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O.INTRODUCTION 
/ 

tet S'(R2) be the space of tempered distributions over th~
 
two-dimensionàl ipace R2 and let I b~ the Borel a -algebra of
 

2
S'(R ) . By Ilo let us denote a free field Gaussian measure. Any
 
measure IIp on {S'(R 2

) , II is cal.led tempered. P(</»2 measure /1/
 
iff:
 

i) IlP is locally absolutely continuous with respect to the
 
me,asure Il O •
 

í )í For any localized in the bounded region A CR2 observable
 
F(</», the conditional expectation values with respect to the
 
measure IIp and the a-algebra I(Ac) are given by the following
 
formula: 

E {F(</»II(A c)1 = E {F(</»II(Ac )1, (o. ] ) IIp \ (J.A ., 

where 

-1 PIl (d</» = (ZA (</>)) exp(-,\ ( (<i»dx) 'Il (d</»,A
A 

o 
(0.2) 

ZA (Ilo(d</»exp(-,\ r P(</>Hx)dx),IC 

A 

'\>0 and P(</» is some bounded trom below wick ordered polynomial 
in"7 t h e free field </>0' A given P(</»2 measure IIp. is called, t emp'er ed , 
regular P(</»2 measure iff ' 

3 "t I</>2(Ollp(<kp) S c IIfl1 2 (0.3)
C (;'R+ r ç; H_ (W ) -1

1

ànd a completely regular P(</»2 measure iff 

n n 
"t 3 "t I ( . n </>(fi)llp(d</» l.s c n, 1Ir. II . n 

n=1,2, ... c 
-

(; R' r.,(;H (R2) 1=1 , i=l 1 -1 (0.4) 
n + 1 -1 f 

i = 1, ... .n 

Le t us denote by- ~ t (,\) (~t (,\)) the se t of alI regular (re sp • 
comp Le t e l y r egu l ar)" solutCfons of i) and ii). 

It can be shown /2-4/ t ha t for Il pç;'§,t (,\) the following fo r-e 
mul a s 'for the condi t i ona I eXE.~2tatiQn. y,bues hold: . 

fõ~ ',,~ .1.\" '.',..... ,..: n 0,t~Cnn~ , I 

~ 0>.1 ~.~ .. ;.; ,,~., " ,~;, (1'''iI'1.,~~,,:r'' 1ti I·jl\ ~'I') • .... !fIó.I...,.;.j ..j'o.,~ 

~'. _. - ~ 



't 

,ElLA1F(4))1 I (AC)~(71) = . 
(0.5)
 

:::: [lL~A (d4»F(w+ 'P;A)exp(_À J :P"(4) +'P;A )(x)dx),
(Z AC1J))-l.. . A 

z (71) = r lL aA (d4»F(4> + 'P aA). exp(-À J dx P(4) + 'PaA )(x)). (0.6)
A . o 71' A 71 

a:(d4»Here lL means th~ free field mea~urewith the Diriehlet
 
boundary çondition on'aA, ~ is the free field distributed ae­

eording ~o Ilg~.. 'P;A is the (uni que ) solution of the following
 
stoehast1e D1r1ehlet problem
 

(_~ + rn~) 'P~A (x) ; x ~ IntA 
(0.7)iJA 

'P71 (x) = 71 (x) ; x ~ aA. 

lhe quantity (assumed to exist) 

P 71 = _ lirn _~1_ In Z (71). (0.8) 
00 AtR2 IA! A 

...:: 

'(where the meaning of the syrnbol 1im will be speeified beLow)
2
 

. 11 d' h . f í.n í 1 A t R d ens i d í I d
•1S ea e' t e t n 1n1 te vo ume vaeuum energy ens i. ty eon 1t i cne
 
by n. Our resu1t is:
" , . t • 
Th e o r ema A. Let lL pC; §cr (À). Take 71 ç s~BPIl a.rb í trary, thep 

p17 existsand p71::::: p71-. " /' 
Th i s t heo rem saysOQ that in the ~ase00of e;mplete1y regular ao Lu-: I 

tions of the DLR equations ,i) and ii) (with fixed P)the infinite 
volu~e~vaeuum energy density does not depend on the boundary con­
ditions. 

