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Abstract. The goal of this work is to build a new family of stellar interior solutions

in the anisotropic regime of pressure using the framework of gravitational decoupling

via minimal geometric deformation. For such purpose, we use a generalization of the

complexity factor of the well-known Wyman IIa (n = 1) interior solution in order to

close the Einstein’s Field Equations, as well we use the Wyman IIa, Tolman IV, and

Heintzmann IIa and Durgapal IV models as seeds solutions. These models fulfill the

fundamental physical acceptability conditions for the compactness factor of the system

4U 1820-30. Stability against convection and against collapse are also studied.
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1. Introduction

In the context of General Relativity, stellar systems were thought to be described by

isotropic stellar solutions for a very long time. Thus many models have been developed

since Karl Schwarzschild in 1916 found the first exact solution of Einstein’s Field

Equations (EFE) [1]. Examples of such models are found in several works [2–32].

However, the assumption of modeling a stellar system using isotropic models results

in mathematical models that are incapable of describing more realistic and complex

systems since it is well known that a wide range of physical processes of the sort

that are anticipated in compact objects may induce disturbances of the isotropy and

fluctuations of the local anisotropy in pressure [33]. Indeed, there are numerous physical

processes that could occur in high energy density stellar systems, resulting in local

anisotropy in the system [34]. This local anisotropy can be caused by a wide variety

of physical phenomena that can be found in stellar compact objects. For instance, this

type of phenomenon includes a recombination of fluids, the existence of super-fluids,

the presence of a solid core, phase transitions, and the presence of magnetic fields,
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among others [35–52]. In fact, if the system has a regime of isotropic pressure, the

resulting final stage of stellar evolution should have anisotropic pressure [53]. Even

so, it is worth mentioning that the presence of anisotropy is frequently observed as

a repulsive force that counterbalances the gravitational force and contributes to the

system’s stability [54, 55]. As a result, the goal of obtaining new anisotropic stellar

solutions is highly valued.

For spherically symmetric space-times, whose metric can be written in canonic

coordinates, which has two radial functions ν and λ [19] (see Eq. (3)), the framework

of solving the EFE results in a robust problem where there are three independent

differential equations containing five unknown functions: two geometric functions (ν(r)

and λ(r)), and three physical functions energy density ρ, radial pressure pr and

tangential pressure pt (referred to as the solution’s matter sector). As a result, in

order to close the EFE, two additional conditions must be imposed, which can be

metric function relations or state equations that relate physical quantities. Particularly,

in this manuscript, we use a recently successful framework to solve the EFE well-

known as Gravitational Decoupling (GD) through Minimal Geometric Deformation

(MGD) [56–60](for the extended version of MGD see [61]). In this approach, a known

interior solution is used (a perfect fluid solution is typically used, but an anisotropic

solution can also be used) as seed solution in order to obtain a new interior solution,

which is commonly in the anisotropic regimen of pressure. However, to perform this,

it is still necessary to add an extra condition to close the system of equations. Use

of equations of state, conditions on density and pressure, metric conditions are a few

criteria that have been mentioned in the literature [62–87].

In particular, we use the known complexity factor for self-gravitating spheres as

extra conditions to close the EFE that arises from the use of GD through MGD. In

such a sense, we obtain a new family of anisotropic solutions that fulfills the acceptance

conditions for a realistic stellar compact object. This complexity factor surges from

Herrera’s definition [88, 89], which is related to the notion of the interior structure

of the self-gravitating spherical system; specifically, it is based on the idea that the

simplest compact stellar object is the one that is a perfect fluid (incompressible and

isotropic in its pressure components), and therefore more complex systems are those

that present inhomogeneities in energy density and isotropic pressure deviations. In

particular, the complexity criteria is a cutting-edge instrument that enables us to create

new anisotropic solutions, as a result of which new solutions have recently been found

given the use of this factor in [90–103]. But also, this definition is so adequate that

it has allowed to carry out, its implementation on the study of black holes in the

framework of the Newman–Penrose formalism [104], construct traversable wormholes

geometries [105, 106], an study of the departure from spheroidicity of self-gravitating

spheres [107], its extension for the time dependent case [108], the study of the dynamics

of the gravitational collapse of a compact object [109], for study of axially symmetric

systems [110,111], for the study of cylindrical fluid systems [112–114], even it has been

used in the study of symmetric hyperbolical fluids [115–128], among others.
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This paper is organized as follows: In Sect. 2 we briefly review the EFE and the

main aspects of GD via MGD. In Sect. 3 we introduce the matching conditions. In

Sect. 4 we present the physical acceptability conditions, which will be used to test the

new interior solutions. In Sect. 5 we provided a brief revision about the complexity of

compact sources. In Sect. 6 we found a generalization of the complexity factor for the

Wyman IIa interior solution. In Sects. 7-10, the new models are found by using the

GD through MGD with the Wyman IIa, Tolman IV, Heintzmann IIa and Durpagal IV

solutions as isotropic seeds and the generalization of Wyman IIa (n = 1) as an extra

condition. Finally, in Sect. 11 we discuss the physical acceptance and stability of the

new models.

