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Abstract
Witten diagrams provide a perturbative framework for calculations in anti-de-
Sitter space and play an essential role in a variety of holographic computations.
In the case of this study in AdS2, the one-dimensional boundary allows for a
simple setup, in which we obtain perturbative analytic results for correlators
with the residue theorem. This elementary method is used to find all scalar n-
point contact Witten diagrams for external operators of conformal dimensions
Δ = 1 and Δ = 2, and to determine topological correlators of Yang–Mills in
AdS2. Another established method is applied to explicitly compute exchange
diagrams and give an example of a Polyakov block in d = 1. We also check
perturbatively a recently proposed multipoint Ward identity with the strong cou-
pling expansion of the six-point function of operators inserted on the 1/2 BPS
Wilson line in N = 4 SYM.

Keywords: holography, AdS2, n-point correlators, CFT1, Witten diagram, AdS
integrals

(Some figures may appear in colour only in the online journal)

1. Discussion

The two-dimensional anti-de-Sitter space AdS2 provides a wonderful playground both to study
quantum field theory in curved space and to further our understanding of correlation functions
in AdS/CFT. As there are no propagating degrees of freedom for the graviton, the latter is not a
usual gauge/gravity correspondence,but rather a rigid holography that has physical settings e.g.
in the context of defects in higher-dimensional theories [1–6], effective and intrinsic theories
in AdS2 [7–18]. Perturbative computations in anti-de-Sitter space are done through Witten
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diagrams, whose structure has extensively been studied [19–29]. Yet, the complexity relative
to their flat space counterpart is still a roadblock to perturbative analysis and there is still a
search for the full equivalent of Feynman rules [30]. As such, the most efficient methods to
date for perturbative correlators are through the conformal bootstrap [31, 32]. However, explicit
computations remain a reliable way to make progress in perturbation theory and can provide
some insight into assumptions that may simplify the bootstrap process. First-order four-point
correlators with quartic interactions in the strong coupling limit can be written in terms of D-
functions [21] which are four-point Witten contact diagrams. At higher order, with loops and
exchanges which correspond to additional integrated bulk points, some diagrams can be related
to contact integrals through differential equations [22, 33]. As such, the n-point D-functions
are used beyond the first order and can be seen as a starting point to build ‘master integrals’
for Witten diagrams. AdS2 is a perfect place to look at these integrals as it provides a simple
framework with relevance in its own right (e.g. in defect theories) and corresponds to a diagonal
limit (z = z̄ for four points) of its higher-dimensional counterparts.

Boundary correlators in AdS2 enjoy a one-dimensional conformal symmetry. In higher
dimensions, along with additional symmetries, this simplifies perturbative computations. How-
ever, the structure of AdS2 provides a framework in which another elementary method can be
used to compute perturbative quantities; the residue theorem. Using contour integration for
one of the AdS2 integrals, the contact diagram in λnφ

n
Δ theory for n scalars of low conformal

dimension is remarkably simple leading to the results (see section 3 below)

ĨΔ=1,n(xi) =
(CΔ=1)nπ

(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j(xi − xk)(xk − x j)
ln

(
xi − x j

2i

)
, (1.1)

ĨΔ=2,n(xi) =
∑
j�=i

−π(CΔ=2)n

2(2i)2n−4(xi − x j)2
∂x j

(
(x j − xi)2n−5∏

k �= j,k �=i(xk − x j)2(xk − xi)2
ln

x j − xi

2i

)
(1.2)

+
∑
j�=i

∂xi

−π(CΔ=2)n

(2i)2n−2(xi − x j)2
∂x j

(
(x j − xi)2n−4∏

k �= j,k �=i(xk − x j)2(xi − xk)2
ln

x j − xi

2i

)
.

Above, ĨΔ,n(xi) is the integral corresponding to the Witten contact diagram of n fields φΔ

of conformal dimension Δ inserted at positions xi, and CΔ is the conformal propagator nor-
malisation defined in (2.22). These expressions are in terms of the operators’ positions and
combine naturally into the cross-ratios obtained with the usual conformal transformations (see
discussion in section 2.1 around equation (2.5) and appendix A.2).

This method proves to be even more powerful in some settings where the residue theorem
can be used for both of the bulk coordinates. This is the case for the topological three-point
correlator of the boundary fields a of the gauge field of pure Yang–Mills in AdS2 presented in
[34], providing an alternative derivation in section 4 of

〈aa(x1)ab(x2)ac(x3)〉 = − 1
4πg2

YM
f abc sgn(x12x23x31), (1.3)

where f abc are the structure constants of the gauge group of the Yang–Mills theory. The low
dimensionality has other advantages, such as having fewer cross-ratios. For four-point func-
tions, for example, the single cross-ratio simplifies the differential equation used to compute
exchange diagrams in section 5. We thus compute explicitly a Polyakov block corresponding
to the sum of four-point exchange Witten diagrams with dimensionsΔ = 1, which agrees with
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independently found results1
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(
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)
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(
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− 6Li3
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− 1

6
π2 log

(
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)
+ 6ζ(3)

+
Li2(1 − z) log
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2 log

(
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(
z2
)
− 6Li3(z) − 1

6π
2 log

(
z2
)
+ 6ζ(3)
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. (1.4)

Natural extensions to this work include deriving position space results of contact diagrams in
the case of higher external dimensions and Polyakov blocks for higher exchanged dimensions.
A possible path for this is by extending the one-dimensional Mellin analysis developed in [35]
to higher n-point functions using results from this study. In the former, Mellin amplitudes for
higher Δ were obtained, so that, in combination with these notes, results for all (n,Δ) may
be achievable. The knowledge of the structure of contact diagrams also sheds light on the
computation of higher-point exchange diagrams through the method presented in section 5.
A combination of these two techniques for contact and exchange diagrams could also, along
with multipoint Ward identities and bootstrap methods, provide a path to the computation of
the strong coupling, second-order, six-point correlator of the 1/2-BPS defect in N = 4 SYM.
In this spirit, an appendix is included providing a perturbative check of the consistency of the
multipoint Ward identities conjectured in [36] for the first two strong coupling perturbative
orders of the six-point correlator of insertions on the 1/2 BPS line in N = 4 SYM. The higher-
order quantities are beyond the scope of this paper and are left for further investigation.

The paper will proceed as follows; after an introduction to the basics, techniques, and nota-
tions of CFT1 and AdS2 in section 2, contour integration will be used in section 3 to derive the
AdS2 massless n-point contact diagrams which are consistent with the numerical integration
and the current literature. This method will also be used in section 4 to derive the topological
three-point correlator of the boundary field of pure Yang–Mills in AdS2. Finally, known meth-
ods will be applied in section 5 to find the explicit expression of a one-dimensional Polyakov
block, which has the correct symmetries, Regge behaviour, and double-discontinuity. Several
technical appendices complete the manuscript.

2. Review of AdS2/CFT1 correlators

Interacting fields propagating in AdS2 define a non-local one-dimensional conformal field at
the boundary. We go through some basics of one-dimensional conformal theories, dynamics in
two-dimensional anti-de-Sitter space, and set up the notation of this paper. We also review the
concepts of Polyakov blocks and the methods used in [26, 33] to relate AdS exchange diagrams
to contact diagrams in the context of CFT1.

2.1. CFT1 basics, techniques, and notation

A one-dimensional conformal field theory can be defined by a set of data consisting of the
spectrum {Δ} which defines which operators are present in the theory, and the coefficients
{cΔ1Δ2Δ3} which define the interactions of these operators. Combined with the operator prod-
uct expansion (OPE), these can be used to reconstruct any correlator of local operators in the

1 We thank Pietro Ferrero for sharing some of the unpublished results related to [10].
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theory. The conformal group in d = 1 is generated by the translation P, dilation D, and special
conformal transformation K which satisfy the conformal algebra and can be parametrised in
one dimension by the differential operators

P = −∂x D = −x∂x −Δ K = −x2∂x − 2Δx, (2.1)

when acting on a field of conformal dimension Δ evaluated at position x. The consequence
of these symmetries on correlators is that the coordinate dependence of the first three n-point
correlators is fixed

〈φΔ(x)〉 = δΔ,0 (2.2)

〈φΔ1 (x1)φΔ2 (x2)〉 = δΔ1,Δ2

x2Δ
12

(2.3)

〈φΔ1 (x1)φΔ2 (x2)φΔ3 (x3)〉 = cΔ1Δ2Δ3

(x12)Δ123 (x13)Δ132 (x23)Δ231
Δi jk = Δi +Δ j −Δk. (2.4)

For n-point correlators, conformal transformations can be used to reduce the number of
independent variables to n − 3 conformally invariant cross-ratios

ui =
x1ixn−1,n

xinx1,n−1
0 < ui < 1, (2.5)

where xi j = x j − xi are real numbers in d = 1. For equal conformal dimensions the correlator
is2

〈φΔ(x1)..φΔ(xi) . . . φΔ(xn)〉 = A(x1, . . . , xn)〈φΔ(0)..φΔ(ui) . . . φΔ(1)φ̃Δ(∞)〉, (2.7)

where

A(x1, . . . xn) =

⎛
⎝(

x1nxn−1,n

x1,n−1

)n−2 n−1∏
j=1

x−2
jn

⎞
⎠

Δ

. (2.8)

One might wonder why higher-point correlators are of any interest since the theory can be
determined by the set {Δ, cΔ1Δ2Δ3}. In practice, however, determining such a set is far from
trivial, and working out perturbative higher-point correlators gives access to this information
through the dynamics of the theory. For example, the four-point correlator has the following
OPE

〈φΔ(x1)φΔ(x2)φΔ(x3)φΔ(x4)〉 = 1
(x13x24)2Δ

f (z) (2.9)

f (z) =
∑

h

c2
ΔΔhzh−2Δ

2F1(h, h, 2h; z), (2.10)

2 Note that the limit

lim
ε→0

〈φΔ(x1)..φΔ(xi) . . . ε
−2ΔφΔ(ε−1)〉 = 〈φΔ(x1)..φΔ(xi) . . . φ̃Δ(∞)〉 (2.6)

is well defined.
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where z = x12x34
x13x24

is the usual cross-ratio—u2 in (2.5)—for the four-point function in 1D. When
computing the analytic expression of this four-point correlator at different orders in perturba-
tion theory, for example using Witten diagrams in a holographic setup [1, 4], these can be
equated to the expansion of (2.9) to find the perturbative CFT data {Δ, cΔ1Δ2Δ3}.

The symmetries of the conformal blocks (similarity under z → z
z−1 ), those of the correla-

tor (crossing symmetry under z → 1 − z), and those of the theory (e.g. Ward identities in [2])
can be used to highly constrain the four-point correlators. Complemented by a transcenden-
tality ansatz for the correlators [37], this provides a powerful way to compute perturbative
correlators, as was done in [2, 4, 6, 10, 38].

