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Abstract. The goal of this work is to build a new family of stellar interior solutions
in the anisotropic regime of pressure using the framework of gravitational decoupling
via minimal geometric deformation. For such purpose, we use a generalization of the
complexity factor of the well-known Wyman IIa (n = 1) interior solution in order to
close the Einstein’s Field Equations, as well we use the Wyman Ila, Tolman IV, and
Heintzmann ITa and Durgapal IV models as seeds solutions. These models fulfill the
fundamental physical acceptability conditions for the compactness factor of the system
4U 1820-30. Stability against convection and against collapse are also studied.
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1. Introduction

In the context of General Relativity, stellar systems were thought to be described by
isotropic stellar solutions for a very long time. Thus many models have been developed
since Karl Schwarzschild in 1916 found the first exact solution of Einstein’s Field
Equations (EFE) [1]. Examples of such models are found in several works [2-32].
However, the assumption of modeling a stellar system using isotropic models results
in mathematical models that are incapable of describing more realistic and complex
systems since it is well known that a wide range of physical processes of the sort
that are anticipated in compact objects may induce disturbances of the isotropy and
fluctuations of the local anisotropy in pressure [33]. Indeed, there are numerous physical
processes that could occur in high energy density stellar systems, resulting in local
anisotropy in the system [34]. This local anisotropy can be caused by a wide variety
of physical phenomena that can be found in stellar compact objects. For instance, this
type of phenomenon includes a recombination of fluids, the existence of super-fluids,
the presence of a solid core, phase transitions, and the presence of magnetic fields,
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among others [35-52]. In fact, if the system has a regime of isotropic pressure, the
resulting final stage of stellar evolution should have anisotropic pressure [53]. Even
S0, it is worth mentioning that the presence of anisotropy is frequently observed as
a repulsive force that counterbalances the gravitational force and contributes to the
system’s stability [54,55]. As a result, the goal of obtaining new anisotropic stellar
solutions is highly valued.

For spherically symmetric space-times, whose metric can be written in canonic
coordinates, which has two radial functions v and A [19] (see Eq. (3)), the framework
of solving the EFE results in a robust problem where there are three independent
differential equations containing five unknown functions: two geometric functions (v(r)
and A(r)), and three physical functions energy density p, radial pressure p, and
tangential pressure p; (referred to as the solution’s matter sector). As a result, in
order to close the EFE, two additional conditions must be imposed, which can be
metric function relations or state equations that relate physical quantities. Particularly,
in this manuscript, we use a recently successful framework to solve the EFE well-
known as Gravitational Decoupling (GD) through Minimal Geometric Deformation
(MGD) [56-60](for the extended version of MGD see [61]). In this approach, a known
interior solution is used (a perfect fluid solution is typically used, but an anisotropic
solution can also be used) as seed solution in order to obtain a new interior solution,
which is commonly in the anisotropic regimen of pressure. However, to perform this,
it is still necessary to add an extra condition to close the system of equations. Use
of equations of state, conditions on density and pressure, metric conditions are a few
criteria that have been mentioned in the literature [62-87].

In particular, we use the known complexity factor for self-gravitating spheres as
extra conditions to close the EFE that arises from the use of GD through MGD. In
such a sense, we obtain a new family of anisotropic solutions that fulfills the acceptance
conditions for a realistic stellar compact object. This complexity factor surges from
Herrera’s definition [88, 89], which is related to the notion of the interior structure
of the self-gravitating spherical system; specifically, it is based on the idea that the
simplest compact stellar object is the one that is a perfect fluid (incompressible and
isotropic in its pressure components), and therefore more complex systems are those
that present inhomogeneities in energy density and isotropic pressure deviations. In
particular, the complexity criteria is a cutting-edge instrument that enables us to create
new anisotropic solutions, as a result of which new solutions have recently been found
given the use of this factor in [90-103]. But also, this definition is so adequate that
it has allowed to carry out, its implementation on the study of black holes in the
framework of the Newman—Penrose formalism [104], construct traversable wormholes
geometries [105,106], an study of the departure from spheroidicity of self-gravitating
spheres [107], its extension for the time dependent case [108], the study of the dynamics
of the gravitational collapse of a compact object [109], for study of axially symmetric
systems [110,111], for the study of cylindrical fluid systems [112-114], even it has been
used in the study of symmetric hyperbolical fluids [115-128], among others.
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This paper is organized as follows: In Sect. 2 we briefly review the EFE and the
main aspects of GD via MGD. In Sect. 3 we introduce the matching conditions. In
Sect. 4 we present the physical acceptability conditions, which will be used to test the
new interior solutions. In Sect. 5 we provided a brief revision about the complexity of
compact sources. In Sect. 6 we found a generalization of the complexity factor for the
Wyman ITa interior solution. In Sects. 7-10, the new models are found by using the
GD through MGD with the Wyman Ila, Tolman IV, Heintzmann ITa and Durpagal IV
solutions as isotropic seeds and the generalization of Wyman Ila (n = 1) as an extra
condition. Finally, in Sect. 11 we discuss the physical acceptance and stability of the
new models.