2. Einstein’s field equations and gravitational decoupling

In this section, we will briefly discuss the main aspects of gravitational decoupling (GD)

via minimal geometric deformation (MGD). The GD approach allows us to solve the

Einstein field equations (EFE)

Gμν ≡ Rμν − 1

2
gμνR = κTμν , (1)

where

Tμν = T (s)
μν + αθμν , (2)

with κ =
8πG

c4
‡, T (s)

μν = diag[ρ(s), p
(s)
r , p

(s)
t , p

(s)
t ] is the matter sector of a known solution

(known as the matter sector of the seed solution), θμν = diag[θ00, θ
1
1, θ

2
2, θ

3
3] is the matter

sector of an unknown extra source and α is a dimensionless factor that measures the

intensity coupling between both sources in EFE.

The corresponding space-time solution of Eq. (1) is related to the interior of a

static self-gravitating system in spherically symmetric space-time, represented by the

line element parametrized as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (3)

where ν and λ are functions that depend only on the radial coordinate r. In what

follows, using the Eq. (3) in Eq. (1) and considering the Eq. (2), we arrive at

κρ =
1

r2
+ e−λ

(
λ′

r
− 1

r2

)
, (4)

κpr = − 1

r2
+ e−λ

(
ν ′

r
+

1

r2

)
, (5)

κpt =
e−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2

ν ′ − λ′

r

)
, (6)

‡ In this work we shall use G = c = 1.
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where a new matter sector is defined as

ρ = ρ(s) + θ00 , (7)

pr = p(s)r − θ11 , (8)

pt = p
(s)
t − θ22 . (9)

The way we have introduced the energy-momentum tensor in the expression (2)

brings to light a simple separation of the constituents of the matter sector, but due to

the non-linearity of the EFE, it seems a priori that it is not possible to separate into

two groups of equations for each constituent. However, it is feasible in the context of

the GD.

The core concept of GD is to introduce a geometric deformation that affects the

space-time of the seed solution (solution of (1) when Tμν = T
(s)
μν ) given by

ds2 = eξdt2 − eμ − r2(dθ2 + sin2 θdφ2), (10)

in order to codify the influence of the unknown source θμν over Tμν , in the following way

ν −→ ξ + αg, (11)

e−λ −→ e−μ + αf, (12)

where {ξ, μ} are functions only of radial coordinate r, {f, g} are the so-called decoupling

functions and α is the same parameter in Eq. (2). In general, one could consider the two

deformations in both metrics (radial and temporal), however, in this work we shall use

the MGD approach, in which the decoupling functions g = 0 and f �= 0. Now applying

the MGD technique, we can straightforwardly split the system of equations (4)-(6) into

two sets; the first one is obtained by doing α = 0, and it reads as

κρ(s) =
1

r2
− e−μ

(
1

r2
− μ′

r

)
, (13)

κp(s) = − 1

r2
+ e−μ

(
1

r2
+

ξ′

r

)
, (14)

κp(s) =
e−μ

4

(
2ξ′′ + ξ′2 − μ′ξ′ + 2

ξ′ − μ′

r

)
. (15)

The second set of equations is obtained by turning on the parameter α, i.e., α �= 0,

so that contains the effects of the source θμν and reads

κθ00 = − f

r2
− f ′

r
, (16)

κθ11 = − f

(
1

r2
+

ν ′

r

)
, (17)

κθ22 = − f

4

(
2ν ′′ + ν ′2 +

2ν ′

r

)
− f ′

4

(
ν ′ +

2

r

)
. (18)
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Furthermore, the contracted Bianchi identities ensure that the Einstein tensor is

divergence-free. Then, by the Eq. (1), we can derive the covariant conservation of the

energy-momentum tensor as follows:

�μT
μν = 0. (19)

Furthermore, T
(s)
μν satisfies the following conservation equation

∇μT
(s)
μν = p′(s) +

ν ′

2
(ρ(s) + p(s)) = 0, (20)

since T
(s)
μν corresponds to a known “seed” source that satisfies its respective EFE. Note

that Eq. (20) is a linear combination of Eqs. (13)-(15). Thus, automatically, the source

θμν fulfills the following expression

∇μθ
μν =

(
θ11
)′
+

ν ′

2

(
θ00 − θ11

)
+

2

r

(
θ22 − θ11

)
= 0. (21)

It is worth noticing that Eq. (21) can also be obtained as a linear combination of Eqs.

(16)-(18). Furthermore, note that Eqs. (20) and (21) imply that the interaction between

the source Tμν and the source θμν is purely gravitational, i.e., there is no exchange of

energy-momentum.