The bosonic four-point correlator defined in (2.9) has symmetries under the permutations
of the external operators. Given the ordering of the operators, the variable z is naturally defined
on the range 0 < z < 1. Following the analysis of [39], the bosonic symmetry can be used to
define the function in (2.11) on the entire real axis.

f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (−)(z) = (1 − z)2Δ f (0)

(
z

z − 1

)
z < 0

f (0)(z) 0 < z < 1

f (+)(z) = z2Δ f (0)

(
1
z

)
z > 1

. (2.11)

The resulting function has an explicit symmetry under crossing

z → 1 − z 0 < z < 1, (2.12)

and braiding

z → z
z − 1

. (2.13)

These two symmetries generate all the crossing symmetries from bosonic permutations. In
addition, these functions defined on a segment of the real line can be analytically continued
outside their region of analyticity. For some functions (for example, those resulting from con-
tact Witten diagrams), the analytic continuation of the function f (0,±)(z) outside its segment
of definition matches the function f (z). In this case, we speak of braiding symmetry. This is
linked to the vanishing of the double-discontinuity, defined in [39] as

dDisc+[G(z)] = G(0)(z) − G(+)(z + iε) + G(+)(z − iε)
2

0 < z < 1. (2.14)

Unitarity arguments link this double-discontinuity to the full correlator thanks to the inversion
formula [39] and provide a powerful tool constraining the correlators and correspondingly the
OPE data.

The OPE expansion is the projection of the correlator on the basis of the conformal blocks.
There is, however, another basis that is of some interest in this context; Polyakov blocks. These
are defined to be crossing-symmetric, Regge-bounded3, and to have the same expansion as the

3 The Regge limit of a correlator in d = 1 is controlled by its behaviour at large |z|. A Regge bounded correlator g(z)
satisfies limζ→∞ g( 1

2 + iζ) < C where C is a constant. Note that the identity contribution has a constant contribution
in this limit.
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conformal blocks (see for example section 6 of [39])∑
h

chGh(z) =
∑

h

chPh(z). (2.15)

Their existence in d = 1 was motivated in [32, 40, 41] and proven in [42]. Additionally, they
have the same double-discontinuity as the conformal blocks and have a double zero at the
position of double trace operators

P2Δ+2n = 0 (2.16)

∂nP2Δ+n = δn,0. (2.17)

As a consequence, they can be expressed as the sum of Witten exchange diagrams (see the
example of perturbative Polyakov blocks in appendix B.2). Through the computation of the
exchange Witten diagrams in position space in one dimension, the explicit form of a Polyakov
block is shown below in section 5.

2.2. Witten diagrammatics in AdS2

We consider bulk theories in euclidean AdS2, for which we use the Poincaré metric

ds2
AdS2

=
dx2 + dz2

z2
. (2.18)

Scalar bosonic fields of mass m are dual to conformal scalars of dimension Δ

m2 = Δ(Δ− 1), (2.19)

inserted on the boundary (z = 0). These fields have a bulk-to-bulk propagator

GΔ
BB(a, b) = CΔ(2u)−1

2F1(Δ,Δ, 2Δ,−2u−1) u =
(za − zb)2 + (xa − xb)2

2zazb
, (2.20)

which satisfies the AdS2 equation of motion

(∇2
AdS −Δ(Δ− 1))GΔ

BB(a, b) = z2δ(2)(a − b), (2.21)

and whose normalisation [29, 43] is

CΔ =
Γ(Δ)

2
√
πΓ

(
Δ+ 1

2

) . (2.22)

The bulk-to-boundary propagator corresponding to the z → 0 limit of (2.20) is

KΔ(z, x; xi) = CΔK̃Δ(z, x; xi) (2.23)

= CΔ

(
z

z2 + (x − xi)2

)Δ

. (2.24)

Due to the isometries of AdS2, the boundary correlators will be conformal. Given an action,
for example the effective worldsheet theory on AdS2 of [1], boundary correlators are computed
via Witten diagrams (e.g. the contact diagram in figure 1).

Just as in Feynman diagrams, the external legs, propagators and vertices play the same role.
The external legs are depicted as points at the boundary and the integral is evaluated over the
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Figure 1. Witten n-point contact diagram with a λnφ
n interaction and n boundary

insertions at positions {x1, . . . , xn}.

position of the vertices in the bulk of AdS2. For example, the contact diagram depicted in
figure 1 corresponds to the integral

λnĨΔ,n(x1, . . . , xn) = λn

∫
dz dx

z2

n∏
i=1

KΔ(z, x; xi), (2.25)

which will be solved in section 3 for all n and Δ = 1, 2.
The first extension to this class of integrals is to consider multiple bulk integrations.

This happens when there are loops and exchanges in the corresponding Witten diagram. For
some exchange diagrams, the multiple integrals can be related to (2.25) through the action
of a differential operator (for more details see appendix B.1). For example, the four-point
single-exchange diagram can be found by solving the differential equation

(C(2)
(34) − m2

E)J(x1, x2, x3, x4) =
∫

dza dxa

z2
a

Π4
i=1KΔφ

(za, xa; xi) (2.26)

= ĨΔφ,4(z), (2.27)

where C(2)
34 is the quadratic Casimir acting on the external legs 3 and 4, mE is the mass of the

exchanged operator, and the full integral is given by

J(x1 . . . x4) =
∫

dza dxa

z2
a

∫
dzb dxb

z2
b

GΔE
BB (a, b)

2∏
i=1

(
KΔφ

(za, xa; xi)
) 4∏

i=3

(
KΔφ

(zb, xb; xi)
)
.

(2.28)

The simple structure of one-dimensional conformal correlators allows us to write the result
explicitly in position space for the case Δ = ΔE = 1, see below in (5.15).
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These quantities have been computed in Mellin space [10, 24, 28, 29, 44], where Witten
diagrams have a natural language. In particular, contact diagrams with no derivatives are given
by constant truncated Mellin amplitudes and exchange diagrams have poles in Mellin space4.

However, there are several caveats to these results. Firstly, the Mellin and anti-Mellin trans-
forms are not trivial computations, so knowledge of the Mellin amplitude does not imply that
of the position space correlator and vice-versa. Additionally, the generality of such results
prevents the use of the simplifications occurring in d = 1. Furthermore, when the number of
external legs is large enough (n > d + 2), many spurious Mellin variables do not correspond
to a cross-ratio in position space. This is already relevant for the four-point d = 1 correlator.
In one dimension, several attempts were made to use the Mellin transform using the higher-
dimensional formalism [10] or developing a one-dimensional formalism [35]. Using as a guide
the principle that contact Witten diagrams correspond to constant Mellin amplitudes, the results
in section 3 may provide a starting point in generalising the one-dimensional Mellin formal-
ism developed in [35]. There, results for contact diagrams with general external dimensionsΔ
were derived so that, in combination with the insights of the present study, results for all (n,Δ)
may be achievable.

3. n-point contact diagrams

We start by looking at n-point correlators of identical scalars with a simple contact interac-
tion. These will serve not only as examples to demonstrate the simplifications occurring in this
low-dimensional case, but also as building blocks for the massive contact diagrams, exchange
diagrams, and other cases seen in the following sections. These correlators result from an
interaction term λnφ

n in the bulk of AdS2 and will be a function of n − 3 independent cross-
ratios due to the symmetry structure of CFT1, or equivalently, the isometry structure of AdS2.
These constitute the ‘master integrals’ in AdS2 for contact diagrams used in [1, 4]. The con-
tact diagram is illustrated in figure 1 and can be written as an integration over AdS2 of the n
bulk-to-boundary propagators, leading to the connected tree-level correlator

〈φΔ1 (x1) . . . φΔn(xn)〉(1)
conn = −λn

(
Πn

i=1CΔi

)
IΔ1,...,Δn(x1, . . . , xn), (3.1)

where we define the integral

IΔ1,...,Δn(x1, . . . , xn) =
∫

dx dz
z2

Πn
i=1

(
z

z2 + (x − xi)2

)Δi

. (3.2)

The simplifications of AdS2 can be made explicit by evaluating the x-integral first with contour
integration. This is especially effective for the massless case (Δ = 1) where the integrand of
(3.2) only has single poles and the general result—see (3.24) below—for a massless n-point
function is derived,

〈φΔ=1(x1) . . . φ(xn)〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−λn
π(CΔ=1)n

(2i)n−2

∑
i> j

(xi − x j)n−4

Πn
k �=i �= j(xi − xk)(x j − xk)

ln
(
(xi − x j)

2
)

n even

−λn
π2(CΔ=1)n

2(2i)n−3

n∑
i> j

(xi − x j)n−4

Πk �= j�=i(xk − x j)(xk − xi)
n odd.

(3.3)

4 For an introduction to the subject, a useful resource is [45].
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Figure 2. Contour used for the integral over the variable x parametrising the AdS2
boundary. The contour can be chosen to close in either the upper or lower complex
half-plane since the integrand is appropriately bounded at large |x|.

3.1. Massless scalar fields

In the case of massless scalar fields, the integral (3.2) reduces to

IΔ=1(x1, . . . , xn) =
∫ ∞

0
dzzn−2

∫ ∞

−∞
dx

1
Πn

i=1(z2 + (x − xi)2)
. (3.4)

The advantage of working in AdS2 is that, since the boundary has only one dimension, the
integrated boundary coordinate x can be analytically continued to the complex plane and the
integral can be evaluated with the residue theorem. The contribution from the contour around
infinity (C∞ in figure 2) vanishes since the integrand is appropriately bounded at large |x|.

The integrand in (3.4) has 2n poles at

x = x j ± iz, (3.5)

where 1 � j � n, with residues

± 1
2izΠi �= j((xi − x j)2 + 2iz(xi − x j))

, (3.6)

which are depicted in figure 2. Since, for z > 0, the poles in the upper half-plane (UHP) come
with a positive sign and those in the lower half-plane (LHP) come with a minus sign, the
result is independent of the choice of closing the contour. However, when z is real, these
poles will have an additional factor sgn(z). This is because the poles cross the x ∈ R axis
when z crosses 0.

We are thus left with the integral

I(xi) = π

∫ ∞

0
dzzn−3

n∑
j=1

1
Πn

1=1,i �= j((xi − x j)2 + 2iz(xi − x j))
. (3.7)
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Figure 3. The contour here is closed in the UHP (the same analysis holds for the LHP
closing). However, since z is now defined on the entire real line the pole enclosed in the
given contour depends on the sign of z. The case where z < 0 (left) will have a residue
of opposite sign when compared to that where z > 0 (right).