2. Einstein’s field equations and gravitational decoupling

In this section, we will briefly discuss the main aspects of gravitational decoupling (GD)
via minimal geometric deformation (MGD). The GD approach allows us to solve the
Einstein field equations (EFE)

1

G;,LI/ = R,m/ - §guuR = "{Tulla (1)
where
T;ux = iT;Si) + ae;w ) (2)
87G. . | .
with kK = :—41, TS = diag[p®, pt, p*, p{*)] is the matter sector of a known solution

(known as the matter sector of the seed solution), 8, = diag[6}), 67,03, 03] is the matter
sector of an unknown extra source and « is a dimensionless factor that measures the
intensity coupling between both sources in EFE.

The corresponding space-time solution of Eq. (1) is related to the interior of a
static self-gravitating system in spherically symmetric space-time, represented by the
line element parametrized as

ds® = e’dt? — e dr? — r2(d6* + sin® 0d¢?), (3)

where v and A are functions that depend only on the radial coordinate r. In what
follows, using the Eq. (3) in Eq. (1) and considering the Eq. (2), we arrive at

1 N1
Kp :ﬁ—i—e <r_7’2>7 (4)
1 BVAZN!
Hpr:_ﬁ—i_e (T+7”2)’ (5)
—-A I\
Kpr = eT <2V" TR (Y X ) , (6)
T

1 In this work we shall use G = c¢=1.
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where a new matter sector is defined as

p =p¥+6), (7)
pr=p — 01, (8)
pe=p" — 03 (9)
The way we have introduced the energy-momentum tensor in the expression (2)

brings to light a simple separation of the constituents of the matter sector, but due to
the non-linearity of the EFE, it seems a priori that it is not possible to separate into
two groups of equations for each constituent. However, it is feasible in the context of
the GD.

The core concept of GD is to introduce a geometric deformation that affects the
space-time of the seed solution (solution of (1) when 7T}, = T,)) given by

ds® = edt* — e — r?(df* 4 sin? 0dp?), (10)
in order to codify the influence of the unknown source 8, over T, in the following way
v— &+ ayg, (11)
e — eM taf, (12)

where {£, i} are functions only of radial coordinate r, {f, g} are the so-called decoupling
functions and « is the same parameter in Eq. (2). In general, one could consider the two
deformations in both metrics (radial and temporal), however, in this work we shall use
the MGD approach, in which the decoupling functions g = 0 and f # 0. Now applying
the MGD technique, we can straightforwardly split the system of equations (4)-(6) into
two sets; the first one is obtained by doing o = 0, and it reads as

1 1 W
wpl = et < — ”) : (13)

r2
. 1 (1 ¢
’ip():—ﬂ"i‘e”(ﬁ—"?q)y (14>
—u /_ /
rkp'®) = 67 (25” + &% — e+ 2£T’”L) . (15)

The second set of equations is obtained by turning on the parameter «, i.e., @ # 0,
so that contains the effects of the source 6, and reads

[ r
1 v
Kby = —f(rZJrr), (17)
2__i /" 12 27V/ _L/ / 2
kb3 = 4<2V + v+ r) ) (18)
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Furthermore, the contracted Bianchi identities ensure that the Einstein tensor is
divergence-free. Then, by the Eq. (1), we can derive the covariant conservation of the
energy-momentum tensor as follows:

v, " = 0. (19)
Furthermore, T,S,s;) satisfies the following conservation equation
/
VT =+ (00 4 =0, (20)

since Tﬁ(f;) corresponds to a known “seed” source that satisfies its respective EFE. Note
that Eq. (20) is a linear combination of Eqs. (13)-(15). Thus, automatically, the source
0, fulfills the following expression

Vb = (0) + 5 (05— 0}) + g (05 —61) =0. (21

It is worth noticing that Eq. (21) can also be obtained as a linear combination of Egs.
(16)-(18). Furthermore, note that Egs. (20) and (21) imply that the interaction between
the source 7}, and the source 0, is purely gravitational, i.e., there is no exchange of
energy-momentum.

