
Quantum Sci. Technol. 10 (2025) 025029 https://doi.org/10.1088/2058-9565/adb3c7

OPEN ACCESS

RECEIVED

8 November 2024

REVISED

20 January 2025

ACCEPTED FOR PUBLICATION

7 February 2025

PUBLISHED

18 February 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Encoding proteins as quantum states with approximate quantum
state preparation by iterated sparse state preparation
Rod Rofougaran1, Ralph Wang1, Akshay Ajagekar1 and Fengqi You2,3,∗

1 School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States of America
2 Systems Engineering, Cornell University, Ithaca, NY, United States of America
3 Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: fengqi.you@cornell.edu

Keywords: quantum state preparation, algorithm, protein

Supplementary material for this article is available online

Abstract
Quantum computing holds transformative potential for various domains including
cheminformatics through advancements in quantum algorithms. The key to realizing
improvements with quantum algorithms in cheminformatics is encoding chemical data like
proteins as quantum states with quantum state preparation. In this work, we propose a
computational framework to encode proteins as quantum states for efficient downstream quantum
processing. Protein data representations are encoded as multi-qubit quantum states with iterative
quantum sparse state preparation guided by the classical heuristic search method for optimal gate
sequence identification. The validity and efficiency of the proposed method is demonstrated with
various computational experiments to encode uniform random states as well as proteins. Several
performance comparisons against the baselines of exact and variational state preparation methods,
the proposed approach is able to encode proteins with 25% fewer controlled-NOT gates while
performing orders of magnitude faster than the variational method.

1. Introduction

Quantum algorithms show potential for speeding up computational routines, such as the quantum Fourier
transform [1], simulating quantum systems [2–6], and solving linear systems [7, 8]. In addition, quantum
machine learning (QML) has demonstrated potential to advance protein design and structure prediction,
which can mitigate crises in resource management, healthcare, and sustainability [9–12]. Encoding chemical
data onto quantum computers is a crucial first step in leveraging their potential because it enables the
quantum system to directly manipulate and analyze data reflecting the underlying properties of the
molecules themselves [13]. The quantum state preparation (QSP) subroutine, which prepares a multi-qubit
quantum state that encodes classical data, is an essential but often expensive step in such quantum
algorithms and machine learning applications [14]. Accurate QSP is essential for developing quantum
algorithms that can exploit any advantages [15] to solve problems like learning from chemical data like
proteins to realize goals like capturing structure-property relationships.

Several exact methods for QSP have been previously proposed, such as the uniformly controlled gates
(UCGs) approach [16] and its various improvements [17–20]. Many sparse state preparation methods have
also been investigated [21, 22], however, they generally assume that CX gates can be applied to any qubit pair.
An alternative to exact QSP methods is approximate encoding using variational quantum circuits (VQCs)
[23, 24], which is hardware-adaptive and requires fewer CX gates compared to the exact QSP approach.
Extracting optimal gate parameters for VQCs can be plagued by the barren plateau problem caused by
vanishing gradients [23, 25]. While exact QSP methods tend to use larger gate counts compared to
VQC-based methods, VQC-based methods require more computational resources to generate a gate

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/adb3c7
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/adb3c7&domain=pdf&date_stamp=2025-2-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9609-4299
mailto:fengqi.you@cornell.edu
https://doi.org/10.1088/2058-9565/adb3c7

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 1. An overview of the framework for encoding proteins as quantum states based on protein data representations, quantum
sparse state preparation, and classical heuristics for refinement.

sequence. Additionally, QSP using matrix product states (MPSs) has been shown to efficiently prepare
quantum states which encode smooth functions, such as probability distributions [26–28].

Efficient preparation of quantum states encoded with chemical data is crucial for applications like QML
in cheminformatics that impact both the performance and the feasibility of applications such as property
prediction tasks [11, 29]. Furthermore, efficient state preparation reduces the computational overhead
associated with initiating QML tasks [30]. As near-term quantum computers suffer from short coherence
times and noisy quantum gate operations [31], executing quantum algorithms with near-term hardware
requires an efficient QSP implementation [14]. This efficiency is particularly crucial in cheminformatics
[32], so effective state preparation can thereby enhances the feasibility of applying quantum computing to
real-world problems involving large-scale protein data.

Realizing the framework for efficient QSP implementation of protein data requires addressing a few
research challenges revolving around mitigating the cost of a quantum circuit. The first research challenge
lies in minimizing the quantum circuit cost measured using gate count (two-qubit gates) or circuit depth
[16], as larger circuit depth can lead to qubit decoherence [19]. As many quantum architectures follow a
linear nearest neighbor (LNN) architecture wherein the ith qubit’s nearest neighbors are the i− 1th and
i+ 1th qubit [33, 34], ensuring protein-encoded QSP for LNN by taking hardware connectivity into account
is another research challenge. Another research challenge lies in identifying a heuristic to find short gate
sequences that approximately prepare quantum states.

To address these research challenges, we propose a framework for efficiently preparing quantum states
encoded with chemical data like proteins, as shown in figure 1. The proposed approach consists of three
primary components: protein embeddings generated by pre-trained language models, quantum sparse state
preparation circuits, and classical heuristic search methods, which work in synergy to streamline the

2

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

preparation process. Protein embeddings capture information about amino acid sequences and molecular
properties and form the raw data encoded onto quantum states via amplitude encoding. Our framework can
be extended to prepare states encoding other types of biomolecular data, such as DNA or metabolic
structures, with variations only in the embedding dimensions and the number of qubits required to
represent the state. State-of-the-art machine learning models typically generate low dimensional
biomolecular embeddings with dimensions ranging from a few dozens to a few thousand [35–40], which can
be efficiently encoded into quantum states of 14 qubits or fewer. Another core component of the proposed
framework is the application of quantum circuits capable of preparing sparse quantum states. Sparse
quantum states on n qubits have at mostm nonzero amplitudes, wherem≪ 2n [41]. The efficient
preparation of sparse quantum states finds applications in solving linear systems [7], the quantum Byzantine
agreement [42], and other quantum algorithms [43, 44]. The third key element is a classical heuristic search
method for identifying optimal sparse QSP circuits, defined by their gate sequences and parameters, which
can be iteratively applied to prepare general quantum states.

To demonstrate the applicability of our method to prepare quantum states in both general and machine
learning applications, we validate our method with randomly sampled quantum states up to 14 qubits and
ten-qubit quantum states that encode proteins from the UniProtKB database [45]. We compared the CX gate
count and classical runtime of our iterated sparse approximation (ISA) implementation against that of UCG
and two VQC-based methods. In addition, we studied the relationship between theoretical and observed
preparation fidelity by performing noisy simulations of our algorithm on five-qubit states. The major
contributions of this work are:

• A novel, hardware-adaptive, non-variational framework for approximate QSP is proposed.
• A connection between sparse QSP and general QSP is established.
• A specific implementation of the proposed framework is described and shown to effectively prepare both
generic quantum states and those representing real-world data.

2. ISA framework

2.1. QSP
QSP is formally defined as: given an arbitrary quantum state |x⟩ and a family of quantum gates G, return a
sequence of quantum gates h1,h2, . . .,hm from G such that hm. . .h2h1|0⟩= |x⟩ [16]. In this paper, we assume
G contains continuously parameterized RX, RY and RZ gates, as well as the CX gate. This gate set is chosen
because these gates are both easy to reason about and easy to compile into the native gate set of existing
quantum computers [46]. In this work, we tackle the following version of approximate QSP: given an
arbitrary quantum state |x⟩, return a sequence of quantum gates g1,g2, . . .,gm that satisfies equation (1),

gm. . .g2g1|x⟩= |y⟩ (1)

|⟨y|0⟩|2 ⩾ 1− ϵ (2)

|⟨x|x ′⟩|2 = |⟨x|g†1g
†
2. . .g

†
m|0⟩|2

= |⟨y|0⟩|2 ⩾ 1− ϵ. (3)

Equation (2) represents the state preparation fidelity requirement with ϵ as the fidelity error.
This version of approximate QSP can be applied towards approximately preparing arbitrary quantum

states. For some state |x⟩, if a sequence of gates can be found for transforming |x⟩ to |y⟩, such that |y⟩ is close
to |0⟩, then inverting each gate and reversing the gate sequence generates a gate sequence for approximately
preparing |x⟩ starting from |0⟩. Indeed, if |y⟩= gm. . .g2g1|x⟩, |⟨0|y⟩|2 ⩾ 1− ϵ, and |x ′⟩= g†1g

†
2. . .g

†
m|0⟩, then

equation (3) follows. This indicates that the prepared state |x ′⟩ is a good approximation of the target state
|x⟩. For this work, qubit indices start at zero and start from the right. This means |0010⟩ is the result of
applying an X gate to qubit 1 of |0000⟩. Single-qubit rotations are written with the rotation angle first, then
the qubit index. For example, an RZ gate, angle π

2 , applied to qubit 1, is written as RZ(π2 ,1). CX gates are
written with the control qubit first. For example, a CX gate applied to qubit 2, with qubit 1 as the control, is
written as CX(1,2). Unless otherwise specified, n will represent the number of qubits in the system and
N= 2n will represent the number of amplitudes to be encoded onto those n qubits. In addition, |0⟩⊗n, the
starting state of an n-qubit quantum processor, will be abbreviated as |0⟩.

3

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

2.2. Patterns and substates
A k-bit pattern denoted by p over n-qubits is defined as a length-n string {0,1,∗}n containing exactly k ‘∗’
characters. The parameter kmay be zero, in which case p would be a length-n bit-string. Let Ip denote the set
of 2k integers such that, integer i ∈ Ip is a permutation of the k-bit pattern formed by replacing ∗ with 0 or 1.
Next, define the p-substate of a quantum state |x⟩ with the operator ξp as shown in equation (4).