The integrand of (3.7) has a leading large z behaviour

π

n−1∑
j=1

z−1

(2i)n−2

1
Πn

i=1,i �= j(xi − x j)
+ O(z−2), (3.8)

which vanishes thanks to the identity

∑
j∈J

1
Πi∈J,i �= j(xi − x j)

= 0, (3.9)

so the integral is convergent for n � 3 as expected. Notice that the integrand of (3.7) has the
same parity as the number of external fields. This leads to a simplification in computing the
odd n-point functions.

n odd.
The massless odd-n case can be solved with contour integration for both the x and the z

coordinates5. Since both the integrand and the residue of the pole in the x coordinates are
antisymmetric under z →−z, we can extend the region of integration of z to the entire real
line. This is best seen in the trivial example of the conformal massless three-point function

lim
Λ→∞

Λ2I(0, 1,Λ) =
∫ ∞

0

dz
z2

∫ ∞

−∞
dx

z3

(z2 + x2)(z2 + (x − 1)2)
. (3.10)

Since the integrand is antisymmetric under z →−z, we need to compensate for the sign change
when extending the range of the integral over z

1
2

∫ ∞

−∞

dz sgn(z)
z2

∫ ∞

−∞
dx

z3

(z2 + x2)(z2 + (x − 1)2)
. (3.11)

When considering the x-contour integral (3.11), we are now faced with two situations for the
contour integral, the first (z < 0) is depicted on the left of figure 3, the second (z > 0) is depicted
on the right.

The sign of the pole included in the contour cancels the sign contribution from
equation (3.11). The range of z can be extended after having done the x-integral to obtain

5 This is true for any convergent integral with odd
∑

i Δi. The resulting correlator will thus be a rational polynomial
in the cross-ratios though it may not have a simple form.
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the same conclusion. In so doing, one obtains

π

∫ ∞

−∞
dz

1
4z2 + 1

=
π2

2
. (3.12)

This reasoning holds for a general n-point function whose integrand is antisymmetric under
z →−z. We will see in one of the examples in section 4, the case of topological operators
where the polynomial dependence on the external coordinates is just a constant (up to a sign-
dependent factor).

We are then left with an analytic integral over the entire real z-line.

I(xi) =
2πi
2

∫ +∞

−∞
dzzn−2

n−1∑
j=1

1
2izΠi �= j((xi − x j)2 + 2iz(xi − x j))

(3.13)

=
π

2

∫ +∞

−∞
dzzn−3

n−1∑
j=1

1
Πi �= j((xi − x j)2 + 2iz(xi − x j))

. (3.14)

The integrand has a good large-|z| behaviour and we can therefore analytically continue z and
evaluate this integral by contour integration, neglecting the vanishing contribution from the
contour at ∞. There are poles at positions

z∗ = − xi − x j

2i
, (3.15)

with residues

Resz=z∗

(
zn−3

Πk �= j((xk − x j)2 + 2iz(xk − x j))

)
=

(xi − x j)n−4

(2i)n−4Πk �= j�=i(xk − x j)(xk − xi)
. (3.16)

We close the contour in the UHP, in which only the poles where xi − x j > 0 contribute. This
gives the final result for odd-n and ordered xi

In odd(xi) =
π2

2(2i)n−3

n∑
i> j

(xi − x j)n−4

Πk �= j�=i(xk − x j)(xk − xi)
. (3.17)

This formula agrees with the canonical case of n = 3, and the explicit results for n = 5 and
n = 7 are given in appendix A.2.

Even and odd n.
For a generic number of external fields n, the integral

I(xi) = π

∫ ∞

0
dzzn−3

n∑
j=1

1
Πn

1=1,i �= j ((xi − x j)2 + 2iz(xi − x j))
, (3.18)

cannot be evaluated with contour integration. It can still be evaluated explicitly with the pole-
matched, partial fraction decomposition of the integrand

∑
j

zn−3

Πk �= j

(
2i(xk − x j)

(
z − i xk−x j

2

)) =
1

(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j(xi − xk)(xk − x j)
−1

(z + ai j)
, (3.19)

11
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where

ai j =
xi − x j

2i
. (3.20)

Using this decomposition, we obtain logarithm functions whose branch cut is chosen to be on
the negative real axis. The choice of the branch of the logarithm is arbitrary since we do not
cross any branch cut in the definite integration6. The convergent commuting of the sum and
the integral is ensured by only taking the upper bound Λ to infinity at the end of computations.
This gives the result

I(xi) = lim
Λ→∞

−π

(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j(xi − xk)(xk − x j)

(
ln(ai j + Λ) − ln(ai j)

)
, (3.21)

which can be simplified by averaging over the permutation of the two indices, since the sum is
indiscriminate in i and j. The first consequence is that the divergent term cancels in both cases,
since we have

log(Λ)
∑
i �= j

(xi − x j)n−4

Πk �=i �= j(xi − xk)(x j − xk)
= 0 n even, (3.22)

and in the odd-n case we have a vanishing leading term since

ln

(
Λ− i

xi − x j

2

)
− ln

(
Λ + i

xi − x j

2

)
Λ→∞−−−−→ 0. (3.23)

Thus, we can write the result as

I(xi) =
π

(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j (xi − xk)(xk − x j)
ln

(
xi − x j

2i

)
, (3.24)

which is a real quantity for both the even case

Ieven(xi) =
π

2(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j(xi − xk)(x j − xk)
ln
(
(xi − x j)

2
)
, (3.25)

and the odd-n case

Iodd(xi) =
π

2(2i)n−2

∑
i �= j

(xi − x j)n−4

Πk �=i �= j (xi − xk)(x j − xk)

(
ln(ai j) − ln(−ai j)

)

=
π

2(2i)n−2

(
iπ
∑
i> j

(xi − x j)n−4

Πk �=i �= j (xi − xk)(x j − xk)
− iπ

∑
i< j

(xi − x j)n−4

Πk �=i �= j (xi − xk)(x j − xk)

)

=
π2

2(2i)n−3

∑
i> j

(xi − x j)n−4

Πk �=i �= j (xi − xk)(x j − xk)
. (3.26)

6 The author thanks Luke Corcoran for a discussion on this point.
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Thus equation (3.24) is consistent with the result (3.17) found in the previous section. The
correlator (3.3) follows from (3.26) and (3.25). This matches known literature for the case of
the four-point function

IΔ=1,n=4 = −π

2

(
log(u1)
1 − u1

+
log(1 − u1)

u1

)
(3.27)

and more cases are listed in appendix A.2.

3.2. Massive scalar fields

The method used in section 3.1 is very powerful in the generic n case but quickly increases in
complexity when Δ > 1. However, another method can be used to obtain the massive n-point
functions from the massless cases, as seen below in subsection 3.3.

For Δ = 2, the result can still be computed with this method relatively efficiently. The
integral

IΔ=2(xi) =
∫

dzz2n−2
∫

dx
1

Πn
i=1(z2 + (x − xi)2)2

(3.28)

is evaluated by contour integration for the x−integral and partial fraction decomposition for
the z−integral. Double poles lead to the less compact formula

IΔ=2,n =
∑

i

∑
j�=i

−π

2(2i)2n−4(xi − x j)2
∂x j

(
(x j − xi)2n−5∏

k �= j,k �=i(xk − x j)2(xk − xi)2
ln

x j − xi

2i

)

+
∑

i

∑
j�=i

∂xi

−π

(2i)2n−2(xi − x j)2
∂x j

(
(x j − xi)2n−4∏

k �= j,k �=i(xk − x j)2(xi − xk)2
ln

x j − xi

2i

)
,

(3.29)

which is derived in appendix A.1. One expects a similar structure at higherΔ, where we have a
double sum over the external coordinates xi, j and ∂2Δ derivatives and Δ terms. Some evidence
of this is the pinching presented in section 3.3 though subtleties in the order of limits prevent
a general analysis in this paper. As such, the residue method loses its efficiency as we increase
the dimension of the external operators.

3.3. Pinching

One of the ways to relate correlators with differing number of points is through pinching, that
is, bringing an operator near another

lim
xi→xi+1

〈φ(x1) . . . φ(xi)φ(xi+1) . . . φ(xn)〉. (3.30)

From the OPE, one expects a divergence in this pinching limit. The contribution from the
exchanged identity, in particular, leads to a power divergence

lim
ε→0

〈φΔ(x1)φΔ(x1 + ε)〉 ∼ ε−2Δ. (3.31)

Useful results can still be obtained through a similar limit relating not the full correlators but
the individual contact diagrams (see figure 4). In particular, the limit of the unit normalised
propagators

lim
x2→x1

K̃Δ1 (x1; x, z)K̃Δ1 (x1; x, z) = K̃Δ1+Δ2 (x1; x, z) (3.32)

13



J. Phys. A: Math. Theor. 55 (2022) 325401 G Bliard

Figure 4. Pinching of the IΔ=1,n=6 integral to I[1,2,2,1] where the thick lines represent
Δ = 2 bulk-to-boundary propagators.

indicates that the pinching of operators should relate higher-point integrals to higher-weight
integrals if this limit commutes with the integrals considered in this paper.

One expects this commuting between the limit and the integral to break down as soon as
one encounters divergences. In other words, in the absence of divergences,

lim
xi+1→xi

I[Δ1,...,Δn](x1, . . . , xn) = I[Δ1,...,Δi+Δi+1,Δ̄i+1,...,Δn](x1, . . . , x̄i+1, . . . , xn), (3.33)

where x̄i+1 denotes the absence of an operator at position xi+1. The process can be iterated
to form massive contact n-point diagrams from the basis of massless contact diagrams. This
can, in principle, be done for all values of Δ and n. A list of examples for scalars of differing
dimensions is given in appendix A.2, agreeing with numerical integration and known results.
This provides a non-trivial check of the six-point function as well as a way to evaluate the four-
point correlator of massive fields. When divergences are present in the individual diagrams,
these might cancel in the full correlator, and if not need to be regularised.

The simplest example in which divergences naturally appear in a pinched contact diagram
is when considering the pinching from a four- to a three-point function

lim
x2→x1

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = lim
x2→x1

(
1

x2
13x2

24

(
−2 log(χ)

1 − χ
− 2 log(1 − χ)

χ

))

=
1

x2
13x2

14

lim
ε→0

(−2 log(ε) − 2), (3.34)

where the pinched cross-ratio χ→ 0 generates a divergence in the pinched correlator. In some
physical systems, the cancelation of such divergences can occur thanks to the symmetries of
the theory. For example, in the pinching of N = 4 fields in [36], the contraction of the R-
symmetry indices with a null vector ensures that the protected operators form a chiral ring,
and the powers of a single protected operator are still protected. In the generic case where the
divergences are retained, these do not necessarily match the corresponding correlator.

From the examples shown in this paper, it seems that the class of scalar contact diagrams
follows this general property. In particular, since the dictionary of D-functions is well known,
this provides a non-trivial check of the higher-point functions. One would be tempted to apply
this pinching to the formal expression (3.24) to have an independent derivation of the Δ = 2
case in (3.29). However, the pinching has to be done after the sum to have consistent limits,
which impedes deriving the Δ = 2 case from the massless one.
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With this caveat in mind, the n-point contact diagrams of massless scalars can generate all
n-point contact diagrams.

4. An application: topological correlators

This example considers non-Abelian gauge theories in AdS2 and is an alternative construction
to the Witten diagram computation in appendix A.2 of [34]. For consistency with the notation
in [34], we denote the boundary coordinate by t instead of x.

