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A quantum algorithm is developed to calculate decay rates and cross sections using quantum resources
that scale polynomially in the system size assuming similar scaling for state preparation and time evolution.
This is done by computing finite-volume one- and two-particle Green’s functions on the quantum
hardware. Particle decay rates and two-particle scattering cross sections are extracted from the imaginary
parts of the Green’s function. A 0þ 1 dimensional implementation of this method is demonstrated on
IBM’s superconducting quantum hardware for the decay of a heavy scalar particle to a pair of light scalars.
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I. INTRODUCTION

Quantum field theories describe three of the four
fundamental forces of nature. In particular, quantum
chromodynamics (QCD) describes the strong interactions
that bind quarks into hadrons [1]. The predictions of QCD
are often tested in experiments where unstable hadrons
decay and their decay products are observed. For high
energy phenomenon, Feynman diagrams and other pertur-
bative techniques provide an excellent description. In the
low energy region, the QCD coupling constant becomes
large, and these methods fail. Nonperturbative approaches
such as lattice QCD (LQCD), chiral perturbation theory
and other effective field theories have enabled the calcu-
lation of some hadronic properties in this region. For
example, Luscher’s method [2,3] has allowed the compu-
tation of some decay rates and scattering cross sections
using LQCD by relating them to finite volume energy
shifts. It has been used to compute scattering phase shifts
for several low energy processes [4–7], and the decay
widths of ρ and σ mesons [8,9]. The extraction of finite
volume energy levels becomes difficult for excited states
and for large lattices, which limits the applicability of the
method.
Quantum computers have been proposed as a tool to

avoid various problems present in simulations of QFT’s. In
particular, fault tolerant quantum computers are expected to
be capable of simulating time evolution of local QFT’s
using resources that scale polynomially in the system size
[10–12]. The first steps towards simulating lattice gauge

theories, such as the Schwinger model, have been made
[13–31]. In this work, a method of extracting particle decay
rates and scattering cross sections from a Green’s function
calculated on a quantum computer is demonstrated. This
method only requires the ability to prepare initial particle
states and perform real time evolution. It has been shown
for scalar and fermionic field theories that state preparation
and real time evolution can be performed on quantum
computers using resources that scale polynomially with the
system size [10–12]. The computational costs of classically
performing real time evolution usually scales exponentially
with the system size [32–39], so the use of quantum
computers would represent an exponential speedup. A
classical simulation of this quantum algorithm is explicitly
demonstrated for a 1þ 1 dimensional QFT where a heavy
scalar decays to a pair of light scalars. A 0þ 1 dimensional
demonstration is performed using IBM’s superconducting
hardware. Although this calculation is demonstrated for a
specific model, the approach is based on general properties
of Green’s functions, and it is expected that it can be
applied to particle decays or scattering in other theories.
The paper is organized as follows. The method of

computing the decay rate from the Green’s function is
described in Sec. II, and the mathematical details are shown
in Appendix A. The quantum circuit used to calculate
the Green’s function is described in Appendix B. The
time truncation and discretization errors are analyzed in
Appendix C 1. The systematic errors present in extracting a
decay rate from a finite volume Green’s function are
analyzed in Appendixes C 2 and C 3. The errors due to
finite particle number truncations for theories containing
bosons are analyzed inAppendixC 4.A classical simulation
of this quantum algorithm is performed in Sec. III. IBM’s
quantum processor is used to implement this algorithm in
Sec. IV. The Trotterization procedure used in this demon-
stration is described in Appendix E. The data from running
on IBM’s quantum processor are in Appendix G.
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II. QUANTUM COMPUTATION
OF GREEN’S FUNCTIONS

For a single particle state jψi, the Green’s function can
be written as hψ j 1

ω−Ĥþiη
jψi ¼ 1

ω−Eþiη−hψ jT̂ðωþiηÞjψi, where E

is the energy of the state jψi, Ĥ is the Hamiltonian, and T̂ is
the scattering T matrix as shown in Appendix A. If the
Hamiltonian H can be split into a free piece H0 that
describes the propagation of free particles and an inter-
action piece V that describes the interaction of particles, the
state jψi can be prepared on a quantum computer as an
eigenstate of H0 using previously developed methods
[10,11,40]. For theories like QCD, where no such division
is known, an unstable particle state can be prepared by
simulating two stable particles colliding on resonance. For
example, a ρ meson can be prepared by simulating the
collision of two pions with total energy equal to the ρ
meson mass. The inclusive decay rate of a particle in d
spatial dimensions is given by

Γ ¼
X
Xf

Z
dPXf

ð2πÞdþ1δdþ1ðPXf
− PψÞjhXfjT̂ðEψÞjψij2

ð1Þ

where Pψ is the energy-momentum vector of the initial
particle, PXf

is the energy-momentum vector of the final
state Xf, the sum is performed over all possible final states
and the integral is performed over all possible energy-
momenta vectors of the final state. The optical theorem
relates this sum to the forward matrix element of
the T matrix by Γ ¼ −2 limη→0 Imðhψ jT̂ðEþ iηÞjψiÞ [1].
Therefore, if the Green’s function can be computed in the
η → 0 limit, the inclusive decay rate can be extracted from
it. For η ≠ 0, the difference between Imðhψ jT̂ðEþ iηÞjψi
and Γ is OðηÞ as shown in Appendix C 3. Furthermore, if
jψi is a two-particle state, the same kind of relationship
between the Green’s function and the T matrix holds, and
the optical theorem can be used to find the inclusive
scattering cross section for the two particles present in
the state. To simplify the following discussion, we
will focus on the case of particle decays. When the
theory describing the particle is simulated inside a finite
volume box with periodic boundary conditions, the
difference between Imðhψ jT̂ðEþ iηÞjψiÞ in the finite
volume and the infinite volume value for a 1 → N decay
is OðEd−1

2
N−2e−

η
Nþ1

L
2Þ for a dþ 1 dimensional theory with a

mass gap, and Oð 1
η2LÞ otherwise, where L is the length of a

side of the finite volume box, as shown in Appendix C 2.
Therefore, if the Green’s function can be calculated in a
finite volume for a theory with a mass gap, Γ for 1 → N
decays can be determined with finite η errors that are OðηÞ
and finite volume errors that are OðMd−1

2
N−2e−

η
Nþ1

L
2Þ. It

should be noted that the L → ∞ and η → 0 limits are

not independent, and to have finite volume errors vanish in
the L → ∞ limit, η must be chosen such that ηL → ∞. To
evaluate this Green’s function, it is helpful to express it in
integral form,

hψ j 1

ω − Ĥ þ iη
jψi ¼ −i

Z
∞

0

hψ jeiðωþiη−ĤÞtjψidt: ð2Þ

If this integral is truncated at finite time T, a Riemann sum
approximation,

R ¼
XT=Δt
k¼0

eiðωþiηÞkΔthψ je−iĤkΔtjψiΔt; ð3Þ

to this integral can be evaluated on a quantum computer
with the techniques described in Appendix B within an
accuracy of ϵ using a gate count that scales as

Gate Count

¼ O

�logð 2ϵηÞ
η2ϵ

ðωþ Eþ ηÞp
�
1

η
log

�
2

ηϵ

�
; ηϵ

��
ð4Þ

where pðt; δÞ is the gate count required to evolve to time t
with accuracy δ, provided that jψi has already been prepared
and E is the energy of the state jψi. Once the Green’s
function has been computed, the particle decay rate can be
extracted from the imaginary part of its pole. It should be
noted that in the η → 0 limit, the imaginary part of the
Green’s function becomes the spectral density function, and
other work has been done on using quantum computers to
calculate the spectral density function [41–43]. Note that Γ
can be extracted from the peak of theGreen’s functionwhich
takes the value 2

Γ. Therefore, to compute Γ to within an
accuracy δΓ, the Green’s function must be computed to
within an accuracy of δΓ

Γ2. Since the uncertainty in Γ scales
linearly with η, Γ can be determined to an accuracy of δΓ
using

Gate Count ¼ O

�
logð2δΓΓ Þ
δΓ3

Γ2ð2Eþ δΓÞ

× p

�
2

δΓ
log

� ffiffiffi
2

p
Γ

δΓ

�
;

�
δΓ
Γ

�
2
��

ð5Þ

gates with a lattice whose size scales as Oð 1
δΓ logð 1

δΓÞÞ when
the theory has a mass gap.
Another approach to computing the decay rate of an

unstable particle would be to prepare the initial state, evolve
for some time and measure detector operators at the border
of the box, similar to the algorithm for the scattering of
scalar particles in previous work [10]. This requires the
simulation to run for a time t ¼ Oð1ΓÞ before measuring the
detector operators. The algorithm presented here only

requires the simulation to run for a time t ¼ 2
δΓ logð

ffiffi
2

p
Γ

δΓ Þ.
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Therefore, this algorithm is expected to perform better for
particles with a long lifetime. This algorithm also provides
a method of computing decay rates that is different from
direct time evolution and should have different systematic
errors. Comparing decay rates computed with these two
different methods will allow them to be determined with a
higher degree of confidence.

III. DECAY OF A HEAVY SCALAR

A demonstration of the algorithm discussed in previous
sections will be provided by a classical simulation of the
decay of a heavy scalar, ϕ, to a pair of light scalars,
χ, in 1þ 1 dimensions. The Lagrangian for this process is
given by

L ¼ 1

2
ð∂ϕÞ2 þ 1

2
ð∂χÞ2 − 1

2
M2

0ϕ
2 −

1

2
m2

0χ
2

−
1

2
gϕχ2 −

1

4!
λχ4 ð6Þ

where M0 and m0 have been chosen such that the heavy
particle’s mass is 2.01 times the light particle’s mass (so the
ϕ → 2χ channel is the only allowed decay channel) and
λ > 3g

M2
0

(to ensure a stable vacuum without spontaneous

symmetry breaking in the infinite volume continuum
theory). This theory was placed on a lattice with periodic
boundary conditions and with lattice spacing a ¼ 0.2 m−1

where m is the light particle’s mass. This was done for
lattices with three, five and seven sites. With these
boundary conditions, the allowed momentum modes are

in the set f− πðns−1Þ
L ;− πðns−1Þ

L þ 2π
L ;…; πðns−1ÞL g, where ns is

the number of sites and L ¼ nsa is the length of the finite
volume box. To simulate this on a classical computer, the ϕ
occupation numbers were truncated at one for each
momentum mode, and the χ occupation numbers were
truncated at two for each momentum mode. Since the mass
of the heavy particle is only slightly larger than 2 times the
light particle’s mass, the arguments of Appendix C 4
indicate that the error in the decay rate calculation due
to this particle number truncation should be negligible.
A classical computer was used to determine the renorm-

alization parameters and to simulate the quantum algorithm
from the previous section. The renormalization conditions
were that the vacuum has zero energy and the mass of the
heavy scalar is 2.01 times the mass of the light scalar. For
each lattice volume, η was chosen to minimize the sum of
the finite volume and finite η error calculated using the
methods in Appendixes C 2 and C 3. The heavy particle
decay rates calculated classically in this example are
displayed in Fig. 1. The finite volume and finite η
uncertainties were calculated using the methods described
in Appendix C. To improve the precision of this calcu-
lation, a larger lattice must eventually be used. No matter
what truncation is used, the dimension of the Hilbert space

will grow exponentially with the number of lattice sites.
The Green’s function can be computed on a classical
computer using matrix inversion techniques, the fastest
of which scale as the dimension of the Hilbert space, which

FIG. 1. Heavy particle decay rates calculated on different lattice
volumes plotted as a function of the coupling constant. The blue
points are the decay rates calculated in the classical simulations of
the quantum algorithm, and the red curves are the one-loop infinite
volume continuum calculations. The error bars on the finite lattice
decay rates represent finite volume and finite η errors calculated
using themethods inAppendixC.The icons are defined inRef. [47].
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grows exponentially with the number of sites [44,45]. Due
to this exponential scaling, it is infeasible to use a classical
computer to compute Green’s functions on a large lattice.
However, using previously developed techniques for simu-
lating scalar field theories, the method described in the
previous section can be used to compute the Green’s
function on a quantum computer using resources that scale
polynomially [10,46].

