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Allgemeinverständliche Zusammenfassung

Gravitationswellen entstehen durch beschleunigte Massen, die Energie
in das Raum-Zeit-Kontinuum abstrahlen. Diese Wellen komprimieren
und dehnen alles in ihrem Weg um einen winzige Distanz, während sie
sich durch das Universum ausbreiten. Nur extrem kompakte Objekte, wie
etwa Schwarze Löcher und Neutronensterne, können genug Energie emit-
tieren, um messbare Gravitationswellen zu erzeugen. Die erste Detektion
eines solchen Signals erfolgte am 14. September 2015 durch das LIGO
Interferometer. Es wurde von zwei verschmelzenden schwarzen Löchern
erzeugt, die über eine Milliarden Lichtjahre von unserem Sonnensystem
entfernt sind.

Die korrekte Auswertung solcher Messungen setzt voraus, dass die
möglichen Signale, auf die der Detektor empfindlich ist, berechnet werden
können. Die Dynamik von binären schwarzen Löchern und die emittierte
Gravitationswellensignatur sind durch die Einsteingleichungen bestimmt.
In der Numerischen Relativitätstheorie (NR) wird die Wellenform eines
Systems erzeugt, indem diese Gleichungen auf einem Gitter diskretisiert
und dann auf Supercomputern gelöst werden. Diese Berechnungen sind
ein wichtiger Beitrag zur aktuellen Bestimmung und Analyse von Gravi-
tationswellen.

Zukünftige Detektoren, wie etwa das Einstein-Teleskop oder LISA, werden
in der Lage sein Gravitationswellen von Binärsystemen zu detektieren,
die aus zwei schwarzen Löchern von weit unterschiedlichen Massen
bestehen. Der Rechenaufwand von NR Simulationen nimmt jedoch stark
mit diesem Massenverhältnis zu, sodass derzeitige Methoden nicht in der
Lage sind, effizient Wellenformen für solche Systeme zu erstellen. In dieser
Dissertation beschreibe ich eine neuen Ansatz, der solche Berechnungen
stark beschleunigen soll. Die grundlegende Idee besteht darin, eine Region
um das kleinere schwarze Loch aus der Simulation auszuschneiden. In
diesem Bereich ist das Gravitationsfeld sehr genau durch die Präsenz des
kleinen schwarzen Lochs bestimmt, wohingegen das große schwarze Loch
nur sehr geringen Einfluss hat. Eine solche Konfiguration ist mathematisch
durch eine perturbative Lösung beschrieben. Ich erkläre, wie eine solche
Lösung in die ausgeschnittene Region der Simulation eingesetzt werden
kann und wie dies den Rechenaufwand reduziert.





Abstract

Future gravitational wave detectors will be sensitive to signals emitted
from binary black hole systems with small mass ratios 𝑞 = 𝑚2/𝑚1 ≲ 10−2.
The generation of accurate waveforms for these systems has proven to
be a challenging task. In numerical relativity, the computational cost
of a simulation grows inversely proportional to the square of the mass
ratio which quickly becomes unfeasible. In this thesis, I present a novel
approach for the simulation of small mass ratio binary black hole systems
that aims to partially alleviate this problem. A spherical region around
the smaller black hole is excised from the computational domain and
replaced with a perturbative solution of a tidally deformed black hole.
This removes the tight grid spacing near the small black hole and thereby
the limitations imposed on the time step by the Courant-Friedrich-Lewy
condition.

The scheme is tested on the example of a scalar toy model consisting of a
point charge orbiting a Schwarzschild black hole. An initial study of this
problem was carried out by Dhesi et al. [1] in 1+1 dimensions. I generalize
their method to 3+1 dimensions and present an implementation using the
SpECTRE numerical relativity code. The accuracy and efficiency of the
simulations are demonstrated for circular geodesic orbits. As a second
step, I include the effect of the scalar self-force and present the first imple-
mentation of a fully self-consistent evolution for a scalar charge model.
By dynamically adjusting the size of the excision region, the simulations
are able to model the inspiral, plunge, merger and ringdown of the orbit.
I present a series of quasi-circular inspirals and compare the results to
an adiabatic approximation, demonstrating that post-adiabatic effects
are accurately resolved. Finally, I show how the code can be extended to
simulate highly eccentric orbits as well as hyperbolic encounters including
direct captures.
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Introduction 1
On the 14th of September 2015, the 4 km long arms of the LIGO ob-
servatory in Livingston, Louisiana were compressed and stretched
by a distance less than 1000 times the diameter of an atomic nu-
cleus [2]. About seven milliseconds later, a detector in Hanford, [2]: LIGO/VIRGO (2016), Obser-

vation of Gravitational Waves from a
Binary Black Hole Merger

Washington experienced a very similar oscillation. This signal was
caused by a gravitational wave emitted by two merging black holes
with 36 and 29 solar masses, respectively. They formed a larger
black hole of 62 solar masses; the remaining 3 solar masses were
radiated away in the form of gravitational waves. During the last
few milliseconds of their merger, the system emitted more power
than all the stars of the visible universe combined [3]. [3]: Abbott et al. (2016), Observa-

tion of Gravitational Waves from a
Binary Black Hole MergerThe signal had been traversing the universe for over a billion

years. At the time it started its journey1, Earth was dominated by 1: The stringent physicist may for-
give my liberal usage of simultane-
ity for dramatization purposes.

prokaryotic cyanobacteria that colored its oceans black, while its
most complex lifeforms, multi-celled eukaryotes, just started to
form their first organelles [4]. If we re-scale the estimated travel [4]: Gee (2021), A (Very) Short His-

tory of Life on Earth: 4.6 Billion Years
in 12 Pithy Chapters

time into a single year so that the waves were emitted at midnight
on January 1st, the first major changes to life on Earth occurred
in about May, when increased oxygen levels in the atmosphere
allowed for more complex life such as mosses and ferns to form.
Soon after, the first fish-like vertebrates started to occupy the oceans
in June and July. In August, some decided to leave the oceans and
go for a walk on land. By October, they had evolved into the first
dinosaurs roaming the plains of Pangaea. Then, on December
7th, a 15 km wide asteroid struck the Gulf of Mexico, killing all
non-avian dinosaurs almost instantly. This proved an opportunity
in particular for mammals which started to massively diversify. On
December 29th, the first apes walked on two legs; the first modern
humans arrived at around 9 pm on December 31st. The earliest
societies formed at 11:56 pm that day and 3 seconds before the
signal reached earth, a German physicist first published a theory
that could explain the oscillations about to shake the planet. The
observatories used for the detections were built in the 0.3 seconds
before they made the measurement.

In this thesis, I try and explain the efforts of my PhD to contribute to
our understanding and measurement capabilities of these signals.
In Section 1.1, I explain how General Relativity (GR) predicts gravi-
tational waves and summarize the most important astrophysical
results from their measurements. I give a brief overview of how
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binary black hole (BBH) systems are modeled with a particular
focus on numerical relativity in Section 1.2. A selection of numeri-
cal techniques to solve partial differential equations is reviewed in
Section 1.3 and I present the code used for the simulations of this
thesis in Section 1.4. Finally, I give an introduction to the numerical
evolution of intermediate mass ratio binary black holes system
and what my work has been trying to accomplish in Section 1.5.
The Einstein summation convention is used throughout the thesis,
where Greek letters indicate spacetime indices and Latin letters
correspond to spatial components.

1.1 Gravitational waves

1.1.1 General relativity

Sources and Further Reading

In this section, I give a very brief overview of the theory gravi-
tational waves, as well as some important astrophysical results
from current detectors. For a more in-depth description, consult
your favorite textbook such as e.g. [5] or [6].

For centuries, the most successful description of gravity was given
by Newton’s laws. One central postulate is that two masses 𝑀
and 𝑚 exert an instantaneous, equal and opposite force onto each
other that is proportional to the inverse square of the distance
𝑟 =

√
𝛿𝑖 𝑗𝑥 𝑖𝑥 𝑗 between them. The acceleration of the body with

mass 𝑚 is then given by this force divided by its mass

��𝑚
𝑑2𝑥 𝑖

𝑑𝑡2
= −𝐺𝑀��𝑚𝑥 𝑖

𝑟3 , (1.1)

where 𝐺 is the gravitational constant. Here, I have carelessly
canceled out the mass𝑚 on both sides without asking the important
question:

Why is a body’s inertial mass (lhs), which determines its acceleration in
response to an applied force, equal to its gravitational mass (rhs), which
dictates the strength of the gravitational force it experiences?

While Newton never found an adequate answer to this question,
known as the (weak) equivalence principle, Einstein formulated
the theory of general relativity without the concept of inertial mass
altogether [7]. Rather, any gravitational mass or energy curves [7]: Einstein (1911), Über den Ein-

fluß der Schwerkraft auf die Ausbre-
itung des Lichtes
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the spacetime around it and bodies simply follow this curvature
independent of their mass [8]. [8]: Einstein (1916), The foundation

of the general theory of relativity.
Central to describing the curvature of spacetime is the metric
𝑔𝜇𝜈. Given a coordinate system 𝑥𝛼, one can define the spacetime
interval which serves as a fundamental invariant encapsulating the
geometric properties of the four-dimensional spacetime manifold.
It is defined as

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (1.2)

The Einstein field equations then connect this metric to the matter
content of the universe [9]: [9]: Einstein (1915), Die Feldgle-

ichungen der Gravitation

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 =

8𝜋𝐺
𝑐4 𝑇𝜇𝜈 (1.3)

This simple-looking equation relates the geometry of spacetime
on the left, described by the Ricci tensor 𝑅𝜇𝜈 and Ricci scalar 𝑅,
to the energy content of the universe on the right, described by
the energy-momentum tensor 𝑇𝜇𝜈. However, hidden behind the
notation is a system of 10 semi-linear partial differential equations
which are highly difficult to solve in most cases.

Schwarzschild solution

Einstein did not believe that there existed any analytical solutions
to his field equations at first and was most surprised when Karl
Schwarzschild found the following solution just a month after he
published his theory [10] [10]: Schwarzschild (1916), On the

gravitational field of a mass point
according to Einstein’s theory

𝑑𝑠2 = −
(
1 − 2𝐺𝑀

𝑐2𝑟

)
𝑐2𝑑𝑡2 +

(
1 − 2𝐺𝑀

𝑐2𝑟

)−1

𝑑𝑟2 + 𝑟2𝑑Ω2. (1.4)

This solution describes exactly a static, spherically symmetric
spacetime in a vacuum around a mass 𝑀 as a function of radius
𝑟.

The metric has a particularly interesting feature at the so-called
Schwarzschild radius at 𝑟𝑠 = 2𝑀. In the coordinates presented
here, the metric blows up at this point and it was long unclear
what physical significance this implied. It was later shown that
the singularity can be removed with an appropriate coordinate
transformation [11, 12]. [11]: Eddington (1924), A Compar-

ison of Whitehead’s and Einstein’s
Formulæ
[12]: Lemaitre (1933), The expand-
ing universe

The region inside the event horizon 𝑟 < 𝑟𝑠 is particularly interesting
as the radial coordinate 𝑟 becomes timelike and the time coordinate
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𝑡 becomes spacelike - the light cone of a particle crossing this line
will flip to its side as seen in Figure 1.1.

Figure 1.1: A diagram demon-
strating the apparent singularity
at 𝑟 = 2𝑀 in Schwarzschild
coordinates and the flipping of
the light cones inside the region.
Source: [13]

This implies that a worldline can not remain at a constant radius
but must fall further inside, the same way any worldline has to go
forward in time outside this region. This suggests the existence
of an event horizon: any particle must fall into the true physical
singularity at 𝑟 = 0 once it crosses the event horizon at 𝑟 = 𝑟𝑠 .
If a spherical body like a star collapses beyond this point, no
physical force can prevent it from fully collapsing into the central
singularity: a black hole is formed.

The Schwarzschild solution, Eq. (1.4), is particularly remarkable
because the black hole is described exactly by a single parameter,
the mass 𝑀. A few decades later, another solution to the field equa-
tions was found describing a black hole with angular momentum.
Such a spacetime is described by the Kerr metric [14] and has three

[14]: Kerr (1963), Gravitational field
of a spinning mass as an example of
algebraically special metrics

additional parameters2 given by the spin vector 𝜒.

2: In addition, black holes are
able to hold an electromagnetic
charge, however there are no
known astrophysical formation
channels for such objects and
they are not expected to exist in
nature.

Gravitational waves

The Einstein field equations can also be solved approximately
through linearization. Here, one considers the evolution of pertur-
bations ℎ𝜇𝜈 on flat spacetime described by the Minkowski metric
𝜂𝜇𝜈 [15]

[15]: Einstein (1918), Über Gravita-
tionswellen

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 . (1.5)

When this ansatz is inserted into the vacuum Einstein field equa-
tions (1.3), one obtains in the Lorenz gauge

□ℎ𝜇𝜈 = −16𝜋𝐺
𝑐4 𝑇𝜇𝜈 . (1.6)

Here, the D’Alembertian□ = 𝜂𝛼𝛽∇𝛼∇𝛽 is a differential operator that
describes the evolution of a wave traversing across flat spacetime.
In general, such gravitational waves are emitted by any system
with an accelerating mass quadrupole as captured by the formula
first conceived by Einstein in 1918 [15] [15]: Einstein (1918), Über Gravita-

tionswellen

ℎ𝑖 𝑗 =
2𝐺
𝑐4𝑟

¥𝐼𝑖 𝑗 . (1.7)

The amplitude of a gravitational wave is sourced by the second
time derivative of the system’s quadrupole ¥𝐼𝑖 𝑗 divided by the
distance to the observer 𝑟 and multiplied by a constant with a
value of 10−44 s2

kg m . The small value of this constant is the reason it
was long doubted gravitational waves would ever be detected.
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Binary compact object systems

As of today, all detections of gravitational waves come from binary
systems consisting of black holes and neutron stars, the densest
known objects of the universe. A system of two such objects will,
at sufficiently small separation, start to dissipate orbital potential
energy in the form of gravitational waves at a rate that significantly
accelerates its inspiral. This causes the separation to shrink which in
turn increases the gravitational wave flux and thereby the inspiral
rate [16]. At some small distance, the two objects will plunge onto [16]: Maggiore (2007), Gravita-

tional Waves. Vol. 1: Theory and Ex-
periments

each other and emit a final burst of gravitational radiation. Finally,
they will merge to a single remnant. Any binary system involving
a black hole will merge to a larger black hole, whereas a system
of two neutron stars may either collapse to a black hole or form
a more massive neutron star. A black hole remnant will relax
to a Schwarzschild or Kerr black hole through the emission of
gravitational waves known as quasi-normal modes. This part of
the waveform is known as the ringdown signal.

Binary black hole systems, which are the focus of this thesis, are
characterized by a set of intrinsic and extrinsic parameters. The
intrinsic parameters include the black hole masses, 𝑚1 and 𝑚2,
their respective spin vectors 𝜒1 and 𝜒2 with three components each
and the orbital eccentricity 𝑒. The extrinsic parameters capture
the system’s location and orientation with respect to the detector,
encompassing right ascension, declination, luminosity distance,
coalescence time, inclination, orbital phase, and polarization.

The dimensionless mass ratio 𝑞 = 𝑚1/𝑚2 ≤ 1 is usually introduced
as a gravitational wave signal can easily be rescaled to different
individual masses if the mass ratio remains the same. Gravitational
wave signals from binary black holes are then categorized3 into 3: There is no sharp boundary

at which mass ratios 𝑞 a BBH
starts to become an IMRI or EMRI
and other publications might use
slightly different intervals for def-
initions.

comparable mass binaries with 𝑞 ≳ 10−2, intermediate mass ratio
inspirals (IMRIs) with 10−2 ≳ 𝑞 ≳ 10−5 and extreme mass ratio
inspirals (EMRIs) 𝑞 ≲ 10−5.
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1.1.2 The LIGO detectors

Figure 1.2: An aerial view of
the LIGO detector in Livingston,
Louisiana.
Source: LIGO/VIRGO

Sources and Further Reading

This section briefly summarizes how the LIGO/VIRGO detec-
tors are able to detect gravitational waves. It is based largely
on chapters 7 and 9 of the textbook [16] and the reviews [17,
18] which provide a much more detailed analysis of current
detectors as well as data analysis techniques.

LIGO (Laser Interferometer Gravitational-Wave Observatory) con-
sists of a giant laser interferometer with two arms extending 4
kilometers each. A high-powered laser is split into two beams that
traverse each arm toward mirrors which reflect them back. Upon
recombination at the beam splitter, the beams form an interference
pattern which depends on their phase difference. This difference
and any variation to it can be measured with extreme accuracy as
light intensity variations at a photodetector. A gravitational wave
passing through Earth will expand and contract the space(time)
occupied by these arms which causes one of the laser beams to
travel a slightly longer distance than the other one. The change in
phase difference of the recombined laser beams is then used to
re-construct the gravitational wave signal.

A typical detection of LIGO will distort the arms by 10−17 meters i.e.
by less than 1000 times the size of a proton [16–18]. Measurements [16]: Maggiore (2007), Gravita-

tional Waves. Vol. 1: Theory and Ex-
periments
[17]: Abbott et al. (2020), A guide
to LIGO–Virgo detector noise and
extraction of transient gravitational-
wave signals
[18]: Cahillane et al. (2022), Review
of the Advanced LIGO Gravitational
Wave Observatories Leading to Ob-
serving Run Four

on such small scales are constantly contaminated by noise from
different sources such as seismic movement, Brownian motion and
quantum effects. We define the data stream of such a detector as
the time series 𝑠(𝑡) consisting of the noise 𝑛(𝑡) and (perhaps) a
signal ℎ(𝑡)

𝑠(𝑡) = 𝑛(𝑡) + ℎ(𝑡). (1.8)

The noise-weighted inner product between two time series 𝑎(𝑡)
and 𝑏(𝑡) is given by

⟨𝑎(𝑡)|𝑏(𝑡)⟩ = 4Re
∫ ∞

0

𝑎( 𝑓 )𝑏∗( 𝑓 )
𝑆𝑛( 𝑓 )

𝑑𝑓 , (1.9)

where 𝑎∗( 𝑓 ) is the Fourier transform of 𝑎(𝑡) and 𝑆𝑛( 𝑓 ) is the one-
sided power spectral density (PSD) of the detector noise. The
PSD quantifies the distribution of noise power as a function of
frequency, characterizing the sensitivity of the detector across
different frequency bands.

The extraction of a signal from this sea of noise is done through
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a technique known as matched filtering which involves cross-
correlating the data stream 𝑠(𝑡) with a template waveform that
represent the expected gravitational wave signal ℎ(𝑡). The central
metric capturing the correlation is the signal-to-noise ratio (SNR)

𝜌 =
⟨𝑠 |ℎ⟩√
⟨ℎ |ℎ⟩

. (1.10)

Figure 1.3: The gravitational wave
strain ℎ detected by LIGO in Han-
ford and Livingston. Overlayed
with the measured signal is the
theoretical prediction of the wave-
form used to justify the detection.
Source: LIGO/VIRGO

The SNR quantifies to what extent the signal of the detector 𝑠(𝑡)
matches the theoretical prediction of a waveform ℎ(𝑡). A high
SNR means a very high probability that the signal was buried
in the data whereas a low SNR suggests that the correlation to
the template could merely be a result of random noise movement.
Once the false alarm rate of a signal is sufficiently low and the
astrophysical probability of detecting such a signal is sufficiently
large, a detection is claimed. This typically happens around SNR
∼ 8.

The detection of a gravitational wave signal through matched
filtering therefore requires a template - a theoretical prediction of
the waveform one is trying to detect. For this purpose, template
banks are created which attempt to cover the parameter space of all
gravitational wave signals in the sensitivity range of a detector.

1.1.3 Observational results

Today, all gravitational wave detections have been made by the two
LIGO detectors in the US and the VIRGO detector in Italy. Figure 1.4
shows a visualization of signals with astrophysical probability
𝑝astro > 0.5 detected within the first three observing runs up to
March 2020. It contains 90 gravitational wave signals, including
two originating from binary neutron star systems and at least
three emitted by black hole-neutron star mergers [19, 20]. These [19]: Abbott et al. (2021), Obser-

vation of Gravitational Waves from
Two Neutron Star–Black Hole Coa-
lescences
[20]: Abbott et al. (2023), GWTC-
3: Compact Binary Coalescences Ob-
served by LIGO and Virgo during the
Second Part of the Third Observing
Run

detections represent a new way of probing the universe which
have yielded many new findings. I will try and summarize the
most important results in this section.

Binary black holes

First and foremost, the detections give the first direct evidence for
the existence of binary black hole systems and gravitational waves.
Until GW150914, gravitational waves had only been measured
indirectly through pulsar timing [21]. The waveform and inferred [21]: Hulse et al. (1975), Discovery

of a pulsar in a binary system
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Figure 1.4: A visualization of the announced gravitational-wave detections up until the end of the third observing run.
Source: LIGO/VIRGO/KAGRA & Aaron Geller

merging dynamics represent the strongest gravitational interaction
ever recorded, providing a spectacular confirmation of General
Relativity. As all theories in physics, it is expected that GR will
eventually break down in some strong-field regime. The growing
number of measurements give increasingly stringent upper bounds
on deviations from GR and place constraints on alternative theories
of gravity [22, 23]. [22]: Abbott et al. (2016), Tests of

general relativity with GW150914
[23]: Krishnendu et al. (2021), Test-
ing General Relativity with Gravita-
tional Waves: An Overview

The distribution of merger properties also provides information
about black hole and neutron star populations as well as the
formation channels of binary systems. For instance, Figure 1.4 also
includes several signals originating from neutron stars with masses
between 1.2 M⊙ and 2 M⊙, as well as black hole mergers with more
than 5 M⊙. However, the merger rate rapidly declines between
those masses even though the detectors would be sensitive in this
region. This discrepancy is known as the lower mass gap [24] and [24]: Abbott et al. (2023), Popula-

tion of Merging Compact Binaries
Inferred Using Gravitational Waves
through GWTC-3

the astrophysical origin is a field of active research.

Gravitational wave detections allow the measurement of the bi-
nary system’s component spins, which, among other things, allows
analysis of the formation channel. While there are many proposed
ways a binary black hole system can form, they can be roughly
divided into two categories [25]: In the isolated, or in-field evolu- [25]: Rodriguez et al. (2016), Il-

luminating Black Hole Binary For-
mation Channels with Spins in Ad-
vanced LIGO
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tion, compact binaries evolve from pairs of stars which eventually
collapse to a black hole. Many astrophysical parameters influence
the properties of the final binary, but it is generally expected that
the spins of the individual black holes are aligned with the orbital
angular momentum [26–28]. In the dynamical formation channel, [26]: Hurley et al. (2002), Evolu-

tion of binary stars and the effect of
tides on binary populations
[27]: Mapelli (2021), Formation
Channels of Single and Binary
Stellar-Mass Black Holes
[28]: Bonino et al. (2023), Inferring
eccentricity evolution from observa-
tions of coalescing binary black holes

the binary black hole system is formed through interactions with
third bodies in dense globular clusters [27]; the spins and angular

[27]: Mapelli (2021), Formation
Channels of Single and Binary
Stellar-Mass Black Holes

momenta are then expected to be randomly distributed. Measure-
ments from BBH systems so far mostly show low effective spins
with very poorly constrained individual black hole spins [20]. It has

[20]: Abbott et al. (2023), GWTC-
3: Compact Binary Coalescences Ob-
served by LIGO and Virgo during the
Second Part of the Third Observing
Run

been suggested that this is consistent with in-field evolution as the
primary formation channel [29]. However, several candidates show

[29]: Bavera et al. (2020), The ori-
gin of spin in binary black holes: Pre-
dicting the distributions of the main
observables of Advanced LIGO

evidence of spins that are anti-aligned with the orbital angular
momentum, likely resulting from dynamical formation [30].

[30]: Antonelli et al. (2023), Clas-
sifying the generation and formation
channels of individual LIGO-Virgo-
KAGRA observations from dynami-
cally formed binaries

Binary neutron stars

Gravitational wave signals from binary neutron stars give insight
into the extreme states of matter found at the center of these objects.
The pressure in the core of a neutron star is much larger than
what is accessible by experiments on Earth. As a result, almost
nothing is known about how matter behaves in these regimes.
However, this unknown equation of state has a large effect on the
tidal deformability of a neutron star which quantifies of how easily
its shape is distorted by the tidal field of a companion object. This
can significantly affect the tidal interactions of a binary system,
creating measurable imprints in the waveform [31]. Neutron star [31]: Takami et al. (2014), Con-

straining the Equation of State of
Neutron Stars from Binary Mergers

waveforms detected so far have loosely constrained what equations
of state are physically possible [32] and it is expected that future

[32]: Annala et al. (2018),
Gravitational-wave constraints on
the neutron-star-matter Equation of
State

measurements will further reduce this uncertainty [33].

[33]: Hernandez Vivanco et al.
(2019), Measuring the neutron star
equation of state with gravitational
waves: The first forty binary neutron
star merger observations

Some of the most groundbreaking results in the field of gravita-
tional waves come from multi-messenger events, where a counter-
part to the gravitational signal is detected through electromagnetic
radiation or neutrinos. The only example of this to date is GW170817
which was the first gravitational wave detection originating from a
binary neutron star inspiral [34]. About ≈ 1.7𝑠 after the peak of the

[34]: Abbott et al. (2017),
GW170817: Observation of Gravita-
tional Waves from a Binary Neutron
Star Inspiral

gravitational wave signal, the Fermi Gamma-ray Burst Monitor in-
dependently measured a gamma-ray burst GRB 170817A [35]. More

[35]: Abbott et al. (2017), Multi-
messenger Observations of a Binary
Neutron Star Merger

than 70 telescopes then participated in the electromagnetic follow-
up of the transient kilonova in the galaxy NGC 4993. It initially
emitted ultraviolet radiation and traversed the electromagnetic
spectrum down to infrared as it cooled off.



1 Introduction 10

Figure 1.5: The kilonova transient
in NGC 4993 associated with
GW170817 as observed by the
Hubble Space Telescope.
Source: ESA/NASA

The observation confirmed that merging binary neutron stars
can emit gamma ray bursts, an idea which had long been postu-
lated. The small delay between the signals constrained the relative
difference between the speed of gravitational waves and light
to less than ∼ 10−15, representing an extreme test of Lorentz
invariance. In addition, the velocity of the system could be de-
termined from the redshift of the host galaxy NGC 4993, while
its distance was independently calculated from the gravitational
wave signal. This allowed for a measurement of the Hubble con-
stant as 70+12.0

−8.0 km s−1 Mpc−1 [36]. It is expected that future multi-

[36]: Abbott et al. (2017), A
gravitational-wave standard siren
measurement of the Hubble constant

messenger measurements may be precise enough to resolve the
Hubble tension that currently exists between measurements from
supernovae and the cosmic microwave background [37].

[37]: Feeney et al. (2021), Prospects
for Measuring the Hubble Con-
stant with Neutron-Star–Black-Hole
Mergers

1.1.4 Future detectors

While gravitational waves have already contributed to many
branches of astrophysics, future detectors will be sensitive to
an even broader range of signals. Figure 1.6 shows the noise sen-
sitivity curves of current and planned detectors as well as the
expected frequencies and characteristic strains produced by differ-
ent populations of binary black holes [38]. The signals that current [38]: Jani et al. (2019), Detectability

of Intermediate-Mass Black Holes in
Multiband Gravitational Wave As-
tronomy

detectors are sensitive to are shown by the green line denoted
"LIGO-like binaries" and consist of stellar-mass black holes with a
mass ratio 𝑞 close to unity.

Einstein Telescope & Cosmic Explorer

Future Ground-based detectors such as the Einstein Telescope
(ET) [39] and Cosmic Explorer (CE) [40] will be able to detect the [39]: Maggiore et al. (2020), Sci-

ence Case for the Einstein Telescope
[40]: Evans et al. (2021), A Horizon
Study for Cosmic Explorer: Science,
Observatories, and Community

same signals as LIGO with a much larger SNR, allowing for an
improved analysis of black hole and neutron star populations as
well as their formation channels. In addition, they will be sensitive
to many signals that LIGO is currently missing, particularly those
emitted at larger redshifts up to 𝑧 = 10. Current estimates are
e.g. between 105 and 106 binary black hole events per year for
ET [39].

This opens up a window into regions beyond the reionization epoch
𝑧 > 6, where only metal-poor progenitor stars are expected to have
formed. Measurements of gravitational waves from these distances
then reveal how the formation of compact objects depends on
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Figure 1.6: The noise sensitivity
curves of current and future de-
tectors along the frequency bands
of gravitational wave signals gen-
erated by different populations of
binary black hole systems.
Source: [38]

the metallicity of stars. If stellar mass black holes are truly a
result of collapsing stars, the rate of gravitational wave events
will have a strong dependence on the stellar formation rate. If the
number of gravitational waves from BBH sources is not correlated
with the star formation rate through different epochs, this could
indicate that these black holes are of primordial rather than stellar
origin [39].

While the two binary neutron star signals detected so far have
already started to constrain the equation of state, the tidal deforma-
bility parameter needs to be measured with an order of magnitude
higher accuracy to distinguish between more realistic models and
to provide evidence for phase transitions in the neutron star in-
terior [41]. ET alone is expected to detect 7 × 104 binary neutron [41]: Tews et al. (2018), Constrain-

ing the speed of sound inside neutron
stars with chiral effective field theory
interactions and observations

stars coalescences per year [39]. For multi-messenger signals, a
network of detectors across the globe will greatly improve the
sky localization of sources to allow for a follow-up search of a
transient. A network of multiple third generation detectors will
likely detect between 102 and 103 binary neutron star events with
an electromagnetic counterpart [42]. [42]: Belgacem et al. (2019), Cos-

mology and dark energy from joint
gravitational wave-GRB observa-
tions

Compared to LIGO, third generation detectors will be better insu-
lated from seismic noise at lower frequencies of ∼ 5𝐻𝑧. Currently,
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the smallest mass ratios detected are GW190814 and GW200210_-
092254 with 𝑞 ≡ 𝑚2/𝑚1 ∼ 0.11 [20, 43], and GW191219_163120 [20]: Abbott et al. (2023), GWTC-

3: Compact Binary Coalescences
Observed by LIGO and Virgo
during the Second Part of the Third
Observing Run
[43]: Abbott et al. (2020),
GW190814: Gravitational Waves
from the Coalescence of a 23 Solar
Mass Black Hole with a 2.6 Solar
Mass Compact Object

which is estimated to have 𝑞 ∼ 0.04 [20]. The CE and ET, however,

[20]: Abbott et al. (2023), GWTC-
3: Compact Binary Coalescences Ob-
served by LIGO and Virgo during the
Second Part of the Third Observing
Run

will be sensitive to the final inspiral orbits of IMRIs with mass-ratios
down to 𝑞 ∼ 10−3, indicated by the red line in Fig. 1.6.

LISA

The LISA observatory [44, 45] is a space-based interferometer that

[44]: Amaro-Seoane et al. (2017),
Laser Interferometer Space Antenna
[45]: Colpi et al. (2024), LISA Defi-
nition Study Report

will be sensitive to completely new populations of gravitational
wave sources not accessible on earth. This includes, e.g. Galactic
binary systems located inside the Milky Way. The proximity of
these sources would allow for the detection of much fainter signals
such as binaries involving white dwarfs [46].

[46]: Postnov et al. (2014), The Evo-
lution of Compact Binary Star Sys-
tems

Critically, LISA’s low frequency band makes it sensitive to at
least the partial inspiral of almost all possible types of black
hole binaries. This includes higher mass systems such as binaries
consisting of similar mass IMBHs shown by the blue line in Fig. 1.6
and massive black hole binaries expected to form during galaxy
mergers [47]. The detection of these events could help shed light [47]: Merritt (2013), Dynamics and

Evolution of Galactic Nucleion the objects’ formation channels. It is widely assumed that
massive black holes grow either through a sequence of black hole
mergers, a process known as a hierarchical merger model, or
through rapid gas accretion. However, detections of quasars at
large redshifts [48] have left open questions about the astrophysical [48]: Fan et al. (2006), A Survey of

z > 5.7 Quasars in the Sloan Digital
Sky Survey IV: Discovery of Seven
Additional Quasars

processes that could maintain the required merger/accretion rates
to form massive black holes within a few hundred million years
of the Big Bang [49]. An alternative explanation are primordial

[49]: Latif et al. (2016), Formation
of supermassive black hole seedsblack holes formed in the early universe which act as seeds for

the massive black holes observed today [50]. LISA is expected to [50]: Clesse et al. (2015), Massive
Primordial Black Holes from Hybrid
Inflation as Dark Matter and the
seeds of Galaxies

detect black holes in mass ranges between 102 and 108 M⊙ with
the majority of events occurring between redshifts 𝑧 ∼ 2 − 4 [51].

[51]: Afshordi et al. (2023), Wave-
form Modelling for the Laser Inter-
ferometer Space Antenna

This presents a unique insight into the formation channels of the
early universe.

Finally, LISA will be sensitive to IMRIs and EMRIs up to mass
ratios 𝑞 ∼ 10−8. A typical IMRI consists of a stellar mass black
hole inspiraling into an IMBH, for example in the center of a
dwarf galaxy [52]; see the red curve in Fig. 1.6. Such an event [52]: Arca-Sedda et al. (2021),

Merging stellar and intermediate-
mass black holes in dense clusters:
implications for LIGO, LISA, and the
next generation of gravitational wave
detectors

provides a possible source of a multiband detection: the early
inspiral is observable by LISA but the signal leaves the sensitivity
band as the waveform frequency increases over the course of
the inspiral. Before merger, the waveform will become detectable
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again by third generation detectors on Earth, enabling the study of
the long-term evolutionary history of these binaries. In addition,
the early LISA measurements should be able to constrain the
sky location and merger time sufficiently to allow for a targeted
search for electromagnetic counterparts immediately following
the merger [53]. [53]: Sesana (2016), Prospects for

Multiband Gravitational-Wave As-
tronomy after GW150914A canonical EMRI source for LISA consists of a stellar mass compact

object orbiting a massive black hole at the center of a galaxy. These
binaries spend 104−105 orbits in the sensitivity band of LISA which
allows the signal to build up a very large SNR. With an EMRI, it is
expected that all intrinsic parameters including the masses of the
bodies, the spin magnitude of the MBH and the orbital eccentricity
can be determined with a relative uncertainty of 10−4 − 10−6 [54]. [54]: Babak et al. (2017), Science

with the space-based interferometer
LISA. V: Extreme mass-ratio inspi-
rals

The sky position and distance will be measured accurately enough
to determine the host galaxy without the need for electromagnetic
counterparts [55]. Measurements of such extreme precision will [55]: Pan et al. (2020), Probing the

Growth of Massive Black Holes with
Black Hole-Host Galaxy Spin Corre-
lations

provide a stringent test of the Kerr metric and the associated no-hair
theorem, further constraining modified gravity theories [56]. In

[56]: Barausse et al. (2020),
Prospects for Fundamental Physics
with LISA

addition, different growth mechanisms of massive galaxies predict
significantly different mass and spin distributions of MBHs; a large
number of accurate EMRI measurements will make it possible to
identify the dominant channels [57]. The number of expected EMRI [57]: Sesana et al. (2014), Linking

the spin evolution of massive black
holes to galaxy kinematics

detections over the LISA mission duration is highly uncertain but
ranges from a few to several thousands [54].

[54]: Babak et al. (2017), Science
with the space-based interferometer
LISA. V: Extreme mass-ratio inspi-
rals

The detection of all these signals relies on the availability of accurate
waveform models covering the entire parameter space of expected
sources. However, particularly for large mass ratios these are not
yet available and their generation is an ongoing effort. In this
thesis, I describe a new approach for modeling such IMRI and
EMRI systems using numerical relativity. In the next section, I
summarize the most common approaches of source modeling that
try and solve the Einstein equations governing the interactions of
these binary systems.
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1.2 Source modeling

Sources and Further Reading

This section gives a brief summary of perturbative methods
used to solve the two body problem in general relativity, as well
as numerical relativity. The latter is mostly based on Chapter 2
of [58] and Chapters 2 through 4 of [59].

1.2.1 Perturbative approaches

Figure 1.7: A diagram showing
the domain of validity for
different approaches to the
relativistic two body problem.
Source: [51]

While exact analytical solutions to the Einstein field equations exist
for some systems with high levels of symmetry, there is little hope
in finding these for dynamic systems such as binary black holes.
Any analytical approaches to the relativistic two body problem are
based on perturbation theory where the Einstein field equations
are expanded in a small parameter.

The earliest such approach, used by Einstein himself [60], is post-

[60]: Einstein (1915), Explanation
of the Perihelion Motion of Mercury
from the General Theory of Relativity

Newtonian (PN) theory. Here, the equations of motions are de-
scribed by Newtonian gravitation at zeroth order and relativistic
effects are added as an expansion in the bodies’ velocities 𝑣/𝑐. This
theory has been very successful in describing the early inspiral
of binary black holes with high accuracy. However, during later
stages of the inspiral (which are particularly important to achieve a
high SNR for current detectors), the speed of the objects approach
the relativistic regime and the theory becomes inaccurate [61].

[61]: Blanchet (2014), Gravitational
Radiation from Post-Newtonian
Sources and Inspiralling Compact
Binaries

In post-Minkowskian (PM) theory, the field equations are expanded
in the gravitational constant 𝐺 itself. This method is particularly
effective in systems where the bodies move at relativistic speeds but
the gravitational field remains weak such as scattering events. PM
theory has seen rapid development in recent years as sophisticated
and mature mathematical techniques describing scattering events
in quantum field theory have started to be applied to binary black
hole systems [62]. However, as of today, its use for gravitational [62]: Bjerrum-Bohr et al. (2022),

The SAGEX review on scatter-
ing amplitudes Chapter 13: Post-
Minkowskian expansion from scat-
tering amplitudes

wave detection and parameter estimation remains limited.

A third avenue is the gravitational self-force approach (GSF) which
expands the equations of motions in the mass ratio 𝑞 of the two
black holes. Here, the larger black hole of the system is denoted the
primary body and the smaller black hole the secondary. At zeroth
order, the secondary body moves on a geodesic of the spacetime
created by the primary. Higher order terms in the expansion then
capture the effect of the secondary’s presence onto its own motion
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as its mass distorts the spacetime around it. This approach is
particularly suitable for high mass ratio binaries such as IMRIs and
EMRIs. Gravitational self-force theory has so far been developed up
to first order for the full parameter space [63, 64] and up to second [63]: Barack et al. (2019), Self-force

and radiation reaction in general rel-
ativity
[64]: Pound et al. (2022), Black
Hole Perturbation Theory and Grav-
itational Self-Force

order for non-spinning black holes on quasi-circular orbits [65,
66]. Extending the second order terms to the full parameter space

[65]: Pound et al. (2020), Second-
Order Self-Force Calculation of Grav-
itational Binding Energy in Compact
Binaries
[66]: Wardell et al. (2021), Grav-
itational waveforms for compact bi-
naries from second-order self-force
theory

is currently considered the only promising approach to generate
EMRI waveforms of sufficient accuracy for LISA [67].

