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Abstract An effective field theory developed for systems interacting through short-
range interactions can be applied to systems of cold atoms with a large scattering
length and to nucleons at low energies. It is therefore the ideal tool to analyze the
universal properties associated with the Efimov effect in three- and four-body sys-
tems. In this progress report, we will discuss recent results obtained within this
framework and report on progress regarding the inclusion of higher order correc-
tions associated with the finite range of the underlying interaction.
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1 Introduction

Universal properties are one reason why few-body systems with a large scattering
length a have received a lot of attention lately. For example, a two-body system
with a large positive scattering length a has a bound state with binding energy
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where m denotes the mass of the particles (note that we set 7z = 1 for convenience).
In the three-body sector a large two-body scattering length leads to further univer-
sal features known widely as Efimov physics (1). These are fascinating and excit-
ing since they relate physical effects that occur at very different length scales. In
experiments with ultracold atoms Feshbach resonances allow the interatom scat-
tering length to be tuned from —oo to oo, while also the internucleon interaction
exhibits a scattering length large compared to the range of the interaction.

An understanding of such systems improves therefore also our understanding
of low-energy nuclear
physics. Moreover, a simple approach only in terms of the large scattering and the
other remaining low-energy parameters of the effective range expansion grants
also the possibility to address important problems in nuclear few-body systems
in a very effective manner. One prominent example is the model-independent
description of electroweak reactions relevant to nuclear astrophysics. An approach
whose parameters are only related to the effective range expansion might seem
inappropriate for such nuclear reactions but it is important to realize that many
important processes occur at energies well below the energy scale set by the range
of the interaction (i.e. the pion mass my).

Since such an approach will fail for observables for which the pion-exchange
character of the internucleon interaction is important, it can therefore also answer
the question for which measurable quantities the chiral character of the nucleon—
nucleon interaction is relevant. This addresses the question what low-energy infor-
mation in particular is required to describe nuclear systems at different energy
scales.

The framework that we will use to address processes in such systems is that
of effective field theory (EFT). It allows to obtain model-independent results in
a small parameter expansion. The advantages of a calculation of observables in
the EFT framework are numerous. First, it allows for a clear separation of the
unknown ultraviolet and known low-energy physics which eliminates any pos-
sible model-dependence. Second, the accuracy of calculated observables can be
systematically improved by calculation of another order in the low-energy expan-
sion. And third, the quantum field-theoretic setup brings along the advantages of
mathematically tools successfully used in high-energy physics, such as Feynman
diagrams, renormalization and regularization.

Here we will concentrate on applications of one particular EFT (that we will
call short-range EFT) that is tailored to the problem of short-range interactions.
The expansion parameters in this EFT are R/a and kR, where R denotes the range
of the underlying interaction and k the momentum scale of the process under con-
sideration. At leading order, this EFT framework allows us to analyze the prop-
erties of systems interacting through zero-range interactions. Finite range effects
can then be accounted for by calculating subleading orders in the EFT expansion.

The short-range EFT provides therefore a good framework to analyze the few-
body dynamics in resonantly interacting ultracold gases. Binding energies and
scattering observables can be calculated and the experimental signals of Efimov
physics can therefore be identified.
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Predictions for low-energy scattering processes and binding energies can also
be made in the nuclear case. However, the field-theoretic formulation of this frame-
work facilitates in addition a calculation of electroweak observables relevant to
nuclear astrophysics as discussed above.

The purpose of this review is to display the similarities between low-energy
atomic and nuclear physics and to demonstrate that the same framework can be
applied to both sectors to obtain relevant and interesting results. In contradistinc-
tion to recent reviews on similar topics (2;13;4;15), we will present the applications
and results for atomic and nuclear systems alongside. By doing this we want to
emphasize the similarities between low-energy nuclear physics and the few-body
dynamics in resonantly interacting ultracold gases of alkali atoms.

We will be mainly interested in few-body systems and will therefore mainly
focus on systems that can be described either as two, three or four-body systems.
It should also be noted that this is not a complete review of work done for systems
with short-range interactions but instead it should be considered as a progress
report that gives a brief introduction to the short-range EFT, that presents recent
calculations performed in the few-body sector and discusses then an incomplete
list of problems that should be addressed in the near future.

In the following chapter, we will thus give a brief introduction to the concept of
EFTs and will discuss in detail the short-range EFT whose application to different
problems will be covered in the remaining sections of this review. In Sect. |3} we
will give a review of recent applications of the short-range EFT to systems of
ultracold atoms. In Sect. il we will review results obtained with short-range EFT
for nuclear systems such as the three- and four-nucleon systems but also heavier
systems such as halo nuclei. We will conclude with a summary.

2 Effective Field Theories

Effective field theories are an excellent tool to describe the interactions in systems
with a separation of scales. The usual example of such a scale separation is the
ratio of a small momentum over a heavy mass scale. The weak interaction for
example, can be described without explicit use of heavy vector bosons if the ener-
gies of the processes are well below the mass scale of the exchange particles. In
this case the weak interactions can be described very well with the familiar Fermi
interaction.

Here, we will focus on the short-range EFT, which is tailored to describe non-
relativistic particles with a large scattering length a at low energies. We will dis-
cuss the Lagrangian which is at the heart of the EFT and describe how it can be
used along with an ordering scheme called power counting and Feynman rules to
obtain a powerful framework for the computation of low-energy observables of
few-body systems with a large two-body scattering length.

Very good introductions to the general concepts of EFTs have been written
by Kaplan (6)), Lepage (7) and Polchinski (8). An excellent introduction to EFTs
applied to nuclear systems has been given by Phillips (9).
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2.1 The Effective Range Expansion

We will consider identical particles (bosons for simplicity) interacting via a poten-
tial that has a finite range R. In this case the amplitude for the scattering of two
particles can be written as

8 21+ 1

o (k,cos8) = EZI" kcot & — ik

Py(cos®), 2)
where k denotes the relative momentum between the two particles, m is the mass
of each of these particles and §; denotes the scattering phase shift in partial wave
[

At low momenta, the expression in the denominator can be expanded in even
powers of the momentum k

1
P cot§ = —— + %kz + Ok 3)
aj

For the S- and P-wave phase shifts, the first terms in the expansions are
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kcotﬁoz—;+§rsk2+~-~, kcot5lz—ﬁ—|—-~-, “4)
p

where a, a,, are the S- and P-wave scattering lengths, respectively, 7y is the S-wave
effective range and the ellipses denote higher order terms in the expansion.

For large positive scattering length, one finds a bound state as discussed above
and we will frequently use the effective range expansion (ERE) around the bound
state pole:

kcot50:—7+%(72+k2)+-~-, S

where Ep = ¥*>/m and p = r, up to the orders considered in this work.

The low-energy physics encoded in the effective range parameters depends
on the relative size of these parameters. In the following, we will consider two
special cases which we will refer to as the natural case and the unnatural case. In
the natural case, all effective range parameters are of natural size, i.e. of the order
of the range of the interaction a ~ r; ~ R. In this case the scattering amplitude in
Eq. (2) can be expanded in powers of k:

o (k) = _87;515 [1—iagk+ (ar/2—al)k* + - 1. (6)

For simplicity we have considered here only the S-wave projected part of the scat-
tering amplitude. This expansion will converge for momenta k < 1/R.

Now consider the case in which the scattering length a is much larger than
all other effective range parameters |a| > |ry| ~ R. This separation of scales indi-
cates the presence of non-perturbative physics through a (virtual) bound state with
energy ~ 1/(ma?). The expansion above is only valid for ak < 1 which reduces
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the radius of convergence dramatically and renders it useless in the limit of infi-
nite scattering length. We will instead expand in powers of kR and keep ak to all
orders:

_ 8z 1 /2 o (/2?4
SO == Tar i | Var ik T WazawzE o]0 D

The resulting expansion still converges for kR < 1 and reflects the fact that sys-
tems with a large two-body scattering length require a non-perturbative resumma-
tion at leading order.

2.2 The Short-Range EFT

Our goal is to describe the dynamics of particles interacting through a short-range
potential with an EFT. The Lagrange density for an EFT is generated by writing
down all possible operators built from the available degrees of freedom in accor-
dance with the required symmetries. At sufficiently low momenta, non-relativistic
particles can be described by an EFT built up from contact interactions alone. This
EFT can be applied if the relative momenta k of the particles is much smaller than
the inverse of the range of the underlying interaction R:

k< 1R, @®)

The convergence radius of our EFT will therefore agree with that of the ERE and
we can therefore anticipate that we will be able fix any free parameters in the
two-body sector from the ERE.

The only degrees of freedom we require for our EFT are therefore the atoms
themselves. Having identified the relevant degrees of freedom, we generate the
effective Lagrangian by writing down all possible operators satisfying the con-
straints of Galilean, parity and time-reversal invariance and locality:

+ s & G, + o Do 3 Ey SV
L=y [zat+2rn]w—4(w (v U =7 U DA )

The ellipses represent operators of higher dimension which means terms with
more derivatives and/or more fields. We have neglected relativistic effects which
are suppressed by factors of (p/M )2. Dy and E, denote the leading three- and
four-body interactions.

Every EFT contains therefore an infinite number of two- and many-body oper-
ators. This framework might therefore seem useless since an infinite number of
Feynman diagrams arises for every observable and infinite number of coupling
constants needs to be determined from experiment. Here, the afore-mentioned
separation of scales allows us to resolve this problem. The separation of scales
usually leads to a ratio of a light scale over a heavy scale (e.g. a small momen-
tum divided by a large mass) which is exploited as a small expansion parameter
agppr- Appropriate renormalization of the vertex constants (also known as low-
energy constants) will then lead to an ordering of all possible Feynman diagrams
(power counting) such that only a well-defined number of low-energy constants
are required at each order of the expansion of a matrix element in powers of OgpT.
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Fig. 1 The sum of diagrams including the Cj vertex contributing to two-body scattering

This power counting arises in the short-range EFT by demanding that the scat-
tering amplitude for two-body scattering reproduces the appropriate momentum
expansion [Egs. (6) and (7)] of the scattering amplitude.