3. Matching conditions

At the boundary of the stellar compact object (r = R), the metric components e” and
e~ should match continuously with the Schwarzschild exterior solution, namely
_ 2M

Yo =1, 22)

where M and R are the total mass and radius of star, respectively.

e’l.—r=¢

As also is necessary that

since the exterior of star in this case is considered empty.

4. Physical acceptability conditions

The fundamental physical requirements necessary to any interior solution can describe
a realistic stellar compact object are (see Ref [129] for a detailed discussion of these
conditions):

C1. In the interior of a stellar compact object, the metrics ¢ and e* should be finite
and regular; additionally, e (*) = constant and e *® = 1.

C2. The matter sector given by the density energy p, radial pressure p, and transversal
pressure p; should be positive and regular inside the compact object. They should
be decreasing functions of the radial coordinate r, with their maximum values at
the center. Furthermore, the radial pressure should vanish at the boundary, and

pr|r:0 = pt|r:0-
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C3. The Dominant Energy Condition (DEC) p — p, > 0 and p — p; > 0 should be
fullfiled inside the stellar compact object.

C4. The surface redshift z(r) = gt_tl/ *(r) — 1 should decrease outward and its value
at the surface is less than the universal bound for interior solutions satisfying the
DEC, namely zppung = 5.211 [130].

C5. The stability of the stellar object requires that the fluid speed of sound should be
less than the speed of light, which leads 0 < v, = %T <land 0 <y = ‘fi—’;‘ <1
within a stellar compact object.

5. Complexity of compact sources

The concept of complexity is highly dependent on the subject of study, particularly, in
this work, we shall use a definition of complexity for static and spherically symmetric
self-gravitational systems, which was recently proposed by L. Herrera [88,89] in the
context of general relativity. This definition is based on the idea that the simplest
system is the one with perfect fluid distribution and that more complex systems are
those that vary from this fundamental system, especially those that deviate from the
regular pattern of constant energy density and pressure isotropy.

Specifically, such a definition surges from the existence of a structure scalar that
is connected to the orthogonal splitting of the Riemann tensor [131,132] in static and
spherically symmetric space-times (for the first time, such a scalar and others were
thoroughly examined in [133]). This scalar captures the concept of complexity since
it measures the relationship between the inhomogeneity in the energy density and the
pressure anisotropy of a static and spherically symmetric self-gravitational system. This
scalar is given by

Yip = wIT — % 7 0/ dF, (24)

with II = p, — p;.
Additionally, it can be demonstrated that (24) permits one to express the Tolman

r\?° X s (v HA)/2 )
mr = (mT)E <r2> +7r / 7 YTFd’I”, (25)

mass as

which, includes all the alterations caused by the energy density inhomogeneity and the
anisotropy of the pressure on the active gravitational mass, namely, the Tolman mass,
which is a combination of its value for a zero-complexity system and two other terms
related to energy density inhomogeneity and pressure anisotropy, respectively. It can
be viewed as a convincing justification to define the complexity factor by means of
this scalar. Thus, this scalar represents an appropriate parameter that characterizes the
complexity of self-gravitating static spheres since, firstly, it is based on a structure scalar
(which is critical because it ensures that this characteristic is founded on a quantity that
is invariant for any observer) that contains all physical parameters of the matter sector
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of the interior of the self-gravitating sphere, and very particularly, it depends on the
inhomogeneity in the energy density and the anisotropy in the pressure, which is in
perfect relation that the most simplest system is the perfect fluid sphere and the more
complex are those who move away from that system.

Now, it is worth noticing that if one uses the EFE (4)-(6) in (24) arrives at

-

Yrr = Z— V(2+rN —r)—2r"), (26)
r

which represents an alternative way to calculate Yrp through the knowledge of the
space-time inside of a compact source.