ξp|x⟩=
∑
i∈Ip

|i⟩⟨i|x⟩. (4)

When |x⟩ is written in the computational basis, ξp|x⟩ contains the subset of basis states |i⟩ where imatches p.
In most cases, the norm of ξp|x⟩ is less than 1, and therefore does not represent a proper quantum state, but
is instead a complex-valued vector. Still, we define the action of quantum gates on these substates as we
would for normalized quantum states. Substates are defined analogously for quantum state-derived
functionals as (ξp|x⟩)† = ⟨x|ξp.

An X or CX gate may be applied to a pattern p as long as their relevant qubit indices do not correspond to
indices where p has a ‘∗’. If an X gate targeting qubit i is applied to a pattern p, the result is p but with the ith
character inverted from 0 to 1 or vice versa. If a CX gate with control qubit i and target qubit j is applied to p
and pi = 0, the result is p; otherwise, the result is p but with the jth character inverted. This behavior of X
and CX gates on patterns is chosen to match the behavior of those gates on substates, as described in lemma
A1 in appendix A; because of this relationship, we let g(p) denote the result of applying a gate g to a pattern p.

2.3. Substate merging
Our implementation of the ISA framework makes extensive use of a substate merging subroutine, which we
describe here. Given a quantum state |x⟩, a k-bit pattern p, and an X gate g that can be applied to p that
follows g(p) ̸= p, the substate merging subroutine applies a single qubit rotation R to |x⟩ such that the norm
of ξpR|x⟩ is maximized. Any single qubit rotation can be decomposed into an RZ–RY–RZ sequence. Since RZ
gates only apply complex phases to the amplitudes in the computational basis, the last RZ has no effect on
the norm of ξpR|x⟩ and can be left out. Thus, we parameterize R= RY(θ)RZ(ϕ). To compute the optimal θ
and ϕ, we perform casework on p[i]. If p[i] = 0, then g(p)[i] = 1, while the norm objective function can be
denoted by:

ξpR|x⟩= ξpRY(θ)RZ(ϕ) |x⟩

= cos

(
θ

2

)
ξp|x⟩− eiϕsin

(
θ

2

)
ξpg|x⟩ (ignoring global phase). (5)

The squared norm of this vector is then:

|ξpR|x⟩|2 = cos2
(
θ

2

)
⟨x|ξp|x⟩− 2cos

(
θ

2

)
sin

(
θ

2

)
Re
(
e−iϕ⟨x|g†ξp|x⟩ + sin2

(
θ

2

)
⟨x|pg†ξpg|x⟩

= cos2
(
θ

2

)
⟨x|ξp|x⟩− 2cos

(
θ

2

)
sin

(
θ

2

)
Re
(
e−iϕ⟨x|ξg(p)gξp|x⟩

)
+ sin2

(
θ

2

)
⟨x|ξg(p)|x⟩ (6)

where the last step used lemma A1 to simplify. The first and third terms of this expression are non-negative,
and do not depend on the sign of θ. Therefore, θ can be chosen such that the coefficient 2cos(θ2)sin(

θ
2) of the

second term is negative. Following this, the expression is maximized when e−iϕ⟨x|ξg(p)gξp|x⟩ is a positive real
number with no imaginary part, which is achieved by assigning ϕ = phase(⟨x|ξg(p)gξp|x⟩). Performing this
substitution and simplifying using half-angle laws yields equation (7). This quantity is maximized when θ
satisfies equation (8),

|(R|x⟩)p |
2 =

⟨x|ξp|x⟩+ ⟨x|ξg(p)|x⟩
2

+
cos(θ)

2

{
⟨x|ξp|x⟩− ⟨x|ξg(p)|x⟩

}
− sin(θ) |⟨x|ξg(p)ξp|x⟩| (7)

θ = tan−1 −2|⟨x|ξg(p)ξp|x⟩|
⟨x|ξp|x⟩− ⟨x|ξg(p)|x⟩

. (8)

Alternatively, in the case of p[i] = 1 and g(p)[i] = 0, ξpR|x⟩ follows equation (9). ignoring global phase.
Performing the same calculations as above, the magnitude of this state is maximized when conditions in
equation (10) are satisfied. By determining θ and ϕ, R can be constructed. This procedure of determining θ
and ϕ to maximize norm of ξpR|x⟩ is called substate merging because equations (5) and (9) show that the
final substate, ξpR|x⟩, is a linear combination of ξp|x⟩ and ξg(p)|x⟩. This can be considered analogous to

4

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

merging ξg(p)|x⟩ with ξp|x⟩ to form a new, larger-magnitude substate ξpR|x⟩, while some residue is left behind
at ξg(p)R|x⟩. For this reason, the substate merging procedure will be described as ‘merging ξg(p)|x⟩ into ξp|x⟩’,

ξpR|x⟩= sin

(
θ

2

)
ξpg|x⟩+ eiϕcos

(
θ

2

)
ξp|x⟩ (9)

θ = tan−1 2|⟨x|ξg(p)ξp|x⟩|
⟨x|ξp|x⟩− ⟨x|ξg(p)|x⟩

ϕ = phase
(
⟨x|ξg(p)gξp|x⟩

)
. (10)

In most cases, the substate merging procedure needs to be modified such that it does not disturb the
amplitude at |0⟩. We call this modified procedure ‘controlled substate merging’ and define it as follows.
Given a quantum state |x⟩, a pattern p, and a CX gate g that can be applied to p (and g(p) ̸= p), the controlled
substate merging procedure applies a transformation R consisting of the CX gate g and single-qubit rotations
applied to the target qubit of g, such that the norm of ξpR|x⟩ is maximized and ⟨0|R|x⟩= ⟨0|x⟩, ignoring
global phase.

The substate merging procedure can be adapted for controlled substate merging as follows. First, the
RZ–RY sequence R′ is constructed for merging ξp|x⟩ into ξg(p)|x⟩ as shown in equation (11). In this pair of
gates, only the RY gate disturbs the amplitude at |0⟩, thus, the RY gate is replaced with a controlled-RY gate,
then decomposed into CX and RY described in equation (12) wherein g is the CX gate given in the problem
statement. The transformation R′ minimizes ξpR ′|x⟩ and maximizes ξg(p)R

′|x⟩, whereas the opposite effect is
desired. This problem is tackled by removing the trailing g in the gate sequence R′ to get the desired gate
sequence R in equation (13). One interesting property of this construction is that, for all integers i where
g|i⟩= |i⟩, ⟨i|R|x⟩= ⟨i|x⟩ up to a complex phase, and the restriction ⟨0|R|x⟩= ⟨0|x⟩ is a special case of this
more general property of the construction for controlled substate merging. This property will prove useful
for our ISA implementation,

R ′ = RY(θ)RZ(ϕ) . (11)

R ′ = CRY(θ)RZ(ϕ)

= gRY

(
−θ

2

)
gRY

(
θ

2

)
RZ(ϕ) (12)

R= RY

(
θ

2

)
gRY

(
θ

2

)
RZ(ϕ) . (13)

2.4. Sparse QSP
In this work, we consider sparse quantum states of the form:

|x ′⟩=
∑
i∈Ip0

ci|i⟩+
∑
j∈Ip

cj|j⟩ (14)

where p is a k-bit pattern, k⩽ 2, p0 is p but with its ‘1’ characters changed to ‘0’, and p ̸= p0. We also require
the ‘∗’ characters in p to be adjacent to each other, if there are two of them, and for all pairs k and l where
p[k] = p[l] = 1, there exists nom such that k<m< l and p[m] = ‘∗’. Patterns meeting these latter two criteria
regarding the positioning of ‘1’ and ‘∗’ characters are called ‘compatible’, since these criteria are necessary for
our sparse QSP method to work on LNN architectures specifically. For example, ‘011 ∗ ∗0’, ‘100∗’ and ‘00001’
are compatible patterns, but ‘01 ∗ 001’ and ‘00 ∗ 01∗’ are not. For a general non-LNN architecture, the
compatibility criteria would need to be modified accordingly. Specifically, the ‘∗’ characters in p would not
need to be adjacent, but rather, we would require them to be at positions that are connected on the
connectivity graph. The remainder of the ISA implementation would then incorporate this adjusted set of
compatible patterns analogously.

As a base case, if p contains at most one ‘1’ character, and that character is adjacent to a ‘∗’ character, then
|x ′⟩ is a k+ 1-qubit entangled state on neighboring qubits. In addition, k+ 1⩽ 3, so existing exact state
preparation methods can be applied [47]; we describe our specific implementation in the appendix.
Otherwise, we can construct a sequence of CX gates g1,g2, . . .,gm and a sequence of patterns p0,p1, . . .,pm
such that pk = gk(pk−1) for all 1⩽ k⩽m, p0 = p, and pm is a base case pattern. This construction is possible

5

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

because p satisfies the compatibility criteria described above. From here, we construct the sequence
|x ′0⟩, |x ′1⟩, . . ., |x ′m⟩ such that |x ′k⟩= gk|x ′k−1⟩ and |x ′0⟩= |x ′⟩. Repeatedly applying lemma A1 shows that

|x ′m⟩=
∑
i∈Ip0

c ′i |i⟩+
∑
j∈Ipm

c ′j |j⟩ (15)

for some complex amplitudes c ′i and c ′j . Then |x ′m⟩ is a k+ 1-qubit quantum state on neighboring qubits,
which can be prepared by existing methods. In summary, our sparse QSP method uses a sequence of CX
gates to move the p-substate to qubits adjancent to the p0-substate, then applies exact QSP. The number of
CX gates our method needs to prepare sparse quantum states is the minimum possible lengthm of the CX
gate sequence used to move the p-substate plus the number of CX gates needed for the base case. Let CX(p)
denote this quantity. Breadth-first search can be used to compute CX(p); despite the inefficiency of such an
approach, the computation for CX(p) can be precomputed and cached, and therefore, needs to be performed
only once.