Feynman rules: As in standard quantum field theory, amplitudes for processes are
calculated by using
Feynman rules derived from the Lagrange density. The Feynman rules for the
short-range EFT are particularly simple

e Assign non-relativistic four-momenta (pg,p) to all lines and enforce momen-
tum conservation at each vertex.
e For each vertex include a factor —i times the low-energy constant of the cor-
responding operator.
e For each internal line include the propagator with four-momentum (po, p)
: i
lS(q’CIO) = 2 BE (10)
qo — 5,; +1€
e Integrate over all undetermined loop momentum using the measure

dgo d’q
2w (2m)3°

The energy integral can be evaluated using contour integration.
e Multiply by a symmetry factor 1/n! if the diagram is invariant under the per-
mutation of » internal lines.

Power counting: It is clear from the discussion on the expansion of the two-body
amplitude for large scattering length that the power counting requires a resumma-
tion of an infinite set of diagrams to obtain the pole structure of Eq. (7). Here, we
will verify by explicit calculation that the leading order two-body amplitude can
be reproduced by summing up all diagrams including only the Cy vertex as shown
in Fig. [T}

Using the Feynman rules given above, the sum of diagrams shown in Fig.
can be expressed as

A (E) = —iCy Y (—iCo.# /2)"
n=0
=i
C14iCys )2’ (i

where .# is given by
dgo dg* i i
s = /‘1 2‘1 Q@ Q@ (12)
7)? Po—q0 — 3,; T1€ o — 5 +IE

_ im( A__Vompo "””0) . (13)

272 47
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Fig. 2 The dressed dimeron propagator

Fig. 3 The integral equation for the atom—dimer scattering amplitude ¢

This integral has been regularized with an ultraviolet cutoff A. Inserting Eq. (I3))
in (L1, we end up with the expression

2A !
=588 A | (14)

m mCy T
We reproduce the leading order term in Eq. (7) by setting

8ma 1

Co= o
7 "m 1-2Aa/z

15)

In the two-body system the leading order amplitude is therefore given by the sum
of all diagrams which contain only the Cy vertex. Subleading corrections can then
be calculated from perturbative insertions of the higher order operators dressed to
all orders by Cy.

The short-range EFT power counting for the two-body sector was developed
in Refs. (105 11151125135 114). A regularization scheme alternative to cutoff regular-
ization which makes the powercounting on a diagram-by-diagram basis explicit
was developed in Refs. (11} [12)).

It has to be emphasized that the powercounting is of course different in the case
of a scattering length of natural size, i.e. a ~ R. In this case the powercounting and
therefore the order at which a particular diagram contributes follows directly from
naive dimensional analysis of the corresponding operators. This EFT is only of
limited interest in the few-body sector, but it has found interesting applications in
the many-body sector (15;16).

2.3 The Three-Body System

Applications of the framework laid out above to the two-nucleon system have been
very successful (for a review see Ref. (4))).

Bedaque et al. were the first to consider the three-body system using the short-
range EFT (17;18). They used an equivalent form of the Lagrange density given
in Eq. (9) that turns out to simplify the treatment of the three-body system. This
form uses an auxiliary field, the dimeron 7', which has the quantum numbers of a
two-body state (17):

2
L=y <i8,+ ;) V+H+AT'T — \%(TWWH.C.) +hT Ty y. ... (16)

The Lagrange density above is equivalent to the density in Eq. () if the low-
energy constants are chosen to be 2g%/A = Cy and —18hg?/A? = Dy (and the four-
body force terms has been omitted). The dimeron field 7' has the bare propagator
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It is clear that the power counting introduced in the previous section dictates a
resummation of the particle-particle loops as shown in Fig.[2] We therefore obtain
the dressed dimeron propagator

—i

lD(po,p) = 5 >
—A+ 75 —mpo+ 5 —ie

_ 4r i (18)

_migz—l/a—k /—mpo+p>—ie

This propagator has a pole at pg = p?/(4m) — (4wA /(mg?))? /m. Evaluating the
residue of Eq. (I8)) leads to the wavefunction renormalization factor

8
Zp = ——5—. 19
D= (19)
Let us consider now elastic scattering between an atom and a dimer shown
diagrammatically in Fig [3] Using the Feynman rules discussed previously with
the added information on the dimeron propagator, we can consider the amplitude
for elastic particle-dimer scattering.

2mg?
t(ipK;E) = h
(P, E) K2+ p?+mE+p-k *
d? 1 t(q,k;E h
+8n / q3 (q2’ 2) o2l
27)® —1/a+\/3¢>/A—mE —ie |—mE+q*+p*+p-q 2mg
(20)
The reason why we have included the three-body interaction £ will be discussed
below.
In order to relate the amplitude to observables, we have to multiply ¢ with the
wavefunction renormalization Zp factor from Eq. (I9). It is therefore convenient
to rewrite the integral equation:
tr( lcE)—16—7r ! +H(A)
R E) = K4+p2—mE+p-k A2
& 1 tr(q,k:E H(A
27)3 —1/a++\/3¢*/4—mE —ie |—-mE+¢*+p*+p-q A

where tg = Zpt and h = 2mg?H(A)/A?. The total energy in this process is given
by E = ﬁkz — Ep and the on-shell point is given by k = p. It is straightforward to

! No cutoff dependence appears in the expressions for the two-body propagator in Eq. ||
since we assume that the bubble loop integrals from the two-loop sector were evaluated using
dimensional regularization with minimal subtraction.
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Fig. 4 The shallowest three-body binding energies indicated by the solid, dashed, and dash-
dotted lines as a function of the momentum cutoff A

decompose the amplitude into contributions from channels with different orbital
angular momentum quantum number /:

1(p.ksE) = /dez {(p.K:E). (22)

where x = p-Kk/(pk) and P;(x) denotes a Legendre polynomial. Projecting onto
S-waves (I = 0) gives

8u[ 1 p2+pk+k2—mE 2H(A
to(p,kE) = —1 5 (2 )
ma | pk — pk+k*—mE A
t(g,k; E
_1_7/ dqq2 (¢,k:E) .
T Jo —1/a++/3¢*/4—mE —ig
1 2 > —mE 2H(A
X [ln <p2+pq+q2 ~ )—i— (2 )} . (23)
pq \p~—pq+q-—mE A

Here a cutoff A has been introduced to make the integral equation well-defined.
Equation is then related to the atom—dimer phase shift via

3r 1

[ P —
t()( ’ ) m kcotdap — ik

(24)
Equation (ZI)) (without the three-body force) is also known as the Skorniakov-
Ter-Martirosian (STM) equation, named after the first ones to derive an integral
equation interacting through zero-range two-body interactions (19).

Bound states can be found by solving the homogeneous version of the integral
equation in Eq. (23). So far we have not explained why we included the three-body
force in our leading order equation. Naive dimensional analysis by counting the
mass dimension of the three-body operator suggests that the three-body force is a
higher order effect.

Let us therefore consider the bound state problem and set the three-body force
to zero. The resulting strong cutoff-dependence of three-body binding energies is
shown in Fig.[d] This cutoff-dependence is no residual dependence which becomes
weaker with increasing cutoff but is a genuine result of the use of zero-range
interactions in the three-body sector. It was in fact already pointed out by Danilov
in the 1960s that the STM equation has no unique solution (20) and it was later
suggested by Kharchenko to fix the cutoff and to treat it as a parameter (21).
The field-theoretic perspective implies that three-body observables are sensitive
to short-distance effects that have not been properly renormalized.

Bedaque et al. (1'7; [18) showed that the inclusion of the three-body force as
in Eq. (23) results in fully renormalized observablesE] The three-body force H(A)

2 An alternative perspective can be won by an analysis of this problem in coordinate space.
An analysis in the hyperspherical formalism shows that the three-body problem with infinite
scattering length becomes a Schrodinger like problem with a 1/%? potential, where % denotes
the three-body hyperradius. The solution to this problem requires a short-distance boundary
condition which is determined by a three-body datum. An excellent discussion of the analysis
of this problem in the hyperspherical formalism is given in (22).
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Fig. 5 Coupling constant H as a function of the cutoff A. The solid shows a fit to Eq. 1| for
an arbitrarily chosen three-body renormalization point

is therefore included and its value is determined by adjusting Eq. to a given
three-body datum (such as the binding energy of a three-body bound state). It was
shown furthermore that the cutoff dependence of H(A) can be approximated with

_sin(soIn(A/Lz) —arctan(1/s)))
sin (soIn(A /Ls) +arctan(1/s9))’

H(A)= (25)

where L3 is a parameter fixed from experiment and so ~ 1.00624. It can easily be
seen that H(A) is periodic in the cutoff. A rescaling of the cutoff A by a factor of
exp(nm/sg) =~ 22.7 gives back the same result for H

H(A) =H(Aexp(nm/sg)). (26)

This particular running of the coupling constant H is called a limit cycle and
was first disussed as an additional type of renormalization group flow in Ref. (23)).
The limit cycle is also reflected in observables: whenever the cutoff is increased
by a factor of 22.7, the number of bound states in the spectrum increases by one
(as can be seen in Fig. [d). In the limit of infinite scattering length, one finds an
infinite tower of three-body bound states (Fig. [5)):

EfY = (72 0)r e fm, @7)

where K, is the binding wavenumber of the Efimov trimer labeled by n, and m
is the mass of the particles. The short-range EFT reproduces therefore at lead-
ing order the Efimov effect. Vitaly Efimov discovered in the 1970s that the zero-
range limit of the three-body problem for nonrelativistic particles with short-range
interactions shows discrete scale invariance. If a = +oo, there are infinitely many
three-body bound states with an accumulation point at the three-atom scattering
threshold. These Efimov states or Efimov trimers have a geometric spectrum (1)).
Furthermore, he pointed out that these results were also valid for finite scattering
length as long as a > r;. The short-range EFT is therefore an approach in which
the properties of few-body systems related to Efimov physics can be analyzed but
that furthermore facilitates the systematic inclusion of perturbations due to the
finite range of the underlying interaction.