Yang–Mills in AdS2.
We review the setting of [34] where the strong coupling action is that of Yang–Mills theory

in AdS2 completed with a regulating boundary term

SYM =
1

2g2
YM

∫
AdS2

dx2√−g Tr
(
FμνFμν

)
(4.1)

Sby =
1

g2
YM

∫
∂AdS2

dx
√
−γ Tr

(
AiA

i − 2AiFμin
μ
)
, (4.2)

where μ, ν are the indices in the bulk coordinates of AdS2, i those of the boundary coordinates,
and nμ is a unit vector normal to the boundary of AdS2.

In radial coordinates, the equation of motion is solved by

Frϕ = Q sinh r Aϕ = Q(cosh r − 1) Ar = 0, (4.3)

where Q = QaTa is an element of the Lie algebra of the theory and in the following, indices
a, b, ai are those of the gauge algebra. This gives the on-shell action

(Stot)on−shell = −2π
Tr(Q2)

g2
YM

. (4.4)

To relate the boundary fields to the bulk fields, the variation of the bulk action needs to be
written in terms of the variation of the boundary field

δStot =
2

g2
YM

∫
∂B

dx
√
−γ Tr

(
Aiδa

)
a = lim

xμ→∂B

(
Ai − Fμin

μ
)
, (4.5)

where a is thus the corresponding boundary field and i is the index corresponding to the bound-
ary coordinate (t in the following). The on-shell action (4.4) can be written in terms of the
boundary fields a through the equation

a(ϕ) = −uQu−1 + iu∂ϕu−1 (4.6)

u0Qu−1
0 =

i
2π

log

(
P exp

(
i
∫ 2π

0
dϕa(ϕ)

))
, (4.7)

where the ϕ−dependant large gauge transformations at the boundary are parametrized by u
and P exp denotes the usual path ordered exponential. The expression for the on-shell action
is then proportional to the trace of (4.7) squared,

Tr(Q2) = Tr((u0Qu−1
0 )2) = − 1

4π2
Ω(a). (4.8)
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The expression forΩ(a) is a standard result in quantum mechanics and is solved by the Magnus
expansion [46, 47]

exp(Ω) = P exp

(
i
∫

dϕa(ϕ)

)
. (4.9)

This can be used to find the dual correlators through the holographic dictionary

〈 j a(ϕ1) j b(ϕ2)〉 = δab

4πg2
YM

(4.10)

〈 j a(ϕ1) j b(ϕ2) j c(ϕ3)〉 = − f abc sgn ϕ12ϕ23ϕ31

4πg2
YM

(4.11)

〈 j a1 (ϕ1) j a2(ϕ2) j a3 (ϕ3) j a4 (ϕ4)〉 = − f aa1a2 f aa3a4

4πg2
YM

(sgn ϕ12ϕ24ϕ43ϕ31 − sgn ϕ21ϕ14ϕ43ϕ32)

+ (2 ↔ 3) + (2 ↔ 4), (4.12)

where the indices a, b, c, ai are those of the gauge algebra. Through Witten diagrams, these
correlators of boundary terms can be computed explicitly using the contour integral method
detailed above. The bulk-to-boundary propagators in Poincaré coordinates for the gauge field
Aμ are [20, 48]

Gμ(z, t; ti) =
z2 + (t − ti)2

2πz
∂μ

(
t − ti

z2 + (t − ti)2

)
, (4.13)

or explicitly

Gz(z, t; ti) =
ti − t

π
(
(t − ti)2 + z2

) Gt(z, t, ti) =
z2 − (t − ti)2

2πz(t − ti)2 + z2
. (4.14)

The on-shell action is a pure boundary term

Son−shell =
1

2g2
YM

∫
AdS2

dx2√−g Tr
(
DμAνFμν

)
+

1
g2

YM

∫
∂AdS2

dx
√
−γ Tr

(
AiA

i − 2AiFμin
μ
)

=
1

g2
YM

∫
∂AdS2

dx
√
−γ Tr

(
AiA

i + AiFiμnμ
)
. (4.15)

Explicitly, in the (z, t) Poincaré coordinates, this gives7

Son−shell = − 1
g2

YM

∫
dtz Tr(AtAt − zAtFtz)|z=0. (4.16)

The two-point correlators are given by Wick contractions acting on this term

〈aa(t1)ab(t2)〉 = lim
z→0

− 1
2g2

YM

∫
dtδabzGt(z, t, t2)

(
Gt(z, t; t1) + z∂[zGt](z, t; t1)

)
(4.17)

7 Note that the vector pointing out of the boundary goes in the −z direction.
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= lim
z→0

(t1 − t2)2δab

4πg2
YM

(
(t1 − t2)2 + 4z2

) (4.18)

=
δab

4πg2
YM

. (4.19)

The three-point vertex is

S3 = − 1
g2

YM

∫
dt dzz2 f abcA

a
z Ab

t ∂[zA
c
t], (4.20)

which gives a correlator

〈aa(t1)ab(t2)ac(t3)〉 = 1
g2

YM

Perm
(

f abcI(t1, t2, t3)
)
, (4.21)

where we define the single-Wick-contracted integral

I(t1, t2, t3) =
∫

dt dzz2Gz(z, t; t1)Gt(z, t; t2)∂[zGt](z, t; t3). (4.22)

The anti-symmetrised derivative removes the t3 dependence, and the parity of this integrand
under z →−z is the same as that of the odd n massless scalar case (see section 3.1) so we can
evaluate both the z and t integrals with a complex contour8. Extending the z variable to the
entire real line we have

I(t1, t2, t3) =
∫ ∞

−∞
dt
∫ ∞

0
dz

(t − t1)
(
(t − t2)2 − z2

)
4π3z

(
(t − t1)2 + z2

)(
(t − t2)2 + z2

) (4.23)

=
1
2

∫ ∞

−∞
dt
∫ ∞

−∞
dz sgn(z)

(t − t1)
(
(t − t2)2 − z2

)
4π3z

(
(t − t1)2 + z2

)(
(t − t2)2 + z2

) . (4.24)

This integral has a ti-independent contribution from the behaviour at t →∞. However, this is
cancelled by the permutation and the antisymmetry of the structure constants. We will there-
fore ignore this contribution and evaluate the integral by contour integration. The t−integral
evaluates to

I(t1, t2, t3) =
∫ ∞

−∞

dz
z

2z(t1 − t2) + i(t1 − t2)2 + 4iz2

8π2
(
(t1 − t2)2 + 4z2

) sgn (z)2 (4.25)

=

∫ ∞

−∞

dz
z

2z(t1 − t2) + i(t1 − t2)2 + 4iz2

8π2
(
(t1 − t2)2 + 4z2

) . (4.26)

Just as in the previous case the factors of sgn(z) cancel and leave an analytic function in z.
This integral also has a pole at 0 and at ∞, these can also be cancelled using the antisymmetry
of the structure constants of the algebra by considering a combination of Wick contractions;
for example f a1,a2,a3

(
It1,t2,t3 − It2,t1,t3

)
. With this in mind, the integral can be evaluated using

contour integration. The only remaining pole is at z = ±i t1−t2
2 and therefore the integral will

have a factor of sgn(t1 − t2) multiplying the residue at that point (see figure 5).

8 There is a convergence issue in I(t1, t2, t3) which is solved when considering the sum of the Wick contractions, since
the leading term is t−1, this is always cancelled by an odd permutation of the indices (1, 2, 3), the next to leading term
is convergent.
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Figure 5. Contour used for the z−integral in equation (4.26), the origin of the topologi-
cal factor sgn(t1 − t2) is clear in this setup. The contour is closed in the UHP (the same
analysis holds for the LHP closing). The pole contained within this contour depends on
the sign of (t1 − t2) where, in this example, we have shown the case t1 < t2.

This gives the result for one diagram

I(t1, t2, t3) =
1

2π
sgn(t1 − t2), (4.27)

and therefore

〈aa(t1)ab(t2)ac(t3)〉 = 1
8πg2

YM

⎛
⎝ ∑

σ({1,2,3})

( f a1a2a3 sgn(t1 − t2))

⎞
⎠|{a1,a2,a3}→{a,b,c}. (4.28)

Using the total antisymmetry of the structure constants we have∑
σ({1,2,3})

( f a1a2a3 sgn(t1 − t2))|{a1,a2,a3}→{a,b,c} = −2 f abc sgn(t12t23t31), (4.29)

which gives the final result

〈aa(t1)ab(t1)ac(t1)〉 = − 1
4πg2

YM

f abc sgn(t12t23t31). (4.30)

This agrees with the result for the topological three-point function seen above through a simple
change of coordinates9.

5. Exchanges and Polyakov blocks

Exchange diagrams immediately increase the difficulty of the calculation by adding a bulk
integration as well as a bulk-to-bulk propagator. For example, the t-channel exchange diagram

9 For higher-point functions, there is the subtlety that the boundary field a is not the boundary limit of the gauge
field Aμ, but rather has a dependence on both Aμ and Fμν . This implies that the bulk-to-boundary propagator receives
corrections from multi-source terms. These questions are addressed in [34] but are beyond the scope of this paper.
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is given by the integral

J(x1, . . . , x4) =
∫

d2za

z2
a,0

I(za, x2, x3)KΔ1 (x1, za)KΔ4 (x4, za) (5.1)

I(w, x2, x3) =
∫

d2z
z2

0

GΔE (w, z)KΔ2 (x2, z)KΔ3 (x3, z), (5.2)

where KΔ and GΔE are defined in equation (2.23) and za = (za,0, za,1) are bulk coordinates.
Using the isometries of AdS space, the exchange diagrams can be related to contact diagrams
[22, 33] such as those presented in section 3.1. This toy example is slightly different to the case
in [22], since the sum of contact diagrams does not truncate, but allows for an explicit example
of a non-vanishing Polyakov block. Since both bulk integrations in the exchange Witten dia-
gram integral have conformal symmetry, the solution is invariant under the action of symmetry
generators on the legs attached to each of the bulk points

(La + �L2 + �L3)I(za, xa; x2, x3) = 0. (5.3)

This allows one to relate the quadratic Casimir acting on the external legs to the Laplacian
acting on the corresponding bulk point

(C(2)
(23) − m2

E)I(za, xa; x2, x3) =
∫

d2z
z2

0

(
(∇2

a − m2
E)GΔE(w, z)

)
KΔ2 (x2, z)KΔ3 (x3, z). (5.4)

Given that the bulk-to-bulk propagator satisfies the equation of motion, this term in (5.4)
reduces to a delta function, thus reducing the number of integrals. The problem is then more
tractable since the double AdS2 bulk integrations are replaced by a differential equation relating
the answer to the known case of contact diagrams10, which is a single bulk integral.

Let us now consider aλφ3 interaction in AdS2 which gives a non-vanishing three-point func-
tion and an exchange diagram for the four-point function. For the case of four-point correlators,
the exchange diagram integral is solved explicitly in the s, t and u channels.

