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ABSTRACT
Many approximate solutions of the time-dependent Schrödinger equation can be formulated as exact solutions of a nonlinear Schrödinger
equation with an effective Hamiltonian operator depending on the state of the system. We show that Heller’s thawed Gaussian approximation,
Coalson and Karplus’s variational Gaussian approximation, and other Gaussian wavepacket dynamics methods fit into this framework if
the effective potential is a quadratic polynomial with state-dependent coefficients. We study such a nonlinear Schrödinger equation in full
generality: we derive general equations of motion for the Gaussian’s parameters, demonstrate time reversibility and norm conservation,
and analyze conservation of energy, effective energy, and symplectic structure. We also describe efficient, high-order geometric integrators
for the numerical solution of this nonlinear Schrödinger equation. The general theory is illustrated by examples of this family of Gaussian
wavepacket dynamics, including the variational and nonvariational thawed and frozen Gaussian approximations and their special limits
based on the global harmonic, local harmonic, single-Hessian, local cubic, and local quartic approximations for the potential energy. We also
propose a new method by augmenting the local cubic approximation with a single fourth derivative. Without substantially increasing the cost,
the proposed “single-quartic” variational Gaussian approximation improves the accuracy over the local cubic approximation and, at the same
time, conserves both the effective energy and symplectic structure, unlike the much more expensive local quartic approximation. Most results
are presented in both Heller’s and Hagedorn’s parametrizations of the Gaussian wavepacket.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146680

I. INTRODUCTION

Semiclassical trajectory-based methods for solving the time-
dependent Schrödinger equation (TDSE) avoid the exponential
scaling of the exact quantum solution and, in contrast to classical
methods, can capture various quantum effects at least qualitatively.
Semiclassical methods have been successfully applied to the calcula-
tion of vibrational and electronic spectra, fluorescence and internal
conversion rates, diffusion constants, and rate constants of chemical
reactions.1–5

Multi-trajectory semiclassical methods, such as the initial value
representation,3 frozen Gaussian approximation,6 Herman–Kluk
propagator,7 phase averaging,2 hybrid dynamics,8 or multiple-
spawning,9 employ an ensemble of trajectories and, therefore,

account for both the nonlinear spreading and interference between
various parts of the wavepacket. Trajectory ensembles were even
used to capture relativistic effects.10 Converging such methods
numerically, however, often requires many trajectories, which can
become computationally prohibitive if the potential energy sur-
faces on which the trajectories evolve are expensive. Unfortunately,
this happens in the most interesting modern applications, where
the potential energy surfaces are evaluated with ab initio electronic
structure codes.11–14

Single-trajectory semiclassical approximations, although obvi-
ously much cruder, provide a practical alternative because they
avoid the issue of convergence over the ensemble and permit
using accurate potential energy surfaces. In addition, they pro-
vide a simpler physical interpretation and preserve more geometric

J. Chem. Phys. 159, 014114 (2023); doi: 10.1063/5.0146680 159, 014114-1

© Author(s) 2023

 19 January 2024 17:59:36

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0146680
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0146680
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0146680&domain=pdf&date_stamp=2023-July-7
https://doi.org/10.1063/5.0146680
https://orcid.org/0000-0002-2080-4378
mailto:jiri.vanicek@epfl.ch
https://doi.org/10.1063/5.0146680


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

properties of the exact solution. Among the earliest such methods,
Heller’s “thawed” Gaussian approximation15–17 propagates a Gaus-
sian wavepacket along a classical trajectory and lets its width evolve
using the local harmonic approximation for the potential. It is very
efficient, permits an on-the-fly ab initio implementation,18–21 and
includes some anharmonic effects that are completely missing in the
simpler global harmonic models.

Although this local harmonic thawed Gaussian wavepacket
dynamics (TGWD) conserves the norm of the wavepacket, this
method conserves neither the exact nor the local harmonic effec-
tive energy. Heller appreciated22 very early the capability of the
time-dependent variational principle23–25 to improve the accuracy
of semiclassical dynamics. Applying the variational principle to the
thawed Gaussian ansatz, Heather and Metiu93 and Coalson and
Karplus26 obtained elegant equations for propagating the Gaussian
wavefunction optimally. This variational Gaussian approximation is
symplectic,25,27,28 conserves the energy exactly, and may even cap-
ture shallow tunneling, but it does so at a much higher cost because it
requires the expectation values of the potential energy, gradient, and
Hessian. Noting that the local harmonic TGWD can also be obtained
by applying the variational principle to the local harmonic approx-
imation of the potential, Pattanayak and Schieve improved the
accuracy of Heller’s method by including the third derivative of the
potential in their “extended” semiclassical wavepacket dynamics.29,30

Ohsawa and Leok31 pointed out that this method is—similar to the
variational TGWD, but unlike the local harmonic TGWD—exactly
symplectic, so they called it “symplectic semiclassical wavepacket
dynamics.”31–34

To accelerate on-the-fly ab initio applications of the local
harmonic TGWD, Begušić, Cordova, and Vaníček proposed35 the
single-Hessian approximation,21,36 in which the trajectory evolves
according to the original potential but the width of the wavepacket
feels a constant curvature. Remarkably, this simplified approxima-
tion preserves the effective energy exactly and has a Hamiltonian
structure in an augmented phase space.35

All of the approximations mentioned in the three preceding
paragraphs propagate a Gaussian wavepacket in a time-dependent
quadratic potential whose parameters depend on the instanta-
neous state of the system. Therefore, each of these approxima-
tions is also an exact solution of a certain nonlinear TDSE,
i.e., a Schrödinger equation whose Hamiltonian depends on the
quantum state. The most famous nonlinear Schrödinger equa-
tion is probably the Gross–Pitaevskii equation,37–39 which describes
approximately the Bose–Einstein condensates, but many other
approximations can be stated as exact solutions of a TDSE with
a state-dependent Hamiltonian operator.35 The time-dependent
variational principle23–25 seeks optimal solutions in a nonlinear
manifold of possible solutions and, thus, yields many examples
of nonlinear TDSEs, including the time-dependent Hartree,23,40,41

time-dependent Hartree–Fock,23,42 or multi-configurational time-
dependent Hartree method.43,44 Most nonlinear TDSEs, however, do
not rely on the variational principle—representative examples45,46

are Heller’s thawed Gaussian approximation15 and the local con-
trol theory,47–49 which seeks a state-dependent electric field that
increases or decreases an observable of interest.

This paper explores Gaussian wavepacket dynamics from the
perspective of a nonlinear TDSE with an effective potential that is
a quadratic polynomial of coordinates with state-dependent coeffi-

TABLE I. Summary of nonstandard notation.

Quantity and equation, where defined Symbol and definition

Shifted position (27) x ∶= q − qt
Shifted position operator (31) x̂ ∶= q̂ − qt
Scaled and shifted position (34) ξ ∶= At ⋅ x + pt
Position covariance (56) Σt ∶= Cov(q̂)
Real part of the width matrix (103) A ∶= Re A
Imaginary part of the width matrix (104) B ∶= Im A

cients. The remainder of the paper is organized as follows: Sec. II
reviews the basic properties of the linear TDSE in order to high-
light the differences from the nonlinear TDSE, presented in Sec. III.
The formalism developed in Sec. III is completely general and also
applies to nonlinear TDSEs that do not result from the variational
principle and to non-Gaussian wavepackets. In contrast to the vari-
ational or symplectic approaches,27,31 the formalism is elementary
and does not rely on the very elegant, but advanced symplectic
formulation of Hamiltonian quantum dynamics.

The main Sec. IV defines Gaussian wavepacket dynamics as an
example of a nonlinear TDSE. We derive equations of motion for
the parameters of the Gaussian in terms of the coefficients of the
effective quadratic potential and analyze time reversibility and the
conservation of norm, energy, effective energy, and symplectic struc-
ture. Although the focus on Gaussian wavepackets makes it possible
to obtain more detailed results, the formalism remains more general
than the variational and symplectic approaches because the nonlin-
ear TDSE analyzed in Sec. IV still does not have to arise from the
variational principle and the equations of motion do not have to be
Hamiltonian for a non-canonical symplectic structure. Examples of
wavepacket dynamics employing Gaussians with a flexible width are
presented in Sec. VI and Gaussians with a fixed width in Sec. VII. In
Sec. VI G, we propose a new, single-quartic TGWD, which—in con-
trast to the similarly accurate but much more expensive local quartic
approximation—conserves both the symplectic structure and effec-
tive energy and, at the same time, improves the accuracy over the
local cubic approximation without increasing the cost. The proposed
method allows for tunneling, but, unlike Coalson and Karplus’s
variational TGWD, makes it possible to evaluate analytically the
expectation values of the potential, gradient, and Hessian; it is, there-
fore, a natural extension of Heller’s thawed Gaussian approximation,
which uses classical trajectories and cannot describe tunneling.
Geometric integrators for the general Gaussian wavepacket dynam-
ics are described in Sec. VIII. Section IX translates all results
from Heller’s to Hagedorn’s parametrization of the Gaussian
wavepacket. Finally, Sec. X discusses the relationship between the
three approaches to the TGWD and concludes the paper. For refer-
ence, the nonstandard notation used in this paper is summarized in
Table I.

II. LINEAR SCHRÖDINGER EQUATION
Let us briefly review the properties of the linear time-dependent

Schrödinger equation (TDSE)

ih̵∣ψ̇(t)⟩ = Ĥ∣ψ(t)⟩, (1)
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in which the wavepacket ψ(t) is driven by the time-independent
Hermitian linear Hamiltonian operator Ĥ. The Hamiltonian is said
to be linear because it is independent of the state ψ and not because
of a linear dependence on coordinates. Indeed, Ĥ can be a nonlinear
function of coordinates and still be a linear operator.

The state ψ(t) at time t can be obtained from the initial state
ψ(0) formally as ∣ψ(t)⟩ = Û(t)∣ψ(0)⟩, where Û(t) = exp (−itĤ/h̵)
is the time evolution operator. Because Ĥ is a linear operator, so
is Û(t). The evolution is time-reversible because Û(−t)Û(t)∣ψ(0)⟩
= ∣ψ(0)⟩.

The exact quantum evolution with a time-independent Hermi-
tian linear Hamiltonian Ĥ conserves both the norm ∥ψ(t)∥ of the
quantum state and its energy

E ∶= ⟨Ĥ⟩, (2)

where ⟨Â⟩ ≡ ⟨Â⟩ψ(t) ∶= ⟨ψ(t)∣Â∣ψ(t)⟩ denotes the expectation value
of operator Â in the state ψ(t). Both conservation properties follow
from a general expression

d⟨Â⟩/dt = (ih̵)−1⟨[Â, Ĥ]⟩ (3)

for the time dependence of ⟨Â⟩, applied to the identity operator
(Â = 1̂) or to the Hamiltonian (Â = Ĥ). The linear time evolution
also conserves the inner product ⟨ψ(t)∣ϕ(t)⟩ of two different states.

Here, we will usually assume that the Hamiltonian is separable
into a sum

Ĥ = T̂ + V̂ = T(p̂) + V(q̂) (4)

of a kinetic energy term T̂ ≡ T(p̂), depending only on momentum p,
and a potential energy term V̂ ≡ V(q̂), depending only on position
q. Both q and p are D-dimensional vectors. We call Hamiltonians
described by Eq. (4) “separable,” without requiring that the potential
energy V(q) itself be separable into a sum V1(q1) + ⋅ ⋅ ⋅ + VD(qD) of
D functions, each depending on a single degree of freedom; beware
that many authors require this property in the definition of separa-
bility. While the potential energy function V(q) can be an arbitrary
real-valued function, for the kinetic energy we shall assume the
quadratic form

T(p) = pT ⋅m−1 ⋅ p/2, (5)

where m is the (not necessarily diagonal) positive-definite real sym-
metric D ×D mass matrix. In a linear TDSE, neither T̂ nor V̂
depends on the state ψ.

III. NONLINEAR SCHRÖDINGER EQUATION
When Eq. (1) is solved approximately, its approximate solution

can often25,45,46 be interpreted as the exact solution of the nonlinear
Schrödinger differential equation

ih̵∣ψ̇(t)⟩ = Ĥeff[ψ(t)]∣ψ(t)⟩ (6)

with an effective Hamiltonian operator Ĥeff(ψ) depending on the
state ψ (see Fig. 1). Although one may envision a more general non-
linearity where Ĥeff(ψ)∣ψ⟩ in the right-hand side of Eq. (6) would

FIG. 1. Example of a wavepacket ψ(q, t) that solves exactly a nonlinear
Schrödinger equation (6) with a separable, state-dependent effective Hamiltonian
Ĥeff(ψ) = T(p̂) + Veff(q̂;ψ). Here, the wavepacket is a Gaussian (26), and the
effective potential Veff(q; ψ) is a quadratic polynomial (30) whose coefficients
are given by the single quartic variational approximation [Eqs. (96)–(99)] to the
original, Morse potential V(q).

be replaced by an arbitrary functional of ψ, the slightly less gen-
eral case described by the “quasi-linear” form of Eq. (6) is much
more interesting because it preserves some features of the linear
Schrödinger equation. Notation Ĥeff(ψ)∣ψ⟩ reflects our assumption
that whereas the mapping Ĥeff : ∣ψ⟩↦ Ĥeff(ψ)∣ψ⟩ is nonlinear, the
mapping Ĥeff(ψ) : ∣ϕ⟩↦ Ĥeff(ψ)∣ϕ⟩ is linear for all ψ. In addition,
we shall assume that the expectation value

⟨Ĥeff(ψ)⟩ϕ ∶= ⟨ϕ∣Ĥeff(ψ)ϕ⟩, (7)

which generalizes the energy, is real for any ψ and ϕ. This condi-
tion implies that Ĥeff(ψ), considered as a linear operator (i.e., with
fixed ψ), is Hermitian:

⟨ϕ∣Ĥeff(ψ)θ⟩ = ⟨Ĥeff(ψ)ϕ∣θ⟩ for allψ,ϕ, θ. (8)

The state at time t ≥ t0 can be obtained from the initial state at
time t0 as ∣ψ(t)⟩ = Û(t, t0;ψ)∣ψ(t0)⟩, i.e., by the multiplication with
the evolution operator,

Û(t, t0;ψ) = T exp [− i
h̵∫

t

t0

Ĥeff[ψ(t′)]dt′], (9)

where T indicates time ordering. The evolution operator is non-
linear because it depends on the propagated state. Yet, the evo-
lution guided by the nonlinear Schrödinger equation (6) remains
time-reversible,

