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Abstract

Einstein’s equations of General Relativity were first published in 1915 and are until this day
the most accurate understanding of gravity. Although first attempts at using computers to
solve them were made in the 1960s [4], only recently has Numerical Relativity (NR) produced
mature tools. These new tools came to existence not only due to the recent development of
robust numerical techniques but also due to the exponential growth of computational power.
A crucial event for NR was the first measurement of two Black holes inspiraling and merging
by the LIGO/Virgo collaboration [5] for which numerical simulations played a significant
role. This was a technically challenging system to model that required numerical simulations
[6–8], and to date, NR is the only tool that can accurately solve it.

In this thesis, we study compact objects using Numerical Relativity. In particular, we
use NR to investigate the nature and the different possible ways of detecting two strongly
gravitating objects: cosmic strings and Boson stars. A better understanding of these objects
is essential as they might produce gravitational waves that allow them to be measured by
current and future gravitational wave detectors.

An introduction to the different types of Boson stars, with different field-content, different
charge or rotating stars, and an overview of the current literature regarding the challenges
of measuring and modelling Boson stars is provided on chapter 1. A small introduction to
cosmic strings is provided in chapter 5.

Chapter 2 focus on one type of Boson stars, which are made from a single real scalar (i.e.
oscillatons) and investigate how changing the potential to the one of an axion can affect its
stability. Changing the potential is essential to elucidate if Bosonic stars might be made from
dark matter. Our results show that under certain condition the star can collapse into a Black
hole or disperse completely.

We study the formation of oscillatons in chapter 3, we simulate sinusoidal initial data
and determine whether they collapse to stars. We find that depending on the mass of the
perturbation, we can either form Black holes or stable Boson stars. We use this information
to create a population of Black holes and Axion stars, binaries of which could be potentially
detected by LIGO/Virgo detectors.
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Chapter 4 explores oscillatons head-on merger. The end product of such mergers can be
either a stable, but very perturbed oscillaton or a Black hole. We find that in both cases, the
signal is different from a Black hole merger, even if cases where the final result was a Black
hole, thus making them a potentially easily differentiable source.

On the other hand, in chapter 5, we study the physics and the gravitational waves
produced by Abelian-Higgs cosmic strings. These strings are topological defects that might
have formed in the very early universe and can be visualised as long filaments, which move
similarly to long rubber bands in zero gravity. Interestingly, they were already predicted by
grand unified theories (GUTs), which unifies weak, strong, electromagnetic and gravitational
forces. As shown by [9], due to their motion, they might produce gravitational waves, we
discuss these findings in this chapter, simulate a collapsing string and extract the gravitational
waves emitted by it.

Many new gravitation wave detectors are in the pipeline to be finished in the next few
decades. These new detectors will drastically change our ability to probe the universe,
allowing us to state more complex questions, and certainly lead to new discoveries of the
wonders of our universe. I hope that in this thesis, I set out the path to allow the discovery of
two such objects, cosmic strings and oscillatons. There is further work to be done, not only
improving on the simulations of oscillatons or cosmic strings but also further developing
theories that can then be tested using these future detectors.
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Chapter 1

Introduction

Boson stars are unlike the stars we typically consider, in that the particles that make them up
are not of fermionic but of bosonic nature. Due to the ability of bosonic particles to share
the same quantum state, we can describe them as a single macroscopic wavefunction. Their
behaviour is comparable to a wave in a potential, which is generated by the gravitational mass
of the boson. The equations describing these states are simple enough to be solved without
approximations, unlike Neutron stars. They were first studied in the late 1960s [27–29]
and have been the focus of many review articles [30–36]. To accurately describe the most
compact solutions where gravity becomes extreme, we leave the regime where Newton’s
gravity accurately describes most stars, and we need General Relativity. To be able to solve
these accurately, we use Numerical Relativity to simulate the evolution over time accurately.
With the first measurement of a Black hole binary by the LIGO/Virgo collaboration [5], the
recent breakthrough Event Horizon Telescope [37, 38] and BlackHoleCam [39], there is a
new window for probing for their existence and thus probing for such exotic objects. While
the first part of this chapter will introduce the reader to their taxonomy, the second part of
this chapter, will focus on the prospects and challenges of measuring and modelling of Boson
stars.

1.1 Taxonomy of Boson stars in General Relativity

The exact properties of the Boson star are strongly dependent on the properties of the bosonic
particle. We will discuss how different particle content can influence properties stability or
compactness; we discuss real, complex and vector configurations, different potentials and
different charges.



4 Introduction

We focus on angular momentum, where the behaviour compared to Neutron stars or
Black holes differs fundamentally. We also discuss how to generate the solutions from the
equations, where we initially focus complex scalar fields, since they are easy and a good
proxy for real scalar fields, which are discussed in great detail in later chapters.

1.1.1 Constructing U(1) Scalar stars

We consider a complex scalar field φ , which is minimally coupled to gravity with the action1

S =
∫

d4x
√−g

[
R

16πG
− 1

2
(∂αφ

∗
∂

α
φ +V (|φ |))

]
. (1.1)

where g is the determinant of the metric and R is the Ricci scalar. Furthermore, the stability
of the Boson star is supported by the conserved charge coming from the U(1) symmetry

Q =
∫

d3x corb j0√−g , (1.2)

where the Noether current is defined as

jµ =
i
2

gµν (φ∗
∂νφ −φ∂νφ

∗) . (1.3)

The stress-energy tensor for scalar fields is given by

Tµν =
1
2
(
∂µφ

∗
∂νφ +∂µφ∂νφ

∗)− 1
2

gµν (∂αφ
∗
∂

α
φ +V (|φ |)) . (1.4)

We decompose the 4-dimensional spacetime into space and time using the ADM formalism.
A more formal way to describe this is as a decomposition of the 4-dimensional spacetime
into many spacelike hypersurfaces. We define nµ as the normal vector of these surfaces and

γµν = gµν +nµnν , (1.5)

the projection of the 4-dimensional metric on them. We thus use them to project

ρ = Tµνnµnν , Si = Tµνγ
µ

i nν , Si j = Tµνγ
µ

i γ
ν
j , (1.6)

1We use the −+++ convention for the metric, and set = c = 1. Our Planck mass MPl = 1/
√

G.
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variable r → 0 r → ∞

a(r) 1 ×
α(r) × ×
φ0(r) × 0

∂rφ0(r) 0 0

Table 1.1 Overview boundary conditions : Imposing regularity of the metric gives us the
conditions for r = 0 and asymptotic flatness the conditions for r → ∞. A free choice is
marked as ×.

where ρ is an energy-density, Si the energy-momentum flux and Si j the spatial stress. A
solution can be found by imposing the harmonic ansatz for the field

φ(r, t) = φ0(r)eiωt , (1.7)

and for the metric

ds2 =−α(r)2dt2 +a(r)2dr2 + r2(dθ
2 + sin2(θ)dϕ

2) . (1.8)

Plugging in the ansatz to the Einstein equations together with the Klein-Gordon equations
we find the following equations

∂ra =− a
2r

(a2 −1)+4πra3
ρ

∂rα =
α

2r
(a2 −1)+4πrαa2Sr

r

∂
2
r φ0 =−

(
1+a2 +4πr2a2(Sr

r −ρ)
) φ

r
−
(

ω2

α2 − dV
d|φ |2

)
a2

φ0 ,

(1.9)

where we impose both asymptotic flatness and the metric to be regular at r = 0. This gives
the boundary conditions in Table 1.1. To solve this system with boundary conditions at
different points, a “shooting” method can be used. This involves tuning values at r = 0
until the boundary conditions towards r = ∞ are fulfilled. There is one free choice for the
boundary φ(0) and thus the solutions span a one-dimensional family. We can calculate the
ADM mass M of the Boson star using the fact that asymptotically the solutions approach the
Schwarzschild solution

M = lim
r→∞

[
r
2

(
1− 1

a2

)]
. (1.10)



6 Introduction

The properties of the resulting Boson star are strongly dependent on the potential V (φ),
which we will explore in the next sections.

The ansatz φ(t,r) = eiωtφ0(r) implies that the phase difference between real and imag-
inary part is equal to π/2, and that their respective amplitudes are identical. See however
[40, 41], which highlights the existence of more general solutions with different phase
differences and different amplitudes.

Stability

To determine perturbative stability of the solutions obtained in the previous section, we
consider small radial perturbations of non-rotating spherical Boson stars [42, 43]. Their
equation of motion form an eigenvalue equation, where the smallest eigenvalue determines
the stability: If the eigenvalue is negative, small perturbations will grow exponentially, which
we refer as to be on the unstable branch. If it is positive, the solution is on a stable branch.
Since Boson stars are determined by one parameter φ0(0) we find the stability flips at

dM
dφ0(0)

= 0 , (1.11)

where M is the ADM mass of the Boson Star. In Table 1.3, we list the maximum masses for
different models. When considering full non-linear perturbations, a similar picture arises.
Non-linear stability has been tested numerically [44–47], which confirmed the stability
condition in eqn.(1.11) from linear perturbations. Boson stars on the unstable branch can
radiate scalar fields (sometimes referred to as gravitational cooling) until they reach a stable
star, collapse into a Black hole or disperse completely.

Physical properties of Boson stars

In this section, we show the effect of different potentials on the physical properties of the
star. We define the compactness

C =
GM
R

, (1.12)

where R is the radius 2 and M is the mass of the Boson star. This is a good measure of how
relativistic a star is, with larger values of compactness implying increasingly relativistic stars.
Additionally, being more compact reduces the time-scales involved in binary mergers, which
helps to reduce the cost of simulations. However, the definition of R can vary depending

2Since Boson Star do not have a clear boundary and extend to infinity, one has to choose a cutoff.
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on where we choose the cutoff, since the solution extends to infinity, thus making the
compactness more of an approximate than an exact measure.

Fig. 1.1 Mass for self-interacting potential : Where σc = (4π)1/2φ0 with several different
values for the rescaled self-interaction Λ = λM2

Pl/(4πm2) = 0,1,30,100,200,300 for the
potential V (φ) = m2|φ |2 + 1

2λ |φ |4 . The maximum mass and radius increases with larger
attractive self-interactions. Figure from [10].

The simplest choice of potential is

V = m2|φ |2 , (1.13)

for which the corresponding Boson star is commonly referred to as a mini-boson star. By
solving the eqn. (1.9) we find the most massive solution has Mmax = 0.633 M2

Pl/m. One finds
that the maximum stable compactness for this potential is C = 0.08.
However when adding an attractive quartic self-interaction [10]

V (φ) = m2|φ |2 + 1
2

λ |φ |4 , (1.14)
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one finds that with increasing λ the star can be made arbitrarily massive. For large Λ =

λM2
Pl/(4πm2) the maximum mass can be expressed as

Mmax ≃ 0.22 Λ
1/2 M2

Pl

m
Λ ≫ 1, (1.15)

which was found numerically and is not valid for small Λ. However, the increase of compact-
ness is only a factor of ∼ 2 at most [48]. More interesingly [49, 50]

V (φ) = m2|φ |2
(

1− |φ |2
σ2

0

)2

(1.16)

produces extremely compact stars. The maximum compactness in this case is Cmax = 0.35
which gives rise to a photon sphere3. Light from inside that region can still escape, but it
becomes increasingly more difficult the further behind the photon sphere. This also implies
that there is an innermost stable circular orbit 4, after which there are no stable circular orbits
within, which plays an important role in the accretion of matter. A larger set of potentials has
been investigated [51]

U = Am2
(

sin
(

π

2

(
β

√
|φ |2 −1

))
+1
)

U = Am2
(

cosh
(

β

√
|φ |2

)
−1
)

U = Am2
(

eβ 2|φ |2 −1
) (1.17)

where A is chosen to be such that locally the potential is ≈ m2|φ |2 +O(|φ |3). The maximum
masses for β = 1 can be found in Table 1.3.

The harmonic ansatz makes an implicit assumption that the phase-difference between
real and imaginary parts tends to be exactly π/2, with equal amplitudes for both real and
imaginary parts of the scalar field. The full family of solutions is therefore likely to be much
bigger [40, 41] than the one-parameter family of solutions discussed.

3which is an imagined surface on which null-geodesics can orbit (which only exists for compactness C > 1/3
in Schwarzschild coordinates)

4ISCO, which only exists for compactness C > 1/6 in Schwarzschild coordinates
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model name potential V k max. stable mass reference

Complex scalar field

mini-boson m2|φ |2 0 0.633M2
Pl/m [28, 27, 29]

1 1.315M2
Pl/m [13, 52]

2 2.216M2
Pl/m [13]

3 3.206M2
Pl/m [13]

4 4.790M2
Pl/m [13]

self interacting m2|φ |2 + 1
2λ |φ |4 0 0.22 Λ1/2M2

Pl/m [10]

with Λ = λ
M2

Pl
4πm2 ≫ 1 [10]

1 3.14M2
Pl/m [13]

2 3.48M2
Pl/m, Λ = 200 [13]

3 4.08M2
Pl/m, Λ = 200 [13]

4 5.59M2
Pl/m, Λ = 200 [13]

solitonic m2|φ |2
(

1− |φ |2
σ2

0

)2
0 0.0198 M4

Pl/(mσ2
0 ) [49, 50]

Sine-Gordon Am2
[

sin
(

π

2 [51](√
|φ |2 −1

))
+1
]

0 0.620 M2
Pl/m [51]

Cosh-Gordon Am2
[

[51]

cosh
(√

|φ |2
)
−1
]

0 0.638 M2
Pl/m [51]

Liouville Am2
(

e|φ |
2 −1

)
0 0.666 M2

Pl/m [51]

Charged Complex scalar field ( with charge e )

mini-boson m2φ 2 0 ≈ 0.44√
ecrit−eM2

Pl/m [11, 53]

self interacting m2|φ |2 + 1
2λ |φ |4 0 ≈ 0.226√

ecrit−eλ 1/2M2
Pl/m [11, 53]

Real scalar field

Oscilloton 1
2m2φ 2 0 0.605M2

Pl/m [54–56]
self interacting 1

2m2φ 2 + 1
4λφ 4 0 0.694M2

Pl/m, Λ = 1 [57]

with Λ = λ
M2

Pl
8πm2 ≫ 1 [57]

0 0.770M2
Pl/m, Λ = 2 [57]

0 0.854M2
Pl/m, Λ = 3 [57]

T-models V0tanh2 (φ/Λ) 0 & 0.44 M2
Pl/m, Λ = 0.14√

8π
[58]

0 & 0.41 M2
Pl/m, Λ = 0.17√

8π
[58]

0 & 0.41 M2
Pl/m, Λ = 0.2√

8π
[58]
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model name potential V k max. stable mass reference

Real scalar field

E-models V0

(
1− e−φ/Λ

)
0 & 0.41 M2

Pl/m , Λ = 1√
8π

[58]

0 & 0.46 M2
Pl/m , Λ = 2√

8π
[58]

KKLT see [58] 0 & 0.33 M2
Pl/m, |W0|= 10−2 [58]

Axions m2 f 2 [1− cos(φ/ fa)] 0 (see Fig. 2.1) [17]

Complex vector

Proca 1
2m2AµA∗µ 0 1.058M2

Pl/m [12]
1 1.568M2

Pl/m [12]
2 2.377M2

Pl/m [12]
3 3.247M2

Pl/m [12]
self-interacting 1

2m2AµA∗µ 0.0057 × [59]

−1
4λ (AµA∗µ)2 0 ln

(
λM2

Pl
m2

) √
λ

M3
Pl

m2 [59]

higher-order 1
2m2AµA∗µ

−1
2(AµA∗µ)2

+1
3(AµA∗µ)3 0 1.04M2

Pl/m [60]

Charged Complex vector

Proca 1
2m2AµA∗µ 0 1.56M2

Pl/m, e = 0.5 [60]
higher-order 1

2m2AµA∗µ

−1
2(AµA∗µ)2

+1
3(AµA∗µ)3 0 1.52M2

Pl/m, e = 0.5 [60]

Real vector

massive 1
2m2AµAµ 0 1.074M2

Pl/m [61]

ℓ Boson star

mini-boson m2|φ |2 0 0.633M2
Pl/m [62, 28, 27, 29]

1 1.18M2
Pl/m [62]

2 1.72M2
Pl/m [62]

3 2.25M2
Pl/m [62]

4 2.78M2
Pl/m [62]

Table 1.3 Summary of various Boson stars models. We denote the characteristic potential
V of each model, its maximum stable mass, the rotational parameter k of solutions that have
been constructed and the relevant references. The maximum stable mass for rotating cases
was defined at the true maximum mass or the point where an ergoregion appears.
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Charged Boson stars

Charged Boson stars were first introduced by [11] and later in [53]. We define the gauged
action

S =
∫

d4x
√−g

[
R

16πG
+(Dµφ)∗(Dµ

φ)+
1
4

FµνFµν +V (φ)

]
, (1.18)

with Dµ = ∂µ + ieAµ , Fµν = ∂µAν − ∂νAµ and Aµ the gauge field. For charge values of
the dimensionless charge ẽ2 = e2M2

Pl/8πm2 > e2
crit = 1/2 (see fig 1.2) there are no physical

solutions of the system. This is due to the electrical repulsion overpowering the gravitational
attraction. We can define the Noether charge

N =
∫

d3x j0√−g , (1.19)

where jµ is the Noether current corresponding to the action. The overall charge Q = eN then
manifests in the asymptotic behaviour of the Boson star

grr =

(
1− 2M

r
+

Q2

4πr2

)−1

r ≫ M . (1.20)

In [11] these solutions were studied using the potential

V (φ) =
1
2

m2|φ |2 + 1
4

λ |φ |4 . (1.21)

where the scaling in eqn.(1.15) for large Λ is still valid, one finds that with increasing
electrical charge the star becomes more massive

M ≈ 0.44√
ecrit − e

M2
Pl

m
. (1.22)

However, the behaviour of the radius is similar

R ≈ 1.5√
ecrit − e

1
m

. (1.23)

The stability under small radial perturbations has been studied in [63], where they showed
that for central densities ρ < ρcrit the Boson star is stable, were ρcrit is the density of the
most massive star.
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Fig. 1.2 Charged Boson star solutions : The mass and size becomes larger with increasing
charge. However, there is a maximum charge ecrit = 0.707 for which the electromagnetic
repulsion overpowers gravity. The addional line shows where the maxima are located. Figure
from [11].

Vector stars

We consider a complex vector field Aµ , which is minimally coupled [12, 64] to gravity with
the action

S =
∫

d4x
√−g

[
R

16πG
− 1

4
FµνF∗µν −V (AµA∗µ)

]
, (1.24)

due to the extra mass term
V (AµA∗µ) =

1
2

m2AµA∗µ (1.25)

we lose the gauge choice and the Proca condition

∇µAµ = 0 (1.26)

becomes a requirement. The harmonic ansatz for the vector field is

A0 = f (r)eiωt

Ar = ig(r)eiωt .
(1.27)
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As in the scalar field case there is a U(1) symmetry which gives rise to a conserved Noether
charge

Q =
∫

V
d3x j0√−g (1.28)

with the Noether current
jα =

i
2

(
F∗αβ Aβ −Fαβ A∗

β

)
. (1.29)

The maximum mass of such objects has been found to be M = 1.058M2
Pl/m (see Fig. 1.3)

thus making it twice as massive as an scalar Boson star. The stability was studied non-linearly
in [65] with very similar results to scalar Boson stars, where it flips at the maximum mass.

A study of self-interacing vector Boson stars

V (AµA∗µ) =
1
2

m2AµA∗µ − 1
4

λ (AµA∗µ)2 (1.30)

has been performed in [59]. The scaling found for values interpolated between 20 ≥ λ

8π
≥ 50

Mmax ≈
(

1.383−0.005099

√
λMPl

m
+

(
−0.03967+0.005675

√
λMPl

m

)
ln
(

λM2
Pl

m2

))
M2

Pl

m
(1.31)

where the asymptotic behaviour

Mmax ≈ 0.005675 ln
(

λM2
Pl

m2

) √
λ

M3
Pl

m2 (1.32)

deviates strongly from the self interacting scalar Boson stars case, which behaves as Mmax ≈√
λM2

Pl/m .
The formation of Proca stars was studied in [66], where similarly to scalar Boson stars

indication for more general solutions of Boson Stars were found, deviating from the harmonic
solutions. Furthermore, solutions for asymptotic anti-de Sitter spacetime have been studied
[64] as well as charged Proca stars [60].

Real Scalar Solitons

In this section, we consider real scalar field solitons [54–56]. We lose the U(1) symmetry,
and therefore the Noether charge that was crucial for the stability. Thus the solutions found
are only quasi-stable on very long time-scales. Similarly, one can find solutions for real
vector fields [61].
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Fig. 1.3 Proca Star Solutions Space : Both the Noether charge Q and ADM mass against
the frequency ω of the Proca star. Similar to Boson stars, points on the left to the maximum
are unstable. Figure from [12].

We consider a free, massive, real scalar field, which is minimally coupled to gravity with
the action

S =
∫

d4x
√−g

[
R

16πG
− 1

2
∂µφ∂

µ
φ −V (φ)

]
, (1.33)

In this section, we focus on Boson stars referred to as Oscillatons, which have the following
potential

V (φ) =
1
2

m2
φ

2 . (1.34)

To obtain the radial profiles we use the ansatz for a spherically symmetric line element:

ds2 =−α
2dt2 +a2dr2 + r2(dθ

2 + sin2(θ)dϕ
2), (1.35)

with rescaled variables

r → r
m

,

φ → φ√
8πG

.
(1.36)
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We define the quantities A = a2, C = a2

α2 . We can rewrite the Einstein-Klein-Gordon equation
as

A(0,1)(t,r) =
1
2

rA(t,r)φ (1,0)(t,r)2C(t,r)+
1
2

rA(t,r)φ (0,1)(t,r)2 +
1
2

rA(t,r)2
φ(t,r)2

− A(t,r)2

r
+

A(t,r)
r

,

C(0,1)(t,r) = rA(t,r)φ(t,r)2C(t,r)− 2A(t,r)C(t,r)
r

+
2C(t,r)

r

φ
(0,2)(t,r) =

1
2

rA(t,r)φ (0,1)(t,r)φ(t,r)2

− A(t,r)φ (0,1)(t,r)
r

+A(t,r)φ(t,r)+
1
2

C(1,0)(t,r)φ (1,0)(t,r) ,

− φ (0,1)(t,r)
r

+φ
(2,0)(t,r)C(t,r) .

(1.37)

where the superscripts refer to derivatives with respect to time t and radial coordinate r,
respectively. We rewrite the variables in Fourier space

φ(t,r) =
jmax

∑
j=1

φ̂ j(r)cos( jωt) ,

A(t,r) =
jmax

∑
j=0

Â j(r)cos( jωt) ,

C(t,r) =
jmax

∑
j=0

Ĉ j(r)cos( jωt) ,

(1.38)

where jmax is the maximum order in the Fourier expansion to which the solution is approxi-
mated. Additionally, we scale the time

t → t
ω

. (1.39)

To solve these equations it is best to calculate the right-hand side (RHS) as a series of
convolutions ( f̂ ∗ ĝ) j using the Fourier-transformed equations. We simplify eq. (1.37) in a
format which only contains multiplication. As for Boson stars we require asymptotic flatness
and regularity at r = 0 which gives the condition in Table 1.4. We employ a shooting method
to solve for the boundary conditions in Table 1.4. These profiles for φ in m2φ 2 theory are
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Fig. 1.4 Oscillatons Solutions : The solutions for all modes φ̂ j(r), Ĉ j(r), Â j(r) of a maxi-
mally massive oscilloton (φ0(0) = 0.46) and with rmax = 23.2 m−1. We find that approxi-
mately every higher mode is suppressed by one order of magnitude, thus showing very fast
convergence in j. Asymtotically in r, the solutions converge to the Schwarzschild spacetime,
where we match with M = 0.605 M2

pl/m, the measured ADM mass.

described in e.g. Refs. [55, 67, 56]. They are a one-parameter family, for which a larger
ADM mass leads to a smaller radius and a higher central field value.

Furthermore, we note that unlike complex Boson stars, the metric is not static, but
oscillates. The amplitude of this oscillation vanishes towards infinity as the solutions
approach the Schwarzschild metric. When solving for the ADM mass (see Fig. 1.5) we find,
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variable mode r → 0 r → ∞

Â j(r) j = 0 1 ×
Â j(r) j > 0 0 0

Ĉ j(r) j = 0 × ×
Ĉ j(r) j > 0 × 0

φ̂ j(r) ∀ j × 0

∂rφ̂ j(r) ∀ j 0 0

Table 1.4 Overview of boundary conditions : Imposing regularity of the metric gives us
the conditions for r = 0 and asymtotic flatness the conditions for r → ∞. A free choice is
marked as ×.

similar to the complex scalar case in section 1.1.1, a stable (S) and a unstable (U) branch,
which is separated by the maxima dM

dφ0(0)
= 0. Stability has been tested in [55] with non-linear

radial perturbations. Small perturbations in the S-branch will settle again into configurations
in the S-branch. Small perturbations in the U-branch will radiate and also settle into the
S-branch. Large enough perturbations will collapse both U and S branch solutions into Black
holes.