IV. DEMONSTRATION OF 0+ 1 THEORY
ON IBM’s QUANTUM PROCESSOR

The calculations in the previous section were performed
using classical computers, but it is possible to use existing
quantum computers to do these calculations for a single
lattice site with the truncations from the previous section.
The Ourense quantum processor made available by IBM
was used to implement this method for a one-site calcu-
lation of the heavy particle decay rate. The details of how
the theory was discretized and how time evolution was
implemented on the quantum computer are described
in Appendix E. The Hadamard test method [48] was
used to obtain hϕje−iĤΔtkjϕi for Δt ¼ 0.2 m−1 and k ¼
1; 2;…; 96, where jϕi is a state describing a single heavy
scalar at rest. Two Trotter steps were used to calculate
each time slice, so the circuits used to calculate the real
component of hϕje−iĤΔtkjϕi used 36 single qubit gates and
28 CNOT gates. The circuit used to estimate the imaginary
component had one additional single qubit gate. Due to the
length of the circuit used, the effect of imperfect gate
implementation on the Ourense quantum processor is non-
negligible. The contribution of imperfect gate implemen-
tation to the error in the computed amplitudes was
estimated using the technique described in Appendix F.
Each circuit used in the Hadamard test was sampled 8000
times, so the resulting statistical error was negligible
relative to the systematic gate errors. To mitigate the effects
of gate errors, an error mitigation technique described in
Appendix D was used to extrapolate to the zero CNOT gate
error limit.
The Green’s function,

G ¼
����Xk

eiðωþiηÞkΔthϕje−iĤΔtkjϕiΔt
����2; ð7Þ

was calculated classically using the error mitigated ampli-
tudes, and the results for two different couplings are
displayed in Fig. 2. The heavy particle decay rate was
extracted from the Green’s function by performing a least
squares fit to a Lorentzian distribution. The extracted decay
rate is compared to the ideal decay rate,

Γ ¼ −ImðhϕjT̂ðM þ iηÞjϕiÞ

¼
X
n

2η

ðM − EnÞ2 þ η2
jhEnjV̂jϕij2 ð8Þ

where the states jEni are eigenstates of the Hamiltonian
with energy En, which would be computed in the absence
of any finite T or Δt errors in Table I. The heavy particle
decay rates calculated on the Ourense quantum processor
are in agreement with the ideal calculation. However, even
after using these error mitigation techniques, the error due
to imperfect gates remained large.

FIG. 2. Green’s functions computed with the Ourense quantum
processor. The solid blue curve is a zero noise classical simulation
of this calculation with Qiskit. The light blue points were
computed using the error mitigated amplitudes from the Ourense
quantum processor. The error bars represent uncertainties from
the error mitigation extrapolation. The red curve is the Lorentzian
fit to the error mitigated Green’s functions.

TABLE I. Heavy particle decay rates calculatedwith theOurense
quantum processor. The first column is the coupling constant. The
second column is the value of Γ that would be computed in the
absence of any finite T or Δt errors. The third column is the decay
rate calculated with the Ourense quantum processor. The error
represents uncertainties in the t to the Green’s function.

g Ideal Γ Extracted Γ

0.5 0.070m ð0.009� 0.037Þm
1. 0.287m ð0.286� 0.047Þm

ANTHONY CIAVARELLA PHYS. REV. D 102, 094505 (2020)

094505-4



V. CONCLUSION

In this work, a quantum algorithm to calculate the decay
rate of unstable particles and scattering cross sections has
been introduced. The resources required to implement this
method scale polynomially with the system size provided
that state preparation and time evolution can be performed
using resources that scale polynomially in the system size
and field value truncations. It has been shown that this is
possible for scalar and fermionic field theories [10,11,40].
To apply this method to LQCD, it will be necessary to
develop techniques to prepare hadronic states and perform
time evolution in lattice gauge theories. IBM’s Ourense
quantum processor was used to apply this algorithm to a
scalar field theory defined on a single lattice site with
truncated occupation numbers. Bounds on the finite volume
error of 1 → N decay rates and 2 → N scattering cross
sections computed with this method have been determined.
More work will need to be done to understand how
different truncations effect the error in the computed decay
rate. The method presented here only requires preparation
of the initial state and the ability to simulate the
Hamiltonian. Classical methods of computing decay rates
and cross sections from lattice calculations such as
Luscher’s method rely on relating these observables to
finite volume energy shifts. In general, this is a difficult
process, and it only allows the calculation of decay rates
and cross sections for limited processes. Due to the greater
generality of this method, it is expected that quantum
computers will be able to calculate decay rates and cross
sections beyond the reach of classical computers.
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APPENDIX A: GREEN’S FUNCTION POLES

The Green’s function used in this method is

G ¼ hψ j 1

ω − Ĥ þ iη
jψi; ðA1Þ

where jψi is a state describing the particle that will be
decaying and Ĥ is the Hamiltonian of the system. This

Green’s function has poles whose real part is the energy of
the state jψi and whose imaginary part is given by the
imaginary part of the forward scattering amplitude. The
manipulations to show this are standard [3] but have
been reproduced here for the reader’s convenience. The
Hamiltonian can be split into a free term and an interaction
term so that Ĥ¼Ĥ0þV̂, Ĥ0jψi ¼ E0jψi. Let P̂ ¼ jψihψ j,
Q̂ ¼ 1 − jψihψ j. The Green’s function can be written as

G ¼ 1

ω − E0 þ iη
þ 1

ðω − E0 þ iηÞ2

× hψ jV̂
X∞
n¼0

�
1

ω − Ĥ0 þ iη
V̂

�
n
jψi: ðA2Þ

Using the matrix identity

Â
X∞
n¼0

ððB̂þ ĈÞÂÞn ¼ Â0 X∞
n¼0

ðB̂Â0Þn ðA3Þ

where Â0 ¼ Â
P∞

n¼0ðĈ ÂÞn with Â ¼ V̂, B̂ ¼ P̂
ω−Ĥ0þiη

and

Ĉ ¼ Q̂
ω−Ĥ0þiη

, the Green’s function is

G ¼ 1

ω − E0 þ iη
þ 1

ðω − E0 þ iηÞ2

× hψ jT̃
X∞
n¼0

�
P̂

ω − Ĥ0 þ iη
T̃

�n

jψi ðA4Þ

where

T̃ ¼ V̂
X∞
n¼0

�
Q̂

ω − Ĥ0 þ iη
V̂

�n

: ðA5Þ

P̂

ω − Ĥ0 þ iη
¼ jψihψ j

ω − E0 þ iη
; ðA6Þ

so

X∞
n¼0

�
P̂

ω − Ĥ0 þ iη
T̃

�n

jψi

¼
X∞
n¼0

�
1

ω − E0 þ iη
hψ jT̃jψi

�
n
jψi: ðA7Þ

Using this fact, Eq. (A4) becomes

G ¼ 1

ω − E0 þ iη
þ 1

ðω − E0 þ iηÞ2 hψ jT̃jψi

þ 1

ðω − E0 þ iηÞ3 hψ jT̃jψi
2 þ � � � ðA8Þ

¼ 1

ω − E0 þ iη

�
1

1 − 1
ω−E0þiη hψ jT̃jψi

�

¼ 1

ω − E0 þ iη − hψ jT̃jψi : ðA9Þ
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In the limit that η goes to zero, T̃ becomes the scattering
T matrix, T̂, and according to the optical theorem,
Γ
2
¼ −Imðhψ jT̂jψiÞ for a single particle state, jψi. So

jhψ j 1

ω − Ĥ þ iη
jψij2 ¼ 1

ðω − EÞ2 þ ðΓ
2
þ ηÞ2 ; ðA10Þ

and from Eq. (A10), the decay rate can be extracted since it
is proportional to the width of a Lorentzian distribution
centered at the particle’s energy.

APPENDIX B: QUANTUM COMPUTATION
OF THE GREEN’S FUNCTION

1. Fully quantum approach

In the previous section, it was shown that the imaginary
part of the poles of the Green’s function hψ j 1

ω−Ĥþiη
jψi is

Γ
2
þ η. Therefore, if this Green’s function can be computed

efficiently, then the decay rate can be computed efficiently
as well. This Green’s function can be expressed as an
integral,

hψ j 1

ω− Ĥþ iη
jψi¼−i

Z
∞

0

eiðωþiηÞthψ je−iĤtjψidt: ðB1Þ

If this integral is cut off at some finite large time T, it can be
approximated with a Riemann sum,

lim
T→∞;Δt→0

XT=Δt
k¼0

eiðωþiηÞkΔthψ je−iĤkΔtjψiΔt

¼ ihψ j 1

E − Ĥ þ iη
jψi: ðB2Þ

If T ¼ ð2nþ1 − 1ÞΔt, this sum can be evaluated on a
quantum computer using a register of n ancilla qubits in
addition to a register used to store the state of the system
and a number of gates that scale polynomially with n and
the size of the system. The circuit used to calculate the
Green’s function is displayed in Fig. 3. The calculation

begins with the quantum computer in the state j0i⊗njψi
where all qubits in the ancilla are in the state j0i and the
system register is in the state jψi, which describes the
unstable particle that will be decaying. Here, Rk is applied
to the kth ancilla qubit, where Rk ¼ ð cosðθkÞ

− sinðθkÞ
sinðθkÞ
cosðθkÞÞ and

θk ¼ arctanðe−2kηΔtÞ. Up to normalization factors, the
quantum computer is in the state

P
2n−1
k¼0 e−ηkΔtjkijψi.

From the kth ancilla qubit, a controlled time evolution
operator is applied to the system register for time 2kΔt.
Finally, the quantum Fourier transform is applied to the
ancilla qubits, which will put the quantum computer

in the state
P

2n−1
m¼0

P
2n−1
k¼0 eið

2π
ð2n−1ÞΔtmþiηÞkΔtjmie−iĤkΔtjψi.

Performing a measurement on both registers, the proba-
bility that the ancilla register is in the statem and the system
register is in the state ψ is

Pðm;ψÞ ∝
����X2

n−1

k¼0

eiðωmþiηÞkΔthψ je−iĤkΔtjψi
����
2

ðB3Þ

where ωm ¼ 2πm
ð2nþ1−1ÞΔt. This is directly proportional to the

Riemann sum that approximates the Green’s function, and
by repeatedly running this circuit, estimates for Pðm;ψÞ
can be obtained.

