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High-rate quantum error correcting (QEC) codes with moderate overheads in
qubit number and control complexity are highly desirable for achieving fault-
tolerant quantum computing. Recently, quantum error correction has
experienced significant progress both in code development and experimental
realizations, with neutral atom qubit architecture rapidly establishing itself as a
leading platform in the field. Scalable quantum computing will require pro-
cessing with QEC codes that have low qubit overhead and large error sup-
pression, and while such codes do exist, they involve a degree of non-locality
that has yet to be integrated into experimental platforms. In this work, we
analyze a family of high-rate Low-Density Parity-Check (LDPC) codes with
limited long-range interactions and outline a near-term implementation in
neutral atom registers. By means of circuit-level simulations, we find that these
codes outperform surface codes in all respects when the two-qubit nearest
neighbour gate error probability is below ~ 0.1%. By using multiple laser colors,
we show how these codes can be natively integrated in two-dimensional static
neutral atom qubit architectures with open boundaries, where the desired
long-range connectivity can be targeted via the Rydberg blockade interaction.

Since Kitaev’s seminal works'?, the surface code has been the dominant
choice for quantum error correction (QEC) as its set of check opera-
tors, or stabilizers, is simple and geometrically local enabling parallel
syndrome extraction with a high tolerance to errors. However, the
encoding—only one logical qubit per code independently of the size—
is poor, posing a large resource overhead for scalable quantum com-
puting. The surface code is but one example of a broader class of low-
density parity-check (LDPC) codes™*, other members of which retain all
the good properties of the surface code such as large distance, which
quantifies the number of correctable errors, while allowing for more
favorable encoding rates, defined by the ratio of logical qubits to
physical qubits.

Recently, there has been intense activity benchmarking the per-
formance of various LDPC codes both for fault-tolerant error
correction”™” and quantum computing® with results converging
towards the idea that “the more non-local, the better’. However, the
investigation into how to use the physics available natively in quantum
computing platforms to maximally utilize the advantages of LDPC

codes is still relatively at an early stage. Ref. 5 shows theoretically that a
stacked two-dimensional architecture can outperform the surface
code under circuit-level noise in constant-overhead hypergraph pro-
duct quantum LDPC codes, provided that inter-layer cross-talks are
sufficiently suppressed. Similarly, biplanar bivariate bicycle codes®
have recently shown high quantum error suppression with moderate
long-range connectivity requirements, which make them intriguing
candidates for near-term implementations on several platforms (e.g.,
superconducting® or neutral atom’ qubits). While the recent experi-
mental realization of both constant-rate and high-rate quantum LDPC
codes via qubit shuttling with trapped ions'>" and neutral atoms ”"*—at
the price of a considerable time overhead—is a major advancement,
the goal of identifying the best quantum LDPC code family ultimately
remains open and intrinsically hardware-dependent.

In this work, we provide a first proposal for a near-term imple-
mentation in neutral atom registers of LDPC codes that is both static—
i.e. it does not require qubit shuttling—and fast compared to existing
proposals. We show that these quantum LDPC codes outperform the
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surface code at the circuit level just using moderate non-local
resources. To this purpose, we analyze a family of high-rate quantum
LDPC codes built via hypergraph product (HGP) construction®°. We
refer to them as La-cross codes, since the arrays of their stabilizer
shapes, each consisting of a surface code stabilizer cross with two extra
long-range interactions, is reminiscent of a long-armed cross stitch
pattern (Fig. 1a). The length of these interactions—or amount of non-
locality—solely depends on the parameters of the classical seeds the
quantum code is constructed from and thus is, to an extent, tunable.
We discuss encoding capabilities and probe tolerance to errors via
circuit-level simulations accounting for state preparation, measure-
ment, single- and range-dependent two-qubit gate errors. Compared
to the surface code with the same number of physical and logical
qubits, we obtain sub-threshold logical error probability reductions
that can reach the order of magnitude and increase with the number of
physical qubits. The second part of this work is aimed at making
contact with near-term experiments with neutral atom quantum
registers” 22, For two-dimensional arrays with open boundaries, we
show how the Rydberg blockade mechanism enables the necessary
long-range gates for stabilizer measurements without the need for
swapping or qubit shuttling. Our error model accounts for fidelity
decay as a function of gate distance, due fundamentally to the decay of
the van der Waals interaction strength. Finally, we show further
improvement by adopting an error model with range-independent

gate errors. In this case, the threshold increases, and the onset of
improvement over the surface code occurs at higher physical error
probabilities. For example, the most non-local instance of La-cross
codes discussed in this work shows improvement over the surface
code below nearest neighbor gate error probabilities of ~0.5%, already
outperforming the surface code logical failure probability by more
than one order of magnitude at physical error probabilities of -0.1%.
Such a range-independent noise model may be realized by qubit
shuttling in neutral atom registers”'®", or in different physical plat-
forms like photonic registers with direct non-local fiber coupling® or
matter-based qubit architectures with cavity-mediated interactions®.