3. Matching conditions

At the boundary of the stellar compact object (r = R), the metric components eν and

e−λ should match continuously with the Schwarzschild exterior solution, namely

eν |r=R = e−λ|r=R = 1− 2M

R
, (22)

where M and R are the total mass and radius of star, respectively.

As also is necessary that

pr(r = R) = 0 (23)

since the exterior of star in this case is considered empty.

4. Physical acceptability conditions

The fundamental physical requirements necessary to any interior solution can describe

a realistic stellar compact object are (see Ref [129] for a detailed discussion of these

conditions):

C1. In the interior of a stellar compact object, the metrics eν and eλ should be finite

and regular; additionally, e−ν(0) = constant and e−λ(0) = 1.

C2. The matter sector given by the density energy ρ, radial pressure pr and transversal

pressure pt should be positive and regular inside the compact object. They should

be decreasing functions of the radial coordinate r, with their maximum values at

the center. Furthermore, the radial pressure should vanish at the boundary, and

pr|r=0 = pt|r=0.
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C3. The Dominant Energy Condition (DEC) ρ − pr ≥ 0 and ρ − pt ≥ 0 should be

fullfiled inside the stellar compact object.

C4. The surface redshift z(r) = g
−1/2
tt (r) − 1 should decrease outward and its value

at the surface is less than the universal bound for interior solutions satisfying the

DEC, namely zbound = 5.211 [130].

C5. The stability of the stellar object requires that the fluid speed of sound should be

less than the speed of light, which leads 0 ≤ vr =
√

dpr
dρ
≤ 1 and 0 ≤ vt =

√
dpt
dρ
≤ 1

within a stellar compact object.

5. Complexity of compact sources

The concept of complexity is highly dependent on the subject of study, particularly, in

this work, we shall use a definition of complexity for static and spherically symmetric

self-gravitational systems, which was recently proposed by L. Herrera [88, 89] in the

context of general relativity. This definition is based on the idea that the simplest

system is the one with perfect fluid distribution and that more complex systems are

those that vary from this fundamental system, especially those that deviate from the

regular pattern of constant energy density and pressure isotropy.

Specifically, such a definition surges from the existence of a structure scalar that

is connected to the orthogonal splitting of the Riemann tensor [131, 132] in static and

spherically symmetric space-times (for the first time, such a scalar and others were

thoroughly examined in [133]). This scalar captures the concept of complexity since

it measures the relationship between the inhomogeneity in the energy density and the

pressure anisotropy of a static and spherically symmetric self-gravitational system. This

scalar is given by

YTF = κΠ− κ

2r3

∫ r

0

r̃3ρ′dr̃, (24)

with Π ≡ pr − pt.

Additionally, it can be demonstrated that (24) permits one to express the Tolman

mass as

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YTFdr̃, (25)

which, includes all the alterations caused by the energy density inhomogeneity and the

anisotropy of the pressure on the active gravitational mass, namely, the Tolman mass,

which is a combination of its value for a zero-complexity system and two other terms

related to energy density inhomogeneity and pressure anisotropy, respectively. It can

be viewed as a convincing justification to define the complexity factor by means of

this scalar. Thus, this scalar represents an appropriate parameter that characterizes the

complexity of self-gravitating static spheres since, firstly, it is based on a structure scalar

(which is critical because it ensures that this characteristic is founded on a quantity that

is invariant for any observer) that contains all physical parameters of the matter sector
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of the interior of the self-gravitating sphere, and very particularly, it depends on the

inhomogeneity in the energy density and the anisotropy in the pressure, which is in

perfect relation that the most simplest system is the perfect fluid sphere and the more

complex are those who move away from that system.

Now, it is worth noticing that if one uses the EFE (4)-(6) in (24) arrives at

YTF =
e−λ

4r
(ν ′(2 + rλ′ − rν ′)− 2rν ′′) , (26)

which represents an alternative way to calculate YTF through the knowledge of the

space-time inside of a compact source.

Particularly, Eq. (24) has been used as a state equation in order to construct new

interior solutions for self-gravitating spheres. For example, it is significant to note that

the vanishing complexity criterion, often known as the YTF = 0 condition, is met not

only in the most straightforward instances of isotropic and homogeneous systems, but

also in the situations where

Π =
1

2r3

r∫
0

r̃3ρ′dr̃, (27)

namely, in the scenarios where the pressure anisotropy and energy inhomogeneity cancel

each other.

The system of EFE can be closed using Eq. (27) as a complementing condition

because it reflects a non-local equation of state (an interesting formalism to construct

solutions with such a characteristic is developed recently in [101]). However, one can

explore different values of the complexity factor distinct from zero in order to find new

solutions, so in this work, a specific value for this scalar is proposed in the next section.

