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A quantum algorithm is developed to calculate decay rates and cross sections using quantum resources
that scale polynomially in the system size assuming similar scaling for state preparation and time evolution.
This is done by computing finite-volume one- and two-particle Green’s functions on the quantum
hardware. Particle decay rates and two-particle scattering cross sections are extracted from the imaginary
parts of the Green’s function. A 0+ 1 dimensional implementation of this method is demonstrated on
IBM’s superconducting quantum hardware for the decay of a heavy scalar particle to a pair of light scalars.
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I. INTRODUCTION

Quantum field theories describe three of the four
fundamental forces of nature. In particular, quantum
chromodynamics (QCD) describes the strong interactions
that bind quarks into hadrons [1]. The predictions of QCD
are often tested in experiments where unstable hadrons
decay and their decay products are observed. For high
energy phenomenon, Feynman diagrams and other pertur-
bative techniques provide an excellent description. In the
low energy region, the QCD coupling constant becomes
large, and these methods fail. Nonperturbative approaches
such as lattice QCD (LQCD), chiral perturbation theory
and other effective field theories have enabled the calcu-
lation of some hadronic properties in this region. For
example, Luscher’s method [2,3] has allowed the compu-
tation of some decay rates and scattering cross sections
using LQCD by relating them to finite volume energy
shifts. It has been used to compute scattering phase shifts
for several low energy processes [4—7], and the decay
widths of p and ¢ mesons [8,9]. The extraction of finite
volume energy levels becomes difficult for excited states
and for large lattices, which limits the applicability of the
method.

Quantum computers have been proposed as a tool to
avoid various problems present in simulations of QFT’s. In
particular, fault tolerant quantum computers are expected to
be capable of simulating time evolution of local QFT’s
using resources that scale polynomially in the system size
[10-12]. The first steps towards simulating lattice gauge
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theories, such as the Schwinger model, have been made
[13-31]. In this work, a method of extracting particle decay
rates and scattering cross sections from a Green’s function
calculated on a quantum computer is demonstrated. This
method only requires the ability to prepare initial particle
states and perform real time evolution. It has been shown
for scalar and fermionic field theories that state preparation
and real time evolution can be performed on quantum
computers using resources that scale polynomially with the
system size [10—12]. The computational costs of classically
performing real time evolution usually scales exponentially
with the system size [32-39], so the use of quantum
computers would represent an exponential speedup. A
classical simulation of this quantum algorithm is explicitly
demonstrated for a 1 + 1 dimensional QFT where a heavy
scalar decays to a pair of light scalars. A O + 1 dimensional
demonstration is performed using IBM’s superconducting
hardware. Although this calculation is demonstrated for a
specific model, the approach is based on general properties
of Green’s functions, and it is expected that it can be
applied to particle decays or scattering in other theories.

The paper is organized as follows. The method of
computing the decay rate from the Green’s function is
described in Sec. I, and the mathematical details are shown
in Appendix A. The quantum circuit used to calculate
the Green’s function is described in Appendix B. The
time truncation and discretization errors are analyzed in
Appendix C 1. The systematic errors present in extracting a
decay rate from a finite volume Green’s function are
analyzed in Appendixes C2 and C 3. The errors due to
finite particle number truncations for theories containing
bosons are analyzed in Appendix C 4. A classical simulation
of this quantum algorithm is performed in Sec. III. IBM’s
quantum processor is used to implement this algorithm in
Sec. IV. The Trotterization procedure used in this demon-
stration is described in Appendix E. The data from running
on IBM’s quantum processor are in Appendix G.
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II. QUANTUM COMPUTATION
OF GREEN’S FUNCTIONS

For a single particle state |y), the Green’s function can

1
be written as (/|- H+u7 lw) = pra TR where E

is the energy of the state |y), A is the Hamiltonian, and 7" is
the scattering 7 matrix as shown in Appendix A. If the
Hamiltonian H can be split into a free piece H, that
describes the propagation of free particles and an inter-
action piece V that describes the interaction of particles, the
state |y/) can be prepared on a quantum computer as an
eigenstate of H(, using previously developed methods
[10,11,40]. For theories like QCD, where no such division
is known, an unstable particle state can be prepared by
simulating two stable particles colliding on resonance. For
example, a p meson can be prepared by simulating the
collision of two pions with total energy equal to the p
meson mass. The inclusive decay rate of a particle in d
spatial dimensions is given by

r= Z/dP (2m) 151 (Py,

P )(XAT(E,)lw)l?

(1)

where P, is the energy-momentum vector of the initial
particle, Py ! is the energy-momentum vector of the final
state X7, the sum is performed over all possible final states
and the integral is performed over all possible energy-
momenta vectors of the final state. The optical theorem
relates this sum to the forward matrix element of
the 7 matrix by I' = —21lim,_o Im((y/|T(E + in)|y)) [1].
Therefore, if the Green’s function can be computed in the
n — 0 limit, the inclusive decay rate can be extracted from
it. For 57 # 0, the difference between Im((y|7T(E + in)|y)
and T is O(n) as shown in Appendix C 3. Furthermore, if
lw) is a two-particle state, the same kind of relationship
between the Green’s function and the T matrix holds, and
the optical theorem can be used to find the inclusive
scattering cross section for the two particles present in
the state. To simplify the following discussion, we
will focus on the case of particle decays. When the
theory describing the particle is simulated inside a finite
volume box with periodic boundary conditions, the
difference between Im((w|T(E + in)|y)) in the finite
volume and the infinite volume value for a 1 — N decay
is O(E‘TN-2¢7%415) for a d 4 1 dimensional theory with a
mass gap, and O(ﬁ) otherwise, where L is the length of a

side of the finite volume box, as shown in Appendix C 2.
Therefore, if the Green’s function can be calculated in a
finite volume for a theory with a mass gap, I' for 1 - N
decays can be determined with finite # errors that are O(#)
and finite volume errors that are O(M%N ‘2e_$15). It
should be noted that the L — oo and # — 0 limits are

not independent, and to have finite volume errors vanish in
the L — oo limit, # must be chosen such that #LL. — . To
evaluate this Green’s function, it is helpful to express it in
integral form,

1

Wl =1 [Tl a2

If this integral is truncated at finite time 7', a Riemann sum
approximation,

T/At

R— Z eilw+in) kAt<w| "H"A’|y/)At, (3)
k=0

to this integral can be evaluated on a quantum computer
with the techniques described in Appendix B within an
accuracy of € using a gate count that scales as

Gate Count

_0<1 5(2’7) (w+E-+n)p ( 10g<}72> '7€>> (4)

where p(t,5) is the gate count required to evolve to time ¢
with accuracy 8, provided that |y) has already been prepared
and E is the energy of the state |y). Once the Green’s
function has been computed, the particle decay rate can be
extracted from the imaginary part of its pole. It should be
noted that in the # — O limit, the imaginary part of the
Green'’s function becomes the spectral density function, and
other work has been done on using quantum computers to
calculate the spectral density function [41-43]. Note that I"
can be extracted from the peak of the Green’s function which
takes the value 1% Therefore, to compute I' to within an
accuracy oI, the Green’s function must be computed to
within an accuracy of ﬁr—I; Since the uncertainty in I" scales
linearly with #, I" can be determined to an accuracy of I
using

log (%)
T3

2 1 V2N (o2 5)
o0 S\ )\T
gates with a lattice whose size scales as O(5:1og(55)) when
the theory has a mass gap.

Another approach to computing the decay rate of an
unstable particle would be to prepare the initial state, evolve
for some time and measure detector operators at the border
of the box, similar to the algorithm for the scattering of
scalar particles in previous work [10]. This requires the

simulation to run for a time ¢ = 0(11-) before measuring the
detector operators. The algorithm presented here only

Gate Count = O < I2(2E + oT)

requires the simulation to run for a time ¢ = 3 log(‘/_r)
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Therefore, this algorithm is expected to perform better for
particles with a long lifetime. This algorithm also provides
a method of computing decay rates that is different from
direct time evolution and should have different systematic
errors. Comparing decay rates computed with these two
different methods will allow them to be determined with a
higher degree of confidence.

III. DECAY OF A HEAVY SCALAR

A demonstration of the algorithm discussed in previous
sections will be provided by a classical simulation of the
decay of a heavy scalar, ¢, to a pair of light scalars,
¥, 1n 1 4+ 1 dimensions. The Lagrangian for this process is
given by

1
5<a¢> (@2 ~ S M3~

1
——gy* —— Wyt 6
5 L oy - M (6)
where M, and m, have been chosen such that the heavy
particle’s mass is 2.01 times the light particle’s mass (so the
¢ — 2)( channel is the only allowed decay channel) and

A>on 9 (to ensure a stable vacuum without spontaneous

symmetry breaking in the infinite volume continuum
theory). This theory was placed on a lattice with periodic
boundary conditions and with lattice spacing a = 0.2 m~!
where m is the light particle’s mass. This was done for
lattices with three, five and seven sites. With these
boundary conditions, the allowed momentum modes are
in the set {—@,—M—F ZIf’, ...,@}, where n; is
the number of sites and L = n,a is the length of the finite
volume box. To simulate this on a classical computer, the ¢
occupation numbers were truncated at one for each
momentum mode, and the y occupation numbers were
truncated at two for each momentum mode. Since the mass
of the heavy particle is only slightly larger than 2 times the
light particle’s mass, the arguments of Appendix C4
indicate that the error in the decay rate calculation due
to this particle number truncation should be negligible.
A classical computer was used to determine the renorm-
alization parameters and to simulate the quantum algorithm
from the previous section. The renormalization conditions
were that the vacuum has zero energy and the mass of the
heavy scalar is 2.01 times the mass of the light scalar. For
each lattice volume, # was chosen to minimize the sum of
the finite volume and finite # error calculated using the
methods in Appendixes C2 and C 3. The heavy particle
decay rates calculated classically in this example are
displayed in Fig. 1. The finite volume and finite 75
uncertainties were calculated using the methods described
in Appendix C. To improve the precision of this calcu-
lation, a larger lattice must eventually be used. No matter
what truncation is used, the dimension of the Hilbert space
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FIG. 1. Heavy particle decay rates calculated on different lattice
volumes plotted as a function of the coupling constant. The blue
points are the decay rates calculated in the classical simulations of
the quantum algorithm, and the red curves are the one-loop infinite
volume continuum calculations. The error bars on the finite lattice
decay rates represent finite volume and finite # errors calculated
using the methods in Appendix C. Theicons are defined in Ref. [47].

will grow exponentially with the number of lattice sites.
The Green’s function can be computed on a classical
computer using matrix inversion techniques, the fastest
of which scale as the dimension of the Hilbert space, which
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grows exponentially with the number of sites [44,45]. Due
to this exponential scaling, it is infeasible to use a classical
computer to compute Green’s functions on a large lattice.
However, using previously developed techniques for simu-
lating scalar field theories, the method described in the
previous section can be used to compute the Green’s
function on a quantum computer using resources that scale
polynomially [10,46].

