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QCD: cromodinámica cuántica (quantum chromodynamics)
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Resumen

Simetŕıas generalizadas y corrientes de Noether:

Explicamos que si las simetŕıas generalizadas están cargadas bajo una simetŕıa glo-

bal continua, entonces dicha simetŕıa no puede ser implementada por una corriente

de Noether. Utilizamos este resultado para volver a derivar el teorema de Weinberg-

Witten en el contexto de la QFT local. Aplicamos estas ideas a distintas teoŕıas con

gravitones mostrando cómo las teoŕıas generales de la gravedad exhiben simetŕıas de

1-forma emergentes en el IR que están cargadas bajo el grupo de Poincaré y discutimos

las implicaciones de estos resultados en relación con el principio de completitud en la

gravedad cuántica. Además, si las simetŕıas generalizadas están cargadas ante un grupo

continuo, deben estar generadas por clases duales continuas. En este contexto, demos-

tramos que una teoŕıa con una simetŕıa de forma no compacta es necesariamente no

masiva y libre. Por lo tanto, estos modelos no pueden completarse en el UV de manera

interactuante sin romper estas simetŕıas generalizadas no compactas a una compacta.

Esta ruptura requiere la existencia de operadores cargados que aparecen a una cier-

ta escala de enerǵıa. Por otro lado, encontramos modelos interactuantes no triviales

donde la simetŕıa continua actúa sobre las clases no locales. Estos tienen anomaĺıas

ABJ, donde vemos que la existencia de simetŕıas 1-forma cargadas ante la acción de

la simetŕıa quiral impiden la existencia una corriente que implemente dicha simetŕıa.

Es decir, la simetŕıa quiral puede entenderse como una simetŕıa U(1) sin corriente de

Noether, que cambia las clases no locales asociadas a la simetŕıa 1-forma. En este caso,

las simetŕıas generalizadas describen un grupo compacto. Esto nos permite entender

y unificar caracteŕısticas fundamentales de las teoŕıas anómalas en términos mas con-

vencionales basados en simetŕıas internas. La compatibilidad del ciclo correspondiente

a las simetŕıas generalizadas con acción no trivial de la simetŕıa quiral requiere la

cuantización del coeficiente de la anomaĺıa ABJ, y podemos derivar la existencia de

excitaciones cargadas en el IR de la presencia de la simetŕıa todas las escalas.

Palabras clave: SIMETRÍAS GENERALIZADAS, DUALIDAD DE HAAG, CO-

RRIENTES DE NOETHER, GRAVITONES, ANOMALÍA ABJ
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Abstract

Generalized symmetries and Noether currents:

We explain that if generalized symmetries are charged under a continuous global sym-

metry, then such a symmetry cannot be implemented by a Noether current. We use

this result to re-derive the Weinberg-Witten theorem in the context of local QFT. We

apply these ideas to different theories with gravitons by showing how general theories

of gravity exhibit emergent 1-form symmetries in the IR that are charged under the

Poincaré group and discuss the implications of these results in relation to the com-

pleteness principle in quantum gravity. Furthermore, if the generalized symmetries are

charged under the action of a continuous group, they must be generated by a continuum

of dual classes. In this context, we show that a theory with a noncompact form sym-

metry is necessarily massless and free. Therefore, these models cannot be completed in

the UV in an interacting manner without breaking these generalized noncompact sym-

metries to a compact one. This breaking requires the existence of charged operators

appearing at a certain energy scale. On the other hand, we find non-trivial interacting

models where the continuous symmetry acts on the non local classes. These have ABJ

anomalies, where we see that the existence of charged 1-form symmetries under the

action of the chiral symmetry prevents the existence of a current that implements such

a symmetry. That is, the chiral symmetry can be understood as a U(1) symmetry

without Noether current, which changes the non local classes associated with the 1-

form symmetry. In this case, the generalized symmetries describe a compact group.

This allows us to understand and unify fundamental features of anomalous theories

in more conventional terms based on internal symmetries. The compatibility of the

cycle corresponding to the generalized symmetries with nontrivial action of the chiral

symmetry requires the quantization of the ABJ anomaly coefficient, and we can derive

the existence of charged excitations in the IR from the presence of the symmetry at all

scales.

Keywords: GENERALIZED SYMMETRIES, HAAG DUALITY, NOETHER CUR-

RENTS, GRAVITONS, ABJ ANOMALY
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Caṕıtulo 1

Introducción

El concepto de simetŕıa desempeña un papel central en el estudio de la teoŕıa

cuántica de campos (QFT). Para empezar, la simetŕıa global de Poincaré es un reque-

rimiento mı́nimo para la descripción de una teoŕıa de part́ıculas relativistas [1]. A su

vez, el estudio de simetŕıas internas, ya sean exactas o emergentes a bajas enerǵıas,

nos ha permitido obtener muchos de los resultados fundamentales que definen el éxito

y aceptación universal del Modelo Estándar.

Dado un modelo particular, conocer las simetŕıas siempre es deseable, pero suele

ser una tarea dif́ıcil especificar todas ellas. En este contexto, son fundamentales los

teoremas del tipo “no-go” que restringen el espacio de simetŕıas que puede exhibir una

teoŕıa. Tal vez, el más famoso de estos teoremas es el de Coleman-Mandula [2], el cual

acota las simetŕıas posibles de una matriz S. En particular, establece que este grupo

de simetŕıas no puede ser mas grande que un producto tensorial del grupo de Poincaré

con algún grupo de simetŕıa interno. En otras palabras, proh́ıbe la mezcla entre los

generadores de Poincaré y los de las demás simetŕıas de la teoŕıa. Posiblemente, la im-

portancia del teorema de Coleman-Mandula se basa en que nos ha ayudado a descartar

distintas versiones previas del modelo estándar y restringe sus posibles extensiones [3].

No obstante, existen distintos tipos de simetŕıas, que no son alcanzables por el teore-

ma de Coleman-Mandula. Históricamente, el ejemplo más caracteŕıstico de este tipo es

la supersimetŕıa, la cual escapa al teorema debido a que es generada por operadores de

carácter fermiónico, las llamadas supercargas [4, 5]. Más aún, recientemente, la noción

de simetŕıa global se ha ampliado a la de simetŕıas generalizadas para incluir simetŕıas

de forma, simetŕıas no invertibles, entre otras [6]. Hasta que punto estas simetŕıas

generalizadas son alcanzadas por un teorema “no-go” del tipo Coleman-Mandula es

desconocido hoy en d́ıa.

Dentro de estas simetŕıas generalizadas, uno de los conceptos que ha recibido más

atención es el de simetŕıas k-forma. Este se remonta a lo expuesto por ‘t Hooft en su

art́ıculo fundacional [7], pero recientemente se ha desarrollado más firmemente en [8].

1



2 Introducción

La idea principal es que los operadores de simetŕıa no viven necesariamente en hipersu-

perficies de codimensión uno, sino que pueden vivir en hipersuperficies de codimensión

dos/tres/. . . . Por otra parte, los operadores cargados bajo la simetŕıa no tienen por

qué ser operadores locales: también pueden ser operadores de ĺınea/superficie/. . . . Esta

idea es natural desde el punto de vista de teoŕıa de cuerdas, donde los objetos cargados

no necesariamente son part́ıculas, sino que pueden ser objetos extendidos como bra-

nas de mayor dimensión. Sin embargo, este tipo de simetŕıas también aparecen QFTs

usuales, siendo un ejemplo caracteŕıstico los lazos de Wilson o ’t Hooft en las teoŕıas

gauge.

Podŕıamos decir que una de las motivaciones más importantes detrás de la gene-

ralización del concepto de simetŕıas es que el paradigma de Landau [9] se extiende de

forma natural para incluir un zoológico mucho mayor de teoŕıas f́ısicas, incluidas las

teoŕıas gauge. Desde una perspectiva más moderna -o de bootstrap- podemos utilizar el

conjunto de simetŕıas k-forma para caracterizar de manera robusta ciertas propiedades

de una QFT fuera de los reǵımenes débilmente acoplados. Por lo tanto, la caracte-

rización cuidadosa de estas simetŕıas generalizadas nos permite entender aspectos no

perturbativos.

Otro de los núcleos del entendimiento de las simetŕıas en QFT es, por supuesto, el

teorema de Noether [10]. Este predice la existencia de una corriente local conservada

cuando una acción es invariante bajo un grupo de simetŕıa cont́ınuo. Sin embargo, una

cuestión pendiente desde hace tiempo es determinar en qué medida, o bajo qué condi-

ciones este teorema se cumple incluso para simetŕıas globales usuales. En la mayoŕıa

de los casos esto es aśı, y la presencia de una simetŕıa continua global implica la exis-

tencia de una corriente local conservada. Sin embargo, esto no siempre es correcto y

conocemos varios ejemplos de simetŕıas globales que no pueden ser implementadas por

una corriente de Noether.

Un contraejemplo reconocido es el de la simetŕıa quiral. En ciertas teoŕıas de gauge

como por ejemplo, la electrodinámica cuántica con fermiones no masivos, encontramos

una corriente conservada a nivel clásico para dicha simetŕıa que actúa de forma distin-

ta en las dos quiralidades de los fermiones. A nivel cuántico sin embargo la corriente

correspondiente deja de ser conservada, siendo esta la afirmación estándar de que la

teoŕıa posee una anomaĺıa Adler-Bell-Jackiw [11, 12]. Aunque este resultado es crucial

para la f́ısica de part́ıculas, ya que permite describir el decaimiento del pion neutro en

las teoŕıa efectivas de bajas enerǵıas de la cromodinámica cuántica, es algo inconve-

niente desde el punto de vista del teorema de Noether. Esto se debe a que, si bien la

conservación de la corriente quiral ya no es valida a nivel cuántico, la acción sigue sien-

do invariante ante dicha simetŕıa. En este sentido, hasta que punto la simetŕıa quiral

se conserva a nivel cuántico y cual es su naturaleza se ha discutido extensivamente en

la literatura, con propuestas que van desde la conservación de la simetŕıa [11, 13], a
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que parte de ella se rompe [14] o incluso que se vuelve no invertible [15, 16].

No obstante, para encontrar contraejemplos del teorema de Noether no necesita-

mos remitirnos exclusivamente a anomaĺıas cuánticas. En efecto, muchos de ellos se

originan a partir de otro teorema “no-go” a priori no relacionado. Este es el teorema

Weinberg-Witten [17] que afirma que las simetŕıas ante las cuales part́ıculas sin masa

con helicidad mayor o igual a uno están cargadas no pueden estar generadas por una

corriente de Noether. Tal vez de forma aun más patológica, este teorema incluye una

segunda afirmación. Esta indica que la presencia de part́ıculas sin masa con helicidades

mayores que uno, proh́ıbe existencia de un tensor de enerǵıa-momento. En este sen-

tido, el teorema nos permite comprender la ausencia de ciertas part́ıculas no masivas

como una condición necesaria para la definición de una corriente de Noether tanto para

simetŕıas internas como para simetŕıas espacio-temporales. En otras palabras, cuando

encontremos part́ıculas no masivas con helicidad mayor o igual a uno en el espectro, es

posible encontrar excepciones del teorema de Noether.

En una dirección diferente, esta última parte del teorema parece tener implicacio-

nes directas en la gravedad cuántica. En particular, se interpreta t́ıpicamente como

un obstáculo para definir la gravedad cuántica como una QFT, o equivalentemente a

encontrar una QFT interactuante con un gravitón emergente en el IR. Por esta razón,

el teorema de Weinberg-Witten se considera una prueba contundente de que la cuan-

tización de la gravedad debe seguir una ruta diferente. Sin embargo, existe un posible

escape para esta conclusión, ya que aún se desconoce si puede existir una QFT inter-

actuante sin tensor de enerǵıa-momento. Si tal estructura pudiera existir, aún cabŕıa

contemplar la posibilidad de una realización de la gravedad cuántica en QFT.

En el contexto de la gravedad cuántica las simetŕıas también tienen un rol protagóni-

co. Un teorema popular crucial es la ausencia de simetŕıas generalizadas en gravedad

cuántica [18, 19]. Recientemente ha habido un creciente interés en tratar de entender

esta idea, y su relación con la completitud de las cargas eléctricas/magnéticas en el

espectro de cualquier teoŕıa gauge acoplada a la gravedad [14, 20–22]. Pero la relación

entre las simetŕıas generalizadas y la completitud del espectro es a priori una afirma-

ción puramente de QFT, y podemos intentar avanzar desde dicho punto de vista. De

hecho, para QFTs con una dada estructura de simetŕıas generalizadas, se han cons-

truido ejemplos de este proceso de completitud introduciendo un número suficiente de

operadores cargados. Sin embargo, todav́ıa no está claro qué caracteŕısticas de baja

enerǵıa fuerzan la aparición de cargas a cierta enerǵıa.

Durante esta tesis nuestro objetivo es describir avances en estos frentes y, en par-

ticular, comenzar a delinear un hilo conductor mostrando como todas estas cuestiones

mencionadas anteriormente se relacionan entre śı. En el centro de estas ideas encon-

tramos la noción de simetŕıas generalizadas. Por ende, en el caṕıtulo 2 comenzaremos

revisando brevemente las propiedades de las simetŕıa generalizadas en QFT. Tomare-
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mos una formulación diferente a la estándar de la literatura. Esto será en términos de

álgebras de observables asociadas a regiones del espacio-tiempo [22, 23]. El objetivo

principal de dicho caṕıtulo es establecer las convenciones y, lo que es más importante,

revisar en qué sentido preciso las simetŕıas generalizadas se relacionan con distintas

asignaciones posibles de álgebras para una región del espacio-tiempo.

Una vez desarrollado este nuevo enfoque, es natural preguntarse si podemos apren-

der algo de la interacción entre las simetŕıas generalizadas y la gravedad. En esta

dirección, tomaremos un punto de partida conservador. Consideraremos una teoŕıa de

campos efectiva, donde describimos a la gravedad mediante la dinámica de campos de

esṕın dos en el espacio-tiempo de Minkoswki. Dentro de este contexto, en el caṕıtulo 3,

trabajaremos el escenario más simple que implica el estudio de las simetŕıas generaliza-

das asociadas con el gravitón de Einstein. Luego, en el caṕıtulo 4 generalizaremos estas

ideas a teoŕıas linealizadas provenientes de términos de mayor curvatura. Un resultado

clave de estos estudios es que las simetŕıas generalizadas del gravitón están cargadas

bajo simetŕıas espacio-temporales. Por un lado, esta observación parece contradecir un

posible teorema Coleman-Mandula para simetŕıas generalizadas. Por otro, veremos que

proporciona una relación intrigante entre la interacción gravitatoria y la f́ısica de los

fractones.

Motivados por el ejemplo del gravitón, en el caṕıtulo 5 buscaremos entender, en un

marco más general, las consecuencias de que las simetŕıas generalizadas estén cargadas

ante otro grupo global de simetŕıa de la teoŕıa. En concreto, demostraremos que en

los casos donde encontremos una simetŕıa global continua que pueda transformar a los

operadores no locales asociados a una dada simetŕıa generalizada, no puede existir una

corriente de Noether para dicha simetŕıa global. Veremos que este resultado rederiva y,

en algunas direcciones, generaliza el teorema Weinberg-Witten desde una perspectiva

diferente, es decir, sin recurrir a la matriz S. Esto es evidente para el caso del gravitón

y sus simetŕıas generalizadas cargadas ante el grupo de Poincaré. Además, esta nueva

condición necesaria para la existencia de una corriente, nos permite comenzar a ca-

racterizar el espacio de QFTs con una simetŕıa global no generada por una corriente

de Noether. Durante este caṕıtulo también describiremos como las simetŕıas globales

pueden ser implementadas localmente en la ausencia de una corriente.

Dado este resultado, podŕıamos cuestionar qué tiene de especial este espacio de

teoŕıas. En este sentido, mostramos que si las simetŕıas de forma asociadas a una

región del espacio-tiempo están cargadas bajo una simetŕıa global continua, estas deben

formar a un grupo cont́ınuo. Lo mismo debe suceder en la región complementaria. En

el caṕıtulo 6, estudiaremos el caso en el que estos grupos son no compactos. A partir

de un cuidadoso análisis de las restricciones de positividad y la existencia de un punto

fijo UV invariante de escala, demostramos que las teoŕıas con estas simetŕıas de forma

no compactas deben tener un sector libre y sin masa. Curiosamente, las simetŕıas de
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forma superior no compactas aparecen, a nivel clásico, en formulaciones lagrangianas

de teoŕıas de campos interactuantes que no son renormalizables. Algunos ejemplos

son la electrodinámica neutra, como la electrodinámica no lineal o un fotón acoplado

magnéticamente a un campo de neutrones, y también las teoŕıas efectivas de baja

enerǵıa de los modos de Goldstone. Nuestro resultado predice que la completación UV

de estas teoŕıas debe implicar necesariamente la ruptura de las simetŕıas generalizadas

no compactas. Dicha ruptura requiere la existencia de operadores cargados a una cierta

escala de enerǵıa. Dado que las simetŕıas de forma están bien definidas a nivel clásico,

esta obstrucción puede verse como una nueva forma de anomaĺıa cuántica. De otra

manera, podemos entender este resultado como una derivación de parte del principio

de completitud anteriormente mencionado aplicable a estos casos.

Durante el caṕıtulo 7 analizamos el otro caso, en el que las simetŕıas generalizadas

pueden asociarse a un grupo compacto. El ejemplo fundamental es el de las teoŕıas de

gauge con anomaĺıas quirales. Veremos que en estos casos tenemos una simetŕıa de for-

ma generada por los lazos de Wilson y ’t Hooft, donde estos últimos están cargados ante

la acción de la simetŕıa quiral. De esta forma, mostraremos como dicha simetŕıa puede

entenderse como una simetŕıa interna U(1) convencional con la única particularidad

de que transforma los sectores no locales de la simetŕıa 1-forma. Por ello, no puede ser

implementada por una corriente de Noether. Esto se debe a la existencia de simetŕıas

generalizadas cargadas ante la acción de la simetŕıa. Más aún, veremos como la nece-

sidad de compatibilizar los ciclos de la simetŕıa quiral y la simetŕıa generalizada nos

permiten entender la cuantización del coeficiente de la anomaĺıa y daremos argumentos

para explicar la correspondencia entre anomaĺıas IR y UV (“anomaly matching”), y la

validez del teorema de Goldstone para estos casos. Es decir, encontramos que la acción

non trivial de la simetŕıa U(1) sobre las clases no locales permite explicar de manera

simple y unificada las caracteŕısticas más sobresalientes de las teoŕıas anómalas.

Terminamos en el caṕıtulo 8 con una discusión de otras ideas o conjeturas que

surgieron durante el desarrollo de esta tesis y quedan como caminos de investigación

hacia el futuro. Esto incluye un posible camino hacia una caracterización completa de

las QFT que violan el teorema de Noether, comentarios sobre invariancia de escala

e invariancia conforme, posibles demostraciones/generalizaciones del teorema con el

teorema Coleman-Mandula en términos de f́ısica local (en lugar de la matriz S), e

intrigantes conexiones con la completación UV de la teoŕıas con gravitones en el IR.





Caṕıtulo 2

Álgebras y regiones en QFT

El propósito principal de este caṕıtulo es presentar algunas definiciones y resultados

que nos serán útiles en esta tesis. En particular, desarrollaremos la noción de simetŕıas

generalizadas desde el punto de vista de la teoŕıa algebraica de campos. Como mencio-

namos anteriormente dichas simetŕıas se manifiestan a partir de la no unicidad en la

asignación de álgebras a regiones de topologia no trivial.

En la sección 2.1 comenzaremos revisando los axiomas de Wightman y como estos

se traducen al lenguaje de álgebras asociadas a regiones. Luego, en la sección 2.2 explo-

raremos exhaustivamente el problema de asignación de álgebras a regiones en teoŕıas

con simetŕıas generalizadas. Veremos como dichas simetŕıas emergen en el contexto

de la teoŕıa algebraica y que propiedades tienen. Finalmente, en la sección 2.3, com-

pararemos nuestro enfoque con el usualmente presentado en la literatura de simetŕıas

generalizadas.

2.1. Axiomas y Álgebras en QFT

En esta sección enunciaremos los axiomas de Wightman, entendiéndolos como los

requerimientos mı́nimos apara definir una QFT. Luego, traduciremos dichos axiomas

al lenguaje Haag-Araki, es decir, el de álgebras asociadas a regiones del espacio tiempo.

Veremos que las propiedades mı́nimas asociadas a estas álgebras pueden ser extendidas

y como las simetŕıas generalizadas emergen generando distintas posibilidades para esta

elección.

2.1.1. Axiomas de Wightman

Durante varios momentos de esta tesis buscaremos probar cuestiones formales en

QFT, por eso empezaremos definiendo que entendemos por QFT. Con este propósito

durante la década del 50 se introdujeron los axiomas de Wightman como requerimientos

mı́nimos. Podemos escribir los postulados fundamentales, siguiendo [1], como

7
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(a) Supuestos sobre el espacio de Hilbert y grupo de Poincaré: Tenemos

un espacio de Hilbert H que contiene una representación unitaria del grupo de

Poincaré. En dicho espacio H existe exactamente un estado (único salvo una

fase constante) conocido como el vaćıo f́ısico, que es invariante bajo todos los

elementos del grupo de Poincaré actuando en la representación correspondiente.

En particular, podemos escribir las traslaciones como U(b) = eip
µbµ donde pµ es un

operador hermı́tico no acotado que interpretamos como el operador de enerǵıa-

momento de la teoŕıa de manera que sus autovalores obedecen las condiciones

espectrales p2 ≥ 0 y p0 ≥ 0.

(b) Supuestos sobre el dominio y la continuidad del campo: Los campos

cuánticos de la teoŕıa son “distribuciones temperadas valuadas en operadores”.

Es decir, para cada función de prueba α(x) suave y de decrecimiento mas rápido

que cualquier potencia definida sobre un espacio-tiempo de Minkowski existe

un set de operadores ϕ1(α), ϕ2(α), ...ϕn(α) definidos sobre algún dominio denso

D ∈ H de la forma

ϕλ(α) =

∫
dDxα(x)ϕλ(x) , λ = 1, 2, ..., n (2.1)

donde asumimos que el vaćıo f́ısico pertenece a D y que tanto las operaciones

del grupo Poincaré como las generadas por los campos mapean elementos de D
en elementos de D. La motivación f́ısica detrás de esta idea se basa en que una

medición en un punto requeriŕıa enerǵıa infinita. Sin embargo los elementos de

matriz ⟨Ψ2|ϕλ(x)|Ψ1⟩ son finitos si ambos estados Ψ1, Ψ2 ∈ D están caracteriza-

dos por la propiedad de que las amplitudes de probabilidad para configuraciones

de part́ıculas disminuyen suficientemente rápido con el aumento de los momentos

y el número de part́ıculas. En este caso el problema es que no podemos multiplicar

trivialmente los operadores de campo en un mismo punto.

(c) Hermiticidad: El conjunto de campos cuánticos de la teoŕıa contiene tanto a los

campos ϕλ con λ = 1, 2, ..., n como a sus conjugados hermı́ticos ϕ†λ, cuyos valores

de expectación están dados por ⟨Ψ2|ϕ†λ(x)|Ψ1⟩ = ⟨Ψ1|ϕλ(x)|Ψ2⟩ .

(d) Propiedades de transformación de los campos: Los campos transforman

ante la acción del grupo de Poincaré como

U(β, b)ϕiλ(α(x))U
−1(β, b) =

∑
j

Sij(β−1)ϕjλ(α(Λ(β)x+ b)) , (2.2)

donde S(β) es una representación matricial finito dimensional de una transfor-

mación de Lorentz determinada por β y b representa una traslación.
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(e) Causalidad: Si los soportes compactos de dos funciones de prueba α1 y α2 están

espacialmente separados, es decir

α1(x)α2(y) = 0 , ∀x, y : (x− y)2 ≥ 0 , (2.3)

para cualquier estado en D debe valer alguno de los siguientes

[
ϕλ(α1), ϕκ(α2)

]
± = ϕλ(α1)ϕκ(α2) ± ϕκ(α2)ϕλ(α1) = 0 , (2.4)

y además [
ϕλ(α1), ϕ

†
κ(α2)

]
± = 0 . (2.5)

En términos de campos “sin smearing”, podemos simplemente traducir esto para

(x− y)2 < 0, en la condición

[
ϕλ(x), ϕκ(y)

]
± = 0 ,

[
ϕλ(x), ϕ

†
κ(y)

]
± = 0 . (2.6)

(f) Time slice axiom: Debe existir una ley dinámica que permita calcular los cam-

pos en un momento arbitrario en términos de los campos en un pequeño intervalo

temporal de la forma

Ot,δ =
{
x ∈M : |x0 − t| < δ

}
. (2.7)

donde denotamos con M toda la variedad sobre la que esta definida la teoŕıa.

Una consecuencia fundamental de este axioma es que podemos recuperar cual-

quier campo de la teoŕıa a partir los campos ϕλ(α) si usamos funciones de prueba

α de soporte compacto en Ot,δ. Es decir, si tomamos combinaciones lineales de

productos de los operadores ϕλ(α) es posible aproximar cualquier operador ac-

tuando sobre el espacio de Hilbert H. No existe ningún operador acotado que

conmute con todos los ϕλ(α) aparte de los múltiplos de la identidad.

Vemos la importancia de estos axiomas evidenciada en la prueba de ciertos teore-

mas que hoy entendemos como centrales en QFT, entre otros destacamos: El teorema

de Reconstrucción que establece que cualquier teoŕıa puede ser reconstruida a partir

de todos los valores de expectación asociados a productos de n operadores en el vaćıo;

El teorema esṕın-estad́ıstica que determina que las part́ıculas esṕın entero (bosones)

conmutan a distancia espacial mientras que las part́ıculas de esṕın semi-entero anti-

conmutan; El teorema CPT que establece que toda teoŕıa de campos tiene una simetŕıa

ante una simultanea transformación de paridad, conjugación de carga e inversión tem-

poral. Sin embargo, los axiomas no deben entenderse como supuestos ŕıgidos que no

pueden variar, de hecho algunos de los supuestos son bastante técnicos y la idea general
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es que debeŕıan sustituirse por otros más naturales a medida que se profundice en ellos.

En este contexto, punto técnico destacable de los axiomas es la introducción de

los campos como distribuciones valuadas en operadores a partir de las funciones de

prueba. Esta idea nos sera útil, para varias demostraciones a lo largo de estas tesis.

En estos casos, llamaremos a ϕλ(α) campos “con smearing” y a las funciones α como

“funciones de smearing”. Sin embargo, por simplicidad cuando sea posible utilizaremos

los campos “sin smearing” ϕλ(x). En este sentido, denominaremos a un campo sobre

el que podemos hacer un smearing de manera que satisfaga todos los axiomas “campo

de Wightman”.

2.1.2. Álgebras de von Neumann en QFT

Ahora abordaremos estas ideas a partir de unos de los enfoques algebraicos a QFT,

más espećıficamente la teoŕıa Haag-Araki [24, 25]. En este contexto, entendemos a los

objetos básicos de la teoŕıa, como álgebras1 de operadores asociadas a regiones espacio-

temporales. La idea intuitiva es que podemos pensar estas álgebras como laboratorios

asociados a regiones R del espacio-tiempo y de esta manera deben estar formadas a

partir de operadores f́ısicos, es decir, observables invariantes de gauge. Esto implica

que los elementos del álgebra deben satisfacer requerimientos análogos a los axiomas

de Wightman.

Si partimos de campos de Wightman, con pequeños cambios técnicos en la prescrip-

ción axiomática, se garantiza la existencia de álgebras asociadas a los operadores de

campo (véase por ejemplo [26]). En este sentido, podemos revisar uno por uno los axio-

mas que describimos anteriormente y ver que propiedades nos sugieren para álgebras

que podemos encontrar en QFT:

(a) Subálgebras de operadores acotados en el espacio de Hilbert: Debemos

entender las álgebras asociadas a regionesA(R) como subálgebras del conjunto de

operadores acotados B(H) del espacio de HilbertH. Además, entre los operadores

acotados deH podemos encontrar a los unitarios de Poincaré U(β, b) que efectúan

las transformaciones de dicho grupo. Asimismo, mantendremos las suposiciones

sobre la existencia del vaćıo f́ısico y la positividad de la enerǵıa.

(b) Isotonia: La introducción de la noción de campos locales nos sugiere la validez

de la propiedad de isotonia

A(R1) ⊂ A(R2) , ∀R1 ⊂ R2 . (2.8)

1Un álgebra es un espacio vectorial sobre un cuerpo (en este caso los números complejos) equipado
con una ley de multiplicación que asocia un producto a cada par del elementos del álgebra. Dicho
producto debe ser asociativo, distributivo y debe conmutar con el producto por elementos del cuerpo.



2.1 Axiomas y Álgebras en QFT 11

(c) Álgebras cerradas ante conjugación hermı́tica: Podemos entender la con-

jugación hermitica sobre las álgebras A(R) como una operación que mapea ele-

mentos del álgebra en elementos del álgebra. Es decir,

O† ∈ A(R) , ∀O ∈ A(R) . (2.9)

(d) Propiedades de transformación de las álgebras: Los álgebras transforman

ante la acción del grupo de Poincaré como

U(β, b)A(R)U−1(β, b) = A(Λ(β)R + b) . (2.10)

En palabras, las transformaciones de Poincaré trasladan el álgebra de una región

al álgebra de la región transformada.

(e) Causalidad: Escribimos la causalidad, entendida como conmutación de obser-

vables espacialmente separados, en términos de álgebras como

A(R) ⊆ A(R′)′ , (2.11)

donde R′ representa el complemento causal de la región R dado por

R′ =
{
x ∈M : (x− y)2 < 0 , ∀y ∈ R

}
. (2.12)

y A(R′)′ es el conmutante de A(R′), es decir, el álgebra formada por todos los

operadores que conmutan con todos los elementos de A(R′)′.

A(R′)′ =
{
O ∈ B(H) : [O, Õ] = 0 , ∀Õ ∈ A(R′)

}
. (2.13)

Evidentemente, la condición (2.11) no puede aplicarse directamente a operado-

res fermiónicos que anti-conmutan a distancia espacial. Puede modificarse o bien

podemos trabajar con bilineales de fermiones. No consideraremos álgebras fer-

miónicas durante la mayor parte de esta tesis, para un desarrollo de estas ideas

véase [27].

(f) Time slice axiom: Podemos expresar el time slice axiom en términos de álgebras

de la siguiente manera

A(Ot,δ) = A(M) . (2.14)

es decir, a partir del álgebra de un pequeño intervalo temporal Ot,δ podemos

generar el álgebra de toda la variedad espacio-temporal M .
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Una consideración importante que mencionamos brevemente en el punto (a), es que

los operadores de A(R) no solo deben ser operadores en el espacio de Hilbert H sino

que también deben ser acotados. Esto es A(R) ⊆ B(H). Dicha condición es necesaria

para que el álgebra A(R) sea cerrada ante sumas y productos arbitrarios de operadores.

Esto es debido a que solo los operadores acotados pueden tener dominio sobre todo

el espacio de Hilbert. Dado este contexto, es importante destacar que los campos de

Wightman bosónicos con smearing ϕλ(α) en (2.1) no son operadores acotados. Sin

embargo, a partir de ellos podemos definir operadores acotados usando exponenciales

o los proyectores obtenidos a partir de una descomposición espectral.

Por otro lado, es esperable que las álgebras A(R) sean cerradas bajo la topoloǵıa

débil. En otras palabras, todas las sucesiones débilmente convergentes de operadores

acotados {On} en A(R) tienen su limite O dentro del álgebra. Dicho limite débil se

define como

ĺım
n→∞

On = O (débil) ⇔
∀ϵ > 0 , |Ψ1⟩ . . . , |Ψm⟩ ∈ H ,

∃n0 / |⟨Ψi|(On −O)|Ψj⟩| < ϵ,

i, j = 1 . . . ,m si n > n0 .

(2.15)

F́ısicamente podemos entender esta idea como como que no podemos distinguir los

operadores de la cola de la sucesión de su respectivo limite con una cantidad finita de

experimentos de finita precision. Esta condición, en combinación de los puntos (a) y (c)

tiene consecuencias importantes sobre el zoológico de álgebras que podemos encontrar

QFT. Esto es por el teorema del doble conmutante de von Neumann. Dicho teorema

establece que cualquier subálgebra del conjunto de operadores acotados B(H) de un

espacio de Hilbert H que es cerrada ante conjugación hermı́tica, es cerrada para la

topoloǵıa débil y contiene a la identidad debe satisfacer que

A(R)′′ = A(R) , (2.16)

donde notamos como A(R)′′ al doble conmutante de A(R), es decir, al conmutante de

A(R)′ definido análogamente a (2.13). Las álgebras que satisfacen (2.16) se conocen

como “álgebras de von Neumann”.

Es de esperar que en QFT siempre podamos asignar a cada región espacio-temporal

un álgebra de von Neumann de manera que se satisfagan todas las propiedades (a-f)

mencionadas. Estas pueden entenderse como los requerimientos mı́nimos para una for-

mulación algebraica de la teoŕıa de campos (AQFT). En efecto, dada una teoŕıa definida

de forma algebraica, existe un procedimiento establecido para extraer (o recuperar) sus

campos de Wightman [28–30]. Para una teoŕıa generada por campos de Wightman este

procedimiento recupera los campos iniciales.
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Figura 2.1: Izquierda: Región espacio-temporal R y su envolvente tipo tiempo E[R]. Por el
“time-like tube theorem” tenemos que A(R) = A(E[R]). Derecha: Otra región espacio-temporal
R y su dominio de dependencia causal D[R]. Si vale el ‘Time slice axiom local” tendremos
A(R) = A(D[R]). En ambas figura R′ representa el complemento causal de R y R′′ el doble
complemento causal de R. La dirección vertical representa al tiempo.

En este contexto, es importante mencionar que hay dos principios que afirman que

el álgebra de una determinada región espacio-temporal coincide con el álgebra de una

región causalmente completa que la contiene. Las regiones causalmente completa son

regiones iguales a su doble complemento causal R = R′′, siendo R′′ es el complemento

causal de R′ dado por (2.12). El primero de estos principios, es que el álgebra de R

debe incluir el álgebra de su envolvente tipo tiempo E[R]. Siendo E[R] el conjunto de

puntos que podemos alcanzar comenzando con una curva de tipo tiempo Γ ∈ R y si la

deformamos continuamente a otra curva tipo tiempo Γ̃ manteniendo sus puntos finales

fijos. Véase figura izquierda en 2.1. El hecho de que A(R) = A(E[R]) para álgebras

como las ya definidas esta asegurado por el “time-like tube theorem” [31–35].

En segundo lugar, una idea natural es queA(R) debe ser la misma que su dominio de

dependencia causal D[R], es decir, A(R) = A(D[R]). Véase figura derecha en 2.1. Esta

idea es una version mas restrictiva del punto (f) conocida como el “Time slice axiom

local”. Observamos que esta condición no es muy restrictiva, por ejemplo vemos que

se cumple en cualquier teoŕıa con tensor enerǵıa-momento bien definido. Sin embargo,

también puede cumplirse en ausencia de este ultimo cuando exista una ecuación de

movimiento lineal, como es el caso para las teoŕıas libres de esṕın ≥ 3/2 [36]. En este

sentido, no es aplicable al caso de los “Generalized Free Fields” que estudiaremos en

el apéndice A.

Motivados por estas dos extensiones, durante esta tesis asumiremos el “Time slice

axiom local” y nos focalizaremos solo en álgebras asociadas a regiones causalmente

completas. Esto nos permitirá trabajar exclusivamente con regiones espaciales definidas

a tiempo fijo (o más formalmente con smearing sobre una pequeña banda temporal),

en vez de regiones espacio-temporales. Haciendo un abuso de la notación ya utilizada

a partir de ahora notaremos estas regiones espaciales con R y asumiremos

A(R) = A(R′′) . (2.17)
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Figura 2.2: A partir de las regiones espaciales R1 y R2 podemos generar las álgebras A(R1) =
A(R′′

1 ) y A(R1) = A(R′′
1 ) asociadas a regiones causalmente completas. Además, a partir de ellas

podemos generar la región casualmente completa R1 ∨R2 = (R1 ∪R2)
′′, si vale la aditividad de

las álgebras a su vez tendremos que A(R1 ∨R2) = A(R1) ∨ A(R2).

Como vimos para el punto (f), también surgen versiones más fuertes de los puntos

(b) y (e). Una noción más restrictiva de la isotonia (2.8) es la aditividad. Esta última

propiedad establece que todos los operadores en una región se generan como productos

de operadores locales dentro de la región. Podemos escribirla como

A(R1 ∨R2) = A(R1) ∨ A(R2) , (2.18)

donde utilizamos el śımbolo ∨ para el dominio causal generado por dos regiones

R1 ∨R2 = (R1 ∪R2)
′′ . (2.19)

y análogamente ∨ denota el álgebra generada por dos conjuntos de operadores

A(R1) ∨ A(R2) = (A(R1) ∪ A(R2))
′′ . (2.20)

Por otro lado, para restringir la causalidad (2.11) podemos llevarla a su saturación

A(R) = A(R′)′ . (2.21)

Esta igualdad se denomina dualidad de Haag. Intuitivamente, podŕıamos creer que

tanto la aditividad como la dualidad Haag deben estar presentes en QFT. Sin embargo,

resulta que este no necesariamente es el caso. Esto proviene de la existencia de opera-

dores que no pueden generarse localmente en R pero que siguen siendo conmutativos

con operadores en R′. Llamaremos a estos operadores “no locales”. La presencia de

operadores no locales, nos permite más de una elección posible para el álgebra de una

región. Por lo tanto, veremos que si los incluimos en el álgebra de R podemos tener

dualidad de Haag, pero introduciremos una violación de la aditividad (2.18). Por el

contrario podŕıamos no incluir ninguno de estos operadores no locales en el álgebra y

recuperar la aditividad a expensas de la dualidad de Haag. Veremos que esta tensión



2.1 Axiomas y Álgebras en QFT 15

Figura 2.3: Esquema de una región espacial R arbitraria con topoloǵıa no trivial (rojo) y su
complemento causal R′ (gris) sobre una superficie a tiempo fijo. En la teoŕıa algebraica debemos
asignar álgebras de von Neumann a cada una de estas regiones. En teorias con simetŕıas genera-
lizadas estas elecciones pueden no ser únicas.

entre dualidad y aditividad en algunas estas teoŕıas no puede resolverse sin cambiar el

espectro de la teoŕıa.2

La idea de que la dualidad de Haag puede ser violada es estándar en la literatura

para teoŕıas con simetŕıas globales [27, 37, 38]. La razón es que se pueden formar

observables neutros a partir del producto de operadores locales cargados. Si elegimos

una región R que esté desconectada, de modo que tenga un grupo de homotoṕıa π0

no trivial (cuyo complemento causal tiene πD−2 no trivial), entonces la dualidad de

Haag no se cumplirá para el álgebra neutra debido a la existencia de operadores de

carga-anticarga localizados en diferentes zonas desconectadas. Veremos este ejemplo en

detalle en la sección 2.2.6.

Además, si bien las simetŕıas globales implican la posibilidad de una ruptura de

la dualidad de Haag para regiones con π0 o πD−2 no triviales, observamos que esta

idea puede generalizarse. Esto es a teoŕıas con simetŕıas generalizadas de tipo k-forma.

Estas simetŕıas están caracterizadas por operadores cargados con soporte compacto

sobre superficies k-dimensionales y generadores con soporte compacto sobre superficies

(D−k−1)-dimensionales. En dichos casos veremos la dualidad de Haag puede romperse

para para regiones con grupos de homotoṕıa πk o πD−k−2 no triviales [22, 23]. Véase

por ejemplo la figura 2.3.

Revisemos el ejemplo más sencillo. Este es el de una simetŕıa k-forma producida por

una corriente (k + 1)-forma F conservada en el sentido de que su derivada exterior se

anula dF = 0. A su vez, asumimos que esta corriente F no puede ser obtenida como la

derivada exterior de un campo observable. En este escenario, podemos integrar F sobre

una superficie abierta (k + 1)-dimensional Σk+1, cuya frontera ∂Σk+1 es una superficie

2Otra propiedad que podemos asignar a las álgebras es la propiedad de intersección, es decir que
A(R1 ∩ R2) = A(R1) ∩ A(R2). Sin embargo, para cualquier álgebra universalmente valen las leyes
de de Morgan dadas por (A1 ∨ A2)

′ = A′
1 ∩ A′

2 y (R1 ∨ R2)
′ = R′

1 ∩ R′
2. Estas implican que si

valen la aditividad y la dualidad de Haag, entonces vale la propiedad de intersección. O bien, si valen
la propiedad de intersección y la dualidad de Haag, entonces vale la aditividad. En otras palabras,
podemos hablar de aditividad o propiedad de intersección indistintamente.
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cerrada k-dimensional, de manera obtenemos un operador de flujo no trivial

ΦF
∂Σk+1

≡
∫
Σk

F , (2.22)

con interesantes propiedades topológicas. Por un lado, dada la conservación de la co-

rriente, este operador no depende de la superficie concreta Σk+1 que utilicemos para la

integración. Sólo depende de su borde ∂Σk+1. Esto implica que este tipo de operadores

conmutan con todos los operadores locales fuera de ∂Σk+1. Detrás de esta idea esta el

teorema de Stokes, si el operador local no está sobre el borde ∂Σk+1, siempre podemos

elegir una superficie de integración que no pase por el operador local y que tenga la

mismo borde. Entonces la causalidad asegura la conmutatividad. Por otro lado, dado

que F no es la derivada exterior de un campo f́ısico de la teoŕıa, este operador no puede

escribirse como una circulación sobre el borde en el álgebra de observables.

La consecuencia de estas dos propiedades es que si consideramos una región espacio-

temporal R que encierra al borde ∂Σk+1 y con la misma topoloǵıa, el álgebra de esta

región contendrá tanto operadores locales como no locales. A saber, los operadores

locales estarán dados por F y cualquier otro operador que surja de F multiplicando con

operadores locales en R, mientras, que los operadores no locales estarán representados

por los flujos ΦF
∂Σk+1

o más formalmente los operadores unitarios acotados

aq∂Σk+1
≡ e

iqΦF
∂Σk+1 , q ∈ R . (2.23)

Estos operadores no locales conmutan con todos los operadores locales en R′ por ende

podemos incluirlos (o no) en el algebra de R. Vemos que este ejemplo evidencia una

tension entre la aditividad y la dualidad de Haag en teoŕıas con simetŕıas generalizadas.

En la próxima sección mayoritariamente estudiaremos estas ideas de forma abstracta

y puntualmente en la sección 2.2.7 elaboraremos sobre el ejemplo de simetŕıas 1-forma.

2.2. Simetŕıas Generalizadas y Dualidad de Haag

En esta sección estudiamos en detalle el rol de las simetŕıas generalizadas en re-

lación a la asignación de álgebras de von Neumann a regiones de topoloǵıa no trivial

desarrollado en [22, 23, 38]. Comenzaremos describiendo detalladamente el origen de

la tensión entre Aditividad y Dualidad de Haag y como las simetŕıas generalizadas

están asociadas más de una posibilidad en la asignación de álgebra a una región. Lue-

go, estudiaremos las implicaciones de estas ideas incluyendo: como definir clases de

equivalencias de operadores no locales; que las simetŕıas generalizadas vienen en pa-

res duales; como recuperar dualidad de Haag introduciendo una red de Haag-Dirac;

y como podemos diagnosticar precisamente la completitud del espectro de una teoŕıa.
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También, mostraremos con ejemplos de violaciones de dualidad para regiones de dis-

tinta topoloǵıa. En particular estudiaremos primero el ejemplo de simetŕıas globales

en regiones desconectadas, y luego, el de simetŕıas 1-forma en regiones con lazos no

contractibles. Para terminar, analizaremos las posibles reglas de fusión de las clases de

equivalencia de operadores no locales en estos dos casos.

En esta sección, y de hecho en el resto de esta tesis a excepción del apéndice A,

trabajaremos con regiones espaciales R definidas a tiempo fijo. En estos casos conside-

raremos que las álgebras asociadas a estas regiones coinciden con las de su completación

causal. Esto esta dado formalmente por la condición (2.17).

2.2.1. Aditividad vs Dualidad de Haag

Comenzamos ahora a describir la clasificación de los operadores en QFTs con si-

metŕıas generalizadas que se propuso en [22, 23]. La esencia de la clasificación reside en

reconocer y distinguir los dos significados diferentes que se suelen asignar a la idea de

localidad. Un sentido de localidad corresponde a la idea de que un operador está forma-

do por grados de libertad locales. Para cualquier región R existe un álgebra intŕınseca

asociada a ella, a saber, el “álgebra aditiva”. Intuitivamente, se trata del álgebra gene-

rada por productos arbitrarios de operadores locales (invariantes de gauge) dentro de la

región. Es el álgebra a la que tendŕıa acceso un observador/laboratorio en dicha región.

Formalmente, puede definirse de forma autoconsistente como el álgebra generada por

las álgebras de bolas que recubren la región R

A(R) ≡
∨

{Bi bola |∪iBi=R}

A(B) . (2.24)

El otro sentido, o idea, asociado a la localidad es que los operadores asociados a

regiones espacialmente separadas conmutan. Previamente llamamos a esta propiedad

“causalidad”. Una pregunta inmediata es si estas dos nociones de localidad acaban

siendo esencialmente una o no.

Para abordar esta cuestión, primero nos fijamos en una observación sencilla pero

básica. Si las álgebras asociadas a bolas satisfacen la causalidad, las álgebras aditivas

para cualquier región dada, independientemente de su topoloǵıa, satisfacen también la

causalidad por construcción. Sin embargo, para una región R puede haber operadores

a que son causales o locales en el sentido de que conmutan con todos los operadores

en A(R′), pero que no pueden ser generados por operadores locales en R. Estos son

los operadores no locales en R. Tomando un conjunto completo de estos operadores no

locales podemos definir

Amax(R) ≡ (A(R′))′ = A(R) ∨ {a} , (2.25)



18 Álgebras y regiones en QFT

Figura 2.4: Esquema de la construcción del álgebra aditiva A(R) como el álgebra generada
por el álgebra de bolas Bi que podemos usar para cubrir la región R.

En esta situación, llamamos a Amax(R) como “álgebra máxima”. Además, decimos que

la red aditiva de álgebras A(R), que por definición satisface la causalidad, no satisface

la dualidad de Haag (2.21). Equivalentemente, los operadores no generados localmente

a violan la dualidad de Haag en la región R. En este tipo de teoŕıas, el primer sentido

de la localidad (relacionado con si los operadores pueden ser generados por campos

locales o no) y el segundo sentido (relacionado con la causalidad) difieren en un sentido

f́ısicamente significativo.

Estos operadores no locales {a} no son algo extraño. Por ejemplo, para el campo

libre de Maxwell en D = 4, los lazos de Wilson (WL) y t’ Hooft (TL) representan

operadores no locales para regiones tipo anillo. En efecto, veremos que los operadores

{a} resultan desempeñar el papel de los operadores cargados y/o el de generadores de

las simetŕıas generalizadas [8]. Haremos una comparación extensiva con la literatura

existente al respecto en la sección 2.3.

Una suposición simplificadora que se mantiene de forma bastante general es que

el álgebra aditiva, cuando se considera para regiones B topológicamente triviales co-

mo bolas, satisfacen tanto aditividad (2.18) como dualidad de Haag (2.21). Por ende,

obedece que

Amax(B) = A(B) . (2.26)

Es sabido que las violaciones de esta propiedad no están relacionadas con simetŕıas

generalizadas, sino que aparecen para ciertas subálgebras neutras en QFT cuando te-

nemos una ruptura espontánea de una simetŕıa global. En ese caso, puede repararse

simplemente tomando la red dual [39], o, equivalentemente, considerando los operado-

res cargados además de los neutros. Volveremos sobre este tema en la sección 5.3.1.

Otros ejemplos corresponden a QFT que son patológicas por otras razones, como los

generalized free fields que violan el time slice axiom [40]. Trataremos de forma extensiva

este ejemplo en el apéndice A.

La importancia de (2.26), reside en que esta ecuación implica que todos los ope-

radores se generan, en última instancia, localmente: cualquier operador que conmuta
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con todos los operadores locales fuera de B puede generarse por productos, combina-

ciones lineales, y ĺımites, de operadores locales en B. En este sentido, queda claro que

la noción de operador no local es relativa a una región R con una topoloǵıa particular.

Por ejemplo, un operador puede ser no local en un anillo, pero local en una bola lo

suficientemente grande como para contener el anillo. El hecho de que los WL y TL en

teoŕıas de gauge no abelianas están generados en última instancia por operadores loca-

les se demostró mediante una construcción expĺıcita en la red [23], apéndice B2.3 Para

el WL esta construcción resulta implicar tanto operadores de plaqueta “magnéticos”

como operadores “eléctricos” locales invariantes de gauge en la superficie.

Es bastante notable que la red aditiva de álgebras (2.24) contenga en śı misma

todas las manifestaciones f́ısicas de las simetŕıas generalizadas. Estas caracteŕısticas

aparecen como texturas del álgebra aditiva, y representan un fenómeno f́ısico y local.

En particular, no es necesario añadir a mano “sondas externas no locales”. El conjunto

completo de operadores no locales o de violaciones de dualidad de Haag (HDV) apa-

recen al tomar conmutantes dentro de las propias álgebras aditivas, y son operadores

dinámicos que pertenecen a la teoŕıa.

2.2.2. Clases de equivalencia HDV no locales

Podemos utilizar los operadores no locales a para definir clases/sectores irreduci-

bles [a] de operadores en Amax(R). Más concretamente, definimos la clase HDV [a] de

Amax(R) como el conjunto de operadores de la forma

[a] ≡
{∑

λ

Oλ a Õλ
∣∣∣Oλ , Õλ ∈ A(R)

}
. (2.27)

Decimos que la clase es irreducible si no hay subespacios no triviales en su interior

invariantes bajo la acción simultánea izquierda y derecha del álgebra aditiva. En el

caso contrario, decimos que es reducible y se puede descomponer en una suma de

irreducibles. Como Amax(R) es un álgebra cerrada ante el producto, el conjunto de

clases debe cerrar un álgebra de fusión en si misma. Esto es

[a][a′] =
∑
a′′

na
′′

aa′ [a
′′] . (2.28)

Estas reglas de fusión pueden estar relacionadas con la fusión de representaciones o

clases de conjugación de un cierto grupo, pero pueden ser más generales. Este ultimo

caso incluye el de las simetŕıas no invertibles, volveremos sobre esta idea en la sec-

3Formas conocidas del teorema de Stokes no abeliano, véase [41–43], tienen este mismo esṕıritu,
pero no son concluyentes desde la perspectiva actual porque expresan el WL en términos de cantidades
no invariantes de gauge en la superficie limitada por el lazo.
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ción 7.2. La clase identidad [1] es por definición A(R), y sus reglas de fusión son por

construcción [1][a] = [a][1] = [a].

Es una suposición natural subyacente en QFT que A(R) no tiene centro. El centro

de un álgebra Z es el conjunto de operadores que conmutan con todos los operadores en

el álgebra, para este caso seŕıa Z = A(R)∩A(R)′. Estas álgebras sin centro se llaman

factores y son a su vez irreducibles. Podemos pasar de cualquier elemento distinto

de cero a cualquier otro mediante combinaciones de acciones a izquierda y derecha

con otros operadores pertenecientes a A(R). De la misma manera Amax(R) no tiene

centro. Es irreducible respecto a productos arbitrarios de operadores en Amax(R). Estas

condiciones surgen de la imposibilidad genérica de construir operadores de campo con

smearing en una frontera D−2 dimensional de la región (para actuar como un elemento

del centro) y todav́ıa producir un operador bien definido en el espacio de Hilbert. Ambos

hechos implican que podemos obtener operadores en A(R) a partir de elementos no

locales en Amax(R) multiplicando con otros elementos no locales de Amax(R) y acciones

arbitrarias izquierda-derecha de operadores en A(R).

Otra noción usual en QFT es que las simetŕıas generalizadas son transportables.

Esto significa que al deformar suavemente una región R1 en otra R2 con la misma

topoloǵıa, los operadores no locales en R1 pueden convertirse en operadores no locales

en R2 mediante la acción de operadores locales. Esta noción de simetŕıas generalizadas

es topológica en este sentido, con las clases no locales preservadas bajo deformaciones.

Supondremos transportabilidad en lo que sigue. Pero, destacamos que para simetŕıas

generalizadas generadas por flujos de k-formas f́ısicas como (2.22) esta transportabili-

dad es evidente.

2.2.3. Las simetŕıas generalizadas vienen en pares duales

En este enfoque algebraico, podemos derivar una conclusión general no trivial. La

inclusión estricta en (2.11) obliga a una inclusión estricta dual en el complemento R′ de

R. La razón es sencilla y podemos deducirla del teorema del doble conmutante de von

Neumann (2.16). Comenzamos con las dos álgebras potenciales asociadas a la región

complementaria, a saber

A(R′) = Amax(R)
′ , Amax(R

′) = A(R)′ . (2.29)

Ahora observamos que la igualdad de A(R′) y Amax(R
′) implica la de las álgebras

análogas correspondientes a R

A(R′) = Amax(R
′) ⇐⇒ Amax(R)

′ = A(R)′ (2.30)

⇐⇒ (Amax(R)
′)′ = (A(R)′)′ ⇐⇒ Amax(R) = A(R) .
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De aqúı, concluimos que si en (6.68) existen operadores HDV no locales {a} asociados

a R, entonces deben existir operadores no locales {b} asociados al complemento R′.

Formalmente, tenemos el álgebra máxima

Amax(R
′) = Aadd(R

′) ∨ {b} . (2.31)

Estos operadores HDV duales deben tener sus propias reglas de fusión, a saber

[b][b′] =
∑
b′′

nb
′′

bb′ [b
′′] . (2.32)

Como Amax(R) = A(R′)′ los operadores no locales de R conmutan con los operadores

aditivos en R′ y viceversa. Sin embargo, los operadores no locales {a} y {b} para R y

R′ no pueden conmutar (todos ellos) entre śı. Dicha conmutatividad implicaŕıa

Amax(R) ⊆ (Amax(R
′))′ = A(R) (2.33)

Esto no es posible si las inclusiones A ⊂ Amax son estrictas. Remarcamos que este fallo

de conmutatividad no es un fallo de causalidad ya que dichos operadores no pueden

construirse localmente en sus respectivas regiones.

En resumen, las álgebras de operadores no locales asociadas a simetŕıas generali-

zadas “vienen en pares duales”. De hecho, no sólo vienen en pares duales, sino que

además el “tamaño” de estas álgebras duales es, en un sentido preciso, el mismo. El

tamaño de estas inclusiones se mide por el llamado “́ındice de Jones” de la inclusión

de álgebras [44–46],4 y aqúı mide el tamaño de las álgebras de operadores no locales

en QFT [22, 23, 49]. Cuando se aplica a simetŕıas de grupo finitas, el ı́ndice es sim-

plemente el número de elementos en el grupo. Cuando es finito, las inclusiones duales

A(R) ⊂ Amax(R) y A(R′) ⊂ Amax(R
′) tienen el mismo ı́ndice.

En términos f́ısicos intuitivos, debemos entender a los operadores HDV duales

{a}, {b} como variables complementarias canónicas, en el sentido mecánico cuánti-

co habitual. El hecho de que vengan en pares duales se reduce al hecho de que el

espacio de fases (descrito por variedad simpléctica) es siempre de dimension par. En

este marco, podemos resumir la estructura algebraica que especifica la violación de la

dualidad para las regiones R y R′ en un diagrama de complementariedad cuántica

Amax(R) ≡ A(R) ∨ {a} ⊃ A(R) (2.34)

↕ ′ ↕ ′
A(R′) ⊂ A(R′) ∨ {b} ≡ Amax(R

′) .

4Véase [47–49] para introducciones más sencillas al concepto y cálculos espećıficos.
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En este diagrama, en la parte superior, tenemos la inclusión de las dos álgebras asocia-

das a la región R. Bajar en el diagrama equivale a tomar conmutantes, produciendo las

álgebras naturalmente asociadas con la región complementaria R′. En QFT podemos

suponer que para este tipo de inclusiones A(R) ⊂ Amax(R) el conmutante relativo es

Amax(R) ∩ A(R)′ = Amax(R) ∩ Amax(R
′) = {1}, es decir, el álgebra identidad. Esto es

equivalente a la aditividad fuerte [50, 51], (A(R)∨A(R′))′ = {1}. F́ısicamente, esto se

debe a que un operador no local que conmuta con toda el álgebra aditiva no puede te-

ner un smearing suave en la región. De nuevo, esto hace que el operador sea demasiado

singular para estar bien definido.

Los operadores no locales para cada región (los a y b) generan endomorfismos de las

álgebras máximas de las regiones complementarias. En este sentido, los operadores no

locales actúan como operaciones de simetŕıa generalizadas, donde los objetos cargados

son los operadores no locales complementarios y los objetos neutros son los observables

en el álgebra aditiva.

Uno de los principales resultados en [22, 23] es que los operadores HDV duales

{a}, {b} proporcionan una definición unificada de lo que es un parámetro de or-

den/desorden en una QFT. Esto se respaldó primero con ejemplos expĺıcitos. Pero

un fuerte apoyo viene al mostrar que los operadores HDV son los únicos tipos de ope-

radores que pueden exhibir un comportamiento del tipo “ley de volumen generalizada”,

donde esta terminoloǵıa debe entenderse en un sentido generalizado. Por ejemplo, los

operadores de ĺınea HDV son los únicos operadores de ĺınea que pueden exhibir ley de

área (⟨a⟩ ∼ e−µ area, µ > 0). En sentido inverso, si uno encuentra un operador que puede

mostrar una “ley de volumen generalizada”, este operador debeŕıa violar la dualidad

de Haag en la región apropiada. Por ejemplo, si se encuentra un operador de ĺınea que

muestre ley de área, entonces este operador no puede generarse localmente en el lazo

donde está definido.

2.2.4. Redes de Haag-Dirac

Anticipamos brevemente en la sección 2.2.1 que la asignación de álgebras máximas

a regiones complementarias no forma una red (local) ya que Amax(R) y Amax(R
′) no

conmutan. Cuando A(R) ⊊ Amax(R). En dicho caso, también, es evidente que la red

aditiva no satisface dualidad de Haag. En esta situación se puede ampliar la red aditiva

añadiendo operadores no generados localmente, para generar una red que satisfaga

dualidad de Haag. En general, esto puede hacerse de varias maneras. Llamaremos a

estas redes como redes de Haag-Dirac (HD) por razones que haremos evidentes en la

sección 2.2.7. Por construcción, las redes Haag-Dirac satisfacen la dualidad

AHD(R) = AHD(R
′)′ , (2.35)
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pero, en general, no satisfacen la aditividad.

Dado que los operadores duales no generados aditivamente {a} y {b} no conmutan,

al construir redes de HD que satisfagan la dualidad, tenemos que sacrificar algunos

operadores de Amax(R) y/o Amax(R
′) , para mantener la causalidad de la red. La

asignación Amax(R) para todo R no forma una red causal. Una opción siempre posible

es Amax(R) para R y A(R′) para R′ o viceversa. Pero, normalmente existen algunas

opciones intermedias. En particular, si las topoloǵıas de R y R′ son iguales, ambas

opciones extremas no son muy naturales y pueden romper algunas simetŕıas espaciales.

En este contexto, la observación fundamental es la siguiente. Incluso si algún ope-

rador no generado aditivamente se excluye del álgebra de R, esto no significa que no

exista en la teoŕıa. Debido a (2.26), todos los operadores no generados aditivamente

que podŕıan asignarse a R siempre se forman aditivamente en una bola que contiene a

R y, por tanto, no puede evitarse su existencia.

2.2.5. Completitud

El posible fracaso de la saturación de la causalidad en dualidad de Haag, impli-

ca una cierta falta de operadores en las álgebras generadas localmente (las álgebras

aditivas) de tal manera que podŕıan añadirse algunos otros operadores sin violar el

principio de causalidad. Podemos basarnos en esta observación para sugerir una defi-

nición de completitud en QFT. Espećıficamente, diremos que el espectro de una teoŕıa

es completo (o de forma más breve que la teoŕıa es completa) si

A(R) = Amax(R) , ∀R (2.36)

En palabras, una QFT es completa si para una región arbitraria del espacio el álgebra

de observables generada por los grados de libertad locales es la máxima compatible con

la causalidad. Nótese que en las teoŕıas completas no hay ambigüedad para el álgebra

asociada a una región dada. Esta álgebra sólo puede ser la mı́nima, a saber, el álgebra

aditiva, que coincide con la máxima. La única red de álgebras posible es la red aditiva.

En este sentido vemos que las siguientes propiedades son equivalentes

(a) La teoŕıa es completa,

(b) El álgebra aditiva satisface dualidad de Haag para cualquier región,

(c) La teoŕıa no tiene simetŕıas generalizas,

(d) La red de Haag-Dirac es única.

F́ısicamente, veremos que esta definición puede entenderse de la siguiente manera:

una teoŕıa con simetŕıas generalizadas no es completa porque tiene más de un álgebra
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posible para alguna región de topoloǵıa no trivial. Sin embargo, podŕıamos completarla

añadiendo más operadores dinámicos a la teoŕıa que rompan la simetŕıa generalizada.

Para el caso de teoŕıas con simetŕıas k-forma dadas por corrientes conservadas (k+1)-

forma, podemos entender estos operadores nuevos como cargas que aparecen a una

cierta escala de enerǵıa completando el espectro de la teoŕıa en cuestión y rompiendo

estas leyes de conservación de la simetŕıa de forma. Veremos ejemplos para teoŕıas de

gauge en la sección (2.2.7) y desarrollaremos extensivamente el caso del gravitón en el

caṕıtulo 3.

2.2.6. Simetŕıas globales y regiones con π0 no trivial

Comenzamos con el primer ejemplo, en particular veremos como teoŕıas con si-

metŕıas globales presentan violaciones de dualidad de Haag para regiones con π0 no

trivial. Para esto, consideramos la subálgebra O de una teoŕıa F , formada por operado-

res invariantes bajo un grupo de simetŕıa global G que actúa sobre F . Denominaremos

a la teoŕıa O = F/G como “orbifold”. Estos modelos se trataron extensivamente en

[38]. En este caso, nos interesara tomar regiones R con π0 no trivial, es decir, regiones

desconectadas. El complemento R′ tendrá πD−2 no trivial. El ejemplo más sencillo son

dos bolas disjuntas B1 y B2 formando R = (B1∪B2), y su complemento R′ = (B1∪B2)
′

que topológicamente es una “cáscara” con la topoloǵıa de SD−2 × R. Véase la figura

2.5.

En esta sección, nos centraremos en el caso de una simetŕıa no espontaneamente

rota, donde el espacio de Hilbert generado a partir del vaćıo por operadores invariantes

consiste en estados invariantes. La discusión, en este caso, puede hacerse sin apelar

a la teoŕıa F . Trataremos las modificaciones producidas por un estado de vaćıo no

invariante en la sección 5.3.1.

Sean ψi,r1 , y ψi,r2 operadores creadores de carga en B1 y B2 respectivamente pa-

ra la teoŕıa F , correspondientes a la representación irreducible r con i un ı́ndice de

la representación. Podemos definir un operador “intertwiner” correspondiente a esta

representación como

Ir =
∑
i

ψi,r1 (ψi,r2 )† . (2.37)

Claramente, este operador es invariante bajo transformaciones globales del grupo y

pertenece a la teoŕıa neutra O. También, vemos que conmuta con todos los operadores

aditivos neutros en R′, pero no puede ser generado aditivamente por operadores en las

álgebras neutras asociadas a R ya que los operadores cargados ψi,r1 , y ψi,r2 pertenecen

al álgebra de campos locales AF(R) de F pero no a AO(R) de O.

En la región complementaria R′, podemos definir operadores duales de “twist” τg

que implementan las operaciones de grupo en B1 y actúan trivialmente en B2. Estos
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Figura 2.5: Una región R = B1 ∪ B2 dada por la unión de dos bolas disjuntas B1 y B2 tiene
grupo de homotoṕıa con π0 no trivial. Para teoŕıas neutras, generadas a partir del orbifold de
una simetŕıa global dicha región presenta operadores no locales que violan dualidad de Haag.
Estos son los intertwiner Ir generados por los operadores cargados ψi,r

1 , y ψi,r
2 en B1 y B2 y los

twists τc en la región complementaria R′ = (B1 ∪B2)
′.

conmutan con las álgebras neutras en B1 y B2, pero no conmutan con los intertwiners

(2.37). Esto es porque los últimos incluyen operadores cargados en B1.

Para estudiar estos twists, empecemos considerando el caso más simple. Esto es el

caso en el que estos implementan la acción un grupo G abeliano. Los twists en la teoria

F pueden elegirse5 de modo que satisfagan

τgτh = τgh , U(g)τgU(g)
−1 = τghg−1 , (2.38)

donde U(g) es el unitario que implementa operación de simetŕıa global. Como G es

abeliano, estos twists τg no transforman ante la acción de G y por ende también per-

tenecen a la teoŕıa del orbifold O. De esta manera, podemos escribir las relaciones de

conmutación a parir del carácter del grupo χr(g) como

τg Ir = χr(g) Ir τg . (2.39)

Para un grupo G no abeliano, los twists no son invariantes bajo la acción del grupo

global. Las combinaciones de operadores de twists invariantes bajo el grupo global son

τc =
∑
h∈c

τh , (2.40)

donde estos twists τc están etiquetados por clases de conjugación c ∈ G tales que

gcg−1 = c para todo g ∈ G. Estos operadores τc pertenecen al álgebra neutra O. En

este escenario, vemos que si bien el modelo completo F , que incluye los operadores

creadores de carga, satisface aditividad y dualidad de Haag, éste no es el caso para el

modelo neutro O. De hecho, podemos resumir la presencia de clases HDV en el modelo

5Dado un grupo de simetŕıa global G, la existencia de twists locales τg que implementan la acción
de g ∈ G sobre el álgebra de una región por conjugación esta garantizada en QFT bajo requerimientos
muy generales. Estudiaremos en detalle estos twists y sus propiedades en el caṕıtulo 5.



26 Álgebras y regiones en QFT

O mediante el diagrama de complementariedad cuántica

AOmax(B1 ∪B2) ≡ AO(B1 ∪B2) ∨ {Ir} ⊃ AO(B1 ∪B2) (2.41)

↕ ′ ↕ ′
AO((B1 ∪B2)

′) ⊂ A((B1 ∪B2)
′) ∨ {τc} ≡ AOmax((B1 ∪B2)

′) .

En palabras, los intertwiner y los twists producen la tension entre aditividad y dualidad

de Haag en la teoŕıa del orbifold. En efecto, como ya mencionamos, estos no conmutan y

generan las clases no locales. En cuanto a las reglas de fusión de dichas clases, podemos

elegir los intertwiners (Véase apéndice A de [23]) de manera que se satisfagan

IrIr′ =
∑
r′′

nr
′′

rr′Ir′′ , (2.42)

con nr
′′

rr′ las matrices de fusión de las representaciones del grupo G. Mientras que los

twists, etiquetados por sus clases de conjugación, satisfacen las reglas de fusión

τcτc′ =
∑
c′′

mc′′

cc′τc′′ , (2.43)

con mc′′

cc′ los coeficientes de fusión de clases de conjugación de G.

Un punto importante en cuanto a nomenclatura es el siguiente, durante esta tesis

muchas veces nos referiremos a “simetŕıas generalizadas” incluyendo el caso de simetŕıas

globales usuales o 0-forma. Cuando lo hagamos nos estaremos refiriendo a las ideas de

esta sección donde las violaciones de dualidad aparecen en la teoŕıa del orbifold pero

no en la teoŕıa completa.

2.2.7. Simetŕıas 1-forma y regiones con π1 no trivial

En esta sección desarrollaremos el ejemplo de violaciones de dualidad de Haag

generadas por simetŕıas 1-forma. Con este propósito, tomamos una region R con grupo

de homotoṕıa π1 no trivial, es decir, una región tipo anillo con lazos no contractibles. El

caso más sencillo de analizar es el de simetŕıas 1-forma en teoŕıas de gauge abelianas. En

particular, para el campo de Maxwell libre en D = 4 podemos encontrar dos 2-formas

conservadas estas son

dF = 0 , (2.44)

d ∗ F = 0 ,

donde notamos como F = dA a la derivada exterior del campo de gauge y con ∗ al

operador dual de Hodge. De esta manera, podemos entender que la primera de las
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conservaciones es simplemente por simetŕıa (d2 = 0) y que la segunda es debido a las

ecuaciones de movimiento.

Podemos integrar estas corrientes sobre superficies bidimensionales abiertas Σ2 de

la forma (2.22) para obetener

ΦB
∂Σ2

=

∫
Σ2

F , ΦE
∂Σ2

=

∫
Σ2

∗F , (2.45)

Observamos que, debido a las leyes de conservación (2.44), podemos entender a los

flujos como operadores asociados exclusivamente a los bordes unidimensionales ∂Σ2.

Nuevamente, esto es porque los operadores de flujo son los mismos para cualquier

elección de Σ2 que no cambie sus respectivos bordes. De la misma manera, vemos que

ambos flujos conmutan con todos los operadores en el álgebra aditiva de la región

complementaria A(R′) generada exclusivamente por el campo F y sus productos y

derivadas.

Otra forma de hacer evidente esta idea, es utilizando el campo de gauge A. En

particular, usando el teorema de Stokes, podemos entender a ΦB
∂Σ2

6 como la circulación

del campo de gauge sobre el lazo cerrado ∂Σ2

ΦB
∂Σ2

=

∫
Σ2

F =

∫
Σ2

dA =

∮
∂Σ2

A . (2.46)

Ahora, si ∂Σ2 es un lazo no contractible en R no podemos generar al operador de

flujo ΦB
∂Σ2

con operadores locales invariantes de gauge en R. Lo mismo sucede con

ΦB
∂Σ2

. La conclusión es que los unitarios (operadores acotados) que podemos definir

exponenciando los flujos (2.45) de la forma

W q
∂Σ2

= eiqΦ
B
∂Σ2 , T g∂Σ2

= eigΦ
E
∂Σ2 , q, g ∈ R , (2.47)

perteneceran a Amax(R) pero no a A(R). Es decir, los WL y TL usuales representan

los operadores no locales para regiones tipo anillo en la teoŕıa de Maxwell.

Establecimos en la sección 2.2.3, que los operadores no locales vienen en pares duales

que no conmutan. En este caso el complemento de una región R con π1 no trivial es

una región R′ con la misma topoloǵıa. De esta forma, las clases HDV en R′ también

serán generadas por los WL y TL. Para calcular el conmutador entre los WL y TL,

el camino mas sencillo es introducir una foliación y calcular el conmutador entre los

flujos a tiempo constante. En este caso, los flujos no son mas que los flujos ΦB y ΦE

de los campos eléctricos y magnéticos respectivamente

ΦB
∂Σ2

=

∫
Σ2

dSiBi , ΦE
∂Σ̃2

=

∫
Σ̃2

dSiEi . (2.48)

6Introduciendo el campo de gauge dual de la forma ∗F = dÃ podemos hacer lo mismo con ΦE
∂Σ2

.
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Figura 2.6: La región R con homotoṕıa π1 no trivial contiene lazos no contractibles como ∂Σ2.
De la misma manera, su complemento causal R′ contiene también lazos no contractibles como
∂Σ̃2. Los WL y TL asociados a ∂Σ2 no conmutan con los TL y WL sobre ∂Σ̃2 respectivamente.

Nótese que también podŕıamos haber tomado como punto de partida las leyes de con-

servación del tipo

∂iBi = 0 , ∂iEi = 0 . (2.49)

Las relaciones de conmutación de los campos invariantes de gauge, obtenidas como

consecuencia de las relaciones de conmutación canónicas están dadas por

[Ei(x), Bj(y)] = iεijk∂
kδ(x− y) . (2.50)

A partir de aqúı, podemos recuperar que el conmutador de los flujos asociados a regiones

complementarias (Vease figura 2.6) es proporcional al numero de enlace entre los lazos

que definen los respectivos flujos

[
ΦB
∂Σ2

,ΦE
∂Σ̃2

]
=

i

4π

∮
∂Σ2

∮
∂Σ̃2

εijk
(x− y)i

|x− y|3 dx
j dyk = i link(∂Σ2, ∂Σ̃2) (2.51)

donde link(∂Σ2, ∂Σ̃2 cuenta cuantas veces ∂Σ2 enlaza a ∂Σ̃2. Si bien este es un resultado

conocido, en la sección 3.2.2 mostraremos como recuperlarlo a través de versiones con

smearing de los flujos. Exponenciando la relación (2.51) mediante la fórmula de Baker-

Campbell-Hausdorff recuperamos

W q
∂Σ2

T g
∂Σ̃2

= ei q g T g
∂Σ̃2

W q
∂Σ2

. (2.52)

Esto implica que los WLWq y los TL Tg en efecto definen las clases HDV no locales. En

D = 4 tanto los WL y TL se asocian a lazos unidimensionales produciendo operadores

no locales en regiones tipo anillo. Como dijimos el complemento de una región tipo

anillo en D = 4 tiene topoloǵıa de anillo. Esto implica que los WL y TL también serán

los operadores HDV en la región complementaria, produciendo el siguiente diagrama
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Figura 2.7: Los WL y TL definidos sobre un lazo ∂Σ2 no contractible en R representan
operadores no locales para dicha región. Sin embargo, estos son localmente generables en una
bola B que contiene a R

de complementariedad cuántica

Amax(R) ≡ A(R) ∨ {W q, T g}q,g∈R ⊃ A(R) (2.53)

↕ ′ ↕ ′
A(R′) ⊂ A(R′) ∨ {W q, T g}q,g∈R ≡ Amax(R

′) .

Por otro lado, las reglas de fusión de los operadores no locales son las de un grupo

abeliano.

W q
∂Σ2

W q′

∂Σ2
= W q+q′

∂Σ2
, T g

∂Σ̃2
T g

′

∂Σ̃2
= T g+g

′

∂Σ̃2
. (2.54)

Veremos en la sección 2.2.8 que este siempre sera el caso para clases HDV únicamente

asociadas simetŕıas 1-forma. Más aún, reescribiendo la relación de conmutación (2.52)

convenientemente tenemos,

W q
∂Σ2

T g
∂Σ̃2

(W q
∂Σ2

)−1 = ei q g T g
∂Σ̃2

, T g
∂Σ̃2

W q
∂Σ2

(T g
∂Σ̃2

)−1 = e−i q gW q
∂Σ2

. (2.55)

Es decir, los WL de R forman un grupo R ante el cual los TL de R′ estan cargados

y los los TL de R forman otro grupo R ante el cual los WL de R′ están cargados. Lo

mimo sucede para la región complementaria de manera que el grupo de todas las clases

HDV es R2 × R2.

Como hemos descrito anteriormente, uno podŕıa argumentar que todos estos ope-

radores no locales no pueden pertenecer a la teoŕıa para preservar la causalidad. Esto

no es cierto porque todos estos WL son generados por flujos del campo magnético, por

lo que evidentemente se generan localmente en una bola que contiene a la región tipo

anillo R. Véase la figura 2.7. También, podemos deducir la existencia de todos los TL

en la misma bola partir del teorema de la doble conmutación de von Neumann o bien

de su definición como exponencial de un flujo eléctrico.7

7Nótese que el primero de estos argumentos sigue siendo valido cuando introducimos cargas eléctri-
cas dinámicas en la teoŕıa mientras el segundo no.
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Sin embargo, es cierto que todos estos operadores no locales no pueden pertenecer a

las álgebras de R y R′ simultáneamente. Podŕıamos bien trabajar con una red aditiva, es

decir tomar A(R) y A(R′) de manera que se respete (2.18) a expensas de la dualidad

de Haag. O bien podŕıamos construir una red HD que respete (2.21) a expensas de

aditividad. Considerando el operador no local mas general en R esta dado por dión

obtenido al multiplicar un WL y TL

D
(g,q)
∂Σ2

= W q
∂Σ2

T g∂Σ2
. (2.56)

Una condición natural es añadir operadores con cargas magnéticas y eléctricas (g, q)

a todos los anillos. Dados dos diones (g, q) y (g̃, q̃) en el mismo anillo, el formado por

su producto (g + g̃, q + q̃), y los conjugados (−g,−q) y (−g̃,−q̃), también debe estar

presente para cerrar un álgebra. Por lo tanto, el conjunto de todos los diones debe ser

un subgrupo aditivo del plano, dando una red

(g, q) = n1(g1, q1) + n2(g2, q2) , n1, n2 ∈ Z , (g1, q1), (g2, q2) ∈ R2 . (2.57)

En Ademas, dada la relación de conmutación (2.52) tenemos que

D
(g,q)
∂Σ2

D
(g̃,q̃)

∂Σ̃2
= ei (q g̃−q̃ g)D

(g̃,q̃)

∂Σ̃2
D

(g,q)
∂Σ2

. (2.58)

por ende, si queremos una red HD, podemos reescribir el requerimiento de conmutati-

vidad como

qg̃ − q̃g = 2πk , k ∈ Z . (2.59)

Esto es compatible con (2.57) siempre que (q1g2 − g1q2)/2π ∈ Z. Si queremos cons-

truir una red de Haag-Dirac, necesitamos tomar un conjunto máximo de cargas que

satisfagan (2.57). Esto nos obliga a elegir q1g2 − g1q2 = 2π.

Para el caso del campo relativista de Maxwell, al resolver para el espacio de so-

luciones de la ecuación anterior, necesitamos tener en cuenta que existe una simetŕıa

de dualidad que mapea campos eléctricos y magnéticos y veceversa. Entonces, hay

un parámetro libre oculto que nos mueve entre redes de Haag-Dirac isomorfas. Esta

libertad puede eliminarse escribiendo las distintas soluciones como

(g, q) =

(
2π

q0
nm, q0

(
ne +

θ

2π
nm

))
, q0 ∈ R+ , ne, nm ∈ Z , θ ∈ [0, 2π) , (2.60)

siendo esta condición sobre las cargas eléctricas y magnéticas conocida como cuantiza-

ción de Dirac o Dirac-Zwanziger [52–55]. Las redes con θ ̸= 0, π no son simétricas ante

la reflexión temporal. Nótese que en un modelo espećıfico que describe cargas eléctricas

y monopolos, al añadir un término θ topológico al Lagrangiano, cambiamos las cargas
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de la red según el efecto Witten [56]. Volveremos sobre este efecto en el caṕıtulo 7.

Estas redes de HD, aśı construidas satisfarán la dualidad de Haag, pero no la

aditividad. La aditividad puede recuperarse si acoplamos la teoŕıa a campos cargados.

Por ejemplo, si tenemos un campo ψ de carga eléctrica q0, ahora podemos considerar

operadores las ĺıneas de Wilson invariantes de gauge la forma

W q0
x→y = ψ(x)eiq0

∫ y
x dx

µAµψ†(y) . (2.61)

Tomando productos de ĺıneas de Wilson consecutivas, y permitiendo la fusión de los

campos con cargas opuestas en los extremos de las ĺıneas que queremos unir, vemos

que WL de carga q0 ya no representa un operador no local para regiones tipo anillo.

En otras palabras, la introducción de una part́ıcula cargada con carga q0 nos permite

recuperar los WL con carga q0 a partir de operadores invariantes gauge (ĺıneas de

Wilson) dentro del anillo. Esto significa que el WL de R carga q0 pertenece ahora al

álgebra aditiva del anillo, W q0
∂Σ2

∈ A(R) para ∂Σ2 ∈ R. Esto tiene dos consecuencias:

(a) Podemos escribir los WL de carga q > q0 como producto de tantos WL aditivos de

carga q0 que necesitemos y un WL de carga q < q0. Esto es evidente a partir de las

reglas de fusión. En consecuencia, los únicos WL verdaderamente no locales son

los que tienen 0 < q < q0 porque los operadores aditivos definen la equivalencia

de las clases a partir de (2.27). Esto implica que los WL generan un U(1) con los

TL de R′ como objetos cargados y lo mismo sucede en la región complementaria.

(b) Podemos obtener el álgebra máxima de la región complementaria Amax(R
′) como

el conmutante A(R). Dado que esta última incluye ahora el WL de carga q0, la

primera no puede tener los TL8 cuya carga difiera de g = 2πk/q0 para k ∈ Z.

Esto implica que los TL de R′ generan un Z con los WL de R como objetos

cargados y lo mismo sucede en la región original.

En la ausencia de cargas el grupo R2 ×R2 representa el grupo de todos las clases HDV

posibles para regiones tipo anillo. El resultado de agregar la carga eléctrica es que las

clases HDV se rompen al grupo (U(1)×Z)× (U(1)×Z) . Podŕıamos también agregar

monopolos dinámicos de carga g0 = 2π/q0 en la teoŕıa obteniendo aśı un teoŕıa sin

clases no locales y por ende completa.

Para el caso de D ̸= 4 tenemos que el complemento de una región con tipo anillo tie-

ne πD−3 no trivial. Sin embargo, si bien el WL sigue siendo asociable a un lazo unidimen-

sional el TL es un operador definido sobre superficies cerradas (D − 3)-dimensionales.

Los WL producen clases HDV en R y los TL hacen lo mismo en R′. La relación de

8Si bien el espacio de fases con la carga dinámica es diferente, la definición de los TL en presencia
de dicha carga ya no es la exponencial del flujo eléctrico pero conserva (2.52). En la sección 7.1.3
describimos como realizar dicha construcción usando la integral de camino.



32 Álgebras y regiones en QFT

conmutación se mantienen y podemos escribir el diagrama de complentareidad cuántica

Amax(R) ≡ A(R) ∨ {W q}q∈R ⊃ A(R) (2.62)

↕ ′ ↕ ′
A(R′) ⊂ A(R′) ∨ {T g}g∈R ≡ Amax(R

′) .

donde el grupo de clases HDV es R × R y agregando cargas eléctricas se rompe a

U(1) × Z. Vemos, en estos casos, que si las clases HDV forman un grupo continuo

compacto, entonces las clases duales son discretas. Durante esta tesis diremos que en

estos casos tenemos una “simetŕıa generalizada compacta”. Por el contario, vemos que

si las clases HDV de la region original corresponden a un grupo no compacto, lo mismo

se aplica a las clases duales. De esta manera, llamaremos a las simetŕıas generalizadas

que producen este tipo de clases “simetŕıa generalizada no compacta”.

Por otro lado, en el caso no abeliano la dificultad reside en que las leyes de conser-

vación (2.44) ya no son validas, ni los campos eléctricos y magnéticos son invariantes

de gauge. De esta manera perdemos la interpretación de los WL y TL como exponen-

ciales de flujos. Sin embargo, podemos seguir definiendo el WL mediante el potencial

de gauge como

W r
∂Σ2

= Tr
[
Pei

∮
∂Σ2

dxµAr
µ

]
. (2.63)

Un punto interesante es que inclusive la ausencia de cargas algunos WL son destructi-

bles, es decir, pertenecen al álgebra aditiva. Esto es porque los propios gluones están

cargados. Están cargados bajo la representación adjunta. De hecho, podemos formar

la siguiente ĺınea de Wilson

Fαβ(x)Pei
∫ y
x dx

µAµFγδ(y) . (2.64)

donde todos los campos están en la representación adjunta del álgebra de Lie. Esto

produce que los verdaderamente no locales, es decir los que no pueden ser aditivamente

generados en una región tipo anillo, están etiquetados por las clases de equivalencia

que surgen cuando cocientamos el conjunto de representaciones irreducibles por el

conjunto de representaciones generadas a partir del WL adjunto. De esta manera, los

WL no locales están etiquetados por las representaciones del centro del grupo de gauge,

mientras que los TL por los elementos de dicho centro. No seguiremos el desarrollo

extensivo de estas clases HDV para teoŕıas de gauge no abelianas en esta tesis. Para un

tratamiento con más profundidad, desde este punto de vista algebraico, véase [23, 57].
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Figura 2.8: Pegado con operaciones aditivas de operadores no locales de lazo pertenecientes a
la misma clase HDV.

2.2.8. Reglas de fusión para clases HDV

Ahora que hemos visto algunos ejemplos, una pregunta interesante es que forma

pueden tomar las reglas de fusión (2.28) de las clases HDV (2.27). En esta sección, es-

tudiaremos cuales son las posibilidades para las simetŕıas 0-forma y 1-forma analizadas

en los ejemplos 2.2.6 y 2.2.7 respectivamente.

Para el caso de simetŕıas globales y regiones con π0 no trivial discutido en la sección

2.2.6 las reglas de fusión están acotadas por el teorema de reconstrucción Doplicher-

Haag-Roberts (DHR) [58–62]. Este teorema establece que en D > 2, bajo condiciones

bastante generales como dualidad de Haag para bolas simples, las álgebras de fusión

asociadas a sectores de superseleccion de bola surgen de un grupo. En D = 2 pueden

aparecer reglas de fusión más generales [63, 64]. Cuando aplicamos este resultado a las

teoŕıas del orbifold como O, vemos que las clases de equivalencia asociadas a violaciones

de dualidad de Haag en sectores de dos bolas deben obedecer reglas de fusion de

un grupo o un cociente de grupos [51]. Más aún, como vimos en (2.42-2.43) estas

reglas de fusión están dadas por las matrices de fusión de las representaciones o clases

de conjugación correspondientes. En el sentido inverso, el teorema de reconstrucción

también muestra que partiendo del modelo O con este tipo de clases HDV existe una

nueva teoŕıa completa F donde los operadores cargados curan estos problemas de

dualidad de Haag y aditividad. El grupo de simetŕıa está representado globalmente

en F actuando sobre los campos cargados. Es destacable que esta reconstrucción no

cambia la teoŕıa O ya que las funciones de correlación de los operadores invariantes no

cambian después de incluir los operadores cargados.

Otro caso particularmente interesante es el de teoŕıas con simetŕıas 1-forma. Como

vimos en la sección 2.2.7, estas simetŕıas suelen aparecer en teoŕıas tipo gauge y están

caracterizadas por operadores HDV no locales definidos sobre lazos unidimensiona-

les. Para el caso de teoŕıas abelianas podemos pensar estos operadores como definidos

de forma análoga a (2.45). Pero, las ideas que desarrollaremos a continuación aplican

también a teoŕıas de gauge no abelianas donde no tenemos una corriente 2-forma con-

servada. Un ejemplo son los WL no abelianos de la forma (2.63). En cualquier caso

estos operadores generan clases HDV asociadas a regiones tipo anillo (con grupo de

homotoṕıa π1 no trivial) y su complemento (con grupo de homotoṕıa πD−3 no trivial).
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Figura 2.9: Pegado de operadores no locales asociados a una simetŕıa 1-forma dentro de un
anillo R. El operador de lazo en el panel izquierdo es contractible en R aśı que pertenece a la
clase identidad [1]. Entonces los operadores en el panel derecho deben corresponder a clases HDV
[a], [a] inversas entre si de manera que [a][a] = [1]

Ahora, siguiendo el desarrollo presentado en [23], probaremos que en estos casos (y en

la ausencia de sectores de dos bolas) las reglas de fusión son las de un grupo abeliano,

es decir, (2.28) presenta un solo elemento del lado derecho.

Comenzamos en la configuración dibujada en la figura 2.8, tomando dos regiones

tipo anillo no enlazadas R1 y R2 (que contienen a las curvas rojas). Vemos que un

operador de lazo correspondiente a la clase a de (R1 ∪R2)
′, que se enlaza una vez con

R1 y otra con R2 (curva azul en el panel izquierdo) pertenece a la misma clase que el

producto de dos operadores de lazo disjuntos de clase a, cada uno enlazado una sola

vez con uno solo de los dos anillos R1 y R2 (curvas azules en el panel derecho). Esto es

aśı porque, en la ausencia de sectores de dos bolas, el álgebra de operadores no locales

de los dos anillos R1 y R2 es el producto tensorial de las álgebras de operadores no

locales de R1 con las de R2. No es dif́ıcil ver que el lazo original de un componente de

clase a basado en (R1∪R2)
′ tiene la misma acción sobre el álgebra no local de la región

(R1 ∪ R2) que el producto de los dos lazos independientes de la misma clase. Luego,

el lazo de un componente y los dos lazos pertenecen a la misma clase. Esto implica

que están relacionados mediante operaciones aditivas en (R1 ∪R2)
′ (representadas por

la región gris). Este es un paso importante para demostrar que el álgebra no local es

abeliana, ahora sabemos que podemos pegar y separar lazos asociados a operadores no

locales de la misma clase HDV. Nótese que para alcanzar la configuración geométrica

de la figura 2.8 requerida por la prueba necesitamos una dimensión espacio-temporal

D > 3.

Ahora pasamos a la configuración presentada en la figura 2.9. Tomemos una única

región tipo anillo R (region roja) con un operador de lazo de la clase a en su interior,

pero con este operador doblado de tal manera que sea localmente generable en R (curva

azul en el panel izquierdo). Si ejecutamos la misma operación que en el caso anterior

obtenemos dos operadores de lazo correspondientes a las clases a y a(curvas azules en

el panel izquierdo). Sin embargo, como lazo original era contractible correspond́ıa a la
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Figura 2.10: Imposibilidad de pegado de operadores HDV no locales para dos bolas con
operaciones aditivas

clase identidad debido a que el lazo original era contractible esto implica que

[a][a] =
∑
a′′

na
′′

aa[a
′′] = [1] ⇒ na

′′

aa = 0 , ∀a′′ ̸= 1 . (2.65)

En palabras, hemos establecido [a] como la inversa de [a] y viceversa. Ahora volvamos

a la expresión general (2.28) y veamos que es lo que esto implica

[a][a′] =
∑
a′′

na
′′

aa′ [a
′′] ⇒ [a′] = [a][a][a′] =

∑
a′′

na
′′

aa′ [a][a
′′] . (2.66)

Ahora, si asumimos que en el lado derecho de la ultima expresión tenemos más de un

termino, por ejemplo n
a′′1
aa′ , n

a′′2
aa′ ̸= 0 tenemos que

[a′] = [a][a′′1] = [a][a′′2] ⇒ [a][a′] = [a′′1] = [a′′2] (2.67)

En conclusión , tenemos que las reglas de fusión de las clases HDV asociadas a una

simetŕıa 1-forma sean las de un grupo abeliano, es decir

[a][a] = [1] , [a][1] = [a] , [a][a′] = na
′′

aa′ [a
′′] (no suma en a′′) . (2.68)

Ademas, es de esperarse que este tipo de ideas puedan aplicarse a simetŕıas del tipo

k-forma con k ≥ 1 en general, pero no existe una prueba conocida para k > 1.