6. The generalized Wyman IIa complexity factor

In this current work, we use as an extra condition a specific value of the complexity

factor in order to close the EFE resulting from GD through MGD. Thus, in order to

use its complexity factor as a supplementary condition, we use the Wyman IIa (with

n = 1) [20,134] solution given by the following metrics

eξ =
(
A0 − B0r

2
)2

(28)

e−μ = 1 +
C0r

2

(A0 − 3B0r2)
2/3

, (29)

where A0 is a dimensionless constant, B0 and C0 are constants with units of length−2.
So in such a way, we replace Eqs.(28) and (29) in (26) to obtain

YTF =
2B0C0r

2

(A0 − 3B0r2)
5/3

, (30)

which can be generalized as

YTF =
a1r

2

(a2 + a3r2)
5/3

, (31)
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where a1 is an arbitrary constant with units of length−4, a2 is an arbitrary dimensionless

constant, and a3 must be a constant with units of length−2.
Using Eq. (12) in (26) yields the following differential equation:

αξ′

4
f ′ +

α

2

(
ξ′′ − ξ′

r
+

ξ′2

2

)
f

+
e−μ

2

(
ξ′′ − ξ′

r
+

ξ′2

2
− μ′ξ′

2

)
+ YTF = 0, (32)

which permits us to obtain the decoupling function f given the pair {ξ, μ} (the seed

solution) and a specific value of YTF .

7. Model 1: like-Wyman IIa solution

In this part, we shall obtain a new interior solution with the Wyman IIa (n = 1)

complexity factor. In such a sense, we use as a seed solution the Wyman IIa (with

n = 1) given by (28) and (29) in (32), obtaining

f(r) = c1 −
4C0r2

(A0−3B0r2)
2/3 +

3a1(a3A0+3a2B0+2a3B0r2)
a23B0(a2+a3r2)

2/3

4α
(33)

where c1 is an integration constant. Thus, taking this f in Eq.(12), we obtain the new

radial metric given by

e−λ = 1 + αc1 − 3a1 (a3A0 + 3a2B0 + 2a3B0r
2)

4a23B0 (a2 + a3r2)
2/3

. (34)

However, such a value of e−λ leads us to have a material sector with divergence problems.

Therefore, in order to solve this problem, it can be prove that the constant c1 must satisfy

c1 =
3a1(a3A0 + 3a2B0)

4αa
2/3
2 a23B0

. (35)

Thus, e−λ is redefined as

e−λ = 1 +

3a1

(
a3A0

a
2/3
2 B0

− a3A0+3a2B0+2a3B0r2

B0(a2+a3r2)
2/3 + 3 3

√
a2

)
4a23

. (36)
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Now, from the system (4)-(6) we arrive at

ρ =
a1

4a
2/3
2 a23B0κr2χ(r)5/3

[
a
2/3
2 ϕ1(r)− 3χ(r)5/3(a3A0 + 3a2B0)

]
(37)

pr = − 1

κr2

[
1−

(
5− 4A0

A0 − B0r2

)

×

⎛
⎜⎜⎝1 +

3a1

(
a3A0

a
2/3
2 B0

− ϕ2(r)

B0χ(r)2/3
+ 3 3
√
a2

)
4a23

⎞
⎟⎟⎠

]
(38)

pt = − 1

2κ

[
8B0

A0 − B0r2
+

3a1ϕ3(r)

a23 (B0r2 − A0)χ(r)5/3

+ a1A0

(
6

a
2/3
2 (a3A0 − a3B0r2)

− 1

B0χ(r)5/3

)]
, (39)

where the functions χ(r), ϕ1(r), ϕ2(r) and ϕ3(r) are auxiliary functions (see the

Appendix, Sect. 13).

Finally, the continuity of the first and second fundamental forms leads to

a1 =
16a

2/3
2 a23B

2
0R

2χ(R)2/3

3 (A0 − 5B0R2)

[
(a3A0 + 3a2B0)χ(R)2/3 − 3a

5/3
2 B0

− a
2/3
2 a3

(
A0 + 2B0R

2
) ]

, (40)

A0 =
B0R

2(5M − 2R)

M
, (41)

B2
0 =

M2

4R5(R− 2M)
, (42)

with χ(R) = χ|r=R.

It is worth noting that R > 2M is derived from Eq. (41), which is consistent with

the requirement that any stable configuration should be greater than its Schwarzschild

radius.