2. Hybrid approach

The circuit described in the previous section allows the
Green’s function to be computed using only quantum
resources. However, that circuit requires many CNOT gates
and ancilla qubits, which makes implementation on a near-
term quantum computer difficult. Previous work has
introduced variational methods to compute the Green’s
function on near-term quantum computers [49]. In this
section, a method of computing Green’s functions using the
Hadamard test will be introduced. This method only
requires a single ancilla qubit, which makes it more suitable
for near-term quantum computers than the method in the
previous section. The Hadamard test method [48] can be
used to compute hψ je−iĤtjψi with a quantum computer for

FIG. 3. The quantum circuit used to calculate the Riemann sum approximation to the Green’s function.
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several time slices. For the circuit in Fig. 4, Pð0Þ − Pð1Þ ¼
Reðhψ je−iĤtjψiÞ, where Pð0Þ is the probability that the
ancilla qubit is measured to be in the state 0 and Pð1Þ is the
probability it is measured to be 1. For the circuit in Fig. 5,
Pð0Þ − Pð1Þ ¼ Imðhψ je−iĤtjψiÞ. By running these two
circuits n times, hψ je−iĤtjψi can be computed with
statistical error given by 1ffiffi

n
p .

Once hψ je−iĤtjψi has been computed for several time
slices, the Green’s function can be computed by classically
performing a discrete Fourier transform. This requires
a separate quantum circuit for each time slice, but the
circuits used are shorter than the circuit in the previous
section, which makes them better suited for implementation
on near-term quantum computers. Implementing the
Hadamard test requires at most a polynomial overhead
over the cost of implementing e−iHt. Therefore, the quan-
tum and classical resources needed to compute the Green’s
function scale polynomially with this method as long as jψi
can be prepared using polynomially many resources and
time evolution can be performed using polynomially many
resources on the quantum computer.

APPENDIX C: ERROR SCALING

1. Finite T and Δt
This calculation is based on performing a Riemann sum

approximation to an integral, so errors due to a finite T
cutoff and a finite step size Δt will need to be estimated.
The Riemann sum being evaluated is

R ¼
XT=Δt
k¼0

eiðωþiηÞkΔthψ je−iĤkΔtjψiΔt ðC1Þ

which approximates

I ¼
Z

T

0

eiðωþiηÞthψ je−iĤtjψidt: ðC2Þ

Equation (C2) differs from the T → ∞ limit by

δI ¼ hψ j 1

ω − Ĥ þ iη
eiðω−ĤÞT jψie−ηT: ðC3Þ

Therefore, to determine the Green’s function to within an
accuracy of ϵ, T must be taken to be Oð1η logð 1ηϵÞÞ. Using
integration by parts, it can be shown that

Z
t2

t1

dteat ¼ ðt2 − t1Þeat2 −
Z

t2

t1

dtðt − t1Þaeat; ðC4Þ

and using Eq. (C4), it can be shown that

I − R ¼ −
Xnt
n¼1

Z
Δt n

Δt ðn−1Þ
dtðt − Δtðn − 1ÞÞ

× hψ jðω − Ĥ þ iηÞeiðω−ĤþiηÞtjψi ðC5Þ

where nt is the number of time slices used in the Riemann
sum. Here, jψi can be expanded in the eigenbasis of Ĥ as
jψi ¼ P

n cnjEni. The Hamiltonians for which this method
of computing the Green’s function is to be applied to have
been renormalized such that the lowest energy state has
zero energy. Therefore, it may be assumed that En ≥ 0 for
all n. If hψ jĤjψi ¼ E, then

jhψ jĤe−iĤtjψij ¼
���X

n

jcnj2Ene−iEnt
���

≤
X
n

jcnj2En ¼ E: ðC6Þ

Using this bound, it can be shown that

jI−Rj≤
Z

T

0

ΔtðωþEþηÞe−ηt ≤ T
ηnt

ðωþηþEÞ: ðC7Þ

Therefore, the number of time slices needed to determine
the Green’s function evaluated at ωþ iη with an accuracy
of ϵ must be

Number of Time Slices ¼ O
�logð 2ϵηÞ

η2ϵ
ðωþ Eþ ηÞ

�
: ðC8Þ

Many implementations of Hamiltonian simulation on
quantum computers do not implement the time evolution
operator exactly [50–53]. To calculate the Green’s function
with accuracy ϵ, the error in the implementation of the time
evolution operator must be OðηϵÞ. If the gate cost required
to evolve to a time T with accuracy δ is given by pðT; δÞ,
then the gate cost required to calculate the Green’s
function is

FIG. 4. Circuit used to determine Reðhψ je−iHtjψiÞ.

FIG. 5. Circuit used to determine Imðhψ je−iHtjψiÞ.
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Gate Count¼O

�logð 2ϵηÞ
η2ϵ

ðωþEþηÞp
�
1

η
log

�
2

ηϵ

�
;ηϵ

��
:

ðC9Þ

2. Finite volume errors

a. d + 1 dimensions with a mass gap

When scattering calculations are done inside of a finite
volume, first the L → ∞ limit should be taken, followed
by the η → 0 limit. The order in which this limit is
taken matters, as can be seen from a rearrangement of
Γ ¼ −2ImðhϕjT̂jϕiÞ,

Γ ¼
X
n

2η

ðM − EnÞ2 þ η2
jhEnjV̂jϕij2 ðC10Þ

where jEni are eigenstates of the full Hamiltonian, jϕi is
the state describing the unstable particle, V̂ is the inter-
action piece of the Hamiltonian, and M is the mass of the
particle decaying. If the η → 0 limit is taken first, then this
discrete sum goes to zero. Alternatively, if L → ∞ first, the
energy levels become continuous and

Γη ¼
Z

2η

ðM − EÞ2 þ η2
jhEjV̂jϕij2ρðEÞdE: ðC11Þ

If then η → 0, the Lorentzian term becomes a delta
function, and the usual expression for the decay rate is
recovered,

Γ ¼ 2πjhMjV̂jϕij2ρðMÞ: ðC12Þ

Finite volume errors in a 1 → N particle decay rate will be
calculated in the case where all of the decay products are
massive. If the interaction energy between the decay
products can be ignored (as in the L → ∞ limit), then
for a 1 → N decay, the calculated decay rate is

ΓFV;η ¼
X

n⃗1;n⃗2;���n⃗N∈Zd

2η

ðM −
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q

Þ2 þ η2

× jhn⃗1; n⃗2; � � � n⃗N jV̂jϕij2 ðC13Þ

in the a → 0 limit, where M is the mass of the heavy
particle decaying and mk is the mass of the kth decay
product. In this case,

jhn⃗1; n⃗2; � � � n⃗N jV̂jϕij2

¼
Z

ddx⃗
Ld ei

2π
L x⃗·ð

P
N
k¼1

n⃗kÞ jMj2
2M

YN
k¼1

1

Ld2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q

ðC14Þ

where M is the scattering amplitude, which is generically
an analytic function of all the decay products’ momenta,
and x⃗ is integrated over the region ½−L

2
; L
2
�d. Therefore,

the decay rate computed inside a finite volume at
finite η is

ΓFV;η ¼
X

n⃗1;n⃗2;���n⃗N∈Zd

Z
ddx⃗
Ld ei

2π
L x⃗·ð

P
N
k¼1

n⃗kÞ

×
2η

ðM −
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q

Þ2 þ η2

jMj2
2M

×
YN
k¼1

1

Ld2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q : ðC15Þ

If, instead, the goal is to calculate a cross section for 2 → N
scattering in the center-of-mass frame, an initial state with
two particles each with energy Ki must be prepared. In this
case,

jhn⃗1; n⃗2; � � � n⃗N jVjϕij2

¼
Z

ddx⃗
Ld ei

2π
L x⃗·ð

P
N
k¼1

n⃗kÞ jMj2
4K2

i L
d

YN
k¼1

1

Ld2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q :

ðC16Þ

The scattering cross section σ is given by the decay rate

divided by the incident flux, which is equal to jv⃗1−v⃗2j
Ld , where

v⃗1 and v⃗2 are the velocities of the particles present in the
initial state. The extracted value for the cross section at
finite volume and η is given by

σFV;η ¼
X

n⃗1;n⃗2;���n⃗N∈Zd

Z
ddx⃗
Ld ei

2π
L x⃗·ð

P
N
k¼1

n⃗kÞ

×
2η

ð2Ki −
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q

Þ2 þ η2

×
1

jv⃗1 − v⃗2j
jMj2
4K2

i

YN
k¼1

1

Ld2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ ð2πn⃗kL Þ2
q : ðC17Þ

This expression takes the same form as Eq. (C15), just with
M replaced by 2Ki and with some slightly different
prefactors, so the finite volume error analysis for cross
sections can proceed in the same way as the decay rate
analysis. To simplify the following discussion, the finite
volume errors will be computed only for decay rates.
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As L → ∞, the computed decay rate becomes

Γη ¼
YN
k¼1

Z
ddp⃗k

ð2πÞd2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q Z
ddx⃗eix⃗·ð

P
N
k¼1

p⃗kÞ

×
2η

ðM −
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q
Þ2 þ η2

jMj2
2M

: ðC18Þ

The Poisson resummation formula states that

X
n⃗∈Zd

fðn⃗Þ ¼
Z

ddx⃗fðx⃗Þ þ
X
p⃗≠0⃗

Z
ddx⃗e2πip⃗·x⃗fðx⃗Þ; ðC19Þ

and using Eq. (C19), the finite volume error in the
calculation of Γη is given by

δΓFV ¼ ΓFV;η − Γη

¼ −2Im
� X

n∈ffn⃗1;n⃗2;…;n⃗N∈Zdggnf0⃗;…;0⃗g
In

�
ðC20Þ

where

In ¼
Z

ddx⃗
Ld

YN
k¼1

Z
ddp⃗k

ð2πÞd2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q eip⃗k·ðn⃗kLþx⃗Þ

×
1

M −
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q
þiη

jMj2
2M

: ðC21Þ

Using the fact that

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

p ¼
Z
γ

dE
2πi

1

ðEþ iδÞ2 − p⃗2 −m2
; ðC22Þ

where γ is a contour enclosing the lower right quadrant of the complex plane, Eq. (C21) can be rewritten as

In ¼
Z

ddx⃗
Ld

YN
k¼1

Z
γ

dEk

2πi

Z
ddp⃗k

ð2πÞd
eip⃗k·ðn⃗kLþx⃗Þ

ðEk þ i η
Nþ1

Þ2 − p⃗2
k −m2

k

1

M −
P

N
k¼1 Ek þ i η

Nþ1

jMj2
2M

: ðC23Þ

The component of p⃗k parallel to n⃗k can be integrated over with contour integration yielding

In ¼
Z

ddx⃗
Ld

YN
k¼1

Z
γ

dEk

2π

Z
dd−1p⃗T

k

ð2πÞd−1
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþi η

Nþ1
Þ2−m2

k−ðp⃗T
k Þ2

p
jnkLþn̂k·x⃗jþip⃗T

k ·x⃗

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ i η

Nþ1
Þ2 −m2

k − ðp⃗T
k Þ2

q 1

M −
P

N
k¼1 Ek þ i η

Nþ1

jMj2
2M

ðC24Þ

where pT
k is a d-dimensional vector integrated over vectors perpendicular to n⃗k. The integral over pT

k can be performed in
the large L limit using the saddle point approximation method, which states that