Results

Quantum LDPC codes

Quantum LDPC codes’ are stabilizer codes where both the number of
qubits acted on by each stabilizer and the number of stabilizers acting
on each qubit are constantly bounded. Stabilizers are then sparse,
hence the notion of low density invoked in their name. The encoding
rate satisfies K/N N2es 0, for some constant C, being N and K the
number of physical and logical qubits, respectively. While constant
rate, C>0, quantum LDPC codes exist, the better-studied examples
have zero rates. The surface code is an example with K = (1), hence
zero rate, and a code distance D =O(+/N). For practical use, it is not
necessarily the asymptotic scaling of the rate that matters, but rather
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Fig. 1| Code overview for quantum error correction performance and imple-
mentation. a Array patch with data (gray) and ancillary (white) qubits hosting one
instance of the here analyzed LDPC code family. Long-range interactions are
highlighted in yellow, two stabilizers are drawn (red and blue) with displayed CNOT
measurement order for syndrome extraction. The inset shows energy levels and
selected transitions (vertical arrows) to different Rydberg states for implementa-
tion with neutral atom qubits. Two-qubit gates between one and five lattice sites
separated qubits and corresponding Rydberg transitions are colored in orange and
violet, respectively. Principal quantum numbers are chosen to minimize gate infi-
delity while still preserving a sufficient Rydberg blockade strength (see text).

no. of physical qubits, NV

no. of physical qubits, NV

b Depth-10 syndrome measurement circuit neglecting idle errors. ¢ Encoding rate,
hence qubit overhead, comparison between k-LDPC codes and surface code (SC)
given the same number of logical qubits and code distance. d and e Illustration
showing logical failure probability for k = 2- and 3-LDPC codes as a function of
nearest neighbor two-qubit gate physical error probability and number of physical
qubits. Solid lines correspond to crossing probabilities below which the LDPC
logical error probability gets lower than the surface code one, assuming an equal
number of logical and physical qubits for both codes. Dashed black line is an
extrapolation to larger numbers of physical qubits.
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choosing a code with a favorable ratio K/N for large but finite N,
together with a large distance.

In the following, we review how a quantum LDPC code can be
constructed via hypergraph product construction by combining two
classical LDPC codes, namely classical codes with sparse checks. Let
C;=[n; k;,d;] with i=1, 2 be two classical linear codes encoding k;
logical bits in n; physical bits with code distance d; (see below). Any of
these codes can be represented by a matrix H; € I * called a parity-
check matrix, having as many columns as physical bits and as many
rows, r;, as checks. Entries of H; are non-zero any time a check acts non-
trivially on the corresponding bit. The number of encoded bits is then
k; = ni—rank(H;). The codewords of these classical codes are vectors in
the kernel of H;. The minimum Hamming distance between two
codewords is called the distance d;. Associated with each classical code
is a transposed code C] =[r;, k;,d;] with parity-check matrix H. The
hypergraph product (HGP) construction”® combines two classical
codes along with their transposed codes, ¢; and C], to produce a
[[N, K, D]] quantum stabilizer code with a quantum parity-check matrix

H = 0 0 H1 ®Hn2 ]I,,.1 ®H2T
o Hnl ®H2 H1T®H72 0 0 ’

The left block of H, describes X-type stabilizers, while the right one
describes Z-type stabilizers. The total number of stabilizers then equals
the number of rows of Hy, i.e. nyr, +n,ri. As before, entries of the
quantum parity-check matrix are non-zero anytime an X or Z stabilizer
acts non-trivially on the corresponding qubit. The number of physical
qubits N=nn, + rir, is half the number of columns of H,, while the
number of encoded logical qubits is K =k k, + lekI. The distance D of
this quantum code denotes the minimum weight of a Pauli operator
commuting with all stabilizers without being itself a product of
stabilizers. It can be shown that for the HGP construction, the distance
satisfies D> min{d,,d,,d],d}}". The resulting quantum stabilizer
code is of Calderbank-Shor-Steane (CSS) type>?® as stabilizers are
either products of only X or only Z Pauli operators.