Observamos que no podŕıa realizarse este tipo de pruebas para el caso de regiones

desconectadas con topo logia de dos bolas. De hecho, vimos en este caso que las reglas

de fusión (2.42-2.43) no son necesariamente abelianas como (2.68). La razón principal

de esta diferencia es que en este caso no podemos pegar/separar operadores HDV con

operadores locales. Esto es porque debemos remplazar los dos anillos R1 y R2 en la

figura 2.8 por las regiones de dos bolas R1 = (B1 ∪ B2) y R2 = (B̃1 ∪ B̃2). Véase la

figura 2.10. Sin embargo, en este caso las clases HDV de (R1 ∪R2) no son el producto

tensorial de las clases de R1 y R2 porque podemos formar intertwiners entre B2 yB̃2.

De esta manera uno de los argumentos fundamentales de la prueba presentada en esta

sección ya no es valido en este caso. Lo mismo ocurre para teoŕıas con simetŕıas 1-forma

que también presenten clases HDV asociadas a regiones de π0 no trivial.
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2.3. Ĺıneas genuinas y superficies topoloǵıcas como

operadores HDV

Ahora describiremos la forma estándar en que se suelen describir las simetŕıas ge-

neralizadas, conectándola con la discusión anterior. La presente sección no es necesaria

para comprender el contenido de esta tesis. La incluimos aqúı porque sera útil para

el lector familiarizado con literatura de simetŕıas generalizadas y cuando comparemos

algunos de nuestros resultados con la bibliograf́ıa reciente durante la sección 7.2.

En la referencia fundamental [8], véase también [65], se propuso una clasificación

particular de los operadores/defectos que aparecen en QFT con simetŕıas generaliza-

das. Esta clasificación se estudia principalmente en la formulación eucĺıdea de la teoŕıa.

Los principales papeles los desempeñan los “generadores de simetŕıa” y los “operado-

res cargados genuinos”, tales como las ĺıneas genuinas para simetŕıas 1-forma. Estos

operadores cargados genuinos son los parámetros de orden de la simetŕıa generalizada

en esta formulación.

Aunque a veces los generadores de simetŕıa se denominan “operadores topológicos

de simetŕıa”, es más apropiado decir que son endomorfismos del álgebra de operadores.

De hecho, suelen definirse por su acción sobre los operadores. En el ejemplo de la

sección 2.2.7, para la simetŕıa 1-forma eléctrica U(1) en la teoŕıa de Maxwell en D = 4,

el flujo eléctrico exponenciado sobre superficies bidimensionales cerradas efectúa uno

de estos endomorfismo de simetŕıa F g ≡ ei gΦ
E
. En particular, actúa sobre ĺıneas de

Wilson W q ≡ ei
∮
Adx = ei qΦ

B
que enlazan con dicha superficie como

F g(W q) = e−i g qW q . (2.69)

La razón por la que F g no es un operador bien definido en la teoŕıa lorentziana a tiempo

real es sencilla. Para una superficie cerrada el operador que obtenemos es la identidad

debida a la ley de Gauss. Pero, aunque esto es más propiamente un endomorfismo, tiene

un avatar en el álgebra de operadores de la teoŕıa. Cortando la superficie cerrada que

define a F g en dos mitades, obtenemos un operador real, llamémoslo T g, en una mitad

y su inverso en la otra mitad. El significado del endomorfismo en la teoŕıa lorentziana

pasa a ser (2.55), es decir

F g(W q) = T gW q (T g)−1 = e−i g qW q , (2.70)

donde T g se denominan, a veces, operadores topológicos de superficie. Por supuesto,

una vez que cortamos el flujo en dos mitades, aparecen ambigüedades locales en la

definición del operador en su frontera unidimensional. Pero estas ambigüedades por

la acción de los operadores locales no afectan a la ley de transformación anterior ya
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que conmutan con el WL. De hecho, como cualquier representante es tan bueno como

cualquier otro, es más propio hablar de las clases que surgen por el cociente de los

operadores no locales sobre dichas acciones de operadores locales en una cierta región

topológicamente no trivial. Estas son las clases HDV que definimos en la sección 2.2.2.

Concluimos que, en tiempo real, la caracterización de operadores planteada en [8]

concierne a flujos abiertos de corrientes generalizadas (o más en general operadores

topológicos de superficie) y operadores cargados genuinos.9 Notemos, sin embargo, que

el papel de WL y TL en (2.70) puede invertirse como en (2.55). Por ende, también,

podemos decir que los TL son los cargados bajo la acción de los WL. En efecto, ya

vimos que desempeñan un papel simétrico dual y que pueden entenderse como varia-

bles complementarias cuánticas en un sentido preciso (2.53). De forma más general,

estos operadores son proporcionados por los a y los b en la discusión de sección 2.2.3.

En este sentido, la perspectiva de esta tesis es que uno puede entender las simetŕıas

generalizadas directamente en la f́ısica local del espacio plano.10

Como tal, esta nomenclatura usual en la literatura de simetŕıas generalizadas dife-

riŕıa muy poco de nuestro enfoque. El problema surge cuando esta selección particular

de lo que es un “operador de ĺınea genuino” y lo que es un “operador de superficie

topológico” se promueve para que tenga un significado f́ısico intŕınseco. Por ejemplo, el

denominado campo de Maxwell compacto libre se dice que tiene WL genuinos W q en

R y TL genuinos T g que envuelven el anillo R′. Se denominan g = g0 nm y q = q0 ne,

siendo nm, ne números enteros y q0 = 2π/g0. Esta elección satura la condición de

cuantización de Dirac que vimos en (2.60). Obviamente conmutan con el álgebra local

exterior, y no pueden ser generados por operaciones locales invariantes de gauge en R

o R′ respectivamente. Son operadores HDV en el sentido descrito anteriormente. Pero

también tenemos los operadores topológicos de superficie, es decir, la exponencial de

los flujos eléctrico y magnético sobre superficies abiertas con ĺımites R y R′. Estas

superficies topológicas están etiquetadas por dos ángulos q ∈ [0, q0) y g ∈ [0, g0) y

precisamente no conmutan con los operadores de ĺınea anteriores. Estos operadores de

flujo son también operadores HDV, y son no locales en ese preciso sentido. De hecho,

este modelo es el campo de Maxwell ordinario que para D = 4 y tiene un grupo de

operadores HDV R × R dados por cargas eléctricas y magnéticas arbitrarias. En este

ejemplo es bastante evidente la arbitrariedad de la elección de los llamados operadores

de ĺınea y de superficie topológica. Todos los operadores no locales son operadores de

ĺınea en el sentido de que conmutan con operadores locales fuera del anillo en el que

están definidos, y ambos son operadores topológicos de superficie en el sentido de que

son localmente construibles dentro de una bola, pero no de un anillo. Lo mismo puede

9Para simetŕıas 0-forma, estos flujos abiertos son los twists que hemos discutido en la sección 2.2.6.
10En un enfoque llamado “Symmetry Topological Field Theories” [66–69], se añaden dimensiones

extra para caracterizar las simetŕıas. Seŕıa interesante entender la conexión con dicho enfoque.



38 Álgebras y regiones en QFT

decirse en ejemplos más complicados, como una teoŕıa de gauge SU(2).

Más que la terminoloǵıa de operadores de ĺınea y operadores topológicos de su-

perficie (que normalmente entran en la formulación como endomorfismos y no como

operadores), el núcleo de diferencia entre los enfoques parece ser el requisito de que

los operadores no locales correspondientes a regiones complementarias deben conmu-

tar. Esta es la razón por la que se piensa en ellos como operadores de ĺınea, la idea

subyacente es que conmutan con seguridad entre śı a distancia espacial. De hecho, en

cualquier teoŕıa con clases HDV, podemos dar el paso de extender las álgebras aditivas

Aadd(R) algunos operadores no locales (no todos), y cuidar que los que añadimos para

regiones complementarias conmuten entre śı. De esta forma podemos llegar a redes de

álgebras que satisfacen la dualidad de Haag. Estas redes son locales en el segundo sen-

tido mencionado en la sección 2.2.1. Un ejemplo es la red del campo de Maxwell donde

tomamos WL y TL con cargas cuantizadas que satisfacen la condición de cuantización

de Dirac. Durante la sección 2.2.4, hemos llamado redes de Haag Dirac (HD) a este

tipo de elecciones ya que las nociones de dualidad de Haag y de cuantización de Dirac

resultan coincidentes. Aunque no hay ningún problema en hacerlo, observamos que

se trata de un juego puramente académico sin ninguna consecuencia f́ısica. En efecto,

tenemos que

(a) Siempre hay muchas opciones posibles de redes de HD.

(b) La teoŕıa es exactamente la misma para cualquiera de estas opciones, y no pode-

mos distinguirlas f́ısicamente, ya que todas las redes tienen las mismas álgebras de

operadores locales con los mismos valores de expectación, y todos los operadores

pertenecen en última instancia al álgebra aditiva de alguna bola.

(c) Una red de Haag Dirac no satisface la aditividad. Aśı que, incluso desde un

punto de vista puramente matemático, la red aditiva, los operadores no locales y

cualquier otra elección de red (como una red HD diferente) pueden reconstruirse

a partir de cualquiera de ellas.

Por supuesto, la elección de una red HD es importante si se van a introducir cargas

dinámicas que destruyan la no aditividad de los operadores no locales.11 La causalidad

implica que la única manera de hacerlo es rompiendo los operadores no locales que

conmutan entre śı. Pero la introducción de cargas dinámicas produciŕıa un modelo

diferente, y precisamente destruiŕıa todas las simetŕıas generalizadas o sectores HDV.

La existencia de simetŕıas generalizadas es lo mismo que la existencia de diferentes

redes HD para la misma teoŕıa. Por eso insistir en la elección de una red HD oscurece

precisamente la naturaleza de los fenómenos en discusión.

11La elección de una red HD no es necesaria si las cargas son sondas externas y no son dinámicas.
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En este sentido, pensamos que es engañoso decir, como es habitual en la literatura,

que hay dos teoŕıas de gauge puras con grupos de gauge SU(2) y SO(3) porque una

de ellas contiene el WL fundamental y la otra el TL.12 En realidad, estas son la misma

teoŕıa SU(2), que contiene tanto el WL como el TL. La razón detrás de esta afirma-

ción, es que si hay un operador no local no se puede evitar la existencia del dual. La

denominación, entonces, no se refiere a teoŕıas, sino a redes HD. Esto sólo puede ser

inofensivo si no se extraen consecuencias f́ısicas de ello.

De esta manera aprendemos varias cosas. La primera es que, después de todo,

los operadores topológicos de superficie, desde una perspectiva f́ısica precisa, no son

tanto “operadores de superficie”. Están naturalmente asociados a los bordes de las

superficies que los definen, ya que conmutan con el álgebra aditiva de cualquier región

que no incluya al mismo. La segunda es que, después de todo, las ĺıneas genuinas no son

tanto “operadores de ĺınea”. Para construirlas utilizando operadores locales invariantes

de gauge necesitamos superficies que vayan más allá de las ĺıneas sobre las que se

definieron en un principio. La tercera es que la no conmutatividad entre operadores

duales HDV no sólo no es un problema, sino una necesidad matemática. Es lo que

permite al endomorfismo de simetŕıa topológica hacer su trabajo sobre los operadores

cargados. Estas estructuras no conmutativas aparecen directamente a partir del álgebra

aditiva, que es el álgebra local intŕınseca, simplemente analizando sus conmutantes.

De nuevo nos encontramos con el resultado de que el álgebra aditiva contiene toda

la información sobre los parámetros de orden y los generadores de simetŕıa. De hecho,

queda claro que todos los operadores HDV deben considerarse como parámetros de

orden. Esto resuelve un problema ya descrito en la referencia original [8], donde se

reconoćıa que la teoŕıa de gauge SU(N) contiene más parámetros de orden que las

habituales ĺıneas de Wilson. Básicamente, se trata de los flujos eléctricos no abelianos,

los generadores de la simetŕıa 1-forma de la teoŕıa. Dicha referencia señalaba que seŕıa

deseable una teoŕıa más unificada de los parámetros de orden. El presente enfoque

proporciona precisamente dicho marco unificado. La solución es que tanto las ĺıneas de

Wilson como los flujos eléctricos son operadores HDV para anillos en teoŕıas de gauge,

y que todos ellos son parámetros de orden de la teoŕıa por igual. Además, como ya se

hemos mencionado, los únicos operadores que pueden mostrar la dualidad “ley de área

12Esta terminoloǵıa no está relacionada con la terminoloǵıa natural en la formulación lattice de
teoŕıas de gauge. Nótese que una teoŕıa en la red SO(3) que no tiene ningún operador no local.
Equivalentemente no tiene simetŕıas generalizadas y no muestra fases en las que los operadores de
ĺınea tengan una ley de área. Al menos desde la perspectiva de la red esta teoŕıa debeŕıa corresponder
a una teoŕıa SU(2) con cargas en la representación fundamental. De hecho, un problema importante
en este contexto es averiguar si la teoŕıa de gauge de la red SO(3) tiene un parámetro de orden de
confinamiento en el ĺımite del continuo [70]. Aunque las part́ıculas cargadas aparecerán necesariamente
a alguna escala de enerǵıa, tapando la ley de área del WL, estas cargas pueden aparecer a la escala del
espaciado de la red, permaneciendo ocultas en la f́ısica del continuo. En cualquier caso, la diferencia
entre las teoŕıas de gauge de la red puras SO(3) y SU(2) es f́ısica en la red.
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vs ley de peŕımetro” son los operadores HDV [23].

Finalmente, remarcamos nuevamente que estas caracteŕısticas aparecen en el espa-

cio de Minkowski. Es decir, no necesitamos ir a variedades con topoloǵıa no trivial. Sin

embargo, toda la misma f́ısica aparece también en variedades con topoloǵıa no trivial

cuando se mira dentro de subregiones dadas por bolas contractibles.

Terminamos esta sección con algunas observaciones sobre tres cuestiones que pueden

inducir erróneamente a pensar que una definición de una QFT requiere la elección de

una red de Haag-Dirac.

2.3.1. ¿Ambiguedades en el ordenamiento temporal eucĺıdeo?

La traducción de las cantidades calculadas con la integral de caminos eucĺıdea al

lenguaje de operadores implica introducir un ordenamiento temporal. Esto es necesario

para explicar la no conmutatividad de los operadores en la teoŕıa cuántica, en contra-

posición con la conmutatividad de las inserciones en la integral de camino. Como es

bien sabido, para operadores locales ϕ(x), el correlador de dos puntos eucĺıdeo para

ambos ordenamientos de campos

⟨ϕ(x)ϕ(y)⟩ = ⟨ϕ(y)ϕ(x)⟩ , (2.71)

calcula el siguiente valor de expectación

⟨0|ϕ(x⃗)e−H(t−t′)ϕ(y⃗)|0⟩ , (2.72)

donde asumimos t > t′. Para que esta prescripción tenga sentido, los operadores inser-

tados en t = 0 con diferentes posiciones deben conmutar entre śı. Éste es, por supuesto,

un requerimiento básico en QFT.

En teoŕıas con simetŕıas generalizadas, esta prescripción eucĺıdea puede parecernos

paradójica. Imaginemos que tenemos que calcular un correlador entre un WL W q y un

TL T g. Podemos tomar ambos en el tiempo t = 0 y enlazados entre śı. A partir de la

prescripción de la integral de caminos Eucĺıdea podemos concluir que

⟨W qT g⟩ = ⟨T gW q⟩ . (2.73)

Pero esto es, por supuesto, incorrecto, ya que los dos términos en general difieren por

un factor de fase. Pero, ¿qué está calculando aqúı la integral de caminos eucĺıdea en el

lado izquierdo o el derecho?

Para evitar este problema, podemos considerar que sólo uno de los dos operadores se

puede insertar en la integral de trayectoria como operador de ĺınea. Esto puede llevar

a la idea de que una red HD es necesaria para que la teoŕıa tenga una descripción
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eucĺıdea, porque los operadores no locales en una red HD conmutan entre śı. Y si sólo

permitimos los operadores consistentes con dicha elección no nos encontramos con el

problema anterior.13.

Pero de nuevo esto no es correcto. El problema es simplemente que la integral

de camino puede no entender el significado de W q o T g, o de ambos, si no somos

más precisos. Para calcular la integral de camino tenemos que expresar el integrando

en términos de las variables de integración. En la descripción habitual del campo de

Maxwell integramos la trayectoria sobre A. De esta manera, el significado de la WL

es suficientemente claro como exponencial de la circulación de A. En cambio, debemos

escribir el TL como un flujo del campo eléctrico. Para evitar puntos de coincidencia de

operadores podemos mover el flujo que define el TL infinitesimalmente hacia el futuro

o el pasado, y esto calculara cualquiera de las dos ordenaciones posibles. Pero esto será

sólo una prescripción que da sentido al cálculo de la integral de camino en cuestión. De

hecho, para resolver el mismo problema podŕıamos haber escrito el WL en términos del

flujo magnético. De esta manera podemos obtener diferentes prescripciones para dar

significado a la integral de camino eucĺıdea en QFTs con simetŕıas generalizadas. Por

supuesto, en la QFT Lorentziana este problema no aparece, y no existen ambigüedades

en el cálculo de los valores de expectación de los productos de WL y TL.

Pero aqúı nos asalta de nuevo una duda. ¿Por qué es importante la posición del flujo

en el tiempo si el flujo se conserva? La respuesta es que la integral de camino realiza un

cálculo espećıfico cuya interpretación en términos de operadores puede diferir aunque se

trate del mismo operador, y depende espećıficamente de cómo se escriba este operador

en términos de campos. Lo mismo ocurre con la ordenación temporal ordinaria en

tiempo real. Esta ordenación temporal no es un mapa de operadores en operadores,

porque para entender cuál es el resultado de la ordenación temporal necesitamos escribir

un operador dado de forma concreta en términos de operadores de campo a tiempos

fijos. Por ejemplo, ϕ(x, t) es el mismo operador si lo expresamos en un tiempo diferente

utilizando las ecuaciones del movimiento. Sin embargo, no podemos esperar que el

resultado de la ordenación temporal con otro operador no dependa de estas dos formas

de escribir ϕ(x, t).

Resumiendo, la principal lección f́ısica aqúı es que podemos usar operadores no

locales no conmutantes en la integral de caminos sin problemas, pero a costa de recordar

que podemos escribirlos en términos de operadores locales, y que cada prescripción

particular en la expresión de los operadores no locales en términos de campos locales

insertados en el cálculo de la integral de camino eucĺıdea tiene su propio significado

f́ısico.

13Una mayor elaboración en torno a esta cuestión se describió en [71].
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2.3.2. Las (engañosas) lecciones de los orbifolds y D = 2

Supongamos que tenemos una teoŕıa F sin violaciones de la dualidad de Haag, y

con un grupo de simetŕıa global G no espontaneamente roto. Tomemos la teoŕıa del

orbifold O = F/G. El orbifold tiene sectores no locales correspondientes a regiones con

la topoloǵıa de dos bolas disjuntas y con la topoloǵıa complementaria. Los operadores

no locales son operadores de carga-anticarga en las dos bolas, y operadores de twist con

borde fuera de las dos bolas. De nuevo podemos elegir redes HD, por ejemplo, tomando

todos los operadores de carga-anticarga para el álgebra de dos bolas cualesquiera, pero

no tomando el operador de twist para el álgebra del complemento, o la elección opuesta.

La cuestión es que para este tipo particular de sectores del orbifold ocurre algo es-

pecial. Podemos pensar en otra teoŕıa, a saber, la teoŕıa F , que contiene los operadores

cargados. Esta representa una extensión de O que respeta la dinámica y los valores de

expectación de O para los operadores neutros, pero cambia la noción de álgebra aditi-

va. De otra manera, la extensión F no tiene sectores HDV. Esto es porque el operador

carga-anticarga es ahora un operador del álgebra aditiva de las dos bolas. Como conse-

cuencia no podemos considerar al twist como un operador en el complemento porque

no conmuta con operadores cargados en una sola bola. En resumen, esta extensión F es

completa en el sentido de que tanto la dualidad de Haag como la aditividad se satisfa-

cen para cualquier región dada, sin importar su topoloǵıa. Esta noción de completitud

coincide con la noción de completitud del espectro de cargas en las teoŕıas de gauge y

la ausencia de simetŕıas generalizadas que mencionamos en la sección 2.2.3.

Podriamos estar tentados a pensar que hab́ıa una elección preferencial de la red

HD para el orbifold original O, a saber, aquella en la que elegimos el operador carga-

anticarga para el álgebra de las dos bolas. Esta elección es la que permite descomponer

el operador carga-anticarga no local en cargas independientes, dando lugar a la nueva

teoŕıa F . En particular, dicha completación no podŕıa alcanzarse rompiendo los twists

para D > 2. En otras palabras, podemos reparar esta forma particular de violaciones

de la dualidad de Haag ampliando el álgebra con operadores cargados. Además, dado el

orbifold, esta completación es única para D > 2, evidenciando que toda la información

sobre F ya exist́ıa en O. Podemos formalizar estas ideas a partir del teorema DHR, el

cual discutiremos en la sección 7.2.3.

Para CFT’s en D = 2, las regiones donde aparecen los operadores no locales con-

sisten en dos intervalos, y el complemento tiene la misma topoloǵıa. Solemos afirmar

que el orbifold14 tiene un nuevo operador de campo, a saber, el twist. Esto es cierto si

el twist sobre un intervalo se descompone en sus dos puntos extremos. Esto indica que

14Hablando estrictamente, el orbifold de una teoŕıa F en cualquier dimensión es la teoŕıa O = F/G
que no incluye ni los operadores cargados ni los campos que rompen a los twists en operadores locales
para el caso de D = 2. En la bibliograf́ıa de las CFTs con D = 2 el nombre “teoŕıa del orbifold”
corresponde a la adición a la teoŕıa O de estos campos cargados que rompen los twists locales.



2.3 Ĺıneas genuinas y superficies topoloǵıcas como operadores HDV 43

se pueden formar diferentes teoŕıas completas (en el sentido descrito anteriormente)

eligiendo redes HD particulares en D = 2, y promoviendo operadores no locales a ope-

radores de campo locales.15 Estas diferentes teoŕıas procedentes de diferentes opciones

de redes HD no son compatibles entre śı porque los tipos de operadores no locales que

rompemos actuaŕıan como operadores de campo locales no pueden conmutar entre śı.

En este escenario, el hecho de que se trate de teoŕıas diferentes puede verse ya en el

espacio plano a nivel local: el álgebra aditiva es diferente y tanto la aditividad como la

dualidad de Haag se satisfacen al mismo tiempo para cualquier región. Aún aśı, nótese

que la totalidad de la información sobre ambas completaciones ya estaba en O.

Estos ejemplos de D = 2 pueden inducir a pensar que todas las teoŕıas pueden

tener completaciones intŕınsecas a śı mismas y que la importancia de las redes HD

reside en las posibles completaciones de este tipo. Sin embargo, no parece posible

tal “completación gratuita” intŕınseca, que no cambie la dinámica de la teoŕıa, para

sectores correspondientes a otras topoloǵıas. No es posible romper un WL y colocarlo

en la dirección del tiempo, de modo que imite a una part́ıcula cargada. Tal ĺınea de

Wilson en el sentido del tiempo no tiene ninguna dinámica que pueda ser dictada por,

o estaŕıa de acuerdo con, la de la teoŕıa original. Tampoco parece posible construir

operadores de la ĺınea de Wilson para romper el WL no local sin introducir operadores

cargados reales que cambien la teoŕıa. Obsérvese también que, mientras que en D = 2

diferentes redes HD en las que los operadores no locales se rompen a campos locales

tienen diferentes álgebras aditivas, no ocurre lo mismo con otros tipos de redes HD para

simetŕıas generalizadas asociadas a diferentes topoloǵıas. Por ejemplo, una red HD para

el campo de Maxwell restablece la dualidad de Haag, pero la teoŕıa sigue violando la

aditividad, y el álgebra aditiva después de tal elección sigue siendo la misma.

2.3.3. Variedades compactas

Como hemos explicado anteriormente, las manifestaciones locales de las simetŕıas

generalizadas suelen despreciarse porque quedan ocultas por la descripción habitual.

Como consecuencia de esto, se suele afirmar que para comprender las consecuencias

sutiles de las simetŕıas generalizadas es necesario poner la teoŕıa en variedades M

topológicamente no triviales. De esta manera se pueden construir observables intere-

santes. Pero en la medida en que no consideramos teoŕıas gravitatorias, poner la teoŕıa

en una variedad diferente, incluso con una formulación lagrangiana, no es un proceso

automático y únicamente definido. Para que podamos entender la teoŕıa en estas varie-

dades como la “misma teoŕıa” que definimos originalmente en el espacio de Minkowski,

los observables deben tener una comprensión en Minkowski. Por el contrario, puede

ser el caso que debamos introducir nuevos datos, más allá de los que definen la teoŕıa

15 La completitud para CFTs en D = 2 está relacionada con la invariancia modular, véase [22, 72].



44 Álgebras y regiones en QFT

original, como una entrada arbitraria en la definición de la teoŕıa en M .

Para teoŕıas con simetŕıas generalizadas, donde el fenómeno en el espacio plano es

suficientemente claro en términos de clases HDV, tenemos una combinación de estas

dos opciones en el proceso de poner la teoŕıa en variedades topológicamente no triviales.

Por un lado, la estructura local de las álgebras debe ser la misma que en el espacio

plano, y esto se puede detectar observando los sectores HDV dentro de una bola. En

este sentido, si la teoŕıa es una teoŕıa de gauge pura SU(2), ésta puede distinguirse de

una teoŕıa sin sectores por la existencia tanto del TL como del WL para las álgebras

locales. Por otro lado, para las teoŕıas con sectores HDV, generalmente necesitaremos

especificar la estructura global mediante elecciones arbitrarias en M (condiciones de

contorno, sectores de superselección, etc). En esta sección desarrollaremos estas ideas

de forma general. Para un ejemplo concreto nos referimos a la sección 7.2.2 donde

hacemos expĺıcitas las ideas descritas en esta sección para el campo de Maxwell.

Estas elecciones globales son, de hecho, bastante similares a las que tenemos para la

teoŕıa en el espacio de Minkowski, si restringimos nuestra atención a una subregión R.

En general hay varias álgebras diferentes que podemos asignar a R, conteniendo o no

algún subgrupo de operadores no locales. Como esperamos tener un álgebra de tipo I16

para una teoŕıa en una variedad compacta, el paralelismo es aún mayor si en lugar de

considerar álgebras asignadas a regiones del espacio consideramos álgebras asignadas

a factores locales de tipo I. Veremos en el caṕıtulo 5 como éstas pueden localizarse

para que sean mayores que el álgebra de R y menores que el álgebra de una región

ligeramente mayor que R. Para estos factores de tipo I tenemos el ingrediente adicional

de que los endomorfismos en el álgebra efectuados por operadores duales no locales

en R′ son ahora internos, es decir, están implementados por operadores en el álgebra

misma. Entonces, podemos tener tanto el álgebra de operadores no locales de R como

los de R′ como parte del factor de tipo I.17 Además de eso también podemos generar

álgebras de tipo I con centro simplemente eliminando los operadores globales no locales

contenidos en el factor original de tipo I.

Al poner la teoŕıa en una variedad no trivial M volvemos a tener un álgebra de

tipo I, y tendremos, junto a los posibles operadores no locales a correspondientes a la

topoloǵıa de M , los duales b, correspondientes a los endomorfismos de esta álgebra no

local. Estos operadores duales conmutan con el álgebra aditiva, y con el tensor enerǵıa-

momento. Entonces, estos operadores duales b actúan como simetŕıas del Hamiltoniano

16 Las álgebras de von Neumann sin centro se clasifican en factores. En QFT las álgebras asociadas a
regiones son de tipo III. En cambio, los factores tipo I son isomorfos al álgebra de todos los operadores
acotados en algún espacio de Hilbert de dimension finita o infinita. Véase [73] para una introducción
y aplicaciones en QFT o [74] para un análisis más matemático.

17Esto no es posible para las álgebras habituales asociadas a subregiones, que son de tipo III. Los
operadores duales en R′ conmutan con el álgebra aditiva en R. Podemos empujar este operador hacia
R intentando ponerlo dentro del álgebra de R, pero la única manera de que siga conmutando con el
álgebra local es ponerlo en la frontera de R, y en ese caso el operador se vuelve demasiado singular.
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global, sin ninguna acción sobre las álgebras locales, y la única acción no trivial está en

los operadores a. En consecuencia, el Hamiltoniano es una función de los operadores

locales y los b, que actúan como cargas conservadas, pero no dependen de los a.

Mientras que las álgebras locales para subregiones con topoloǵıa no trivial en una

bola dentro de M no pueden hacerse únicas sin cambiar la teoŕıa, las opciones globales

(posibles subálgebras de los operadores no locales y sus duales) representan modelos

f́ısicamente diferentes enM . En la literatura estándar se insiste en que la teoŕıa debeŕıa

definir un modelo para cualquier M . Esto, por supuesto, puede establecerse, pero la

relevancia f́ısica es de nuevo discutible. Podemos preparar diferentes sistemas, con

diferente estructura global, para diferentesM , y no hay conexión entre estas elecciones

a medida que cambiamosM . La receta estándar es que uno debe elegir los modelos para

diferentes M de acuerdo con una única red HD para la teoŕıa original. Por ejemplo,

para una teoŕıa SU(2), para cualquier M con un lazo no contractible, se puede tomar

la prescripción con el WL global o sin el WL global, y esto está en correspondencia

con las dos redes HD. Una vez más, desde el punto de vista de la teoŕıa original, y

desde un punto de vista f́ısico, no hay nada que apunte a estas elecciones, ni a ninguna

compatibilidad prescrita para las elecciones para diferentes M .18

La lógica detrás de esta idea de que debemos elegir una única red HD para todas las

variedades M puede venir de los modelos de gravedad, donde el espacio es dinámico,

y en principio la f́ısica en cualquier variedad debe ser determinada automáticamente.

Aqúı no hablamos de gravedad. Pero incluso en este caso, no está claro por qué la

teoŕıa en cada variedad debeŕıa estar dictada por una red HD, y no por cualquier otra

elección, o incluso por una superposición cuántica de elecciones. Más aún, si tenemos

en cuenta que la estructura local sigue gozando de toda su arbitrariedad. Tal vez esta

imposibilidad de eliminar la arbitrariedad de la red HD esté relacionada con la idea

habitual de que, en última instancia, las simetŕıas generalizadas deben estar realmente

ausentes en las teoŕıas de la gravedad.

Otra motivación puede venir de conectar la idea de simetŕıas generalizadas con la

descripción de modelos topológicos. En efecto, podemos utilizar variedades suficiente-

mente grandes para estudiar la f́ısica infrarroja de una teoŕıa con grados de libertad

locales, y este ĺımite puede mostrar propiedades topológicas. En este caso, lo que ocurre

es que la propia dinámica de la teoŕıa determina una red IR HD efectiva. Por ejemplo,

una teoŕıa SU(2) puede tener confinamiento, de tal manera que en el IR el valor de ex-

pectación del WL es 0 mientras que el del TL es 1 (después de un smearing adecuado).

La opción opuesta es válida para la ruptura espontánea de simetŕıa.

18Exigir que una QFT se defina automáticamente para todas las variedades sin entradas externas
en parte también se origina en la definición de Segal de CFTs en D = 2 [75]. Esta definición prescribe
una función de partición única para cualquier variedad, y debido a ello asume invariancia modular.
Sin embargo, la existencia de diferentes redes HD está asociada al fallo de la invariancia modular.
Véanse las referencias en la nota a pie de página 15.
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Esta saturación de los valores de expectación, ya sea a 1 o a 0, sólo puede ocurrir

para las redes HD, precisamente debido a las relaciones de conmutación no triviales

de los operadores no locales, y a las relaciones de complementariedad cuántica que

satisfacen. Por supuesto, también podemos estudiar este fenómeno de saturación IR en

el espacio plano. En este caso existe una elección dinámica en el IR. Pero para estudiar

la teoŕıa fuera del ĺımite IR puramente topológico, tenemos que entender que ambos

operadores duales existen en pie de igualdad, aunque con estad́ısticas diferentes. En el

ĺımite topológico, podemos asimilar efectivamente el operador con valor de expectación

1 a un número (el “generador de simetŕıa” que respeta el vaćıo), mientras que el que

tiene valor de expectación 0 conducirá a degeneraciones del vaćıo en una variedad

no trivial. Entonces, tenemos más bien una estructura de sectores de superselección

correspondientes a las diferentes vaćıos. En el caso del ĺımite IR del confinamiento,

por ejemplo, la terminoloǵıa habitual de SU(2) frente a SO(3) implica nombrar la

teoŕıa por la elección de considerar todos los sectores de superselección (y el WL que

cambia entre ellos) o sólo considerar uno de ellos, mientras que todos los sectores existen

realmente en ambos casos.

Una cuestión interesante revelada por la presente discusión es la siguiente. Dada

una QFT en un espacio plano, ¿cuáles son las ambiguedades al poner esta “misma

teoŕıa” en variedades compactas? Argumentamos que la presencia de sectores HDV

siempre da lugar a tales ambiguedades. La cuestión es si éstas son todas las posibles, o

si hay más. Otra cuestión relacionada es que las subregiones del espacio plano no tienen

topoloǵıas tan ricas como las de las variedades compactas de la misma dimensión. Esto

puede sugerir que las variedades no triviales pueden revelar otras propiedades. Éstas,

sin embargo, por razones más lógicas que f́ısicas, deben tener otra manifestación en el

espacio plano.

2.4. Discusión del caṕıtulo

Durante este caṕıtulo hemos introducido las herramientas que utilizaremos a lo largo

de esta tesis. En particular, vimos como en las teoŕıas con simetŕıas generalizadas existe

más de una álgebra posible para ciertas regiones del espacio-tiempo con topoloǵıa no

trivial. En otra palabras, la simetŕıas generalizadas vienen asociadas a operadores no

locales que producen los fallos en la aditividad y/o dualidad de Haag a la hora de

definir el álgebra asociada a una dada región.

Este enfoque algebraico nos permite probar de forma abstracta resultados que

valdrán para cualquier tipo de simetŕıa generalizada, ya sea una simetŕıa 0-forma pro-

veniente de un orbifold o una simetŕıa tipo k-forma. Un ejemplo claro es el hecho de que

las simetŕıas generalizadas vienen en pares. También, nos permite definir con precision

ciertas ideas, como las clases de equivalencia de operadores no locales, la completitud,
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etc. Durante los próximos caṕıtulos trabajaremos estas ideas para distintas teoŕıas,

comenzando con el gravitón de Einstein en el caṕıtulo 3.

En la sección final comparamos nuestro enfoque algebraico con el enfoque usual

usado en la literatura de simetŕıas generalizadas. Vimos que ambas nociones son ma-

yormente equivalentes en lo que respecta a cálculos espećıficos pero difieren en ciertas

interpretaciones. En el centro de esta discrepancias se encuentra la idea de red de Haag-

Dirac, la cual en algunos casos suele entenderse como parte de la definición de la teoŕıa.

Pospondremos volver a discutir esta comparación hasta el caṕıtulo 7 donde veremos

un ejemplo que maximiza las consecuencias de estas diferencias.





Caṕıtulo 3

Simetŕıas Generalizadas del

Gravitón

El objetivo de este caṕıtulo es encontrar y analizar en teoŕıa de gravedad linealizada

los operadores no locales y las correspondientes clases HDV, aśı como sus reglas de

fusión y álgebra. A continuación describiremos las motivaciones para dicho estudio.

Comencemos con las que provienen puramente de QFT. Como es bien sabido, apa-

recen varios obstáculos y peculiaridades cuando se intenta construir una QFT con

part́ıculas sin masa de esṕın dos. Por un lado, tenemos el teorema de Weinberg-Witten

[17], que proh́ıbe la existencia de un tensor de enerǵıa-momento para estas teoŕıas.

Por otro lado, tenemos el teorema de Coleman-Mandula [2], que impide una mezcla

no trivial de simetŕıas espacio-temporales con simetŕıas internas. Dado este contex-

to, seŕıa interesante profundizar en estas cuestiones desde el punto de vista de las

simetŕıas generalizadas. En particular, dado que la simetŕıa de gauge del gravitón está

relacionada con simetŕıas espacio-temporales, uno podŕıa imaginar que las simetŕıas

generalizadas podŕıan estar cargadas bajo el grupo Poincaré. De hecho, encontraremos

que el gravitón tiene clases HDV asociadas a regiones con lazos no contractibles, y que

estas clases están cargadas bajo simetŕıas espacio-temporales. Podemos pensar esto, en

principio, como un contra-ejemplo a una posible extensión del Coleman-Mandula para

simetŕıas generalizadas. En particular, este ejemplo podŕıa explicarse porque la teoŕıa

es libre, pero estaŕıa dando un fuerte argumento adicional en contra de potenciales

teoŕıas interactuantes e invariantes de Lorentz del gravitón.

Desde una perspectiva de QFT, también estamos motivados a estudiar este proble-

ma para comprender mejor el alcance del enfoque algebraico de las simetŕıas generali-

zadas, dado que esperamos que el gravitón muestre varios comportamientos peculiares

que podŕıan escapar los enfoques usuales de las simetŕıas generalizadas.

Por otro lado existen motivaciones procedentes de la gravedad cuántica. Desde la

aparición de [18, 19], ha habido un creciente interés en tratar de entender la comple-
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50 Simetŕıas Generalizadas del Gravitón

titud del espectro en la gravedad cuántica. A partir de [19], y más recientemente en

[20–23], la cuestión de la completitud se ha relacionado acertadamente con la ausencia

de simetŕıas generalizadas. El enfoque algebraico hace esto transparente, como hemos

revisado anteriormente en el caṕıtulo 2. Dada una QFT con una estructura dual de

simetŕıas generalizadas, para que la teoŕıa sea completa, necesitamos introducir un

número suficiente de operadores cargados tal que las inclusiones anteriores se satu-

ren, o equivalentemente, tal que los operadores no generados localmente se generen

localmente. En este sentido, al estudiar las simetŕıas generalizadas del gravitón, tam-

bién estamos allanando el camino para una posible comprensión de cómo completar

tal teoŕıa y/o qué problemas o sutilezas surgen en el proceso. En este contexto, vere-

mos que para romper los operadores no locales manteniéndonos dentro de formalismo

estándar de QFT, necesitaremos romper drásticamente la invariancia de Poincaré.

Por último, también existen motivaciones procedentes de la f́ısica de la materia

condensada. Recientemente, se han explorado algunos nuevos tipos de excitaciones con

movilidad restringida. Estas fueron denominadas fractones, véase por ejemplo [76–81]

y para posibles escenarios experimentales [82, 83]. Las formulación de teoŕıas fracto-

nicas dentro del formalismo de QFT fue desarrollada en [84–86]. En particular, dichas

teoŕıas no poseen simetŕıa de Poincaré y las propiedades de movilidad de estos fracto-

nes están completamente determinadas por la naturaleza de las simetŕıas generalizadas

asociadas con los campos de gauge a los que se acoplan los fractones. Estas simetŕıas

generalizadas, y sus operadores topológicos asociados, están t́ıpicamente cargados bajo

simetŕıas espaciales, y esto es la ráız de las propiedades de movilidad restringida de los

fractones. Además, en [87] ya se estableció una conexión heuŕıstica entre la f́ısica de los

fractones y la f́ısica gravitacional, basada en los v́ınculos hamiltoniano y de momento.

En este caṕıtulo, analizando en detalle las simetŕıas generalizadas del gravitón, podre-

mos precisar mejor las conexiones y diferencias entre la f́ısica de los gravitones y la

f́ısica de los campos de gauge tensoriales que son usualmente asociados a los fractones.

Este caṕıtulo está estructurado de la siguiente manera. En la sección 3.1, intro-

duciremos la teoŕıa del gravitón (gravedad linealizada) y repasaremos la derivación

de los v́ınculos hamiltoniano y de momento, junto con sus respectivas cargas globales

asociadas. Veremos que estas pueden escribirse en términos de integrales de superficie

de operadores no invariantes de gauge. Por ende, no son responsables de las simetŕıas

generalizadas. Para encontrar simetŕıas generalizadas es necesario escribir la teoŕıa en

términos de operadores invariantes de gauge y estudiar la no saturación de la causalidad

para tal álgebra. Para ello, reformulamos la teoŕıa del gravitón en términos de ciertos

campos eléctricos y magnéticos, re-derivando finalmente la formulación de Longo et

al [36]. Utilizaremos esta formulación electromagnética del gravitón en la sección 3.2

para encontrar las clases HDV duales producidas por la simetŕıa generalizada. Éstas

resultan ser simetŕıas 1-forma cargadas bajo el grupo de Poincaré (esto es debido a que



3.1 Gravedad Linealizada 51

llevan ı́ndices espaciales). Trabajando las relaciones de conmutación canónicas del gra-

vitón derivaremos las relaciones de conmutación de los campos eléctricos y magnéticos

del gravitón. Con estas relaciones de conmutación, hallaremos el álgebra de operado-

res topológicos. En la última sección 3.3, discutiremos la conexión entre la f́ısica del

gravitón y la f́ısica de los sistemas fractónicos. Exploramos brevemente la naturaleza

de los operadores cargados que necesitamos incluir para romper expĺıcitamente las si-

metŕıas generalizadas y completar la teoŕıa del gravitón dentro del marco de la QFT.

Terminamos con algunas discusiones sobre el contenido del caṕıtulo en la sección 3.4.

3.1. Gravedad Linealizada

Vamos a comenzar analizando la teoŕıa del gravitón de Einstein linealizado en un

espacio-tiempo plano en D = 4 dimensiones. Dicha teoŕıa surge al considerar pequeñas

perturbaciones sobre una métrica de Minkowski fija de fondo. Más precisamente, la

métrica tiene la forma

gµν = ηµν + hµν , ||hµν || ≪ 1 . (3.1)

Utilizando esta expresión podemos expandir a cualquier orden deseado cualquier va-

riable relacionada con la curvatura en relatividad general. En particular, partiendo de

las ecuaciones de Einstein sin fuentes externas en D = 4 dimensiones, la ecuación de

movimiento linealizada esta dada por

∂λ∂µhλν + ∂λ∂νhλµ − ∂λ∂λhµν − ∂µ∂νh
σ
σ − ηµν(∂

λ∂σhλσ − ∂σ∂σh
ρ
ρ) = 0 . (3.2)

Por otro lado, expandiendo el escalar de Ricci a primer y segundo orden, obtenemos

R(1) = ∂ρ∂σh
ρσ − ∂ρ∂ρh

σ
σ , (3.3)

R(2) = hλσ
[
∂ρ∂

ρhλσ − ∂λ∂
ρhρσ − ∂σ∂

ρhρλ + ∂λ∂σh
ρ
ρ

]
+

3

4
∂σhρλ∂

σhρλ

− ∂σhσλ∂ρh
ρλ + ∂σhσλ∂

λhρρ −
1

2
∂σhρλ∂

ρhσλ − 1

4
∂λhσσ∂λh

ρ
ρ . (3.4)

En este contexto, podemos recuperar las ecuaciones de movimiento anteriores (3.2) a

partir de la acción cuadrática de Einstein-Hilbert 1

SEH =

∫
d4x

√
g R ≈

∫
d4x

[(
1 +

1

2
h

)
R(1) +R(2)

]
. (3.5)

1Para mayor comodidad consideraremos (8πG) = 1 a menos que se exprese lo contrario.
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Esta es simplemente la acción habitual de Fierz-Pauli para el gravitón [88], a excepción

de algunos términos de borde que surgen de integrar por partes la curvatura, es decir

SFP =

∫
d4x

[
−1

2
∂µh

ρ
ρ∂νh

µν +
1

2
∂λh

µν∂νhµλ +
1

4
∂µh

ρ
ρ∂

µhσσ −
1

4
∂λhµν∂λhµν

]
. (3.6)

3.1.1. Simetŕıa de Gauge: difeomorfismos lineales

Debido a la invariancia ante difeomorfismos, la teoŕıa de los gravitones tiene una

simetŕıa de gauge. Sin embargo, no se trata del grupo de difeomorfismos completo,

como ocurre para la teoŕıa de Einstein no lineal completa. La razón fundamental es

que hay difeomorfismos que destruyen el ĺımite de perturbación débil definido por (3.1).

Por ende, necesitamos restringirnos a los difeomorfismos que respetan dicha suposición.

A orden lineal, podemos escribir los difeomorfismos en cuestión como

xµ → x′
µ
= xµ + ξµ(x) , (3.7)

donde ξµ(x) es del mismo orden que hµν . Bajo este conjunto restringido de difeomor-

fismos, la perturbación hµν transforma de la siguiente forma

h′µν(x
′) = hµν(x) + ∂µξν(x) + ∂νξµ(x) , (3.8)

lo que implica que los śımbolos de Christoffel linealizados dados por

Γ
µ (1)
αβ =

1

2
ηµn (hnα,β + hnβ,α + hαβ,n) , (3.9)

transforman como

Γ′
µ (1)
αβ = Γ

µ (1)
αβ + ∂α∂βξ

µ . (3.10)

Siguiendo, vemos que el tensor de Riemann a primer orden definido como

R(1)
ρσµν = ηρα

(
Γα (1)
νσ,µ − Γα (1)

µσ,ν

)
=

1

2
(∂σ∂µhρν + ∂ρ∂νhσµ − ∂ρ∂µhσν − ∂σ∂νhρµ) , (3.11)

es claramente invariante de gauge

R′
ρ (1)
σµν = Γ′

ρ (1)
νσ,µ − Γ′

ρ (1)
µσ,ν =

(
Γρ (1)
νσ,µ − Γρ (1)

µσ,ν

)
+ (∂ν∂σ∂µξ

ρ − ∂µ∂σ∂νξ
ρ) = Rρ (1)

σµν . (3.12)

Como mencionamos anteriormente, nos interesa estudiar la teoŕıa de gravitones linea-

lizados en el espacio plano. Esta es es una teoŕıa de part́ıculas de esṕın dos sin masa.

En este contexto, el tensor de curvatura (3.11), como operador en la teoŕıa cuántica,

genera el álgebra invariante de gauge local de la teoŕıa de gravitones.
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3.1.2. Vı́nculos, simetŕıas globales y cargas conservadas

Para derivar los operadores no locales que implementan a las simetŕıas genera-

lizadas, se podŕıa seguir ingenuamente un procedimiento similar al del campo elec-

tromagnético libre. En la teoŕıa de Maxwell, podemos integrar los v́ınculos de gauge

∇ · E = 0 sobre un volumen espacial. Esto nos da lugar a la ley de Gauss en ausencia

de cargas. La ley de Gauss implica que si definimos un operador de flujo sobre una

superficie abierta, este operador no depende de la superficie elegida, sólo de su borde.

Esto produce que dicho operador pueda asociarse a cualquier anillo que contenga el

borde, ya que conmuta con todos los operadores locales invariantes de gauge fuera de

dicho anillo. Estos operadores de superficie son los TL.

Repasemos como funciona este método en la teoŕıa del gravitón. En este caso,

las ecuaciones de movimiento de los multiplicadores de Lagrange h00 y h0i producen

respectivamente los v́ınculos hamiltoniano y de momento linealizados

H = −2G
(1)
00 = ∂i∂

ihjj − ∂i∂jhij = 0 , Hi = −2G
(1)
0i = −2 ∂jπ

ij = 0 , (3.13)

donde πij denota los momentos canónicos asociados a las restantes variables dinámicas

hij. Más expĺıcitamente, tenemos

πij =
δLFP
δḣij

=
1

2

(
ḣij − ∂ih0j − ∂jh0i − δijḣ

k
k + 2 δij∂

kh0k

)
. (3.14)

A nivel cuántico, las variables duales canónicas hij y πij satisfacen las relaciones de

conmutación a igual tiempo

[
hij(x), π

kn(y)
]
=
i

2

(
δki δ

n
j + δni δ

k
j

)
δ(x− y) . (3.15)

A partir de estas relaciones de conmutación, es sencillo encontrar que los v́ınculos

con smearing producen la acción de difemorfismos linealizados (3.8) sobre las varia-

bles canónicas. Esto es, si introducimos funciones de smearing ξ0(x) y ξi(x) para H y

Hi respectivamente, podemos escribir las operaciones no triviales sobre las variables

canónicas como [
hij(x),

∫
d3yHk(y) ξk(y)

]
= i (∂iξj(x) + ∂jξi(x)) , (3.16)[

πij(x),

∫
d3yH(y) ξ0(y)

]
= i
(
∂i∂j − δij∂

2
)
ξ0(x) . (3.17)

Al igual que con el campo de Maxwell, uno podŕıa estar interesado en encontrar las

cargas asociadas con estos v́ınculos, es decir, con la invariancia ante difeomorfismos

lineales. Teniendo en cuenta el segundo teorema de Noether [89, 90] para difeomorfismos
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linealizados, es posible derivar las cargas asociadas de forma más rigurosa. Podemos

escribir estas cargas como integrales de los v́ınculos sobre una región R definida sobre

una superficie de Cauchy, o como flujos sobre el borde cerrado ∂R de dicha región. Más

expĺıcitamente:

P 0 = −1

2

∫
R

d3xH =
1

2

∫
∂R

dSn
(
∂jh

nj − ∂nhjj
)
, (3.18)

P i = −1

2

∫
R

d3xHi =
1

2

∫
∂R

dSn

[
∂nh i

0 − ḣni − δni(∂jh
j
0 − ḣjj)

]
,

J0i = −1

2

∫
R

d3x (xiH− x0Hi)

=
1

2

∫
∂R

dSn

[
xi(∂jhjn − ∂nhjj)− hni + δnihjj − x0(∂nh i

0 − ḣni − δni∂jh0j + δniḣjj)
]
,

J ij = −1

2

∫
R

d3x (xjHi − xiHj)

=
1

2

∫
∂R

dSn

[
xj(∂nh i

0 − ḣni − δni∂mh
0
m + δniḣmm)− δjnh i

0 − (i↔ j)
]
.

Estas son las famosas “cargas de Poincaré”. Son precisamente las que se propusieron

originalmente en [91] mediante la construcción del tensor de enerǵıa-momento efectivo

del gravitón (cuando se consideran válidas las ecuaciones completas de la relatividad

general). Puede verse que estas cargas de Poincaré satisfacen el álgebra de Poincaré

[92], lo que podemos considerar como una consecuencia de la linealización del álgebra de

Dirac-Schwinger para los v́ınculos no lineales de la formulación Arnowitt-Deser-Misner

(ADM) [93].

No obstante, aqúı vemos la primera diferencia con la teoŕıa de Maxwell. Mientras

que en la teoŕıa de Maxwell las cargas se escriben como flujos de operadores locales

invariantes de gauge (campos eléctrico y magnético), en gravedad estas cargas conser-

vadas de Poincaré, que surgen al integrar los v́ınculos hamiltoniano y de momento, son

flujos de operadores locales no invariantes de gauge. Esto se produce, a pesar de que,

los propios v́ınculos y cargas asociadas son invariantes de gauge. Esta caracteŕıstica

nos impide extraer de ellas los WL y TL de la forma en que se hace para el campo

de Maxwell. Más concretamente, si integramos los flujos anteriores sobre superficies

abiertas obtenemos operadores lineales que no son invariantes de gauge, y por tanto no

generan simetŕıas del espacio f́ısico de Hilbert invariante de gauge en el que los v́ınculos

están fijados a cero.

De forma equivalente, la diferencia entre el caso de Maxwell y el de gravedad linea-

lizada en consideración se manifiesta en que el tensor de enerǵıa-momento efectivo del

gravitón no presenta invariancia ante difeomorfismos (excepto en el bode de la variedad

diferencial en cuestión, donde las transformaciones de gauge desaparecen). Más aún,

no es posible encontrar una modificación de dicho tensor de enerǵıa-momento que sea
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invariante de gauge. Esto es debido al teorema de Weinberg-Witten [17], que proh́ıbe

la existencia de un tensor de enerǵıa-momento invariante de gauge, conservado y cova-

riante de Lorentz que produzca las cargas de Poincaré en una teoŕıa con part́ıculas no

masivas de esṕın 2.

Notamos que la ausencia de un tensor de enerǵıa-momento bien definido no implica

la ausencia de la simetŕıa de Poincaré. Esta es implementada por los unitarios del

grupo que podemos definir si exponenciamos (3.18) tomando a R como una superficie

de Cauchy completa e infinita. También, existen implementaciones de la simetŕıa sobre

álgebras locales pero las estudiaremos en el caṕıtulo 5. En esta dirección, para el caso

D = 4 podemos ver que las simetŕıas espacio-temporales de la teoŕıa de la gravedad

linealizada pueden extenderse al grupo conforme completo. A continuación esbozamos

los argumentos en cuestión y presentamos las referencia correspondientes.

La teoŕıa libre del gravitón sobre un espacio de Minkowski claramente exhibe inva-

riancia de Poincaré y de escala, por lo que nos resta comprender si podemos ampliar

dicha simetŕıa para incluir el grupo conforme completo en D = 4. Por un lado, hemos

afirmado que el teorema Weinberg-Witten [17] excluye la existencia de un tensor de

enerǵıa-momento. Podŕıamos considerar este fallo como un argumento en contra de

que la teoŕıa tenga simetŕıa conforme. Es decir, la teoŕıa no satisface los axiomas de

CFT habituales que aparecen en la literatura bootstrap, y que usualmente asumen

la existencia de tal corriente [94, 95]. Por otro lado, podemos relajar esta suposición

[96–98]. En este contexto, todas las representaciones libres, sin masa e irreducibles del

grupo conforme se han clasificado en [99, 100], donde las representaciones spin 2 de

SO(4, 2) vienen dadas por diagramas de Young con las mismas simetŕıas y ecuaciones

de movimiento que el tensor de Riemann lineal on-shell:

Rµνρσ = −Rνµρσ = −Rµνσρ , Rµνρσ = Rρσµν , ηµνRµνρσ = 0 . (3.19)

Además, el tensor de Riemann es el operador de menor dimensión que aparece en el

espacio de fases invariante de gauge, con su dimensión de escala ∆ = 3 saturando el

ĺımite de unitaridad [101]. Esto lo hace un candidato a operador primario que describe

una CFT libre.

Siguiendo esta linea, se ha demostrado expĺıcitamente que todas las funciones de

correlación del tensor de Riemann lineal en D = 4 coinciden con las de un campo de

spin 2 primario con ∆ = 3 [102]. Esto prueba que la teoŕıa en cuestión (definida por

sus correladores) tiene simetŕıa conforme. Más aún, podemos obtener los generadores

del grupo conforme a partir de los de Poincaré utilizando la construcción presentada

en [36].
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3.1.3. Gravedad linealizada en la formulación ADM

Para mayor claridad respecto al origen f́ısico de las leyes de conservación menciona-

das anteriormente, aqúı presentamos la teoŕıa de la gravedad linealizada utilizando el

enfoque Hamiltoniano usual de la Relatividad General. Es decir, revisitamos la teoŕıa

ya presentada en la formulación ADM, presentada por primera vez en [103]. En parti-

cular, seguiremos la notación y las ideas generales desarrolladas en [104]. Esta sección

no es necesaria para el desarrollo de lo que sigue en el caṕıtulo, solo mostramos que los

resultados ya presentados son consistentes con ADM.

Para comenzar, vemos que la acción ADM cuadrática que es equivalente a la acción

de Einstein-Hilbert al mismo orden (3.5) y a la acción de Fierz-Pauli (3.6) a excepción

de los términos de borde. Podemos escribir a la primera de estas como

S
(2)
ADM =

∫
dt d3x

[(
1 +

h

2
− h00

2

)
3R(1) + 3R(2) +Kij

(1)K
(1)
ij −K2

(1)

]
, (3.20)

donde 3R es la curvatura tridimensional, y la foliación queda definida por la función

de lapso N y el vector de desplazamiento N i

N =
√

(1− h00) +O(h2) = 1− h00
2

+O(h2) , N i = −h0i +O(h2) , (3.21)

que se corresponden a la curvatura extŕınseca definida como

Kij =
1

2

(
ḣij − ∂ih0j − ∂jh0i

)
. (3.22)

La foliación determinada por N y N i y la métrica inducida qij = δij+hij nos permiten

recuperar la métrica completa gµν = ηµν + hµν de la forma usual en ADM

ds2 = (−N2 + qij N iN j)dt2 + qij N jdxidt+ qij N idxjdt+ qij dx
idxj (3.23)

= −(1− h00)dt
2 + 2h0bdt dx

b + (δab + hab)dx
adxb +O(h2) .

Los momentos y v́ınculos estándar de ADM reproducen los momentos correctos (3.14)

y los v́ınculos (3.13) presentados en la sección 3.1.2

πij =
√
q(Kij − qijK) =

1

2

(
ḣij − ∂ih0j − ∂jh0i − δijḣ

k
k + 2δij∂

kh0k

)
+O(h2) , (3.24)

H =
√
q
(
−3R +KabK

ab −K2
)
= ∂a∂ahbb − ∂a∂bhab +O(h2) , (3.25)

Hi =
√
q∇j

πij = −2∂jπij +O(h2) , (3.26)

donde∇i es la derivada covariante proyectada sobre la superficie de Cauchy del espacio-

tiempo de Minkowski definida por la foliación (3.21). Esta actúa sobre variables de

orden O(h) como la derivada habitual ∂i.
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Además, podemos recuperar el Hamiltoniano a partir de la transformación de Le-

gendre de (3.20) o bien expandiendo el Hamiltoniano de ADM no lineal

HADM =

∫
d3x

[
N(x)H(x) +N i(x)Hi(x)

]
(3.27)

=

∫
d3x

[
H(2) +

(
1− h00

2

)
H(1)(x)− h0i(x)H(1)

i (x)

]
+O(h3) .

Desde este punto de vista, el Hamiltoniano de gravedad linealizada sin términos de

borde no es una combinación lineal de v́ınculos lineales. Sin embargo, como cabŕıa de

esperar a partir de la foliación (3.21), los v́ınculos procedentes de la función de lapso y

del vector de desplazamiento son equivalentes a los derivados en la sección 3.1 a partir

de los multiplicadores de Lagrange h00 y h0i respectivamente.

Nos será útil tener en cuenta que podemos calcular las ecuaciones de Heisenberg

para las variables canónicas utilizando (3.27)

iḣij(x) = [hij(x), HADM ] ⇒ πij =
1

2

(
Kij − δijK

n
n

)
, (3.28)

iπ̇ij(x) = [πij(x), HADM ] ⇒ G
(1)
ij = 0 . (3.29)

las cuales equivalen a la ecuación de movimiento (3.2).

3.1.4. Espacio de fases invariante de gauge del gravitón

La descripción del campo gravitatorio linealizado en términos de variables del espa-

cio de fases invariante de gauge nos facilitara la comprensión del problema de encontrar

las simetŕıas generalizadas. El objetivo es encontrar campos gravitatorios eléctricos y

magnéticos que desempeñen papeles análogos a los del campo de Maxwell. En el caso

del campo de Maxwell, el álgebra completa de la teoŕıa está generada por dichos cam-

pos. Aśı que empecemos por buscar un conjunto de operadores invariantes de gauge

que generen el álgebra de gravitones.

En contraste con lo que se espera en la gravedad cuántica completa, la teoŕıa del

campo de gravitones en el espacio de Minkowski contiene operadores locales invariantes

de gauge. Como hemos mencionado anteriormente, podemos construirlos a partir del

tensor de Riemann linealizado2, definido en (3.11). Este tensor genera completamente

el álgebra local de la teoŕıa. Además, presenta las mismas simetŕıas del tensor de

Riemann no lineal. Un camino para escribir la teoŕıa en términos de campos eléctricos

y magnéticos, utiliza el hecho de que podemos entender el tensor de Riemann como

la curvatura de una conexión local de Lorentz, la conexión de esṕın3. Esto nos sugiere

2De ahora en adelante suprimiremos el ı́ndice de orden en perturbaciones y escribiremos el tensor

de Riemann linealizado R
(1)
µνρσ simplemente como Rµνρσ

3Para una descripción completa de este enfoque y su historia, véase [88].
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definir los siguientes campos eléctricos y magnéticos

Ẽ αβ
i = −R αβ

0i , B̃ αβ
i =

1

2
εijkR

αβ
jk . (3.30)

Sin embargo, como es bien sabido, la formulación de la teoŕıa gauge de la Relatividad

General difiere en muchos aspectos de la de Maxwell. En el caso que nos ocupa, y a

diferencia de Maxwell, utilizando la ecuación de Heisenberg para los momentos canóni-

cos πij (o las ecuaciones del movimiento en la imagen clásica), observamos que estos

campos no son independientes. En efecto obtenemos

Ẽ 0a
i = εijk δ

jnB̃ ka
n , B̃ 0a

i = −εijk δjnẼ ka
n . (3.31)

En consecuencia, podemos describir mejor los grados de libertad on-shell del tensor

de Riemann linealizado mediante la elección de operadores eléctricos y magnéticos

presentada en [36]. Estos son

Eij = −R0i0j , Bij =
1

2
εiabR

ab
0j . (3.32)

Dichas variables proporcionan un conjunto independiente de campos locales invariantes

de gauge que generan el álgebra de gravitones. Es importante que destaquemos que

heredan del tensor de Riemann las siguientes propiedades de simetŕıa

Eij = Eji , Bij = Bji , Ei
i = 0 , Bi

i = 0 , (3.33)

y obedecen a una versión generalizada de las ecuaciones de Maxwell

∂jEij = 0 , ∂jBij = 0 , (3.34)

εink∂
nEk

j = −Ḃij , εink∂
nBk

j = Ėij . (3.35)

Utilizando la expresión (3.11), podemos describir estos campos eléctricos y magnéticos

en términos de las variables canónicas como

Eij =
1

2

(
∂k∂khij + ∂i∂jh

k
k − ∂i∂

khkj − ∂j∂
khki

)
, (3.36)

Bij =εink ∂
k
(
πnj − δnj

π

2

)
, (3.37)

con π = πjj . Estas expresiones nos permiten interpretar las propiedades sin divergencia

y sin traza de los campos eléctricos como consecuencia del v́ınculo hamiltoniano

∂jEij =
1

4
∂iH , Ei

i =
1

4
H , εijkE

ij = 0 , (3.38)
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mientras que las propiedades de simetŕıa y ausencia de divergencia del campo magnético

proceden del v́ınculo de momento

∂jBij = −1

2
εink∂

kHn , Bi
i = 0 , εijkB

ij =
1

2
Hk = 0 . (3.39)

Aunque la teoŕıa del gravitón y la teoŕıa de Maxwell parecen bastante similares en

esta formulación, existe una diferencia clave al cuantizar la teoŕıa. Las relaciones de

conmutación entre los campos eléctrico y magnético resultan ser muy diferentes. En el

presente caso, utilizando las relaciones de conmutación canónicas (3.15), y las expre-

siones (3.36-3.37), obtenemos4

[Eij(x), Bkl(y)] =
i

4
εkab

[
δia(∂j∂l − δjl∂

2) (3.40)

+ δja (∂i∂l − δil∂
2)− δla(∂i∂j − δij∂

2)
]
∂b δ(x− y) .

Estas expresiones obedecen todas las propiedades (3.33-3.34). De hecho, podemos re-

escribirlas de una manera más simétrica

[Eij(x), Bkl(y)] =
i

8

[
εkib(∂j∂l − δjl∂

2) + εkjb(∂i∂l − δil∂
2) (3.41)

+ εlib(∂j∂k − δjk∂
2) + εljb(∂i∂k − δik∂

2)
]
∂b δ(x− y) .

Para resumir, en esta formulación Maxwelliana, las álgebras locales están generadas

por campos eléctricos y magnéticos Eij, Bij, que obedecen los v́ınculos (3.33), las ecua-

ciones de movimiento (3.34-3.35), y tienen conmutadores (3.41). El análisis de simetŕıas

generalizadas será mucho más transparente en esta formulación como mostraremos en

la sección (3.2).

3.1.5. Formulación dual del campo gravitatorio linealizado

Un estudio más profundo de las simetŕıas generalizadas de la gravedad linealizada

requiere entender la transformación de dualidad que involucra un tensor simétrico de

segundo rango hµν . La dualidad correspondiente, análoga a la electromagnética, se

describió en detalle en [107]. Aqúı presentamos una revisión de los aspectos útiles.

Comenzamos escribiendo la acción en términos de un Lagrangiano “parental”

S =

∫
d4x

[
1

16
T(αβ)µT

(αβ)µ +
1

8
T(αβ)µT

(αµ)β +
1

4
T(αβ)µε

αβνρ∂νh
µ
ρ

]
, (3.42)

4Las relaciones de conmutación deben ser invariantes de gauge. Por ende, un ejercicio más sencillo
es calcular estas relaciones de conmutación utilizando el esquema de cuantización de Gupta [105, 106]
en gauge armónico. El resultado es exactamente el mismo.
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donde el campo T(αβ)µ es un tensor antisimétrico en los ı́ndices α ↔ β y además tiene

traza cero T α
(αβ) = 0. Podemos resolver la ecuación de movimiento de T(αβ)µ en términos

de hµν para obtener

T(αβ)µ = εαβµλ(∂σh
σλ − ∂λhσσ)− ε σν

αβ ∂σhνµ . (3.43)

Nótese que sustituyendo (3.43) en (3.42) podemos recuperar la acción de Fierz-Pauli

(3.6) que esperamos para el campo original. Además, en (3.42) el campo hµν aparece

como multiplicador de Lagrange dando lugar, en ausencia de fuentes, al v́ınculo

∂σ
(
εαβσµT ν

αβ + εαβσνT µ
αβ

)
= 0 . (3.44)

La solución correspondiente viene dada por un par de campos duales h̃µν y ωµν de la

forma

T(αβ)µ = (∂αωµβ − ∂βωµα) + (∂αh̃µβ − ∂βh̃µα) , ωµν = −ωνµ , h̃µν = h̃νµ . (3.45)

Escribimos la acción (3.42) en término de los campos simétrico y antisimétrico como

S =

∫
d4x

[
1

4
∂αh̃µν∂αh̃

µν − 1

3
∂µh̃µν∂αh̃αν −

1

12
∂µh̃νν∂µh̃

α
α

+
1

6
∂µh̃

α
α∂ν h̃

µν − 1

3
∂µh̃µν∂αωνα +

1

6
∂µωνµ∂αωνα

]
. (3.46)

Dicha acción tiene una simetŕıa de gauge dual que podemos escribir como

ω′
µν
(x′) =ωµν(x)− ∂µξ̃ν(x) + ∂ν ξ̃µ(x) , (3.47)

h̃′µν(x′) =h̃µν(x) + ∂µξ̃ν(x) + ∂ν ξ̃µ(x) . (3.48)

Permitiéndonos obtener identidades útiles a partir de la relación de dualidad entre los

potenciales que provienen de (3.43) y (3.45). Por ejemplo, podemos escribir

εαβµλ(∂σh
σλ − ∂λhσσ)− ε σν

αβ ∂σhνµ = (∂αωµβ − ∂βωµα) + (∂αh̃µβ − ∂βh̃µα) . (3.49)

También, demostramos que este proceso implementa una transformación de dualidad

sobre el tensor de Riemann de la forma

R̃µνρσ =
1

2
εµναβR

αβ
ρσ , (3.50)

que intercambia los campos eléctrico y magnético como

Eij =
1

2
εiab R̃

ab
0j , Bij = −R̃0i0j . (3.51)
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Además, una consecuencia particularmente interesante de (3.49) es que podemos escri-

bir el campo magnético como un doble rotor

Bij =
1

2
εiabεjcd∂

b∂dh̃ac , (3.52)

donde hemos utilizado la definición canónica (3.37) y la expresión (3.49) contráıda con

un tensor espacial Levi-civita como

1

2
εabjT(ab)i = ḣ j

i − ∂jh0i − δji

(
ḣaa − ∂jhaa

)
= εabj∂b

(
h̃ia + ωia

)
. (3.53)

De la misma manera, como cabŕıa esperar de la dualidad, podemos utilizar (3.36) para

obtener

Eij = −1

2
εiabεjcd∂

b∂dhac . (3.54)

cuando el v́ınculo hamiltoniano5 y las ecuaciones de movimiento se satisfacen. Destaca-

mos que esta formulación dual, y en particular las ecuaciones (3.54-3.52), serán útiles

cuando analicemos la relación con los modelos fractonicos en la sección 3.3.

3.2. Operadores topológicos para el gravitón

Habiendo encontrado una formulación de la gravedad lineal en términos de un con-

junto de campos eléctricos y magnéticos locales invariantes de gauge, podemos ahora

proceder a encontrar operadores HDV. A partir de las ecuaciones de Maxwell generali-

zadas (3.34-3.35), esperamos que estos operadores violen la dualidad en un anillo, como

en las teoŕıas de gauge convencionales [23]. A continuación confirmamos que este es el

caso. Pero también podŕıamos esperar ingenuamente que estos operadores sólo estén

dados por los flujos de los campos eléctrico y magnético, como en el caso de Maxwell.

En otras palabras, tendeŕıamos a suponer que los flujos se obtienen considerando los

v́ınculos que fijan divergencia cero para los campos eléctrico y magnético, lo que condu-

ciŕıa a las cargas conservadas habituales. Aunque esto es parcialmente correcto, pasa

por alto varias cargas conservadas. La diferencia es que para la teoŕıa del gravitón,

necesitamos añadir también las restricciones que provienen de la formulación a partir

métrica, estas son

Eij = Eji , Ei
i = 0 , (3.55)

Bij = Bji , Bi
i = 0 . (3.56)

Vamos a ver que teniendo en cuenta estas propiedades, encontraremos un conjunto

ampliado de cargas conservadas. Además, en la sección 3.3, veremos que la adición de

5Es necesario que agreguemos al campo eléctrico un factor de δijH = 0 para llegar a esta expresión
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estas restricciones sugiere que la analoǵıa correcta no es entre el gravitón y el campo

de Maxwell, sino entre la teoŕıa del gravitón y los sistemas fractónicos.

3.2.1. Un nuevo conjunto de cargas conservadas

Las propiedades de simetŕıa y traza nula de los campos eléctricos y magnéticos

(3.33), junto con las ecuaciones de divergencia cero (3.34), sugieren que es útil pensar

en estos campos como “tensores de enerǵıa-momento” Tij de CFTs Eucĺıdeas en D = 3.

Tal tensor de enerǵıa-momento satisface análogamente que

Tij = Tji , T ii = 0 , ∂iTij = 0 . (3.57)

Y sabemos que dado tal tensor de enerǵıa-momento, las cargas conservadas están en

correspondencia uno a uno con los generadores del grupo conforme. Para esto, sólo

necesitamos contraer el tensor de enerǵıa-momento con los campos vectoriales que

generan las isometŕıas conformes asociadas. Utilizando esta intuición podemos verificar

que tenemos un conjunto ampliado de operadores vectoriales invariantes de gauge6 con

divergencia nula. Estos son

BP
i = Bjia

j , BJ
i = −Bijs

jnxn , B
D
i = κBijx

j , BK
i = Bij(b

jx2 − 2xjb · x) , (3.58)

EP
i = Ejiã

j , EJ
i = −Eij s̃jnxn , ED

i = κ̃Eijx
j , EK

i = Eij(b̃
jx2 − 2xj b̃ · x) , (3.59)

donde tenemos que κ, ai, bi y sij son respectivamente un escalar, dos vectores y un

tensor antisimétrico arbitrarios. Lo mismo se aplica a κ̃, ãi, b̃i y s̃ij. Las etiquetas

P, J,D,K representan respectivamente la analoǵıa con traslaciones, rotaciones, dilata-

ciones y transformaciones conformes especiales. En este contexto, podemos comprobar

utilizando las ecuaciones de Maxwell generalizadas, junto con los v́ınculos correspon-

dientes, que tenemos

∂iEP
i = (∂iEij) ã

j = 0 ,

∂iEJ
i = Eij s̃

ij − (∂iEij)s̃
jnxn = 0 , (3.60)

∂iED
i = κ̃(∂iEij)x

j + κ̃Ei
i = 0 ,

∂iEK
i = (∂iEij)(b̃

jx2 − 2xj b̃ · x) + 2Eij(b̃
jxi − b̃ixj)− 2(b̃ · x)Ei

i = 0 .

El conjunto ampliado de ecuaciones de divergencia nula y sus contrapartes magnéticas

nos dicen que la teoŕıa tiene el siguiente conjunto de flujos7 conservados

6Para un difeomorfismo linealizado tenemos que xµ → xµ + ξµ. Pero, como los campos eléctrico y
magnético son ya de primer orden en la perturbación, la no invariancia de gauge de estas cargas es de
segundo orden, y podemos despreciarla en la teoŕıa linealizada.

7Cuando consideramos el adimensional hµν las cargas de Poincaré (3.18) se suprimen en realidad
por un factor (8πG)−1. Este no es el caso de los flujos eléctricos y magnéticos (3.61-3.62).
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Figura 3.1: Elecciones posibles de Σ y Σ′ para un borde fijo Γ.

ΦB
P =

∫
Σ

BP
i dS

i , ΦB
J =

∫
Σ

BJ
i dS

i , ΦB
D =

∫
Σ

BD
i dS

i , ΦB
K =

∫
Σ

BK
i dS

i , (3.61)

ΦE
P =

∫
Σ

EP
i dS

i , ΦE
J =

∫
Σ

EJ
i dS

i , ΦE
D =

∫
Σ

ED
i dS

i , ΦE
K =

∫
Σ

EK
i dS

i , (3.62)

donde la superficie de integración Σ es cualquier superficie abierta bidimensional de-

limitada por una cierto borde cerrado en forma de anillo. Estos operadores de flujo

conmutan con todos los operadores locales fuera del anillo. La razón es la misma que

en la teoŕıa de Maxwell, podemos simplemente mover la superficie Σ de la definición

del operador topológico a otra Σ′ con el mismo borde Γ = ∂Σ = ∂Σ′ y el operador

no cambia (Ver figura 3.1). Por tanto, los operadores locales que yacen sobre Σ con-

mutan con los flujos debido a la necesidad de preservar la causalidad, ya que podemos

alejar el flujo del soporte del operador. Crucialmente, como explicamos en el caṕıtulo

2, incluso si por este argumento podemos asociar estos operadores con regiones tipo

anillo, no se generan localmente en el anillo. En particular, no conmutan con algunos

de los operadores que no son aditivamente generados en el anillo complementario. En

la sección 3.2.3 probaremos y discutiremos esta afirmación en detalle.

Por otro lado, queremos que los flujos de los vectores conservados (3.58-3.59) sean

cargas adimensionales. Teniendo en cuenta que Bij, Eij tienen dimensión tres en enerǵıa

tenemos que ai, ãi tienen dimensiones de longitud, sij, s̃ij, κ, κ̃ son adimensionales, y

bi, b̃i tienen dimensiones de enerǵıa.

3.2.2. Álgebras de operadores topológicos para Maxwell

Dado el conjunto de flujos conservados y sus operadores topológicos asociados, el

objetivo ahora es calcular su álgebra. Dado que vamos a introducir nuevas técnicas,

adaptadas al estudio de los operadores no locales con smearing que nos permitirán cal-

cular relaciones de conmutación entre operadores no locales, empezaremos recuperando
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los resultados conocidos presentados en [7, 108, 109] para el campo de Maxwell.

Sabemos que los operadores topológicos en la teoŕıa de Maxwell son los WL y TL

(a los que respectivamente notamos como W y T ). Estos son operadores invariantes

de gauge que podemos obtener exponenciando el flujo magnético y eléctrico respec-

tivamente. Se definen t́ıpicamente como lazos singulares infinitamente delgados. Sin

embargo, en esta teoŕıa abeliana, podemos definir una versión con smearing de ellos de

la siguiente manera.8 Comenzamos con

W = eiΦ
B

= ei
∫
d4xAµJµ

, ∂µJ
µ = 0 , (3.63)

donde J es una corriente conservada de soporte compacto. Estas dos condiciones im-

puestas sobre la corriente (entendida como una función de smearing) aseguran la inva-

riancia de gauge del operador anterior. Más precisamente,

Aµ → Aµ + ∂µΛ ⇒ W → Wei
∫
d4x (∂µΛ)Jµ

= We−i
∫
d4xΛ(∂µJµ) = W . (3.64)

Ahora suponemos además que el soporte de J está restringido a una región del espacio-

tiempo R. Dicha región es definida como dominio de dependencia causal de una región

espacial que contiene un ćırculo no contractible. Para ser concretos, supondremos que

la topoloǵıa de R es S1 × R3. Debido a la conservación de la corriente, el flujo sobre

una superficie tridimensional Σ que corta el anillo R una vez es independiente del Σ

particular. Este flujo define una carga

q =

∫
Σ

dSµ J
µ =

∫
Σ

dσ nµ J
µ . (3.65)

donde el vector nµ es la normal espacio-temporal a Σ. La afirmación es que W es un

WL con smearing y carga adimensional q. Lo confirmaremos mediante cálculo directo.

Por otro lado, podemos hacer una reescritura equivalente de este operador, en térmi-

nos del campo magnético, de la forma

ΦB =

∫
d4xAµJ

µ =
1

2

∫
d4xωµνF

µν , (3.66)

donde ωµν es una 2-forma cualquiera para la cual requerimos que

Jµ = ∂νωµν . (3.67)

En este contexto, podemos recuperar el TL para el campo de Maxwell a partir del flujo

8Definir versiones con smearing de operadores de lazo en teoŕıas de gauge no abelianas resulta ser
un problema particularmente dif́ıcil, véase [57] para un relato reciente desde la perspectiva de este
caṕıtulo o [110] para desarrollos numéricos en la red.



3.2 Operadores topológicos para el gravitón 65

Figura 3.2: Las regiones tipo anillo R y R̃ sobre las que definimos los WL y TL son el soporte
compacto de las corrientes J(x) y J̃(x).

del campo eléctrico

T = eiΦ
E

= e
i
2

∫
d4x ω̃µν(∗Fµν) , (3.68)

o bien podemos escribirlo de forma dual al WL, utilizando la expresión del flujo en

términos el campo de gauge dual Ãµ como

ΦE =
1

2

∫
d4x ω̃µν(∗F µν) =

∫
d4x ÃµJ̃

µ , (3.69)

donde tenemos que ∗F = dÃ y J̃µ = ∂νω̃µν . Si la corriente J̃ tiene soporte en un anillo,

podemos medir la carga monopolar del TL con smearing integrando el flujo de esta

corriente dual sobre una superficie tridimensional Σ̃ con vector normal ñµ de la forma

g =

∫
Σ̃

dSµ J̃
µ =

∫
Σ̃

dσ ñµ J̃
µ . (3.70)

Ahora estamos listos para calcular el conmutador [ΦB,ΦE]. El caso interesante es

cuando las corrientes duales J y J̃ tienen soporte en anillos enlazados como mostramos

en la figura 3.2. En primer lugar, elegimos las funciones de smearing para tener soporte

compacto espacial sobre los anillos de interés y que también cumplan

Ji(t, x) ∝ δ(t− t0) , J̃i(t, x) ∝ δ(t− t0) , J0(t, x) = 0 , J̃0(t, x) = 0 . (3.71)

Esto implica que la 2-forma ωµν tiene divergencia cero y componentes espaciales pro-

porcionales a la función delta

ωij(t, x) ∝ δ(t− t0) , ω̃ij(t, x) ∝ δ(t− t0) , ∂νω0ν(t, x) = 0 , ∂νω̃0ν(t, x) = 0 .

(3.72)

Sin embargo, podemos utilizar la libertad restante para elegir la condición más fuerte

ω0µ(t, x) = 0 , ω̃0µ(t, x) = 0 . (3.73)
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Ahora, nos permitiremos un ligero abuso en la notación y escribiremos ωij → ωij δ(t−t0)
y (t0, x) → x. También, observamos que Fij = ϵijkB

k y ∗Fij = ϵijkE
k. Por ende,

podemos escribir los flujos de la forma

ΦB =
1

2

∫
d3x ωij Fij =

1

2

∫
d3x εijk ω

ij Bk =

∫
d3xΩk B

k , (3.74)

ΦE =
1

2

∫
d3x ω̃ij (∗Fij) =

1

2

∫
d3x εijk ω̃

ij Ek =

∫
d3x Ω̃k E

k , (3.75)

donde hemos definido las funciones de smearing más convenientes

Ωi =
1

2
ϵijkω

jk , Ω̃i =
1

2
ϵijkω̃jk . (3.76)

Esto implica que el rotor de Ω viene dado por la corriente J como (∇×Ω)i = ∂jωij = Ji.

Entonces, para una curva cerrada Γ = ∂Σ, tenemos que∮
Γ=∂Σ

Ωi dx
i =

∫
Σ

(∇× Ω)i dS
i =

∫
Σ

Ji dS
i . (3.77)

Vemos aqúı una ambigüedad en la elección de Σ. En particular, tenemos permitido

elegir otras superficies como Σ′ (Ver figura 3.1). Sin embargo, debido a la conservación

de la corriente ∇ · J = 0 y a que J tiene soporte compacto en un anillo, el flujo es el

mismo para cada Σ que corta el anillo una sola vez. Más precisamente, este flujo viene

dado por la carga q como

q =

∫
Σ

Ji dS
i =

∮
Γ

Ωi dx
i . (3.78)

Nótese que estamos usando (3.65) y (3.71) para llegar a esta conclusión.

La situación es la misma en el caso dual con el TL. A partir de (3.70), podemos ver

que la carga del monopolo obedece que

g =

∫
Σ̃

J̃i dS
i =

∮
Γ̃

Ω̃i dx
i . (3.79)

Volviendo a los flujos y utilizando el conmutador canónico entre los campos eléctricos

y magnéticos9

[Ei(x), Bj(y)] = iεijk∂
kδ(x− y) , (3.80)

vemos que el conmutador que queremos calcular toma la forma

[
ΦB,ΦE

]
=

∫
d3x

∫
d3y Ω̃i(x) Ωj(y) [Bj(y), Ei(x)] (3.81)

= i

∫
d3x

∫
d3y Ω̃i(x) (ϵikj∂

k
yΩ

j(y)) δ(x− y) = i

∫
d3x Ω̃i(x) Ji(x) .

9Esto se deduce simplemente de las relaciones de conmutación canónicas entre el campo eléctrico
y el potencial de gauge.
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Dentro del anillo R, donde J(x) tiene soporte compacto, la otra corriente J̃(x) es cero

x ∈ R =⇒ J̃(x) = 0 . (3.82)

Recortando una sección Σ de R podemos convertirla en una región simplemente conexa,

en la que podemos escribir el vector Ω̃ localmente como un gradiente

x ∈ R− Σ ⇒ ∇× Ω̃(x) = J̃(x) = 0 ⇒ Ω̃(x) = ∇φ̃(x) . (3.83)

La circulación de Ω̃ sobre una curva no contractible γ dentro de R (enlazada una vez

con R̃) y que incluye un punto y ∈ Σ viene dada por el salto de φ̃ en y a través de Σ.

Este salto es constante en Σ porque es equivalente al flujo del rotor de Ω̃, o el flujo de

la corriente J̃ :

g =

∮
Γ

∂iφ̃ dxi = ∆φ̃(y) . (3.84)

Utilizando esta observación dentro del conmutador (3.81) e integrando por partes ob-

tenemos simplemente que

[
ΦB,ΦE

]
= i

∫
d3x Ji(x) ∂

iφ̃(x) (3.85)

= i

∫
d3x

(
∂i [φ̃(x)Ji(x)])− φ̃(x)

[
∂iJi(x)

])
.

El último término desaparece por la conservación de la corriente ∂iJi = 0. El término

restante es una divergencia que podemos escribir como

[
ΦB,ΦE

]
= i

∫
Σ

dSi∆φ̃(y) Ji = i q g . (3.86)

F́ısicamente, las cargas q y g tienen en cuenta “cuántas veces la corriente da la vuelta”

al respectivo anillo. Entonces, para regiones lineales delgadas, este resultado da el

número de enlace habitual entre los lazos enlazados. Otro comentario es que, debido

a la naturaleza topológica de estas relaciones de conmutación, podemos deformar las

regiones para que parezcan anillos infinitamente finos, o tomar las corrientes para que

se extiendan por el espacio-tiempo en lugar de simplemente por la superficie t = 0, y

las relaciones de conmutación no cambian en la medida de que las cargas no cambien y

las regiones sigan espacialmente separadas. De hecho, las deformaciones que preservan

la carga son producidas por operadores locales que conmutan con el operador no local

dual.

Si ahora tomamos el WL y el TL como en las ecuaciones (3.63) y (3.68), de nuevo

con soporte compacto en anillos espacialmente separados pero simplemente enlazados

entre śı, llegamos a las famosas relaciones de conmutación introducidas en [7]. Es decir,
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tenemos que

W q T g = eiΦ
B

eiΦ
E

= eiΦ
B+iΦE+ 1

2
[ΦB ,ΦE ] = ei q g T gW q . (3.87)

Nótese que los términos siguientes de la fórmula de Baker-Campbell-Hausdorff no apa-

recen para estos campos libres debido a que el conmutador (3.86) entre los flujos es

numérico.

3.2.3. Álgebras de operadores topológicos para el gravitón

En la teoŕıa de la gravedad linealizada, podemos definir operadores tipo WL y TL

con smearing análogamente utilizando los flujos conservados (3.61-3.62) relacionados

con las corrientes conservadas (3.58-3.59). Más concretamente, definimos

WG = eiΦ
B
G , TF = eiΦ

E
F , F, G = P, J, D, K , (3.88)

donde los flujos con smearing vienen dados por

ΦB
G =

∫
d3xΩi(x)BG

i (x) =

∫
d3xΩi(x) gjG(x)Bij(x) (3.89)

ΦE
F =

∫
d3x Ω̃i(x)EF

i (x) =

∫
d3x Ω̃i(x) f jF (x)Eij(x) , (3.90)

y donde las funciones gjG(x) vienen dadas, para los diferentes G, por

aj , −sjnxn , κxj , (bjx2 − 2xjb · x) , (3.91)

mientras que f jF (x) para los diferentes F toman la forma

ãj , −s̃jnxn , κ̃xj , (b̃jx2 − 2xj b̃ · x) . (3.92)

Las funciones de smearing Ωi(x) y Ω̃i(x) son tales que ∇ × Ω = J , ∇ × Ω̃ = J̃ . Los

soportes de J y J̃ están restringidos a las regiones tipo anillo R y R̃ respectivamente.

Sin pérdida de generalidad, fijaremos las cargas correspondientes a uno. De esta manera

tenemos que ∫
Σ

Ji dS
i =

∫
Σ̃

J̃i dS
i = 1 . (3.93)

Para demostrar que los operadores (3.88) son no locales en sus respectivos anillos,

tenemos que demostrar que no conmutan con ciertos operadores no locales en la región

complementaria. Este problema, por supuesto, se resuelve completamente una vez que

calculamos el álgebra de los flujos involucrados. Para esto, comenzamos de la expresión

del conmutador en términos de los campos con smearing y consideramos el conmutador
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entre las variables eléctricas y magnéticas

[
ΦB
G,Φ

E
F

]
=

∫∫
d3x d3y Ω̃i(x) Ωk(y) f jF (x) g

l
G(y) [Bkl(y), Eij(x)] . (3.94)

Ahora sustituimos la expresión para el conmutador (3.40), integramos por partes las

derivadas de cada término actuando sobre y, y eliminamos la función delta integrando

sobre y. Como resultado, obtenemos que podemos escribir el conmutador como

[
ΦB
G,Φ

E
F

]
=− i

4

∫
d3x Ω̃if jF

[
(∂j∂l − δjl∂

2)Jig
l
G + (∂i∂l − δil∂

2)Jjg
l
G

− ( ∂i∂j − δij∂
2 )Jlg

l
G + εibk( ∂j∂l − δjl∂

2 )Ωk∂bg
l
G (3.95)

+ εjbk(∂i∂l − δil∂
2)Ωk∂bg

l
G − εlbk(∂i∂j − δij∂

2)Ωk∂bg
l
G

]
,

donde usamos que Ji = εijk ∂
jΩk.

Los últimos tres términos de (3.95) no están expresados en términos de la corriente.

Esto obstruye momentáneamente la localización de la integral en la región R (que es el

soporte de J). Esta localización nos fue fundamental en la derivación de las relaciones

de conmutación para el campo de Maxwell. Sin embargo, esta localización se produce

naturalmente cuando escribimos en detalle la forma de la función glG. Tenemos que

analizar caso por caso. Proporcionamos aqúı el ejemplo para “dilataciones magnéticas”

glD(x) = κxl. En dicho caso, obtenemos

[
εibk(∂j∂l − δjl∂

2) + εjbk(∂i∂l − δil∂
2)− εlbk(∂i∂j − δij∂

2)
] (

Ωk∂bgl
)

(3.96)

= κ
[
εilk∂j∂

lΩk − εijk∂
2Ωk + εjlk∂i∂

lΩk − εjik∂
2Ωk
]
= κ [∂jJi + ∂iJj] .

Es decir, podemos expresar este termino de forma proporcional a la corriente (y sus

derivadas) como sucede para los primeros términos en (3.95). Sustituyendo en dicha

expresión para el conmutador, tenemos

[
ΦB
D,Φ

E
F

]
= −i κ

4

∫
d3x Ω̃if jF

[
(∂j∂l − δjl∂

2)(Jix
l) (3.97)

+ (∂i∂l − δil∂
2)(Jjx

l)− (∂i∂j − δij∂
2)(Jlx

l) + ∂jJi + ∂iJj

]
.