Û(t0, t;ψ)Û(t, t0;ψ)∣ψ(t0)⟩ = ∣ψ(t0)⟩, (10)

because, for t0 ≤ t,

Û(t0, t;ψ) = T̄ exp [− i
h̵∫

t0

t
Ĥeff[ψ(t′)]dt′]

= T̄ exp [ i
h̵∫

t

t0

Ĥeff[ψ(t′)]dt′] = Û(t, t0;ψ)−1, (11)
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where T̄ denotes reverse time ordering. Because the Hamiltonian is
state-dependent, the scalar product generally depends on time:

d
dt
⟨ψ∣ϕ⟩ = ⟨ψ̇∣ϕ⟩ + ⟨ψ∣ϕ̇⟩

= (ih̵)−1⟨ψ∣[−Ĥeff(ψ) + Ĥeff(ϕ)]ϕ⟩ ≠ 0, (12)

where we used relation (A1) from Appendix A 1 for ⟨ψ̇∣ϕ⟩.
Let us inspect the conservation of norm and energy by the non-

linear Schrödinger equation (6). These and other useful properties
are obtained by generalizing Eq. (3) to the state-dependent operators
Ĥeff(ψ) and Â(ψ). In Appendix A 2, we prove that the expecta-
tion value ⟨Â(ψ)⟩ ∶= ⟨ψ∣Â(ψ)ψ⟩ evolves in time according to the
equation

d⟨Â(ψ)⟩
dt

= ⟨ d
dt

Â(ψ)⟩ + 1
ih̵
⟨[Â(ψ), Ĥeff(ψ)]⟩. (13)

For a linear, state-independent operator Â, the general equation (13)
simplifies to

d⟨Â⟩/dt = (ih̵)−1⟨[Â, Ĥeff(ψ)]⟩. (14)

Applying this expression, which is analogous to Eq. (3) for the lin-
ear TDSE, to the identity operator demonstrates that the nonlinear
TDSE (6) conserves the norm,

d
dt
∥ψ(t)∥2 = d

dt
⟨1̂⟩ = 1

ih̵
⟨[1̂, Ĥeff(ψ)]⟩ = 0, (15)

while its application to the exact Hamiltonian yields the time
dependence of energy,

Ė = d⟨Ĥ⟩/dt = (ih̵)−1⟨[Ĥ, Ĥeff(ψ)]⟩. (16)

As a result, the energy E may not be conserved under evolution with
the effective Hamiltonian Ĥeff(ψ).

For effective Hamiltonians, one can also study the time
dependence of the effective energy

Eeff ∶= ⟨Ĥeff(ψ)⟩. (17)

Because the exact energy (2) is conserved under the exact time evo-
lution with the Hamiltonian Ĥ, one might expect that the effective
energy (17) would be conserved under the evolution with the effec-
tive Hamiltonian Ĥeff. This is not true in general; taking Â = Ĥeff(ψ)
in Eq. (13) gives

Ėeff = ⟨dĤeff[ψ(t)]/dt⟩. (18)

A. Nonlinear TDSE with a separable Hamiltonian
In what follows, we only consider separable Hamiltonians (4)

and related separable effective Hamiltonians

Ĥeff(ψ) = T̂ + V̂eff(ψ) = T(p̂) + Veff(q̂;ψ). (19)

Expressed in position representation, the nonlinear Schrödinger
equation (6) becomes

ih̵∂tψ(q, t) = − h̵2

2
∇T ⋅m−1 ⋅ ∇ψ(q, t) + Veff(q;ψ)ψ(q, t). (20)

With the obvious exception of energy conservation, many of the fol-
lowing results can be easily generalized to explicitly time-dependent
potentials V̂(t). However, for the sake of brevity, we shall continue
assuming that the original potential energy V̂ is independent of time
and that the effective potential: V̂eff ≡ V̂eff(ψ) depends on time only
implicitly, via the dependence on the state ψ(t).

For separable Hamiltonians, general expressions (16) and (18)
for the time dependence of energy and effective energy reduce to (see
Appendix A 3 for proof)

Ė = Re⟨p̂ T ⋅m−1 ⋅ (V̂ ′ − V̂′eff)⟩ (21)

and
Ėeff = ⟨dV̂eff[ψ(t)]/dt⟩, (22)

where the gradient of the effective potential is defined as

V̂′eff ∶= ∂Veff(q;ψ)/∂q∣q=q̂. (23)

Finally, applying Eq. (14) to the position and momentum oper-
ators shows that the Ehrenfest theorem continues to hold for the
nonlinear Schrödinger equation with the separable Hamiltonian
(19), namely,

d⟨q̂⟩/dt = m−1 ⋅ ⟨p̂⟩, (24)

d⟨p̂⟩/dt = −⟨V̂′eff⟩. (25)

These two equations follow from the explicit expressions (A6)
and (A7) in Appendix A 3 for the commutators of position and
momentum with the effective Hamiltonian.

IV. NONLINEAR TIME-DEPENDENT SCHRÖDINGER
EQUATION FOR A GAUSSIAN WAVEPACKET
A. Gaussian wavepacket

Let us consider approximate solutions of the linear Schrödinger
equation (1), which are exact solutions of the nonlinear Schrödinger
equation (6), in which the wavepacket ψ(t) has a Gaussian form
at all times. I.e., we will consider wavepackets written in position
representation as

ψ(q, t) = exp [ i
h̵
(1

2
xT ⋅ At ⋅ x + pT

t ⋅ x + γt)], (26)

where the shifted position vector

x ∶= q − qt , (27)

was introduced to simplify notation, and qt , pt , At , and γt are
Heller’s15,50,51 parameters determining the time dependence of ψ(t).
The parameters qt and pt are real D-dimensional vectors equal to the
expectation values of position and momentum, At is a complex sym-
metric D ×D matrix, and γt is a complex scalar. The positive definite
imaginary part of At determines the width of the Gaussian, while its
real part introduces a spatial chirp; the real part of γt gives a time-
dependent phase, while its imaginary part controls the norm of ψ(t),
given by

∥ψ(t)∥ = [det (Im At/πh̵)]−1/4e−Im γt/
̵h. (28)
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As shown above, in Eq. (15), this norm is conserved by the solutions
of Eq. (6). Choosing γ0 so that

exp (−Im γ0/h̵) = [det (Im A0/πh̵)]1/4 (29)

ensures unit normalization at all times.

B. Nonlinear time-dependent Schrödinger equation
in terms of parameters of the Gaussian wavepacket

Now we shall show that the nonlinear Schrödinger equa-
tion (20) is solved exactly by a Gaussian wavepacket (26) if and
only if the effective potential energy operator V̂eff(ψ) is a quadratic
polynomial

V̂eff(ψ) ≡ Veff(q̂;ψ) ≡ Veff(x̂;ψ)
= V0 + VT

1 ⋅ x̂ + x̂ T ⋅ V2 ⋅ x̂/2
= V0 + VT

1 ⋅ x̂ + Tr (V2 ⋅ x̂⊗ x̂ T)/2 (30)

in the shifted position operator

x̂ ∶= q̂ − qt (31)

with coefficients V j ≡ V j(ψ) ( j = 0, 1, 2) that may depend on the
state ψ. Note that V̂eff(ψ) depends on ψ not only through the coef-
ficients V j(ψ) but also through x̂ = q̂ − qt since qt = ⟨q̂⟩ψ . See Fig. 1
for an example.

Let us rewrite the Schrödinger equation (20) in terms of ordi-
nary differential equations for the parameters of the Gaussian (26).
Using the chain rule and Eqs. (B7) and (B8) from Appendix B, we
find that the time derivative of the Gaussian wavepacket (26) is

∂ψ/∂t = (∂ψ/∂qt)T ⋅ q̇t + (∂ψ/∂pt)T ⋅ ṗt

+ Tr[(∂ψ/∂At)T ⋅ Ȧt] + (∂ψ/∂γt)γ̇t. (32)

Employing expressions (B10)–(B13) for the partial derivatives of
ψ with respect to various parameters, we can rewrite the time
derivative (32) as

ih̵
∂ψ
∂t
= (ξT ⋅ q̇t − xT ⋅ ṗt −

1
2

xT ⋅ Ȧt ⋅ x + γ̇t)ψ, (33)

where we introduced a complex vector

ξ ∶= At ⋅ x + pt = At ⋅ (q − qt) + pt (34)

to simplify notation. The kinetic energy acting on ψ requires
differentiating ψ twice with respect to x,

⟨q∣T̂∣ψ⟩ = (−h̵2/2)∇T ⋅m−1 ⋅ ∇ψ(q)

= 1
2
[ξT ⋅m−1 ⋅ ξ − ih̵ Tr (m−1 ⋅ At)]ψ(q), (35)

where we used Eq. (B15) from Appendix B.
Schrödinger’s equation (6) can also be written as

0 = ih̵∣ψ̇(t)⟩ − Ĥeff∣ψ(t)⟩ and, (36)

using Eqs. (33) and (35), in position representation as

0 = [ f (x) − Veff(x)]ψ, (37)

where

f (x) = C0 + CT
1 ⋅ x + xT ⋅ C2 ⋅ x/2 (38)

is a quadratic polynomial with coefficients

C0(ψ) ∶= pT
t ⋅ q̇t − γ̇t + (ih̵/2)Tr (m−1 ⋅ At)

− pT
t ⋅m−1 ⋅ pt/2, (39)

C1(ψ) ∶= At ⋅ q̇t − ṗt − At ⋅m−1 ⋅ pt , (40)

C2(ψ) ∶= −Ȧt − At ⋅m−1 ⋅ At. (41)

Because f (x) is a quadratic polynomial, Eq. (37) is satisfied at all
x if and only if Veff(x; ψ) is also a quadratic polynomial in x in the
form of Eq. (30) and, in addition, Cj(ψ) = V j(ψ) for j = 0, 1, 2. Let
us summarize this in

Proposition 1 (Gaussian wavepacket in a linear or nonlinear
TDSE). Gaussian wavepacket (26) solves the nonlinear TDSE (20)
with a possibly state-dependent effective potential V̂eff (ψ) if and
only if Veff is a quadratic potential (30) and Cj(ψ) = V j(ψ) for
j = 0, 1, 2. In particular, the Gaussian wavepacket solves the linear
TDSE (1) if and only if the linear (i.e., independent of ψ) operator V̂
is a quadratic polynomial of coordinates.

The system of equations Cj(ψ) = V j(ψ) (for j = 0, 1, 2) seems
rather complicated to be useful in practice because Eqs. (39)–(41)
couple the time derivatives of the Gaussian parameters. However, it
is easy to invert this system:

Proposition 2. Let V0(ψ), V1(ψ), and V2(ψ) be, respectively,
some prescribed real scalar, vector, and symmetric matrix functions
of the state ψ. Then the Gaussian wavepacket (26) solves the non-
linear TDSE (20) with the effective potential (30) if and only if the
parameters of the Gaussian solve the following system of ordinary
differential equations:

q̇t = m−1 ⋅ pt , (42)

ṗt = −V1, (43)

Ȧt = −At ⋅m−1 ⋅ At − V2, (44)

γ̇t = T(pt) − V0 + (ih̵/2)Tr (m−1 ⋅ At). (45)

Proof. Proposition 1 implies that we can replace Cj with V j,
j = 0, 1, 2, in Eqs. (39)–(41). Equation (44) of motion for Ȧt follows
immediately by inverting Eq. (41) for the C2 matrix. Equation (42)
for q̇t is obtained from the imaginary part of Eq. (40) for the C1
vector,

0 = Im At ⋅ q̇t − Im At ⋅m−1 ⋅ pt. (46)

Because the evolution of ψ(t) conserves the norm (28) and the initial
state ψ(0) is normalized, Im At must be invertible. Multiplying the
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last equation on the left with (Im At)−1 yields Eq. (42) for q̇t . Sub-
stituting the equation of motion (42) for q̇t into Eq. (40) for C1 and
Eq. (39) for C0 yields Eq. (43) for ṗt and Eq. (45) for γ̇t . The opposite
implication is proved similarly: In particular, Eq. (39) follows from
Eqs. (42) and (45), whereas Eqs. (42) and (43) imply Eq. (40), and
Eq. (44) implies Eq. (41).

Next, after discussing various properties of the effective poten-
tial (30), we will show that Eqs. (42) and (43) of motion for position
and momentum also follow, more generally and directly, from the
Ehrenfest theorem.

C. Properties of the quadratic effective potential
Let us list several useful properties of the effective potential Veff

of Eq. (30). Since x ∶= q − qt , the gradient vector and Hessian matrix
of Veff are

V′eff(x) = V1 + V2 ⋅ x, (47)

V′′eff(x) = V2. (48)

Here, we have used and will use short-hand notations

g′ ∶= grad g ∶= ∇g, (49)

g′′ ∶= Hess g ∶= ∇⊗∇Tg (50)

for the gradient and Hessian of function g(x). Expected values of
the effective potential energy (30), its gradient, and its Hessian in
the Gaussian wavepacket (26) are

⟨V̂eff⟩ = V0 + VT
1 ⋅ ⟨x̂⟩ + Tr [V2 ⋅ ⟨x̂⊗ x̂ T⟩]/2

= V0 + Tr (V2 ⋅ Σt)/2, (51)

⟨V̂′eff⟩ = V1 + V2 ⋅ ⟨x̂⟩ = V1, (52)

⟨V̂′′eff⟩ = V2, (53)

where we have invoked relations

⟨x̂⟩ = ⟨q̂ − qt⟩ = ⟨q̂⟩ − qt = 0, (54)

⟨x̂⊗ x̂ T⟩ = ⟨(q̂ − qt)⊗ (q̂ − qt)T⟩ = Cov(q̂) (55)

for the mean and covariance of position and introduced the
shorthand notation

Σt ∶= Cov(q̂). (56)

In a Gaussian wavepacket, qt = ⟨q̂⟩, pt = ⟨p̂⟩ and, therefore, the
equations of motion (42) and (43) for position and momentum also
follow immediately from Eqs. (24) and (25) of the Ehrenfest theorem
for the general nonlinear TDSE (20) and from Eq. (52) for ⟨V̂′eff⟩.
Ehrenfest theorem was also used by Pattanayak and Schieve to derive

the equations of semiquantal dynamics.29,30 Finally, note that for a
fixed state ψ, V̂eff(ψ) is a Hermitian operator because

⟨V̂eff(ψ)⟩ϕ = V0(ψ) + Tr [V2(ψ) ⋅ Covϕ(q̂)]/2 (57)

is real for any ψ and ϕ since V0(ψ), V2(ψ), and the covariance
Covϕ(q̂) of position in the state ϕ are all real. This justifies our
assumption (7) of the hermiticity of Ĥeff used in the general analysis
in Sec. III.