Particularly, Eq. (24) has been used as a state equation in order to construct new
interior solutions for self-gravitating spheres. For example, it is significant to note that
the vanishing complexity criterion, often known as the Y;rr = 0 condition, is met not
only in the most straightforward instances of isotropic and homogeneous systems, but
also in the situations where

1 e,
11 = ﬁ pold’l”, (27)
0

T

namely, in the scenarios where the pressure anisotropy and energy inhomogeneity cancel
each other.

The system of EFE can be closed using Eq. (27) as a complementing condition
because it reflects a non-local equation of state (an interesting formalism to construct
solutions with such a characteristic is developed recently in [101]). However, one can
explore different values of the complexity factor distinct from zero in order to find new
solutions, so in this work, a specific value for this scalar is proposed in the next section.

6. The generalized Wyman Ila complexity factor

In this current work, we use as an extra condition a specific value of the complexity
factor in order to close the EFE resulting from GD through MGD. Thus, in order to
use its complexity factor as a supplementary condition, we use the Wyman Ila (with
n = 1) [20,134] solution given by the following metrics

65 = (Ao — B0T2)2 (28)

C 2
er=1+ 0—7“2/37 (29)
(Ao — 3Bor?)

where Ay is a dimensionless constant, By and Cy are constants with units of length=2.
So in such a way, we replace Eqs.(28) and (29) in (26) to obtain

QB()C()T‘Z

T s v
which can be generalized as
2
i ar
Yrrp = 7@2 n a37"2)5/37 (31)
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where a; is an arbitrary constant with units of length™, as is an arbitrary dimensionless
constant, and as must be a constant with units of length 2.
Using Eq. (12) in (26) yields the following differential equation:

a£// « 1" E/ £/2
T +2<5 ‘ﬁz)f

— ! 2 1¢l
+©;<8—£+£—J&>+HT=Q (32)

2 2

which permits us to obtain the decoupling function f given the pair {&, u} (the seed
solution) and a specific value of Yrp.

7. Model 1: like-Wyman Ila solution

In this part, we shall obtain a new interior solution with the Wyman Ila (n = 1)
complexity factor. In such a sense, we use as a seed solution the Wyman Ila (with
n = 1) given by (28) and (29) in (32), obtaining

400,,,2 3ai (a3A0+3a230+2agBo7‘2)
(Ao 73307‘2)2/3 a%Bo (a2 +a3r2)2/3
r)=c — : 33
) = i @)

where ¢; is an integration constant. Thus, taking this f in Eq.(12), we obtain the new
radial metric given by
3aq (a3A0 + 3&2B0 + 2@330T2)

-
e =14ac -
40,%30 (ag + CL3T2)2/3

(34)

However, such a value of e~ leads us to have a material sector with divergence problems.
Therefore, in order to solve this problem, it can be prove that the constant ¢; must satisfy

- 30,1(61314() + 30,230)

C1 - . (35)
4022 B,
Thus, e~ is redefined as
son (. — sttt 4 3 ;)
er=1+ . (36)

2
4az
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Now, from the system (4)-(6) we arrive at
a1

— 2/3 5/3
- as’ " (r) — 3x(r aszAg + 3asB } 37
| 3/3 §Bol<;7“2x(7")5/3[ 2 pa(r) (1) (azAg 25y) (37)

_ L 1 5 47’40
Pr= K12 Ay — Byr?

p

) N
< |1+ - [
1 8By 3ayps(r)
e = —5- 5T 3 2 5/3
2k | Ag — Bor? a2 (Bor? — Ag) x(r)5/
6 1
+ CL1A0 - - :| 5 (39)
(ag/d (ang — G3Bo7”2) BOX(T)5/3>

where the functions x(r), ¢1(r), @2(r) and @3(r) are auxiliary functions (see the
Appendix, Sect. 13).
Finally, the continuity of the first and second fundamental forms leads to

164y a2 BZR?x(R)Y/?

a3A0 + 3&230 X R 2/3 — 3@5/3B0
2

“ 3(Ay — 5By R?)
— a§/3a3 (A() + QB()RQ) :| s (40)
BoR*(5M — 2R
Ay = DIEOM 221, (41)
M2
B2—-___ - 42
O 4R5(R —2M)’ (42)

with X(R) = X|T:R'

It is worth noting that R > 2M is derived from Eq. (41), which is consistent with
the requirement that any stable configuration should be greater than its Schwarzschild
radius.