For the present purposes, we have chosen the seed codes C; to be
cyclic codes generalizing the repetition code the surface code is built
upon. Such a choice both allows for improving the encoding rate and

) O

Fig. 2 | Code layout, logical operators, and boundary conditions. a Classical
polynomial seeds constraining stabilizer shape and ruling one lattice direction
each. Both symmetric and asymmetric configurations are allowed. The examples
here refer to the cases n; =6, k;=2 (vertical) and n, =15, k, =7 (horizontal).
Data(ancilla) qubits are colored black(white). b The [[65, 9, 4]] k= 3-LDPC code with
the 9 partially overlapping horizontal logical Z operators shown in different colors.
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retaining most of the intuitiveness of the surface code, at the price of a
non-constant overhead in the asymptotic limit. However, this does not
represent a severe issue in the prospect of implementation on near-
term quantum computers, as we will discuss more quantitatively in the
next sections.

Classical seeds and quantum layout

In this section we review how stabilizers, logical operators, and array
shape of a quantum HGP code are determined from its classical seeds.
This represents a huge help in designing new LDPC codes tailored to
the connectivity of the quantum hardware.

We have chosen cyclic seed codes, i.e. codes with cyclic shift
invariant codewords. A square matrix is said to be circulant if its rows
are cyclic shifts of the first row”. When the parity-check matrix, H, is
circulant, the associated code is fully specified by the first row of
H=circ(cy, ¢y, -+, 0, ..., 0) € F5* . Entries ¢; (i=0, 1, ..., k) can be
mapped into coefficients of a degree-k polynomial of the form
h(x)=1+ Zlec,-x". More formally, there exists a map
4 — FF,[x]/(x* — 1), being F,[x]/(x" —1) the ring of polynomials
dividing x"-1. This map transforms cyclic shifts in Fj into multi-
plications by x in I, [x]/(x" — 1), hence cyclic-shift-invariant codes into
polynomials invariant under x-multiplication. Due to the ring struc-
ture, invariance under multiplication by x is equivalent to invariance
under multiplication of any element of the ring, a property defining the
so-called ideals of the ring. Thus, there exists a one-to-one corre-
spondence between cyclic codes C € T} and ideals of F,[x]/(x" — 1),
which in turn are in one-to-one correspondence with unitary mod-2-
divisors of x"-1 having a leading coefficient equal to 1. Building blocks
of length-n cyclic codes then correspond to factors of x"~1. For k =1the
repetition code is recovered.

We note that there always exists a mapping from the quantum
parity-check matrix to array indexing so that the shape of the stabi-
lizers of the code can be directly inferred from the polynomial of the
classical seed (see Fig. 2a). Additionally, there always exists a basis
where logical operators align along the same row or column. In con-
trast to the surface code where logical operators are Pauli strings
stretching from boundary to boundary, for the present code family
logical operators are Pauli strings—possibly with holes - which are

squeezed OBC

reshaping

c Array shape and two stabilizers with periodic boundary conditions (PBC), open
boundary conditions (OBC), and squeezed open boundary conditions, assuming
n=7 and k=3 (equal seeds). Long-range gates of boundary stabilizers are effec-
tively shorter upon array reshaping (from length j =S5 lattice sites to j=4 orj=3
here), which should be included in quantum error correction simulations under a
range-dependent noise model.
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shorter in length and larger in number (Fig. 2b). As a second remark, we
observe that, if H is circulant, for any n only some k’s are allowed, as H
may happen to be full-rank, and thus k=0. The HGP of equal seeds
having circulant parity check matrix, H € T5*", naturally leads to a
quantum code with parameters N = 2n%, K = 2k? and periodic boundary
conditions. In this work, we are interested in codes with open
boundary conditions for the sake of experimental realization, thus we
choose a full-ranked H ¢ lb‘(z"’k”", which, by being rectangular, allows
for any choice of k and n. Quantum parameters now read N = (n—k)* + n*
and K = K2 (half logical qubits get “lost”), with consequent array shape
shown in Fig. 2¢, which can be squeezed to restore a full square con-
figuration. A consequent effect is that squeezed stabilizers have
effectively shorter legs (see Fig. 2c, right panel), where a leg is defined
as the distance between the central ancilla and a non-local data qubit of
the stabilizer. Depending on the exact position of the boundary sta-
bilizer, this effective shortening can even result in legs of different
lengths in different directions (see, e.g., the red stabilizer in Fig. 2c,
right panel). Interestingly, this effective leg shortening improves the
circuit-level error correction performance (see below) and is later
accounted for in quantum error correction simulations. For
more details regarding seed choice and code construction, see
Supplementary Information.