In the discussion above, we have considered systems with identical mass which
we will consider for the main part of this work. Nonetheless, it should be pointed
out that the consequences of different masses on the discrete scale invariance/limit
cycle are well-understood (2).

One-parameter correlations: The necessity of two counterterms at leading order
to obtain cutoff independent results implies that two very different types of one-
parameter correlations exist. One can for example consider correlations between
two- and three-body observables by changing the two-body counterterm and there-
fore effectively changing the scattering length. A well-known example of such a
correlation is the so-called Efimov plot that is shown in Fig. [6] In this plot the
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Fig. 6 The a~'-K plane for the three-body problem. The allowed regions for three-atom scat-
tering states and atom—dimer scattering states are labeled AAA and AD, respectively. The heavy
lines labeled T are two of the infinitely many branches of Efimov states. The cross-hatching
indicates the threshold for scattering states. States along the vertical dashed line have a fixed
scattering length

binding momentum of the nth trimer state K, = 1/ mE;n) is plotted against the
inverse scattering length. At the origin of the plot the three-body system shows
the afore-mentioned exact discrete scaling symmetry with respect to the binding
momenta along the y-axis. A change of L3 in Eq. corresponds therefore to
a rescaling of the Efimov plot. Any point in this plot is therefore equally well-
suited to characterize the short-distance behavior of the three-body amplitude and
can be used instead of L3 as the three-body parameter. Several distinct points are
particularly convenient:

® K, the binding momenta of a trimer in the limit @ — oo,

e d, the scattering length at which an Efimov trimer crosses the three-atom
threshold,

e q,, the scattering length at which an Efimov trimer crosses the dimer-atom
threshold.

Other three-body parameters can of course be defined and generally all of them
are related by simple expressions to each other, e.g. a, ~ 0.0798 k"' (2).

A very different type of correlation plot can be generated by keeping the two-
body scattering length constant while varying the three-body force. This allows the
study of the correlation between different three-body observables. One such cor-
relation that is very well known is the Phillips line (which will be shown later). It
is an approximately linear correlation between the particle-dimer scattering length
and the three-body binding energy. This correlation line is well-known in nuclear
physics, since calculations of the neutron—deuteron scattering length and triton
binding energy with different two-nucleon potentials lie near this line.

Correlation lines calculated using the short-range EFT will in fact provide
constraints on calculations with realistic potentials that give a large two-body
scattering length. A three-body calculation of particle-dimer scattering length and
binding energy employing such a potential has to give a point lying on or close
to the Phillips line. The short-range EFT provides therefore strong low-energy
constraints even in the absence of an experimental datum to fix the three-body
low-energy constant.

Higher Orders and Higher Partial Waves: The leading order (LO) calculations
described above give results for the limit in which the range is taken to 0. The
analysis of higher order corrections is important for several reasons. It allows to
increase the accuracy of predictions for observables but provides also further infor-
mation on the convergence radius of the short-range EFT. It was also mentioned
before that the Lagrange density shown in Eq. (9) contains an infinite number of
counterterms. It is therefore natural to ask at what order the next three-body force
enters.

The calculation of higher order corrections has been addressed a number of
times. The correction to observables linear in the effective range was already con-
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sidered by Efimov using the hyperspherical formalism (24; [25) but no explicit
results were given for systems in which the Efimov effect is relevant. Hammer and
Mehen (26) calculated the next-to-leading order (NLO) correction to neutron—
deuteron scattering perturbatively. They found an improvement in the description
of the corresponding phase shift but did not present a result for the three-body
binding energy at NLO. The extension of their perturbative approach to higher
orders is involved since it requires the knowledge of the full off-shell three-body
scattering amplitude.

This and and other publications (that considered higher order corrections to
three-body observables) displayed an unexpected convergence pattern since the
NLO shift to LO observables was unexpectedly small. This lead to a more detailed
analysis of the NLO correction to observables which is linear in the effective range
(27). It was found that the exact discrete scale invariance of the leading order wave
function in the unitary limit (i.e. |a| — o) protects the LO bound state spectrum.

That means, if E;”I)‘O (E;?I)\ILO) denotes the binding energy of the nth three-body
bound state at LO (NLO) in the limit @ — oo, then we have

EY)o—Eflo=0 forallnandy=0. (28)

This observation was made independently by Thggersen et al. (28) using a numer-
ical analysis of the Efimov bound state spectrum for finite range potentials.

For arbitrary scattering length, we can define the linear shift in the binding
energy of the nth three-body bound state in the following way:

B =6 [ (L)t (L) woiwn). o)

* *

and we have G,(0) = 0 for y = 0. In Ref. (27) the function G, was also ana-
lyzed for finite ¥ and evidence was found that G, is close to O at the atom—dimer
threshold. An ongoing analysis will shine more light on the properties of the lin-
ear range correction and will address the impact of finite range corrections on
universal relations that relate the recombination maxima at negative scattering
length to the recombination minima at positive scattering length and will give a
better understanding of how different signatures of Efimov physics are impacted
by finite range effects (29) (see Sect. |3| for a detailed discussion of three-body
recombination in ultracold gases).

Bedaque et al. (30) calculated the neutron—deuteron phase shifts up to next-
to-next-to-leading order (N2LO) and included (based on a perturbative power
counting argument that assumes the cutoff to be A ~ 1/R) an additional energy-
dependent three-body force at this order. The authors supported there finding with
an analysis of the cutoff dependence of observables which at this order is expected
to be ~A 3. They also suggested to include effective range corrections by mod-
ifying the two-body propagator in the STM equation. The two-body propagator
with the effective range summed up to all orders is given by

1
D(po,p) = - . (30)
=Y+ 3 (V2 +mpo—p*/4) +/—mpo +p* /4
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It is easy to show that the denominator in Eq. has two poles. In the case of
positive y and ry this propagator has the bound state pole of the shallow dimer and
a pole with binding energy

16 1 1
Espurious = W (1 - E’yrs + ]6(rs7)2) : (3D

N

This pole corresponds to a spurious bound state which is unphysical since in the
two-body system the short-range EFT cannot make predictions for energy scales
> 1/(mR?). The spurious bound state pole in Eq. leads to an ill-behaved
kernel when inserted into the STM equation and the description of observables
fails (31). It was therefore suggested by Bedaque et al. to expand Eq. in
powers of the effective range:

1 Iy +mpo—p*/4
D(po.p) = T Gl ek

—Y+/—mpo+p*/4 2<—Y+\/—mpo+l32/4)2
(ﬁ)Z (V> +mpo —p*/4)*

2 (~r+ Vo pY/A)

This amounts to a partial resummation of effective range corrections when inserted
into the STM equation. The difference in results for observables between a purely
perturbative calculation of effective range corrections and this approach is expected
to be of higher order. The solution of a modified STM integral equation leads
directly to the desired observables and the amount of effort to calculate higher
order corrections does therefore not increase compared to the solution of the lead-
ing order STM equation.

In Ref. (32) a renormalization group analysis was performed for large cutoffs
in the STM equation. It lead to the conclusion that for large cutoffs no additional
three-body counterterm has to be included until N3LO in the EFT expansion.
Subsequent publications employing these results up N2LO found good agree-
ment with experimental measurements and calculations using realistic interac-
tions (335 134).

There is an obvious disagreement between the predictions for the order at
which the next three-body counterterm enters that requires a comment. In Ref. (30)
it was argued that it enters at N2L.O (an additional argument was provided in (35))).
In Ref. (32)) the RG analysis lead to the conclusion that N3LO is the order at which
an energy-dependent three-body force has to be included. The difference between
the two analyses was the assumed size of the cutoff, namely either A ~ 1/r; or
A > 1/r; which can in fact be the reason for the different conclusions. A future
publication (29) will address this issue and will try to reconcile the results of
Refs. (30) and (32)).

An analysis of the power counting for arbitrary partial waves was performed
by GrieBhammer (35)). He defined the asymptotic exponent s; which describes the
momentum behavior of the half off-shell amplitude for angular momentum / and
for large off-shell momenta p >> k

S (32)

ti(k,p) o< k'p~171. (33)
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Table 1 Binding energies of the “He trimer and tetramer in mK

System BO) (mK) B (mK) BY) (mK) BLY, (mK)
“He; 127 [2.186] 125.5 2.186
‘He, 492 128 559.7 1327

The two right columns show the Monte Carlo results by Blume and Greene (46) (denoted by the
index BG) while the two left columns show the EFT results of Platter et al. (37). The number in
brackets was used as input to fix L3

Using an argument based on the analysis of the perturbative evaluation of higher
order corrections of the three-body amplitude, he identified the superficial degree
of divergence of a given contribution at order n to be n — 2s;. A contribution at
order n will therefore diverge if

Re[n—2s;] > 0. (34)

Naively, one expects the large momentum behaviour of this amplitude to be deter-
mined by the driving term K (k, p; E) of the STM equation

(k. p) o= lim K (k, p, 3k /4) =< &' /2, (35)

which would imply the simplistic estimate s; =+ 1.