Como cada término es proporcional a la corriente, la integración se restringe a la

región R. En (3.97) estamos considerando el caso particular de gG = gD, pero este

paso ocurre también para los otros gG. En los demás casos, considerando el análogo

de (3.97) obtenemos respectivamente para “traslaciones, rotaciones y transformaciones
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conformes especiales magnéticas” que

[
ΦB
P ,Φ

E
F

]
=− i κ

4

∫
d3x Ω̃if jF

[
(∂j∂l − δjl∂

2)(Jix
l)

+ (∂i∂l − δil∂
2)(Jjx

l)− (∂i∂j − δij∂
2)(Jlx

l)
]
, (3.98)[

ΦB
J ,Φ

E
F

]
=− i snl

4

∫
d3x Ω̃if jF

[
(∂j∂l − δjl∂

2)(Jix
n) + (∂i∂l − δil∂

2)(Jjx
n)

− (∂i∂j − δij∂
2)(Jlx

n) +
1

2
(εinlεjab + εjnlεiab) ∂

aJ b
]
,[

ΦB
K ,Φ

E
F

]
=− i

4

∫
d3x Ω̃if jF

[
(∂j∂l − δjl∂

2)(Jix
l) + (∂i∂l − δil∂

2)(Jjx
l)

− (∂i∂j − δij∂
2)(Jlx

l) + 2(b · x) (∂jJi + ∂iJj)− 8 δij (b · J)
+ 6 bi Jj + 6 bj Ji + (bl xn − bn xl) (εinlεjab + εjnlεiab) ∂

aJ b
]
.

El siguiente paso es escribir dentro de R el campo Ω̃i = ∂iφ̃ donde φ̃ tiene un salto

unidad al cruzar Σ. Después de la integración por partes encontramos que la divergencia

en el ı́ndice i del integrando desaparece. Considerando la conservación de la corriente,

esto es válido para todo fF (x) y gG(x) con F, G = P, D, J, K. Por ejemplo, para el

caso de dilataciones magnéticas, (3.97), vale que

∂i
{
f jF
[
(∂j∂l − δjl∂

2) (Jix
l) + (∂i∂l − δil∂

2)(Jjx
l)

−(∂i∂j − δij∂
2)(Jlx

l) + ∂jJi + ∂iJj
]}

= 0 . (3.99)

Como resultado de (3.99), la integral en (3.97) viene dada únicamente por un término

de superficie, que es independiente de la elección particular de Σ que corte a R:

[
ΦB
D,Φ

E
F

]
= −i κ

4

∫
Σ

dSi f
F
j

[
(∂j∂l − δjl∂

2)(Jixl) (3.100)

+ (∂i∂l − δil∂
2)(Jjxl)− (∂i∂j − δij∂

2)(Jlxl) + ∂jJi + ∂iJj

]
.

Para evaluar la integral de superficie, considerando que el resultado es independiente

de la sección de corte elegida sobre R, elegimos una superficie plana Σ. Además, to-

mamos coordenadas cartesianas donde x1, x2 son paralelas a dicha superficie, y x3 es

la ortogonal. Véase la figura 3.3. Con esta imagen en mente, estudiemos las integrales

de superficie que aparecen. Estas son de la forma

[
ΦB
D,Φ

E
F

]
= −i κ

4

∫
Σ

dx1 dx2 f
j
F

[
(∂j∂l − δjl∂

2)(J3 x
l) (3.101)

+ (∂3∂l − δ3l∂
2)(Jjx

l)− (∂3∂j − δ3j∂
2)(Jlx

l) + ∂jJ3 + ∂3Jj

]
.

La integración de las derivadas paralelas a la superficie desaparece porque la co-
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Figura 3.3: Ejemplo de superficie de integración Σ. Aqúı utilizamos coordenadas (x1, x2, x3)
siendo la superficie Σ ortogonal a x3.

rriente y sus derivadas tienen soporte compacto en R y por ende se anulan en las

borde de Σ. También podemos utilizar la conservación de la corriente para escribir

∂3J3 = −∂1J1−∂2J2, e integrar por partes las derivadas paralelas. Después de un poco

de trabajo, encontramos que para cualquier f jF espećıfica la integral o bien desaparece

o se hace proporcional a
∫
Σ
dx1 dx2 J3 = 1. De este modo obtenemos

[
ΦB
D,Φ

E
P

]
= 0 ,

[
ΦB
D,Φ

E
J

]
= 0 ,

[
ΦB
D,Φ

E
D

]
=
i κ κ̃

2
,
[
ΦB
D,Φ

E
K

]
= 0 . (3.102)

Como se ha dicho, podemos seguir el mismo procedimiento para obtener los demás

conmutadores de gG para G ̸= D. No reproducimos aqúı estos cálculos porque son

bastante largos y no especialmente esclarecedores. También hemos comprobado el re-

sultado realizando los cálculos con un programa para manipulaciones matemáticas. El

álgebra completa de operadores topológicos que obtenemos considerando (3.97-3.98) es

[
ΦB
P ,Φ

E
K

]
= i ai b̃i ,

[
ΦB
J ,Φ

E
J

]
=
i

4
sij s̃ji , (3.103)[

ΦB
D,Φ

E
D

]
=
i

2
κ κ̃ ,

[
ΦB
K ,Φ

E
P

]
= i bi ãi .

Nótese que todos los demás conmutadores tienen que ser cero por análisis dimensional.

En particular, los conmutadores son adimensionales al igual que las cargas. Para obte-

ner un resultado adimensional que dependa totalmente de las cargas escalar, vectorial

y tensorial, los únicos conmutadores que pueden presentar resultados distintos de cero

son los anteriores. Otras posibilidades implican funciones de las coordenadas que de-

penden de la geometŕıa de los anillos, pero esto no es posible debido a la naturaleza

topológica de estas cargas. Para ser precisos, si cambiamos suavemente la geometŕıa
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de R y el valor de J a R′ y J ′, manteniendo fija la carga y evitando intersecar R̃, los

conmutadores no deben cambiar. La razón es que la diferencia entre el operador de

flujo definido en R y el definido en R′ es un operador aditivo en el complemento de R̃,

y por ende conmuta con los operadores basados en R̃.

Teniendo en cuenta estos resultados, las correspondientes relaciones de conmutación

distintas de cero para los WL y TL del gravitón (3.88) tienen la forma

W a
P T

b̃
K = eib̃·a T b̃KW

a
P , W s

J T
s̃
J = e−

i
4
s̃··s T s̃J W

s
J , (3.104)

W κ
D T

κ̃
D = e

i
2
κ̃κ T κ̃DW

κ
D , W b

K T
ã
P = eiã·b T ãP W

b
K .

Las relaciones de conmutación muestran que los operadores definidos anteriormente

son operadores no locales HDV en el anillo, ya que no conmutan con al menos un

operador no local en el anillo complementario. El grupo de simetŕıas generalizadas es

el grupo abeliano R10 × R10 de flujos eléctricos y magnéticos. Hay 10 flujos eléctricos

independientes y 10 flujos magnéticos independientes, y podemos asociar ambos a la

misma región tipo anillo R en D = 4.

La caracteŕıstica más destacada de esta simetŕıa generalizada, que no está presente

en las teoŕıas de gauge ordinarias, es la presencia de ı́ndices de Lorentz para las cargas

de la simetŕıa generalizada que definen las clases HDV. Estudiaremos en detalle este

tema en el caṕıtulo 5.

3.2.4. Conmutador de flujos para el caso de dos cuadrados

Dado que la prueba de las relaciones de conmutación (3.86) y especialmente (3.103)

pueden ser algo abstractas es conveniente comprobarlas utilizando lazos singulares

(infinitamente delgados). Para el campo de Maxwell en D = 4 dimensiones, tenemos

que las relaciones de conmutación entre los campos eléctrico y magnético vienen dadas

por (3.80). Podemos calcular el conmutador de los flujos ΦB y ΦE asociados a las

superficies bidimensionales S y S̃ como

[
ΦB,ΦE

]
=

∫
S

∫
S̃

[Bj(y), Ei(x)] dS
j(y) dS̃i(x) (3.105)

= i

∫
S

∫
S̃

εjik
[
∂kδ(x− y)

]
dSj(y) dS̃i(x) .

Supongamos que podemos representar la curva que define la región S mediante sus

extremos como Γ = ∂S = {b1, b2, b3, b4} y que la curva que define S̃ viene dada por
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Figura 3.4: Regiones S y S̃ delimitadas por Γ y Γ̃ para e = x3 = 0 y b = y1 = 0.

Γ̃ = ∂S̃ = {e1, e2, e3, e4} donde

b1

(
0,
L

2
, −L

2

)
, b2

(
0,
L

2
,
L

2

)
, b3

(
0,

3L

2
,
L

2

)
, b4

(
0,

3L

2
, −L

2

)
, (3.106)

e1

(
L

2
, 0, 0

)
, e2

(
L

2
, L, 0

)
, e3

(
−L
2
, L, 0

)
, e4

(
−L
2
, 0, 0

)
. (3.107)

Esta geometŕıa se representa en la figura 3.4. Los vectores normales a las superficies

S y S̃ (asociados a la circulación que hemos dibujado) dan ni = δi1 y ñi = −δi3. Por
tanto las diferenciales de superficie vienen dadas por

dSj(y) =nj dy2dy3 = δj1dy2dy3 , y2 ∈
[
L

2
,
3L

2

]
, y3 ∈

[
−L
2
,
L

2

]
, (3.108)

dS̃i(x) = ñi dx1dx2 = −δi3dx1dx2 , x1 ∈
[
−L
2
,
L

2

]
, x2 ∈

[
0, L

]
. (3.109)

Sustituyendo las ecuaciones (3.108-3.109) en (3.105), tenemos que el conmutador es

[ΦE,ΦB] = i

∫ L
2

−L
2

∫ L

0

∫ 3L
2

L
2

∫ L
2

−L
2

δ(x1) δ(−y3) ∂2 δ(x2 − y2) dx1 dx2 dy2 dy3 = i . (3.110)

Además, podemos comprobar que si se rotan los cuadrados el resultado no cambia

(salvo un signo menos global relacionado con la orientación de las superficies). Sin

embargo, si se separan los cuadrados y sus superficies ya no se tocan, el resultado es

siempre cero. Esto se debe a que el conmutador [ΦB,ΦE] es proporcional al número de

enlace entre las curvas Γ y Γ̃.

Podemos realizar el mismo proceso para el gravitón considerando el conmutador

(3.40). Queremos calcular los conmutadores de los flujos definidos por (3.61) y (3.62)

en la configuración que presentamos en la figura 3.4. Más espećıficamente, podemos
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utilizar la notación

ΦB
G =

∫
S

Bij(x) g
j(x) dSi , gj(x) = aj , −sjnxn , kxj , (bjxnxn − 2xjbnxn) , (3.111)

ΦE
F =

∫
S̃

Eij(x)f
j(x) dS̃i , fj(x) = ãj , −s̃jnxn , k̃xj , (b̃jxnxn − 2xj b̃nxn) . (3.112)

De esta manera, para las geometŕıas cuadradas enlazadas definidas anteriormente po-

demos escribir

[
ΦB
G,Φ

E
F

]
=

∫
S

∫
S̃

[Ekl(y), Bij(x)] g
l(y) f j(x) dSk(y) dS̃i(x) (3.113)

=

∫ L
2

−L
2

∫ L

0

∫ 3L
2

L
2

∫ L
2

−L
2

[E3i(x), B1j(y)] f
i(x)gj(y) dx1 dx2 dy2 dy3 .

A partir de aqúı, calculando caso por caso, obtenemos los resultados esperados

[
ΦB
P ,Φ

E
K

]
= i ai b̃i ,

[
ΦB
J ,Φ

E
J

]
=
i

4
sij s̃ji , (3.114)[

ΦB
D,Φ

E
D

]
=
i

2
κ κ̃ ,

[
ΦB
K ,Φ

E
P

]
= i bi ãi .

Observamos que esto sigue siendo cierto si movemos los cuadrados cambiando las coor-

denadas x3 y y1 en el rango [−L/2, L/2] (sin cambiar el número de enlace) pero el

resultado desaparece si separamos los cuadrados, lo cual es un buen śıntoma ya que

esperamos que el resultado general sea topológico.

3.3. Fractones y completitud del espectro

Habiendo derivado el álgebra de las simetŕıas generalizadas de la teoŕıa del gravitón

linealizado libre, discutimos ahora algunas aplicaciones interesantes. En particular,

como se describe en la introducción, queremos abordar la cuestión de cargar o romper

estas simetŕıas generalizadas desde una perspectiva puramente de QFT.

Seamos más precisos. En [18] se argumentó que las teoŕıas de campos efectivas

de tipo gauge en gravedad cuántica debeŕıan ser “completas”, lo que significa que

el espectro de cargas posibles debeŕıa ser el máximo consistente con la condición de

cuantización de Dirac. Este principio se amplió posteriormente en [19] para incluir

simetŕıas generalizadas. Más recientemente, en [20, 21, 23], la relación entre completitud

y ausencia de simetŕıas generalizadas ha sido profundizada. En particular, como vimos

en el caṕıtulo 2, en [23] se define que una QFT (sin gravedad) como completa siempre

que la causalidad A(R) ⊆ A(R)′ siempre esté saturada para el álgebra de observables

asociada a cualquier región con cualquier topoloǵıa dada. Permitir la no saturación de

esta condición conduce inevitablemente a la existencia de dos simetŕıas generalizadas
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duales, como los dos conjuntos duales que derivamos para el gravitón.10 De la existencia

de tales simetŕıas generalizadas, o equivalentemente de la no saturación de causalidad

en regiones tipo anillo por la precencia de clases HDV, sabemos que la teoŕıa del

gravitón libre no es completa.

Aśı pues, es interesante ver si podemos “completar” la teoŕıa del gravitón intro-

duciendo un número suficiente de operadores cargados para destruir el conjunto de

simetŕıas generalizadas que describimos anteriormente. Se podŕıa anticipar que apa-

receŕıan problemas al intentar llevar a cabo este proceso. Por ejemplo, dado que las

simetŕıas generalizadas del gravitón están cargadas bajo simetŕıas espacio-temporales,

esperamos que alguna generalización del teorema de Coleman-Mandula a simetŕıas in-

ternas generalizadas dificulte encontrar una completación invariante Lorentz simple de

esta teoŕıa. Además, a partir de los conocimientos actuales sobre gravedad cuántica,

no esperamos poder completar la teoŕıa de una forma usual desde el punto de vista de

QFTs relativistas.

Resulta que el hecho de que las simetŕıas generalizadas del gravitón estén cargadas

bajo simetŕıas espacio-temporales significa que las part́ıculas cargadas que hacen adi-

tivos los operadores topológicos tendrán su movimiento altamente restringido, ya que

el mismo debe respetar todas las leyes de conservación en cuestión. Curiosamente, este

tipo de comportamiento se ha observado muy recientemente en el contexto de materia

condensada, donde este tipo de excitaciones reciben el nombre de “fractones”.

3.3.1. Fractones y teoŕıas de gauge tensoriales

Los fractones se definen como part́ıculas incapaces de moverse a través del espacio

[76–80]11. La razón detrás de esta restricción de movilidad, no tiene nada que ver con la

inercia, en el sentido de tener grandes masas. Tiene que ver con leyes de conservación

bastante peculiares que el movimiento tiene que respetar. Aunque los fractones, de

forma aislada, no pueden moverse, los estados ligados de fractones pueden moverse

por el espacio. Por ejemplo, en algunos modelos que revisaremos más adelante, los

fractones aislados no pueden moverse, mientras que sus dipolos śı. Intuitivamente, hay

una “simetŕıa” que proh́ıbe la existencia de operadores dipolares localizados en la teoŕıa,

que de otro modo podŕıan transportar fractones de un lugar a otro, pero esa simetŕıa no

proh́ıbe la existencia de operadores cuadrupolares localizados que transporten dipolos

de un lugar a otro, véase [81] y también [82, 83] para posibles escenarios experimentales.

Estas propiedades bastante inusuales y sorprendentes han sido bien descritas por

Pretko [80, 113] en términos de los recientes avances en las teoŕıas de gauge tensoriales

10En el contexto de AdS/CFT hay diferentes argumentos para la ausencia de diferentes tipos de
simetŕıas en las teoŕıas de campo efectivas del bulk, véase [14, 22, 111, 112].

11En esta ĺınea también se encuentran los “lineones” y los “planones”, que son part́ıculas a las que
sólo se les permite moverse en sub-variedades diferenciales apropiadas [81].
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[114], que resultan mostrar leyes de conservación de este tipo. Un ejemplo estándar

que se encuentra en la literatura es el siguiente: empecemos con un potencial de gauge

simétrico de dos ı́ndices Aij y una ley de transformación de gauge dada por

Aij → Aij + ∂i∂jα . (3.115)

Podemos introducir un campo magnético invariante de gauge de dos ı́ndices de la forma

habitual mediante

Bij = ϵikl∂
kAlj , (3.116)

y podemos definir el campo eléctrico invariante de gauge impĺıcitamente imponiendo

una relación de conmutación canónica con el potencial de gauge

[Aij, Ekl] = i(δikδjl − δilδjk)δ(x− y) . (3.117)

La ley de conservación presente en esta teoŕıa es una versión modificada de la ley de

Gauss para el caso de Maxwell

∂i∂jEij = 0 , (3.118)

donde podemos verificar que, dadas las relaciones de conmutación canónicas, genera

adecuadamente la transformación de gauge (5.86). Si introducimos un nuevo potencial

A0 con transformación de gauge

A0 → A0 + α̇ , (3.119)

podemos escribir el campo eléctrico como Eij = Ȧij − ∂i∂jA0.

Es de interés comprender cómo acoplar este modelo con fuentes. Llamando ρ =

∂i∂jEij a una fuente de densidad de carga para la ecuación de conservación anterior,

podemos medir las cargas eléctricas conservadas de este modelo por el flujo correspon-

diente en el infinito

Q =

∫
dx3ρ =

∫
dx3∂i∂jEij =

∫
dSj∂iE

ij , (3.120)

esto es, de la misma manera que se hace con la carga eléctrica habitual. Además, tam-

bién tenemos una carga vectorial, no invariante bajo las simetŕıas espacio-temporales.

Esta carga “dipolar” escribe como

P i =

∫
dx3ρ xi =

∫
dx3xi∂j∂kE

jk =

∫
dSj(x

i∂kE
jk − Eij) . (3.121)

La conservación de esta carga dipolar impide que las excitaciones cargadas locales,

llamadas fractones, se muevan por el espacio, mientras que los dipolos pueden moverse
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si conservan la dirección. Este modelo se denomina “modelo tensorial de carga escalar”.

Un segundo tipo de teoŕıa, denominado “modelo tensorial de carga vectorial”, surge

al considerar la siguiente transformación de gauge diferente para el potencial

Aij → Aij + ∂iαj + ∂jαi , (3.122)

generada por la siguiente v́ınculo de carácter vectorial

∂iEij = 0 . (3.123)

En esta teoŕıa podemos escribir el campo magnético invariante de gauge como

Bij = εiabεjcd∂
b∂dAac , (3.124)

que obedece explicitamente ∂iBij = 0.

En este escenario, se denomina teoŕıa vectorial, ya que la fuente de la ecuación

de conservación transforma como un vector bajo rotaciones. Esta teoŕıa tiene la carga

conservada habitual.

Qi =

∫
d3x ρi =

∫
d3x ∂jE

ij =

∫
dSj E

ij , (3.125)

pero también una carga de tipo momento angular

M i =

∫
d3x εijkρjxk =

∫
dSj (ε

ilk Ej
l xk) . (3.126)

De nuevo, la conservación de ambas cargas restringe el movimiento de las excita-

ciones y estados ligados. En general, estos modelos se incluyen dentro de “teoŕıas de

gauge de rango superior”, cuyos grados de libertad son potenciales de gauge y campos

eléctricos y magnéticos con varios ı́ndices simétricos. En este contexto, los v́ınculos y/o

leyes de conservación surgen por diferentes combinaciones de divergencias y trazas,

véase [114] para revisión más completa.

Dadas estas caracteŕısticas de las teoŕıas de gauge tensoriales que potencialmente

se acoplan a fractones o excitaciones relacionadas, se desarrollaron conexiones con la

relatividad general en [87, 115, 116]. En particular, se argumentó en [87] que varias

propiedades de las interacciones entre fractones se asemejan a la gravedad. Las razones

heuŕısticas descritas en esos art́ıculos se basan en el hecho de que la teoŕıa de los

gravitones, en su formulación métrica, puede verse como una teoŕıa tensorial de gauge

donde el potencial de gauge hµν , representa la perturbación sobre la métrica de fondo.

Más aún, se propuso que el papel de las leyes de conservación no triviales de las teoŕıas

tensoriales de gauge lo desempeñan los v́ınculos hamiltoniano y de momento (3.13). Si
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bien la intuición detrás de esta idea es correcta, una comparación adecuada entre las

teoŕıas fractónicas y la de gravitones debe realizarse en el espacio de fases invariante de

gauge. En lo que resta de esta sección buscaremos formular precisamente dicha relación

a partir de los campos Eij y Bij del gravitón definidos en (3.32).

En lugar de intentar adaptar el zoológico de sistemas fractónicos y teoŕıas de gau-

ge tensoriales a la gravedad, utilizando nuestros resultados anteriores sobre simetŕıas

generalizadas y la formulación electromagnética generalizada de la gravedad lineal, po-

demos ir en la dirección opuesta. Es decir, intentaremos describir la teoŕıa linealizada

del gravitón como un ejemplo espećıfico del zoológico de teoŕıas de gauge tensoriales

que describen sistemas fractónicos.

Observando la clasificación anterior y nuestros resultados anteriores, vemos que las

restricciones sobre las variables f́ısicas Eij, Bij nos muestran de que el gravitón es un

ejemplo de una “teoŕıa de carga vectorial de traza nula”, como se describe en [113].

Curiosamente, la teoŕıa del gravitón no es precisamente la teoŕıa de gauge tensorial

de este tipo descrita en [113], pero comparte con ella el mismo conjunto de leyes de

conservación y simetŕıas generalizadas. La razón es que el modelo del gravitón también

es auto-dual, y los campos eléctrico y magnético satisfacen las mismas relaciones alge-

braicas y de conservación que los tensores enerǵıa-momento de las CFTs Eucĺıdeas en

una dimensión menos. La diferencia radica en la dinámica y las relaciones de conmu-

tación. En particular, el modelo descrito en [113] debe tener la misma estructura de

operadores no locales y simetŕıas generalizadas que los descritos en el presente trabajo.

Sin embargo, esperamos que el álgebra de estos operadores topológicos sea diferente del

álgebra descrita anteriormente, dado que esta es procedente de la teoŕıa de gravitones.

Además, la forma natural de acoplar la materia fractónica a los campos de gauge no

resulta ser la misma que la forma en que acoplamos la materia a la métrica en relativi-

dad general. En particular, podemos escribir las ecuaciones de movimiento linealizadas

en presencia de un tensor de enerǵıa-momento de materia acoplado mı́nimamente como

G(1)
µν = R(1)

µν − ηµν
2
R(1) = Tµν , (3.127)

donde Tµν da cuenta de las fuentes de materia y gravitones como en [91]. En la formu-

lación electromagnética, esto es

Ei
i = T ii − 2T00 , ϵijkEij = 0 ,

Bi
i = 0 , ϵijkBij = Tk0 , (3.128)

∂jEij = Ṫ0i − 2∂iT00 + ∂iT
j
j , ϵiab∂aEbj = −Bij ,

∂jBij = ϵijk∂jTk0 , ϵiab∂aBbj = Eij − Tij −
δij
2
T + ∂jTij .

El principio de equivalencia, en su encarnación de “acoplamiento mı́nimo”, obliga a
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las “corrientes eléctricas y magnéticas” a tener alguna forma peculiar definida. Esta

caracteŕıstica también se desv́ıa del modelo espećıfico considerado en [113].

3.3.2. Ĺıneas de Wilson para el gravitón

Si estuviéramos considerando una teoŕıa de gauge convencional, para romper la

simetŕıa generalizada primero escribiŕıamos el operador no local utilizando el potencial

de gauge. En otras palabras, pondŕıamos el operador no local como un operador de

lazo de un campo no invariante de gauge, en lugar de escribirlo como un flujo sobre una

superficie. De este modo, podemos descomponer el lazo en ĺıneas de Wilson abiertas.

Estas ĺıneas de Wilson abiertas no son invariantes de gauge, pero su transformación

sólo depende de los puntos extremos. Esto nos permite comprender qué tipo de materia

debemos incluir para obtener una ĺınea de Wilson verdaderamente invariante de gauge.

Para las teoŕıas de gauge t́ıpicas, esto significa incluir materia que transforme bajo una

cierta representación del grupo de gauge. Estas ĺıneas de Wilson invariantes de gauge

convierten entonces el operador HDV topológico en uno aditivo.

Hasta ahora, sólo hemos producido expresiónes de los operadores HDV no locales

en términos de flujos invariantes de gauge. Ahora buscaremos expresiones en términos

de operadores de lazo de campos no invariantes de gauge, que desempeñan el papel del

potencial de gauge en el escenario de una teoŕıa de gauge convencional. Veremos que

los resultados sugieren que el contenido de materia que puede romper los operadores

no locales es una completación no convencional de la teoŕıa del gravitón linealizado.

Para empezar, observamos que los campos eléctrico y magnético del gravitón pue-

den escribirse en términos de las variables de ADM presentadas en la sección 3.1.3.

Espećıficamente, usando la curvatura extŕınseca (3.22) y la función de lapso (3.21)

tenemos que

Eij = K̇ij − ∂i∂jN , Bij = εiab∂bKaj . (3.129)

Aunque los campos eléctrico y magnético son invariantes bajo la acción de difeomor-

fismos linealizados, la curvatura extŕınseca y la función de lapso se transforman como

en el “modelo tensorial de carga escalar” con la ley (5.86) asociada a la componente

ξ0. Es decir,

Kij → Kij − ∂i∂jξ0 , N → N − ξ̇0 . (3.130)

Esto sólo depende de la función ξ0 y reproduce las transformaciones (5.86) y (3.119)

presentadas en [80, 113]. Nótese, sin embargo, que Eij y Kij no son variables canónica-

mente conjugadas, como se suele suponer en las discusiones de los modelos tensoriales

de carga escalar. En este punto desaparece la similitud de la teoŕıa del gravitón con este

tipo de modelos. En particular, la transformación de las variables canónicas inducida

por los v́ınculos es muy diferente.
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Figura 3.5: Ejemplo de una curva que define un operador de ĺınea.

Utilizando las expresiones (3.129-3.130) podemos escribir los campos magnéticos de

traslación y dilatación descritos en la ecuación (3.58) de la forma

BP
i = ϵiab∂

b(Kajaj) , BD
i = ϵiab∂

b(κKajxj) . (3.131)

Esto nos permite escribir los correspondientes flujos de operadores no locales como

circulaciones de Kajaj y κKajxj a lo largo del borde de la superficie. Estas mismas

integrales de ĺınea sobre una curva abierta C nos permiten definir

UP (C) =

∫
C

dℓi (K
ij aj) =

1

2

∫
C

dℓi (ajḣ
ij − aj∂

jh i
0 − aj∂

ih j
0 ) , (3.132)

UD(C) =

∫
C

dℓi (κK
ij xj) =

κ

2

∫
C

dℓi (xjḣ
ij − xj∂

jh i
0 − xj∂

ih j
0 ) . (3.133)

Estos operadores, como era de esperar, tienen transformaciones de gauge que sólo

dependen de los puntos finales de la curva (Ver figura 3.5)

UP (C) → UP (C)− aj

∫
C

dℓi ∂i∂jξ0 = UP (C)− aj∂jξ0|X2

X1
, (3.134)

UD(C) → UD(C)− κ

∫
C

dℓi xj∂i∂jξ0 = UD(C)− κ (xj∂jξ0 − ξ0)|X2

X1
. (3.135)

Podemos interpretar estas ĺıneas de Wilson como el ĺımite de las bandas de Wilson

asociadas a un dipolo fractónico, como se procede en [85, 86] en el contexto de los

modelos tensoriales de carga escalar. La configuración correspondiente se describe en

la Figura 3.6. El operador de banda viene dado ahora por una integral de ĺınea doble

sobre la curva C y otra sobre la fibra Fλ en cada punto λ perteneciente a C:

U(C,F ) =

∫
C

dℓCi

∫
Fλ

dℓλj K
ij =

∫ λ2

λ1

dλ

∫ β2

β1

dβ

[
∂xCi (λ)

∂λ

∂xλj (β)

∂β
Kij

]
. (3.136)

Para una fibra infinitesimal, escribimos el vector tangente
∂xλj (β)

∂β
= ϵ kj(λ) y obtenemos

U(C,F ) = ϵ

∫ λ2

λ1

dλ
∂xCi (λ)

∂λ
kj(λ)K

ij . (3.137)
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Figura 3.6: Configuración de las curvas correspondientes a una banda de Wilson finita (iz-
quierda) y el correspondiente ĺımite infinitesimal u operador del ĺınea asociado (derecha).

A partir de aqúı, las transformaciones de gauge (3.130) actúan como

δU(C,F ) =− ϵ

∫ λ2

λ1

dλ
∂xCi (λ)

∂λ
kj(λ) ∂i∂jξ0 = −ϵ

∫ λ2

λ1

dλ kj(λ) ∂λ∂jξ0 =

= −ϵ (kj(λ) ∂jξ0)|λ2λ1 + ϵ

∫ λ2

λ1

dλ

[
∂kj(λ)

∂λ
∂jξ0

]
. (3.138)

Esto tiene un término que no depende exclusivamente de los puntos extremos de la

curva C(λ). Sin embargo, aún podemos elegir la dependencia de la dirección de la fibra

como queramos. Para reproducir las transformaciones de gauge del operador lineal de

traslación UP (C) elegimos kj(λ) = aj. De este modo, recuperamos

U(C,F ) = ϵ

∫ λ2

λ1

dλ
∂xCi (λ)

∂λ
ajK

ij = ϵ

∫
C

dℓi (ajK
ij) = ϵ UP (C) , (3.139)

teniendo una transformación de gauge consistente con la esperada (7.98)

δU(C,F ) = −ϵ
(
aj∂jξ0

)∣∣X2

X1
. (3.140)

Considerando las dilataciones proponemos la dependencia kj(λ) = κxCj (λ) y obtene-

mos

U(C,F ) = ϵ κ

∫ λ2

λ1

dλ

[
∂xCi (λ)

∂λ
xCj (λ)K

ij

]
= ϵ κ

∫
C

dℓCi (x
C
j K

ij) = ϵ UD(C) . (3.141)

Con esta elección de fibra, el segundo término en (3.138) da un término de borde, y

recuperamos la transformación de gauge esperada de (7.99)

δU(C,F ) =− ϵ κ
(
xCj (λ)∂

jξ0
)∣∣λ2
λ1

+ ϵ κ

∫ λ2

λ1

dλ

[
∂xCj (λ)

∂λ
∂jξ0

]
(3.142)

=− κ ϵ
(
xj∂

jξ0 − ξ0
)∣∣X2

X1
.

De este modo, es evidente que una forma de hacer invariantes de gauge estas ĺıneas de

Wilson es acoplar las exponenciales de estos operadores de banda con dipolos de carga
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ordinarios en los extremos, donde el campo cargado se transforma, como es habitual,

es decir, ψ → eiξ0ψ. Necesitamos un dipolo constante para la carga de traslación y un

dipolo de tamaño proporcional a ϵxi para la carga de dilatación. Algunos candidatos

para los Lagrangianos de materia fractónica que obedecen estas leyes de transformación

exóticas han sido estudiados recientemente en [117, 118].

En el caso de las demás cargas, es necesario adoptar prescripciones más complejas.

Consideremos el caso de las cargas de rotación. Hasta donde vimos, no hay manera de

escribir las ĺıneas de Wilson relacionadas con los operadores de rotación provenientes

de (3.58) como integrales de lazo de operadores no invariantes de gauge. Sin embargo,

podemos llegar mas lejos observando la teoŕıa dual presentada en la sección 3.1.5. Aqúı,

consideraremos la formulación electromagnética obtenida a partir de (3.52) y (3.54),

es decir,

Eij = −1

2
εiabεjcd∂

b∂dhac , Bij =
1

2
εiabεjcd∂

b∂dh̃ac . (3.143)

Nótese que ahora la simetŕıa de gauge tiene el aspecto de un “modelo tensorial de

carga vectorial” como en (3.122) y (3.124) (compárese con [114]). Esto es debido a la

tranformación

h̃ij → h̃ij + ∂iξ̃j + ∂j ξ̃i . (3.144)

Entonces, escribimos las corrientes de traslación y rotación en (3.58) como

BP
i =

aj

2
εiabεjcd∂

b∂dh̃ac , BJ
i =

sjn

2
xn εiabεjcd∂

b∂dh̃ac , sij = εijks
k . (3.145)

Las ĺıneas de Wilson correspondientes son

UP (C) =
1

2

∫
C

dℓi

[
εjab ∂

bh̃ai aj
]
, (3.146)

UJ(C) =
1

2

∫
C

dℓi

[
(snxk − skxn) ∂

nh̃ki − sk h̃
ki
]
. (3.147)

Ahora, como queŕıamos, las transformaciones de gauge correspondientes sólo dependen

de los puntos extremos de la curva:

UP (C) → UP (C)− 1

2
εjabaj∂bξ̃a

∣∣∣∣X2

X1

, (3.148)

UD(C) → UD(C)− 1

2

(
snxk − skxn

)
∂nξ̃k

∣∣∣X2

X1

− skξ̃k

∣∣∣X2

X1

. (3.149)

Estas leyes de transformación podŕıan coincidir con un tipo diferente de part́ıculas

cargadas cuyas transformaciones dependen de un vector de gauge ξj en lugar de una

función escalar. Véase [85, 86] para interpretaciones en términos de , part́ıculas restrin-

gidas a moverse en ĺıneas, denominadas “lineones”.
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Es importante destacar, que todos los modelos expĺıcitos conocidos en los que se car-

gan estas teoŕıas tensoriales rompen alguna invariancia de Lorentz y algunas simetŕıas

espaciales. Entonces estas formas de completar la teoŕıa del gravitón linealizado de-

beŕıan, como era de esperar, renunciar a la invariancia relativista.

3.4. Discusión del caṕıtulo

Hemos encontrado simetŕıas generalizadas para la teoŕıa del gravitón linealizado.

Estas son simetŕıas tipo 1-forma que están asociadas con la existencia de clases HDV

para regiones con grupo de homotoṕıa no trivial π1, es decir, regiones que contienen

lazos no contractibles. En otras palabras, se trata de la misma configuración de simetŕıas

generalizadas para teoŕıas de gauge libres ordinarias. Sin embargo, las cargas de los

operadores no locales para el gravitón no son invariantes bajo transformaciones de

Lorentz. Esto da lugar a consecuencias en la f́ısica UV de la teoŕıa.

En particular, vimos que para completar el espectro de cargas de la teoria del gra-

vitón linealizado necesitamos incluir part́ıculas cargadas con movilidad restringida. En

otras palabras, intentar completar la teoŕıa del gravitón como seŕıa estándar en QFT

parece requerir romper la invariancia relativista. Aśı pues, los resultados y observacio-

nes de este caṕıtulo, apoyan la idea de que para completar la teoŕıa de los gravitones

debeŕıa seguirse una ruta distinta a la de QFT. Una v́ıa diferente para completar

dicha teoŕıa es la Teoŕıa de Cuerdas o, más en general, holograf́ıa. Seŕıa interesante

comprender cómo se rompen alĺı estas simetŕıas.

Otra diferencia entre las teoŕıas de gauge ordinarias y el campo de gravitones es que

esta ultima no posee un el tensor de enerǵıa-momento bien definido como consecuencia

del teorema de Weinberg-Witten. No obstante, esta en realidad es la razón por la

que están permitidos los operadores no locales transforman bajo simetŕıas espacio-

temporales. Dicho de otra forma, parece haber una razón muy sencilla por la que una

teoŕıa con tensor de enerǵıa-momento no puede tener una mezcla de ı́ndices de Lorentz

con las etiquetas de simetŕıa generalizada, una especie de generalización del teorema de

Coleman-Mandula. En presencia de un tensor de enerǵıa-momento, podemos formar un

operador aditivo en A(R) que implemente la simetŕıa de Poincaré en la región R y no

en su complemento. En este contexto, como el operador que implementa la simetŕıa es

aditivo en R cualquiera sea la topoloǵıa de la región, y por ende no puede transformar

las clases no locales. Esto proh́ıbe los ı́ndices de Lorentz en las etiquetas de clase. En

el caṕıtulo 5 estudiaremos más en detalle y generalidad estas ideas.





Caṕıtulo 4

Simetŕıas Generalizadas de

Gravitones Generalizados

Considerando los resultados del capitulo anterior, el siguiente escenario más sencillo

es ir más allá de las cuatro dimensiones y considerar teoŕıas generales de gravedad

linealizada, denominadas aqúı teoŕıas de “gravitones generalizados”. Este zoológico de

modelos desciende de la linealización de teoŕıas de gravedad de orden superior generales

e invariantes ante difeomorfismos construidas a partir de la métrica y el tensor de

Riemann. Encontrar las simetŕıas generalizadas para estos gravitones generalizados es

el objetivo principal de este caṕıtulo.

Hay dos motivaciones principales para este análisis. La primera proviene de la gra-

vedad clásica. El estudio de las cargas conservadas en las teoŕıas gravitatorias de todo

tipo ha sido un área clave en este campo, siendo en este contexto uno de sus aspec-

tos más destacados el llamado formalismo de Wald [119–121]. Si existen nuevas cargas

conservadas, aunque sean de naturaleza diferente, es importante encontrarlas.

La segunda motivación proviene de AQFT. Como mencionamos el el capitulo 2,

una consecuencia clave del teorema del doble conmuntante de von Neumann sobre las

simetŕıas generalizadas es que estas vienen en pares duales. Este principio básico tiene

varias implicaciones importantes. Por ejemplo, en un contexto holográfico, proporciona

un argumento sólido contra la existencia de simetŕıas p-forma en gravedad cuántica

[22]. Sin embargo, a simple vista las teoŕıas generalizadas de gravitones parecen desafiar

dicho principio.

Más precisamente, para derivar las propiedades de los campos eléctricos y magnéti-

cos en el capitulo anterior utilizamos propiedades del tensor de Riemann y su dual que

no necesariamente son validas cuando consideramos generalizaciones de la teoŕıa. Por

un lado, en las teoŕıas de mayor orden en curvatura el tensor de Riemann no es una

corriente conservada pero si lo es su dual. Por otro, en más dimensiones, incluso para

la gravedad de Einstein, las identidades de Bianchi del tensor de Riemann dual no

85
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necesariamente tienen las mismas implicaciones. En este contexto, el hecho de que las

simetŕıas generalizadas vengan en pares duales podŕıa predecir la existencia de nuevas

clases HDV, de otro modo inesperadas. Por el contrario, podŕıa sugerir que ciertos ope-

radores no locales ingenuos en realidad son aditivamente generados y no corresponden

a una simetŕıa generalizada.

El resto del caṕıtulo se organiza de la siguiente manera: Comenzamos en sección 4.1

introduciendo el conjunto de teoŕıas gravitatorias que consideraremos, y mostraremos

como estas surgen de extensiones cuadráticas generales de la teoŕıa de Einstein. En la

sección 4.2 identificamos las cargas conservadas asociadas con las simetŕıas generaliza-

das de la gravedad linealizada de Einstein donde presentaremos de forma covariante

los resultados del caṕıtulo 3 y su generalización a D > 4. Siguiendo, en la sección

4.3, estudiamos las simetŕıas generalizadas que emergen en teoŕıas de mayor curvatura

linealizadas en dimensiones generales. Finalmente, en la sección 4.4 mostramos que las

ecuaciones de movimiento de cada una de las teoŕıas pueden deducirse a partir de sus

correspondientes conjuntos de simetŕıas generalizadas. Concluimos en la sección 4.5 con

algunas discusiones respecto a la aplicabilidad del principio de pares duales y planes

para futuros trabajos relacionados.

4.1. Gravitones generalizados

Como mencionamos, vamos a trabajar con generalizaciones Lagrangiano de Einstein-

Hilbert que incluyen funciones genéricas invariantes ante difeomorfismos construidas a

partir del tensor de Riemann. La linealización de esas teoŕıas resulta proporcionar un

interesante zoológico de modelos, al que denominaremos“gravitones generalizados”. En

esta sección describimos este zoológico de gravitones generalizados.

Las extensiones de la teoŕıa de la relatividad general de Einstein surgen al considerar

acciones construidas a partir de contracciones del tensor de Riemann y de la métrica1

S =

∫
dDx

√
|g| L(gαβ, Rρ

σµν) . (4.1)

En ausencia de campos adicionales, las ecuaciones de movimiento no lineales que se

derivan de esta acción son las siguientes

Eµν ≡ Pµ
σρδRνσρλ−

1

2
gµνL−2∇α∇βPµαβν = 0 , donde P µ

νρσ ≡
[

∂L
∂Rµ

νρσ

]
gγδ

. (4.2)

Nótese que buscamos analizar las simetŕıas generalizadas para gravitones en un espacio

de Minkowski. Por lo tanto, fijamos la constante cosmológica a cero, lo que implica que

1Obsérvese que podŕıamos haber elegido un conjunto diferente de variables independientes en L.
De hecho, todas las expresiones son consistentes con elecciones como {Rµνρσ, g

αβ} o {Rρσ
µν} [122].
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el espacio de Minkowski es una solución de estas ecuaciones.2 Deseamos considerar la

versión linealizada del conjunto anterior de teoŕıas en torno a dicho fondo, caracterizado

por g
(0)
µν = ηµν y R

ρ(0)
σµν = 0. De esta forma, una pequeña perturbación hµν sobre este

fondo se define por (3.1), es decir

gµν = ηµν + hµν , ||hµν || ≪ 1 . (4.3)

Como en el caṕıtulo 3, subiremos y bajaremos ı́ndices utilizando la métrica de fondo

ηµν y su inversa, y utilizaremos la notación h ≡ hλλ. Usando esta expresión para la

métrica podemos calcular las cantidades asociadas relevantes al orden deseado en hµν .

Para cada una de ellas tendremos una expansión de la forma

T = T (0) + T (1) + T (2) +O(h3) . (4.4)

Las expresiones relevantes hasta O(h2), serán suficientes para nuestros propósitos. En

particular, para los órdenes cero y lineal del determinante de la métrica, de la métrica

inversa, de los śımbolos de Christoffel, del tensor de Riemann, del tensor de Ricci y del

escalar de Ricci, encontramos respectivamente:

√
|g|(0) = 1 ,

√
|g|(1) = 1

2
h , (4.5)

gµν(0) = ηµν , gµν(1) = −hµν , (4.6)

Γ
µ(0)
αβ = 0 , Γ

µ(1)
αβ =

1

2

(
hµα,β + hµβ,α + h µ

αβ,

)
, (4.7)

Rρ(0)
σµν = 0 , Rρ(1)

σµν = Γρ(1)νσ,µ − Γρ(1)µσ,ν =
1

2

(
hρν,σµ + h ρ

µσ,ν − h ρ
νσ,µ − hρµ,σν

)
, (4.8)

R(0)
µν = 0 , R(1)

µν =
1

2

(
hρν,µρ + hρµ,νρ − h ρ

µν,ρ − hρρ,µν
)
, (4.9)

R(0) = 0 , R(1) = h µν
µν, − hµµ,

ν
ν (4.10)

Por otra parte, los términos de orden cuadrático correspondientes son los siguientes

√
|g|(2) = 1

8
h2 , (4.11)

gµν(2) = hµσh
σν , (4.12)

Γ
µ(2)
αβ = −1

2
hµν
(
hνα,β + hνβ,α + hαβ,ν

)
, (4.13)

Rρ(2)
σµν = Γρ(2)νσ,µ − Γρ(2)µσ,ν + Γ

ρ(1)
µλ Γλ(1)νσ − Γ

ρ(1)
νλ Γλ(1)µσ , (4.14)

2A continuación será conveniente pensar en esta teoŕıa como si contuviera una parte de Einstein-
Hilbert, más correcciones.
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R(2)
µν = ηρσR(2)

ρµσν , (4.15)

R(2) = hλσ
(
h ρ
λσ,ρ − h ρ

ρσ,λ − h ρ
ρλ,σ + hρρ,σλ

)
+

3

4
h σ
ρλ, h

ρλ
,σ (4.16)

− h σ
σλ, h

ρλ
,ρ + h σ

σλ, h
ρ
ρ
λ
, −

1

2
hρλ,σh

σλ ρ
, − 1

4
hσσ,

λhρρ,λ .

En este contexto, dada una densidad lagrangiana genérica de curvatura superior a

orden n en curvaturas de Riemann, observamos que los tres términos que aparecen en

las ecuaciones de movimiento (4.2) son de órdenes Riemn, Riemn y Riemn−1, respecti-

vamente. Por lo tanto, a orden lineal en hµν , cada uno de esos términos será de la forma:

Riem(1)· [Riemn−1](0), Riem(1)· [Riemn−1](0) y Riem(1)· [Riemn−2](0), respectivamente.

Puesto que el tensor de Riemann se anula idénticamente en el fondo de Minkowski,

todos estos términos desaparecerán para n general con dos únicas excepciones:

(a) los dos primeros términos para n = 1, que combinados no serán más que el tensor

de Einstein linealizado;

(b) el tercer término para n = 2.

En consecuencia, basta con considerar una teoŕıa cuadrática genérica para dar cuenta

del caso más general posible.3 Por ende, podemos escribir una teoŕıa cuadrática genérica

a partir de la densidad lagrangiana como

L =
1

16πG

[
R + α1R

2 + α2RµνR
µν + α3RµνλσR

µνλσ
]
, (4.17)

donde α1,2,3 son constantes arbitrarias con dimensiones de longitud al cuadrado. Pode-

mos obtener las ecuaciones linealizadas para esta teoŕıa a partir de la acción expandida

a orden cuadrático en perturbaciones. Más precisamente, escribiremos dicha acción

como

S =
1

16πG
[SFP + SHD] +O(h3) . (4.18)

donde el primer término, SFP, es la acción de Fierz-Pauli procedente de la densidad de

Einstein-Hilbert. Sin considerar términos de borde, podemos escribirla análogamente

a (3.6) , es decir

SFP =

∫
dDx

[(
1 +

h

2

)
R(1) +R(2)

]
(4.19)

=

∫
dDx

[
−1

2
∂µh∂νh

µν +
1

2
∂λh

µν∂νhµλ +
1

4
∂µh∂

µh− 1

4
∂λhµν∂λhµν

]
.

3Naturalmente, esto cambia cuando está presente una constante cosmológica, ya que entonces
Riem(0) ̸= 0, véase [123–126].
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Por otra parte, el segundo término, SHD, proviene de las densidades cuadráticas como

SHD =

∫
dDx

[
α1R

2
(1) + α2R

(1)
µνR

µν
(1) + α3R

(1)
µνλσR

µνλσ
(1)

]
(4.20)

=

∫
dDx

[(
α1 +

α2

2
+ α3

)
∂µ∂νh

µν∂λ∂σh
λσ +

(
α1 +

α2

4

) (
∂2h∂2h− 2∂µ∂νh

µν∂2h
)

+
(α2

4
+ α3

) (
∂2hµν∂2hµν − 2∂µ∂λh

µσ∂ν∂λhνσ
)]
.

Obsérvese que si elegimos α1 = α3 y α2 = −4α3 en (4.17), la parte cuadrática se hace

proporcional a la densidad de Gauss-Bonnet. Para esa teoŕıa, el tercer término que

aparece en las ecuaciones de movimiento no lineales genéricas (4.2) está ausente, ya

que tenemos ∇αPαµβν = 0 en las teoŕıas de Lovelock [127, 128]. Por lo tanto, siguiendo

nuestro razonamiento anterior, la densidad de Gauss-Bonnet no debeŕıa contribuir en

absoluto a las ecuaciones linealizadas sobre un fondo de Minkowki. Esto es precisamente

lo que ocurre si analizamos cuidadosamente SHD, debido a que dicha acción se anula

idénticamente para la elección de acoplamientos en cuestión.

Siguiendo el desarrollo en [125], es conveniente escribir los acoplamientos α1 y α2 en

términos de dos nuevos parámetros, ms y mg, que tienen dimensiones de masa, como

α1 =
(D − 2)m2

g +Dm2
s

4(D − 1)m2
sm

2
g

+ α3 , α2 = − 1

m2
g

− 4α3 . (4.21)

Entonces, podemos escribir la teoŕıa cuadrática original como 4

L =
1

16πG

[
R+

(D − 2)(m2
g −m2

s)

4(D − 1)m2
sm

2
g

R2 (4.23)

− (D − 2)

4(D − 3)m2
g

[CµνρσC
µνρσ −X4] + α3X4

]
,

donde Cmuνρσ es el tensor de Weyl y X4 es la densidad de Gauss-Bonnet. La ecuación

de movimiento de la perturbación coincide con la presentada en [125] y viene dada por

E (1)
µν = 0, donde

16πGE (1)
µν ≡

[
1− ∂2

m2
g

] [
R(1)
µν − 1

2
ηµνR

(1)

]
(4.24)

+

[
(D − 2)(m2

g −m2
s)

2(D − 1)m2
sm

2
g

] [
ηµν∂

2 − ∂µ∂ν
]
R(1) .

4Aqúı usamos la relación

X4 − CµνρσC
µνρσ =

D(D − 3)

(D − 2)(D − 1)

[
R2 − 4(D − 1)

D
RµνR

µν

]
. (4.22)
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Esta ecuación de movimiento se reduce a la de Einstein linealizada para m2
g,m

2
s → ∞,

lo que equivale a desactivar los acoplamientos cuadráticos (con la excepción del de

Gauss-Bonnet, que no contribuye). Los dos coeficientes m2
g y m2

s que parametrizan la

ecuación linealizada modificada corresponden a las masas al cuadrado de dos modos

adicionales que aparecen en el espectro linealizado de (4.2), además del gravitón habi-

tual. En particular, ms es la masa de un modo escalar, mientras que mg es la masa de

un modo de esṕın 2 masivo y fantasma que, en D dimensiones, propaga D(D − 1)/2−1

grados de libertad. Para ver esto expĺıcitamente, es conveniente reescribir las expresio-

nes anteriores en el gauge de Donder. Este gauge se define por

∂µh
µν =

1

2
∂νh . (4.25)

En este gauge, podemos obtener el tensor de Ricci linealizado y el escalar de Ricci

como

R(1)
µν = −1

2
∂2hµν , R(1) = −1

2
∂2h , (4.26)

y podemos escribir las ecuaciones linealizadas de la forma

E (1)
µν ≡ − 1

32πG
∂2ĥµν = 0 , (4.27)

donde representamos como ĥµν a la expresión

ĥµν ≡ hµν −
1

2
ηµνh− 1

m2
g

[
∂2hµν −

1

2
∂µ∂νh

]
(4.28)

+

[
m2
g(D − 2) +m2

s

2(D − 1)m2
gm

2
s

](
ηµν∂

2 − ∂µ∂ν

)
h .

Esta perturbación modificada, que corresponde al gravitón sin masa habitual, es trans-

versal pero tiene traza no nula

∂µĥ
µν = 0 , ĥ ̸= 0 . (4.29)

Descomponiendo hµν como en [125] tenemos

hµν = tµν + ĥµν −
ηµν ĥ

(D − 2)
+

(m−2g −m2
s)

(D − 1)
∂⟨µ∂ν⟩ĥ (4.30)

+
2

D(D − 2)
ηµνϕ+

1

(D − 1)m2
s

∂⟨µ∂ν⟩ϕ ,

donde tµν es un modo de spin-2 sin traza, ϕ es un escalar y ⟨µν⟩ denota la parte sin
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traza. En efecto, podemos demostrar que estos satisfacen

(∂2 −m2
s)ϕ = 0 , (∂2 −m2

g)tµν = 0 . (4.31)

Por lo tanto, describen modos masivos de esṕın 0 y 2 respectivamente, como hab́ıamos

previsto. Si hubiéramos incluido algún tensor de enerǵıa-momento de materia en el

Lagrangiano, tµν se acoplaŕıa a él con el signo equivocado, lo que refleja su naturaleza

de campo fantasma.

Resumiendo, los gravitones generalizados se caracterizan básicamente por dos paráme-

tros dimensionales, las masas de los nuevos modos existentes en el espectro. Dado que

tenemos nuevos modos masivos anticipamos que las simetŕıas generalizadas del gravitón

de Einstein cambiarán. Este será el caso, como mostraremos a continuación.

4.2. Simetŕıas generalizadas para gravitones

de Einstein-Hilbert

Antes de sumergirnos en el caso general, estudiemos primero las simetŕıas genera-

lizadas de la gravedad de Einstein linealizada en D ≥ 4 dimensiones.

Esta teoŕıa está controlada por la acción de Fierz-Pauli (4.19), que tiene una simetŕıa

de gauge asociada a la acción de difeomorfismos linealizados que actúan según (3.8)

como

hµν → hµν + ∂µξν + ∂νξµ . (4.32)

Las corrientes p-forma conservadas deben ser operadores f́ısicos, y por lo tanto invarian-

tes ante difeomorfismos linealizados. Esto significa que deben escribirse en términos del

tensor de Riemann linealizado Rµναβ. Al igual que en el capitulo 3, podemos considerar

a dicho tensor de curvatura como el generador del álgebra local invariante de gauge de

la teoŕıa. Sin embargo, a diferencia de lo ya estudiado, trataremos de encontrar una

formulación covariante de los operadores no locales. Con este propósito, observamos

primero que el tensor de Riemann on-shell cumple las siguientes idetidades

Rµναβ = −Rνµαβ = −Rµνβα [Antisimetŕıa] (4.33)

Rµναβ = Rαβµν [Simetŕıa de intercambio] (4.34)

ηµαRµναβ = 0 [Ecuación de Einstein] (4.35)

εµ1...µD−3αβγ Rαβγν = 0 [1ra Identidad de Bianchi ] (4.36)

εµ1...µD−3αβγ ∂αRβγµν = 0 [2da Identidad de Bianchi ] (4.37)

∂µRµναβ = 0 [Ecuación de Einstein + 2da de Bianchi ] (4.38)
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donde aqúı y en adelante omitimos el supeŕındice “(1)” utilizado en la sección anterior.

Nótese que la última ecuación, (4.38), dice que el tensor de Riemann se comporta como

un biforma conservada a partir de la cual esperamos poder construir corrientes p-forma.

Ahora bien, aunque el tensor de Riemann Rµναβ es el generador del álgebra inva-

riante de gauge, también podemos utilizar el tensor máximamente antisimétrico εµ1...µD
para producir nuevos tensores. Equivalentemente, otro candidato natural para construir

cargas conservadas es la curvatura dual [129, 130].5 Definimos la curvatura dual me-

diante la acción del operador de Hodge sobre el tensor de Riemann de la siguiente

manera

R∗µ1...µD−2αβ
=

1

2
εµ1...µD−2λσ R

λσ
αβ . (4.39)

Este operador satisface las siguientes ecuaciones algebraicas y de conservación

R∗µ1µ2...µD−2αβ
= −R∗µ2µ1...µD−2αβ

= ... , [Antisimetŕıa del Levi-Civita] (4.40)

R∗µ1µ2...µD−2αβ
= −R∗µ1µ2...µD−2βα

, [Antisimetŕıa del Riemann] (4.41)

ηγαR∗γµ1...µD−3αβ
= 0 , [1ra Identidad de Bianchi ] (4.42)

εµ1µ2...µD−1βR∗µ1µ2...µD−1α
= 0 , [Ecuación de Einstein] (4.43)

εµ1µ2...µD−1βR∗αµ1µ2...µD−1
= 0 , [Ecuación de Einstein] (4.44)

∂γ R∗γµ1...µD−3αβ
= 0 . [2da Identidad de Bianchi] (4.45)

∂β R∗µ1...µD−2αβ
= 0 . [Conservación del Riemman] (4.46)

εµ1µ2...µD−1γ∂µ1R
∗
µ2µ3...µD−1αβ

= 0 . [Conservación del Riemman] (4.47)

εν1ν2...νD−3αβγ∂γR
∗
µ1µ2...µD−2αβ

= 0 . [2da Identidad de Bianchi ] (4.48)

Obsérvese que muchas de las propiedades algebraicas y diferenciales dadas en (4.33-

4.38) y (4.40-4.48) son válidas on-shell más allá del nivel linealizado si se sustituye la

métrica de Minkowski por una métrica general, y la derivada parcial por una derivada

covariante. Sin embargo, el tensor de Riemann ya no es un operador invariante de gauge

cuando vamos más allá de la teoŕıa linealizada sobre el espacio plano y, por tanto, no

podemos extender la construcción de las corrientes de forma sencilla más allá del caso

en cuestión. Para realizar dicha generalización, en [132] se ha utilizado el formalismo

de Cartan donde se han extendido los resultados de este caṕıtulo a gravitones sobre

métricas de fondo generales.

4.2.1. Gravitones de Fierz-Pauli en D = 4

Permitamosnos ahora revisar el caso de D = 4, que desarrollamos en el caṕıtulo

3. En esta dimension podemos construir las siguientes cuatro familias de 2-formas

5Podemos realizar el mismo procedimiento con el doble dual del tensor de Riemann, véase [131].
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conservadas [131, 133].

Aµν = Rµναβ a
αβ , (4.49)

Bµν = Rµναβ (x
αbβ − xβbα) , (4.50)

Cµν = Rµναβ c
αβγxγ , (4.51)

Dµν = Rµναβ (x
αdβγxγ − xβdαγxγ +

1

2
dαβx2) , (4.52)

donde aαβ, bα, cαβγ y dαβ son tensores reales de antisimétricos de parámetros libres

que determinan las 20 espećıficas 2-formas conservadas. Sin embargo, como veremos

en el capitulo siguiente estos tensores no necesariamente transforman como tensores

de Lorentz. Siguiendo, podemos ver que las corrientes satisfacen las ecuaciones de

conservación apropiadas de la forma

d ∗ A = 0 , d ∗B = 0 , d ∗ C = 0 , d ∗D = 0 . (4.53)

Nótese que la conservación de A sólo requiere que se conserve el tensor de Riemann

(4.38) mientras que para las otras corrientes necesitamos propiedades algebraicas adi-

cionales. En concreto, la conservación de B depende de la condición de traza nula

(4.35), para C se requiere la primera identidad de Bianchi (4.36), y para D necesita-

mos tanto (4.35) como (4.36). Para relación con el caṕıtulo 3: la familia A contiene a

los operadores llamados traslaciones eléctricas y magnéticas, las familias B y C son

equivalentes a las dilataciones y rotaciones eléctricas y magnéticas, y finalmente la

familia D esta compuesta por las transformaciones conformes especiales eléctricas y

magnéticas.

Podemos integrar todas las corrientes (4.49-4.52) en una superficie Σ2 de codimen-

sión 2 enD = 4 produciendo cargas conservadas si Σ2 es cerrada. En particular, en [131]

se estudiaron cargas análogas para soluciones linealizadas de [134–140]. El resultado es

que, por un lado, la integral del dual de B es proporcional a la masa y el flujo del dual

de D mide el momento angular. Por otro lado, los duales de C y A están relacionados

con las soluciones magnéticas, de manera que son respectivamente proporcionales a la

carga NUT (que representa la dual magnética de la masa) y a la versión magnética del

momento angular.

Podemos también integrar las corrientes 2-forma (4.49-4.52) sobre superficies Σ2

abiertas, produciendo operadores HDV no locales que sólo dependen del borde ∂Σ2 si.

En este contexto, podemos escribir el flujo no local más general posible definido por

los parámetros (aαβ, bα, cαβγ, dαβ) en una región tipo anillo R que contiene una curva
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cerrada no contractible ∂Σ2 como

Φ∂Σ2 =

∫
Σ2

∗ (A + B + C + D ) . (4.54)

Si consideremos además un operador no local Φ∂Σ̃2
en la región complementaria R

con parámetros (ãαβ, b̃α, c̃αβγ, d̃αβ). Los operadores Φ∂Σ2 y Φ∂Σ̃2
no se generan localmen-

te en regiones complementarias y, por tanto, no conmutan entre śı. Podemos introducir

una foliación y calcular conmutador correspondiente a partir de (3.103) para obtener

[Φ∂Σ2 ,Φ∂Σ̃2
] = i

(
a · ·d̃∗ + 2 b · c̃∗ − 2 c∗ · b̃− d∗ · ·ã

)
(4.55)

donde utilizamos la convención

d∗αβ =
1

2!
εαβγδ d

γδ , c∗α =
1

3!
εαβγδ c

βγδ . (4.56)

Esto prueba que las corrientes (4.49-4.52) integradas sobre superficies bidimencionales

abiertas en efecto producen violaciones de dualidad de Haag y generan las clases HDV

asociadas a regiones tipo anillo que contienen lazos no contractibles. Dicho de otra

manera, el hecho de que los conmutadores no sean cero asegura directamente que las

corrientes que generan los flujos no son exactas en el álgebra f́ısica. La razón es que

siempre que una de los flujos que aparecen en un conmutador esté generado por una

corriente exacta, dicho conmutador debe ser cero por causalidad, ya que el álgebra

máxima en una región dada es precisamente el conmutante del álgebra aditiva de

región complementaria.

Cabe preguntarse si podŕıan construirse más corrientes conservadas. De hecho, po-

demos definir cantidades conservadas similares a partir de la curvatura dual, a saber,

Ãµν = R∗µναβ ã
αβ , (4.57)

B̃µν = R∗µναβ (x
αb̃β − xβ b̃α) , (4.58)

C̃µν = R∗µναβ c̃
αβγxγ , (4.59)

D̃µν = R∗µναβ (x
αd̃βγxγ − xβd̃αγxγ +

1

2
d̃αβx2) . (4.60)

Sin embargo, en D = 4 tenemos una simetŕıa de dualidad U(1) que corresponde a una

rotación de Riemann y su dual,(
R

R∗

)
→
(
cos (θ) − sin (θ)

sin (θ) cos (θ)

)(
R

R∗

)
. (4.61)

análoga a la simetŕıa de dualidad del campo libre de Maxwell. Esto significa que el álge-

bra generada por A,B,C,D es de hecho la misma que la generada por Ã, B̃, C̃, D̃. Como
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veremos en un momento, para la generalización a dimensiones arbitrarias D ≥ 4 se-

ra más conveniente elegir una base “más equilibrada”, formada por el mismo número de

cargas tildadas y no tildadas. Esta esta dada porB,D, Ã, B̃. Entonces,equivalentemente,

podemos escribir el operador no local más general en D = 4 como

Φ∂Σ2 ,=

∫
Σ2

∗
(
B + D + Ã + B̃

)
. (4.62)

En este número de dimensiones el hecho de que las simetŕıas vengan en pares duales es

a primera vista trivial ya que para una región tipo anillo el complemento es también

una región tipo anillo. Por lo tanto, las mismas cargas aparecen en una región tipo

anillo y en su complemento. Sin embargo, no es una coincidencia que el número total

de ellos es par, a saber, 20. Esto es requerido por el conmutador, dado que las B están

emparejadas con las B̃ y las D están emparejadas con las Ã.

4.2.2. Garvitones de Fierz-Pauli en D > 4

Ahora pasamos a dimensiones D > 4. En este caso, el complementario de una región

tipo anillo ya no es un anillo, por lo que las clases HDV y clases HDV duales corres-

ponden a regiones con topoloǵıas diferentes. En particular, tendremos operadores no

locales que violan dualidad de Haag en regiones con grupo de homotoṕıa no trivial π1,

d́ıgase anillos, y cargas duales que violan la dualidad en regiones con grupo homotoṕıa

no trivial πD−3.

A primera vista, siguiendo a [131], se observa que las familias A,B,C,D de 2-

formas descritas anteriormente siguen siendo conservadas en dimensiones generales, y

son D(D + 1)(D + 2)/6 candidatas para generar simetŕıas generalizadas asociadas a

anillos. El principio de que las simetŕıas generalizadas vienen en pares duales predice

entonces que debeŕıamos encontrar un número igual de (D−2)-formas duales conserva-

das. Los candidatos naturales aparecen al considerar la extensión obvia de las familias

Ã, B̃, C̃, D̃ a dimensiones superiores. Desgraciadamente, en dimensiones superiores sólo

podemos recuperar (D + 1)/2 corrientes conservadas (D − 2)-forma. Estas provienen

de las dos familias Ã, B̃ construidas como

Ãµ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

ãαβ , (4.63)

B̃µ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

(xαb̃β − xβ b̃α) . (4.64)

Desde un punto de vista técnico, el problema reside en que, en D > 4, no podemos

construir corrientes conservadas C̃µν y D̃µν análogamente a (4.51-4.52). Esto se debe a

que la identidad de Bianchi del tensor dual de Riemann con sólo tres ı́ndices contráıdos
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no se cumple. Más precisamente, se obtiene

εµ1...µD−3αβγ R∗ν1...νD−3αβγ
=

1

2
η
βγµ1...µD−3

αδν1...νD−3
Rδα

βγ , (4.65)

donde ηµ1µ2...ν1ν2...
es la métrica generalizada definida a partir del determinante

ηµ1µ2...ν1ν2...
=

∣∣∣∣∣∣∣∣
ηµ1ν1 ηµ2ν1 . . .

ηµ1ν2 ηµ2ν2 . . .
...

...
. . .

∣∣∣∣∣∣∣∣ . (4.66)

Mientras que en D = 4 esto se reduce a una combinación de tensores de Ricci que des-

aparece en virtud de la ecuación de Einstein (4.35), este ya no es el caso en dimensiones

superiores.6

Esta discrepancia entre el número de clases HDV asociadas a simetŕıas generalizadas

en regiones complementarias tiene dos posibles oŕıgenes. La primera posibilidad es que

nos falten operadores no locales que surjan de nuevas (D − 2)-formas conservadas. En

este caso, los flujos tienen que ser del tipo C̃ o D̃ para que las dimensiones coincidan y

podamos formar conmutadores no nulos con las A y B. Argumentamos que estas cargas

no existen en la sección 4.2.3. La segunda posibilidad es que algunas de las familias

A,B,C,D de 2-formas conservadas se vuelvan exactas en dimensiones superiores a

cuatro y no generen simetŕıas generalizadas. Aunque esto resulte contraintuitivo a

primera vista, resulta ser aśı, ya que las familias A, C contienen exclusivamente 2-

formas exactas en D > 4. Para observar esto con precision definimos las siguientes

3-formas

A[R]
µνρ = −

R∗µνρα1...αD−3

(D − 4)!
ãα1...αD−3σ xσ , (4.67)

C[R]
µνρ =

R∗µνρα1...αD−3

(D − 5)!(D − 2)

(
1

2
c̃α1...αD−3 x2 +

η
α1...αD−3

β1...βD−3

(D − 4)!
cβ1...βD−4σ xβD−3 xσ

)
, (4.68)

donde hemos nombrado ãα1...αD−2 y c̃α1. . . αD−3 a formas constantes obtenidas actuando

con el operador estrella de Hodge sobre los tensores antisimétricos aµν y cµνρ en (4.49)

y (4.51) respectivamente.

ãα1...αD−2 =
1

2
ϵα1...αD−2µν aµν , (4.69)

c̃α1...αD−3 =
1

3!
ϵα1...αD−3µνρ cµνρ .

6Por ejemplo, en D = 5 encontramos εµ1µ2αβγ R∗
ν1ν2αβγ

= 2Rµ1µ2
ν1ν2

.
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Por cálculo directo, podemos obtener que las divergencias correspondientes obedecen

∂ρA[R]
µνρ = Aµν , (4.70)

∂ρC[R]
µνρ = Cµν .

Considerando que la divergencia se escribe en lenguaje de formas diferenciales como

∗ d ∗, esto implica

d ∗ A[R] ∼ ∗A ,
d ∗ C[R] ∼ ∗C . (4.71)

Esto nos demuestra que ∗A y ∗B son exactas en el álgebra f́ısica de la teoŕıa. Los

flujos construidos a partir de ellas pertenecen al álgebra aditiva del anillo y conmutan

con todos los operadores de la región complementaria, incluidos los no locales. En otras

palabras, no generan simetŕıas generalizadas. Nótese que este análisis no es aplicable

en D = 4 ya que (4.67) y (4.68) no corresponden a formas diferenciales antisimétricas.

Se podŕıa intentar antisimetrizar los ı́ndices libres, pero tal procedimiento daŕıa lugar

a que tanto Aµνρ como Cµνρ desaparecieran debido a la identidad de Bianchi del tensor

de Riemann dual (4.43). El hecho de que las corrientes conservadas A y B no generan

simetŕıas generalizadas en D > 4 también puede verse a partir del teorema de Noether,

ya que corresponden a variaciones triviales de la acción obtenida en [131] para los

gravitones en cuestión.

En este contexto, los operadores no locales más generales asociados a superficies de

dimension (D − 2) y 2 toman la forma

Φ∂Σ(D−2)
=

∫
Σ(D−2)

∗
(
B +D

)
, Φ̃∂Σ̃2

=

∫
Σ̃2

∗
(
Ã+ B̃

)
. (4.72)

La verificación definitiva de que los operadores Φ∂Σ(D−2)
y Φ̃∂Σ̃2

realmente represen-

tan operadores HDV no locales, es evaluar el conmutador entre los flujos para superficies

enlazadas. Para empezar, observamos que podemos escribir tensor de Riemann a orden

lineal en perturbaciones de hµν como función de las variables dinámicas del espacio de

fases de la forma

R0i0j =
1

2
(∂i∂nhnj + ∂j∂nhni − ∂i∂jhnn − ∂n∂nhij) , (4.73)

R0ijk = ∂lπik − ∂kπil −
δik

D − 2
∂lπnn +

δil
D − 2

∂kπnn , (4.74)

Rijkl =
1

2
(∂l∂ihjk + ∂k∂jhil − ∂k∂ihjl − ∂l∂jhik) , (4.75)

donde πij representa los momentos canónicos asociados a hij, definidos a partir del
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lagrangiano de Fierz-Pauli como

πij ≡
δLFP

δḣij
=

1

2
(ḣij − ∂ih0j − ∂jh0i − δijḣnn + 2δij∂nh0n) . (4.76)

Procedemos ahora a calcular el conmutador de los flujos para una configuración

análoga a la desarrollada en la sección 3.2.4 del caṕıtulo 3. En particular, usaremos

los flujos definidos sobre un “cuadrado” espacial finito (D − 2)-dimensional ΣD−2 y

uno Σ2-dimensional. Elegimos el sistema de coordenadas como (x0, x1, x2, ..., xD−1), de

modo que las superficies están definidas por los parámetros de longitud L, α, y β como

ΣD−2 ≡
{
x0 = 0 , x1 = 0, x2 ∈ [0, α] , x3, ...., xD−1 ∈ [−L/2, L/2]

}
, (4.77)

Σ2 ≡
{
x0 = 0 , x1 ∈ [−L/2, L/2] , x2 ∈ [β, 3L/2] , x3, ...., xD−1 = 0

}
. (4.78)

donde α, β ∈ (0, 3L/2). Considerando (4.73-4.75) y las relaciones de conmutación a

tiempos iguales dadas por la cuantización canónica de la teoŕıa de Fierz-Pauli como

[hij(x), πkl(y)] =
i

2

(
δikδjl + δilδjk

)
δ(x− y) , (4.79)

o equivalentemente, la generalización a D > 4 del enfoque ADM linealizado presentado

en el la sección 3.1.3 del caṕıtulo 3. Recuperamos por cálculo directo el resultado[
Φ∂Σ(D−2)

, Φ̃∂Σ̃2

]
= i (D − 3)

(
2 b · b̃+ d · ·ã

)
θ(α− β) . (4.80)

La dependencia del resultado de la función de Heaviside θ(α − β) representa el hecho

de que el conmutador sólo es no nulo cuando α > β, es decir, cuando los bordes de los

cuadrados están enlazados. Además, las leyes de conservación

d ∗ B = d ∗ D = d ∗ Ã = d ∗ B̃ = 0 , (4.81)

implican que el mismo argumento vale para cualquier otro par de geometŕıas ΣD−2 y

Σ2. Siempre que sus bordes estén enlazados, el conmutador vendrá dado en términos

de (b · b̃) y (d · ·ã) por la expresión anterior. Cuando no lo estén, el conmutador se

anulara.

Una cuestión interesante es si en D ≥ 6 dimensiones podemos encontrar p−formas

conservadas con p ̸= 2 y p ̸= (D − 2). Efectivamente es aśı, pero estas corrientes

conservadas resultan ser formas exactas, es decir, se pueden obtener si aplicamos la

derivada exterior a una (p− 1)-forma. Lo mismo ocurre para el campo de Maxwell en
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D ≥ 6. Algunos ejemplos son:

R∗µ1µ2...µD−3λαβ
ãαβvλ = Ãµ1µ2...µD−3λv

λ, (4.82)

R∗µ1µ2...µD−3λαβ
(xαb̃β − xβ b̃α)xλ = B̃µ1µ2...µD−3λx

λ , (4.83)

con ãαβ, b̃α, y vα constantes. Podemos ver que estas corrientes conservadas, simplemente

obedecen a que

∂λ

(
Ãµ1µ2...µD−3λv

σxσ

)
= Ãµ1µ2...µD−3λv

λ , (4.84)

∂λ

(1
2
B̃µ1µ2...µD−3λx

2
)
= B̃µ1µ2...µD−3λx

λ . (4.85)

En resumen, al considerar un gravitón de Fierz-Pauli, encontramos dos familias de 2-

formas conservadas de que generan simetŕıas generalizadas, las B y lasD—véase (4.50)

y (4.52). Generando un total de cargas conservadas D(D+ 1)/2 integrando sus duales

de Hodge de la forma (4.72). En las regiones complementarias también encontramos dos

familias de (D − 2)-formas conservadas que generan simetŕıas generalizadas. Se trata

de las Ã y las B̃ —véase (4.63-4.64). Generan un número igual de cargas conservadas

D(D + 1)/2 integrando sus duales de Hodge (4.72). Este resultado puede entenderse

como una manifestación no trivial del principio de que los operadores no locales HDV

vienen en pares duales.

4.2.3. Buscando (D − 2)-formas conservadas en D > 4

Si bien la solución a la discrepencia de pares duales se evidencia en el hecho de

que las cargas generadas por las familias A y C son exactas, es un ejercicio interesante

convencernos de que no existen otras (D − 2)-formas conservadas en D > 4. Cuando

buscamos dichas corrientes, la primera propuesta que podemos intentar es la generali-

zación directa del caso D = 4. Esto incluye las corrientes bien definidas Ã y B̃ definidas

en (4.63-4.64) aśı como

C̃µ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

c̃αβγ xγ, (4.86)

D̃µ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

(
xαd̃βγxγ + xβd̃γαxγ +

1

2
d̃αβx2

)
, (4.87)

donde c̃αβγ y d̃βγ son de nuevo tensores reales antisimétricos de parámetros libres. Sin

embargo, estas 2-formas no se conservan. En concreto, para su divergencia obtenemos

∂ρC̃µ1µ2...µD−3ρ = R∗µ1µ2...µD−3ραβ
c̃ραβ (4.88)

∂ρD̃µ1µ2...µD−3ρ = R∗µ1µ2...µD−3ραβ

(
xαd̃βρ + xβd̃ρα + d̃αβxρ

)
(4.89)
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Sin embargo, como en D > 4 las identidades de Bianchi del tensor dual de Riemann

(4.43-4.44) son menos restrictivas que en D = 4, se permiten varias modificaciones

de esta primera propuesta. De hecho, podemos escribir todas las combinaciones po-

sibles del tensor dual de Riemann y sus derivadas con c̃αβγ, d̃αβ y las coordenadas

espacio-temporales que obedezcan la antisimetŕıa requerida y tengan la dimensión de

escala correcta. Muchas de estas combinaciones no son linealmente independientes unas

de otras, pero haciendo varias manipulaciones algebraicas que implican añadir ciertos

términos a las formas originales de C̃µν y D̃µν , encontramos que otras corrientes con-

servadas adicionales existen. Por ejemplo, podŕıan estar dadas por

C̃µ1µ2...µD−2
=
(
R∗µ1µ2...µD−2αβ

+
xσ

3
∂σR

∗
µ1µ2...µD−2αβ

)
c̃αβγ xγ

− 1

3(D − 3)!
ην1...νD−2
µ1...µD−2

R∗ν1...νD−3αβγ
c̃αβγ xνD−2

, (4.90)

D̃µ1µ2...µD−2
=
(
R∗µ1µ2...µD−2αβ

+
xσ

4
∂σR

∗
µ1µ2...µD−2αβ

) [
xαd̃βγxγ + xβd̃γαxγ +

1

2
d̃αβx2

]
− 1

4(D − 3)!
ην1...νD−2
µ1...µD−2

R∗ν1...νD−3αβγ
xνD−2

[
xαd̃βγ + xβd̃γα + xγ d̃

αβ
]
, (4.91)

donde se obtienen las leyes de conservación deseadas

∂ρC̃µ1µ2...µD−3ρ = 0 , (4.92)

∂ρD̃µ1µ2...µD−3ρ = 0 . (4.93)

Además, añadiendo a estas nuevas corrientes conservadas (D − 2)-forma alcanzamos

el total originalmente esperado de D(D + 1)(D + 2)/6 corrientes duales. Pero, estas

nuevas corrientes conservadas son exactas y no generan simetŕıas generalizadas. Es

decir, podemos encontrar (D − 1)-formas f́ısicas C̃ y D̃ de modo que

d ∗ C̃[R] ∼ ∗C , d ∗ D̃[R] ∼ ∗D , (4.94)

con las componentes de C̃ and D̃ dadas por

C̃[R]
µ1µ2...µD−1

=
η
ν1...νD−1
µ1...µD−1

3(D − 2)!
R∗ν1...νD−2αβ

cαβγ xγ xνD−1
, (4.95)

D̃[R]
µ1µ2...µD−1

=
η
ν1...νD−1
µ1...µD−1

4(D − 2)!
R∗ν1...νD−2αβ

[
xαd̃βγ + xβd̃γα +

d̃αβ

2
xγ

]
xγ xνD−1

, (4.96)

En efecto, podemos chequear que tienen las divergencias esperadas

∂ρC̃µ1µ2...µD−2ρ = Cµ1µ2...µD−2
, ∂ρD̃µ1µ2...µD−2ρ = Dµ1µ2...µD−2

. (4.97)
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4.3. Simetŕıas generalizadas para gravitones

de curvatura superior

Consideremos ahora el caso de gravitones generalizados. La acción linealizada en

este caso viene dada por (4.18). Puesto que la simetŕıa de gauge sigue siendo la misma,

es decir, los difeomorfismos linealizados descritos en (4.32), el tensor de Riemann sigue

siendo el generador de operadores invariantes de gauge en la teoŕıa. Sin embargo, la

ecuación de movimiento viene dada ahora por (4.24) y, en particular, el tensor de Ricci

no se anula on-shell. Por lo tanto, dicho tensor es un operador no trivial invariante de

gauge en la teoŕıa. Como consecuencia, el tensor de Riemann ya no es una corriente

conservada como en (4.38) ni tampoco lo es el tensor de Weyl.

Por otra parte, la conservación y las propiedades adicionales del tensor de Riemann

dual no son consecuencia de las ecuaciones de movimiento. Estas dependen únicamente

de sus simetŕıas y de las identidades de Bianchi. Más concretamente, las ecuaciones

(4.40-4.45) siguen siendo válidas para los gravitones en teorias de curvatura superior y

obtenemos de nuevo D(D+1)/2 corrientes (D−2)-forma conservadas correspondientes

a las familias Ã y B̃, a saber

Ãµ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

ãαβ , (4.98)

B̃µ1µ2...µD−2
= R∗µ1µ2...µD−2αβ

(xαb̃β − xβ b̃α) . (4.99)

El flujo no local, definido sobre superficies bidimensionales, más general que podemos

escribir tiene entonces de la misma forma que para el gravitón de Einstein

Φ̃∂Σ̃2
=

∫
Σ̃2

∗
(
Ã + B̃

)
. (4.100)

Este resultado predice la existencia de un número igual de D(D + 1)/2 corrientes 2-

forma conservadas. Nuevamente, esta se trata de una predicción no trivial ya que,

como se ha mencionado anteriormente, el tensor de Riemann ya no es una corriente

conservada. Una primera generalización puede construirse sin recurrir a la dinámica

especifica de cada teoŕıa. En particular, podemos construir7

Sµναβ = Rµναβ−
(
ηµαRνβ − ηµβRνα (4.101)

+ηνβRµα + ηναRµβ

)
+

1

2

(
ηµαηνβ − ηναηµβ

)
R ,

7Véase que el tensor Sµναβ no coincide con el tensor de Weyl porque los pesos relativos de los
términos son diferentes
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que debido a las simetŕıas del Riemann y la 2ª identidad de Bianchi cumple que

εµ1...µD−3αβγ Sαβγν = 0 . ∂µSµναβ = 0 . (4.102)

No obstante, el tensor (4.101) no genera nuevos operadores no locales, ya que todos sus

flujos resultan venir de corrientes exactas. Podemos observar esto por cálculo directo

de las versiones con traza no nula de (4.67-4.68). Por ejemplo, podemos ver que los

flujos de tipo A asociados a Sµναβ son aditivos debido a que

∂ρA[R]
µνρ = Rµναβa

αβ + 2R ν
α aαµ − 2R µ

α aαν +Raµν = Sµναβa
αβ (4.103)

Sin embargo, debeŕıa existir un tensor generalizado que desempeñara el papel que

desempeña el tensor de Riemann en el caso Fierz-Pauli. En dicho caso, vimos que las

leyes de conservación requieren la validez de las ecuaciones de Eistein, por ende es

de esperar que una generalización al caso de orden superior involucre la dinámica de

dichas teoŕıas. Siguiendo esta idea nos sera útil re-escribir la ecuación de movimiento

(4.24) como (
1− ∂2

m2
g

)
Rµν = ∆µν R . (4.104)

donde ∆µν es un operador diferencial simétrico de orden dos definido como

∆µν =
1

2
ηµν

[
1− ∂2

m2
g

]
+

(D − 2)(m2
g −m2

s)

2(D − 1)m2
sm

2
g

[
∂µ∂ν − ηµν∂

2
]
. (4.105)

A partir de aqúı, después de bastante trabajo, tenemos que las simetŕıas generalizadas

de las teoŕıas gravitatorias linealizadas de curvatura superior pueden caracterizarse

utilizando el tensor W de trazas nulas definido como

Wµναβ ≡ Rµναβ+
2

(D − 2)

[
ην[αRβ]µ−ηµ[αRβ]ν

]
+

2

(D − 2)(D − 1)
ηµ[αηβ]ν R , (4.106)

donde además hemos definido

Rµναβ ≡
[
1− ∂2

m2
g

]
R

(1)
µναβ + 2∆µ[βR

(1)
α]ν + 2∆ν[αR

(1)
β]µ . (4.107)

En particular, la divergencia de la biforma W puede calcularse en cualquier teoŕıa

gravedad linealizada de curvatura superior, de manera que tenemos

∂µWµναβ =
1

(D − 2)

[
∂β

(
Rνα −

ηνα
(D − 1)

R
)
− ∂α

(
Rνβ −

ηνβ
(D − 1)

R
)]

, (4.108)
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donde nombramos a las contracciones de Rµναβ de la forma

Rνβ = ηµαRµναβ = ∆βσR
σ
ν +∆νσR

σ
β −∆Rβν , (4.109)

R = ηµαηνβRµναβ = 2∆ρσR
ρσ −∆R . (4.110)

Podemos ver que los términos dentro del paréntesis en (4.108) pueden calcularse utili-

zando las definiciones (4.109-4.110), la segunda identidad de Bianchi y la ecuación del

movimiento. Más espećıficamente, tenemos

Rµν −
ηµν

(D − 1)
R =

(D − 2)(m2
g −m2

s)

2(D − 1)m2
sm

2
g

× (4.111)

×
[
(D − 3) ∂2

(
Rµν −

ηµν
2(D − 1)

R
)
− (D − 4)∂µ∂νR

]
.

De aqúı, vemos que ecuación (4.108) claramente se anula en dos casos diferentes:

(a) cuando el modo de esṕın 2 está ausente del espectro (m2
g → ∞), es decir que la

parte cuadrática de la acción se reduce a un único término R2;

(b) cuando m2
s = m2

g de manera que solo encontramos un único término de alta

curvatura en la acción de forma de Weyl2.

Observaremos, que en ambas situaciones, se deduce que Wµναβ genera cargas no tri-

viales de las clases B y D de forma análoga a la gravedad de Einstein. Comencemos

analizando el primer caso. Espećıficamente, cuando mg → ∞ recuperamos una teoŕıa

que sólo contiene el gravitón sin masa habitual y un campo escalar masivo. En tal caso,

podemos escribir la ecuación de movimiento como

Rµν =
1

2(D − 1)

[
(D − 2)

m2
s

∂µ∂ν + ηµν

]
R , (4.112)

pudiendo utilizarse para comprobar expĺıcitamente a partir de (4.108) y (4.111) que W
define una corriente biforma conservada. Sin embargo, en este caso, podemos simplificar

aún más (4.106) para obtener una expresión más manejable, es decir

Wµναβ = Rµναβ +
1

(D − 1)m2
s

[
ην[α∂β]∂µ + ηµ[β∂α]∂ν

]
R . (4.113)

A partir de (4.113), podemos comprobar expĺıcitamente que W obedece las mismas

propiedades que el tensor de Riemann en una teoŕıa de Fierz-Pauli, a saber

ηµαWµναβ = 0 , εµ1...µD−3αβγ Wαβγν = 0 , (4.114)

∂µWµναβ = 0 , εµ1...µD−3αβγ ∂αWβγµν = 0 .
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Esto implica que W produce flujos no locales de las clases tipo-B y tipo-D. A saber,

las generadas por las corrientes conservadas

B[W]
µν = Wµναβ (x

αbβ − xβbα) , (4.115)

D[W]
µν = Wµναβ (x

αdβγxγ − xβdαγxγ +
1

2
dαβx2) . (4.116)

Podemos ver que las corrientes conservadas restantes, es decir las de las clases tipo-A

y tipo-C, están producidas por formas exactas. Esto se consigue si consideramos las

mismas estructuras tensoriales que en el caso de la gravedad de Einstein. Para ser

precisos, obtenemos que

A[W]
µν = Wµναβ a

αβ = ∂ρA[W]
µνρ , (4.117)

C [W]
µν = Wµναβ c

αβγxγ = ∂ρC[W]
µνρ , (4.118)

donde hemos utilizado la notación

A[W]
µνρ ≡ −

W∗
µνρα1...αD−3

(D − 4)!
ãα1...αD−3σ xσ , (4.119)

C[W]
µνρ ≡

W∗
µνρα1...αD−3

(D − 5)!(D − 2)

(
1

2
c̃α1...αD−3 x2 +

η
α1...αD−3

β1...βD−3

(D − 4)!
cβ1...βD−4σ xβD−3 xσ

)
. (4.120)

Siguiendo esta ĺınea, una cuestión que hemos evitado hasta ahora es que R, definido a

partir de (4.107), es por śı mismo una corriente biforma conservada en cualquier teoŕıa

gravitatoria de orden superior, a saber ∂µRµναβ = 0. Sin embargo, tiene una traza no

nula y por ende produce sólo flujos de los tipo-A y tipo-C. Podemos comprobar que

éstos son generadas por corrientes exactas. Por ejemplo, obtenemos que en el ĺımite

mg → ∞ vale

A[R]
µν − A[W]

µν = ∂ρ

(
A[W]
µνρ −A[R]

µνρ

(D − 3)(D − 1)

)
, (4.121)

donde hemos utilizado que (4.107) se reduce a

Rµναβ = Rµναβ +
(D − 2)

(D − 1)2m2
s

[
ην[α∂β]∂µ + ηµ[β∂α]∂ν

]
R− ηµ[αηβ]ν

(D − 1)2
R . (4.122)

Nos queda comprobar qué ocurre en la imagen dual, donde el tensor dual W∗
µ1...µD−2αβ

también se conserva y genera flujos de tipo-Ã y de tipo-B̃ de la forma habitual

Ã[W]
µ1µ2...µD−2

= W∗
µ1µ2...µD−2αβ

ãαβ , (4.123)

B̃[W]
µ1µ2...µD−2

= W∗
µ1µ2...µD−2αβ

(xαb̃β − xβ b̃α) . (4.124)



4.3 Simetŕıas generalizadas para gravitones
de curvatura superior 105

Observamos que este tensor dual puede escribirse como

W∗
µ1...µD−2αβ

= R∗µ1...µD−2αβ
+

1

(D − 1)
εµ1...µD−2ρση

ρ
[β∂α]∂

σ R , (4.125)

lo que implica que W∗
µ1...µD−2αβ

genera las mismas cargas que R∗µ1...µD−2αβ
. La razón es

que diferencia entre ambas también es exacta. Deducimos esto definiendo

Ãµ1...µD−1
≡ 1

(D − 1)
εµ1...µD−1ρ a

αβ ηρ[α∂β]R , (4.126)

B̃µ1...µD−1
≡ 1

(D − 1)

[
εµ1...µD−1ρ

(
bαxβ − bβxα

)
ηρ[α∂β]R− εµ1...µD−1ρb

ρR
]
, (4.127)

cuyas divergencias son

∂σÃµ1...µD−2σ =
1

(D − 1)
εµ1...µD−2ρσ a

αβ ηρ[β∂α]∂
σR (4.128)

= Ã[W∗]
µ1µ2...µD−2

− Ã[R∗]
µ1µ2...µD−2

,

∂σB̃µ1...µD−2σ =
1

(D − 1)
εµ1...µD−2ρσ

(
bαxβ − bβxα

)
ηρ[β∂α]∂

σR (4.129)

= B̃[W∗]
µ1µ2...µD−2

− B̃[R∗]
µ1µ2...µD−2

.

Por último, nos queda analizar el caso m2
s = m2

g = m2 cuya lógica sigue un patrón

similar. En tal caso, la ecuación de movimiento puede simplificarse y obtenemos[
1− ∂2

m2

]
Rµν = 0 . (4.130)

Además, las ecuaciones (4.106) y (4.107) se convierten en

Wµναβ = Rµναβ =

[
1− ∂2

m2

]
Rµναβ , (4.131)

que obedece a todas las propiedades presentadas en (4.114), generando por tanto cargas

no triviales a partir de las corrientes (4.115-4.116) y (4.98-4.99). Los cálculos corres-

pondientes y las pruebas que demuestran que las restantes corrientes conservadas son

exactas son análogas a los ya presentadas.