In the following, we stick to a sub-family of HGP codes with equal
seed polynomials of the form h(x)=1+x+x* and, consequently
weight-6 stabilizers, which we study for different values of k. The k=2
instance of this family has recently been studied in ref. 10, where the
possibility of implementation via qubit shuttling is discussed. This
polynomial choice provides quantum codes with high rate, low stabi-
lizer weight, and moderate non-locality both in terms of range and
number of long-range interactions while allowing for a similar imple-
mentation scheme as the surface code. We mention in passing that the
similar polynomial A(x)=1+x*¥ leads to codes with a shorter distance
than h(x)=1+x+x* and shows no apparent improvement in the
overhead over the surface code. For example, the HGP of two [9, 3, 3]
classical codes, i.e. 1+x°, leads to a quantum code with N = 162 (peri-
odic boundary conditions) or N=117 (open boundary conditions).
These code parameters exactly match the number of physical qubits of
K copies of surface codes, thus not allowing for any overhead saving,
independently of the choice of boundary conditions.

Error models

We perform quantum error correction with data and ancilla qubits
placed in the same square array, analogous to an unrotated surface
code with open boundaries. To measure a stabilizer, a CZ gate has to
be applied between the ancilla qubit, located in the middle of the cross
describing the stabilizers, and the six data qubits (see Fig. 1a and b). For
the four data qubits that directly neighbor the ancilla qubits, this can
be done simultaneously for all stabilizers”, while the long-range CZ
gates to the remaining data qubits have to be applied separately for X
and Z stabilizers, leading to a stabilizer measurement circuit of depth
10 (see Fig. 1b). Such gate ordering for the syndrome extraction circuit
also ensures robustness against hook errors when open boundary
conditions are enforced (see Supplementary Information).

The code tolerance against errors is probed via numerical simu-
lations under circuit-level depolarizing noise, which is chosen to
directly compare with existing literature®’. We assume uniformly dis-
tributed Pauli errors drawn from {X, Z, ¥} and {/, X, Z, V}**\{/ ® I} with
probability p;/3 and p,/15 for single and two-qubit errors, respectively.
We simulate D rounds of syndrome measurements, using Stim® to
sample from the code circuit and Belief Propagation with Ordered
Statistics Decoder (BP+0SD)*”° to process syndrome information
(see the “Methods” section). The latter is commonly regarded as one of
the most viable approaches to decode arbitrary quantum LDPC codes.

For the error model above, we denote our error probabilities as
{1, P2), Pp, Pm} Where p; is the aforementioned single-qubit error

probability, p,(j) is the two-qubit error probability for separations of j
in units of lattice spacing between control and target, p, and py, are
the preparation and measurement error probabilities, respectively.
Idle errors are neglected. We focus most of our analysis on noise
ratios appropriate for neutral atom hardware based on numbers
reported in experiments for state preparation and measurement
(SPAM) errors®, and gate errors®*, by adopting the following
hardware-specific noise parameters {p=p,(1), p.()=cp, p1=p/
10, pp = pm =2p}, with ¢; the proportionality constants between long-
range two-qubit gate error probabilities and the nearest neighbor
two-qubit gate error probability (see below). The choice of linear
dependence is justified in the Methods section. Experimentally, atom
arrays can be directly loaded in the reshaped configuration discussed
before for squeezed open boundary conditions (Fig. 2c). Conse-
quently, under the range-dependent noise model, boundary long-
range gates get shorter and the associated fidelities improve at the
boundaries. Such a favorable finite-size effect is particularly relevant
for small atom arrays. Subsequently, anticipating potential imple-
mentation with other platforms and mostly for comparison with
existing literature, we provide numerical results for a hardware-
agnostic noise parameter set using {p =p;=p>()Vj, pp=pm=0}, i.e.
where all unitary gate errors are treated as equal (cf. ref. 33). Mea-
surement and reset gates have hardware-dependent fidelities, hence
we just set the SPAM error strength to zero.

Performance of La-cross codes

Overhead reduction against the surface code is the main motivation
for adopting quantum LDPC codes. As shown in Fig. 1c, the present
code family offers a significant advantage in terms of encoding rate,
and hence qubit overhead, when compared to surface codes having
the same number of logical qubits and distance, although asymptoti-
cally both are still scale-like K = O(1), D= O(~/N). Along with overhead
saving, the present code family also shows an advantage over the
surface code given an equal number of physical and logical qubits,
offering larger code distance and lower logical error probability for
sufficiently small physical error probabilities, as shown below.

