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Abstract

The currently ongoing dawn of quantum technologies, such as quantum infor-
mation and quantum metrology, leaves some to speak of a quantum revolution.
The development of the required physical "hardware" goes hand-in-hand with
quantum state engineering, i.e., the design of quantum protocols that prepare
the quantum states required as resources for these technologies. Concentrated
efforts have produced a plethora of potential schemes for this purpose. How-
ever, trying to improve on and optimise these is vital and thus a main drive of
the field. The topic of this thesis is precisely that, the search for novel genera-
tion schemes that are potentially easier, more high yield or more "quantum".
Common issues within this topic are the susceptibility of these states to fall
victim to decoherence, and the probabilistic nature of certain techniques. The
"hardware" considered here are cavity quantum electrodynamics systems, i.e.,
optical cavities in which atom-light interactions are enhanced. The parameter
regimes made accessible by state-of-the-art optical cavities open up new roads
for investigations when it comes to protocols, and a variety of them are there-
fore considered here. A central aspect of this thesis is also further inspection of
the recently experimentally-implemented Dicke model in integer-spin atoms.
Even though it is one of the fundamental models of quantum optics, it does
not arise naturally and can thus only be studied in engineered systems like
this one. The quantum states we target to engineer within this thesis are,
firstly, light pulses containing Fock states, 0N-states, binomial-code-states,
and Greenberger-Horne-Zeilinger states. Additionally, we also aim to produce
two-mode (or two-colour) light with quantum-correlated photon statistics. Sec-
ondly, in ensembles of atoms, we propose to create entangled spin states such

as Schrodinger’s cat states and Dicke states. Among these, the states of light



would mainly find application and lead to further developments in quantum

information, while the atomic states would find a use in quantum metrology.



Acknowledgements

First and foremost, I would like to thank my supervisor Scott Parkins for giving me the
opportunity to join his team here in Auckland and for his guidance at all stages of the
PhD. This certainly allowed me to deepen my understanding Quantum Optics and grow as
a scientist.

In the same vein, I would like to thank the Dodd-Walls Centre for Photonic and Quantum
Technologies for making this possible by sponsoring me and letting me be part of the wider
New Zealand Optics community.

I would also like to thank the people who helped me tread my path in physics without which
I would not be here today, such as Luis Roa Oppliger for introducing me to Quantum Optics
and Information, and Sandro Wimberger for being a valuable mentor for many years now.
Similarly, I also thank Messieurs Clément, Harms et Moudat from the FG Berlin for giving
me the motivation to pursue sciences.

I would like to thank the Theoretical Quantum Optics group as a whole for maintaining such
a pleasant working environment. Special thanks go out to Nikki (and by extension Peter)
for taking me on all these amazing hikes, to Stuart for aiding me getting started on the
project and to Alex for helping me a great deal to get a better understanding of Quantum
Tomography.

A great many thanks go to Adrian Ortiz Cervantes for all the meals and discussions that
we have shared over the last couple of years. I am also very grateful for being able to go
through the PhD experience with the other Janis: Ayomikun, Mohammad, Nicola, Qaisar,
Santhosh and Sina who, with their banter, made sure that our office never got too quiet.

I would also like to thank the University of Auckland Maths club (Polygon), especially Ben,
Brendan and Phelisia for all the board game sessions that gave me something to look forward
to at the end of each week.

I also thank Peter Reimitz for proofreading parts of my thesis.

Finally, I thank Reni and Olsen for always believing in me.



This work makes use of the Quantum Toolbox in Python (QuTiP) [I} 2].

I also acknowledge the contribution of NeSI high-performance computing facilities to the
results of this research. New Zealand’s national facilities are provided by the New Zealand
eScience Infrastructure and funded jointly by NeSI’s collaborator institutions and through

the Ministry of Business, Innovation and Employment’s Research Infrastructure program.



10




Contents

I Front Matterl
[Abstract]

[Acknowledgments|

(1 _Introduction|

T Prelimbnarics

2 Open Quantum Systems|

2.1  Quantum Harmonic Oscillator| . . . . . . . ... ... ... ...
[2.2  Number State Representation . . . . . ... .. ... ... ...
2.3 Master Equation| . . . . ... ... 000000

2.4 Quantum 'Trajectories| . . . . .. ... .. ... ... ... ...

[2.5  Quantum Regression| . . . . . . ... ..o

[3 Atomic Physics of Alkali Metals|
[3.1  Energy Level Structure of Alkali Atoms|. . . . . . .. ... ...
[3.2  Static Magnetic Fields| . . . ... ... ... ...,
[3.3  Spinor Systems| . . . . ...

[3.4 Atoms interacting with Classical Fields| . . . . . . ... ... ..

[3.5 Spontaneous Emission| . . . . ... ..o

[4 Cavity Quantum Electrodynamics|

[4.1 Quantisation of the Electromagnetic Field| . . . . . . .. . . ..

11

17

21

23
23
25
27
31
33

37
37
38
42
44
46

49



12 CONTENTS

[4.2  Optical Cavities| . . . . . . . . .. ... ... ... ... ..., 51
4.3 Input-Output Theory|. . . . . . ... ... ... ... ... ... 54
[4.4  Atoms interacting with Quantum Fields| . . . .. ... ... .. 56
[4.5 Cooperativityl . . . . . . . . ... 58
4.6 Photon Statistics . . . . . .. . ..o oo 59
(5 An Integer-Spin Dicke Model 63
b1 The Dickemodell . . . .. .. ... o000 63
b2 Derivationl . . . . . . . .. 64
(Hh.2.1  Hamiltonianl . . . . . . . . . ... Lo 65
[6.2.2  Interaction Picturel . . . . . . . . ... ... oL 66
H.2.3 Adiabatic Elimination of Fixcited States) . . . . . . . .. 67
[5.2.4  Large Detuning Limit| . . .. ... ... ... .. .... 72
[5.2.5  Other F-Levels/Atoms| . . . . . ... ... ... ..... 73

.3  Modelling Spontaneous Emission| . . . . .. .. ... ... ... 74
(5.4  Engineering of Collisional Dynamics for an Ensemble of Atoms|. 75
[>.4.1 Many-body Hamiltonian| . . . . . . . ... ... ... .. 75
0.4.2 Adiabatic Flimination of the Bosonic Model . . . . . .. 76

[6 Reconstructing Quantum States of Light)| 81
6.1 Temporal Modes| . . . . . ... ... ... ... ... 81
6.2 Radon Transform| . . . . . ... ... ... ... 0. 83
[6.3 Balanced Homodyne Detection| . . . . . . ... ... ... ... 83
[6.4  Maximum Likelihood Estimation for (Quantum States| . . . . . . 84
(6.5 Input-Output Theory for Quantum Pulses| . . . . . . . . . . .. 85

LIl Single- or Few-atom Sources of Nonclassical Light| 87

7 Deterministic Single-atom Source of Quasi-superradiant N- |

[ photon Pulses| 89
[[1 TIntroductionl . . . . . . . . . . . . . . . 89
[7.2  Engineered Tavis-Cummings type Dynamics| . . . . . . . . . .. 91

[7.3  Output Photon Number| . . . . . .. ... ... ... ... ... 94




CONTENTS ].3

[7.3.1 Quantum Trajectories] . . . . ... ... ... ...... 97
7.4 Atomic State Populations| . . . . ... ... .. ... .. .... 98
[7.5 Additional Examples| . . . . . . ... ... 00000 100
[7.5.1 Constant Laser Amplitude| . . . . . . . . ... ... ... 100
[7.5.2  'Time-varying Laser Amplitude|. . . . . . . . . ... ... 101
[7.6 0/N-states and other Superpositions| . . . . . . . ... ... ... 103
[7.6.1 Relative Phase Shitts in Superposition States|. . . . . . . 104
[7.7  Quantum State Tomography via Optical Homodyne Detection| . 105
[7.7.1 Full Model Input-Output formalism|. . . . . . ... ... 107
[[.8 Conclusions and Outlookl . . . . . ... ... ... ... ... .. 108

[8  N-Photon Pulses via Resonant Optical Pumping of a Single

[ Atoml 111
8.1 Introductionl . . . . . . . ... Lo 111
[8.2  Preliminary Considerations|. . . . . . . . ... ... ... .... 112
8.3 Number State Generation| . . . .. . ... ... ... .. .... 113

[8.3.1 'lTreating the F' = 1 manifold as a single dark state[. . . . 113
[8.3.2  Low Coupling Regime| . . . . . ... ... ... . .... 115
[8.3.3  High Coupling Regime| . . . . . . . ... ... .. .... 118
[8.3.4  Quantum Tomographyl . . . . . . .. ... ... ... .. 121
[8.3.5 F + F'"= F'+1 and the Cycling Transition| . . . .. .. 122
[8.4  0/N-states and other Superpositions . . . . . . . ... ... ... 124
[8.5 Preparation of Entangled States| . . . . . .. ... .00 127
8.6 Conclusions and Outlookl . . . . . . . ... ... ... ... ... 129

[9 Two-Mode Single-Atom Laser| 131
9.1 Introductionl . . . . . . . . ..o 131
9.2 Full Modell. . . . . ... o oo 133

0.2.1 Interaction Picturel . . . . . . ... ... ... ... ... 134
9.3 Atomic Populations and Intracavity Photon Number| . . . . . . 135
[9.3.1 Varying the Laser Strengths| . . . . . . . ... ... ... 136
[9.3.2  Varying the Detunings| . . . . . . . ... ... ... ... 138

[9.3.3  Varying the Atom-Cavity Coupling Strength| . . . . . . . 140




14: CONTENTS

9.4 Photon Statistics . . . . . ... ... 142
9.4.1 Inference from Photoelectric Counts. . . . . . . . .. .. 142
[9.4.2  Intensity Correlation Functions| . . . . . ... ... ... 144
[9.4.3  Violation of Cauchy-Schwarz Inequalities| . . . . . . . .. 148

9.5 4-state Modell . . . . . . .. oo 151
951 Version Il. . .. ... oo 151
952 Version Il . .. ... ... oo 153
[9.5.3 Comparison of the Models| . . . . . ... ... ... ... 154
[9.5.4 Ramp of the Laser Intensity| . . . . . .. ... ... ... 157

9.6 Conclusions and Outlookl . . . . . ... ... ... ... ... .. 160

IV  Cavity-mediated Many-body Quantum Dynamics |

with Spin-F" Atoms| 163
[10 Generation of Spin Cat States in an engineered Dicke model 165
(10.1 Introductionl . . . . . . . . .. .o 165
[10.2 One-Axis Twisting Dynamics| . . . . . . .. ... ... ... .. 167
(10.2.1 Engineering from a Dicke model . . . . . . . . . . . ... 167

(10.2.2 Time evolution of the wave functionl. . . . . . . . .. .. 169

(10.2.3 Fidelity and Quantum Fisher Information| . . . . . . .. 171

(10.2.4 No-jump trajectory: Cat State]. . . . . . . . . . .. ... 172

[10.3 Trapped-lon Framework| . . . .. ... .. ... ... ... ... 175
(10.3.1 Implementation| . . . . . . ... ... ... ... ..... 175

(10.3.2 Damping and Dephasingl . . . . . .. .. ... ... ... 176

(10.3.3 Possible Experimental Parameters|. . . . . . . . .. ... 177

[10.4 Cavity QED Frameworkl . . . . . ... .. ... ... ... ... 178
(10.4.1 Implementation| . . . . . . ... ... ... ... ..., 178

(10.4.2 Cavity Decay: No-Jump Evolution| . . . . . . ... ... 179

(10.4.3 Spontaneous Emission| . . . . ... ..o L 182

(10.4.4 Possible Experimental Parameters|. . . . . . . . . . ... 183

(10.4.5 Preparation of the Dicke state [S,0),f . . . .. ... ... 184

(10.4.6 Jump trajectory: Entangled-State Cycles|. . . . . . . .. 186

(10.4.7 Steering a kitten state to a cat state] . . . . . . . . ... 189




CONTENTS ].5

[10.5 Conclusions and Outlookl . . . . . . . .. .. ... .. ... ... 191
[V___Back Matter] 193
(11 Conclusions and Outlookl 195

(Bibliography| 199




16

CONTENTS




Chapter 1
Introduction

In this thesis, we would like to explore two main themes with very different
aims, but which nevertheless are complementary to each other:

The first theme is Single- or few-atom cavity quantum electrody-
namics systems for production of nonclassical light: Recent exper-
iments with trapped atoms and fibre-integrated, optical micro- and nano-
cavities have pushed the field of cavity quantum electrodynamics (cavity QED)
into a new realm of single-atom—photon coupling strengths, corresponding to
unprecedentedly large single-atom cooperativities [3H8], while also offering the
possibility of integrated quantum networks for quantum communication or
simulation of quantum many-body systems [9HI5]. A further, well-known ca-
pability provided by such large coupling strength is the generation of single
photons with high fidelity through cavity-enhanced atomic spontaneous emis-
sion. Efficient single-photon sources are central to many efforts to realise opti-
cal quantum computation and communication. Some interdisciplinary applica-
tions are also on the horizon as recently their distinctive quantumness (photon
statistics) has led to their use in studies of quantum biology, e.g., for biolog-
ical photoreceptors such as those in the retina [I6-19]. Beyond this, there is
the even greater, and still outstanding challenge to realise an equally efficient
source of pulses of exactly N (> 2) optical photons. Highly nonclassical states
of light such as these are of fundamental interest to quantum optics and repre-

sent a starting point for the engineering of yet more complex quantum states.
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They are also essential for new, more resource-efficient photonic architectures
for universal quantum computation and quantum error correction using indi-
vidual, higher-dimensional systems [20-22] (¢f. multiple two-state systems),
as well as for optimal capacity of a quantum communication channel [23| 24],
and Heisenberg-limited interferometry [25H31].

The second theme is Many-body quantum dynamics with spin-/
atoms in cavities. Bose-Einstein condensates of ultracold atoms with an in-
ternal spin degree of freedom are a useful tool to investigate many-body quan-
tum dynamics. Recent experiments have realised Bose-Einstein condensates in
which all magnetic sublevels of a hyperfine state are condensed [32], 33]. The
tunability of these systems is limited, since some parameters are fixed by the
choice of the atomic species. In such systems, the dynamics are governed by
spin collisions and magnetic field shifts. The small energy scales herein lead to
long time scales for the dynamics. We emulate and extend these spin dynamics
of Bose-Einstein condensates with an engineered cavity QED system, in which
we have more flexibility with regard to choosing the values of the parameters
and typical time scales that are orders of magnitude faster. Another important
difference is that the system is now an open system, i.e., photons are leaving
the system, and that we can monitor this escaping light field via a variety
of measurements. Indeed, there has been a growing experimental interest in
cavity QED-mediated interactions of spin-F' atoms, atoms that in contrast to
most studies in the field have a spin F' > %, in recent times [34, [35]. This
could be used to study quantum phase transitions [36], 37|, but here we shall
look at producing exotic spin states, of potential use in quantum metrology or
in quantum information. The reason for this is that these spin states display
multipartite entanglement and can offer quantum-enhanced precision [38].

This thesis is organised as follows:

Chapter [2| aims to give the basic tools needed for the description of open
quantum systems. We start with some basics such as the quantum harmonic
oscillator and its number state representation. We introduce the two main
ways to simulate open quantum systems: the master equation and quantum
trajectories. Finally, we explain quantum regression, which is crucial for the

computation of correlation functions.



19

A major part of the research in the fields of atomic and optical physics
arguably concentrates on the alkali atoms because of their relative simplicity
and their relatively high mass, which makes them easier to cool and thereby
to use in experiments. Similarly, in this thesis, we mostly employ Rubidium
(®"Rb) and Caesium (*3Cs) as atomic species. Therefore we shall give a brief
description of their main optical properties in Chapter [3], such as their energy
level structure and their interaction with electromagnetic fields.

In Chapter [ we give an introduction to cavity quantum electrodynamics.
We start with the quantisation of the electromagnetic field, followed by an
introduction to optical cavities. Then we treat the interaction of light in said
cavities with the environment and atoms. Finally we discuss basic photon
statistics.

In Chapter [5| we shall setup the derivations of the engineered Dicke model
for integer spin systems that will be the basis for Chapters [7] and The
chapter also contains an extension for including spontaneous emission and the
engineering of spin collision dynamics.

Chapter [6]is about the various methods that will be used to perform quan-
tum state tomography, i.e., the reconstruction of the quantum state of a light
pulse that will be used extensively in the Chapters [7] and [§ which are part of
the first theme and focus on the generation of exotic optical quantum states.

In Chapter [7] we propose a single-atom, cavity quantum electrodynamics
system, compatible with recently demonstrated, fibre-integrated micro- and
nano-cavity setups, for the on-demand production of optical number-state,
ON-state, and binomial-code-state pulses. The scheme makes use of Raman
transitions within an entire atomic ground-state hyperfine level and operates
with laser and cavity fields detuned from the atomic transition by much more
than the excited-state hyperfine splitting. This enables reduction of the dy-
namics to that of a simple, cavity-damped Tavis-Cummings model with the
collective spin determined by the total angular momentum of the ground hy-
perfine level.

In Chapter[§ we extend Chapter [7]to resonance, which allows us to consider
a wider range of optical cavities. The possibilities offered remain much the

same, but now they also feature the generation of entangled photonic states.
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In Chapter [9) we explore a novel variation of the one-atom laser made
possible by state-of-the-art nanofibre cavities, which allow for the simultaneous
strong coupling of the atom to two cavity modes. The output light of the
system shows, on top of sub-Poissonian photon statistics and antibunching of
the individual modes, a series of other quantum signatures in the correlations
between the two modes.

In Chapter we examine trajectories of collective atomic spin states of
an effective Dicke model. When the strengths of the co-rotating and counter-
rotating couplings are set to be equal to each other we obtain one-axis twisting
dynamics, which enables the system to evolve to a spin cat state, conditioned
upon there being no jumps (with jumps corresponding to photon emissions
from the cavity). If there is a jump, however, the system evolves probabilis-
tically into one of a finite number of entangled-state cycles, where the system
then undergoes a persistent sequence of jumps between two Dicke state super-
positions in a rotated basis.

Finally, we close this thesis with our conclusions and outlook in Chapter

11l



Part 11

Preliminaries

21






Chapter 2

Open Quantum Systems

2.1 Quantum Harmonic Oscillator

Harmonic oscillators are ubiquitous in quantum mechanics; a lot of systems
can be boiled down to them and in this thesis alone they will serve to describe
the dynamics of two very distinct subsystems: the electromagnetic field and
the centre-of-mass motion of trapped particles. The Hamiltonian of a classical
harmonic oscillator is made up of a kinetic and a potential part. Quantising the

momentum and the position brings us to the quantum analogue (m = h = 1)

~2 2,2

~ Pt Wi

H==— . 2.1
SR (2.1)

A more useful picture can be gained by introducing the ladder operators, i.e.,

the annihilation and creation operators

R [
a= Q—(wx—Hp),
w (2.2)

23
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which allow us to bring the Hamiltonian into the form that will be most preva-

lent in this thesis,

. i 1

H=wla a—|—§ . (2.3)
The ladder operators satisfy the canonical commutation relations

[a,a'] =1,
(2.4)
[a,a) = [a',a'] = 0.
Since the ladder operators are not Hermitian (@ # a'), they are not observables.

For this reason the two orthogonal observables of the phase space from the

initial form of the harmonic oscillator: the position quadrature,

and the momentum quadrature

p= —@'\g(a—a ), (2.6)

still retain importance as quantities that are actually measurable through ex-
periment.

In this thesis we are interested in engineering and, for verification purposes,
recognising specific (optical) quantum states. To this end, we are interested
in a way to unambiguously represent said states in (optical) phase space. The

Wigner quasiprobability distribution, a function which for an arbitrary state
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p, mixed or pure, provides this, is defined through

T A @-
W(f@p)z;/ (z+y|plr—y)e*dy. (2.7)

o0

The Wigner function is normalised but can become negative, in which case
it is a sign for the "quantumness" of p [39, 40]. An example for this be-
haviour are Fock states, which will be introduced in the next Section and
whose Wigner functions we will encounter several times in the Chapters 7| and
Bl The marginals, or probability distributions for the quadratures, can be

obtained by integrating over one of x or y, e.g., for the position distribution

/ W (e, p)dp = (alpla), (2.8)

which is exactly what we will be measuring later in our modelling of homodyne
detection.

2.2 Number State Representation

The number state representation arises naturally from forming a basis from the

eigenstates |n) of the harmonic oscillator or equivalently the number operator

>
I
>
pafiy
Q>

(2.9)

These eigenstates |n) are called Fock or number states and stand for a quantum

field excited by n quanta of energy. As such this is the most common way to
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describe quantum states of light but can be used for any bosonic mode, with

ataln) = nn),
aln) = v/njn—1), (2.10)
a'ln) = Vn+1n+1).

Other important states can be readily expressed in terms of the number

states. One such example are coherent states,

o Z \/_]n (2.11)

which are defined through being eigenstates of the annihilation operator,

ale) = alay,
2.12
(ala" = (ala”. (212)

Coherent states satisfy the minimum uncertainty of the Heisenberg inequality,

AZAp = ; (2.13)

where Z is the amplitude quadrature and p the phase quadrature of the light
field. This means that these are the states that behave the most "classical"
and are therefore usually used to represent classical fields such as a laser, with
« taking the role of the classical field amplitude.

Another class of very important exemplary states is the thermal state [41].
Thermal states are used when the light field or any other field for that matter

is described as a thermodynamic system in contact with a bath at temperature
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T. Contrary to the number and coherent states, it is a mixed state represented

by the density operator

AT

p= —rIndnl, (2.14)

— (ﬁ+1)n+1
where
I

is the average number of photons with 3 = kBLT

2.3 Master Equation

A major tool for the description of open quantum systems in quantum optics
is the master equation [42] 43]. The idea here is to describe the total system as
a combination of two coupled subsystems: one being the "system" subsystem
S that is actually studied (in our case atoms and cavities) and the other one
being the environment (or reservoir) E. The total dynamics are described by

the Hamiltonian
H=Hs+Hp+Hsp, (2.16)

where the first two terms describe the S and E subsystems and the last one
the interaction between these subsystems.

The total system evolves according to the von Neumann equation

and is fully coherent and time reversible. We, however, are generally only



28 CHAPTER 2. OPEN QUANTUM SYSTEMS

interested in and/or can only keep track of the dynamics of the system alone,

as described by the reduced density operator

ps(t) = Tre(p(t)), (2.18)

where the environment has been traced out. This gives rise to incoherent and

irreversible dynamics for pg. In the interaction picture we have

plt) = =i |V (1), 5(1)] (2.19)

where we have the interaction Hamiltonian

~

V(t) = enHstHp)t fro—i (Hs+Ap)t (2.20)
and
pt) = enHsHHp)t o= (Hs+Hp)t (2.21)
We integrate formally which yields
i [
pt) = otto) 5 [ (V00,12 . (2.22)
to

By plugging Eq. (2.22) into Eq. (2.19) we create a Born series from perturba-
tion theory,

0 =5 [P0, - [ [P0 @ s as)
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At this stage we use the Born approximation, saying that the coupling to the
environment is weak and therefore we can write the density matrix as the
factorised density matrix without coupling plus higher order terms which are

neglected,

p(t) = ps(t)@pr(te) +O(V), (2.24)

where we also posited that the environment is in equilibrium. We trace out

the environment and obtain

ﬁs(t) = —iTrE( [V(t), ﬁs(t0>®ﬁE<t0)] )

sl [ [P0, [V 50) @00 ),

to

(2.25)

Now we perform the Markov approximation, which starts by realising that our

expression is made up by terms like
C(U'~t) = Tep(V OV (#)p(to)), (2.26)

which are bath correlation functions. In the systems we will be considering
in this thesis the bath correlation time scale (optical frequencies of the order
of THz) is much faster than the relaxation time of S (life time of atomic and
cavity excitations of the order of MHz), so we can take C(#'—t) = 0 for all

t" # t and hence we replace pg(t') by ps(t),

ps(t) = —Trp( [V(t), ps(to>®ﬁE(to)] )

sty [ [P0, [V, psto@pt)] ). -

Our environment is considered to be a bunch of harmonic oscillators with
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frequencies w and annihilation operator B(w)

Hyp = /_OO dwwb' (w)b(w). (2.28)

[e.e]

Typical assumptions about the interaction between the system and the bath
are that it is linear in the bath operators, independent of frequency, and no

terms proportional to bé and biét | e.g.,
V o< béf +bie. (2.29)

If the various modes of the bath are assumed to be in thermal states, all
with average occupation number 7, we can explicitly evaluate the correlation

functions,

Tl"E |:i)ﬁE(t/> = 0,

Trg {B%E(t’) =0,

: (2.30)
Trp {BTf)ﬁE(t’) =7,
Trg {B@%E(t’) = (A+1),
which leads us to the Master equation in Lindblad form,
d . _ R o NTAT A
Epg(t) = %(n—l—l)D[c]pg—i—%nD[cT]ps (2.31)

where the integration and prefactors have been integrated into -, which rep-

resents the rate at which the interaction dampens the system dynamics. Ad-
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ditionally, we have defined the Lindblad superoperator

~

D[0]p = 200" —p0t0O-00)p. (2.32)

Back in the Schrodinger picture we have

ps = —i[ Hs, ps| + 2 (2a+1)D(O)ps+LnDI0)ps = £ps, (2.33)

where we introduce the Liouville superoperator £ that combines the free evo-

lution and damping from being an open system.