8. Model 2: like-Tolman IV solution

In this case, we use the Tolman IV solution [19] as a seed solution, which is given by

eξ = B2

(
r2

A2
+ 1

)
, (43)

e−μ =
(A2 + r2) (C2 − r2)

C2 (A2 + 2r2)
, (44)

where A, B and C are constants. So, realizing the same procedure as in the last section,

but using the Tolman IV solution, we obtain

f =
A2 + r2

2αC2

[
2C2

A2
− 2(C − r)(C + r)

A2 + 2r2
+

3a1C
2

(
1

χ(r)2/3
− 1

a
2/3
2

)
a3

]
, (45)
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with which in (4) we arrives at

e−λ =
A2 + r2

2A2a
2/3
2 a3χ(r)2/3

[
2a

2/3
2 a3χ(r)

2/3 + 3A2a1

(
a
2/3
2 − χ(r)2/3

)]
. (46)

Now, using EFE (4)-(6), one obtains the new matter sector

ρ =
1

2κ

[
− 6

A2
+

a1
a3

(
9

a
2/3
2

− 9a2 + 5a3r
2

χ(r)5/3

)

+
a1A

a3r2

(
3

a
2/3
2

+
a3r

2 − 3a2
χ(r)5/3

)]
(47)

pr =
3

2κ

[
2

A2
+

3a1
a3

(
1

χ(r)2/3
− 1

a
2/3
2

)
+

a1A
2

a3r2

(
1

χ(r)2/3
− 1

a
2/3
2

)]
(48)

pt =
1

κ

[
6

A2
− 9a1

a
2/3
2 a3

+
a1 (−2a3A2 + 9a2 + 5a3r

2)

a3χ(r)5/3

]
(49)

Now, applying the matching conditions, we obtain the following

a1 =
2a

2/3
2 a3R

2χ(R)2/3

A2 (A2 + 3R2)
(
χ(R)2/3 − a

2/3
2

) , (50)

A2 =
R2(R− 3M)

M
, (51)

B2 = 1− 3M

R
. (52)

9. Model 3: like-Heintzmann IIa solution

In this case, we consider the Heintzmann IIa solution [20,135] as a seed, which is given

by

eξ = A2
(
Br2 + 1

)3
, (53)

e−μ = 1−
3Br2

(
1 + C√

4Br2+1

)
2 (Br2 + 1)

, (54)

where A, B and C are constants. Then, using the same procedure as in the previous

sections, we found

f =
1

12αB (Br2 + 1)

[
6B2r2 +

18B2Cr2√
4Br2 + 1

− 3a1 (9a
2
2B

2 − 12a2a3B + 2a23)

a
2/3
2 a33

+
3a1 (9a

2
2B

2 + 6a2a3B (Br2 − 2))

a33χ(r)
2/3

− 3a1 (a
2
3 (Br2 (Br2 + 8)− 2))

a33χ(r)
2/3

]
. (55)
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In such a sense, the new radial metric is

e−λ =
1

4 (Br2 + 1)

[
a1 (−9a22B2 + 12a2a3B − 2a23)

a
2/3
2 a33B

+
a1 (9a

2
2B

2 + 6a2a3B (Br2 − 2))

a33Bχ(r)2/3

− a1a
2
3 (Br2 (Br2 + 8)− 2)

a33Bχ(r)2/3
+ 4

]
. (56)

Now, using EFE (4)-(6), we arrive at

ρ =
1

12Br2 (Br2 + 1)2 κ

[
12B2r2

(
Br2 + 3

)
+

a1ϕ4(r)

a
2/3
2 a33χ(r)

5/3

]
, (57)

pr = − 1

κr2

[
1− 7Br2 + 1

4 (Br2 + 1)2

(
4 +

a1ϕ5(r)

a33Bχ(r)2/3

+
a1 (−9a22B2 + 12a2a3B − 2a23)

a
2/3
2 a33B

)]
, (58)

pt =
1

12Bκ (Br2 + 1)2

[
a1ϕ6(r)

a
2/3
2 a33χ(r)

5/3
+ 60B2

]
, (59)

where ϕ4(r), ϕ5(r) and ϕ6(r) are auxiliary functions defined in Sect. 13. Now from

matching conditions we have

a1 =
4a

2/3
2 a33B

2R2 (BR2 − 5)χ(R)2/3

7BR2 + 1

[
9a

8/3
2 B2

− a
2/3
2 a23

(
BR2

(
BR2 + 8

)− 2
)
+ 6a

5/3
2 a3B

(
BR2 − 2

)
− (

9a22B
2 + 2a23 − 12a2a3B

)
χ(R)2/3

]−1
, (60)

B =
M

R2(3R− 7M)
, (61)

A2 =
(3R− 7M)3

27R(R− 2M)2
. (62)

Eqs. (61) and (62) show that M/R < 3/7 < 4/9 corresponds to less compact

solutions than the Buchdahl’s limit allows for isotropic solutions.

