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Abstract. We study some Hermitian Φ4-matrix model and some real sym-
metric Φ4-matrix model whose kinetic terms are given by Tr(EΦ2), where E is
a positive diagonal matrix without degenerate eigenvalues. We show that the
partition functions of these matrix models correspond to zero-energy solutions
of a Schödinger type equation with N -body harmonic oscillator Hamiltonian
and Calogero-Moser Hamiltonian, respectively. The first half of this paper is
primarily a review of previous work of us. The discussion of the properties of
zero-energy solutions and the discussion of systems of differential equations sat-
isfied by partition functions derived from the Virasoro algebra in the latter half
of this paper contain novel material.

1 Brief Background
First, let us take a moment to review some historical background on matrix models.

In the 1990s, deep connections between matrix models and two-dimensional quantum gravity
were discovered, and many important developments have been made. We refer to [2] for an
early review that covers most of these achievements. Among them, the matrix model that is
closest to the content of this paper is the Kontsevich model [9]. Its action is given by SK =
N Tr{EΦ2 + λ

3Φ
3}, where Φ is an N × N Hermitian matrix, E is a positive diagonal N × N

matrix E := diag(E1, E2, · · · , EN ) without degenerate eigenvalues, and λ is a complex number
as a coupling constant. This model was proposed to prove the Witten conjecture [13]. The model
we will study is given by replacing the interaction term 1

3Φ
3 by 1

4Φ
4.
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In the 2000s, a different motivation led to the study of matrix models. There has been a
lot of interest in analyzing matrix models as quantum field theories on noncommutative spaces.
A noncommutative space is realized, for example, as a noncommutative algebra obtained by
deforming a function algebra on that space into a noncommutative product. Therefore, by
attaching an appropriate matrix representation to the noncommutative algebra, the field theory
can be described as a matrix model. However, those quantum theories generally have no chance
to be renormalizable because of the UV/IR problem. The scalar Φ4 field theory on Moyal space
by Grosse and Wulkenhaar [5] and the scalar Φ3 theory by Grosse and Steinacker [6] [7] appeared
as theories to avoid the UV/IR problem. In other words, they showed that those field theories
to which certain counter-Lagrangian terms are added are renormalizable.

This scalar Φ4 quantum field theory on Moyal space (Grosse-Wulkenhaar model) is the model
we discuss in this paper.

2 N-body harmonic oscillator system and Calogero-Moser model from Φ4-matrix
model

We study a Hermitian Φ4-matrix model and a real symmetric Φ4-matrix model whose kinetic
terms are given by Tr(EΦ2), where E is a positive diagonal matrix E := diag(E1, E2, · · · , EN )
without degenerate eigenvalues. In this paper, we treat both cases of Hermitian and real sym-
metric matrices as Φ, and write them with subscript β when equations can be described in a
unified manner. When β is 2, it is the case of a Hermitian matrix, and when β is 1, it is the
case of a real symmetric matrix. We show that their partition functions of these matrix models
correspond to zero-energy solutions of a Schödinger type equation with N -body harmonic os-
cillator Hamiltonian and Calogero-Moser Hamiltonian [1], respectively. (See also related works
[10, 11, 12].) In more detail, they are as follows.

Let Z(E, η) be the partition function defined by

Z(E, η) =

∫
Mβ

dΦ e−SE [Φ], (1)

where

SE = N Tr{EΦ2 +
η

4
Φ4} (2)

η is a positive real number as a coupling constant, M2 is the space of N ×N Hermitian matrices,
and M1 is the space of N ×N real symmetric matrices.

Here the integral measure is the ordinary Haar measure. Let ∆(E) be the Vandermonde
determinant ∆(E) :=

∏
k<l(El − Ek). Then the function

Ψ(E, η) := e−
N
βη

∑N
i=1 E2

i ∆(E)
β
2 Z(E, η)

is a zero-energy solution of the Schrödinger type equation for the N -body harmonic oscillator
system when we consider the Hermitian matrix model with β = 2, and for Calogero-Moser model
when we consider the real symmetric matrix model with β = 1.