Gasaneo and Macek derived, however, an exact algrebraic equation for the
asymptotic exponent s; using a Mellin transformation of the integral equation
defined in Eq. (22)) at zero energy (36)

=y 2 F[%]ﬂi[#] g[Sl Los et 2043 1]
Var T [%F] 2 2 2 4

It depends only on the relative angular momentum / and the function , F} [a, b; ¢; x|
is the hyper-geometric series. GrieBhammer (who rederived this equation) pointed
out that the order n at which the first three-body force in particular partial wave
channel enters can then be obtained from a solution of Eq. (36) and does for a
number of cases not agree with the simplistic estimate derived from Eq. (33).

Equations (36) and hold for spinless bosons. In Ref. (35) it was laid out
how these formulas are generalized to systems of spin-1/2 nucleons.

(36)

2.4 The Four-Body System

It is natural to ask whether a new counterterm has to be included for every new
particle added to the problem. The question whether a four-body parameter is
required for consistent renormalization in the four-body system is therefore a log-
ical extension of the effort of applying the short-range EFT to few-body systems.
This pertinent question can also be paraphrased in more general terms: do zero-
range two-body interactions and one three-body parameter lead to unique predic-
tions for observables in the four-body sector?

This question was addressed in the framework of the short-range EFT by Plat-
ter et al. in Ref. (37). In this work the effective two- and three-body potentials
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at LO were generated and used together with the quantum mechanical few-body
equations (38)) to solve for the binding energies of the four-body system. The lead-
ing order effective two-body potential is given by

(k|[VIK') = 228(k)g(K), (37)

here g(k) = exp(—k?/A?) is a regulator function. Since this is a separable poten-
tial, the two-body problem can be solved exactly (39))

1(E) = |g)T(E)(gl, (38)
with (k|g) = g(k) and the two-body propagator t
T(E) = [1/%2— (3|Go(E)[g)] " (39)

and Gy denotes the free two-body propagator. Observables in the two-body sector
will depend on the coupling strength A, and the cutoff A. For a given cutoff A the
coupling constant A, is then renormalized by fixing the pole position of the two-
body propagator T which amounts to fixing the binding energy of the two-body
bound state. The effective three-body potential is

Vs =43|6)(E ], (40)

where A3 denotes the three-body coupling constant that has to be adjusted to a
three-body datum (such as the binding energy of the shallowest three-body bound
state) and (ujup|E) = exp(—(u? — 3u3/4)/A?) is a regulator function (u; and u,
denote here the canonical Jacobi momenta in the three-body system (38))).

Information on the necessity of a four-body parameter can be gained by study-
ing the regulator dependence of four-body observables. A change in the regulator
A corresponds to a modification of the short-distance physics while the renormal-
ization conditions on the coupling constants A, and A3 guarantee that low-energy
observables in the two- and three-body sector remain unchanged. A detailed anal-
ysis shows then that no four-body parameter is required since the values of the
tetramer binding energies converge to well-defined values with increasing regula-
tor A (37).

This approach was also used to address the four-body problem of “He atoms.
“He atoms have a scattering length ten times larger than the range of the He—He
interaction. The existence of n-body clusters of *He atoms was shown experi-
mentally (41), however, the measurement of the binding energies of these cluster
states is currently not possible. Several potentials that are believed to describe the
two-body interaction accurately have been developed and have been used in Fad-
deev (42} 143 144; 145)) and Monte—Carlo (46) calculations. The four-body binding
energies were computed, using the results for the dimer and trimer binding bind-
ing energies obtained using the LM2M?2 potential in Ref. (46) as input. For the
three-body coupling constant, the excited three-body state of the “He trimer was
chosen as input parameter. The results can be seen in Table [l The binding ener-
gies of the “He tetramer were found to be in good agreement with the results for
the ground and excited state of the “He tetramer obtained by Blume and Greene
40).

By keeping the two-body parameter fixed and varying the three-body coupling
constant, the correlation line between the tetramer and trimer binding energies
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Fig.7 One-parameter correlations of three- and four-boson bound states. The crosses are results
for LM2M?2 potential (46). The triangles are the results for the TTY, HFD-B and HFDHE2
potentials (47; 48))

Fig. 8 The a~'—K plane for the four-body problem. The circles and triangles indicate the four-

body ground and excited state energies BE‘0> and Bgl), while the lower (upper) solid lines give
the thresholds for decay into a ground state (excited state) trimer and a particle. The dash-dotted
(dashed) lines give the thresholds for decay into two dimers (a dimer and two particles). The
vertical dotted line indicates infinite scattering length. All quantities are given in units of the
three-body parameter L3

can be generated. These are are approximately linear correlations which are well
known from calculations in the few-nucleon sector. They parameterize the com-
mon knowledge that an internucleon potential that gives the correct value for the
triton binding energy also gives a good result for the four-nucleon bound state (i.e.
the a-particle). In Fig.[/| we show this correlation line (which in nuclear physics
is called the Tjon line) generated for values of the three-body binding energy close
to the value of “He trimer binding energy. The Tjon line is therefore a common
feature of systems with a large two-body scattering length and does not depend on
any details of the interaction at short-distances.

This approach was used furthermore for a more detailed analysis of the four-
boson system with large positive and large negative scattering length (40). Results
in this analysis also lead to the conclusion that every trimer state is tied to two
universal tetramer states with binding energies related to the binding energy of the
next shallower trimer:

E4’()N5ET and E4’1N1.01ET for ’}/NO, (4])

where E4 o denotes the binding energy of the deeper of the two tetramer states and
E4 1 the shallower of the two.

A recent calculation by von Stecher et al. (49) supports the findings made in
(37;140). The authors of this work extended previous results to higher numerical
accuracy. They furthermore considered the relation between universal three- and
four-body bound states in the exact unitary limit (a — o). They found

E;o~457Er and E4) ~10l1Er, (42)

which agree with the results obtained in Ref. (40) and given in Eq. f#I).

The results obtained by the Hammer and Platter in Ref. (40) were furthermore
presented in the form of an extended Efimov plot, shown in Fig. [§] Four-body
states have to have a binding energy larger than the one of the deepest trimer
state. The corresponding threshold is denoted by lower solid line in Fig. [§] The
threshold for decay into the shallowest trimer state and an atom is indicated by the
upper solid line. At positive scattering length, there are also scattering thresholds
for scattering of two dimers and scattering of a dimer and two particles indicated
by the dash-dotted and dashed lines, respectively. The vertical dotted line denotes
infinite scattering length. A similar but extended version of this four-body Efimov
plot was also presented by Stecher et al. in Ref. (49). They computed also the
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scattering lengths at which the binding energies of the tetramer states become
zero and found

ay0~043a, and a;;~0.92a,. (43)

A further interesting detail was pointed out in (49). In the unitary limit the shal-
lower of the two—four-body states can be considered as a trimer state with an extra
particle attached to it. If this interpretation as an effective two-body state holds,
then it leads to an important conclusion. Such an effective two-body picture in
terms of a heavy and a light particle implies that the atom—trimer scattering length
has to be large. For a two-body system with large positive scattering a length a and
unequal masses, the binding energy is 1/(2ua?), where @ = mymy /(my +my) is
the reduced mass. With m; = m and my = 3m we obtain for aar

2 1

Er—E o= =

—, (44)
3 maiT

where aar denotes the atom—trimer scattering length. We can therefore obtain a
simple estimate for the scattering length of an Efimov trimer with index n and an
atom in the unitary limit

o 21 2 .
O ~ 2 okt (45)
3m(Er —Eao) —\[ 0.01me™

Since E;’l) is the only scale in the problem, naive dimensional analysis predicts the
range of the atom-trimer interaction to be of order k, !. The estimated scattering
length axr is thus by an order of magnitude larger than this estimate of the range.

3 Low-Energy Universality in Atomic Physics

In this section, we will discuss recent applications of the short-range EFT to sys-
tems of cold atoms. We will focus in particular on the problems of three-body
recombination and atom—dimer relaxation in ultracold gases but will also report
on recent progress in the four-body sector.

The recombination rate and atom—dimer relaxation have been identified as key
signatures in the search for Efimov physics since they can be obtained my measur-
ing atomic loss rates. Three-body recombination is a process in which a two-body
bound state is formed as the result of a three-body collision. The two outgoing
particles will gain kinetic energy in this process equal to the binding energy of the
dimer. In experiments with ultracold atoms, the kinetic energy is often sufficient
to allow the atom and dimer to subsequently escape the trapping potential.

Ultracold gases of alkali atoms are very well suited for such experiments since
in many cases Feshbach resonances allow the scattering length to be tuned to
arbitrarily large values using an external magnetic field. Observables can therefore
be measured as a function of the two-body scattering length and results can be
compared to the corresponding one-parameter correlation discussed previously.

The first experimental evidence for Efimov physics in an atomic system was
presented by Grimm and co-workers (50). In this pioneering experiment with
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ultracold '33Cs atoms in the lowest hyperfine state, they observed a resonant
enhancement in the three-body recombination rate at a =~ —850 a that can be
explained with an Efimov trimer close to the three-atom threshold.

Since then the number of experiments that show evidence for universal three-
body physics has increased significantly. Signatures of Efimov physics have been
found in three-component Fermi gases of ®Li (51} [52), in a Bose gase of *°K
atoms (53), and in heterogenuous mixtures of *'K and 3’Rb (54). The level of
sophistication in experiments has increased so much that recent measurements
even test the implications of low-energy universality on four-body dynamics (53)).

