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Resumen

Simetrias generalizadas y corrientes de Noether:

Explicamos que si las simetrias generalizadas estan cargadas bajo una simetria glo-
bal continua, entonces dicha simetria no puede ser implementada por una corriente
de Noether. Utilizamos este resultado para volver a derivar el teorema de Weinberg-
Witten en el contexto de la QFT local. Aplicamos estas ideas a distintas teorias con
gravitones mostrando cémo las teorias generales de la gravedad exhiben simetrias de
1-forma emergentes en el IR que estan cargadas bajo el grupo de Poincaré y discutimos
las implicaciones de estos resultados en relacion con el principio de completitud en la
gravedad cudntica. Ademas, si las simetrias generalizadas estan cargadas ante un grupo
continuo, deben estar generadas por clases duales continuas. En este contexto, demos-
tramos que una teoria con una simetria de forma no compacta es necesariamente no
masiva y libre. Por lo tanto, estos modelos no pueden completarse en el UV de manera
interactuante sin romper estas simetrias generalizadas no compactas a una compacta.
Esta ruptura requiere la existencia de operadores cargados que aparecen a una cier-
ta escala de energia. Por otro lado, encontramos modelos interactuantes no triviales
donde la simetria continua actia sobre las clases no locales. Estos tienen anomalias
ABJ, donde vemos que la existencia de simetrias 1-forma cargadas ante la acciéon de
la simetria quiral impiden la existencia una corriente que implemente dicha simetria.
Es decir, la simetria quiral puede entenderse como una simetria U(1) sin corriente de
Noether, que cambia las clases no locales asociadas a la simetria 1-forma. En este caso,
las simetrias generalizadas describen un grupo compacto. Esto nos permite entender
y unificar caracteristicas fundamentales de las teorias anémalas en términos mas con-
vencionales basados en simetrias internas. La compatibilidad del ciclo correspondiente
a las simetrias generalizadas con acciéon no trivial de la simetria quiral requiere la
cuantizacion del coeficiente de la anomalia ABJ, y podemos derivar la existencia de

excitaciones cargadas en el IR de la presencia de la simetria todas las escalas.

Palabras clave: SIMETRIAS GENERALIZADAS, DUALIDAD DE HAAG, CO-
RRIENTES DE NOETHER, GRAVITONES, ANOMALIA ABJ

xi






Abstract

Generalized symmetries and Noether currents:

We explain that if generalized symmetries are charged under a continuous global sym-
metry, then such a symmetry cannot be implemented by a Noether current. We use
this result to re-derive the Weinberg-Witten theorem in the context of local QFT. We
apply these ideas to different theories with gravitons by showing how general theories
of gravity exhibit emergent 1-form symmetries in the IR that are charged under the
Poincaré group and discuss the implications of these results in relation to the com-
pleteness principle in quantum gravity. Furthermore, if the generalized symmetries are
charged under the action of a continuous group, they must be generated by a continuum
of dual classes. In this context, we show that a theory with a noncompact form sym-
metry is necessarily massless and free. Therefore, these models cannot be completed in
the UV in an interacting manner without breaking these generalized noncompact sym-
metries to a compact one. This breaking requires the existence of charged operators
appearing at a certain energy scale. On the other hand, we find non-trivial interacting
models where the continuous symmetry acts on the non local classes. These have ABJ
anomalies, where we see that the existence of charged 1-form symmetries under the
action of the chiral symmetry prevents the existence of a current that implements such
a symmetry. That is, the chiral symmetry can be understood as a U(1) symmetry
without Noether current, which changes the non local classes associated with the 1-
form symmetry. In this case, the generalized symmetries describe a compact group.
This allows us to understand and unify fundamental features of anomalous theories
in more conventional terms based on internal symmetries. The compatibility of the
cycle corresponding to the generalized symmetries with nontrivial action of the chiral
symmetry requires the quantization of the ABJ anomaly coefficient, and we can derive
the existence of charged excitations in the IR from the presence of the symmetry at all

scales.

Keywords: GENERALIZED SYMMETRIES, HAAG DUALITY, NOETHER CUR-
RENTS, GRAVITONS, ABJ ANOMALY
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Capitulo 1

Introduccion

El concepto de simetria desempena un papel central en el estudio de la teoria
cudntica de campos (QFT). Para empezar, la simetria global de Poincaré es un reque-
rimiento minimo para la descripcién de una teoria de particulas relativistas [1]. A su
vez, el estudio de simetrias internas, ya sean exactas o emergentes a bajas energias,
nos ha permitido obtener muchos de los resultados fundamentales que definen el éxito
y aceptacion universal del Modelo Estandar.

Dado un modelo particular, conocer las simetrias siempre es deseable, pero suele
ser una tarea dificil especificar todas ellas. En este contexto, son fundamentales los
teoremas del tipo “no-go” que restringen el espacio de simetrias que puede exhibir una
teoria. Tal vez, el mds famoso de estos teoremas es el de Coleman-Mandula [2], el cual
acota las simetrias posibles de una matriz S. En particular, establece que este grupo
de simetrias no puede ser mas grande que un producto tensorial del grupo de Poincaré
con algin grupo de simetria interno. En otras palabras, prohibe la mezcla entre los
generadores de Poincaré y los de las demés simetrias de la teoria. Posiblemente, la im-
portancia del teorema de Coleman-Mandula se basa en que nos ha ayudado a descartar
distintas versiones previas del modelo estdndar y restringe sus posibles extensiones [3].

No obstante, existen distintos tipos de simetrias, que no son alcanzables por el teore-
ma de Coleman-Mandula. Histéricamente, el ejemplo mas caracteristico de este tipo es
la supersimetria, la cual escapa al teorema debido a que es generada por operadores de
cardcter fermidnico, las llamadas supercargas [1, 5]. Mds aun, recientemente, la nocién
de simetria global se ha ampliado a la de simetrias generalizadas para incluir simetrias
de forma, simetrias no invertibles, entre otras [0]. Hasta que punto estas simetrias
generalizadas son alcanzadas por un teorema “no-go” del tipo Coleman-Mandula es
desconocido hoy en dia.

Dentro de estas simetrias generalizadas, uno de los conceptos que ha recibido mas
atencién es el de simetrias k-forma. Este se remonta a lo expuesto por ‘t Hooft en su

articulo fundacional [7], pero recientemente se ha desarrollado més firmemente en [3].



2 Introduccion

La idea principal es que los operadores de simetria no viven necesariamente en hipersu-
perficies de codimension uno, sino que pueden vivir en hipersuperficies de codimensién
dos/tres/.... Por otra parte, los operadores cargados bajo la simetria no tienen por
qué ser operadores locales: también pueden ser operadores de linea/superficie/. . .. Esta
idea es natural desde el punto de vista de teoria de cuerdas, donde los objetos cargados
no necesariamente son particulas, sino que pueden ser objetos extendidos como bra-
nas de mayor dimension. Sin embargo, este tipo de simetrias también aparecen QFTs
usuales, siendo un ejemplo caracteristico los lazos de Wilson o 't Hooft en las teorias
gauge.

Podriamos decir que una de las motivaciones més importantes detras de la gene-
ralizacion del concepto de simetrias es que el paradigma de Landau [9] se extiende de
forma natural para incluir un zoolégico mucho mayor de teorias fisicas, incluidas las
teorias gauge. Desde una perspectiva més moderna -o de bootstrap- podemos utilizar el
conjunto de simetrias k-forma para caracterizar de manera robusta ciertas propiedades
de una QFT fuera de los regimenes débilmente acoplados. Por lo tanto, la caracte-
rizacion cuidadosa de estas simetrias generalizadas nos permite entender aspectos no
perturbativos.

Otro de los nicleos del entendimiento de las simetrias en QFT es, por supuesto, el
teorema de Noether [10]. Este predice la existencia de una corriente local conservada
cuando una accién es invariante bajo un grupo de simetria continuo. Sin embargo, una
cuestiéon pendiente desde hace tiempo es determinar en qué medida, o bajo qué condi-
ciones este teorema se cumple incluso para simetrias globales usuales. En la mayoria
de los casos esto es asi, y la presencia de una simetria continua global implica la exis-
tencia de una corriente local conservada. Sin embargo, esto no siempre es correcto y
conocemos varios ejemplos de simetrias globales que no pueden ser implementadas por
una corriente de Noether.

Un contraejemplo reconocido es el de la simetria quiral. En ciertas teorias de gauge
como por ejemplo, la electrodinamica cuantica con fermiones no masivos, encontramos
una corriente conservada a nivel clasico para dicha simetria que actia de forma distin-
ta en las dos quiralidades de los fermiones. A nivel cuantico sin embargo la corriente
correspondiente deja de ser conservada, siendo esta la afirmacién estandar de que la
teorfa posee una anomalia Adler-Bell-Jackiw [11, 12]. Aunque este resultado es crucial
para la fisica de particulas, ya que permite describir el decaimiento del pion neutro en
las teoria efectivas de bajas energias de la cromodindmica cudntica, es algo inconve-
niente desde el punto de vista del teorema de Noether. Esto se debe a que, si bien la
conservaciéon de la corriente quiral ya no es valida a nivel cuantico, la accion sigue sien-
do invariante ante dicha simetria. En este sentido, hasta que punto la simetria quiral
se conserva a nivel cudntico y cual es su naturaleza se ha discutido extensivamente en

la literatura, con propuestas que van desde la conservacién de la simetria [11, 13], a



que parte de ella se rompe [11] o incluso que se vuelve no invertible [15, 16].

No obstante, para encontrar contraejemplos del teorema de Noether no necesita-
mos remitirnos exclusivamente a anomalias cuanticas. En efecto, muchos de ellos se
originan a partir de otro teorema “no-go” a priori no relacionado. Este es el teorema
Weinberg-Witten [17] que afirma que las simetrias ante las cuales particulas sin masa
con helicidad mayor o igual a uno estan cargadas no pueden estar generadas por una
corriente de Noether. Tal vez de forma aun mas patoldgica, este teorema incluye una
segunda afirmacion. Esta indica que la presencia de particulas sin masa con helicidades
mayores que uno, prohibe existencia de un tensor de energia-momento. En este sen-
tido, el teorema nos permite comprender la ausencia de ciertas particulas no masivas
como una condicién necesaria para la definicion de una corriente de Noether tanto para
simetrias internas como para simetrias espacio-temporales. En otras palabras, cuando
encontremos particulas no masivas con helicidad mayor o igual a uno en el espectro, es
posible encontrar excepciones del teorema de Noether.

En una direccién diferente, esta ultima parte del teorema parece tener implicacio-
nes directas en la gravedad cudntica. En particular, se interpreta tipicamente como
un obstaculo para definir la gravedad cuantica como una QFT, o equivalentemente a
encontrar una QFT interactuante con un graviton emergente en el IR. Por esta razén,
el teorema de Weinberg-Witten se considera una prueba contundente de que la cuan-
tizacion de la gravedad debe seguir una ruta diferente. Sin embargo, existe un posible
escape para esta conclusion, ya que ain se desconoce si puede existir una QFT inter-
actuante sin tensor de energia-momento. Si tal estructura pudiera existir, atin cabria
contemplar la posibilidad de una realizacion de la gravedad cuantica en QFT.

En el contexto de la gravedad cuantica las simetrias también tienen un rol protagoni-
co. Un teorema popular crucial es la ausencia de simetrias generalizadas en gravedad
cuantica [18, 19]. Recientemente ha habido un creciente interés en tratar de entender
esta idea, y su relacién con la completitud de las cargas eléctricas/magnéticas en el
espectro de cualquier teorfa gauge acoplada a la gravedad [14, 20-22]. Pero la relacién
entre las simetrias generalizadas y la completitud del espectro es a priori una afirma-
cién puramente de QFT, y podemos intentar avanzar desde dicho punto de vista. De
hecho, para QFTs con una dada estructura de simetrias generalizadas, se han cons-
truido ejemplos de este proceso de completitud introduciendo un niimero suficiente de
operadores cargados. Sin embargo, todavia no esta claro qué caracteristicas de baja
energia fuerzan la aparicién de cargas a cierta energia.

Durante esta tesis nuestro objetivo es describir avances en estos frentes y, en par-
ticular, comenzar a delinear un hilo conductor mostrando como todas estas cuestiones
mencionadas anteriormente se relacionan entre si. En el centro de estas ideas encon-
tramos la nocion de simetrias generalizadas. Por ende, en el capitulo 2 comenzaremos

revisando brevemente las propiedades de las simetria generalizadas en QFT. Tomare-



4 Introduccion

mos una formulacion diferente a la estandar de la literatura. Esto sera en términos de
dlgebras de observables asociadas a regiones del espacio-tiempo [22, 23]. El objetivo
principal de dicho capitulo es establecer las convenciones y, lo que es mas importante,
revisar en qué sentido preciso las simetrias generalizadas se relacionan con distintas
asignaciones posibles de algebras para una region del espacio-tiempo.

Una vez desarrollado este nuevo enfoque, es natural preguntarse si podemos apren-
der algo de la interaccién entre las simetrias generalizadas y la gravedad. En esta
direccién, tomaremos un punto de partida conservador. Consideraremos una teoria de
campos efectiva, donde describimos a la gravedad mediante la dindmica de campos de
espin dos en el espacio-tiempo de Minkoswki. Dentro de este contexto, en el capitulo 3,
trabajaremos el escenario mas simple que implica el estudio de las simetrias generaliza-
das asociadas con el graviton de Einstein. Luego, en el capitulo 4 generalizaremos estas
ideas a teorias linealizadas provenientes de términos de mayor curvatura. Un resultado
clave de estos estudios es que las simetrias generalizadas del graviton estan cargadas
bajo simetrias espacio-temporales. Por un lado, esta observacién parece contradecir un
posible teorema Coleman-Mandula para simetrias generalizadas. Por otro, veremos que
proporciona una relacion intrigante entre la interaccién gravitatoria y la fisica de los
fractones.

Motivados por el ejemplo del graviton, en el capitulo 5 buscaremos entender, en un
marco mas general, las consecuencias de que las simetrias generalizadas estén cargadas
ante otro grupo global de simetria de la teoria. En concreto, demostraremos que en
los casos donde encontremos una simetria global continua que pueda transformar a los
operadores no locales asociados a una dada simetria generalizada, no puede existir una
corriente de Noether para dicha simetria global. Veremos que este resultado rederiva vy,
en algunas direcciones, generaliza el teorema Weinberg-Witten desde una perspectiva
diferente, es decir, sin recurrir a la matriz S. Esto es evidente para el caso del graviton
y sus simetrias generalizadas cargadas ante el grupo de Poincaré. Ademas, esta nueva
condicién necesaria para la existencia de una corriente, nos permite comenzar a ca-
racterizar el espacio de QFTs con una simetria global no generada por una corriente
de Noether. Durante este capitulo también describiremos como las simetrias globales
pueden ser implementadas localmente en la ausencia de una corriente.

Dado este resultado, podriamos cuestionar qué tiene de especial este espacio de
teorias. En este sentido, mostramos que si las simetrias de forma asociadas a una
region del espacio-tiempo estéan cargadas bajo una simetria global continua, estas deben
formar a un grupo continuo. Lo mismo debe suceder en la region complementaria. En
el capitulo 6, estudiaremos el caso en el que estos grupos son no compactos. A partir
de un cuidadoso analisis de las restricciones de positividad y la existencia de un punto
fijo UV invariante de escala, demostramos que las teorias con estas simetrias de forma

no compactas deben tener un sector libre y sin masa. Curiosamente, las simetrias de



forma superior no compactas aparecen, a nivel clasico, en formulaciones lagrangianas
de teorias de campos interactuantes que no son renormalizables. Algunos ejemplos
son la electrodindmica neutra, como la electrodinamica no lineal o un fotén acoplado
magnéticamente a un campo de neutrones, y también las teorias efectivas de baja
energia de los modos de Goldstone. Nuestro resultado predice que la completacion UV
de estas teorias debe implicar necesariamente la ruptura de las simetrias generalizadas
no compactas. Dicha ruptura requiere la existencia de operadores cargados a una cierta
escala de energia. Dado que las simetrias de forma estan bien definidas a nivel clésico,
esta obstruccion puede verse como una nueva forma de anomalia cuantica. De otra
manera, podemos entender este resultado como una derivaciéon de parte del principio
de completitud anteriormente mencionado aplicable a estos casos.

Durante el capitulo 7 analizamos el otro caso, en el que las simetrias generalizadas
pueden asociarse a un grupo compacto. El ejemplo fundamental es el de las teorias de
gauge con anomalias quirales. Veremos que en estos casos tenemos una simetria de for-
ma generada por los lazos de Wilson y 't Hooft, donde estos iltimos estan cargados ante
la accién de la simetria quiral. De esta forma, mostraremos como dicha simetria puede
entenderse como una simetria interna U(1) convencional con la tnica particularidad
de que transforma los sectores no locales de la simetria 1-forma. Por ello, no puede ser
implementada por una corriente de Noether. Esto se debe a la existencia de simetrias
generalizadas cargadas ante la accién de la simetria. Mas ain, veremos como la nece-
sidad de compatibilizar los ciclos de la simetria quiral y la simetria generalizada nos
permiten entender la cuantizacion del coeficiente de la anomalia y daremos argumentos
para explicar la correspondencia entre anomalias IR y UV (“anomaly matching”), y la
validez del teorema de Goldstone para estos casos. Es decir, encontramos que la accién
non trivial de la simetria U(1) sobre las clases no locales permite explicar de manera
simple y unificada las caracteristicas mas sobresalientes de las teorias anémalas.

Terminamos en el capitulo 8 con una discusién de otras ideas o conjeturas que
surgieron durante el desarrollo de esta tesis y quedan como caminos de investigacion
hacia el futuro. Esto incluye un posible camino hacia una caracterizacion completa de
las QFT que violan el teorema de Noether, comentarios sobre invariancia de escala
e invariancia conforme, posibles demostraciones/generalizaciones del teorema con el
teorema Coleman-Mandula en términos de fisica local (en lugar de la matriz S), e

intrigantes conexiones con la completacion UV de la teorias con gravitones en el IR.






Capitulo 2
Algebras y regiones en QFT

El propésito principal de este capitulo es presentar algunas definiciones y resultados
que nos seran utiles en esta tesis. En particular, desarrollaremos la nocién de simetrias
generalizadas desde el punto de vista de la teoria algebraica de campos. Como mencio-
namos anteriormente dichas simetrias se manifiestan a partir de la no unicidad en la
asignacion de algebras a regiones de topologia no trivial.

En la seccién 2.1 comenzaremos revisando los axiomas de Wightman y como estos
se traducen al lenguaje de algebras asociadas a regiones. Luego, en la seccién 2.2 explo-
raremos exhaustivamente el problema de asignacién de algebras a regiones en teorias
con simetrias generalizadas. Veremos como dichas simetrias emergen en el contexto
de la teoria algebraica y que propiedades tienen. Finalmente, en la seccién 2.3, com-
pararemos nuestro enfoque con el usualmente presentado en la literatura de simetrias

generalizadas.

2.1. Axiomasy Algebras en QFT

En esta seccién enunciaremos los axiomas de Wightman, entendiéndolos como los
requerimientos minimos apara definir una QFT. Luego, traduciremos dichos axiomas
al lenguaje Haag-Araki, es decir, el de dlgebras asociadas a regiones del espacio tiempo.
Veremos que las propiedades minimas asociadas a estas algebras pueden ser extendidas
y como las simetrias generalizadas emergen generando distintas posibilidades para esta

eleccion.

2.1.1. Axiomas de Wightman

Durante varios momentos de esta tesis buscaremos probar cuestiones formales en
QFT, por eso empezaremos definiendo que entendemos por QFT. Con este propdsito
durante la década del 50 se introdujeron los axiomas de Wightman como requerimientos

minimos. Podemos escribir los postulados fundamentales, siguiendo [1], como

7
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(a)

Supuestos sobre el espacio de Hilbert y grupo de Poincaré: Tenemos
un espacio de Hilbert H que contiene una representacion unitaria del grupo de
Poincaré. En dicho espacio H existe exactamente un estado (unico salvo una
fase constante) conocido como el vacio fisico, que es invariante bajo todos los
elementos del grupo de Poincaré actuando en la representacion correspondiente.
En particular, podemos escribir las traslaciones como U (b) = ¢ donde Py €S un
operador hermitico no acotado que interpretamos como el operador de energia-
momento de la teoria de manera que sus autovalores obedecen las condiciones

espectrales p> > 0y p° > 0.

Supuestos sobre el dominio y la continuidad del campo: Los campos
cuanticos de la teoria son “distribuciones temperadas valuadas en operadores”.
Es decir, para cada funcién de prueba «(z) suave y de decrecimiento mas rapido
que cualquier potencia definida sobre un espacio-tiempo de Minkowski existe
un set de operadores ¢1(), do(), ..., () definidos sobre algiin dominio denso
D € H de la forma

ox(a) = /dDJUOz(:L‘) onz), A=1,2,..,n (2.1)

donde asumimos que el vacio fisico pertenece a D y que tanto las operaciones
del grupo Poincaré como las generadas por los campos mapean elementos de D
en elementos de D. La motivacién fisica detras de esta idea se basa en que una
medicién en un punto requeriria energia infinita. Sin embargo los elementos de
matriz (Wa|py(x)| W) son finitos si ambos estados ¥y, ¥y € D estén caracteriza-
dos por la propiedad de que las amplitudes de probabilidad para configuraciones
de particulas disminuyen suficientemente rapido con el aumento de los momentos
y el nimero de particulas. En este caso el problema es que no podemos multiplicar

trivialmente los operadores de campo en un mismo punto.

Hermiticidad: El conjunto de campos cuanticos de la teoria contiene tanto a los

campos ¢y con A = 1,2, ..., n como a sus conjugados hermiticos gbl, cuyos valores
de expectacién estédn dados por (Wy|oh (2)| W) = (T ]@y(z)][¥y) .

Propiedades de transformaciéon de los campos: Los campos transforman

ante la accién del grupo de Poincaré como
U(B,0)6(a()UH(B,0) = Y 57(5 o (a(ABe +b),  (22)

donde S(f) es una representaciéon matricial finito dimensional de una transfor-

macién de Lorentz determinada por S y b representa una traslacion.
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(e)

Causalidad: Si los soportes compactos de dos funciones de prueba oy y as estan

espacialmente separados, es decir
a1 ()ax(y) =0, Va,y: (z—y)*>0, (2.3)
para cualquier estado en D debe valer alguno de los siguientes

[Da(@1), du(@2)], = da(ar) dulas) £ Pu(as) Pa(ar) =0, (2.4)

y ademas

[oa(ar), ol (az)] . =0. (2.5)

En términos de campos “sin smearing”, podemos simplemente traducir esto para

(z —y)? <0, en la condicién
[gb)\(x)?gbn(y)]i :Oa [QZS)\(I‘),QZSL(y)}i =0. (26)

Time slice axiom: Debe existir una ley dindmica que permita calcular los cam-
pos en un momento arbitrario en términos de los campos en un pequeno intervalo

temporal de la forma
Ops={zeM:|z°—t|<b}. (2.7)

donde denotamos con M toda la variedad sobre la que esta definida la teoria.
Una consecuencia fundamental de este axioma es que podemos recuperar cual-
quier campo de la teorfa a partir los campos ¢, («) si usamos funciones de prueba
a de soporte compacto en O, 5. Es decir, si tomamos combinaciones lineales de
productos de los operadores ¢,(«) es posible aproximar cualquier operador ac-
tuando sobre el espacio de Hilbert H. No existe ningin operador acotado que

conmute con todos los ¢,(«) aparte de los multiplos de la identidad.

Vemos la importancia de estos axiomas evidenciada en la prueba de ciertos teore-

mas que hoy entendemos como centrales en QFT, entre otros destacamos: El teorema

de Reconstruccion que establece que cualquier teoria puede ser reconstruida a partir

de todos los valores de expectacién asociados a productos de n operadores en el vacio;

El teorema espin-estadistica que determina que las particulas espin entero (bosones)

conmutan a distancia espacial mientras que las particulas de espin semi-entero anti-

conmutan; El teorema CPT que establece que toda teoria de campos tiene una simetria

ante una simultanea transformacion de paridad, conjugacién de carga e inversion tem-

poral. Sin embargo, los axiomas no deben entenderse como supuestos rigidos que no

pueden variar, de hecho algunos de los supuestos son bastante técnicos y la idea general
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es que deberian sustituirse por otros mas naturales a medida que se profundice en ellos.

En este contexto, punto técnico destacable de los axiomas es la introduccién de
los campos como distribuciones valuadas en operadores a partir de las funciones de
prueba. Esta idea nos sera ttil, para varias demostraciones a lo largo de estas tesis.
En estos casos, llamaremos a ¢, (a) campos “con smearing” y a las funciones o como
“funciones de smearing”. Sin embargo, por simplicidad cuando sea posible utilizaremos
los campos “sin smearing” ¢,(x). En este sentido, denominaremos a un campo sobre
el que podemos hacer un smearing de manera que satisfaga todos los axiomas “campo
de Wightman”.

2.1.2. Algebras de von Neumann en QFT

Ahora abordaremos estas ideas a partir de unos de los enfoques algebraicos a QFT,
més especificamente la teorfa Haag-Araki [24, 25]. En este contexto, entendemos a los
objetos bésicos de la teorfa, como 4lgebras® de operadores asociadas a regiones espacio-
temporales. La idea intuitiva es que podemos pensar estas dlgebras como laboratorios
asociados a regiones R del espacio-tiempo y de esta manera deben estar formadas a
partir de operadores fisicos, es decir, observables invariantes de gauge. Esto implica
que los elementos del algebra deben satisfacer requerimientos analogos a los axiomas
de Wightman.

Si partimos de campos de Wightman, con pequenios cambios técnicos en la prescrip-
cién axiomatica, se garantiza la existencia de algebras asociadas a los operadores de
campo (véase por ejemplo [20]). En este sentido, podemos revisar uno por uno los axio-
mas que describimos anteriormente y ver que propiedades nos sugieren para algebras

que podemos encontrar en QFT:

(a) Subdlgebras de operadores acotados en el espacio de Hilbert: Debemos
entender las dlgebras asociadas a regiones A(R) como subdalgebras del conjunto de
operadores acotados B(H) del espacio de Hilbert H. Ademas, entre los operadores
acotados de H podemos encontrar a los unitarios de Poincaré U (3, b) que efectiian
las transformaciones de dicho grupo. Asimismo, mantendremos las suposiciones

sobre la existencia del vacio fisico y la positividad de la energia.

(b) Isotonia: La introduccién de la nocién de campos locales nos sugiere la validez

de la propiedad de isotonia

A(Rl) C A(Rg) s VRl CR,. (28)

1Un algebra es un espacio vectorial sobre un cuerpo (en este caso los niimeros complejos) equipado
con una ley de multiplicacién que asocia un producto a cada par del elementos del algebra. Dicho
producto debe ser asociativo, distributivo y debe conmutar con el producto por elementos del cuerpo.
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()

Algebras cerradas ante conjugacion hermitica: Podemos entender la con-
jugacién hermitica sobre las algebras A(R) como una operacién que mapea ele-

mentos del algebra en elementos del algebra. Es decir,

O' € A(R), VYO € A(R). (2.9)

Propiedades de transformacién de las algebras: Los algebras transforman

ante la accién del grupo de Poincaré como
U8, ) ARU(5,b) = A(M(B)R + ). (2.10)

En palabras, las transformaciones de Poincaré trasladan el algebra de una region

al dlgebra de la regién transformada.

Causalidad: Escribimos la causalidad, entendida como conmutaciéon de obser-

vables espacialmente separados, en términos de algebras como
A(R) C AR, (2.11)
donde R’ representa el complemento causal de la regiéon R dado por
R={zeM:(zx—y)?*<0, Vy € R}. (2.12)

v A(R’) es el conmutante de A(R'), es decir, el dlgebra formada por todos los

operadores que conmutan con todos los elementos de A(R')'.
AR ={0 € B(H) : [0,0] =0, YO € A(R)} . (2.13)

Evidentemente, la condicién (2.11) no puede aplicarse directamente a operado-
res fermionicos que anti-conmutan a distancia espacial. Puede modificarse o bien
podemos trabajar con bilineales de fermiones. No consideraremos algebras fer-
miodnicas durante la mayor parte de esta tesis, para un desarrollo de estas ideas

véase [27].

Time slice axiom: Podemos expresar el time slice axiom en términos de algebras

de la siguiente manera

A(O,5) = A(M) . (2.14)

es decir, a partir del dlgebra de un pequeno intervalo temporal O;; podemos

generar el algebra de toda la variedad espacio-temporal M.
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Una consideracién importante que mencionamos brevemente en el punto (a), es que
los operadores de A(R) no solo deben ser operadores en el espacio de Hilbert H sino
que también deben ser acotados. Esto es A(R) C B(H). Dicha condicién es necesaria
para que el dlgebra A(R) sea cerrada ante sumas y productos arbitrarios de operadores.
Esto es debido a que solo los operadores acotados pueden tener dominio sobre todo
el espacio de Hilbert. Dado este contexto, es importante destacar que los campos de
Wightman bosénicos con smearing ¢,(«) en (2.1) no son operadores acotados. Sin
embargo, a partir de ellos podemos definir operadores acotados usando exponenciales
o los proyectores obtenidos a partir de una descomposicién espectral.

Por otro lado, es esperable que las dlgebras A(R) sean cerradas bajo la topologia
débil. En otras palabras, todas las sucesiones débilmente convergentes de operadores
acotados {O,} en A(R) tienen su limite O dentro del algebra. Dicho limite débil se

define como

Ve >0,|Uq) ..., |¥,) € H,
lim O, =0 (débil) < Ing/[(V;](0,, — O)|¥;)| <, (2.15)
1, j=1....msin>ng.

Fisicamente podemos entender esta idea como como que no podemos distinguir los
operadores de la cola de la sucesion de su respectivo limite con una cantidad finita de
experimentos de finita precision. Esta condicién, en combinacién de los puntos (a) y (c)
tiene consecuencias importantes sobre el zooldgico de algebras que podemos encontrar
QFT. Esto es por el teorema del doble conmutante de von Neumann. Dicho teorema
establece que cualquier subélgebra del conjunto de operadores acotados B(H) de un
espacio de Hilbert H que es cerrada ante conjugacién hermitica, es cerrada para la

topologia débil y contiene a la identidad debe satisfacer que
A(R)" = A(R), (2.16)

donde notamos como A(R)” al doble conmutante de A(R), es decir, al conmutante de
A(R)" definido andlogamente a (2.13). Las dlgebras que satisfacen (2.16) se conocen
como “dlgebras de von Neumann”.

Es de esperar que en QFT siempre podamos asignar a cada regién espacio-temporal
un &lgebra de von Neumann de manera que se satisfagan todas las propiedades (a-f)
mencionadas. Estas pueden entenderse como los requerimientos minimos para una for-
mulacion algebraica de la teoria de campos (AQFT). En efecto, dada una teoria definida
de forma algebraica, existe un procedimiento establecido para extraer (o recuperar) sus
campos de Wightman [28-30]. Para una teorfa generada por campos de Wightman este

procedimiento recupera los campos iniciales.
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M

Figura 2.1: Izquierda: Regién espacio-temporal R y su envolvente tipo tiempo E[R]. Por el
“time-like tube theorem” tenemos que A(R) = A(E[R]). Derecha: Otra regién espacio-temporal
R y su dominio de dependencia causal D[R]. Si vale el ‘Time slice axiom local” tendremos
A(R) = A(D[R]). En ambas figura R’ representa el complemento causal de R y R” el doble
complemento causal de R. La direccién vertical representa al tiempo.

En este contexto, es importante mencionar que hay dos principios que afirman que
el algebra de una determinada regién espacio-temporal coincide con el algebra de una
region causalmente completa que la contiene. Las regiones causalmente completa son
regiones iguales a su doble complemento causal R = R”, siendo R” es el complemento
causal de R’ dado por (2.12). El primero de estos principios, es que el dlgebra de R
debe incluir el dlgebra de su envolvente tipo tiempo E[R]. Siendo E[R] el conjunto de
puntos que podemos alcanzar comenzando con una curva de tipo tiempo I' € R y si la
deformamos continuamente a otra curva tipo tiempo ' manteniendo sus puntos finales
fijos. Véase figura izquierda en 2.1. El hecho de que A(R) = A(F[R]) para algebras
como las ya definidas esta asegurado por el “time-like tube theorem” [31-35].

En segundo lugar, una idea natural es que A(R) debe ser la misma que su dominio de
dependencia causal D[R], es decir, A(R) = A(D[R]). Véase figura derecha en 2.1. Esta
idea es una version mas restrictiva del punto (f) conocida como el “Time slice axiom
local”. Observamos que esta condicién no es muy restrictiva, por ejemplo vemos que
se cumple en cualquier teoria con tensor energia-momento bien definido. Sin embargo,
también puede cumplirse en ausencia de este ultimo cuando exista una ecuacion de
movimiento lineal, como es el caso para las teorfas libres de espin > 3/2 [30]. En este
sentido, no es aplicable al caso de los “Generalized Free Fields” que estudiaremos en
el apéndice A.

Motivados por estas dos extensiones, durante esta tesis asumiremos el “Time slice
axiom local” y nos focalizaremos solo en &dlgebras asociadas a regiones causalmente
completas. Esto nos permitira trabajar exclusivamente con regiones espaciales definidas
a tiempo fijo (o mas formalmente con smearing sobre una pequena banda temporal),
en vez de regiones espacio-temporales. Haciendo un abuso de la notaciéon ya utilizada

a partir de ahora notaremos estas regiones espaciales con R y asumiremos

A(R) = A(R") . (2.17)
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Figura 2.2: A partir de las regiones espaciales Ry y Ry podemos generar las dlgebras A(R;) =
A(RY) y A(R1) = A(RY) asociadas a regiones causalmente completas. Ademds, a partir de ellas
podemos generar la regién casualmente completa Ry V Ry = (Ry U R3)”, si vale la aditividad de
las dlgebras a su vez tendremos que A(Ry V Ry) = A(Ry) V A(R3).

Como vimos para el punto (f), también surgen versiones maés fuertes de los puntos
(b) v (e). Una nocién mas restrictiva de la isotonia (2.8) es la aditividad. Esta dltima
propiedad establece que todos los operadores en una regién se generan como productos

de operadores locales dentro de la region. Podemos escribirla como
A(RyV Ry) = A(Ry) V A(Ry) , (2.18)
donde utilizamos el simbolo V para el dominio causal generado por dos regiones
RV Ry = (R URy)". (2.19)
y analogamente V denota el algebra generada por dos conjuntos de operadores
A(R1) V A(R2) = (A(R1) U A(R))" . (2.20)
Por otro lado, para restringir la causalidad (2.11) podemos llevarla a su saturacién
A(R) = AR') . (2.21)

Esta igualdad se denomina dualidad de Haag. Intuitivamente, podriamos creer que
tanto la aditividad como la dualidad Haag deben estar presentes en QFT. Sin embargo,
resulta que este no necesariamente es el caso. Esto proviene de la existencia de opera-
dores que no pueden generarse localmente en R pero que siguen siendo conmutativos
con operadores en R’. Llamaremos a estos operadores “no locales”. La presencia de
operadores no locales, nos permite mas de una eleccion posible para el algebra de una
region. Por lo tanto, veremos que si los incluimos en el algebra de R podemos tener
dualidad de Haag, pero introduciremos una violacién de la aditividad (2.18). Por el
contrario podriamos no incluir ninguno de estos operadores no locales en el algebra y

recuperar la aditividad a expensas de la dualidad de Haag. Veremos que esta tension
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Figura 2.3: Esquema de una regién espacial R arbitraria con topologia no trivial (rojo) y su
complemento causal R’ (gris) sobre una superficie a tiempo fijo. En la teorfa algebraica debemos
asignar dlgebras de von Neumann a cada una de estas regiones. En teorias con simetrias genera-
lizadas estas elecciones pueden no ser tunicas.

entre dualidad y aditividad en algunas estas teorias no puede resolverse sin cambiar el
espectro de la teorfa.?

La idea de que la dualidad de Haag puede ser violada es estandar en la literatura
para teorfas con simetrias globales [27, 37, 38]. La razén es que se pueden formar
observables neutros a partir del producto de operadores locales cargados. Si elegimos
una region R que esté desconectada, de modo que tenga un grupo de homotopia g
no trivial (cuyo complemento causal tiene mp_5 no trivial), entonces la dualidad de
Haag no se cumplird para el algebra neutra debido a la existencia de operadores de
carga-anticarga localizados en diferentes zonas desconectadas. Veremos este ejemplo en
detalle en la seccion 2.2.6.

Ademas, si bien las simetrias globales implican la posibilidad de una ruptura de
la dualidad de Haag para regiones con 7y o mp_s no triviales, observamos que esta
idea puede generalizarse. Esto es a teorias con simetrias generalizadas de tipo k-forma.
Estas simetrias estan caracterizadas por operadores cargados con soporte compacto
sobre superficies k-dimensionales y generadores con soporte compacto sobre superficies
(D—k—1)-dimensionales. En dichos casos veremos la dualidad de Haag puede romperse
para para regiones con grupos de homotopia 7, 0 Tp_x_2 no triviales [22, 23]. Véase
por ejemplo la figura 2.3.

Revisemos el ejemplo mas sencillo. Este es el de una simetria k-forma producida por
una corriente (k + 1)-forma F' conservada en el sentido de que su derivada exterior se
anula dF = 0. A su vez, asumimos que esta corriente F' no puede ser obtenida como la
derivada exterior de un campo observable. En este escenario, podemos integrar F' sobre

una superficie abierta (k + 1)-dimensional ¥4, 1, cuya frontera 03,1 es una superficie

20tra propiedad que podemos asignar a las dlgebras es la propiedad de interseccién, es decir que
A(Ry N Ry) = A(R1) N A(R2). Sin embargo, para cualquier dlgebra universalmente valen las leyes
de de Morgan dadas por (A; V As) = A1 NA, y (R V Ry) = Rj N R5. Estas implican que si
valen la aditividad y la dualidad de Haag, entonces vale la propiedad de interseccién. O bien, si valen
la propiedad de interseccién y la dualidad de Haag, entonces vale la aditividad. En otras palabras,
podemos hablar de aditividad o propiedad de interseccién indistintamente.
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cerrada k-dimensional, de manera obtenemos un operador de flujo no trivial

Ohs,., = /E F, (2.22)
k

con interesantes propiedades topoldgicas. Por un lado, dada la conservacion de la co-
rriente, este operador no depende de la superficie concreta ;.1 que utilicemos para la
integracién. Solo depende de su borde 0%, 1. Esto implica que este tipo de operadores
conmutan con todos los operadores locales fuera de 0%, 1. Detras de esta idea esta el
teorema de Stokes, si el operador local no esta sobre el borde 0%, 1, siempre podemos
elegir una superficie de integracién que no pase por el operador local y que tenga la
mismo borde. Entonces la causalidad asegura la conmutatividad. Por otro lado, dado
que F' no es la derivada exterior de un campo fisico de la teoria, este operador no puede
escribirse como una circulacion sobre el borde en el dlgebra de observables.

La consecuencia de estas dos propiedades es que si consideramos una region espacio-
temporal R que encierra al borde 0¥, y con la misma topologia, el algebra de esta
region contendrd tanto operadores locales como no locales. A saber, los operadores
locales estaran dados por F'y cualquier otro operador que surja de F' multiplicando con
operadores locales en R, mientras, que los operadores no locales estaran representados

por los flujos @5%1 o més formalmente los operadores unitarios acotados
; F
q — J4%ss
a82k+1 =e k+1 S R. (223)

Estos operadores no locales conmutan con todos los operadores locales en R’ por ende
podemos incluirlos (o no) en el algebra de R. Vemos que este ejemplo evidencia una
tension entre la aditividad y la dualidad de Haag en teorias con simetrias generalizadas.
En la préoxima seccion mayoritariamente estudiaremos estas ideas de forma abstracta

y puntualmente en la seccion 2.2.7 elaboraremos sobre el ejemplo de simetrias 1-forma.

2.2. Simetrias (GGeneralizadas y Dualidad de Haag

En esta seccion estudiamos en detalle el rol de las simetrias generalizadas en re-
lacion a la asignacion de dlgebras de von Neumann a regiones de topologia no trivial
desarrollado en [22, 23, 38]. Comenzaremos describiendo detalladamente el origen de
la tensién entre Aditividad y Dualidad de Haag y como las simetrias generalizadas
estan asociadas mas de una posibilidad en la asignacién de algebra a una regién. Lue-
go, estudiaremos las implicaciones de estas ideas incluyendo: como definir clases de
equivalencias de operadores no locales; que las simetrias generalizadas vienen en pa-
res duales; como recuperar dualidad de Haag introduciendo una red de Haag-Dirac;

y como podemos diagnosticar precisamente la completitud del espectro de una teoria.
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También, mostraremos con ejemplos de violaciones de dualidad para regiones de dis-
tinta topologia. En particular estudiaremos primero el ejemplo de simetrias globales
en regiones desconectadas, y luego, el de simetrias 1-forma en regiones con lazos no
contractibles. Para terminar, analizaremos las posibles reglas de fusién de las clases de
equivalencia de operadores no locales en estos dos casos.

En esta seccién, y de hecho en el resto de esta tesis a excepcién del apéndice A,
trabajaremos con regiones espaciales R definidas a tiempo fijo. En estos casos conside-
raremos que las algebras asociadas a estas regiones coinciden con las de su completacion

causal. Esto esta dado formalmente por la condicién (2.17).

2.2.1. Aditividad vs Dualidad de Haag

Comenzamos ahora a describir la clasificacién de los operadores en QFTs con si-
metrias generalizadas que se propuso en [22, 23]. La esencia de la clasificacién reside en
reconocer y distinguir los dos significados diferentes que se suelen asignar a la idea de
localidad. Un sentido de localidad corresponde a la idea de que un operador esta forma-
do por grados de libertad locales. Para cualquier regién R existe un dlgebra intrinseca
asociada a ella, a saber, el “adlgebra aditiva”. Intuitivamente, se trata del algebra gene-
rada por productos arbitrarios de operadores locales (invariantes de gauge) dentro de la
region. Es el dlgebra a la que tendria acceso un observador/laboratorio en dicha regién.
Formalmente, puede definirse de forma autoconsistente como el dlgebra generada por

las algebras de bolas que recubren la regiéon R

A(R) = \/ A(B). (2.24)

{Bi bola ‘UiBi:R}

El otro sentido, o idea, asociado a la localidad es que los operadores asociados a
regiones espacialmente separadas conmutan. Previamente llamamos a esta propiedad
“causalidad”. Una pregunta inmediata es si estas dos nociones de localidad acaban
siendo esencialmente una o no.

Para abordar esta cuestion, primero nos fijamos en una observacion sencilla pero
basica. Si las dlgebras asociadas a bolas satisfacen la causalidad, las algebras aditivas
para cualquier region dada, independientemente de su topologia, satisfacen también la
causalidad por construccion. Sin embargo, para una regiéon R puede haber operadores
a que son causales o locales en el sentido de que conmutan con todos los operadores
en A(R'), pero que no pueden ser generados por operadores locales en R. Estos son
los operadores no locales en R. Tomando un conjunto completo de estos operadores no

locales podemos definir

Amax(R) = (A(R)) = A(R) V {a}, (2.25)
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R/

Figura 2.4: Esquema de la construccién del dlgebra aditiva A(R) como el dlgebra generada
por el dlgebra de bolas B; que podemos usar para cubrir la region R.

En esta situacion, llamamos a A, (R) como “dlgebra maxima”. Ademés, decimos que
la red aditiva de dlgebras A(R), que por definicién satisface la causalidad, no satisface
la dualidad de Haag (2.21). Equivalentemente, los operadores no generados localmente
a violan la dualidad de Haag en la region R. En este tipo de teorias, el primer sentido
de la localidad (relacionado con si los operadores pueden ser generados por campos
locales 0 no) y el segundo sentido (relacionado con la causalidad) difieren en un sentido
fisicamente significativo.

Estos operadores no locales {a} no son algo extrafio. Por ejemplo, para el campo
libre de Maxwell en D = 4, los lazos de Wilson (WL) y t’ Hooft (TL) representan
operadores no locales para regiones tipo anillo. En efecto, veremos que los operadores
{a} resultan desempenar el papel de los operadores cargados y/o el de generadores de
las simetrias generalizadas [¢]. Haremos una comparacién extensiva con la literatura
existente al respecto en la seccién 2.3.

Una suposicion simplificadora que se mantiene de forma bastante general es que
el algebra aditiva, cuando se considera para regiones B topoldgicamente triviales co-
mo bolas, satisfacen tanto aditividad (2.18) como dualidad de Haag (2.21). Por ende,
obedece que

A (B) = A(B). (2.26)

Es sabido que las violaciones de esta propiedad no estan relacionadas con simetrias
generalizadas, sino que aparecen para ciertas subalgebras neutras en QFT cuando te-
nemos una ruptura espontanea de una simetria global. En ese caso, puede repararse
simplemente tomando la red dual [39], o, equivalentemente, considerando los operado-
res cargados ademas de los neutros. Volveremos sobre este tema en la seccién 5.3.1.
Otros ejemplos corresponden a QFT que son patolégicas por otras razones, como los
generalized free fields que violan el time slice axiom [10]. Trataremos de forma extensiva
este ejemplo en el apéndice A.

La importancia de (2.26), reside en que esta ecuacién implica que todos los ope-

radores se generan, en ultima instancia, localmente: cualquier operador que conmuta
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con todos los operadores locales fuera de B puede generarse por productos, combina-
ciones lineales, y limites, de operadores locales en B. En este sentido, queda claro que
la nocién de operador no local es relativa a una region R con una topologia particular.
Por ejemplo, un operador puede ser no local en un anillo, pero local en una bola lo
suficientemente grande como para contener el anillo. El hecho de que los WL y TL en
teorias de gauge no abelianas estan generados en tltima instancia por operadores loca-
les se demostré mediante una construccién explicita en la red [23], apéndice B2.? Para
el WL esta construccién resulta implicar tanto operadores de plaqueta “magnéticos”
como operadores “eléctricos” locales invariantes de gauge en la superficie.

Es bastante notable que la red aditiva de dlgebras (2.24) contenga en si misma
todas las manifestaciones fisicas de las simetrias generalizadas. Estas caracteristicas
aparecen como texturas del algebra aditiva, y representan un fenémeno fisico y local.
En particular, no es necesario anadir a mano “sondas externas no locales”. El conjunto
completo de operadores no locales o de violaciones de dualidad de Haag (HDV) apa-
recen al tomar conmutantes dentro de las propias algebras aditivas, y son operadores

dindmicos que pertenecen a la teoria.

2.2.2. Clases de equivalencia HDV no locales

Podemos utilizar los operadores no locales a para definir clases/sectores irreduci-
bles [a] de operadores en Ap.x(R). Mas concretamente, definimos la clase HDV [a] de

Apax(R) como el conjunto de operadores de la forma
[a] = ZO)‘ a O ‘ 0, O*c AR) ¢ . (2.27)
A

Decimos que la clase es irreducible si no hay subespacios no triviales en su interior
invariantes bajo la accién simultanea izquierda y derecha del algebra aditiva. En el
caso contrario, decimos que es reducible y se puede descomponer en una suma de
irreducibles. Como Ap.x(R) es un algebra cerrada ante el producto, el conjunto de

clases debe cerrar un algebra de fusién en si misma. Esto es
lal[a] =) " ngyla"]. (2.28)

Estas reglas de fusién pueden estar relacionadas con la fusiéon de representaciones o
clases de conjugacion de un cierto grupo, pero pueden ser mas generales. Este ultimo

caso incluye el de las simetrias no invertibles, volveremos sobre esta idea en la sec-

3Formas conocidas del teorema de Stokes no abeliano, véase [11-13], tienen este mismo espiritu,
pero no son concluyentes desde la perspectiva actual porque expresan el WL en términos de cantidades
no invariantes de gauge en la superficie limitada por el lazo.
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cién 7.2. La clase identidad [1] es por definicién A(R), y sus reglas de fusién son por
construccién [1][a] = [a][1] = [al.

Es una suposicién natural subyacente en QFT que A(R) no tiene centro. El centro
de un algebra Z es el conjunto de operadores que conmutan con todos los operadores en
el algebra, para este caso serfa Z = A(R) N A(R)’. Estas algebras sin centro se llaman
factores y son a su vez irreducibles. Podemos pasar de cualquier elemento distinto
de cero a cualquier otro mediante combinaciones de acciones a izquierda y derecha
con otros operadores pertenecientes a A(R). De la misma manera Ap,.x(R) no tiene
centro. Es irreducible respecto a productos arbitrarios de operadores en Ay« (R). Estas
condiciones surgen de la imposibilidad genérica de construir operadores de campo con
smearing en una frontera D —2 dimensional de la regién (para actuar como un elemento
del centro) y todavia producir un operador bien definido en el espacio de Hilbert. Ambos
hechos implican que podemos obtener operadores en A(R) a partir de elementos no
locales en Ay, (R) multiplicando con otros elementos no locales de Ap,.x(R) y acciones
arbitrarias izquierda-derecha de operadores en A(R).

Otra nocién usual en QFT es que las simetrias generalizadas son transportables.
Esto significa que al deformar suavemente una regién R; en otra R, con la misma
topologia, los operadores no locales en R; pueden convertirse en operadores no locales
en R, mediante la accién de operadores locales. Esta nocion de simetrias generalizadas
es topoldgica en este sentido, con las clases no locales preservadas bajo deformaciones.
Supondremos transportabilidad en lo que sigue. Pero, destacamos que para simetrias
generalizadas generadas por flujos de k-formas fisicas como (2.22) esta transportabili-

dad es evidente.

2.2.3. Las simetrias generalizadas vienen en pares duales

En este enfoque algebraico, podemos derivar una conclusion general no trivial. La
inclusion estricta en (2.11) obliga a una inclusion estricta dual en el complemento R’ de
R. La razén es sencilla y podemos deducirla del teorema del doble conmutante de von
Neumann (2.16). Comenzamos con las dos algebras potenciales asociadas a la region

complementaria, a saber
A(R) = Anax(R)",  Anax(R) = A(R)" . (2.29)

Ahora observamos que la igualdad de A(R’) v Amax(R’') implica la de las élgebras

andlogas correspondientes a R

A(R) = Auax(R') <= Amax(R) = A(R) (2.30)
= (Anax(R)) = (A(R)) = Anax(R) = A(R) .



2.2 Simetrias Generalizadas y Dualidad de Haag 21

De aqui, concluimos que si en (6.68) existen operadores HDV no locales {a} asociados
a R, entonces deben existir operadores no locales {b} asociados al complemento R'.

Formalmente, tenemos el dlgebra méaxima
Apax(R') = Aaqa(R') V {b} . (2.31)
Estos operadores HDV duales deben tener sus propias reglas de fusién, a saber

BI] = npy[b"]. (2.32)

b//
Como Ayax(R) = A(R') los operadores no locales de R conmutan con los operadores
aditivos en R’ y viceversa. Sin embargo, los operadores no locales {a} y {b} para Ry

R’ no pueden conmutar (todos ellos) entre si. Dicha conmutatividad implicaria
Amax(R) - (Amax(R/>>/ = A(R) (233)

Esto no es posible si las inclusiones A C Ay, son estrictas. Remarcamos que este fallo
de conmutatividad no es un fallo de causalidad ya que dichos operadores no pueden
construirse localmente en sus respectivas regiones.

En resumen, las algebras de operadores no locales asociadas a simetrias generali-
zadas “vienen en pares duales”. De hecho, no sélo vienen en pares duales, sino que
ademas el “tamano” de estas algebras duales es, en un sentido preciso, el mismo. El
tamano de estas inclusiones se mide por el llamado “Indice de Jones” de la inclusion
de algebras [11-10],* v aqui mide el tamafio de las dlgebras de operadores no locales
en QFT [22, 23, 19]. Cuando se aplica a simetrias de grupo finitas, el indice es sim-
plemente el nimero de elementos en el grupo. Cuando es finito, las inclusiones duales
A(R) C Apax(R) v A(R') C Apax(R') tienen el mismo indice.

En términos fisicos intuitivos, debemos entender a los operadores HDV duales
{a}, {b} como variables complementarias candnicas, en el sentido mecédnico cuanti-
co habitual. El hecho de que vengan en pares duales se reduce al hecho de que el
espacio de fases (descrito por variedad simpléctica) es siempre de dimension par. En
este marco, podemos resumir la estructura algebraica que especifica la violacién de la

dualidad para las regiones R y R’ en un diagrama de complementariedad cuédntica

Amar(R) = A(R)V {a} > A(R) (2.34)
T p
AR) © ARV D) = Apae(R)) .

4Véase [17—19] para introducciones més sencillas al concepto y célculos especificos.
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En este diagrama, en la parte superior, tenemos la inclusion de las dos algebras asocia-
das a la region R. Bajar en el diagrama equivale a tomar conmutantes, produciendo las
algebras naturalmente asociadas con la regiéon complementaria R’. En QFT podemos
suponer que para este tipo de inclusiones A(R) C Apax(R) el conmutante relativo es
Apax(R) N A(R) = Apax(R) N Apnax(R') = {1}, es decir, el dlgebra identidad. Esto es
equivalente a la aditividad fuerte [50, 51], (A(R) V A(R'))" = {1}. Fisicamente, esto se
debe a que un operador no local que conmuta con toda el algebra aditiva no puede te-
ner un smearing suave en la regién. De nuevo, esto hace que el operador sea demasiado
singular para estar bien definido.

Los operadores no locales para cada regién (los a y b) generan endomorfismos de las
algebras maximas de las regiones complementarias. En este sentido, los operadores no
locales actian como operaciones de simetria generalizadas, donde los objetos cargados
son los operadores no locales complementarios y los objetos neutros son los observables
en el algebra aditiva.

Uno de los principales resultados en [22, 23] es que los operadores HDV duales
{a}, {b} proporcionan una definicién unificada de lo que es un pardmetro de or-
den/desorden en una QFT. Esto se respaldé primero con ejemplos explicitos. Pero
un fuerte apoyo viene al mostrar que los operadores HDV son los tinicos tipos de ope-
radores que pueden exhibir un comportamiento del tipo “ley de volumen generalizada”,
donde esta terminologia debe entenderse en un sentido generalizado. Por ejemplo, los
operadores de linea HDV son los tinicos operadores de linea que pueden exhibir ley de
drea ((a) ~ e 2 ;> (). En sentido inverso, si uno encuentra un operador que puede
mostrar una “ley de volumen generalizada”, este operador deberia violar la dualidad
de Haag en la region apropiada. Por ejemplo, si se encuentra un operador de linea que
muestre ley de area, entonces este operador no puede generarse localmente en el lazo
donde esta definido.

2.2.4. Redes de Haag-Dirac

Anticipamos brevemente en la seccién 2.2.1 que la asignaciéon de dlgebras maximas
a regiones complementarias no forma una red (local) ya que Apax(R) v Amax(R’) n0
conmutan. Cuando A(R) C Apax(R). En dicho caso, también, es evidente que la red
aditiva no satisface dualidad de Haag. En esta situacién se puede ampliar la red aditiva
anadiendo operadores no generados localmente, para generar una red que satisfaga
dualidad de Haag. En general, esto puede hacerse de varias maneras. Llamaremos a
estas redes como redes de Haag-Dirac (HD) por razones que haremos evidentes en la

seccién 2.2.7. Por construccién, las redes Haag-Dirac satisfacen la dualidad

Anp(R) = Agp(R'), (2.35)
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pero, en general, no satisfacen la aditividad.

Dado que los operadores duales no generados aditivamente {a} y {b} no conmutan,
al construir redes de HD que satisfagan la dualidad, tenemos que sacrificar algunos
operadores de Apax(R) y/0 Amax(R') , para mantener la causalidad de la red. La
asignacion Ap.x(R) para todo R no forma una red causal. Una opcién siempre posible
es Amax(R) para Ry A(R') para R’ o viceversa. Pero, normalmente existen algunas
opciones intermedias. En particular, si las topologias de R y R’ son iguales, ambas
opciones extremas no son muy naturales y pueden romper algunas simetrias espaciales.

En este contexto, la observacion fundamental es la siguiente. Incluso si algin ope-
rador no generado aditivamente se excluye del algebra de R, esto no significa que no
exista en la teorfa. Debido a (2.26), todos los operadores no generados aditivamente
que podrian asignarse a R siempre se forman aditivamente en una bola que contiene a

R y, por tanto, no puede evitarse su existencia.

2.2.5. Completitud

El posible fracaso de la saturacién de la causalidad en dualidad de Haag, impli-
ca una cierta falta de operadores en las dlgebras generadas localmente (las dlgebras
aditivas) de tal manera que podrian anadirse algunos otros operadores sin violar el
principio de causalidad. Podemos basarnos en esta observacion para sugerir una defi-
nicion de completitud en QFT. Especificamente, diremos que el espectro de una teoria

es completo (o de forma mas breve que la teorfa es completa) si
A(R) = Apax(R), VR (2.36)

En palabras, una QFT es completa si para una region arbitraria del espacio el dlgebra
de observables generada por los grados de libertad locales es la maxima compatible con
la causalidad. Nétese que en las teorias completas no hay ambigiiedad para el algebra
asociada a una region dada. Esta algebra sélo puede ser la minima, a saber, el dlgebra
aditiva, que coincide con la maxima. La tnica red de algebras posible es la red aditiva.

En este sentido vemos que las siguientes propiedades son equivalentes
(a) La teoria es completa,
(b) El algebra aditiva satisface dualidad de Haag para cualquier region,
(c) La teorfa no tiene simetrias generalizas,
(d) La red de Haag-Dirac es tinica.

Fisicamente, veremos que esta definiciéon puede entenderse de la siguiente manera:

una teoria con simetrias generalizadas no es completa porque tiene mas de un algebra
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posible para alguna regién de topologia no trivial. Sin embargo, podriamos completarla
anadiendo mas operadores dindamicos a la teoria que rompan la simetria generalizada.
Para el caso de teorias con simetrias k-forma dadas por corrientes conservadas (k + 1)-
forma, podemos entender estos operadores nuevos como cargas que aparecen a una
cierta escala de energia completando el espectro de la teoria en cuestion y rompiendo
estas leyes de conservacion de la simetria de forma. Veremos ejemplos para teorias de
gauge en la seccién (2.2.7) y desarrollaremos extensivamente el caso del gravitén en el

capitulo 3.

2.2.6. Simetrias globales y regiones con m; no trivial

Comenzamos con el primer ejemplo, en particular veremos como teorias con si-
metrias globales presentan violaciones de dualidad de Haag para regiones con my no
trivial. Para esto, consideramos la subalgebra O de una teoria F, formada por operado-
res invariantes bajo un grupo de simetria global G que actia sobre F. Denominaremos
a la teorfa O = F/G como “orbifold”. Estos modelos se trataron extensivamente en
[38]. En este caso, nos interesara tomar regiones R con my no trivial, es decir, regiones
desconectadas. El complemento R’ tendrd wp_o no trivial. El ejemplo maés sencillo son
dos bolas disjuntas By y By formando R = (B;UB,), y su complemento R’ = (B;UBy)’
que topoldgicamente es una “céscara” con la topologia de Sp_o x R. Véase la figura
2.5.

En esta seccién, nos centraremos en el caso de una simetria no espontaneamente
rota, donde el espacio de Hilbert generado a partir del vacio por operadores invariantes
consiste en estados invariantes. La discusién, en este caso, puede hacerse sin apelar
a la teoria JF. Trataremos las modificaciones producidas por un estado de vacio no
invariante en la seccién 5.3.1.

Sean ¢i’r, y %’T operadores creadores de carga en By y By respectivamente pa-
ra la teoria F, correspondientes a la representacion irreducible r con ¢ un indice de
la representacién. Podemos definir un operador “intertwiner” correspondiente a esta

representacion como

7, = ZW( 1N (2.37)

Claramente, este operador es invariante bajo transformaciones globales del grupo y
pertenece a la teoria neutra @. También, vemos que conmuta con todos los operadores
aditivos neutros en R’, pero no puede ser generado aditivamente por operadores en las
algebras neutras asociadas a R ya que los operadores cargados wi’r, y z/J;’T pertenecen
al algebra de campos locales A”(R) de F pero no a A°(R) de O.

En la regién complementaria R', podemos definir operadores duales de “twist” 7,

que implementan las operaciones de grupo en By y actian trivialmente en B,. Estos
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Figura 2.5: Una regién R = B; U By dada por la unién de dos bolas disjuntas By y Bs tiene
grupo de homotopia con 7y no trivial. Para teorias neutras, generadas a partir del orbifold de
una simetria global dicha regién presenta operadores no locales que violan dualidad de Haag.
Estos son los intertwiner Z, generados por los operadores cargados 17", y 5" en By y By y los
twists 7, en la regién complementaria R’ = (By U By)'.

conmutan con las algebras neutras en By y By, pero no conmutan con los intertwiners
(2.37). Esto es porque los ltimos incluyen operadores cargados en Bj.

Para estudiar estos twists, empecemos considerando el caso mas simple. Esto es el
caso en el que estos implementan la accién un grupo G abeliano. Los twists en la teoria

F pueden elegirse® de modo que satisfagan

TyTh = Tyh U(g)TgU(g)_1 = Tyhg—1 , (2.38)

donde U(g) es el unitario que implementa operacién de simetria global. Como G es
abeliano, estos twists 7, no transforman ante la acciéon de G y por ende también per-
tenecen a la teoria del orbifold O. De esta manera, podemos escribir las relaciones de

conmutacién a parir del cardcter del grupo x,(g) como
TgLr = Xr(9) Ly 7y - (2.39)

Para un grupo G no abeliano, los twists no son invariantes bajo la accién del grupo

global. Las combinaciones de operadores de twists invariantes bajo el grupo global son

T, = Z Th, (2.40)

hec

donde estos twists 7. estan etiquetados por clases de conjugacién ¢ € G tales que
gcg~! = ¢ para todo g € G. Estos operadores 7, pertenecen al algebra neutra O. En
este escenario, vemos que si bien el modelo completo F, que incluye los operadores
creadores de carga, satisface aditividad y dualidad de Haag, éste no es el caso para el

modelo neutro O. De hecho, podemos resumir la presencia de clases HDV en el modelo

®Dado un grupo de simetria global G, la existencia de twists locales Tg que implementan la accién
de g € G sobre el dlgebra de una regién por conjugacién esta garantizada en QFT bajo requerimientos
muy generales. Estudiaremos en detalle estos twists y sus propiedades en el capitulo 5.
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O mediante el diagrama de complementariedad cuantica

(@
Amax

(BiUBy) = A°(BiUBy) V{Z,} > A°(B,UBy) (2.41)

b
AO((Bl U BQ),) C A((Bl U BQ)/) V {Tc} = AI(IQlaX((Bl U BQ),) .

En palabras, los intertwiner y los twists producen la tension entre aditividad y dualidad
de Haag en la teoria del orbifold. En efecto, como ya mencionamos, estos no conmutan y
generan las clases no locales. En cuanto a las reglas de fusion de dichas clases, podemos

elegir los intertwiners (Véase apéndice A de [23]) de manera que se satisfagan

ITITI = Z n::,Irn s (242)

,,-.//

" . ., . .
con n/., las matrices de fusién de las representaciones del grupo G. Mientras que los

twists, etiquetados por sus clases de conjugacion, satisfacen las reglas de fusién

o c//
TeTe = g M Ter (2.43)
C//

/1

con m¢. los coeficientes de fusién de clases de conjugacion de G.

Un punto importante en cuanto a nomenclatura es el siguiente, durante esta tesis
muchas veces nos referiremos a “simetrias generalizadas” incluyendo el caso de simetrias
globales usuales o O-forma. Cuando lo hagamos nos estaremos refiriendo a las ideas de
esta seccién donde las violaciones de dualidad aparecen en la teoria del orbifold pero

no en la teoria completa.

2.2.7. Simetrias 1-forma y regiones con 7 no trivial

En esta seccién desarrollaremos el ejemplo de violaciones de dualidad de Haag
generadas por simetrias 1-forma. Con este propdsito, tomamos una region R con grupo
de homotopia 7; no trivial, es decir, una regién tipo anillo con lazos no contractibles. El
caso mas sencillo de analizar es el de simetrias 1-forma en teorias de gauge abelianas. En
particular, para el campo de Maxwell libre en D = 4 podemos encontrar dos 2-formas

conservadas estas son

dF =0, (2.44)
dxF =0,

donde notamos como F' = dA a la derivada exterior del campo de gauge y con * al

operador dual de Hodge. De esta manera, podemos entender que la primera de las
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conservaciones es simplemente por simetria (d*> = 0) y que la segunda es debido a las
ecuaciones de movimiento.
Podemos integrar estas corrientes sobre superficies bidimensionales abiertas Y, de

la forma (2.22) para obetener

@522:/ F, @522:/ *F (2.45)
Yo P

Observamos que, debido a las leyes de conservacién (2.44), podemos entender a los
flujos como operadores asociados exclusivamente a los bordes unidimensionales 0%,.
Nuevamente, esto es porque los operadores de flujo son los mismos para cualquier
eleccion de X5 que no cambie sus respectivos bordes. De la misma manera, vemos que
ambos flujos conmutan con todos los operadores en el algebra aditiva de la regién
complementaria A(R’) generada exclusivamente por el campo F' y sus productos y
derivadas.

Otra forma de hacer evidente esta idea, es utilizando el campo de gauge A. En

6

particular, usando el teorema de Stokes, podemos entender a (I)aBEZ como la circulacién

del campo de gauge sobre el lazo cerrado 0%,

@5222/ F:/ dA:]{ A. (2.46)
Yo Yo 0X9

Ahora, si 0% es un lazo no contractible en R no podemos generar al operador de
flujo (I)aBzg con operadores locales invariantes de gauge en R. Lo mismo sucede con
@gEQ. La conclusion es que los unitarios (operadores acotados) que podemos definir

exponenciando los flujos (2.45) de la forma
Wg22 — eiq<1>aBEQ , TgEQ — eigfngg , q,9 = R’ (247)

perteneceran a Ayax(R) pero no a A(R). Es decir, los WL y TL usuales representan
los operadores no locales para regiones tipo anillo en la teoria de Maxwell.
Establecimos en la seccion 2.2.3, que los operadores no locales vienen en pares duales
que no conmutan. En este caso el complemento de una regién R con 7 no trivial es
una regién R’ con la misma topologia. De esta forma, las clases HDV en R’ también
seran generadas por los WL y TL. Para calcular el conmutador entre los WL y TL,
el camino mas sencillo es introducir una foliacién y calcular el conmutador entre los
flujos a tiempo constante. En este caso, los flujos no son mas que los flujos 2 y ®F

de los campos eléctricos y magnéticos respectivamente

ol = / dS'B;, ¥ = / dS'E; . (2.48)
3o P

6Introduciendo el campo de gauge dual de la forma *F = dA podemos hacer lo mismo con @gzz.



28 Algebras y regiones en QFT

R/

Figura 2.6: La regién R con homotopia 7 no trivial contiene lazos no contractibles como 0Xs.
De la misma manera, su complemento causal R’ contiene también lazos no contractibles como
0%5. Los WL y TL asociados a 9¥5 no conmutan con los TL y WL sobre 0%.5 respectivamente.

Notese que también podriamos haber tomado como punto de partida las leyes de con-
servacion del tipo
0'Bi=0, 0E =0. (2.49)

Las relaciones de conmutacién de los campos invariantes de gauge, obtenidas como

consecuencia de las relaciones de conmutacion canodnicas estan dadas por
[Ei(x), Bj(y)] = ieird"6(x — y) . (2.50)

A partir de aqui, podemos recuperar que el conmutador de los flujos asociados a regiones
complementarias (Vease figura 2.6) es proporcional al numero de enlace entre los lazos
que definen los respectivos flujos
i (=) 5ok s

o, DL } = —j{ 7{ Eijk = da’ dy” = ilink(03,, 0%5) (2.51)

[ PO ] T dr Jos, Jos, T e =yl
donde link (933, O cuenta cuantas veces 9, enlaza a 9%. Si bien este es un resultado
conocido, en la seccion 3.2.2 mostraremos como recuperlarlo a través de versiones con
smearing de los flujos. Exponenciando la relacién (2.51) mediante la férmula de Baker-

Campbell-Hausdorff recuperamos
Wis, T§i2 = ¢t49 Tg22 Wis, - (2.52)

Esto implica que los WL W, y los TL T}, en efecto definen las clases HDV no locales. En
D = 4 tanto los WL y TL se asocian a lazos unidimensionales produciendo operadores
no locales en regiones tipo anillo. Como dijimos el complemento de una regién tipo
anillo en D = 4 tiene topologia de anillo. Esto implica que los WL y TL también seran

los operadores HDV en la region complementaria, produciendo el siguiente diagrama
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R/

Figura 2.7: Los WL y TL definidos sobre un lazo 935 no contractible en R representan
operadores no locales para dicha region. Sin embargo, estos son localmente generables en una
bola B que contiene a R

de complementariedad cuantica

Apax(R) = A(R) VW9, T}, 5er D A(R) (2.53)

T
A(R) C AR VAW T ger = Amax(R') -

Por otro lado, las reglas de fusién de los operadores no locales son las de un grupo
abeliano.
q ¢ _ yyatd g 9 _ gtg
W822W822 ARG TBEQTBEQ = TaiQ . (254)
Veremos en la seccion 2.2.8 que este siempre sera el caso para clases HDV tnicamente
asociadas simetrias 1-forma. Mds aun, reescribiendo la relacién de conmutacién (2.52)
convenientemente tenemos,
. . . »
Wi, T, (Wis,) ™ = €105, Thg, W, (T5s,) 7 =719 Wy, (255)
Es decir, los WL de R forman un grupo R ante el cual los TL de R’ estan cargados
y los los TL de R forman otro grupo R ante el cual los WL de R’ estdn cargados. Lo
mimo sucede para la regién complementaria de manera que el grupo de todas las clases
HDV es R? x R
Como hemos descrito anteriormente, uno podria argumentar que todos estos ope-
radores no locales no pueden pertenecer a la teoria para preservar la causalidad. Esto
no es cierto porque todos estos WL son generados por flujos del campo magnético, por
lo que evidentemente se generan localmente en una bola que contiene a la regién tipo
anillo R. Véase la figura 2.7. También, podemos deducir la existencia de todos los TL
en la misma bola partir del teorema de la doble conmutacién de von Neumann o bien

de su definicién como exponencial de un flujo eléctrico.”

"Nétese que el primero de estos argumentos sigue siendo valido cuando introducimos cargas eléctri-
cas dindmicas en la teoria mientras el segundo no.
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Sin embargo, es cierto que todos estos operadores no locales no pueden pertenecer a
las dlgebras de Ry R’ simultaneamente. Podriamos bien trabajar con una red aditiva, es
decir tomar A(R) y A(R’) de manera que se respete (2.18) a expensas de la dualidad
de Haag. O bien podriamos construir una red HD que respete (2.21) a expensas de
aditividad. Considerando el operador no local mas general en R esta dado por dién

obtenido al multiplicar un WL y TL
DY) = W, TSy . (2.56)

Una condicién natural es anadir operadores con cargas magnéticas y eléctricas (g, q)
a todos los anillos. Dados dos diones (g,¢) v (g, ) en el mismo anillo, el formado por
su producto (g + §,q + §), y los conjugados (—g, —q) v (—g, —q), también debe estar
presente para cerrar un algebra. Por lo tanto, el conjunto de todos los diones debe ser

un subgrupo aditivo del plano, dando una red

(9,61) = nl(glvch) + n2(92,Q2)7 ni,ng € Z, (917611), (927612) €R%. (2~57)

En Ademas, dada la relacién de conmutacién (2.52) tenemos que

(9:9) 1@:D) _ i(qg—q (@9 1y(9:9)

Dyl D = (19739 D2t Dt (2.58)
por ende, si queremos una red HD, podemos reescribir el requerimiento de conmutati-
vidad como

qq—qg =27k, keZ. (2.59)

Esto es compatible con (2.57) siempre que (q192 — g1G2)/2m € Z. Si queremos cons-
truir una red de Haag-Dirac, necesitamos tomar un conjunto maximo de cargas que
satisfagan (2.57). Esto nos obliga a elegir ¢1go — g1¢2 = 2.

Para el caso del campo relativista de Maxwell, al resolver para el espacio de so-
luciones de la ecuacién anterior, necesitamos tener en cuenta que existe una simetria
de dualidad que mapea campos eléctricos y magnéticos y veceversa. Entonces, hay
un parametro libre oculto que nos mueve entre redes de Haag-Dirac isomorfas. Esta

libertad puede eliminarse escribiendo las distintas soluciones como

2T 0

(97Q) = (_nm7q0 (ne + 2_nm>) ) q0 € R+a Ney, Ny € 27 0 € [0727T)7 (260)
do m

siendo esta condicién sobre las cargas eléctricas y magnéticas conocida como cuantiza-

cién de Dirac o Dirac-Zwanziger [52-55]. Las redes con € # 0,7 no son simétricas ante

la reflexién temporal. Notese que en un modelo especifico que describe cargas eléctricas

y monopolos, al anadir un término 6 topoldgico al Lagrangiano, cambiamos las cargas
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de la red segin el efecto Witten [50]. Volveremos sobre este efecto en el capitulo 7.

Estas redes de HD, asi construidas satisfaran la dualidad de Haag, pero no la
aditividad. La aditividad puede recuperarse si acoplamos la teoria a campos cargados.
Por ejemplo, si tenemos un campo @ de carga eléctrica ¢y, ahora podemos considerar
operadores las lineas de Wilson invariantes de gauge la forma

Wi, = d(a)e el Ayi(y). (2.61)

Tomando productos de lineas de Wilson consecutivas, y permitiendo la fusiéon de los
campos con cargas opuestas en los extremos de las lineas que queremos unir, vemos
que WL de carga ¢y ya no representa un operador no local para regiones tipo anillo.
En otras palabras, la introduccién de una particula cargada con carga gy nos permite
recuperar los WL con carga ¢qo a partir de operadores invariantes gauge (lineas de
Wilson) dentro del anillo. Esto significa que el WL de R carga qo pertenece ahora al
algebra aditiva del anillo, Wg%z € A(R) para 03, € R. Esto tiene dos consecuencias:

(a) Podemos escribir los WL de carga ¢ > go como producto de tantos WL aditivos de
carga ¢o que necesitemos y un WL de carga g < qo. Esto es evidente a partir de las
reglas de fusion. En consecuencia, los inicos WL verdaderamente no locales son
los que tienen 0 < ¢ < qo porque los operadores aditivos definen la equivalencia
de las clases a partir de (2.27). Esto implica que los WL generan un U(1) con los

TL de R’ como objetos cargados y lo mismo sucede en la regién complementaria.

(b) Podemos obtener el dlgebra méxima de la regién complementaria Ay, (R’) como
el conmutante A(R). Dado que esta tltima incluye ahora el WL de carga qo, la
primera no puede tener los TL® cuya carga difiera de g = 27k/qy para k € Z.
Esto implica que los TL de R’ generan un Z con los WL de R como objetos

cargados y lo mismo sucede en la region original.

En la ausencia de cargas el grupo R? x R? representa el grupo de todos las clases HDV
posibles para regiones tipo anillo. El resultado de agregar la carga eléctrica es que las
clases HDV se rompen al grupo (U(1) x Z) x (U(1) x Z) . Podriamos también agregar
monopolos dindmicos de carga gy = 27/qo en la teorfa obteniendo asi un teorfa sin
clases no locales y por ende completa.

Para el caso de D # 4 tenemos que el complemento de una region con tipo anillo tie-
ne mp_z no trivial. Sin embargo, si bien el WL sigue siendo asociable a un lazo unidimen-
sional el TL es un operador definido sobre superficies cerradas (D — 3)-dimensionales.

Los WL producen clases HDV en R y los TL hacen lo mismo en R'. La relacién de

8Si bien el espacio de fases con la carga dindmica es diferente, la definicién de los TL en presencia
de dicha carga ya no es la exponencial del flujo eléctrico pero conserva (2.52). En la seccién 7.1.3
describimos como realizar dicha construcciéon usando la integral de camino.
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conmutacion se mantienen y podemos escribir el diagrama de complentareidad cudntica

Apax(R) = AR)V {WTer D A(R) (2.62)

Tr
A(R) C A(R) VAT }ger = Amax(R') .

donde el grupo de clases HDV es R x R y agregando cargas eléctricas se rompe a
U(1) x Z. Vemos, en estos casos, que si las clases HDV forman un grupo continuo
compacto, entonces las clases duales son discretas. Durante esta tesis diremos que en
estos casos tenemos una “simetria generalizada compacta”. Por el contario, vemos que
si las clases HDV de la region original corresponden a un grupo no compacto, lo mismo
se aplica a las clases duales. De esta manera, llamaremos a las simetrias generalizadas
que producen este tipo de clases “simetria generalizada no compacta”.

Por otro lado, en el caso no abeliano la dificultad reside en que las leyes de conser-
vacion (2.44) ya no son validas, ni los campos eléctricos y magnéticos son invariantes
de gauge. De esta manera perdemos la interpretacién de los WL y TL como exponen-
ciales de flujos. Sin embargo, podemos seguir definiendo el WL mediante el potencial
de gauge como

Wiy, = Tr|Pelfom dx”‘ﬁ] . (2.63)

Un punto interesante es que inclusive la ausencia de cargas algunos WL son destructi-
bles, es decir, pertenecen al dlgebra aditiva. Esto es porque los propios gluones estan
cargados. Estan cargados bajo la representacién adjunta. De hecho, podemos formar

la siguiente linea de Wilson
Fop(x)Pe e " A B s(y) (2.64)

donde todos los campos estan en la representacion adjunta del algebra de Lie. Esto
produce que los verdaderamente no locales, es decir los que no pueden ser aditivamente
generados en una regién tipo anillo, estdn etiquetados por las clases de equivalencia
que surgen cuando cocientamos el conjunto de representaciones irreducibles por el
conjunto de representaciones generadas a partir del WL adjunto. De esta manera, los
WL no locales estan etiquetados por las representaciones del centro del grupo de gauge,
mientras que los TL por los elementos de dicho centro. No seguiremos el desarrollo
extensivo de estas clases HDV para teorias de gauge no abelianas en esta tesis. Para un

tratamiento con méas profundidad, desde este punto de vista algebraico, véase [23, 57].
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a a a

R, R, R

C D —C D
Figura 2.8: Pegado con operaciones aditivas de operadores no locales de lazo pertenecientes a
la misma clase HDV.

2.2.8. Reglas de fusiéon para clases HDV

Ahora que hemos visto algunos ejemplos, una pregunta interesante es que forma
pueden tomar las reglas de fusién (2.28) de las clases HDV (2.27). En esta seccién, es-
tudiaremos cuales son las posibilidades para las simetrias O-forma y 1-forma analizadas
en los ejemplos 2.2.6 y 2.2.7 respectivamente.

Para el caso de simetrias globales y regiones con 7y no trivial discutido en la seccion
2.2.6 las reglas de fusion estan acotadas por el teorema de reconstruccion Doplicher-
Haag-Roberts (DHR) [58-62]. Este teorema establece que en D > 2, bajo condiciones
bastante generales como dualidad de Haag para bolas simples, las dlgebras de fusion
asociadas a sectores de superseleccion de bola surgen de un grupo. En D = 2 pueden
aparecer reglas de fusién mas generales [63, (1]. Cuando aplicamos este resultado a las
teorias del orbifold como O, vemos que las clases de equivalencia asociadas a violaciones
de dualidad de Haag en sectores de dos bolas deben obedecer reglas de fusion de
un grupo o un cociente de grupos [51]. Mds ain, como vimos en (2.42-2.43) estas
reglas de fusion estan dadas por las matrices de fusion de las representaciones o clases
de conjugacién correspondientes. En el sentido inverso, el teorema de reconstruccion
también muestra que partiendo del modelo O con este tipo de clases HDV existe una
nueva teoria completa F donde los operadores cargados curan estos problemas de
dualidad de Haag y aditividad. El grupo de simetria estd representado globalmente
en J actuando sobre los campos cargados. Es destacable que esta reconstrucciéon no
cambia la teoria O ya que las funciones de correlacién de los operadores invariantes no
cambian después de incluir los operadores cargados.

Otro caso particularmente interesante es el de teorias con simetrias 1-forma. Como
vimos en la seccién 2.2.7, estas simetrias suelen aparecer en teorias tipo gauge y estan
caracterizadas por operadores HDV no locales definidos sobre lazos unidimensiona-
les. Para el caso de teorias abelianas podemos pensar estos operadores como definidos
de forma andloga a (2.45). Pero, las ideas que desarrollaremos a continuacién aplican
también a teorias de gauge no abelianas donde no tenemos una corriente 2-forma con-
servada. Un ejemplo son los WL no abelianos de la forma (2.63). En cualquier caso
estos operadores generan clases HDV asociadas a regiones tipo anillo (con grupo de

homotopia 7 no trivial) y su complemento (con grupo de homotopia mp_3 no trivial).