0.1 0.2 0.3 0.4 0.5 0.6

φ̂0(0)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
[M

2 p
l/
m

]

mass

Unstable region

0.1 0.2 0.3 0.4 0.5 0.6
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0.1

0.2

0.3

0.4

0.5

C

compactness C
maximal stable C = 0.14

Black Hole

Unstable region

Fig. 1.5 Overview of m2φ 2 Oscillatons : The figure on the left shows the defining parameter
φ̂0 vs the ADM mass MADM of the soliton. We can see that the most stable solution can reach
a maximum mass of M = 0.605M2

Pl/m. The right plot depicts φ̂0(0) against the compactness
C. We see that we can reach a maximum stable compactness of C ∼ 0.14 .
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Beyond m2φ 2

Previous sections focused on solitons with a V (φ) = 1
2m2φ 2 potential, yet there are many

other physically motivated potentials that we summarise in Table 1.3. Similar to complex
scalar fields [57] solutions for a self-interacting potential

V =
1
2

m2
φ

2 +
1
4

λφ
4 . (1.40)

have been constructed. In [57], the solutions for Λ = λ/(8πGm2) = 1,2,3 were generated.
Considering the similarities between complex scalar Boson stars with a massive potential and
Oscillatons (real scalar field Boson stars with a massive potential), the question of whether
this still holds for other potentials as well. For future work, it would be interesting to study
whether the scaling for complex Boson stars from eq. (1.15) could be reproduced for real
scalar fields. As the self-interaction Λ increases, higher order modes j > 0 (see eq. (1.38) or
Fig. 2.1) become more relevant , which indicates different behaviour.

In this thesis (see chapter 2), we study the effective axion potential m2 f 2 [1− cos(φ/ fa)]

[17]. A wide study of potentials was performed by [58]. These are not found by making a
periodic ansatz as before, rather by inserting the solutions for a m2φ 2 potential and evolve
them until the solutions settle down to a stable state. There are some caveats, e.g. the radial
profiles are significantly harder to generate and likely, the resulting star is not in its ground
state. However, this implicitly shows stability against large perturbations.

1.1.2 Rotating Boson stars

In this section, we will consider Boson stars with angular momentum. This is of importance
since we are discussing merging binary systems in the next sections, which contain a large
amount of orbital angular momentum that will go partly to the resulting Boson star or Black
hole. Thus knowledge of rotating states is crucial to understand binary systems.

In [68], it was shown that there are no arbitrarily slowly rotating Boson stars. However
counterintuitively, it turns out they can rotate rapidly, due to their rotation being quantised.
Thus there is a gap in angular momentum between a non-rotating star and the first spinning
state. The relativistic solutions [13, 69, 52] use the scalar-field ansatz

φ(t,r,θ ,ϕ) = ei(ωt−kϕ)
φ(r,θ) , (1.41)
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Fig. 1.6 Illustration of Rotating Boson star: Energy isosurfaces for a scalar configuration
with k = 2. Figure from [13].

and the metric ansatz

ds2 =−α
2dt2 +A (dr2 + r2dθ

2)+B r2 sin(θ)2(dϕ +β
ϕdt)2 . (1.42)

The angular momentum is given by
J = kQ , (1.43)

where Q is the Noether charge of the Boson star and k an integer. Due to regularity we have
φ(t,0,ϕ,θ) = 0, which causes the solutions to be torus-shaped as illustrated in Fig. 1.6.

It has been shown in [70] that scalar field configurations with an ergoregion 5 and with
no horizon are unstable. For scalar and vector Boson stars with a massive potential (see Fig.
1.7) it has been shown that an ergoregion forms for some configurations[13, 12], thus making
these unstable. This changes when self-interactions are introduced, in which case no solution
with ergoregion has been found [13].

The first spinning solutions were obtained by [69], which confined itself to the weakly
relativistic regime with values of k = 1,10,500. Subsequently, relativistic solutions were
obtained [52] for k = 1. There was disagreement on these results in [71] with k = 1,2,
which could not reproduce the same maximum masses and described regularity issues in

5i.e. a spacetime where the killing vector ∂t becomes spacelike
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Fig. 1.7 Solutions of rotational mini-boson stars with rotating quantum numbers k = 1, ..,4.
Solutions left of the marked points are unstable due to the appearance of ergoregions. Figure
from [13].

his solutions. This was then resolved by [13], which reproduced the results [52] and obtain
stable relativistic solution for k = 1,2,3,4 (using the publicly available KADATH6 library).
Non-relativistic spinning solutions have been studied in [72] and [73].

Rotating solutions of Boson stars are difficult to obtain, because the scalar fields need
to break spherical symmetry to acquire angular momentum. However, there exist special
spinning solutions which reduce the equation of motion to a one-dimensional problem [62]
by using and increasing the number of fields N. These can be obtained using the ansatz

φkm = φk(t,r)Y km(ϕ,θ) , (1.44)

where Y km(ϕ,θ) is a spherical harmonic, with k = (N −1)/2, and N is the number of fields.
For larger k, the compactness increases significantly, from C = 0.08 for k = 0 (which gives
the normal massive Boson stars) to C = 0.14 for k = 4.

The work of [74] studied the stability of scalar and vector solutions. Using the fully
non-linear evolution, they found that after some time the stars would develop instabilities,
causing the separation into two Boson stars or collapse into a Black hole. Furthermore,

6see https://kadath.obspm.fr/

https://kadath.obspm.fr/
https://kadath.obspm.fr/
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solutions with non-minimal couplings have been studied [75], as well as Proca stars [12],
charged Boson stars [76], Dirac stars [77], and multistate rotating stars [78].

1.2 Detecting Boson stars

1.2.1 Gravitational Waves from Binaries with Boson stars

The recent detection of Gravitational Waves from Black hole (BH) binaries [5] by the
LIGO/Virgo collaboration marked the start of a new era of observations. In the next two
sections, we explore the possibility of detecting or constraining the existence of Boson star
binaries by their emission of gravitational waves.

Before merger - Tidal deformations

Firstly, we focus on the gravitational wave signal emitted before merger [14]. The tidal
deformability of non-spinning Boson stars has been the subject of several studies [79, 14, 80].
We parametrise the gravitational wave signal emitted by the binary as

h̃( f ) =A( f )eiψ( f ) , (1.45)

where h̃( f ) is the strain and f the orbital frequency. The Boson star distinguishes itself by
the energy transfer from orbital energy into deformation energy, which causes the system to
inspiral faster. There might be further sources of energy-loss, for example scalar radiation,
which requires more detailed studies. This has been studied for Black hole binaries with
scalar wigs in scalar Gauss-Bonnet gravity [81]. We use the stationary-phase approximation

d2ψ

dΩ2 = 2
(dE/dΩ)

ĖGW
(1.46)

where ĖGW is the energy flux of GWs and Ω = π f the orbital frequency. One can find the
solutions to the previous equation

ψ =
3

128(πM f )5/2

(
1+ ...+(αtidal + ...)x5 + ...

)
(1.47)
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Fig. 1.8 Tidal deformability [14] : Tidal deformations for massive self-interacting Boson
stars. A large lower bound of Λ ≥ 280 allows the distiction between Boson stars and other
compact object (i.e. Neutron stars or Black holes).

where M = M1 +M2 and M1,2 are the masses corresponding to the compact objects in the
binary, x = (πM f )2/3, ν = M1M2/M2, M= ν3/5M and

αtidal =−39
2

Λ̃ , (1.48)

with the weighted tidal deformation

Λ̃ =
16
13

((
1+12

M2

M1

M5
1

(M1 +M2)5

)
Λ̄1 +

(
1+12

M1

M2

M5
2

(M1 +M2)5

)
Λ̄2

)
, (1.49)

where Λ̄i are the individual deformability parameters. They can be best understood by
looking at the metric far away from the Boson star in the local frame

gtt =−1+
2 M

r
+

3Qi j

r3

(
nin j − 1

3
δ

i j
)
−Ei jxix j +O(r3) , (1.50)
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where xi are the coordinates, ni = xi/r the normal vector, Ei j is the external force and Qi j the
quadrupol induced by it. The tidal deformability λ̄ is defined by the relation

Qi j =−λ̄Ei j . (1.51)

We can define the dimensionless quantity

Λ̄ = λ̄/M5 , (1.52)

which was calculated in [14] for a massive potential with self-interactions ( see Fig. 1.8 )

V (φ) =
1
2

m2|φ |2 + 1
4

λ |φ |4 , (1.53)

as well as for solitonic stars

V (φ) = m2|φ |2
(

1− |φ |2
σ2

0

)2

. (1.54)

Furthermore, [14] found that for Boson stars with self-interactions a lower bound on the
deformability of Λ̄ ≥ 280, which is much larger then the one for Neutron stars (Λ̄ ≥ 10)
and for Black holes (Λ̄ = 0). This gap in deformability permits a clear distinction between
self-interacting Boson stars and NS/BH.

This distinction becomes more difficult for solitonic Boson stars, since they have Λ̄ ≥ 1.3,
making it hard to distinguish them from NS/BH with just one measurement. However,
combining measurements may allow us to make this distinction, as discussed in [14].

There is the possibility that self-interacting Boson stars can be distinguished from NS/BH
with Advanced LIGO and Virgo, though 3G detectors have better chances.

Merger

The previous section focused on the inspiral part of the signal, though at merger the full
non-linearity of the matter and Einstein equations will be dominant, thus potentially making
it much easier to distinguish Boson stars from NS/BH. However, to adequately model the
system and its gravitational wave output, numerical methods are needed. In [82], the first
merger of Boson stars was simulated and subsequently followed by [83, 71, 84, 85]. For real
scalar fields, [86] performed the first study, with Proca stars studied in [87]. The merger of
Boson stars with different scalar sectors and of mixed fermion-boson stars have been studied
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in [88, 89], respectively. In chapter 4, we will discuss the head-on mergers as discussed in
[19].

In most of the mentioned papers [84, 89, 83, 71, 84, 82, 86], the initial data is obtained
by linearly superposing two separate single object solutions

gµν = g1
µν +g2

µν −ηµν , (1.55)

where ηµν is the Minkowski metric and gi
µν is the metric of a single Boson star. This

operation creates a spacetime inconsistent with general relativity and creates Hamiltonian and
Momentum constraint violations. We also found that this initial data can create radial modes
which have significant effects on the dynamics, as well as giving unphysical gravitational
wave signals. In this thesis, we present a simple solution to these problems for the case
of head-on mergers, which is described in detail in Appendix C.1.1. This eliminates any
excitations that we could measure for the mergers studied.

In contrast to the parameters defining a binary Black hole, Boson stars have additional
parameters, like their relative phase or their rotation. For complex stars, due to the sign of
rotation in field-space

φ = φ1eiωt +φ2e−iωt , (1.56)

the two stars have a Noether charge with opposite signs and, hence, a zero net charge. This
indicates that in the final state all matter is dispersed, which has been confirmed in simulations
[84]. This discussion only applies to complex fields, since real scalar fields do not have a
sign of rotation.

Furthermore, the phase-difference δ between the two stars

φ = φ1eiωt +φ2eiωt+iδ , (1.57)

is crucial for an equal mass merger. For δ = π/2 the stars cannot merge due to the resulting
mirror-symmetry

φ(x,y,z, t) =−φ(−x,y,z, t) (1.58)

and a repulsive force causes them to bounce off each other. This extreme repulsiveness is
constrained to the values close to δ = π/2: for small values deviating from it, they simply
merge [90].

Surprisingly, in [84, 87] none of the simulated binaries formed a rotating Boson star state
as described in the previous section; all cases that did not form Black holes seem to converge
to a non-rotating state.



1.3 Boson stars as Supermassive Black holes 25

Recent work by [91–93] studied the merger of an Axion star with a Black hole or NS.
The recent discovery of the first Neutron star merger [94] which has been observed using
both electromagnetic and gravitational wave detectors, started the age of multi-messenger
astronomy. There are indications that an AS-NS event might be able to mimic a BNS or
NSBH merger [92] in certain situations.

post-merger

Later in this thesis, we study the merger of two Oscillatons, which results in another stable
Oscilloton for light enough cases. The resulting remnant is highly excited and continuously
radiates gravitational waves in a periodic pattern. Due to their relatively large amplitude,
they could be a potentially interesting feature for detections. Both of these mergers did not
contain any angular momentum, which might change the radiation profile significantly.

1.3 Boson stars as Supermassive Black holes

Unlike Neutrons stars, which due to the Chandrasekhar limit have a maximum mass of
∼ 3M⊙, ultralight scalar fields could form stable objects with masses comparable to super-
massive Black holes (SMBH). This raises the question of whether the assumed Black hole in
the centre of the galaxy M87 could potentially be a Boson star. This hypothesis can be tested
thanks to the recent efforts of the Event Horizon Telescope [37, 38] and BlackHoleCam [39],
which measures millimetre synchrotron radiation from the accretion disc using very-long-
baseline interferometry (VLBI) methods. Furthermore, Boson stars are a toy model for any
other horizon-free compact objects without hard surfaces.

To understand what a Boson star would look like one has to model the accretion disk
in the background spacetime of the Boson star, and then calculate the light rays in reverse
through the spacetime and recreate the picture. [15] undertook such a complete study,
producing the images in Fig. 1.9. The general-relativistic ideal-magnetohydrodynamic
GRMHD simulations showed the formation of a torus in the interior of the Boson star. Due
to the angular momentum contained in the plasma, there is very little material in the centre of
the scalar Boson star, which reproduces the crescent-like feature seen for Kerr Black holes.
This Boson star would not be able to be a Black hole mimicker, because the size of the hole
would be too small for the expected mass.

In another study [95], where rotating mini-boson stars where considered, there exist
configurations (k = 1, ω = 0.77) for which the resulting image is harder to distinguish than
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in the non-rotating case. However, the accretion disc in the study [95] was not obtained using
dynamical evolution, but constructed a priori and kept static.

Another limitation is that these studies only consider a static spacetime. Many Boson
stars (e.g. Oscillatons) also introduce a time-dependence of the metric, which might give a
transient signal.

In [95, 15, 96], only massive potentials V (φ) = 1
2m2|φ |2 were considered, which is only

one of potentials studied in literature (see Table 1.3). A larger study of potentials would be
needed to provide conclusive information whether Boson stars can be distinguished from
SMBH using VLBI methods.
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Fig. 1.9 Comparison between Kerr BH and Boson star : Simulated raytraced pictures at
230 GHz from electron synchrotron emission of the accrection disc which was obtained by
GRMHD simulations. Comparison between the picture of a spinning kerr Black hole and a
non-spinning mini-boson star [15].





Chapter 2

Black hole formation from Axion stars

The work presented in this chapter is derived from the paper “Black hole formation from
Axion stars” [17], published in the Journal of Cosmology and Astroparticle Physics (JCAP).

The classical equations of motion for an axion with potential V (φ)=m2
a f 2

a [1−cos(φ/ fa)]

possess quasi-stable, localized, oscillating solutions, which we refer to as “Axion stars”.
We study, for the first time, collapse of Axion stars numerically using the full non-linear
Einstein equations of general relativity and the full non-perturbative cosine potential. We
map regions on an “Axion star stability diagram", parameterized by the initial ADM mass,
MADM, and axion decay constant, fa. We identify three regions of the parameter space: i)

long-lived oscillating Axion star solutions, with a base frequency, ma, modulated by self-
interactions, ii) collapse to a BH and iii) complete dispersal due to gravitational cooling and
interactions. We locate the boundaries of these three regions and an approximate “triple point"
(MTP, fTP) ∼ (2.4M2

pl/ma,0.3Mpl). For fa below the triple point BH formation proceeds
during winding (in the complex U(1) picture) of the axion field near the dispersal phase.
This could prevent astrophysical BH formation from Axion stars with fa ≪ Mpl . For larger
fa & fTP, BH formation occurs through the stable branch and we estimate the mass ratio of
the BH to the stable state at the phase boundary to be O(1) within numerical uncertainty.
We discuss the observational relevance of our findings for Axion stars as BH seeds, which
are supermassive in the case of ultralight axions. For the QCD axion, the typical BH mass
formed from Axion star collapse is MBH ∼ 3.4( fa/0.6Mpl)

1.2M⊙.
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2.1 Introduction

The influence of dark matter (DM) can be seen over a vast range of astrophysical scales
[97], from super clusters of galaxies with M ∼ 1015M⊙ (e.g. Ref. [98]), down to the
disruption of tidal streams, and contribution to reionization, by substructures with M ∼
106M⊙ (e.g. Ref. [99, 100]), yet the particle nature of DM remains unknown. Theories
of DM span an even vaster range of scales, from primordial black holes (BHs), with mass
as large as MBH ∼ 102M⊙ ∼ 1032 kg (e.g. Ref. [101]), down to ultra-light axions, with
ma ∼ 10−22 eV ∼ 10−60 kg (e.g. Ref. [102]). In the absence of direct detection of DM in the
laboratory, the frontiers of our knowledge are pushed back by the gravitational interactions
of DM, and its influence on astrophysics.
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Fig. 2.1 The Axion star stability diagram. The stability diagram is parameterized by the
axion decay constant, fa, and the initial condition MADM (which we set using the initial
field velocity, Π, at the centre). Solid lines mark the approximate boundaries between three
regions of the Axion star parameter space: quasi-stability (R1), collapse to a BH (R2), and
dispersal (R3). We postulate the existence of a “triple point" between these regions. The
dashed line marks the region below which axion mass is effectively negligible. Simulated
Axion stars are marked as circles; other symbols mark points explored in more detail in
Section 2.2. Below the triple point, for fa ≪ Mpl , under an increase in mass, dispersal of the
star via winding of the axion field occurs before collapse to a BH. Above the triple point,
stable Axion stars can collapse to BHs by acquiring mass e.g. by accretion.
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DM composed of axions (or other scalar fields) can be created non-thermally in the
early Universe via the vacuum realignment mechanism. The DM consists of a classical field
undergoing coherent oscillations about a quadratic potential minimum [103–106]. Such a
model differs from standard cold DM below the scalar field Jeans scale [107]. Below the
Jeans scale, DM perturbations are pressure supported by the field gradient energy. In the
non-linear regime, the gradient energy supports quasi-stable localised solutions [108–110].
We will refer to these solutions generally as “Axion stars”. 1 Axion stars are closely related
to the well-known Boson star soliton solutions for a complex field with a conserved global
U(1) symmetry [34]. In the present work, we study the gravitational collapse of Axion stars
to BHs.

In models of axion DM, Axion stars are expected to be the smallest possible DM
structures. Axion stars can form astrophysically either from hierarchical structure formation
inside dark matter haloes [111], or are seeded at early times from the large field fluctuations
induced by the symmetry breaking leading to axion production [112]. Axion stars can range
in mass from O(10−12M⊙) for the QCD axion (e.g. Refs. [113–115]), up to O(106M⊙) in
the cores of DM haloes formed of ultra-light axion-like particles (e.g. Refs. [111, 116, 117,
90, 118–126]).

The strength of the axion self interactions is governed by the “axion decay constant", fa.
It is known that in the m2φ 2 approximation, which represents the limit φ/ fa ≪ 1, Axion
stars possess a critical mass [108] beyond which they are unstable: they migrate to the
stable branch under perturbations that decrease the total mass, or collapse to BHs under
perturbations that increase the total mass [55]. Criticality occurs when φ(r = 0)≈ 0.48Mpl ,
where Mpl = 1/

√
8πGN ≈ 2.4×1018GeV is the reduced Planck mass. The expectation from

high-energy physics is that generically fa < Mpl .2 Therefore, Axion stars may exist far from
the m2φ 2 region of the potential, and their stability may be affected by the periodicity and
anharmonicity of the axion potential.

As we will discuss, the initial central field velocity of the Axion star, Π(r = 0), specifies
its ADM mass, MADM, and thus collapse is ultimately determined by the star’s mass. In this
work we investigate the Axion star solution space parameterized by (MADM, fa). For each
value of fa, we scan a range of initial values of ADM mass to identify regions on an “Axion
star stability diagram".

1In the case of a pure m2φ 2 scalar potential these solutions are known as “oscillatons”. In the case of axion
DM, they go under various names depending on the mechanism of formation: axion miniclusters, axion drops,
solitons etc.

2See e.g. Refs. [127–133]. This subject and the related “weak gravity conjecture” are hotly debated at
present with relation to axion inflation.
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We explore this stability diagram numerically, solving the full non-linear Einstein equa-
tions of general relativity (GR) using the numerical GR code GRCHOMBO [134], see
Appendix A.2. Numerical GR permits us to evolve regimes in which strong gravity effects
play a role without linear approximations. The development of stable numerical formulations
(such as BSSN [135, 136], which we use here) and of “moving puncture" gauge conditions
(see [8, 6]), have been critical for recent advances in the field. The use of these techniques
allows us to stably evolve spacetimes up to and beyond collapse to a BH. The resulting Axion
star stability diagram is shown in Fig. 2.1.

We discuss our simulations and main results in Section 2.2. Possible astrophysical
consequences of our results are discussed in Section 2.3, and we conclude in Section 2.4.
The appendices contain some technical details of the code and simulations, and a brief
introduction to axion cosmology and the more familiar non-relativistic Axion stars.

Some movies of simulations from this work can be accessed via the GRCHOMBO website
http://www.grchombo.org/.

2.2 Simulating Axion Stars

We simulate Axion stars in numerical GR using GRCHOMBO [134]. Details of our numerical
scheme can be found in Appendix A.2 and Appendix A.3. Numerical relativity solves GR
as an initial value problem. We simulate points on the two-dimensional axion stability
diagram defined by the axion decay constant, fa (the axion mass is absorbed in the choice
of units for length and time), and a one-parameter family of initial conditions specified
by the initial ADM mass, MADM. We begin by defining the problem under consideration
and giving the axion potential, with additional details relegated to Appendix A.1. Next we
consider an approximation to axion stars that allows for a perturbative stability analysis. We
then describe our initial conditions. Next we present our main results concerning the phase
diagram, Fig. 2.1. We end with a brief discussion of an interesting transient phenomenon:
the “scalar wig”.

Throughout, we simulate axion stars as a solution to the classical equations of motion.
The semi-classical approximation to Einstein’s equations is

Gµν = 8πGN⟨Tµν⟩Q , (2.1)

where ⟨Tµν⟩Q is the expectation value of the axion energy momentum tensor in some state
|Q⟩. Solving the classical equations of motion corresponds to setting |Q⟩= |φ⟩. The state
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|φ⟩ is defined such that the expectation value of the field operator (and its correlators) obeys
the classical equations of motion, i.e. �φcl = 0 with φcl ≡ ⟨φ |φ̂ |φ⟩. Given explicitly in terms
of creation operators |φ⟩ is (see e.g. Ref. [137]):

|φ⟩=Aexp
[∫ d3k

(2π3)
φ̃ (⃗k)â†

k

]
|0⟩ , (2.2)

where A is a normalization factor.
Our choice of state |Q⟩= |φ⟩ is quite different from the state used in e.g. Refs. [108, 138]

who take |Q⟩= |N,1,0,0⟩, i.e. a state of definite particle number N in the ground state in
spherical symmetry with principal quantum numbers n = 1, ℓ= m = 0. The expectation value
of Tµν in such a state is time independent, and is not suitable for our purposes of studying
dynamics. In the relativistic regime, the real scalar axion field has no conserved particle
number, although there is an effective conserved particle number in the non-relativistic limit
(see Appendix A.1.1). The state |φ⟩ represents the thermalized condensate of axions created
either by the smoothing of fluctations by inflation in the misalignment mechanism, or by
late-time Bose-Einstein condensation due to self interactions [102, 137]. We discuss quantum
corrections to our treatment briefly in Section 2.4, but leave a systematic treatment to a future
work.

2.2.1 The axion potential

Axions are pseudo-Goldstone bosons of spontaneously broken global U(1) “Peccei-Quinn”
(PQ) symmetries [139]. The complex PQ-field, ϕ , has the potential

V (ϕ) = λϕ

(
|ϕ|2 − f 2

a
2

)2

. (2.3)

The U(1)PQ symmetry is broken at a scale fa, which in string theory is expected to be in the
range 1012 GeV . fa . Mpl [140, 128],3 and for the QCD axion is bounded experimentally
to fa & 109 GeV [142]. After symmetry breaking, writing the PQ field as ϕ = (ρ/

√
2)eiφ/ fa ,

the radial field ρ acquires a vacuum expectation value such that: ⟨ϕ⟩= ( fa/
√

2)eiφ/ fa . The
angular degree of freedom, the axion φ , is the Goldstone boson of the broken symmetry.

As a Goldstone boson, the axion enjoys a shift symmetry, i.e. the action contains only
terms in ∂µφ and there is a symmetry under φ → φ +c for any real number c. In general, this
shift symmetry is anomalous, and is broken to a discrete symmetry, φ → φ +2πn for some

3This ignores alignment [141, 131] and assumes soft SUSY masses are above about 1 TeV.
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integer n. In the case of QCD this occurs thanks to the chiral anomaly if there are quarks
charged under the chiral U(1)PQ symmetry. In a general model, quantum gravity effects are
expected to break all continuous global symmetries.4 In practice in string theory, this occurs
due to the presence of instantons and other non-perturbative effects [128].

The breaking of the axion shift symmetry selects a particular direction in the field space
ϕ = ϕ1 + iϕ2. In the potential we can write this as:

V (ϕ) = λϕ

(
|ϕ|2 − f 2

a
2

)2

+ εϕ1 , (2.4)

for some parameter ε of mass dimension three, which is “small” in the sense that ε/ f 3
a ≪ 1.