Theorem 2.1. Let Ψ(E, η) be a function defined by

Ψ(E, η) := e−
N
βη

∑N
i=1 E2

i ∆(E)
β
2 Z(E, η).

Then Ψ(E, η) is a zero-energy solution of the Schrödinger type equation

HΨ(E, η) = 0.
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Here H is the Hamiltonian HHO for the N -body harmonic oscillator system when we consider
the Hermitian matrix model with β = 2:

HHO := − η

N

N∑
i=1

(
∂

∂Ei

)2

+
N

η

N∑
i=1

(Ei)
2. (3)

When we consider the real symmetric matrix model with β = 1, then H is the Hamiltonian HCM

for Calogero-Moser model:

HCM :=
−η
2N

 N∑
i=1

∂2

∂E2
i

+
1

4

∑
i̸=j

1

(Ei − Ej)2

+ 2
N

η

N∑
i=1

E2
i . (4)

Let us look at a rough outline of the proof of this theorem, in this section. The details are
given in [3] [4]. The flow of the proof is the same in the case of the Hermitian matrix model as
in the case of the real symmetric matrix. Therefore, the Hermitian matrix case (β = 2), which
is computationally simpler, will be discussed below.

To derive the above differential equation, E is not enough, so let us introduce H as a positive
Hermitian N ×N matrix with nondegenerate eigenvalues {E1, E2, · · · , EN | Ei ̸= Ej for i ̸= j}.
Using this H, we consider the new action

S = N Tr{HΦ2 +
η

4
Φ4}

= N

 N∑
i,j,k

HijΦjkΦki +
η

4

N∑
i,j,k,l

ΦijΦjkΦklΦli

 . (5)

The partition function defined by this S

Z(E, η) :=

∫
M2

dΦ e−S , (6)

is the same one defined by (1), because the integral measure is U(N) invariant. We use the

symbol ⟨O⟩ as a non-normalized vacuum expectation value defined by ⟨O⟩ :=
∫
M2

dΦ Oe−S .

The Schwinger-Dyson equation is derived from∫
M2

∂

∂Φij

(
Φije

−S
)
= 0, (7)

which is expressed as

Z(E, η)−N
∑
k

(⟨HkiΦijΦjk⟩+ ⟨HjkΦkiΦij⟩)−Nη
∑
k,l

⟨ΦjkΦklΦliΦij⟩ = 0. (8)

The key to obtaining the desired partial differential equation is that the following expectation
values are expressed in terms of partial derivatives:

∂Z(E, η)

∂Hij
= −N

∑
k

⟨ΦjkΦki⟩,
∂2Z(E, η)

∂Hij∂Hmn
= N2

∑
k,l

⟨ΦjkΦkiΦnlΦlm⟩. (9)

After summing (8) overindices i and j and substituting (9) for it, we get

LH
SDZ(E, η) = 0. (10)
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Here LH
SD is a second order differential operator defined by

LH
SD := N2 + 2

∑
i,k

Hki
∂

∂Hki
− η

N

∑
i,k

(
∂

∂Hki

∂

∂Hik

)
. (11)

Next we rewrite this Schwinger-Dyson equation in terms of En(n = 1, 2, · · · , N). After small
calculations, we find that the second term is expressed as∑

i,j

Hij
∂Z(E, η)

∂Hij
=
∑
k

Ek
∂Z(E, η)

∂Ek
, (12)

and the Laplacian is rewritten as

∑
i,k

(
∂

∂Hki

∂

∂Hik

)
Z(E, η) =


N∑
i=1

(
∂

∂Ei

)2

+
∑
i̸=j

1

Ei − Ej

(
∂

∂Ei
− ∂

∂Ej

) Z(E, η). (13)

Here
∑
i̸=j

means
N∑

i,j=1,i ̸=j

. From (10) , (12) , and (13), we find that the partition function defined

by (1) satisfies

LSDZ(E, η) = 0, (14)

where

LSD :=

 η

N

N∑
i=1

(
∂

∂Ei

)2

+
η

N

∑
i̸=j

1

Ei − Ej

(
∂

∂Ei
− ∂

∂Ej

)
− 2

∑
k

Ek
∂

∂Ek
−N2

 . (15)

The next step is to diagonalize LSD. By direct calculations, we can prove the following
proposition.