One experimental tool that has become essential for the analysis of Efimov
physics are Feshbach resonances. As mentioned above they allow the interparticle
scattering length to be tuned by adjusting an external magnetic field. A Feshbach
resonance arises due to the coupling of two atoms in an open channel to a closed
channel. The open channel corresponds to a pair of atoms in energetically allowed
hyperfine states while the closed channel corresponds to a combination of hyper-
fine states that is energetically inaccessible to asymptotic scattering states. The
coupling between the open and closed channel arises due to the hyperfine interac-
tion. The scattering length becomes large when a magnetic field is used to tune a
bound state in the closed channel to the threshold of the open channel. The depen-
dence of the scattering length on the magnetic field near a Feshbach resonance can
be described by

A
a(B) = apg <1_B—Bo> , (46)

where B denotes the magnetic field strength at which a state in the closed channel
is at threshold and A governs the width of the resonance. For magnetic fields away
from the resonance By, the scattering length is given by ape. The scattering length
can therefore be tuned to values significantly larger than the low-energy length
scale of the atom—atom interaction which is given by the so-called van der Waals
length ¢ygw. This quantity is related to the long-range van der Waals tail of the
atom-atom interaction via

_Eﬁdw/m

V() — -2

(47)
This length scale sets therefore the natural scale for the effective range ry ~ R
of the interaction and quantifies at which distances the short-range EFT is not
applicable anymore.

3.1 Three-Body Recombination of Identical Bosons

In a three-body recombination process, three particles collide and two of them
form a two-body bound state. If the scattering length is large and positive, the
resulting two-body bound state can be a deep dimer or a shallow dimer when the
scattering length is positive. A deep dimer is a two-body bound state that cannot
be described within the short-range EFT and has binding energy > 1/(mR?). The
shallow dimer can be described within the short-range EFT and has binding energy
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~ 1/(ma®). If the scattering length is large and negative the resulting two-body
bound state can only be a deep dimer.
The change in density n due to such losses is described by

d

—Nn = —RNjp O N 48

dr lost ’ (43)
where njoq ¢ = L3 is an experimentally measurable loss rate constant, njg is the
number of atoms escaping in every recombination process and « is the event rate
of the recombination process. In the case of a Boltzmann distribution, the event
rate can be related to the hyperangular averaged recombination rate K (E):

[ EE?e /W) K(E)
6 fo EE?e E/(ksT)

a(T) ~ (49)

The recombination rate K(E) can be decomposed into a contribution from recom-
bination into the shallow dimer and a contribution from recombination into deep
dimers:

K(E> = Kshallow (E) + Kdeep (E) . (50)
The three-body recombination rate into the shallow dimer can be decomposed into

channel contributions with different total orbital angular momentum J:

=

Koatow (E) = Y KY(E). (51)
J=0

The recombination rate Kgpajow into the shallow dimer is then related to the total
atom—dimer breakup cross section via

192V/37(Ep +E)
m2E?

This implies that the recombination rate is related to the S-matrix for the scattering
of three atoms into an atom and dimer through the following relation:

Kshatow (E> = Obreakup (E) . (52)

144/372(2J + 1)
KO(E) = =20 Z\SAAAAD | (53)

Here, n denotes a set of quantum numbers that includes the relative angular momenta
between the particles. The hyperangular average is implemented by the sum over n
which starts at n = 3 for convenience. The unitarity of the S-matrix in the angular
momentum J sector implies

(J
’SA])),AD ‘ +Z‘SADAAA ‘ =1. (54)

By unitarity, the recombination rate into the shallow dimer is therefore directly
related to the S-matrix element for elastic atom—dimer scattering:

2
KY(E) = V3E QI ()| e[ : (55)
m3E?
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Fig. 9 The integral equation for three-body recombination into the shallow dimer

since

()
Sz(\jl)),AD (E) = 92’5‘(*11)@)- (56)

The phase shifts for atom—dimer scattering are therefore sufficient for a calculation
of the recombination rate into shallow dimers.

Recombination into the Shallow Dimer: Bedaque et al. were the first to use the
short-range EFT to describe three-body recombination into the shallow dimer
(56). They calculated the three-body recombination rate at zero temperature and
for J = 0 by solving the integral equation for the scattering of three atoms into
an atom and dimer, shown diagrammatically in Fig. [0 It can be shown that for
zero energy, the amplitude for this process is related to the amplitude for elas-
tic scattering given in Eq. at an off-shell point. This can be used to simplify
the numerical calculation of the three-body recombination rate. This approach can
also be used to calculate the contribution to the recombination rate from channels
with J # 0. The contribution to the three-body recombination rate is in this case

_ 144/372(2J + 1) 7 (x) a*

KV(E) = =, (57)
where f7(x) is a real-valued scaling function:
f1(x) = 1 —exp (—4Im 8 (E)), (58)
and x is defined as
x = (maE)'". (59)

As x — 0, the leading powers of x are determined by Wigner’s threshold law (57):
f1(x) ~ x?%+4 where A; = 3 and Ay = J for J > 2.

It is only in the channel with total angular momentum J = 0 that observables
depend on the three-body parameter. In this channel, a different perspective on
the recombination rate can be gained using Efimov’s radial (65} [2) laws which
expresses the S-matrix in the three-body sector as a combination of universal func-
tions of a scaling variable x and a phase 6,9:

(J=0) 521 (x)zezm*o
E) = _sa(x)7em™0
Sapap(E) = s2(x) + =511 (x)e200 (60a)
=0,n S xsnxe2i9*0
b ana (E) = s20(x) + 21(@s1n(x) (60b)

1—s11(x)e?00

The phase 0, is related to the minimum in the recombination rate a.q for positive
scattering length

0.0 = 50 ln(a/a*0)7 (61)
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where a,9 ~ 0.32x @).

Using analytical results on the atom—dimer phase shift at breakup threshold
obtained in Ref. (58)), Efimov’s radial laws can be used to derive an analytical
result for the recombination rate into the shallow dimer

 7687% (41w —3/3) sin®[soIn(a/a.)] ﬁ
~ sinh?(7so) +cos?[soIn(a/a.)] m’

KO (E = 0) (62)

Macek et al. derived this analytic result for the three-body recombination rate at
the three-atom threshold in (59). This equation was also derived independently
by Petrov (60). Simpler approximate expressions that correspond essentially to
omitting the cos? term in the denominator have been previously derived by Nielsen
and Macek (61), Esry et al. (62)) and by Bedaque et al. (56).

For a fixed scattering length, the recombination rate in Eq. (62) has therefore
the maximum value

12872 (47 —3+/3)

sinh?(7sg) (63)

Kinax = 6Ciaxa” /m with  Cpax =

Effects of Deep Dimers: While recombination into the shallow dimer can only
occur for positive scattering length, recombination into deeply bound states (into
deep dimers) can occur for either sign of the scattering length. Properties of these
bound states cannot be calculated in the short-range EFT. However, their cumula-
tive effects on low-energy observables can be accounted for analytically continu-
ing the Efimov parameter to complex values. This introduces only one additional
real-valued parameter denoted usually with 7,.. If the dependence of an amplitude
on K or, equivalently, a,¢ is known analytically, the effect of deep dimers can be
taken into account by the simple substitution

Ina,g — Ina. — in*/S() (64)

For positive scattering length, making this replacement in the amplitudes for
recombination into the shallow dimer leads to

X (0) = 76872 (41 — 3V/3)(sin’[soIn(a/a.0)] + sinh® 1) a*
shallowt %)= sinh?(7so + 1) + cos2[so In(a/aso )] m

o (63)

Using unitarity, one can also obtain an analytic expression for the recombination
rate into deep dimers:

_ 384m*(4m —3V/3) coth(msg) sinh(21..) a*
"~ sinh?(7so +1.) +cos?[soIn(a/a.g)] m

Kieep(0) , (a>0). (66)

These results were first derived by Braaten and Hammer (2). Simpler approximate
expressions that correspond essentially to omitting the cos® in the denominator
were derived in Ref. (63)). The weak dependence on the three-body parameter a.g
in Eq. (66) was first observed in a numerical calculation for the case of infinitesi-
mal 7, (64).
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Fig. 10 The three-body recombination length p3 for '33Cs atoms as a function of a for T = 200
nK. The data points are from Ref. (50). The curves are the universal prediction for three values
of n.: 0 (solid line), 0.1 (dashed line), and 0.2 (dotted line)

For negative scattering length , there is no shallow dimer. The recombination
rate into deep dimers is given by

7 765sinh(21,.) a*
~ sin?(soIn(a/d’)) +sin®n, m’

Kieep(0) (a<0). (67)
This results was first derived by Braaten and Hammer in Ref. (63). The scaling of
Kgeep With a* was predicted by Nielsen and Maceck and by Esry et al. (61} 62).
Esry et al. were the first to point out the existence of a log-periodic sequence of
resonances related to Efimov trimers (62).

Three-Body Recombination at Finite Temperature: The experimental measure-
ments of the three-body recombination rate of '33Cs atoms were performed at
finite temperature. Although the zero temperature equations can be applied imme-
diately to their results, it is desirable to extend these to finite temperature. This
requires the calculation of the energy dependent recombination rate. For recom-
bination into the shallow dimer, this can be obtained by solving the amplitude
for scattering of three atoms into atom and dimer as a function of the external
momenta, calculating the thermal average of the recombination rate, and then
adjusting the three-body parameters k, and 7, to fit experimental data. An alterna-
tive path is to determine the universal functions s;;(x) from the atom—dimer scat-
tering phase shifts. Once these functions are determined, the temperature depen-
dent recombination rate can be determined for any system of identical bosons with
arbitrary three-body parameter. This was done in Ref. (66) for the case of positive
scattering length. Using the STM equation the atom—dimer phase shifts were cal-
culated for a wide range of energies and three-body parameters. The results were
then fit to the formula

< (J=0) B s12(x)? exp|2isoIn(a/a.)]
exp (285 () = s )+ 1 e e (@)

to determine the universal scaling functions sy (x), s12(x) and s22(x) for 0 < x <
10.