10. Model 4: like-Durgapal IV solution

In this last case, we consider the Durgapal IV solution [20,136] as a seed solution

eξ = A
(
Cr2 + 1

)4
, (63)

e−μ =
BCr2

(Cr2 + 1)2 (5Cr2 + 1)2/5
+

7− 10Cr2 − C2r4

7 (Cr2 + 1)2
, (64)
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where A, B and C are constants. After realizing the same procedure applied in the last

sections, we found the decoupling function

f =
1

112αC (Cr2 + 1)2

[
160C2r2 + 16C3r4 − 112BC2r2

(5Cr2 + 1)2/5
+

3a1ϕ7(r)

a43χ(r)
2/3

+
3a1

a
2/3
2 a43

(
81a32C

3 − 189a22a3C
2 + 126a2a

2
3C − 14a33

)]
, (65)

where ϕ7(r) is an auxiliary function defined in Sect. 13. Thus, the resulting radial

metric is

e−λ =
1

112 (Cr2 + 1)2

[
112 +

3a1ϕ7(r)

a43Cχ(r)2/3

+
3a1

a
2/3
2 a43C

(
81a32C

3 − 189a22a3C
2 + 126a2a

2
3C − 14a33

)]
. (66)

Then, from EFE (4)-(6) we obtain

ρ =
1

112Cκ (Cr2 + 1)3

[
112C2

(
Cr2

(
Cr2 + 3

)
+ 6

)
+

a1ϕ8(r)

a
2/3
2 a43r

2χ(r)5/3

]
, (67)

pr = − 1

κr2

[
1− 9Cr2 + 1

112 (Cr2 + 1)3

(
112 +

3a1ϕ9(r)

a43Cχ(r)2/3

+
3a1

a
2/3
2 a43C

(
81a32C

3 − 189a22a3C
2 + 126a2a

2
3C − 14a33

))]
, (68)

pt =
336C2 + a1ϕ10(r)

a
2/3
2 a43χ(r)

5/3

56Cκ (Cr2 + 1)3
, (69)

where ϕ8(r), ϕ9(r) and ϕ10(r) are auxiliary functions defined in Sect. 13.

So using the matching conditions, we obtain

a1 =
112a

2/3
2 a43C

2R2 (CR2 (CR2 + 3)− 6)χ(R)2/3

3 (9CR2 + 1)

×
[
81a

11/3
2 C3 + 14a33χ(R)2/3 − 126a2a

2
3Cχ(R)2/3

+ 189a22a3C
2χ(R)2/3 − 81a32C

3χ(R)2/3 + 27a
8/3
2 a3C

2
(
2CR2 − 7

)
− 9a

5/3
2 a23C

(
CR2

(
CR2 + 14

)− 14
)

+ a
2/3
2 a33

(
CR2

(
CR2

(
4CR2 + 21

)
+ 84

)− 14
) ]−1

, (70)

C =
M

R2(4R− 9M)
, (71)

A =
1− 2M

R(
M

4R−9M + 1
)4 . (72)

Note that from Eqs.(71) and (72), the solution must satisfy M/R < 4/9, which

corresponds to the Buchdahl’s limit.
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11. Results and discussion

In this section, we analyse the physical acceptance of the new models developed in

this manuscript, as we will also discuss these results. For such purposes, we had taken

into account the compactness factor of the system 4U 1820-30 (see Table 1). Also, we

checked that the models behaved regularly if we set the constants a2 and a3 in the way

of Table 2. It is worth mentioning that these models can be used for other systems by

changing the values of the parameters a2 and a3 in a correct manner in order to ensure

compliance with the physical acceptance conditions.

Table 1. Physical parameters for the compact star 4U 1820-30.

Compact start M/M� R(km) u = M/R ρ(0)/ρ(R) Z(R)

4U 1820-30 [137] 1.58 9.1 0.2501 2.0266 [137] 0.414496

Table 2. Energy density ratio predicted by all new models.

Model ρ(0)/ρ(R)

like-Wyman 2.1263

like-Tolman IV 4.37376

like-Heinztmann 2.16077

like-Durgapal IV 2.15727

11.1. Metrics

The metrics eν and e−λ are plotted in Figs. 1 and 2, respectively. We observe from these

figures that condition C1 of Sect. 4 is satisfied for all models. It is interesting that the

value of eν is higher for the Model 1 compared with the other models.

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r/R

�
�

Figure 1. eν for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.
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Figure 2. e−λ for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

11.2. Matter sector

In Figs. 3, 4 and 5 the energy density, radial and tangential pressures are shown. We

can see from these figures that condition C2 is met for all models, namely that the

matter sector is positive and regular within the compact object. The energy density,

radial pressure, and tangential pressure are decreasing functions of radial coordinate

r, having their maximum values at the center of the stellar object. Furthermore, the

radial pressure should vanish at the boundary and pr|r=0 − pt|r=0 = 0 (See. Fig. 6). At

this point, it is worth noting that the behavior of the energy density and the anisotropy

pressure for the Model 2 (like-Tolman IV) is distinct from others models.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

r/R

�
�

Figure 3. ρ for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3 (purple

line), Model 4 (red line) and parameters in Table 2.