IV. DEMONSTRATION OF 0+1 THEORY
ON IBM’s QUANTUM PROCESSOR

The calculations in the previous section were performed
using classical computers, but it is possible to use existing
quantum computers to do these calculations for a single
lattice site with the truncations from the previous section.
The Ourense quantum processor made available by IBM
was used to implement this method for a one-site calcu-
lation of the heavy particle decay rate. The details of how
the theory was discretized and how time evolution was
implemented on the quantum computer are described
in Appendix E. The Hadamard test method [48] was
used to obtain {(¢|e A *|p) for At =0.2 m™! and k =
1,2,...,96, where |¢) is a state describing a single heavy
scalar at rest. Two Trotter steps were used to calculate
each time slice, so the circuits used to calculate the real

component of (¢p|e=#A%|¢) used 36 single qubit gates and
28 CNOT gates. The circuit used to estimate the imaginary
component had one additional single qubit gate. Due to the
length of the circuit used, the effect of imperfect gate
implementation on the Ourense quantum processor is non-
negligible. The contribution of imperfect gate implemen-
tation to the error in the computed amplitudes was
estimated using the technique described in Appendix F.
Each circuit used in the Hadamard test was sampled 8000
times, so the resulting statistical error was negligible
relative to the systematic gate errors. To mitigate the effects
of gate errors, an error mitigation technique described in
Appendix D was used to extrapolate to the zero CNOT gate
error limit.
The Green’s function,

N 2
G = ‘Zkei(a)+ir/)kAt<¢|e—iHAtk|¢>At , (7)

was calculated classically using the error mitigated ampli-
tudes, and the results for two different couplings are
displayed in Fig. 2. The heavy particle decay rate was
extracted from the Green’s function by performing a least
squares fit to a Lorentzian distribution. The extracted decay
rate is compared to the ideal decay rate,

T = ~Im({p|T(M + in)|¢))
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FIG. 2. Green’s functions computed with the Ourense quantum
processor. The solid blue curve is a zero noise classical simulation
of this calculation with Qiskit. The light blue points were
computed using the error mitigated amplitudes from the Ourense
quantum processor. The error bars represent uncertainties from
the error mitigation extrapolation. The red curve is the Lorentzian
fit to the error mitigated Green’s functions.

where the states |E,) are eigenstates of the Hamiltonian
with energy E,, which would be computed in the absence
of any finite T or At errors in Table 1. The heavy particle
decay rates calculated on the Ourense quantum processor
are in agreement with the ideal calculation. However, even
after using these error mitigation techniques, the error due
to imperfect gates remained large.

TABLE 1. Heavy particle decay rates calculated with the Ourense
quantum processor. The first column is the coupling constant. The
second column is the value of I' that would be computed in the
absence of any finite 7" or At errors. The third column is the decay
rate calculated with the Ourense quantum processor. The error
represents uncertainties in the t to the Green’s function.

g Ideal I Extracted I
0.5 0.070m (0.009 £+ 0.037)m
1. 0.287m (0.286 4 0.047)m

094505-4



ALGORITHM FOR QUANTUM COMPUTATION OF PARTICLE ...

PHYS. REV. D 102, 094505 (2020)

V. CONCLUSION

In this work, a quantum algorithm to calculate the decay
rate of unstable particles and scattering cross sections has
been introduced. The resources required to implement this
method scale polynomially with the system size provided
that state preparation and time evolution can be performed
using resources that scale polynomially in the system size
and field value truncations. It has been shown that this is
possible for scalar and fermionic field theories [10,11,40].
To apply this method to LQCD, it will be necessary to
develop techniques to prepare hadronic states and perform
time evolution in lattice gauge theories. IBM’s Ourense
quantum processor was used to apply this algorithm to a
scalar field theory defined on a single lattice site with
truncated occupation numbers. Bounds on the finite volume
error of 1 — N decay rates and 2 — N scattering cross
sections computed with this method have been determined.
More work will need to be done to understand how
different truncations effect the error in the computed decay
rate. The method presented here only requires preparation
of the initial state and the ability to simulate the
Hamiltonian. Classical methods of computing decay rates
and cross sections from lattice calculations such as
Luscher’s method rely on relating these observables to
finite volume energy shifts. In general, this is a difficult
process, and it only allows the calculation of decay rates
and cross sections for limited processes. Due to the greater
generality of this method, it is expected that quantum
computers will be able to calculate decay rates and cross
sections beyond the reach of classical computers.
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APPENDIX A: GREEN’S FUNCTION POLES

The Green’s function used in this method is

1

G={yl——F—Iv).

(A1)
w—H+in

where |w) is a state describing the particle that will be
decaying and H is the Hamiltonian of the system. This

Green’s function has poles whose real part is the energy of
the state /) and whose imaginary part is given by the
imaginary part of the forward scattering amplitude. The
manipulations to show this are standard [3] but have
been reproduced here for the reader’s convenience. The
Hamiltonian can be split into a free term and an interaction

¢ W) = Eolw). Let P = [w){w,
0 = 1—|y)(y/|. The Green’s function can be written as

1 1
= —+ 5
w—Ey+in  (o—Ey+in)?
.\ 1 A\ "
X (y|V ——V . A2
WPy (o ?) W e

Using the matrix identity

MS
('j)

= A" (BA)"
n=0

:0

where A’ = AS"® (CA)" with A=V, B= w_;}m and
F—_ 0
C=— T the Green’s function is
1 1
= — >
w—Ey+in (w—-Ey+in)
& P\
WY (o) W 49
where
T= V). AS
nz (a) Ho +in ) (A3)
C()—H0+17] O)—E0+l}7,
SO
0o P A\
;<w—ﬁl0+in > |W>
00 1 B n
= T A7
S (g ) @
Using this fact, Eq. (A4) becomes
1 1 ~
= — — ([T
w—Ey+in  (w—Ey+in)? wiTlw)
o W[ Tly)* + A8
(0—E 1 i)’ (W|Tw) (A8)
T e=—— )
= : 1 _
o= Eo+in \1 - ——(y|T|w)
1
= . —. (A9)
w = Eq + in = (y|Tly)
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In the limit that # goes to zero, T becomes the scattering
T matrix, 7, and according to the optical theorem,
L= —Im((y|T|w)) for a single particle state, [y). So

1 2 1

RPy sl oy L

(A10)

and from Eq. (A10), the decay rate can be extracted since it
is proportional to the width of a Lorentzian distribution
centered at the particle’s energy.

APPENDIX B: QUANTUM COMPUTATION
OF THE GREEN’S FUNCTION

1. Fully quantum approach

In the previous section, it was shown that the imaginary
part of the poles of the Green’s function (/| H+m lw) is
. 5 + 1. Therefore, if this Green’s function can be computed
efﬁmently, then the decay rate can be computed efficiently
as well. This Green’s function can be expressed as an
integral,

1

Wl =i [ e ey ar

B1
w—H+in (B

If this integral is cut off at some finite large time 7', it can be
approximated with a Riemann sum,

T/At
i(w+in)kAt —iHkAr
T—»(llenAlt—>0 ¢ <ll/| |W>
k=0
[ —— (82)
=1 Sy o —— .
v E—-H+in v

If T=(2"""'—1)At, this sum can be evaluated on a
quantum computer using a register of n ancilla qubits in
addition to a register used to store the state of the system
and a number of gates that scale polynomially with n and
the size of the system. The circuit used to calculate the
Green’s function is displayed in Fig. 3. The calculation

begins with the quantum computer in the state |0)®"|y)
where all qubits in the ancilla are in the state |0) and the
system register is in the state |y), which describes the
unstable particle that will be decaying. Here, R, is applied

to the kth ancilla qubit, where R, = (—CZISIE?@)) gg:((zkk))) and
—2";1At)

0, = arctan(e . Up to normalization factors, the
quantum computer is in the state >z e 7*Ak)|w).
From the kth ancilla qubit, a controlled time evolution
operator is applied to the system register for time 2¥At.
Finally, the quantum Fourier transform is applied to the
ancilla qubits, which will put the quantum computer
in the state 32172l /@i HIRAL yyy pmifikar)y )
Performing a measurement on both registers, the proba-
bility that the ancilla register is in the state m and the system
register is in the state y is

-1 2
P(m,y) « Z el @ntin) kAt<l//|€ szAt|w> (B3)
k=0
where ®,, ﬁ This is directly proportional to the

Riemann sum that approximates the Green’s function, and
by repeatedly running this circuit, estimates for P(m,y)
can be obtained.

2. Hybrid approach

The circuit described in the previous section allows the
Green’s function to be computed using only quantum
resources. However, that circuit requires many CNOT gates
and ancilla qubits, which makes implementation on a near-
term quantum computer difficult. Previous work has
introduced variational methods to compute the Green’s
function on near-term quantum computers [49]. In this
section, a method of computing Green’s functions using the
Hadamard test will be introduced. This method only
requires a single ancilla qubit, which makes it more suitable
for near-term quantum computers than the method in the
previous section. The Hadamard test method [48] can be
used to compute (y|e~#!|y) with a quantum computer for

QFT

T N

N

0) —{Fa ’
0) — R ’
- T - T CTran
|77b> _ e—zHAt — 6—2H2At — e — 6—2H2 At
FIG. 3. The quantum circuit used to calculate the Riemann sum approximation to the Green’s function.
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0) — H T H —

g
1) ———— it A

FIG. 4. Circuit used to determine Re((y|e~"|y)).

S H

0) — H T

A
|¢> ] e‘iﬁt /74

FIG. 5.

Circuit used to determine Im((y|e=|y)).

several time slices. For the circuit in Fig. 4, P(0) — P(1) =

Re((y|e=™!y)), where P(0) is the probability that the
ancilla qubit is measured to be in the state 0 and P(1) is the
probability it is measured to be 1. For the circuit in Fig. 5,

P(0) = P(1) = Im((w|e="#'|y)). By running these two
circuits n times, (y|e~#|y) can be computed with
statistical error given by \/L—

n

Once (w|e |y has been computed for several time
slices, the Green’s function can be computed by classically
performing a discrete Fourier transform. This requires
a separate quantum circuit for each time slice, but the
circuits used are shorter than the circuit in the previous
section, which makes them better suited for implementation
on near-term quantum computers. Implementing the
Hadamard test requires at most a polynomial overhead
over the cost of implementing =", Therefore, the quan-
tum and classical resources needed to compute the Green’s
function scale polynomially with this method as long as [y)
can be prepared using polynomially many resources and
time evolution can be performed using polynomially many
resources on the quantum computer.

APPENDIX C: ERROR SCALING
1. Finite T and At

This calculation is based on performing a Riemann sum
approximation to an integral, so errors due to a finite T
cutoff and a finite step size At will need to be estimated.
The Riemann sum being evaluated is

T/At .
R = z ei(a)+i;1)kAt<W|e—inAt|w>At (Cl)
k=0
which approximates
T -
1_/ el(w+lr])t<ll/|e—lﬂl|w>dt. (C2)
0

Equation (C2) differs from the 7' — oo limit by

1

- ei(w—ﬁ])T e
w—H+in v

Sl = (/| (C3)

Therefore, to determine the Green’s function to within an
accuracy of e, T must be taken to be O(;log(;.)). Using
integration by parts, it can be shown that

¢ t
/2 dteat — (tZ _ tl)eatl —_ / : dt(t - tl)ae‘”, (C4)
' t

1 1

and using Eq. (C4), it can be shown that

i Atn
I-R=- / dt(t — At(n — 1
> o) ( (n—1))

n=1

x (yl(@ — H + in)e’@-frity) — (C5)
where 7, is the number of time slices used in the Riemann
sum. Here, |y) can be expanded in the eigenbasis of H as
lw) =", c,|E,). The Hamiltonians for which this method
of computing the Green’s function is to be applied to have
been renormalized such that the lowest energy state has
zero energy. Therefore, it may be assumed that E,, > 0 for
all n. If (w|H|w) = E, then

(BTl =[S Je, PE et

< Z|Cn|2En =E. (C6)
Using this bound, it can be shown that
T T
|I—R|§/ At(w+E+n)e" <—(w+n+E). (C7)
0 nn;

Therefore, the number of time slices needed to determine
the Green’s function evaluated at w + in with an accuracy
of ¢ must be

2
0552”) (+E+ n)) . (C8)

1
Number of Time Slices = O (

Many implementations of Hamiltonian simulation on
quantum computers do not implement the time evolution
operator exactly [50-53]. To calculate the Green’s function
with accuracy e, the error in the implementation of the time
evolution operator must be O(5e). If the gate cost required
to evolve to a time 7 with accuracy & is given by p(T, d),
then the gate cost required to calculate the Green’s
function is
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log(2 1 2

Gate Count = O ( gz(en) (w+E+n)p (—log (—) ,ne) > )
n-e n ne

(C9)

2. Finite volume errors
a. d +1 dimensions with a mass gap

When scattering calculations are done inside of a finite
volume, first the L — oo limit should be taken, followed
by the # — 0 limit. The order in which this limit is
taken matters, as can be seen from a rearrangement of

I = =2Im((¢|T¢)).