In some limits, as we will discuss in the following, we can ignore the radial mode and
consider simply a periodic potential for the axion:5

V (φ) = Λ
4
a

[
1− cos

(
φ

fa

)]
≡ m2

a f 2
a

[
1− cos

(
φ

fa

)]
, (2.5)

and we find that ε =
√

2m2
a fa. The minimum of the potential at φ = 0 (and not the local

curvature of the potential) defines the “axion mass”,6 ma = Λ2
a/ fa. Since non-perturbative

effects generally switch on at scales far below the fundamental scale, while we expect fa

to be of order the fundamental scale, axions are naturally extremely light via the seesaw
mechanism as long as the shift symmetry breaking is small: ε/ f 3

a =
√

2(ma/ fa)
2 ≪ 1. The

axion is also hierarchically lighter than the radial field, ρ .
Due to the hierarchy of scales between the axion mass and the radial mode, in this work

we simulate the axion field as real valued in the cosine potential. A discussion of simulations
using the full complex PQ field, versus the real-valued axion field, is contained in Appendix
A.3.2, where we also discuss the stability of the radial mode.

Given that we are modelling the periodic potential and allowing the field to go over the
maximum at φ = π fa, it is possible to imagine situations where two adjacent regions in space
have the same field value in the corresponding full U(1) potential – with each 2π traversed

4This is thanks to the BH no-hair theorems [143], the existence of wormholes [144, 145], and the exchange
of Planck-scale BHs in gravitational scattering. In the standard model, for example, this allows for violation
of Baryon number suppressed by powers of Mpl [146]. For discussion relating to the QCD axion, see e.g.
Ref. [147].

5The cosine potential is the canonical, and simplest, axion potential. Note, however, that for the QCD
axion there are corrections to the chiral Lagrangian that steepen the potential slightly away from the φ = 0 (e.g.
Ref. [148]).

6Of course, the local curvature defines the instantaneous mass, and all the dynamics. The definition here is
just a useful parameterization that we use to choose units.
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in the periodic potential corresponding to a winding of the U(1) vacuum manifold. This can
lead to the formation of closed global strings – our fixed boundary conditions with φ = 0
imply that the total winding number must be conserved and since our initial configuration
has zero winding number, only closed strings can form.

Energetically, as long as φ can traverse more than 2π (which indeed happens in our
simulations) such closed strings can form. Nevertheless, the spherical symmetry of our
initial conditions (and hence of the subsequent evolution) means that topologically it will be
unlikely that closed strings (which are topologically tori) can form. It would be interesting
to imagine situations where this is not the case, where loops of string could be produced in
objects with less symmetric initial conditions such as that of two colliding Axion stars.

In addition to strings, the axion potential can support the presence of domain walls.7

The many “minima” of the axion potential V (φ) = Λ4
a[1− cos(φ/ fa)] correspond to a single

minimum in the complex broken U(1) potential. In the periodic potential picture, domain
walls form when neighbouring regions fall into different minima – in the U(1) picture these
domain walls corresponds to the twisting of the argument of the complex field ϕ (which
carries energy since the U(1) symmetry is broken). In the simple model when there is only
a single minimum in the U(1) potential, the formation of a domain wall is a necessary but
insufficient condition for the formation of a closed string.

In variants of the axion model (in particular the DFSZ axion in QCD) anomaly factors
lead to more than one distinct minimum within the U(1) vacuum manifold. In this case,
domain walls can form even if the argument of ϕ twists less than 2π . We leave consideration
of such cases to a future work. As long as the radial mode is stable and the boundary
conditions fixed, all considerations of domain walls and strings are captured by the evolution
of the real field in the cosine potential. Operationally, to interpret the results in terms of the
full U(1) potential, one simply applies the appropriate surjective map from R1 to S1.

2.2.2 Perturbative Analysis of Axion Stars Solutions

In this section, we investigate the stability of the Axion stars in the relativistic, but weak
gravity, regime with small self-interactions.8 Our goal is to show that the presence of higher
order terms in the potential generates a long wavelength modulation of the oscillaton. As we
will see below, since we will be working on the super long wavelength limit, this is not a full

7Again the fixed boundary conditions imply that the global solitonic charge of the domain walls must be
conserved, and hence equal to zero at all times.

8The non-relativistic limit including gravity but with no self-interactions is discussed briefly in Ap-
pendix A.1.1.
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stability analysis (which we will undertake in a separate work). For a stability analysis of
Boson stars in the limit with no higher order terms in the potential, see [149].

In the limit of small angles, we can expand the potential Eq. (2.5) in orders of (φ/ fa) as
follows

V (φ) = m2
a f 2

a

[
1− cos

(
φ

fa

)]
=

1
2

m2
aφ

2 − 1
4!

m2
aφ 4

f 2
a

+ . . .

(2.6)

with the subsequent equation of motion for the scalar field

�φ −m2
aφ +

1
6

m2
aφ 3

f 2
a

= 0 . (2.7)

Consider the perturbative expansion

φ = φ̄ +δφ (2.8)

and inserting this back into Eq.(2.7) we obtain the zeroth order equation of motion

�φ̄ −m2
aφ̄ +

1
6

m2
aφ̄ 3

f 2
a

= 0 . (2.9)

In spherically symmetric coordinates, we can expand the d’Alembertian as follows

�φ̄ =− ¨̄
φ +

2
r

∂ φ̄

∂ r
+

∂ 2φ̄

∂ r2 +gravity terms . (2.10)

Consider the motion of the field at the origin r = 0, and write φ̄(r = 0) = φ̄0. Regularity at
the origin imposes the condition ∂ φ̄0/∂ r = 0. Furthermore, consider the limit where gravity
is subdominant, i.e. where MADM .O(0.1), so we can ignore the gravity terms. Finally, the
gradient term

∂ 2φ̄

∂ r2 ∼ k2
φ̄ , (2.11)

where k−1 is roughly the characteristic size of the Axion star. For a generic Axion star,
k ≪ ω where ω is the characteristic frequency of the axion, and hence we also neglect this
term at low orders [150, 151].
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After making all these assumptions, the partial differential equation Eq. (2.9) is reduced
into an ordinary differential equation

¨̄
φ0 +m2

aφ̄0

(
1− 1

6
φ̄ 2

0
f 2
a

)
= 0 . (2.12)

In the small angle limit, f 2
a ≫ (1/6)|φ̄0|2, so φ̄0 has an oscillatory solution

φ̄0(t) = Acosω1t , (2.13)

where ω1 ≈ ma
√

1− (1/6)(A/ fa)2 ≈ ma. At second order in 1/ f 2
a , we obtain the Mathieu

equation for δφ

d2

dτ2 δφ +(a−2qcos2τ)δφ = 0 , (2.14)

where we have rescaled time τ = t/ω1 and

a =
m2

a

ω2
1

(
1− 1

4

(
A
fa

)2
)

, q =
m2

a

8ω2
1

(
A
fa

)2

. (2.15)

In the small angle approximation, A/ fa ≪ 1, an approximate solution is

δφ ∝ cosω2t , ω2 = ω1
√

a / ω1 . (2.16)

The last inequality on the frequencies implies that the total solution, φ̄ +δφ , at r = 0:

φ(t,r = 0)≈Cm cos
(

ω1 +ω2

2
t
)

cos
(

ω1 −ω2

2
t
)
, (2.17)

(where Cm is a constant), is a modulation of the short wavelength frequency (ω1+ω2)/2≈ω1

with a long wavelength (ω1 −ω2)/2 frequency. We observe such a modulation in our
numerical solutions (Section 2.2.4).

Note that since we have dropped the gradient terms in this analysis – and hence consider
only the long wavelength limit of the true solution, it would be treacherous to analyze this
result further using a Floquet type stability analysis [152, 153]. We leave a more detailed
analysis to a future work.
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2.2.3 Initial Conditions

In this section we construct initial conditions for our Axion star. These are based on the
solutions for oscillatons in an m2φ 2 potential, for which the full solutions in space and
time are known (that is, they have been obtained semi-analytically, see Refs. [55, 67, 56]).
Since the axion potential is more complex, the oscillaton profiles for the field and metric
components will not, in general, satisfy our axion constraint equations. The exception is
the time instant at which φ(r) is zero everywhere, since V (φ = 0) = 0 in either the m2φ 2 or
cosine potential. Thus, since the Hamiltonian constraint will contain the same value of ρ ,
the same field and metric profiles will be a solution in either case. It is this instantaneous
solution which is chosen as the initial condition for our Axion star.

Since we choose initial conditions for which φ(r) is zero everywhere on the initial
hypersurface, all information is contained in the profile for the field velocity Π = φ̇/α

(where α is the lapse function in the ADM decomposition of GR, see Appendix A.2). Whilst
the field data is not time symmetric (the field profile is moving “up”), the momentum
constraint is still trivially satisfied by setting the extrinsic curvature Ki j = 0 due to the fact
that the momentum density Si is instantaneously zero. The Hamiltonian constraint is then
solved using a Fourier method, which is described in Appendix A.1.2.

Since we assume that the initial radial profile for Π(r) is that of an oscillaton, we can
define a one parameter family by the initial value of Π(r = 0). The ADM masses of the
the profiles are fixed by Π(r = 0), and so MADM can be used as an alternative (and perhaps
more intuitive) variable for our initial conditions on the stability diagram. Thus, for a given
value of fa, the initial conditions of our Axion stars are then specified entirely by the value
of MADM, giving our two dimensional solution space.

Although φ = 0 everywhere on the initial hypersurface for our solutions, we refer to
them as “Axion stars” because of their formal construction from the compact quasi-stable
solutions in the m2φ 2 theory.

The radial profiles of Π(t = ti) are illustrated in Fig. 2.2. The solutions with larger MADM

have larger central field velocity, and are more compact radially. The larger field velocity
implies that the axion field will travel further up the potential, and will feel more of the effect
of the self-interactions. Note that the radii of these stars are bigger than their Schwarzchild
radii so any collapse into a Black hole is purely driven by its dynamics.

Our chosen one-parameter family of initial conditions does not, of course, cover the most
general possible initial conditions for an Axion star in spherical symmetry – in theory one
could choose to evolve any perturbation in the field, with any radial spread and velocity
profile. There are no restrictions in the code requiring specific initial conditions, except that
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Fig. 2.2 Initial Conditions. We show our initial conditions, where φ is zero everywhere and
the conjugate momentum of the field Π contains all the information about the solution. This
solution for Π is correct for any value of fa in the full cosine potential, since V (φ = 0) = 0
for all fa and the Hamiltonian constraint is satisfied. Therefore, we can use these Π(ti)
profiles, which we parameterize according to their ADM mass using Fig. A.1, to define our
one-parameter family of initial conditions for Axion stars. The ADM mass is measured in
units of M2

pl/ma.

they must satisfy the Hamiltonian and Momentum constraints of GR. However, our initial
conditions provide a useful reduction of the solution space of Axion stars for this study. We
also consider them well motivated astrophysically by their relation to the non-relativistic
Axion stars expected to form in DM halos.

2.2.4 Three phases of Axion stars

Having calculated the initial conditions, we evolved a range of models parameterized by
(MADM, fa), as shown in Fig. 2.1. The solution space is divided into three regions:

• Region 1 (stable): Where the maximum axion angle φ/ fa . 0.1π , we find quasi-stable
solutions for which the lifetime is much longer than the individual oscillations of the
field profile. These solutions differ from the m2φ 2 model by small modulations and
are true Axion stars (see Fig. 2.3).
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Fig. 2.3 Stable Axion stars. (MADM, fa) = (2.86,0.92), R1 star in Fig. 2.1. Left panel: The
evolution of the central field value, φ(r = 0), over time of a stable Axion star, compared to
that of an oscillaton (i.e. pure m2

aφ 2). Stability is shown over many periods of oscillation.
The existence of two frequencies in this solution can be understood qualitatively from the
perturbative analysis in Section 2.2.2. Right panel: comparison of the potential for an m2

aφ 2

oscillaton (dashed) and the cosine Axion star (solid). The two marked points correspond to
times in the evolution of the Axion star shown in the left panel.

• Region 2 (unstable): Where the initial ADM mass is sufficiently large, we find
collapse to black holes (see Figs. 2.4 and 2.5) even though the stars’ radii are greater
than their respective Schwarzchild radii.

• Region 3 (unstable): Where fa is small (large self-interactions) and the initial field
velocity is sufficiently large, we see dispersal of the Axion star caused by scalar
radiation (see Figs. 2.6 and 2.7).

There are various competing physical factors which determine the evolution of the Axion
stars in each part of the solution space. Gravity, in the form of the total Axion star mass,
tends to lead to collapse. An opposing factor is the gradient pressure, which tends to support
the star against collapse (the familiar axion Jeans scale in linear theory). Thus if the profile
of the Axion star grows narrower, or if the field makes excursions over a large distance in
field space, this tends to make the field “bounce back" to a flatter configuration.

https://youtu.be/bpiW-lsN1tE?list=PLSkfizpQDrcYflSOzWVSPRVjGDf2s6-bw
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The interplay between gravity and gradient energy results in the interesting quasi-stable
Axion star configurations of Region 1, with a boundary separating it from the unstable
Regions 2 and 3. This division of the solution space into stable and unstable regions can be
understood qualitatively by extending the calculations in Section 2.2.2 to a more advanced
stability analysis. However, we found that an adequate quantitative understanding (e.g.
predicting the slope of the boundary between stability and inability) cannot be achieved by
such methods. The endpoint of the instability: collapse in Region 2, or dispersal in Region 3,
is determined by dynamics. These three fates have also been observed in different cases (see
Ref. [45]).

In the case of stable Axion stars in Region 1, they remain in phase, i.e. the angular
velocity of the φ field remains coherent. This, combined with the fixed boundary at infinity,
necessitates that the traverse of φ is larger in the center of the star than at its periphery
– a behaviour which is also exhibited by flat space oscillons in a periodic potential [154].
Intuitively, one can understand the tendency for the Axion stars to stay in phase by noting
that any deviation creating an off phase configuration radially will result in an increase in the
total gradient energy. Hence, roughly speaking, one can say that the in-phase configuration is
a “low energy configuration” (i.e. excess energy will be radiated away quickly).

A closer look at the evolution of the central axion field value in a Region 1 stable Axion
star is shown in Fig. 2.3. The evolution shows two distinct frequencies: a high frequency
close to that of the m2φ 2 theory, and a low, modulating frequency. This behaviour can be
understood qualitatively in terms of the perturbative analysis in Section 2.2.2, though we were
not able to quantitatively reproduce the exact frequency ratio via this simplified calculation.
In addition to the dynamics of the central point, conservation of energy implies that this
“breathing” must be accompanied by corresponding modulation of the characteristic size of
the Axion star, which we also observe in our numerical simulations . While this observation
of modulating, stable Axion star solutions in full numerical GR is a new result of the present
work, this effect is also first alluded to in Ref. [154] in simulations without gravitational
backreaction.

In the unstable region of the solution space, Region 2, BH formation occurs. This is
demonstrated in Figs. 2.4 and 2.5, for BH formation near the “triple point” and near the
dispersal region respectively.

Fig. 2.4 shows the central field evolution over time, the radial profile of the metric lapse,
α , at various time slices, and the journey of the field over the potential. At this point, BH
formation is occurring near the boundary between the stable and unstable regions. The
instability is monotonic, in the sense that the amplitude of the central field value oscillations
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always grows over time. In the so-called “moving puncture gauge” which we employ in
our simulations [155], the lapse is driven to zero in regions of high curvature, hence a good
indication of BH formation is that the central value of the lapse approaches zero. In this
simulation, the field amplitude grows significantly, reaching the top of the potential “hill"
before collapse. It thus feels the full anharmonicity of the potential. This shows that BH
formation from Axion stars, even near the stable region, involves the full cosine potential
and self-interactions.

A qualitative picture of BH formation near the dispersing region is shown in the contour
plots of Fig. 2.5, which show the conformal metric factor, χ (as defined and described in
Appendix A.3). Large gradients in χ indicate strongly curved space, and a collapse to zero at
some point is usually indicative of a BH having formed. We use a horizon finder to locate
the approximate trapped surface of the ensuing black hole (see Fig. 2.5), from which we can
obtain a lower bound on the final BH mass. In the case of BH formation near the dispersing
region, ejection of matter during collapse is important.

This ejection of matter via scalar radiation, sometimes known as “gravitational cool-
ing” [109], is the third important factor at play for Axion stars, and the most important factor
in Region 3. If the Axion star mass is small, and the initial field velocity is large, gradient
pressure prevents collapse and the continuous ejection of shells of matter will gradually
disperse the star.

We illustrate dispersal in Region 3 qualitatively in Fig. 2.6 with contour plots at fixed
time slices, and more quantitatively in Fig. 2.7 where we show the time evolution of the
field and conformal metric factor at the origin. Dispersal of the Axion star in Region 3 is
indicated most clearly by the time evolution of the metric conformal factor at the origin, χ(0).
As detailed in Appendix A.3, for weak field gravity the conformal factor is approximately
related to the Newtonian gravitational potential VNewton by:

χ =

√
1

1−2VNewton
, (2.18)

Thus as χ decreases below 1, this corresponds to a negative potential into which the
field initially infalls. Later, matter ejection takes over when χ is driven to χ > 1, indicating
that the Newtonian potential is positive and the Axion star is dispersing. The intervening
oscillations are the result of shells of matter collapsing and then being “blown off" during the
gravitational cooling. Eventually, when all the material has dispersed, it will settle back to
χ ≈ 1, corresponding to flat space and the absence of a gravitational potential.
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A qualitatively new feature in Region 3 is seen by inspecting the evolution of the central
value of the axion field, φ(0). The initial field velocity in Region 3 is large, and the central
axion field value undergoes winding in the U(1) vacuum manifold, oscillating around zero
with an almost fixed period and decaying amplitude. In the cosine potential, this is seen as the
field moving “over the top” of the potential hills. Like a wound-up spring, after the field goes
over the top a number of times, it unwinds and returns to negative values. This unwinding is
symmetric and the field always oscillates about φ = 0, never getting trapped in one of the
other minima, due to the boundary conditions on the field, which impose conserved zero
winding number.

Given that we have identified three distinct regions of Axion stars, and mapped some of
the structure of the solution space, it is evident that there must exist a “triple point", where
dispersal, collapse, and stability co-exist. We can estimate the approximate location of the
triple point:

MTP ∼ 2.4
M2

pl

ma
, (2.19)

fTP ∼ 0.3Mpl . (2.20)

The existence of the triple point has the interesting consequence that for fa < fTP, increasing
the mass of a stable Axion star will move it into the dispersal region before moving into the
BH region. This suggests that BH formation from stable Axion stars may be impossible for
fa < fTP (barring violent, non-adiabatic processes leading to a rapid increase in mass).

2.2.5 “Scalar Wigs”

We noted in the simulations that following BH formation, the residual axion field outside
the horizon settled into semi-stable configurations. These are shown in Fig. 2.8, where we
plot the scalar field value near the horizon at r = 6/ma from the time at which the apparent
horizon forms. These configurations appear to be similar to the “scalar wigs” described in
Refs. [156–159]. It is likely that eventually these wigs will partly fall into the black hole, and
thus increase its final mass, and partly disperse to infinity. This is evident in Fig. 2.8 where
we notice the scalar amplitude oscillate and decay. We did not investigate these structures and
their stability in great detail, as the timescales involved would have required much longer runs
and significant computational resources, and reflections from our computational boundary
could become problematic. We leave further study of scalar wigs formed from gravitational
collapse of Axion stars to future work.
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2.3 Observational Consequences

2.3.1 BH – Axion star mass relation

We simulated the formation of a BH from an Axion star close to the boundary separating
regions R1 and R2: (MADM, fa) = (2.81,0.57), shown as the R2 diamond in Fig. 2.1. We
found that the final BH mass in this case was:

MBH = (2.80±0.03)
M2

pl

ma
, (2.21)

where the error arises from the limited numerical resolution, with additional error of up to
0.1% due to reflections of outgoing scalar waves. Thus, within the errors of our simulation,
almost all of the mass of a stable Axion star above the “triple point” could be expected to
form a BH if it accretes mass and moves over the phase boundary. We point out that almost
all of the initial mass gets absorbed into the BH.

Above the “triple point” the line separating stable Axion stars from BHs scales with fa as
Mstable ∼ f p

a , with p ≈ 0.2 fit from the points on the line separating R1 and R2 in Fig. 2.1.
Converting to astrophysical units, the typical BH mass formed from collapse of initially
stable Axion stars is thus of order:

MBH ∼ 1.4×107
(

10−18 eV
ma

)(
fa

0.6Mpl

)0.2

M⊙ ,

( fa & 0.3Mpl) . (2.22)

Plugging in the relation ma ≈ 6 µeV(1012 GeV/ fa) for the QCD axion [160, 161] yields:

MBH,QCD ∼ 3.4( fa/0.6Mpl)
1.2M⊙ . (2.23)

That this is of the order of the BH mass relevant for superradiance for the QCD axion [162]
is not entirely a coincidence, since in both cases one is equating the two length scales of
Compton wavelength and Schwarzschild radius. Superradiance is absent in our simulations
due to the spherical symmetry. We note that observations of spinning solar mass BHs exclude
3× 1017 GeV < fa < 1× 1019 GeV QCD axions [163], which excludes fa ∼ fTP, though
super-Planckian QCD axions are allowed. It will be interesting in future to study the interplay
of BH formation and superradiance in systems with angular momentum, such as Axion star
binaries.
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We emphasize that the relationship Eq. (2.22) is approximate, and only holds in the small
region of the solution space that we have studied. We further emphasize the conjectural
nature of our division of the phase space, and that this work does not constitute a study of
criticality of Axion stars.

2.3.2 Axion stars as seeds of SMBHs?

In models with Axions as dark matter and ordinary, almost scale invariant, adiabatic initial
conditions with scalar amplitude As ≈ 2× 10−9 normalized by the CMB (case I in Ap-
pendix A.1.3), galaxies are expected to host Axion stars at their cores [111] (for sufficiently
low Axion mass such that the Axion stars are large and not disrupted by repeated mergers).
Galaxy formation is non-relativistic, and the simulations of Ref. [116] found that the Axion
star-halo mass relation is given by:9

M⋆ = η(z)
(

Mh

Mmin.

)1/3

Mmin. , (2.24)

where Mmin. ∼ 40M⊙(ma/10−18 eV)−3/2 and η(z) is a redshift dependent function that can
be found in Ref. [116] (the details needn’t concern us here). If the Axion star mass in a given
halo exceeds the critical mass for BH formation, the galaxy should instead host a BH formed
by collapse of the Axion star, if fa > fTP.

The above mechanism provides a potential origin for a seed population of super massive
BHs (SMBHs).10 SMBHs provide the engines powering active galactic nuclei (AGN) and
quasars at high redshift, z ≈ 6, which require MBH ≈ 109M⊙. Such a SMBH can grow at
the Eddington rate from a seed mass of around Mseed ≈ 104M⊙ if it was formed when the
Universe was approximately 0.5×109 years old. Modelling the evolution of a population
of BHs is a complex astrophysical problem, and we will make no attempt here to address
the issue in any detail, but simply point out this interesting possibility. Ref. [116] have also
suggested that the presence of an Axion star core may provide a favourable environment for
SMBH formation.

The formation of SMBH seeds from direct collapse of an Axion star in the centre of
a DM halo, assuming 100% BH formation efficiency above the critical mass, is similar in
spirit to SMBH seed models based on gas-dynamical processes [164]. These processes can,
e.g. via rotational support and angular momentum shedding, lead to the formation of very

9Note that this relation is empirical, and was not recovered in similar simulations in Ref. [90]. The origins
and applicability of the scaling relation thus remains unclear.

10For a review, see Ref. [164].
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massive stars of 104M⊙ if the accumulation of gas proceeds correctly. Such an isolated star
will collapse into a massive seed Kerr BH [165].

On the other hand, the formation of SMBH seeds from collapse of an Axion star is
quite different to the mechanism of “Dark Stars” in WIMP models with large annihilation
rates [166–171]. Dark Stars provide a route to form objects of ∼ 103M⊙ at much earlier
times around 106 years, falling in the category of SMBH seeds from Pop-III remnants [164].

2.3.3 BHs from axion miniclusters?

Axion “miniclusters” [112] can form from strong perturbations in the axion field caused if
PQ-symmetry breaking occurs after inflation (case II in Appendix A.1.3). Miniclusters, if
present, would form the first generation of Axion stars at very early times around matter
radiation equality. Miniclusters provide a different route to Axion star formation than the
hierarchical formation discussed above.

The bound on the tensor-to-scalar ratio in the CMB, rT < 0.12 [172], implies that
miniclusters can only form the first generation of Axion stars if fa < 1.4×1013 GeV ≪ fTP.
This value of fa is far below the “triple point" we postulate in the Axion star stability diagram.
It is thus highly unlikely that axion miniclusters can collapse to form BHs. Instead, as their
mass is increased and winding of the axion field begins they will first cross from the stable to
the dispersing region of the phase diagram; they will then lose mass due to scalar radiation
before returning to the stable regime.

We postulate that this sets a maximum axion minicluster mass given by the boundary
between the stable and dispersing phases at fa < fTP. Strong perturbations to the stable phase
may allow for collapse to BHs [55], but this is unlikely in astrophysical environments where
accretion is a very slow process compared to the dynamical timescale, ma.

2.3.4 Quantum Effects and Axion Emission

Our analysis makes no attempt to capture any truly quantum effects, which could change the
state, |φ⟩ in Eq. (2.2) by the production of individual highly relativistic axions. There is a
considerable body of work considering quantum effects for Axion stars and how well such
effects are captured in the classical field theory: a non-exhaustive list of such works includes
Refs. [173–175, 137, 151, 176–179].