2.5. ISA framework implementation
In the previous sections, we described the building blocks for our ISA implementation; in this section, we
assembled the pieces. For the select step, we enumerate all compatible k-bit patterns p, with k⩽ 2. For each
pattern, we construct the corresponding (non-normalized) sparse approximation:

|x ′ (p)⟩= ξp0 |x⟩+ ξp|x⟩. (16)

When the sparse QSP method is applied to |x ′(p)⟩, the result is ∥x ′(p)∥|0⟩; when the same gate sequence is
applied to |x⟩ to get |x1⟩, we expect ⟨0|x1⟩= ∥x ′(p)∥. This corresponds to a fidelity increase of
⟨x ′(p)|x ′(p)⟩− |⟨0|x⟩|2 using CX(p) CX gates, or a fidelity increase ratio of

Rp =
⟨x ′ (p) |x ′ (p)⟩− |⟨0|x⟩|2

1+CX(p)
. (17)

Adding 1 to the denominator is necessary to prevent division by zero when CX(p) is zero. In the select step,
we greedily choose p to maximize Rp and select the corresponding sparse approximation |x ′(p)⟩. In the
prepare step, the sparse QSP method is adapted for general QSP. In our implementation, we replace the
iterated application of CX gates to move the p-substate with the iterated application of controlled substate
merging. This change allows the p-substate of |x⟩ to increase its norm as it moves towards a base-case
pattern, instead of keeping the same norm throughout. Also, using controlled substate merging in place of
CX gates will not affect the p0 substate, as argued at the end of section 2.3. In addition, we implement a
greedy selection procedure to construct the pattern sequence p0,p1, . . .,pm. Specifically, we implement
prepare using the following procedure:

(i) If p is a base case pattern, apply exact QSP and terminate the prepare step.
(ii) Otherwise, construct P , the set of patterns p′ such that g(p) = p ′ for some CX gate g and p ̸= p ′.
(iii) For each p ′ ∈ P , compute the magnitude of the substate that would result from merging |xp⟩ with

ξp′ |x⟩ and call this quantity mag(p ′).
(iv) For each p′, compute the projected fidelity increase ratio as

Rp′ =
mag(p ′)+ ⟨x|ξp0 |x⟩− |⟨0|x⟩|2

1+min(CX(p) ,CX(p ′))
. (18)

The numerator is the projected fidelity increase after substate merging, while the denominator is the
projected number of CX gates—one for substate merging and min(CX(p),CX(p ′)) for preparing the
resulting sparse approximation.

(v) Select p′ such that it maximizes Rp′ . If CX(p)< CX(p ′), then controlled substate merge ξp′ |x⟩ into ξp|x⟩
and return to the first step. Otherwise, controlled substate merge ξp|x⟩ into ξp′ |x⟩, set p= p ′, and
return to the first step.

It may seem possible that this procedure will always select p′ with CX(p ′)> CX(p) in step 5 and enter an
infinite loop. However, this cannot happen because each time another substate is merged into ξp|x⟩, an extra
CX gate is used. This extra CX gate must be justified by a corresponding increase in projected fidelity
increase, and the projected fidelity increase cannot increase indefinitely. We defer the discussion of two
optimizations in the ISA framework—refinement by RZ–RY and retroactive base case reduction—to
appendix B. Otherwise, every step of our ISA framework implementation has been fully described, and we
summarize it in figure 2.

6

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 2. Schematic depiction of the ISA framework. (a) The ISA framework is a check termination-select-prepare loop that
brings |x⟩ closer to |0⟩ on every iteration. (b) Flowchart depiction of the ISA implementation which includes refinement by
RZ–RY before entering the main check termination-select-prepare loop and retroactive base cacse reduction. Both optimizations,
RZ–RY refinement and retroactive base case reduction, are detailed in appendix B.

3. Results and discussion

We conduct several experiments to demonstrate the creation of arbitrary quantum states through two case
studies. The first case study focuses on generating uniform random states, while the second explores
protein-encoded states where computed protein embeddings serve as the quantum state amplitudes. In both
scenarios, the approach involves real amplitude encoding, where an n-qubit quantum state is constructed by
normalizing a 2n-dimensional feature vector and mapping its components to quantum amplitudes. The
experiments utilize both the ISA method and benchmark QSP techniques to generate sequences of quantum
gates that transform an initial state into the desired target state, aiming to achieve a theoretical fidelity of
0.95. To define this more precisely, given a real 2n-dimensional vector x with components x0,x1, . . . ,x2n−1,
the corresponding n-qubit quantum state can be expressed as:

|x⟩=
2n−1∑
j=0

x̃j|j⟩ (19)

where x̃j =
xj
∥x∥ represents the normalized features of x. By inputting |x⟩ into ISA and the benchmark QSP

methods, we generate a gate sequence g†1,g
†
2, . . . ,g

†
m that prepares |x⟩ from |0⟩ with an ideal fidelity of 0.95, as

described in equation 3. It should be noted that the vector x corresponds to fixed length randomly sampled
vector in the first case study and protein embeddings computed with a deep learning-based language model
in the second case.

7

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 3. (a) Average classical runtime versus number of qubits for each QSP method, plotted on a linear-log scale. Only the ISA
and UCG methods were able to prepare the quantum states for n up to 14; the AA-VQC method timed out (more than 1 hour to
prepare 100 states) after n= 9 and the ADAPT-VQE method timed out after n= 7. (b) Average number of CX gates used to
prepare 100 randomly generated quantum states versus number of qubits. The values in the ISA and ADAPT-VQE column show
two decimal digits, since the number of CX gates used varied across quantum states. By contrast, the values for the UCG column
were theoretically determined.

3.1. Uniform random state preparation
We first applied the proposed state preparation method to prepare uniformly sampled quantum states. Exact
state preparation approaches using UCG [17], alternating ansatz VQC (AA-VQC) [48], and ADAPT-VQE
[49] were also validated for the random uniform quantum states. In our experiments using randomly
generated states, we tested qubit numbers from 5 to 14, inclusive. For each qubit number, 100 quantum states
were uniformly, and randomly sampled. When determining the classical runtime, the number of CX gates in
the AA-VQC was set to 2n−1. This number was chosen because each CX gate attaches four free parameters,
therefore, approximately 2n−1 CX gates are necessary for the number of circuit parameters to exceed the
number of free parameters in an n-qubit quantum state. Under these conditions, the VQC should be able to
prepare any arbitrary n-qubit quantum state with high fidelity.

To determine the number of CX gates needed for AA-VQC, we trained VQCs with varying numbers of
layers and reported the CX gate count corresponding to the minimum number of layers needed to achieve an
average fidelity of 0.95. However, this minimum CX count also depends on the number of gradient descent
steps used to optimize the angles: more layers require less training. To ensure a sufficiently large but also fair
number of training iterations for each n, we trained an AA-VQC with 2n−1 CX gates on the first three
quantum states and recorded the number of training iterations required to achieve 0.95 fidelity on all three
states. Then, the number of training iterations was set to twice the sum of those numbers. This ensured that
the number of training iterations was approximately six times as many as actually necessary for that specific
number of qubits, preventing insufficient training from marring the results. CX gate count experiments were
not run for the UCG method. This is because the number of CX gates depends on whether the circuit
transpiler finds good circuit optimizations for LNN. However, using the exact nature of this algorithm, it was
determined that this method uses 2× 2n + 2n− 19 CX gates to prepare an n-qubit quantum state (proof
given in the appendix).

3.2. Fidelity of protein-encoded states
For the second set of experiments, we sampled 20 proteins from the proteome of Homo sapiens from the
UniProtKB database [45]. We embedded these proteins into continuous, 1024-dimensional feature vectors
using the ProtT5 pre-trained protein language model [50]. We encoded these features into ten-qubit
quantum states using real amplitude encoding. Classical runtime and CX gate counts were measured using
the same methods as in the first set of experiments. Theoretical fidelities were also determined using the gate
sequence outputs of each of the methods.

The AA-VQC method needed 71 layers to achieve a minimum average fidelity of 0.95, corresponding to
320 CX gates. The fidelity of UCG is exactly 1.0, as it is an exact state preparation method rather than an
approximation. Figure 3(b) shows that the number of CX gates needed for the VQC-based methods is
approximately 0.3N= 307.2, which is consistent with the CX gate counts reported for AA-VQC and
ADAPT-VQE methods in table 2. In addition, the CX gate counts for ISA and UCG in table 2 are consistent
with those shown in table 1. Thus, all methods returned similar gate counts for both protein-encoded states
and randomly generated states. In addition, the classical runtimes shown in table 2 for UCG and ISA
methods are consistent with those presented in figure 3(a). In addition, despite the timeout for the

8

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Table 1. Average number of CX gates used to prepare 100 randomly generated quantum states versus number of qubits. The values in the
ISA and ADAPT-VQE column show two decimal digits, since the number of CX gates used varied across quantum states. By contrast, the
values for the UCG column were theoretically determined, and are therefore whole numbers. In addition, the values for AA-VQC were
calculated by finding the minimum number of CX gates corresponding to an average fidelity of 0.95 - these are also whole numbers.