V. GEOMETRIC PROPERTIES OF GAUSSIAN
WAVEPACKET DYNAMICS

As mentioned in Sec. II, the exact solution of the linear TDSE
(1) with a time-independent Hamiltonian has several “geometric”
properties: the time evolution is linear, unitary, norm-conserving,
energy-conserving, symplectic, and time-reversible. Symplecticity
means that the time evolution conserves the symplectic structure—a
symplectic 2-form ω(ψ,ϕ) ∶= −2h Im ⟨ψ,ϕ⟩, defined on the Hilbert
space as the imaginary part of the scalar product.25 The loss of lin-
earity implies that the nonlinear TDSE fails to conserve the inner
product. As a result, the conservation of neither the norm nor the
symplectic structure is guaranteed. Let us discuss the time reversibil-
ity and conservation of norm, energy, effective energy, and symplec-
tic structure by the Gaussian wavepacket dynamics—the nonlinear
TDSE (20) with the effective potential (30).

A. Norm conservation
As already shown in Secs. III and IV A, the norm of a Gaussian

wavepacket is always conserved, although a scalar product between
two different initial states is not.

B. Exact and effective energies
Quantum-mechanical energy in a state ψ driven by the sepa-

rable Hamiltonian (4) is given by the sum of expectation values of
kinetic and potential energies,

E = ⟨Ĥ⟩ = ⟨T̂⟩ + ⟨V̂⟩. (58)

In general, the expected value ⟨V̂⟩ of the potential energy cannot be
simplified. Because the kinetic energy has the quadratic form (5), its
expected value in a Gaussian is

⟨T̂⟩ = ⟨p̂ T ⋅m−1 ⋅ p̂⟩/2 = Tr (m−1 ⋅ ⟨p̂⊗ p̂ T⟩)/2
= T(pt) + Tr [m−1 ⋅ Cov(p̂)]/2, (59)

where the first term is the classical kinetic energy at the wavepacket’s
center and the second term reflects the finite width of the
wavepacket; Cov(p̂) is the momentum covariance matrix (B24).
In the third step of the derivation, we used Eq. (B29) from
Appendix B 4.

Unlike the energy, the effective energy (17),

Eeff = ⟨Ĥeff⟩ = ⟨T̂⟩ + ⟨V̂eff⟩, (60)

can be evaluated fully analytically since, for quadratic effective
potentials (30), ⟨V̂eff⟩ is given by Eq. (51).
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Because the effective potential is different from the exact poten-
tial, generally ⟨V̂eff⟩ ≠ ⟨V̂⟩ and, therefore, Eeff ≠ E. Below, we shall
see that in the special case of the variational Gaussian wavepacket
dynamics, a beautiful cancellation results in the equality Eeff = E.

C. Time dependence or conservation of energy
As follows from a more universal analysis in Sec. III A, the

evolution of a Gaussian wavepacket with an approximate effec-
tive Hamiltonian (19) may not conserve energy. It is a remarkable
fact that energy is conserved in the special cases of variational
thawed and frozen Gaussian wavepacket dynamics (FGWD), dis-
cussed below in Secs. VI A and VII A. More generally, energy is con-
served along the solutions satisfying the Dirac–Frenkel variational
principle for any, not necessarily Gaussian, wavefunction ansatz
compatible with the principle (see Appendix C).25,52–54 No other
example of Gaussian wavepacket dynamics among those presented
in Secs. VI and VII conserves energy.

To see when energy may be conserved, let us derive a universal
expression for the time dependence of energy in a system propa-
gated in a general quadratic effective potential (30). Substituting the
gradient (47) of the effective potential into Eq. (21) gives

Ė = Re⟨p̂ T ⋅m−1 ⋅ (V̂ ′ − V1 − V2 ⋅ x̂)⟩
= Tr [m−1 ⋅ Re⟨(V̂ ′ − V1 − V2 ⋅ x̂)⊗ p̂ T⟩]. (61)

Substitution of expression (B35) from Appendix B 5 for the expected
value in Eq. (61) yields

Ė = pT
t ⋅m−1 ⋅ (⟨V̂ ′⟩ − V1)
+ Tr [m−1 ⋅ (⟨V̂ ′′⟩ − V2) ⋅ CovR(q̂, p̂)], (62)

where CovR(q̂, p̂) = (h̵/2)(Im At)−1 ⋅ Re At is the real covariance
(B26). Relation (62) helps determine when the energy is con-
served exactly. First, consider a Gaussian with a purely imaginary
width matrix At . Then CovR(q̂, p̂) = 0 and, in order for Ė to be
zero for arbitrary m and pt , we must have V1 = ⟨V̂ ′⟩. If At is
purely imaginary, Eq. (44) implies that both Re At and CovR(q̂, p̂)
will become nonzero unless Ȧt = 0, i.e., we have a “frozen”
Gaussian with constant width matrix At = A0 and require that
V2 = −A0 ⋅ m−1 ⋅ A0. If At is not purely imaginary, CovR(q̂, p̂) ≠ 0
and we must have both V1 = ⟨V̂ ′⟩ and V2 = ⟨V̂ ′′⟩. To sum up, there
are two general ways to guarantee the conservation of energy: Either

V1 = ⟨V̂ ′⟩ and V2 = ⟨V̂ ′′⟩ (63)

for a Gaussian wavepacket with a flexible width, or

V1 = ⟨V̂ ′⟩, V2 = −A0 ⋅m−1 ⋅ A0, and Re A0 = 0 (64)

for a Gaussian wavepacket with fixed width. As we shall see, these
two cases occur, respectively, in the variational thawed and frozen
Gaussian wavepacket dynamics.

D. Time dependence of the effective energy
In Sec. III A, we have also seen that the effective energy of a

nonlinear TDSE is not always conserved. To find the time depen-
dence of the effective energy (60) for the effective potential (30), we
need the time derivative

dV̂eff/dt = V̇0 + V̇T
1 ⋅ x̂ − VT

1 ⋅ q̇t − q̇T
t ⋅ V2 ⋅ x̂ + x̂ T ⋅ V̇2 ⋅ x̂/2. (65)

Because the second and fourth terms of Eq. (65) vanish under the
expectation value, the substitution of Eq. (65) into Eq. (22) for the
time derivative of Eeff yields

Ėeff = V̇0 − VT
1 ⋅ q̇t + Tr (V̇2 ⋅ Σt)/2. (66)

The effective energy of the Gaussian generally depends on time.
Yet, we will see that in many examples of Gaussian wavepacket
dynamics, the effective energy is conserved due to the cancella-
tion of various terms in Eq. (66). The effective energy is conserved,
e.g., if Eqs. (42)–(45) of motion for qt , pt , At , and γt coincide
with Hamilton’s equations for the Hamiltonian Eeff on a symplectic
manifold of Gaussian wavepackets.31,55

E. Time reversibility
If we denote by Λ ∶= (q, p, A, γ) the collection of parameters

of the Gaussian ψ, the time evolution of ψ(t) can be expressed in
terms of the time evolution Λt = Φ(Λ0, t) of the parameters by a
flowΦ(Λ, t). Time reversibility (10) of the TGWD, equivalent to the
condition

Λ0 = Φ(Λt ,−t), (67)

follows from the reversibility (10) of general nonlinear TDSE. In
Sec. VIII, we will provide more explicit proof based on condition
(67) and the fact that the symmetric composition of reversible flows
is reversible.

F. Symplecticity
The family of Gaussian wavepackets (26) parameterized by

qt , pt , At , and γt forms a finite-dimensional symplectic submanifold
of the Hilbert space and is equipped with a certain noncanonical
symplectic structure.31 Ohsawa and Leok showed that symplectic
reduction associated with norm conservation leads to a simpler
symplectic form

ω =
D

∑
j=1

dq j ∧ dpj + (h̵/4)
D

∑
j,k=1

d(B −1) jk ∧ dAk j (68)

on a manifold with coordinates Λ ∶= (q, p,A ≡ Re A,B ≡ Im A); this
symplectic structure is conserved, e.g., by the variational Gaussian
approximation but not by the original thawed Gaussian approx-
imation.31 If the effective Hamiltonian is defined as the expec-
tation value of the exact or some approximate Hamiltonian, i.e.,
Heff ∶= ⟨Ĥ⟩ψ or Heff ∶= ⟨Ĥappr⟩ψ , and Eqs. (42)–(45) of motion are
replaced with noncanonical Hamilton’s equations for Heff, then
the conservation of both symplectic structure and effective energy
are guaranteed automatically.31 This is because the function
Heff(q, p,A,B) provides a Hamiltonian function on a manifold with
coordinates Λ and symplectic structure (68) and because every
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Hamiltonian flow conserves its energy and symplectic structure.
Although most examples in the following Secs. VI and VII satisfy
Heff = ⟨Ĥappr⟩ψ , we do not assume the validity of this relation. There-
fore, the more general Eqs. (42)–(45) obtained from the perspective
of the nonlinear TDSE differ from the equations of motion obtained
from the Hamiltonian approach, and conservation of neither the
symplectic form nor the effective energy is guaranteed.

The analysis of the symplectic structure of Gaussian wavepacket
dynamics with a general effective potential (30) can be done ele-
gantly using the formalism of symplectic geometry, as was done
by Ohsawa and Leok31 for the effective potential obtained as the
expected value of some approximate potential (Veff ∶= ⟨V̂appr⟩).
Because this analysis relies on non-elementary concepts of differen-
tial geometry, it will be presented elsewhere.55

VI. THAWED GAUSSIAN WAVEPACKET DYNAMICS
The reader may ask whether there exist any interesting effective

quadratic Hamiltonians for which the preceding general analysis is
useful. Indeed, there are many; five such Hamiltonians are hidden
behind the variational Gaussian approximation,22,26 Heller’s original
thawed Gaussian approximation,15 the single-Hessian thawed Gaus-
sian approximation,35 the local cubic variational TGWD (also known
as the extended semiclassical dynamics30 or symplectic semiclassi-
cal wavepacket dynamics32,33), and—of course—the global harmonic
approximation, of which the last one leads to a linear TDSE, while
the first four give rise to genuine nonlinear TDSEs. Below, we also
propose the single-quartic variational TGWD, which improves the
accuracy of the local cubic variational TGWD without increasing its
cost or sacrificing its geometric properties.

We now list the expansion coefficients V0, V1, and V2 of the
effective potential (30) for each of these approximations. Equations
of motion for parameters qt , pt , At , and γt are in each case obtained
by substituting specific expressions for V0, V1, and V2 into the
general Eqs. (42)–(45).

In this section, we will discuss methods employing a
“thawed” Gaussian—a Gaussian wavepacket with a flexible width
matrix, while in Sec. VII, we shall provide examples of meth-
ods using a “frozen” Gaussian—a Gaussian wavepacket with a
time-independent width.

A. Variational TGWD
As shown in Refs. 25, 26, and 52 and here in Appendix D,

the optimal solution (in the sense of the Dirac–Frenkel vari-
ational principle23–25) of the TDSE (1) with a Gaussian
ansatz (26) is the variational TGWD, or variational Gaussian
approximation,22,25,26,52,56 which corresponds to an effective
potential (30) with coefficients

V0 = ⟨V̂⟩ − Tr [⟨V̂ ′′⟩ ⋅ Σt]/2, V1 = ⟨V̂ ′⟩, V2 = ⟨V̂ ′′⟩. (69)

Inserting V j from Eq. (69) into general Eqs. (51)–(53) shows that
in the variational TGWD the exact and effective potentials have
the same expectation values of the potential energy, gradient, and
Hessian,

⟨V̂eff⟩ = ⟨V̂⟩, ⟨V̂′eff⟩ = ⟨V̂ ′⟩, ⟨V̂′′eff⟩ = ⟨V̂ ′′⟩. (70)

The first equality results from a beautiful cancellation of two terms
in the expression

⟨V̂eff⟩ = ⟨V̂⟩ − Tr [⟨V̂ ′′⟩ ⋅ Σt]/2 + Tr [⟨V̂ ′′⟩ ⋅ Σt]/2
= ⟨V̂⟩ (71)

and implies that the effective energy is exact (Eeff = E) for varia-
tional TGWD, even though the propagation itself may be far from
exact. Equations of motion that follow from the effective potential
(69) were originally derived (differently) by Coalson and Karplus26

and are equivalent to those of Theorem 3.2 by Ohsawa and Leok31

and Theorem 3.11 by Lasser and Lubich.52 Poirier derived these
equations using quantum trajectories.57

The variational TGWD is symplectic.27,31 Because any solu-
tion derived from the Dirac–Frenkel variational principle conserves
energy (see Appendix C)25,52 and because the exact and effective
energies are equal in the variational TGWD, this approximation
conserves the effective energy, too. The conservation of the exact
and effective energies by the variational TGWD also follows directly
from the general expressions (62) for dE/dt and (66) for dEeff/dt. See
Appendix E for this more “pedestrian” proof of Ėeff = 0.

The variational TGWD has been extended from real-time to
imaginary-time quantum dynamics in order to describe the equilib-
rium properties of van der Waals clusters58 and the time-correlation
functions of liquid para-hydrogen.59

B. Local harmonic TGWD
In his original thawed Gaussian approximation,1,15 Heller did

not invoke the variational principle and avoided the expensive eval-
uation of expectation values needed in Eq. (69) by making the local
harmonic approximation, in which the effective potential in Eq. (30)
depends on ψ only via qt and its coefficients,

V0 = V(qt), V1 = V′(qt), V2 = V′′(qt), (72)

are the coefficients of the truncated, second-order Taylor expan-
sion of V(q̂) about qt . Heller’s local harmonic TGWD (72) can also
be obtained from the variational TGWD (69) if the local harmonic
approximation is used to evaluate the expectation values ⟨V̂ ( j)⟩. In
Sec. VI E, we prove this statement for an arbitrary “local quadratic”
approximation for V .