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = λ2C4
ΔCΔE

(x13x24)2

(
f Δ,ΔE

t (z) + f Δ,ΔE
s (z) + f Δ,ΔE

u (z)
)

, (5.5)

where CΔ is the normalisation defined in equation (2.22). For example in the t channel,

(C(2)
(23) −ΔE(ΔE − 1))

1
(x13x24)2Δφ

f Δ,ΔE
t (z) =

1
(x13x24)2Δφ

IΔ,n=4(z), (5.6)

where C(2)
(23) is the quadratic Casimir acting on the external points 2 and 3, ΔE is the conformal

dimension of the exchanged operator, f Δ,ΔE
t is the function of the cross-ratio z corresponding

to the Witten exchange diagram in the t-channel (J(x1, . . . , x4) in equation (5.1)), and IΔ,n=4 is
the contact integral defined in (3.2). For more details in the derivation and the computation, see
appendix B.2. In one dimension, this differential equation simplifies to one of a single variable

(
(z − 1)

(
(z − 1)z f ′′(z) + (4Δz + z − 1) f ′(z)

)
+ f (z)(2Δ(2Δz − 1) − mE)

)
= IΔ,n=4(z). (5.7)

10 A more detailed review of the derivation is presented in appendix B.2.
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And can be solved for example for Δφ = Δexch = 1

f (1,1)
t (z) =

π

4
c1 + c2 log(z2) + 6Li3(z) − Li2(z) log(z2)

(z − 1)2
. (5.8)

The same can be done in the other channels; in the s-channel, we have

f (1,1)
s (z) =

π

4
c1 + c2 log

(
(1 − z)2

)
+ 6Li3(1 − z) − Li2(1 − z) log

(
(1 − z)2

)
z2

(5.9)

= f (1,1)
t (1 − z). (5.10)

In the u-channel, we have

f (1,1)
u (z) =

π

4

(
c3 + 6Li3

(
z

z − 1

)
− Li2

(
z

z − 1

)
log

((
z

1 − z

)2
)

+ c4 log

((
z

1 − z

)2
))

= (1 − z)−2 f t

(
z

z − 1

)
. (5.11)

The symmetry of the three channels is clear: the s and t channels are related by z → 1 − z
crossing which equates their integration constants. The solution which is crossing-symmetric
and makes the OPE expansion consistent11 has the integration coefficients equal to

c1 = c3 = 6ζ(3) (5.12)

c2 = c4 = −π2

6
. (5.13)

Additionally, this solution has the mildest Regge growth.
We can then define the correlator from the sum of the exchanges in the different channels.

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = λ2

π5(x13x24)2

(
f Δ,ΔE

t (z) + f Δ,ΔE
s (z) + f Δ,ΔE

u (z)
)
. (5.14)

The sum of exchanged Witten diagrams can be related to the Polyakov block [39], for an
exchanged weight Δ = 1 and external weights Δφ = 1,

P(0)
1,1(z) =

4
π

(
f (1,1)

u (z) + f (1,1)
t (z) + f (1,1)

s (z)
)
. (5.15)

Notice that the u and t channels evaluated in the z
1−z variable are well defined on the analytic

continuation to the interval 0 < z < 1.

fu(z) = (1 − z)−2 f t

(
z

z − 1

)
(5.16)

f t(z) = (1 − z)−2 fu

(
z

z − 1

)
. (5.17)

11 The full analysis requires the three-point diagram and is done in appendix B.2.
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Due to this ‘pseudo-braiding’ and crossing properties of this analytically continued func-
tion, the double-discontinuity defined in [39] and reviewed in (2.14), can be evaluated quite
easily as

dDisc(+)[P(1,1)(z)] =
2Gh=1(z)

z2
. (5.18)

This is the discontinuity in the s-channel of the corresponding Polyakov block [39]. Addition-
ally, the bosonic continuation defined via (2.11) is fully symmetric under s → t and s → u, and
is Regge-bounded. Therefore, P(0)

1,1 in (5.15) is the Polyakov block (defined on 0 < z < 1) with
external weight Δ = 1 and exchanged weight ΔE = 1,

P(0)
1,1(z) = Li2

(
z

z − 1

)
log

(
z2

(z − 1)2

)
− 6Li3

(
z

z − 1

)

− 1
6
π2 log

(
z2

(z − 1)2

)
+ 6ζ(3)

+
Li2(1 − z) log

(
(z − 1)2

)
− 6Li3(1 − z) − 1

6π
2 log

(
(z − 1)2

)
+ 6ζ(3)

z2

+
Li2(z) log

(
z2
)
− 6Li3(z) − 1

6π
2 log

(
z2
)
+ 6ζ(3)

(z − 1)2
. (5.19)

This agrees with the computation12 done via the conformal bootstrap in [10]. Similarly, higher
exchanged weights or external weights can be computed, see appendix B.2. Along with con-
straints from the double-discontinuity and a suitable ansatz, this method might provide a way
to compute all Polyakov blocks P(0)

1,ΔE
(z).
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Appendix A. n-point contact integrals

This appendix compiles the derivation of the Δ = 2n-point contact integral, a non-exhaustive
list of n-point D-functions, and a short numerical analysis of the results obtained for a large
number of external legs.

A.1. Derivation of Δ = 2

One may of course be interested in higherΔ. This is where this method loses some of its power.
While it is very powerful in the generic n regime, it quickly increases in complexity when Δ is
increased. However, the complexity will only be combinatorial and not intrinsic. The integrand
of

I(xi) =
∫

dzz2n−2
∫

dx
1

ΠN−1
i=1 (z2 + (x − xi)2)2

, (A.1)

only has double poles (and single poles from the expansion around these poles), at the position
x = xi + iz with residue

Res
x=xi+iz

(
1

Π(z2 + (x − xi)2)2

)
= ∂x

(
1

(x − (xi − iz))2

1∏
j, j�=i(z

2 + (x − x j)2)2

)∣∣∣∣∣
x=xi+iz

(A.2)

= −
∑

i

1
4z2

(
1
iz

+ ∂xi

)(
1

Π j�=i(xi − x j)2(2iz + (xi − x j))2

)
,

where the residue was massaged into a more useable form. As is the massless case, these can
be integrated by using the partial fraction decomposition. By comparison of simple and double
poles we have ∑

i

z2n−n0∏
k(z + aik)2

=
∑
i �= j

ci j

(z + ai j)2
−
∑
i �= j

∂ai jci j

(z + ai j)
(A.3)

= −
∑
i �= j

∂ai j

(
ci j

(z + ai j)

)
, (A.4)

ci j =
(−ai j)2n−n0∏
k �= j(aki − a ji)2

. (A.5)

as long as the n0 > −1. This is integrated by sight∫ Λ

0
dz

⎛
⎝∑

i �= j

ci j

(z + ai j)2
−
∑

i

∂ai jci j

(z + ai j)

⎞
⎠ =

∑
i �= j

∂ai j

(
ci j ln(ai j)

)
+ (∂aici j) ln(Λ). (A.6)

Explicitly, we have∫
dzz2n−2 −1

4z2

∑
i

∂xi

(
1∏

j�=i(xi − x j)2(2iz + (xi − x j))2

)
(A.7)

=
∑

i

∑
j�=i

∂xi

1
4(2i)2n−3(xi − x j)2

∂x j

(
(x j − xi)2n−4∏

k �= j,k �=i(xk − x j)2(xi − xk)2
ln

x j − xi

2i

)
, (A.8)
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and∫
dz

z2n−5

4i

(
1∏

j�=i(xi − x j)2(2iz + (xi − x j))2

)

=
∑

i

∑
j�=i

1
4i(2i)2n−4(xi − x j)2

∂x j

(
(x j − xi)2n−5∏

k �= j,k �=i(xk − x j)2(xk − xi)2
ln

x j − xi

2i

)
. (A.9)

As in the massless case, the divergent terms cancel and the logarithm is a well-defined function
with a branch cut on the negative real axis. This gives the result

IΔ=2,n(xi) =
∑

i

∑
j�=i

−π

2(2i)2n−4(xi − x j)2
∂x j

(
(x j − xi)2n−5∏

k �= j,k �=i(xk − x j)2(xk − xi)2
ln

x j − xi

2i

)

+
∑

i

∑
j�=i

∂xi

−π

(2i)2n−2(xi − x j)2
∂x j

(
(x j − xi)2n−4∏

k �= j,k �=i(xk − x j)2(xi − xk)2
ln

x j − xi

2i

)
.

(A.10)

A.2. Library of contact correlators

In the main body, results are naturally written in terms on the cross-ratios ui defined in
equation (2.5). However, they also hold for the external coordinates, for example {x1, . . . , x4}
combine naturally to form the cross-ratio u1 in (3.27) in the case of the four-point function

IΔ=1,n=4(x1, .., x4)

= −π

2

(
log x12

x23x13x24x14
+

log x13

x12x23x34x14
+

log x23

x12x13x34x24

+
log x34

x13x23x14x24
+

log x24

x12x23x14x34
+

log x14

x12x13x24x34

)

= − π

2(x13x24)2

(
x13x24

x14x23
log

(
x12x34

x13x24

)
+

x13x24

x12x34
log

(
x14x23

x13x24

))
. (A.11)

Below, we include a few examples I(0, u1, . . . , un−3, 1,∞) of the contact integral (3.2) evaluated
in the cross-ratios defined in (2.5), where we use the notation IΔ,n for equal dimension operators
and I[Δ1,...,Δn] to include external operators of different dimensions.