34 Algebras y regiones en QFT

R’ R’

Figura 2.9: Pegado de operadores no locales asociados a una simetria 1-forma dentro de un
anillo R. El operador de lazo en el panel izquierdo es contractible en R asi que pertenece a la
clase identidad [1]. Entonces los operadores en el panel derecho deben corresponder a clases HDV
[a], [@] inversas entre si de manera que [a][a] = [1]

Ahora, siguiendo el desarrollo presentado en [23], probaremos que en estos casos (y en
la ausencia de sectores de dos bolas) las reglas de fusién son las de un grupo abeliano,
es decir, (2.28) presenta un solo elemento del lado derecho.

Comenzamos en la configuraciéon dibujada en la figura 2.8, tomando dos regiones
tipo anillo no enlazadas R; y Rs (que contienen a las curvas rojas). Vemos que un
operador de lazo correspondiente a la clase a de (R; U R»)’, que se enlaza una vez con
Ry y otra con Ry (curva azul en el panel izquierdo) pertenece a la misma clase que el
producto de dos operadores de lazo disjuntos de clase a, cada uno enlazado una sola
vez con uno solo de los dos anillos Ry y Ry (curvas azules en el panel derecho). Esto es
asi porque, en la ausencia de sectores de dos bolas, el dlgebra de operadores no locales
de los dos anillos R; y Rs es el producto tensorial de las algebras de operadores no
locales de R; con las de Ry. No es dificil ver que el lazo original de un componente de
clase a basado en (R U Ry)’ tiene la misma accién sobre el dlgebra no local de la regién
(R1 U Rs) que el producto de los dos lazos independientes de la misma clase. Luego,
el lazo de un componente y los dos lazos pertenecen a la misma clase. Esto implica
que estan relacionados mediante operaciones aditivas en (R U Ry)" (representadas por
la regién gris). Este es un paso importante para demostrar que el dlgebra no local es
abeliana, ahora sabemos que podemos pegar y separar lazos asociados a operadores no
locales de la misma clase HDV. Nétese que para alcanzar la configuracion geométrica
de la figura 2.8 requerida por la prueba necesitamos una dimensién espacio-temporal
D > 3.

Ahora pasamos a la configuracién presentada en la figura 2.9. Tomemos una tinica
regién tipo anillo R (region roja) con un operador de lazo de la clase a en su interior,
pero con este operador doblado de tal manera que sea localmente generable en R (curva
azul en el panel izquierdo). Si ejecutamos la misma operacién que en el caso anterior
obtenemos dos operadores de lazo correspondientes a las clases a y a(curvas azules en

el panel izquierdo). Sin embargo, como lazo original era contractible correspondia a la
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a a

Figura 2.10: Imposibilidad de pegado de operadores HDV no locales para dos bolas con
operaciones aditivas

clase identidad debido a que el lazo original era contractible esto implica que

al[al = niglad"]=[1] = nl=0,Va" #1. (2.65)

a//

En palabras, hemos establecido [a@] como la inversa de [a] y viceversa. Ahora volvamos

a la expresién general (2.28) y veamos que es lo que esto implica

ala] =) nosla’] = [d]=[@a]ld] =) ng, [@l]. (2.66)

a// a//

Ahora, si asumimos que en el lado derecho de la ultima expresion tenemos mas de un
a
aa’?

. . al
termino, por ejemplo n,},, n,2, # 0 tenemos que

0] = [alla1] = [alla] = [a]la’] = [a7] = [a3] (2.67)

En conclusion , tenemos que las reglas de fusién de las clases HDV asociadas a una

simetria 1-forma sean las de un grupo abeliano, es decir

1

[a][a] = [1], [a][1] =]a], [a][a'] =nl,[a"] (no suma en a”). (2.68)
Ademas, es de esperarse que este tipo de ideas puedan aplicarse a simetrias del tipo
k-forma con k > 1 en general, pero no existe una prueba conocida para k > 1.

Observamos que no podria realizarse este tipo de pruebas para el caso de regiones
desconectadas con topo logia de dos bolas. De hecho, vimos en este caso que las reglas
de fusién (2.42-2.43) no son necesariamente abelianas como (2.68). La razén principal
de esta diferencia es que en este caso no podemos pegar /separar operadores HDV con
operadores locales. Esto es porque debemos remplazar los dos anillos R; y Ry en la
figura 2.8 por las regiones de dos bolas Ry = (B1 U Bs) y Ry = (Bl U Bg). Véase la
figura 2.10. Sin embargo, en este caso las clases HDV de (R; U Ry) no son el producto
tensorial de las clases de Ry y Ry porque podemos formar intertwiners entre By yég.
De esta manera uno de los argumentos fundamentales de la prueba presentada en esta
seccion ya no es valido en este caso. Lo mismo ocurre para teorias con simetrias 1-forma

que también presenten clases HDV asociadas a regiones de my no trivial.
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2.3. Lineas genuinas y superficies topologicas como
operadores HDV

Ahora describiremos la forma estandar en que se suelen describir las simetrias ge-
neralizadas, conectandola con la discusion anterior. La presente seccién no es necesaria
para comprender el contenido de esta tesis. La incluimos aqui porque sera til para
el lector familiarizado con literatura de simetrias generalizadas y cuando comparemos
algunos de nuestros resultados con la bibliografia reciente durante la seccién 7.2.

En la referencia fundamental [3], véase también [(5], se propuso una clasificacién
particular de los operadores/defectos que aparecen en QFT con simetrias generaliza-
das. Esta clasificacion se estudia principalmente en la formulacién euclidea de la teoria.
Los principales papeles los desempenan los “generadores de simetria” y los “operado-
res cargados genuinos”, tales como las lineas genuinas para simetrias 1-forma. Estos
operadores cargados genuinos son los parametros de orden de la simetria generalizada
en esta formulacién.

Aunque a veces los generadores de simetria se denominan “operadores topoldgicos
de simetria”, es mas apropiado decir que son endomorfismos del dlgebra de operadores.
De hecho, suelen definirse por su accién sobre los operadores. En el ejemplo de la
seccién 2.2.7, para la simetria 1-forma eléctrica U(1) en la teorfa de Maxwell en D = 4,
el flujo eléctrico exponenciado sobre superficies bidimensionales cerradas efectiia uno
ig®F

de estos endomorfismo de simetria F9 = e . En particular, actia sobre lineas de

Wilson W = ¢if Ade — ¢iq®® que enlazan con dicha superficie como
FI(W?) = e "99W9 . (2.69)

La razon por la que F9 no es un operador bien definido en la teoria lorentziana a tiempo
real es sencilla. Para una superficie cerrada el operador que obtenemos es la identidad
debida a la ley de Gauss. Pero, aunque esto es mas propiamente un endomorfismo, tiene
un avatar en el algebra de operadores de la teoria. Cortando la superficie cerrada que
define a F'9 en dos mitades, obtenemos un operador real, llamémoslo 7Y, en una mitad
y su inverso en la otra mitad. El significado del endomorfismo en la teoria lorentziana

pasa a ser (2.55), es decir
FIWT) =TIW(T9)™F = e 999 (2.70)

donde TY se denominan, a veces, operadores topoldgicos de superficie. Por supuesto,
una vez que cortamos el flujo en dos mitades, aparecen ambigiiedades locales en la
definicion del operador en su frontera unidimensional. Pero estas ambigiiedades por

la accién de los operadores locales no afectan a la ley de transformacién anterior ya
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que conmutan con el WL. De hecho, como cualquier representante es tan bueno como
cualquier otro, es mas propio hablar de las clases que surgen por el cociente de los
operadores no locales sobre dichas acciones de operadores locales en una cierta region
topoldgicamente no trivial. Estas son las clases HDV que definimos en la seccién 2.2.2.

Concluimos que, en tiempo real, la caracterizacién de operadores planteada en []
concierne a flujos abiertos de corrientes generalizadas (o més en general operadores
topoldgicos de superficie) y operadores cargados genuinos.? Notemos, sin embargo, que
el papel de WL y TL en (2.70) puede invertirse como en (2.55). Por ende, también,
podemos decir que los TL son los cargados bajo la accién de los WL. En efecto, ya
vimos que desempenan un papel simétrico dual y que pueden entenderse como varia-
bles complementarias cudnticas en un sentido preciso (2.53). De forma méas general,
estos operadores son proporcionados por los a y los b en la discusién de seccion 2.2.3.
En este sentido, la perspectiva de esta tesis es que uno puede entender las simetrias
generalizadas directamente en la fisica local del espacio plano.!?

Como tal, esta nomenclatura usual en la literatura de simetrias generalizadas dife-
rirfa muy poco de nuestro enfoque. El problema surge cuando esta seleccién particular
de lo que es un “operador de linea genuino” y lo que es un “operador de superficie
topoldgico” se promueve para que tenga un significado fisico intrinseco. Por ejemplo, el
denominado campo de Maxwell compacto libre se dice que tiene WL genuinos W? en
R y TL genuinos 79 que envuelven el anillo R'. Se denominan g = gon,;, v ¢ = qo Ne,
siendo n,,,n. nimeros enteros y qo = 27m/go. Esta eleccién satura la condicién de
cuantizacién de Dirac que vimos en (2.60). Obviamente conmutan con el dlgebra local
exterior, y no pueden ser generados por operaciones locales invariantes de gauge en R
o R’ respectivamente. Son operadores HDV en el sentido descrito anteriormente. Pero
también tenemos los operadores topoldgicos de superficie, es decir, la exponencial de
los flujos eléctrico y magnético sobre superficies abiertas con limites R y R'. Estas
superficies topoldgicas estan etiquetadas por dos angulos ¢ € [0,¢0) v g € [0,90) ¥
precisamente no conmutan con los operadores de linea anteriores. Estos operadores de
flujo son también operadores HDV, y son no locales en ese preciso sentido. De hecho,
este modelo es el campo de Maxwell ordinario que para D = 4 y tiene un grupo de
operadores HDV R x R dados por cargas eléctricas y magnéticas arbitrarias. En este
ejemplo es bastante evidente la arbitrariedad de la eleccion de los llamados operadores
de linea y de superficie topoldgica. Todos los operadores no locales son operadores de
linea en el sentido de que conmutan con operadores locales fuera del anillo en el que
estan definidos, y ambos son operadores topoldgicos de superficie en el sentido de que

son localmente construibles dentro de una bola, pero no de un anillo. Lo mismo puede

9Para simetrias 0-forma, estos flujos abiertos son los twists que hemos discutido en la seccién 2.2.6.
OEn un enfoque llamado “Symmetry Topological Field Theories” [66—69], se afiaden dimensiones
extra para caracterizar las simetrias. Seria interesante entender la conexién con dicho enfoque.
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decirse en ejemplos mas complicados, como una teoria de gauge SU(2).

Mas que la terminologia de operadores de linea y operadores topoldgicos de su-
perficie (que normalmente entran en la formulacién como endomorfismos y no como
operadores), el nicleo de diferencia entre los enfoques parece ser el requisito de que
los operadores no locales correspondientes a regiones complementarias deben conmu-
tar. Esta es la razon por la que se piensa en ellos como operadores de linea, la idea
subyacente es que conmutan con seguridad entre si a distancia espacial. De hecho, en
cualquier teoria con clases HDV, podemos dar el paso de extender las dlgebras aditivas
A.aa(R) algunos operadores no locales (no todos), y cuidar que los que anadimos para
regiones complementarias conmuten entre si. De esta forma podemos llegar a redes de
algebras que satisfacen la dualidad de Haag. Estas redes son locales en el segundo sen-
tido mencionado en la seccion 2.2.1. Un ejemplo es la red del campo de Maxwell donde
tomamos WL y TL con cargas cuantizadas que satisfacen la condiciéon de cuantizacion
de Dirac. Durante la seccién 2.2.4, hemos llamado redes de Haag Dirac (HD) a este
tipo de elecciones ya que las nociones de dualidad de Haag y de cuantizacién de Dirac
resultan coincidentes. Aunque no hay ningin problema en hacerlo, observamos que
se trata de un juego puramente académico sin ninguna consecuencia fisica. En efecto,

tenemos que
(a) Siempre hay muchas opciones posibles de redes de HD.

(b) La teorfa es exactamente la misma para cualquiera de estas opciones, y no pode-
mos distinguirlas fisicamente, ya que todas las redes tienen las mismas algebras de
operadores locales con los mismos valores de expectacién, y todos los operadores

pertenecen en ultima instancia al dlgebra aditiva de alguna bola.

(c) Una red de Haag Dirac no satisface la aditividad. Asi que, incluso desde un
punto de vista puramente matematico, la red aditiva, los operadores no locales y
cualquier otra eleccién de red (como una red HD diferente) pueden reconstruirse

a partir de cualquiera de ellas.

Por supuesto, la eleccion de una red HD es importante si se van a introducir cargas
dindmicas que destruyan la no aditividad de los operadores no locales.!! La causalidad
implica que la tUnica manera de hacerlo es rompiendo los operadores no locales que
conmutan entre si. Pero la introduccién de cargas dinamicas produciria un modelo
diferente, y precisamente destruiria todas las simetrias generalizadas o sectores HDV.
La existencia de simetrias generalizadas es lo mismo que la existencia de diferentes
redes HD para la misma teoria. Por eso insistir en la eleccién de una red HD oscurece

precisamente la naturaleza de los fenémenos en discusion.

T, eleccién de una red HD no es necesaria si las cargas son sondas externas y no son dindmicas.
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En este sentido, pensamos que es enganoso decir, como es habitual en la literatura,
que hay dos teorfas de gauge puras con grupos de gauge SU(2) y SO(3) porque una
de ellas contiene el WL fundamental y la otra el TL.'? En realidad, estas son la misma
teorfa SU(2), que contiene tanto el WL como el TL. La razén detras de esta afirma-
cién, es que si hay un operador no local no se puede evitar la existencia del dual. La
denominacién, entonces, no se refiere a teorias, sino a redes HD. Esto sélo puede ser
inofensivo si no se extraen consecuencias fisicas de ello.

De esta manera aprendemos varias cosas. La primera es que, después de todo,
los operadores topoldgicos de superficie, desde una perspectiva fisica precisa, no son
tanto “operadores de superficie”. Estan naturalmente asociados a los bordes de las
superficies que los definen, ya que conmutan con el algebra aditiva de cualquier region
que no incluya al mismo. La segunda es que, después de todo, las lineas genuinas no son
tanto “operadores de linea”. Para construirlas utilizando operadores locales invariantes
de gauge necesitamos superficies que vayan méas alla de las lineas sobre las que se
definieron en un principio. La tercera es que la no conmutatividad entre operadores
duales HDV no sélo no es un problema, sino una necesidad matematica. Es lo que
permite al endomorfismo de simetria topoldgica hacer su trabajo sobre los operadores
cargados. Estas estructuras no conmutativas aparecen directamente a partir del algebra
aditiva, que es el algebra local intrinseca, simplemente analizando sus conmutantes.

De nuevo nos encontramos con el resultado de que el dlgebra aditiva contiene toda
la informacion sobre los parametros de orden y los generadores de simetria. De hecho,
queda claro que todos los operadores HDV deben considerarse como parametros de
orden. Esto resuelve un problema ya descrito en la referencia original [3], donde se
reconocia que la teoria de gauge SU(N) contiene mas parametros de orden que las
habituales lineas de Wilson. Basicamente, se trata de los flujos eléctricos no abelianos,
los generadores de la simetria 1-forma de la teoria. Dicha referencia senalaba que seria
deseable una teoria mas unificada de los parametros de orden. El presente enfoque
proporciona precisamente dicho marco unificado. La solucién es que tanto las lineas de
Wilson como los flujos eléctricos son operadores HDV para anillos en teorias de gauge,
y que todos ellos son parametros de orden de la teoria por igual. Ademas, como ya se

hemos mencionado, los tinicos operadores que pueden mostrar la dualidad “ley de area

12Esta terminologia no estd relacionada con la terminologia natural en la formulacién lattice de
teorfas de gauge. Nétese que una teoria en la red SO(3) que no tiene ningin operador no local.
Equivalentemente no tiene simetrias generalizadas y no muestra fases en las que los operadores de
linea tengan una ley de drea. Al menos desde la perspectiva de la red esta teoria deberia corresponder
a una teorfa SU(2) con cargas en la representacién fundamental. De hecho, un problema importante
en este contexto es averiguar si la teorfa de gauge de la red SO(3) tiene un pardmetro de orden de
confinamiento en el limite del continuo [70]. Aunque las particulas cargadas aparecerdan necesariamente
a alguna escala de energia, tapando la ley de area del WL, estas cargas pueden aparecer a la escala del
espaciado de la red, permaneciendo ocultas en la fisica del continuo. En cualquier caso, la diferencia
entre las teorfas de gauge de la red puras SO(3) y SU(2) es fisica en la red.
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vs ley de perfmetro” son los operadores HDV [23].

Finalmente, remarcamos nuevamente que estas caracteristicas aparecen en el espa-
cio de Minkowski. Es decir, no necesitamos ir a variedades con topologia no trivial. Sin
embargo, toda la misma fisica aparece también en variedades con topologia no trivial
cuando se mira dentro de subregiones dadas por bolas contractibles.

Terminamos esta secciéon con algunas observaciones sobre tres cuestiones que pueden
inducir erréneamente a pensar que una definicién de una QFT requiere la eleccién de

una red de Haag-Dirac.

2.3.1. jAmbiguedades en el ordenamiento temporal euclideo?

La traduccion de las cantidades calculadas con la integral de caminos euclidea al
lenguaje de operadores implica introducir un ordenamiento temporal. Esto es necesario
para explicar la no conmutatividad de los operadores en la teoria cudntica, en contra-
posicién con la conmutatividad de las inserciones en la integral de camino. Como es
bien sabido, para operadores locales ¢(x), el correlador de dos puntos euclideo para

ambos ordenamientos de campos

(o(x)e(y)) = (d(y)o(2)) , (2.71)

calcula el siguiente valor de expectacién

(Olo(@)e "D (7)[0) | (2.72)

donde asumimos ¢ > t’. Para que esta prescripcién tenga sentido, los operadores inser-
tados en t = 0 con diferentes posiciones deben conmutar entre si. Este es, por supuesto,
un requerimiento basico en QFT.

En teorias con simetrias generalizadas, esta prescripcion euclidea puede parecernos
paraddjica. Imaginemos que tenemos que calcular un correlador entre un WL W7 y un
TL TY9. Podemos tomar ambos en el tiempo t = 0 y enlazados entre si. A partir de la

prescripcién de la integral de caminos Euclidea podemos concluir que
(WaT9) = (TIW1) . (2.73)

Pero esto es, por supuesto, incorrecto, ya que los dos términos en general difieren por
un factor de fase. Pero, jqué esta calculando aqui la integral de caminos euclidea en el
lado izquierdo o el derecho?

Para evitar este problema, podemos considerar que sélo uno de los dos operadores se
puede insertar en la integral de trayectoria como operador de linea. Esto puede llevar

a la idea de que una red HD es necesaria para que la teoria tenga una descripcién
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euclidea, porque los operadores no locales en una red HD conmutan entre si. Y si sélo
permitimos los operadores consistentes con dicha eleccién no nos encontramos con el
problema anterior.'3.

Pero de nuevo esto no es correcto. El problema es simplemente que la integral
de camino puede no entender el significado de W9 o 79, o de ambos, si no somos
mas precisos. Para calcular la integral de camino tenemos que expresar el integrando
en términos de las variables de integracion. En la descripcion habitual del campo de
Maxwell integramos la trayectoria sobre A. De esta manera, el significado de la WL
es suficientemente claro como exponencial de la circulacion de A. En cambio, debemos
escribir el TL como un flujo del campo eléctrico. Para evitar puntos de coincidencia de
operadores podemos mover el flujo que define el TL infinitesimalmente hacia el futuro
o el pasado, y esto calculara cualquiera de las dos ordenaciones posibles. Pero esto serd
s6lo una prescripcion que da sentido al calculo de la integral de camino en cuestion. De
hecho, para resolver el mismo problema podriamos haber escrito el WL en términos del
flujo magnético. De esta manera podemos obtener diferentes prescripciones para dar
significado a la integral de camino euclidea en QFTs con simetrias generalizadas. Por
supuesto, en la QFT Lorentziana este problema no aparece, y no existen ambigiiedades
en el calculo de los valores de expectacion de los productos de WL y TL.

Pero aqui nos asalta de nuevo una duda. ;Por qué es importante la posicion del flujo
en el tiempo si el flujo se conserva? La respuesta es que la integral de camino realiza un
calculo especifico cuya interpretacion en términos de operadores puede diferir aunque se
trate del mismo operador, y depende especificamente de como se escriba este operador
en términos de campos. Lo mismo ocurre con la ordenacién temporal ordinaria en
tiempo real. Esta ordenacion temporal no es un mapa de operadores en operadores,
porque para entender cudl es el resultado de la ordenacion temporal necesitamos escribir
un operador dado de forma concreta en términos de operadores de campo a tiempos
fijos. Por ejemplo, ¢(x,t) es el mismo operador si lo expresamos en un tiempo diferente
utilizando las ecuaciones del movimiento. Sin embargo, no podemos esperar que el
resultado de la ordenacion temporal con otro operador no dependa de estas dos formas
de escribir ¢(z,t).

Resumiendo, la principal leccién fisica aqui es que podemos usar operadores no
locales no conmutantes en la integral de caminos sin problemas, pero a costa de recordar
que podemos escribirlos en términos de operadores locales, y que cada prescripcién
particular en la expresion de los operadores no locales en términos de campos locales
insertados en el calculo de la integral de camino euclidea tiene su propio significado

fisico.

13Una mayor elaboracién en torno a esta cuestién se describié en [71].
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2.3.2. Las (enganosas) lecciones de los orbifolds y D =2

Supongamos que tenemos una teoria J sin violaciones de la dualidad de Haag, y
con un grupo de simetria global G no espontaneamente roto. Tomemos la teoria del
orbifold O = F/G. El orbifold tiene sectores no locales correspondientes a regiones con
la topologia de dos bolas disjuntas y con la topologia complementaria. Los operadores
no locales son operadores de carga-anticarga en las dos bolas, y operadores de twist con
borde fuera de las dos bolas. De nuevo podemos elegir redes HD, por ejemplo, tomando
todos los operadores de carga-anticarga para el algebra de dos bolas cualesquiera, pero
no tomando el operador de twist para el algebra del complemento, o la eleccion opuesta.

La cuestién es que para este tipo particular de sectores del orbifold ocurre algo es-
pecial. Podemos pensar en otra teoria, a saber, la teoria F, que contiene los operadores
cargados. Esta representa una extensién de O que respeta la dinamica y los valores de
expectacion de O para los operadores neutros, pero cambia la nocién de algebra aditi-
va. De otra manera, la extension F no tiene sectores HDV. Esto es porque el operador
carga-anticarga es ahora un operador del algebra aditiva de las dos bolas. Como conse-
cuencia no podemos considerar al twist como un operador en el complemento porque
no conmuta con operadores cargados en una sola bola. En resumen, esta extensién F es
completa en el sentido de que tanto la dualidad de Haag como la aditividad se satisfa-
cen para cualquier region dada, sin importar su topologia. Esta nociéon de completitud
coincide con la nocién de completitud del espectro de cargas en las teorias de gauge y
la ausencia de simetrias generalizadas que mencionamos en la seccién 2.2.3.

Podriamos estar tentados a pensar que habia una eleccion preferencial de la red
HD para el orbifold original O, a saber, aquella en la que elegimos el operador carga-
anticarga para el dlgebra de las dos bolas. Esta eleccién es la que permite descomponer
el operador carga-anticarga no local en cargas independientes, dando lugar a la nueva
teoria F. En particular, dicha completacion no podria alcanzarse rompiendo los twists
para D > 2. En otras palabras, podemos reparar esta forma particular de violaciones
de la dualidad de Haag ampliando el algebra con operadores cargados. Ademas, dado el
orbifold, esta completacion es tinica para D > 2, evidenciando que toda la informacion
sobre F ya existia en O. Podemos formalizar estas ideas a partir del teorema DHR, el
cual discutiremos en la seccién 7.2.3.

Para CFT’s en D = 2, las regiones donde aparecen los operadores no locales con-
sisten en dos intervalos, y el complemento tiene la misma topologia. Solemos afirmar
que el orbifold'* tiene un nuevo operador de campo, a saber, el twist. Esto es cierto si

el twist sobre un intervalo se descompone en sus dos puntos extremos. Esto indica que

4Hablando estrictamente, el orbifold de una teoria F en cualquier dimensién es la teoria O = F/G
que no incluye ni los operadores cargados ni los campos que rompen a los twists en operadores locales
para el caso de D = 2. En la bibliografia de las CFTs con D = 2 el nombre “teoria del orbifold”
corresponde a la adicién a la teoria O de estos campos cargados que rompen los twists locales.
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se pueden formar diferentes teorias completas (en el sentido descrito anteriormente)
eligiendo redes HD particulares en D = 2, y promoviendo operadores no locales a ope-
radores de campo locales.'® Estas diferentes teorias procedentes de diferentes opciones
de redes HD no son compatibles entre si porque los tipos de operadores no locales que
rompemos actuarian como operadores de campo locales no pueden conmutar entre si.
En este escenario, el hecho de que se trate de teorias diferentes puede verse ya en el
espacio plano a nivel local: el dlgebra aditiva es diferente y tanto la aditividad como la
dualidad de Haag se satisfacen al mismo tiempo para cualquier region. Aun asi, nétese
que la totalidad de la informacién sobre ambas completaciones ya estaba en O.

Estos ejemplos de D = 2 pueden inducir a pensar que todas las teorias pueden
tener completaciones intrinsecas a si mismas y que la importancia de las redes HD
reside en las posibles completaciones de este tipo. Sin embargo, no parece posible
tal “completacién gratuita” intrinseca, que no cambie la dindmica de la teoria, para
sectores correspondientes a otras topologias. No es posible romper un WL y colocarlo
en la direccién del tiempo, de modo que imite a una particula cargada. Tal linea de
Wilson en el sentido del tiempo no tiene ninguna dindmica que pueda ser dictada por,
o estaria de acuerdo con, la de la teoria original. Tampoco parece posible construir
operadores de la linea de Wilson para romper el WL no local sin introducir operadores
cargados reales que cambien la teoria. Obsérvese también que, mientras que en D = 2
diferentes redes HD en las que los operadores no locales se rompen a campos locales
tienen diferentes dlgebras aditivas, no ocurre lo mismo con otros tipos de redes HD para
simetrias generalizadas asociadas a diferentes topologias. Por ejemplo, una red HD para
el campo de Maxwell restablece la dualidad de Haag, pero la teoria sigue violando la

aditividad, y el algebra aditiva después de tal eleccion sigue siendo la misma.

2.3.3. Variedades compactas

Como hemos explicado anteriormente, las manifestaciones locales de las simetrias
generalizadas suelen despreciarse porque quedan ocultas por la descripcién habitual.
Como consecuencia de esto, se suele afirmar que para comprender las consecuencias
sutiles de las simetrias generalizadas es necesario poner la teoria en variedades M
topolégicamente no triviales. De esta manera se pueden construir observables intere-
santes. Pero en la medida en que no consideramos teorias gravitatorias, poner la teoria
en una variedad diferente, incluso con una formulacién lagrangiana, no es un proceso
automatico y unicamente definido. Para que podamos entender la teoria en estas varie-
dades como la “misma teoria” que definimos originalmente en el espacio de Minkowski,
los observables deben tener una comprension en Minkowski. Por el contrario, puede

ser el caso que debamos introducir nuevos datos, mas alla de los que definen la teoria

15 La completitud para CFTs en D = 2 est4 relacionada con la invariancia modular, véase [22, 72].
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original, como una entrada arbitraria en la definicién de la teoria en M.

Para teorias con simetrias generalizadas, donde el fenémeno en el espacio plano es
suficientemente claro en términos de clases HDV, tenemos una combinacion de estas
dos opciones en el proceso de poner la teoria en variedades topolégicamente no triviales.
Por un lado, la estructura local de las algebras debe ser la misma que en el espacio
plano, y esto se puede detectar observando los sectores HDV dentro de una bola. En
este sentido, si la teorfa es una teorfa de gauge pura SU(2), ésta puede distinguirse de
una teoria sin sectores por la existencia tanto del TL como del WL para las dlgebras
locales. Por otro lado, para las teorias con sectores HDV, generalmente necesitaremos
especificar la estructura global mediante elecciones arbitrarias en M (condiciones de
contorno, sectores de superseleccion, etc). En esta secciéon desarrollaremos estas ideas
de forma general. Para un ejemplo concreto nos referimos a la seccién 7.2.2 donde
hacemos explicitas las ideas descritas en esta seccion para el campo de Maxwell.

Estas elecciones globales son, de hecho, bastante similares a las que tenemos para la
teoria en el espacio de Minkowski, si restringimos nuestra atencién a una subregién R.
En general hay varias algebras diferentes que podemos asignar a R, conteniendo o no
algtin subgrupo de operadores no locales. Como esperamos tener un algebra de tipo I'¢
para una teoria en una variedad compacta, el paralelismo es aiin mayor si en lugar de
considerar dlgebras asignadas a regiones del espacio consideramos algebras asignadas
a factores locales de tipo I. Veremos en el capitulo 5 como éstas pueden localizarse
para que sean mayores que el algebra de R y menores que el algebra de una region
ligeramente mayor que R. Para estos factores de tipo I tenemos el ingrediente adicional
de que los endomorfismos en el dlgebra efectuados por operadores duales no locales
en R’ son ahora internos, es decir, estan implementados por operadores en el dlgebra
misma. Entonces, podemos tener tanto el dlgebra de operadores no locales de R como
los de R’ como parte del factor de tipo I.'7 Ademds de eso también podemos generar
algebras de tipo I con centro simplemente eliminando los operadores globales no locales
contenidos en el factor original de tipo I.

Al poner la teorfa en una variedad no trivial M volvemos a tener un algebra de
tipo I, y tendremos, junto a los posibles operadores no locales a correspondientes a la
topologia de M, los duales b, correspondientes a los endomorfismos de esta algebra no
local. Estos operadores duales conmutan con el dlgebra aditiva, y con el tensor energia-

momento. Entonces, estos operadores duales b actiian como simetrias del Hamiltoniano

16 1,as 4lgebras de von Neumann sin centro se clasifican en factores. En QFT las dlgebras asociadas a
regiones son de tipo III. En cambio, los factores tipo I son isomorfos al dlgebra de todos los operadores
acotados en algin espacio de Hilbert de dimension finita o infinita. Véase [73] para una introduccién
y aplicaciones en QFT o [74] para un anélisis mas matemdtico.

1"Esto no es posible para las dlgebras habituales asociadas a subregiones, que son de tipo III. Los
operadores duales en R’ conmutan con el dlgebra aditiva en R. Podemos empujar este operador hacia
R intentando ponerlo dentro del algebra de R, pero la tinica manera de que siga conmutando con el
algebra local es ponerlo en la frontera de R, y en ese caso el operador se vuelve demasiado singular.
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global, sin ninguna accién sobre las algebras locales, y la inica accién no trivial esta en
los operadores a. En consecuencia, el Hamiltoniano es una funciéon de los operadores
locales y los b, que actian como cargas conservadas, pero no dependen de los a.

Mientras que las algebras locales para subregiones con topologia no trivial en una
bola dentro de M no pueden hacerse tinicas sin cambiar la teoria, las opciones globales
(posibles subdlgebras de los operadores no locales y sus duales) representan modelos
fisicamente diferentes en M. En la literatura estandar se insiste en que la teoria deberia
definir un modelo para cualquier M. Esto, por supuesto, puede establecerse, pero la
relevancia fisica es de nuevo discutible. Podemos preparar diferentes sistemas, con
diferente estructura global, para diferentes M, y no hay conexion entre estas elecciones
a medida que cambiamos M. La receta estandar es que uno debe elegir los modelos para
diferentes M de acuerdo con una unica red HD para la teoria original. Por ejemplo,
para una teoria SU(2), para cualquier M con un lazo no contractible, se puede tomar
la prescripcién con el WL global o sin el WL global, y esto estd en correspondencia
con las dos redes HD. Una vez maés, desde el punto de vista de la teoria original, y
desde un punto de vista fisico, no hay nada que apunte a estas elecciones, ni a ninguna
compatibilidad prescrita para las elecciones para diferentes M .'8

La logica detras de esta idea de que debemos elegir una tinica red HD para todas las
variedades M puede venir de los modelos de gravedad, donde el espacio es dinamico,
y en principio la fisica en cualquier variedad debe ser determinada automaticamente.
Aqui no hablamos de gravedad. Pero incluso en este caso, no esta claro por qué la
teoria en cada variedad deberia estar dictada por una red HD, y no por cualquier otra
eleccion, o incluso por una superposicion cuantica de elecciones. Mas atn, si tenemos
en cuenta que la estructura local sigue gozando de toda su arbitrariedad. Tal vez esta
imposibilidad de eliminar la arbitrariedad de la red HD esté relacionada con la idea
habitual de que, en tdltima instancia, las simetrias generalizadas deben estar realmente
ausentes en las teorfas de la gravedad.

Otra motivacién puede venir de conectar la idea de simetrias generalizadas con la
descripcion de modelos topoldgicos. En efecto, podemos utilizar variedades suficiente-
mente grandes para estudiar la fisica infrarroja de una teoria con grados de libertad
locales, y este limite puede mostrar propiedades topoldgicas. En este caso, lo que ocurre
es que la propia dinamica de la teoria determina una red IR HD efectiva. Por ejemplo,
una teorfa SU(2) puede tener confinamiento, de tal manera que en el IR el valor de ex-
pectacién del WL es 0 mientras que el del TL es 1 (después de un smearing adecuado).

La opcién opuesta es valida para la ruptura espontanea de simetria.

18Exigir que una QFT se defina automaticamente para todas las variedades sin entradas externas
en parte también se origina en la definicién de Segal de CFTs en D = 2 [75]. Esta definicién prescribe
una funcién de particién unica para cualquier variedad, y debido a ello asume invariancia modular.
Sin embargo, la existencia de diferentes redes HD estd asociada al fallo de la invariancia modular.
Véanse las referencias en la nota a pie de pagina 15.
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Esta saturacién de los valores de expectacién, ya sea a 1 o a 0, sélo puede ocurrir
para las redes HD, precisamente debido a las relaciones de conmutacién no triviales
de los operadores no locales, y a las relaciones de complementariedad cuéntica que
satisfacen. Por supuesto, también podemos estudiar este fenémeno de saturaciéon IR en
el espacio plano. En este caso existe una eleccién dindmica en el IR. Pero para estudiar
la teoria fuera del limite IR puramente topoldgico, tenemos que entender que ambos
operadores duales existen en pie de igualdad, aunque con estadisticas diferentes. En el
limite topolégico, podemos asimilar efectivamente el operador con valor de expectacion
1 a un nimero (el “generador de simetria” que respeta el vacio), mientras que el que
tiene valor de expectacién 0 conducirda a degeneraciones del vacio en una variedad
no trivial. Entonces, tenemos mas bien una estructura de sectores de superseleccion
correspondientes a las diferentes vacios. En el caso del limite IR del confinamiento,
por ejemplo, la terminologia habitual de SU(2) frente a SO(3) implica nombrar la
teorfa por la eleccion de considerar todos los sectores de superseleccién (y el WL que
cambia entre ellos) o s6lo considerar uno de ellos, mientras que todos los sectores existen
realmente en ambos casos.

Una cuestion interesante revelada por la presente discusiéon es la siguiente. Dada
una QFT en un espacio plano, ;jcudles son las ambiguedades al poner esta “misma
teoria” en variedades compactas? Argumentamos que la presencia de sectores HDV
siempre da lugar a tales ambiguedades. La cuestién es si éstas son todas las posibles, o
si hay mas. Otra cuestion relacionada es que las subregiones del espacio plano no tienen
topologias tan ricas como las de las variedades compactas de la misma dimension. Esto
puede sugerir que las variedades no triviales pueden revelar otras propiedades. Estas,
sin embargo, por razones mas logicas que fisicas, deben tener otra manifestaciéon en el

espacio plano.

2.4. Discusion del capitulo

Durante este capitulo hemos introducido las herramientas que utilizaremos a lo largo
de esta tesis. En particular, vimos como en las teorias con simetrias generalizadas existe
mas de una algebra posible para ciertas regiones del espacio-tiempo con topologia no
trivial. En otra palabras, la simetrias generalizadas vienen asociadas a operadores no
locales que producen los fallos en la aditividad y/o dualidad de Haag a la hora de
definir el algebra asociada a una dada region.

Este enfoque algebraico nos permite probar de forma abstracta resultados que
valdran para cualquier tipo de simetria generalizada, ya sea una simetria O-forma pro-
veniente de un orbifold o una simetria tipo k-forma. Un ejemplo claro es el hecho de que
las simetrias generalizadas vienen en pares. También, nos permite definir con precision

ciertas ideas, como las clases de equivalencia de operadores no locales, la completitud,
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etc. Durante los proximos capitulos trabajaremos estas ideas para distintas teorias,
comenzando con el gravitéon de Einstein en el capitulo 3.

En la seccién final comparamos nuestro enfoque algebraico con el enfoque usual
usado en la literatura de simetrias generalizadas. Vimos que ambas nociones son ma-
yormente equivalentes en lo que respecta a calculos especificos pero difieren en ciertas
interpretaciones. En el centro de esta discrepancias se encuentra la idea de red de Haag-
Dirac, la cual en algunos casos suele entenderse como parte de la definicién de la teoria.
Pospondremos volver a discutir esta comparaciéon hasta el capitulo 7 donde veremos

un ejemplo que maximiza las consecuencias de estas diferencias.






Capitulo 3

Simetrias Generalizadas del

Graviton

El objetivo de este capitulo es encontrar y analizar en teoria de gravedad linealizada
los operadores no locales y las correspondientes clases HDV, asi como sus reglas de
fusion y dlgebra. A continuacion describiremos las motivaciones para dicho estudio.

Comencemos con las que provienen puramente de QFT. Como es bien sabido, apa-
recen varios obstaculos y peculiaridades cuando se intenta construir una QFT con
particulas sin masa de espin dos. Por un lado, tenemos el teorema de Weinberg-Witten
[17], que prohibe la existencia de un tensor de energia-momento para estas teorias.
Por otro lado, tenemos el teorema de Coleman-Mandula [2], que impide una mezcla
no trivial de simetrias espacio-temporales con simetrias internas. Dado este contex-
to, seria interesante profundizar en estas cuestiones desde el punto de vista de las
simetrias generalizadas. En particular, dado que la simetria de gauge del gravitén estd
relacionada con simetrias espacio-temporales, uno podria imaginar que las simetrias
generalizadas podrian estar cargadas bajo el grupo Poincaré. De hecho, encontraremos
que el gravitén tiene clases HDV asociadas a regiones con lazos no contractibles, y que
estas clases estan cargadas bajo simetrias espacio-temporales. Podemos pensar esto, en
principio, como un contra-ejemplo a una posible extension del Coleman-Mandula para
simetrias generalizadas. En particular, este ejemplo podria explicarse porque la teoria
es libre, pero estaria dando un fuerte argumento adicional en contra de potenciales
teorias interactuantes e invariantes de Lorentz del gravitén.

Desde una perspectiva de QFT, también estamos motivados a estudiar este proble-
ma para comprender mejor el alcance del enfoque algebraico de las simetrias generali-
zadas, dado que esperamos que el graviton muestre varios comportamientos peculiares
que podrian escapar los enfoques usuales de las simetrias generalizadas.

Por otro lado existen motivaciones procedentes de la gravedad cuantica. Desde la

aparicién de [18, 19], ha habido un creciente interés en tratar de entender la comple-
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titud del espectro en la gravedad cudntica. A partir de [19], y méds recientemente en
[20-23], 1a cuestién de la completitud se ha relacionado acertadamente con la ausencia
de simetrias generalizadas. El enfoque algebraico hace esto transparente, como hemos
revisado anteriormente en el capitulo 2. Dada una QFT con una estructura dual de
simetrias generalizadas, para que la teoria sea completa, necesitamos introducir un
numero suficiente de operadores cargados tal que las inclusiones anteriores se satu-
ren, o equivalentemente, tal que los operadores no generados localmente se generen
localmente. En este sentido, al estudiar las simetrias generalizadas del graviton, tam-
bién estamos allanando el camino para una posible comprension de cémo completar
tal teorfa y/o qué problemas o sutilezas surgen en el proceso. En este contexto, vere-
mos que para romper los operadores no locales manteniéndonos dentro de formalismo
estandar de QFT, necesitaremos romper drasticamente la invariancia de Poincaré.
Por dltimo, también existen motivaciones procedentes de la fisica de la materia
condensada. Recientemente, se han explorado algunos nuevos tipos de excitaciones con
movilidad restringida. Estas fueron denominadas fractones, véase por ejemplo [76-81]
y para posibles escenarios experimentales [32, 83]. Las formulacién de teorias fracto-
nicas dentro del formalismo de QFT fue desarrollada en [¢1-80]. En particular, dichas
teorias no poseen simetria de Poincaré y las propiedades de movilidad de estos fracto-
nes estan completamente determinadas por la naturaleza de las simetrias generalizadas
asociadas con los campos de gauge a los que se acoplan los fractones. Estas simetrias
generalizadas, y sus operadores topologicos asociados, estan tipicamente cargados bajo
simetrias espaciales, y esto es la raiz de las propiedades de movilidad restringida de los
fractones. Ademads, en [37] ya se estableci6 una conexién heuristica entre la fisica de los
fractones y la fisica gravitacional, basada en los vinculos hamiltoniano y de momento.
En este capitulo, analizando en detalle las simetrias generalizadas del graviton, podre-
mos precisar mejor las conexiones y diferencias entre la fisica de los gravitones y la
fisica de los campos de gauge tensoriales que son usualmente asociados a los fractones.
Este capitulo estd estructurado de la siguiente manera. En la seccién 3.1, intro-
duciremos la teorfa del gravitén (gravedad linealizada) y repasaremos la derivacién
de los vinculos hamiltoniano y de momento, junto con sus respectivas cargas globales
asociadas. Veremos que estas pueden escribirse en términos de integrales de superficie
de operadores no invariantes de gauge. Por ende, no son responsables de las simetrias
generalizadas. Para encontrar simetrias generalizadas es necesario escribir la teoria en
términos de operadores invariantes de gauge y estudiar la no saturacion de la causalidad
para tal algebra. Para ello, reformulamos la teoria del gravitén en términos de ciertos
campos eléctricos y magnéticos, re-derivando finalmente la formulacién de Longo et
al [30]. Utilizaremos esta formulacién electromagnética del gravitén en la seccién 3.2
para encontrar las clases HDV duales producidas por la simetria generalizada. Estas

resultan ser simetrias 1-forma cargadas bajo el grupo de Poincaré (esto es debido a que
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llevan indices espaciales). Trabajando las relaciones de conmutacién canénicas del gra-
viton derivaremos las relaciones de conmutacion de los campos eléctricos y magnéticos
del graviton. Con estas relaciones de conmutacion, hallaremos el dlgebra de operado-
res topoldgicos. En la tultima seccion 3.3, discutiremos la conexion entre la fisica del
graviton y la fisica de los sistemas fracténicos. Exploramos brevemente la naturaleza
de los operadores cargados que necesitamos incluir para romper explicitamente las si-
metrias generalizadas y completar la teoria del gravitén dentro del marco de la QFT.

Terminamos con algunas discusiones sobre el contenido del capitulo en la seccién 3.4.

3.1. Gravedad Linealizada

Vamos a comenzar analizando la teoria del gravitén de Einstein linealizado en un
espacio-tiempo plano en D = 4 dimensiones. Dicha teoria surge al considerar pequenas
perturbaciones sobre una métrica de Minkowski fija de fondo. M&s precisamente, la
métrica tiene la forma

G = N + Py Hh/WH <1. (3.1)

Utilizando esta expresion podemos expandir a cualquier orden deseado cualquier va-
riable relacionada con la curvatura en relatividad general. En particular, partiendo de
las ecuaciones de Einstein sin fuentes externas en D = 4 dimensiones, la ecuacion de

movimiento linealizada esta dada por
0’\6uhA,, + 8A3Vhw — 8A8,\h,w — 0,0,h; — nw,(aA(?JhM —970,h0) = 0. (3.2)

Por otro lado, expandiendo el escalar de Ricci a primer y segundo orden, obtenemos

RY = 9,0, —0°0,h°,, (3.3)
R® = 17 [0,0°hae — 020" hpe — 050°hpx + ONO 17| + zaah,,Aa"hﬂ*
1 1
= OThor0ph” + O h) O, = 05 hpp O'h — 20K, 05N, (3.4)

En este contexto, podemos recuperar las ecuaciones de movimiento anteriores (3.2) a

partir de la accién cuadratica de Einstein-Hilbert !

1
Sgi = /d%;\/g}z ~ /d%; {<1+§h) RW +R(2)} . (3.5)

Para mayor comodidad consideraremos (87G) = 1 a menos que se exprese lo contrario.
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Esta es simplemente la accién habitual de Fierz-Pauli para el graviton [38], a excepcién

de algunos términos de borde que surgen de integrar por partes la curvatura, es decir
Spp = [ d* 18 h?0,hH" 18 h*”0,h 18 heo*he 18)‘h’“’8 h 3.6
FPp = ﬁc—éupu +§,\ uu,\—i-zup o] ©w | - (3.6)

3.1.1. Simetria de Gauge: difeomorfismos lineales

Debido a la invariancia ante difeomorfismos, la teoria de los gravitones tiene una
simetria de gauge. Sin embargo, no se trata del grupo de difeomorfismos completo,
como ocurre para la teoria de Einstein no lineal completa. La razon fundamental es
que hay difeomorfismos que destruyen el limite de perturbacién débil definido por (3.1).
Por ende, necesitamos restringirnos a los difeomorfismos que respetan dicha suposicion.

A orden lineal, podemos escribir los difeomorfismos en cuestién como
ot — M=ot (), (3.7)

donde &(z) es del mismo orden que hy,,. Bajo este conjunto restringido de difeomor-

fismos, la perturbacién h,, transforma de la siguiente forma
(@) = by () + 0,60 (x) + 008, (2) | (3.8)

lo que implica que los simbolos de Christoffel linealizados dados por
py _ 1o
Las™ = 1" (hnap + hupa + hapn) (3.9)

transforman como
e =1r Y 49,056 (3.10)

Siguiendo, vemos que el tensor de Riemann a primer orden definido como

1
RO = o (To® — T D)) = 5 QoOuhpy + 0,01 — 0pDuhoy — 050,hy) , (3.11)

Vo, Ho,v

es claramente invariante de gauge

RN =100 10 0 = (00 ) — T2 D) +(8,0,0,6" — 0,0,0,6°) = R {l), . (3.12)

P (
ouy Vo, no,v Vo, po,v ouy

Como mencionamos anteriormente, nos interesa estudiar la teoria de gravitones linea-
lizados en el espacio plano. Esta es es una teoria de particulas de espin dos sin masa.
En este contexto, el tensor de curvatura (3.11), como operador en la teorfa cuéntica,

genera el algebra invariante de gauge local de la teoria de gravitones.
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3.1.2. Vinculos, simetrias globales y cargas conservadas

Para derivar los operadores no locales que implementan a las simetrias genera-
lizadas, se podria seguir ingenuamente un procedimiento similar al del campo elec-
tromagnético libre. En la teoria de Maxwell, podemos integrar los vinculos de gauge
V - E = 0 sobre un volumen espacial. Esto nos da lugar a la ley de Gauss en ausencia
de cargas. La ley de Gauss implica que si definimos un operador de flujo sobre una
superficie abierta, este operador no depende de la superficie elegida, s6lo de su borde.
Esto produce que dicho operador pueda asociarse a cualquier anillo que contenga el
borde, ya que conmuta con todos los operadores locales invariantes de gauge fuera de
dicho anillo. Estos operadores de superficie son los TL.

Repasemos como funciona este método en la teoria del graviton. En este caso,
las ecuaciones de movimiento de los multiplicadores de Lagrange hgg y hg; producen

respectivamente los vinculos hamiltoniano y de momento linealizados
H=—2Gy = 0,0'W, — Jh; =0, H,=-2Gy =-2077 =0, (3.13)
donde 7;; denota los momentos canénicos asociados a las restantes variables dindmicas

hi;. Més explicitamente, tenemos

5£Fp 1 /. .
7Tz‘j - 5hl] = 5 (hlj — @hoj — 8jh0i — (5whkk + 25138%0;6) . (314)

A nivel cuantico, las variables duales canénicas h;; y m;; satisfacen las relaciones de

conmutacion a igual tiempo

[hij(z), 7" (y)] = < (6867 + 676%) 6(z —y) . (3.15)

1
2
A partir de estas relaciones de conmutacion, es sencillo encontrar que los vinculos
con smearing producen la acciéon de difemorfismos linealizados (3.8) sobre las varia-
bles candnicas. Esto es, si introducimos funciones de smearing &y(x) v & (z) para H y
‘H; respectivamente, podemos escribir las operaciones no triviales sobre las variables

[hij @), [Eyrw 5k<y>] = (06 () + 0,6 () | (3.16)
|:7Tij<x)7/d3yﬂ(y) £O(y>:| =1 (818_] - (51‘]'82) &](l‘) . (317)

Al igual que con el campo de Maxwell, uno podria estar interesado en encontrar las
cargas asociadas con estos vinculos, es decir, con la invariancia ante difeomorfismos

lineales. Teniendo en cuenta el segundo teorema de Noether [39, 90] para difeomorfismos
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linealizados, es posible derivar las cargas asociadas de forma més rigurosa. Podemos
escribir estas cargas como integrales de los vinculos sobre una regiéon R definida sobre

una superficie de Cauchy, o como flujos sobre el borde cerrado R de dicha regién. Més

explicitamente:
0 1 3 1 nj nij
P'=—— [ EaH == [ dS,(9;h"7 —"W}) (3.18)
2 Jr 2 Jor ’
) 1 ) 1 ) . ) ; ..
P = ——/ PrH = —/ s, [é?"hoZ — W™ — 0™ (0;hd — k)|,
2 Jr 2 Jor ’

JU = —%/ &Px (x'H — 2"H')
R

= % /a S [xi(ajhjn — O"I)) — " 4 8", — 20(0"hy — W — MRS + M) |
J9 = —l/ dx (I H — 2" H)

2 Jr
= % /8 i ds, [xﬂ'(a”hoi — B — 579,k 4 0MRT) — " hi — (i > §)
Estas son las famosas “cargas de Poincaré”. Son precisamente las que se propusieron
originalmente en [91] mediante la construccién del tensor de energia-momento efectivo
del gravitén (cuando se consideran validas las ecuaciones completas de la relatividad
general). Puede verse que estas cargas de Poincaré satisfacen el dlgebra de Poincaré
[92], 1o que podemos considerar como una consecuencia de la linealizacién del dlgebra de
Dirac-Schwinger para los vinculos no lineales de la formulacion Arnowitt-Deser-Misner
(ADM) [93].

No obstante, aqui vemos la primera diferencia con la teoria de Maxwell. Mientras
que en la teoria de Maxwell las cargas se escriben como flujos de operadores locales
invariantes de gauge (campos eléctrico y magnético), en gravedad estas cargas conser-
vadas de Poincaré, que surgen al integrar los vinculos hamiltoniano y de momento, son
flujos de operadores locales no invariantes de gauge. Esto se produce, a pesar de que,
los propios vinculos y cargas asociadas son invariantes de gauge. Esta caracteristica
nos impide extraer de ellas los WL y TL de la forma en que se hace para el campo
de Maxwell. Mas concretamente, si integramos los flujos anteriores sobre superficies
abiertas obtenemos operadores lineales que no son invariantes de gauge, y por tanto no
generan simetrias del espacio fisico de Hilbert invariante de gauge en el que los vinculos
estan fijados a cero.

De forma equivalente, la diferencia entre el caso de Maxwell y el de gravedad linea-
lizada en consideracion se manifiesta en que el tensor de energia-momento efectivo del
graviton no presenta invariancia ante difeomorfismos (excepto en el bode de la variedad
diferencial en cuestién, donde las transformaciones de gauge desaparecen). Mas aun,

no es posible encontrar una modificaciéon de dicho tensor de energia-momento que sea
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invariante de gauge. Esto es debido al teorema de Weinberg-Witten [17], que prohibe
la existencia de un tensor de energia-momento invariante de gauge, conservado y cova-
riante de Lorentz que produzca las cargas de Poincaré en una teoria con particulas no
masivas de espin 2.

Notamos que la ausencia de un tensor de energia-momento bien definido no implica
la ausencia de la simetria de Poincaré. Esta es implementada por los unitarios del
grupo que podemos definir si exponenciamos (3.18) tomando a R como una superficie
de Cauchy completa e infinita. También, existen implementaciones de la simetria sobre
algebras locales pero las estudiaremos en el capitulo 5. En esta direccién, para el caso
D = 4 podemos ver que las simetrias espacio-temporales de la teoria de la gravedad
linealizada pueden extenderse al grupo conforme completo. A continuacién esbozamos
los argumentos en cuestion y presentamos las referencia correspondientes.

La teoria libre del graviton sobre un espacio de Minkowski claramente exhibe inva-
riancia de Poincaré y de escala, por lo que nos resta comprender si podemos ampliar
dicha simetria para incluir el grupo conforme completo en D = 4. Por un lado, hemos
afirmado que el teorema Weinberg-Witten [17] excluye la existencia de un tensor de
energia-momento. Podriamos considerar este fallo como un argumento en contra de
que la teoria tenga simetria conforme. Es decir, la teoria no satisface los axiomas de
CFT habituales que aparecen en la literatura bootstrap, y que usualmente asumen
la existencia de tal corriente [94, 95]. Por otro lado, podemos relajar esta suposicién
[96-98]. En este contexto, todas las representaciones libres, sin masa e irreducibles del
grupo conforme se han clasificado en [99, |, donde las representaciones spin 2 de
SO(4,2) vienen dadas por diagramas de Young con las mismas simetrias y ecuaciones

de movimiento que el tensor de Riemann lineal on-shell:
R,uypa = _Ru,upo = _R,uucrpa R;wpo - Rpa,ul/7 nuyRm/po =0. (319)

Ademas, el tensor de Riemann es el operador de menor dimensién que aparece en el
espacio de fases invariante de gauge, con su dimensién de escala A = 3 saturando el
limite de unitaridad [101]. Esto lo hace un candidato a operador primario que describe
una CFT libre.

Siguiendo esta linea, se ha demostrado explicitamente que todas las funciones de
correlacion del tensor de Riemann lineal en D = 4 coinciden con las de un campo de
spin 2 primario con A = 3 [102]. Esto prueba que la teorfa en cuestién (definida por
sus correladores) tiene simetria conforme. Mdas atin, podemos obtener los generadores
del grupo conforme a partir de los de Poincaré utilizando la construccién presentada

en [30].
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3.1.3. Gravedad linealizada en la formulacion ADM

Para mayor claridad respecto al origen fisico de las leyes de conservacién menciona-
das anteriormente, aqui presentamos la teoria de la gravedad linealizada utilizando el
enfoque Hamiltoniano usual de la Relatividad General. Es decir, revisitamos la teoria
ya presentada en la formulacién ADM, presentada por primera vez en [103]. En parti-
cular, seguiremos la notacién y las ideas generales desarrolladas en [104]. Esta seccién
no es necesaria para el desarrollo de lo que sigue en el capitulo, solo mostramos que los
resultados ya presentados son consistentes con ADM.

Para comenzar, vemos que la accion ADM cuadratica que es equivalente a la accion
de Einstein-Hilbert al mismo orden (3.5) y a la accién de Fierz-Pauli (3.6) a excepcién

de los términos de borde. Podemos escribir a la primera de estas como

hooh .
S = /dt d*x [(1 +5 - %) SR 4 3R(™) 4 K(Z{)Kfjl) - K}yl (3.20)

donde 3R es la curvatura tridimensional, y la foliacién queda definida por la funcién

de lapso N y el vector de desplazamiento A/*
h , .
N = /(1 =hg)+0OMh*) =1- % +0Oh?), Ni=-hr"40h?, (3.21)

que se corresponden a la curvatura extrinseca definida como

1.
Ki; = 5 (hij — Oihoj — 3jh0@') : (3.22)

La foliacién determinada por N y Ny la métrica inducida q;; = d;; + h;; nos permiten

recuperar la métrica completa g, = 1, + hy de la forma usual en ADM

ds® = (=N?+qy N'N?)dt* + q;; N7dz'dt + q;; N'da? dt + g;; da'dx?  (3.23)
= —(1 — hoo)dt* + 2hqpdt dz’ + (Gap + hap)dxdz’ + O(R?) .

Los momentos y vinculos estandar de ADM reproducen los momentos correctos (3.14)

y los vinculos (3.13) presentados en la seccién 3.1.2

1/, .
7Tij = \/6(sz - QZJK) = 5 (hz] - 8ih0j - ajh[)z‘ - 5Z]hkk + 25133kh0k) + O(h2) 5 (324)
H =G (—"R+ KK — K*) = 040alusp — 0uObhas, + O(1?) (3.25)
M, = gV m; = —207m; + O(h?), (3.26)

donde V; es la derivada covariante proyectada sobre la superficie de Cauchy del espacio-

tiempo de Minkowski definida por la foliacién (3.21). Esta actia sobre variables de
orden O(h) como la derivada habitual 0;.
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Ademas, podemos recuperar el Hamiltoniano a partir de la transformacion de Le-

gendre de (3.20) o bien expandiendo el Hamiltoniano de ADM no lineal
Hapw = [ &5 [N@HE) + N (@) (0)] (3.27)

= / d*x {7—[(2) + < - %) HO (@) — WO (2)H" (2)| + O(R) .

Desde este punto de vista, el Hamiltoniano de gravedad linealizada sin términos de
borde no es una combinacion lineal de vinculos lineales. Sin embargo, como cabria de
esperar a partir de la foliacién (3.21), los vinculos procedentes de la funcién de lapso y
del vector de desplazamiento son equivalentes a los derivados en la seccion 3.1 a partir
de los multiplicadores de Lagrange hgg v ho; respectivamente.

Nos sera 1til tener en cuenta que podemos calcular las ecuaciones de Heisenberg

para las variables canénicas utilizando (3.27)

Ky — 6557 (3.28)

N | —

ihij(x) = [hij(z), Hapu] = iy =

ityj(x) = [mij(2), Hap) = GiY =0. (3.29)

las cuales equivalen a la ecuacién de movimiento (3.2).

3.1.4. Espacio de fases invariante de gauge del gravitén

La descripcién del campo gravitatorio linealizado en términos de variables del espa-
cio de fases invariante de gauge nos facilitara la comprension del problema de encontrar
las simetrias generalizadas. El objetivo es encontrar campos gravitatorios eléctricos y
magnéticos que desempenen papeles analogos a los del campo de Maxwell. En el caso
del campo de Maxwell, el dlgebra completa de la teoria estd generada por dichos cam-
pos. Asi que empecemos por buscar un conjunto de operadores invariantes de gauge
que generen el algebra de gravitones.

En contraste con lo que se espera en la gravedad cuantica completa, la teoria del
campo de gravitones en el espacio de Minkowski contiene operadores locales invariantes
de gauge. Como hemos mencionado anteriormente, podemos construirlos a partir del
tensor de Riemann linealizado?, definido en (3.11). Este tensor genera completamente
el dlgebra local de la teoria. Ademads, presenta las mismas simetrias del tensor de
Riemann no lineal. Un camino para escribir la teoria en términos de campos eléctricos
y magnéticos, utiliza el hecho de que podemos entender el tensor de Riemann como

la curvatura de una conexién local de Lorentz, la conexién de espin®. Esto nos sugiere

2De ahora en adelante suprimiremos el indice de orden en perturbaciones y escribiremos el tensor

. . . 1 .
de Riemann linealizado R,(“,)pa simplemente como R, o
3Para una descripciéon completa de este enfoque y su historia, véase [35].
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definir los siguientes campos eléctricos y magnéticos

- - 1
ES = =Ry ", B = ceqRy . (3.30)
Sin embargo, como es bien sabido, la formulacién de la teoria gauge de la Relatividad
General difiere en muchos aspectos de la de Maxwell. En el caso que nos ocupa, y a
diferencia de Maxwell, utilizando la ecuacién de Heisenberg para los momentos canéni-
cos 7;; (o las ecuaciones del movimiento en la imagen clédsica), observamos que estos
campos no son independientes. En efecto obtenemos

EiOa = &ijk (Sjanka y Bioa = —&ijk 5an~lnka . (331)
En consecuencia, podemos describir mejor los grados de libertad on-shell del tensor
de Riemann linealizado mediante la eleccién de operadores eléctricos y magnéticos

presentada en [30]. Estos son

1
Eij = —Rowj, By = égmbRa%j : (3.32)

Dichas variables proporcionan un conjunto independiente de campos locales invariantes
de gauge que generan el algebra de gravitones. Es importante que destaquemos que

heredan del tensor de Riemann las siguientes propiedades de simetria

Ej=E;, B;=B;, E;=0, B,=0, (3.33)

7

y obedecen a una version generalizada de las ecuaciones de Maxwell
PEy; =0, &By;=0, (3.34)

&kaanEkj = —Bij, €inkaanj = EZ . (335)

Utilizando la expresién (3.11), podemos describir estos campos eléctricos y magnéticos

en términos de las variables candnicas como
1
Ej =3 (0" Ohi; + 0;0;h"), — 0,0"hij — 8;0%hy;) (3.36)

Byj =i O (wnj . 5;%) , (3.37)

con = 7r§. Estas expresiones nos permiten interpretar las propiedades sin divergencia

y sin traza de los campos eléctricos como consecuencia del vinculo hamiltoniano

; 1 . 1 -
8JEZ~j = Z@ﬂ'[, Ezi = ZH, €ijk;EU =0 s (338)
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mientras que las propiedades de simetria y ausencia de divergencia del campo magnético

proceden del vinculo de momento

& By = —%Emkak?‘[n, B, =0, &jB"= %”H,k =0. (3.39)
Aunque la teoria del gravitén y la teoria de Maxwell parecen bastante similares en
esta formulacién, existe una diferencia clave al cuantizar la teoria. Las relaciones de
conmutacion entre los campos eléctrico y magnético resultan ser muy diferentes. En el
presente caso, utilizando las relaciones de conmutacién canénicas (3.15), y las expre-
siones (3.36-3.37), obtenemos®

l

[Eij(x), Bu(y)] = 7 5hab [5ia(8jal — 5,07 (3.40)
+ 64 (8:0) — 840%) — 01a(9:0; — 5@02)} Opo(zr—y).

Estas expresiones obedecen todas las propiedades (3.33-3.34). De hecho, podemos re-

escribirlas de una manera maéas simétrica

[Eij(l"), Bkl(g)] :% [c‘:kib(ajal - 5]'[82) + 6@5(&‘8[ - 5i162) (3_41)

+ €1p(0;0k — (5jka2) + €15(0;0 — 5ik82)} O b(x —y) .

Para resumir, en esta formulacion Maxwelliana, las algebras locales estan generadas
B

ciones de movimiento (3.34-3.35), y tienen conmutadores (3.41). El anélisis de simetrias

por campos eléctricos y magnéticos F; que obedecen los vinculos (3.33), las ecua-

YRR YR
generalizadas serd mucho mas transparente en esta formulacion como mostraremos en

la seccién (3.2).

3.1.5. Formulacién dual del campo gravitatorio linealizado

Un estudio més profundo de las simetrias generalizadas de la gravedad linealizada
requiere entender la transformacién de dualidad que involucra un tensor simétrico de
segundo rango h,,. La dualidad correspondiente, andloga a la electromagnética, se
describié en detalle en [107]. Aqui presentamos una revisién de los aspectos utiles.
Comenzamos escribiendo la accién en términos de un Lagrangiano “parental”

1 1

1 « « apr,
S = / d*z {ETW;)MT( D+ gT(aﬁ)m w4 1 Tasye Peont | (3.42)

4Las relaciones de conmutacién deben ser invariantes de gauge. Por ende, un ejercicio mas sencillo
es calcular estas relaciones de conmutacién utilizando el esquema de cuantizacién de Gupta [105, ]
en gauge armoénico. El resultado es exactamente el mismo.
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donde el campo T{,g), es un tensor antisimétrico en los indices « <+ § y ademas tiene
traza cero T(a Bl)l = 0. Podemos resolver la ecuacién de movimiento de T{,g), en términos

de h,, para obtener
Tapyn = Eapr(Osh™ — 0Mh7,) — €057 Ol - (3.43)

Noétese que sustituyendo (3.43) en (3.42) podemos recuperar la accién de Fierz-Pauli
(3.6) que esperamos para el campo original. Ademas, en (3.42) el campo h,, aparece

como multiplicador de Lagrange dando lugar, en ausencia de fuentes, al vinculo
Oy (P T, 5" + 7T 1) = 0. (3.44)

La solucién correspondiente viene dada por un par de campos duales h,, y w,, de la

forma

Tapyu = (Oawyp — Opwua) + (aailub’ - aﬁﬁua) y W = —Wy, = ;LVM' (3.45)

Escribimos la accién (3.42) en término de los campos simétrico y antisimétrico como

| ~ 1 - ~ 1 - -
— 4 ~ Ao [ i~ [y 7 e o v e
S /d x [43 By Ot — SO B0 Doy, — 50" R, 01,

1.+ ~ 1.+ 1
—l—éﬁuhaa&,h“” — §(9“h“”8°‘w,,a + éﬁ“w”“ao‘wm . (3.46)
Dicha accién tiene una simetria de gauge dual que podemos escribir como

W2 = (x)

— O (2) 4 0VEM(x) (3.47)
W (1) =hM (x) + OMEY () + 0V EM () . (3.48)

Permitiéndonos obtener identidades ttiles a partir de la relaciéon de dualidad entre los

potenciales que provienen de (3.43) y (3.45). Por ejemplo, podemos escribir
Eapr (0577 — Oh,) = €057 Oy = (Oatwyp — Opwia) + (Oaltys — Ophya) . (3.49)

También, demostramos que este proceso implementa una transformacion de dualidad

sobre el tensor de Riemann de la forma

~ 1

Rypo = §5uvaﬁRa£a ) (3.50)
que intercambia los campos eléctrico y magnético como
1 - )

Eij = §5iabR 0j > Bij = _ROin . (351)
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Ademads, una consecuencia particularmente interesante de (3.49) es que podemos escri-

bir el campo magnético como un doble rotor
1 ~
Bz’j = §5iab€jcd8b8dh“, (352)

donde hemos utilizado la definicién candnica (3.37) y la expresién (3.49) contraida con

un tensor espacial Levi-civita como

1 .. . , /. s
5 T = hi! = 0'hoi — (h - ajhw> = cabig, (h + w) . (3.53)
De la misma manera, como cabria esperar de la dualidad, podemos utilizar (3.36) para
obtener .

Ei‘ = —§5iab5jcd8b8dh“ . (354)
cuando el vinculo hamiltoniano® y las ecuaciones de movimiento se satisfacen. Destaca-
mos que esta formulacién dual, y en particular las ecuaciones (3.54-3.52), seran tiles

cuando analicemos la relacion con los modelos fractonicos en la seccién 3.3.

3.2. Operadores topolégicos para el gravitéon

Habiendo encontrado una formulacion de la gravedad lineal en términos de un con-
junto de campos eléctricos y magnéticos locales invariantes de gauge, podemos ahora
proceder a encontrar operadores HDV. A partir de las ecuaciones de Maxwell generali-
zadas (3.34-3.35), esperamos que estos operadores violen la dualidad en un anillo, como
en las teorias de gauge convencionales [23]. A continuacién confirmamos que este es el
caso. Pero también podriamos esperar ingenuamente que estos operadores solo estén
dados por los flujos de los campos eléctrico y magnético, como en el caso de Maxwell.
En otras palabras, tenderiamos a suponer que los flujos se obtienen considerando los
vinculos que fijan divergencia cero para los campos eléctrico y magnético, lo que condu-
ciria a las cargas conservadas habituales. Aunque esto es parcialmente correcto, pasa
por alto varias cargas conservadas. La diferencia es que para la teoria del graviton,
necesitamos anadir también las restricciones que provienen de la formulacién a partir

métrica, estas son

E;=FE;, FE,=0, (3.55)
B =B, B,=0. (3.56)

7

Vamos a ver que teniendo en cuenta estas propiedades, encontraremos un conjunto

ampliado de cargas conservadas. Ademads, en la seccién 3.3, veremos que la adicién de

5Es necesario que agreguiemos al campo eléctrico un factor de 0;;H = 0 para llegar a esta expresién
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estas restricciones sugiere que la analogia correcta no es entre el gravitén y el campo

de Maxwell, sino entre la teoria del gravitén y los sistemas fractonicos.

3.2.1. Un nuevo conjunto de cargas conservadas

Las propiedades de simetria y traza nula de los campos eléctricos y magnéticos
(3.33), junto con las ecuaciones de divergencia cero (3.34), sugieren que es ttil pensar
en estos campos como “tensores de energia-momento” 7T;; de CFTs Euclideas en D = 3.
Tal tensor de energia-momento satisface analogamente que

T =Ty, T. =0, aisz =0. (3.57)
Y sabemos que dado tal tensor de energia-momento, las cargas conservadas estan en
correspondencia uno a uno con los generadores del grupo conforme. Para esto, sélo
necesitamos contraer el tensor de energia-momento con los campos vectoriales que
generan las isometrias conformes asociadas. Utilizando esta intuicion podemos verificar
que tenemos un conjunto ampliado de operadores vectoriales invariantes de gauge® con
divergencia nula. Estos son

Bf = Bjid’, B = —By;s""x,,, B? = kB;jx’, Bff = B;(V2* —227b-z), (3.58)

7

EF = E;é , B! = —E;;#"x,, EP = kB2, EX = B;(Wa® — 227b-2),  (3.59)

7

donde tenemos que k, a;, b; y s;; son respectivamente un escalar, dos vectores y un
tensor antisimétrico arbitrarios. Lo mismo se aplica a k, a;, bi y 8. Las etiquetas
P, J, D, K representan respectivamente la analogia con traslaciones, rotaciones, dilata-
ciones y transformaciones conformes especiales. En este contexto, podemos comprobar
utilizando las ecuaciones de Maxwell generalizadas, junto con los vinculos correspon-

dientes, que tenemos

OES = (0'Eyj)d =0,

OE! = E;59 - (0'E;j)3"x, =0, (3.60)
OEP = RO'Ej)x +kE', =0,

OEX = (0'Ey)(Va? — 2270 - x) + 2B (Wa’ — b'a?) —2(b-2)E';, = 0.

El conjunto ampliado de ecuaciones de divergencia nula y sus contrapartes magnéticas

nos dicen que la teoria tiene el siguiente conjunto de flujos” conservados

6Para un difeomorfismo linealizado tenemos que x* — x* + ¢#. Pero, como los campos eléctrico y
magnético son ya de primer orden en la perturbacion, la no invariancia de gauge de estas cargas es de
segundo orden, y podemos despreciarla en la teoria linealizada.

"Cuando consideramos el adimensional h,,, las cargas de Poincaré (3.18) se suprimen en realidad
por un factor (87G)~!. Este no es el caso de los flujos eléctricos y magnéticos (3.61-3.62).
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Z/

Figura 3.1: Elecciones posibles de ¥ y ¥’ para un borde fijo T'.

@B:/desi, @B:/Bgdsi, @B:/BiDdSi, oL :/desi, (3.61)
P % b %

@E:/Efdsi, @E:/E{dsi, oL :/Efdsi, L :/E{fdsi, (3.62)
% b % DN

donde la superficie de integracion ¥ es cualquier superficie abierta bidimensional de-
limitada por una cierto borde cerrado en forma de anillo. Estos operadores de flujo
conmutan con todos los operadores locales fuera del anillo. La razon es la misma que
en la teoria de Maxwell, podemos simplemente mover la superficie 2 de la definicién
del operador topoldgico a otra ¥’ con el mismo borde I' = 9% = 9% y el operador
no cambia (Ver figura 3.1). Por tanto, los operadores locales que yacen sobre ¥ con-
mutan con los flujos debido a la necesidad de preservar la causalidad, ya que podemos
alejar el flujo del soporte del operador. Crucialmente, como explicamos en el capitulo
2, incluso si por este argumento podemos asociar estos operadores con regiones tipo
anillo, no se generan localmente en el anillo. En particular, no conmutan con algunos
de los operadores que no son aditivamente generados en el anillo complementario. En
la seccién 3.2.3 probaremos y discutiremos esta afirmacién en detalle.

Por otro lado, queremos que los flujos de los vectores conservados (3.58-3.59) sean
cargas adimensionales. Teniendo en cuenta que B;;, F;; tienen dimension tres en energia
tenemos que a;, a; tienen dimensiones de longitud, s;;, 5;;, K, K son adimensionales, y

b;, b; tienen dimensiones de energia.

3.2.2. Algebras de operadores topoldgicos para Maxwell

Dado el conjunto de flujos conservados y sus operadores topoldogicos asociados, el
objetivo ahora es calcular su algebra. Dado que vamos a introducir nuevas técnicas,
adaptadas al estudio de los operadores no locales con smearing que nos permitiran cal-

cular relaciones de conmutacién entre operadores no locales, empezaremos recuperando
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los resultados conocidos presentados en [7, , | para el campo de Maxwell.
Sabemos que los operadores topolégicos en la teoria de Maxwell son los WL y TL
(a los que respectivamente notamos como W y T'). Estos son operadores invariantes
de gauge que podemos obtener exponenciando el flujo magnético y eléctrico respec-
tivamente. Se definen tipicamente como lazos singulares infinitamente delgados. Sin
embargo, en esta teoria abeliana, podemos definir una versién con smearing de ellos de

la siguiente manera.® Comenzamos con
iHB ; 4 i
W = e® =i/ deaut g =, (3.63)

donde J es una corriente conservada de soporte compacto. Estas dos condiciones im-
puestas sobre la corriente (entendida como una funcién de smearing) aseguran la inva-

riancia de gauge del operador anterior. Més precisamente,
Ay = Ay + 0, = W o Wl @@ — yye=i[ dadO - (3.64)

Ahora suponemos ademas que el soporte de J esta restringido a una region del espacio-
tiempo R. Dicha regién es definida como dominio de dependencia causal de una region
espacial que contiene un circulo no contractible. Para ser concretos, supondremos que
la topologia de R es S' x R3. Debido a la conservacién de la corriente, el flujo sobre
una superficie tridimensional ¥ que corta el anillo R una vez es independiente del X

particular. Este flujo define una carga

q:/dS“J“:/dan“J“. (3.65)
> >

donde el vector n* es la normal espacio-temporal a Y. La afirmacién es que W es un
WL con smearing y carga adimensional ¢. Lo confirmaremos mediante célculo directo.
Por otro lado, podemos hacer una reescritura equivalente de este operador, en térmi-

nos del campo magnético, de la forma
PP = / d'z A, J" = % / d'z w,, F" (3.66)
donde wy,, es una 2-forma cualquiera para la cual requerimos que
J, = 0"wy, . (3.67)

En este contexto, podemos recuperar el TL para el campo de Maxwell a partir del flujo

8Definir versiones con smearing de operadores de lazo en teorfas de gauge no abelianas resulta ser
un problema particularmente dificil, véase [57] para un relato reciente desde la perspectiva de este
capitulo o [110] para desarrollos numéricos en la red.
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R

Figura 3.2: Las regiones tipo anillo R y R sobre las que definimos los WL y TL son el soporte
compacto de las corrientes J(z) y J(z).

del campo eléctrico
T — eiq:E _ egfd‘ixaw(*FW)

: (3.68)

o bien podemos escribirlo de forma dual al WL, utilizando la expresion del flujo en

términos el campo de gauge dual flu como

1 L.
oF = 5/d‘lgg@w(*w") = /d% A g (3.69)
donde tenemos que xF = dA y ju = 0"W,, . Si la corriente J tiene soporte en un anillo,
podemos medir la carga monopolar del TL con smearing integrando el flujo de esta

corriente dual sobre una superficie tridimensional ¥ con vector normal 7, de la forma

g:/dSu j“:/daﬁu J". (3.70)
2 b

Ahora estamos listos para calcular el conmutador [®g, ®g]. El caso interesante es
cuando las corrientes duales .J y J tienen soporte en anillos enlazados como mostramos
en la figura 3.2. En primer lugar, elegimos las funciones de smearing para tener soporte

compacto espacial sobre los anillos de interés y que también cumplan

Esto implica que la 2-forma w,, tiene divergencia cero y componentes espaciales pro-

porcionales a la funcién delta

wij(t,x) o< 6(t —to), @ij(t,z) < 8(t —tg), "wo(t,z) =0, 0@ (t,x)=0.
(3.72)

Sin embargo, podemos utilizar la libertad restante para elegir la condicion mas fuerte

wou(t,z) =0, Qou(t,xz) =0. (3.73)
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Ahora, nos permitiremos un ligero abuso en la notacién y escribiremos w;; — w;; 6(t—to)
y (to,x) — x. También, observamos que F;; = eijkBk y *F; = e,-jkEk. Por ende,

podemos escribir los flujos de la forma

1 . 1 i

i §/dgm w" Fy = §/d3l‘5ijkw” B Z/dSIEQk B, (3.74)
1 . 1 ” =

@E = §/d3{]j (Ij” (*EJ) = §/d3x€ijk(bl] Ek :/d3$Qk Ek; (375)

donde hemos definido las funciones de smearing més convenientes

1 . g
Qi = 5 eijkoﬂk, Qz = - e”kcbjk . (376)
Esto implica que el rotor de Q2 viene dado por la corriente J como (VxQ); = dw;; = J;.

Entonces, para una curva cerrada I' = 0%, tenemos que

]{ Qidxi:/(VxQ)idSi:/JidSi. (3.77)
I'=0% % %

Vemos aqui una ambigiiedad en la elecciéon de . En particular, tenemos permitido
elegir otras superficies como ¥ (Ver figura 3.1). Sin embargo, debido a la conservacién
de la corriente V - J = 0 y a que J tiene soporte compacto en un anillo, el flujo es el

mismo para cada Y que corta el anillo una sola vez. Més precisamente, este flujo viene

q= / J;dS" = 7{9 dz" . (3.78)
% r

Noétese que estamos usando (3.65) y (3.71) para llegar a esta conclusion.

dado por la carga ¢ como

La situacién es la misma en el caso dual con el TL. A partir de (3.70), podemos ver

que la carga del monopolo obedece que

9= / J; dS" = 749 da' . (3.79)
Y r

Volviendo a los flujos y utilizando el conmutador canénico entre los campos eléctricos
y magnéticos’

vemos que el conmutador que queremos calcular toma la forma
@7 0) = [ e [y @) 900) 18,0, Bie) (3.81)
= i/d?’:z: /d?’y Qz(x) (eikjalszj(y)) x—y) = i/d?’x Q’(:B) Ji(x) .

9Esto se deduce simplemente de las relaciones de conmutacién canénicas entre el campo eléctrico
y el potencial de gauge.
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Dentro del anillo R, donde J(z) tiene soporte compacto, la otra corriente J(z) es cero
t€R = J(z)=0. (3.82)

Recortando una seccién 3 de R podemos convertirla en una regién simplemente conexa,

en la que podemos escribir el vector € localmente como un gradiente
te€R-Y = VxQ@)=Jx=0 = Q)=Va). (3.83)

La circulacién de © sobre una curva no contractible v dentro de R (enlazada una vez
con fi’) y que incluye un punto y € ¥ viene dada por el salto de ¢ en y a través de X.
Este salto es constante en ¥ porque es equivalente al flujo del rotor de €, o el flujo de

la corriente J:

g= 75 s = AB(y) (3.84)

Utilizando esta observacién dentro del conmutador (3.81) e integrando por partes ob-

tenemos simplemente que
[@F, "] =i / d*x Ji(x) 0'@(x) (3.85)

y / &r (9 [p(2)1(@)]) - 3(2) [ (@)]) .

El tltimo término desaparece por la conservacién de la corriente 9°J; = 0. El término

restante es una divergencia que podemos escribir como
(@7, 7] = z/ dS; Ap(y) Ji =iqg. (3.86)
)

Fisicamente, las cargas q y g tienen en cuenta “cuantas veces la corriente da la vuelta”
al respectivo anillo. Entonces, para regiones lineales delgadas, este resultado da el
nimero de enlace habitual entre los lazos enlazados. Otro comentario es que, debido
a la naturaleza topoldgica de estas relaciones de conmutaciéon, podemos deformar las
regiones para que parezcan anillos infinitamente finos, o tomar las corrientes para que
se extiendan por el espacio-tiempo en lugar de simplemente por la superficie t = 0, y
las relaciones de conmutacién no cambian en la medida de que las cargas no cambien y
las regiones sigan espacialmente separadas. De hecho, las deformaciones que preservan
la carga son producidas por operadores locales que conmutan con el operador no local
dual.

Si ahora tomamos el WL y el TL como en las ecuaciones (3.63) y (3.68), de nuevo
con soporte compacto en anillos espacialmente separados pero simplemente enlazados

entre si, llegamos a las famosas relaciones de conmutacién introducidas en [7]. Es decir,
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tenemos que
5B &HE -&B | &F 1 11&B &F .
WaT9 — ezCID ez<1> _ 62@ +i®F+5[0°,0F] _ e 49 TIWY . (387)

Notese que los términos siguientes de la féormula de Baker-Campbell-Hausdorff no apa-
recen para estos campos libres debido a que el conmutador (3.86) entre los flujos es

numérico.