Number of qubits ISA UCG ADAPT-VQE AA-VQC

5 24.08 55 13.67 14
6 60.98 121 25.97 28
7 143.46 251 47.96 48
8 319.02 509 88.76 91
9 689.32 1023 164.22 180
10 1439.6 2049 TIMEOUT TIMEOUT
11 2952.66 4099
12 5991.51 8197
13 12 123.3 16 391
14 24 538 32 777

Table 2.Minimum CX gate count and classical runtime to achieve 0.95 ideal fidelity for each state preparation method for the
protein-encoded quantum states. Each result is an average across the 20 trials of preparing distinct protein-encoded quantum states.

Method CX gate count Classical runtime

ISA 1422.3 6.420× 10−2

UCG 2049 1.801× 100

ADAPT-VQE 286.0 6.424× 103

AA-VQC 320 4.895× 101

VQC-based methods at ten qubits, as shown in figure 3, the classical runtime values are consistent with the
general trend of pure VQC being several orders of magnitude slower than ISA and ADAPT-VQE being an
order of magnitude slower than AA-VQC. Thus, the classical runtime results for protein-encoded states are
consistent with those for general quantum states.

In addition, we also benchmark the proposed ISA approach against MPS for preparing quantum states
corresponding to protein-encoded states. The computational metrics presented in appendix D reveal
significant differences in their practical applicability for QSP, particularly for highly entangled
protein-encoded states. It is clear that the performance of MPS is strongly dictated by its bond dimension
hyperparameter. As the bond dimension increases, the average CX gate count for 10-qubit quantum states
increases significantly as compared to the ISA approach. It should also be noted that the computational
efforts also increase significantly without an improvement in the achieved fidelity. In contrast, the ISA
method’s iterative approach offers a more practical solution, as it naturally progresses toward the target
fidelity without requiring extensive hyperparameter optimization. This fundamental difference makes ISA
more suitable for preparing highly entangled states, where the MPS approach struggles to capture the
complex quantum correlations despite increased computational resources. The requirement for
hyperparameter tuning in MPS adds an extra layer of complexity and uncertainty to the state preparation
process, making it less practical for real-world applications involving protein-encoded states.

3.3. Computational performance
Figure 3(a) shows the average classical runtime versus the number of qubits for each method. For all numbers
of qubits tested, the ISA implementation ran the fastest, however, the ISA method’s classical runtime
increases faster with qubit number compared to the UCG method. Thus, the UCG method is expected to be
faster than ISA for more than 14 qubits. Both methods were orders of magnitude faster than the variational
methods. This reflects the intense computational cost incurred by the gate optimization procedures.

Table 1 shows the average number of CX gates used by each method as a function of the number of
qubits. The UCG method uses the most CX gates. The ISA method uses somewhat fewer CX gates, while the
variational methods use the fewest CX gates. The variational methods far outperform the non-variational
methods in this regard, demonstrating the effectiveness of the variational optimization procedure. That said,
the ISA method is shown to outperform the UCG method without any variational angle tuning procedure,
indicating that ISA is able to find good QSP gate sequences.

The number of free parameters in the quantum circuit is proportional to the number of CX gates; the
number of free parameters needed is proportional to N, the number of complex amplitudes in the target
state. Therefore, we hypothesized that the number of CX gates would be approximately proportional to N
and try to determine the constant factor by graphing CX count divided by N as a function of the number of

9

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 4. Theoretical fidelity, noisy fidelity, and CX gate count for ISA on randomly sampled five-qubit states on imbq_melbourne
quantum hardware. (a)Noisy fidelity versus CX gate count across all 100 states. The error bars represent one standard deviation at
each CX gate count. The bar chart shows that the noisy fidelity peaks around 10 CX gates. (b) Theoretical fidelity versus CX gate
count across all 100 states. The error bars represent one standard deviation at each CX count. The graph shows that as CX gate
count increases, theoretical fidelity increases. (c) Noisy fidelity versus theoretical fidelity. The scatter plot shows that increasing
theoretical fidelity increases the noisy fidelity up to a theoretical fidelity of 0.8, then the curve inverts and the two quantities
become negatively correlated. (d) Target state and prepared state amplitude vs basis vector for the first randomly sampled
quantum state. This figure compares the target quantum state with the quantum state prepared on noisy hardware—while the
peaks, corresponding to large amplitudes, approximately match, the valleys corresponding to smaller amplitudes match less well.

qubits. If the CX count is indeed proportional to N, then the graph should approach a horizontal line for
large n, asymptotically approaching the constant factor. Figure 3(b) shows the average number of CX gates
divided by N as a function of qubit number for each method. For our ISA implementation, the curve
increases for n< 10, then stabilizes to around 1.5. Thus, we conclude that our ISA implementation uses
approximately 1.5N CX gates for randomly sampled quantum states. By contrast, the UCG method is shown
to use 2N+ 2n− 19 CX gates, which is 2N to the leading order. Thus, the ISA method is shown to use
approximately 25% fewer CX gates compared to the UCG method. However, both variational methods
stabilize to around 0.3, which is about 5 times better than our ISA implementation, demonstrating the
effectiveness of the (computationally expensive) gate optimization procedure.

3.4. Simulations with noisy quantum circuits
For the third set of experiments, we prepared five-qubit quantum states on Qiskit’s FakeMelbourneV2
machine, which features a LNN architecture on the first five qubits. We sampled 100 five-qubit states
uniformly at random. For each state, we ran our ISA implementation with target fidelity thresholds ranging
from 0.4 to 0.95 in increments of 0.05, then included an additional target fidelity threshold of 0.98, for a total
of 13 trials per state. For each trial, the theoretical fidelity, noisy fidelity, and CX gate count were determined.
Different target fidelity thresholds for the same state sometimes yielded identical gate sequences and
corresponding fidelities; these duplicates were removed from our results.

Figure 4 depicts the theoretical fidelity, noisy fidelity, and CX gate count from the third set of
experiments. Figure 4 shows that as the theoretical fidelity increases from 0.4 to 0.8, the noisy fidelity
increases from 0.4 to 0.6. Further increases in theoretical fidelity, however, cause the noisy fidelity to
decrease. This inverse-U shaped correlation between the noisy fidelity and the theoretical fidelity is expected
because increasing target fidelity increases the CX gate count; at first, CX gates improve the quality of the
prepared state, but beyond a point, the marginal utility of a CX gate is outweighed by the noise it introduces.
Indeed, figures 4(a) and (b) corroborate these expectations; while increasing CX gate count monotonically
increases theoretical fidelity, an increase in CX gate count improves noisy fidelity only up to a peak of 0.68,
around 10 CX gates. Figure 4(d) shows that the largest amplitudes in the prepared states match the largest
amplitudes in the target state, but the smaller amplitudes match less well. This is a direct consequence of how
our ISA implementation approximates the target state as the sum of its largest amplitudes, then applies

10

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

corrections for the smaller amplitudes. These corrections cannot prepare the smaller amplitudes perfectly,
leading to a negative correlation between target amplitude magnitude and how closely it matches the
corresponding amplitude in the prepared state.

3.5. Hardware considerations and challenges
For both the random and protein-encoded quantum states, our implementation of the ISA framework uses
fewer CX gates than exact state preparation methods without incurring the variational optimization costs
associated with VQC-based methods. However, the VQC-based methods are able to prepare quantum states
using much fewer CX gates compared to the ISA method, and the UCG method is expected to be faster than
ISA for quantum states on more than 14 qubits. This trend is expected: the less computation time a method
uses, the lower the quality of its output.

In practice, every CX gate applied introduces hardware noise into the computation. Therefore, the design
of quantum circuits will require a careful balance between using enough CX gates to approximate the desired
computation, while not using so many CX gates as to corrupt the computation with noise. The ISA
framework lends itself to a simple method for finding this balance: if too many CX gates are present in the
state preparation algorithm, delete the gates corresponding to the last ISA iteration; if insufficient CX gates
are present, perform more sparse approximation iterations, which lends itself favorable for near-term
quantum devices. This works because each iteration of sparse approximation monotonically increases the
state preparation fidelity and each additional iteration provides diminishing returns on fidelity increase. This
idea was demonstrated our noisy simulation experiments. Different target fidelity thresholds led to different
numbers of CX gates, corresponding to a range of different observed preparation fidelities. Finding the
optimal CX count was reduced to identifying the optimal target fidelity threshold along the theoretical versus
noisy fidelity plot for that particular state. By contrast, creating such a CX gate count vs noisy fidelity curve
for a simple VQC method would require re-training the quantum circuit at every CX count sampled; for
large numbers of qubits, this would require many repetitions of the parameter optimization procedure,
driving up its already-expensive computational cost.

It would be valuable for future research to explore how ISA could integrate error correction techniques or
noise mitigation strategies. For instance, ISA could be combined with noise mitigation methods such as
zero-noise extrapolation [51, 52] or probabilistic error cancellation [51, 53], which enhance fidelity during
post-processing without modifying the gate sequence. Additionally, it has been shown that
repeat-until-success paradigms can enhance state preparation algorithms, including potentially ISA, by
providing additional robustness against hardware noise [54]. This is achieved through the use of mid-circuit
partial measurements, which allow verification of whether a particular operation was successfully applied
[55]. Furthermore, incorporating quantum error correction codes, such as qLDPC codes [56] or surface
codes [57, 58], into ISA could enable the resulting gate sequence to be made fault-tolerant. This can be
achieved using established methods for decomposing arbitrary rotations into fault-tolerant gate sets [59–61].
Periodic syndrome measurements during ISA iterations could detect and correct errors, thereby preserving
high-fidelity state preparation.

