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O.INTRODUCQION

Let S(R®) be the space of tempered distributions over the
two-dimensional space R? and let I be the Borel o -algebra of
S’(Rz). By po let us denote a free field Gaussian measure. Any
measure pg on S’ (R?), =} is called tempered_?(tﬁ)g measure ’1/
iff:

i) pp is locally absolutely continuous with respect to the
measure H .

ii) For any localized in the bounded region ACR? observable
F(¢), the conditional expectation values with respect to the

measure pgp and the o-algebra 3(A®) are given by the following
formula:

. c c
Eug)iF(qb)lE(\A 3= EﬂA[F(qb)lE(A M, (0.1)

where

By @) = @y )T oA [ P (9)d)-u, @),
! A 0.2)
Zy = [uo(@®)exp(-x [ P(gHx)dx),

A
A>0 and P(¢4) is some bounded from below Wick ordered polynomial

in the free field by A given 5’((;6)2 measure pp is called tempered,
regular ?(¢>)2 measure iff '

3 Y [eMug@) < cllf]l? (0.3)
¢cERy fSH_(R®) -1

and a completely regular f?(qS)'.2 measure iff

n
v I v ”121 qS(fi)u?

n
() <c_ 1 |If ||
2 Vn i 1
n=1.2... ¢ CR, f CH_(R?)

-1 7°(0.4)

i=1,...,n
Let us denote by 8* (W) (B' (\) the set of all regular (resp.
completely regular)r solutfons of i) and ii).
It can be shown 724/ that for ug,g‘gto\) the following for-
mulas for the conditional g_}g_gg_gtatiqn_xélugs, hold: °
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Eg[F@)] 2 A1) =
- (0.5)
= (Z () )exp(~)\ r P (¢ +‘l!

fuo (dp) F (o + ‘I‘ )(X)dx) ’

J-“OA (qu)F(qS +lyaA) exp(—-)\. f dX?(¢+WaA)(x))
A

Here Il (d¢>) means the free field measure with the Dirichlet
boundary condition on'dA, ¢ 1is the free field distributed ac-
cording to uaA. by is the (unique) solution of the following
stochastic Dirichlet problem

ZA(n) (0.6)

’

(-A + m%) ‘I’?'A x); x € IntA
dA (0.7)
‘I’n x =7x); xe JA.
The quantity (assumed to exist)
p” - - lim ——1——an . ) (0.8)
o /\‘PR2 [A] : ,

(where the meaning of the symbol 1im2will be specified below)
1 4

is called the infinite volume vaclt\mr% energy density conditioned
by n. Our result is:

Theorema A. Let u?G(‘} A). Take n € Squp. a,rbltrary, t-hen

pﬂ ex1sts and p” = p -

This theorem says that in the case of completely regular soly—
tions of the DLR equations i) and ii) (with fixed P)the infinite

volume 'vacuum energy density does not depend on the boundary con-

ditions.

Some results of the independence of boundar/'g conditions of
.the vacuum energy density have been proven in’®’.Howewer, from
the p01nt of view of Gibbsian approach this class®of boundary
conditions presumably is not of measure 1. R

The class of completely regular solutions of the DLR-equa-
tions is rather large. It includes among others weakly coupled
?(q&)z models 78/ , ¢ 4-like models (due to the Newman Gaussian ine-
qgglltles 7). .

1. PROOF OF THE THEOREM A

1.1. Shift Transformation

-

Let A be a bounded, with C
R Let 0 <ex1
that:

-piecewise boundary 8/\ subset of
and let 0<x (x) be a C*®-function on R? such

s

v 2

W g

P

1 for x&Int_; A={xc IntA]dist(x, dA) > 1}
X,® = 4 <l for xcti A={xctA|l-e<dist(x, A<l (1.1)
0 for X CIA =A- (lnt _,A U Inti_ll\).

In formula (0.6) defining conditioned partition function let us
perform the following shift transformation: °

ETN '
o -(x, ¥ ).