11.3. Dominant Energy conditions and causality

The profiles of ρ − pr and ρ − pt are shown in Figs. 7 and 8, respectively. In these

figures, we can observe that the DEC is fulfilled by all models. Also, we observe that

for the Model 2 the values of these profiles are higher than the rest of the models.
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Figure 4. pr for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.
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Figure 5. pt for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3 (purple

line), Model 4 (red line) and parameters in Table 2.
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�
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Figure 6. pt − pr for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

On the other hand, we plotted the internal sound velocities in the radial and

tangential directions in Figs. 9 and 10. We observed from them that condition C5 is

satisfied by every model, namely, that they do not surpass the relativistic limit of light

velocity. Also, we have to note that for the Model 2 such profiles of sound velocities
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have a steeper slope than the rest of the models.
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Figure 7. ρ − pr for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.
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Figure 8. ρ − pt for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.
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Figure 9. vr for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.
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Figure 10. vt for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

11.4. Redshift

In Fig. 11, the redshift z is plotted. In this figure, we observe that z is a monotonously

function of the radial coordinate, having its maximum value at the center of the compact

object. Also, it is noticeable that the surface redshift value is below the universal bound

of zbound = 5.211.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5
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0.7

0.8

0.9

1.0

r/R
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Figure 11. z for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

Because the Model 2 exhibits non-monotonic anisotropy and its sound velocities

inside the star exhibit distinct behavior in comparison to the other models, it can be

inferred that this model may be unstable. Therefore, in this work, we go one step further

and study the stability of the solution in the next two subsections.

11.5. Stability against convection

Any fluid element pushed downward must float back to its original position. Such a

principle should be satisfied by any fluid that supports a self-gravitating sphere in order
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to remain stable during convection. It was demonstrated in [138] in such a way that

ρ′′ ≤ 0. (73)

So in the Fig. 12, the profile of ρ′′ is shown. In this figure, we observe that all

models do not fulfill this stability condition. Specifically, ρ′′ ≤ 0 is satisfied in the inner

regions of the star, while the outer regions are unstable. Furthermore, it is observable

that ρ′′ has a different behaviour for Model 2 against the other models.

0.0 0.2 0.4 0.6 0.8 1.0

-30

-20

-10

0

10

r/R

�
''

Figure 12. ρ′′ for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

11.6. Stability against collapse

In order to study the instability of the models against collapse, it is necessary to analyse

the behavior of the adiabatic index (Γ) in the radial direction given by

Γ =
ρ+ pr
pr

dpr
dρ

, (74)

which should satisfy

Γ ≥ Γcrit, (75)

with

Γcrit =
4

3
+

19

21

M

R
. (76)

The relationship mentioned above accounts for relativistic adjustments to the

adiabatic index Γ that can cause instabilities inside the star. So in this way, the stability

condition (76) applies to any relativistic compact object supported by an anisotropic

fluid (for a detailed discussion about this point, see Refs. [73, 139,140].

The adiabatic index profile is then displayed in Fig. 13 as a function of radial

coordinate. It is observable from this figure that the Model 2 presents instability against

collapse for the parameters shown in the caption. While, in the rest of the models, we

checked that they have stability against collapse, namely, that they satisfy the condition

(75).
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Figure 13. Γ for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

Now, the density ratio for the system 4U 1820-30 is ρ(0)/ρ(R) ≈ 2.0266 [137], which

is near the predictions of Model 1, Model 3 and Model 4 (see Table 2). While the value

predicted by Model 2 is so far with this value. Then, we have that the Model 1, Model

2 and Model 3 are appropriate in order to model the system 4U 1820-30, and the Model

2 results inadequate in such purpose.

12. Final Remarks

In conclusion, the models constructed in this work satisfy the essential physical

requirements listed in Sect. 4, namely, they have the regular behavior of a realistic

stellar compact object for the parameters shown in Table 2. Respecting the relation of

energy density ρ(0)/ρ(R) results in all models fitting accurately to the system 4U 1820-

30 except for the Model 2 which departures from the value of such ratio. Instability

against convective motion is nonetheless presented by the models. But on the other

hand, all of the other models, with the exception of Model 2, exhibit stability in the

face of collapse. Therefore, it may be worth conducting a study in the future of the

behavior of the matter sector of these models against small perturbations and being

able to relate the results to those found here in Sect. 11.5 and 11.6. Moreover, the

current work is important given that, together with the previous works [90,91], they are

evidence that GD can be used through the MGD together with a non-zero complexity

factor condition in order to find new families of anisotropic interior solutions, which can

also be regulated through their parameters to be able to model some realistic compact

stellar systems.

Finally, it would be very interesting to use the same technique performed here in

order to find new anisotropic solutions with other generalizations of the complexity

factor of a known solution or to use the extended version of the MGD instead of

the MGD. It is worth noting that not only new solutions with vanishing complexity

are valuable, but also solutions with non vanishing complexity should be interesting.

Of course, this would imply a complicated mathematical challenge when it comes to
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considering geometric deformation in both metrics, radial and temporal, which, to date,

with the exception of the use of vanishing complexity, has not been done already.