In addition, different quantum hardwares have different qubit connectivity. The only
hardware-dependent steps in our ISA implementation are enumerating the compatible patterns {p} and
computing CX(p), both of which can be done by an analogous breadth first search procedure. Thus, our ISA
implementation can be easily adapted to different hardware connectivities. However, the ISA method does
face several limitations. Most importantly, our implementation of ISA uses four or five times as many CX
gates as the VQC-based methods. This may cause ISA-generated gate sequences to induce much more noise
on near term quantum hardware compared to VQC-based methods. This problem may eventually be
mitigated by future work discovering alternative, easy-to-prepare classes of quantum states for
approximating dense quantum states, then adapting those discoveries towards an improved ISA
implementation. In addition, it may be possible to incorporate some variational training alongside ISA.
However, the cost function, training schedule, gradient conditioning, and other things would need to be
carefully designed to ensure such a hybrid method does not become a worse version of ADAPT-VQE or
AA-VQC. Another limitation of the ISA method is that it cannot prepare quantum states that require
extremely high fidelity. This is because the ISA method treats the dense target state as a sparse approximate
state, therefore, some percentage of the fidelity will be lost on every sparse approximation, and chasing down
these lost details would require many, many more iterations of ISA. That said, many applications of QSP,
such as machine learning and sampling from probability distributions, require only approximate QSP [23].
Nevertheless, in this context of approximate QSP, ISA can provide an advantage because the fidelity
threshold-and consequently the circuit depth-can be adjusted according to the specific requirements of the
downstream machine learning task wherein the corresponding metrics can guide the search for optimal ISA
iterations as a hyperparameter.

11

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

4. Conclusion

In this work, we introduced a framework for efficient QSP that addresses key challenges in encoding
chemical data like proteins on quantum computers. The proposed ISA framework demonstrated several
important advantages while balancing the competing demands of gate count optimization, classical
computational efficiency, and hardware constraints. The ISA framework achieves approximate QSP using
approximately 25% fewer CX gates compared to exact methods like UCG, while maintaining compatibility
with LNN architectures common in current quantum hardware. This reduction in gate count is crucial for
minimizing decoherence effects in near-term quantum devices. The presented results also demonstrated that
ISA can prepare quantum states orders of magnitude faster than variational approaches, making it
particularly suitable for large-scale applications in protein data encoding. The framework successfully
prepared both random uniform quantum states up to 14 qubits and protein-encoded quantum states from
the UniProtKB database with high fidelity. The method demonstrated consistent performance across
different state preparation tasks, suggesting robust applicability to various quantum computing applications.
The limitations of our approach include higher gate counts compared to variational methods and potential
challenges in achieving extremely high fidelities. However, these limitations are offset by the method’s
classical computational efficiency and hardware adaptability. Future work could explore alternative sparse
approximation strategies or hybrid approaches incorporating limited variational optimization to further
improve gate count efficiency while maintaining the framework’s computational advantages.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
The data, source code, and results that support the findings of this study are openly available in our

GitHub repository at https://github.com/PEESEgroup/QSP-ISA-Protein. This includes Python and C++
code comprising implementation of all quantum state preparation algorithms described in this work, input
data files containing protein-encoded quantum states, and complete benchmark results included in the log
files.

Appendix A

Lemma A1. If an X or CX gate g may be applied to a pattern p, then for all quantum states |x⟩,
gξp|x⟩= ξg(p)g|x⟩, ∀g ∈ {X(i),CX(i, j)|pi ̸= ∗,pj ̸= ∗}

Proof. Define g(i) such that g|i⟩= |g(i)⟩. Then g(i) ∈ Ig(p) for all i ∈ Ip. This also implies g(g(i)) ∈ Ig(g(p)) for
all g(i) ∈ Ig(p). Applying g twice amounts to the identity transformation in the context of both patterns and
substates, thus, i ∈ Ip for all g(i) ∈ Ig(p), implying that g creates a bijection between Ip and Ig(p). In addition,
given that X and CX gates on quantum states represent amplitude permutations in the computational basis,
⟨g(i)|g|x⟩= ⟨i|x⟩. It then follows that,

gξp|x⟩= g
∑
i∈Ip

|i⟩⟨i|x⟩

=
∑
i∈Ip

|g(i)⟩⟨i|x⟩

=
∑
i∈Ip

|g(i)⟩⟨g(i) |g|x⟩

=
∑
j∈Ig(p)

|j⟩⟨j|g|x⟩

= ξg(p)g|x⟩. (20)

Appendix B. Refinements for the ISAmethod

We describe two optimizations to our implementation of the ISA framework: refinement by RZ–RY, and
retroactive base case reduction.

12

https://github.com/PEESEgroup/QSP-ISA-Protein

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 5.Quantum circuit components comprising the ISA framework. (a) General quantum circuit structure of a single iteration
of ISA using a two-bit pattern p. Several iterations of controlled substate merging are performed on neighboring qubits before a
three-qubit state preparation base case is applied. (b) Decomposition of a single iteration of ISA using a two-bit pattern p. The
three-qubit state preparation base case is broken down into a distangling step and a two-qubit state preparation base case. (c)
General quantum circuit structure for two consecutive iterations of ISA ending in a three-qubit base case on the same three
qubits. Note that the SP2 base case in the first ISA iteration can be commuted with the controlled substate merging step in the
second ISA iteration. (d) General quantum circuit structure for two consecutive iterations of ISA width the same three-qubit state
preparation base case after applying retroactive base case reduction. The SP2 block from figure 4 is merged with the later SP3
block, saving 1 CX gate.

B.1. Refinement by RZ–RY
Refinement by RZ–RY seeks to apply approximate QSP to the target state |x⟩ without using any CX gates,
before applying the ISA framework. This is done by selecting a zero-bit pattern p such that ∥ξp|x⟩∥ is
maximized (ties are broken randomly), then applying substate merging several times to eventually merge
ξp|x⟩ into ξp′ |x⟩. The selection procedure resembles the implementation of prepare, but using substate
merging instead of controlled substate merging:

(i) If p is the string of all zeroes, then terminate this procedure. Otherwise, continue.
(ii) Construct the set P, containing zero-bit patterns p′ that differ from p.
(iii) Select p′ such that ξp′ |x⟩ is maximized, with ties broken randomly.
(iv) Let i be the index where p and p′ differ. If p[i] = 0 then merge ξp′ |x⟩ into ξp|x⟩, otherwise, merge ξp|x⟩

into ξp′ |x⟩ and update p= p ′. Return to step 1.

B.2. Retroactive Base Case Reduction
When a two-bit pattern p is chosen in the select step, the corresponding quantum circuit takes on the
structure shown in figure 5(a). The three-qubit QSP step can be broken into two steps: disentangling the
third qubit and two-qubit state preparation on the remaining two qubits, as shown in Figure 5(b). However,

13

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

if two consecutive iterations of ISA both selected a two-bit pattern and those two patterns had their ‘∗’
characters on the same two qubits, the resulting quantum circuit would have the structure shown in
figure 5(c). Then, the part of the quantum circuit enclosed in dotted lines first performs two-qubit state
preparation on the lower two qubits, then performs three-qubit state preparation on all three relevant qubits.
These two transformations have the net effect of transforming the three-qubit substate to |0⟩ and can instead
be replaced by a single three-qubit state preparation routine. This procedure saves the one CX gate used by
the two-qubit state preparation base case.

Appendix C. Optimal, exact three-qubit state preparation

Optimal, exact three-qubit state preparation has been studied in the literature [47]; our specific
implementation requires three steps, called ‘D1’, ‘D2’ and ‘SP2’. Let the target state be

|x⟩=
∑

i,j,k∈{0,1}

aijk|ijk⟩. (21)

Step D1 applies a single-qubit rotation, then CX(0, 1), then another single-qubit rotation, resulting in the
state

|y⟩=
∑

i,j,k∈{0,1}

bijk|ijk⟩, (22)

such that

b110
b010

=
b111
b011

and
b100
b000

=
b101
b001

. (23)

Next, step D2 uses a single-qubit rotation, CX(1, 2), and another single-qubit rotation to transform |y⟩ into a
two-qubit state

|z⟩=
∑

j,k∈{0,1}

cjk|0jk⟩. (24)

Finally, step SP2 implements two-qubit state preparation on this state using one CX gate and several
single-qubit rotations. We describe each of these steps in detail, starting with SP2 and D2. Then, we briefly
discuss the decomposition of uniformly controlled single-qubit rotations before concluding with a
description of D1.

C.1. SP2
Starting from the state

|z⟩=
∑

j,k∈{0,1}

cjk|0jk⟩, (25)

we rotate merge c001|001⟩ into c000|000⟩, leading to the state:

|z ′⟩= c ′000|000⟩+ c ′010|010⟩+ c ′011|011⟩. (26)

Next, c ′011|011⟩ is controlled rotate merged into c ′010|010⟩. This results in a one-qubit state that can be
prepared using a single-qubit rotation gate.