Proposition 2.2. The differential operator LSD defined in (15) is transformed into the Hamil-
tonian of the N -body harmonic oscillator as

−e−
N
2η

∑
i E

2
i ∆(E)LSD∆−1(E)e

N
2η

∑
i E

2
i = − η

N

N∑
i=1

(
∂

∂Ei

)2

+
N

η

N∑
i=1

(Ei)
2. (16)

Note that this transformation is invertible. We can regard this as some kind of gauge trans-
formation. We denote the right-hand side by HHO as (3). To cancel the gauge transformation

∆−1(E)e
N
2η

∑
i E

2
i , we introduce a transformed partition function Ψ(E, η) by

Ψ(E, η) := e−
N
2η

∑
i E

2
i ∆(E)Z(E, η). (17)

From Proposition 2.2, we find that the transformed partition function Ψ(E, η) is a zero-energy
solution of the Schrödinger-type differential equation:

HHOΨ(E, η) = 0. (18)

Theorem 2.1 for the case of the Hermitian matrix model is thus proved. HHO is the N -body
harmonic oscillator Hamiltonian (3). This N -body harmonic oscillator system has no interaction
terms between the oscillators, so it is a trivial quantum integrable system.

We can perform parallel discussions as above for the case of real symmetric matrix model.
We refer to [4] for details.
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3 Zero-energy solution of N-body harmonic oscillator system
In this section, we will investigate the partition function, or Ψ in the above section, which is the
zero-energy solution of the N -body harmonic oscillator system, in more detail. In particular, it
is a well-known fact that L2(RN ) does not contain a solution of the N -body harmonic oscillator
system with zero energy. What kind of function is this Ψ? Let us consider this question.

After using the Harish-Chandra-Itzykson-Zuber integral [8] for the unitary group U(N) and
some calculations, we get

Z(E, η) =
∑

σ∈SN

cN
∆(E)

∫
RN

(
N∏
i=1

dxi e
−NV (xi))

(∏
l<k

xk − xl
xk + xl

)
N∏
j=1

e−NEjx
2
j

=
N !cN
∆(E)

∫
RN

(
N∏
i=1

dxi e
−N(V (xi)+Eix

2
i )

)(∏
l<k

xk − xl
xk + xl

)
, (19)

or

Ψ(E, η) = N !cN

∫
RN

(
N∏
i=1

dxi e
−N( η

4 x
4
i+Eix

2
i+

1
2ηE2

i )

)(∏
l<k

xk − xl
xk + xl

)
. (20)

These integral representations should be regarded as Cauchy principal values.

Let us look at the simplest case N = 1. Introducing new variables ui :=

√
N

η
Ei, the

Schrödinger-type equation (18) is deformed into

N∑
i=1

(
∂

∂ui

)2

y(u) =
N∑
i=1

u2i y(u). (21)

So in the N = 1 case, this is a kind of the Weber equation:

y′′(u) = u2y(u). (22)

For the N = 1 case, the partition function is

Z(E, η) :=

∫ ∞

−∞
dx e−Ex2− η

4 x
4

=

∫ ∞

−∞
dx e−

√
ηux2− η

4 x
4

=: Z(u, η), (23)

and using this Z(u, η), (17) implies that the solution of (22) is given as

Ψ(u) := e−
E2

2η Z(u, η) = e−
u2

2

∫ ∞

−∞
dx e−

√
ηux2− η

4 x
4

. (24)

Furthermore, for the u > 0, in terms of the modified Bessel function of the second kind K 1
4
(u),

Ψ(u) can also be written as

Ψ(u) =
1

η
1
4

√
uK 1

4

(u2
2

)
. (25)
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We find that the boundary condition for this solution is required as

Ψ(0) = Z(0, η) =

∫ ∞

−∞
dxe−

η
4 x

4

=
Γ( 14 )√
2η

1
4

,

Ψ′(0) = −√
η

∫ ∞

−∞
dx x2e−

η
4 x

4

= −
√
2Γ( 34 )

η
1
4

.