3.2.3. Algebras de operadores topolégicos para el graviton

En la teoria de la gravedad linealizada, podemos definir operadores tipo WL y TL
con smearing andlogamente utilizando los flujos conservados (3.61-3.62) relacionados

con las corrientes conservadas (3.58-3.59). Mds concretamente, definimos
Wg=e%, Tp=¢%, F,G=P J D, K, (3.88)
donde los flujos con smearing vienen dados por
P8 = /d3x Q'(z) BE (z) = /de Q'(z) gl () By (z) (3.89)
PL = /d3x Q'(z) EF (z) = /d3x Q'(z) fL(x) Ey(z) (3.90)
y donde las funciones g]G(a:) vienen dadas, para los diferentes GG, por
aj, —sjnx", Kkx;, (bjx* —2z;b- 1), (3.91)
mientras que fi,(z) para los diferentes F' toman la forma
aj, —&ma", kxy, (bja? —2x;b-x). (3.92)

Las funciones de smearing Q(z) y Q¥(z) son tales que V x Q = J, V x Q = J. Los
soportes de J y J estdn restringidos a las regiones tipo anillo R y R respectivamente.

Sin pérdida de generalidad, fijaremos las cargas correspondientes a uno. De esta manera

/Jidsi:[jidsi: : (3.93)
% %

Para demostrar que los operadores (3.88) son no locales en sus respectivos anillos,

tenemos que

tenemos que demostrar que no conmutan con ciertos operadores no locales en la region
complementaria. Este problema, por supuesto, se resuelve completamente una vez que
calculamos el algebra de los flujos involucrados. Para esto, comenzamos de la expresion

del conmutador en términos de los campos con smearing y consideramos el conmutador



3.2 Operadores topoldgicos para el graviton 69

entre las variables eléctricas y magnéticas

[08,0F] = [[ 0y @) 940) fi0) dblw) (Buly) By . (399)

Ahora sustituimos la expresién para el conmutador (3.40), integramos por partes las
derivadas de cada término actuando sobre y, y eliminamos la funcién delta integrando

sobre y. Como resultado, obtenemos que podemos escribir el conmutador como

(@2, 7] = - i/dg% O fr [(33'31 — 630%)Jigg + (0,0 — 620°) J; 95
- (&8] — 5U82)Jlglc -+ 8ibk(8j81 — j182 )Qkabglc (395)
+ €jbk(ai81 — 5il82)§2k8bglc — abk(&»@j — 52-]-82)(2’“81,9[@ s

donde usamos que J; = &5, &’ QOF.

Los ultimos tres términos de (3.95) no estan expresados en términos de la corriente.
Esto obstruye momentédneamente la localizacién de la integral en la regién R (que es el
soporte de J). Esta localizacién nos fue fundamental en la derivacién de las relaciones
de conmutacion para el campo de Maxwell. Sin embargo, esta localizacion se produce
naturalmente cuando escribimos en detalle la forma de la funcién g.. Tenemos que
analizar caso por caso. Proporcionamos aqui el ejemplo para “dilataciones magnéticas”

gh(x) = k2!, En dicho caso, obtenemos

[€¢bk(ajal — 5]-182) + qbk(aﬁl — 5il82) — 5lbk(8z-8j — 5”82)] (Qkﬁbgl) (396)
=K [@lk@jalﬁk — %-kE)QQk + qlk@ialQ"’ — €jik829k} =K [8]JZ + @J]] .

Es decir, podemos expresar este termino de forma proporcional a la corriente (y sus
derivadas) como sucede para los primeros términos en (3.95). Sustituyendo en dicha

expresion para el conmutador, tenemos

(@7, 7] = —% / Pz Q' f [(ajal — 0;0%)(J;h) (3.97)
+ (8181 — 5il82)(<]j$l) — (&GJ — (SijaQ)(Jlfl) + @JZ + &J] .

Como cada término es proporcional a la corriente, la integracion se restringe a la
region R. En (3.97) estamos considerando el caso particular de g = gp, pero este
paso ocurre también para los otros gg. En los demas casos, considerando el andlogo

de (3.97) obtenemos respectivamente para “traslaciones, rotaciones y transformaciones
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conformes especiales magnéticas” que

[@F, 0F) == & [ dw Qi | (0,0 — 5207 (Jia)

+ (0,0, — 6u0%)(J;2') — (8,0; — 51-]-82)(Jlxl)} , (3.98)
- onl .
[®% &%) = — % &z O fi [(ajal — 6.402)(Jix™) + (8:0, — 640%)(J;2™)

1
— (81(9, — (5”82)<J1$n) + 5 <5inl€jab + €jnl€mb) 8“Jb} s

[@F, L] = - % / Pz Q' f [(ajal — 0;0%)(Jix!) + (00 — 640%)(J;at)
— (6,8] — 5ij82)((]lml) —|— 2(b . ZL’) (a]JZ ‘I— &JJ) — 8 (51']‘ (b . J)
F6b; ;4 6b; J; 4+ (B 2™ — b 2) (CimiEjab + Ejmician) anb] .

El siguiente paso es escribir dentro de R el campo €; = 0;¢ donde ¢ tiene un salto
unidad al cruzar Y. Después de la integracién por partes encontramos que la divergencia
en el indice 7 del integrando desaparece. Considerando la conservacion de la corriente,
esto es valido para todo fr(x) y go(z) con F, G = P, D, J, K. Por ejemplo, para el

caso de dilataciones magnéticas, (3.97), vale que

0; { 1 [(0;01 — 0140) (Jia) + (9,0, — 620%)(Ja")
—(5’2-8j — (5Z'j62)(<]ll’l) + (93Jz + &JJ} } =0. (399)

Como resultado de (3.99), la integral en (3.97) viene dada dnicamente por un término

de superficie, que es independiente de la eleccion particular de X que corte a R:

(8, dE] = —% s fF [(ajal — §,0%)(Jix) (3.100)

+ (8181 - (Sila2)(Jj.CEl) — (6laj — 5ij82)(Jl.Tl) + OJJZ + 8“]] .

Para evaluar la integral de superficie, considerando que el resultado es independiente
de la seccion de corte elegida sobre R, elegimos una superficie plana ¥. Ademas, to-
mamos coordenadas cartesianas donde 1, x5 son paralelas a dicha superficie, y z3 es
la ortogonal. Véase la figura 3.3. Con esta imagen en mente, estudiemos las integrales
de superficie que aparecen. Estas son de la forma

1K

(@5, ®F] = —— | doy day i [(ajal — §,0%)(J; 2 (3.101)

+ (8381 — 53[82)(<]jl’l> — (838j — 53]'(92)(Jl$l) + 8jJ3 + 83Jj

La integracion de las derivadas paralelas a la superficie desaparece porque la co-
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X3

Figura 3.3: Ejemplo de superficie de integracién X. Aqui utilizamos coordenadas (x1, z2, x3)
siendo la superficie ¥ ortogonal a x3.

rriente y sus derivadas tienen soporte compacto en R y por ende se anulan en las
borde de ¥. También podemos utilizar la conservaciéon de la corriente para escribir
O3J3 = —01J1 — 0oJ5, € integrar por partes las derivadas paralelas. Después de un poco
de trabajo, encontramos que para cualquier ffm especifica la integral o bien desaparece

o se hace proporcional a fz dx1dxre J3 = 1. De este modo obtenemos

1KR
o ef] =0, [ef.0f] =0, [ef.0f]=""F  [efef]=0.  (3102)
Como se ha dicho, podemos seguir el mismo procedimiento para obtener los demas
conmutadores de gg para G # D. No reproducimos aqui estos cédlculos porque son
bastante largos y no especialmente esclarecedores. También hemos comprobado el re-
sultado realizando los calculos con un programa para manipulaciones matematicas. El

algebra completa de operadores topolégicos que obtenemos considerando (3.97-3.98) es

(@, @F] = ia'h,,  [#F,95] = LV s,, (3.103)

(@5, ®5) = s xR, [0F,0F) = iba:.

Notese que todos los demés conmutadores tienen que ser cero por analisis dimensional.
En particular, los conmutadores son adimensionales al igual que las cargas. Para obte-
ner un resultado adimensional que dependa totalmente de las cargas escalar, vectorial
y tensorial, los tnicos conmutadores que pueden presentar resultados distintos de cero
son los anteriores. Otras posibilidades implican funciones de las coordenadas que de-
penden de la geometria de los anillos, pero esto no es posible debido a la naturaleza

topoldgica de estas cargas. Para ser precisos, si cambiamos suavemente la geometria
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de R y el valor de J a R’ y J’, manteniendo fija la carga y evitando intersecar R, los
conmutadores no deben cambiar. La razon es que la diferencia entre el operador de
flujo definido en R y el definido en R’ es un operador aditivo en el complemento de R,
y por ende conmuta con los operadores basados en R.

Teniendo en cuenta estos resultados, las correspondientes relaciones de conmutacion

distintas de cero para los WL y TL del gravitén (3.88) tienen la forma

WeTh =ePeTbWe,  WSTS = e a5 TS, (3.104)
WETH=es™TEWr, WhTh=e"TEW .

Las relaciones de conmutaciéon muestran que los operadores definidos anteriormente
son operadores no locales HDV en el anillo, ya que no conmutan con al menos un
operador no local en el anillo complementario. El grupo de simetrias generalizadas es
el grupo abeliano R x R de flujos eléctricos y magnéticos. Hay 10 flujos eléctricos
independientes y 10 flujos magnéticos independientes, y podemos asociar ambos a la
misma regiéon tipo anillo R en D = 4.

La caracteristica mas destacada de esta simetria generalizada, que no esta presente
en las teorias de gauge ordinarias, es la presencia de indices de Lorentz para las cargas
de la simetria generalizada que definen las clases HDV. Estudiaremos en detalle este

tema en el capitulo 5.

3.2.4. Conmutador de flujos para el caso de dos cuadrados

Dado que la prueba de las relaciones de conmutacién (3.86) y especialmente (3.103)
pueden ser algo abstractas es conveniente comprobarlas utilizando lazos singulares
(infinitamente delgados). Para el campo de Maxwell en D = 4 dimensiones, tenemos
que las relaciones de conmutacion entre los campos eléctrico y magnético vienen dadas
por (3.80). Podemos calcular el conmutador de los flujos ®F y ®F asociados a las

superficies bidimensionales S y S como

(@7, oF] = /S /S [B;(y), Bi(x)] dS’(y) dS'(z) (3.105)
= Z'/S/Sajik [0%6(x — y)] dS?(y) dS'(x).

Supongamos que podemos representar la curva que define la region S mediante sus

extremos como I' = 95 = {by, by, b3, by} v que la curva que define S viene dada por
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A
A

X3 (N ' e;

Figura 3.4: Regiones S y S delimitadas por T'y I para e =23 =0y b=y, = 0.

['=0S = {ey, ey, €3, e4} donde

L L L L 3L L 3L L
b (07 2 —5) , by <0, 2 5) ,  bs (07 R 5) by <0, R —§> , (3.106)
L L L L
€1 <§, 0, 0) s €9 (5, L, 0) s €3 (—5, L, 0) , €4 <—§, 0, O> . (3107)

Esta geometria se representa en la figura 3.4. Los vectores normales a las superficies
Sy S (asociados a la circulacién que hemos dibujado) dan n; = §;; y n; = —d;3. Por

tanto las diferenciales de superficie vienen dadas por

L 3L L L
dS](y) =n; ddey?) - jldQQdyiig Yo € |:§, 7:| , Ys € |:—§, §:| R (3108)

~ L L
dSZ(l’) :fbl dl‘ldeg = — i3d371d1‘2, X € |:—§, §:| s To € |:O,L:| . (3109)

Sustituyendo las ecuaciones (3.108-3.109) en (3.105), tenemos que el conmutador es

(I)E (DB —Z/L/ / /L —Ys 82(5( yg) d.ﬁL’l d$2dy2dy3:i. (3110)

Ademads, podemos comprobar que si se rotan los cuadrados el resultado no cambia
(salvo un signo menos global relacionado con la orientacién de las superficies). Sin
embargo, si se separan los cuadrados y sus superficies ya no se tocan, el resultado es
siempre cero. Esto se debe a que el conmutador [®F, ®F] es proporcional al nimero de
enlace entre las curvas I' y I

Podemos realizar el mismo proceso para el graviton considerando el conmutador
(3.40). Queremos calcular los conmutadores de los flujos definidos por (3.61) y (3.62)

en la configuracién que presentamos en la figura 3.4. Mas especificamente, podemos
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utilizar la notacion
d5 = / Bij(z) ¢’ () dS", g;(z) = aj, —8jn¥n, kz;j, (bjzn2, — 22;b,7,), (3.111)
S
oL = / Ey(x)fi(x)dS, f;(x) =a;, —8;nxn, kz;, (janm, — 22;0,7,) . (3.112)
5

De esta manera, para las geometrias cuadradas enlazadas definidas anteriormente po-

demos escribir

08, 0F] = [ [ [Bulo), By(o)] 4'(0) £(2) 45" () dS'(0) (3.113)
sJs
L .5 3L L
2 2 2 i .
=[] Bate). By £@)g' ) derdesdysds.
-3J0 Jg J-3
A partir de aqui, calculando caso por caso, obtenemos los resultados esperados
(@, 0F) =ia'b, [0F,0F] = <55, (3.114)
(@, @] = S, [0F,®F] =iVai.

Observamos que esto sigue siendo cierto si movemos los cuadrados cambiando las coor-
denadas z3 y y; en el rango [—L/2,L/2] (sin cambiar el nimero de enlace) pero el
resultado desaparece si separamos los cuadrados, lo cual es un buen sintoma ya que

esperamos que el resultado general sea topolégico.

3.3. Fractones y completitud del espectro

Habiendo derivado el dlgebra de las simetrias generalizadas de la teoria del graviton
linealizado libre, discutimos ahora algunas aplicaciones interesantes. En particular,
como se describe en la introduccion, queremos abordar la cuestion de cargar o romper
estas simetrias generalizadas desde una perspectiva puramente de QFT.

Seamos méas precisos. En [18] se argumentd que las teorias de campos efectivas
de tipo gauge en gravedad cuantica deberian ser “completas”, lo que significa que
el espectro de cargas posibles deberia ser el maximo consistente con la condicion de
cuantizacién de Dirac. Este principio se amplié posteriormente en [19] para incluir
simetrias generalizadas. M&s recientemente, en [20, 21, 23], la relacién entre completitud
y ausencia de simetrias generalizadas ha sido profundizada. En particular, como vimos
en el capitulo 2, en [23] se define que una QFT (sin gravedad) como completa siempre
que la causalidad A(R) C A(R)’ siempre esté saturada para el dlgebra de observables
asociada a cualquier region con cualquier topologia dada. Permitir la no saturacion de

esta condicion conduce inevitablemente a la existencia de dos simetrias generalizadas
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duales, como los dos conjuntos duales que derivamos para el gravitén.' De la existencia
de tales simetrias generalizadas, o equivalentemente de la no saturacién de causalidad
en regiones tipo anillo por la precencia de clases HDV, sabemos que la teoria del
gravitén libre no es completa.

Asi pues, es interesante ver si podemos “completar” la teoria del graviton intro-
duciendo un numero suficiente de operadores cargados para destruir el conjunto de
simetrias generalizadas que describimos anteriormente. Se podria anticipar que apa-
recerian problemas al intentar llevar a cabo este proceso. Por ejemplo, dado que las
simetrias generalizadas del graviton estan cargadas bajo simetrias espacio-temporales,
esperamos que alguna generalizacion del teorema de Coleman-Mandula a simetrias in-
ternas generalizadas dificulte encontrar una completacién invariante Lorentz simple de
esta teoria. Ademas, a partir de los conocimientos actuales sobre gravedad cuéntica,
no esperamos poder completar la teoria de una forma usual desde el punto de vista de
QFTs relativistas.

Resulta que el hecho de que las simetrias generalizadas del graviton estén cargadas
bajo simetrias espacio-temporales significa que las particulas cargadas que hacen adi-
tivos los operadores topoldgicos tendran su movimiento altamente restringido, ya que
el mismo debe respetar todas las leyes de conservacion en cuestion. Curiosamente, este
tipo de comportamiento se ha observado muy recientemente en el contexto de materia

condensada, donde este tipo de excitaciones reciben el nombre de “fractones”.

3.3.1. Fractones y teorias de gauge tensoriales

Los fractones se definen como particulas incapaces de moverse a través del espacio
[76-80]*. La razén detras de esta restriccion de movilidad, no tiene nada que ver con la
inercia, en el sentido de tener grandes masas. Tiene que ver con leyes de conservacion
bastante peculiares que el movimiento tiene que respetar. Aunque los fractones, de
forma aislada, no pueden moverse, los estados ligados de fractones pueden moverse
por el espacio. Por ejemplo, en algunos modelos que revisaremos mas adelante, los
fractones aislados no pueden moverse, mientras que sus dipolos si. Intuitivamente, hay
una “simetria” que prohibe la existencia de operadores dipolares localizados en la teoria,
que de otro modo podrian transportar fractones de un lugar a otro, pero esa simetria no
prohibe la existencia de operadores cuadrupolares localizados que transporten dipolos
de un lugar a otro, véase [21] y también [32, 83] para posibles escenarios experimentales.

Estas propiedades bastante inusuales y sorprendentes han sido bien descritas por

Pretko [0, | en términos de los recientes avances en las teorfas de gauge tensoriales

0En el contexto de AdS/CFT hay diferentes argumentos para la ausencia de diferentes tipos de
simetrias en las teorfas de campo efectivas del bulk, véase [14, 22, , ].

'En esta linea también se encuentran los “lineones” y los “planones”, que son particulas a las que
sélo se les permite moverse en sub-variedades diferenciales apropiadas [31].



76 Simetrias Generalizadas del Graviton

[111], que resultan mostrar leyes de conservacién de este tipo. Un ejemplo estdndar
que se encuentra en la literatura es el siguiente: empecemos con un potencial de gauge

simétrico de dos indices A;; y una ley de transformacién de gauge dada por

Podemos introducir un campo magnético invariante de gauge de dos indices de la forma

habitual mediante
Bij = en0" A, (3.116)

y podemos definir el campo eléctrico invariante de gauge implicitamente imponiendo

una relacion de conmutacién candnica con el potencial de gauge
[Aija Ekl] = z(élkéﬂ — 511(5]k)5($ — y) . (3117)

La ley de conservacion presente en esta teoria es una version modificada de la ley de
Gauss para el caso de Maxwell
DVE; =0, (3.118)

donde podemos verificar que, dadas las relaciones de conmutacién candnicas, genera
adecuadamente la transformacién de gauge (5.86). Si introducimos un nuevo potencial

Ag con transformacion de gauge

Ay — A+ @, (3.119)

podemos escribir el campo eléctrico como E;; = A;; — 0;0;Ao.

Es de interés comprender cémo acoplar este modelo con fuentes. Llamando p =
D' E;; a una fuente de densidad de carga para la ecuacién de conservacién anterior,
podemos medir las cargas eléctricas conservadas de este modelo por el flujo correspon-

diente en el infinito

esto es, de la misma manera que se hace con la carga eléctrica habitual. Ademas, tam-
bién tenemos una carga vectorial, no invariante bajo las simetrias espacio-temporales.

Esta carga “dipolar” escribe como
Pl = / dedpat = / dr’3'0;0, F7* = / dS;(z' 0, E7F — E) . (3.121)

La conservacion de esta carga dipolar impide que las excitaciones cargadas locales,

llamadas fractones, se muevan por el espacio, mientras que los dipolos pueden moverse
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si conservan la direccion. Este modelo se denomina “modelo tensorial de carga escalar”.
Un segundo tipo de teoria, denominado “modelo tensorial de carga vectorial”, surge

al considerar la siguiente transformacion de gauge diferente para el potencial
Aij = Ajj + 0ioj + 050, (3.122)
generada por la siguiente vinculo de caracter vectorial
O'E;;=0. (3.123)
En esta teoria podemos escribir el campo magnético invariante de gauge como
Bij = €iapejea0’ 0" A™ (3.124)

que obedece explicitamente 9'B;; = 0.
En este escenario, se denomina teoria vectorial, ya que la fuente de la ecuacion
de conservacion transforma como un vector bajo rotaciones. Esta teoria tiene la carga

conservada habitual.

Q' = / dxpt = / d*r0,F" = / ds; B | (3.125)
pero también una carga de tipo momento angular

M = /d%eijkpj:ﬁk = /de (e E7 xy,) . (3.126)

De nuevo, la conservacion de ambas cargas restringe el movimiento de las excita-
ciones y estados ligados. En general, estos modelos se incluyen dentro de “teorias de
gauge de rango superior”, cuyos grados de libertad son potenciales de gauge y campos
eléctricos y magnéticos con varios indices simétricos. En este contexto, los vinculos y/o
leyes de conservacion surgen por diferentes combinaciones de divergencias y trazas,
véase [ 11] para revisién més completa.

Dadas estas caracteristicas de las teorias de gauge tensoriales que potencialmente
se acoplan a fractones o excitaciones relacionadas, se desarrollaron conexiones con la
relatividad general en [37, , 116]. En particular, se argumenté en [37] que varias
propiedades de las interacciones entre fractones se asemejan a la gravedad. Las razones
heuristicas descritas en esos articulos se basan en el hecho de que la teoria de los
gravitones, en su formulacion métrica, puede verse como una teoria tensorial de gauge

donde el potencial de gauge h,,, representa la perturbacion sobre la métrica de fondo.

nuv s
Mas aun, se propuso que el papel de las leyes de conservacién no triviales de las teorias

tensoriales de gauge lo desempenan los vinculos hamiltoniano y de momento (3.13). Si
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bien la intuicién detras de esta idea es correcta, una comparacién adecuada entre las
teorias fracténicas y la de gravitones debe realizarse en el espacio de fases invariante de
gauge. En lo que resta de esta seccion buscaremos formular precisamente dicha relacion
a partir de los campos E;; y B;; del gravitén definidos en (3.32).

En lugar de intentar adaptar el zooldgico de sistemas fracténicos y teorias de gau-
ge tensoriales a la gravedad, utilizando nuestros resultados anteriores sobre simetrias
generalizadas y la formulacion electromagnética generalizada de la gravedad lineal, po-
demos ir en la direccién opuesta. Es decir, intentaremos describir la teoria linealizada
del graviton como un ejemplo especifico del zooldgico de teorias de gauge tensoriales
que describen sistemas fractonicos.

Observando la clasificacion anterior y nuestros resultados anteriores, vemos que las
restricciones sobre las variables fisicas Fj;, B;; nos muestran de que el gravitén es un
ejemplo de una “teoria de carga vectorial de traza nula”, como se describe en [113].
Curiosamente, la teoria del gravitéon no es precisamente la teoria de gauge tensorial
de este tipo descrita en [113], pero comparte con ella el mismo conjunto de leyes de
conservaciéon y simetrias generalizadas. La razon es que el modelo del gravitén también
es auto-dual, y los campos eléctrico y magnético satisfacen las mismas relaciones alge-
braicas y de conservacién que los tensores energia-momento de las CFTs Euclideas en
una dimensién menos. La diferencia radica en la dinamica y las relaciones de conmu-
tacién. En particular, el modelo descrito en [113] debe tener la misma estructura de
operadores no locales y simetrias generalizadas que los descritos en el presente trabajo.
Sin embargo, esperamos que el algebra de estos operadores topoldgicos sea diferente del
algebra descrita anteriormente, dado que esta es procedente de la teoria de gravitones.

Ademas, la forma natural de acoplar la materia fracténica a los campos de gauge no
resulta ser la misma que la forma en que acoplamos la materia a la métrica en relativi-
dad general. En particular, podemos escribir las ecuaciones de movimiento linealizadas

en presencia de un tensor de energia-momento de materia acoplado minimamente como

Ny
donde T, da cuenta de las fuentes de materia y gravitones como en [91]. En la formu-

lacién electromagnética, esto es

Ef = TZ — 2100, eijpki; =0,
Bi=0, €iirBij = Tho (3.128)
0;E;; = TOi — 20;Too + @TJJ ) €iab0a By = —Bij
8;j
0;Bij = €ij10;Tho €iab0aBoj = Eij — Tij — EJT + 0513 .

El principio de equivalencia, en su encarnacion de “acoplamiento minimo”, obliga a
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las “corrientes eléctricas y magnéticas” a tener alguna forma peculiar definida. Esta

caracteristica también se desvia del modelo especifico considerado en [113].

3.3.2. Lineas de Wilson para el graviton

Si estuviéramos considerando una teoria de gauge convencional, para romper la
simetria generalizada primero escribiriamos el operador no local utilizando el potencial
de gauge. En otras palabras, pondriamos el operador no local como un operador de
lazo de un campo no invariante de gauge, en lugar de escribirlo como un flujo sobre una
superficie. De este modo, podemos descomponer el lazo en lineas de Wilson abiertas.
Estas lineas de Wilson abiertas no son invariantes de gauge, pero su transformacién
s6lo depende de los puntos extremos. Esto nos permite comprender qué tipo de materia
debemos incluir para obtener una linea de Wilson verdaderamente invariante de gauge.
Para las teorias de gauge tipicas, esto significa incluir materia que transforme bajo una
cierta representacion del grupo de gauge. Estas lineas de Wilson invariantes de gauge
convierten entonces el operador HDV topoldgico en uno aditivo.

Hasta ahora, sélo hemos producido expresiénes de los operadores HDV no locales
en términos de flujos invariantes de gauge. Ahora buscaremos expresiones en términos
de operadores de lazo de campos no invariantes de gauge, que desempenan el papel del
potencial de gauge en el escenario de una teoria de gauge convencional. Veremos que
los resultados sugieren que el contenido de materia que puede romper los operadores
no locales es una completaciéon no convencional de la teoria del graviton linealizado.

Para empezar, observamos que los campos eléctrico y magnético del gravitén pue-
den escribirse en términos de las variables de ADM presentadas en la seccion 3.1.3.
Especificamente, usando la curvatura extrinseca (3.22) y la funcién de lapso (3.21)
tenemos que

Eij = Kz] — 8i8jN, Bz'j = 5iab8bKaj . (3129)

Aunque los campos eléctrico y magnético son invariantes bajo la accién de difeomor-
fismos linealizados, la curvatura extrinseca y la funcién de lapso se transforman como
en el “modelo tensorial de carga escalar” con la ley (5.86) asociada a la componente
&o- Es decir,

Kij — Kij — 00,6, N—N-§&. (3.130)

Esto sélo depende de la funcién &, y reproduce las transformaciones (5.86) y (3.119)
presentadas en [30), ]. Nétese, sin embargo, que E;; y K;; no son variables canénica-
mente conjugadas, como se suele suponer en las discusiones de los modelos tensoriales
de carga escalar. En este punto desaparece la similitud de la teoria del gravitén con este
tipo de modelos. En particular, la transformacion de las variables candnicas inducida

por los vinculos es muy diferente.
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X5

Figura 3.5: Ejemplo de una curva que define un operador de linea.

Utilizando las expresiones (3.129-3.130) podemos escribir los campos magnéticos de

traslacion y dilatacién descritos en la ecuacién (3.58) de la forma
B = €iy0"(K%a;), BP = ¢;a0"(k K92;) . (3.131)

Esto nos permite escribir los correspondientes flujos de operadores no locales como
circulaciones de K“a; y kK%z; a lo largo del borde de la superficie. Estas mismas

integrales de linea sobre una curva abierta C' nos permiten definir

ur(o) = /C dt; (K7 aj) = % /C dt; (a;h¥ — a;°hy — a;0°hy) (3.132)

UPc) = /C dt; (k K z;) = g /C dl; (x;h7 — 2,0°hf — 2,0°h) . (3.133)

Estos operadores, como era de esperar, tienen transformaciones de gauge que sélo

dependen de los puntos finales de la curva (Ver figura 3.5)
UP<C) — UP(C) — aj/ d& 81'8]'50 = UP<C) — aj(?jﬁo\ﬁf R (3134)
c

UD<C> — UD(C> — :‘i/cdgz xjﬁiaj&) = UD(C) — K (xj(?jfo — &)) ﬁi . (3135)

Podemos interpretar estas lineas de Wilson como el limite de las bandas de Wilson
asociadas a un dipolo fracténico, como se procede en [35, 86] en el contexto de los
modelos tensoriales de carga escalar. La configuracién correspondiente se describe en
la Figura 3.6. El operador de banda viene dado ahora por una integral de linea doble

sobre la curva C'y otra sobre la fibra F) en cada punto \ perteneciente a C"

A2 B2 A
U(C,F) = /C dee /F e} K = /A dA / ds lgxgﬁ) i (B)K""] . (3.136)

9p
Para una fibra infinitesimal, escribimos el vector tangente axg ﬁ(’g) = ek’(\) y obtenemos
A2 9rC (A g
U(C,F) = e / i PNy i (3.137)
M O\
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X Q¢ CcA)

Figura 3.6: Configuracién de las curvas correspondientes a una banda de Wilson finita (iz-
quierda) y el correspondiente limite infinitesimal u operador del linea asociado (derecha).

A partir de aqui, las transformaciones de gauge (3.130) actiian como

A2
e =-c [N ko060 = - [k a6 =

= e (b (N) 0,8) E/Al 0\ [a’gi >ajgo} . (3.138)

Esto tiene un término que no depende exclusivamente de los puntos extremos de la
curva C'(A). Sin embargo, ain podemos elegir la dependencia de la direccién de la fibra
como queramos. Para reproducir las transformaciones de gauge del operador lineal de

traslacién UF(C) elegimos k;()\) = a;. De este modo, recuperamos

A a‘ri0<)\) ij ij P
U(C,F):E d)\TajK” =€ d& (CleZ]) =ecU (C), (3139)
A1 C

teniendo una transformacién de gauge consistente con la esperada (7.98)
SU(C,F) = —¢ (a?0;6) | - (3.140)

Considerando las dilataciones proponemos la dependencia k;(A) = & 2] “(X\) y obtene-

1mos

U(C,F):em/h i [8%; )22 (3) Kij] :edeef(foif):eUD<C). (3.141)

Con esta eleccién de fibra, el segundo término en (3.138) da un término de borde, y

recuperamos la transformacién de gauge esperada de (7.99)

A2 c
SU(C,F)=—¢k (x].C(A)ajgo)Rjer/ d\ [axé;”aj&)] (3.142)
A1

= —KE (xj(‘?jfo - &)) ))2 .

De este modo, es evidente que una forma de hacer invariantes de gauge estas lineas de

Wilson es acoplar las exponenciales de estos operadores de banda con dipolos de carga
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ordinarios en los extremos, donde el campo cargado se transforma, como es habitual,
es decir, 1 — €%9). Necesitamos un dipolo constante para la carga de traslacién y un
dipolo de tamano proporcional a ex; para la carga de dilataciéon. Algunos candidatos
para los Lagrangianos de materia fracténica que obedecen estas leyes de transformacion
exdticas han sido estudiados recientemente en [117, ].

En el caso de las demas cargas, es necesario adoptar prescripciones mas complejas.
Consideremos el caso de las cargas de rotacién. Hasta donde vimos, no hay manera de
escribir las lineas de Wilson relacionadas con los operadores de rotaciéon provenientes
de (3.58) como integrales de lazo de operadores no invariantes de gauge. Sin embargo,
podemos llegar mas lejos observando la teoria dual presentada en la seccién 3.1.5. Aqui,

consideraremos la formulacién electromagnética obtenida a partir de (3.52) y (3.54),

es decir,
1 1 -
Ez" = —égiabejcdabadh“, Bij = §5iab5jcd8b8dhac . (3143)
Notese que ahora la simetria de gauge tiene el aspecto de un “modelo tensorial de
carga vectorial” como en (3.122) y (3.124) (compaérese con [111]). Esto es debido a la
tranformacion
hij = hij + 0: + 06 . (3.144)

Entonces, escribimos las corrientes de traslacién y rotacién en (3.58) como

J - Jn -
BP = %ewbejcdéb@dh“c, BZJ = % Tn Eiabchdabadhac, Sij = €ijk8k . (3.145)

2

Las lineas de Wilson correspondientes son

1 -
UP(C) == / dt; [gjababhm aj} , (3.146)
2 Je
U’(C) :%/ dl; [(snxk—skmn) O"hF — s, ﬁkz] ) (3.147)
c

Ahora, como queriamos, las transformaciones de gauge correspondientes s6lo dependen

de los puntos extremos de la curva:

1. MR
uf(c) - ur(o) - §gﬂ“bajabga : (3.148)
X3
D D Lok k.n - | X2 ke |2
U(C’)—>U(C)—i(sx—sa:)ﬁnka—sgk){ (3.149)

Estas leyes de transformacién podrian coincidir con un tipo diferente de particulas
cargadas cuyas transformaciones dependen de un vector de gauge {; en lugar de una
funcién escalar. Véase [35, 80] para interpretaciones en términos de , particulas restrin-

gidas a moverse en lineas, denominadas “lineones”.



3.4 Discusién del capitulo 83

Es importante destacar, que todos los modelos explicitos conocidos en los que se car-
gan estas teorias tensoriales rompen alguna invariancia de Lorentz y algunas simetrias
espaciales. Entonces estas formas de completar la teoria del gravitén linealizado de-

berian, como era de esperar, renunciar a la invariancia relativista.

3.4. Discusion del capitulo

Hemos encontrado simetrias generalizadas para la teoria del gravitéon linealizado.
Estas son simetrias tipo 1-forma que estan asociadas con la existencia de clases HDV
para regiones con grupo de homotopia no trivial my, es decir, regiones que contienen
lazos no contractibles. En otras palabras, se trata de la misma configuracion de simetrias
generalizadas para teorfas de gauge libres ordinarias. Sin embargo, las cargas de los
operadores no locales para el gravitén no son invariantes bajo transformaciones de
Lorentz. Esto da lugar a consecuencias en la fisica UV de la teoria.

En particular, vimos que para completar el espectro de cargas de la teoria del gra-
viton linealizado necesitamos incluir particulas cargadas con movilidad restringida. En
otras palabras, intentar completar la teoria del gravitén como seria estandar en QFT
parece requerir romper la invariancia relativista. Asi pues, los resultados y observacio-
nes de este capitulo, apoyan la idea de que para completar la teoria de los gravitones
deberia seguirse una ruta distinta a la de QFT. Una via diferente para completar
dicha teoria es la Teoria de Cuerdas o, més en general, holografia. Seria interesante
comprender como se rompen alli estas simetrias.

Otra diferencia entre las teorias de gauge ordinarias y el campo de gravitones es que
esta ultima no posee un el tensor de energia-momento bien definido como consecuencia
del teorema de Weinberg-Witten. No obstante, esta en realidad es la razon por la
que estan permitidos los operadores no locales transforman bajo simetrias espacio-
temporales. Dicho de otra forma, parece haber una razéon muy sencilla por la que una
teoria con tensor de energia-momento no puede tener una mezcla de indices de Lorentz
con las etiquetas de simetria generalizada, una especie de generalizacion del teorema de
Coleman-Mandula. En presencia de un tensor de energia-momento, podemos formar un
operador aditivo en A(R) que implemente la simetria de Poincaré en la regién R y no
en su complemento. En este contexto, como el operador que implementa la simetria es
aditivo en R cualquiera sea la topologia de la region, y por ende no puede transformar
las clases no locales. Esto prohibe los indices de Lorentz en las etiquetas de clase. En

el capitulo 5 estudiaremos mas en detalle y generalidad estas ideas.






Capitulo 4

Simetrias Generalizadas de

Gravitones Generalizados

Considerando los resultados del capitulo anterior, el siguiente escenario mas sencillo
es ir mas alla de las cuatro dimensiones y considerar teorias generales de gravedad
linealizada, denominadas aqui teorias de “gravitones generalizados”. Este zooldgico de
modelos desciende de la linealizacién de teorias de gravedad de orden superior generales
e invariantes ante difeomorfismos construidas a partir de la métrica y el tensor de
Riemann. Encontrar las simetrias generalizadas para estos gravitones generalizados es
el objetivo principal de este capitulo.

Hay dos motivaciones principales para este anélisis. La primera proviene de la gra-
vedad clasica. El estudio de las cargas conservadas en las teorias gravitatorias de todo
tipo ha sido un area clave en este campo, siendo en este contexto uno de sus aspec-
tos més destacados el llamado formalismo de Wald [1 19-121]. Si existen nuevas cargas
conservadas, aunque sean de naturaleza diferente, es importante encontrarlas.

La segunda motivacion proviene de AQFT. Como mencionamos el el capitulo 2,
una consecuencia clave del teorema del doble conmuntante de von Neumann sobre las
simetrias generalizadas es que estas vienen en pares duales. Este principio bésico tiene
varias implicaciones importantes. Por ejemplo, en un contexto holografico, proporciona
un argumento solido contra la existencia de simetrias p-forma en gravedad cuantica
[22]. Sin embargo, a simple vista las teorfas generalizadas de gravitones parecen desafiar
dicho principio.

Mas precisamente, para derivar las propiedades de los campos eléctricos y magnéti-
cos en el capitulo anterior utilizamos propiedades del tensor de Riemann y su dual que
no necesariamente son validas cuando consideramos generalizaciones de la teoria. Por
un lado, en las teorias de mayor orden en curvatura el tensor de Riemann no es una
corriente conservada pero si lo es su dual. Por otro, en mas dimensiones, incluso para

la gravedad de Einstein, las identidades de Bianchi del tensor de Riemann dual no

85
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necesariamente tienen las mismas implicaciones. En este contexto, el hecho de que las
simetrias generalizadas vengan en pares duales podria predecir la existencia de nuevas
clases HDV, de otro modo inesperadas. Por el contrario, podria sugerir que ciertos ope-
radores no locales ingenuos en realidad son aditivamente generados y no corresponden
a una simetria generalizada.

El resto del capitulo se organiza de la siguiente manera: Comenzamos en seccién 4.1
introduciendo el conjunto de teorias gravitatorias que consideraremos, y mostraremos
como estas surgen de extensiones cuadraticas generales de la teoria de Einstein. En la
seccion 4.2 identificamos las cargas conservadas asociadas con las simetrias generaliza-
das de la gravedad linealizada de Einstein donde presentaremos de forma covariante
los resultados del capitulo 3 y su generalizaciéon a D > 4. Siguiendo, en la seccién
4.3, estudiamos las simetrias generalizadas que emergen en teorias de mayor curvatura
linealizadas en dimensiones generales. Finalmente, en la seccion 4.4 mostramos que las
ecuaciones de movimiento de cada una de las teorias pueden deducirse a partir de sus
correspondientes conjuntos de simetrias generalizadas. Concluimos en la seccién 4.5 con
algunas discusiones respecto a la aplicabilidad del principio de pares duales y planes

para futuros trabajos relacionados.

4.1. Gravitones generalizados

Como mencionamos, vamos a trabajar con generalizaciones Lagrangiano de Einstein-
Hilbert que incluyen funciones genéricas invariantes ante difeomorfismos construidas a
partir del tensor de Riemann. La linealizacion de esas teorias resulta proporcionar un
interesante zooldgico de modelos, al que denominaremos “gravitones generalizados”. En
esta seccion describimos este zoolégico de gravitones generalizados.

Las extensiones de la teoria de la relatividad general de Einstein surgen al considerar

acciones construidas a partir de contracciones del tensor de Riemann y de la métrica

S = /dD:r; \/EE(QQB,RPUW). (4.1)

En ausencia de campos adicionales, las ecuaciones de movimiento no lineales que se
derivan de esta accién son las siguientes

1
Ew =P, UP5RVUP,\——gWE—2VaVBPW5V =0, donde P* = ﬂ . (4.2)
2 aRuupU g'yé

vpo

Notese que buscamos analizar las simetrias generalizadas para gravitones en un espacio

de Minkowski. Por lo tanto, fijamos la constante cosmoldgica a cero, lo que implica que

LObsérvese que podriamos haber elegido un conjunto diferente de variables independientes en L.
De hecho, todas las expresiones son consistentes con elecciones como { R, p0, 9%} 0 {RA7} [122].
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el espacio de Minkowski es una solucién de estas ecuaciones.? Deseamos considerar la
version linealizada del conjunto anterior de teorias en torno a dicho fondo, caracterizado
por g,(“,) =Nw Y R ouv = 0. De esta forma, una pequena perturbacién h,, sobre este

fondo se define por (3.1), es decir
G = My + Py ]| < 1. (4.3)

Como en el capitulo 3, subiremos y bajaremos indices utilizando la métrica de fondo
Nw Y Su inversa, y utilizaremos la notacién h = h3. Usando esta expresién para la
métrica podemos calcular las cantidades asociadas relevantes al orden deseado en h,,.

Para cada una de ellas tendremos una expansion de la forma
T=T9+70 4+ 7@ L O1?). (4.4)

Las expresiones relevantes hasta O(h?), serdn suficientes para nuestros propésitos. En
particular, para los érdenes cero y lineal del determinante de la métrica, de la métrica
inversa, de los simbolos de Christoffel, del tensor de Riemann, del tensor de Ricci y del

escalar de Ricci, encontramos respectivamente:

(0) m 1
Vigh =1 Vgl =3h, (4.5)

gW(O) = gW(l) = —h, (4.6)
=0, 1= (h“ + R+ haﬂ ", (4.7)
R, =0, RO, =10 — 1) = 5 (hp FPgs” = P’ =10 0) s (48)
1
0) 1)
R/(w) =0, wa) o §<hpww + hpW/p - hu hpp /w) ’ (4‘9)
0) __ 1) v v
RO =0, RW =h, » — bt " (4.10)

Por otra parte, los términos de orden cuadréatico correspondientes son los siguientes

(2) 1
Vgl =gh*, (4.11)
g = hihev (4.12)
1
FZ(2) — ——h“”(hm,g + hypa + ham) , (4.13)
RR), =T0R) — 0@ 4 1o — o (4.14)

2A continuacién serd conveniente pensar en esta teorfa como si contuviera una parte de Einstein-
Hilbert, més correcciones.



88 Simetrias Generalizadas de Gravitones Generalizados

RZ) =R, (4.15)
o 3 o
R(2) = h>‘ (h)\o'7pp _ hpo—’Ap _ hp)\7o-p _|_ hpp7o—)\) + th}\7 hpA7U (416)
1 1
lea A o A oA o A
o ha}‘V hp P + hU}‘: hpﬂv - EhpA7O'h 7p - Zh a, hpp7A °

En este contexto, dada una densidad lagrangiana genérica de curvatura superior a
orden n en curvaturas de Riemann, observamos que los tres términos que aparecen en

las ecuaciones de movimiento (4.2) son de 6rdenes Riem”, Riem” y Riem" !

, respecti-
vamente. Por lo tanto, a orden lineal en h,,,, cada uno de esos términos sera de la forma:
Riem™. [Riem” '], Riem™. [Riem™ '] y Riem™- [Riem" 2] respectivamente.
Puesto que el tensor de Riemann se anula idénticamente en el fondo de Minkowski,

todos estos términos desapareceran para n general con dos tnicas excepciones:

(a) los dos primeros términos para n = 1, que combinados no seran mas que el tensor

de Einstein linealizado;
(b) el tercer término para n = 2.

En consecuencia, basta con considerar una teoria cuadratica genérica para dar cuenta
del caso més general posible.? Por ende, podemos escribir una teoria cuadrética genérica

a partir de la densidad lagrangiana como

L=t [R+ a1 R? + aw Ry R*™ + a3 Ryune R (4.17)

donde o 2 3 son constantes arbitrarias con dimensiones de longitud al cuadrado. Pode-
mos obtener las ecuaciones linealizadas para esta teoria a partir de la accién expandida
a orden cuadratico en perturbaciones. Mas precisamente, escribiremos dicha accién

como
1

5= 167TG[

donde el primer término, Sip, es la acciéon de Fierz-Pauli procedente de la densidad de

Sep + Sup] + O(h?) . (4.18)

Einstein-Hilbert. Sin considerar términos de borde, podemos escribirla analogamente
a (3.6) , es decir

S = /dD:c [(1 + g) RW 4 R<2>] (4.19)

1 1 1 1
_ / APz [ — 5 OuhO Y SO Dy + L0,h b — SO Dby,

3Naturalmente, esto cambia cuando estd presente una constante cosmolégica, ya que entonces
Riem(® £ 0, véase [123-120].
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Por otra parte, el segundo término, Sy, proviene de las densidades cuadraticas como
Sp = / dPz [ozl R{y + aa RO)RY) + ag RWAUR{‘I”)A"} (4.20)
= / a”z [ (a1 + 5+ a3) Qa0 030,17 + (an + 52) (9*h9*h — 20,0, 6h)

+ (5 + as) (W 0y — 20,0070 ) |

Obsérvese que si elegimos a; = a3 y as = —4ag en (4.17), la parte cuadrética se hace
proporcional a la densidad de Gauss-Bonnet. Para esa teoria, el tercer término que
aparece en las ecuaciones de movimiento no lineales genéricas (4.2) estd ausente, ya
que tenemos V*FP,,5, = 0 en las teorfas de Lovelock [127, 128]. Por lo tanto, siguiendo
nuestro razonamiento anterior, la densidad de Gauss-Bonnet no deberia contribuir en
absoluto a las ecuaciones linealizadas sobre un fondo de Minkowki. Esto es precisamente
lo que ocurre si analizamos cuidadosamente Sy, debido a que dicha accién se anula
idénticamente para la eleccién de acoplamientos en cuestion.

Siguiendo el desarrollo en [125], es conveniente escribir los acoplamientos a; y a en

términos de dos nuevos pardmetros, m, y mgy, que tienen dimensiones de masa, como

(D —2)m? + Dm? 1 A 101

a1 =

Entonces, podemos escribir la teoria cuadrética original como *

1 (D — 2)(m —m?) )
~ TonG [t (D — 1)ymZm? (4.23)
D-2
g o€ = R eu]

donde Cpyupe €s el tensor de Weyl y Xy es la densidad de Gauss-Bonnet. La ecuacién
de movimiento de la perturbacién coincide con la presentada en [125] y viene dada por
S,Sly) = 0, donde

167GES) = {1 — —] { — —nle(l)} (4.24)

2)(m —m?)

* { 2(D — 1)mZm?

] i — 3,0, RO

4 Aqui usamos la relacién

D(D —3)
(D=2)(D-1)

4D -1
X4 - CHVPO_CIU’PO' = |:R2 — ( D )RNVRHV] . (422)
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Esta ecuacién de movimiento se reduce a la de Einstein linealizada para mf;, m? — oo,
lo que equivale a desactivar los acoplamientos cuadréticos (con la excepcién del de
Gauss-Bonnet, que no contribuye). Los dos coeficientes mg y m? que parametrizan la
ecuacion linealizada modificada corresponden a las masas al cuadrado de dos modos
adicionales que aparecen en el espectro linealizado de (4.2), ademds del gravitén habi-
tual. En particular, mg es la masa de un modo escalar, mientras que my, es la masa de
un modo de espin 2 masivo y fantasma que, en D dimensiones, propaga D(D —1)/2—1
grados de libertad. Para ver esto explicitamente, es conveniente reescribir las expresio-

nes anteriores en el gauge de Donder. Este gauge se define por
1
O, = 58’%. (4.25)

En este gauge, podemos obtener el tensor de Ricci linealizado y el escalar de Ricci

como

ro L

1
2 1 2
o 5 hy RW = —50h, (4.26)

y podemos escribir las ecuaciones linealizadas de la forma

1 o
e = —%a%w =0, (4.27)

donde representamos como /h,, a la expresion

. 1 1 1
huu = hwj — §nuyh - W |:82h/“, - §0uayh] (428)

g

m2(D — 2) + m?
g s 2
{ 2(D — 1)ym2m? ] <’7Wa a“a”)h‘

Esta perturbacion modificada, que corresponde al gravitén sin masa habitual, es trans-

versal pero tiene traza no nula

" =0, h#0. (4.29)
Descomponiendo h,,, como en [125] tenemos
7 nuuil (mg_2 - m§> 7

hw =tw + hw - +

(D —2) (D—1)

2 1
+ mmud) + mawau@,

s

9uOyh (4.30)

donde ¢,, es un modo de spin-2 sin traza, ¢ es un escalar y (uv) denota la parte sin
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traza. En efecto, podemos demostrar que estos satisfacen
(> =m2)p=0, (0> —=m)t, =0. (4.31)

Por lo tanto, describen modos masivos de espin 0 y 2 respectivamente, como habiamos
previsto. Si hubiéramos incluido algin tensor de energia-momento de materia en el
Lagrangiano, t,, se acoplaria a él con el signo equivocado, lo que refleja su naturaleza
de campo fantasma.

Resumiendo, los gravitones generalizados se caracterizan basicamente por dos parame-
tros dimensionales, las masas de los nuevos modos existentes en el espectro. Dado que
tenemos nuevos modos masivos anticipamos que las simetrias generalizadas del graviton

de Einstein cambiaran. Este sera el caso, como mostraremos a continuacion.

4.2. Simetrias generalizadas para gravitones
de Einstein-Hilbert

Antes de sumergirnos en el caso general, estudiemos primero las simetrias genera-
lizadas de la gravedad de Einstein linealizada en D > 4 dimensiones.

Esta teoria estd controlada por la accién de Fierz-Pauli (4.19), que tiene una simetria
de gauge asociada a la accién de difeomorfismos linealizados que actian segin (3.8)

como
Py = Dy + 0,8 + 0,8, . (4.32)

Las corrientes p-forma conservadas deben ser operadores fisicos, y por lo tanto invarian-
tes ante difeomorfismos linealizados. Esto significa que deben escribirse en términos del
tensor de Riemann linealizado R,,,.s3. Al igual que en el capitulo 3, podemos considerar
a dicho tensor de curvatura como el generador del algebra local invariante de gauge de
la teorfa. Sin embargo, a diferencia de lo ya estudiado, trataremos de encontrar una
formulacion covariante de los operadores no locales. Con este propdsito, observamos

primero que el tensor de Riemann on-shell cumple las siguientes idetidades

Ryvep = —Rujpap = —Ruupa  [Antisimetrial (4.33)
Ryvap = Ropuw [Simetria de intercambio] (4.34)
" Ryvap =0 [Ecuacién de Einstein] (4.35)
ght-tp=30BT R o, =0 [1ra Identidad de Bianchi ] (4.36)
ght-tp=3081 9 Re ., =0 [2da Identidad de Bianchi | (4.37)
0" Ryvap =0 [Ecuacién de Einstein + 2da de Bianchi | (4.38)
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donde aqui y en adelante omitimos el superindice “(1)” utilizado en la seccién anterior.
Noétese que la tltima ecuacion, (4.38), dice que el tensor de Riemann se comporta como
un biforma conservada a partir de la cual esperamos poder construir corrientes p-forma.

Ahora bien, aunque el tensor de Riemann R,,.s3 es el generador del dlgebra inva-
riante de gauge, también podemos utilizar el tensor maximamente antisimétrico €, ,,,
para producir nuevos tensores. Equivalentemente, otro candidato natural para construir
cargas conservadas es la curvatura dual [129, ].5 Definimos la curvatura dual me-
diante la accion del operador de Hodge sobre el tensor de Riemann de la siguiente

manera
1

R;1~~MD—2045 = 5 Epipp_odo R af (4-39)

Este operador satisface las siguientes ecuaciones algebraicas y de conservacion

i R [Antisimetria del Levi-Civita] (4.40)

ronsinpip208 = o up_afa [Antisimetria del Riemann] (4.41)
N R upsap =0, [1ra Identidad de Bianchi | (4.42)
6#1“2...“D715R21H2--~/1«D—104 =0, [Ecuacién de Einstein] (4.43)
5HW2"'“DflﬁRme...uD,l =0, [Ecuacién de Einstein] (4.44)
"R psap =0 [2da Identidad de Bianchi] (4.45)
o° toipsap = 0. [Conservacién del Riemman] (4.46)
L L U [Conservacion del Riemman)] (4.47)
g =g R ipsas =0 [2da Identidad de Bianchi ] (4.48)

Obsérvese que muchas de las propiedades algebraicas y diferenciales dadas en (4.33-
4.38) y (4.40-4.48) son vélidas on-shell mds alla del nivel linealizado si se sustituye la
métrica de Minkowski por una métrica general, y la derivada parcial por una derivada
covariante. Sin embargo, el tensor de Riemann ya no es un operador invariante de gauge
cuando vamos mas alld de la teoria linealizada sobre el espacio plano y, por tanto, no
podemos extender la construccién de las corrientes de forma sencilla més alla del caso
en cuestién. Para realizar dicha generalizacién, en [132] se ha utilizado el formalismo
de Cartan donde se han extendido los resultados de este capitulo a gravitones sobre

métricas de fondo generales.

4.2.1. Gravitones de Fierz-Paulien D =4

Permitamosnos ahora revisar el caso de D = 4, que desarrollamos en el capitulo

3. En esta dimension podemos construir las siguientes cuatro familias de 2-formas

®Podemos realizar el mismo procedimiento con el doble dual del tensor de Riemann, véase [131].
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conservadas [131, 133].
Aw = Ruaga™”, (4.49)
B, = Ruap (z°0° — 2°6%), (4.50)
Cuw = Ruasc®z,, (4.51)
Dy = Ryap (x°d27 — 2Pd*2” + %do‘ﬁﬁ) : (4.52)

donde a®?, b, ¢*® y d*# son tensores reales de antisimétricos de pardametros libres
Y )
que determinan las 20 especificas 2-formas conservadas. Sin embargo, como veremos
en el capitulo siguiente estos tensores no necesariamente transforman como tensores
de Lorentz. Siguiendo, podemos ver que las corrientes satisfacen las ecuaciones de
7

conservacién apropiadas de la forma
d*xA=0, d«B=0, d«C=0, d+«xD=0. (4.53)

Notese que la conservacién de A solo requiere que se conserve el tensor de Riemann
(4.38) mientras que para las otras corrientes necesitamos propiedades algebraicas adi-
cionales. En concreto, la conservacion de B depende de la condicién de traza nula
(4.35), para C' se requiere la primera identidad de Bianchi (4.36), y para D necesita-
mos tanto (4.35) como (4.36). Para relacién con el capitulo 3: la familia A contiene a
los operadores llamados traslaciones eléctricas y magnéticas, las familias B y C' son
equivalentes a las dilataciones y rotaciones eléctricas y magnéticas, y finalmente la
familia D esta compuesta por las transformaciones conformes especiales eléctricas y
magnéticas.

Podemos integrar todas las corrientes (4.49-4.52) en una superficie ¥y de codimen-
sién 2 en D = 4 produciendo cargas conservadas si ¥ es cerrada. En particular, en [131]
se estudiaron cargas analogas para soluciones linealizadas de [131-110]. El resultado es
que, por un lado, la integral del dual de B es proporcional a la masa y el flujo del dual
de D mide el momento angular. Por otro lado, los duales de C' y A estan relacionados
con las soluciones magnéticas, de manera que son respectivamente proporcionales a la
carga NUT (que representa la dual magnética de la masa) y a la versién magnética del
momento angular.

Podemos también integrar las corrientes 2-forma (4.49-4.52) sobre superficies Xy
abiertas, produciendo operadores HDV no locales que sélo dependen del borde 0%, si.
En este contexto, podemos escribir el flujo no local mas general posible definido por

los pardmetros (a®?, b, ¢ d*?) en una regién tipo anillo R que contiene una curva
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cerrada no contractible 9%, como

%22:/ s(A+ B+C+D). (4.54)
P!

Si consideremos ademéas un operador no local ®,5, en la regién complementaria R
con pardmetros (a*?, b, ¢*#7, d*?). Los operadores ®pyx, y @ o5, 1O se generan localmen-
te en regiones complementarias y, por tanto, no conmutan entre si. Podemos introducir

una foliacién y calcular conmutador correspondiente a partir de (3.103) para obtener
(s, Bz, | =i (a--d'+ 206 = 26" b~ d" - -a) (4.55)

donde utilizamos la convencion

iy = %gaw °, = %gaw AL (4.56)
Esto prueba que las corrientes (4.49-4.52) integradas sobre superficies bidimencionales
abiertas en efecto producen violaciones de dualidad de Haag y generan las clases HDV
asociadas a regiones tipo anillo que contienen lazos no contractibles. Dicho de otra
manera, el hecho de que los conmutadores no sean cero asegura directamente que las
corrientes que generan los flujos no son exactas en el algebra fisica. La razén es que
siempre que una de los flujos que aparecen en un conmutador esté generado por una
corriente exacta, dicho conmutador debe ser cero por causalidad, ya que el algebra
maxima en una regién dada es precisamente el conmutante del algebra aditiva de
regiéon complementaria.
Cabe preguntarse si podrian construirse mas corrientes conservadas. De hecho, po-

demos definir cantidades conservadas similares a partir de la curvatura dual, a saber,

Aw = R,.z07, (4.57)
B, = vaf (z°0° — 2°b%) (4.58)
D = R @y (4.59)
D, = v (zd® Y — 2Pd* Y + %Jo‘ﬁxQ) . (4.60)

Sin embargo, en D = 4 tenemos una simetria de dualidad U(1) que corresponde a una

rotacion de Riemann y su dual,

<R> . (c?s(ﬁ) —sin(@)) <R> ' (4.61)
R* sin (f)  cos (0) R*

analoga a la simetria de dualidad del campo libre de Maxwell. Esto significa que el alge-

bra generada por A, B, C, D es de hecho la misma que la generada por A, B, C, D. Como
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veremos en un momento, para la generalizacién a dimensiones arbitrarias D > 4 se-
ra mas conveniente elegir una base “mas equilibrada”, formada por el mismo ntimero de
cargas tildadas y no tildadas. Esta esta dada por B, D, A, B. Entonces,equivalentemente,

podemos escribir el operador no local mas general en D = 4 como
%22,:/ *<B+D+A+B) . (4.62)
P

En este nimero de dimensiones el hecho de que las simetrias vengan en pares duales es
a primera vista trivial ya que para una regién tipo anillo el complemento es también
una region tipo anillo. Por lo tanto, las mismas cargas aparecen en una regién tipo
anillo y en su complemento. Sin embargo, no es una coincidencia que el nimero total
de ellos es par, a saber, 20. Esto es requerido por el conmutador, dado que las B estan

emparejadas con las B y las D estédn emparejadas con las A.

4.2.2. Garvitones de Fierz-Pauli en D > 4

Ahora pasamos a dimensiones D > 4. En este caso, el complementario de una region
tipo anillo ya no es un anillo, por lo que las clases HDV y clases HDV duales corres-
ponden a regiones con topologias diferentes. En particular, tendremos operadores no
locales que violan dualidad de Haag en regiones con grupo de homotopia no trivial 7y,
digase anillos, y cargas duales que violan la dualidad en regiones con grupo homotopia
no trivial mp_s.

A primera vista, siguiendo a [131], se observa que las familias A, B,C, D de 2-
formas descritas anteriormente siguen siendo conservadas en dimensiones generales, y
son D(D + 1)(D + 2)/6 candidatas para generar simetrias generalizadas asociadas a
anillos. El principio de que las simetrias generalizadas vienen en pares duales predice
entonces que deberfamos encontrar un nimero igual de (D —2)-formas duales conserva-
das. Los candidatos naturales aparecen al considerar la extensién obvia de las familias
A, B,C, D a dimensiones superiores. Desgraciadamente, en dimensiones superiores solo
podemos recuperar (D + 1)/2 corrientes conservadas (D — 2)-forma. Estas provienen

de las dos familias A, B construidas como

AMIHQ---H‘D72 = R;.klll“z.A.MD72a/8 ELOCB ? (463)
Bipswpo = B ip sap (z°V° — 2Pb%) . (4.64)

Desde un punto de vista técnico, el problema reside en que, en D > 4, no podemos
construir corrientes conservadas CN'W y DW andlogamente a (4.51-4.52). Esto se debe a

que la identidad de Bianchi del tensor dual de Riemann con sélo tres indices contraidos
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no se cumple. Mas precisamente, se obtiene

ghi-kD-3087 p* 1 57“1"'”D*3R5a (4.65)

1.-Vp_3aBy 9 ladvi..vp_3 By

donde nfik2 es la métrica generalizada definida a partir del determinante

H1 o 2
7]1/1 771/1

nhifze = 171//‘21 17522 el (4'66)

vivo...

Mientras que en D = 4 esto se reduce a una combinacién de tensores de Ricci que des-
aparece en virtud de la ecuacién de Einstein (4.35), este ya no es el caso en dimensiones
superiores.’

Esta discrepancia entre el nimero de clases HDV asociadas a simetrias generalizadas
en regiones complementarias tiene dos posibles origenes. La primera posibilidad es que
nos falten operadores no locales que surjan de nuevas (D — 2)-formas conservadas. En
este caso, los flujos tienen que ser del tipo C' o D para que las dimensiones coincidan y
podamos formar conmutadores no nulos con las A y B. Argumentamos que estas cargas
no existen en la seccion 4.2.3. La segunda posibilidad es que algunas de las familias
A, B,C,D de 2-formas conservadas se vuelvan exactas en dimensiones superiores a
cuatro y no generen simetrias generalizadas. Aunque esto resulte contraintuitivo a

primera vista, resulta ser asi, ya que las familias A, C' contienen exclusivamente 2-

formas exactas en D > 4. Para observar esto con precision definimos las siguientes

3-formas
R*
[R] _ _ " "HYpO1..0D-3 ~ay..0p_30
A,uup - (D . 4)| a™ b3 Zo, (467)
R* 1 ,r]()él...ocD,z),
C[R] — HYpa...ap_3 < soq..ap-3 .2 B1---Bp-3 Bi..Bp_a0 .Bp_3 i 468
nrp (D—5)'(D—2) 20 X + (D—4)_|C i o s ( )

donde hemos nombrado a®*+*P-2 y ¢ *D=3 g formas constantes obtenidas actuando
con el operador estrella de Hodge sobre los tensores antisimétricos a*” y ¢ en (4.49)

y (4.51) respectivamente.

1
aoq...aD_g — - 6011.‘.04D_2,u,1/ a#y, (469)
2
1
GAl-OD—3 T O1.-OD-3HVP . vp
3!
5Por ejemplo, en D = 5 encontramos gt1#2@87 Ry papy = 2RI .
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Por célculo directo, podemos obtener que las divergencias correspondientes obedecen

AR = AL, (4.70)
ol = C, .

Considerando que la divergencia se escribe en lenguaje de formas diferenciales como

x d *, esto implica

dx A7 ~ A,
d«CcB ~ «C. (4.71)

Esto nos demuestra que x A y % B son exactas en el algebra fisica de la teoria. Los
flujos construidos a partir de ellas pertenecen al algebra aditiva del anillo y conmutan
con todos los operadores de la regiéon complementaria, incluidos los no locales. En otras
palabras, no generan simetrias generalizadas. Nétese que este andlisis no es aplicable
en D =4 ya que (4.67) y (4.68) no corresponden a formas diferenciales antisimétricas.
Se podria intentar antisimetrizar los indices libres, pero tal procedimiento daria lugar
a que tanto A, como C,,, desaparecieran debido a la identidad de Bianchi del tensor
de Riemann dual (4.43). El hecho de que las corrientes conservadas A y B no generan
simetrias generalizadas en D > 4 también puede verse a partir del teorema de Noether,
ya que corresponden a variaciones triviales de la accién obtenida en [I31] para los
gravitones en cuestion.

En este contexto, los operadores no locales mas generales asociados a superficies de

dimension (D — 2) y 2 toman la forma

@aE(D2>:/E(D2)*<B+D>, éaiﬁfi *<21+ B). (4.72)

2

La verificacion definitiva de que los operadores Posp_y ¥ Pos, realmente represen-
tan operadores HDV no locales, es evaluar el conmutador entre los flujos para superficies
enlazadas. Para empezar, observamos que podemos escribir tensor de Riemann a orden
lineal en perturbaciones de h,, como funcién de las variables dindmicas del espacio de

fases de la forma

1
RDin - 5 (azanhn] + Gjanhm - azajh'nn - 8nanhu) ) (473)
0; 0;
Roiji. = Omip — Opmyg — D——k2 Oy Ttpn + D _l 5 Ok Tn (4.74)
1
Riji = 3 (010;hji + 0xOjhy — OKO;hjy — 0,0;hik;) (4.75)

donde 7;; representa los momentos canénicos asociados a h;;, definidos a partir del
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lagrangiano de Fierz-Pauli como

FP 1. ]
T4 = (;flw = §(h” - 8ih0j — @hgi — 5@]hnn + 25Uanh()n) . (476)

Procedemos ahora a calcular el conmutador de los flujos para una configuracion
andloga a la desarrollada en la seccion 3.2.4 del capitulo 3. En particular, usaremos
los flujos definidos sobre un “cuadrado” espacial finito (D — 2)-dimensional ¥p 5 y
uno Yp-dimensional. Elegimos el sistema de coordenadas como (2°, z!, 22, ..., 2P~1), de

modo que las superficies estan definidas por los parametros de longitud L, «, y S como

Sp oo = {xo —0, 21 =0, 22€[0,q], 2% ...,aP € [-L/2,L/2] } , (4.77)

L= {a0 =0, o' € [-L/2,L/2], 2* € [8,3L/2], a%,...aP =0}, (478)

donde «, 8 € (0,3L/2). Considerando (4.73-4.75) y las relaciones de conmutacién a

tiempos iguales dadas por la cuantizacién canodnica de la teoria de Fierz-Pauli como

[hij(z), ma(y)] = %(5zk5ﬂ + 0a0;%)0(z — y) (4.79)

o equivalentemente, la generalizacion a D > 4 del enfoque ADM linealizado presentado

en el la seccion 3.1.3 del capitulo 3. Recuperamos por calculo directo el resultado
[%E(M), ‘5322] —i(D—3) (2 b-b+d- -a) B(a— ). (4.80)

La dependencia del resultado de la funcién de Heaviside 0(av — 3) representa el hecho
de que el conmutador sélo es no nulo cuando o > 3, es decir, cuando los bordes de los

cuadrados estan enlazados. Ademas, las leyes de conservacion
d« B=d* D=d+« A=d* B=0, (4.81)

implican que el mismo argumento vale para cualquier otro par de geometrias Xp_o y
Yo, Siempre que sus bordes estén enlazados, el conmutador vendra dado en términos
de (b-b) y (d--@) por la expresién anterior. Cuando no lo estén, el conmutador se
anulara.

Una cuestion interesante es si en D > 6 dimensiones podemos encontrar p—formas
conservadas con p # 2y p # (D — 2). Efectivamente es asi, pero estas corrientes
conservadas resultan ser formas exactas, es decir, se pueden obtener si aplicamos la

derivada exterior a una (p — 1)-forma. Lo mismo ocurre para el campo de Maxwell en



4.2 Simetrias generalizadas para gravitones
de Einstein-Hilbert 99

D > 6. Algunos ejemplos son:

* saB, A A A
RﬂllnnﬂDfs)\aﬁa U= A/‘1N2~~-ﬂD—3)\/U ) (482)
* arf BN, A 1 A
,u,l,ug...,uD,g)\aB(x b z”b )I - BM1H2---HD—3>\:B ) (483)
con a®?, b,y v constantes. Podemos ver que estas corrientes conservadas, simplemente

obedecen a que
Ox (Albluzm#Dfa*)\UUIU) = Auluzmqus)\U)\ ) (4'84)

01 (5 Bunsis o 38°) = B oo (4.85)
En resumen, al considerar un graviton de Fierz-Pauli, encontramos dos familias de 2-
formas conservadas de que generan simetrias generalizadas, las B y las D —véase (4.50)
y (4.52). Generando un total de cargas conservadas D(D + 1)/2 integrando sus duales
de Hodge de la forma (4.72). En las regiones complementarias también encontramos dos
familias de (D — 2)-formas conservadas que generan simetrias generalizadas. Se trata
de las A y las B —véase (4.63-4.64). Generan un nimero igual de cargas conservadas
D(D + 1)/2 integrando sus duales de Hodge (4.72). Este resultado puede entenderse
como una manifestacién no trivial del principio de que los operadores no locales HDV

vienen en pares duales.

4.2.3. Buscando (D — 2)-formas conservadas en D > 4

Si bien la solucién a la discrepencia de pares duales se evidencia en el hecho de
que las cargas generadas por las familias A y C' son exactas, es un ejercicio interesante
convencernos de que no existen otras (D — 2)-formas conservadas en D > 4. Cuando
buscamos dichas corrientes, la primera propuesta que podemos intentar es la generali-
zacién directa del caso D = 4. Esto incluye las corrientes bien definidas A y B definidas
en (4.63-4.64) asi como

A _ *
CH1H2-~~HD72 - Ry

By, (4.86)

1h2.pip—2af €

- i} - - 1 -
DN1H2~--HD—2 = pUip2...bp—2af ("Eadﬁ’yx’y + mﬁd,yax’Y + §daﬂx2) ) (487)

donde 7 y dP son de nuevo tensores reales antisimétricos de parametros libres. Sin

embargo, estas 2-formas no se conservan. En concreto, para su divergencia obtenemos

8pé’#1,u2muD73P = R, ﬁépaﬁ (4-88)

U1p2.fhD 3P0
8‘)[)“1“2“.“]373’) = z*d” + P d* - Jaﬁxp> (4'89)

*
Hi1p2...pD—3p0B <
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Sin embargo, como en D > 4 las identidades de Bianchi del tensor dual de Riemann
(4.43-4.44) son menos restrictivas que en D = 4, se permiten varias modificaciones
de esta primera propuesta. De hecho, podemos escribir todas las combinaciones po-
sibles del tensor dual de Riemann y sus derivadas con ¢#7, des y las coordenadas
espacio-temporales que obedezcan la antisimetria requerida y tengan la dimensién de
escala correcta. Muchas de estas combinaciones no son linealmente independientes unas
de otras, pero haciendo varias manipulaciones algebraicas que implican anadir ciertos
términos a las formas originales de é,w y ﬁW, encontramos que otras corrientes con-

servadas adicionales existen. Por ejemplo, podrian estar dadas por

~ x°

. * * ~a
C#1M2~~~HD—2 - (R,uum...uD_gaB + ?aURulug...,uD_gaﬁ) 7 Ly

1
Vi...Vp_ * ~of3

B 3(D _ 3)!nui---ulgféRVL--VDf:aaﬁW o LTvp_a > (4'90)
- * 7 * a g Fo%el 1 08,2
D#1N2~~~ND72 = (RulﬂzmuD—zaﬁ + Zaf’RmmmuD_zaﬁ) |:1} dﬁ7$7 + 2 Ty + §d P :|

1 V1.V * a 7l Tva Jo
— m%iﬁlﬁiRyl...uD_gam Tup [x d” + 2P D + 2d /B} , (4.91)

donde se obtienen las leyes de conservacién deseadas

apémm---upfap = 0, (492)
o*D 0. (4.93)

H1K2..LD—3P

Ademads, anadiendo a estas nuevas corrientes conservadas (D — 2)-forma alcanzamos
el total originalmente esperado de D(D + 1)(D + 2)/6 corrientes duales. Pero, estas
nuevas corrientes conservadas son exactas y no generan simetrias generalizadas. Es

decir, podemos encontrar (D — 1)-formas fisicas C y D de modo que
d«CH ~xC, dxDW ~«D, (4.94)

con las componentes de C and D dadas por

vi..Vp_1

5[R _ Muiup1 s a

CL1L2-~~ND—1 - MRW-JJD—W&C o Ly Lvp_y s (495)
SIA) Mo tis 0 e, 477

Duluz---qu = 4(D _ 2)!RV1---VD72045 zd7 4 2" d" + Txv z? Tvp_y s (4'96)

En efecto, podemos chequear que tienen las divergencias esperadas

12 — %) —
9 CN1M2~--MD—2P - CﬂluzmuD—z ’ 0 DM1M2~--#D—2P - DN1P«2--'/‘«D—2 : (4'97)
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4.3. Simetrias generalizadas para gravitones

de curvatura superior

Consideremos ahora el caso de gravitones generalizados. La accion linealizada en
este caso viene dada por (4.18). Puesto que la simetria de gauge sigue siendo la misma,
es decir, los difeomorfismos linealizados descritos en (4.32), el tensor de Riemann sigue
siendo el generador de operadores invariantes de gauge en la teorfa. Sin embargo, la
ecuacién de movimiento viene dada ahora por (4.24) y, en particular, el tensor de Ricci
no se anula on-shell. Por lo tanto, dicho tensor es un operador no trivial invariante de
gauge en la teoria. Como consecuencia, el tensor de Riemann ya no es una corriente
conservada como en (4.38) ni tampoco lo es el tensor de Weyl.

Por otra parte, la conservacion y las propiedades adicionales del tensor de Riemann
dual no son consecuencia de las ecuaciones de movimiento. Estas dependen tnicamente
de sus simetrias y de las identidades de Bianchi. Mas concretamente, las ecuaciones
(4.40-4.45) siguen siendo validas para los gravitones en teorias de curvatura superior y
obtenemos de nuevo D(D+1)/2 corrientes (D — 2)-forma conservadas correspondientes
a las familias A y B, a saber

Apvpsnins = Roypn 2as @™, (4.98)
B —

i D D a0B (20 — 27b%) . (4.99)

El flujo no local, definido sobre superficies bidimensionales, méas general que podemos

escribir tiene entonces de la misma forma que para el gravitén de Einstein
s, :/ «(A+B) (4.100)
s

Este resultado predice la existencia de un nimero igual de D(D + 1)/2 corrientes 2-
forma conservadas. Nuevamente, esta se trata de una prediccién no trivial ya que,
como se ha mencionado anteriormente, el tensor de Riemann ya no es una corriente
conservada. Una primera generalizaciéon puede construirse sin recurrir a la dindmica

especifica de cada teoria. En particular, podemos construir”

Sw/oa,é’ = R,ul/a,B_ (nuaRVﬁ - nuﬁRya (4101)

<77;wcnu,3 - nuan/Lﬁ) R7

DN —

B+ aBs ) +

"Véase que el tensor Suvag no coincide con el tensor de Weyl porque los pesos relativos de los
términos son diferentes
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que debido a las simetrias del Riemann y la 2% identidad de Bianchi cumple que
ghi-pp-saBy Sapyw =0. 0"Sap=0. (4.102)

No obstante, el tensor (4.101) no genera nuevos operadores no locales, ya que todos sus
flujos resultan venir de corrientes exactas. Podemos observar esto por calculo directo
de las versiones con traza no nula de (4.67-4.68). Por ejemplo, podemos ver que los
flujos de tipo A asociados a S,.qs son aditivos debido a que

" Al = Raga® + 2R, 0y — 2R, oy + R = Sasa®® (4.103)

Sin embargo, deberia existir un tensor generalizado que desempenara el papel que
desempena el tensor de Riemann en el caso Fierz-Pauli. En dicho caso, vimos que las
leyes de conservacién requieren la validez de las ecuaciones de Eistein, por ende es
de esperar que una generalizacién al caso de orden superior involucre la dinamica de
dichas teorias. Siguiendo esta idea nos sera 1til re-escribir la ecuacién de movimiento
(4.24) como

32
(1 - EFQJ) Ry, =A,R. (4.104)

donde A, es un operador diferencial simétrico de orden dos definido como

| a_z] (D —2)(m? — m?)

Al/:_ v 1—
" 77“{ m2 2(D — L)ym2m?

5 (0,0, — 1,,07] . (4.105)
9

A partir de aqui, después de bastante trabajo, tenemos que las simetrias generalizadas
de las teorias gravitatorias linealizadas de curvatura superior pueden caracterizarse
utilizando el tensor W de trazas nulas definido como

2 2
Wivas = Ryvap + D—2) [nu[ﬂmu —m[aRmu} T D =D = 1y el R, (4.106)

donde ademés hemos definido

*1 L (1) 0
Romas = [1 _ ﬁ] R o+ 28,5R0) + 28,1, RY) . (4.107)

9

En particular, la divergencia de la biforma W puede calcularse en cualquier teoria
gravedad linealizada de curvatura superior, de manera que tenemos

Wiy = —— ) [85 (R,,a - (”—‘”‘) R) 9, (Ryﬁ - (”—ﬁ)n)} . (4.108)

(D—2 D—1 D—1
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donde nombramos a las contracciones de R ,,q5 de la forma

Rug = 1" "Ruvas = Dps R, + Dy R% — ARg, (4.109)
R =n""1"Ryap = 28,0R” — AR. (4.110)

Podemos ver que los términos dentro del paréntesis en (4.108) pueden calcularse utili-
zando las definiciones (4.109-4.110), la segunda identidad de Bianchi y la ecuacién del

movimiento. Mas especificamente, tenemos
R Nuv R — (D - 2)(7”3 - mg)
(D -1) 2(D — 1)m?m?

x [(D —3)9? (RW . %R) — (D —4)9,0,R] .

(4.111)

De aqui, vemos que ecuacién (4.108) claramente se anula en dos casos diferentes:

(a) cuando el modo de espin 2 estd ausente del espectro (m] — 00), es decir que la

parte cuadratica de la accién se reduce a un tinico término R?;

(b) cuando m? = mg de manera que solo encontramos un unico término de alta

curvatura en la accién de forma de Weyl?.

Observaremos, que en ambas situaciones, se deduce que W,,.3 genera cargas no tri-
viales de las clases B y D de forma andloga a la gravedad de Einstein. Comencemos
analizando el primer caso. Especificamente, cuando m, — oo recuperamos una teoria
que solo contiene el graviton sin masa habitual y un campo escalar masivo. En tal caso,

podemos escribir la ecuacion de movimiento como

1 (D —2)
2(D — 1) { m?2

S

R, = 0,0, + T]w/:| R, (4.112)
pudiendo utilizarse para comprobar explicitamente a partir de (4.108) y (4.111) que W
define una corriente biforma conservada. Sin embargo, en este caso, podemos simplificar

aun mas (4.106) para obtener una expresién més manejable, es decir

1
W,uuaﬁ - Rp,ua,@ + T)TI’LQ 7],/[048/3]8,,, + 77#[53(1]&,] R. (4113)

(D

A partir de (4.113), podemos comprobar explicitamente que ¥V obedece las mismas

propiedades que el tensor de Riemann en una teoria de Fierz-Pauli, a saber

N Wipas =0,  eht=#o=seb1W o =0, (4.114)
o Wluya/g = 0, E’ul'"’uD_gaﬁv @a ngﬂw =0.
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Esto implica que W produce flujos no locales de las clases tipo-B y tipo-D. A saber,

las generadas por las corrientes conservadas

B = W (270 — 2%b%), (4.115)

1
DY = Wias (20727 —2Pda" + Sd*a?). (4.116)

Podemos ver que las corrientes conservadas restantes, es decir las de las clases tipo-A
y tipo-C, estan producidas por formas exactas. Esto se consigue si consideramos las
mismas estructuras tensoriales que en el caso de la gravedad de Einstein. Para ser

precisos, obtenemos que

AV = Wpapa™ = v AT (4.117)
Y = Wiwas 'z, = 0°Cl), (4.118)

donde hemos utilizado la notacion

wr
[W] — HVPQL...0D—3 ~q7..ap_30
A, = “D-1n ° P37 I, (4.119)
W* 1 nal..AaD,S
W] — prpay...ap_3 ~Q1...0p_3 .2 Bi1--Bp-3  B1..B8p_s0 Bp_
CLW]):(D—5)'<D—2) (561 b=3 g +mcl b SL’DgiCU . (4120)

Siguiendo esta linea, una cuestién que hemos evitado hasta ahora es que R, definido a
partir de (4.107), es por si mismo una corriente biforma conservada en cualquier teoria
gravitatoria de orden superior, a saber O*R .3 = 0. Sin embargo, tiene una traza no
nula y por ende produce sélo flujos de los tipo-A y tipo-C. Podemos comprobar que
éstos son generadas por corrientes exactas. Por ejemplo, obtenemos que en el limite

mg — 00 vale

A[W} _A[R]
ARL . ADVE— gp e e 4.121
2 nv (D—3)<D—1) ) ( )
donde hemos utilizado que (4.107) se reduce a
(D=2 MulaTIly
Ry = Buas + ez jas ) O | R~ M R (4122
pvaf3 1t B+(D—1)2m§n[ 810p + N[00 (D —1)2 ( )

Nos queda comprobar qué ocurre en la imagen dual, donde el tensor dual W)~ s

también se conserva y genera flujos de tipo-A y de tipo-B de la forma habitual

AW _ * ~a

ALII]lQ---MD—z - Wuluz...up_zocﬁ a g ’ (4123)
=~ B . o -

B/[llll}wHD—Q o H1p2...kp—20f (l’ bﬁ - lﬁb ) . (4.124)
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Observamos que este tensor dual puede escribirse como

* * 1 o
B pmp—208 T Rm.--quzaﬁ + mgulwﬂD%PUn[pﬂaa]a R, (4‘125)

lo que implica que W), = 5 genera las mismas cargas que R~ 5. Larazon es

que diferencia entre ambas también es exacta. Deducimos esto definiendo

- 1
Ay oupy = m

~ 1
Bu.wpy = m

Eurp1p O MO R (4.126)

[em,_.w,w (072 — ) 1 051 R — prvop il R] L (4.127)

cuyas divergencias son

. 1

7 Apy.ppz0 = (D = 1) n-200 a®” ;0.0 R (4.128)
2% A[R*
- A;[uu;--upa - ;[tw]z---upfz )
o R 1 o o o
a B,ul...,u,D,QU = mgul...uD,Qpa (b :L‘B - bB.I > nfﬂ a]a R (4129)
_ pwr SR
- B/[HM}WMD—z o B/[tlu]zmuD—z :

Por tltimo, nos queda analizar el caso m? = mf] = m? cuya légica sigue un patrén

similar. En tal caso, la ecuaciéon de movimiento puede simplificarse y obtenemos
52

Ademsds, las ecuaciones (4.106) y (4.107) se convierten en

82
W,u,uaﬁ - R,u,z/a,B = |:1 - ﬁ:| R/,Waﬁ 5 (4131)

que obedece a todas las propiedades presentadas en (4.114), generando por tanto cargas
no triviales a partir de las corrientes (4.115-4.116) y (4.98-4.99). Los célculos corres-
pondientes y las pruebas que demuestran que las restantes corrientes conservadas son
exactas son analogas a los ya presentadas.