8. Model 2: like-Tolman IV solution

In this case, we use the Tolman IV solution [19] as a seed solution, which is given by

¢ 2 (1

e =B <A2+1>, (43)

(42 4 72) (C? —1?)
C?2 (A% +2r2)

where A, B and C' are constants. So, realizing the same procedure as in the last section,

- _

(44)

but using the Tolman IV solution, we obtain

o 1 1
/= A2 2(C—r)(C+r) N 3arC (x(r)m ag/3>
 2a0? | A? A2Z 4 272 as

,  (45)
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10

with which in (4) we arrives at

e = At [2@2/3a X(r)2/3 +34A% (a2/3 X(r)2/3) } (46)
= 3 1 - .
2A2a§/3agx(7")2/3 2 2

Now, using EFE (4)-(6), one obtains the new matter sector

L —i—i-@ i_9a2—|—5a3r2
P =9 A% ay ag/?’ x(r)%/3
@A 3 asr? — 3as
S A e 47

32 daf 1 1) awAf 1 1 48)
P o |2 T ey \ X2 al® ) asr? \x(r)¥® 2

176 9a ay (—2a3 A% + 9ay + Sasr?

Pe=""1703 ~ 231 e 523 = (49)
kLA a2/ as azx(r)®

Now, applying the matching conditions, we obtain the following
92 2/3 R2v(R 2/3

a; = ay ag X( ) — (50)
A2 (A2 + 3R2) (X(R)2/3 - ag/“)
R*(R—3M)

M ? ( )
3M
B’=1-"—. (52)

R
9. Model 3: like-Heintzmann Ila solution

In this case, we consider the Heintzmann ITa solution [20,135] as a seed, which is given
by

¢ =A% (Brr+1)°, (53)
2 C
2(Br2+1)

where A, B and C are constants. Then, using the same procedure as in the previous
sections, we found

f=

. { B2 18B°Cr*  3ay (9a3B° — 12a9a3B + 243)
12aB (Br? +1) ABr? + 1 ag/?’ag
3ay (9a3B? + 6azaz B (Br? — 2))
agx (r)*?
3 (a3 (Br? (Br* +8) —2))
ajx(r)*?

10
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In such a sense, the new radial metric is

Y 1 ai (—90/%32 + 12@2&33 — 2@%)
e = ,
4(Br? +1) ag/sagB
L@ (9a3B* + 6asas B (Br? — 2))
a3 Bx(r)*/?
2 (12 (B2
ara3 (Br® (Br* +8) —2)
- ; 4]. 56
ARG o0
Now, using EFE (4)-(6), we arrive at
1 a1p4(r)
= 12B%% (Br? +3) + |, 57
p ].QBT2 (BT’2 + 1)2 K |: ( ) ag/gagx(r)5/3 ( )
_ ot TBrt+1 a1ps(r)
e Y TR a3Bx(r)*?
ay (—9a3B?% + 12aa3 B — 2a3)
+ s 2. (58)
ay "a3B
1 a1p6(r) 2]
= + 6087, 59
P 1ok (Br2 + 1)* [ag/?’agx(r)f)/s (59)

where ¢4(r), p5(r) and @g(r) are auxiliary functions defined in Sect. 13. Now from
matching conditions we have

v = 403" a3B*R* (BR® — 5) x(R)*/* 90%/3 2
! 7TBR? +1 ?
—a3a2 (BR® (BR® +8) — 2) + 6ay/*a3 B (BR® — 2)
-1
— (9a3B” + 2a3 — 12asa3B) X(R)2/3] ; (60)
M
B=- - 61
R2(3R—TM)’ (61)
3R —TM)?
A2 — (— 2
27TR(R — 2M)? (62)

Egs. (61) and (62) show that M/R < 3/7 < 4/9 corresponds to less compact
solutions than the Buchdahl’s limit allows for isotropic solutions.

10. Model 4: like-Durgapal IV solution

In this last case, we consider the Durgapal IV solution [20,136] as a seed solution
et =A (Cr? + 1)4 : (63)
BCr? 7 —10Cr? — C?%rt

et = 2 5 T 2
(Cr2 +1)2 (5Cr2 + 1)% 7(Cr2 +1)

, (64)

11
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where A, B and C' are constants. After realizing the same procedure applied in the last
sections, we found the decoupling function