Thus, in the case of N = 1, the results are expressed in terms of known special functions.
Let us now consider the first question of this section. It is well known that there are no

zero-energy solutions which belong to L2(R).
By (25), the graph of ψ in the range u > 0 is shown in Fig. 1. However, the graph of ψ when

the definition range of u is extended to the whole real numbers using the original definition (24)
is shown in Fig. 2. This figure clearly shows that ψ is not included in L2(R).
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Figure 1: u > 0
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Figure 2: −∞ < u <∞

In the case of N = 1, the properties of Ψ can be clearly identified, as we have seen above. For
the general case of N , it is not yet known what kind of function Ψ is and what kind of boundary
conditions can be imposed on it. On the contrary, even the case N = 2 is still an unknown
problem.

4 Virasoro (Witt) algebra
These quantum integrable systems often lead to representations of Virasoro (Witt) algebras,
reflecting their nature.

We saw that the partition function of the matrix model of the Hermitian matrix corresponds
to the solution of the Schrödinger equation for the N -body harmonic oscillator, and the matrix
model of the real orthogonal matrix corresponds to the solution of the Calogero model. Both of
these are quantum integrable systems, leading to a representation of the Virasoro (Witt) algebra.
We would like to mention this, but the Calogero model requires a complicated setup. We refer
to [4] for details. In the following, we restrict our attential to the case of the matrix model of
Hermitian matrices corresponding to the solution of harmonic oscillators.

For simplicity, we use variables ui :=
√

N
η Ei, then the Hamiltonian is written as

HHO =
N∑
i=1

(
− ∂2

∂u2i
+ u2i

)
=

N∑
i=1

{ai , a†i},

where

ai =
1√
2

(
ui +

∂

∂ui

)
, a†i =

1√
2

(
ui −

∂

∂ui

)
.
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Let us introduce the Virasoro generator:

L−n =
N∑
i=1

(
α
(
a†i

)n+1

ai + (1− α)ai

(
a†i

)n+1
)
, (n ≥ −1)

that satisfies the following commutation relations:

[Ln, Lm] = (n−m)Ln+m.

Here α is a free parameter. In particular, noting that

L0 =
1

2
HHO +

(
1

2
− α

)
N,

we obtain [
1

2
HHO, L−m

]
= mL−m.

Using G = ∆−1(E)e
N
2η

∑
i E

2
i , we define L̃n by L̃n := GLnG−1 satisfying

[
L̃n, L̃m

]
= (n−m)L̃n+m.

Using this L̃n, we immediately obtain the following result,[
LSD, L̃−m

]
= −2

[
L̃0, L̃−m

]
= −2mL̃−m,

which implies the following theorem.

Theorem 4.1. The partition function defined by (1) satisfies

LSD(L̃−mZ(E, η)) =− 2m(L̃−mZ(E, η)). (26)

Here LSD is a differential operator such that the Schwinger-Dyson equation for the partition
function is given by

LSDZ(E, η) = 0. (27)

LSD for the Hermitian matrix model is given in (15).

This means that L̃−mZ(E, η) is an eigenfunction of LSD with the eigenvalue −2m. This
theorem is exactly the same as the theorem obtained in the case of the matrix model of a real
symmetric matrix (the Calogero model).

5 Summary
While mainly reviewing [3] and [4], we have seen that the partition function of the matrix model
in which the potential of the Kontsevich model is replaced by Φ4 implies a zero-energy solution
of the Schrödinger equation for an integrable system by some gauge transformation. In the case
of the Hermitian matrix model, it gives the solution to the Schrödinger equation for a system
of N -body harmonic oscillators as an integrable system, and in the case of the real symmetric
matrix model, it gives the zero-energy solution of the Calogero model. Since it is known that
these integrable systems lead to representations of Virasoro algebras (Witt algebras), a sequence
of differential equations that the partition function satisfies was obtained using them.

It is known that there are no such solutions in L2(RN ), so the solution obtained here is not
such a function. In fact, we discussed the case of N = 1 in detail, and by looking at the specific
functional form of the solution, we were able to see that it was not in L2(R). In the case of both
the harmonic oscillator and the Calogero model, these zero-energy solutions have not been well
studied, and in the general case, as well as in the case of N = 2, they are unknown. We look
forward to further progress in this area.
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