Resumiendo, en ausencia del modo de espin 2 masivo encontramos que las teorias de
mayor curvatura poseen D(D+ 1) corrientes conservadas, organizadas en dos conjuntos
duales de igual tamafio {A, B} y {B,D}. Ademés, las corrientes obtenidas pueden
entenderse como deformaciones continuas de las de Einstein.

Cuando mg es finito y m? # mg, esta construccion falla y encontramos una posible
violacién del principio de pares duales. Esto estda probablemente relacionado con el

hecho de que el modo de espin 2 es un fantasma [125, ], cuya presencia hace que la
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teorfa no sea unitaria [112, ]. Es razonable esperar que las simetrias generalizadas
y el principio de pares duales sean sensibles a esta cuestién. No obstante, también es
una posibilidad légica que exista un conjunto de cargas mas elusivo para estos casos y

que acabe salvando el dia para estas teorias.

2
g

pagandose, tiene problemas de unitaridad similares [113]. El hecho de que esto no viole

Por otra parte, el caso m? = m?, para el cual la particula de espin 2 sigue pro-
el principio de pares duales sugiere que las teorias consistentes siempre respetaran dicho
principio, pero que la implicacién contraria en general no seria cierta. En este contex-
to, como el campo se espin 2 masivo es un fantasma, queda abierta la pregunta si las
simetrias generalizadas para esta teoria estan bien definidas desde el punto de vista de
la causalidad. Esto podria ser estudiado incluso a nivel clasico utilizando los métodos

que presentaremos en la seccién 6.1.2.

4.4. Simetrias generalizadas definen

el gravitén generalizado

En [131] se adopté una perspectiva interesante en relacién con la gravedad. Siguien-
do el paradigma de Landau [9], y en particular su generalizacién para incluir simetrias
generalizadas [3]. Se caracteriza una fase de la materia (una teorfa) en términos de sus
simetrias y su patron de ruptura de simetria. La gravedad podria seguir este paradig-
ma, y de hecho esto se demostré para el gravitén de Einstein linealizado en [131], donde
la accion de Fierz-Pauli se rederivo a partir del patron de simetria. Aqui mostramos
que éste también es el caso para gravitones generalizados. En lugar de centrarnos en
rederivar la accion apropiada, nos centramos en rederivar las ecuaciones de movimiento
apropiadas. En otras palabras, buscaremos recuperar el conjunto completo de ecuacio-
nes linealizadas para gravitones generalizados, a partir del patron de simetria de la
teoria.

Es un ejercicio sencillo ver que, suponiendo que buscamos una teoria con las si-

metrias generalizadas generadas por los operadores HDV no locales

Pos o :/Z *<B+D), Dy, :/i *(21+ B) : (4.132)
(D-2) 2

entonces, el cardcter cerrado de las respectivas corrientes (D — 2)-forma y 2-forma
implica el conjunto completo de ecuaciones de Einstein. Por ejemplo, para el gravitén
de Einstein pretendemos recuperar (4.35-4.37). Podemos deducir esto de las leyes de

conservacion

d*B=0, d+«D=0, d*A=0, d*B=0, (4.133)
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que hacen que se cumplan las identidades de Bianchi del tensor de Riemann asi como
las ecuaciones de Einstein. Para gravitones generalizados debemos considerar las mis-
mas condiciones de conservacion pero recordando que es el tensor W el que genera la
simetrias generalizadas de tipo-B y tipo D. En dicho caso, la conservacién de A implica
la validez de la segunda identidad de Bianchi (4.37). La conservacién de B produce las
ecuaciones de movimiento (4.24). Finalmente, el comportamiento de D y B generan la
primera identidad de Bianchi (4.36). Por lo tanto, concluimos que el conjunto completo
de ecuaciones de movimiento para teorias generales de gravedad linealizada se sigue de

su patrén de simetrias generalizadas.

4.5. Discusién del capitulo

En este capitulo hemos hallado D(D + 1) corrientes que producen simetrias gene-
ralizadas para la gravedad de Einstein linealizada, asi como para gravedades de mayor
curvatura que propagan un modo adicional de espin 0 en dimensiones generales. La
mitad de las simetrias son generadas por corrientes de 2-forma y la otra mitad por
corrientes de (D — 2)-forma , lo cual verifica el principio de QFT de que las simetrias
generalizadas siempre vienen en pares duales. Sin embargo, en el caso de gravitones de
mayor curvatura que propagan un graviton masivo adicional de espin 2, la teoria no es
unitaria, y parece violarse el principio de los pares duales.

Un resultado interesante es que los gravitones generalizados pueden definirse por
sus simetrias generalizadas, apoyando la perspectiva de [131]. Mds precisamente, la
gravedad linealizada es una teoria de simetria, caracterizada por la conservacion de
sus corrientes p-forma cerradas. Esto nos recuerda a AdS/CFT [114, |, donde la
gravedad es dual a la dindmica del tensor de energia-momento de una CF'T, restringida
por su conservacion, traza nula e identidades de Ward asociadas.

Otros resultados interesantes son que las simetrias generalizadas del graviton estan
cargadas bajo simetrias espacio-temporales para cualquiera de las acciones considera-
das. Esto implica que estas teorias amplian el espacio de las llamadas teorias tensoriales
de gauge [111], proporcionando més ejemplos de la conexién propuesta entre la gra-
vedad y los sistemas fracténicos que hemos estudiado en el capitulo 3. Ademds, que
las clases HDV de operadores no locales transformen ante el grupo de Poincaré tiene
consecuencias directas en la construccién de tensores energia-momento para todas las
teorias consideradas. Estudiaremos esta idea en profundidad en el capitulo 5.

Este escenario nos abre varias posibilidades de trabajo futuro. En primer lugar,
nuestro analisis podria extenderse a: teorias linealizadas de la gravedad cuyo Lagran-
giano sea también un funcional de la derivada covariante, teorias con términos de masa
explicitos en la accién, o métricas de fondo méas generales. Si bien [132] ya plantea un

progreso en esta ultima direccion, el calculo explicito sobre métricas de fondo como
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AdS podria ser particularmente interesante. Por un lado, podriamos estudiar como
se rompen las simetrias generalizadas del gravitén en gravedad cuéntica y, por otro,
podriamos aprender sobre las propiedades de tensores energia-momento de CFTs ho-
lograficas.

Otra cuestién no relacionada, es si la existencia de un espacio no trivial de teorias
gravitatorias de baja energia (definidas en términos del espectro de simetrias generali-
zadas) implica la existencia de un espacio similar de completaciones UV. Uno espera
que este no sea el caso, y que la ausencia de simetrias generalizadas en la gravedad
cuantica [18, 19] deberfa conducir a una teorfa unificada en el UV, donde todas estas

diferentes fases estdn suavemente conectadas entre si.



Capitulo 5

Simetrias (Generalizadas y el

teorema de Noether

En mecénica clasica, el teorema de Noether [10] afirma la existencia de cargas
conservadas () cuando la acciéon es invariante bajo un grupo de simetria continuo.
Estas cargas conservadas son los generadores del grupo en el espacio de fases clasico
de la teoria. Una version, a priori mas fuerte aparece en la teoria clasica de campos,
donde el teorema de Noether implica la existencia de corrientes locales conservadas
J*, que satisfacen d, j* = 0. Integrando estas corrientes sobre una superficie espacial,
recuperamos las cargas conservadas.

Es una cuestién de larga data determinar en qué medida, o en qué condiciones,
este teorema se mantiene en QFT. En la mayoria de los escenarios, sabemos que es
asi, y que la existencia de una simetria continua global implica la existencia de una
corriente local conservada. En lo que sigue de esta tesis, denominaremos la aparicién
de corrientes locales asociadas a simetrias continuas globales como “version fuerte” del
teorema de Noether.

De hecho, existe una versién mas débil del teorema de Noether. Si tenemos una
corriente, podemos integrarla sobre una regién finita R contenida dentro de una super-
ficie de Cauchy completa. Esta integraciéon parcial da lugar a las cargas locales Q g, que
miden la cantidad de carga en la regiéon R. Equivalentemente, vemos que las cargas Qr
generan las transformaciones de simetria para los campos locales dentro de R. Estas
transformaciones de simetria locales se conocen como “twists”. La existencia de estas
cargas locales Qg v twists estda garantizada por la existencia de las propias corrientes.
Pero desconocemos la validez de la afirmacién inversa. Nombraremos a la existencia de
Qg locales para cualquier regién R como “versién débil” del teorema de Noether.

Un progreso significativo hacia una prueba de primeros principios e independiente
del Lagrangiano del teorema de Noether en QFT apareci6 en [116-119], dentro del

contexto del estudio de simetrias globales en AQFT [58, 59, 62, , |. En particular,

109
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en [119], dada una cierta suposicién técnica pero débil en QFT llamada “split property”,
se demostro la version débil del teorema de Noether, y se encontré una construccion
canonica de las cargas locales (Jg. A continuacion revisaremos esta construccion, la
cual también es valida para simetrias globales discretas, extendiendo la versién débil del
teorema también a esos casos. Finalmente, [119] también reconoce que esta construccion
no es una prueba de la version fuerte del teorema de Noether, y que se requieren nuevas
ideas para lograr tal objetivo, o para encontrar la potencial obstruccion. Podemos
encontrar progreso en esta direccién en [14, , .

Un teorema a priori no relacionado en QFT para D = 4 es el teorema Weinberg-
Witten [17]. Este teorema afirma que la existencia de una corriente conservada j*
excluye la existencia de particulas sin masa con helicidad mayor o igual a uno que
estén cargadas bajo ella, y que la existencia de un tensor de energia-momento T+
excluye la existencia de particulas sin masa con helicidad mayor o igual a dos. Estos
teoremas restringen entonces el espacio de posibles QFTs en D = 4. En particular,
la segunda version se interpreta tipicamente como una obstruccién a la construccion
de QFTs relativistas con un graviton emergente en el infrarrojo, sugiriendo que la
cuantizacion de la gravedad debe seguir una ruta diferente.

Es evidente que ambos teoremas, la version fuerte del teorema de Noether y el
teorema de Weinberg-Witten, exigen una comprension mas profunda de cuando y por
qué pueden aparecer en la teoria corrientes conservadas que generen simetrias globales.
Una observacion que sugiere que ambas estan relacionadas entre si aparece al dar la
vuelta al teorema de Weinberg-Witten. Por ejemplo, si existiera en D = 4 una teoria
de particulas sin masa con helicidad mayor o igual a uno cargadas bajo una simetria
global, esta violaria definitivamente la versién fuerte del teorema de Noether ya que
segin Weinberg-Witten no existe corriente local conservada para tal simetria.

Dado este contexto, la principal motivacién de este capitulo es comenzar a com-
prender el espacio de QFTs que violan la version fuerte del teorema de Noether, y
analizar las lecciones aprendidas en relacion con el teorema de Weinberg-Witten. Para
tal fin, desarrollamos una clasificacion més fina de cargas locales y operadores de twist
en QFT. Esta clasificacion se deriva naturalmente del enfoque para simetrias genera-
lizadas en AQFT presentado en el capitulo 2. M&s concretamente, para avanzar sera
crucial considerar QFTs que poseen simultaneamente simetrias generalizadas y una
simetria global usual en la que centraremos nuestra atencién. En tales escenarios, las
cargas/twists asociadas en una cierta regién R son potencialmente de diferentes tipos,
los cuales analizaremos en detalle.

Utilizando esta clasificacion mas fina de los operadores de twist derivaremos los
principales resultados de este capitulo, de donde se siguen los demas. En palabras, mos-
traremos que las simetrias generalizadas no pueden estar cargadas bajo una simetria

global continua que tenga una corriente de Noether, y que sélo las simetrias generaliza-
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das con un continuo de clases duales pueden cargarse bajo una simetria global continua.
También describiremos la extension natural de estas afirmaciones a simetrias globales
asociadas a grupos finitos.

La discusién dejara claro que las versiones débil y fuerte del teorema de Noether
no son equivalentes. Existe un espacio no vacio de QFTs que satisfacen la version débil
y violan la fuerte. Ademads, llegamos a una caracterizacion minima de dicho espacio.
Muy explicitamente, éste espacio contendra a las QFTs con simetrias generalizadas
cargadas bajo la simetria continua global. Estas teorias son muy especiales, ya que
poseen simetrias generalizadas con un continuo de clases duales, lo que concuerda con
la validez casi universal de la version fuerte.

Utilizaremos estos resultados (junto con los presentados en los capitulos 3 y 4) para
proporcionar una nueva demostracion del teorema de Weinberg-Witten. A la luz de
estas ideas, el teorema de Weinberg-Witten surge como una obstruccién topologica
para que una simetria global tenga una corriente conservada debido a la existencia
de simetrias generalizadas 1-forma cargadas bajo ella. En este contexto, se permiten
generalizaciones de distintos tipos del teorema Weinberg-Witten, como a dimensiones
D # 4 y particulas sin masa en distintas representaciones del “little group”. De la
misma manera, esta forma de pensar nos lleva a ideas similares aplicables a ejemplos
no relativistas y simetrias globales dadas por grupos finitos.

Para ilustrar la fisica estudiamos ejemplos de diferente espin con simetrias globa-
les continuas y finitas. Todos los aspectos descritos en la discusién general abstracta,
apareceran en estos ejemplos concretos. En particular, veremos explicitamente como
transforman las clases asociadas a los operadores no locales de las simetrias generali-
zadas presentadas para el gravitén en los capitulos 3 y 4, y como esto implica que la
teoria no puede tener un tensor energia-momento bien definido.

La organizacién del capitulo es la siguiente. En la seccion 5.1 presentaremos los
twists y desarrollaremos la clasificacion mas fina de estos operadores que surge para las
QFTs con simetrias generalizadas. A continuacion, utilizamos esta clasificacién para
deducir nuestro principal resultado, a saber, que si las clases HDV de una teoria tras-
forman bajo la acciéon de un grupo de simetria continuo, entonces dicha simetria no
puede ser implementada por una corriente de Noether. Mas atin, veremos que en estos
casos las clases HDV deben formar un continuo y presentaremos una clasificacion de
la posibles formas de estos continuos para los casos mas simples. La seccion 5.2 estd
dedicada a un analisis técnico mas profundo de los operadores de twist en QFTs con
simetrias generalizadas. En la seccién 5.3 ilustramos la nueva clasificacion de twists y
los resultados derivados con ejemplos explicitos. En la seccién 5.4 proporcionamos una
demostracion diferente del teorema de Weinberg-Witten, y discutimos varias generali-
zaciones. La seccién 5.5 estd dedicada a una discusion final incluyendo la motivacion

para varias que desarrollaremos durante el resto de la tesis.
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5.1. Simetrias generalizadas y corrientes de Noether

Introducimos ahora un nuevo ingrediente al enfoque de las simetrias generalizadas
desarrollado durante el capitulo 2. Comenzamos con una QFT con cierta algebra aditiva
A(R), posiblemente violando la dualidad de Haag en ciertas regiones, y por lo tanto con
potenciales simetrias generalizadas. Pero, ahora permitimos que esta algebra aditiva
este cargada bajo un grupo de simetria global G.!

Para empezar consideremos que G es una simetria global interna. Por definicién, el
grupo actia como un automorfismos de las algebras aditivas para cualquier region R.

Para una simetria global no rota vemos actia mediante los operadores unitarios
Ulg)AR)U(9)™" = A(R), g€G. (5.1)

Debemos entender esta relacion, y las que siguen como un mapeo entre algebras. No
esta diciendo que todos los elementos de A(R) sean invariantes bajo el grupo de si-
metria, sino que se transforman entre si. Es facil comprobar que la conjugacién con
el unitario U(g) lleva dlgebras que conmutan a algebras que conmutan, es decir, dado

(7.76) tenemos para su conmutante
Ug) A(R)'U(g) " = A(R)', g€G. (5.2)

Dado que A(R') = Apnax(R), el grupo actuando como conjugacion es también un

automorfismo de las algebras maximas
U(9) Amax(R) U(9) ™" = Amax(R) - (5.3)

Por lo tanto, la simetria no puede convertir los operadores no locales en locales o
viceversa. Dicho de otra forma, esta obligada a transformar los operadores no locales
entre ellos mismos. La cuestion que queremos estudiar es si esta accion de grupo puede
cambiar las clases no locales de una regién dada R o debe dejar las clases invariantes.

Y luego entender las consecuencias en ambos casos.

5.1.1. Transformaciones de punto sobre etiquetas de clases

Comenzamos considerando posibles transformaciones de las etiquetas de las clases.
Para esto, elegimos representantes para las clases HDV no locales [a,] en R, digamos
ay. Para la clase identidad podemos elegir el propio operador identidad. Recordemos
que las clases [ay] son conjuntos disjuntos de operadores invariantes bajo la accién

izquierda y derecha de A(R), y son irreducibles cuando no hay subconjuntos propios

!Escenarios similares relacionados con mezcla de simetrias han aparecido recientemente. Véase
[154-157] y referencias alli contenidas.
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de [a,] invariantes bajo A(R). Por definicién, podemos escribir cualquier operador
A € Apax(R) como

A= Z O)\,s Q) O~)\7S , O)\ys, O,\’s € .A(R) . (54)

A, S

Para una combinacién no irreducible de clases HDV de la forma (5.4), podemos
proyectar la suma a uno de los operadores no locales irreducibles que aparecen con
coeficiente no triviales en el lado derecho de (5.4). Lo hacemos actuando a izquierda
y a derecha con combinaciones de elementos de A(R) (utilizando los proyectores pre-
sentados en [23] y construidos a partir de operadores no locales duales que pueden ser

contenidos en R)

Y P AP =ay, P,PcAR). (5.5)
Consideremos ahora de nuevo la simetria global. La transformacién de un operador no

local ag bajo la simetria global pertenece a Apax(R). Por lo tanto, podemos escribirla

como

U(9)agU(g) " = OxsaxOys. (5.6)

Como antes, podemos proyectar el lado derecho en un a) si multiplicamos esta ecuacion
a izquierda y derecha por ciertos P; y P; pertenecientes a A(R) y sumando sobre i.

Mediante este proceso, obtenemos
U(g) (Z Qiag Qz) Ug)™ = ax, (5.7)

donde escribimos como @); v @); a los operadores que obtenemos cuando el grupo actia

como conjugacién sobre P; y ]52-, es decir
Q:=Ulg) ' PU(g) € AR), Qi=U(g9)"'P.U(g) € A(R). (5.8)

De esta manera tenemos que

(Z Qz ag Qz) - [Clﬁ] . (59)

Por tanto, (5.7) nos dice que un elemento de la clase HDV f se transforma en solamente
un elemento de la clase HDV \. Esto, junto con el hecho de que la simetria global mapea
A(R) en A(R), nos permite deducir que todos los elementos pertenecientes a la clase
[ se transforman en elementos pertenecientes a la clase A. Por tanto, sélo puede haber

una clase no nula en la descomposicion (5.6). Concluimos, que el grupo actia como
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una transformacion de punto sobre la variedad generada por las etiquetas de clase.
Mas aun, esta se divide en 6rbitas bajo la accion del grupo de simetria global, dejando
invariante la clase identidad. Estas transformaciones de punto deben manifestarse como
una simetria de las reglas de fusién asociadas a las clases [a,]|. También, deducimos que
la accién del grupo sobre clases HDV no locales es transportable (es decir, se mantiene
igual) bajo la identificacién de clases irreducibles cuando deformamos continuamente
una region pero no su topologia.

Si la simetria global se rompe esponténeamente (SSB) no podemos implementar los
automorfismos de grupo con un operador unitario global U(g), pero podemos imple-
mentarlos dentro de cualquier regién acotada fija R usando un operador unitario [39].
Estos unitarios locales que efectiian la transformacién del grupo en regiones compactas
R son los twists 7,(R). Estos twists jugardn un papel central en lo que sigue y por
ende los discutiremos a continuacién. Utilizando estos twists, no es dificil demostrar
que las conclusiones de esta seccién siguen siendo validas para el caso de SSB, ya que
las simetrias generalizadas siempre pueden estudiarse dentro de una region finita R con

la topologia de una bola.

5.1.2. Twists y sus diferentes tipos

Introducimos a continuaciéon los operadores de twist. Basicamente, se tratan de
unitarios locales que implementan la transformacion del grupo sélo en una determinada
region R. Ahora los discutiremos més formalmente. Dada una region R podemos definir
otra region ligeramente mayor RU Z, tal que su borde esté separada del de R por una
distancia e suficientemente pequena (e representa “la anchura” de 7). Llamaremos a la
regién Z como “buffer zone”. El borde de Z es 0Z = (0Z),U(0Z)3, siendo (02); = OR
y (0Z)y = O(RUZ). Las topologias de (0Z); y (0Z)2 son iguales. La topologia de Z es
la misma que R x R. También, llamamos R = (RU Z)', de manera que RU Z U R es
una particion del espacio completo dada por tres regiones disjuntas. Esta configuracion
geométrica se representa en la figura 5.1.

Con estas convenciones geométricas, un twist 7,(R, Z) es un operador unitario que
implementa la trasformacion de simetria global g (por conjugacién) sobre los operadores
del dlgebra A(R) y deja invariantes los operadores en A(R). Introdujimos la buffer zone
por la razén técnica de que al tender € a cero el twist es demasiado singular para ser un
operador. Por definicién, dada la accién trivial de dicho twist sobre A(R), deducimos
simplemente que

7y(R,Z) € Anax(RU Z) . (5.10)

Podemos aclarar la intuicién asociada a estos operadores cuando tenemos una corriente
de Noether j#. En estos casos producimos el twist si integramos la carga sobre R con

smearing igual a uno, y luego dejamos que el smearing decaiga en la buffer zone Z.
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R

Figura 5.1: Configuracién geométrica que usamos para caracterizar la definicién de un operador
de twist 74(R, Z). No es necesario que la topologia de la regién R sea trivial para que podamos
definir el twist. Este se construye de modo que efectie la transformacién de simetria en A(R) y
deje invariantes los operadores en A(R). Requerimos la existencia de la buffer zone Z con tamafio
e distinto de cero para que formalmente exista el operador en la QFT.

Pero, como estudiaremos en la siguiente seccion, estos twists existen en condiciones muy
generales, incluso para grupos finitos, y pueden construirse canonicamente utilizando
la teoria modular.

Cuando la QFT en la que actia el grupo de simetria G presenta simetrias genera-
lizadas, podriamos tener inclusiones estrictas del tipo discutido en la seccién anterior,
a saber A C Ap.. En particular, para la regién R U Z sobre la cual definimos el twist

podriamos tener, debido a la existencia de operadores no locales en RU Z, la inclusiéon
ARUZ) C Apax(RU Z) . (5.11)

En estos escenarios, hay refinamientos en los posibles tipos de twists que podemos
tener. En primer lugar, un twist puede pertenecer al algebra aditiva A(R U Z), en
lugar de pertenecer sélo a la méxima (5.10). En este caso decimos que el twist es
“aditivo”. Nétese que si no es aditivo es, por definicion, tenemos un operador no local
de Apax(RUZ). En segundo lugar, un twist puede implementar la simetria global en el
algebra maxima Ap.x(R), en lugar de sélo sobre la aditiva. En dicho caso, diremos que
el twist es “completo”. Obsérvese que no se requiere que un twist general actiie sobre
los operadores no locales de R ya que estos operadores sélo se vuelven locales en una
region que va mas alla de la que define el twist. A continuacién discutiremos ejemplos de
twist aditivos/no aditivos y completos/no completos. También, en la siguiente seccién
discutiremos otros refinamientos, relacionados con la forma en que el twist transforma
las diferentes algebras en la buffer zone. No obstante, la caracterizacion en términos
de twist aditivos y completos sera suficiente para entender la mayoria de los resultados
del capitulo.

Dado un twist 7,(R, Z) para R, podemos construir un twist “complementario”
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7,(R, Z) para R como
(R, Z) = U(9) 7(R, Z) ™", (5.12)

donde U(g) es el unitario global del grupo de simetria. De la definicién deducimos
que 7,(R,Z) implementa las operaciones de grupo en A(R), dejando invariantes los
operadores en A(R). Si 7,(R, Z) es completo, el twist complementario 7,(R, Z) también
deja invariantes los operadores no locales en A,.«(R) ya que toda transformacién no
trivial es cancelada por U(g). Por lo tanto, pertenece al conmutante de Ayax(R), a
saber, A(R U Z). En resumen, si 7,(R,Z) es un twist aditivo para R si 7,(R, Z) es
completo. Del mismo modo, si 7,(R, Z) es aditivo, el twist complementario es completo.
En otra palabras, los twist completos y aditivos son nociones complementarias o duales.

Es inmediato que la existencia de twists 7,(R, Z) para R, que son simultaneamente
completos y aditivos, implica que las clases no locales correspondientes a R son inva-
riantes bajo la accién G. Por lo tanto, la simetria generalizada no estd cargada con
respecto a GG. Esto se deduce de la siguiente cadena de argumentos. Al ser completo,
el twist implementa la operacion de grupo sobre los operadores no locales en R. Por
transportabilidad, los operadores no locales en R son operadores no locales en RU Z.
Siendo el twist un operador aditivo en RU Z, no puede producir transiciones entre las
clases HDV de RU Z. Entonces, la simetria generalizada no esté cargada bajo la accién
de GG. Por supuesto, el twist completo y aditivo puede cambiar el contenido aditivo de
los operadores no locales ya que los operadores aditivos estan genéricamente cargados
bajo G pero no es capaz de transformar las clases HDV. En la seccién 5.2 mostraremos
la afirmacion contraria: la existencia de clases HDV no cargadas implica la existencia
de twists aditivos y completos (asumiendo la split property). Como discutiremos en
varios lugares a lo largo del capitulo, ambas afirmaciones son cruciales para entender
la diferencia entre las versiones débil y fuerte del teorema de Noether.

En consecuencia, si hay clases no locales en R que transforman no trivialmente bajo
la accién de G tenemos dos posibilidades distintas. O bien el twist no es completo o, si es
completo, debe ser no aditivo. En el segundo caso, el twist tiene que ser un operador no
local en la region RUZ, es decir, el twist contiene elementos no locales de A« (RUZ).
Como en general los operadores no locales en R pueden ser transportados a la buffer
zone Z, también podemos pensar que el twist pertenece a A,qq(R) V Amax(Z). En esta

presentacién, el twist parece tener “términos de borde no locales” .2

2Observamos que esto no debe confundirse con un problema de regularizacién UV. El hecho de que
la correccién sea no local es una caracteristica macroscopica que no depende de ambigiiedades UV y
que tiene consecuencias para la fisica IR.
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5.1.3. Twists para simetrias espacio-temporales continuas

En contraste a lo que ya analizamos, las simetrias espacio-temporales A introducen
la novedad de que las algebras no se mantienen invariantes sino que se transforman

geométricamente segin (2.10), es decir
UMNARUN) "= AAR). (5.13)

Para simetrias espacio-temporales continuas y transformaciones suficientemente pe-
quenas las regiones se desplazan muy poco de manera que, debido a la transportabi-
lidad, existe una identificaciéon tnica de sectores no locales entre las dlgebras trans-
formadas. Por consiguiente, la cuestién de la transformacion o no de los sectores no
locales bajo la operacion de simetria tiene perfecto sentido: es la cuestion de si la trans-
formacion unitaria que implementa la simetria cambia las clases HDV con respecto a
las clases HDV asociadas por transportabilidad.

La definiciéon de los twists puede generalizarse para transformaciones de simetria
de espacio-tiemporales finitas si requerimos que el twist implemente la operacién de
simetrfa en A(R) s6lo en operadores O € A(R) tales que U(A) O U(A)™! también per-
tenezca A(R). También podremos construirse twists estandar para este caso utilizando
la split property [119], como revisaremos en detalle en la siguiente seccién. Para nues-
tros propositos, sera suficiente hablar de las cargas locales, generadores infinitesimales
de los twists para simetrias continuas. Se requiere que estas cargas tengan los mismos
conmutadores que la carga global con elementos en A(R) y conmuten con elementos en
A(R). Definimos las cargas locales como aditivas si estdn asociadas® al dlgebra aditiva
de RUZ, a saber A(RUZ). Por otro lado, diremos que las cargas locales son completas

si tienen el mismo conmutador que la carga global con el dlgebra maxima de R, a saber

Apax(R).

5.1.4. Simetrias generalizadas y cargas de Noether

Anteriormente mostramos, desde un punto de vista general, que la existencia de
twists simultaneamente aditivos y completos implica que la simetria generalizada no
puede estar cargada bajo el grupo de simetria global. Ahora mostraremos que las si-
metrias globales implementadas por una corriente de Noether siempre tienen twists
aditivos y completos. Por tanto, las simetrias globales implementadas por una corrien-
te de Noether deben dejar invariantes las clases HDV no locales de todas las simetrias
generalizadas. Equivalentemente, las simetrias generalizadas no pueden estar cargadas

bajo simetrias globales implementadas por corrientes de Noether. A la inversa, esto

3Dado que una carga no es en general un operador acotado no puede pertenecer al dlgebra de von
Neumann, pero puede ser asociada a ella si los proyectores espectrales pertenecen al algebra.
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a® =1

Figura 5.2: Configuracién geométrica utilizada para la definicién de operadores de twist a
partir de corrientes de Noether. La funcién de smearing «(Z) es igual a uno para el futuro y el
pasado de R en el intervalo de tiempo (—4,d) y es igual a cero en el futuro y el pasado de R en
el mismo intervalo de tiempo.

demuestra una obstruccion a la existencia de corrientes de Noether cuando encontra-
mos clases HDV no locales que se transforman bajo una simetria continua. Esto nos
demuestra que el espacio de QFTs que violan la version fuerte del teorema de Noether
incluye todas las QFT's con simetrias generalizadas cargadas bajo un grupo de simetria
continuo global.

Consideremos una regiéon R (con cualquier topologia dada) con una buffer zone Z,
y supongamos que la simetria global es generada por una corriente local de Noether
Ju- Podemos construir un twist 7,(R, Z), que implementa la simetria en R y no hace
nada en (RU Z)’, haciendo un smearing de la corriente de Noether j,. Explicitamente,

podemos definir el twist local y la carga correspondiente como
n(RZ) =D QR 2) = [aPep)a@ ). (5.1)

En esta formula A determina el elemento especifico del grupo de simetria G. Las
funciones de smearing a y  son suaves. Ademads, cumplen los siguientes requisitos:
[ dx® B(x°) = 1, el soporte de 3 estd en [0, 6] para § suficientemente pequetio, (%) = 1
para todas las coordenadas espaciales de los puntos dentro de la interseccion del cono
de luz futuro y pasado de R con 2° € [—6, 4], a(Z) = 0 para todos los puntos dentro de
la interseccién del cono de luz futuro y pasado de R = (RU Z)' con 2° € [—6,5]. Re-
presentamos esta configuracion geométrica en la figura 5.2. Esta eleccién de funciones
de smearing nos asegura que el conmutador de la carga local Q(R, Z) con cualquier
operador local en R, y por tanto con el dlgebra aditiva A(R) de la regiéon R, coincide
con el conmutador del operador de carga global. También asegura que el conmutador
de Q(R, Z) con operadores locales en la regién R se anula. El operador 7y(R, Z) defi-
nido anteriormente es entonces un operador de twist para la regiéon R y la buffer zone
Z.

Es evidente que los twists de Noether 7,(R, Z), al estar formados localmente por el
algebra de un campo local, son siempre aditivos en RU Z. Ahora, podemos demostrar
sencillamente que los twists de Noether también son necesariamente completos. Sea ()
la carga global, la cual recuperamos de la misma expresioén (5.14) pero donde a(7) = 1

para todo Z. Esta carga () genera la transformacién de simetria global para todos los
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operadores no locales en R ya que estos operadores son aditivos en ultima instancia en
la teoria completa. Tenemos trivialmente @ = Q(R, Z) + (Q — Q(R, Z)). A partir de la
definicién de la carga local (5.14), el operador Q — Q(R, Z) es aditivo en RU Z. Por lo
tanto, vemos que conmuta con todos los operadores no locales en R. Esto implica que
el conmutador de Q(R, Z) con los operadores no locales en R es el mismo que el de Q.
Por tanto, los twists de Noether son aditivos y completos. Concluimos que para QFTs
en las que la simetria esta generada por una corriente de Noether, las clases HDV no
locales, asociadas con cualquier regién (de topologia general), son invariantes bajo la
accion de G.

Las simetrias espacio-temporales continuas (simetrias de Poincaré y/o conformes)
son generadas por el tensor de energia-momento, cuando éste existe. Podemos generar
una carga para un twist de Poincaré o uno conforme utilizando el tensor de energia-
momento tal como describimos anteriormente. Entonces, si la QFT contiene un tensor
de energia-momento las cargas locales correspondientes seran aditivas y completas.
Concluimos que para teorias con un tensor de energia-momento bien definido, las clases
HDV dadas por la simetria generalizadas no pueden cargarse bajo simetrias espacio-

temporales continuas.?

5.1.5. Clases HDV no invariantes ante una simetria continua

Probamos que las clases HDV generadas por una simetria generalizada no pueden
cargarse bajo simetrias continuas implementadas por una corriente de Noether. En-
tonces, ahora es interesante que investiguemos las consecuencias que puede acarrear
la existencia de simetrias generalizadas que si se cargan bajo una simetria continua.
Ademas, en esta seccién obtenemos una clasificacion completa de los posibles secto-
res HDV para el caso mas simple, a saber, cuando dichos sectores son abelianos con
hasta dos generadores y la simetria global que los trasforma esta dada por un grupo
uniparamétrico.

Dadas las transformaciones de punto entre clases descritas en la seccion 5.1.1, el
conjunto H de elementos de G que dejan invariantes todas las clases no locales es un
subgrupo normal de G. Podemos centrarnos entonces en el cociente G = G/H. Ex-
cepto la identidad, ninguno de sus elementos de G deja invariantes todas las clases.
Nos interesa particularmente el caso en que G es un grupo de Lie. Este grupo actuard
como transformaciones de punto sobre el conjunto de etiquetas de clase. Por lo tanto,

las clases no locales para R deben formar un continuo. Bajo la accién de G tal varie-

4En [149, ] se han utilizado argumentos relacionados para demostrar que el grupo de simetria
global subyacente a una estructura de sectores de superselecciéon de carga conmuta con las transfor-
maciones de Poincaré cuando existe un tensor de energia-momento. Estos son un caso particular del
presente teorema cuando se restringe al caso de dos sectores de bola, o sectores de orbifold. Véase
ejemplo de la seccién 5.3.1. Aqui demostramos que el resultado se extiende a todas las simetrias
generalizadas.



120 Simetrias Generalizadas y el teorema de Noether

dad generada por etiquetas de las clases HDV podria romperse en diferentes orbitas,
generadas por el grupo y un solo punto en la orbita. Si dicho punto tiene un grupo
estabilizador no trivial, la dimension de la é6rbita es la dimension del cociente entre
G y el grupo estabilizador. En este contexto, debemos encontrar al menos una orbita
unidimensional o las clases HDV serian invariantes.

Por otra parte, recordamos que en el capitulo 2 probamos que clases HDV pro-
ducidas por una simetria generalizada vienen en pares duales asociadas a regiones
complementarias. Inclusive vimos ejemplos no tiviales en el capitulo 4. En este contex-
to, vemos como estas ideas se vuelven relevantes nuevamente. Mas precisamente, si las
clases HDV no locales de R no son invariantes, entonces, las clases HDV de R nece-
sariamente deben ser también no invariantes. Esto implica, que estas ultimas también
deben formar un continuo de clases. En conclusion: cuando las simetrias generalizadas
se cargan bajo un grupo de simetria global continuo, las simetrias generalizadas deben
tener un continuo de clases duales que no conmutan entre si.

Luego, terminaremos esta seccion iniciando una clasificacion de las posibles estruc-
turas en las que tenemos clases HDV no invariantes bajo un grupo uniparamétrico. En
este sentido consideremos que el grupo G que actia de forma no trivial sobre las clases
HDV asociadas a una regién R es un grupo uniparamétrico con parametro aditivo .
Por definicién, tenemos que el grupo completo G no deja invariantes las clases (no con-
sideramos el caso que s6lo un subgrupo discreto desplaza las clases no trivialmente).
Llamemos ahora a a un operador no local en R que no es invariante. Entonces, existe
necesariamente un continuo de clases a(\).

En este tipo de escenarios, el caso més sencillo se da cuando estos a(\) son los
Unicos sectores no locales. Entonces la fusién de a es necesariamente abeliana formando
un grupo uniparamétrico A, y podemos etiquetar a; + a» a la clase generada por el
producto de los sectores aq, as, correspondiendo a = 0 a la clase identidad. La acciéon

de la simetria que respeta esta algebra de fusion debe ser de la forma
a(\) =eta, (5.15)

donde hemos normalizado el parametro de grupo A de forma que el exponente no tenga
un factor constante extra. En la region R tenemos los operadores duales no locales b.
El dual del grupo abeliano A es otro grupo abeliano B formado por los caracteres de
A, y podemos establecer la parametrizacion de los b de tal forma que la fusion de by
y by sea by + by. Las relaciones de conmutacion entre clases no locales son de la forma

[23]
ab=¢"""ba. (5.16)

La tnica accion posible de la simetria sobre los sectores duales b que respeta esta
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relacién de conmutacién es

b—e b, (5.17)

Esto da un continuo de b, y la simetria generalizada es necesariamente un grupo R
tanto para A como para B. El grupo G es un grupo R* no compacto. Este es el caso,
por ejemplo, de los sectores HDV asociados al dlgebra de las derivadas de un campo
escalar libre sin masa para d > 3 bajo la accién del grupo de dilatacion. Estudiaremos
este ejemplo en la seccion 5.3.1. De forma general, cuando los sectores de R forman
una variedad continua no compacta (o alguna parte de ella es continua no compacta)
llamaremos a la simetria generalizada no compacta. En este caso ocurre lo mismo con
las clases duales. Esperamos encontrar teorias libres cuando hay sectores no compactos,
en particular, en el capitulo 6, demostraremos que este es el caso cuando estas clases
no compactas estén generadas por campos de forma.
Analicemos a continuacién el caso de clases HDV formadas por un grupo abeliano
A con elementos etiquetados a = (ag, as), donde la fusién es aditiva en esta parame-
trizacion vectorial. Las coordenadas pueden formar un grupo Z, R, o U(1). El grupo
dual B tiene elementos b = (by, bs), con fusién aditiva. Las relaciones de conmutacion
pueden escribirse
ab="bae"". (5.18)

Para respetar estas reglas de fusion y relaciones de conmutacion necesitamos una accién

de la simetria de la forma
a— M\ a, b— (M()\)T)_1 b, (5.19)

donde M () es un grupo uniparamétrico de matrices reales bidimensionales.

(a) Elcaso A =U(1)xU(1), que produce B = (Z,Z), o viceversa, no puede contener
la accién de una simetria continua. La razén es la discretizaciéon de uno de los
sectores duales. Ambos sectores duales tienen que contener partes continuas para

que sea posible una accién no trivial.

(b) Para el caso A = R x R, que tiene B = R x R, el grupo puede ser cualquier
subgrupo uniparamétrico de GL(2,R). Esto incluye, por ejemplo, dilataciones
como la discutida anteriormente, y una rotacion. En este ultimo caso, el grupo
de simetria es U(1). Un ejemplo de rotacién de clases HDV viene dado por la
simetria de rotacién entre dos campos de Maxwell independientes, o la dualidad
electromagnética del campo libre de Maxwell en D = 4. Veremos estos ejemplos
en las secciones 5.3.2 y 5.3.3 respectivamente. Todos estos casos corresponden
a simetrias generalizadas no compactas y son libres. Sin embargo, veremos que

emergen otros escenarios posibles en el marco de la teoria efectiva de campos,



122

Simetrias Generalizadas y el teorema de Noether

5.2.

estos tienen simetrias generalizadas bien definidas a nivel clasico. Estudiaremos
las simetrias generalizadas clasicas en el capitulo 6 y discutiremos en detalle un

ejemplo concreto, la electrodinamica de piones, en el capitulo 7.

Si A =RxU(l), entonces B = R x Z. Tenemos ay = ay + 27y by € Z. La
simetria general es una combinaciéon de una dilatacién en los sectores duales no

compactos R y la transformacion
(CLl, CLQ) — (al, as + )\al) , (b17 bz) — (bl — )\bz, bg) . (520)

No tenemos ejemplos de este tipo, aunque la no compacidad de los sectores impli-
carfa un modelo libre si estuvieran generados por un campo de forma (suponiendo
que la parte R x R de la simetria no sea efectiva sino exacta). En ese caso, no

parece posible que se pueda realizar esta transformacion.

Por 1ltimo, tenemos el caso A = Z x U(1), con dual B = U(1) x Z. La tnica
accion posible de G es la dada en (5.20). Posteriormente veremos que este es
exactamente el caso de la anomalia quiral para D = 4, donde Z corresponde a
TL y U(1) a WL. Discutiremos dicho ejemplo de forma extensa en el capitulo 7.
En este ejemplo la estructura de los sectores duales en R v R es la misma porque
tienen la misma topologia.® No sabemos si este tipo de transformacién es posible
para regiones R y R de topologia diferente. Si la simetria es una U(1) el rango
de las diferentes A es A\ € [0,27n), siendo n un nimero entero. Esto se deduce
del hecho de que A = 27 n tiene que actuar como la identidad en (5.20), y hemos

fijado la periodicidad de los sectores no locales de U(1) en 27.

La simetria continua no trivial implica que tanto R como R presentan algunos
sectores continuos HDV, pero esto no implica la no compacidad ya que los secto-
res continuos pueden conmutar entre si. Esto sera claramente evidenciado en el

ejemplo de la anomalia quiral en el capitulo 7

Propiedades de los twists y twists estandar

Vimos en la seccién anterior los dos principales resultados importantes de este

capitulo: las simetrias generalizadas cargadas bajo una simetria global continua gene-

ran un continuo de clases duales, y en tales escenarios el grupo de simetria global no

puede ser generado por una corriente de Noether. Con esta informacion, y la clasifica-

cion de los twists en términos de aditividad y completitud, el lector puede saltar con

seguridad a las siguientes secciones donde discutimos ejemplos explicitos en la seccién

°El signo diferente en a; y by en la transformacién (5.20) puede eliminarse redefiniendo by — —bs.
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5.3 y generalizaciones del teorema de Weinberg-Witten en la secciéon 5.4. La presente
seccion es mas técnica que las demas y no es necesaria para comprender los puntos
principales del resto del capitulo. No obstante, serd importante en relacion con una
posible clasificacién completa de las QFTs que violan la versiéon fuerte del teorema de
Noether. También nos permite completar el analisis de la clasificacion de los operadores
de twist cuando estan presentes simetrias generalizadas.

Comenzamos revisando la construccion de los twists estandar utilizando la split
property. Esto garantiza la existencia de twists en la mayoria de las teorias de interés
fisico. Mds aun, extenderemos la construccion a casos en los que estan presentes si-
metrias generalizadas. A continuacién, estudiaremos los sectores no locales en la buffer
zone y la accién de los twists en esta regién. Esto nos permite encontrar nuevas con-
diciones suficientes para tener twists que sean simultaneamente aditivos y completos.
Utilizando este analisis obtenemos el resultado principal de esta seccion: demostrare-
mos que existen twists aditivos completos cuando las clases no estan cargadas y que
estos pueden construirse de manera estandar. Esta es la inversa de la afirmacion que
derivamos en la seccion 5.1.2. Terminamos con una discusion sobre la posibilidad de

concatenar twists pequenos para producir otros para regiones mas grandes.

5.2.1. Twists estandar construidos a partir de la split property

Existe una forma estdndar aunque abstracta de construir operadores de twist [116—

|. Esta requiere la split property. Revisaremos la forma original en que se formuld
esta construccién, y luego introducimos las variaciones que aparecen cuando, ademas
de la simetria global, la QFT en cuestién posee simetrias generalizadas. A continuacion
seguiremos la construccién presentada en [119].

Dadas dos dlgebras conmutativas A y B, y un estado |Q) ciclico y separador® para
AV B, la split property afirma la existencia de un factor de tipo I A tal que A C Ny
B c N'. Un factor de tipo I7 es el dlgebra de todos los operadores acotados en algin
espacio de Hilbert. Una descripcién equivalente de la split property es que las dlgebras
N y N’ son las dlgebras de los operadores que actian en cada uno de los dos factores

de Hilbert H v Har asociados a una descomposicién del espacio de Hilbert completo

SPodemos pensar que un vector |Q) perteneciente a un dado espacio de Hilbert H es ciclico con
respecto a un dlgebra de von Neumann A definida sobre el conjunto de operadores acotados B(H)
cuando {0|2), O € A} es denso en H. Por otro lado, |Q2) es separador con respecto a A cuando el
cero es el inico operador perteneciente a A que aniquila |(2).

"En QFT, es esperable que &lgebras asociadas a regiones sin buffer zone sean de tipo III. Estas
algebras exhiben entrelazamiento infinito de manera que es de esperar que el espacio de Hilbert no
factorize para las algebras de una regién y su complemento causal. Las algebras de tipo I, en cambio,
muestran entrelazamiento finito. Intuitivamente, esto permite la factorizacion del espacio de Hilbert
global para estas dlgebras. Sin embargo, perdemos la interpretacién geométrica aguda sin smearing
sobre la buffer zone. Véase [73].
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como producto tensorial de la forma
H=Hy @ Hp . (5.21)

Las algebras A y B se incluyen entonces en las dlgebras de operadores que actian a
cada lado de este producto tensorial.

Esperamos que la split property asociada a las algebras de regiones espacialmente
separadas se mantenga con gran generalidad en QFT. Esta, se deduce simplemente de
dos premisas bésicas [159, |. La primera es que las traslaciones temporales de una de
las dlgebras para cualquier tiempo en algin intervalo no vacio (—tg,%y) ain conmutan
con la otra algebra. En una QFT local relativista, esto se garantiza por la existencia de
la buffer zone Z entre las dos regiones espacialmente separadas. Véase la figura 5.1. La
segunda es una condicién UV que requiere que el nimero de grados de libertad a altas
energias no aumente demasiado rapido. En términos fisicos mas concretos, esto implica
que la energia libre local aumente como méaximo con una ley de potencias en la tem-
peratura. Esta condicion solamente garantiza propiedades termodinamicas normales a
todas las temperaturas (por ejemplo implica que en nuestra teoria no encontraremos
una temperatura maxima de Hagedorn). Por lo tanto, en el contexto de esta tesis, su-
pondremos que se cumple la split property para en cualquier teoria y cualquier region
definida sobre cualquier espacio. Solamente, en el apéndice A estudiaremos la teoria
de Generalized Free Fields la cual viola la primera de las condiciones presentadas para
algunas elecciones de algebras.

El factor de split A/ con el que definimos la split property es altamente no tinico. Sin
embargo, hay una construccién general por Doplicher y Longo para un split estandar.
Comienza con un estado |€2) que es ciclico y separador para AV B, y la conjugacién
modular inducida por J = Jy4ys con respecto a dicha algebra. En QFT es natural
utilizar el estado de vacio. Tenemos permitido construir explicitamente el factor de

split estandar como
N=AV(JAJ), N =BV (JBJ). (5.22)

Una buena caracteristica a favor de esta construccién es que N sélo depende del vacio
y de las dlgebras A y B.

Una vez que tenemos un split, podemos elegir un vector construido a partir del
producto tensorial |n) = |Q)x ® [Q)n~ tal que el estado inducido por |n) en A y
B coincide con el estado producto inducido por [€2) sobre dichas &lgebras. En otras
palabras, |n) es una purificacién del estado de vacio en cada dlgebra dentro de los
factores de tipo I correspondientes. Observamos que este estado no tiene correlaciones

entre las dlgebras, en contraste con |Q2). Ademads, el vector |n) es unico si lo elegimos en
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el cono estdndar P. ® Mds concretamente, tenemos que existe una isometria invertible

W:H — H®H tal que

WAB|p) = A|Q) ® B|Q), Ac A, BeB,  (523)
WAW*=A®1, WBW*'=1®B, AcA,BchB. (5.24)

Este mapeo lleva los factores de tipo I dados por Ny N’ a las dlgebras de operadores

de los dos espacios de Hilbert. Asimismo, obtenemos que
Jny=ny, WIW =J,®Js (5.25)

Esta estructura hace transparente la construccién estandar de los twists. Sélo tenemos

que utilizar la construccién anterior con las asociaciones
A— AR), B — A(R), (5.26)

tal que A(R) C N, A(R) C N'. Para cualquier operador unitario U(g) actuando en el

espacio de Hilbert global, siguiendo [119], definimos
7,(R,Z)=W*(U(9) @ 1) W (5.27)

que acttia no trivialmente sélo sobre el factor A y por tanto conmuta con A(R).
Ademés, si U(g) lleva un elemento A de A(R) a otro elemento A de A(R) es directo
que 7,(R, Z) tendra la misma accién sobre A. Entonces, 7,(R, Z) puede generar un twist
tanto para las simetrias internas como para las simetrias espacio-temporales. Ademas,
a partir de su definicidn, los twists 7,(R, Z) nos proporcionan una representacion del
grupo

TyTh = Tgh - (5.28)

Estas relaciones de producto de grupo no son necesarias para que el twist efectué
las operaciones de grupo localmente. De hecho, tipicamente no se mantienen para un
smearing mas general del twist en la buffer zone Z. Por ejemplo, para los twists que
surgen al hacer el smearing convencional de las corrientes de Noether (5.14).

Para una simetria interna no rota, los twists estandar pueden entenderse como las

restricciones de U(g) a los dos factores de tipo I que conmutan. Es decir, tenemos que
Ug) = Té\/®7';w =1,(R,Z)7,(R, Z) . (5.29)

Entonces podemos ver que los twists estandar tienen la nocién de complementariedad

8El cono estandar se define como el conjunto de vectores O J O |Q2) con O € AV B. Vease [27] para
una presentacién completa.
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asociada. Otro un resultado muy conveniente de esta construccién especifica, que nos
sera util mas adelante, es que los twists estandar para simetrias internas se transforman

de forma covariante, es decir
U(g) Th(Rv Z) U(g)_l = 7-ghgfl(Ra Z) . (530)

En el caso de simetrias globales esponténeamente rotas, no tenemos un U(g) que
implemente las transformaciones de simetria y este adecuadamente definido globalmen-
te. Sin embargo, dada cualquier regiéon compacta R, siempre nos es posible construir
un operador unitario Ug(g) en el espacio de Hilbert global que implementa la simetria
en R, véase [39]. Si utilizamos este operador unitario, la misma construccién anterior
proporciona un twist 7,(R, Z) para A(R) en tal caso. Dicho de otra forma, la falta del
U(g) global no interfiere con nuestra investigacién actual, ya que podemos describir las
simetrias generalizadas dentro de regiones contenidas en una bola y sus complementos
relativos dentro de la misma bola. Podemos definir un espacio de Hilbert y un factor
de tipo I para la bola separada del resto del espacio, y se puede restringir la atencién
a la fisica dentro de dicha algebra. La tunica diferencia restante con el caso de simetria
no rota es que el estado del vacio no es invariante bajo el grupo. No obstante, como
no estamos interesados en el estado sino en las simetrias de las dlgebras, esto se puede
manejar promediando las transformaciones del grupo sobre estado del vacio en una
bola y tomando una purificacién dentro de la bola que separamos.

Ahora pasamos al caso en que la QF T muestra simetrias generalizadas que producen
clases HDV asociadas a ciertas regiones R. En estas QFT podemos considerar mas de
una algebra para la misma R, por ejemplo A(R) 0 Apnax(R). Entonces, en lugar de
empezar la construccion de Buchholz-Doplicher-Longo con las dlgebras conmutativas
A(R) vy A(R), podemos tomar las algebras también conmutativas A(R) y Amax(R).
Para esta eleccién, por las mismas razones descritas anteriormente, podemos realizar
el split requerido. De esta manera, podemos construir los twists estdndar procediendo
de forma andloga. Es inmediato que estos twists son completos para R y por tanto
aditivos para R. Por otro lado, si partimos de un split estandar entre Ap..(R) y A(R),
dicho twist estdndar serd completo para R y aditivo para R.

Aqui terminamos con la revisién de la construccién algebraica desarrollada en [116—

|, ¥ su extensién para incluir simetrias generalizadas. La conclusién es que, dada
la split property en QFT, se pueden hallar los twists locales 7,(R, Z) para cualquier
regién R, y buffer zone Z. Estas son las versiones locales de los operadores de simetria
global U(g). Esto nos demuestra la versién débil del teorema de Noether. Ademas, esta

construcciéon se aplica también al caso de simetrias discretas. Sin embargo, como se

9Una expectativa natural para los twist estandar que surgen de A(R) y A(R) es que en general no
son necesariamente completos ni aditivos.
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subraya en [119], la derivacién de una corriente conservada a partir de la existencia de
twists no es necesariamente cierta para simetrias continuas. De hecho, en la secciéon 5.3,
revisaremos una variedad de ejemplos sencillos que nos mostraran que esto no siempre
es posible, y que la version fuerte del teorema de Noether no siempre es valida. Mas
precisamente, tal como se discutié anteriormente, cuando tenemos simetrias genera-
lizadas, existe una diferencia importante en la naturaleza de los twists estandar con
respecto a las que surgen a través de una posible corriente de Noether. En particular,
mientras que los twists estandar pueden construirse generalmente, los twists aditivos y
completos no pueden construirse cuando la simetria generalizada esta cargada bajo la

simetria global, prohibiendo la existencia de una corriente de Noether.

5.2.2. Estructura de los operadores no locales en la buffer zone

Analizaremos ahora las clases no locales que pueden aparecer en la buffer zone Z.
Son las clases HDV de A, (Z). En primer lugar, destacamos que una clase no local
en An.x(Z) puede corresponder a operadores que son aditivos en RU Z. En este caso,

el operador claramente pertenece a
ARZ) = A(RUZ)N A(R) . (5.31)

Anélogamente, si el operador no local es aditivo en R U Z vemos que pertenece a

ARZ) = A(RUZ)N A(R)' . (5.32)

Podemos comprobar ficilmente que tanto A®(Z) como AF(Z) estin contenidos en

Amax(Z). La razén es que conmutan con A(R) V A(R). Esto implica que

AMZ) v A(Z) C Anax(Z) . (5.33)

Sin embargo, también podemos estudiar la inclusién opuesta, es decir, Ap.x(Z) C

AR(Z)Vv AR(Z). Si tomamos conmutantes vemos que es equivalente a
(Amax(R) V A(R)) N (Amax(R) V A(R)) € A(R) V A(R). (5.34)

Esto se deduce expandiendo en operadores no locales las dos algebras intersecadas del

lado izquierdo y usando que Ampax(R) N Amax(R) = {1}. Por tanto tenemos que

Anmax(2) = AR(Z) v AR(Z) . (5.35)

Entonces, los operadores no locales de Z estan generados por los que son aditivos en

RUZ y los que son aditivos en RUZ. Llamaremos genéricamente a estos operadores no
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locales ¢ y ¢ respectivamente. Si nombramos a a los operadores no locales en A« (R)

v b alos de Apax(R), tenemos que [a,c] = [b, ¢] = 0. Puesto que
ARR(Z) = AR(Z)N AR(Z) = A(RUZ)NA(RU Z) (5.36)

puede contener operadores no locales de Z, y algunos de los operadores no locales en
Z pueden ser aditivos en ambos lados.

Las clases ¢, ¢ conmutan porque siempre podemos dividir Z en dos partes, una con-
tigua a R y otra contigua a R, y elegir representantes de cada uno de los dos tipos de
clases localizados en cada una de las partes, y por lo tanto aditivos en regiones com-

plementarias. Entonces, para un operador genérico en Ap.x(Z) tenemos la expansiéon

Z Oixgs € G Ongs , (5.37)
ABs

para O)gs, O,\ﬂs operadores locales en Z, es decir, pertenecientes a A(Z). Las clases ¢ y
¢ son por definicién clases no locales en A,.x(Z). Sin embargo, un operador ¢ ¢ puede
ser descompuesto en varias clases de Ap.x(Z) por la accién de operadores locales en
Z, de modo que c¢ podria no representar una unica clase irreducible.

Observamos que no hemos utilizado que la buffer zone es delgada. Este resultado
es completamente general y de naturaleza topolégica: si R y R son regiones disjuntas,
las clases no locales de Z = (R U R)’ estan generadas por productos de clases aditivas
en RUZ y clases aditivas en RU Z. Ademds, tenemos la expansién general (5.37) para

el algebra maxima de Z.

5.2.3. Twists verdaderamente aditivos

Por las definiciones (5.31-5.32) y (5.36), cualquier elemento global de grupo U(g)
deja invariantes las dlgebras Amax(Z), AR(Z), AR(Z), ARR(Z), y A(Z)."° Mezclar las
clases HDV no locales de las dlgebras anteriores entre si cuando estas estan cargadas.
Sin embargo, un twist genérico definido para R sélo deja Apax(Z) invariante. Si el
twist fuese aditivo, es decir 7,(R, Z) € A(RU Z), también dejarfa invariante A%(Z).
En cambio, si el twist fuese completo dejaria invariante AR(Z ), la razoén es que el twist
complementario es aditivo y el grupo de simetria global deja las algebras invariantes.
Por 1ltimo, si el twist fuese aditivo y completo, ademas dejaria ARR(Z ) invariante.

La inversa de estas afirmaciones no es cierta en general. Pero es cierto que si te-
nemos un twist aditivo que deja ARR(Z ) invariante podemos construir otro twist que

sea completo y aditivo. Llamaremos a un twist aditivo que mantiene ARR(Z ) en si

10Para comprobarlo recordamos que la conjugacién con un unitario mapea algebras que conmutan
a algebras que conmutan
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misma “verdaderamente aditivo”. Los twists aditivos y completos son verdaderamente
aditivos. A continuacién (en esta seccién y la siguiente) mostraremos que las clases son
invariantes si y sélo si hay un twist aditivo y completo, y que la misma afirmacién es
cierta para los twists verdaderamente aditivos. A la inversa, si las clases estan cargadas,
no es posible tener un twist aditivo que mantenga ARR(Z) en si misma.

Para probar esto tomemos un twist verdaderamente aditivo 7,(R,Z) y un twist
aditivo 7,(R, Z). Si utilizamos también la transformacién de simetria global, podemos

definir el siguiente unitario
2=U(g) ' 7y(R, 2)7,(R, Z) € Amax(2) . (5.38)

Donde vemos que O z = z C para cualquier O € ARE(Z) y algin C € AR(Z). De aqui,
podemos deducir que

D 0x20,=2C, (5.39)
A

para cualquier Oy, O, € A" (Z) y algin C' € A®(Z). Expandiendo z en elementos ¢z
como en (5.37), podemos elegir cualquiera de estos elementos actuando a izquierda y
derecha con elementos O € ARR(Z) (como en el lado izquierdo de (5.39)). Por tanto,

obtenemos
CC'=zC. (5.40)

En términos de las clases de Amax(Z) con respecto a la accién de AF(Z), esta ecuacién
nos implica que sélo puede haber una unica clase C' en la expansion de z. Como z es
unitario, la clase ¢ debe ser abeliana, cc* es la clase identidad (aqui AR(Z )), y podemos
tomar un representante unitario C'. Entonces, podemos poner todos los elementos del

algebra A% (Z) en la expansién de z del mismo lado, y obtenemos
z2=0C, (5.41)
con C' unitario en A®(Z). Entonces, tenemos

1

CU(g) ' 7y(R.2)74(R, Z) C
Ulg)™ ((C") ' 7y(R. 2)) (14(R, Z) C7Y) (5.42)
Ulg)~' 74(R, 2)) 7(R. Z),

con (C")~' € Af(Z). Por lo tanto, (5.42) muestra dos twists aditivos complementarios
7y(R, Z) y 74(R, Z) que son simultdneamente aditivos y completos.

Vemos que los twists verdaderamente adititivos, y en particular los twists aditivos
y completos, no sélo dejan invariante A®R(Z) sino también el dlgebra aditiva A(Z)

y de hecho todas las clases de ARR(Z ). Més atn, tenemos que cualquier twist que
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deje invariante ARF(Z) lo hard. La razén es que las clases de A®(Z) con respecto
a A(Z) son duales de las clases de Apax(R U R) con respecto a Apax(R) V Amax(R).
Estos operadores duales son no locales en RU R y sus clases no pueden ser cambiadas
por operadores no locales en R o en R. Luego, por transportabilidad, los twists no

pueden cambiar estas clases. Por lo tanto, el twist tampoco puede cambiar las clases

de ARE(Z).

5.2.4. Existencia de twists aditivos y completos

En la seccién 5.1.2 demostramos que la existencia de twists aditivos completos
implica que las clases HDV no locales no estan cargadas. Ahora, demostraremos lo
contrario, si las clases HDV no estan cargadas, existen twists completos y aditivos. La
prueba que presentaremos es valida para simetrias globales internas. De hecho, demos-
tramos que los twists estandar son, al menos, verdaderamente aditivos. Utilizando los
resultados de la seccion anterior, esto implica que siempre podemos construir twists
aditivos y completos modificando ligeramente los estandar.

Tomemos un twist estdndar aditivo 7,(R, Z) construido con la split property. El
twist complementario ,

(R, Z) =1,(R, Z)U(g)"", (5.43)

da una representacion del grupo. En lo que sigue, sélo necesitaremos considerar un
subgrupo abeliano de G generado por un unico elemento g. Mas especificamente, el
subgrupo G, = ¢", con n un nimero entero.

El twist 7,(R, Z) deja invariantes los elementos de A(R). Como U(g) deja invariante
Amax(R) vy 74(R, Z) actia sélo en el factor de split AV, el twist complementario 7,(R, Z)

transforma un operador no local a € Ay, (R) en un operador no local a contenido en

Amax(N) =NV {a} = NV Apnax(R) . (5.44)
Nétese que N = A(R)V JA(R)J y JA(R)J conmuta con A(R) y Apax(R), y por
tanto tenemos que J A(R) J C A%(Z). Luego, N' C A(RUZ). También, deducimos que
Amax(N) tiene las mismas clases a que Apa(R) v que conmuta con A(R). Entonces,
podemos pensar A.x(N) como el dlgebra maxima asociada al factor N
Ahora consideremos que las clases de R no estan cargadas bajo la accién de G.
Por lo tanto, vemos que no estdn cargadas bajo el subgrupo abeliano G. Entonces, el
twist 7,(R, Z) deja invariantes las clases de Amax(N') porque U(g) lo hace, y porque
7,(R, Z) es aditivo y por ende no puede cambiar clases no locales. Si tomamos la accién

de G, sobre un operador no local a perteneciente a R (mediante conjugacién) podemos
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proyectar en representaciones irreducibles tales que

7,(R, Z)a,7(R,Z)"" = ¢'%a,. (5.45)

Este a, pertenece a la misma clase que a. Como Tg(l:?, Z) deja invariante de punto a los
elementos de N, y los elementos de la clase [a] en Apax(N) estdn generados por a, y
N, vemos que necesariamente todos los elementos de [a] se transforman con el misma
fase. Entonces, de hecho sélo hay una representacion irreducible en la descomposicién
de a sobre representaciones irreducibles de G4. En el caso de un grupo no compacto G|,
tendriamos que haber tomado a, proyectado a un intervalo de factores de fase, pero
el intervalo puede ser tan pequeno como queramos. Al final el resultado es el mismo y
solo intervienen una unica fase y representacion.

Por tanto, de la expresién (5.43) hemos aprendido que la accién de U(g) y el twist
aditivo 7,(R, Z) sobre el elemento no local a € Apax(R) difieren (como mucho) en una
fase. En términos de cargas en un grupo continuo, esto significa que los conmutadores
de la carga global @ y la carga aditiva local Q%9 con a difieren (como méximo) en un

término proporcional a a,

Q. a] = [QF,a] + ¢'a. (5.46)

Ahora tomemos un twist estandar aditivo T;dd<R, Z) para R y un twist estandar
completo Tgom(R, Z) para R. Recordamos que estos dos siempre se pueden encontrar

eligiendo adecuadamente un split para las dlgebras. Luego, calculamos
2 =1"(R, Z) YR, Z). (5.47)

Este elemento pertenece a Ay, (Z) porque conmuta, por construccién, tanto con A(R)

como con A(R). Actia sobre un elemento a de A, (R) introduciendo una fase ya que

com
g

dor a fuera de Apax(R) hacia la buffer zone. También, podemos escribir el unitario z si

(R, Z) actia como el grupo global. El punto importante es que no lleva a el opera-

utilizamos una expresién andloga a (5.47) en términos de los twists complementarios,

es decir, los aditivos y completos para R. Mas concretamente,

P com( ) lTadd(R Z)
= (U(9)"" 7" (R, 2))" (U(9) " 7,°™(R, 2) (5.48)
add(R Z) COm(R Z)

Por lo tanto, también vemos que transforma elementos b cambiando una fase. Consi-

deremos ahora un elemento O de ARE(Z). Recordemos que

A Z) = AR Z)n AR(Z) = A(RUZ)NA(RU Z) , (5.49)
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Por tanto si O pertenece a ARR(Z ) conmuta con los operadores no locales a y b a

ambos lados. Ademas, como O conmuta con a, b también deducimos que
20 zx (5.50)
conmuta con a,b. Concluimos que
20z € ARR(Z). (5.51)

Usaremos ahora esta informacién para demostrar que T;dd(R, Z) es verdaderamente
aditivo. Escribiendo
2=12YR,Z)U(9) " 2R, Z), (5.52)

vemos que la accién de z sobre O esta compuesta por la accién de tres operadores. El
twist 729(R, Z) podria llevarnos de O a un operador con una clase exclusiva de A%(Z2),
es decir, una clase no aditiva en RUZ. Esto es asi porque Tgadd(R, Z) es aditivo en RUZ.
El elemento de grupo global U(g) no cambiard esta clase. El operador de twist aditivo
en el complemento Tgadd<R, Z) no puede cambiar una clase exclusiva en A%(Z) porque
es aditivo en R U Z. Por lo tanto, la tinica forma de que z deje A®¥(Z) en sf misma,
satisfaciendo (5.52), es que 72%(R, Z) también deje esta dlgebra invariante. Por tanto,
el twist estandar aditivo original T;dd<R, Z) es en realidad un twist verdaderamente
aditivo. Puesto que los twists verdaderamente aditivos pueden convertirse en twists
aditivos y completos, como mostramos en la seccion 5.2.3, esto completa la prueba de
la existencia de twists aditivos y completos cuando las clases no estan cargadas bajo
la accién de la simetria global.

Resumiendo, si las clases no locales de una regiéon R son invariantes bajo la simetria,
existen twists aditivos y completos para R. Ademas, estos pueden construirse de manera
estandar. Esto implica que el twist complementario también es aditivo y completo. Por
lo tanto las clases de R son invariantes. Y sabemos que las clases duales estdn ambas
cargadas o ninguna lo esta.

Para las simetrias espacio-temporales continuas los twists aditivos y completos de
las regiones complementarias no pueden ser complementarios (aunque las cargas puedan
sumarse a la global). Pero el principal obstdculo para la generalizaciéon de la presente
demostracién es que necesitamos un twist completo para Any..(R) que tenga la misma

accién que el twist aditivo en N. Seria interesante seguir estudiando este problema.

5.2.5. Concatenacién de twists y twists aditivos concatenables

Consideremos regiones no intersecantes A y B tales que Z4 es una buffer zone

para A y Zp es una buffer zone para B. Suponemos que Zg N A = Z, N B = (.



5.2 Propiedades de los twists y twists estandar 133

Figura 5.3: Configuraciones geométricas apropiadas para la definicién de concatenabilidad
asociada a operadores de twist. El lado izquierdo representa la existencia de operadores de twist
14(A,Z4) y 74(B,Zp). En el lado derecho representamos la existencia de un operador de twist
14(C, Z¢c) para C = AUBUZ y Z = (Za U Zp) N Z'. Decimos que 74(A,Za) y 14(B, ZB)
son “concatenables” si 7,(AZB,Z4 U Zg) puede obtenerse como el producto de 74(A,Z4) y
Tg (B, ZB)-

Representamos esquematicamente esta configuracién geométrica en la parte izquierda
de la figura (5.3). En este escenario, decimos que los twists 7,(A, Z4) v 7,(B, Zg)
“concatenan” en la region AU B U Z, si el producto de los dos produce un twist para
AU BU Z con buffer zone (Z4U Zg) N Z'. Més concretamente,

7o(A, Z4) 74(B, Zp) = 7,(C. Zc), C=AUZUB, Zc=(Z4UZs)NZ . (5.53)

Esto se representa en la parte derecha de la figura (5.3). En este sentido, decimos que
los twists complementarios concatenan al operador de simetria global.

Si tenemos dos twists aditivos 7,(A4, Z4), 7,(B, Zp) que concatenan a un twist com-
pleto 7,(C, Z¢), es inmediato que los tres twists son simultdneamente completos y
aditivos. Veamos, en primer lugar, el twist 7,(C, Z¢) también es aditivo porque es el

producto de operadores aditivos en C'U Z. Ahora escribiendo
70(A, Za) = 7,(C, Zc) 7,(B, Zp) ", (5.54)

Tenemos que el twist 7,(A, Z4) es completo ya que 7,(C, Z¢) implementa operaciones de
grupo en Apmax(A) C A (C), pero 7,(B, Zp) ™', al ser aditivo, conmuta con Apax(A).
Andalogamente, vemos que el twist 7,(B, Zp) es necesariamente completo.

Por lo tanto, en esta situacion ninguna de las clases no locales de A, B, C' puede
cargarse bajo la simetria global. Un caso particularmente 1til es cuando C' no tiene
clases no locales, lo que implica que 7,(C, Z¢) es automaticamente completo. Este caso
aparece naturalmente cuando C' es el espacio completo o una regioén con la topologia de
una bola (Véase la figura 5.4), bajo el supuesto de dualidad de Haag.!! En tal escenario,
la existencia de twists aditivos para A y B que concatenan a un twist para C' implica
que los twists aditivos para A y B son también completos, y por tanto las clases para

Ay B son no pueden estar cargadas bajo la accién del grupo.

HPara un orbifold de un grupo de simetria global interna espontdneamente rota hay mas de un
algebra posible para regiones con topologia de una tnica bola. Véase la seccién 5.3.1 méas adelante.



134 Simetrias Generalizadas y el teorema de Noether

Figura 5.4: Una bola C con su buffer zone Z¢. En su interior tenemos una regiéon A con
una buffer zone Z4. Llamamos B a la regién complementaria de A dentro de C. La regién C
no puede mostrar simetrias generalizadas bajo el supuesto de la dualidad de Haag. Las regiones
A y B pueden presentar simetrias generalizadas. Cuando las clases asociadas con la simetria
generalizada se cargan bajo el grupo de simetria global vemos que los twists aditivos en A y B
no pueden concatenar a twists en C.

De este modo llegamos a una conclusion sencilla pero importante. Cuando las clases
no locales asociadas a cierta simetria generalizada estan cargadas bajo el grupo de
simetria global, los twists aditivos no pueden concatenar a twists en una bola o en el
espacio completo.

Para el caso de simetrias continuas, los twists locales 7,(R, Zr) pueden sustituirse
por las cargas locales Q(R, Zr) que generan estos twists por exponenciacién. La carga
Q(R, Zg) tiene el mismo conmutador que la carga global para A(R), y conmuta con
A(R). La nocién de concatenabilidad de twists puede expresarse en términos de estas
cargas. Muy sencillamente, diremos que las cargas locales Q(A, Z4) v Q(B,Zg) en

AU Z4y BU Zg" concatenan a la carga Q(C, Z¢) en C si

Cuando C no tiene clases no locales esto implica de nuevo que las clases no locales
en A y B no estan cargadas si las cargas locales de A y B son aditivas. La razon
es que el conmutador de Q(C, Z¢) con un operador no local en Ap.«(A) es igual al
conmutador de Q(A, Z4) va que Q(B, Zp) es aditivo. Pero como Q(A, Z4) es aditivo,
estos conmutadores no pueden cambiar las clases no locales. Por lo tanto Q(C, Z¢) y la
carga global no pueden cambiar las clases en A. Este es el mismo argumento utilizado
en la seccion 5.1.4 para demostrar la no existencia de corrientes de Noether cuando

hay clases cargadas.

12Estas cargas son, en realidad, asociadas a las dlgebras aditivas, como se mencioné en la seccién
anterior.
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5.2.6. Concatenacion arbitraria de twists

En esta seccion, consideraremos la generalizacion de discusion anterior a n regiones
Ay, As, ..., A, levemente separadas permitiendo la existencia de las respectivas buffer
zones Zy, Zs, ..., Zy,. Diremos que los twists 7,(A1, Z1), 7,(A2, Z3) , ..., 74(An, Z,,) son

concatenables para Ay, A, ..., A, con buffer zones 7, Z>, ..., Z, si
Tg(Al,Zl)Tg(Ag,Zg)...Tg<An7Zn> == U(g) (556)

En esta definicién, también requerimos que Z; N A; = () para cada i, j y que Z; tenga
topologia contactible a 0A;. De otra forma, perderiamos la nocién de concatenabilidad
de operadores locales dado que los twists estaran tipicamente extendidos por toda la
buffer zone.

Para construir estos twists nuestro primer impulso seria hacerlo en orden utilizando
la split property. Es decir, primero separamos A; con Z; de U} , A; y el resto de algebras
correspondiente a las buffer zones. Mas concretamente, empleamos la split property
entre A; y (A; U Z;)". Luego, dentro del espacio de Hilbert correspondiente a U ,A;
hacemos el split correspondiente a Ay y U 3 A;, etc. Sin embargo, esta construccién no
respetard la contractibilidad de las buffer zones. Esto se debe a que, en la mayoria de
las geometrias, la buffer zone para A, rodeara todo U} ;A; después de haber usado la
split property sobre A;. Entonces, si por ejemplo dividimos un plano con cuadrados el
twist tipico obtenido empleando dicha particion serd totalmente no local en el plano.
Andlogamente, si hacemos un split entre A; y U ,A;, v definimos la buffer zone como
U, Z;, entonces el twist de A; estara repartido por todo el espacio.

Consideramos ahora la posibilidad de elegir una particion del espacio de Hilbert
como ‘H = @), Hy;, donde los factores de tipo I correspondientes N; contienen A(A;)
y estan incluidos en el algebra A(A; U Z;). En tal caso se seguiria una concatenacién
de twists restringiendo la accién del grupo a cada factor, si los factores se eligen de
manera invariante ante grupo. Sin embargo, tal split general por factores locales de tipo
I es imposible en teorias que tienen simetrias generalizadas. Por ejemplo, considérese
un split asociado a cuadrados u otras regiones topoldgicamente triviales. El algebra
VierN; para cualquier subconjunto de indices I es aditiva en la unién de las regiones
correspondientes. El dlgebra complementaria V¢ 1 N; también es aditiva. Esto implica
que ninguna de estas regiones contiene operadores no locales y que no hay clases no
locales. Por el contrario, en una particiéon arbitraria del espacio por regiones no inter-
secantes esperamos que las algebras aditivas correspondientes a estas regiones generen
el algebra completa de operadores (podemos encontrar esta idea en la literatura como
aditividad fuerte). Sin embargo, estas dlgebras son de tipo III y no estédn en producto
tensorial entre si debido a que comparten sus bordes.

Entonces, no podemos esperar un split arbitrario por factores de tipo I, al me-
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nos cuando estan presentes simetrias generalizadas. Sin embargo, queda la cuestion
de la concatenacion de twists. Para las corrientes de Noether es posible la conca-
tenacion arbitraria de cargas, incluso si existen simetrias generalizadas no cargadas.
Pero la concatenacién arbitraria no es posible con simetrias generalizadas cargadas.
De nuevo, pensamos en utilizar una particién por regiones topoldgicamente triviales.
Si Tk, Tkt - - - Tg—1, Ty cubre una regién con clases cargadas, serd un twist aditivo para
ella. En otras palabras, tenemos que U(g)(Tyt1...7n) " es completo, y 71...75_1 €s
aditivo. Entonces, como explicamos en la seccién anterior, las clases no pueden estar
cargadas. Cambiando la ordenacién de forma que ninguna subsecuencia contigua cu-
bra una region que tenga clases cargadas, podriamos obtener concatenabilidad. Pero
eso significaria que los conmutadores del conjunto de twists aditivos pequenos deben
producir no localidades grandes. Vemos que cuando concatenamos méas de dos twists
la cuestion de la conmutatividad entre los twists se vuelve importante.

Otra cuestion es si podemos producir twists concatenables cuando tenemos clases
no cargadas y que sean twists simultaneamente aditivos y completos. Esperamos que
asi sea, pero no tenemos ninguna prueba. Un caso particular que vale la pena mencionar
es el caso en que las buffer zones Z; de A; comparten componentes conectadas entre si,
es decir, Z;; = Z; N Z; estd formado por uniones de componentes conectadas de Z;, Z;.
En este caso, como cada componente conexa de la frontera divide el espacio en dos
regiones disjuntas, podemos definir una particién adecuada, y tenemos que las clases
no estan cargadas si y sélo si hay twists aditivos y completos 74, que conmutan y se
concatenan.

Supongamos, mas en general, que tenemos twists aditivos y completos para A, B,
yC=AUBUZ, Zc = (Z4U Zg)N Z' (Ver figura 5.3). Si escribimos

2=TATRTS, (5.57)

vemos que el unitario z lleva A(Z4 U Zg) en si misma porque cada uno de los twists lo
hace. Entonces z pertenece al algebra aditiva de la unién de buffer zones. Esto no es
valido para otro tipo de twists, donde z contiene tipicamente operadores no locales de
ZAUZpg. Para corregir los twists y lograr la concatenabilidad necesitamos dividir z en un
producto de un operador en Zg, que se absorberd en 7¢, v otro en Z, que se absorbera
en 74. Esto nos requiere cierta localidad de z. En el limite de anchura pequena e de la
buffer zone esperamos que la escala de no localidad, en la direccién paralela al borde
de R, de los factores de split sea del mismo orden que €. En este limite podemos pensar
en una delgada pared que separa dos semi-espacios, y que en el UV no existen mas
escalas para el problema que €. Por lo tanto, un z que no contiene operadores no locales,
seria aproximadamente local en el limite de € pequeno y los twists se concatenarian

aproximadamente en dicho limite. Por el contrario, si z contiene operadores no locales,
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el limite z — 0 no puede ayudar a la concatenacién.

5.3. Ejemplos

En esta seccion describimos varios ejemplos de simetrias generalizadas cargadas
bajo la accién una simetria global. Los ejemplos incluiran simetrias globales continuas y
discretas, transformaciones de dualidad y simetrias espacio-temporales. Construiremos
operadores de twist, y mostraremos explicitamente algunas de sus propiedades sutiles

que discutimos de forma abstracta anteriormente.

5.3.1. Orbifolds

Dada una teoria F con un grupo de simetria interno H, podemos producir otra
teoria O = F/H formada por los operadores invariantes ante dicha simetria. Llama-
mos a O teoria del orbifold. Queremos ver cémo la discusion anterior se refleja en este
orbifold. El orbifold tiene simetrias generalizadas asociadas con la violacion de la dua-
lidad en regiones con la topologia de dos bolas si la simetria no esta rota o una bola si
esta rota. En el caso donde no vemos rotura de simetria, los operadores no locales que

violan la dualidad en una region R formada por dos bolas R = By U Bs son intertwiners
L= i(r1) () (2) 1, € By, 12 € By. (5.58)

Estos son operadores de carga / anti-carga localizados en las dos bolas. Més atin, estén
etiquetados por las representaciones r de H. Por otra parte, los operadores HDV en la
region complementaria R = (B; U By)' son los twists simetrizados de H que actian
sobre una sola de las bolas. Estos surgen si tomamos los twists estandar 7,(B;, Z) para
By, definidos en la seccién 5.2.1, que estan etiquetados por elementos de grupo h € H,

y los simetrizamos promediando sobre una clase de conjugacién ¢

Te=) Ty (5.59)
hec

Entonces, estos twists invariantes nos quedan etiquetados por clases de conjugacion c
del grupo. En estos casos, el grupo de simetria interna original H actia trivialmente
en la teorfa @ = F/H por definicién. Por tanto, actia trivialmente en cada una de
las simetrias generalizadas del orbifold, generadas por los intertwiners I, y los twists
Te. De hecho, el propio grupo de simetria H ya no existe en el orbifold, puesto que la
operacién de grupo global se identifica con la identidad. Un tratamiento mas completo
de estos escenarios fue desarrollado en [22, 23, 38|, véase también el capitulo 2.