If we substitute expressions for V0 and V1 from Eq. (72) into
the general equation (51), we find that

⟨V̂eff⟩ = V(qt) + Tr [V′′(qt) ⋅ Σt]/2 ≠ ⟨V̂⟩, (73)

and, therefore, Eeff ≠ E. The local harmonic TGWD conserves nei-
ther exact nor effective energy. Whereas the nonconservation of
the exact energy was proven, in general, in the discussion follow-
ing Eq. (62) in Sec. V C, the nonconservation of the effective energy
follows from Eq. (66) because

Ėeff = V′(qt)T ⋅ q̇t − V′(qt)T ⋅ q̇t + Tr (Bt ⋅ Σt)/2
= Tr (Bt ⋅ Σt)/2, (74)
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where Bt is the matrix obtained from the contraction of vector
q̇t with the symmetric rank-3 tensor V′′′(qt). Using Einstein’s
convention for a sum over repeated indices,

(Bt) jk ∶= dV′′(qt) jk/dt = (q̇t)iV
′′′(qt)ijk

= (pt)l(m−1)liV
′′′(qt)ijk. (75)

Lauvergnat et al.60 derived equations of motion for the local
harmonic TGWD in generalized coordinates.

C. Single-Hessian TGWD
The most expensive part of a higher-dimensional calculation

using the local harmonic TGWD is, of course, the evaluation of the
Hessian matrix V′′(qt). In the single-Hessian approximation,35,61,62

the Hessian is computed only once, at a reference geometry qref,
but the energies and gradients are still computed at each point
qt along the trajectory. Within the single-Hessian TGWD, the
effective potential (30) again depends on ψ only via qt :

V0 = V(qt), V1 = V′(qt), V2 = V′′(qref). (76)

Although the single-Hessian TGWD does not conserve energy, it
is symplectic, and Eq. (66) implies the conservation of effective
energy,35

Ėeff = V′(qt)T ⋅ q̇t − V′(qt)T ⋅ q̇t +
1
2

Tr [dV′′(qref)
dt

⋅ Σt]

= 0, (77)

because dV′′(qref)/dt = 0 as qref is constant. Because of its efficiency
and improved geometric properties, the single-Hessian TGWD was
implemented in the electronic structure package Turbomole.21

D. Global harmonic TGWD
Among all thawed Gaussian approximations, the least expen-

sive but crudest one is the global harmonic TGWD, in which the
effective potential is the second-order Taylor expansion of V about
a fixed reference geometry qref,

Veff(q) = V(qref) + V′(qref)T ⋅ (q − qref)
+ (q − qref)T ⋅ V′′(qref) ⋅ (q − qref)/2. (78)

This equation is not in the standard form (30), which requires an
expansion about the current center qt of the wavepacket; the coef-
ficients V j of the standard form (30) are obtained by evaluating
derivatives V( j)

eff at qt :

V0 = Veff(qt),
V1 = V′eff(qt) = V′(qref) + V′′(qref) ⋅ (qt − qref),

V2 = V′′eff(qt) = V′′(qref).
(79)

Because the coefficients V0 and V1 depend on ψ via qt , one might
think that Veff is a nonlinear operator. Yet, in contrast to the pre-
viously mentioned approximations, in the global harmonic TGWD,
Veff is a linear operator; this follows clearly from Eq. (78), where Veff
depends on ψ via neither qt nor any other parameter of the Gaussian.

Although the global harmonic TGWD does not conserve
energy, it obviously conserves both the symplectic structure and
effective energy Eeff because Ĥeff = T̂ + V̂eff is a linear, time-
independent Hamiltonian operator. An alternative proof follows
from Eq. (66):

Ėeff = [V′(qref) + V′′(qref) ⋅ (qt − qref)]T ⋅ q̇t

− [V′(qref) + V′′(qref) ⋅ (qt − qref)]T ⋅ q̇t = 0. (80)

E. Variational Gaussian approximation applied
to any local quadratic approximation for V

Effective potentials used in the local harmonic, single-Hessian,
and global harmonic TGWD are all quadratic functions of nuclear
coordinates and, as a result, can be obtained either directly (as sug-
gested above) or by an alternative procedure consisting of two steps:
First, approximate the exact potential V with a state-dependent
approximation Vappr. Then, apply the variational TGWD to Vappr
instead of V . To see this, note that if

Vappr(x) = v0 + vT
1 ⋅ x + xT ⋅ v2 ⋅ x/2 (81)

is a quadratic polynomial of x, inserting Vappr instead of V into the
variational expressions (69) for V j yields

V0 = ⟨V̂appr⟩ − Tr [⟨V̂′′appr⟩ ⋅ Σt]/2
= v0 + Tr (v2 ⋅ Σt)/2 − Tr (v2 ⋅ Σt)/2 = v0, (82)

V1 = ⟨V̂′appr⟩ = v1, (83)

V2 = ⟨V̂′′appr⟩ = v2, (84)

where the expected values were evaluated by applying Eqs. (51)–(53)
to Vappr instead of Veff. The effective potential is equal to the original
approximate potential,

Veff(x) = Vappr(x). (85)

The expectation values of the effective potential, its gradient, and its
Hessian are, therefore, equal to the corresponding properties of the
approximate potential:

⟨V̂eff⟩ = ⟨V̂appr⟩ = v0 + Tr (v2 ⋅ Σt)/2, (86)

⟨V̂′eff⟩ = ⟨V̂′appr⟩ = v1, (87)

⟨V̂′′eff⟩ = ⟨V̂′′appr⟩ = v2. (88)

The variational principle is not needed if the effective potential is
defined by Eq. (85). The equality of the effective and exact ener-
gies requires that v0 = ⟨V̂⟩ − Tr (v2 ⋅ Σt)/2. This equality holds in the
variational TGWD, where v2 = ⟨V̂ ′′⟩.

If v0 only depends on qt , Eq. (66) implies that

Ėeff = [v′0(qt) − v1]T ⋅ q̇t + Tr (v̇2 ⋅ Σt)/2.
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This shows that if the variational principle is applied to an approxi-
mate instead of an exact Hamiltonian, neither the exact nor effec-
tive energy is conserved, in general. The case of local harmonic
TGWD demonstrates that the symplectic structure is generally not
conserved either.

F. Local cubic variational TGWD
Compared with Heller’s original TGWD, the variational

TGWD is hard to evaluate in practice because expectation val-
ues ⟨V̂ ( j)⟩ typically cannot be obtained analytically. However, as
we have just shown, to go beyond Heller’s method, the variational
TGWD must be combined with a more accurate approximation for
V than the local harmonic one. Then the effective quadratic poten-
tial Veff will, obviously, differ from the approximate potential Vappr.
An obvious and simplest possible choice for Vappr that still per-
mits evaluating the expectation values analytically is the local cubic
approximation,

Vappr(q) ∶= V(qt) + V′(qt)T ⋅ x + xT ⋅ V′′(qt) ⋅ x/2
+ V′′′(qt)ijk xix jxk/3!, (89)

which was also used for evaluating the matrix elements of the poten-
tial in the variational multi-configurational Gaussian method.63

Expectation values for Vappr are

⟨V̂′′appr⟩ = V′′(qt), (90)

⟨V̂′appr⟩i = V′(qt)i + V′′′(qt)ijk Σt, jk/2, (91)

⟨V̂appr⟩ = V(qt) + Tr [V′′(qt) ⋅ Σt]/2. (92)

Substitution of these into the variational expressions (69) for V j
yields the effective potential coefficients,

V0 = V(qt), V1,i = V′(qt)i + V′′′(qt)ijk Σt, jk/2, V2 = V′′(qt)
(93)

of the local cubic variational TGWD. The equations of motion
obtained from the effective potential (93) are equivalent to those of
“symplectic semiclassical wavepacket dynamics” [Eq. (36) in Ref. 31,
Eq. (19) in Ref. 32, and Proposition 4.4 in Ref. 33] and, indirectly,
to those of “extended semiclassical dynamics” of Pattanayak and
Schieve.30 The method is symplectic,31 and only the equation for ṗt
differs from the local harmonic TGWD due to a nonclassical term in
the force, given by −V1.

Equation (66) implies that the local cubic variational TGWD
conserves the effective energy because

Ėeff = V̇0 − VT
1 ⋅ q̇t + Tr (V̇2 ⋅ Σt)/2

= V̇(qt) − V′(qt)T ⋅ q̇t − V′′′(qt)ijk Σt, jkq̇t ,i/2
+ Tr{[dV′′(qt)/dt] ⋅ Σt}/2 = 0, (94)

where, in the last step, the second and fourth terms cancel the first
and third terms [see Eq. (75)].

G. Single-quartic variational TGWD (see Fig. 1)
To increase the accuracy over the local cubic approximation,

the “obvious” logical step is to include the local fourth deriva-
tive of V . However, evaluating this local quartic approximation is
expensive, and, similar to the local harmonic TGWD, the local quar-
tic variational TGWD conserves neither the effective energy nor
the symplectic structure. Instead, in analogy to the single-Hessian
TGWD, a much more effective approach is to apply the variational
TGWD to the single-quartic approximation,

Vappr(q) ∶= V(qt) + V′(qt)T ⋅ x + xT ⋅ V′′(qt) ⋅ x/2
+ V′′′(qt)ijk xix jxk/3!

+ V(4)(qref)ijkl xix jxkxl/4!, (95)

which augments the local cubic approximation (89) with the evalu-
ation of a single fourth derivative at a reference geometry qref. The
coefficients of the effective potential of this single-quartic variational
TGWD are obtained by applying the variational formulas (69) to the
expectation values of the potential, gradient, and Hessian of Vappr:

V2,ij = ⟨V̂′′appr⟩ij = V′′(qt)ij + V(4)(qref)ijkl Σt,kl/2, (96)

V1,i = ⟨V̂′appr⟩i = V′(qt)i + V′′′(qt)ijk Σt, jk/2, (97)

⟨V̂appr⟩ = V(qt) + Tr [V′′(qt) ⋅ Σt]/2

+ V(4)(qref)ijkl Σt,ijΣt,kl/8, (98)

V0 = ⟨V̂appr⟩ − Tr [⟨V̂′′appr⟩ ⋅ Σt]/2

= V(qt) − V(4)(qref)ijkl Σt,ijΣt,kl/8. (99)

Here, in deriving expressions for ⟨V̂′appr⟩ and ⟨V̂appr⟩, we used the
identities ⟨xixjxk⟩ = 0 and

⟨xix jxkxl⟩ = Σt,ijΣt,kl + Σt,ikΣt, jl + Σt,ilΣt, jk; (100)

since V(4)(qref)ijkl is a totally symmetric tensor,

V(4)(qref)ijkl⟨xix jxkxl⟩ = 3V(4)(qref)ijkl Σt,ijΣt,kl.

In the single-quartic variational TGWD, equations for q̇t and ṗt
remain the same as in the local cubic variational TGWD, but equa-
tions for Ȧt and γ̇t change due to the changes in V0 and V2. Because
only a single fourth derivative is needed, the computational cost
is only slightly higher than the cost of the local cubic variational
TGWD. Assuming that the fourth derivative must be evaluated by
finite difference, the increase in cost is negligible in typical simu-
lations, where the number of time steps is much larger than the
number of degrees of freedom.
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Remarkably, Eq. (66) implies that the single-quartic variational
TGWD conserves the effective energy because

Ėeff = V̇0 − VT
1 ⋅ q̇t + Tr (V̇2 ⋅ Σt)/2

= V̇(qt) − V(4)(qref)ijklΣ̇t,ijΣt,kl/4
− V′(qt)T ⋅ q̇t − V′′′(qt)ijkΣt, jkq̇t,i/2

+ 1
2

Tr [dV′′(qt)
dt

⋅ Σt] +
1
4

V(4)(qref)ijklΣ̇t,ijΣt,kl

= 0, (101)

where, in the last step, the first term cancels the third one, the sec-
ond term cancels the sixth, and the fourth term cancels the fifth
[see Eq. (75)]. Because the single-quartic variational TGWD does
not increase the cost over the local cubic variational TGWD and
because it, in contrast to the local quartic TGWD, conserves the
symplectic structure and effective energy, this method appears to
be the logical and promising choice in calculations whose goal is to
improve geometric properties and accuracy beyond Heller’s original
local harmonic TGWD.

VII. FROZEN GAUSSIAN WAVEPACKET DYNAMICS
In more restrictive approximations, the Gaussian wavepacket

has a constant width matrix At = A0. Clearly, all such “frozen
Gaussian” approximations6 require that Ȧt = 0 and Eq. (44) implies
that the coefficient V2 in the effective quadratic potential (30) must
satisfy

V2 = −At ⋅m−1 ⋅ At = −A0 ⋅m−1 ⋅ A0. (102)

One can freely choose only the coefficients V0 and V1, but not
V2. The frozen Gaussian approximation is typically used in multi-
trajectory methods, which can describe wavepacket spreading and
distortion without requiring a flexible width; the description of the
nonlinear spreading of a wavepacket was, indeed, Heller’s moti-
vation in proposing the frozen Gaussian approximation.6 Other
methods employing frozen Gaussians are the semiclassical
Herman–Kluk propagator3,7,52,56 and its extensions,64–66 which
assign each trajectory a weight factor depending on the stability
matrix; imaginary-time frozen Gaussian dynamics,67 which treats
the quantum Boltzmann operator instead of the time evolution
operator; and Gaussian basis methods,68–72 which allow coupling
between the trajectories.

Here, we focus only on single-trajectory methods employing a
Gaussian with a fixed width. These methods form a family of frozen
Gaussian wavepacket dynamics (FGWD), which has an interesting
relation to the single-Hessian approximation (76) of Sec. VI C. The
FGWD is on one hand, a special case of the single-Hessian TGWD
because one can think of V2 from Eq. (102) as a reference Hessian
of a harmonic potential whose ground state is the initial state and,
on the other hand, a generalization because one is still free to choose
V0 and V1.

Let

A ∶= Re A0 = Re At , (103)

B ∶= Im A0 = Im At (104)

denote the real and imaginary parts of the constant width matrix. It
follows from Eq. (102) that

Re V2 = −A ⋅m−1 ⋅A + B ⋅m−1 ⋅ B, (105)

Im V2 = −A ⋅m−1 ⋅ B − B ⋅m−1 ⋅A. (106)

Recall that in order for V̂eff(ψ) to be a Hermitian operator with
real expectation values, coefficient V2(ψ) must be a real matrix. In
Appendix F, it is shown that setting Im V2 = 0 in Eq. (106) implies
that the initial width matrix A0 of the frozen Gaussian is purely
imaginary,

A = 0. (107)

As a consequence,
V2 = Re V2 = B ⋅m−1 ⋅ B. (108)

Because A = 0 in the FGWD, CovR(q̂, p̂) = 0 and the equations
of motion (42)–(45) become

q̇t = m−1 ⋅ pt , (109)

ṗt = −V1, (110)

At = A0 = const. = iB, (111)

γ̇t = T(pt) − V0 − (h̵/2)Tr (m−1 ⋅ B). (112)

Equations (62) and (66) for the time dependence of exact and
effective energies reduce to

Ė = pT
t ⋅m−1 ⋅ (⟨V̂ ′⟩ − V1), (113)

Ėeff = V̇0 − VT
1 ⋅ q̇t = V̇0 + ṗT

t ⋅m−1 ⋅ pt

= V̇0 + Ṫ(pt). (114)

Now, let us examine examples of effective potentials giving rise to
FGWD; V2 is always given by Eq. (108).