SN e P
= Zn:(M_En)z +”2|<Enlv|¢>| (C10)

where |E,) are eigenstates of the full Hamiltonian, |¢) is
the state describing the unstable particle, V is the inter-
action piece of the Hamiltonian, and M is the mass of the
particle decaying. If the # — O limit is taken first, then this
discrete sum goes to zero. Alternatively, if L — oo first, the
energy levels become continuous and

r, = / 21
n ( M — E)Z + ’12
If then # — 0, the Lorentzian term becomes a delta

function, and the usual expression for the decay rate is
recovered,

KEIVI)Pp(E)dE.  (Cl1)

I = 2a{(M]V1¢) 2p(1). (€12)

Finite volume errors in a 1 — N particle decay rate will be
calculated in the case where all of the decay products are
massive. If the interaction energy between the decay
products can be ignored (as in the L — oo limit), then
for a 1 - N decay, the calculated decay rate is

2
iy iy, iyezd (M = 30 o/ m + (MLﬁk)z)z +
X (i, iy, - - iy | V) [P (C13)

l—‘FV.}y =

in the a — 0 limit, where M is the mass of the heavy
particle decaying and my is the mass of the kth decay
product. In this case,

|1, 7ia, - 7| V)

N =

. /dd)_f eiZLl}_( - ”k) |M 1
- d a =
L 2M el Ld2 /mi + (2n:Lnk)2
(

where M is the scattering amplitude, which is generically

an analytic function of all the decay products’ momenta,

and X is integrated over the region [=£,%]. Therefore,

the decay rate computed inside a finite volume at
finite # is

x . (C15)

KETLA2\ 4 (2

If, instead, the goal is to calculate a cross section for 2 — N
scattering in the center-of-mass frame, an initial state with
two particles each with energy K; must be prepared. In this
case,

(i), iy, - - 1y V] )

d> 2 N
[ i IME ! .
L LT L2 fmd + (a2

The scattering cross section ¢ is given by the decay rate
divided by the incident flux, which is equal to ="\, where
v} and v; are the velocities of the particles present in the
initial state. The extracted value for the cross section at

finite volume and 7 is given by

d=
Z Qei%ﬂ_"( g:] ﬁk)
Ld

OFrvy =
i1ty iiy€Z4
X 211
2
(2K; = 30, mE + (52 + o
1 MPE 1

(C17)

X ——— .
|U1 —U2| 4K12 kzl_[lLdz /m%_’_(ZﬂTﬁk)Z

This expression takes the same form as Eq. (C15), just with
M replaced by 2K; and with some slightly different
prefactors, so the finite volume error analysis for cross
sections can proceed in the same way as the decay rate
analysis. To simplify the following discussion, the finite
volume errors will be computed only for decay rates.
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As L — oo, the computed decay rate becomes Sy =Tpy, =T,
. 3 = —2Im< > d 1n> (C20)
r,=11 / k / dzei (0, ) Wity €Z Y\ (... )
(27)924/m} + p?
5 where
2
x il |/2\:4| . (C18)
(M =320 \/mi+ bR)* + - / d"* / d'p _ i+
=17 (27) d2 m3 —|—
The Poisson resummation formula states that 1 | M|2
. (C21)
- . 2M
M =320 \/mi + Pi +in
> i) /dd?cf +Z/dd 2TPEF(R), (C19)
iiez? 7#0 Using the fact that
and using Eq. (C19), the finite volume error in the / 5. (C22)
calculation of T, is given by 2y/m 2/m? + 2 P’ 27i (E +i5)* = p> —m

where y is a contour enclosing the lower right quadrant of the complex plane, Eq. (C21) can be rewritten as

ddq dE eiPi (i L+X) 1 M|?
L v e
2ri YE+ige)? —Dpr—miM =33 Ex+igs 2M -

The component of p, parallel to 7, can be integrated over with contour integration yielding

dd* dE, [ d*'pl m P el 3|45} % | M
/ / k/ 27) dl = M-SV E —l—'i|2M| (C24)
T2\ B+ i)? —mE - (BT w1 B+ ig

where p! is a d-dimensional vector integrated over vectors perpendicular to 7;. The integral over p! can be performed in
the large L limit using the saddle point approximation method, which states that

- 27\ 5 2 1
A1 (2 ,—Af(¥) %) o= Af (%o) C
/d *h(F)e (ﬂ ) hFo)e det(Hessian(f(Xy))) (€23)

l—

in the 4 — oo limit, where X, is a stationary point of f(X) in the integration domain. Therefore, in the large L limit Eq. (C24)
becomes

d=3
2

dz E, +i —-m 2
1, / e H/ - 21 (k v oV Bt —milmL 4y 1 M (C26)

)5 |nkL+nk-x|T M—ZszlEk‘HNLH 2M

The E; integrals over y can be written as a sum over an integral over the positive real axis and the negative imaginary axis.
We can explicitly write out these integrals as
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-3
E, +i1)?— 2) z
/ / / dEy \/( e+ ip)” - m oV i Pl Lt 3
n d_ N —d=1
o'C{l 2....N} kéo am (275 2 I L + fy - X|2

d=3
E, — 12 2)T
/ —ldEk 1 (\/( k N+1) +mk e m\nkL+nkx\
keo

4 272'% |nkL—|—ka)_c’|%
! |M‘2 (C27)
M- Yoo Bk il + D ke Er) 2M
For k € o, the E; integrals can be evaluated using the saddle point approximation again,
)
Eo+ i) — )
I, = / / dEk _ \/( e tig) d_’]n" oV Bt P my Lt |
gc{12 N} m)T InL + fiy - X[
2
x e gl ! M (C28)
ieo 4” (277)7 |l + iy - X[° M = igoEr +in ‘;}:1 2M
The final set of E; integrals will be performed by making the substitution E; = Efy,
e 2\
B+ i )
I, /d X/ dEEN—\a|—1H / dfk 1 _ ( S N""l) — k el (Efitigp)?—m? |ng L+ X|
oc{1.2,...N} ko T [ L + 7y - X[
2 2
<TT my il 1 M| (C29)
keg4ﬂ( n)f L+ iy - X[ M—E+inly 2M

where the f are integrated over the region 0 < f;, < 1 and )_ f; = 1. The integral over E can be found by performing a
contour integration over a contour enclosing the upper quadrant of the complex plane. Performing this contour integral
yields

I, = Z ) + B,(0) (C30)
1,2,.

where

d=3
dz Ey+75) + mz) ’
A,(0) /d /dEk ( k N+1) d_lk o~V Bty +m Iy L+, |

_1

_ e 2
% H i my ol L+ ] 1 M|

e 4z (27:)7 |ng L + 7y ~x|§ M — ZkéﬂlEk + in I,'\’,‘Ll M

(C31)

comes from integrating along the positive imaginary axis and
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1\ N=lo]-1
B, (o )——2ﬂl<M+ll’]|0|+ )

N+1

d=3
i lolt1 i1 )2 2\ 7
((M+”7 N+1)fk+lN+1) _mk) ei\/((MﬂLi’I‘nHl

/dfk 1 N+1)f~k+"NL+1)2_mi‘"kL+ﬁk'x‘
kéo dT |nkL + nk
d-2
o 2
% —i my’ ; o—Milm L+ | M| (C32)
keg4ﬂ(2ﬂ)§|nkL+nk.x|z 2M
|
comes from the pole located at E =M + in ‘,f,lj:ll . ' / dixf(3) - Z Ax"f(Axn)
The integrals in Eq. (C31) can be evaluated using ez {m] AxE)
the saddle point approximation, and using the fact -
that L + iy - X| > (ny —3)L, it follows that A,(c) = k| max gf
0(# [1, e™(m=2L). Using the bound < 7 - RFAx, (C37)

o] +1 .0 \? n
Im<\/(<M—|—m|N|+l>fk+zN+l> —m%) ZN—+1’

(C33)

it can be seen that

Bn<a>—o<Md—z‘N—2He—mk<nk—%>LHe—N'—wk—%ﬂ). (C34)

keo ko

Therefore, in the limit of small 7,

N
I,=0 (M"%N—2 11 e—%wk—%ﬂ), (C35)
k=1
and
oy = 0<MMN 2e—m> (C36)

b. d +1 dimensions without a mass gap

The bound in the previous section was calculated under
the assumption that all decay products are massive; how-
ever, this is not always the case. In the case where there are
massless particles, the decay rate calculated in finite
volume is again given by Eq. (C13), and the infinite
volume limit is given by Eq. (CI18). Note that I'zy , is a
Riemann sum approximation to I',, and using the multi-
dimensional bound on the Riemann sum error for integrat-
ing over a k dimensional hypercube with side length R,

it can be seen that o[y is O(ﬂ%L) for small 7.
3. Finite 7 errors

The value of I' calculated for a 1 — N particle decay
at finite » in an infinite volume is given by I, =
—2Im(T(M + in)) where

! Pk (2”)d5d(ZN 1ﬁk) ‘M|2

N
=11/
@r)2\/m2+ pRz =N | Jmd 42 2M

(C38)

is the forward scattering amplitude, M is the mass of the
particle decaying, m; is the mass of the kth decay product
and M is the scattering amplitude for the given decay
channel. The decay rate I" is given by lim,_I’,. It will be
shown in this section that 6T, = I', —T"is O(#) for small #.
Changing to spherical coordinates and making the sub-

stitution E;, = \/p% + m% — my, Eq. (C38) becomes
(E2 4+ 2mEp)
H/ dEk/ko et ’”’)f o

(27)*5 (3%, Pr) [IMP?
2= 20 (Ex+myi) 2M

(C39)

Now, making the substitution E;
expressed in the form

= fyE, T(z) can be

1
-E- chvﬂmk

T(z) = A ” dEf(E)- (C40)

where
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N a=2
f(E) — EN_1 H/dfk / ko (Ezf% + ZMkEfk) 2 (271-)‘1
k=1

2(2m)¢
ZN - M 2
X 5(1( pk) | |

k=1

(C41)

where the f; are integrated over the region 0 < f; < 1 and
S, fx = 1. Note that f(E) has the following properties,
2nf(AM) =T where AM =M -5 ¥ my, f(0)=0,
and f(E) > 0. Here, T(z) is known to be analytic in
the upper half of the complex plane [1], which implies

limg_,, f(E) =0, since otherwise Re(T(z)) would
diverge. The decay rate calculated at finite # is
r, = / " dEf(E) 21 (C42)
" o (AM —E)* +1*"

Integrating Eq. (C42) by parts gives

r,=-2 /) " dEf’(E)tan‘1<

= ZLAM dEf'(E)cot™! (E —nAM>
A
) A Y 4EF (E)cot! (ﬁ) (C43)

To show that 6T, = T',, — I"is O(n) for small #, it suffices to

show that
or dar
lim <—"> =_1
=0t \ 1 dn

is finite. Differentiating under the integral shows that for
n>0,

E—AM)

(C44)

n=0"

dar 00 E—-AM
—”_2/ dEf'(E) 54—
dn 0 n°+ (E—AM)
o0 E—- AM
=2P dEf'(E) 5¥—————. C45
| aer e s ()
Therefore,
dar oo 1
—1 =2 dEf'(E . (C46
arl =P e ey (©9

The integral in Eq. (C46) is finite due to the properties of
f(E) discussed above, so oI, is O(n) for small #.