Our analysis has been entirely classical in the sense that we have solved the classical field
equations under the assumption that the occupation number of the axion field is much greater
than unity. We leave the assessment of quantum effects in our analysis to a future work,
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but note that the dominant effects on the time scales considered should be captured in the
classical theory. By considering the axion decays in e.g. Ref. [162] and the analogous process
for gravity wave/graviton production in Ref. [180] (see also Ref. [181] for the axion maser
effect when a canonical photon coupling is included), it is clear that a classical treatment
captures, on simulation time scales, the large number limit of tree-level axion production
processes when the grid resolution is small enough to resolve the produced relativistic modes
(our maximum mesh refinement gives a resolution of relativistic modes up to k ≈ 27ma).

2.4 Conclusions

For the first time, Axion stars in full numerical relativity using GRCHOMBO with the non-
perturbative instanton potential, V (φ) = m2

a f 2
a [1−cos(φ/ fa)]. We studied the solution space,

Fig. 2.1, parameterized by the axion decay constant, fa, and the initial ADM mass, MADM,
of a one parameter family of initial conditions. Our initial conditions are based on the quasi-
stable m2φ 2 solutions known as oscillatons, and are specified in terms of a radial profile
for the field velocity, Π(r), with φ = 0 everywhere such that the Hamiltonian constraint is
satisfied in the interacting cosine potential.

We identified three distinct regions of the solution space: a (quasi-)stable region of true
axion stars; an unstable region where the initial axion star collapses to a BH; an unstable
region where the initial axion star disperses via scalar radiation. The stable axion stars are
new solutions, and differ from oscillatons by the presence of a second modulating frequency
in the solution. The existence of the second frequency can be understood from a perturbative
analysis, as can the qualitative feature that the solution space is separated into stable and
unstable regions depending on the value of fa.

BH formation via increase of MADM from the stable branch can only be achieved above the
“triple point" separating the three phases, fa > fTP ≈ 0.3Mpl . This could have astrophysical
consequences for axion stars as seeds for supermassive BHs. The existence of the dispersing
region separating the stable region from BH formation when fa < fTP would appear to
prohibit BH formation via slow accretion of mass onto axion miniclusters.

For each value of fa, as we scan the initial values of ADM mass, we expect within some
range to see behaviour akin to that observed in critical collapse ([182], for a review see
[183]). That is, just above some critical value of MADM, the star will collapse and form a
BH, with a universal scaling relation between the masses. In the present work we do not
seek to investigate the criticality of the solutions – that is, we do not seek to demonstrate
a universal scaling relation in the final masses of black holes which occur near the critical
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point – since we are for the moment interested in the overall solution space. However, based
on previous studies of massive scalar field collapse in Ref. [184], we would expect type II
behaviour similar to that found in the massless case (e.g. in [182]) where the mass of the
axion is negligible in comparison to the initial ADM mass of the star (that is, in the bottom
right of our phase space, below the dashed line). In this case the mass of the critical BH
formed would be zero. We may also expect to observe type I behaviour for larger values
of fa, in which case the black hole formed at the transition point has a finite mass. This
appears consistent with our findings, although we have not investigated sufficiently close to
the critical point to confirm it.

Various authors have studied collisions of oscillatons in the m2φ 2 potential and Boson
stars, see Ref. [86] in the relativistic case, and Refs. [185, 186, 116, 90, 187, 188] in the non-
relativistic case. Studying collisions of axion stars, and in particular whether colliding stable
axion stars can cause BH formation, is left to future work. The full 3+1 dimensional solutions
possible with GRCHOMBO will allow us to study non-spherically symmetric axion stars
with angular momenta, and axion star binaries, with possible applications to experimental
searches for gravitational waves with LIGO [5, 189].
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Fig. 2.4 Black hole formation near the triple point. (MADM, fa) = (2.51,0.35), R2 square
in Fig. 2.1. The central field value is shown evolving over time in the top left panel, with
the color gradient on the line used to indicate times in the other panels. The top right panel
shows the radial profile of the lapse, α , on different time slices. In the bottom panel, several
points are marked to show the movement of the central field value on the potential. Over
time, the field amplitude slowly grows and leaves the m2φ 2 regime, even though initially it
provides a good approximation to the axion potential. Shortly after the field goes over the
“potential hill”, the Axion star collapses to form a BH. BH formation is indicated by the value
of α at the centre approaching zero. The yellow bar indicates the position of the apparent
horizon shortly after it forms. Note that local proper time τ is used rather than simulation
time t, to remove gauge effects due to the strongly varying lapse.

https://youtu.be/w-kMGjA8G0A?list=PLSkfizpQDrcYflSOzWVSPRVjGDf2s6-bw
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Fig. 2.5 Black hole formation near the dispersal region. (MADM, fa) = (2.63,0.055), R2
star in Fig. 2.1. The parameter shown is the conformal factor of the metric, χ (for a definition
see Appendix A.3). The first panel shows the initial data, and subsequent panels show the
evolution. The initial state is spatially extended, with low curvature. As collapse proceeds,
the Axion star becomes smaller, and some scalar radiation is emitted in waves. The final BH
has an apparent horizon that is very small compared to the initial Axion star size. Some of
the axion field remains outside the BH, and gravitationally bound to it, which we discuss in
Section 2.2.5.

https://youtu.be/oHO4658OFq0?list=PLSkfizpQDrcYflSOzWVSPRVjGDf2s6-bw
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Fig. 2.6 Dispersion of Axion stars. (MADM, fa) = (2.40,0.14), R3 star in Fig. 2.1. The
parameter shown is the conformal factor of the metric, χ (for a definition and relation to the
Newtonian potential see Appendix A.3). Note that the colour scale for the conformal factor,
χ is not the same as in Fig. 2.5, since in the dispersing case the variation in χ is much smaller,
corresponding to less spatial curvature. The first panel shows the initial data. The second
shows some initial collapse. Collapse then slows, which can be seen by the central peak
getting broader and smaller in amplitude from the third to the fourth panel. As the dispersal
continues, we notice matter shells being ejected. The evolution of χ(0) over a longer time
scale is shown in Fig. 2.7.

https://youtu.be/JMjhjAJmAiA?list=PLSkfizpQDrcYflSOzWVSPRVjGDf2s6-bw
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Fig. 2.7 Dispersion of Axion stars. (MADM, fa) = (2.40,0.14), R3 star in Fig. 2.1. The
parameter shown is the conformal factor of the metric, χ , which can be related to the
Newtonian Potential in the weak gravity case (for a definition see Appendix A.3). Several
points are marked to show the movement of the field on the field potential. The field quickly
leaves the stable Axion star regime and the amplitude grows. Eventually the field goes “over
the top” in the cosine potential: equivalent to the field winding in the complex plane. The
amplitude then slowly decays by ejecting matter shells (see panel 4 of Fig. 2.6). The interplay
between gradient energy and nonlinear interaction causes a very intricate evolution.

https://youtu.be/oBNkvNnqgec?list=PLSkfizpQDrcYflSOzWVSPRVjGDf2s6-bw
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Fig. 2.8 “Scalar wig”. (MADM, fa) = (2.63,0.055), R2 star in Fig. 2.1. Evolution of the
scalar field outside the horizon, beginning at the point in time when the apparent horizon
appears. The scalar field seems to fall slowly into the black hole, however, the configuration
seems to be long-lived, i.e. stable for many oscillations.





Chapter 3

Formation of Relativistic Axion Stars

The work presented in this chapter is derived from the paper “Formation of Relativistic Axion
Stars” [190], published in the Journal of Cosmology and Astroparticle Physics (JCAP).

Axions and axion-like particles are compelling candidates for the missing dark matter of
the universe. As they undergo gravitational collapse, they can form compact objects such
as Axion stars or even Black holes. In this paper, we study the formation and distribution
of such objects. First, we simulate the formation of compact Axion stars using numerical
relativity with aspherical initial conditions that could represent the final stages of axion
dark matter structure formation. We show that the final states of such collapse closely
follow the known relationship of initial mass and axion decay constant fa. Second, we
demonstrate with a toy model how this information can be used to scan a model density field
to predict the number densities and masses of such compact objects. In addition to being
detectable by the LIGO/VIRGO gravitational wave interferometer network for axion mass
of 10−9 < ma < 10−11 eV, we show using peak statistics that for fa < 0.2Mpl , there exists a
“mass gap” between the masses of Axion stars and Black holes formed from collapse.

3.1 Introduction

The Advanced Laser Interferometry Gravitational wave Observatory (LIGO) has made
historic measurements of gravitational waves (GW) from the binary coalescence of Black
holes [5] and neutron stars [191]. This paves the way for searches for signals from “exotic
compact objects” (ECO; see e.g. [55, 16, 85, 192, 83, 86, 193]). Axions and axion-like
particles [194–197, 139, 160, 161, 198, 199, 128, 200, 140, 201, 202] (which we refer to
collectively as simply “axions”) can form such ECO, known as Axion stars, which are related
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to a family of compact scalar field (pseudo)-solitons including Wheeler’s “geons”, Boson
stars, and oscillatons [28, 108, 34, 109, 203].

To have a strong GW signal in LIGO, the ECO must have mass and compactness,

C ≡ GM⋆

R
, (3.1)

where M⋆ is the mass of the object, in a particular range [16]. Simulations have shown that
there are known environments in dark matter halos in which non-relativistic Axion stars form
[204–208]. Any source of large (possibly primordial) density perturbations, or rapid merging
and accretion could potentially grow such stars into the range of mass and compactness
accessible to LIGO, and even beyond as they collapse to BH or disperse as novae [17].
However, there have not been simulations of the final stages of Axion star formation in the
full relativistic regime and beyond spherical symmetry, which are required to determine the
fate of large axion densities.

In the following we simulate the formation of compact Axion stars and BH from some
pseudo-random initial conditions using full (3+1) dimensional numerical relativity simula-
tions with GRCHOMBO [209]. Our results can be used to assess Axion star formation given
some input realisation of the axion density field. We demonstrate this for a toy model density
field, using peak statistics to label compact Axion stars and BH in the LIGO frequency band.

We remain agnostic about the amount of dark matter (DM) that might be contained in
compact Axion stars, noting only that it must be relatively small, of order a few percent
(see e.g. the compilations of primordial BH constraints in [210–212]). Given the theoretical
uncertainties in formation mechanisms for compact Axion stars from axion dark matter, such
bounds can easily be consistent with all the dark matter being axions.

We use units = c = 1 and Mpl = 1/
√

8πG is the reduced Planck mass.

3.2 Gravitational Waves from ECOs

In the following we review the description of GWs from ECOs given in [16]. An ECO
is described by two parameters, the mass, M⋆, and the compactness, C, which together
determine the frequency and amplitude of GWs produced in a binary inspiral (the merger and
ringdown phase contain more information requiring direct simulation). The orbital period, P,
is related to the total binary mass, Mtot and semi-major axis, l, by Kepler’s third law

P2 =
4π2l3

GMtot
. (3.2)
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Fig. 3.1 LIGO frequency band for Axion stars. The frequency is given by the ISCO
frequency, Eq. (3.6). The compactness C(M) is for non-interacting oscillatons, which is
a good description of stable Axion stars. Assigning a luminosity distance to binaries, the
minimum compactness is found from the results of Ref. [16]. Axion stars detectable by
LIGO must have C & 0.02 and axion mass ma ≈ 10−10 eV.
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The frequency, f , of gravitational wave emission is twice 1 the orbital frequency, ν = 1/P,
and hence is given by

f =

√
GMtot

π2l3 . (3.3)

The innermost stable circular orbit, ISCO, determines the end of the inspiral phase, and the
beginning of the merger phase. For a blackhole binary, the ISCO is given by

RISCO
BH = 6GMtot . (3.4)

For an ECO, the ISCO is modified by the variable compactness:

RISCO
ECO =

3GMtot

C . (3.5)

Hence the typical frequency, f ISCO
ECO , of two merging ECO is

f ISCO
ECO =

C 3
2

3
3
2 πGMtot

. (3.6)

For blackholes, the maximum frequency for gravitational wave emission at the end of
the inspiral is given by numerical relativity, and is defined as f = (1+∆) f ISCO

BH . ∆ is a
correction term computed in post-Newtonian approximation [213], and is dependant of the
mass ratio and spins of the blackholes. In the parameter range where the post-Newtonian
approximation is valid, it was found that ∆ =O(1), although we only expect this to hold for
relatively compact objects with C within a factor of a few of BH. With this knowledge, for
the discussion we deem it adequate to take Eq. 3.6 as the typical frequency of gravitational
wave emission.

The LIGO noise-power spectral density is minimized between 50 Hz and 1000 Hz.
Placing the frequency in Eq. 3.6 in the LIGO band gives the range of M and C. For BH we
find the benchmark mass for LIGO of M⋆ ≈ 10M⊙ stellar mass BH, while for LISA one
finds sensitivity to supermassive BHs, M⋆ ≈ 103 −107M⊙. Ref. [16] considered the signal to
noise for ECO binary mergers in the LIGO band, and found that for events within a given
luminosity distance DL there is a minimum value of C at any given mass to give an event
with large signal to noise.

Fig. 3.1 shows the results of Ref. [16] for the minimum compactness for different lumi-
nosity distances together with the C(M) relation for Axion stars determined from spherically

1As both frequency, f , and orbital frequency, ν , contain factors of 2π we can cancel them for ease



3.3 Axion Star Formation 59

symmetric numerical GR [17, 19]. Axion stars detectable by LIGO must have C & 0.02 and
axion mass ma ≈ 10−10 eV, implying that the Axion stars are of approximately solar mass.

3.3 Axion Star Formation

Axion stars giving rise to potential GW inspiral signals in LIGO have high compactness,
and are thus relativistic objects. If Axion stars can reach such high compactness, they
could also surpass their maximum stable mass, entering the unstable region in the “phase
diagram” [17, 18, 214], either collapsing to a BH or dispersing in a nova, depending on the
axion “decay constant”, fa.

3.3.1 Initial Conditions

We consider an initial state of energy density in the axion field characterised by a single
momentum scale, k⋆, in a superposition of waves in (x,y,z):

φ = ϕ [cosk⋆x+ cosk⋆y+ cosk⋆z] . (3.7)

The waves have initially zero velocity, φ̇ = 0. We impose periodic boundary conditions on
our computational domain, and hence the initial condition is that of a superposition of waves
that is not spherically symmetric, but possesses a 6-fold discrete permutation symmetry. This
breaks spherical symmetry for the density peak, allowing us to investigate the effects of
anisotropy while keeping the parameter space sufficiently small so that we can scan through
them with available computational resources. This initial condition represents a locally
overdense region dominated by the axion energy density, and hence is decoupled from the
Hubble flow.

According to the results of Ref. [17] we expect collapse to be governed by two parameters:
the total mass, M, in a single overdensity (periodic boundary conditions means that this is
half the total box mass), and the axion decay constant, fa, defining a “phase diagram”.2 The
total maximum mass in an overdensity is found by integrating the initial potential energy
inside the box, and dividing by two (as two objects will form due to symmetry):

1
2

∫
V

ρ
√

detγi jdV , (3.8)

2This diagram has been explained by various arguments in Refs. [215, 216]. The phase boundaries have
been accurately determined using spherically symmetric simulations by [18]. See also the simulations of [214]
who study the regime of low fa and low curvature leading to axion emission.
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Fig. 3.2 Using 3.10 we calculate the total box mass, M, of our initial conditions for a box
size of L̃ = 16m−1

a and fa = 0.5Mpl , as well as the contributions to M of the gradient term,
1
2(∂iφ)

2, and the potential term, V (φ). For the fa simulated it can be seen that our initial
mass is dominated by contributions from the potential term.
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with
ρ = nµnνTµν , (3.9)

where nµ is the normal to the hypersurface and γi j the 3-D spatial metric. Assuming that the
metric is conformally flat as our initial energy density has a small average density, then using
B.9

M =
1
2

∫ L/2

−L/2
dx dy dz

(
1
2
(∂iφ)

2 +V (φ)

)
, (3.10)

where L≡ 2π/k∗ is the physical size of the periodic domain. We also define the corresponding
scaled size L̃ = 2πma/k⋆ and mass M̃ = Mma . The axion potential energy is given by

V (φ) = m2
a f 2

a

[
1− cos

(
φ

fa

)]
. (3.11)

By a choice of units, the axion mass ma can be scaled out of all our simulations; units
can be easily restored to set the physical mass of the compact objects formed. To achieve
this scaling, we chose

M = 0.27M̃
(

10−10 eV
ma

)
M⊙ (3.12)

where M⊙ is the solar mass. Meanwhile, for small L̃ < (ϕ/ fa) the gradient term dominates.
Eq. 3.2 shows the initial conditions for the smallest L̃ we simulated and for fa = 0.5Mpl . All
of our numerical simulations had initial conditions where potential energy dominated.

Finally, we can compute the average energy density of the simulation domain via

ρ̄ =
M
L3 , (3.13)

and hence the “local” Hubble constant H2
local = (1/3M2

pl)ρ̄ which is Hlocal ∼ ma. We empha-
sise that this is not related to the “global” Hubble constant, since we are simulating a local
overdense region.

Our simulations begin at an arbitrary dimensionless time, and we should ask how this is
related to the cosmic time. In our simulations, we are evolving an axion dominated overdense
local patch that is much smaller than the current Hubble radius, thus it is assumed that the
expansion of the Universe and the presence of any fluctuation in energy density of non-axion
components can be neglected. Thus, a fluctuation of any amplitude in our simulations will
collapse, and cosmologically we cannot relate this to the collapse threshold for a given
redshift.
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A perturbation mode of co-moving wave number k with frequency ω2(a) = (k/a)2 +m2
a

will begin to evolve when ω(a)> H(a). Consider a co-moving mode kcm which re-enters
the horizon at time aret, kcm = aretH(aret). Furthermore, if H(aret)< ma, then the mode will
collapse only at time aosc > aret where H(aosc)≈ ma, i.e. when the mode is subhorizon. In
our simulations, our box size is set to L̃ = 2πma/k⋆ where k⋆ is a physical scale and related
to the co-moving wave vector kcm by an arbitrary scale factor a.

From our choice of dimensionless units, this means that the physical length k−1
⋆ =

(L̃/2π)m−1
a . As will be described in section 3.3.2, we take L̃ =O(16 ∼ 128) in our simula-

tions, and hence k⋆ < ma, which satisfies the condition for subhorizon collapse above.

3.3.2 Numerical Simulations

We simulated collapse of a massive scalar field, φ , with an axion potential in numerical
relativity, using GRCHOMBO [134]. Details of the numerical scheme can be found in ??.
We probed a three dimensional “phase diagram", summarised in Fig. 3.3, to investigate how
collapse differed whilst varying initial mass M, length scale of the axion waves L̃, and decay
constant fa. In the following sections we will explore the different types of structure that can
be formed according to the parameters of the “phase diagram", as well as commenting on the
technical limitations that we faced.

To explore the possible “phase diagram" of initial conditions for Axion star collapse, we
choose three length scales of the axion waves L̃ = 16,64,128 m−1

a , two decay constants fa =

5.0,0.5 Mpl and four initial total box masses M = 2.14,1.34,1.07,0.80 M⊙ (10−10eV m−1
a ).

These initial conditions were chosen so that we can form a range of final structures; Axion
stars and Black holes, like those found in [17, 18]. We fix our boundary conditions to be
periodic.

We used varying adaptive mesh refinement (AMR) conditions based on the length scale,
L̃, of the axion wave (discussed in B.1.2 in more detail). Each AMR level had a refinement
ratio of two, with the coarsest grid set at a resolution of 643. Convergence and stability of the
simulations is discussed in B.1.3.

B.1.1 has a complete discussion on the initial conditions used. To summarise we calculate
the initial value of trace of the extrinsic curvature, K, using

K =−
√

24πG⟨ρ⟩ , (3.14)
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Fig. 3.3 These plots are a summary of all numerical simulations performed. Black
circles indicate that blackholes where formed from the initial conditions and yellow circles
indicate that Axion stars were formed. We emphasise that the y-axis labels the initial total
mass of the simulation initial conditions, not the final mass of the formed objects. No
dispersion cases were obtained, and the reason for this is outlined in 3.3.5. The results
presented here mirror that of [17, 18], so when discussing the likely structure formation we
will use the “phase diagram" constructed there.
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where ⟨ρ⟩ average initial energy density. The conformal factor, χ , was calculated using a
relaxation procedure until we reached a relative Hamiltonian constraint violation, H

H≡ Hcenter

16πGρcenter
, (3.15)

of O(0.1%)3 and where Hcenter and ρcenter are the corresponding variables evaluated in the
center of grid. The larger the length scale of the axion waves, the more numerically expensive
the simulations were to perform due to an increase in the time scale of collapse, and a need
for more refinement layers to track formation and the evolution of the resulting structure.

Blackhole formation is identified using a horizon finder and the formation of an Axion
star was identified using an “Axion star location" script, which is detailed in B.1.4.

3.3.3 Axion Star Formation and Evolution

Our simulations with initial conditions M ≤ 1.34 M⊙ 10−10eV m−1
a resulted in Axion star

formation (see Fig. 3.3). To compute the mass, M⋆, of the Axion stars, we use 3.8, with the
radius R computed to be such that ρ(R) = 0.05 ρmax – this is a good approximation since the
Axion star sphericalizes rapidly.

During the course of the evolution the Axion stars were found to be stable (i.e. they do
not disperse nor collapse into a BH), sphericalizing rapidly leaving only a dominant radially
perturbative mode (see Fig. 3.4). Fig. 3.5 shows the variation of the radius of Axion stars
over time generated from spherically symmetric initial data [17, 19]. The radial variation in
the spherically symmetric case is long lived, and the computational cost of evolving the stars
to their final end-state (presumably an unexcited star) is prohibitive. For fa = 5.0Mpl the
radial variation presented in Fig. 3.4 is negligible for both masses shown. When lowering fa

to 0.5Mpl it can be seen that the more massive Axion star collapses to a blackhole, however
for the less massive Axion star a radial variation with a period of 300m−1

a develops. The
radial variation shown here has a longer period compared to the most massive case for L̃ = 16,
and shorter compared to L̃ = 64. We conclude that the variation in radius of the stars from
our formation process comes dominantly from decaying radially perturbative modes.

As has been shown in [55], ground state Axion stars span a family parameterized by the
compactness parameter C. When studying the compactness of Axion stars formed by our
collapse process vs this family, it can be seen that these formed stars oscillate around this
family, hence represents stable stars. This can be seen in Fig. 3.4.

3During the relaxation routine the value of H and ρ at the centre of the simulation was also the max value
of those variables
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Finally, we compute the efficiency of the Axion star formation process, which is defined
as

Efficiency ≡ Total Initial Mass
Mass captured in AS

. (3.16)

This is measured to range from 0.5 for L̃ = 128 to 0.8 for L̃ = 16. In other words, a large
fraction of the initial mass forms the Axion star. Since our simulation domain is periodic,
and hence “free scalar field energy” has no place to disperse, we might worry that this may
be due to a significant reabsorption. We observed that the Axion star formed in O(10) “box
crossing" times and if reabsorption of the scalar field was big, we should see a modulation in
φ at 10 times that frequency, which we do not. Hence we surmise that reabsorption is small
and expect that while in a dispersive environment the efficiency will be lower, it will not be
significantly lower.

3.3.4 Black hole Formation

Meanwhile, our simulations show that initial conditions with M = 2.14 M⊙ 10−10eV m−1
a

resulted in Black hole formation (see Fig. 3.3). This is consistent with the “phase diagram”
presented in [17, 18]. Similar to the Axion star formation process, we found that the efficiency
of Black hole formation was O(1) (i.e. the final BH contained most of the initial mass).

3.3.5 Dispersion Regime

As shown in the phase diagram constructed in [17, 18], there exists “dispersal regions” where
the Axion star is not stable and disperses into scalar radiation. This occurs in regions with
sufficiently low fa and M. Due to the periodic domain, dispersed scalar fields will eventually
fall back into a (possibly dispersing Axion star), and hence we cannot probe this possibility.
Instead we use the phase diagram constructed in [17, 18] for the analysis that follows.

3.4 Axion Stars and Gravitational Waves

Relativistic Axion stars with high compactness can emit sufficiently strong GW signals which
makes them possible targets of gravitational wave detectors. In this section, we will explore
this possibility.

The phase diagram of Ref. [17] suggests that, for each value of fa below the “triple point”,
fTP ≈ 0.2Mpl , there are three phases of Axion star: low mass stars are stable; those above
a first critical mass, Mdisp. are unstable to emission of relativistic axion waves; those above
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Fig. 3.4 Evolution of the mass-radius relation of all simulations whose end state was
identified as an Axion star. The reference line in the plots is the mass radius relation for
an unexcited Axion star, and the points on top indicate the evolution of the observed star
forming. The evolution in time of the mass-radius relation is indicated by the colour of the
point, with the darkest points being the earliest in the evolution and the lightest points being
the end of the evolution. Additionally the start point of the evolution is indicated by an
‘S’. The mass radius relation fluctuates significantly over time, varying in a decaying way
around the unexcited star value. This process is attributed to the formed stars having radial
perturbative modes. Outliers on these graphs are due to the Axion star finder, outlined in
B.1.4
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Fig. 3.5 Variation of the Axion star radius over time for spherically symmetric initial
data [17, 19] . For fa = 5.0Mpl the radial variation is negligible for both masses shown.
When lowering fa to 0.5Mpl it can be seen that the more massive Axion star collapses to a
blackhole, however for the less massive Axion star a radial variation with a period of 300m−1

a
develops. The radial variation shown here has a longer period compared to the most massive
case for L̃ = 16, and shorter compared to L̃ = 64.
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a second critical mass, MBH, collapse to BHs. Above the triple point, the dispersal phase
no longer exists, and compact objects form for all masses. Our numerical simulations have
verified that this same picture applies to the “cosmological” initial conditions of Fig. 3.7.