Some results of the independenee of boundar~ eonditions of 
.the vaeuum energy density have been proven in 5/.Howew~r, from 
the point of view of Gibbsian approaeh this class*of boundary 
eonditions presumably is not of measu~e 1. 

The e1ass of eompletely regular solutions of the DLR-equa­
tions is rather large. It ineludes among others weakly coup1ed 
p(4)) 2 models -: 4> 4-like models (due to the Newman Gaussian ine­
qualities 171 ).,,­

1 • PROOF OF THE THEOREM A 

1.1. $Qift Trqnsforrnation 

s' 

" for x ~ Int ~l A == [x ç IntA 11 - e =: dist(x, A) < 11 ( 1 • 1) 1 X, (x) ~ { ~: 
lt . f. ~ 

for x c;; Int_1 A == {x ~ IntAI dist{x, aA) ~ 1 I 

for x ç a A == A - (Int_1A U. Int~lA). 
I. ' 

In formula (0.6) defining eonditioned partition funetion 1et us 
perform the fo110wing shift transformation: 

4> ~ 4> - (X • 'PaA ) (I .2) 
€ 17' 

Caleulating the eorresponding Radon-Nikodyrn derivative, we Qb­
tain: 

Z À (71) 1 aA € 
....:-~-- = exp(- J X (x) 'P (x): J (x)dx) x
 
ZA(71 == O) 2' € 71 71
 

(1 .3) 

x r Il a exp (-4> ( J e )). exp(O e (4) 'l' aA)) , 
. AA(d4» 'YJ o 71
 

whé r e
 

2 aAf (x) ::::: (-Ll + rn ) (X • 'P )(x)
71 € 71 

I

o for x Z; Int_ 1 (A:)
 

(1 .4)
(-~X )'11 aA(X)' + 2( V X )(x) ( V 'I' aA)(x) for x ~ Int e 1,(A) 

e 71 € ' 71 ­

O for x ~ a€ A. 

Note that tt\.ese manipulations have perfee~ly good mathematieal 
sense as 'P~ is C oo -funetion inside A being solution (in the ~ 
space S'(R2) of the e1liptie homogenous equation. 

The polynomial 

Q e (4),'P aA )(x) ::::: À [ P (4) + Ü - X )'1' aA)(x) - P (4))(x) Y (1 .5) 
e 71 

1S. supported in the set A - Int_1A and has degree degQ(=deg P _. L 
in the variab le tP. . """ 

By IlXAwe have denoted the finite volume P(4))2 measure with 
l_i the full Dirichlet boundary eondition on aA.
 

Applying Cauehy-Sehwartz .inequality we have
 

wr:' 

Let A be a bounded, wi th C 1 -pieeewise boundary aA, subse t of Z A(71) 
< n ~(Tl)(n ~ (71)) Y2 (TI ~ (71)) Y2 (I ~ 6)

R2. Let ,9 < e < 1 and let O:::: X/x) be a C 00 -funetion -on .R2 sueh Z A(fj==O)
that: 

,2 3 



where 

1 1 aA (
Il A (11) "'" exp{- f x (x) 'li (x) J (x)dx).

2 .e / Tl 11
 

2 aA (aA

II A (7/) == f 11 A (dq.,) exp 2~ A (q., , 'li 11 ) •	 (1 • 7), 

lI~(11) == f Il~A(ckp)exp - 2q.,(~~). 
aA 1.2. Some Estima~es on 'P
11
 

Let
 

KoA(x"y) == (_~ +m 2 ) - l (x,y) _'(_j),aA +m 2)-l (x,y). (1 .8) 

Lemma I. 1.	 Let IA 1 be any sequence of bounded sub se t s of 
R2 witt piecewise - C 1 bounda r i e s laA 1 and suchn 
that A tR 2 monotouously and by inclusion.n

Let 11 cp ç :§~r ('\P) and a number 0< P be given. Then there 
exists a sufis e quenc e (n ') C (n) and functions ,Cl(P,q) ,0 «( , 1] ) 
fini te on the supp 11 such that for every B> 1 

2

JAn , s 'l+pr .I'P TJ (x) I dx.::: c 1(p, 1J)IaA n " I (1. 9) 

...... 