I1,3 =
π2

2
(A.12)

I1,4 = −π

2

(
log(u1)
1 − u1

+
log(1 − u1)

u1

)
(A.13)

I1,5 =
π2

4u2(1 − u1)
(A.14)
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I1,6 =
π

8

(
(u1 − 1)2 log(1 − u1)

u1(u1 − u2)(u2 − 1)(u1 − u3)(u3 − 1)

+
(u1 − u2)2 log(u2 − u1)

(u1 − 1)u1(u2 − 1)u2(u1 − u3)(u2 − u3)

− (u2 − 1)2 log(1 − u2)
(u1 − 1)(u1 − u2)u2(u2 − u3)(u3 − 1)

+
u2

2 log(u2)
u1(u1 − u2)(u2 − 1)(u2 − u3)u3

+
(u3 − 1)2 log(1 − u3)

(u1 − 1)(u2 − 1)(u1 − u3)(u2 − u3)u3

+
(u2 − u3)2 log(u3 − u2)

(u1 − u2)(u2 − 1)u2(u1 − u3)(u3 − 1)u3

− (u1 − u3)2 log(u3 − u1)
(u1 − 1)u1(u1 − u2)(u2 − u3)(u3 − 1)u3

− u2
3 log(u3)

u1u2(u1 − u3)(u2 − u3)(u3 − 1)

− u2
1 log(u1)

(u1 − 1)(u1 − u2)u2(u1 − u3)u3

)
(A.15)

I1,7 =
π2

16(u1 − 1)(u2 − 1)u2(u1 − u3)(u3 − 1)u3(u1 − u4)(u2 − u4)u4

×
(
(u2 − 1)(u3 − 1)(u2 − u4)u2

1

×+u2

(
u2

3 + u4(u3 + u4 − 2)u3 − u4 − u2(u3 − 1)(u3 + u4 + 1)
)
u1

×+u2
(
u2(u3 − 1)(u3 + (u3 + 1)u4) − u3

(
u3
(
u2

4 + u4 + 1
)
− 3u4

)))
. (A.16)

For the massive cases, we find agreement between the result of pinching and that of the
formula (3.29) which gives for the first few cases:

I2,3 =
3π
8

(A.17)

I2,4 = −π((χ− 1)χ+ 1)
8(χ− 1)2χ2

− π
(
2χ2 + χ+ 2

)
log(1 − χ)

16χ3
+

π(χ(2χ− 5) + 5) log(χ)
16(χ− 1)3

(A.18)

I2,5 =
π

32

(

+
(u − v)2

(
u3(2v − 1) + u2(3(v − 2)v + 2) + uv(2(v − 3)v + 3) − (v − 2)v2

)
log(v − u)

(u − 1)3u3(1 − v)3v3

+
(v − 1)2

(
u2(−(v(2v + 3) + 2)) + u(v + 1)(v(v + 5) + 1) − v(v(2v + 3) + 2)

)
log(1 − v)

(u − 1)3v3(u − v)3
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+
(u − 1)2

(
(u(2u + 3) + 2)v2 − (u + 1)(u(u + 5) + 1)v + u(u(2u + 3) + 2)

)
log(1 − u)

u3(v − 1)3(u − v)3

+
v2
(
7u2 − (u + 1)v3 + (u + 2)(2u + 1)v2 − 7u(u + 1)v

)
log(v)

u3(v − 1)3(u − v)3

+
u2
(
u3(v + 1) − u2(v + 2)(2v + 1) + 7uv(v + 1) − 7v2

)
log(u)

(u − 1)3v3(u − v)3

+
−2u4((v − 1)v + 1) + u3

(
2v3 + v2 + v + 2

)
− 2v2((v − 1)v + 1)

2(u − 1)2u2(v − 1)2v2(u − v)2

+
u
(
−2v4 + v3 − 6v2 + v − 2

)
+ v

(
2v3 + v2 + v + 2

)
2(u − 1)2u(v − 1)2v2(u − v)2

)
. (A.19)

From pinching, we define the integral with the pinched weights at positions xi, e.g I[1,2,2,1]

I[2,2,2] =
3π
8

(A.20)

I[1,1,1,2] =
π2

4x13x14x2
24x34

(A.21)

I[2,2,1,1] = −π(χ+ 2) log(1 − χ)
8χ3

+
π

8χ2(1 − χ)
+

π log(χ)
8(χ− 1)2

(A.22)

I[2,1,2,1] = − (2πχ+ π) log(1 − χ)
8χ2

+
π

8(χ− 1)χ
+

π(2χ− 3) log(χ)
8(χ− 1)2

(A.23)

I[1,2,2,1] =
π log(1 − χ)

8χ2
+

π

8(χ− 1)2χ
− π(χ− 3) log(χ)

8(χ− 1)3
(A.24)

I[2,2,2,1] =
π2

8χ(1 − χ)
(A.25)

I[3,1,2,1] =
3π2

16χ
(A.26)

I[1,2,1,1,1] = − πv2 log(v)
8u2(v − 1)(u − v)2

+
π(u(u − 2v + 2) − v) log(1 − u)

8u2(v − 1)(u − v)2

+
π(v − u(u + 2v − 2)) log(v − u)

8(u − 1)2u2(v − 1)v

− π
(
u2 − 2u(v + 1) + 3v

)
log(u)

8(u − 1)2v(u − v)2
+

π(v − 1)2 log(1 − v)
8(u − 1)2v(u − v)2

(A.27)

I[2,1,1,2,1] = −π2(2uv + u − 3v)
16(u − 1)2v2

(A.28)

I[1,1,1,1,2,1] =
π2
(
u2

1(u2 − 1)2 + u2(u2 + (2u2 − 3)u3) + u1u2(2u3 − u2(u3 + 2) + 1)
)

16(u1 − 1)2(u2 − 1)2u2(u1 − u3)u3
. (A.29)

There are also some divergent cases
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I[2,1,1] =
π

2
(1 − log(ε)) (A.30)

I[1,3,1,1] =
5π

16(χ− 1)2χ2
− π((χ− 3)χ+ 3)log(χ)

8(χ− 1)3χ2
+

π(χ2 + χ+ 1)log(1 − χ)
8(χ− 1)2χ3

− 3π log(ε)
8(χ− 1)2χ2

. (A.31)

We also find agreement between the pinching of the 2n-point function of massless correlators
and the n-point function of Δ = 2 correlators up to n = 8, but these were omitted from the
text since they are bulky and not elucidating. Notice that the prefactor (2.8) has no neighbour-
ing terms of type xi,i+1 except for the xn−1,n term and the n = 3 cases, so no single pinching
will lead to divergences in the prefactor. In general, one expects the divergences appearing in
the pinching to be physical divergences which need to be considered and not artefacts of this
method.

A.3. Numerical and analytical agreement

An additional check for the validity of these results is to perform a numerical integration of
these quantities for various values of n. This is done through fixing all but one parameter, for
example considering the numerical integration of

IΔ,n(0,χ, 1, 2, . . . , n − 2) =
∫

dz dx

(
z

(z2 + (x − χ)2)

)Δ n−2∏
k=0

(
z

(z2 + (x − k)2)

)Δ

, (A.32)

where χ is a free parameter which allows us to compare (A.32) to the analytic results in
(3.24). The difference between the two can be seen in figure 6 and shows good agreement for
3 < n < 30. In the figure, the normalised average over values in 0 < χ < 1 of the difference
between (A.32) and the analytic result (3.24) is plotted for varying numbers n of external
operators.

A second check of validity can be made through analytical comparisons with known results.
The results for n = 3 and n = 4 are well known but become sparser as n grows larger, how-
ever, pinching also provides a way to compare higher—n results to higher—Δ four-point
correlators, this is done in appendix A.2.

Appendix B. Exchange diagrams

This appendix contains complementary material relating to the derivation and interpretation of
the exchange diagrams. First, details on the conformal Casimir and its relation to the equation
of motion in AdS are given. Then the derivation of the relation between exchange diagrams and
contact diagrams from [26, 33] is reviewed. This is then applied to the toy model of φ3 inter-
action in AdS2, which gives insight into Polyakov blocks whose perturbative strong coupling
structure is shown explicitly

Quadratic Casimir.
The n-Casimir of the boundary conformal group is given by

C(n)
i1..in

=
1
2

{
n∑

k=1

L(0)
ik

,
n∑

k=1

L(0)
ik

}
− 1

2

[
n∑

k=1

L−α
ik

,
n∑

k=1

Lα
ik

]
, (B.1)
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Figure 6. The quantity plotted (for clarity on a logarithmic scale) Av = 〈 In−In,num
In

〉 is the
weighted difference between the numerical integration IΔ=1,n in equation (A.32) and the
corresponding analytical result, averaged over 0 < χ < 1 for a number of external points
ranging from n = 3 to n = 17. For this range, the leading error comes from the machine
precision in the integral near the endpoints and thus is of the same order for n = 3 and
n = 17. For higher n, the numerical stability of the integral becomes problematic and
the numerical results should not be trusted.

where L(0) are elements of the Cartan and the others are the simple roots. Explicitly for a d = 1
conformal boundary the differential expression of the operators is:

D = L0 = Δ+ x∂x P = L−1 = −∂x K = L+1 = −2Δx − x2∂x. (B.2)

This leads to a linear Casimir

C(1)
a = Δ(Δ− 1), (B.3)

which is the mass-squared of the bulk operator, and a quadratic Casimir:

C(2)
x,y = 2(x − y)(−Δ1∂y +Δ2∂x) − (y − x)2∂x∂y + (Δ1 +Δ2 − 1)(Δ1 +Δ2).

(B.4)

The quadratic Casimir of the AdS2 isometries is the Laplacian of AdS, this is best seen in flat
embedding coordinates where the generators are given by

JAB = −i(XA∂B − XB∂A), (B.5)

where XAXA = 1. The quadratic Casimir of the AdS isometries in embedding coordinates is
then

−1
2
LaLa = −1

2
JABJAB (B.6)

=
1
2

(XA∂B − XB∂A)(XA∂B − XB∂A) (B.7)

= XAXA∂B∂
B + (1 − d)XB∂

B (B.8)

= ∂A∂
A, (B.9)
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Figure 7. Exchange Witten diagram for four external insertions of identical scalars of
weight Δφ exchanging a scalar of weight ΔE in the t channel.

which is the coordinate-independent Laplacian.
A case of interest in this paper is when we have Δ1 = Δ2. The conformal quadratic Casimir

then simplifies further to

C(2)
z = 2Δ(2Δ− 1) f (z) − z

(
(z − 1)z f ′′(z) + (2Δ(z − 2) + z) f ′(z)

)
, (B.10)

where we have made a change of variable

z = 1 − x
y
. (B.11)

Such changes of variables can be made to reduce this differential equation into a single variable
differential equation for each of the (s, t, u) exchange channels.

B.1. Relating the exchange and contact diagrams

We review the analysis from [22, 25], which goes through a detailed computation of the
exchange diagram and the z integral. However, they specialise in the case where the result-
ing exchange correlator can be written in terms of a finite sum of D-functions. The toy model
considered in this paper does not satisfy the conditions needed for such a simplification, but
still is useful to illustrate the Polyakov blocks.

The integral we are interested in, corresponding to the Witten diagram (figure 7), is

J(t)(x1, . . . , x4) =
∫

d2w

w2
0

I(w, x2, x3)KΔ1 (x1,w)KΔ4 (x4,w), (B.12)

I(w, x2, x3) =
∫

d2z
z2

0

GΔE(w, z)KΔ2 (x2, z)KΔ3 (x3, z). (B.13)

The integral I(za, xa; x2, x3) is a boundary–boundary-to-bulk three-point function and has
conformal symmetry (figure 8).
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Figure 8. The system is invariant under an infinitesimal transformation (B.14).