Using the unitarity of the S-matrix it can then be shown that these three uni-
versal scaling functions are sufficient for the calculation of the J = 0 contributions
to the recombination rate into shallow dimers, even if there are deep dimers:

144377 < . ?

Slz(x)262i9*o—2n*

1 — 511 (x)e20:0-2n-

KO(E) 522 (x) +

x4

[1— 511 (x)e2i®o=2n+|2 |,
They are also sufficient to calculate the recombination rate into deep dimers:
Koo (E) = 144372 (1 — 1) (1 — 511 (x)|* = |s12(x)*) a* 70
deept=/ x4|1 = 511 (x)e200=2n+|2 m’
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The knowledge of three universal scaling functions facilitates therefore the calcu-
lation of the temperature dependent recombination rate constant in the presence
of deep dimers. In Fig. [I0] the theoretical results for three different values of 7,
are compared to the experimental results by Grimm and co-workers. The vertical
axis is the recombination length p3 defined by

> 1/4
ps = (’"nlosta> : (71)

where 7njqgt.
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The recombination minimum that determines the three-body body input is near
200 ayp. This is comparable in size to the Waals length scale (mCe) 1/4 ~ 200 agp, SO
range corrections may be large near the minimum and the disagreement between
theoretical and experimental results at smaller values of the scattering length is
hardly surprising. The authors of Ref. (66) were not able to determine 1), since
their fit was insensitive to the value of 7,. It yielded, however, the upper bound
7N+« < 0.2. Their result for the recombination minimum g, = 210(10) ag obtained
from a fit for a > 500 ag agrees with direct experimental loss measurements pre-
formed by the Innsbruck group.

Finite Range Effects in Three-Body Recombination: The recombination rate mea-
surements performed by Grimm and co-workers were carried out at scattering
lengths at which the finite range of the atom—atom interaction is expected to play
a significant role. The range of the '3*Cs interaction is of the order of 200 a. It is
therefore of interest to understand the impact of the finite range of the atom—atom
interaction on experimentally measurable quantities.

A first effort to calculate range corrections to the recombination rate into shal-
low dimers was performed in (67). The authors considered corrections up to N2LO
in the EFT expansion to the recombination rate and calculated the correlation
between the atom—dimer scattering length and the recombination rate K(0) at zero
energy. The approach was furthermore used to calculate the recombination rate
coefficient for “He atoms for which the effective range is known. This approach
can be applied to more interesting systems such as '33Cs or ®Li provided the cor-
responding effective range is known.

3.2 Three-Body Recombination of Fermions

A large number of experiments with cold atoms are now carried out with fermionic
atoms. Systems of fermionic atoms are of interest due to their relation to solid state
physics. In particular, systems with two spin states have received considerable
attention. Many-body systems of cold atoms display superfluidity at sufficiently
low temperatures. Feshbach resonances can be used to study how the mechanism
for superfluidity depends on the interactions. In the case of fermions with two
spin states, as the scattering length is varied from 1/a < 0 to 1/a > 0 through the
Feshbach resonance, the mechanism changes continuously from the formation of
Cooper pairs to the Bose-Einstein condensation of shallow dimers.

The Efimov can not occur in systems of fermions with only two spin states.
This can be understood from the fact that a pointlike three-body S-wave interaction
is forbidden due to the Pauli principle. However, in the case of fermions with three
spin states the Efimov effect can occur again since a pointlike three-body S-wave
interaction is not forbidden by the Pauli principle. Experiments using SLi atoms
in the three lowest hyperfine states have been performed by Selim and co-workers
(51) and O’Hara and co-workers (52). The three corresponding scattering lengths
in this system have broad Feshbach resonances at nearby values of the magnetic
field, i.e. at 690, 810 and 833 G. A narrow loss feature near 130 G was discovered
independently by both groups. At these magnetic field strengths all three scattering
lengths are negative and relatively large, universal results are therefore relevant in
this region and the short-range EFT is applicable.
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Fig. 11 The three-body recombination rate constant K3 for the three lowest hyperfine spin states
of ®Li atoms as a function of the magnetic field B. The two vertical dotted lines mark the bound-
aries of the region in which |aj2| > 2 fyqw. The solid squares are data points from Ref. (51). The
solid dots are data points from Ref. (52). The curve is a 2-parameter fit to the shape of the data
from Ref. (51)

The rate equations for the number densities #; of atoms in the three spin states
are

d
dt
In the case of this more complicated system, no analytical results for the recombi-
nation rate are available so one has to do a numerical calculation. The three-body
recombination is related to the amplitudes for elastic scattering
327
oom

ni — —K3n1n2n3. (72)

K3 Y aia;ImA;;(0,0), (73)
i

The amplitudes A;; have to be calculated from a set of nine coupled integral equa-
tions which are an extension of the STM equation:

-5 A 2 2
Ay (p,0) = 1 25:/ +%Z(1_5"/)/ dg-L1n (W) M};@
» me o 2p \p+pet+q’) —1/a+V3/2q

These equations are written out without the use of an explicit three-body force
and instead the momentum cutoff is used to fix the the three-body coefficient. In
(68) the recombination rate of general systems of three identical fermions with
three spin states was analyzed. The case of ®Li was also considered. Theoretical
results on the magnetic field dependence of the three scattering lengths were used
to calculate the three-body recombination rate in regions of the magnetic field
relevant to the Penn-State and and Heidelberg experiments. The effects of deep
dimers were included by using a complex cutoff AeM/% in the STM integral
equation in Eq. (74). The three-body parameters were adjusted to reproduce the
observed recombination maximum near 130 G. In Fig. [[T|we show a comparison
of theoretical and experimental results. The results are in excellent agreement with
the observed recombination rate near the narrow loss feature at 210 G. They also
predict a second narrow loss feature near 500 G. In the experiments a broad loss
feature is observed near 500 G, but the behavior in this region is not correctly
reproduced by theory. The reason for this discrepancy is under investigation.

Following this work, the problem was also considered using a wave function
approach (69) and functional renormalization (70). The authors of both studies
found qualitative agreement with the EFT results.

3.3 Atom-Dimer Relaxation

Another observable closely related to three-body recombination is atom—dimer
relaxation. If there is an Efimov trimer close to the three-atom threshold, inelas-
tic scattering processes of atom—dimer to atom-(deep dimer) will be resonantly
enhanced. The parameters that determine the rate of these losses are a, k, and 1.
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The relaxation rate event constant is defined by the following equation:

d d
3= 3 = —Bnanp, (75)

where n4 denotes the atom density and np denotes the density of dimers. The rate
constant 3 can also be obtained using the optical theorem:

6
B =—""Imanp. (76)
m

where aap denotes the atom—dimer scattering length:

20.3sinh(21,) a
S— S— (77)
sin“(soIn(a/a,)) + sinh”n, m

where a, denotes the value of the two-body scattering length at which there is a
trimer at the atom—dimer threshold: a, ~ 0.0798 & '. This expression was first
derived in (63)) using Efimov’s radial law discussed in the previous section.

Atom—dimer relaxation at finite temperature was first considered by Braaten
and Hammer in Ref. (71). Recently, Helfrich and Hammer (72) extended this
work. Using generalized Bose—FEinstein distribution functions to perform a ther-
mal average, they calculated the rate of change in the number of shallow dimers
Np due to relaxation into deep dimers:

d

3k .
END = */d3rd3pAd3PDnA(PA,V)”D(PD,V)%GXIBI', (78)

here k = |2ps — pp|/3 denotes the relative momentum, p4 and pp are the momenta
of atoms and dimer, respectively. The generalized Bose—Einstein distribution func-
tions ny /p for atoms/dimers in a harmonic trapping potential are

2 (272 -1
pir) = {exp | (24 50 ) ftan)| <1} 09)

i

with i = A, D, @ denotes the average trap frequency, and y; is the chemical poten-
tial. Knowledge of the S-wave phase shift for atom—dimer scattering 56“) allows

: ; inel. __ total elastic
therefore the evaluation of Eq. (78) since i<l = ool — glastic 4pd

dc[ilgstic ‘ 1 2
de kcot&gP — ik | (80)
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Braaten and Hammer have calculated the phase shift kacot 56“) for k up to the
dimer breakup threshold v/3/(2a) (63). They parameterized the results as

kacot 8P (k) = cy(ka) + c(ka) cot[soIn(0.19a/a.) + ¢ (ka)|,  (81)
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Fig. 12 Left the dimer relaxation coefficient 8 as a function of a/ag for T = 170 nK, a. = 395q,
and different values of 7,.. BO indicates a Boltzmann average. Right 3 as a function of a/ay for
T =40 nK, a, = 395ay, and different values of 1n.. The data points in both panels are from (73)

where

c1(ka) = —0.22+0.39k%a*> — 0.17k*a*,
ca(ka) = 0.32+0.82k%a> — 0.14k*a*, (82)
¢ (ka) = 2.64 —0.83k>a* +0.23k*a*.

Using these results Helfrich and Hammer evaluated the integral in Eq. (78). They

related there results to the experimental results by Knoop et al. (73)) using the loss
model employed in (73). They find

V2 < N, (83)

BE_SﬁANDE b

The factor of (1/3/2)? takes into account the assumed Boltzmann distributions
exp(—m;®”r*/3) of the atoms and the dimers that were assumed in the analysis
of Ref. (73).

The free parameters a. and 7, are fitted to the data at 7 = 170 nK. In the left
panel of Fig. the results for a. = 395ap and 1, = 0.025,0.06 (solid curves)
give an excellent fit to the experimental results by Knoop et al. (73)). The dashed
curve in the left panel is the result one obtains by using a Boltzmann instead of
a Bose-Einstein distribution in Eq. (79). The results display some sensitivity to
Ns«. At T =40 nK, the best fit is obtained with 717, = 0.012 (solid line). The value
N« = 0.025, which gave the best fit for 170 nK gives a prediction that is too large
by a factor of two when compared to the experimental results.