Construimos ahora sobre estos ejemplos e introducimos otro grupo de simetria
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interna G actuando sobre O. Tenemos entonces la alternativa de que G deje invariantes
o no las clases HDV generadas por los intertwiners I,. y los twists de O. En particular,
si seguimos los resultados de la seccion anterior, si existe una corriente de Noether para
(G, deberia darse el primer caso.

Para ver cémo pueden darse las dos situaciones, imaginemos que tenemos un grupo
de simetrias G actuando sobre F tal que H C G es un subgrupo normal. Entonces,
tenemos que G = G /H es un grupo que actia sobre el orbifold O = F/H. Si G también
es normal en GG, o equivalentemente G = G x H, entonces la simetria global restante
G del orbifold claramente no interfiere con las clases no locales. Sin embargo, si éste
no es el caso, habra twists de G definidos sobre dos bolas B U By o sobre la cascara
S = (B1 U Bsy)" que actian de forma no trivial sobre las clases no locales. En este caso,
los twists 7, asociados a G no pueden ser aditivos y completos al mismo tiempo, y
los twists aditivos no podran concatenarse. Si hay corrientes de Noether asociadas a
G en la teorfa original F, veremos que estas no perteneceran a la teoria del orbifold
O=F/H.

Como un ejemplo, tomemos la teoria de dos campos escalares reales (posiblemente
interactuantes) ¢y, ¢, con una simetria H = Z X Zy actuando como ¢ — —a¢y,
¢y — —@o, sumada a una simetria de intercambio ¢; <+ ¢ entre los dos campos.

Entonces, tenemos en la notacién anterior
G=(Zyx Zy) )N Zy=HXZ, . (5.60)

El ultimo Z, en el producto semidirecto es el que intercambia los dos campos. Es un
subgrupo del grupo de simetria completo, pero no es normal, mientras que H si es un
subgrupo normal. Tomando el cociente O = F/H tenemos una teoria de orbifolds con
una simetria residual G = G /H = Z, que intercambia los campos. Luego, tenemos

cuatro clases para regiones dadas por la unién de dos bolas By, By, a saber
1, I, I, LI, (5.61)

donde 1 es la clase identidad y I; = ¢;(x1) ¢;(x2) con i = 1,2. Las clases no locales
(dadas por los intertwiners) I3, I5, son intercambiadas por G , y por tanto estan cargadas
bajo la accion de dicho subgrupo. También tenemos cuatro clases asociadas a la region
complementaria, que es un cascaron S = (B; U By). Vemos que estas clases vienen
dadas como

H1 H2 H1 _H?2
1, TB1 > TB1 > TB1 TB1 > (5.62)

donde 1 es el operador identidad asociado a la clase identidad, y 74 con i = 1,2 son los
twists, actuando sobre B; como el grupo de simetria global H, y no haciendo nada en

B,. Estos twists estan asociados al grupo de orbifold H. Como H es un grupo abeliano,
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tales twists pertenecen directamente al orbifold O = F/H. También, estan cargados
bajo la accién G, como se mostraremos en un momento.

Construimos ahora el twist localizado de G para una regién R. Este deberfa lla-

marse 75, pero como lo usaremos repetidamente lo renombraremos como 7S — Tg.

Observamos que podemos hacer twists para la transformacién (¢; — ¢o, ¢ — —¢1) en
la teorfa F original utilizando las relaciones de conmutacién canénicas. Para simplificar
la discusion y no desordenar la notacion, omitimos la dependencia de la buffer zone 7,

y escribimos los twist de la forma heuristica sin inlcuir el smearing. Esto es,

TR = e2 [T e (1 madam) (5.63)

Aqui 7y, w2 son los momentos canonicos. Cambiar el signo del exponente dard (¢; —
— o, 2 — ¢1). Tenemos que ver cémo actian estos twists en la teoria del orbifold O.

Para empezar, estos twists intercambian las dos algebras de campos neutros en O,

TR 01(21)P1(22) = Pa(w1)Pa(72) TR, TR $2(21)P2(72) = ¢1(x1)P1(72) TR,  (5.64)

para x1,x2 € R. En el caso particular en el que R = By U B es la unién de dos bolas,

vemos que este twist intercambia entonces las clases no locales, es decir
TR]1:]2TR. (565)

Sin embargo, (5.63) no es invariante bajo el cambio de signo independiente para los
dos campos. Por lo tanto, no pertenece al orbifold. Para construir el twist de G en el
orbifold podemos promediar sobre la accion de H. A continuacién, redefinimos el twist
(5.63) como '3

1 i i
TR= 5 (615 Jr(@rma=d2m) 4 =15 [n(é1 7r2—¢27r1)> - (g/(¢1 Ty — ¢27T1)) . (5.66)
R

Este twist es invariante bajo H. Tiene la conmutacién correcta (5.64) cuando lo hace-
mos actuar sobre pares de campos. Mas atn, cuando R es una bola, o cualquier region
con topologia trivial, este operador es aditivo porque su expansién en serie contiene
s6lo pares de campos de cada tipo en R.

En cambio, para dos bolas R = By U By tenemos dos opciones. Podemos tomar el
producto 7, 7, de twists para bolas simples. Este es el twist aditivo en las dos bolas
por construccion, pero no podra intercambiar las clases de los intertwiners, es decir, no

transforma Iy = ¢y (z1)d1(22) a Iy = ¢o(x1)Pa(x2). La razén es que estos intertwiners

IBPara hacer este operador unitario podemos dividirlo por \/Cos2 (% fR(¢1 Ty — ¢2771)). Esto con-

muta con pares de campos en la regién.
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contienen un solo campo en cada bola. Los twists completos para la simetria de inter-
cambio en las dos bolas tienen la misma expresion (5.66), donde la integral estd ahora
en R = By U Bsy. Esto es claramente no aditivo en las dos bolas, dado que implica a los
propios intertwiners en su construccién. Esto se puede ver expandiendo el coseno en
una expansion de Taylor. Ademads, si tenemos una bola B que contiene R = By U Bs,
entonces los twists aditivos de la forma 75, 75, ¥ T5_g, no concatenan al twist 75. La
razon es que 7p transforma las clases no locales en R, mientras que 7p,,7p,, T3_gr NO
lo hace. En cambio, los twists originales de la forma (5.63), definidos en la teoria F,
son concatenables.

Consideremos ahora dos bolas anidadas, By C By, y el cascaron S = B, — B;. Un
twist aditivo 7 para el cascaron se proporciona de nuevo por la férmula (5.66) donde
R = S. Esto no cambia las clases no locales dadas por los twists 75, 742 del orbifold
con base en S. Un twist completo Tg viene dado por la construccion complementaria,
tomando por ejemplo Tg = TBQT];I donde ambos operadores de la derecha vienen dados
por la expresién aditiva (5.66). Como el grupo es Z, podemos sustituir el twist inverso

por el propio twist. Esto nos produce un operador

Ts = Tp, Tp, ~ Ts + €OS (g /Bl(<b1 Ty — ¢om1) + g /B2(¢1 Ty — <z527n)) . (5.67)

El primer y segundo término del lado derecho tienen la misma conmutacién (5.64) con
operadores locales en S, mientras que ambos términos conmutan con operadores locales
del orbifold en Bj;. Para el segundo término esto se debe a que el coeficiente total de
la integral de la corriente en B es m en lugar de 7/2, produciendo la transformacién
01 — —P1, s — —p9, que deja a los operadores locales en el orbifold invariantes. Pero
esto también muestra que el nuevo operador dado por (5.67) contiene, ademas del twist
aditivo 7g, los twists no locales del orbifold a través de B;, que cambian el signo de los
campos allf. Para una bola genérica B, los denominamos 74! y 782, Estos, cambian el

signo de ¢, y ¢ en la bola B.1* Si B; C B C Bs, se nos vuelve evidente que
fsTglzTngs. (568)

Esto dice que el twist Tg es completo, e intercambia clases no locales. La razon es que

para dos bolas B, B tenemos

H1 _ _H2__ _H2 _ _Hl1__
TaTg =T Tk, T5TE. =T Th, B C B, (5.69)

H1 _ _H1__ _H2 _ _H2_
TaTg =T Th, TETE. =T Tk, BcCB. (5.70)

Entonces, dentro de Tg = 75,75, , €l twist 75, intercambia los twists del orbifold mientras

Pyeden escribirse e™ /s #i(#)mi(z)
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que Tg,, al ser un operador local dentro de B, conmuta con ellos.

Ahora, veamos otro ejemplo donde el grupo de simetria global GG es continuo. Para
esto, consideramos el caso de dos campos escalares libres reales sin masa con simetrias
b = i+, i=12yG= U(1) asociado a la rotacién entre los campos. El grupo

de simetria completo es entonces isomorfo a la simetria euclidea del plano
G=EQ2)=T2)xU(1), (5.71)

donde las traslaciones forman el subgrupo normal utilizado para producir un orbifold

con H = T(2), y donde el grupo de simetria global residual es
G=U(Q)=E?2)/T(?2). (5.72)

En este caso, vemos que el orbifold estd generado por las derivadas d¢;. Ademas,

tenemos intertwiners de dos bolas By U By que podemos escribir de la forma

Ly = et A (B1(w1) =1 (x2)) i B (P2(w1)—¢2(x2)) z; € B; | (5.73)

estando etiquetados por dos niimeros reales A, 5. La corriente de Noether de la simetria

que rota los campos es

Jy = 010,02 — $20,01 . (5.74)

Claramente dicha corriente no es un operador de la teoria del orbifold ya que contiene
campos ¢; que no estan en el dlgebra de 0¢;. Esto estd en consonancia con los resultados
genéricos que derivamos en la seccion 5.1, a saber, que las etiquetas de los operadores
no locales estén cargadas bajo una simetria global continua prohibe la existencia de
la corriente de Noether. En este caso, los twists completos para el resto del U(1),
construidos a partir de la construccién estandar usando la split property transforman
I,g — Igx. Nétese que estos twists perteneceran al orbifold, mientras que la corriente
anterior no.”

Tenemos que ser un poco més precisos en este ejemplo, distinguiendo los casos de
dimensién D = 2 de los de D > 2. Para D = 2 los campos ¢; no son campos cuanticos
debido a las divergencias infrarrojas, mientras que la teoria del orbifold estando gene-
rada por 0¢; sigue teniendo perfecto sentido. La simetria de rotacién no tiene corriente
de Noether, como ya se hemos mencionado. Esta teoria tiene dos sectores de bolas
generados por los intertwiners (5.73).

Para D > 2, la simetria de desplazamiento de los campos se rompe espontaneamen-

te. Debido a ello, el algebra del orbifold generado por 0¢; genera el espacio de Hilbert

15La falta de la corriente U(1) en el caso de dos dimensiones fue reconocida en [152] utilizando
otras técnicas. Aqui vemos el origen fisico de la corriente de Noether que falta, y como encaja en el
zoologico general de QFT's sin corrientes de Noether.
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completo de los campos libres completos cuando actiian sobre el vacio. Entonces se
puede considerar que la teoria contiene también los escalares y que existe una corriente
de Noether. Pero, coherentemente, desde esta perspectiva no encontramos sectores no
locales generados por la simetria generalizada asociada a dos bolas, y no hay nada que
prohiba la existencia de tal corriente.

Por otra parte, el dlgebra del orbifold generada por d¢; es algebraicamente cerrada.
También es cerrada bajo transformaciones de Poincaré. Por tanto, forma una subred.
Esta subred producida por el orbifold, ademés de los sectores de dos bolas debidos a
los intertwiners, también tiene sectores no locales asociados bolas individuales. Estos se
deben a los propios campos locales que violan dualidad de Haag para las bolas simples.
Mas especificamente, vemos que el conmutante del algebra de la derivada en una regién
contiene el campo escalar en el complemento, y este escalar constituye un operador no
local en el orbifold. Este es siempre el caso para las algebras del orbifold cuando hay
rupturas espontaneas de simetria [161, ].

En este contexto, vemos que grupo de simetria global G produce una rotacion entre
operadores no locales para bolas individuales, pero no estd generado por una corriente
de Noether en el orbifold. Los sectores no locales para una tinica bola B estan asociados

a operadores de la forma

P =¢llsed =12, (5.75)

donde « es una funcién de smearing con soporte dentro de la bolay a = [ g La
clase no local de ¥ depende exclusivamente de @&. Esto se debe a que una funcién
de smearing con integral cero nos produce un operador aditivo formado por 0¢;. Los
operadores duales, naturalmente asociados a la regién complementaria, son los twists
del orbifold

= eMe® =12, (5.76)

Las relaciones de conmutacion entre operadores duales no locales son
Hi i ( Hix—1 _ _i\a i
T s ()T =g (5.77)

El twist para la simetria global G que actda sobre el orbifold que se obtiene de la

corriente (5.74). Especificamente, tenemos que

o = 10 [p(drma—gomi) (5.78)

Este twist es completo. Es decir, tenemos que rota los sectores no locales. Aunque es
un operador aditivo en la teoria JF, claramente no es un operador aditivo de la teoria
del orbifold porque contiene los propios campos ¢;. Nuevamente, esto es consistente

con las lecciones generales de la seccién anterior. Para obtener un twist aditivo en el
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orbifold escribimos primero

o

con zo un punto fijo en dB. Entonces, reemplazamos
bi(z) > / dat 9,6, (5.80)
o

en la expresion (5.78). Esto rota correctamente d,¢;, y por tanto cualquier operador
aditivo en el orbifold, pero no rota las clases no locales. En otras palabras, este twist

no es completo. La diferencia entre los twists aditivos y completos es el operador

(10 (61(@0) ([ m2) =2 (w0) ([ 1)) (5.81)

Este combina operadores no locales del orbifold en B (los campos ¢;(xg)) con opera-
dores no locales del orbifold definidos sobre el borde de la region'® B (los generadores
de twist [ 5 Ti). Esta es una caracteristica general de los twists completos que hace
transparente su no aditividad en la ausencia de una corriente de Noether.

Terminamos esta seccion con algunas observaciones. En primer lugar, el algebra
de la derivada de un escalar libre sin masa es también un ejemplo de un modelo que
tiene sectores que no son invariantes bajo simetrias conformes. Si hacemos una trans-
formacién de escala las etiquetas de clase no pueden permanecer invariantes porque la
etiqueta de clase & en (5.75) tiene dimensiones —(D — 2)/2 en energia, mientras que A
en (5.76) tiene dimensién (D — 2)/2. De hecho, el algebra orbifold no tiene un tensor
energfa-momento conforme que permita generar la corriente de escala (para D > 2). Si
bien se podria hacer un “improving” del tensor energia-momento esto requiere el uso
del campo ¢.

En segundo lugar, podemos construir un ejemplo analogo para producir sectores
de bola no invariantes bajo transformaciones de Lorentz. Tomamos la subalgebra de
derivadas del campo libre de Maxwell 0, F),,. Los sectores respecto a esta subred vienen

g , . .
aw B 1T 1,05 sectores estan etiquetados por inte-

dados por operadores cargados e’ /s
grales @, = | 5 Quus Y 1O son invariantes bajo transformaciones de Lorentz. De nuevo,

como era de esperar, el tensor de energia-momento no puede escribirse en términos

16M4s precisamente estos twists son no locales en la regién complementaria cuando se incluye la
buffer zone necesaria para su definicién. En este caso, estamos simplificando la discusiéon tomando la
buffer zone pequena y pensando en estos operadores como si vivieran en el borde de B.

17En [39] se propuso este modelo como ejemplo de ruptura de simetria espontédnea de una simetria
continua que da lugar a un bosén de Goldstone no escalar (el fotén en este caso). Sin embargo,
usualmente en la literatura de simetrias generalizadas |3, ] suele entenderse al fotén como el bosén
de Goldstone de la simetria 1-forma espontaneamente rota generada por los WL y TL. Seria interesante
comprender la relaciéon entre ambos argumentos.
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de las derivadas de F),,. En otras palabras, aunque se pueden construir los twists de
las simetrias de Lorentz, para ser completos implicaran necesariamente que el tensor
energia-momento de la teorfa de Maxwell completa, en particular el operador F),, que

representa un operador no local en la bola para el orbifold.

5.3.2. Campos de Maxwell con rotacion de sabor

Consideramos ahora un ejemplo en el que las clases HDV no locales de la simetria
generalizada estan asociadas con la violacién de la dualidad en una region tipo anillo.
Esto ocurre con dos campos de Maxwell independientes en D = 4 dimensiones de
espacio-tiempo. Més concretamente, consideramos la accion

1 a 174 a a a
S:—Z/d4xF EY, Fy = 0,A, - 0,4, a=1,2. (5.82)

urs a
Tenemos una simetria gauge abeliana asociada a las transformaciones gauge
Al — AL+ 0,X" (5.83)

Ademas, esta teoria muestra sectores no locales para regiones que contienen lazos no
contractibles (regiones tipo anillo). La violacién de la dualidad de Haag en tales regiones
corresponde al flujo de los campos eléctricos o magnéticos en superficies limitadas por
estos lazos. Se trata de una simetria generalizada 1-forma no compacta con grupo
RZ x R2. 18

Por otro lado, esta teoria exhibe una simetria global U(1) correspondiente a la
rotacién entre los campos gauge. Queremos analizar como se manifiesta esta simetria en
el dlgebra invariante gauge y en el espacio de Hilbert. Inmediatamente vemos que esta
manifestacion va a ser problematica al notar que las transformaciones infinitesimales
del grupo U(1), dadas por 5A}L = GAZ y 6Ai = —¢ A}“ no son implementadas por
una corriente fisica de Noether. La raiz de esta caracteristica es que la simetria global
transforma los sectores no locales y los twists locales seran aditivos o completos pero
no cumplirdn ambas condiciones a la vez.!?

Para analizar estas ideas comenzamos calculando la corriente de Noether no inva-

riante gauge mediante la prescripcién habitual. Obtenemos

g = Fi AL — FI'V A2 (5.84)

8L os dos factores R? corresponden a los dos campos. Para cada campo tenemos WL etiquetados por
un ntmero real y TL etiquetados también por un nimero real, de ahi R?. El segundo R? corresponde
a los WL y TL de la regiéon complementaria

19En este escenario especifico, la no existencia de la corriente de Noether es también una consecuencia
del teorema de Weinberg-Witten [17]. Describiremos esto en detalle en la siguiente seccidn.
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Esto se conserva on-shell dado que 9,F" = 0. Para cualquier regiéon R con buffer
zone 7, esta corriente nos produce twists candidatos para la simetria de rotacién como

7,(R, Z) = €'99% con la carga local Qg dada por

Qr = / Pz a(z) °(z) = /R  Pra(@) [Fi) Ae) - By Al 685)

donde «a(z) es una funcién de smearing de soporte compacto sobre la regién tridimen-
sional RU Z, con a(x) = 1 para x € R, y a(z) = 0 para z fuera de RU Z. En
este escenario, puesto que la teoria es libre, sélo tenemos que hacer un smearing en el

espacio. El twist resultante no es invariante gauge ya que la carga se transforma como

Qr— Qr— /[@a(fﬁ)][Ei(fE) X*(x) = By(w) X' (@) - (5.86)

Se trata de un término de borde con smearing de soporte compacto en la buffer zone Z.
Matematicamente, esto se produce porque J;a(z) = 0 para x € R. La cuestién ahora
es si podemos anadir algin término de borde para que la carga sea invariante gauge.
Esta cuestion se considerd anteriormente en [14], donde se construyé una versién (sin
smearing) del twist invariante gauge. Aqui comenzamos construyendo una versién con
smearing andloga. Para hacer invariante de gauge el twist 7,(R, Z), consideremos la
funcién v(z,y) dada por la solucién de la ecuacién de Poisson con carga unitaria en x

y condiciones de contorno de Newman en la regiéon 2

Vyv(zy) =z ~y), wyeZ, (5.87)
n' oY v(z,y) =0, y €0z . (5.88)

donde n’ es el versor normal a dZ. Si utilizamos la funcién v(z,y), podemos definir la

siguiente cantidad no invariante gauge con soporte compacto en Z
L@ == [ @yotuen a0) = @) = o). (589)
Entonces, utilizéndo I,(x) continuamos definiendo el operador
C= /d3x dia(x) [E; (z) Ir(z) — E?(x) ()], (5.90)
que tiene la transformacion gauge
3C = [ P 0ia(@) [Bi(x) (o) ~ Eifa) X' (o). (5.91)

Vemos que dicha transformacién, claramente coincide con (5.86) haciendo que el ope-
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rador de carga modificado
Qn=Qn+C, (5.92)

sea explicitamente invariante gauge. Esta se trata de una versiéon con smearing de la
carga construida en [14].

La carga Q r implementa claramente la operacién de twist correcta, correspondiente
a la simetria global U(1), en el dlgebra aditiva de R. Esto se debe a que el soporte del
operador C' que agregamos esta confinado a la buffer zone Z. De ahi, vemos claramente
que el conmutador con los campos eléctricos y magnéticos en R coincidira con los de
la carga de Noether no invariante Q.

Para regiones topologicamente triviales, esta construccion da un twist aditivo y
completo ya que no hay sectores no locales en estas regiones para la teoria en cues-
tién. Ahora, queremos analizar este twist pero definido para un anillo R. Empezamos
preguntandonos cémo actia esta carga sobre los operadores no locales en R. Los ope-

radores eléctricos no locales tienen como generadores los flujos
dr = /de Qi(z) E(z) a=1,2, (5.93)

donde 2 es la funcién vectorial de smearing definida en el capitulo 3 y cuyo rotor
produce una corriente conservada J = V x () que tiene soporte compacto en R. A

partir de aqui, calculamos el conmutador obteniendo
@n 0= [ &2 [ Eyal@) @) Bl W) Bl =1 [ dwals) 2 Eia).
es decir, un operador local en RU Z (el soporte de a(z)). Utilizando
(B (), I*(2)] = Oyv(,y) (5.95)
también tenemos
[C, ®F] = /d3 /d3yQ ) 0;0(x) B (x ) (. y) . (5.96)

Este se trata de un operador local en la buffer zone Z, y por tanto también en RU Z.

Asi que el conmutador del twist con el flujo eléctrico es un operador aditivo en RU Z.

Esto implica que este twist no cambia la clases HDV generadas por el flujo eléctrico.
Por otra parte, también siguiendo el tratamiento de operadores no locales en el

capitulo 3, para el flujo magnético escribimos

o8 = /d3x Ji(z) Al(x) a=1,2, (5.97)
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con una corriente conservada J con soporte en R. Tenemos que
[Qr. ®J] =icq ® (5.98)

con &4 €l tensor de Levi-Civita de dos indices. Implicando que estas cargas locales
rotan las clases HDV asociadas a los flujos magnéticos del mismo modo que el grupo
de simetria global.

Concluimos que el twist en consideracién no es completo ni aditivo. Produce las
transformaciones correctas en el algebra aditiva y en los flujos magnéticos no locales,
pero no cambia los flujos eléctricos no locales. Dualmente, podemos hacer un twist con
la transformacién correcta para los flujos eléctricos no locales y actuando trivialmente
sobre los magnéticos. En D > 4 esta misma construccion nos provee un twist completo
para un anillo R que solo contiene WL como operadores no locales. Este twist vuelve
a ser no aditivo. En este escenario, estd claro que los twists aditivos no pueden conca-
tenarse a los twists en una bola ya que estos ultimos transforman todos los operadores
dentro de la bola.

Twist aditivo construido a partir de un fijado de gauge

A partir de la discusion abstracta de la seccién anterior sabemos, por razones ge-
nerales, que se pueden construir twists aditivos y completos. Una forma es realizar la
construccion estandar a partir de la split property comenzando con el algebra aditiva
en Ry el dlgebra completa en R = (RUZ)’, donde Z es la buffer zone. Esto da un twist
aditivo para R y uno completo para R. Atn asi es clarificador tener una construccién
mas explicita del twist aditivo, y estudiar las diferencias con el completo.

Para construir un twist puramente aditivo en el escenario actual partimos de la
expresion (5.85) y buscamos una solucién de Vx A = B, donde el potencial A se escribe
como una funcién no local de B s6lo dentro de la region R U Z. Podemos interpretar
esto como una fijacién gauge particular que tiene en cuenta la forma de la regién, salvo
un pequeno detalle que encontraremos mas adelante. Por lo tanto, A, definido de esta
forma como una funcional del campo magnético dentro de RU Z, es automéaticamente
invariante gauge y aditivo en RU Z, y asi serd el twist construido a partir de dicho
potencial vector. Este tipo de fijaciones gauge se utilizaron en el contexto del estudio
de la entropia de entrelazamiento para campos gauge. Una construccién general en la
red se encuentra en [164]. En el continuo, y para el caso de esferas se discutié en [165].

Para resolver V x A = B en el anillo R U Z, tomamos una coordenada “radial”
r € [0,1] en RU Z. Esta coordenada radial es cero para cierto lazo no contractible
dentro de R, y es uno en la superficie 9 (RU Z) que representa el borde del anillo. Las
superficies de r constante representan una foliacién del anillo con toros topolégicos 7.

Para r = 1 tenemos T} = 0 (RU Z). Vr es perpendicular al toro 7,.. Esta configuracion
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T, = d(RUZ)

Figura 5.5: Configuracién geométrica que nos facilita resolver V x A = B dentro de una regién
tipo anillo. Las superficies a r constante representan una foliacién del anillo con toros topolégicos,
a los que llamamos 7.

geométrica se representa en la figura (5.5).
Llamaremos F() a la restriccién de las 2-formas F;; al toro T,. Andlogamente,
llamamos A a la restriccién de la 1-forma A;. En T, tenemos F") = dA") . siendo d

la derivada exterior. Mas atn, por descomposicion de Hodge en T, tenemos
A" =da+ 0w+ A. (5.99)

Donde los tres términos estan definidos univocamente, y son ortogonales en el sentido de
producto escalar de campos sobre T,.. a es una 0-forma (una funcién), w es una 2-forma
(caracterizada por una tnica funcién), § es el adjunto de la derivada exterior d, y A es
una 1-forma arménica (que tiene laplaciano cero). A también satisface dA = §A = 0.
En este contexto, utilizaremos la libertad gauge para eliminar el primer término en

(5.99). Con esta eleccién tenemos
FO = dsw = (dé + 6d)w = Aw, (5.100)

con A el operador Laplaciano. Esta ecuacién tiene una solucién unica para w en térmi-
nos de F(") excepto por adiciones de la 2-forma de volumen. Pero esta ambigiiedad no
afecta a A"). Por tanto, con esta eleccién de gauge hemos fijado A™ de forma tnica
en términos del campo magnético F") en T, excepto por la forma arménica A.

Para fijar A observamos que las formas arménicas estdn asociadas al grupo de
cohomologia del toro y tienen un niimero finito de soluciones en una variedad compacta.
En este caso, hay dos soluciones. Son localmente de puro gauge, pero tienen circulacion
no trivial a lo largo de los dos circulos no contractibles del toro. Por tanto, una vez
determinado dw, podemos deducir su coeficiente evaluando la circulacién de A, o el
flujo del campo magnético, a lo largo de cualquier par de superficies limitadas por los
dos circulos no contractibles de la superficie toroidal. Para el circulo que es contractil

dentro de R U Z, obtenemos el resultado en términos del campo magnético dentro de
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R U Z. Para la otra direccién no podemos calcular sélo en términos de operadores en
R U Z. Necesitamos fijar el valor de una sola circulaciéon no trivial. Entonces, fijamos
esta contribucién en cero. Esta eleccion no es posible mediante la fijacién gauge de A
en el espacio completo. Sin embargo, es una eleccion valida para resolver la ecuacion
VxA=Ben RUZ.

Por tanto, hemos resuelto las componentes tangenciales A" en términos del campo
magnético en el interior del anillo. La restante componente radial A, queda fijada por

la ecuacién

Fop = 0,4, — 0, A, (5.101)

donde a = 1,2 son las dos coordenadas en el toro T,. Como A, ya se ha fijado, esta
ecuacién determina A, salvo un valor constante. Este valor constante puede fijarse a
voluntad mediante la transformacién gauge residual A, — A, + 0, f(r).

Con esta eleccion del potencial vectorial A, el twist (5.85) es autométicamente
invariante gauge y aditivo. Para comprobar que sigue haciendo las transformaciones

correctas en el dlgebra aditiva del anillo R, evaluemos el conmutador de
Qr = /d?’m(:c) (E*- A? — E?. AY) (5.102)
con los campos invariantes de gauge dentro de R. Comenzamos con el campo magnético
[Qr, BN y)] = icap /d3x giji 0(x — ) Ok(a(x) A?(x)) =i Bb(y), (5.103)
donde hemos utilizado
[Ej(x), Bi(y)] = i1 O 0(x — ), (5.104)

ademas de que el campo magnético conmuta con el potencial vectorial a gauge fijo,
y que « es constante dentro de R. Esto demuestra la transformacién correcta para el
campo magnético. Pero ain no hemos utilizado nuestra prescripcién especifica para A.
Para analizar la conmutacién con el campo eléctrico definimos E = V x A4, y tomamos
para la expresién de A en términos de E exactamente la misma que tenemos para A

en términos de B. Insertando F = V x A en (5.102) obtenemos
Qr = /d3m (B'-A? - B%. A" + /d% eijr (0;0) (AR A2 — AZAYY. (5.105)

Para simplificar el iltimo término en (5.105) elegimos nuestra funcién de smearing o(r)

como una funcién de r. Luego, el dltimo término se puede escribir como

/ dr o/ (r) / (AT A AP — A9 A A0 (5.106)
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Vemos que esto se anula debido a que fT,- dSwNOw =0y fT7- SwAA = 0, por propiedades

del calculo de formas en T,., combinado con §A = 0. De esta manera, tenemos que
Qr = /d% afr) (B - A> — B*. AY), (5.107)

tiene una expresion invariante dual (véase 5.102). Esto induce la transformacién co-
rrecta sobre el campo eléctrico en R, replicando el cédlculo anterior para el campo
magnético.

En conclusién, Qr con esta particular fijacién gauge construimos un generador de
twists aditivos para R. Estos twists no pueden cambiar las clases no locales ya que son
aditivo en ambos campos, pero tienen la accién correcta sobre los operadores aditivos.
El twist completo puede construirse ahora utilizando el twist complementario de uno
aditivo, a saber

7_Complete(Ra Z) = Tglobal 7—a»dditive(Ra Z)_l . (5108)

Para ver mas claramente la diferencia entre los twists completos y los aditivos pen-
semos heuristicamente en términos de twists sin smearing. La carga aditiva (.qq sin
smearing rota los campos eléctricos y magnéticos dentro y en el borde de R. No hace
nada fuera y por lo tanto no rota los operadores no locales, que son flujos que cruzan
el agujero del anillo. Para construir una carga completa a partir de (),qq, consideremos
los flujos eléctricos y magnéticos @E?B(Fl) alrededor del lazo no contractible de R, y
los @}E’?B(Fg) en un circulo maximal contractible de . Estos conmutan, respectivamen-
te, con operadores locales fuera y dentro del anillo en la aproximacion sin smearing.

Entonces, podemos escribir una carga local completa como

Qmax = Qada+(Py(T1)H(Ty) — OH(T1)Pp(Ty)) (5.109)
+(Pp(T1)P% (L) — PH(T1)Py(T,)) .

Esta nueva carga rota los operadores no locales asi como los aditivos. Es evidente que
se trata de un operador no local en RU Z dado que contiene operadores no locales en el
borde (o en la buffer zone Z). Més atin, esté claro por qué dos twists complementarios
completos no pueden concatenarse: la combinacién tiene el doble de operadores no
locales necesarios. Dos twists aditivos tampoco pueden concatenarse. Un twist completo
y uno aditivo se concatenan por construccién, véase (5.108). Tenemos entonces otro
ejemplo de una QFT en la que podemos construir twists locales para cualquier region.
Es este caso, nuevamente son aditivos o completos, pero no tienen ambas cualidades a
la vez, y por tanto perdemos la concatenabilidad de los twists aditivos (y también de

los twists completos).
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5.3.3. Simetria de dualidad electromagnética

El campo de Maxwell libre tiene una simetria de dualidad. Podemos escribirla, de

forma compacta, usando la transformacién entre F'y su dual F*
(F +iF*) — € (F +iF"). (5.110)

Vemos que esta transformacion representa una simetria interna de la teoria, ya que
preserva las dlgebras locales. En particular, sélo intercambia el campo eléctrico local
por el campo magnético local en todo el espacio. Esto implica que intercambia los WL
y TL (obtenidos exponenciando los flujos magnéticos y eléctricos) y por tanto no deja
invariantes las clases HDV asociadas a los anillos. De acuerdo con el resultado de la
seccion anterior, esperamos que no pueda haber una corriente fisica de Noether que
implemente dicha simetria. Nétese que (5.110) no nos dice cémo efectuar la simetria en
las variables lagrangianas no fisicas A,,. Por lo tanto no podemos aplicar la prescripcién
habitual para obtener una corriente de Noether. Sin embargo, si escribimos F' = dA,

F* = dA, tenemos que
d(ANF+ANF)=FANF+FANF*=0. (5.111)

Por lo tanto la 3-forma A A F + A A F* es cerrada y su dual de Hodge es una corriente

conservada. De forma explicita encontramos que

1 ~ -
JH = S (4,0, Ay + A0, Ag). (5.112)

donde podemos escribir carga asociada como
1 3 ~
Dicha carga, efectia las transformaciones deseadas

Q,Ej] =iB;, (5.114)
Q.B;] = —i E;. (5.115)

Por lo tanto ) implementa la simetria de dualidad (5.110). A partir de su implemen-
tacion como la integral de una densidad conservada sobre todo el espacio, entendemos
que la dualidad representa una simetria convencional (0-forma). Pero, nétese que dicha
densidad no es invariante gauge y no produce una corriente de Noether bien definida.
Entonces, podremos implementar la simetria mediante twists aditivos o completos pero
no twists que cumplan ambas propiedades. Si queremos construir un twist aditivo pro-

cedemos como en la seccion 5.3.2. En otras palabras, escribimos A y A como funcién
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de B y E respectivamente dentro de la regién tipo anilllo R, obteniendo
On — / Bz alr) (ABi + AE). (5.116)

Esta carga implementa correctamente la simetria de dualidad en la region R por las
mismas razones. Al ser aditiva no puede cambiar las clases no locales asociadas a
los WL y TL. Para construir los twists completos tenemos que recurrir los twists
complementarios de los aditivos. Retomaremos estas ideas durante el capitulo 7 donde
estudiaremos la simetria de dualidad para el campo libre de Maxwell definido sobre

variedades compactas no triviales.

5.3.4. Graviton de Fierz-Pauli en D =4

En el siguiente ejemplo estudiaremos la teoria del graviton libre sin masa en D = 4.
Por un lado, como argumentamos en el capitulo 3, esta teoria es invariante conforme a
nivel cudntico. Por otro obedece la split property [36]. De esta manera, sabemos que po-
dremos construir los twists estandar que implementan la simetria conforme localmente.
La pregunta es si es posible generar los twists mediante una corriente local conservada.
Claramente, esto no sera posible porque aplica el teorema de Weinberg-Witten [17].
Este prohibe la existencia de un tensor de energia-momento bien definido para teorias
con particulas de espin 2 no masivas.

No obstante, para abordar esta situacién desde el punto de vista de los sectores HDV
retomamos el andlisis de los capitulos 3 y 4. En particular, ya mostramos la teoria en
cuestién tiene simetrias generalizadas que producen un grupo R* de operadores HDV
no locales en regiones tipo anillo, es decir, en regiones con lazos no contractibles. Estas,
al igual que en la teoria de Maxwell, corresponden a simetrias generalizadas 1-forma.
Ademas, habiamos encontrado que las clases no locales estan cargadas bajo simetrias
espacio-temporales. A la luz de los resultados de la seccién anterior, esto implica la
validez del teorema Weinberg-Witten, es decir, prohibe la existencia de un tensor de
energia-momento. Esto se debe a que tal tensor energia-momento daria lugar a twists
aditivos, completos y concatenables, en contradiccion con el hecho de que las clases no
locales estan cargadas bajo el grupo conforme.

En este ejemplo usaremos la formulacion covariante de las simetrias generalizadas
del graviton que presentamos en el capitulo 4. Consideramos que esta forma, es la
mas adecuada para el andlisis de las transformaciones conformes de los sectores no
locales, las cuales estudiaremos en detalle a continuacién. En particular en este ejemplo
queremos aclarar, en una situacion algo sofisticada, una de las observaciones descritas
en la seccién 5.1 respecto al caracter de punto de las transformaciones asociadas a

simetrias generalizadas cargadas bajo grupos continuos.
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Figura 5.6: Definimos el operador no local ®r con la curva I'. En la regién complementaria
tenemos ®1v, definido con I, que no conmuta con ®r. Obtenemos la curva I al actuar con
pequenas traslaciones z, sobre I'. La traslacién cambia las clases HDV no locales para el gravitén.
Sin embargo, al operador de una clase HDV determinada en T le corresponde un operador con
la misma clase en I' no trasladandolo, sino extendiendo la integral de superficie desde Ial con
operadores locales.

Para comenzar, reescribimos el flujo no local mas general posible & que presenta-

mos en (4.54) de la forma

b= [ do" Rnale) 1(0), (5.117)
P

donde do*” = dx*Adz” es el dual de la 2-forma diferencial de area en la superficie >3 con
borde ' = 9%, y f*?(z) representa todas las funciones que definen la 2-forma cerrada

(5.117). Podemos escribir la funcién obtenida explicitamente usando los pardmetros
(a®?, b, c*P7 d*P) de la forma

1
f(z) = a® + (2°b° — 2°b*) + Pz, + (2°d27 — 2PdT2T + édaﬁxz) . (5.118)

Ahora, analizamos el efecto de una transformacién conforme general sobre un opera-
dor no local ®r. Podemos deducirlo del cambio de coordenadas asociado, el cual es
implementado por una transformacién de Lorentz y un factor conforme en el tensor
de curvatura. Absorbemos el cambio de cada punto mediante una transformacién de
coordenadas z — 7 en la integracién sobre ¥. Esto transporta la curva T’ a T, pero
esta transformacion es irrelevante para las clases HDV no locales mientras sea pequena.
En consecuencia, podemos escribir la transformacion conforme del espacio-tiempo glo-
bal como un cambio de los pardmetros que determinan la clase HDV de la curva T
ligeramente desplazada. Més concretamente, vemos que el conjunto de polinomios de
2-formas que multiplican R(,,)g) en las ecuaciones anteriores se mezcla bajo transfor-
maciones conformes generales.

Empecemos por las traslaciones. Al realizar x# — z* + z#, el tensor de Riemann
transforma como

U(2) Ruap(@®) U (2) = Rypap(x — 2) . (5.119)

(BibliotecalLeo FalicovCAB-IB)


tamara.carcamo
Texto escrito a máquina
(Biblioteca Leo Falicov CAB-IB)

tamara.carcamo
Texto escrito a máquina

tamara.carcamo
Texto escrito a máquina


154 Simetrias Generalizadas y el teorema de Noether

Esto implica que el operador no local (5.117) cambia como

Or = / 45" Ry — =) P(2) = / 05" Rypes(®) fP(5+2).  (5.120)

by b
Notese que z* es lo suficientemente pequeno como para permitir que T tenga las mismas
clases HDV no locales que I' (Ver figura 5.6). Al calcular el cambio en el integrando en

el lado derecho de (5.120) obtenemos que el cambio de clases tiene la forma

a®® = a4 (220 — 2°07) + Pz, 4 (22d77 — 2Pd T+ %daﬁzz) ,

br = b +dVz,,

P PV (20dPT 4 P A 4 2dP), (5.121)

df — dv.
De forma andloga, podemos verificar que las transformaciones de Lorentz z# — A* 2
inducen una transformacién de las etiquetas de clase (a®?, b, c®?7,d*?) simplemente
como tensores con la transformacién Lorentz inversa A~!. Para las transformaciones
de escala observamos primero que el tensor de Riemann tiene dimensiéon de escala
A = 3, de modo que bajo transformaciones de escala x — Ax se transforma como
UN) Ruvas(®) UM (N) = A3 Rypap(A 1 ). A partir de esta observacién, nos encon-
tramos con la transformacion de las etiquetas de clase de la forma a®® — \"'a*® y
d*® — Xd*?, como era de esperar basandonos en motivos dimensionales.

Simplemente, nos quedan las transformaciones conformes especiales

o 4 wh x?
142w -z 4+ w2z’

(5.122)

Dicha transformacion actia localmente como una dilatacién y una transformacion de

Lorentz. Mas precisamente
ox'™

ox?

donde Q(x) caracteriza una transformacién de escala pura dada en términos del vector

= Q(z) A" (), (5.123)

w como
Qz)=1-2w- -z +w?z?, (5.124)

y A* (x) es una transformacién pura de Lorentz que podemos escribir como

(A1) (2) = 8% —2 w'e, —w,x’ + wir’r, + *ww, — 2w - r)w'z,
p H 1—2w-z+ w?x?

(5.125)

De nuevo utilizamos que el tensor de curvatura on-shell se comporta como un campo
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primario conforme con dimensién de escala igual a A = 3. De ello se deduce que

U(w) Ruvas(z) U™ (w) = Q2 A7 A7 AT (5.126)

2
xA~1 R 5< o —wh )
poy

1—2w- 2+ w2a?

Como en los casos anteriores, podemos cambiar las coordenadas dentro del flujo. Ob-
tenemos entonces un nuevo operador no local ® para el lazo ligeramente desplazado

I que toma la forma

O = |0 Bys(®) 2" (a() A7, (al@) A% (0() 1 (0(2) - (5127

De aqui, encontramos que las etiquetas de las clases HDV se transforman bajo trans-

formaciones conformes especiales como

a® — ¢ ,
b o= b —2a%w,, (5.128)
P s P 49 (waaﬁ'y +wPa + w'ya"‘ﬁ) ,

d*? — d* +2w?a™ + 4 (v w,ad” — w’w,a®) — 2 (W’ — W) + 2w, .

Concluimos que la accién del grupo conforme es lineal en las operadores HDV no
locales. Esto es necesario para respetar las reglas de fusion y mantener invariantes los
conmutadores (4.55). También, esta en perfecto acuerdo con los comentarios generales
realizados en las secciones anteriores .

Como mencionamos en los capitulos 3 y 4 el graviton de Einstein en D = 4 presenta,
ademds del grupo conforme, una simetria de dualidad U(1). Podemos ver claramente
dicha simetria como una simetria de las de las reglas de fusién y conmutadores (4.55)
de los operadores no locales. Especificamente, vemos que corresponde a una rotacién

de Ry su dual R* como en (4.61), es decir de la forma

<R) . (c?s () —sin (0)) (R) . (5.129)
R* sin (0)  cos (0) R*

Utilizando las expresiones anteriores encontramos que esta transformacion actia sobre

las etiquetas de las clases HDV como

a — cos(f)a—sin(d)a*, d" — cos(f)d* —sin(f)d, (5.130)
b — cos(0)b+sin(f)c*, ¢ — cos(f)c" —sin(0)b. (5.131)

Por lo tanto, el grupo completo de simetrias globales que actiian sobre los sectores no
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locales es el grupo conforme maés el grupo de dualidad. Su algebra de Lie es SO(5,1) x
U(1), con 16 generadores. Hemos verificado mediante calculo explicito que las érbitas
genéricas del grupo completo de simetrias son 16 dimensionales. Los 4 casimires del
grupo SO(5,1) x U(1) deben etiquetar las 4 coordenadas restantes de la variedad que

definen 20 las clases HDV. Por ejemplo, podemos escribir el casimir cuadratico como
a-d+b-b+c"-c". (5.132)

Sin embargo, como era de esperar, hay puntos especiales en la variedad asociada a
las etiquetas de clase con grupos estabilizadores no triviales. La dimension de estas
érbitas es la dimensién del cociente de SO(5,1) x U(1) por el grupo estabilizador. En
resumen, todos estos resultados para el caso del graviton estan en perfecto acuerdo con
la discusion general realizada en las secciones anteriores.

Como mencionamos, la construccién de operadores de twist que implementan las
transformaciones conformes de grupo en el tensor de curvatura se puede hacer, a nivel
abstracto, mediante la construccion estandar de la split property, dando lugar a twists
aditivos o completos. Mas explicitamente, para el caso de las traslaciones espaciales,
puede construirse una torsién no invariante gauge utilizando la componente t% del

tensor de energia-momento de Belifante, o simplemente
p=est | p= / Pz 70k . (5.133)
R

Donde los h;; son los campos dindmicos de los gravitones definidos sobre una superficie
de Cauchy que contiene la regiéon R, y m; son los momentos candnicos (3.14) que

obedecen las reglas de cuantizacién (3.15)

[hij(z), Wkl(y)] = (5?5; + 525;?) iz —y). (5.134)

N | =

Vemos que operador P; realiza traslaciones espaciales dentro de R sobre las variables
canonicas y los operadores invariantes gauge como era de esperar. Pero como podriamos
haber anticipado, a partir de la discusion del campo de Maxwell, dado que los difeo-
morfismos linealizados actian sobre los campos dinamicos de los gravitones siguiendo
(3.8) como

Ohij(x) = 9,&;(x) + 0;6(x),  omi(x) = (0" — 690%)&(x) | (5.135)

el operador de twist propuesto (5.133) no es invariante gauge. Sin embargo, como en el
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caso de Maxwell, podemos calcular su variacion simplemente como término de borde

0P’ = / do [20pE0’ O"E" — 2000 O&" + 21D (5.136)
OR

+ &O'PRY, — 0D RS, — L0k W + 030 R

Por lo tanto, deberia ser posible hacer este twist invariante de gauge mediante la
adiciéon de un término de borde que cancele la transformacion gauge. Si R contiene
lazos no contractibles, esta modificacién transformara el twist en un operador no local,
consistente con el hecho de que no hay un tensor de energia-momento bien definido
para el gravitén. Equivalentemente, esta modificacién contendra los propios operadores
no locales del anillo en su construccién. Ademas, podriamos abordar la construccién
del twist aditivo mediante un procedimiento similar de fijacién de gauge, como hicimos
para el par de campos de Maxwell. Sin embargo, no proseguiremos con esta construccion

por lo que resta de esta tesis.

5.4. Teorema Weinberg-Witten

Uno de los principales resultados de este capitulo es que la existencia de una si-
metria generalizada que no es invariante bajo una simetria global continua implica que
la simetria global no tiene corriente. En esta secciéon mostramos céomo este resultado
contiene el teorema de Weinberg-Witten [17], y cémo expresa manifiestamente las obs-
trucciones topoldgicas detras de él. Esta nueva comprension nos permitira hacer varias
generalizaciones.

Recordemos que el teorema de Weinberg-Witten [17] establece que para QFTs en

D = 4 dimensiones espacio-temporales:

(a) las particulas sin masa de helicidad A > 1 no pueden llevar una carga global

asociada a una corriente conservada,

(b) una teorfa con particulas sin masa de helicidad A > 1 no admite un tensor de

energia-momento .

Realizamos en el apéndice B una descripcién de la prueba original del teorema en
termino de estados asintéticos de una particula. A continuacion mostraremos como
derivarlo a partir delos argumentos de QFT local presentados en la seccion 5.1.

La conexion del teorema de Weinberg-Witten con los resultados de este capitulo
surge de dos hechos. En primer lugar, las teorias libres de particulas sin masa con
h > 1en D = 4 tienen simetrias generalizadas de tipo 1-forma (simetrias generalizadas
asociadas con regiones que contienen lazos no contractibles). En segundo lugar, para las

teorfas libres de particulas sin masa con h > 3/2 los operadores no locales asociados
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con la simetria generalizada 1-forma llevan indices Poincaré. Anteriormente hemos
analizado explicitamente los casos de h = 1 y h = 2. Para helicidades enteras mayores
en D = 4, tenemos la teoria de un campo conservado R, 1,)...(up,v,) CON Una simetria de
diagrama de Young de 2 x h para los indices. Este campo da lugar a diferentes 2-formas
conservadas de forma analoga al tensor de Riemann para h = 2. Lo més importante
es que estas formas conservadas estan etiquetadas por clases cargadas bajo la simetria
de Poincaré. Los espines semienteros también dan lugar a 2-formas conservadas. Por
ejemplo, podemos describir la teoria de h = 3/2 usando el campo de gauge espinor-
vector de Rarita-Schwinger ¢ [166—168]. El espacio de fases invariante gauge esta
generado exclusivamente por la 2-forma espinorial 9,9, — d,¢; y su conjugado [169,
|. Esta 2-forma genera sectores HDV asociados a anillos etiquetados por espinores
constantes, y por lo tanto cargados bajo la simetria de conforme de la teorfa.?°

Por tanto, todas estas simetrias globales, internas para h > 1 o Poincaré para h > 1,
bajo las cuales estan cargadas las particulas sin masa no pueden ser generadas por una
corriente. Deducimos esto de nuestro resultado genérico, dada la existencia de simetrias
generalizadas de 1-forma en estas teorias que estan cargadas bajo la simetria global.
Este es el teorema de Weinberg-Witten. Desde el punto de vista actual, dicho teorema
se basa en las obstrucciones topoldgicas que aparecen cuando se intenta cargar una
simetria 1-forma con una simetria O-forma.

Observamos que no suponemos que la teoria sea libre ni que tenga una simetria
generalizada 1-forma exacta. Sin embargo, suponemos que la simetria global es exacta,
como en el teorema de Weinberg Witten. Por ejemplo, las particulas sin masa en el
teorema de Weinberg-Witten pueden no conducir a una simetria generalizada exacta
en la teoria completa, ya que podria haber cargas pesadas rompiendo los operadores
no locales a energias suficientemente altas, donde la teoria se vuelve interactuante. Sin
embargo, el limite IR asintético de la teoria es libre, ya que es necesario para definir
los estados de entrada y salida y determinar que tenemos una particula sin masa en el
espectro. Por lo tanto, en el IR estas particulas muestran las simetrias generalizadas
antes mencionadas. Por otro lado, la corriente, al estar asociada a una simetria global
exacta, tiene que generar los twists a todas las escalas. Puesto que la simetria global
estd no trivialmente presente en la teoria IR, la corriente también tiene que formar

parte de la teoria IR. Como hemos visto, esto no es posible.

5.4.1. Generalizaciones

La primera generalizacién que se desprende del presente planteamiento se refiere

a los campos sin masa de espin superior en dimensiones superiores. De nuevo, es-

20 Andlogamente a la discusién para el gravitén en el capitulo 3, la teorfa generada por Oy — Oty
es una CFT libre con dicha 2-forma actuando como campo primario de espin 3/2 y A =5/2 [171].
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tas particulas sin masa no pueden estar cargadas bajo un grupo de simetria continuo
implementado por una corriente de Noether. Para el caso de gravitones una generali-
zacién previa en esta direccién puede encontrarse en [172] con argumentos similares a
los originales. En este caso generalizacion aplica a todo espin y se debe a que todas
estas particulas presentan diferentes tipos de simetrias generalizadas, como simetrias
k-forma, y éstas no pueden cargarse bajo una simetria generada por una corriente local.

Observamos que las particulas sin masa en dimensiones superiores se caracterizan
por representaciones de la parte semi-simple SO(D — 1) del little group. Los campos se
clasifican por representaciones del grupo de Lorentz SO(D—1,1). El problema de clasi-
ficar qué particulas sin masa pueden caber dentro de un tipo de campo dado se resolvio
recientemente en [173, |. La solucién es que una particula con una representacién
del little group SO(D — 1), caracterizada por un cierto Young-tableaux, puede caber
minimamente en un campo que se transforma bajo el grupo de Lorentz SO(D — 1,1)
en una representacion irreducible caracterizada por un Young-tableaux dado por la
adicién de otra fila (primera fila). Entonces, cualquier particula bosénica no escalar
dard lugar, como minimo, a una simetria generalizada k-forma con k la longitud de la
columna mayor en el diagrama de Young SO(D — 1). Las simetrias globales, bajo las
cuales se cargan este tipo de particulas, no pueden tener corriente. Si el diagrama de
Young SO(D — 1) tiene més de una columna, entonces las etiquetas de clase no locales
tendran indices de Lorentz, y las teorias que describen este tipo de particulas sin masa
no pueden tener un tensor energia-momento.

La segunda generalizacién es que, en este lenguaje, podemos deshacernos de cual-
quier suposicion adicional acerca del espectro de la teoria, alcanzando asi una afir-
macion valida para QFTs o CFTs interactuantes. Supongamos que una QFT con-
tiene un campo F' invariante gauge k-forma, cerrado y “fisicamente” no exacto, con
1 <k < D — 2. Esto significa que dF' = 0, F' # dA, para cualquier campo de (k — 1)-
forma invariante del gauge A. En cualquier teoria de este tipo, si F' estd cargado bajo
un grupo de simetria continuo GG, no puede haber una corriente para G. La razon es
que tal forma cerrada, pero no exacta, conduce a una simetria generalizada (D —k—1)-
forma. Esto se debe a que al integrar F' en una superficie espacial abierta p-dimensional
da lugar a un operador que depende sélo del borde (k — 1)-dimensional. Cambiando
ligeramente la superficie?’ de integracién podemos demostrar que conmuta con ope-
radores locales espacialmente separados del borde. Pero este flujo generalizado no es
un operador aditivo en la frontera ya que la forma cerrada no es exacta en el algebra
fisica invariante de gauge. La carga de F' bajo la simetria global conduce a una simetria
generalizada cargada que no admite una corriente como se deduce de nuestro resultado

general.

21Como discutimos en la seccién 5.3.4, la transportabilidad es automaética en este escenario.
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El caso de k = D — 1 (simetria 0-forma) es un poco diferente porque conduce a
operadores de twist integrando la (D — 1)-forma sobre una superficie espacial (D — 1)-
dimensional. Esto no conduce automaticamente a una simetria generalizada en la QFT
local en el sentido revisado anteriormente. La razén es que la superficie de integracion
espacial (D — 1)—dimensional sélo puede desplazarse en el tiempo. Por tanto, no se
garantiza que existan operadores locales no cargados bajo el twist. En otras palabras,
el orbifold generado por esta simetria puede estar simplemente vacio si todos los opera-
dores estan cargados. Volveremos a enfrentarnos a esta cuestién similar en el capitulo
8, al comparar estas ideas con el teorema de Coleman-Mandula. En cualquier caso, si
el orbifold no es trivial, y los twists estan cargados bajo una simetria global continua G
(posiblemente una simetria del espacio-tiempo), no puede haber corriente de Noether
en la teoria del orbifold que genera G.

Como caso particular de estas generalizaciones podemos elegir que el grupo de
simetria continua sea el propio grupo de Poincare. En este caso, si la QFT tiene un
tensor invariante gauge v(s,...s;)ay.a;, donde 1 < p < D — 2, que es cerrado para los
primeros p indices

6(sk+1v(51...5k))a1...al =0 y (5.137)

y no es la derivada exterior de una forma invariante gauge a(s,...s, ;)a;.-;» €0tonces la
QFT en cuestién no puede tener un tensor energia-momento si/ > 1. Noétese que indices
a; pueden tanto espinoriales como de Lorentz. Es decir, en términos més generales,
cualquier operador topolégico (no necesariamente generado por un campo k-forma).
cargado ante un grupo de simetria continuo GG prohibe la existencia de una corriente
para G.

Otra generalizacién se refiere a simetrias globales discretas (no continuas) G. Aqui,
la no existencia de una corriente local se sustituye por la no existencia de twists aditivos
y concatenables. Las restricciones que podrian surgir en estas teorias, debido a esta
obstruccién, son objeto de un estudio futuro y no se seguirdan desarrollando en esta
tesis.

La ultima generalizacién se refiere a la QFTs no relativista. Muchas de las herra-
mientas utilizadas para el enfoque local de las simetrias generalizadas no se limitan
unicamente a las QFTs relativistas. En particular, esperamos que por motivos bas-
tante generales, las simetrias generalizadas cargadas bajo simetrias globales continuas
prohiban la existencia de corrientes locales conservadas asociadas. Si la simetria global
es discreta, esta condicion prohibira la existencia de twists concatenables. Este resul-
tado podria ser interesante para sistemas de materia condensada. También reduce el
nimero de loop-holes respecto a la aplicacion del teorema de Weinberg-Witten en el
contexto de la gravedad cuantica. En este contexto, el teorema de Weinberg-Witten

se entiende como un obstaculo para disponer de un modelo de gravedad puramente
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QFT, con un gravitéon IR. Una fuente obvia de loop-holes que se ha explotado es la
necesidad de simetria relativista en el UV. Aqui observamos que incluso si la QFT UV
no es relativista, estd muy restringida. En particular, no puede tener corrientes que
generen ningun tipo de simetria espacio-temporal, y no puede ser discreta con twists

concatenables.

5.5. Discusion del capitulo

En este capitulo hemos demostrado que las simetrias globales continuas que no
dejan invariante todas las simetrias generalizadas no pueden ser generadas por una
corriente local conservada. Ademas, en estos escenarios, la simetria generalizada debe
estar asociada a un continuo de clases HDV duales no locales.

Estos resultados se han derivado de un cuidadoso analisis de las condiciones pa-
ra que una simetria generalizada no sea invariante bajo una global. En primer lugar,
observamos que las simetrias globales actian como una transformaciéon de punto en
el espacio de clases HDV no locales. En segundo lugar, y lo que es méas importante,
desarrollamos una clasificacién més exhaustiva de los operadores de twist en QFT. Des-
cubrimos que los twists pueden ser aditivos (0 no) y completos (o no), y que los twists
aditivos en regiones mas pequenas podrian no producir twists para regiones mas gran-
des. Esto nos sugiere el concepto de concatenabilidad de twists, el cual argumentamos
como crucial para entender el teorema de Noether en QFT.

Hemos apoyado la discusion abstracta con varios ejemplos de simetrias generali-
zadas cargadas bajo una global en donde la simetria global es continua y por tanto
sin corriente. En todos los casos analizados, la simetria generalizada es no compacta,
es decir, esta asociada un grupo no compacto de clases HDV. Ademas, los ejemplos
analizados, siempre correspondieron a campos libres sin masa. En el capitulo 6 vere-
mos que esto es una condicion necesaria para teorias UV completas con una simetria
generalizada no compacta.

Sin embargo, notamos que las simetrias generalizadas cargadas ante un grupo con-
tinuo no necesariamente se corresponden con un grupo no compacto de clases HDV.
En esta direccion, hemos iniciando una clasificacion de las posibles estructuras en las
que tenemos clases HDV no invariantes bajo un grupo uniparamétrico. Vimos que
cuando existe mas de un tipo de sectores no locales asociados a una dada regiéon pode-
mos tener un continuo compacto de clases HDV. En estos casos podemos tener teorias
interactuantes. Un ejemplo es el de la simetrias 1-forma cargadas ante la accién de
la simetria quiral en presencia de la anomalia ABJ. Estudiaremos este ejemplo para
diversos modelos en el capitulo 7.

Por 1ultimo, los resultados de este capitulo, por un lado, pueden ser usados pa-

ra re-derivar teorema de Weinberg-Witten como un caso especial, generalizandolo en
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varias direcciones no triviales. Por otro, parecen proporcionar una caracterizacion po-
tencialmente completa del espacio de QFTs que muestra una violacién de la versién
fuerte del teorema de Noether. En esta direccién, probamos que la inexistencia de clases
HDV cargadas ante una dada simetria implica que podemos construir twists aditivos,
completos y concatenables que implementen dicha simetria. Pero, es incierto bajo que
condiciones estos twits pueden converger a una corriente de Noether. En el capitulo
8, estudiaremos esto recogiendo algunas de estas ideas combinadas con que desarrolla-
remos de capitulos siguientes y propondremos conjeturas interesantes para avanzar en

esta direccion.



Capitulo 6

Cargas en la completacion UV de

una electrodinamica Neutra

El objetivo principal de este capitulo es demostrar una conjetura: una teoria in-
variante de Poincaré UV completa con simetrias generalizadas no compactas tiene
necesariamente un sector libre y no masivo.

En primer lugar, esta conjetura viene sugerida por nuestro fracaso (durante los
capitulos 3, 4 y 5) en la construccién de ejemplos interactuantes. Pero hay mas indicios.
En particular, ya se ha probado que una teoria conforme en D = 4 con una simetria
no compacta 1-forma tiene que ser libre [163]. En este capitulo estudiaremos el caso de
simetrias k-forma no compactas en D dimensiones sin asumir la simetria conforme.

Esta idea es naturalmente interesante a la luz del capitulo 5, debido a que una
simetria generalizada cargada ante un grupo continuo presenta un continuo de clases
HDV duales. Més aun, si solamente podemos asociar un tipo de operador no local a una
dada region, necesariamente tendremos un continuo no compacto de clases HDV. En
este sentido, las ideas que desarrollaremos en este capitulo nos ayudaran a comprender
el espacio de QFTs que violan la version fuerte del teorema de Noether. Sin embargo,
es importante resaltar que la conjetura en cuestiéon solo se refiere a las simetrias gene-
ralizadas. Es decir, no requerimos que estas estén cargadas bajo otra simetria global.

Otra motivacién importante es que que esta conjetura conlleva profundas implica-
ciones dinamicas. En particular, veremos que conecta la renormalizabilidad de ciertas
teorias con una pregunta sobre sus simetrias y, en este sentido, describe nuevas fuentes
de anomalias cudnticas. A continuacion, ilustraremos esta nocién en teorias del campo
electromagnético con interacciones neutras.

Estas teorias estan dadas por un Lagrangiano interactuante que podemos escribir
sin implicar el potencial vector. Mas especificamente, incluimos teorias de “Electro-

dindmica no lineal”! siendo ejemplos particularmente interesantes las teorfas de Born-

Véase [175—178] para literatura reciente sobre el tema y [179] para un resumen actualizado.
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Infeld [180], la mds reciente “ModMax” [181-183] y las teorfas del electromagnetismo
cuasi-topoldgico [184, ]. También, englobamos dentro del concepto “electrodindmica
neutra” acoplamientos magnéticos con campos neutros. Para ser concretos, comenza-

mos proponiendo el lagrangiano

L= —i Fly ™ 4 1(ir"8), — m)ip — % (F?)2 - % o b Y. (6.)
Estos acoplamientos no son renormalizables en ninguna dimensién D > 2, y es sencillo
darse cuenta de que no podemos encontrar un acoplamiento neutro renormalizable
para el campo electromagnético. En el modelo estandar, estos términos aparecen como
términos efectivos de baja energfa. El acoplamiento ju; es del orden (e/m.)?*, mientras
que ji3 es del orden e/my para un neutrén y e® m; /M2 para un neutrino, donde my es
la masa del neutrén, y m; representa las masas de los leptones cargados. Estos términos

/

. - —1/4 _ _ o .
neutros tienen escalas caracteristicas p; '~y i5 * donde se rompe la descripcion efectiva.

En el modelo estandar estos términos se generan integrando los campos cargados. De

/4 y pi5*, donde

hecho, las particulas cargadas aparecen a escalas mas pequenas que ul_l
el modelo efectivo predice que ocurre nueva fisica.

Es evidente entonces que nos encontramos con problemas para construir una elec-
trodinamica puramente neutra desde el punto de vista perturbativo. La cuestion que
queremos abordar es si se puede llegar a la misma conclusion a nivel no perturbativo:
Jexiste una “electrodinamica neutra” UV completa o, a la inversa, cualquier teoria
interactuante UV completa para el fotén contiene cargas?

Para abordar este problema en toda su generalidad necesitamos hacer més precisa
la afirmacién de que “no hay cargas”. Los operadores cargados no existen porque no
son invariantes de gauge, y la existencia de particulas cargadas requiere entender el
espectro de la teoria. Elegimos un camino diferente. El modelo (6.1), tomado a nivel

clasico, tiene dos campos diferentes descriptos por 2-formas cerradas

F/ux ) dF — 0, (62)
G = Euvas (FP(1 4y F2) + pap 0P 9) dG =0. (6.3)

El campo G es cerrado debido a las ecuaciones de movimiento. El hecho de que existan
dos campos F'y G dados por 2-formas cerradas es lo que interpretamos como la ausencia
de cargas en el modelo. De hecho, las cargas magnéticas llevarian a dF' # 0 y las cargas
eléctricas a la imposibilidad de encontrar un campo G tal que dG = 0. Esto es una
caracteristica comin a todos los modelos en cuestién. La razon es evidente cuando

escribimos la ecuacion de movimiento de la forma habitual 0, F** = J*. Luego, la
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Unica forma de obtener una 2-forma cerrada G seria que
JH = 0w (6.4)

para algin otro campo 2-forma invariante de gauge w*”. La forma particular (6.4) de
la corriente es precisamente la que obtenemos en todos los modelos de electrodinamica
neutra, pero no es el caso de la QED habitual. De forma mas fisica, (6.4) nos dice que
existe un operador de flujo eléctrico re-definido como integral de G = x(F + w) sobre
superficies bidimensionales, que no detecta ninguna carga a través de su ley de Gauss.

En estos términos, podemos reformular lo que tiene de especial cualquier modelo
de electrodindmica neutra diciendo que posee una simetria generalizada no compacta.
Esto se refleja en la existencia de los generadores infinitesimales dados por los dos
campos cerrados duales F' 'y G. En este capitulo, demostraremos que F' y G, son
generadores de las simetrias de forma duales, y que podemos elegirlos como campos
duales libres. Esto significa que si los campos F,G de la teoria efectiva interactian,
la simetria generalizada tiene que romperse en la completacién UV a un grupo mas
pequeno, lo que implica la existencia de cargas eléctricas y/o magnéticas.

Otro ejemplo similar es la teoria de baja energia de un bosén de Goldstone. En un

modelo de este tipo sélo podemos tener acoplamientos con derivadas de la forma
1 9 A
L= 3 (09) + L(09) . (6.5)
En este caso, podemos escribir las formas duales como

oL
9(0u0)

Fopg s = € (8“¢ + ) , G, =0,9. (6.6)
Ambos campos son cerrados dF = dG = 0 y la teoria efectiva tiene simetrias de forma
no compactas. De nuevo, todos los acoplamientos posibles son no renormalizables ya
que la dimensién de d,¢ es D/2 y deben ir acompafnados en el Lagrangiano por un
campo vectorial de dimensién menor que D/2, lo cual no es posible.

El plan del capitulo es el siguiente. En la proxima seccion 6.1, describiremos las
propiedades de los dos generadores de simetrias de forma no compacta y mostraremos
como dicha simetria puede definirse a nivel clasico. En la secciéon 6.2, analizaremos la
forma de las funciones de dos puntos mas generales de los campos involucrados, tenien-
do en cuenta las simetrias (o antisimetrias) requeridas y las restricciones de positividad.
Luego, en la seccién 6.3, estudiaremos aspectos de simetrias generalizadas en teorias
invariantes de escala. En particular, probaremos que en tal caso las corrientes cerradas
que generan una simetria de forma no compacta deben ser libres y sin masa. En esta

linea, la seccién 6.4 contiene la prueba principal. En ella extenderemos los resultados
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obtenidos para teorias invariantes de escala a todas las QFTs. Esto requerira el estudio
de los puntos fijos UV de la teoria, y especialmente las restricciones que imponen sobre
la QFT completa. Por ultimo, la seccién 6.5 discutiremos el resultado de este capitulo
con una perspectiva ligeramente diferente. Como las simetrias generalizadas no com-
pactas de los modelos clasicos interactuantes no pueden implementarse cuanticamente,

podemos interpretar esto como una anomalia.

6.1. Simetrias de forma no compactas

En esta seccién, para evitar ambigiiedades, desarrollaremos exactamente que en-
tendemos por simetrias de forma no compactas tanto a nivel clasico como cuantico.
Comenzamos especificando que suposiciones necesitamos para entender los operadores
no locales, definidos partir corrientes de forma conservadas, como generadores de una
simetria de forma no compacta. Desde el punto de vista de AQFT, repasaremos en
que sentido estos operadores producen violaciones de dualidad de Haag para ciertas
regiones. Luego, estudiamos como puede implementarse un escenario analogo en una
teorfa cldsica de campos a través del corchete de Peierls/Poisson. Terminamos revi-
sando varios ejemplos de simetrias de forma no compactas a nivel clasico en teorias
interactuantes. Si bien la definicién de la simetria de forma no compacta clasica no es
necesaria para el desarrollo del capitulo, ni para la prueba de la conjetura que mencio-
namos, es necesario comprender en que sentido y bajo que condiciones dichas simetrias

estan bien definidas.

6.1.1. Caracteristicas de una simetria de forma no compacta

Las simetrias de forma no compactas corresponden a la existencia de un campo F
real k-forma cerrado (dF = 0), y un campo G real ¢g-forma cerrado (dG = 0), con
D=k+q,y1<kqg<D—1.Por definicién y sin perdida de generalidad tomamos
k > q. Suponemos que tanto F' como G son campos de Wightmann fisicos (invariantes

gauge) de manera que podemos definir apropiadamente los flujos

@F:/ P @G:/ G (6.7)
X ZG

sobre superficies espaciales k-dimensionales >, y superficies g-dimensionales Y res-
pectivamente. Estos flujos, dependen sélo de los bordes I'r = 0Xp, I'¢ = 0%, v no de
las superficies particulares X r y Y. Por simplicidad, podemos pensar que Xr y X se
encuentran en z° = 0.

Si k< D—1, tanto ®r como 5 conmutan con cualquier operador de campo local

en cualquier punto x espacialmente separado de I'r y I'¢ respectivamente. Esto se debe
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a que podemos deformar las superficies Xz y ¥ de forma que queden espacialmente
separadas de cualquier punto x, sin cambiar el operador de flujo (Véase la figura 3.1
para el caso de k, ¢ = 2). En particular, los flujos conmutan con F(x) y G(x) para
x espacialmente separado de los respectivos bordes. Si £k = D — 1 la conmutatividad
de ®r con operadores locales espacialmente separados del borde no puede implicarse
porque solo podemos deformar la superficie X en una direccion temporal. En este caso,
suponemos ademds que ¢ conmuta con F'(z) y G(x) para x espacialmente separados
de I'p. En este caso k = D — 1 el flujo de F' sobre todo el espacio da un generador
de un grupo global de simetria uniparametrico. Entonces, el requisito adicional que
necesitamos para este caso es que F'y GG sean campos no cargados con respecto a
esta simetria. Observamos que, sin pérdida de generalidad, podemos tomar el espacio
de Hilbert como el generado por F,G actuando sobre el vacio de tal forma que estos
campos actien irreduciblemente.

Tomemos I'r y I'¢; con la topologia de S¥~! y S9!y simplemente enlazados entre
si en el plano espacial 2° = 0. Estas representan los bordes de regiones tipo disco
Y, Xa, de dimension k y q respectivamente. Una tltima suposicién que consideramos
implicada en la idea de las simetrias de forma no compactas es que los flujos ®r y ®q
no conmutan entre si en este caso de bordes simplemente enlazados. Esto implica que
ninguno de los campos de forma es un campo de forma fisicamente exacto. Es decir, no
podemos escribirlos como F' = dF, o G = dG, para campos F, G invariantes de gauge.
De lo contrario ®r o &5 podrian escribirse como integrales de campos locales en I'p y
I'c v los respectivos flujos conmutarian.? Vimos extensivamente un ejemplo donde esto
sucede: el caso del gravitéon en D > 4 durante el capitulo 4.

Podemos ver una primera simplificacion en este escenario de la siguiente manera. El
conmutador [, D;| no cambia si deformamos I'r o I'¢ manteniéndolos espacialmente
separados y simplemente enlazados. La razén es que el cambio en el flujo @ bajo tal
deformacién de I' es un flujo en una superficie entre el borde I' y su deformacién
I't.. Entonces, es un flujo de G en una regién espacialmente separada de I'r, y conmuta
con ®r. Lo mismo ocurre si deformamos I'p.

Como consecuencia de la idea anterior, podemos desplazar ambas superficies juntas
hasta el infinito manteniéndolas unidas, y el conmutador no puede cambiar. Esto impli-
ca que el conmutador de los flujos conmuta con cualquier operador local, y por tanto
es un numero, que también representa un invariante topoldgico para el par I'p, ['g.

Podemos normalizarlo para que sea

[P, D] =i (6.8)

2Una excepcién es el caso de simetrias globales k = D — 1, ¢ = 1, donde G podria ser de la forma
d¢, para un campo escalar ¢. Sin embargo, para tener flujos no conmutativos ¢ debe ser un operador
cargado bajo la simetria global, y por tanto cae fuera de las dlgebras neutras generadas por G y F.
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En esta situacion la teoria generada por los campos F, G contiene violaciones de la
dualidad de Haag. Para ver esto mas claramente, tomemos regiones espacio-temporales
causalmente complementarias Rr v Rg, tales que 'y C Rp vy I'¢ C Rg. Entonces,
podemos asignar a estas regiones dlgebras de von Neumann A(Rp) y A(Rq) generadas
por ambos campos F, G en Rp y Rg. Sin embargo, estas dlgebras no incluyen los grupos
uniparamétricos de unitarios a(q) = €7 b(g) = €%, q,g € R. Estos estan formados
por exponenciales de versiones con smearing de los flujos @z, &5 cuyos bordes tienen
soporte compacto dentro de las respectivas regiones. Para ver esto notamos que por
construccion a(q) conmuta con A(Rg) y b(g) conmuta con A(Rp). Entonces, el dlgebra
A(Rp) no puede contener a(q) porque todos los elementos de esta dlgebra conmutan
con el flujo &5 mientras que a(g) no. Del mismo modo, b(g) no estd contenida en

A(Rg). Asi que tenemos
A(Rrp) € A(Rg)' = Amax(Rr), A(Ra) € A(Rp)' = Amax(Rq) - (6.9)

Es decir, (6.9) implica que no hay dualidad de Haag para estas regiones. Los operadores
a(q), b(g), son operadores no locales en sus respectivas regiones en el sentido de que
no pueden formarse localmente en estas regiones, pero conmutan con los operadores
locales fuera de ellas. Los campos de forma generan los grupos continuos duales de
operadores de simetria no local de forma andloga a como una corriente de Noether
genera una simetria global continua. Las cargas ¢, g, etiquetan las diferentes clases no
locales de operadores. Los miembros de la misma clase no local se diferencian por la
acciéon de los operadores locales en las regiones. Los operadores no locales a(q),b(g)
son duales entre si en el sentido de que se basan en regiones complementarias y no
conmutan entre si. Ambos conjuntos de operadores no locales duales forman grupos
continuos no compactos. Tomamos este escenario como definicién de una simetria de
forma no compacta.

La relacién (6.8) elimina la posibilidad de que cualquiera de los grupos duales
sea un grupo U(1) compacto, y da dos grupos duales no compactos R de simetrias
generalizadas.? Las relaciones de conmutacién para los operadores no locales se fijan
por (6.8) a

a(g) b(g) = e~ b(g) a(q) . (6.10)

3Si una de las simetrfas duales fuera U(1) la dual se verfa forzada a ser un grupo Z no continuo,
y sus operadores no locales no podrian ser generados por un campo de forma de manera andloga a
como una simetria global discreta no es generada por una corriente. Veremos ejemplos de este tipo en
el capitulo siguiente.



6.1 Simetrias de forma no compactas 169

6.1.2. Simetrias de forma no compactas clasicas

Siguiendo con las ideas basicas necesarias para este capitulo definimos simetrias
de forma no compactas en la teoria de campos clasica y mostramos que no surgen
contradicciones para modelos interactuantes. Claramente, estas simetrias son anémalas
en el sentido de que estos modelos no pueden existir a nivel cuantico, pero, por ahora
procedemos.

Nuestra definicién de simetria de forma requiere el analisis de la localizacion de los
observables y de las relaciones de conmutacién. En la teoria clasica, representamos los
observables mediante funciones en el espacio de fases y las relaciones de conmutacion
mediante corchetes de Poisson. En este sentido, quedamos obligados a trabajar en un
formalismo candnico, pero también necesitamos una descripcién espacio-temporal para
localizar los observables. Podemos conseguir esto mediante el formalismo covariante
del espacio de fases [186—185].

Nuestro punto de partida es una accién S dada por un Lagrangiano local en términos
de campos. En la teoria podemos tener simetrias gauge pero la accién es invariante
gauge. Ademas, en el Lagrangiano podemos incluir términos de derivadas superiores, y
tenemos la posibilidad de tratar con campos fermionicos que anticonmutan [187]. Para
proceder, seguimos la notaciéon compacta de de Witt [188] y llamamos ¢; a los campos,
donde el indice 7 incluye coordenadas del espacio-tiempo. La variaciéon de la accién se

anula en las soluciones de las ecuaciones de movimiento, y podemos escribirla como

58 .
55 = Si=0. (6.11)

Nos referimos con el simbolo = a una ecuacion valida sobre las soluciones de las ecua-

ciones de movimiento.

Consideremos un funcional invariante gauge A de los campos con soporte compacto
sup(A) en el espacio-tiempo. Dicho soporte es el conjunto de puntos tales que el funcio-
nal depende de los valores del campo en esos puntos. Este funcional tiene dos papeles
diferentes. En primer lugar, podemos utilizarlo para perturbar la accién. En segundo
lugar, si evaluamos sobre las soluciones de las ecuaciones de movimiento le podemos
dar al funcional A la interpretacién de un elemento del espacio de fases de la teoria.
Dado un elemento del espacio de fases de la teoria A como un funcional invariante gau-
ge de las soluciones de las ecuaciones de movimiento, podemos producir un funcional
invariante gauge sobre los campos que es Unico excepto por términos proporcionales
a las propias ecuaciones de movimiento. Esta ambigiiedad no sera relevante en lo que
sigue.

Si perturbamos la acciéon con S — S + € A, el cambio en las soluciones obedece a
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orden lineal en e las ecuaciones
Sijoap;=—A;. (6.12)

donde S ;; es un operador diferencial local que depende de los campos si el Lagrangiano
no es cuadratico. La solucién de (6.12) no es tnica. Hay soluciones de la ecuacién
homogénea S ;; 6¢;=0 porque son transformaciones gauge infinitesimales alrededor de
los campos de fondo (soluciones de las ecuaciones de movimiento), y también hay
soluciones de la ecuacién homogénea porque hay perturbaciones fisicas linealizadas d¢;
que se propagan del pasado al futuro. Podemos considerar soluciones especiales que

obedecen las condiciones de contorno retardadas y adelantadas
65¢; =0 para z € I*(sup(A)), = ¢ sup(A), (6.13)

donde I*(X) es el futuro y el pasado de X. Esto no elimina la redundancia gauge pero
la variacion en los observables fisicos invariantes gauge resulta ser también invariante

gauge, definiendo el nuevo elemento del espacio de fases
6% B= B, 5%¢;. (6.14)

Notamos que, dejando a un lado la invariancia gauge, las soluciones adelantadas y
retardadas son tnicas porque la solucién y todas sus derivadas desaparecen en el pasado
o en el futuro.

Recuperamos las relaciones de reciprocidad 6% B = §% A. A partir de ellas, podemos

definir el corchete de Peierls/Poisson [136] siguiendo [188] como
{A/B}=0,B—6B=6,B—05A=6,A-05A. (6.15)

Vemos que este corchete obedece las relaciones usualmente impuestas, incluyendo la
identidad de Jacobi.

Si dos observables estan separados espacialmente tenemos {A, B} = 0. Esto nos
requiere alguna condicion extrae en el caso de lagrangianos de derivada superior, porque
la perturbaciones adelantadas y retardadas se mueven en el campo de fondo de cualquier
solucién de las ecuaciones de movimiento. Por ende, tenemos que comprobar que este
fondo no ensancha los conos de luz en los que se propaga la perturbacion. Esta es una
restriccion de causalidad independiente para la teoria clasica no lineal que tenemos que
asumir. Para los Lagrangianos (6.1) y (6.5) esto fue estudiado en [189]. El resultado
es que las teorias clasicas son causales si los coeficientes de los términos no lineales
satisfacen ciertas restricciones de positividad.

Una vez que tenemos un espacio de fases covariante, podemos definir una simetria
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de forma clasica por analogia con el caso cuantico. Supongamos que tenemos una k-
forma cerrada F' invariante de gauge. Como discutimos en la seccién anterior, un flujo
bp = fEF F' construido con F' conmuta con todos los observables O, que tienen un
soporte topolégicamente trivial, y estan espacialmente separados del borde I'p = 0% f.
Para k = D — 1 tenemos que pedir esta propiedad como condicién independiente. Este
campo de forma produce una simetria de forma sélo cuando F no es la derivada exterior
de una (k — 1)-forma invariante de gauge. En caso contrario ®z puede escribirse como
una integral sobre ['r y no es un operador no local.