4. Particle number truncation

When a quantum field theory describing bosons is
simulated on a quantum computer, the degrees of freedom
must be truncated. For the bosonic theories considered in

this paper, this was done by simulating the theory on a finite
lattice with particle numbers truncated. The calculations in
the previous section bounded the error in the computed
decay rate due to the finite lattice, and in this section, the
error due to the particle number truncation will be calcu-
lated. The scattering 7" matrix can be computed from the
recurrence relation

1

E—-Hy+in

T (C47)

where V is the free part of the Hamiltonian describing the
motion of free particles and V is the interaction part of the
Hamiltonian. If P projects out the finite particle subspace
under consideration, then the 7" matrix computed with this
truncation satisfies the recurrence relation

N

~ ~ N P ~
E — H 0 + li’]

Then the difference between the actual 7 matrix and the 7'
matrix computed with a particle number truncation,
6=T- Tf, satisfies

PN 1 f o~ 1=P
o=V = —o0+V ~ —Ty. (C49)
E—-Hy+1in E—-Hy+in -
This can be rewritten as
N . 1=P
o=T——7—-1y (C50)
E—H0+li7

Therefore, if the lightest particle in the theory has mass m
and particle number is truncated at n, then the error in T'(E)

due to the particle number truncation is O(W)

APPENDIX D: ERROR MITIGATION

While the Hadamard test enables the computation of
matrix elements, it does not address errors due to imperfect
gates on the device itself. To mitigate this error, an
extrapolation technique was used [54,55]. In each circuit,
every CNOT was replaced with an odd number, r (for
r=23,5,7), of CNOT’s, and each amplitude was linearly
extrapolated to » = 0. If there was no noise, these addi-
tional CNOT gates would make no change to the outcome
of the circuit.

This procedure reduces the error from imperfect imple-
mentation of CNOT gates on the quantum computer but
does not mitigate readout errors. To address readout errors,
the default calibration matrix method included in the Qiskit
Ignis package was used [56].
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APPENDIX E: HAMILTONIAN SIMULATION

The one-site calculation done on IBM’s quantum com-
puter was done in the momentum basis. While the gate cost
of performing time evolution in the momentum basis
does not scale to large lattices as well as in the position
basis, it is suitable for small calculations [46]. With a
single site,

N 1 . .

¢:m'(a¢+a;)

N | N

X:m(al+al)

N M, N

Ty = —i E(ad)—a;)

~ .o/m, AT

7, = —i E(a}(—a’)

N 1 1 1 N 1 1 &

=22 182 L 2 MRO% 4 232 1~ a2
27z¢+27z){+2 ¢ +2m;( +29¢)(

1 1 ey 1
+ oM+ E5M2¢2 +50m + A (E1)

where H is the Hamiltonian, M is the mass of the heavy
particle, m is the mass of the light particle, A is chosen to
make the vacuum energy equal to zero, and 0M and dm are
the differences between the physical and bare masses. This
Hamiltonian only couples states with the same parity in the
number of y particles, so states with an even number of y
particles are the only ones needed. The mapping of basis
states to qubit states is listed in Table II. Two qubits were
used to store the state of the system, and one ancilla qubit
was used to implement the amplitude estimation algorithm
described in Appendix B 2.

TABLE II. Basis states.

Qubit state Basis state

00 Vacuum
01 1¢p

10 2y

11 1¢ and 2y

In this truncated basis, the Hamiltonian is

M 7 M2 3em® \, -
H:(—+m+ + m+A>1®1

2 32m? + 2M  4m

A V26m?\ 32 om?
X— T
+<(8\/§m2+ 4m ) (m+16m2+2m>
A 39 o (M 5M2>A)
et (=+25)2
®<4m\/—2M (2 aM

RX.

N

>®i

(E2)

g 3 g 5

+ X - Z
<4m\/M 2m\2M )
The amplitude estimation procedure described in the pre-

vious section requires implementation of a controlled time
evolution operator which was implemented using a Trotter-

Suzuki decomposition e™* D Hidt [T, e+ where

7 +5M2
32m? 2M

Ao V2em?\ 30 om*\ 5\ _ -
- K= (m+—2 +2)2) @1
! ((8\/§m2+ am > <m+16m2+2m> >®

i —i®< 9% (M+5M2>Z)
P umvam” \2 0 aM

A [/ g A

H;= X- VA
} <4m\/1\_4 2mv/2M )

Implementing a controlled version of this time evolution

operator requires the ability to perform controlled unitary

~ ~

35m?
42om +A)1®1
4dm

N M
H(): <?+m+

)

®RX.

(E3)

!

}

—U—e_i—@z e—@z DU —
FIG. 6. Circuit for e~i(X+&:2) controlled on the first qubit.
L 4 L
H 0 i Vs D Vit O H [—
FIG. 7. Circuit for e~(c1X+:2)®% controlled on the first qubit.
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icl®i c1X+c,2)®1
9

transformations of the form e ell and

el ¥+a2)®X - A controlled ¢1®1 can be performed by
applying (j %) to the control qubit. Here, X+ Zisa
2 x 2 Hermitian matrix, and the matrix U that maps the
computational basis to the eigenbasis of this matrix can be
found classically. Using the matrix U, it is trivial to modify
the textbook implementation of a controlled 7 rotation [57]
to a controlled rotation about ¢; X + ¢,Z as shown in Fig. 6.
A similar trick can be used to implement the (¢, X + ¢,2) ®

X term as shown in Fig. 7.

APPENDIX F: ESTIMATION OF IMPERFECT
GATE IMPLEMENTATION ERRORS

On NISQ era quantum computers, the statistical error
and error due to imperfect implementation of logic gates on
the quantum processor must both be addressed. In general,
the density matrix describing the state of the quantum
computer is given by

Pexp = (1 - p)pideal + ZEipidealEi+ (Fl)
i

where p;4.q 15 the density matrix describing the state of the
quantum computer if every gate was implemented per-
fectly, p is the probability there is an error anywhere in the
circuit, E; are the Krauss operators describing the errors
and >, E,E,I = p. The difference between the probability
observed on a real quantum computer and an ideal quantum
computer is given by

Tr (—pOpideal + ZOEipidealEj>
i
0 t
= pTr ;ZEipidealEi — Opigeal (F2)
i

where O is the projection operator corresponding to the
measurement result. Note that izl EipidealE,T is a density
matrix because >, E;El = p. So Tr(%ZiE,»pidealEj'—
Opigeal) 1s the difference of probabilities, which must be
bounded above by one. As a result, the difference between
the probability of a given measurement observed on a real
quantum computer and an ideal quantum computer is
bounded above by p. For the calculation on IBM’s
Ourense quantum processor, p was calculated using the
calibration data provided by IBM, and it was used as an
estimate of the error due to imperfect gate implementation.

APPENDIX G: DATA

The following tables contain the results of all compu-
tations run on the IBM Ourense quantum processor.

TABLE III. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the real part of
{wle~™"y) for g = 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(0) g = 0.5

Time slice r=1 r=3 r=>5 r=17
1 0.694 0.341 0.195 0.152
2 0.608 0.279 0.163 0.137
3 0.492 0.208 0.152 0.132
4 0.342 0.161 0.139 0.115
5 0.194 0.123 0.109 0.114
6 0.091 0.094 0.105 0.111
7 0.057 0.108 0.119 0.111
8 0.053 0.108 0.121 0.113
9 0.116 0.144 0.142 0.121
10 0.21 0.195 0.149 0.114
11 0.337 0.264 0.183 0.125
12 0.475 0.336 0.204 0.133
13 0.55 0.345 0.233 0.137
14 0.641 0.357 0.236 0.159
15 0.683 0.354 0.241 0.15

16 0.674 0.371 0.265 0.185
17 0.633 0.312 0.233 0.16

18 0.552 0.266 0.205 0.122
19 0.446 0.236 0.141 0.12

20 0.37 0.207 0.11 0.117
21 0.278 0.147 0.101 0.107
22 0.196 0.107 0.095 0.112
23 0.141 0.087 0.111 0.113
24 0.107 0.082 0.107 0.129
25 0.084 0.112 0.097 0.111
26 0.108 0.127 0.096 0.123
27 0.144 0.145 0.118 0.112
28 0.189 0.174 0.124 0.113
29 0.234 0.177 0.141 0.137
30 0.289 0.172 0.155 0.132
31 0.272 0.195 0.16 0.13

32 0.218 0.162 0.13 0.117
33 0.169 0.126 0.134 0.12

34 0.131 0.108 0.13 0.129
35 0.087 0.114 0.123 0.124
36 0.072 0.117 0.131 0.135
37 0.116 0.148 0.172 0.139
38 0.206 0.195 0.19 0.155
39 0.311 0.251 0.206 0.161
40 0.379 0.254 0.172 0.143
41 0.447 0.262 0.176 0.143
42 0.524 0.276 0.186 0.144
43 0.555 0.284 0.186 0.15

44 0.564 0.256 0.164 0.132
45 0.512 0.245 0.162 0.132
46 0.433 0.2 0.157 0.131
47 0.345 0.199 0.139 0.118

(Table continued)
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TABLE III. (Continued)

Error mitigated real Hadamard test P(0) g = 0.5

Time slice r=1 r=3 r=>5 r=17
48 0.243 0.165 0.139 0.114
49 0.19 0.135 0.123 0.112
50 0.14 0.121 0.126 0.111
51 0.142 0.125 0.134 0.112
52 0.17 0.126 0.13 0.123
53 0.214 0.134 0.13 0.116
54 0.248 0.147 0.121 0.117
55 0.288 0.127 0.126 0.119
56 0.267 0.124 0.1 0.112
57 0.213 0.108 0.101 0.11

58 0.167 0.104 0.113 0.106
59 0.121 0.094 0.113 0.117
60 0.084 0.101 0.117 0.129
61 0.046 0.089 0.112 0.141
62 0.052 0.117 0.129 0.145
63 0.075 0.174 0.155 0.151
64 0.136 0.222 0.173 0.141
65 0.238 0.267 0.197 0.151
66 0.313 0.282 0.208 0.139
67 0.423 0.251 0.202 0.136
68 0.473 0.291 0.208 0.156
69 0.507 0.291 0.235 0.15

70 0.543 0.297 0.211 0.131
71 0.579 0.283 0.188 0.12

72 0.571 0.291 0.178 0.126
73 0.525 0.306 0.198 0.146
74 0.453 0.315 0.204 0.153
75 0.385 0.273 0.212 0.145
76 0.29 0.232 0.195 0.157
77 0.208 0.173 0.165 0.133
78 0.133 0.131 0.136 0.121
79 0.072 0.09 0.115 0.107
80 0.045 0.089 0.105 0.103
81 0.072 0.094 0.109 0.105
82 0.197 0.186 0.209 0.146
83 0.35 0.251 0.238 0.14

84 0.496 0.321 0.251 0.147
85 0.635 0.394 0.257 0.156
86 0.689 0.441 0.258 0.159
87 0.698 0.425 0.246 0.155
88 0.645 0.4 0.246 0.17