7 (1.2)

Calculating the corresponding Radon-Nikodym derivative, we ob-
tain:

Z A (n) '
e = exp(._. N X, (®) ‘-P (x) J (x)dx) x
A(Tl 0) ( 1. 3)
JA
x f ﬂ (d¢) exp(—¢(J€ )) exp(Q ¢ (q’> 'I-’ N,
whére !
2 JA
fn(x) = (A +m )(x€ -‘I’n (X)) = ,
0 for x & Int_;(A) _
oA N . (1.4)
= (= Ax )W ®+ AV X, ® (V ‘l’ )\x) for x & Int_.li(/\) .

0 for x € 9°A.
Note that tlxese manlpulatlons have perfectly good mathematical
sense as ‘P is C”-function inside A being solution (in the -
space 8 (Ra)) of the elliptic homogenous equation.

The polynomial
Q¥ M) - ALP b+ -, )tp Mo - 2@ eor (1.5)
is supported in the set A -Int 1/\ and has degree degQ=deg ?—1
in the variable ¢.

By #K' we have denoted the finite volume fP(qS)2 measure with
the full Dirichlet boundary condition on JA.
Applying Cauchy-Schwartz .inequality we have

YANE)] Y Y
AT cnlemEm® @t m” (1,6)
ZA(17=0) N
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where

HA(TI) = eXp(—— I'x, (X)‘I’ A I, ‘() dx)
E
&G = f,lA (d¢)exp29f\(¢,wn ) i (1.7).
oA
MR = f ug Apew -~ 263 5)
1.2. Some Estimates on ‘P?’A
Let
A y) = A 4wt (x9) - (A s m®)t k) . (1.8)
Lemma 1.1. Let{A } be any sequence of bounded subsets of
R2 w1th piecewise - C! boundaries {0A ;1 and such
that A, tR2 monotounously and by 1nc1u51on
Let (= ch()\P) and a number 0<p be given. Then there
exists a su sequence (n”) C{(n) and functions -Cy(p,p) , Cgle, 7)
finite on the suppu such that for every s> 1
A _ - . "
[, "@1%ax < Cylp, oA .| TP (1.9)
(0,A,-)
and
oA -
F VY, T P wax < Cylemlan, | P
€ : ,
(alAn').
Here:
g1 A ={x € A| 0 < dist(x, 0A) <1} (1.10)
F A xed Al e < dist(x, OA)} .

Proof: This is a simple .consequence of the assumed regularity
of u P - Taking arbitrary p>0 we have:

A,
[ ¥ n (x))  dx

A ~N
e [ uglan) —tRo <
loA, |- FP / . .
L - oA
<A 17 (T agan (¥, " @)° < constn|on, |
- alA

The last estlmate follows from the well-known fact that for every
unit cube A we have ||K 7% I(A)<— const (see Prop. 7.8 /17y
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Proof:

]

uniformly in A and A and the -assumed complete

xx .

By an elementary calculation we have

regularity of

(x,x) + 2K (x, X) =
=2 [ v, PaA‘ (%, zl)vx pIA (x,z2) dzldzg ,
dA OJA
where KaA(x, ) = (-A + mvg)-‘1 (%, x) —(A,aA +m2)—'1 (%, x)

is the Poisson kernel for the problem.

for x € dA, and PaAé-x, z)
(%,%) has still exponential decay in dist

(0.7). Moreover, AK
(x, 9A)  argument.

q.e.d.
Let p & Q (A?). Then for any unit cube ACRZ, any
bounded ACR2 with Cl-piecewise boundary, and any
i > 1 there exists a constant C(j,(n), finite

Lemma 1.2.
e

B ¢ =a.e. and such that for all B<(j+1)/2 the
. following
estimate holds:
H‘P (X)l dX < C(J, 7)( fK (x,x)dx) ﬁ- (1.11)

A A

Let c(Rz) = UA be a partitioning of R?
such that A ¢ c(R ). Take § > O arbitrary and fixed.
Assumej 2 for simplicity (the general case can be proven
in an analogous fashion). For < (‘,’ (AP)

we have:

into unit cubes.