Resumiendo, en ausencia del modo de esṕın 2 masivo encontramos que las teoŕıas de

mayor curvatura poseen D(D+1) corrientes conservadas, organizadas en dos conjuntos

duales de igual tamaño {Ã, B̃} y {B,D}. Además, las corrientes obtenidas pueden

entenderse como deformaciones continuas de las de Einstein.

Cuando m2
g es finito y m2

s ̸= m2
g, esta construcción falla y encontramos una posible

violación del principio de pares duales. Esto está probablemente relacionado con el

hecho de que el modo de esṕın 2 es un fantasma [125, 141], cuya presencia hace que la
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teoŕıa no sea unitaria [142, 143]. Es razonable esperar que las simetŕıas generalizadas

y el principio de pares duales sean sensibles a esta cuestión. No obstante, también es

una posibilidad lógica que exista un conjunto de cargas más elusivo para estos casos y

que acabe salvando el d́ıa para estas teoŕıas.

Por otra parte, el caso m2
g = m2

s, para el cual la part́ıcula de esṕın 2 sigue pro-

pagándose, tiene problemas de unitaridad similares [143]. El hecho de que esto no viole

el principio de pares duales sugiere que las teoŕıas consistentes siempre respetarán dicho

principio, pero que la implicación contraria en general no seria cierta. En este contex-

to, como el campo se esṕın 2 masivo es un fantasma, queda abierta la pregunta si las

simetŕıas generalizadas para esta teoŕıa están bien definidas desde el punto de vista de

la causalidad. Esto podŕıa ser estudiado incluso a nivel clásico utilizando los métodos

que presentaremos en la sección 6.1.2.

4.4. Simetŕıas generalizadas definen

el gravitón generalizado

En [131] se adoptó una perspectiva interesante en relación con la gravedad. Siguien-

do el paradigma de Landau [9], y en particular su generalización para incluir simetŕıas

generalizadas [8]. Se caracteriza una fase de la materia (una teoŕıa) en términos de sus

simetŕıas y su patrón de ruptura de simetŕıa. La gravedad podŕıa seguir este paradig-

ma, y de hecho esto se demostró para el gravitón de Einstein linealizado en [131], donde

la acción de Fierz-Pauli se rederivó a partir del patrón de simetŕıa. Aqúı mostramos

que éste también es el caso para gravitones generalizados. En lugar de centrarnos en

rederivar la acción apropiada, nos centramos en rederivar las ecuaciones de movimiento

apropiadas. En otras palabras, buscaremos recuperar el conjunto completo de ecuacio-

nes linealizadas para gravitones generalizados, a partir del patrón de simetŕıa de la

teoŕıa.

Es un ejercicio sencillo ver que, suponiendo que buscamos una teoŕıa con las si-

metŕıas generalizadas generadas por los operadores HDV no locales

Φ∂Σ(D−2)
=

∫
Σ(D−2)

∗
(
B +D

)
, Φ̃∂Σ̃2

=

∫
Σ̃2

∗
(
Ã+ B̃

)
, (4.132)

entonces, el carácter cerrado de las respectivas corrientes (D − 2)-forma y 2-forma

implica el conjunto completo de ecuaciones de Einstein. Por ejemplo, para el gravitón

de Einstein pretendemos recuperar (4.35-4.37). Podemos deducir esto de las leyes de

conservación

d ∗B = 0 , d ∗D = 0 , d ∗ Ã = 0 , d ∗ B̃ = 0 , (4.133)
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que hacen que se cumplan las identidades de Bianchi del tensor de Riemann aśı como

las ecuaciones de Einstein. Para gravitones generalizados debemos considerar las mis-

mas condiciones de conservación pero recordando que es el tensor W el que genera la

simetŕıas generalizadas de tipo-B y tipo D. En dicho caso, la conservación de Ã implica

la validez de la segunda identidad de Bianchi (4.37). La conservación de B produce las

ecuaciones de movimiento (4.24). Finalmente, el comportamiento de D y B̃ generan la

primera identidad de Bianchi (4.36). Por lo tanto, concluimos que el conjunto completo

de ecuaciones de movimiento para teoŕıas generales de gravedad linealizada se sigue de

su patrón de simetŕıas generalizadas.

4.5. Discusión del capitulo

En este caṕıtulo hemos hallado D(D + 1) corrientes que producen simetŕıas gene-

ralizadas para la gravedad de Einstein linealizada, aśı como para gravedades de mayor

curvatura que propagan un modo adicional de esṕın 0 en dimensiones generales. La

mitad de las simetŕıas son generadas por corrientes de 2-forma y la otra mitad por

corrientes de (D − 2)-forma , lo cual verifica el principio de QFT de que las simetŕıas

generalizadas siempre vienen en pares duales. Sin embargo, en el caso de gravitones de

mayor curvatura que propagan un gravitón masivo adicional de esṕın 2, la teoŕıa no es

unitaria, y parece violarse el principio de los pares duales.

Un resultado interesante es que los gravitones generalizados pueden definirse por

sus simetŕıas generalizadas, apoyando la perspectiva de [131]. Más precisamente, la

gravedad linealizada es una teoŕıa de simetŕıa, caracterizada por la conservación de

sus corrientes p-forma cerradas. Esto nos recuerda a AdS/CFT [144, 145], donde la

gravedad es dual a la dinámica del tensor de enerǵıa-momento de una CFT, restringida

por su conservación, traza nula e identidades de Ward asociadas.

Otros resultados interesantes son que las simetŕıas generalizadas del gravitón están

cargadas bajo simetŕıas espacio-temporales para cualquiera de las acciones considera-

das. Esto implica que estas teoŕıas ampĺıan el espacio de las llamadas teoŕıas tensoriales

de gauge [114], proporcionando más ejemplos de la conexión propuesta entre la gra-

vedad y los sistemas fractónicos que hemos estudiado en el caṕıtulo 3. Además, que

las clases HDV de operadores no locales transformen ante el grupo de Poincaré tiene

consecuencias directas en la construcción de tensores enerǵıa-momento para todas las

teoŕıas consideradas. Estudiaremos esta idea en profundidad en el caṕıtulo 5.

Este escenario nos abre varias posibilidades de trabajo futuro. En primer lugar,

nuestro análisis podŕıa extenderse a: teoŕıas linealizadas de la gravedad cuyo Lagran-

giano sea también un funcional de la derivada covariante, teoŕıas con términos de masa

expĺıcitos en la acción, o métricas de fondo más generales. Si bien [132] ya plantea un

progreso en esta ultima dirección, el calculo explicito sobre métricas de fondo como
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AdS podŕıa ser particularmente interesante. Por un lado, podŕıamos estudiar como

se rompen las simetŕıas generalizadas del gravitón en gravedad cuántica y, por otro,

podŕıamos aprender sobre las propiedades de tensores enerǵıa-momento de CFTs ho-

lograf́ıcas.

Otra cuestión no relacionada, es si la existencia de un espacio no trivial de teoŕıas

gravitatorias de baja enerǵıa (definidas en términos del espectro de simetŕıas generali-

zadas) implica la existencia de un espacio similar de completaciones UV. Uno espera

que este no sea el caso, y que la ausencia de simetŕıas generalizadas en la gravedad

cuántica [18, 19] debeŕıa conducir a una teoŕıa unificada en el UV, donde todas estas

diferentes fases están suavemente conectadas entre śı.



Caṕıtulo 5

Simetŕıas Generalizadas y el

teorema de Noether

En mecánica clásica, el teorema de Noether [10] afirma la existencia de cargas

conservadas Q cuando la acción es invariante bajo un grupo de simetŕıa continuo.

Estas cargas conservadas son los generadores del grupo en el espacio de fases clásico

de la teoŕıa. Una versión, a priori más fuerte aparece en la teoŕıa clásica de campos,

donde el teorema de Noether implica la existencia de corrientes locales conservadas

jµ, que satisfacen ∂µ j
µ = 0. Integrando estas corrientes sobre una superficie espacial,

recuperamos las cargas conservadas.

Es una cuestión de larga data determinar en qué medida, o en qué condiciones,

este teorema se mantiene en QFT. En la mayoŕıa de los escenarios, sabemos que es

aśı, y que la existencia de una simetŕıa continua global implica la existencia de una

corriente local conservada. En lo que sigue de esta tesis, denominaremos la aparición

de corrientes locales asociadas a simetŕıas continuas globales como “versión fuerte” del

teorema de Noether.

De hecho, existe una versión más débil del teorema de Noether. Si tenemos una

corriente, podemos integrarla sobre una región finita R contenida dentro de una super-

ficie de Cauchy completa. Esta integración parcial da lugar a las cargas locales QR, que

miden la cantidad de carga en la región R. Equivalentemente, vemos que las cargas QR

generan las transformaciones de simetŕıa para los campos locales dentro de R. Estas

transformaciones de simetŕıa locales se conocen como “twists”. La existencia de estas

cargas locales QR y twists está garantizada por la existencia de las propias corrientes.

Pero desconocemos la validez de la afirmación inversa. Nombraremos a la existencia de

QR locales para cualquier región R como “versión débil” del teorema de Noether.

Un progreso significativo hacia una prueba de primeros principios e independiente

del Lagrangiano del teorema de Noether en QFT apareció en [146–149], dentro del

contexto del estudio de simetŕıas globales en AQFT [58, 59, 62, 150, 151]. En particular,
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en [149], dada una cierta suposición técnica pero débil en QFT llamada “split property”,

se demostró la versión débil del teorema de Noether, y se encontró una construcción

canónica de las cargas locales QR. A continuación revisaremos esta construcción, la

cual también es válida para simetŕıas globales discretas, extendiendo la versión débil del

teorema también a esos casos. Finalmente, [149] también reconoce que esta construcción

no es una prueba de la versión fuerte del teorema de Noether, y que se requieren nuevas

ideas para lograr tal objetivo, o para encontrar la potencial obstrucción. Podemos

encontrar progreso en esta dirección en [14, 152, 153].

Un teorema a priori no relacionado en QFT para D = 4 es el teorema Weinberg-

Witten [17]. Este teorema afirma que la existencia de una corriente conservada jµ

excluye la existencia de part́ıculas sin masa con helicidad mayor o igual a uno que

estén cargadas bajo ella, y que la existencia de un tensor de enerǵıa-momento T µν

excluye la existencia de part́ıculas sin masa con helicidad mayor o igual a dos. Estos

teoremas restringen entonces el espacio de posibles QFTs en D = 4. En particular,

la segunda versión se interpreta t́ıpicamente como una obstrucción a la construcción

de QFTs relativistas con un gravitón emergente en el infrarrojo, sugiriendo que la

cuantización de la gravedad debe seguir una ruta diferente.

Es evidente que ambos teoremas, la versión fuerte del teorema de Noether y el

teorema de Weinberg-Witten, exigen una comprensión más profunda de cuándo y por

qué pueden aparecer en la teoŕıa corrientes conservadas que generen simetŕıas globales.

Una observación que sugiere que ambas están relacionadas entre śı aparece al dar la

vuelta al teorema de Weinberg-Witten. Por ejemplo, si existiera en D = 4 una teoŕıa

de part́ıculas sin masa con helicidad mayor o igual a uno cargadas bajo una simetŕıa

global, esta violaŕıa definitivamente la versión fuerte del teorema de Noether ya que

según Weinberg-Witten no existe corriente local conservada para tal simetŕıa.

Dado este contexto, la principal motivación de este caṕıtulo es comenzar a com-

prender el espacio de QFTs que violan la versión fuerte del teorema de Noether, y

analizar las lecciones aprendidas en relación con el teorema de Weinberg-Witten. Para

tal fin, desarrollamos una clasificación más fina de cargas locales y operadores de twist

en QFT. Esta clasificación se deriva naturalmente del enfoque para simetŕıas genera-

lizadas en AQFT presentado en el caṕıtulo 2. Más concretamente, para avanzar será

crucial considerar QFTs que poseen simultaneamente simetŕıas generalizadas y una

simetŕıa global usual en la que centraremos nuestra atención. En tales escenarios, las

cargas/twists asociadas en una cierta región R son potencialmente de diferentes tipos,

los cuales analizaremos en detalle.

Utilizando esta clasificación más fina de los operadores de twist derivaremos los

principales resultados de este caṕıtulo, de donde se siguen los demás. En palabras, mos-

traremos que las simetŕıas generalizadas no pueden estar cargadas bajo una simetŕıa

global continua que tenga una corriente de Noether, y que sólo las simetŕıas generaliza-
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das con un continuo de clases duales pueden cargarse bajo una simetŕıa global continua.

También describiremos la extensión natural de estas afirmaciones a simetŕıas globales

asociadas a grupos finitos.

La discusión dejará claro que las versiones débil y fuerte del teorema de Noether

no son equivalentes. Existe un espacio no vaćıo de QFTs que satisfacen la versión débil

y violan la fuerte. Además, llegamos a una caracterización mı́nima de dicho espacio.

Muy expĺıcitamente, éste espacio contendrá a las QFTs con simetŕıas generalizadas

cargadas bajo la simetŕıa continua global. Estas teoŕıas son muy especiales, ya que

poseen simetŕıas generalizadas con un continuo de clases duales, lo que concuerda con

la validez casi universal de la versión fuerte.

Utilizaremos estos resultados (junto con los presentados en los caṕıtulos 3 y 4) para

proporcionar una nueva demostración del teorema de Weinberg-Witten. A la luz de

estas ideas, el teorema de Weinberg-Witten surge como una obstrucción topológica

para que una simetŕıa global tenga una corriente conservada debido a la existencia

de simetŕıas generalizadas 1-forma cargadas bajo ella. En este contexto, se permiten

generalizaciones de distintos tipos del teorema Weinberg-Witten, como a dimensiones

D ̸= 4 y part́ıculas sin masa en distintas representaciones del “little group”. De la

misma manera, esta forma de pensar nos lleva a ideas similares aplicables a ejemplos

no relativistas y simetŕıas globales dadas por grupos finitos.

Para ilustrar la f́ısica estudiamos ejemplos de diferente esṕın con simetŕıas globa-

les continuas y finitas. Todos los aspectos descritos en la discusión general abstracta,

aparecerán en estos ejemplos concretos. En particular, veremos expĺıcitamente como

transforman las clases asociadas a los operadores no locales de las simetŕıas generali-

zadas presentadas para el gravitón en los caṕıtulos 3 y 4, y como esto implica que la

teoŕıa no puede tener un tensor enerǵıa-momento bien definido.

La organización del caṕıtulo es la siguiente. En la sección 5.1 presentaremos los

twists y desarrollaremos la clasificación más fina de estos operadores que surge para las

QFTs con simetŕıas generalizadas. A continuación, utilizamos esta clasificación para

deducir nuestro principal resultado, a saber, que si las clases HDV de una teoŕıa tras-

forman bajo la acción de un grupo de simetŕıa continuo, entonces dicha simetŕıa no

puede ser implementada por una corriente de Noether. Más aún, veremos que en estos

casos las clases HDV deben formar un continuo y presentaremos una clasificación de

la posibles formas de estos continuos para los casos más simples. La sección 5.2 está

dedicada a un análisis técnico más profundo de los operadores de twist en QFTs con

simetŕıas generalizadas. En la sección 5.3 ilustramos la nueva clasificación de twists y

los resultados derivados con ejemplos expĺıcitos. En la sección 5.4 proporcionamos una

demostración diferente del teorema de Weinberg-Witten, y discutimos varias generali-

zaciones. La sección 5.5 está dedicada a una discusión final incluyendo la motivación

para varias que desarrollaremos durante el resto de la tesis.
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5.1. Simetŕıas generalizadas y corrientes de Noether

Introducimos ahora un nuevo ingrediente al enfoque de las simetŕıas generalizadas

desarrollado durante el caṕıtulo 2. Comenzamos con una QFT con cierta álgebra aditiva

A(R), posiblemente violando la dualidad de Haag en ciertas regiones, y por lo tanto con

potenciales simetŕıas generalizadas. Pero, ahora permitimos que esta álgebra aditiva

este cargada bajo un grupo de simetŕıa global G.1

Para empezar consideremos que G es una simetŕıa global interna. Por definición, el

grupo actúa como un automorfismos de las álgebras aditivas para cualquier región R.

Para una simetŕıa global no rota vemos actúa mediante los operadores unitarios

U(g)A(R)U(g)−1 = A(R) , g ∈ G . (5.1)

Debemos entender esta relación, y las que siguen como un mapeo entre álgebras. No

está diciendo que todos los elementos de A(R) sean invariantes bajo el grupo de si-

metŕıa, sino que se transforman entre śı. Es fácil comprobar que la conjugación con

el unitario U(g) lleva álgebras que conmutan a álgebras que conmutan, es decir, dado

(7.76) tenemos para su conmutante

U(g)A(R)′ U(g)−1 = A(R)′ , g ∈ G . (5.2)

Dado que A(R′)′ = Amax(R), el grupo actuando como conjugación es también un

automorfismo de las álgebras máximas

U(g)Amax(R)U(g)
−1 = Amax(R) . (5.3)

Por lo tanto, la simetŕıa no puede convertir los operadores no locales en locales o

viceversa. Dicho de otra forma, esta obligada a transformar los operadores no locales

entre ellos mismos. La cuestión que queremos estudiar es si esta acción de grupo puede

cambiar las clases no locales de una región dada R o debe dejar las clases invariantes.

Y luego entender las consecuencias en ambos casos.

5.1.1. Transformaciones de punto sobre etiquetas de clases

Comenzamos considerando posibles transformaciones de las etiquetas de las clases.

Para esto, elegimos representantes para las clases HDV no locales [aλ] en R, digamos

aλ. Para la clase identidad podemos elegir el propio operador identidad. Recordemos

que las clases [aλ] son conjuntos disjuntos de operadores invariantes bajo la acción

izquierda y derecha de A(R), y son irreducibles cuando no hay subconjuntos propios

1Escenarios similares relacionados con mezcla de simetŕıas han aparecido recientemente. Véase
[154–157] y referencias alĺı contenidas.
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de [aλ] invariantes bajo A(R). Por definición, podemos escribir cualquier operador

A ∈ Amax(R) como

A =
∑
λ,s

Oλ,s aλ Õλ,s , Oλ,s, Õλ,s ∈ A(R) . (5.4)

Para una combinación no irreducible de clases HDV de la forma (5.4), podemos

proyectar la suma a uno de los operadores no locales irreducibles que aparecen con

coeficiente no triviales en el lado derecho de (5.4). Lo hacemos actuando a izquierda

y a derecha con combinaciones de elementos de A(R) (utilizando los proyectores pre-

sentados en [23] y construidos a partir de operadores no locales duales que pueden ser

contenidos en R) ∑
i

PiA P̃i = aλ , Pi, P̃i ∈ A(R) . (5.5)

Consideremos ahora de nuevo la simetŕıa global. La transformación de un operador no

local aβ bajo la simetŕıa global pertenece a Amax(R). Por lo tanto, podemos escribirla

como

U(g) aβ U(g)
−1 =

∑
λ

Oλ,s aλ Õλ,s . (5.6)

Como antes, podemos proyectar el lado derecho en un aλ si multiplicamos esta ecuación

a izquierda y derecha por ciertos Pi y P̃i pertenecientes a A(R) y sumando sobre i.

Mediante este proceso, obtenemos

U(g)

(∑
i

Qi aβ Q̃i

)
U(g)−1 = aλ , (5.7)

donde escribimos como Qi y Q̃i a los operadores que obtenemos cuando el grupo actúa

como conjugación sobre Pi y P̃i, es decir

Qi = U(g)−1 Pi U(g) ∈ A(R) , Q̃i = U(g)−1 P̃i U(g) ∈ A(R) . (5.8)

De esta manera tenemos que (∑
i

Qi aβ Q̃i

)
∈ [aβ] . (5.9)

Por tanto, (5.7) nos dice que un elemento de la clase HDV β se transforma en solamente

un elemento de la clase HDV λ. Esto, junto con el hecho de que la simetŕıa global mapea

A(R) en A(R), nos permite deducir que todos los elementos pertenecientes a la clase

β se transforman en elementos pertenecientes a la clase λ. Por tanto, sólo puede haber

una clase no nula en la descomposición (5.6). Concluimos, que el grupo actúa como
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una transformación de punto sobre la variedad generada por las etiquetas de clase.

Más aún, esta se divide en órbitas bajo la acción del grupo de simetŕıa global, dejando

invariante la clase identidad. Estas transformaciones de punto deben manifestarse como

una simetŕıa de las reglas de fusión asociadas a las clases [aλ]. También, deducimos que

la acción del grupo sobre clases HDV no locales es transportable (es decir, se mantiene

igual) bajo la identificación de clases irreducibles cuando deformamos continuamente

una región pero no su topoloǵıa.

Si la simetŕıa global se rompe espontáneamente (SSB) no podemos implementar los

automorfismos de grupo con un operador unitario global U(g), pero podemos imple-

mentarlos dentro de cualquier región acotada fija R usando un operador unitario [39].

Estos unitarios locales que efectúan la transformación del grupo en regiones compactas

R son los twists τg(R). Estos twists jugarán un papel central en lo que sigue y por

ende los discutiremos a continuación. Utilizando estos twists, no es dif́ıcil demostrar

que las conclusiones de esta sección siguen siendo válidas para el caso de SSB, ya que

las simetŕıas generalizadas siempre pueden estudiarse dentro de una región finita R con

la topoloǵıa de una bola.

5.1.2. Twists y sus diferentes tipos

Introducimos a continuación los operadores de twist. Basicamente, se tratan de

unitarios locales que implementan la transformación del grupo sólo en una determinada

región R. Ahora los discutiremos más formalmente. Dada una región R podemos definir

otra región ligeramente mayor R∪Z, tal que su borde esté separada del de R por una

distancia ϵ suficientemente pequeña (ϵ representa “la anchura” de Z). Llamaremos a la

región Z como “buffer zone”. El borde de Z es ∂Z = (∂Z)1∪(∂Z)2, siendo (∂Z)1 = ∂R

y (∂Z)2 = ∂(R∪Z). Las topoloǵıas de (∂Z)1 y (∂Z)2 son iguales. La topoloǵıa de Z es

la misma que ∂R× R. También, llamamos R̄ = (R ∪ Z)′, de manera que R ∪ Z ∪ R̄ es

una partición del espacio completo dada por tres regiones disjuntas. Esta configuración

geométrica se representa en la figura 5.1.

Con estas convenciones geométricas, un twist τg(R,Z) es un operador unitario que

implementa la trasformacion de simetŕıa global g (por conjugación) sobre los operadores

del álgebra A(R) y deja invariantes los operadores en A(R̄). Introdujimos la buffer zone

por la razón técnica de que al tender ϵ a cero el twist es demasiado singular para ser un

operador. Por definición, dada la acción trivial de dicho twist sobre A(R̄), deducimos

simplemente que

τg(R,Z) ∈ Amax(R ∪ Z) . (5.10)

Podemos aclarar la intuición asociada a estos operadores cuando tenemos una corriente

de Noether jµ. En estos casos producimos el twist si integramos la carga sobre R con

smearing igual a uno, y luego dejamos que el smearing decaiga en la buffer zone Z.
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Figura 5.1: Configuración geométrica que usamos para caracterizar la definición de un operador
de twist τg(R,Z). No es necesario que la topoloǵıa de la región R sea trivial para que podamos
definir el twist. Este se construye de modo que efectúe la transformación de simetŕıa en A(R) y
deje invariantes los operadores en A(R̄). Requerimos la existencia de la buffer zone Z con tamaño
ϵ distinto de cero para que formalmente exista el operador en la QFT.

Pero, como estudiaremos en la siguiente sección, estos twists existen en condiciones muy

generales, incluso para grupos finitos, y pueden construirse canonicamente utilizando

la teoŕıa modular.

Cuando la QFT en la que actúa el grupo de simetŕıa G presenta simetŕıas genera-

lizadas, podŕıamos tener inclusiones estrictas del tipo discutido en la sección anterior,

a saber A ⊂ Amax. En particular, para la región R ∪Z sobre la cual definimos el twist

podŕıamos tener, debido a la existencia de operadores no locales en R∪Z, la inclusión

A(R ∪ Z) ⊂ Amax(R ∪ Z) . (5.11)

En estos escenarios, hay refinamientos en los posibles tipos de twists que podemos

tener. En primer lugar, un twist puede pertenecer al álgebra aditiva A(R ∪ Z), en

lugar de pertenecer sólo a la máxima (5.10). En este caso decimos que el twist es

“aditivo”. Nótese que si no es aditivo es, por definición, tenemos un operador no local

de Amax(R∪Z). En segundo lugar, un twist puede implementar la simetŕıa global en el

álgebra máxima Amax(R), en lugar de sólo sobre la aditiva. En dicho caso, diremos que

el twist es “completo”. Obsérvese que no se requiere que un twist general actúe sobre

los operadores no locales de R ya que estos operadores sólo se vuelven locales en una

región que va más allá de la que define el twist. A continuación discutiremos ejemplos de

twist aditivos/no aditivos y completos/no completos. También, en la siguiente sección

discutiremos otros refinamientos, relacionados con la forma en que el twist transforma

las diferentes álgebras en la buffer zone. No obstante, la caracterización en términos

de twist aditivos y completos será suficiente para entender la mayoŕıa de los resultados

del caṕıtulo.

Dado un twist τg(R,Z) para R, podemos construir un twist “complementario”
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τg(R̄, Z) para R̄ como

τg(R̄, Z) = U(g) τg(R,Z)
−1 , (5.12)

donde U(g) es el unitario global del grupo de simetŕıa. De la definición deducimos

que τg(R̄, Z) implementa las operaciones de grupo en A(R̄), dejando invariantes los

operadores en A(R). Si τg(R,Z) es completo, el twist complementario τg(R̄, Z) también

deja invariantes los operadores no locales en Amax(R) ya que toda transformación no

trivial es cancelada por U(g). Por lo tanto, pertenece al conmutante de Amax(R), a

saber, A(R̄ ∪ Z). En resumen, si τg(R̄, Z) es un twist aditivo para R̄ si τg(R,Z) es

completo. Del mismo modo, si τg(R,Z) es aditivo, el twist complementario es completo.

En otra palabras, los twist completos y aditivos son nociones complementarias o duales.

Es inmediato que la existencia de twists τg(R,Z) para R, que son simultáneamente

completos y aditivos, implica que las clases no locales correspondientes a R son inva-

riantes bajo la acción G. Por lo tanto, la simetŕıa generalizada no está cargada con

respecto a G. Esto se deduce de la siguiente cadena de argumentos. Al ser completo,

el twist implementa la operación de grupo sobre los operadores no locales en R. Por

transportabilidad, los operadores no locales en R son operadores no locales en R ∪ Z.
Siendo el twist un operador aditivo en R∪Z, no puede producir transiciones entre las

clases HDV de R∪Z. Entonces, la simetŕıa generalizada no está cargada bajo la acción

de G. Por supuesto, el twist completo y aditivo puede cambiar el contenido aditivo de

los operadores no locales ya que los operadores aditivos están genéricamente cargados

bajo G pero no es capaz de transformar las clases HDV. En la sección 5.2 mostraremos

la afirmación contraria: la existencia de clases HDV no cargadas implica la existencia

de twists aditivos y completos (asumiendo la split property). Como discutiremos en

varios lugares a lo largo del caṕıtulo, ambas afirmaciones son cruciales para entender

la diferencia entre las versiones débil y fuerte del teorema de Noether.

En consecuencia, si hay clases no locales en R que transforman no trivialmente bajo

la acción de G tenemos dos posibilidades distintas. O bien el twist no es completo o, si es

completo, debe ser no aditivo. En el segundo caso, el twist tiene que ser un operador no

local en la region R∪Z, es decir, el twist contiene elementos no locales de Amax(R∪Z).
Como en general los operadores no locales en R pueden ser transportados a la buffer

zone Z, también podemos pensar que el twist pertenece a Aadd(R)∨Amax(Z). En esta

presentación, el twist parece tener “términos de borde no locales”.2

2Observamos que esto no debe confundirse con un problema de regularización UV. El hecho de que
la corrección sea no local es una caracteŕıstica macroscópica que no depende de ambigüedades UV y
que tiene consecuencias para la f́ısica IR.
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5.1.3. Twists para simetŕıas espacio-temporales continuas

En contraste a lo que ya analizamos, las simetŕıas espacio-temporales Λ introducen

la novedad de que las álgebras no se mantienen invariantes sino que se transforman

geométricamente según (2.10), es decir

U(Λ)A(R)U(Λ)−1 = A(ΛR) . (5.13)

Para simetŕıas espacio-temporales continuas y transformaciones suficientemente pe-

queñas las regiones se desplazan muy poco de manera que, debido a la transportabi-

lidad, existe una identificación única de sectores no locales entre las álgebras trans-

formadas. Por consiguiente, la cuestión de la transformación o no de los sectores no

locales bajo la operación de simetŕıa tiene perfecto sentido: es la cuestión de si la trans-

formación unitaria que implementa la simetŕıa cambia las clases HDV con respecto a

las clases HDV asociadas por transportabilidad.

La definición de los twists puede generalizarse para transformaciones de simetŕıa

de espacio-tiemporales finitas si requerimos que el twist implemente la operación de

simetŕıa en A(R) sólo en operadores O ∈ A(R) tales que U(Λ)OU(Λ)−1 también per-

tenezca A(R). También podremos construirse twists estándar para este caso utilizando

la split property [149], como revisaremos en detalle en la siguiente sección. Para nues-

tros propósitos, será suficiente hablar de las cargas locales, generadores infinitesimales

de los twists para simetŕıas continuas. Se requiere que estas cargas tengan los mismos

conmutadores que la carga global con elementos en A(R) y conmuten con elementos en

A(R̄). Definimos las cargas locales como aditivas si están asociadas3 al álgebra aditiva

de R∪Z, a saber A(R∪Z). Por otro lado, diremos que las cargas locales son completas

si tienen el mismo conmutador que la carga global con el álgebra máxima de R, a saber

Amax(R).

5.1.4. Simetŕıas generalizadas y cargas de Noether

Anteriormente mostramos, desde un punto de vista general, que la existencia de

twists simultáneamente aditivos y completos implica que la simetŕıa generalizada no

puede estar cargada bajo el grupo de simetŕıa global. Ahora mostraremos que las si-

metŕıas globales implementadas por una corriente de Noether siempre tienen twists

aditivos y completos. Por tanto, las simetŕıas globales implementadas por una corrien-

te de Noether deben dejar invariantes las clases HDV no locales de todas las simetŕıas

generalizadas. Equivalentemente, las simetŕıas generalizadas no pueden estar cargadas

bajo simetŕıas globales implementadas por corrientes de Noether. A la inversa, esto

3Dado que una carga no es en general un operador acotado no puede pertenecer al álgebra de von
Neumann, pero puede ser asociada a ella si los proyectores espectrales pertenecen al álgebra.
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Figura 5.2: Configuración geométrica utilizada para la definición de operadores de twist a
partir de corrientes de Noether. La función de smearing α(x⃗) es igual a uno para el futuro y el
pasado de R en el intervalo de tiempo (−δ, δ) y es igual a cero en el futuro y el pasado de R̄ en
el mismo intervalo de tiempo.

demuestra una obstrucción a la existencia de corrientes de Noether cuando encontra-

mos clases HDV no locales que se transforman bajo una simetŕıa continua. Esto nos

demuestra que el espacio de QFTs que violan la versión fuerte del teorema de Noether

incluye todas las QFTs con simetŕıas generalizadas cargadas bajo un grupo de simetŕıa

continuo global.

Consideremos una región R (con cualquier topoloǵıa dada) con una buffer zone Z,

y supongamos que la simetŕıa global es generada por una corriente local de Noether

jµ. Podemos construir un twist τg(R,Z), que implementa la simetŕıa en R y no hace

nada en (R∪Z)′, haciendo un smearing de la corriente de Noether jµ. Expĺıcitamente,

podemos definir el twist local y la carga correspondiente como

τλ(R,Z) = ei λQ(R,Z) , Q(R,Z) =

∫
dDx β(x0)α(x⃗) j0(x) . (5.14)

En esta fórmula λ determina el elemento espećıfico del grupo de simetŕıa G. Las

funciones de smearing α y β son suaves. Además, cumplen los siguientes requisitos:∫
dx0 β(x0) = 1, el soporte de β está en [−δ, δ] para δ suficientemente pequeño, α(x⃗) = 1

para todas las coordenadas espaciales de los puntos dentro de la intersección del cono

de luz futuro y pasado de R con x0 ∈ [−δ, δ], α(x⃗) = 0 para todos los puntos dentro de

la intersección del cono de luz futuro y pasado de R̄ = (R ∪ Z)′ con x0 ∈ [−δ, δ]. Re-
presentamos esta configuración geométrica en la figura 5.2. Esta elección de funciones

de smearing nos asegura que el conmutador de la carga local Q(R,Z) con cualquier

operador local en R, y por tanto con el álgebra aditiva A(R) de la región R, coincide

con el conmutador del operador de carga global. También asegura que el conmutador

de Q(R,Z) con operadores locales en la región R̄ se anula. El operador τλ(R,Z) defi-

nido anteriormente es entonces un operador de twist para la región R y la buffer zone

Z.

Es evidente que los twists de Noether τg(R,Z), al estar formados localmente por el

álgebra de un campo local, son siempre aditivos en R ∪Z. Ahora, podemos demostrar

sencillamente que los twists de Noether también son necesariamente completos. Sea Q

la carga global, la cual recuperamos de la misma expresión (5.14) pero donde α(x⃗) = 1

para todo x⃗. Esta carga Q genera la transformación de simetŕıa global para todos los
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operadores no locales en R ya que estos operadores son aditivos en última instancia en

la teoŕıa completa. Tenemos trivialmente Q = Q(R,Z)+ (Q−Q(R,Z)). A partir de la

definición de la carga local (5.14), el operador Q−Q(R,Z) es aditivo en R̄∪Z. Por lo
tanto, vemos que conmuta con todos los operadores no locales en R. Esto implica que

el conmutador de Q(R,Z) con los operadores no locales en R es el mismo que el de Q.

Por tanto, los twists de Noether son aditivos y completos. Concluimos que para QFTs

en las que la simetŕıa está generada por una corriente de Noether, las clases HDV no

locales, asociadas con cualquier región (de topoloǵıa general), son invariantes bajo la

acción de G.

Las simetŕıas espacio-temporales continuas (simetŕıas de Poincaré y/o conformes)

son generadas por el tensor de enerǵıa-momento, cuando éste existe. Podemos generar

una carga para un twist de Poincaré o uno conforme utilizando el tensor de enerǵıa-

momento tal como describimos anteriormente. Entonces, si la QFT contiene un tensor

de enerǵıa-momento las cargas locales correspondientes serán aditivas y completas.

Concluimos que para teoŕıas con un tensor de enerǵıa-momento bien definido, las clases

HDV dadas por la simetŕıa generalizadas no pueden cargarse bajo simetŕıas espacio-

temporales continuas.4

5.1.5. Clases HDV no invariantes ante una simetŕıa continua

Probamos que las clases HDV generadas por una simetŕıa generalizada no pueden

cargarse bajo simetŕıas continuas implementadas por una corriente de Noether. En-

tonces, ahora es interesante que investiguemos las consecuencias que puede acarrear

la existencia de simetŕıas generalizadas que si se cargan bajo una simetŕıa continua.

Además, en esta sección obtenemos una clasificación completa de los posibles secto-

res HDV para el caso más simple, a saber, cuando dichos sectores son abelianos con

hasta dos generadores y la simetŕıa global que los trasforma esta dada por un grupo

uniparamétrico.

Dadas las transformaciones de punto entre clases descritas en la sección 5.1.1, el

conjunto H de elementos de G que dejan invariantes todas las clases no locales es un

subgrupo normal de G. Podemos centrarnos entonces en el cociente G̃ = G/H. Ex-

cepto la identidad, ninguno de sus elementos de G̃ deja invariantes todas las clases.

Nos interesa particularmente el caso en que G̃ es un grupo de Lie. Este grupo actuará

como transformaciones de punto sobre el conjunto de etiquetas de clase. Por lo tanto,

las clases no locales para R deben formar un continuo. Bajo la acción de G̃ tal varie-

4En [149, 158] se han utilizado argumentos relacionados para demostrar que el grupo de simetŕıa
global subyacente a una estructura de sectores de superselección de carga conmuta con las transfor-
maciones de Poincaré cuando existe un tensor de enerǵıa-momento. Estos son un caso particular del
presente teorema cuando se restringe al caso de dos sectores de bola, o sectores de orbifold. Véase
ejemplo de la sección 5.3.1. Aqúı demostramos que el resultado se extiende a todas las simetŕıas
generalizadas.
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dad generada por etiquetas de las clases HDV podŕıa romperse en diferentes órbitas,

generadas por el grupo y un solo punto en la órbita. Si dicho punto tiene un grupo

estabilizador no trivial, la dimensión de la órbita es la dimensión del cociente entre

G̃ y el grupo estabilizador. En este contexto, debemos encontrar al menos una órbita

unidimensional o las clases HDV seŕıan invariantes.

Por otra parte, recordamos que en el caṕıtulo 2 probamos que clases HDV pro-

ducidas por una simetŕıa generalizada vienen en pares duales asociadas a regiones

complementarias. Inclusive vimos ejemplos no tiviales en el capitulo 4. En este contex-

to, vemos como estas ideas se vuelven relevantes nuevamente. Más precisamente, si las

clases HDV no locales de R no son invariantes, entonces, las clases HDV de R nece-

sariamente deben ser también no invariantes. Esto implica, que estas ultimas también

deben formar un continuo de clases. En conclusión: cuando las simetŕıas generalizadas

se cargan bajo un grupo de simetŕıa global continuo, las simetŕıas generalizadas deben

tener un continuo de clases duales que no conmutan entre śı.

Luego, terminaremos esta sección iniciando una clasificación de las posibles estruc-

turas en las que tenemos clases HDV no invariantes bajo un grupo uniparamétrico. En

este sentido consideremos que el grupo G̃ que actúa de forma no trivial sobre las clases

HDV asociadas a una región R es un grupo uniparamétrico con parámetro aditivo λ.

Por definición, tenemos que el grupo completo G̃ no deja invariantes las clases (no con-

sideramos el caso que sólo un subgrupo discreto desplaza las clases no trivialmente).

Llamemos ahora a a un operador no local en R que no es invariante. Entonces, existe

necesariamente un continuo de clases a(λ).

En este tipo de escenarios, el caso más sencillo se da cuando estos a(λ) son los

únicos sectores no locales. Entonces la fusión de a es necesariamente abeliana formando

un grupo uniparamétrico A, y podemos etiquetar a1 + a2 a la clase generada por el

producto de los sectores a1, a2, correspondiendo a = 0 a la clase identidad. La acción

de la simetŕıa que respeta esta álgebra de fusión debe ser de la forma

a(λ) = eλ a , (5.15)

donde hemos normalizado el parámetro de grupo λ de forma que el exponente no tenga

un factor constante extra. En la región R tenemos los operadores duales no locales b.

El dual del grupo abeliano A es otro grupo abeliano B formado por los caracteres de

A, y podemos establecer la parametrización de los b de tal forma que la fusión de b1

y b2 sea b1 + b2. Las relaciones de conmutación entre clases no locales son de la forma

[23]

a b = ei a b b a . (5.16)

La única acción posible de la simetŕıa sobre los sectores duales b que respeta esta
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relación de conmutación es

b→ e−λ b . (5.17)

Esto da un continuo de b, y la simetŕıa generalizada es necesariamente un grupo R

tanto para A como para B. El grupo G̃ es un grupo R+ no compacto. Este es el caso,

por ejemplo, de los sectores HDV asociados al álgebra de las derivadas de un campo

escalar libre sin masa para d ≥ 3 bajo la acción del grupo de dilatación. Estudiaremos

este ejemplo en la sección 5.3.1. De forma general, cuando los sectores de R forman

una variedad continua no compacta (o alguna parte de ella es continua no compacta)

llamaremos a la simetŕıa generalizada no compacta. En este caso ocurre lo mismo con

las clases duales. Esperamos encontrar teoŕıas libres cuando hay sectores no compactos,

en particular, en el caṕıtulo 6, demostraremos que este es el caso cuando estas clases

no compactas estén generadas por campos de forma.

Analicemos a continuación el caso de clases HDV formadas por un grupo abeliano

A con elementos etiquetados a = (a1, a2), donde la fusión es aditiva en esta parame-

trización vectorial. Las coordenadas pueden formar un grupo Z, R, o U(1). El grupo

dual B tiene elementos b = (b1, b2), con fusión aditiva. Las relaciones de conmutación

pueden escribirse

a b = b a eia·b . (5.18)

Para respetar estas reglas de fusión y relaciones de conmutación necesitamos una acción

de la simetŕıa de la forma

a→M(λ) a , b→ (M(λ)T )−1 b , (5.19)

donde M(λ) es un grupo uniparamétrico de matrices reales bidimensionales.

(a) El caso A = U(1)×U(1), que produce B = (Z,Z), o viceversa, no puede contener

la acción de una simetŕıa continua. La razón es la discretización de uno de los

sectores duales. Ambos sectores duales tienen que contener partes continuas para

que sea posible una acción no trivial.

(b) Para el caso A = R × R, que tiene B = R × R, el grupo puede ser cualquier

subgrupo uniparamétrico de GL(2,R). Esto incluye, por ejemplo, dilataciones

como la discutida anteriormente, y una rotación. En este último caso, el grupo

de simetŕıa es U(1). Un ejemplo de rotación de clases HDV viene dado por la

simetŕıa de rotación entre dos campos de Maxwell independientes, o la dualidad

electromagnética del campo libre de Maxwell en D = 4. Veremos estos ejemplos

en las secciones 5.3.2 y 5.3.3 respectivamente. Todos estos casos corresponden

a simetŕıas generalizadas no compactas y son libres. Sin embargo, veremos que

emergen otros escenarios posibles en el marco de la teoŕıa efectiva de campos,



122 Simetŕıas Generalizadas y el teorema de Noether

estos tienen simetŕıas generalizadas bien definidas a nivel clásico. Estudiaremos

las simetŕıas generalizadas clásicas en el caṕıtulo 6 y discutiremos en detalle un

ejemplo concreto, la electrodinámica de piones, en el caṕıtulo 7.

(c) Si A = R × U(1), entonces B = R × Z. Tenemos a2 ≡ a2 + 2π y b2 ∈ Z. La

simetŕıa general es una combinación de una dilatación en los sectores duales no

compactos R y la transformación

(a1, a2) → (a1, a2 + λ a1) , (b1, b2) → (b1 − λ b2, b2) . (5.20)

No tenemos ejemplos de este tipo, aunque la no compacidad de los sectores impli-

caŕıa un modelo libre si estuvieran generados por un campo de forma (suponiendo

que la parte R × R de la simetŕıa no sea efectiva sino exacta). En ese caso, no

parece posible que se pueda realizar esta transformación.

(d) Por último, tenemos el caso A = Z × U(1), con dual B = U(1) × Z. La única

acción posible de G̃ es la dada en (5.20). Posteriormente veremos que este es

exactamente el caso de la anomaĺıa quiral para D = 4, donde Z corresponde a

TL y U(1) a WL. Discutiremos dicho ejemplo de forma extensa en el caṕıtulo 7.

En este ejemplo la estructura de los sectores duales en R y R es la misma porque

tienen la misma topoloǵıa.5 No sabemos si este tipo de transformación es posible

para regiones R y R de topoloǵıa diferente. Si la simetŕıa es una U(1) el rango

de las diferentes λ es λ ∈ [0, 2πn), siendo n un número entero. Esto se deduce

del hecho de que λ = 2π n tiene que actuar como la identidad en (5.20), y hemos

fijado la periodicidad de los sectores no locales de U(1) en 2π.

La simetŕıa continua no trivial implica que tanto R como R presentan algunos

sectores continuos HDV, pero esto no implica la no compacidad ya que los secto-

res continuos pueden conmutar entre śı. Esto será claramente evidenciado en el

ejemplo de la anomaĺıa quiral en el caṕıtulo 7

5.2. Propiedades de los twists y twists estándar

Vimos en la sección anterior los dos principales resultados importantes de este

caṕıtulo: las simetŕıas generalizadas cargadas bajo una simetŕıa global continua gene-

ran un continuo de clases duales, y en tales escenarios el grupo de simetŕıa global no

puede ser generado por una corriente de Noether. Con esta información, y la clasifica-

ción de los twists en términos de aditividad y completitud, el lector puede saltar con

seguridad a las siguientes secciones donde discutimos ejemplos expĺıcitos en la sección

5El signo diferente en a1 y b2 en la transformación (5.20) puede eliminarse redefiniendo b2 → −b2.
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5.3 y generalizaciones del teorema de Weinberg-Witten en la sección 5.4. La presente

sección es más técnica que las demás y no es necesaria para comprender los puntos

principales del resto del caṕıtulo. No obstante, será importante en relación con una

posible clasificación completa de las QFTs que violan la versión fuerte del teorema de

Noether. También nos permite completar el análisis de la clasificación de los operadores

de twist cuando están presentes simetŕıas generalizadas.

Comenzamos revisando la construcción de los twists estándar utilizando la split

property. Esto garantiza la existencia de twists en la mayoŕıa de las teoŕıas de interés

f́ısico. Más aún, extenderemos la construcción a casos en los que están presentes si-

metŕıas generalizadas. A continuación, estudiaremos los sectores no locales en la buffer

zone y la acción de los twists en esta región. Esto nos permite encontrar nuevas con-

diciones suficientes para tener twists que sean simultáneamente aditivos y completos.

Utilizando este análisis obtenemos el resultado principal de esta sección: demostrare-

mos que existen twists aditivos completos cuando las clases no están cargadas y que

estos pueden construirse de manera estándar. Esta es la inversa de la afirmación que

derivamos en la seccion 5.1.2. Terminamos con una discusión sobre la posibilidad de

concatenar twists pequeños para producir otros para regiones más grandes.

5.2.1. Twists estándar construidos a partir de la split property

Existe una forma estándar aunque abstracta de construir operadores de twist [146–

149]. Esta requiere la split property. Revisaremos la forma original en que se formuló

esta construcción, y luego introducimos las variaciones que aparecen cuando, además

de la simetŕıa global, la QFT en cuestión posee simetŕıas generalizadas. A continuación

seguiremos la construcción presentada en [149].

Dadas dos álgebras conmutativas A y B, y un estado |Ω⟩ ćıclico y separador6 para

A∨B, la split property afirma la existencia de un factor de tipo I N tal que A ⊂ N y

B ⊂ N ′. Un factor de tipo I7 es el álgebra de todos los operadores acotados en algún

espacio de Hilbert. Una descripción equivalente de la split property es que las álgebras

N y N ′ son las álgebras de los operadores que actúan en cada uno de los dos factores

de Hilbert HN y HN ′ asociados a una descomposición del espacio de Hilbert completo

6Podemos pensar que un vector |Ω⟩ perteneciente a un dado espacio de Hilbert H es ćıclico con
respecto a un álgebra de von Neumann A definida sobre el conjunto de operadores acotados B(H)
cuando {O|Ω⟩, O ∈ A} es denso en H. Por otro lado, |Ω⟩ es separador con respecto a A cuando el
cero es el único operador perteneciente a A que aniquila |Ω⟩.

7En QFT, es esperable que álgebras asociadas a regiones sin buffer zone sean de tipo III. Estas
álgebras exhiben entrelazamiento infinito de manera que es de esperar que el espacio de Hilbert no
factorize para las álgebras de una región y su complemento causal. Las álgebras de tipo I, en cambio,
muestran entrelazamiento finito. Intuitivamente, esto permite la factorización del espacio de Hilbert
global para estas álgebras. Sin embargo, perdemos la interpretación geométrica aguda sin smearing
sobre la buffer zone. Véase [73].
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como producto tensorial de la forma

H = HN ⊗HN ′ . (5.21)

Las álgebras A y B se incluyen entonces en las álgebras de operadores que actúan a

cada lado de este producto tensorial.

Esperamos que la split property asociada a las álgebras de regiones espacialmente

separadas se mantenga con gran generalidad en QFT. Esta, se deduce simplemente de

dos premisas básicas [159, 160]. La primera es que las traslaciones temporales de una de

las álgebras para cualquier tiempo en algún intervalo no vaćıo (−t0, t0) aún conmutan

con la otra álgebra. En una QFT local relativista, esto se garantiza por la existencia de

la buffer zone Z entre las dos regiones espacialmente separadas. Véase la figura 5.1. La

segunda es una condición UV que requiere que el número de grados de libertad a altas

enerǵıas no aumente demasiado rápido. En términos f́ısicos más concretos, esto implica

que la enerǵıa libre local aumente como máximo con una ley de potencias en la tem-

peratura. Esta condición solamente garantiza propiedades termodinámicas normales a

todas las temperaturas (por ejemplo implica que en nuestra teoŕıa no encontraremos

una temperatura máxima de Hagedorn). Por lo tanto, en el contexto de esta tesis, su-

pondremos que se cumple la split property para en cualquier teoŕıa y cualquier región

definida sobre cualquier espacio. Solamente, en el apéndice A estudiaremos la teoŕıa

de Generalized Free Fields la cual viola la primera de las condiciones presentadas para

algunas elecciones de álgebras.

El factor de split N con el que definimos la split property es altamente no único. Sin

embargo, hay una construcción general por Doplicher y Longo para un split estándar.

Comienza con un estado |Ω⟩ que es ćıclico y separador para A ∨ B, y la conjugación

modular inducida por J ≡ JA∨B con respecto a dicha álgebra. En QFT es natural

utilizar el estado de vaćıo. Tenemos permitido construir expĺıcitamente el factor de

split estándar como

N = A ∨ (J A J) , N ′ = B ∨ (J B J) . (5.22)

Una buena caracteŕıstica a favor de esta construcción es que N sólo depende del vaćıo

y de las álgebras A y B.
Una vez que tenemos un split, podemos elegir un vector construido a partir del

producto tensorial |η⟩ = |Ω⟩N ⊗ |Ω⟩N ′ tal que el estado inducido por |η⟩ en A y

B coincide con el estado producto inducido por |Ω⟩ sobre dichas álgebras. En otras

palabras, |η⟩ es una purificación del estado de vaćıo en cada álgebra dentro de los

factores de tipo I correspondientes. Observamos que este estado no tiene correlaciones

entre las álgebras, en contraste con |Ω⟩. Además, el vector |η⟩ es único si lo elegimos en
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el cono estándar P . 8 Más concretamente, tenemos que existe una isometŕıa invertible

W : H → H⊗H tal que

W AB |η⟩ = A |Ω⟩ ⊗B |Ω⟩ , A ∈ A , B ∈ B , (5.23)

W AW ∗ = A⊗ 1 , W BW ∗ = 1⊗B , A ∈ A , B ∈ B . (5.24)

Este mapeo lleva los factores de tipo I dados por N y N ′ a las álgebras de operadores

de los dos espacios de Hilbert. Asimismo, obtenemos que

J |η⟩ = |η⟩ , W J W ∗ = JA ⊗ JB. (5.25)

Esta estructura hace transparente la construcción estándar de los twists. Sólo tenemos

que utilizar la construcción anterior con las asociaciones

A → A(R) , B → A(R̄) , (5.26)

tal que A(R) ⊂ N , A(R̄) ⊂ N ′. Para cualquier operador unitario U(g) actuando en el

espacio de Hilbert global, siguiendo [149], definimos

τg(R,Z) = W ∗ (U(g)⊗ 1)W (5.27)

que actúa no trivialmente sólo sobre el factor N y por tanto conmuta con A(R̄).

Además, si U(g) lleva un elemento A de A(R) a otro elemento Ã de A(R) es directo

que τg(R,Z) tendrá la misma acción sobre A. Entonces, τg(R,Z) puede generar un twist

tanto para las simetŕıas internas como para las simetŕıas espacio-temporales. Además,

a partir de su definición, los twists τg(R,Z) nos proporcionan una representación del

grupo

τgτh = τgh . (5.28)

Estas relaciones de producto de grupo no son necesarias para que el twist efectué

las operaciones de grupo localmente. De hecho, t́ıpicamente no se mantienen para un

smearing más general del twist en la buffer zone Z. Por ejemplo, para los twists que

surgen al hacer el smearing convencional de las corrientes de Noether (5.14).

Para una simetŕıa interna no rota, los twists estándar pueden entenderse como las

restricciones de U(g) a los dos factores de tipo I que conmutan. Es decir, tenemos que

U(g) = τNg ⊗ τN
′

g = τg(R,Z) τg(R̄, Z) . (5.29)

Entonces podemos ver que los twists estándar tienen la noción de complementariedad

8El cono estándar se define como el conjunto de vectores OJ O |Ω⟩ con O ∈ A∨B. Vease [27] para
una presentación completa.
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asociada. Otro un resultado muy conveniente de esta construcción especifica, que nos

sera útil más adelante, es que los twists estándar para simetŕıas internas se transforman

de forma covariante, es decir

U(g) τh(R,Z)U(g)
−1 = τghg−1(R,Z) . (5.30)

En el caso de simetŕıas globales espontáneamente rotas, no tenemos un U(g) que

implemente las transformaciones de simetŕıa y este adecuadamente definido globalmen-

te. Sin embargo, dada cualquier región compacta R, siempre nos es posible construir

un operador unitario UR(g) en el espacio de Hilbert global que implementa la simetŕıa

en R, véase [39]. Si utilizamos este operador unitario, la misma construcción anterior

proporciona un twist τg(R,Z) para A(R) en tal caso. Dicho de otra forma, la falta del

U(g) global no interfiere con nuestra investigación actual, ya que podemos describir las

simetŕıas generalizadas dentro de regiones contenidas en una bola y sus complementos

relativos dentro de la misma bola. Podemos definir un espacio de Hilbert y un factor

de tipo I para la bola separada del resto del espacio, y se puede restringir la atención

a la f́ısica dentro de dicha álgebra. La única diferencia restante con el caso de simetŕıa

no rota es que el estado del vaćıo no es invariante bajo el grupo. No obstante, como

no estamos interesados en el estado sino en las simetŕıas de las álgebras, esto se puede

manejar promediando las transformaciones del grupo sobre estado del vaćıo en una

bola y tomando una purificación dentro de la bola que separamos.

Ahora pasamos al caso en que la QFT muestra simetŕıas generalizadas que producen

clases HDV asociadas a ciertas regiones R. En estas QFT podemos considerar más de

una álgebra para la misma R, por ejemplo A(R) o Amax(R). Entonces, en lugar de

empezar la construcción de Buchholz-Doplicher-Longo con las álgebras conmutativas

A(R) y A(R̄), podemos tomar las álgebras también conmutativas A(R) y Amax(R̄).

Para esta elección, por las mismas razones descritas anteriormente, podemos realizar

el split requerido. De esta manera, podemos construir los twists estándar procediendo

de forma análoga. Es inmediato que estos twists son completos para R̄ y por tanto

aditivos para R. Por otro lado, si partimos de un split estándar entre Amax(R) y A(R̄),

dicho twist estándar será completo para R y aditivo para R̄.9

Aqúı terminamos con la revisión de la construcción algebraica desarrollada en [146–

149], y su extensión para incluir simetŕıas generalizadas. La conclusión es que, dada

la split property en QFT, se pueden hallar los twists locales τg(R,Z) para cualquier

región R, y buffer zone Z. Éstas son las versiones locales de los operadores de simetŕıa

global U(g). Esto nos demuestra la versión débil del teorema de Noether. Además, esta

construcción se aplica también al caso de simetŕıas discretas. Sin embargo, como se

9Una expectativa natural para los twist estándar que surgen de A(R) y A(R̄) es que en general no
son necesariamente completos ni aditivos.
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subraya en [149], la derivación de una corriente conservada a partir de la existencia de

twists no es necesariamente cierta para simetŕıas continuas. De hecho, en la sección 5.3,

revisaremos una variedad de ejemplos sencillos que nos mostraran que esto no siempre

es posible, y que la versión fuerte del teorema de Noether no siempre es válida. Más

precisamente, tal como se discutió anteriormente, cuando tenemos simetŕıas genera-

lizadas, existe una diferencia importante en la naturaleza de los twists estándar con

respecto a las que surgen a través de una posible corriente de Noether. En particular,

mientras que los twists estándar pueden construirse generalmente, los twists aditivos y

completos no pueden construirse cuando la simetŕıa generalizada está cargada bajo la

simetŕıa global, prohibiendo la existencia de una corriente de Noether.

5.2.2. Estructura de los operadores no locales en la buffer zone

Analizaremos ahora las clases no locales que pueden aparecer en la buffer zone Z.

Son las clases HDV de Amax(Z). En primer lugar, destacamos que una clase no local

en Amax(Z) puede corresponder a operadores que son aditivos en R ∪Z. En este caso,

el operador claramente pertenece a

AR(Z) = A(R ∪ Z) ∩ A(R)′ . (5.31)

Análogamente, si el operador no local es aditivo en R̄ ∪ Z vemos que pertenece a

AR̄(Z) = A(R̄ ∪ Z) ∩ A(R̄)′ . (5.32)

Podemos comprobar fácilmente que tanto AR(Z) como AR̄(Z) están contenidos en

Amax(Z). La razón es que conmutan con A(R) ∨ A(R̄). Esto implica que

AR(Z) ∨ AR̄(Z) ⊆ Amax(Z) . (5.33)

Sin embargo, también podemos estudiar la inclusión opuesta, es decir, Amax(Z) ⊆
AR(Z) ∨ AR̄(Z). Si tomamos conmutantes vemos que es equivalente a

(Amax(R) ∨ A(R̄)) ∩ (Amax(R̄) ∨ A(R)) ⊆ A(R) ∨ A(R̄) . (5.34)

Esto se deduce expandiendo en operadores no locales las dos álgebras intersecadas del

lado izquierdo y usando que Amax(R) ∩ Amax(R̄) = {1}. Por tanto tenemos que

Amax(Z) = AR(Z) ∨ AR̄(Z) . (5.35)

Entonces, los operadores no locales de Z están generados por los que son aditivos en

R∪Z y los que son aditivos en R̄∪Z. Llamaremos genéricamente a estos operadores no
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locales c y c̄ respectivamente. Si nombramos a a los operadores no locales en Amax(R)

y b a los de Amax(R̄), tenemos que [a, c̄] = [b, c] = 0. Puesto que

ARR̃(Z) = AR(Z) ∩ AR̄(Z) = A(R ∪ Z) ∩ A(R̄ ∪ Z) , (5.36)

puede contener operadores no locales de Z, y algunos de los operadores no locales en

Z pueden ser aditivos en ambos lados.

Las clases c, c̄ conmutan porque siempre podemos dividir Z en dos partes, una con-

tigua a R y otra contigua a R̄, y elegir representantes de cada uno de los dos tipos de

clases localizados en cada una de las partes, y por lo tanto aditivos en regiones com-

plementarias. Entonces, para un operador genérico en Amax(Z) tenemos la expansión∑
λβs

Oλβs cλ c̄β Õλβs , (5.37)

para Oλβs, Õλβs operadores locales en Z, es decir, pertenecientes a A(Z). Las clases c y

c̄ son por definición clases no locales en Amax(Z). Sin embargo, un operador c c̄ puede

ser descompuesto en varias clases de Amax(Z) por la acción de operadores locales en

Z, de modo que c c̄ podŕıa no representar una única clase irreducible.

Observamos que no hemos utilizado que la buffer zone es delgada. Este resultado

es completamente general y de naturaleza topológica: si R y R̄ son regiones disjuntas,

las clases no locales de Z = (R ∪ R̄)′ están generadas por productos de clases aditivas

en R∪Z y clases aditivas en R̄∪Z. Además, tenemos la expansión general (5.37) para

el álgebra máxima de Z.

5.2.3. Twists verdaderamente aditivos

Por las definiciones (5.31-5.32) y (5.36), cualquier elemento global de grupo U(g)

deja invariantes las álgebras Amax(Z), AR(Z), AR̄(Z), ARR̄(Z), y A(Z).10 Mezclará las

clases HDV no locales de las álgebras anteriores entre śı cuando estas están cargadas.

Sin embargo, un twist genérico definido para R sólo deja Amax(Z) invariante. Si el

twist fuese aditivo, es decir τg(R,Z) ∈ A(R ∪ Z), también dejaŕıa invariante AR(Z).

En cambio, si el twist fuese completo dejaŕıa invariante AR̄(Z), la razón es que el twist

complementario es aditivo y el grupo de simetŕıa global deja las álgebras invariantes.

Por último, si el twist fuese aditivo y completo, además dejaŕıa ARR̄(Z) invariante.

La inversa de estas afirmaciones no es cierta en general. Pero es cierto que si te-

nemos un twist aditivo que deja ARR̄(Z) invariante podemos construir otro twist que

sea completo y aditivo. Llamaremos a un twist aditivo que mantiene ARR̄(Z) en śı

10Para comprobarlo recordamos que la conjugación con un unitario mapea álgebras que conmutan
a álgebras que conmutan
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misma “verdaderamente aditivo”. Los twists aditivos y completos son verdaderamente

aditivos. A continuación (en esta sección y la siguiente) mostraremos que las clases son

invariantes si y sólo si hay un twist aditivo y completo, y que la misma afirmación es

cierta para los twists verdaderamente aditivos. A la inversa, si las clases están cargadas,

no es posible tener un twist aditivo que mantenga ARR̄(Z) en śı misma.

Para probar esto tomemos un twist verdaderamente aditivo τg(R,Z) y un twist

aditivo τg(R̄, Z). Si utilizamos también la transformación de simetŕıa global, podemos

definir el siguiente unitario

z = U(g)−1 τg(R,Z) τg(R̄, Z) ∈ Amax(Z) . (5.38)

Donde vemos que O z = z C̄ para cualquier O ∈ ARR̄(Z) y algún C̄ ∈ AR̄(Z). De aqúı,

podemos deducir que ∑
λ

Oλ z Õλ = z C̄ , (5.39)

para cualquier Oλ, Õλ ∈ ARR̄(Z) y algún C̄ ∈ AR̄(Z). Expandiendo z en elementos cc̄

como en (5.37), podemos elegir cualquiera de estos elementos actuando a izquierda y

derecha con elementos O ∈ ARR̄(Z) (como en el lado izquierdo de (5.39)). Por tanto,

obtenemos

C C̄ ′ = z C̄ . (5.40)

En términos de las clases de Amax(Z) con respecto a la acción de AR̄(Z), esta ecuación

nos implica que sólo puede haber una única clase C en la expansión de z. Como z es

unitario, la clase c debe ser abeliana, cc∗ es la clase identidad (aqúı AR̄(Z)), y podemos

tomar un representante unitario C. Entonces, podemos poner todos los elementos del

álgebra AR̄(Z) en la expansión de z del mismo lado, y obtenemos

z = C C̄ , (5.41)

con C̄ unitario en AR̄(Z). Entonces, tenemos

1 = C−1 U(g)−1 τg(R,Z) τg(R̄, Z) C̄
−1

= U(g)−1 ((C ′)−1 τg(R,Z)) (τg(R̄, Z) C̄
−1) (5.42)

≡ U(g)−1 τ̃g(R,Z)) τ̃g(R̄, Z) ,

con (C ′)−1 ∈ AR(Z). Por lo tanto, (5.42) muestra dos twists aditivos complementarios

τ̃g(R,Z) y τ̃g(R̄, Z) que son simultáneamente aditivos y completos.

Vemos que los twists verdaderamente adititivos, y en particular los twists aditivos

y completos, no sólo dejan invariante ARR̄(Z) sino también el álgebra aditiva A(Z)

y de hecho todas las clases de ARR̄(Z). Más aún, tenemos que cualquier twist que
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deje invariante ARR̄(Z) lo hará. La razón es que las clases de ARR̄(Z) con respecto

a A(Z) son duales de las clases de Amax(R ∪ R̄) con respecto a Amax(R) ∨ Amax(R̄).

Estos operadores duales son no locales en R ∪ R̄ y sus clases no pueden ser cambiadas

por operadores no locales en R o en R̄. Luego, por transportabilidad, los twists no

pueden cambiar estas clases. Por lo tanto, el twist tampoco puede cambiar las clases

de ARR̄(Z).

5.2.4. Existencia de twists aditivos y completos

En la sección 5.1.2 demostramos que la existencia de twists aditivos completos

implica que las clases HDV no locales no estan cargadas. Ahora, demostraremos lo

contrario, si las clases HDV no estan cargadas, existen twists completos y aditivos. La

prueba que presentaremos es válida para simetŕıas globales internas. De hecho, demos-

tramos que los twists estándar son, al menos, verdaderamente aditivos. Utilizando los

resultados de la sección anterior, esto implica que siempre podemos construir twists

aditivos y completos modificando ligeramente los estándar.

Tomemos un twist estándar aditivo τg(R,Z) construido con la split property. El

twist complementario ,

τg(R̄, Z) = τg(R,Z)U(g)
−1 , (5.43)

da una representación del grupo. En lo que sigue, sólo necesitaremos considerar un

subgrupo abeliano de G generado por un único elemento g. Más especificamente, el

subgrupo Gg = gn, con n un número entero.

El twist τg(R̄, Z) deja invariantes los elementos de A(R). Como U(g) deja invariante

Amax(R) y τg(R,Z) actúa sólo en el factor de split N , el twist complementario τg(R̄, Z)

transforma un operador no local a ∈ Amax(R) en un operador no local ã contenido en

Amax(N ) = N ∨ {a} = N ∨Amax(R) . (5.44)

Nótese que N = A(R) ∨ J A(R) J y J A(R) J conmuta con A(R) y Amax(R̄), y por

tanto tenemos que J A(R) J ⊂ AR(Z). Luego,N ⊂ A(R∪Z). También, deducimos que

Amax(N ) tiene las mismas clases a que Amax(R) y que conmuta con A(R̄). Entonces,

podemos pensar Amax(N ) como el álgebra máxima asociada al factor N .

Ahora consideremos que las clases de R no están cargadas bajo la acción de G.

Por lo tanto, vemos que no están cargadas bajo el subgrupo abeliano Gg. Entonces, el

twist τg(R̄, Z) deja invariantes las clases de Amax(N ) porque U(g) lo hace, y porque

τg(R,Z) es aditivo y por ende no puede cambiar clases no locales. Si tomamos la acción

de Gg sobre un operador no local a perteneciente a R (mediante conjugación) podemos
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proyectar en representaciones irreducibles tales que

τg(R̄, Z) ap τg(R̄, Z)
−1 = ei ϕ ap . (5.45)

Este ap pertenece a la misma clase que a. Como τg(R̄, Z) deja invariante de punto a los

elementos de N , y los elementos de la clase [a] en Amax(N ) están generados por ap y

N , vemos que necesariamente todos los elementos de [a] se transforman con el misma

fase. Entonces, de hecho sólo hay una representación irreducible en la descomposición

de a sobre representaciones irreducibles de Gg. En el caso de un grupo no compacto Gg

tendŕıamos que haber tomado ap proyectado a un intervalo de factores de fase, pero

el intervalo puede ser tan pequeño como queramos. Al final el resultado es el mismo y

sólo intervienen una única fase y representacion.

Por tanto, de la expresión (5.43) hemos aprendido que la acción de U(g) y el twist

aditivo τg(R,Z) sobre el elemento no local a ∈ Amax(R) difieren (como mucho) en una

fase. En términos de cargas en un grupo continuo, esto significa que los conmutadores

de la carga global Q y la carga aditiva local Qadd
R con a difieren (como máximo) en un

término proporcional a a,

[Q, a] = [Qadd
R , a] + ϕ′ a . (5.46)

Ahora tomemos un twist estándar aditivo τ addg (R,Z) para R y un twist estándar

completo τ comg (R,Z) para R. Recordamos que estos dos siempre se pueden encontrar

eligiendo adecuadamente un split para las álgebras. Luego, calculamos

z = τ comg (R,Z)−1 τ addg (R,Z) . (5.47)

Este elemento pertenece a Amax(Z) porque conmuta, por construcción, tanto con A(R)

como con A(R̄). Actúa sobre un elemento a de Amax(R) introduciendo una fase ya que

τ comg (R,Z) actúa como el grupo global. El punto importante es que no lleva a el opera-

dor a fuera de Amax(R) hacia la buffer zone. También, podemos escribir el unitario z si

utilizamos una expresión análoga a (5.47) en términos de los twists complementarios,

es decir, los aditivos y completos para R̄. Más concretamente,

z = τ comg (R,Z)−1 τ addg (R,Z)

= (U(g)−1 τ addg (R̄, Z))−1 (U(g)−1 τ comg (R̄, Z)) (5.48)

= τ addg (R̄, Z)−1 τ comg (R̄, Z) .

Por lo tanto, también vemos que transforma elementos b cambiando una fase. Consi-

deremos ahora un elemento O de ARR̄(Z). Recordemos que

ARR̃(Z) = AR(Z) ∩ AR̄(Z) = A(R ∪ Z) ∩ A(R̄ ∪ Z) , (5.49)
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Por tanto si O pertenece a ARR̄(Z) conmuta con los operadores no locales a y b a

ambos lados. Además, como O conmuta con a, b también deducimos que

z O z∗ (5.50)

conmuta con a, b. Concluimos que

z O z∗ ∈ ARR̄(Z) . (5.51)

Usaremos ahora esta información para demostrar que τ addg (R,Z) es verdaderamente

aditivo. Escribiendo

z = τ addg (R̄, Z)U(g)−1 τ addg (R,Z) , (5.52)

vemos que la acción de z sobre O está compuesta por la acción de tres operadores. El

twist τ addg (R,Z) podŕıa llevarnos de O a un operador con una clase exclusiva de AR(Z),

es decir, una clase no aditiva en R̄∪Z. Esto es aśı porque τ addg (R,Z) es aditivo en R∪Z.
El elemento de grupo global U(g) no cambiará esta clase. El operador de twist aditivo

en el complemento τ addg (R̄, Z) no puede cambiar una clase exclusiva en AR(Z) porque

es aditivo en R̄ ∪ Z. Por lo tanto, la única forma de que z deje ARR̄(Z) en śı misma,

satisfaciendo (5.52), es que τ addg (R,Z) también deje esta álgebra invariante. Por tanto,

el twist estándar aditivo original τ addg (R,Z) es en realidad un twist verdaderamente

aditivo. Puesto que los twists verdaderamente aditivos pueden convertirse en twists

aditivos y completos, como mostramos en la sección 5.2.3, esto completa la prueba de

la existencia de twists aditivos y completos cuando las clases no están cargadas bajo

la acción de la simetŕıa global.

Resumiendo, si las clases no locales de una región R son invariantes bajo la simetŕıa,

existen twists aditivos y completos para R. Además, estos pueden construirse de manera

estándar. Esto implica que el twist complementario también es aditivo y completo. Por

lo tanto las clases de R̄ son invariantes. Y sabemos que las clases duales están ambas

cargadas o ninguna lo esta.

Para las simetŕıas espacio-temporales continuas los twists aditivos y completos de

las regiones complementarias no pueden ser complementarios (aunque las cargas puedan

sumarse a la global). Pero el principal obstáculo para la generalización de la presente

demostración es que necesitamos un twist completo para Amax(R) que tenga la misma

acción que el twist aditivo en N . Seŕıa interesante seguir estudiando este problema.

5.2.5. Concatenación de twists y twists aditivos concatenables

Consideremos regiones no intersecantes A y B tales que ZA es una buffer zone

para A y ZB es una buffer zone para B. Suponemos que ZB ∩ A = ZA ∩ B = ∅.
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Figura 5.3: Configuraciones geométricas apropiadas para la definición de concatenabilidad
asociada a operadores de twist. El lado izquierdo representa la existencia de operadores de twist
τg(A,ZA) y τg(B,ZB). En el lado derecho representamos la existencia de un operador de twist
τg(C,ZC) para C = A ∪ B ∪ Z y Z = (ZA ∪ ZB) ∩ Z ′. Decimos que τg(A,ZA) y τg(B,ZB)
son “concatenables” si τg(AZB,ZA ∪ ZB) puede obtenerse como el producto de τg(A,ZA) y
τg(B,ZB).

Representamos esquemáticamente esta configuración geométrica en la parte izquierda

de la figura (5.3). En este escenario, decimos que los twists τg(A,ZA) y τg(B,ZB)

“concatenan” en la región A ∪ B ∪ Z, si el producto de los dos produce un twist para

A ∪B ∪ Z con buffer zone (ZA ∪ ZB) ∩ Z ′. Más concretamente,

τg(A,ZA) τg(B,ZB) = τg(C,ZC) , C = A ∪ Z ∪B , ZC = (ZA ∪ ZB) ∩ Z ′ . (5.53)

Esto se representa en la parte derecha de la figura (5.3). En este sentido, decimos que

los twists complementarios concatenan al operador de simetŕıa global.

Si tenemos dos twists aditivos τg(A,ZA), τg(B,ZB) que concatenan a un twist com-

pleto τg(C,ZC), es inmediato que los tres twists son simultáneamente completos y

aditivos. Veamos, en primer lugar, el twist τg(C,ZC) también es aditivo porque es el

producto de operadores aditivos en C ∪ ZC . Ahora escribiendo

τg(A,ZA) = τg(C,ZC) τg(B,ZB)
−1 , (5.54)

Tenemos que el twist τg(A,ZA) es completo ya que τg(C,ZC) implementa operaciones de

grupo en Amax(A) ⊆ Amax(C), pero τg(B,ZB)
−1, al ser aditivo, conmuta con Amax(A).

Análogamente, vemos que el twist τg(B,ZB) es necesariamente completo.

Por lo tanto, en esta situación ninguna de las clases no locales de A,B,C puede

cargarse bajo la simetŕıa global. Un caso particularmente útil es cuando C no tiene

clases no locales, lo que implica que τg(C,ZC) es automáticamente completo. Este caso

aparece naturalmente cuando C es el espacio completo o una región con la topoloǵıa de

una bola (Véase la figura 5.4), bajo el supuesto de dualidad de Haag.11 En tal escenario,

la existencia de twists aditivos para A y B que concatenan a un twist para C implica

que los twists aditivos para A y B son también completos, y por tanto las clases para

A y B son no pueden estar cargadas bajo la acción del grupo.

11Para un orbifold de un grupo de simetŕıa global interna espontáneamente rota hay más de un
álgebra posible para regiones con topoloǵıa de una única bola. Véase la sección 5.3.1 más adelante.



134 Simetŕıas Generalizadas y el teorema de Noether

Figura 5.4: Una bola C con su buffer zone ZC . En su interior tenemos una región A con
una buffer zone ZA. Llamamos B a la región complementaria de A dentro de C. La región C
no puede mostrar simetŕıas generalizadas bajo el supuesto de la dualidad de Haag. Las regiones
A y B pueden presentar simetŕıas generalizadas. Cuando las clases asociadas con la simetŕıa
generalizada se cargan bajo el grupo de simetŕıa global vemos que los twists aditivos en A y B
no pueden concatenar a twists en C.

De este modo llegamos a una conclusión sencilla pero importante. Cuando las clases

no locales asociadas a cierta simetŕıa generalizada están cargadas bajo el grupo de

simetŕıa global, los twists aditivos no pueden concatenar a twists en una bola o en el

espacio completo.

Para el caso de simetŕıas continuas, los twists locales τg(R,ZR) pueden sustituirse

por las cargas locales Q(R,ZR) que generan estos twists por exponenciación. La carga

Q(R,ZR) tiene el mismo conmutador que la carga global para A(R), y conmuta con

A(R̄). La noción de concatenabilidad de twists puede expresarse en términos de estas

cargas. Muy sencillamente, diremos que las cargas locales Q(A,ZA) y Q(B,ZB) en

A ∪ ZA y B ∪ ZB12 concatenan a la carga Q(C,ZC) en C si

Q(C,ZC) = Q(A,ZA) +Q(B,ZB) . (5.55)

Cuando C no tiene clases no locales esto implica de nuevo que las clases no locales

en A y B no están cargadas si las cargas locales de A y B son aditivas. La razón

es que el conmutador de Q(C,ZC) con un operador no local en Amax(A) es igual al

conmutador de Q(A,ZA) ya que Q(B,ZB) es aditivo. Pero como Q(A,ZA) es aditivo,

estos conmutadores no pueden cambiar las clases no locales. Por lo tanto Q(C,ZC) y la

carga global no pueden cambiar las clases en A. Este es el mismo argumento utilizado

en la sección 5.1.4 para demostrar la no existencia de corrientes de Noether cuando

hay clases cargadas.

12Estas cargas son, en realidad, asociadas a las álgebras aditivas, como se mencionó en la sección
anterior.
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5.2.6. Concatenación arbitraria de twists

En esta sección, consideraremos la generalización de discusión anterior a n regiones

A1, A2, ... , An levemente separadas permitiendo la existencia de las respectivas buffer

zones Z1, Z2, ... , Zn. Diremos que los twists τg(A1, Z1), τg(A2, Z2) , ... , τg(An, Zn) son

concatenables para A1, A2, ... , An con buffer zones Z1, Z2, ... , Zn si

τg(A1, Z1) τg(A2, Z2) ... τg(An, Zn) = U(g) . (5.56)

En esta definición, también requerimos que Zi ∩ Aj = ∅ para cada i, j y que Zi tenga

topoloǵıa contactible a ∂Ai. De otra forma, perdeŕıamos la noción de concatenabilidad

de operadores locales dado que los twists estarán t́ıpicamente extendidos por toda la

buffer zone.

Para construir estos twists nuestro primer impulso seŕıa hacerlo en orden utilizando

la split property. Es decir, primero separamos A1 con Z1 de ∪ni=2Ai y el resto de álgebras

correspondiente a las buffer zones. Más concretamente, empleamos la split property

entre A1 y (A1 ∪ Z1)
′. Luego, dentro del espacio de Hilbert correspondiente a ∪ni=2Ai

hacemos el split correspondiente a A2 y ∪ni=3Ai, etc. Sin embargo, esta construcción no

respetará la contractibilidad de las buffer zones. Esto se debe a que, en la mayoŕıa de

las geometŕıas, la buffer zone para A2 rodeará todo ∪ni=3Ai después de haber usado la

split property sobre A1. Entonces, si por ejemplo dividimos un plano con cuadrados el

twist t́ıpico obtenido empleando dicha partición será totalmente no local en el plano.

Análogamente, si hacemos un split entre A1 y ∪ni=2Ai, y definimos la buffer zone como

∪ni=1Zi, entonces el twist de A1 estará repartido por todo el espacio.

Consideramos ahora la posibilidad de elegir una partición del espacio de Hilbert

como H =
⊗

iHNi
donde los factores de tipo I correspondientes Ni contienen A(Ai)

y están incluidos en el álgebra A(Ai ∪ Zi). En tal caso se seguiŕıa una concatenación

de twists restringiendo la acción del grupo a cada factor, si los factores se eligen de

manera invariante ante grupo. Sin embargo, tal split general por factores locales de tipo

I es imposible en teoŕıas que tienen simetŕıas generalizadas. Por ejemplo, considérese

un split asociado a cuadrados u otras regiones topológicamente triviales. El álgebra

∨i∈INi para cualquier subconjunto de ı́ndices I es aditiva en la unión de las regiones

correspondientes. El álgebra complementaria ∨i/∈INi también es aditiva. Esto implica

que ninguna de estas regiones contiene operadores no locales y que no hay clases no

locales. Por el contrario, en una partición arbitraria del espacio por regiones no inter-

secantes esperamos que las álgebras aditivas correspondientes a estas regiones generen

el álgebra completa de operadores (podemos encontrar esta idea en la literatura como

aditividad fuerte). Sin embargo, estas álgebras son de tipo III y no están en producto

tensorial entre śı debido a que comparten sus bordes.

Entonces, no podemos esperar un split arbitrario por factores de tipo I, al me-
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nos cuando están presentes simetŕıas generalizadas. Sin embargo, queda la cuestión

de la concatenación de twists. Para las corrientes de Noether es posible la conca-

tenación arbitraria de cargas, incluso si existen simetŕıas generalizadas no cargadas.

Pero la concatenación arbitraria no es posible con simetŕıas generalizadas cargadas.

De nuevo, pensamos en utilizar una partición por regiones topológicamente triviales.

Si τk, τk+1 . . . τq−1, τq cubre una región con clases cargadas, será un twist aditivo para

ella. En otras palabras, tenemos que U(g)(τq+1 . . . τn)
−1 es completo, y τ1 . . . τk−1 es

aditivo. Entonces, como explicamos en la sección anterior, las clases no pueden estar

cargadas. Cambiando la ordenación de forma que ninguna subsecuencia contigua cu-

bra una región que tenga clases cargadas, podŕıamos obtener concatenabilidad. Pero

eso significaŕıa que los conmutadores del conjunto de twists aditivos pequeños deben

producir no localidades grandes. Vemos que cuando concatenamos más de dos twists

la cuestión de la conmutatividad entre los twists se vuelve importante.

Otra cuestión es si podemos producir twists concatenables cuando tenemos clases

no cargadas y que sean twists simultáneamente aditivos y completos. Esperamos que

aśı sea, pero no tenemos ninguna prueba. Un caso particular que vale la pena mencionar

es el caso en que las buffer zones Zi de Ai comparten componentes conectadas entre śı,

es decir, Zij ≡ Zi ∩Zj está formado por uniones de componentes conectadas de Zi, Zj.

En este caso, como cada componente conexa de la frontera divide el espacio en dos

regiones disjuntas, podemos definir una partición adecuada, y tenemos que las clases

no están cargadas si y sólo si hay twists aditivos y completos τAi
que conmutan y se

concatenan.

Supongamos, más en general, que tenemos twists aditivos y completos para A, B,

y C = A ∪B ∪ Z, ZC = (ZA ∪ ZB) ∩ Z ′ (Ver figura 5.3). Si escribimos

z = τA τB τ
−1
C , (5.57)

vemos que el unitario z lleva A(ZA ∪ZB) en śı misma porque cada uno de los twists lo

hace. Entonces z pertenece al álgebra aditiva de la unión de buffer zones. Esto no es

válido para otro tipo de twists, donde z contiene t́ıpicamente operadores no locales de

ZA∪ZB. Para corregir los twists y lograr la concatenabilidad necesitamos dividir z en un

producto de un operador en ZC , que se absorberá en τC , y otro en Z, que se absorberá

en τA. Esto nos requiere cierta localidad de z. En el ĺımite de anchura pequeña ϵ de la

buffer zone esperamos que la escala de no localidad, en la dirección paralela al borde

de R, de los factores de split sea del mismo orden que ϵ. En este ĺımite podemos pensar

en una delgada pared que separa dos semi-espacios, y que en el UV no existen más

escalas para el problema que ϵ. Por lo tanto, un z que no contiene operadores no locales,

seŕıa aproximadamente local en el ĺımite de ϵ pequeño y los twists se concatenaŕıan

aproximadamente en dicho ĺımite. Por el contrario, si z contiene operadores no locales,
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el ĺımite z → 0 no puede ayudar a la concatenación.

5.3. Ejemplos

En esta sección describimos varios ejemplos de simetŕıas generalizadas cargadas

bajo la acción una simetŕıa global. Los ejemplos incluirán simetŕıas globales continuas y

discretas, transformaciones de dualidad y simetŕıas espacio-temporales. Construiremos

operadores de twist, y mostraremos expĺıcitamente algunas de sus propiedades sutiles

que discutimos de forma abstracta anteriormente.

5.3.1. Orbifolds

Dada una teoŕıa F con un grupo de simetŕıa interno H, podemos producir otra

teoŕıa O = F/H formada por los operadores invariantes ante dicha simetŕıa. Llama-

mos a O teoŕıa del orbifold. Queremos ver cómo la discusión anterior se refleja en este

orbifold. El orbifold tiene simetŕıas generalizadas asociadas con la violación de la dua-

lidad en regiones con la topoloǵıa de dos bolas si la simetŕıa no está rota o una bola si

está rota. En el caso donde no vemos rotura de simetŕıa, los operadores no locales que

violan la dualidad en una región R formada por dos bolas R = B1∪B2 son intertwiners

Ir =
∑
r

ψir(x1) (ψ
i
r)
†(x2) x1 ∈ B1, x2 ∈ B2 . (5.58)

Estos son operadores de carga / anti-carga localizados en las dos bolas. Más aún, están

etiquetados por las representaciones r de H. Por otra parte, los operadores HDV en la

región complementaria R′ = (B1 ∪B2)
′ son los twists simetrizados de H que actúan

sobre una sola de las bolas. Estos surgen si tomamos los twists estándar τh(B1, Z) para

B1, definidos en la sección 5.2.1, que están etiquetados por elementos de grupo h ∈ H,

y los simetrizamos promediando sobre una clase de conjugación c

τc =
∑
h∈c

τg . (5.59)

Entonces, estos twists invariantes nos quedan etiquetados por clases de conjugación c

del grupo. En estos casos, el grupo de simetŕıa interna original H actúa trivialmente

en la teoŕıa O = F/H por definición. Por tanto, actúa trivialmente en cada una de

las simetŕıas generalizadas del orbifold, generadas por los intertwiners Ir y los twists

τc. De hecho, el propio grupo de simetŕıa H ya no existe en el orbifold, puesto que la

operación de grupo global se identifica con la identidad. Un tratamiento más completo

de estos escenarios fue desarrollado en [22, 23, 38], véase también el caṕıtulo 2.

Construimos ahora sobre estos ejemplos e introducimos otro grupo de simetŕıa
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interna G actuando sobre O. Tenemos entonces la alternativa de que G deje invariantes

o no las clases HDV generadas por los intertwiners Ir y los twists de O. En particular,

si seguimos los resultados de la sección anterior, si existe una corriente de Noether para

G, debeŕıa darse el primer caso.

Para ver cómo pueden darse las dos situaciones, imaginemos que tenemos un grupo

de simetŕıas G actuando sobre F tal que H ⊆ G es un subgrupo normal. Entonces,

tenemos que G̃ = G/H es un grupo que actúa sobre el orbifold O = F/H. Si G̃ también

es normal en G, o equivalentemente G = G̃ ×H, entonces la simetŕıa global restante

G̃ del orbifold claramente no interfiere con las clases no locales. Sin embargo, si éste

no es el caso, habrá twists de G̃ definidos sobre dos bolas B1 ∪ B2 o sobre la cáscara

S = (B1 ∪B2)
′ que actúan de forma no trivial sobre las clases no locales. En este caso,

los twists τg asociados a G̃ no pueden ser aditivos y completos al mismo tiempo, y

los twists aditivos no podrán concatenarse. Si hay corrientes de Noether asociadas a

G̃ en la teoŕıa original F , veremos que estas no pertenecerán a la teoŕıa del orbifold

O = F/H.

Como un ejemplo, tomemos la teoŕıa de dos campos escalares reales (posiblemente

interactuantes) ϕ1, ϕ2, con una simetŕıa H = Z2 × Z2 actuando como ϕ1 → −ϕ1,

ϕ2 → −ϕ2, sumada a una simetŕıa de intercambio ϕ1 ↔ ϕ2 entre los dos campos.

Entonces, tenemos en la notación anterior

G = (Z2 × Z2)⋊ Z2 ≡ H ⋊ Z2 . (5.60)

El último Z2 en el producto semidirecto es el que intercambia los dos campos. Es un

subgrupo del grupo de simetŕıa completo, pero no es normal, mientras que H śı es un

subgrupo normal. Tomando el cociente O = F/H tenemos una teoŕıa de orbifolds con

una simetŕıa residual G̃ = G/H = Z2 que intercambia los campos. Luego, tenemos

cuatro clases para regiones dadas por la unión de dos bolas B1, B2, a saber

1, I1, I2, I1 I2 , (5.61)

donde 1 es la clase identidad y Ii = ϕi(x1)ϕi(x2) con i = 1, 2. Las clases no locales

(dadas por los intertwiners) I1, I2, son intercambiadas por G̃, y por tanto están cargadas

bajo la accion de dicho subgrupo. También tenemos cuatro clases asociadas a la región

complementaria, que es un cascaron S = (B1 ∪B2)
′. Vemos que estas clases vienen

dadas como

1, τH1
B1 , τH2

B1 , τH1
B1 τ

H2
B1 , (5.62)

donde 1 es el operador identidad asociado a la clase identidad, y τHiB1 con i = 1, 2 son los

twists, actuando sobre B1 como el grupo de simetŕıa global H, y no haciendo nada en

B2. Estos twists están asociados al grupo de orbifold H. Como H es un grupo abeliano,
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tales twists pertenecen directamente al orbifold O = F/H. También, están cargados

bajo la acción G̃, como se mostraremos en un momento.

Construimos ahora el twist localizado de G̃ para una región R. Este debeŕıa lla-

marse τ G̃R , pero como lo usaremos repetidamente lo renombraremos como τ G̃R → τR.

Observamos que podemos hacer twists para la transformación (ϕ1 → ϕ2, ϕ2 → −ϕ1) en

la teoŕıa F original utilizando las relaciones de conmutación canónicas. Para simplificar

la discusión y no desordenar la notación, omitimos la dependencia de la buffer zone Z,

y escribimos los twist de la forma heuŕıstica sin inlcuir el smearing. Esto es,

τR = ei
π
2

∫
R d

D−1x (ϕ1 π2−ϕ2π1) . (5.63)

Aqúı π1, π2 son los momentos canonicos. Cambiar el signo del exponente dará (ϕ1 →
−ϕ2, ϕ2 → ϕ1). Tenemos que ver cómo actúan estos twists en la teoŕıa del orbifold O.