13. Appendix: Auxiliary functions

χ = a2 + a3r
2

ϕ1 = a3r
2(15a2B0 − A0a3) + 3a2(a3A0 + 3a2B0) + 10a23B0r

4

ϕ2 = a3A0 + 3a2B0 + 2a3B0r
2

ϕ3 = 2a2a3A0 + a23A0r
2 + 6a22B0 − 6 3

√
a2B0χ(r)

5/3

+ 10a2a3B0r
2 + 5a23B0r

4

ϕ4 = 27a
11/3
2 B2

(
Br2 − 1

)
− 27a32B

2
(
Br2 − 1

)
χ(r)2/3

− 6a33r
2
(
Br2 − 1

)
χ(r)2/3

+ 3a
5/3
2 a23

(
Br2 − 1

) (
5Br2

(
Br2 − 4

)
+ 2

)
+ 9a

8/3
2 a3B

(
Br2

(
5Br2 − 9

)
+ 4

)
− 9a22a3B

(
Br2

(
3Br2 − 7

)
+ 4

)
χ(r)2/3

+ 6a2a
2
3

(
Br2

(
6Br2 − 7

)
+ 1

)
χ(r)2/3

+ a
2/3
2 a33r

2
(
Br2

(
Br2

(
5Br2 + 3

)
+ 54

)
+ 2

)
ϕ5 = 9a22B

2 + 6a2a3B
(
Br2 − 2

)− a23
(
Br2

(
Br2 + 8

)− 2
)

ϕ6 = 135a
11/3
2 B3 − 135a32B

3χ(r)2/3

− 30a33Br2χ(r)2/3

+ 45a22a3B
2
(
4− 3Br2

)
χ(r)2/3

+ 45a
8/3
2 a3B

2
(
5Br2 − 4

)
+ 30a2a

2
3B

(
6Br2 − 1

)
χ(r)2/3

+ 15a
5/3
2 a23B

(
5Br2

(
Br2 − 4

)
+ 2

)
− a

2/3
2 a33

(
Br2

(
Br2

(
31Br2 + 156

)− 6
)
+ 4

)
ϕ7 = − 81a32C

3 + 27a22a3C
2
(
7− 2cr2

)
+ 9a2a

2
3C

(
Cr2

(
Cr2 + 14

)− 14
)

− (
a33

(
Cr2

(
Cr2

(
4Cr2 + 21

)
+ 84

)− 14
))

ϕ8 = 243a
14/3
2 C3

(
1− 3Cr2

)
+ 42a43r

2
(
1− 3Cr2

)
χ(r)2/3

+ 243a42C
3
(
3Cr2 − 1

)
χ(r)2/3

− 81a
11/3
2 a3C

2
(
3Cr2 − 1

) (
5Cr2 − 7

)
+ 42a2a

3
3

(
3Cr2 − 1

) (
9Cr2 − 1

)
χ(r)2/3
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− 27a
8/3
2 a23C

(
3Cr2 − 1

) (
5Cr2

(
Cr2 − 7

)
+ 14

)
− 189a22a

2
3C

(
9Cr2

(
Cr2 − 1

)
+ 2

)
χ(r)2/3

+ 81a32a3C
2
(
3Cr2

(
3Cr2 − 8

)
+ 7

)
χ(r)2/3

+ 3a
5/3
2 a33

(
3Cr2 − 1

)
ϕ11 + a

2/3
2 a43r

2ϕ12

ϕ9 = − 81a32C
3 + 27a22a3C

2
(
7− 2Cr2

)
+ 9a2a

2
3C

(
Cr2

(
Cr2 + 14

)− 14
)

− (
a33

(
Cr2

(
Cr2

(
4Cr2 + 21

)
+ 84

)− 14
))

ϕ10 = − 729a
14/3
2 C4 + a

2/3
2 a43ϕ13(r)

+ 729a42C
4χ(r)2/3 − 126a43Cr2χ(r)2/3

+ 243a32a3C
3
(
3Cr2 − 7

)
χ(r)2/3

− 567a22a
2
3C

2
(
3Cr2 − 2

)
χ(r)2/3

+ 126a2a
3
3C

(
9Cr2 − 1

)
χ(r)2/3

− 243a
11/3
2 a3C

3
(
5Cr2 − 7

)
− 81a

8/3
2 a23C

2
(
5Cr2

(
Cr2 − 7

)
+ 14

)
+ 9a

5/3
2 a33C

(
5Cr2

(
Cr2

(
Cr2 + 21

)− 42
)
+ 14

)
ϕ11 = 5Cr2

(
Cr2

(
Cr2 + 21

)− 42
)
+ 14

ϕ12 = Cr2
(
Cr2

(
Cr2

(
20Cr2 + 47

)− 357
)
+ 602

)
+ 14

ϕ13 = 14 + Cr2
(
Cr2

(
Cr2

(
106Cr2 + 413

)
+ 1008

)− 14
)
.
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