I(w, x2, x3) in (B.13) is invariant under global transformations generated byLa + �L2 + �L3,13

where the first term generates the isometries of AdS2 and the other two generate the conformal
transformation of the boundary. As such, we can write

(La + �L2 + �L3)I(za, xa; x2, x3) = 0, (B.14)

and can therefore relate the Casimirs of the generators

−1
2
L2

aI(za, xa; x2, x3) = −1
2

(�L2 + �L3)2I(za, xa; x2, x3) (B.15)

= C(23)
2 I(za, xa; x2, x3). (B.16)

In one dimension, the quadratic Casimir of the AdS2 isometries is the Laplacian of the bulk
appendix B. This Laplacian will allow us to get rid of the bulk-to-bulk propagator through the
equation of motion (2.21). Linking the previous elements together, we obtain

(C(2)
(23) − m2

E)I(za, xa; x2, x3) = (∇2
a − m2

E)I(za, xa; x2, x3) (B.17)

= KΔφ
(za, xa; x2)KΔφ

(za, xa; x3). (B.18)

The quadratic Casimir acting on the points 3 and 4 commutes with the other coordinates, so
we can write a differential equation relating the full exchange diagram to the contact term

(C(2)
(23) − m2

E)J(x1, x2, x2, x3) =
∫

dza dxa

z2
a

Π4
i=1KΔφ

(za, xa; xi) (B.19)

=
A

(x13x24)2Δφ
D̄ΔφΔφΔφΔφ

(z). (B.20)

The same analysis holds for any two legs attached to a bulk-to-bulk propagator, though the
final differential equation might depend on many variables.

13 We write the transformations under the conformal group as vectors �L2 = (L−1, L0, L1) acting on point 2.
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B.2. Perturbative Polyakov blocks

Polyakov blocks and OPE expansion.
It will be useful to illustrate how Polyakov blocks and conformal blocks operate perturba-

tively. The four-point correlator of a scalar of conformal dimension Δ is

〈φΔ(x1)φΔ(x1)φΔ(x1)φΔ(x1)〉 = (CΔ)4

(x13x24)2Δ
f (z) (B.21)

f (z) =
∑

h

c2
ΔΔhz−2ΔGh(z) =

∑
h

c2
ΔΔhz−2ΔPh(z), (B.22)

where Gh are the conformal blocks and Ph(z) are the Polyakov blocks. The four-point conformal
blocks in d = 1 are the eigenfunctions of the quadratic Casimir

Gh(z) = zh
2F1(h, h, 2h; z). (B.23)

The Polyakov blocks are not eigenvalues of the quadratic Casimir and depend non-trivially on
the exchanged and external dimension. Though the Polyakov blocks are not known in closed
form in position sapce, their double-discontinuity is equal to that of the conformal blocks in
the t-channel

dDisc[z−2ΔP(t)
h (z)] = dDisc[z−2ΔG(t)

h (z)]

= 2 sin2
(π

2
(h − 2Δ)

)
(1 − z)−2ΔGh(1 − z). (B.24)

The double-discontinuity of the Polyakov block in the t-channel is given by the replacement
z → 1 − z since the Polyakov block is crossing-symmetric14.

dDisc[z−2ΔP(s)
h (z)] = 2 sin2

(π
2

(h − 2Δ)
)

z−2ΔGh(z). (B.25)

If we expand the four-point correlator in a small strong coupling parameter ε

f (z) = f 0(z) + ε f 1(z) + O(ε2), (B.26)

one can look at the structure and properties of these two expansions. The first order is gener-
alised free field theory where the spectrum is {0, h = 2Δ+ 2n}, and the correlator is obtained
with the pairwise Wick contractions between fields

f 0(z) = 1 + z2Δ +

(
z

1 − z

)2Δ

. (B.27)

The conformal decomposition

f 0(z) = 1 +
∑

n

c2
2Δ+2n,Δ,ΔG2Δ+2n(z), (B.28)

14 We choose a prefactor 1
(x13 x24)2Δ

to have a crossing-symmetric function f (z). However, we keep the normalisation

of the blocks in equation (B.23) to be consistent with the literature and use the combination z−2ΔP(z) to work with a
truly crossing-symmetric quantity, without the need for a prefactor.
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gives the OPE coefficients. Whereas the Polyakov blocks vanish at the position of the double
trace operators

f 0(z) = PΔ,0(z) +
∑

n

c(0)
n P2Δ+2n(z), (B.29)

giving the identity contribution in all channels.

PΔ,0(z) = 1 + z2Δ +

(
z

1 − z

)2Δ

. (B.30)

At first order in a perturbative expansion, assuming that there are no new exchanged
operators15, the spectrum is h = {0, 2Δ+ 2n + εγ(1)

n }, where the identity operator receives
no corrections. The first order OPE expansion is then

f 1(z) =
∑

n

c(1)
n Gn(z) + c(0)

n

(gγn

2

)
∂nGn(z) (B.31)

=
∑

n

c(0)
n

(gγn

2

)
∂nPn(z). (B.32)

Only one term in the Polyakov block expansion is non vanishing in this case

f 1(z) = c(0)
0

(gγ0

2

)
(∂nPn)|n=0(z). (B.33)

If there is a new exchanged operator ΔE �= 2Δ+ 2n at this order (cΔEΔΔ = O(
√
ε)), the

expansion is changed by a factor:

f 1(z) = c(0)
0

(gγ0

2

)
(∂nPn)|n=0(z) + c2

ΔEΔΔPΔE (z). (B.34)

In the strong coupling language, this corresponds to having an exchange Witten diagram with
exchange dimension ΔE. Hence, the Polyakov blocks are given by exchange Witten diagrams,
up to the contact diagram contribution from equation (B.33).

Polyakov blocks and exchange Witten diagrams.
The computation of the exchange Witten diagram in the main text (5.19) is the sum of

solutions to second-order differential equations. The integration constants are provided by the
three-point function and the symmetry of the correlator. The example given in the main text
corresponding to the Polyakov block of external dimension Δ = 1 and exchanged dimension
ΔE = 1 can be computed with the toy model of a massless scalar theory in AdS2 with a φ3

interaction, this corresponds to the action

Sφ3 =

∫
dt dz

z2

(
∂μφ∂

μ φ− λ

3!
φ3

)
. (B.35)

The leading order is given by GFF. The next to leading order (O(λ)) correlators come from the
constant vertex giving the three point function

〈φ(x1)φ(x2)φ(x3)〉 = λ

π3

π2

2x12x23x13
, (B.36)

15 At strong coupling, this means that the first order Witten diagrams are contact diagrams and not exchange diagrams.
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and the OPE coefficient

c111 =
λ

2π
. (B.37)

The first sub-leading term (O(λ2)) in the four-point function is generated by the exchange
diagram which contributes

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
∑
s,t,u

λ2JΔE=1,Δ=1(x1, . . . , x4) (B.38)

=
λ2

π5

π

4
1

(x13x24)2
P(0)

(1,1)(z), (B.39)

where P(0)
(1,1)(z) is written explicitly in equation (5.19) and has a small z expansion16

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 1
(x13x24)2

λ2

4π4

(
c1 − 6ζ(3)

z2
+

2
(
π2 − 3c2

)
3z

)
+ o

(
1
z

)
. (B.40)

The first term in the expansion is set to zero since it corresponds to a correction to the identity
operator. The second term corresponds in the conformal s-channel OPE to

1
(x13x24)2

∑
h

c2
11hzh−2

2F1(h, h, 2h, z) =
1

(x13x24)2

(
c2

111

z
+ o

(
1
z

))
, (B.41)

where by equating the expansions in the conformal and Polyakov blocks, this corresponds to
cΔEΔΔ in equation (B.34). The known three-point function and the four-point OPE then give
the solutions for the integration constants

c1 = 6ζ(3) (B.42)

c2 = −π2

6
, (B.43)

and provide the correct numerical factor for the Polyakov block computed in the main text as
well as the maximally symmetric and Regge-bounded function.

B.3. Higher weight exchange diagrams and bootstrap

The process done in the main text can be repeated for other exchanged weights, for example
we have the s-channel exchanges

f (s)
ΔE=2(z) =

4c2 − 4z log2(z) + 8z log(z) + 2 log(1 − z)(2z log(z) − 4) + 4π2

3

z3

(B.44)

+
2(z − 2)

z3

(
c1 − c2 log(1 − z) − Li2(z) log

(
1 − z

z2

)

−Li3(1 − z) − 2Li3(z)+ log

(
z

1 − z

)
log(1 − z) log(z)

)

16 We have kept the integration constants from (5.9).
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f (s)
ΔE=3 = −2((z − 6)z + 6)(+3Li3(1 − z) + log(1 − z)(Li2(z) + log(1 − z) log(z)))

z4
(B.45)

− 6(z − 2)(2Li2(z) + log(1 − z) log(z))
z3

+
2
(
9z2 log(z) +

(
π2((z − 6)z + 6) − 9

(
z2 + z − 3

))
log(1 − z)

)
3z4

+ 2

(
π2(z − 3) − 9(z − 4)

)
(z − 1)

z4

f (s)
ΔE=4 = −2(z − 2)

(
z2 − 10z + 10

)
z5

⎛
⎝Li2(z) log

(
1 − z

z2

)
(B.46)

+ Li3(1 − z) + 2Li3(z) + log(z) log2(1 − z) − log2(z)log(1 − z)

⎞
⎠

+
2(11z2 − 60z + 60)(log(1 − z) − log(z))log(z)

3z4

+
8z(z(19z − 90) + 90)log(z) − 2(z − 1)(z(76z − 335) + 310)log(1 − z)

9z5

+
10(z(2(104− 9z)z − 505) + 330) + 2π2(z((336 − 25z)z − 885) + 610)

9z5
.

As we increase the weight of the exchanged operator, this seemingly increases the com-
plexity of the solution, however, there are some patterns that are easy to spot. Notice that all
transcendentality three terms have the same polynomial function multiplying them motivating
the use a transcendentality ansatz [10]:

∑
n,i

ri,n(z)Tin(z). (B.47)

And inserting it in the differential equations, we obtain differential equations for the polynomi-
als multiplying the transcendentality i functions for arbitrary weight ΔE and arbitrary external
weightsΔ. In particular, the polynomials multiplying the transcendentality three terms remain-
ing after the action of the Casimir differential operator will satisfy the homogeneous differential
equation. Explicitly we have

r(s)
3,n = cnz−2Δ−ΔE+1

2F1(1 −ΔE, 1 −ΔE; 2 − 2ΔE; z) (B.48)

r(t)
3,n = cn(1 − z)−2Δ−ΔE+1

2F1(1 −ΔE, 1 −ΔE; 2 − 2ΔE; 1 − z) (B.49)

r(u)
3,n = PΔE−1(2z − 1). (B.50)

The transcendentality two functions are multiplied by polynomials that satisfy inhomogeneous
differential equations and are difficult to solve for general ΔE. However, for specific cases,
they are simple to solve. We can do this for example for higher exchanged weights and more
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importantly, for higher-point correlators with exchanges. This analysis is beyond the scope of
this paper and left for further investigation.