[67]: Burke et al. (2023), Accuracy
Requirements: Assessing the Impor-
tance of First Post-Adiabatic Terms
for Small-Mass-Ratio Binaries

Finally, the effective one body (EOB) formalism uses a Hamil-
tonian framework to transform the two-body problem into an
equivalent one-body system where a test particle moves in an ef-
fective potential [68–70]. This allows it to include post-Newtonian

[68]: Buonanno et al. (1999), Ef-
fective one-body approach to general
relativistic two-body dynamics
[69]: Buonanno et al. (2000), Tran-
sition from inspiral to plunge in bi-
nary black hole coalescences
[70]: Damour et al. (2011), The Ef-
fective One Body description of the
Two-Body problem

expansion terms while exactly satisfying the geodesic test body
limit. It is further improved by calibrating its terms to numerical
relativity simulations and has even started to include results from
post-Minkowskian [71] and gravitational self-force theory [72].

[71]: Khalil et al. (2022), Energet-
ics and scattering of gravitational
two-body systems at fourth post-
Minkowskian order
[72]: Meent et al. (2023), Enhanc-
ing the SEOBNRv5 effective-one-
body waveform model with second-
order gravitational self-force fluxes

The waveforms it generates remain accurate until the late inspiral
of binary black holes and have been employed both in detection
templates as well as for parameter estimation.

Overall, all analytical approaches presented here remain accurate in
limited regions of parameter space and none are able to accurately
describe the dynamics of a BBH system in the highly relativistic
regime near the plunge and merger. A plot indicating the regions
of parameter space where different approximations are effective
is shown in Fig. 1.7. At this stage, analytical perturbation theory
inevitably breaks down and the full Einstein equations have to be
solved.

1.2.2 Numerical relativity

Numerical relativity solves the relativistic two body problem by
discretizing the full non-linear Einstein field equations (1.3) over a
grid and solving them numerically.

For this thesis, I will explain the steps to numerically solve the
simpler but similar problem of the scalar wave equation in curved
spacetime, also known as the massless Klein-Gordon equation.
This is the same equations that will be solved in the main chapters.
This hyperbolic partial differential equation describes the evolution
of a scalar field Ψ on a (fixed) spacetime background

𝑔𝜇𝜈∇𝜇∇𝜈Ψ = 0. (1.11)
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Solving such an equation numerically requires formulating it as
an initial value problem where a set of initial data is advanced
through successive time steps. However, Eq. (1.11) (and the Ein-
stein equations) are formulated on a four-dimensional spacetime
manifold which first has to be decomposed into a structure that
allows for such a prescription.

3+1D decomposition

In the 3+1 decomposition, the spacetime manifold is foliated into a
sequence of three-dimensional spatial slices. A global time function
𝑡 is used to define the slices Σ𝑡 of constant time. This motivates the
definition of the lapse [58] [58]: Baumgarte et al. (2010), Nu-

merical Relativity: Solving Einstein’s
Equations on the Computer𝛼 =

(
−𝑔𝜇𝜈∇𝜇𝑡∇𝜈𝑡

)− 1
2 , (1.12)

which measures how much proper time elapses between adjacent
time slices and is used to normalize the timelike unit normal vector
to the slice

𝑛𝜇 = −𝛼𝑔𝜇𝜈∇𝜈𝑡. (1.13)

Figure 1.8: The 3+1D decompo-
sition: the spacetime manifold
is foliated into hypersurfaces of
constant 𝑡.
Source: [58]

The shift vector 𝛽𝜇 measures how much the spatial coordinates
are shifted within a slice with respect to 𝑛𝜇 and is defined
through [59]

[59]: Gourgoulhon (2007), 3+1 for-
malism and bases of numerical rela-
tivity

𝑡𝜇 = 𝛼𝑛𝜇 + 𝛽𝜇, (1.14)

where 𝑡𝜇 = 𝛿
𝜇
𝑡 connects points with the same spatial coordinates on

adjacent time slices. The normal vector also allows us to construct
the spatial metric 𝛾𝜇𝜈 that is induced on Σ𝑡 as well the extrinsic
curvature 𝐾𝜇𝜈:

𝛾𝜇𝜈 = 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈 , (1.15)
𝐾𝜇𝜈 = 𝛾𝜈

𝜇𝛾
𝜎
𝜌∇𝜇𝑛𝜎 . (1.16)

The metric 𝛾𝜇𝜈 allows one to compute distances within a slice
Σ𝑡 . The extrinsic curvature 𝐾𝜇𝜈 measures the gradient of the unit
normal vector, i.e. how much its direction changes from one point
on Σ𝑡 to the next.

All the quantities introduced here are fully spatial 𝑛𝜇𝛾𝜇𝜈 =

𝑛𝜇𝐾𝜇𝜈 = 𝑛𝜇𝛽𝜇 = 0. For contravariant(upper) indices, the time
component vanishes when we choose the coordinate time 𝑡 to
foliate our spacetime. The full four-metric is then re-expressed in
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terms of these quantities as

𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = −𝛼2𝑑𝑡2 + 𝛾𝑖 𝑗(𝑑𝑥 𝑖 + 𝛽𝑖𝑑𝑡)(𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡). (1.17)

This decomposition is known as the 3+1D formalism and allows
the formulation of Eq. (1.11) as an initial value problem. First, the
second order Klein-Gordon equation is transformed into a set of
first order equations by introducing the auxiliary variables [73] [73]: Scheel et al. (2004), 3D sim-

ulations of linearized scalar fields in
Kerr spacetimeΠ = −𝛼−1(𝜕𝑡Ψ − 𝛽𝑖𝜕𝑖Ψ), (1.18a)

Φ𝑖 = 𝜕𝑖Ψ. (1.18b)

The first order evolution equations of the scalar wave equation in
the 3+1D formalism are then given by [74] [74]: Holst et al. (2004), Optimal

constraint projection for hyperbolic
evolution systems𝜕𝑡Ψ − 𝛽𝑖𝜕𝑖Ψ = −𝛼Π, (1.19a)

𝜕𝑡Π − 𝛽𝑘𝜕𝑘Π + 𝛼𝛾𝑖𝑘𝜕𝑖Φ𝑘 = 𝛼𝐾Π + 𝛼Γ𝑖Φ𝑖 − 𝛾𝑖 𝑗Φ𝑖𝜕𝑗𝛼 (1.19b)
𝜕𝑡Φ𝑖 − 𝛽𝑘𝜕𝑘Φ𝑖 + 𝛼𝜕𝑖Π = −Π𝜕𝑖𝛼 +Φ𝑗𝜕𝑖𝛽

𝑗 . (1.19c)

This makes for a set of 5 variables {Ψ,Π,Φ𝑖}, each of which is
endowed with its own hyperbolic evolution equation. On any
timeslice Σ𝑡 , the equations are evaluated and then advanced to the
next slice Σ𝑡+Δ𝑡 using an appropriate PDE solver as explained in
Section 1.3.

Constraints

The Klein Gordon equation (1.11) is now formulated as an initial
value problem that allows for evolution through different time
slices. However, if one were to try to evolve Eqs. (1.19), the solution
would likely blow up very quickly. In this section, I will show the
root of this instability by considering the constraint evolutions.
This is an essential technique in numerical relativity to formulate
stable evolution equations [74] and boundary conditions [75]. [74]: Holst et al. (2004), Optimal

constraint projection for hyperbolic
evolution systems
[75]: Kidder et al. (2005), Boundary
conditions for the Einstein evolution
system

The first order reduction variables in Eq. (1.18) introduce the
constraint fields [74]

𝐶𝑖 = 𝜕𝑖Ψ −Φ𝑖 , (1.20)
𝐶𝑖 𝑗 = 𝜕𝑖Φ𝑗 − 𝜕𝑗Φ𝑖 . (1.21)

These must vanish for any solution to the original second order
Klein-Gordon equation Eq. (1.19). However, because the evolution
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equations (1.19) evolve Ψ and Φ𝑖 separately, this is not guaran-
teed.

A stable evolution requires that these constraints do not grow and
are ideally suppressed with time. Their behavior can be studied by
considering the evolution equations of the constraints themselves
which can be constructed by combining Eqs. (1.19) appropriately:

𝜕𝑡𝐶𝑖 = 𝛽𝑘𝜕𝑘𝐶𝑖 + 𝜕𝑖𝛽
𝑘𝐶𝑘 = L𝛽𝐶𝑖 (1.22)

𝜕𝑡𝐶𝑖 𝑗 = 𝛽𝑘𝜕𝑘𝐶𝑖 + 2𝜕𝑖𝛽𝑘𝐶𝑘 𝑗 = L𝛽𝐶𝑖 𝑗 , (1.23)

whereL𝛽 is the Lie derivative along the shift vector. The constraints
therefore evolve according to an advection equation where any
initial violations are transported along the flow integral curves
defined by the shift vector. Further insight into the constraint
evolutions can be gained through the method of characteristics by
implicitly choosing a proper time 𝜏 that fulfills:

𝑑𝑡

𝑑𝜏
= 1

𝑑𝑥𝑘

𝑑𝜏
= −𝛽𝑘 , (1.24)

corresponding to an observer that moves against the shift vector.
The total derivative with respect to this parameter can then be
expressed as

𝑑𝐶𝑖

𝑑𝜏
=

𝜕𝐶𝑖
𝜕𝑡

𝑑𝑡

𝑑𝜏
+ 𝜕𝐶𝑖

𝜕𝑥𝑘
𝑑𝑥𝑘

𝑑𝜏
(1.25)

=
𝜕𝐶𝑖
𝜕𝑡

− 𝜕𝐶𝑖
𝜕𝑥𝑘

𝛽𝑘 (1.26)

= 𝜕𝑖𝛽
𝑘𝐶𝑘 , (1.27)

where in the last line, we have used the constraint evolution
equation (1.22). This is a matrix differential equation of the form
¤®𝑣 = A®𝑣, solved by a sum of exponential functions. The constraints
will be exponentially suppressed if all eigenvalues of A = 𝜕𝑖𝛽𝑘 are
negative, otherwise they will be exponentially growing. However,
the spatial derivative of the shift may well have positive eigenvalues
leading to uncontrolled constraint growth.

The behavior can be remedied by using the freedom of adding
arbitrary factors of the constraints themselves to the evolution
equations. It suffices to add the extra term 𝛾2𝛼𝐶𝑖 to the source
term of Eq. (1.19c) which alters the constraint evolution (1.22)
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according to

𝜕𝑡𝐶𝑖 −L𝛽𝐶𝑖 = −𝛾2𝛼𝐶𝑖 (1.28)
𝜕𝑡𝐶𝑖 𝑗 −L𝛽𝐶𝑖 𝑗 = −𝛾2𝛼𝐶𝑖 𝑗 . (1.29)

The derivative with respect to the proper time defined through
Eqs. (1.24) then becomes

𝑑𝐶𝑖

𝑑𝜏
= 𝜕𝑖𝛽

𝑘𝐶𝑘 − 𝛾2𝛼𝐶𝑖 . (1.30)

In matrix form, the equation is given by ¤®𝑣 = (A − 𝛾2𝛼I) ®𝑣, where
A = 𝜕𝑖𝛽𝑘 is the original coefficient matrix. By considering the
characteristic polynomial of (A − 𝛾2𝛼I), we can immediately see
that the eigenvalues of the original coefficient matrix are all sub-
tracted by 𝛼𝛾2. We therefore choose 𝛾2 > 0 (since 𝛼 > 0 for any
physical system) so that all eigenvalues of (A − 𝛾2𝛼I) are negative
and the constraints are exponentially suppressed everywhere in
the domain.

The final set of evolution equations is given by (2.8) in Chapter 2
below. These contain an additional parameter 𝛾1 that allows control
over some characteristic speeds but is usually set to 0. Finally,
some terms proportional to 𝛾1𝛾2 ensure that the system remains
symmetric hyperbolic which is a sufficient condition for a stable
evolution.

Einstein Equations

The 3+1D form of the Einstein equations are known as the ADM
equations. They describe the evolution of the spatial metric 𝛾𝑖 𝑗 and
the extrinsic curvature 𝐾𝑖 𝑗

𝜕𝑡𝛾𝑖 𝑗 = −2𝛼𝐾𝑖 𝑗 + 𝐷𝑖𝛽 𝑗 + 𝐷𝑗𝛽𝑖 (1.31a)
𝜕𝑡𝐾𝑖 𝑗 = 𝛼(𝑅𝑖 𝑗 − 2𝐾𝑖𝑘𝐾𝑘𝑗 + 𝐾𝐾𝑖 𝑗) − 𝐷𝑖𝐷𝑗𝛼 (1.31b)

− 8𝜋𝛼(𝑆𝑖 𝑗 −
1
2
𝛾𝑖 𝑗(𝑆 − 𝜌)) + 𝛽𝑘𝜕𝑘𝐾𝑖 𝑗 + 𝐾𝑖𝑘𝜕𝑗𝛽𝑘 + 𝐾𝑘 𝑗𝜕𝑖𝛽𝑘 ,

where 𝐷𝑖 is the covariant derivative compatible with 𝛾𝑖 𝑗 , 𝜌 =

𝑛𝛼𝑛𝛽𝑇
𝛼𝛽 is the energy density and 𝑆𝑖 𝑗 is the stress-energy-tensor

projected onto the spatial hypersurface, 𝑆𝑖 𝑗 = 𝛾𝑖𝛼𝛾𝑗𝛽𝑇𝛼𝛽. Its trace
is given by 𝑆 = 𝛾𝑖 𝑗𝑆𝑖 𝑗 .

The evolution equations are supplemented by a set of elliptic
constraint equations that relate the initial metric to the extrinsic
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Figure 1.9: A numerical relativ-
ity simulation of a binary black
hole system. Shown are the two
apparent horizons on a time slice
of fixed coordinate time 𝑡.
Source: Nils Vu & SXS collabora-
tion

curvature as well as any matter content present on the manifold.
They are given by the Hamiltonian constraint

𝑅 + 𝐾2 − 𝐾𝑖 𝑗𝐾 𝑖 𝑗 = 16𝜋𝜌 (1.32)

and the momentum constraint

𝐷𝑗(𝐾 𝑖 𝑗 − 𝛾𝑖 𝑗𝐾) = 8𝜋𝑆𝑖 , (1.33)

where 𝑆𝑖 = −𝛾𝑖 𝑗𝑛𝛼𝑇𝛼 𝑗 is the momentum density.

The constraint equations must be satisfied on every time slice so
that the data satisfies the Einstein equations. Specifying initial data
for the Einstein equations is therefore significantly harder than for
the scalar wave equation as these elliptic PDEs have to be solved
to generate it. One of my co-author publications [76] derives and [76]: Vu et al. (2022), A scalable

elliptic solver with task-based paral-
lelism for the SpECTRE numerical
relativity code

implements such an elliptic solver used to generate initial data for
binary black hole evolutions.

The evolution equations (1.31) are not yet in a suitable form for
numerical implementation as coordinates have to be chosen first
by fixing the lapse 𝛼 and shift 𝛽𝑖 . The construction of a coordinate
system appropriate for numerical evolution is not obvious as most
systems will admit singularities which cause the simulation to
fail. Common choices are the BSSN system [77, 78], Generalized [77]: Shibata et al. (1995), Evo-

lution of three-dimensional gravita-
tional waves: Harmonic slicing case
[78]: Baumgarte et al. (1998), On
the numerical integration of Ein-
stein’s field equations

Harmonic coordinates [79, 80] and the CCZ4 formalism [81]. An

[79]: Pretorius (2005), Numerical
relativity using a generalized har-
monic decomposition
[80]: Lindblom et al. (2006), A New
generalized harmonic evolution sys-
tem

example of a BBH simulation is shown in Figure 1.9.
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1.3 PDE solvers

In this section, I give a brief and by no means complete overview
of the most common methods used for solving hyperbolic PDEs
in numerical relativity.

The Klein-Gordon equation is now cast into a form that allows the
specification of initial data and exponentially suppresses constraint
violations. An appropriate numerical method must now be chosen
to integrate this system of partial differential equations.

1.3.1 Finite difference methods

x0 x1 x2 x3 x4 x5 x6

h h h h h h

y = f(x)

Figure 1.10: An example of a finite
difference grid in one dimension.

Finite difference methods discretize the solution of the PDE onto a
grid of collocation points. At each point, a stencil rule defines a
set of neighboring points and coefficients used to approximate the
derivative. Examples of a first, second and fourth order stencil are
given by

𝑑𝑓

𝑑𝑥
=
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ
+ O(ℎ) (1.34)

𝑑𝑓

𝑑𝑥
=
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)

2ℎ
+ O(ℎ2) (1.35)

𝑑𝑓

𝑑𝑥
=

8( 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)) − ( 𝑓 (𝑥 + 2ℎ) − 𝑓 (𝑥 − 2ℎ))
12ℎ

+ O(ℎ4),
(1.36)

where 𝑓 (𝑥) is an arbitrary function on an equidistant grid with
step size ℎ.

Figure 1.11 shows how the error of these finite difference approx-
imations scales with the number of grid points when used to
compute the derivative of 𝑓 (𝑥) = 𝑒sin 𝑥 at 𝑥 = 𝜋/4. We consider a
grid of 𝑛 equidistant grid points in the interval [0, 1] leading to a
step size of ℎ = 1/𝑛. Each finite difference method then computes
the approximated derivative with the assigned step size; the error
with respect to the analytical derivative is plotted on the y-axis
against the number of grid points. It scales according to a power
law: a finite difference method of order 𝑘 will carry an error∝ ℎ𝑘 .

These rules can all be generalized to compute derivatives in several
dimensions. Typically, only the spatial derivatives of the PDE will
be evaluated using the finite difference method, which transforms
the PDE (space and time derivatives) to an ODE (time derivatives
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Fourth Order Figure 1.11: The error of comput-

ing derivative of 𝑓 (𝑥) = 𝑒sin 𝑥 at
𝑥 = 𝜋/4 using a first, second
and fourth order finite difference
method.

only) for the value of the field at each grid point. The ODE can
then be advanced using an arbitrary time stepper, for instance, a
Runge-Kutta method. This is known as the method of lines because
the ODE governing the evolution of the function will define a
separate line through the time dimension at each grid point. The
mesh used to compute the derivatives is typically build up of cubes
and can be refined adaptively by e.g. doubling the number of grid
points in regions where the derivatives are particularly large and
more accuracy is required.

Finite difference methods are usually relatively easy to implement
and have the big advantage of being fairly robust. The local nature
of computing the derivatives also makes them a common choice
for solving PDEs that can admit discontinuous shocks propagating
through the domain such as arise in hydrodynamics. One popular
choice to handle shocks are essentially non-oscillatory (ENO)
methods which detect grid points near a discontinuity and then
adaptively select stencils that avoid these points to compute the
derivatives [82]. [82]: Harten et al. (1987), Uniformly

high order accurate essentially non-
oscillatory schemes, III

1.3.2 Spectral methods

Spectral methods represent the solution of the PDE as a series
expansion in a global, orthogonal basis. A common choice for
hyperbolic equations in 3+1 dimensions is to expand the spatial
dimensions in a basis Ψ𝑘(𝑥 𝑖) with unknown time dependent
coefficients 𝑎𝑘(𝑡) [83]. In 1+1 dimension, a time dependent function [83]: Boyd (2013), Chebyshev and

Fourier Spectral Methods: Second Re-
vised Edition
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𝑓 (𝑡 , 𝑥) is then expanded as:

𝑓 (𝑡 , 𝑥) =
𝑁∑
𝑘=0

𝑎𝑘(𝑡)𝜓𝑘(𝑥). (1.37)

Common choices for the basis include Chebyshev polynomials,
Legendre polynomials and spherical harmonics. The derivative of
each basis function can be exactly represented by the linear combi-
nation of several other basis functions. Taking the derivative of a
spectral expansion therefore boils down to a matrix multiplication
with the so-called differentiation matrix. When inserted into the
PDE, what remains is an ODE for the coefficients 𝑎𝑘(𝑡) which can
be advanced using an arbitrary time stepper.

Pseudo-spectral methods transform the modal representation of
a spectral method to a mesh with points distributed according
to a certain quadrature. The Vandermonde matrix contains the
value of each basis function 𝜓𝑘 evaluated at a set of grid points 𝜉𝑖 ,
𝑉𝑘𝑖 = 𝜓𝑘(𝜉𝑖). A spectral expansion can then be transformed to the
values of a grid by multiplying this matrix with the coefficients4. 4: This is rarely done with direct

matrix multiplication as special
properties of the Vandermonde
matrix often allows for more effi-
cient evaluations such as through
a Fast Fourier Transformation.

The choice of quadrature include equidistant points for periodic
problems where a Fourier basis is used or Gauss/Gauss-Lobatto
quadrature when Chebyshev or Legendre polynomials are em-
ployed. Integrals over the grid can then be computed using a
quadrature rule, e.g. to recover the spectral coefficients.
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Figure 1.12: The error of com-
puting the derivative of 𝑓 (𝑥) =

𝑒sin 𝑥 at 𝑥 = 𝜋/4 using a spectral
method with Chebyshev and Leg-
endre polynomials.

Spectral methods have the enormous advantage that their solution
converges exponentially with the polynomial order for smooth
problems. Figure 1.12 shows the error of computing the derivative
of 𝑓 (𝑥) = 𝑒sin 𝑥 at 𝑥 = 𝜋/4 with a spectral method using both
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Chebyshev and Legendre polynomials with Gauss quadrature.
Double precision of 10−14 is a achieved with a polynomial of
order 21, corresponding to 22 grid points for a pseudo-spectral
method. This is much less than the finite difference method in
Fig. 1.11 which required over 1000 points. The accuracy of the
evolution can be dynamically adjusted by changing the polynomial
order. While this makes spectral methods extremely effective for
smooth problems, they struggle with problems that have many
different regions requiring different resolutions and particularly
discontinuities such as shocks. The Gibbs phenomenon causes the
polynomials to oscillate around the shock and severely suppress
the convergence behavior. A spectral method will have heavily
reduced convergence in a broader region around the discontinuity
and their global nature does not allow to increase accuracy in a
small subset of the domain. An example of this is shown in Fig. 1.13.
Some techniques such as limiters exist to address the issues but
are not always useful.

1 0 1

Figure 1.13: An illustration of
the Gibbs phenomenon arising
when discontinuous function is
approximated with a Chebyshev
series of polynomial order 100.

1.3.3 Discontinuous Galerkin methods

Finally, the discontinuous Galerkin (DG) scheme is a finite element
method closely related to spectral methods [84]. As an example,

[84]: Hesthaven et al. (2007), Nodal
Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applica-
tions

let us consider the scalar advection equation in one dimension
given by

𝜕𝑡𝑢(𝑡 , 𝑥) + 𝑣𝜕𝑥𝑢(𝑡 , 𝑥) = 0. (1.38)

Unlike spectral methods, the domain is not globally represented by
a series expansion but decomposed into a set of non-overlapping el-
ements which we denote Ω𝑖 . The solution 𝑢(𝑡 , 𝑥) is then expanded
into an orthogonal basis within each element

𝑢 𝑖(𝑡 , 𝑥) =
𝑁∑
𝑗=0

𝑎𝑘𝑗 (𝑡)𝜓 𝑗(𝑥) 𝑥 ∈ Ω𝑖 . (1.39)

In a nodal DG method, this expansion is then projected onto a mesh
endowed with a certain quadrature analogous to a pseudo-spectral
method. A weak solution to the PDE is constructed by demanding
that the projection of this equation onto the expansion basis 𝜓𝑘(𝑥)
vanishes within each element5 5: This is known as a Galerkin

projection/method, if the set of
test functions onto which the ex-
pansion is projected is the same
as the basis functions used to ex-
pand the solution.

∫
Ω𝑖

𝜕𝑡𝑢
𝑖(𝑡 , 𝑥)𝜓𝑘(𝑥)𝑑𝑥 + 𝑣

∫
Ω𝑖

𝜕𝑥𝑢
𝑖(𝑡 , 𝑥)𝜓𝑘(𝑥)𝑑𝑥 = 0. (1.40)



1 Introduction 25

The second term can be transformed using integration by parts
yielding∫

Ω𝑖

𝜕𝑡𝑢
𝑖𝜓𝑘𝑑𝑥 + 𝑣

∫
Ω𝑖

𝑢 𝑖𝜕𝑥𝜓𝑘𝑑𝑥 = −
∮
𝜕Ω𝑖

𝑛̂ · (𝑣𝑢 𝑖)∗𝜓𝑘𝑑𝑥, (1.41)

where we have dropped the explicit space and time dependencies.
The vector 𝑛̂ is normal to the boundary of the DG element 𝜕Ω𝑖 and
reduces to ±1 in the one dimensional case. It is contracted with the
term (𝑣𝑢 𝑖)∗, known as the numerical flux. The right hand side of
this equation is integrated over the boundary 𝜕Ω𝑖 of the element.
However, at this point the flux is given both by the elementΩ𝑖 itself
and the neighboring elements Ω𝑖±1. Different choices of numerical
flux use different combinations of the two solutions to construct
the surface integral. It is not always clear which numerical flux will
give the most accurate results but the choice is ideally motivated
by the physical properties of the PDE.

Figure 1.14: An example of a
discontinuous Galerkin finite ele-
ment grid in one dimension.
Source: [85]

When the expansion (1.39) is inserted into the DG scheme (1.41),
only integrals of the basis functions remain captured by the mass
matrix

M𝑖
𝑗𝑘
=

∫
Ω𝑖

𝜓 𝑗(𝑥)𝜓𝑘(𝑥)𝑑𝑥 (1.42)

and the stiffness matrix

S𝑖
𝑗𝑘
=

∫
Ω𝑖

𝜓 𝑗(𝑥)𝜕𝑥𝜓𝑘(𝑥)𝑑𝑥. (1.43)

All these integrals can be pre-computed using the quadrature rule
defined by the grid of each element, greatly saving computational
cost.

The DG method has the big advantage that it can locally change
its resolution by both changing the polynomial order within an
element (p-refinement) or splitting/merging an element into small-
er/larger elements (h-refinement). This gives it more flexibility
for problems which have varying accuracy requirements within
different parts of the domain. Additionally, there is no enforced
continuity between elements so discontinuities can be resolved
if they are placed on an element boundary. This is very effective
for non-moving discontinuities; shocks that traverse the domain
however, will cause Gibbs oscillations within an element as they
do for spectral methods.
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1.4 The SpECTRE numerical relativity code

This section gives an overview of SpECTRE [86] as well as
some motivation that led to the most important design and
infrastructure choices.

1.4.1 Moore’s law

Moore’s Law, originally posited by Gordon Moore in 1965 [87], [87]: Moore (2006), Cramming more
components onto integrated circuits,
Reprinted from Electronics, volume
38, number 8, April 19, 1965, pp.114
ff.

observed that the number of transistors on a microchip doubles ap-
proximately every two years, resulting in a corresponding increase
in computational power and a decrease in relative cost. Figure 1.15
shows this trend, where the orange triangles demonstrate the
exponential growth of transistors built into a single computer chip
until today.

Figure 1.15: The evolution of mi-
croprocessor properties such as
transistors, clocking frequency
and number of cores since 1970.
Source: [88]

This growth was originally driven by continually shrinking the
transistor sizes and increasing the clocking speed of a single
processor. Around the year 2000, transistor dimensions became
so small that physical limitations of power dissipation and heat
generation could not be overcome and the clocking speed stalled
in the GHz regime. The green squares show how the frequency
of singular CPUs increased exponentially until 2000 and has
remained at approximately the same value since.

At this point, integrated circuits started to shift towards multi-core
architectures, adding multiple processing units to a single chip
to sustain the exponential performance improvements. The black
squares show the number of logical cores within a chip starting



1 Introduction 27

to grow exponentially in the early 2000s. Modern HPC systems,
as used for the results of this thesis often have 100 cores within a
single chip. While these architectures have sustained the growth in
the theoretically achievable performance of an integrated circuit,
not all algorithms are equally suitable for parallel architectures.

1.4.2 The Spectral Einstein Code (SpEC)

The spectral Einstein code [89, 90] (SpEC) is a code used for generat- [89]: Boyle et al. (2007), Testing
the accuracy and stability of spectral
methods in numerical relativity
[90]: Mroue et al. (2013), Catalog of
174 Binary Black Hole Simulations
for Gravitational Wave Astronomy

ing gravitational waveforms by solving the Einstein field equations
with a pseudo-spectral method. For smooth problems such as
binary black holes, the spectral method achieves exponential con-
vergence which has allowed it to produce highly accurate and
long waveforms with great computational efficiency, particularly
compared to finite difference codes. Today, SpEC has been used to
produce the largest and most accurate waveform catalogues [91] [91]: Boyle et al. (2019), The SXS

Collaboration catalog of binary black
hole simulations

in existence which are used e.g. for the calibration of EOB models
as well the creation of surrogate models [92, 93].

[92]: Islam et al. (2022), Surro-
gate model for gravitational wave sig-
nals from nonspinning, comparable-
to large-mass-ratio black hole bina-
ries built on black hole perturbation
theory waveforms calibrated to nu-
merical relativity
[93]: Yoo et al. (2023), Numerical
relativity surrogate model with mem-
ory effects and post-Newtonian hy-
bridization

However, the pseudo-spectral method has some limitations: firstly,
it is unsuitable for problems in General Relativity that admit shocks
such as binary neutron stars. This can be partially remedied by
evolving the equations of general relativistic hydrodynamics on a
separate grid using a shock-capturing finite difference method [94,
95]. However, this is not fully self-consistent and loses a lot of the

[94]: Foucart et al. (2019), Gravita-
tional waveforms from spectral Ein-
stein code simulations: Neutron star-
neutron star and low-mass black hole-
neutron star binaries
[95]: Foucart et al. (2019), Numeri-
cal simulations of neutron star-black
hole binaries in the near-equal-mass
regime

speed due to lack of spectral convergence.

Secondly, the global nature of the method means it is limited in its
usage of increasingly parallel computing systems. SpEC partially
addresses this issue by dividing its global domain into smaller
sub-domains which can be evolved on separate computational
cores and communicate over boundary conditions. However, most
simulations today can not make full use of modern computational
nodes with over ∼ 100 cores.

1.4.3 SpECTRE

These limitations motivated the development of a new code, SpEC-
TRE [86] which is also used to generate the results for this thesis. It [86]: Deppe et al. (2024), SpECTRE
employs a DG method to solve both elliptic and hyperbolic PDEs.
DG methods are naturally suitable for parallel computing systems
as the domain is split up into many local elements, which can
be freely distributed on the computational cores assigned to the
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simulation. Each time step, neighboring elements exchange their
boundary data to compute the numerical flux which minimizes
inter-nodal communication and avoids any global synchronization
points. This is further optimized through the use of the task-based
parallelism platform Charm++ [96], which allows elements to be [96]: Kale et al. (2021), UIUC-

PPL/charm: Charm++ version 7.0.0dynamically migrated across different cores to reduce the idle time
and maximize the parallel efficiency of the evolution.

SpECTRE is also able to resolve shocks via the subcell method [97]. [97]: Deppe et al. (2022), A high-
order shock capturing discontinu-
ous Galerkin–finite difference hybrid
method for GRMHD

This algorithm is able to detect when a DG element does not achieve
adequate convergence due to the presence of a discontinuity in
the cell. When this occurs, the solution is projected onto a finite
difference grid and a shock capturing scheme is used to correctly
resolve the discontinuity. Many problems in physics, particularly
hydrodynamics will be smooth almost everywhere with the ex-
ception of some shocks occurring at rare occasions. Using this
hybrid DG-FD method, the evolution is able to retain exponential
convergence for the majority of the domain and use the far less
efficient finite-difference method only where necessary [98]. [98]: Deppe et al. (2024), Binary

neutron star mergers using a dis-
continuous Galerkin-finite difference
hybrid method

1.5 Simulating intermediate mass ratio
black holes

Here I briefly describe the difficulties involved in simulating
intermediate mass ratio binary black holes as well as the current
state of simulations.

In the last few sections, I explained how the waveforms created by
numerical relativity are crucial for the detection and interpreta-
tion of gravitational wave signals. Here, I motivate the need for
numerical simulations of IMRI systems for future detectors and
the difficulties they currently encounter.

Accurate theoretical modeling of such systems is essential for
detector operation and data analysis but no methods are currently
able to describe such high mass ratio binaries within the required
errors. A promising approach for EMRIs is the gravitational self-
force explained in Section 1.2. However, it remains unclear whether
this method will be able to produce accurate waveforms for IM-
RIs, where the larger mass ratio will induce higher errors in the
expansion.

The problem of generating IMRI template banks becomes even
more difficult due to the non-vanishing eccentricity of the binary.
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Current template banks have until recently been neglecting this
effect [99] due to orbital circularization: for binary black holes [99]: Abbott et al. (2019), Search for

Eccentric Binary Black Hole Mergers
with Advanced LIGO and Advanced
Virgo during their First and Second
Observing Runs

of similar mass, the emission of gravitational waves near the
periastron causes the system to circularize [100]. While there have

[100]: Peters et al. (1963), Gravita-
tional radiation from point masses in
a Keplerian orbit

been efforts to detect remnant eccentricity in current data [28, 101],

[28]: Bonino et al. (2023), Inferring
eccentricity evolution from observa-
tions of coalescing binary black holes
[101]: Romero-Shaw et al.
(2022), Four Eccentric Merg-
ers Increase the Evidence that
LIGO–Virgo–KAGRA’s Binary
Black Holes Form Dynamically

the detections themselves do not rely on theoretical modeling
of eccentric waveforms. IMRIs, however, are expected to emit
gravitational waves in the detector band with significant orbital
eccentricity because the circularization effect becomes suppressed
with smaller mass ratios. This adds an extra dimension to the
parameter space that needs to be covered by waveforms.

Figure 1.16: The distribution of
numerical relativity simulations
available from different groups in
the parameter space of effective
spin 𝜒 and mass ratio 𝑞.
Source: [51]

For the later stages of the inspiral, numerical relativity remains a
great candidate for generating these signals. However, few simula-
tions exist for systems with small mass ratios. Figure 1.16 shows
the latest distribution of gravitational waveforms in terms of ef-
fective spin 𝜒 and the mass ratio6𝑞. While the parameter space 6: This plot uses the convention

of a mass ratio 𝑞 > 1 which is the
inverse of the definition used in
this thesis.

for waveforms with mass ratio 𝑞 < 5 (𝑞 > 0.2) is covered fairly
densely, waveforms for BBH systems with larger mass ratios are
sparse.

The reason for this is mostly related to the Courant-Friedrichs-
Lewy (CFL) condition which places an upper limit on the time step
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that may be employed to advance the solution. When employing
an explicit time-stepping scheme, the CFL condition requires that
the time step Δ𝑡 be sufficiently small relative to the spatial grid
spacing Δ𝑥

Δ𝑡 ≤ Δ𝑥/𝜆𝑚𝑎𝑥 , (1.44)

where 𝜆𝑚𝑎𝑥 is the maximum wave/characteristic speed of the PDE.
If this condition is violated, the solution will typically blow up
exponentially.

Figure 1.17: A binary black hole
domain showing the much tighter
grid spacing near the smaller
black hole on the right than
around the larger black hole on
the left.

This effect is particularly punishing for binary black holes of small
mass ratios because of the scale disparity in the computational
domain. As the size of a black hole’s event horizon decreases with
its mass, the distance between grid points Δ𝑥 next to the smaller
black hole will be tighter than the grid points next to the larger
black hole by a factor of 𝑞. An example of such a grid with mass
ratio 𝑞 ≈ 0.3 can be seen in Figure 1.17. The maximum time step
permitted by the CFL-condition then scales about linearly with the
mass ratio. Simulating a BBH with 𝑞 = 0.1 for a fixed amount of
orbits is then ten times as expensive to simulate as an equal mass
binary and IMRIs with 𝑞 < 0.01 become entirely impossible.

Figure 1.18: A sketch of the world-
tube excision method.
Source: [1]

In this thesis, I try to tackle this problem by excising a much larger
sphere around the smaller black hole and employing a perturbative
solution inside this worldtube. This method was first initialized
by [1] for a scalar toy problem in 1+1D dimensions. In Chapter 2, I

[1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

continue this work by generalizing the method to 3+1 dimensions
using SpECTRE. In Chapter 3, I add the back-reaction of the scalar
field to the charge’s orbit and explore the accuracy of this method
for quasi-circular orbits. Highly eccentric orbits and hyperbolic
encounters are analyzed in Chapter 4. In the final Chapter 5, I
summarize this work and give a brief outlook on the gravitational
case.



Worldtube excision method:
scalar-field model in 3+1D 2

This chapter is based on my lead-author publication [102]. It
describes the worldtube excision method used for simulating a
scalar charge on circular geodesics in Schwarzschild spacetime.
My contributions to this work include the derivation and im-
plementation of the matching algorithm. I also produced and
analyzed all results.

2.1 Introduction

Inspiraling binary black holes (BBHs) are the most numerous
source of gravitational wave signals detected by the LIGO and
Virgo observatories [20, 103–105]. The mass ratio is one of the
most important characteristics of these binaries, and observations
so far [105–109] predominantly find mass ratios close to unity.
However, GW190814 and GW200210_092254 have mass ratios
𝑞 ≡ 𝑚2/𝑚1 ∼ 0.11 [20, 43], and GW191219_163120—where the [20]: Abbott et al. (2023), GWTC-

3: Compact Binary Coalescences
Observed by LIGO and Virgo
during the Second Part of the Third
Observing Run
[43]: Abbott et al. (2020),
GW190814: Gravitational Waves
from the Coalescence of a 23 Solar
Mass Black Hole with a 2.6 Solar
Mass Compact Object

secondary’s mass suggests it is a neutron star—is estimated to
have 𝑞 ∼ 0.04 [20].

[20]: Abbott et al. (2023), GWTC-
3: Compact Binary Coalescences Ob-
served by LIGO and Virgo during the
Second Part of the Third Observing
Run

It is likely that upcoming observing runs by ground-based detectors
will continue to record binaries with small mass-ratios. Future
ground-based detectors like the Einstein Telescope [39] and Cosmic

[39]: Maggiore et al. (2020), Sci-
ence Case for the Einstein Telescope

Explorer [40], featuring an improved low-frequency sensitivity,

[40]: Evans et al. (2021), A Horizon
Study for Cosmic Explorer: Science,
Observatories, and Community

will be able to detect the capture of stellar-mass black holes (BHs)
by intermediate-mass BHs, with mass-ratios down to 𝑞 ∼ 10−3 [38].

[38]: Jani et al. (2019), Detectability
of Intermediate-Mass Black Holes in
Multiband Gravitational Wave As-
tronomy

Moreover, space-borne detectors, like the LISA observatory [44,
110], will be sensitive to binaries with mass ratios in the entire

[44]: Amaro-Seoane et al. (2017),
Laser Interferometer Space Antenna
[110]: Seoane et al. (2013), The Grav-
itational Universe

range from 𝑞 ∼ 1 to extreme mass-ratio inspirals with 𝑞 ∼ 10−5 [38,
111–113].