In Fig. 3a-c, we first present the error correction performance for
several different sizes of La-cross codes under hardware-specific noise
and defer the hardware-agnostic case to the Supplementary Informa-
tion (Supplementary Fig. 3a-c). We plot the cumulative logical error
probability, i.e. the probability that any of the K logical qubits fails,
normalized by the number of rounds, P, =1— (1 —p)"? vs. the
nearest-neighbor two-qubit gate error probability p, with p, =errors/
shots, for k=2, 3, 4-LDPC codes. This is consistent with real experi-
ments where one wants all logical qubits to be protected at the same
time. We find nearest-neighbor two-qubit gate error probability
thresholds pk=2 ~ 0.22%, p&=3 ~ 0.20%, pk=* ~ 0.17%, which for
simulations with hardware-agnostic noise further improve to
pr=2 ~ 0.38%, pk=3 ~ 0.45%, pk=* ~ 0.5% (see Supplementary Infor-
mation). While in the latter case pfh increases with the degree of non-
locality k, in the hardware-specific case, long-range gates get longer
and thus more faulty (see below) and so pfh decreases with k. In all
cases, the slope of the decoding curves is found to be consistent within
good agreement (black dashed lines) with the expected behavior in the
deep sub-threshold regime: P, (p) ~ A(p/pth)De, being D, = |25| the
effective distance of the code, namely the length of the minimal phy-
sical error chain triggering a logical error.

We show in Fig. 3d-f comparisons of error correction perfor-
mance for the k=2, 3, 4-LDPC codes with the surface code with an
equal number of logical and physical qubits. We find that in all cases a
crossing occurs between the LDPC and surface code decoding curves
at a given nearest-neighbor gate error probability p*~107, with the
LDPC achieving lower logical errors for p < p* (see also Fig. 1d and e).
The crossing value p*-~107 is already within experimental reach,
despite the penalty on long-range gates we have enforced.
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Fig. 3 | Error correction performance under hardware-specific noise model.
Cumulative logical error probability normalized by the number, D, of rounds
PL(p)=(1— p (p)? for k=2 (a), k=3 (b), k=4 (c) vs. nearest-neighbor two-qubit
gate error probability p, under circuit-level depolarizing errors with hardware-specific
noise. Error bars correspond to standard deviations 0, = /P (1 — P)/(shots).
Vertical dotted lines indicate the approximate location of the threshold probability
P Dashed black lines are added to show the qualitative good agreement of the

decoding curves with the expected asymptotic scaling. d-f Logical error probability
comparison against the surface code given the same number of logical and physical
qubits. For larger-distance codes, extrapolations to lower logical error probabilities
are shown (solid lines) to guide the eye. Surface code simulations have been per-
formed under depolarizing noise with the same single- and nearest neighbor two-
qubit gate and SPAM errors as the LDPC codes.

We observe that p* slowly decreases as the distance increases. In
the sub-threshold regime, the logical error probability for both codes

scales as P, (p) ~ A (p/pth)D/2 =A (p/pth)ﬁm, with 8=0(1) and A is the
logical error probability extrapolated from the power-law behavior up

to the threshold. Defining the two k-dependent values B, = (2v/2K )_1
and Pigpc, With the former determined by partitioning the N physical
qubits into K surface codes so the number of logical qubits is equal for
both, a simple argument (see the “Methods” section) shows that

D S 1
* — (piﬁ)ﬂsc Bx?ﬂldpc { (M) m:| .
(pidhpc)ﬂldpc Ag.
Therefore, since By < Bigpe by construction and from data extrapola-
tion 0 < (Aigpc/Asc) <1, we find that p* decreases as the size N increases,
but converges to a constant greater than zero asymptotically. This
ensures that the LDPC codes always offer lower logical error prob-
ability for sufficiently small physical error probabilities with respect to
the surface code, given the same number of logical and physical qubits.
In the Supplementary Information we compare the La-cross codes
to other quantum LDPC codes in terms of qubit overhead, type of
connectivity and geometrical layout.

Implementation with neutral atom qubits

In the following, we discuss the implementation of our family of La-
cross LDPC codes on neutral atom quantum computers. In particular,
we show how long-range connectivity can be realized natively via
Rydberg-blockade interactions involving highly excited electronic

Rydberg states. We rely on the standard blockade gate*, consisting of
one laser-excited atom shifting the Rydberg states of a neighboring
atom off-resonance via strong Rydberg-Rydberg interaction (Rydberg
blockade mechanism) to accumulate the desired two-qubit gate phase
shift. In fact, while several other gate protocols exist* %, such a gate
scheme currently represents the most robust approach for performing
high-fidelity two-qubit gates with neutral atom qubits?>**~*%

For concreteness, we here assume an array of *’Cs atoms with
lattice spacing R and take [0)=|6s,,, F=3, mg=0) and
1) =16sy/,, F =4, mg=0). To perform a CZ gate between two atoms
with a separation of j lattice sites we couple the state |1) to a Rydberg
state |r;)=|n;s) using a two-photon transition via the intermediate
|7py/2) state with effective Rabi frequency Q. We choose the laser
phase ¢(t) according to the time-optimal (TO) protocol**** in order to
minimize gate duration and Rydberg scattering. Note that we propose
to use different principal quantum numbers n; for different interatomic
distances. Hereafter, in this section, the symbol n will refer to principal
quantum numbers and not to classical code parameters.