Para empezar, estos twists intercambian las dos álgebras de campos neutros en O,

τR ϕ1(x1)ϕ1(x2) = ϕ2(x1)ϕ2(x2) τR , τR ϕ2(x1)ϕ2(x2) = ϕ1(x1)ϕ1(x2) τR , (5.64)

para x1, x2 ∈ R. En el caso particular en el que R = B1 ∪B2 es la unión de dos bolas,

vemos que este twist intercambia entonces las clases no locales, es decir

τR I1 = I2 τR . (5.65)

Sin embargo, (5.63) no es invariante bajo el cambio de signo independiente para los

dos campos. Por lo tanto, no pertenece al orbifold. Para construir el twist de G̃ en el

orbifold podemos promediar sobre la acción de H. A continuación, redefinimos el twist

(5.63) como 13

τR =
1

2

(
ei

π
2

∫
R(ϕ1 π2−ϕ2π1) + e−i

π
2

∫
R(ϕ1 π2−ϕ2π1)

)
= cos

(
π

2

∫
R

(ϕ1 π2 − ϕ2π1)

)
. (5.66)

Este twist es invariante bajo H. Tiene la conmutación correcta (5.64) cuando lo hace-

mos actuar sobre pares de campos. Más aún, cuando R es una bola, o cualquier región

con topoloǵıa trivial, este operador es aditivo porque su expansión en serie contiene

sólo pares de campos de cada tipo en R.

En cambio, para dos bolas R = B1 ∪ B2 tenemos dos opciones. Podemos tomar el

producto τB1 τB2 de twists para bolas simples. Éste es el twist aditivo en las dos bolas

por construcción, pero no podrá intercambiar las clases de los intertwiners, es decir, no

transforma I1 = ϕ1(x1)ϕ1(x2) a I2 = ϕ2(x1)ϕ2(x2). La razón es que estos intertwiners

13Para hacer este operador unitario podemos dividirlo por
√
cos2

(
π
2

∫
R
(ϕ1 π2 − ϕ2π1)

)
. Esto con-

muta con pares de campos en la región.



140 Simetŕıas Generalizadas y el teorema de Noether

contienen un solo campo en cada bola. Los twists completos para la simetŕıa de inter-

cambio en las dos bolas tienen la misma expresión (5.66), donde la integral está ahora

en R = B1 ∪B2. Esto es claramente no aditivo en las dos bolas, dado que implica a los

propios intertwiners en su construcción. Esto se puede ver expandiendo el coseno en

una expansión de Taylor. Además, si tenemos una bola B que contiene R = B1 ∪ B2,

entonces los twists aditivos de la forma τB1 τB2 y τB−R, no concatenan al twist τB. La

razón es que τB transforma las clases no locales en R, mientras que τB1 , τB2 , τB−R no

lo hace. En cambio, los twists originales de la forma (5.63), definidos en la teoŕıa F ,

son concatenables.

Consideremos ahora dos bolas anidadas, B1 ⊂ B2, y el cascaron S = B2 − B1. Un

twist aditivo τS para el cascaron se proporciona de nuevo por la fórmula (5.66) donde

R = S. Esto no cambia las clases no locales dadas por los twists τH1
B1 , τ

H2
B1 del orbifold

con base en S. Un twist completo τ̄S viene dado por la construcción complementaria,

tomando por ejemplo τ̄S ≡ τB2τ
−1
B1

donde ambos operadores de la derecha vienen dados

por la expresión aditiva (5.66). Como el grupo es Z2 podemos sustituir el twist inverso

por el propio twist. Esto nos produce un operador

τ̄S = τB2 τB1 ∼ τS + cos

(
π

2

∫
B1

(ϕ1 π2 − ϕ2π1) +
π

2

∫
B2

(ϕ1 π2 − ϕ2π1)

)
. (5.67)

El primer y segundo término del lado derecho tienen la misma conmutación (5.64) con

operadores locales en S, mientras que ambos términos conmutan con operadores locales

del orbifold en B1. Para el segundo término esto se debe a que el coeficiente total de

la integral de la corriente en B1 es π en lugar de π/2, produciendo la transformación

ϕ1 → −ϕ1, ϕ2 → −ϕ2, que deja a los operadores locales en el orbifold invariantes. Pero

esto también muestra que el nuevo operador dado por (5.67) contiene, además del twist

aditivo τS, los twists no locales del orbifold a través de B1, que cambian el signo de los

campos alĺı. Para una bola genérica B, los denominamos τH1
B y τH2

B . Estos, cambian el

signo de ϕ1 y ϕ2 en la bola B.14 Si B1 ⊂ B ⊂ B2, se nos vuelve evidente que

τ̄S τ
H1
B = τH2

B τ̄S . (5.68)

Esto dice que el twist τ̄S es completo, e intercambia clases no locales. La razón es que

para dos bolas B, B̃ tenemos

τB̃τ
H1
B = τH2

B τB̃ , τB̃τ
H2
B = τH1

B τB̃ , B ⊂ B̃ , (5.69)

τB̃τ
H1
B = τH1

B τB̃ , τB̃τ
H2
B = τH2

B τB̃ , B̃ ⊂ B . (5.70)

Entonces, dentro de τ̄S = τB2τB1 , el twist τB2 intercambia los twists del orbifold mientras

14Pueden escribirse eπ
∫
B

ϕi(x)πi(x).
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que τB1 , al ser un operador local dentro de B, conmuta con ellos.

Ahora, veamos otro ejemplo donde el grupo de simetŕıa global G es continuo. Para

esto, consideramos el caso de dos campos escalares libres reales sin masa con simetŕıas

ϕi → ϕi + αi, i = 1, 2, y G̃ ≡ U(1) asociado a la rotación entre los campos. El grupo

de simetŕıa completo es entonces isomorfo a la simetŕıa eucĺıdea del plano

G = E(2) = T (2)⋊ U(1) , (5.71)

donde las traslaciones forman el subgrupo normal utilizado para producir un orbifold

con H = T (2), y donde el grupo de simetŕıa global residual es

G̃ = U(1) = E(2)/T (2) . (5.72)

En este caso, vemos que el orbifold está generado por las derivadas ∂ϕi. Además,

tenemos intertwiners de dos bolas B1 ∪B2 que podemos escribir de la forma

Iλβ = ei λ (ϕ1(x1)−ϕ1(x2)) ei β (ϕ2(x1)−ϕ2(x2)) xi ∈ Bi , (5.73)

estando etiquetados por dos números reales λ, β. La corriente de Noether de la simetŕıa

que rota los campos es

Jµ = ϕ1 ∂µϕ2 − ϕ2 ∂µϕ1 . (5.74)

Claramente dicha corriente no es un operador de la teoŕıa del orbifold ya que contiene

campos ϕi que no están en el álgebra de ∂ϕi. Esto está en consonancia con los resultados

genéricos que derivamos en la sección 5.1, a saber, que las etiquetas de los operadores

no locales estén cargadas bajo una simetŕıa global continua proh́ıbe la existencia de

la corriente de Noether. En este caso, los twists completos para el resto del U(1),

construidos a partir de la construcción estándar usando la split property transforman

Iλβ → Iβλ. Nótese que estos twists pertenecerán al orbifold, mientras que la corriente

anterior no.15

Tenemos que ser un poco más precisos en este ejemplo, distinguiendo los casos de

dimensión D = 2 de los de D > 2. Para D = 2 los campos ϕi no son campos cuánticos

debido a las divergencias infrarrojas, mientras que la teoŕıa del orbifold estando gene-

rada por ∂ϕi sigue teniendo perfecto sentido. La simetŕıa de rotación no tiene corriente

de Noether, como ya se hemos mencionado. Esta teoŕıa tiene dos sectores de bolas

generados por los intertwiners (5.73).

Para D > 2, la simetŕıa de desplazamiento de los campos se rompe espontáneamen-

te. Debido a ello, el álgebra del orbifold generado por ∂ϕi genera el espacio de Hilbert

15La falta de la corriente U(1) en el caso de dos dimensiones fue reconocida en [152] utilizando
otras técnicas. Aqúı vemos el origen f́ısico de la corriente de Noether que falta, y cómo encaja en el
zoológico general de QFTs sin corrientes de Noether.
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completo de los campos libres completos cuando actúan sobre el vaćıo. Entonces se

puede considerar que la teoŕıa contiene también los escalares y que existe una corriente

de Noether. Pero, coherentemente, desde esta perspectiva no encontramos sectores no

locales generados por la simetŕıa generalizada asociada a dos bolas, y no hay nada que

proh́ıba la existencia de tal corriente.

Por otra parte, el álgebra del orbifold generada por ∂ϕi es algebraicamente cerrada.

También es cerrada bajo transformaciones de Poincaré. Por tanto, forma una subred.

Esta subred producida por el orbifold, además de los sectores de dos bolas debidos a

los intertwiners, también tiene sectores no locales asociados bolas individuales. Éstos se

deben a los propios campos locales que violan dualidad de Haag para las bolas simples.

Más espećıficamente, vemos que el conmutante del álgebra de la derivada en una región

contiene el campo escalar en el complemento, y este escalar constituye un operador no

local en el orbifold. Este es siempre el caso para las álgebras del orbifold cuando hay

rupturas espontaneas de simetŕıa [161, 162].

En este contexto, vemos que grupo de simetŕıa global G̃ produce una rotacion entre

operadores no locales para bolas individuales, pero no está generado por una corriente

de Noether en el orbifold. Los sectores no locales para una única bola B están asociados

a operadores de la forma

ψiᾱ = ei
∫
B αϕi , i = 1, 2 , (5.75)

donde α es una función de smearing con soporte dentro de la bola y ᾱ =
∫
B
α. La

clase no local de ψi depende exclusivamente de ᾱ. Esto se debe a que una función

de smearing con integral cero nos produce un operador aditivo formado por ∂ϕi. Los

operadores duales, naturalmente asociados a la región complementaria, son los twists

del orbifold

τHiλ = eiλ
∫
R ϕ̇i , i = 1, 2 . (5.76)

Las relaciones de conmutación entre operadores duales no locales son

τHiλ ψiᾱ (τ
Hi
λ )−1 = ei λ ᾱ ψiᾱ . (5.77)

El twist para la simetŕıa global G̃ que actúa sobre el orbifold que se obtiene de la

corriente (5.74). Especificamente, tenemos que

τθ = eiθ
∫
B(ϕ1π2−ϕ2π1) . (5.78)

Este twist es completo. Es decir, tenemos que rota los sectores no locales. Aunque es

un operador aditivo en la teoŕıa F , claramente no es un operador aditivo de la teoŕıa

del orbifold porque contiene los propios campos ϕi. Nuevamente, esto es consistente

con las lecciones generales de la sección anterior. Para obtener un twist aditivo en el
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orbifold escribimos primero

ϕi(x) = ϕi(x0) +

∫ x

x0

dxµ ∂µϕi (5.79)

con x0 un punto fijo en ∂B. Entonces, reemplazamos

ϕi(x) →
∫ x

x0

dxµ ∂µϕi (5.80)

en la expresión (5.78). Esto rota correctamente ∂µϕi, y por tanto cualquier operador

aditivo en el orbifold, pero no rota las clases no locales. En otras palabras, este twist

no es completo. La diferencia entre los twists aditivos y completos es el operador

eiθ(ϕ1(x0)(
∫
B π2)−ϕ2(x0)(

∫
B π1)) . (5.81)

Este combina operadores no locales del orbifold en B (los campos ϕi(x0)) con opera-

dores no locales del orbifold definidos sobre el borde de la region16 ∂B (los generadores

de twist
∫
B
πi). Esta es una caracteŕıstica general de los twists completos que hace

transparente su no aditividad en la ausencia de una corriente de Noether.

Terminamos esta sección con algunas observaciones. En primer lugar, el álgebra

de la derivada de un escalar libre sin masa es también un ejemplo de un modelo que

tiene sectores que no son invariantes bajo simetŕıas conformes. Si hacemos una trans-

formación de escala las etiquetas de clase no pueden permanecer invariantes porque la

etiqueta de clase ᾱ en (5.75) tiene dimensiones −(D− 2)/2 en enerǵıa, mientras que λ

en (5.76) tiene dimensión (D − 2)/2. De hecho, el álgebra orbifold no tiene un tensor

enerǵıa-momento conforme que permita generar la corriente de escala (para D > 2). Si

bien se podŕıa hacer un “improving” del tensor enerǵıa-momento esto requiere el uso

del campo ϕ.

En segundo lugar, podemos construir un ejemplo análogo para producir sectores

de bola no invariantes bajo transformaciones de Lorentz. Tomamos la subálgebra de

derivadas del campo libre de Maxwell ∂γFµν . Los sectores respecto a esta subred vienen

dados por operadores cargados ei
∫
B αµνFµν

. 17 Los sectores están etiquetados por inte-

grales ᾱµν =
∫
B
αµν , y no son invariantes bajo transformaciones de Lorentz. De nuevo,

como era de esperar, el tensor de enerǵıa-momento no puede escribirse en términos

16Más precisamente estos twists son no locales en la región complementaria cuando se incluye la
buffer zone necesaria para su definición. En este caso, estamos simplificando la discusión tomando la
buffer zone pequeña y pensando en estos operadores como si vivieran en el borde de B.

17En [39] se propuso este modelo como ejemplo de ruptura de simetŕıa espontánea de una simetŕıa
continua que da lugar a un bosón de Goldstone no escalar (el fotón en este caso). Sin embargo,
usualmente en la literatura de simetŕıas generalizadas [8, 163] suele entenderse al fotón como el bosón
de Goldstone de la simetŕıa 1-forma espontáneamente rota generada por los WL y TL. Seŕıa interesante
comprender la relación entre ambos argumentos.
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de las derivadas de Fµν . En otras palabras, aunque se pueden construir los twists de

las simetŕıas de Lorentz, para ser completos implicarán necesariamente que el tensor

enerǵıa-momento de la teoŕıa de Maxwell completa, en particular el operador Fµν que

representa un operador no local en la bola para el orbifold.

5.3.2. Campos de Maxwell con rotación de sabor

Consideramos ahora un ejemplo en el que las clases HDV no locales de la simetŕıa

generalizada están asociadas con la violación de la dualidad en una región tipo anillo.

Esto ocurre con dos campos de Maxwell independientes en D = 4 dimensiones de

espacio-tiempo. Más concretamente, consideramos la acción

S = −1

4

∫
d4xF a

µνF
µν
a , F a

µν = ∂µA
a
ν − ∂νA

a
µ , a = 1, 2 . (5.82)

Tenemos una simetŕıa gauge abeliana asociada a las transformaciones gauge

Aaµ → Aaµ + ∂µχ
a . (5.83)

Además, esta teoŕıa muestra sectores no locales para regiones que contienen lazos no

contractibles (regiones tipo anillo). La violación de la dualidad de Haag en tales regiones

corresponde al flujo de los campos eléctricos o magnéticos en superficies limitadas por

estos lazos. Se trata de una simetŕıa generalizada 1-forma no compacta con grupo

R2 × R2. 18

Por otro lado, esta teoŕıa exhibe una simetŕıa global U(1) correspondiente a la

rotación entre los campos gauge. Queremos analizar cómo se manifiesta esta simetŕıa en

el álgebra invariante gauge y en el espacio de Hilbert. Inmediatamente vemos que esta

manifestación va a ser problemática al notar que las transformaciones infinitesimales

del grupo U(1), dadas por δA1
µ = ϵA2

µ y δA2
µ = −ϵA1

µ, no son implementadas por

una corriente f́ısica de Noether. La ráız de esta caracteŕıstica es que la simetŕıa global

transforma los sectores no locales y los twists locales serán aditivos o completos pero

no cumplirán ambas condiciones a la vez.19

Para analizar estas ideas comenzamos calculando la corriente de Noether no inva-

riante gauge mediante la prescripción habitual. Obtenemos

jµ = F µν
2 A1

ν − F µν
1 A2

ν . (5.84)

18Los dos factores R2 corresponden a los dos campos. Para cada campo tenemos WL etiquetados por
un número real y TL etiquetados también por un número real, de ah́ı R2. El segundo R2 corresponde
a los WL y TL de la región complementaria

19En este escenario espećıfico, la no existencia de la corriente de Noether es también una consecuencia
del teorema de Weinberg-Witten [17]. Describiremos esto en detalle en la siguiente sección.



5.3 Ejemplos 145

Esto se conserva on-shell dado que ∂µF
µν
a = 0. Para cualquier región R con buffer

zone Z, esta corriente nos produce twists candidatos para la simetŕıa de rotación como

τq(R,Z) = ei q QR con la carga local QR dada por

QR =

∫
d3xα(x) j0(x) =

∫
R∪Z

d3xα(x) [Ei
1(x)A

2
i (x)− Ei

2(x)A
1
i (x)] , (5.85)

donde α(x) es una función de smearing de soporte compacto sobre la región tridimen-

sional R ∪ Z, con α(x) = 1 para x ∈ R, y α(x) = 0 para x fuera de R ∪ Z. En

este escenario, puesto que la teoŕıa es libre, sólo tenemos que hacer un smearing en el

espacio. El twist resultante no es invariante gauge ya que la carga se transforma como

QR → QR −
∫

[∂iα(x)][E
i
1(x)χ

2(x)− Ei
2(x)χ

1(x)] . (5.86)

Se trata de un término de borde con smearing de soporte compacto en la buffer zone Z.

Matemáticamente, esto se produce porque ∂iα(x) = 0 para x ∈ R. La cuestión ahora

es si podemos añadir algún término de borde para que la carga sea invariante gauge.

Esta cuestión se consideró anteriormente en [14], donde se construyó una versión (sin

smearing) del twist invariante gauge. Aqúı comenzamos construyendo una versión con

smearing análoga. Para hacer invariante de gauge el twist τq(R,Z), consideremos la

función v(x, y) dada por la solución de la ecuación de Poisson con carga unitaria en x

y condiciones de contorno de Newman en la región Z

∇2
y v(x, y) = δ(x− y) , x, y ∈ Z , (5.87)

ni ∂yi v(x, y) = 0 , y ∈ ∂Z . (5.88)

donde ni es el versor normal a ∂Z. Si utilizamos la función v(x, y), podemos definir la

siguiente cantidad no invariante gauge con soporte compacto en Z

Ia(x) = −
∫
Z

d3y ∂yi v(x, y)A
a
i (y) → δIa(x) = αa(x) . (5.89)

Entonces, utilizándo Ia(x) continuamos definiendo el operador

C =

∫
d3x ∂iα(x) [E

1
i (x) I2(x)− E2

i (x) I1(x)] , (5.90)

que tiene la transformación gauge

δC =

∫
d3x ∂iα(x) [E

i
1(x)χ

2(x)− Ei
2(x)χ

1(x)] . (5.91)

Vemos que dicha transformación, claramente coincide con (5.86) haciendo que el ope-
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rador de carga modificado

Q̃R = QR + C , (5.92)

sea explicitamente invariante gauge. Esta se trata de una versión con smearing de la

carga construida en [14].

La carga Q̃R implementa claramente la operación de twist correcta, correspondiente

a la simetŕıa global U(1), en el álgebra aditiva de R. Esto se debe a que el soporte del

operador C que agregamos está confinado a la buffer zone Z. De ah́ı, vemos claramente

que el conmutador con los campos eléctricos y magnéticos en R coincidirá con los de

la carga de Noether no invariante QR.

Para regiones topológicamente triviales, esta construcción da un twist aditivo y

completo ya que no hay sectores no locales en estas regiones para la teoŕıa en cues-

tión. Ahora, queremos analizar este twist pero definido para un anillo R. Empezamos

preguntándonos cómo actúa esta carga sobre los operadores no locales en R. Los ope-

radores eléctricos no locales tienen como generadores los flujos

ΦE
a =

∫
d3xΩi(x)E

i
a(x) a = 1, 2 , (5.93)

donde Ω es la función vectorial de smearing definida en el caṕıtulo 3 y cuyo rotor

produce una corriente conservada J = ∇ × Ω que tiene soporte compacto en R. A

partir de aqúı, calculamos el conmutador obteniendo

[QR,Φ
E
1 ] =

∫
d3x

∫
d3y α(x) Ωi(y)E2

j (x) [A
1
j(x), E

1
i (y)] = i

∫
d3xα(x) Ωi(x)E2

i (x) ,

(5.94)

es decir, un operador local en R ∪ Z (el soporte de α(x)). Utilizando

[Ei
a(y), I

a(x)] = ∂iyv(x, y) , (5.95)

también tenemos

[C,ΦE
1 ] = −

∫
d3x

∫
d3yΩi(y) ∂jα(x)E

j
2(x) ∂

i
yv(x, y) . (5.96)

Este se trata de un operador local en la buffer zone Z, y por tanto también en R ∪ Z.
Aśı que el conmutador del twist con el flujo eléctrico es un operador aditivo en R ∪Z.
Esto implica que este twist no cambia la clases HDV generadas por el flujo eléctrico.

Por otra parte, también siguiendo el tratamiento de operadores no locales en el

caṕıtulo 3, para el flujo magnético escribimos

ΦB
a =

∫
d3x Ji(x)A

i
a(x) a = 1, 2 , (5.97)
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con una corriente conservada J con soporte en R. Tenemos que

[Q̃R,Φ
B
a ] = i εabΦ

B
b , (5.98)

con εab el tensor de Levi-Civita de dos ı́ndices. Implicando que estas cargas locales

rotan las clases HDV asociadas a los flujos magnéticos del mismo modo que el grupo

de simetŕıa global.

Concluimos que el twist en consideración no es completo ni aditivo. Produce las

transformaciones correctas en el álgebra aditiva y en los flujos magnéticos no locales,

pero no cambia los flujos eléctricos no locales. Dualmente, podemos hacer un twist con

la transformación correcta para los flujos eléctricos no locales y actuando trivialmente

sobre los magnéticos. En D > 4 esta misma construcción nos provee un twist completo

para un anillo R que sólo contiene WL como operadores no locales. Este twist vuelve

a ser no aditivo. En este escenario, está claro que los twists aditivos no pueden conca-

tenarse a los twists en una bola ya que estos últimos transforman todos los operadores

dentro de la bola.

Twist aditivo construido a partir de un fijado de gauge

A partir de la discusión abstracta de la sección anterior sabemos, por razones ge-

nerales, que se pueden construir twists aditivos y completos. Una forma es realizar la

construcción estándar a partir de la split property comenzando con el álgebra aditiva

en R y el álgebra completa en R̄ = (R∪Z)′, donde Z es la buffer zone. Esto da un twist

aditivo para R y uno completo para R̄. Aún aśı es clarificador tener una construcción

más expĺıcita del twist aditivo, y estudiar las diferencias con el completo.

Para construir un twist puramente aditivo en el escenario actual partimos de la

expresión (5.85) y buscamos una solución de∇×A = B, donde el potencial A se escribe

como una función no local de B sólo dentro de la región R ∪ Z. Podemos interpretar

esto como una fijación gauge particular que tiene en cuenta la forma de la región, salvo

un pequeño detalle que encontraremos más adelante. Por lo tanto, A, definido de esta

forma como una funcional del campo magnético dentro de R ∪Z, es automáticamente

invariante gauge y aditivo en R ∪ Z, y aśı será el twist construido a partir de dicho

potencial vector. Este tipo de fijaciones gauge se utilizaron en el contexto del estudio

de la entroṕıa de entrelazamiento para campos gauge. Una construcción general en la

red se encuentra en [164]. En el continuo, y para el caso de esferas se discutió en [165].

Para resolver ∇ × A = B en el anillo R ∪ Z, tomamos una coordenada “radial”

r ∈ [0, 1] en R ∪ Z. Esta coordenada radial es cero para cierto lazo no contractible

dentro de R, y es uno en la superficie ∂ (R∪Z) que representa el borde del anillo. Las

superficies de r constante representan una foliación del anillo con toros topológicos Tr.

Para r = 1 tenemos T1 = ∂ (R∪Z). ∇r es perpendicular al toro Tr. Esta configuración
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Figura 5.5: Configuración geométrica que nos facilita resolver ∇×A = B dentro de una región
tipo anillo. Las superficies a r constante representan una foliación del anillo con toros topológicos,
a los que llamamos Tr.

geométrica se representa en la figura (5.5).

Llamaremos F (r) a la restricción de las 2-formas Fij al toro Tr. Análogamente,

llamamos A(r) a la restricción de la 1-forma Ai. En Tr tenemos F (r) = dA(r), siendo d

la derivada exterior. Más aún, por descomposición de Hodge en Tr tenemos

A(r) = dα + δw + Ā . (5.99)

Donde los tres términos están definidos uńıvocamente, y son ortogonales en el sentido de

producto escalar de campos sobre Tr. α es una 0-forma (una función), w es una 2-forma

(caracterizada por una única función), δ es el adjunto de la derivada exterior d, y Ā es

una 1-forma armónica (que tiene laplaciano cero). Ā también satisface dĀ = δĀ = 0.

En este contexto, utilizaremos la libertad gauge para eliminar el primer término en

(5.99). Con esta elección tenemos

F (r) = dδw = (dδ + δd)w = ∆w , (5.100)

con ∆ el operador Laplaciano. Esta ecuación tiene una solución única para w en térmi-

nos de F (r), excepto por adiciones de la 2-forma de volumen. Pero esta ambigüedad no

afecta a A(r). Por tanto, con esta elección de gauge hemos fijado A(r) de forma única

en términos del campo magnético F (r) en Tr, excepto por la forma armónica Ā.

Para fijar Ā observamos que las formas armónicas están asociadas al grupo de

cohomoloǵıa del toro y tienen un número finito de soluciones en una variedad compacta.

En este caso, hay dos soluciones. Son localmente de puro gauge, pero tienen circulación

no trivial a lo largo de los dos ćırculos no contractibles del toro. Por tanto, una vez

determinado δw, podemos deducir su coeficiente evaluando la circulación de A, o el

flujo del campo magnético, a lo largo de cualquier par de superficies limitadas por los

dos ćırculos no contractibles de la superficie toroidal. Para el ćırculo que es contráctil

dentro de R ∪ Z, obtenemos el resultado en términos del campo magnético dentro de
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R ∪ Z. Para la otra dirección no podemos calcular sólo en términos de operadores en

R ∪ Z. Necesitamos fijar el valor de una sola circulación no trivial. Entonces, fijamos

esta contribución en cero. Esta elección no es posible mediante la fijación gauge de A

en el espacio completo. Sin embargo, es una elección válida para resolver la ecuación

∇× A = B en R ∪ Z.
Por tanto, hemos resuelto las componentes tangenciales A(r) en términos del campo

magnético en el interior del anillo. La restante componente radial Ar queda fijada por

la ecuación

Fa,r = ∂aAr − ∂rAa , (5.101)

donde a = 1, 2 son las dos coordenadas en el toro Tr. Como Aa ya se ha fijado, esta

ecuación determina Ar salvo un valor constante. Este valor constante puede fijarse a

voluntad mediante la transformación gauge residual Ar → Ar + ∂rf(r).

Con esta elección del potencial vectorial A, el twist (5.85) es automáticamente

invariante gauge y aditivo. Para comprobar que sigue haciendo las transformaciones

correctas en el álgebra aditiva del anillo R, evaluemos el conmutador de

QR =

∫
d3xα(x) (E1 · A2 − E2 · A1) (5.102)

con los campos invariantes de gauge dentro de R. Comenzamos con el campo magnético

[QR, B
a
i (y)] = i εa,b

∫
d3x εijk δ(x− y) ∂k(α(x)A

b
j(x)) = i Bb

i (y) , (5.103)

donde hemos utilizado

[Ej(x), Bi(y)] = i εijk ∂k δ(x− y) , (5.104)

además de que el campo magnético conmuta con el potencial vectorial a gauge fijo,

y que α es constante dentro de R. Esto demuestra la transformación correcta para el

campo magnético. Pero aún no hemos utilizado nuestra prescripción espećıfica para A.

Para analizar la conmutación con el campo eléctrico definimos E = ∇× Ã, y tomamos

para la expresión de Ã en términos de E exactamente la misma que tenemos para A

en términos de B. Insertando E = ∇× Ã en (5.102) obtenemos

QR =

∫
d3xα (B1 · Ã2 −B2 · Ã1) +

∫
d3x εijk (∂jα) (Ã

1
kA

2
i − Ã2

kA
1
i ) . (5.105)

Para simplificar el último término en (5.105) elegimos nuestra función de smearing α(r)

como una función de r. Luego, el último término se puede escribir como∫
dr α′(r)

∫
Tr

(Ã
(r)
1 ∧ A(r)

2 − Ã
(r)
2 ∧ A(r)

1 ) . (5.106)
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Vemos que esto se anula debido a que
∫
Tr
δw∧δw̃ = 0 y

∫
Tr
δw∧Ã = 0, por propiedades

del calculo de formas en Tr, combinado con δÃ = 0. De esta manera, tenemos que

QR =

∫
d3xα(r) (B1 · Ã2 −B2 · Ã1) , (5.107)

tiene una expresión invariante dual (véase 5.102). Esto induce la transformación co-

rrecta sobre el campo eléctrico en R, replicando el cálculo anterior para el campo

magnético.

En conclusión, QR con esta particular fijación gauge construimos un generador de

twists aditivos para R. Estos twists no pueden cambiar las clases no locales ya que son

aditivo en ambos campos, pero tienen la acción correcta sobre los operadores aditivos.

El twist completo puede construirse ahora utilizando el twist complementario de uno

aditivo, a saber

τcomplete(R,Z) = τglobal τadditive(R̄, Z)
−1 . (5.108)

Para ver más claramente la diferencia entre los twists completos y los aditivos pen-

semos heuŕısticamente en términos de twists sin smearing. La carga aditiva Qadd sin

smearing rota los campos eléctricos y magnéticos dentro y en el borde de R. No hace

nada fuera y por lo tanto no rota los operadores no locales, que son flujos que cruzan

el agujero del anillo. Para construir una carga completa a partir de Qadd, consideremos

los flujos eléctricos y magnéticos Φ1,2
E,B(Γ1) alrededor del lazo no contractible de R, y

los Φ1,2
E,B(Γ2) en un ćırculo maximal contractible de R. Estos conmutan, respectivamen-

te, con operadores locales fuera y dentro del anillo en la aproximación sin smearing.

Entonces, podemos escribir una carga local completa como

Qmax = Qadd+(Φ1
E(Γ1)Φ

2
B(Γ2)− Φ2

E(Γ1)Φ
1
B(Γ2)) (5.109)

+(Φ1
B(Γ1)Φ

2
E(Γ2)− Φ2

B(Γ1)Φ
1
E(Γ2)) .

Esta nueva carga rota los operadores no locales aśı como los aditivos. Es evidente que

se trata de un operador no local en R∪Z dado que contiene operadores no locales en el

borde (o en la buffer zone Z). Más aún, está claro por qué dos twists complementarios

completos no pueden concatenarse: la combinación tiene el doble de operadores no

locales necesarios. Dos twists aditivos tampoco pueden concatenarse. Un twist completo

y uno aditivo se concatenan por construcción, véase (5.108). Tenemos entonces otro

ejemplo de una QFT en la que podemos construir twists locales para cualquier región.

Es este caso, nuevamente son aditivos o completos, pero no tienen ambas cualidades a

la vez, y por tanto perdemos la concatenabilidad de los twists aditivos (y también de

los twists completos).
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5.3.3. Simetŕıa de dualidad electromagnética

El campo de Maxwell libre tiene una simetŕıa de dualidad. Podemos escribirla, de

forma compacta, usando la transformación entre F y su dual F ∗

(F + iF ∗) → eiϕ (F + iF ∗) . (5.110)

Vemos que esta transformación representa una simetŕıa interna de la teoŕıa, ya que

preserva las álgebras locales. En particular, sólo intercambia el campo eléctrico local

por el campo magnético local en todo el espacio. Esto implica que intercambia los WL

y TL (obtenidos exponenciando los flujos magnéticos y eléctricos) y por tanto no deja

invariantes las clases HDV asociadas a los anillos. De acuerdo con el resultado de la

sección anterior, esperamos que no pueda haber una corriente f́ısica de Noether que

implemente dicha simetŕıa. Nótese que (5.110) no nos dice cómo efectuar la simetŕıa en

las variables lagrangianas no f́ısicas Aµ. Por lo tanto no podemos aplicar la prescripción

habitual para obtener una corriente de Noether. Sin embargo, si escribimos F = dA,

F ∗ = dÃ, tenemos que

d (A ∧ F + Ã ∧ F ∗) = F ∧ F + F ∗ ∧ F ∗ = 0 . (5.111)

Por lo tanto la 3-forma A∧F + Ã∧F ∗ es cerrada y su dual de Hodge es una corriente

conservada. De forma expĺıcita encontramos que

Jµ =
1

2
ϵµνρσ (Aν ∂ρAσ + Ãν ∂ρ Ãσ) , (5.112)

donde podemos escribir carga asociada como

Q =
1

2

∫
d3x (AiBi + ÃiEi) . (5.113)

Dicha carga, efectúa las transformaciones deseadas

[Q,Ej] = i Bj , (5.114)

[Q,Bj] = −i Ej . (5.115)

Por lo tanto Q implementa la simetŕıa de dualidad (5.110). A partir de su implemen-

tación como la integral de una densidad conservada sobre todo el espacio, entendemos

que la dualidad representa una simetŕıa convencional (0-forma). Pero, nótese que dicha

densidad no es invariante gauge y no produce una corriente de Noether bien definida.

Entonces, podremos implementar la simetŕıa mediante twists aditivos o completos pero

no twists que cumplan ambas propiedades. Si queremos construir un twist aditivo pro-

cedemos como en la sección 5.3.2. En otras palabras, escribimos A y Ã como función
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de B y E respectivamente dentro de la región tipo anilllo R, obteniendo

QR =

∫
d3xα(r) (AiBi + ÃiEi) . (5.116)

Esta carga implementa correctamente la simetŕıa de dualidad en la región R por las

mismas razones. Al ser aditiva no puede cambiar las clases no locales asociadas a

los WL y TL. Para construir los twists completos tenemos que recurrir los twists

complementarios de los aditivos. Retomaremos estas ideas durante el caṕıtulo 7 donde

estudiaremos la simetŕıa de dualidad para el campo libre de Maxwell definido sobre

variedades compactas no triviales.

5.3.4. Gravitón de Fierz-Pauli en D = 4

En el siguiente ejemplo estudiaremos la teoŕıa del gravitón libre sin masa en D = 4.

Por un lado, como argumentamos en el caṕıtulo 3, esta teoŕıa es invariante conforme a

nivel cuántico. Por otro obedece la split property [36]. De esta manera, sabemos que po-

dremos construir los twists estándar que implementan la simetŕıa conforme localmente.

La pregunta es si es posible generar los twists mediante una corriente local conservada.

Claramente, esto no sera posible porque aplica el teorema de Weinberg-Witten [17].

Este proh́ıbe la existencia de un tensor de enerǵıa-momento bien definido para teoŕıas

con part́ıculas de esṕın 2 no masivas.

No obstante, para abordar esta situación desde el punto de vista de los sectores HDV

retomamos el análisis de los caṕıtulos 3 y 4. En particular, ya mostramos la teoŕıa en

cuestión tiene simetŕıas generalizadas que producen un grupo R20 de operadores HDV

no locales en regiones tipo anillo, es decir, en regiones con lazos no contractibles. Éstas,

al igual que en la teoŕıa de Maxwell, corresponden a simetŕıas generalizadas 1-forma.

Además, hab́ıamos encontrado que las clases no locales están cargadas bajo simetŕıas

espacio-temporales. A la luz de los resultados de la sección anterior, esto implica la

validez del teorema Weinberg-Witten, es decir, proh́ıbe la existencia de un tensor de

enerǵıa-momento. Esto se debe a que tal tensor enerǵıa-momento daŕıa lugar a twists

aditivos, completos y concatenables, en contradicción con el hecho de que las clases no

locales están cargadas bajo el grupo conforme.

En este ejemplo usaremos la formulación covariante de las simetŕıas generalizadas

del gravitón que presentamos en el caṕıtulo 4. Consideramos que esta forma, es la

más adecuada para el análisis de las transformaciones conformes de los sectores no

locales, las cuales estudiaremos en detalle a continuación. En particular en este ejemplo

queremos aclarar, en una situación algo sofisticada, una de las observaciones descritas

en la sección 5.1 respecto al carácter de punto de las transformaciones asociadas a

simetŕıas generalizadas cargadas bajo grupos continuos.
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Figura 5.6: Definimos el operador no local ΦΓ con la curva Γ. En la región complementaria
tenemos ΦΓ′ , definido con Γ′, que no conmuta con ΦΓ. Obtenemos la curva Γ̃ al actuar con
pequeñas traslaciones zµ sobre Γ. La traslación cambia las clases HDV no locales para el gravitón.

Sin embargo, al operador de una clase HDV determinada en Γ̃ le corresponde un operador con
la misma clase en Γ no trasladándolo, sino extendiendo la integral de superficie desde Γ̃ a Γ con
operadores locales.

Para comenzar, reescribimos el flujo no local más general posible ΦΓ que presenta-

mos en (4.54) de la forma

ΦΓ =

∫
Σ2

dσµν Rµναβ(x) f
αβ(x) , (5.117)

donde dσµν = dxµ∧dxν es el dual de la 2-forma diferencial de área en la superficie Σ2 con

borde Γ = ∂Σ2 y fαβ(x) representa todas las funciones que definen la 2-forma cerrada

(5.117). Podemos escribir la función obtenida explicitamente usando los parámetros

(aαβ, bα, cαβγ, dαβ) de la forma

fαβ(x) = aαβ + (xαbβ − xβbα) + cαβγxγ + (xαdβγxγ − xβdαγxγ +
1

2
dαβx2) . (5.118)

Ahora, analizamos el efecto de una transformación conforme general sobre un opera-

dor no local ΦΓ. Podemos deducirlo del cambio de coordenadas asociado, el cual es

implementado por una transformación de Lorentz y un factor conforme en el tensor

de curvatura. Absorbemos el cambio de cada punto mediante una transformación de

coordenadas x → x̃ en la integración sobre Σ2. Esto transporta la curva Γ a Γ̃, pero

esta transformación es irrelevante para las clases HDV no locales mientras sea pequeña.

En consecuencia, podemos escribir la transformación conforme del espacio-tiempo glo-

bal como un cambio de los parámetros que determinan la clase HDV de la curva Γ̃

ligeramente desplazada. Más concretamente, vemos que el conjunto de polinomios de

2-formas que multiplican R(µν)(αβ) en las ecuaciones anteriores se mezcla bajo transfor-

maciones conformes generales.

Empecemos por las traslaciones. Al realizar xµ → xµ + zµ, el tensor de Riemann

transforma como

U(z)Rµναβ(x)U
−1(z) = Rµναβ(x− z) . (5.119)

tamara.carcamo
Texto escrito a máquina
(Biblioteca Leo Falicov CAB-IB)

tamara.carcamo
Texto escrito a máquina

tamara.carcamo
Texto escrito a máquina
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Esto implica que el operador no local (5.117) cambia como

ÕΓ̃ =

∫
Σ

dσµν Rµναβ(x− z) fαβ(x) =

∫
Σ̃

dσ̃µν Rµναβ(x̃) f
αβ(x̃+ z) . (5.120)

Nótese que zµ es lo suficientemente pequeño como para permitir que Γ̃ tenga las mismas

clases HDV no locales que Γ (Ver figura 5.6). Al calcular el cambio en el integrando en

el lado derecho de (5.120) obtenemos que el cambio de clases tiene la forma

aαβ → aαβ + (zαbβ − zαbβ) + cαβγzγ + (zαdβγzγ − zβdαγzγ +
1

2
dαβz2) ,

bα → bα + dαγzγ ,

cαβγ → cαβγ + (zαdβγ + zβdγα + zγdαβ) , (5.121)

dαβ → dαβ .

De forma análoga, podemos verificar que las transformaciones de Lorentz xµ → Λµν x
ν

inducen una transformación de las etiquetas de clase (aαβ, bα, cαβγ, dαβ) simplemente

como tensores con la transformación Lorentz inversa Λ−1. Para las transformaciones

de escala observamos primero que el tensor de Riemann tiene dimensión de escala

∆ = 3, de modo que bajo transformaciones de escala x → λx se transforma como

U(λ)Rµναβ(x)U
−1(λ) = λ−3Rµναβ(λ

−1 x). A partir de esta observación, nos encon-

tramos con la transformación de las etiquetas de clase de la forma aαβ → λ−1 aαβ y

dαβ → λ dαβ, como era de esperar basandonos en motivos dimensionales.

Simplemente, nos quedan las transformaciones conformes especiales

xµ → xµ + wµ x2

1 + 2w · x+ w2x2
. (5.122)

Dicha transformación actúa localmente como una dilatación y una transformación de

Lorentz. Más precisamente
∂x′µ

∂xν
= Ω(x) Λµν(x) , (5.123)

donde Ω(x) caracteriza una transformación de escala pura dada en términos del vector

w como

Ω(x) = 1− 2w · x+ w2x2 , (5.124)

y Λµν(x) es una transformación pura de Lorentz que podemos escribir como

(
Λ−1

)ν
µ
(x) = δνµ − 2

wνxµ − wµx
ν + w2xνxµ + x2wνwµ − 2(w · x)wνxµ

1− 2w · x+ w2x2
(5.125)

De nuevo utilizamos que el tensor de curvatura on-shell se comporta como un campo
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primario conforme con dimensión de escala igual a ∆ = 3. De ello se deduce que

U(w)Rµναβ(x)U
−1(w) = Ω−3 Λ−1ρµ Λ

−1σ
ν Λ
−1γ

α× (5.126)

×Λ−1δβ Rρσγδ

(
xµ − wµ x2

1− 2w · x+ w2x2

)
.

Como en los casos anteriores, podemos cambiar las coordenadas dentro del flujo. Ob-

tenemos entonces un nuevo operador no local Φ̃Γ̃ para el lazo ligeramente desplazado

Γ̃ que toma la forma

ÕΓ̃ =

∫
Σ̃≡Σ

dσ̃µν Rµνγδ(x̃) Ω
−1 (x(x̃)) Λ−1γα (x(x̃)) Λ

−1δ
β (x(x̃)) f

αβ (x(x̃)) . (5.127)

De aqúı, encontramos que las etiquetas de las clases HDV se transforman bajo trans-

formaciones conformes especiales como

aαβ → aαβ ,

bα → bα − 2 aαγwγ , (5.128)

cαβγ → cαβγ + 2 (wαaβγ + wβaγα + wγaαβ) ,

dαβ → dαβ + 2w2aαβ + 4 (wαwγa
βγ − wβwγa

αγ)− 2 (wαbβ − wβbα) + 2 cαβγwγ .

Concluimos que la acción del grupo conforme es lineal en las operadores HDV no

locales. Esto es necesario para respetar las reglas de fusión y mantener invariantes los

conmutadores (4.55). También, esta en perfecto acuerdo con los comentarios generales

realizados en las secciones anteriores .

Como mencionamos en los caṕıtulos 3 y 4 el gravitón de Einstein en D = 4 presenta,

además del grupo conforme, una simetŕıa de dualidad U(1). Podemos ver claramente

dicha simetŕıa como una simetŕıa de las de las reglas de fusión y conmutadores (4.55)

de los operadores no locales. Espećıficamente, vemos que corresponde a una rotación

de R y su dual R∗ como en (4.61), es decir de la forma(
R

R∗

)
→
(
cos (θ) − sin (θ)

sin (θ) cos (θ)

)(
R

R∗

)
. (5.129)

Utilizando las expresiones anteriores encontramos que esta transformación actúa sobre

las etiquetas de las clases HDV como

a → cos(θ) a− sin(θ) a∗ , d∗ → cos(θ) d∗ − sin(θ) d , (5.130)

b → cos(θ) b+ sin(θ) c∗ , c∗ → cos(θ) c∗ − sin(θ) b . (5.131)

Por lo tanto, el grupo completo de simetŕıas globales que actúan sobre los sectores no
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locales es el grupo conforme más el grupo de dualidad. Su álgebra de Lie es SO(5, 1)×
U(1), con 16 generadores. Hemos verificado mediante cálculo expĺıcito que las órbitas

genéricas del grupo completo de simetŕıas son 16 dimensionales. Los 4 casimires del

grupo SO(5, 1)× U(1) deben etiquetar las 4 coordenadas restantes de la variedad que

definen 20 las clases HDV. Por ejemplo, podemos escribir el casimir cuadrático como

a · d+ b · b+ c∗ · c∗ . (5.132)

Sin embargo, como era de esperar, hay puntos especiales en la variedad asociada a

las etiquetas de clase con grupos estabilizadores no triviales. La dimensión de estas

órbitas es la dimensión del cociente de SO(5, 1)× U(1) por el grupo estabilizador. En

resumen, todos estos resultados para el caso del gravitón están en perfecto acuerdo con

la discusión general realizada en las secciones anteriores.

Como mencionamos, la construcción de operadores de twist que implementan las

transformaciones conformes de grupo en el tensor de curvatura se puede hacer, a nivel

abstracto, mediante la construcción estándar de la split property, dando lugar a twists

aditivos o completos. Más expĺıcitamente, para el caso de las traslaciones espaciales,

puede construirse una torsión no invariante gauge utilizando la componente t0i del

tensor de enerǵıa-momento de Belifante, o simplemente

τP = eizjP
j

, Pj =

∫
R

d3x πkl∂jhkl . (5.133)

Donde los hij son los campos dinámicos de los gravitones definidos sobre una superficie

de Cauchy que contiene la región R, y πij son los momentos canónicos (3.14) que

obedecen las reglas de cuantización (3.15)

[hij(x), π
kl(y)] =

i

2

(
δki δ

l
j + δliδ

k
j

)
δ(x− y) . (5.134)

Vemos que operador Pj realiza traslaciones espaciales dentro de R sobre las variables

canónicas y los operadores invariantes gauge como era de esperar. Pero como podŕıamos

haber anticipado, a partir de la discusión del campo de Maxwell, dado que los difeo-

morfismos linealizados actúan sobre los campos dinámicos de los gravitones siguiendo

(3.8) como

δhij(x) = ∂iξj(x) + ∂jξi(x) , δπij(x) = (∂i∂j − δij∂2)ξ0(x) , (5.135)

el operador de twist propuesto (5.133) no es invariante gauge. Sin embargo, como en el
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caso de Maxwell, podemos calcular su variación simplemente como término de borde

δP j =

∫
∂R

dσi
[
2∂kξ0∂

j∂kξi − 2∂iξ0∂
j∂kξ

k+ 2πik∂jξk (5.136)

+ ξ0∂
i∂jhkk − ∂iξ0∂

jhkk − ξ0∂k∂
jhik + ∂kξ0∂

jhik
]
.

Por lo tanto, debeŕıa ser posible hacer este twist invariante de gauge mediante la

adición de un término de borde que cancele la transformación gauge. Si R contiene

lazos no contractibles, esta modificación transformará el twist en un operador no local,

consistente con el hecho de que no hay un tensor de enerǵıa-momento bien definido

para el gravitón. Equivalentemente, esta modificación contendrá los propios operadores

no locales del anillo en su construcción. Además, podŕıamos abordar la construcción

del twist aditivo mediante un procedimiento similar de fijación de gauge, como hicimos

para el par de campos de Maxwell. Sin embargo, no proseguiremos con esta construcción

por lo que resta de esta tesis.

5.4. Teorema Weinberg-Witten

Uno de los principales resultados de este caṕıtulo es que la existencia de una si-

metŕıa generalizada que no es invariante bajo una simetŕıa global continua implica que

la simetŕıa global no tiene corriente. En esta sección mostramos cómo este resultado

contiene el teorema de Weinberg-Witten [17], y cómo expresa manifiestamente las obs-

trucciones topológicas detrás de él. Esta nueva comprensión nos permitirá hacer varias

generalizaciones.

Recordemos que el teorema de Weinberg-Witten [17] establece que para QFTs en

D = 4 dimensiones espacio-temporales:

(a) las part́ıculas sin masa de helicidad h ≥ 1 no pueden llevar una carga global

asociada a una corriente conservada,

(b) una teoŕıa con part́ıculas sin masa de helicidad h > 1 no admite un tensor de

enerǵıa-momento .

Realizamos en el apéndice B una descripción de la prueba original del teorema en

termino de estados asintóticos de una part́ıcula. A continuación mostraremos como

derivarlo a partir delos argumentos de QFT local presentados en la sección 5.1.

La conexión del teorema de Weinberg-Witten con los resultados de este caṕıtulo

surge de dos hechos. En primer lugar, las teoŕıas libres de part́ıculas sin masa con

h ≥ 1 en D = 4 tienen simetŕıas generalizadas de tipo 1-forma (simetŕıas generalizadas

asociadas con regiones que contienen lazos no contractibles). En segundo lugar, para las

teoŕıas libres de part́ıculas sin masa con h ≥ 3/2 los operadores no locales asociados
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con la simetŕıa generalizada 1-forma llevan ı́ndices Poincaré. Anteriormente hemos

analizado expĺıcitamente los casos de h = 1 y h = 2. Para helicidades enteras mayores

en D = 4, tenemos la teoŕıa de un campo conservado R(µ1,ν1)···(µh,νh) con una simetŕıa de

diagrama de Young de 2×h para los ı́ndices. Este campo da lugar a diferentes 2-formas

conservadas de forma análoga al tensor de Riemann para h = 2. Lo más importante

es que estas formas conservadas están etiquetadas por clases cargadas bajo la simetŕıa

de Poincaré. Los espines semienteros también dan lugar a 2-formas conservadas. Por

ejemplo, podemos describir la teoŕıa de h = 3/2 usando el campo de gauge espinor-

vector de Rarita-Schwinger ψαµ [166–168]. El espacio de fases invariante gauge esta

generado exclusivamente por la 2-forma espinorial ∂µψ
α
ν − ∂νψ

α
µ y su conjugado [169,

170]. Esta 2-forma genera sectores HDV asociados a anillos etiquetados por espinores

constantes, y por lo tanto cargados bajo la simetŕıa de conforme de la teoŕıa.20

Por tanto, todas estas simetŕıas globales, internas para h ≥ 1 o Poincaré para h > 1,

bajo las cuales están cargadas las part́ıculas sin masa no pueden ser generadas por una

corriente. Deducimos esto de nuestro resultado genérico, dada la existencia de simetŕıas

generalizadas de 1-forma en estas teoŕıas que están cargadas bajo la simetŕıa global.

Este es el teorema de Weinberg-Witten. Desde el punto de vista actual, dicho teorema

se basa en las obstrucciones topológicas que aparecen cuando se intenta cargar una

simetŕıa 1-forma con una simetŕıa 0-forma.

Observamos que no suponemos que la teoŕıa sea libre ni que tenga una simetŕıa

generalizada 1-forma exacta. Sin embargo, suponemos que la simetŕıa global es exacta,

como en el teorema de Weinberg Witten. Por ejemplo, las part́ıculas sin masa en el

teorema de Weinberg-Witten pueden no conducir a una simetŕıa generalizada exacta

en la teoŕıa completa, ya que podŕıa haber cargas pesadas rompiendo los operadores

no locales a enerǵıas suficientemente altas, donde la teoŕıa se vuelve interactuante. Sin

embargo, el ĺımite IR asintótico de la teoŕıa es libre, ya que es necesario para definir

los estados de entrada y salida y determinar que tenemos una part́ıcula sin masa en el

espectro. Por lo tanto, en el IR estas part́ıculas muestran las simetŕıas generalizadas

antes mencionadas. Por otro lado, la corriente, al estar asociada a una simetŕıa global

exacta, tiene que generar los twists a todas las escalas. Puesto que la simetŕıa global

está no trivialmente presente en la teoŕıa IR, la corriente también tiene que formar

parte de la teoŕıa IR. Como hemos visto, esto no es posible.

5.4.1. Generalizaciones

La primera generalización que se desprende del presente planteamiento se refiere

a los campos sin masa de esṕın superior en dimensiones superiores. De nuevo, es-

20Análogamente a la discusión para el gravitón en el caṕıtulo 3, la teoŕıa generada por ∂µψ
α
ν −∂νψα

µ

es una CFT libre con dicha 2-forma actuando como campo primario de esṕın 3/2 y ∆ = 5/2 [171].
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tas part́ıculas sin masa no pueden estar cargadas bajo un grupo de simetŕıa continuo

implementado por una corriente de Noether. Para el caso de gravitones una generali-

zación previa en esta dirección puede encontrarse en [172] con argumentos similares a

los originales. En este caso generalización aplica a todo esṕın y se debe a que todas

estas part́ıculas presentan diferentes tipos de simetŕıas generalizadas, como simetŕıas

k-forma, y éstas no pueden cargarse bajo una simetŕıa generada por una corriente local.

Observamos que las part́ıculas sin masa en dimensiones superiores se caracterizan

por representaciones de la parte semi-simple SO(D−1) del little group. Los campos se

clasifican por representaciones del grupo de Lorentz SO(D−1, 1). El problema de clasi-

ficar qué part́ıculas sin masa pueden caber dentro de un tipo de campo dado se resolvió

recientemente en [173, 174]. La solución es que una part́ıcula con una representación

del little group SO(D − 1), caracterizada por un cierto Young-tableaux, puede caber

mı́nimamente en un campo que se transforma bajo el grupo de Lorentz SO(D − 1, 1)

en una representacion irreducible caracterizada por un Young-tableaux dado por la

adición de otra fila (primera fila). Entonces, cualquier part́ıcula bosónica no escalar

dará lugar, como mı́nimo, a una simetŕıa generalizada k-forma con k la longitud de la

columna mayor en el diagrama de Young SO(D − 1). Las simetŕıas globales, bajo las

cuales se cargan este tipo de part́ıculas, no pueden tener corriente. Si el diagrama de

Young SO(D− 1) tiene más de una columna, entonces las etiquetas de clase no locales

tendrán ı́ndices de Lorentz, y las teoŕıas que describen este tipo de part́ıculas sin masa

no pueden tener un tensor energia-momento.

La segunda generalización es que, en este lenguaje, podemos deshacernos de cual-

quier suposición adicional acerca del espectro de la teoŕıa, alcanzando aśı una afir-

mación válida para QFTs o CFTs interactuantes. Supongamos que una QFT con-

tiene un campo F invariante gauge k-forma, cerrado y “f́ısicamente” no exacto, con

1 ≤ k ≤ D − 2. Esto significa que dF = 0, F ̸= dA, para cualquier campo de (k − 1)-

forma invariante del gauge A. En cualquier teoŕıa de este tipo, si F está cargado bajo

un grupo de simetŕıa continuo G, no puede haber una corriente para G. La razón es

que tal forma cerrada, pero no exacta, conduce a una simetŕıa generalizada (D−k−1)-

forma. Esto se debe a que al integrar F en una superficie espacial abierta p-dimensional

da lugar a un operador que depende sólo del borde (k − 1)-dimensional. Cambiando

ligeramente la superficie21 de integración podemos demostrar que conmuta con ope-

radores locales espacialmente separados del borde. Pero este flujo generalizado no es

un operador aditivo en la frontera ya que la forma cerrada no es exacta en el álgebra

f́ısica invariante de gauge. La carga de F bajo la simetŕıa global conduce a una simetŕıa

generalizada cargada que no admite una corriente como se deduce de nuestro resultado

general.

21Como discutimos en la sección 5.3.4, la transportabilidad es automática en este escenario.
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El caso de k = D − 1 (simetŕıa 0-forma) es un poco diferente porque conduce a

operadores de twist integrando la (D− 1)-forma sobre una superficie espacial (D− 1)-

dimensional. Esto no conduce automáticamente a una simetŕıa generalizada en la QFT

local en el sentido revisado anteriormente. La razón es que la superficie de integración

espacial (D − 1)−dimensional sólo puede desplazarse en el tiempo. Por tanto, no se

garantiza que existan operadores locales no cargados bajo el twist. En otras palabras,

el orbifold generado por esta simetŕıa puede estar simplemente vaćıo si todos los opera-

dores están cargados. Volveremos a enfrentarnos a esta cuestión similar en el caṕıtulo

8, al comparar estas ideas con el teorema de Coleman-Mandula. En cualquier caso, si

el orbifold no es trivial, y los twists están cargados bajo una simetŕıa global continua G

(posiblemente una simetŕıa del espacio-tiempo), no puede haber corriente de Noether

en la teoŕıa del orbifold que genera G.

Como caso particular de estas generalizaciones podemos elegir que el grupo de

simetŕıa continua sea el propio grupo de Poincare. En este caso, si la QFT tiene un

tensor invariante gauge v(s1···sk)α1···αl
, donde 1 ≤ p ≤ D − 2, que es cerrado para los

primeros p ı́ndices

∂(sk+1
v(s1···sk))α1···αl

= 0 , (5.137)

y no es la derivada exterior de una forma invariante gauge a(s1···sk−1)α1···αl
, entonces la

QFT en cuestión no puede tener un tensor enerǵıa-momento si l ≥ 1. Nótese que ı́ndices

αi pueden tanto espinoriales como de Lorentz. Es decir, en términos más generales,

cualquier operador topológico (no necesariamente generado por un campo k-forma).

cargado ante un grupo de simetŕıa continuo G proh́ıbe la existencia de una corriente

para G.

Otra generalización se refiere a simetŕıas globales discretas (no continuas) G. Aqúı,

la no existencia de una corriente local se sustituye por la no existencia de twists aditivos

y concatenables. Las restricciones que podŕıan surgir en estas teoŕıas, debido a esta

obstrucción, son objeto de un estudio futuro y no se seguirán desarrollando en esta

tesis.

La última generalización se refiere a la QFTs no relativista. Muchas de las herra-

mientas utilizadas para el enfoque local de las simetŕıas generalizadas no se limitan

únicamente a las QFTs relativistas. En particular, esperamos que por motivos bas-

tante generales, las simetŕıas generalizadas cargadas bajo simetŕıas globales continuas

proh́ıban la existencia de corrientes locales conservadas asociadas. Si la simetŕıa global

es discreta, esta condición prohibirá la existencia de twists concatenables. Este resul-

tado podŕıa ser interesante para sistemas de materia condensada. También reduce el

número de loop-holes respecto a la aplicación del teorema de Weinberg-Witten en el

contexto de la gravedad cuántica. En este contexto, el teorema de Weinberg-Witten

se entiende como un obstáculo para disponer de un modelo de gravedad puramente
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QFT, con un gravitón IR. Una fuente obvia de loop-holes que se ha explotado es la

necesidad de simetŕıa relativista en el UV. Aqúı observamos que incluso si la QFT UV

no es relativista, está muy restringida. En particular, no puede tener corrientes que

generen ningún tipo de simetŕıa espacio-temporal, y no puede ser discreta con twists

concatenables.

5.5. Discusión del caṕıtulo

En este caṕıtulo hemos demostrado que las simetŕıas globales continuas que no

dejan invariante todas las simetŕıas generalizadas no pueden ser generadas por una

corriente local conservada. Además, en estos escenarios, la simetŕıa generalizada debe

estar asociada a un continuo de clases HDV duales no locales.

Estos resultados se han derivado de un cuidadoso análisis de las condiciones pa-

ra que una simetŕıa generalizada no sea invariante bajo una global. En primer lugar,

observamos que las simetŕıas globales actúan como una transformación de punto en

el espacio de clases HDV no locales. En segundo lugar, y lo que es más importante,

desarrollamos una clasificación más exhaustiva de los operadores de twist en QFT. Des-

cubrimos que los twists pueden ser aditivos (o no) y completos (o no), y que los twists

aditivos en regiones más pequeñas podŕıan no producir twists para regiones más gran-

des. Esto nos sugiere el concepto de concatenabilidad de twists, el cual argumentamos

como crucial para entender el teorema de Noether en QFT.

Hemos apoyado la discusión abstracta con varios ejemplos de simetŕıas generali-

zadas cargadas bajo una global en donde la simetŕıa global es continua y por tanto

sin corriente. En todos los casos analizados, la simetŕıa generalizada es no compacta,

es decir, esta asociada un grupo no compacto de clases HDV. Además, los ejemplos

analizados, siempre correspondieron a campos libres sin masa. En el caṕıtulo 6 vere-

mos que esto es una condición necesaria para teoŕıas UV completas con una simetŕıa

generalizada no compacta.

Sin embargo, notamos que las simetŕıas generalizadas cargadas ante un grupo con-

tinuo no necesariamente se corresponden con un grupo no compacto de clases HDV.

En esta dirección, hemos iniciando una clasificación de las posibles estructuras en las

que tenemos clases HDV no invariantes bajo un grupo uniparamétrico. Vimos que

cuando existe más de un tipo de sectores no locales asociados a una dada región pode-

mos tener un continuo compacto de clases HDV. En estos casos podemos tener teoŕıas

interactuantes. Un ejemplo es el de la simetŕıas 1-forma cargadas ante la acción de

la simetŕıa quiral en presencia de la anomaĺıa ABJ. Estudiaremos este ejemplo para

diversos modelos en el caṕıtulo 7.

Por último, los resultados de este caṕıtulo, por un lado, pueden ser usados pa-

ra re-derivar teorema de Weinberg-Witten como un caso especial, generalizándolo en
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varias direcciones no triviales. Por otro, parecen proporcionar una caracterización po-

tencialmente completa del espacio de QFTs que muestra una violación de la versión

fuerte del teorema de Noether. En esta dirección, probamos que la inexistencia de clases

HDV cargadas ante una dada simetŕıa implica que podemos construir twists aditivos,

completos y concatenables que implementen dicha simetŕıa. Pero, es incierto bajo que

condiciones estos twits pueden converger a una corriente de Noether. En el caṕıtulo

8, estudiaremos esto recogiendo algunas de estas ideas combinadas con que desarrolla-

remos de caṕıtulos siguientes y propondremos conjeturas interesantes para avanzar en

esta dirección.



Caṕıtulo 6

Cargas en la completación UV de

una electrodinámica Neutra

El objetivo principal de este caṕıtulo es demostrar una conjetura: una teoŕıa in-

variante de Poincaré UV completa con simetŕıas generalizadas no compactas tiene

necesariamente un sector libre y no masivo.

En primer lugar, esta conjetura viene sugerida por nuestro fracaso (durante los

caṕıtulos 3, 4 y 5) en la construcción de ejemplos interactuantes. Pero hay más indicios.

En particular, ya se ha probado que una teoŕıa conforme en D = 4 con una simetŕıa

no compacta 1-forma tiene que ser libre [163]. En este caṕıtulo estudiaremos el caso de

simetŕıas k-forma no compactas en D dimensiones sin asumir la simetŕıa conforme.

Esta idea es naturalmente interesante a la luz del caṕıtulo 5, debido a que una

simetŕıa generalizada cargada ante un grupo continuo presenta un continuo de clases

HDV duales. Más aún, si solamente podemos asociar un tipo de operador no local a una

dada región, necesariamente tendremos un continuo no compacto de clases HDV. En

este sentido, las ideas que desarrollaremos en este caṕıtulo nos ayudarán a comprender

el espacio de QFTs que violan la versión fuerte del teorema de Noether. Sin embargo,

es importante resaltar que la conjetura en cuestión sólo se refiere a las simetŕıas gene-

ralizadas. Es decir, no requerimos que estas estén cargadas bajo otra simetŕıa global.

Otra motivación importante es que que esta conjetura conlleva profundas implica-

ciones dinámicas. En particular, veremos que conecta la renormalizabilidad de ciertas

teoŕıas con una pregunta sobre sus simetŕıas y, en este sentido, describe nuevas fuentes

de anomaĺıas cuánticas. A continuación, ilustraremos esta noción en teoŕıas del campo

electromagnético con interacciones neutras.

Estas teoŕıas están dadas por un Lagrangiano interactuante que podemos escribir

sin implicar el potencial vector. Más espećıficamente, incluimos teoŕıas de “Electro-

dinámica no lineal”1 siendo ejemplos particularmente interesantes las teoŕıas de Born-

1Véase [175–178] para literatura reciente sobre el tema y [179] para un resumen actualizado.
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Infeld [180], la más reciente “ModMax” [181–183] y las teoŕıas del electromagnetismo

cuasi-topológico [184, 185]. También, englobamos dentro del concepto “electrodinámica

neutra” acoplamientos magnéticos con campos neutros. Para ser concretos, comenza-

mos proponiendo el lagrangiano

L = −1

4
Fµν F

µν + ψ̄(iγµ∂µ −m)ψ − µ1

8
(F 2)2 − µ2

2
ψ̄ σµν ψ F

µν . (6.1)

Estos acoplamientos no son renormalizables en ninguna dimensión D > 2, y es sencillo

darse cuenta de que no podemos encontrar un acoplamiento neutro renormalizable

para el campo electromagnético. En el modelo estándar, estos términos aparecen como

términos efectivos de baja enerǵıa. El acoplamiento µ1 es del orden (e/me)
4, mientras

que µ2 es del orden e/mN para un neutrón y e3ml/M
2
Z para un neutrino, donde mN es

la masa del neutrón, y ml representa las masas de los leptones cargados. Estos términos

neutros tienen escalas caracteŕısticas µ
−1/4
1 y µ−12 donde se rompe la descripción efectiva.

En el modelo estándar estos términos se generan integrando los campos cargados. De

hecho, las part́ıculas cargadas aparecen a escalas más pequeñas que µ
−1/4
1 y µ−12 , donde

el modelo efectivo predice que ocurre nueva f́ısica.

Es evidente entonces que nos encontramos con problemas para construir una elec-

trodinámica puramente neutra desde el punto de vista perturbativo. La cuestión que

queremos abordar es si se puede llegar a la misma conclusión a nivel no perturbativo:

¿existe una “electrodinámica neutra” UV completa o, a la inversa, cualquier teoŕıa

interactuante UV completa para el fotón contiene cargas?

Para abordar este problema en toda su generalidad necesitamos hacer más precisa

la afirmación de que “no hay cargas”. Los operadores cargados no existen porque no

son invariantes de gauge, y la existencia de part́ıculas cargadas requiere entender el

espectro de la teoŕıa. Elegimos un camino diferente. El modelo (6.1), tomado a nivel

clásico, tiene dos campos diferentes descriptos por 2-formas cerradas

Fµν , dF = 0 , (6.2)

Gµν = εµναβ (F
αβ(1 + µ1 F

2) + µ2 ψ̄ σ
αβ ψ) , dG = 0 . (6.3)

El campo G es cerrado debido a las ecuaciones de movimiento. El hecho de que existan

dos campos F yG dados por 2-formas cerradas es lo que interpretamos como la ausencia

de cargas en el modelo. De hecho, las cargas magnéticas llevaŕıan a dF ̸= 0 y las cargas

eléctricas a la imposibilidad de encontrar un campo G tal que dG = 0. Esto es una

caracteŕıstica común a todos los modelos en cuestión. La razón es evidente cuando

escribimos la ecuación de movimiento de la forma habitual ∂ν F
νµ = Jµ. Luego, la
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única forma de obtener una 2-forma cerrada G seŕıa que

Jµ = ∂νω
µν (6.4)

para algún otro campo 2-forma invariante de gauge ωµν . La forma particular (6.4) de

la corriente es precisamente la que obtenemos en todos los modelos de electrodinámica

neutra, pero no es el caso de la QED habitual. De forma mas f́ısica, (6.4) nos dice que

existe un operador de flujo eléctrico re-definido como integral de G = ⋆(F + ω) sobre

superficies bidimensionales, que no detecta ninguna carga a través de su ley de Gauss.

En estos términos, podemos reformular lo que tiene de especial cualquier modelo

de electrodinámica neutra diciendo que posee una simetŕıa generalizada no compacta.

Esto se refleja en la existencia de los generadores infinitesimales dados por los dos

campos cerrados duales F y G. En este caṕıtulo, demostraremos que F y G, son

generadores de las simetŕıas de forma duales, y que podemos elegirlos como campos

duales libres. Esto significa que si los campos F,G de la teoŕıa efectiva interactúan,

la simetŕıa generalizada tiene que romperse en la completación UV a un grupo más

pequeño, lo que implica la existencia de cargas eléctricas y/o magnéticas.

Otro ejemplo similar es la teoŕıa de baja enerǵıa de un bosón de Goldstone. En un

modelo de este tipo sólo podemos tener acoplamientos con derivadas de la forma

L =
1

2
(∂ϕ)2 + L̃(∂ϕ) . (6.5)

En este caso, podemos escribir las formas duales como

Fµ1···µd−1
= εµ1···µd−1µ

(
∂µϕ+

∂L̃
∂(∂µϕ)

)
, Gµ = ∂µϕ . (6.6)

Ambos campos son cerrados dF = dG = 0 y la teoŕıa efectiva tiene simetŕıas de forma

no compactas. De nuevo, todos los acoplamientos posibles son no renormalizables ya

que la dimensión de ∂µϕ es D/2 y deben ir acompañados en el Lagrangiano por un

campo vectorial de dimensión menor que D/2, lo cual no es posible.

El plan del caṕıtulo es el siguiente. En la próxima sección 6.1, describiremos las

propiedades de los dos generadores de simetŕıas de forma no compacta y mostraremos

como dicha simetŕıa puede definirse a nivel clásico. En la sección 6.2, analizaremos la

forma de las funciones de dos puntos más generales de los campos involucrados, tenien-

do en cuenta las simetŕıas (o antisimetŕıas) requeridas y las restricciones de positividad.

Luego, en la sección 6.3, estudiaremos aspectos de simetŕıas generalizadas en teoŕıas

invariantes de escala. En particular, probaremos que en tal caso las corrientes cerradas

que generan una simetŕıa de forma no compacta deben ser libres y sin masa. En esta

linea, la sección 6.4 contiene la prueba principal. En ella extenderemos los resultados
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obtenidos para teoŕıas invariantes de escala a todas las QFTs. Esto requerirá el estudio

de los puntos fijos UV de la teoŕıa, y especialmente las restricciones que imponen sobre

la QFT completa. Por último, la sección 6.5 discutiremos el resultado de este caṕıtulo

con una perspectiva ligeramente diferente. Como las simetŕıas generalizadas no com-

pactas de los modelos clásicos interactuantes no pueden implementarse cuánticamente,

podemos interpretar esto como una anomaĺıa.

6.1. Simetŕıas de forma no compactas

En esta sección, para evitar ambigüedades, desarrollaremos exactamente que en-

tendemos por simetŕıas de forma no compactas tanto a nivel clásico como cuántico.

Comenzamos especificando que suposiciones necesitamos para entender los operadores

no locales, definidos partir corrientes de forma conservadas, como generadores de una

simetŕıa de forma no compacta. Desde el punto de vista de AQFT, repasaremos en

que sentido estos operadores producen violaciones de dualidad de Haag para ciertas

regiones. Luego, estudiamos como puede implementarse un escenario análogo en una

teoŕıa clásica de campos a través del corchete de Peierls/Poisson. Terminamos revi-

sando varios ejemplos de simetŕıas de forma no compactas a nivel clásico en teoŕıas

interactuantes. Si bien la definición de la simetŕıa de forma no compacta clásica no es

necesaria para el desarrollo del caṕıtulo, ni para la prueba de la conjetura que mencio-

namos, es necesario comprender en que sentido y bajo que condiciones dichas simetŕıas

están bien definidas.

6.1.1. Caracteŕısticas de una simetŕıa de forma no compacta

Las simetŕıas de forma no compactas corresponden a la existencia de un campo F

real k-forma cerrado (dF = 0), y un campo G real q-forma cerrado (dG = 0), con

D = k + q, y 1 ≤ k, q ≤ D − 1. Por definición y sin perdida de generalidad tomamos

k ≥ q. Suponemos que tanto F como G son campos de Wightmann f́ısicos (invariantes

gauge) de manera que podemos definir apropiadamente los flujos

ΦF =

∫
ΣF

F , ΦG =

∫
ΣG

G , (6.7)

sobre superficies espaciales k-dimensionales ΣF , y superficies q-dimensionales ΣG res-

pectivamente. Estos flujos, dependen sólo de los bordes ΓF = ∂ΣF , ΓG = ∂ΣG, y no de

las superficies particulares ΣF y ΣG. Por simplicidad, podemos pensar que ΣF y ΣG se

encuentran en x0 = 0.

Si k < D− 1, tanto ΦF como ΦG conmutan con cualquier operador de campo local

en cualquier punto x espacialmente separado de ΓF y ΓG respectivamente. Esto se debe
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a que podemos deformar las superficies ΣF y ΣG de forma que queden espacialmente

separadas de cualquier punto x, sin cambiar el operador de flujo (Véase la figura 3.1

para el caso de k, q = 2). En particular, los flujos conmutan con F (x) y G(x) para

x espacialmente separado de los respectivos bordes. Si k = D − 1 la conmutatividad

de ΦF con operadores locales espacialmente separados del borde no puede implicarse

porque sólo podemos deformar la superficie ΣF en una dirección temporal. En este caso,

suponemos además que ΦF conmuta con F (x) y G(x) para x espacialmente separados

de ΓF . En este caso k = D − 1 el flujo de F sobre todo el espacio da un generador

de un grupo global de simetŕıa uniparámetrico. Entonces, el requisito adicional que

necesitamos para este caso es que F y G sean campos no cargados con respecto a

esta simetŕıa. Observamos que, sin pérdida de generalidad, podemos tomar el espacio

de Hilbert como el generado por F,G actuando sobre el vaćıo de tal forma que estos

campos actúen irreduciblemente.

Tomemos ΓF y ΓG con la topoloǵıa de Sk−1 y Sq−1, y simplemente enlazados entre

śı en el plano espacial x0 = 0. Estas representan los bordes de regiones tipo disco

ΣF ,ΣG, de dimensión k y q respectivamente. Una última suposición que consideramos

implicada en la idea de las simetŕıas de forma no compactas es que los flujos ΦF y ΦG

no conmutan entre śı en este caso de bordes simplemente enlazados. Esto implica que

ninguno de los campos de forma es un campo de forma f́ısicamente exacto. Es decir, no

podemos escribirlos como F = dF , o G = dG, para campos F ,G invariantes de gauge.

De lo contrario ΦF o ΦG podŕıan escribirse como integrales de campos locales en ΓF y

ΓG y los respectivos flujos conmutaŕıan.2 Vimos extensivamente un ejemplo donde esto

sucede: el caso del gravitón en D > 4 durante el caṕıtulo 4.

Podemos ver una primera simplificación en este escenario de la siguiente manera. El

conmutador [ΦF ,ΦG] no cambia si deformamos ΓF o ΓG manteniéndolos espacialmente

separados y simplemente enlazados. La razón es que el cambio en el flujo ΦG bajo tal

deformación de ΓG es un flujo en una superficie entre el borde ΓG y su deformación

Γ′G. Entonces, es un flujo de G en una región espacialmente separada de ΓF , y conmuta

con ΦF . Lo mismo ocurre si deformamos ΓF .

Como consecuencia de la idea anterior, podemos desplazar ambas superficies juntas

hasta el infinito manteniéndolas unidas, y el conmutador no puede cambiar. Esto impli-

ca que el conmutador de los flujos conmuta con cualquier operador local, y por tanto

es un número, que también representa un invariante topológico para el par ΓF ,ΓG.

Podemos normalizarlo para que sea

[ΦF ,ΦG] = i . (6.8)

2Una excepción es el caso de simetŕıas globales k = D − 1, q = 1, donde G podŕıa ser de la forma
dϕ, para un campo escalar ϕ. Sin embargo, para tener flujos no conmutativos ϕ debe ser un operador
cargado bajo la simetŕıa global, y por tanto cae fuera de las álgebras neutras generadas por G y F .
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En esta situación la teoŕıa generada por los campos F,G contiene violaciones de la

dualidad de Haag. Para ver esto más claramente, tomemos regiones espacio-temporales

causalmente complementarias RF y RG, tales que ΓF ⊂ RF y ΓG ⊂ RG. Entonces,

podemos asignar a estas regiones álgebras de von Neumann A(RF ) y A(RG) generadas

por ambos campos F,G en RF y RG. Sin embargo, estas álgebras no incluyen los grupos

uniparamétricos de unitarios a(q) = eiqΦF , b(g) = eigΦG , q, g ∈ R. Estos están formados

por exponenciales de versiones con smearing de los flujos ΦF ,ΦG cuyos bordes tienen

soporte compacto dentro de las respectivas regiones. Para ver esto notamos que por

construcción a(q) conmuta con A(RG) y b(g) conmuta con A(RF ). Entonces, el álgebra

A(RF ) no puede contener a(q) porque todos los elementos de esta álgebra conmutan

con el flujo ΦG mientras que a(q) no. Del mismo modo, b(g) no está contenida en

A(RG). Aśı que tenemos

A(RF ) ⊊ A(RG)
′ ≡ Amax(RF ) , A(RG) ⊊ A(RF )

′ ≡ Amax(RG) . (6.9)

Es decir, (6.9) implica que no hay dualidad de Haag para estas regiones. Los operadores

a(q), b(g), son operadores no locales en sus respectivas regiones en el sentido de que

no pueden formarse localmente en estas regiones, pero conmutan con los operadores

locales fuera de ellas. Los campos de forma generan los grupos continuos duales de

operadores de simetŕıa no local de forma análoga a como una corriente de Noether

genera una simetŕıa global continua. Las cargas q, g, etiquetan las diferentes clases no

locales de operadores. Los miembros de la misma clase no local se diferencian por la

acción de los operadores locales en las regiones. Los operadores no locales a(q), b(g)

son duales entre śı en el sentido de que se basan en regiones complementarias y no

conmutan entre śı. Ambos conjuntos de operadores no locales duales forman grupos

continuos no compactos. Tomamos este escenario como definición de una simetŕıa de

forma no compacta.

La relación (6.8) elimina la posibilidad de que cualquiera de los grupos duales

sea un grupo U(1) compacto, y da dos grupos duales no compactos R de simetŕıas

generalizadas.3 Las relaciones de conmutación para los operadores no locales se fijan

por (6.8) a

a(q) b(g) = e−i q g b(g) a(q) . (6.10)

3Si una de las simetŕıas duales fuera U(1) la dual se veŕıa forzada a ser un grupo Z no continuo,
y sus operadores no locales no podŕıan ser generados por un campo de forma de manera análoga a
como una simetŕıa global discreta no es generada por una corriente. Veremos ejemplos de este tipo en
el caṕıtulo siguiente.
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6.1.2. Simetŕıas de forma no compactas clásicas

Siguiendo con las ideas basicas necesarias para este caṕıtulo definimos simetŕıas

de forma no compactas en la teoŕıa de campos clásica y mostramos que no surgen

contradicciones para modelos interactuantes. Claramente, estas simetŕıas son anómalas

en el sentido de que estos modelos no pueden existir a nivel cuántico, pero, por ahora

procedemos.

Nuestra definición de simetŕıa de forma requiere el análisis de la localización de los

observables y de las relaciones de conmutación. En la teoŕıa clásica, representamos los

observables mediante funciones en el espacio de fases y las relaciones de conmutación

mediante corchetes de Poisson. En este sentido, quedamos obligados a trabajar en un

formalismo canónico, pero también necesitamos una descripción espacio-temporal para

localizar los observables. Podemos conseguir esto mediante el formalismo covariante

del espacio de fases [186–188].

Nuestro punto de partida es una acción S dada por un Lagrangiano local en términos

de campos. En la teoŕıa podemos tener simetŕıas gauge pero la acción es invariante

gauge. Además, en el Lagrangiano podemos incluir términos de derivadas superiores, y

tenemos la posibilidad de tratar con campos fermionicos que anticonmutan [187]. Para

proceder, seguimos la notación compacta de de Witt [188] y llamamos ϕi a los campos,

donde el ı́ndice i incluye coordenadas del espacio-tiempo. La variación de la acción se

anula en las soluciones de las ecuaciones de movimiento, y podemos escribirla como

δS

δϕi
≡ S,i =̇ 0 . (6.11)

Nos referimos con el śımbolo =̇ a una ecuación válida sobre las soluciones de las ecua-

ciones de movimiento.

Consideremos un funcional invariante gauge A de los campos con soporte compacto

sup(A) en el espacio-tiempo. Dicho soporte es el conjunto de puntos tales que el funcio-

nal depende de los valores del campo en esos puntos. Este funcional tiene dos papeles

diferentes. En primer lugar, podemos utilizarlo para perturbar la acción. En segundo

lugar, si evaluamos sobre las soluciones de las ecuaciones de movimiento le podemos

dar al funcional A la interpretación de un elemento del espacio de fases de la teoŕıa.

Dado un elemento del espacio de fases de la teoŕıa A como un funcional invariante gau-

ge de las soluciones de las ecuaciones de movimiento, podemos producir un funcional

invariante gauge sobre los campos que es único excepto por términos proporcionales

a las propias ecuaciones de movimiento. Esta ambigüedad no será relevante en lo que

sigue.

Si perturbamos la acción con S → S + ϵA, el cambio en las soluciones obedece a
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orden lineal en ϵ las ecuaciones

S,ij δAϕj =̇− A,i . (6.12)

donde S,ij es un operador diferencial local que depende de los campos si el Lagrangiano

no es cuadrático. La solución de (6.12) no es única. Hay soluciones de la ecuación

homogénea S,ij δϕj=̇0 porque son transformaciones gauge infinitesimales alrededor de

los campos de fondo (soluciones de las ecuaciones de movimiento), y también hay

soluciones de la ecuación homogénea porque hay perturbaciones f́ısicas linealizadas δϕj

que se propagan del pasado al futuro. Podemos considerar soluciones especiales que

obedecen las condiciones de contorno retardadas y adelantadas

δ±Aϕi = 0 para x ∈ I±(sup(A)) , x /∈ sup(A) , (6.13)

donde I±(X) es el futuro y el pasado de X. Esto no elimina la redundancia gauge pero

la variación en los observables f́ısicos invariantes gauge resulta ser también invariante

gauge, definiendo el nuevo elemento del espacio de fases

δ±A B ≡ B,i δ
±
Aϕi . (6.14)

Notamos que, dejando a un lado la invariancia gauge, las soluciones adelantadas y

retardadas son únicas porque la solución y todas sus derivadas desaparecen en el pasado

o en el futuro.

Recuperamos las relaciones de reciprocidad δ±A B = δ∓B A. A partir de ellas, podemos

definir el corchete de Peierls/Poisson [186] siguiendo [188] como

{A,B} = δ−A B − δ+A B = δ−A B − δ−B A = δ+B A− δ−B A . (6.15)

Vemos que este corchete obedece las relaciones usualmente impuestas, incluyendo la

identidad de Jacobi.

Si dos observables están separados espacialmente tenemos {A,B} = 0. Esto nos

requiere alguna condición extrae en el caso de lagrangianos de derivada superior, porque

la perturbaciones adelantadas y retardadas se mueven en el campo de fondo de cualquier

solución de las ecuaciones de movimiento. Por ende, tenemos que comprobar que este

fondo no ensancha los conos de luz en los que se propaga la perturbación. Esta es una

restricción de causalidad independiente para la teoŕıa clásica no lineal que tenemos que

asumir. Para los Lagrangianos (6.1) y (6.5) esto fue estudiado en [189]. El resultado

es que las teoŕıas clásicas son causales si los coeficientes de los términos no lineales

satisfacen ciertas restricciones de positividad.

Una vez que tenemos un espacio de fases covariante, podemos definir una simetŕıa
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de forma clásica por analoǵıa con el caso cuántico. Supongamos que tenemos una k-

forma cerrada F invariante de gauge. Como discutimos en la sección anterior, un flujo

ΦF =
∫
ΣF
F construido con F conmuta con todos los observables O, que tienen un

soporte topológicamente trivial, y estan espacialmente separados del borde ΓF = ∂ΣF .

Para k = D− 1 tenemos que pedir esta propiedad como condición independiente. Este

campo de forma produce una simetŕıa de forma sólo cuando F no es la derivada exterior

de una (k− 1)-forma invariante de gauge. En caso contrario ΦF puede escribirse como

una integral sobre ΓF y no es un operador no local.

Supongamos ahora que tenemos formas k y d − k cerradas F y G. Tomemos los

elementos de flujo del espacio de fases ΦF , ΦG, sobre superficies con ĺımites ΓF y ΓG,

enlazados entre śı, y supongamos que los flujos no conmutan. En este caso, obtenemos

automáticamente que representan simetŕıas de forma porque las formas no pueden ser

exactas en el espacio invariante gauge. Como describimos en la sección anterior, si mo-

vemos las fronteras ΓF y ΓG, manteniéndolas enlazadas y espacialmente separadas, el

corchete de Poisson {A,B} no puede cambiar. Por tanto, podemos deformar los bor-

des manteniéndolos enlazados y manteniendo invariante el conmutador. En particular

podemos alejar ΓF y ΓG juntos. Entonces {A,B} tiene que conmutar con cualquier

elemento del espacio de fases, y tiene que ser un número, que podemos normalizar a 1.

Entonces, tenemos una simetŕıa de forma asociada al grupo abeliano no compacto R.

Supongamos que tenemos esta situación para una teoŕıa donde el Lagrangiano tiene

un término libre que ya muestra la simetŕıa de forma no compacta, y un término inter-

actuante que no rompe esta simetŕıa de forma dual. Para ser concretos, consideremos

simplemente el caso

L = −1

4

(
F 2 +

µ

2
(F 2)2

)
. (6.16)

Podemos modificar este lagrangiano de manera que

L = −1

4

(
F 2 +

µ(x)

2
(F 2)2

)
, (6.17)

donde µ(x) depende de las coordenadas, y es constante en una región Λ del espacio-

tiempo, y cero suficientemente lejos en el espacio-tiempo. Podemos escribir la ecuación

de movimiento como

∂ν
(
F µν(1 + µ(x)F 2)

)
= 0 . (6.18)

De esta forma, recuperamos dos corrientes 2-forma conservadas

Fµν , ∗ (Fµν(1 + µ(x)F 2)) . (6.19)

Podemos aplicar el razonamiento anterior para demostrar que los flujos enlazados por

estas dos formas tienen un conmutador constante. En particular, este conmutador pue-
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de evaluarse en el infinito espacial donde µ(x) = 0, lo que nos da el mismo conmutador

que en la teoŕıa de Maxwell. El mismo conmutador debe ser válido en la región donde

µ(x) = µ. Podemos, entonces, tomar el ĺımite donde µ(x) = µ en todo el espacio-

tiempo. Vemos que la adición de términos al Lagrangiano que no contienen cargas, y

que en consecuencia no pueden romper la conservación de una de las formas cerra-

das, sólo deformarán la expresión de la corriente conservada, y deben mantener fijo el

conmutador. Por lo tanto, estos modelos clásicos nos exhiben simetŕıas de forma no

compactas a pesar de ser interactuantes.

Debido al teorema de Groenewold [190] no es posible ningún mapeo razonable del

espacio de fases clásico a los operadores del espacio de Hilbert que respete la estructura

no lineal y dé una representación de corchetes de Poisson. Las anomaĺıas aparecen ah́ı,

y en el caso que nos compete veremos que no existe un modelo cuántico correspondiente

a estos modelos clásicos.

Para finalizar esta sección, como ya hemos definido las simetŕıas de forma a nivel cla-

sico y comprendemos donde podemos encontrar problemas a nivel cuantico, estudiemos

más detenidamente lo que ocurre cuando una de las simetŕıas es compacta. Pensemos

en el caso de una simetŕıa continua rota que da lugar a un bosón de Goldstone. Para

ser concretos presentamos el lagrangiano

L =
1

2
(∂ψ)(∂ψ)∗ − λ

4
(|ψ|2 − v2)2 (6.20)

que tiene una simetria U(1) rota. Escribiendo ψ = (v + σ) eiϕ tenemos

L =
1

2
(∂σ)2 +

1

2
(∂ϕ)2 (v + σ)2 − λ

4
(σ2 + 2v σ)2 . (6.21)

Como consecuencia de las ecuaciones de movimiento, esta teoŕıa se ve como si tuviéra-

mos una simetŕıa no compacta generada por la 1-forma cerrada ∂µϕ y la (D−1)-forma

dual ∗ ((∂µϕ) (v + σ)2). Sin embargo, ϕ sólo esta definido a excepción de múltiplos de

2π. Ambas corrientes son invariantes bajo el desplazamiento ϕ→ ϕ+ 2π. En la teoŕıa

completa sólo podemos hacer un smearing para ei
∫
α(x)ϕ(x) con

∫
α(x) = n un número

entero. Esto implica que no podemos formar los flujos de ∂µϕ a lo largo de una recta

con coeficientes arbitrarios.

En la teoŕıa clásica esto significa que sólo se permiten flujos cuantizados y no repre-

senta un campo de forma ordinaria. En la teoŕıa cuántica esto significa que los campos

ϕ o ∂µϕ no son campos de Wightman (lo mismo vale para σ). En la integral de camino

pueden representarse como campos siempre que también sumemos sobre contribuciones

topológicamente no equivalentes para las amplitudes, donde el campo ϕ va a 2πn en el

infinito en lugar de a cero. Aśı que el Lagrangiano (6.21) no está describiendo la teoŕıa

de forma completa porque tenemos una prescripción oculta para la integral de camino
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que debemos que añadir. Sin embargo, vemos que la corriente que se conserva debido

a las ecuaciones de movimiento es simplemente

((∂µϕ) (v + σ)2) ∼ i(ψ ∂µψ
∗ − ψ∗∂µψ) , (6.22)

dándonos un buen candidato representar un campo de Wightman.

6.2. Funciones de dos puntos

En esta sección, volviendo a la configuración que explicamos en la sección 6.1.1,

analizamos la forma general las funciones de dos puntos los campos reales F y G

en cualquier dimensión D. Comenzamos con un breve resumen de la notación que

utilizaremos por el resto del caṕıtulo. Seguimos, con el estudio de todas las estructuras

tensoriales posibles en el espacio de momento. Luego, proporcionamos la expresión más

general para los correladores en la representación de Kallen-Lehmann permitida por

las leyes de conservación de los campos, la conmutatividad espacial y el conmutador

de flujos (6.8). También, analizamos las restricciones de positividad requeridas sobre

las funciones espectrales de Kallen-Lehmann en cada caso.