In anticipation of this remarkable expansion in observational reach,
it is important to develop accurate theoretical waveform templates
that reliably cover the entire relevant range of mass ratios. Standard
Numerical Relativity (NR) methods [114] work well for mass ratios

[114]: Baumgarte et al. (2010), Nu-
merical Relativity: Solving Einstein’s
Equations on the Computer

in the range 0.1 ≲ 𝑞 ≤ 1 (see e.g. [91]). However, simulations
become progressively less tractable at smaller 𝑞, and few numerical
simulations have been performed at 𝑞 < 0.1 so far. The root cause
is a problematic scaling of the required simulation time with
𝑞. Fundamentally, one expects the required simulation time to
grow in proportion to 𝑞−2, where one factor of 𝑞−1 is associated



2 Worldtube excision method: scalar-field model in 3+1D 32

with the number of in-band orbital cycles, and the second factor
𝑞−1 comes from the Courant-Friedrich-Lewy (CFL) stability limit
on the time step of the numerical simulation, arising from the
requirement to resolve the smaller black hole. The state of the art
in small-𝑞 NR is represented by the recent simulations performed
at Rochester Institute of Technology of the last 13 orbital cycles
prior to merger of a black-hole binary system with 𝑞 = 1/128 [115,
116]. Head-on simulations, where the needed evolution time is [115]: Lousto et al. (2020), Explor-

ing the Small Mass Ratio Binary
Black Hole Merger via Zeno’s Di-
chotomy Approach
[116]: Rosato et al. (2021), Adapted
gauge to small mass ratio binary black
hole evolutions

orders of magnitudes shorter than for inspirals, are possible at even
smaller mass-ratios [117, 118]. While these simulations represent an

[117]: Sperhake et al. (2011), Ex-
treme black hole simulations: colli-
sions of unequal mass black holes and
the point particle limit
[118]: Lousto et al. (2023), Study
of the intermediate mass ratio black
hole binary merger up to 1000:1 with
numerical relativity

important proof of concept, their computational cost is extremely
high, and it is presently impossible to explore the full parameter
space including spin and eccentricity.

Binaries with extreme mass-ratios, say 𝑞 ≲ 10−4, corresponding
to a compact object orbiting a massive black hole in a galactic
nucleus, can be modeled with a perturbative expansion in 𝑞.
This “gravitational self-force” (GSF) approach [63, 64] incorpo-

[63]: Barack et al. (2019), Self-force
and radiation reaction in general rel-
ativity
[64]: Pound et al. (2022), Black
Hole Perturbation Theory and Grav-
itational Self-Force

rates order-by-order in 𝑞 the small deviations of the motion of
the small body away from the geodesic motion that applies for
test-bodies. The GSF approach is the only method for modeling
extreme-mass-ratio inspirals, and development is ongoing towards
waveform models suitable for signal identification and interpre-
tation with LISA [65, 66, 119–122]. With NR being well-suited to
comparable masses and the GSF approach to extreme mass-ratios,
the question arises of how to model the intermediate mass-ratio
regime. For simple binary systems (of nonspinning black holes in
quasi-circular or eccentric inspirals) NR simulations suggest [123,
124] that GSF calculations may be sufficiently accurate even at [123]: Meent et al. (2020), Interme-

diate mass-ratio black hole binaries:
Applicability of small mass-ratio per-
turbation theory
[124]: Ramos-Buades et al. (2022),
Eccentric binary black holes: Compar-
ing numerical relativity and small
mass-ratio perturbation theory

mass-ratios reaching the NR regime. “Post-adiabatic” GSF wave-
forms [66] for non-spinning, quasi-circular binaries have shown

[66]: Wardell et al. (2021), Grav-
itational waveforms for compact bi-
naries from second-order self-force
theory

those predictions were somewhat over-optimistic in the 𝑞 > 0.1
range [125], but they have borne out the prediction for smaller mass

[125]: Albertini et al. (2022), Com-
paring second-order gravitational
self-force, numerical relativity, and
effective one body waveforms from
inspiralling, quasicircular, and non-
spinning black hole binaries

ratios ≲ 0.1. However, it remains unclear whether the two meth-
ods, separately applied, can achieve reliable waveform models
of intermediate-mass-ratio inspirals over the full astrophysically
relevant parameter space.

In this chapter, we continue the work of [1] to develop a new

[1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

approach to the simulation of intermediate-mass-ratio systems,
combining NR techniques with black hole perturbation theory.
The general idea is to excise a large region around the smaller
black hole. Inside this region—a “worldtube” in spacetime—an
approximate analytical solution is prescribed for the spacetime
metric, arising from the perturbation theory of compact objects
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in a tidal environment. An NR simulation is set up for the binary,
in which the worldtube’s interior is excised from the numerical
domain, and replaced with the analytical solution. At each time
step of the numerical evolution, the numerical solution (outside the
worldtube) and analytical solution inside are matched across the
worldtube’s boundary, in a process that fixes a priori unknown tidal
coefficients in the analytical solution, gauge degrees of freedom,
and also provides boundary conditions to the NR evolution. The
intended effect of this construction is to partially alleviate the scale
disparity that thwarts the efficiency of the numerical evolution at
small 𝑞: The smallest length scales on the numerical domain is
now that of the worldtube-radius 𝑅, rather than the scale 𝑚2 of
the smaller body. As a result, the CFL limit is expected to increase
by a factor 𝑅/𝑚2 ≫ 1, with a comparable gain in computational
efficiency.

In Ref. [1], as also in the present work, we consider a linear [1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

scalar-field toy model where the small black hole is replaced
with a pointlike scalar charge moving on a circular geodesic
around a Schwarzschild black hole. Instead of tackling the full
Einstein’s equations, one solves the less complicated massless
linear Klein-Gordon equation for a scalar field. Our previous
work [1] decomposed the scalar field into spherical harmonics and
solved the resulting 1+1-dimensional (1+1D) partial differential
equation for each mode separately. Such a modal decomposition
will not be possible in the fully nonlinear BBH case. As a step
towards the BBH case, in this chapter, we derive and implement a
generalized matching scheme in full 3+1D. Our implementation is
publicly accessible as part of the SpECTRE platform [86], a new [86]: Deppe et al. (2024), SpECTRE
general-relativistic code developed by the SXS collaboration, which
employs a nodal discontinuous Galerkin method with task-based
parallelism. The input file for the simulations presented in this
chapter is given as supplemental material. (An evolution of the
scalar field equation in 3+1D with a point source was performed
in [126] using a different method.) [126]: Vega et al. (2009), Self-force

with (3 + 1) codes: A primer for nu-
merical relativistsThe chapter is organized as follows. In Section 2.2 we describe

our scalar-field model, and formulate it as an initial-boundary
evolution problem suitable for implementation on SpECTRE. Sec-
tion 2.3 describes the construction of the approximate analytical
solution inside the worldtube. In Section 2.4, we show how the
unknown parameters of this local solution can be continuously
determined from the evolution data on the worldtube boundary,
using a set of ordinary differential equations (in time) derived from
the Klein-Gordon equations. The fully specified solution inside
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the worldtube is then used to formulate boundary conditions for
the evolution system. We present the results of our simulations
in Section 2.5, and demonstrate a good agreement with both an-
alytical solutions in limiting cases, and numerical results from
other simulations. We explore the convergence of our numerical
solutions with worldtube size, and show that its rate matches
our theoretical expectations. Finally, in Section 2.6, we summarize
our findings and discuss the next steps in our program. We use
geometrized units throughout the text with 𝐺 = 𝑐 = 1.

2.2 Numerical field evolution outside the
worldtube

We place a pointlike particle with scalar charge 𝑞 on a fixed,
geodesic circular orbit around a Schwarzschild black hole of mass
𝑀. The evolution of the scalar field Ψ is governed by the massless
Klein-Gordon equation,

𝑔𝜇𝜈∇𝜇∇𝜈Ψ = −4𝜋𝑞
∫ 𝛿4(𝑥𝛼 − 𝑥𝛼𝑝 (𝜏))√−𝑔 𝑑𝜏. (2.1)

Here 𝑔𝜇𝜈 is the inverse Schwarzschild metric, and ∇𝜇 is the
covariant derivative compatible with it. 𝑥𝛼𝑝 (𝜏) is the particle’s
geodesic worldline parameterized in terms of proper time 𝜏. In
Kerr-Schild coordinates 𝑥𝛼 = (𝑡 , 𝑥 𝑖), parametrized by coordinate
time 𝑡, the worldline with orbital radius 𝑟𝑝 and angular velocity
𝜔 = (𝑀/𝑟3

𝑝)1/2 is given by

𝑥𝛼𝑝 (𝑡) =
(
𝑡 , 𝑟𝑝 cos(𝜔𝑡), 𝑟𝑝 sin(𝜔𝑡), 0

)
, (2.2)

where we have fixed the orbital plane and phase without loss of
generality.

We excise the interior of a sphere with constant Kerr-Schild radius

𝑅 =

√
𝛿𝑖 𝑗(𝑥 𝑖 − 𝑥 𝑖𝑝)(𝑥 𝑗 − 𝑥

𝑗
𝑝), centered on the particle’s position,

from the numerical domain. We refer to this excision region as the
worldtube and elaborate in Sec. 2.4 how boundary conditions are
provided to the evolution domain.

Outside the worldtube, the numerical evolution of the scalar-field
variable ΨN (‘N’ for ‘numerical’, to contrast with the analytical
solution inside the worldtube, to be introduced below) is governed
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by the source-free Klein-Gordon equation on the fixed background
spacetime:

𝑔𝜇𝜈∇𝜇∇𝜈Ψ
N = 0. (2.3)

The background spacetime is given in the usual 3+1 split,

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖 𝑗(𝑑𝑥 𝑖 + 𝛽𝑖𝑑𝑡)(𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (2.4)

where 𝛼 is the lapse, 𝛽𝑖 is the shift and 𝛾𝑖 𝑗 is the spatial metric
on 𝑡 = const. hypersurfaces. The background spacetime of our
simulations is a single Schwarzschild black hole in Kerr-Schild
coordinates.

The Klein-Gordon equation is transformed into the standard first-
order form by introducing the auxiliary variables [73] [73]: Scheel et al. (2004), 3D sim-

ulations of linearized scalar fields in
Kerr spacetimeΠ = −𝛼−1(𝜕𝑡ΨN− 𝛽𝑖𝜕𝑖Ψ

N), (2.5a)
Φ𝑖 = 𝜕𝑖Ψ

N. (2.5b)

This introduces two constraint fields [74], [74]: Holst et al. (2004), Optimal
constraint projection for hyperbolic
evolution systems𝐶𝑖 = 𝜕𝑖Ψ

N−Φ𝑖 , (2.6)
𝐶𝑖 𝑗 = 𝜕𝑖Φ𝑗 − 𝜕𝑗Φ𝑖 , (2.7)

which must vanish for any solution to the original, second-order
evolution equation. Following [127], we write the first-order evolu- [127]: Lindblom et al. (2006), A

new generalized harmonic evolution
system

tion equations for the vacuum Klein-Gordon equation (2.3) as

𝜕𝑡Ψ
N− (1 + 𝛾1)𝛽𝑖𝜕𝑖ΨN = −𝛼Π − 𝛾1𝛽

𝑖Φ𝑖 ,

(2.8a)
𝜕𝑡Π − 𝛽𝑘𝜕𝑘Π + 𝛼𝛾𝑖𝑘𝜕𝑖Φ𝑘 − 𝛾1𝛾2𝛽

𝑖𝜕𝑖Ψ
N =

𝛼𝐾Π + 𝛼Γ𝑖Φ𝑖 − 𝛾𝑖 𝑗Φ𝑖𝜕𝑗𝛼 − 𝛾1𝛾2𝛽
𝑖Φ𝑖 , (2.8b)

𝜕𝑡Φ𝑖 − 𝛽𝑘𝜕𝑘Φ𝑖 + 𝛼𝜕𝑖Π − 𝛾2𝛼𝜕𝑖Ψ
N =

−Π𝜕𝑖𝛼 +Φ𝑗𝜕𝑖𝛽
𝑗 − 𝛾2𝛼Φ𝑖 . (2.8c)

The lapse 𝛼, shift 𝛽𝑖 , spatial metric 𝛾𝑖 𝑗 , inverse spatial metric 𝛾𝑖 𝑗 ,
trace of the extrinsic curvature 𝐾 := 𝛾𝑖 𝑗𝐾𝑖 𝑗 and trace of the spatial
Christoffel symbol Γ𝑖 := 𝛾 𝑗𝑘Γ𝑖

𝑗𝑘
appearing in Eqs. (2.8) depend

only on the background Schwarzschild spacetime. Explicitly, they
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read as follows in Kerr-Schild coordinates:

𝛼 =

(
1 + 2𝑀

𝑟

)−1/2

, (2.9a)

𝛽𝑖 =
2𝑀𝛼2

𝑟2 𝑥 𝑖 , (2.9b)

𝛾𝑖 𝑗 = 𝛿𝑖 𝑗 +
2𝑀
𝑟3 𝑥

𝑘𝑥 𝑙𝛿𝑖𝑘𝛿 𝑗𝑙 , (2.9c)

𝛾𝑖 𝑗 = 𝛿𝑖 𝑗 − 2𝑀𝛼2

𝑟3 𝑥 𝑖𝑥 𝑗 , (2.9d)

𝐾 =
2𝑀𝛼3

𝑟2

(
1 + 3𝑀

𝑟

)
, (2.9e)

Γ𝑖 =
8𝑀2 + 3𝑀𝑟

(2𝑀𝑟 + 3𝑟2)2
𝑥 𝑖 , (2.9f)

where 𝑟 =
√
𝛿𝑖 𝑗𝑥 𝑖𝑥𝑘 is the areal radius from the central black hole.

The variables 𝛾1 and 𝛾2 appearing in Eqs. (2.8) are constraint damp-
ing parameters. Compared to the first-order reduction presented
in [74], the additional term 𝛾1𝛾2𝛽𝑖𝐶𝑖 in Eq. (2.8b) ensures that the [74]: Holst et al. (2004), Optimal

constraint projection for hyperbolic
evolution systems

system is symmetric hyperbolic for any values of 𝛾1 and 𝛾2 [127].

[127]: Lindblom et al. (2006), A
new generalized harmonic evolution
system

For 𝛾2, we found that a central Gaussian profile 𝛾2 = 𝐴𝑒−(𝜎𝑟)
2 + 𝑐

with𝐴 = 10, 𝜎 = 10−1/𝑀 and 𝑐 = 10−4 results in a long-term stable
evolution for all tested systems. We choose 𝛾1 = 0 throughout.

The evolution equations (2.8) are in the general symmetric hyper-
bolic form

𝜕𝑡𝜓
𝑎 + 𝐴𝑖𝑎𝑏𝜕𝑖𝜓𝑏 = 𝐹𝑎 , (2.10)

with 𝜓𝑎 := (Ψ,Π,Φ𝑖) representing the set of first-order variables,
enumerated by the indices 𝑎 and 𝑏. For the imposition of boundary
conditions at a boundary with normal co-vector 𝑛̂𝑖 , we solve the
(left) eigenvalue problem

𝑒 𝑎̂ 𝑎 𝑛̂𝑖𝐴
𝑖𝑎
𝑏 = 𝑣(𝑎̂)𝑒

𝑎̂
𝑏 (2.11)

for the eigenvalues 𝑣(𝑎̂) and eigenvectors 𝑒 𝑎̂ 𝑏 , enumerated by the
index 𝑎̂. The 𝑣(𝑎̂) are known as the characteristic speeds, and the
parentheses indicate that there is no implicit sum convention on
the right hand side of Eq. (2.11). The co-vector 𝑛̂𝑖 is normalized
with respect to the three metric, i.e. 𝛾𝑖 𝑗 𝑛̂𝑖 𝑛̂ 𝑗 = 1, and we define
𝑛̂ 𝑖 = 𝛾𝑖 𝑗 𝑛̂ 𝑗 . The characteristic fields 𝜓 𝑎̂ are obtained by projecting
the evolved variables 𝜓𝑎 onto the set of eigenvectors 𝑒 𝑎̂ 𝑎 :

𝜓 𝑎̂ = 𝑒 𝑎̂ 𝑎 𝜓
𝑎 . (2.12)
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For the evolution system (2.8), the characteristic fields are 𝜓 𝑎̂ =

(𝑍1, 𝑍2
𝑖
, 𝑈+, 𝑈−) with

𝑍1 = ΨN, (2.13a)
𝑍2
𝑖 = 𝑃

𝑘
𝑖 Φ𝑘 , (2.13b)

𝑈± = Π ± 𝑛̂ 𝑖Φ𝑖 − 𝛾2Ψ
N. (2.13c)

Here, 𝑃𝑘
𝑖
= 𝛿𝑘

𝑖
− 𝑛̂𝑘 𝑛̂𝑖 denotes the projection operator orthogonal to

𝑛̂ 𝑖 , so that 𝑍2
𝑖

carries only two degrees of freedom. The correspond-
ing characteristic speeds are 𝑣𝑍1 = −𝑛̂𝑖𝛽𝑖(1 + 𝛾1) , 𝑣𝑍2 = −𝑛̂𝑖𝛽𝑖
and 𝑣𝑈± = −𝑛̂𝑖𝛽𝑖 ± 𝛼. We note that the fields 𝑈± reduce to the
known physical retarded/advanced derivatives 𝜕𝑡Ψ ± 𝜕𝑟Ψ in flat
space with 𝛾2 = 0. The other characteristic fields result from the
reduction of the PDE system to first order.

Boundary conditions must be specified at the external boundaries
of the domain for each characteristic field, if and only if it is flowing
into the domain, specifically those with negative characteristic
speeds. There are three external boundaries in our domain: one
excision sphere within the central black hole, one excision sphere
around the scalar charge (the surface of the worldtube), and the
outer boundary.

At the black hole excision sphere, all characteristic fields are flowing
out of the computational domain into the excised domain, so no
boundary conditions need to be applied. For the outer boundary
and at the worldtube boundary, the fields 𝑍1, 𝑍2

𝑖
may require

boundary conditions, while 𝑈− always requires ones and 𝑈+

never requires ones.

Boundary conditions for the physical characteristic field𝑈− at the
outer boundary are derived from the second-order Bayliss-Turkel
radiation condition [128]. These boundary conditions are applied [128]: Bayliss et al. (1980), Radia-

tion boundary conditions for wave-
like equations

with the method of Bjorhus [129]. At the worldtube boundary, the

[129]: Bjørhus (1995), The ODE For-
mulation of Hyperbolic PDEs Dis-
cretized by the Spectral Collocation
Method

local solution inside the worldtube is used to provide boundary
conditions for𝑈−, as explained in detail in Section 2.4.

Boundary conditions for 𝑍1 and 𝑍2
𝑖

can be derived by requiring
that there are no constraint violations flowing into the domain
[75], as described in Appendix 2.7. These constraint-preserving [75]: Kidder et al. (2005), Boundary

conditions for the Einstein evolution
system

boundary conditions are applied with the method of Bjorhus
[129] at the worldtube boundary and at the outer boundary; see
Eq. (2.68).

The evolution equations (2.8) are solved with SpECTRE [86], [86]: Deppe et al. (2024), SpECTRE
which employs a nodal discontinuous Galerkin (DG) scheme
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in 3+1 dimensions. The domain is built up of several hundred
DG elements, each endowed with a tensor product of Legendre
polynomials using Gauss-Lobatto quadrature. The elements are
deformed from unit cubes to fit the domain structure using a
series of smooth maps as illustrated in Fig. 2.1. Discontinuous
Galerkin methods require a choice of numerical flux that dictates
how fields are evolved on element boundaries where they are
multiply defined [84]. Here we employ an upwind flux. [84]: Hesthaven et al. (2007), Nodal

Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applica-
tions

SpECTRE uses dual coordinate frames [130] to solve the evolu-

[130]: Scheel et al. (2006), Solving
Einstein’s equations with dual coor-
dinate frames

tion equations. The components of the tensors in the evolution
Eqs. (2.8) are constructed in Kerr-Schild coordinates 𝑥 𝑖 . We re-
fer to these as the inertial frame because the coordinates are not
rotating with respect to the asymptotic frame at spatial infinity.
The evolution equations for the inertial components are solved as
functions of co-rotating coordinates (𝑡 , 𝑥𝚤) = (𝑡 , 𝑥̄ , 𝑦̄ , 𝑧̄) given by
the transformation

𝑡 = 𝑡 , (2.14a)
𝑥̄ = 𝑥 cos(𝜔𝑡) + 𝑦 sin(𝜔𝑡), (2.14b)
𝑦̄ = −𝑥 sin(𝜔𝑡) + 𝑦 cos(𝜔𝑡), (2.14c)
𝑧̄ = 𝑧. (2.14d)

Tensor components in this frame we denote with a bar, as in 𝑔𝛼̄𝛽̄. For
more demanding situations (e.g. binary black hole simulations),
the transformation 𝑥 𝑖 → 𝑥𝚤 can take a much more complicated
form [131, 132]. The grid points of the DG domain, as well as [131]: Hemberger et al. (2013), Dy-

namical Excision Boundaries in Spec-
tral Evolutions of Binary Black Hole
Spacetimes
[132]: Scheel et al. (2015), Improved
methods for simulating nearly ex-
tremal binary black holes

the particle position 𝑥𝚤𝑝 = (𝑟𝑝 , 0, 0) are constant in space in these
coordinates, which we will refer to as grid coordinates. The internal
worldtube solution is evolved in the grid frame directly, which
considerably simplifies the formulation of the matching scheme in
Sec. 2.4.

A Dormand-Prince time stepper is used to advance the solution
of the numerical fields with a global time step. We apply a weak
exponential filter to the evolution fields after every time step to
ensure stability of the evolution.

The code is parallelized using the heterogeneous task-based paral-
lelism framework Charm++ [96]. The inclusion of the worldtube [96]: Kale et al. (2021), UIUC-

PPL/charm: Charm++ version 7.0.0does not adversely impact the parallel efficiency, as its computa-
tional cost is negligible compared to even a single DG element
evaluation, and no additional communication between cores is
introduced.
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Figure 2.1: Illustration of the computational domain: Shown is the equatorial plane, with height-deformation
proportional to the value of the scalar field. The grid lines correspond to the DG-element boundaries of the 3-D
numerical evolution. The central blue/green peak represents the region inside the worldtube, where the approximate
solution is dominated by the singularity of the scalar field at the point-charge. Left of the peak an excision region is cut
out within the horizon of the central black hole. A zoomed-out view of the entire domain is shown in Figure 2.2.

2.3 Approximate solution inside the
worldtube

Inside the worldtube, the scalar field is given by an analytical
expansion in powers of coordinate distance from the particle’s
worldline 𝑥𝑝 . We use ΨA to denote this analytical solution, and we
use a formal parameter 𝜖 = 1 to count powers of the separation
between the worldline and the field point.

As in Ref. [1], we split the field ΨA into a puncture field ΨP and a [1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

regular field ΨR:
ΨA = ΨP +ΨR. (2.15)

ΨP is an approximate particular solution to the inhomogeneous
equation (3.1), and it will be fully determined in advance; ΨR is
an approximate smooth solution to the homogeneous equation,



2 Worldtube excision method: scalar-field model in 3+1D 40

and it will be determined dynamically through matching ΨA to
ΨN at the worldtube boundary.

We express both ΨP and ΨR in terms of the coordinate distance
Δ𝑥𝛼 := 𝑥𝛼 − 𝑥̃𝛼, where 𝑥̃𝛼 is a reference point on 𝑥𝑝 . For a given
field point 𝑥𝛼 at coordinate time 𝑡, we let 𝑥̃𝛼 := 𝑥𝛼𝑝 (𝑡) be the point
on 𝑥𝑝 at the same value of 𝑡, such that Δ𝑡 = 0. Tensors evaluated
at 𝑥̃𝛼 are written with a tilde, as in 𝑔̃𝜇𝜈. To facilitate matching ΨA

to ΨN, we ultimately express both ΨP and ΨR in the co-rotating
grid coordinates (𝑡 , 𝑥𝚤) introduced in Eq. (2.14), but most of this
section applies in both inertial and co-rotating coordinates.

Unlike in Ref. [1], forΨP we use an approximation to the Detweiler- [1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

Whiting singular field [133]; this choice ensures that we can cal-

[133]: Detweiler et al. (2003), Self-
force via a Green’s functsion decom-
position

culate the scalar self-force directly from the regular field ΨR.
Covariant expansions of the Detweiler-Whiting singular field are
readily available to high order in 𝜖; see [134, 135], for example, with

[134]: Haas et al. (2006), Mode-sum
regularization of the scalar self-force:
Formulation in terms of a tetrad de-
composition of the singular field
[135]: Wardell et al. (2012), A
Generic effective source for scalar self-
force calculations

[136] deriving the scalar singular field to the highest order in the

[136]: Heffernan et al. (2012),
High-order expansions of the
Detweiler-Whiting singular field in
Schwarzschild spacetime

literature, O(𝜖4). These covariant expressions contain several ingre-
dients. First among them is Synge’s world function 𝜎(𝑥, 𝑥̃) [137],

[137]: Synge (1960), Relativity: The
General theory

which is equal to half the squared geodesic distance between 𝑥 and
𝑥̃. Its gradient, 𝜎̃𝛼 := ∇̃𝛼𝜎(𝑥, 𝑥̃), is a directed measure of distance
from 𝑥̃ to 𝑥. The projection of 𝜎̃𝛼 tangent to the worldline has
magnitude

𝜚 := 𝜎̃𝛼𝑢̃
𝛼 , (2.16)

and the projection normal to the worldline has magnitude

𝑠 :=
√
(𝑔̃𝛼𝛽 + 𝑢̃𝛼𝑢̃𝛽)𝜎̃𝛼 𝜎̃𝛽 , (2.17)

where 𝑢̃𝛼 is the particle’s four-velocity at time 𝑡. In terms of these
quantities, the covariant expansion of ΨP through order 𝜖2 is
given by [135, 136]

ΨP = 𝑞

{
1
𝜖𝑠

+ 𝜖

6𝑠3 (𝜚
2 − 𝑠2)𝐶̃𝑢𝜎𝑢𝜎

+ 𝜖2

24𝑠3

[
(𝜚2 − 3𝑠2)𝜚𝐶̃𝑢𝜎𝑢𝜎 |𝑢 − (𝜚2 − 𝑠2)𝐶̃𝑢𝜎𝑢𝜎 |𝜎

]
+ O(𝜖3)

}
. (2.18)

Here

𝐶̃𝑢𝜎𝑢𝜎 := 𝐶̃𝛼𝛽𝜇𝜈𝑢̃
𝛼 𝜎̃𝛽𝑢̃𝜇𝜎̃𝜈 , (2.19)

𝐶̃𝑢𝜎𝑢𝜎 |𝜎 := ∇̃𝛾𝐶̃𝛼𝛽𝜇𝜈𝑢̃
𝛼 𝜎̃𝛽𝑢̃𝜇𝜎̃𝜈 𝜎̃𝛾 (2.20)
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are contractions of the Weyl tensor 𝐶𝛼𝛽𝜇𝜈 and its derivative evalu-
ated at the reference point 𝑥̃ on the particle’s worldline.

We now express the covariant expansion (2.18) in terms of Kerr-
Schild coordinates. To achieve this we follow the method in [135], [135]: Wardell et al. (2012), A

Generic effective source for scalar self-
force calculations

which begins from an expansion of 𝜎(𝑥, 𝑥̃) in powers of Δ𝑥𝛼,

𝜎 =
1
2
𝑔̃𝛼𝛽Δ𝑥

𝛼Δ𝑥𝛽 + 𝐴̃𝛼𝛽𝛾Δ𝑥
𝛼Δ𝑥𝛽Δ𝑥𝛾

+ 𝐵̃𝛼𝛽𝛾𝛿Δ𝑥
𝛼Δ𝑥𝛽Δ𝑥𝛾Δ𝑥𝛿

+ 𝐶̃𝛼𝛽𝛾𝛿𝜌Δ𝑥
𝛼Δ𝑥𝛽Δ𝑥𝛾Δ𝑥𝛿Δ𝑥𝜌 + . . . (2.21)

Differentiating this with respect to 𝑥̃𝛼, we obtain

𝜎̃𝛼 = −𝑔̃𝛼𝛽Δ𝑥𝛽 + (1
2
𝑔̃𝛽𝛾,𝛼 − 3𝐴̃𝛼𝛽𝛾)Δ𝑥𝛽Δ𝑥𝛾

+ (𝐴̃𝛽𝛾𝛿,𝛼 − 4𝐵̃𝛼𝛽𝛾𝛿)Δ𝑥𝛽Δ𝑥𝛾Δ𝑥𝛿

+ (𝐵̃𝛽𝛾𝛿𝜌,𝛼 − 5𝐶̃𝛼𝛽𝛾𝛿𝜌)Δ𝑥𝛽Δ𝑥𝛾Δ𝑥𝛿Δ𝑥𝜌 + . . .

(2.22)

We then use the identity 2𝜎 = 𝜎̃𝛼 𝜎̃𝛼 to recursively determine the
coefficients 𝐴̃𝛼𝛽𝛾, 𝐵̃𝛼𝛽𝛾𝛿, 𝐶̃𝛼𝛽𝛾𝛿𝜌 and so on. This yields, for example,
𝐴̃𝛼𝛽𝛾 = 1

4 𝑔̃(𝛼𝛽,𝛾). We now contract 𝜎̃𝛼 with the four-velocity, metric
and Weyl tensor to get the coordinate expressions for 𝜚 , 𝑠, 𝐶̃𝑢𝜎𝑢𝜎,
and 𝐶̃𝑢𝜎𝑢𝜎 |𝜎 as per their definitions (3.30), (3.31), (2.19), and (2.20).
Our final expression for ΨP is obtained by substituting all of these
results into Eq. (2.18) and re-expanding in powers of Δ𝑥𝛼.

We write the result in the style of [138]: [138]: Barack et al. (2002), Regular-
ization parameters for the self-force in
Schwarzschild space-time. 1. Scalar
caseΨP= 𝑞

[
1
𝜖𝑠1

+ P3(Δ𝑥𝛼)
𝑠3

1
+ 𝜖P6(Δ𝑥𝛼)

𝑠5
1

+ 𝜖2P9(Δ𝑥𝛼)
𝑠7

1
+O(𝜖3)

]
. (2.23)

Here 𝑠1 =

√
(𝑔̃𝛼𝛽 + 𝑢̃𝛼𝑢̃𝛽)Δ𝑥𝛼Δ𝑥𝛽 is the leading coordinate approx-

imation to 𝑠, and P𝑛(Δ𝑥𝛼) is a polynomial in Δ𝑥𝛼 of homogeneous
order 𝑛.

The form (2.23) is valid in any coordinate system. In the co-
rotating grid coordinates, the reference point on 𝑥𝑝 is 𝑥̃ 𝛼̄ = 𝑥 𝛼̄𝑝 (𝑡) =
(𝑡 , 𝑟𝑝 , 0, 0), and the coordinate separation Δ𝑥𝚤 := 𝑥𝚤 − 𝑥𝚤𝑝(𝑡) is
Δ𝑥 = 𝑥̄ − 𝑟𝑝 , Δ𝑦 = 𝑦̄, and Δ𝑧 = 𝑧̄. The distance 𝑠1 then reduces
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to

(𝑠1)2 =

(
1 + 2𝑀

𝑟𝑝

)
Δ𝑥2 + Δ𝑦2 + Δ𝑧2

+ (𝑢̃𝑡)2
(
2𝑀Δ𝑥

𝑟𝑝
+ 𝑟𝑝𝜔Δ𝑦

)2

, (2.24)

where 𝑢̃𝑡 = (1 − 3𝑀/𝑟𝑝)−1/2. The polynomials P3(Δ𝑥𝛼), P6(Δ𝑥𝛼),
and P9(Δ𝑥𝛼) are too long to be included here. Instead we have
made them available online as Mathematica code *.

We now turn to the regular field ΨR. Because it approximates a
smooth homogeneous solution, we can write it as a Taylor series
around 𝑥̃𝛼. In the grid coordinates, such an expansion reads

ΨR(𝑡 , 𝑥𝚤) = ΨR
0 (𝑡)+𝜖ΨR

𝑖 (𝑡)Δ𝑥
𝚤+𝜖2ΨR

𝚤 𝚥 (𝑡)Δ𝑥𝚤Δ𝑥 𝚥+O(𝜖3), (2.25)

with the notation ΨR
0 (𝑡) := ΨR(𝑡 , 𝑥𝚤𝑝), ΨR

𝚤 (𝑡) := 𝜕𝚤ΨR(𝑡 , 𝑥 𝚥𝑝),
ΨR
𝚤 𝚥 (𝑡) := 1

2𝜕𝚤𝜕𝚥Ψ
R(𝑡 , 𝑥𝑘𝑝), and so on. The coefficients ΨR

𝚤1...𝚤𝑘
in

this series contain the full freedom in the approximate solution
ΨA. However, not all of these coefficients are independent; the
field equation imposes relationships between them. As shown in
Ref. [139], once the field equation is enforced, only the trace-free [139]: Pound (2012), Nonlinear

gravitational self-force. I. Field out-
side a small body

piece of each ΨR
𝚤1...𝚤𝑘

is left undetermined. An 𝑛th-order approx-
imate solution ΨR contains ∑𝑛

𝑘=0(2𝑘 + 1) = (𝑛 + 1)2 of these
undetermined functions. All other functions of 𝑡 in ΨR are related
to these by ordinary differential equations (ODEs) that result from
the field equations. In the next section we show how all the func-
tions ΨR

𝚤1...𝚤𝑘
(𝑡) can be determined through the combination of (i)

matching ΨR to ΨN and (ii) solving the ODEs in 𝑡 that follow
from the field equation.

2.4 Matching method

The idea behind the matching method is straightforward. We
numerically solve the scalar wave equation on a Schwarzschild
background, excising the worldtube containing the scalar charge
from the numerical domain. Inside the worldtube, the solution is
given by the analytical approximation ΨA = ΨP +ΨR described
above. Outside the worldtube we have the numerical field ΨN. We

* https://github.com/nikwit/Puncture-Field-KS-Coords

https://github.com/nikwit/Puncture-Field-KS-Coords
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demand
ΨN Γ

= ΨP +ΨR, (2.26)

where Γ
= henceforth represents an equality that holds on the

(2+1D) worldtube’s boundary Γ. We will show that this matching
condition, together with the scalar wave equation, fully determine
the regular field ΨR inside the worldtube. This solution, in turn,
provides boundary conditions for the evolution of the numerical
field, specifically for𝑈−.

We formulate the matching scheme in the co-moving grid co-
ordinates 𝑥𝚤 introduced in Eq. (2.14). The Euclidean distance to
the particle is defined as 𝜌 :=

√
𝛿𝚤 𝚥Δ𝑥𝚤Δ𝑥 𝚥 =

√
𝛿𝑖 𝑗Δ𝑥 𝑖Δ𝑥 𝑗 . The

boundary of the worldtube is located at 𝜌 = 𝑅, with normal vector
𝑛𝚤 := Δ𝑥𝚤/𝜌. We note that 𝑛𝚤 is normalized with respect to 𝛿𝚤 𝚥 ,
whereas 𝑛̂ 𝑖 in Sec. 2.2 is normalized with respect to the 3-metric
𝛾𝑖 𝑗 .

We now introduce the details of our matching scheme for order
𝑛 = 0, 1 and 2, which are the expansion orders implemented
numerically in this work. The matching scheme for an expansion
of arbitrary order 𝑛 is given in Appendix 2.8. We start by re-writing
the Taylor expansion in Eq. (2.25) in terms of the quantities 𝜌 and 𝑛𝚤 ,
and we introduce an analogous expansion for the time derivative
of the regular field:

ΨR(𝑡 , 𝑥𝚤) = ΨR
0 (𝑡) + 𝜌ΨR

𝚤 (𝑡)𝑛𝚤 + 𝜌2ΨR
𝚤 𝚥 (𝑡)𝑛𝚤𝑛 𝚥 + O(𝜌3), (2.27a)

¤ΨR(𝑡 , 𝑥𝚤) = ¤ΨR
0 (𝑡) + 𝜌 ¤ΨR

𝚤 (𝑡)𝑛𝚤 + 𝜌2 ¤ΨR
𝚤 𝚥 (𝑡)𝑛𝚤𝑛 𝚥 + O(𝜌3), (2.27b)

where we now drop the order-counting parameter 𝜖 = 1. The
set of coefficients

{
ΨR

0 (𝑡),ΨR
𝚤 (𝑡),ΨR

𝚤 𝚥 (𝑡)
}

have one, three and six
independent components, respectively, for a total of ten. We will
show that all of these can be uniquely determined at each time step
from (i) the numerical field ΨN(𝑡 , 𝑥𝚤) at the worldtube boundary,
and (ii) the Klein-Gordon equation (2.3).

2.4.1 Worldtube boundary data

At each time step 𝑡𝑠 we enforce the continuity condition

ΨR(𝑡𝑠 , 𝑥𝚤)
Γ
= ΨN(𝑡𝑠 , 𝑥𝚤) −ΨP(𝑡𝑠 , 𝑥𝚤), (2.28)

both for the field itself and its time derivative. In the following
section we will omit explicit expressions which enforce continuity
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between the time derivative of the regular field ¤ΨR(𝑡 , 𝑥𝚤) and the
numerical field 𝜕𝑡ΨN(𝑡 , 𝑥𝚤) because they are completely analogous
to the expressions for the fields themselves. We will utilize sym-
metric trace-free (STF) tensors, indicated with angular brackets,
e.g. 𝐴⟨𝑘1...𝑘𝑙⟩.

Note that 𝐴⟨𝑘1···𝑘𝑙⟩𝐵𝑘1···𝑘𝑙 = 𝐴
𝑘1···𝑘𝑙𝐵⟨𝑘1···𝑘𝑙⟩ = 𝐴

⟨𝑘1···𝑘𝑙⟩𝐵⟨𝑘1···𝑘𝑙⟩; more
details about STF tensors are given in Appendix 2.8. Transforming
Eq. (2.27a) to a STF basis using (2.80) yields, at order 𝑛 = 2,

ΨR(𝑡𝑠 , 𝑥𝚤) = ΨR
0 (𝑡𝑠) +

1
3
𝜌2𝛿𝚤 𝚥ΨR

𝚤 𝚥 + 𝜌ΨR
⟨𝚤⟩𝑛

⟨𝚤⟩

+ 𝜌2ΨR
⟨𝚤 𝚥⟩𝑛

⟨𝚤𝑛 𝚥⟩ , (2.29)

with 𝑛⟨𝚤⟩ = 𝑛𝚤 and 𝑛⟨𝚤𝑛 𝚥⟩ = 𝑛𝚤𝑛 𝚥 − 1
3𝛿

𝚤 𝚥 . Equation (2.29) will be
used on the left-hand side in Eq. (2.28).