A. Variational FGWD
Application of the Dirac–Frenkel variational principle to the

frozen Gaussian ansatz is similar to the derivation of the varia-
tional TGWD in Appendix D except that we lose parameter At and,
therefore, Eqs. (D8) and (D13). The remaining equations are either
0 = ⟨g⟩ = ⟨xg⟩ or the equivalent 0 = ⟨g⟩ = ⟨∇g⟩, which give

V0 = ⟨V̂⟩ − Tr [V2 ⋅ Cov(q̂)]/2
= ⟨V̂⟩ + (ih̵/4)Tr (A0 ⋅m−1 ⋅ A0 ⋅ A−1

0 )
= ⟨V̂⟩ − (h̵/4)Tr (m−1 ⋅ B), (115)

V1 = ⟨V̂ ′⟩.

Equation (45) for γ̇t becomes

γ̇t = T(pt) − ⟨V̂⟩ − (h̵/4)Tr (m−1 ⋅ B)
= T(pt) − ⟨V̂⟩ − Tr [m−1 ⋅ Cov(p̂)]/2
= 2T(pt) − ⟨V̂⟩ − ⟨T̂⟩ = 2T(pt) − ⟨Ĥ⟩. (116)

Since V1 = ⟨V̂ ′⟩ and Eeff = E in the variational FGWD, Eq. (113)
implies that the exact and effective energies are conserved:
Ė = Ėeff = 0.
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B. Variational FGWD with classical trajectories
In Heller’s original frozen Gaussian approximation,6 the Gaus-

sians move along classical trajectories. Such an approximation can
be obtained by applying the Dirac–Frenkel variational principle to
the Gaussian ansatz, in which qt and pt are required to follow clas-
sical Hamilton’s equations of motion and γt is the only variationally
optimized parameter. (Strictly speaking, this is a generalization of
the Dirac–Frenkel variational principle because the approximation
manifold is time-dependent.) The derivation is analogous to that of
the variational TGWD except that now we only have Eq. (D9) related
to the parameter γt : 0 = ⟨g⟩. The resulting method corresponds to an
effective potential with coefficients

V0 = ⟨V̂⟩ − (h̵/4)Tr (m−1 ⋅ B) and V1 = V′(qt). (117)

As in the previous case, the exact and effective energies are equal,
E = Eeff; however, neither energy is conserved, and their common
time dependence is

Ė = Ėeff = pT
t ⋅m−1 ⋅ [⟨V̂ ′⟩ − V′(qt)]. (118)

C. Variational frozen Gaussian approximation applied
to any local quadratic approximation for V

In analogy to the TGWD, one may apply the variational frozen
Gaussian approximation (115) to an approximate, state-dependent
potential Vappr from Eq. (81) instead of V . The only difference is
that for the frozen Gaussian approximation, the coefficient v2 of
Vappr is fixed and always equal to V2 from Eq. (108). Derivation from
Sec. VI E combined with the variational approximation (115) yields
an effective potential (30) with

V0 = v0 and V1 = v1. (119)

Neither the exact nor the effective energy is conserved in general;
their time dependencies are

Ė = pT
t ⋅m−1 ⋅ (⟨V̂ ′⟩ − v1) (120)

and, if the coefficients v0 and v1 only depend on qt ,

Ėeff = v̇0 − vT
1 ⋅ q̇t = [v′0(qt) − v1(qt)]

T ⋅ q̇t. (121)

D. Local harmonic FGWD = single-Hessian FGWD
Since the coefficient v2 of Vappr is always equal to V2 from

Eq. (108), the local harmonic and single-Hessian approximations
applied to the frozen Gaussian are equivalent; the effective potential
coefficients from Eq. (119) are

V0 = v0 = V(qt) and V1 = v1 = V′(qt). (122)

The same method is obtained regardless of whether the FGWD
assumes classical or variational trajectories. Whereas the exact
energy generally depends on time,

Ė = pT
t ⋅m−1 ⋅ [⟨V̂ ′⟩ − V′(qt)], (123)

Eq. (121) implies that the effective energy is conserved,

Ėeff = [V′(qt) − V′(qt)]T ⋅ q̇t = 0. (124)

E. Global harmonic FGWD
Likewise, combining the frozen Gaussian ansatz with the global

harmonic approximation yields an approximation equivalent to Veff
with coefficients

V0 = v0 = Vappr(qt) and V1 = v1 = V′appr(qt). (125)

This result follows because the Hessian of the global harmonic
approximation is again constrained by Eq. (108) and V′′appr(qt)
= v2 = V2. Whereas the exact energy, in general, depends on time,

Ė = pT
t ⋅m−1 ⋅ [⟨V̂ ′⟩ − V′appr(qt)], (126)

Eq. (121) implies conservation of the effective energy,

Ėeff = [V′appr(qt) − V′appr(qt)]T ⋅ q̇t = 0. (127)

VIII. GEOMETRIC INTEGRATORS
As mentioned in Sec. V, exact solutions of the nonlinear TDSE

(20) have certain geometric properties, such as norm conservation
and time reversibility. For some effective potentials, the exact solu-
tions also conserve the symplectic structure, energy, or effective
energy. The numerical solution of the nonlinear equation, how-
ever, requires further approximations, including time discretization.
“Geometric integrators” are numerical algorithms28,73 that preserve
some or all of the geometric properties of the exact solution,
regardless of the discretization time step.

Let us describe geometric integrators for the nonlinear
Schrödinger equation (20) with a general quadratic effective poten-
tial (30). Because the effective Hamiltonian (19) is separable into
a kinetic energy term depending only on p̂ and a potential term
depending only on q̂, we can, under a rather weak additional
assumption on Veff (see Sec. VIII B), employ the explicit splitting
method. In this method, equations of motion are solved analyti-
cally for both the kinetic and potential propagation steps, in which
Ĥeff ∶= T(p̂) and Ĥeff ∶= Veff(q̂;ψ), respectively.

By composing exactly solved kinetic and potential propaga-
tions with the same time step Δt, one obtains—depending on the
ordering of composition—either the “VT” or “TV” algorithm, which
approximates the evolution driven by Ĥeff = T(p̂) + Veff(q̂;ψ) with
first-order accuracy in the time step Δt. Composing, in turn, the VT
with TV algorithm, both with the time step Δt/2, yields, depending
on the order of composition, either the “VTV” or “TVT” second-
order algorithm, which are analogs of the Verlet algorithm74 for
classical molecular dynamics and of the split-operator algorithm75

for quantum dynamics. They also generalize Faou and Lubich’s
algorithm27 for the variational TGWD to the TGWD with a gen-
eral effective potential (30). Both VTV and TVT algorithms are
symmetric and, therefore, time-reversible.

Explicit geometric integrators of arbitrary even orders in Δt are
then obtained by applying recursive76,77 or nonrecursive78,79 sym-
metric composition schemes to the second-order algorithms.28,73
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For details on how high-order integrators are generated from the
elementary algorithms for kinetic and potential propagations, see,
e.g., Refs. 46, 80, and 81. Because this procedure is general, one
can use for the splitting and composition the same algorithm46,80,81

as for any other classical or quantum dynamics; below, we only
need to describe exact solutions for the kinetic and potential
propagations.

The algorithm presented below suggests how to write a single
computer program that can evaluate all methods from Secs. VI and
VII, regardless of whether they were derived using the variational
principle, the Hamiltonian approach, or, more generally, the per-
spective of the nonlinear TDSE. One simply invokes the potential
propagation with different coefficients, V0, V1, and V2.

A. Kinetic propagation
Equations of motion for the kinetic propagation are obtained

by considering only the kinetic term in the effective Hamiltonian,
i.e., by setting Ĥeff = T(p̂), which results in a problem equivalent
to solving the propagation of a free-particle Gaussian wavepacket.
Setting V0 = V1 = V2 = 0 in Eqs. (42)–(45) yields the system

q̇t = m−1 ⋅ pt , (128)

ṗt = 0, (129)

Ȧt = −At ⋅m−1 ⋅ At , (130)

γ̇t = T(pt) + (ih̵/2)Tr (m−1 ⋅ At) (131)

of ordinary differential equations for parameters Λt ∶= (qt , pt , At , γt)
whose exact solution is the flow Λt = ΦT(Λ0, t) given explicitly by

qt = q0 + tm−1 ⋅ p0, (132)

pt = p0, (133)

At = (A−1
0 + tm−1)−1 = A0 ⋅ (IdD + tm−1 ⋅ A0)

−1

= (IdD + tA0 ⋅m−1)−1 ⋅ A0, (134)

γt = γ0 + tT(p0) + (ih̵/2) ln det (IdD + tm−1 ⋅ A0). (135)

In the last equation, the continuity of γt and, therefore, continuity of
ψ(t), is guaranteed for sufficiently small time steps t if one takes the
principal branch of the logarithm—the branch on which the imag-
inary part of the logarithm lies in the interval (−π,π).21 The first
of the three alternatives for evaluating At behaves better numeri-
cally despite requiring two instead of one matrix inverse at each step
(m−1 can be precomputed). In the FGWD, Eq. (130) is replaced with
Ȧt = 0, Eq. (134) with At = A0, and Eq. (135) with

γt = γ0 + t[T(p0) − (h̵/2)Tr (m−1 ⋅ B)]. (136)

Because T(p̂) is a special case of a linear Hamiltonian operator
Ĥ, kinetic propagation conserves the scalar product, norm, and sym-
plectic structure. Kinetic propagation is also time-reversible because
Λ0 = ΦT(Λt ,−t), which follows by inverting Eqs. (132)–(135)
explicitly:

q0 = qt − tm−1 ⋅ pt , (137)

p0 = pt , (138)

A0 = (A−1
t − tm−1)−1

, (139)

γ0 = γt − tT(pt) + (ih̵/2) ln det (IdD − tm−1 ⋅ At). (140)

In FGWD, Eqs. (139) and (140) become A0 = At and

γ0 = γt + t[T(pt) − (h̵/2)Tr (m−1 ⋅ B)]. (141)

Equations (132)–(135) and (140) for the forward and backward
propagations are derived in Appendix G.

B. Potential propagation
Equations of motion for the potential propagation are obtained

by considering only the potential energy term in the effective Hamil-
tonian, i.e., Ĥeff(ψ) = Veff(q̂;ψ). Setting T(p) = 0 is equivalent to
taking the limit m→∞ (or m−1 → 0) in Eqs. (42)–(45), which yields
the system

q̇t = 0, (142)

ṗt = −V1, (143)

Ȧt = −V2, (144)

γ̇t = −V0. (145)

This system can be solved analytically if the coefficients V0, V1, and
V2 depend on the state ψ(t) only via qt and Im At but are inde-
pendent of pt , Re At , and γt . This assumption, which holds for all
approximations from Secs. VI and VII, results in the trivial solution

qt = q0, (146)

pt = p0 − tV1(q0, Im A0), (147)

At = A0 − tV2(q0, Im A0), (148)

γt = γ0 − tV0(q0, Im A0). (149)

In FGWD, Eqs. (144) and (148) are replaced with Ȧt = 0 and At = A0.
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Equation (146) follows immediately from Eq. (142). Because
V2 is real, Eq. (144) implies that dIm At/dt = 0 and, there-
fore, Im At = Im A0. As a consequence, if the coefficients
V j ≡ V j(qt , Im At) depend only on qt and Im At , then each
V j remains unchanged during the potential propagation, and
Eqs. (143)–(145) can be solved separately to yield Eqs. (147)–(149),
respectively.

The assumption is obviously satisfied in the global harmonic,
local harmonic, and single-Hessian TGWD, for which the coeffi-
cients of Veff depend on ψ(t) only via qt . In the variational methods,
coefficients of the effective potential depend on the expectation
values

⟨V̂ ( j)⟩ = ∫ V( j)(qt + x)ρ(x)dDx, (150)

which depend on both qt and Im At but on no other parameters of
ψ(t) because the density ρ(x) = ∣ψ(x)∣2 depends on ψ(t) only via
Im At [see Eq. (B16)].

Potential propagation conserves the norm of ψ(t) because
Veff(q̂;ψ) is a special case of Ĥeff. Potential propagation is also
time-reversible becauseΛ0 = ΦVeff(Λt ,−t), which, in turn, follows by
inverting Eqs. (146)–(149):

q0 = qt , (151)

p0 = pt + tV1(qt , Im At), (152)

A0 = At + tV2(qt , Im At), (153)

γ0 = γt + tV0(qt , Im At). (154)

In FGWD, Eq. (153) is replaced with A0 = At .
In general, in particular, propagation with Veff does not con-

serve symplectic structure; in particular, potential propagation in
neither the local harmonic nor the local quartic variational TGWD
is symplectic.31 In contrast, potential propagations in all other
presented examples of the TGWD, i.e., the variational, single-
Hessian, global harmonic, local cubic variational, and single-quartic
variational TGWD are symplectic.

C. Geometric properties of integrators
If the exact solution of the nonlinear TDSE has a certain geo-

metric property for any Hamiltonian Ĥeff = T(p̂) + Veff(q̂;ψ), then
both the kinetic and potential steps share the same property because
they can be thought of as exact solutions of nonlinear TDSEs with
effective Hamiltonians Ĥeff = T(p̂) and Ĥeff(ψ) = Veff(q̂;ψ). This
implication justifies the norm conservation by kinetic and potential
propagations. Although the implication is also true for the exact and
effective energies, it is “useless” because the definitions of these ener-
gies are different for the three effective Hamiltonians: T̂, V̂eff, and
T̂ + V̂eff.

If a geometric property preserved by kinetic and potential steps
is also preserved under the composition of flows, it is preserved by
the TV and VT integrators as well as by their arbitrary compositions.
This is again true for the norm and useless for the exact and effective

energies. It is also true for symplecticity; as a consequence, if the ele-
mentary propagation with Veff is symplectic, then so is an arbitrary
integrator based on composing VT and TV steps. Time reversibility
requires that the composition of time-reversible maps be symmetric.
VT and TV integrators are not reversible, whereas TVT and VTV
integrators and their symmetric compositions are reversible.