2.4 Quantum Trajectories

Quantum trajectories (or Monte Carlo Wave Function) [43H45]| represent a
different approach to solving the open system problem, that is nonetheless
completely equivalent to the master equation. A trajectory corresponds to
the path that a wave function follows subject to the probabilistic evolution
prescribed by the Master equation. The density matrix solution from the
Master equation is obtained by averaging over the ensemble of wave functions

obtained from different trajectories,

p(t) = (@) (W ()] (2.34)

Quantum trajectories can be a useful analytical tool if one wants to quickly
gauge what is happening in a given system, but also a potent numerical one,
if the dimension of the problem d is large and it becomes computationally less
demanding to simulate a vector of size d than a dxd matrix. The trade-off
being, that usually a high number of trajectories is required for the average to

converge.
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Given a quantum system described by the following Master equation
5=—i [H ,6} — (éfep+pete) +2etpe, (2.35)

with the Lindblad operator ¢, we construct the non-Hermitian effective Hamil-

tonian
}A]NH = ]:.I—’iCTC, (236)

which, if plugged into the von Neumann equation, yields almost the whole
of Eq. except for the last term going with éfjé, which corresponds to
quantum jumps.

Let us assume without loss of generality that we start at a time ¢ in the
state |¢(t)). During an infinitesimal time step, the quantum state evolves

according to
[(t+6t)) = e () = (1—ifimot ) (1)) (2.37)

where we truncated the Taylor expansion to first order, assuming that Hynét
is small. The non-Hermiticity makes it so that the norm of this new wave

function is no longer equal to one,
(P(t+0t) [ (t+0t)) = 1—0p+O(6t?), (2.38)

but rather has dropped by an amount

op = 26t(w(t)|e el (1)), (2.39)

which represents the probability for a jump to happen. It is at this stage that
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the missing quantum jump part from the Master equation is reintroduced. A
random number 7 is drawn from a uniform distribution between 0 and 1. If
1 < dp, a jump is deemed to have occurred, i.e., the jump operator is applied
to the quantum state. Otherwise, |1)(t4dt)) is just kept, but no matter what

the outcome the result needs to renormalised:

[¥(t+6t))

sty = 4 V)
| (t+0t)) o) _ :

—_—— um
Jwwede P

no jump

(2.40)

after which the whole process is repeated until the desired time is reached.
The average density operator at time t+40t is the sum of these two possible

outcomes, weighted by their respective probabilities

T U+ ] | ) Bl
AN = 00 G rnliteren) T PROIEAE] o)

p(t)—idt [ﬁNH, f)(t)] +26tep(t)eét.

By averaging over the possible states at time ¢ and still assuming 6t to be

infinitesimally small, we can write
p= i, 5] +Dlelp, (242)

which is equivalent to Eq. (2.35) and proves that quantum trajectories repro-

duce the master equation.

2.5 Quantum Regression

The quantum regression theorem [43, 46| is a helpful tool when it comes to
calculating two-time averages such as correlation functions from the master

equation.



34 CHAPTER 2. OPEN QUANTUM SYSTEMS

For a density operator p, the product average of three system operators

O, Oy and Oy is given by the following total trace

~

(O1(£)O2(t+7)05(1)) = Tr{p(0)O1 (1) Os(t+7) O5(1)}. (2.43)

We substitute the formal solutions to the Heisenberg equation for the system

and density operators

A (t) _ 6iﬁté‘(0)6_iﬁt
’ o (2.44)
5(0) = et p(t)eiM,

which yields

~

(O1(£)Oa(t+7)05(1)) = Tr{e™ p(£)01(0)e™™ Oy (0)e A7 O4(0)e Y. (2.45)

Next, we use the fact that the trace is unchanged under a cyclic permutation

and that O, is only acting on the system and not the reservoir, so

~

(O1()05(t+7)05(1)) = Trs{02(0)Trp{e " 705(0)p(£)01 (0)e 7)), (2.46)

The remaining e**7 terms in the trace mean that O3(0)5s()O;(0) gets evolved

an additional time 7 with the reduced system dynamics,

N

Tre{e ™ 70;(0)p(£)01(0)e™} = £ Trp{05(0)p(£)01 (0)}, (2.47)

where £ is the Liouvillian describing the reduced system dynamics, i.e., /55 =
Lpg. Since the Oj are system operators, evaluating the trace over the envi-

ronment just replaces the full density matrix with the reduced system density
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matrix pg,

~

TTE{O3(O)ﬁ(t)Ol(O)} = Oa(O)ﬁS(t>01(0)a (2.48)

which leaves us with the final result

~ ~

(O1(£)Os(t+7)05(1)) = Trs{02(0)e7[03(0) s (£) 01 (0)]}- (2.49)

In the case where our system tends towards a steady state, we can set t — oo

and replace the density operator with the steady state pgg, i.e.,

(01(0)05()03(0)) = Tr{02(0)e“[03(0)ps501(0)]}. (2.50)
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Chapter 3

Atomic Physics of Alkali Metals

3.1 Energy Level Structure of Alkali Atoms

Alkali atoms are similar to the hydrogen atom and are called "hydrogenic"
atoms at times, in the sense that all the electronic subshells are filled and a
single electron is in the outermost shell. The electrons between the outermost
valence electron and the nucleus shield that electron from the nucleus, such
that we can view the nucleus-subshell electrons compound as a compound
point charge of charge +1. Indeed, the gross electronic structure of an alkali

atom has basically the same formula as that of a hydrogen atom [47],

hcR o

E(n,l) = —m,

(3.1)

except that the principal quantum number n has been replaced by an effective

principal quantum number,
n* =n—a, (3.2)

which is smaller by a value ¢;, called the quantum defect. Depending on the
orbital angular momentum [ of the electron, the electronic wave function might

penetrate inside the core region and experience less shielding, a higher nuclear

37
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charge, and thus a larger quantum defect. The quantum defect is maximal for

[ = 0 and drops off quickly for larger [ as the shielding becomes complete.
Similarly to the hydrogen atom, each of these levels will split up into a fine

structure doublet from the spin-orbit coupling, resulting in the new quantum

number, the total electron angular momentum,

J=L+S, |[L-S|<J<L+S. (3.3)

After that comes the coupling of the total angular momentum with the nuclear

spin, resulting in the total atomic angular momentum

F=J+I, |J-I|<F<J+I. (3.4)

The additional energy shift due to this hyperfine splitting is given by [48§]

SK(K+1)—2I(I+1)J(J+1)
21(21-1)J(2J—1) ’

1
B(F.J.1) = ;AK+B (3.5)

where K = F(F+1)—I(I+1)—J(J+1), A is the magnetic dipole constant,
and B is the electric quadrupole constant. Figs. shows a schematic
representation of the resulting energy level structure for a selection of atoms

and transitions used later on.

3.2 Static Magnetic Fields

The 2F +1 hyperfine sublevels |F, mp) with —F < mp < F are degenerate. In
the presence of an external magnetic field, said degeneracy is lost due to their
different magnetic moments. Assuming a weak magnetic field, the sublevels

experience a linear energy shift [49] 50],

]:[:mFuBgFB|F,mF><F,mF|, (36)
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where pp is the Bohr magneton, gr the hyperfine Landé g-factor and B the
magnetic field strength. This is called the Zeeman effect and the different
|F,mp) will throughout the text also be referred to as Zeeman or magnetic
sublevels. Lifting the degeneracy in such a way can be used to isolate specific
transitions, e.g. the ground states have gp of opposite sign and thus their
Zeeman level shift away from each other at one end of the Zeeman ladder.

At higher magnetic field strengths, the splitting stops being linear, and the
levels start to rearrange according to their mj, M; this is referred to as the
Paschen-Back effect.
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Figure 3.1: Energy level diagrams of the D; and D, lines of 8"Rb [49].
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Figure 3.2: Energy level diagrams of the D; and D, lines of 33Cs [50].
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3.3 Spinor Systems

In this thesis we will be working a lot with spinors particles, i.e., particles with
intrinsic spin degrees of freedom, and therefore we shall introduce the language
that we will be using to describe these systems. Let us remind ourselves of the

Pauli spin matrices:

T
. 0 i (3.7)
Oy = ,
o\ o
1 0
0 —1)
and the associated ladder operators 64+ = 0,4i0,. The corresponding spin
operators for a spin—% particle S, 5’1, Sy, SZ, S’+ and S_ are obtained by
multiplying these by a factor %

If we were to consider now an ensemble of N of these spin—% particles we

can construct the collective spin operators by summing up the spin operators

for every spinor,

N
- 1 NORR N— N—
Jp=5 § ) = 5(o},”@l® '+leoP@1%V 24 )
N
2

where in the second row we have used that in the appropriate frame the col-
lective operator can be written as a direct sum of spin matrices 3,()3) of spin

S whose subspace correspond to the multiplets obtained from spin additions.
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The direct summation goes over all the integers (including 0) or all the half-
integers, depending on whether % is an integer or half-integer. This new frame
gets spanned by the so-called Dicke states |S,m) for all spins S and magnetic
quantum number —S < m < S, which are the eigenstates of the collective
spin operators J ? and the J,. Consequently, in each subspace of spin S, the
corresponding Dicke states of the same spin are also the eigenstates of the spin

~92 ~
operators S and S, and get acted on as follows:

3°18,m) = §°IS,m) = S(S+1)[S,m),

J.|S,m) = 5.|S,m) = m|S, m> (3.9)
Ji|S,m) = S.|S,m) = /S(S m(m=1)|S, m+1).

The form of these operators just depends on the total spin S and will be used
to describe spinors of spin S, so that for the collective operators it does not
matter what kind of spinors one is adding up, but just their maximal spin
sum, i.e., the collective operators for two spin-1 or four spin—% are exactly the
same. The spin matrices, and by extension their collective counterparts, fulfill

the following commutation relationships

>

_S’yagz_ =1 T
A —iS,, (3.10)
S LS. | =4S,
and
[5127‘§+— = ‘§+7
[SS_ - (3.11)
[§+,S”__ =28,
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for the raising and lowering operators.

3.4 Atoms interacting with Classical Fields

Throughout this thesis, the light fields considered will always have optical wave
lengths, i.e., typically 780 nm (57Rb) or 852 nm (**3Cs). This is about four
orders of magnitude larger than the size of an atom. We can therefore assume
the field to vary slowly, or to be constant in space, from the perspective of the
atom. For minimal coupling this leads to the interaction Hamiltonian in, the

dipole approximation,

q2 2
€A t 3.12
2m (ro, )’ ( )

I:II = _er'A(r0> t>+

where the second term is usually small enough to be ignored. By performing
the gauge transformation ¢ — e'%Arot)y) we can express the interaction in

terms of the gauge-independent E,

H; = —q.E(ro, t) 1, (3.13)

where ¢, is the elemental charge, r the position of the atom and E the electric
field inducing the interaction. Let us assume that the atom is interacting with

a laser field of frequency v, i.e.

E = ¢(Ee V&™) (3.14)

and that the atom is a two-level system with a ground state |¢g) and an excited

state |e). Using the completeness relationship 1 = |e)(e|+]|g)(g|, we have

1,1 = —é€(dle) (gle™ ™" +d"|g) (ele™ ™" +dle) (gle™ +d"[g){ele™),  (3.15)
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where we have defined the dipole transition element

d = ge(efrlg) = ge(glrle)” (3.16)

and the terms proportional to |g)(g| and |e)(e| drop out for parity reasons. We

transform the full Hamiltonian
H = wy|g) (g +we|e) (e|+ H, (3.17)
with the unitary transformation defined by the transformation Hamiltonian
Hy = wilg)(gl+(wy+v)le) (] (3.18)
to obtain the interaction picture Hamiltonian

V = e Hr)e = Al el + S (gl Ho) e, (3.19)

2ivt 2ivt

where we have omitted two terms proportional to |g){e|le™**" and |e)(g|e

since they average out due to their rapid oscillating nature (rotating wave

approximation). Here,
A =v—w.+w, (3.20)
is the detuning and
O =—2ced (3.21)

is the Rabi frequency.
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The general solution for the state amplitudes depends on the generalised

Rabi frequency
Qg = VAZ+Q2, (3.22)

In the case of a far off-resonant laser (A > ), there is effectively no evolution;
the amplitudes of the states remain the same and only incur a phase shift. This
serves as a justification for our few-level approximation that we will often use to
discard atomic levels that are far-detuned and thus not immediately involved.
Otherwise, if the detuning is not much bigger than the Rabi frequency, the

population inversion (the difference in state population) is proportional to [42]

A2 Q2
—— —— cos(Qqt). (3.23)
0% Q%
Finally, on resonance (A = 0) the population transfer between the ground and

the excited state is complete and happens periodically at a rate 2.

3.5 Spontaneous Emission

Excited states of the atom tend to relax over time via spontaneous emission,
which can be considered as stimulated emission through the vacuum fluctua-
tions. Still considering a two-level atom, but now interacting with the infinite

ensemble of modes of the free electromagnetic field, we have

Hsp =Y (gror€ +gipo_e ), (3.24)
k
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where 6, = |e)(g| and 6_ = |g)(e|. Following the standard derivation of the
Master equation we end up with the Lindblad form

A YA 1A
p=5Dlo-]p, (3.25)
where
t ' )
=2 / dt' Y |ge[Pe 0, (3.26)
0 Kk
with
d|?v
o] = ‘26‘—0; cos? 6. (3.27)

Firstly, the full field forms a continuum, so we replace the discrete summation

over the modes by an integral and add the mode density as a prefactor,

2
/ d¢ / df sin / dyk%. (3.28)

Next up we perform the Wigner-Weisskopf approximation [51]: the frequency

1%
(27)?

%::2

integral only contributes when vy ~ w due to the exponential shape:

/ dVU/ﬁ—)/ dvw? (3.29)
0 —00

The frequency integral can then be evaluated to be a delta distribution centred

around t,

/ dine’ @) — ot —t'), (3.30)

—00
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and the integral up to the centre of a delta distribution is simply a half,

/ st = % (3.31)

Altogether this yields the final result for the spontaneous emission rate, the

Einstein A coefficient

_|dPwp

= . .32
3meghcd (3.32)




Chapter 4

Cavity Quantum Electrodynamics

4.1 Quantisation of the Electromagnetic Field

From classical electrodynamics we recall that the total energy of the electro-

magnetic field is given by
1 3 2, 1o
H=— | d&’r(e|El*+—|B|?), (4.1)
2 Ho

where E is the electric field, B is the magnetic field, ¢, the electric constant,
and 1o the magnetic permeability. Assuming we are in vacuum, i.e., no charges

or currents, the Maxwell equations are given by

V.E =0,
VxE = —8—B,
ot (4.2)
V-B =0,
10E
VxB = T

49
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where both E and B depend on the vector potential A according to

g _0A
ot (4.3)
B =VxA.

In the Coulomb gauge, i.e., V-A = 0, and using the Maxwell equations it can
be shown that E; B and A have to fulfil the wave equation Cizg—;o = V2e. The
corresponding solutions can be written as a Fourier expansion of plane waves,

e.g., for the vector potential

& , .
Alrt) =) gk,Aw—‘;(mk,Ae—“k-r—wkﬁ—mbeﬂk'r—wk)t), (4.4)

where k is the wave vector, €y ) is the polarisation unit vector, & is the field
amplitude, wy is the frequency, A is the polarisation index and ay ) are the
Fourier amplitudes.

If this is continued for E and B and plugged into the Hamiltonian, it can
be shown that the result is

1 . )
H = 5 3 holoponont o). 45)

where we have deliberately kept the order of the mode functions ay ) and
g, 5; subsequently we will identify these as the ladder operators dy \ and &L A

respectively. Using the canonical commutation relations

[dk,)\v dL/7/\/] = 5k,k’ 6)\,)\’ (46)

[ n, G ] = [&L)\’d;f(’,)\/} =0,
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we can bring the Hamiltonian into the typical harmonic oscillator form,

1

H=>" hwk(dL/\&k)\—i—?.

k)

(4.7)

The final result lets us interpret the electromagnetic vacuum as a collection
of modes, distinct in frequency, polarization and wave vector, that behave like
simple quantum mechanical harmonic oscillators.

In this thesis we will be working with optical cavities in which only one,
and on one occasion two, of the modes of the electromagnetic field are relevant.
So, unless we are talking about the infinite modes in the environment, we will
drop the indices in the photonic operators. Additionally, for brevity, we shall
ignore the constant part attributed to vacuum fluctuations of the Hamiltonian
since it only corresponds to a global offset that does not affect the overall

dynamics. In that case, we can write

H = hwa'a. (4.8)

4.2 Optical Cayvities

Optical cavities are the heart of cavity quantum electrodynamics as they pro-
vide an environment that enhances the interaction between atoms and light,
so here we now give a brief introduction to them [52]. Optical cavities in their
simplest form consist of two mirrors facing, and as close to parallel as possi-
ble, to each other (see Fig. . If on top of that the two mirrors are highly
reflective, then in that configuration, light will bounce back and forth between
the two mirrors for a long time. Light of a given wave length A\ will acquire a
phase shift

p=— (4.9)
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upon travelling once back and forth between the two mirrors. Here ¢ represents
the distance between the two mirrors and n the refractive index inside the
cavity.

If this phase shift is an integer multiple of 27, i.e., £ is an integer multiple of
ﬁ, the light will be in phase and interfere constructively, leading to a standing
wave and a peak in the cavity transmission. Each scenario of this sort has an

associated mode frequency

) e
= —m—. 4.1
Win . mnﬁ (4.10)

These modes are what we shall refer to when we talk about cavity modes.

These resonances have a certain linewidth given by

Ap=" (4.11)

determined by the finesse § of the cavity, a figure of merit for the quality of
the cavity. The finesse is given by

N

7T(R1R2)

5= 1—/RiRy

(4.12)

where the R; represent the reflectivities of the mirrors. The more finesse the
cavity has, the sharper are also the corresponding resonant modes.

Let us now consider a number of photons N. Every At = %Z we lose AN =
(1-R)N(t) (where R = R1+ Ry) of our photons via transmission through the

Mirrors:

N(t) = ————N(t) (4.13)
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with the exponential solution

N(t) = Noe ™, (4.14)
where
c¢(1-R)
— - Y 4.1
K ; (4.15)

is the cavity decay rate or cavity linewidth that determines the time scale on

which photons escape the cavity.

R1 RQ

K1 K2

N

Figure 4.1: Schematic of a one-sided cavity showing input, output and intracavity field.
Oftentimes, in the lab, cavities can be made of two mirrors of quite distinct reflectivities R;
(and therefore cavity decay constants k;), occasionally, to such a degree that the cavity can
be considered one-sided.

The leakage of photons out of the cavity can be described as an interaction
of the cavity modes with the infinity of modes of the electromagnetic field
external to the cavity (here denoted by the operators 6), completely analogous

to spontaneous emission. By starting with a system-bath interaction (h = 1)

Hgp =i /_ h dw\/g(éf(w)a—é(w)af), (4.16)



54 CHAPTER 4. CAVITY QUANTUM ELECTRODYNAMICS

where we assumed a single reservoir and the spectrum of the bath to be inde-

pendent of frequency, we can describe the situation with the Master equation

ps = —i| Hs, ps| +Dlalps. (4.17)

4.3 Input-Output Theory

The input-output formalism [53] relates the output of a given open quantum
system to its internal dynamics. Consider the cavity interaction that we just

introduced in the last Section. This leads to the following quantum Langevin

B:—zwb(w 1)+ \/E
T
= —3 a HS / dw\/> w, t).

We integrate formally the first line from a time ¢y < ¢ to get

b(w,t) = e @ 0b(w, 1)+ /dt\/7 “t=a(t), (4.19)

and substitute it back into the second equation to give

a=—i [d, lﬂ —/ dwe_iw(t_tO)\/ElA)(w, to)
o ™
oo KR t : ’
— / dw= / dt' e (=g (1),
—00 ™ to

equations

(4.18)

(4.20)



4.3. INPUT-OUTPUT THEORY

55

Using the same integral properties as those in Eq. (3.30]) and (3.31]) we obtain

a=—i [&, ﬁ] — KA+ V 2Ky,

where we have defined

1 oo

a V2T ) oo

&in -
Integrating towards a larger time t; > t yields
0= —i [&, f[] +Ka—V 2Kaout

where

1 o0 . ~
Oout = —— dwe™ @t w, ty).
¢ AV, 27T /oo ( 0)

dwe ™ =0)p(w, 1),

(4.21)

(4.22)

(4.23)

(4.24)

Equating the two results in Eq. (4.21)) and (4.23]) leaves us with the input-

output relation

V2ka(t) = Gin+aout,

(4.25)

which relates the intracavity field to the incoming and outgoing fields at the

boundaries of a cavity (see Fig. 4.2)).
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)

111

>

Gout
Figure 4.2: Schematic of a one-sided cavity showing input, output and intracavity fields.

4.4 Atoms interacting with Quantum Fields

The coupling of an atom to the cavity follows the same procedure as the one
laid out for the interaction with a classical field. So let us consider again the
same single spin—% atom, but now replace the electric field in the interaction
Hamiltonian by the corresponding operator for a quantised single-mode field
/541,

E = é(af*(r)+al f(r)), (4.26)
where the field per photon is given by

[ w
=4/ — 4.2
& 2€0V’ ( 7)

and where V is the effective mode volume

V—/|f(r)]2dr. (4.28)
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This is saying that the smaller the space in which our light modes are confined
the stronger the interaction.

Following the same procedure as with the atom interacting with a laser
field we can plug our quantum field into Eq. and obtain the Rabi model

describing the atom-field interaction for a quantised field,

i= wam+%&z+g(@+&_)(a+a*), (4.29)

where we introduced the single atom coupling strength (assuming f is real)
g=—¢é-dEf(r). (4.30)

As one can see, this is pretty much the same form as that of the Rabi frequency,
and indeed it is sometimes referred to as the vacuum Rabi frequency. The
reason for this is that if one starts with an excited atom in an empty cavity,
one can also observe Rabi oscillations between the state where the cavity is
in the vacuum and the atom excited, and the state where the atom is in the
ground state and a single photon is in the cavity [55].

The interaction part of the Hamiltonian in (4.29)) is made up of four terms:
0_a describing the deexcitation of the atom and the annihilation of a photon,
a'é, describing the excitation of the atom and the creation of a photon, ad
describing the absorption of a photon by the atom from the field and finally
a'6_ describing the emission of a photon from the atom into the field.

The first two terms describe the creation and annihilation of two quanta of
energy in the system, while the latter two describe the transfer of one quantum
of energy from the atom to the field or vice-versa. Thus, these processes are
said to be non-energy-conserving and energy-conserving, respectively. In the
interaction picture, the two types of terms oscillate on very different time

scales,

~

V = g(6 ae” @t g gemiwtenll 5 gleilwtwoll 1 gleilwmwolty — (4.3])
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Assuming that w =~ wy, we can perform the rotating wave approximation
which consists in dropping the fast-oscillating, non-energy-conserving terms
(due to them averaging to 0) and we obtain the so-called Jaynes-Cummings

Hamiltonian

A

A =watat %&ﬁ— glac,+a's_). (4.32)

The generalisation of this model to an ensemble of N atoms using collective

spin operators brings about the Tavis-Cummings Hamiltonian,

H = waitatw . +g(at,+atJ), (4.33)

s N (i
where again, J, 1 = Z, Ugl-

4.5 Cooperativity

Together with the previously introduced loss processes of cavity decay and
spontaneous emission, we have a full set of channels where energy quanta can
be emitted. The coupling strength gives the rate at which an atom emits into
the cavity, while the other two channels are into free space. Often times the

cooperativity,

2 2
c=29 (4.34)
YK

the ratio of these "good" and "bad" rates, is used as a figure of merit for
atom-cavity systems. In particular, if the cooperativity for a system is high
and g > 7,k we can assume that over short time frames the evolution stays

mostly coherent.
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4.6 Photon Statistics

The photon statistics, or more exactly the statistics of photon counting, give a
lot of information about the nature of the measured light, such as whether it is
classical or whether it is quantum. To this end, we introduce the second order
(intensity) correlation function for two light fields with annihilation operators

@ and b
G2 () = (al ()b (t+1)b(t+7)a(t)), (4.35)

which can be understood as the probability of measuring a photon in mode b
at time t+7 after having recorded a photon in mode a at time t. It is helpful
to normalise the correlation function by the probability of measuring photons
in those two modes in the first place; the final result is referred to as the degree

of coherence,

oy _ @O b)) L
9 (7) = G a0 B o)) 430

For classical fields of intensity I, this corresponds to

(Lo
(La(

g (1) = it>]b(t+7)> (4.37)

NI(t+T7))

Let us consider autocorrelations ¢®) = gﬁ) for now. We differentiate between
three regimes: bunched, coherent and antibunched light. Coherent light is
characterised by ¢® = 1, which means that photons in such light are somewhat
randomly distributed in time. As the name suggests, it is true for coherent
states, but also for all states as time approaches 7 — oo, as the fluctuations
become uncorrelated. Light with super-Poissonian statistics has ¢ > 1, and
photons are more likely to be recorded directly after recording another one,

i.e., photons come in bunches. This is true, for example, for thermal states.
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Classical light will always fall into one of these two categories as ¢'® > 1 has
to hold true, which is a consequence of classical fields adhering to (I?(t))—
(I(t))* > 0 and the Cauchy-Schwarz inequality (I(¢)I(t+7)) < (I*(t)), which
implies both

g?0)>1 (4.38)
and
g?(0) > ¢¥ (), (4.39)
respectively. It was also shown [56] that they fulfil
92(0)=1] > |¢* () ~1]. (4.40)

For crosscorrelations Eq. (4.38)) still holds, but Eq. (4.39)) generalises to [57-59]

92(0)g5(0) > [9%) ()2 (4.41)

Eq. (4.40) on the other hand can be generalised to

2

@)y _qp2 — [(ALa(0)AL(7))
4 (-1 = |0
((AL)*)((AL)%) (4.42)
T L) ()P

= (9{2(0)~1)(gs7 (0) 1),
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using I(t) = (I)ss+AI(t), where we rewrite the intensity at a time ¢ in terms
of the average (I)gs and its deviation from the average, AI(t).