The right-hand side of Eq. (2.28) is obtained by evaluating the
puncture field of Eq. (2.23) and its time derivative at the coor-
dinates of the DG collocation points on the worldtube surface,
and subtracting them pointwise from the corresponding values
of ΨN(𝑡𝑠 , 𝑥𝚤) and 𝜕𝑡ΨN(𝑡𝑠 , 𝑥𝚤). This expression is then projected
numerically onto the set of spherical harmonics defined on the
worldtube Γ with constant radius 𝜌,

ΨN(𝑡𝑠 , 𝑥𝚤) −ΨP(𝑡𝑠 , 𝑥𝚤)
Γ
=

𝑛=2∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎N,R
𝑙𝑚

(𝑡𝑠)𝑌𝑙𝑚(𝑛𝚤), (2.30)

where

𝑎N,R
𝑙𝑚

(𝑡𝑠) =
∮
Γ

[
ΨN(𝑡𝑠 , 𝑥𝚤) −ΨP(𝑡𝑠 , 𝑥𝚤)

]
𝑌∗
𝑙𝑚(𝑛

𝚤)𝑑Ω (2.31)

are the spherical harmonic coefficients of the numerical, regular field
ΨN(𝑡𝑠 , 𝑥𝚤)−ΨP(𝑡𝑠 , 𝑥𝚤) and 𝑑Ω is the area element of the flat-space
unit 2-sphere. In practice we use real-valued spherical harmonics
and evaluate the integral with the Gauss-Lobatto quadrature used
by the DG method.

Both the spherical harmonics 𝑌𝑙𝑚 and the STF normal vector
𝑛⟨𝑘1 · · · 𝑛𝑘𝑙⟩ provide an orthogonal basis for functions on a sphere.
They can be transformed into each other using Eqs. (2.82),

𝑛=2∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎N,R
𝑙𝑚

(𝑡𝑠)𝑌𝑙𝑚(𝑛𝚤)

= Ψ
N,R

⟨0⟩ (𝑡𝑠) +Ψ
N,R

⟨𝚤⟩ (𝑡𝑠)𝑛⟨𝚤⟩ +Ψ
N,R

⟨𝚤 𝚥⟩ (𝑡𝑠)𝑛⟨𝚤𝑛 𝚥⟩ . (2.32)
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We have thus expressed both sides of the continuity condition (2.28)
in a basis of STF normal vectors, using Eqs. (2.29) and (2.32).
Orthogonality of the STF basis allows us to match order by order
in the STF expansion:

Ψ
N,R

⟨0⟩ (𝑡𝑠) = ΨR
0 (𝑡𝑠) +

1
3
𝜌2𝛿𝚤 𝚥ΨR

𝚤 𝚥 (𝑡𝑠), (2.33a)

Ψ
N,R

⟨𝚤⟩ (𝑡𝑠) = 𝜌ΨR
𝚤 (𝑡𝑠), (2.33b)

Ψ
N,R

⟨𝚤 𝚥⟩ (𝑡𝑠) = 𝜌2ΨR
⟨𝚤 𝚥⟩(𝑡𝑠). (2.33c)

We emphasise that Eqs. (2.33) contain two distinct sets of coeffi-
cients: The ΨN,R on the left-hand-sides are expansion coefficients
on the surface Γ, whereas the ΨR on the right-hand-side are
the Taylor expansion coefficients of the solution in the interior,
Eq. (2.27a). The continuity conditions for a field expanded to arbi-
trary order are given in Eq. (2.87). For expansion orders 𝑛 = 0 or
𝑛 = 1 the second term in Eq. (2.33a) falls away. The regular field
inside the worldtube is then fully determined by the continuity
condition and can directly be used to provide boundary conditions
for the future evolution. In one dimension, this is equivalent to a
linear polynomial in an interval being fully determined by its two
endpoints.

For 𝑛 = 2, Eqs. (2.33) provide only 9 equations for the 10 coefficients
of ΨR(𝑡𝑠 , 𝑥𝚤) because the monopole of the regular numerical field
Ψ

N,R

⟨0⟩ in Eq. (2.33a) contributes to both the zeroth-order coefficient
ΨR

0 and the trace of the second-order coefficient, 𝛿𝚤 𝚥ΨR
𝚤 𝚥 . More

generally, for arbitrary order, the STF expansion on the worldtube,
Eq. (2.87), provides only the trace-free components of ΨN,R, so
that boundary-matching determines only the trace-free parts of the
expansion ΨR(𝑡𝑠 , 𝑥𝚤) but not its traces. Therefore, for expansions
of order 𝑛 ≥ 2, additional equations are needed to fully determine
the regular field inside the worldtube. These are provided by a
series expansion of the Klein-Gordon equation, as we describe
below in Sec. 2.4.2.

The coefficients of the regular field’s time derivative are determined
completely analogously, with the continuity condition

𝜕𝑡Ψ
R(𝑡𝑠 , 𝑥 𝑖)

Γ
= 𝜕𝑡Ψ

N(𝑡𝑠 , 𝑥 𝑖) − 𝜕𝑡Ψ
P(𝑡𝑠 , 𝑥 𝑖). (2.34)

𝜕𝑡ΨN(𝑡𝑠 , 𝑥 𝑖) is evaluated using its evolution equation (2.8a) and
then transformed into the co-moving grid frame by adding the
advective term 𝑣 𝑖𝑔𝜕𝑖Ψ

N, where 𝑣 𝑖𝑔 is the instantaneous local grid
velocity. The matching conditions for the time derivative of the



2 Worldtube excision method: scalar-field model in 3+1D 46

regular field ¤Ψ𝑅(𝑡𝑠) are then just the time derivative of the matching
conditions for Ψ𝑅(𝑡𝑠), Eqs. (2.33).

2.4.2 Klein-Gordon equation

We rewrite the Klein-Gordon equation (2.3) in grid coordinates

0 = 𝑔𝜇̄𝜈̄𝜕𝜇̄𝜕𝜈̄Ψ
R − Γ𝜌̄𝜕𝜌̄Ψ

R, (2.35)

whereΓ𝜌̄ B 𝑔𝜇̄𝜈̄Γ
𝜌̄
𝜇̄𝜈̄. The metric quantities 𝑔𝜇𝜈 andΓ𝜇 are expanded

in the grid coordinates 𝑥𝚤 to the same order 𝑛 as the regular field
at each time step 𝑡𝑠 . For 𝑛 = 2 these expansions read

𝑔𝜇̄𝜈̄(𝑡𝑠 , 𝑥𝚤) = 𝑔
𝜇̄𝜈̄
0 (𝑡𝑠) + 𝑔

𝜇̄𝜈̄
𝚤 (𝑡𝑠)Δ𝑥𝚤

+ 𝑔
𝜇̄𝜈̄
𝚤 𝚥 (𝑡𝑠)Δ𝑥𝚤Δ𝑥 𝚥 + O(𝜌3), (2.36)

Γ𝜇̄(𝑡𝑠 , 𝑥𝚤) = Γ
𝜇̄
0 (𝑡𝑠) + Γ

𝜇̄
𝚤 (𝑡𝑠)Δ𝑥𝚤

+ Γ
𝜇̄
𝚤 𝚥(𝑡𝑠)Δ𝑥𝚤Δ𝑥 𝚥 + O(𝜌3). (2.37)

The expansion coefficients are given by 𝑔𝜇̄𝜈̄0 := 𝑔𝜇̄𝜈̄(𝑡𝑠 , 𝑥𝚤𝑝), 𝑔
𝜇̄𝜈̄
𝚤 :=

𝜕𝚤𝑔𝜇̄𝜈̄(𝑡𝑠 , 𝑥 𝚥𝑝), and 𝑔
𝜇̄𝜈̄
𝚤 𝚥 (𝑡𝑠) := 1

2𝜕𝚤𝜕𝚥𝑔
𝜇̄𝜈̄(𝑡𝑠 , 𝑥𝑘𝑝), and similarly for Γ𝜇̄0 ,

Γ
𝜇̄
𝚤 , and Γ

𝜇̄
𝚤 𝚥 . Due to the spherical symmetry of the Schwarzschild

spacetime, and our circular-orbit setup, these expansion coeffi-
cients are in fact independent of 𝑡𝑠 .

We now expand the Klein-Gordon equation in powers of 𝜌 by
inserting the expansions for ΨR, 𝑔𝜇𝜈 and Γ𝜇 from Eqs. (2.27a),
(2.36) and (2.37), respectively, into Eq. (2.35). The 𝑂(𝜌0) piece of
the equation reads

𝑔𝑡𝑡0
¥ΨR

0 (𝑡𝑠) + 2𝑔𝑡𝚤0 ¤ΨR
𝚤 (𝑡𝑠) + 2𝑔𝚤 𝚥0 Ψ

R
𝚤 𝚥 (𝑡𝑠)

− Γ𝑡0
¤ΨR

0 (𝑡𝑠) − Γ𝚤0Ψ
R
𝚤 (𝑡𝑠) = 0. (2.38)

This ODE provides an additional, independent relation between
the expansion coefficients ΨR

0 , ΨR
𝚤 and ΨR

𝚤 𝚥 , which enables us to
determine the remaining, trace degree of freedom of the regular
field at 𝑛=2. Specifically, combining Eq. (2.38) with the continuity
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conditions (2.33), and using ΨR
𝚤 𝚥 = ΨR

⟨𝚤 𝚥⟩ +
1
3𝛿

𝑙𝑘ΨR

𝑙𝑘
𝛿𝚤 𝚥 , we obtain

𝑔𝑡𝑡0
¥ΨR

0 (𝑡𝑠) + 2𝑔𝑡𝚤0 ¤ΨN,R
𝚤 (𝑡𝑠) + 2𝑔𝚤 𝚥0 Ψ

N,R

⟨𝚤 𝚥⟩ (𝑡𝑠)

+
2𝛿𝚤 𝚥𝑔

𝚤 𝚥

0
𝜌2

(
Ψ

N,R
0 (𝑡𝑠) −ΨR

0 (𝑡𝑠)
)

− Γ0
0
¤ΨR

0 (𝑡𝑠) − Γ𝚤0Ψ
N,R
𝚤 (𝑡𝑠) = 0. (2.39)

We reduce this ODE to first order and use a Dormand-Prince
time stepper to advance the zeroth-order coefficient ΨR

0 and
its time derivative to the next time step 𝑡𝑠+1, taking the same
global time step as the DG evolution. Together with the continuity
conditions (2.33) at time step 𝑡𝑠+1, this completely determines
all components of the second-order expansion of ΨR(𝑡 , 𝑥𝚤) in
Eq. (2.27a) at 𝑡𝑠+1.

The coefficients of the numerical, regular fieldΨ
N,R

⟨𝑘0···𝑘𝑙⟩
are updated

each sub-step. As initial conditions of the ODE (2.39) we take
ΨR

0 (𝑡0) = ¤ΨR
0 (𝑡0) = 0.

In Appendix 2.8 we formulate the generalization of this method to
an arbitrary order 𝑛, and in particular we derive the generalized
form of the ODE on Γ.

2.4.3 Boundary conditions for ΨN

Once the expansion of the regular field has been fully determined,
it can be used to provide boundary conditions to the DG elements
neighboring the worldtube. DG methods commonly formulate
boundary conditions between elements using the numerical flux,
and these conditions are applied to each of the characteristic fields
defined in Eqs. (2.13). We use the internal solution ΨA of the
worldtube to provide boundary conditions for the characteristic
field𝑈− as if the interior of the worldtube were simply another DG
element. From the definition of𝑈− in Eq. (2.13c) and the definitions
in Eq. (3.9), we obtain the boundary condition

𝑈−(𝑡𝑠)
Γ
= −𝛼−1𝜕𝑡Ψ

A(𝑡𝑠) +
(
𝛽𝚤 − 𝑛̂𝚤

)
𝜕𝚤Ψ

A(𝑡𝑠) − 𝛾2Ψ
A(𝑡𝑠). (2.40)

The analytical solution ΨA(𝑡𝑠) was defined in Eq. (2.15) as the
sum of the regular field ΨR and the puncture field ΨP, both of
which are now fully determined. The time and spatial derivative
are simply obtained from 𝜕𝑡ΨA(𝑡𝑠) = 𝜕𝑡ΨN(𝑡𝑠) + 𝜕𝑡ΨP(𝑡𝑠) and
𝜕𝚤ΨA(𝑡𝑠) = 𝜕𝚤ΨN(𝑡𝑠) + 𝜕𝚤ΨP(𝑡𝑠). The fields ΨR(𝑡𝑠) and 𝜕𝑡ΨR(𝑡𝑠)
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are given by Eq. (2.27) and its time derivative. The derivative
normal to the worldtube boundary is similarly obtained by taking
the appropriate spatial derivative of ΨR in Eq. (2.27a) analytically.
The expression for the puncture field ΨP(𝑡𝑠) is given in Eq. (2.25),
and its time and normal derivative are computed analytically. We
evaluate all of these expressions at the grid coordinates 𝑥𝚤 of all
DG grid points that lie on element faces abutting the worldtube to
formulate pointwise boundary conditions. The value of𝑈−(𝑡𝑠) at
the boundary is used to apply a correction to the time derivative
of the evolution equations using the upwind flux [84]. [84]: Hesthaven et al. (2007), Nodal

Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applica-
tions

We initially tried to provide boundary conditions in the above
fashion for all characteristic fields entering the numerical domain,
including 𝑍1 and 𝑍2

𝑖
. However, we found that this caused sub-

stantial constraint violations entering the numerical domain at
the worldtube boundary. Instead, we use constraint-preserving
boundary conditions for 𝑍1 and 𝑍2

𝑖
as described in Appendix 2.7.

2.4.4 Roll-on function

The initial conditions we use for the simulations are Ψ = 𝜕𝑡Ψ = 0
for both the DG fields outside the worldtube and the regular
field inside it. The puncture field ΨP added to the regular field
in Eq. (2.40) initially creates a discontinuity at the worldtube
boundary, due to the unphysical instantaneous appearance of
the scalar charge source 𝑡 = 0. DG methods are very inefficient
at resolving discontinuities within elements, due to the Gibbs
phenomenon.

To alleviate this, we multiply the puncture field ΨP with a roll-
on function 𝑤(𝑡) that smoothly grows from 0 to 1 (up to double
precision) between 𝑡 = 0 and 𝑡 = 𝑡end. We found that this effectively
stretches out the initial discontinuity and causes the fields to settle
more smoothly to their final values.

We tested two different roll-on functions: 𝑤(𝑡) = sin[𝜋𝑡/(2𝑡end)]
and 𝑤(𝑡) = erf(12𝑡/𝑡end − 6)/2 + 1/2, where erf is the Gaussian
error function. There was little difference in the long term evolution
between the two choices.

The roll-on function ensures a smooth settling of the solution
corresponding to the scalar charge slowly being turned on over
its first 4 orbits. We found 𝑡end = 300𝑀 to be a good choice for the
simulations with orbital radius 𝑟𝑝 = 5𝑀.
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2.4.5 Error estimates

To estimate the errors that our matching method incurs, we apply
the same analysis as we did for the 1+ 1D case in [1]. The estimates [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

follow from a Kirchhoff representation of the scalar field. We first
consider the field in the numerical domain, outside the tube Γ.
Call this region 𝑉 . Inside 𝑉 , our field ΨN satisfies the same homo-
geneous field equation as the exact solution Ψ, 𝑔𝜇𝜈∇𝜇∇𝜈Ψ

N = 0,
but it inherits errors that propagate out from Γ. We introduce a
retarded Green’s function 𝐺(𝑥, 𝑥′) satisfying

□𝐺(𝑥, 𝑥′) = □′𝐺(𝑥, 𝑥′) = 𝛿4(𝑥, 𝑥′) , (2.41)

where 𝑥 and 𝑥′ denote any two points, primes denote quantities
at 𝑥′, □ := 𝑔𝜇𝜈∇𝜇∇𝜈, and 𝛿4(𝑥, 𝑥′) := 𝛿4(𝑥𝜇−𝑥𝜇′)√−𝑔 . If we now take any
point 𝑥 ∈ 𝑉 , then the equations (2.41) and □ΨN = 0 imply the
identity

ΨN(𝑥′)𝛿4(𝑥, 𝑥′) = ΨN(𝑥′)□′𝐺(𝑥, 𝑥′) − 𝐺(𝑥, 𝑥′)□′ΨN(𝑥′). (2.42)

Integrating this equation over all 𝑥′ ∈ 𝑉 and then integrating by
parts, we obtain the Kirchhoff representation

ΨN(𝑥) =
∫
𝑉

[
ΨN(𝑥′)□′𝐺(𝑥, 𝑥′) − 𝐺(𝑥, 𝑥′)□′ΨN(𝑥′)

]
𝑑𝑉′

=

∫
𝜕𝑉

[
ΨN(𝑥′)∇𝜇′𝐺(𝑥, 𝑥′)−𝐺(𝑥, 𝑥′)∇𝜇′ΨN(𝑥′)

]
𝑑Σ𝜇′

. (2.43)

Here 𝑑Σ𝜇′ is the outward-directed surface element on 𝜕𝑉 . For
us the relevant portion of 𝜕𝑉 is the tube boundary Γ, where
𝑑Σ𝜇′

= O(𝑅2)𝑑𝑡 𝑑Ω. As in Eq. (2.31), here 𝑑Ω is the area element
of the unit 2-sphere.

In the integral over Γ, we may replace ΨN with ΨA. Our truncated
expansion of ΨA introduces an inherent O(𝑅𝑛+1) error in ΨN(𝑥′)
and O(𝑅𝑛) error in ∇𝜇′ΨN(𝑥′) on the worldtube. Equation (2.43)
implies that the O(𝑅𝑛) error in ∇𝜇′ΨN(𝑥′) dominates. Accounting
for the O(𝑅2) surface element, we see that this creates an O(𝑅𝑛+2)
error in ΨN(𝑥).

An important takeaway from this analysis is that the error in the
numerical domain is suppressed by the small spatial size of Γ.
As a consequence, the error converges two orders faster than the
analogous error in the 1 + 1D problem in [1].

However, we note that this analysis applies only at a fixed location
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𝑥 outside the worldtube. At a point on the worldtube boundary Γ,
the errors in ΨN are inherently O(𝑅𝑛+1), and the errors in ∇𝜇Ψ

N

are inherently O(𝑅𝑛). There is no suppression due to the small
spatial size of the worldtube in this case. The same is true of the
errors at a point outside the worldtube if we consider a point 𝑥
that is at a fixed multiple of 𝑅 away from the worldline rather than
at a fixed physical location.

We also note that in applications, we require outputs other than
ΨN: the regular field on the particle’s worldline and the self-force,
for example. The omitted terms in our expansion (2.25) scale
with a power of distance from the worldline, which might make
us expect that we incur no error in ΨR(𝑥𝑝) and 𝜕𝜇ΨR(𝑥𝑝) (and
therefore in the self-force). However, we can see this is incorrect
by referring again to a Kirchhoff representation of the field. Our
method enforces the field equation (3.1) on ΨA up to an error
∼ 𝑅𝑛−1 (two derivatives of the truncation error in ΨA). If we
momentarily ignore that error term in the field equation, and if
we consider 𝑉 to be the interior of Γ and repeat the steps that led
to Eq. (2.43), then we obtain the Kirchhoff representation

ΨA(𝑥) = −4𝜋𝑞
∫
𝛾
𝐺(𝑥, 𝑥𝑝(𝜏))𝑑𝜏 +

∫
Γ

[
ΨA(𝑥′)∇𝜇′𝐺(𝑥, 𝑥′)

− 𝐺(𝑥, 𝑥′)∇𝜇′ΨA(𝑥′)
]
𝑑Σ𝜇′

. (2.44)

If we now take 𝑥 to be a point 𝑥𝑝 on the worldline and consider
the integral over Γ, then we have 𝐺(𝑥, 𝑥′) ∼ 1/𝑅 and ∇𝜇′𝐺(𝑥, 𝑥′) ∼
1/𝑅2. We can combine this with 𝑑Σ𝜇′ ∼ 𝑅2 and with the errors
O(𝑅𝑛+1) inΨA(𝑥′) and O(𝑅𝑛) in ∇𝜇′ΨA(𝑥′) to deduce that the error
in ΨA(𝑥𝑝) is O(𝑅𝑛+1). If we take a derivative of Eq. (2.44), we find
that the error in 𝜕𝜇ΨA(𝑥𝑝) is O(𝑅𝑛). These error estimates apply
immediately to ΨR(𝑥𝑝) as well.

It is also straightforward to see that these estimates are not al-
tered by the O(𝑅𝑛−1) error in the field equation, which we ne-
glected in deriving Eq. (2.44). That error contributes an error
∼

∫
𝑅𝑛−1𝐺(𝑥𝑝 , 𝑥′)𝑑𝑉′ ∼ 𝑅𝑛+1 toΨR(𝑥𝑝), consistent with the error

from the boundary integral.

In summary, we expect that for an 𝑛th-order analytical approxi-
mation, our method introduces the following errors:

Error in ΨN(𝑥) : O(𝑅𝑛+2), (2.45)
Error in ΨR(𝑥𝑝) : O(𝑅𝑛+1), (2.46)

Error in 𝜕𝛼Ψ
R(𝑥𝑝) : O(𝑅𝑛), (2.47)
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where 𝑥 is a point outside Γ and 𝑥𝑝 is a point on the particle’s
worldline. Our numerical results in the next section will bear
out these predictions. The error in 𝜕𝛼ΨR(𝑥𝑝), and hence in the
self-force, will be particularly relevant when we allow the system
to evolve (as opposed to keeping the particle on a fixed geodesic
orbit). We defer discussion of this to the Conclusion.

Finally, before proceeding, we note that our error estimate for
𝜕𝛼ΨR(𝑥𝑝) might be too pessimistic in some instances. Specifically,
time-antisymmetric components, linked to the dissipative pieces of
the self-force, might converge more rapidly with 𝑅. This is because
these components arise from the radiative piece of the field, equal
to half the retarded solution minus half the advanced solution [140]. [140]: Mino (2003), Perturbative ap-

proach to an orbital evolution around
a supermassive black hole

For these pieces of the field, we can replace the Green’s function 𝐺
in Eq. (2.44) with its radiative piece, 𝐺Rad = 1

2(𝐺Ret − 𝐺Adv). 𝐺Rad

is smooth when its two arguments coincide (because singularities
cancel between 𝐺Ret and 𝐺Adv), meaning it does not introduce
the negative powers of 𝑅 that 𝐺Ret introduces in Eq. (2.44). We
therefore might expect that errors scale with a higher power
of 𝑅 in the dissipative components of 𝜕𝛼ΨR(𝑥𝑝). That could
be extremely beneficial in practice because dissipative effects
dominate over conservative ones on the long timescale of an
inspiral [141], and dissipative effects must therefore be computed [141]: Hinderer et al. (2008), Two

timescale analysis of extreme mass
ratio inspirals in Kerr. I. Orbital Mo-
tion

with higher accuracy. However, our numerical experiments in the
next section do not entirely bear out this expectation of more rapid
convergence, and we leave further investigation of it to future
work.

2.5 Results

We use a central black hole of mass 𝑀 for the simulations. The
excision sphere inside the black hole has radius 1.9𝑀. The outer
boundary is placed at 400𝑀. We use a CFL safety factor of 0.4.
The scalar charge is placed on a circular orbit with radius 𝑟𝑝 = 5𝑀
with angular velocity 𝜔 = 𝑀1/2𝑟

−3/2
𝑝 ≈ 0.09𝑀−1.

The expansion terms of the puncture field converge more quickly
with larger orbital radii of the scalar charge. The truncation error of
the puncture field and hence of the worldtube solution is therefore
particularly large at the relatively small orbital radius of 𝑟𝑝 = 5𝑀
used in our simulations. This ensures that the scheme is tested
in an extreme region, comparable to binary black holes close to
merger. Because the error due to the worldtube is comparatively
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Figure 2.2: The equatorial plane of the domain, depicting the steady-state solution of the scalar field ΨN. The scalar
charge creates an outward propagating spiral as it orbits the central black hole. Figure 2.1 shows a tilted perspective
zoomed into the center of the same plane with the spiral arms visible in the background.

large for a small 𝑟𝑝 , it can be resolved with a lower resolution
in the numerical domain, lowering the computational cost of the
simulations.

We have implemented the worldtube scheme with the local solution
expanded to orders 𝑛 = 0, 1 and 2. The radius of the worldtube
was varied between 0.2𝑀 and 1.6𝑀. The simulations were run
until the field had settled to its steady state solution over the entire
domain, which took between 3000𝑀 and 7000𝑀, depending on
the magnitude of the settled error. Figure 2.2 shows a cut through
the equatorial plane of the computational domain.

Figure 2.3 plots the steady state solution along two lines cut
through the domain at late, constant Kerr-Schild times 𝑡: one along
the co-moving 𝑥-axis connecting the central black hole center and
the scalar charge and one along the 𝑧-axis normal to the charge’s
orbital plane. The undulations of the scalar field on the 𝑥-axis
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Figure 2.3: The steady-state solu-
tion of the scalar field ΨN along
the co-moving 𝑥-axis and 𝑧-axis
of the domain.

correspond to the arms of the spiral in Fig. 2.2. The missing part of
the ‘𝑥-axis’ line corresponds to the worldtube; the field increases
strongly near the worldtube, because of the scalar charge contained
at the center of the worldtube.

We verify the validity and convergence of our simulations in
three different ways: First, in Sec. 2.5.1, we compare the value
of the regular field ΨR and its spatial derivative 𝜕𝚤ΨR at the
position of the charge to published numerical results obtained
using frequency-domain self-force methods. Second, in Sec. 2.5.2
we compare with the known axially symmetric analytical solution
along the 𝑧-axis, given below in Eq. (2.54). Finally, we perform an
internal convergence test along the co-moving 𝑥-axis in Sec. 2.5.3.
For each simulation in the following sections, the resolution of the
DG domain was increased until it no longer affected the steady-
state solution. This guaranteed that the error measured was due
to the worldtube, not the numerical evolution.

2.5.1 Regular field ΨR at the charge’s position

The value of the regular field for a scalar charge in a circu-
lar geodesic orbit in Schwarzschild spacetime has been calcu-
lated in self-force literature. We compare the regular field of
our simulations with the results of [142], who quote the value [142]: Diaz-Rivera et al. (2004),

Scalar field self-force effects on orbits
about a Schwarzschild black hole

ΨR
ref(0) = −0.01023418𝑞/𝑀 for a circular orbit with radius 5𝑀.

For expansion orders 𝑛 = 0 and 𝑛 = 1, the regular field at the
charge position is given directly by the monopole of the numerical
field Ψ

N,R

⟨0⟩ (𝑡𝑠) in Eq. (2.33a) (the second term on the right-hand
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Figure 2.4: Top panel: The relative
error of the regular field at the po-
sition of the charge compared to
the value computed in [142]. Each
cross represents the settled error
at the final simulation time. The
dashed lines are best fits for the
relation 𝜀 ∝ 𝑅𝛼 . Bottom panel: The
local convergence order between
simulations of neighboring world-
tube radii.

side is absent for 𝑛 = 0, 1). For 𝑛 = 2, it is determined by solving
the ODE (2.39) inside the worldtube.

The relative error 𝜀 = |ΨR(0) −ΨR
ref(0)|/|Ψ

R
ref(0)|, where ΨR(0) is

the final value of the regular field at the scalar charge, is shown
in the top panel of Fig. (2.4), with each marker representing
a simulation. The dashed lines show fits of the data, for each
expansion order 𝑛, to a relation of the form 𝜀 ∝ 𝑅𝛼, where 𝑅
(recall) is the worldtube radius. The bottom panel displays the
local convergence order, defined through

𝛼loc,𝑖 =
log(𝜀𝑖) − log(𝜀𝑖−1)
log(𝑅𝑖) − log(𝑅𝑖−1)

, (2.48)

where 𝑅𝑖 are the worldtube radii in our sample, and 𝜀𝑖 are the
corresponding errors. We find that the error always decreases
with smaller worldtube radius or higher order 𝑛 of the local
solution as expected. Equation (2.46) indicated a convergence
order inside the worldtube of 𝛼 = 𝑛 + 1 at sufficiently small
worldtube radii. For 𝑛 = 1 and 2 we find that this prediction is
confirmed quite well, with global convergence orders measured
as ∼ 2.07 and ∼ 3.08, respectively, and local convergence order
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uniformly close to this value. At 𝑛 = 0 we measure a global
convergence order of ∼ 1.72 and a local convergence order that
appears to decrease with the worldtube radius. This suggests
that for 𝑛 = 0 the scheme is not fully in the convergent regime
for the values of 𝑅 we consider; rather, there are still significant
contributions from higher-order terms. At smaller worldtube radii
𝑅, these higher-order-in-𝑅 contributions become less significant
and the local convergence rate approaches the expected value of
1.

We also compare the gradient of ΨR at the position of the particle,
which enters the expression for the self-force acting on the particle
due to back-reaction from the scalar field. The value of the radial
derivative is given in [142] as 𝜕𝑟𝑠ΨR

ref(0) = 0.0004149937𝑞/𝑀2 us- [142]: Diaz-Rivera et al. (2004),
Scalar field self-force effects on orbits
about a Schwarzschild black hole

ing Schwarzschild coordinates (𝑡𝑠 , 𝑟𝑠 , 𝜃𝑠 , 𝜑𝑠). We are not aware of
any works which report the angular derivative of the scalar field
at 𝑟𝑝 = 5𝑀. Instead, it was computed for us to be 𝜕𝜑𝑠Ψ

R
ref(0) =

−0.01009125769𝑞/𝑀2 using the frequency domain code of [143]. [143]: Macedo et al. (2022), Hy-
perboloidal method for frequency-
domain self-force calculations

The coordinate transformation from Kerr-Schild time 𝑡 to Schwarzschild
time 𝑡𝑠 is given by

𝑡𝑠 = 𝑡 + 2𝑀 ln
( 𝑟

2𝑀
− 1

)
, (2.49)

which makes the conversion between 𝜕𝑟𝑠Ψ
R and the Kerr–Schild

radial derivative 𝜕𝑟ΨR

𝜕𝑟𝑠 = 𝜕𝑟 +
2𝑀

2𝑀 − 𝑟 𝜕𝑡

= 𝜕𝑟 +
2𝑀

2𝑀 − 𝑟 (𝜕𝑡 +
𝜕𝑥𝚤

𝜕𝑡
𝜕𝚤), (2.50)

where in the second line we have transformed into the co-moving
coordinate frame given in Eqs. (2.14). The reference values of the
regular field’s gradient at the particle’s position are then given
by

𝜕𝑟Ψ
R
ref(0) = 𝜕𝑥̄Ψ

R
ref(0) = 𝜕𝑟𝑠Ψ

R
ref(0) −

2𝑀𝜔
2𝑀 − 𝑟𝑝

𝜕𝜑𝑠Ψ
R
ref(0), (2.51)

𝜕𝜑Ψ
R
ref(0) = 𝑟𝑝𝜕𝑦̄Ψ

R
ref(0) = 𝜕𝜑𝑠Ψ

R
ref(0), (2.52)

which we use to compare to our simulation values.

Figure 2.5 compares the radial and azimuthal derivative of ΨR

obtained by our worldtube evolutions against these reference
values. Shown are the differences from the reference values for
orders 𝑛 = 1 and 2, with power-law fits ∝ 𝑅𝛼. At zeroth order, the
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Figure 2.5: Top panel: The absolute
difference between the radial and
angular derivatives of the regular
field at the position of the par-
ticle and the reference values of
Eqs. (2.51) and (2.52). Each cross
represents the final value of a
simulation. The dashed lines are
best fits to the power-law relation
∝ 𝑅𝛼. Bottom panel: The local con-
vergence order between the simu-
lations of adjacent worldtube radii
as defined in Eq. (3.75). The simu-
lations at order 𝑛 = 1 show a con-
vergence order consistent with the
predicted rate 𝛼 = 1. The 𝑛 = 2
simulations show a higher conver-
gence rate likely due to dominant
higher order terms. Some anoma-
lies are not visible.

regular field is constant across the worldtube so the derivatives
can not be computed. The lower panel of Fig. 2.5 plots the local
convergence order 𝛼loc defined in (3.75).

We argued in Eq. (2.47) that the error of the regular field’s deriva-
tives at the particle position should scale with the worldtube radius
as ∝ 𝑅𝑛 . For 𝑛 = 1, this behavior is confirmed by the local con-
vergence 𝛼loc of our simulations with the exception of worldtube
radius 𝑅 = 1.6𝑀, which is anomalously lower than expected
and skews the global convergence order. For 𝑛 = 2, the radial
derivative 𝜕𝑟ΨR (linked to the conservative, time-symmetric piece
of the self-force) shows a local convergence that approaches the
expected order of 𝑅2 at smaller worldtube radii. This suggests that
the error is just entering the regime where the O(𝑅𝑛) contribution
becomes dominant. For the angular derivative 𝜕𝜑ΨR (linked to
the dissipative, time-antisymmetric piece of the self-force), the
local convergence order is larger than 3 for all simulations. This
could indicate that the error is still dominated by higher-order con-
tributions at the sampled worldtube radii. Alternatively, it could
indicate that dissipative quantities converge more rapidly with
𝑅 than conservative one, as suggested in Sec. 2.4.5; however, the
results for 𝑛 = 1 do not support that proposal, showing the same
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convergence rate for 𝜕𝜑ΨR as for 𝜕𝑟ΨR. We stress that in any case,
the convergence is at least as rapid as predicted in Eq. (2.47).

2.5.2 Solution along the 𝑧-axis

The spherical symmetry of the Schwarzschild background allows
for the Klein-Gordon Eq. (2.3) to be decomposed into separately
evolving spherical harmonic modes Ψ𝑙𝑚(𝑟, 𝑡), where the spherical
harmonic decomposition is centered on the black hole (different
to the spherical harmonics introduced in Eq. (2.30), which are
centered on the worldtube). On the polar axis (𝑥 = 𝑦 = 0) all
modes vanish except the axially symmetric ones, i.e. those with
𝑚 = 0. These modes are also static and admit simple analytical
solutions [1]. Along the polar axis these solutions read [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
modelΨ𝑙0(𝑧) =

4𝜋
√

1 − 3𝑀/𝑟𝑝
𝑀

𝑌𝑙0(𝑛𝑥)×(
𝑄𝑙(𝑟𝑝/𝑀 − 1)𝑃𝑙(𝑧/𝑀 − 1)Θ(𝑟𝑝 − 𝑧)

+𝑄𝑙(𝑧/𝑀 − 1)𝑃𝑙(𝑟𝑝/𝑀 − 1)Θ(𝑧 − 𝑟𝑝)
)
,

(2.53)

where 𝑃𝑙 and 𝑄𝑙 are Legendre functions of the first and second
kind, respectively, 𝑛𝑥 is the normal vector pointing in the direction
of the 𝑥 coordinate axis, and Θ is the Heaviside function. The full
solution along the 𝑧-axis is then given by

Ψ𝑧(𝑧) = 𝑞
∞∑
𝑙=0

Ψ𝑙0(𝑧)𝑌𝑙0(𝑛𝑧), (2.54)

where 𝑛𝑧 is normal vector pointing in the coordinate z direction.
The expansion (2.54) converges exponentially in 𝑙 everywhere
except in the neighborhood of 𝑧 = 𝑟𝑝 , where the convergence is
too slow to yield good results in practice. We therefore ignore this
region and cut it out of plots when comparing with the analytical
solution Ψ𝑧 .

Figure 2.6 shows the relative error |ΨN − Ψ𝑧 |/Ψ𝑧 between our
numerical worldtube solutions ΨN and Eq. (2.54), computed at
late evolution time, after ΨN has settled into its steady state. The
error is fairly constant along the axis. It is immediately clear that
smaller 𝑅 and higher 𝑛 lead to improved agreement.

To investigate convergence with worldtube radius, we define the
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Figure 2.6: The relative error of
the scalar field Ψ along the 𝑧-
axis compared to the analytical
solution Ψ𝑧 given by Eq. (2.54).
We show two simulations with
worldtube radii 1.6𝑀 and 0.6𝑀
for each order, 0, 1 and 2. The er-
ror decreases with higher order
or smaller worldtube radius, as
expected. A small region is cut
out around 𝑧 = 𝑟𝑝 = 5𝑀, where
Eq. (2.54) converges too slowly to
be calculated to sufficient accu-
racy in practice.

𝐿1-norm

∥ 𝑓 (𝑥)∥ :=
∫ 100𝑀

10𝑀
| 𝑓 (𝑥)|𝑑𝑥, (2.55)

which we use to integrate the relative error shown in Fig. 2.6
between 𝑧 = 10𝑀 and 𝑧 = 100𝑀 for each simulation. Using this
norm, the top panel of Fig. 2.7 plots the relative differences between
the analytical solution Eq. (2.54) and numerical solutionsΨNusing
various 𝑅 and 𝑛 and evaluated at late time in steady state. Each
symbol represents the integrated, relative error of a simulation’s
final value. Also plotted is a best fit of the error convergence ∝ 𝑅𝛼,
where 𝑅 is the worldtube radius and 𝛼 is the global convergence
order. The lower panel of Fig. 2.7 shows the local convergence
order 𝛼loc as defined in Eq. (3.75).

As explained in Section 2.4.5, we expect the convergence order
𝛼 = 𝑛 + 2 in the volume outside the worldtube. At order 𝑛 = 2,
the global convergence order is best fit to 𝛼 = 4.07 which matches
the predicted error. Order 1 has a fitted global convergence order
of 3.14 and a local convergence order close to this value across
the worldtube radii sampled. For the zeroth-order expansion, a
global value of 2.33 is calculated, but the local order consistently
decreases with smaller worldtube radii, which suggests that the
error might still get contributions from higher-order terms at the
larger worldtube radii, similar to the zeroth-order expansion in
Fig. 2.4.
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Figure 2.7: Top panel: The relative
difference between the numerical,
retarded fieldΨNalong the 𝑧-axis
and the analytical solution Ψ𝑧

given in Eq. (2.54), integrated be-
tween 𝑧 = 10𝑀 and 𝑧 = 100𝑀 us-
ing the𝐿1-norm of Eq. (2.55). Each
cross represents the final value of
a simulation. The straight lines are
a best fit to the power-law relation
𝜀 ∝ 𝑅𝛼. Bottom panel: The local
convergence order between the
simulations of adjacent worldtube
radii as defined in Eq. (3.75). The
simulations with 𝑛 = 1 and 𝑛 = 2
show a constant convergence or-
der consistent with the predicted
rate 𝛼 = 𝑛 + 2. The 𝑛 = 0 simula-
tions show a higher convergence
rate at larger worldtube radii but
approach the expected value at
smaller radii.

2.5.3 Solution along the 𝑥-axis

The tests of our method so far compared to previously known
data, either at the position of the charge or on the 𝑧-axis. We now
evaluate the convergence with worldtube radius in the volume, at
locations where no analytic solution is available. To this end, we
evaluate our numerical solutions 𝛹N along the co-rotating 𝑥̄-axis,
which passes through the center of the Schwarzschild black hole
and the point charge. The settled field along this axis is shown
as the blue curve in Figure 2.3. The simulation with 𝑛 = 2 and
𝑅 = 0.4𝑀 is used as a reference solution, denoted Ψref, since it
has the lowest error inside the worldtube and along the 𝑧-axis, as
demonstrated above.

Figure 2.8 shows the relative difference with respect to the refer-
ence solution between 𝑥 = 1.9𝑀 and 𝑥 = 100𝑀 for two sample
simulations at each order. The field along the 𝑥-axis has more
features as it lies in the orbital plane of the charge. The error along
the 𝑥-axis is therefore not quite as smooth as along the 𝑧-axis; for
instance at 𝑥 ≈ 80𝑀 some features are apparent, which coincide
to a wave-crest in ΨN (see Fig. 2.3). The error decreases with both
a higher expansion order 𝑛 and a decreasing worldtube radius 𝑅
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Figure 2.8: The relative error
along the 𝑥-axis between 𝑥 =

10𝑀 and 𝑥 = 100𝑀 for two sam-
ple simulations of each order. The
worldtube is centered at 𝑥 = 5𝑀
and cut out from the plots.

as is expected.