In summary, all integrators obtained by symmetric composi-
tions of the VTV and TVT algorithms are norm-conserving and
time-reversible. They are also symplectic if the exact solution of
the nonlinear TDSE itself is symplectic. Due to the splitting, how-
ever, for a given finite time step Δt, they conserve neither the exact
nor the effective energy, even if the exact solution of the nonlinear
TDSE does. [This happens for the exact energy, conserved by the
variational TGWD and variational FGWD. The numerical integra-
tors do conserve the exact energy but only approximately, with an
error O(ΔtM), where the order M is greater or equal to the order
of the method.] General proofs of these statements can be found in
Refs. 28, 45, 73, 80, and 81.

D. Geometric properties of Gaussian
wavepacket dynamics

Typically, one first demonstrates a geometric property of an
approximation, before analyzing the preservation of this prop-
erty by a numerical integrator. This is how we have treated
norm conservation. However, sometimes it is easier to go “the other
way.” If an integrator is “consistent,” i.e., at least first-order accurate
in the time step Δt, and preserves a given geometric property dur-
ing both kinetic or potential propagations, then considering the limit
Δt → 0 shows that the exact solution of the nonlinear TDSE has the
same geometric property. The application of this idea to the time-
reversible second-order TVT algorithm proves the time reversibility
of general Gaussian wavepacket dynamics. The application of this
idea to symplecticity shows that if the potential propagation step
with Veff is symplectic, then so is the Gaussian wavepacket dynam-
ics with this effective potential. Whereas the symplecticity of the
variational and local cubic variational TGWD was demonstrated in
Refs. 27 and 31, a detailed analysis of the symplecticity of the TGWD
with a general effective potential (30) will be presented elsewhere
because this analysis relies on non-elementary tools of symplectic
geometry.55

IX. HAGEDORN PARAMETRIZATION
Hagedorn82 proposed an alternative parametrization of

the Gaussian wavepacket, in which the equations of motion
and other properties become simpler. Below, we translate the
preceding results from Heller’s parametrization (q, p, A, γ) to
Hagedorn’s parametrization (q, p, Q, P, S).25,52,83 For derivations,
see Appendix B 7.

A. Gaussian wavepacket
As shown in Appendix B 7, in Hagedorn’s parametrization, the

Gaussian wavepacket (26) can be written as

ψ(q, t) = (πh̵)−D/4(det Qt)−1/2

× exp [ i
h̵
(1

2
xT ⋅ Pt ⋅Q−1

t ⋅ x + pT
t ⋅ x + St)], (155)
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where qt and pt are, as before, real D-vectors of position and
momentum, Qt and Pt are complex D ×D matrices, related to
the width matrix At , and St is a real scalar generalizing classical
action and related to Heller’s parameter γt . Matrices Qt and Pt have
several remarkable properties, listed in Appendix B 7. In particu-
lar, the often needed expressions for the position and momentum
covariances assume symmetric and decoupled forms

Cov(q̂) = (h̵/2)Qt ⋅Q†
t and Cov(p̂) = (h̵/2)Pt ⋅ P†

t . (156)

B. Equations of motion
In Appendix B 7, the nonlinear TDSE (20) is shown to be equiv-

alent to a system of ordinary differential equations for parameters
qt , pt , Qt , Pt , and St . Whereas Eqs. (42)–(43) for q̇t and ṗt remain
unchanged, Eqs. (44) and (45) for Ȧt and γ̇t are replaced with three
equations,

Q̇t = m−1 ⋅ Pt , (157)

Ṗt = −V2 ⋅Qt , (158)

Ṡt = T(pt) − V0. (159)

A family of high-order geometric integrators for the numerical
propagation can be obtained, as in Heller’s parametrization, by
combining the concepts of splitting into the sequence of kinetic
and potential propagations and of the symmetric composition of
the symmetric second-order TVT or VTV algorithm. We, there-
fore, only need to derive expressions for the elementary kinetic
and potential propagations, which are generalizations of Faou and
Lubich’s algorithm25,27 for the variational TGWD to the generalized
thawed Gaussian wavepacket dynamics expressed in Eqs. (42), (43),
and (157)–(159).

C. Kinetic propagation
If the Hamiltonian consists only of the kinetic energy,

Ĥeff = T(p̂), equations of motion (157)–(159) reduce to

Q̇t = m−1 ⋅ Pt , (160)

Ṗt = 0, (161)

Ṡt = T(pt). (162)

Because the momentum pt is constant during the kinetic step, this
system has the analytical solution

Qt = Q0 + tm−1 ⋅ P0, (163)

Pt = P0, (164)

St = S0 + tT(p0), (165)

which is time-reversible [i.e., Λ0 = ΦT(Λt ,−t) if Λ ∶= (q, p, Q, P, S)
and Λt = ΦT(Λ0, t)] since the inversion of Eqs. (163)–(165) gives

Q0 = Qt − tm−1 ⋅ Pt , (166)

P0 = Pt , (167)

S0 = St − tT(pt). (168)

D. Potential propagation
If Ĥeff(ψ) = Veff(q̂;ψ), Eqs. (157)–(159) reduce to

Q̇t = 0, (169)

Ṗt = −V2 ⋅Qt , (170)

Ṡt = −V0. (171)

Since the position qt remains constant during the potential step,
under the assumption that the coefficients V0, V1, and V2 only
depend on qt and Qt but not on other Hagedorn parameters, this
system has the exact solution

Qt = Q0, (172)

Pt = P0 − tV2(q0, Q0) ⋅Q0, (173)

St = S0 − tV0(q0, Q0). (174)

The assumption holds for all examples from Secs. VI and VII. In the
global harmonic, local harmonic, and single-Hessian TGWD, coef-
ficients V j depend only on qt ; in the variational methods, expected
values ⟨V̂ ( j)⟩ and, hence, coefficients V j depend only on qt and
Qt because the density ρ(x) depends only on position covari-
ance, which depends only on Qt [see Eqs. (150), (B16), and (156)].
Potential propagation is time-reversible, i.e., Λ0 = ΦVeff(Λt ,−t) if
Λt = ΦVeff(Λ0, t), since the inversion of Eqs. (172)–(174) yields

Q0 = Qt , (175)

P0 = Pt + tV2(qt , Qt) ⋅Qt , (176)

S0 = St + tV0(qt , Qt). (177)

X. DISCUSSION AND CONCLUSION
In conclusion, we have discussed Gaussian wavepacket dynam-

ics from the perspective of a nonlinear Schrödinger equation, which
is complementary to the variational25,27 and symplectic27,31–33 per-
spectives. The more general state-dependent quadratic potential
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appearing in the nonlinear TDSE describing Gaussian wavepacket
dynamics guarantees norm conservation and time reversibility but
not always the conservation of energy, effective energy, or sym-
plectic structure. Depending on the choice of the coefficients of
this potential, one obtains a large family of both well-known and
new Gaussian wavepacket dynamics methods. Among the latter, the
single-quartic variational TGWD is promising because it is symplec-
tic, conserves effective energy, and increases accuracy over the local
cubic variational TGWD without substantially increasing its cost.

The general form of presentation suggests how all single-
trajectory Gaussian wavepacket dynamics methods can be imple-
mented in a single, universal computer code, in which one only
needs to modify the three coefficients of the effective poten-
tial to obtain any one of the specific methods. Moreover, we
have described a single, universal high-order geometric integrator
for Gaussian wavepacket dynamics, which generalizes Faou and
Lubich’s integrator for the variational TGWD.27

Many but not all TGWD methods can be obtained by the
variational and symplectic approaches. If the variational principle
is applied to the exact potential V , the resulting method is sym-
plectic and conserves energy.27 Neither property is guaranteed if
this principle is applied to an approximate potential Vappr: local
harmonic approximation provides a counterexample. Remarkably,
the symplectic approach31 always conserves both the symplectic
structure and effective energy. If applied to the local harmonic
approximation, the symplectic method conserves the local harmonic
energy, although the resulting equations of motion are equivalent
to those obtained by applying the variational principle to the local
cubic approximation. Heller’s original thawed Gaussian approxima-
tion, therefore, cannot be derived by the symplectic approach. As
opposed to both variational and symplectic approaches, the more
general nonlinear TDSE (20) does not require a specific form of the
wavepacket; e.g., if it is applied directly to the local cubic approxima-
tion, without invoking the variational principle, an initial Gaussian
wavepacket will quickly lose its Gaussian form.

Single-trajectory Gaussian wavepacket dynamics clearly can-
not propagate wavefunctions of more general forms, needed in
many chemical physics applications. This issue has been addressed
partially in the extended thawed Gaussian approximation,16,36,84,85

which propagates a Gaussian multiplied with a linear polyno-
mial and, thus, can describe electronic spectra beyond the Con-
don approximation84,85 or rates of internal conversion.86 The same
issue is fully resolved by Hagedorn wavepackets,52,82,83 which can
propagate arbitrary wavefunctions. Indeed, Ohsawa generalized the
symplectic formulation to such non-Gaussian states.87 The gener-
alization of the present analysis to the dynamics of wavepackets
of arbitrary shapes is, therefore, also interesting and in progress.
In particular, any of the effective potentials described here will
preserve the form not only of Gaussian but also of Hagedorn
wavepackets. Yet, even the simple Gaussian wavepacket dynamics
discussed here improves substantially electronic spectra calcula-
tions over the standard global harmonic approaches, which com-
pletely ignore the anharmonicity of the potential energy surface.
Among the different methods mentioned here, the variational,26

local cubic variational,29,31 and single-quartic variational TGWD
can even approximate tunneling and, therefore, also deserve further
attention.
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APPENDIX A: PROPERTIES OF THE NONLINEAR TDSE
1. Nonconservation of the inner product

In Sec. III, the nonconservation (12) of the inner product by the
nonlinear TDSE follows from the relation

⟨ψ̇∣ϕ⟩ = ⟨ϕ∣ψ̇ ⟩∗ = −(ih̵)−1⟨ϕ∣Ĥ eff(ψ)ψ⟩∗

= ih̵−1⟨Ĥeff(ψ)ψ∣ϕ⟩ = ih̵−1⟨ψ∣Ĥeff(ψ)ϕ⟩. (A1)

2. Evolution of the expected value
of a nonlinear operator

To prove the relation (13), let us evaluate the time derivative of
a nonlinear observable ⟨Â(ψ)⟩:

d
dt
⟨Â(ψ)⟩ = d

dt
⟨ψ∣Â(ψ)ψ⟩

= ⟨ψ̇∣Â(ψ)ψ⟩ + ⟨ψ∣dÂ(ψ)
dt

ψ ⟩ + ⟨ψ∣Â(ψ)ψ̇⟩

= ih̵−1⟨ψ∣Ĥeff(ψ)Â(ψ)ψ⟩ + ⟨dÂ(ψ)/dt⟩
− ih̵−1⟨ψ∣Â(ψ)Ĥeff(ψ)ψ⟩
= ⟨dÂ(ψ)/dt⟩ − ih̵−1⟨[Â(ψ), Ĥeff(ψ)]⟩. (A2)

In the third step of the derivation, we used the relation
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⟨ψ̇∣Â(ψ)ψ⟩ = ⟨Â(ψ)ψ∣ψ̇ ⟩∗ = ih̵−1⟨Â(ψ)ψ∣Ĥ eff(ψ)ψ⟩∗

= ih̵−1⟨Ĥeff(ψ)ψ∣Â(ψ)ψ⟩
= ih̵−1⟨ψ∣Ĥeff(ψ)Â(ψ)ψ⟩, (A3)

which follows easily from the hermiticity of Ĥeff(ψ) viewed as a
linear operator for a fixed state ψ.

3. Time dependence of energy, position,
and momentum in a nonlinear TDSE
with a separable Hamiltonian

For separable Hamiltonians, the commutator on the right-hand
side of Eq. (16) becomes

[Ĥ, Ĥeff(ψ)] = [V̂ − V̂eff(ψ), T̂], (A4)

where

2[V̂ , T̂] = p̂ T ⋅m−1 ⋅ [V̂ , p̂] + [V̂ , p̂ T] ⋅m−1 ⋅ p̂
= ih̵(p̂ T ⋅m−1 ⋅ V̂ ′ + V̂ ′T ⋅m−1 ⋅ p̂), (A5)

and an analogous relation holds for [V̂eff(ψ), T̂]. Substituting
Eqs. (A4) and (A5) into the general equation (16) for the time
dependence of energy yields Eq. (21).

The Ehrenfest theorem [Eqs. (24) and (25)] for the evolution of
q and p follows directly from the commutators

2[q̂ j , Ĥeff] = [q̂ j , p̂ T ⋅m−1 ⋅ p̂]
= [q̂ j , p̂ T] ⋅m−1 ⋅ p̂ + p̂ T ⋅m−1 ⋅ [q̂ j , p̂]
= 2ih̵(m−1 ⋅ p̂) j , (A6)

[p̂, Ĥeff] = −ih̵V̂′eff. (A7)

APPENDIX B: PROPERTIES OF THE GAUSSIAN
WAVEPACKET
1. Derivatives of functions of a vector or matrix

We need several matrix relations, which can be found, e.g.,
in Ref. 88. A derivative of a scalar function ψ(x) of a vector x is
defined by

[∂ψ(x)/∂x]i ∶= ∂ψ(x)/∂xi. (B1)

Likewise, a derivative of a scalar function ψ(A) of a general, not
necessarily symmetric, matrix A is defined by

[∂ψ(A)/∂A]ij ∶= ∂ψ(A)/∂Aij. (B2)

With these definitions, if a is a vector, we get

∂(aT ⋅ x)/∂x = a, (B3)

∂(xT ⋅ A ⋅ x)/∂A = x⊗ xT , (B4)

∂(xT ⋅ A ⋅ x)/∂x = (A + AT) ⋅ x. (B5)

If B = BT is a symmetric matrix, Eq. (B5) reduces to

∂(xT ⋅ B ⋅ x)/∂x = 2B ⋅ x. (B6)

If x and A depend on time t, then

dψ(x)/dt = (∂ψ/∂xi)ẋi = (∂ψ/∂x)T ⋅ ẋ, (B7)

dψ(A)/dt = (∂ψ/∂Aij)Ȧij = Tr [(∂ψ/∂A)T ⋅ Ȧ]. (B8)

The divergence of a vector-valued function v(A, x) = A ⋅ x is

∇T ⋅ v = ∂(Aijx j)/∂xi = Aijδ ji = Tr A. (B9)

2. Derivatives of the Gaussian amplitude
Derivatives of the Gaussian (26) with respect to the four

parameters are

∂ψ
∂qt
= ( ∂x

∂qt
)

T

⋅ ∂ψ
∂x
= −∂ψ

∂x
= − i

h̵
ξψ, (B10)

∂ψ/∂pt = ih̵−1xψ, (B11)

∂ψ/∂At = ih̵−1(1/2)x⊗ xTψ, (B12)

∂ψ/∂γt = ih̵−1ψ, (B13)

where ξ is given in Eq. (34) and relation (B4) was used to obtain
Eq. (B12). The first and second derivatives of ψ with respect to the
coordinate q (or x), needed in ⟨q∣T̂∣ψ⟩, are

∇ψ = ∂ψ/∂x = ih̵−1ξψ, (B14)

∇T ⋅m−1 ⋅ ∇ψ = i
h̵
[(∇T ⋅m−1 ⋅ ξ)ψ + (∇Tψ) ⋅m−1 ⋅ ξ]

= i
h̵
[Tr (m−1 ⋅ At) +

i
h̵
ξT ⋅m−1 ⋅ ξ]ψ, (B15)

where Eqs. (B9) and (B10) were used in the last step.