uniformly in A anel A.. and the·assumed complete regulp.rity .of 
11 P.	 . / 

By an elementary calculation we have: 

aA aA­
~K (x, JS:) + 2K (x, x ) 

2 r r v p aI\. (x, z ) V P aA (x, z2) dZ dZ 
x 1 x • l 2

aA aA 

aA	 2 -'1 aA 2 -1
where K (x, x ) = (-~ + rm") (x, x) -(L\ + rn )' (x, x ) 

for x ~ aA, and is the Po í's son kernel 'for the p rob l em. P aA tx, z) 
(0·7). Moreover, ~K A(x,~ has still exponential decay in dist 
(x, aA) argument. 

t ,q.e.d. 
Lemma 1.2. Let 11 ç '~cr (,\ p). Then for any uni t cube ~ C R 2, any 

bounded A C R2 wi th O 1-p i e c ewi s e boundary , and any' 
j > r there ex;i.sts a constant O(j, (1])), finite 
IIp==a.e. and such that for a l I (3<(j+l)j2 the 

, following 
estimate ho Lds ; 

f":Y(a l A ..)	 aA j . aA (3 . n r \'P (x)l dx ~ C(j,1])( r K (x,x)dx) • (1.11)
 
and ~ .. TJ ~ \
 

aAn , 2	 1 ,Proof: Let c(R2 
) =jU~j~ be a partitioning of R,2 I nt unit cube s , ç,J .Iv 'li TJ 1 (x) dx 'S.. c 2 «(, TJ) IaA n ' I + p 

such that tY. ç c (R 2 
) . Take õ > O arbitrary and fixed. 

(ar A n'l Assume j == 2 for s ímp l í c i t y (the general case can be proven 
in an ana Logous fashion). For 11 (i) ç '§ t (,\ P)Here: 
we have: J cr 

a1 A == I x ç A I o ::: drst (x, aA) ::: 1 }	 (1. 10) 
éa l A , i x ~ a1 A I ~ S dist(x, aA) 1•
 

11 ~ 71 éS' (R
2

) I ~ .r ('li ~A ) 2 (x) dx ~ : ( f K aA (x, x ) dx ) 13 }.~
Proof: This is a simple ·consequence of the assumed ,regul~rity 
J ~. .~.of 11 p . Taking arbi trary p > O we have:	 J J 

aA r ('li n(x» S dx	 ".", f; ~ Il pl 1] é S ' (R2 ) I J ('P ~A)2(x) dx ~ ~ (- r Ka\x: x) dX),f3 L. 
, ." ' -,	 J ~j t1 jalAn 

~ r 11 p(d11) ---, < <1""
laA, \ 1 + p	 (by Tchebyshev's inequality)

n 

-l-p	 aA s -p aA -(3~ laA I ,f dx (f JLp(d11)('P." n (x) ~ const(q) IaA n I . < ô ~ ( r K (x, x) dx) r 11 p (dn ) r ('li ~A ) 2 (x) dx ~
 
alA n ~ j ~j
 

aA 1- f3
 
'''I < õ const •(~ f K ( x, x) dx)

The last estimate follows from tne well-known fact that for ev~ry	 
• 

- j ~. 
unit cube ~,~ we have IIK aA11 Ll(~)~ cons t (see Prop. 7.8.7 in /1/) \'	 J 
4 - /1 

5 
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1fJ 

{l~. 
I" 

11 •P oo 

be arbitrary chosen. Then we 

1.3. Existence and Shape-tndependence of 

. - t 
Let ~ p ç.. ~ cr(ÀP) and ." ~ 'supp Il 

have 

Hhenever 13 < 1, t he sum 2, is fini te due to the exponent ial 

decay of KaA and mild ijntegrable singularities of KdA on es, 
Since 8 is arbitrary the proof follows. 

q.e.d. 
The dependence on A of the cons t ant s CO,.,,) in the above 

Lemma is very weak. For this we refer to our paper /8/ 

Ir 
t 
~ 

'I" 

(:~'
\ ' 
: I 

\ 

1• 4. p'" == p TJ.-= O 
00 00 

IIp·the limit\ p'" c Um ..!....lnZ A(.,,) exists, whenever A1'R 2 i n 
00 AtR2 IAI ' 

the sense of van Howe- and such that aA are C 1 -piecewise curves. 
Moreover, the limit does not depend on the sequence AtR2 chosen. 