6.2.1. Biformas y notación

Podemos describir la estructura tensorial de la función de dos puntos de los campos

F y G mediante biformas. Éstas pueden representarse mediante tensores con dos pares

de ı́ndices antisimétricos. En este apéndice, estableceremos la notación para una (k|q)-
biforma T con dos multíındices µ, ν. Obsérvese que con µ representamos el primer

conjunto de k ı́ndices antisimétricos µ1, µ2, ... , µk, mientras que con ν describimos los

siguientes q ı́ndices antisimétricos ν1, ν2, ... , νq. Es decir, podemos escribir

[
T
]
µ|ν ≡

[
T
]
µ1µ2 ... µk|ν1ν2 ... νq

. (6.23)

Un buen ejemplo expĺıcito de una biforma es la métrica generalizada η(k) introducida

en (4.66). Se trata de una (k|k)-biforma obtenida por la contracción de dos tensores

antisimétricos Levi-civita de la siguiente manera

η
(k)
µ|ν ≡

(−1)D−1

(D − k)!
ε α
µ ενα =

(−1)D−1

(D − k)!
ε α1···αD−k
µ1µ2 ... µk

εν1ν2 ... νkα1···αD−k
. (6.24)

En general, las operaciones habituales de geometŕıa diferencial pueden actuar sobre

cualquiera de los dos conjuntos de ı́ndices. Siguiendo la notación de [131], al escribir

la operación en el lado izquierdo de T denotamos que la operación actúa sobre los

primeros k ı́ndices etiquetados por µ. Por ejemplo, el producto en exterior p∧T donde
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pα es el vector momento da lugar al (k + 1|q)-bifoma dada por

[
p ∧ T

]
µ|ν =

1

k!
η
(k+1)
µ |αρ p

α T ρν ≡
1

k!
η
(k+1)
µ1µ2 ... µkµk+1 |αρ1ρ2 ... ρk p

α T ρ1ρ2 ... ρk ν1ν2 ... νq . (6.25)

Por otro lado, si el operador está en el lado derecho de T , actúa sobre los segundos

ı́ndices q etiquetados por ν. En este caso el producto exterior produce la (k, q + 1)-

biforma

[
T ∧ p

]
µ|ν =

1

q!
η
(q+1)
ν | ρα T

µ
ρ p

α ≡ 1

q!
η
(q+1)
ν1ν2 ... νqνq+1 | ρ1ρ2 ... ρqα T

ρ1ρ2 ... ρq
µ1µ2 ... µk

pα . (6.26)

Podemos extender las mismas ideas para otras operaciones. El producto punto actuando

sobre la izquierda p·T produce una (k−1|q)-biforma mientras que T ·p da una (k|q−1)-

biforma [
p · T

]
µ|ν = pα Tαµ|ν ≡ pα Tαµ1µ2 ... µk−1|ν1ν2 ... νq . (6.27)[

T · p
]
µ|ν = Tµ|να p

α ≡ Tµ1µ2 ... µk|ν1ν2 ... νq−1α p
α. (6.28)

Además, el dual de Hodge produce una (D − k|q)-biforma o una (k|D − q)-biforma

respectivamente

[
∗ T
]
µ|ν =

1

k!
εµρ T

ρ
ν ≡

1

k!
εµ1µ2 ... µD−kρ1ρ2 ... ρk T

ρ1ρ2 ... ρk
ν1ν2 ... νq

, (6.29)[
T ∗

]
µ|ν =

1

q!
T ρ
µ ερν ≡

1

q!
T ρ1ρ2 ... ρq
µ1µ2 ... µk

ερ1ρ2 ... ρqν1ν2 ... νD−q
. (6.30)

Con esta normalización y la métrica en signatura4 (+,−− ...) tenemos que

[
∗ ∗T

]
µ|ν = (−1)(k−1)(D−1)

[
T
]
µ|ν ,

[
T ∗ ∗

]
µ|ν = (−1)(q−1)(D−1)

[
T
]
µ|ν . (6.31)

En este contexto, nos será útil definir el operador ∗̃ que actúa en el lado derecho como

[
T ∗̃
]
µ|ν ≡ (−1)q(D−q)

[
T ∗

]
µ|ν . (6.32)

6.2.2. Estructuras tensoriales

Cualquiera de las funciones de dos puntos F y G es una biforma conservada en cada

ı́ndice. En otras palabras, en el espacio de momentos podemos escribir la estructura

genérica de una función de Wightman de dos puntos, usando una función de Kallen-

Lehmann, de la forma∫
ds ρ(s)

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s) eipx Pµ|ν(p) , (6.33)

4Notamos que en este caṕıtulo y los siguientes utilizaremos la métrica de Minkowski en signatura
η = diag(+1,−1,−1, ...) a diferencia de los caṕıtulos anteriores donde usamos η = diag(−1,+1,+1, ...).
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donde usamos notación recientemente mencionada de manera que el tensor de polari-

zación Pµ|ν es una (k|k), (q|q) o (k|q) biforma según el correlador en cuestión. Además,

las leyes de conservación dF, dG = 0 nos requieren que

p ∧ P = 0 , P ∧ p = 0 . (6.34)

Utilizando el operador estrella de Hodge ∗, podemos analizar un problema dual equi-

valente. Si definimos P̃ = ∗P∗, la condición de conservación viene dada por p · P̃ =

P̃ · p = 0. Esto se debe a que estos dos tensores son proporcionales

∗p ∧ ∗(· · · ) ∼ p · (· · · ) . (6.35)

Esto corresponde en el espacio de momento a la identidad δ = (−1)kD+1 ∗ d ∗ entre

la coderivada δ (proporcional a la divergencia del tensor) y la derivada exterior d que

actúa sobre las formas. Recordamos que δ δ = 0 como consecuencia de d d = 0.

A continuación estudiamos todas las estructuras posibles para el tensor de polari-

zación P . Este tensor debe escribirse en términos de la métrica η, el momento p y el

tensor de Levi-Civita ε. En primer lugar, consideramos los tensores construidos utili-

zando sólo la métrica. Comencemos con el caso de ⟨FF ⟩ con (k|k)-biformas de igual

número de ı́ndices. El caso de ⟨GG⟩ se sigue de manera similar para (q|q)-biformas.

La antisimetŕıa implica que si tenemos una métrica involucrada, sus dos ı́ndices deben

pertenecer a los dos conjuntos diferentes de ı́ndices µ, ν, de igual tamaño. Entonces,

hay exactamente k tensores métricos en P . Después de antisimetrizar en ambos conjun-

tos de ı́ndices, sólo hay una estructura tensorial posible que podemos obtener de esta

forma. Esta esta dada por un término proporcional a la metrica generalizada (6.24).

Para un polinomio del momento y la métrica, por antisimetŕıa, no podemos incluir

más de dos potencias de p. Tampoco solamente un momento, porque eso implicaŕıa

que una de las métricas tiene los dos ı́ndices en el mismo conjunto antisimétrico. Con

dos vectores momento y la métrica, la única estructura tensorial posible que contiene

un momento en cada conjunto de ı́ndices es

p · η(k+1) · p . (6.36)

Sin embargo, sólo una combinación de (6.24) y (6.36) es cerrada en ambos conjuntos

ı́ndices. Puesto que (6.36) es la única estructura bi-cerrada, la bi-cerrada para P es su

dual para el orden apropiado, digamos

∗p · η(d−k+1) · p ∗ ∼ p ∧ η(k−1) ∧ p . (6.37)

Consideremos ahora el correlador ⟨FG⟩, con ı́ndices (k|q) obedeciendo k + q = D.
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Podemos aplicar el análisis anterior si k = q = D/2 para D par. Si k ̸= q no podemos

formar nada antisimétrico sólo con la métrica. Con un momento tenemos para k = q+1,

y D = 2k − 1 impar,

η(k) · p ∼ p ∧ η(k−1) . (6.38)

Sin embargo, esta estructura sólo es cerrada por un lado pero co-cerrada por el otro, y

no puede aparecer en el correlador.

Además, con dos o más vectores de momento, la antisimetŕıa de nuevo no nos

permite ninguna estructura tensorial construida sólo con la métrica y el momento para

k ̸= q. Sin embargo, podemos considerar estructuras tensoriales que contengan el tensor

de Levi-Civita ε. Estas resultan de las anteriores actuando con la estrella de Hodge en

un solo lado. La parte de Pµν que contiene ε tiene que ser bi-cerrada por separado.

Entonces tenemos que ir a través de las estructuras tensoriales anteriores y comprobar

si son cerradas por un lado y co-cerradas por el otro. La única estructura bi-cerrada

posible se obtiene dualizando (6.37) cuando p2 = 0, ya que en tal caso obtenemos

∗p · η(d−k+1) · p ∼ p · η(k+1) · p ∗ . (6.39)

Este termino siempre puede aparecer en ⟨FG⟩. También, podemos verlo aparecer en

⟨FF ⟩ o ⟨GG⟩ cuando k = q = D/2.

Si incluimos el tensor de Levi-Civita, surge una nueva posibilidad lineal en el mo-

mento para el correlador ⟨FF ⟩. Dualizando (6.38) por un lado recuperamos

∗η(d−k) ∧ p ∼ p ∧ η(k−1)∗ ∼ ∗ p · ε ∗ . (6.40)

Esto sólo puede aparecer cuando D es impar y D = 2k − 1. En D = 3 representa el

caso del campo Maxwell-Chern-Simons.

En resumen, para el caso genérico donde k ̸= q y k ̸= (D + 1)/2, la forma más

general de los correladores en forma Kallen-Lehmann es

⟨F (x)F (0)⟩ =
∫ ∞
0

ds (aF δ(s) + ρF (s))

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s) eipx P (k)(p) , (6.41)

⟨G(x)G(0)⟩ =
∫ ∞
0

ds (aG δ(s) + ρG(s))

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s) eipx P (q)(p) , (6.42)

⟨F (x)G(0)⟩ =
∫

dDp

(2π)D−1
θ(p0) δ(p2) eipx (P (k)∗̃)(p) , (6.43)

⟨G(x)F (0)⟩ =
∫

dDp

(2π)D−1
θ(p0) δ(p2) eipx (∗P (k))(p) , (6.44)

donde el operador ∗̃ es el definido en (6.32). Las funciones de Kallen-Lehmann tienen

que ser reales debido a la conmutatividad a distancias espaciales y porque requerimos
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que los campos sean reales. Aqúı, hemos separado las partes sin masa de las densidades

espectrales para ⟨FF ⟩ y ⟨GG⟩ con los coeficientes reales aF y aG. Además, hemos

elegido la normalización de (6.37) como

P
(k)
µ|ν ≡ (−1)k−1

(k − 1)!
η
(k) γ
µ|α η

(k)
ν|βγ p

α pβ . (6.45)

Esto nos permite obtener una identidad útil para el dual de P (k) a ambos lados. Es

decir, tenemos

∗P (k)∗̃ = P (q) + (−1)q η(q) p2 . (6.46)

Curiosamente, vemos a partir de (6.39) que el correlador ⟨F (x)G(0)⟩ sólo puede ser

proporcional a un único término en el espacio de momento con soporte p2 = 0. Hemos

escrito este termino en la forma (6.43). Este no puede ser cero porque el conmutador

de flujos tiene que ser un número, y su valor de expectación en el vaćıo no se anula.

Hemos optado por normalizar el coeficiente a uno. Este correlador sólo puede tener

una contribución no masiva, y por tanto es covariante de escala, y satisface la ecuación

de movimiento sin masa

□ ⟨F (x)G(0)⟩ = 0 . (6.47)

En otras palabras, tenemos que la simetŕıa generalizada no compacta fuerza la forma

particular de esta función de dos puntos que no renormaliza. El hecho de que obedezca

a la ecuación de movimiento libre sin masa contiene la esencia de la prueba de que la

teoŕıa tiene un sector libre no masivo.

Sin embargo, notamos que la ecuación de Klein Gordon para el correlador de dos

campos diferentes como (6.47) no implica la ecuación para los operadores, ni que los

campos sean libres. Por ejemplo, podŕıamos escribir F = F0 + F1 y G = G0 +G1 con

F0 = ∗G0 libres y F1, G1 no libres, de manera que F1, y G1 tengan funciones de dos

puntos cero entre śı y con los campos libres F0, y G0. En este caso seguiŕıamos teniendo

un subsector libre de la teoŕıa, que es responsable de la función de dos puntos mixta

no nula y de la simetŕıa no compacta. Es una expectativa natural que éste sea el caso

en general. En lo que resta del caṕıtulo, nos ocuparemos del “filtrado” de los campos

para extraer su parte libre.

Antes de seguir, como hemos dicho, hay que considerar dos casos especiales. Cuando

k = q = D/2 las estructuras de ⟨FF ⟩ y ⟨GG⟩ pueden aparecer en ⟨FG⟩ y ⟨GF ⟩
y viceversa. Escribimos la nueva forma de los correladores como en (6.41-6.45) más
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nuevos términos

⟨F (x)F (0)⟩ = · · ·+ bF

∫
dDp

(2π)D−1
θ(p0) δ(p2) eipx (P (k)∗̃)(p) , (6.48)

⟨G(x)G(0)⟩ = · · ·+ bG

∫
dDp

(2π)D−1
θ(p0) δ(p2) eipx (P (k)∗̃)(p) , (6.49)

⟨F (x)G(0)⟩ = · · ·+
∫ ∞
0

ds(c δ(s) + ρ̃(s))

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s)eipxP (k)(p), (6.50)

⟨G(x)F (0)⟩ = · · ·+
∫ ∞
0

ds(c δ(s) + ρ̃(s))

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s)eipxP (k)(p). (6.51)

El nuevo término en los correladores ⟨FF ⟩ y ⟨GG⟩ obedece que

[P (k)∗̃]µ|ν = (−1)k−1[P (k)∗̃]ν|µ . (6.52)

Si combinamos esto con la conmmutatividad espacial, se impone que bF , bG = 0 si k

es par. En los casos restantes sólo implica que las funciones de Kallen-Lehmann son

reales.

Análogamente, a partir de (6.40), en el caso de D = 2k − 1 nos aparece una

posibilidad adicional para la función de dos puntos ⟨FF ⟩

⟨F (x)F (0)⟩ = · · ·+ ik−1
∫ ∞
0

ds ρCS(s)

∫
dDp

(2π)D−1
θ(p0) δ(p2 − s) eipx (∗ p.ε ∗̃) . (6.53)

donde el factor ik−1 se ha añadido para mantener ρCS(s) real.

6.2.3. Conmutadores de flujos

Como describimos anteriormente, los conmutadores de flujos enlazados (6.8) son

numéricos y no dependen de la forma geométrica de los lazos enlazados ΓF , ΓG. Esto

puede verificarse utilizando el correlador cruzado (6.43) en la expresión para el conmu-

tador de flujos e integrando sobre las regiones limitadas por los lazos ΓF , ΓG. Para ello

necesitamos un mapa φF que describa el embedding de ΣF en RD mediante

φµF (s1, s2, ... , sk) =
(
φ1
F (s1, s2, ... , sk) , .... , φ

d
F (s1, s2, ... , sk)

)
, (6.54)

donde las variables s1, s2, ... , sk parametrizan la superficie tomando valores en un do-

minio SF ⊂ Rk. En este contexto, podemos definir el flujo como el pullback de F sobre
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SF o más expĺıcitamente

ΦF (ΣF ) =

∫
SF

dks Fµ1µ2...µk
(
φ1
F (s1, s2, ..., sk),..., φ

d
F (s1, s2, ..., sk)

)
× (6.55)

×
(∂φµ1F
∂s1

∂φµ2F
∂s2

...
∂φµkF
∂sk

)
.

Comenzamos ahora calculando el conmutador de los flujos definidos sobre un “cua-

drado” espacial infinito k-dimensional Σ∞F y otro (D−k)-dimensional Σ∞G . Elegimos las

coordenadas (x0, x1, ... , xk, xk+1, ..., xd−1) de modo que las superficies están definidas

análogamente a (4.77-4.78) de la forma

Σ∞F ≡
{
x0 = 0 , x1 ∈ (−∞, α) , x2, x3, ...xk ∈ R , xk+1, ..., xD−1 = 0

}
, (6.56)

Σ∞G ≡
{
x0 = 0 , x1 ∈ (β,∞) , x2, x3, ...xk = 0 , xk+1, ..., xD−1 ∈ R

}
. (6.57)

Esto nos lleva a que Σ∞F y Σ∞G estén parametrizados por los siguientes mapas

φµF =
(
0, x1, x2 ... , xk, 0, 0, ... , 0

)
, (6.58)

φµG =
(
0, x1, 0 ... , 0, xk+1, xk+2, ... , xD−1

)
.

Considerando (6.58) en (6.55) obtenemos que podemos calcular el flujo de F sobre Σ∞F
simplemente como

ΦF (Σ
∞
F ) =

∫ α

−∞
dx1

∫ ∞
−∞

dx2 ...

∫ ∞
−∞

dxk F1 2 ... k

(
0, x1, x2 ... , xk, 0, 0, ... , 0

)
. (6.59)

Para proceder, calculamos el valor de expectación del conmutador mediante

⟨
[
ΦF (Σ

∞
F ),ΦG(Σ

∞
G )
]
⟩ =

∫
Σ∞

F

∫
Σ∞

G

⟨F (x), G(y)⟩ −
∫
Σ∞

F

∫
Σ∞

G

⟨G(y), F (x)⟩ , (6.60)

donde solo tenemos en cuenta los componentes relevantes presentados en (6.59) y su

análogo para ΦG. Considerando que la estructura tensorial en cuestión toma los valores

[P (k)∗̃]1 2 ... k 1k+1 .. D−1 = [∗P (k)]1k+1 .. D−1 1 2 ... k = (−1)k(D−k)+1 p1 p0 (6.61)

podemos integrar las funciones delta que aparecen en las integrales de los momentos

p2, p2, ...pd−1. La expresión resultante para el valor de expectación del conmutador
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⟨
[
ΦF (Σ

∞
F ),ΦG(Σ

∞
G )
]
⟩ es

(−1)kq+1

π

∫ α

−∞
dx1

∫ ∞
β

dy1

∫ ∞
0

dp0

∫ ∞
−∞

dp1δ(p
2
0 − p21) p1 p0 e

ip1(x1−y1) (6.62)

= (−1)kq
i

2π

∫ ∞
β

dy1

∫ α

−∞
dx1

∂

∂x1

∫ ∞
−∞

dp1 e
ip1(x1−y1) = i (−1)kq θ(α− β) .

La dependencia del resultado de la función de Heaviside θ(α − β) representa que el

conmutador sólo es no nulo cuando α > β. Es decir, cuando los ĺımites de los cuadrados

están enlazados. Por otra parte, el signo (−1)kq no es relevante para el resultado, ya

que el signo del conmutador también cambiará con la orientación de las superficies.

Como esperamos que el conmutador sea siempre un número, tenemos para cuadrados

enlazados que se extienden hasta el infinito que

[
ΦF (Σ

∞
F ),ΦG(Σ

∞
G )] = ±i . (6.63)

Podemos generalizar fácilmente este resultado a cuadrados finitos. Obtenemos el flujo

sobre un cuadrado finito ΣF restando al flujo sobre Σ∞F el flujo sobre otro cuadrado

infinito Σ̃F que termina en x1 < β. Tenemos la posibilidad de hacer lo mismo sobre

un cuadrado finito dual ΣG restando el flujo sobre Σ̃G que termina en x1 > α. Esto

significa que tenemos

ΦF (ΣF ) = ΦF (Σ
∞
F )− ΦF (Σ̃F ) , ΦG(ΣG) = ΦG(Σ

∞
G )− ΦF (Σ̃G) , (6.64)

donde hemos elegido las regiones Σ̃F y Σ̃G de manera que

[ΦG(Σ̃G),ΦF (Σ̃F )] = [ΦG(Σ̃G),ΦF (Σ
∞
F )] = [ΦG(Σ

∞
G ),ΦF (Σ̃F )] = 0 . (6.65)

Esto implica que el conmutador calculado sobre los cuadrados finitos enlazados ΣF y

ΣG es el mismo que el que se extiende hasta el infinito. A saber,

[ΦG(ΣG),ΦF (ΣF )] = [ΦG(Σ
∞
G ),ΦF (Σ

∞
F )] = ±i . (6.66)

Podemos aplicar el mismo argumento a otras deformaciones de las geometŕıas de ΣF y

ΣG que no cambian el hecho de que estén enlazadas. En resumen, el conmutador sobre

superficies enlazadas vendrá siempre dado por

[
ΦF ,ΦG] = ±i . (6.67)

Recordamos que el caso k = q = D/2 puede contener términos adicionales en

la función de dos puntos cruzada (6.50). Sin embargo, este nuevo término no puede
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cambiar el conmutador de los flujos. La razón es que la forma de P (k) es proporcional

a (6.37) y esto implica que estos nuevos términos5 son la doble derivada exterior (en

distintas coordenadas) de una (k − 1|q − 1)-biforma que llamamos K(x, y)

⟨F (x)G(y)⟩ = · · ·+ dx dyK(x, y) . (6.68)

Podemos ver que estos términos doblemente exactos no pueden cambiar el valor del

conmutador de dos maneras. Primero podemos insertarlos directamente en la expresión

para el conmutador de flujos y verificar que se anulan incluso cuando los flujos no están

trivialmente enlazados. En este caso, las componentes nuevas relevantes al calculo de

los conmutadores son

[P (k)]1 2 ... k 1k+1 .. D−1 = [P (k)]1k+1 .. D−1 1 2 ... k =


p21 if k = 1

p2p3 if k = 2

0 if k > 2

. (6.69)

Para k > 2 obtenemos trivialmente cero. Para k = 2 tenemos que sustituyendo en

(6.60) podemos escribir el término extra en (6.68) como∫
Σ∞

F

∫
Σ∞

G

∫
d4p

(2π)3
θ(p0) δ(p

2)P (2)(p) = (6.70)

=
1

π

∫ α

−∞
dx1

∫ ∞
β

dy1

∫
d4p θ(p0) δ(p

2) p2 δ(p2) p3 δ(p3) = 0 ,

donde integrando la función delta obtenemos que el término extra no contribuye al

conmutador. Para k = 1 procedemos de la misma manera y obtenemos∫
Σ∞

F

∫
Σ∞

G

∫
d2p

2π
θ(p0) δ(p

2)P (1)(p) = (6.71)

1

2π

∫ α

−∞
dx1

∫ ∞
β

dy1

∫
d2p θ(p0) δ(p

2) p21
(
eip1(x1−y1) − e−ip1(x1−y1)

)
= 0 ,

donde obtenemos el cero si cambiamos el signo de p1 en el segundo término. Resumiendo

obtenemos ∫
Σ∞

F

∫
Σ∞

G

∫
d2kp

(2π)2k−1
θ(p0) δ(p

2)P (k)(p) = 0 . (6.72)

Como esto es cierto para cualquier elección α y β, es válido para cuadrados enlazados

o no enlazados. Teniendo en cuenta que dF = 0 y dG = 0, las superficies pueden

deformarse de nuevo, lo que significa que el resultado (6.72) es válido para cualquier

elección de ΣF y ΣG.

5F́ısicamente, este tipo de términos corresponden a la correlación entre operadores lineales aditivos,
que, enlazados o no, debeŕıan conmutar debido a la microcausalidad.
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Otra forma de ver que los términos adicionales en el caso k = q = D/2 no afectan

el conmutador es cambiar a los correladores euclideos. Estos no son singulares excepto

en los puntos de coincidencia. Tomemos un disco k-dimensional ΣF con borde ΓF

en x0 = 0 y un disco q-dimensional ΣG en y0 = 0 con borde ΓG. Los bordes ΓF y

ΓG están simplemente enlazados entre śı. Sin cambiar los flujos podemos deformar

ΣF moviendo los puntos hacia el futuro en tiempo eucĺıdeo de forma que formemos

una nueva superficie Σ+
F con la misma frontera ΓF en x0 = 0. De forma análoga

formamos Σ−F deformando la superficie hacia el pasado. Considerando el tiempo como

vector eucĺıdeo τ̂ = (1, 0, · · · , 0), la expresión eucĺıdea para el valor de expectacion del

conmutador es

⟨[ΦF ,ΦG]⟩ = ĺım
ϵ→0

(∫
Σ+

F+ϵ τ̂

∫
ΣG

⟨F (x)G(y)⟩ −
∫
Σ−

F−ϵ τ̂

∫
ΣG

⟨F (x)G(y)⟩
)
. (6.73)

Es inmediato que la contribución de un término doblemente exacto como el de (6.68)

se anula. Esto es debido a que, como éste es exacto en x e y, obtenemos una expresión

donde la integración es en los bordes ΓG y ΓF ± ϵτ̂ . Estos dos términos son continuos

en el ĺımite ϵ→ 0 ya que sólo involucran correlaciones distantes, y se cancelan entre śı

en el ĺımite. No ocurre lo mismo con el término (6.43) que es exacto en cualquiera de

sus variables pero no en ambas a la vez. Podemos integrar este término sobre ΣG para

dar una forma armónica no exacta en RD − ΓG que contribuye de forma no trivial al

conmutador (6.73).

Visto a la luz del cálculo eucĺıdeo (6.73), el conmutador de flujos aparece como

un invariante topológico para dos superficies intersecantes de dimensiones k y q con

k+ q = D, una cerrada, Σ+
F ∪Σ−F , y otra abierta ΣG. Se denomina ı́ndice de Kronecker

para las superficies, y el correlador ⟨FG⟩ es la bi-forma “número de enlace” que permite

escribir este invariante topológico como una integral doble. Véase [191], caṕıtulo 33.

6.2.4. Positividad

En una teoŕıa unitaria, los correladores de la forma ⟨FF ⟩ deben ser semidefinidos

positivos ∫
ddx ddy ϕ∗(x) ⟨F (x)F (y)⟩ϕ(y) ≥ 0 . (6.74)

Esperamos que esto sea válido para todas las posibles funciones de prueba ϕ(x). Por

lo tanto, para cada p tenemos que

ϕ̂∗(p)P (k)(p) ϕ̂(p) ≥ 0 , (6.75)

lo que lleva a que la estructura tensorial en el espacio de momentos sea semidefinida

positiva. Esto es cierto para P
(k)
µν como se define en (6.45). Podemos comprobarlo fácil-
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mente fijando p en la dirección temporal. Para p2 = 0 la positividad de esta matriz se

deduce porque es el ĺımite de una matriz semidefinida positiva.

Además, las restricciones de positividad se aplican por separado a las funciones delta

no masivas y a las medidas remanentes de Kallen-Lehmann ρF (s) y ρG(s) que incluimos

en (6.41) y (6.42). Eligiendo un smearing en (6.75) con p2 ̸= 0, la positividad de los

correladores ⟨FF ⟩ y ⟨GG⟩ implica que ρF (s) y ρG(s) son medidas positivas en [0,∞).

Además, para distribuciones temperadas, ρF (s), ρG(s) tienen que ser como mucho de

crecimiento polinomial en el infinito. Por otro lado, podemos deducir la positividad de

los términos que incluyen funciones delta no masivas a partir de la positividad en el

ĺımite IR, donde éstas constituyen la única contribución restante. En este contexto,

recuperamos que las constantes que multiplican las funciones delta deben obedecer

aF , aG ≥ 0.

Para este caso particular, la positividad de la matriz de los correladores cruzados

nos añade una nueva restricción sólo para p2 = 0. Hemos elegido convenientemente la

normalización de (6.45) de modo que P (q)(p) = ∗P (k)(p) ∗̃. Véase (6.46). Por lo tanto,

podemos escribir la matriz de correladores cuando p2 = 0 de la forma(
aF P

(k) P (k) ∗̃
∗P (k) aG ∗ P (k) ∗̃

)
. (6.76)

El requisito en cuestión es que (6.76) debe ser una matriz semidefinida positiva. En-

tonces, se deduce que la positividad para p2 = 0 da

aF aG ≥ 1 . (6.77)

En particular, esto obliga a lo coeficientes aF y aG a ser distintos de cero, lo que significa

que aF , aG > 0. Este resultado, combinado con la forma espećıfica de los correladores

(6.41) y (6.42), implica que la teoŕıa tiene una part́ıcula sin masa.

Nos queda analizar los casos especiales. Cuando k = q = D/2 los correladores

tienen los términos adicionales descritos en (6.48-6.51). Para la parte masiva, seguimos

teniendo ρF , ρG ≥ 0. Para el sector p2 = 0, si k es par, obtenemos aF , aG ≥ 0 y

aFaG ≥ 1+ c2. Por otro lado, si k es impar tenemos que 0 ≤ |bF | ≤ aF y 0 ≤ |bG| ≤ aG,

y la matriz de correladores cruzados produce que aFaG + bF bG ≥ 1 + c2. Nótese que la

combinación de ambas restricciones en cada caso implica la existencia de una part́ıcula

sin masa.

En el caso D = 2k − 1, la función de dos puntos ⟨GG⟩ permanece inalterada

y seguimos recuperando ρG(s) ≥ 0. Sin embargo, para el ⟨FF ⟩ definido por (6.53),

podemos comprobar que

0 ≤ |ρCS(s)| ≤
√
sρF (s) . (6.78)
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Esto obliga a ρCS(s) a desaparecer para s = 0 y no altera la desigualdad (6.77) ni los

resultados obtenidos para el sector p2 = 0.

6.3. Simetŕıas de forma invariantes de escala

A continuación analizamos las simetŕıas de forma en teoŕıas invariantes de escala.

Comenzamos mostrando que si la simetŕıa de forma es no compacta, entonces los

campos que generan dicha simetŕıa deben ser libres y sin masa. Luego, estudiamos

el caso más general de un único campo de forma conservado, y clasificamos distintas

posibilidades que existen en dicho caso.

6.3.1. Simetŕıas de forma no compactas invariantes de escala

Consideremos el caso de la simetŕıa de forma no compacta generada por los campos

F y G en una teoŕıa invariante de escala. Sean las dimensiones de F y G dadas por ∆F

y ∆G respectivamente. Esto implica que debemos introducir las densidades espectrales

ρF (s) ∼ s∆F−D/2−1 , ρG(s) ∼ s∆G−D/2−1 . (6.79)

El hecho de que ρF y ρG deban ser medidas integrables implica las cotas de unitaridad

∆F ,∆G ≥ D/2 . (6.80)

En el caso concreto de la dimensión D/2 que satura el ĺımite de unitaridad, debemos

sustituir la medida espectral por δ(s) en lugar de s−1 debido a que esta última no es

integrable en s = 0. Por otra parte, los correladores (6.43-6.44) nos requieren que

∆F +∆G = D . (6.81)

Combinando (6.80-B.16), tenemos que ∆F = ∆G = D/2. Esto implica la saturación

de la cota de unitaridad, y que la medida espectral es proporcional a δ(s). Entonces,

las funciones de dos puntos satisfacen □x⟨F (x)F (y)⟩ = 0. A partir de aqúı, por el

argumento estándar de que

⟨□F (x)|□F (y)⟩ = 0 ⇒ □F (x)|0⟩ = 0 ⇒ □F (x) = 0 , (6.82)

obtenemos ecuaciones de movimiento libres para el campo (véase, por ejemplo, [192]).

Como es bien sabido, esto implica que el campo es libre. Los campos se pueden nor-

malizar como F = ∗G.6
6El término impar de paridad en D = 2k − 1 no puede aparecer en el punto fijo, y el conteo de

potencias para el caso k = q = D/2 no se altera.
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Otra forma de llegar a esta conclusión es utilizar un teorema de Buchholz y Fre-

denhagen que implica que para una teoŕıa invariante de escala una part́ıcula sin masa

es una part́ıcula libre [193]. Es precisamente el contenido de part́ıcula libre de la teoŕıa

el responsable de los términos δ(s) en las funciones espectrales, en particular para la

forma de ⟨FG⟩ que necesitamos para tener la simetŕıa de forma no compacta.

Un campo que satisface la ecuación de Klein Gordon es libre

Como mencionamos, que un campo satisfaga la ecuación de Klein Gordon implica

que el campo en cuestión libre. Existen varias pruebas de este hecho. A continuación

presentamos un breve resumen de las referencias que pueden encontraren la literatura.

Además, presentamos una prueba alternativa simple basada en las propiedades de las

funciones armónicas. Para comenzar veamos que en este contexto, libre significa que

el conmutador del campo consigo mismo es númerico o que el campo es gaussiano y

tiene funciones de n puntos que satisfacen el teorema de Wick. Ambas propiedades son

equivalentes para un campo de Wightman, y caracterizan a los generalized free fields

[194]. El caso masivo se trató primero en [195, 196]. El caso sin masa se demostró en

[197], incluyendo el caso más sutil de D = 2, donde el enunciado se aplica a campos

vectoriales quirales. Este último trabajo demuestra que el conmutador tiene que ser un

número a partir de las propiedades de soporte copacto de las funciones de correlación

en el espacio de momento y la condición espectral. La misma conclusión se sigue del

resultado [198] que establece que si el soporte de un campo en el espacio de momento

no contiene la vecindad de un punto espacial entonces el campo es un generalized

free field. De hecho, la ecuación de movimiento implica que el campo tiene soporte

en el cono nulo (un mass-shell para el caso masivo) en el espacio de momento. Más

recientemente, el teorema ha sido revisado en [199], donde el énfasis está en propiedades

de la propagación de ecuaciones hiperbólicas y una descripción algebraica.

Ahora, mostraremos que una prueba sencilla se deduce de las propiedades de las

funciones armónicas en la versión eucĺıdea de la teoŕıa. Pensemos primero en un campo

escalar para simplificar. El correlador eucĺıdeo S(x, y1, · · · , yn) es una función anaĺıtica

real de x excepto en los puntos y1, · · · , yn. Además, es una función armónica en dicho

dominio debido a las ecuaciones de movimiento □ϕ = 0. También, cae a cero en el

infinito y diverge como a lo sumo como una potencia cerca de los puntos y1, · · · , yn
[200]. Por la expresión general de una función armónica en RD−{y1, · · · , yn}, tenemos

una descomposición en los diferentes términos singulares para cada yi que tiene la forma

[201]

S(x, y1, · · · , yn) =
n∑
i=1

r∑
m=0

qm,i[x− yi]

|x− yi|2m+D−2 . (6.83)

Los qm,i son polinomios armónicos homogéneos de grado m en las coordenadas de x−yi
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cuyos coeficientes pueden depender de los puntos yj ̸= yi, y r es un entero positivo.

Podemos deducir esta descomposición esencialmente de la unicidad de las funciones

armónicas una vez fijado el comportamiento en el borde y en los puntos singulares.

Si utilizamos esta expresión para x → x + a, yi → yi + a, en el ĺımite |a| →
∞, se deduce de la propiedad de clustering de los correladores que r = 0 y q0,i =

S(y1, · · · , ŷi , · · · , yn) , donde ŷi representa una variable omitida. Hemos normalizado

la función de dos puntos para que sea |x− y|−(D−2). Esto nos da la gaussianidad

S(x, y1, · · · , yn) =
n∑
i=1

S(y1, · · · , ŷi , · · · , yn)
|x− yi|D−2

. (6.84)

Para campos armónicos en una representación arbitraria de esṕın y D > 2 la

gaussianidad se obtiene en la misma ĺınea. Una descomposición análoga a (6.83) es

válida para el caso masivo en términos de soluciones elementales de la ecuación de

Klein Gordon eucĺıdea, las cuales son singulares en un único punto. Entonces, podemos

extender la misma derivación a campos que obedecen ecuaciones lineales masivas.

Para D = 2, utilizando coordenadas complejas, tenemos □ = ∂z∂z̄. Entonces, para

los operadores quirales en las CFT de D = 2, como las corrientes o el tensor de enerǵıa-

momento, todos los correladores son armónicos (holomorfos en este caso) y por lo tanto,

de acuerdo con (6.83), las funciones de correlación son meromorfas. La estructura

singular del OPE es suficiente para calcular las funciones de correlación completas

en forma cerrada. Véase [202]. Sin embargo, estos correladores no son necesariamente

gaussianos y, en general, la función de dos puntos no es suficiente para determinarlos.

La novedad aqúı es que los coeficientes de qm,i pueden depender de yi para D = 2, y el

correlador sigue siendo armónico en yi, mientras que esto no puede ocurrir en D > 2.

Esto tiene el efecto de que hay términos en x− yi en (6.83) tales que qm,i puede decaer

a cero en el ĺımite |a| → ∞, haciendo que este término sea invisible en el ĺımite de

clustering. Sin embargo, una corriente quiral es siempre gaussiana.

6.3.2. Una simetŕıa de forma continua invariante de escala

En esta sección analizamos el caso más general de una única simetŕıa de forma

continua en una teoŕıa invariante de escala. Consideramos que esta está generada por

el campo H con h ı́ndices antisimétricos. Utilizamos otra letra para este campo para

no confundirlo con el análisis de F,G en el resto del caṕıtulo. Este análisis no es

estrictamente necesario para los propósitos de este caṕıtulo, centrado principalmente

en el caso no compacto, pero queremos destacar que incluso si sólo se tiene invariancia

de escala muchas de las caracteŕısticas que se siguen de la invariancia conforme aparecen

a partir del análisis de la simetŕıa generalizada.

Vemos que la dimensión de escala ∆H de este campo resulta ser D/2 o h para
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h ≥ D/2. La razón es muy sencilla. Si ∆H ̸= h los operadores no locales eiα
∫
Σ dσH

tienen un parámetro α que transforma de forma no trivial ante transformaciones de

escala. Esto significa que las clases HDV no locales de estos operadores (la carga de

la simetŕıa de forma esta etiquetada por α) cambian con la escala. Como las clases

HDV no son invariantes bajo un grupo de simetŕıa continuo, vimos en el caṕıtulo

anterior que la simetŕıa de forma debe ser continua. En este caso particular, implica

que la simetŕıa es no compacta. Por ende, necesariamente existe una simetŕıa de forma

dual continua, digamos generada por H̃ con D − h ı́ndices. Como hemos visto, la

única forma de que el correlador de H y H̃ tenga el término necesario para producir

conmutadores numéricos entre los flujo es que ambos campos tengan la dimensión libre

D/2. Otra forma de decir esto es que los operadores de flujo ΦH ,ΦH̃ , que generan las

transformaciones de simetŕıa de forma, deben tener conmutador i. La transformación

invariante de escala asociada a un parámetro λ multiplica uno de los flujos por λ∆H−h y

entonces el otro debe transformarse con exponente h−∆H . Esto nos da una dimensión

de escala ∆H̃ = D −∆H , y una de las dos es incompatible con el ĺımite de unitaridad

excepto en el caso libre, donde ambas son iguales a D/2. Luego, también tenemos la

posibilidad de ∆H = h, para h > D/2. En este caso, la simetŕıa de forma es invariante

bajo escaleos pero no puede ser una simetŕıa no compacta ya que no puede existir una

forma dual con dimensión D − h < D/2. Debe ser entonces una simetŕıa compacta

U(1).

En resumen, una forma cerrada H con h indices en una teoŕıa invariante de escala

debe encontrarse en una de las siguientes posibilidades mutuamente excluyentes:7

(a) H es un campo libre con dimensión ∆H = D/2, que genera una simetŕıa de forma

no compacta junto con su correspondiente campo dual ∗H.

(b) H tiene dimensión ∆H = h con h > D/2, generando una simetŕıa de forma U(1)

continua pero compacta.

(c) H es una forma exacta, es decir, es una derivada total H = dϕ con ϕ un campo

invariante de gauge. En este caso H no genera una simetŕıa de forma.

En el último caso el campo es cerrado, pero no produce una simetŕıa de forma porque

los flujos son locales sus bordes. Aun aśı, el caso h = 1 puede ser una simetŕıa de

forma en el caso de que la simetŕıa dual sea una simetŕıa global y la transformación de

simetŕıa actúe como ϕ→ ϕ+ constante para el campo escalar ϕ. Pero, éste sólo puede

ser un campo escalar ϕ libre sin masa, y ya cubrimos este caso en el punto (a).

7Suponemos que puede definirse una red aditiva para regiones causales basadas en la superficie
t = 0, de modo que la simetŕıa de forma pueda definirse correctamente. Esto elimina expĺıcitamente
los generalized free fields. En este sentido, alcanza con que la teoŕıa contenga un tensor de enerǵıa-
momento, pero podŕıa valer de forma más general.
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Durante el razonamiento anterior no consideramos simetŕıa conforme, sino sólo

argumentos asociados a violaciones de dualidad de Haag que implican la existencia de

simetŕıas duales generalizadas. Sin embargo, es interesante analizar las implicaciones

de la invariancia conforme por si misma sin apelar estas ideas.8

Un campo primario h-forma H tiene una cota de unitariedad ∆H ≥ máx(h,D −
h) [204–207]. Puede ser cerrado sólo para ∆H = h ≥ D/2, cuando satura la cota

unitaridad. A la inversa, es co-cerrado para ∆H = D − h, h ≤ D/2. El único caso

libre es para D par con h = D/2. Fuera de estos casos, el campo cerrado no puede

ser primario. Pero, nos resta analizar si puede ser un campo descendente, es decir, una

derivada de un campo primario. Una derivada puede añadir un ı́ndice al campo, en cuyo

caso sólo permitimos una derivada porque H es antisimétrico, es decir, tendŕıamos

H = dϕ para algún primario (h − 1)-forma ϕ. Otra posibilidad seŕıa que tengamos

Hµ1···µh = ∂α1 · · · ∂αnϕµ1···µhα1···αn para un campo primario ϕµ1···µhα1···αn antisimétrico

en los ı́ndices µ y simétrico en los α. Sin embargo, dicho campo no puede ser cerrado

porque dichos campos primarios no obedecen ecuaciones de conservación a menos que

se encuentren en el ĺımite de unitaridad, y en tal caso la divergencia es cero [207]. La

tercera y última posibilidad seŕıa que H = δϕ para un primario antisimétrico ϕ. La

conservación implica que ϕ es libre, y eso implica que el número de ı́ndices en ϕ es D/2,

y que δϕ = 0. Por tanto, para una CFT tenemos el mismo resultado que en el caso

anterior, con el añadido de que el caso (a) sólo puede darse para h = D/2. Resumiendo,

si tenemos un punto fijo conforme con una simetŕıa de forma no compacta, sólo puede

corresponder a la teoŕıa de dos campos de forma primarios y libres de dimensión D/2

(como en el campo de Maxwell para D = 4).

Si volvemos al caso general, es importante que las simetŕıas de forma de los casos

(a) y (b) no estén saturadas. Equivalentemente, no podemos haber llegado a un ĺımite

topológico en el que los operadores unitarios no locales tengan valor de expectación 1

o 0. Estos casos sólo pueden ser el resultado de un ĺımite, pero nunca ser producidos

por operadores reales existentes en la teoŕıa. Por ejemplo, tomemos una región R con

la topoloǵıa de un Sk−1 × T siendo T un subconjunto compacto de RD−k+1. Entonces,

podemos formar el operador unitario

W (q) = ei q
∫
ω(x)H(x) , (6.85)

donde q es la carga asociada a la clase HDV no local y ω(x) es una función de smearing

tal que

δω(x) = J(x) , J(x) = 0 si x /∈ R . (6.86)

Como vimos en el caṕıtulo 3, esta condición garantiza que W (q) corresponda a un

8Véase [163, 203] para un análisis similar en el caso conforme.
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operador localizado en R en el sentido de que conmuta con operadores locales en R′.

Por otro lado, para tener carga q necesitamos normalizar el flujo de J en una sección

S de R ∫
S

J = 1 . (6.87)

El valor de expectación de este operador unitario está acotado como 0 < |⟨0|W (q)|0⟩| <
1. No puede ser igual a 1 porque en ese caso W (q)|0⟩ = |0⟩ debido a la desigualdad

de Cauchy-Schwartz. Por el teorema de Reeh-Schlieder si (W (q) − 1)|0⟩ = 0 para un

operador local entonces W (q) = 1, que no es el caso. De la misma manera no puede

ser ⟨0|W (q)|0⟩ = 0 para todo q. Si ése fuera el caso, como W (q) no puede aniquilar

el vaćıo, debe convertirlo en un vector unitario ortogonal |q⟩. De ello se seguiŕıa que

todos los |q⟩ son ortogonales entre śı para el parámetro continuo q, lo que es imposible.

Esto tiene una implicación interesante en cualquier teoŕıa en la que exista un campo

cerrado F (no necesariamente asociado a una simetŕıa no compacta). En ese caso, o bien

el campo es una derivada total F = dϕ, o bien el punto fijo UV contiene violaciones de

dualidad de Haag. Es decir, las violaciones de dualidad de Haag no pueden convertirse

en topológicas en el UV. Esto contrasta con los casos de sectores no continuos, como el

caso de las teoŕıas de Yang Mills asintóticamente libres donde la simetŕıa generalizada

discreta se satura en el UV [57].

6.4. Flujo del grupo de Renormalización

En esta sección probamos que una teoŕıa con simetŕıas de forma no compacta tiene

un sector libre sin masa. Tales resultados descienden de la prueba invariante de escala,

presentada en la sección 6.3.1, mediante argumentos relacionados al flujo del grupo de

renormalización (RG). Por lo tanto, para continuar, haremos la suposición habitual

de que una teoŕıa UV completa tiene un punto fijo UV invariante de escala, y que

la teoŕıa completa surge perturbando dicho punto fijo UV. Para el problema que nos

interesa, de hecho, necesitamos suponer menos estructura, básicamente que hay un

punto fijo UV invariante de escala, y que a los campos cuánticos en este punto fijo

corresponden campos cuánticos (Wightman) en la teoŕıa completa, y viceversa. Dado

que los detalles de la relación esperada entre el punto fijo UV y la QFT correspondiente

rara vez se explican con detalle, nos esforzaremos por ser más precisos en lo que sigue.

En este escenario analizaremos las restricciones sobre la QFT completa que surgen de

la existencia de un punto fijo UV con una simetŕıa de forma no compacta. Aunque

la existencia de un punto fijo invariante de escala es una suposición en esta tesis,

observamos que esto se ha demostrado bajo la condición de ciertas propiedades del

espacio de fases que restringen el aumento del número de grados de libertad a altas

enerǵıas [208].



190 Cargas en la completación UV de una electrodinámica Neutra

6.4.1. Suposiciones sobre el flujo del RG y el ĺımite UV

Puesto que la existencia de una completación, o un ĺımite UV de la teoŕıa, es

bastante central para nuestros argumentos, vamos a ser expĺıcitos sobre los supuestos

implicados en esta idea. Describimos la QFT y su punto fijo UV mediante el conjunto

de sus campos de Wightman. Suponemos que el punto fijo UV es una teoŕıa invariante

de escala.

Formalmente, dado un campo φ, suponemos que siempre hay un ∆ > 0 tal que

ĺım
λ→0

λα⟨φ(λx)φ(0)⟩ = 0 , ∀ α > ∆ , (6.88)

ĺım
λ→0

λα|⟨φ(λx)φ(0)⟩| = ∞ , ∀ α < ∆ . (6.89)

De esta manera, decimos que dicho campo φ tiene dimensión asintótica ∆. En una

teoŕıa invariante de escala para campos irreducibles esto coincide con la dimensión de

escala. Suponemos, tanto para el punto fijo UV como para la QFT, que el espacio

lineal de campos con dimensión menor que cualquier ∆ es de dimensión finita y que los

campos se encuentran en representaciones de dimensión finita del grupo de Lorentz.

Ésta es una condición necesaria para muchos de los requisitos habituales de una QFT,

por ejemplo tener una función de partición finita.

Para continuar, con respecto a la relación entre la QFT y su punto fijo UV, haremos

las siguientes suposiciones:

(a) Para cada φ de la QFT existe una función Zφ(λ) y un campo φ0 en el punto fijo

UV (llamamos φ0 al ĺımite UV de φ), único a excepción de la normalización, tal

que

ĺım
λ→0

⟨Zφ(λ)φ(λx1) · · ·Zφ(λ)φ(λxn)⟩ = ⟨φ0(x1) · · ·φ0(xn)⟩ . (6.90)

Las funciones Zφ(λ) son altamente no únicas pero su ĺımite asintótico esta bas-

tante restringido. En particular

ĺım
λ→0

λ−α Zφ(λ) = 0 , si α < ∆ , (6.91)

ĺım
λ→0

λ−α Zφ(λ) = ∞ , si α > ∆ , (6.92)

donde ∆ es la dimensión de escala de φ0. De aqúı se deduce que φ0 tiene una

dimensión de escala única y que se corresponde con una única representación de

esṕın. Estas coinciden con la dimensión asintótica y el esṕın de φ. Escribimos

este mapeo de campos (a excepción de la normalización) como M(φ) = φ0,

o simplemente φ → φ0. Este mapeo es generalmente muchos a uno porque a

partir de una combinación lineal de campos en la QFT, sólo la componente de

dimensión más alta sobrevive en el ĺımite UV. También, deducimos que para una
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combinación irreducible no nula de derivadas de φ, que para abreviar escribimos

como ∂φ, y tal que ∂φ0 ̸= 0, tenemos M(∂φ) = ∂φ0, donde Z∂φ(λ) = λZφ(λ).

Si ∂φ = 0 lo mismo vale para φ0, es decir ∂φ0 = 0.

(b) Existe una base lineal B0 de los campos en la teoŕıa UV, que tiene representación

de esṕın y dimensión de escala definidas, y una base B para los campos de la

QFT, tal que para cada uno de los campos φ0 ∈ B0 hay un único (excepto la

normalización) N (φ0) = φ ∈ B, tal que M(φ) = M(N (φ0)) = φ0. La idea f́ısica

detrás de esta suposición es que los campos irreducibles en el punto fijo UV (en

una cierta base en el caso de tener un espectro degenerado) generan campos en la

QFT una vez que perturbamos la teoŕıa fuera del punto fijo. De esto deducimos

que para cada ∆̃ > 0, los campos en N ({φ0 ∈ B0,∆φ0 < ∆̃}) forman una base

lineal para todos los campos en la QFT con dimensión asintótica menor que ∆̃,

y que las dimensiones de ambos espacios es la misma. Esperamos que cualquier

φ → φ0 conduzca a un φ0 ∈ B0, exeptuando posibles degeneraciones debidas a

simetŕıas. Más en general, para tal φ→ φ0, donde φ0 se descompone linealmente

en un subconjunto φi0 ∈ B0, podemos descomponer linealmente el campo φ en

los elementos φi de B asociados a φi0 más (eventualmente) campos de menor o

igual dimensión. Combinando estas ideas con el supuesto (a), pedimos que las

funciones de correlación obedezcan que

ĺım
λ→0

⟨Zφi1 (λ)φ
i1(λx1) · · ·Zφin (λ)φin(λxn)⟩ = ⟨φi10 (x1) · · ·φin0 (xn)⟩ . (6.93)

(c) Para cualquier φ0 ∈ B, con N (φ0) = φ, y cualquier campo irreducible no nulo

formado a partir de las derivadas de φ0, que para abreviar llamaremos ∂φ0,

suponemos que ∂φ0 ∈ B0 y N (∂φ0) = ∂φ ∈ B.

Algunas de las ideas anteriores han requerido una comprensión más cuidadosa de

la relación entre una QFT y su ĺımite UV. Aunque estos son supuestos usualmente

impĺıcitos en la nocion de una teoŕıa en el ĺımite UV, seŕıa importante tener una

derivación de estas propiedades desde un punto de vista más general. Aunque no nos

ocuparemos aqúı de esta investigación, observamos que los avances en los estudios

matemáticos de la QFT en las últimas décadas ayudan a delinear los contornos de

estos supuestos usualmente utilizados. A continuación, revisamos brevemente parte

este progreso incluyendo las referencias relevantes.

La idea del grupo de renormalización puede formular precisamente en el contexto

algebraico de AQFT mediante la idea de álgebras escaleables (“scaling algebras”) [209].

Estas también pueden ser usadas para definir apropiademente una teoŕıa en el ĺımite

UV. En general la complicación reside en que, dicho ĺımite puede no ser único, o puede

ser clásico (en el sentido de que todos los operadores conmutan). Más aún, podemos
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construir ejemplos que “fallan” utilizando generalized free fields9. Como ocurre para

cualquier campo, el crecimiento polinómico de la función de dos puntos en el espacio

de momento obliga a que exista un ∆ tal que (6.88) se cumpla [210]. Pero (6.88-6.89)

no se cumplen necesariamente para el mismo ∆. Luego, es posible diseñar una función

espectral de Kallen-Lehmann para el correlador del generalized free field tal que su

comportamiento a corta distancia oscile entre diferentes dimensiones de escala y nunca

converja realmente.

Para controlar el comportamiento de la teoŕıa ĺımite, y eliminar estos casos, es

necesario introducir una condición sobre el espacio de fases que limite el crecimiento del

número de grados de libertad a altas enerǵıas. Con tal fin, en el contexto algebraico, se

han introducido varias condiciones sobre el espacio de fases. Una de estas condiciones

es llamada compacidad uniforme (“uniform compactness”), y garantiza la unicidad

del ĺımite y la convergencia a una QFT invariante dilatacional [208]. Otra “condición

microscópica del espacio de fases” se ha introducido en [30], y se demostró que bajo

esta condición existe un número finito de campos de esṕın finito con dimensiones de

escala por debajo de cualquier número fijo ∆ [211]. Las simetŕıas globales internas

(rotas o no rotas) y espacio-temporales de la QFT se preservan en el ĺımite del escaleo,

y pueden obtenerse análogos de las funciones de renormalización Zφ(λ) presentadas en

(6.90) [211]. Inclusive, esta condición de espacio del fases es lo suficientemente fuerte

como para permitir un OPE [212].

En conclusión, gran parte de las suposiciones del presente trabajo respecto al ĺımite

UV se derivan de las condiciones del espacio de fases que, a grandes rasgos, podemos

entender como restricciones al crecimiento del número de grados de libertad en el UV.

Por ejemplo, basta con que este crecimiento esté acotado por arriba por el corres-

pondiente a un número finito de campos libres en un número finito de dimensiones

espacio-temporales ≥ D. Sin embargo, la coincidencia con nuestros requisitos no es

completa. Por ejemplo, [211] sólo prueba que el número de campos φ0 independientes

del punto fijo UV con dimensión de escala por debajo de cierto ∆ es menor o igual que

el número de campos linealmente independientes φ de la QFT por debajo de la misma

dimensión.

6.4.2. Filtrado de campos libres en el UV

Analicemos las distintas posibilidades de los ĺımites UV F0, G0 de los campos F,G.

Estos satisfacen dF0 = dG0 = 0. Empecemos por la hipótesis más sencilla en la que la

simetŕıa de forma se genera en el UV por los campos ĺımite F0, G0. Como comentamos

en la sección 6.3, esto implica que ambos campos tienen dimensión D/2. Las correla-

9Estos se definen por una función espectral de Kallen-Lehmann en el correlador de dos puntos y
el teorema de Wick. Véase apendice A.
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ciones de estos campos UV serán proporcionales a una δ(p2) en el espacio de momento.

El requisito de que el término de enlace en ⟨FG⟩ no sea borrado por la renormali-

zación implica que las funciones de renormalización tienen un ĺımite ZF ∼ λD/2 Z0
F ,

ZG ∼ λD/2 Z0
G, con Z0

F y Z0
G finitos. Utilizando la notación de (6.41-6.44), obtene-

mos cuando p2 = 0 para los coeficientes de las estructuras tensoriales normalizadas en

matriz de correladores cruzados de F0 y G0:(
(Z0

F )
2 (aF +

∫
ds ρF ) Z0

F Z
0
G

Z0
F Z

0
G (Z0

G)
2 (aG +

∫
ds ρG)

)
. (6.94)

Simplifiquemos aún más el escenario suponiendo que no hay degeneración en la dimen-

sión de escala ni en los espines de F0 y G0. Por lo tanto, podemos normalizar F0 y G0

de tal manera que F0 = ∗G0, y los coeficientes de la matriz anterior sean todos iguales

a uno. De aqúı obtenemos un determinante cero, lo que nos lleva a la condición(
aF +

∫
ds ρF

) (
aG +

∫
ds ρG

)
= 1 . (6.95)

Sin embargo, la positividad en el ĺımite IR implica aF aG ≥ 1, (6.77). Combinando con

la positividad de ρF y ρG tenemos que

ρF = 0 , ρG = 0 . (6.96)

Por ende, tenemos funciones de correlación que obedecen a la ecuación de Klein Gordon

sin masa, y en consecuencia una teoŕıa libre. No es dif́ıcil darse cuenta de que siguiendo

el mismo cálculo, el caso ligeramente más complicado de k = q = D/2, donde pode-

mos encontrar términos mixtos en la matriz de correladores de la forma (6.48-6.51),

obtenemos de nuevo a campos libres.

Otra forma de decir esto es que como vale la relación dualidad F0 = ∗G0 con F0

el único campo que encontaramos para la dimensión de escala y esṕın en cuestion, los

campos N (F0) ∼ F y N (∗G0) ∼ ∗N (G0) ∼ ∗G son proporcionales entre śı. Esto

produce que

dF = d ∗ G = 0 ⇒ δ G = 0 ⇒ □G = (d δ + d δ)G = 0 , (6.97)

y lo mismo ocurre para F a partir de dG = 0.

Podemos considerar el caso más general en el que las dimensiones de escala D/2

y los espines de F,G en el UV son degenerados, pero dichos campos siguen teniendo

renormalizaciones finitas. En este caso obtenemos una descomposición

F = F̃ + F1 , G = G̃+G1 . (6.98)
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Los campos F̃ y G̃ son responsables de la simetŕıa de forma en el UV,10 y podemos ele-

girlos de forma que F̃ = ∗G̃. Los campos F̃ , F1, G1 son libres y no están correlacionados

en el UV. Si F1 y G1 estuvieran correlacionados en el UV tendŕıamos una componente

F1 = ∗G̃1 que podŕıamos absorber en las definiciones de F̃ y G̃. Seguiŕıamos teniendo

dF = dF̃ + dF1 = 0, dG = dG̃ + dG1 = 0, pero los campos individuales F̃ , G̃, F1, G1

podŕıan no ser cerrados fuera del punto fijo. Ciertamente resulta un escenario muy

particular. No obstante, vemos que el análisis de positividad sigue misma ĺınea que el

cálculo anterior dando de nuevo un resultado libre. Debido a su extension presentamos

los detalles de este calculo debajo.

Solamente resta analizar el caso cuando al menos uno de los campos tiene renor-

malización infinita. Con esto queremos decir que la integral de la medida espectral

es divergente,
∫
ds ρ(s) = ∞. En este caso la función de dos puntos es más singular

que la libre, y no es dif́ıcil ver que Z(λ) tiene que tender a cero más rápido que la

correspondiente a un campo libre:

ĺım
λ→0

Z(λ)λ−D/2 = 0 . (6.99)

En particular, tendremos entonces

ĺım
λ→0

ZF (λ)ZG(λ)λ
−D = 0 . (6.100)

En este caso, los flujos, luego de que realizamos el escaleo correspondiente,

Φλ
F = ZF (λ)

∫
ΣF

F (λx) = ZF (λ)λ
−k
∫
λΣF

F (x) −→λ→0 ΦF0 =

∫
ΣF

F0(x) , (6.101)

Φλ
G = ZG(λ)

∫
ΣG

G(λx) = ZG(λ)λ
−q
∫
λΣG

G(x) −→λ→0 ΦG0 =

∫
ΣG

G0(x) , (6.102)

se conservan y una versión con smearing de ellos tiene valores de expectación finitos

en el ĺımite UV. Sin embargo, el conmutador llega a cero en el UV debido a que

[Φλ
F ,Φ

λ
G] = i ZF (λ)ZG(λ)λ

−D → 0 . (6.103)

En otras palabras, los campos UV F0, G0 son cerrados, pero su función de correlación

cruzada no contiene el término de número de enlace. La razón es que, como vimos

anteriormente, dicho término no se renormaliza en la QFT, y por ende se borra por

renormalización en la teoŕıa UV.

Si el campo UV F0 = dϕ0 es exacto, tenemos un campo ϕ en la QFT tal que ϕ→ ϕ0.

Deducimos, entonces, que dϕ es una componente de F . Podemos simplemente eliminar

esta componente y redefinir F → F −dϕ. El nuevo campo sigue siendo cerrado, y sigue

10Más exactamente, sus ĺımites UV F̃0 y G̃0 son responsables de la simetŕıa de forma no compacta.
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generando la misma simetŕıa de forma no compacta, porque ésta no puede cambiarse

por la adición del campo exacto. De este modo eliminamos la posibilidad de que F0 sea

(f́ısicamente) exacto en el UV. Lo mismo ocurre con G0.

Por otro lado, si F0, G0 no son exactos, generan simetŕıas de forma no triviales en

la teoŕıa UV, y estas simetŕıas de forma no son duales entre śı. Podemos definir los

operadores de flujo no locales unitarios y escaleados por analoǵıa con (6.85-6.87) como

W λ(q) = ei q ZF (λ)
∫
dDx ω(x)F (λx) , (6.104)

donde δω = J tiene soporte en una región fija topológicamente no contractible R, con

carga unitaria, véase (6.87) o para más detalles el caṕıtulo 3. El ĺımite débil de este

operador no local da lugar a un operador no local basado en R, con carga q en la teoŕıa

ĺımite UV

ĺım
λ→0

W λ(q) = W 0(q) = ei q
∫
dDx ω(x)F0(x) . (6.105)

Por tanto, por el análisis general revisado en el caṕıtulo 2, sabemos que deben exis-

tir operadores duales T 0(g) con valores de expectacion no saturados, y relaciones de

conmutación

W 0(q)T 0(g) = ei q g T 0(g)W 0(q) . (6.106)

Estos T 0(g) están generados por el campo de forma dual ∗F0 en caso de que el UV sea

libre. Sino, cuando elegimos que el grupo U(1) corresponda a q ∈ [0, 1), los operadores

T 0(g) tienen cargas discretas g ∈ 2πn. En cualquier caso, fuera del punto fijo, los

W λ(q) son auténticos operadores no locales de la teoŕıa. Entonces, para regiones finitas

pequeñas, a medida que λ → 0, debe existir un conjunto de operadores T λ(g) que

satisfagan (6.106) con W λ(q) también en la teoŕıa completa, y tales que sus valores de

expectacion converjan a los de T 0(g).

Podŕıamos buscar los operadores T λ(g) entre los generados por los flujos de G, pero

esto es imposible. Si intentamos mantener fijo el conmutador de los dos operadores no

locales como λ → 0, por analoǵıa con (6.104) tenemos que tomar un operador de la

forma

T λ(g) = ei g Z
−1
F (λ)Z−1

G (λ)λD
∫
dDx ω̃(x)ZG(λ)G(λx) ∼ ei g (Z

−1
F (λ)Z−1

G (λ)λD)
∫
dDx ω̃(x)G0(x) .

(6.107)

Esto nos conduce a un escaleo del flujo de G demasiado poco suprimido para producir

un operador con valor de expectacion no nulo en el ĺımite.

En otras palabras, esto significa que las violaciones de dualidad de la teoŕıa forman

un grupo mayor, por ejemplo R×U(1) o mayor, en lugar de sólo R. Entonces, F resulta

ser una mezcla de generadores de dos (o más) simetŕıas de forma. Por lo tanto, podemos

reajustar nuestra definición de F extrayendo el componente de renormalización mayor
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(la de dimensión de escala mayor si hay más de una dimensión de escala diferente).

Pero, está claro que como hay un número finito de campos independientes en el UV

en un rango de dimensiones, podemos continuar el proceso hasta que obtengamos un

F con renormalización finita, mostrando que debe haber un sector libre de la teoŕıa.

Filtrado UV de campos degenerados con renormalización finita

A continuacion, presentamos con detalle el filtrado UV mencionado anteriormente

en el cual consideramos que existe más de un campo en el UV con el mismo esṕın

y dimensión de escala D/2. En este caso, si todas las renormalizaciones son finitas

podemos descomponer los campos F y G como

F = F̃ + F1 , G = G̃+G1 . (6.108)

podemos elegir que los campos F̃ y G̃ obedezcan la condicion de dualidad F̃ = ∗ G̃ y

por lo tanto en el IR sus funciones de dos puntos deben incluir un término como el que

vemos en (6.43-6.44).

Para comenzar, nos limitaremos al estudio de los correladores de F̃F1. Podemos

escribir expresión más general para las funciones de dos puntos que involucran sólo a

los campos F̃ y F1 de la forma

⟨F̃ (x)F̃ (0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(a δ(s) + ρ0(s)) P

(k) + (−1)ks ρ1(s)η
(k)
]
,

⟨F1(x)F1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)× (6.109)

×
[
(b δ(s) + ρ2(s)) P

(k) + (−1)ks ρ1(s)η
(k)
]
,

⟨F̃ (x)F1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(c δ(s) + ρ3(s)) P

(k) − (−1)ks ρ1(s)η
(k)
]
,

donde ρ1(s) aparece en los tres correladores de manera que sean consistentes con la ley

de conservación dF = dF̃ + dF1 = 0, a saber

⟨F̃ (x)dF (0)⟩ = 0 , ⟨F1(x)dF (0)⟩ = 0 . (6.110)

Será interesante que veamos las restricciones impone la postividad de los correla-

dores. Para ⟨F̃ F̃ ⟩ y ⟨F1F1⟩ la positividad en el IR sólo alcanza al coeficiente de las

funciones delta y por tanto obtenemos a ≥ 0 , y b ≥ 0. Sin embargo, a enerǵıas más

altas la positividad de la parte masiva implica que las funciones de Kallen-Lehmann
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obedecen a

0 ≤ ρ1(s) ≤ ρ0(s) , 0 ≤ ρ1(s) ≤ ρ2(s) . (6.111)

Además, la positividad de la matriz de correladores cruzados entre F̃ y F1 produce las

desigualdades

a b ≥ c2 , ρ0(s)− 2ρ1(s)+ ρ2(s)±
√

[ρ0(s)− ρ2(s)]2 + 4[ρ1(s) + ρ3(s)]2 ≥ 0 . (6.112)

El hecho de que F̃ = ∗ G̃, fija las funciones de correlación que contienen a G̃ y F̃ o

F1. Esto junto con dG = 0 implica que las funciones de dos puntos están limitadas a

⟨G̃(x)G̃(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(a δ(s) + ρ0(s)) P

(q) + (−1)qs [ρ0(s)− ρ1(s)]η
(q)
]
,

⟨G1(x)G1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(d δ(s) + ρ4(s)) P

(q) + (−1)qs [ρ0(s)− ρ1(s)]η
(q)
]
,

⟨G̃(x)G1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(e δ(s) + ρ5(s)) P

(q) − (−1)qs [ρ0(s)− ρ1(s)]η
(q)
]
,

⟨F̃ (x)G̃(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)× (6.113)

×
[
(a δ(s) + ρ0(s)) P

(k)∗̃+ (−1)Dks ρ1(s)ϵ
]
,

⟨F1(x)G̃(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(c δ(s) + ρ3(s)) P

(k)∗̃ − (−1)Dks ρ1(s)ϵ
]
,

⟨F̃ (x)G1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(e δ(s) + ρ5(s)) P

(k)∗̃ − (−1)Dks [ρ0 − ρ1 + ρ5](s)ϵ
]
,

⟨F1(x)G1(0)⟩ =
∫ ∞
0

ds

∫
dDp eipx

(2π)D−1
θ(p0) δ(p2 − s)×

×
[
(f δ(s)− [ρ0 + ρ3 + ρ5]) P

(k)∗̃+ (−1)Dks [ρ0 − ρ1 + ρ5]ϵ
]
.

Nótese que la positividad en el ĺımite IR implica que f ≥ 0 , ad ≥ e2 , y bd ≥ f 2.

Además, la positividad de los correladores ⟨G̃G̃⟩ y ⟨G1G1⟩ es análoga a (6.111). La

matriz de correladores cruzados de G̃ y G1, por analoǵıa con (6.112), nos produce la

nueva restricción

−ρ0(s) + 2ρ1(s) + ρ4(s)±
√

[ρ0(s)− ρ4(s)]2 + 4[ρ0(s)− ρ1(s) + ρ5(s)]2 ≥ 0 . (6.114)
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El cálculo directo de la función de dos puntos ⟨FG⟩, utilizando (6.113), tiene sólo una

contribución resultante. Vemos que esta es no masiva y podemos escribirla como

⟨F (x)G(0)⟩ = ⟨F̃ (x)G̃(0)⟩+ ⟨F1(x)G̃(0)⟩+ ⟨F̃ (x)G1(0)⟩+ ⟨F1(x)G1(0)⟩

= (a+ c+ e+ f)

∫
dDp

(2π)D−1
eipx θ(p0) δ(p2 − s)P (k)∗̃ (p) . (6.115)

Como este correlador no renormaliza, en el UV ⟨FG⟩UV es equivalente a ⟨F̃ G̃⟩IR, lo
que implica que

c+ e+ f = 0 . (6.116)

Además, pedimos que los campos F1 y G1 no estén correlacionados con F̃ en el UV.

Es decir, tenemos ⟨F̃F1⟩UV, ⟨F̃G1⟩UV = 0, o bien

c+

∫ ∞
0

ρ3(s) ds = 0 , e+

∫ ∞
0

ρ5(s) ds = 0 . (6.117)

El último requisito UV que pedimos es que F1 y G1 no estén correlacionados en dicho

ĺımite. Esto no implica pérdida de generalidad, ya que si estuvieran correlacionados

tendŕıamos una componente de la forma F1 = ∗G1 que podŕıa ser absorbida en las

definiciones de F̃ y G̃. El hecho de que ⟨F1G1⟩UV = 0 produce que

f −
∫ ∞
0

(ρ0(s) + ρ3(s) + ρ5(s)) ds = 0 . (6.118)

Sustituyendo (6.116) y (6.117) en (6.118) obtenemos
∫
ds ρ0(s) = 0. A la luz de (6.111),

esto significa que ρ0(s) = 0 y, también, ρ1(s) = 0. Entonces, las restricciones (6.112)

y (6.114) implican que ρ3(s), ρ5(s) = 0, aśı como c, e, f = 0. Obtenemos que la forma

final de los correladores no nulos fuera del UV es de la forma

⟨F̃ (x)F̃ (0)⟩ =
∫

dDp

(2π)D−1
eipx θ(p0) δ(p2)P (k) , (6.119)

⟨G̃(x)G̃(0)⟩ =
∫

dDp

(2π)D−1
eipx θ(p0) δ(p2)P (q) , (6.120)

⟨F̃ (x)G̃(0)⟩ =
∫

dDp

(2π)D−1
eipx θ(p0) δ(p2)P (k)∗̃ , (6.121)

⟨F1(x)F1(0)⟩ =
∫ ∞
0

ds

∫
dDp

(2π)D−1
eipx θ(p0) δ(p2 − s) (b δ(s) + ρ2(s)) P

(k) , (6.122)

⟨G1(x)G1(0)⟩ =
∫ ∞
0

ds

∫
dDp

(2π)D−1
eipx θ(p0) δ(p2 − s) (d δ(s) + ρ4(s)) P

(q) , (6.123)

donde también fijamos a = 1. Esto nos conduce a que F̃ y G̃ son campos libres sin

masa que generan la simetŕıa de forma por (6.121). Además, tenemos que el espacio
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de Hilbert generado por estos campos está en producto tensorial con el generado por

los campos restantes F1 y G1.

6.5. Discusión del caṕıtulo

Las formulaciones lagrangianas una electrodinámica neutra, como la electrodinámi-

ca no lineal (por ejemplo, Born-Infeld) o un fotón acoplado magnéticamente a un

campo de neutrones, y también las teoŕıas efectivas de baja enerǵıa de los bosones de

Goldstone, son todas no renormalizables. En este caṕıtulo hemos explorado la cuestión

de si esta clase de teoŕıas puede completarse en el UV, o si el comportamiento no

renormalizable apunta a algunas caracteŕısticas más profundas. Para abordar este pro-

blema hemos observado que esta clase de teoŕıas está mejor definida por sus simetŕıas

generalizadas. En particular, todas comparten la misma estructura de simetŕıas gene-

ralizadas, es decir, simetŕıas de forma no compactas. En términos de estas simetŕıas

la pregunta es: ¿puede una teoŕıa UV completa con simetŕıas de forma no compactas

ser interactuante? El análisis descrito en este caṕıtulo muestra que esto no es posible,

y que la completación UV de una electrodinámica neutra o de los bosones de Golds-

tone interactuantes deben implicar necesariamente la ruptura de estas simetŕıas. Esto

debe producirse debido a la existencia de operadores cargados a una cierta escala de

enerǵıa que rompeŕıan las leyes de conservación de los campos que generan la simetria

no compacta (Véanse los ejemplos e ideas que discutimos en los caṕıtulos 2 y 3 y pos-

teriormente en el caṕıtulo 7). Sin embargo, las simetŕıas de forma están bien definidas

en el nivel clásico, por ende esta obstrucción puede verse como una nueva forma de

anomaĺıa cuántica.

Surge naturalmente una pregunta importante: ¿a qué escala de enerǵıa aparecen en

el espectro las cargas eléctricas y/o magnéticas que rompen la simetŕıa generalizada? Si

disponemos de una formulación lagrangiana perturbativa, como la descrita por (6.1),

es natural esperar que un ĺımite superior para la masa de estas part́ıculas cargadas

predichas venga dado por los acoplamientos dimensionales apropiados que aparecen

en el lagrangiano. Pero en realidad no hay ninguna razón espećıfica para esperar la

saturación de este ĺımite, y de hecho en el modelo estándar las part́ıculas asociadas

aparecen a escalas muy por debajo del ĺımite. Seŕıa conveniente desarrollar un método

directo para acotar estas masas a partir de la teoŕıa efectiva en el infrarrojo. Podŕıamos

esperar que estas masas aparecieran en las estructuras de los correladores de los campos

conservados que generan la simetŕıa de forma no compacta dual. Hemos llevado a

cabo exploraciones preliminares usando teoŕıa de perturbaciones y hemos llegado a la

conclusión provisoria de que la simetŕıa se conserva en una expansión diagramática de

Feynman del modelo efectivo. Se requiere más trabajo para responder a esta pregunta.





Caṕıtulo 7

La anomaĺıa ABJ como simetŕıa

U(1) y el teorema de Noether

En este caṕıtulo estudiamos la anomaĺıa de Adler-Bell-Jackiw (ABJ) [11, 12], y

su relación con el teorema de Noether [10]. La anomaĺıa ABJ o quiral se refiere ori-

ginalmente al decaimiento anómalo del pión neutro, cuando lo comparamos con las

predicciones provenientes del álgebra de corrientes [213, 214]. Esta misma anomaĺıa

aparece en QED y en muchas otras generalizaciones. Más precisamente, un fermión sin

masa acoplado al campo electromagnetico contiene una corriente quiral clásicamente

conservada jµ5 = ψ̄γ5γµψ. Si se conservara dicha corriente a nivel cuántico generaŕıa

una simetŕıa global U(1). Pero, la corriente quiral es un operador compuesto, y de-

bemos que definirlo adecuadamente mediante regularización. Este proceso rompe la

conservación de la corriente quiral y famosamente nos conduce a

∂µ j
µ
5 =

1

16π2
ϵµναβFµν Fαβ , (7.1)

donde con F describimos al campo electromagnético, con una normalización tal que

ψ tiene carga unitaria. La existencia de esta anomaĺıa puede demostrarse de varias

maneras diferentes, véase [215].

Por otro lado, el teorema de Noether afirma la correspondencia entre cargas con-

servadas y simetŕıas que dejan invariante la acción. En el contexto de QFT vimos que

existe una versión fuerte de este teorema que daŕıa una correspondencia a una entre

simetŕıas continuas y corrientes locales conservadas jµ. Sin embargo, en el contexto de

QFT, también encontramos la versión débil donde sólo se requieren implementaciones

locales de la simetŕıa (twists), que actúan sobre regiones compactas [146–149]. Esta

segunda versión es válida con gran generalidad en QFT, siendo una pregunta intere-

sante: ¿Cómo podemos caracterizar el espacio de teoŕıas para las que la versión fuerte

del teorema de Noether no es aplicable?

En el caṕıtulo 5, hemos hecho una propuesta independiente de la formulación la-

201
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grangiana para responder a esta pregunta. Simplemente afirmamos que la versión fuerte

del teorema de Noether se viola para una simetŕıa global continua siempre que haya

simetŕıas generalizadas cargadas bajo ella. En otras palabras, mostramos que la exis-

tencia de una corriente de Noether implica que las clases son invariantes bajo dicha

simetŕıa. Sin embargo, la implicación opuesta es más sutil. Más espećıficamente, pro-

bamos que siempre que una simetŕıa deje invariante las clases no locales será posible

encontrar twists aditivos y concatenables. Pero, no probamos la convergencia de estos

twists a una corriente.

Volviendo a la anomalia ABJ, ya en su art́ıculo seminal [11], Adler mencionó que

una modificación aparentemente inofensiva, pero ingeniosa, de la corriente quiral daŕıa

lugar a una comprensión de la anomaĺıa en términos de una simetŕıa global U(1)

convencional. A saber, si redefinimos una nueva corriente local j̃5 por

j̃5
µ
= jµ5 − 1

8π2
ϵµναβAν Fαβ ⇒ ∂µ j̃5

µ
= 0 , (7.2)

recuperamos una ecuación de conservación convencional. El problema, ya reconocido

por Adler, es que j̃5 no es un operador invariante de gauge y, por ende, la teoŕıa no tiene

un operador de corriente conservado asociado a dicha simetŕıa. Aún aśı, integrando

la densidad de carga local sobre una superficie de Cauchy completa en el espacio de

Minkowski, se llega a una carga conservada invariante de gauge, que genera un grupo de

simetŕıa global U(1). Desde esta perspectiva, vemos que la anomaĺıa ABJ simplemente

redefine la simetŕıa quiral.

Este contexto plantea cuestiones importantes que constituyen la motivación de este

caṕıtulo. La primera es que si tomamos seriamente esta simetŕıa quiral U(1) modi-

ficada, entonces esta clase de teoŕıas parece violar la versión fuerte del teorema de

Noether. Luego, basándonos en propuesta desarrollada en el caṕıtulo 5, seŕıa esperable

ver que estas teoŕıas contengan sectores cargados bajo la nueva simetŕıa quiral. En

este caṕıtulo demostraremos que éste es efectivamente el caso. Nuestra conclusión será

que la simetŕıa U(1) modificada es una simetŕıa interna ordinaria de la teoŕıa con la

peculiar caracteŕıstica de que mezcla las clases no locales del campo electromagnético.

Esta peculiaridad explica la ausencia de la corriente de Noether.

Además, en el caṕıtulo 5 observamos que una simetŕıa generalizada cargada bajo

la acción de un grupo continuo produce un continuo de clases. Si este continuo es no

compacto, vimos en el el caṕıtulo 6 que la simetŕıa corresponde a la presencia de un

sector libre no masivo. En este sentido, la anomaĺıa representa el otro caso. Es decir,

tenemos un continuo compacto de clases no locales, lo que en este contexto parece

compatible con una teoŕıa interactuante.

También, esta imagen proporciona una nueva perspectiva sobre el origen de la

cuantización de la anomaĺıa. Brevemente, veremos que dicha cuantización se ve forzada
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por la compatibilidad de los ciclos U(1) asociados con el grupo quiral correcto y el grupo

de operadores HDV no locales. Equivalentemente, encontramos que la anomaĺıa en la

simetŕıa y el hecho de que una simetŕıa cambie las clases es el mismo fenómeno f́ısico.

Desde esta perspectiva también podemos explicar la correspondencia de anomaĺıas

(“anomaly matching”) [216], incluyendo la existencia de excitaciones sin masa en el

modelo infrarrojo, de una manera convencional (basada en la simetŕıa). Un último

beneficio de esta perspectiva es que nos permite entender la aplicabilidad del teorema

de Goldstone.

Este caṕıtulo esta organizado de la siguiente manera. Comenzamos en la sección 7.1

desarrollando como las teoŕıas con anomaĺıas ABJ ejemplifican las pruebas presenta-

das en el caṕıtulo 5. Además, mostramos como estas ideas explican la cuantización del

coeficiente de la anomaĺıa, la correspondencia entre anomaĺıas IR y UV, y la validez del

teorema de Goldstone para estos casos. Luego, durante la sección 7.2 comparamos nues-

tros resultados con la literatura reciente. En la sección 7.3, estudiamos nuevos ejemplos

que nos ayudaran (en el caṕıtulo 8) a establecer una caracterización potencialmente

completa de teoŕıas que violan la versión fuerte del teorema de Noether. Finalmente,

la sección 7.4 contiene un resumen y discusión de los resultados del caṕıtulo.

7.1. La anomaĺıa ABJ como simetŕıa U(1)

En esta sección estudiamos escenarios que contienen la anomaĺıa dentro de una

teoŕıa abeliana. Comenzamos describiendo el caso de la electrodinámica de piones, ya

que en este modelo efectivo la anomaĺıa se manifiesta a nivel clásico. Como conse-

cuencia, podemos representar todas las caracteŕısticas de la simetŕıa, incluyendo su

acción sobre operadores locales y no locales, de forma muy sencilla. A continuación

describimos el caso de la QED no masiva, donde adaptamos esencialmente la discusión

de Adler [11], complementada por el efecto Witten [56] que determina la acción de la

simetŕıa sobre los TL.1 Tanto los modelos de piones como los provenientes de QED nos

cuentan la misma historia, la de un grupo continuo de simetŕıa interna que transforma

de forma no trivial las clases HDV.

Además, destacaremos cómo la cuantización de la anomaĺıa surge aqúı de la com-

patibilidad entre los dos ciclos U(1) asociados a las dos simetŕıas, equivalentemente

de la compatibilidad entre la simetŕıa 0-forma quiral modificada y la simetŕıa 1-forma

magnética. A la luz de lo anterior, deducimos la correspondencia de anomaĺıas de ’t

Hooft entre la f́ısica UV e IR como resultado de la existencia de una simetŕıa global

ordinaria U(1). Finalmente, recordamos cómo la acción no trivial de la simetŕıa sobre

las clases HDV impide la existencia de una corriente conservada.

1Esta acción fue discutida en la literatura reciente [14–16] como discutiremos en la siguiente sección.
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7.1.1. Electrodinámica con piones

En el contexto de la teoŕıa efectiva de piones, podemos utilizar un enfoque lagran-

giano más transparente, en el que podemos deducir la anomaĺıa quiral de las ecuaciones

de movimiento. Entonces, discutamos primero una electrodinámica efectiva de piones

en D = 4 con Lagrangiano

L =
1

2
∂µπ0∂

µπ0 −
1

4 e2
FµνF

µν +
1

8µ
ϵµνρσπ0F

µνF ρσ , (7.3)

donde µ es una constante con dimensiones de masa. Las ecuaciones de Euler-Lagrange

son las siguientes

□π0 =
1

4µ
F̃ µνF µν , (7.4)

∂νF
µν =

e2

µ
F̃ µν(∂νπ0) , (7.5)

donde definimos el dual de F como F̃ µν ≡ 1
2
ϵµνρσ Fρσ. Este, es conservado (∂νF̃

µν = 0)

por simetŕıa. Obsérvese que la primera ecuación de movimiento (7.4), asociada al campo

del pión neutro π0, expresa la anomaĺıa. De hecho, podemos reescribir esta ecuación

como

jµ = µ ∂µπ0 , ∂µj
µ =

1

8
ϵµνρσF

µνF ρσ . (7.6)

En este contexto, siguiendo a Adler, podemos expresar (7.6) como una ecuación de

conservación de una corriente dependiente del gauge

j̃µ = µ ∂µπ0 −
1

2
F̃ µνAν , ∂µj̃

µ = 0 . (7.7)

Podemos integrar, esta corriente no invariante de gauge sobre una superficie de Cauchy

completa para obtener una carga conservada

Q̃ =

∫
d3x j̃0(x) =

∫
d3x

(
µ π̇0(x)−

1

2
Bi(x)Ai(x)

)
. (7.8)

donde Bi = −1
2
εijkFjk representa el campo magnético. Esta carga es ahora invariante

de gauge para transformaciones de gauge o campos que se anulan en el infinito.

Entonces, la cuestión es si este generador da lugar a una simetŕıa de la teoŕıa

en el sentido convencional, y cuáles son las diferencias, si las hay, con las simetŕıas

internas ordinarias. Un operador autoadjunto genérico genera un grupo de unitarios,

pero para que sea generador de una simetŕıa interna deben darse otras condiciones. Más

concretamente, el grupo debe dejar álgebras de operadores locales en śı mismas (5.1),

y las transformaciones deben conmutar con simetŕıas de Poincare. A continuación,
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utilizando la cuantización canónica, comprobamos que éste es el caso en el modelo

actual.

Si definimos el campo eléctrico como Ei = −F 0i, los momentos canónicos son

p0 =
δL
δπ̇0

= π̇0 , piA =
δL
δȦi

=
1

e2
Ei +

1

µ
π0B

i . (7.9)

Vemos que el momento del pión no se ve afectado por el término anómalo, mientras

que el momento conjugado del campo del fotón recibe una contribución. Escribimos

las relaciones de conmutación canónicas a igual tiempo no nulas como[
π0(x), p0(y)

]
= i δ(x− y) ,

[
Ai(x), p

j
A(y)

]
= i δ ji δ(x− y) . (7.10)

Nos resultará esclarecedor ver la manifestación de estas relaciones de conmutación

canónicas en los conmutadores de los observables. Las no triviales son[
Bi(x), Ej(y)

]
= i e2 ϵijk ∂xk δ(x− y) , (7.11)[

p0(x), E
i(y)
]
=
i e2

µ
Bi(y) δ(x− y) , (7.12)[

Ei(x), Ej(y)
]
= −i e

4

µ
ϵijk

(
π0(y) ∂

k
y δ(y − x) + π0(x) ∂

k
xδ(x− y)

)
. (7.13)

Las relaciones (7.12-7.13) muestran el efecto de la interacción en el espacio de fases

f́ısico de la teoŕıa como una deformación de las relaciones de conmutación canónicas.

Es especialmente interesante la no conmutatividad de los campos eléctricos. Estos

conmutadores juegan el papel de los términos de Schwinger encontrados para QED en

[13] y que discutiremos más adelante. En la teoŕıa efectiva del pión, surgen mediante

cuantización canónica.

Utilizando estos conmutadores podemos encontrar la acción de la carga (7.8) sobre

los operadores de campo locales que describen el espacio de fases de la teoŕıa. A saber,[
Q̃, π0(x)

]
= −µ i,

[
Q̃, Bi(x)

]
= 0,

[
Q̃, p0(x)

]
= 0,

[
Q̃, Ei(x)

]
= 0 . (7.14)

El único conmutador no nulo es con el propio campo de piones π0. Esto es lo que

esperábamos, ya que todos los demás campos no llevan carga quiral. En este caso, la

simetŕıa esta espontáneamente rota y el pión es un bosón de Goldstone para la simetŕıa

quiral, transformándose aditivamente como

U(λ) π0(x)U(λ)
† = π0(x) + λµ , U(λ) = eiλQ̃ . (7.15)

Podemos comprobar fácilmente que la transformación implementada por U(λ) respeta

las ecuaciones de movimiento y las relaciones de conmutación. Entonces, avanzamos y



206 La anomaĺıa ABJ como simetŕıa U(1) y el teorema de Noether

calculamos el tensor enerǵıa-momento. Podemos escribir el mismo como

T µν =
(
∂µπ0∂

νπ0 −
ηµν
2
∂απ0∂

απ0

)
+

1

e2

(
F µαF ν

α +
ηµν
4
FαβF

αβ
)
. (7.16)

Un punto interesante es que en este modelo parece existir una tensión entre el tensor

enerǵıa-momento canónico, y el que obtenemos derivando la acción con respecto a la

métrica. Esto es debido a que este último, dado por (7.16), coincide con el libre. No

obstante, podemos demostrar que está permitida una modificación para llevar el ten-

sor canónico a la forma (7.16) y que esta implementa la evolución temporal correcta.

Debemos esto a las relaciones de conmutación no triviales (7.12) y (7.13). Debido a la

longitud de los cálculos, presentamos un resumen más detallado de estas sutilezas al

final de esta sección. Siguiendo, dados los conmutadores anteriores, comprobamos cla-

ramente que el tensor enerǵıa-momento es invariante bajo las transformaciones quirales

modificadas, a saber [
Q̃, T µν

]
= 0 . (7.17)

Esto demuestra, en lo que respecta al modelo efectivo, que Q̃ genera una verdadera

simetŕıa interna de la teoŕıa. Además, ni siquiera necesitamos pensar que esta simetŕıa

está implementada por un unitario global, ya que la transformación del pión (7.15) es

un automorfismo de las álgebras de operadores locales y de las ecuaciones de movi-

miento. En particular, siguiendo los resultados [146–149] (resumidos en el caṕıtulo 5),

esto implica que podemos encontrar transformaciones locales para cualquier subregión

compacta de cualquier topoloǵıa.

Una vez establecida la simetŕıa quiral modificada como una simetŕıa global U(1),

tenemos que entender sus implicaciones. La primera cuestión se refiere al sentido en

que esta simetŕıa es diferente de otras simetŕıas más convencionales. En particular,

debeŕıamos encontrar una razón por la que esta simetŕıa no tiene una corriente de

Noether, ya que la corriente (7.7) no es invariante de gauge. La razón resulta ser un

caso particular del teorema mostrado en caṕıtulo 5. En otras palabras, la teoŕıa actual

posee clases HDV asociadas a regiones con la topoloǵıa de lazos no contractibles, y

la simetŕıa quiral śı transforma estas clases no locales. Sin embargo, notamos que la

descripción de este fenómeno no implica más información que la ya tenemos, y que la

acción de la simetŕıa está completamente especificada por (7.14). En particular, todas

las relaciones de conmutación con operadores no locales se siguen de las relaciones de

conmutación con los locales.

Para analizar la acción de la simetŕıa quiral sobre las clases HDV analicemos más

detalladamente las ecuaciones de movimiento (7.5) del campo de gauge. Estas pueden

ser reescritas como la conservación de un campo 2-forma invariante de gauge, es decir2

2Esta corriente también fue identificada en [20] pero se descartó debido a la compacidad del campo
de piones. Sin embargo, en esta teoŕıa efectiva de baja enerǵıa, debeŕıamos interpretar el campo de
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Gµν ≡ 1

e2
F µν − π0

µ
F̃ µν , ∂νG

µν = 0 . (7.18)

La otra 2-forma conservada invariante de gauge es el dual de F . Tenemos,

∂νF̃
µν = 0 . (7.19)

Esto nos permite definir los flujos conservados correspondientes integrando estas co-

rrientes sobre superficies orientadas bidimensionales Σ como

ΦG =

∫
Σ

∗G , ΦF =

∫
Σ̃

∗F̃ . (7.20)

Para obtener operadores no triviales necesitamos integrar estos flujos sobre superficies

Σ abiertas con su borde ∂Σ dado por un lazo. Debido a la conservación de los flu-

jos, los operadores resultantes conmutan con todos los operadores de campo locales

espacialmente separados de ∂Σ y, en este sentido, pueden considerarse operadores de

lazo. Consideremos estos flujos sobre superficies bidimensionales en el corte a tiempo

constante x0 = 0

ΦG = −
∫
Σ

dSi p
i
A = −

∫
Σ

dSi

( 1

e2
Ei +

1

µ
π0B

i
)
, ΦF =

∫
Σ̃

dSiB
i . (7.21)

El conmutador entre estos flujos, cuando los definimos sobre dos superficies diferen-

tes, es proporcional al número de enlace entre los lazos que determinan el borde de

las respectivas superficies. Podemos entender el hecho de que se trate de un invariante

topológico a partir de la conmutatividad de estos flujos con operadores locales espacial-

mente separados de los bordes. Como vimos anteriormente, esto nos permite deformar

los lazos de borde sin cambiar el conmutador. Siguiendo con el cálculo, utilizando

(7.10-7.13) obtenemos para lazos simplemente enlazados que

[ΦG,ΦF ] = i . (7.22)

Por supuesto, lo mismo ocurre con el campo electromagnético libre. La diferencia es

que en este modelo efectivo, el flujo eléctrico necesita ser modifica (incluyendo el campo

quiral) para ser un operador de lazo. Desde cierto punto de vista, esto análogo a lo que

estudiamos en el caṕıtulo 6 para las electrodinámicas neutras.