89 0.558 0.305 0.237 0.161
90 0.469 0.238 0.199 0.15

91 0.343 0.187 0.151 0.122
92 0.202 0.132 0.124 0.126
93 0.109 0.108 0.107 0.11

94 0.051 0.093 0.125 0.121
95 0.062 0.103 0.14 0.124

TABLE IV. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the real part of
{wle~™"y) for g = 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated real Hadamard test P(1) g = 0.5

Time slice r=1 r=3 r=>5 r=17
1 0.07 0.142 0.138 0.122
2 0.162 0.197 0.18 0.125
3 0.266 0.256 0.206 0.144
4 0.397 0.31 0.208 0.166
5 0.523 0.364 0.24 0.171
6 0.612 0.373 0.248 0.185
7 0.68 0.38 0.259 0.194
8 0.666 0.369 0.241 0.179
9 0.601 0.349 0.223 0.171
10 0.497 0.272 0.209 0.15

11 0.374 0.203 0.154 0.125
12 0.256 0.136 0.119 0.116
13 0.141 0.123 0.115 0.116
14 0.068 0.097 0.107 0.109
15 0.045 0.09 0.105 0.105
16 0.057 0.12 0.11 0.12

17 0.101 0.18 0.135 0.142
18 0.165 0.236 0.165 0.165
19 0.239 0.219 0.193 0.166
20 0.304 0.257 0.224 0.167
21 0.358 0.306 0.227 0.174
22 0.403 0.322 0.223 0.181
23 0.424 0.328 0.223 0.176
24 0.423 0.302 0.22 0.159
25 0.407 0.278 0.227 0.165
26 0.333 0.26 0.201 0.154
27 0.279 0.226 0.175 0.141
28 0.232 0.18 0.183 0.142
29 0.191 0.166 0.163 0.141
30 0.162 0.165 0.159 0.145
31 0.181 0.16 0.15 0.132
32 0.254 0.189 0.152 0.123
33 0.323 0.238 0.159 0.115
34 0.387 0.254 0.184 0.142
35 0.462 0.27 0.192 0.135
36 0.505 0.266 0.192 0.14

37 0.499 0.244 0.17 0.139
38 0.449 0.209 0.139 0.131
39 0.341 0.179 0.126 0.124
40 0.257 0.144 0.129 0.127
41 0.192 0.136 0.131 0.126
42 0.123 0.127 0.126 0.119
43 0.093 0.13 0.133 0.12

(Table continued)
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TABLE IV. (Continued) TABLE V. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the imaginary part of
Error mitigated real Hadamard test P(1) g = 0.5 {wle~™"y) for g = 0.5 after applying the measurement noise
Time slice F=1 r=3 P— F=7 mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
44 0.079 0.132 0.137 0.124 with 8192 measurements.
45 0.105 0.144 0.143 0.125
46 0.157 0.156 0.133 0.119 Error mitigated imaginary Hadamard test P(0) g = 0.5
47 0.22 0.164 0.152 0.121 Time slice 1 3 s P
48 0.273 0.186 0.143 0.123 — — _ _
49 0.281 0.206 0.154 0.125 1 0.224 0.111 0.099 0.105
50 0.286 0.197 0.137 0.122 2 0.126 0.082 0.105 0.093
51 0.283 0.166 0.119 0.116 3 0.058 0.074 0.105 0.103
52 0.256 0.165 0.121 0.116 4 0.041 0.101 0.12 0.114
53 0.23 0.164 0.126 0.126 5 0.071 0.129 0.127 0.124
54 0.196 0.184 0.14 0.127 6 0.168 0.17 0.143 0.143
55 0.221 0.225 0.164 0.138 7 0.301 0.225 0.19 0.158
56 0.258 0.262 0.177 0.133 8 0.409 0.292 0.213 0.152
57 0.331 0.289 0.187 0.138 9 0.536 0.341 0.221 0.164
58 0.421 0.264 0.166 0.151 10 0.629 0.374 0.233 0.167
59 0.521 0.263 0.179 0.149 11 0.663 0.373 0.225 0.13
60 0.588 0.273 0.195 0.141 12 0.644 0.333 0.196 0.131
61 0.678 0.305 0.234 0.145 13 0.567 0.328 0.195 0.144
62 0.692 0.327 0.239 0.164 14 0.456 0.277 0.16 0.12
63 0.667 0.3 0.218 0.18 15 0.367 0.207 0.149 0.112
64 0.581 0.279 0.181 0.171 16 0.264 0.139 0.145 0.113
65 0.478 0.235 0.165 0.167 17 0.196 0.089 0.102 0.092
66 0.399 0.197 0.127 0.147 18 0.107 0.069 0.109 0.101
67 0.29 0.163 0.118 0.113 19 0.074 0.075 0.099 0.105
68 0.213 0.136 0.117 0.106 20 0.052 0.085 0.109 0.111
69 0.149 0.133 0.111 0.115 21 0.064 0.107 0.129 0.126
70 0.093 0.119 0.118 0.109 22 0.093 0.148 0.169 0.153
71 0.058 0.105 0.105 0.114 23 0.109 0.185 0.171 0.182
72 0.056 0.086 0.109 0.115 24 0.16 0.24 0.192 0.192
73 0.087 0.087 0.116 0.122 25 0.2 0.235 0.173 0.164
74 0.147 0.117 0.123 0.15 26 0.223 0.27 0.171 0.176
75 0.227 0.163 0.123 0.155 27 0.246 0.239 0.176 0.158
76 0.366 0.226 0.14 0.143 28 0.251 0.229 0.202 0.151
77 0.487 0.278 0.164 0.156 29 0.232 0.208 0.182 0.169
78 0.586 0.346 0.194 0.171 30 0.22 0.158 0.177 0.148
79 0.605 0.282 0.185 0.14 31 0.176 0.153 0.154 0.144
80 0.622 0.293 0.184 0.153 32 0.153 0.126 0.15 0.135
81 0.59 0.299 0.192 0.146 33 0.152 0.137 0.143 0.129
82 0.552 0.317 0.141 0.143 34 0.148 0.177 0.168 0.15
83 04 0.242 0.135 0.127 35 0.241 0.19 0.18 0.155
84 0.238 0.174 0.119 0.121 36 0.349 0.242 0.198 0.147
85 0.113 0.115 0.113 0.103 37 0.469 0.262 0.219 0.159
86 0.045 0.089 0.098 0.12 38 0.556 0.305 0.222 0.152
87 0.042 0.09 0.118 0.111 39 0.604 0.303 0.195 0.14
88 0.116 0.132 0.15 0.123 40 0.541 0.246 0.157 0.137
89 0.2 0.219 0.167 0.122 41 0.498 0.228 0.157 0.129
90 0.304 0.288 0.221 0.138 42 0.449 0.206 0.147 0.128
91 0.437 0.321 0.23 0.144 43 0.386 0.176 0.143 0.127
92 0.586 0.379 0.254 0.157 44 0.296 0.169 0.129 0.12
93 0.686 0418 0.276 0.161 45 0.208 0.14 0.127 0.116
94 0.749 0.455 0.257 0.172 46 0.129 0.124 0.123 0.128
95 0.739 0.439 0.236 0.175

(Table continued)
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TABLE V. (Continued)

Error mitigated imaginary Hadamard test P(0) g = 0.5

Time slice r=1 r=3 r=>5 r="17
47 0.09 0.112 0.13 0.105
48 0.09 0.115 0.123 0.113
49 0.113 0.126 0.132 0.117
50 0.159 0.127 0.137 0.114
51 0.182 0.134 0.135 0.112
52 0.219 0.115 0.12 0.11
53 0.204 0.123 0.135 0.108
54 0.166 0.127 0.122 0.112
55 0.166 0.12 0.128 0.121
56 0.13 0.139 0.137 0.112
57 0.11 0.149 0.137 0.124
58 0.122 0.14 0.134 0.137
59 0.171 0.153 0.16 0.148
60 0.259 0.186 0.166 0.15
61 0.339 0.243 0.195 0.178
62 0.44 0.302 0.231 0.203
63 0.537 0.379 0.257 0.215
64 0.601 0.411 0.263 0.208
65 0.638 0.425 0.268 0.206
66 0.665 0.402 0.238 0.19
67 0.639 0.316 0.206 0.132
68 0.611 0.315 0.202 0.139
69 0.546 0.311 0.205 0.14
70 0.454 0.271 0.192 0.121
71 0.358 0.242 0.16 0.118
72 0.27 0.195 0.136 0.1
73 0.175 0.162 0.148 0.109
74 0.09 0.123 0.126 0.109
75 0.053 0.104 0.122 0.103
76 0.042 0.085 0.113 0.104
77 0.075 0.098 0.112 0.109
78 0.134 0.124 0.11 0.12
79 0.229 0.152 0.125 0.118
80 0.34 0.195 0.148 0.123
81 0.469 0.238 0.175 0.137
82 0.657 0.398 0.236 0.166
83 0.687 0.393 0.231 0.161
84 0.653 0.378 0.216 0.145
85 0.569 0.372 0.198 0.143
86 0.436 0.31 0.163 0.134
87 0.301 0.212 0.137 0.135
88 0.176 0.147 0.133 0.114
89 0.094 0.095 0.108 0.106
90 0.045 0.093 0.114 0.103
91 0.051 0.112 0.135 0.115
92 0.099 0.144 0.159 0.127
93 0.195 0.207 0.187 0.139
94 0.339 0.251 0.229 0.159
95 0.505 0.331 0.261 0.172

TABLE VI. The probability of measuring one in the ancilla
qubit for the Hadamard test to determine the imaginary part of
{wle~™"y) for g = 0.5 after applying the measurement noise
mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements.

Error mitigated imaginary Hadamard test P(1) g = 0.5

Time slice r=1 r=3 r=>5 r=17
1 0.53 0.372 0.231 0.16

2 0.633 0.397 0.253 0.179
3 0.712 0.39 0.256 0.167
4 0.693 0.364 0.239 0.177
5 0.644 0.351 0.226 0.166
6 0.536 0.302 0.203 0.154
7 0.437 0.26 0.181 0.15

8 0.308 0.188 0.154 0.149
9 0.162 0.134 0.135 0.12

10 0.084 0.1 0.125 0.11

11 0.04 0.098 0.117 0.107
12 0.059 0.125 0.126 0.112
13 0.125 0.141 0.14 0.137
14 0.238 0.181 0.182 0.135
15 0.354 0.237 0.202 0.146
16 0.454 0.349 0.245 0.185
17 0.531 0.426 0.268 0.213
18 0.604 0.431 0.261 0.197
19 0.622 0.396 0.234 0.176
20 0.613 0.374 0.205 0.176
21 0.579 0.333 0.186 0.16

22 0.502 0.285 0.157 0.136
23 0.452 0.226 0.15 0.111
24 0.369 0.177 0.144 0.104
25 0.28 0.153 0.145 0.117
26 0.218 0.126 0.127 0.115
27 0.177 0.129 0.129 0.108
28 0.157 0.123 0.112 0.12

29 0.188 0.134 0.12 0.117
30 0.224 0.181 0.126 0.126
31 0.28 0.196 0.136 0.117
32 0.331 0.221 0.144 0.115
33 0.355 0.226 0.145 0.124
34 0.371 0.199 0.143 0.122
35 0.318 0.202 0.133 0.119
36 0.239 0.156 0.117 0.117
37 0.151 0.13 0.121 0.12

38 0.099 0.118 0.13 0.126
39 0.057 0.122 0.145 0.132
40 0.083 0.145 0.142 0.129
41 0.128 0.181 0.163 0.13