1 112BC?*r? 3
f= ; [160027"2 +160% — )
112aC (Cr2 + 1) (5Cr2 + 1)*°  agx(r)¥
3
+ % <81a303 — 189a3a3C? + 126a9a3C — 14a§>} : (65)
ay "ag
where ¢7(r) is an auxiliary function defined in Sect. 13. Thus, the resulting radial
metric is
_ 1 3ayp7(r)
e — } > B A
112 (Cr2 4+ 1)° { azCx(r)/?
3
+ e (81a303 — 189a2a5C? + 126a,a2C' — 14a§)]. (66)
ay "a3C
Then, from EFE (4)-(6) we obtain
1
= - |112C% (Cr* (Cr* +3) + 6
STTYer (Cr2+1)° [ (cr( ) +6)
GI@S(T) :| (67)
Foadrrr(7R)
B 1 ) 9CTr* + 1 119 3aipy(r)
Pr= = | T o2 1) alCy(r)2/3
K 112 (Cr2 + 1) asCx(r)
3
+ (81a§C3 189020307 + 126a2a2C — 14a§>>} . (68)
ay’aiC
a (r)
3607 o
Pe = : (69)

56Ck (Cr2 4+1)°
where @g(7), po(r) and ¢io(r) are auxiliary functions defined in Sect. 13.

So using the matching conditions, we obtain
 112a3%aC?R? (CR? (CR? + 3) — 6) x(R)*/®

431

3(9CR? +1)
X 81a;1/3(73 + 14adx(R)¥? — 126a5a2Cx(R)*?
+189a2asC?x (R)?? — 81a3C3 X (R)*? + 27ay*asC? (20 R? — 7)
— 9a5/%a2C (CR? (CR? + 14) — 14)
-1
+ a3 a3 (CR? (CR® (ACR* +21) +84) — 14) |, (70)
M
R?(4R — 9M)’ (71)
_2M

M 4°
(7 + 1)
Note that from Eqs.(71) and (72), the solution must satisfy M/R < 4/9, which
corresponds to the Buchdahl’s limit.

12
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11. Results and discussion

In this section, we analyse the physical acceptance of the new models developed in
this manuscript, as we will also discuss these results. For such purposes, we had taken
into account the compactness factor of the system 4U 1820-30 (see Table 1). Also, we
checked that the models behaved regularly if we set the constants ay and a3 in the way
of Table 2. It is worth mentioning that these models can be used for other systems by
changing the values of the parameters as and a3 in a correct manner in order to ensure
compliance with the physical acceptance conditions.

Table 1. Physical parameters for the compact star 4U 1820-30.
Compact start ~ M/M, R(km) w=M/R p(0)/p(R) Z(R)
4U 1820-30 [137] 1.58 9.1 0.2501 2.0266 [137] 0.414496

Table 2. Energy density ratio predicted by all new models.

Model p(0)/p(R)
like-Wyman 2.1263
like-Tolman IV 4.37376
like-Heinztmann  2.16077
like-Durgapal IV~ 2.15727

11.1. Metrics

The metrics e and e~ are plotted in Figs. 1 and 2, respectively. We observe from these
figures that condition C1 of Sect. 4 is satisfied for all models. It is interesting that the
value of €” is higher for the Model 1 compared with the other models.

0.8 ‘ ‘ ‘ ‘ ]
0.7 —//
0.6
0.5

0.4 1
0.3 1
0.2 1

)
0.1

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 1. ¢” for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.
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0.8

0.7

0.6

0.5

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 2. e for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

11.2. Matter sector

In Figs. 3, 4 and 5 the energy density, radial and tangential pressures are shown. We
can see from these figures that condition C2 is met for all models, namely that the
matter sector is positive and regular within the compact object. The energy density,
radial pressure, and tangential pressure are decreasing functions of radial coordinate
r, having their maximum values at the center of the stellar object. Furthermore, the
radial pressure should vanish at the boundary and p,|,—o — p¢|r—o = 0 (See. Fig. 6). At
this point, it is worth noting that the behavior of the energy density and the anisotropy
pressure for the Model 2 (like-Tolman IV) is distinct from others models.

4.5¢
4.0
3.5
3.0
g 2.5
2.0
1.5

1.0¢, ‘ ‘ ‘ ‘ -]
0.0 0.2 0.4 0.6 0.8 1.0
/R

Figure 3. p for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3 (purple
line), Model 4 (red line) and parameters in Table 2.

11.3. Dominant Energy conditions and causality

The profiles of p — p,. and p — p; are shown in Figs. 7 and 8, respectively. In these
figures, we can observe that the DEC is fulfilled by all models. Also, we observe that
for the Model 2 the values of these profiles are higher than the rest of the models.