pgnes'®@)iz 1 @M@ ax s L kM xmanPig
PoA, 8 4
< S polneS (R | [ WIM(max » L ¢ [ kg, x) ax)Bi
=5y A" o K,
]

(by Tchebyshev's inequality)

<53 ([ k™ nan)F fhg @) [ (w‘;’\)z(x) ax <
N A _
] J
< 8-.const.(2 f KaA(x,x)dx)l—B
J
A
R )
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We apply variant of the finite volume: ¢ I:

'

Whenever <1, the sum 3 1is finite due to the exponential

] - .
decay of KaA and mild integrable singularities of KaA on dA.
Since 6 is arbitrary the proof follows.

) gqg.e.d.
The dependence on A of the constants C(j, ) in the above
Lemma is very weak. For this we refer to our paper

1.3. Existence and Shape-Independence of pnw'

st
Let ng & G, OP) and n < suppp

be arbitrary chosen. Then we
have
\ .

Zy(p) = ‘p%A (d¢) exp(-APp (4)) eprA(¢,‘I’:A), (1.12)

s“(r%)
where

aA .
Q 8, ¥ ) ==r [ [T +=¥ M - 2@ @1 ax (1.13)

A

is a polynomial in the field ¢ of degree dég -1 and with coef-
ficients which are polynonual's in the field ‘P‘Z’A
Let: '

w00 (ap) = w9 (@g) exp - f LDy, (0 dx), (1.14)

where: ,;
oA
ce (=A%,
Let n=deg? and let us write

meanas tlhe Wick orderlng with respect to the covarian-
) R

2 Q(lP
j=1

Q(s, ‘I’ )(x) )(‘l) <J5

o (O = AP (w M. (1715)

. 9/
estimates to ZA(n

n—-1 . |
[0 el (la’ @i eate il

Z,(p < s
AT L1(A) N n Ln,(n—x)(A)x (1.16)

x,exp A ffi’\‘l’ )(x)dx.

Appllcatlon of the Lemma 1.2 together with the Minkovski ine-
quality gives that there ex1sts a function J(n) finite on SUpp ugp
such that

Z () _<_' expJ(n)|A] . (1.17)

This bound together with the standard subadditivity arguments
(see, for example 78/ ) gives that for almost every n wr. to

6"

r

S
1

= lim2 whenever A *R2in
ATR

the sense of van Howe' and such that JdA are Cl

y?the limit p” —;l\—fanA(q) exists,

-piecewise curves.

Moreover, the limit does not depend on the sequence At R? chosen.

Remark: The existence of finite on supppg function i(s), such
that (1.17) holds, can be also proven by the applica-
tion of the Tchebyshev inequality.

1.4. p:’o - p’fo

Now we are ready to prove the second part of the Theorem A.
From the Lemma 1.3. it follows that it is ehought to control
the limit ‘i by passing to sebsequences. Let {A 1. be
any sequence 0?3:' ounded w1th2(, -piecewise boundaries " oA ot
subsets of R2? such that ATR monotonously and by 1nc1u51cm and
such that there exists a number p > O for which:
1+
oA 51 !
lim
ST

i
For every n let X ‘ be a C*
in (1.1%.

— function with the propertles listed
Additionally we assume

s n n al 00
ntjl;maﬂl@l X 1 19,x 1< C <=,
sup [Ax"| < C_< oo. .

‘z,1 € ' 2 .

Using the: ¢’ : -estimates together with the Lemma 1.1., we easily
conclude from (1.9) that there exists for any given number

p>0 a function Clp,n) finite on the support of ke and such that
for some subsequence (n*) C (n) we have the following estimate:

Z, (p
A AT 1
e <em A |,
ZAD’(T’ =0) ’
From this estimate it follows that
0
lim pn lim p =0
. An' oo An'

Faking into account Lemma 1.3. we conclude that

=0
= lim pA

s 0

1im pA = lxm pA

n-+o o'+ oo
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Thi's shows that for p g dlmost every 7 the infinite volume vacuum
energy dénsity is equal to the Dirichlet pressure which is
equal to other classically conditioned infinite volume pressu-
res following from the results of 57,

‘

Remark: A similar trick with the shift transformation has )
been used in a quite different context in paper/15/, f'
V

2. CONCLUDING REMARKS - mh

N ~

The above Theorem A 'has been. formulated in the course of our
studies on the DLR equations. for the fP(qS)2 theories. We expect
that in the region of convergence of the cluster expansion the e
obtained regular Gibbs measure is unique in the setvgcﬁh?).