Quantum light can violate these conditions in some way or another, e.g.,
by displaying sub-Poissonian photon statistics, ¢ < 1, where photons are
distinctly spaced in time, thus making it less probable to measure two at the
same time. It may also display antibunching ¢®(0) < ¢® (7). But it may also
violate Eq. without being antibunched [60)].

The correlation function ¢ (7 # 0) cannot be computed like normal single-
time expectation values, but rather via the Quantum Regression theorem or
via the photocount record from quantum trajectories, which in fact emulates

how they are actually determined in an experimental setup.
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Chapter 5

An Integer-Spin Dicke Model

5.1 The Dicke model

The Dicke model corresponds to the many-body version of the Rabi model,

which for N particles we write as

A

H = wala+we . +g(J+J)(a+a), (5.1)

where again, w is the frequency of the cavity mode, wy the frequency separation
in the atomic two-level system, g the strength of the atom-cavity interaction
and jz,i = va (3%[ This situation arises when either the coupling is very
strong, we are far-off resonance, or it is specifically engineered like in this
thesis.

Contrary to the Tavis-Cummings model, the Dicke model does not conserve
the number of excitations, but rather only the parity of the number of exci-
tations. That is, the Tavis-Cummings terms are number-conserving, whereas
the additional terms in the Dicke model change the number by plus or minus
two.

The Dicke model was hotly debated due to its predicted superradiant phase
transition [61], a regime where the intensity of the cavity field in the steady
state becomes proportional to the number of atoms, which in the presence

of a finite k implies a continuous stream of photoemissions from the cavity.

63
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This happens once the coupling strength A = gv/ N exceeds a certain critical
coupling given by

wo(w?+k2)

1
)\c - 5 w (52)

A cavity producing an unlimited amount of energy does not seem physical.
It was shown, however, that the steady-state superradiance vanishes if the term
proportional to the squared vector potential A? in the atom-field Hamiltonian
Eq. is not omitted [62]. This term can usually be ignored in the rotating
wave approximation, but evidently not here when the field is becoming quite
strong.

This seeming impossibility to realise the Dicke model experimentally with
atoms in a cavity had halted any further interest in it for a while. That is,
until schemes were proposed where it was effectively engineered by including
external driving fields to manufacture cavity-mediated Raman transitions [63).
Experimental realisation in ensembles of spin-3 [64] and spin-1 atoms [65]
ensued.

In parallel to this, there have also been some efforts to implement the Dicke
model in Bose-Einstein condensates [66H70]. In these studies, the role of the
internal degree of freedom of the atom is replaced with their motional state.
Above the critical coupling, the superradiant phase transition occurs by atoms

arranging in a square lattice and emitting in phase into the cavity mode.

5.2 Derivation

We shall demonstrate now the derivation for the F' = 4 manifold of ¥3Cs
driven via the D; line (see Fig. , although we will try to keep most of
the derivation as general as possible. This example was chosen to complement
the case of the F' = 1 manifold of 8 Rb also driven via the D; line that has
been obtained [71], [72], to demonstrate that the same approach also works in
another alkaline metal and their upper ground state. We will also use 33Cs

for N-photon pulse generation.
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Figure 5.1: Energy level diagram of a D; line in '*3Cs that yields the Dicke model with
F = 4. The cavity (red), the o_- (blue dashed) and o -polarised laser (green dotdashed)
are detuned by an amount A with respect to F' =4« F' = 3.

5.2.1 Hamiltonian

We use the following nomenclature: the F-manifold ground states are labelled
by their magnetic quantum number |mg) and the excited states by |F', mpg);

the complete Hamiltonian reads
= Aot Hot B+ B+ 11 (5.3)

where we have the bare cavity mode and atomic ground state Hamiltonian for

a single atom (h = 1)

Hy = wchd—l—wZZmﬂmF)(mpL (5.4)

mpg

the atomic excited state Hamiltonian

f[e :ZZwF/|F/,mF/><F/,mF/], (55)

F’ m g
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and the three interaction Hamiltonians H., I:Lr and H_ corresponding to the

cavity, the o,- and the o_-polarised lasers, respectively:

H, = ga'Do(F, F')+H.c,

F,F'

X QO - / (5.6)
H, = Z 7Dﬂ(F, F')+H.ec..
FF’
Here we define the atomic dipole transition operators
F
DUEFY = 3 mdomelpg F'ometa)(F el (57)
mp=—F

where ¢ = 0, =1 stands for the polarisation of the transition.

5.2.2 Interaction Picture

After moving into the interaction picture of H,, the interaction picture Hamil-
tonian V = If[e—i-Q—l—@T can be split into three parts. The two new parts
correspond to projection onto the excited and ground state subspaces of v,
i.e., terms that describe excitation processes (Q) and deexcitation processes

(QT), where Q = > Q; and the partial operators are given by

Qc — e—iwct Z g&eiﬁotbg(F, F,)B_iﬁot,
F.F’
Qi _ piwst Z %eiﬁotﬁll(F7 F/>6—iﬁ0t‘

F.F

(5.8)
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Simultaneously we introduce the related operator Q' = ZQ; that will be

useful in the future:

~ . 1 RSN ~
Q/ _ efzwct Z gdeZHOtD(T)(F, Fl)eszot
We

g e T VR
’ 5.9
Al —dwyt 1 0y iHot T N —iHot ( )
Qi—e Zm76 Dil(F,F)e .
FF’

5.2.3 Adiabatic Elimination of Excited States

In the following, we rewrite the energy differences w; —wy = A; (i = ¢, £) and
wy —wy = (.

In the limit where the detunings are large, the excited state is only virtu-
ally populated and we can adiabatically eliminate it and compute an effective

Hamiltonian through

A~

e = 5 (QQ+QQ) = Y eulivil (510)
1,J

This procedure is equivalent to the effective Lindblad operator formalism [73],
indeed Q’ is the product of Q and the inverse excited state Hamiltonian
(Wee—Ho4i Y . [A/];[A/q)*l where the last term (see next section for an explicit
formula) from the effect of spontaneous emission is removed, as it will not have
a great impact on the coherent dynamics due to the linewidth v being orders of
magnitude smaller than the detunings. We shall revisit spontaneous emission
in the next section, where we will derive the effect of it in such a system.

Up to here everything has been kept general, let us now consider specifically
the F = 4 manifold of *3Cs. We obtain the following coefficients for the

diagonal elements of the Hamiltonian
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792€LT&+ 0% N 702
“4T A, TA8A. TA8(A_+0)
7¢%ata  3g%ata Q2 702 702
C33 — + + + +
48(Ac+C)  16A,  48A, ' 64(A_+C)  192A_
g?afa  g*ata QR 02 502 302
Co2 = + + + + +
AAAHC)  12A, T 192AL  192(AL+C)  64(A_+C)  64A_
5¢%ata  g*ata 0% 302 502 502
€11 = + + + + +
16(AA4C)  48A,  64(AL+C)  64A,  96(A_+()  96A_
g?afa 502 0% 502 02
Coo = + + + +
3(AA+C)  96AL  32(AL+() 96A_  32(A_+C)
5¢%ata  ¢*ata 0% Q2 502 502
Co1-1 = + + + + +
16(A+C)  48A,  32(AL+C) 32AL  64A_  192(A_+()
g*afa  g¢*ata 502 302 702 02
C_2-2 = + + + + +
4(AAC)  12A,  64(A ) 64A,  192(A_+C)  192A_
7¢%afa  3g¢%afa 702 702 02
C_3_3 = + + + +
A48(A+C) T 16A, T 192A,  64(AL+C)  48A_
gata Q2 70%

T A TRA, TB(BL 10
(5.11)
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and the following off-diagonal coefficients

1/ . _ga  Q_ga. QO gaf
C43 = = el 7wc+wz)t( - ga)+€l(w°7w++wz)t—+ga
2 48(Ac+¢)  16A, 127

+1 <€i(w—wc+wz)t( Q_ga Q*gd)_l_ei(wc—wr—s-wz)t Q+9&T>

A8(A_+¢) 16A_ 124,
Cy0 = 1 ei(wf—wc—i—wz)t( \/?Q—gd _ ﬁQ—gd)+€i(wc—w++wz)t(ﬁQ-ﬁ-ng \/?Q-&-ng
2 16(A.+C)  48A, 327, 96(A,+0)
_|_1 ei(w, —wc+wz)t( \/?Q—gd _ ﬁQ—gd)+€i(wc—w++wz)t( \/?Q-i—ng \/79-&-gdJf )
16(A_+¢)  48A_ 32A. 06(8.10)
Cop = 1 ei(w_ 7wc+wz)t( 59_9& _ Q—g& Q—l-ng + Q-l—ng
2 32(A,1+C) 32, 16(A,+C) ' 16A,

\)

[\]

) _'_ei(wcfw++wz)t<

+1 ei(w—_wc+wz)t( 5Qfgd _ Q*gd)_i_ei(wc—wq_—&-wz)t( Q+g&,T Q+ng)
2 32(A_+¢) 32A_ 16(A.+¢)  16A,
_ 1 H(w— —wetwz )t \/SQ*Q& H(we—w4+wz)t \/EQJrng \/EQJrng
cio==|\e€ ———— +te€ ( )
12v2(A+0) 16v2(AL+C)  48V2A,
1< H(w— —wetwz )t \/BQ—gd t(we—wy+wy )t \/EQ-i-ng \/BQ-ngT )
+-le ————+e (
2 12v/2(A_+C) 16vV2(A+C)  48V2A,
Co-1 = 1<ei(w_%+w2)t( V52 ga + \/SQ_gd)jLe“%wﬁwZ)tM)
2 16v2(Ac4C)  48V2A, 12v/2(A L +0)

+1 (ei(w —wc+wz)t( \/SQ*g& \/EQ,Q& ) +ei(wc—w++wz)t \/39+ng >
2 16v2(A_+¢)  48v2A_ 12v/2(AA4C)
Q_ga n Q_ga 50, gal B Q. gaf
16(Ac+0) | 16A, 32(A+() 327,
ei(w_fwc+wz)t( Q—g& Q—gd)+ei(w67w++w2)t( 5Q+ng . Q—l-ng
16(A_+¢) 16A_ 32(Ac+C) 324,

1<ei(w_—wc+wz)t(ﬁﬂg& ﬁQ*gd )+ei(wc—w++wz)t< ﬁQJrng _\/79+ng >

>+ei(we—w++wz)t<

1 )
C 1 9= 5 <ez(w—wc+wz)t(

_|_

N | —

2375 327, 96(A.+C) 16(A,+C)  48A,
+1 ei(wf —wc—ﬁ-wz)t(\/?Qfg&_{_ ﬁQ,g& )+ei(wc—w++wz)t( \/7£2+g&Jr o \/79+9&T)
2 32A_ ' 96(A_+Q) 16(A.+() 487,

a4 :1 ez‘(w,—wcjth)tw+ei(wc_w++wz)t( 70, gal _Q+ng
T 2 12A, 48(AL+(¢)  16A,

1 <€i(w_wc+wz)t Q—gd +€i(wcfw++wz)t( 7Q+ng . Q-l-ng >7

3 12A 48(A.+C¢)  16A,

(5.12)
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and

1 tH(w— —wy+2w, )t \/?Q-FQ—( 1 1 )

T Ty 24 \A +C A,
+1€i(w—*w++2wz)t \/79-5-9_ 1 _L
2 24 \A_4+¢ A_
C31 = C_1_3 = 1«ei(“’—*”#ﬂr?wz)t V0.0 1
2 16 \A,+C Ay
+lei(wf—w++2wz)t\/79+9* ( 1 _L>
0 A-t( A (5.13)
Co0 = Co_g = lei(wf—w++2wz)t \/EQ+97 ( 1 _L)
2 8v/2 A +C Ay

1 i(w—w++2wz)t\/EQ+Q_< 1 1 >

+§€

8v2 \A_+¢ A

1. 50,0 1 1

_ pi(wo—wy 2w )t T o
1= 5e 96 <A++( A+)
+lei(w7—w++2wz)t59+97 1 —L .

2 96 A_+(¢ A_

The inverse coefficients are of course just the Hermitian conjugates (¢; ; = c;rl)
For the terms corresponding to the off-diagonal terms of the Hamiltonian, the
first lines corresponds to the contribution from QTQ’ and the second one to
Q’ TQ . As one can see, those are basically identical, with the only difference
being the detuning changing to the respective other field contributing to that
Raman transition, i.e., A, replacing A, and A_ replacing A, for the terms
corresponding to ¢;;—1 and A_ replacing A, each other for the terms corre-
sponding to ¢; ;_o.

Note: in the previous derivation of the Dicke model in [72], solely Heog =
QTQ’ was used, which leads to a non-Hermitian variant. In that case, the
coefficients are just one of the lines of our coefficients. This, however, ends
up being inconsequential, as they were operating in a regime where the non-
Hermiticity vanishes, i.e., when all fields and therefore detunings are equal.

Ultimately, we will also choose this limit.
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All time dependence in the effective Hamiltonian is now being eliminated

by transforming with

Hy = (—wc+w+;w‘>a”fa+ (_wz+w+;w_)§m (5.14)
where
S.=> mplmp)(mp]. (5.15)
mg

After the removal of the global offset

_ 5% 02 50% Q2
E= + + + , (5.16)
96A L 32(AL+¢) 96A_  32(A_+()
and setting the various detunings to be equal, A, = A, = A_ = A, we can

rewrite the Hamiltonian as

S+a+§aT)+%(§a+S+df)

A N N 0. A A
H = A5 . 2 4 Q24574 1 <
wa'a+wyS, +weSs + 5 Sza a+—\/§
+§1sz (d+dT)+§2Qyz (d_dT)+h+§i+h_Sz7
(5.17)

where

Si =Y VF(F+1)—mp(mp1)|mp+1)(mp|. (5.18)

mpg
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and the Qij operators are the nematic tensors

~

O = i85+ 55—

col»b
>

and we have identified the following parameters

(AngC +w w++”‘ (5.20)
== E (A+C A) (5.21)
Ya = 9232492 (Aig A) (5.22)
5 =% (%_A%FJ (5.23)
AL = ?95 (— T) (5.24)
A = ?;29( + 7() (5.25)
o= (3 ae) rlares) oW
sz% Aic > —9<A—+g—%) (5.27)
(2

5.2.4 Large Detuning Limit

Finally, we assume that the detuning is much larger than the excited state
manifold energy splitting A > ¢ which removes all the terms that are not

found in the standard Dicke model so that the Hamiltonian reduces to

- LA
H = wila+wS. + =

vl
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with
g N Wi tw_
W= "—4w.—
3AT° 2
93_92_ Wy —W-
Wy = — +wz_ )
48A 2 (5.30)
P
DYV,
Qg
Ao = ——.
°7 24A

5.2.5 Other F-Levels/Atoms

For the sake of completeness, we want to also give the Dicke models for the

F = 3 manifold in 133Cs

2

Qi—Q% LL}+—(A)_
Wy = +w2_ )
;128A 2 (5.31)
0y
24A’
Q49
Ag = ——=
2 24N’
for the F = 2 manifold in 8Rb
g* witw_
T T
91—92_ W+_w_
Wy = — +wz_ )
o 24A 2 (5.32)
A\ = =9
12A°
Ay Qg
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and for the F = 1 manifold in 8"Rb

2

_ 9 Wi two
WIS T T
Qa_—Q% Wy —W-
Wp = —— W, — :
240 2 (5.33)
SO
DY
Qg
Ay = — -2
2T 12A

At times, we will extract a factor S out of the coupling strengths A\ to
normalise the edge transition of the spin operator Sy to unity to make rel-
ative strengths between models (especially for growing atom number) more

apparent, i.e,

H = wala+weo,+—=— <5‘+&+S_5ﬁ> +\j\T+_S (S_d+§+m> : (5.34)

with

A = A VS, (5.35)

5.3 Modelling Spontaneous Emission

The adiabatic elimination of the excited states can be extended to incorporate
effects of spontaneous emission in a way that is compatible with the effec-
tive Tavis-Cummings model. To do this, we use again the effective Lindblad
operator formalism described in [73], but this time actually for the Lindblad
operators. Note that the cavity decay remains unchanged. Since the simple

Tavis-Cummings model ignores the lower hyperfine ground state, we shall also
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ignore decay to this state. The new effective spontaneous emission operators,

~

Ly = j—fq@lv (5.36)

include a dissipative part L, corresponding to the normal spontaneous emission

operator for the different polarisations from the full model,
~ ’}/ A~
i, = \/;Z Dy(F. F"), (5.37)
FF’

and the coherent part Q’ we introduced in the last section corresponding to the
interaction part of H. responsible for the excitations from the ground state to

the excited state prior to the collapse.

5.4 Engineering of Collisional Dynamics for an

Ensemble of Atoms

5.4.1 Many-body Hamiltonian

Now we shall consider the case of an ensemble of N atoms. We start by

reformulating the Hamiltonian in terms of collective spin operators, i.e.
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which for an ensemble of spin-1 particles updates the parameters from Eq.

E3) to

- Ng2 n Wy —+w_
YT BA T T
Q?i- - Q2_ Wy —W-
DTN T T T (5.30)
o VNQ_g '
a 12A
P \/NQ+9
- 12A
5.4.2 Adiabatic Elimination of the Bosonic Mode
We move into the interaction picture
ﬁ/ (t) _ ei(wd*d—i—woé‘z)tﬁ(t)e—i(wdfd-‘rwos'z)t (540)
which yields the interaction picture Hamiltonian
]:II(t) = de_i“’tX(t)—l—dTeMXT(t), (5.41)
where
A Ao - ) A A
X(t) = S=J_e oty X J et (5.42)

V25 V25

Under the assumption that vw?+rk? > wy, Ay, we expand to second order

in the interaction Hamiltonian and trace out the bosonic environment E as
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7

follows,

t
Ho= - / at' e ([B17, 52 [1,(0), s ()] ])

= — / t d' X)X (1)

X)) X () Trp
— X ()X (0T

A~/

45X () X (1) T
X)X (1) () T
— X (1)) X () T

~X1(¢)A5(t) X (1) Tep

+0s(t) X1 () X (1) Trp

~

P

a2 (P (t)al)
ae e (@ pig(t'))
ace 0 (i ()
ate r ) (gl (1)
alef2=1 (pl(t)a)

NN

lel= ) (aply(t)

a'e 21 (p(t)a)

dT) e

(0T a0 a1 (1) [0

efiw (t—t")

(5.43)

where we eliminated terms proportional to aa and a'al because their expecta-

tion value for a thermal state is zero. Next of, we can assume that the system

dynamics are slow when compared to relaxation time of the bosonic mode and

set t' — t in all operators acting on the system only.
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By assuming that the environment F is in a thermal state we can replace

the following terms

Trg |ae“= =" (' p(t)) | = (A+1)e 0"

Trp |21 (pp(t)a) | = ne )

- - (5.44)
Trp |afefrtt) (ap(t)) = fie (1)
Trp |ale == (pp(t)a) | = (A+1)e 01,
Evaluating the integral for a large time t we get
/t dt' —(ktiw)(t—t") 1 (1 —(H:I:iw)t) 1 (5 45>
e =——(1—e ~ . .
0 KEiw KEiw
After rotating back to the Schrodinger picture this leaves us with
ps = —i [ﬁa ﬁs}
. < ¢ LD N~ I e
—|—(11+1) — — X' Xps+—Xps X'+ —Xpg X' — —ps X' X
K+ww K+ww K—1w K—iw
_ L oo L o 5 L oo o L oo
+n| — — XX ps—f-—X pSX—I——X st— - stX
K—1w K+1w K—1w K+w
N n+1 N ~ TN NN
= —i[i1,ps] L alntl) (2Xps X1 - X1 Xps—ps X1X)
w2+ K?
Kl D PN
s (2)(T psX — XXt pg— pSXXT) ,
(5.46)
where
~ ~ n+1) ~. ~ n N
[ e b o5 L o ¢ (5.47)
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and

(5.48)



80

CHAPTER 5.

AN INTEGER-SPIN DICKE MODEL




Chapter 6

Reconstructing Quantum States of
Light

6.1 Temporal Modes

Optical homodyne detection allows us to measure a set of marginals of the
Wigner function of a field mode for a set of different angles # by scanning
the phase of the local oscillator. The quantum state of interest occupying the
quantum pulse output from a cavity can be associated to a temporal mode

[74] bosonic annihilation operator
A= [t O (61
with the output field of the cavity .. and the normalisation
| irwra =1 (6.2
so that the filtered mode obeys the bosonic commutation relation

[A, AT} ~ 1 (6.3)
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Since we want to mode match to a field amplitude the natural choice for the

filter function is the normalised amplitude correlation function

o = LA 6
V1T vt (eace))

which is related to the power spectrum P via the Fourier transform

Pv) = / h (a'(e)a(t))e ™ dLt. (6.5)

In the next Chapters the initial state will always be the vacuum state. There-
fore, we start an infinitesimal time € after 0, after the initial transient rise in

cavity population, otherwise the filter would just be zero

(a'(0)a(t)) = Tr{ae™[p(0)a']} = 0. (6.6)
o

Finally, we obtain a single measurement of the rotated quadrature by integrat-

ing the photocurrent of a single trajectory over time after applying the time
filter,

ol = [ arrorco. (6.7)

Experimentally, the filter can be implemented by giving the local oscillator a

similar temporal profile.



6.2. RADON TRANSFORM 83

6.2 Radon Transform

The Radon transform R(xg,0) [75] of the Wigner distribution W (z,y) is a

marginal distribution,

R(:Eg,@)[W(a:,y)]:/ / W (x,y)d(xe—x cos—ysinb)dxdy
:/ W (g cos @ —yg sin b, zg sin 0+yy cos 0)dyy (6.8)

= (509’/3’3€9>-

As we measure these marginals in our simulations we may reconstruct the
Wigner distribution by employing the inverse Radon transform, more specifi-

cally a filtered back-projection algorithm.

6.3 Balanced Homodyne Detection

In balanced homodyne detection [76] the cavity output field is overlapped at a
50/50 beamsplitter with a strong and resonant local oscillator field, i.e., a large
coherent state of amplitude |e|e?”. The difference in photon counts between the

two beamsplitter outputs is then proportional to
An = |¢] <\/2H<afei9+ae—i9>At+Aw), (6.9)

which is directly proportional to the expectation value of the quadrature zy =
afe? +ae~ while AW = v/AtN (0, 1) is a Wiener noise increment accounting
for detector shot noise, where N'(0, 1) is a normally-distributed number with
mean 0 and variance 1.

The continuous detection of the output field is modelled with a stochastic

Schrédinger equation [77] which evolves the wave function between quantum
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jumps with the propagator

An
—e

el

U =1—iHgAt+V2k—e P4+ O(AL?), (6.10)

where Hp is the non-Hermitian Hamiltonian from the quantum jump method.

For a detector with bandwidth I', the (scaled) photocurrent obeys

AI(t) = T (J(t)m—%). (6.11)

€]

For our simulations, we consider the bandwidth to be large, e.g., I' = ﬁ.

6.4 Maximum Likelihood Estimation for Quan-

tum States

With maximum likelihood estimation [78] [79] we are trying to find the density
operator that is most likely to generate our set of Ny measured marginals. For
this we start with an initial guess py = 15/5 (specifically for our purposes of

N = 4-photon pulses the Hilbert space is truncated to |4)) and iterate like so,

po = (6.12)
TI"(R,OkR)
where
= I ), 6.3
Ny 0,79 pe(xe)

Here fy is our measured marginal function, fy(xy) the relative frequency with

which xy was measured, and pg(xg) = Tr(|zg)(xg|pr) is the probability of our
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current guess pr to measure zy. In the Fock state basis, we can write

|20} (sl =) _{nlwo) {wln)n) ('],

n,n’
an/Q

Vnlri

| (6.14)
efzpa/Qefme]'_[n(xg)7

(zoln) =

where H,(x) is the n-th Hermite polynomial. The iteration converges to-
wards the ideal density operator p, because as we approach the ideal state,
Tr(|zg) (29|p) = fo(xg), and then because of the closure relation, R = > ap [T0) (0| =
1.