To quantify the convergence with respect to𝑅we compute the norm
Eq. (2.55) integrated along the co-moving x-axis, ∥ΨN(𝑥)−Ψref(𝑥)∥.
This difference, normalized, is plotted in Fig. 2.9, where each
marker represents an individual simulation. The straight lines
show power law fits ∝ 𝑅𝛼. In the bottom panel we show the local
convergence order 𝛼loc as defined in Eq. (3.75). The convergence
rates in worldtube radius 𝑅 are close to the expectation from
Eq. (2.45), 𝛼 = 𝑛 + 2, with global convergence order 𝛼 equal
to 2.25, 3.18, 4.29 for orders 0, 1 and 2, respectively. For 𝑛 = 0,
the local convergence order 𝛼loc is steadily decreasing with the
worldtube radius 𝑅 towards the expected value of 𝛼 = 2, which
suggests it is just entering the convergent regime here. The local
convergence rate of the 𝑛 = 2 simulations appears to jump slightly
at the smallest worldtube radius sampled, which we attribute to
numerical error.
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Figure 2.9: Top panel: The relative
error 𝜀 integrated along the co-
moving x-axis compared to a refer-
ence solution Ψref with 𝑛 = 2 and
𝑅 = 0.4𝑀. Each cross represents
a simulation, and the straight
lines are a best fit of the relation
𝜀 ∝ 𝑅𝛼. Bottom panel: The local
convergence order as defined in
Eq. (3.75). At first and second or-
der, the simulations reproduce
the expected convergence order
of 𝛼 = 𝑛 + 2. At zeroth order, the
local convergence approaches the
expected order for smaller world-
tube radii, likely indicating that
the error still has contributions
from higher-order terms in this
regime.

2.6 Conclusions

In this chapter we continue the work of [1] and explore a novel [1]: Dhesi et al. (2021), Worldtube
excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

approach to simulating high mass-ratio binary black holes. A large
region (worldtube) is excised from the numerical domain around
the smaller black hole, to alleviate the limiting CFL condition
due to small grid spacing in this region. The solution inside the
worldtube is represented by a perturbative approximation that
is determined by the numerical solution on the boundary and in
turn provides boundary conditions to the numerical evolution.

We test this method using the toy problem of a scalar charge
in circular orbit around a central black hole. The simulations
are carried out in 3+1D using SpECTRE, the new discontinuous
Galerkin code developed by the SXS collaboration. In order to
develop algorithms that generalize to the full GR problem, we
do not decompose our solution into spherical harmonics as is the
usual approach. We split the solution near the scalar charge into
a puncture field, which is fully determined as a local expansion
in Sec. 2.3, and a regular field, which is a smooth Taylor series
with undetermined coefficients. The expansion coefficients in the
regular field are determined by (i) the numerical solution on the
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Figure 2.10: Time steps Δ𝑡 of the
worldtube simulations presented
here.

worldtube boundary and (ii) the scalar wave equation as described
in Sec. 2.4. Our puncture is constructed from the Detweiler-Whiting
singular field, allowing us to calculate the scalar self-force from
our regular field.

We implement the described matching scheme for orders 𝑛 = 0, 1
and 2 and perform numerical simulations for a circular orbit of
radius 𝑟𝑝 = 5𝑀 for a variety of worldtube radii. In Sec. 2.4.5 we
make a theoretical argument for how the error introduced by the
excision should converge with the excision radius in- and outside
the worldtube. We confirm these results in Sec. 2.5 and show that
the scheme solves the scalar wave equation with high accuracy even
at relatively large worldtube radii. We further validate our method
by comparing against known values of the Detweiler-Whiting
regular field and its first derivatives on the particle’s worldline.

The ultimate goal of the worldtube method is to speed up BBH
simulations at large mass-ratios by alleviating the CFL condition.
Figure 2.10 considers the time steps sizes Δ𝑡 taken by our primary
simulations. Plotted is Δ𝑡/𝑅 vs the worldtube radius 𝑅. Note
that the resolutions of our simulations were adjusted such that
for each simulation, numerical truncation error is subdominant
compared to the worldtube error, resulting in differences in Δ𝑡 for
simulations with different expansion orders at the same worldtube
radius. Nevertheless, it is apparent that for fixed order, the time
step is roughly proportional to the worldtube radius. Therefore,
the promise that larger worldtube radii allow larger time steps ∝ 𝑅

indeed holds. Ideally, the worldtube error should be comparable to
or somewhat smaller than the NR error. Our results show that this
can be achieved by either decreasing the worldtube radius or by
increasing the expansion order. The former, of course, would lead
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to a smaller grid-spacing and a more significant CFL condition,
whereas the latter has no noticeable performance cost. We have
discussed the next steps towards tackling BBH simulations using
the worldtube method in [1]. [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

Before tackling the full BBH problem, our next step will be to
include the back-reaction of the scalar field onto the charged
particle [144]. In the present work we have computed the first [144]: Diener et al. (2012), Self-

Consistent Orbital Evolution of a Par-
ticle around a Schwarzschild Black
Hole

derivatives of the Detweiler-Whiting regular field, from which
we can construct the scalar self-force, but we have so far ignored
the effect of that force. Once it is accounted for, the equations of
motion for the scalar charge 𝑞 of bare mass 𝜇0 are given by [145] [145]: Quinn (2000), Axiomatic ap-

proach to radiation reaction of scalar
point particles in curved spacetime𝑢𝛽∇𝛽(𝜇𝑢𝛼) = 𝑞𝜕𝛼Ψ

R, (2.56)
𝜇 = −𝑞ΨR + 𝜇0. (2.57)

Allowing the particle’s trajectory to evolve dynamically in this way
is an important step toward the full gravity problem which we
explore in the next chapter.

2.7 Appendix: Constraint-preserving
boundary conditions

The domain features two boundaries which require boundary
conditions on the characteristic fields flowing into the domain:
the worldtube boundary and the outer boundary. For the fields
𝑍1 and 𝑍2

𝑖
(arising from reduction to first-order form), we use

constraint-preserving boundary conditions which are formulated
analogously to [75] and applied using the Bjorhus condition. We [75]: Kidder et al. (2005), Boundary

conditions for the Einstein evolution
system

begin by rewriting Eq. (2.6) in terms of the characteristic fields
with respect to a boundary with normal vector 𝑛̂ 𝑖 ,

𝐶𝑖 = 𝜕𝑖Ψ −Φ𝑖 (2.58)

= 𝜕𝑖𝑍
1 − 1

2
(𝑈+ −𝑈−)𝑛̂𝑖 − 𝑍2

𝑖 . (2.59)

The normal component of this constraint is given by

𝑛̂ 𝑖𝐶𝑖 = 𝑛̂ 𝑖𝜕𝑖𝑍
1 − 1

2
(𝑈+ −𝑈−) − 𝑛̂ 𝑖𝑍2

𝑖 . (2.60)

Vanishing of the constraints implies in particular that the nor-
mal component vanishes, 𝑛̂ 𝑖𝐶𝑖 = 0, we interpret as a boundary
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condition on 𝑍 𝑖 :

(𝑛̂ 𝑖𝜕𝑖𝑍1)𝐵𝐶 =
1
2
(𝑈+ −𝑈−) + 𝑛̂ 𝑖𝑍2

𝑖 . (2.61)

Applying the same procedure to Eq. (2.7) yields

𝑛̂ 𝑖𝐶𝑖 𝑗 = 𝑛̂ 𝑖𝜕𝑖𝑍
2
𝑗+

1
2
𝑛̂ 𝑖 𝑛̂𝑗 𝜕𝑖(𝑈+−𝑈−)−1

2
𝜕𝑗 (𝑈+−𝑈−)−𝑛̂ 𝑖𝜕𝑗𝑍2

𝑖 (2.62)

and

(𝑛̂ 𝑖𝜕𝑖 𝑍2
𝑗 )𝐵𝐶 = −1

2
𝑛̂ 𝑖 𝑛̂𝑗 𝜕𝑖(𝑈+−𝑈−)+1

2
𝜕𝑗 (𝑈++𝑈−)+𝑛̂ 𝑖𝜕𝑗𝑍2

𝑖 . (2.63)

In order to implement Eqs. (2.61) and (2.63), we return to the
evolution equations in first order form,

𝜕𝑡𝜓
𝛼 + 𝐴𝑖𝛼𝛽 𝜕𝑖𝜓

𝛽 = 𝐹𝛼 . (2.64)

Projecting onto the characteristic fields, one finds

𝑒 𝑎̂ 𝑎(𝜕𝑡𝜓𝑎 + 𝐴𝑖𝑎
𝑏
𝜕𝑖𝜓

𝑏) = 𝑒 𝑎̂ 𝑎𝐹
𝑎 , (2.65)

𝜕𝑡𝜓
𝑎̂ + 𝑒 𝑎̂ 𝑎𝐴𝑖𝑎𝑏 (𝑃

𝑘
𝑖 + 𝑛̂

𝑘 𝑛̂𝑖)𝜕𝑘𝜓𝑏 = 𝑒 𝑎̂ 𝑎𝐹
𝑎 , (2.66)

𝜕𝑡𝜓
𝑎̂ + 𝑣(𝑎̂)𝑛̂𝑘𝜕𝑘𝜓 𝑎̂ + 𝑒 𝑎̂ 𝑎𝐴𝑖𝑎𝑏 𝑃

𝑘
𝑖 𝜕𝑘𝜓

𝑏 = 𝑒 𝑎̂ 𝑎𝐹
𝑎 . (2.67)

Boundary conditions are now applied by modifying the term
𝑣(𝑎̂)𝑛̂

𝑘𝜕𝑘𝜓 𝑎̂ : Iff 𝑣(𝑎̂) < 0 at a grid-point on the boundary, then the
following modified evolution equation is used at that grid-point:

𝑑𝑡𝜓
𝑎̂ = 𝐷𝑡𝜓

𝑎̂ + 𝑣(𝑎̂)
(
𝑛̂ 𝑖𝜕𝑖𝜓

𝑎̂ − (𝑛̂ 𝑖𝜕𝑖𝜓 𝑎̂)𝐵𝐶
)
. (2.68)

Here
𝐷𝑡𝜓

𝑎̂ ≡ −𝑒 𝑎̂ 𝑎𝐴𝑖𝑎𝑏 𝜕𝑖𝜓
𝑏 + 𝑒 𝑎̂ 𝑎𝐹𝑎 (2.69)

represents the volume time-derivative of the characteristic fields.
In other words, the time-derivative arising from the volume equa-
tions is corrected with a term that ensures the desired boundary
condition. Summing Eqs. (2.60) and (2.61) yields

𝑛̂ 𝑖𝜕𝑖𝑍
1 − (𝑛̂ 𝑖𝜕𝑖𝑍1)𝐵𝐶 = 𝑛̂ 𝑖𝐶𝑖 . (2.70)

Analogously, combining Eqs. (2.62) and (2.63) results in

𝑛̂ 𝑖𝜕𝑖𝑍
2
𝑗 − (𝑛̂ 𝑖𝜕𝑖𝑍2

𝑗 )𝐵𝐶 = 𝑛̂ 𝑖𝐶𝑖 𝑗 . (2.71)
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Finally, we insert this into the Bjorhus condition (2.68) to obtain

𝑑𝑡𝑍
1 = 𝐷𝑡𝑍

1 + 𝑣𝑍1 𝑛̂ 𝑖𝐶𝑖 , (2.72)
𝑑𝑡𝑍

2
𝑖 = 𝐷𝑡𝑍

2
𝑖 + 𝑣𝑍2 𝑛̂ 𝑖𝐶𝑖 𝑗 , (2.73)

where boundary corrections are only imposed when the corre-
sponding characteristic speeds are negative.

2.8 Appendix: Matching method at
arbitrary order

The main text in Sec. 2.4 develops our matching scheme up to
order 𝑛 = 2. Here we show how this can be generalized to arbitrary
order 𝑛.

First, we introduce some notation and useful identities. We make
use of multi-index notation according to [6] where a capital index [6]: Poisson et al. (2014), Gravity:

Newtonian, Post-Newtonian, Rela-
tivistic

𝐿 stands for a collection of 𝑙 indices,

𝐴𝐿 = 𝐴𝑘1𝑘2···𝑘𝑙 . (2.74)

The tensor product of 𝑙 coordinate vectors or 𝑙 normal vectors is
abbreviated as

𝑥𝐿 = 𝑥𝑘1𝑥𝑘2 · · · 𝑛𝑘𝑙 , (2.75)
𝑛𝐿 = 𝑛𝑘1𝑛𝑘2 · · · 𝑛𝑘𝑙 , (2.76)

and the tensor product of 𝑙 Kronecker symbols is written as

𝛿2𝐿 = 𝛿𝑘1𝑘2𝛿𝑘3𝑘4 · · · 𝛿𝑘2𝑙−1𝑘2𝑙 . (2.77)

Symmetric, trace-free (STF) tensors are written with angular brack-
ets around the indices. The combination of 𝑙 STF normal vectors is
defined as [146] [146]: Thorne (1980), Multipole ex-

pansions of gravitational radiation

𝑛⟨𝐿⟩ = 𝑛⟨𝑘1 · · · 𝑛𝑘𝑙⟩ =
⌊𝑙/2⌋∑
𝑘=0

𝑐 𝑙
𝑘
𝛿(2𝐾𝑛𝐿−2𝐾), (2.78)

where

𝑐 𝑙
𝑘
= (−1)𝑘 𝑙!(2𝑙 − 2𝑘 − 1)!!

(2𝑙 − 1)!!(𝑙 − 2𝑘)!(2𝑘)!! . (2.79)
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The parentheses in Eq. (2.78) indicate indices to be symmetrized
and ⌊𝑙/2⌋ is the largest integer less than or equal to 𝑙/2. The inverse
expression is given by [147] [147]: Blanchet et al. (1986), Ra-

diative gravitational fields in general
relativity. I - General structure of the
field outside the source𝑛𝐿 = 𝑛𝑘1 · · · 𝑛𝑘𝑙 =

⌊𝑙/2⌋∑
𝑘=0

𝑐 𝑙
𝑘
𝛿(2𝐾𝑛⟨𝐿−2𝐾⟩) (2.80)

with

𝑐 𝑙
𝑘
=

𝑙!(2𝑙 − 4𝑘 + 1)!!
(2𝑙 − 2𝑘 + 1)!!(𝑙 − 2𝑘)!(2𝑘)!! . (2.81)

The 𝑛⟨𝐿⟩ provide an orthogonal basis for functions on a sphere,
and each 𝑛⟨𝐿⟩ is an eigenfunction of the Laplacian ∇2 := 𝛿𝑎𝑏𝜕𝑎𝜕𝑏 ,
satisfying ∇2𝑛⟨𝐿⟩ = −ℓ (ℓ+1)

𝜌2 𝑛⟨𝐿⟩. For a fixed 𝑙, the STF tensors 𝑛⟨𝐿⟩

span the same functions as the set of spherical harmonics𝑌𝑙𝑚(𝜃, 𝜙)
of rank 𝑙. This can be seen by expressing the normal vector as
𝑛 𝑖 = (sin𝜃 cos 𝜙, sin𝜃 sin 𝜙, cos𝜃), leading to [6] [6]: Poisson et al. (2014), Gravity:

Newtonian, Post-Newtonian, Rela-
tivistic

𝑌𝑙𝑚 = Y
∗⟨𝐿⟩
𝑙𝑚

𝑛⟨𝐿⟩ , (2.82a)

𝑛⟨𝐿⟩ = 𝑁𝑙

𝑙∑
𝑚=−𝑙

Y
⟨𝐿⟩
𝑙𝑚
𝑌𝑙𝑚 , (2.82b)

where

Y
⟨𝐿⟩
𝑙𝑚
B

1
𝑁𝑙

∫
𝑆2
𝑛⟨𝐿⟩𝑌∗

𝑙𝑚𝑑Ω, (2.82c)

𝑁𝑙 B
4𝜋𝑙!

(2𝑙 + 1)!! . (2.82d)

We start by expanding the regular scalar field ΨR(𝑡 , 𝑥 𝑖) and its
time derivative in a power series around the charge’s position to
arbitrary order 𝑛 as shown in Eq. (2.83). We will show that all free
components of the expansion can be uniquely determined at each
time step from (i) numerical data from the worldtube boundary
and (ii) the Klein-Gordon equation (2.3).

2.8.1 Worldtube boundary data

We carry the Taylor expansion of the regular field given in Eq. (2.25)
to 𝑛th order and give an analogous expansion for the time deriva-
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tive

ΨR(𝑡 , 𝑥𝚤) =
𝑛∑
𝑙=0

ΨR

𝑘1···𝑘𝑛
(𝑡)𝑥𝑘1 · · · 𝑥𝑘𝑛 + O(𝜌𝑛+1), (2.83a)

𝜕𝑡Ψ
R(𝑡 , 𝑥𝚤) =

𝑛∑
𝑙=0

¤ΨR

𝑘1···𝑘𝑛
(𝑡)𝑥𝑘1 · · · 𝑥𝑘𝑛 + O(𝜌𝑛+1), (2.83b)

which has 1
2
∑𝑛
𝑖=0(𝑖+2)(𝑖+1) = 1

6(𝑛+3)(𝑛+2)(𝑛+1) components.

The continuity condition at the worldtube boundary is given by
Eq. (2.28). Both sides of this equation can be expressed in a basis
of STF normal vectors. The regular field ΨR(𝑡𝑠 , 𝑥𝚤) on the left is
transformed using Eq. (2.80) to give

ΨR(𝑡𝑠 , 𝑥 𝑖) =
𝑛∑
𝑙=0

𝜌𝑙ΨR

𝐿̄
(𝑡𝑠)

⌊𝑙/2⌋∑
𝑘=0

𝑐 𝑙
𝑘
𝛿(2𝐾̄𝑛⟨𝐿̄−2𝐾̄⟩) (2.84)

=

𝑛∑
𝑙=0

⌊𝑙/2⌋∑
𝑘=0

𝜌𝑙𝑐 𝑙
𝑘
ΨR

𝐿̄−2𝐾̄𝚤1𝚤1···𝚤𝑘 𝚤𝑘
(𝑡𝑠)𝑛⟨𝐿̄−2𝐾̄⟩ . (2.85)

As in Sec. 2.4, the right-hand side of Eq. (2.28) is calculated by
projecting the numerical, regular field onto spherical harmonics
up to order 𝑛 to obtain the coefficients 𝑎N,R

𝑙𝑚
. This expansion is

then transformed to STF normal vectors using Eq. (2.82a),

𝑛∑
𝑙=0

Ψ
N,R

⟨𝐿̄⟩ (𝑡𝑠)𝑛⟨𝐿̄⟩ =
𝑛∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑎𝑙𝑚(𝑡𝑠)𝑌𝑙𝑚(𝑥𝚤). (2.86)

The orthogonality of the STF normal vectors allows us to match
Eqs. (2.85) and (2.86) order by order, yielding a system of algebraic
equations:

Ψ
N,R

⟨𝐿̄⟩ (𝑡𝑠) =
⌊ 𝑛−𝑙2 ⌋∑
𝑘=0

𝜌𝑙+2𝑘𝑐 𝑙+2𝑘
𝑘

ΨR

𝐿̄𝚤1𝚤1···𝚤𝑘 𝚤𝑘
(𝑡𝑠), 0 ≤ 𝑙 ≤ 𝑛. (2.87)

Each tensor component in the set
{
Ψ

N,R

⟨𝐿̄⟩

}
𝑙
with 0 ≤ 𝑙 ≤ 𝑛 fixes one

degree of freedom of the Taylor coefficients
{
ΨR

𝐿̄

}
𝑙
for a total of

(𝑛 + 1)2 equations. The matching equations for the time derivative
coefficients

{
¤ΨR

𝐿̄

}
𝑙
are derived completely analogously.
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2.8.2 Klein-Gordon equation

The remaining components of
{
ΨR

𝐿̃

}
𝑙
are fixed by the Klein-Gordon

equation (2.35). The metric quantities 𝑔𝜇𝜈 and Γ𝜇 are expanded to
the same order 𝑛 as the regular field in the grid frame 𝑥𝚤 ,

𝑔𝜇̄𝜈̄(𝑡𝑠 , 𝑥𝚤) =
𝑛∑
𝑙=0

𝑔
𝜇̄𝜈̄

𝐿̄
𝑥 𝐿̄ + O(𝜌𝑛+1), (2.88)

Γ𝜇̄(𝑡𝑠 , 𝑥𝚤) =
𝑛∑
𝑙=0

Γ
𝜇̄

𝐿̄
𝑥 𝐿̄ + O(𝜌𝑛+1), (2.89)

where the expansion coefficients are given by

𝑔
𝜇̄𝜈̄

𝐿̄
B

1
𝑙!
𝜕𝐿̄𝑔

𝜇̄𝜈̄(𝑡𝑠 , 𝑥𝚤𝑝), (2.90)

Γ
𝜇̄

𝐿̄
B

1
𝑙!
𝜕𝐿̄Γ

𝜇̄(𝑡𝑠 , 𝑥𝚤𝑝). (2.91)

Here, recall, 𝑥𝚤𝑝 = (𝑟𝑝 , 0, 0). Substituting these expansions into the
Klein-Gordon equation, we obtain

0 =

(
𝑛∑
𝑙=0

𝑔
𝜇̄𝜈̄

𝐿̄
𝑥 𝐿̄

)
𝜕𝜇̄𝜕𝜈̄

(
𝑛∑
𝑙=0

ΨR

𝐿̄
𝑥 𝐿̄

)
+

(
𝑛∑
𝑙=0

Γ
𝜇̄

𝐿̄
𝑥 𝐿̄

)
𝜕𝜇̄

(
𝑛∑
𝑙=0

ΨR

𝐿̄
𝑥 𝐿̄

)
. (2.92)

We now split the partial derivative into its time part 𝜕𝑡 and spatial
part 𝜕𝚤 and solve order by order in 𝜌. The 𝑘th-order equation
reads

0 =

𝑘∑
𝑙=0

(
𝑔𝑡𝑡
𝐾̄−𝐿̄

¥ΨR

𝐿̄
+ 2(𝑙 + 1)𝑔𝑡𝚤

𝐾̄−𝐿̄
¤ΨR

𝐿̄𝚤

+ (𝑙 + 2)(𝑙 + 1)𝑔𝚤 𝚥
𝐾̄−𝐿̄Ψ

R

𝐿̄𝚤 𝚥
− Γ𝑡

𝐾̄−𝐿̄
¤ΨR

𝐿̄

−(𝑙 + 1)Γ𝚤
𝐾̄−𝐿̄Ψ

R

𝐿̄𝚤

)
0 ≤ 𝑘 ≤ 𝑛 − 2,

(2.93)

where we have made use of the identity 𝜕𝚤𝑎𝐿̄(𝑡)𝑥 𝐿̄ = 𝑙𝑎𝐿̄−1𝚤(𝑡)𝑥 𝐿̄−1

for 𝑎𝐿̄ completely symmetric 𝑎(𝐿̄) = 𝑎𝐿̄. The set of equations (2.93)
fixes 1

6(𝑛 + 1)𝑛(𝑛 − 1) components of ΨR which, when combined
with equations Eq. (2.87), fixes all components of the expan-
sion (2.83).



Worldtube excision method:
self-consistent evolution in a

scalar-charge model 3
This chapter is based on my lead-author publication [148]. It
describes the addition of a self-consistent evolution algorithm
to a scalar charge and analyzes quasi-circular inspirals.
My contributions to this work include the derivation and imple-
mentation of the iterative method to evolve the particle’s motion
as well as the algorithm to adjust the DG grid accordingly. I also
produced and analyzed all results.

3.1 Introduction

Inspiraling binary black holes (BBHs) will remain prime targets
for gravitational-wave searches as we approach the era of third-
generation instruments and LISA (the Laser Interferometer Space
Antenna). Precision modelling of BBH signals over the full pa-
rameter space of expected sources remains a high priority task
[51]. Unique difficulties are posed in the intermediate mass-ratios [51]: Afshordi et al. (2023), Wave-

form Modelling for the Laser Inter-
ferometer Space Antenna

regime, where Numerical Relativity (NR) simulations become less
efficient while perturbative methods may not be adequate. This
work continues the program initiated in Dhesi et al. [1] (henceforth [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

Paper I) aimed at developing a synergistic approach to the problem,
combining NR techniques with methods in black hole perturba-
tion theory. The general idea is to alleviate the scale disparity that
hampers NR simulations by excising a large region around the
smaller black hole (BH), inside which an approximate analytical
solution is used, representing a tidally perturbed BH geometry.
The smallest lengthscale on the numerical domain is now that of
the excised sphere (a “worldtube” in spacetime), rather than the
scale of the smaller body. As a result, the Courant-Friedrich-Lewy
(CFL) stability limit on the timestep of the numerical simulation is
relaxed, with a commensurate gain in computational efficiency.

Paper I laid out the basic framework and tested it in a simple scalar-
field model in 1+1 dimensions. In this toy model, reviewed further
below, the smaller BH is replaced with a point particle endowed
with scalar charge, which sources a (massless) scalar field, assumed
to satisfy the Klein-Gordon equation on the fixed geometry of the
large object, taken to be a Schwarzschild black hole. The scalar
charge in Paper I was taken to move on a fixed circular geodesic
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orbit around the BH, with both gravitational and scalar-field back-
reaction forces ignored. Paper I was focused on exploring various
techniques for matching the numerical field outside the excision
worldtube to the analytically prescribed solution inside it. It also
investigated and quantified the scaling of the model error with the
worldtube size, using two independent numerical implementation
schemes.

The previous chapter applied the worldtube idea in full 3+1 di-
mensions, still working with a scalar-field toy model and a fixed
circular geodesic source. The problem was reformulated as an
initial-boundary evolution problem suitable for implementation
on the SpECTRE platform [86], and a completely new implemen- [86]: Deppe et al. (2024), SpECTRE
tation code was developed. The paper detailed the construction of
a suitable approximate analytical solution inside the worldtube,
and devised a procedure for fixing remaining, a priori unknown
degrees of freedom using dynamical matching to the external nu-
merical solution across the worldtube’s boundary. The convergence
of the numerical solutions with worldtube size was quantified
and shown to agree with theoretical expectations. Detailed com-
parisons were made with analytical solutions in limiting cases,
and with numerical results from other simulations, showing a
reassuring agreement.

In the current work we make a crucial step towards the physical
BBH problem by relaxing the condition that the scalar charge
is moving on a fixed geodesic orbit, and instead allowing the
orbit to evolve radiatively, solving the sourced field equation in
a self-consistent manner. This requires substantial adaptations in
both formulation and code infrastructure. The analytical model
inside the worldtube must be generalised to allow for the source’s
acceleration as it moves in its inspiral trajectory around the large
BH. The architecture of the numerical domain must be signifi-
cantly modified, too. In particular, our evolution code employs a
discontinuous Galerkin (DG) scheme with several hundred DG
elements that are deformed to fit the domain structure using a
series of smooth coordinate maps, and these must now become
time-dependent.

We begin in Sec. 3.2 with a general summary of the worldtube
method. Section 3.3 details our numerical method, including
the construction of time-dependent coordinate maps for generic
orbits, and the procedure for matching numerical data to the
analytical solution across the worldtube’s boundary. In Sec. 3.4
we give a generalized approximate analytical model for the field
inside the worldtube, allowing for source acceleration. Section
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3.5 describes in detail the procedure employed to perform a self-
consistent evolution of the sourced field equations, coupled to
the particle’s equation of motion. Since, at each timestep, the
analytical field inside the worldtube depends on the particle’s
acceleration, which itself is determined from the field that we are
attempting to calculate, the acceleration equations take an implicit
form. We describe an iterative scheme developed to deal with this
problem.

Section 3.6 contains a sample of illustrative results from our numer-
ical simulations. We show examples of inspiral orbits and emitted
scalar-field waveforms, tracking the evolution all through the in-
spiral, plunge and ringdown phases. We use invariant diagnostics–
the adiabaticity parameter and total orbital phase—to perform
quantitative tests against accurate perturbative calculations in the
adiabatic approximation, showing excellent agreement. We show,
furthermore, how our simulations resolve post-adiabatic infor-
mation. We explore in detail the scaling of numerical error with
worldtube size and with the number of iterations of the accelera-
tion equation, in both cases confirming the expected convergence.
Section 2.6 summarizes our results and discusses forthcoming
steps in our program.

To the best of our knowledge, our work is the first to report a
fully self-consistent evolution in the scalar-field model. Previously,
Diener et al. [149] have studied the radiative evolution of orbits [149]: Diener et al. (2012), Self-

consistent orbital evolution of a par-
ticle around a Schwarzschild black
hole

in the same model, using an alternative method—the so called
“effective source” approach (whose relation to our worldtube
method is discussed in Sec. III.C of Paper I). However, in that work
it was found that, in order to achieve a numerically stable evolution,
certain terms (involving time derivatives of the acceleration) had
to be ignored in the equations that couple the particle’s equation
of motion to the local analytical approximation. For that reason,
we were unable to perform a detailed comparison to our results.

The rest of this introduction reviews the scalar-field toy model
employed in this work. Throughout the chapter we use geometrized
units, with 𝐺 = 𝑐 = 1. We use Latin indices to denote spatial tensor
components and Greek indices for spacetime components.

3.1.1 Scalar-field toy model

We consider a Schwarzschild BH of mass 𝑀 orbited by a pointlike
particle carrying a scalar charge 𝑞 and mass 𝜇 ≪ 𝑀. The particle
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sources a (test) scalar field Ψ, assumed to be governed by the
massless Klein-Gordon equation

𝑔𝜇𝜈∇𝜇∇𝜈Ψ = −4𝜋𝑞
∫ 𝛿4(𝑥𝛼 − 𝑥𝛼𝑝 (𝜏))√−𝑔 𝑑𝜏, (3.1)

and subject to the usual retarded boundary conditions at null
infinity and on the event horizon. In Eq. (3.1), 𝑔𝜇𝜈 is the inverse
Schwarzschild metric and∇𝜇 is the covariant derivative compatible
with it. 𝑥𝛼𝑝 (𝜏) describes the particle’s worldline, parameterized in
terms of proper time 𝜏. The worldline itself satisfies the equation
of motion

𝑢𝛽∇𝛽(𝜇𝑢𝛼) = 𝑞∇𝛼Ψ
R, (3.2)

where 𝑢𝛼 :=
𝑑𝑥𝛼𝑝
𝑑𝜏 is the tangent four-velocity, and ΨR is the

Detweiler-Whiting regular piece of Ψ (‘R field’) at the position of
the particle. On the left-hand side here is the covariant derivative
of the particle’s four-momentum along the orbit, and the right-
hand side represents the back-reaction force from the particle’s
own scalar field, known as self-force. Equations (3.1) and (3.2),
together with a prescription for constructing ΨR out of Ψ, form a
closed coupled set of “self-consistent” evolution equations, whose
solution we aim to obtain. This solution is uniquely determined
once initial conditions are given in the form of 𝑥𝛼 and 𝑢𝛼 at an
initial time, together with initial data for Ψ.

It is useful to split Eq. (3.2) into its components orthogonal and
tangent to 𝑢𝛼, respectively given by

𝑢𝛽∇𝛽(𝑢𝛼) =
𝑞

𝜇
(𝛿𝛽𝛼 + 𝑢𝛽𝑢𝛼)∇𝛽Ψ

R, (3.3)

𝑑𝜇

𝑑𝜏
= −𝑞𝑢𝛼∇𝛼Ψ

R. (3.4)

The first equation describes the self-acceleration of the scalar
charge on the Schwarzschild background due to the scalar-field
back reaction. The second equation can be immediately integrated
to yield

𝜇 = 𝜇0 − 𝑞ΨR, (3.5)

which describes the evolution of the particle’s mass over time due
to exchange of energy with the ambient scalar field.

From Eq. (3.3) and the fact that∇𝛽Ψ
R ∝ 𝑞/𝑀2, we see that the mag-

nitude of the self-acceleration is controlled by the dimensionless
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parameter

𝜖 :=
𝑞2

𝜇0𝑀
, (3.6)

which plays the role of the (small) mass ratio in the analogous BBH
problem. We assume 𝜖 ≪ 1, in order to ensure that the orbital
evolution is slow during the inspiral, as in the BBH case. In practice,
𝜇 changes by a few percent at most during the systems studied here,
so the distinction between 𝜇 and 𝜇0 in Eq. (3.6) is subdominant. In
this work we also completely neglect the gravitational back-reaction
on the particle’s motion.

3.2 Summary of worldtube method

In the previous chapter, we developed a technique for solving the
field equation (3.1) with a source corresponding to a scalar charge
on a fixed, circular geodesic orbit. Much of the infrastructure
of Paper I carries over to our present work, so we start with a
summary of that infrastructure.

We describe the trajectory of the scalar charge using 𝑥 𝑖𝑝(𝑡) in
Kerr-Schild (KS) coordinates 𝑡 , 𝑥 𝑖 associated with the BH. For the
Schwarzschild black hole considered here, the horizon is at 𝑟 = 2𝑀
where the radius in KS coordinates is given by

𝑟 =
(
𝛿𝑖 𝑗𝑥

𝑖𝑥 𝑗
)1/2

. (3.7)

A KS coordinate sphere, centered on 𝑥 𝑖𝑝(𝑡), is excised from the
computational domain. We refer to the spacetime boundary of the
excised region as the worldtube, denoted by Γ. By construction, the
scalar charge is always at the center of the spherical excision sphere.
Outside the worldtube, we solve the homogeneous Klein-Gordon
equation

𝑔𝜇𝜈∇𝜇∇𝜈Ψ
N = 0, (3.8)

with 3+1 dimensional numerical relativity methods. The super-
script Ndenotes this numerical solution (as distinguished from
the fields ΨP and ΨR defined below). To facilitate numerical
implementation, Eq. (3.8) is reduced to first order in space and
time by introducing the following auxiliary variables [150]: [150]: Scheel et al. (2004), 3-D sim-

ulations of linearized scalar fields in
Kerr space-timeΠ = −𝛼−1(𝜕𝑡ΨN− 𝛽𝑖𝜕𝑖Ψ

N), (3.9a)
Φ𝑖 = 𝜕𝑖Ψ

N, (3.9b)
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where 𝛼 and 𝛽𝑖 are, respectively, the lapse function and shift vector
of the background metric. They are solved using SpECTRE [86] [86]: Deppe et al. (2024), SpECTRE
in 3+1 dimensions using a nodal discontinuous Galerkin (DG)
scheme.

In the vicinity of the charge, an approximate particular solution
to the inhomogeneous equation (3.1) is given by the puncture
field ΨP. It is constructed as an approximation to the Detweiler-
Whiting singular field [133] and expressed as a power series in [133]: Detweiler et al. (2003), Self-

force via a Green’s functsion decom-
position

coordinate distance from 𝑥 𝑖𝑝(𝑡). In Chapter 2, we derived ΨP for
circular geodesic orbits; here, in Section 3.4, we extend it to generic,
accelerated equatorial orbits.

The residual field ΨR = Ψ −ΨP approximately solves the homo-
geneous Klein-Gordon equation in the worldtube’s interior. Our
perturbative approximation of the interior solution consists of
expanding ΨR and its time derivative as a Taylor Series truncated
at order 𝑛. For 𝑛 = 1, these read

ΨR(𝑡 , 𝑥 𝑖) = ΨR
0 (𝑡) +ΨR

𝑖 (𝑡)𝜌𝑛
𝑖 + O(𝜌2), (3.10)

𝜕𝑡Ψ
R(𝑡 , 𝑥 𝑖) = (𝜕𝑡ΨR)0(𝑡) + (𝜕𝑡ΨR)𝑖(𝑡)𝜌𝑛 𝑖 + O(𝜌2). (3.11)

Different to the previous chapter, we write this expansion in inertial
KS coordinates 𝑥 𝑖 . We define the displacement to the particle as
Δ𝑥 𝑖 := 𝑥 𝑖 − 𝑥 𝑖𝑝 , the KS spatial distance by 𝜌 :=

√
𝛿𝑖 𝑗Δ𝑥 𝑖Δ𝑥 𝑗 and

normal vector through𝑛 𝑖 := Δ𝑥 𝑖/𝜌. The boundary of the worldtube
is located at 𝜌 = 𝑅 (for some constant𝑅). Because Eq. (3.11) expands
the inertial time-derivative around a time-dependent expansion
point 𝑥 𝑖𝑝(𝑡), the coefficients on the right-hand side of Eq. (3.11)
are not the time-derivatives of the coefficients in Eq. (3.10), i.e.
𝑑ΨR

0 /𝑑𝑡 ≠ (𝜕𝑡ΨR)0.

The essence of the worldtube scheme lies in determining the un-
known expansion coefficients in Eqs. (3.10) and (3.11) dynamically
during the evolution. Most of the coefficients are determined
from a continuity condition at the worldtube’s boundary Γ, which
matches the exterior solution ΨN to the interior, residual solution
ΨR at each time step:

ΨR Γ
= ΨN−ΨP, (3.12)

𝜕𝑡Ψ
R Γ
= 𝜕𝑡Ψ

N− 𝜕𝑡Ψ
P. (3.13)

This matching is done mode by mode in a multipole expansion.
For expansion orders 𝑛 > 1, to fully determine all coefficients
one must additionally use further constraints coming from the
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requirement that ΨR solves the vacuum Klein-Gordon equations.
As described in the previous chapter, one arrives at ODEs in time,
to be solved along with the evolution equation.

Once fully determined, the expansions (3.10) and (3.11) are used to
provide boundary conditions to the DG evolution at the worldtube
boundary as described in the previous chapter.

The errors of various quantities in the simulation are expected to
scale with the worldtube radius 𝑅 according to a power law. In
Chapter 2, we derived the following predictions:

Error in ΨN(𝑥 𝑖) : O(𝑅𝑛+2), (3.14)
Error in ΨR(𝑥 𝑖𝑝) : O(𝑅𝑛+1), (3.15)

Error in 𝜕𝛼Ψ
R(𝑥 𝑖𝑝) : O(𝑅𝑛). (3.16)

The validity of these scaling relations was illustrated numerically
in the previous chapter for a particle on a fixed, circular geodesic
orbit with radius 𝑟0 = 5𝑀.

In the next three sections we describe the extension of the above
scheme to radiatively evolving orbits. This involves (i) the addition
of time-dependent maps to the code, able to track the particle
on generic orbits; (ii) the generalization of the puncture field to
generic orbits; and (iii) the derivation of an iterative scheme to
accommodate the new puncture field. We restrict ourselves to the
first-order expansion case, 𝑛 = 1.

3.3 Time-dependent maps for generic orbits

3.3.1 Coordinate frames

The computational domain is constructed by combining several
hundred DG elements, each containing up to several thousand
collocation points. These grid points correspond to the nodal
representation of a tensor product of Legendre polynomials using
Gauss-Lobatto quadrature.