Z
ddx⃗hðx⃗Þe−λfðx⃗Þ ¼

�
2π

λ

�d
2

hðx⃗0Þe−λfðx⃗0Þ
1

detðHessianðfðx⃗0ÞÞÞ12
ðC25Þ

in the λ → ∞ limit, where x⃗0 is a stationary point of fðx⃗Þ in the integration domain. Therefore, in the large L limit Eq. (C24)
becomes

In ¼
Z

ddx⃗
Ld

YN
k¼1

Z
γ

dEk

4π

1

ð2πÞd−12
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ i η

Nþ1
Þ2 −m2

k

q
Þ
d−3
2

jnkLþ n̂k · x⃗jd−12
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþi η

Nþ1
Þ2−m2

k

p
jnkLþn̂k·x⃗j 1

M −
P

N
k¼1 Ek þ i η

Nþ1

jMj2
2M

: ðC26Þ

The Ek integrals over γ can be written as a sum over an integral over the positive real axis and the negative imaginary axis.
We can explicitly write out these integrals as
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In ¼
X

σ⊆f1;2;…;Ng

Z
ddx⃗
Ld

Y
k∉σ

Z
∞

0

dEk

4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ i η

Nþ1
Þ2 −m2

k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþi η

Nþ1
Þ2−m2

k

p
jnkLþn̂k·x⃗j

×
Y
k∈σ

Z
∞

0

−idEk

4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk −

η
Nþ1

Þ2 þm2
k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk−

η
Nþ1

Þ2þm2
k

p
jnkLþn̂k·x⃗j

×
1

M −
P

k∉σEk þ ið η
Nþ1

þP
k∈σEkÞ

jMj2
2M

: ðC27Þ

For k ∈ σ, the Ek integrals can be evaluated using the saddle point approximation again,

In ¼
X

σ⊆f1;2;…;Ng

Z
ddx⃗
Ld

Y
k∉σ

Z
∞

0

dEk

4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ i η

Nþ1
Þ2 −m2

k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþi η

Nþ1
Þ2−m2

k

p
jnkLþn̂k·x⃗j

×
Y
k∈σ

−i
4π

1

ð2πÞd2
m

d−2
2

k

jnkLþ n̂k · x⃗jd2
e−mkjnkLþn̂k·x⃗j 1

M −
P

k∉σEk þ iη jσjþ1
Nþ1

jMj2
2M

: ðC28Þ

The final set of Ek integrals will be performed by making the substitution Ek ¼ Efk,

In ¼
X

σ⊆f1;2;…;Ng

Z
ddx⃗
Ld

Z
∞

0

dEEN−jσj−1Y
k∉σ

Z
dfk
4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEfk þ i η

Nþ1
Þ2 −m2

k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEfkþi η

Nþ1
Þ2−m2

k

p
jnkLþn̂k·x⃗j

×
Y
k∈σ

−i
4π

1

ð2πÞd2
m

d−2
2

k

jnkLþ n̂k · x⃗jd2
e−mkjnkLþn̂k·x⃗j 1

M − Eþ iη jσjþ1
Nþ1

jMj2
2M

ðC29Þ

where the fk are integrated over the region 0 ≤ fk ≤ 1 and
P

fk ¼ 1. The integral over E can be found by performing a
contour integration over a contour enclosing the upper quadrant of the complex plane. Performing this contour integral
yields

In ¼
X

σ⊆f1;2;…;Ng
AnðσÞ þ BnðσÞ ðC30Þ

where

AnðσÞ ¼ i
Z

ddx⃗
Ld

Y
k∉σ

Z
dEk

4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ η

Nþ1
Þ2 þm2

k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkþ η

Nþ1
Þ2þm2

k

p
jnkLþn̂k·x⃗j

×
Y
k∈σ

−i
4π

1

ð2πÞd2
m

d−2
2

k

jnkLþ n̂k · x⃗jd2
e−mkjnkLþn̂k·x⃗j 1

M −
P

k∉σiEk þ iη jσjþ1

Nþ1

jMj2
2M

ðC31Þ

comes from integrating along the positive imaginary axis and
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BnðσÞ ¼ −2πi
�
M þ iη

jσj þ 1

N þ 1

�
N−jσj−1

×
Y
k∉σ

Z
dfk
4π

1

ð2πÞd−12

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððM þ iη jσjþ1

Nþ1
Þfk þ i η

Nþ1
Þ2 −m2

k

q �d−3
2

jnkLþ n̂k · x⃗jd−12
ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððMþiηjσjþ1

Nþ1
Þfkþi η

Nþ1
Þ2−m2

k

p
jnkLþn̂k·x⃗j

×
Y
k∈σ

−i
4π

1

ð2πÞd2
m

d−2
2

k

jnkLþ n̂k · x⃗jd2
e−mkjnkLþn̂k·x⃗j jMj2

2M
ðC32Þ

comes from the pole located at E ¼ M þ iη jσjþ1
Nþ1

.
The integrals in Eq. (C31) can be evaluated using
the saddle point approximation, and using the fact
that jnkLþ n̂k · x⃗j ≥ ðnk − 1

2
ÞL, it follows that AnðσÞ ¼

Oð 1
M2

Q
k e

−mkðnk−1
2
ÞLÞ. Using the bound

Im

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
Mþ iη

jσj þ 1

Nþ 1

�
fkþ i

η

Nþ 1

�
2

−m2
k

s �
≥

η

Nþ 1
;

ðC33Þ

it can be seen that

BnðσÞ¼O

�
M

d−1
2
N−2

Y
k∈σ

e−mkðnk−1
2
ÞLY

k∉σ
e−

η
Nþ1

ðnk−1
2
ÞL
�
: ðC34Þ

Therefore, in the limit of small η,

In ¼ O

�
M

d−1
2
N−2

YN
k¼1

e−
η

Nþ1
ðnk−1

2
ÞL
�
; ðC35Þ

and

δΓFV ¼ O

�
M

d−1
2
N−2e−

η
Nþ1

L
2

�
: ðC36Þ

b. d + 1 dimensions without a mass gap

The bound in the previous section was calculated under
the assumption that all decay products are massive; how-
ever, this is not always the case. In the case where there are
massless particles, the decay rate calculated in finite
volume is again given by Eq. (C13), and the infinite
volume limit is given by Eq. (C18). Note that ΓFV;η is a
Riemann sum approximation to Γη, and using the multi-
dimensional bound on the Riemann sum error for integrat-
ing over a k dimensional hypercube with side length R,

����
Z

dkxfðx⃗Þ −
X

n⃗∈ZnnfjnijΔx≥R
2
g
ΔxnfðΔxn⃗Þ

����

≤

P
k
i¼1 max

���� ∂f
∂xi

����
2

RkΔx; ðC37Þ

it can be seen that δΓFV is Oð 1
η2LÞ for small η.

3. Finite η errors

The value of Γ calculated for a 1 → N particle decay
at finite η in an infinite volume is given by Γη ¼
−2ImðTðM þ iηÞÞ where

TðzÞ ¼
YN
k¼1

Z
ddp⃗k

ð2πÞd2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q ð2πÞdδdðPN
k¼1 p⃗kÞ

z−
P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k þ p⃗2
k

q jMj2
2M

ðC38Þ

is the forward scattering amplitude, M is the mass of the
particle decaying, mk is the mass of the kth decay product
and M is the scattering amplitude for the given decay
channel. The decay rate Γ is given by limη→0Γη. It will be
shown in this section that δΓη ¼ Γη − Γ isOðηÞ for small η.
Changing to spherical coordinates and making the sub-

stitution Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k þm2

k

q
−mk, Eq. (C38) becomes

TðzÞ ¼
YN
k¼1

Z
∞

0

dEk

Z
dΩk

ðE2
k þ 2mkEkÞd−22
2ð2πÞd

×
ð2πÞdδdðPN

k¼1 p⃗kÞ
z −

P
N
k¼1ðEk þmkÞ

jMj2
2M

: ðC39Þ

Now, making the substitution Ek ¼ fkE, TðzÞ can be
expressed in the form

TðzÞ ¼
Z

∞

0

dEfðEÞ 1

z − E −
P

N
k¼1mk

ðC40Þ

where
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fðEÞ ¼ EN−1
YN
k¼1

Z
dfk

Z
dΩk

ðE2f2k þ 2mkEfkÞd−22
2ð2πÞd ð2πÞd

× δd
�XN

k¼1

p⃗k

� jMj2
2M

ðC41Þ

where the fk are integrated over the region 0 ≤ fk ≤ 1 andP
N
k¼1 fk ¼ 1. Note that fðEÞ has the following properties,

2πfðΔMÞ ¼ Γ where ΔM ¼ M −
P

N
k¼1 mk, fð0Þ ¼ 0,

and fðEÞ ≥ 0. Here, TðzÞ is known to be analytic in
the upper half of the complex plane [1], which implies
limE→∞ fðEÞ ¼ 0, since otherwise ReðTðzÞÞ would
diverge. The decay rate calculated at finite η is

Γη ¼
Z

∞

0

dEfðEÞ 2η

ðΔM − EÞ2 þ η2
: ðC42Þ

Integrating Eq. (C42) by parts gives

Γη ¼ −2
Z

∞

0

dEf0ðEÞtan−1
�
E − ΔM

η

�

¼ 2

Z
ΔM

∞
dEf0ðEÞcot−1

�
η

E − ΔM

�

− 2

Z
ΔM

0

dEf0ðEÞcot−1
�

η

E − ΔM

�
: ðC43Þ

To show that δΓη ¼ Γη − Γ isOðηÞ for small η, it suffices to
show that

lim
η→0þ

�
δΓη

η

�
¼ dΓη

dη

����
η¼0þ

ðC44Þ

is finite. Differentiating under the integral shows that for
η > 0,

dΓη

dη
¼ 2

Z
∞

0

dEf0ðEÞ E − ΔM
η2 þ ðE − ΔMÞ2

¼ 2P
Z

∞

0

dEf0ðEÞ E − ΔM
η2 þ ðE − ΔMÞ2 : ðC45Þ

Therefore,

dΓη

dη

����
η¼0þ

¼ 2P
Z

∞

0

dEf0ðEÞ 1

E − ΔM
: ðC46Þ

The integral in Eq. (C46) is finite due to the properties of
fðEÞ discussed above, so δΓη is OðηÞ for small η.

4. Particle number truncation

When a quantum field theory describing bosons is
simulated on a quantum computer, the degrees of freedom
must be truncated. For the bosonic theories considered in

this paper, this was done by simulating the theory on a finite
lattice with particle numbers truncated. The calculations in
the previous section bounded the error in the computed
decay rate due to the finite lattice, and in this section, the
error due to the particle number truncation will be calcu-
lated. The scattering T matrix can be computed from the
recurrence relation

T̂ ¼ V̂ þ V̂
1

E − Ĥ0 þ iη
T̂ ðC47Þ

where V0 is the free part of the Hamiltonian describing the
motion of free particles and V̂ is the interaction part of the
Hamiltonian. If P̂ projects out the finite particle subspace
under consideration, then the T matrix computed with this
truncation satisfies the recurrence relation

T̂f ¼ V̂ þ V̂
P̂

E − Ĥ0 þ iη
T̂f: ðC48Þ

Then the difference between the actual T matrix and the T
matrix computed with a particle number truncation,
δ̂ ¼ T̂ − T̂f, satisfies

δ̂ ¼ V̂
1

E − Ĥ0 þ iη
δ̂þ V̂

1 − P̂

E − Ĥ0 þ iη
T̂f: ðC49Þ

This can be rewritten as

δ̂ ¼ T̂
1 − P̂

E − Ĥ0 þ iη
T̂f: ðC50Þ

Therefore, if the lightest particle in the theory has mass m
and particle number is truncated at n, then the error in TðEÞ
due to the particle number truncation is Oð 1

E−mðnþ1ÞÞ.