The atoms interact via a dipole-dipole interaction, which for large
atomic distances jR can be perturbatively treated as a van der Waals
interaction Zij|rjrj)(rjrj|, where the blockade strength B; scales as
B; ocn}! /(iR)®. There are two constraints on our choice of nj: First, n;
must be large enough to ensure a sufficient Rydberg blockade. While
the TO protocol was originally designed in the limit B;>Q;, small
variations of the phase profile ¢(¢) allow to implement a CZ gate as
long as B;z (). For concreteness, we here require B;>3();, striking a
compromise between allowing finite interaction strengths B; while
preserving the qualitative behavior of the B;> () limit. The second
constraint is that n; must be small enough such that the perturbative
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Fig. 4 | Two-atom Hamiltonian eigenenergies. Pair state interaction energy AE
calculated as a function of the interatomic distance jR for different eigenstates of
the two-atom Hamiltonian. Red points are eigenenergies of eigenstates with the
largest overlap with the |75s, 75s) state. Panel b shows zoom-in of panel (a) on the
range 0 < AF/h <10 MHz. Blue line shows the minimal interaction B = 3Q which we
assume to be necessary for a Rydberg blockade gate (we take the realistic value
0Q=2mx1.9 MHZ'®). The range of valid distances in which there is a sufficient
blockade (B> 30) but we have not yet entered the “Spaghetti” regime, where the
perturbative treatment of the dipole-dipole interaction between the atoms breaks
down (see the “Methods” section), is shaded in green.

treatment of the dipole-dipole interaction is valid. For too large n; we
enter the so-called “Spaghetti” regime, in which the eigenstates of the
two atom Hamiltonian cannot be approximated by-product states
anymore. Both the lower and the upper bound of n; depend on the
interatomic distance jR. This is exemplified in Fig. 4, which shows the
eigenenergies of the two-atom Hamiltonian near the |75s, 75s) state®.
The shaded green area marks the range of interatomic distances jR for
which n; =75 allows for a sufficient Rydberg blockade without entering
the “Spaghetti” regime.

For arealistic analysis of the logical error probability it is crucial to
understand how the physical error probability scales with the number
of lattice sites j between the atoms. To estimate this, we assume that
the only two sources of infidelity are the decay of the Rydberg states
with decay rates y; and the dephasing of the Rydberg states due to a
Doppler shift arising from the thermal motion of the atoms at
T =10 pK. The infidelity of a time-optimal CZ gate is then given by*®

4 A2D |
—_F.= oy _—2oppler
1 FJ 2.96 Qj 712 sz (1)

where Apgppier = Ker/ kg T/m and ke is the effective wave vector of the
two photon transition. To find the value n; with the lowest infidelity 1-F;
we assume realistic values of R=3 pm and 1/y =430 ps at n =75 and use
the scalings Q= n"*?and y « n*. For each j we now consider different
values of the laser intensity (characterized by the value of Q at a
reference principal quantum number n = 75) and numerically minimize
1-F; over n;, constraining n; to be large enough to achieve a sufficient

blockade and small enough to not enter the “Spaghetti” regime (see
the “Methods” section). We find that for each j the relationship
1-F;= c(1-Fy) holds, with the constant ¢; increasing with j. This scaling
forms the basis of our numerical simulation of the logical error
probability.

We note that also the gate duration 7 increases with increasing
interatomic distance j, scaling as 7 (jR)'®% (see the “Methods” sec-
tion). With demonstrated gate durations around 250 ns for nearest
neighbor atoms™, a gate between atoms separated by j = 7 lattice sites
(the maximum considered above), could be implemented in ~1 ps.

The implementation on Rydberg atoms dictates that different
two-qubit gates can only be implemented in parallel when the qubit
pairs are sufficiently separated, i.e. outside a blockade sphere of radius
Ry < QY62 2R, since otherwise an atom in the Rydberg state in one
qubit pair might blockade an atom in another qubit pair*’. A safe
option is to divide the lattice into a rectangular grid of square sub-
regions, each of size 2(k+1)x2(k+1), and measure each subregion
stabilizer, one by one, in parallel over the grid. This will enable mea-
suring all the stabilizers in 4(k +1)> measurement rounds.