C.2. Step D2
Starting from the state

|y⟩=
∑

i,j,k∈{0,1}

bijk|ijk⟩, (27)

we rotate merge b100|100⟩ into b000|000⟩. The pre-condition

b100
b000

=
b101
b001

(28)

14

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Figure 6. (a) The circuit block used in ADAPT-VQE for state preparation. The operator pool was generated by translating this
block across different pairs of adjacent qubits. Each operator contains four parameters, one for each rotation. All four rotation
angles were initialized to zero. (b) Target decomposition of the uniformly controlled single-qubit rotation with one control qubit.

ensures that this procedure also merges b101|101⟩ into b001|001⟩. This results in the state:

|y⟩=
∑

i,j,k∈{0,1}

b ′
ijk|ijk⟩

such that b ′
100,b

′
101 = 0. (29)

In addition, the RZ and RY gate were applied to qubit 2, therefore, the equality

b110
b010

=
b111
b011

(30)

is preserved after the transformation.

b ′
110

b ′
010

=
b ′
111

b ′
011

. (31)

Next, b ′
110|110⟩ is controlled rotate merged into b ′

010|010⟩. The equality

b ′
110

b ′
010

=
b ′
111

b ′
011

(32)

ensures that b ′
111|111⟩ is also merged into b ′

011|011⟩ by this process. The previous step zeroed out the |100⟩
and |101⟩ basis vectors; this step zeroed out the |110⟩ and |111⟩ basis vectors. Therefore, the result of these
transformations is a two-qubit state:

|z⟩=
∑

j,k∈{0,1}

cjk|0jk⟩. (33)

C.3. Decomposing uniformly controlled single-qubit rotations
In this section, we describe the set of uniformly controlled single-qubit rotations with one control qubit that
can be decomposed into one CX gate and single-qubit rotations. In addition, we give a procedure for their
decomposition. These constructions will be necessary for the construction of step D1 for optimal, exact
three-qubit state preparation.

For simplicity, let the control qubit be qubit 1, let the target qubit be qubit 0. Suppose the desired gate
applies a if the control qubit is 0, applies b otherwise. Then the desired gate has matrix form[

a 0
0 b

]
. (34)

We wish to decompose this transformation into a quantum circuit of the form shown in figure 6(b).
These gates, together, take the matrix form[

v 0
0 v

][
I 0
0 X

][
u 0
0 u

]
. (35)

This requires some u and v to exist such that a= vu and b= vXu. Then

ab† = (vu)(vXu)† = vXv†, (36)

15

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

which implies that ab† must have the same eigenvalues,±1, as X. This condition is both necessary and
sufficient for the uniformly controlled rotation to be decomposable into the quantum circuit shown. Indeed,
if ab† has the same eigenvalues as X, then we can compute v by diagonalization, then compute u= v†a.
Finally, u and v can be decomposed to RY and RZ gates using ZYZ decomposition.

C.4. Step D1
Step D1 is implemented using a uniformly controlled single-qubit rotation, with qubit 0 as the control, qubit

1 as the target. To implement D1, we construct single-qubit operations a and b such that applying

[
a 0
0 b

]
to

|x⟩ leads to the state

|y⟩=
∑

i,j,k∈{0,1}

bijk|ijk⟩, (37)

such that

b110
b010

=
b111
b011

and
b100
b000

=
b101
b001

. (38)

In addition, we perform this construction such that ab† has eigenvalues±1 to ensure the transformation can
be implemented using only one CX gate.

We parameterize a and b as:

a= eiϕg

[
cos(θa) −sin(θa)eiϕa

sin(θa)eiαa cos(θa)ei(αa+ϕa)

]
b=

[
cos(θb) −sin(θb)eiϕb

sin(θb)eiαb cos(θb)ei(αb+ϕb)

]
. (39)

Then, we can express the bijk coefficients of |y⟩ in terms of ϕg , θa, αa, ϕa, θb, αb, ϕb, and the aijk coefficients
of |x⟩:

b000 = eiϕg
(
cos(θa)a000 + sin(θa)e

iϕaa010
)

b010 = ei(αa+ϕg) (−sin(θa)a000 + cos(θa)e
iϕaa010

)
b100 = eiϕg

(
cos(θa)a100 + sin(θa)e

iϕaa110
)

b110 = ei(αa+ϕg) (−sin(θa)a100 + cos(θa)e
iϕaa110

)
b001 = cos(θb)a001 + sin(θb)e

iϕba011

b011 = eiαb
(
−sin(θb)a001 + cos(θb)e

iϕba011
)

b101 = cos(θb)a101 + sin(θb)e
iϕba111

b111 = eiαb
(
−sin(θb)a101 + cos(θb)e

iϕba111
)
. (40)

Then the constraints

b110
b010

=
b111
b011

and
b100
b000

=
b101
b001

. (41)

Can be written as:

ei(αa+ϕg) (−sin(θa)a100 + cos(θa)eiϕaa110
)

ei(αa+ϕg) (−sin(θa)a000 + cos(θa)eiϕaa010)
=

eiαb
(
−sin(θb)a101 + cos(θb)eiϕba111

)
eiαb (−sin(θb)a001 + cos(θb)eiϕba011)

eiϕg
(
cos(θa)a100 + sin(θa)eiϕaa110

)
eiϕg (cos(θa)a000 + sin(θa)eiϕaa010)

=
cos(θb)a101 + sin(θb)eiϕba111
cos(θb)a001 + sin(θb)eiϕba011

. (42)

The eiαa , eiαb , eiϕg terms cancel out, making ϕg , αa, and αb free parameters. Multiplying out the
denominators, dividing by cos(θa)cos(θb), and re-arranging the terms gives:

Atan(θa) tan(θb)+Btan(θa)e
iϕb +Ctan(θb)e

iϕa +Dei(ϕa+ϕb) = 0

A−Btan(θb)e
iϕb −Ctan(θa)e

iϕa +Dtan(θa) tan(θb)e
i(ϕa+ϕb) = 0 (43)

16

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

where

A= a100a001 − a000a101

B= a100a011 − a000a111

C= a110a001 − a010a101

D= a110a011 − a010a111. (44)

Dividing the first equation by ei(ϕa+ϕb) and taking its conjugate results in the following system of
equations:

A∗tan(θa) tan(θb)e
i(ϕa+ϕb) +B∗tan(θa)e

iϕa +C∗tan(θb)e
iϕb +D∗ = 0

A−Btan(θb)e
iϕb −Ctan(θa)e

iϕa +Dtan(θa) tan(θb)e
i(ϕa+ϕb) = 0. (45)

Performing the substitution

x= tan(θa)e
iϕa

y= tan(θb)e
iϕb . (46)

Results in the system of equations:

A∗xy+B∗x+C∗y+D∗ = 0

A−By−Cx+Dxy= 0. (47)

Which can be solved by substitution. Once x and y are known, θa, θb, ϕa, ϕb can be determined.
Next, the constraint on the eigenvalues of ab† needs to be satisfied. Using the same parameterization as

before, we can write:

a= eiϕg

[
cos(θa) −sin(θa)eiϕa

sin(θa)eiαa cos(θa)ei(ϕa+αa)

]
= eiϕg

[
1 0
0 eiαa

][
cos(θa) −sin(θa)eiϕa

sin(θa) cos(θa)eiϕa

]
b=

[
cos(θb) −sin(θb)eiϕb

sin(θb)eiαb cos(θb)ei(ϕb+αb)

]
=

[
1 0
0 eiαb

][
cos(θb) −sin(θb)eiϕb

sin(θb) cos(θb)eiϕb

]
ab† = eiϕg

[
1 0
0 eiαa

]([
cos(θa) −sin(θa)eiϕa

sin(θa) cos(θa)eiϕa

][
cos(θb) −sin(θb)eiϕb

sin(θb) cos(θb)eiϕb

]†)[
1 0
0 eiαb

]†
. (48)

The two matrices between the parentheses in equation (48) are unitary matrices, thus, their product is a
unitary matrix and can be expressed as[

cos(θa) −sin(θa)eiϕa

sin(θa) cos(θa)eiϕa

][
cos(θa) −sin(θa)eiϕa

sin(θa) cos(θa)eiϕa

]†
= eiαg

[
cos(θ) −sin(θ)eiϕ

sin(θ)eiα cos(θ)ei(α+ϕ)

]
(49)

for some αg , α, ϕ, and θ. Then, we can write

ab† = eiϕg

[
1 0
0 eiαa

]
eiαg

[
cos(θ) −sin(θ)eiϕ

sin(θ)eiα cos(θ)ei(α+ϕ)

][
1 0
0 eiαb

]†
= ei(ϕg+αg)

[
cos(θ) −sin(θ)ei(ϕ−αb)

sin(θ)ei(α+αa) cos(θ)ei(ϕ+α+αa−αb)

]
. (50)

The characteristic polynomial of this matrix is:

p(t) =
(
cos(θ)ei(ϕg+αg)− t

)(
cos(θ)ei(ϕ+α+αa−αb+ϕg+αg)− t

)
−
(
−sin(θ)ei(ϕ−αb+ϕg+αg)

)(
sin(θ)ei(α−αa+ϕg+αg)

)
= t2 − ei(ϕg+αg)cos(θ)

(
1+ ei(ϕ+α+αa−αb)

)
t+ cos(θ)2 ei(2(ϕg+αg)+ϕ+α+αa−αb)

+ sin(θ)2 ei(2(ϕg+αg)+ϕ+α+αa−αb)

= t2 − ei(ϕg+αg)cos(θ)(1+ ei(ϕ+α+αa−αb))t+ e2i(ϕg+αg)ei(ϕ+α+αa−αb). (51)

17

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

We require the eigenvalues to be±1, so the characteristic polynomial must be equal to t2 − 1. This requires:

ei(ϕg+αg)cos(θ)
(
1+ ei(ϕ+α+αa−αb)

)
= 0

e2i(ϕg+αg)ei(ϕ+α+αa−αb) =−1. (52)

Solving these equations gives:

ϕ +α+αa −αb = π

ϕg +αg = 0. (53)

Therefore, we set ϕg =−αg, αa = π −ϕ −α, and αb = 0 to ensure that ab† is similar to X. Now, all the
parameters in a and b are specified, and the procedure from the previous Section can be used to compute the
gate sequence implementing the desired transformation. This concludes the description of each individual
step in our LNNs implementation of optimal, exact three-qubit state preparation.