3. Derivatives of the Gaussian density
The probability density of the Gaussian (26) is

ρ(x) ∶= ∣ψ(x)∣2 = [det (2πΣt)]−1/2e−xT
⋅Σ−1

t ⋅x/2, (B16)

where Σt = Cov(x) = Cov(q) is the position covariance matrix
(B23), which is a real, symmetric, positive definite, and invertible
matrix because Im At is.

Derivatives of the Gaussian density (B16) with respect to the
coordinate q (or x) are

∇ρ = ∂ρ/∂x = −Σ−1
t ⋅ xρ, (B17)

∇⊗∇Tρ = (Σ−1
t ⋅ x⊗ xT ⋅ Σ−1

t − Σ−1
t )ρ. (B18)
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Because Σt is invertible, the above equations for the gradient and
Hessian of the density imply that

xρ = −Σt ⋅ ∇ρ, (B19)

x⊗ xTρ = (Σt ⋅ ∇ ⊗∇T ⋅ Σt + Σt)ρ. (B20)

4. Covariances
Here, we list explicit expressions for the frequently needed posi-

tion and momentum covariance matrices. Recall that the (generally
complex) cross-covariance matrix of Hermitian vector operators
Â and B̂ is given by

Cov(Â, B̂) ∶= ⟨(Â − ⟨Â⟩)⊗ (B̂ − ⟨B̂⟩)T⟩
= ⟨Â⊗ B̂ T⟩ − ⟨Â⟩⊗ ⟨B̂⟩T , (B21)

and that one writes Cov(Â) instead of Cov(Â, Â) for the (always
real) autocovariance of Â. For Â ≠ B̂, a real cross-covariance matrix
is obtained by symmetrization,

CovR(Â, B̂) = [Cov(Â, B̂) + Cov(B̂ , Â)T]/2
= Re Cov(Â, B̂). (B22)

The position, momentum, and position-momentum covariance
matrices in a Gaussian (26) [or (155)] are

Cov(q̂) = (h̵/2)(Im At)−1 = (h̵/2)Qt ⋅Q†
t , (B23)

Cov(p̂) = (h̵/2)At ⋅ (Im At)−1 ⋅ A∗t = (h̵/2)Pt ⋅ P†
t , (B24)

Cov(q̂, p̂) = Cov(q̂) ⋅ At = (h̵/2)(Im At)−1 ⋅ At

= (h̵/2)Qt ⋅Q†
t ⋅ Pt ⋅Q−1

t = h̵(i +Qt ⋅ P†
t /2), (B25)

CovR(q̂, p̂) = (h̵/2)(Im At)−1 ⋅ Re At = (h̵/2)Re(Qt ⋅ P†
t ), (B26)

where we have listed expressions in both Heller’s and Hagedorn’s
parametrizations. The first equality in the expression for Cov(q̂, p̂)
holds because

Cov(q̂, p̂) = ⟨(q̂ − qt)⊗ (p̂ − pt)T⟩

= ∫ ψ(x)∗x⊗ (ξ − pt)Tψ(x)dDx

= ⟨x⊗ (At ⋅ x)T⟩ = ⟨x⊗ xT⟩ ⋅ At , (B27)

whereas the last equality is obtained by the substitution
Q†

t ⋅ Pt = 2iID + P†
t ⋅Qt , which follows from Eq. (B46).

We frequently need explicit expressions for the expectation
value ⟨Â⊗ B̂ T⟩. Since ⟨q̂⟩ = qt and ⟨p̂⟩ = pt , the general relation
(B21) implies that

⟨q̂⊗ q̂ T⟩ = qt ⊗ qT
t + Cov(q̂), (B28)

⟨p̂⊗ p̂ T⟩ = pt ⊗ pT
t + Cov(p̂), (B29)

⟨q̂⊗ p̂ T⟩ = qt ⊗ pT
t + Cov(q̂, p̂). (B30)

For a frozen Gaussian, Ȧt = 0 and At = A0 = const. If At = A0
is purely imaginary, i.e., A0 = i Im A0 = iB, covariance expressions
(B23)–(B26) reduce to

Cov(q̂) = (ih̵/2)A−1
0 = (h̵/2)B −1, (B31)

Cov(p̂) = −(ih̵/2)A0 = (h̵/2)B, (B32)

Cov(q̂, p̂) = ih̵/2, (B33)

CovR(q̂, p̂) = 0. (B34)

Because the position covariance appears frequently in the text, we
use the shorthand notation Σt ∶= Cov(q̂).

5. Time dependence of energy in the TGWD
To gain further insight into the time dependence of energy,

let us express the expected value in Eq. (61) for Ė in terms of dif-
ferences ⟨V̂ ′⟩ − V1 and ⟨V̂ ′′⟩ − V2; to simplify the derivation, we
employ notation ŷ ∶= p̂ − pt for the displaced momentum operator:

⟨(V̂ ′ − V1 − V2 ⋅ x̂)⊗ (pt + ŷ)T⟩
= ⟨(V̂ ′ − V1)⊗ (pt + ŷ)T⟩ − V2 ⋅ ⟨x̂⊗ (pt + ŷ)T⟩
= (⟨V̂ ′⟩ − V1)⊗ pT

t + ⟨V̂ ′ ⊗ ŷ T⟩ − V2 ⋅ ⟨x̂⊗ ŷ T⟩
= (⟨V̂ ′⟩ − V1)⊗ pT

t + ⟨V̂ ′′⟩ ⋅ Cov(q̂, p̂) − V2 ⋅ Cov(q̂, p̂)
= (⟨V̂ ′⟩ − V1)⊗ pT

t + (⟨V̂ ′′⟩ − V2) ⋅ Cov(q̂, p̂). (B35)

In the second step, we used ⟨x̂⟩ = ⟨ŷ⟩ = 0 and, in the third step,
invoked the definition (B25) of the position-momentum covariance
Cov(q̂, p̂) and the relation

⟨V̂ ′ ⊗ (p̂ − pt)T⟩ = ⟨V̂ ′′⟩ ⋅ Cov(q̂, p̂), (B36)

proven in Appendix B 6. Substitution of Eq. (B35) in Eq. (61) for
Ė yields the final expression (62) for the time dependence of energy.

6. Proof of Eq. (B36): ⟨V̂ ′ ⊗ (p̂ −pt)
T
⟩ = ⟨V̂ ′′⟩ ⋅ Cov(q̂, p̂)

Equation (B36) follows immediately from the relations

⟨V̂ ′ ⊗ (p̂ − pt)T⟩ = ⟨V̂ ′ ⊗ x̂ T⟩ ⋅ At , (B37)

⟨V̂ ′ ⊗ xT⟩ = ⟨V̂ ′′⟩ ⋅ Cov(q̂), (B38)

and Eq. (B25) for the position-momentum covariance. To prove
Eq. (B37), we note that

⟨V̂ ′ ⊗ (p̂ − pt)T⟩

= ∫ ψ(q, t)∗V′(q)⊗ (−ih̵∇− pt)Tψ(q, t)dDq

= ∫ ψ(x, t)∗V′(qt + x)⊗ (At ⋅ x)Tψ(x, t)dDx

= ⟨V̂ ′ ⊗ x̂ T⟩ ⋅ At. (B39)
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Equation (B38) follows from Eq. (B19) and by-parts integration,

⟨V̂ ′ ⊗ x̂ T⟩ = ∫ V′(qt + x)⊗ xTρ(x)dDx

= −∫ ∇V(qt + x)⊗∇Tρ(x)dDx ⋅ Cov(q̂)

= ∫ ρ(x)∇⊗∇TV(qt + x)dDx ⋅ Cov(q̂)

= ⟨∇⊗∇TV⟩ ⋅ Cov(q̂). (B40)

7. Derivation of the Gaussian wavepacket’s
form and of the equations of motion
in Hagedorn’s parametrization

Here, we justify Hagedorn’s form (155) of the Gaussian
wavepacket as well as Eqs. (157)–(159) of motion for Hagedorn’s
parameters Qt , Pt , and St .

Every complex symmetric matrix A with a positive definite
imaginary part can be factorized as52

A = P ⋅Q−1, (B41)

where Q and P are complex invertible matrices such that the real
2D × 2D matrix

Y ∶=
⎛
⎜
⎝

Re Q Im Q

Re P Im P

⎞
⎟
⎠

(B42)

is symplectic, i.e.,

YT ⋅ J ⋅ Y = J, (B43)

where

J =
⎛
⎜
⎝

0 −IdD

IdD 0

⎞
⎟
⎠

(B44)

is the standard symplectic matrix. This condition is equivalent52 to
the requirement that the matrices Q and P satisfy the relations

QT ⋅ P − PT ⋅Q = 0, (B45)

Q† ⋅ P − P† ⋅Q = 2i IdD. (B46)

The imaginary part of A can be computed from Q as52

Im A = (Q ⋅Q†)−1. (B47)

If one imposes the equation

Q̇t = m−1 ⋅ Pt (B48)

of motion for Qt , then Pt must satisfy the equation

Ṗt = Ȧt ⋅Qt + At ⋅ Q̇t = −At ⋅m−1 ⋅ At ⋅Qt

− V2 ⋅Qt + At ⋅m−1 ⋅ Pt = −V2 ⋅Qt. (B49)

In the derivation, we used the Leibniz rule, Eq. (44) for Ȧt , and fac-
torization (B41) of At . It can be shown52 that if parameters Qt and
Pt are propagated with Eqs. (B48) and (B49) and satisfy relations
(B45)–(B47) at time zero, they satisfy those relations for all times.

Equation (45) for γ̇t can be rewritten as

γ̇t = Ṡt +
ih̵
2

d
dt

ln det Qt , (B50)

where we have defined a generalized real action St by

Ṡt = T(pt) − V0. (B51)

The second term in Eq. (B50) follows from Eq. (45) since

Tr (m−1 ⋅ At) = Tr (m−1 ⋅ Pt ⋅Q−1
t ) = Tr (Q̇t ⋅Q−1

t )
= (det Qt)−1 ⋅ d(det Qt)/dt. (B52)

Here, we used the factorization (B41) of At , the equation of motion
(B48) for Qt , and the formula for the derivative of a determinant. By
integrating Eq. (B50) for γ̇t , we can rewrite the wavepacket (26) at
time t as

ψ(q, t) = (det Q0/det Qt)1/2

× exp [ i
h̵
(1

2
xT ⋅ Pt ⋅Q−1

t ⋅ x + pT
t ⋅ x + St − S0 + γ0)].

(B53)

Recall that the initial wavepacket ψ(q, 0) is normalized if γ0 satisfies
Eq. (29). Setting the initial value of γt to γ0 = S0 + i Im γ0, where

Im γ0 = −h̵ ln det (Im A0/πh̵)1/4 = h̵ ln det (πh̵Q0 ⋅Q†
0)

1/4

= h̵ ln [(πh̵)D∣det Q0∣2]1/4 =
h̵
2

ln [(πh̵)D/2∣det Q0∣],

we obtain a simple formula for the wavepacket parameterized by
Qt , Pt , and St instead of At and γt ,

ψ(x, t) = (πh̵)−D/4( det Q0

det Qt ∣det Q0∣
)

1/2

× exp [ i
h̵
(1

2
xT ⋅ Pt ⋅Q−1

t ⋅ x + pT
t ⋅ x + St)]. (B54)

The prefactor can be further simplified with another choice of the
initial value of γt , namely,

γ0 = S0 + h̵φ0 + iIm γ0, (B55)

where φ0 = − 1
2 arg det Q0, for which the wavepacket assumes a

simple Hagedorn form (155), valid at all times.