The elements are deformed from unit cubes to fit the domain
structure using a series of maps. An initial set of time-independent
maps transforms them to the so-called grid frame which is co-
moving with the grid points. It is depicted in the left panel of
Figure 3.1. We denote the corresponding grid coordinates with a
bar, 𝑥𝚤 .
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Figure 3.1: Top: The DG grid in the time-independent grid frame, equivalent to the inertial Kerr-Schild coordinates
at the start of a simulation. On the right side is the worldtube excision sphere with the scalar charge 𝑞 at its center
indicated by a red dot. On the left side is the excision sphere around the central black hole. The blue ring corresponds
to the event horizon at 𝑟 = 2𝑀. The KS coordinates are centered on the black hole, and during the evolution the grid
rotates around this center. Bottom: The DG grid in the inertial frame at a later time of a simulation, at the same scale as
on the left. The worldtube excision sphere at the bottom left is close to crossing the event horizon at 𝑟 = 2𝑀. A series
of time-dependent functions map the collocation points from the grid frame as depicted in the top panel to the inertial
frame by rotating and compressing the grid. The approximate value for the phase is 𝜙 ≈ 5𝜋

4 𝜋, for the orbital radius it is
𝑟𝑝 ≈ 2.7𝑀, for the worldtube radius 𝑅 ≈ 0.15𝑀, and the black hole excision radius is ≈ 0.5𝑀.
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A set of time-dependent maps then transform the grid coordinates
to the inertial KS coordinates 𝑥 𝑖 introduced earlier. These time-
dependent maps cause the grid points to move across the spacetime
background in the inertial frame, to follow the motion of the scalar
point charge. The setup is motivated by BBH evolutions where
control systems continually adjust time-dependent parameters
in these maps to track the motion and shape of the black holes’
apparent horizons [131, 132, 151]. [131]: Hemberger et al. (2013), Dy-

namical Excision Boundaries in Spec-
tral Evolutions of Binary Black Hole
Spacetimes
[132]: Scheel et al. (2015), Improved
methods for simulating nearly ex-
tremal binary black holes
[151]: Scheel et al. (2006), Solving
Einstein’s equations with dual coor-
dinate frames

In this work, we integrate the particle’s orbit along with the DG
evolution and determine the time-dependent parameters in the
maps by demanding that the worldtube is centered on the scalar
charge at each time step. This corresponds to the particle physically
moving across the KS background with its position fixed at the
excision sphere’s center. Because 𝑥 𝑖𝑝(𝑡) is determined directly from
the ODE Eq. (3.3), this setup does not utilize control systems.

In the previous chapter, we fixed the particle’s orbit to be circular.
The map from grid to inertial coordinates then amounts to a global
rotation with constant angular velocity. We now generalize to a
series of time-dependent maps to accommodate generic, equatorial
orbits with dynamically adjustable excision radii:

A rotation map controls the angular position of the particle and is
applied globally to each DG element according to

𝑥 = 𝑥̄ cos 𝜙(𝑡) − 𝑦̄ sin 𝜙(𝑡), (3.17a)
𝑦 = 𝑥̄ sin 𝜙(𝑡) + 𝑦̄ cos 𝜙(𝑡), (3.17b)
𝑧 = 𝑧̄ , (3.17c)

where 𝜙(𝑡) is the time-dependent rotation angle. The orbital ve-
locity ¤𝜙(𝑡) is no longer constant but tracks the particle’s orbit. The
rotation is always around the z-axis as we fix the particle’s orbit in
the 𝑥𝑦-plane.

A compression map stretches grid points according to a time-
dependent factor 𝜆(𝑡) about a center 𝐶𝚤 . We define the coordinate
distance from 𝐶𝚤 in the grid frame to be 𝑟 =

√
𝛿𝚤 𝚥(𝑥𝚤 − 𝐶𝚤)(𝑥 𝚥 − 𝐶 𝚥).

The compression factor falls off linearly in the radial interval
[𝑟min, 𝑟max], and the compression map is given in the piecewise
form as

𝑥 𝑖 =


𝑥𝚤 − 𝜆(𝑡) 𝑥𝚤−𝐶𝚤𝑟min

, 𝑟 < 𝑟min,

𝑥𝚤 − 𝜆(𝑡) 𝑟max−𝑟
𝑟max−𝑟min

𝑥𝚤−𝐶𝚤
𝑟 , 𝑟min ≤ 𝑟 ≤ 𝑟max,

𝑥𝚤 , 𝑟 > 𝑟max.

(3.18)
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The Jacobian of this map is discontinuous at 𝑟min and 𝑟max. The DG
method can handle this as long as these radii are placed at element
boundaries. We apply three compression maps to the domain as
follows:

A global compression map is centered on the central black hole
with the inner radius placed at the so-called envelope 𝑟min = 𝑟env
which is chosen several times larger than the initial separation
of the two excision spheres. The outer radius 𝑟max is placed at
the outer boundary of the domain. The radial separation between
the worldtube and the black hole in the inertial frame can then
be controlled by adjusting the corresponding parameter 𝜆𝑟(𝑡)
which linearly scales the entire inner portion of the grid. The outer
boundary of the domain does not change as the compression factor
drops to zero at the outer boundary.

Two additional compression maps are centered on the black hole
and the worldtube, respectively, with 𝑟min set to the initial excision
sphere radii and 𝑟max placed at the spherical element boundaries
surrounding them. We denote the corresponding functions of
time as 𝜆bh(𝑡) and 𝜆wt(𝑡), respectively. As the compression map
is spherically symmetric, the excision regions remain spherical in
the inertial frame.

The combination of all four time-dependent maps allows for
separate control of the angular and radial position of the worldtube
through 𝜙(𝑡) and𝜆𝑟(𝑡), as well as the excision sphere radii through
𝜆bh(𝑡) and 𝜆wt(𝑡). An example of this concatenation of maps is
shown in Figure 3.1. The top figure corresponds to the DG elements
in the time-independent grid frame which coincides with the
inertial frame the beginning of the simulation. The bottom figure
shows the same grid points transformed to the inertial frame at a
later time of the simulation.

At each time 𝑡, the DG elements need to be supplied with the value
and derivative of the time-dependent parameters 𝜙(𝑡),𝜆𝑟(𝑡),𝜆bh(𝑡)
and 𝜆wt(𝑡) to evaluate the evolution equations at their collocation
points in the inertial frame 𝑥 𝑖(𝑡 , 𝑥𝚤). At these positions, we compute
the metric quantities appearing in the evolution equations. The
velocity is needed to transform the time derivative of the evolution
equations into the co-moving grid frame as described e.g. in [151]. [151]: Scheel et al. (2006), Solving

Einstein’s equations with dual coor-
dinate frames

We now show how the values of these time-dependent parameters
are determined from the orbit of the scalar charge.
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3.3.2 Particle’s position

At the start of the simulation, all functions of time are set to zero,
𝜙 = 𝜆𝑟 = 𝜆bh = 𝜆wt = 0, so that grid coordinates coincide with
inertial coordinates, 𝑥 𝑖(𝑥𝚤 , 𝑡 = 0) = 𝑥𝚤 . The worldtube is initially
located on the positive 𝑥-axis with center at an orbital radius 𝑟0.

In Section 3.5, we will derive an ordinary differential equation
(ODE) governing the particle’s motion. At each time step, we inte-
grate the ODE to calculate the new position 𝑥 𝑖𝑝(𝑡) = (𝑥𝑝(𝑡), 𝑦𝑝(𝑡), 𝑧𝑝(𝑡))
and velocity ¤𝑥 𝑖𝑝(𝑡) = ( ¤𝑥𝑝(𝑡), ¤𝑦𝑝(𝑡), ¤𝑧𝑝(𝑡)) of the particle in Kerr-
Schild coordinates. The time-dependent parameters are then ad-
justed so that the function from grid to inertial coordinates 𝑥 𝑖(𝑡 , 𝑥𝚤)
maps the center of the worldtube to the current position of the
particle,

𝑥 𝑖(𝑡 , 𝑥𝚤𝑝) = 𝑥 𝑖𝑝(𝑡). (3.19)

This condition is satisfied by choosing the following values:

𝜙(𝑡) = arctan
(
𝑦𝑝(𝑡), 𝑥𝑝(𝑡)

)
, (3.20)

¤𝜙(𝑡) =
𝑥𝑝(𝑡) ¤𝑦𝑝(𝑡) − 𝑦𝑝(𝑡) ¤𝑥𝑝(𝑡)

𝑟2
𝑝(𝑡)

, (3.21)

𝜆𝑟(𝑡) = 𝑟env

(
1 −

𝑟𝑝(𝑡)
𝑟0

)
, (3.22)

¤𝜆𝑟(𝑡) =
−𝑟env ¤𝑟𝑝(𝑡)

𝑟0
, (3.23)

where we defined the orbital radius of the particle as 𝑟𝑝(𝑡) =√
𝛿𝑖 𝑗𝑥 𝑖𝑝(𝑡)𝑥

𝑗
𝑝(𝑡), with radial velocity ¤𝑟𝑝(𝑡) = 𝛿𝑖 𝑗 ¤𝑥 𝑖𝑝(𝑡)𝑥

𝑗
𝑝(𝑡)/𝑟𝑝(𝑡).

3.3.3 Radii of excision spheres

The time-dependent map parameters 𝜆bh(𝑡) and 𝜆wt(𝑡) merely
modify the size of the excision regions around the centre of the
black hole or the scalar charge, respectively, and can be chosen
independently of Eq. (3.19).

Our choice for 𝜆wt is motivated by observing that the worldtube
scheme is more accurate at larger 𝑟𝑝 , since the expansion terms
of the puncture field converge more quickly there. If the orbital
radius decreases, the truncation error of the puncture field, and
hence that of the regular field too, grow. We expect the error 𝜀 due
to the worldtube to scale with 𝑟𝑝 as [1] [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model
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𝜀 ∼ 𝑟
−3(𝑛+1)/2
𝑝 . (3.24)

Recall that 𝑛 is the expansion order of the scheme, fixed to 𝑛 = 1 in
this work. The error in the field and its derivatives also scale with
the worldtube radius 𝑅, according to the relations (3.14)–(3.16):
∼ 𝑅𝑛+1 for the field and ∼ 𝑅𝑛 for its derivatives. We can keep
the error roughly constant as the orbit evolves, by adjusting the
worldtube radius 𝑅 as a function of the changing orbital radius 𝑟𝑝 .
To achieve this we use the power-law relation

𝑅(𝑡) = 𝑅0

(
𝑟𝑝(𝑡)
𝑟0

)𝛽
, (3.25)

where 𝑅0 is the initial excision radius and the exponent 𝛽 can be
chosen freely. A value of 𝛽 = 3/2 should ensure that the error in
ΨR remains constant; a value of 𝛽 = 3 is required to keep the error
in the derivatives 𝜕𝑖ΨR constant. For the simulations presented
in this work we choose 𝛽 = 3/2, as the larger worldtube reduces
computational cost.

The excision sphere within the central black hole is assigned an
initial radius of 𝑅0 = 1.99 M. It is then shrunk using Eq. (3.25) with
𝛽 = 1. The dynamic shrinking of both excision spheres allows the
worldtube to approach and ultimately to pass through the black
hole horizon with the grid remaining well-behaved; see the bottom
panel of Figure 3.1 for the configuration shortly before the particle
passes through the horizon.

Care has to be taken in determining the actual functions of time
𝜆bh(𝑡) and 𝜆wt(𝑡) to match the desired excision sphere radii 𝑅(𝑡),
as the global compression map governed by 𝜆𝑟(𝑡) has already
affected the radii. The appropriate choice to attain an excision
sphere radius of 𝑅bh/wt(𝑡) is

𝜆bh/wt(𝑡) = 𝑅0 +
𝑅bh/wt(𝑡)𝑟env

𝜆𝑟(𝑡) − 𝑟env
, (3.26)

¤𝜆bh/wt(𝑡) =
𝑟env

𝜆𝑟(𝑡) − 𝑟env

(
¤𝑅bh/wt(𝑡) +

𝑅bh/wt(𝑡) ¤𝜆𝑟(𝑡)
𝑟env − 𝜆𝑟(𝑡)

)
, (3.27)

where 𝑅0 = 𝑅bh/wt(𝑟0) is the excision sphere radius at the start of
the simulation.
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3.4 Puncture field

Local expansions of the Detweiler-Whiting singular field for a
scalar charge are well developed [134–136]. These have primarily [134]: Haas et al. (2006), Mode-sum

regularization of the scalar self-force:
Formulation in terms of a tetrad
decomposition of the singular field
[135]: Wardell et al. (2012), A
Generic effective source for scalar
self-force calculations
[136]: Heffernan et al. (2012),
High-order expansions of the
Detweiler-Whiting singular field in
Schwarzschild spacetime

focused on the case of a charge moving on a geodesic, but Refs. [152,
153], for example, considered the case of an accelerated source

[152]: Pound et al. (2014), Practical,
covariant puncture for second-order
self-force calculations
[153]: Heffernan et al. (2018), Ac-
celerated motion and the self-force in
Schwarzschild spacetime

particle.

Here we start from the results of Ref. [152]. That reference provided
punctures for gravitational perturbations ℎ𝛼𝛽 produced by an ac-
celerated point mass 𝜇, but we can readily extract the puncture
for our scalar field by noting that the trace of the linear metric
perturbation, ℎ := 𝑔𝛼𝛽ℎ𝛼𝛽, satisfies the same Klein-Gordon equa-

tion (3.1) as the scalar field, 𝑔𝜇𝜈∇𝜇∇𝜈ℎ = −16𝜋𝜇
∫ 𝛿4(𝑥𝛼−𝑥𝛼𝑝 (𝜏))√−𝑔 𝑑𝜏,

with the replacement 𝑞 ↔ 4𝜇. Therefore we have ΨP =
𝑞

4𝜇 ℎ
P.

The resulting puncture takes the form

ΨP = ΨP
geo +ΨP

acc, (3.28)

where ΨP
geo is the puncture for a particle on a geodesic, and ΨP

acc
is the correction due to the particle’s acceleration. The first term is
given by

ΨP
geo =

𝑞

𝜆𝑠
+ 𝑞𝜆

6𝑠3 (𝜚
2 − 𝑠2)𝐶𝑢𝜎𝑢𝜎 + O(𝜆2). (3.29)

Here we have introduced a number of auxiliary quantities. 𝜆 := 1
is used to count powers of distance to the particle. 𝑠, 𝜚 , and 𝐶𝑢𝜎𝑢𝜎
are defined from Synge’s world function 𝜎(𝑥, 𝑥̃) and its derivative
𝜎̃𝛼 := ∇̃𝛼𝜎(𝑥, 𝑥̃) [137], where we use a tilde to label quantities [137]: Synge (1960), Relativity: The

General theoryevaluated on the particle at time 𝑡, as in 𝑥̃𝛼 := (𝑡 , 𝑥 𝑖𝑝(𝑡)). 𝜎(𝑥, 𝑥̃) is
equal to half the squared geodesic distance between 𝑥𝛼 and 𝑥̃𝛼,
and its gradient 𝜎̃𝛼 is a directed measure of distance from 𝑥̃𝛼 to
𝑥𝛼. In terms of these, we have defined

𝜚 := 𝜎̃𝛼𝑢
𝛼 , (3.30)

𝑠 :=
√
(𝑔̃𝛼𝛽 + 𝑢𝛼𝑢𝛽)𝜎̃𝛼 𝜎̃𝛽 , (3.31)

𝐶𝑢𝜎𝑢𝜎 := 𝐶̃𝛼𝛽𝜇𝜈𝑢
𝛼 𝜎̃𝛽𝑢𝜇𝜎̃𝜈 , (3.32)

where 𝐶̃𝛼𝛽𝜇𝜈 is the Weyl tensor at 𝑥̃𝛼. Written in an analogous
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form, the correction to Eq. (3.29) due to acceleration reads

ΨP
acc =

𝜆0 𝑓 𝛼𝜎𝛼
(
𝑠2 − 𝜚2)

2𝑠3 + 𝜆

{
𝑓 𝛼𝜎𝛼

(
𝑠2 − 𝜚2)

2𝑠3

−
𝜚𝐷𝑢 𝑓

𝛼𝜎𝛼
(
𝜚2 − 3𝑠2)

6𝑠3 −
𝑓𝛼 𝑓

𝛼
(
𝜚2 + 𝑠2)
𝑠

}
+ O(𝜆2), (3.33)

where 𝑓 𝛼 is the self-force per unit mass, given by the right-hand
side of Eq. (3.3), and 𝐷𝑢 𝑓

𝛼 := 𝑢𝛽∇𝛽 𝑓
𝛼 is its covariant derivative

along the worldline. Explicitly,

𝑓 𝛼 =
𝑞

𝜇

(
𝑔̃𝛼𝛽 + 𝑢𝛼𝑢𝛽

)
𝜕𝛽 Ψ

R
��
𝑥 𝑖𝑝
, (3.34)

𝑢𝛽∇𝛽 𝑓
𝛼 =

𝑞

𝜇

(
¤𝑓 𝛼𝑢0 + Γ̃𝛼𝛽𝛾𝑢

𝛽 𝑓 𝛾
)
. (3.35)

In all expressions, it is understood that the four-velocity 𝑢𝛼 and
self-force per unit mass 𝑓 𝛼 are evaluated on the worldline at time
𝑡. We note that the acceleration terms ΨP

acc depend on the self-
force per unit mass 𝑓 𝛼 at O(𝜆0) and also start to depend on the
derivatives 𝜕𝛽 𝑓 𝛼 at O(𝜆1).

Starting from the above covariant expansions, we re-expand all
quantities in powers of the Kerr-Schild coordinate distance from the
particle,Δ𝑥 𝑖 := 𝑥 𝑖−𝑥 𝑖𝑝(𝑡). Although we use all terms through order
𝜆 in our numerics, here for brevity we only present the order-𝜆−1

and -𝜆0 terms. Our results for those terms are the following:

ΨP
geo =

𝑞

𝜆𝑠0
+𝜆0𝑞𝑀

2𝑟8
𝑝𝑠

3
0

{
𝑟3
𝑝𝑥

𝑖
𝑝Δ𝑥

𝑖
𝑝𝑥

𝑘
𝑝𝑥

𝑙
𝑝Δ𝑥

𝑚Δ𝑥𝑛 (3𝛿𝑘𝑚𝛿𝑙𝑛 − 2𝛿𝑘𝑙𝛿𝑚𝑛)

+
(
𝑢0)2

(
𝑟3
𝑝 ¤𝑥 𝑖𝑝Δ𝑥 𝑖 + 2𝑀𝑟𝑝𝑥

𝑖
𝑝Δ𝑥

𝑖 + 2𝑀 ¤𝑥 𝑖𝑝𝑥 𝑖𝑝𝑥
𝑗
𝑝Δ𝑥

𝑗
)

×
[
2𝑟𝑝𝑥𝑎𝑝𝑥𝑏𝑝Δ𝑥𝑘Δ𝑥 𝑙 (2𝛿𝑎𝑘𝛿𝑏𝑙 − 𝛿𝑎𝑏𝛿𝑘𝑙)

+ ¤𝑥𝑎𝑝Δ𝑥𝑎𝑝𝑥𝑘𝑝𝑥 𝑙𝑝Δ𝑥𝑚Δ𝑥𝑛 (3𝛿𝑘𝑚𝛿𝑙𝑛 − 2𝛿𝑘𝑙𝛿𝑚𝑛)
]}

+ O(𝜆)

(3.36)
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for the geodesic piece and

ΨP
acc =

𝜆0𝑞

2𝑟9
𝑝𝑠

3
0

{ (
𝑢0)2

[
2𝑀𝑟𝑝𝑥

𝑖
𝑝Δ𝑥

𝑖
𝑝 + 2𝑀𝑥 𝑖 ¤𝑥 𝑖𝑝𝑥

𝑗
𝑝Δ𝑥

𝑗 + 𝑟3
𝑝 ¤𝑥 𝑖𝑝Δ𝑥 𝑖

]2

×
[
2𝑀 𝑓 𝑡𝑟𝑝𝑥

𝑖
𝑝Δ𝑥

𝑖 + 𝑓 𝑖
(
𝑟3
𝑝Δ𝑥

𝑖 + 2𝑀𝑥 𝑖𝑝𝑥
𝑗
𝑝Δ𝑥

𝑗
) ]

−2𝑀 𝑓 𝑡𝑟7
𝑝𝑠

2
0𝑥

𝑖
𝑝Δ𝑥

𝑖

−𝑟6
𝑝𝑠

2
0 𝑓

𝑖
(
𝑟3
𝑝Δ𝑥

𝑖 + 2𝑀𝑥 𝑖𝑝𝑥
𝑗
𝑝Δ𝑥

𝑗
) }

+ O(𝜆)

(3.37)

for the correction due to acceleration. Here we have introduced the
convention that two repeated upper indices are summed over with
a Kronecker delta, i.e. 𝑥 𝑖𝑦 𝑖 := 𝑥 𝑖𝑦 𝑗𝛿𝑖 𝑗 . We have also introduced
𝑢0 := 𝑑𝑡/𝑑𝜏, given by

(
𝑢0)2

=
𝑟3
𝑝

𝑟3
𝑝

(
¤𝑥 𝑖𝑝 ¤𝑥 𝑖𝑝 − 1

)
− 2𝑀𝑟2

𝑝 − 4𝑀𝑟𝑝𝑥
𝑖
𝑝 ¤𝑥 𝑖𝑝 − 2𝑀

(
𝑥 𝑖𝑝 ¤𝑥 𝑖𝑝

)2 ,

(3.38)
and the leading-order term in the coordinate expansion of Eq. (3.31),
given by

𝑠2
0 =Δ𝑥 𝑖Δ𝑥 𝑖 +

2𝑀
(
Δ𝑥 𝑖𝑥 𝑖𝑝

)2

𝑟3
𝑝

+

(
𝑢0)2

(
𝑟3
𝑝Δ𝑥

𝑖 ¤𝑥 𝑖𝑝 + 2𝑀𝑟𝑝Δ𝑥
𝑖𝑥 𝑖𝑝 + 2𝑀Δ𝑥 𝑖𝑥 𝑖𝑝 ¤𝑥

𝑗
𝑝𝑥

𝑗
𝑝

)2

𝑟6
𝑝

. (3.39)

3.5 Self consistent evolution

The motion of a scalar charge subject to the scalar self-force is
governed by Eq. (3.3). In coordinate form, the spatial components
are given by

(𝑢0)2 ¥𝑥 𝑖𝑝 =
𝑞

𝜇
(𝑔 𝑖𝛼 − ¤𝑥 𝑖𝑝𝑔0𝛼)𝜕𝛼ΨR − (Γ𝑖𝛽𝛾 − ¤𝑥 𝑖𝑝Γ0

𝛽𝛾)𝑢
𝛽𝑢𝛾 , (3.40)

where Γ𝛼𝛽𝛾 are the Christoffel symbols of the second kind and
𝑢 𝑖 = ¤𝑥 𝑖𝑝𝑢0. The first term on the right-hand side represents the
covariant acceleration due to the scalar self-force, and the second
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term describes the coordinate acceleration of the background
geodesic.

The metric and Christoffel symbols are known a priori as the
particle is evolved on a fixed Schwarzschild background in Kerr-
Schild coordinates. The relevant expressions can be found e.g. in
[154]. [154]: Visser (2007), The Kerr space-

time: A Brief introduction

3.5.1 Iterative Scheme

The particle’s self-acceleration is driven by spatial and time deriva-
tives of the regular field ΨR, as described in Eqs. (3.3) or (3.40).
Inside the worldtube, the regular field is represented by a Taylor
expansion, the coefficients of which are determined from conti-
nuity conditions on ΨR and its time derivative on the worldtube
boundary, Eqs. (3.12) and (3.13). These conditions involve the punc-
ture field ΨP and its time derivative, which themselves, however,
depend on the particle’s self-acceleration and its derivatives; recall
Eq. (3.37). The acceleration equation (3.40) is therefore an implicit
equation for ¥𝑥 𝑖𝑝 .

To deal with this problem, we construct an iterative scheme. For the
ease of the reader, we first define the scheme using just the geodesic
component of the puncture field, ΨP = ΨP

geo and elaborate how
the acceleration terms ΨP

acc are included in the next section. The
geodesic puncture field ΨP

geo, as given in Eq. (3.36), only depends
on the particle’s position and velocity but its time derivative 𝜕𝑡ΨP

geo
depends on the particle’s acceleration.

Let ¥𝑥 𝑖
𝑝(𝑘) be this acceleration during the 𝑘-th iteration of this scheme.

From this, we compute the corresponding value for the geodesic
puncture field by evaluating Eq. (3.36) and its time derivative

ΨP
(𝑘) = ΨP

geo(𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝), (3.41)

𝜕𝑡Ψ
P
(𝑘) = 𝜕𝑡Ψ

P
geo(𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝 , ¥𝑥 𝑖𝑝 = ¥𝑥 𝑖

𝑝(𝑘)). (3.42)

This allows us to calculate iteration 𝑘 for the Taylor expansions
of the regular field ΨR

(𝑘) and its time derivative 𝜕𝑡ΨR
(𝑘) using the

continuity condition (3.12) and (3.13)

ΨR
(𝑘)(𝑡 , 𝑥

𝑖) Γ
= ΨN(𝑡 , 𝑥 𝑖) −ΨP

(𝑘)(𝑡 , 𝑥
𝑖), (3.43)

𝜕𝑡Ψ
R
(𝑘)(𝑡 , 𝑥

𝑖) Γ
= 𝜕𝑡Ψ

N(𝑡 , 𝑥 𝑖) − 𝜕𝑡Ψ
P
(𝑘)(𝑡 , 𝑥

𝑖). (3.44)
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The regular field then yields an updated guess for the acceleration
through Eq. (3.40)

¥𝑥 𝑖
𝑝(𝑘+1) = ¥𝑥 𝑖(𝜕𝛼ΨR

(𝑘)). (3.45)

The updated acceleration can be re-inserted into Eq. (3.41) and
the iteration procedure can in principle be repeated an arbitrary
number of times. The convergence of this scheme is explored in
Section 3.6.4.

We initialize this iterative procedure with the geodesic acceleration
¥𝑥 𝑖(0) = ¥𝑥 𝑖geo as given by the second term in Eq. (3.40). This choice
conveniently separates the first iterations by order in 𝜖: the values
from the 0-th iteration ¥𝑥 𝑖

𝑝(0), 𝜕𝑡Ψ
P
(0) and 𝜕𝑡ΨR

(0) are all computed for
a geodesic orbit and are accurate up to order 𝜖0. The first iteration
of the acceleration ¥𝑥 𝑖

𝑝(1) is then accurate up to order 𝜖1, as is the
resulting derivative of the puncture field 𝜕𝑡ΨP

(1).

3.5.2 Evaluation of acceleration terms

The acceleration terms of the puncture field ΨP
acc directly depend

on the particle’s acceleration ¥𝑥 𝑖𝑝 captured by the self-acceleration
𝑓 𝛼 and its derivatives, see Eq. (3.37). We now explain how this
contribution, and its required derivatives, are evaluated at the 𝑘th
iteration step, given the particle’s current position and velocity as
well as ΨR

(𝑘−1)(𝑡 , 𝑥
𝑖) and 𝜕𝑡ΨR

(𝑘−1)(𝑡 , 𝑥
𝑖).

We denote the partial derivative of a field ℎ(𝑡 , 𝑥 𝑖) evaluated at the
position of the particle 𝑥 𝑖𝑝 :

𝜕ℎ

𝜕𝑥𝛼

����
𝑥 𝑖𝑝

(𝑡) = 𝜕ℎ

𝜕𝑥𝛼
(𝑡 , 𝑥 𝑖 = 𝑥 𝑖𝑝(𝑡)). (3.46)

We label with a tilde fields evaluated along the path of the particle,
𝑓 (𝑡) = 𝑓 (𝑡 , 𝑥 𝑖 = 𝑥 𝑖𝑝(𝑡)). We also introduce the total time derivative
operator 𝑑𝑡 to take time derivatives of fields evaluated at the
position of the particle. It acts on an arbitrary field ℎ̃ as

𝑑𝑡 ℎ̃ =
𝜕ℎ

𝜕𝑡

����
𝑥 𝑖𝑝

+ ¤𝑥 𝑖𝑝
𝜕ℎ

𝜕𝑥 𝑖

����
𝑥 𝑖𝑝

. (3.47)
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The second total time derivative is given by

𝑑2
𝑡 ℎ̃ =

𝜕2ℎ

𝜕𝑡2

����
𝑥 𝑖𝑝

+ 2 ¤𝑥 𝑖𝑝
𝜕2ℎ

𝜕𝑡𝜕𝑥 𝑖

����
𝑥 𝑖𝑝

+ ¤𝑥 𝑖𝑝 ¤𝑥
𝑗
𝑝

𝜕2ℎ

𝜕𝑥 𝑖𝜕𝑥 𝑗

����
𝑥 𝑖𝑝

+ ¥𝑥 𝑖𝑝
𝜕ℎ

𝜕𝑥 𝑖

����
𝑥 𝑖𝑝

.

(3.48)

For 𝑛 = 1, the acceleration terms Eq. (3.37) depend on 𝑓 𝛼(𝑡) and
its first covariant derivative along the orbit, (𝑢𝛽∇𝛽 𝑓

𝛼)(𝑡). We also
require 𝜕𝑡ΨP

acc, which involves the time derivative of these two
quantities. These expressions, in turn, require the calculation of
the first and second time derivatives of the four velocity, ¤𝑢𝛼 and ¥𝑢𝛼,
as well as various partial derivatives of the regular field evaluated
at the position of the particle. Here we give explicit expressions
for all these necessary input quantities.

The first two time derivatives of the self-force are given by

¤𝑓 𝛼 =
𝑞

𝜇

[ (
𝑑𝑡(𝑔̃𝛼𝛽) + ¤𝑢𝛼𝑢𝛽 + 𝑢𝛼 ¤𝑢𝛽

)
𝜕𝛽Ψ

R|𝑥 𝑖𝑝

+
(
𝑔̃𝛼𝛽 + 𝑢𝛼𝑢𝛽

)
𝑑𝑡(𝜕𝛽ΨR|𝑥 𝑖𝑝 )

]
, (3.49a)

¥𝑓 𝛼 =
𝑞

𝜇

[ (
𝑑2
𝑡 (𝑔̃𝛼𝛽) + ¥𝑢𝛼𝑢𝛽 + 2 ¤𝑢𝛼 ¤𝑢𝛽 + 𝑢𝛼 ¥𝑢𝛽

)
𝜕𝛽Ψ

R|𝑥 𝑖𝑝

+ 2
(
𝑑𝑡(𝑔̃𝛼𝛽) + ¤𝑢𝛼𝑢𝛽 + 𝑢𝛼 ¤𝑢𝛽

)
𝑑𝑡(𝜕𝛽ΨR|𝑥 𝑖𝑝 )

+
(
𝑔̃𝛼𝛽 + 𝑢𝛼𝑢𝛽

)
𝑑2
𝑡 (𝜕𝛽ΨR|𝑥 𝑖𝑝 )

]
. (3.49b)

The derivative of 𝑢𝛽∇𝛽 𝑓
𝛼 is given by

𝑑

𝑑𝑡
(𝑢𝛽∇𝛽 𝑓

𝛼) = ¥𝑓 𝛼𝑢0 + ¤𝑓 𝛼 ¤𝑢0 (3.50)

+ 𝑑𝑡 Γ̃𝛼𝛽𝛾𝑢𝛽 𝑓 𝛾 + Γ̃𝛼𝛽𝛾 ¤𝑢𝛽 𝑓 𝛾 + Γ̃𝛼𝛽𝛾𝑢
𝛽 ¤𝑓 𝛾 .

The quantities 𝜕𝑖𝑔𝛼𝛽, 𝜕𝑖𝜕𝑗𝑔𝛼𝛽 and 𝜕𝑖Γ𝛼𝛽𝛾, which are required for
the total time derivatives of the metric and Christoffel symbols,
are calculated analytically. We do not give the expressions here for
brevity.

The first derivative of the four velocity is given directly by the
evolution equation (3.3), and the second time derivative can be
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obtained from its derivative:

¤𝑢𝛼 =
1
𝑢0

(
𝑞

𝜇
𝑔̃𝛼𝛽𝜕𝛽Ψ

R|𝑥 𝑖𝑝 − Γ̃𝛼𝛽𝛾𝑢
𝛽𝑢𝛾

)
, (3.51a)

¥𝑢𝛼 =
1
𝑢0

(
𝑞

𝜇
𝑑𝑡 𝑔̃

𝛼𝛽𝜕𝛽Ψ
R|𝑥 𝑖𝑝 +

𝑞

𝜇
𝑔̃𝛼𝛽𝑑𝑡(𝜕𝛽ΨR|𝑥 𝑖𝑝 )

− 𝑑𝑡 Γ̃𝛼𝛽𝛾𝑢𝛽𝑢𝛾 − 2Γ̃𝛼𝛽𝛾 ¤𝑢𝛽𝑢𝛾 − ¤𝑢0 ¤𝑢𝛼

)
. (3.51b)

Some of the required derivatives of the regular field ΨR can be
obtained directly from the Taylor expansions (3.10),

𝜕𝑖Ψ
R|𝑥 𝑖𝑝 = ΨR

𝑖 (𝑡), (3.52)

𝜕𝑡Ψ
R|𝑥 𝑖𝑝 = (𝜕𝑡ΨR)0(𝑡), (3.53)

𝜕𝑡𝜕𝑖Ψ
R|𝑥 𝑖𝑝 = (𝜕𝑡ΨR)𝑖(𝑡). (3.54)

Higher derivatives, however, are not obtainable directly in this
manner. We make use of the fact that we can take arbitrarily high
spatial derivatives of the regular field and its time derivative by
taking spatial derivatives of their expansions. For expansion order
𝑛 = 1, this implies that all second and higher spatial derivatives of
the regular field and its time derivative can be consistently set to
zero. This leaves the higher time derivatives 𝜕2

𝑡Ψ
R|𝑥 𝑖𝑝 , 𝜕

3
𝑡Ψ

𝑅 |𝑥 𝑖𝑝 and
𝜕2
𝑡 𝜕𝑖Ψ

R|𝑥 𝑖𝑝 to be determined. We obtain these by taking derivatives
of the vacuum scalar wave equation which the regular field satisfies.
As they express the second time derivative in terms of spatial
derivatives, we can consistently express all second time derivatives
in terms of spatial derivatives yielding

𝜕2
𝑡Ψ

R =
1
𝑔𝑡𝑡

(
− 2𝑔𝑡𝑖𝜕𝑡𝜕𝑖ΨR + Γ𝑡𝜕𝑡Ψ

R + Γ𝑖𝜕𝑖Ψ
R
)
, (3.55)

𝜕2
𝑡 𝜕𝑖Ψ

R =
1
𝑔𝑡𝑡

(
2𝜕𝑖𝑔𝑡 𝑗𝜕𝑡𝜕𝑗ΨR − 𝜕𝑖Γ

𝑡𝜕𝑡Ψ
R (3.56)

− Γ𝑡𝜕𝑡𝜕𝑖Ψ
R − 𝜕𝑖Γ

𝑗𝜕𝑗Ψ
R − 𝜕𝑖𝑔

𝑡𝑡𝜕2
𝑡Ψ

R
)
.

The time derivative of Eq. (3.55), yields the final necessary term

𝜕3
𝑡Ψ

𝑅 =
1
𝑔𝑡𝑡

(
2𝑔𝑡𝑖𝜕2

𝑡 𝜕𝑖Ψ
R − Γ𝑡𝜕2

𝑡Ψ
𝑅 − Γ𝑖𝜕𝑡𝜕𝑖Ψ

R
)
. (3.57)

At this point, we have prescribed all quantities necessary for evalu-
ating the acceleration term ΨP

acc and its time derivative in terms of
the expansion coefficients of ΨR and 𝜕𝑡ΨR, the current position
and velocity of the particle, and background quantities. This allows
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for ΨP
acc to be included in the iterative scheme consistently. We con-

struct the 𝑘th iteration of the puncture field from an acceleration
¥𝑥 𝑖
𝑝(𝑘) as

ΨP
(𝑘) = ΨP

geo

(
𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝

)
(3.58)

+ΨP
acc

(
𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝 , ¥𝑥 𝑖𝑝(𝑘), 𝜕𝛼Ψ

R
(𝑘−1) |𝑥 𝑖𝑝

)
,

𝜕𝑡Ψ
P
(𝑘) = 𝜕𝑡Ψ

P
geo

(
𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝 , ¥𝑥 𝑖𝑝(𝑘)

)
(3.59)

+ 𝜕𝑡Ψ
P
acc

(
𝑥 𝑖𝑝 , ¤𝑥 𝑖𝑝 , ¥𝑥 𝑖𝑝(𝑘), 𝜕𝛼Ψ

R
(𝑘−1) |𝑥 𝑖𝑝

)
.

Recall that the scheme is initialized with the geodesic acceleration
¥𝑥 𝑖
𝑝(0) = ¥𝑥 𝑖geo so the zeroth iteration of the puncture field is given

by its geodesic component ΨP
(0) = ΨP

geo and 𝜕𝑡ΨP
(0) = 𝜕𝑡ΨP

geo. The
acceleration terms ΨP

acc only start to contribute to the particle’s
acceleration at the second iteration ¥𝑥 𝑖

𝑝(2). At this point, ¥𝑥 𝑖𝑝 includes
terms of O(𝜖2) and we must use in Eq. (3.40) the dynamical mass
𝜇(𝑡) as obtained in Eq. (3.5), rather than the rest mass 𝜇0.

The acceleration terms can cause the simulation to grow unstable
during a self-consistent evolution. We find this happens only for
relatively large 𝜖 (≳ 0.1) and far into the inspiral, usually when
the scalar charge is near the horizon of the central black hole.
The instabilities do not occur when the acceleration terms are not
included in the evolution. We are unsure what the underlying
cause is, but it does not affect the regions of parameter space we
probe in Sec. 3.6. It might be a consequence of the coupled system
(the Klein-Gordon equation coupled to the particle’s equation
of motion) being effectively higher than second-order in time,
meaning the instability could be similar in nature to the well-
known problem of runaway solutions in the equation of motion
of an accelerated charged particle in electromagnetism [155, 156]; [155]: Dirac (1938), Classical theory

of radiating electrons
[156]: Spohn (2000), The Critical
manifold of the Lorentz-Dirac equa-
tion

our iterative procedure is similar to an iterative reduction-of-
order approximation in that context [157]. If the instability is a

[157]: Ekman et al. (2021), Reduc-
tion of order, resummation, and radi-
ation reaction

pathology of the original system of equations (3.1) and (3.2) in this
way, then it can be understood as a failing of the point-particle
approximation [158, 159].

[158]: Rohrlich (n.d.), Dynamics of
a charged particle
[159]: Gralla et al. (2009), A Rig-
orous Derivation of Electromagnetic
Self-force

Spectre employs a task-based parallelism design where the world-
tube and the DG elements are assigned to different cores of a
computational cluster. At each iteration, the DG elements neigh-
boring the worldtube evaluate the puncture field ΨP

(𝑘), integrate it
over the worldtube boundary and send the result to the worldtube.
It uses this data to compute the next iteration of the acceleration,
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¥𝑥 𝑖
𝑝(𝑘+1), and the self-force per unit-mass 𝑓 𝛼 and its derivatives,

which it then sends back to the neighboring elements. Each iter-
ation therefore introduces a synchronization point between the
worldtube and adjacent DG elements where computational cores
are idly waiting for the results of another core. We find that in our
simulations each iteration does increase runtime by 15 − 20 per
cent compared to the evolution with one iteration.