C.5. CX gate count for UCG Exact Method on LNNArchitecture
Bergholm et al [17] showed that exact QSP on n qubits can be reduced to a sequence of n uniformly
controlled single-qubit gates, where the kth gate uses qubits [0. . .n− 1− k] as the controls, and qubit n− k as
the target. The last UCG is a single-qubit rotation on qubit 0. Next, the authors showed that, on LNN
architectures, a uniformly controlled single-qubit gate using controls [0. . .c− 1] and target qubit c can be
implemented, up to a diagonal gate, as

UCG(c) =
2c−1∏
i=0

CX chain(c− 1− z(i) , c)U(i), (54)

for some choice of single-qubit rotations U(i), where z(i) is the number of trailing zeroes in the binary
representation of i (define z(0) = c− 1) and CX chain(i, j) is a sequence of CX gates:

CX chain(i, j) = CX(i, i + 1)CX(i + 1, i + 2) . . .CX(j − 2, j − 1)CX(j − 1, j)

×CX(j − 2, j − 1) . . .CX(i + 1, i + 2)CX(i, i + 1) . (55)

The number of CX gates in CX chain(i, j) is 2(j − i)− 1. Then, the number of CX gates needed to implement
UCG(c) is

CX count(UCG(c)) =
2c−1∑
i=0

(2(1+ z(i))− 1)

=
2c−1∑
i=0

(2z(i)+ 1)

= 2c + 2
2c−1∑
i=0

z(i). (56)

Since i takes on all non-negative integers with c bits inthe sum, there are 2c−m−1 instances where z(i) =m,
for 0⩽m⩽ c− 2. However,m= c− 1 will show up twice because z(0) is defined to be c− 1. Then,

2c−1∑
i=0

z(i) =
c−2∑
m=0

m2c−m−1 + 2(c− 1) = 2c − 2

CX count(UCG(c)) = 2c + 2(2c − 2) = 3× 2c − 4. (57)

This would be the number of CX gates required to implement UCG(c) on an LNN architecture, however,
[17] introduces an optimization: by swapping qubits c and c− 1, all of the CX chain(c− 1− z(i), c) terms in
equation (54), where c− 1− z(i)< c− 1, become CX chain(c− 1− z(i), c− 1). This saves 2 CX gates for
each of those terms. In addition, for the CX chains where c− 1− z(i) = c− 1, the CX chain(c− 1− z(i), c)
term becomes CX chain(c− 1, c), which is the same thing. The swapping procedure costs 6 CX gates (3 to
swap the qubits, 3 to swap back at the end), but it saves 2 CX gates for each term where
c− 1− z(i)< c− 1 =⇒ z(i)> 0. There are 2c−1 such terms, for a net savings of 2c − 6 CX gates. Thus,

CX count, optimized(UCG(c)) = 3× 2c − 4− (2c − 6) = 2× 2c + 2. (58)

18

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

Table 3. Average fidelity, CX gate count, and computational effort required to prepare protein-encoded quantum states with matrix
product states (MPS) approach with different values of bond dimension hyperparameter.

Bond dimension Avg. Fidelity Avg. CX gate count Classical runtime

2 0.00045 29.8 1.89
4 0.0016 181.8 12.86
8 0.0006 963.8 528.03
16 0.0024 4353.8 4393.3

We introduce one additional optimization: the UCG(2), UCG(1), and UCG(0) gates at the end can be
replaced by exact, optimal three-qubit state preparation. Then, we can compute the total number of CX gates
required to prepare an n-qubit quantum state (n> 3) using the UCG method:

CX count, UCG onnqubits= 3+
n−1∑
k=3

(
2× 2k + 2

)
= 3+ 2(2n − 8)+ 2(n− 3) = 2× 2n + 2n− 19. (59)

Appendix D. BenchmarkingMPSs

We conducted additional experiments using the MPSs approach for state preparation for 10-qubit QSP tasks
using protein-encoded quantum states, evaluating average fidelity, CX gate count, and classical
computational runtime across different bond dimensions. The computational results presented in the table
below indicate that the fidelity of the quantum state prepared with MPS is dependent on the bond dimension
hyperparamter. There is also a clear exponential increase in both the CX gate count and classical runtime as
the bond dimension increases. The CX gate count grows from approximately 30 gates at bond dimension 2 to
over 4300 gates at bond dimension 16, while the classical runtime escalates dramatically from 1.89 units to
4393.3 units. This suggests that higher bond dimensions, while potentially offering marginally better fidelity
in some cases, come at a significant cost in terms of circuit complexity and computational resources. MPS is
suited for encoding smooth functions like probability distributions as they typically correspond to
low-entanglement states [62, 63]. As the classical data to be encoded becomes more complex, as can be case
with chemical data, the data-encoded quantum states become highly entangled. In these cases, MPS struggles
to efficiently represent such states [64, 65].

ORCID iD

Fengqi You https://orcid.org/0000-0001-9609-4299

References

[1] Shor P W 1994 Algorithms for quantum computation: discrete logarithms and factoring Proc. 35th Annual Symp. on Foundations of
Computer Science (IEEE) pp 124–34

[2] Lloyd S 1996 Universal quantum simulators Science 273 1073–8
[3] Berry D W, Childs A M, Cleve R, Kothari R and Somma R D 2015 Simulating Hamiltonian dynamics with a truncated Taylor series

Phys. Rev. Lett. 114 090502
[4] Berry D W, Childs A M and Kothari R 2015 Hamiltonian simulation with nearly optimal dependence on all parameters 2015 IEEE

56th Annual Symp. on Foundations of Computer Science (IEEE) pp 792–809
[5] Low G H and Chuang I L 2017 Optimal Hamiltonian simulation by quantum signal processing Phys. Rev. Lett. 118 010501
[6] Low G H and Chuang I L 2019 Hamiltonian simulation by qubitization Quantum 3 163
[7] Harrow AW, Hassidim A and Lloyd S 2009 Quantum algorithm for linear systems of equations Phys. Rev. Lett. 103 150502
[8] Wossnig L, Zhao Z and Prakash A 2018 Quantum linear system algorithm for dense matrices Phys. Rev. Lett. 120 050502
[9] Outeiral C, StrahmM, Shi J, Morris G M, Benjamin S C and Deane C M 2021 The prospects of quantum computing in

computational molecular biologyWiley Interdiscip. Rev.-Comput. Mol. Sci. 11 e1481
[10] Batra K, Zorn K M, Foil D H, Minerali E, Gawriljuk V O, Lane T R and Ekins S 2021 Quantum machine learning algorithms for

drug discovery applications J. Chem. Inf. Model. 61 2641–7
[11] Ajagekar A and You F 2022 New frontiers of quantum computing in chemical engineering Korean J. Chem. Eng. 39 811–20
[12] Andersson M P, Jones M N, Mikkelsen K V, You F and Mansouri S S 2022 Quantum computing for chemical and biomolecular

product design Curr. Opin. Chem. Eng. 36 100754
[13] Doga H, Raubenolt B, Cumbo F, Joshi J, DiFilippo F P, Qin J, Blankenberg D and Shehab O 2024 A perspective on protein structure

prediction using quantum computers J. Chem. Theory Comput. 20 3359–78
[14] Aaronson S 2015 Read the fine print Nat. Phys. 11 291–3
[15] Pal S, Bhattacharya M, Lee S-S and Chakraborty C 2024 Quantum computing in the next-generation computational biology

landscape: from protein folding to molecular dynamicsMol. Biotechnol. 66 163–78
[16] Shende V V, Bullock S S and Markov I L 2006 Synthesis of quantum-logic circuits IEEE Trans. Comput.-Aided Des. Integr.

25 1000–10

19

https://orcid.org/0000-0001-9609-4299
https://orcid.org/0000-0001-9609-4299
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1103/PhysRevLett.120.050502
https://doi.org/10.1002/wcms.1481
https://doi.org/10.1002/wcms.1481
https://doi.org/10.1021/acs.jcim.1c00166
https://doi.org/10.1021/acs.jcim.1c00166
https://doi.org/10.1007/s11814-021-1027-6
https://doi.org/10.1007/s11814-021-1027-6
https://doi.org/10.1016/j.coche.2021.100754
https://doi.org/10.1016/j.coche.2021.100754
https://doi.org/10.1021/acs.jctc.4c00067
https://doi.org/10.1021/acs.jctc.4c00067
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nphys3272
https://doi.org/10.1007/s12033-023-00765-4
https://doi.org/10.1007/s12033-023-00765-4
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1109/TCAD.2005.855930

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

[17] Bergholm V, Vartiainen J J, Möttönen M and Salomaa MM 2005 Quantum circuits with uniformly controlled one-qubit gates
Phys. Rev. A 71 052330

[18] Plesch M and Brukner Č 2011 Quantum-state preparation with universal gate decompositions Phys. Rev. A 83 032302
[19] Sun X, Tian G, Yang S, Yuan P and Zhang S 2023 Asymptotically optimal circuit depth for quantum state preparation and general

unitary synthesis IEEE Trans. Comput.-Aided Des. Integr. pp 1–1
[20] Zhang X-M, Li T and Yuan X 2022 Quantum state preparation with optimal circuit depth: implementations and applications Phys.