42 0.197 0.201 0.176 0.129
43 0.265 0.222 0.165 0.14

44 0.331 0.229 0.179 0.133

(Table continued)
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TABLE VL. (Continued) TABLE VII. The probability of measuring zero in the ancilla
qubit for the Hadamard test to determine the real part of
Error mitigated imaginary Hadamard test P(1) g = 0.5 {wle™")y) for g=1 after applying the measurement noise
Time slice F=1 r=3 P— P mitigation procedure described in Appendix D for different
numbers of CNOT gates. Each entry in this table was calculated
45 0.4 0.244 0.177 0.137 with 8192 measurements.
46 0.464 0.242 0.174 0.13
47 0.479 0.244 0.162 0.127 Error mitigated real Hadamard test P(0) g =1
48 0.433 0.239 0.157 0.134 Time slice 1 3 s 7
49 0.354 0.218 0.137 0.122 _ — — —
50 0.275 0.186 0.13 0.118 1 0.445 0.134 0.131 0.089
51 0.241 0.179 0.111 0.12 2 0.335 0.136 0.128 0.119
52 0.222 0.166 0.126 0.13 3 0.35 0.154 0.124 0.125
53 0.239 0.178 0.128 0.129 4 0.318 0.152 0.117 0.099
54 0.259 0.203 0.142 0.131 5 0.239 0.192 0.118 0.095
55 0.332 0.237 0.155 0.134 6 0.187 0.179 0.124 0.105
56 0.39 0.25 0.15 0.134 7 0.12 0.199 0.108 0.076
57 0.444 0.241 0.15 0.124 8 0.141 0.183 0.123 0.111
58 0.47 0.23 0.129 0.126 9 0.109 0.218 0.092 0.117
59 0.47 0.205 0.13 0.123 10 0.102 0.207 0.121 0.121
60 0.439 0.193 0.135 0.134 11 0.099 0.219 0.119 0.127
61 0.385 0.159 0.141 0.107 12 0.137 0.228 0.127 0.112
62 0.311 0.127 0.117 0.1 13 0.164 0.204 0.132 0.113
63 0.206 0.098 0.105 0.105 14 0.167 0.215 0.139 0.121
64 0.121 0.086 0.091 0.104 15 0.187 0.203 0.128 0.116
65 0.065 0.081 0.094 0.104 16 0.25 0.178 0.127 0.119
66 0.04 0.087 0.107 0.105 17 0.281 0.197 0.132 0.112
67 0.07 0.107 0.118 0.115 18 0.294 0.177 0.104 0.126
68 0.086 0.11 0.14 0.128 19 0.345 0.166 0.115 0.117
69 0.125 0.118 0.143 0.116 20 0.394 0.179 0.136 0.116
70 0.182 0.131 0.132 0.113 21 0.387 0.173 0.138 0.113
71 0.269 0.14 0.14 0.122 22 0.434 0.155 0.126 0.11
72 0.351 0.191 0.149 0.134 23 0.424 0.151 0.136 0.122
73 0.424 0.241 0.174 0.172 24 0.422 0.143 0.127 0.117
74 0514 0.291 0.207 0.182 25 0.378 0.125 0.13 0.116
75 0.564 0.341 0.209 0.198 26 0.367 0.149 0.138 0.115
76 0.601 0.371 0.22 0.197 27 0.394 0.118 0.132 0.113
77 0.624 0.369 0.222 0.189 28 0.372 0.135 0.13 0.104
78 0.59 0.326 0.225 0.172 29 0.32 0.139 0.122 0.077
79 0.439 0.238 0.176 0.139 30 0.331 0.125 0.113 0.116
80 0.337 0.192 0.153 0.126 31 0.324 0.124 0.106 0.118
81 0.207 0.144 0.119 0.126 32 0.291 0.139 0.121 0.11
82 0.101 0.107 0.113 0.119 33 0.321 0.133 0.147 0.124
83 0.059 0.096 0.132 0.121 34 0.273 0.143 0.143 0.117
84 0.082 0.119 0.153 0.122 35 0.272 0.134 0.133 0.122
85 0.169 0.15 0.164 0.133 36 0.254 0.141 0.123 0.119
86 0.311 0.223 0.202 0.145 37 0.183 0.148 0.147 0.1
87 0.451 0.289 0.224 0.144 38 0.183 0.147 0.131 0.108
88 0.576 0.376 0.252 0.16 39 0.131 0.145 0.139 0.116
89 0.672 0.422 0.284 0.173 40 0.124 0.155 0.153 0.118
90 0.722 0.435 0.295 0.183 41 0.112 0.177 0.143 0.103
91 0.721 0.388 0.259 0.15 42 0.094 0.161 0.139 0.104
92 0.679 0.365 0.224 0.147 43 0.094 0.169 0.121 0.1
93 0.593 0.326 0.189 0.139 44 0.099 0.175 0.13 0.093
94 0.454 0.289 0.15 0.115 45 0.11 0.192 0.122 0.1
95 0.296 0.208 0.126 0.118

(Table continued)
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TABLE VII. (Continued)

TABLE VII. (Continued)

Error mitigated real Hadamard test P(0) g =1

Error mitigated real Hadamard test P(0) g =1

Time slice r=1 r=3 r=>5 r=717 Time slice r=1 r=3 r=>5 r=717
46 0.111 0.172 0.111 0.112 100 0.336 0.111 0.102 0.096
47 0.137 0.183 0.135 0.133 101 0.325 0.14 0.104 0.108
48 0.134 0.192 0.116 0.098 102 0.25 0.109 0.101 0.124
49 0.175 0.158 0.109 0.095 103 0.176 0.133 0.12 0.11
50 0.189 0.16 0.122 0.117 104 0.124 0.116 0.13 0.127
51 0.174 0.156 0.129 0.108 105 0.112 0.123 0.131 0.109
52 0.141 0.148 0.106 0.113 106 0.114 0.112 0.136 0.123
53 0.169 0.16 0.129 0.103 107 0.077 0.142 0.131 0.114
54 0.162 0.157 0.122 0.125 108 0.053 0.139 0.125 0.102
55 0.189 0.157 0.106 0.11 109 0.076 0.175 0.138 0.129
56 0.158 0.16 0.114 0.106 110 0.09 0.203 0.147 0.116
57 0.183 0.137 0.124 0.121 111 0.11 0.19 0.112 0.113
58 0.177 0.151 0.134 0.102 112 0.173 0.233 0.136 0.121
59 0.192 0.164 0.122 0.083

60 0.229 0.179 0.101 0.119

61 0.232 0.168 0.112 0.115

62 0.279 0.154 0.121 0.102 TABLE VIII. The probability of measuring one in the ancilla
63 0.282 0.154 0.123 0.097 qubit for the Hadamard test to determine the real part of
64 0.32 0.13 0.103 0.093 (wlem™|y) for g =1 after applying the measurement noise
65 0.368 0.168 0.119 0.104 mitigation procedure described in Appendix D for different
66 0.392 0.144 0.112 0.101 numbers of CNOT gates. Each entry in this table was calculated
67 0.379 0.145 0.113 0.108 with 8192 measurements.

68 0.417 0.111 0.105 0.109

69 0.409 0.121 0.117 0.103 Error mitigated real Hadamard test P(l) g= 1

70 0.417 0.119 0.117 0.103  Time slice r—1 3 s 7

71 0.364 0.11 0.127 0.105

7 0.366 0.099 0.117 0.099 1 0.174 0.2 0.123 0.119
73 0.338 0.119 0.123 0122 2 0.204 0.192 0.125 0.094
74 0.288 0.108 0.121 0099 3 0.286 0.197 0.114 0.12
75 0.247 0.119 0.111 0115 4 0.36 0.184 0.134 0.115
iy 023 012 0.09 ol S 0.416 0.189 0.098 0.117
77 0.152 0.122 0.101 0.113 6 0.451 0.17 0.119 0.119
78 0.137 0.136 0.111 0.1 7 0.489 0.171 0.144 0.13
79 0.092 0.129 0.115 0.117 8 0.491 0.169 0.115 0.114
80 0.07 0.127 0.083 0.075 9 0.496 0.139 0.12 0.112
81 0.063 0.106 0.088 0.079 10 0.51 0.145 0.127 0.097
% 0.100 0154 o1 0.083 11 0.507 0.119 0.109 0.112
83 0.073 0.163 0.066 0.079 12 0.45 0.119 0.104 0.123
o1 0111 011 0,008 0,097 13 0.419 0.124 0.121 0.117
85 0.136 0.153 0.117 0.113 14 0.407 0.106 0.11 0.103
86 0.144 0.136 0.101 0.097 15 0.351 0.131 0.127 0.097
87 0.202 0.124 0.093 0.102 16 0.313 0.141 0.124 0.118
88 0.162 0.155 0.117 0.076 17 0.264 0.122 0.117 0.116
89 0.179 0.135 0.099 0.117 18 0.213 0.127 0.128 0.113
90 0.257 0.169 0.084 0.074 19 0.181 0.147 0.124 0.13
91 0.336 0.133 0.106 0.103 20 0.166 0.132 0.112 0.119
92 0.245 0.177 0.095 0076 21 0.117 0.144 0.125 0.125
93 0.492 0.187 0.106 0.091 22 0.088 0.145 0.126 0.133
o1 0473 018 0137 olle 23 0.091 0.166 0.116 0.123
95 0.43 0.184 0.118 0.112 24 0.09 0.154 0.132 0.113
o 024 0107 0113 olle 25 0.092 0.166 0.132 0.111
97 0.244 0.108 0.082 0.091 26 0.108 0.181 0.123 0.133
98 0411 0.132 0.115 0114 27 0.093 0.173 0.13 0.11
99 0.353 0.141 0.133 0.101 28 0.16 0.149 0.124 0.09

(Table continued)
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TABLE VIIL. (Continued) TABLE VIII. (Continued)

Error mitigated real Hadamard test P(1) g =1 Error mitigated real Hadamard test P(1) g =1
Time slice r=1 r=3 r=>5 r=17 Time slice r=1 r=3 r=>5 r=17
29 0.124 0.166 0.131 0.121 83 0.318 0.155 0.102 0.099
30 0.13 0.165 0.129 0.12 84 0.38 0.124 0.108 0.093
31 0.151 0.167 0.128 0.103 85 0.332 0.103 0.12 0.103
32 0.193 0.168 0.129 0.135 86 0.291 0.109 0.101 0.143
33 0.284 0.208 0.138 0.132 87 0.256 0.133 0.09 0.115
34 0.296 0.223 0.105 0.108 88 0.184 0.155 0.13 0.093
35 0.325 0.222 0.137 0.11 89 0.123 0.116 0.108 0.095
36 0.361 0.207 0.148 0.099 90 0.132 0.118 0.089 0.09
37 0.425 0.211 0.121 0.128 91 0.198 0.108 0.129 0.128
38 0.41 0.214 0.122 0.121 92 0.116 0.139 0.085 0.11
39 0.466 0.198 0.116 0.124 93 0.108 0.154 0.117 0.136
40 0.488 0.227 0.129 0.12 94 0.09 0.154 0.117 0.124
41 0.466 0.152 0.132 0.099 95 0.096 0.161 0.106 0.124
42 0.467 0.176 0.108 0.128 96 0.094 0.161 0.098 0.087
43 0.465 0.175 0.124 0.13 97 0.099 0.107 0.106 0.089
44 0.457 0.172 0.126 0.132 98 0.164 0.171 0.131 0.112
45 0.392 0.132 0.12 0.125 99 0.192 0.203 0.13 0.115
46 0.413 0.131 0.126 0.113 100 0.239 0.213 0.121 0.107
47 0.412 0.136 0.119 0.096 101 0.323 0.186 0.14 0.122
48 0.369 0.141 0.132 0.111 102 0.326 0.212 0.151 0.133
49 0.289 0.146 0.126 0.104 103 0.399 0.209 0.131 0.134
50 0.273 0.126 0.116 0.104 104 0.423 0.239 0.143 0.123
51 0.286 0.121 0.118 0.114 105 0.437 0.214 0.128 0.131
52 0.284 0.145 0.134 0.127 106 0.472 0.221 0.142 0.125
53 0.252 0.116 0.13 0.127 107 0.449 0.201 0.133 0.113
54 0.26 0.123 0.122 0.121 108 0.505 0.162 0.125 0.14
55 0.242 0.129 0.131 0.12 109 0.472 0.189 0.111 0.131
56 0.253 0.127 0.127 0.13 110 0.524 0.147 0.132 0.126
57 0.247 0.152 0.115 0.11 111 0.509 0.161 0.131 0.124
58 0.279 0.145 0.103 0.129 112 0.476 0.149 0.105 0.124
59 0.239 0.141 0.103 0.132
60 0.24 0.131 0.131 0.102
61 0.24 0.141 0.129 0.128
62 0.212 0.142 0.105 0.135
63 0.201 0.146 0.121 0.118
64 0.178 0.149 0.132 0.121

TABLE IX. The probability of measuring zero in the ancilla

65 0.163 0.11 0.124 0.109 qubit for the Hadamard test to determine the imaginary part of

66 0.122 0.149 0.142 0.134 {wle ")y} for g =1 after applying the measurement noise

67 0.135 0.152 0.122 0.106 s . . . :

mitigation procedure described in Appendix D for different

68 0.089 0.139 0.108 0.123 numbers of CNOT gates. Each entry in this table was calculated

69 0.114 0.142 0.119 0.121 with 8192 measurements.