3.5.3 Evolving the orbit

Given the position 𝑥 𝑖𝑝(𝑡𝑠) and velocity ¤𝑥 𝑖𝑝(𝑡𝑠) of the particle, as well
as data for the evolved fields ΨN(𝑡𝑠 , 𝑥 𝑖), Π(𝑡𝑠 , 𝑥 𝑖) and Φ𝑖(𝑡𝑠 , 𝑥 𝑖) at
time step 𝑡𝑠 , we can evaluate time derivatives of the evolved fields
using Eq. (3.8) and compute the acceleration ¥𝑥 𝑖𝑝(𝑡𝑠) with Eq. (3.40).
Both the PDEs for the fields and the ODEs of the trajectory are
advanced with the same time stepper and step.

The evaluation of the evolution equations requires for the DG
method to know both the position and velocity of the collocation
points at the corresponding time step as discussed in Section 3.3.
These are set by the new position 𝑥 𝑖𝑝(𝑡𝑠+1) and velocity ¤𝑥 𝑖𝑝(𝑡𝑠+1)
of the particle through the time-dependent parameters 𝜆𝑟(𝑡𝑠+1)
and 𝜙(𝑡𝑠+1) and their derivatives, by demanding that the center of
the worldtube is mapped onto the new position of the worldtube
through Eqs. (3.20). The parameters controlling the excision sphere
radii𝜆wt(𝑡𝑠+1) and𝜆bh(𝑡𝑠+1) are fixed by the condition (3.26). These
fully determine the global map from grid to inertial Kerr-Schild
coordinates 𝑥 𝑖(𝑡𝑠+1, 𝑥

𝚤) and its time derivative at the new time step
𝑡𝑠+1 and therefore the position and velocity of each grid point.
Both the evolved variables and the orbit can now be advanced to
the next time step 𝑡𝑠+2 and the procedure repeated. When using
multi-step methods, all variables are updated each substep.

3.6 Results

For the results presented here, we excise a sphere with initial radius
𝑅0 = 1.99𝑀 from the center of our domain. The excision will at all
times be contained within the event horizon of the Schwarzschild
black hole of fixed mass 𝑀. The particle with charge 𝑞 and mass
𝜇 is initially placed at an orbital radius 𝑟0 and the worldtube is
centered on it. The outer boundary of the domain is placed at
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𝑟 = 500𝑀. The left side of Fig. 3.1 shows a cut through the inner
part of the domain at the start of the simulation.

The DG evolution of the scalar field ΨN is carried out in a manner
very similar to the circular orbit case of the previous chapter.
We employ a multi-step fourth-order Runge-Kutta method [160] [160]: Owren et al. (1992), Deriva-

tion of Efficient, Continuous, Explicit
Runge–Kutta Methods

and the orbital parameters are advanced along with the evolved
variables at each substep. A weak exponential filter is employed
on all the evolved variables at each time step. The resolution of the
DG grid is always set so that its error is subdominant to the error
introduced by the worldtube. For simplicity, we always choose the
charge and mass to be equal: 𝑞 = 𝜇0 = 𝜖𝑀. This is no restriction,
since only the ratio 𝑞2/(𝜇0𝑀) is relevant for the evolution of the
system.

At time 𝑡 = 𝑡0 = 0, the regular field inside the worldtube and
the evolved variables are set to zero throughout the domain,
ΨR(𝑡0, 𝑥 𝑖) = ΨN(𝑡0, 𝑥 𝑖) = Π(𝑡0, 𝑥 𝑖) = Φ𝑖(𝑡0, 𝑥 𝑖) = 0. The simula-
tion is then evolved up to 𝑡1 = 1500𝑀 with the worldtube orbiting
on a prescribed, circular geodesic exactly as in the previous chap-
ter. During this time, ΨR and the evolved variables converge
to a steady-state solution which acts as initial condition to the
inspiral.

Starting at 𝑡1, we include the acceleration due to the scalar self-force
given by the first term in Eq. (3.40), as discussed in Section 3.5. A
transition function 𝑤(𝑡) is used to continuously activate this extra
term, chosen as

𝑤(𝑡) = 1 − exp

(
−

(
𝑡 − 𝑡1
𝜎

)4
)
. (3.60)

Here, 𝜎 is the timescale over which the scalar self-force is turned
on. A short timescale will cause the orbit to have higher residual
eccentricity whereas a long time scale is computationally more
expensive. Quantitative results below are presented starting at
𝑡 = 𝑡1 +2𝜎 where the self-force is fully active to more than one part
in 107. The smoothness of the turn-on function also avoids a jump
in the puncture field caused by the addition of the acceleration
terms ΨP

acc.

The back-reaction of the scalar radiation causes the charge to lose
potential energy and to spiral into the central black hole on a
quasi-circular orbit. Figure 3.2 depicts one of these simulations.
Here, the particle was placed at an initial radius 𝑟0 = 10.5𝑀 and a
comparatively large value 𝜖 = 0.08 leads to a fast inspiral. The orbit
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is only shown starting at 𝑡 = 3500𝑀, at which point the self-force
is fully activated. The orbital radius decreases at a faster rate as the
particle gets closer to the central black hole. The red dot shows the
particle’s position as it crosses the ISCO at 𝑟 = 6𝑀. At this point,
it quickly plunges into the event horizon, depicted by the dashed
black line.

Once the scalar charge is contained entirely within the horizon
it can no longer transfer any information to future null infinity,
and there starts a vacuum “ringdown” evolution, in which the
scalar field ΨN evolves outside the BH without a source term. In
practice, we choose to evolve the simulation with the scalar charge
until the worldtube excision sphere is contained entirely within
a radius of 𝑟 = 1.99𝑀. At this point, we halt the simulation and
save the values of the evolved variables ΨN, Π and Φ𝑖 on the final
timeslice 𝑡 = 𝑡rd. The evolution of the scalar field is continued on a
new domain which has a single central excision sphere of constant
radius 𝑟 = 1.995𝑀. This choice places the boundary within the
black hole horizon so no boundary conditions are required, and
outside the worldtube so data can be supplied entirely from ΨN.
The ringdown evolution of the scalar field is then initialized at time
𝑡rd by interpolating the evolved variables to the new grid points.
The simulation is continued on the same background spacetime for
a duration of 1000𝑀 at which point the scalar field has dissipated
beyond the resolution of the grid.

Figure 3.3 shows the value of 𝑟ΨN(𝑡 , 𝑥 𝑖)/𝑞 in the orbital plane eval-
uated at 𝑥 = 300𝑀. It is plotted against retarded time 𝑡 − 𝑟 zeroed
at the onset of ringdown time, corresponding to KS time 𝑡 = 𝑡rd.
The dominant frequency of the produced waveform matches the
orbital frequency of the particle and gradually increases during
the inspiral. The vertical dashed line shows the retarded time at
which the particle crossed the ISCO. The waveform looks different
to typical gravitational waveforms, as the scalar charge emits dom-
inant monopole and dipole radiation causing its profile to oscillate
around a positive value. The average amplitude of the waveform
also slightly decreases during the final orbits, presumably because
a significant part of the monopolar radiation is absorbed by the
central black hole at this stage.

We define the phase 𝜙𝑝(𝑡) and angular velocity 𝜔(𝑡) of the particle
as

𝜙𝑝 = arctan(𝑦𝑝 , 𝑥𝑝), (3.61)
𝜔 = ¤𝜙𝑝 . (3.62)
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Figure 3.2: The orbit of a particle
inspiralling into a central black
hole under the influence of the
scalar self-force. The orbit inspi-
rals at a faster rate as the particle
approaches the black hole and,
after crossing the ISCO, plunges
into the event horizon depicted
by the dashed, black ring. The
red dot shows the position of the
particle as it crosses the ISCO at
𝑟𝑝 = 6𝑀. Here, 𝜖 = 0.08 and
𝑅0 = 0.8𝑀.

The definition of the phase 𝜙𝑝 coincides with the time-dependent
parameter 𝜙(𝑡) of the rotation map (3.17) because we demand
that the worldtube excision sphere is tracking the particle through
Eq. (3.20).

In general, we will compare two simulations at the same angular
velocity 𝜔(𝑡). As the angular velocity is strictly monotonically
increasing for the quasi-circular inspirals presented here, it can be
mapped to the coordinate time 𝑡 one-to-one. This allows us to eval-
uate the difference between two simulations at a common angular
velocity but still plot it against the corresponding coordinate time
of one of the simulations.

We also define the quantity 𝑟𝜔 = 𝑀1/3𝜔−2/3, which is the radius
corresponding to a perfectly circular geodesic orbit with angular
velocity 𝜔. During the inspiral, the value of 𝑟𝜔 is typically similar
to the Kerr-Schild orbital radius 𝑟𝑝 of the particle. Comparing
two simulations at the same 𝑟𝜔 is mathematically equivalent to
comparing them at the same angular velocity 𝜔 but hopefully
more intuitive to the reader.

In Sec. 3.6.1, we study the dependence of the self-force driven
inspiral on the small parameter 𝜖 by fixing the initial worldtube
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Figure 3.3: The value of the scalar
field 𝑟ΨN/𝑞 evaluated in the or-
bital plane at 𝑥 = 300𝑀 for the
same simulation as depicted in
Figure 3.2. The 𝑥 axis shows the
retarded time 𝑡 − 𝑟, zeroed at the
ringdown time 𝑡rd. The dashed
vertical black line indicates the
retarded time when the charge
crossed the ISCO.

radius 𝑅0 and varying 𝜖 between 0.005 and 0.08. In the following
Section 3.6.2, we fix 𝜖 = 0.01 and explore the convergence with
worldtube radius 𝑅0 by varying it between 3.2𝑀 and 0.2𝑀. In
Sec. 3.6.3, we repeat these simulations but do not include the
acceleration termsΨP

acc to see how this affects the evolution. Finally,
we explore the convergence of the iterative scheme in Sec. 3.6.4 by
fixing both 𝜖 = 0.01 and the initial worldtube radius 𝑅0 = 0.8𝑀
and iterating the acceleration ¥𝑥 𝑖

𝑝(𝑘) up to 𝑘 = 2, 3, 5 or 7.

3.6.1 Comparison with adiabatic approximation

We explore the effect of the inspiral parameter 𝜖 by varying it
between 𝜖 = 0.005 and 𝜖 = 0.08 for a total of 14 values. Two
simulations are run for each value of 𝜖, one with initial worldtube
radius 𝑅0 = 0.8𝑀 and one with 𝑅0 = 0.4𝑀. For simulations with
𝜖 ≤ 0.01, we set an initial orbital radius 𝑟0 = 8𝑀. For larger 𝜖, the
inspiral can happen so quickly that the particle would cross the
ISCO before the self-force is fully turned on. To remedy this, we
appropriately set larger initial orbital radii up to 10.5𝑀 such that
the self-force is fully active at latest when the particle reaches an
orbital radius of 𝑟𝑝 = 7.8𝑀. The worldtube radius 𝑅(𝑡) is shrunk
according to Eq. (3.25) with 𝑟0 fixed to 8𝑀, even for simulations
starting at larger initial separations. This leads to simulations
having the same worldtube radius at the same 𝑟𝑝 , independent
of initial separation. We apply the iterative scheme derived in
Secs. 3.5.1 and 3.5.2 and iterate each simulation until it does not
affect the final results. The turn-on timescale is set to 𝜎 = 1000𝑀
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Figure 3.4: The orbital radius 𝑟𝑝
plotted against coordinate time
𝑡 multiplied by the inspiral pa-
rameter 𝜖 for different values of
𝜖. The time was set to zero for all
simulations at an orbital radius
of 𝑟𝑝 = 7.8𝑀, when the scalar
self-force was fully active. Ini-
tially, the radii are almost identi-
cal between simulations. Near the
ISCO, they start to deviate due to
non-adiabatic effects. Beyond the
ISCO, the particle quickly plunges
into the central black hole.

for all simulations. The puncture field includes the acceleration
terms according to Eq. (3.58).

To understand the 𝜖 dependence of our results, we compare against
a standard adiabatic approximation [63], which fixes the particle [63]: Barack et al. (2019), Self-force

and radiation reaction in general rel-
ativityon a quasi-circular orbit with 𝜔 =

√
𝑀/𝑟3

𝑝 and evolves the orbital
radius according to the fluxes of energy to null infinity and down
the BH horizon. Concretely, we assume a solution to Eq. (3.1) of
the form

Ψ =
∑
ℓ𝑚

[Ψℓ𝑚(𝑟𝑝 , 𝑟) + O(𝜖)]𝑒−𝑖𝑚𝜙𝑝𝑌ℓ𝑚(𝜃, 𝜙). (3.63)

Substituting this expansion into the Klein-Gordon equation, using
𝑑𝜙𝑝/𝑑𝑡 = 𝜔 and 𝑑𝑟𝑝/𝑑𝑡 = O(𝜖), discarding subleading terms,
and factoring out 𝑒−𝑖𝑚𝜙𝑝𝑌ℓ𝑚(𝜃, 𝜙) reduces the PDE to decoupled
radial ODEs for the coefficients Ψℓ𝑚(𝑟𝑝 , 𝑟), which we solve on a
grid of 𝑟𝑝 values using the Teukolsky package from the Black Hole
Perturbation Toolkit [161]. At each value of 𝑟𝑝 , the energy fluxes [161]: Wardell et al. (2023), Teukol-

sky (1.0.4)F∞ and F𝐻 are extracted from the solutions Ψℓ𝑚(𝑟𝑝 , 𝑟 → ∞) and
Ψℓ𝑚(𝑟𝑝 , 𝑟 → 2𝑀). In terms of these fluxes, the orbital energy E

changes at a rate

𝑑E

𝑑𝑡
= −F := −(F∞ + F𝐻). (3.64)

At leading order, E is related to the orbital radius by the geodesic
relationship, E= 𝜇0

1−2𝑀/𝑟𝑝√
1−3𝑀/𝑟𝑝

, which allows us to express the rate

of change of 𝑟𝑝 in terms of F. The evolution of the orbital phase
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Figure 3.5: The evolution of the
dynamic mass 𝜇 shown as a frac-
tion of 𝜇0 for simulations with
varying 𝜖. The mass grows with
the orbital frequency during the
evolution. The inset on the right
shows 𝜇/𝜇0 − 1 (plotted logarith-
mically), which remains propor-
tional to 𝜖 throughout the simula-
tion.

and radius are then governed by

𝑑𝜙𝑝
𝑑𝑡

= 𝜔(𝑟𝑝), (3.65)

𝑑𝑟𝑝

𝑑𝑡
= −𝜖

F̂(𝑟𝑝)
𝑑 Ê/𝑑𝑟𝑝

. (3.66)

To express the last equation in terms of 𝜖, we have introduced the
normalized quantities Ê := E/𝜇, F̂ := F/𝑞2, and 𝑟𝑝 := 𝑟𝑝/𝑀.

The solution to Eqs. (3.65) and (3.66) can be written as

𝜙𝑝 =
𝜙0(𝑟𝑝)

𝜖
. (3.67)

From Eq. (3.66), we can also obtain an adiabatic approximation for
the dimensionless adiabaticity parameter ¤𝜔/𝜔2,

¤𝜔
𝜔2 = 𝜖𝐺0(𝑟𝑝), (3.68)

where𝐺0(𝑟𝑝) = − 𝑑𝜔/𝑑𝑟𝑝
𝜔(𝑟𝑝)2

F̂(𝑟𝑝)
𝑑 Ê/𝑑𝑟𝑝

. We note that unlike the self-consistent
evolution we perform in our worldtube scheme, this approximation
(and its extension in the next paragraph) breaks down at the ISCO:
as 𝑟𝑝 approaches the ISCO, 𝑑 Ê/𝑑𝑟𝑝 vanishes and 𝐺0 diverges.

It will also be useful to compare against the expected 𝜖 depen-
dence beyond leading order in a two-timescale expansion. If the
expansion is carried to higher order in 𝜖 following Refs. [162, 163],
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then Eqs. (3.67) and (3.68) take the post-adiabatic form

𝜙𝑝 =
𝜙0(𝑟𝜔)

𝜖
+ 𝜙1(𝑟𝜔) + 𝜖𝜙2(𝑟𝜔) + O(𝜖2), (3.69)

¤𝜔
𝜔2 = 𝜖𝐺0(𝑟𝜔) + 𝜖2𝐺1(𝑟𝜔) + 𝜖3𝐺2(𝑟𝜔) + O(𝜖4). (3.70)

Here it is more useful to use the invariant orbital radius 𝑟𝜔, but
note that 𝜙0 and 𝐺0 are the same functions as in the adiabatic
approximation, now simply evaluated at 𝑟𝜔 rather than 𝑟𝑝 .

Figure 3.4 shows the orbital radius 𝑟𝑝 extracted from our numerical
simulations for different values of 𝜖 plotted against coordinate
time 𝑡 multiplied by 𝜖. Here, the worldtube radius is fixed to
𝑅0 = 0.8𝑀 and we set 𝑡 to zero at an orbital radius of 𝑟𝑝 = 7.8𝑀
when the scalar self-force was fully active for all simulations. The
rescaling of time by 𝜖 is motivated by Eq. (3.66), which shows
that at adiabatic order the orbital radius is independent of 𝜖 when
treated as a function of 𝜖𝑡. Initially, our results conform to that
behavior: our numerically computed orbital radii lie on top of
each other, which suggests that the orbit is well described by
the adiabatic approximation. The lines start to deviate near the
ISCO, as non-adiabatic effects start to become significant. Once the
particle passes the ISCO at 𝑟𝑝 = 6𝑀, it quickly plunges into the
central black hole. The simulations shown here proceed through
69 orbits for 𝜖 = 0.005 between 𝑟𝑝 = 7.8𝑀 and 𝑟𝑝 = 6𝑀, and
through 4.8 orbits for 𝜖 = 0.08.

Figure 3.5 shows the evolution of the dynamic mass 𝜇 given by
Eq. (3.5), plotted as a fraction of 𝜇0. The mass grows as the particle
inspirals and can increase by ≈ 0.1 per cent of 𝜇0. The inset on the
right plots this fraction logarithmically as 𝜇/𝜇0 − 1, which can be
re-written as −𝜖ΨR/𝑞 using Eq. (3.5). It remains proportional to 𝜖
during the simulation as ΨR is proportional to the scalar charge 𝑞.
This again conforms to the expected behavior at adiabatic order;
beyond adiabatic order, we would expect order-𝜖 corrections to
appear in ΨR as a function of 𝑟𝜔, but these appear to remain small
even when the particle has crossed the ISCO.

Figure 3.6 plots ¤𝜔/𝜔2 against 𝑟𝜔. The solid lines correspond to
simulations with worldtube radius 𝑅0 = 0.8𝑀. The simulations
start at an initial separation between 𝑟0 = 8𝑀 and 𝑟0 = 10𝑀,
depending on the value of 𝜖. Outside the ISCO, the particle is on a
quasi-circular orbit. The geodesic angular acceleration ¤𝜔 is close
to zero in this regime and the adiabaticity parameter is dominated
by the scalar self-force given by the first term of Eq. (3.40). The
adiabaticity parameter roughly doubles for each doubling of 𝜖
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Figure 3.6: The value of the adia-
baticity parameter ¤𝜔/𝜔2 plotted
for a circular inspiral for different
values of 𝜖. The solid lines cor-
respond to a worldtube simula-
tion with initial worldtube radius
𝑅0 = 0.8𝑀. The dashed lines cor-
respond to the adiabatic approxi-
mation given by the first term in
Eq. (3.70), which breaks down at
the ISCO.

here, as predicted by Eq. (3.70). For 𝑟𝑝 < 6𝑀, the scalar charge
plunges into the black hole. The geodesic angular acceleration
starts to dominate over the scalar self-force in this regime so the
solid lines approach a common value independent of 𝜖.

The dashed lines in Fig. 3.6 show the results of the adiabatic
approximation, given by the leading term in Eq. (3.70). We calculate
these results starting at separation 𝑟𝑝 = 10𝑀 until their divergence
at the ISCO. The adiabaticity parameter looks almost identical to
the worldtube scheme and starts to deviate only near the ISCO.

We investigate the transition regime from inspiral to plunge fur-
ther and define the “local convergence order” of the adiabaticity
parameter

𝛼𝜖, 𝑗(𝑟𝜔) =
log(𝑄 𝑗(𝑟𝜔)) − log(𝑄 𝑗−1(𝑟𝜔))

log(𝜖 𝑗) − log(𝜖 𝑗−1)
, (3.71)

where 𝜖 𝑗 are the different values of the inspiral parameter that were
simulated and we have denoted with 𝑄 𝑗 = ¤𝜔 𝑗/𝜔2

𝑗
the correspond-

ing values of the adiabaticity parameter. The quantity 𝛼𝜖 gives the
power in 𝜖 with which the adiabaticity parameter changes between
simulations with different 𝜖. We evaluate 𝛼𝜖 as a function of 𝑟𝜔 to
investigate the different regimes inspiral, transition-to-plunge, and
plunge. Figure 3.7 shows 𝛼𝜖, 𝑗 for the same set of simulations shown
in Fig. 3.6. Early in the inspiral (where 𝑟𝜔 is significantly larger than
𝑟ISCO = 6𝑀), 𝛼𝜖, 𝑗 ≈ 1, since in that regime ¤𝜔/𝜔2 is proportional to
𝜖. Deep inside the plunge (when 𝑟𝜔 ≪ 𝑟ISCO), the particle follows
a plunge geodesic independent of 𝜖, and 𝛼𝜖, 𝑗 approaches zero. The
transition regime in between is broader for larger values of 𝜖. At
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Figure 3.7: The convergence order
𝛼𝜖 of the adiabaticity parameter
¤𝜔/𝜔2 between simulations of ad-
jacent 𝜖. The convergence order
is close to one during the early
inspiral on the right, where ¤𝜔/𝜔2

is proportional to 𝜖 and close to
zero during the final plunge on
the left, where it is independent
of 𝜖. The width of this transition
grows with larger values of 𝜖. The
inset on the left shows the same
plot with the x-axis rescaled by a
factor of 𝜖−2/5 around 𝑟ISCO = 6𝑀.
The curves now collapse, suggest-
ing that the width of the transition
regime scales as 𝜖2/5.

the ISCO, 𝛼𝜖, 𝑗 ≈ 3/5, in line with the theoretical prediction [164]; [164]: Compère et al. (2022),
Asymptotically matched quasi-
circular inspiral and transition-
to-plunge in the small mass ratio
expansion

see, for example, Eq. (25) of Ref. [125].

[125]: Albertini et al. (2022), Com-
paring second-order gravitational
self-force, numerical relativity, and
effective one body waveforms from
inspiralling, quasicircular, and non-
spinning black hole binaries

We expect the width of this interval in the transition regime to
scale as 𝜖2/5 [165]. To check this, we rescale the 𝑥-axis around the

[165]: Ori et al. (2000), The Tran-
sition from inspiral to plunge for a
compact body in a circular equato-
rial orbit around a massive, spinning
black hole

ISCO by a factor of 𝜖−2/5 as shown in the inset of Fig. 3.7. Now
the values of 𝛼𝜖 coincide between the different simulations and
the width of the transition region appears independent of 𝜖 as
expected.

Let us now investigate the deviations of our worldtube inspiral
from the adiabatic approximation in more detail. We explore the
effect of higher-order terms by considering the 𝜖 dependence of
the orbital phase accumulated during the inspiral. We define 𝜙tot
as the total phase covered between the frequencies corresponding
to 𝑟(0)𝜔 = 7.8𝑀 and 𝑟(1)𝜔 = 6.8𝑀. We consider an expansion of the
form predicted by Eq. (3.69),

𝜖𝜙tot = 𝑎 + 𝑏𝜖 + 𝑐𝜖2 + . . . (3.72)

Figure 3.8 shows 𝜖𝜙tot plotted for a range of 𝜖 using the adiabatic
approximation (marked by green triangles), as well as for simula-
tions with initial worldtube radius 𝑅0 = 0.8𝑀 (blue circles) and
𝑅0 = 0.4𝑀 (red crosses). Each marker corresponds to a separate
simulation. Also plotted is a cubic fit for each worldtube size and
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Figure 3.8: The total phase 𝜙tot
covered between the two angu-
lar velocities corresponding to
𝑟
(0)
𝜔 = 7.8𝑀 and 𝑟(1)𝜔 = 6.8𝑀, mul-

tiplied by 𝜖. Each marker repre-
sents a separate simulation. The
blue dots correspond to simula-
tions with initial worldtube radius
𝑅0 = 0.8𝑀, the red crosses corre-
spond to 𝑅0 = 0.4𝑀. A cubic fit is
shown for each worldtube radius
as well. The green triangles cor-
respond to the adiabatic approx-
imation which only captures the
leading order term of the scalar
self-force. A linear fit is shown as
well.

a linear fit for the adiabatic approximation given by:

𝑅0 = 0.8𝑀 : 𝜖𝜙tot = 1.6516 + 0.184𝜖 + 8.49𝜖2 − 36.4𝜖3,

𝑅0 = 0.4𝑀 : 𝜖𝜙tot = 1.6522 + 0.195𝜖 + 8.20𝜖2 − 34.4𝜖3,

adiabatic : 𝜖𝜙tot = 1.6527 − 4.3 × 10−7𝜖.

The bottom panel displays the residuals of each fit.

The adiabatic approximation only resolves the leading order term
in 𝜖 given by the constant coefficient 𝑎, whereas the worldtube
simulations are sensitive to all powers of 𝜖. It is therefore unclear
which order polynomial should be used to fit our simulations.
A higher-order polynomial will always have lower residuals but
will start to overfit the data at some order. A low-order fit will
absorb higher-order physical effects into the low-order coefficients,
skewing their values.

We choose to fit a cubic polynomial here, as the residuals start
to look more or less unstructured at this point. A brief Bayesian
analysis confirmed that a cubic fit has the highest evidence of
all orders. The coefficients of the fit depend on the choice of the
arbitrary frequencies 𝑟(0)𝜔 and 𝑟

(1)
𝜔 between which the phase is

covered. We analyze the results here for 𝑟(0)𝜔 = 7.8𝑀 and 𝑟
(1)
𝜔 =

6.8𝑀, but our general conclusions hold for all frequency intervals
examined.
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The coefficient 𝑎 corresponds to the difference 𝜙0(𝑟(1)𝜔 ) − 𝜙0(𝑟(0)𝜔 )
predicted by the adiabatic approximation (3.67). This limit is
approached by the worldtube simulations at the left side of Fig. 3.8
as 𝜖 approaches zero. The cubic fits in Eq. (3.73) demonstrate that
the worldtube simulations extract this value with a relative error
of ∼ 10−4. The smaller worldtube radius 𝑅0 = 0.4𝑀 has a lower
error indicating the expected convergence with worldtube size.

The difference in the simulations with worldtube radius𝑅0 = 0.8𝑀
and 𝑅0 = 0.4𝑀 gives an estimate of the error induced by the finite
size of the worldtube. The top panel of Figure 3.8 shows that
the error remains small for the range of 𝜖 sampled as the points
of the two simulations lie almost on top of each other. This is
reflected by the small difference in the linear and post-adiabatic
coefficients, which suggests that our simulations are able to resolve
such higher-order effects accurately. However, the exact values
of the post-adiabatic coefficients are more uncertain, as our fits
yield values that depend rather strongly on the polynomial order
used for the fit. An accurate extraction of such coefficients would
require many simulations at small 𝜖 and worldtube radii, which are
computationally expensive and beyond the scope of this project.

3.6.2 Convergence with worldtube radius

In the previous chapter, we predicted the (global) converge rates
𝛼 with worldtube radius 𝑅 of the numerical field ΨN, the regular
field ΨR and its derivatives 𝜕𝑖ΨR which we have summarized
in Eqs. (3.14)–(3.16). These scaling relations were confirmed for
circular geodesic orbits with radius 𝑟0 = 5𝑀. The predicted rates
are, however, valid for arbitrarily accelerated orbits and a correct
generalization of the worldtube scheme should show the same
behavior.

We investigate convergence with worldtube radius by running a
set of simulations with 𝑅0 varying between 3.2𝑀 and 0.2𝑀. As no
analytical solutions or comparable codes exist to our knowledge,
we choose the evolution with smallest initial worldtube radius
0.2𝑀 as a reference solution and compute errors with respect to
it. The initial orbital radius is set to 𝑟0 = 8𝑀 for each simulation
and we compute the second iteration of the acceleration ¥𝑥 𝑖

𝑝(2) at
each time step. The turn-on timescale is fixed to 𝜎 = 500𝑀. The
puncture field is computed with the acceleration terms according
to Eq. (3.58).
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Figure 3.9: Top panel: The relative
error of the regular field ΨR at
the position of the charge com-
pared to a reference solution of
small worldtube radius. The er-
ror is computed for fixed angular
velocities. Each line represents a
simulation with different initial
worldtube radius. The error re-
mains constant during the inspi-
ral as the worldtube is shrunk at
a rate that compensates the in-
creasing error at smaller orbital
radii. Bottom panel: The local con-
vergence order between simula-
tions of neighboring worldtube
radii. It continually exceeds the ex-
pected convergence rate of 𝛼 = 2.

Regular field

We denote the reference solution of the regular field at the position
of the particle as ΨR

ref(𝜔) to emphasize that we are evaluating it as
a function of the particle’s angular velocity. The relative error of a
simulation at angular velocity 𝜔 is defined as

𝜀(𝜔) =
|ΨR(𝜔) −ΨR

ref(𝜔)|
|ΨR

ref(𝜔)|
. (3.74)

The top panel of Fig. 3.9 shows this relative error 𝜀(𝜔) plotted
against the coordinate time corresponding to the angular velocity
of the reference solution. For all simulations, the error of the
regular fieldΨR at the charge’s position remains constant until the
particle is close to the event horizon. Recall that in all simulations
presented here, we shrink 𝑅(𝑡) according to the power law given
by Eq. (3.25) with exponent 𝛽 = 3/2. The constant error in the
regular field confirms our hypothesis from Sec. 3.3.3 that this
choice compensates the increase in the error of the regular field
ΨR as the orbital radius 𝑟𝑝(𝑡) decreases.

The convergence rate 𝛼 is no longer constant for the inspiralling
orbits, as the simulations do not reach a steady-state solution. We
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Figure 3.10: Top panel: The rela-
tive error of the angular deriva-
tive of the regular field 𝜕𝜙ΨR at
the position of the charge com-
pared to a reference solution of
small worldtube radius. The er-
ror is computed for fixed angular
velocities. Bottom panel: The local
convergence order between simu-
lations of neighboring worldtube
radii.

introduce the local convergence order

𝛼loc, 𝑗(𝜔) =
log(𝜀𝑗(𝜔)) − log(𝜀𝑗−1(𝜔))

log(𝑅0, 𝑗) − log(𝑅0, 𝑗−1)
, (3.75)

where 𝑅0, 𝑗 are the different initial worldtube radii evolved, and
𝜀𝑗 are the corresponding errors. The metric 𝛼loc, 𝑗 gives a “local"
measure of 𝛼 reached between simulations with worldtube radius
𝑅0, 𝑗 and the next smaller worldtube radius 𝑅0, 𝑗−1 and is therefore
less prone to be influenced by zero-crossings or anomalies in the
errors. The bottom panel of Fig. 3.10 shows 𝛼loc(𝜔). The rates are
continually between 2.2 and 2.5 for all worldtube radii up until the
scalar charge is very close to the event horizon. This consistently
exceeds the prediction 𝛼 = 2 from Eq. (3.15).

Angular derivative of regular field

Next, we show the convergence of the error in the angular deriva-
tive of the regular field at the particle’s position 𝜕𝜙ΨR|𝑥 𝑖𝑝 . This
component corresponds to the dissipative part of the scalar self-
force, which dominates the particle’s inspiral rate. Its relative
error against a reference simulation with initial worldtube radius
𝑅0 = 0.2𝑀 is depicted in the top panel of Fig. 3.10. As before,
data at the same frequency are subtracted from each other at fixed
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angular velocity 𝜔 but plotted against the corresponding time of
the reference simulation.

All simulations show a zero crossing in this error over the course
of the inspiral, appearing later for larger worldtube radii. With the
exception of this crossing, the errors are consistently increasing
over the course of the evolution. This is expected as the worldtube
radius is shrunk according to the power law (3.25) with 𝛽 = 3/2, a
choice that keeps the error in the regular fieldΨR constant. A value
of 𝛽 = 3 would be required to keep the error in the derivatives of
the field constant.

The bottom panel displays the local convergence order 𝛼loc of the
relative error in 𝜕𝜙ΨR|𝑥 𝑖𝑝 . When the scalar self-force is fully turned
on at around 𝑡 = 2500𝑀 at an orbital radius close to 𝑟𝑝 ≈ 8𝑀, the
converge order is around 2 for all simulations. As the errors goes
through zero crossings, the convergence jumps but, at least for
the smaller worldtube radii, appears to settle to a value 𝛼loc ≈ 1.
We suspect that, at larger worldtube radii, higher-order terms still
dominate, which causes the convergence order to be higher than
predicted by Eq. (3.16). As the orbital radius decreases, the terms
stop dominating and we approach the expected convergence order.
The radial and time derivative of the regular field show similar
behavior, but we do not include their analysis here.

Orbital phase

Lastly, we consider the error in the orbital phase 𝜙𝑝 . As the
simulations are already accumulating phase differences while
the self-force is being turned on, we compare phase differences
at fixed angular velocity rather than time. The phase offset 𝛿𝜙
and the accumulated phase error 𝜀(𝜔) with respect to a reference
simulation are defined as

𝛿𝜙 = 𝜙𝑝(𝜔0) − 𝜙𝑝,ref(𝜔0) (3.76)
𝜀(𝜔) = |𝜙𝑝(𝜔) − 𝜙𝑝,ref(𝜔) − 𝛿𝜙 |, (3.77)

where 𝜔0 is an arbitrary angular velocity at which the phase
difference is set to zero, 𝜀(𝜔0) = 0. We choose 𝜔0 = 0.2𝑀−1 here,
which is close to the final passage through the event horizon of
the particle.

The phase differences are shown in the top panel of Fig. 3.11 plotted
against the coordinate time corresponding to the angular velocity of
the reference simulation. The entire inspiral covered about 41 orbits
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Figure 3.11: Top panel: The accu-
mulated phase error of the orbit
compared to a reference solution
of small worldtube radius. The
phase difference is set to zero at an
angular velocity of 𝜔0 = 0.2𝑀−1

corresponding to the right end of
the figure. Bottom panel: The local
convergence order between simu-
lations of neighboring worldtube
radii. The zero crossings in the er-
ror skew the convergence orders
for larger worldtube radii.

while the self-force was fully turned on, during which a total phase
error between 0.2 and 1 radians was accumulated. This corresponds
to a relative error of ∼ 10−3. The phase error of the blue line with
the largest initial worldtube radius of 𝑅0 = 3.2𝑀 shows a zero
crossing in the orbit as well as signs of some residual eccentricity.
The orange line with initial worldtube radius 𝑅0 = 1.6𝑀 also
appears to approach a zero crossing towards the start of the
simulation.

The bottom panel of Fig. 3.11 shows the local convergence order 𝛼loc.
We expect that the phase error is dominated by the dissipative part
of the scalar self-force driven by 𝜕𝜙ΨR|𝑥 𝑖𝑝 and should therefore
display the same convergence behavior of 𝛼 = 1. The evolution
with initial worldtube radius 𝑅0 = 0.4𝑀 shown by the red line
supports this with a local convergence order slightly larger than 1
for the entire inspiral. The zero crossings of the error in the other
simulations make the analysis more difficult but the convergence
order for the slightly larger initial worldtube size 𝑅0 = 0.8𝑀
appears to approach 𝛼loc ≈ 1 towards the end of the simulation.

3.6.3 Effect of acceleration terms

In the previous section, we showed that the iterative scheme
derived in Sec. 3.5.1 attains at least the same convergence orders
predicted in Eqs. (3.15) and (3.16) for a scalar charge inspiralling
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Figure 3.12: Top panel: The rela-
tive error of the regular field ΨR

at the position of the charge com-
pared to a reference solution of
small worldtube radius when not
including the acceleration terms
in the puncture field. Bottom panel:
The local convergence order be-
tween simulations of neighbor-
ing worldtube radii. This figure is
very similar to Fig. 3.9 indicating
the acceleration terms do not af-
fect the convergence rate of ΨR.
However, they change the value
to which the regular fieldΨR con-
verges by about 3 per cent.

under the influence of the scalar self-force. These simulations
include acceleration terms in the computation of the puncture field,
and we explain our method of calculating them in Sec. 3.5.2. Given
the difficulties involved in including the acceleration terms, one
might wonder whether they are indeed needed at the accuracies
reached here. To this end, we repeat the simulations of the previous
section but use Eq. (3.41) to evaluate the puncture field, i.e. we do
not include the acceleration terms. Other than that, the simulations
presented here are identical to those from the last section. The
acceleration is calculated up to the second iteration ¥𝑥 𝑖

𝑝(2) and the
initial worldtube radius 𝑅0 is varied between 3.2𝑀 and 0.2𝑀.
The evolution with smallest initial worldtube radius 0.2𝑀 (not
including acceleration terms) is again used as a reference solution
to compute errors with respect to it.

Regular field

The top panel of Fig. 3.12 shows the relative error of the regular
field at a fixed angular velocity as defined in Eq. (3.74). The error
looks almost identical to the equivalent top panel of Fig. 3.9, which
includes the acceleration terms. However, the regular field of the
reference simulations ΨR

ref changes by about 3 per cent throughout
the evolution if these terms are included. The regular field therefore
converges to a different value.
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Figure 3.13: Top panel: The relative
error of the angular derivative of
the regular field 𝜕𝜙ΨR at the po-
sition of the charge compared to a
reference solution of small world-
tube radius. The simulations here
do not include the acceleration
terms. Bottom panel: The local con-
vergence order between simula-
tions of neighboring worldtube
radii. The convergence rate is be-
low the expected value of 𝛼 = 1.
Figure 3.10 shows the same metric
when the acceleration terms are
included.

The bottom panel shows the local convergence order 𝛼loc(𝜔) be-
tween simulations with adjacent worldtube radii. These naturally
also look almost identical and show convergence orders between
2.2 and 2.5, which is consistent with the prediction (3.15). The only
discernible effect of ignoring the acceleration terms are visible
oscillations in the error and convergence rates, which suggests that
the residual eccentricities between the simulations are no longer in
phase. Nevertheless, we can conclude that the acceleration terms
significantly change the value to which the regular field ΨR con-
verges but do not have a visible effect on the convergence rate in
this regime.

Angular derivative of regular field

Next, we explore the effect of the acceleration terms on the angular
derivative of the regular field at the particle’s position, 𝜕𝜙ΨR|𝑥 𝑖𝑝 ,
which is responsible for the dissipative part of the scalar self-force.
Its error is as usual defined with respect to the reference solution
𝜕𝜙ΨR

ref as in Eq. (3.74).