Rev. Lett. 129 230504
[21] Gleinig N and Hoefler T 2021 An efficient algorithm for sparse quantum state preparation 2021 58th ACM/IEEE Design

Automation Conf. (DAC) (IEEE Press) pp 433–8
[22] Malvetti E, Iten R and Colbeck R 2021 Quantum circuits for sparse isometries Quantum 5 412
[23] Nakaji K, Uno S, Suzuki Y, Raymond R, Onodera T, Tanaka T, Tezuka H, Mitsuda N and Yamamoto N 2022 Approximate amplitude

encoding in shallow parameterized quantum circuits and its application to financial market indicators Phys. Rev. Res. 4 023136
[24] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Quantum circuit learning Phys. Rev. A 98 032309
[25] Rivera-Dean J, Huembeli P, Acín A and Bowles J 2021 Avoiding local minima in variational quantum algorithms with neural

networks (arXiv:2104.02955)
[26] Melnikov A A, Termanova A A, Dolgov S V, Neukart F and Perelshtein M 2023 Quantum state preparation using tensor networks

Quantum Sci. Technol. 8 035027
[27] Iaconis J, Johri S and Zhu E Y 2024 Quantum state preparation of normal distributions using matrix product states npj Quantum

Inf. 10 15
[28] Holmes A and Matsuura A Y 2020 Efficient quantum circuits for accurate state preparation of smooth, differentiable functions

2020 IEEE Int. Conf. on Quantum Computing and Engineering (QCE) (IEEE) pp 169–79
[29] Bernal D E, Ajagekar A, Harwood S M, Stober S T, Trenev D and You F 2022 Perspectives of quantum computing for chemical

engineering AIChE J. 68 e17651
[30] Gujju Y, Matsuo A and Raymond R 2024 Quantum machine learning on near-term quantum devices: current state of supervised

and unsupervised techniques for real-world applications Phys. Rev. Appl. 21 067001
[31] Preskill J 2018 Quantum computing in the NISQ era and beyond Quantum 2 79
[32] Xu Y, Verma D, Sheridan R P, Liaw A, Ma J, Marshall N M, McIntosh J, Sherer E C, Svetnik V and Johnston J M 2020 Deep dive into

machine learning models for protein engineering J. Chem. Inf. Model. 60 2773–90
[33] Bravyi S, Dial O, Gambetta J M, Gil D and Nazario Z 2022 The future of quantum computing with superconducting qubits J. Appl.

Phys. 132 160902
[34] Saeedi M, Wille R and Drechsler R 2010 Synthesis of quantum circuits for linear nearest neighbor architectures Quantum Inf.

Process. 10 355–77
[35] Bepler T and Berger B 2019 Learning protein sequence embeddings using information from structure (arXiv:1902.08661)
[36] Yang K K, Wu Z, Bedbrook C N, Arnold F H and Wren J 2018 Learned protein embeddings for machine learning Bioinformatics

34 2642–8
[37] Zhou Z, Ji Y, Li W, Dutta P, Davuluri R and Liu H 2023 Dnabert-2: efficient foundation model and benchmark for multi-species

genome (arXiv:2306.15006)
[38] Dalla-Torre H et al 2025 Nucleotide transformer: building and evaluating robust foundation models for human genomics Nat.

Methods 22 287–97
[39] Nguyen E et al 2024 Hyenadna: long-range genomic sequence modeling at single nucleotide resolution Advances in Neural

Information Processing Systems vol 43177–201
[40] Jaeger S, Fulle S and Turk S 2018 Mol2vec: unsupervised machine learning approach with chemical intuition J. Chem. Inf. Model.

58 27–35
[41] Mozafari F, De Micheli G and Yang Y 2022 Efficient deterministic preparation of quantum states using decision diagrams Phys. Rev.

A 106 022617
[42] Ben-Or M and Hassidim A 2005 Fast quantum byzantine agreement Proc. 37th Annual ACM Symp. on Theory of Computing

(STOC’05) (Association for Computing Machinery) pp 481–5
[43] Sierra-Sosa D, Telahun M and Elmaghraby A 2020 Tensorflow quantum: impacts of quantum state preparation on quantum

machine learning performance IEEE Access 8 215246–55
[44] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Quantum machine learning Nature 549 195–202
[45] Consortium U 2015 Uniprot: a hub for protein information Nucleic Acids Res. 43 D204–12
[46] Maldonado T J, Flick J, Krastanov S and Galda A 2022 Error rate reduction of single-qubit gates via noise-aware decomposition

into native gates Sci. Rep. 12 6379
[47] Žnidarič M, Giraud O and Georgeot B 2008 Optimal number of controlled-not gates to generate a three-qubit state Phys. Rev. A

77 032320
[48] Zhang K, Hsieh M-H, Liu L and Tao D 2020 Toward trainability of quantum neural networks (arXiv:2011.06258)
[49] Grimsley H R, Economou S E, Barnes E and Mayhall N J 2019 An adaptive variational algorithm for exact molecular simulations

on a quantum computer Nat. Commun. 10 3007
[50] Elnaggar A et al 2020 Prottrans: towards cracking the language of life’s code through self-supervised learning IEEE Trans. Pattern

Anal. Mach. Intell. 44 7112–27
[51] Temme K, Bravyi S and Gambetta J M 2017 Error mitigation for short-depth quantum circuits Phys. Rev. Lett. 119 180509
[52] Li Y and Benjamin S C 2017 Efficient variational quantum simulator incorporating active error minimization Phys. Rev. X 7 021050
[53] Endo S, Benjamin S C and Li Y 2018 Practical quantum error mitigation for near-future applications Phys. Rev. X 8 031027
[54] Rattew A G, Sun Y, Minssen P and Pistoia M 2021 The efficient preparation of normal distributions in quantum registers Quantum

5 609
[55] Paetznick A and Svore K M 2013 Repeat-until-success: non-deterministic decomposition of single-qubit unitaries (arXiv:1311.

1074)
[56] Gottesman D 2013 Fault-tolerant quantum computation with constant overhead (arXiv:1310.2984)
[57] Bravyi S B and Kitaev A Y 1998 Quantum codes on a lattice with boundary (arXiv:quant-ph/9811052)
[58] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Surface codes: towards practical large-scale quantum computation

Phys. Rev. A 86 032324
[59] Kitaev A Y 1997 Quantum computations: algorithms and error correction Russ. Math. Surv. 52 1191
[60] Dawson C M and Nielsen M A 2005 The solovay-kitaev algorithm (arXiv:quant-ph/0505030)

20

https://doi.org/10.1103/PhysRevA.71.052330
https://doi.org/10.1103/PhysRevA.71.052330
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.22331/q-2021-03-15-412
https://doi.org/10.22331/q-2021-03-15-412
https://doi.org/10.1103/PhysRevResearch.4.023136
https://doi.org/10.1103/PhysRevResearch.4.023136
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://arxiv.org/abs/2104.02955
https://doi.org/10.1088/2058-9565/acd9e7
https://doi.org/10.1088/2058-9565/acd9e7
https://doi.org/10.1038/s41534-024-00805-0
https://doi.org/10.1038/s41534-024-00805-0
https://doi.org/10.1002/aic.17651
https://doi.org/10.1002/aic.17651
https://doi.org/10.1103/PhysRevApplied.21.067001
https://doi.org/10.1103/PhysRevApplied.21.067001
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1063/5.0082975
https://doi.org/10.1063/5.0082975
https://doi.org/10.1007/s11128-010-0201-2
https://doi.org/10.1007/s11128-010-0201-2
https://arxiv.org/abs/1902.08661
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.1093/bioinformatics/bty178
https://arxiv.org/abs/2306.15006
https://doi.org/10.1038/s41592-024-02523-z
https://doi.org/10.1038/s41592-024-02523-z
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1103/PhysRevA.106.022617
https://doi.org/10.1103/PhysRevA.106.022617
https://doi.org/10.1145/1060590.1060662
https://doi.org/10.1109/ACCESS.2020.3040798
https://doi.org/10.1109/ACCESS.2020.3040798
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/s41598-022-10339-0
https://doi.org/10.1038/s41598-022-10339-0
https://doi.org/10.1103/PhysRevA.77.032320
https://doi.org/10.1103/PhysRevA.77.032320
https://arxiv.org/abs/2011.06258
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.22331/q-2021-12-23-609
https://doi.org/10.22331/q-2021-12-23-609
https://arxiv.org/abs/1311.1074
https://arxiv.org/abs/1311.1074
https://arxiv.org/abs/1310.2984
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://arxiv.org/abs/quant-ph/0505030

Quantum Sci. Technol. 10 (2025) 025029 R Rofougaran et al

[61] Bravyi S and Kitaev A 2005 universal quantum computation with ideal clifford gates and noisy ancillas Phys. Rev. A 71 022316
[62] García-Ripoll J J 2021 Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations

Quantum 5 431
[63] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett. 91 147902
[64] Lubasch M, Joo J, Moinier P, Kiffner M and Jaksch D 2020 Variational quantum algorithms for nonlinear problems Phys. Rev. A

101 010301
[65] Eisert J, Cramer M and Plenio M B 2008 Area laws for the entanglement entropy-a review (arXiv:0808.3773)

21

https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.101.010301
https://arxiv.org/abs/0808.3773

	Encoding proteins as quantum states with approximate quantum state preparation by iterated sparse state preparation
	1. Introduction
	2. ISA framework
	2.1. QSP
	2.2. Patterns and substates
	2.3. Substate merging
	2.4. Sparse QSP
	2.5. ISA framework implementation

	3. Results and discussion
	3.1. Uniform random state preparation
	3.2. Fidelity of protein-encoded states
	3.3. Computational performance
	3.4. Simulations with noisy quantum circuits
	3.5. Hardware considerations and challenges

	4. Conclusion
	Appendix A
	Appendix B. Refinements for the ISA method
	B.1. Refinement by RZ–RY
	B.2. Retroactive Base Case Reduction

	Appendix C. Optimal, exact three-qubit state preparation
	C.1. SP2
	C.2. Step D2
	C.3. Decomposing uniformly controlled single-qubit rotations
	C.4. Step D1
	C.5. CX gate count for UCG Exact Method on LNN Architecture

	Appendix D. Benchmarking MPSs
	References