6.5 Input-Output Theory for Quantum Pulses

An alternative and more abstract method to reconstruct the quantum state
is the following Gedankenexperiment [80], where virtual cavities with time-
dependent mirror reflectivities inject input pulses into and absorb output pulses
from a target system.

For our purposes, we can ignore the input part of the idea and consider the
outgoing pulse f(t) from Eq. now to be incident on a virtual one-sided
cavity with cavity mode annihilation operator b. If the mirror coupling of the

second cavity is chosen to be

f*(t)
Jo dt'If ()2

g9r(t) = — (6.15)

the state of the pulse is asymptotically mapped onto the virtual cavity mode.
The system is treated as a cascaded system [81] [82] with the additional inter-

cavity coupling Hamiltonian

H =iy /= (gs(t)a'b—g}(t)ab") (6.16)
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and updated cavity decay

2 . (6.17)
o a K .2 « P TN Y) 27 A
= WDl 5 s Dl0, B+ 0o+ 2,
where the generalised Lindblad form is
Dla, blp = 2apb’ —pbfa—blap. (6.18)

The quantum state can then simply read out from the state of the virtual

cavity mode.
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Chapter 7

Deterministic Single-atom Source
of Quasi-superradiant N-photon

Pulses

7.1 Introduction

Recent proposals and proof-of-principle demonstrations of optical N-photon
sources, typically using parametric down conversion or quantum dots, are in-
trinsically probabilistic and low-yield in nature [83H89]. The use of a known
number of (effective) two-level atoms emitting into a cavity or photonic waveg-
uide has also been proposed [90H93|, but the required many-body control and
repeatability is still very challenging. Complementary to this, there also exists
a range of ideas and efforts around N-photon sources in the microwave regime
[94-98].

Here, we propose a deterministic N-photon source that requires just a single
atom and makes use of its entire, multilevel energy structure in a manner
that reduces the effective system dynamics to a simple and transparent form.
In particular, we demonstrate that a single alkali atom coupled strongly to a
cavity mode and subject to Raman transitions between sublevels of a ground F
hyperfine state can replicate the collective emission of N = 2F initially excited,

two-level atoms into the cavity mode. In this way, a "superradiant" pulse of

89
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precisely N photons can be extracted, through the cavity mode, from a single
atom. Moreover, an initial, coherent superposition state of the atom’s ground
sublevels is also preserved in the emission process, enabling the generation of a
light pulse in an arbitrary superposition of Fock states; as particular examples,
we consider O N-state and binomial-code-state pulses of light.

Key to the reduction of the single-atom, multilevel dynamics is a very large
detuning of the laser and cavity fields from an entire excited state hyperfine
manifold of the atom, such that the excited-state hyperfine splittings can be
ignored; alternatively, such that the total electronic angular momentum, J,
is a good quantum number. Such large detuning from the atomic transition
in turn demands a very large atom-cavity coupling strength and, as we show
here, the experimental configurations of [3H§| attain the requisite strength for
our scheme to be feasible and efficient.

The potential for making use of the multilevel energy structure of an al-
kali atom to prepare N-photon states has been considered previously, using
either adiabatic passage with time-dependent laser and atom-cavity coupling
strengths [99] [100], or cavity-mediated optical pumping between atomic ground
state sublevels [I0T], 102]. However, in contrast to the present scheme, these
approaches assume near-resonant laser and cavity fields and consider just a
single F' <» F' transition. This limits the range of validity of the approaches
and means that Clebsch-Gordan coefficients between mpr and mg sublevels
play a nontrivial and restricting (with regard to choice of F' and F”) role in

the scope and performance of the scheme.
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Figure 7.1: Fibre-cavity configuration with a o -polarised laser and m-polarised cavity mode
coupled to the D; line of a 8Rb atom. The atom is initially prepared in the {F =2, mp =
—2} ground-state sublevel. The cavity field decays predominantly through the right-hand
mirror.

7.2 Engineered Tavis-Cummings type Dynamics

We consider a single alkali atom tightly confined inside an optical cavity. The
atom couples to a m-polarised cavity mode (annihilation operator a) and is

also driven by either a o, - or o_-polarised laser field (Fig. . We define the

atomic dipole transition operators

F
DFF) = S |Fme)(Fomel | Fomp+a)(Fometdl,— (71)

mF:—F

where ¢ = {—1,0, 1} and y, is the dipole operator for {o_, 7, o }-polarisation,
normalised such that (i) = 1 for a cycling transition. The master equation for

the density operator, p, of our system in the interaction picture is (h = 1)

p=—i [ﬁi, ;3] +,-@D[a],3+% > D [Z D,(F, F")| p, (7.2)
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where k is the cavity field decay rate, v the free-space atomic spontaneous
emission rate, and D[0]p = 20p0—pOTO—0T0p. Setting the zero of en-
ergy at the lower ground hyperfine level, and assuming (for the moment) zero

magnetic field, the Hamiltonian is

H:i: = Achd—f—Z wHF|F¢, mFT><F¢, mFT|

?’np'T

=Y Ap|F mp)(F' mp| (7.3)

F'ympy

+y <§Dﬂ(F, F')+ga'Dy(F, F") +H.C.> :

F.F/

Here, A, = w.—w4 is the detuning between the cavity and laser frequencies,
Q = |Qe” the Rabi frequency of the oi-polarised laser field, g the atom-
cavity coupling strength, wgns the ground state hyperfine splitting [F; (F))
denotes the upper (lower) hyperfine ground state|, and Ap = wy—wp the
detuning of the laser from the F| <> F” transition. Note that, given the large
coupling strengths and detunings that we consider here, we assume that the
light fields couple all hyperfine ground and excited states. Consistent with
this, we also assume that all atomic decays of a given polarisation are into a
common reservoir [103].

If we now assume also, more specifically, that the detunings of the fields
(cavity and laser) are much larger than the excited state hyperfine splitting,
such that this splitting can essentially be neglected, then, in addition to being
able to adiabatically eliminate the atomic excited states and neglect atomic
spontaneous emission, we obtain a tremendously simplified effective model of
the atom-cavity dynamics in the form of an anti-Tavis-Cummings or Tavis-
Cummings model (anti-TCM or TCM, depending on the polarisation of the
laser field) for a collective spin F' |71} [104], 105], where F' (either Fy or F)) is

determined by the initial state of the atom; i.e., our master equation reduces
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to
p = —i| Ha. p| +rDlalp, (7.4
with

Hy — wde+w05’Z+/\(e_i‘z’dg;—l—ew&TS’i), (7.5)

where {S’i, 5'2} are the spin-F' angular momentum operators and, for example,

for the D line of 8"Rb, the effective parameters are

g
_Ac DA
w +3A
Q2
wn=wF (7.6)
9/

Here, we now assume an external magnetic field giving rise to a shift w, of
the mp levels. The detuning A depends on the choice of F'; for F' = F},
we take A = Ap ~+wgr, where the choice of F” in Ap makes little difference
due to the very large detuning assumed (in practice, we pick the lowest F”).
The same forms of expressions for {w,wy, A} are obtained for the D; and Dy
lines of other alkali atoms, but with slightly different numerical factors. Note
that such a reduction of dynamics as described above has been demonstrated
experimentally in a many-atom realisation of the Dicke model with spin-1
atoms in an optical cavity [104].

The essence of our scheme follows clearly and simply from the dynamics
described by and . With the choice H. and corresponding initial
atom-cavity state |F,mp = FF)|0)cay, the system evolves irreversibly to the
unique steady state |F,mp = £F)|0)cs with emission from the cavity of a

pulse of exactly 2F photons. The dynamics is irreversible because each photon
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that is created (via a'S4) in and subsequently emitted from the cavity (at rate
k) occurs in unison with a single unidirectional step along the ladder of spin
states.

Additionally, in the regime of interest to us, where x > VFX and w ~
wp ~ 0 (via tuning of A, and w,), the effective model of our single spin-F
atom emulates resonant, cavity-mediated superradiant emission of 2F spin—%
particles; i.e., the emitted 2F-photon pulse will have a characteristic sech?-

shaped temporal profile [106].

7.3 Output Photon Number

A preliminary way to quantify the quality of our state generation scheme is to
compute the time evolution of the output photon flux from the cavity and the

mean number of emitted photons,
N =2k / dt(at(t)a(t)). (7.7)
0

We consider first the case of a 8Rb atom initially prepared in the ground
state |F' = 2, mp = —2) and coupled to the laser and cavity fields via the D,
line. With this system, we expect an output pulse of exactly 4 photons. Note
that we neglect any extraneous photon losses, which is a good approximation
provided the dominant loss channel from the system is photon transmission
through the cavity mirror (at rate ). For our quantum trajectory simulations
the photon detection efficiency is additionally assumed to be ideal.

We solve the master equation numerically for the full model, (7.2}{7.3)), and
compare results with the solution for the effective anti-TCM, , for
two sets of cavity QED parameters: (i) {x,g,7v}/2m = {50,250,5.7} MHz and
(ii) {k,g9,7}/2m = {0.5,2,0.0057} GHz. The first set corresponds to the fibre
microcavity system of [3H5], while the second set is relevant to the nanocavity
system of [6-8]. Results for the output photon flux are shown in Fig. [7.2]
The agreement between the full and reduced models is clearly very good, and

the predicted sech®-shaped pulse is confirmed, with a duration on the order
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Figure 7.2: Top row: Output photon flux for a 8”Rb atom initially prepared in |F = 2, mp =
—2). The black solid line represents the full model and the red dashed line the anti-TCM.
The histogram shows the temporal distribution of photocounts (renormalised to N) for 10000
trajectories of the anti-TCM with additional, effective spontaneous emission. The number
below the curves gives N for the full model. Insets: Histogram of photon number counts per
trajectory (i.e., per output pulse). Bottom row: Atomic ground state populations (F = 2:
main plot, F' = 1: inset), and total excited state population (inset, red-dashed) as a function
of time.

of (FA?/k)~!. The atomic state populations are also plotted in Fig. [7.2] and
similarly show the expected evolution, with a smooth transfer of population
along the F' = 2 hyperfine level to the final state |F' = 2, mp = +2). A very
small fraction of population may be transferred to the F' = 1 ground state via
off-resonant processes, but, in fact, the effective superradiant emission simply
continues from within this level and any population there is ultimately driven
back (also by an off-resonant process) into the F' = 2 level and so to the
final (dark) state |F' = 2,mp = +2). Atomic excited state populations are
essentially negligible.

Similar results for the photon flux are shown in Fig. [7.3] for a '33Cs atom
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initially prepared in the |F' = 4,mp = —4) ground state, also operating on
the D, line. For the parameters used, there is a slight discrepancy between
pulse shapes for the two models, but the mean photon number obtained from
the full model is still very close to the expected value of 8. The discrepancy
arises primarily from the larger excited state hyperfine splitting in 33Cs, which
means that a larger detuning is required to ensure closer agreement with the

TCM; a similar discrepancy is also observed in 8"Rb for smaller detunings.

The integrated photon flux obtained from the master equation, however,
does not tell us about the variance in the photon number of the output pulse.
To get the variance we perform quantum trajectory simulations [43, 44] and
record the times and total number of photon counts in each trajectory. The
histogram of photon detection times gives us again the output photon flux,
which is shown for comparison in Figs. and along with the photon
number distribution and its variance for the output pulse. The distributions
are clearly very close to an ideal number state. Note that for these simulations
we do not use the full model (owing to the stiffness of the numerical integra-
tion caused by the large detunings and ground state hyperfine splitting), but
rather use the anti-TCM (or TCM) with spontaneous emission added, in the
form of an effective Lindblad operator acting just within the relevant ground

state. Spontaneous emission to the other hyperfine ground state is therefore

. 133Cs (k, 9, A, Q) = (0.05,0.25,-25,4) x 2 GHz . 133Cs (k,g9,A, Q) = (0.5,2,-50,4) x 2m GHz
4} 100 { 9] 100y —
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Figure 7.3: Output photon flux for a 133Cs atom initially prepared in |F = 4,mp = —4).
Line markings, histograms, and annotations are the same as described in Fig. 2.
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neglected, but the numerical results from the master equation support this as
a good approximation.

Finally, we note that shorter or longer output pulses can be obtained by
changing the detuning A and/or laser Rabi frequency €. Also, in the results
presented here, we assume an instantaneous switch-on of the laser field. This
can be relaxed to allow for a smooth initial ramp of the laser field to its peak

value, which can be used to tailor the shape of the output 2F-photon pulse.

7.3.1 Quantum Trajectories

To access the variance in the output photon number we perform photon-
counting quantum jump simulations [43, 44], where we accumulate photocount
records from an ensemble of quantum trajectories. In each quantum trajec-

tory, the system state is evolved with the non-Hermitian effective Hamiltonian

~ A

Ho — ﬁi—mam—z’% N LiL, (7.8)

q
q

where ﬁq (¢ = —1,0,+1) is an effective spontaneous emission operator (see

below). In particular, over an infinitesimal time step At, we have
[it+A8) = et ly(t) ~ (1-ilgAt+O(AR) ) [6(#).  (7.9)
The loss in norm through this non-Hermitian evolution is given by

Ap = At(y(t) ralalp()+ A3 D LIL (), (7.10)

which corresponds to the probability for a quantum jump to occur. If a jump
does occur (as decided by a random number), we replace the effective Hamil-

tonian evolution with the action of a quantum jump, itself also chosen by a
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random number:

VIR[OW)

FUAR) \/<w(t)|?,@dT&\¢(t)> 7.11
[ (t+At)) VALY (1) (g=—1,0 or +1). T
VOORELE9) ’

If the jump corresponds to emission of a photon from the cavity, we record its
timestamp and increase the photon count for that trajectory by one; sampling
over many trajectories then yields the temporal distribution of the output

photons and the output photon number histogram, respectively.

7.4 Atomic State Populations

Let us start with discussing the atomic state populations in more detail. In
Fig. below we show the time evolution of the atomic state populations
for parameter sets that are the same as those used in Fig. except for
larger detunings. This change yields pulses and dynamics of longer duration,
however, apart from this, the behaviour is qualitatively the same. For conve-
nience, in the first column we plot the output photon flux again. The atomic
population is seen to transfer smoothly and predominantly along the F' = 2
ground state manifold from the initial state |F' = 2,mp = —2) to the state
|FF = 2,mp = +2). The peak in the output photon flux coincides approxi-
mately with the peak in the population of the state |[F' = 2, mp = —1). A
small amount of population makes it into the F' = 1 manifold, where it is also
subject to effective, resonant (spin-1) anti-Tavis-Cummings dynamics and is
transferred to the state |F' =1, mp = +1). From there, a far-off-resonant Ra-
man transition eventually transfers this small population into the target state
|F =2, mp =+2).

For the two cases considered in Fig. [7.4] there is not a large difference in
the populations of the F' = 2 manifold. The F' = 1 manifold on the other
hand shows some slight differences; it depletes more rapidly (even though

initially more highly populated) for the nanocavity system as a result of the
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larger atom-cavity coupling strength, which enhances the off-resonant Raman
transition back into the F' = 2 ground state. The figure also underpins our
assumptions that the excited state and lower-ground-state populations are
very small, thus ensuring the validity of the effective Tavis-Cummings (or

anti-Tavis-Cummings) model.
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Figure 7.4: Output photon flux (top row), atomic ground state populations (F = 2: middle
row, F' = 1: bottom row), and total excited state population (bottom row) as a function
of time for a 8’Rb atom initially prepared in state |F' = 2,mp = —2). Parameters are for
optical microcavity (left column) and nanocavity (right column) systems.
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7.5 Additional Examples

7.5.1 Constant Laser Amplitude

As the formula for the approximate time scale of the output pulse 7 o %‘;P

suggests we can create even shorter pulses by further decreasing the detuning
A. While the approximation, that the detuning is larger than the excited state
hyper fine splitting, might still be valid, at some point we usually observe a
discrepancy between the full system dynamics from the Tavis-Cummings ones
in the form of oscillations in the initial rise of the output photon flux and an
offset in the two curves.

We observe these oscillations only as A becomes small but the {x,g} =
{0.05,0.25} -2 GHz set of values is more robust against them than the {x, g} =
{0.5,2}-2m GHz set. That is because their occurrence is facilitated by a larger
cavity decay rate k, but we can counteract to a certain degree and eliminate
them by increasing || and/or g but lowering & is the most effective.

While the offset seems to worsen by lowering A (see top row of Fig. [7.2)),
the change is very small. It is far more affected by the amplitude of x and
will persist through to much larger A as shown in the middle row of Fig.
where the cavity decay rate x that is a factor 2 larger than before (and closer
to state-of-the-art values [6]), where the two curves are noticeably offset from

each other and oscillations arise for the lower detuning.
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Figure 7.5: Output photon flux for a 8"Rb atom initially prepared in |F = 2,mp = —2).
The lines represent the full model (solid black) and the simple Tavis-Cummings model where
the excited states have been adiabatically eliminated (dashed red). The number below the
curves represents the output photon number from the full model.

7.5.2 Time-varying Laser Amplitude

In a real experiment, the laser will not instantaneously turn on at the chosen
intensity, but rather get there through a continuous ramp. Ramping would
eliminate some of the very fast non-adiabatic processes which affect the early
n

parts of the pulse. Additionally, we would like to know how valid the "in-

stantaneous" approximation really is. We approximate the ramp through the



].02 CHAPTER 7. DETERMINISTIC SINGLE-ATOM SOURCE OF QUASI-SUPERRADIANT N-PHOTON PULSES

following sinusoidal function

sin(ZL), t<t,
r(t) = (3i,) : (7.12)
1, t>t,

The smoothness of the initial rise increases slowly for increasing ramp times.
The output photon number and the offset present for larger x stays mainly the
same. For very slow ramps, i.e., large t,, we are able to produce pulses with

both smooth leading and trailing edges.
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Figure 7.6: Output photon flux for a 8"Rb atom initially prepared in |F = 2,mp = —2).
The lines represent the full model (solid black), the simple Tavis-Cummings model where
the excited states have been adiabatically eliminated (dashed red) and the ramp function
r(t) (dotted blue) that has been applied to both models. The number below the curves
represents the output photon number from the full model.
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7.6 (0N-states and other Superpositions

Instead of starting with an atom in an end state of the Zeeman ladder, we
also have the option to start with a superposition of Zeeman substates; for
example, [Voat)r = (|F, —F)+|F, +F))/+/2, which can be created using a one-
axis twisting (oat) scheme [107], or an arbitrary superposition, created using
a scheme such as in [I08]. With our proposed system, these atomic super-
position states are directly mapped onto photonic states of the output light
pulse. So, for example, the initial state [toa)r leads to an output pulse in
a coherent superposition of vacuum and N = 2F photons, i.e., an 0N-state,
[V putse = (|0)out+ [N )out)/ v/2, which is a basic resource in schemes proposed
for universal quantum computation [20]. The output photon flux and photon
number distribution for initial atomic state |tgat) p—2 are shown in Fig. for
8"Rb with cavity QED parameters relevant to the fibre microcavity.

As a further example, in Fig. |7.7| we also consider an initial state of 8"Rb of
the form |Ype)r—z = (12, —=2)+v2|2,0)+|2, +2))/2, yielding an output pulse
state |¥)puise = (10Yout +v/2|2)out +|4)out) /2. Such a state is of particular in-
terest, as it constitutes a superposition of states |0.) = (|0)+]4))/v/2 and
|11,) = |2), which are logically encoded (binomial code) states of a qubit for a
quantum computation scheme protected up to one photon loss [2I]. Note that
in mapping general atomic ground-state superpositions onto the states of the
output light pulses, one must pay attention to the relative phases between the
different components and the phase ¢ of the effective cavity-spin coupling. For
an exact mapping of relative phases, we require in our model that ¢ = Fm/2
(depending on the sign of A), which can of course be chosen through the phase
of the laser field. Alternatively, ¢ can also be incorporated as the relative phase

between neighbouring mg levels in the initial atomic state.
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87Rb (k, g, A, Q) = (0.05,0.25,-50,2) x 21t GHz 87Rb (k, g, A, Q) = (0.05,0.25,-50,2) x 21t GHz
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Figure 7.7: Output Photon Flux of a Rubidium atom prepared in equal superposition states
of mp = =2 and mpr = 2 (left), and of mp = —2, mp = 0 and mp = 2 (right). The
lines represent the full model (solid black) and the simple Tavis-Cummings model where the
excited states have been adiabatically eliminated (dashed red). The histogram shows the
temporal distribution of photocounts (renormalised to N) for 10000 trajectories of the Tavis-
Cummings model with additional effective spontaneous emission. The number below the
curves represents the output photon number from the full model. The inset plots show the
histogram of the photon number counts for the different quantum trajectories and includes
the mean photon number for the effective Tavis-Cummings model plus the variance of the
photocounts as an error.

In Fig. [7.7 the pulses of the two superpositions state we consider are
depicted. Note that the pulse shape of the ON-state is the same as the one
of the corresponding Fock state, just rescaled by a factor % Contrariwise,
the other superposition state gives rise to a very different looking pulse that
resembles a superradiant pulse where everything before the maximum has been
discarded.

7.6.1 Relative Phase Shifts in Superposition States

To understand the origin of the phase shift between the different components
of a superposition state, let us, without loss of generality, look at the most
simple imaginable example; the coherent time evolution of the initial state
with the atom one step away from the edge in an empty cavity, i.e., \%(!F =
2, = +2)+F = 2,mp = +1))]0)ear|Oout-

If we consider the capture cavity method as described in Section [6.5] then

for the Anti-Tavis-Cummings version of the Hamiltonian, the corresponding
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time evolution operator including the cavity decay is given by [82]

U = 1—iAtA(e aS_+eals,)

e (7.13)
—ratadt—|gy(t) ]P0 bAL— 2k g} (t)abT At.

The final state will be |F = 2,mp = +2>|O>cav\%(|0>out+ew|1>out), where
@ is a phase to be determined below. By virtue of being a dark state, the
phase of the |F = 2,mp = +2))]0)cay|0)out component of the wave function
remains unchanged. Recall that g7(t) oc —f(t), where in this case f is a
positive real-valued function, thus the transfer into the virtual cavity does not
cause any phase change. The phase ¢ of the one-photon output state |F' =
2,mp = 42)|0)cav|1)ous is therefore determined by the phase of |F' = 2, mp =
+2)|1) cav|0)out, which itself is regulated by the phase of the term proportional
to dTng of the Taylor expansion in Eq. . That phase amounts to

o= qb—%—karg@\), (7.14)

meaning that we can use the polarisation (and to some extent the detuning)
of the laser to control the relative phases in the state and set ¢ = 7 —arg(A) to
get rid of all relative phases. If we were to consider a superposition of states
that lie further apart, e.g., 2 steps, then the second power of U matters and
Eq. just doubles, meaning that Eq. really is the shift incurred

for each step along the Zeeman ladder.

7.7 Quantum State Tomography via Optical Ho-

modyne Detection

The photon number distribution of the output pulse is not sufficient to confirm
that the desired output state has been generated. To verify that the target
quantum state has indeed been generated, we implement quantum state tomog-

raphy on simulated, pulsed-homodyne measurements, obtained via the method
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of homodyne quantum trajectories. That is, we reconstruct the Wigner func-
tion of the pulse by measuring marginals of the Wigner function for a set of
homodyne phase angles # and then applying the inverse Radon transform to
these marginals [75]. For these simulations, we again use the TCM with effec-
tive spontaneous emission added. Results of these reconstructions are shown
in Fig.[7.8] Our reconstructions can clearly be assigned to the predicted, ideal
state. For a better comparison, we remove most of the noise from the simulated
results by smoothing with a Gaussian blur, which reveals some discrepancy in
the heights of the extrema between the ideal case and our reconstruction. This
effect can also be observed in the untreated marginals, where we observe some
noise in the outer peaks of these marginals that can be attributed to atomic
spontaneous emission.

Alternatively, the density matrix itself can be reconstructed using maxi-
mum likelihood estimation 78| [79] on the marginals. We start with the iden-
tity matrix as the initial guess and go through 500 iterations. The resulting
fidelities, a figure of merit telling us about the closeness to the target state

|W), of these output density matrices are computed via

F= (VD@ (7.15)

and amount for the Fock state, ON-state and the binomial-code state from
Fig. to 0.849, 0.922, and 0.937, respectively. These are in accord with
the fidelities obtained using the capture-cavity method. This illustrates that,
even though the superposition states are somewhat more complex, the initial
atomic superposition states are, in a certain sense, closer to the final atomic

state, and therefore more robust against spontaneous emission.
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Figure 7.8: Ideal Wigner functions (top), smoothened with a Gaussian blur (middle) and
raw (bottom) reconstructed Wigner functions for a single Rubidium atom in a fibre cav-
ity setup ({k,g,A,Q} = {0.05,0.25, —50,2}-27 GHz) for different configurations. The re-
constructions are using a set of 500 angles § € [0,7) and 10000 trajectories per angle.
The leftmost column shows |4)oyt, the middle \%(|0>0ut—|—|4>0ut) and the rightmost column

3 (0ous-+VE2)ouw+4)ou):

7.7.1 Full Model Input-Output formalism

Input-output simulation for the full atomic model can be quite numerically
demanding due to the additional “capture” cavity mode. We check that the
desired state leaves the cavity also in the full model by looking at the simplest
case, a 1-photon pulse from a 8’Rb atom initially prepared in |F = 2, mp =

+1). We manage to retrieve the 1-photon Fock state in the virtual cavity with
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a fidelity of 0.994. As can be seen in Fig. [7.9] in that case, the filter function
of the effective model corresponds to the absolute value of the full-model filter
function. The non-zero free Hamiltonian of the full model (involving the large

detuning A) adds a time-dependent phase.