Supongamos ahora que tenemos formas k£ y d — k cerradas F'y GG. Tomemos los
elementos de flujo del espacio de fases @, @, sobre superficies con limites ['r y ',
enlazados entre si, y supongamos que los flujos no conmutan. En este caso, obtenemos
automaticamente que representan simetrias de forma porque las formas no pueden ser
exactas en el espacio invariante gauge. Como describimos en la secciéon anterior, si mo-
vemos las fronteras I'r y I'g, manteniéndolas enlazadas y espacialmente separadas, el
corchete de Poisson {A, B} no puede cambiar. Por tanto, podemos deformar los bor-
des manteniéndolos enlazados y manteniendo invariante el conmutador. En particular
podemos alejar I'p y I'¢ juntos. Entonces {A, B} tiene que conmutar con cualquier
elemento del espacio de fases, y tiene que ser un niimero, que podemos normalizar a 1.
Entonces, tenemos una simetria de forma asociada al grupo abeliano no compacto R.

Supongamos que tenemos esta situacion para una teoria donde el Lagrangiano tiene
un término libre que ya muestra la simetria de forma no compacta, y un término inter-
actuante que no rompe esta simetria de forma dual. Para ser concretos, consideremos

simplemente el caso

z;:<—% (F2+-g(ﬁﬂﬁ). (6.16)

Podemos modificar este lagrangiano de manera que

L::—i (FQ+-ﬁ%2(FQV>, (6.17)

donde p(z) depende de las coordenadas, y es constante en una regién A del espacio-
tiempo, y cero suficientemente lejos en el espacio-tiempo. Podemos escribir la ecuacion

de movimiento como

Oy (F*™(1+ p(z) F?)) = 0. (6.18)
De esta forma, recuperamos dos corrientes 2-forma conservadas
F., *(F,(1+p(x)F?). (6.19)

Podemos aplicar el razonamiento anterior para demostrar que los flujos enlazados por

estas dos formas tienen un conmutador constante. En particular, este conmutador pue-
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de evaluarse en el infinito espacial donde p(x) = 0, lo que nos da el mismo conmutador
que en la teoria de Maxwell. El mismo conmutador debe ser valido en la region donde
p(x) = p. Podemos, entonces, tomar el limite donde pu(x) = p en todo el espacio-
tiempo. Vemos que la adicion de términos al Lagrangiano que no contienen cargas, y
que en consecuencia no pueden romper la conservacion de una de las formas cerra-
das, sélo deformaran la expresién de la corriente conservada, y deben mantener fijo el
conmutador. Por lo tanto, estos modelos cldsicos nos exhiben simetrias de forma no
compactas a pesar de ser interactuantes.

Debido al teorema de Groenewold [190] no es posible ningiin mapeo razonable del
espacio de fases clésico a los operadores del espacio de Hilbert que respete la estructura
no lineal y dé una representacién de corchetes de Poisson. Las anomalias aparecen ahi,
y en el caso que nos compete veremos que no existe un modelo cudntico correspondiente
a estos modelos clasicos.

Para finalizar esta seccién, como ya hemos definido las simetrias de forma a nivel cla-
sico y comprendemos donde podemos encontrar problemas a nivel cuantico, estudiemos
mas detenidamente lo que ocurre cuando una de las simetrias es compacta. Pensemos
en el caso de una simetria continua rota que da lugar a un bosén de Goldstone. Para

ser concretos presentamos el lagrangiano

1 * A 2 2\2
L= 5@00)(00) = J(0F = ?) (6.20)

que tiene una simetria U(1) rota. Escribiendo 1 = (v + o) €' tenemos
- 1 2 1 2 2 é 2 2
L= 5 (0o)* + 5 (00)° (v + o) 4(0 +2v0)?. (6.21)

Como consecuencia de las ecuaciones de movimiento, esta teoria se ve como si tuviéra-
mos una simetria no compacta generada por la 1-forma cerrada 0,¢ y la (D — 1)-forma
dual * ((9,¢) (v + 0)?). Sin embargo, ¢ sélo esta definido a excepcién de multiplos de
2m. Ambas corrientes son invariantes bajo el desplazamiento ¢ — ¢ + 27. En la teoria
completa sélo podemos hacer un smearing para e/ *®) @) con J a(x) = n un ntmero
entero. Esto implica que no podemos formar los flujos de d,¢ a lo largo de una recta
con coeficientes arbitrarios.

En la teoria clésica esto significa que sélo se permiten flujos cuantizados y no repre-
senta un campo de forma ordinaria. En la teoria cuantica esto significa que los campos
¢ 0 0,¢ no son campos de Wightman (lo mismo vale para o). En la integral de camino
pueden representarse como campos siempre que también sumemos sobre contribuciones
topoldgicamente no equivalentes para las amplitudes, donde el campo ¢ va a 27n en el
infinito en lugar de a cero. Asi que el Lagrangiano (6.21) no esta describiendo la teoria

de forma completa porque tenemos una prescripcion oculta para la integral de camino
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que debemos que anadir. Sin embargo, vemos que la corriente que se conserva debido

a las ecuaciones de movimiento es simplemente

((@@) (v+ ‘7)2) ~ iy o™ —y* Lﬂﬁ) ) (6.22)

déandonos un buen candidato representar un campo de Wightman.

6.2. Funciones de dos puntos

En esta seccion, volviendo a la configuracién que explicamos en la seccién 6.1.1,
analizamos la forma general las funciones de dos puntos los campos reales F' y G
en cualquier dimension D. Comenzamos con un breve resumen de la notacién que
utilizaremos por el resto del capitulo. Seguimos, con el estudio de todas las estructuras
tensoriales posibles en el espacio de momento. Luego, proporcionamos la expresiéon mas
general para los correladores en la representaciéon de Kallen-Lehmann permitida por
las leyes de conservaciéon de los campos, la conmutatividad espacial y el conmutador
de flujos (6.8). También, analizamos las restricciones de positividad requeridas sobre

las funciones espectrales de Kallen-Lehmann en cada caso.

6.2.1. Biformas y notacién

Podemos describir la estructura tensorial de la funcion de dos puntos de los campos
F' y G mediante biformas. Estas pueden representarse mediante tensores con dos pares
de indices antisimétricos. En este apéndice, estableceremos la notacién para una (k|q)-
biforma T con dos multiindices u,r. Obsérvese que con pu representamos el primer
conjunto de k indices antisimétricos p1, pa, ..., ik, mientras que con v describimos los
siguientes ¢ indices antisimétricos vy, vs, ..., 4. Es decir, podemos escribir

(6.23)

[Tj| ulv = [T} H1p2 .. P |V1V2 Vg

Un buen ejemplo explicito de una biforma es la métrica generalizada n*) introducida
en (4.66). Se trata de una (k|k)-biforma obtenida por la contraccién de dos tensores

antisimétricos Levi-civita de la siguiente manera

-1 D—-1 -1 D—-1
w_ (D7 o (21)

s (D — k)" mguluz---uk

OélmaD_kgljll/Q VROl ap gt (624)
En general, las operaciones habituales de geometria diferencial pueden actuar sobre
cualquiera de los dos conjuntos de indices. Siguiendo la notacién de [131], al escribir
la operacion en el lado izquierdo de 1" denotamos que la operacién actiia sobre los

primeros k indices etiquetados por p. Por ejemplo, el producto en exterior p AT donde
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p® es el vector momento da lugar al (k + 1|g)-bifoma dada por

[p A T] _ L e PATP = L e " P TP1P2Pi

ply N E nu\ap v k" 77/‘1N2~-.U~kuk+1 |apips ...

(6.25)

ViV ... Vg *

Por otro lado, si el operador estd en el lado derecho de T', actiia sobre los segundos
indices ¢ etiquetados por v. En este caso el producto exterior produce la (k,q + 1)-
biforma
1 (g+1) a — 1 (g+1) PLP2 - Pq O
[TAP}MV = any“)a Tl;)p — a77V1V2---Vql/q+1‘,0102---,0(104 Tmuz...yk e qp . (626)

Podemos extender las mismas ideas para otras operaciones. El producto punto actuando

sobre la izquierda p-T produce una (k—1|¢)-biforma mientras que 7"-p da una (k|g—1)-

biforma
[p ’ T]My = pa Ta/i\l’ = pa Tamuz v bk—tlvive vg (6'27)
[T 'p]#\y = Lyfva p* = TH1N2 e plvive v 1 P~ (6'28)
Ademas, el dual de Hodge produce una (D — k|g)-biforma o una (k|D — ¢)-biforma
respectivamente
T _ 1 TP = 1 TP1P2 - Pk
[ * }MV - H Eup L'y = E Epips .. LD kP12 - P Viva ... Vg ) (6'29)
1 1
[T * ]ulv = a Tﬂp Epy = a TM/LQ e pP1LP2 ... Pgq Ep1p2 o pq1V2 o VD g (63())
Con esta normalizacién y la métrica en signatura® (+, — — ...) tenemos que

[##T] = (—1)* DO T]

ulv

[Tx%] = (=1)le D@D 7]

plv

(6.31)

ply? plv”

En este contexto, nos sera 1til definir el operador * que actia en el lado derecho como

[T%] = (-1)9P"9 [T ] (6.32)

plv plv”

6.2.2. Estructuras tensoriales

Cualquiera de las funciones de dos puntos F' y GG es una biforma conservada en cada
indice. En otras palabras, en el espacio de momentos podemos escribir la estructura
genérica de una funcion de Wightman de dos puntos, usando una funcién de Kallen-

Lehmann, de la forma

[ dsote) [ i 060 67 = )€ Plo), (6.3

m)

4Notamos que en este capitulo y los siguientes utilizaremos la métrica de Minkowski en signatura
n = diag(+1, —1, -1, ...) a diferencia de los capitulos anteriores donde usamos n = diag(—1, +1,+1, ...).
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donde usamos notacion recientemente mencionada de manera que el tensor de polari-
zacion P, es una (k|k), (¢|q) o (k|q) biforma segtin el correlador en cuestién. Ademads,

las leyes de conservacién dF, dG = 0 nos requieren que
pANP=0, PAp=0. (6.34)

Utilizando el operador estrella de Hodge *, podemos analizar un problema dual equi-
valente. Si definimos P = *Px, la condicién de conservacién viene dada por p- P =

P -p=0. Esto se debe a que estos dos tensores son proporcionales

spAk() ~pe(er). (6.35)

kD+1 o d % entre

Esto corresponde en el espacio de momento a la identidad 6 = (—1)
la coderivada § (proporcional a la divergencia del tensor) y la derivada exterior d que
actua sobre las formas. Recordamos que 6 6 = 0 como consecuencia de dd = 0.

A continuacion estudiamos todas las estructuras posibles para el tensor de polari-
zacion P. Este tensor debe escribirse en términos de la métrica 7, el momento p y el
tensor de Levi-Civita . En primer lugar, consideramos los tensores construidos utili-
zando sélo la métrica. Comencemos con el caso de (F'F) con (k|k)-biformas de igual
nimero de indices. El caso de (GG) se sigue de manera similar para (g|q)-biformas.
La antisimetria implica que si tenemos una métrica involucrada, sus dos indices deben
pertenecer a los dos conjuntos diferentes de indices p, v, de igual tamano. Entonces,
hay exactamente k tensores métricos en P. Después de antisimetrizar en ambos conjun-
tos de indices, s6lo hay una estructura tensorial posible que podemos obtener de esta
forma. Esta esta dada por un término proporcional a la metrica generalizada (6.24).

Para un polinomio del momento y la métrica, por antisimetria, no podemos incluir
mas de dos potencias de p. Tampoco solamente un momento, porque eso implicaria
que una de las métricas tiene los dos indices en el mismo conjunto antisimétrico. Con
dos vectores momento y la métrica, la inica estructura tensorial posible que contiene
un momento en cada conjunto de indices es

p-n*p. (6.36)
Sin embargo, s6lo una combinacién de (6.24) y (6.36) es cerrada en ambos conjuntos
indices. Puesto que (6.36) es la tinica estructura bi-cerrada, la bi-cerrada para P es su

dual para el orden apropiado, digamos

wp - L ps ~ p ApFTD Ap. (6.37)

Consideremos ahora el correlador (F'G), con indices (k|q) obedeciendo k + ¢ = D.
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Podemos aplicar el andlisis anterior si k = ¢ = D /2 para D par. Si k # ¢ no podemos
formar nada antisimétrico solo con la métrica. Con un momento tenemos para k = ¢+1,
y D =2k — 1 impar,

(k)

n®p~pan®Th (6.38)

Sin embargo, esta estructura sélo es cerrada por un lado pero co-cerrada por el otro, y
no puede aparecer en el correlador.

Ademas, con dos o mas vectores de momento, la antisimetria de nuevo no nos
permite ninguna estructura tensorial construida sélo con la métrica y el momento para
k # q. Sin embargo, podemos considerar estructuras tensoriales que contengan el tensor
de Levi-Civita €. Estas resultan de las anteriores actuando con la estrella de Hodge en
un solo lado. La parte de P, que contiene ¢ tiene que ser bi-cerrada por separado.
Entonces tenemos que ir a través de las estructuras tensoriales anteriores y comprobar
si son cerradas por un lado y co-cerradas por el otro. La tnica estructura bi-cerrada

posible se obtiene dualizando (6.37) cuando p? = 0, ya que en tal caso obtenemos

sp - p gD p e (6.39)

Este termino siempre puede aparecer en (F'G). También, podemos verlo aparecer en
(FF) o (GG) cuando k = q = D/2.
Si incluimos el tensor de Levi-Civita, surge una nueva posibilidad lineal en el mo-

mento para el correlador (F'F'). Dualizando (6.38) por un lado recuperamos

s A p~ pARE s v xp e (6.40)
Esto s6lo puede aparecer cuando D es impar y D = 2k — 1. En D = 3 representa el
caso del campo Maxwell-Chern-Simons.

En resumen, para el caso genérico donde k # ¢y k # (D + 1)/2, la forma més
general de los correladores en forma Kallen-Lehmann es

(F(2)F(0)) = / " ds (ar 6(s) + pr(s) / %e@%(ﬁ—s) ¢ PO (p) | (6.41)

(G(2)G(0)) = / " ds (ag 3(5) + pa(s) / D052 — sy POp), (6.42)

(2m)P-1
(F@GO) = [ Gober 007567 7 (P¥3)(0), (6.43
(G(x)F(0) = / (Qi)—f;’ 0(°) 3(p%) €7 (P (p), (6.44)

donde el operador * es el definido en (6.32). Las funciones de Kallen-Lehmann tienen

que ser reales debido a la conmutatividad a distancias espaciales y porque requerimos
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que los campos sean reales. Aqui, hemos separado las partes sin masa de las densidades
espectrales para (F'F) y (GG) con los coeficientes reales ar y ag. Ademds, hemos

elegido la normalizacién de (6.37) como

p*)
v

(_1)]{:71 (k) v (k) a3 (6 45)
(k—1)! T ula gy PP '

Esto nos permite obtener una identidad 1til para el dual de P*) a ambos lados. Es
decir, tenemos
«PWx = p@ 4 (—1)7 n@ 52, (6.46)

Curiosamente, vemos a partir de (6.39) que el correlador (F(z)G(0)) s6lo puede ser
proporcional a un tinico término en el espacio de momento con soporte p* = 0. Hemos
escrito este termino en la forma (6.43). Este no puede ser cero porque el conmutador
de flujos tiene que ser un ntimero, y su valor de expectacién en el vacio no se anula.
Hemos optado por normalizar el coeficiente a uno. Este correlador sélo puede tener
una contribucién no masiva, y por tanto es covariante de escala, y satisface la ecuacion

de movimiento sin masa

O (F(2)G(0)) = 0. (6.47)

En otras palabras, tenemos que la simetria generalizada no compacta fuerza la forma
particular de esta funciéon de dos puntos que no renormaliza. El hecho de que obedezca
a la ecuacion de movimiento libre sin masa contiene la esencia de la prueba de que la
teoria tiene un sector libre no masivo.

Sin embargo, notamos que la ecuaciéon de Klein Gordon para el correlador de dos
campos diferentes como (6.47) no implica la ecuacién para los operadores, ni que los
campos sean libres. Por ejemplo, podriamos escribir F' = Fy + F; y G = Gy + G con
Fy = Gy libres y Fy, G; no libres, de manera que Fi, y GG; tengan funciones de dos
puntos cero entre si y con los campos libres Fy, y Go. En este caso seguirfamos teniendo
un subsector libre de la teoria, que es responsable de la funcion de dos puntos mixta
no nula y de la simetria no compacta. Es una expectativa natural que éste sea el caso
en general. En lo que resta del capitulo, nos ocuparemos del “filtrado” de los campos
para extraer su parte libre.

Antes de seguir, como hemos dicho, hay que considerar dos casos especiales. Cuando
k = q = D/2 las estructuras de (FF) y (GG) pueden aparecer en (FG) y (GF)

y viceversa. Escribimos la nueva forma de los correladores como en (6.41-6.45) mas
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nuevos términos

(F@FO) =+ b [ D06 567 e (P93, (6.48)
(@GO =+ +bo [ B0 56 e (PO, (6.49)
(F(x)G(0)) = -+ + /0 " ds(eo(s) + p(s)) / (Qf))]f19(p°)5(p2—s)e”’””P(k)(p), (6.50)
(GFO) =+ [ dstes(s) + ) [ B0 507 — e PO (). (65

El nuevo término en los correladores (F'F) y (GG) obedece que
(PO, = (~1) [P0, (6:52)

Si combinamos esto con la conmmutatividad espacial, se impone que bp,bg = 0 si k
es par. En los casos restantes solo implica que las funciones de Kallen-Lehmann son
reales.

Andlogamente, a partir de (6.40), en el caso de D = 2k — 1 nos aparece una
posibilidad adicional para la funcién de dos puntos (F'F’)

(P@FO) =+ [T dspeste) [ Gtz 067 567 =5) 7 (s ). (659

donde el factor *~! se ha afiadido para mantener pcg(s) real.

6.2.3. Conmutadores de flujos

Como describimos anteriormente, los conmutadores de flujos enlazados (6.8) son
numéricos y no dependen de la forma geométrica de los lazos enlazados I'r, I'. Esto
puede verificarse utilizando el correlador cruzado (6.43) en la expresién para el conmu-
tador de flujos e integrando sobre las regiones limitadas por los lazos ['g, I'. Para ello

necesitamos un mapa @ que describa el embedding de ¥ en R” mediante

P81, S2, vy SK) = (g&};(sl, 9, oy Sk) s e s Ph(51, S2, . ,sk)> , (6.54)

donde las variables sq, so, ..., s; parametrizan la superficie tomando valores en un do-

minio S C R¥. En este contexto, podemos definir el flujo como el pullback de F sobre
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SF o mas explicitamente

(I)F(EF) - / dksFylpz...}Lk (SOIF<517827"'7Sk)7"'7spcfl7'(517527'”7Sk))x (655)
Sp
y (W‘# s 39@‘#)
881 852 &sk '

Comenzamos ahora calculando el conmutador de los flujos definidos sobre un “cua-
drado” espacial infinito k-dimensional ¥ y otro (D —k)-dimensional . Elegimos las
coordenadas (xg, 1, ..., Tk, Tgi1, ---, Ta—1) de modo que las superficies estan definidas

andlogamente a (4.77-4.78) de la forma

n® = {xﬂ =0, 2! € (—o0,a), 22,25, ..aF e R, o 2Pl = 0}, (6.56)

0 — {:L’O =0, 2l € (8,00), 2%,2%,..a% =0, 2", . 2Pl e R}. (6.57)
Esto nos lleva a que X% y X¥ estén parametrizados por los siguientes mapas

- <O,x1,x2...,xk,0,0, 0), (6.58)

eSS

¥

[ 1 k+1 k42 D—-1
@G—(O,x,o...,O,x , T LT )

Considerando (6.58) en (6.55) obtenemos que podemos calcular el flujo de F' sobre X%

simplemente como

Pp(X¥) = / dxl/ dzs ... / dzy, Fro. (0,2, 2% .., 2%,0,0, ..., 0).  (6.59)
Para proceder, calculamos el valor de expectacion del conmutador mediante

([orEreaes)) = [ [ F@.cw)- [ [ Gw.rey. 660

donde solo tenemos en cuenta los componentes relevantes presentados en (6.59) y su

andlogo para ®5. Considerando que la estructura tensorial en cuestion toma los valores

[P(k);‘]ll..klk-i-l..D—l = [*P(k)]lkz—i-l..D—llz...k: = (—1)k(D_k)+1 b1 Do (6-61)

podemos integrar las funciones delta que aparecen en las integrales de los momentos

P2, Pa, ...p4—1. La expresion resultante para el valor de expectacion del conmutador
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([@r(E5), 2a(25)]) es

(=1)katt r OO Oo OO 2 9 ip1 (21—91)
T/ dﬂh/ dyl/ dpo/ dp16(pg — py) p1po P (6.62)
—00 B 0 —00
ey o S I
(=1) o J, (7 N " o N p1€ i(=1)"0(a - B)

La dependencia del resultado de la funcién de Heaviside §(a — ) representa que el
conmutador sélo es no nulo cuando o > . Es decir, cuando los limites de los cuadrados
estan enlazados. Por otra parte, el signo (—1)* no es relevante para el resultado, ya
que el signo del conmutador también cambiara con la orientacion de las superficies.
Como esperamos que el conmutador sea siempre un nimero, tenemos para cuadrados

enlazados que se extienden hasta el infinito que
(0p(55), 0(55)] = +i. (6.69)

Podemos generalizar facilmente este resultado a cuadrados finitos. Obtenemos el flujo
sobre un cuadrado finito ¥ restando al flujo sobre ¥% el flujo sobre otro cuadrado
infinito Xp que termina en z; < B. Tenemos la posibilidad de hacer lo mismo sobre
un cuadrado finito dual X restando el flujo sobre f]g que termina en x; > «. Esto

significa que tenemos

Op(Sp) = Pp(TF) — Op(Zr), Pe(Te) = Ca(5F) — Pr(Ze), (6.64)
donde hemos elegido las regiones Y y S de manera que
[P6(3a), Pr(Er)] = [@a(Z6), ®r(EF)] = [06(2F), r(Sr)] = 0. (6.65)

Esto implica que el conmutador calculado sobre los cuadrados finitos enlazados ¥z y

Y¢ es el mismo que el que se extiende hasta el infinito. A saber,
[Pc(Ec), Pr(Ep)] = [Pa(E), Pr(EF)] = +i. (6.66)

Podemos aplicar el mismo argumento a otras deformaciones de las geometrias de X y
Y que no cambian el hecho de que estén enlazadas. En resumen, el conmutador sobre

superficies enlazadas vendra siempre dado por
[PF, Pe| = i (6.67)

Recordamos que el caso k = ¢ = D/2 puede contener términos adicionales en

q
la funcién de dos puntos cruzada (6.50). Sin embargo, este nuevo término no puede
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cambiar el conmutador de los flujos. La razén es que la forma de P*) es proporcional

5

a (6.37) y esto implica que estos nuevos términos® son la doble derivada exterior (en

distintas coordenadas) de una (k — 1|¢ — 1)-biforma que llamamos K (x,y)
(F(z)G(y)) =+ dody K(z,y) . (6.68)

Podemos ver que estos términos doblemente exactos no pueden cambiar el valor del
conmutador de dos maneras. Primero podemos insertarlos directamente en la expresion
para el conmutador de flujos y verificar que se anulan incluso cuando los flujos no estan
trivialmente enlazados. En este caso, las componentes nuevas relevantes al calculo de

los conmutadores son

p? ifk=1
[P®)yg  giker. D1 = [P®)ips1 D112k = S pops ifk=2. (6.69)
0 ifk>2

Para k > 2 obtenemos trivialmente cero. Para k = 2 tenemos que sustituyendo en

(6.60) podemos escribir el término extra en (6.68) como

L[ ot s P = (6.70)

1 [0 o0
= ;/ dxl/ dyl/d4p 0(po) 6(p°) p2 6(p2) p3 d(p3) = 0,
—00 B

donde integrando la funcién delta obtenemos que el término extra no contribuye al

conmutador. Para k£ = 1 procedemos de la misma manera y obtenemos

(/?/w/f@mmw@%PM@w: ©.71)

_ dxl/ dy1/d p 9 po ) P> ( ip1(z1—y1) _e—ip1(ff»‘1—y1)) =0,

donde obtenemos el cero si cambiamos el signo de p; en el segundo término. Resumiendo

[ L, ] s 2w <o om

Como esto es cierto para cualquier eleccién a 'y [, es valido para cuadrados enlazados

obtenemos

o no enlazados. Teniendo en cuenta que dF' = 0 y dG = 0, las superficies pueden
deformarse de nuevo, lo que significa que el resultado (6.72) es valido para cualquier

eleccion de Xp y 2.

SFisicamente, este tipo de términos corresponden a la correlacién entre operadores lineales aditivos,
que, enlazados o no, deberian conmutar debido a la microcausalidad.
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Otra forma de ver que los términos adicionales en el caso k = ¢ = D/2 no afectan
el conmutador es cambiar a los correladores euclideos. Estos no son singulares excepto
en los puntos de coincidencia. Tomemos un disco k-dimensional > con borde I'p
en 2° = 0 y un disco g-dimensional ¥¢ en y° = 0 con borde I'. Los bordes I'p y
['¢ estan simplemente enlazados entre si. Sin cambiar los flujos podemos deformar
Yr moviendo los puntos hacia el futuro en tiempo euclideo de forma que formemos

una nueva superficie 31 con la misma frontera T'r en 2V

= 0. De forma analoga
formamos >, deformando la superficie hacia el pasado. Considerando el tiempo como
vector euclideo 7 = (1,0,---,0), la expresién euclidea para el valor de expectacion del

conmutador es

([@r, 0c]) = liny ( / | F@ew - [ / G<F<x>G<y>>> (67

Es inmediato que la contribucién de un término doblemente exacto como el de (6.68)
se anula. Esto es debido a que, como éste es exacto en x e y, obtenemos una expresion
donde la integracion es en los bordes ' v I'p & €7. Estos dos términos son continuos
en el limite € — 0 ya que sélo involucran correlaciones distantes, y se cancelan entre si
en el limite. No ocurre lo mismo con el término (6.43) que es exacto en cualquiera de
sus variables pero no en ambas a la vez. Podemos integrar este término sobre ¥ para
dar una forma arménica no exacta en R” — I'; que contribuye de forma no trivial al
conmutador (6.73).

Visto a la luz del célculo euclideo (6.73), el conmutador de flujos aparece como
un invariante topoldgico para dos superficies intersecantes de dimensiones k y ¢ con
k+q = D, una cerrada, X} UX 7, y otra abierta ¥g. Se denomina indice de Kronecker
para las superficies, y el correlador (F'G) es la bi-forma “ntimero de enlace” que permite

escribir este invariante topol6gico como una integral doble. Véase [191], capitulo 33.

6.2.4. Positividad

En una teoria unitaria, los correladores de la forma (F'F') deben ser semidefinidos

positivos

/ dlz iy ¢ (z) (F(z) F(y)) 6(y) > 0. (6.74)

Esperamos que esto sea vélido para todas las posibles funciones de prueba ¢(zx). Por

lo tanto, para cada p tenemos que

~

¢*(p) P®)(p) d(p) > 0, (6.75)

lo que lleva a que la estructura tensorial en el espacio de momentos sea semidefinida

positiva. Esto es cierto para P,El;) como se define en (6.45). Podemos comprobarlo fécil-
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mente fijando p en la direccién temporal. Para p? = 0 la positividad de esta matriz se
deduce porque es el limite de una matriz semidefinida positiva.

Ademas, las restricciones de positividad se aplican por separado a las funciones delta
no masivas y a las medidas remanentes de Kallen-Lehmann pr(s) y pa(s) que incluimos
en (6.41) y (6.42). Eligiendo un smearing en (6.75) con p? # 0, la positividad de los
correladores (F'F) y (GG) implica que pr(s) y pa(s) son medidas positivas en [0, 00).
Ademds, para distribuciones temperadas, pr(s), pc(s) tienen que ser como mucho de
crecimiento polinomial en el infinito. Por otro lado, podemos deducir la positividad de
los términos que incluyen funciones delta no masivas a partir de la positividad en el
limite IR, donde éstas constituyen la tnica contribucion restante. En este contexto,
recuperamos que las constantes que multiplican las funciones delta deben obedecer
ap,aq > 0.

Para este caso particular, la positividad de la matriz de los correladores cruzados
nos anade una nueva restriccién sélo para p? = 0. Hemos elegido convenientemente la
normalizacién de (6.45) de modo que P@(p) = x P*)(p) %. Véase (6.46). Por lo tanto,

podemos escribir la matriz de correladores cuando p? = 0 de la forma

PRSI SCF:
) 6.76
x P(K) ag * P®) ( )

El requisito en cuestién es que (6.76) debe ser una matriz semidefinida positiva. En-

tonces, se deduce que la positividad para p? = 0 da
apag > 1. (6.77)

En particular, esto obliga a lo coeficientes ar y a¢ a ser distintos de cero, lo que significa
que ar,aqg > 0. Este resultado, combinado con la forma especifica de los correladores
(6.41) y (6.42), implica que la teorfa tiene una particula sin masa.

Nos queda analizar los casos especiales. Cuando k = ¢ = D/2 los correladores
tienen los términos adicionales descritos en (6.48-6.51). Para la parte masiva, seguimos
teniendo pp, pg > 0. Para el sector p> = 0, si k es par, obtenemos arp, ag > 0y
arag > 1+ c2. Por otro lado, si k es impar tenemos que 0 < |bp| < ar y 0 < |bg| < ag,
y la matriz de correladores cruzados produce que arag + brpbg > 14 c. Nétese que la
combinacion de ambas restricciones en cada caso implica la existencia de una particula
sin masa.

En el caso D = 2k — 1, la funcién de dos puntos (GG) permanece inalterada
y seguimos recuperando pg(s) > 0. Sin embargo, para el (F'F) definido por (6.53),

podemos comprobar que
0 < |pcs(s)| < Vspr(s). (6.78)
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Esto obliga a pog(s) a desaparecer para s = 0 y no altera la desigualdad (6.77) ni los

resultados obtenidos para el sector p? = 0.

6.3. Simetrias de forma invariantes de escala

A continuacion analizamos las simetrias de forma en teorias invariantes de escala.
Comenzamos mostrando que si la simetria de forma es no compacta, entonces los
campos que generan dicha simetria deben ser libres y sin masa. Luego, estudiamos
el caso mas general de un unico campo de forma conservado, y clasificamos distintas

posibilidades que existen en dicho caso.

6.3.1. Simetrias de forma no compactas invariantes de escala

Consideremos el caso de la simetria de forma no compacta generada por los campos
F y GG en una teoria invariante de escala. Sean las dimensiones de I’y G dadas por Ag

y Ag respectivamente. Esto implica que debemos introducir las densidades espectrales
pr(s) ~ sAF=P/271 pa(s) ~ she=P/2-1 (6.79)

El hecho de que pr y pg deban ser medidas integrables implica las cotas de unitaridad
Ap,Ag > DJ2. (6.80)

En el caso concreto de la dimensién D/2 que satura el limite de unitaridad, debemos
sustituir la medida espectral por §(s) en lugar de s=! debido a que esta tltima no es

integrable en s = 0. Por otra parte, los correladores (6.43-6.44) nos requieren que
Ar+Ag=D. (681)

Combinando (6.80-B.16), tenemos que Arp = Ag = D/2. Esto implica la saturacién
de la cota de unitaridad, y que la medida espectral es proporcional a §(s). Entonces,
las funciones de dos puntos satisfacen O, (F(x)F(y)) = 0. A partir de aqui, por el

argumento estandar de que
(OF (z)|OF(y)) = 0= 0OF(x)|0) =0=0OF(z) =0, (6.82)

obtenemos ecuaciones de movimiento libres para el campo (véase, por ejemplo, [192]).
Como es bien sabido, esto implica que el campo es libre. Los campos se pueden nor-

malizar como F = x G.6

6E] término impar de paridad en D = 2k — 1 no puede aparecer en el punto fijo, v el conteo de
potencias para el caso k = ¢ = D/2 no se altera.
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Otra forma de llegar a esta conclusion es utilizar un teorema de Buchholz y Fre-
denhagen que implica que para una teoria invariante de escala una particula sin masa
es una particula libre [193]. Es precisamente el contenido de particula libre de la teoria
el responsable de los términos d(s) en las funciones espectrales, en particular para la

forma de (F'G) que necesitamos para tener la simetria de forma no compacta.

Un campo que satisface la ecuacién de Klein Gordon es libre

Como mencionamos, que un campo satisfaga la ecuacién de Klein Gordon implica
que el campo en cuestion libre. Existen varias pruebas de este hecho. A continuacion
presentamos un breve resumen de las referencias que pueden encontraren la literatura.
Ademas, presentamos una prueba alternativa simple basada en las propiedades de las
funciones armoénicas. Para comenzar veamos que en este contexto, libre significa que
el conmutador del campo consigo mismo es nimerico o que el campo es gaussiano y
tiene funciones de n puntos que satisfacen el teorema de Wick. Ambas propiedades son
equivalentes para un campo de Wightman, y caracterizan a los generalized free fields
[194]. El caso masivo se traté primero en [195, 196]. El caso sin masa se demostrd en
[197], incluyendo el caso més sutil de D = 2, donde el enunciado se aplica a campos
vectoriales quirales. Este tltimo trabajo demuestra que el conmutador tiene que ser un
nimero a partir de las propiedades de soporte copacto de las funciones de correlacion
en el espacio de momento y la condicién espectral. La misma conclusion se sigue del
resultado [198] que establece que si el soporte de un campo en el espacio de momento
no contiene la vecindad de un punto espacial entonces el campo es un generalized
free field. De hecho, la ecuacién de movimiento implica que el campo tiene soporte
en el cono nulo (un mass-shell para el caso masivo) en el espacio de momento. Mas
recientemente, el teorema ha sido revisado en [199], donde el énfasis esté en propiedades
de la propagaciéon de ecuaciones hiperbdlicas y una descripcién algebraica.

Ahora, mostraremos que una prueba sencilla se deduce de las propiedades de las
funciones armonicas en la versién euclidea de la teoria. Pensemos primero en un campo
escalar para simplificar. El correlador euclideo S(z,y, - ,y,) es una funcién analitica
real de = excepto en los puntos vy, - -, y,. Ademas, es una funcion armonica en dicho
dominio debido a las ecuaciones de movimiento [d¢p = 0. También, cae a cero en el
infinito y diverge como a lo sumo como una potencia cerca de los puntos yi, -+ ,yn
[200]. Por la expresién general de una funcién arménica en RP? — {y;,--- , y,}, tenemos

una descomposicion en los diferentes términos singulares para cada y; que tiene la forma

[201]

“~ qm,i[x - y’L]
Sy, ) =) PR (6.83)

i=1 m=0

Los gy, son polinomios arménicos homogéneos de grado m en las coordenadas de  —y;
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cuyos coeficientes pueden depender de los puntos y; # v;, y r es un entero positivo.
Podemos deducir esta descomposicién esencialmente de la unicidad de las funciones
armonicas una vez fijado el comportamiento en el borde y en los puntos singulares.

Si utilizamos esta expresién para * — = + a,y; — Yy; + a, en el limite |a| —
0o, se deduce de la propiedad de clustering de los correladores que r = 0y qp; =
Sy, -+ Ui+ ,Yn), donde g; representa una variable omitida. Hemos normalizado

la funcién de dos puntos para que sea |z — y\_(D ~2)_ Esto nos da la gaussianidad

- S 7'”7Ai7"'7 n
S,y yn) = D NIRRT TMASY ) (6.84)

i1 o — il P72

Para campos armoénicos en una representacion arbitraria de espin y D > 2 la
gaussianidad se obtiene en la misma linea. Una descomposicién anédloga a (6.83) es
valida para el caso masivo en términos de soluciones elementales de la ecuacion de
Klein Gordon euclidea, las cuales son singulares en un unico punto. Entonces, podemos
extender la misma derivacion a campos que obedecen ecuaciones lineales masivas.

Para D = 2, utilizando coordenadas complejas, tenemos [J = 0,0;. Entonces, para
los operadores quirales en las CFT de D = 2, como las corrientes o el tensor de energia-
momento, todos los correladores son armonicos (holomorfos en este caso) y por lo tanto,
de acuerdo con (6.83), las funciones de correlacién son meromorfas. La estructura
singular del OPE es suficiente para calcular las funciones de correlacién completas
en forma cerrada. Véase [202]. Sin embargo, estos correladores no son necesariamente
gaussianos y, en general, la funciéon de dos puntos no es suficiente para determinarlos.
La novedad aqui es que los coeficientes de g, ; pueden depender de y; para D = 2, y el
correlador sigue siendo armoénico en y;, mientras que esto no puede ocurrir en D > 2.
Esto tiene el efecto de que hay términos en x —y; en (6.83) tales que ¢y, ; puede decaer
a cero en el limite |a| — oo, haciendo que este término sea invisible en el limite de

clustering. Sin embargo, una corriente quiral es siempre gaussiana.

6.3.2. Una simetria de forma continua invariante de escala

En esta seccién analizamos el caso mas general de una tunica simetria de forma
continua en una teorfa invariante de escala. Consideramos que esta esta generada por
el campo H con h indices antisimétricos. Utilizamos otra letra para este campo para
no confundirlo con el analisis de F,G en el resto del capitulo. Este andlisis no es
estrictamente necesario para los propdsitos de este capitulo, centrado principalmente
en el caso no compacto, pero queremos destacar que incluso si sélo se tiene invariancia
de escala muchas de las caracteristicas que se siguen de la invariancia conforme aparecen
a partir del analisis de la simetria generalizada.

Vemos que la dimension de escala Ay de este campo resulta ser D/2 o h para



6.3 Simetrias de forma invariantes de escala 187

h > D/2. La razén es muy sencilla. Si Ay # h los operadores no locales e’ Jx

tienen un parametro o que transforma de forma no trivial ante transformaciones de
escala. Esto significa que las clases HDV no locales de estos operadores (la carga de
la simetria de forma esta etiquetada por «) cambian con la escala. Como las clases
HDV no son invariantes bajo un grupo de simetria continuo, vimos en el capitulo
anterior que la simetria de forma debe ser continua. En este caso particular, implica
que la simetria es no compacta. Por ende, necesariamente existe una simetria de forma
dual continua, digamos generada por H con D — h indices. Como hemos visto, la
unica forma de que el correlador de H y H tenga el término necesario para producir
conmutadores numéricos entre los flujo es que ambos campos tengan la dimensién libre
D/2. Otra forma de decir esto es que los operadores de flujo @5, @, que generan las
transformaciones de simetria de forma, deben tener conmutador i. La transformacién
invariante de escala asociada a un parametro A multiplica uno de los flujos por A2# ="y
entonces el otro debe transformarse con exponente h — Ag. Esto nos da una dimensién
de escala Az = D — Ay, y una de las dos es incompatible con el limite de unitaridad
excepto en el caso libre, donde ambas son iguales a D/2. Luego, también tenemos la
posibilidad de Ay = h, para h > D/2. En este caso, la simetria de forma es invariante
bajo escaleos pero no puede ser una simetria no compacta ya que no puede existir una
forma dual con dimensién D — h < D/2. Debe ser entonces una simetria compacta
U(1).

En resumen, una forma cerrada H con h indices en una teoria invariante de escala

debe encontrarse en una de las siguientes posibilidades mutuamente excluyentes:”

(a) H esun campo libre con dimensiéon Ay = D/2, que genera una simetria de forma

no compacta junto con su correspondiente campo dual x H.

(b) H tiene dimensiéon Ay = h con h > D/2, generando una simetria de forma U(1)

continua pero compacta.

(c) H es una forma exacta, es decir, es una derivada total H = d¢ con ¢ un campo

invariante de gauge. En este caso H no genera una simetria de forma.

En el dltimo caso el campo es cerrado, pero no produce una simetria de forma porque
los flujos son locales sus bordes. Aun asi, el caso h = 1 puede ser una simetria de
forma en el caso de que la simetria dual sea una simetria global y la transformacion de
simetria actie como ¢ — ¢ + constante para el campo escalar ¢. Pero, éste sélo puede

ser un campo escalar ¢ libre sin masa, y ya cubrimos este caso en el punto (a).

"Suponemos que puede definirse una red aditiva para regiones causales basadas en la superficie
t = 0, de modo que la simetria de forma pueda definirse correctamente. Esto elimina explicitamente
los generalized free fields. En este sentido, alcanza con que la teoria contenga un tensor de energia-
momento, pero podria valer de forma mas general.
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Durante el razonamiento anterior no consideramos simetria conforme, sino sélo
argumentos asociados a violaciones de dualidad de Haag que implican la existencia de
simetrias duales generalizadas. Sin embargo, es interesante analizar las implicaciones
de la invariancia conforme por si misma sin apelar estas ideas.®

Un campo primario h-forma H tiene una cota de unitariedad Ay > max(h, D —
h) [204=207]. Puede ser cerrado sbélo para Ay = h > D/2, cuando satura la cota
unitaridad. A la inversa, es co-cerrado para Ay = D — h, h < D/2. El tnico caso
libre es para D par con h = D/2. Fuera de estos casos, el campo cerrado no puede
ser primario. Pero, nos resta analizar si puede ser un campo descendente, es decir, una
derivada de un campo primario. Una derivada puede anadir un indice al campo, en cuyo
caso sb6lo permitimos una derivada porque H es antisimétrico, es decir, tendriamos
H = d¢ para algtin primario (h — 1)-forma ¢. Otra posibilidad seria que tengamos
Hy o, = 0 - -0 Gy, ppyar -, PATA UN CAMPO Primario @,...u, aq-a, antisimétrico
en los indices p y simétrico en los a. Sin embargo, dicho campo no puede ser cerrado
porque dichos campos primarios no obedecen ecuaciones de conservacion a menos que
se encuentren en el limite de unitaridad, y en tal caso la divergencia es cero [207]. La
tercera y ultima posibilidad serfa que H = d¢ para un primario antisimétrico ¢. La
conservacion implica que ¢ es libre, y eso implica que el nimero de indices en ¢ es D/2,
y que 6¢ = 0. Por tanto, para una CFT tenemos el mismo resultado que en el caso
anterior, con el anadido de que el caso (a) sélo puede darse para h = D /2. Resumiendo,
si tenemos un punto fijo conforme con una simetria de forma no compacta, sélo puede
corresponder a la teorfa de dos campos de forma primarios y libres de dimensién D /2
(como en el campo de Maxwell para D = 4).

Si volvemos al caso general, es importante que las simetrias de forma de los casos
(a) v (b) no estén saturadas. Equivalentemente, no podemos haber llegado a un limite
topoldgico en el que los operadores unitarios no locales tengan valor de expectacién 1
o 0. Estos casos solo pueden ser el resultado de un limite, pero nunca ser producidos
por operadores reales existentes en la teoria. Por ejemplo, tomemos una region R con
la topologia de un S*~! x T siendo T un subconjunto compacto de RP~*+1. Entonces,

podemos formar el operador unitario
W(q) = ¢'e ) «@HE) (6.85)

donde q es la carga asociada a la clase HDV no local y w(z) es una funcién de smearing
tal que
dw(x) = J(x), J(x)=0siz¢R. (6.86)

Como vimos en el capitulo 3, esta condicién garantiza que W(q) corresponda a un

8Véase [163, 203] para un anélisis similar en el caso conforme.
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operador localizado en R en el sentido de que conmuta con operadores locales en R'.

Por otro lado, para tener carga ¢ necesitamos normalizar el flujo de J en una seccién

Sde R
/le. (6.87)
S

El valor de expectacién de este operador unitario estd acotado como 0 < [(0|W (q)|0)| <
1. No puede ser igual a 1 porque en ese caso W(q)|0) = |0) debido a la desigualdad
de Cauchy-Schwartz. Por el teorema de Reeh-Schlieder si (W(q) — 1)|0) = 0 para un
operador local entonces W (q) = 1, que no es el caso. De la misma manera no puede
ser (0|W(q)|0) = 0 para todo ¢. Si ése fuera el caso, como W (q) no puede aniquilar
el vacio, debe convertirlo en un vector unitario ortogonal |¢). De ello se seguiria que
todos los |¢) son ortogonales entre si para el pardmetro continuo ¢, lo que es imposible.

Esto tiene una implicacion interesante en cualquier teoria en la que exista un campo
cerrado F' (no necesariamente asociado a una simetria no compacta). En ese caso, o bien
el campo es una derivada total F' = d¢, o bien el punto fijo UV contiene violaciones de
dualidad de Haag. Es decir, las violaciones de dualidad de Haag no pueden convertirse
en topologicas en el UV. Esto contrasta con los casos de sectores no continuos, como el
caso de las teorias de Yang Mills asintéticamente libres donde la simetria generalizada

discreta se satura en el UV [57].

6.4. Flujo del grupo de Renormalizacion

En esta seccién probamos que una teoria con simetrias de forma no compacta tiene
un sector libre sin masa. Tales resultados descienden de la prueba invariante de escala,
presentada en la seccion 6.3.1, mediante argumentos relacionados al flujo del grupo de
renormalizacién (RG). Por lo tanto, para continuar, haremos la suposicién habitual
de que una teoria UV completa tiene un punto fijo UV invariante de escala, y que
la teoria completa surge perturbando dicho punto fijo UV. Para el problema que nos
interesa, de hecho, necesitamos suponer menos estructura, basicamente que hay un
punto fijo UV invariante de escala, y que a los campos cudnticos en este punto fijo
corresponden campos cudnticos (Wightman) en la teorfa completa, y viceversa. Dado
que los detalles de la relacién esperada entre el punto fijo UV y la QFT correspondiente
rara vez se explican con detalle, nos esforzaremos por ser més precisos en lo que sigue.
En este escenario analizaremos las restricciones sobre la QFT completa que surgen de
la existencia de un punto fijo UV con una simetria de forma no compacta. Aunque
la existencia de un punto fijo invariante de escala es una suposicién en esta tesis,
observamos que esto se ha demostrado bajo la condiciéon de ciertas propiedades del
espacio de fases que restringen el aumento del nimero de grados de libertad a altas

energfas [208].
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6.4.1. Suposiciones sobre el flujo del RG y el limite UV

Puesto que la existencia de una completacion, o un limite UV de la teoria, es
bastante central para nuestros argumentos, vamos a ser explicitos sobre los supuestos
implicados en esta idea. Describimos la QFT y su punto fijo UV mediante el conjunto
de sus campos de Wightman. Suponemos que el punto fijo UV es una teoria invariante
de escala.

Formalmente, dado un campo ¢, suponemos que siempre hay un A > 0 tal que

}\i{)r(l) A p(Ax)p(0)) =0, Va>A, (6.88)
/l\l’g(l) A (p(Az)p(0))] = oo, Va<A. (6.89)

De esta manera, decimos que dicho campo ¢ tiene dimensién asintética A. En una
teoria invariante de escala para campos irreducibles esto coincide con la dimensién de
escala. Suponemos, tanto para el punto fijo UV como para la QFT, que el espacio
lineal de campos con dimensiéon menor que cualquier A es de dimension finita y que los
campos se encuentran en representaciones de dimension finita del grupo de Lorentz.
Esta es una condicién necesaria para muchos de los requisitos habituales de una QFT,
por ejemplo tener una funcion de particién finita.

Para continuar, con respecto a la relacion entre la QFT y su punto fijo UV, haremos

las siguientes suposiciones:

(a) Para cada ¢ de la QFT existe una funcién Z,(\) y un campo ¢y en el punto fijo
UV (llamamos ¢q al limite UV de ), tinico a excepcién de la normalizacién, tal
que

lim (Z,(A) (A1) - - Zo(A)p(Azn)) = (o(21) - - @o(zn)) - (6.90)

A—=0
Las funciones Z,(\) son altamente no tnicas pero su limite asintético esta bas-

tante restringido. En particular

/1\1_>rno N YZ,N) =0, si a< A, (6.91)
/I\ILI(IJ AN Y ZyH(N) =00, sioa>A, (6.92)

donde A es la dimensién de escala de ¢g. De aqui se deduce que g tiene una
dimension de escala tnica y que se corresponde con una Unica representaciéon de
espin. Estas coinciden con la dimensién asintotica y el espin de ¢. Escribimos
este mapeo de campos (a excepcién de la normalizacién) como M(p) = o,
o simplemente ¢ — . Este mapeo es generalmente muchos a uno porque a
partir de una combinacién lineal de campos en la QFT, sélo la componente de

dimension mas alta sobrevive en el limite UV. También, deducimos que para una
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combinacion irreducible no nula de derivadas de ¢, que para abreviar escribimos
como Jyp, y tal que dpy # 0, tenemos M (Jp) = Jypp, donde Zy,(A) = X Z,(N).

Si dp = 0 lo mismo vale para ¢, es decir dpy = 0.

(b) Existe una base lineal By de los campos en la teoria UV, que tiene representacion
de espin y dimension de escala definidas, y una base B para los campos de la
QFT, tal que para cada uno de los campos ¢y € By hay un tnico (excepto la
normalizacién) N (pg) = ¢ € B, tal que M(p) = M(N(pg)) = ¢o. La idea fisica
detras de esta suposicién es que los campos irreducibles en el punto fijo UV (en
una cierta base en el caso de tener un espectro degenerado) generan campos en la
QFT una vez que perturbamos la teoria fuera del punto fijo. De esto deducimos
que para cada A > 0, los campos en N ({py € By, A,, < A}) forman una base
lineal para todos los campos en la QFT con dimensién asintética menor que A,
y que las dimensiones de ambos espacios es la misma. Esperamos que cualquier
@ — o conduzca a un ¢y € By, exeptuando posibles degeneraciones debidas a
simetrias. Mas en general, para tal ¢ — g, donde ¢ se descompone linealmente
en un subconjunto ¢} € By, podemos descomponer linealmente el campo ¢ en
los elementos ' de B asociados a ¢} mds (eventualmente) campos de menor o
igual dimensién. Combinando estas ideas con el supuesto (a), pedimos que las

funciones de correlacién obedezcan que

0 (7,0 (3) ¢ (1) -+ Zyon (Vg™ () = (@) 0 (). (6.98)
(c) Para cualquier ¢y € B, con N(pg) = ¢, y cualquier campo irreducible no nulo
formado a partir de las derivadas de ¢, que para abreviar llamaremos Jypy,

suponemos que dyy € By y N (d¢g) = 0p € B.

Algunas de las ideas anteriores han requerido una comprensién mas cuidadosa de
la relaciéon entre una QFT y su limite UV. Aunque estos son supuestos usualmente
implicitos en la nocion de una teoria en el limite UV, seria importante tener una
derivacion de estas propiedades desde un punto de vista mas general. Aunque no nos
ocuparemos aqui de esta investigacién, observamos que los avances en los estudios
matematicos de la QFT en las ultimas décadas ayudan a delinear los contornos de
estos supuestos usualmente utilizados. A continuacién, revisamos brevemente parte
este progreso incluyendo las referencias relevantes.

La idea del grupo de renormalizacién puede formular precisamente en el contexto
algebraico de AQFT mediante la idea de dlgebras escaleables (“scaling algebras”) [209)].
Estas también pueden ser usadas para definir apropiademente una teoria en el limite
UV. En general la complicacion reside en que, dicho limite puede no ser tinico, o puede

ser clasico (en el sentido de que todos los operadores conmutan). Més atin, podemos
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construir ejemplos que “fallan” utilizando generalized free fields”. Como ocurre para
cualquier campo, el crecimiento polinémico de la funcién de dos puntos en el espacio
de momento obliga a que exista un A tal que (6.88) se cumpla [210]. Pero (6.88-6.89)
no se cumplen necesariamente para el mismo A. Luego, es posible disenar una funcién
espectral de Kallen-Lehmann para el correlador del generalized free field tal que su
comportamiento a corta distancia oscile entre diferentes dimensiones de escala y nunca
converja realmente.

Para controlar el comportamiento de la teoria limite, y eliminar estos casos, es
necesario introducir una condicién sobre el espacio de fases que limite el crecimiento del
numero de grados de libertad a altas energias. Con tal fin, en el contexto algebraico, se
han introducido varias condiciones sobre el espacio de fases. Una de estas condiciones
es llamada compacidad uniforme (“uniform compactness”), y garantiza la unicidad
del limite y la convergencia a una QFT invariante dilatacional [208]. Otra “condicién
microscépica del espacio de fases” se ha introducido en [30], y se demostré que bajo
esta condicion existe un numero finito de campos de espin finito con dimensiones de
escala por debajo de cualquier nimero fijo A [211]. Las simetrias globales internas
(rotas o no rotas) y espacio-temporales de la QFT se preservan en el limite del escaleo,
y pueden obtenerse analogos de las funciones de renormalizacion Z,(\) presentadas en
(6.90) [211]. Inclusive, esta condicién de espacio del fases es lo suficientemente fuerte
como para permitir un OPE [212].

En conclusién, gran parte de las suposiciones del presente trabajo respecto al limite
UV se derivan de las condiciones del espacio de fases que, a grandes rasgos, podemos
entender como restricciones al crecimiento del nimero de grados de libertad en el UV.
Por ejemplo, basta con que este crecimiento esté acotado por arriba por el corres-
pondiente a un numero finito de campos libres en un nimero finito de dimensiones
espacio-temporales > D. Sin embargo, la coincidencia con nuestros requisitos no es
completa. Por ejemplo, [211] s6lo prueba que el nimero de campos ¢, independientes
del punto fijo UV con dimensién de escala por debajo de cierto A es menor o igual que
el nimero de campos linealmente independientes ¢ de la QFT por debajo de la misma

dimension.

6.4.2. Filtrado de campos libres en el UV

Analicemos las distintas posibilidades de los limites UV Fj, Gy de los campos F, G.
Estos satisfacen dFy = dGy = 0. Empecemos por la hipdtesis més sencilla en la que la
simetria de forma se genera en el UV por los campos limite Fj, Gg. Como comentamos

en la seccién 6.3, esto implica que ambos campos tienen dimensién D/2. Las correla-

9Estos se definen por una funcién espectral de Kallen-Lehmann en el correlador de dos puntos y
el teorema de Wick. Véase apendice A.
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ciones de estos campos UV serdn proporcionales a una §(p?) en el espacio de momento.
El requisito de que el término de enlace en (F'G) no sea borrado por la renormali-
zacién implica que las funciones de renormalizacién tienen un limite Zp ~ AP/2 79
Za ~ A\PI2Z0 con ZY% y Z2 finitos. Utilizando la notacién de (6.41-6.44), obtene-
mos cuando p? = 0 para los coeficientes de las estructuras tensoriales normalizadas en

matriz de correladores cruzados de Fy y Gy:

( (Z3)? (ar + [ ds pr) 73 78 ) | (694
73 78 (Z8)? (ac + [ ds pa)

Simplifiquemos atin mas el escenario suponiendo que no hay degeneracién en la dimen-
sion de escala ni en los espines de Fy y Gy. Por lo tanto, podemos normalizar Fy y G
de tal manera que Fy = * Gy, y los coeficientes de la matriz anterior sean todos iguales

a uno. De aqui obtenemos un determinante cero, lo que nos lleva a la condicién

(or ) (o fasnc) 1. 69

Sin embargo, la positividad en el limite IR implica ar ag > 1, (6.77). Combinando con

la positividad de pgp vy pe tenemos que
pr=0, pg=0. (6.96)

Por ende, tenemos funciones de correlacién que obedecen a la ecuacion de Klein Gordon
sin masa, y en consecuencia una teoria libre. No es dificil darse cuenta de que siguiendo
el mismo calculo, el caso ligeramente més complicado de k = ¢ = D/2, donde pode-
mos encontrar términos mixtos en la matriz de correladores de la forma (6.48-6.51),
obtenemos de nuevo a campos libres.

Otra forma de decir esto es que como vale la relacion dualidad Fy = *x Gy con Fj
el inico campo que encontaramos para la dimension de escala y espin en cuestion, los
campos N (Fy) ~ F y N(xGg) ~ «N(Ggy) ~ =G son proporcionales entre si. Esto

produce que
dF=d+G=0 = 0G=0 = 0OG=(dd+di)G=0, (6.97)

y lo mismo ocurre para F' a partir de dG = 0.
Podemos considerar el caso mas general en el que las dimensiones de escala D /2
y los espines de F,G en el UV son degenerados, pero dichos campos siguen teniendo

renormalizaciones finitas. En este caso obtenemos una descomposicion

F=F+F, G=G+G,. (6.98)
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Los campos F y G son responsables de la simetria de forma en el UV, y podemos ele-
girlos de forma que F = «G. Los campos F, Fy, G son libres y no estan correlacionados
en el UV. Si F} y G estuvieran correlacionados en el UV tendriamos una componente
F, = %G, que podriamos absorber en las definiciones de 'y G. Seguirfamos teniendo
dF = dF + dF, = 0, dG = dG + dG, = 0, pero los campos individuales F,G F,G,
podrian no ser cerrados fuera del punto fijo. Ciertamente resulta un escenario muy
particular. No obstante, vemos que el andlisis de positividad sigue misma linea que el
calculo anterior dando de nuevo un resultado libre. Debido a su extension presentamos
los detalles de este calculo debajo.

Solamente resta analizar el caso cuando al menos uno de los campos tiene renor-
malizacion infinita. Con esto queremos decir que la integral de la medida espectral
es divergente, [ dsp(s) = oo. En este caso la funcién de dos puntos es mds singular
que la libre, y no es dificil ver que Z(\) tiene que tender a cero més rapido que la

correspondiente a un campo libre:

lim Z(A\) A P2 =0. (6.99)

A—0

En particular, tendremos entonces
lm Zr(\) Za(A) A =0. (6.100)
A—=0

En este caso, los flujos, luego de que realizamos el escaleo correspondiente,

Oy = Zp(N) /

YF

O = Za(N) /

D!

F(hx) = Zp(M\) X7k /

X

Fz) 5 r, = / Fox),  (6.101)

YF

GNz) = Zo(A) A0 / Glz) o Dy = / Golx),  (6.102)
Az Ya
se conservan y una version con smearing de ellos tiene valores de expectacion finitos

en el limite UV. Sin embargo, el conmutador llega a cero en el UV debido a que
(D%, DY) =i Zp(\) Zg(AW) AP = 0. (6.103)

En otras palabras, los campos UV Fy, GGy son cerrados, pero su funcién de correlacién
cruzada no contiene el término de nimero de enlace. La razén es que, como vimos
anteriormente, dicho término no se renormaliza en la QFT, y por ende se borra por
renormalizacién en la teoria UV.

Si el campo UV Fj = d¢g es exacto, tenemos un campo ¢ en la QFT tal que ¢ — ¢y.
Deducimos, entonces, que d¢ es una componente de F'. Podemos simplemente eliminar

esta componente y redefinir F' — F' —d¢. El nuevo campo sigue siendo cerrado, y sigue

10M4s exactamente, sus limites UV Fy y G son responsables de la simetria de forma no compacta.
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generando la misma simetria de forma no compacta, porque ésta no puede cambiarse
por la adicion del campo exacto. De este modo eliminamos la posibilidad de que Fj sea
(fisicamente) exacto en el UV. Lo mismo ocurre con Gj.

Por otro lado, si Fy, Gg no son exactos, generan simetrias de forma no triviales en
la teoria UV, y estas simetrias de forma no son duales entre si. Podemos definir los

operadores de flujo no locales unitarios y escaleados por analogia con (6.85-6.87) como
W)\(q) :eiqZF()\)dex w(x)F(/\x)’ (6104)

donde dw = J tiene soporte en una regién fija topoldgicamente no contractible R, con
carga unitaria, véase (6.87) o para mads detalles el capitulo 3. El limite débil de este
operador no local da lugar a un operador no local basado en R, con carga g en la teoria
limite UV

lim W (q) = W°(q) = ¢'¢ /47 «(@) Fole) (6.105)

A—0
Por tanto, por el analisis general revisado en el capitulo 2, sabemos que deben exis-
tir operadores duales T°(g) con valores de expectacion no saturados, y relaciones de
conmutacion

Whq) T"(g) = 19 T%(g) W*(q) - (6.106)

Estos T%(g) estan generados por el campo de forma dual *Fj en caso de que el UV sea
libre. Sino, cuando elegimos que el grupo U(1) corresponda a ¢q € [0, 1), los operadores
T%(g) tienen cargas discretas g € 2wn. En cualquier caso, fuera del punto fijo, los
W*(q) son auténticos operadores no locales de la teorfa. Entonces, para regiones finitas
pequeiias, a medida que A — 0, debe existir un conjunto de operadores T*(g) que
satisfagan (6.106) con W*(q) también en la teorfa completa, y tales que sus valores de
expectacion converjan a los de T°(g).

Podriamos buscar los operadores T (g) entre los generados por los flujos de G, pero
esto es imposible. Si intentamos mantener fijo el conmutador de los dos operadores no
locales como A — 0, por analogia con (6.104) tenemos que tomar un operador de la

forma

TA(g) _ eingl()\) Zg (WAL [dPz &(z) Zg(N) G(Ax) eig(Zl;l(/\) Zg (W) AP) [dPz () Go(z)
(6.107)
Esto nos conduce a un escaleo del flujo de G' demasiado poco suprimido para producir
un operador con valor de expectacion no nulo en el limite.
En otras palabras, esto significa que las violaciones de dualidad de la teoria forman
un grupo mayor, por ejemplo R x U(1) o mayor, en lugar de sélo R. Entonces, F' resulta
ser una mezcla de generadores de dos (o més) simetrias de forma. Por lo tanto, podemos

reajustar nuestra definicién de I’ extrayendo el componente de renormalizacién mayor
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(la de dimensién de escala mayor si hay més de una dimensién de escala diferente).
Pero, esta claro que como hay un nimero finito de campos independientes en el UV
en un rango de dimensiones, podemos continuar el proceso hasta que obtengamos un

F' con renormalizacién finita, mostrando que debe haber un sector libre de la teoria.

Filtrado UV de campos degenerados con renormalizacién finita

A continuacion, presentamos con detalle el filtrado UV mencionado anteriormente
en el cual consideramos que existe méas de un campo en el UV con el mismo espin
y dimension de escala D/2. En este caso, si todas las renormalizaciones son finitas

podemos descomponer los campos F' y G como
F=F+F, G=G+G;. (6.108)

podemos elegir que los campos F'y G obedezcan la condicion de dualidad F = %G y
por lo tanto en el IR sus funciones de dos puntos deben incluir un término como el que
vemos en (6.43-6.44).

Para comenzar, nos limitaremos al estudio de los correladores de FF. Podemos
escribir expresion mas general para las funciones de dos puntos que involucran sélo a

los campos F' v F; de la forma

de e
F@FO) = [ as [GE5000) 567 - 5)x

x [(@d(s) + po(s)) PY + (=1)*s pi(s)n™)] ,
o / / dgf f;pi ") o(p* — s)x (6.109)

x [(b6(s) + pa(s)) P + (=1)%s pi(s)n™]

de e
FRO) = [ as [ TR 068 507 - 9%

x [(c6(s) + ps(s)) PP — (=1)%s pi(s)n™]

donde p;(s) aparece en los tres correladores de manera que sean consistentes con la ley
de conservacién dF = dF + dF, = 0, a saber

(F(z)dF(0)) =0, (F(z)dF(0))=0. (6.110)

Sera interesante que veamos las restricciones impone la postividad de los correla-
dores. Para (FF) y (F\F}) la positividad en el IR sélo alcanza al coeficiente de las
funciones delta y por tanto obtenemos a > 0,y b > 0. Sin embargo, a energias més

altas la positividad de la parte masiva implica que las funciones de Kallen-Lehmann



6.4 Flujo del grupo de Renormalizacién 197

obedecen a
0<pi(s) < pols), 0= pi(s) < pals). (6.111)
Ademas, la positividad de la matriz de correladores cruzados entre F y Fi produce las
desigualdades
ab> e, po(s) — 201(s) + pa(5) % /Tpo(5) — pa(o) + Alpi(5) + pa(s)P 2 0. (6.112)

El hecho de que F = G, fija las funciones de correlacién que contienen a G y Fo

Fi. Esto junto con dG = 0 implica que las funciones de dos puntos estan limitadas a

~ ~ dPp e’
(G(x)G(0 / /27rD - )o(p? — 5)x

x [(ad(s) + po(s)) P+ (=1)%s [po(s) — pr(s)]n'?]

(h / ds/dee )6(p% — 5)x

% [(d8(s) + pa(s)) P+ (=1)%s[po(s) — pi(s)ln'?]

00 dD 6ipz
0= [ ds [ GEE007) 808 - 5)x
0 7T

x [(ed(s) + ps(s)) P9 — (=1)%s[po(s) — pa(s)]n @],

/ / d;f ") 60 — 5)x (6.113)
x [(a8(s) + po(s)) PW% + (=1)PFs pi(s)e] ,

/ dS/dee ) 8(p* — )%

x [(cd(s) + pa(s)) POx = (=1)PFs pi(s)e] ,

/ /dee )(p® — 5)x

% [(ed(s) + ps(s)) PO% — (=1)""s [po — pr + ps](s)e] ,

(F@G0) = [ as [TET000) 507 - 5)x

x [(f0(s) = [po + ps + ps]) PW%+ (=1)"s[po — p1 + psle] .

Qz

Nétese que la positividad en el limite IR implica que f > 0, ad > e?, y bd > f2.
Ademiés, la positividad de los correladores (GG) y (G1G) es andloga a (6.111). La
matriz de correladores cruzados de Gy Gy, por analogia con (6.112), nos produce la

nueva restriccion

—po(s) 4 2p1(s) + pa(s) £ V/[po(s) — pa()]> + 4lpo(s) — p1(s) + ps(s)]2 > 0. (6.114)
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El célculo directo de la funcién de dos puntos (F'G), utilizando (6.113), tiene s6lo una

contribucion resultante. Vemos que esta es no masiva y podemos escribirla como

(F(2)G(0)) = (F(2)G(0)) + (Fi(2)G(0)) + (F(2)G1(0)) + (F(2)G1(0))

D

=(a+c+e+f) / (ij){j_l e 9(p°) 6(p® — s) PP (p).  (6.115)

Como este correlador no renormaliza, en el UV (FG)yy es equivalente a (F G>IR, lo
que implica que
c+e+ f=0. (6.116)

Ademas, pedimos que los campos F; y G7 no estén correlacionados con Fenel UV,
Es decir, tenemos (ﬁFQUV, (FGH}UV =0, o bien

c+/ p3(s)ds =0, e+/ ps(s)ds =0. (6.117)
0 0

El ultimo requisito UV que pedimos es que F7 y G no estén correlacionados en dicho
limite. Esto no implica pérdida de generalidad, ya que si estuvieran correlacionados
tendriamos una componente de la forma [} = *G1 que podria ser absorbida en las

definiciones de F y G. El hecho de que (FyG4)uy = 0 produce que

P [ onls) o) + s ds =0 (6.118)

Sustituyendo (6.116) y (6.117) en (6.118) obtenemos [ ds po(s) = 0. A laluz de (6.111),
esto significa que po(s) = 0y, también, p;(s) = 0. Entonces, las restricciones (6.112)
y (6.114) implican que ps(s), p5(s) = 0, asi como ¢, e, f = 0. Obtenemos que la forma

final de los correladores no nulos fuera del UV es de la forma

F@EO) - [ 5 d;@’_l e 0) 5157) P (6.119)
2)G(0 / e? 0(p%) §(p*) P9, (6.120)
2)G(0 / e 9(p°) 6(p*) PWx (6.121)

— P 0(p°) 6(p° — 5) (b8(s) + pa(s)) PO, (6.122)

e
e

donde también fijamos a = 1. Esto nos conduce a que F' y G son campos libres sin

e O(p°) 5(p* — s) (d6(s) + pa(s)) P9, (6.123)

masa que generan la simetria de forma por (6.121). Ademads, tenemos que el espacio
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de Hilbert generado por estos campos esta en producto tensorial con el generado por

los campos restantes I} y Gy.

6.5. Discusion del capitulo

Las formulaciones lagrangianas una electrodindmica neutra, como la electrodinami-
ca no lineal (por ejemplo, Born-Infeld) o un fotén acoplado magnéticamente a un
campo de neutrones, y también las teorias efectivas de baja energia de los bosones de
Goldstone, son todas no renormalizables. En este capitulo hemos explorado la cuestién
de si esta clase de teorias puede completarse en el UV, o si el comportamiento no
renormalizable apunta a algunas caracteristicas mas profundas. Para abordar este pro-
blema hemos observado que esta clase de teorias estd mejor definida por sus simetrias
generalizadas. En particular, todas comparten la misma estructura de simetrias gene-
ralizadas, es decir, simetrias de forma no compactas. En términos de estas simetrias
la pregunta es: jpuede una teoria UV completa con simetrias de forma no compactas
ser interactuante? El andlisis descrito en este capitulo muestra que esto no es posible,
y que la completacién UV de una electrodinamica neutra o de los bosones de Golds-
tone interactuantes deben implicar necesariamente la ruptura de estas simetrias. Esto
debe producirse debido a la existencia de operadores cargados a una cierta escala de
energia que romperian las leyes de conservacion de los campos que generan la simetria
no compacta (Véanse los ejemplos e ideas que discutimos en los capitulos 2 y 3 y pos-
teriormente en el capitulo 7). Sin embargo, las simetrias de forma estédn bien definidas
en el nivel clasico, por ende esta obstruccion puede verse como una nueva forma de
anomalia cuantica.

Surge naturalmente una pregunta importante: ja qué escala de energia aparecen en
el espectro las cargas eléctricas y/o magnéticas que rompen la simetria generalizada? Si
disponemos de una formulacién lagrangiana perturbativa, como la descrita por (6.1),
es natural esperar que un limite superior para la masa de estas particulas cargadas
predichas venga dado por los acoplamientos dimensionales apropiados que aparecen
en el lagrangiano. Pero en realidad no hay ninguna razon especifica para esperar la
saturacion de este limite, y de hecho en el modelo estandar las particulas asociadas
aparecen a escalas muy por debajo del limite. Seria conveniente desarrollar un método
directo para acotar estas masas a partir de la teoria efectiva en el infrarrojo. Podriamos
esperar que estas masas aparecieran en las estructuras de los correladores de los campos
conservados que generan la simetria de forma no compacta dual. Hemos llevado a
cabo exploraciones preliminares usando teoria de perturbaciones y hemos llegado a la
conclusion provisoria de que la simetria se conserva en una expansion diagramatica de

Feynman del modelo efectivo. Se requiere mas trabajo para responder a esta pregunta.






Capitulo 7

La anomalia ABJ como simetria

U(1) y el teorema de Noether

En este capitulo estudiamos la anomalia de Adler-Bell-Jackiw (ABJ) [11, 12], y
su relacién con el teorema de Noether [10]. La anomalia ABJ o quiral se refiere ori-
ginalmente al decaimiento anémalo del pién neutro, cuando lo comparamos con las
predicciones provenientes del algebra de corrientes [213, |. Esta misma anomalia
aparece en QED y en muchas otras generalizaciones. Mas precisamente, un fermién sin
masa acoplado al campo electromagnetico contiene una corriente quiral clasicamente
conservada j£ = ¢y°y"1). Si se conservara dicha corriente a nivel cudntico generarfa
una simetria global U(1). Pero, la corriente quiral es un operador compuesto, y de-
bemos que definirlo adecuadamente mediante regularizacion. Este proceso rompe la

conservacién de la corriente quiral y famosamente nos conduce a

aﬂ jg = Flﬂ_g EHVQBF/AV Fa,@ ) (71)
donde con F' describimos al campo electromagnético, con una normalizacién tal que
1 tiene carga unitaria. La existencia de esta anomalia puede demostrarse de varias
maneras diferentes, véase [215].

Por otro lado, el teorema de Noether afirma la correspondencia entre cargas con-
servadas y simetrias que dejan invariante la accion. En el contexto de QFT vimos que
existe una version fuerte de este teorema que daria una correspondencia a una entre
simetrias continuas y corrientes locales conservadas j*. Sin embargo, en el contexto de
QFT, también encontramos la version débil donde sélo se requieren implementaciones
locales de la simetria (twists), que actian sobre regiones compactas [146-119]. Esta
segunda versién es valida con gran generalidad en QFT, siendo una pregunta intere-
sante: ;Cémo podemos caracterizar el espacio de teorias para las que la version fuerte
del teorema de Noether no es aplicable?

En el capitulo 5, hemos hecho una propuesta independiente de la formulacién la-

201
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grangiana para responder a esta pregunta. Simplemente afirmamos que la version fuerte
del teorema de Noether se viola para una simetria global continua siempre que haya
simetrias generalizadas cargadas bajo ella. En otras palabras, mostramos que la exis-
tencia de una corriente de Noether implica que las clases son invariantes bajo dicha
simetria. Sin embargo, la implicacién opuesta es mas sutil. Mas especificamente, pro-
bamos que siempre que una simetria deje invariante las clases no locales sera posible
encontrar twists aditivos y concatenables. Pero, no probamos la convergencia de estos
twists a una corriente.

Volviendo a la anomalia ABJ, ya en su articulo seminal [I 1], Adler mencion6 que
una modificacién aparentemente inofensiva, pero ingeniosa, de la corriente quiral daria
lugar a una comprensién de la anomalia en términos de una simetria global U(1)

convencional. A saber, si redefinimos una nueva corriente local j5 por

js' =gt — %ewﬁAy F.s = 0,75 =0, (7.2)
8T

recuperamos una ecuacion de conservacién convencional. El problema, ya reconocido
por Adler, es que j5 no es un operador invariante de gauge v, por ende, la teorfa no tiene
un operador de corriente conservado asociado a dicha simetria. Aun asi, integrando
la densidad de carga local sobre una superficie de Cauchy completa en el espacio de
Minkowski, se llega a una carga conservada invariante de gauge, que genera un grupo de
simetria global U(1). Desde esta perspectiva, vemos que la anomalia ABJ simplemente
redefine la simetria quiral.

Este contexto plantea cuestiones importantes que constituyen la motivacion de este
capitulo. La primera es que si tomamos seriamente esta simetria quiral U(1) modi-
ficada, entonces esta clase de teorias parece violar la version fuerte del teorema de
Noether. Luego, basdndonos en propuesta desarrollada en el capitulo 5, seria esperable
ver que estas teorias contengan sectores cargados bajo la nueva simetria quiral. En
este capitulo demostraremos que éste es efectivamente el caso. Nuestra conclusiéon serd
que la simetria U(1) modificada es una simetria interna ordinaria de la teoria con la
peculiar caracteristica de que mezcla las clases no locales del campo electromagnético.
Esta peculiaridad explica la ausencia de la corriente de Noether.

Ademsds, en el capitulo 5 observamos que una simetria generalizada cargada bajo
la accién de un grupo continuo produce un continuo de clases. Si este continuo es no
compacto, vimos en el el capitulo 6 que la simetria corresponde a la presencia de un
sector libre no masivo. En este sentido, la anomalia representa el otro caso. Es decir,
tenemos un continuo compacto de clases no locales, lo que en este contexto parece
compatible con una teoria interactuante.

También, esta imagen proporciona una nueva perspectiva sobre el origen de la

cuantizacion de la anomalia. Brevemente, veremos que dicha cuantizacion se ve forzada
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por la compatibilidad de los ciclos U(1) asociados con el grupo quiral correcto y el grupo
de operadores HDV no locales. Equivalentemente, encontramos que la anomalia en la
simetria y el hecho de que una simetria cambie las clases es el mismo fenémeno fisico.
Desde esta perspectiva también podemos explicar la correspondencia de anomalias
(“anomaly matching”) [216], incluyendo la existencia de excitaciones sin masa en el
modelo infrarrojo, de una manera convencional (basada en la simetria). Un ultimo
beneficio de esta perspectiva es que nos permite entender la aplicabilidad del teorema
de Goldstone.

Este capitulo esta organizado de la siguiente manera. Comenzamos en la secciéon 7.1
desarrollando como las teorias con anomalias ABJ ejemplifican las pruebas presenta-
das en el capitulo 5. Ademas, mostramos como estas ideas explican la cuantizacion del
coeficiente de la anomalia, la correspondencia entre anomalias IR y UV, y la validez del
teorema de Goldstone para estos casos. Luego, durante la seccién 7.2 comparamos nues-
tros resultados con la literatura reciente. En la seccién 7.3, estudiamos nuevos ejemplos
que nos ayudaran (en el capitulo 8) a establecer una caracterizaciéon potencialmente
completa de teorias que violan la versién fuerte del teorema de Noether. Finalmente,

la seccién 7.4 contiene un resumen y discusion de los resultados del capitulo.

7.1. La anomalia ABJ como simetria U(1)

En esta seccion estudiamos escenarios que contienen la anomalia dentro de una
teoria abeliana. Comenzamos describiendo el caso de la electrodinamica de piones, ya
que en este modelo efectivo la anomalia se manifiesta a nivel cldsico. Como conse-
cuencia, podemos representar todas las caracteristicas de la simetria, incluyendo su
accién sobre operadores locales y no locales, de forma muy sencilla. A continuacion
describimos el caso de la QED no masiva, donde adaptamos esencialmente la discusién
de Adler [11], complementada por el efecto Witten [56] que determina la accién de la
simetria sobre los TL.! Tanto los modelos de piones como los provenientes de QED nos
cuentan la misma historia, la de un grupo continuo de simetria interna que transforma
de forma no trivial las clases HDV.

Ademas, destacaremos cémo la cuantizacion de la anomalia surge aqui de la com-
patibilidad entre los dos ciclos U(1) asociados a las dos simetrias, equivalentemente
de la compatibilidad entre la simetria O-forma quiral modificada y la simetria 1-forma
magnética. A la luz de lo anterior, deducimos la correspondencia de anomalias de 't
Hooft entre la fisica UV e IR como resultado de la existencia de una simetria global
ordinaria U(1). Finalmente, recordamos cémo la accién no trivial de la simetria sobre

las clases HDV impide la existencia de una corriente conservada.

IEsta accién fue discutida en la literatura reciente [14-16] como discutiremos en la siguiente seccién.
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7.1.1. Electrodinamica con piones

En el contexto de la teoria efectiva de piones, podemos utilizar un enfoque lagran-
giano mas transparente, en el que podemos deducir la anomalia quiral de las ecuaciones
de movimiento. Entonces, discutamos primero una electrodindmica efectiva de piones

en D =4 con Lagrangiano

1

1 1
L= § M’T(’oa'uﬂ'o - —FHUFHV + @ GW,po’YToF'uVFpU R (73)

4 e?

donde p es una constante con dimensiones de masa. Las ecuaciones de Euler-Lagrange

son las siguientes

1 -
Org = — FHEFH 7.4
o 4/.L ; ( )
e? -
o,F* = —F’“’(a,mo) , (7.5)
o

donde definimos el dual de F' como F* = %e“”’” F,,. Este, es conservado (0, F* = 0)
por simetria. Obsérvese que la primera ecuacién de movimiento (7.4), asociada al campo
del pién neutro my, expresa la anomalia. De hecho, podemos reescribir esta ecuacion

como

. . v oo
j'“ = M@“WO, (9“]“ = g ijpaFu e, (76)

En este contexto, siguiendo a Adler, podemos expresar (7.6) como una ecuacién de

conservacién de una corriente dependiente del gauge

1 -~ ~
Jt=ndm— SFA, L 9,50 =0. (7.7)

Podemos integrar, esta corriente no invariante de gauge sobre una superficie de Cauchy

completa para obtener una carga conservada
. - 1_.
Q= /d3xj0(:c) = /d3x (ufrg(x) - §BZ(QJ)A1(I)> : (7.8)

donde B* = —%ﬁijjk representa el campo magnético. Esta carga es ahora invariante
de gauge para transformaciones de gauge o campos que se anulan en el infinito.
Entonces, la cuestién es si este generador da lugar a una simetria de la teoria
en el sentido convencional, y cudles son las diferencias, si las hay, con las simetrias
internas ordinarias. Un operador autoadjunto genérico genera un grupo de unitarios,
pero para que sea generador de una simetria interna deben darse otras condiciones. Mas
concretamente, el grupo debe dejar dlgebras de operadores locales en si mismas (5.1),

y las transformaciones deben conmutar con simetrias de Poincare. A continuacion,
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utilizando la cuantizacién candnica, comprobamos que éste es el caso en el modelo

actual.
Si definimos el campo eléctrico como E' = —F% los momentos canénicos son
0L ‘ 0L | :
:—':' y Z:—.:—El—i—— BZ. 79
Po 570 To, DPa 54, e MWO (7.9)

Vemos que el momento del pién no se ve afectado por el término anémalo, mientras
que el momento conjugado del campo del fotén recibe una contribucion. Escribimos

las relaciones de conmutacion canodnicas a igual tiempo no nulas como

M@ n)] = ide—y), [A@).Aw)] =idlda—y. (710

Nos resultard esclarecedor ver la manifestacion de estas relaciones de conmutacion

canonicas en los conmutadores de los observables. Las no triviales son

:Bi(a:), Jou (y)} — it 9 gz —y), (7.11)
(). B'(5)] = =B (1) 6z~ ). (7.12)
@), B )] = = e (o) 95310 — ) + mofe) 923(r =) . (713)

Las relaciones (7.12-7.13) muestran el efecto de la interaccién en el espacio de fases
fisico de la teorfa como una deformacion de las relaciones de conmutacién canodnicas.
Es especialmente interesante la no conmutatividad de los campos eléctricos. Estos
conmutadores juegan el papel de los términos de Schwinger encontrados para QED en
[13] v que discutiremos mas adelante. En la teorfa efectiva del pién, surgen mediante
cuantizacion canodnica.