Rem a rk: The ex í s t ence of fini te on 5UPP Il P function J (.,,), such 
that (1.17) holds, can be also proven by the applica~ 

tion of the Tchebyshev ~nequality. 

. \ 

Z '( ) r' aA aAA'" == ' /l o {drp) exp (-À PA (rp» expU A (9, 'li." ), 
S'(I~2) 

aA aA 
Q A(1;I, 'V ) == -À r [ P (ep + IJI )(x) - P(ep)(x}) dx 

11 A ." 
ís a polynomial in t he field rp of degree d~g p. -1 
fic,ients which are polynornials in the field IJI~\ 
Let: 

where 

(l . 13) 

(1 . 12) 

and wi t h coef­

r ~ 

l+p 
laA n I := O • 

IA nl. 
lim 
0:~Ô<l 

Now we are ready to prove the second part of the Theorem A. 
.From the Lemma 1.,3. it follows that it is e nought to control 

the limi t À.im 2 p~ by passing to sebsequences. Let {A n I. be 
any sequencetRof b'"ounded wíth C 1 -piecewise boundaries {aA o ~, 

2 t R2 1 ••subsets of R such that A monotonously and by lncluslon and 
n 

such that there exists a number p > O for which: 

uO!J.L~A(drp) =p.~i\(dep) exp(-À ~ : 'Y(ep):aA (x) dx), (1.14) 
for every n let x~ be a 0 

00 

_ function with 
in (1.1). Additionally we assume 

t.he properties listed 

where:aA means the Wick 
ce (_~aA + m2 ) - 1 • 

ordering with respect to the covarian­ sup max { Ia x n i, Ia xn f I < C 
n,x 1 e 2 e - 1 

< 00 , 

aA 0- 1 'aA j aA 
n (ep, '1'17 )(x) == L Q J ('I'." )(x): cP :aA (x) - ÀP ('P )(x) • 

, j= 1 ." 

~.]e app ly variant of the .f ini te volume: rp J. es t imates 

Let n == deg P and let us wri te 

to 

(1 . 15) 

19 ,­
ZA("')' ': 

,; 

/~ 
I' 

SUl' I~· x n I < C < 00.
(. - 2'X,o 

Using the:~j: -estimates together with the Lemma 1.1., we easily 
conclude from (1.9) that there exists for any given nu~ber 
p > O a function C(p,.,,) fini te on the suppor t of Il p and such that 
for some subsequence (n ') C (n) we have the following estimate: 

0-1 , aA ' aA 
ZA("') < n exp lÃI (!!Q J ('li )11 1 + \\Q J(qJ .,,)\1 I( í ) x 

- j == 1 ." L (A) _ L n. 0-1 (A) ( l • 16) 

aA 
x,exp ­ À f P ('li." )(x) dx , 

. A 
Application of the Lemma 1.2 together with the Minkovski inp­
quality gives that there exists a function J(~ finite on S~PPllp 
such that 

~ 

~,.I 

~ 

1 + p)I .< exp CC (p, i]) IaA 
ZA,(TJ"=O) 

n 

ZA ,(.,,) 
n 

." .,,= O 
lim P A = lim p \. -
o~ o' 0'-'00 10' 

Frorn' this estimate it follows that 

/ 

I 

This bound together with the 
(see, for example 161 ). gí.vé s 

Z A(.,,) ~' exp J (71) IA\ . 

standard subadditiv~ty arguments 
that for a Imost every·." wr. (o 

(1 . 17) 
~aking into account 

" ." Ii YJ"11m ,P A "= im p A ' 
n -+00 o n'-+00 n 

." =0 
lim p A o 
n-.. 00 

Lemma 1.3. we conclude that 

6" 7 t:' 



I .' 

" 

Th~s shows that for ~~ almost e~ery ry the infinite volume vacuum 
energy dénsity is equa\ to the Dirich~et pressure which is 
equal to other classically conditioneq infinite volume pressu­

I 

tt f oLl.ows then f rom 
,'differentiable. at u , 

the convexíty 
then: 

at /-L t ha t whenave r p",,(/-L, O) is 

res following from the results of 151 

20 CONCLUDING REMARKS 

Remark: A similar trick with the shift 
been used in a quite different 

transformation has 
context in paper!15( 

tI 
fi 
'\' 

L lim p' ~(J,t, e , f) 1 ' == _1_ J dx < <p (O) > 
,afJ. I\.'t R 2 ~ - !::=O \A1 A 00 

, ." 
== Iím .-L [dx < <p (x) > A'-(~' O, O) o 

AtR2 iA] - ... 