Definimos ahora los operadores unitarios, como WL y TL, exponenciando los flujos

Wq = eiqΦF , Tg = eigΦG . (7.23)

piones como no compacto (ya que π0 ≪ µ) y este conduce (a través de un flujo de superficie) a un
operador HDV bien definido en el IR.
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Estos se tratan de operadores no locales asociados a anillos. Las reglas de fusión para

estos operadores no locales son

WqWq′ = Wq+q′ , Tg Tg′ = Tg+g′ . (7.24)

En este modelo efectivo, los operadores no locales de una región tipo anillo R forman

un grupo R×R.3 Un operador genérico no local será “diónico”, es decir, tendrá cargas

eléctricas y magnéticas, y lo llamaremos D(g,q). Está formado, por ejemplo, por pro-

ductos de WL y TL con cargas q, g, en el mismo R. Estos operadores en R forman

clases invariantes bajo la acción de los operadores locales en R, y determinadas exclu-

sivamente por las cargas (g, q). Equivalentemente, si multiplicamos un dión dado por

operadores locales en R no podremos cambiar su clase. El grupo dual, correspondien-

te a R′, es también R × R. Las relaciones de conmutación de los operadores diónicos

enlazados se deducen simplemente de las de los propios flujos. Son las siguientes

DR
(g,q)D

R′

(g′,q′) = ei (q g
′−q′ g)DR′

(g′,q′) D
R
(g,q) . (7.25)

Como pod́ıamos prever, la acción de la carga quiral correcta Q̃ es particularmente

interesante sobre estos operadores. Transforma los flujos eléctricos dejando invariantes

los magnéticos. Más precisamente

[Q̃,ΦG] = iΦF , [Q̃,ΦF ] = 0 . (7.26)

Considerando transformaciones finitas sobre los operadores de lazo obtenemos

U(λ)WqU
−1(λ) = Wq , U(λ)TgU

−1(λ) = D(g,λ g) . (7.27)

El TL preciso en el lado izquierdo de la última fórmula depende de la forma precisa del

TL en el lado derecho. Pero, lo importante es la clase a la que pertenece. En palabras,

los TL (clases HDV magnéticas) están cargados bajo la acción de la simetŕıa generada

por Q̃. En particular, se mezclan con flujos magnéticos. Para una clase HDV genérica,

vemos que la transformación se convierte en

U(λ)D(g,q)U
−1(λ) = D(g,q+λ g) . (7.28)

Dado que la simetŕıa mantiene el álgebra de operadores locales enR′ dentro de śı misma,

también mantendrá invariante el conjunto de todos los operadores que conmutan con

ella (5.2). Entonces, se mapeara el álgebra de los operadores locales y no locales en

3Añadir los piones cargados sin masa π± convertiŕıa esto en un grupo Z×U(1). Esto es consistente
con el resto de esta discusión siempre que mantengamos las transformaciones de simetŕıa en el rango
del modelo efectivo π0 ≪ µ.
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R en śı misma (5.3), un hecho que será relevante de nuevo más adelante. Aunque las

clases no son invariantes bajo la simetŕıa quiral modificada, las reglas de fusión y las

relaciones de conmutación son invariantes, como debe ser el caso para un automorfismo

del álgebra:

DR
(g1,q1+λ g1)

DR
(g2,q2+λ g2)

= DR
(g1+g2,q1+q2+λ (g1+g2))

, (7.29)

DR
(g,q+λ g)D

R′

(g′,q′+λ g′) = ei (q g
′−q′ g)DR′

(g′,q′+λ g′)D(g,q+λ g) . (7.30)

La interpretación de esta acción es sencilla y transparente. Tenemos una simetŕıa uni-

taria interna ordinaria que transforma cualquier álgebra de operadores locales para

cualquier región en śı misma. Esta acción también transforma las clases HDV no loca-

les. Esta es la única nueva caracteŕıstica que no se encuentra generalmente para otras

simetŕıas internas.

Para terminar esta sección nos parece importante destacar dos hechos clave que

suelen llevar a confusión. En primer lugar, tanto los operadores eléctricos como los

magnéticos no locales forman parte del álgebra ordinaria de operadores locales en bolas,

y como tales no pueden ser eliminados o excluidos de la teoŕıa. En segundo lugar, el

comportamiento de los operadores no locales bajo la simetŕıa viene determinado, por

la misma razón, por la acción de la simetŕıa sobre los operadores de campo locales.

Las caracteŕısticas que definen a los operadores no locales de la teoŕıa se calculan a

partir de las propias álgebras de operadores locales. No es posible tener una simetŕıa

que actúe de forma diferente sobre los operadores locales y no locales en una QFT. En

el presente ejemplo, esto es expĺıcito puesto que todos los conmutadores se determinan

a partir de los canónicos (locales). El punto interesante aqúı es que los flujos del campo

eléctrico se mezclan con el campo local quiral (el pión) para producir un operador no

local en un anillo. El flujo eléctrico por śı mismo, que es no local para el campo libre

de Maxwell, no es un operador no local en una región anular R en el presente modelo

porque no conmuta con operadores locales fuera de R.

Tensor enerǵıa-momento del pión y el acoplamiento cuasi-topológico WZW

Por completitud, estudiamos el tensor enerǵıa-momento del pión neutro en presencia

del acoplamiento cuasi-topológico WZW introducido como en (7.33). Véase [104] para

una discusión más general sobre los acoplamientos cuasi-topológicos. Para empezar,

el tensor enerǵıa-momento obtenido derivando la acción con respecto a la métrica en

signo (+,−,−,−) viene dado por

T µν =
2√
g

δS

δgµν

∣∣∣∣
g=η

. (7.31)
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En este punto, vemos que se vuelve relevante la naturaleza cuasi-topológica del término

de interacción. Considerando que F̃ se conserva

∂νF̃
µν = ϵµνρσ∂ν∂ρAσ = 0 , (7.32)

la acción que surge del lagrangiano (7.3) puede reescribirse convenientemente como

S =

∫
d3x

[
1

2
∂µπ0∂

µπ0 −
1

4 e2
FµνF

µν +
π0
4µ
∂µ

(
ϵµνρσA

νF ρσ
)]

. (7.33)

Esto demuestra que el término de interacción en (7.33) no se acopla a la métrica y

por lo tanto no tiene ninguna contribución a (7.31). Por lo tanto, recuperamos sólo las

contribuciones libres dadas por (7.16). Esto es

T µν =
(
∂µπ0∂

νπ0 −
ηµν
2
∂απ0∂

απ0

)
+

1

e2

(
F µαF ν

α +
ηµν
4
FαβF

αβ
)
. (7.34)

Por otra parte, el tensor enerǵıa-momento canónico viene dado por

Θµν =
δL
δ∂µπ0

∂νπ0 +
δL

δ∂µAα
∂νAα − ηµνL =

(
∂µπ0∂

νπ0 −
ηµν
2
∂απ0∂

απ0

)
+ (7.35)

− 1

e2

(
F µα∂νAα −

ηµν
4
FαβF

αβ
)
+
π0
µ

(
F̃ µα∂νAα −

ηµν
4
F̃αβFαβ

)
,

que parece evidenciar una contribución no trivial procedente del término de interac-

ción en (7.3). Es evidente que Θµν no es simétrico ni invariante de gauge, pero puede

modificarse de la manera habitual. En concreto, podemos utilizar las ecuaciones de

movimiento para escribir que

Tµν = Θµν + ∂αχαµν +
π0
µ

(
F̃µαF

α
ν − ηµν

4
F̃αβFαβ

)
, (7.36)

donde χαµν obedece a la condición habitual χαµν = −χµαν ya que viene dado por

χαµν = GµαAν =
( 1

e2
F µα − π0

µ
F̃µα

)
Aν . (7.37)

Sin embargo, el último término de (7.36) nos impide a priori igualar (7.35) y (7.34).

Un análisis más detallado de esta estructura tensorial nos muestra que

F̃µαF
α

ν = −1

4
ϵαµρσϵ

α
νλϵF

ρσF̃λϵ =
1

4
ηµρσ , νλϵF

ρσF̃λϵ =
ηµν
2
F̃αβFαβ − F̃µαF

α
ν , (7.38)
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lo que demuestra que el tensor canónico (7.35) es consistente el que se obtiene derivando

con respecto a la métrica (7.34) como

F̃µαF
α

ν =
ηµν
4
F̃αβFαβ ⇒ Tµν = Θµν + ∂αχαµν . (7.39)

La pregunta que queda es si (7.34) es suficiente para proporcionar la evolución temporal

correcta. El tensor enerǵıa-momento en cuestión produce el Hamiltoniano

H =

∫
d3xT 00(x) =

1

2

∫
d3x

[
p20 − ∂iπ0∂

iπ0 +
1

e2
(
EiEi +BiBi

)]
, (7.40)

donde podemos utilizar (7.10-7.13) para obtener que

i
[
H, π0(x)

]
= p0(x) , (7.41)

i
[
H,Ai(x)

]
= Ei(x) , (7.42)

i
[
H, p0(x)

]
= −∂i∂iπ0(x)−

1

µ
Bi(x)E

i(x) , (7.43)

i
[
H,Ei(x)

]
= −ϵijk∂jBk(x)− e2

µ

(
Bi(x)p0(x) + ϵijkE

j(x)∂kπ0(x)
)
, (7.44)

que es equivalente a las ecuaciones de movimiento. En resumen, el tensor enerǵıa-

momento (7.34) es, de hecho, el generador simétrico invariante de gauge de la evolución

temporal de la teoŕıa.

7.1.2. Origen de la cuantización de la anomaĺıa

El modelo de pión efectivo discutido anteriormente es no renormalizable y tiene que

ser completado en el UV. Esta completación necesitará necesariamente la introducción

de cargas que rompan los sectores HDV de R×R a un grupo más pequeño. Una razón

formal para esta reducción de los sectores es que para el caso de sectores no compactos,

los campos duales 2-forma F y G que los generan deben tener un correlador cruzado

que está fijado por la simetŕıa y no se renormaliza. Como vimos en el caṕıtulo 6, esto

nos conduce a un modelo libre.

En la completación del modelo dentro de QCD con quarks no masivos cargados, los

sectores HDV se reducen a U(1) × Z. Tenemos un U(1) generado por WL continuos

mientras que los TL están discretizados y forman un grupo Z. En el modelo efectivo

podŕıamos implementar esto introduciendo los piones cargados.

Consideremos tal compactificación desde una perspectiva más general. Fijamos la

carga eléctrica mı́nima en q = q0, donde la derivada covariante es ∂µ+iqAµ. Esto corres-

ponde a fijar en eq0 la carga de Coulomb correspondiente al campo electromagnético

débilmente acoplado. Entonces, para el WL tenemos un grupo compacto U(1) etique-
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tado por las cargas q ∈ [0, q0). En consecuencia, el TL forma un grupo Z con cargas

g = 2π
q0
k, y k entero. Crucialmente, la compatibilidad del grupo compacto de WL con la

acción no trivial de la simetŕıa quiral sobre el grupo U(1)×Z de sectores HDV implica

restricciones para el radio de compactificación de dicha simetŕıa.

Observamos en primer lugar que cualquier extensión de la simetŕıa a enerǵıas más

altas debe respetar (7.28). Esto implica que el rango del parámetro λ de la simetŕıa

quiral U(1) es

λ ∈ [0, λ0) , λ0 = n
q20
2π

, (7.45)

donde n es un entero positivo. En términos del modelo con Lagrangiano (7.3) esta

ecuación relaciona el radio de compactificación del campo de piones con el coeficiente

del término anómalo. La definición convencional de la constante de decaimiento del

pión nos permite escribir radio de compactificación del pión como π0 ≡ π0 + 2πfπ.

Utilizando (7.15) para el generador de la simetŕıa quiral y (7.45) obtenemos para el

coeficiente del término anómalo la siguiente expresión

1

8µ
=

n q20
32π2 fπ

. (7.46)

Esta ecuación expresa la cuantización del valor del coeficiente de anomaĺıa en términos

de teoŕıa de grupos. Esto es porque proviene de la compatibilidad necesaria entre las

clases HDV y una simetŕıa global que actúa no trivialmente sobre ellas.

La cuantización de la anomaĺıa se ha obtenido anteriormente a partir de distintas

consideraciones. Por ejemplo, en la inmersión de este modelo en un modelo sigma no

lineal, apropiado para QCD con quarks sin masa y un número de sabores Nf ≥ 3. En

este contexto, la cuantización del coeficiente se sigue de la cuantización del coeficiente

WZW por razones topológicas [217].4 En este caso tenemos q0 = 1/3 y n = 3Nc con

Nc el número de colores [218].

Otra forma de expresar estas caracteŕısticas es en términos de una corriente ĵ = λ0
2π
j

normalizada tal que el operador de carga tiene un ciclo fijado en el valor estándar 2π.

Esto implica que la carga toma valores enteros. A partir de (7.6) esta corriente quiral

produce la anomaĺıa

∂µĵ
µ = n

q20
32 π2

ϵµνρσF
µνF ρσ . (7.47)

Vemos que esta fórmula se ajusta bien al valor general de la anomaĺıa. Para la corriente

quiral en QED tenemos n = 2 si el ángulo quiral es la fase que actúa sobre el electrón,

como corresponde a tener dos campos quirales para el fermión de Dirac. Pero tenemos

n = 1 si fijamos la carga quiral mı́nima en los operadores invariantes de gauge en 1

(véase más adelante).

4Nótese que nuestra derivación de la cuantización de la anomaĺıa no requiere ninguna suposición
sobre el número de sabores.
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Para n > 1 tenemos que la simetŕıa quiral se mueve n veces más rápido en las

clases no locales que en el campo del pión. Los operadores con carga quiral unidad se

obtienen exponenciando los campos de piones con el smearing adecuado:

ei f
−1
π

∫
α(x)π0(x) ,

∫
α(x) = 1 . (7.48)

Por otra parte, podemos producir operadores cargados quiralmente combinando ope-

radores no locales como

Ψk,m =

∫ q0

0

dq e
im 2π q

q0 D( k 2π
q0

,q) , (7.49)

para enteros m.5 La transformación quiral produce

U(λ)Ψk,m U(λ)
† = e

i nmk 2π λ
λ0 Ψk,m . (7.50)

La carga mı́nima no nula con respecto a la simetŕıa quiral en este tipo de operadores es

entonces n, alcanzada para m = 1 y el TL elemental con k = 1. Esto nos proporciona

una interpetación f́ısica complementaria del número entero n que define la anomaĺıa.

7.1.3. Simetŕıa quiral en QED no masiva

Consideramos ahora el caso de la QED sin masa en D = 4. Podemos describir esta

teoŕıa mediante la acción

S =

∫
d4x

[
− 1

4e2
FµνF

µν + ψ i/∂ ψ − ψ /Aψ

]
. (7.51)

En este caso, la simetŕıa quiral dada por transformaciones de la forma ψ → eiαγ
5
ψ está

asociada, por el teorema de Noether, a la corriente

jµ5 = ψ γµγ5 ψ . (7.52)

Sin embargo, la ley de conservación correspondiente es anómala a nivel cuántico [11, 12].

En este caso, podemos escribir la anomaĺıa a partir de

∂µj
µ
5 =

1

16π2
ϵµνρσFµνFρσ . (7.53)

5Nótese que la selección de operadores especiales representantes de las clases no locales que se
transforman en śı mismos por la operación de grupo como en (7.28) elimina automáticamente las
cargas adicionales de los operadores locales. La construcción de estos operadores puede llevarse a cabo
de manera estándar utilizando herramientas modulares. Véase [23], sección 2.2.3.
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Como en el ejemplo del pión, podemos definir una corriente conservada pero no inva-

riante de gauge mediante

j̃µ5 = jµ5 − 1

4π2
F̃ µνAν , ∂µ j̃

µ
5 = 0 . (7.54)

Esto nos da un operador de carga global conservado invariante de gauge cuando se

integra sobre todo el espacio

Q̃ =

∫
d3x

[
ψ†(x)γ5ψ(x)− Bi(x)Ai(x)

4π2

]
. (7.55)

Para entender si esta carga define una simetŕıa interna o no necesitamos saber cómo

actúa sobre los campos locales. Los momentos canónicos pueden calcularse como

pψ = iψ† , piA(x) =
1

e2
Ei , (7.56)

implicando las relaciones de (anti)conmutación a igual tiempo{
ψ(x), ψ†(y)

}
= δ(x− y) 1 ,

[
Ai(x), E

j(y)
]
= ie2δ ji δ(x− y) . (7.57)

A partir de aqúı, uno podŕıa pensar ingenuamente que la acción de la carga (7.55)

viene dada por [
Q̃, ψ(x)

]
= −γ5ψ(x) ,

[
Q̃, ψ†(x)

]
= ψ†(x) γ5, (7.58)[

Q̃, Ai(x)
]
= 0 ,

[
Q̃, Ei(x)

]
= − i

2π2
Bi(x) . (7.59)

Es decir, la carga actúa como era de esperar sobre el campo fermiónico intercambiando

sus quiralidades. Sin embargo, actúa sobre el campo de fotones de una manera no

covariante cambiando el campo eléctrico en un campo magnético y dejando el campo

magnético invariante. Esto no sólo es extraño, sino también incoherente con el hecho

de que ˙̃Q = 0. Este problema se resuelve considerando los términos de Schwinger

que aparecen en el conmutador con la densidad de carga compuesta. Los términos de

Schwinger no nulos6 a primer orden en teoŕıa de perturbaciones están dados por [13]

de la forma:

6Claramente, podŕıamos preguntarnos por la posible existencia de más términos de Schwinger.
Sin embargo, tal como se calculó en [13], el conjunto completo (7.64) es consistente con todas las
ecuaciones de movimiento y leyes de conservación de la teoŕıa. Esto, combinado con el hecho de que
por razones generales uno no esperaŕıa más derivadas de las funciones delta en (7.64) [13, 219], nos
sugiere que (7.64) es de hecho exacta a todo órden en teoŕıa de perturbaciones.
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[
J0
5 (x), E

i(y)
]
=

ie2

2π2
Bi(x) δ(x− y) , (7.60)[

J i5(x), E
j(y)

]
=

ie2

4π2
ϵijkEk(x) δ(x− y) , (7.61)[

J0(x), J0
5 (y)

]
=

i

2π2
Bi(y) ∂xi δ(x− y) , (7.62)[

J i(x), J0
5 (y)

]
=

i

2π2
ϵijkEj(x) ∂

x
kδ(x− y) , (7.63)[

J0(x), J i5(y)
]
= − i

2π2
ϵijkEj(x) ∂

x
kδ(x− y) . (7.64)

En consecuencia, (7.59) se modifica como[
Q̃, Ai(x)

]
= 0 ,

[
Q̃, Ei(x)

]
= 0 . (7.65)

Es evidente que Q̃ deja invariantes las variables del fotón, como cab́ıa esperar basándo-

nos en el ejemplo anterior. En este caso, las cargas quirales más pequeñas vienen dadas

por los bilineales quirales

[
Q̃, ψ̄

(
1± γ5

2

)
ψ(x)

]
= ±2ψ̄(x)

(
1± γ5

2

)
ψ(x) . (7.66)

Estos bilineales tienen dos unidades de carga como mencionamos anteriormente. Me-

diante cálculos similares, también podemos comprobar que la carga modificada, que im-

plementa una transformación quiral bastante estándar, conmuta con el tensor energia-

momento. Nótese que este cálculo requiere de nuevo la consideración de los términos

de Schwinger anteriores dados por (7.64).

Concluimos que las transformaciones generadas por la carga (7.55) parecen obede-

cer todos los requisitos de simetŕıa interna. En particular, puesto que transforma las

álgebras locales en śı mismas y conmuta con las simetŕıas espacio-temporales, pode-

mos construir cargas locales (o twists) para cualquier subregión de cualquier topoloǵıa

dada.

Como antes, la pregunta que queda es en qué sentido esta simetŕıa es diferente de

las simetŕıas internas convencionales. Para abordar esta cuestión, observamos que esta

teoŕıa tiene sectores HDV para regiones tipo anillo, dadas por un grupo Z × U(1). La

parte Z corresponde a TL con cargas 2πk, mientras que la parte U(1) corresponde a

WL de cargas en q ∈ [0, 1). Los WL con cargas enteras no son operadores no locales

porque podemos descomponerlos localmente en ĺıneas de Wilson. Como F̃ se conserva,

el WL puede construirse exponenciando los flujos del campo magnético. La simetŕıa

quiral deja invariantes las clases de los WL, porque el campo magnético es invariante.

Por otro lado, sólo los TL de cargas 2πk son operadores de lazo. Esto, y las relaciones
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de conmutación con WL, queda fijado por las clases de WL no locales que forman un

grupo U(1).

La cuestión crucial nos refiere a la naturaleza de los TL. Observamos, en primer

lugar, que estos operadores TL necesariamente forman parte del álgebra generada por

los operadores locales en una bola.7 La razón es que el WL pertenece a esta álgebra

(es un flujo del campo magnético). En consecuencia, el teorema del doble conmutante

de von Neumann nos requiere que el TL pertenezca al álgebra de la misma bola.

Una expresión del TL que muestre que pertenece al álgebra de los operadores locales

podŕıa obtenerse de forma abstracta utilizando la teoŕıa modular. Pero es ciertamente

oscuro cómo hacer expĺıcita dicha construcción en este contexto QED. El modelo de

piones anterior da una pista sobre lo que ocurre en la expresión del TL en términos de

operadores locales. Ciertamente, los operadores locales cargados quiralmente debeŕıan

jugar un papel.

Sin embargo, la forma estándar de expresar la acción del TL es a partir de la

definición original de ’t Hooft. Esto es, como una inserción de una condición de contorno

a lo largo de Γ = ∂Σ en la integral de camino [7, 220]. Esta condición de contorno es la

imposición de una condición de tipo monopolo magnético sobre el campo de gauge en

una esfera S2 alrededor de cualquier punto en Γ. Esta inserción tiene necesariamente

las relaciones de conmutación correctas con WL, un hecho que establece al TL como

un operador HDV en el anillo.

Para seguir, queremos analizar la transformación quiral estos TL. Podemos calcular

esta transformación a partir del efecto Witten, y de esta manera, se conecta directa-

mente con el mismo efecto en la electrodinámica del pión. Presentamos en el apéndice

C una descripción extensa de dicho efecto, junto con más detalles de la definición del

TL como condición de borde en la integral de camino y el calculo de la transformación

quiral de la medida del fermión. Todos estos conceptos serán necesarios a continuación

para analizar la trasformación quiral del TL.

En esta ĺınea, el efecto de Witten [56] describe un monopolo de carga magnética g

sujeto a un cambio externo del parámetro del término θ en el Lagrangiano

Lθ =
1

16π2
θ F µν F̃µν , (7.67)

para un cambio total ∆θ. En este proceso un monopolo con carga g se transforma en

un dión de carga (
g, g

∆θ

4π2

)
. (7.68)

Equivalentemente, el monopolo ha adquirido una carga eléctrica g ∆θ
4π2 . Como resultado,

7Dicha bola debe contener completamente la región tipo anillo que encierra el lazo en el que se
define el TL.
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las condiciones de contorno del monopolo a lo largo del TL también se modifican a

condiciones de contorno de dión, y el cambio del TL a lazo de caracter diónico viene

dado por la misma fórmula (7.68).

Ahora, sólo queda conectar tal cambio de θ con una transformación quiral a través

de la anomaĺıa. En efecto, dicho término aparece en la acción como resultado de una

transformación quiral de la medida del fermión en la integral de camino [221]. La

transformación quiral cambia la acción con el término (7.67), donde

∆θ =

(∑
i

q2i

)
λ . (7.69)

En esta ecuación, λ es precisamente el ángulo de la transformación quiral, y la suma es

sobre los diferentes fermiones quirales con carga qi. Para QED es ∆θ = 2λ. Nótese que

también podŕıamos haber invocado el efecto de Witten en la electodinámica de piones,

con la identificación

θ = n q20
π0
fπ
. (7.70)

Por lo tanto, en QED tenemos el mismo fenómeno que en la electrodinámica de

piones. El de una simetŕıa quiral U(1) que cambia las clases como

(2πk, q) →
(
2πk, q + 2k

λ

2π

)
, (7.71)

con λ ∈ [0, 2π), q ∈ [0, 1). Vemos que la carga mı́nima construida con estos lazos es 2,

pero ésta es también la carga mı́nima en los operadores locales invariantes de gauge.

En este sentido, este modelo alcanza el valor mı́nimo posible n = 1. Descripciones

análogas de la acción no trivial de las transformaciones quirales sobre el TL han apare-

cido anteriormente [14–16]. Sin embargo, la interpretación y las consecuencias difieren.

Compararemos con tales trabajos en la sección 7.2.

Es interesante observar que en QED esperamos a priori que esta simetŕıa no se

rompa. De hecho, la QED ordinaria no presenta ningún escalar de Goldstone y la masa

del electrón ya es muy pequeña con respecto a la escala a la que la constante de acopla-

miento es fuerte. Esto conduciŕıa a la ecuación ⟨D(g,q)⟩ = ⟨D(g,q+λ g)⟩ para operadores

no locales relacionados con la simetŕıa. Esta ecuación es ciertamente sorprendente des-

de el punto de vista del campo libre de Maxwell. Podemos preguntarnos cómo esto es

compatible con el signo “equivocado” de la función beta en QED. En este sentido, seŕıa

interesante tener una comprensión más expĺıcita de esta ecuación.
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7.1.4. Correspondencia de anomaĺıas y teorema de Goldstone

La interpretación habitual de las anomaĺıas es que no se renormalizan. Equivalen-

temente, la divergencia de la corriente anómala debe ser la misma en los modelos UV

e IR. Esto implica que la expresión general para la anomaĺıa

∂µj
µ
5 = c ϵµνρσFµνFρσ , (7.72)

tiene el mismo c adimensional para las teoŕıas IR y UV, cuando fijamos la normalización

de la corriente y del campo electromagnético. Esto impone una correspondencia de

anomaĺıas entre los modelos IR y UV. Esta correspondencia implica la existencia de

excitaciones sin masa en el IR, ya sean fermiones o bosones de Goldstone, capaces de

reproducir la anomaĺıa UV [216]. Por ejemplo, para QCD con quarks sin masa tenemos

para la anomaĺıa en la corriente quiral

jµ =
1

2

(
ū γµ γ5 u− d̄ γµ γ5 d

)
, (7.73)

generando el valor del coeficiente

c =
Nc

2

1

16π2

((
2

3

)2

−
(
1

3

)2
)

=
Nc

96π2
. (7.74)

Podemos deducir esto de la anomaĺıa presente en QED para cargas 2/3 y −1/3 aso-

ciadas a los quarks u y d, que se replican por el número de colores Nc. Fijamos la

normalización de F estableciendo la carga del protón en uno. Esta corriente se iden-

tifica en el IR con la que crea el campo de piones jµ = fπ ∂µπ0. La correspondencia

de anomaĺıas nos da entonces el coeficiente en el Lagrangiano del pión a través de

(7.46-7.47), con q0 = 1/3, n = 3Nc.

Ahora queremos entender la correspondencia de anomaĺıas en términos de la exis-

tencia de la simetŕıa quiral global U(1). Nótese que, genéricamente, la existencia de

una simetŕıa global continua ordinaria en el UV no implica necesariamente excitaciones

sin masa en el IR. Aunque los bosones de Goldstone sin masa aparecen si la simetŕıa

se rompe espontáneamente, podemos tener el caso de que todas las part́ıculas cargadas

se vuelvan masivas, y la simetŕıa desaparezca efectivamente en el IR. Sin embargo,

para la simetŕıa quiral actual, el punto clave es que cambia las clases HDV. Por lo

tanto, la simetŕıa no puede simplemente desaparecer en el IR ya que transforma las

clases no locales del campo electromagnético. Estas clases también están presentes en

el IR, ya que se supone que el campo electromagnético se acopla débilmente en ese

régimen. Además, no puede darse el caso de que una simetŕıa cambie las clases en el

UV y luego deje de cambiarlas en el IR, si las clases siguen estando presentes. Esto no
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es posible porque la acción de la simetŕıa sobre las clases no locales se preserva bajo

“transportabilidad”, o deformaciones de los operadores no locales por los locales. Estas

deformaciones pueden transformar continuamente un lazo pequeño en uno grande.

Otra perspectiva es la siguiente. La simetŕıa de 1-forma no desaparece en el IR debi-

do a la existencia del campo de Maxwell. Entonces, los TL tienen valores de expectación

no triviales, dando lugar a operadores cargados quirales no triviales. La complementa-

riedad cuántica obliga a la existencia de operadores duales a estos cargados, también

con valores de expectación no triviales [22, 49]. En este caso, estos son los twists locales

que efectúan la transformación de simetŕıa en el IR.

Por otro lado, como hemos comentado antes, los operadores no locales se construyen

con operadores locales ordinarios. Puesto que los TL están cargados quiralmente, esto

implica que en el IR debe haber operadores locales que aún se transforman bajo la

simetŕıa. Esto explica la existencia de excitaciones sin masa en el IR (además del campo

fotónico). Entonces, la correspondencia de anomaĺıas se convierte simplemente en la

afirmación de que la acción de la simetŕıa de grupo sobre las clases no locales se preserva

a través del flujo del RG, y por lo tanto sus manifestaciones pueden corresponderse a

diferentes escalas. Está claro que la velocidad de estas transformaciones en las clases

preservadas también tiene que ser preservada, y esta velocidad es la que establece el

coeficiente de la anomaĺıa.

En este sentido, podŕıa darse el caso de que no todos los sectores no locales se

conserven o, como en QCD, que surjan nuevos sectores en el IR porque la carga mı́nima

cambia de 1/3 a 1 (considerando los piones cargados). En este caso, los sectores UV

forman un subgrupo U(1)IR/Z3 × 3ZIR de los infrarrojos. La correspondencia con la

acción de la simetŕıa quiral conduce entonces a

nUV (qUV
0 )2 = nIR (qIR0 )2 . (7.75)

Por último, la existencia de una simetŕıa global continua en la QFT implica que se

aplica el teorema de Goldstone [222–224]. La validez de este teorema no se apoya en la

existencia de una corriente invariante de gauge. Sólo requiere la existencia de las cargas

o twists locales invariantes de gauge, como se demuestra en [39]. Como discutiremos en

la siguiente sección, las cargas locales U(1) pueden construirse para el campo del pión.

Por lo tanto, esta simetŕıa puede romperse espontáneamente o no en el IR, conduciendo

a la existencia de modos Goldstone o no. En QCD surge la primera posibilidad, con la

aparición de los piones como bosones de Goldstone de la ruptura de la simetŕıa quiral.

En otras palabras, el acoplamiento entre la QCD y el campo electromagnético, que

deforma la conservación ingenua de la corriente quiral, no estropea la aplicabilidad del

teorema de Goldstone, lo que implica la existencia de piones neutros a bajas enerǵıas.8

8Una versión del teorema de Goldstone para simetŕıas no invertibles que explica estos aspectos
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7.1.5. Implementación local de la simetŕıa

Dada una simetŕıa interna, definida como un automorfismo global de las álgebras

(aditivas) generadas localmente para cualquier región del espacio-tiempo, siempre po-

demos encontrar operadores con soporte en regiones compactas del espacio que imple-

mentan la simetŕıa dentro de estas regiones, actuando trivialmente fuera de ellas. Este

es el contenido de la forma débil del teorema de Noether [146–149]. Estos operadores

que implementan transformaciones locales son los twists que estudiamos extensivamen-

te en el caṕıtulo 5.9 Podemos construirlos de forma general y abstracta utilizando la

split property y la teoŕıa modular. Como vimos en la sección 5.2.1, una vez que tene-

mos dos álgebras que conmuten (sin intersección no trivial entre ellas), y un unitario

global que efectúa automorfismos para esas álgebras, podemos construir los twists que

efectúan la transformación en una de las álgebras.

La versión débil del teorema de Noether y la construcción de twists locales pueden

extenderse al caso de ruptura de simetŕıa [39]. Esta extensión es relevante para el caso

que nos interesa, a saber, para QCD con quarks sin masa, ya que la simetŕıa quiral

esta espontáneamente rota. En este caso, los automorfismos de las álgebras locales que

conmutan con la simetŕıa de Poincaré sustituyen a los operadores de simetŕıa global

(que están mal definidos en el caso de ruptura de simetŕıa) en la construcción de los

twists. Para un resumen de las sutilezas involucradas véase la sección 5.2.1 y para un

ejemplo la sección 5.3.1.

Por lo tanto, la existencia de estas implementaciones locales nos permite estudiar,

por ejemplo, las transformaciones de las clases HDV bajo la simetŕıa, donde ahora

todas las transformaciones de simetŕıa están definidas localmente y representadas por

los operadores de twist τg. Si definimos el modelo en un espacio de topoloǵıa no trivial, la

estructura de las álgebras locales dentro de una bola contractible debe ser en principio la

misma, a saber, el álgebra aditiva (véase [226] para una discusión reciente con diferentes

motivaciones). Existirán twists para tales bolas, y a su vez a partir de ellas podemos

proporcionar twists asociados a cualquier región dada (de cualquier topoloǵıa) dentro

de la bola. Esto nos permite comprender que la simetŕıa quiral es la misma simetŕıa

U(1) invertible en cualquier espacio-tiempo, en lo que se refiere a los automorfismos de

las álgebras locales. Esta simetŕıa es intŕınseca a la QFT y, lo que es más importante,

controla el decaimiento de piones. Discutiremos las simetŕıas globales para variedades

se describió en [225]. Pero a partir del presente análisis, está claro que es el teorema de Goldstone
convencional el que dicta que el campo del pión es un bosón de Nambu-Goldstone.

9Las simetŕıas globales convencionales se definen, a veces, como aquellas con operadores topológicos
para cualquier variedad de codimensión uno en signatura eucĺıdea. Nótese que la presente versión débil
del teorema de Noether en QFT muestra que uno sólo necesita demostrar la existencia del operador
topológico global en la variedad M de sobre la que definimos la teoŕıa, y que tal operador topológico
global genera un automorfismo de las álgebras aditivas. Una vez demostradas estas dos cosas en la
QFT en cuestión, el teorema estudiado en [146–149] implica la existencia de operadores topológicos
para cualquier subregión en la variedad M .
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compactas con topoloǵıa no trivial utilizando los conceptos introducidos en el caṕıtulo

2 durante la sección 7.2. No obstante, veremos que las posibles caracteŕısticas de estos

operadores globales no tienen nada que ver con el decaimiento de los piones.

Como vimos en el caṕıtulo 5, cuando la simetŕıa global modifica las clases no locales

asociadas a una determinada región, se producen ciertos refinamientos en la clasificación

de los twists. Más concretamente, los twists para regiones que contienen operadores no

locales pueden reproducir o no la acción de la simetŕıa global sobre estos operadores

no locales. En términos más generales, los twists pueden implementar la simetŕıa en

una subálgebra cerrada de los operadores no locales que se mantiene invariante bajo

la simetŕıa. Esto es posible porque los twists estándar surgen al elegir las dos álgebras

conmutativas y no intersecantes apropiadas aplicando la split property, y en estos

casos tenemos más de una opción. Se pueden elegir las álgebras aditivas para ambas

regiones, o el álgebra aditiva para una región y el álgebra máxima para la otra. También

se pueden elegir opciones intermedias, siempre que conmuten. Los twists formarán

siempre el mismo grupo que el global y actuarán de forma correcta sobre cualquier

operador cuya transformación de simetŕıa se mantenga en el álgebra.

7.2. Simetŕıas no invertibles y literatura reciente

Este caṕıtulo fue motivado principalmente por la interesante interacción entre las

teoŕıas con anomaĺıas ABJ, el teorema de Noether y su relación con las pruebas del

caṕıtulo 5. La discusión anterior concluyó que las anomaĺıas ABJ debeŕıan entenderse

más propiamente como teoŕıas con una simetŕıa global U(1), como anticipó Adler.

Siendo la única caracteŕıstica que hace especial a esta simetŕıa global el hecho de que

transforma las clases no locales. Sin embargo, esta peculiaridad nos permite explicar

(a) la cuantización del coeficiente de la anomaĺıa debido a la necesidad de compatibi-

lidad de los ciclos U(1) asociados a la simetŕıa quiral y a la simetŕıa generalizada

1-forma,

(b) la correspondencia de la anomaĺıa (“anomaly matching”) por la preservación de

la simetŕıa que transforma las clases no locales a lo largo del flujo del RG entre

el IR y el UV,

(c) la ausencia de una corriente de Noether por el hecho de que los twists locales

transforman las clases no locales mientras que los twits de Noether no pueden

hacerlo,

(d) la aplicabilidad del teorema de Goldstone que muestra que el campo de piones

puede considerarse un bosón de Goldstone incluso cuando QCD está acoplada al

campo de fotones.
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Estas conclusiones resultan estar en contraste con literatura reciente [14–16]. Aun-

que parte del esṕıritu y varios cálculos son similares, no encontramos que la simetŕıa

quiral se reduzca a Znf
en QED con nf fermiones sin masa [14], o que deba interpretarse

como no invertible [15, 16]. Estas discrepancias se originan en caracteŕısticas asocia-

das con las manifestaciones en la f́ısica local de las simetŕıas generalizadas. La f́ısica

de QFTs con anomaĺıas ABJ simplemente amplifica sus consecuencias. Por lo tanto

durante esta sección buscamos aclarar la imagen f́ısica general en comparación con los

trabajos anteriores. Para esto tomamos como punto de partida las ideas desarrolladas

en el caṕıtulo 2 durante la sección 2.3 y describimos cómo afectan a la comprensión de

la anomaĺıa en la literatura reciente.

Terminamos la sección recordando el teorema de reconstrucción DHR [58–62], des-

tacando las dificultades, o más bien la imposibilidad, que plantea a tener genuinas

simetŕıas internas globales (0-forma) no invertibles, para dimensiones D > 2. Nuestros

resultados relativos a las teoŕıas con anomaĺıas ABJ son, por tanto, coherentes con

dicho teorema general. Esbozamos además la idea de un “teorema de reconstrucción

generalizado”.

7.2.1. Discusión de literatura reciente sobre la anomaĺıa ABJ

A continuación describimos cómo las caracteŕısticas discutidas en los caṕıtulos 2

y 5 afectan a las interpretaciones recientes de la anomaĺıa ABJ. El primer art́ıculo

que dio cuenta de que hab́ıa una interacción interesante entre la simetŕıa quiral y

los TL fue [14]. Sin embargo, alĺı se argumentaba que en QED, la simetŕıa quiral

modificada U(1) de Adler no es realmente una simetŕıa global. La razón dada es que

esta simetŕıa mezcla el TL con un operador topológico de superficie, concretamente el

flujo magnético. La definición que proporcionan de simetŕıa global es la estándar, y la

misma que en la literatura algebraica, a saber, como un automorfismo de las álgebras

locales. El problema en cuestión es la noción de álgebra local. En el art́ıculo citado,

esto significa el álgebra aditiva más los TL, pero no el WL. Esto es hacer una elección

particular de red de Haag-Dirac (HD) y atribuirle un significado f́ısico. En este caso

particular, para decidir si algunas transformaciones son simetŕıas de la teoŕıa o no.

Sin embargo, una definición de simetŕıa global que sea f́ısica (intŕınseca) debe partir

únicamente de los automorfismos del álgebra aditiva. Y, de hecho, esto nos es suficiente

para toda la discusión de este caṕıtulo y el caṕıtulo 5. La razón es la siguiente. Puesto

que las regiones topológicamente triviales tienen álgebras únicas (satisfacen la dualidad

de Haag), es un requisito minimalista que una simetŕıa global sea un automorfismo

de las álgebras asociadas a regiones topológicamente triviales como las bolas. Pero

este requisito minimalista se extiende inmediatamente a toda la red aditiva, ya que la

construimos a partir de las álgebras asociadas a las bolas. Supongamos entonces que
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efectivamente tenemos (5.1)

U(g)A(R)U(g)−1 = A(R) , g ∈ G , (7.76)

donde debemos entender esta relación como un mapeo entre álgebras. Por supuesto,

no dice que todos los elementos de A(R) son invariantes bajo el grupo de simetŕıa.

Sólo dice que la acción de la simetŕıa deja el álgebra en śı misma. Equivalentemente, si

a ∈ A(R) entonces U(g) aU(g)−1 ∈ A(R). Ahora, recordamos que la conjugación con

un unitario U(g) lleva álgebras que conmutan a álgebras que conmutan, es decir, dado

(7.76) recuperamos (5.2), a saber

U(g)A(R)′ U(g)−1 = A(R)′ , g ∈ G . (7.77)

Pero el conmutante del álgebra aditiva en una dada región es el álgebra máxima en

el complemento, que contiene todos los operadores HDV. Equivalentemente, contiene

todas las ĺıneas genuinas y superficies topológicas. Concluimos que si tenemos un au-

tomorfismo de las álgebras locales asociadas a bolas, tenemos un automorfismo para

las álgebras máximas asociadas a cualquier región R, dado por (5.3) de la forma

U(g)Amax(R)U(g)
−1 = Amax(R) . (7.78)

En resumen, esto implica que la simetŕıa no puede convertir operadores no locales en

locales o viceversa. Tiene que transformar las clases de operadores no locales en śı

mismas. La mayoŕıa de las simetŕıas no transforman estas clases, pero algunas śı lo

hacen. Dado que las ĺıneas genuinas y las superficies topológicas son operadores HDV

por igual, se espera que las simetŕıas de este tipo transformen entre ellas. Obsérvese

que el hecho de que algunas simetŕıas puedan transformar ĺıneas genuinas en superficies

topológicas sólo es posible si tal distinción no tiene sentido f́ısico. En tales escenarios,

esos operadores pertenecen al mismo multiplete generalizado. Equivalentemente, la

noción de clases HDV es la noción adecuada para caracterizar y clasificar las posibles

mezclas entre diferentes simetŕıas generalizadas.

Para la anomaĺıa ABJ, tal como se ha calculado anteriormente, el conmutante del

álgebra aditiva del anillo es el álgebra máxima en el anillo complementario. Esta incluye

el álgebra aditiva más los TL dados por Tg con g = g0 n y n entero, y los WL actuando

como superficies topológicas, es decir Wq = eiqΦB con ΦB el flujo magnético sobre

cualquier superficie con borde en el anillo complementario y q ∈ [0, 2π/g0). Podemos

construir automorfismos del álgebra aditiva, que dejan invariantes las álgebras aditivas,

pero mezclan los TL con los WL, como deducimos en la sección 7.1. Como la simetŕıa

cambia las clases no locales, no respeta las elecciones de redes de HD, como por ejemplo

la que obtenemos al tomar sólo los TL como operadores no locales para una región.
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Como ya hemos explicado, las elecciones de HD no son intŕınsecas o f́ısicas, y una

simetŕıa f́ısica puede cambiarlas. Este tipo de mezcla es la generada por la simetŕıa

quiral modificada. Por ende, vemos que trata de una transformación U(1) sin corriente

de Noether debido al teorema que probamos en el caṕıtulo 5.

En otra visión del tema se introdujo en [15, 16], donde se ha argumentado que la

afirmación correcta no es la de Adler, a saber, que la anomaĺıa ABJ está codificando

una simetŕıa global U(1) abeliana, sino que su origen reside en la existencia de una

cierta simetŕıa no invertible implementada por un conjunto modificado de generadores

de simetŕıa. En la construcción original los nuevos operadores de simetŕıa se etiqueta-

ron mediante números racionales, mientras que las extensiones a etiquetas compactas

continuas se han descrito en [225, 227]. La construcción sigue la ĺınea de una análoga

para el caso de simetŕıa de dualidad y escenarios relacionados [228–234]. La motivación

para estos nuevos desarrollos es que la construcción de Adler de la carga conservada

invariante de gauge Q̃ sólo es válida cuando la carga tiene soporte compacto sobre

una superficie de Cauchy infinita a tiempo fijo, y sólo cuando insertamos operadores

locales, tales como el campo pión π0 o Fµν en la electrodinámica con axiónes. Aunque

se reconoce que en el espacio plano con inserciones de operadores locales la simetŕıa

se convierte en una U(1), la transformación no trivial de el TL se considera de nuevo

un problema. Se argumenta que la mezcla no convencional entre ĺıneas genuinas (aqúı

el TL) y superficies topológicas (el WL con cargas no enteras) está relacionada con la

naturaleza no invertible de la propuesta simetŕıa.

Sin embargo, como hemos explicado, la simetŕıa actúa como actúa sobre el TL

exactamente porque transforma los campos locales de la forma correcta. El TL y el

WL no son más que operadores construidos con los campos locales.10 La afirmación

de que una simetŕıa puede actuar de algún modo en operadores locales pero de un

modo fundamentalmente distinto en operadores no locales es inconsistente en QFT.

Esta observación de primeros principios se vuelve completamente expĺıcita en el caso

de la electrodinámica de piones, donde podemos escribir el TL como

Tg = ei gΦG , ΦG ≡ −
∫
Σ

dSi p
A
i = −

∫
Σ

dSi

( 1

e2
Ei +

1

µ
π0Bi

)
. (7.79)

Insertar el TL no significa otra cosa que insertar muchos campos eléctricos, magnéticos

y de piones. La transformación no trivial del TL se sigue enteramente de la del campo

de piones local π0, que a su vez es un U(1), como reconoce en [15, 16]. También, es

transparente que el hecho de que la transformación mezcle el TL con la superficie

topológica no tiene nada que ver con la no invertibilidad de la simetŕıa, sólo con el

10Este es el caso del TL y la WL definidos por lazos contractibles en la variedad sobre la que se
definen. Estos tipos de lazos contractibles están relacionados con la f́ısica local. En la siguiente sección
comentamos los no contractibles.
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hecho de que el TL, para ser topológico, necesita incluir con el campo quiral local.

Es transparente que la clasificación entre ĺıneas genuinas y superficies topológicas sólo

causa confusión aqúı, como muestran precisamente estos modelos, que las conectan

mediante una transformación de simetŕıa.

Estos trabajos descartan hasta cierto punto la discusión de lo que ocurre para las

álgebras locales y la f́ısica local y se concentran en definir y comprender la simetŕıa en

las variedades topológicamente no triviales. Esto nos aleja del ámbito de la anomaĺıa

ABJ y de la f́ısica de part́ıculas. Para variedades de topoloǵıas no triviales, la f́ısica

relevante dentro de bolas contenidas estas variedades debeŕıa seguir la que que hemos

descrito en el espacio plano.

Como hemos mencionado en el caṕıtulo 2, para entender la estructura global ne-

cesitamos hacer elecciones adicionales que definen el modelo. La acción global de la

simetŕıa debe definirse en consecuencia. En la próxima sección profundizaremos más

en las simetŕıas que cambian de clase en las variedades no triviales. Aqúı queremos

destacar que un problema muy similar, con elecciones y soluciones paralelas, puede

estudiarse dentro del espacio plano. Podemos preguntarnos cómo construir twists para

la simetŕıa que actúan en una región compacta R del espacio y no hacen nada en el

complemento de una región ligeramente mayor. En el caso que nos ocupa el interés

se centra, por ejemplo, en una región R con la topoloǵıa de un anillo. Como se estu-

diamos en detalle durante el caṕıtulo 5, para una región topológicamente no trivial R

hay diferentes opciones de álgebras y twists que podemos considerar. El álgebra pue-

de ser puramente aditiva, o contener todas, o algún subgrupo de clases no locales de

operadores. Los twists para estas álgebras pueden construirse de tal forma que formen

un grupo U(1), y de tal forma que tengan, al menos, la misma acción que la simetŕıa

global sobre los operadores locales. Si la subálgebra elegida de operadores no locales es

invariante bajo la simetŕıa, entonces también pueden construirse twists que realicen las

transformaciones relevantes también sobre operadores no locales. Estos twists comple-

tos siguen formando una representación del grupo original. Vemos que no necesitamos

ninguna acción no invertible para definir localmente la acción de la simetŕıa.

7.2.2. Variedades compactas con topologia no trivial

En secciones anteriores hemos demostrado que es posible recuperar la simetŕıa qui-

ral U(1) para subregiones contractibles de cualquier topoloǵıa en cualquier variedad.

En el caṕıtulo 5 durante la sección 5.3.3, hicimos una discusión similar para la si-

metŕıa de dualidad electromagnética del campo de Maxwell y subregiones del espacio

de Minkowski. Desde nuestro punto de vista, esta es la afirmación importante, ya que

tales simetŕıas U(1), válidas a nivel local, son las que controlan la f́ısica local, como

el decaimiento de piones, en cualquier espacio-tiempo. Sin embargo, parte de la comu-
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nidad define convencionalmente una simetŕıa global de modo que existan generadores

de simetŕıa topológica cuando la teoŕıa se sitúa en variedades con topoloǵıa no trivial.

Ahora mostramos cómo extender la construcción a dichos casos.

Para ser concertos y por simplicidad nos centramos en el ejemplo considerado re-

cientemente en [232, 234], a saber, las transformaciones de dualidad electromagnética

de un campo libre de Maxwell en un espacio-tiempo S2 × S1 × R. Esta simetŕıa, como

la simetŕıa quiral, transforma las clases, ya que rota los flujos eléctricos y magnéticos

del campo de Maxwell. Por ello se considera que también se vuelve no invertible, véase

[232, 234] y referencias al respecto. En lo que sigue, mostramos cómo cuantizar la teoŕıa

en este espacio-tiempo y luego como recuperar la simetŕıa de dualidad U(1).

Armónicos esféricos en S2 × S1

Empezamos desarrollando, a partir de los armónicos esféricos usuales, una base

completa ortonormal que nos permita expandir campos escalares y vectoriales en S2 ×
S1. Más precisamente, consideramos la métrica del espacio-tiempo dada por

ds2 = gµνdx
µdxν = −dt2 +R2

(
dθ2 + sin2 θ dφ2

)
+ L2dχ2 , (7.80)

donde t ∈ R describe la coordenada temporal, θ ∈ [0, π) y φ ∈ [0, 2π) representan los

ángulos de S2 con radio R, y usamos χ ∈ [0, 2π) para notar el ángulo de S1 con radio

L.

Para construir la base necesaria, comenzamos estudiando las auto-funciones del

Laplaciano espacial. Estas vienen dadas por

Φlmk(θ, φ, χ) =
1

R

eikχ√
2πL

Ylm(θ, φ) , (7.81)

con l,∈ N0, m, k ∈ Z, y |m| ≤ l. Los auto-valores correspondientes vienen dados por

las frecuencias ωlk =
l(l+1)
R2 + k2

L2 como

∇2Φlmk(θ, φ, χ) =
1√
|g|
∂i

[√
|g| gij∂jΦlmk(θ, φ, χ)

]
= −ωlkΦlmk(θ, φ, χ) . (7.82)

Las funciones (7.81) obedecen a la condición de ortonormalidad dada por el producto

escalar∫ 2π

0

dχ

∫ π

0

dθ

∫ 2π

0

dφ
√
|g|Φ∗lmk(θ, φ, χ)Φl′m′k′(θ, φ, χ) = δll′δmm′δkk′ . (7.83)
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De esta forma podemos expandir campos escalares ϕ(t, θ, φ, χ) en S2 × S1 de la forma

ϕ(t, θ, φ, χ) =
∑
lmk

ϕlmk(t)Φlmk(θ, φ, χ) . (7.84)

Continuando, podemos utilizar los modos escalares, y podemos obtener una base para

vectores espaciales en S2 × S1, a saber

[Φe
lmk(θ, φ, χ)]i =

eikχ√
2πL

∂iYlm(θ, φ)√
l(l + 1)

, l > 0 , −l ≤ m ≤ l , k ∈ Z , (7.85)

[Φm
lmk(θ, φ, χ)]i =

1

L

eikχ√
2πL

Eijnχ̂
j∂nYlm(θ, φ)√
l(l + 1)

, l > 0 , −l ≤ m ≤ l , k ∈ Z , (7.86)

[Φχ
lmk(θ, φ, χ)]i =

1

RL

eikχ√
2πL

Ylm(θ, φ) gijχ̂
j , l ≥ 0 , −l ≤ m ≤ l , k ∈ Z . (7.87)

En estas definiciones, obsérvamos que Φ⃗χ
lmk es paralelo al versor χ̂i = (0, 0, 1) en

la direccion dada por el S1, y Φ⃗e
lmk y Φ⃗m

lmk representan las direcciones “eléctrica” y

“magnética” habituales sobre S2. También, hemos definido el tensor de Levi-Civita

como Eijk =
√
gεijk, con εθφχ = 1, y definimos el gradiente espacial en las coordenadas

naturales de la variedad S2×S1, es decir ∂i =
(
∂
∂θ
, ∂
∂φ
, ∂
∂χ

)
. Si utilizamos las relaciones

de ortonormalidad anteriores asociadas a los modos escalares, podemos comprobar que

los vectores (7.85-7.87) satisfacen∫ 2π

0

dχ

∫ π

0

dθ

∫ 2π

0

dφ
√
|g|
[
Φs∗

lmk(θ, φ, χ)
]i[

Φs′

l′m′k′(θ, φ, χ)
]
i
= δll′δmm′δkk′δss′ , (7.88)

donde los ı́ndices son s, s′ = e,m, χ. Usando esta base podemos expandir la parte

espacial de campos vectoriales v̄(t, x̄) como

v̄(t, θ, φ, χ) =
∑
lmk

∑
s

vslmk(t)Φ̄
s
lmk(θ, φ, χ) . (7.89)

Podemos calcular otras propiedades considerando la acción correspondiente de las de-

rivadas covariantes ∇i. Por ejemplo, las divergencias toman la forma

∇i [Φ
e
lmk]

i = −
√
l(l + 1)

R
Φlmk, (7.90)

∇i [Φ
m
lmk]

i = 0 , (7.91)

∇i [Φ
χ
lmk]

i =
ik

L
Φlmk , (7.92)
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mientras podemos escribir los rotores como

Eijn∇j [Φe
lmk]

n =
ik

L
[Φm

lmk]i , (7.93)

Eijn∇j [Φm
lmk]

n = −ik
L

[Φe
lmk]i −

√
l(l + 1)

R
[Φχ

lmk]i , (7.94)

Eijn∇j [Φχ
lmk]

n = −
√
l(l + 1)

R
[Φm

lmk]i . (7.95)

Campo de Maxwell libre en la variedad S2 × S1

Seguimos, con el análisis de la estructura del álgebra, para esto tenemos que definir

la teoŕıa de Maxwell en S2 × S1 × R. Con este propósito, estudiaremos la transición al

formalismo hamiltoniano donde veremos que la cuantización es sencilla y que podemos

entenderla como la de una serie de osciladores armónicos desacoplados. A continuación,

presentamos este calculo detalladamente.

Como primer paso, expandimos las partes escalar y vectorial del potencial de gauge

combinando (7.81) y (7.85-7.87). Más precisamente, tenemos

A0 =
∑
lmk

A0
lmk(t)Φlmk(θ, φ, χ), Ai =

∑
lmk

∑
s

Aslmk(t)
[
Φs
lmk(θ, φ, χ)

]
i
. (7.96)

Nótese que por coherencia con las definiciones (7.85-7.87) tenemos l ≥ 1 para s = e,m,

mientras que l ≥ 0 para s = χ. Utilizaremos este abuso de notación durante lo que resta

de la sección. Además, el hecho de que Aµ(x) sea un campo vectorial real combinado

con el hecho de que Φs∗
lmk = (−1)mΦs

l−m−k y Φ∗lmk = (−1)mΦl−m−k implica que

Aslmk
∗ = (−1)mAsl−m−k , A0

lmk
∗ = (−1)mA0

l−m−k . (7.97)

En este contexto, podemos reescribir una transformación de gauge de la forma A′µ =

Aµ + ∂µα expandiendo la función α(t, θ, φ, χ) en la base escalar dada por los modos

(7.81). De esta manera, obtenemos

A′0 =
∑
lmk

(
A0
lmk + α̇lmk

)
Φlmk , (7.98)

A′i =
∑
lmk

[(
Aelmk +

√
l(l + 1)

R
αlmk

)[
Φe
lmk

]
i

(7.99)

+Amlmk
[
Φm
lmk

]
i
+
(
Aχlmk +

ik

L
αlmk

)[
Φχ
lmk

]
i

]
.

A partir de esta relación es transparente que podemos fijar el gauge de modo que

recuperemos Aelmk = 0 para todo m, k y l ≥ 1. Para seguir, impondremos dicho gauge.

A partir de las expresiones anteriores, también podemos reescribir los campos
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eléctricos y magnéticos que describen el espacio de fase invariante de gauge. Si rem-

plazamos (7.93-7.95) y (7.96) en las definiciones Ei = −Ȧi + ∂iA0 y Bi = Eijk∇jAk

encontramos

Ei =(−1)
∑
lmk

[
Ȧmlmk

[
Φm
lmk

]
i
−
√
l(l + 1)

R
A0
lmk

[
Φe
lmk

]
i

(7.100)

+
(
Ȧχlmk −

ik

L
A0
lmk

)[
Φχ
lmk

]
i

]
,

Bi =(−1)
∑
lmk

[√l(l + 1)

R
Aχlmk

[
Φm
lmk

]
i
+
ik

L
Amlmk(t)

[
Φe
lmk

]
i

(7.101)

+

√
l(l + 1)

R
Amlmk

[
Φχ
lmk

]
i

]
.

Basándonos en estos resultados, procedemos a estudiar la dinámica de esta teoŕıa.

Como generalización del caso de espacio plano es natural expandir en modos la acción

S =
1

4

∫
d4x
√

|g|gµαgνβFµνFαβ =

∫
dtL =

∞∑
l=0

l∑
m=−l

∞∑
k=−∞

∫
dtLlmk , (7.102)

donde los modos lagrangianos Llmk pueden calcularse combinando (7.88) y (7.100-

7.101). Por ejemplo, si l ≥ 1, recuperamos

Llmk =
1

2

[
Ȧχlmk

∗Ȧχlmk −
(
ω2
lk −

k2

L2

)
Aχlmk

∗Aχlmk + Ȧmlmk
∗Ȧmlmk (7.103)

− ω2
lkA

m
lmk
∗Amlmk + ω2

lkA
0
lmk
∗A0

lmk −
ik

L

(
Ȧχlmk

∗A0
lmk − A0

lmk
∗Ȧχlmk

)]
.

Dada esta forma del Lagrangiano, donde todos los modos están básicamente desaco-

plados, podemos proceder modo por modo. Debemos tener en cuenta que A0
lmk y su

conjugado aparecen como multiplicadores de Lagrange. Las correspondientes ecuacio-

nes de movimiento nos producen los v́ınculos

ω2
lkA

0
lmk = −ik

L
Ȧχlmk , ω2

lkA
0
lmk
∗ =

ik

L
Ȧχlmk

∗ . (7.104)

Podemos ver que estos son equivalentes a la ley de Gauss ∇iE
i = 0 recordando (7.93-

7.95) y (7.100). Resolviendo dichos vinculos y remplazando en el Lagrangiano tenemos

Llmk =
1

2

[(
1− k2

ω2
lkL

2

)
Ȧχlmk

∗Ȧχlmk + Ȧmlmk
∗Ȧmlmk (7.105)

−
(
ω2
lk −

k2

L2

)
Aχlmk

∗Aχlmk − ω2
lkA

m
lmk
∗Amlmk

]
,

donde recordamos que estamos analizando l ≥ 1. A partir de aqúı podemos encontrar
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los momentos, que obedecen las relaciones de conmutación canónicas. Estos son

πmlmk =
δL

δȦmlmk
= Ȧmlmk

∗ , πχlmk =
δL

δȦχlmk
=

(
1− k2

ω2
lkL

2

)
Ȧχlmk

∗ , (7.106)

y conducen, mediante la transformación de Legendre apropiada, al Hamiltoniano

Hlmk =
1

2

[(
1− k2

ω2
lkL

2

)−1
πχlmk

∗πχlmk + πmlmk
∗πmlmk (7.107)

+

(
ω2
lk −

k2

L2

)
Aχlmk

∗Aχlmk + ω2
lkA

m
lmk
∗Amlmk

]
.

Nótese que en esta notación Hlmk = Hl−m−k y ambos contribuyen al mismo modo. En

este contexto, nos será útil redefinir las variables canónicas como

πmlmk =
1√
2

(
p
(1)
lmk − i p

(1)
l−m−k

)
, πχlmk =

1√
2

√
l(l + 1)

R

(
q
(2)
lmk − i q

(2)
l−m−k

)
, (7.108)

Amlmk =
1√
2

(
q
(1)
lmk + i q

(1)
l−m−k

)
, Aχlmk = − 1√

2

R√
l(l + 1)

(
p
(2)
lmk + i p

(2)
l−m−k

)
, (7.109)

considerando para el caso especial de m = 0 y k = 0 que

πml00 = p
(1)
l00 , Aml00 = q

(1)
l00 , Aχlmk = − R√

l(l + 1)
p
(2)
l00 , πχl00 =

√
l(l + 1)

R
q
(2)
l00 . (7.110)

Esto nos permite reescribir el Hamiltoniano como el correspondiente a osciladores

armónicos reales desacoplados con las mismas frecuencias

∞∑
l=1

l∑
m=−l

∑
k∈Z

Hlmk =
1

2

∞∑
l=1

l∑
m=−l

∑
k∈Z

(
(p

(1)
lmk)

2+(p
(2)
lmk)

2+ω2
lk

[
(q

(1)
lmk)

2+(q
(2)
lmk)

2
])
. (7.111)

Las relaciones de conmutación, recuperadas de la cuantización canónica de (7.105),

simplemente toman la forma de

[q
(1)
lmk, p

(1)
lmk] = i [q

(2)
lmk, p

(2)
lmk] = i . (7.112)

Por último, consideramos el caso faltante de l = 0. Nos concentramos en el subcon-

junto de esos modos con k ̸= 0, es decir, todos los modos restantes menos el que tiene

k = l = m = 0. Para estos modos tenemos el Lagrangiano

L00k = Ȧχ00k
∗Ȧχ00k +

k2

L2
A0

00k
∗A0

00k −
ik

L

(
Ȧχ00k

∗A0
00k − A0

00k
∗Ȧχ00k

)
. (7.113)

En este caso, el multiplicador de Lagrange A0
00k produce el v́ınculo Ȧ

χ
00k = (ik/L)A0

00k,
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forzando que L00k = 0.

Finalmente nos queda el modo k = l = m = 0, que resulta ser una part́ıcula libre

no relativista con Lagrangiano y Hamiltoniano dados por la forma usual

L000 =
1

2
Ȧχ000

2 ⇒ H000 =
1

2
p20 , p0 ≡ Ȧχ000 , q0 ≡ Aχ000 . (7.114)

Las relaciones de conmutación canónicas para estos modos son simplemente

[
q0, p0

]
= i . (7.115)

En resumen, el Hamiltoniano completo conserva la forma una serie de osciladores

armónicos desacoplados, d́ıgase

H =
1

2

∫
dt

∫ 2π

0

dχ

∫ π

0

dθ

∫ 2π

0

dφ
√
|g|gij

(
EiEj +BiBj

)
= (7.116)

=
p20
2

+
1

2

∞∑
l=1

l∑
m=−l

∞∑
k=−∞

(
(p

(1)
lmk)

2 + (p
(2)
lmk)

2 + ω2
lk (q

(1)
lmk)

2 + ω2
lk (q

(2)
lmk)

2
)
,

Además, en esta notación podemos escribir los campos invariantes de gauge como

Ei = −p0
[
Φχ

000

]
i
+
∞∑
l=1

l∑
m=−l

∞∑
k=0

[Elmk]i , Bi =
∞∑
l=1

l∑
m=−l

∞∑
k=0

[Blmk]i , (7.117)

donde tenemos que remplazando (7.108-7.110) en (7.100-7.101) vale que

∞∑
l=1

l∑
m=−l

∞∑
k=0

[Elmk]i =
∞∑
l=1

[
ωl0q

(2)
l00

[
Φr
l00

]
i
− p

(1)
l00

[
Φm
l00

]
i

]
(7.118)

+
∞∑
l=1

l∑
m=−l

∞∑
k=1

[
ωlkq

(2)
lmk

(
Φr
lmk + Φr∗

lmk√
2

)
+ i ωlkq

2
l−m−k

(
Φr
lmk − Φr∗

lmk√
2

)]

−
∞∑
l=1

l∑
m=−l

∞∑
k=1

[
p
(1)
lmk

(
Φm
lmk + Φm∗

lmk√
2

)
+ i p1l−m−k

(
Φm
lmk − Φm∗

lmk√
2

)]
.

∞∑
l=1

l∑
m=−l

∞∑
k=0

[Blmk]i =
∞∑
l=1

[
ωl0q

(1)
l00

[
Φr
l00

]
i
+ p

(2)
l00

[
Φm
l00

]
i

]
(7.119)

+
∞∑
l=1

l∑
m=−l

∞∑
k=1

[
ωlkq

(1)
lmk

(
Φr
lmk + Φr∗

lmk√
2

)
+ i ωlkq

(1)
l−m−k

(
Φr
lmk − Φr∗

lmk√
2

)]

+
∞∑
l=1

l∑
m=−l

∞∑
k=1

[
p
(2)
lmk

(
Φm
lmk + Φm∗

lmk√
2

)
+ i p

(2)
l−m−k

(
Φm
lmk − Φm∗

lmk√
2

)]
.
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Nótese que hemos cambiado convenientemente de base, definiendo para l ̸= 0

[Φr
lmk(θ, φ, χ)]i =

1

ωlk
Eijn∇j [Φm

lmk(θ, φ, χ)]
n . (7.120)

Con estas expresiones, estamos en posición de entender el rol de los WL y TL (globales

o no) en esta teoŕıa. Podemos comenzar calculando el flujo eléctrico sobre la esfera

espacial S2. Más concretamente, el flujo eléctrico sobre una superficie S2 llamada Σ

definida por Σ =
{
(t0, θ, ϕ, χ0) | θ ∈ [0, π) , ϕ ∈ [0, 2π)

}
viene dado por la integración

del pullback de ∗F a Σ (Véase la sección 6.2.3 para detalles). De esta forma, tenemos

ΦE(Σ) =

∫
Σ

∗F =

∫ π

0

dθ

∫ 2π

0

dϕ
√

|h|Eχ = −
(
L3/2

√
2R

)−1
p0(t0) . (7.121)

En otras palabras, el modo p0 representa al flujo eléctrico sobre la esfera espacial S2

en el álgebra. Dı́gase,

p0 ∼
∫
Σ

∗F . (7.122)

Este conmuta con el Hamiltoniano (7.116) y con todos los demás operadores (7.108-

7.110) excepto q0 ∼ Aχ000. La razón f́ısica detrás de esta conmutatividad, es que tenemos

un campo eléctrico que satisface ∇iE
i = 0 y por ende su flujo conmuta con todos los

operadores locales de la teoŕıa. Aqúı, los operadores locales están representados por

todos los modos restantes a excepción de q0. Esta última variable, es la pareja canónica

del flujo eléctrico global en S2 y, en consecuencia, es de esperar que no corresponda

un operador local de la teoŕıa. En efecto, podemos ver que q0 representa en el álgebra

al WL global paralelo a la dirección S1, es decir, es el resultado de integrar Aχ sobre

toda la variedad espacial

q0 ∼
∫
S2×S1

(A · χ̂) . (7.123)

Esto es esperable en base a la discusión presentada en el caṕıtulo 2. Como hemos

mencionado, para las álgebras dadas por factores tipo I, los automorfismos del álgebra

(como los que el TL efectúa sobre el WL para regiones complementarias en el espacio

plano) son internos e implementados por operadores en el álgebra misma. Por eso

obtenemos aqúı el WL global y su operador dual dentro del álgebra, representados por

q0 y p0 respectivamente.

Por otro lado, para el flujo magnético global sobre la superficie S2 dada por Σ

obtenemos simplemente cero, a saber

ΦB(Σ) =

∫
Σ

F =

∫ π

0

dθ

∫ 2π

0

dϕ
√
|h|Bχ = 0 . (7.124)

Del mismo modo, no tenemos una versión de el TL con smearing a largo de la dirección
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S1. Esto implica que el álgebra en este modelo está generada por el WL global y las

álgebras locales. La razón de esta asimetŕıa para los modos globales proviene de haber

cuantizado la teoŕıa utilizando el potencial vector A, de tal manera que F = dA

incluso para el modo global, y esto no es necesario para tener dF = 0. Por supuesto,

nada en la teoŕıa de Maxwell nos instruyó para establecer el flujo magnético sobre el

S2 a cero mientras dejamos que el flujo eléctrico tome cualquier valor. Esto implica una

elección, análoga a la elección de la red HD. Dada la teoŕıa en el espacio plano, también

podŕıamos haber definido nuestra formulación lagrangiana utilizando un dual Ã tal que

∗F = dÃ. Esta cuantización nos habŕıa dado un modelo en el que el flujo eléctrico sobre

la esfera se fija en cero y el magnético es libre. Como veremos a continuación, también

son posibles otras opciones.

Recuperando la simetŕıa de dualidad U(1) en S2 × S1 × R

En este escenario, la cuestión es si existe una definición de la teoŕıa de Maxwell

en S2 × S1 × R que respete la dualidad electromagnética. De hecho, hay dos formas

canónicas. En primer lugar, podemos optar por eliminar ambos operadores de flujo y

los WL y TL no locales.11 Esta es una restricción análoga al álgebra aditiva en las

discusiones de las secciones anteriores ya que esta álgebra no contiene el WL o TL no

local y no puede cambiar los flujos eléctricos y magnéticos. En esta teoŕıa, podemos

escribir el Hamiltoniano como

Hadd =
1

2

∞∑
l=1

l∑
m=−l

∞∑
k=−∞

[
(p

(1)
lmk)

2 + (p
(2)
lmk)

2 + ω2
lk (q

(1)
lmk)

2 + ω2
lk (q

(2)
lmk)

2
]
. (7.125)

Esto define una QFT local en S2 × S1 donde podemos describir el álgebra asociada a

cualquier región compacta a partir campos locales con smearing de la forma∫
σµνF

µν (7.126)

La restricción que establece los flujos eléctrico y magnético en cero podŕıa sugerir la

idea de que las álgebras locales no contienen el campo de Wightman Fµν(x). Esto no

es aśı, las únicas restricciones están en las funciones de smearing disponibles de esta

distribución valuada en operadores. Esto no implica que no existan álgebras locales12,

sino que solo impone que ∫
Σ

σ = 0 ,

∫
Σ

σ∗ = 0 . (7.127)

11Más formalmente esto se puede hacer a partir de la teoŕıa dada por (7.116) y eliminando de q0
del álgebra. Esto se hace mediante una “conditional expectation” actuando con exponenciales de p0.
Entonces, p0 forma un centro del álgebra resultante. Podemos entonces fijar p0 = 0.

12Obsérvese que lo mismo podŕıa decirse en el caso que sólo fijamos flujo magnético o el eléctrico a
cero. Es decir, cuando cuantizamos A con F = dA o Ã con ∗F = dÃ.
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En esta QFT existe una simetŕıa de dualidad electromagnética U(1) generada por

la siguiente carga

Qadd =
∞∑
l=1

l∑
m=−l

∞∑
k=0

(
q
(1)
lmkp

(2)
lmk − q

(2)
lmkp

(1)
lmk

)
, (7.128)

donde el sufijo “add” significa que pertenece al álgebra aditiva. Como era de esperar,

si calculamos la acción de (7.128) sobre (7.118-7.119) vemos que esta carga rota los

campos eléctrico y magnético como

[Qadd, Fµν(x)] = F ∗µν(x) , [Qadd, F
∗
µν(x)] = −Fµν(x) , (7.129)

donde las restricciones (7.127), compatibles con esta simetŕıa, se imponen a las funcio-

nes de smearing.

Observamos que esta carga transformará las clases HDV dentro de la variedad

en cuestión. De forma equivalente, efectuará la transformación de dualidad en WL y

TL contráctibles dentro de la variedad, ya que estos operadores pueden construirse

a partir de los propios campos eléctricos y magnéticos. En este sentido, la simetŕıa

sigue rotando las clases no locales. Nótese también que con esta carga global podemos

construir twists locales en la variedad utilizando la teoŕıa modular, como explicamos

en la sección 5.2.1 . Para ello sólo necesitamos la carga global (7.128) y el hecho de

que produce un automorfismo de las álgebras locales, como acabamos de mostrar en

(7.129).

Una segunda posibilidad es permitir que tanto los flujos eléctricos como los magnéti-

cos atraviesen la superficie S2. Ambos flujos conmutan con el Hamiltoniano y el álgebra

local (el resto de los modos desde esta perspectiva). También podemos incluir el WL y

el TL globales. No hay ningún principio que nos lo impida. Llegamos a esta teoŕıa intro-

duciendo un nuevo modo cero p̃0 cuyos valores de expectación miden el flujo del campo

magnético a través de la esfera S2 espacial. En esta teoŕıa “parental” de Maxwell,

podemos escribir el Hamiltoniano como

Hmax =
p20 + p̃20

2
+Hadd . (7.130)

Podemos ver esta teoŕıa como una representación diferente de los campos eléctrico y

magnético, junto con su dinámica, en la variedad de interés. Es totalmente invariante de

gauge, y es una representación menos sesgada que la que surge del potencial de gauge

A o del potencial dual de gauge Ã.13 Esta elección corresponde al álgebra máxima en

13Neficientemente se podŕıa pensar que esta elección no es posible ya que no podemos elegir cuantizar
la teoŕıa con A y Ã al mismo tiempo. Pero este razonamiento no es correcto porque una teoŕıa cuántica
no necesita definirse por cuantización.
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la variedad.

Con esta elección máxima, también tenemos una simetŕıa de dualidad electro-

magnética U(1). Está generada por la siguiente carga

Qmax = Qadd +
(
q̃0p0 − q0p̃0

)
, (7.131)

donde el sufijo “max” significa que pertenece al álgebra máxima. Transforma todos

los operadores no locales, tanto los contractibles como los no contractibles. Esta carga

deja invariante al Hamiltoniano. Es sólo una transformación de dualidad local entre los

campos eléctrico y magnético (7.129), que ahora no satisfacen las restricciones (7.127).

Esto recupera la simetŕıa completa U(1) del campo de Maxwell en esta variedad, la

cual también intercambia clases no locales.

Por supuesto, si cortamos el modo global de forma sesgada “romperemos” inme-

diatamente la simetŕıa de dualidad electromagnética U(1). Hay muchas maneras de

hacerlo. Por ejemplo, podemos tomar el operador de flujo eléctrico global y no el WL.

En este caso el álgebra tiene un centro. También, podemos tomar una red de HD para

los operadores globales. Por ejemplo, podemos elegir subálgebras de los modos globa-

les como {ei q0n} para enteros n, en lugar de todos los operadores generados por q0, y

análogamente para q̃0. Pero nótese que de esta forma, primero, sólo rompemos la parte

U(1) asociada al modo global. El U(1) asociado a la teoŕıa local en la variedad (7.129),

es decir, la que actúa en todos los demás modos, sigue intacta y no se puede romper.

Esta esta controlada por la f́ısica local. Esto demuestra que incluso en las elecciones

globales sesgadas existe una simetŕıa U(1). Todas estas elecciones pueden implemen-

tarse mediante una extensión de el U(1) que actúa sobre el álgebra aditiva al espacio

de Hilbert completo. Esta extensión puede tomarse como la identidad sobre los modos

globales. De esta forma no hay necesidad de invocar una simetŕıa no invertible para ver

las manifestaciones de la simetŕıa de dualidad. También se pueden construir simetŕıas

no invertibles, a partir de una “conditional expectation”14 del álgebra global elegida al

álgebra aditiva y seguida de la simetŕıa U(1) habitual. Sin embargo, el presente ejemplo

muestra que oscurecemos innecesariamente la f́ısica al pensar de esta manera.

7.2.3. Hacia un teorema de reconstrucción generalizado

Terminamos con una disgresión sobre las simetŕıas no invertibles, el teorema de

reconstrucción en QFT y una posible generalización del mismo. Discutiremos cada

tema por separado.

Como hemos comentado anteriormente, recientemente ha habido una intensa ac-

14Una conditional expectation es un mapa positivo, lineal, y unital ε : M → N de un algebra
N a una subalgebra N que satisface ε(n1mn2) = n1 ε(m)n2 ∀m ∈ M y ∀n1, n2 ∈ N . Véase
[23, 49, 57, 235–237] para aplicaciones recientes en QFT y QG.
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tividad en torno a la noción de simetŕıa no invertible en dimensiones D > 2. Como

su nombre indica, las simetŕıas no invertibles son generadas por operadores que no

satisfacen una ley de la teoŕıa de grupos. En concreto, las “operaciones de simetŕıa”

no tienen inversa. Son generadas por operadores topológicos (o endomorfismos de las

álgebras locales) Tr que satisfacen álgebras de fusión más generales. En general, son de

la forma

Tr Tr′ =
∑
r′′

nr
′′

rr′ Tr′′ , (7.132)

donde encontramos más de un r′′ con coeficiente de fusión distinto de cero.

Probablemente de forma contraintuitiva, obtener teoŕıas con estas estructuras de

simetŕıa es bastante sencillo. De hecho, ejemplos anteriores de simetŕıas no invertibles

en dimensiones generales se encontraron en el análisis de simetŕıas ordinarias no abe-

lianas en [22, 23, 38]. Surgen en un escenario similar al de los orbifolds considerado en

las secciones 2.2.6 y 5.3.1. En este caso, tomamos una QFT F con una simetŕıa global

no abeliana G, y consideramos el orbifold O = F/G. La QFT original contiene, por

suposición, defectos topológicos invertibles, los twists τg que generan la simetŕıa G. En

el orbifold, estos twists dan lugar a defectos topológicos no invertibles τc etiquetados

por las clases de conjugación c del grupo G definidos como (2.40). Más precisamente,

puesto que una combinación lineal de operadores topológicos es un operador topológico,

al definir

τc =
∑
g∈c

τg , (7.133)

obtenemos operadores topológicos, etiquetados por las clases de conjugación c, perte-

necientes a la teoŕıa O y que satisfacen las reglas de fusión (2.43), a saber

τc τc′ =
∑
c′′

nc
′′

cc′ τc′′ , (7.134)

donde nc
′′

cc′ son los coeficientes de fusión de la categoŕıa de clases de conjugación. Re-

mitimos a [23, 38] para más detalles, incluyendo la diagonalización del álgebra y la

construcción de proyectores topológicos que nos muestran transparentemente que la

simetŕıa se ha vuelto no invertible. Por lo tanto, en estos casos vemos que el orbifold

O representa una teoŕıa con una simetŕıa no invertible.

Podemos construir fácilmente ejemplos similares para simetŕıas 1-forma. Un ejemplo

sencillo consiste en tomar el producto de dos teoŕıas de gauge SU(2) independientes con

un grupo Z2 de operadores no locales (digamos, para simplificar, para D = 5) y hacer el

orbifold diagonal. Llamando a cada sabor 1 y 2 respectivamente, la teoŕıa original teńıa

cuatro sectores no locales generados por los WL y sus productos 1,W1,W2,W1W2. La

teoŕıa del orbifold tiene sólo tres sectores generados por 1,W1+W2,W1W2. En este caso,

esta construcción nos proporciona incluso reglas de fusión que no están relacionadas
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con la categoŕıa de representaciones/clases de conjugación de un grupo.15

Muchos de los ejemplos en D > 2 que se han considerado recientemente son de este

tipo, es decir, surgen por un cociente global de la forma O = F/G. En estos ejemplos, la

no invertibilidad de la simetŕıa es bastante leve, ya que podemos repararla considerando

la QFT F completa en lugar del orbifold O. En otras palabras, simplemente tenemos

un álgebra de operadores topológicos (de cualquier codimensión) que satisface reglas

de fusión de tipo grupo y elegimos subálgebras particulares con reglas de fusión no

triviales. Aun aśı, la cuestión interesante sigue siendo si existen simetŕıas no invertibles

de 0-forma o 1-forma que no surjan de una construcción de orbifold de este tipo. Que

éstas existen y que aparecen en teoŕıas con anomaĺıas ABJ es parte de la afirmación

de [15, 16]. Ahora, argumentamos lo contrario.16

Para ello, es importante que recordemos el denominado teorema de reconstrucción

DHR en QFT [58–62]. En este lenguaje, este teorema establece precisamente la no

existencia de simetŕıas 0-forma no invertibles enD > 2 que no surgen de la construcción

anterior, es decir, como resultantes de un cociente global de la forma O = F/G. Los
supuestos para derivar este teorema son muy leves, y básicamente se basan en la validez

de dualidad de Haag para regiones en forma de bola. Esta noción simplemente establece

que cada operador dentro de una bola se genera en última instancia por productos de

operadores locales. Esto representa la esencia de la localidad en QFT. El teorema se

deriva entonces de una sutil interacción entre las restricciones impuestas por la simetŕıa

relativista y la microcausalidad de Einstein, por un lado, y la categoŕıa de sectores de

superselección globales (0-forma), por otro. Los recientes resultados/afirmaciones de

[15, 16] están, por tanto, en tensión con dicho teorema de reconstrucción. Lo mismo se

aplica a las afirmaciones en [232, 234] de que la simetŕıa de dualidad no es invertible.

Desde esta perspectiva, esta sección puede interpretarse como una aclaración de esta

tensión, coherente con el teorema de reconstrucción.

Queda la cuestión de si podemos tener simetŕıas de 1-forma no invertibles que no

surjan por el procedimiento del cociente global anterior. Ahora sostenemos que no es

el caso. Esto debeŕıa conducir a una especie de “teorema de reconstrucción generali-

zado”. La idea es la siguiente. Consideremos una QFT genérica con sólo simetŕıas de

0-forma y 1-forma, siendo probablemente algunas de ellas no invertibles. El teorema

de reconstrucción indica que la parte de 0-forma de la simetŕıa es, en el caso más ex-

tremo, no invertible debido a un cociente. Podemos eliminar los problemas derivados

de tales sectores no locales acudiendo a la teoŕıa madre, es decir la teoŕıa F . Esto es

precisamente la reconstrucción de una teoŕıa con cargas locales a partir de su sector

15Nótese que no se puede utilizar esta construcción para proporcionar sectores no invertibles de
0-forma con reglas de fusión no relacionadas con la fusión de representaciones/clases de conjugación
de un grupo.

16El caso de las teoŕıas con anomaĺıas ABJ, y por qué deben ser entendidas como simetŕıas invertibles
convencionales ha sido el contenido de este caṕıtulo. Queremos tomar ahora un camino más general.
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neutro. Pero una vez que hemos eliminado los sectores de 0-forma, podemos utilizar la

construcción que presentamos en la sección 2.2.8. Alĺı demostramos que una QFT sin

sectores de 0-forma sólo puede tener sectores de 1-forma generados por un grupo de

simetŕıa abeliano. Esto muestra potencialmente que los sectores de 1-forma no inverti-

bles se deben de nuevo en última instancia a un cociente subyacente de la forma F/G.
Se debeŕıa continuar por este camino analizando simetŕıas superiores a la 1-forma, lo

que potencialmente podŕıa conducirnos a un teorema de reconstrucción generalizado.

7.3. Reflexiones sobre el teorema de Noether y otros

contra-ejempos falsos

En esta sección retomamos más a fondo el estudio de la anomaĺıa en relación con

la forma fuerte del teorema de Noether. En el capitulo 5 probamos que la existencia

de clases HDV cargadas ante una dada simetŕıa implica la ausencia de una corriente

de Noether que implemente dicha simetŕıa. Durante la seccion 7.1 vimos que dicha

idea esta en perfecto acuerdo con distintos modelos que contienen una nomalia ABJ en

D = 4, d́ıgase la electrodinámica de piones y la QED no masiva. A continuación, vemos

como otros ejemplos que podŕıan poner a prueba estas ideas en realidad se encuentan

en perfecto lineamiento con las mismas.

(a) Anomlia ABJ no abeliana: El primer ejemplo es una corriente con una ano-

maĺıa no abeliana, como la corriente quiral para un quark sin masa en alguna

representación de la teoŕıa de gauge SU(N). Esta corriente es anómala

∂µ J
µ =

1

16π2
tr ϵµνρσFµνFρσ . (7.135)

Sin embargo, a diferencia del caso abeliano, sabemos que existen instantones

para las teoŕıas no abelianas. Éstos introducen fluctuaciones dinámicas en el lado

derecho de (7.135) cuya integral mide el número de instantones. En consecuencia,

la carga quiral no es preservada por la dinámica y la simetŕıa continua se rompe

expĺıcitamente. En QCD esto está relacionado con el hecho de que el mesón η′

no es un modo Goldstone. En particular, no es sin masa en el ĺımite del quarks

sin masa.

(b) Modelo de Schwinger: Una situación similar ocurre para la QED en D = 2.

En este caso podemos resolver exactamente el modelo dado que es equivalente

a un campo escalar libre masivo. Esta equivalencia es conocida en la literatura

y se obtiene si bosonizamos los fermiones y posteriormente integramos el campo

de gauge, véase [218] para más detalles. En este contexto, podemos reescribir la
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corriente quiral en términos del campo escalar como

Jµ5 = ψγµγ5ψ =
1

2π
∂µϕ . (7.136)

Esto nos muestra que la simetŕıa generada por la carga correspondiente está

expĺıcitamente rota para un escalar masivo, y no puede ser reparada. En términos

de las variables QED originales la simetŕıa quiral tiene la anomaĺıa

∂µJ
µ
5 =

1

2π
ϵµνF

µν . (7.137)

Por tanto, a partir de (7.137) aún podemos intentar definir una corriente conser-

vada, añadiendo un término proporcional a ϵµν Aν a Jµ5 . En términos del escalar

los dos términos en (7.137) son proporcionales a

□ϕ =
e2

π
ϕ . (7.138)

Por lo tanto, dicha corriente mejorada seŕıa

J̃µ5 = ∂µϕ(x)− e2

π

∫
d2y

[
∂µG0(x, y)

]
ϕ(y) , □G0(x, y) = δ(x− y) . (7.139)

Vemos que podemos construir la corriente conservada a costa de no ser local.

Concluimos que en estos ejemplos no hay de hecho ninguna simetŕıa continua

interna ordinaria y la ausencia de una corriente de Noether no es más que lo

esperado.

(c) Teoŕıas con un conjunto denso de cargas: Un ejemplo más desafiante es

QED en D = 4 con un fermión sin masa de carga q1 y otro campo, que podŕıa ser

un escalar, de carga q2, tal que q1/q2 es irracional. En este caso podemos definir

la carga quiral como hicimos anteriormente, pero no hay sectores HDV para el

campo de Maxwell. Todo WL con carga que sea combinación n1 q1 + n2 q2 con

n1, n2 enteros, se genera localmente. En consecuencia, no existen TL no locales. La

razón es que un operador no local en un lazo tiene que conmutar con operadores

locales fuera, y un TL para cualquier carga no podŕıa conmutar con todos los

WL generados localmente. Aśı que, a primera vista tenemos una simetŕıa que no

cambia las clases no locales pero no tiene corriente. A continuación tratamos de

entender por qué la completación UV de este modelo debe tener problemas.

Esta teoŕıa con un conjunto denso de cargas fue propuesta en [20] como ejemplo

de un modelo donde hay sectores no locales, aqúı los WL con cargas que no son de

la forma n1q1+n2 q2, y los duales están ausentes. Pero esto es imposible, porque la

existencia de operadores no locales está ligada a la existencia de los duales como
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lo impone el teorema de la doble conmutación de von Neumann. Además, las

clases duales no locales, si son abelianas, deben ser grupos duales. Entonces, en

este caso lo que debe ocurrir en una teoŕıa completa es que el conjunto de cargas

sea de hecho la recta real continua. Tener un continuo de cargas dinámicas es

de hecho un problema que muy probablemente enferma la teoŕıa. Pensemos en

el caso más simple de cargas para una simetŕıa global. Tal teoŕıa no tendŕıa una

función de partición bien definida (o violaŕıa la split property). Por ejemplo, si

ponemos la teoŕıa en una esfera compacta, los auto-estados deben ser discretos

para tener una función de partición finita. Pero un conjunto discreto de auto-

estados no puede acomodar un conjunto continuo de cargas a menos que haya

infinitas degeneraciones.

Para entender en términos más f́ısicos lo que está pasando, podemos adoptar

el punto de vista de la teoŕıa efectiva de campo . Consideremos las escalas de

enerǵıa por debajo de algún punto de corte dado. Para simplificar, pensemos que

el campo electromagnético está débilmente acoplado, y tenemos dos escalares

casi libres de cargas no conmensurables. La carga m1 q1 + m2 q2 es producida

por polinomios en los campos, produciendo un operador con dimensión de al

menos |m| + |n|. Aśı que no podemos considerar los operadores que rompen los

WL livianos para todas las cargas, y ciertamente no tenemos un conjunto denso

de cargas a ninguna escala. De hecho, para cada escala fija, tendŕıamos muchos

sectores que no pueden considerarse rotos. En este escenario f́ısico, la ausencia de

una corriente de Noether se sigue explicando por el hecho de que a bajas enerǵıas

tenemos sectores HDV cargados bajo la simetŕıa continua. Si queremos romper

estos sectores a bajas enerǵıas, necesitamos introducir un nuevo campo liviano y

nuevos grados de libertad. Y para romper un conjunto denso de sectores a una

escala dada necesitaŕıamos demasiados grados de libertad locales de tal manera

que la teoŕıa no tendŕıa una función de partición bien definida. Resumiendo, si

sólo añadimos dos campos cargados de cargas no conmensurables, entonces los

argumentos del caṕıtulo 5 siguen siendo válidos a baja enerǵıa. Si añadimos un

conjunto continuo de campos locales cargados a baja enerǵıa, entonces la teoŕıa

se vuelve mal definida desde varios puntos de vista.