87Rb (k, g, A, Q) = (0.05,0.25,-50,2) x 21t GHz

0.006
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0.002
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0.000
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—0.004
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Figure 7.9: Plot comparing the filter functions for the full and the effective model for a 8"Rb
atom initially prepared in the ground state |F' = 2, mp = +1). The lines represent |f(¢)|
(solid blue), Re(f(t)) (green dashed), and Im(f(¢)) (red dash-dotted) from the full model,
and f(t) (black dotted) from the simple Tavis-Cummings model where the excited states
have been adiabatically eliminated.

7.8 Conclusions and Outlook

We have proposed a single-atom, deterministic source of optical number-state,
0N-state, and binomial-code-state pulses. The scheme does not require time-
dependent atom-laser or atom-cavity coupling strengths or detunings, or spe-
cific F' <» F’ atomic transitions, and should be feasible with recently-demonstrated,
fibre-integrated micro- and nano-cavity QED setups. Some other potential fea-
tures of the scheme are worth noting. For the case of number-state pulses, it
is a simple matter to generate a stream of separate pulses by switching the
polarisation of the laser field at the end of each pulse and cycling the atom
back and forth between the end states |F,+mpg). Also, one may increase
the number of photons per pulse, N, by adding more atoms; e.g., with two
identically-prepared 8" Rb atoms coupled collectively to the cavity mode, the
effective spin in the TCM is simply doubled, enabling the generation of 8-
photon pulses. Finally, we have assumed throughout this work that the cavity

is essentially one-sided, so that pulses are emitted in just one direction into
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the output fibre. We could equally well assume a symmetric cavity, in which
case our scheme could be equated to a 50/50 beamsplitter with the incident
state in one input port determined by the initial state of the atom. This would
provide a straightforward means of producing an entangled state of light fields

propagating in opposite directions away from the cavity.
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Chapter 8

N-Photon Pulses via Resonant

Optical Pumping of a Single Atom

8.1 Introduction

In the previous chapter, we proposed a single-atom source of N-photon pulses
by exploiting the Zeeman substructure. There we focused on high couplings
and far detuned fields, resulting in a coherent sequence of Raman transitions.
We extend this now to the case of resonance, where the model no longer can be
reduced to a simple Tavis-Cummings type model. Our scheme can essentially
be described as resonant optical pumping [109], but where the cavity mode
"catches" each emitted photon from the atom. This can be done efficiently
when the cooperativity is high, so that emission through the cavity mode
dominates spontaneous emission. Being on resonance opens up the door to
high-cooperativity Fabry-Pérot cavities and tapered nanofibre cavities, which
were impractical for our previous scheme due to their relatively low coupling
strength. On the flipside, very high coupling strengths (in the GHz’s) can
also not be used for this setup, since such strengths are of the same order
of magnitude as the hyperfine splittings and this would lead to significant
coupling to the second ground hyperfine state.

So, to reiterate, we consider continuous resonant driving (as opposed to

pulsed or continuous, detuned driving), but still include all hyperfine levels in

111
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our model. As before, we also consider initial, coherent superpositions of the
atom’s ground states to investigate the possibility of generating more exotic
Fock state superpositions in the outgoing light pulse, e.g., 0 N-states. However,
there are also new aspects to be explored, for instance, the weaker atom-field
coupling allows us to effectively hide the part of the atomic population that
is in one hyperfine ground state, which in turn offers the chance to generate

interesting entangled states.

8.2 Preliminary Considerations

When choosing a specific transition for the scheme, there are some things that
prove to be beneficial for our purposes.

In particular, the total angular momentum of the excited state, F’, should
be smaller than or equal to that of the ground state F, else the opposite edge
of the ground state Zeeman ladder is no longer a dark state and will undergo
a cycling transition with the excited states, this ultimately complicates the
quantum state tomography; more on that in Section On top of that, the
higher ground state can also generate larger photon numbers due to the larger
number of Zeeman states.

This leaves us mainly with 2 possible transitions that we can consider for
resonant driving: F'=2 <« [’ =2 and F = 2 +» ' = 1 of the Rubidium D,
line. A visualisation of the corresponding main pathways through the state
manifold is given in Fig. 8.1}

The same transitions can of course also be chosen in the Dy line, but there
the energy differences between the excited hyperfine states are smaller, making
populating the non-resonantly driven excited states more likely. The D, line
also always comes with an excited state F” that is larger than the highest
ground state F', which is problematic because of the aforementioned cycling
transition. Additionally, the spontaneous emission on that line is stronger.
Therefore, we mainly consider the D; line.

If F" = F for the considered transition, the |F,mp = 0) <> |[F',mp = 0)
transition is forbidden and represents a "roadblock". In this case, we have to

start in the |F, mpr = 0) state and we can only extract F' photons.
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Figure 8.1: Depiction of the movement of the atoms through the state manifold for the D
line. The black dot is the initial state that yields the pulse with the highest photon number.
The dashed circle represents the final state. (a) FF = 2 <» F’ = 1 transition with initial
state |F,mp = —2). The dashed lines represent the Raman process. (b) F' =2 <> F/ =2
transition with initial state |F, mp = 0).

8.3 Number State Generation

We consider exactly the same full model as in the aforegoing chapter, except
that now the detuning from the chosen F' <+ F” transition is set to zero. The
effective TCM model is no longer valid.

We solve the master equation numerically for the full model, (7.2H7.3), for
two sets of cavity QED parameters: (i) a "high coupling regime" {x, g,v}/2m =
{50, 250, 5.7} MHz and (ii) a "low coupling regime" {x, g,v}/2m = {4,25,5.7} MHz.
The first set corresponds to the fibre microcavity system of [3H5], while the sec-
ond set is relevant to state-of-the-art, high cooperativity Fabry-Pérot cavities

or tapered nano-fibre cavities [110, [111].

8.3.1 Treating the F' = 1 manifold as a single dark state

Note that for quantum trajectories in the present scenario we do not use the
full model (owing to the stiffness of the numerical integration caused by the
large ground state hyperfine splitting), but rather use a model where the other
ground state is treated as a dark state. Additionally, trajectory simulations in
the low coupling regime also ignore the off-resonant excited state manifold.
The large hyperfine splitting between the two ground states suggests that

the lower one should not matter, and indeed the coherent dynamics show no
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discernible difference between the inclusion or omission of the F' = 1 manifold.
However, due to the resonant drive, spontaneous emission to the F' = 1 ground
state cannot be neglected.

Hence, we eliminate all occurrences of F' = 1 in the Hamiltonian Hy,
but keep the non-Hermitian quantum jump picture Hamiltonian otherwise

unchanged,

T
Hyn = ﬁi—i% (Z D,(F, F’)) N Dy(F,F), (8.1)

F.F F.F

thus preserving the loss in amplitude corresponding to the different decay
channels, even those to /' = 1. Whenever a jump is deemed to have occurred
we apply the new effective Lindblad operator > P ﬁ;(F , "), where we have
replaced all the states of the F' = 1 manifold by a single level | D), i.e.,

F

DyF =1,F)= > |DNF,mplu|F',mp+q)(F',mp-+tq. (8.2)
mF:—F

Thus we do not allow for any reexcitation from the F' = 1 manifold and

any population therein is completely lost to the dynamics. This means that
the quantum trajectories tend to underestimate the output photon number in
that regard, which explains the small discrepancy in the average output photon
number between them and the master equation for most of the plots. Eliminat-
ing these manifolds can also lead to some overestimation, for instance, when
additionally excited state levels are eliminated in the low coupling regime one
is removing a competing slower process. The elimination of the other ground
state eliminates also some destructive interference from different pathways with

opposite sign Clebsch-Gordan coefficients.
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8.3.2 Low Coupling Regime

We consider first the case of a 8"Rb atom initially prepared in the ground
state |F' = 2,mp = —2) and coupled to the laser and cavity fields via the
F =2 < F’' =1 transition (Fig. . With this system, we expect an
output pulse of exactly 3 photons. Then, we start with the ground state
|F'=2,mp = 0) and couple the laser and cavity fields via the F' = 2 <> F' =2
transition, which generates a 2 photon pulse (Fig. [8.1b)).

Let us look at the output photon flux and quantum state reconstruction
in Fig. to begin with. The average photon number from the integrated
output photon flux obtained from the master equation and from the quantum
trajectories reaches values close to the target photon number, especially for
the F' = 2 «<» I’ = 1 transition. The photon counting statistics reveal that
observing zero photons is more likely than observing one in both cases, which
can be mostly attributed to spontaneous emission to F' = 1. Decay to F' =1
affects the I' = 2 «» I’ = 2 disproportionately more than the ' =2« [/ =1
scheme because the average Clebsch-Gordan coefficients for F' =1 <> F' = 2
tend to be higher than those of ' =1+« F' = 1.
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Figure 8.2: Output Photon Flux (top row) of a Rubidium atom prepared in mp = —2 driven
via F =2« F' =1 (left), and mp = 0 driven via FF = 2 +» F' = 2 (right). The lines
represent the full master equation model (solid black). The histogram shows the temporal
distribution of photocounts (renormalised to N) for 10000 trajectories of the reduced model.
The number below the curves represents the output photon number from the full model.
The inset plots show the histogram of the photon number counts for the different quantum
trajectories and includes the mean photon number plus the variance of the photocounts.
Corresponding Wigner functions plots from the quantum tomography applied to the master

equation are shown in the bottom row.
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Figure 8.3: Atomic ground state populations (F = 2: main plot, F' = 1: inset), and total
excited state population (inset, red-dashed) as a function of time in the low coupling regime
for F =2 + F’ =1 with initial state mp = —2 (left) and F' = 2 <+ F/ = 2 with initial state
mp = 0 (right).

Let us continue by discussing the atomic state populations in more detail.
In Fig. 8.3 we show the time evolution of the atomic state populations for
parameter sets that are the same as those in the output photon flux plots.
The atomic population is seen to transfer smoothly and predominantly along
the F' = 2 ground state manifold from the initial state |F' = 2, mp = —2) (or
|F'=2,mp = 0)) to the state |’ =2, mp = +1) (or |FF =2,mp = +2)). In all
cases, the excited state populations are very small, although the initial spike
can get quite high.

A small amount of population makes it into the F' = 1 manifold. For our
mostly low driving (when compared to the hyperfine ground state splitting), it
effectively remains trapped there, and we have somewhat constant populations
of these states.

For F' =2 <> F’ = 1 one can observe the population of the |F =2, mp =
+2) state slowly growing, through a resonant Raman processes, thus making
|FF = 2,mp = +1) not a truly dark state. The photon counting statistics
do not show no trajectories with 4 counts because the F’ = 2 manifold is

eliminated and this process therefore not allowed.
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8.3.3 High Coupling Regime

The two configurations from the low coupling regime can readily be taken to
the high coupling regime. There is, however, a little twist for the atom starting
in |[FF = 2,mp = —2) and driven on resonance with the F' = 2 < F' =1
transition, which will, now that the couplings are large enough, undergo a
more effective Raman process between |F' = 2, mp = 1) and |F = 2, mp = 2)
through |F = 2',mpr = 2) (in complete analogy to the previous Section and
Chapter , thus leading to a pulse with 4 photons. The rate of this additional

process is proportional to

9292
kA2’

A X (8.3)

Apart from generating larger Fock states, this variant has the advantage
that reversing it in an attempt to repeat the process should yield the same
number of photons. When compared to the low g setups from before, this
seems to be much less impacted by spontaneous emission see Figs. [8.448.5|
For example, we virtually see no trajectories with a photoncount of 1 and the
second-highest count number has a probability of around 2-10~2, while the pre-
vious " = 1 example recorded losses of three photons and had a probability of
about 107! even though that one had a lower maximum photon number. This
can be explained by the cooperativity being larger, such that the spontaneous
emission is competing with a cavity coupling much larger than it. On top
of that, the last step is a strong resonant Raman transition, for which spon-
taneous emission is effectively suppressed due to the negligible excited state
population.

Note that a similar approach, for when ' = 2 <> F’ = 2 is resonantly driven
from the initial state mp = —2, is not practical. While theoretically it could
circumvent the forbidden [F' = 2;mp = 0) — |F' = 2,mp = 0) transition,
what ends up effectively happening is that the atom still gets predominantly
pumped to the |F’ = 2,mp = 0) level from where it can cycle back to |F' =

2,mp = —1) or decay by spontaneous emission to |F' = 2,mp = 1) (which
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Figure 8.4: Atomic ground state populations (F' = 2: main plot, F' = 1: inset), and total
excited state population (inset, red-dashed) as a function of time in the high coupling regime
for F =2 + F’ =1 with initial state mp = —2 (left) and F' = 2 <+ F/ = 2 with initial state
mp = 0 (right).

corresponds to a 2 photon loss!). The rate of this process is much stronger than
that of the Raman process, so that we actually enhance spontaneous emission
and this is reflected in the photon statistics where 2 photons are more likely
to be registered than 3, and almost as likely as 4, due to the aforementioned
loss.

Even though the output photon flux and quantum trajectories of the 4-
photon pulse indicate that it is a 4-photon state, the actual quantum state
tomography does not properly reproduce the maxima and minima of the
Wigner functions, thus the faded look in Fig. [8.5] Artificially lowering the
|F" = 2, mp = 2) state in our simulations seems to rectify this issue, suggest-
ing that the Raman process’ large detuning, i.e., the excited state manifold
splitting is too large to easily filter the pulse appropriately.

The situation for the F' = 2 <» F’ = 2 remains qualitatively the same, just
quantitatively the average output photon number is relatively speaking much

closer to its ideal value.

Most of the discussion of the atomic state population in the low coupling
regime still holds for the high coupling regime. There are differences in the
populations of the F' = 1- and F' = 2-manifolds; in the high g regime at the

end of the pulse, the F' = 1 manifold population is overall lower and that of



].20 CHAPTER 8. N-PHOTON PULSES VIA RESONANT OPTICAL PUMPING OF A SINGLE ATOM

F = 2 is higher when compared to the low coupling. This is because there
the cooperativity is higher and thus dominates spontaneous emission more,
which is the main source of population for F' = 1. Moreover, due to the higher
driving, these populations are subject to effective, resonant (spin-1) anti-Tavis-
Cummings dynamics and slowly transferred to the state |F' = 1,mp = +1).
From there, a far-off-resonant Raman transition eventually transfers this small

population into the target state |F' = 2, mp = +2).
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Figure 8.5: Output Photon Flux (top row) of a Rubidium atom prepared in mp = —2 driven
via =2+ F' =1 (left), and mpr = 0 driven via F = 2 + F' = 2 (right). The lines
represent the full master equation model (solid black). The histogram shows the temporal
distribution of photocounts (renormalised to N) for 10000 trajectories of the reduced model.
The number below the curves represents the output photon number from the full model.
The inset plots show the histogram of the photon number counts for the different quantum
trajectories and includes the mean photon number plus the variance of the photocounts.
Corresponding Wigner functions plots from the quantum tomography applied to the master

equation are shown in the bottom row.



8.3. NUMBER STATE GENERATION 121

Table 8.1: Fidelities F of the reconstructed density operators relative to the target Fock
state.

{k,g}/2m {4,25} MHz {50,250} MHz
F & FY 21 22 241 22
F 0.808 0.741 0.290 0.874

8.3.4 Quantum Tomography

As before, we verify that the target quantum state has indeed been produced
via quantum state tomography, although here this is done using the input-
output formalism for quantum pulses [80] because of the complex-valued nature
of the filter functions. The additional imaginary part of the filter function
comes from the free evolution when the wave function is in a state with non-
zero energy, which did not occur in the previous chapter because either the
Tavis-Cummings model did not include any such terms or in the corresponding
full model these states were barely populated. In general, the filter function
can end up somewhat noisy, this is especially true for the high coupling case
of the F' = 2 «+» F’ = 1 transition. The resulting fidelities are compiled in
table 8.1} Overall, our reconstructions always let us visually identify what the
target was, i.e., correct number of rings for Fock states or correct number of
Wigner-negative zones in the 0/N-states.

In Table we display the fidelities of the reconstructed density operators.
Comparing the results for the FF = 2 <+ F' = 1 and F' = 2 +» F’ = 2 transitions
in the low coupling regime we see that the F' = 2 «» F’ = 1 transition performs
better for the Fock state generation even though the photon number state
is larger, this can be attributed to the, on average, higher Clebsch-Gordan
coefficients for that transition. In the large coupling regime, F =2 «+» [/ =1
always gets outperformed by the F' = 2 «+» F’ = 2 transition, however, this
is due to the previously mentioned difficulty in filtering the state and the real
fidelity should be higher, as the photon counting statistics suggest. Finally,
F =2 + F’ = 2 transition in the high coupling regime is better than in the

low coupling regime by virtue of the higher cooperativity.



].22 CHAPTER 8. N-PHOTON PULSES VIA RESONANT OPTICAL PUMPING OF A SINGLE ATOM

8.3.5 F +» F'= F+1 and the Cycling Transition

For the sake of completeness, we shall also briefly discuss the case of F' <«
F' = F+1 on the D; line (see Fig. [8.6). This transition has the benefit of
having no roadblocks and can therefore produce 4 photons without relying on

any off-resonant Raman process.

52Ps

525%

mp -3 -2 -1 0 1 2 3

Figure 8.6: Depiction of the movement of the atom through the state manifold for the Do
line. The black dot is the initial state that yields the pulse with the highest photon number.
The dashed circle represents the final state. The thick line represents the cycling transition.

The integrated output photon flux, however, ends up being further from
the ideal value of 4 than for ' = 2 <> F’ = 1 as can be seen in Fig. [8.7
This can be attributed to the higher spontaneous emission (both higher rate
and higher Clebsch-Gordan coefficients) on the Dy line and the absence of a

Raman process, which is inherently more robust due to the detuning.
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Figure 8.7: Output Photon Flux of a Rubidium atom prepared in mp = —2 driven via

F =2+ F’ = 3 (right). The lines represent the full master equation model (solid black).
The histogram shows the temporal distribution of photocounts (renormalised to N) for 10000
trajectories of the reduced model. The number below the curves represents the output
photon number from the full model. The inset plots show the histogram of the photon
number counts for the different quantum trajectories and includes the mean photon number
plus the variance of the photocounts.
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Figure 8.8: Atomic ground state populations (F = 2: main plot, F' = 1: inset), and total
excited state population (inset, red-dashed) as a function of time.

In contrast to the previously considered transitions, the output photon
flux of this transition does not have an exponential shape, but rather displays
something more alike to the superradiant shape. This can be understood by

having a closer look at the transition strengths between two ground states, i.e.,
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the product of the two dipole matrix elements
>\mF,m1~‘+1 = <F: mF’M+1|F/: mF+1> X <F/7 mF+1‘MO‘F7 mF+1>7 (84>

for the transition from mp to mp+1. For F + F' = F+1, these grow

monotonically as the atom traverses the state manifold, i.e.,

)\mp,mp+1 < )‘mp+1,mp+27 (85>

while in the previous case from the Dy line, they were decreasing monotonically.
This is similar to the first half of the components of the spin raising or lowering
operators Sy (although there the coefficients are mirrored around the centre),
which are the origin of a similar pulse shape in the Dicke model. The same
effect is also observed when driving F' = 3 <> [’ = 4 on the D; line.

The quantum state reconstruction for this transition, however, fails com-
pletely. The filter function ends up being even more rapidly oscillating than
the previous cases. On top of that, using our argument about relative phases
from before, there must be a relative phase of —7 between the states [ =
2,mp = 2) and |F' = 3,mr = 3). The atomic steady state is a mixture of
these two states with non-negligible contribution of |F" = 3, mpr = 3) as can be
seen in Fig. [8.8] The cavity field thus exits with a mixture of these two phases
depending on the atomic state, which is a significant issue for superposition

states.

8.4 (N-states and other Superpositions

Similar to the previous chapter, we may again start with a superposition of
Zeeman levels of F' = 2. For every level the atom goes through, it still incurs a
phase shift of —7, which gets transferred to the output light pulse. Since here
the excited states do not only get virtually populated, every photon emission

corresponds to a two-level process (which means a phase shift of —), therefore
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all our pulses with even photon number states are unaffected, but for the
F =2 < F’' = 1 case, where we have 3 photons, the relative sign of the
superposition is changed, which rotates the Wigner function by an angle —3.
This is different to the high detuning case, as there each photon emission was
a simple transition between two levels due to being a Raman process. Since
our 4-photon 0 N-state preparation includes one Raman process and 3 resonant
processes, the relative phase is —77.

The two reconstructed Wigner functions of the 0 N-states in Figs. [8.943.10
show a considerable rotation in the clockwise direction from their predicted
orientation. This corresponds to a relative phase between the |0) and |N)
parts. The origin of this phase is the sizeable population of states of the atom-
cavity system, where the atom is in the off-resonant ground state manifold and
the cavity is not empty. This either happens when spontaneous emission of a
state with a photonic contribution decays to the lower ground state or through
an off-resonant cavity transition, the latter one mainly being important in
the high coupling regime. For low coupling, F' = 2 <» F’ = 1 has a much
smaller phase difference from the theoretical prediction Ap = 0.1459 than the
F =2 « F' = 2 transition with Ay = 0.4264. This can be explained by
the population of FF = 1 being more important in the case of the F = 2 <
F’ = 2 transition. The same logic can also be applied if we compare the
F = 2 < F' = 2 transition for low and high coupling, i.e., for high coupling
the FF = 1 population is lower and so is the phase difference Ay = 0.2991.
F =2« F’" =1 for high coupling is a bit peculiar as it has the lowest F' =1
population but also the highest phase difference Ay = 2.4980. The F = 1
population is lower because of the higher driving strength, but that will also
enable Raman processes on top of the final step, which add a different phase
each step than their resonant counterpart. We also noticed that smoothening
out some of the oscillations of the filter functions with a Gaussian filter can
decrease the relative phase.

The first thing to notice about Table [8.2 is that again the O0N-states,
compared to the Fock states of the same configuration, sport a higher fidelity
all across the board. In contrary to the number state generation, the F' = 2 <+

F' = 2 performs better because the 4 photon contributions of the F' = 2 «+»
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Table 8.2: Fidelities F of the reconstructed density operators relative to the target O N-state.
The fidelities take into account the added phase shifts.

{k,g}/2m {4,25} MHz {50,250} MHz
F & FY 21 22 241 22
F 0.888 0.905 0.611 0.956

F’" =1 transition have more effect on the ON-state than in Fock state, i.e. the
additional |0)(4] and |4)(0| components on top of the |4)(4| component of the

density operator.
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Figure 8.9: Output Photon Flux (top row) of a Rubidium atom prepared in equal superpo-
sition states of mp = —2 and mp = 1 driven via F = 2 + F/ = 1 (left), and of mp = 0
and mp = 2 driven via F = 2 < F' = 2 (right). The lines represent the full master equa-
tion model (solid black). The histogram shows the temporal distribution of photocounts
(renormalised to N) for 10000 trajectories of the reduced model. The number below the
curves represents the output photon number from the full model. The inset plots show the
histograms of the photon number counts for the different quantum trajectories and includes
the mean photon number plus the variance of the photocounts. Corresponding Wigner func-
tions plots from the quantum tomography applied to the master equation are shown in the
bottom row.
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Figure 8.10: Output Photon Flux (top row) of a Rubidium atom prepared in equal super-
position states of mp = —2 and mp = 2 driven via F' = 2 +> F' =1 (left), and of mp =0
and mp = 2 driven via F = 2 <> F' = 2 (right). The lines represent the full master equa-
tion model (solid black). The histogram shows the temporal distribution of photocounts
(renormalised to N) for 10000 trajectories of the reduced model. The number below the
curves represents the output photon number from the full model. The inset plots show the
histograms of the photon number counts for the different quantum trajectories and includes
the mean photon number plus the variance of the photocounts. Corresponding Wigner func-
tions plots from the quantum tomography applied to the master equation are shown in the
bottom row.

8.5 Preparation of Entangled States

Since the lower ground state F' = 1 is really far detuned, any part of the wave
function in these states is essentially unaffected by the dynamics, especially in
the low coupling regime, which we will be considering from now on. We exploit

this by starting with an atom initially in a superposition of both ground states,
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e.g.,

) = % (|F — Lmp = —1)4|F = 2,mp = —1>). (8.6)

We run our F' = 2 «» F' = 1 scheme (see Fig. for a schematic representa-
tion) to obtain a superposition of 0 and 2 photons conditioned on the atomic

state, so the output photon number is entangled with the atomic state:

1
|¢> = E(’F = 1,mF - —1>®‘O>out+‘F - 2,mp = +1>®|2>0ut>- (87)

This transition is chosen because |F' = 2,mp = +1) are pseudo-dark states
(also the reason why this is our initial state) and we already showed that this
yields a satisfactory fidelity. Inverting the polarisation of the laser for the

reverse operation yields

1
) = - (|F — Lmp = 1) @|0)E2 +|F = 2,mp = —1>®\2>fii)- (8.8)

V2

Now, in addition to the aforementioned entanglement between the internal
atomic state and photon number, the photon numbers of consecutive pulses
are also entangled, i.e., if we measured the output photon number we would
either have a sequence of 2 photons or no photons at all.