3.4.1 Cosmological Formation of Axion Stars

Axion stars are the (quasi-)stable end point of gravitational collapse of the axion field, and
in simulations of dark matter structure formation have been observed to form in diverse
conditions [208, 111, 188]

Non-relativistic axions stars are observed to form in simulations with coherent initial
conditions, where they condense via monolithic collapse as the first generation of axion
DM halos, with a population expected to inhabit the centres of all halos [111, 217, 207].
These Axion stars form from the small (ζ ≈ 10−5) amplitude adiabatic curvature fluctuations
which dominate the Universe on large scales, with the coherent initial conditions provided
if Peccei-Quinn symmetry is broken during inflation. Cosmological simulations of this
formation mechanism have only been performed for ultralight axions with ma ≈ 10−22 eV.
The corresponding Axion stars in dwarf galaxies are too heavy to be relevant for LIGO. The
formation mechanism, however, is expected to be operative for all axion masses in all dark
matter halos [218], potentially leading to relativistic cores in some region of parameter space.

Recently, axions stars were also shown to condense from highly incoherent initial condi-
tions [208]. This mechanism is expected to be active in axion “miniclusters” [219, 112, 220,
221], and indeed throughout any axion dark matter halo, potentially leading to spontaneous
Axion star formation. [208] proposes a growth rate that could make these Axion stars reach
relativistic masses if it does not quench. Mergers of such Axion stars could also lead to mass
increase.

Non-relativistic simulations like these provide realisations of the axion field with Axion
star locations. Dense peaks of this field will require individual relativistic simulations, and
the evolution should resemble the cases that we have studied in the present work. In this
model, the Axion star population builds up over time in an astrophysical way, just as ordinary
stars and BH do.

It is also possible that relativistic Axion stars could form directly in the early Universe
from large amplitude primordial fluctuations, a possibility we discuss in more detail in
Section 3.5. In this case also, dense peaks of the axion field will evolve to relativistic Axion
stars as studied above. In this model, the Axion star population resembles primordial BH.
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Fig. 3.6 A toy model realisation of the axion density field that can be filtered to locate
candidate compact Axion stars.

3.4.2 Peak Statistics

Simulating a cosmological volume of initial conditions for the axion field with numerical
relativity is not feasible. Instead we consider our simulations as representing isolated peaks
in the density field.

We consider a toy model for an axion density field containing large amplitude peaks that
can be described by our numerical simulations. A simple mechanism to form massive, dense,
primordial AS in the LIGO band is to enhance the axion power spectrum by a Gaussian
bump on small scales:

Pδφ ≡ Aexp
[−(k− k⋆)2

2σ2
k

]
, (3.17)

where A is the amplitude, k⋆ the central mode, and σk ≪ k⋆ the width. The amplitude has
units M2

plm
−3
a . Fig. 3.6 shows the toy model for the axion density field with k−1

∗ roughly
equal to the size of a peak described by our numerical simulations. For any axion density
field like this toy example (e.g. density field and Axion star location inside a DM halo),
we can calculate the mass distribution of Axion stars and BH formed by the extreme peaks
by analogy to the theory of critical collapse for BHs, and to the Press-Schechter theory of
cosmological structure formation.
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Fig. 3.7 Top panel: Peaks of the toy model density field are assigned masses as Axion stars
and Black holes according to the location on the phase diagram with fa = 0.5 Mpl . Bottom
panel: Using Eq. 3.6 and the C(M) relation for Axion stars, we calculate the gravitational
wave frequencies for Axion star and BH equal mass binary mergers.
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Fig. 3.8 Peaks of the toy model density as Fig. 3.7 with fa = 0.5 Mpl (upper panel) and
fa = 0.1 Mpl (lower panel). Note that as fa dips below the triple point [17], a dispersal gap
appears between the formation of Black holes and Axion stars.
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The peak statistics are determined by thresholding the field, and are classified using a
two pass connected component clustering algorithm, see B.1. We partition the distribution
for M̃⋆( fa) according to the critical masses Mdisp. and MBH in the phase diagram [17]. In
our numerical simulations, due to the construction with periodic boundary conditions and
an isolated fluctuation, fluctuations of all amplitudes leading to Axion stars with radius
smaller than the box size will eventually collapse under self-gravity. Thus we cannot
determine the critical threshold for Axion star collapse. However, we are only interested
phenomenologically in the densest, and thus most massive stars, and so we threshold our
field for a minimum compactness of the final Axion star assuming that at least these most
compact objects successfully collapse.

Figs 3.7 and 3.8 apply such a thresholding and labelling to a statistically representative
realisation of the toy model field of Fig. 3.6, taking only the one percent densest peaks. The
labelled peaks span from Axion stars, to a mix of Axion stars and blackholes, to primarily
blackholes depending on the field variance. Lowering fa below fTP results in the formation
of a mass gap of objects. In particular, as fa dips below the triple point at fTP = 0.2Mpl , a
mass gap appears between the masses of formed Axion stars and Black holes. This mass gap
is a characteristic feature of Axion stars, hence the observation of a mass gap in the power
spectrum of compact objects is a clear method of identifying the existence of axions in the
universe.

We can also estimate the frequency of gravitational waves emitted by an Axion star-Axion
star or BH-BH binary merger using Eq. (3.6). Assuming binary mergers from the density
field simply takes the field statistics as representative: no merger rate is calculated. Fig.
3.7 shows the frequencies with an axion mass of ma ≈ 10−10eV. We observe that, for this
distribution of peaks, Axion star binary coalescence, as well as BH-BH binary coalescence
from collapsed Axion stars fall in the LIGO band.

3.5 Discussion

It is important to note that only a small fraction of the DM density should be contained
in Axion stars and primordial BH. It is still an intriguing possibility that some GW events
detectable by LIGO might be due to primordial BH, and the distribution of GW events could
be used to confirm this [101]. Similarly, GW events and their distribution could confirm the
existence of a fraction of DM in Axion stars and BH formed from their collapse [222, 223].

Recent work with scalar compact objects head on mergers [85, 83, 19, 224] indicates
distinctions in the gravitational wave signal with respect to blackholes. If these distinctions
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also exist in binary coalescence (see [14, 225, 84] for Boson star inspirals), a single GW
event could be a smoking gun for the existence of Axion stars. The end state mass spectrum
from a number of such events could be used to determine the axion decay constant.

One possible mechanism to form compact axions stars in the early Universe is to enhance
the axion power spectrum, ⟨δφ(k)δφ(k′)⟩, on small scales, similarly to production methods
for primordial Black holes (see Ref. [226] and references therein). Such enhanced axion
fluctuations on small scales arise generically in models of inflation in which the radial
mode of the Peccei-Quinn field evolves as a spectator, leading to a strongly blue axion
spectrum [227, 228].

Unfortunately, under standard cosmological assumptions such a power spectrum cannot
form compact Axion stars. A fluctuation in the axion field at early times is isocurvature
(since the axions are subdominant compared to the radiation). During the radiation epoch,
the linear transfer function of isocurvature overdensities is close to unity [229]. This implies
that, between the time the axion field becomes non-relativistic, H(aosc)≈ ma, and matter-
radiation equality, aeq, the field fluctuation is redshifted as δφ ∼ a−3/2. For the axion masses
of interest, ma ≈ 10−10 eV ⇒ aosc/aeq ≈ 10−14, giving huge redshift factors.

Collapse of primordial fluctuations could occur during a putative early matter dominated
phase [230, 231] (as expected in supersymmetric models, e.g. Refs. [232, 233]), or during
reheating if the equation of state is in the correct regime. Study of collapse of Axion stars
during such a period, or from primordial curvature perturbations in the radiation era, requires
additional simulations that account for the background fluid in addition to the axion scalar
field. This interesting possibility, incorporating fluids into GRCHOMBO, will be the subject
of future study.

An Axion star in the LIGO band requires ma ≈ 10−10 eV. The QCD axion with this mass
has fa ≈ 1016 GeV, which could possibly be detected directly by ABRACADABRA [234]
or CASPEr [235]. However, with this low value of fa Axion stars cannot reach the required
high compactness before becoming unstable. This leads to the interesting conclusion that
any future observation of GWs from Axion stars would imply the existence of contributions
to the axion spectrum beyond QCD, and could thus lend support to the idea of a “String
Axiverse” [200] or other non-standard axion scenarios [236].





Chapter 4

Gravitational Wave Emission from
Collisions of Compact Scalar Solitons

The work presented in this chapter is derived from the paper “Gravitational Wave Emission
from Collisions of Compact Scalar Solitons” [19], published in the Journal Physical Review
D (PRD).

We numerically investigate the gravitational waves generated by the head-on collision
of equal-mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their
compactness C. We start with solitons that are initially at rest with respect to each other,
and show that there exist three different possible outcomes resulting from their collisions:
(1) an excited stable oscillaton for low C, (2) a merger and formation of a black-hole for
intermediate C, and (3) a pre-merger collapse of both oscillatons into individual black-holes
for large C. For (1), the excited, aspherical oscillaton continues to emit gravitational waves.
For (2), the total energy in gravitational waves emitted increases with compactness, and
possesses a maximum which is greater than that from the merger of a pair of equivalent mass
black-holes. The initial amplitudes of the quasi-normal modes in the post-merger ring-down
in this case are larger than that of collisions of corresponding mass black-holes – potentially
a key observable to distinguish black-hole mergers from their scalar mimics. For (3), the
gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light
scalars of mass 10−12 eV . m . 10−10 eV.
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4.1 Introduction and Results

The spectacular recent detections of gravitational waves from binary black-hole mergers has
heralded a new golden age in gravitational wave physics [5, 237, 238]. Gravitational waves
from the merger of compact objects are one of our best resources for probing the strong-field
regime of gravity. They also provide us with a probe of the nature of the compact objects
themselves.

In addition to black-holes (BH) and neutron stars (NS), the expected quality of the
gravitational wave data could allow for the search of exotic compact objects as progenitors in
such collisions [85]. In particular, coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores [239, 10, 54]. Their collisions may
generate observable amounts of gravitational waves and whose waveforms can deviate from
those of BH-BH or NS-NS mergers (see in particular [83, 224, 14, 225]).

In this chapter, we study the head-on collisions of a class of real scalar field solitons
called oscillatons [203] using GRChombo [134] in full general relativity. Unlike Boson stars
made of complex scalar fields, oscillatons do not have a conserved U(1) charge, but can
nevertheless be stable on cosmological time scales [240]. For example, such objects can
consist of a spatially localized condensate of an axion field oscillating near the minimum of
the potential [17]. Such axion fields are ubiquitous in many high energy physics theories,
and are considered to be plausible dark matter candidates (see [201] for a review).1

Our main result for the gravitational wave output from equal-mass oscillaton collisions
as a function of the compactness of the solitons is shown in Fig. 4.1. In particular, the new
results are: (1) a jump in the fractional gravitational wave output near a critical compactness
value C ≈ 0.14, and (2) the fractional gravitational wave output near this C value exceeds
that of corresponding mass black-holes. In order to achieve these results, we constructed
unexcited oscillaton binaries which possess no spurious additional modes. Such “clean”
initial conditions allow us to accurately extract the GW production efficiency Egw/Etot.
Furthermore, we also compute the gravitational waveforms for such collisions to show that
the quasi-normal modes are significantly different from equivalent BH-BH collisions during
merger and in their ringdown phase, which suggests that they can be distinguished.

1We cannot claim that such compact soliton collisions are likely sources of gravitational waves; an estimate
of their population and distribution would be needed, which is beyond the scope of this work. We hope that the
results from this work will motivate such studies further.
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Fig. 4.1 Fraction of initial rest mass energy of the two oscillatons (Etot) radiated into gravi-
tational waves (Egw) as a function of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but aspherical, excited oscillaton.
In the critical regime, oscillatons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-holes before the collision. Note
that in the critical regime (and possibly in the subcritical regime also), the emitted fraction in
gravitational waves can exceed that of corresponding mass black-holes (0.06% dashed line).

4.2 Initial Set-Up of Solitons

We consider a free, massive, real scalar field, which is minimally coupled to gravity with the
action2

S =
∫

d4x
√−g

[
R

16πG
− 1

2
∂µφ∂

µ
φ − 1

2
m2

φ
2
]
, (4.1)

where g is the determinant of the metric, R is the Ricci scalar, and m is the mass of the
real scalar field3 φ . We briefly discuss self-interactions in the Appendix. Conservatively,
the results are expected to apply for solitons made of a sub-dominant axionic dark matter
component with the axion decay constant f & mPl. Assuming we have a scenario similar
to [192], for f & mPl, the total dark matter abundance bound requires the axion to be
unacceptably light (m . 10−30 eV), in conflict with observations [201]. We further discuss
this issue and possible solutions in the Appendix.

This theory contains a single parameter family of localized, solitonic solutions called
oscillatons (once the mass m is scaled out). We choose to parametrize our solutions in terms

2We use the −+++ convention for the metric, and set = c = 1. Our Planck mass MPl = 1/
√

G.
3We have ignored possible self-interactions of λφ 3 and higher order terms.
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Fig. 4.2 Relationship between the mass M and the compactness C of the oscillaton. Note
that for C & 0.14 (M ≈ 0.605M2

Pl/m) oscillatons become unstable under perturbations (grayed
area).

of their compactness, which we define as

C ≡ GM
R

, (4.2)

where M is the Arnowitt-Deser-Misner (ADM) mass, and R is the effective radius of the
oscillaton which encompasses 95% of its mass. The maximum mass of the oscillaton
Mmax ≈ 0.605M2

Pl/m occurs when C ≈ 0.14. When C < 0.14, the oscillatons are stable
against perturbations. For C > 0.14, they are unstable with respect to perturbations [55] (Fig.
4.2).

To ensure that these results are qualitatively and quantitatively robust, we implemented
several steps such that the initial conditions for these oscillatons are in their unexcited
“ground” state. We refer the reader to the Appendix for details of this construction, and other
numerical convergence tests.

We set up two equal C (and hence equal mass) oscillatons at a distance of 60m−1, both of
which are initially at rest, and explore the end-state of the collision and gravitational wave
signature as a function of C. These oscillatons can also have a relative phase 0 < ∆θ < π

between their respective oscillations. Oscillatons are considered “in-phase” when ∆θ = 0;
this is the scenario we focus on in this paper. “Out-of-phase” ∆θ ̸= 0 oscillatons exhibit
additional repulsive force that, at sufficiently large phase differences, prevents a merger from
occurring. We will leave the results of out-of-phase initial conditions to a future publication.
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Fig. 4.3 The panel shows the numerically evaluated gravitational wave waveforms (the
dominant quadrupole mode: l = 2, m = 0 is shown) for typical subcritical (C = 0.03), critical
(C = 0.10) and degenerate (C = 0.15) collisions. For comparison, the waveform for the
corresponding mass black-hole collision is also shown in black. Note that in the sub-critical
case (left panel), the resulting excited oscillaton continues to emit gravitational waves. In the
critical case (middle panel), the waveform is qualitatively similar to a BH-BH merger, but
importantly, the post-merger QNM amplitude is greater for the oscillaton merger as they are
less “rigid”. Since there is some mass loss during the merger, the final mass is less than that
of the equivalent BH-BH merger, leading to a slightly shorter QNM period (as observed).
Finally, the degenerate case is almost indistinguishable from a BH-BH collision (right panel).
The vertical dashed line indicates time of BH formation during the merger in the critical
case, and pre-merger in the degenerate case. Note that rΨ4 ∼ rḧ, and t = 0 is associated
with the time when the objects are ≈ 60m−1 apart. Movie links for the time evolution of the
gravitational wave signal and the energy density ρ are available for the subcritical, critical
and degenerate mergers [20–22].

4.3 Gravitational Waves from Collisions

We find that there are three possible outcomes of head-on collisions of equal mass solitons
depending on the initial C of the oscillatons.

4.3.1 Subcritical Case C . 0.04

Collisions of these less compact oscillatons form another more massive and quasi-stable,
but aspherical and excited oscillaton. The merger proceeds via multiple stages. As we
have shown in Fig. 4.4, the oscillatons collide and initially form a very perturbed oscillaton,
whose density oscillates in a “+ ” pattern (i.e. periodically becomes elongated along two
perpendicular axes). A significant amount of mass is lost during the initial collision. This
mass loss can be inferred from the fact that M(C = 0.03) = 0.41M2

Pl/m > 0.5Mmax – this is

https://youtu.be/ri2jkxA-a-o
https://youtu.be/FHYvFCSwcaY
https://youtu.be/R6Hz2Q4FbIU
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consistent with the results first obtained in [86]. Without any mass loss, the final oscillaton
in this case would have been unstable, which is not seen in our simulations. The oscillaton
continues to radiate scalar waves and, notably, a long-time-scale continued emission of
gravitational waves [85, 193].

From Fig. 4.4 and the first panel in Fig. 4.3, we see repeated alternating max/min
bursts of gravitational waves coinciding with the maximum deformation of the perturbed
oscillaton perpendicular-to/along the axis of collision. While the lack of computational
resources prevented us from evolving this end state further in time, we expect that the
continued emission of both scalar waves and GW will eventually sphericalize the oscillaton.
This so-called “super-emitter” [193] will eventually emit more total GW energy than the
corresponding equal-mass BH-BH merger. We have only found the lower bound on this GW
energy output numerically.

4.3.2 Critical Case 0.04 . C . 0.14

These more massive and compact oscillatons collide to form a black-hole surrounded by
a thin scalar field “wig". There is a slight mass loss during the collision, but the majority
(≈ 90%) of the initial mass remains in the final black-hole state. The total GW energy
emitted by this merger monotonically scales with C in this regime. However, interestingly,
for oscillatons with C > 0.06, the fraction of the emitted gravitational wave energy4 to the
total initial energy, Egw/Etot, is greater than that from an equivalent head-on merger of a pair
of equal mass black-holes (Egw/Etot = 0.06%). The maximum gravitational wave energy
emitted Egw/Etot ≈ 0.11% occurs at C ≈ 0.14, the boundary where the individual oscillatons
themselves become unstable.

A typical waveform of the merger from this region is shown in the middle panel of Fig. 4.3.
Black-hole formation occurs rapidly after the initial merger. For less compact oscillatons, not
surprisingly, the scalar dynamics during merger will lead to different GW waveforms that
distinguishes it from that of a BH-BH merger [85, 225]. Crucially however, even for very
compact oscillatons where BH formation is very rapid, the waveform differs from that of a
BH-BH collision even in the post-merger ringdown stages. The quasi-normal mode (QNM)

4This energy is computed by integrating over time the total power given by

dEgw

dt
= lim

r→∞

r2

16π

∮ ∣∣∣∣∫ t

−∞

Ψ4(r) dt ′
∣∣∣∣2 dΩ, (4.3)

where Ψ4 is the Newman-Penrose scalar. For our simulations the extraction radius r = 60m−1. Moreover,
Etot = 2M, i.e. total initial ADM mass of the oscillatons.
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frequency during the ring down is close to that of a BH-BH merger (as expected) with a
shorter period due to mass loss during merger. Importantly, the initial amplitude of the QNM
is different. In particular, we find that for C & 0.06 the initial QNM amplitude is larger than
that of an equal mass BH-BH merger leading to the aforementioned higher output in total
GW emission (see Fig. 4.1).

We believe that this higher initial amplitude for the QNM is due to the fact that oscillatons
are “less rigid” than black-holes, and hence easier to excite during the initial merger phase.

Interestingly, in [85], the authors argue instead that collisions of more massive Boson
stars will lead to a more rapid collapse into BHs and hence to a smaller deviation from a
BH-BH merger. Our results here show that the deviation is more significant for oscillatons,
allowing us to directly test for such non-BH merger scenarios.5

4.3.3 Degenerate Case C > 0.14

Oscillatons with C > 0.14 are inherently unstable to perturbations. We find that as they
fall towards one another, mutual tidal forces generate sufficient perturbations to cause the
oscillatons to collapse into a pair of BHs before they collide. The new BHs (with a thin
wig) then collide and merge as in the standard BH-BH case to form a larger black-hole.
The waveform (see rightmost panel of Fig. 4.3) and the fraction of energy in gravitational
waves is indistinguishable from the BH case and remains constant as we continue to increase
the compactness (see Fig. 4.1). This expected behavior in the degenerate case makes for a
strikingly steep transition in the emitted gravitational wave energy from the critical to the
degenerate regime (near C ≈ 0.14, see Fig. 4.1).

4.4 Discussion and Future Directions

Our main results can be seen in Fig. 4.1 and Fig. 4.3. Through detailed calculations using
the full power of numerical GR, we showed that oscillaton head-on mergers have distinctly
different GW signatures than that of their corresponding equal mass BH-BH counterparts.
We found three different outcomes of collisions depending on the initial compactness of the
oscillatons: formation of excited oscillatons (sub-critical), formation of a black-hole after

5Furthermore we note that while Boson star mergers can be qualitatively similar to our oscillaton mergers,
there are differences. For example, a collision between a Boson star and anti-Boson star can lead to annihilation,
with a dispersal of most of the field to infinity [84]. Analogs of Boson star/anti-Boson star pairs are not present
in the oscillaton merger case. Note that an initial phase difference between pre-merger oscillatons cannot mimic
these configurations.
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Fig. 4.4 Numerically evaluated gravitational wave waveform for a typical subcritical
(C = 0.03) collision, demonstrating bursts of repeating gravitational waveforms. Inset shows
the “+ ” pattern of oscillations of the density of the perturbed final state.

collision (critical) and formation of black-holes before collision (degenerate) due to tidal
forces.

In terms of gravitational waves, the subcritical merger results in a potentially long lived
source of gravitational waves. The gravitational waveform is qualitatively different from
the Black hole merger case with multiple post merger pulses. For the degenerate case, the
dynamics and gravitational wave signatures are very similar to that of corresponding mass
black-holes.

Most interestingly, for critical mergers where the final state is a BH, the post-merger
QNM mode has a significantly larger amplitude than that of an equivalent BH-BH merger
(for sufficiently compact oscillatons). We believe that this is due to the fact that oscillatons
are less rigid and easier to excite than BHs. This raises the possibility that, without inspiral
GW information, compact oscillatons mergers may mimic BH mergers of a larger mass,
though QNM frequency information will allow us to break this degeneracy. Conversely with
inspiral information, this may provide a distinct GW signature for the detection of such
exotic compact objects. If these results carry through to inspiral mergers, the ratio of the
GW amplitude during the inspiral phase and the ringdown phase will be a strong indicator of
exotic mergers. While these are plausible arguments, we admit that more work is needed in
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the inspiral case to make a convincing argument regarding observationally distinguishing
BH-BH mergers from OS-OS ones.

For the cases checked (in head-on collisions), we found that the fraction of energy density
in gravitational waves is relatively independent of the initial separation of the solitons (within
numerical error, we confirmed this for separations of 40m−1, 55m−1 and 65m−1 in the critical
and degenerate regimes). The critical-degenerate boundary in Fig. 4.1 is similarly robust,
suggestive of some novel criticality in terms of the dynamics and the gravitational wave
output near C ≈ 0.14, which is worth investigating in detail. Further investigation of this
criticality by scanning through different initial velocities, relative phases and a larger variance
in distances is needed.

Assuming that our oscillatons are stellar mass so that their QNM frequencies fall within
LIGO range, this allows us to probe light oscillaton masses of 10−12 eV . m . 10−10 eV.
On the other hand, interactions of free scalar fields with rotating Black holes can cause a
superradiance instability, robbing the blackholes of their spin – LIGO (LISA) observations of
stellar mass (supermassive) spinning Black holes can potentially rule out 10−13 . m . 10−12

eV (10−19 . m . 10−17 eV) [223].
In conclusion, we have found that in head-on collisions, compact scalar field solitons can

be louder in gravitational waves than their black-hole counterparts. Moreover, a new critical
transition in the GW amplitude is seen at C ≈ 0.14. It will be interesting to see if these results
are replicated in the inspiral case (e.g. [225]), which we are currently investigating.





Chapter 5

Cosmic String Loop Collapse in Full
General Relativity

The work presented in this chapter is derived from the paper “Cosmic String Loop Collapse
in Full General Relativity” [241], published in the Journal Physical Review D (PRD).

We present the first fully general relativistic dynamical simulations of Abelian Higgs
cosmic strings using 3+1D numerical relativity. Focusing on cosmic string loops, we show
that they collapse due to their tension and can either (i) unwind and disperse or (ii) form a
Black hole, depending on their tension Gµ and initial radius. We show that these results
can be predicted using an approximate formula derived using the hoop conjecture, and
argue that it is independent of field interactions. We extract the gravitational waveform
produced in the Black hole formation case and show that it is dominated by the l = 2 and
m = 0 mode. We also compute the total gravitational wave energy emitted during such a
collapse, being 0.5±0.2 % of the initial total cosmic string loop mass, for a string tension
of Gµ = 1.6× 10−2 and radius R = 100 M−1

Pl . We use our results to put a bound on the
production rate of planar cosmic strings loops as N <∼ 10−2 Gpc−3 yr−1.