Utilizando estos conmutadores podemos encontrar la accién de la carga (7.8) sobre

los operadores de campo locales que describen el espacio de fases de la teoria. A saber,
Q.m@)| =—pi. [Q.B@)] =0, [Qw@] =0, [¢E@]|=0. (14

El tnico conmutador no nulo es con el propio campo de piones 7. Esto es lo que
esperabamos, ya que todos los demas campos no llevan carga quiral. En este caso, la
simetria esta espontaneamente rota y el pion es un bosén de Goldstone para la simetria

quiral, transformandose aditivamente como
UN o) UM =mo(z) + Ap,  UQ) =9, (7.15)

Podemos comprobar facilmente que la transformacién implementada por U(\) respeta

las ecuaciones de movimiento y las relaciones de conmutacién. Entonces, avanzamos y
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calculamos el tensor energia-momento. Podemos escribir el mismo como

T = (aﬂwoavm - %aﬂoaa@ + 6—12<F“°‘Fa” + ”Z” FaBFaB) . (7.16)
Un punto interesante es que en este modelo parece existir una tension entre el tensor
energia-momento canonico, y el que obtenemos derivando la acciéon con respecto a la
métrica. Esto es debido a que este dltimo, dado por (7.16), coincide con el libre. No
obstante, podemos demostrar que esta permitida una modificacion para llevar el ten-
sor canonico a la forma (7.16) y que esta implementa la evolucién temporal correcta.
Debemos esto a las relaciones de conmutacion no triviales (7.12) y (7.13). Debido a la
longitud de los calculos, presentamos un resumen més detallado de estas sutilezas al
final de esta seccién. Siguiendo, dados los conmutadores anteriores, comprobamos cla-
ramente que el tensor energia-momento es invariante bajo las transformaciones quirales

modificadas, a saber
[Q,TW} ~0. (7.17)

Esto demuestra, en lo que respecta al modelo efectivo, que Q genera una verdadera
simetria interna de la teoria. Ademas, ni siquiera necesitamos pensar que esta simetria
estd implementada por un unitario global, ya que la transformacién del pién (7.15) es
un automorfismo de las algebras de operadores locales y de las ecuaciones de movi-
miento. En particular, siguiendo los resultados [116—119] (resumidos en el capitulo 5),
esto implica que podemos encontrar transformaciones locales para cualquier subregion
compacta de cualquier topologia.

Una vez establecida la simetria quiral modificada como una simetria global U(1),
tenemos que entender sus implicaciones. La primera cuestion se refiere al sentido en
que esta simetria es diferente de otras simetrias mas convencionales. En particular,
deberiamos encontrar una razon por la que esta simetria no tiene una corriente de
Noether, ya que la corriente (7.7) no es invariante de gauge. La razén resulta ser un
caso particular del teorema mostrado en capitulo 5. En otras palabras, la teoria actual
posee clases HDV asociadas a regiones con la topologia de lazos no contractibles, y
la simetria quiral si transforma estas clases no locales. Sin embargo, notamos que la
descripcion de este fenémeno no implica mas informacion que la ya tenemos, y que la
accién de la simetria estd completamente especificada por (7.14). En particular, todas
las relaciones de conmutacién con operadores no locales se siguen de las relaciones de
conmutacion con los locales.

Para analizar la accién de la simetria quiral sobre las clases HDV analicemos maés
detalladamente las ecuaciones de movimiento (7.5) del campo de gauge. Estas pueden

ser reescritas como la conservacién de un campo 2-forma invariante de gauge, es decir?

2Esta corriente también fue identificada en [20] pero se descarté debido a la compacidad del campo
de piones. Sin embargo, en esta teoria efectiva de baja energia, deberiamos interpretar el campo de
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1 .
G = F =0 e g,am =0 (7.18)
e p

La otra 2-forma conservada invariante de gauge es el dual de F'. Tenemos,
O, F* =0, (7.19)

Esto nos permite definir los flujos conservados correspondientes integrando estas co-

rrientes sobre superficies orientadas bidimensionales ¥ como

@G:/*G, @F:/*F. (7.20)
% %

Para obtener operadores no triviales necesitamos integrar estos flujos sobre superficies
> abiertas con su borde 0% dado por un lazo. Debido a la conservacion de los flu-
jos, los operadores resultantes conmutan con todos los operadores de campo locales
espacialmente separados de 0¥ y, en este sentido, pueden considerarse operadores de
lazo. Consideremos estos flujos sobre superficies bidimensionales en el corte a tiempo

constante 20 = (

. 1 1 ; ;
@GZ—/dSz'pfq :_/dSi <_2EZ+—7TOBZ), cI)F:/dSiBl' (7.21)
> = € H >

El conmutador entre estos flujos, cuando los definimos sobre dos superficies diferen-
tes, es proporcional al nimero de enlace entre los lazos que determinan el borde de
las respectivas superficies. Podemos entender el hecho de que se trate de un invariante
topoldgico a partir de la conmutatividad de estos flujos con operadores locales espacial-
mente separados de los bordes. Como vimos anteriormente, esto nos permite deformar
los lazos de borde sin cambiar el conmutador. Siguiendo con el célculo, utilizando

(7.10-7.13) obtenemos para lazos simplemente enlazados que
[Pq, Pp] =1 (7.22)

Por supuesto, lo mismo ocurre con el campo electromagnético libre. La diferencia es
que en este modelo efectivo, el flujo eléctrico necesita ser modifica (incluyendo el campo
quiral) para ser un operador de lazo. Desde cierto punto de vista, esto andlogo a lo que
estudiamos en el capitulo 6 para las electrodinamicas neutras.

Definimos ahora los operadores unitarios, como WL y TL, exponenciando los flujos

W, =e“% T, =¢9% (7.23)

piones como no compacto (ya que my < p) y este conduce (a través de un flujo de superficie) a un
operador HDV bien definido en el IR.
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Estos se tratan de operadores no locales asociados a anillos. Las reglas de fusién para

estos operadores no locales son
WoWy =Wory s TyTy =Thig - (7.24)

En este modelo efectivo, los operadores no locales de una regién tipo anillo R forman
un grupo R x R.3 Un operador genérico no local serd “diénico”, es decir, tendré cargas
eléctricas y magnéticas, y lo llamaremos Dy, ). Esta formado, por ejemplo, por pro-
ductos de WL y TL con cargas ¢, g, en el mismo R. Estos operadores en R forman
clases invariantes bajo la accién de los operadores locales en R, y determinadas exclu-
sivamente por las cargas (g, q). Equivalentemente, si multiplicamos un dién dado por
operadores locales en R no podremos cambiar su clase. El grupo dual, correspondien-
te a R, es también R x R. Las relaciones de conmutacion de los operadores diénicos
enlazados se deducen simplemente de las de los propios flujos. Son las siguientes
D@ﬂ) Dgl/vq/) = ¢!@d=d9) D@'»Q') D@ﬂ) : (7.25)
Como podiamos prever, la acciéon de la carga quiral correcta Q es particularmente
interesante sobre estos operadores. Transforma los flujos eléctricos dejando invariantes

los magnéticos. Mas precisamente
Q. 0] =i®p, [Q,Pp]=0. (7.26)
Considerando transformaciones finitas sobre los operadores de lazo obtenemos
UNW, U N) =W, UNT,U A =Dy - (7.27)

El TL preciso en el lado izquierdo de la ultima férmula depende de la forma precisa del
TL en el lado derecho. Pero, lo importante es la clase a la que pertenece. En palabras,
los TL (clases HDV magnéticas) estédn cargados bajo la accién de la simetria generada
por Q. En particular, se mezclan con flujos magnéticos. Para una clase HDV genérica,

vemos que la transformacion se convierte en
UMD U (N) = Digginrg) - (7.28)

Dado que la simetria mantiene el algebra de operadores locales en R’ dentro de si misma,
también mantendrd invariante el conjunto de todos los operadores que conmutan con

ella (5.2). Entonces, se mapeara el algebra de los operadores locales y no locales en

3 Afadir los piones cargados sin masa 7+ convertirfa esto en un grupo Z x U(1). Esto es consistente
con el resto de esta discusion siempre que mantengamos las transformaciones de simetria en el rango
del modelo efectivo my < p.
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R en si misma (5.3), un hecho que sera relevante de nuevo mas adelante. Aunque las
clases no son invariantes bajo la simetria quiral modificada, las reglas de fusién y las
relaciones de conmutacion son invariantes, como debe ser el caso para un automorfismo

del dlgebra:

R R R
D(gl,q1+/\ g1) D(g27qz+/\ 92) D(91+gz,q1+q2+/\ (91+92)) > (7-29)
R R i(qg'—q' R
D(g,q+kg) D(g’ﬁq’+/\g’) = ld=dy D(g’,q’+/\g’) D(97q+>\9) . (730)

La interpretacion de esta accién es sencilla y transparente. Tenemos una simetria uni-
taria interna ordinaria que transforma cualquier algebra de operadores locales para
cualquier regiéon en si misma. Esta accién también transforma las clases HDV no loca-
les. Esta es la uinica nueva caracteristica que no se encuentra generalmente para otras
simetrias internas.

Para terminar esta seccién nos parece importante destacar dos hechos clave que
suelen llevar a confusion. En primer lugar, tanto los operadores eléctricos como los
magnéticos no locales forman parte del algebra ordinaria de operadores locales en bolas,
y como tales no pueden ser eliminados o excluidos de la teoria. En segundo lugar, el
comportamiento de los operadores no locales bajo la simetria viene determinado, por
la misma razoén, por la accién de la simetria sobre los operadores de campo locales.
Las caracteristicas que definen a los operadores no locales de la teoria se calculan a
partir de las propias dlgebras de operadores locales. No es posible tener una simetria
que actie de forma diferente sobre los operadores locales y no locales en una QFT. En
el presente ejemplo, esto es explicito puesto que todos los conmutadores se determinan
a partir de los candnicos (locales). El punto interesante aqui es que los flujos del campo
eléctrico se mezclan con el campo local quiral (el pién) para producir un operador no
local en un anillo. El flujo eléctrico por si mismo, que es no local para el campo libre
de Maxwell, no es un operador no local en una regiéon anular R en el presente modelo

porque no conmuta con operadores locales fuera de R.

Tensor energia-momento del pion y el acoplamiento cuasi-topolégico WZW

Por completitud, estudiamos el tensor energia-momento del piéon neutro en presencia
del acoplamiento cuasi-topolégico WZW introducido como en (7.33). Véase [101] para
una discusiéon mas general sobre los acoplamientos cuasi-topologicos. Para empezar,
el tensor energia-momento obtenido derivando la accién con respecto a la métrica en

signo (+, —, —, —) viene dado por

o _ 2 08

= — . (7.31)
\/§5g#,, g9=n
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En este punto, vemos que se vuelve relevante la naturaleza cuasi-topologica del término

de interaccién. Considerando que F' se conserva
O, F" = " 9,0,A, =0, (7.32)

la accién que surge del lagrangiano (7.3) puede reescribirse convenientemente como

1 1 v o v o
S = / &z {Eaﬂoaﬂwo = g Fw" 4 10, (EWGA e )] . (7.33)
Esto demuestra que el término de interaccién en (7.33) no se acopla a la métrica y
por lo tanto no tiene ninguna contribucién a (7.31). Por lo tanto, recuperamos sélo las

contribuciones libres dadas por (7.16). Esto es

v 1 v
T — (8"’7?08”7r0 — %aﬂoaam) + 5 (F“O‘Fa” + "Z FaﬁFaﬂ) . (7.34)
e

Por otra parte, el tensor energia-momento canénico viene dado por

5»6 v (5£ v v n 14 6%
Ow =55 0 M0+ 5 a0 A~ Mk = (a%a To = =y Oamod ”0>+ (7.35)
1 Nuv To (7 Nuv
o no Qv _ pv afs Y no Qv _ WY rhaB
62<F 0 Ao~ M F0F >+M<F 0 Ao~ M F Fag)

que parece evidenciar una contribucién no trivial procedente del término de interac-
cién en (7.3). Es evidente que ©,, no es simétrico ni invariante de gauge, pero puede
modificarse de la manera habitual. En concreto, podemos utilizar las ecuaciones de

movimiento para escribir que

T = Op + 0 X + > (P, = %F@ﬂﬂw) , (7.36)
1
donde x“* obedece a la condicién habitual y** = —x** ya que viene dado por
auy a AV 1 e To v
XM =GR AY = (;F“ - EF,M)A . (7.37)

Sin embargo, el ultimo término de (7.36) nos impide a priori igualar (7.35) y (7.34).

Un analisis méas detallado de esta estructura tensorial nos muestra que

n 1 n 1 n V o [ «a
MOéFua = _ZEOCMﬂGEaV)\erUF)\e = Znuﬂa,u)\staF)\e = %F BFOé,B - FlwéFy ) (738)
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lo que demuestra que el tensor candénico (7.35) es consistente el que se obtiene derivando

con respecto a la métrica (7.34) como

FuaB," =B Fy = T = O+ 0 Xaw (7.39)

La pregunta que queda es si (7.34) es suficiente para proporcionar la evolucién temporal

correcta. El tensor energia-momento en cuestion produce el Hamiltoniano

1 , 1
H:/fﬂm@zi/fxW—&m%@tﬂ&&+&&), (7.40)
donde podemos utilizar (7.10-7.13) para obtener que
i|H,m(x)| = po(x), (7.41)
i[H, Ai(x)] = Ei(z), (7.42)
- . . 1 4
i|H,po(z)| = —0;0'mo(z) — ;Bz(x)Ez(x) : (7.43)
: _ | ? -
i H, Ei(x)] = —eud BF(x) — m (Bi(x)po(x) + e B (x)@kﬂo(x)> , (7.44)

que es equivalente a las ecuaciones de movimiento. En resumen, el tensor energia-
momento (7.34) es, de hecho, el generador simétrico invariante de gauge de la evolucién

temporal de la teoria.

7.1.2. Origen de la cuantizacion de la anomalia

El modelo de pién efectivo discutido anteriormente es no renormalizable y tiene que
ser completado en el UV. Esta completacion necesitara necesariamente la introduccion
de cargas que rompan los sectores HDV de R X R a un grupo mas pequeno. Una razén
formal para esta reduccion de los sectores es que para el caso de sectores no compactos,
los campos duales 2-forma F'y G que los generan deben tener un correlador cruzado
que esta fijado por la simetria y no se renormaliza. Como vimos en el capitulo 6, esto
nos conduce a un modelo libre.

En la completacién del modelo dentro de QCD con quarks no masivos cargados, los
sectores HDV se reducen a U(1) x Z. Tenemos un U(1) generado por WL continuos
mientras que los TL estan discretizados y forman un grupo Z. En el modelo efectivo
podriamos implementar esto introduciendo los piones cargados.

Consideremos tal compactificacion desde una perspectiva mas general. Fijamos la
carga eléctrica minima en ¢ = g, donde la derivada covariante es d,+igA,,. Esto corres-
ponde a fijar en eqq la carga de Coulomb correspondiente al campo electromagnético

débilmente acoplado. Entonces, para el WL tenemos un grupo compacto U(1) etique-
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tado por las cargas ¢ € [0,qo). En consecuencia, el TL forma un grupo Z con cargas
g= i—gk’, y k entero. Crucialmente, la compatibilidad del grupo compacto de WL con la
accién no trivial de la simetria quiral sobre el grupo U(1) x Z de sectores HDV implica
restricciones para el radio de compactificacién de dicha simetria.

Observamos en primer lugar que cualquier extension de la simetria a energias mas
altas debe respetar (7.28). Esto implica que el rango del pardmetro A\ de la simetria
quiral U(1) es ,

A0, h), N=nl (7.45)

27’
donde n es un entero positivo. En términos del modelo con Lagrangiano (7.3) esta
ecuacion relaciona el radio de compactificacion del campo de piones con el coeficiente
del término anémalo. La definicién convencional de la constante de decaimiento del
pion nos permite escribir radio de compactificacién del pién como my = 7y + 27 f5.
Utilizando (7.15) para el generador de la simetria quiral y (7.45) obtenemos para el

coeficiente del término anémalo la siguiente expresion

1 n g

— = : 7.46
8u 3272 f, (7.46)

Esta ecuacion expresa la cuantizacion del valor del coeficiente de anomalia en términos
de teoria de grupos. Esto es porque proviene de la compatibilidad necesaria entre las
clases HDV y una simetria global que actia no trivialmente sobre ellas.

La cuantizacién de la anomalia se ha obtenido anteriormente a partir de distintas
consideraciones. Por ejemplo, en la inmersién de este modelo en un modelo sigma no
lineal, apropiado para QCD con quarks sin masa y un nimero de sabores Ny > 3. En
este contexto, la cuantizacion del coeficiente se sigue de la cuantizacion del coeficiente
WZW por razones topolégicas [217].4 En este caso tenemos ¢y = 1/3 y n = 3N, con

N, el nimero de colores [215].

Ao
27r‘7

normalizada tal que el operador de carga tiene un ciclo fijado en el valor estandar 27.

Otra forma de expresar estas caracteristicas es en términos de una corriente j =

Esto implica que la carga toma valores enteros. A partir de (7.6) esta corriente quiral

produce la anomalia
2

4y
32 72

Vemos que esta formula se ajusta bien al valor general de la anomalia. Para la corriente

gt =n €ppo FM FPO . (7.47)

quiral en QED tenemos n = 2 si el angulo quiral es la fase que actiia sobre el electrén,
como corresponde a tener dos campos quirales para el fermion de Dirac. Pero tenemos
n = 1 si fijamos la carga quiral minima en los operadores invariantes de gauge en 1

(véase mds adelante).

4Nétese que nuestra derivacién de la cuantizacién de la anomalia no requiere ninguna suposicién
sobre el numero de sabores.
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Para n > 1 tenemos que la simetria quiral se mueve n veces mas rapido en las
clases no locales que en el campo del pién. Los operadores con carga quiral unidad se

obtienen exponenciando los campos de piones con el smearing adecuado:
eifr Ja@m@) /a(x) =1. (7.48)

Por otra parte, podemos producir operadores cargados quiralmente combinando ope-

radores no locales como

9 ome
\IIk,m - / dq e’L,'nH D(k27‘r q) 3 (749)
0

Wv
para enteros m.” La transformacién quiral produce
. 2w A
UN) W UNT = €™ 50 Wy, (7.50)

La carga minima no nula con respecto a la simetria quiral en este tipo de operadores es
entonces n, alcanzada para m = 1 y el TL elemental con £ = 1. Esto nos proporciona

una interpetacion fisica complementaria del nimero entero n que define la anomalia.

7.1.3. Simetria quiral en QED no masiva

Consideramos ahora el caso de la QED sin masa en D = 4. Podemos describir esta

teoria mediante la accién
1 — _
S = /d% {—4—62FWF“” +idy —p Ay | . (7.51)

. , . . ; 5 ,
En este caso, la simetria quiral dada por transformaciones de la forma ¢ — €'* ¢ esta

asociada, por el teorema de Noether, a la corriente

e =y . (7.52)

Sin embargo, la ley de conservacién correspondiente es anémala a nivel cudntico [11, 12].

En este caso, podemos escribir la anomalia a partir de

: 1 vpo
aﬂ]g = 1672 er FuVFpa . (753)

5Nétese que la seleccién de operadores especiales representantes de las clases no locales que se
transforman en si mismos por la operacién de grupo como en (7.28) elimina automdticamente las
cargas adicionales de los operadores locales. La construccién de estos operadores puede llevarse a cabo
de manera estdndar utilizando herramientas modulares. Véase [23], seccién 2.2.3.
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Como en el ejemplo del pién, podemos definir una corriente conservada pero no inva-
riante de gauge mediante

TR 1F/WA o Gt =

Js =I5 T 2 v Js = 0. (7.54)
Esto nos da un operador de carga global conservado invariante de gauge cuando se

integra sobre todo el espacio

B'(x) Ai(x)

= (7.55)

Q= [ & sl wn o) -
Para entender si esta carga define una simetria interna o no necesitamos saber cémo

actua sobre los campos locales. Los momentos canénicos pueden calcularse como

. i 1
po =it ph(r) = 5 B, (7.56)

implicando las relaciones de (anti)conmutacién a igual tiempo

{1 ')} =se-n1.  |A@.BH)|=islse-y). (757

A partir de aqui, uno podria pensar ingenuamente que la accién de la carga (7.55)

viene dada por

Q@) = "u@), @) = vi(@)7” (7.58)
[@,Ai@)} ~0, [@, Ei(x)] =L Bi(a). (7.59)

272

Es decir, la carga actiia como era de esperar sobre el campo fermiénico intercambiando
sus quiralidades. Sin embargo, actia sobre el campo de fotones de una manera no
covariante cambiando el campo eléctrico en un campo magnético y dejando el campo
magnético invariante. Esto no sélo es extrano, sino también incoherente con el hecho
de que Q = 0. Este problema se resuelve considerando los términos de Schwinger
que aparecen en el conmutador con la densidad de carga compuesta. Los términos de
Schwinger no nulos® a primer orden en teorfa de perturbaciones estdn dados por [13]

de la forma:

6Claramente, podriamos preguntarnos por la posible existencia de més términos de Schwinger.
Sin embargo, tal como se calculé en [13], el conjunto completo (7.64) es consistente con todas las
ecuaciones de movimiento y leyes de conservacion de la teoria. Esto, combinado con el hecho de que
por razones generales uno no esperarfa mas derivadas de las funciones delta en (7.64) [13, ], nos
sugiere que (7.64) es de hecho exacta a todo érden en teoria de perturbaciones.
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(), B )] = 2 B) 6 ), (7.60)
(@), B (0)] = S5 Byl ol ). (7.61)
(), ()| = 5B ) 055(x — ). (7.62)
(1), )] = g€ By ) 35S — ) (7.63)
10(), Ji(9)] =~ € B (@) 076 ). (7.64)

En consecuencia, (7.59) se modifica como
@A) =0, Q. E@) =o0. (7.65)

Es evidente que @) deja invariantes las variables del fotén, como cabia esperar basdndo-
nos en el ejemplo anterior. En este caso, las cargas quirales mas pequenas vienen dadas

por los bilineales quirales

@0 (150 vw)] = 200) (152 ) vt (7.60)

2 2

Estos bilineales tienen dos unidades de carga como mencionamos anteriormente. Me-
diante célculos similares, también podemos comprobar que la carga modificada, que im-
plementa una transformacién quiral bastante estandar, conmuta con el tensor energia-
momento. Notese que este calculo requiere de nuevo la consideracién de los términos
de Schwinger anteriores dados por (7.64).

Concluimos que las transformaciones generadas por la carga (7.55) parecen obede-
cer todos los requisitos de simetria interna. En particular, puesto que transforma las
algebras locales en si mismas y conmuta con las simetrias espacio-temporales, pode-
mos construir cargas locales (o twists) para cualquier subregion de cualquier topologia
dada.

Como antes, la pregunta que queda es en qué sentido esta simetria es diferente de
las simetrias internas convencionales. Para abordar esta cuestién, observamos que esta
teorfa tiene sectores HDV para regiones tipo anillo, dadas por un grupo Z x U(1). La
parte Z corresponde a TL con cargas 2wk, mientras que la parte U(1) corresponde a
WL de cargas en ¢ € [0,1). Los WL con cargas enteras no son operadores no locales
porque podemos descomponerlos localmente en lineas de Wilson. Como F' se conserva,
el WL puede construirse exponenciando los flujos del campo magnético. La simetria
quiral deja invariantes las clases de los WL, porque el campo magnético es invariante.

Por otro lado, sélo los TL de cargas 27k son operadores de lazo. Esto, y las relaciones
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de conmutacion con WL, queda fijado por las clases de WL no locales que forman un
grupo U(1).

La cuestién crucial nos refiere a la naturaleza de los TL. Observamos, en primer
lugar, que estos operadores TL necesariamente forman parte del dlgebra generada por
los operadores locales en una bola.” La razén es que el WL pertenece a esta algebra
(es un flujo del campo magnético). En consecuencia, el teorema del doble conmutante
de von Neumann nos requiere que el TL pertenezca al algebra de la misma bola.
Una expresion del TL que muestre que pertenece al algebra de los operadores locales
podria obtenerse de forma abstracta utilizando la teoria modular. Pero es ciertamente
oscuro como hacer explicita dicha construccion en este contexto QED. El modelo de
piones anterior da una pista sobre lo que ocurre en la expresion del TL en términos de
operadores locales. Ciertamente, los operadores locales cargados quiralmente deberian
jugar un papel.

Sin embargo, la forma estandar de expresar la accién del TL es a partir de la
definicion original de 't Hooft. Esto es, como una inserciéon de una condicion de contorno
alo largo de I' = OX en la integral de camino [7, 220]. Esta condicién de contorno es la
imposicién de una condicion de tipo monopolo magnético sobre el campo de gauge en
una esfera S? alrededor de cualquier punto en I'. Esta insercién tiene necesariamente
las relaciones de conmutacién correctas con WL, un hecho que establece al TL como
un operador HDV en el anillo.

Para seguir, queremos analizar la transformacion quiral estos TL. Podemos calcular
esta transformaciéon a partir del efecto Witten, y de esta manera, se conecta directa-
mente con el mismo efecto en la electrodinamica del pion. Presentamos en el apéndice
C una descripcion extensa de dicho efecto, junto con mas detalles de la definicién del
TL como condicion de borde en la integral de camino y el calculo de la transformacién
quiral de la medida del fermién. Todos estos conceptos seran necesarios a continuacién
para analizar la trasformacion quiral del TL.

En esta linea, el efecto de Witten [50] describe un monopolo de carga magnética g

sujeto a un cambio externo del pardmetro del término 6 en el Lagrangiano

1

L, —
o~ T6r2

v E,, (7.67)

para un cambio total Af. En este proceso un monopolo con carga g se transforma en

(g,gf—e) : (7.68)

T2

un dion de carga

A9 Como resultado,

Equivalentemente, el monopolo ha adquirido una carga eléctrica g

"Dicha bola debe contener completamente la regién tipo anillo que encierra el lazo en el que se
define el TL.
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las condiciones de contorno del monopolo a lo largo del TL también se modifican a
condiciones de contorno de dién, y el cambio del TL a lazo de caracter diénico viene
dado por la misma férmula (7.68).

Ahora, sélo queda conectar tal cambio de 6 con una transformacién quiral a través
de la anomalia. En efecto, dicho término aparece en la accion como resultado de una
transformacién quiral de la medida del fermién en la integral de camino [221]. La

transformacién quiral cambia la accién con el término (7.67), donde

Af = <Z q3> A (7.69)

En esta ecuacion, A es precisamente el angulo de la transformacién quiral, y la suma es
sobre los diferentes fermiones quirales con carga ¢;. Para QED es Af = 2\. Nétese que
también podriamos haber invocado el efecto de Witten en la electodindmica de piones,
con la identificacion
0=ng 2. (7.70)
fr

Por lo tanto, en QED tenemos el mismo fenémeno que en la electrodinamica de

piones. El de una simetria quiral U(1) que cambia las clases como

(27k,q) — (27Tk, q+ 2k %) , (7.71)
con A € [0,27), ¢ € [0,1). Vemos que la carga minima construida con estos lazos es 2,
pero ésta es también la carga minima en los operadores locales invariantes de gauge.
En este sentido, este modelo alcanza el valor minimo posible n = 1. Descripciones
andlogas de la acciéon no trivial de las transformaciones quirales sobre el TL han apare-
cido anteriormente [11—16]. Sin embargo, la interpretacién y las consecuencias difieren.
Compararemos con tales trabajos en la seccién 7.2.

Es interesante observar que en QED esperamos a priori que esta simetria no se
rompa. De hecho, la QED ordinaria no presenta ningun escalar de Goldstone y la masa
del electrén ya es muy pequena con respecto a la escala a la que la constante de acopla-
miento es fuerte. Esto conducirfa a la ecuacion (D, q)) = (D(g,4+24)) Para operadores
no locales relacionados con la simetria. Esta ecuacion es ciertamente sorprendente des-
de el punto de vista del campo libre de Maxwell. Podemos preguntarnos como esto es
compatible con el signo “equivocado” de la funciéon beta en QED. En este sentido, seria

interesante tener una comprension mas explicita de esta ecuacion.
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7.1.4. Correspondencia de anomalias y teorema de Goldstone

La interpretacion habitual de las anomalias es que no se renormalizan. Equivalen-
temente, la divergencia de la corriente anémala debe ser la misma en los modelos UV

e IR. Esto implica que la expresion general para la anomalia
aﬂ-]g = CEMVPUF/WF;)U 9 (772)

tiene el mismo ¢ adimensional para las teorias IR y UV, cuando fijamos la normalizacion
de la corriente y del campo electromagnético. Esto impone una correspondencia de
anomalias entre los modelos IR y UV. Esta correspondencia implica la existencia de
excitaciones sin masa en el IR, ya sean fermiones o bosones de Goldstone, capaces de
reproducir la anomalia UV [216]. Por ejemplo, para QCD con quarks sin masa tenemos
para la anomalia en la corriente quiral

J* =5 (@ u—dy*r°d) | (7.73)

1
2

generando el valor del coeficiente

N, 1 2\%  /1\? N,
_ e Y _(2) ) 2 B 74
T 2 162 ((3) (3) ) 0672 (7.74)

Podemos deducir esto de la anomalia presente en QED para cargas 2/3 y —1/3 aso-

ciadas a los quarks u y d, que se replican por el nimero de colores N,. Fijamos la
normalizacion de F' estableciendo la carga del protén en uno. Esta corriente se iden-
tifica en el IR con la que crea el campo de piones j, = fr d,m. La correspondencia
de anomalias nos da entonces el coeficiente en el Lagrangiano del pion a través de
(7.46-7.47), con go = 1/3, n = 3N,.

Ahora queremos entender la correspondencia de anomalias en términos de la exis-
tencia de la simetria quiral global U(1). Nétese que, genéricamente, la existencia de
una simetria global continua ordinaria en el UV no implica necesariamente excitaciones
sin masa en el IR. Aunque los bosones de Goldstone sin masa aparecen si la simetria
se rompe espontaneamente, podemos tener el caso de que todas las particulas cargadas
se vuelvan masivas, y la simetria desaparezca efectivamente en el IR. Sin embargo,
para la simetria quiral actual, el punto clave es que cambia las clases HDV. Por lo
tanto, la simetria no puede simplemente desaparecer en el IR ya que transforma las
clases no locales del campo electromagnético. Estas clases también estan presentes en
el IR, ya que se supone que el campo electromagnético se acopla débilmente en ese
régimen. Ademas, no puede darse el caso de que una simetria cambie las clases en el

UV y luego deje de cambiarlas en el IR, si las clases siguen estando presentes. Esto no
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es posible porque la accién de la simetria sobre las clases no locales se preserva bajo
“transportabilidad”, o deformaciones de los operadores no locales por los locales. Estas
deformaciones pueden transformar continuamente un lazo pequeno en uno grande.

Otra perspectiva es la siguiente. La simetria de 1-forma no desaparece en el IR debi-
do a la existencia del campo de Maxwell. Entonces, los TL tienen valores de expectacién
no triviales, dando lugar a operadores cargados quirales no triviales. La complementa-
riedad cuédntica obliga a la existencia de operadores duales a estos cargados, también
con valores de expectacion no triviales [22, 19]. En este caso, estos son los twists locales
que efectian la transformacion de simetria en el IR.

Por otro lado, como hemos comentado antes, los operadores no locales se construyen
con operadores locales ordinarios. Puesto que los TL estan cargados quiralmente, esto
implica que en el IR debe haber operadores locales que aun se transforman bajo la
simetria. Esto explica la existencia de excitaciones sin masa en el IR (ademds del campo
foténico). Entonces, la correspondencia de anomalias se convierte simplemente en la
afirmacién de que la accién de la simetria de grupo sobre las clases no locales se preserva
a través del flujo del RG, y por lo tanto sus manifestaciones pueden corresponderse a
diferentes escalas. Esta claro que la velocidad de estas transformaciones en las clases
preservadas también tiene que ser preservada, y esta velocidad es la que establece el
coeficiente de la anomalia.

En este sentido, podria darse el caso de que no todos los sectores no locales se
conserven o, como en QCD, que surjan nuevos sectores en el IR porque la carga minima
cambia de 1/3 a 1 (considerando los piones cargados). En este caso, los sectores UV
forman un subgrupo U(1)r/Z3 x 3Zig de los infrarrojos. La correspondencia con la

accion de la simetria quiral conduce entonces a

nuv (g5 ¥)* = g (g5°)% - (7.75)

Por tltimo, la existencia de una simetria global continua en la QFT implica que se
aplica el teorema de Goldstone [222-221]. La validez de este teorema no se apoya en la
existencia de una corriente invariante de gauge. Sélo requiere la existencia de las cargas
o twists locales invariantes de gauge, como se demuestra en [39]. Como discutiremos en
la siguiente seccién, las cargas locales U(1) pueden construirse para el campo del pién.
Por lo tanto, esta simetria puede romperse espontdaneamente o no en el IR, conduciendo
a la existencia de modos Goldstone o no. En QCD surge la primera posibilidad, con la
aparicion de los piones como bosones de Goldstone de la ruptura de la simetria quiral.
En otras palabras, el acoplamiento entre la QCD y el campo electromagnético, que
deforma la conservacion ingenua de la corriente quiral, no estropea la aplicabilidad del

teorema de Goldstone, lo que implica la existencia de piones neutros a bajas energias.®

8Una versién del teorema de Goldstone para simetrias no invertibles que explica estos aspectos
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7.1.5. Implementacion local de la simetria

Dada una simetria interna, definida como un automorfismo global de las algebras
(aditivas) generadas localmente para cualquier regién del espacio-tiempo, siempre po-
demos encontrar operadores con soporte en regiones compactas del espacio que imple-
mentan la simetria dentro de estas regiones, actuando trivialmente fuera de ellas. Este
es el contenido de la forma débil del teorema de Noether [116-119]. Estos operadores
que implementan transformaciones locales son los twists que estudiamos extensivamen-
te en el capitulo 5. Podemos construirlos de forma general y abstracta utilizando la
split property y la teoria modular. Como vimos en la seccién 5.2.1, una vez que tene-
mos dos dlgebras que conmuten (sin interseccién no trivial entre ellas), y un unitario
global que efectiia automorfismos para esas algebras, podemos construir los twists que
efectiian la transformacién en una de las algebras.

La version débil del teorema de Noether y la construccion de twists locales pueden
extenderse al caso de ruptura de simetria [39]. Esta extension es relevante para el caso
que nos interesa, a saber, para QCD con quarks sin masa, ya que la simetria quiral
esta espontaneamente rota. En este caso, los automorfismos de las dlgebras locales que
conmutan con la simetria de Poincaré sustituyen a los operadores de simetria global
(que estan mal definidos en el caso de ruptura de simetria) en la construccién de los
twists. Para un resumen de las sutilezas involucradas véase la secciéon 5.2.1 y para un
ejemplo la secciéon 5.3.1.

Por lo tanto, la existencia de estas implementaciones locales nos permite estudiar,
por ejemplo, las transformaciones de las clases HDV bajo la simetria, donde ahora
todas las transformaciones de simetria estan definidas localmente y representadas por
los operadores de twist 7,. Si definimos el modelo en un espacio de topologia no trivial, la
estructura de las dlgebras locales dentro de una bola contractible debe ser en principio la
misma, a saber, el dlgebra aditiva (véase [220] para una discusién reciente con diferentes
motivaciones). Existirdn twists para tales bolas, y a su vez a partir de ellas podemos
proporcionar twists asociados a cualquier regiéon dada (de cualquier topologia) dentro
de la bola. Esto nos permite comprender que la simetria quiral es la misma simetria
U(1) invertible en cualquier espacio-tiempo, en lo que se refiere a los automorfismos de
las algebras locales. Esta simetria es intrinseca a la QFT y, lo que es mas importante,

controla el decaimiento de piones. Discutiremos las simetrias globales para variedades

se describié en [225]. Pero a partir del presente andlisis, estd claro que es el teorema de Goldstone
convencional el que dicta que el campo del pién es un bosén de Nambu-Goldstone.

9Las simetrias globales convencionales se definen, a veces, como aquellas con operadores topolégicos
para cualquier variedad de codimension uno en signatura euclidea. Notese que la presente versién débil
del teorema de Noether en QFT muestra que uno sélo necesita demostrar la existencia del operador
topoldgico global en la variedad M de sobre la que definimos la teoria, y que tal operador topolégico
global genera un automorfismo de las dlgebras aditivas. Una vez demostradas estas dos cosas en la
QFT en cuestion, el teorema estudiado en [146-149] implica la existencia de operadores topoldgicos
para cualquier subregion en la variedad M.
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compactas con topologia no trivial utilizando los conceptos introducidos en el capitulo
2 durante la seccién 7.2. No obstante, veremos que las posibles caracteristicas de estos
operadores globales no tienen nada que ver con el decaimiento de los piones.

Como vimos en el capitulo 5, cuando la simetria global modifica las clases no locales
asociadas a una determinada region, se producen ciertos refinamientos en la clasificacién
de los twists. Mas concretamente, los twists para regiones que contienen operadores no
locales pueden reproducir o no la accién de la simetria global sobre estos operadores
no locales. En términos més generales, los twists pueden implementar la simetria en
una subalgebra cerrada de los operadores no locales que se mantiene invariante bajo
la simetria. Esto es posible porque los twists estandar surgen al elegir las dos dlgebras
conmutativas y no intersecantes apropiadas aplicando la split property, y en estos
casos tenemos mas de una opcion. Se pueden elegir las dlgebras aditivas para ambas
regiones, o el algebra aditiva para una region y el algebra maxima para la otra. También
se pueden elegir opciones intermedias, siempre que conmuten. Los twists formaran
siempre el mismo grupo que el global y actuaran de forma correcta sobre cualquier

operador cuya transformacion de simetria se mantenga en el algebra.

7.2. Simetrias no invertibles y literatura reciente

Este capitulo fue motivado principalmente por la interesante interaccién entre las
teorias con anomalias ABJ, el teorema de Noether y su relacion con las pruebas del
capitulo 5. La discusién anterior concluyé que las anomalias ABJ deberian entenderse
m&s propiamente como teorias con una simetria global U(1), como anticipé Adler.
Siendo la tunica caracteristica que hace especial a esta simetria global el hecho de que

transforma las clases no locales. Sin embargo, esta peculiaridad nos permite explicar

(a) la cuantizacién del coeficiente de la anomalia debido a la necesidad de compatibi-
lidad de los ciclos U(1) asociados a la simetria quiral y a la simetria generalizada

1-forma,

(b) la correspondencia de la anomalia (“anomaly matching”) por la preservacién de
la simetria que transforma las clases no locales a lo largo del flujo del RG entre
el IR yel UV,

(c) la ausencia de una corriente de Noether por el hecho de que los twists locales
transforman las clases no locales mientras que los twits de Noether no pueden

hacerlo,

(d) la aplicabilidad del teorema de Goldstone que muestra que el campo de piones
puede considerarse un bosén de Goldstone incluso cuando QCD esta acoplada al

campo de fotones.
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Estas conclusiones resultan estar en contraste con literatura reciente [11-16]. Aun-
que parte del espiritu y varios calculos son similares, no encontramos que la simetria
quiral se reduzca a Z,,, en QED con ny fermiones sin masa [11], 0 que deba interpretarse
como no invertible [15, 16]. Estas discrepancias se originan en caracteristicas asocia-
das con las manifestaciones en la fisica local de las simetrias generalizadas. La fisica
de QFTs con anomalias ABJ simplemente amplifica sus consecuencias. Por lo tanto
durante esta seccién buscamos aclarar la imagen fisica general en comparacion con los
trabajos anteriores. Para esto tomamos como punto de partida las ideas desarrolladas
en el capitulo 2 durante la seccién 2.3 y describimos como afectan a la comprension de
la anomalia en la literatura reciente.

Terminamos la seccién recordando el teorema de reconstruccion DHR [58-62], des-
tacando las dificultades, o mas bien la imposibilidad, que plantea a tener genuinas
simetrias internas globales (0-forma) no invertibles, para dimensiones D > 2. Nuestros
resultados relativos a las teorfas con anomalias ABJ son, por tanto, coherentes con
dicho teorema general. Esbozamos ademas la idea de un “teorema de reconstruccién

generalizado”.

7.2.1. Discusion de literatura reciente sobre la anomalia ABJ

A continuacién describimos cémo las caracteristicas discutidas en los capitulos 2
y b afectan a las interpretaciones recientes de la anomalia ABJ. El primer articulo
que dio cuenta de que habia una interaccion interesante entre la simetria quiral y
los TL fue [14]. Sin embargo, alli se argumentaba que en QED, la simetria quiral
modificada U(1) de Adler no es realmente una simetria global. La razén dada es que
esta simetria mezcla el TL con un operador topoldgico de superficie, concretamente el
flujo magnético. La definiciéon que proporcionan de simetria global es la estandar, y la
misma que en la literatura algebraica, a saber, como un automorfismo de las dlgebras
locales. El problema en cuestién es la nocién de algebra local. En el articulo citado,
esto significa el algebra aditiva mas los TL, pero no el WL. Esto es hacer una eleccién
particular de red de Haag-Dirac (HD) y atribuirle un significado fisico. En este caso
particular, para decidir si algunas transformaciones son simetrias de la teoria o no.

Sin embargo, una definicién de simetria global que sea fisica (intrinseca) debe partir
unicamente de los automorfismos del dlgebra aditiva. Y, de hecho, esto nos es suficiente
para toda la discusion de este capitulo y el capitulo 5. La razon es la siguiente. Puesto
que las regiones topolégicamente triviales tienen dlgebras tinicas (satisfacen la dualidad
de Haag), es un requisito minimalista que una simetria global sea un automorfismo
de las dlgebras asociadas a regiones topoldgicamente triviales como las bolas. Pero
este requisito minimalista se extiende inmediatamente a toda la red aditiva, ya que la

construimos a partir de las algebras asociadas a las bolas. Supongamos entonces que
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efectivamente tenemos (5.1)
Ulg) AR)U(9)™ = A(R), g€G, (7.76)

donde debemos entender esta relacion como un mapeo entre dlgebras. Por supuesto,
no dice que todos los elementos de A(R) son invariantes bajo el grupo de simetria.
Sélo dice que la accion de la simetria deja el algebra en si misma. Equivalentemente, si
a € A(R) entonces U(g)aU(g)~! € A(R). Ahora, recordamos que la conjugacién con
un unitario U(g) lleva dlgebras que conmutan a dlgebras que conmutan, es decir, dado

(7.76) recuperamos (5.2), a saber
U(g) A(R)'U(g)' = A(R),  g€G. (7.77)

Pero el conmutante del algebra aditiva en una dada regién es el algebra maxima en
el complemento, que contiene todos los operadores HDV. Equivalentemente, contiene
todas las lineas genuinas y superficies topolégicas. Concluimos que si tenemos un au-
tomorfismo de las dlgebras locales asociadas a bolas, tenemos un automorfismo para

las dlgebras maximas asociadas a cualquier regién R, dado por (5.3) de la forma
U(g) AmaX(R) U(g)_l = AmaX(R) . (778)

En resumen, esto implica que la simetria no puede convertir operadores no locales en
locales o viceversa. Tiene que transformar las clases de operadores no locales en si
mismas. La mayoria de las simetrias no transforman estas clases, pero algunas si lo
hacen. Dado que las lineas genuinas y las superficies topoldgicas son operadores HDV
por igual, se espera que las simetrias de este tipo transformen entre ellas. Obsérvese
que el hecho de que algunas simetrias puedan transformar lineas genuinas en superficies
topoldgicas sélo es posible si tal distincion no tiene sentido fisico. En tales escenarios,
esos operadores pertenecen al mismo multiplete generalizado. Equivalentemente, la
nocion de clases HDV es la nocion adecuada para caracterizar y clasificar las posibles
mezclas entre diferentes simetrias generalizadas.

Para la anomalia ABJ, tal como se ha calculado anteriormente, el conmutante del
algebra aditiva del anillo es el dlgebra maxima en el anillo complementario. Esta incluye
el dlgebra aditiva mas los TL dados por T, con g = gon y n entero, y los WL actuando
como superficies topoldgicas, es decir W, = €% con ®p el flujo magnético sobre
cualquier superficie con borde en el anillo complementario y ¢ € [0,27/go). Podemos
construir automorfismos del algebra aditiva, que dejan invariantes las algebras aditivas,
pero mezclan los TL con los WL, como deducimos en la seccion 7.1. Como la simetria
cambia las clases no locales, no respeta las elecciones de redes de HD, como por ejemplo

la que obtenemos al tomar sélo los TL como operadores no locales para una region.
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Como ya hemos explicado, las elecciones de HD no son intrinsecas o fisicas, y una
simetria fisica puede cambiarlas. Este tipo de mezcla es la generada por la simetria
quiral modificada. Por ende, vemos que trata de una transformacién U(1) sin corriente
de Noether debido al teorema que probamos en el capitulo 5.

En otra visién del tema se introdujo en [15, 16], donde se ha argumentado que la
afirmacién correcta no es la de Adler, a saber, que la anomalia ABJ esta codificando
una simetria global U(1) abeliana, sino que su origen reside en la existencia de una
cierta simetria no invertible implementada por un conjunto modificado de generadores
de simetria. En la construccion original los nuevos operadores de simetria se etiqueta-
ron mediante nimeros racionales, mientras que las extensiones a etiquetas compactas
continuas se han descrito en [225, |. La construccion sigue la linea de una analoga
para el caso de simetria de dualidad y escenarios relacionados [228—234]. La motivacién
para estos nuevos desarrollos es que la construccion de Adler de la carga conservada
invariante de gauge Q solo es valida cuando la carga tiene soporte compacto sobre
una superficie de Cauchy infinita a tiempo fijo, y sélo cuando insertamos operadores
locales, tales como el campo pién m o F),, en la electrodindmica con axiénes. Aunque
se reconoce que en el espacio plano con inserciones de operadores locales la simetria
se convierte en una U(1), la transformacién no trivial de el TL se considera de nuevo
un problema. Se argumenta que la mezcla no convencional entre lineas genuinas (aqui
el TL) y superficies topoldgicas (el WL con cargas no enteras) estéd relacionada con la
naturaleza no invertible de la propuesta simetria.

Sin embargo, como hemos explicado, la simetria actiia como actia sobre el TL
exactamente porque transforma los campos locales de la forma correcta. El TL y el
WL no son mds que operadores construidos con los campos locales.! La afirmacién
de que una simetria puede actuar de algiin modo en operadores locales pero de un
modo fundamentalmente distinto en operadores no locales es inconsistente en QFT.
Esta observacion de primeros principios se vuelve completamente explicita en el caso

de la electrodinamica de piones, donde podemos escribir el TL como
igPa — A 1 1
T, =%,  bg=— | dS;pt =— dSi<—2 B+ = Bi> . (7.79)
X X € H

Insertar el TL no significa otra cosa que insertar muchos campos eléctricos, magnéticos
y de piones. La transformacién no trivial del TL se sigue enteramente de la del campo
de piones local 7y, que a su vez es un U(1), como reconoce en [15, 16]. También, es
transparente que el hecho de que la transformacion mezcle el TL con la superficie

topoldgica no tiene nada que ver con la no invertibilidad de la simetria, sélo con el

10Este es el caso del TL y la WL definidos por lazos contractibles en la variedad sobre la que se
definen. Estos tipos de lazos contractibles estdan relacionados con la fisica local. En la siguiente seccién
comentamos los no contractibles.
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hecho de que el TL, para ser topoldgico, necesita incluir con el campo quiral local.
Es transparente que la clasificacion entre lineas genuinas y superficies topologicas sélo
causa confusién aqui, como muestran precisamente estos modelos, que las conectan
mediante una transformacion de simetria.

Estos trabajos descartan hasta cierto punto la discusion de lo que ocurre para las
algebras locales y la fisica local y se concentran en definir y comprender la simetria en
las variedades topologicamente no triviales. Esto nos aleja del ambito de la anomalia
ABJ y de la fisica de particulas. Para variedades de topologias no triviales, la fisica
relevante dentro de bolas contenidas estas variedades deberia seguir la que que hemos
descrito en el espacio plano.

Como hemos mencionado en el capitulo 2, para entender la estructura global ne-
cesitamos hacer elecciones adicionales que definen el modelo. La accion global de la
simetria debe definirse en consecuencia. En la préxima seccién profundizaremos mas
en las simetrias que cambian de clase en las variedades no triviales. Aqui queremos
destacar que un problema muy similar, con elecciones y soluciones paralelas, puede
estudiarse dentro del espacio plano. Podemos preguntarnos cémo construir twists para
la simetria que actian en una region compacta R del espacio y no hacen nada en el
complemento de una region ligeramente mayor. En el caso que nos ocupa el interés
se centra, por ejemplo, en una regiéon R con la topologia de un anillo. Como se estu-
diamos en detalle durante el capitulo 5, para una regién topoldégicamente no trivial R
hay diferentes opciones de dlgebras y twists que podemos considerar. El algebra pue-
de ser puramente aditiva, o contener todas, o algin subgrupo de clases no locales de
operadores. Los twists para estas dlgebras pueden construirse de tal forma que formen
un grupo U(1), y de tal forma que tengan, al menos, la misma accién que la simetria
global sobre los operadores locales. Si la subédlgebra elegida de operadores no locales es
invariante bajo la simetria, entonces también pueden construirse twists que realicen las
transformaciones relevantes también sobre operadores no locales. Estos twists comple-
tos siguen formando una representacion del grupo original. Vemos que no necesitamos

ninguna accién no invertible para definir localmente la acciéon de la simetria.

7.2.2. Variedades compactas con topologia no trivial

En secciones anteriores hemos demostrado que es posible recuperar la simetria qui-
ral U(1) para subregiones contractibles de cualquier topologia en cualquier variedad.
En el capitulo 5 durante la seccién 5.3.3, hicimos una discusién similar para la si-
metria de dualidad electromagnética del campo de Maxwell y subregiones del espacio
de Minkowski. Desde nuestro punto de vista, esta es la afirmaciéon importante, ya que
tales simetrias U(1), validas a nivel local, son las que controlan la fisica local, como

el decaimiento de piones, en cualquier espacio-tiempo. Sin embargo, parte de la comu-
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nidad define convencionalmente una simetria global de modo que existan generadores
de simetria topoldgica cuando la teoria se sitiia en variedades con topologia no trivial.
Ahora mostramos cémo extender la construccion a dichos casos.

Para ser concertos y por simplicidad nos centramos en el ejemplo considerado re-
cientemente en [232, |, a saber, las transformaciones de dualidad electromagnética
de un campo libre de Maxwell en un espacio-tiempo Sy x S; X R. Esta simetria, como
la simetria quiral, transforma las clases, ya que rota los flujos eléctricos y magnéticos
del campo de Maxwell. Por ello se considera que también se vuelve no invertible, véase
(232, | v referencias al respecto. En lo que sigue, mostramos c6mo cuantizar la teoria

en este espacio-tiempo y luego como recuperar la simetria de dualidad U(1).

Armonicos esféricos en S? x S!

Empezamos desarrollando, a partir de los armonicos esféricos usuales, una base
completa ortonormal que nos permita expandir campos escalares y vectoriales en S? x

S1. Més precisamente, consideramos la métrica del espacio-tiempo dada por
ds* = g datds” = —dt* + R* (df® + sin® 0 dp*) + L*dx*, (7.80)

donde ¢ € R describe la coordenada temporal, 8 € [0,7) y ¢ € [0,27) representan los
dngulos de S? con radio R, y usamos x € [0, 27) para notar el 4ngulo de S* con radio
L.
Para construir la base necesaria, comenzamos estudiando las auto-funciones del
Laplaciano espacial. Estas vienen dadas por
1 etkx

con [, € Ng, m, k € Z, y |m| < [. Los auto-valores correspondientes vienen dados por

1(1+1)
R2

. 2
las frecuencias wy, = + % como

V20,1 (0, 0, X) = az’[ 191 67 0; P (0,0, %) | = —wirPrmr (6, 0, X) - (7.82)

1
V19l
Las funciones (7.81) obedecen a la condicién de ortonormalidad dada por el producto

escalar

2 T 27
/ dX/ d9/ Ao/ |91 lmse (05 05 X) Purimrir (0, 0, X) = Ot Sryuams Ok - (7.83)
0 0 0
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De esta forma podemos expandir campos escalares ¢(t, 0, ¢, x) en Ss x S1 de la forma

t 87 ¥, X Z ¢lmk (I)lmk ) . (784)
Imk

Continuando, podemos utilizar los modos escalares, y podemos obtener una base para

vectores espaciales en Sy X S7, a saber

eikx @Yim (‘97 90)
VorL /Il +1)
1 et Eijn)%janylm(ea@

ikx

[ @08, 0, X)), = 0, 1<m<l, keZ, (7.85)

>0, -l<m<l, keZ, (7.806)

(&

1 :
X (6,0,X)]. = = —=Yin(6, X, >0, =l<m<l, keZ. 7.87
[ lmk( 2 X)]z RL\/27T_L l ( QO)QJX ( )
En estas definiciones, obsérvamos que <I> < . es paralelo al versor {* = (0,0,1) en
la direccion dada por el Si, y (I)lmk y @lmk representan las direcciones “eléctrica” y
“magnética” habituales sobre S;. También, hemos definido el tensor de Levi-Civita

como Eijp = \/gijk, con g,y = 1, y definimos el gradiente espacial en las coordenadas

o 9
80’8@’8){

de ortonormalidad anteriores asociadas a los modos escalares, podemos comprobar que

naturales de la variedad Sy x S1, es decir 0; = . Si utilizamos las relaciones

los vectores (7.85-7.87) satisfacen

/ dy / 0 / oA T (0,0 0)] [ (0,6, )], = OOt (7.59)

donde los indices son s,s = e,m, . Usando esta base podemos expandir la parte

espacial de campos vectoriales o(t, Z) como

(t 97 ¥, X) = Z Z Ulmk lmk 907 X) : (789)

Imk s

Podemos calcular otras propiedades considerando la accién correspondiente de las de-

rivadas covariantes V;. Por ejemplo, las divergencias toman la forma

. 1+ 1
VZ' [(I)?mk] = _%q}lmka (790)
Vi [er.]' =0, (7.91)
Vi [ @l = 7 Pom (7.92)
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mientras podemos escribir los rotores como

1 e n Zk m

Eijnvj[ lmk] = f[ lmk]i ) (7-93)
ik, 1(1+1)

BV [@5]" = =7 (Bl — Y= @), (7.94)
e i+ .,

BV (@) = == [0, (7.95)

Campo de Maxwell libre en la variedad S? x S!

Seguimos, con el andlisis de la estructura del algebra, para esto tenemos que definir
la teorfa de Maxwell en S? x S! x R. Con este propésito, estudiaremos la transicién al
formalismo hamiltoniano donde veremos que la cuantizacion es sencilla y que podemos
entenderla como la de una serie de osciladores arménicos desacoplados. A continuacion,
presentamos este calculo detalladamente.

Como primer paso, expandimos las partes escalar y vectorial del potencial de gauge

combinando (7.81) y (7.85-7.87). Mds precisamente, tenemos

Ag =D A O Pi(0,0.%), A=) A ()[40, 0.X)] - (7.96)

Imk Imk s

Nétese que por coherencia con las definiciones (7.85-7.87) tenemos [ > 1 para s = e, m,
mientras que [ > 0 para s = y. Utilizaremos este abuso de notaciéon durante lo que resta
de la seccién. Ademsds, el hecho de que A,(z) sea un campo vectorial real combinado

con el hecho de que &%, = (=1)"®; v &) = (—1)"P;_,,,_; implica que

En este contexto, podemos reescribir una transformacién de gauge de la forma Aj, =
A, + 0,0 expandiendo la funcién a(t, 8, ¢, x) en la base escalar dada por los modos

(7.81). De esta manera, obtenemos

Imk
(1
A =3 | (Ag + %almk) [@5,]. (7.99)
Imk

1k
A @], + (Al + e ) [] |

A partir de esta relaciéon es transparente que podemos fijar el gauge de modo que

€

recuperemos Aj , = 0 para todo m, k y [ > 1. Para seguir, impondremos dicho gauge.

A partir de las expresiones anteriores, también podemos reescribir los campos
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eléctricos y magnéticos que describen el espacio de fase invariante de gauge. Si rem-
plazamos (7.93-7.95) y (7.96) en las definiciones E; = —A; + 8, Ay B, = E;;, V7 Ak

encontramos

- m (l+1 .
By =(—1) Z [Almk [q)lka - —(R )Alomk [(I)lmk]i (7.100)
Imk
. ik
I(I+1 ik
B =(-1)) [%Aﬁm [Pim], + %A;;;k(t) [P, (7.101)
Imk

E.

Basandonos en estos resultados, procedemos a estudiar la dindmica de esta teoria.

Como generalizacion del caso de espacio plano es natural expandir en modos la accién
1 o0 l %)
5= [ dovisle g B = [ae =" 3" S [t (1102
=0 m=—1 k=—00

donde los modos lagrangianos L, pueden calcularse combinando (7.88) y (7.100-

7.101). Por ejemplo, si [ > 1, recuperamos

L1 * A k? * Am * Am
Limk = 5 |:A;<mk A?mk - (W?k - ﬁ) Afmk A%nk + Almk Almk (7-103)
— Wi A AT Wi A Ak — T (Ai(mk Ad ok — Ak A;(mk>:| :

Dada esta forma del Lagrangiano, donde todos los modos estan basicamente desaco-
plados, podemos proceder modo por modo. Debemos tener en cuenta que AY . vy su
conjugado aparecen como multiplicadores de Lagrange. Las correspondientes ecuacio-
nes de movimiento nos producen los vinculos
240 ik 2 00 «_ Kk
Wik Ak = _IA;(mk ) Wik Ak = fAfmk : (7.104)
Podemos ver que estos son equivalentes a la ley de Gauss V;E? = 0 recordando (7.93-

7.95) y (7.100). Resolviendo dichos vinculos y remplazando en el Lagrangiano tenemos

1 k? A * A Am  x Am
Limk =5 Kl - W) A Al + Al Al (7.105)

k’2
2 X % AX 2 Am *x Am
- (Wm T Iz Al A — Wik Ak Al |

donde recordamos que estamos analizando [ > 1. A partir de aqui podemos encontrar
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los momentos, que obedecen las relaciones de conmutacién candnicas. Estos son

oL . oL k2 .
o =——=A"* 7 =—=(1- AX " 7.106
Imk 514%]6 Imk Imk 5A;<mk ( wlkLg) Imk ( )

y conducen, mediante la transformacion de Legendre apropiada, al Hamiltoniano

1 K2\ 7!
Himk =5 <1 wlkL2) Tk T T T e (7.107)
, K
+ (Wzk Lg) Al Al + wlkA;;L@k*A;rnnk] :

Notese que en esta notacion Hp,x = Hi—m_x ¥ ambos contribuyen al mismo modo. En

este contexto, nos serda util redefinir las variables candnicas como

m 1 1 G 1 VII+1), (@2
Mk = E(pl(m)k - Zpl(f)mfk) o Tk = ET( l(m)k - qu(f)mfk) ’ (7.108)
m M ), (7.109)

1 () 1 R (2)
mk — = \Qim +Zq—m— ) AXm = 7= 77— \Pim +Zp—m—
Imk ﬂ(lk 1 k:) Imk V2 l<l+1)(lk ! k
considerando para el caso especial de m =0y k =0 que

— @ o = VT @ 7110
10 +1>pzoo 100 R Boo - ( )

m _ (1) m (1) X
Ti00 = Proo > 100 = Q00+ A = —

Esto nos permite reescribir el Hamiltoniano como el correspondiente a osciladores

armonicos reales desacoplados con las mismas frecuencias
1 2
S Y S = 30 Y (0 e [ ) ()
=1 m=—1 keZ =1 m=-1l keZ
Las relaciones de conmutacién, recuperadas de la cuantizaciéon canénica de (7.105),

simplemente toman la forma de

1 1 . 2 2 .
(G Pio) =1 (@ Phoe] =7 (7.112)

Por t1ltimo, consideramos el caso faltante de [ = 0. Nos concentramos en el subcon-
junto de esos modos con k # 0, es decir, todos los modos restantes menos el que tiene
k =1 =m = 0. Para estos modos tenemos el Lagrangiano

k2 1k

Look = A, AL, + Iz —Ador" Agor, — 7 (A§0k*A00k AOOk*A§Ok> : (7.113)

En este caso, el multiplicador de Lagrange AJ,; produce el vinculo AOOk = (ik/L) Ao
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forzando que Ly, = 0.
Finalmente nos queda el modo £k =1 = m = 0, que resulta ser una particula libre

no relativista con Lagrangiano y Hamiltoniano dados por la forma usual

1. 1
Looo = 514%)(002 = Hooo = 51937 Po = Ajoo, 90 = Adoo - (7.114)
Las relaciones de conmutacién candnicas para estos modos son simplemente

[q0,p0) =i (7.115)

En resumen, el Hamiltoniano completo conserva la forma una serie de osciladores

armoénicos desacoplados, digase

1 27 T 27 -
H:—/dt/ dx/ d@/ dp\/]glg" (EiEj+BiBj> — (7.116)
2 0 0 0

2 0o l 00
D 1 1 2 1 2
=B ST ST DT (A l)? + i (af)? + i (af)?)

=1 m=—lk=—

Ademas, en esta notaciéon podemos escribir los campos invariantes de gauge como

) l 00 ) l 00
E;,=—pg [(I)E)COOL + Z Z Z[Elmk]i, B; = Z Z Z[Blmk]ia (7.117)
=1 m=—1 k=0 =1 m=—1 k=0

donde tenemos que remplazando (7.108-7.110) en (7.100-7.101) vale que

8

>0 (Bl = Y [whoatio[@h], — ploa 1] (7.115)

I=1 m=—I k=0 =1
fe’e) l 0o
(2) (I);mk + ‘Dﬁlk) . 2 (q)fmk - cb%k)}
+ w ——— | 4w —m—
[e'e) l o)
M Pl T q’%k) 1 (q’%k - ‘D%)}
S350 [l (B ) gy, (R
I=1 m=—1 k=1 [ V2 V2
o) ! 0o o)
SO S Bk = 3 [wiodies[®h], + Pl [@00], | (7.119)
I=1 m=—1 k=0 =1

[ l 00
@7‘ _'_ @’r‘* @T’ _ @7’*
1 m m . 1 m. m
+Z Z Z [Wlkql(m)k (%) +2w1kql(_)m—k (%)]
00 l 00
2) (Lo + Pl \ | .2 Limk — Pimi
#3050 Y [ (T ) iy, (MR
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Nétese que hemos cambiado convenientemente de base, definiendo para [ # 0

1 1 n

Con estas expresiones, estamos en posicién de entender el rol de los WL y TL (globales
0 no) en esta teoria. Podemos comenzar calculando el flujo eléctrico sobre la esfera
espacial S?. Méas concretamente, el flujo eléctrico sobre una superficie S? llamada X
definida por ¥ = {(to,0,¢,x0) |6 € [0,7),¢ € [0, 27r)} viene dado por la integracion

del pullback de xF" a ¥ (Véase la seccién 6.2.3 para detalles). De esta forma, tenemos

™ 2 L3/2 -1
Pp(X)= [ *xF = do d h|EX = — to) - 7.121
o) = [wr=[Tao [Taovlle = (T2) w1
En otras palabras, el modo p, representa al flujo eléctrico sobre la esfera espacial S?

en el algebra. Digase,
Do ~ / «F | (7.122)
b

Este conmuta con el Hamiltoniano (7.116) y con todos los demds operadores (7.108-
7.110) excepto gy ~ Ajgo- La razon fisica detrds de esta conmutatividad, es que tenemos
un campo eléctrico que satisface V,E£* = 0 y por ende su flujo conmuta con todos los
operadores locales de la teoria. Aqui, los operadores locales estan representados por
todos los modos restantes a excepcion de qy. Esta iltima variable, es la pareja candnica
del flujo eléctrico global en S? y, en consecuencia, es de esperar que no corresponda
un operador local de la teoria. En efecto, podemos ver que qq representa en el algebra
al WL global paralelo a la direccién S*, es decir, es el resultado de integrar AX sobre

toda la variedad espacial
o ~ / (A-x). (7.123)
S52x St

Esto es esperable en base a la discusién presentada en el capitulo 2. Como hemos
mencionado, para las algebras dadas por factores tipo I, los automorfismos del algebra
(como los que el TL efectiia sobre el WL para regiones complementarias en el espacio
plano) son internos e implementados por operadores en el dlgebra misma. Por eso
obtenemos aqui el WL global y su operador dual dentro del élgebra, representados por
qo Y po respectivamente.

Por otro lado, para el flujo magnético global sobre la superficie S? dada por X

obtenemos simplemente cero, a saber

@B(E):/EF:/OWdH/O%dqﬁ\/WBX:O. (7.124)

Del mismo modo, no tenemos una versién de el TL con smearing a largo de la direccién
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S, Esto implica que el dlgebra en este modelo estd generada por el WL global v las
algebras locales. La razon de esta asimetria para los modos globales proviene de haber
cuantizado la teoria utilizando el potencial vector A, de tal manera que F = dA
incluso para el modo global, y esto no es necesario para tener dF' = 0. Por supuesto,
nada en la teoria de Maxwell nos instruyé para establecer el flujo magnético sobre el
S? a cero mientras dejamos que el flujo eléctrico tome cualquier valor. Esto implica una
eleccion, andloga a la eleccion de la red HD. Dada la teoria en el espacio plano, también
podriamos haber definido nuestra formulacién lagrangiana utilizando un dual A tal que
+F = dA. Esta cuantizacién nos habria dado un modelo en el que el flujo eléctrico sobre
la esfera se fija en cero y el magnético es libre. Como veremos a continuacién, también

son posibles otras opciones.

Recuperando la simetria de dualidad U(1) en S? x S' x R

En este escenario, la cuestién es si existe una definicién de la teoria de Maxwell
en S, x 57 X R que respete la dualidad electromagnética. De hecho, hay dos formas
canoénicas. En primer lugar, podemos optar por eliminar ambos operadores de flujo y
los WL y TL no locales.!! Esta es una restriccién andloga al dlgebra aditiva en las
discusiones de las secciones anteriores ya que esta algebra no contiene el WL o TL no
local y no puede cambiar los flujos eléctricos y magnéticos. En esta teoria, podemos

escribir el Hamiltoniano como

Haga = Z Z Z [szk + (Do) + Wik (@i + W (qhoy)? ] . (7.125)

=1 m=—lk=—

Esto define una QFT local en Sy x S; donde podemos describir el dlgebra asociada a

cualquier regiéon compacta a partir campos locales con smearing de la forma

/ 0 F™ (7.126)

La restriccién que establece los flujos eléctrico y magnético en cero podria sugerir la
idea de que las algebras locales no contienen el campo de Wightman F),,(z). Esto no
es asi, las tunicas restricciones estan en las funciones de smearing disponibles de esta

distribucién valuada en operadores. Esto no implica que no existan algebras locales'?

/UzO, /0*20. (7.127)
s s

1M4s formalmente esto se puede hacer a partir de la teoria dada por (7.116) y eliminando de qg
del algebra. Esto se hace mediante una “conditional expectation” actuando con exponenciales de pyg.
Entonces, pg forma un centro del algebra resultante. Podemos entonces fijar py = 0.

120bservese que lo mismo podria decirse en el caso que sélo fijamos flujo magnético o el eléctrico a
cero. Es decir, cuando cuantizamos A con F = dA o A con *F = dA.

sino que solo impone que
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En esta QFT existe una simetria de dualidad electromagnética U(1) generada por

la siguiente carga

Qaaa = Z Z Z (ap2, — a2iD)) (7.128)

=1 m=—1 k=0

donde el sufijo “add” significa que pertenece al algebra aditiva. Como era de esperar,
si calculamos la accién de (7.128) sobre (7.118-7.119) vemos que esta carga rota los

campos eléctrico y magnético como

[Qaaa; Fu ()] = F,(x),  [Qaaa, F (2)] = —Flu(2) (7.129)

donde las restricciones (7.127), compatibles con esta simetria, se imponen a las funcio-
nes de smearing.

Observamos que esta carga transformard las clases HDV dentro de la variedad
en cuestion. De forma equivalente, efectuara la transformacién de dualidad en WL y
TL contractibles dentro de la variedad, ya que estos operadores pueden construirse
a partir de los propios campos eléctricos y magnéticos. En este sentido, la simetria
sigue rotando las clases no locales. Notese también que con esta carga global podemos
construir twists locales en la variedad utilizando la teoria modular, como explicamos
en la seccién 5.2.1 . Para ello sélo necesitamos la carga global (7.128) y el hecho de
que produce un automorfismo de las algebras locales, como acabamos de mostrar en
(7.129).

Una segunda posibilidad es permitir que tanto los flujos eléctricos como los magnéti-
cos atraviesen la superficie S2. Ambos flujos conmutan con el Hamiltoniano y el dlgebra
local (el resto de los modos desde esta perspectiva). También podemos incluir el WL y
el TL globales. No hay ningin principio que nos lo impida. Llegamos a esta teoria intro-
duciendo un nuevo modo cero py cuyos valores de expectacion miden el flujo del campo
magnético a través de la esfera S? espacial. En esta teorfa “parental” de Maxwell,

podemos escribir el Hamiltoniano como

Po + P

Hmax -
2

+ Haogd - (7.130)

Podemos ver esta teoria como una representacion diferente de los campos eléctrico y
magnético, junto con su dindmica, en la variedad de interés. Es totalmente invariante de
gauge, v es una representaciéon menos sesgada que la que surge del potencial de gauge

A o del potencial dual de gauge A.'* Esta eleccién corresponde al dlgebra méxima en

I3Neficientemente se podria pensar que esta eleccién no es posible ya que no podemos elegir cuantizar
la teoria con A y A al mismo tiempo. Pero este razonamiento no es correcto porque una teoria cudntica
no necesita definirse por cuantizacion.
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la variedad.
Con esta eleccién méaxima, también tenemos una simetria de dualidad electro-

magnética U(1). Estd generada por la siguiente carga

Qumax = Qadad + (Gopo — qoPo). (7.131)

donde el sufijo “max” significa que pertenece al dlgebra maxima. Transforma todos
los operadores no locales, tanto los contractibles como los no contractibles. Esta carga
deja invariante al Hamiltoniano. Es s6lo una transformacién de dualidad local entre los
campos eléctrico y magnético (7.129), que ahora no satisfacen las restricciones (7.127).
Esto recupera la simetria completa U(1) del campo de Maxwell en esta variedad, la
cual también intercambia clases no locales.

Por supuesto, si cortamos el modo global de forma sesgada “romperemos” inme-
diatamente la simetria de dualidad electromagnética U(1). Hay muchas maneras de
hacerlo. Por ejemplo, podemos tomar el operador de flujo eléctrico global y no el WL.
En este caso el dlgebra tiene un centro. También, podemos tomar una red de HD para
los operadores globales. Por ejemplo, podemos elegir subédlgebras de los modos globa-
les como {e'%"} para enteros n, en lugar de todos los operadores generados por g, ¥
analogamente para ¢y. Pero nétese que de esta forma, primero, s6lo rompemos la parte
U(1) asociada al modo global. El U(1) asociado a la teorfa local en la variedad (7.129),
es decir, la que actia en todos los demés modos, sigue intacta y no se puede romper.
Esta esta controlada por la fisica local. Esto demuestra que incluso en las elecciones
globales sesgadas existe una simetria U(1). Todas estas elecciones pueden implemen-
tarse mediante una extensién de el U(1) que actiia sobre el dlgebra aditiva al espacio
de Hilbert completo. Esta extensién puede tomarse como la identidad sobre los modos
globales. De esta forma no hay necesidad de invocar una simetria no invertible para ver
las manifestaciones de la simetria de dualidad. También se pueden construir simetrias
no invertibles, a partir de una “conditional expectation”!* del dlgebra global elegida al
algebra aditiva y seguida de la simetria U(1) habitual. Sin embargo, el presente ejemplo

muestra que oscurecemos innecesariamente la fisica al pensar de esta manera.

7.2.3. Hacia un teorema de reconstruccion generalizado

Terminamos con una disgresion sobre las simetrias no invertibles, el teorema de
reconstruccién en QFT y una posible generalizacion del mismo. Discutiremos cada
tema por separado.

Como hemos comentado anteriormente, recientemente ha habido una intensa ac-

14Una conditional expectation es un mapa positivo, lineal, y unital € : M — N de un algebra
N a una subalgebra N que satisface e(nymng) = nie(m)ns Ym € M y Vni, ng € N. Véase
[23, 49, 57, —237] para aplicaciones recientes en QFT y QG.
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tividad en torno a la nocién de simetria no invertible en dimensiones D > 2. Como
su nombre indica, las simetrias no invertibles son generadas por operadores que no
satisfacen una ley de la teoria de grupos. En concreto, las “operaciones de simetria”
no tienen inversa. Son generadas por operadores topoldgicos (o endomorfismos de las
algebras locales) T, que satisfacen algebras de fusion mas generales. En general, son de

la forma

T, T => np T, (7.132)

donde encontramos mas de un r” con coeficiente de fusion distinto de cero.
Probablemente de forma contraintuitiva, obtener teorias con estas estructuras de
simetria es bastante sencillo. De hecho, ejemplos anteriores de simetrias no invertibles
en dimensiones generales se encontraron en el anélisis de simetrias ordinarias no abe-
lianas en [22, 23, 38]. Surgen en un escenario similar al de los orbifolds considerado en
las secciones 2.2.6 y 5.3.1. En este caso, tomamos una QFT F con una simetria global
no abeliana G, y consideramos el orbifold O = F/G. La QFT original contiene, por
suposicion, defectos topolégicos invertibles, los twists 7, que generan la simetria G. En
el orbifold, estos twists dan lugar a defectos topologicos no invertibles 7. etiquetados
por las clases de conjugacién ¢ del grupo G definidos como (2.40). Més precisamente,
puesto que una combinacion lineal de operadores topoldgicos es un operador topologico,

al definir

=3 Ty, (7.133)

gec
obtenemos operadores topoldgicos, etiquetados por las clases de conjugacién ¢, perte-

necientes a la teoria O y que satisfacen las reglas de fusién (2.43), a saber
Te Ty = Z ngg, Ter (7.134)

donde ni’cl/ son los coeficientes de fusién de la categoria de clases de conjugacion. Re-
mitimos a [23, 38| para més detalles, incluyendo la diagonalizaciéon del algebra y la
construccion de proyectores topoldgicos que nos muestran transparentemente que la
simetria se ha vuelto no invertible. Por lo tanto, en estos casos vemos que el orbifold
O representa una teoria con una simetria no invertible.

Podemos construir facilmente ejemplos similares para simetrias 1-forma. Un ejemplo
sencillo consiste en tomar el producto de dos teorfas de gauge SU(2) independientes con
un grupo Zs de operadores no locales (digamos, para simplificar, para D = 5) y hacer el
orbifold diagonal. Llamando a cada sabor 1y 2 respectivamente, la teoria original tenia
cuatro sectores no locales generados por los WL y sus productos 1, Wy, Wy, W1 Ws. La
teoria del orbifold tiene sélo tres sectores generados por 1, Wi+ Ws, W1 Ws. En este caso,

esta construccion nos proporciona incluso reglas de fusién que no estan relacionadas
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con la categoria de representaciones/clases de conjugacién de un grupo.!®

Muchos de los ejemplos en D > 2 que se han considerado recientemente son de este
tipo, es decir, surgen por un cociente global de la forma O = F/G. En estos ejemplos, la
no invertibilidad de la simetria es bastante leve, ya que podemos repararla considerando
la QFT F completa en lugar del orbifold O. En otras palabras, simplemente tenemos
un algebra de operadores topolégicos (de cualquier codimensién) que satisface reglas
de fusién de tipo grupo y elegimos subalgebras particulares con reglas de fusién no
triviales. Aun asi, la cuestion interesante sigue siendo si existen simetrias no invertibles
de O-forma o 1-forma que no surjan de una construccion de orbifold de este tipo. Que
éstas existen y que aparecen en teorias con anomalias ABJ es parte de la afirmacion
de [15, 16]. Ahora, argumentamos lo contrario.'®

Para ello, es importante que recordemos el denominado teorema de reconstruccién
DHR en QFT [58-62]. En este lenguaje, este teorema establece precisamente la no
existencia de simetrias O-forma no invertibles en D > 2 que no surgen de la construccion
anterior, es decir, como resultantes de un cociente global de la forma O = F/G. Los
supuestos para derivar este teorema son muy leves, y basicamente se basan en la validez
de dualidad de Haag para regiones en forma de bola. Esta nocion simplemente establece
que cada operador dentro de una bola se genera en tltima instancia por productos de
operadores locales. Esto representa la esencia de la localidad en QFT. El teorema se
deriva entonces de una sutil interaccién entre las restricciones impuestas por la simetria
relativista y la microcausalidad de Einstein, por un lado, y la categoria de sectores de
superseleccion globales (0-forma), por otro. Los recientes resultados/afirmaciones de
[15, 10] estan, por tanto, en tensién con dicho teorema de reconstruccion. Lo mismo se
aplica a las afirmaciones en [232, | de que la simetria de dualidad no es invertible.
Desde esta perspectiva, esta secciéon puede interpretarse como una aclaracion de esta
tension, coherente con el teorema de reconstruccion.

Queda la cuestion de si podemos tener simetrias de 1-forma no invertibles que no
surjan por el procedimiento del cociente global anterior. Ahora sostenemos que no es
el caso. Esto deberia conducir a una especie de “teorema de reconstruccion generali-
zado”. La idea es la siguiente. Consideremos una QFT genérica con sélo simetrias de
O-forma y 1-forma, siendo probablemente algunas de ellas no invertibles. El teorema
de reconstruccién indica que la parte de O-forma de la simetria es, en el caso més ex-
tremo, no invertible debido a un cociente. Podemos eliminar los problemas derivados
de tales sectores no locales acudiendo a la teoria madre, es decir la teoria F. Esto es

precisamente la reconstruccién de una teoria con cargas locales a partir de su sector

I5Nétese que no se puede utilizar esta construccién para proporcionar sectores no invertibles de
0-forma con reglas de fusién no relacionadas con la fusién de representaciones/clases de conjugacién
de un grupo.

16E] caso de las teorfas con anomalias ABJ, y por qué deben ser entendidas como simetrias invertibles
convencionales ha sido el contenido de este capitulo. Queremos tomar ahora un camino mas general.
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neutro. Pero una vez que hemos eliminado los sectores de O-forma, podemos utilizar la
construccion que presentamos en la secciéon 2.2.8. Alli demostramos que una QFT sin
sectores de O-forma solo puede tener sectores de 1-forma generados por un grupo de
simetria abeliano. Esto muestra potencialmente que los sectores de 1-forma no inverti-
bles se deben de nuevo en tltima instancia a un cociente subyacente de la forma F/G.
Se deberia continuar por este camino analizando simetrias superiores a la 1-forma, lo

que potencialmente podria conducirnos a un teorema de reconstruccion generalizado.

7.3. Reflexiones sobre el teorema de Noether y otros

contra-ejempos falsos

En esta seccién retomamos mas a fondo el estudio de la anomalia en relacién con
la forma fuerte del teorema de Noether. En el capitulo 5 probamos que la existencia
de clases HDV cargadas ante una dada simetria implica la ausencia de una corriente
de Noether que implemente dicha simetria. Durante la seccion 7.1 vimos que dicha
idea esta en perfecto acuerdo con distintos modelos que contienen una nomalia ABJ en
D = 4, digase la electrodinamica de piones y la QED no masiva. A continuacion, vemos
como otros ejemplos que podrian poner a prueba estas ideas en realidad se encuentan

en perfecto lineamiento con las mismas.

(a) Anomlia ABJ no abeliana: El primer ejemplo es una corriente con una ano-
malia no abeliana, como la corriente quiral para un quark sin masa en alguna

representacion de la teorfa de gauge SU(N). Esta corriente es anémala

8, J" =

e T (7.135)

Sin embargo, a diferencia del caso abeliano, sabemos que existen instantones
para las teorias no abelianas. Estos introducen fluctuaciones dindmicas en el lado
derecho de (7.135) cuya integral mide el nimero de instantones. En consecuencia,
la carga quiral no es preservada por la dindmica y la simetria continua se rompe
explicitamente. En QCD esto estd relacionado con el hecho de que el meson 7’
no es un modo Goldstone. En particular, no es sin masa en el limite del quarks

sin masa.