We can now disentangle the atom from the exact output photon number

by mixing the atomic states with a microwave 7/2-pulse which yields

_ L am_ NN (el P
) = \/§<‘F =1,mp=—1) NG o
1F = 2,mp = —1) o o

out out ) ]

V2

The entanglement has been transferred to these superposition states, that are
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two of the maximally entangled Bell states, if we imagine for a moment that
we could encode the logical |0) and |1) of a qubit on the states |0)qy and
|2)out- A state measurement (F' = 1 or F' = 2) collapses the state of the
propagating light into the corresponding Bell state. The dimensionality of this
final superposition depends only on how often we invert the polarisation of the
laser, which would give us the option to generate Greenberger-Horne-Zeilinger
state [112], the generalisation of Bell states to higher dimensions.

The production of GHZ-like states is mainly limited by the fact that the
losses to F' =1 or |F = 2, mp = £+2) for every drive will accumulate for every
switch of the polarisation, the former one leading to a loss in amplitude and

the latter to some 3-photon contributions.
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Figure 8.11: Depiction of the movement of the atoms through the state manifold. The black
dot is the initial state, the dashed circle represent the final state of the upper half of the
superposition.

8.6 Conclusions and Outlook

In this Chapter, we have shown that our deterministic single-atom source of
N-photon pulses can readily be taken to resonance, if the emission into free
space via spontaneous emission is dominated by the emission into the cavity.
Overall, the fidelities obtained are a bit lower than those from before, especially
considering the lower photon number of the output pulse, but our overall goal

to demonstrate that such a scheme is feasible for low coupling cavities was
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fulfilled. The pulses also end up happening on a much shorter time scale,
which is a welcome addition.

Most of what we have shown here for ’Rb will hold for similar atoms such
as 133Cs, where one could utilise the F =4 <+ F' =4 and F =4 < F' =3
transitions of the D; line. The output photon numbers would be doubled in
that case. The larger hyperfine state splittings will also help by suppressing
both resonant Raman transitions in the low coupling regime and off-resonant
cavity deexcitation in the high coupling regime. Note that for the F' = 4 <
F' = 4 transition, similar to the F = 2 «+ F’ = 2 transition in Rb, the
Clebsch-Gordan coefficients going to F' = 3/F = 1 are larger than the ones of
the main paths, this circumstances is accentuated for *3Cs, thus making this
transition less ideal for low g. The bigger ground state manifolds open up the
door to look at F' =3 + F' = 4.



Chapter 9

Two-Mode Single-Atom Laser

9.1 Introduction

In an ordinary laser (light amplification by stimulated emission of radiation), a
gain medium such as atoms is placed between two mirrors forming a cavity, in
such a fashion that the emitted photons get reflected back through the medium
leading to stimulated emission of additional photons.

Single-atom lasers are different in that the medium is now made up of
one strongly coupled atom (or ion) instead of a lot of weakly coupled ones.
Theoretical proposals and studies of such systems have been around since
the early 90s [113-123]. They have recently been successfully implemented
experimentally with a beam of ¥®Ba atoms (technically multiple atoms, but
they traverse the cavity one-by-one) [124, 125] and one-and-the-same '33Cs
atom [126], the latter implementation being the one we are interested in here.
Recent investigations of single-atom lasers also include normal-superconductor
quantum dot systems [127].

These experiments displayed sub-Poissonian photon statistics and anti-
bunching. That means that these systems are potential candidates for single-
photon sources, which are necessary prerequisites for quantum informatical
applications such as quantum key distribution. Another exciting feature is the
lack of a lasing threshold, a minimum pump strength above which a normal

laser has to be driven so that lasing occurs.
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In the original experiment [126], the ideal trajectory of the *3Cs atom
would be as follows: it would be driven with a laser from F' = 3 to F’ = 3. From
there it will decay to F' = 4, while emitting a photon into the cavity. Then
it gets driven by another laser to F’ = 4. The scheme relied on spontaneous
emission back to F' = 3 to enable the next round trip (Fig. 0.1} left).

We are now interested in expanding this idea to the two-cavity-mode case,
where the atom no longer relies on spontaneous emission in the last step, but
rather is strongly coupled to a second cavity mode. This is made possible by the
relatively small free spectral range of novel fibre cavities [110, 128] that allow
for the simultaneous strong coupling to two 7-polarised cavity modes a and l;,
roughly separated by the ground state hyperfine splitting wgpr. In a current
nanofibre cavity QED setup [128], the modes a and b end up being red- and
blue-detuned by A = 27 x60 MHz from their respective atomic resonances.
This is the closest to resonance the free spectral range allows for now in the
experiment. The cavity has single-atom coupling strengths g = 27 x9 MHz
and cavity linewidths k = 27 x5 MHz.

We consider a single 133Cs atom trapped in a dipole trap and driven by o_-
and o_-polarised lasers with frequencies w3 and w, respectively. The frequen-
cies w3z and wy are chosen to be red- and blue-detuned by the same amount as
the frequencies of the corresponding cavity modes going to the same excited
state. For a schematic representation of the transition (Fig. , right). The
trap is positioned in the evanescent field of a tapered optical nanofibre between
two fibre-Bragg gratings, which forms the aforementioned cavity.

With the addition of the second strongly-coupled cavity mode, this system
has the potential to behave as a quasi-deterministic two-photon source. In this

Chapter, we give a thorough analysis of its emission properties.
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Figure 9.1: Schematic Representations of the laser and cavity transition arrangement from

the experiment in [126] (left) and the one we are now considering (right). Zeeman sublevels
are not shown.

9.2 Full Model

The Hamiltonian for this system reads (h = 1)

A

H = waala+wyb'b—wip|3) (3]
Fwa |2 (2| +wy[3) (3 +wa [47) (4| +ws |57) (5]

+Qiwgt<|3><2'|—+|3><3’l-+|3><4’|_)+H.c.
ze;:t””?/w 13)(3'[ +13)(4'] 1)+ H.c. o
F () -+ ]+ )+
in<‘4><3/\++!4><4’!++!4><5’r+>+H.c.

+9a(|4) (3 |n+[4) (4| +[4) (5') + H.c.
b(I3)(2 |+ 13) (3| +[3) (4']) + H.c.,

where we have already removed all the terms corresponding to very far off-
resonant processes, i.e., those detuned by the large ground state hyperfine
splitting (e.g., we neglect the coupling of mode a to the |3) <> |2/,3',4’) transi-
tions). We have also absorbed the dipole transition elements and the different
Zeeman sublevels into the |7)(i|,, where the subscript specifies the polarisation
of the transitions, and we assume the same Rabi frequency 2 for each laser

field. We consider the system to be open and introduce cavity decay at a rate
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r and spontaneous emission at a rate . The different spontaneous emission
channels (7,04 for each F' — F transition) are taken to be independent,

leading to the following master equation

p=—il ] +/<D[&]f)+/<;D[l;]ﬁ
S D32 1o+ DI+ S DII3) (117
. [r4><5'mp+’;DH4><3’rﬂ1ﬁ+gz>u4><4'rﬂm
S DI13)(2]-16+3 DII3) (3|-p+ 3 DII3) 4] (9:2)
S DI4)(5)-1o+3 DII4) (3| 5+ D[I4) 4] ]
gn3><2'|+] D([3)(3'|+1p+5 DII3) (¢'|+)5
S DI4)(5 1o+ 5 DII4) (314 5+ S DII4) 4]

9.2.1 Interaction Picture

For our numerical simulations, the large ground state hyperfine splitting (around
9.2 GHz) is problematic, as it makes the problem ’stiff’; i.e., having time scales
very different from each other (the coupling strengths are in the MHz range).
Therefore, we transform the full Hamiltonian into the interaction picture

using the transformation Hamiltonian

Hy = (w3—wpp)ata+ (wit+wpr)b b+ (ws —wir) Z |[E)(F]
Fr (9.3)
+ (w3 —ws—2wrr)|3) (3].



9.3. ATOMIC POPULATIONS AND INTRACAVITY PHOTON NUMBER 135

The Hamiltonian in this new frame is given by

V = 613) (3| + (Atwys)|2) (2] +A[3) (3]
+ (A+W3/4/)|4/> <4,| + (A+W3/4/ +w4/5/) |5,> <5/|
Qefi&
2
Qe—idt
2
Qei&
2
ei

_|_

(I3) (2] -+ 13-+ 3) (4] )+ H.c.

+

(1324 +(3) (3| +[3) (4] )+ H.c.
(9.4)

+

(14) -+ [4) A +[4) (5] )+ H.c.
N ot

(14) 3+ +[4) (4| +[4) (5] )+ H.c.

+9a([4) (37 +|4) (4| +[4) (5']x) + H.c.

+9b(13) 22+ (3)(3|=+13)(4']x) + H.c.,
where we define
d = 2A+wyy (9.5)
and the energy difference between the excited levels
Wij = Wj—Ww;. (9.6)
The transformation does not affect the dissipative part of the Master equation.

9.3 Atomic Populations and Intracavity Photon

Number

For the numerical integration of the master equation, we start with the atom

initially in a mixed state with equal populations of all Zeeman sublevels of the
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lower ground state, i.e.,

3

fo== 30 IF =3mp)(F =3, me|l0)0Lol0)0l  (97)

mp=—3

if using the full model (or in |F = 3) when using one of the 4-state models
later in the Chapter). Both cavity modes are initially in the vacuum state. For
trajectory simulations of the full model, we start with the atom in a random
Zeeman level of the lower ground state, unless we only do a single trajectory,

in which case we start with an equal superposition of all of them.

9.3.1 Varying the Laser Strengths

We start by looking at what happens if we vary the strength of the lasers in our
system. Fig. shows the population of various hyperfine manifolds. For low
field strengths, the population of the initial state F' = 3 remains dominant. As
we get further from that condition, the populations of the two ground states
become equal, and the excited state populations start to become important.
Note also that for very large driving strengths, the population of the upper
ground may even surpass that of the lower. Fig. shows the behaviour of the
photon number for the same set of parameters. The populations of the cavity
modes in the steady state are mainly equal unless the driving laser becomes
strong, in which case the mode b ends up being slightly more populated on
average. The initially larger population of mode a is due to the atom starting
in ' = 3, from which that mode is the first to be excited.

For the corresponding trajectory picture, that means that on average the
atom stays longer in /' = 3. The noise on the curve corresponds to sponta-
neous emission events. Every jump with one of the cavity mode annihilation
operators cements the two photon transition and comes thus with a switch in
ground state and cavity population. The same is true for spontaneous emission
decaying to a ground state different from the one it came from. The frequency
of this swapping increases as the laser driving increases. For low driving,

jumps are infrequent, for intermediate there is a regular occurrence, and in the
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high driving limit the trajectory becomes quite erratic as spontaneous emission

dominates.
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Figure 9.2: Atomic state populations from the Master equation (left column) and for a single
quantum trajectory (right column) as a function of time for varying driving strengths €.
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Figure 9.3: Average photon number (a'a) (solid blue) and (b'b) (dashed orange) from the
Master equation (left column) and for a single quantum trajectory (right column) as a
function of time for varying driving strengths €.

9.3.2 Varying the Detunings

In contrast to higher laser strengths, lower detunings do not cause the steady
state excited state populations to become more important, even though they
are quite important in the initial dynamics, as can be seen in the first row of
Fig. [9.4. This hints toward the atom reaching a state that is close to being

dark. In the trajectory picture, this results in jumps becoming less prevalent
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asS we approach resonarce.

The master equation solutions suggest that the steady state populations of

the cavity modes stay roughly equal (Fig. . Looking at a single trajectory,

we see again that the frequency of jumps diminishes closer to resonance.
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Figure 9.4: Atomic state populations from the Master equation (left column) and for a single
quantum trajectory (right column) as a function of time for varying detuning A.
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Figure 9.5: Average photon number (a'a) (solid blue) and (b'b) (dashed orange) from the
Master equation (left column) and for a single quantum trajectory (right column) as a
function of time for varying detuning A.

9.3.3 Varying the Atom-Cavity Coupling Strength

The cavity coupling strength is a parameter that is not easily tunable experi-
mentally, but it is imaginable that in the future slight increases can be realised.
In contrast to increasing the laser strength, the increased cavity coupling leads
to an increased splitting of the ground state populations. Also, spontaneous

emission should become less prevalent because the cavity transitions are in
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stronger competition with them.

Since the cavity coupling strength is quite small to begin with (relative to
the driving), increasing it can only accelerate the dynamics and thus increase
the cavity photon number. If it was increased further, we would expect this to
decrease the photon number as well because vacuum Rabi oscillations between

the cavity modes and the atom could be expected to occur.

(k,9,A,Q)=(59,60,20) x 2m MHz (k,9,4A,Q)=(5,15,60,20) x 2mr MHz

1.0 1.0
" — F=4 " — F'=4
5 F=3 S F=3
5 0.81 — F=4 ‘5 0.8 — F=4
© — F=3 © — F=3
=} —_— F = > —_— Fl=
% F'=5 a F'=5
© 0.6 — F'=2 O 0.6 — F=2
o o
] )
- +J
8 0.4 0.4
n 0
u L
€ 021 € 0.2
o o
- -~
< <

0.0 T T T T 0.0 T T T r

0 20 40 60 80 100 0 20 40 60 80 100
Time in us Time in us
(k,9,4,Q)=(5,9,60,20) x 2 MHz (k,9,A,Q)=(5,15,60,20) X 2 MHz
1.0 1.0 P
; ] 7

" — F=4 " — F=4
S F=3 S F=3
5 08— F=4 S 0.8+ — F=4
o — F=3 o — F=3
=} - F= > —_— Fl=
3 F=5 3 F'=5
0 06{— F=2 S 0.61  Fp=>
o o
] [0
- -+
5 044 0 0.4
n 0
9 =
€ 021 € 02
o o
e +J
< <

0.0 T T T T T T T 0.0 F—=== T =4 T T T T

80.0 825 850 875 90.0 925 950 97.5 100.0 80.0 825 850 875 900 925 950 975 100.0
Time in us Time in us

Figure 9.6: Atomic state populations from the Master equation (first row) and for a single
quantum trajectory (second row) as a function of time for varying coupling strength g.
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Figure 9.7: Average photon number (a'a) (solid blue) and (b'b) (dashed orange) from the
Master equation (first row) and for a single quantum trajectory (second row) as a function
of time for varying coupling strength g.

9.4 Photon Statistics

9.4.1 Inference from Photoelectric Counts

We use the method outlined in [126], where the photonic intensity correlation
functions are reconstructed from the coincidence of photoelectric counts. We
simulate IV trajectories of a single atom for a duration 7" with y time steps. We
record the times at which photons are emitted from one of the cavity modes.
These times are then converted into histograms with a bin number equal to the
number of time steps, meaning we only have a count number ¢ that is equal
to either one or zero in each bin. This is done for each cavity mode separately,

giving us two lists of photoelectric events (c§, ¢f, ..., ¢i_;) and (cf, ¢}, ..., ¢} _;).
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We compute the coincidence function for the rth trajectory through
n (k)= "chel . i.j € {ab}, (9.8)
and sum the results of all trajectories up to a total coincidence function

ni(r) =Y n(r)  ij€{a,b}. (9.9)

Because of the high resolution, the coincidence function is most of the time
zero or 1 and therefore quite noisy. We smoothen the coincidence function by
convolving it with a Gaussian function. Fig. shows both the raw output
of this procedure and how a convolution of it leads to more telling data sets.
Furthermore, in the case where we want to compute the coincidence for photons
of the same mode, we have to set the Oth element of the coincidence function
manually to zero as otherwise we are coinciding the photon with itself in that
case.

The correlation function can be computed from the coincidence function
through

(2) ni;(7) .
o =7 q

where R, and R, are the counting rates, i.e., the integral over the output
photon flux 2x(afa) (average over all trajectories) divided by the observation

time of the two modes,

2 T
R, = ?“ dt(a'a),

) - (9.11)
Ry=—= [ ar(bih),
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and € = % is the time resolution.

The observation time starts after the system has reached the steady state.
The first event is recorded if it happens before a time T after the start of the
record and the second event happens up to T afterwards (so at most 27" after
the start).

Alternatively, we can also choose to start to record from the point in time
when the lasers are turned on, but then a large time is required to compensate
for the initial dynamics to reach the same normalisation as the steady state

case.

9.4.2 Intensity Correlation Functions

The zero-delay correlation functions

(0 <dTBT8€f>?S . (9.12)
<&T&>55<bTb>SS

can be obtained from solving the master equation to the steady state once
and give us a rough idea of how the correlation functions behave for a certain
selection of parameters. Some results are given in Fig. [0.9] for a variety of
parameter sets.

Our expectations for the light emitted from the cavity are that the two
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autocorrelation functions should still display sub-Poissonian photon statistics
and be antibunched, since the situation is virtually the same as in [126] for one
of the modes and there is no reason the newly added mode should behave any
different. The crosscorrelations between the two modes, on the other hand, we
expect to show super-Poissonian statistics due to the atom ideally traversing
the level structure in clockwise fashion and thus emitting photons into the
cavity in alternation. As we can see in Figs. and these expectations
are mostly met. We can also observe that the autocorrelation functions show
excess fluctuations ¢ (7) > 1 for intermediate time delays 7 (Fig. [9.10)). This
can be understood as the fact that after a time of the order of the average
round trip, time observing a photon from the same mode is more likely. This
effect could already be observed in [126] and disappears as the detuning is
decreased or the laser strength is increased, but becomes more prominent with
the higher cavity coupling. The crosscorrelations show both antibunching for
very small time delays and bunching after that initial rise.

The only time we can see a departure from this behaviour is when we
approach resonance or when the driving laser intensity becomes very strong,
as can be seen in the second row of Figs. and Then, there is no
more sub-Poissonian statistics of the autocorrelation. For comparison, in the
experiment [126] all fields were blue-detuned by at least 27 x9 MHz. For
low detunings this can be remedied to some degree by increasing the cavity
linewidth k to ensure that the photons leave the cavity fast enough to suppress
reexcitation processes from the cavity, as illustrated by the bottom plot in Fig.
9.91
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Figure 9.9: Zero-delay correlation functions gﬁ)(()) (solid blue), géz) (0) (dashed orange) and

gg))(O) (dotted green) as a function of time obtained from the master equation.

We can also observe an asymmetry between the two crosscorrelations, which
can be explained by the two processes putting photons into the two cavities
happening at different rates, i.e., Quu g3y > Q33943 (using the relative hy-
perfine transition strengths [50], explicit values for these parameters will be
derived at a later stage). So for a given time delay, it is more likely to observe a
photon in mode b after having observed in mode a than the other way around.

This directly translates to gﬁ) (1) > gg)(T) for the crosscorrelation functions.
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The peak in the crosscorrelation function also gives us an idea of the char-

acteristic time of one half of a round trip. It is also worth noting that the time
scale 7 over which the correlation functions become coherent (¢ (7) — 1) is

approximately the same. When the autocorrelation functions are affected by

excess fluctuations, they will converge before reaching 1.
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(1) (green dotted) and ggz) (1) (red dash-dotted) obtained from photon counting simula-
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tions and from solving the master equation.

2 (1) (blue solid), géz) (1) (orange dashed),
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Figure 9.11: Intensity correlation functions g\2 (1) (blue solid), gég) (1) (orange dashed),

gi?(T) (green dotted) and géi) (1) (red dash-dotted) obtained from photon counting simula-
tions and from solving the master equation.

9.4.3 Violation of Cauchy-Schwarz Inequalities

We take now a closer look at the quantum signatures that are a little more
difficult to spot than sub-Poissonian photon statistics and antibunching, i.e.,
the violation of the other classical Cauchy-Schwarz inequalities that we intro-
duced back in Sec. [£.6] The trajectories are supposed to average to the same
result as the master equation. Therefore, we use the zero-delay results from
the master equation solution (horizontal lines) for comparison in the plots of
this Subsection, because the result from the trajectory simulation have not
converged enough.

In Fig. we take a look at the condition |¢®(7)—1| < [¢®?(0)—1] for
the autocorrelation functions. In the main parameter regime of interest (high

detuning and low driving), when there is antibunching this is never really
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violated (see first row of Fig. . In the results from quantum trajectories
there are occasional violations, but this is not backed up by the master equation
solution and can be attributed to the noisiness of the trajectories. Even outside
this regime, the zero-delay autocorrelation function ¢®(0) stays quite close to
1 or at least grows very slowly for high driving and/or low detuning, but ¢®(7)
can reach quite large values for small time delays, which leads to a substantial
violation of that particular Cauchy-Schwarz relation (see second row Fig. [9.12

for a low detuning example).
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Figure 9.12: |g¢(1i)(T)—1| (solid blue) and |g£§)(T)—1| (dashed orange) computed from 500
quantum trajectories (left) and from the steady state solution of the master equation (right).

The horizontal lines represent | gﬁ)(O) —1] (black solid) and | gl(j)(O) —1] (grey dashed).

Owing to the existence of the second cavity mode and the concomitant
existence of a crosscorrelation in this scheme, we now can observe an additional
quantum signature of the light based on it.

The strongest of all these quantum signatures is the violation of [gﬁ) (1)) <

g,(li) (0) géi) (0), which usually occurs by a margin of several orders of magnitude,
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as can be seen in Fig. Sub-Poissonian statistics clearly also contribute to
breaking this inequality, but even if those were not present, e.g., in the regime
of strong driving, the excess fluctuations of the crosscorrelation would make
sure that the inequality still no longer holds (see second row of Fig. [9.13).
If the autocorrelations are sufficiently sub-Poissonian | gt (O)gl()g)((]ﬂ < 1 the
inequality is violated at all times, else the violation just persists for small time
delays. Since we already observed that ¢®(7) < ¢g®(0) for both autocorre-
lation functions, we can check whether [gg))(T)]2 < g2(r) gg)(T) holds, which
is a more restrictive condition fields that already obey ¢(® < 1, so potentially
a way to quantify the degree of violation. This inequality, however, is only

violated for small time delays.
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Figure 9.13: [géi)(T)]Z (solid blue), [géz) (7)]? (dashed orange) and g2 (T)géz) (1) (green dot-
ted)) computed from 500 quantum trajectories (left) and from the steady state solution of
the master equation (right). The horizontal line represents gg%)(O)gl(j)(O).

Finally, we have the condition \gﬁ)(T)—lP < (gC(LZa)(O)—l)( ég)(O)—l) for
crosscorrelation functions in Fig. This appears to be mainly violated for
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small time delays and only occasionally for larger ones. Again, larger driving

strengths and lower detunings remove the violation.
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Figure 9.14: \gﬁ)(r)—uz (solid blue), |géi)(7')—1|2 (dashed orange) and (g((l?l)(r)—
1)(95?(7)—1) (dotted green) computed from 500 quantum trajectories (left) and from
the steady state solution of the master equation (right). The horizontal line represents

(952 (0)~1)(g%5) (0)—1).

It should also be noted that while we lose quantum signatures such as sub-
Poissonian photon statistics in the limit of high driving, the other ones still

appear and for those related to |¢(®(7)—1| are even amplified.

9.5 4-state Model

The full model as it is, is fine to do quantum trajectories, but solving the
master equation is quite resource- and time-consuming, especially if we were
to perform quantum regression or to do parameter sweeps. Therefore, in this
section, we would like to see whether we can come up with a simpler model

that can reproduce some of the results that we have so far.

9.5.1 Version 1

In the initial theoretical studies of the one-atom laser experiment [129] the full
model was reduced to an effective 4-state model. We may do the same by, first,
ignoring the far off-resonant excited states F' = 2 and ' = 5 and, second,

remove the Zeeman sublevelstructure of the F/ = 3 and F’' = 4 states. Here
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the effective coupling strengths are obtained by taking the squared average of

the dipole transition elements:

F
"= |(F, ' 2
IFF = 9| 5 min F T Z mp|pol F',mp)|
QFF/ = Q 2 1 £ |<F mF|Mj:1|F/ mFi1>|2 <913)
’ 2 F+F/ : :F ? )
mp=—

S (F mp| ol FY mp) |2
dor EmF—fF [(Fymep | o] FY, mp)|?