5.1 Introduction

The recent detection of Gravitational Waves (GW) from Black hole (BH) [5] binaries by
the LIGO/VIRGO collaboration marked the start of a new era of observations. Beyond
astrophysical objects such as BH and neutron stars, this paved the way for the use of GW
to search directly for signatures of new physics. One of the key targets for this search are
cosmic strings [242, 9, 243].
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Cosmologically, cosmic string networks naturally arise after a phase transition in the
early universe, possibly during GUT symmetry breaking. More speculatively, string theory
also suggests the presence of cosmological fundamental superstrings, especially through
the mechanism of brane inflation [244, 245]. These networks may manifest themselves
through several channels, such as imprints via lensing on the Cosmic Microwave Background
[246] and possibly through the presence of a stochastic gravitational wave background. The
latter in particular is recently searched for by the LIGO/VIRGO collaboration [9]. More
intriguingly, one can search for localized coherent events of these strings, such as when the
strings self-interact through the formation of sharp cusps or through the collisions of traveling
kinks that are formed during the intercommutation (i.e. collisions) of cosmic strings.

Before this work, the two primary methods of modeling cosmic strings has been through
solving the field theory equations in flat or expanding spacetime, or through an effective
Nambu-Goto prescription with weak coupling to gravity (see e.g. [247]). In either case, by
considering the stress-energy of a network of strings, one can then compute in the weak
gravity limit a stochastic GW background [248, 249]. Local events such as the collisions
of traveling kinks and cusps along the strings are expected to produce bursts of GW –
these bursts events have been computed using the Nambu-Goto approximation, again in the
weak field limit [249]. These two methods do not coincide in general, mainly due to their
disagreement on the primary energy loss mechanism of the cosmic strings (see [250–255]).

Going beyond the weak field limit requires the finding of the solutions to the full field
theory coupled to general relativity – and in this work we present the first numerical relativity

simulation of Abelian Higgs cosmic strings in full general relativity. We numerically explore
the collapse of a circular cosmic string loop in extreme regimes (4×10−3 < Gµ < 4×10−2).
We show that whether the loop collapses into a BH or unwinds itself depends on a simple
analytic relation derived using the hoop conjecture. In the former case, we computed both the
gravitational waveform (fig. 5.1) and its integrated GW energy emitted from such a collapse.
For the latter, we found that the total energy emitted in gravitational waves is 0.5±0.2 % of
the initial mass, which is in agreement with the bound of < 29% [256].We will discuss direct
detection prospects of such individual collapse events with GW detectors in section 5.5.
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Fig. 5.1 GW for a BH formed from circular cosmic string loop collapse: We plot the
real part of the dominant l = 2 m = 0 mode of rΨ4 over time. The loop has tension
Gµ = 1.6×10−2 and an initial radius R = 100 M−1

Pl . The grey shaded area of the plot are
mixed with stray GWs that arise as artifacts of the initial data. The x-axis tret = t − rext is the
retarded time where rext is the extraction radius.

5.2 Abelian Higgs with Gravity

The action of the Abelian Higgs model minimally coupled to gravity 1

S = SEH −
∫

d4x
√−g

[
(Dµφ)∗(Dµ

φ)+
1
4

FµνFµν +V (φ)

]
, (5.1)

where SEH =
∫

dx4√−g(R/16πG), Dµ is the covariant derivative (∂µ − ieAµ) with its U(1)
gauge field Aµ , and V (φ) is the potential of the complex scalar field φ given by

V (φ) =
1
4

λ

(
|φ |2 −η

2
)2

, Fµν = ∂µAν −∂νAµ . (5.2)

For simplicity, we set the charge e and the dimensionless coupling constant λ to obey the
critical coupling limit

β =
λ

2e2 = 1 , (5.3)

1We use the −+++ convention for the metric, and set = c = 1 and MPl = 1/
√

G.
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in which the Higgs and vector masses are identical and µ simplifies to

µ = 2πη
2 . (5.4)

As a check of our code, we numerically construct a fully relativistic infinite static string
coupled to gravity and demonstrate that its evolution is indeed static and stable. The details
of this construction can be found in Appendix D.2.

We consider circular string loops. To construct the initial conditions, we define toroidal
coordinates

x = cosϕ(R+ r cosθ) ,

y = sinϕ(R+ r cosθ) ,

z = r sinθ ,

(5.5)

where R is the radius of the loop and choose the following ansatz for the field variables

φ = f (r)einθ , Aθ =
nα(r)

e
, (5.6)

where n is the winding number of the string which is set to one throughout this paper. To
construct the loop we use the profile f (r) from the static string2. After making the conformal
metric ansatz

γi jdxidx j = χ(dx2 +dy2 +dz2) , (5.7)

we solve the Hamiltonian constraint to obtain the conformal factor χ .

5.3 Results

We simulate the collapse of circular loops, scanning through the initial condition parameter
radius R and the model symmetry-breaking scale η (and hence string tension via Eq. 5.4),
in the critical coupling limit with e = 1 and λ = 2. The loop begins at rest but quickly
accelerates to close to the speed of light due mainly to the string tension. We find this motion
to be consistent with the Nambu-Goto action dynamics (see Appendix D.3)

r = Rcos
τ

R
, (5.8)

2See Appendix D.2 for details.
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Fig. 5.2 Overview of simulations : The loop can either form a BH or unwind and radiate
all its mass. The analytical expression derived from the hoop conjecture accurately predicts
the outcome. Movie links for the evolution over time of the collapse are available for the
dispersion [23] and Black hole [24] cases.

up to r ∼ δ which is the thickness of the string given by

δ =
1

η
√

λ
, (5.9)

and τ is the time coordinate at spatial infinity. Depending on the choice of µ and R, there are
two possible outcomes: (i) the string unwinds itself and the resulting radiation disperses or
(ii) a BH forms.

This result can be predicted using the hoop conjecture as follows. A BH forms if the
loop mass Mloop = 2πµR is enclosed within a radius smaller than its Schwarzschild radius
2GMloop. In addition, the smallest volume in which a loop can be contained before the string
unwinds has radius δ , which sets the Schwarzschild radius the lower bound for BH formation
to be 2GMloop > δ , or

R >

√
1

8πλ
(Gµ)−3/2M−1

Pl . (5.10)

Moreover, as the minimum radius of a loop is R = δ , we don’t expect dispersion cases for
Gµ > (4π)−1 and all loops will form BHs. We find this estimate to be a good predictor

https://youtu.be/nHH3gTEjMPo
https://youtu.be/U5CkThsDU6w
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(see fig. 5.2), which suggests that Black hole formation is broadly independent of field
interactions.

If a Black hole forms, the amount of initial mass that falls into the Black hole depends on
the initial radius R for fixed Gµ , with the rest being radiated in either gravitational waves or
matter.

We investigate whether this collapse is a Type I or Type II transition [183] by studying
the mass of the Black hole close to the critical radius. Supposing it is a Type II collapse
and let R∗ be the critical point such that MBH(R∗) = 0, one can compute the critical index γ

defined by
MBH ∝ (R−R∗)γ . (5.11)

The value asumming the theoretical prediction of Eq. 5.10, Rth
∗ =

√
1/8πλ (Gµ)−3/2M−1

Pl ,
is γ = 0.39, see fig. 5.3. However, in our simulations we have observed Rob

∗ > Rth
∗ , giving

γ = 0.17, showing that γ is highly dependent on the choice of the actual value of R∗ – of
which we are unable to identify with confidence due to the lack of computational resources.
Therefore, we conclude that γ = 0.28±0.11.

In the subcritical limit where 2GMloop < δ , the loop unwinds as it collapses, transferring
all the mass into matter and gravitational radiation. If R ≫ δ the velocity at unwinding is
much larger than the escape velocity and all the energy is radiated away. However, if R ∼ δ ,
the velocity can be small enough so that instead of full dispersal the mass slowly decays at
the center and a soliton might form.

5.4 Gravitational Waves from Black hole formation

We compute the gravitational waveform from the collapse of a loop with Gµ = 1.6×10−2

and R = 100 M−1
Pl into a Black hole, fig. 5.1. Post formation of the apparent horizon, the

waveform exhibits the characteristic quasi-normal mode decay, with the dominant mode
being the l = 2,m = 0 mode as usual. We found the integrated energy of the signal to be

ε ≡ EGW

Mloop
= 0.5±0.2 % . (5.12)

The error bars come primarily from the presence of the spurious modes from the initial
data mixing in with the early part of the collapse (grey area in fig. 5.1). Even though the
velocity of the loop at collision is ultra-relativistic, ∼ 0.99 c, the GW production is strongly
suppressed when compared to other ultra-relativistic events. For comparison, a boosted head-
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Fig. 5.3 Critical collapse: We plot the logarithm of the mass of the Black hole vs the
logarithm of the difference between the initial and the theoretical(star)/observed(cross)
critical radius for Gµ = 1.6×10−2. As we argued in the text, our simulation showed that the
actual Rob

∗ > Rth
∗ , resulting in a critical index within 0.17 < γ < 0.39, where the error is due

to the uncertainty in determining numerically Rth
∗ < R∗ < Rob

∗ . Note that we only use the first
7 points to compute the critical index for R ≤ 0.05R∗ as the critical relation is only expected
to hold perturbatively.

on Black hole merger (14±3%) and relativistic fluid particle collapse (16±2%) radiates
a much larger fraction of its total mass in gravitational waves [257, 258]. This suggests
that the initial apparent horizon is very spherical – possibly due to the thickness of our
strings when compared to the Schwarzschild radius, i.e. 2GMloop ∼O(1)×δ . In the limit of
infinitisimally thin strings, the maximum GW production was calculated by Hawking to be
29% [256]. Hence, we believe that one can boost the efficiency by colliding thinner strings
(i.e. 2GMloop ≫ δ ) – in this limit the hoop conjecture argument above suggests that a Black
hole will form before the loop has a chance to interact and unwind, thus it is possible that the
GW emission will be larger via Hawking’s argument, though this has not been demonstrated
numerically.

Finally, loops in general are generated non-circularly with many different oscillating
stable configurations. Nevertheless, in the presence of gravity, we expect gravity to eventually
win out, with roughly the timescale of their gravitational collapse to be the free-fall time-scale.
In the final stages of collapse, we expect the tension to circularize the loops and thus our
results might also for more general initial data.
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5.5 Discussion and detection prospects

We have extracted the gravitational wave signal for the case Gµ = 1.6× 10−2, and R =

100 M−1
Pl and found that the efficiency ε = 0.5±0.2 % of the initial mass is radiated into

gravitational waves. The QNM frequency of our GW waveform (fig. 5.1) is in the UV
range and out of any current or future detectors. On the other hand, if we assume that our
numerical results scale, we can ask whether we can detect suitably massive cosmic strings
loops with current or future detectors. The two key parameters are (i) the frequency and (ii)

the luminosity of the event, both which depend on the masses. The former constrains our
loop parameter space to 2πµR ≈ Mdetector. We choose Mdetector such that its frequency lies
at peak sensitivity of LIGO/VIRGO ( f ∼ 100Hz). For the latter, the strain h observed at a
distance d from a source of GWs is(

h
10−21

)
∼
√

EGW

3×10−3M⊙

(
10 Mpc

d

)
. (5.13)

Cosmic strings loops are generated during the evolution of the string network when strings
intercommute, although there is presently no consensus on the probability distribution of
loops and their classification (see e.g. [259, 260]). Furthermore, it is not clear that all loops
will collapse due to the presence of non-intersecting loop configurations and the uncertainty
in their angular momentum loss mechanisms. Hence, we will take the agnostic view that only
planar loops will collapse – assuming that planar loops will circularize as argued by [261].
Suppose then N(R,z) is the co-moving production density rate of planar loops of radius R at
redshift z (i.e. it has dimensions [N(R,z)] = L−3T−1), then the detection rate is given by

Γ =
∫ zd

0
4π

[∫ z

0

dz′

H(z′)

]2 N(r,z)dz
H(z)

, d =
∫ zd

0

dz
(1+ z)H(z)

. (5.14)

such that zd is the maximum range in redshift of the detector, which itself depends on the
energy of the GW EGW emitted. Our numerical results Eq. 5.12 suggest that 0.5% of the
total string loop mass is emitted, which is an order of magnitude smaller than that of the
typical BH-BH mergers, translating to about a factor of 3 shorter in detectable distance d.
For LIGO/VIRGO and ET, the maximum redshift range is then zd ∼ 0.005 and zd ∼ 0.05
respectively. In this limit, Γ can be approximated as

Γ ≈ ε
3/2
(

R
GM⊙

)3/2

(Gµ)3/2
(

10−19

h

)3(N(R,z)
Mpc−3

)
. (5.15)
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Clearly, Γ depends linearly on N(R,z), which itself depends on the cosmic string model and
its network evolution, which at present is still being debated vigorously as mentioned above.
For example, in [261], it was estimated that N(R,z) ∝ (Gµ)2R/s−4 where s is the correlation
length of the loop. Other estimates are given in [262, 263]. On the other hand, we can use
the non-detection of such collapse events in the present LIGO/VIRGO to put a constraint on
N(R,z). For Gµ ∼ 10−10 which leads to solar system sized loops of R ∼O(100) a.u., this is
N(R,z)< 10−2 Gpc−3 yr−1, which is a lower detection rate than what is expected from BH
mergers of O(10) Gpc−3 yr−1 [264].

Finally, we note that this is a conservative estimate since these solar system sized loops
satisfy RBH ∼O(1040)×δ and hence are thin loops. In this limit, ε might be closer to 29 %,
with a corresponding increase in d. We will numerically investigate the collapse of these thin
loops in a future work.





Chapter 6

Conclusions

6.1 Summary

In chapters 2, 3 and 4 we studied Axion stars [19, 17, 190]. We discussed their formation in
chapter 3, end-of-life in chapter 3 and emitted signals in a merger in chapter 4. In chapter 5
we discussed gravitational waves from collapsing cosmic string loops.

Chapter 2 focused on Axion stars [17]. We find that due to the axion potential

V (φ) = m2
a f 2

a

[
1− cos

(
φ

fa

)]
(6.1)

an instability develops which can either collapse the Axion star into a Black hole, or disperse
its content to infinity. We studied the solution space, Fig. 2.1, parameterized by the axion
decay constant, fa, and the initial ADM mass, MADM, of a one parameter family of initial
conditions.

In chapter 3 [190] we discussed the formation of such objects with non-spherical initial
data

φ = ϕ (cos(k⋆x)+ cos(k⋆y)+ cos(k⋆z)) . (6.2)

for selfinteraction f = 0.5MPl and 5MPl. We find that, depending on the initial mass, we form
either Oscillatons or Black holes where most of the mass is in final object. With further
analysis we are able to determine the populations of boson stars and Black holes and find a
mass-gap for fa < 0.2MPl

1 which could be detected by LIGO/VIRGO for axion masses of
10−9eV < ma < 10−10eV .

1MPl =
1√

8πG
for all of chapter 3
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In chapter 4, we studied the merger of oscillatons, where we found three different types
of merger dubbed subcritical, critical and degenerate mergers. A subcritical merger forms a
stable boson star as a final product, a critical merger formed a Black hole as a final product
and a degenerate merger collapsed each star collapsed into a Black hole even before they
merge.

In chapter 5 [241] we studied cosmic strings in full numerical general relativity for the
first time. More specifically, we study the collapse of a ring of a cosmic string and the
possible outcomes, as well as the radiated gravitational waves (see movie).

6.2 Future work

In planned research, we hope to gain a better understanding of the final state of a boson star
merger and the formation of rotating state and their nature. Furthermore, we hope to further
improve initial data even further for binary systems.

We will extend our study of the dynamics of cosmic strings, to that of a cosmic string
cusps and study their collisions to produce large GWs. We will generate the initial data by
constructing travelling waves as in [265]. This construction does give solutions of cosmic
string travelling waves in their minimum energy state without any constraint violations. Ulti-
mately, we hope to construct the necessary theory and numerical infrastructure to characterise
the GW signatures from a wide range of cosmic string phenomena, in order to enable a
waveform search by GW detectors.

We intend to study superradiance, an effect where bosonic particles interact violently
with the spin of Black holes. This phenomenon can reduce the spin of Black holes if axions
exist, thus giving us a way of discovering them. This is a technically difficult phenomenon to
simulate because of the vast hierarchy in the timescales of BH and scalar fields. We plan to
mitigate this problem by ignoring the loss of spin from the Black hole, which reduces the
complexity of the problem and allows us to simulate for longer. This would allow us to study
the stability of this process under more realistic conditions. By running these simplified
scenarios, we hope to develop the technical tools to make fewer assumptions. Our goal
ultimately is to understand if superradiance can happen under realistic conditions.

https://youtu.be/U5CkThsDU6w
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Appendix A

Black hole formation from Axion stars

A.1 Notes on Axions

A.1.1 Non-relativistic Axion stars and oscillotons

Here we give a brief and hopefully pedagogical introduction to Axion stars in the non-
relativistic limit of weak gravity, rapid field oscillations, and small angle field excursions.
This introduction should be familiar from studies of Axion and scalar field DM halos. We aim
to provide intuition for the existence of Axion stars in this limit, without requiring numerical
simulation.

The wave equation for the axion field after spontaneous symmetry breaking (SSB) is:

�φ − Λ4
a

fa
sin(φ/ fa) = 0 . (A.1)

In the regime of small (φ ≪ fa) field fluctuations, consider the ansatz solution:

φ = ψe−imat +ψ
⋆eimat . (A.2)

Consider for simplicity the non-relativistic limit. The energy density of the axion field is

ρa =
1
2

m2
a|ψ|2 , (A.3)
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and the “wavefunction” ψ obeys the Schrödinger-like Gross-Pitaevski equation (ignoring
self interactions):1

iψ̇ =− 1
2ma

∇
2
ψ +maΨψ , (A.4)

∇
2
Ψ =

m2
a

4M2
pl
|ψ|2 , (A.5)

where Ψ is the Newtonian potential.
Assuming spherical symmetry, stable solutions with constant (in time) ρa take the

form ψ(r, t) = eiγtg(r), leading to an eigenvalue problem for the radial function g(r) (after
specifying the boundary conditions). The ground state solution (found numerically) has
γ = −0.692ma. The solutions possess a scaling symmetry, and are specified as a one
parameter family, defined by the central field value, φ(r = 0). This family of solutions to
m2φ 2 theory are known as oscillotons. Here we have worked in the non-relativistic limit,
but oscilloton solutions to the full Einstein-Klein-Gordon equations also exist, although they
must be found numerically, as is described in the following section.

A.1.2 Relativistic Axion stars and oscillotons

The full spherically symmetric oscilloton solutions for the m2φ 2 theory in GR must be
constructed for use in our initial conditions in Section 3.3.

To obtain the radial oscilloton profiles we use the ansatz for the spherically symmetric
line element:

ds2 =−α
2dt2 +a2dr2 + r2(dθ

2 + sin2(θ)dφ
2), (A.6)

We define the quantities A = a2, C = a2

α2 . Solutions are then obtained by expanding the metric
functions and the scalar field in their Fourier components, assuming they have profiles that

1For various useful discussions, derivations, solutions, and properties of this system of equations, relating
both to axions and other scalar/condensate DM, see e.g. Refs. [266, 125, 267, 115]. A very thorough history
can be found in Ref. [268].
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oscillate coherently with base frequency ω:

φm(t,r) =
jmax

∑
j∈2N≥0+1

φm, j(r)cos( jωt) ,

A(t,r) =
jmax

∑
j∈2N≥0

A j(r)cos( jωt) ,

C(t,r) =
jmax

∑
j∈2N≥0

C j(r)cos( jωt) ,

(A.7)

where jmax is the maximum order in the Fourier expansion to which the solution is obtained.
The value of jmax sets the amount by which the Hamiltonian and momentum constraints
are violated by the approximate initial conditions, with higher values resulting in smaller
constraint violation. We found that sufficient accuracy of O(1%) in the relative Hamiltonian
constraint violation (see Equation A.30) could be obtained with jmax = 12. In similar
numerical studies ([67]), values of jmax of 10 have been used. To generate these solutions
efficiently for large jmax we used the code of Ref. [55].

One now substitutes the Fourier expansion into the Einstein-Klein-Gordon system of
equations with V (φ) = m2φ 2/2, which are

∂rA =
8πAr

2
(
C(∂tφm)

2 +(∂rφm)
2 +Am2

φ
2
m
)
+

A
r
(1−A) , (A.8)

∂rC =
2C
r

(
1+A

(
1
2

8πr2m2
φ

2
m −1

))
, (A.9)

C∂
2
t φm =−1

2
∂tC∂tφm +∂

2
r φm +∂rφm

(
2
r
− ∂rC

2C

)
−Am2

φm, (A.10)

∂tA = 8πrA∂tφm∂rφm, (A.11)

These are effectively the Hamiltonian and Momentum constraints of GR with a scalar field as
the energy-momentum source. The solutions thus found have φm(0,0) ̸= 0, and the subscript
“m” reminds us that this particular solution for φ applies to the m2φ 2 theory. These profiles
for φ in m2φ 2 theory are known as oscillotons and are described in e.g. Refs. [55, 67, 56].
They are a one parameter family, for which a larger ADM mass leads to a smaller radius and
a higher central field value.

Assuming flat space at infinity and imposing regularity, one obtains boundary conditions
both at the centre and at spatial infinity. The Fourier coefficients, and the frequency, ω = Ωm

with Ω ≈ 1, can be found numerically, using a shooting technique, in which the boundary
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conditions at infinity are sought by tuning those at the centre and integrating outwards until
they coincide. To compensate for the small domain of the shooting technique, we truncate
the field, setting φ to zero at a certain radius and extending the solution by matching it to a
Schwarzschild solution.

As described in the main text, we use these oscilloton solutions to construct Axion star
solutions valid for V (φ) = m2

a f 2
a [1− cos(φ/ fa)] in the following manner. The solutions for

A, C, φ are taken on a hyperslice at ti = 1
ω

π/2, where φ = 0 everywhere, but Π(ti) ̸= 0. The
value of Π is obtained from the time derivative of the solution for φ at this point. Crucially,
because on this initial hyperslice φ = 0 everywhere, this implies V (φ = 0) = 0, and therefore
for each solution for Π the Hamiltonian constraint is satisfied and valid in the full cosine
potential.

Although φ = 0 everywhere on the initial hypersurface for our solutions, we refer to
them as “Axion stars” because of their formal construction from the compact quasi-stable
solutions in the m2φ 2 theory.

In Fig. A.1 we plot the ADM mass for the relativistic oscilloton solutions as a function of
the first component of the Fourier expansion, φ1,m, which gives the approximate central field
value of the oscilloton. As is well known [108], increasing φ1,m results in a mass curve with
a maximum value of φ1,m ≈ 0.48, above which oscillotons are unstable [55].

Oscillotons are clearly a solution to the small-field axion equations of motion, where
φ/ fa ≪ 1 and self-interactions can be neglected. When the axion is treated as having only
a mass term, oscillotons form in simulations of the QCD phase transition [113], and in the
centres of axion DM halos in cosmological simulations [111]. As these astrophysical Axion
stars grow, either through accretion or mergers, the central axion field value will grow, and
the Newtonian potential will increase. Thus, they will eventually leave the validity of the
m2φ 2 approximation, i.e. they will no longer be oscillotons, and strong gravity effects will
become important. Non-perturbative interactions (in the form of the cosine potential) and
strong gravity effects are therefore both expected to play a role in the life, and death, of
Axion stars. It is these effects which we seek to understand in this work.

A.1.3 Cosmological initial conditions and symmetry breaking

Consider the cosmological evolution of the PQ field. SSB occurs at the temperature TPQ = fa

and non-perturbative effects switch on at TNP ≈ Λa (such that, to zeroth order, ε(T > TNP) =

0). We consider the order of events SSB followed by non-perturbative effects, i.e. TPQ > TNP.
As the Universe cools, we first have PQ symmetry breaking, then shift symmetry breaking.
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Fig. A.1 Criticality of oscillotons. We show the oscilloton ADM mass, MADM, versus
φ1,m(0), the value of the first component in the Fourier expansion of the field profile at the
centre. There is a critical value φ1,m = 0.48Mpl where the mass relation turns over, and
oscillotons become unstable. This defines Mcrit.,osc., the oscilloton critical mass. Blue points
show the oscilloton initial conditions used to map the MADM(φ1) relationship. Green points
show those values of MADM for which we actually simulate dynamical Axion stars. As we
show above, Axion stars show non-trivial behaviour and collapse for MADM < Mcrit.,osc..

For simplicity, we describe axion cosmology in the context of the standard inflationary
paradigm [269–271], but the picture is easy to generalize. The temperature during inflation
is given by the Gibbons-Hawking temperature [272], TGH = HI/2π , where HI is the Hubble
scale. The maximum thermalization temperature after inflation (related to the reheating
temperature) is Tmax.. The values of TGH and Tmax. compared to TPQ serve to set the initial
conditions on the axion field and determines how the axion DM relic abundance is determined,
and how Axion stars are formed.2

If TPQ > max{TGH,Tmax.} (case I), then the PQ symmetry is broken during inflation, and
is not restored by thermal fluctuations in the post inflation Universe. In this case the axion
field is initially approximately homogeneous across our entire causal volume. There are
small, almost scale-invariant isocurvature perturbations in the axion field, as well as the
dominant adiabatic curvature perturbation.

If TPQ < max{TGH,Tmax.} (case II), then the PQ symmetry is broken sometime after
inflation. The dominant adiabatic curvature perturbation is still present, but now there are

2The values of TGH and Tmax. compared to TNP also have an affect on the details of the relic abundance
calculation, but the qualitative picture is unchanged.
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also O(1) isocurvatrue perturbations in the axion field, coherent over scales of order the
horizon size at symmetry breaking.