Finally, we mention that while the values of the c; are specific for
Cs atoms at 10 pK, we expect qualitatively similar behavior for other
atoms at other temperatures. Dephasing of the Rydberg state arising
from sources other than Doppler shifts and optical pumping by black
body radiation could be easily incorporated into our model by adding
an additional termin Eq. (1). Additional dephasing errors would reduce
the optimal principal quantum numbers n;, while additional decay due
to black body radiation would increase them. Other error sources,
such as leakage to other states, would require a more elaborate error
model. However, most error sources become more detrimental with
longer gate durations, and, thus, with larger interatomic distances.
This is in accordance with our assumption that gate infidelities
increase with j.

Discussion

We have developed an integrated approach to neutral atom QEC
exploiting flexible data/ancilla qubit layout together with tunable long-
range gates using multiple laser colors addressing distinct Rydberg
states. Our analysis focuses on a sub-family of HGP quantum LDPC
codes with high rate, low stabilizer weight, and moderate non-locality.
All these features make them promising candidates to be implemented
on near-term neutral atom quantum computers with all qubits in place.
The limiting gate time is set by the slowest elementary gate, which is
typically state preparation and measurement. Since all ancilla mea-
surements can be deferred to the end of a round of stabilizer circuits,
the overall time to perform a round of stabilizer measurements for La-
cross codes, even using restricted parallelization, is notably shorter
than using qubit shuttling. For example, for the largest code discussed
in this work, [[400, 16, 8]], we conservatively estimate the single round
time to be 0.6 ms, which is approximately one order of magnitude
shorter than the single round movement time costs estimated
in ref. 12.

We have examined the performance of these codes via numerical
simulations under circuit-level depolarizing noise, which is a useful
tool for benchmarking the code performance and making compar-
isons against the surface code. Noise models beyond depolarizing
noise, appearing in many realistic situations, are expected to improve
our results. For example, in Rydberg atom arrays it has been predicted
that up to 98% of errors can be converted to erasure errors®*%*’,
implying much better scaling of the logical error rate with physical
probability. Other noise biases®”* can easily be incorporated into our
construction in full analogy with the XZZX surface code®. We defer the
problem of addressing these issues to future work.

A severe bottleneck for QEC experiments can be fast real-time
decoding of syndrome information. In this work, we have used a state-
of-the-art decoding technique at the time of submission, namely a BP
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+0SD decoder, which can be flexibly applied to arbitrary quantum
LDPC codes at the price of a severe time overhead in the OSD part.
Recently, new decoders have been proposed to tackle the problem of
fast and reliable syndrome information processing in quantum LDPC
codes, such as Ambiguity Clustering®, Belief Propagation with Guided
Decimation Guessing (BP + GDG)**, Belief Propagation with Localized
Statistics Decoding (BP + LSD)> and Belief Propagation with Ordered
Tanner Forest (BP + OTF)*. These decoders are faster and, therefore,
may ultimately be preferred over BP+OSD.

Finally, while we have focused here on how to achieve long-lived
quantum memory, quantum computation will require implementing
fault-tolerant logical gates. Various proposals have been made to
perform logical gates with LDPC codes including using non-destructive
Pauli measurements assisted with non-local gates® and code switching
to another stabilizer code like the surface code’. Recent work shows a
way to perform transversally logical Hadamard (H) and logical CZ gates
within the same array patch of HGP codes”. We note that La-cross
codes with open boundaries are square but not symmetric HGP codes
and they may allow for transversal H and CZ gates by trapping the
atoms in a folded triangular configuration in a static plane without
increasing the connectivity requirements. Alternatively, one can use
our QEC method for static memory and then physically transport
qubits for performing logical computation, as demonstrated in ref. 22
for transversal CNOT gates between different array patches of
surface codes.

Methods

Quantum error correction simulations

In the following we provide further detail about quantum error cor-
rection simulations. The qubit register is firstly initialized to |0),
Hadamard gates are acted on X-type ancilla qubits and subsequent
CNOT gates are applied according to the order prescription specified
in the main text (Fig. 1a, b). We simulate as many rounds of syndrome
measurements as the code distance, with ancilla measurement and
reset after any round and data measurement occurring only after the
last round. State preparation and measurement bit-flip errors and
single- and two-qubit gate depolarizing errors are applied with prob-
abilities specified in the main text, under both hardware-specific and
agnostic noise models, which we show in Supplementary Fig. 3
(see Supplementary Information). Idle errors are always neglected.