APPENDIX C: DIRAC–FRENKEL VARIATIONAL
PRINCIPLE, NONLINEAR TDSE, AND CONSERVATION
OF ENERGY AND NORM

One often seeks an approximate solution of the TDSE only
within a certain subset M of the full Hilbert space H. If one seeks
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a solution among states ϕ(t; θ1, . . . , θN) ∈ H that depend on N para-
meters θj, j = 1, . . . , N, the Dirac–Frenkel variational principle states
that the optimal solution satisfies the equation

⟨δϕ∣[ih̵(d/dt) − Ĥ]∣ϕ(t)⟩ = 0, (C1)

where δϕ is an arbitrary variation of the solution, i.e., an infinitesimal
change of ϕ such that ϕ + δϕ is still in the approximation manifold
M. [More precisely, δϕ is an arbitrary “tangent vector” to the mani-
fold M at the point ϕ(t).] The variation δϕ can be expressed in terms
of the variations of its N parameters as

δϕ =
N

∑
j=1

∂ϕ
∂θ j

δθ j. (C2)

Because the variations of parameters are independent, the
Dirac–Frenkel principle (C1) requires the following equation to be
satisfied for each of the parameters:

0 = ⟨ ∂ϕ
∂θ j
∣(ih̵

d
dt
− Ĥ)∣ϕ⟩ for j = 1, . . . , N. (C3)

This variational principle provides a rich class of nonlinear
TDSEs because Eq. (C1) is equivalent52 to

ih̵∣ϕ̇(t)⟩ = P̂(ϕ(t))Ĥ∣ϕ(t)⟩, (C4)

where P̂(ϕ) is the projection on the tangent space of M at the state
ϕ. In other words, the solution ϕ(t) satisfies the nonlinear TDSE (6)
with the effective Hamiltonian

Ĥeff(ϕ) ∶= P̂(ϕ(t))Ĥ. (C5)

Remarkably, solutions of the Dirac–Frenkel equation (C1) pre-
serve several properties of the exact solution of the TDSE (1). In par-
ticular, the energy is conserved along the variational solutions ϕ(t)
satisfying Eq. (C1), and the conservation of the norm requires only
a weak additional assumption. The energy is conserved because25

d
dt
⟨Ĥ⟩ = d

dt
⟨ϕ(t)∣Ĥ∣ϕ(t)⟩ = ⟨ϕ̇∣Ĥ∣ϕ⟩ + ⟨ϕ∣Ĥ∣ϕ̇⟩

= 2 Re⟨ϕ̇∣Ĥ∣ϕ⟩ = 2Re⟨ϕ̇∣ih̵ϕ̇⟩
= 2 Re(ih̵∥ϕ̇∥2) = 0, (C6)

where, in the fourth step, we invoked the variational principle (C1)
with δϕ∝ ϕ̇. If the manifold has the ray property (λϕ ∈M for
each complex number λ and each ϕ ∈M), then the norm remains
constant because25

d
dt
∥ϕ(t)∥2 = d

dt
⟨ϕ(t)∣ϕ(t)⟩ = ⟨ϕ̇∣ϕ⟩ + ⟨ϕ∣ϕ̇⟩ = 2Re⟨ϕ∣ϕ̇⟩

= 2h̵−1Im⟨ϕ∣ih̵ϕ̇⟩ = 2h̵−1Im⟨ϕ∣Ĥϕ⟩
= 2h̵−1Im⟨Ĥ⟩ = 0, (C7)

where, in the fifth step, we invoked the variational principle (C1)
with δϕ∝ ϕ. ϕ is in the tangent space because of the ray property. If
the ray property does not hold with given parameters, it will hold if
we augment89 the parameter set by a prefactor λ of the state ϕ.

Note that the conservation of energy requires only the real part
of Eq. (C1), which is sometimes referred to as the Lagrangian varia-
tional principle (or time-dependent variational principle),90 whereas
the conservation of norm requires only the imaginary part of
Eq. (C1), which is sometimes referred to as the McLachlan varia-
tional principle.40 For Gaussian wavepackets, the three forms of the
variational principle are equivalent.25,52,91

APPENDIX D: VARIATIONAL GAUSSIAN
APPROXIMATION

The variational Gaussian approximation (or variational
TGWD) follows from the Dirac–Frenkel principle:

Proposition (Variational TGWD). The Dirac–Frenkel varia-
tional principle (C1) for the TDSE (1) applied to the Gaussian ansatz
(26) yields the following equations of motion for the Gaussian’s
parameters:

q̇t = m−1 ⋅ pt , (D1)

ṗt = −⟨V̂ ′⟩, (D2)

Ȧt = −At ⋅m−1 ⋅ At − ⟨V̂ ′′⟩, (D3)

γ̇t = T(pt) − ⟨V̂⟩ + (h̵/4)Tr [⟨V̂ ′′⟩ ⋅ (Im At)−1]
+ (ih̵/2)Tr (m−1 ⋅ At). (D4)

These are equivalent to Eqs. (42)–(45) for the TGWD satisfying the
nonlinear TDSE (20) with the effective potential (30) and coefficients
(69).

Proof. Since the manifold of Gaussian wavepackets has the ray
property, the variational solution conserves the norm of the wave-
function (see Appendix C).25 For the Gaussian ansatz (26), this
implies [see Eq. (28)] that

exp (−Im γt/h̵) = [det (Im At/πh̵)]1/4 (D5)

for all times t if the initial norm is 1. For Gaussian (26) with density
ρ(x) [Eq. (B16)], variational equations (C3) for parameters qt , pt , At ,
and γt are, respectively,

0 = ∫ (At ⋅ x + pt)g(x)ρ(x)dDx, (D6)

0 = ∫ xg(x)ρ(x)dDx, (D7)

0 = ∫ x⊗ xTg(x)ρ(x)dDx, (D8)

0 = ∫ g(x)ρ(x)dDx, (D9)

where

g(x) ∶= f (x) − V(qt + x) (D10)
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is the difference between the quadratic polynomial (38) and the
potential energy V(q). Because ρ is normalized, the variational
equations (D6)–(D9) can be expressed as

0 = ⟨(At ⋅ x + pt)g(x)⟩, (D11)

0 = ⟨xg(x)⟩, (D12)

0 = ⟨x⊗ xTg(x)⟩, (D13)

0 = ⟨g(x)⟩. (D14)

The first equation, which follows from the second and fourth equa-
tions, is redundant. The last three equations, which are independent,
are equivalent to the system

0 = ⟨g(x)⟩, (D15)

0 = ⟨∇g(x)⟩, (D16)

0 = ⟨∇⊗∇Tg(x)⟩. (D17)

Equation (D16) is equivalent to Eq. (D12) because

⟨∇g(x)⟩ = ∫ ρ∇g dDx = −∫ g∇ρ dDx

= ∫ gΣ−1
t ⋅ xρ dDx = Σ−1

t ⋅ ⟨xg(x)⟩. (D18)

Here, we integrated by parts and used relation (B17). Likewise,
Eqs. (D13) and (D14) are equivalent to Eqs. (D15) and (D17) since

⟨∇⊗∇Tg(x)⟩ = ∫ ρ∇⊗∇Tg dDx = ∫ g∇⊗∇Tρ dDx

= ∫ g(Σ−1
t ⋅ x⊗ xT ⋅ Σ−1

t − Σ−1
t )ρ dDx

= Σ−1
t ⋅ ⟨x⊗ xTg(x)⟩ ⋅ Σ−1

t − Σ−1
t ⟨g(x)⟩,

where we integrated twice by parts and used Eq. (B18).

Recalling the definition (D10) of g(x), we find that g, its
gradient, and its Hessian can be written explicitly as

g(x) = xT ⋅ C2 ⋅ x/2 + xT ⋅ C1 + C0 − V(qt + x), (D19)

g′(x) = C2 ⋅ x + C1 − V′(qt + x), (D20)

g′′(x) = C2 − V′′(qt + x). (D21)

Substituting expressions (D19)–(D21) for g, g′, and g′′ into
Eqs. (D15)–(D17) for the expectation values yields

0 = ⟨xT ⋅ C2 ⋅ x⟩/2 + CT
1 ⋅ ⟨x⟩ + C0 − ⟨V̂⟩

= Tr (C2 ⋅ Σt)/2 + C0 − ⟨V̂⟩, (D22)

0 = C2 ⋅ ⟨x⟩ + C1 − ⟨V̂ ′⟩ = C1 − ⟨V̂ ′⟩, (D23)

0 = C2 − ⟨V̂ ′′⟩, (D24)

where we have used relations ⟨x⟩ = 0 for the position and

⟨xT ⋅ C2 ⋅ x⟩ = Tr (C2 ⋅ ⟨x⊗ xT⟩) = Tr (C2 ⋅ Σt) (D25)

for the expectation value of a quadratic form.
The system of Eqs. (D22)–(D24) has the solution

C0 = ⟨V̂⟩ − Tr [⟨V̂ ′′⟩ ⋅ Σt]/2, (D26)

C1 = ⟨V̂ ′⟩, (D27)

C2 = ⟨V̂ ′′⟩. (D28)

In view of Propositions 1 and 2 from Sec. IV B, we find that the
variational TGWD is equivalent to the nonlinear TDSE (20) with an
effective potential (30) whose parameters V0, V1, and V2 satisfy con-
ditions (69) and are all real, as required in Proposition 2. Altogether,
the Dirac–Frenkel principle applied to the Gaussian (26) is equiva-
lent to the system (42)–(45) with coefficients V j given by Eq. (30),
i.e., to the system (D1)–(D4).

APPENDIX E: CONSERVATION OF Eeff
BY THE VARIATIONAL TGWD

Although Eeff = E = const for any solution of the Dirac–Frenkel
variational principle (see Appendix C), it is instructive to demon-
strate the conservation of the effective energy explicitly for the
variational TGWD, regarded as a solution of the nonlinear TDSE
(6). Applying the general expression (66) for Ėeff to the variational
coefficients (69) gives

Ėeff =
d
dt
[⟨V̂⟩ − Tr (V2 ⋅ Σt)/2] − VT

1 ⋅ q̇t + Tr (V̇2 ⋅ Σt)/2

= d⟨V̂⟩
dt
− 1

2
Tr (V2 ⋅ Σ̇t) − ⟨V̂ ′⟩T ⋅m−1 ⋅ pt , (E1)

where two terms Tr (V̇2 ⋅ Σt)/2 of opposite signs cancel each other.
The time derivative of Eeff becomes

Ėeff = Tr (m−1 ⋅ Re⟨V̂ ′ ⊗ p̂ T⟩) − Tr [V2 ⋅ CovR(q̂, p̂) ⋅m−1]
− Tr (m−1 ⋅ ⟨V̂ ′⟩⊗ pT

t ) (E2)

because

d⟨V̂⟩
dt
= Re⟨p̂ T ⋅m−1 ⋅ V̂ ′⟩ = Tr (m−1 ⋅ Re⟨V̂ ′ ⊗ p̂ T⟩),

which can be derived in the same way as Eq. (21), and

Tr (V2 ⋅ Σ̇t) = (h̵/2)Tr [V2 ⋅ (m−1 ⋅A ⋅ B −1 + B −1 ⋅A ⋅m−1)]
= 2 Tr [V2 ⋅ CovR(q̂, p̂) ⋅m−1]. (E3)
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To find expression (E3) for Tr (V2 ⋅ Σ̇t), we used the notation
A ∶= Re At and B ∶= Im Bt and the relation

Σ̇t = −(h̵/2)B −1 ⋅ Ḃ ⋅ B −1

= (h̵/2)(m−1 ⋅A ⋅ B −1 + B −1 ⋅A ⋅m−1), (E4)

which follows from Eqs. (B23) and (44). Equation (E3) then fol-
lows from the symmetry of matrices A, B −1, m−1, and V2, and from
Eq. (B26) for CovR(q̂, p̂) because

Tr (V2 ⋅m−1 ⋅A ⋅ B −1) = Tr [(V2 ⋅m−1 ⋅A ⋅ B −1)T]
= Tr (B −1 ⋅A ⋅m−1 ⋅ V2)
= Tr (V2 ⋅ B −1 ⋅A ⋅m−1).

Using identity (B36) and definition (B22) of CovR(q̂, p̂) shows that
the effective energy is conserved:

Ėeff = Tr{m−1 ⋅ [Re⟨V̂ ′ ⊗ (p̂ − pt)T⟩ − ⟨V̂ ′′⟩ ⋅ CovR(q̂, p̂)]}
= 0. (E5)

APPENDIX F: PROOF THAT A = Re A = 0 IN FGWD

Here, we prove that setting Im V2 = 0 in Eq. (106) for the
FGWD implies that the width matrix A of the frozen Gaussian is
purely imaginary. In fact, we will show more generally that if m−1

and B are positive-definite real symmetric D ×D matrices and A a
real (but not necessarily symmetric) D ×D matrix, then the equation

A ⋅m−1 ⋅ B + B ⋅m−1 ⋅A = 0 (F1)

implies that A = 0. First, note that matrix m−1 has a unique
positive-definite real symmetric square root m−1/2.92 Multiplication
of Eq. (F1) by m−1/2 both from the left and from the right yields

A ′ ⋅ B ′ + B ′ ⋅A ′ = 0 (F2)

where A ′ = m−1/2 ⋅A ⋅m−1/2 is a real matrix and B ′ = m−1/2 ⋅ B
⋅m−1/2 is a positive-definite real symmetric matrix,92 whose eigen-
vectors vj form a basis of RD. In this basis, matrix elements of
Eq. (F2) are

0 = vT
j ⋅ (A ′ ⋅ B ′ + B ′ ⋅A ′) ⋅ vk = (λ j + λk)vT

j ⋅A ′ ⋅ vk.

Since all eigenvalues λj of B ′ are strictly positive, v j ⋅A ′ ⋅ vk = 0 for
all j and k. Therefore, A ′ = 0. Because m−1/2 is positive-definite, it
has an inverse m1/2 and

A = m1/2 ⋅A ′ ⋅m1/2 = 0. (F3)

APPENDIX G: KINETIC PROPAGATION

Here we derive analytical solutions (132)–(135) for the kinetic
propagation. Equations (132) and (133) for qt and pt follow from
Eqs. (128) and (129) because pt = const. To solve the differential
Eq. (130) for At , we use the relation for the derivative of a matrix
inverse,88

d(A−1
t )/dt = −A−1

t ⋅ Ȧt ⋅ A−1
t = m−1, (G1)

where Eq. (130) was used in the second step. The differential
equation (G1) has the solution

A−1
t = A−1

0 + tm−1 = A−1
0 ⋅ (IdD + tA0 ⋅m−1)

= (IdD + tm−1 ⋅ A0) ⋅ A−1
0 , (G2)

and taking the inverse of the three alternative expressions for A−1
t

gives the three formulas for At in Eq. (134). To find γt , we substitute
the expression for m−1 ⋅ At from Eq. (130) into Eq. (131) and use
the formula for the derivative of a logarithm of a determinant,

γ̇t = T(pt) − (ih̵/2)Tr (A−1
t ⋅ Ȧt)

= T(pt) − (ih̵/2)
d
dt

ln det At. (G3)

Since pt = p0, the solution of this differential equation is

γt = γ0 + tT(p0) − (ih̵/2) ln [(det At)/(det A0)]
= γ0 + tT(p0) − (ih̵/2) ln det (A−1

0 ⋅ At). (G4)

Inserting Eq. (134) for At gives Eq. (135) for γt .
Among Eqs. (132)–(135), the only one that is nontrivial to

invert is Eq. (135) for γt , whose inversion (140) follows from
Eqs. (132) and (G2) because

IdD + tm−1 ⋅ A0 = A−1
t ⋅ A0 = (A−1

0 ⋅ At)−1 = [(A−1
t − tm−1) ⋅ At]−1

= (IdD − tm−1 ⋅ At)
−1

. (G5)
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35T. Begušić, M. Cordova, and J. Vaníček, J. Chem. Phys. 150, 154117 (2019).
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