14
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~ 030

0.2}

0.1}

0.0, ‘ ‘ ‘ ‘ ]
0.0 0.2 0.4 0.6 0.8 1.0
/R

Figure 4. p, for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.
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0.4¢

~ 03¢

0.2¢

0.1}

0.0f 1
0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 5. p; for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3 (purple
line), Model 4 (red line) and parameters in Table 2.

0.08F

r/R

Figure 6. p; — p, for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

On the other hand, we plotted the internal sound velocities in the radial and
tangential directions in Figs. 9 and 10. We observed from them that condition C5 is
satisfied by every model, namely, that they do not surpass the relativistic limit of light
velocity. Also, we have to note that for the Model 2 such profiles of sound velocities

15
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have a steeper slope than the rest of the models.

r/R

Figure 7. p — p, for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

r/R

Figure 8. p — p; for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

0.7

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 9. v, for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.
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0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 10. v; for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

11.4. Redshift

In Fig. 11, the redshift z is plotted. In this figure, we observe that z is a monotonously
function of the radial coordinate, having its maximum value at the center of the compact
object. Also, it is noticeable that the surface redshift value is below the universal bound
of Zbound — 5.211.

0.9
0.8
N 0.7
0.6
0.5

0.4

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 11. z for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3

(purple line), Model 4 (red line) and parameters in Table 2.

Because the Model 2 exhibits non-monotonic anisotropy and its sound velocities
inside the star exhibit distinct behavior in comparison to the other models, it can be
inferred that this model may be unstable. Therefore, in this work, we go one step further
and study the stability of the solution in the next two subsections.

11.5. Stability against convection

Any fluid element pushed downward must float back to its original position. Such a
principle should be satisfied by any fluid that supports a self-gravitating sphere in order

17
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to remain stable during convection. It was demonstrated in [138] in such a way that
p" <. (73)

So in the Fig. 12, the profile of p” is shown. In this figure, we observe that all
models do not fulfill this stability condition. Specifically, p” < 0 is satisfied in the inner
regions of the star, while the outer regions are unstable. Furthermore, it is observable
that p” has a different behaviour for Model 2 against the other models.

10¢

0

. -10

UL

-20+

=301

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 12. p” for v = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

11.6. Stability against collapse

In order to study the instability of the models against collapse, it is necessary to analyse
the behavior of the adiabatic index (I") in the radial direction given by

p + pr dpr
r=-_ ; 74
pr dp ( )
which should satisfy
r 2 ch“itv <75)
with
4 19M
Loi = 3 + NR (76)

The relationship mentioned above accounts for relativistic adjustments to the
adiabatic index I" that can cause instabilities inside the star. So in this way, the stability
condition (76) applies to any relativistic compact object supported by an anisotropic
fluid (for a detailed discussion about this point, see Refs. [73,139,140].

The adiabatic index profile is then displayed in Fig. 13 as a function of radial
coordinate. It is observable from this figure that the Model 2 presents instability against
collapse for the parameters shown in the caption. While, in the rest of the models, we
checked that they have stability against collapse, namely, that they satisfy the condition
(75).
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0.0 0.2 0.4 0.6 0.8 1.0
r/R

Figure 13. I for u = 0.2501, Model 1 (black line), Model 2 (blue line), Model 3
(purple line), Model 4 (red line) and parameters in Table 2.

Now, the density ratio for the system 4U 1820-30 is p(0)/p(R) =~ 2.0266 [137], which
is near the predictions of Model 1, Model 3 and Model 4 (see Table 2). While the value
predicted by Model 2 is so far with this value. Then, we have that the Model 1, Model
2 and Model 3 are appropriate in order to model the system 4U 1820-30, and the Model
2 results inadequate in such purpose.

12. Final Remarks

In conclusion, the models constructed in this work satisfy the essential physical
requirements listed in Sect. 4, namely, they have the regular behavior of a realistic
stellar compact object for the parameters shown in Table 2. Respecting the relation of
energy density p(0)/p(R) results in all models fitting accurately to the system 4U 1820-
30 except for the Model 2 which departures from the value of such ratio. Instability
against convective motion is nonetheless presented by the models. But on the other
hand, all of the other models, with the exception of Model 2, exhibit stability in the
face of collapse. Therefore, it may be worth conducting a study in the future of the
behavior of the matter sector of these models against small perturbations and being
able to relate the results to those found here in Sect. 11.5 and 11.6. Moreover, the
current work is important given that, together with the previous works [90,91], they are
evidence that GD can be used through the MGD together with a non-zero complexity
factor condition in order to find new families of anisotropic interior solutions, which can
also be regulated through their parameters to be able to model some realistic compact
stellar systems.