APPENDIX D: ERROR MITIGATION

While the Hadamard test enables the computation of
matrix elements, it does not address errors due to imperfect
gates on the device itself. To mitigate this error, an
extrapolation technique was used [54,55]. In each circuit,
every CNOT was replaced with an odd number, r (for
r ¼ 3, 5, 7), of CNOT’s, and each amplitude was linearly
extrapolated to r ¼ 0. If there was no noise, these addi-
tional CNOT gates would make no change to the outcome
of the circuit.
This procedure reduces the error from imperfect imple-

mentation of CNOT gates on the quantum computer but
does not mitigate readout errors. To address readout errors,
the default calibration matrix method included in the Qiskit
Ignis package was used [56].
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APPENDIX E: HAMILTONIAN SIMULATION

The one-site calculation done on IBM’s quantum com-
puter was done in the momentum basis. While the gate cost
of performing time evolution in the momentum basis
does not scale to large lattices as well as in the position
basis, it is suitable for small calculations [46]. With a
single site,

ϕ̂ ¼ 1ffiffiffiffiffiffiffi
2M

p ðâϕ þ â†ϕÞ

χ̂ ¼ 1ffiffiffiffiffiffiffi
2m

p ðâχ þ â†χÞ

π̂ϕ ¼ −i
ffiffiffiffiffi
M
2

r
ðâϕ − â†ϕÞ

π̂χ ¼ −i
ffiffiffiffi
m
2

r
ðâχ − â†χÞ

Ĥ ¼ 1

2
π̂2ϕ þ

1

2
π̂2χ þ

1

2
M2ϕ̂2 þ 1

2
m2χ̂2 þ 1

2
gϕ̂χ̂2

þ 1

4!
λχ̂4 þ 1

2
δM2ϕ̂2 þ 1

2
δm2χ̂2 þ Λ ðE1Þ

where H is the Hamiltonian, M is the mass of the heavy
particle, m is the mass of the light particle, Λ is chosen to
make the vacuum energy equal to zero, and δM and δm are
the differences between the physical and bare masses. This
Hamiltonian only couples states with the same parity in the
number of χ particles, so states with an even number of χ
particles are the only ones needed. The mapping of basis
states to qubit states is listed in Table II. Two qubits were
used to store the state of the system, and one ancilla qubit
was used to implement the amplitude estimation algorithm
described in Appendix B 2.

In this truncated basis, the Hamiltonian is

H̄¼
�
M
2
þmþ 7λ

32m2
þδM2

2M
þ3δm2

4m
þΛ

�
1̂⊗ 1̂

þ
��

λ

8
ffiffiffi
2

p
m2

þ
ffiffiffi
2

p
δm2

4m

�
X̂−

�
mþ 3λ

16m2
þδm2

2m

�
Ẑ

�
⊗ 1̂

þ 1̂⊗
�

3g

4m
ffiffiffiffiffiffiffi
2M

p X̂−
�
M
2
þδM2

4M

�
Ẑ

�

þ
�

g

4m
ffiffiffiffiffi
M

p X̂−
g

2m
ffiffiffiffiffiffiffi
2M

p Ẑ

�
⊗ X̂: ðE2Þ

The amplitude estimation procedure described in the pre-
vious section requires implementation of a controlled time
evolution operator which was implemented using a Trotter-

Suzuki decomposition e−i
P

Hkδt ≈
Q

k e
−iHkδt where

Ĥ0¼
�
M
2
þmþ 7λ

32m2
þδM2

2M
þ3δm2

4m
þΛ

�
1̂⊗ 1̂

Ĥ1¼
��

λ

8
ffiffiffi
2

p
m2

þ
ffiffiffi
2

p
δm2

4m

�
X̂−

�
mþ 3λ

16m2
þδm2

2m

�
Ẑ

�
⊗ 1̂

Ĥ2¼ 1̂⊗
�

3g

4m
ffiffiffiffiffiffiffi
2M

p X̂−
�
M
2
þδM2

4M

�
Ẑ

�

Ĥ3¼
�

g

4m
ffiffiffiffiffi
M

p X̂−
g

2m
ffiffiffiffiffiffiffi
2M

p Ẑ

�
⊗ X̂: ðE3Þ

Implementing a controlled version of this time evolution
operator requires the ability to perform controlled unitary

FIG. 6. Circuit for e−iðc1X̂þc2ẐÞ controlled on the first qubit.

FIG. 7. Circuit for e−iðc1X̂þc2ẐÞ⊗X̂ controlled on the first qubit.

TABLE II. Basis states.

Qubit state Basis state

00 Vacuum
01 1ϕ
10 2χ
11 1ϕ and 2χ
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transformations of the form eic1̂⊗1̂, eiðc1X̂þc2ẐÞ⊗1̂ and
eiðc1X̂þc2ẐÞ⊗X̂. A controlled eic1̂⊗1̂ can be performed by
applying ð1

0
0
eicÞ to the control qubit. Here, c1X̂ þ c2Ẑ is a

2 × 2 Hermitian matrix, and the matrix U that maps the
computational basis to the eigenbasis of this matrix can be
found classically. Using the matrix U, it is trivial to modify
the textbook implementation of a controlled Ẑ rotation [57]
to a controlled rotation about c1X̂ þ c2Ẑ as shown in Fig. 6.
A similar trick can be used to implement the ðc1X̂ þ c2ẐÞ ⊗
X̂ term as shown in Fig. 7.

APPENDIX F: ESTIMATION OF IMPERFECT
GATE IMPLEMENTATION ERRORS

On NISQ era quantum computers, the statistical error
and error due to imperfect implementation of logic gates on
the quantum processor must both be addressed. In general,
the density matrix describing the state of the quantum
computer is given by

ρexp ¼ ð1 − pÞρideal þ
X
i

EiρidealE
†
i ðF1Þ

where ρideal is the density matrix describing the state of the
quantum computer if every gate was implemented per-
fectly, p is the probability there is an error anywhere in the
circuit, Ei are the Krauss operators describing the errors
and

P
i EiE

†
i ¼ p. The difference between the probability

observed on a real quantum computer and an ideal quantum
computer is given by

Tr

�
−pOρideal þ

X
i

OEiρidealE
†
i

�

¼ pTr

�
O
p

X
i

EiρidealE
†
i −Oρideal

�
ðF2Þ

where O is the projection operator corresponding to the
measurement result. Note that 1

p

P
i EiρidealE

†
i is a density

matrix because
P

i EiE
†
i ¼ p. So TrðOp

P
i EiρidealE

†
i−

OρidealÞ is the difference of probabilities, which must be
bounded above by one. As a result, the difference between
the probability of a given measurement observed on a real
quantum computer and an ideal quantum computer is
bounded above by p. For the calculation on IBM’s
Ourense quantum processor, p was calculated using the
calibration data provided by IBM, and it was used as an
estimate of the error due to imperfect gate implementation.

APPENDIX G: DATA

The following tables contain the results of all compu-
tations run on the IBM Ourense quantum processor.

TABLE III. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the real part of
hψ je−iHtjψi for g ¼ 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(0) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.694 0.341 0.195 0.152
2 0.608 0.279 0.163 0.137
3 0.492 0.208 0.152 0.132
4 0.342 0.161 0.139 0.115
5 0.194 0.123 0.109 0.114
6 0.091 0.094 0.105 0.111
7 0.057 0.108 0.119 0.111
8 0.053 0.108 0.121 0.113
9 0.116 0.144 0.142 0.121
10 0.21 0.195 0.149 0.114
11 0.337 0.264 0.183 0.125
12 0.475 0.336 0.204 0.133
13 0.55 0.345 0.233 0.137
14 0.641 0.357 0.236 0.159
15 0.683 0.354 0.241 0.15
16 0.674 0.371 0.265 0.185
17 0.633 0.312 0.233 0.16
18 0.552 0.266 0.205 0.122
19 0.446 0.236 0.141 0.12
20 0.37 0.207 0.11 0.117
21 0.278 0.147 0.101 0.107
22 0.196 0.107 0.095 0.112
23 0.141 0.087 0.111 0.113
24 0.107 0.082 0.107 0.129
25 0.084 0.112 0.097 0.111
26 0.108 0.127 0.096 0.123
27 0.144 0.145 0.118 0.112
28 0.189 0.174 0.124 0.113
29 0.234 0.177 0.141 0.137
30 0.289 0.172 0.155 0.132
31 0.272 0.195 0.16 0.13
32 0.218 0.162 0.13 0.117
33 0.169 0.126 0.134 0.12
34 0.131 0.108 0.13 0.129
35 0.087 0.114 0.123 0.124
36 0.072 0.117 0.131 0.135
37 0.116 0.148 0.172 0.139
38 0.206 0.195 0.19 0.155
39 0.311 0.251 0.206 0.161
40 0.379 0.254 0.172 0.143
41 0.447 0.262 0.176 0.143
42 0.524 0.276 0.186 0.144
43 0.555 0.284 0.186 0.15
44 0.564 0.256 0.164 0.132
45 0.512 0.245 0.162 0.132
46 0.433 0.2 0.157 0.131
47 0.345 0.199 0.139 0.118

(Table continued)
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TABLE III. (Continued)

Error mitigated real Hadamard test P(0) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

48 0.243 0.165 0.139 0.114
49 0.19 0.135 0.123 0.112
50 0.14 0.121 0.126 0.111
51 0.142 0.125 0.134 0.112
52 0.17 0.126 0.13 0.123
53 0.214 0.134 0.13 0.116
54 0.248 0.147 0.121 0.117
55 0.288 0.127 0.126 0.119
56 0.267 0.124 0.1 0.112
57 0.213 0.108 0.101 0.11
58 0.167 0.104 0.113 0.106
59 0.121 0.094 0.113 0.117
60 0.084 0.101 0.117 0.129
61 0.046 0.089 0.112 0.141
62 0.052 0.117 0.129 0.145
63 0.075 0.174 0.155 0.151
64 0.136 0.222 0.173 0.141
65 0.238 0.267 0.197 0.151
66 0.313 0.282 0.208 0.139
67 0.423 0.251 0.202 0.136
68 0.473 0.291 0.208 0.156
69 0.507 0.291 0.235 0.15
70 0.543 0.297 0.211 0.131
71 0.579 0.283 0.188 0.12
72 0.571 0.291 0.178 0.126
73 0.525 0.306 0.198 0.146
74 0.453 0.315 0.204 0.153
75 0.385 0.273 0.212 0.145
76 0.29 0.232 0.195 0.157
77 0.208 0.173 0.165 0.133
78 0.133 0.131 0.136 0.121
79 0.072 0.09 0.115 0.107
80 0.045 0.089 0.105 0.103
81 0.072 0.094 0.109 0.105
82 0.197 0.186 0.209 0.146
83 0.35 0.251 0.238 0.14
84 0.496 0.321 0.251 0.147
85 0.635 0.394 0.257 0.156
86 0.689 0.441 0.258 0.159
87 0.698 0.425 0.246 0.155
88 0.645 0.4 0.246 0.17
89 0.558 0.305 0.237 0.161
90 0.469 0.238 0.199 0.15
91 0.343 0.187 0.151 0.122
92 0.202 0.132 0.124 0.126
93 0.109 0.108 0.107 0.11
94 0.051 0.093 0.125 0.121
95 0.062 0.103 0.14 0.124