70 0.125 0.148 0.129 0.107

71 0.149 0.151 0.12 0.117 Error mitigated imaginary Hadamard test P(0) g = 1

72 0.182 0.166 0.107 0.128 : :

73 0.198 0.171 0.107 0.112  Time slice r=l r=3 r=5 r=7

74 0.255 0.176 0.12 0.125 1 0.125 0.178 0.112 0.125

75 0.294 0.151 0.124 0.147 2 0.037 0.194 0.134 0.088

76 0.382 0.167 0.127 0.101 3 0.104 0.225 0.125 0.12

77 0.38 0.167 0.111 0.116 4 0.099 0.195 0.112 0.105

78 0.416 0.175 0.128 0.12 5 0.112 0.208 0.134 0.106

79 0.403 0.16 0.129 0.105 6 0.145 0.188 0.121 0.095

80 0.257 0.183 0.124 0.105 7 0.197 0.228 0.127 0.086

81 0.382 0.143 0.084 0.085 8 0.21 0.224 0.11 0.1

82 0.381 0.157 0.136 0.09 9 0.275 0.207 0.104 0.116
(Table continued) (Table continued)
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TABLE IX. (Continued) TABLE IX. (Continued)

Error mitigated imaginary Hadamard test P(0) g = 1 Error mitigated imaginary Hadamard test P(0) g = 1
Time slice r=1 r=3 r=>5 r=17 Time slice r=1 r=3 r=>5 r=7
10 0.317 0.205 0.118 0.103 61 0.364 0.139 0.124 0.122
11 0.36 0.217 0.127 0.11 62 0.372 0.131 0.12 0.128
12 0.426 0.209 0.122 0.104 63 0.358 0.129 0.132 0.096
13 0.409 0.181 0.127 0.113 64 0.363 0.123 0.11 0.114
14 0.462 0.167 0.116 0.112 65 0.382 0.124 0.127 0.121
15 0.45 0.168 0.096 0.127 66 0.331 0.127 0.12 0.103
16 0.457 0.155 0.105 0.12 67 0.286 0.114 0.126 0.107
17 0.457 0.137 0.117 0.1 68 0.271 0.108 0.103 0.105
18 0.425 0.147 0.119 0.104 69 0.234 0.103 0.102 0.109
19 0.409 0.12 0.105 0.116 70 0.196 0.125 0.113 0.103
20 0.397 0.163 0.122 0.104 71 0.18 0.112 0.111 0.107
21 0.371 0.122 0.118 0.113 72 0.116 0.126 0.105 0.125
22 0.377 0.14 0.116 0.12 73 0.109 0.118 0.11 0.125
23 0.318 0.138 0.125 0.12 74 0.099 0.118 0.117 0.124
24 0.295 0.123 0.13 0.112 75 0.075 0.135 0.113 0.114
25 0.226 0.126 0.123 0.113 76 0.084 0.156 0.132 0.114
26 0.253 0.121 0.127 0.101 77 0.103 0.167 0.123 0.125
27 0.178 0.136 0.148 0.095 78 0.143 0.202 0.099 0.098
28 0.155 0.125 0.121 0.108 79 0.153 0.153 0.101 0.116
29 0.129 0.125 0.126 0.108 80 0.146 0.109 0.096 0.069
30 0.123 0.122 0.136 0.09 81 0.216 0.172 0.105 0.087
31 0.108 0.139 0.129 0.122 82 0.298 0.178 0.101 0.112
32 0.082 0.124 0.127 0.112 83 0.248 0.151 0.102 0.092
33 0.08 0.173 0.122 0.122 84 0.369 0.125 0.086 0.123
34 0.074 0.176 0.142 0.119 85 0.366 0.154 0.107 0.084
35 0.083 0.227 0.15 0.122 86 0.317 0.124 0.085 0.104
36 0.085 0.196 0.142 0.123 87 0.348 0.105 0.107 0.131
37 0.131 0.227 0.131 0.11 88 0.261 0.156 0.092 0.089
38 0.148 0.205 0.125 0.124 89 0.232 0.119 0.106 0.1
39 0.151 0.187 0.123 0.113 90 0.284 0.144 0.099 0.082
40 0.178 0.224 0.144 0.127 91 0.377 0.119 0.108 0.11
41 0.197 0.201 0.113 0.097 92 0.227 0.153 0.101 0.091
42 0.226 0.206 0.118 0.111 93 0.391 0.147 0.114 0.119
43 0.284 0.211 0.113 0.108 94 0.35 0.13 0.126 0.112
44 0.308 0.205 0.12 0.108 95 0.258 0.136 0.111 0.114
45 0.338 0.211 0.134 0.115 96 0.118 0.116 0.102 0.112
46 0.338 0.174 0.112 0.118 97 0.121 0.108 0.073 0.111
47 0.378 0.174 0.118 0.138 98 0.138 0.13 0.128 0.091
48 0.378 0.142 0.126 0.118 99 0.123 0.132 0.122 0.104
49 0.328 0.156 0.115 0.107 100 0.063 0.124 0.113 0.115
50 0.335 0.164 0.126 0.117 101 0.092 0.153 0.126 0.108
51 0.318 0.167 0.124 0.128 102 0.08 0.162 0.142 0.125
52 0.298 0.134 0.106 0.121 103 0.093 0.203 0.15 0.117
53 0.315 0.139 0.112 0.119 104 0.107 0.176 0.136 0.134
54 0.289 0.146 0.123 0.112 105 0.161 0.212 0.133 0.108
55 0.284 0.152 0.117 0.11 106 0.144 0.188 0.154 0.122
56 0.287 0.15 0.109 0.117 107 0.195 0.208 0.126 0.137
57 0.31 0.149 0.114 0.123 108 0.228 0.193 0.148 0.114
58 0.321 0.15 0.138 0.118 109 0.293 0.238 0.143 0.133
59 0.313 0.134 0.13 0.12 110 0.372 0.212 0.123 0.104
60 0.328 0.164 0.111 0.118 111 0.42 0.24 0.144 0.121

112 0.513 0.233 0.139 0.11

(Table continued)
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TABLE X. The probability of measuring one in the ancilla TABLE X. (Continued)
qubit for the Hadamard test to determine the imaginary part of — . .
(wle=#y) for g=1 after applying the measurement noise Error mitigated imaginary Hadamard test P(1) g = 1

mitigation procedure described in Appendix D for different Time slice r=1 F=3 r=5 F=17
numbers of CNOT gates. Each entry in this table was calculated
with 8192 measurements. 50 0.113 0.144 0.122 0.126
51 0.137 0.132 0.12 0.104
Error mitigated imaginary Hadamard test P(1) g = 1 52 0.114 0.137 0.137 0.115
Time slice ] 3 s 7 53 0.119 0.151 0.129 0.086
54 0.136 0.111 0.125 0.115
1 0.51 0.144 0.119 0.13 55 0.145 0.151 0.126 0.103
2 0.467 0.125 0.116 0.114 56 0.125 0.154 0.14 0.107
3 0.528 0.134 0.124 0.125 57 0.126 0.141 0.138 0.103
4 0.575 0.143 0.122 0.119 58 0.141 0.154 0.096 0.12
5 0.536 0.146 0.11 0.117 59 0.108 0.147 0.102 0.111
6 0.501 0.135 0.134 0.13 60 0.106 0.135 0.118 0.106
7 0.424 0.128 0.117 0.117 61 0.118 0.156 0.126 0.12
8 0411 0.137 0.121 0.13 62 0.117 0.175 0.1 0.122
9 0.343 0.152 0.119 0.113 63 0.134 0.175 0.108 0.122
10 0.293 0.15 0.132 0.118 64 0.129 0.161 0.115 0.102
11 0.233 0.132 0.122 0.126 65 0.155 0.148 0.11 0.112
12 0.163 0.157 0.135 0.128 66 0.175 0.169 0.107 0.124
13 0.163 0.175 0.12 0.1 67 0.223 0.178 0.111 0.104
14 0.122 0.157 0.137 0.113 68 0.223 0.159 0.121 0.126
15 0.104 0.148 0.142 0.109 69 0.281 0.169 0.118 0.117
16 0.105 0.191 0.134 0.114 70 0.328 0.153 0.12 0.137
17 0.079 0.172 0.125 0.115 71 0.34 0.167 0.128 0.117
18 0.105 0.182 0.131 0.126 72 0.412 0.139 0.125 0.106
19 0.104 0.185 0.129 0.086 73 0.417 0.169 0.117 0.109
20 0.17 0.152 0.125 0.13 74 0.432 0.163 0.11 0.101
21 0.153 0.186 0.132 0.134 75 0.478 0.145 0.119 0.123
22 0.159 0.177 0.132 0.125 76 0.488 0.139 0.123 0.124
23 0.209 0.179 0.118 0.102 77 0.453 0.139 0.097 0.096
24 0.212 0.179 0.114 0.113 78 0.421 0.115 0.125 0.112
25 0.249 0.18 0.131 0.125 79 0.317 0.117 0.141 0.095
26 0.256 0.196 0.108 0.13 80 0.165 0.156 0.122 0.084
27 0.32 0.164 0.112 0.115 81 0.231 0.125 0.098 0.083
28 0.345 0.157 0.127 0.11 82 0.198 0.158 0.136 0.092
29 0.306 0.17 0.117 0.112 83 0.137 0.122 0.103 0.087
30 0.33 0.168 0.127 0.138 84 0.184 0.134 0.101 0.084
31 0.386 0.166 0.131 0.099 85 0.133 0.109 0.131 0.094
32 0.424 0.151 0.132 0.122 86 0.098 0.124 0.096 0.129
33 0.506 0.168 0.135 0.142 87 0.081 0.106 0.078 0.094
34 0.506 0.186 0.121 0.112 88 0.063 0.123 0.133 0.092
35 0.534 0.133 0.114 0.13 89 0.063 0.13 0.103 0.076
36 0.505 0.146 0.141 0.109 90 0.1 0.128 0.085 0.083
37 0.482 0.145 0.14 0.13 91 0.166 0.124 0.12 0.092
38 0.448 0.146 0.129 0.12 92 0.124 0.132 0.124 0.113
39 0.45 0.155 0.131 0.121 93 0.201 0.198 0.136 0.118
40 0.437 0.132 0.135 0.126 94 0.214 0.226 0.119 0.111
41 0.38 0.133 0.129 0.124 95 0.27 0.209 0.134 0.106
42 0.336 0.122 0.126 0.127 96 0.218 0.154 0.098 0.104
43 0.285 0.139 0.134 0.119 97 0.244 0.127 0.1 0.082
44 0.25 0.125 0.135 0.116 98 0.437 0.173 0.114 0.108
45 0.181 0.122 0.1 0.118 99 0.436 0.191 0.123 0.11
46 0.198 0.151 0.145 0.111 100 0.498 0.191 0.108 0.089
47 0.154 0.158 0.14 0.111 101 0.546 0.157 0.11 0.121
48 0.133 0.161 0.125 0.115 102 0.473 0.156 0.114 0.123
49 0.142 0.153 0.14 0.114 103 0.475 0.164 0.112 0.123
(Table continued) (Table continued)
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TABLE X. (Continued)