Ode of the possible ways of proof is to show that the cluster

expansion converges uniformly in the boundary data. This is

true for the classical boundary conditions’/1%/ As an application

of the estimates proven in the subsection [.3. we mention here

the following result:

Theorem B. Let p,& 'Q;(/\P) be arbitrary and 75 € supp pp.
Then there exists a number o=0(p) such that for
Al <o ()  the cluster expansion for the conditio-
ned by 5 measure 7 (d¢) converges.

Note that this result is too weak to prove the uniqueness
of the completely regular Gibbs states due to the n-dependence
of the convergence radius of the corresponding high-temperature
cluster expansions. .

For the lattice models this problem has been resolved in/18/
by a beautiful trick. Some umiqueness results have been proved
for some other field theoretical models in/8,12,13,14/

Estimates established in subsection 1.2. can be also used _
to prove independence of the boundary data of suitably perturbed
energy densities.

The following genéralized energy densities

.

PR €, D) :—---|A1| mZ (¢, ), (2.1)

- ‘ n .

n

Zgln e D) = fuj@em T ¢ $(1) emupixy), (2.2)
where ¢ =(el,u” €.) s f=(,.., £.) is a sequence of smooth g
functions localized in unit cubes, can be shown to be independent §
of typical boundary data: This remark opens a new posstble way
to attack the problem of uniqueness. From the remark above it t>
follows: .

: . (]
hm‘,P(X)(ll, €, f) = lim DE\)(“’ €, f) = Pm(ﬂ-, €, f)’ . (2-3)
AtR2 T AR - - T y
8

<

' -~
\

]
\&t follows then from the convexity at p that whenever paJu,O) is
., differentiable at g, then: ,

9 . N} 1

- llm p ‘.(V«, €, f) | P = e f‘dx<¢(0)>m (,U-,f, f)' =

Ou A9 g2 ~ o~ £=0 Al A ~ o~ g0

- lim L [dx<@(®) > Ap, 0, 0)

 Atr? A AT S (2.4)

i n .
Assuming moreover that lim < >, has the translationally inva-
. ; A?
riant first moment we conclude from (2.4) that

Jdim <®>" (1,0,0) = <p(O> (4,0,0) (2.5)
Ar2 A © - -

does not depend on the typical boundary condition. In the region
of convergence of the cluster expansion it 1s known that the
right-hand side of (2.3) is analytic functions of the complex
parameters € = (e, ,..., € n) at € =(0,...,0). Taking the derivati-
ves of r.h.S. of (2.3) we obtain:

~ =

on+1
_ . .. T _
.S:W.... ’y éu pw(u, € t:.) [€=(0'm'0)_<¢(0), ¢(f1) e »qzﬁ(fn)>“7 (e, e_.—O)..
n 1 ~ (2).6)

b

<Thus, the problem of uniqueness of the translationally invariant
state has been reduced to the question about the possibility of
interchanging the operation dn/de, ... de l€=(0 0) with the

operation of taking the thefmodynamic limit. This seems to be

"a much easier problem than the question about uniform convergence
of the cluster expansion. | . :
Even more perspective appears this possibility of proving ¢
the uniqueness for the case of ?(¢)=AZ¢4D+b:¢ 2. From the Lee-

Yang theorem 1 it follows that the r.h.s. of (2.3) is then analv-

tic at € =(0,...,0) whenever p # 0. Having in mind the Vitali
theorem we see that the problem is reduced here to a volume uni-
form bound on'pgiu,f) in some complex neighbourhood of e=(0,...,0).
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