(Il, f, 

-

f) I 
- f== O 

(2.4) 

The above Theorem A 'has been, formulat~d in the course of our 
studies on thç DLR equationa for the ~~~)2 theorieso We expect 
that in the region of convergence of the cluster expansion the 
ob t a í'ned r egul.ar Gibbs measure is uni.que in the set§: (À p). 
Orie of the possible way s of proof is' to show that the·~~luster 

." . 
Assuming mo~eover that Iim < >A has the translationally inva­

. AtR 2 
riant first moment we conclude from (2.4) that 

~x?ansion converges uniformly in the boundarv data0 This is 
true for the classical boundary conditions / 10I.As an application 

,Üm <<p (x) > 11 (J,t, O, O)
j\ tR2 A... -

== < <p (O)> (fJ., o, O ) 
00... ... 

(2.5 ) 

of the estimates proven in the 
the following result: 
Theor em B o Let ~ Cp ç; '§;r (ÀP) 

subsection r03. we mention here 

be arbH:rary and '11 ~ supp /-L~' 

does not depend on the typical boundary conditiono In the region 
pf convergence of the cluster expansion it ís known that the 
right-hand side of (2.3) is analytic functions of the complex 

Then there ex í s t s a number a::=a(l1) such that for 
IÀ I < a (",) the cluster expansion for the cond\tio~" 

n~d by 11 me~sure ~ A(dq'» converges o, . 

parame t ers e ::= (f 1 '0'0, f ) 

ves of roh.so of (203) nwe 
at e == (O ;.'00, O) o 
obtãin: 

Taking the derivati­

of 
Note that th~s result LS toa 
the completely regular Gibbs 

weak to prove 
states due to 

the 
the 

un~qu~ness 

.,,-dependence 
n+ 1 a 

---.­

of the convergence radius of the corresponding high-temperature a€noooaf1all 
cluster expansions~ . 

For the lattice models this problem has been resolved in / 12 1 

by a b~autiful tricko Some uniqueness resul~; have be~n proved 
for some other field theoret·ical models in 18, 12, 13,14~ 

Estimates established ~n subsection 102. can be also used _ 
~Thus, the probJem of uniqueness of the translationally invariant 
state has been reduced to the q~estion about the possibility of 

(,2 o 1,) 

(202) 
'h 

ZJ( (/-L,~, !) 
n 

J Il X(d<p) exp . ~ f i 4> (f i) exp /-L ~ (X A ) , 
1::= 1­ • -

where !. ::= (f 1,0'0' f n ) " .E:::: (f1 ,0'0' f n) i s a sequence of smoo t h 
functions localized in unit cubes, can be shown to be independent 
of typical boundary data: This remark opens a new posslble way 

to prove independence of the boundary data of suitably perturbed 
energy densitieso 

The following generalized energy densities 

11 1.,,·
P ,,(/-L, f , f) == - -­ In Z " (~, f, f) , 

1\ _... IA I I\. -­

(­
i 
{ 

interchanging the operat í on an/ a€ 1 0'0 afn I e = (O~ ••• ,O), wi th the 
operat.ion of taking the thefmodynamic limito This seems to be 

-, a much easier problem than the question about uniform convergence 
of the cluster expans í on, . , . 

Even more perspective appears this possibility of pr 9v í ng 
the uniqueness for t he .case of P(<p) = À:..p 4:+ b : <p 2: From the Lee­
Yang th~orem ] it follows that the rohos o of (203) is then analy­
t í c at '€ = (0, ... ,0) whenever ~ -f:. o. Having in mind the Vitali 
theorem we see t ha t the problem í.s red.uced here· to a volume uni­
form bound on 'p~.(Il, !) in some complex ne í ghbourhood of ! = (0'00.,0)0 

! 

to att~ck 

fo,1lows: 
the problem of uniqueness. From 

~. 

the remark above it \. 
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