The relative error with respect to coordinate time is plotted in the
top panel of Fig. 3.13. It is 1-2 orders of magnitude larger compared
to the corresponding top panel of Fig. 3.10, where the acceleration
terms were included. The only exception is the largest worldtube
radius, 𝑅0 = 3.2𝑀, which shows a zero crossing at the start of
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Figure 3.14: Top panel: The accu-
mulated phase error of the orbit
compared to a reference solution
of small worldtube radius when
the acceleration terms are not in-
cluded. The phase difference is
set to zero at an angular velocity
of 𝜔0 = 0.2𝑀−1 which, roughly
corresponding to 𝑡 ≈ 7100𝑀.
Bottom panel: The local conver-
gence order between simulations
of neighboring worldtube radii.
Figure 3.11 shows results for the
same runs with acceleration terms
included which have lower errors
and higher convergence rates.

the simulation. For the other evolutions, decreasing the worldtube
radius appears to slightly decrease the relative error in 𝜕𝜙ΨR|𝑥 𝑖𝑝 .
The local convergence rate 𝛼loc depicted in the bottom panel reveals
that convergence is consistently lower than the predicted rate of
𝛼 = 1.

The acceleration terms therefore appear to be essential for correctly
computing the angular derivative of the regular field 𝜕𝜙ΨR|𝑥 𝑖𝑝 . As
this component drives the inspiral of the particle, we expect that
the particle’s orbit to be also significantly affected.

This behavior roughly conforms with our theoretical expectation.
Omitting the acceleration terms amounts to neglecting a term of or-
der 𝜖𝑅0 in the puncture and 𝜖𝑅−1 in the derivative of the puncture,
inducing errors of those orders in ΨR and 𝜕𝛼ΨR. Therefore, when
𝑅 → 0, ΨR will converge but have a finite error of order 𝜖, while
𝜕𝛼ΨR will actually diverge as 𝑅−1; the fact that we find similar
convergence for ΨR and slow convergence for 𝜕𝛼ΨR (rather than
divergence) is likely due to the small value of 𝜖 suppressing the
effect.

Orbital phase

Finally, we explore how the acceleration terms affect the particle’s
orbital phase 𝜙(𝑡). We measure the effect with the accumulated
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phase error 𝜀 defined in Eq. (3.76) which zeros the phase difference
at an angular velocity 𝜔0 = 0.2𝑀−1. The top panel of Fig. 3.14
shows 𝜀 plotted against coordinate time corresponding to the
angular velocity of the reference simulation. When compared to
the corresponding top panel of Fig. 3.11, the accumulated phase
difference is about an order of magnitude higher when the acceler-
ation terms are omitted. While a lower worldtube radius in general
still reduces the total phase difference, a comparison of the bottom
panels of Fig. 3.11 and 3.14 reveals that the local convergence order
is consistently about half an order higher when acceleration terms
are included.

3.6.4 Convergence of the iterative scheme

In Sec. 3.5.1 we presented an iterative scheme that addresses the
implicit form of the particle’s equation of motion (3.40) under the
influence of the scalar self-force. We check the convergence with
iterations by running a set of simulations with 𝑘 = 2, 3, 5 and 7
iterations of the acceleration ¥𝑥 𝑖

𝑝(𝑘), and then use the simulation
with 7 iterations as a reference solution to estimate errors. We
fix the initial worldtube radius to 𝑅0 = 0.8𝑀 and the inspiral
parameter to 𝜖 = 0.01. The acceleration terms are included and
the turn-on timescale is set to 𝜎 = 1000𝑀 in these runs.

Figure 3.15 shows the relative error in the angular derivative of
the regular field 𝜕𝜙ΨR at the position of the particle for 2, 3 and
5 iterations, respectively. The error is computed analogously to
Eq. (3.74), which compares the value at the same orbital angular
velocity 𝜔 of the orbit against the reference value 𝜕𝜙ΨR

(7). The
simulation with 2 iterations shows a constant relative error of
∼ 10−5 until the particle is very close to the horizon. This justifies
our choice of using two iterations when analyzing the convergence
with worldtube radius 𝑅0 in section 3.6.2 because the worldtube
always induces an error at least an order of magnitude larger.

We expect that each additional iteration adds a correction that is a
factor of 𝜖 smaller than the previous one. This is demonstrated by
the orange line, which used 3 iterations and shows an error two
order of magnitudes smaller ∼ 10−7. When using 5 iterations, the
additional corrections get so small that the finite resolution of the
DG grid causes the error to be fairly noisy. However, a majority
of the simulation still shows an error of ∼ 10−11, which is four
orders of magnitude lower than with 3 iterations, as expected. For
larger 𝜖, convergence with the iterations 𝑘 is slower so that several
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Figure 3.15: The relative error in
the angular derivative of the reg-
ular field 𝜕𝜙ΨR when using dif-
ferent number of iterations com-
pared to using seven iterations.
The error decreases by a factor of
𝜖 = 0.01 with each iteration, as ex-
pected. The green curve is noisy
due to the finite resolution of the
DG evolution.

iterations were used in Sec. 3.6.1 where 𝜖 was set as high as 0.08.

3.7 Conclusions and outlook

In this work, we continue to explore a new approach to simulating
intermediate mass-ratio binary black holes in numerical relativity.
The method works by excising a worldtube much larger than
the smaller object from an evolution domain and employing a
perturbative solution inside this region. The perturbative solution
is calibrated from the evolution outside the excision sphere and in
turn provides boundary conditions to it.

In the previous chapter, we implemented this scheme for a scalar
charge on a circular geodesic orbit using SpECTRE, a numerical
relativity code that employs a DG method to evolve the Klein-
Gordon equation in 3+1 dimensions. Here we extend the scheme to
include the effect of radiative back-reaction on the charge, known
as the scalar self-force.

We construct series of time-dependent maps that allow the world-
tube to track the particle’s motion on generic equatorial orbits
along with the rest of the grid. Then, we derive a puncture field
that is valid for generically accelerated orbits. Finally, we show
that the particle’s acceleration under the scalar self-force is given
in implicit form and construct an iterative scheme to address this
issue.
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The scheme is tested with a set of quasi-circular inspirals for
different values of the inspiral parameter 𝜖, the worldtube radius 𝑅
and number of iterations 𝑘 used in solving the implicit equation for
the self-force. We compare the results to an adiabatic approximation
and show that we not only resolve effects at leading order in
𝜖 but also get important contributions from higher orders. We
demonstrate that the regular field at the position of the particle
and its derivatives converge with the worldtube radius 𝑅 at the
theoretically predicted rates. At last, we show that the iterative
scheme converges rapidly.

In this work, we have restricted ourselves to expansion order
𝑛 = 1 in coordinate distance and have shown that the resulting
simulations can be run with high accuracy within a day. The
inclusion of second order 𝑛 = 2, as implemented for circular orbits
in the previous chapter, would greatly speed up simulations as
a much larger worldtube radius can be used to achieve the same
accuracy. Our previous work also indicates that the next order
would increase the accuracy of the scheme by up to two orders
of magnitude at the same worldtube radius. An implementation
would require the derivation of the puncture field at the next
order as well as adjusting the iterative scheme to include these
higher-order terms. Both additions should be straightforward if
tedious, and we leave them to future work.

While only quasi-circular orbits were presented in this work, our
method is applicable for generic bound orbits. In the next chapter,
we examine the effects of the scalar self-force on eccentric orbits
and hyperbolic encounters during a self-consistent evolution.

Other avenues for future work include the extraction of multipo-
lar energy-momentum fluxes in scalar-field radiation to infinity
and down the event horizon, which would allow us to check flux
balance laws. We currently find that the finite size of our Cauchy
domain limits the accuracy at which these quantities can be ex-
tracted. This difficulty could be mitigated through a procedure
of Cauchy-Characteristic extraction [166] or Cauchy-characteristic [166]: Moxon et al. (2023), SpEC-

TRE Cauchy-characteristic evolution
system for rapid, precise waveform
extraction

matching [167], in order to propagate the scalar field to null infin-

[167]: Ma et al. (2023), Fully rel-
ativistic three-dimensional Cauchy-
characteristic matching

ity.



Self-consistent evolution on
eccentric orbits and

hyperbolic trajectories 4
This chapter considers the self-consistent evolution of a scalar
charge in Schwarzschild spacetime on eccentric and hyperbolic
trajectories.

4.1 Introduction

The dynamics of a scalar charge moving across Schwarzschild
spacetime is a well-studied toy model for the fully nonlinear
problem of intermediate/extreme mass-ratio inspirals. However,
almost all studies only consider the geodesic evolution of the
charge and ignore the effects of the scalar field’s backreaction
onto the particle’s orbit, known as the scalar self-force [142, 168,
169]. Works that do consider this effect employ approximations [142]: Diaz-Rivera et al. (2004),

Scalar field self-force effects on or-
bits about a Schwarzschild black hole
[168]: Warburton et al. (2010), Self
force on a scalar charge in Kerr space-
time: circular equatorial orbits
[169]: Barack et al. (2022), Self-force
correction to the deflection angle in
black-hole scattering: A scalar charge
toy model

such as two-timescale expansions driven by adiabatic fluxes [170,
171]. However, these methods ignore conservative effects [172] and

[170]: Drasco et al. (2005), Comput-
ing inspirals in Kerr in the adiabatic
regime. I. The Scalar case
[171]: Mino et al. (2008), Two-
timescale adiabatic expansion of a
scalar field model
[172]: Pound et al. (2005), Limita-
tions of the adiabatic approximation
to the gravitational self-force

become inaccurate for larger values of the inspiral parameter 𝜖.
In addition, they are not able to resolve the transition-to-plunge,
plunge or ringdown regime of the evolution. To our knowledge,
only one attempt at a self-consistent evolution has previously been
explored in [149]; however, the code has low accuracy and omits

[149]: Diener et al. (2012), Self-
consistent orbital evolution of a par-
ticle around a Schwarzschild black
hole

the "acceleration terms" of the puncture field which are essential
for an accurate evolution, as explored in Sec. 3.6.3.

In the previous chapter, we presented a fully self-consistent evo-
lution algorithm based on the worldtube excision method. Here,
the scheme is generalized to eccentric orbits as well as hyperbolic
encounters. We find that our method is able to handle highly ec-
centric orbits up to 𝑒 ≈ 0.9 through plunge, merger and ringdown
as well as hyperbolic encounters with large scattering angles.

The chapter is structured as follows. In Section 4.2, we explore the
adjustments made to the code necessary for the evolution of non-
quasi-circular orbits. Next, we present a series of eccentric orbits in
Section 4.3 and explore the effect of varying the inspiral parameter
𝜖. In Section 4.4, we consider a set of hyperbolic trajectories and
show how the scalar self-force alters the scattering angle and can
lead to the direct capture of the charge. Lastly, we summarize our
results and present some future projects in Section 4.5.
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4.2 Methods

In Chapter 3, we developed an algorithm for the self-consistent
evolution of a point charge, including the derivation of a puncture
field for generic orbits and the construction of an iterative scheme
that can evaluate the equation of motion (3.2) to arbitrary precision.
The method was constructed with such generality that it can readily
be extended to eccentric orbits and hyperbolic encounters by
adjusting the computational domain and changing the prescription
used to dynamically shrink the worldtube.

4.2.1 Worldtube radius adjustment

We originally argued that the worldtube radius 𝑅 should grow
with the orbital radius according to a power law 𝑅(𝑡) ∝ 𝑟3/2(𝑡),
as this keeps the error in the regular field ΨR constant. However,
for highly eccentric orbits and scattering encounters, the varia-
tions in orbital radius can cause the worldtube radius to become
prohibitively large. In addition, the simulation does not gain any
speed for worldtube radii larger than 3𝑀 as the CFL criterion
is no longer limited by the grid spacing near the worldtube. We
therefore employ a smoothly broken power law that allows us to
limit the growth of the excision sphere

0 20 40
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Figure 4.1: A plot of Eq. (4.1) for
𝑅ISCO = 0.4𝑀 and𝑅∞ = 3𝑀. The
worldtube radius does not grow
indefinitely but asymptotically ap-
proaches a maximum value.
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. (4.1)

This prescription ensures that the worldtube radius will grow
according to a power law 𝑅(𝑡) ∝ 𝑟𝛼1(𝑡) in the region 𝑟 ≪ 𝑟𝑏 and
according to 𝑅(𝑡) ∝ 𝑟𝛼2(𝑡) for 𝑟 ≫ 𝑟𝑏 ; the parameter Δ determines
the width of the transition region with a larger value ofΔ leading to
a more gradual transition. We choose 𝛼1 = 3/2, 𝛼2 = 0 so that the
worldtube radius asymptotically approaches a constant value. We
then specify the worldtube radius at the ISCO 𝑅ISCO and at infinity
𝑅∞, and determine corresponding values for the amplitude 𝐴 and
the transition radius 𝑟𝑏 using a numerical root search. Δ is set to
0.05 for all simulations presented here. A plot of this function is
shown in Fig. 4.1.



4 Self-consistent evolution on eccentric orbits and hyperbolic trajectories 113

4.2.2 Additional adjustments

The large variation in the orbital radius also produces a challenge
for the DG domain itself. As the excision sphere always tracks the
particle, the time dependent maps explored in Sec. 3.3 will stretch
and compress the grid, changing the numerical resolution through-
out the domain for different phases of the orbit. In particular, the
grid near the worldtube will be significantly stretched at large
orbital separations. We found that this does not pose problems for
eccentric orbits and hyperbolic trajectories as the large worldtube
radius in these regions ensures that there are no steep gradients
to be resolved. The numerical error was always largest for the
smallest orbital radii which we already explored in Chapter 3.
Because of these considerations, the new trajectories simulated
here can be accommodated by slightly adjusting the initial, fixed
polynomial order in the DG elements to account for the dynamic
changes in the grid spacing.

The self-consistent evolution requires several additional param-
eters to be set, some of which do not have obvious choices for
eccentric and hyperbolic trajectories. We therefore re-run a sample
of the evolutions, changing one of these parameters at a time,
including the worldtube radius, the numerical resolution and the
number of iterations to compute the self-force. This allows us to
calculate the error induced by each of these parameters to ensure
that the worldtube error always remains dominant.

4.2.3 Osculating geodesics

The Schwarzschild spacetime admits several Killing vectors. In
Kerr-Schild coordinates, the time-like Killing vector reflecting the
metric’s time symmetry reads 𝜉

𝜇
𝑡 = 𝛿

𝜇
𝑡 and a spacelike Killing

vector is given by 𝜉
𝜇
𝜙 = (0,−𝑦, 𝑥, 0), representing the rotational

symmetry around the z-axis. These vectors define two constants
of motion which are conserved along geodesics: the energy and
angular momentum per unit mass

𝐸 = 𝑔𝜇𝜈𝑢
𝜇𝜉𝜈𝑡 , (4.2)

𝐿 = 𝑔𝜇𝜈𝑢
𝜇𝜉𝜈𝜙 . (4.3)

For eccentric orbits, these can be converted to an apoapsis 𝑟𝑎 and
periapsis radius 𝑟𝑝 by considering the roots of radial Schwarzschild
geodesics given by a cubic polynomial, see e.g. [173]. The radii can [173]: Hughes (2024), Parameter-

izing black hole orbits for adiabatic
inspiral
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then be used to compute the semi-latus rectum and the eccentric-
ity

𝑝 =
2𝑟𝑎𝑟𝑝
𝑟𝑎 + 𝑟𝑝

, (4.4)

𝑒 =
𝑟𝑎 − 𝑟𝑝
𝑟𝑎 + 𝑟𝑝

. (4.5)

All of these quantities are only conserved along geodesics and
will evolve once the scalar self-force is turned on. However, at any
point in time, we can still define a geodesic using the instantaneous
position and velocity of the scalar charge. This is known as an
osculating geodesic where the name indicates that it only touches
the particle’s worldline at this point. By defining a geodesic for
every point of time, it is possible to consider the evolution of
constants of geodesic motion including the energy 𝐸, the angular
momentum 𝐿, the semi-latus rectum 𝑝 and the eccentricity 𝑒.

For scattering trajectories, the semi-latus rectum is no longer
defined. Instead, a more convenient choice of parameters are
given by the velocity of the particle at infinity 𝑣∞ and the impact
parameter 𝑏. In Schwarzschild spacetime, these are related to the
energy and angular momentum through (e.g. [169]) [169]: Barack et al. (2022), Self-force

correction to the deflection angle in
black-hole scattering: A scalar charge
toy model

𝑣2
∞ = 1 − 𝐸2, (4.6)

𝑏 =
𝐿√

𝐸2 − 1
. (4.7)

4.3 Eccentric orbits

As usual, we evolve the scalar charge for a few orbits on a geodesic
orbit to build up initial data for the self-consistent evolution. The
orbital time period of this geodesic is computed by numerically
evaluating the integral (see e.g. [13]) [13]: Misner et al. (1973), Gravita-

tion

𝑇 = 2
∫ 𝑟𝑎

𝑟𝑝

(
(1 − 2/𝑟)

√
1 − (1 − 2/𝑟)(1 + 𝐿2/𝑟2)/𝐸2

)−1
𝑑𝑟. (4.8)

In the last chapter on quasi-circular inspirals, the scalar self force
was smoothly turned on over several orbits using a transition
function (3.60) to avoid inducing residual eccentricity in the orbit.
This is no longer necessary when considering eccentric orbits.
Instead, we turn on the self-force smoothly using Eq. (3.60) during



4 Self-consistent evolution on eccentric orbits and hyperbolic trajectories 115

an apoapsis passage where the self-force is expected to be insignif-
icantly small. The parameter 𝜎 which dictates the turn-on time
scale is set to 0.2𝑇. We found that turning on the scalar-force after
four radial periods is sufficient to provide accurate initial data for
the evolution; the difference from using more orbits was much
lower than the error induced by the worldtube.

The top panel of Fig. 4.4 shows the orbit of a typical evolution.
Here, the inspiral parameter is set to 𝜖 = 0.01 and the initial
geodesic has apoapsis 30𝑀 and eccentricity 0.6. The worldtube
radius is set to 𝑅∞ = 3𝑀 and 𝑅ISCO = 0.4𝑀. The particle traces
out 92 orbits before it plunges into the central black hole. The
periapsis distance and advance evolve continuously throughout
the simulation, creating an irregular pattern.
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Figure 4.2: The evolution of the
angular velocity 𝑑𝜙

𝑑𝑡
for the simu-

lation shown in Fig. 4.4. The black
dots indicates the location of the
periapses which occurs close to
the maxima of the angular veloc-
ity.

Figure 4.2 shows the evolution of the angular velocity of the
particle 𝑑𝜙

𝑑𝑡
. The quantity carries out one oscillations per orbit,

approximately reaching its minimum at the apoapsis and its
maximum at the periapses. The black dots indicate the location of
the periapsis passages which almost coincides with the maxima
of the angular velocity. Over the course of the evolution, angular
velocity shows an increasing trend before it plunges.

To quantify the evolution of the periapsis advance, we define the
orbit averaged radial Ω𝑟 and angular frequency Ω𝜙. These are
computed by considering the time 𝑇peri (given by the time period
between adjacent black dots in Fig. 4.2) and phase 𝜙peri covered
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between adjacent periapsis passages

Ω𝑟 =
2𝜋
𝑇peri

, (4.9)

Ω𝜙 =
𝜙peri

𝑇peri
. (4.10)

Orbital resonances are determined by the ratio of these two fre-
quencies. Fig. 4.3 shows this ratio Ω𝜙 /Ω𝑟 which describes the
number of angular orbits covered between two periapsis passages.
The initial four points, marked in orange, have a constant value
of ∼ 1.65 corresponding to the value of the initial geodesic. Once
the self-consistent evolution begins, the periapsis distance shrinks
and the particle starts a cover a larger phase with each passage.
Just before the plunge, more than 5𝜋 radians are traversed each
orbit.
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Figure 4.3: The evolution of the
periapsis advance for the orbit
shown in Fig. 4.4. The quantity
Ω𝜙 /Ω𝑟 corresponds to the orbit-
averaged fraction of angular to ra-
dial orbits and is plotted against
the orbital time. The orange mark-
ers correspond to the first four
geodesic orbits. As the evolution
progresses, the particle covers a
larger phase between successive
periapsis passages. During the fi-
nal radial orbit, the charge circles
the central black hole more than
2.5 times.

We analyze the waveform of the evolution by considering the
decomposition of the scalar field into spherical harmonic modes,
given by the expansion

𝑟ΨN(𝑡 , 𝜃, 𝜙)/𝑞 =
∑
𝑙 ,𝑚

Ψ𝑙𝑚(𝑡)𝑌𝑙𝑚(𝜃, 𝜙) (4.11)

at some fixed radius 𝑟. Here, ΨN was rescaled by the extraction
radius 𝑟 to offset the dominant decay of ∼ 1/𝑟. The orthogonality
of the spherical harmonics allows for the modes Ψ𝑙𝑚(𝑡) to be
computed individually by projecting the scalar field ΨN onto
different spherical harmonics on an extraction sphere of fixed
radius 𝑟.



4 Self-consistent evolution on eccentric orbits and hyperbolic trajectories 117

20 10 0 10 20 30
x [M]

30

20

10

0

10

20

30

y 
[M

]

0

2

Ψ
0
0

0.25
0.00
0.25

Ψ
1
1

0.01
0.00
0.01

Ψ
20

20000 21000 22000 23000 24000 25000 26000
(t− r)/M

0.1
0.0
0.1

Ψ
22

Figure 4.4: Top Panel: An eccentric orbit traced out by a scalar charge with inspiral parameter 𝜖 = 0.01. The particle
starts on a geodesic with apoapsis 30𝑀 and eccentricity 0.6. Once the scalar self-force is turned on, the apoapsis and
the eccentricity decay until the particle plunges into the central black hole after ∼ 25000𝑀. Bottom Panel: The waveform
produced by the final 8000𝑀 of this orbit extracted at 𝑟 = 450𝑀. Shown are the spherical harmonic modes Ψ00, Ψ11,
Ψ20 and Ψ22 of the field 𝑟ΨN/𝑞. The part of the waveform highlighted in orange corresponds to the retarded time
where the particle traced out the orange section of its orbit marked the top panel.
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Important waveform modes during the final ∼ 8000𝑀 are shown
in the bottom panel of Figure 4.4, plotted against the retarded
time (𝑡 − 𝑟)/𝑀. Shown are the spherical harmonic modes Ψ00,
Ψ11, Ψ20 and Ψ22 of the field 𝑟ΨN/𝑞 where 𝑟 = 450𝑀 is the
radius of the signal’s extraction sphere. The monopole Ψ00 shows
a single frequency around a constant value reflecting the radial
motion of the particle - for a circular orbit, there would be no
oscillations visible in this mode. The higher modes show more
complex behavior as the orbit now has both a radial and angular
frequency. With larger 𝑚, the amount of structure in the waveform
mode increases as they vary more rapidly in the angular directions.
Note that only modes with an even sum of 𝑙 + 𝑚 are plotted; for
odd values the modes are zero due to the equatorial symmetry
of the system. The orange highlights in the modes indicate the
retarded time during which the particle traced out the orange
section of the orbit shown in the top panel.
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Figure 4.5: Shown is the evolution
of the orbital radius of four sim-
ulations with different values of
𝜖. Initially, all simulations are on
the same geodesic orbit with ec-
centricity 0.5 and apoapsis 20𝑀.
When the scalar force is turned on,
it causes the charge to dissipate
energy at a rate proportional to 𝜖.
As a result, the apoapsis and the
eccentricity start to decay until the
particle plunges into the central
black hole.

Let us now discuss the dependence on the inspiral parameter 𝜖.
Figure 4.5 shows the evolution of the orbital radius with respect to
coordinate time for a series of simulations with different values
of the inspiral parameter 𝜖. All simulations start on the same
initial geodesic with apoapsis 20𝑀, periapsis 6.66𝑀, eccentricity
of 0.5 and semi-latus rectum of 10𝑀. The scalar self-force is
proportional to 𝜖 so that the particle dissipates more energy and
angular momentum each orbit for larger values of 𝜖. As a result,
simulations with larger 𝜖 spiral in faster and cover fewer orbits
before plunging into the central black hole.

The worldtube radius for all simulations depicted here is set to
𝑅∞ = 1.5𝑀 and 𝑅ISCO = 0.2𝑀. We ran each simulation again
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with twice these values. This allows us to use the evolutions
with smaller worldtube radius as a reference solution to compute
errors. The difference in the absolute phase, for instance, compared
at fixed coordinate time was always around 0.01 to 0.1 radians.
The error in the eccentricity defined at fixed semi-latus rectum
was around 0.1 per cent for the simulations presented here. The
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Figure 4.6: Shown is the evolu-
tion of the eccentricity and semi-
latus rectum for the four orbits
shown in Fig. 4.5. All simulations
oscillate about approximately the
same line in the pe-plane. Greater
values of 𝜖 do fewer oscillations
of a larger amplitude as they do
fewer orbits each of which is al-
tered more strongly by the scalar
self-force. The black dashed line
shows the separatrix 𝑝 = 2𝑒 + 6
beyond which geodesic orbits
plunge into the black hole.

evolution of the eccentricity 𝑒 and the semi-latus rectum 𝑝 is
shown in Figure 4.6. The black dashed line shows the separatrix
𝑝 = 2𝑒 + 6 corresponding to the last stable orbit, beyond which
any geodesic plunges. The simulations with different 𝜖 all show
the eccentricity decaying approximately along the same line with
respect to the semi-latus rectum. Oscillations around this line
correspond to 𝑝 and 𝑒 varying over a single orbit: for larger values
of 𝜖 there are fewer oscillations with greater amplitudes as the
energy dissipation each orbit is stronger. Once the particle crosses
the separatrix, the semi-latus rectum 𝑝 is no longer defined.

4.4 Hyperbolic encounters

Our worldtube techniques can also be applied to hyperbolic en-
counters of the scalar charge with a black hole, i.e. trajectories that
start at infinite separation with velocity 𝑣∞ > 0. A problem that
arises here is the generation of initial data for the self-consistent
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evolution. For bound orbits, we have simply used zero initial
data, Ψ(𝑡0, 𝑥 𝑖) = Π(𝑡0, 𝑥 𝑖) = Φ𝑖(𝑡0, 𝑥 𝑖) = 0 and then evolved the
system for a few geodesic orbits so the scalar field could settle to
appropriate values throughout the domain. This is not possible
with scattering trajectories and the evolution should ideally start
with the particle at a very large distance from the central black
hole so that there is sufficient time for a solution to build up in the
domain. This, however, can cause problems with the numerical
grid as the outer boundary has to be shifted far out requiring a
larger domain size with more grid points.

Instead, we pursue a different strategy: at large distances where
interactions with the black hole are small, the puncture field
provides an excellent approximation to the full scalar field in
the vicinity of the particle. We therefore use the zeroth order
puncture field as initial conditions for the numerical domain
which corresponds to Lorentz-boosted, flat spacetime solution, see
Sec. 3.4. We find that this allows us to place the particle at an initial
radius of 𝑟 = 200𝑀 on a geodesic for unbound motion with our
desired asymptotic parameters. Initialization with the puncture
field results in drastically reduced transients which dissipate long
before the periapsis passage when compared to zero initial data.
The self-consistent evolution is turned on when the particle reaches
a separation of 100𝑀 to the black hole with the transition time
𝜎 = 30𝑀 in Eq. (3.60). The outer boundary is placed at 1200𝑀.

We show some representative simulations in Figure 4.7. All these
evolutions start on the same geodesic with velocity at infinity
of 𝑣∞ = 0.1 and impact parameter 𝑏 = 40.21𝑀, just above the
critical value where a geodesic would plunge. The worldtube
radius at infinity is set according to Eq. (4.1) with 𝑅∞ = 3𝑀 and
𝑅ISCO = 0.4𝑀.

The black dashed line shows a geodesic orbit. The particle comes in
from the right and does almost two full orbits before scattering off
to infinity. When the self-consistent evolution is turned on, for the
other three lines, the particle loses energy and angular momentum
during the inspiral which increases the scattering angle. We define
this scattering angle as

𝛿𝜙 = 𝜙𝑝(𝑡 = ∞) − 𝜙𝑝(𝑡 = −∞) − 𝜋 (4.12)

where 𝜙𝑝 is the phase of the orbit as defined in Eq. (3.61). The self-
consistent evolution is only carried out until the particle reaches
separation 𝑟 ≈ 200𝑀 and we integrate the final state of the particle
to 𝑡 = 1010𝑀 using the geodesic equation, neglecting the scalar
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Figure 4.7: Scattering/Capture of a scalar charge around a black hole Top Panel: The black dashed line corresponds to a
geodesic orbit with 𝑣∞ = 0.1 and impact parameter 𝑏 = 40.21𝑀. The other lines start on the same geodesic but include
the effect of the scalar self force with different values of 𝜖. The simulations with 𝜖 = 0.01 (blue, dash-dotted)and
𝜖 = 0.02 (orange, dashed) lose energy and angular momentum as they scatter of the black hole, increasing the scattering
angle. The simulation with 𝜖 = 0.03 loses enough energy to be captured by the black hole and plunges after about 2
orbits. Bottom Panel: The waveform produced by the four scattering simulations extracted at 𝑟 = 950𝑀. Shown are
four spherical harmonic modes of the field 𝑟ΨN/𝑞. The scalar self force visibly changes the waveform of the different
modes for the scattering orbits. The direct capture shows a typical ringdown pattern before all modes decay to zero.
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self-force. We checked that this does not affect the angle to double
precision as long as the particle has traveled further than ≈ 100𝑀
from the black hole, where the self-force has effectively decayed
to zero. The scattering angles are 12.29 radians for the geodesic,
13.08 radians for 𝜖 = 0.01 and 14.85 radians for 𝜖 = 0.02.

Particularly interesting is the simulation with 𝜖 = 0.03 indicated
by the solid green line. Here, the charge loses enough energy to be
captured and plunges into the event horizon. The inset at the top
right shows a zoom-in of the region around the central black hole.
The four geodesics almost look identical for the first orbit but can
be seen to deviate "south" of the black hole as they lose energy at
different rates.

The waveforms these particles produced are depicted in the bottom
panel of Figure 4.7. Again, the modes Ψ00, Ψ11, Ψ20 and Ψ22
defined in Eq. (4.11) are shown with the extraction sphere of
the signal located at a distance of 𝑟 = 950𝑀. The monopole
𝜖 = 0.02 initially has a constant value and slightly decreases
during the scattering before returning to its original value. This
indicates that a significant amount of this mode crosses the event
horizon as the charge scatters off the black hole. For the captured
orbit, the field quickly decays to zero in all modes, showing
a ringdown behavior similar to the eccentric orbits. For higher
modes, the different scattering angles can significantly change the
amplitude of the waveform. For instance, the Ψ11 mode shows
very different amplitudes for the simulations with 𝜖 = 0.01 and
𝜖 = 0.02 following the scattering event. Here, the difference in the
scattering angle of the two events effectively rotates the domain,
changing how the 𝑙 = 1 mode waveform is distributed between
the 𝑚 = 1 and the 𝑚 = −1 mode.

4.5 Conclusions

In the Chapter 3, we presented the self-consistent evolution of a
scalar charge model on quasi-circular inspirals using the worldtube
excision method. In this chapter, we generalized this scheme to
evolve eccentric orbits and hyperbolic encounters. The majority
of the methods, in particular the puncture field and the iterative
scheme, were derived for generic orbits in the previous chapter
and could be carried over directly.

A particular challenge arising from eccentric orbits and hyperbolic
trajectories is the large variation of the orbital radius over the course
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of the simulation. We showed how this could be accommodated
by adapting the resolution of the numerical grid and limiting the
growth of the worldtube radius by controlling it using a smoothly
broken power law.

We presented an example of an eccentric orbit inspiralling for over
25000𝑀 of simulation time and extracted the waveform modes
through inspiral, plunge, merger and ringdown. A series of eccen-
tric orbits with varying inspiral parameter 𝜖 was analyzed. Moving
to hyperbolic trajectories, we considered a scattering geodesic and
showed how the scalar self-force increased the scattering angle
of the simulation and can lead to a direct capture for sufficiently
large 𝜖.

To our knowledge, this presents the first work that considers the self-
consistent evolution of a scalar charge for eccentric or hyperbolic
trajectories. For future work, we plan to compare our model with
geodesic or adiabatic methods that only capture the leading order
term in 𝜖. This would allow us to identify the parameter space
where higher order terms are needed for an accurate evolution. For
eccentric orbits, we want to compare against the code presented in
[174]; for hyperbolic encounters, the geodesic code [169] would be [174]: Warburton et al. (2012), Evo-

lution of inspiral orbits around a
Schwarzschild black hole
[169]: Barack et al. (2022), Self-force
correction to the deflection angle in
black-hole scattering: A scalar charge
toy model

a good candidate to compare scattering angles.
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In this thesis, we presented a method that attempts to accelerate
the evolution of intermediate mass ratio binary black hole simula-
tions in numerical relativity. Classical methods are prohibitively
slow as the small mass ratio introduces a scale invariance to the
computational domain. The tight grid spacing next to the smaller
black hole causes the time step of the evolution to become pro-
hibitively small due to the CFL criterion, greatly increasing the
computational cost. Our worldtube excision method avoids this
problem by excising a large region around the smaller black hole.
Inside this worldtube, a perturbative solution is employed which
is calibrated from the numerical evolution data on the worldtube
boundary. This solution, in turn, provides boundary conditions to
the simulation. A first study of this method was presented in [1], [1]: Dhesi et al. (2021), Worldtube

excision method for intermediate-
mass-ratio inspirals: Scalar-field toy
model

which describes a scalar toy model in 1+1 dimensions.

In Chapter 2, we presented an updated implementation in 3+1
dimension using the SpECTRE numerical relativity code. The code
solves the evolution of a scalar charge on a circular, geodesic orbit
and employs a perturbative solution up to second order in coordi-
nate distance inside the worldtube. We demonstrated the accuracy
of our scheme and showed that the error in various quantities
converges with the worldtube radius as theoretically expected.
The implementation readily scales to thousands of computational
cores due to the parallel nature of SpECTRE.

We generalized this method to include the effect of the scalar self-
force in Chapter 3. In this setup, the equation of motion is given in
an implicit form. To address this, we derived an iterative algorithm
that converges to the particle’s acceleration with arbitrary precision
at each time step. Additionally, we showed how dynamically
adjusting the worldtube radius during the inspiral keeps the error
in the simulation constant as the orbital radius changes. A range of
quasi-circular inspirals was run with different inspiral parameters
𝜖 = 𝑞2/(𝜇𝑀). A comparison with an adiabatic approximation
was shown and we verified that our method correctly resolves
post-adiabatic terms. Finally, we explored how the convergence
rates with respect to the worldtube radius are affected by the scalar
self-force. To our knowledge, this is the first implementation of a
fully self-consistent inspiral under the scalar self-force.

Finally, the self-consistent evolution was extended further to in-
clude eccentric orbits and hyperbolic encounters in Chapter 4.
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After a brief description of the adjustments to the code, we showed
a highly eccentric inspiral that covers over 90 orbital periods. We
explored the evolution of the periapsis advance and extracted
different harmonic modes from the waveform. In the second part,
we presented a series of hyperbolic trajectories where the scalar self
force causes the particle to lose energy and angular momentum,
significantly changing its scattering angle. We gave an example of
how the particle can lose sufficient energy to directly plunge into
the central black hole.

In this thesis, we have treated a scalar toy model where the
nonlinear Einstein equations are replaced by the simpler, linear
Klein-Gordon equation. Our ultimate goal is to apply the worldtube
excision method to binary black holes, particularly IMRIs. Let us
consider such a system consisting of a primary black hole of mass
𝑚1 and a secondary of mass 𝑚2 so that 𝑚1 ≫ 𝑚2. In this scenario,
the worldtube is excised around the secondary black hole. In the
interior, a perturbative solution to the Einstein equations is given
by a Schwarzschild black hole under the influence of the tidal field
of the primary body. Specifically, the solution will be expanded in
the ratio of the distance from the secondary 𝑠 and the characteristic
lengthscale of the tidal field R. In the vicinity of the secondary,
this is equivalent to an expansion in the mass ratio 𝑞. The required
tidally perturbed black hole solutions have been computed up to
fourth order [175, 176]. [175]: Poisson (2005), Metric of a

tidally distorted, nonrotating black
hole
[176]: Poisson et al. (2018), Nonro-
tating black hole in a post-Newtonian
tidal environment II

These solutions contain several parameters which capture the
physical degrees of freedom of the external tidal field and are a
priori unknown. It should be possible to determine the values of
these parameters each time step by matching it to the evolved NR
fields on the worldtube boundary, analogous to the matching of the
regular field in Chapter 2. Once the solution is fully determined, the
worldtube can provide boundary conditions to the NR evolution.
These can likely be constructed completely analogous to the ones
derived for the Klein-Gordon equation in Chapter 2, by considering
the characteristic fields of the Einstein equations.

A particular challenge in the gravitational case comes from the
choice of coordinates. The perturbative solutions are derived in
Eddington-Finkelstein coordinates employing a Regge-Wheeler
gauge. While this makes the expressions very concise, this gauge
is not suitable for numerical evolution and has to be transformed
into a more appropriate system first.
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SpEC and SpECTRE usually employ damped harmonic coordi-
nates for binary black hole simulations [80, 177]. However, the [80]: Lindblom et al. (2006), A New

generalized harmonic evolution sys-
tem
[177]: Lindblom et al. (2009), An
Improved Gauge Driver for the GH
Einstein System

transformation of the tidally perturbed Schwarzschild solution to
this gauge has proven to be prohibitively difficult. In a series of
preliminary test simulations, we found that regular harmonic co-
ordinates are able to sustain a stable evolution of binary black hole
systems until close to the final merger. For the sake of simplicity,
we will therefore start our approach using harmonic coordinates
even though this will likely fail near merger.

The transformation of Eddington-Finkelstein to harmonic coor-
dinates was explored in [178]. Here, the harmonic coordinate [178]: Dhesi (2023), Modelling black

hole binaries in the intermediate-
mass-ratio regime

condition □𝑋𝜇 = 0, where 𝑋𝜇 corresponds to the coordinate
"vector"1, is expanded to the same order as the tidally perturbed

1: The components of 𝑋𝜇 corre-
spond to the four spacetime co-
ordinates but the object does not
mathematically constitute a ten-
sor. The harmonic coordinate con-
dition should therefore be viewed
as four independent scalar equa-
tions.

Schwarzschild solution to yield the forward and backward trans-
formation. The spacetime metric components of a tidally perturbed
black hole in harmonic coordinates are then given as functions
of the unknown physical parameters as well as a set of gauge
parameters introduced by the transformation. Time derivatives of
these parameters also enter the expressions. Our hope is that we
can match each component individually to the evolved fields on the
worldtube boundary by projecting them onto spherical harmonics,
analogous to the scalar charge case presented in Chapter 2. This
continuity condition will yield a system of algebraic-differential
equations that have to be evolved along the evolution. The mo-
tion of the smaller black hole should be governed by a subset of
these equations, yielding an equation of motion for the worldtube
analogous to the scalar self force explored in Chapter 3.
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