3.4 Four-Body Recombination

Stecher et al. considered in their work on the four-body system also the implica-
tions of four-body universality on loss rates in systems of ultracold atoms (74)). In
particular, they pointed out that the existence of the two universal tetramer states
discovered by Platter and Hammer should lead to observables loss features at val-
ues of the scattering length that are related to the scattering length at which the
tetramer binding energy becomes zero. Their results for the values of the scatter-
ing lengths are given in Eq. (43).

In a second paper Stecher et al. addressed the problem of dimer—dimer colli-
sions (74) which is relevant for the case of positive scattering length. They denoted
the two-body scattering length for which the ith four-body bound state crosses the
dimer—dimer threshold by a 4~ They denoted the two-body scattering length at
which the trimer—atom and dimer—dimer channels become degenerate by aj;;. We
previously defined a, to be the scattering length at which the trimer state crosses
atom—dimer threshold. The ratio of these quantities are universal numbers

a0/ g =237, agay/dgy~ 6.6, and ag,/a.~6.73. (84)
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Ferlaino et al. recently studied the four-body problem with short-range interac-
tions experimentally (55). Using ultracold 33Cs atoms in the lowest hyperfine
state at a temperature of 50 nK, they found loss features at scattering lengths
—730ag and —410ay which were interpreted as the four-body loss features pre-
dicted by Stecher et al. (49). With the triatomic Efimov resonance measured at
—870ay, this gives for the ratios of the four- and three-body resonance position

ayo/a.~047 and aj,/a.~0.84. (85)

These experimental results are in fact surprisingly close to the zero-range pre-
diction made in (49) since finite range effects are expected to important at these
values of the scattering length. The range of the Cs—Cs interaction (which is set
by the van-der Waals length scale) is approximately 200ay.

3.5 Challenges and Opportunities I

Recent experimental progress demonstrates that the limits of complexity have not
been reached yet in the field of few-body dynamics in gases of ultracold atoms.
The experimental evidence for three-body universality in systems of ultracold
atoms has increased significantly. First experimental evidence for four-body uni-
versality have been presented and more can expected in the near future.

Measurements of Efimov loss features in heterogenous systems, i.e. systems
with different constituent masses, have also been presented. It is therefore a natural
task to identify the universal signatures and their relation to each other using the
short-range EFT. Some of these signatures might offer also stronger signatures of
Efimov physics since the discrete scaling factor associated with the Efimov bound
state spectrum depends on the mass ratios of the constituents.

Significant progress in mapping out the relevant signatures of universal four-
body physics has been made. However, a full treatment of scattering processes
remains desirable. This would facilitate an analysis of the impact of universality
on further quantities such as the dimer—dimer or atom—trimer scattering lengths.
Access to scattering quantities is also required for the calculation of the four-body
recombination rate at finite temperature.

The ongoing analysis of the effects of range corrections on universal few-body
physics is important since most experiments are carried out at scattering lengths
at which the finite range of the two-body interaction is expected to have a measur-
able effect. The questions that remain to be answered are therefore how universal
relations that relate different recombination observables will be affected by finite
range effects and what implications does a small but finite range have for the four-
body bound state spectrum. Since the linear range correction has been shown to
be small for some observables it will be important to address the quadratic range
correction with a full N2LO analysis.

4 Low-Energy Universality in Nuclear Physics

The model-independent description of nuclear systems has been one of the main
goals in nuclear physics for many years. Since their introduction to nuclear physics,
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EFTs have allowed the calculation of a large number of observables model-independently

and in some cases to very high accuracy. The standard EFT approaches to inter-
nucleon interactions employ nucleon and pion fields as the minimal set of degrees
of freedom (4; 155 [75). The separation of scales that is exploited here is the one
of chiral symmetry which identifies pions as the Goldstone bosons of the sponta-
neously broken chiral symmetry of QCD. The relatively small pion mass is then a
consequence of the small up and down quark mass, i.e. the explicitly broken chiral
symmetry.

Fortunately, this is not the only separation of scales in the two-nucleon system.
It turns out that also the scattering length in the nucleon—nucleon system is large
compared to the range of the interaction which in this case is set by the pion mass
myz. The short-range EFT can therefore be applied in the nuclear sector as long as
we consider momenta that are much smaller than m .

Such a limitation might seem to make this approach inadequate for nuclear
physics. However, it is important to realize that a large number of reactions rele-
vant to nuclear astrophysics occur at energies well below this breakdown scale of
the short-range EFT. Proton—proton fusion (p + p — *H+e™ +v,) for example,
a reaction which plays an important role in the sun’s energy generation, occurs
at the keV scale due to the low temperature in the sun (76). The short-range EFT
seems therefore to be the ideal framework for the calculation of such reaction.

Halo nuclei and weakly bound systems of o particles are an additional play-
ground for the short-range EFT. Halo nuclei are weakly bound systems of a core
(e.g. an o-particle) and additional nucleons that are weakly bound to the core.
There is also evidence that some of the properties of o-clusters can be described
using the short-range EFT.

In this section, we will discuss applications of the short-range EFT to systems
of nucleons. We will first consider the two-nucleon system and discuss a recent
calculation in this sector which exemplifies the strong predictive power of the
short-range EFT. We will then turn to the three-nucleon sector. We will discuss
the renormalization, the inclusion of higher order corrections and the status of
the inclusion of external currents in the few-body sector. Then we summarize
recent calculation of halo nuclei. We end with a section which discusses the work
required to be done in the future.

4.1 Two Nucleons

Nucleons are spin 1/2 particles that come in two flavors, protons and neutrons. A
nucleon field will therefore carry spin and isospin indices to accommodate these
extra degrees of freedom. The Lagrange density for nucleons interacting at very
low energies is constructed by writing down all possible operators allowed by the
underlying symmetries

2
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(86)
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where the dots represent higher-order contributions suppressed by more fields
and/or derivatives. The low-energy constants C;) and C}, are renormalized to the
spin-singlet and triplet scattering length, respectively.

The short-range EFT has been applied very successfully in the two-nucleon
sector to electroweak observables. Here, we will only mention a few very recent
calculations since they exemplify typical applications and the predictive power for
low-energy processes with only a few physical input parameters.

Christlmeier and GrieBhammer (77)) recently addressed a discrepancy between
previously obtained theoretical and experimental results for the electro-disintegration
cross section of deuterium (*H(e,e’p)n). They considered the triple-differential
cross-section for this process which can also be decomposed into

o - d?
dElb dQlbdQ,  dERPdQlbdQ,

(GL + or + o7 cos (Pp + Or7 COS 2@,,)(87)

where Q% = (@} P! = 0) and Q, = (0, P,) are the scattering angles of elec-
tron and proton in the lab frame, respectively. The superscript “lab” denotes the
laboratory frame which is defined to be the rest frame of the deuteron. They found
their results to be in excellent agreement with previous theoretical calculations
by Arenhovel et al. (78)) and experimental results by Tamae (79)) which lead to the
conclusion that none of the available theoretical approaches can explain the exper-
imental data presented for orr in Ref. (80).
A subsequent experimental study of the double differential cross section for (*H(e, ¢’ p)n)
at an angle of 180° lead to excellent agreement between experiment and theory
(81).

Finally, Ando considered pp — ppn® near production threshold in the short-
range EFT (82)) and Phillips et al. considered parity violating nucleon—-nucleon
scattering in (83)).

4.2 Three Nucleons

The short-range EFT was first applied to three-nucleon system in the doublet
channel by Bedaque et al. (84; [85). As in the bosonic case, the calculation of
three-body processes is simplified if we introduce auxiliary fields that carry the
quantum numbers of the allowed two-body S-wave states. Here, we introduce two
auxiliary fields (one for every possible S-wave channel), #; with spin 1 (isospin 0)
and s; with spin O (isospin 1), respectively

+ & + & + V2
Y =N <180+W)N—tl <130+W—At> t,'—sj (lao—i—w—AS) S
+g; (II-TNT‘L'zGiczN-I-h.C) + g5 <S;NTO'2(TJ~’L'2N+h.C)
1
—G3NJf <gt2(t,~6,')Tt,~/Gi/ + gg[gs [(IiGj)TSjTj —l—h.C] —i—g?(SjTj)TSj/Tj/)N—}—(SS)

We want to use this Lagrange density to calculate observables for nucleon
deuteron scattering. The total spin of this system is either 1/2 (doublet) or 3/2
(quartet) and correspondingly two different integral equations can be derived that
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describe the scattering of a neutron and a deuteron in a relative S-wave. The inte-
gral equation for scattering in the quartet channel is given by

7177

13/2(p,k) = : - */ dgq°D (P.9)t3/2(q,k), (89)

where
1 P2+ pk+ k>
K(p,k)=—In| ——F— 90
(p,k) pkn<p2_pk+k2 (90)
The Pauli principle forbids the appearance of an S-wave three-body force in this
channel, since the spins and isospins of two of the three nucleons are aligned

parallely.
The integral for the scattering in the singlet channel is given by

to(p.k) = 8:1% (iK(p,k) ZH) +—/ dg”Dy( )<K(q,p)+fg)ts(q,k)

o [ ainia) ( (@) + 2 )ulad
t2(pk) = 82”( )+ / dg*Dy(q) < (p,q)+ i}i)ts(q,k)
27[/ dg’Ds(q )( (p,q) + >tv(q7k) 1)

In this case a three-body force is allowed and also required for consistent renor-
malization of the problem. The triton binding energy can be calculated from the
homogeneous part of Eq. (9I) since the total spin (isospin) of the triton is 1/2
(172).