Belief Propagation with Ordered Statistics Decoder (BP + OSD)**°
has been used to obtain all the decoding plots shown in the main text.
We have optimized over the decoder parameters and opted for the
minimum-sum variant of Belief Propagation with a scaling factor of
s=1.0 for all LDPC codes. The number of iterations of Belief Propa-
gation was found to be almost irrelevant, so we have fixed it to 4.
Ordered Statistics Decoding was performed in combination sweep
mode up to order 1to speed up the decoding process, upon testing up
to order 10 without finding any relevant improvement. Monte Carlo
samplings have been performed using the Sinter library with 10°
decoders with a maximal number of errors cutoff and increasing a
maximal number of samples cutoff with decreasing physical error rate,
~10*-107, compatible with the system sizes.

Surface code simulations are performed under the same noise
model of the LDPC codes they are compared to, performing Dgpc
rounds of stabilizer measurements so to keep qubits alive for the same
amount of time for both codes. Logical error probability is computed
as PL(p)=1— (1 — P.(p))", being P! (p) the single surface code logical
error probability. For the fairest comparison, we want to compare our
(LDPC code, BP + OSD decoder)-pair against the surface code with its
best decoder. Given the impractically huge time overhead of the
maximum-likelihood decoder, we have opted for decoding the surface
code with the BP+OSD decoder with optimized scaling factor
§=0.625, which was found to outperform the minimum-weight perfect
matching decoder with open boundaries. Thus, with safe confidence,

we claim that our comparing argument can only benefit from better
decoders for the LDPC codes.

Analytical sub-threshold error estimation

The crossing point between LDPC and surface code decoding curves,
p*, given an equal number of logical and physical qubits decreases as
the distance increases. We can provide a quantitative and decoder-
independent estimate of this behavior via the following analytical
argument. In the sub-threshold regime, the logical error probability

scales as
aD BYN
P.(p)~ A %) =A %) )
th th

with a=1/2 asymptotically and f=0O(1) being code dependent. For
either code, the distance as a function of N can be computed from

N=ADygpe — k> + ()lledpc)2 ~ 2/ﬁDIdeC 3)

N=K((Dg —1)* +D%) ~ 2KD%.

being A, some constant depending on the order k of the LDPC code, for
which—we recall—the code distance is D= O(+/N) and K constant for a
given code. The crossing rate can be computed by requiring

P ﬂsc‘/ﬁy p* BiapeVN
A | == =A S , 4
() el
leading to
o (Ad>— " )
(P As |

Therefore, when 0<(A[dpc/(ASC))I/(ﬂsfﬁ'dpc)<1 the crossing point
decreases with N for PBs.<Pigpe, Which is always our case by
construction.

Realistic infidelity calculations

In the following, we detail our estimate of the gate error for an
implementation on Rydberg atoms. For a given interatomic distancejR
and a given laser intensity, characterized by the Rabi frequency Q at a
fixed reference n, e.g. n=75, we proceed as follows: We first use the
AtomicRydbergCalculator (ARC)* to determine the lowest n; for which
we still obtain B; > 30); (note that both B; and (); change with n)), as well
as the highest n; which is admissible without entering the Spaghetti
regime. We define the start of the Spaghetti regime as the smallest
value of n; for which there is an eigenstate of the two-atom Hamilto-
nian, which has a smaller pair state interaction energy |AE| then the
perturbed |75s, 75s) state. We only consider states with a non-zero
dipole-dipole coupling to the intermediate |7p,,) state in this
comparison.

Having established the upper and the lower bound of n;, we then
minimize the infidelity 1-F; [Eq. (1)] over this range. Supplementary
Fig. 2a (see Supplementary Information) shows an example of this for
an interatomic distance of jR =9 um with a laser intensity such that at
n=75 we have Q=2 x1.9 MHz*. In this example, as in all cases con-
sidered by us, the lowest infidelity is achieved at the lower bound of the
allowed values of n.

In Supplementary Fig. 2, we vary the Rabi frequency Q at n=75
from 2 x 0.5 to 2mr x 15 MHz and compare the gate error 1-f; for gates
over j lattice sites as a function of gate error 1-F; for nearest neighbor
gates. The ratios ¢;= (1-F)/(1-F,) are approximately independent of Q
and given by ¢;=1, c,=1.6, c3=2.5, ¢4, =3.6, 5= 4.8, C4= 6.1, c;=7.5.
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Since the lowest fidelity is always achieved by the lowest value of

n, which still gives a sufficient blockade, the ratio B/Q = n*?*/(jR)® is
constant, so that the optimal n scales as n; < (jR)¥*. The pulse duration
then scales as 7o Q' < 12 o< (jR)S/Z,

Data availability
The error correction simulation data shown in this work have been
deposited in ref. 59.
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