(b) Modelo de Schwinger: Una situacién similar ocurre para la QED en D = 2.
En este caso podemos resolver exactamente el modelo dado que es equivalente
a un campo escalar libre masivo. Esta equivalencia es conocida en la literatura
y se obtiene si bosonizamos los fermiones y posteriormente integramos el campo

de gauge, véase [218] para més detalles. En este contexto, podemos reescribir la
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corriente quiral en términos del campo escalar como

T =Ty = o (7.136)

Esto nos muestra que la simetria generada por la carga correspondiente estd
explicitamente rota para un escalar masivo, y no puede ser reparada. En términos

de las variables QED originales la simetria quiral tiene la anomalia

1
Ot = ™. (7.137)
T

Por tanto, a partir de (7.137) ain podemos intentar definir una corriente conser-
vada, anadiendo un término proporcional a e A, a J. En términos del escalar

los dos términos en (7.137) son proporcionales a

2

O¢ = %¢. (7.138)

Por lo tanto, dicha corriente mejorada seria

2

Ji =0 (x) - %/cﬁy [0"Go(z,y)]0(y), OGo(z,y) =d(z —y). (7.139)

Vemos que podemos construir la corriente conservada a costa de no ser local.
Concluimos que en estos ejemplos no hay de hecho ninguna simetria continua
interna ordinaria y la ausencia de una corriente de Noether no es mas que lo

esperado.

Teorias con un conjunto denso de cargas: Un ejemplo mas desafiante es
QED en D = 4 con un fermién sin masa de carga ¢; y otro campo, que podria ser
un escalar, de carga ¢, tal que ¢1 /g2 es irracional. En este caso podemos definir
la carga quiral como hicimos anteriormente, pero no hay sectores HDV para el
campo de Maxwell. Todo WL con carga que sea combinacién ny ¢; + ny ga con
ni, ng enteros, se genera localmente. En consecuencia, no existen TL no locales. La
razon es que un operador no local en un lazo tiene que conmutar con operadores
locales fuera, y un TL para cualquier carga no podria conmutar con todos los
WL generados localmente. Asi que, a primera vista tenemos una simetria que no
cambia las clases no locales pero no tiene corriente. A continuacién tratamos de

entender por qué la completacion UV de este modelo debe tener problemas.

Esta teoria con un conjunto denso de cargas fue propuesta en [20] como ejemplo
de un modelo donde hay sectores no locales, aqui los WL con cargas que no son de
la forma n1q; +ns9 g, y los duales estan ausentes. Pero esto es imposible, porque la

existencia de operadores no locales esta ligada a la existencia de los duales como
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lo impone el teorema de la doble conmutacion de von Neumann. Ademds, las
clases duales no locales, si son abelianas, deben ser grupos duales. Entonces, en
este caso lo que debe ocurrir en una teoria completa es que el conjunto de cargas
sea de hecho la recta real continua. Tener un continuo de cargas dinamicas es
de hecho un problema que muy probablemente enferma la teoria. Pensemos en
el caso mas simple de cargas para una simetria global. Tal teoria no tendria una
funcién de particién bien definida (o violaria la split property). Por ejemplo, si
ponemos la teoria en una esfera compacta, los auto-estados deben ser discretos
para tener una funcién de particion finita. Pero un conjunto discreto de auto-
estados no puede acomodar un conjunto continuo de cargas a menos que haya

infinitas degeneraciones.

Para entender en términos maés fisicos lo que esta pasando, podemos adoptar
el punto de vista de la teoria efectiva de campo . Consideremos las escalas de
energia por debajo de algin punto de corte dado. Para simplificar, pensemos que
el campo electromagnético esta débilmente acoplado, y tenemos dos escalares
casi libres de cargas no conmensurables. La carga my ¢, + ms gy es producida
por polinomios en los campos, produciendo un operador con dimensiéon de al
menos |m| + |n|. Asi que no podemos considerar los operadores que rompen los
WL livianos para todas las cargas, y ciertamente no tenemos un conjunto denso
de cargas a ninguna escala. De hecho, para cada escala fija, tendriamos muchos
sectores que no pueden considerarse rotos. En este escenario fisico, la ausencia de
una corriente de Noether se sigue explicando por el hecho de que a bajas energias
tenemos sectores HDV cargados bajo la simetria continua. Si queremos romper
estos sectores a bajas energias, necesitamos introducir un nuevo campo liviano y
nuevos grados de libertad. Y para romper un conjunto denso de sectores a una
escala dada necesitariamos demasiados grados de libertad locales de tal manera
que la teoria no tendria una funcién de particiéon bien definida. Resumiendo, si
solo anadimos dos campos cargados de cargas no conmensurables, entonces los
argumentos del capitulo 5 siguen siendo validos a baja energia. Si anadimos un
conjunto continuo de campos locales cargados a baja energia, entonces la teoria

se vuelve mal definida desde varios puntos de vista.

Monopolos: Finalmente, en lugar de considerar cargas no conmensurables, otra
forma de borrar los sectores HDV es incluir monopolos magnéticos saturando la
condicién de cuantizacion de Dirac. El grupo U(1) x Z de operadores no locales
desaparece entonces. Mas precisamente, el grupo Z de TL es generado aditi-
vamente porque podemos crear los lazos utilizando lineas que terminan en los
monopolos, y el U(1) deja de ser topoldgico porque dF' # 0 en presencia de mo-

nopolos. Pero esto no cuestiona el teorema de Noether porque, al mismo tiempo,
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rompemos explicitamente la simetria quiral U(1) de Adler. Como no podemos
escribir F' = dA, la carga quiral modificada no se conservara. También, pode-
mos ver que la simetria se rompe explicitamente porque la transformacién quiral
cambiaria, mediante el efecto de Witten, un monopolo en un dién que no existe

en la teoria.

En resumen, para los ejemplos analizados, las ideas del capitulo 5 siguen aplican-
do perfectamente. En este contexto, la pregunta interesante es si la no existencia de
una corriente de Noether para una simetria continua implica que la teoria debe tener
sectores HDV no locales y que estos deben ser afectados por la simetria. Los ejemplos
analizados se inclinan en esta direccion, pero también parecen apuntar a la necesidad
de algiin ingrediente extra relacionado con la completacién UV de las teorias en cues-
tién. Esto no es nuevo, de hecho, ya hemos afrontado una situacion similar durante
el capitulo 6. Buscaremos formalizar nuestras conjeturas en este sentido durante el

capitulo 8.

7.4. Discusion del capitulo

Este capitulo nos hemos centrado en la interacciéon entre las simetrias generalizadas,
las anomalias ABJ y el teorema de Noether, un tema que ha recibido mucha atencién
recientemente. Utilizando la nociéon de sectores HDV, hemos aclarado por qué la ano-
malia ABJ puede formularse en términos de una simetria global U(1) convencional.
La tnica particularidad es que esta simetria transforma las clases HDV. Mas atn, es-
to explica la cuantizacion de la anomalia, la correspondencia de anomalias, la validez
del teorema de Goldstone y la ausencia de una corriente de Noether que genere esta
simetria.

Por otro lado, esperamos haber ejemplificado ciertas cuestiones sutiles relativas a la
manifestacion local de las simetrias generalizadas mencionadas en el capitulo 2. Como
hemos discutido anteriormente, vimos dos cuestiones que son particularmente relevan-
tes para este problema en cuestion. La primera es la nocién de dlgebra local de una
cierta regién R. Una eleccién fisica intrinseca estd formada por los operadores locales
de la regién, a saber, el algebra aditiva. En este contexto, debemos ser cuidadosos al
asignar un significado fuerte a otras elecciones. La segunda es el hecho de que cual-
quier operador, incluidos los no locales para cierta region R, estan generados en ltima
instancia por operadores locales. Si nos encontramos en una situacién en la que cierta
propiedad (como tener una simetria particular) depende de la naturaleza de los opera-
dores no locales, y no se puede remontar a la naturaleza de los operadores locales, esto
es senal de un problema.

En resumen, las teorias con anomalias ABJ apoyan ain mas las ideas desarrolladas
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en el capitulo 5 relativas a la versiéon fuerte del teorema de Noether. Es decir, que la
existencia de clases HDV cargadas impide la existencia de una corriente de Noether.
En este sentido, seria importante disponer de una derivacién adecuada de la afirmacién
inversa. Es decir, que la clases HDV no estén cargadas ante una simetria implica la
existencia de una coerriente de Noether. De este modo, la pregunta es si esta afirmacion
inversa requiere alguna suposicion extra. Los ejemplos discutidos en la ultima seccion
parecen mostrar que este es el caso. Discutiremos estas ideas en la discusién final de

esta tesis en el capitulo 8.



Capitulo 8
Discusion

Durante esta tesis nos hemos dedicado al estudio de distintos aspectos relacionados
con la existencia simetrias generalizadas en QFT. Seguimos una perspectiva algebraica
diferente a la usualmente utilizada para dichos estudios. Para esto en el capitulo 2
estudiamos como estas simetrias generalizadas estan relacionadas con las ambigiieda-
des en la asignacion de dlgebras a regiones. En particular, destacamos que en teorias
con simetrias k-forma existe mas de una algebra posible para regiones con grupo de
homotopia 7 no trivial.

En los capitulos 3 y 4, estudiamos la aparicion de simetrias k-forma en QFTs con
particulas de espin 2 descritas por tensores biforma invariantes de gauge. Siguiendo
esta linea, encontramos estas simetrias para distintas teorias linealizadas de gravito-
nes provenientes de acciones tipo Einstien-Hilbert o de alta curvatura. En todos los
casos podemos construir las corrientes 2-forma que generan estas simetrias a partir del
tensor de Riemann y/o sus derivadas y contracciones mezcladas con funciones espacio-
temporales. Ademads, en relacién con el paradigma de Landau, las teorias de gravitones
estan completamente determinadas por su patron de simetrias generalizadas.

Es, a priori, sorprendente encontrar que las simetrias de los gravitones en los capitu-
los estan cargadas ante las simetrias espacio-temporales. Sin embargo, en el capitulo 5
comprendimos que esto no sélo no es extrano sino que desde un nuevo punto de vista
esperable. Durante el capitulo 5 probamos que una simetria continua con una corriente
de Noether asociada no puede transformar los generadores de una simetria generali-
zada. En otras palabras, si las simetrias generalizadas estan cargadas ante la accion
de una simetria continua de la teoria, esta no puede estar generada por una corriente
de Noether. En este contexto, vimos para el ejemplo del graviton, y otras particulas
no masivas que esta idea re-deriva el teorema Weinberg-Witten y ademéas nos permite
algunas generalizaciones del mismo.

Estas ideas nos permiten intentar caracterizar el espacio de QFTs que violan la

version fuerte del teorema de Noether, es decir teorias con simetrias continuas O-forma

243



244 Discusion

no implemendas por corrientes de Noether. A la luz del capitulo 5 sabemos que este
espacio al menos contiene las teorias con clases no locales cargadas ante la accion
de la simetria sin corriente. En este contexto, una pregunta interesante es bajo que
condiciones esta caracterizacién es completa. Si bien vimos que la inexistencia de clases
cargadas implica que podemos construir twists aditivos y completos, resta entender si
estos twists cuando los hacemos suficientemente pequenos pueden concatenarse para
formar corriente. Mas adelante en este capitulo, volveremos con mas detalle sobre esta
idea.

En cualquier caso, observamos que las teorias con clases HDV cargadas ante un
grupo continuo son especiales en si mismas. En particular estdn caracterizas por un
continuo de clases duales. Si el continuo de clases duales es no compacto y la teoria es
UV completa probamos en el capitulo 6 que la teoria continene un sector libre no ma-
sivo. De otra forma, las teorias interactuantes con una simetria de forma no compacta
necesitan cargas que rompan la simetria de forma en cuestiéon para ser completadas
en el UV. Podemos interpretar este resultado como una prueba no perturbativa de la
necesidad de introducir cargas a altas energia en las teorias de electrodinamica neutra
o en las teorfas con bosones de Goldstone interactuantes.

Por otro lado, las clases HDV pueden generar un grupo compacto. Estos son los
casos que estudiamos durante el capitulo 7, donde la corriente quiral tiene una anomalia
ABJ. En estos casos, vimos que la compatibilidad del grupo compacto de clases con
accion no trivial de la simetria quiral requiere la cuantizacién del coeficiente de la
anomalia ABJ. Ademas, observamos que las ideas desarrolladas durante el capitulo 5
nos permiten explicar la correspondencia entre anomalias IR y UV, y la validez del
teorema de Goldstone para estas teorias.

Dado este escenario, incluimos a continuacion un grafico resumiendo los resultados

fundamentales de esta tesis:

‘Slmetrla global Contlnua

(Clases inVﬂriaﬂteV \Clases no invariantes)

E?cisten twists - No existe corrientede Noether
aditivos y completos - Clases HDV duales continuas

V | Clases no compactas| |Clases Compactas‘

Existe corriente l l
de Noether

Teorfas con un sector Teorias andémalas
libre no masivo (Anomalia ABJ)

Si algo es claro, es que la nocién de simetrias generalizadas nos esta obligando a
replantearnos problemas tradicionales del contexto de QFT y gravedad cudntica. A
continuacion recogemos algunas conjeturas e ideas que se desprenden de los resultados

de esta tesis y podrian continuarse en un futuro:
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(a) Espacio de QFTs que violan la versién fuerte del teorema de Noether

Habiendo identificado un obstaculo para la existencia de corrientes de Noether
asociadas con simetrias continuas, una idea natural es que las corrientes deben existir
siempre que este obstaculo esté ausente. Es decir, podriamos pensar que una teoria con
una simetria global continua, donde todas las simetrias generalizadas para cualquier
topologia son invariantes bajo la simetria, debe contener una corriente que generador
dicha simetria. Esta es la inversa del resultado principal del capitulo 5 presentado en
la seccion 5.1. Equivalentemente, desde una perspectiva mas matemaética, en dicho
capitulo hemos encontrado una condicién necesaria para la existencia de una corriente
de Noether. Esta condicion necesaria es la ausencia de simetrias generalizadas cargadas
bajo la simetria global continua. En este contexto, la pregunta es si esta también es
una condicion suficiente.

De hecho, durante la secciéon 5.2 vimos argumentos sélidos en esta direccién. Un
camino prometedor en el escenario actual se deriva del hecho de que, como demos-
tramos en la seccién 5.2.4, si las clases no locales asociadas con cualquier topologia
son invariantes bajo la simetria global, entonces existen twists completos aditivos para
ellas. Estos twists aditivos para dos regiones con clases HDV no cargadas deberian
concatenar, al menos en un sentido aproximado como discutimos en la seccién 5.2.6.
Esto es, en el limite de buffer zones delgadas, el producto de dichos twists produce
twists aditivos y completos para la unién de la regiones, si esta ultima también tiene
clases no cargadas.! Claramente, esto no es posible para clases HDV cargadas.

Ahora bien, los twists para una simetria continua pueden describirse mediante car-
gas locales Q). Los twists aditivos tienen cargas locales formadas con operadores adi-
tivos de la region. Si tenemos el time slice axiom podemos pensar heuristicamente
que estas cargas son operadores aditivos en una superficie de tiempo constante. Que
los twists aditivos sean concatenables para cualquier forma de las regiones implicadas
implica que para cualquier particion dada del espacio, siempre es posible elegir una
particion de cargas locales que sumen la global. Esto parece bien en el camino para
demostrar que la carga puede expresarse como una integral de una cantidad local.
Basicamente, notamos que la validez de la nocién de concatenabilidad hace que este
problema sea andlogo a la forma en que se definen integrales continuas a partir de
sumas discretas, pero para algebras de operadores. Si bien es una tarea técnicamente
dificil derivar campos cudnticos de una teoria descrita en términos de algebras locales,
esperamos que se pueda demostrar pensando en limites de funciones de correlacién para
particiones cada vez més pequenas de la carga utilizando la convergencia en la topo-

logia débil de las algebras de von Neumann. Por otro lado, es tal vez méas conveniente,

'Probar, de forma rigurosa y general, la concatenabilidad de twists para teorfas con simetrias
generalizadas pero no cargadas bajo el grupo de simetria global es un importante problema abierto.
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utilizar el procedimiento establecido en [28] para recuperar campos de Wightman a
partir de la versién algebraica.

Desde este punto de vista, interrogante restante es si dicha convergencia requerira
suposiciones extras sobre la teoria. Sin duda, el andlisis de regiones cada vez mas
pequenas podria requerir alguna condicion UV. Notamos ademés que este ya fue el
caso durante el capitulo 6. En esta direccion, las ideas desarrolladas en el capitulo
7, especificamente los ejemplos y reflexiones de la seccién 7.3, nos llevan a refinar la
conjetura de que una teoria con una simetria global continua que no cambie las clases
no locales debe tener una corriente de Noether. Como tal, esta afirmacion se aplica
a teorias completas con una simetria exacta y sectores no locales. Pero en este caso,
también podemos hacer afirmaciones sobre la fisica IR. En particular, si la simetria
sobrevive en el IR, la corriente también debe ser un operador en la teoria IR. Entonces
tenemos una especie de inversa de la correspondencia de anomalias que discutimos

durante la seccion 7.1.4, a saber podemos conjeturar que

St un modelo efectivo tiene una simetria continua que cambia las clases
HDYV (y por tanto sin corriente), entonces cualquier completacion del mo-

delo que preserve la simetria tiene que preservar los sectores HDV cargados.

Como el fenémeno de las clases no locales cargadas y la no existencia de la corriente
parece aparecer de forma independiente de una gran separacién de escalas, podemos

conjeturar ademas que

St un modelo efectivo tiene una simetria continua sin corriente, pero ningun
sector HDV estd cargado bajo la simetria, el modelo no tiene una comple-
tacion UV.

Un ejemplo de modelo alcanzado por esta tltima conjetura es la generalizacion de

la electrodinamica de piones a D = 6. Este modelo efectivo tiene una accién

Szl/dﬂo/\*dWO—FL/F/\*F—i—l/TfoF/\F/\F.
2 2e? 1

Este tiene una simetria local 7y — 7y + constante que se deduce de la invariancia
de la accién. Como en el modelo (7.3) en D = 4, podemos construir una corriente
no invariante gauge y una carga global. Sin embargo, ahora los TL son operadores
asociados a superficiales tridimensionales, y la simetria no tiene permitido cambiar su
clase mezclandola con los WL. Eso es por la sencilla razén de que los WL son ope-
radores de lazo unidimensionales ordinarios. De hecho, se puede comprobar mediante
calculo directo que la simetria sélo modifica los TL por operadores locales sin cam-
biar de clase. Por lo tanto, la conjetura afirma que este modelo no puede completarse

consistentemente en el UV.
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Si esta conjetura es correcta, el zooldgico de teorias con completacién UV bien
definida que violan la versién fuerte del teorema de Noether estaria restringido ex-
clusivamente a teorias con sectores HDV cargados. De otra manera, dada una teoria
completable en el UV con un grupo de simetria global existiria una corriente de Noether
para tal simetria si y solo si las clases HDV asociadas a cualquier regién no transforman

ante la accién del grupo.

(b) Invariancia de escala vs. Invariancia de conforme

Es parte una idea estandar en QFT que la invariancia de escala deberia implicar
invariancia conforme. De hecho, s6lo se conocen unos pocos contraejemplos, y se cons-
truyen con teorias libres [2358]. También, existe una prueba para D = 2 [239, 210)], pero
no se conoce una prueba completa para dimensiones superiores.

Para comenzar este analisis, supongamos que la teoria tiene un tensor de energia-
momento, esta suele ser una suposicion usual en la discusion de este tema. Entonces,
la ruta habitual para tratar de demostrar la invariancia conforme a partir de la inva-
riancia de escala implica tomar el tensor energia-momento y mejorarlo para que tenga
traza nula. Sin embargo, vemos que podemos encontrar un obstaculo importante en
esta construccién. La teoria con invariancia de escala puede tener sectores HDV aso-
ciados a una simetria generalizados con etiquetas de clase que tienen dimensiones. Es
decir, las etiquetas de las clases estaran cargadas ante el grupo de dilataciones, que por
suposicion, representa un grupo de simetria de la teoria. En ese caso, los resultados del
capitulo 5 prohiben la existencia de una corriente de dilatacién, y por tanto no existe
una mejora del tensor energia-momento. El punto es que este tipo de contraejemplos
deberian ser muy peculiares. Vimos en el capitulo 6, que la existencia de clases di-
mensionales en una teoria invariante de escala implica la que estamos ante simetrias
generalizadas no compactas, y estas, si son UV completas, son libres.

Estas ideas aplican a los casos conocidos en la literatura. Hemos visto el ejemplo
de la derivada de un escalar libre sin masa en la seccion 5.3.1. Otro es el campo de
Maxwell para D # 4 [238]. Este coincide con la derivada del escalar en D = 3. La
razén de la ruptura de la invariancia conforme es clara. Por razones dimensionales, las
cargas de los WL y TL son tienen dimensiones cuando D # 4. De manera que existe un
tensor de energia-momento (que genera simetrias de Poincaré) pero no una corriente
de dilatacion y, por lo tanto, no existe un “tensor energia-momento tipo CFT”.

Obsérvese que, como se senala en [238], para D = 3 podemos reparar este problema
considerando la teoria completa de un escalar, en lugar de las derivadas del escalar
(que coinciden con el dlgebra de campo de Maxwell). La razon es que los sectores
de esta teorfa son sectores del orbifold (sectores de dos bolas) y podemos eliminarlos

pensando en la teoria madre reconstruida a partir del orbifold. El modelo original es
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una subteoria de otra que es invariante conforme. Sin embargo, esto no es posible con
los sectores 1-forma en D > 5 por ejemplo. En [241] se demostrd que si la teoria con
tensor energia-momento e invariancia escala pero no conforme puede embeberse en una
CFT entonces es una teoria libre. Este no es el caso general, pero concuerda con nuestra
discusion actual.

Notese que para D = 2, donde existe una prueba, todos los sectores son sectores
de dos (o més) intervalos. Es decir, son operadores de carga anti-carga, donde la carga
no existe en la teorfa.? Los sectores con etiquetas dimensionales e invariancia de escala
dan un continuo de sectores, un ejemplo de la descripcion general de la seccion 5.1.1.
El generador de carga correspondiente debe ser una corriente conservada, y esto fija
su dimension en 1. A su vez, esto no da sectores dimensionales cuando la densidad de
carga se integra sobre el intervalo. Esto es consistente con la discusién en la seccién
6.3.2. Concluimos que los contraejemplos en cuestién no pueden existir en D = 2.

Nos resta ver que pasa en el caso donde no tenemos corriente de dilatacién pero tam-
poco tensor energia-momento. En estos casos, el modelo podria seguir siendo invariante
conforme, como discutimos para el graviton de Fierz-Pauli en la seccién 3.1.2. Esto tam-
bién aplica a las particulas de espin 3/2 descritas por la teorfa de Rarita-Schwinger
que presentan invariancia conforme inclusive teniendo clases dimensionales [171]. Mds
en general, esto se extiende a todos los campos libres primarios en D dimensiones con
estructura de indices dadas por diagramas de Young (bosonicos o fermionicos) que con-
tengan D/2 filas [205]. Para estos modelos, aunque no existan las corrientes locales por
las razones mencionadas, si existen las representaciones unitarias del grupo conforme.
Sin embargo, todos estas teorfas tienen simetrias generalizadas no compactas y, por
ende, son libres. A la luz, de lo discutido en el punta (a), esto pareceria ser esperable
para todas las teorias sin tensor energia-momento con un punto fijo UV bien definido.

En conclusion, esto da una nueva comprensién que separa los contraejemplos del
resto de las QFT, reduciendo el problema a la presencia de sectores cargados bajo el
grupo de dilatacién para la teoria invariante ante dicho grupo. Esto implica que no hay
corriente de dilatacién y por tanto no hay tensor energia-momento de CFT. Entonces,
una conjetura natural es que la prueba del teorema deberia existir para el caso en que
no existan tales sectores no invariantes de escala. Si confiamos en que estos casos sélo
proceden de teorias libres, bastaria con restringir el &mbito a modelos sin sector libre. Si
creemos en el teorema de Noether cuando no hay clases no invariantes bajo la simetria
del continuo, tendriamos una corriente de escala fisica més el tensor energia-momento

original para empezar, véase [2412].

2Aqui por “carga” nos referimos a una nocién generalizada de la misma. Podrfa estar relacionada
con representaciones de las dlgebras de Virasoro y/o quiral extendida.
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(c) Teorema Coleman-Mandula

El hecho de que una teoria con un tensor energia-momento no puede tener simetrias
generalizadas cargadas bajo la simetria de Poincare se asemeja, y de hecho extiende
en algunas direcciones, al teorema Coleman-Mandula (CM) [2]. En las direcciones que
generaliza el teorema CM también lo conecta con el teorema de Weinberg Witten (véase
la seccién 5.4). En otras direcciones no lo hace. Ahora, discutimos la interseccién de la
de los resultados de esta tesis con el teorema CM.

Recordemos que el teorema CM se expresa en el lenguaje de la matriz S. Nos afirma
que para una teoria interactuante con un mass-gap, un grupo de simetria asociado a
la matriz S debe ser un producto del grupo de Poincaré y otro grupo. El teorema CM
no supone un tensor energia-momento. Pero, siguiendo nuestras discusiones anteriores,
las teorias sin tensor energia-momento bien definidas son probablemente libres. Puesto
que el teorema requiere teorias interactuantes, considerar teorias con un tensor de
energia-momento no parece una restricciéon importante.

Con la tinica suposicion de tener un tensor energia-momento, los presentes resulta-
dos muestran que cualquier clase HDV generada por una simetria generalizada debe
ser invariante de Poincaré. Esto extiende el teorema CM, aplicindolo también a si-
metrias k-forma. Sin embargo, el teorema CM trata de simetrias de la matriz S, y las
unicas simetrias generalizadas que son (facilmente) visibles en la matriz S son las que
proceden de grupos de simetria globales no rotos. En muchos casos estas corresponden
a simetrias generalizadas de orbifolds (simetrias de 0-forma). Nuestra afirmacién se
aplica a estos orbifolds, y se extiende también a orbifolds de simetria rota, prohibien-
do sectores cargados bajo simetria de Poincaré. No obstante, requerimos que haya un
tensor de energia-momento en el propio orbifold. Por otra parte, también puede haber
grupos de simetria global que no den lugar a un orbifold, porque todos los operadores
locales estan cargados. Entonces el orbifold esta vacio. Los casos en los que el orbifold
no tiene un tensor de energia-momento (incluyendo el caso que no hay orbifold) no
estan cubiertos por los presentes resultados.

Para entender estas observaciones en términos mas precisos, podemos formar el
algebra aditiva generada por el tensor energia-momento. Llamamos a esta algebra 7.
Para una CFT en D = 2, ésta es la red de Virasoro para la carga central dada. En
cada dimension, la red T contiene muchos campos locales, ademés del tensor energia-
momento y sus derivadas. En esta teorfa 7 podemos tener simetrias generalizadas.
En particular, podria tener simetrias generalizadas asociadas con la violacion de la
dualidad en regiones de dos bolas. En este escenario, para D > 2, el teorema de
reconstrucciéon DHR [161] afirma la existencia de un grupo global G de simetrias tal
que T es el orbifold sobre G de una teorfa extendida F, a saber T = F/G. Siguiendo

nuestros resultados, puesto que el tensor de energia-momento pertenece a la teoria del
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orbifold, dicho grupo de simetria global G debe conmutar con las simetrias de Poincaré
para que los sectores del orbifold sean no cargados. Esta version restringida del teorema
CM también se deduce de la propia reconstruccion DHR por razones bastante similares
[149).

Sin embargo, esto deja abierta la posibilidad de que pueda haber otras simetrias
que se mezclen de forma no trivial con la simetria de Lorentz porque el orbifold esté
vacio o no contenga el tensor energia-momento. Esta mezcla de simetrias implica ope-
radores de twists con indices. En el caso continuo, éstos estarian representados por
corrientes conservadas con més indices no antisimétricos,® como un ju, ay.-a, Simétrico
que satisface 0" j, ay..a, = 0. Si hacemos el orbifold con estas nuevas simetrias imple-
mentadas por los twists con indices de Lorentz obtenemos un élgebra O. Esta algebra
puede ser vacia, es decir, generada unicamente por la identidad. Si no esta vacia, el
tensor energfa-momento no debe pertenecer al orbifold 7),, ¢ O ya que los sectores del
orbifold mostrardn indices de Lorentz y estardn cargados bajo el grupo de Poincaré.*
Entonces, esperamos un modelo libre ya que O no tiene tensor energia-momento. Este
es el caso del ejemplo comentado en la seccion 5.3.1. Quedamos reducidos, entonces, a
considerar O = 1. En estos casos, también, podemos formar el dlgebra generada por la
corriente jo, ay--,- D€ forma equivalente esta es el dlgebra generada por los twists de
la simetria asociada. Podemos llamarla J. Si J C T, o méas generalmente T}, ¢ 7,
existe una red sin tensor energia-momento y esperariamos de nuevo un modelo libre.
Las algebras de Kac Moody en D = 2, la supersimetria y las corrientes de espin supe-
rior conservadas de [243] tienen O = 1, T C J. Necesitamos mas ideas para ampliar

el presente enfoque con el propésito de restringir tales escenarios.

(d) Completaciéon UV de la teorias con gravitones en el IR

Comencemos considerando un punto fijo IR con particulas de espin 2 no masivas.
Estas teorfas famosamente poseen estados de norma negativa y la tinica forma de defi-
nirlas consistente es incluir invariancia ante difeomorfismos. Eso significa que una teoria
que contenga cualquier particula de espin 2 no masiva es necesariamente descrita por
la gravedad de Einstein, quizéd complementada por términos de derivadas superiores.

Analizamos estas teorias en los capitulos 3 y 4, donde vimos que son caracterizadas
por simetrias 1-forma que estan cargadas ante simetrias espacio-temporales. Estas estan
descritas por el grupo de Poincaré, o bien para el caso gravedad de Einstein en D = 4,
el grupo conforme correspondiente. Como vimos, por un lado, esto implica que aplica
el teorema Weinberg-Witten y la teoria no tiene tensor energia-momento bien definido.

Por otro, implica que estamos ante una teoria con una simetria de forma no compacta.

3Para comparar con la discusién de la seccién 5.4, este es el caso k = D — 1.
4E] caso de simetrias internas ordinarias no cargadas bajo el grupo de Poincaré tiene 7 C O, pero
esto no es posible aqui.
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A la luz del capitulo 6, la teoria es libre y no masiva.

Por supuesto, que esta teoria esta perfectamente definida si es libre y no masiva
a toda escala, es decir, con flujo del RG trivial. No obstante, en la busqueda de una
teoria interactuante de gravitones podriamos buscar romper la simetrias de forma no
compactas introduciendo cargas a alguna escala dada. Sin embargo, segin el capitulo
3, la tnica forma de hacer esto dentro de QFT es incluir fractones. Esto implicaria que
la simetria de Poincaré no es exacta, en particular esta rota en la escala que aparecen
las cargas fractonicas. Nétese que estas ideas estéan en perfecto acuerdo con la conjetura
que presentamos en el punto (a), dicho de otra manera, como los sectores HDV estan
cargados ante el grupo de Poincaré, cualquier completacion que preserve dicha simetria
debe preservar los sectores cargados que en este caso implican una teoria libre.

Esos resultados apoyan simplemente la nocién de que una teoria UV completa que
contenga gravitones en el IR debe seguir una ruta distinta a la de QFT por ejemplo a
partir de teorfa de cuerdas y/o holografia. Estas ideas estdn alineadas con la aplicacién
usual del teorema de Weinberg-Witten a la gravedad cuantica, y apoya firmemente su

interpretacién como un obstaculo para tener un modelo puramente QFT.






Apéndice A

Generalized Free Fields

Los “Generalized free fields” (GFF), introducidos en [211], son los modelos més sim-
ples de las teorfas cudnticas de campos (QFT) que satisfacen los axiomas de Wightman
(a-e) presentados en la seccién 2.1.1. Se definen por tener correlaciones gaussianas, es
decir, que satisfacen el teorema de Wick para las funciones de correlacion de n puntos.
La teoria queda entonces completamente especificada por una funcién de dos puntos
que cumple los requerimientos necesarios de positividad, la condicién espectral y cova-
rianza de Poincaré. Para un campo escalar, la funcién de dos puntos més general tiene

la forma de Kallen-Lehmann
(@) = [ dsplo) Wl =1 (A1)

siendo Wy(x — y, s) la funcién de dos puntos de un campo escalar libre con masa al
cuadrado m? = s > 0. La densidad espectral p(s) es una medida positiva para s > 0
con un incremento a lo sumo polinémico en s.

Los GFF aparecen de forma natural en algunos resultados formales en QFT axiomati-
ca [194, —247]. Debido a la simplicidad de la teoria también son utilizados en la
literatura matematica como fuente de ejemplos para probar diferentes conjeturas o
analizar la independencia o consistencia de diferentes propiedades, véase por ejemplo
[148, |. Desde el punto de vista fisico, aparecen naturalmente como limites en mo-
delos vectoriales o matriciales a N grande [249]. Esto es porque el limite de N grande
suprime las funciones n puntos con respecto a las funciones de dos puntos para campos
suficientemente simétricos. Un ejemplo notable son las teorias holograficas donde los
GFF describen el sector de baja energia de la teoria en la aproximacién de N grande,
y son equivalentes a los campos libres ordinarios que viven en el espacio Anti-de Sitter
(AdS) [0, 250, 251].

En este apéndice buscamos analizar las propiedades algebraicas del los GFF. En
particular veremos que estos muestran violaciones de dualidad de Haag para regiones

con topologias triviales (que no son bolas perfectas). En este sentido, no respetan
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la suposicion (2.26) que hicimos en el capitulo 2 y escapan muchos de los resultados
presentados en esta tesis. Destacamos que estas posibles elecciones de dlgebras emergen
debido a que los GFF no cumplen el axioma (f) de la seccién 2.1.1, es decir, el time
slice axiom.! Esto es porque si bien, tienen una evolucién temporal bien definida no
podemos construir al hamiltoniano integrando dentro de pequeno intervalo temporal,
sino que este es un objeto no local en el espacio-tiempo [2441].

Comenzaremos, en la seccién A.1 con un ejemplo de campos libres independientes,
que ilustra la idea general de como podemos asignar mas de un algebra a una region
con topologia trivial. Este es el caso, donde la densidad de Kallen-Lehmann p(s) en
(A.1) es una suma de deltas. Luego, procederemos al estudiar densidades espectrales
continuas. Para facilitar esta cuestién miraremos el ejemplo de GFF hologréficos, donde
la prescripcién usual de AdS/CFT [250, | nos permite visualizar adecuadamente
las diferentes posibilidad de algebras [10]. Con este propdésito estudiaremos los GFF
conformes en la seccién A.2 y sus posibles dlgebras en la seccién A.3. Terminaremos
en la seccion A.4 con una breve discusién sobre las ideas de este capitulo, comentarios

sobre la literatura y posibles avances.

A.1. Ejemplo: campos libres independientes

Para exponer las peculiaridades algebraicas que aparecen en las teorias de GFF en
contraposicién al caso de QFT's mas ordinarias consideremos primero un caso sencillo.
Cuando el GFF es un campo libre de masa m, la densidad espectral consiste en una
tinica funcién delta p(s) = d(s — m?). En este caso, podemos asignar un dlgebra de
operadores a una region espacial R en 2° = 0. Esta dlgebra esta generada por ¢ y é en

R. Debido a las ecuaciones hiperbdlicas de movimiento del campo,
(O+m?)6 =0, (A.2)

esta algebra coincide con el algebra generada por el campo en el desarrollo causal de
la regién espacial R dado por D[R] en la figura 2.1.

Ahora, tomemos p(s) = d(s — m?) + d(s — m3), correspondiente a la suma de
dos campos libres independientes ¢(z) = ¢1(x) + ¢o(z). El dlgebra generada por ¢, ¢
sigue cerrandose en si misma debido al conmutador numérico del GFF. Sin embargo,
obsérvese que ¢(z) obedece ahora a una ecuacién de movimiento con mayor nimero
de derivadas temporales

@O+ m)(O+m)p=0, (A.3)

1Si bien no cumplen el time slice axiom si obedecen un axioma de completitud mas leve. En otras
palabras, podemos generar todo el espacio de Hilbert utilizando los GFF con todos los smearing
posibles pero no podemos hacerlo con smearings sobre un intervalo temporal.
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de modo que ¢ y ¢ son operadores independientes. La inclusién o no del operador ¢ da
lugar a diferentes algebras. Por ejemplo, podemos considerar el dlgebra generada por
{¢, 0} y el dlgebra conmutativa generada por {¢, qB} con ¢(xz) = ¢1(x) — do(x). De otra
manera, podemos incluir ¢, ¢ en el algebra. En este ultimo caso, el algebra resultante
resulta ser exactamente el dlgebra de dos campos libres independientes de masas m; y

ms. podemos deducir esto de de las relaciones

O+ m3 O+ m?
L R — L 4= A4
m%—m%(Zs 2K m%—mg(b 92 (A4)

a partir de la cual podemos reconstruir los dos operadores independientes de campo y de

momento. Por lo tanto, esta nueva algebra que contiene derivadas superiores generada

por {¢, b, b, ¢ } es igual al dlgebra producida por {¢y, ¢2} en el desarrollo causal R..
Para una densidad espectral con cualquier nimero finito n de funciones delta, es

decir de la forma

)

p(s) =Y d(s—mf), m eRT, neN, (A.5)
=0

tenemos una situacion analoga. Podemos tomar algebras del campo y menos de 2n — 1
derivadas temporales en 2° = 0, o podemos incluir 2n — 1 derivadas temporales de
manera que el algebra sera las misma que la de n campos libres independientes. En
este tltimo sentido los n campos libres independientes se codifican en un tinico GFF.

En QFT relativista es natural definir las dlgebras tomando un espacio-tiempo en
lugar de una region espacial. Si tomamos un espacio de tiempo finito alrededor de la
region espacial R no hay diferencia entre el GFF definido con un nimero finito de
funciones delta en la densidad espectral y una teoria de campos libres independientes.
Sin embargo, esta discusion nos anticipa los problemas que podemos encontrar al con-
siderar una medida continua p(s). En este caso veremos que la teoria tiene propiedades
bastante inusuales. En particular, no satisface el time slice axiom, lo que significa que
el algebra generada por los operadores de campo en un pequeno intervalo temporal,
como (2.7), alrededor de z° = 0 no agota todos los operadores de la teorfa. Esta es otra
forma de decir que el campo no obedece a ninguna ecuaciéon de movimiento local, con
cualquier ntimero finito de derivadas temporales.

Por esta misma razén, vemos que la teoria de los GFF en general no contiene un
tensor energia-momento. De lo contrario podriamos utilizarlo para construir el Hamil-
toniano en el algebra dentro de un intervalo temporal. Con el Hamiltoniano podemos
entonces mover los operadores en el tiempo para generar todos los operadores de la
teoria. El Hamiltoniano para un GFF con medida espectral que tiene soporte en un
conjunto no discreto todavia existe pero es més bien no local [244].

Entonces, esta claro que una regién espacial no determina de forma tnica un alge-

bra para estas teorias y debemos elegir una region espacio-temporal en su lugar. Una
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eleccién natural es centrarse en regiones causalmente completas. Estas son el dominio
de dependencia de las regiones espaciales. Sin embargo, incluso para una regién causal-
mente completa existe en general una ambigiiedad en el dlgebra que se le puede asociar
para un GFF. Como vimos en esta tesis, las ambigiiedades en la asignacion de algebras
a regiones aparecen también en QFT ordinaria con simetrias generalizadas, pero son

mucho mas severas para los GFF.

A.2. Generalized Free Fields conformes

Una gran simplificacion en la comprensiéon de la naturaleza las posibilidades permi-
tidas para las dlgebras de GFF, aparece con la realizacién holografica de (una clase) de
estas teorias como campos libres ordinarios en el “bulk” asociados a un espacio-tiempo
de una dimensiéon méas. A continuacién estudiaremos estas ideas poniendo el foco en
los los GFF holograficos, especialmente en los GFF conformes. De esta manera, apro-
vecharemos la descripcién dual para definir y caracterizar as algebras de una region
dada. En particular, en esta seccion introduciremos los campos GFF conformes. Estos

tienen una densidad espectral dada por
pls) =577, (A.6)

y dimensiéon conforme A. Claremente, (A.6) nos da una medida bien definida para
(A.1) siempre que A obedezca la cota de unitaridad A > (D — 2)/2. Para cualquiera
de estos A el GFF define una CFT. El caso limite, A = (D — 2)/2 queda excluido
porque p(s) se vuelve no integrable alrededor de s = 0. En cambio, el campo libre sin
masa tiene p(s) = (s).

La descripcion holografica dual es en el espacio AdS. En el parche de Poincaré

podemos escribir la métrica como
2 1 2 2

siendo dz? la métrica de Minkoswki en D dimensiones del espacio-tiempo y z € (0, 00).

El campo dual ¢ del GFF es un campo libre masivo en AdS con ecuacién de movimiento
(2?02 +2’0p + (1 = D)20. —m?) ¢ =0, (A.8)

donde la masa m esta dada a partir de la dimension de escala A en el borde como
m? = A(A - D). (A.9)

El valor minimo para la masa al cuadrado viene dado por la cota de Breitenlohner-



A.2 Generalized Free Fields conformes 257

== A
(D+1)/2
D/2
(D-1)/2
(D—-2)/2
mEr myp+1/4 myp+1 m?

Figura A.1l: El grifico muestra la relacién (A.9), destacando algunos puntos importantes de
la curva. Los segmentos de color azul y rojo corresponden a la cuantizaciéon con condiciones de
contorno de Dirichlet y Neumann respectivamente. De abajo a arriba, el punto negro es el final
de la curva, donde la CFTp alcanza la cota de unitaridad, precisamente en m? = m% . + 1. El
punto rojo muestra el punto donde el campo masivo de AdS estd acoplado de forma conforme
para condiciones de Neumann. El punto rojo y azul es la cota BF, la masa mas baja posible en
AdS consistente con la unitaridad m%, = —D?/4. El punto azul destaca cuando el campo de
AdS es acoplado de forma conforme con la condiciéon de Dirichlet.

Freedman m? > m%, = —D?/4 [252]. Nétese que puede ser negativa.

El campo ¢ puede cuantizarse canénicamente para un vacio simétrico en AdS. Para
—D?/4 <m? < —D?/4+1 existen dos cuantizaciones no equivalentes correspondientes
a las dos raices de (A.9). Véase la figura A.1. Estas estan definidas por diferentes
condiciones de contorno para el campo en el borde de AdS, es decir z — 0. La condicién

de contorno de Dirichlet corresponde a

A:%<D+\/m> , (A.10)

y la condicién de frontera Neumann a

A:%(D_m) . (A.11)

Para m? > —D?/4 + 1 sélo se permite la condicién de contorno de Dirichlet. Por otro
lado, en el limite m? — —D?/4+1 la rama de Neumann alcanza el limite de unitaridad
A = (D —2)/2. No existe descripcién holografica para dicho punto.

También hay puntos notables en m? = —D?*/4+1/4, A = (D £1)/2, en los que el
dual en AdS es un escalar sin masa acoplado de forma conforme y, por tanto, un campo
conforme por si mismo. Estas teorias de masa particulares pueden tienen un mapeo
conforme al espacio de Minkowski D + 1-dimensional con métrica ds? = (dz? + dz?),
donde tenemos las dos posibles condiciones de contorno conformes en z = 0. En la
rama de Neumann en este punto tiene A = (D — 1)/2 correspondiente a un campo

libre de dimensiéon D+ 1 sin masa, y la rama de Dirichlet tiene una dimensién de borde
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diferente A = (D + 1)/2 debido a la condicién de contorno.
La relacién entre el campo del borde y el campo en AdS puede describirse del

siguiente modo. El GFF puede obtenerse simplemente como el limite del campo en

AdS utilizando el diccionario hologréfico habitual [251], a saber
A 2—a—1/2
lim 272 p(z, 2) = ot 1] oalz), (A.12)

donde o = A — D/2. A la inversa, el campo en AdS tiene una expresién no local en

términos del de los campos en el borde

1 A 2 —a/2
(p(x,z):ﬁz (z°0)~2 J,(zv/O) ¢a(x) . (A.13)

A.3. Algebras holograficas

Podemos dar una relacion mas esclarecedora entre las teorias en AdS y el borde
en términos de algebras locales. Si W es una regién en AdS, llamemos W' al conjunto
de puntos espacialmente separados de W el bulk. La completacién causal de W es
W"” y una regién causalmente completa, es decir, satisface W = W”. Las regiones
causalmente completas en el bulk son el dominio de dependencia de las superficies
espaciales y estdn naturalmente unidas a las dlgebras A¥(W) generadas por el campo
libre ¢ en W.

En la teorfa de borde, para cualquier regién espacio-temporal R llamemos A®(R)
al algebra generada por el GFF ¢ en R. Si consideramos R como una regién en el
borde de AdS podemos definir una regién causal asociada en el bulk como R’. Para
un doble cono D (la interseccién del pasado de un punto con el futuro de otro punto)

en la frontera se demostré en [10] que vale la igualdad
A?(D) = A?(D"). (A.14)

Esta relacién puede generalizarse. Las dlgebras del borde A?(R) son generadas por el
GFF local y luego son aditivas bajo unién de regiones espacio-temporales. En otras

palabras, podemos descomponerlas como generadas por algebras de doble cono

A*(R)=\/ A*(D)=\/ A°(D"). (A.15)

DCR DCR

En particular, si R es causalmente cerrada en el borde, tenemos

A?(R) = A*(Rew), Rew =JH(R)NJ (R). (A.16)
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donde J*(R) y J (R) son el futuro y el pasado de R. Esto generaliza (A.14). La
regién de bulk Rey se llama la “causal wedge” de R [253].2 Por lo tanto, si hacemos
un smearing del el GFF para tal R obtenemos el algebra de campo libre en el bulk
asociada al causal wedge. Esta asignacion del algebra es la més natural desde el punto

de vista del GFF y es también la minima posible. Escribimos
Acow (R) = A?(R) = A°(Rew). (A.17)

También podemos definir el complemento causal en el espacio-tiempo del borde co-
mo R, y una regién causalmente completa en el limite satisface R = R.? Por causalidad,

las algebras correspondientes a regiones limite complementarias conmutan:
A?(R) C (A?(R)). (A.18)

Un campo escalar libre ordinario satisface la dualidad de Haag (2.21) para cualquier
region causal [25]. Entonces, a partir de la representacién bulk (A.16) podemos compro-
bar facilmente que las algebras de los causal wedge del GFF no satisfacen la dualidad
de Haag para regiones generales. Esto se debe a que a las regiones complementarias del
borde R v R corresponden las regiones del bulk Row y Row que generalmente no son
complementarias. La region espacialmente separada de estas dos regiones (Row URcw )’
se llama “causal shadow” [254]. Una excepcion es el caso en el que R es un doble cono
y el causal shadow desaparece. La dualidad de Haag para conos dobles es, de hecho,
siempre necesariamente vélida para todas las CF'T, cuando tomamos el complemento
en el espacio compacto [37].

Vimos durante esta tesis que los fallos topoldgicos de la dualidad de Haag estan
asociados a simetrias generalizadas y estan ausentes para teorias suficientemente com-
pletas. Sin embargo, el presente caso es diferente en varios aspectos. El fallo de la
dualidad de Haag para GFF esta relacionado con el fallo del time slice axiom y el
consiguiente fallo de la aditividad para regiones causales basadas en el mismo plano
espacial. El dlgebra generada por el campo en dos conos dobles superpuestos no co-
rresponde al dlgebra de una region causal para un GFF. Por el contrario, los ejemplos
ordinarios de QFT satisfacen esta forma de aditividad causal, formulada formalmente
a partir de (2.17). Ademas, el conmutante relativo A(R)' N.A(R)’ es trivial en casos de
QFT ordinaria mientras que es un dlgebra grande para los GFF. Esto esta representado

por el algebra de los campos del bulk en el causal shadow, véase la figura A.2.

2Esta regién no es en general una regién causalmente cerrada. Por lo tanto, una expectativa natural
es que usando las propiedades de las dlgebras de campos libres [25], la regién del bulk en el lado
izquierdo de (A.16) podria extenderse a ((JT(R) N J (R))” = R, teniendo la misma &lgebra. No
necesitaremos esto en lo que sigue.

3Tomamos el complemento de R, dado por R, en el espacio compacto o equivalentemente en el
cilindro espacio-temporal.
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R

Figura A.2: Un corte a tiempo constante de AdS. Los causal wedges Row y Row para regiones
complementarias en el borde R y R no cubren el espacio en el bulk, sino que estan separados por
el causal shadow. Una superficie que divide el causal shadow en dos, puede utilizarse para definir
algebras que satisfagan dualidad de Haag. La superficie minima HRT Y i nos da una particién
de este tipo y define el entanglement wedge Rgyy -

Como desarrollamos en el capitulo 2, una vez que falla la dualidad de Haag, la
posible asignacion de algebras a las regiones no es unica. Podemos ampliar las dlgebras
de R y R manteniéndolas atin conmutativas entre si. En la representaciéon holografica,
una forma sencilla de hacerlo es desplazando los limites del dlgebra asociada campo
en AdS hacia adentro en el bulk, pero manteniendo las regiones de bulk espacialmente
separadas entre si. Si dividimos el AdS en dos regiones, una que contenga Row y la
otra Rew, las dlgebras de campo libre asociadas serdn duales entre si, y podremos
recuperar la dualidad de Haag. Es decir, tenemos una posible red Haag-Dirac tal como
definimos en la seccién 2.2.4. Un punto fundamental es que la prescripcion elegida
también deberia ser monoténicamente creciente con el tamano de la region para dar
algebras mayores a regiones mayores, esto es, debemos obedecer la isotonia (2.8).

En este contexto, la prescripcion holografica selecciona una division particular del
espacio en dos dada por la superficie minima >z anclada en el borde a una region cau-
sal R (o equivalentemente }:3) Se denomina superficie Ryu-Takayanagi [255] o Hubeny-
Rangamani-Takayanagi [250]. La regién causal que abarca desde R hasta Yi se deno-
mina “entanglement wedge” y la notaremos como Rgy . Es sabido en la literatura que
Rew € Rew, v que el mapeo R — Rpgw es monotonico bajo el orden de inclusion.
Esta propiedad se denomina “entanglement wedge nesting” [257]. En este escenario,

definimos

Esta es, de hecho, el algebra de los operadores de baja dimensién asociada a la regién
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Figura A.3: Red dual representada sobre un corte a tiempo constante de AdS.

en el limite de NV grande de los modelos holograficos. Por construccion deducimos que
Acw(R) C Apw (R), Apw(R) = (Apw(R)) . (A.20)

Sin embargo, observamos que desde el punto de vista de la propia teoria de los
GFF hay potencialmente infinitas opciones diferentes de algebras para las regiones que
satisfacen la dualidad de Haag y la propiedad de nesting, siendo el entanglement wedge
s6lo una de ellas.

Para las teorias holograficas existe la idea de la reconstruccién de campos en el bulk
a partir de operadores del borde [258]. A nivel de los GFF, podemos realizar la recons-
truccion de los operadores del bulk dentro de Ry, a partir de los operadores del borde
en R, utilizando el flujo modular de Agw (R) [259, 260]. Pero este flujo modular ya in-
volucra a los operadores de bulk dentro del entanglement wedge. En principio, también
para otras regiones distintas que contengan al causal wedge, podriamos reconstruir los
campos de forma similar.

Saliendo un poco de las ideas holograficas usuales, podemos asignar a los GFF otra

algebra para la regién de borde R de la siguiente forma
.ADual(R) = .AQO(RDual) , Rpua = R % {Z S (0, OO)} , (A.Ql)

siendo esta nueva prescripcion covariante de Poincaré pero no invariante conforme. Di-
cha asignacién de algebras se denomina “red dual” en la literatura matematica porque
surge como conmutante del dlgebra del complemento de la region dentro del espacio
de Minkowski (en lugar del complemento tomado en el cilindro espacio-temporal). Se
demostré que esta asignacién de algebras no satisface la split property [148], lo que

implica que los métodos desarrollados en el capitulo 5 no necesariamente se aplican a
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esta familia de teorias.*

A.4. Discusién del apéndice

Los GFF son teorias cuanticas de campos con propiedades inusuales. Si bien definen
una QFT apropiadamente, el hecho de que no cumplan el time slice axiom esta aso-
ciado a distintas posibilidades en la eleccion de un algebra para regiones con topologia
trivial. Estudiamos estas ideas desde un punto de vista holografico para GFF conformes
donde podemos entender estas posibilidades como tomar el algebra del causal wedge,
entanglement wedge, la red dual, etc.

En la literatura, las propiedades de estas algebras se han estudiado a partir de
la informacién mutua [261], “quantum error correction” [260] y el rol del limite de N
grande [262-201]. Una pregunta abierta es si existe algin argumento intrinseco de GFF
que seleccione el entanglement wedge como opcion preferida. A partir de la informacion
mutua se ha visto que la eleccion del algebra del entanglement wedge difiere de todas
las deméas porque permite una nocién de causalidad “falsa” en la teoria de los GFF
[261]. Seria interesante estudiar este punto méas en profundidad y también su relacién
con las dlgebras tipo II emergentes en gravedad [265, 2606].

Ademads, un punto interesante es que nos hemos centrado sélo en los GFF con-
formes. Pero, otros GFF también pueden estudiarse holograficamente utilizando un
espacio-tiempo asintoticamente AdS. Una problema interesante es cudal es el conjun-
to de GFF que podemos producir de esta manera. La positividad de la densidad de
Kallen-Lehmann parece estar relacionada con la condicién de energia nula en el bulk
[267], pero no esta claro cuél es la clase de densidades espectrales que se derivan de

soluciones a ecuaciones diferenciales en un espacio asintoticamente AdS.

4Este fallo de la split property puede verse a nivel de la informacién mutua entre dos regiones de
borde R; y Ry. En particular se calcul6 que dicha cantidad es divergente para las redes duales y finita
para cualquiera de las otras elecciones de dlgebra mencionadas. Véase [261].



Apéndice B
Teorema Weinberg-Witten

En este apéndice, presentaremos la prueba usual del teorema Weinberg-Witten. El

teorema en cuestién cuenta de dos partes

(a) Las teorfas con simetrias globales internas implementadas por una corriente de
Noether j# no pueden presentar particulas sin masa de espin > 1 en el espectro

cargadas ante dicha simetria.

(b) Las teorias con con un tensor energia-momento bien definido que implemente la
simetria de Poincaré no pueden presentar particulas sin masa de espin > 1 en el

espectro.

Durante el desarrollo de esta tesis, hemos discutido extensamente este teorema y pro-
visto ejemplos explicitos. Ademas, en la seccién 5.4, presentamos una rederivacién de
este teorema en el contexto de QFT local con simetrias generalizadas y propuesto ge-
neralizaciones del mismo. En este apéndice, exclusivamente presentaremos la prueba
original del teorema introducida en [17]. Esta prueba alcanza particulas de espin > 1
en D = 4 dimensiones espacio-temporales. Para revisiones mas modernas y extensas
de esta prueba véase [208, 269] y para la extension a D =5 del caso de espin 2 [172].
Especificamente, la prueba de este teorema se basa en el estudio de los elementos
matriciales de la corriente conservada j* y del tensor energia-momento T"” entre dos
estados de una particula sin masa de helicidad A y momentos definidos p'* y p*, es

decir,
@, hli" o by, P RIT [p, by (B.1)

Por un lado, mostraremos que los elementos de matriz (B.1) no pueden anularse en el
limite p’ — p debido a que, por suposicion, las particulas no masivas de helicidad h
en cuestion estan cargadas ante la acciéon de la simetria generada por la corriente j# o
ante el mismo grupo de Poincaré en el caso del T*” . Por otro lado mostraremos que

la invariancia de Poincaré requiere que los elementos (B.1) se anulen si |h| > 1 para

263
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el caso de la corriente y si |h| > 1 para el tensor energia-momento. La tension entre
ambas afirmaciones prueba el teorema.
A continuaciéon presentamos de forma concreta ambas partes del teorema y sus

respectivas pruebas:

Teorema (a): Una teoria que permite la construcciéon de una corriente conservada

de j* covariante de Lorentz no puede contener particulas sin masa de espin > 1 con

valores de expectacién no nulos para la carga conservada Q = [ d®z j°.

Demostracién: Formalmente, podemos escribir la condicién de que las particulas no

masivas de helicidad h estan cargadas ante la simetria si consideramos que la los estados
de momento definido actiian como autoestados del operador de carga global obtenido

a partir de la corriente j#(z°, z"), es decir

Qp.w) =dp.h). Q= [ &), a0, (B.2)
donde los estados de momento definido generan una base ortonormal de manera que

(¥ hlp, h)y =6(p" —p). (B.3)

De aqui, tenemos que los valores de expectacion del operador de carga global estan

dados por
¥, h|Qlp, k) = qo(p’ —p). (B.4)

Para el mismo valor de expectacién, por otro lado, podemos calcular que
<pl’ h|Q|p, h) — /de <pl’ h|j0(0,$z)|p, h> — /d?’l' <p/’ h|6iPixi jO(O7 0) 6—iPixi|p’ h) _

- / Pz @O () B]10(0,0)|p, by = (27)° 6(p = p) (P, h]5°(0,0)p, k). (B.5)

La consistencia entre (B.4) y (B.5) nos requiere que

Iim (¢, hj°(0, 0)[p, h) = s (B.6)
p'—p (27T)3
Mas aun, debido a la covariancia de Lorentz de j# tenemos necesariamente que
lim (. h17#(0.0)|p. ) = 10 (B.7)
p'—p E (277')3

Observamos que esto es consistente con la conservacién de la corriente 9,5* = 0 debido



265

a que al tener particulas no masivas p* es tipo luz, es decir

pup" =0. (B.8)

Otra consecuencia del caracter tipo luz de los momentos p* y p’** implica que

@ +p)? ="+, +p.) =0"D +P'pu+ 20" P = (B.9)
= 2p"p. = 2(19'|lpl = pip’) = 21P'|Ipl (1 = cos ) > 0,

para ¢ el angulo formado por los momentos espaciales p’ y p/ g Anélogamente, tenemos

(¥ —p)*> = =2[p||p| (1 — cosp) <0.

De esta manera para ¢ # 0, tenemos que (p' — p)* es un vector tipo espacio y (p’ + p)*
es tipo tiempo. Esto implica que podemos elegir un sistema de referencia de Lorentz

en el cual la parte espacial de (p’ + p)* se anula, a saber

' =pl.0"), »"=(pl.-p"). (B.10)

En este sistema de referencia, dado por (B.10), consideramos una rotacién definida
por un angulo 6 alrededor de p’. Los estados de una particula transforman segiin su

helicidad como
AO)|p, h) = e |p, k)  AO)|p, h) = e "|p,h), (B.11)

donde la diferencia en signo proviene de la eleccién que hicimos en (B.10). En otras
palabras, A(f) genera una rotacién alrededor de p' dada por 6 pero una dada por —@
alrededor de p'* = —p'. Ademés, en este caso, la covariancia de Lorentz de J* implica
que

A0, (' hl5"|p, h) = € b|j¥(p, h) . (B.12)

Sin embargo, el hecho de que A(f) sea una matriz de rotacién implica en su descom-
posicién de Fourier solo pueden aparecer los autovalores e, 1, 0 e7. De esta manera,
tenemos que, si (p/, h|j#|p, h) # 0, la consistencia entre el lado izquierdo y derecho de
(B.12) requiere que 2|h| =0, 1, es decir,

1
h=0,%5. (B.13)

De otra forma si |h| > 1 la consecuencia es que que estos elementos de matriz en
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cuestién deben anularse, a saber
;o . 1
(p', h|j"|p, h) =0 si h;éO:lzi. (B.14)

La validez de esta ecuacién (B.14) en el sistema de referencia de Lorentz dado por
(B.10) , que j* es covariantes de Lorentz y, que las helicidades de las particulas sin
masa son invariantes de Lorentz, nos permiten concluir que los elementos de la matriz
en cuestion tendrian que desaparecer en todos los sistemas de referencia. Por la tanto,
la contradiccién entre (B.7) y (B.14) prueba el teorema.

Un detalle importante de esta prueba es que escribimos la ecuacién (B.6) en térmi-
nos del limite p’ — p, y no en términos de los valores de expectacién elementos
(p,h|j°|p, h). Esta definicién mediante el limite corresponde al método mediante el
cual se determinan realmente las cargas (y de hecho también las energias y momentos).
Esto es a partir de mediciones del “nearly forward scattering” evaluando las cargas
locales Qg = [, d*z j° para una regién R finita. Si hubiésemos tomado los elementos
matriciales con p’ = p no podriamos haber probado el teorema sin asumir la continui-
dad de (p/, h|j*|p, h) para (p' —p) tipo espacio y tipo luz. Si bien esta suposicién parece

razonable, en este contexto, no es necesaria.

Teorema 2: Una teoria que permite la construccion de una tensor energia-momento

conservado T covariante de Lorentz para el cual P* = [ dz T es el vector energfa-

momento no puede contener particulas sin masa de espin > 1.

Demostracion: Podemos probar esta segunda parte del teorema, de forma andloga a

la anterior. Comenzamos considerando que el operador momento, construido a partir
del tensor energia-momento, actia sobre los estados de una particula momento definido

como

Phlp,hY = p"lp, h),  PH— /d% TO4(0, 27) (B.15)
De esta manera, también tenemos el valor de expectacion
(0, h|P¥|p, h) = p" o(p" — p). (B.16)
Nuevamente, podemos calcular explicitamente para obtener
WPy = [ @l WOl k) = [ @ e T 0,00 b

- / B @I () BTO(0,0)[p, h) = (27)*6(p — p) (o, BIT*(0,0)|p, h) . (B.17)
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Combinando (B.16) y (B.17) tenemos para el limite de las mediciones p’ — p que

o
lim (', h| T By = -2 B.1
p,lglp(p, |T°*(0,0)|p, h) 2n)? (B.18)

Mas ain, de la covariancia de Lorentz del tensor energia-momento recuperamos

(B.19)

lim <p/, h’le(Ov 0)|p7 h’> =
p'—p

Por otro lado, si trabajamos en el sistema de referencia definido por (B.10) tenemos
que una rotacién A(6) alrededor de p’ dada por 6 obedece que
AO)A(0)", (', hIT? |p, h) = " (p, h|TH |p, h) . (B.20)

p

En este caso, vemos que el caracter tensorial del T"” permite los que valores de expec-

tacién (p/, h|T*|p, h) sean no nulos para 2|h| = 0, 1, 2, o bien
1
h=0, £, 1. (B.21)
Al revés, si no acotamos la helicidades tenemos
1
(o', h|T*|p,h) =0 si h # 0, i§, +1. (B.22)

En este caso, la contradiccion entre (B.19) y (B.22) prueba el teorema.






Apéndice C
Efecto Witten y simetria quiral

En este apéndice revisaremos ideas relacionadas con la electrodinamica en presencia

de un término 6
Sy o / d*z 0 ¢ yap " FP (C.1)

Estos conceptos seran particularmente ttiles para interpretar los resultados incluidos en
el capitulo 7. Comenzaremos en la seccién C.1 estudiando como un término de la forma
(C.1) con 0 = 0(2°, ") produce variaciones en la ecuaciones de movimiento, es decir,
como afecta la dindmica de la teoria a nivel clasico. Luego, en la seccion C.2 veremos
que podemos entender esta nueva fisica a partir del efecto Witten [270]. Dicho efecto se
basa en que los monopolos magnéticos en presencia de un término ¢ no se comportaran
exclusivamente como monopolos, sino que actian como diones que tienen tanto carga
magnética como carga eléctrica. En la secciéon C.3 estudiaremos un problema a priori
no relacionado, la derivacién de la anomalia Adler—Bell-Jackiw (ABJ) [11, 12] en la
integral de caminos introducida en [221]. Sin embargo, veremos como la transformacién
quiral de la medida de integracién induce un término 6 en la accion. Por 1ltimo, en la
seccién C.4 estudiaremos brevemente como podemos describir las lineas de Wilson y 't
Hooft como condiciones de contorno en la en la integral de camino. Combinando con
los demas resultados del apéndice, veremos que los operadores no locales didénicos en

el caso de QED no masiva estan cargados ante la simetria quiral.

C.1. Electrodinamica con término 6

Comencemos viendo en que situaciones en un término ¢ afecta a la dinamica de la

teoria a nivel clasico. Para esto escribimos la acciéon del campo de gauge como

1 . w0 =
§=—7 dx[FWF + 1 PR |, (C.2)

7
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donde podemos recuperar la 2-forma invariante de gauge F),, y su dual F, w @ partir
del campo de gauge A, como

. 1
E,, =0,A,—-0,A,, F,= §gwﬁF0‘5 = CuvapOadp . (C.3)

Observamos que hemos escrito las constantes del término ¢ de manera que sean con-
sistentes con (7.46) para 6 € [0, 27). Siguiendo este camino, podemos escribir las ecua-
ciones de movimiento del campo de gauge A, asociadas a la accién (C.2) como

962 B 2

v v v € njn%
9, (F“ - ) = OuF" — 5 (0,0) " = 0. (C.4)
A la luz de (C.4), es evidente que el término # solo puede afectar las ecuaciones de

movimiento si 6 que es una funcién no trivial del espacio-tiempo, es decir
0=0(z,2"). (C.5)

Esto se debe a que la 2-forma dual F v, dada por (C.3), siempre es conservada por
simetria,

"F oy = €pyap0u0aAs = 0. (C.6)

La necesidad de que # sea una funcion no trivial viene del hecho que podemos expresar

FrE w como derivada total
FME,, = 2(0"A")E,, = 20"(A"E,,). (C.7)

De esta manera si 6 es constante el término extra en la accion no es mas que un
término de borde y, por ende no cambia las ecuaciones de movimiento. Por el contrario
en los casos que 6 tiene una dependencia como (C.5) estaremos ante la presencia de
un término cuasi-topologico. Esto es el término € no esta acoplado a la métrica dele
espacio-tiempo pero cambia las ecuaciones de movimiento.

Para entender las implicaciones fisicas de la introduccion de un término 6, podemos

escribir las ecuaciones de movimiento en funcién de los campos eléctricos y magnéticos
i 0i i L ik
E'=—-F B"'= ——&""Fy . (C.8)
) 2 J

En particular, la ecuacién (C.4) toma la forma
i e’ i : J Rk e’ ; j ak

472

mientras que las ecuaciones dadas por (C.6) no varian inclusive en presencia del término
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0 no trivial, es decir

Claramente, las ecuaciones (C.9) son las que contienen la nueva fisica. La primera nos
dice que en regiones del espacio donde # varia, un campo magnético actiia como una
densidad de carga eléctrica. La segunda nos dice que la combinacion (BZG + a-jkEj (9’“6)
actia como una densidad de corriente.

Un ejemplo muy simple de la nueva dinamica es el caso donde vamos muy lenta-
mente cambiando € en el tiempo de manera que 6 = 0(t). Esta variaciéon produce un
término en la segunda ecuacién de (C.9) proporcional a 0

. e

E; = —mBi. (C.11)
En consecuencia, si comenzamos un campo magnético constante generado posiblemente
por la presencia de un monopolo magnético puntual g y hacemos el aumento 6(0) —
0(t), vemos que esto serd acompanado por un campo eléctrico variable en el tiempo

que paralelo a campo magnético. Especificamente, tenemos integrando (C.11) que

t 20 e2 A0

El punto fundamental es que la presencia de un monopolo magnético ha generado
un campo eléctrico. Esto es consecuencia del efecto Witten que estudiaremos a en la

siguiente seccion.

C.2. Efecto Witten

Podemos entender idea de que el término término 6 variable en el espacio-tiempo
actia como fuente de cargas/corrientes eléctricas como una consecuencia del efecto
Witten. En otras palabras, como mostramos ahora, el efecto del término 6 es esencial-
mente dotar al monopolo magnético de una carga eléctrica.

Esta idea fue introducida originalmente en [270]. Sin embargo, a continuacién se-
guiremos el desarrollo mas diddctico presentado en [218]. En particular, tomaremos
un monopolo magnético con carga magnética g y lo colocaremos en el vacio dentro de
una cavidad con € = 0. Ademas, como mostramos en la figura C.1, rodearemos dicha
cavidad con un medio que tiene 6 # 0.

Podemos escribir el campo magnético, obtenido a partir de la ley de Gauss magnéti-
ca, en todo el espacio como

Bi(r) = Ly (C.13)

473
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Figura C.1: Configuracién geométrica que usamos para estudiar el efecto Witten. Un monopolo
magnético con carga magnética g se encuentra en una cavidad con = 0y, a su vez, dicha cavidad
esta rodeada de un medio con 6 # 0. En el medio donde 6 # 0, vemos al monopolo magnético
como un dién que genera tanto un campo magnético B como uno eléctrico E.

donde 7% es el vector posicién espacial y r su modulo. Ademds, si asumimos que la
cavidad con 6 = 0 es esférica de radio R mientras que el medio con € # 0 se extiende

hasta el infinito tenemos
0sir<R,
O(r) = (C.14)
0 sir>R.
De la ecuacion (C.9) sabemos lo que sucede a partir de nuestra discusién anterior.
Cuando el campo magnético cruza la interfaz donde cambia 6, se inducird un campo

eléctrico. En particular tenemos

OE = 62_93%5@ ~R)= <€290) o = K) (C.15)

472 472 4arp?

y podemos escribir el campo eléctrico como

0sir<R,

B = <6299) " osir>R.

(C.16)

4n2 ) 43

Desde el interior del medio cuando 6 # 0, parece que el monopolo tiene carga eléctrica
distinta de cero es decir actiia como un diéon de cargas eléctricas y magnéticas dado

por
2

(9.9) = (g, % 9) : (C.17)
Es fundamental que este resultado es independiente de R, es decir, del tamano de la
region interior donde € = 0. Podriamos encoger esta region hasta que fuera infinitesi-
malmente pequena, y aun encontrariamos que el monopolo inevitablemente tiene carga

electrica ¢. La interpretacion fisica de este resultado es que cuando # # 0 un monopolo
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siempre es un dién de cargas (g,q). En particular, cuando el monopolo lleva la carga
magnética minima permitida por la cuantizacion de Dirac, su carga dionica viene dada
por

2n 69) . (C.18)

(9,9) = (;,g

Podriamos intentar construir un verdadero monopolo agregando cargas eléctricas
que cancelen las generadas por el monopolo original. Esto solo es posible si tenemos
6 = 2m, de manera que la carga eléctrica del monopolo coincida con la carga ¢ original.
En este caso, podemos construir un monopolo neutro considerando un estado ligado
del dién-positron. Sin embargo, cuando 6 no es un mutliplo de 27, todos los monopolos

llevan necesariamente carga eléctrica.

C.3. Simetria quiral en la integral de caminos

Ahora estudiaremos la derivacion de la anomalia quiral usando la integral de cami-
nos y veremos como las transformaciones quirales estan relacionada con los términos
. Para esto, consideremos la acciéon de un campo fermiénico ¢ sin masa y un campo

electromagnético fijo A,, como fuente

S[, ¥, A] = /d‘*wmw, (C.19)
donde usamos la notacién
D="Dy =70 — Ay), ©=1"". (C.20)
La simetria quiral viene dada por transformaciones sobre los campos fermiénicos como
W= Y, P — Pt (C.21)
De la misma manera, podemos escribir la versién infinitesimal de la forma
S =iy, 0 = ifyYy°. (C.22)
Vemos que la accién (C.19) es invariante ante la transformacion (C.22), es decir
S[h + v, + 0, A] — S[p, 4, A] = 0. (C.23)

A partir de aqui, podemos calcular la corriente de Noether siguiendo el procedimiento

presentado en [29, 90]. Escribiendo la variacién de la accién a partir de las ecuaciones
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de movimiento E[¢] y E[¢] y términos de borde tenemos
o5(. 7. Al = [ e SR + Bl + 0,0 (C24)
donde consideramos que E[], E[¢)], y ©* vienen dados por

Ep) =i, Ell=—i0Dh, =iy, (C.25)

Por ende, la simetria esta asociada por el teorema de Noether a la corriente

e

b=— =Yy 9. 2
5 =5 vy Y (C.26)

Si bien esta derivacion, nos asegura que la conservacién de la corriente quiral es valida
a nivel clasico,

a,u]g =0, (027)

sabemos que a nivel cuantico se rompe por la presencia de la anomalia ABJ. La contri-

bucion de esta anomalia fue originalmente calculada a primer orden en perturbaciones

usando los diagramas tridngulos para las corrientes [ 1, 12], y dicho resultado es vélido
a todas las escalas [271]. De esta manera, para QED no masiva tenemos
% e?
N vpo
au.]5 = 167'('2 P FuVFpa . (028)

Sin embargo, otra forma para ver la contribucién de la anomalia es usar la integral de
caminos [221]. A continuacién presentamos dicho calculo siguiendo las referencias més
modernas [218, |. Empezamos escribiendo la funcién particién correspondiente a la

accién (C.19) como

Z = / Dy DeSW9A (C.29)

Si hacemos una transformacién quiral dentro de dicha integral sabemos, por (C.24),
que la accion es invariante el efecto de la simetria. Pero, en este caso también debemos
considerar la transformacién de la medida de integraciéon de los campos. Estas vienen
dadas por,

DYDY = |J|*DyDip, (C.30)

donde | J| representa el jacobiano de la transformacién y el factor —2 viene del caracter
fermiénico de los campos. A continuacién, veremos que no solo obedece que |J| # 1
sino que, de hecho, produce la contribucién correspondiente a la anomalia ABJ.

Para definir apropiadamente las medidas DyD1), necesitamos estudiar los autova-

lores/autovectores del operador de Dirac I). Estos vienen dados a derecha/izquierda
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por las funciones ¢,,(z) y ¢,,(x) respectivamente como
(iD)bm(7) = A (@), Gp() (i) = Ay (@) | (C.31)
obedeciendo la condiciéon de ortonormalidad
/ 428, ()b () = Sy (C.32)

Cuando la fuente externa se anula, es decir A, = 0, los ¢,, son funciones de onda
de Dirac con momento definido k* = A2,. Si en cambio ponemos A, a una constante no
nula esta solucién sigue valiendo a nivel asintotico. En este contexto, podemos expandir

los campos en modos como

1/}(1’) = Z Cm¢m<x> ) E(q") - Zﬁmq_bm@?) ) (033)

m m

De esta manera, tenemos que medida de la integral de caminos toma la forma

/Dwa: /Hdcm de,, . (C.34)

Para calcular la transformacién quiral de (C.34) necesitamos el jacobiano (C.30). Pa-
ra esto, vemos como transforman los ¢,, antitransformando fourier la transformacion

infinitesimal (C.22). Esto es, calculamos

Cm = /d%@mw - Cm = /d%gm(l +i07°) = e + dep (C.35)
donde podemos recuperar dc,, de la forma
Oem = XoumrCont Xy =1 / d*z 0(x) (8,(2)7° b (2)) . (C.36)
De esta manera, el jacobiano viene dado simplemente a partir del determinante
7| = det (1 + X) = Tloe0] = o3 X +00%) (C.37)

donde podemos no considerar los siguientes términos en la ultima igualdad debido al

cardcter infinitesimal de X que es lineal en € segin (C.36). De aqui, nuestro propdsito
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sera calcular X,.m. Para esto, es tutil calcular
m 7

S (65(@) 7 dm(@) = lim ™ (6,(2)7° dule))e it (C.38)
= lim 3 (61() " € T 9(a)) = lim (afTr[y €5 o).

Destacamos que (C.38) no es exactamente una traza de 7° por la necesidad de intro-
ducir una regularizacién. Esta regularizacion es necesaria porque para cada x estamos
sumando sobre infinitos modos ¢,,(z) v ¢! (x) y no hay razén para pensar que dicha
sumatoria converge. En este contexto, introducimos la variable M con unidades de
energia como escala de dicha regularizacién. De esta manera, esperamos que el limi-
te converja para M — oo. Esto esta asegurado debido a que el signo de A2, = k?
es negativo para momento grande después de una rotaciéon de Wick, por ende el fac-
tor del exponente es el correcto para asegurar la convergencia del limite en cuestion.

Para seguir calculando, podemos concentrarnos simplemente en la parte asintética
del espectro a k grande. Entonces, expandimos en potencias del campo de gauge A,

reescribiendo el operador de Dirac al cuadrado como

N v 1 v v
(up)Z = _7u7 DMDV = _§<{7H77 }+ [7”77 ])DNDV (039)
1 v 1 14 e v
= 5 (20 DuD. + 510D, D.]) = =D? + S0™

donde usamos 0" = i[y*,7"]/2. Para obtener una traza distinta de cero para ~°
en (C.38), debemos bajar al menos cuatro matrices de Dirac del exponente. Podemos
calcular el primer término no trivial expandiendo el exponente hasta el orden (o, F*)?2.

Asi obtenemos, remplazando (C.39) en (C.38), que

’ 5 UBZL o 5 (~D2+50hvF,,)/M?
1\/1[51100<$|Trh e m? ||z) = A}ll)noo<x|T7’[v e 2 1|z) (C.40)
75 e " 2 52
_ 17 I v -5
= m Tr {2! (s ) 1 (xle )

También, podemos simplificar esta expresion haciendo una rotacién de Wick como

e k@Y oaz — e M2

(x|e_1€)722|a:) = lim &k =
B (2m)4 - 1672

Ty (27T)4

2 4 _ k2 M4
k / d kE _"E 1 (C.41)
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Remplazando (C.40-C.41) en (C.36) recuperamos que

. iM? vooe o, 2
2_ (@)1 m(@)) = lim o5Tr [5 <2M20# F“”) } (C.42)
ie? » - ie2 oo
= 1287T2T,r [75 ,y,u,y WpW F,u,qua} - 3271'26” 4 FHJ/FpO"
Finalmente, volviendo a (C.37) tenemos el jacobiano
|J‘ — e*ééig fd4x etvPoF, 1, Fpo ) (043)

Considerando que el jacobiano entra en la transformacién de la medida como (C.30)

tenemos para la accién dentro de la funcién particién (C.29) que

e%0 swpo
P F . (C.44)

St 54l = [ dia[Gibv +

En conclusion, el efecto de una transformacién quiral en la funciéon particién es anadir
a la accién un término 6 como el introducido en (C.2). Este término extra nos permite
recuperar la ecuacion de conservacién andmala (C.28) de manera analoga a (C.26).
Nétese que la transformacion de la medida segun el jacobiano (C.43) también es valida
para un 6(z) con dependencia espacial, mientras que la accién (C.44) tiene un termino
extra (0,0)75.

C.4. Operadores de linea en la integral de camino

Dada una teoria de gauge, podemos definir las linea de Wilson y operadores/lineas
de 't Hooft como condiciones de borde en la integral de camino. A continuacién pre-
sentamos estas ideas para teorias de gauge abelianas. Para comenzar, podemos enten-
der heuristicamente los operadores de 't Hooft, definidos sobre superficies (D — 3)-
dimensionales I'p_3 abiertas o cerradas, como la descripcion de un monopolo de carga
magnética ¢ infinitamente pesado actuando como sonda externa sobre un volumen de
mundo dado por T'p_3. En este contexto, el operador de 't Hooft se suele definirse
extirpando un volumen estrecho alrededor de I'p_5 del espacio tiempo y exigiendo que
los campos de gauge en la integral de camino tengan una condiciéon de contorno cerca

de I'p_3 de manera que valga

/Z Fey. (C.45)

para una esfera pequena Y, que enlaza I'p_3. Véase figura 2.3.1. Esto asegura que la
conmutacién entre operadores de 't Hooft y lineas de Wilson sea la correcta [273].

En efecto, podemos aplicar la misma idea si queremos definir una linea de Wilson
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como condicién de borde en la integral de camino. La idea en este caso es extirpar un
tubo alrededor una linea I';. Andlogamente al caso del operador de 't Hooft, debemos

exigir cerca de curva Iy una condicién de borde tal que
/ xF =q, (C.46)
Sp-2

para superficies (D—2)-dimensionales pequenas y cerradas que enlazan I';. En palabras,
la linea de Wilson inserta una particula infinitamente masiva de carga ¢ cuya linea del

mundo es I'; siendo esto consistente con la interpretacién usual de la definicion
iq [ dzt A,
Wr, = 'y 4" A (C.47)

Veamos el caso particular de D = 4. Para tal dimension, también podemos asociar
los operadores de 't Hooft a lineas unidimensionales y podemos escribir las condiciones
de contorno para la integral de camino a partir de las soluciones de cargas eléctri-
cas/magnéticas puntuales que discutimos brevemente en la seccién C.2. En particular,
siguiendo [220] podemos obtener lineas de cardcter diénico a partir de condiciones de
contorno cerca de I'y dadas por

;

AT pii ik I (C.48)

FiO ~
A3’ A3’

donde r? representan el vector posicién centrado en punto mas cercano de I
Podemos combinar esta idea con los conceptos revisados en las secciones C.2 y C.3,
para comprender las transformaciones de los operadores dionicos ante la simetria quiral.
La accién de la simetria quiral dentro de la integral de caminos es como vimos en la
seccién la adicién de un término 0. Segin (C.7), dicho término es un término de borde
en la accién y por ende podemos entenderlo como un cambio sobre las condiciones de
contorno. Dicha variacién es naturalmente la del efecto witten segiin (C.18), mapeando
monopolos magnéticos en diones. En el contexto del capitulo 7, vemos que la simetria
quiral mueve los operadores no locales didénicos, dados por un producto de WL y TL

cambiando la carga de los WL segun el valor de 0 y la carga original del TL.
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