TABLE X. (Continued)

Error mitigated imaginary Hadamard test P(1) g = 1

Error mitigated imaginary Hadamard test P(1) g = 1

Time slice r=1 r=3 r=>5 r=17 Time slice r=1 r=3 r=>5 r=7
104 0.448 0.18 0.13 0.128 108 0.302 0.109 0.126 0.124
105 0.395 0.122 0.126 0.112 109 0.242 0.144 0.117 0.122
106 0.426 0.15 0.096 0.122 110 0.234 0.137 0.13 0.128
107 0.339 0.141 0.131 0.101 111 0.174 0.113 0.131 0.1
112 0.137 0.122 0.125 0.134

(Table continued)

[1] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014), ISBN No. 1107034736 and No. 9781107034730.

[2] M. Luscher, Commun. Math. Phys. 104, 177 (1986).

[3] M. Luscher, Commun. Math. Phys. 105, 153 (1986).

[4] B.C. Tiburzi, M.L. Wagman, F. Winter, E. Chang, Z.
Davoudi, W. Detmold, K. Orginos, M. J. Savage, and P. E.
Shanahan (NPLQCD Collaboration), Phys. Rev. D 96,
054505 (2017).

[5] M.J. Savage, P. E. Shanahan, B. C. Tiburzi, M. L. Wagman,
F. Winter, S. R. Beane, E. Chang, Z. Davoudi, W. Detmold,
and K. Orginos (NPLQCD Collaboration), Phys. Rev. Lett.
119, 062002 (2017),

[6] S.R.Beane, E. Chang, W. Detmold, K. Orginos, A. Parrefo,
M.J. Savage, and B. C. Tiburzi (NPLQCD Collaboration),
Phys. Rev. Lett. 115, 132001 (2015).

[7] S.R. Beane, T.C. Luu, K. Orginos, A. Parrefio, M.J.
Savage, A. Torok, and A. Walker-Loud (NPLQCD Col-
laboration), Phys. Rev. D 77, 094507 (2008).

[8] L. Leskovec, C. Alexandrou, S. Meinel, J. W. Negele, S.
Paul, M. Petschlies, A. Pochinsky, G. Rendon, and S.
Syritsyn, arXiv:1810.01927.

[9] R. Molina, D. Guo, A. Alexandru, M. Mai, and M. Dring,
arXiv:1804.10225.

[10] S.P. Jordan, K.S. M. Lee, and J. Preskill, Quantum Inf.
Comput. 14, 1014 (2014), arXiv:1112.4833.

[11] S.P. Jordan, K. S. M. Lee, and J. Preskill, arXiv:1404.7115.

[12] J. Preskill, Proc. Sci. LATTICE2018 (2018) 024
[arXiv:1811.10085].

[13] N. Klco, E.F. Dumitrescu, A.J. McCaskey, T.D. Morris,
R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
Savage, Phys. Rev. A 98, 032331 (2018).

[14] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi,
P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos
et al., Nature (London) 569, 355 (2019).

[15] D.E. Kharzeev and Y. Kikuchi, Phys. Rev. Res. 2, 023342
(2020).

[16] H.-H. Lu, N. Klco, J. M. Lukens, T. D. Morris, A. Bansal, A.
Ekstrm, G. Hagen, T. Papenbrock, A.M. Weiner, M. J.
Savage et al., Phys. Rev. A 100, 012320 (2019).

[17] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi,
P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos
et al., Nature (London) 569, 355 (2019).

[18] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A.
Tomiya, arXiv:2001.00485.

[19] A.F. Shaw, P. Lougovski, J. R. Stryker, and N. Wiebe,
Quantum 4, 306 (2020).

[20] J. Bender, E. Zohar, A. Farace, and J. I. Cirac, New J. Phys.
20, 093001 (2018).

[21] E. Zohar and M. Burrello, Phys. Rev. D 91, 054506
(2015).

[22] N. Klco, J. R. Stryker, and M. J. Savage, Phys. Rev. D 101,
074512 (2020).

[23] E. Zohar, J.1. Cirac, and B. Reznik, Phys. Rev. A 88,
023617 (2013).

[24] E. Zohar, J. 1. Cirac, and B. Reznik, Rep. Prog. Phys. 79,
014401 (2015).

[25] H. Lamm, S. Lawrence, and Y. Yamauchi, Phys. Rev. D 100,
034518 (2019).

[26] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm, S.
Lawrence, and N. C. Warrington, Phys. Rev. D 100, 114501
(2019).

[27] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence,
Phys. Rev. Lett. 123, 090501 (2019).

[28] H. Lamm, S. Lawrence, and Y. Yamauchi, Phys. Rev. Res.
2, 013272 (2020).

[29] M. C. Baiiuls, R. Blatt, J. Catani, A. Celi, J. 1. Cirac, M.
Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S.
Montangero et al., Eur. Phys. J. D 74, 165 (2020).

[30] L. Tagliacozzo, A. Celi, P. Orland, M. W. Mitchell, and M.
Lewenstein, Nat. Commun. 4, 2615 (2013).

[31] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein,
Ann. Phys. (Amsterdam) 330, 160 (2013).

[32] C.H. Mak and D. Chandler, Phys. Rev. A 41, 5709
(1990).

[33] J. H. Samson, Phys. Rev. B 51, 223 (1995).

[34] S. Bergkvist, P. Henelius, and A. Rosengren, Phys. Rev. E
68, 016122 (2003).

[35] K. Fukushima and Y. Hidaka, Phys. Rev. D 75, 036002
(2007).

[36] G. Aarts, Phys. Rev. Lett. 102, 131601 (2009).

[37] M.G. Endres, D.B. Kaplan, J.-W. Lee, and A.N.
Nicholson, Phys. Rev. Lett. 107, 201601 (2011).

[38] M. Unsal, Phys. Rev. D 86, 105012 (2012).

[39] J. Greensite, J. C. Myers, and K. Splittorff, Phys. Rev. D 88,
031502 (2013).

094505-23


https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211097
https://doi.org/10.1103/PhysRevD.96.054505
https://doi.org/10.1103/PhysRevD.96.054505
https://doi.org/10.1103/PhysRevLett.119.062002
https://doi.org/10.1103/PhysRevLett.119.062002
https://doi.org/10.1103/PhysRevLett.115.132001
https://doi.org/10.1103/PhysRevD.77.094507
https://arXiv.org/abs/1810.01927
https://arXiv.org/abs/1804.10225
https://arXiv.org/abs/1112.4833
https://arXiv.org/abs/1404.7115
https://arXiv.org/abs/1811.10085
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevResearch.2.023342
https://doi.org/10.1103/PhysRevA.100.012320
https://doi.org/10.1038/s41586-019-1177-4
https://arXiv.org/abs/2001.00485
https://doi.org/10.22331/q-2020-08-10-306
https://doi.org/10.1088/1367-2630/aadb71
https://doi.org/10.1088/1367-2630/aadb71
https://doi.org/10.1103/PhysRevD.91.054506
https://doi.org/10.1103/PhysRevD.91.054506
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.1103/PhysRevD.100.034518
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevLett.123.090501
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1103/PhysRevResearch.2.013272
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1103/PhysRevA.41.5709
https://doi.org/10.1103/PhysRevA.41.5709
https://doi.org/10.1103/PhysRevB.51.223
https://doi.org/10.1103/PhysRevE.68.016122
https://doi.org/10.1103/PhysRevE.68.016122
https://doi.org/10.1103/PhysRevD.75.036002
https://doi.org/10.1103/PhysRevD.75.036002
https://doi.org/10.1103/PhysRevLett.102.131601
https://doi.org/10.1103/PhysRevLett.107.201601
https://doi.org/10.1103/PhysRevD.86.105012
https://doi.org/10.1103/PhysRevD.88.031502
https://doi.org/10.1103/PhysRevD.88.031502

ANTHONY CIAVARELLA

PHYS. REV. D 102, 094505 (2020)

[40] A. H. Moosavian, J. R. Garrison, and S. P. Jordan,
arXiv:1911.03505.

[41] A. Roggero, Phys. Rev. A 102, 022409 (2020).

[42] P. Rall, Phys. Rev. A 102, 022408 (2020).

[43] R.D. Somma, New J. Phys. 21, 123025 (2019).

[44] W. Leidemann, Int. J. Mod. Phys. E 18, 1339 (2009).

[45] J.R. Shewchuk er al, An introduction to the
conjugate gradient method without the agonizing pain,
1994.

[46] K. Yeter-Aydeniz, E. F. Dumitrescu, A.J. McCaskey, R. S.
Bennink, R. C. Pooser, and G. Siopsis, Phys. Rev. A 99,
032306 (2019).

[47] N. Klco and M.J. Savage, Phys. Rev. A 102, 012612
(2020).

[48] E. Knill, G. Ortiz, and R.D. Somma, Phys. Rev. A 75,
012328 (2007).

[49] S. Endo, I. Kurata, and Y. O. Nakagawa, Phys. Rev. Res. 2,
033281 (2020).

[50] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Phys. Rev. Lett. 114, 090502 (2015).

[51] G.H. Low and I. L. Chuang, Quantum 3, 163 (2019).

[52] A. M. Childs, D. Maslov, Y. Nam, N.J. Ross, and Y. Su,
Proc. Natl. Acad. Sci. U.S.A. 115, 9456 (2018).

[53] A.M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu,
arXiv:1912.08854.

[54] Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).

[55] K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett.
119, 180509 (2017).

[56] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello,
Y. Ben-Haim, D. Bucher, F.J. Cabrera-Hernandez, J.
Carballo-Franquis, A. Chen, C.-F. Chen et al., Qiskit: An
open-source framework for quantum computing (2019).

[57] M. A. Nielsen and I.L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, New York, 2011), ISBN
No. 1107002176 and No. 9781107002173.

094505-24


https://arXiv.org/abs/1911.03505
https://doi.org/10.1103/PhysRevA.102.022409
https://doi.org/10.1103/PhysRevA.102.022408
https://doi.org/10.1088/1367-2630/ab5c60
https://doi.org/10.1142/S0218301309013567
https://doi.org/10.1103/PhysRevA.99.032306
https://doi.org/10.1103/PhysRevA.99.032306
https://doi.org/10.1103/PhysRevA.102.012612
https://doi.org/10.1103/PhysRevA.102.012612
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevResearch.2.033281
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1073/pnas.1801723115
https://arXiv.org/abs/1912.08854
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509