Finally, it would be very interesting to use the same technique performed here in
order to find new anisotropic solutions with other generalizations of the complexity
factor of a known solution or to use the extended version of the MGD instead of
the MGD. It is worth noting that not only new solutions with vanishing complexity
are valuable, but also solutions with non vanishing complexity should be interesting.
Of course, this would imply a complicated mathematical challenge when it comes to
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considering geometric deformation in both metrics, radial and temporal, which, to date,
with the exception of the use of vanishing complexity, has not been done already.

13. Appendix: Auxiliary functions

X = az+ a3r2
o1 = asr*(15a,By — Agas) + 3as(asAg + 3aaBo) + 10a2Bor?
0y = azAg + 3a2By + 2a3Bor?
3 = 2asa3Ag + a3 Agr* + 6028, — 6\3/@Box(1")5/:3

+ 10aga3 Bor? + 5a3 Byr*
Py = 27&%1/332 (BT2 — 1)

—27a3B* (Br* — 1) x(r)*?®

— 6ajr® (Br? — 1) x(r)**

+ 3ag/3a§ (BT2 -1) (5B7‘2 (BT2 —4) +2)

+9ayaz B (Br® (5Br2 — 9) + 4)

—9a3a3B (Br’® (3Br* —7) +4) x(r)¥?

+ 6asa3 (Br® (6Br* —7) + 1) x(r)*/?

+a3a3r? (Br? (Br? (5Br® + 3) + 54) +2)
¢5 = 9a3B* + 6azaz B (Br* —2) — a3 (Br* (Br* 4+ 8) — 2)
06 = 135022 B? — 13543 B3y (r)?/3

— 3003 Briy(r)*3

+45a3a3B* (4 — 3Br?) x(r)*/?

+ 4505 %ay B? (5B1% — 4)

+ 30aza3B (6Br* — 1) x(r)??

+ 15a5/3a§B (5Br* (Br* —4) +2)

— ag/saf’; (BT2 (Br2 (3137”2 + 156) - 6) + 4)
7 = —81a3C? + 27a3a3C* (7 — 2cr?)

+ 9asa3C (Cr* (Cr* + 14) — 14)

— (a3 (Cr* (Cr? (4Cr* + 21) + 84) — 14))
s = 2430, C? (1 - 3C7?)

+ 42a3r? (1 — 307%) x(r)*?

+243a3C% (3Cr?* — 1) x(r)*/?

— 81ay*a3C? (3072 — 1) (5Cr2 —7)
+ 42asa3 (3Cr? — 1) (9C7% — 1) x(r)*/?
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— 27a5/%a2C (307 = 1) (5C1% (Cr® = 7) + 14)
— 189a3a3C (9Cr* (Cr* — 1) + 2) x(r)?*?
+ 8laja;C* (3CT* (3CT* — 8) +17) x(r)¥3

+ 3ag/3a§ (3Cr* = 1) ¢11 + ag/3a§r2<,012
g = —81a3C? + 27a3a;C* (7 — 2C7r?)

+ 9a2a5C (Cr? (Cr® + 14) — 14)

— (a3 (Cr* (Cr* (4Cr* + 21) + 84) — 14))
010 = — 729a3"*C* + a2 ad1s(r)

+ 729a3C* x (r)*? — 126a3Cr*x ()3

+ 243a3a;C° (3Cr* — 7) x(r)??

— 567a3a5C” (3Cr* —2) x(r)¥?

+ 126a2a5C (9CT* — 1) x(r)*®

— 243@%1/3%03 (5C’r2 — 7)

- 81a§/3a302 (5C’r2 (C’r2 —7) +14)

+9a3a3C (5Cr% (Or (Cr? + 21) — 42) + 14)
@11 =5Cr* (Cr? (Cr* + 21) — 42) + 14
@12 = Cr* (Cr* (Cr* (20C7* + 47) — 357) + 602) + 14
¢13 = 144 Cr? (Cr* (Cr? (106C7 + 413) 4 1008) — 14) .
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