When T < TNP and H .ma, the axion field begins to oscillate about its potential minimum.
The coherent classical field then begins to behave like dark matter [106], and any topological
defects decay into a cold population of axions ( e.g. Ref. [273] and references therein). The
axion DM fluctuations then begin to cluster and form structure in the Universe. On large
scales, axions form DM haloes indistinguishable from those of standard cold DM as long
as ma & 10−22 eV (e.g. Refs. [100, 274]), while on small scales, pressure support leads to
the formation of Axion stars (e.g. Refs. [113, 111]). The mass function (number density) of
structures formed, and thus the characteristic mass of Axion stars in the Universe, depends
on whether we are in case I or case II. We discuss the importance of this in Section 2.3.

A.2 GRChombo

This appendix summarises the key features of the numerical relativity code GRCHOMBO.
For a more full discussion see [134].

A.2.1 Numerical implementation

GRCHOMBO is a multi-purpose numerical relativity code, which is built on top of the open
source Chombo framework. Chombo is a set of tools developed by Lawrence Berkeley National
Laboratory for implementing block-structured AMR in order to solve partial differential
equations [275].

The key features of Chombo are:

• C++ class structure: Chombo is primarily written in the C++ language, using the
class structure inherent in that language to separate the various evolution and update
processes.

• Adaptive Mesh Refinement: Chombo provides Berger-Oliger style [276, 277] AMR
with Berger-Rigoutsos [278] block-structured grid generation. Chombo supports full
non-trivial mesh topology – i.e. many-boxes-in-many-boxes. The user is required to
specify regridding criteria, which is usually based on setting a maximum threshold for
the change in a variable across a gridpoint.

• MPI scalability: Chombo contains parallel infrastructure which gives it the ability
to scale efficiently to several thousand CPU-cores per run. It uses an inbuilt load
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balancing algorithm, with Morton ordering to map grid responsibility to neighbouring
processors in order to optimize processor number scaling.

• Standardized Output and Visualization: Chombo uses the HDF5 output format, which is
supported by many popular visualization tools such as VisIt. In addition, the output
files can be used as input files if one chooses to continue a previously stopped run – i.e.
the output files are also checkpoint files.

The key features of GRCHOMBO are:

• BSSN formalism with moving puncture: GRCHOMBO evolves the Einstein equation
in the BSSN formalism with scalar matter. Singularities of Black holes are managed
using the moving puncture gauge conditions [8, 6]. These evolution equations and
gauge conditions are detailed further below.

• 4th order discretisation in space and time: We use the method of lines with 4th order
spatial stencils and a 4th order Runge-Kutta time update. We use symmetric stencils
for spatial derivatives, except for the advection derivatives (of the form β i∂iF) for
which we use one-sided/upwinded stencils. In [134] it was shown that the convergence
is approximately 4th order without regridding, but reduces to 3rd order convergence
with regridding effects.

• Kreiss-Oliger dissipation: Kreiss-Oliger dissipation is used to control errors, from
both truncation and the interpolation associated with regridding.

• Boundary conditions: We use either periodic boundaries or Sommerfeld boundary
conditions [279], which allow outgoing waves to exit the grid with minimal reflections.
For many simulations, the AMR ability allows us to set the boundaries far enough
away so that reflections do not affect the results during simulation time.

• Initial Conditions: In principle any initial conditions can be used, for example, where
solutions to the constraints have been found numerically, these can be read into the
grid using a simple first order interpolation. Note that GRCHOMBO itself does not
currently solve the constraints for the initial conditions.

• Diagnostics: GRCHOMBO permits the user to monitor the Hamiltonian and momentum
constraint violation, find spherically symmetric apparent horizons, and calculate ADM
mass and momenta values.
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A.2.2 Gauge choice

GRCHOMBO uses the BSSN formalism [135, 280, 136] of the Einstein equation in 3+1
dimensions. This is similar to the more well known ADM decomposition [281], but is more
stable numerically. The 4 dimensional spacetime metric is decomposed into a spatial metric
on a 3 dimensional spatial hypersurface, γi j, and an extrinsic curvature Ki j, which are both
evolved along a chosen local time coordinate t. Since one is free to choose what is space and
what is time, the gauge choice must also be specified. The line element of the decomposition
is

ds2 =−α
2 dt2 + γi j(dxi +β

i dt)(dx j +β
j dt) , (A.12)

where α and β i are the lapse and shift, the gauge parameters. These parameters are specified
on the initial hypersurface and then allowed to evolve using gauge-driver equations, in
accordance with the puncture gauge [8][6], for which the evolution equations are

∂tα =−µαK +β
i
∂iα , (A.13)

∂tβ
i = Bi , (A.14)

∂tBi =
3
4

∂tΓ
i −ηBi , (A.15)

where the constants η , of order 1/MADM, and µ , of order 1, may be varied by the user to
improve stability. The effect of the moving puncture gauge is to avoid resolving the central
singularity of the Black hole. It was shown that in this gauge the central gridpoints asymptote
to a fixed radius within the event horizon, the so-called “trumpet” solution described in [282].
Thus numerical excision of the central singularity is not required. Whilst constraint violation
occurs at the central point due to taking gradients across the puncture, these remain within
the horizon and do not propagate into the outside spacetime.

A.2.3 Evolution equations

In GRCHOMBO the induced metric is decomposed as

γi j =
1

χ2 γ̃i j det γ̃i j = 1 χ =
(
detγi j

)− 1
6 . (A.16)
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Thus for weak gravity cases the conformal factor χ is approximately related to the Newtonian
gravitational potential VNewton by

χ =

√
1

1−2VNewton
, (A.17)

and a value of χ less than 1 can be loosely thought of as corresponding to a gravitational
“well". The extrinsic curvature is decomposed into its trace, K = γ i j Ki j, and its traceless part
γ̃ i j Ãi j = 0 as

Ki j =
1

χ2

(
Ãi j +

1
3

K γ̃i j

)
. (A.18)

The conformal connections Γ̃i = γ̃ jk Γ̃i
jk where Γ̃i

jk are the Christoffel symbols associated
with the conformal metric γ̃i j.
The evolution equations for BSSN are then

∂t χ =
1
3

α χ K − 1
3

χ ∂kβ
k +β

k
∂kχ , (A.19)

∂t γ̃i j =−2α Ãi j + γ̃ik ∂ jβ
k + γ̃ jk ∂iβ

k

− 2
3

γ̃i j ∂kβ
k +β

k
∂kγ̃i j , (A.20)

∂tK =−γ
i jDiD jα +α

(
Ãi jÃi j +

1
3

K2
)

+β
i
∂iK +4π α(ρ +S) , (A.21)

∂t Ãi j = χ
2 [−DiD jα +α

(
Ri j −8π α Si j

)]TF

+α(KÃi j −2Ãil Ãl
j)

+ Ãik ∂ jβ
k + Ã jk ∂iβ

k

− 2
3

Ãi j ∂kβ
k +β

k
∂kÃi j , (A.22)

∂t Γ̃
i = 2α

(
Γ̃

i
jk Ã jk − 2

3
γ̃

i j
∂ jK −3 Ãi j ∂ jχ

χ

)
−2 Ãi j

∂ jα +β
k
∂kΓ̃

i

+ γ̃
jk

∂ j∂kβ
i +

1
3

γ̃
i j

∂ j∂kβ
k

+
2
3

Γ̃
i
∂kβ

k − Γ̃
k
∂kβ

i −16π α γ̃
i j S j . (A.23)
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The scalar field matter evolution equations are

∂tφ = αΠM +β
i
∂iφ , (A.24)

∂tΠM = β
i
∂iΠM +α∂i∂

i
φ +∂iφ∂

i
α

+α

(
KΠM − γ

i j
Γ

k
i j∂kφ +

dV
dφ

)
, (A.25)

where the second order Klein Gordon equation has been decomposed into two first order
equations as is usual. The stress energy tensor for a single scalar field is

Tab = ∇aφ∇bφ − 1
2

gab(∇cφ ∇
c
φ +2V ) . (A.26)

and the various components of the matter stress tensor are calculated from this as

ρ = na nb T ab , Si =−γia nb T ab ,

Si j = γia γ jb T ab , S = γ
i j Si j (A.27)

The Hamiltonian constraint is

H= R+K2 −Ki jKi j −16πρ . (A.28)

The Momentum constraint is

Mi = D j(γi jK −Ki j)−8πSi . (A.29)

A.3 Specific Numerical Details

A.3.1 Initial Conditions, Convergence and Stability

To simulate Axion stars we use GRCHOMBO, a 3+1D numerical general relativity solver with
full adaptive mesh refinement (AMR). Some generic details regarding the code are provided
in Appendix A.2 above, including the evolution equations and numerical methods. In this
section we provide further details specific to this work. Whilst the full 3+1D formulation is
clearly not necessary for a spherically symmetric solution like an Axion star, we intend to
expand the work in future to non-spherically symmetric cases, and thus we were content to
sacrifice some efficiency in this simpler case in order to build our skills for future work with
this code.
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In our simulations, the gauge variables are initially are chosen in accordance with the
spherical oscilloton solutions in polar-areal coordinates, as detailed in the main text, and
then transformed into cartesian coordinates. This was done by interpolating a Mathematica
solution for the gauge, metric and extrinsic curvature variables in radial coordinates onto
each gridpoint (using linear interpolation of values lying between the Mathematica solution
points), and then transforming this into cartesian coordinates using the relevant Jacobian
transformation at each grid point. The values of the Γ̃i were then calculated from the
derivatives of the spatial metric, rather than interpolated onto the grid. In figure A.4 we show
that the generated initial data has O(0.1%) relative Hamiltonian violation. On subsequent
slices the gauge variables are allowed to evolve away from the polar areal gauge dynamically,
in accordance with the puncture gauge in Eq. (A.13). This gauge choice allows us to resolve
and stably evolve spacetimes containing Black holes without excision, but requires some
care when interpreting results.

In cases of Black hole formation we see the expected “collapse of the lapse” and the
solution quickly stabilises into the “trumpet” puncture solution described in [282]. We
remove the effect of the changing lapse by plotting against the proper time τ rather than
simulation time t for central values. This is achieved by integrating the lapse at each timestep.
In other cases the lapse is of order 1 so simulation time is approximately equal to proper time
locally. Modulo numerical error, the shift vector is always zero at the origin due to spherical
symmetry.

The presence of a Black hole event horizon is gauge invariant. We use an apparent
horizon finder which assumes spherically symmetry to identify marginally trapped surfaces
on each spatial slice. Whilst these are local rather than global horizons, if we detect an
apparent horizon on a time slice, the singularity theorems tell us that it must lie inside an
event horizon (see, for example, section 7.1 of [155]). Thus if we detect an apparent horizon
we can infer that a Black hole has formed, and the area of the apparent horizon provides a
lower bound on the Black hole mass. Note that the converse is not true – the absence of an
apparent horizon does not imply the absence of an event horizon.

For all our simulations we use a minimum of three fixed levels of refinement to get good
spatial resolution, and add additional levels above this dynamically in response to the scales
which develop in each case. The coarsest grid is 643 and has a physical length of 128m−1,
and the refinement ratio at each level is 2. The conditions for AMR are based on the gradients
of χ , the conformal factor. Depending on whether a Black hole formation occurs or whether
the field disperses, we typically use a maximum of 5-8 levels of refinement.
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We checked the convergence of the code in a fixed mesh refinement (FMR) case by
tracking the difference in the value of φ when the highest refinement level was doubled
succesively over three simulations. The results are shown in figure A.2, in which 3.5th order
convergence is demonstrated, which is consistent with the spatial stencils and time integration
used. For a selection of full AMR simulations, we repeated the runs with an additional grid
and more aggressive threshold for refinement, to check that the same phenomena were
observed and thus that the code had converged sufficiently. In addition, we track the relative
violation of the Hamiltonian constraint at each timestep, calculated as

Hrel =
H

16πρavg
, (A.30)

with ρavg the average density inside the star. We define ρavg = MADM/VStar, with VStar =

vol({x ∈ R3 | ρ(x) > 0.05max(ρ(x))}). We also measure the absolute violation of the Mo-
mentum constraint. We find that these remain stable and bounded throughout the simulation,
see Figure A.3 and Figure A.5, although the absolute violation in the Momentum constraint
increases somewhat during Black hole formation.

To determine the end state for an Axion star we simulated the star for approximately 87
crossing times of the numerical grid. We use Sommerfeld boundary conditions [279], which
allow outgoing waves to exit the grid with minimal reflections in the case of a φ 2 potential.
Whilst we consider a non free-field case, at the boundaries the field is near the minimum
and therefore only probes the m2φ 2 part of the potential. We thus expect the condition to
work reasonably well despite the additional self interaction terms. However, since we evolve
for several crossing times, we must consider the possible effect of reflections on our results,
which are difficult to quantify. Even though boundary conditions were used which allowed
radiation to exit the grid, it is inevitable that some reflections will have occurred, and this
adds uncertainty to any numerical values extracted from the final state.

We estimated that the reflected energy was of the order of 10−4M2
pl/ma on the first

reflection, and thus it was unlikely to significantly affect our results. We show in figure A.6
a plot of the mass of the apparent horizon, which quickly stabilises around a fixed value,
showing that it is not significantly affected by reflections at later times. We also show in
the same figure the ADM mass, calculated from ADM variables extracted on the surface
of a square box with width 25.4 1/ma, centred at r = 0. The ADM mass remains relatively
constant during the simulation, which gives additional evidence that the boundaries are not
significantly reflecting energy back into the domain.



A.3 Specific Numerical Details 123

Fig. A.2 FMR Covergence test. We tested the convergence of the code in an FMR setup,
in three runs with finest mesh spacings of h1 = 0.125, h2 = 0.0625 and h1 = 0.03125. The
results are shown in the figure, which demonstrates that the code has ≈ 3.5th order conver-
gence. There is some loss of the expected 4th order, but this is partly due to interpolation
errors when comparing solutions (since we use a cell centred grid, the cell centre at each
additional refinment level is ∆x/2 from that of the level below).

In addition, we checked the final state for fa/
√

2 = 0.100 and φ1,osc(0) = 0.15, which has
an initial total energy of 2.50 M2

pl/ma. After 87 light crossing times the total energy which
remains in our grid is 2.25× 10−9 M2

pl/ma. This indicates that the majority of the initial
energy was dispersed and has been able to exit the grid. Additionally, we checked the final
state for fa/

√
2 = 0.040 and φ1,osc(0) = 0.2, which forms a Black hole. We simulate this case

for 2.34 light crossing times which covers the period before and shortly after BH formation.
The initial mass of the system is 2.62 M2

pl/ma, and this is found to be mostly absorbed into
the Black hole which has a final mass of 2.0 M2

pl/ma. Although the exact value of the mass
might be somewhat influenced by reflections, the formation of the Black hole occurs well
before these could interfere with the dynamics of the system, so we are in no doubt that this
is the correct end state. Our ability to evolve the quasi-stable solutions with a modulating
self interaction over several periods is further evidence that reflections are not significantly
contaminating our results.

A further constraint of the finite grid comes from the fact that, in cases where most of the
Axion star mass gets ejected, the end state could be another low mass Axion star. Since the
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Fig. A.3 Relative Hamiltonian constraint violation, L2 norm (MADM, fa) = (0.85,0.25).

The L2 norm || f ||2 =
√

1
V
∫

V f 2dV of the relative Hamiltonian constraint violation (as defined
in Eqn. (A.30)) for a case of Black hole formation. We excise the interior of the Black hole
apparent horizon after it forms. Because the definition of the relative density does not make
sense anymore after Black hole formation, we continue to use the value from shortly before
the apparent horizon appears. We used a short relaxation routine for χ initially, in addition to
the numerical solution, to improve the initial constraint violation.

radius of the Axion star increases with decreasing mass, if the final Axion stars are very low
mass, and thus bigger than the initial grid, they will be impossible to resolve. This means that
the size of the grid puts a lower bound on the mass of any oscillotons which can be identified
as the final states of our system. However, this is a relatively small value, approximately 0.46
M2

pl/ma, and thus we say that the star has dispersed in these cases.

A.3.2 Complex PQ field versus real axion field

In this section, we comment on the mapping between S1 and R1 for the axion field. For
field values of the form ϕ = faeiφ/ fa/

√
2, the potentials in Eq. (2.4) and (2.5) should be

equivalent, but with the significant difference that the real potential has distinct vacua and
the complex one does not – going “over the potential hill" takes you back to where you
started. However, because we have fixed our boundary conditions at infinity to be at the
same central minimum in all directions, and assuming continuity in the solutions, we cannot
have any charges corresponding to the distinct vacua, and therefore there should be no
physical difference between the two, provided that the radial field stays in the minimum of
the potential ring. This means that one should obtain the same results using a real scalar field
and a real cosine potential, as would be obtained for the full complex potential, provided that



A.3 Specific Numerical Details 125

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
r [1/ma]

0.0

0.1

0.2

0.3

0.4

0.5

|H
re
l|

[%
]

Fig. A.4 Relative Hamiltonian constraint violation for initial conditions, radial profile
(MADM, fa) = (0.85,0.25). Initial relative Hamiltonian constraint violation, as defined in
Eqn. (A.30). The zero radius marks the center of Axion star. The momentum constraint is
identically zero initially, since Ki j = 0 and Si = 0, so no plot is provided for this.

the radial oscillations in the complex case are small. We have confirmed that this is the case,
as detailed below.

The full complex potential for the PQ field is given by Eq. (2.4).3 We consider solutions
in the broken phase of PQ symmetry, i.e. with the radial mode ρ = fa everywhere.

Although ρ is much heavier than the axion, and so naively can be integrated out and set
to a constant, strong gravitational effects in Axion stars could destabilize the radial mode.
We investigate radial mode stability by simulating the full complex-valued PQ field. We
define our initial conditions in this case using

ϕ =
fa√
2

eiφ/ fa, (A.31)

to map the Axion star initial data, in φ , to the equivalent values for the complex PQ field ϕ .
Simulating the radial mode and the full complex field is computationally challenging

due to the hierarchy of masses between ρ and φ : steep potential “walls” imply the radial
oscillations have much shorter time-scales than the angular ones and therefore require higher
temporal resolution. We performed a small number of simulations of the complex field, to
demonstrate that stability of the radial mode can be ensured.

3An additional term must be added in the potential to ensure that we have zero vacuum energy at the
minimum, such that V becomes V ′ = V + V̄ . Naively, V̄ = ε fa by expanding the potential. However, due
the breaking of the shift symmetry the effective minimum moves slightly and the values must be adapted
accordingly.
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Fig. A.5 Absolute Momentum constraint violation. (MADM, fa) = (0.85,0.25). The L2

norm (|| f ||2 =
√

1
V
∫

V f 2dV ) of the absolute momentum constraint violation for a case of

Black hole formation. Even though the initial data is not time-symmetric (Π ̸= 0), Ki j and Si

are zero everywhere, therefore the momentum-constraint is trivially satisfied initially.

The results of these simulations are shown in Fig. A.7. The left panel shows the evolution
of the radial mode, while the right panel compares the evolution of the axion field in the
complex (εϕ1) and real (cosine) simulations. We notice that the radial mode undergoes
small (sub-percent) oscillations at high frequency. The radial frequency is increased, and the
amplitude reduced, as we increase λϕ (which sets the mass of ρ). The axion field evolution
in both simulations agrees at the sub-percent level, with agreement also increased as we
increase λϕ .
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Fig. A.6 Apparent horizon and ADM mass versus time Evolution of the (MADM, fa) =
(2.63,0.055), R2 star in Fig. 2.1. Evolution of the Black hole apparent horizon mass and
ADM mass over time. The blue shaded area indicates the potential error due to resolution
when measuring the radius of the AH. The AH mass increases as more matter is accreted, as
expected, and stabilises at a relatively constant value, indicating that it is not significantly
affected at later times by reflections. The ADM mass remains relatively constant. The later
perturbations are caused by scalar fields propagating through the boundary which we use to
measure it. These may be in part due to reflections from the boundary, but appear to remain
well bounded and do not grow.
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Fig. A.7 Radial field stability.Time evolution of the full complex field for different values
of λϕ for fa =

√
8π

√
2, for which the evolution is oscilloton like. The panel on the left

shows the radial modes |ϕ|, and the one on the right shows the difference between complex
and real field evolution. Values in the left panel of ± 100 % would indicate that the radial
mode is unbounded, that is, that it can go “over the top” of the central point. However, it can
be seen that its values are extremely well bounded, justifying the use of the real potential
as equivalent to that of the full complex one. The plots cover one period of the angular
oscillation, which contains multiple periods in the radial amplitude.



Appendix B

Formation of Relativistic Axion Stars

B.1 Two Pass Connected Component Labelling

The connected component labelling (CCL) procedure assigns a unique label to a set of
connected target pixels in a binary image [283]. We can construct a binary image from an
2D array, in our case the energy density of the φ field generated by our toy power spectrum,
by assigning a 0 to all elements in the array that are below a cutoff threshold, and a 1 to all
those that are above. A subset of the binary image is called connected if for any two points
P and Q of the subset there exists a sequence of points P = P0,P1,P2...,Pn−1,Pn = Q such
that Pi is a neighbour of Pi−1 [284]. The definition of a connection relies on that of a pixel’s
neighbourhood, if this includes 4 neighbours it is said to be 4-connected, and if it includes 8
neighbours it is said to be 8-connected [285].

We use a specific group of CCL, known as two-pass algorithms, to label peaks. Two
pass complete labelling in two scans: during the first scan they assign provisional labels to
pixels and record label equivalencies. Label equivalencies are the resolved during or after the
first scan. During the second scan, all equivalent labels are replaced by their representative
label [286, 287]. We use a two-pass algorithm that use 4-connected to define a connection.
Algorithmically, we did the following:

loop p
if p > 0 then

if p above !=0 and p left =0 then
pl = pl above

else if p above =0 and p left !=0 then
pl = pl left
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else if p above !=0 and p left !=0 then
pl = min(pl above, pl left)
record pl dependancy

else
pl = new label

end if
end if

end loop

where p is a pixel, pl is a pixel label, and min is a function that chooses the minimum of
two values. The label equivalencies were then processed such that consecutive labels where
generated, and then a second pass would the replace all equivalent labels. This algorithm
provides a description of how the peaks where labelled. The Numpy [3] CCL algorithm was
used for the analysis presented in this work.

B.1.1 Constructing Initial data

We construct our initial data in the same was as in [288], however the key details of the
method are reproduced here for convenience. We choose α = 1 and βi = 0 and hence on the
initial hypersurface the initial gradient energy is

ρgrad ≡ 1
2

γ
i j

∂iφ∂ jφ . (B.1)

We also introduce the notation for the kinetic term

η =
1
α

(
∂tφ −β

k
)
, (B.2)

which is zero on our initial hypersurface. Hence initially

ρ =
1
2

γ
i j

∂iφ∂ jφ +V . (B.3)

Our constraint equations become

D̃2
χ − 5

4χ
γ̃

i jD̃iχD̃ jχ +
χR̃
2

+
K2

3
− 1

2
Ãi jÃi j = 8πGρ , (B.4)

and
D̃ jÃi j − 3

2χ
Ãi jD̃ jχ − 2

3
γ̃

i jD̃ jK = 8πGηγ̃
i j

∂ jφ . (B.5)
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Next we want to specify the initial conditions for the metric γi j and the extrinsic curvature
Ki j. We can make the simplifying assumption that the metric is conformally flat and the
traceless part of the extrinsic curvature Ki j is zero everywhere on the initial hyperslice

γ̃i j = δi j , (B.6)

and
Ãi j = 0 . (B.7)

We now need to specify the values of K and χ on the initial hyperslice. Eq. B.5 is trivially
satisfied for K = const, however, in order to satisfy Eq. B.4, and the periodic boundary
conditions, K2/24π needs to lie close to the average initial energy density for the hyper-
surface. Therefore for simplicity we choose it equal to the average initial energy density,
approximating the metric to be Euclidean

K =−
√

24πG⟨ρ⟩ , (B.8)

with
ρ =

1
2
(∂iφ)

2 +V (φ) , (B.9)

where ⟨X⟩= V−1 ∫ X dV indicates the average over the spatial volume V of the quantity X .
Once K is chosen, the initial field profile and the Hamiltonian constraint then fully determine
the conformal factor χ (which we solve for using numerical relaxation).

B.1.2 AMR Condition

All simulations shared a coarsest grid of 643. Locally, the scale-factor of our spacetime is
roughly

a ≡ 1√
χ
, (B.10)

which is not a true comparison, since the scale-factor a from FRW assumes a homogeneous
space-time, however, it is still a useful measure.

Since the timescale of formation of objects varies, this means that the physical length
scales of the problem do not necessarily track the grid, and hence requires a rescale regridding
threshold. We set our threshold to be triggered by high gradients in K and a scaled version
of the gradients of ρ . These conditions track gravitational collapse in our simulations. For
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Fig. B.1 The plot shows the L2 norm Eq. B.11 of the Hamiltonian constraint violation
over time for a simulation that forms an Axion star, with an initial total mass of M = 1.34
M⊙ 10−10eV m−1

a , fa = 5.0 Mpl and L̃ = 16 m−1
a . The spikes in the plot are due to the

regridding in the simulation and are rapidly damped.
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Fig. B.2 Convergence test for φcenter showing a convergence between 3rd and 4th order. The
convergence test is done with a fixed grid with three different resolutions of 0.25 m−1

a , 0.125
m−1

a and 0.0625 m−1
a . Our evolution scheme is 4th order and the variation in the convergence

is due to φ passing through 0 during the evolution.
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L̃ = 16 we scaled our regridding of the gradients of ρ as

ρt
∇ρ√

χ
,

where ρt is a numerical regridding threshold set at the beginning of the simulation. It was
set to a value of 20ρstar

max , where ρstar
max is the maximum value of ρ that a star of half total box

mass would have. If half the total box mass was greater then the most stable Axion star, then
ρstar

max was set to be the for the highest stable Axion star. For L̃ = 64 and L̃ = 128 we found
that this condition was not enough for optimum regridding. Below an amount of layers (3 for
64, and 4 for 128), we added an additional regrid condition

ρa
∇ρ

χ
3
2
,

where ρa is an additional regridding threshold. ρa was chosen to be 10ρbox
max, where ρbox

max is
the maximum value of ρ in the simulation at t = 0. Once the correct thresholds where chosen,
these regrid conditions would effectively follow the gravitational collapse in the simulations.