TABLE IV. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the real part of
hψ je−iHtjψi for g ¼ 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(1) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.07 0.142 0.138 0.122
2 0.162 0.197 0.18 0.125
3 0.266 0.256 0.206 0.144
4 0.397 0.31 0.208 0.166
5 0.523 0.364 0.24 0.171
6 0.612 0.373 0.248 0.185
7 0.68 0.38 0.259 0.194
8 0.666 0.369 0.241 0.179
9 0.601 0.349 0.223 0.171
10 0.497 0.272 0.209 0.15
11 0.374 0.203 0.154 0.125
12 0.256 0.136 0.119 0.116
13 0.141 0.123 0.115 0.116
14 0.068 0.097 0.107 0.109
15 0.045 0.09 0.105 0.105
16 0.057 0.12 0.11 0.12
17 0.101 0.18 0.135 0.142
18 0.165 0.236 0.165 0.165
19 0.239 0.219 0.193 0.166
20 0.304 0.257 0.224 0.167
21 0.358 0.306 0.227 0.174
22 0.403 0.322 0.223 0.181
23 0.424 0.328 0.223 0.176
24 0.423 0.302 0.22 0.159
25 0.407 0.278 0.227 0.165
26 0.333 0.26 0.201 0.154
27 0.279 0.226 0.175 0.141
28 0.232 0.18 0.183 0.142
29 0.191 0.166 0.163 0.141
30 0.162 0.165 0.159 0.145
31 0.181 0.16 0.15 0.132
32 0.254 0.189 0.152 0.123
33 0.323 0.238 0.159 0.115
34 0.387 0.254 0.184 0.142
35 0.462 0.27 0.192 0.135
36 0.505 0.266 0.192 0.14
37 0.499 0.244 0.17 0.139
38 0.449 0.209 0.139 0.131
39 0.341 0.179 0.126 0.124
40 0.257 0.144 0.129 0.127
41 0.192 0.136 0.131 0.126
42 0.123 0.127 0.126 0.119
43 0.093 0.13 0.133 0.12

(Table continued)
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TABLE V. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the imaginary part of
hψ je−iHtjψi for g ¼ 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated imaginary Hadamard test P(0) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.224 0.111 0.099 0.105
2 0.126 0.082 0.105 0.093
3 0.058 0.074 0.105 0.103
4 0.041 0.101 0.12 0.114
5 0.071 0.129 0.127 0.124
6 0.168 0.17 0.143 0.143
7 0.301 0.225 0.19 0.158
8 0.409 0.292 0.213 0.152
9 0.536 0.341 0.221 0.164
10 0.629 0.374 0.233 0.167
11 0.663 0.373 0.225 0.13
12 0.644 0.333 0.196 0.131
13 0.567 0.328 0.195 0.144
14 0.456 0.277 0.16 0.12
15 0.367 0.207 0.149 0.112
16 0.264 0.139 0.145 0.113
17 0.196 0.089 0.102 0.092
18 0.107 0.069 0.109 0.101
19 0.074 0.075 0.099 0.105
20 0.052 0.085 0.109 0.111
21 0.064 0.107 0.129 0.126
22 0.093 0.148 0.169 0.153
23 0.109 0.185 0.171 0.182
24 0.16 0.24 0.192 0.192
25 0.2 0.235 0.173 0.164
26 0.223 0.27 0.171 0.176
27 0.246 0.239 0.176 0.158
28 0.251 0.229 0.202 0.151
29 0.232 0.208 0.182 0.169
30 0.22 0.158 0.177 0.148
31 0.176 0.153 0.154 0.144
32 0.153 0.126 0.15 0.135
33 0.152 0.137 0.143 0.129
34 0.148 0.177 0.168 0.15
35 0.241 0.19 0.18 0.155
36 0.349 0.242 0.198 0.147
37 0.469 0.262 0.219 0.159
38 0.556 0.305 0.222 0.152
39 0.604 0.303 0.195 0.14
40 0.541 0.246 0.157 0.137
41 0.498 0.228 0.157 0.129
42 0.449 0.206 0.147 0.128
43 0.386 0.176 0.143 0.127
44 0.296 0.169 0.129 0.12
45 0.208 0.14 0.127 0.116
46 0.129 0.124 0.123 0.128

(Table continued)

TABLE IV. (Continued)

Error mitigated real Hadamard test P(1) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

44 0.079 0.132 0.137 0.124
45 0.105 0.144 0.143 0.125
46 0.157 0.156 0.133 0.119
47 0.22 0.164 0.152 0.121
48 0.273 0.186 0.143 0.123
49 0.281 0.206 0.154 0.125
50 0.286 0.197 0.137 0.122
51 0.283 0.166 0.119 0.116
52 0.256 0.165 0.121 0.116
53 0.23 0.164 0.126 0.126
54 0.196 0.184 0.14 0.127
55 0.221 0.225 0.164 0.138
56 0.258 0.262 0.177 0.133
57 0.331 0.289 0.187 0.138
58 0.421 0.264 0.166 0.151
59 0.521 0.263 0.179 0.149
60 0.588 0.273 0.195 0.141
61 0.678 0.305 0.234 0.145
62 0.692 0.327 0.239 0.164
63 0.667 0.3 0.218 0.18
64 0.581 0.279 0.181 0.171
65 0.478 0.235 0.165 0.167
66 0.399 0.197 0.127 0.147
67 0.29 0.163 0.118 0.113
68 0.213 0.136 0.117 0.106
69 0.149 0.133 0.111 0.115
70 0.093 0.119 0.118 0.109
71 0.058 0.105 0.105 0.114
72 0.056 0.086 0.109 0.115
73 0.087 0.087 0.116 0.122
74 0.147 0.117 0.123 0.15
75 0.227 0.163 0.123 0.155
76 0.366 0.226 0.14 0.143
77 0.487 0.278 0.164 0.156
78 0.586 0.346 0.194 0.171
79 0.605 0.282 0.185 0.14
80 0.622 0.293 0.184 0.153
81 0.59 0.299 0.192 0.146
82 0.552 0.317 0.141 0.143
83 0.4 0.242 0.135 0.127
84 0.238 0.174 0.119 0.121
85 0.113 0.115 0.113 0.103
86 0.045 0.089 0.098 0.12
87 0.042 0.09 0.118 0.111
88 0.116 0.132 0.15 0.123
89 0.2 0.219 0.167 0.122
90 0.304 0.288 0.221 0.138
91 0.437 0.321 0.23 0.144
92 0.586 0.379 0.254 0.157
93 0.686 0.418 0.276 0.161
94 0.749 0.455 0.257 0.172
95 0.739 0.439 0.236 0.175
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TABLE V. (Continued)

Error mitigated imaginary Hadamard test P(0) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

47 0.09 0.112 0.13 0.105
48 0.09 0.115 0.123 0.113
49 0.113 0.126 0.132 0.117
50 0.159 0.127 0.137 0.114
51 0.182 0.134 0.135 0.112
52 0.219 0.115 0.12 0.11
53 0.204 0.123 0.135 0.108
54 0.166 0.127 0.122 0.112
55 0.166 0.12 0.128 0.121
56 0.13 0.139 0.137 0.112
57 0.11 0.149 0.137 0.124
58 0.122 0.14 0.134 0.137
59 0.171 0.153 0.16 0.148
60 0.259 0.186 0.166 0.15
61 0.339 0.243 0.195 0.178
62 0.44 0.302 0.231 0.203
63 0.537 0.379 0.257 0.215
64 0.601 0.411 0.263 0.208
65 0.638 0.425 0.268 0.206
66 0.665 0.402 0.238 0.19
67 0.639 0.316 0.206 0.132
68 0.611 0.315 0.202 0.139
69 0.546 0.311 0.205 0.14
70 0.454 0.271 0.192 0.121
71 0.358 0.242 0.16 0.118
72 0.27 0.195 0.136 0.1
73 0.175 0.162 0.148 0.109
74 0.09 0.123 0.126 0.109
75 0.053 0.104 0.122 0.103
76 0.042 0.085 0.113 0.104
77 0.075 0.098 0.112 0.109
78 0.134 0.124 0.11 0.12
79 0.229 0.152 0.125 0.118
80 0.34 0.195 0.148 0.123
81 0.469 0.238 0.175 0.137
82 0.657 0.398 0.236 0.166
83 0.687 0.393 0.231 0.161
84 0.653 0.378 0.216 0.145
85 0.569 0.372 0.198 0.143
86 0.436 0.31 0.163 0.134
87 0.301 0.212 0.137 0.135
88 0.176 0.147 0.133 0.114
89 0.094 0.095 0.108 0.106
90 0.045 0.093 0.114 0.103
91 0.051 0.112 0.135 0.115
92 0.099 0.144 0.159 0.127
93 0.195 0.207 0.187 0.139
94 0.339 0.251 0.229 0.159
95 0.505 0.331 0.261 0.172

TABLE VI. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the imaginary part of
hψ je−iHtjψi for g ¼ 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated imaginary Hadamard test P(1) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.53 0.372 0.231 0.16
2 0.633 0.397 0.253 0.179
3 0.712 0.39 0.256 0.167
4 0.693 0.364 0.239 0.177
5 0.644 0.351 0.226 0.166
6 0.536 0.302 0.203 0.154
7 0.437 0.26 0.181 0.15
8 0.308 0.188 0.154 0.149
9 0.162 0.134 0.135 0.12
10 0.084 0.1 0.125 0.11
11 0.04 0.098 0.117 0.107
12 0.059 0.125 0.126 0.112
13 0.125 0.141 0.14 0.137
14 0.238 0.181 0.182 0.135
15 0.354 0.237 0.202 0.146
16 0.454 0.349 0.245 0.185
17 0.531 0.426 0.268 0.213
18 0.604 0.431 0.261 0.197
19 0.622 0.396 0.234 0.176
20 0.613 0.374 0.205 0.176
21 0.579 0.333 0.186 0.16
22 0.502 0.285 0.157 0.136
23 0.452 0.226 0.15 0.111
24 0.369 0.177 0.144 0.104
25 0.28 0.153 0.145 0.117
26 0.218 0.126 0.127 0.115
27 0.177 0.129 0.129 0.108
28 0.157 0.123 0.112 0.12
29 0.188 0.134 0.12 0.117
30 0.224 0.181 0.126 0.126
31 0.28 0.196 0.136 0.117
32 0.331 0.221 0.144 0.115
33 0.355 0.226 0.145 0.124
34 0.371 0.199 0.143 0.122
35 0.318 0.202 0.133 0.119
36 0.239 0.156 0.117 0.117
37 0.151 0.13 0.121 0.12
38 0.099 0.118 0.13 0.126
39 0.057 0.122 0.145 0.132
40 0.083 0.145 0.142 0.129
41 0.128 0.181 0.163 0.13
42 0.197 0.201 0.176 0.129
43 0.265 0.222 0.165 0.14
44 0.331 0.229 0.179 0.133

(Table continued)
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TABLE VI. (Continued)