YEF =7

which yields

{933’7 9347, 943/, g44/} - {

VT
NG

f 1
{933', Q34', Q43'7 Q44’} = { \\//_—

6
1 \/_ 10 (9.14)
4V/3' 82

i -

{733’7 V43’5 Y34/, ’744'} = { 2’

m»aﬂ%ﬂ ~

NGNS
—_
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In reality, the atom never really is in an equal superposition of all the hyperfine
states, but in between jumps it trends towards quasi-steady-states, which are
roughly equal superpositions (if the driving strengths are equal) of all the
odd or all the even Zeeman sublevels, so that on average this should be a
sensible approximation. Indeed, the master equation solution shows an equal
population of the Zeeman sublevels apart from the edge states, which tend to
be more populated, but not by a large margin. Incidentally, in resonance the
Zeeman sublevels of ' = 4 with odd mpr and those of F' = 3 with even mp

are one to two orders of magnitude less populated than their neighbours. The



9.5. 4-STATE MODEL 153

effective 4-state Hamiltonian reads

H = 0[3) (3] + A3 (3] + (A +wy) 404
+e 70 ( Qa3 13) (3| + Qaur [3) (4]) + H.c.
4+ Qs [4) (3 |+ Quu |4) (4 )+ H c. (9.15)
+a" (g3 14) (3| + gaw |4) (4] )+ H ..
+b'(g33|3) (3| + gaw |3) (4|) + H.c..

The master equation changes to

p = =i, p| +xDlalp+D[bp
+ 5 D3)(3 ) o+ - DI14) (3] (9.16)
ﬂﬁpn 4) ()| p+ D34 )b

9.5.2 Version 11

In the Hamiltonian dynamics in Eq. (9.15]) half of the transitions are processes
detuned by A and the other half is detuned by A+wsgy, such as the transition
going with gs3, gas, Q3 and sy, which we shall ignore in the following.

This allows us to get rid of any explicit time dependence after rotating about

A~

U = e~ 903 B|-4) ]t

Ho= A3 (3| -Al4) (4|
+ Quy|3)(3'| + H.c.
+Quu|4)(4'|+ H.c. (9.17)
+al gyz[4) (3| + H.c.
0t gau|3)(4'|+ H.c..

Now that the more off-resonant processes have been eliminated, it is clear to

see that in these Hamiltonian dynamics, photons are put into the modes in an
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alternating fashion and never in succession into the same mode.

9.5.3 Comparison of the Models

Let us start by comparing the atomic populations and cavity mode populations
for a single trajectory and the Master equation solutions. We restrict ourselves
here to a high detuning and low driving, as beyond that the simpler models
should not hold anymore. On first sight, the 4-state models appear much more
regular, whereas the trajectory of the full model may stay in the same state
for prolonged periods in which fewer photons are observed, as can be seen in
Figs. 9.15}9.16] This seems to coincide with the time before the steady state
is reached, which is longer than in the 4-state models, which makes sense since
there is much less going on in these. The overall lower cavity populations can
be explained by the fact that in the full model the atom is also being pumped
into dark states, which slows down the process of putting photons into the
cavities, as was argued in [129]. In the 4-state models, these dark states do

not occur.
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Figure 9.15: Cavity mode populations from a single trajectory (left column) and the en-
semble average from the master equation (right column) for the full model (top row), the
4-state model (middle row) and the simplified 4-state model (bottom row). The parameters
were set to {g, k, 2, A} = {9,5,20,60} in units of 2rxMHz.
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Figure 9.16: Atomic state populations from a single trajectory (left column) and the en-
semble average from the master equation (right column) for the full model (top row), the
4-state model (middle row) and the simplified 4-state model (bottom row). The parameters
were set to {g,k,Q, A} ={9,5,20,60} in units of 27 x MHz.

Even though our three models can reach results that can quantitatively
differ quite a bit, as we just saw, when it comes to the photon statistics from
the effective model displayed in Fig. they are in qualitative agreement
with Fig. [0.10] This of course speaks for the approximations made, when it

comes to isolating the main dynamics of the system. The magnitudes of the
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intensity correlation functions are quite a bit lower and the time scales slower
than those in Fig. [9.10] also there are no excess fluctuations in Fig. [9.17] The
origin of this discrepancy, should again be connected to the dark states, which
the 4-state models do not have. Their slowing effect on the dynamics should

cause slower time scales, which in turn leads to fewer photons in the cavity

modes and thus decreased crosscorrelation functions.

2.5

g
o
L

Correlation
-
°

o
w»
L

0.0+

(k,9,4,Q)=(5,9,60,20) x 2m MHz

-
»
L

Time in us

10

Correlation

25

g
o

=
wn
L

g
o

o
5

0.0+

(k,9.4,Q)=(5,9,60,20) x 2mr MHz

Time in us

Figure 9.17: Intensity correlation functions g(ﬁ) (1) (blue solid), géi) (1) (orange dashed),

g((i)(r) (green dotted) and géi)(r) (red dash-dotted) for Version I (left) and II (right) of the
4-state model. The parameters were set to {g, %, 2, A} = {9,5,20,60} in units of 2r x MHz.

9.5.4 Ramp of the Laser Intensity

Using the 4-state model, with off-resonant processes eliminated in Eq. ,
we ramp up both Rabi frequencies and look at the change in intracavity photon
number (directly proportional to the output photon flux) in Fig. [9.18 Similar
to the original one-atom laser, we observe an immediate onset in the photon
number in Fig. [9.18 A further increase in the driving strength leads to a
drop-off in the intracavity photon number; it has been argued that this is due
to the laser-induced Autler-Townes splitting pushing the transitions further
away from resonance [I126]. The more exact condition describing the lasing

threshold is the ratio of the photon flux from cavity decay and fluorescence,

2k{ata
To = —H<aA 4) ; (9.18)
Va3 <P3'3'>
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and

2k (b1h)

" 34/ <,54/4/> '

(9.19)

Lasing is deemed to occur if 7 > 1. As can be seen in Fig. both ratios
are larger than one from the outset, so there is no lasing threshold. The ratio
decreases as the laser strength increases because the excited state populations
and the associated effective spontaneous emission rates grow faster than the
cavity photon numbers. A lower detuning leads to an increased output photon
flux, but also causes the ratios to decay faster, as this also increases excited
state populations. Note that this is different from the full model, where getting

closer to resonance makes dark states start to play a more significant role.
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Figure 9.18: Intracavity photon numbers (a'a) (solid blue) and (b7h) (dashed orange) as a
function of driving strength  in units of 2rxMHz. {g, k,7v, A} = {9,5,5.2227,60} in units
of 27 xMHz on the left and {g, k,v, A} = {9,5,5.2227,20} on the right. The top row shows
version I and the bottom row version II of the 4-state model.



9.5. 4-STATE MODEL 159

2.00
2.5 1
1.75
2.01 1.50
- 1.25
15 S
1.00
0.75
1.0
0.50
051 0.25
10 20 30 40 10 20 30 40
Q Q
1.75 1 1.75
1.50 1.50
1.254 1.25
W~ 1.00 W 1.00
0.75 0.75 1
0.50 0.50 1
0.254 0.25 1
0.00 1 ; 0.00
20 40 60 80 20 40 60 80
Q Q

Figure 9.19: 7, (solid blue) and 7, (dashed orange) as a function of driving strength 2
in units of 2rxMHz. {g,k,7v,A} = {9,5,5.2227,60} in units of 27 xMHz on the left and
{g9,K,7,A} = {9,5,5.2227,20} on the right. The top row shows version I and the bottom
row version II of the 4-state model.

As we ramp up the driving strength, we also track the zero-delay intensity
correlation function. In Fig. [9.20] we can observe that the sub-Poissonian
statistics of the autocorrelation functions vanish and that the super-Poissonian
statistics of the crosscorrelation functions become more pronounced as the laser
strength increases. Both effects can be explained by increasing the coupling,
making it more likely to observe two photons close in time. Closer to resonance,
we actually also observe sub-Poissonian statistics of the crosscorrelation for
weak fields. A possible explanation for this feature is that after a photon
has been put in a cavity mode by an atomic deexcitation, if the field is too
weak to make the atom progress sufficiently fast through to the excited state
(Q33 < g3ar or Quu < g43), the atom is more likely to undergo vacuum Rabi
oscillations. This would delay the emission of the next photon and thus lead
to a decreased crosscorrelation.

As we have already seen, the 4-state models do not catch all the intricacies
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of the full model and thus this can also only give us a general idea for how the
correlation functions behave for different field strengths. Some features shown
in Fig. [9.20] such as the excess fluctuations in the autocorrelation functions in
the high-field limit for a finite detuning, we have seen in the full model, albeit
at different values. A drastic decrease of the bunching of the crosscorrelation
for decreasing laser intensities can also be seen; whether it goes all the way
down to 1 or even below as the curves with lower detuning suggest, is unclear
due to the dynamics becoming extremely slow and thus it taking longer and

longer to reach the steady state.
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Figure 9.20: Correlation functions g((fl)(O) (blue solid), géi)(O) (orange dashed) and gﬁ)(O)
(green dotted) as a function of the driving strength Q in units of 2arxMHz. {g,k,v, A} =
{9,5,5.2227,60} in units of 27 xMHz on the left and {g, k,vy, A} = {9,5,5.2227,20} on the
right. The top row shows version I and the bottom row version II of the 4-state model.

9.6 Conclusions and Outlook

To recapitulate, we have performed a preliminary investigation of a novel one-

atom laser system, in which the atom couples strongly to two cavity modes.
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We have given an overview of the dynamics and observed a variety of differ-
ent quantum signatures in the output light. An experimental realisation in
nanofibre cavity QED is likely to be achieved soon, at which point some of the

theoretical predictions might be verified, either qualitatively or quantitatively.
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Chapter 10

Generation of Spin Cat States in

an engineered Dicke model

10.1 Introduction

A so-called "cat state" is a quantum superposition of two quasi-classical states,
in analogy to Schrodinger’s original Gedankenexperiment [I30]. As well as
this fundamental physics aspect, such states are especially interesting for the
field of quantum metrology as they allow for quantum-enhanced measurements
[38]. Hence, there is considerable interest in the generation of such states,
particularly in the context of light fields and of spin angular momentum in
atomic ensembles [107, I31HI37|. Cat states of light involving quasi-classical
states of large average photon number are notoriously difficult to produce
because of their extreme sensitivity to even very small losses in propagation
and in optical elements. Spin angular momentum states of atoms, however,
offer better possibilities for mesoscopic or macroscopic cat states due to the
generally long lifetimes (and coherence times) of the involved spin states, which
are typically stable ground hyperfine states.

Nevertheless, the preparation of large-sized spin cat states is still very chal-
lenging, as decoherence still scales with the size of the system (i.e., the magni-
tude of the total spin), and evolution that produces a cat state in general re-

quires a collective (all-to-all) interaction amongst the atoms. Such dynamics is
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offered by small, tightly-confined ("single-mode") spinor atomic Bose-Einstein
condensates, but the time scales involved are slow as a result of the relatively
weak atom-atom interaction strength, and particle losses are difficult to avoid.

An alternative, and increasingly prevalent means of implementing collective
atom-atom interactions is via the platform of cavity quantum electrodynamics
(cavity QED), whereby a cavity light field facilitates the exchange of excitation
between atoms, i.e., atom-atom interactions are mediated by the cavity field,
and are effectively infinite range in nature. Prominent amongst examples of
such cavity-mediated collective atomic interactions is the Dicke model [138,
139].

Here, we explore two alternative ways of preparing cat states of two max-
imal spin projections using recently implemented effective Dicke models: first
for trapped ions [140], 141] and then for atom ensembles with cavity-mediated
Raman transitions [65], [71].

The chapter is organised as follows: we start in Section by introduc-
ing a somewhat general, open Dicke model for N particles. By considering a
dispersive limit of this model, we show how one can obtain a particular, effec-
tive dynamics — the so-called one-axis twisting Hamiltonian — that is known to
generate cat states. With damping, the one-axis twisting dynamics is modified
and we derive the non-Hermitian time evolution of the spin wave function by
changing to a convenient (rotated) basis. We also introduce the fidelity and
quantum Fisher information as measures to quantify the success of our scheme
in preparing cat states. Then, in Sections and we take a closer look
at the two physical systems — trapped ions and atoms in a cavity — in which
our scheme could potentially be put into practice. For each of these systems,
we examine the influence of the most relevant decoherence mechanisms on cat-
state generation using our scheme. We then consider the requirements that
these decoherence mechanisms put on potential experimental values of the key
parameters, enabling us to gauge the feasibility of our scheme.

In Section we additionally explore quantum jump trajectories, her-
alded by photon emissions from the cavity, which generate "kitten" states (cat
states of smaller spin amplitude) in a random fashion. We close with our

conclusions in Section [10.5]
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10.2 Omne-Axis Twisting Dynamics

10.2.1 Engineering from a Dicke model

We consider an ensemble of NV identical spinor particles (of total spin S = Ns,
where s is the spin of each particle) coupled to a, for now unspecified, bosonic
mode, which is in equilibrium with a thermal reservoir of mean excitation
number n, and subject to decay at a rate k. The master equation for the

system density operator p is (A = 1)
b= —i [ﬁ,ﬁ} +k(f41)DJa]p+wiDaT)p, (10.1)

where a represents the bosonic mode annihilation operator, and the Lindblad

superoperator is given by
D[0]p = 200" —p0t0O—-00p. (10.2)

For the Hamiltonian, we assume a generalised form of the Dicke model,

X N /. . A . .
H = wilatwod, +—— aJ++aTJ,)+ & (dJ,+&TJ+>. (10.3)

\/ﬁ< V25

This is expressed in terms of the collective spin operators which are sums of

the spin operators of the individual spinors ng)y o4}

N
j _N g
Ttawaty = Y Sy ey (10.4)

In the dispersive limit (Jw| > wp, A+, albeit more generally valid for vVw?+x? >

wo, A+) we can adiabatically eliminate the bosonic mode to obtain a master
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equation for the reduced density operator of the collective spin in the form

. ~ n+1 ~ ~
5= —z’[H,ﬁ] LD RPN AP

25 (w2 + k2
i ( ) ) A (10.5)
——D[A_ A _|p
+28(w2+f€2> [ ‘]++ +‘] ]p7
with the Hamiltonian
N 2n+1)(A\2 =)\2)7 .
H = {WO—W( ;;,_ >2( _2 +):|Jz
. (W?+42) (10.6)
- 2 72 . 2 72
T [(A_+A+) T (A=) Jy].

Now, for the purposes of this Chapter, the original Dicke model system is
itself assumed to have been "engineered" and that the parameters w, wy, and
A+ are effective parameters that are typically comparable in (energy) scale,

but can be tuned as desired. So, in particular, we may choose \y = A_ = A

and wy = 0 in Egs. (10.5{10.6) to give
p=—i|H.p|+TDLLIp, (107

with the one-axis twisting Hamiltonian [142],

H=—AJ?, (10.8)
where
2 2
P (10.9)

S(w2+k2)
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and

9 ro= _
_ —QQ(ZET;;) -z —&(QZH)A. (10.10)
For the remainder of this Chapter w and A are assumed, without loss of gen-
erality, to be positive.

Our choice of parameters (A; = A_ = X and wy = 0) leads to the elimi-
nation of the two terms proportional to S, and 5’5 . The former term would
introduce dephasing between the superposition components, while the latter

would add a separate, distinct one-axis twisting to the dynamics.

10.2.2 Time evolution of the wave function

The one-axis twisting Hamiltonian ((10.8)) is known to generate spin cat states,
that is, coherent superpositions of the angular momentum eigenstates |S, S),
and |S, —S),. For finite I', we can consider a quantum trajectory treatment of
and generalise this Hamiltonian evolution to that of the non-Hermitian
effective Hamiltonian [43), 44]

H = —(A+il)J2 (10.11)

In the two systems that we will be looking at, it turns out that either I' = 0
(trapped ions) or that, for finite " (cavity QED), the quantum jumps associated
with the quantum trajectory picture correspond to photon emissions from a
cavity, which could be monitored to facilitate a conditional evolution. We
note also the possibility A =0 and I' > 0, e.g., when w = 0. In this case, the
Hamiltonian can lead to novel entangled-state cycles of collective spin states
or to probabilistic preparation of the state |.S,0), [143].

Since the Hamiltonian depends only on J,, it will be convenient at

times to change from the basis of S, eigenstates to the basis spanned by those
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of S, through

S

Som). = 3 Dfm,(—g)w, MY, (10.12)

m=—5

where the subscript on the ket indicates in which basis the collective spin state
is, and D2, are the elements of the Wigner D matrix [144],

S+m

Dy (B) =D (=1)Fmm

VST =m)(S+m)(S—m)! (10.13)
KI(S+m/ —k)(S—m—k) (k+m—m)!

25—2k+m’—m 2k—m'+m
X | cos é sin é )
2 2

where the sum runs over all non-negative factorial arguments. From now on

we can simplify the notation, as we always consider the case 8 = —7 and all
sums over m are from —S to S. In particular (from the representation as a

spin coherent state) we have

s (_T\_o9-5 25
D, o( 2)—2 (S+m)' (10.14)

We always start with an initial Dicke state with maximal orientation in z-

direction,
1(0)) =[5, 5).. (10.15)

which can be easily achieved by pumping all the spinors to their highest spin
state. During the evolution with (10.11]) the norm of the wave function decays
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due to the non-Hermiticity; the renormalised wave function at a time ¢ is given

by

_ e T(0)
)= o]

S DS SeiAmQte—Fm2t|S7m>m (10.16)
e D)

10.2.3 Fidelity and Quantum Fisher Information

Throughout this chapter, we will use the fidelity, F, and Quantum Fisher
Information (QFI) [145] (with respect to the generator S.), F[S.], as figures of
merit. The former is a metric for the closeness of the actual quantum state, as
described by the density operator p, to the target state |¥), and the latter for
its quantum metrological usefulness. They are computed in their most general

form through

- (VR ) (10,17

and

2
: (10.18)

)\k’ ‘ A
J.lew
kz A+ Aws (exl Jelew)

where )\, and |e) are the eigenvalues and eigenvectors of p, respectively. In

the case of a pure state p = |¢)(¢)| these simplify to

= [(¥|y)[? (10.19)
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and
FLL =475 (12)?). (10.20)

10.2.4 No-jump trajectory: Cat State

Free evolution of the initial state subject to the effective Hamiltonian (10.11])
up to a time ¢ = w/(2A) gives the state

_thW ZDS igm2€_%mz|5, m>x
= Z D;fl’se_ﬁm |S,m),

m even

+i Y DS ge B S my,
m odd
1 S S S _xl, 2
- Z 2(D S+( 1) Dm,—S)e A |Sam>cc
]‘ us 2
+i Y 5 (Dns— (=)D, g)e” 57|S, m),
m odd

1
= Z 5 (Dis+(=1)°D3, _g)e 5|5, m),

‘HZ (Dy.s—(=1)°Dy, s)ef%mz‘&mh

(10.21)

=3 S (D (1PD5 ) e E S m),

m odd ~
=0
. 1 Care
LY L (D5 (CDDS o) B m),
m even v

=0

1
“ZDS 5|5, m),

G Dl s B ),
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where in multiple places we have used
Dy g =(-1)%"D5 . (10.22)
After proper normalisation of the state we have

1+iz DS 6—%m2|5 my

T
Wt =57) =
2A S 32
VI F D) . (10.23)
+( Sl ZZ DS Seiﬁ |S,m>x
Ve (D)2
In the case of vanishing decay (I" = 0) this reduces to
1
—HZD 5| M)+ ZD _glS,m),
(10.24)
I+1

= 2218, 8).+ (1) 15, -5).,

i.e., a spin cat state. More generally, the cat state occurs at times At = 7
mod 27, while at times At = 37“ mod 27 one obtains another spin cat state

with a different relative phase,

\\Iﬂ>=ﬂ\ss> (= )SH —l5._9).. (10.25)

Note that if the initial state is instead |S, —S)., then one obtains |¥') at At =
mod 27.
From the overlap between [¢)(t)) and the target state |¥) at time t =
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™/ (20),

s 2

m € 2" (D5 6)?
\/Z e Am2 szs)z

(Wlw(t 7 (10.26)

we obtain the fidelity as

]
F = _ , (10.27)
Y €A (DE )?

while the QFT is computed to be

Yt Dins D Dy Dy % (4
>, € (DS, o)

Zm,k,l Dm SDS DS Dsle*%(mQJer)ikQ—m?l 2

2m 6*Tm2<D,is>2

‘F[SZ] =4
(10.28)
—4

In Fig. [10.1] we show the temporal evolution of the populations of the
various states of interest, i.e., the states |S,S), and |S, —S5),, and the target
state |U), for two values of the total spin S and for I' = 0 and I' > 0. It is
clear that a higher spin makes the system more fragile to finite dissipation,
although more so with regard to the fidelity than to the QFT (we will look at
this in more detail in Section IV). Note that the revival of the QFI at At = 37”

corresponds to generation of the state |[¥').
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Figure 10.1: Master equation simulations of the QFT (red dash-dotted) and the populations
of |S,5), (blue solid), |S, —S). (orange dashed) and |¥) (green dotted) over time for spin
S = 10 (left column) and S = 20 (right column), with £ = 0 (top row) and % = 0.05
(bottom row). The QFTI is plotted relative to the theoretical maximum, 452.

10.3 Trapped-Ion Framework

10.3.1 Implementation

For this framework we follow the proposal of [140] in which the spinors are
two-level ions, with transition frequency wrg, confined in a trap of frequency
v, and the harmonic oscillator mode corresponds to the centre-of-mass vi-
brational mode of the ions. The ions are driven by two lasers (sidebands),
one red-detuned and one blue-detuned from the transition frequency, with
bare frequencies wy and Rabi frequencies {24. In the Lamb-Dicke regime,
i.e., nv/2n+1 < 1, where 7 is the Lamb-Dicke parameter and fi is the mean

phonon number in the centre-of-mass mode, it can be shown that the system
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is described by an effective Dicke model with parameters given by [140)]

. W_ —wy
w = V+—2 ,
w_tw
Wo = Wrs = —— +, (10.29)
V 25 QiT]
Aj: == T

For our purposes, we require that wy = wrstr+0+ with the offsets to the
sidebands, d1, chosen to satisfy 6, = —0_ = —4¢, so that w = ¢ and wy = 0.
We also assume that 2, = Q_ = (.

10.3.2 Damping and Dephasing

Heating rates in ion traps are typically very small, while advanced cooling
schemes (for example, using electromagnetically induced transparency [146])
are expected to enable cooling close to the ground state, corresponding to
n ~ 0. Hence, within the trapped-ion framework it is reasonable to assume
that I' ~ 0 and to neglect this source of damping.

The dominating decoherence process is usually dephasing originating from
voltage fluctuations that propagate to the trap frequency, magnetic field and

laser frequency [147]. We use the following Master equation

N
P 3 SN E &(n)7 A
p=—iH,p|+5 > DISM5, (10.30)

n

where € is the dephasing rate.

The dynamics in ((10.30) are invariant under permutation of the identical
ions and can therefore be modelled in a Dicke state basis [148] [149]. Hence,
we use the Permutational Invariant Quantum Solver (PIQS) [I49] to solve
the master equation. Fig. plots the fidelity and the QFI as a function
of the dephasing rate e. Again the overall trend is a decrease in these two

quantities, however, in the limit of very strong dephasing the system essentially
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Figure 10.2: Fidelity (left) and QFT (right) as a function of the strength of dissipation § at
the time At = 5. The QFT is plotted relative to the theoretical maximum, 452,

gets trapped in the state |S,S), and the larger the dephasing the slower the
leakage out of that state. This explains why we see the fidelity go up again for
increasing dephasing rate €, as the overlap between the cat state and |S, S), is
large (the fidelity goes to [(¥[¢)|? =  in the limit of infinite €), even though
the QFT goes to zero.

10.3.3 Possible Experimental Parameters

For a specific experimental configuration, we can consider trapped “°Ca* ions
that are driven on the Sy 2 <+ Dj5/2 quadrupole transition [150]. This transition
has a very small natural linewidth, which allows us to ignore spontaneous
emission in what follows, especially since the lasers are also detuned from the
transition by roughly the trap frequency (A = wy—wrs = FvF0).

Let us consider an ensemble of N = 20 ions (S = 10) in a trap of frequency
v/2m = 3 MHz and Lamb-Dicke parameter n = 0.05. With Q/27 = 300 kHz,
we have A\/2r = 34 kHz. The effective coupling strength in the one-axis

twisting Hamiltonian is given, for the proposed ion system, by

_ 92772

A 5

(10.31)

so selecting 0 /27 = 300 kHz (> \) yields A/27w = 750 Hz. Looking at Fig.[10.2]

we see that to achieve a fidelity in excess of 0.9 requires a dephasing rate
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¢/A <0.02, or 1/e 2 11 ms, which appears within reach of recent experiments

with strings of °°Ca™ ions [I51].

10.4 Cavity QED Framework

10.4.1 Implementation

For this framework, we consider an ensemble of atoms trapped inside an optical
cavity and undergoing Raman transitions between selected hyperfine-ground-
state levels. The Raman transitions are driven by the cavity field and aux-
iliary laser fields, as depicted in Fig. [10.3] Such schemes have been used in
experimental realisations of the Dicke model and implement either effective
spin-1/2 [I52] or spin-1 [65] atoms. Note that using the scheme of [65] one
could also implement larger effective spins per atom by using other hyperfine
levels (e.g., spin-2 for F' = 2 in 8"Rb) or atomic species (e.g., spin-3 or spin-4
for 133Cs). Note also that the spin-1/2 implementation is also feasible using
the clock states (rather than the stretched states, as depicted in Fig.
of Rb or 133Cs [153]. However, for the spin-1/2 realisation an additional
term, proportional to S,a'a, appears in the effective Hamiltonian (the effect of
which, however, becomes small for large enough detunings of the fields), and
the tuning of laser frequencies and driving strengths requires somewhat more
care.