(d) Monopolos: Finalmente, en lugar de considerar cargas no conmensurables, otra

forma de borrar los sectores HDV es incluir monopolos magnéticos saturando la

condición de cuantización de Dirac. El grupo U(1)× Z de operadores no locales

desaparece entonces. Más precisamente, el grupo Z de TL es generado aditi-

vamente porque podemos crear los lazos utilizando ĺıneas que terminan en los

monopolos, y el U(1) deja de ser topológico porque dF ̸= 0 en presencia de mo-

nopolos. Pero esto no cuestiona el teorema de Noether porque, al mismo tiempo,
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rompemos expĺıcitamente la simetŕıa quiral U(1) de Adler. Como no podemos

escribir F = dA, la carga quiral modificada no se conservará. También, pode-

mos ver que la simetŕıa se rompe expĺıcitamente porque la transformación quiral

cambiaŕıa, mediante el efecto de Witten, un monopolo en un dión que no existe

en la teoŕıa.

En resumen, para los ejemplos analizados, las ideas del caṕıtulo 5 siguen aplican-

do perfectamente. En este contexto, la pregunta interesante es si la no existencia de

una corriente de Noether para una simetŕıa continua implica que la teoŕıa debe tener

sectores HDV no locales y que estos deben ser afectados por la simetŕıa. Los ejemplos

analizados se inclinan en esta dirección, pero también parecen apuntar a la necesidad

de algún ingrediente extra relacionado con la completación UV de las teoŕıas en cues-

tión. Esto no es nuevo, de hecho, ya hemos afrontado una situación similar durante

el caṕıtulo 6. Buscaremos formalizar nuestras conjeturas en este sentido durante el

caṕıtulo 8.

7.4. Discusión del caṕıtulo

Este caṕıtulo nos hemos centrado en la interacción entre las simetŕıas generalizadas,

las anomaĺıas ABJ y el teorema de Noether, un tema que ha recibido mucha atención

recientemente. Utilizando la noción de sectores HDV, hemos aclarado por qué la ano-

maĺıa ABJ puede formularse en términos de una simetŕıa global U(1) convencional.

La única particularidad es que esta simetŕıa transforma las clases HDV. Más aún, es-

to explica la cuantización de la anomaĺıa, la correspondencia de anomaĺıas, la validez

del teorema de Goldstone y la ausencia de una corriente de Noether que genere esta

simetŕıa.

Por otro lado, esperamos haber ejemplificado ciertas cuestiones sutiles relativas a la

manifestación local de las simetŕıas generalizadas mencionadas en el caṕıtulo 2. Como

hemos discutido anteriormente, vimos dos cuestiones que son particularmente relevan-

tes para este problema en cuestión. La primera es la noción de álgebra local de una

cierta región R. Una elección f́ısica intŕınseca está formada por los operadores locales

de la región, a saber, el álgebra aditiva. En este contexto, debemos ser cuidadosos al

asignar un significado fuerte a otras elecciones. La segunda es el hecho de que cual-

quier operador, incluidos los no locales para cierta región R, están generados en última

instancia por operadores locales. Si nos encontramos en una situación en la que cierta

propiedad (como tener una simetŕıa particular) depende de la naturaleza de los opera-

dores no locales, y no se puede remontar a la naturaleza de los operadores locales, esto

es señal de un problema.

En resumen, las teoŕıas con anomaĺıas ABJ apoyan aún más las ideas desarrolladas
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en el caṕıtulo 5 relativas a la versión fuerte del teorema de Noether. Es decir, que la

existencia de clases HDV cargadas impide la existencia de una corriente de Noether.

En este sentido, seŕıa importante disponer de una derivación adecuada de la afirmación

inversa. Es decir, que la clases HDV no estén cargadas ante una simetŕıa implica la

existencia de una coerriente de Noether. De este modo, la pregunta es si esta afirmación

inversa requiere alguna suposición extra. Los ejemplos discutidos en la ultima sección

parecen mostrar que este es el caso. Discutiremos estas ideas en la discusión final de

esta tesis en el caṕıtulo 8.



Caṕıtulo 8

Discusión

Durante esta tesis nos hemos dedicado al estudio de distintos aspectos relacionados

con la existencia simetŕıas generalizadas en QFT. Seguimos una perspectiva algebraica

diferente a la usualmente utilizada para dichos estudios. Para esto en el caṕıtulo 2

estudiamos como estas simetŕıas generalizadas están relacionadas con las ambigüeda-

des en la asignación de álgebras a regiones. En particular, destacamos que en teoŕıas

con simetŕıas k-forma existe más de una álgebra posible para regiones con grupo de

homotopia πk no trivial.

En los caṕıtulos 3 y 4, estudiamos la aparición de simetŕıas k-forma en QFTs con

part́ıculas de esṕın 2 descritas por tensores biforma invariantes de gauge. Siguiendo

esta ĺınea, encontramos estas simetŕıas para distintas teoŕıas linealizadas de gravito-

nes provenientes de acciones tipo Einstien-Hilbert o de alta curvatura. En todos los

casos podemos construir las corrientes 2-forma que generan estas simetŕıas a partir del

tensor de Riemann y/o sus derivadas y contracciones mezcladas con funciones espacio-

temporales. Además, en relación con el paradigma de Landau, las teoŕıas de gravitones

están completamente determinadas por su patrón de simetŕıas generalizadas.

Es, a priori, sorprendente encontrar que las simetŕıas de los gravitones en los caṕıtu-

los estan cargadas ante las simetŕıas espacio-temporales. Sin embargo, en el caṕıtulo 5

comprendimos que esto no sólo no es extraño sino que desde un nuevo punto de vista

esperable. Durante el caṕıtulo 5 probamos que una simetŕıa continua con una corriente

de Noether asociada no puede transformar los generadores de una simetŕıa generali-

zada. En otras palabras, si las simetŕıas generalizadas están cargadas ante la acción

de una simetŕıa continua de la teoŕıa, esta no puede estar generada por una corriente

de Noether. En este contexto, vimos para el ejemplo del gravitón, y otras part́ıculas

no masivas que esta idea re-deriva el teorema Weinberg-Witten y además nos permite

algunas generalizaciones del mismo.

Estas ideas nos permiten intentar caracterizar el espacio de QFTs que violan la

versión fuerte del teorema de Noether, es decir teoŕıas con simetŕıas continuas 0-forma
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no implemendas por corrientes de Noether. A la luz del caṕıtulo 5 sabemos que este

espacio al menos contiene las teoŕıas con clases no locales cargadas ante la acción

de la simetŕıa sin corriente. En este contexto, una pregunta interesante es bajo que

condiciones esta caracterización es completa. Si bien vimos que la inexistencia de clases

cargadas implica que podemos construir twists aditivos y completos, resta entender si

estos twists cuando los hacemos suficientemente pequeños pueden concatenarse para

formar corriente. Más adelante en este caṕıtulo, volveremos con más detalle sobre esta

idea.

En cualquier caso, observamos que las teoŕıas con clases HDV cargadas ante un

grupo continuo son especiales en si mismas. En particular están caracterizas por un

continuo de clases duales. Si el continuo de clases duales es no compacto y la teoŕıa es

UV completa probamos en el caṕıtulo 6 que la teoŕıa continene un sector libre no ma-

sivo. De otra forma, las teoŕıas interactuantes con una simetŕıa de forma no compacta

necesitan cargas que rompan la simetŕıa de forma en cuestión para ser completadas

en el UV. Podemos interpretar este resultado como una prueba no perturbativa de la

necesidad de introducir cargas a altas enerǵıa en las teoŕıas de electrodinámica neutra

o en las teoŕıas con bosones de Goldstone interactuantes.

Por otro lado, las clases HDV pueden generar un grupo compacto. Estos son los

casos que estudiamos durante el caṕıtulo 7, donde la corriente quiral tiene una anomaĺıa

ABJ. En estos casos, vimos que la compatibilidad del grupo compacto de clases con

acción no trivial de la simetŕıa quiral requiere la cuantización del coeficiente de la

anomaĺıa ABJ. Ademas, observamos que las ideas desarrolladas durante el caṕıtulo 5

nos permiten explicar la correspondencia entre anomaĺıas IR y UV, y la validez del

teorema de Goldstone para estas teoŕıas.

Dado este escenario, incluimos a continuación un gráfico resumiendo los resultados

fundamentales de esta tesis:

.

Si algo es claro, es que la noción de simetŕıas generalizadas nos esta obligando a

replantearnos problemas tradicionales del contexto de QFT y gravedad cuántica. A

continuación recogemos algunas conjeturas e ideas que se desprenden de los resultados

de esta tesis y podŕıan continuarse en un futuro:
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(a) Espacio de QFTs que violan la versión fuerte del teorema de Noether

Habiendo identificado un obstáculo para la existencia de corrientes de Noether

asociadas con simetŕıas continuas, una idea natural es que las corrientes deben existir

siempre que este obstáculo esté ausente. Es decir, podŕıamos pensar que una teoŕıa con

una simetŕıa global continua, donde todas las simetŕıas generalizadas para cualquier

topoloǵıa son invariantes bajo la simetŕıa, debe contener una corriente que generador

dicha simetŕıa. Esta es la inversa del resultado principal del caṕıtulo 5 presentado en

la sección 5.1. Equivalentemente, desde una perspectiva más matemática, en dicho

caṕıtulo hemos encontrado una condición necesaria para la existencia de una corriente

de Noether. Esta condición necesaria es la ausencia de simetŕıas generalizadas cargadas

bajo la simetŕıa global continua. En este contexto, la pregunta es si esta también es

una condición suficiente.

De hecho, durante la sección 5.2 vimos argumentos sólidos en esta dirección. Un

camino prometedor en el escenario actual se deriva del hecho de que, como demos-

tramos en la sección 5.2.4, si las clases no locales asociadas con cualquier topoloǵıa

son invariantes bajo la simetŕıa global, entonces existen twists completos aditivos para

ellas. Estos twists aditivos para dos regiones con clases HDV no cargadas debeŕıan

concatenar, al menos en un sentido aproximado como discutimos en la sección 5.2.6.

Esto es, en el ĺımite de buffer zones delgadas, el producto de dichos twists produce

twists aditivos y completos para la unión de la regiones, si esta última también tiene

clases no cargadas.1 Claramente, esto no es posible para clases HDV cargadas.

Ahora bien, los twists para una simetŕıa continua pueden describirse mediante car-

gas locales QR. Los twists aditivos tienen cargas locales formadas con operadores adi-

tivos de la región. Si tenemos el time slice axiom podemos pensar heuŕısticamente

que estas cargas son operadores aditivos en una superficie de tiempo constante. Que

los twists aditivos sean concatenables para cualquier forma de las regiones implicadas

implica que para cualquier partición dada del espacio, siempre es posible elegir una

partición de cargas locales que sumen la global. Esto parece bien en el camino para

demostrar que la carga puede expresarse como una integral de una cantidad local.

Básicamente, notamos que la validez de la noción de concatenabilidad hace que este

problema sea análogo a la forma en que se definen integrales continuas a partir de

sumas discretas, pero para álgebras de operadores. Si bien es una tarea técnicamente

dif́ıcil derivar campos cuánticos de una teoŕıa descrita en términos de álgebras locales,

esperamos que se pueda demostrar pensando en ĺımites de funciones de correlación para

particiones cada vez más pequeñas de la carga utilizando la convergencia en la topo-

loǵıa débil de las álgebras de von Neumann. Por otro lado, es tal vez más conveniente,

1Probar, de forma rigurosa y general, la concatenabilidad de twists para teoŕıas con simetŕıas
generalizadas pero no cargadas bajo el grupo de simetŕıa global es un importante problema abierto.
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utilizar el procedimiento establecido en [28] para recuperar campos de Wightman a

partir de la versión algebraica.

Desde este punto de vista, interrogante restante es si dicha convergencia requerirá

suposiciones extras sobre la teoŕıa. Sin duda, el análisis de regiones cada vez más

pequeñas podŕıa requerir alguna condición UV. Notamos además que este ya fue el

caso durante el caṕıtulo 6. En esta dirección, las ideas desarrolladas en el caṕıtulo

7, espećıficamente los ejemplos y reflexiones de la sección 7.3, nos llevan a refinar la

conjetura de que una teoŕıa con una simetŕıa global continua que no cambie las clases

no locales debe tener una corriente de Noether. Como tal, esta afirmación se aplica

a teoŕıas completas con una simetŕıa exacta y sectores no locales. Pero en este caso,

también podemos hacer afirmaciones sobre la f́ısica IR. En particular, si la simetŕıa

sobrevive en el IR, la corriente también debe ser un operador en la teoŕıa IR. Entonces

tenemos una especie de inversa de la correspondencia de anomaĺıas que discutimos

durante la sección 7.1.4, a saber podemos conjeturar que

Si un modelo efectivo tiene una simetŕıa continua que cambia las clases

HDV (y por tanto sin corriente), entonces cualquier completación del mo-

delo que preserve la simetŕıa tiene que preservar los sectores HDV cargados.

Como el fenómeno de las clases no locales cargadas y la no existencia de la corriente

parece aparecer de forma independiente de una gran separación de escalas, podemos

conjeturar además que

Si un modelo efectivo tiene una simetŕıa continua sin corriente, pero ningún

sector HDV está cargado bajo la simetŕıa, el modelo no tiene una comple-

tación UV.

Un ejemplo de modelo alcanzado por esta última conjetura es la generalización de

la electrodinámica de piones a D = 6. Este modelo efectivo tiene una acción

S =
1

2

∫
dπ0 ∧ ⋆ dπ0 +

1

2e2

∫
F ∧ ⋆F +

1

µ

∫
π0 F ∧ F ∧ F .

Este tiene una simetŕıa local π0 → π0 + constante que se deduce de la invariancia

de la acción. Como en el modelo (7.3) en D = 4, podemos construir una corriente

no invariante gauge y una carga global. Sin embargo, ahora los TL son operadores

asociados a superficiales tridimensionales, y la simetŕıa no tiene permitido cambiar su

clase mezclándola con los WL. Eso es por la sencilla razón de que los WL son ope-

radores de lazo unidimensionales ordinarios. De hecho, se puede comprobar mediante

cálculo directo que la simetŕıa sólo modifica los TL por operadores locales sin cam-

biar de clase. Por lo tanto, la conjetura afirma que este modelo no puede completarse

consistentemente en el UV.
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Si esta conjetura es correcta, el zoológico de teoŕıas con completación UV bien

definida que violan la versión fuerte del teorema de Noether estaŕıa restringido ex-

clusivamente a teoŕıas con sectores HDV cargados. De otra manera, dada una teoŕıa

completable en el UV con un grupo de simetŕıa global existiŕıa una corriente de Noether

para tal simetŕıa śı y solo śı las clases HDV asociadas a cualquier región no transforman

ante la acción del grupo.

(b) Invariancia de escala vs. Invariancia de conforme

Es parte una idea estándar en QFT que la invariancia de escala debeŕıa implicar

invariancia conforme. De hecho, sólo se conocen unos pocos contraejemplos, y se cons-

truyen con teoŕıas libres [238]. También, existe una prueba para D = 2 [239, 240], pero

no se conoce una prueba completa para dimensiones superiores.

Para comenzar este análisis, supongamos que la teoŕıa tiene un tensor de enerǵıa-

momento, esta suele ser una suposición usual en la discusión de este tema. Entonces,

la ruta habitual para tratar de demostrar la invariancia conforme a partir de la inva-

riancia de escala implica tomar el tensor enerǵıa-momento y mejorarlo para que tenga

traza nula. Sin embargo, vemos que podemos encontrar un obstáculo importante en

esta construcción. La teoŕıa con invariancia de escala puede tener sectores HDV aso-

ciados a una simetŕıa generalizados con etiquetas de clase que tienen dimensiones. Es

decir, las etiquetas de las clases estarán cargadas ante el grupo de dilataciones, que por

suposición, representa un grupo de simetŕıa de la teoŕıa. En ese caso, los resultados del

caṕıtulo 5 proh́ıben la existencia de una corriente de dilatación, y por tanto no existe

una mejora del tensor enerǵıa-momento. El punto es que este tipo de contraejemplos

debeŕıan ser muy peculiares. Vimos en el caṕıtulo 6, que la existencia de clases di-

mensionales en una teoŕıa invariante de escala implica la que estamos ante simetŕıas

generalizadas no compactas, y estas, si son UV completas, son libres.

Estas ideas aplican a los casos conocidos en la literatura. Hemos visto el ejemplo

de la derivada de un escalar libre sin masa en la sección 5.3.1. Otro es el campo de

Maxwell para D ̸= 4 [238]. Este coincide con la derivada del escalar en D = 3. La

razón de la ruptura de la invariancia conforme es clara. Por razones dimensionales, las

cargas de los WL y TL son tienen dimensiones cuando D ̸= 4. De manera que existe un

tensor de enerǵıa-momento (que genera simetŕıas de Poincaré) pero no una corriente

de dilatación y, por lo tanto, no existe un “tensor enerǵıa-momento tipo CFT”.

Obsérvese que, como se señala en [238], para D = 3 podemos reparar este problema

considerando la teoŕıa completa de un escalar, en lugar de las derivadas del escalar

(que coinciden con el álgebra de campo de Maxwell). La razón es que los sectores

de esta teoŕıa son sectores del orbifold (sectores de dos bolas) y podemos eliminarlos

pensando en la teoŕıa madre reconstruida a partir del orbifold. El modelo original es
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una subteoŕıa de otra que es invariante conforme. Sin embargo, esto no es posible con

los sectores 1-forma en D ≥ 5 por ejemplo. En [241] se demostró que si la teoŕıa con

tensor enerǵıa-momento e invariancia escala pero no conforme puede embeberse en una

CFT entonces es una teoŕıa libre. Este no es el caso general, pero concuerda con nuestra

discusión actual.

Nótese que para D = 2, donde existe una prueba, todos los sectores son sectores

de dos (o más) intervalos. Es decir, son operadores de carga anti-carga, donde la carga

no existe en la teoŕıa.2 Los sectores con etiquetas dimensionales e invariancia de escala

dan un continuo de sectores, un ejemplo de la descripción general de la sección 5.1.1.

El generador de carga correspondiente debe ser una corriente conservada, y esto fija

su dimensión en 1. A su vez, esto no da sectores dimensionales cuando la densidad de

carga se integra sobre el intervalo. Esto es consistente con la discusión en la sección

6.3.2. Concluimos que los contraejemplos en cuestión no pueden existir en D = 2.

Nos resta ver que pasa en el caso donde no tenemos corriente de dilatación pero tam-

poco tensor enerǵıa-momento. En estos casos, el modelo podŕıa seguir siendo invariante

conforme, como discutimos para el gravitón de Fierz-Pauli en la sección 3.1.2. Esto tam-

bién aplica a las part́ıculas de esṕın 3/2 descritas por la teoŕıa de Rarita-Schwinger

que presentan invariancia conforme inclusive teniendo clases dimensionales [171]. Más

en general, esto se extiende a todos los campos libres primarios en D dimensiones con

estructura de ı́ndices dadas por diagramas de Young (bosonicos o fermionicos) que con-

tengan D/2 filas [205]. Para estos modelos, aunque no existan las corrientes locales por

las razones mencionadas, śı existen las representaciones unitarias del grupo conforme.

Sin embargo, todos estas teoŕıas tienen simetŕıas generalizadas no compactas y, por

ende, son libres. A la luz, de lo discutido en el punta (a), esto pareceŕıa ser esperable

para todas las teoŕıas sin tensor enerǵıa-momento con un punto fijo UV bien definido.

En conclusión, esto da una nueva comprensión que separa los contraejemplos del

resto de las QFT, reduciendo el problema a la presencia de sectores cargados bajo el

grupo de dilatación para la teoŕıa invariante ante dicho grupo. Esto implica que no hay

corriente de dilatación y por tanto no hay tensor enerǵıa-momento de CFT. Entonces,

una conjetura natural es que la prueba del teorema debeŕıa existir para el caso en que

no existan tales sectores no invariantes de escala. Si confiamos en que estos casos sólo

proceden de teoŕıas libres, bastaŕıa con restringir el ámbito a modelos sin sector libre. Si

creemos en el teorema de Noether cuando no hay clases no invariantes bajo la simetŕıa

del continuo, tendŕıamos una corriente de escala f́ısica más el tensor enerǵıa-momento

original para empezar, véase [242].

2Aqúı por “carga” nos referimos a una noción generalizada de la misma. Podŕıa estar relacionada
con representaciones de las álgebras de Virasoro y/o quiral extendida.
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(c) Teorema Coleman-Mandula

El hecho de que una teoŕıa con un tensor enerǵıa-momento no puede tener simetŕıas

generalizadas cargadas bajo la simetŕıa de Poincare se asemeja, y de hecho extiende

en algunas direcciones, al teorema Coleman-Mandula (CM) [2]. En las direcciones que

generaliza el teorema CM también lo conecta con el teorema de Weinberg Witten (véase

la sección 5.4). En otras direcciones no lo hace. Ahora, discutimos la intersección de la

de los resultados de esta tesis con el teorema CM.

Recordemos que el teorema CM se expresa en el lenguaje de la matriz S. Nos afirma

que para una teoŕıa interactuante con un mass-gap, un grupo de simetŕıa asociado a

la matriz S debe ser un producto del grupo de Poincaré y otro grupo. El teorema CM

no supone un tensor enerǵıa-momento. Pero, siguiendo nuestras discusiones anteriores,

las teoŕıas sin tensor enerǵıa-momento bien definidas son probablemente libres. Puesto

que el teorema requiere teoŕıas interactuantes, considerar teoŕıas con un tensor de

enerǵıa-momento no parece una restricción importante.

Con la única suposición de tener un tensor enerǵıa-momento, los presentes resulta-

dos muestran que cualquier clase HDV generada por una simetŕıa generalizada debe

ser invariante de Poincaré. Esto extiende el teorema CM, aplicándolo también a si-

metŕıas k-forma. Sin embargo, el teorema CM trata de simetŕıas de la matriz S, y las

únicas simetŕıas generalizadas que son (fácilmente) visibles en la matriz S son las que

proceden de grupos de simetŕıa globales no rotos. En muchos casos estas corresponden

a simetŕıas generalizadas de orbifolds (simetŕıas de 0-forma). Nuestra afirmación se

aplica a estos orbifolds, y se extiende también a orbifolds de simetŕıa rota, prohibien-

do sectores cargados bajo simetŕıa de Poincaré. No obstante, requerimos que haya un

tensor de enerǵıa-momento en el propio orbifold. Por otra parte, también puede haber

grupos de simetŕıa global que no den lugar a un orbifold, porque todos los operadores

locales están cargados. Entonces el orbifold está vaćıo. Los casos en los que el orbifold

no tiene un tensor de enerǵıa-momento (incluyendo el caso que no hay orbifold) no

están cubiertos por los presentes resultados.

Para entender estas observaciones en términos más precisos, podemos formar el

álgebra aditiva generada por el tensor enerǵıa-momento. Llamamos a esta álgebra T .

Para una CFT en D = 2, ésta es la red de Virasoro para la carga central dada. En

cada dimensión, la red T contiene muchos campos locales, además del tensor enerǵıa-

momento y sus derivadas. En esta teoŕıa T podemos tener simetŕıas generalizadas.

En particular, podŕıa tener simetŕıas generalizadas asociadas con la violación de la

dualidad en regiones de dos bolas. En este escenario, para D > 2, el teorema de

reconstrucción DHR [161] afirma la existencia de un grupo global G de simetŕıas tal

que T es el orbifold sobre G de una teoŕıa extendida F , a saber T = F/G. Siguiendo
nuestros resultados, puesto que el tensor de enerǵıa-momento pertenece a la teoŕıa del
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orbifold, dicho grupo de simetŕıa global G debe conmutar con las simetŕıas de Poincaré

para que los sectores del orbifold sean no cargados. Esta versión restringida del teorema

CM también se deduce de la propia reconstrucción DHR por razones bastante similares

[149].

Sin embargo, esto deja abierta la posibilidad de que pueda haber otras simetŕıas

que se mezclen de forma no trivial con la simetŕıa de Lorentz porque el orbifold esté

vaćıo o no contenga el tensor enerǵıa-momento. Esta mezcla de simetŕıas implica ope-

radores de twists con ı́ndices. En el caso continuo, éstos estaŕıan representados por

corrientes conservadas con más ı́ndices no antisimétricos,3 como un jα1 α2···αl
simétrico

que satisface ∂µ jµα2···αl
= 0. Si hacemos el orbifold con estas nuevas simetŕıas imple-

mentadas por los twists con ı́ndices de Lorentz obtenemos un álgebra O. Esta álgebra

puede ser vaćıa, es decir, generada únicamente por la identidad. Si no está vaćıa, el

tensor enerǵıa-momento no debe pertenecer al orbifold Tµν /∈ O ya que los sectores del

orbifold mostrarán ı́ndices de Lorentz y estarán cargados bajo el grupo de Poincaré.4

Entonces, esperamos un modelo libre ya que O no tiene tensor enerǵıa-momento. Este

es el caso del ejemplo comentado en la sección 5.3.1. Quedamos reducidos, entonces, a

considerar O = 1. En estos casos, también, podemos formar el álgebra generada por la

corriente jα1 α2···αl
. De forma equivalente esta es el álgebra generada por los twists de

la simetŕıa asociada. Podemos llamarla J . Si J ⊂ T , o más generalmente Tµν /∈ J ,

existe una red sin tensor enerǵıa-momento y esperaŕıamos de nuevo un modelo libre.

Las álgebras de Kac Moody en D = 2, la supersimetŕıa y las corrientes de esṕın supe-

rior conservadas de [243] tienen O = 1, T ⊆ J . Necesitamos más ideas para ampliar

el presente enfoque con el propósito de restringir tales escenarios.

(d) Completación UV de la teoŕıas con gravitones en el IR

Comencemos considerando un punto fijo IR con part́ıculas de esṕın 2 no masivas.

Estas teoŕıas famosamente poseen estados de norma negativa y la única forma de defi-

nirlas consistente es incluir invariancia ante difeomorfismos. Eso significa que una teoŕıa

que contenga cualquier part́ıcula de esṕın 2 no masiva es necesariamente descrita por

la gravedad de Einstein, quizá complementada por términos de derivadas superiores.

Analizamos estas teoŕıas en los caṕıtulos 3 y 4, donde vimos que son caracterizadas

por simetŕıas 1-forma que están cargadas ante simetŕıas espacio-temporales. Estas están

descritas por el grupo de Poincaré, o bien para el caso gravedad de Einstein en D = 4,

el grupo conforme correspondiente. Como vimos, por un lado, esto implica que aplica

el teorema Weinberg-Witten y la teoŕıa no tiene tensor enerǵıa-momento bien definido.

Por otro, implica que estamos ante una teoŕıa con una simetŕıa de forma no compacta.

3Para comparar con la discusión de la sección 5.4, este es el caso k = D − 1.
4El caso de simetŕıas internas ordinarias no cargadas bajo el grupo de Poincaré tiene T ⊆ O, pero

esto no es posible aqúı.
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A la luz del caṕıtulo 6, la teoŕıa es libre y no masiva.

Por supuesto, que esta teoŕıa esta perfectamente definida si es libre y no masiva

a toda escala, es decir, con flujo del RG trivial. No obstante, en la búsqueda de una

teoŕıa interactuante de gravitones podŕıamos buscar romper la simetŕıas de forma no

compactas introduciendo cargas a alguna escala dada. Sin embargo, según el caṕıtulo

3, la única forma de hacer esto dentro de QFT es incluir fractones. Esto implicaŕıa que

la simetŕıa de Poincaré no es exacta, en particular esta rota en la escala que aparecen

las cargas fractonicas. Nótese que estas ideas están en perfecto acuerdo con la conjetura

que presentamos en el punto (a), dicho de otra manera, como los sectores HDV están

cargados ante el grupo de Poincaré, cualquier completación que preserve dicha simetŕıa

debe preservar los sectores cargados que en este caso implican una teoŕıa libre.

Esos resultados apoyan simplemente la noción de que una teoŕıa UV completa que

contenga gravitones en el IR debe seguir una ruta distinta a la de QFT por ejemplo a

partir de teoŕıa de cuerdas y/o holograf́ıa. Estas ideas están alineadas con la aplicación

usual del teorema de Weinberg-Witten a la gravedad cuántica, y apoya firmemente su

interpretación como un obstáculo para tener un modelo puramente QFT.





Apéndice A

Generalized Free Fields

Los “Generalized free fields” (GFF), introducidos en [244], son los modelos más sim-

ples de las teoŕıas cuánticas de campos (QFT) que satisfacen los axiomas de Wightman

(a-e) presentados en la sección 2.1.1. Se definen por tener correlaciones gaussianas, es

decir, que satisfacen el teorema de Wick para las funciones de correlación de n puntos.

La teoŕıa queda entonces completamente especificada por una función de dos puntos

que cumple los requerimientos necesarios de positividad, la condición espectral y cova-

rianza de Poincaré. Para un campo escalar, la función de dos puntos más general tiene

la forma de Kallen-Lehmann

⟨ϕ(x)ϕ(y)⟩ =
∫ ∞
0

ds ρ(s)W0(x− y, s) , (A.1)

siendo W0(x − y, s) la función de dos puntos de un campo escalar libre con masa al

cuadrado m2 = s ≥ 0. La densidad espectral ρ(s) es una medida positiva para s ≥ 0

con un incremento a lo sumo polinómico en s.

Los GFF aparecen de forma natural en algunos resultados formales en QFT axiomáti-

ca [194, 245–247]. Debido a la simplicidad de la teoŕıa también son utilizados en la

literatura matemática como fuente de ejemplos para probar diferentes conjeturas o

analizar la independencia o consistencia de diferentes propiedades, véase por ejemplo

[148, 248]. Desde el punto de vista f́ısico, aparecen naturalmente como ĺımites en mo-

delos vectoriales o matriciales a N grande [249]. Esto es porque el ĺımite de N grande

suprime las funciones n puntos con respecto a las funciones de dos puntos para campos

suficientemente simétricos. Un ejemplo notable son las teoŕıas holográficas donde los

GFF describen el sector de baja enerǵıa de la teoŕıa en la aproximación de N grande,

y son equivalentes a los campos libres ordinarios que viven en el espacio Anti-de Sitter

(AdS) [40, 250, 251].

En este apéndice buscamos analizar las propiedades algebraicas del los GFF. En

particular veremos que estos muestran violaciones de dualidad de Haag para regiones

con topoloǵıas triviales (que no son bolas perfectas). En este sentido, no respetan
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la suposición (2.26) que hicimos en el capitulo 2 y escapan muchos de los resultados

presentados en esta tesis. Destacamos que estas posibles elecciones de álgebras emergen

debido a que los GFF no cumplen el axioma (f) de la sección 2.1.1, es decir, el time

slice axiom.1 Esto es porque si bien, tienen una evolución temporal bien definida no

podemos construir al hamiltoniano integrando dentro de pequeño intervalo temporal,

sino que este es un objeto no local en el espacio-tiempo [244].

Comenzaremos, en la sección A.1 con un ejemplo de campos libres independientes,

que ilustra la idea general de como podemos asignar más de un álgebra a una región

con topoloǵıa trivial. Este es el caso, donde la densidad de Kallen-Lehmann ρ(s) en

(A.1) es una suma de deltas. Luego, procederemos al estudiar densidades espectrales

continuas. Para facilitar esta cuestión miraremos el ejemplo de GFF holográficos, donde

la prescripción usual de AdS/CFT [250, 251] nos permite visualizar adecuadamente

las diferentes posibilidad de álgebras [40]. Con este propósito estudiaremos los GFF

conformes en la sección A.2 y sus posibles álgebras en la sección A.3. Terminaremos

en la sección A.4 con una breve discusión sobre las ideas de este caṕıtulo, comentarios

sobre la literatura y posibles avances.

A.1. Ejemplo: campos libres independientes

Para exponer las peculiaridades algebraicas que aparecen en las teoŕıas de GFF en

contraposición al caso de QFTs más ordinarias consideremos primero un caso sencillo.

Cuando el GFF es un campo libre de masa m, la densidad espectral consiste en una

única función delta ρ(s) = δ(s − m2). En este caso, podemos asignar un álgebra de

operadores a una región espacial R en x0 = 0. Esta álgebra está generada por ϕ y ϕ̇ en

R. Debido a las ecuaciones hiperbólicas de movimiento del campo,

(□+m2)ϕ = 0 , (A.2)

esta álgebra coincide con el álgebra generada por el campo en el desarrollo causal de

la región espacial R dado por D[R] en la figura 2.1.

Ahora, tomemos ρ(s) = δ(s − m2
1) + δ(s − m2

2), correspondiente a la suma de

dos campos libres independientes ϕ(x) = ϕ1(x) + ϕ2(x). El álgebra generada por ϕ, ϕ̇

sigue cerrándose en śı misma debido al conmutador numérico del GFF. Sin embargo,

obsérvese que ϕ(x) obedece ahora a una ecuación de movimiento con mayor número

de derivadas temporales

(□+m2
1)(□+m2

2)ϕ = 0 , (A.3)

1Si bien no cumplen el time slice axiom si obedecen un axioma de completitud mas leve. En otras
palabras, podemos generar todo el espacio de Hilbert utilizando los GFF con todos los smearing
posibles pero no podemos hacerlo con smearings sobre un intervalo temporal.
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de modo que ϕ̈ y ϕ son operadores independientes. La inclusión o no del operador ϕ̈ da

lugar a diferentes álgebras. Por ejemplo, podemos considerar el álgebra generada por

{ϕ, ϕ̇} y el álgebra conmutativa generada por {ϕ̃, ˙̃ϕ} con ϕ̃(x) = ϕ1(x)−ϕ2(x). De otra

manera, podemos incluir ϕ̈,
...
ϕ en el álgebra. En este último caso, el álgebra resultante

resulta ser exactamente el álgebra de dos campos libres independientes de masas m1 y

m2. podemos deducir esto de de las relaciones

□+m2
2

m2
2 −m2

1

ϕ = ϕ1 ,
□+m2

1

m2
1 −m2

2

ϕ = ϕ2 , (A.4)

a partir de la cual podemos reconstruir los dos operadores independientes de campo y de

momento. Por lo tanto, esta nueva álgebra que contiene derivadas superiores generada

por {ϕ, ϕ̇, ϕ̈,
...
ϕ } es igual al álgebra producida por {ϕ1, ϕ2} en el desarrollo causal Rc.

Para una densidad espectral con cualquier número finito n de funciones delta, es

decir de la forma

ρ(s) =
n∑
i=0

δ(s−m2
i ) , m

2
i ∈ R+ , n ∈ N , (A.5)

tenemos una situación análoga. Podemos tomar álgebras del campo y menos de 2n− 1

derivadas temporales en x0 = 0, o podemos incluir 2n − 1 derivadas temporales de

manera que el álgebra será las misma que la de n campos libres independientes. En

este último sentido los n campos libres independientes se codifican en un único GFF.

En QFT relativista es natural definir las álgebras tomando un espacio-tiempo en

lugar de una región espacial. Si tomamos un espacio de tiempo finito alrededor de la

región espacial R no hay diferencia entre el GFF definido con un número finito de

funciones delta en la densidad espectral y una teoŕıa de campos libres independientes.

Sin embargo, esta discusión nos anticipa los problemas que podemos encontrar al con-

siderar una medida continua ρ(s). En este caso veremos que la teoŕıa tiene propiedades

bastante inusuales. En particular, no satisface el time slice axiom, lo que significa que

el álgebra generada por los operadores de campo en un pequeño intervalo temporal,

como (2.7), alrededor de x0 = 0 no agota todos los operadores de la teoŕıa. Esta es otra

forma de decir que el campo no obedece a ninguna ecuación de movimiento local, con

cualquier número finito de derivadas temporales.

Por esta misma razón, vemos que la teoŕıa de los GFF en general no contiene un

tensor enerǵıa-momento. De lo contrario podŕıamos utilizarlo para construir el Hamil-

toniano en el álgebra dentro de un intervalo temporal. Con el Hamiltoniano podemos

entonces mover los operadores en el tiempo para generar todos los operadores de la

teoŕıa. El Hamiltoniano para un GFF con medida espectral que tiene soporte en un

conjunto no discreto todav́ıa existe pero es más bien no local [244].

Entonces, está claro que una región espacial no determina de forma única un álge-

bra para estas teoŕıas y debemos elegir una región espacio-temporal en su lugar. Una
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elección natural es centrarse en regiones causalmente completas. Éstas son el dominio

de dependencia de las regiones espaciales. Sin embargo, incluso para una región causal-

mente completa existe en general una ambigüedad en el álgebra que se le puede asociar

para un GFF. Como vimos en esta tesis, las ambigüedades en la asignación de álgebras

a regiones aparecen también en QFT ordinaria con simetŕıas generalizadas, pero son

mucho más severas para los GFF.

A.2. Generalized Free Fields conformes

Una gran simplificación en la comprensión de la naturaleza las posibilidades permi-

tidas para las álgebras de GFF, aparece con la realización holográfica de (una clase) de

estas teoŕıas como campos libres ordinarios en el “bulk” asociados a un espacio-tiempo

de una dimensión más. A continuación estudiaremos estas ideas poniendo el foco en

los los GFF holográficos, especialmente en los GFF conformes. De esta manera, apro-

vecharemos la descripción dual para definir y caracterizar as álgebras de una región

dada. En particular, en esta sección introduciremos los campos GFF conformes. Estos

tienen una densidad espectral dada por

ρ(s) = s∆−
D
2 , (A.6)

y dimensión conforme ∆. Claremente, (A.6) nos da una medida bien definida para

(A.1) siempre que ∆ obedezca la cota de unitaridad ∆ > (D − 2)/2. Para cualquiera

de estos ∆ el GFF define una CFT. El caso limite, ∆ = (D − 2)/2 queda excluido

porque ρ(s) se vuelve no integrable alrededor de s = 0. En cambio, el campo libre sin

masa tiene ρ(s) = δ(s).

La descripción holográfica dual es en el espacio AdS. En el parche de Poincaré

podemos escribir la métrica como

ds2 =
1

z2
(dz2 + dx2) , (A.7)

siendo dx2 la métrica de Minkoswki en D dimensiones del espacio-tiempo y z ∈ (0,∞).

El campo dual φ del GFF es un campo libre masivo en AdS con ecuación de movimiento

(
z2∂2z + z2□D + (1−D)z∂z −m2

)
φ = 0 , (A.8)

donde la masa m esta dada a partir de la dimension de escala ∆ en el borde como

m2 = ∆(∆−D) . (A.9)

El valor mı́nimo para la masa al cuadrado viene dado por la cota de Breitenlohner-
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∆

m2
BF m2

BF+1/4 m2
BF+1 m2

D/2

(D− 2)/2

(D− 1)/2

(D+ 1)/2

Figura A.1: El gráfico muestra la relación (A.9), destacando algunos puntos importantes de
la curva. Los segmentos de color azul y rojo corresponden a la cuantización con condiciones de
contorno de Dirichlet y Neumann respectivamente. De abajo a arriba, el punto negro es el final
de la curva, donde la CFTD alcanza la cota de unitaridad, precisamente en m2 = m2

BF + 1. El
punto rojo muestra el punto donde el campo masivo de AdS está acoplado de forma conforme
para condiciones de Neumann. El punto rojo y azul es la cota BF, la masa más baja posible en
AdS consistente con la unitaridad m2

BF = −D2/4. El punto azul destaca cuando el campo de
AdS es acoplado de forma conforme con la condición de Dirichlet.

Freedman m2 ≥ m2
BF = −D2/4 [252]. Nótese que puede ser negativa.

El campo φ puede cuantizarse canónicamente para un vaćıo simétrico en AdS. Para

−D2/4 ≤ m2 < −D2/4+1 existen dos cuantizaciones no equivalentes correspondientes

a las dos ráıces de (A.9). Véase la figura A.1. Éstas están definidas por diferentes

condiciones de contorno para el campo en el borde de AdS, es decir z → 0. La condición

de contorno de Dirichlet corresponde a

∆ =
1

2

(
D +

√
D2 + 4m2

)
, (A.10)

y la condición de frontera Neumann a

∆ =
1

2

(
D −

√
D2 + 4m2

)
. (A.11)

Para m2 ≥ −D2/4 + 1 sólo se permite la condición de contorno de Dirichlet. Por otro

lado, en el ĺımite m2 → −D2/4+1 la rama de Neumann alcanza el ĺımite de unitaridad

∆ = (D − 2)/2. No existe descripción holográfica para dicho punto.

También hay puntos notables en m2 = −D2/4 + 1/4, ∆ = (D ± 1)/2, en los que el

dual en AdS es un escalar sin masa acoplado de forma conforme y, por tanto, un campo

conforme por si mismo. Estas teoŕıas de masa particulares pueden tienen un mapeo

conforme al espacio de Minkowski D + 1-dimensional con métrica ds2 = (dz2 + dx2),

donde tenemos las dos posibles condiciones de contorno conformes en z = 0. En la

rama de Neumann en este punto tiene ∆ = (D − 1)/2 correspondiente a un campo

libre de dimensión D+1 sin masa, y la rama de Dirichlet tiene una dimensión de borde
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diferente ∆ = (D + 1)/2 debido a la condición de contorno.

La relación entre el campo del borde y el campo en AdS puede describirse del

siguiente modo. El GFF puede obtenerse simplemente como el ĺımite del campo en

AdS utilizando el diccionario holográfico habitual [251], a saber

ĺım
z→0

z−∆ φ(x, z) =
2−α−1/2

Γ[α + 1]
ϕ∆(x) , (A.12)

donde α = ∆ − D/2. A la inversa, el campo en AdS tiene una expresión no local en

términos del de los campos en el borde

φ(x, z) =
1√
2
z∆ (z2□)−α/2 Jα(z

√
□)ϕ∆(x) . (A.13)

A.3. Álgebras holograf́ıcas

Podemos dar una relación más esclarecedora entre las teoŕıas en AdS y el borde

en términos de álgebras locales. Si W es una región en AdS, llamemos W ′ al conjunto

de puntos espacialmente separados de W el bulk. La completación causal de W es

W ′′ y una región causalmente completa, es decir, satisface W = W ′′. Las regiones

causalmente completas en el bulk son el dominio de dependencia de las superficies

espaciales y están naturalmente unidas a las álgebras Aφ(W ) generadas por el campo

libre φ en W .

En la teoŕıa de borde, para cualquier región espacio-temporal R llamemos Aϕ(R)

al álgebra generada por el GFF ϕ en R. Si consideramos R como una región en el

borde de AdS podemos definir una región causal asociada en el bulk como R′′. Para

un doble cono D (la intersección del pasado de un punto con el futuro de otro punto)

en la frontera se demostró en [40] que vale la igualdad

Aϕ(D) = Aφ(D′′) . (A.14)

Esta relación puede generalizarse. Las álgebras del borde Aϕ(R) son generadas por el

GFF local y luego son aditivas bajo unión de regiones espacio-temporales. En otras

palabras, podemos descomponerlas como generadas por álgebras de doble cono

Aϕ(R) =
∨
D⊂R

Aϕ(D) =
∨
D⊂R

Aφ(D′′) . (A.15)

En particular, si R es causalmente cerrada en el borde, tenemos

Aϕ(R) = Aφ(RCW ) , RCW ≡ J+(R) ∩ J−(R) . (A.16)
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donde J+(R) y J−(R) son el futuro y el pasado de R. Esto generaliza (A.14). La

región de bulk RCW se llama la “causal wedge” de R [253].2 Por lo tanto, si hacemos

un smearing del el GFF para tal R obtenemos el álgebra de campo libre en el bulk

asociada al causal wedge. Esta asignación del álgebra es la más natural desde el punto

de vista del GFF y es también la mı́nima posible. Escribimos

ACW (R) ≡ Aϕ(R) = Aφ(RCW ). (A.17)

También podemos definir el complemento causal en el espacio-tiempo del borde co-

mo R̄, y una región causalmente completa en el ĺımite satisface R = ¯̄R.3 Por causalidad,

las álgebras correspondientes a regiones ĺımite complementarias conmutan:

Aϕ(R) ⊆ (Aϕ(R̄))′. (A.18)

Un campo escalar libre ordinario satisface la dualidad de Haag (2.21) para cualquier

región causal [25]. Entonces, a partir de la representación bulk (A.16) podemos compro-

bar fácilmente que las álgebras de los causal wedge del GFF no satisfacen la dualidad

de Haag para regiones generales. Esto se debe a que a las regiones complementarias del

borde R y R̄ corresponden las regiones del bulk RCW y R̄CW que generalmente no son

complementarias. La región espacialmente separada de estas dos regiones (RCW∪R̄CW )′

se llama “causal shadow” [254]. Una excepción es el caso en el que R es un doble cono

y el causal shadow desaparece. La dualidad de Haag para conos dobles es, de hecho,

siempre necesariamente válida para todas las CFT, cuando tomamos el complemento

en el espacio compacto [37].

Vimos durante esta tesis que los fallos topológicos de la dualidad de Haag están

asociados a simetŕıas generalizadas y están ausentes para teoŕıas suficientemente com-

pletas. Sin embargo, el presente caso es diferente en varios aspectos. El fallo de la

dualidad de Haag para GFF está relacionado con el fallo del time slice axiom y el

consiguiente fallo de la aditividad para regiones causales basadas en el mismo plano

espacial. El álgebra generada por el campo en dos conos dobles superpuestos no co-

rresponde al álgebra de una región causal para un GFF. Por el contrario, los ejemplos

ordinarios de QFT satisfacen esta forma de aditividad causal, formulada formalmente

a partir de (2.17). Además, el conmutante relativo A(R)′∩A(R̄)′ es trivial en casos de

QFT ordinaria mientras que es un álgebra grande para los GFF. Esto está representado

por el álgebra de los campos del bulk en el causal shadow, véase la figura A.2.

2Esta región no es en general una región causalmente cerrada. Por lo tanto, una expectativa natural
es que usando las propiedades de las álgebras de campos libres [25], la región del bulk en el lado
izquierdo de (A.16) podŕıa extenderse a ((J+(R) ∩ J−(R))′′ = R′′, teniendo la misma álgebra. No
necesitaremos esto en lo que sigue.

3Tomamos el complemento de R, dado por R̄, en el espacio compacto o equivalentemente en el
cilindro espacio-temporal.
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Figura A.2: Un corte a tiempo constante de AdS. Los causal wedges RCW y R̄CW para regiones
complementarias en el borde R y R̄ no cubren el espacio en el bulk, sino que están separados por
el causal shadow. Una superficie que divide el causal shadow en dos, puede utilizarse para definir
álgebras que satisfagan dualidad de Haag. La superficie mı́nima HRT ΣR nos da una partición
de este tipo y define el entanglement wedge REW .

Como desarrollamos en el caṕıtulo 2, una vez que falla la dualidad de Haag, la

posible asignación de álgebras a las regiones no es única. Podemos ampliar las álgebras

de R y R̄ manteniéndolas aún conmutativas entre śı. En la representación holográfica,

una forma sencilla de hacerlo es desplazando los ĺımites del álgebra asociada campo

en AdS hacia adentro en el bulk, pero manteniendo las regiones de bulk espacialmente

separadas entre śı. Si dividimos el AdS en dos regiones, una que contenga RCW y la

otra R̄CW , las álgebras de campo libre asociadas serán duales entre śı, y podremos

recuperar la dualidad de Haag. Es decir, tenemos una posible red Haag-Dirac tal como

definimos en la sección 2.2.4. Un punto fundamental es que la prescripción elegida

también debeŕıa ser monotónicamente creciente con el tamaño de la región para dar

álgebras mayores a regiones mayores, esto es, debemos obedecer la isotonia (2.8).

En este contexto, la prescripción holográfica selecciona una división particular del

espacio en dos dada por la superficie mı́nima ΣR anclada en el borde a una región cau-

sal R (o equivalentemente ¯̄R). Se denomina superficie Ryu-Takayanagi [255] o Hubeny-

Rangamani-Takayanagi [256]. La región causal que abarca desde R hasta ΣR se deno-

mina “entanglement wedge” y la notaremos como REW . Es sabido en la literatura que

RCW ⊆ REW , y que el mapeo R → REW es monotónico bajo el orden de inclusión.

Esta propiedad se denomina “entanglement wedge nesting” [257]. En este escenario,

definimos

AEW (R) ≡ Aφ(REW ) . (A.19)

Esta es, de hecho, el álgebra de los operadores de baja dimensión asociada a la región
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Figura A.3: Red dual representada sobre un corte a tiempo constante de AdS.

en el ĺımite de N grande de los modelos holográficos. Por construcción deducimos que

ACW (R) ⊆ AEW (R) , AEW (R) = (AEW (R̄))′ . (A.20)

Sin embargo, observamos que desde el punto de vista de la propia teoŕıa de los

GFF hay potencialmente infinitas opciones diferentes de álgebras para las regiones que

satisfacen la dualidad de Haag y la propiedad de nesting, siendo el entanglement wedge

sólo una de ellas.

Para las teoŕıas holográficas existe la idea de la reconstrucción de campos en el bulk

a partir de operadores del borde [258]. A nivel de los GFF, podemos realizar la recons-

trucción de los operadores del bulk dentro de REW , a partir de los operadores del borde

en R, utilizando el flujo modular de AEW (R) [259, 260]. Pero este flujo modular ya in-

volucra a los operadores de bulk dentro del entanglement wedge. En principio, también

para otras regiones distintas que contengan al causal wedge, podŕıamos reconstruir los

campos de forma similar.

Saliendo un poco de las ideas holograficas usuales, podemos asignar a los GFF otra

álgebra para la región de borde R de la siguiente forma

ADual(R) ≡ Aφ(RDual) , RDual = R× {z ∈ (0,∞)} , (A.21)

siendo esta nueva prescripción covariante de Poincaré pero no invariante conforme. Di-

cha asignación de álgebras se denomina “red dual” en la literatura matemática porque

surge como conmutante del álgebra del complemento de la región dentro del espacio

de Minkowski (en lugar del complemento tomado en el cilindro espacio-temporal). Se

demostró que esta asignación de álgebras no satisface la split property [148], lo que

implica que los métodos desarrollados en el caṕıtulo 5 no necesariamente se aplican a
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esta familia de teoŕıas.4

A.4. Discusión del apéndice

Los GFF son teoŕıas cuánticas de campos con propiedades inusuales. Si bien definen

una QFT apropiadamente, el hecho de que no cumplan el time slice axiom esta aso-

ciado a distintas posibilidades en la elección de un álgebra para regiones con topoloǵıa

trivial. Estudiamos estas ideas desde un punto de vista holografico para GFF conformes

donde podemos entender estas posibilidades como tomar el álgebra del causal wedge,

entanglement wedge, la red dual, etc.

En la literatura, las propiedades de estas álgebras se han estudiado a partir de

la información mutua [261], “quantum error correction” [260] y el rol del limite de N

grande [262–264]. Una pregunta abierta es si existe algún argumento intŕınseco de GFF

que seleccione el entanglement wedge como opción preferida. A partir de la información

mutua se ha visto que la elección del álgebra del entanglement wedge difiere de todas

las demás porque permite una noción de causalidad “falsa” en la teoŕıa de los GFF

[261]. Seŕıa interesante estudiar este punto más en profundidad y también su relación

con las álgebras tipo II emergentes en gravedad [265, 266].

Además, un punto interesante es que nos hemos centrado sólo en los GFF con-

formes. Pero, otros GFF también pueden estudiarse holográficamente utilizando un

espacio-tiempo asintóticamente AdS. Una problema interesante es cuál es el conjun-

to de GFF que podemos producir de esta manera. La positividad de la densidad de

Kallen-Lehmann parece estar relacionada con la condición de enerǵıa nula en el bulk

[267], pero no está claro cuál es la clase de densidades espectrales que se derivan de

soluciones a ecuaciones diferenciales en un espacio asintóticamente AdS.

4Este fallo de la split property puede verse a nivel de la información mutua entre dos regiones de
borde R1 y R2. En particular se calculó que dicha cantidad es divergente para las redes duales y finita
para cualquiera de las otras elecciones de álgebra mencionadas. Véase [261].



Apéndice B

Teorema Weinberg-Witten

En este apéndice, presentaremos la prueba usual del teorema Weinberg-Witten. El

teorema en cuestión cuenta de dos partes

(a) Las teoŕıas con simetŕıas globales internas implementadas por una corriente de

Noether jµ no pueden presentar part́ıculas sin masa de esṕın ≥ 1 en el espectro

cargadas ante dicha simetŕıa.

(b) Las teoŕıas con con un tensor enerǵıa-momento bien definido que implemente la

simetŕıa de Poincaré no pueden presentar part́ıculas sin masa de esṕın > 1 en el

espectro.

Durante el desarrollo de esta tesis, hemos discutido extensamente este teorema y pro-

visto ejemplos expĺıcitos. Ademas, en la sección 5.4, presentamos una rederivación de

este teorema en el contexto de QFT local con simetŕıas generalizadas y propuesto ge-

neralizaciones del mismo. En este apéndice, exclusivamente presentaremos la prueba

original del teorema introducida en [17]. Esta prueba alcanza part́ıculas de esṕın ≥ 1

en D = 4 dimensiones espacio-temporales. Para revisiones más modernas y extensas

de esta prueba véase [268, 269] y para la extension a D = 5 del caso de esṕın 2 [172].

Espećıficamente, la prueba de este teorema se basa en el estudio de los elementos

matriciales de la corriente conservada jµ y del tensor enerǵıa-momento T µν entre dos

estados de una part́ıcula sin masa de helicidad h y momentos definidos p′µ y pµ, es

decir,

⟨p′, h|jµ|p, h⟩ , ⟨p′, h|T µν |p, h⟩ . (B.1)

Por un lado, mostraremos que los elementos de matriz (B.1) no pueden anularse en el

limite p′ → p debido a que, por suposición, las part́ıculas no masivas de helicidad h

en cuestión están cargadas ante la acción de la simetŕıa generada por la corriente jµ o

ante el mismo grupo de Poincaré en el caso del T µν . Por otro lado mostraremos que

la invariancia de Poincaré requiere que los elementos (B.1) se anulen si |h| ≥ 1 para

263
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el caso de la corriente y si |h| > 1 para el tensor enerǵıa-momento. La tension entre

ambas afirmaciones prueba el teorema.

A continuación presentamos de forma concreta ambas partes del teorema y sus

respectivas pruebas:

Teorema (a): Una teoŕıa que permite la construcción de una corriente conservada

de jµ covariante de Lorentz no puede contener part́ıculas sin masa de esṕın ≥ 1 con

valores de expectación no nulos para la carga conservada Q =
∫
d3x j0 .

Demostración: Formalmente, podemos escribir la condición de que las part́ıculas no

masivas de helicidad h están cargadas ante la simetŕıa si consideramos que la los estados

de momento definido actúan como autoestados del operador de carga global obtenido

a partir de la corriente jµ(x0, xi), es decir

Q|p, h⟩ = q|p, h⟩ , Q =

∫
d3x j0(0, xi) , q ̸= 0 , (B.2)

donde los estados de momento definido generan una base ortonormal de manera que

⟨p′, h|p, h⟩ = δ(p′ − p) . (B.3)

De aqúı, tenemos que los valores de expectación del operador de carga global están

dados por

⟨p′, h|Q|p, h⟩ = q δ(p′ − p) . (B.4)

Para el mismo valor de expectación, por otro lado, podemos calcular que

⟨p′, h|Q|p, h⟩ =
∫
d3x ⟨p′, h|j0(0, xi)|p, h⟩ =

∫
d3x ⟨p′, h|eiPix

i

j0(0, 0) e−iPix
i |p, h⟩ =

=

∫
d3x ei(p

′
i−pi)xi ⟨p′, h|j0(0, 0)|p, h⟩ = (2π)3 δ(p′ − p) ⟨p′, h|j0(0, 0)|p, h⟩ . (B.5)

La consistencia entre (B.4) y (B.5) nos requiere que

ĺım
p′→p

⟨p′, h|j0(0, 0)|p, h⟩ = q

(2π)3
. (B.6)

Más aún, debido a la covariancia de Lorentz de jµ tenemos necesariamente que

ĺım
p′→p

⟨p′, h|jµ(0, 0)|p, h⟩ = q pµ

E (2π)3
. (B.7)

Observamos que esto es consistente con la conservación de la corriente ∂µj
µ = 0 debido
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a que al tener part́ıculas no masivas pµ es tipo luz, es decir

pµp
µ = 0 . (B.8)

Otra consecuencia del carácter tipo luz de los momentos pµ y p′µ implica que

(p′ + p)2 = (p′
µ
+ pµ)(p′µ + pµ) = p′

µ
p′µ + pµpµ + 2 p′

µ
pµ = (B.9)

= 2 p′
µ
pµ = 2(|p′||p| − p′ip

i) = 2 |p′||p| (1− cosφ) ≥ 0 ,

para φ el angulo formado por los momentos espaciales pi y p′i. Análogamente, tenemos

(p′ − p)2 = −2 |p′||p| (1− cosφ) ≤ 0 .

De esta manera para φ ̸= 0, tenemos que (p′− p)µ es un vector tipo espacio y (p′+ p)µ

es tipo tiempo. Esto implica que podemos elegir un sistema de referencia de Lorentz

en el cual la parte espacial de (p′ + p)µ se anula, a saber

pµ = (|p|, pi) , p′
µ
= (|p|,−pi) . (B.10)

En este sistema de referencia, dado por (B.10), consideramos una rotación definida

por un angulo θ alrededor de pi. Los estados de una part́ıcula transforman según su

helicidad como

Λ(θ)|p, h⟩ = eiθh|p, h⟩ Λ(θ)|p, h⟩ = e−iθh|p, h⟩ , (B.11)

donde la diferencia en signo proviene de la elección que hicimos en (B.10). En otras

palabras, Λ(θ) genera una rotación alrededor de pi dada por θ pero una dada por −θ
alrededor de p′i = −pi. Además, en este caso, la covariancia de Lorentz de jµ implica

que

Λ(θ)µν⟨p′, h|jν |p, h⟩ = e2 iθh⟨p′, h|jµ|p, h⟩ . (B.12)

Sin embargo, el hecho de que Λ(θ) sea una matriz de rotación implica en su descom-

posición de Fourier solo pueden aparecer los autovalores eiθ, 1, o e−iθ. De esta manera,

tenemos que, si ⟨p′, h|jµ|p, h⟩ ≠ 0, la consistencia entre el lado izquierdo y derecho de

(B.12) requiere que 2|h| = 0, 1, es decir,

h = 0,±1

2
. (B.13)

De otra forma si |h| ≥ 1 la consecuencia es que que estos elementos de matriz en
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cuestión deben anularse, a saber

⟨p′, h|jµ|p, h⟩ = 0 si h ̸= 0 ± 1

2
. (B.14)

La validez de esta ecuación (B.14) en el sistema de referencia de Lorentz dado por

(B.10) , que jµ es covariantes de Lorentz y, que las helicidades de las part́ıculas sin

masa son invariantes de Lorentz, nos permiten concluir que los elementos de la matriz

en cuestión tendŕıan que desaparecer en todos los sistemas de referencia. Por la tanto,

la contradicción entre (B.7) y (B.14) prueba el teorema.

Un detalle importante de esta prueba es que escribimos la ecuación (B.6) en térmi-

nos del ĺımite p′ → p, y no en términos de los valores de expectación elementos

⟨p, h|j0|p, h⟩. Esta definición mediante el limite corresponde al método mediante el

cual se determinan realmente las cargas (y de hecho también las enerǵıas y momentos).

Esto es a partir de mediciones del “nearly forward scattering” evaluando las cargas

locales QR =
∫
R
d3x j0 para una región R finita. Si hubiésemos tomado los elementos

matriciales con p′ = p no podŕıamos haber probado el teorema sin asumir la continui-

dad de ⟨p′, h|jµ|p, h⟩ para (p′−p) tipo espacio y tipo luz. Si bien esta suposición parece

razonable, en este contexto, no es necesaria.

Teorema 2: Una teoŕıa que permite la construcción de una tensor enerǵıa-momento

conservado T µν covariante de Lorentz para el cual P µ =
∫
d3xT 0µ es el vector enerǵıa-

momento no puede contener part́ıculas sin masa de esṕın > 1.

Demostración: Podemos probar esta segunda parte del teorema, de forma análoga a

la anterior. Comenzamos considerando que el operador momento, construido a partir

del tensor enerǵıa-momento, actúa sobre los estados de una part́ıcula momento definido

como

P µ|p, h⟩ = pµ|p, h⟩ , P µ =

∫
d3xT 0µ(0, xi) . (B.15)

De esta manera, también tenemos el valor de expectación

⟨p′, h|P µ|p, h⟩ = pµ δ(p′ − p) . (B.16)

Nuevamente, podemos calcular expĺıcitamente para obtener

⟨p′, h|P µ|p, h⟩ =
∫
d3x ⟨p′, h|T 0µ(0, xi)|p, h⟩ =

∫
d3x ⟨p′, h|eiPix

i

T 0µ(0, 0) e−iPix
i |p, h⟩

=

∫
d3x ei(p

′
i−pi)xi ⟨p′, h|T 0µ(0, 0)|p, h⟩ = (2π)3 δ(p′ − p) ⟨p′, h|T 0µ(0, 0)|p, h⟩ . (B.17)
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Combinando (B.16) y (B.17) tenemos para el limite de las mediciones p′ → p que

ĺım
p′→p

⟨p′, h|T 0µ(0, 0)|p, h⟩ = pµ

(2π)3
. (B.18)

Más aún, de la covariancia de Lorentz del tensor enerǵıa-momento recuperamos

ĺım
p′→p

⟨p′, h|T µν(0, 0)|p, h⟩ = pµ pν

E (2π)3
. (B.19)

Por otro lado, si trabajamos en el sistema de referencia definido por (B.10) tenemos

que una rotación Λ(θ) alrededor de pi dada por θ obedece que

Λ(θ)µρΛ(θ)
ν
σ⟨p′, h|T ρσ|p, h⟩ = e2 iθh⟨p′, h|T µν |p, h⟩ . (B.20)

En este caso, vemos que el carácter tensorial del T µν permite los que valores de expec-

tación ⟨p′, h|T µν |p, h⟩ sean no nulos para 2|h| = 0, 1, 2, o bien

h = 0, ±1

2
, ±1 . (B.21)

Al revés, si no acotamos la helicidades tenemos

⟨p′, h|T µν |p, h⟩ = 0 si h ̸= 0, ±1

2
, ±1 . (B.22)

En este caso, la contradicción entre (B.19) y (B.22) prueba el teorema.





Apéndice C

Efecto Witten y simetria quiral

En este apéndice revisaremos ideas relacionadas con la electrodinámica en presencia

de un término θ

Sθ ∝
∫
d4x θ εµναβF

µνFαβ . (C.1)

Estos conceptos serán particularmente útiles para interpretar los resultados incluidos en

el capitulo 7. Comenzaremos en la sección C.1 estudiando como un término de la forma

(C.1) con θ = θ(x0, xi) produce variaciones en la ecuaciones de movimiento, es decir,

como afecta la dinámica de la teoŕıa a nivel clásico. Luego, en la sección C.2 veremos

que podemos entender esta nueva f́ısica a partir del efecto Witten [270]. Dicho efecto se

basa en que los monopolos magnéticos en presencia de un término θ no se comportaran

exclusivamente como monopolos, sino que actúan como diones que tienen tanto carga

magnética como carga eléctrica. En la sección C.3 estudiaremos un problema a priori

no relacionado, la derivación de la anomaĺıa Adler–Bell–Jackiw (ABJ) [11, 12] en la

integral de caminos introducida en [221]. Sin embargo, veremos como la transformación

quiral de la medida de integración induce un término θ en la acción. Por último, en la

sección C.4 estudiaremos brevemente como podemos describir las ĺıneas de Wilson y ’t

Hooft como condiciones de contorno en la en la integral de camino. Combinando con

los demás resultados del apéndice, veremos que los operadores no locales diónicos en

el caso de QED no masiva están cargados ante la simetŕıa quiral.

C.1. Electrodinámica con término θ

Comencemos viendo en que situaciones en un término θ afecta a la dinámica de la

teoŕıa a nivel clásico. Para esto escribimos la acción del campo de gauge como

S = −1

4

∫
d4x
[
FµνF

µν +
θe2

4π2
F µνF̃µν

]
, (C.2)
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donde podemos recuperar la 2-forma invariante de gauge Fµν y su dual F̃µν a partir

del campo de gauge Aµ como

Fµν = ∂µAν − ∂νAµ , F̃µν =
1

2
εµναβF

αβ = εµναβ∂αAβ . (C.3)

Observamos que hemos escrito las constantes del término θ de manera que sean con-

sistentes con (7.46) para θ ∈ [0, 2π). Siguiendo este camino, podemos escribir las ecua-

ciones de movimiento del campo de gauge Aν asociadas a la acción (C.2) como

∂µ

(
F µν − θe2

4π2
F̃ µν

)
= ∂µF

µν − e2

4π2
(∂µθ)F̃

µν = 0 . (C.4)

A la luz de (C.4), es evidente que el término θ solo puede afectar las ecuaciones de

movimiento si θ que es una función no trivial del espacio-tiempo, es decir

θ = θ(x0, xi) . (C.5)

Esto se debe a que la 2-forma dual F̃µν , dada por (C.3), siempre es conservada por

simetŕıa,

∂µF̃µν = εµναβ∂µ∂αAβ = 0 . (C.6)

La necesidad de que θ sea una función no trivial viene del hecho que podemos expresar

F µνF̃µν como derivada total

F µνF̃µν = 2(∂µAν)F̃µν = 2∂µ(AνF̃µν) . (C.7)

De esta manera si θ es constante el término extra en la acción no es mas que un

término de borde y, por ende no cambia las ecuaciones de movimiento. Por el contrario

en los casos que θ tiene una dependencia como (C.5) estaremos ante la presencia de

un término cuasi-topoloǵıco. Esto es el término θ no esta acoplado a la métrica dele

espacio-tiempo pero cambia las ecuaciones de movimiento.

Para entender las implicaciones f́ısicas de la introducción de un término θ, podemos

escribir las ecuaciones de movimiento en función de los campos eléctricos y magnéticos

Ei = −F 0i , Bi = −1

2
εijkFjk . (C.8)

En particular, la ecuación (C.4) toma la forma

∂iE
i =

e2

4π2
(∂iθ)B

i , Ėi = −εijk∂jBk − e2

4π2

(
Biθ̇ + εijkE

j∂kθ
)
, (C.9)

mientras que las ecuaciones dadas por (C.6) no vaŕıan inclusive en presencia del término
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θ no trivial, es decir

∂iB
i = 0 , Ḃi = εijk∂

jEk . (C.10)

Claramente, las ecuaciones (C.9) son las que contienen la nueva f́ısica. La primera nos

dice que en regiones del espacio donde θ vaŕıa, un campo magnético actúa como una

densidad de carga eléctrica. La segunda nos dice que la combinación (Biθ̇+ εijkE
j∂kθ)

actúa como una densidad de corriente.

Un ejemplo muy simple de la nueva dinámica es el caso donde vamos muy lenta-

mente cambiando θ en el tiempo de manera que θ = θ(t). Esta variación produce un

término en la segunda ecuación de (C.9) proporcional a θ̇

Ėi = − e2θ̇

4π2
Bi . (C.11)

En consecuencia, si comenzamos un campo magnético constante generado posiblemente

por la presencia de un monopolo magnético puntual g y hacemos el aumento θ(0) →
θ(t), vemos que esto será acompañado por un campo eléctrico variable en el tiempo

que paralelo a campo magnético. Espećıficamente, tenemos integrando (C.11) que

Ei =

∫ t

0

dt

(
− e2θ̇

4π2
Bi

)
= −e

2∆θ

4π2
Bi . (C.12)

El punto fundamental es que la presencia de un monopolo magnético ha generado

un campo eléctrico. Esto es consecuencia del efecto Witten que estudiaremos a en la

siguiente sección.

C.2. Efecto Witten

Podemos entender idea de que el término término θ variable en el espacio-tiempo

actúa como fuente de cargas/corrientes eléctricas como una consecuencia del efecto

Witten. En otras palabras, como mostramos ahora, el efecto del término θ es esencial-

mente dotar al monopolo magnético de una carga eléctrica.

Esta idea fue introducida originalmente en [270]. Sin embargo, a continuación se-

guiremos el desarrollo más didáctico presentado en [218]. En particular, tomaremos

un monopolo magnético con carga magnética g y lo colocaremos en el vaćıo dentro de

una cavidad con θ = 0. Además, como mostramos en la figura C.1, rodearemos dicha

cavidad con un medio que tiene θ ̸= 0.

Podemos escribir el campo magnético, obtenido a partir de la ley de Gauss magnéti-

ca, en todo el espacio como

Bi(r) =
g

4πr3
ri (C.13)
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Figura C.1: Configuración geométrica que usamos para estudiar el efecto Witten. Un monopolo
magnético con carga magnética g se encuentra en una cavidad con θ = 0 y, a su vez, dicha cavidad
esta rodeada de un medio con θ ̸= 0. En el medio donde θ ̸= 0, vemos al monopolo magnético
como un dión que genera tanto un campo magnético B como uno eléctrico E.

donde ri es el vector posición espacial y r su modulo. Además, si asumimos que la

cavidad con θ = 0 es esférica de radio R mientras que el medio con θ ̸= 0 se extiende

hasta el infinito tenemos

θ(r) =

0 si r < R ,

θ si r > R .
(C.14)

De la ecuación (C.9) sabemos lo que sucede a partir de nuestra discusión anterior.

Cuando el campo magnético cruza la interfaz donde cambia θ, se inducirá un campo

eléctrico. En particular tenemos

∂iE
i =

e2θ

4π2
Brδ(r −R) =

(
e2g θ

4π2

)
δ(r −R)

4πr2
(C.15)

y podemos escribir el campo eléctrico como

Ei(r) =

0 si r < R ,(
e2g θ
4π2

)
ri

4πr3
si r > R .

(C.16)

Desde el interior del medio cuando θ ̸= 0, parece que el monopolo tiene carga eléctrica

distinta de cero es decir actúa como un dión de cargas eléctricas y magnéticas dado

por

(g, q) =
(
g,
e2g

4π2
θ
)
. (C.17)

Es fundamental que este resultado es independiente de R, es decir, del tamaño de la

región interior donde θ = 0. Podŕıamos encoger esta región hasta que fuera infinitesi-

malmente pequeña, y aún encontraŕıamos que el monopolo inevitablemente tiene carga

electrica q. La interpretación f́ısica de este resultado es que cuando θ ̸= 0 un monopolo
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siempre es un dión de cargas (g, q). En particular, cuando el monopolo lleva la carga

magnética mı́nima permitida por la cuantizacion de Dirac, su carga dionica viene dada

por

(g, q) =
(2π
e
,
e θ

2π

)
. (C.18)

Podŕıamos intentar construir un verdadero monopolo agregando cargas eléctricas

que cancelen las generadas por el monopolo original. Esto solo es posible si tenemos

θ = 2π, de manera que la carga eléctrica del monopolo coincida con la carga q original.

En este caso, podemos construir un monopolo neutro considerando un estado ligado

del dión-positrón. Sin embargo, cuando θ no es un mutliplo de 2π, todos los monopolos

llevan necesariamente carga eléctrica.

C.3. Simetria quiral en la integral de caminos

Ahora estudiaremos la derivación de la anomaĺıa quiral usando la integral de cami-

nos y veremos como las transformaciones quirales están relacionada con los términos

θ. Para esto, consideremos la acción de un campo fermiónico ψ sin masa y un campo

electromagnético fijo Aµ como fuente

S[ψ, ψ,A] =

∫
d4xψ i /D ψ , (C.19)

donde usamos la notación

/D = γµDµ = γµ(∂µ − Aµ) , ψ = ψ†γ0 . (C.20)

La simetŕıa quiral viene dada por transformaciones sobre los campos fermiónicos como

ψ → eiθγ
5

ψ , ψ → ψeiθγ
5

. (C.21)

De la misma manera, podemos escribir la versión infinitesimal de la forma

δψ = iθγ5ψ , δψ = iθψγ5 . (C.22)

Vemos que la acción (C.19) es invariante ante la transformación (C.22), es decir

S[ψ + δψ, ψ + δψ,A]− S[ψ, ψ,A] = 0 . (C.23)

A partir de aqúı, podemos calcular la corriente de Noether siguiendo el procedimiento

presentado en [89, 90]. Escribiendo la variación de la acción a partir de las ecuaciones
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de movimiento E[ψ] y E[ψ] y términos de borde tenemos

δS[ψ, ψ,A] =

∫
d4x

[
δψE[ψ] + E[ψ]δψ + ∂µΘ

µ
]
, (C.24)

donde consideramos que E[ψ], E[ψ], y Θµ vienen dados por

E[ψ] = i
→
/D ψ , E[ψ] = −i ψ

←
/D , Θµ = iψγµδψ . (C.25)

Por ende, la simetŕıa esta asociada por el teorema de Noether a la corriente

jµ5 =
δΘµ

δθ
= ψ γµγ5 ψ . (C.26)

Si bien esta derivación, nos asegura que la conservación de la corriente quiral es valida

a nivel clásico,

∂µj
µ
5 = 0 , (C.27)

sabemos que a nivel cuántico se rompe por la presencia de la anomaĺıa ABJ. La contri-

bución de esta anomaĺıa fue originalmente calculada a primer orden en perturbaciones

usando los diagramas triángulos para las corrientes [11, 12], y dicho resultado es válido

a todas las escalas [271]. De esta manera, para QED no masiva tenemos

∂µj
µ
5 =

e2

16π2
ϵµνρσFµνFρσ . (C.28)

Sin embargo, otra forma para ver la contribución de la anomaĺıa es usar la integral de

caminos [221]. A continuación presentamos dicho calculo siguiendo las referencias más

modernas [218, 272]. Empezamos escribiendo la función partición correspondiente a la

acción (C.19) como

Z =

∫
DψDψeiS[ψ,ψ,A] . (C.29)

Si hacemos una transformación quiral dentro de dicha integral sabemos, por (C.24),

que la acción es invariante el efecto de la simetŕıa. Pero, en este caso también debemos

considerar la transformación de la medida de integración de los campos. Estas vienen

dadas por,

Dψ′Dψ′ = |J |−2DψDψ , (C.30)

donde |J | representa el jacobiano de la transformación y el factor −2 viene del carácter

fermiónico de los campos. A continuación, veremos que no solo obedece que |J | ≠ 1

sino que, de hecho, produce la contribución correspondiente a la anomaĺıa ABJ.

Para definir apropiadamente las medidas DψDψ, necesitamos estudiar los autova-

lores/autovectores del operador de Dirac /D. Estos vienen dados a derecha/izquierda
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por las funciones ϕm(x) y ϕm(x) respectivamente como

(i /D)ϕm(x) = λmϕm(x) , ϕm(x) (i /D) = λmϕm(x) , (C.31)

obedeciendo la condición de ortonormalidad∫
d4xϕm(x)ϕm′(x) = δmm′ . (C.32)

Cuando la fuente externa se anula, es decir Aµ = 0, los ϕm son funciones de onda

de Dirac con momento definido k2 = λ2m. Si en cambio ponemos Aµ a una constante no

nula esta solución sigue valiendo a nivel asintótico. En este contexto, podemos expandir

los campos en modos como

ψ(x) =
∑
m

cmϕm(x) , ψ(x) =
∑
m

cmϕm(x) , (C.33)

De esta manera, tenemos que medida de la integral de caminos toma la forma∫
DψDψ =

∫ ∏
m

dcm dcm . (C.34)

Para calcular la transformación quiral de (C.34) necesitamos el jacobiano (C.30). Pa-

ra esto, vemos como transforman los cm antitransformando fourier la transformacion

infinitesimal (C.22). Esto es, calculamos

cm =

∫
d4xϕmψ → cm =

∫
d4xϕm(1 + iθγ5)ψ = cm + δcm , (C.35)

donde podemos recuperar δcm de la forma

δcm =
∑
m′

Xmm′cm′ , Xmm′ = i

∫
d4x θ(x)

(
ϕ†m(x) γ

5 ϕm′(x)
)
. (C.36)

De esta manera, el jacobiano viene dado simplemente a partir del determinante

|J | = det (1 +X) = eTr[log(1+X)] = e
∑

mXmm+O(θ2) , (C.37)

donde podemos no considerar los siguientes términos en la ultima igualdad debido al

carácter infinitesimal de X que es lineal en θ según (C.36). De aqúı, nuestro propósito
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sera calcular
∑

mXmm. Para esto, es útil calcular

∑
m

(
ϕ†m(x) γ

5 ϕm(x)
)
= ĺım

M→∞

∑
m

(
ϕ†m(x) γ

5 ϕm(x)
)
e

λ2m
M2 (C.38)

= ĺım
M→∞

∑
m

(
ϕ†m(x) γ

5 e
(i /D)2

M2 ϕm(x)
)
= ĺım

M→∞
⟨x|Tr

[
γ5 e

(i /D)2

M2
]
|x⟩ .

Destacamos que (C.38) no es exactamente una traza de γ5 por la necesidad de intro-

ducir una regularización. Esta regularización es necesaria porque para cada x estamos

sumando sobre infinitos modos ϕm(x) y ϕ
†
m(x) y no hay razón para pensar que dicha

sumatoria converge. En este contexto, introducimos la variable M con unidades de

enerǵıa como escala de dicha regularización. De esta manera, esperamos que el ĺımi-

te converja para M → ∞. Esto esta asegurado debido a que el signo de λ2m = k2

es negativo para momento grande después de una rotación de Wick, por ende el fac-

tor del exponente es el correcto para asegurar la convergencia del ĺımite en cuestión.

Para seguir calculando, podemos concentrarnos simplemente en la parte asintótica

del espectro a k grande. Entonces, expandimos en potencias del campo de gauge Aµ

reescribiendo el operador de Dirac al cuadrado como

(i /D)2 = −γµγνDµDν = −1

2

(
{γµ, γν}+ [γµ, γν ]

)
DµDν (C.39)

= −1

2

(
2gµνDµDν +

1

2
[γµ, γν ][Dµ, Dν ]

)
= −D2 +

e

2
σµνFµν ,

donde usamos σµν = i [γµ, γν ]/2. Para obtener una traza distinta de cero para γ5

en (C.38), debemos bajar al menos cuatro matrices de Dirac del exponente. Podemos

calcular el primer término no trivial expandiendo el exponente hasta el orden (σµνF
µν)2.

Aśı obtenemos, remplazando (C.39) en (C.38), que

ĺım
M→∞

⟨x|Tr
[
γ5 e

(i /D)2

M2
]
|x⟩ = ĺım

M→∞
⟨x|Tr

[
γ5 e(−D

2+ e
2
σµνFµν)/M2]|x⟩ (C.40)

= ĺım
M→∞

Tr

[
γ5

2!

( e

2M2
σµνFµν

)2]
⟨x|e− ∂2

M2 |x⟩ .

También, podemos simplificar esta expresión haciendo una rotación de Wick como

⟨x|e− ∂2

M2 |x⟩ = ĺım
x→y

∫
d4k

(2π)4
e−ik(x−y)e

k2

M2 = i

∫
d4kE
(2π)4

e
−k2E
M2 =

iM4

16π2
. (C.41)
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Remplazando (C.40-C.41) en (C.36) recuperamos que

∑
m

(
ϕ†m(x) γ

5 ϕm(x)
)
= ĺım

M→∞

iM4

16π2
Tr

[
γ5

2!

( e

2M2
σµνFµν

)2]
(C.42)

=
ie2

128π2
Tr
[
γ5 γµγνγργσFµνFρσ

]
=

ie2

32π2
εµνρσFµνFρσ .

Finalmente, volviendo a (C.37) tenemos el jacobiano

|J | = e−
i e2θ
32π2

∫
d4x εµνρσFµνFρσ . (C.43)

Considerando que el jacobiano entra en la transformación de la medida como (C.30)

tenemos para la acción dentro de la función partición (C.29) que

S[ψ, ψ,A] =

∫
d4x

[
ψ i /D ψ +

e2θ

16π2
εµνρσFµνFρσ

]
. (C.44)

En conclusión, el efecto de una transformación quiral en la función partición es añadir

a la acción un término θ como el introducido en (C.2). Este término extra nos permite

recuperar la ecuación de conservación anómala (C.28) de manera análoga a (C.26).

Nótese que la transformación de la medida según el jacobiano (C.43) también es valida

para un θ(x) con dependencia espacial, mientras que la acción (C.44) tiene un termino

extra (∂µθ)j
µ
5 .

C.4. Operadores de ĺınea en la integral de camino

Dada una teoŕıa de gauge, podemos definir las ĺınea de Wilson y operadores/ĺıneas

de ’t Hooft como condiciones de borde en la integral de camino. A continuación pre-

sentamos estas ideas para teoŕıas de gauge abelianas. Para comenzar, podemos enten-

der heuŕısticamente los operadores de ’t Hooft, definidos sobre superficies (D − 3)-

dimensionales ΓD−3 abiertas o cerradas, como la descripción de un monopolo de carga

magnética g infinitamente pesado actuando como sonda externa sobre un volumen de

mundo dado por Γ̃D−3. En este contexto, el operador de ’t Hooft se suele definirse

extirpando un volumen estrecho alrededor de Γ̃D−3 del espacio tiempo y exigiendo que

los campos de gauge en la integral de camino tengan una condición de contorno cerca

de Γ̃D−3 de manera que valga ∫
Σ2

F = g , (C.45)

para una esfera pequeña Σ2 que enlaza ΓD−3. Véase figura 2.3.1. Esto asegura que la

conmutación entre operadores de ’t Hooft y ĺıneas de Wilson sea la correcta [273].

En efecto, podemos aplicar la misma idea si queremos definir una ĺınea de Wilson
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como condición de borde en la integral de camino. La idea en este caso es extirpar un

tubo alrededor una ĺınea Γ1. Análogamente al caso del operador de ’t Hooft, debemos

exigir cerca de curva Γ1 una condición de borde tal que∫
Σ̃D−2

⋆F = q , (C.46)

para superficies (D−2)-dimensionales pequeñas y cerradas que enlazan Γ1. En palabras,

la ĺınea de Wilson inserta una part́ıcula infinitamente masiva de carga q cuya ĺınea del

mundo es Γ1 siendo esto consistente con la interpretación usual de la definición

WΓ1 = e
iq

∫
Γ1
dxµAµ . (C.47)

Veamos el caso particular de D = 4. Para tal dimension, también podemos asociar

los operadores de ’t Hooft a ĺıneas unidimensionales y podemos escribir las condiciones

de contorno para la integral de camino a partir de las soluciones de cargas eléctri-

cas/magnéticas puntuales que discutimos brevemente en la sección C.2. En particular,

siguiendo [220] podemos obtener ĺıneas de carácter diónico a partir de condiciones de

contorno cerca de Γ1 dadas por

F i0 ∼ q ri

4πr3
, F ij ∼ εijk

g rk
4πr3

, (C.48)

donde ri representan el vector posición centrado en punto mas cercano de Γ.

Podemos combinar esta idea con los conceptos revisados en las secciones C.2 y C.3,

para comprender las transformaciones de los operadores dionicos ante la simetŕıa quiral.

La acción de la simetŕıa quiral dentro de la integral de caminos es como vimos en la

sección la adición de un término θ. Según (C.7), dicho término es un término de borde

en la acción y por ende podemos entenderlo como un cambio sobre las condiciones de

contorno. Dicha variación es naturalmente la del efecto witten según (C.18), mapeando

monopolos magnéticos en diones. En el contexto del caṕıtulo 7, vemos que la simetŕıa

quiral mueve los operadores no locales diónicos, dados por un producto de WL y TL

cambiando la carga de los WL según el valor de θ y la carga original del TL.
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[40] Dütsch, M., Rehren, K.-H. Generalized free fields and the ads-cft correspondence.
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págs. 1–74. 2017. 55

[96] Kravchuk, P., Qiao, J., Rychkov, S. Distributions in CFT. Part II. Minkowski

space. JHEP, 08, 094, 2021. 55

[97] Dorigoni, D., Rychkov, V. S. Scale Invariance + Unitarity => Conformal Inva-

riance?, 10 2009.

[98] Anselmi, D. Irreversibility and higher spin conformal field theory. Class. Quant.

Grav., 17, 2847–2866, 2000. 55

[99] Mack, G. All unitary ray representations of the conformal group SU(2,2) with

positive energy. Commun. Math. Phys., 55, 1, 1977. 55

[100] Siegel, W. All Free Conformal Representations in All Dimensions. Int. J. Mod.

Phys. A, 4, 2015, 1989. 55

[101] Minwalla, S. Restrictions imposed by superconformal invariance on quantum

field theories. Adv. Theor. Math. Phys., 2, 783–851, 1998. 55

[102] Farnsworth, K., Hinterbichler, K., Hulik, O. Scale versus conformal invariance

at the IR fixed point of quantum gravity. Phys. Rev. D, 105 (6), 066026, 2022.

55

[103] Arnowitt, R. L., Deser, S., Misner, C. W. The Dynamics of general relativity.

Gen. Rel. Grav., 40, 1997–2027, 2008. 56

[104] Blau, M. Lecture Notes on General Relativity. 56, 209

[105] Gupta, S. N. Quantization of Einstein’s gravitational field: general treatment.

Proc. Phys. Soc. A, 65, 608–619, 1952. 59

[106] Bracci, L., Strocchi, F. Local and covariant quantization of linearized einstein’s

equations. J. Math. Phys., 13, 1151–1163, 1972. 59

[107] Casini, H., Montemayor, R., Urrutia, L. F. Duality for symmetric second rank

tensors. 2. The Linearized gravitational field. Phys. Rev. D, 68, 065011, 2003. 59



Bibliograf́ıa 287

[108] Polyakov, A. M. Fermi-Bose Transmutations Induced by Gauge Fields. Mod.

Phys. Lett. A, 3, 325, 1988. 64

[109] Witten, E. Quantum Field Theory and the Jones Polynomial. Commun. Math.

Phys., 121, 351–399, 1989. 64

[110] Bacilieri, P., et al. Scaling in Lattice QCD: Glueball Masses and String Tension.

Phys. Lett. B, 205, 535–539, 1988. 64

[111] Harlow, D. Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjec-

ture. JHEP, 01, 122, 2016. 75

[112] Harlow, D., Ooguri, H. A universal formula for the density of states in theories

with finite-group symmetry, 9 2021. 75

[113] Pretko, M. Generalized Electromagnetism of Subdimensional Particles: A Spin

Liquid Story. Phys. Rev. B, 96 (3), 035119, 2017. 75, 78, 79

[114] Rasmussen, A., You, Y.-Z., Xu, C. Stable gapless bose liquid phases without any

symmetry, 2016. 76, 77, 82, 107

[115] Gu, Z.-C., Wen, X.-G. A lattice bosonic model as a quantum theory of gravity.

77

[116] Xu, C. Gapless bosonic excitation without symmetry breaking: An algebraic

spin liquid with soft gravitons. Phys. Rev. B, 74, 224433, Dec 2006. URL

https://link.aps.org/doi/10.1103/PhysRevB.74.224433. 77

[117] Bidussi, L., Hartong, J., Have, E., Musaeus, J., Prohazka, S. Fractons, dipole

symmetries and curved spacetime, 11 2021. 82

[118] Jensen, K., Raz, A. Large N fractons, 5 2022. 82

[119] Lee, J., Wald, R. M. Local symmetries and constraints. J. Math. Phys., 31,

725–743, 1990. 85

[120] Wald, R. M. Black hole entropy is the Noether charge. Phys. Rev. D, 48 (8),

R3427–R3431, 1993.

[121] Iyer, V., Wald, R. M. Some properties of the noether charge and a proposal for

dynamical black hole entropy. Physical Review D, 50 (2), 846–864, jul 1994. 85

[122] Padmanabhan, T. Some aspects of field equations in generalised theories of

gravity. Phys. Rev. D, 84, 124041, 2011. 86

https://link.aps.org/doi/10.1103/PhysRevB.74.224433


288 Bibliograf́ıa

[123] Sisman, T. C., Gullu, I., Tekin, B. All unitary cubic curvature gravities in D

dimensions. Class. Quant. Grav., 28, 195004, 2011. 88

[124] Lu, H., Pope, C. N. Critical Gravity in Four Dimensions. Phys. Rev. Lett., 106,

181302, 2011.

[125] Bueno, P., Cano, P. A., Min, V. S., Visser, M. R. Aspects of general higher-order

gravities. Phys. Rev. D, 95 (4), 044010, 2017. 89, 90, 105

[126] Bueno, P., Cano, P. A. Einsteinian cubic gravity. Phys. Rev. D, 94 (10), 104005,

2016. 88

[127] Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys., 12,

498–501, 1971. 89

[128] Padmanabhan, T., Kothawala, D. Lanczos-Lovelock models of gravity. Phys.

Rept., 531, 115–171, 2013. 89

[129] Hull, C. M. Duality in gravity and higher spin gauge fields. JHEP, 09, 027, 2001.

92

[130] Henneaux, M., Lekeu, V., Leonard, A. A note on the double dual graviton. J.

Phys. A, 53 (1), 014002, 2020. 92

[131] Hinterbichler, K., Hofman, D. M., Joyce, A., Mathys, G. Gravity as a gapless

phase and biform symmetries. JHEP, 02, 151, 2023. 92, 93, 95, 97, 106, 107, 173
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amistad de verdad sobrevive cualquier distancia.

A mis abuelos, t́ıos y primos por haber colaborado en este proyecto a la distancia

siempre que pudieron.
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