Error mitigated imaginary Hadamard test P(1) g ¼ 0.5

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

45 0.4 0.244 0.177 0.137
46 0.464 0.242 0.174 0.13
47 0.479 0.244 0.162 0.127
48 0.433 0.239 0.157 0.134
49 0.354 0.218 0.137 0.122
50 0.275 0.186 0.13 0.118
51 0.241 0.179 0.111 0.12
52 0.222 0.166 0.126 0.13
53 0.239 0.178 0.128 0.129
54 0.259 0.203 0.142 0.131
55 0.332 0.237 0.155 0.134
56 0.39 0.25 0.15 0.134
57 0.444 0.241 0.15 0.124
58 0.47 0.23 0.129 0.126
59 0.47 0.205 0.13 0.123
60 0.439 0.193 0.135 0.134
61 0.385 0.159 0.141 0.107
62 0.311 0.127 0.117 0.1
63 0.206 0.098 0.105 0.105
64 0.121 0.086 0.091 0.104
65 0.065 0.081 0.094 0.104
66 0.04 0.087 0.107 0.105
67 0.07 0.107 0.118 0.115
68 0.086 0.11 0.14 0.128
69 0.125 0.118 0.143 0.116
70 0.182 0.131 0.132 0.113
71 0.269 0.14 0.14 0.122
72 0.351 0.191 0.149 0.134
73 0.424 0.241 0.174 0.172
74 0.514 0.291 0.207 0.182
75 0.564 0.341 0.209 0.198
76 0.601 0.371 0.22 0.197
77 0.624 0.369 0.222 0.189
78 0.59 0.326 0.225 0.172
79 0.439 0.238 0.176 0.139
80 0.337 0.192 0.153 0.126
81 0.207 0.144 0.119 0.126
82 0.101 0.107 0.113 0.119
83 0.059 0.096 0.132 0.121
84 0.082 0.119 0.153 0.122
85 0.169 0.15 0.164 0.133
86 0.311 0.223 0.202 0.145
87 0.451 0.289 0.224 0.144
88 0.576 0.376 0.252 0.16
89 0.672 0.422 0.284 0.173
90 0.722 0.435 0.295 0.183
91 0.721 0.388 0.259 0.15
92 0.679 0.365 0.224 0.147
93 0.593 0.326 0.189 0.139
94 0.454 0.289 0.15 0.115
95 0.296 0.208 0.126 0.118

TABLE VII. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the real part of
hψ je−iHtjψi for g ¼ 1 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.445 0.134 0.131 0.089
2 0.335 0.136 0.128 0.119
3 0.35 0.154 0.124 0.125
4 0.318 0.152 0.117 0.099
5 0.239 0.192 0.118 0.095
6 0.187 0.179 0.124 0.105
7 0.12 0.199 0.108 0.076
8 0.141 0.183 0.123 0.111
9 0.109 0.218 0.092 0.117
10 0.102 0.207 0.121 0.121
11 0.099 0.219 0.119 0.127
12 0.137 0.228 0.127 0.112
13 0.164 0.204 0.132 0.113
14 0.167 0.215 0.139 0.121
15 0.187 0.203 0.128 0.116
16 0.25 0.178 0.127 0.119
17 0.281 0.197 0.132 0.112
18 0.294 0.177 0.104 0.126
19 0.345 0.166 0.115 0.117
20 0.394 0.179 0.136 0.116
21 0.387 0.173 0.138 0.113
22 0.434 0.155 0.126 0.11
23 0.424 0.151 0.136 0.122
24 0.422 0.143 0.127 0.117
25 0.378 0.125 0.13 0.116
26 0.367 0.149 0.138 0.115
27 0.394 0.118 0.132 0.113
28 0.372 0.135 0.13 0.104
29 0.32 0.139 0.122 0.077
30 0.331 0.125 0.113 0.116
31 0.324 0.124 0.106 0.118
32 0.291 0.139 0.121 0.11
33 0.321 0.133 0.147 0.124
34 0.273 0.143 0.143 0.117
35 0.272 0.134 0.133 0.122
36 0.254 0.141 0.123 0.119
37 0.183 0.148 0.147 0.1
38 0.183 0.147 0.131 0.108
39 0.131 0.145 0.139 0.116
40 0.124 0.155 0.153 0.118
41 0.112 0.177 0.143 0.103
42 0.094 0.161 0.139 0.104
43 0.094 0.169 0.121 0.1
44 0.099 0.175 0.13 0.093
45 0.11 0.192 0.122 0.1

(Table continued)
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TABLE VII. (Continued)

Error mitigated real Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

46 0.111 0.172 0.111 0.112
47 0.137 0.183 0.135 0.133
48 0.134 0.192 0.116 0.098
49 0.175 0.158 0.109 0.095
50 0.189 0.16 0.122 0.117
51 0.174 0.156 0.129 0.108
52 0.141 0.148 0.106 0.113
53 0.169 0.16 0.129 0.103
54 0.162 0.157 0.122 0.125
55 0.189 0.157 0.106 0.11
56 0.158 0.16 0.114 0.106
57 0.183 0.137 0.124 0.121
58 0.177 0.151 0.134 0.102
59 0.192 0.164 0.122 0.083
60 0.229 0.179 0.101 0.119
61 0.232 0.168 0.112 0.115
62 0.279 0.154 0.121 0.102
63 0.282 0.154 0.123 0.097
64 0.32 0.13 0.103 0.093
65 0.368 0.168 0.119 0.104
66 0.392 0.144 0.112 0.101
67 0.379 0.145 0.113 0.108
68 0.417 0.111 0.105 0.109
69 0.409 0.121 0.117 0.103
70 0.417 0.119 0.117 0.103
71 0.364 0.11 0.127 0.105
72 0.366 0.099 0.117 0.099
73 0.338 0.119 0.123 0.122
74 0.288 0.108 0.121 0.099
75 0.247 0.119 0.111 0.115
76 0.23 0.122 0.09 0.104
77 0.152 0.122 0.101 0.113
78 0.137 0.136 0.111 0.1
79 0.092 0.129 0.115 0.117
80 0.07 0.127 0.083 0.075
81 0.063 0.106 0.088 0.079
82 0.109 0.154 0.1 0.083
83 0.073 0.163 0.066 0.079
84 0.111 0.11 0.098 0.097
85 0.136 0.153 0.117 0.113
86 0.144 0.136 0.101 0.097
87 0.202 0.124 0.093 0.102
88 0.162 0.155 0.117 0.076
89 0.179 0.135 0.099 0.117
90 0.257 0.169 0.084 0.074
91 0.336 0.133 0.106 0.103
92 0.245 0.177 0.095 0.076
93 0.492 0.187 0.106 0.091
94 0.473 0.18 0.137 0.116
95 0.43 0.184 0.118 0.112
96 0.24 0.107 0.113 0.119
97 0.244 0.108 0.082 0.091
98 0.411 0.132 0.115 0.114
99 0.353 0.141 0.133 0.101

(Table continued)

TABLE VII. (Continued)

Error mitigated real Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

100 0.336 0.111 0.102 0.096
101 0.325 0.14 0.104 0.108
102 0.25 0.109 0.101 0.124
103 0.176 0.133 0.12 0.11
104 0.124 0.116 0.13 0.127
105 0.112 0.123 0.131 0.109
106 0.114 0.112 0.136 0.123
107 0.077 0.142 0.131 0.114
108 0.053 0.139 0.125 0.102
109 0.076 0.175 0.138 0.129
110 0.09 0.203 0.147 0.116
111 0.11 0.19 0.112 0.113
112 0.173 0.233 0.136 0.121

TABLE VIII. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the real part of
hψ je−iHtjψi for g ¼ 1 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(1) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.174 0.2 0.123 0.119
2 0.204 0.192 0.125 0.094
3 0.286 0.197 0.114 0.12
4 0.36 0.184 0.134 0.115
5 0.416 0.189 0.098 0.117
6 0.451 0.17 0.119 0.119
7 0.489 0.171 0.144 0.13
8 0.491 0.169 0.115 0.114
9 0.496 0.139 0.12 0.112
10 0.51 0.145 0.127 0.097
11 0.507 0.119 0.109 0.112
12 0.45 0.119 0.104 0.123
13 0.419 0.124 0.121 0.117
14 0.407 0.106 0.11 0.103
15 0.351 0.131 0.127 0.097
16 0.313 0.141 0.124 0.118
17 0.264 0.122 0.117 0.116
18 0.213 0.127 0.128 0.113
19 0.181 0.147 0.124 0.13
20 0.166 0.132 0.112 0.119
21 0.117 0.144 0.125 0.125
22 0.088 0.145 0.126 0.133
23 0.091 0.166 0.116 0.123
24 0.09 0.154 0.132 0.113
25 0.092 0.166 0.132 0.111
26 0.108 0.181 0.123 0.133
27 0.093 0.173 0.13 0.11
28 0.16 0.149 0.124 0.09

(Table continued)
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TABLE IX. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the imaginary part of
hψ je−iHtjψi for g ¼ 1 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated imaginary Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.125 0.178 0.112 0.125
2 0.037 0.194 0.134 0.088
3 0.104 0.225 0.125 0.12
4 0.099 0.195 0.112 0.105
5 0.112 0.208 0.134 0.106
6 0.145 0.188 0.121 0.095
7 0.197 0.228 0.127 0.086
8 0.21 0.224 0.11 0.1
9 0.275 0.207 0.104 0.116

(Table continued)

TABLE VIII. (Continued)

Error mitigated real Hadamard test P(1) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

29 0.124 0.166 0.131 0.121
30 0.13 0.165 0.129 0.12
31 0.151 0.167 0.128 0.103
32 0.193 0.168 0.129 0.135
33 0.284 0.208 0.138 0.132
34 0.296 0.223 0.105 0.108
35 0.325 0.222 0.137 0.11
36 0.361 0.207 0.148 0.099
37 0.425 0.211 0.121 0.128
38 0.41 0.214 0.122 0.121
39 0.466 0.198 0.116 0.124
40 0.488 0.227 0.129 0.12
41 0.466 0.152 0.132 0.099
42 0.467 0.176 0.108 0.128
43 0.465 0.175 0.124 0.13
44 0.457 0.172 0.126 0.132
45 0.392 0.132 0.12 0.125
46 0.413 0.131 0.126 0.113
47 0.412 0.136 0.119 0.096
48 0.369 0.141 0.132 0.111
49 0.289 0.146 0.126 0.104
50 0.273 0.126 0.116 0.104
51 0.286 0.121 0.118 0.114
52 0.284 0.145 0.134 0.127
53 0.252 0.116 0.13 0.127
54 0.26 0.123 0.122 0.121
55 0.242 0.129 0.131 0.12
56 0.253 0.127 0.127 0.13
57 0.247 0.152 0.115 0.11
58 0.279 0.145 0.103 0.129
59 0.239 0.141 0.103 0.132
60 0.24 0.131 0.131 0.102
61 0.24 0.141 0.129 0.128
62 0.212 0.142 0.105 0.135
63 0.201 0.146 0.121 0.118
64 0.178 0.149 0.132 0.121
65 0.163 0.11 0.124 0.109
66 0.122 0.149 0.142 0.134
67 0.135 0.152 0.122 0.106
68 0.089 0.139 0.108 0.123
69 0.114 0.142 0.119 0.121
70 0.125 0.148 0.129 0.107
71 0.149 0.151 0.12 0.117
72 0.182 0.166 0.107 0.128
73 0.198 0.171 0.107 0.112
74 0.255 0.176 0.12 0.125
75 0.294 0.151 0.124 0.147
76 0.382 0.167 0.127 0.101
77 0.38 0.167 0.111 0.116
78 0.416 0.175 0.128 0.12
79 0.403 0.16 0.129 0.105
80 0.257 0.183 0.124 0.105
81 0.382 0.143 0.084 0.085
82 0.381 0.157 0.136 0.09