For the spin-1 realisation in 8"Rb the parameters of the effective Dicke

model take the specific forms

w_+wy; Ng?
W= We— ;
2 3A
wo—wy -7
— 0. — 10.32
wo = W, Tt A ( )
~ VNgQ.
SR DY NI

where w, and w4 are the frequencies of the cavity mode and o-polarised laser

field, respectively, 24+ the Rabi frequencies of the laser fields, g the single-
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Figure 10.3: Atomic level configurations and excitation schemes for spin—é (left) and spin-1
(right) realisations of the Dicke model in optical cavity QED with 87Rb atoms.

atom-cavity coupling strength, w, the Zeeman splitting of the F' = 1 atomic
levels, and A the detuning of the lasers and cavity mode from the excited state
manifold.

One-axis twisting engineered from cavity dynamics but with off-resonant
Raman transitions have been studied before in the context of spin squeezing
[154-156].

10.4.2 Cayvity Decay: No-Jump Evolution

The normalisation factor in Eq. ((10.16]),

e (0] = \/Z e-2nt (DS )2, (10.33)

gives us the probability P(¢) that no jump (no photon emission) has occurred

up to a time t through

P(t) = [l ™ p(0) |2 = D e (D5, ) (10.34)

m

Since the occurrence of a jump or not leads to two very distinct behaviours, it

makes sense to take a closer look at the probability of there being no jump up
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until a time ¢ = 7/(2A),
Pt=g0) =Y e 2" (D) (10.35)

for reasons that will become evident in the next section. A certain level of
dissipation can be tolerated without considerably increasing the possibility of
a jump, but that level clearly decreases with increasing total spin, as shown
in Fig. where P(t = 7/(2A)) is plotted as a function of I'/A for varying
values of S.

Note that if no jump has occurred after a sufficiently long time (i.e., 2I't >
1), then the system will be projected into the state |S,0),, as this is the only
component for which the probability amplitude does not decay. This explains
why, in Fig. [10.4] the probability curves level out at constant, finite values for
I'/A Z 1. However, the likelihood of there being no jump decreases gradually
with increasing spin length [143].

Focusing still on the case in which no jump occurs, Fig. shows the
fidelity and QFT of the prepared quantum state as a function of the spin length
S and the dissipation rate I'. Interestingly, the QFI is significantly more robust
than the fidelity with respect to increasing spin length. For example, at I'/A =
1072 the fidelity drops from ~ 1 to ~ 0.8 with an increase of S from 10 to 100,

whereas the QFI remains within 1% of the theoretical maximum 452. The

o o o =
> o © =3
L |

Probability

o
N

1073 16" 10"3 16’2 ld’l 16“ 1(‘)1 102
Dissipation /A

Figure 10.4: Probability of there being no jump until a time ¢t = 7/(2A) as a function of the
dissipation I'/A for a selection of different spin lengths.
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Figure 10.5: Fidelity (left) and QFI (right) as a function of the strength of dissipation I'/A
at the time t = w/(2A) given that no jump has occurred. The QFI is plotted relative to the
theoretical maximum, 452.
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Figure 10.6: QFI of the quantum state at ¢ = w/(2A), given no jump has occurred, as
a function of the spin length S for a selection of dissipation strengths I'/A. The line for
I'/A = 0 corresponds to the limit 452, while the line for I'/A = 1 corresponds approximately
to the limit 25%+25.

fidelity and QFI both level out at constant values once I'/A 2 3—5 and this
appears largely independent of the spin length S.

The optimal scaling of the QFI is quadratic: 4S%. For increasing I'/A the
QFT obviously decreases, and this is further illustrated in Fig. [10.6], where we
plot the QFI as a function of spin length S for several values of I'/A. We can
in fact compute a lower bound for the QFI scaling in the absence of a jump,
since we know that for sufficiently large I'/A (i.e., 2 1) the system ends up in
the state |S,0),, for which the QFI scales as 25%2+4-25. This is still quadratic,
and still clearly better than the scaling of standard quantum-limit states. This
only slightly lesser scaling of the QFI means that |S,0), has similar potential

for use in quantum metrology to the cat state considered earlier.
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10.4.3 Spontaneous Emission

In the cavity QED framework, off-resonant excitation of atomic excited states
by the Raman lasers leads to residual spontaneous emission that affects all
atoms individually. In the atomic ground state manifold, the effects of this
can be modelled by local dephasing (S*é")), excitation (ﬁin)), or deexcitation
(S"™), with the (no-jump) master equation modified to

N

p= =il o]+ 20 S (PISUlo+DISI 5+ DISM]p),  (10:36)

n

where for simplicity we assume that the local effects all occur at the effective
rate Veg.

Again we can use the permutational invariance of the system, as described
earlier and, also for simplicity, we consider just spin-1/2 atoms. With regard
to the effects of spontaneous emission, we do not expect a significant difference
between the spin-1/2 and spin-1 cases.

In practice, we include both evolution with the collective and individual
decay operators at the same time by performing in each time step a short

evolution with the collective term followed by a short evolution with PIQS,
plt6t) = elExt Bt T8 )= D 20 (10.37)

where £, corresponds to the Hermitian part of the Hamiltonian and £, is
the Liouvillian operator corresponding to the second line of . Note that
due to the way in which PIQS separates the collective and local effects, it
turns out that doing the whole evolution with the local effects and afterwards
overlaying the evolution of the collective effects show the same final results.
Numerical results for the fidelity and QFI as a function of the dissipative
rate Yo /A are shown in Fig. Single-particle processes mix subspaces of
different spin lengths, which increases the number of spin states available to

the system and hence the size of the basis required for simulations. This means



10.4. CAVITY QED FRAMEWORK 183

that our results are generally restricted to smaller spin lengths S. As can be
seen in Fig. , the fidelity and QFT both show a greater sensitivity to Yeg/A
than to I'/A, with the QFI now dropping off with ~e¢/A in a similar fashion to
the fidelity. To maintain high values of the QFI clearly requires veg/A < 1072
We note also that both the fidelity and the QFI go to zero once veg/A 2 1.
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Figure 10.7: Fidelity (left) and QFI (right) as a function of the strength of dissipation e /A
at the time ¢t = 7/(2A), given that no jump (cavity photon emission) has occurred when
I' > 0. The QFTI is plotted relative to the theoretical maximum, 4.52.

10.4.4 Possible Experimental Parameters

Considering the spin-1 realisation of the Dicke model with 8"Rb, the effective

one-axis twisting parameter in the limit w > & is

2 2
g~ Q
A= ar (10.38)

and I' = (k/w)A. Meanwhile, the effective rate of atomic spontaneous emission
due to off-resonant excitation of the excited hyperfine level 5% P, /5 is estimated

to be

v Q2

where ~ is the spontaneous emission line width of the 52P;/, level. Hence,
we have yeg/A ~ 6yw/g? = (12/C)(w/k), where C' = 2¢?/(k7y) is the single-



].84 CHAPTER 10. GENERATION OF SPIN CAT STATES IN AN ENGINEERED DICKE MODEL

atom cooperativity. Minimising both I'/A and ~.g/A therefore puts a very
demanding requirement on the cooperativity C'. For example, if we consider
['/A = k/w = 0.1, then to achieve y.g/A = 1073 would require C' = 120, 000.
So, perhaps not unsurprisingly, it is very difficult to ensure Hamiltonian-
dominated evolution in this cavity-QED-based scheme whilst also protecting
the well-known fragility of the mesoscopic superposition states from the effects
of spontaneous emission.

Finally, we must note also that fluctuations in the number of atoms (i.e.,
in S) can be relevant in these cavity QED experiments with cold atoms [34],
since A is in principle dependent on atom number through the dependence of
w on the term Sg¢?/(3A) (and also since for spin-1/2 particles the fluctuations
will lead to non-integer S). So, fluctuations in atom number will in principle
cause fluctuations in A and hence also in the preparation time. However, as
long as the detuning of the cavity mode from the lasers, w.—w<, is sufficiently
large, and thus dominates over the term Sg¢g?/(3A) in the expression for w,
then the effect of atom number fluctuations should be minimal.

Of course, for the typical numbers of atoms that we consider here, another
possibility would be a well-controlled number of atoms held in an array of
optical tweezers, with each tweezer containing one atom, which is certainly a
viable technology nowadays [157, I58]. (Similarly, in a trapped-ion configura-
tion, the number of ions can be precisely determined.) In the spin-1/2 case,
this would also solve the issue of having an even number of atoms to ensure
an integer value of S, which all of our results assume. However, the spin-1
realisation of the Dicke model also offers a simple solution to this issue, as the

total spin necessarily takes an integer value.

10.4.5 Preparation of the Dicke state |S,0),

A more promising target for the cavity QED framework is in fact preparation
of the Dicke state |S,0),, which still shows a quadratic scaling of the QFI with
spin length (25%2+425).

As we saw earlier, with increasing spin length the probability to have no

photon emission decreases with increasing I' or for large t, but there is still
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always a finite probability of having no cavity emissions, which in the absence
of spontaneous emission heralds the preparation of the state |S,0),. A simple

formula for this probability can be obtained using Stirling’s approximation

(S~ S%e%v/2rS) as [143]
Poo = (D§g)* = ——. (10.40)

So, the rate of decrease with S is actually somewhat slow; e.g., for § = 30 the
probability is still 10%. Note also that, as we shall see in the next Section, if
a photon emission does occur, then it triggers an ongoing sequence of photon
emissions. So, in practice, the distinction between preparation (no photon
emission) and non-preparation (continual photon emission) of the state |.S, 0),
in any particular run of the experiment should be clear.

For this alternative target state, the preparation can be entirely dissipative
in nature; that is, we can simply set w = 0 (so A = 0) and the rate at which

the state is prepared is then determined by

2 2
g- Q
= T Ar (1041)

In particular, the m # 0 components of the initial state decay like e~mTt,

Meanwhile, to avoid the effects of spontaneous emission we now only require
Yer /T = 12/C < 1. Microcavity experiments with 8’Rb atoms can already
achieve C' 2 300 [3] corresponding to 7eg/I" < 0.04, while nanocavity experi-
ments show promise of much larger cooperativities [6].

In Fig. it can be seen that the fidelity and QFI are considerably im-
pacted by spontaneous emission. The preparation of the Dicke state does not
require a specific time. Thus, fidelity and QFT at low dissipation rates 7eg/T"
may be sacrificed for better results at higher rates by choosing smaller times,
effectively trading stronger decay of the m # 0 components of the initial state
for less time being exposed to spontaneous emission. For an efficient state

preparation results Y /T' ~ 1072 would be required.
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Figure 10.8: Fidelity to the state |S,0), (left) and QFI (right) as a function of the relative
strength of the two dissipations 7.g/T" at the time ¢ = 21n(10)/T (and ¢ = In(10)/T"), given
that no jump (cavity photon emission) has occurred when I" > 0. The QFT is plotted relative
to the theoretical maximum, 452.

10.4.6 Jump trajectory: Entangled-State Cycles

Let us assume that the cavity-mediated dynamics dominates over effects asso-

ciated with spontaneous emission. By realising that
DS ¢=Dj s, (10.42)

we can rewrite the wave function (10.16) as

Zm Dfm,SeiAmZteirm% |S, m>z

¥ (t))
Ve (DS o)
(10.43)
_ Dis18,0)e+ 3001 D3 se V20X (m)
e DS, )2 |
where |x&(m)) are the "kitten" states
N eiAmQt
X5 (m)) = (1S, m)2 %S, —=m)z). (10.44)

V2
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These are just cat states in a different basis, "smaller" (for m < ) than those
considered earlier, but for which the QFI (relative to the generator .J,) still
scales like 4m?. Hence, even with the occurrence of a jump in the dynamics,
a highly entangled and potentially useful state can still be generated. In par-
ticular, once a jump happens, the jump operator, being proportional to JA:C,
makes it so that the m = 0 component of the initial state vanishes and the

|x3(m)) states change their relative phase by 7:

JaIxg (m)) = mixG (m)). (10.45)

The system then, after some time, settles probabilistically into one of .S possible
cycles of jumps each cycle corresponding to a different pair |x&(m)) (with an
overall probability of 2(Df% g)? for a given m) and the jumps between these
two states of a given pair |x&(m)) and |yg(m)) continue indefinitely.

We can determine in which cycle the system has settled by observing the
rate at which photons are emitted, as this rate depends quadratically on m,

(XE(m)] T2 xE (m)) = m?. (10.46)

In Fig.[10.9]we show a couple of examples of such jump trajectories. In particu-
lar, we plot the overlaps of the system state |1(¢)) with the various eigenstates
of J,. We see clearly how jumps lead to a relative sign change between the
components |S,+m),, and also how the frequency of jumps increases with
increasing m.

The particular cycle in which the system ends up is random, but is in
general strongly influenced by the time at which the first jump happens. An
early jump may increase the relative amplitude of a higher-m cycle above that
of some lower ones, and therefore steer the system towards a higher-m cycle,
while the longer the first jump takes to happen, the more likely it is for lower-m

cycles to be established, since only these remain with significant amplitudes.
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Note that the highest-m cycles rarely appear, since their amplitudes are so
suppressed that even an immediate jump would not make them significant.
In fact, for j immediate jumps, the relative amplitudes of the states |S,m),

become

mi—s < SQfm) N %e—’f, (10.47)
T

which makes little difference for the largest m.

Once one m-cycle starts to dominate it is unlikely for the system to evolve
to another cycle, as the dominant cycle determines the probability of jumps
and hence the frequency (but this is not impossible, as can be seen in Fig. [10.9
(bottom), where the system transitions from being a higher-m cycle to the
m = 2-cycle after a small period of less frequent jumps). One essentially
sees a positive feedback loop relationship between the jump frequency and the

population of a specific entangled-state cycle.

Overlap

Time At Time At

Figure 10.9: Monte Carlo simulations of the overlap of the system state with the eigenstates
of S,. We plot (¢(t)|S,m), (solid blue) and (1)(t)|S, —m), (dashed orange) for the m-value
that corresponds to the final, surviving entangled-state cycle, and the remaining overlaps
(dotted grey) as a function of time for single trajectories of spin S = 10, with I'/A = 0.5.
The two trajectories show a cycle with m = 1 (left) and m = 2 (right). Note that we have
removed the phase factor eAm*t from all of the overlaps.
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10.4.7 Steering a kitten state to a cat state

Since the entangled-state cycles with high m correspond to cat states we would
like to increase the chance of landing in one of those. We propose here two
ideas of for that might be implemented.

Because of the aforementioned positive feedback loop, we explore now the
implementation of a J, quantum gate that we could then apply to the spin

state as an impulse train (of period T') of the form

T 6(t—jT), AT <1. (10.48)
J

The spin matrices would have to be implemented through non-Hamiltonian
techniques due to their non-unitary nature.

We have two options for how to apply it:

The first option is to apply these pulses intermittently during most of the
evolution, ensuring that the system does not probabilistically evolve into an-
other cycle. This ensures that always the right cycle is hit, but both Hamilto-
nians acting at the same time might introduce some errors if the pulse time is
not short enough.

The second option is to just apply the pulses prior to the one axis twisting
Hamiltonian. This means that if the system can still probabilistically evolve
into another cycle, but especially if we only care about the highest cycle,
this probability can be highly suppressed by applying the quantum gate a
sufficiently high number of times.

An exemplary trajectory of the second option can be found in Fig. [10.10}
To ensure a transition to the highest entangled-state cycle, the quantum gate
has to be applied enough times so that the |5, S),-component dominates the

initial superposition, i.e.,

(X (m)| J2](0) A

1. (10.49)
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This means that in theory, applying J,, an infinite amount should also generate
a spin cat state and what we are effectively doing is enhancing the overlap
between the initial state and the spin cat state. We then let the system settle
itself into that cat state.

Besides J, another way to generalise the Pauli spin matrix 6, to higher

dimensions, thinking about it more in terms of a NOT-gate, is the shift matrix

S
U=15,8)(S, =S+ > [|S.m—=1),(S,ml.. (10.50)

m=—S+1

Such a quantum gate has been implemented for the orbital angular momenta
of a photon [I59-I61]. In our case, the initial application of this operator in
the eigenbasis of J, would allow us to shift the high populations of the low m
entangled-state cycles to the high m entangled-state cycles.

Let us consider the case of an integer spin, with an odd number of Dicke
states, and the system being in the mth entangled-state cycle (again verifiable
from the frequency of photon emissions) before we apply the shift matrix S
(or S+1) times There is the additional issue that the superposition ends up

being made up of two components from two different entangled-state cycles,

e.g.,

1

|winteger> = \/5

(1S, S—m)o£|S, —S—1+m),), (10.51)

which will most likely still be a mesoscopic superposition if S is sufficiently
large, since high m are strongly suppressed. Because these two components
induce jumps at vastly different rates (oc m?), the state will become biased
and in the long run only one component will survive, meaning this is another
way to prepare Dicke states.

Even though the rest of the chapter is exclusive to integer spins, the present

effect is not, so let us also take a look at a half-integer spin. In that case we
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have to apply the operator % times to obtain

1
|"/}half—integer> = EOS, S_m>xZ|I|S, —S—i—m)x) (1052)

Examples of trajectories for integer and half-integer spin are depicted in

Fig. [10.100

Overlap
Overlap

6 4 6 ] 10 2 4 6
Time At Time At Time At

Figure 10.10: Monte Carlo simulations of the overlap (computed as described prior) of the
eigenstates of .J,. We plot |S,m), (solid blue), |S, —m), (dashed orange) that make up the
final (here the highest, i.e. m = S) entangled-state cycle and the rest (dotted grey) as a
function of time for single trajectories of spin S = 10, % = 0.5. The three trajectories show

a cycle with m = 10 induced by applying .J, 100 times at the start (left) or S = 10 times
(middle), and a cycle with S = 2! obtained by applying U (S+1) times (right) at a time
At =5.

10.5 Conclusions and Outlook

To summarise, we have proposed a scheme for generating spin cat states using
an engineered Dicke model. The scheme could be implemented in two different
physical systems: trapped ions and cavity QED. Each comes with their own
benefits: the trapped ion variant is more robust against decoherence, while the
cavity QED case has the option to generate alternative states such as kitten
states and the state |S9,0),, both of which are identifiable from the cavity
output (photon flux).

One could also think about using a cavity @-switch [162] once a photon
has been detected to change from a high quality factor ) cavity to a low @
one to increase I' and therefore the speed at which the entangled-state cycles

is reached.



].92 CHAPTER 10. GENERATION OF SPIN CAT STATES IN AN ENGINEERED DICKE MODEL




Part V

Back Matter

193






Chapter 11
Conclusions and Outlook

Let us discuss the main results from this thesis, starting with Chapters [7] and
and the on-demand generation of optical N-photon states. We are convinced
that our proposed schemes offer very realistic (and topical, in the context of
fibre-integrated micro- and nanophotonic platforms) means to achieve a deter-
ministic N-photon source, which is an outstanding problem in experimental
quantum optics. The solution to this issue will offer exciting applications, at-
tracting particular attention from the quantum optics, quantum computing,
and quantum communication communities. The cavity QED parameters that
we use are either taken directly from, or are very similar to, the parameters in
state-of-the-art experiments. The use of the entire atomic level structure in a
single-atom cavity QED system to achieve the desired behaviour is also innova-
tive and of general interest to the fields of quantum optics and atomic physics.
The truly deterministic nature of the scheme, and the fact that it does not rely
on temporal control of fields, sets it apart from virtually all other competing
proposals for N-photon sources in the optical regime. We also demonstrated
the possibility for an efficient and faithful reduction of the full dynamics of an
alkali atom coupled to a cavity mode to that of a simple Tavis-Cummings (or
anti-Tavis-Cummings) model for a spin-F' system. This enables an effective
superradiant behaviour of the composite system, even though only a single
atom is involved, which constitutes a significant novelty. Some open ques-

tions remain when it comes to the quantum tomography, more specifically the
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temporal filtering. We saw that at times the filtering and thus the state recon-
struction fail, even though the photon counting results confirm that the desired
Fock state was realised. This seems to be linked to the filter function possessing
high-frequeny components for a particular atom /laser configurations. Future
project ideas include studying this more extensively, its origin, and possible
ramifications for experimental implementations. During our investigation we
definitely noticed how choosing a filter not based on the amplitude correlation
function, e.g., based on the output photon flux or atomic correlation functions,
would also lead to respectable results. So, whether our choice is the optimal
one remains to be seen. The observation of rotated Wigner functions in the
resonant case also sparks the question whether such an effect should be present
in the far-detuned case as well, and was ignored through the approximation via
a Tavis-Cummings model, since that by itself cannot create such an effect. One
could investigate this by including the lower hyperfine state Tavis-Cummings
model, e.g., for 8’Rb, a sum of the F' = 1 and F' = 2 versions (with one of
them being detuned by an additional amount wy ) plus additional off-resonant

Raman process (o In the end this rate and the coupling in the ad-

)
ditional Tavis-Cummings model end up being much smaller, which with the
additional low population of F' = 1 should make that effect very small, as even
in resonance it is unnoticeable most of the time. Input-output simulations of
the full model confirm this.

In Chapter [J] we have given a brief overview of the dynamics of this novel
two-mode cavity QED system. We presented foundations for the theoretical
description and showed how the output light exhibits quantum signatures such
as antibunching or the violation of the Cauchy-Schwarz Inequalities. However,
the chapter is probably the most open-ended of this thesis. Regarding the
one-atom laser, we have started exploring possible venues towards time-bin-
entangled photons [163, 164]. The idea here is to start with a superposition
of the two ground states and no photons in either of the two cavity modes,
i.e., |3)]0)a|0)s41]4)]0)4]|0)s, and to transfer that superposition to a superposi-
tion where one photon is put in each cavity mode, e.g., |4)|1)4|0)5+1[3)[0)a|1)s
with a pulsed laser sequence. If this process is repeated and the photons

escape the cavity, we have |3)[0)4]0)p|wa)1|ws)2+[4)|0)a]|0)s|ws)1|wa)2, Where
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the subscript 1 or 2 indicates the order in which the photons exit the sys-
tem and a and b from which mode they came. After disentangling the atom
with a microwave 7/2-pulse, we should observe some energy-time entangle-
ment, [3)]0)a|0)s(|ws)1|wa)z —lwa)1]ws)2) +[4)10)a]0)6(|ws)1|wa)2 4 [wa)1|ws)2), a
state that would violate the following steering inequality: A(w;+wq)A(ty—
t1) > 1. Stimulated Raman adiabatic passage (STIRAP) [165] in its tradi-
tional form is not really feasible, since the system does not have a dark state
(effective model Version II). We started investigating possible laser pulse se-
quences using quantum optimal control methods [I66], but generating these
superpositions with high fidelity so far hinged on treating the system as a
closed system.

Another idea is to include the quantised trap motion of the atom into our
models, might make it possible to combine the cyclic evolution of the system
with cavity-assisted cooling of the motion [L67]. This could help stabilise the
experimental setup.

Chapter represents a potential solution to the problem of generating
entangled states in large ensembles of atoms. That one-axis twisting has the
potential to create cat states was known before, but the novel engineering of
it from a Dicke model creates a distinct model, where the non-jump part of
the dissipative evolution also takes the form of one axis-twisting. Again, we
examined parameter regimes from state-of-the-art cavity and trapped ion ex-
periments. From these two, the trapped ions end up being more promising
because of the vanishing collective noise from heating and the manageable
single-particle dephasing. Here, however, the spin cat state production is re-
stricted to trapped-ion experiments, while the cooperativities required for a
cavity QED implementation still lie in the (hopefully near) future. The cavity
QED setup has the benefit of offering a potential fail-safe to fall back onto
a smaller cat state in case of a photodetection. The usefulness and potential
manipulation of the entangled-state cycles remains speculative. Future direc-
tions could be to look more closely at them, in which case one would have to
start looking into how single-particle decoherence processes affect these. Since
single-particle operators jump between different Dicke subspaces, entangled-

states cycles should be superpositions made up of Dicke states from different
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subspaces. Other than that, the decay and pumping of individual spins would
shift the magnetic quantum number of the two components of the kitten state
by the same amount, thus creating superpositions of different m which decay
at different speeds, or even potentially removing it if m = £5.

The aim of this thesis is to propose and examine a series of schemes ded-
icated to the generation of exotic quantum states both in light and atomic
ensembles. While doing so, we built on the pioneering work on engineered
Dicke models in cavity quantum electrodynamics systems and added to that
by extending it to more atomic species and levels. Between the effective Lind-
blad operator formalism, the permutational quantum solver and input-output
theory for quantum pulses, this thesis also experiments with some novel meth-
ods from the world of quantum optics. The ideas that we developed in this
thesis put forth some exciting future directions, the biggest being their poten-
tial experimental implementation. The realisation of the one-atom-laser with
two cavity modes is already a work in progress [128]. The big variety in and
relative simplicity that our work on N-photon pulses offer should also make it
appealing in this respect, and indeed the Hoogerland group at the University

of Auckland is already proposing an experiment.
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