Appendix C. Multipoint Ward identity: a check

A concrete example of n-point correlators of fields at the boundary of AdS2 is the dual setup
of the defect CFT of operator insertions on the 1/2 BPS Wilson line in N = 4 SYM studied
at strong coupling in [1, 2]. In higher-point correlators, the first terms in the strong coupling
expansion will originate from disconnected Witten diagrams. These first terms in the strong
coupling expansion should satisfy the multipoint Ward identity presented in [36], therefore
providing a perturbative check of these conjectured Ward identities

n−3∑
k=1

(
1
2
∂χk + αk∂rk − (1 − αk)∂sk

)
AΔ1...Δn

∣∣∣∣ ri → αiχi

si → (1 − αi)(1 − χi)

ti j → (αi − α j)(χi − χ j)

= 0, (C.1)

where we use the notation of [36] in which the cross-ratios are defined as17

χi−1 =
x1ixn−1,n

xinx1,n−1
(C.2)

ri−1 =
(u1 · ui)(un−1 · un)
(ui · un)(u1 · un−1)

(C.3)

si−1 =
(u1 · un)(ui · un−1)
(ui · un)(u1 · un−1)

(C.4)

ti−1, j−1 =
(ui · u j)(u1 · un)(un−1 · un)
(ui · un)(u j · un)(u1 · un−1)

, (C.5)

and the Ward identity is applied to the correlator of dimensionΔ = 1, SO(5) vectors expressed
in terms of cross-ratios

〈Π6
i=1uaiΦ

ai(xi)〉 = C(xi, ui)AΔ=1,n=6(χi, ri, si, ti, j), (C.6)

where the prefactor

C(xi, ui) =
(u1.u5)2(u2.u6)(u3.u6)(u4.u6)

(u1.u6)(u5.u6)
x2

16x2
56

x4
15x2

26x2
36x2

46

, (C.7)

has been amputated. The strong coupling expansion of this quantity is given by the holo-
graphic dual studied in [1], where the dual of these particular fields are the fluctuations in the
S5 directions propagating in the AdS2 minimal string surface. If we denote the strong coupling
expansion parameter by g, we can expand the six-point function at strong coupling

AΔ=1,n=6(χi, ri, si, ti, j) = A(0)
Δ=1,n=6(χi, ri, si, ti, j) + gA(1)

Δ=1,n=6(χi, ri, si, ti, j) + O(g2). (C.8)

Given the Ward identity is coupling independent, each of the terms in this perturbative
expansion should satisfy equation (C.1). The leading term, A(0)

Δ=1,n=6, in the strong coupling

17 The shift is the index of the cross-ratios is to have them ranging from 1 to n − 3.
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Figure 9. A non-exhaustive list of leading order disconnected Witten diagram. The
overlapping lines are broken to indicate they are not vertices, it is not a non-planar
contribution at strong coupling, since we are in the strict planar limit.

expansion corresponds to the simple Wick contractions where a few examples are drawn in
figure 9.

Explicitly, performing these permutations, we find

A(0)
Δ=1,n=6 =

r3t1,2

(χ1 − χ2)2χ2
3

+
r2t1,3

χ2
2(χ1 − χ3)2 +

r1t2,3

χ2
1(χ2 − χ3)2

+
s1t2,3

(χ1 − 1)2(χ2 − χ3)2 +
s3t1,2

(χ1 − χ2)2(χ3 − 1)2

+
s2t1,3

(χ2 − 1)2(χ1 − χ3)2 +
t1,2

(χ1 − χ2)2 +
t1,3

(χ1 − χ3)2

+
t2,3

(χ2 − χ3)2 +
r2s1

(χ1 − 1)2χ2
2

+
r3s1

(χ1 − 1)2χ2
3

+
r1s2

χ2
1(χ2 − 1)2 +

r1s3

χ2
1(χ3 − 1)2 +

r2s3

χ2
2(χ3 − 1)2 +

r3s2

(χ2 − 1)2χ2
3

. (C.9)

For which, not only is the Ward identity satisfied, but each of the terms in equation (C.9)
corresponding to the different R-symmetry channels individually satisfy this equation. As
such, this is a trivial check of this Ward identity. The next-to-leading term corresponds to the
disconnected diagram with one Wick contraction and a contact four-point function,

A(1)
Δ=1,n=6(χi, ri, si, ti, j) =

r1t2,3G(1)
4

(
χ1(χ2−χ3)
χ2(χ1−χ3)

)
χ2

1(χ2 − χ3)2 + permutations [(xi, ui)]. (C.10)

This corresponds to the permutations of which a few examples are given by the disconnected
Witten diagrams in figure 10.

The four-point function is computed in [1] and can be written as

〈Φa1 (x1)Φa2 (x2)Φa3 (x3)Φa4 (x4)〉 =
δa1

a2
δ

a3
a4

(x12x34)2
G(1)

4

(
x12x34

x13x24

)

+ permutations [(xi, ui)] (C.11)

G(1)
4 (χ) =

(χ− 1)
(
χ2 + χ+ 2

)
log

(
(χ− 1)2

)
2χ

−
(
χ2 − 2χ+ 2

)(
χ2 log

(
χ2

)
− 2χ+ 2

)
2(χ− 1)2

. (C.12)
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Figure 10. Some of the next-to-leading order disconnected Witten diagrams.

Just as in the GFF case, each of the R-symmetry channels also satisfy the Ward identities (C.1)
individually. As a consequence, this is not constraining for the six-point function, but rather
motivates the consistency of these Ward identities. This seems to follow from the fact that the
disconnected contribution can be written as a product of correlators, each satisfying a Ward
identity, though this is dependent on the crossing and analytic properties of the four-point
function. While it does not give insight into the connected contribution, this seems to indicate
a recursive method to prove this Ward identity for any disconnected correlators.
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[9] Mazáč D 2017 Analytic bounds and emergence of AdS2 physics from the conformal bootstrap J.
High Energy Phys. JHEP04(2017)146

[10] Ferrero P, Ghosh K, Sinha A and Zahed A 2020 Crossing symmetry, transcendentality and the Regge
behaviour of 1D CFTs J. High Energy Phys. JHEP07(2020)170

[11] Beccaria M, Jiang H and Tseytlin A A 2020 Boundary correlators in WZW model on AdS2 J. High
Energy Phys. JHEP05(2020)099

[12] Beccaria M, Jiang H and Tseytlin A A 2019 Supersymmetric Liouville theory in AdS2 and AdS/CFT
J. High Energy Phys. JHEP11(2019)051

[13] Beccaria M and Tseytlin A A 2019 On boundary correlators in Liouville theory on AdS2 J. High
Energy Phys. JHEP07(2019)008

36

https://orcid.org/0000-0002-4824-3760
https://orcid.org/0000-0002-4824-3760
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1016/j.nuclphysb.2017.07.004
https://doi.org/10.1007/jhep10(2018)077
https://doi.org/10.1007/jhep05(2019)122
https://doi.org/10.1007/jhep08(2020)143
https://doi.org/10.1007/jhep05(2021)195
https://doi.org/10.1103/physrevd.104.l081703
https://doi.org/10.1103/physrevd.104.l081703
https://doi.org/10.1007/jhep11(2017)133
https://doi.org/10.1007/JHEP04(2019)159
https://doi.org/10.1007/JHEP04(2017)146
https://doi.org/10.1007/JHEP07(2020)170
https://doi.org/10.1007/JHEP05(2020)099
https://doi.org/10.1007/JHEP11(2019)051
https://doi.org/10.1007/jhep07(2019)008


J. Phys. A: Math. Theor. 55 (2022) 325401 G Bliard

[14] Beccaria M, Jiang H and Tseytlin A A 2019 Non-Abelian Toda theory on AdS2 and duality J. High
Energy Phys. JHEP09(2019)036

[15] Di Pietro L and Stamou E 2018 Operator mixing in the ε-expansion: scheme and evanescent-
operator independence Phys. Rev. D 97 065007

[16] Maldacena J, Michelson J and Strominger A 1999 Anti-de Sitter fragmentation J. High Energy Phys.
JHEP02(1999)011

[17] Gross D J and Rosenhaus V 2017 A line of CFTs: from generalized free fields to SYK J. High
Energy Phys. JHEP07(2017)086

[18] Maldacena J and Stanford D 2016 Remarks on the Sachdev–Ye–Kitaev model Phys. Rev. D 94
106002

[19] Witten E 1998 Anti de Sitter space and holography Adv. Theor. Math. Phys. 2 253
[20] D’Hoker E, Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 Graviton and gauge boson

propagators in AdS(d + 1) Nucl. Phys. B 562 330
[21] D’Hoker E, Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 Graviton exchange and

complete four point functions in the AdS/CFT correspondence Nucl. Phys. B 562 353
[22] D’Hoker E, Freedman D Z and Rastelli L 1999 AdS/CFT four point functions: how to succeed at z

integrals without really trying Nucl. Phys. B 562 395
[23] Freedman D Z, Mathur S D, Matusis A and Rastelli L 1999 Comments on four-point functions in

the CFT/AdS correspondence Phys. Lett. B 452 61
[24] Rastelli L and Zhou X 2017 Mellin amplitudes for AdS5 × S5 Phys. Rev. Lett. 118 091602
[25] Zhou X 2019 Recursion relations in Witten diagrams and conformal partial waves J. High Energy

Phys. JHEP05(2019)006
[26] Zhou X 2020 How to succeed at Witten diagram recursions without really trying J. High Energy

Phys. JHEP08(2020)077
[27] Dolan F A and Osborn H 2001 Conformal four point functions and the operator product expansion

Nucl. Phys. B 599 459
[28] Penedones J 2011 Writing CFT correlation functions as AdS scattering amplitudes J. High Energy

Phys. JHEP03(2011)025
[29] Fitzpatrick A L, Kaplan J, Penedones J, Raju S and van Rees B C 2011 A natural language for

AdS/CFT correlators J. High Energy Phys. JHEP11(2011)095
[30] Paulos M F 2011 Towards Feynman rules for Mellin amplitudes in AdS/CFT J. High Energy Phys.

JHEP10(2011)074
[31] Bissi A, Sinha A and Zhou X 2022 Selected topics in analytic conformal bootstrap: a guided journey

(arXiv:2202.08475)
[32] Gopakumar R, Kaviraj A, Sen K and Sinha A 2017 A Mellin space approach to the conformal

bootstrap J. High Energy Phys. JHEP05(2017)027
[33] Rastelli L and Zhou X 2018 How to succeed at holographic correlators without really trying J. High

Energy Phys. JHEP04(2018)014
[34] Mezei M, Pufu S S and Wang Y 2017 A 2D/1D holographic duality (arXiv:1703.08749)
[35] Bianchi L, Bliard G, Forini V and Peveri G 2021 Mellin amplitudes for 1D CFT J. High Energy

Phys. JHEP10(2021)095
[36] Barrat J, Liendo P, Peveri G and Plefka J 2021 Multipoint correlators on the supersymmetric Wilson

line defect CFT (arXiv:2112.10780)
[37] Alday L F, Henriksson J and van Loon M 2018 Taming the ε-expansion with large spin perturbation

theory J. High Energy Phys. JHEP07(2018)131
[38] Lemos M, Liendo P, Meneghelli C and Mitev V 2017 Bootstrapping N = 3 superconformal theories

J. High Energy Phys. JHEP04(2017)032
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