(Table continued)

TABLE VIII. (Continued)

Error mitigated real Hadamard test P(1) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

83 0.318 0.155 0.102 0.099
84 0.38 0.124 0.108 0.093
85 0.332 0.103 0.12 0.103
86 0.291 0.109 0.101 0.143
87 0.256 0.133 0.09 0.115
88 0.184 0.155 0.13 0.093
89 0.123 0.116 0.108 0.095
90 0.132 0.118 0.089 0.09
91 0.198 0.108 0.129 0.128
92 0.116 0.139 0.085 0.11
93 0.108 0.154 0.117 0.136
94 0.09 0.154 0.117 0.124
95 0.096 0.161 0.106 0.124
96 0.094 0.161 0.098 0.087
97 0.099 0.107 0.106 0.089
98 0.164 0.171 0.131 0.112
99 0.192 0.203 0.13 0.115
100 0.239 0.213 0.121 0.107
101 0.323 0.186 0.14 0.122
102 0.326 0.212 0.151 0.133
103 0.399 0.209 0.131 0.134
104 0.423 0.239 0.143 0.123
105 0.437 0.214 0.128 0.131
106 0.472 0.221 0.142 0.125
107 0.449 0.201 0.133 0.113
108 0.505 0.162 0.125 0.14
109 0.472 0.189 0.111 0.131
110 0.524 0.147 0.132 0.126
111 0.509 0.161 0.131 0.124
112 0.476 0.149 0.105 0.124
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TABLE IX. (Continued)

Error mitigated imaginary Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

10 0.317 0.205 0.118 0.103
11 0.36 0.217 0.127 0.11
12 0.426 0.209 0.122 0.104
13 0.409 0.181 0.127 0.113
14 0.462 0.167 0.116 0.112
15 0.45 0.168 0.096 0.127
16 0.457 0.155 0.105 0.12
17 0.457 0.137 0.117 0.1
18 0.425 0.147 0.119 0.104
19 0.409 0.12 0.105 0.116
20 0.397 0.163 0.122 0.104
21 0.371 0.122 0.118 0.113
22 0.377 0.14 0.116 0.12
23 0.318 0.138 0.125 0.12
24 0.295 0.123 0.13 0.112
25 0.226 0.126 0.123 0.113
26 0.253 0.121 0.127 0.101
27 0.178 0.136 0.148 0.095
28 0.155 0.125 0.121 0.108
29 0.129 0.125 0.126 0.108
30 0.123 0.122 0.136 0.09
31 0.108 0.139 0.129 0.122
32 0.082 0.124 0.127 0.112
33 0.08 0.173 0.122 0.122
34 0.074 0.176 0.142 0.119
35 0.083 0.227 0.15 0.122
36 0.085 0.196 0.142 0.123
37 0.131 0.227 0.131 0.11
38 0.148 0.205 0.125 0.124
39 0.151 0.187 0.123 0.113
40 0.178 0.224 0.144 0.127
41 0.197 0.201 0.113 0.097
42 0.226 0.206 0.118 0.111
43 0.284 0.211 0.113 0.108
44 0.308 0.205 0.12 0.108
45 0.338 0.211 0.134 0.115
46 0.338 0.174 0.112 0.118
47 0.378 0.174 0.118 0.138
48 0.378 0.142 0.126 0.118
49 0.328 0.156 0.115 0.107
50 0.335 0.164 0.126 0.117
51 0.318 0.167 0.124 0.128
52 0.298 0.134 0.106 0.121
53 0.315 0.139 0.112 0.119
54 0.289 0.146 0.123 0.112
55 0.284 0.152 0.117 0.11
56 0.287 0.15 0.109 0.117
57 0.31 0.149 0.114 0.123
58 0.321 0.15 0.138 0.118
59 0.313 0.134 0.13 0.12
60 0.328 0.164 0.111 0.118

(Table continued)

TABLE IX. (Continued)

Error mitigated imaginary Hadamard test P(0) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

61 0.364 0.139 0.124 0.122
62 0.372 0.131 0.12 0.128
63 0.358 0.129 0.132 0.096
64 0.363 0.123 0.11 0.114
65 0.382 0.124 0.127 0.121
66 0.331 0.127 0.12 0.103
67 0.286 0.114 0.126 0.107
68 0.271 0.108 0.103 0.105
69 0.234 0.103 0.102 0.109
70 0.196 0.125 0.113 0.103
71 0.18 0.112 0.111 0.107
72 0.116 0.126 0.105 0.125
73 0.109 0.118 0.11 0.125
74 0.099 0.118 0.117 0.124
75 0.075 0.135 0.113 0.114
76 0.084 0.156 0.132 0.114
77 0.103 0.167 0.123 0.125
78 0.143 0.202 0.099 0.098
79 0.153 0.153 0.101 0.116
80 0.146 0.109 0.096 0.069
81 0.216 0.172 0.105 0.087
82 0.298 0.178 0.101 0.112
83 0.248 0.151 0.102 0.092
84 0.369 0.125 0.086 0.123
85 0.366 0.154 0.107 0.084
86 0.317 0.124 0.085 0.104
87 0.348 0.105 0.107 0.131
88 0.261 0.156 0.092 0.089
89 0.232 0.119 0.106 0.1
90 0.284 0.144 0.099 0.082
91 0.377 0.119 0.108 0.11
92 0.227 0.153 0.101 0.091
93 0.391 0.147 0.114 0.119
94 0.35 0.13 0.126 0.112
95 0.258 0.136 0.111 0.114
96 0.118 0.116 0.102 0.112
97 0.121 0.108 0.073 0.111
98 0.138 0.13 0.128 0.091
99 0.123 0.132 0.122 0.104
100 0.063 0.124 0.113 0.115
101 0.092 0.153 0.126 0.108
102 0.08 0.162 0.142 0.125
103 0.093 0.203 0.15 0.117
104 0.107 0.176 0.136 0.134
105 0.161 0.212 0.133 0.108
106 0.144 0.188 0.154 0.122
107 0.195 0.208 0.126 0.137
108 0.228 0.193 0.148 0.114
109 0.293 0.238 0.143 0.133
110 0.372 0.212 0.123 0.104
111 0.42 0.24 0.144 0.121
112 0.513 0.233 0.139 0.11
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TABLE X. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the imaginary part of
hψ je−iHtjψi for g ¼ 1 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated imaginary Hadamard test P(1) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

1 0.51 0.144 0.119 0.13
2 0.467 0.125 0.116 0.114
3 0.528 0.134 0.124 0.125
4 0.575 0.143 0.122 0.119
5 0.536 0.146 0.11 0.117
6 0.501 0.135 0.134 0.13
7 0.424 0.128 0.117 0.117
8 0.411 0.137 0.121 0.13
9 0.343 0.152 0.119 0.113
10 0.293 0.15 0.132 0.118
11 0.233 0.132 0.122 0.126
12 0.163 0.157 0.135 0.128
13 0.163 0.175 0.12 0.1
14 0.122 0.157 0.137 0.113
15 0.104 0.148 0.142 0.109
16 0.105 0.191 0.134 0.114
17 0.079 0.172 0.125 0.115
18 0.105 0.182 0.131 0.126
19 0.104 0.185 0.129 0.086
20 0.17 0.152 0.125 0.13
21 0.153 0.186 0.132 0.134
22 0.159 0.177 0.132 0.125
23 0.209 0.179 0.118 0.102
24 0.212 0.179 0.114 0.113
25 0.249 0.18 0.131 0.125
26 0.256 0.196 0.108 0.13
27 0.32 0.164 0.112 0.115
28 0.345 0.157 0.127 0.11
29 0.306 0.17 0.117 0.112
30 0.33 0.168 0.127 0.138
31 0.386 0.166 0.131 0.099
32 0.424 0.151 0.132 0.122
33 0.506 0.168 0.135 0.142
34 0.506 0.186 0.121 0.112
35 0.534 0.133 0.114 0.13
36 0.505 0.146 0.141 0.109
37 0.482 0.145 0.14 0.13
38 0.448 0.146 0.129 0.12
39 0.45 0.155 0.131 0.121
40 0.437 0.132 0.135 0.126
41 0.38 0.133 0.129 0.124
42 0.336 0.122 0.126 0.127
43 0.285 0.139 0.134 0.119
44 0.25 0.125 0.135 0.116
45 0.181 0.122 0.1 0.118
46 0.198 0.151 0.145 0.111
47 0.154 0.158 0.14 0.111
48 0.133 0.161 0.125 0.115
49 0.142 0.153 0.14 0.114

(Table continued)

TABLE X. (Continued)

Error mitigated imaginary Hadamard test P(1) g ¼ 1

Time slice r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

50 0.113 0.144 0.122 0.126
51 0.137 0.132 0.12 0.104
52 0.114 0.137 0.137 0.115
53 0.119 0.151 0.129 0.086
54 0.136 0.111 0.125 0.115
55 0.145 0.151 0.126 0.103
56 0.125 0.154 0.14 0.107
57 0.126 0.141 0.138 0.103
58 0.141 0.154 0.096 0.12
59 0.108 0.147 0.102 0.111
60 0.106 0.135 0.118 0.106
61 0.118 0.156 0.126 0.12
62 0.117 0.175 0.1 0.122
63 0.134 0.175 0.108 0.122
64 0.129 0.161 0.115 0.102
65 0.155 0.148 0.11 0.112
66 0.175 0.169 0.107 0.124
67 0.223 0.178 0.111 0.104
68 0.223 0.159 0.121 0.126
69 0.281 0.169 0.118 0.117
70 0.328 0.153 0.12 0.137
71 0.34 0.167 0.128 0.117
72 0.412 0.139 0.125 0.106
73 0.417 0.169 0.117 0.109
74 0.432 0.163 0.11 0.101
75 0.478 0.145 0.119 0.123
76 0.488 0.139 0.123 0.124
77 0.453 0.139 0.097 0.096
78 0.421 0.115 0.125 0.112
79 0.317 0.117 0.141 0.095
80 0.165 0.156 0.122 0.084
81 0.231 0.125 0.098 0.083
82 0.198 0.158 0.136 0.092
83 0.137 0.122 0.103 0.087
84 0.184 0.134 0.101 0.084
85 0.133 0.109 0.131 0.094
86 0.098 0.124 0.096 0.129
87 0.081 0.106 0.078 0.094
88 0.063 0.123 0.133 0.092
89 0.063 0.13 0.103 0.076
90 0.1 0.128 0.085 0.083
91 0.166 0.124 0.12 0.092
92 0.124 0.132 0.124 0.113
93 0.201 0.198 0.136 0.118
94 0.214 0.226 0.119 0.111
95 0.27 0.209 0.134 0.106
96 0.218 0.154 0.098 0.104
97 0.244 0.127 0.1 0.082
98 0.437 0.173 0.114 0.108
99 0.436 0.191 0.123 0.11
100 0.498 0.191 0.108 0.089
101 0.546 0.157 0.11 0.121
102 0.473 0.156 0.114 0.123
103 0.475 0.164 0.112 0.123

(Table continued)
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