B.1.3 Convergence and Stability

We use the following to measure the volume averaged Hamiltonian constraint violation:

L2(H) =

√
1
V

∫
V
|H2|dV , (B.11)

where V is the box volume with the interior of the apparent horizon excised. As can be seen
in B.1, we have good control over the constraint violation throughout the simulation.

We test the convergence of our simulations with the formation of an Axion Star with
initial total mass of M = 1.34 M⊙ 10−10eV m−1

a , fa = 5.0 Mpl and L̃ = 16 m−1
a . We use a

fixed grid for the convergence test with resolutions of 0.25 m−1
a , 0.125 m−1

a and 0.0625 m−1
a .

The results are shown in B.2, where we obtain an order of convergence between 3rd and 4th
order on average. The variation of the in the convergence test is due to the methodology,
where we extract values of φ at the centre of the grid. φ passes through 0 during the evolution,
that causes the spikes present in the convergence test.
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B.1.4 Axion Star Location

To confirm the that a resulting object was an Axion star, and to track its subsequent evolution,
an “Axion star finder" script was written, and ran in post-processing. The finder would look
at the density in the simulation, and locate the value and location of it’s maximum, ρmax. The
radius in x-direction for which the value of ρ had dropped to 5% of ρmax was calculated, and
then the total mass was defined as the integrated density within a sphere of that radius. The
radius of the object was adjusted for expansion.

In Fig. 3.4, there are some points that can be considered to be outliers. When the script
looks for the maximum value and location of ρ , if at that point in time there are two maximum
points in the central region, it causes the script to not return the true radius of the object, and
hence the calculated mass will also not be correct. This was not a frequent occurrence, and
the cause of it is easily confirmed.





Appendix C

Gravitational Wave Emission from
Collisions of Compact Scalar Solitons

C.1 Numerical Methodology

C.1.1 Constructing Initial Data

We solve for single oscillaton (OS) profile for φ ,π,γi j at some initial hyperslice t = t0 as
described in Refs. [203, 55, 67, 56] where π = α−1(∂tφ −β i∂iφ) is the initial kinetic term
of the scalar, and γi j is the 3-metric defined as usual in the ADM line element

ds2 =−α
2 dt2 + γi j(dxi +β

i dt)(dx j +β
j dt). (C.1)

The determinant of the spatial metric γ will be denoted by detγ . We also set the extrinsic
curvature Ki j = 0.

Given this single oscillaton profile, we generate static OS-OS initial data by superposing
two single OS solutions:

φtot = φ |x−x0 +φ |x+x0

πtot = π|x+x0 +π|x−x0

γi j,tot = γi j|x+x0 + γi j|x−x0 −hi j

, (C.2)

where ±x0 are the locations of the centers of the two oscillatons, and hi j is a constant metric.
The choice of hi j turns out to be important in setting up the initial conditions. Naively, one
would use hi j = δi j, which would make the asymptotic values the same as for a single OS.



138 Gravitational Wave Emission from Collisions of Compact Scalar Solitons

7 9 11 13 15 17 19
r [m−1]

−0.0070

−0.0055

−0.0040

−0.0025

−0.0010

0.0005

H
[m

2 P
lm

2 ]

hij = γij|2x0

hij = δij

Fig. C.1 The Hamiltonian constraint violation of the OS-OS initial data before relaxation for
C = 0.13 along the axis of the two OS. By choosing hi j = γi j|2x0 the relative Hamiltonian
constraint violation (Eq. C.1.1) is reduced by a order of magnitude from 2.6 % to 0.3 %. An
additional relaxation routine in χ is implemented after this improvement is applied.

However, this choice induces large radial modes in both oscillatons. These modes are caused
by the change in the volume element near the center of each OS due to the influence of the
companion (as compared to the case of an isolated OS). This difference is clearly seen in
Fig. C.2, where the black curve is the volume element related to an isolated OS, whereas the
orange curve is the volume element obtained by using hi j = δi j.

An estimate for the change in the volume element can be obtained as follows. Consider
OS1 at x0, with its companion OS2 located at −x0. Assuming a Schwarzchild metric far from
the surface of OS1, the volume element at −x0 due to OS1 is

√
detγ =

√
(1−2GM/d)−1 ≈

O(1.01). We assumed a distance d = 2x0 = 60m−1 and M ≈ 0.5M2
Pl/m. By subtracting off

hi j = δi j, we are still left with ∼ 1% extra volume at x =−x0 compared to the case where
OS2 was isolated (and vice-versa for OS1). That is, the oscillatons are “puffed up” initially.
These radially excited OS are not the initial conditions we seek as they add additional energy
and induce instabilities into the initial conditions for single oscillatons. In particular, the
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Fig. C.2 The volume element detγ of the OS-OS initial data before relaxation for φm,0(0) =
0.44, C = 0.13 on a line in the x direction which goes through the center of both OS. In
this example, we have positioned the stars at distance ±15 m−1 as opposed to ±30 m−1 to
illustrate our point. Note that the values are closer to the single OS solution when the metric
values are conserved in the center of the OS.

central densities and radii of these excited OS can deviate from their unexcited counterparts
by O(100%) and O(10%) respectively as they evolve, potentially rendering any results that
we obtain unreliable.1

As quantitative test, we set up a single OS with compactness C = 0.10, and then imposing
a 0.1% perturbation in its radius achieved simply by remapping the field values with r →
0.999r. This small change results in a large oscillating radial mode with a & 10% fluctuation
in maximum amplitude of the central density.2 Not surprisingly, the radiated GW energy
becomes strongly dependent on the choice of the initial separation causing varying results

1This is reminiscent of the old “self-crushing” problem in the set up of binary neutron stars initial conditions
[289].

2An animation showing the evolution in time of the central density is available [290]

https://youtu.be/LCpTmEuZm-I
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Fig. C.3 The plot shows the central density of OS with C = 0.10 at a distance 60m−1

from its counterpart. The high frequency oscillation with wavelength λ ≈ 2πm−1 is the
natural breathing of the oscillaton while the low frequency mode is caused by the radial
mode. Applying the choice hi j = γi j|2x0 removes this radial mode. Animations depicting the
evolution of the central density with and without radial modes are available [25, 26] .

for different initial distances, thus making it a bad approximation for an unexcited OS falling
in from infinity.

Our solution to this problem is to choose hi j = γi j|2x0 , which leaves the metric values at
the center of each OS unchanged from the isolated case and thus also its volume element.
From the close match between the green curve (hi j = γi j|2x0) and the black curve (isolated
OS) in Fig. C.2, one can see how this choice is a significant improvement over the orange
curve (hi j = δi j).

Furthermore, defining the relative Hamiltonian violation as( H
16πρ

)∣∣∣
x=argmax︸ ︷︷ ︸

x

(ρ)
,

https://youtu.be/h0MXVNd8u2E
https://youtu.be/W95UkprupyA
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Fig. C.4 The plot shows the L2 norm (Eq. B.11) of the Hamiltonian constraint violation over
time, with excision of the black-hole interior (which forms around t = 700). The green region
shows the relaxation time3, with data points extracted every 100th coarsest time-step. There
is a jump after the relaxation, likely caused by regridding during transition from relaxation to
evolution, but still extremely good overall.

we see a significant improvement in relative violation from 2.6% to 0.3% (see Fig. C.1).
Finally, we apply a relaxation routine to reduce this Hamiltonian constraint violation further.
The result of our method is shown in Fig. C.3 where it is clear that we have eliminated the
large low frequency radial modes (orange curve) to leave only the physical high frequency
central density fluctuation present in the original single OS solution (green curve).

C.1.2 Numerical Methodology and Convergence Tests

All grids for extraction of gravitational waves have a side length of 512m−1, with the coarsest
resolution being ∆x = 2m−1. We extract rΨ4 at a radius of 60m−1 and we set a fixed
resolution over the region containing the extraction sphere. Depending on the scenario,
we use from five to six levels of refinement, which corresponds to a smallest resolution of
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Fig. C.5 Convergence test for the l = 2, m = 0 mode of rΨ4, showing convergence between
2nd and 3rd order. The convergence test is done with three different coarsest resolutions of
4m−1, 2m−2 and 1m−1, 6 levels of 2 : 1 refinement, with corresponding finest resolutions
of 0.0625m−1, (0.0625/2)m−1 and (0.0625/4)m−1. Our evolution scheme is 4th order, and
the lowered accuracy is due to the large amount of re-gridding required to track the motion
of the oscillaton through to final state.

0.0625m−1 and 0.03125m−1, respectively. Since for all simulations the boxsize is 500m−1

and our extraction sphere is positioned at radius 60m−1 from the center, we choose the
maximum run-time at around 380m−1 in order to prevent spurious reflections at the boundary
from contributing to the final results.

We use the following to measure the volume averaged Hamiltonian constraint violation
as in Eq. B.11. As can be seen in Fig. D.2, we have good control over the constraint
violation throughout the simulation. As can be seen in Fig. C.4, we have good control over
the constraint violation throughout the simulation.

We test the convergence of our simulations with the collision of two oscillatons with
φm,0(0) = 0.33 (C= 0.20). We use a box of sidelength 256m−1, and initial separation of the
oscillatons of 40m−1. As we have turned on adaptive refinement, we use three different
coarse resolutions of 1m−1, 2m−1 and 4m−1. This allows for 6 levels of 2 : 1 refinement each
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with corresponding finest possible resolutions of 0.015625m−1, 0.03125m−1 and 0.0625m−1.
We extract the l = 2, m = 0 mode of rΨ4 at distance 60m−1 from the center. The results are
shown in Fig. C.5, where we obtain between 2nd and 3rd order convergence on average.
While we have used a 4th order scheme, the large amount of re-gridding required to track
the collision results in some loss of accuracy which is not surprising.4 Lastly, we note that
an estimate for the error bars in the energy extraction (Fig. 4.1 ) is obtained by doubling the
resolution of the simulations described in the main text, and computing the energy for this
higher resolution case. The difference of the results at two different resolutions gives us an
estimate for the error.

C.2 Self-Interactions

In our study we have ignored possible self-interactions of the scalar field φ . Here we discuss
the domain of validity of our results.

Let us first consider the case where our compact scalar solitons are made of axionic
dark matter. In this case, the potential V (φ) = m2 f 2[1− cosφ/ f ] = m2φ 2/2−λφ 4/4!+ . . .,
where λ = m2/ f 2. By comparing the self-interaction and the gravitational interaction, the
gravitational interaction dominates our solitons for φ/ f . C1/2 (where the dimensionless
compactness C = GM/R is of the order of the typical gravitational potential associated with
each soliton).5 For our merger simulations, the maximum value of the field is typically
φmax . 0.24MPl (estimated as twice the maximum field value at the center of individual
oscillatons). Hence, for f & MPl, we expect our results will remain unchanged.

Although it is not impossible to envision a mechanism through which such a large
value of the decay constant would be set in the effective theory [291, 292], f & MPl is
phenomenologically problematic if φ constitutes the totality of dark matter. Assuming we
have a scenario similar to [192], for f & MPl, the total dark matter abundance bound requires
the axion to be unacceptably light (m < 10−30 eV), in conflict with observations [201]. An
obvious way around this abundance bound is to assume that the field φ corresponds to a
sub-dominant dark matter component. Conservatively, the results of our paper are therefore
expected to apply for solitons made of a subdominant axionic dark matter component with
f & MPl.

4Using fixed grids, we have demonstrated 4th order convergence of the code consistent with methods used
[134, 17].

5For non-axionic cases with an attractive self-interaction: φ . (m/
√

λ )C1/2.
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As we have discussed, the upper bound of f . MPl is desirable from both a model
building perspective and from abundance constraints. In the regime f ≪ MPl, we would
expect self-interactions to be relevant.

However, for f . 10−2MPl, the self-gravitating real-scalar lumps cannot reach compact-
ness values that would make them approximate mimickers of BHs [17]. Hence, including
self-interactions, a typical f value of interest for gravitational wave emission would be
f ∼ 10−1mPl. For this value of f , we have found that the compactness of our configuration of
mass M can change by at most 20% relative to the non-interacting case. How does this affect
our results? While the compactness for a given mass changes, if the fractional gravitational
wave output is a function of compactness only, our curve in Fig. 1 should remain unchanged.

These heuristic arguments deserve a more complete study, which will be taken up in
future works. The main difficulty lies in setting up initial conditions. The construction of
an unexcited ultra-compact initial configuration with significant self-interactions within full
nonlinear GR is still an open problem [17].
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Fig. D.1 Gauss constraint for static string: We run the same simulation for am infinite
static string with Gµ = 1.6×10−2 (η = 0.05MPl) with and without damping. We find that
the damping stabilises the linear growth in violation.

Appendix D

Cosmic String Loop Collapse in Full
General Relativity

D.1 Numerical Methodology

D.1.1 Evolution Equations

In this work, we use GRCHOMBO, a multipurpose numerical relavity code [134] which
solves the BSSN [135, 280, 136] formulation of the Einstein equation. Meanwhile, the matter
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part of the Lagrangian is

Lm =−(Dµφ)∗(Dµ
φ)− 1

4
FµνFµν −V (φ) , (D.1)

which gives the evolution equations

−DµDµ
φ +

∂V (φ)

∂ φ̄
= 0 , (D.2)

∇µFµν =−eJν , (D.3)

with
Jν = 2Im(φ∗Dν

φ) , Fµν = ∂µAν −∂νAµ . (D.4)

We decompose these equations in 3+1 coordinates, following [293]. Furthermore, we impose
the Lorenz condition

∇
µAµ = 0 . (D.5)

Using the projector
Pν

µ = δ
ν
µ +nµnν , (D.6)

where nµ is the normal to the hypersurface, the gauge field and current can further be
decomposed into traverse and longitudinal components via

Aµ =Aµ +nµA ,

Jµ = Jµ +nµJ ,
(D.7)

such that

Aµ = Pν
µ Aν and A=−nνAν ,

Jµ = Pν
µ Jν and J =−nνJν .

(D.8)

The electric and magnetic fields are defined as

Eµ = Pν
µ nρFνρ , (D.9)

Bµ = Pν
µ nρ(⋆Fνρ) , (D.10)
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where (⋆Fνρ) is the dual Maxwell tensor. Using the previous decomposition we rewrite the
Maxwell tensor as

Fµν = nµEν −nνEµ +∂µAν −∂µAν . (D.11)

In addition, eq. D.3 gives the Gauss constraint

∇̃iE i = eJ , (D.12)

where ∇̃ = Pν
µ ∇ν .

To ensure that numerical violation of D.12 is kept to a minimum, we stabilise it by
introducing an auxiliary damping variable Z [293–295], resulting in the following modified
evolution equations

∂tE i = α(Ei − eJ i + ∇̃iA)−A∇̃iα +β
j
∂ jE i −E j

∂ jβ
i ,

∂tA=−Ai
∇̃iα +α(KA− ∇̃iAi −Z)+β

j
∂ jA ,

∂tAi =−α(Ei + ∇̃iA)−A∇̃iα +β
j
∂ jAi +∂iβ

jA j ,

∂tZ = α(∇̃iE i − eJ −κZ)+β
j
∂ jZ .

(D.13)

From fig. D.1 we see the scheme is effective at stopping the growth of constraint violations.
Finally, we decompose the complex scalar field

φ =
1√
2
(φ1 + iφ2) , (D.14)

and rewriting the matter equation with BSSN variables,
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Fig. D.2 L2 norm of constraints: Loop with Gµ = 1.6×10−2 and R = 100 M−1
Pl remains

stable throughout evolution, even after Black hole formation. The initial Hamiltonian
constraint is smaller than it can be maintained by the evolution scheme. The momentum
constraints violation are negligible throughout.

∂tφa = αΠM,a +β
i
∂iφa ,

∂tΠM,a = β
i
∂iΠM,a +α∂i∂

i
φa +∂iφa∂

i
α

+α

(
KΠM,a − γ

i j
Γ

k
i j∂kφa +

dV
dφa

)
+α(−e2AµAµ

φa ± eφa+1∇µAµ

±2eAµ
∂µφa+1) ,

∂tE i = αKE i + eαχγ̃
i jJ j +αχγ̃

i j
∂ jZ

+χ
2
γ̃

i j
γ̃

kl
∂lα(∂ jAk −∂kA j)

+χ
2
γ̃

i j
γ̃

kl(D̃k∂ jAl − D̃k∂lA j)

+
α

2
χγ̃

i j
γ̃

kl(∂ jAl∂kχ −∂kA j∂lχ)

+β
j
∂ jE i −E j

∂ jβ
i −αeJ i ,

∂tA= αKA−αχγ̃
i j

∂ jAi +αχAiΓ̃
i −αZ

+
α

2
Aiγ̃

i j
∂ jχ −χγ̃

i jAi∂ jα +β
j
∂ jA ,

∂tAi =−αχ
−1

γ̃i jE j −α∂iA−A∂iα

+β
j
∂ jAi +∂iβ

jA j ,

∂tZ = α∇̃iE i − 3
2

α

χ
E i

∂iχ −αeJ −ακZ +β
j
∂ jZ ,

(D.15)
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where a ∈ {1,2} and the second order Klein Gordon equation has been decomposed into two
first order equations as usual. The stress energy tensor for Abelian Higgs is

Tµν = D(µφ
∗Dν)φ +FµαFα

ν +gµνLm, (D.16)

and its various components are defined as

ρ = na nb T ab , Si =−γia nb T ab ,

Si j = γia γ jb T ab , S = γ
i j Si j . (D.17)

The Hamiltonian constraint

H= R+K2 −Ki jKi j −16πρ , (D.18)

the momentum constraint

Mi = D j(γi jK −Ki j)−8πSi , (D.19)

and the Gauss constraint
Z = ∇̃iE i + eJ νnν , (D.20)

are monitored throughout the evolution to check the quality of our simulations (see fig. D.2).
Our boundary conditions are Dirichlet.

D.1.2 Initial Data

We set up the field as mentioned in the main text using toroidal coordinates (see fig. D.4).
Time symmetry is assumed for our initial data,

K = 0 , Ai j = 0 , (D.21)

which automatically fulfils the momentum contraint (eq. D.19). In addition, we make a
conformally flat1 ansatz γ̃i j,

γ̃i j = δi j , (D.22)

1This is not the unique solution to the constraint equations given the initial field configuration. However, it
is the most easily implemented, as more general initial conditions require much greater computational resources
to find. Conformal flatness is also consistent with the fact that the spacetime is asymptotically Schwarzschild.
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Fig. D.3 Initial relative violation: Slice through initial data for loop from center through
string with Gµ = 1.6×10−2 and initial radius R = 100 M−1

Pl . The shaded region indicates
where the string is located. We find that there is an error of at most 0.3%.

and impose the metric to be equal to the identity δi j in the center of the string, similar as the
static string (see eq. D.30). We find that doing so reduces possible excitations of the string.
For the gravitational wave extraction, we impose the condition

lim
r→∞

χ = 1 , (D.23)

by applying a rescaling of the radial coordinates.
We solve for χ using the Hamiltonian constraint eq. D.18. We reduce the spatial

dimension of the problem by using its cylindrical symmetry. This solution is then further
relaxed to obtain the final solution, which is that of an excited cosmic string loop.

As shown in fig. D.3, the relative Hamiltonian violation from our prescription is

Hrel =
H

16πρmax
< 1% .

D.1.3 Numerical Extraction of Signal

We extract the Penrose scalar Ψ4 with tetrads proposed by [296]. Similarly as in Black hole
binaries, there is some non-physical radiation associated with the initial data, which in our
case consists of a toroidal shell of artificial radiation resulting in two GW peaks before the
physical signal. While such stray-GW can often be ignored as they quickly radiate away at
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Fig. D.4 Toroidal coordinates encode the symmetry of our cosmic string loops. They are
used to generate the initial field configuration, where R defines the radius of the loop.

light speed, in our case due to the rapid collapse of our loops at ultrarelativistic speeds, they
cannot be ignored.

The first peak at tret < 0 is due to this initial radiation travelling opposite to the collapse
and could be separated by increasing the loop radius so that the real signal takes longer.
However, the second peak (first peak in fig. 5.1) results from the radiation which travels
together with the collapsing loop at similar velocity, which always mixes with the real
signal. In any case, increasing the loop radius would result in a cleaner signal but this is
computationally very expensive.

To estimate the GW energy we use the equation

dEGW

dt
=

r2

16π

∫
Sr

∣∣∣∣∫ t

t0
Ψ4dt ′

∣∣∣∣2 dΩ , (D.24)

where Sr is a sphere of radius r.
In the cases for which the cosmic string loop does not form a Black hole, most of the

matter will escape, typically at velocities close to the speed of light. This scalar and vector
radiation overlaps the gravitational wave signal and due to its large mass might leave an
imprint on rΨ4, making the signal extraction problematic2.

2This could be prevented by setting the extraction zone further out, but this is numerically too expensive.
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Fig. D.5 Convergence in rΨ4 between low, mid and high resolutions giving an overall
2nd-3rd order convergence. The x-axis tret = t − rext is the retarded time where rext is the
extraction radius.

D.1.4 Numerics and Convergence Tests

In fig. D.2, we show that the volume-averaged Hamiltonian constraint violation

L2(H) =

√
1
V

∫
V
|H2|dV , (D.25)

where V is the box volume with the interior of the apparent horizon excised, is under control
throughout the simulation.

We use the gradient conditions on φ and χ to tag cells for regridding. The precise criteria
is chosen depending on the symmetry breaking scale η and the total mass of the system. The
major distinction for the amount of resolution needed is whether GW are being extracted
or not. To obtain a clean GW large boxes are needed to avoid the detection of reflections
of the non-physical signal with the boundaries, which increases the cost of the simulation.
We double checked that our signal in fig. 5.1 was consistent with a l = 2 m = 0 QNM [297]
within numerical error.

We tested the convergence of our simulations with a cosmic string loop of η = 0.05
(Gµ = 1.6× 10−2) and R = 100 M−1

Pl by using a box of size L = 2048 M−1
Pl in which we

improved by a factor of 1.5 between all three resolutions. The convergence of rΨ4 for low
(∆xmin = 1.33 M−1

Pl ), medium (∆xmin = 1.00 M−1
Pl ) and high (∆xmin = 0.66 M−1

Pl ) resolutions
is shown in fig. D.5.
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Fig. D.6 Radial profile of α and f for an infinite static string with gravity in the critical
coupling limit (e = 1, λ = 2) and η = 0.05 MPl (Gµ = 1.6×10−2).

D.2 Abelian Higgs Code Test

To test the code, we compare the evolution of a simulation with a known semi-analytic case of
the infinite static string [247]. Given the symmetry of the problem we use polar coordinates

x = r cos(θ) ,

y = r sin(θ) ,

z = z .

(D.26)

and choose cylindrically symmetric ansatz for the scalar and gauge fields φ and Aµ

φ = f (r)einθ ,

Aθ =
nα(r)

e
,

(D.27)

and all other components are set to zero. We impose the boundary conditions

f (0) = 0 , f (∞) = 1 ,

α(0) = 0 , α(∞) = 1 .
(D.28)

For the metric, the following ansatz is chosen
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Fig. D.7 Comparison with Nambu-Goto for loop with Gµ = 1.6×10−2 and initial radius
R = 100 M−1

Pl shows agreement.

ds2 =−eA(r)dt2 + eB(r)(dr2 + r2dθ
2)+ eA(r)dz2 , (D.29)

where A(r) and B(r) are radial functions numerically determined. We impose the metric and
its derivatives to be locally flat

A(0) = 0 , A′(0) = 0 ,

B(0) = 0 , B′(0) = 0 .
(D.30)

We solve Einstein’s and the corresponding matter evolution equations

Gµν = 8πTµν , (D.31)

DµDµ
φ =

dV
dφ̄

, (D.32)
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iteratively as follows. We solve the Klein-Gordon equation (eq. D.32) for fixed flat back-
ground, then use this solution to calculate the stress-energy tensor and retrieve the values of
A(r) and B(r) via (D.31) to build a new metric. Plugging this back into the Klein-Gordon
equation we find new profiles for the fields using the new metric as background. The solution
converges quickly (within ∼ 5 iterations), see fig. D.6 for the obtained profiles of f and α .

D.3 Comparison with Nambu-Goto

Previous work showed that without gravity [298] the Nambu-Goto (NG) action is still valid at
relativistic speeds. However, a comparison between the two approaches, leads to consistent
results with NG up to roughly the point when the string radius is close to the string thickness
(see fig. D.7). To reduce gauge effects we use the time of static observer at the position of
the string,

τ =
∫

α|ρ=max(ρ) dt . (D.33)

Having shown that NG is a good approximation, we use it to estimate the velocity before
unwinding, which we define as the point where the radius of the ring R is equal to the
thickness of the string δ . We find

vδ =

√
1−
(

δ

R

)2

, (D.34)

which, for our simulations, gives results ranging from 0.97 c to 0.99 c. In the case for which
we extract the gravitational wave signal (Gµ = 1.6× 10−2, R = 100 M−1

Pl ) we estimate a
velocity of 0.99 c before collision.
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