The solutions of Egs. and are related to the deuteron—neutron phase
shift

3 1
35k, k)= ——F— 92
3/2( ’ ) m kCOt(Sg,/z-ik, ( a)
3n 1
t o+
fpplkok) =20 kcot,, — ik (O2b)

The appearance of a three-body force in the doublet channel implies the corre-
lation of different three-body observables. The short-range EFT describes these
correlations therefore with the minimal number of degrees of freedom and all
observed correlation lines are therefore a consequence of the large scattering length
in the two-nucleon system. The short-range EFT also offers a different perspective
on the internucleon interaction: different two-nucleon interactions may describe
two-body data equally well but give different predictions for three-body observ-
ables.
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Finite Range Corrections: Since the ratio of effective range over scattering length
in the spin-triplet channel is approximately R/a ~ 1/3, the consistent calculation
of finite range corrections is crucial for an accurate description of low-energy
observables in nuclear physics. In the three-nucleon context, range corrections
were first addressed by Hammer and Mehen (26). They included the the first
subleading correction perturbatively. Bedaque et al. (30) calculated finite range
corrections up N2LO in the EFT expansion using the modified version of the
STM equation discussed in Sect. They calculated phase shifts for neutron—
deuteron scattering up to N2LO using the triton binding energy and the neutron—
deuteron scattering length as three-body input parameters. In (33)) the powercount-
ing results from Ref. (32)) were used to calculate scattering phase shifts for S-wave
scattering in the neutron—deuteron doublet channel up to N2LO. The triton bind-
ing energy was calculated as a function of the neutron—deuteron scattering length
as. In Fig. [I3] we show the result for this correlation line (the Phillips line). The
dot-dashed, dashed and solid line show the LO, NLO and N2LO results, respec-
tively. The cross denotes the experiment result for the triton binding energy and
the neutron—deuteron scattering length. The lines in Fig.|13|are not parallel to each
other since the shift from order to order depends on two expansion parameters, Kr;
and yrs (with k¥ = /mB;). At the experimental value of the nd scattering length
we find for the triton binding energy

B; = (8.08(LO) +0.11(NLO) +0.35(N2LO)) MeV. (93)

These 8.54 MeV are in very good agreement with the experimental value By * =

8.48 MeV and within the naively expected error bounds of a N2LO calculations.
These results furthermore exemplify the unusual convergence pattern of the short-
range EFT for three-body observables. This is due to the unnaturally small NLO
correction while the N2LO corrections has the size as predicted by naive dimen-
sional analysis. We explained in Sect.[2.3]that in the unitary limit the discrete scale
invariance of the LO wave function prohibits the bound state spectrum to obtain
any NLO correction in the unitary limit. It is tempting to speculate that the approx-
imate discrete scale invariance of the leading order amplitude at unitarity is also
partially responsible for the unexpected convergence pattern in the three-nucleon
sector.

Electroweak Observables: A major benefit of using a field-theoretic framework
is the straightforward inclusion of external currents. The short-range EFT facil-
itates therefore the calculation of electroweak observables of few-nucleon reac-
tions. This is particularly useful since a number of reactions relevant to nuclear
astrophysics occur at energies well below the breakdown scale of the short-range
EFT which is set by the pion mass. The number of three-body calculations with
external currents is however, extremely limited. Universal properties of the electric
form factor and charge radius of the triton were considered in (86). The leading
order wave function was used to evaluate the charge form factor from the leading
order charge operator

Fo(q%) = (P q Ky lpelki ¥k)., %94)
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Fig. 13 The Phillips line for leading (dot-dashed line), next-to-leading (dashed line) and next-
to-next-to-leading (solid line) order. The cross denotes the experimental value

Fig. 14 The correlation between the triton charge radius and binding energy. The solid (dashed)
line denotes the leading-order result using a; and a; (B, and a;) as input parameters. The circles
indicate Faddeev calculations using different potentials from Ref. (89) while the square gives
the experimental values. The shaded band provides a naive error estimate obtained from the
expected contribution of NLO corrections (r; /a, ~ 30%)

where q = k; — k¢, k; and Kk are the initial and final momentum of the scattered
electron, and ¥k denotes the full triton wave function with center of mass momen-
tum K. The charge density operator pc is defined as (87)

3 1 1
PC:Z §(1+Tiz)Pg(r—l‘i)+§(1_Tiz)Pg(r_ri) : ©3)

The charge radius (r?) can then be defined as
Fo(q®) =1-q*(r)/6+-. (96)

In Fig.[T4 we display the one-parameter correlation between the charge radius
and the triton binding energy. The two lines shown in this figure correspond to two
different inputs for the two-body triplet scattering length. The shaded band gives
the expected error of a leading order calculation. The existence of this correlation
was (to our knowledge) first pointed out in Ref. (88).

A process relevant to big bang nucleosynthesis is thermal proton capture (p +
d —3He + 7). The calculation of this amplitude is complicated by the presence of
Coulomb effects. Yet, a first step towards the goal of calculating such processes
within the short-range EFT framework was performed in (90; 91). In this work the
authors considered thermal neutron capture (n +d — >H+7) and calculated the
total cross section at zero energy up to N2LO. The calculation of cross sections
for this process is easier since no Coloumb effects need to be considered in this
reaction. The final result is

Giot = [0.485(LO) +0.011(NLO) +0.007(N2LO)] mb
= [0.503£0.003] mb, (97)

where the remaining uncertainty is an estimate of higher order effects. This theo-

retical result is in excellent agreement with the experiment value oﬁi‘p =0.508 +
0.015 mB.

A first calculation of Coulomb effects in proton—deuteron scattering (in the
quartet channel) was done in (92). However, the energies relevant to big bang
nucleosynthesis are significantly lower than considered in this publication and
still a challenge.
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Fig. 15 The correlation between triton and alpha particle binding energies, as predicted by the
short-range EFT. The grey circles and triangles show various calculations using phenomeno-
logical potentials (94). The squares show the results of chiral EFT at NLO for different cutoffs
while the diamond gives the N2LO result (95 [96). The cross shows the experimental point

4.3 Four and more Nucleons

The short-range EFT has also been applied to the four-nucleon sector (93). The
binding energy of the a-particle was calculated using the same approach as dis-
cussed in Sect.[2.4] In the case of the nuclear system, two effective potentials have
to be introduced:

Vs = )Lsgzs“gﬂg‘v (98)
Vi = L Zig)(gl, (99)

where V; (V;) denotes the spin-singlet (triplet) potential. &5 and &7, projects on the
spin-singlet and triplet channels, respectively. The coupling constants Ay and A, are
therefore renormalized to the singlet and triplet scattering lengths. The effective
three-body potential is

Vs =23 Z418)(&, (100)

where 2, is the operator that projects on the completely antisymmetrized three-
nucleon state. The three-body coupling constant A3 can be adjusted using the triton
binding energy.

The correlation line between triton and the ¢ particle binding energy were cal-
culated using the Faddeev and Faddeev—Yakubovski equations. In Fig.[T3|we show
this correlation which is also known as the Tjon line. Since the short-range EFT
uses the minimal number of degrees of freedom for the construction of the interac-
tion, it explains therefore the old observation of the linear correlation between B,
and By In Fig.[T5]we show for example also calculations using phenomenological
potentials (94) and a chiral EFT potential with explicit pions (95; 96). All these
calculations have to lie in the band generated with the short-range EFT since these
potentials reproduce the large scattering length of the internucleon interaction. By
the same logic, the short-range EFT also explains why different versions of the
renormalization group evolved potential Vo, reproduce the Tjon line (99).

The short-range EFT was also used to calculate the properties of heavier sys-
tems than the -particle. Stetcu et al. (100) considered the o-particle and oLi
using the short-range EFT in combination with the no-core shell model. They
reproduced the ground-state results for the a-particle and gave an estimate for the
binding energy of its first excited 0" state. The agreement with the experimental
value of the °Li ground state was at the 70% level.

4.4 Halo Nuclei

Another exciting arena for the short-range EFT is the physics of halo nuclei. Halo
nuclei are weakly bound systems which consist of a tightly bound core and a
“halo” of one or more nucleons. The radius of a halo nucleus is typically much
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Fig. 16 Boundary curve in the \/E, /B;") versus \/ E,, /B(3n> plane with leading order error

bands. Boundary curve shown for a core mass of A = 18 with the experimental data for 20C
from Ref. (113)

larger than the radius of the core since the total binding energy of such a system
is comparable to the binding energy of its core. A well-known example is °He, a
system consisting of an ¢-particle core and two neutrons.

Over the last years ab initio, wave functions methods (that start from a real-
istic internucleon interaction) have made considerable progress in describing the
lighter of the known halo systems (L01)), however calculations for heavier systems
such as ''Li or 2°C are not under control yet. The short-range EFT offers an alter-
native perspective on these systems by treating the core of the halo as a separate
degree of freedom.
A system such as °He becomes therefore an effective three-body problem and it’s
properties can be calculated with the methods discussed in the previous sections.
Such an approach is interesting for several reasons. It allows to test whether these
systems have features related to large scattering length physics such as excited Efi-
mov states but provides also testable predictions for observables such matter and
charge radii. A further advantage of this approach is that scattering observables
become directly accessible and can be calculated without any further approxima-
tions.

Many studies of universal behavior in halo nuclei have been performed (102
1035110451055 1065 [107; [108)). The first application of the short-range EFT to halo
nuclei was carried out in Refs. (1095 110). In these works the authors considered
the one-neutron halo He and calculated in particular phase shifts and cross sec-
tions for elastic a-nucleon scattering. A further example of a nuclear two-body
cluster that has been considered is the 2-o¢ system (1L11)).

Recently, Canham and Hammer (112} performed the first EFT calculation for
two-neutron halos. In their work they calculated the binding energies and radii
of halos such '"Li and ?°C. Canham and Hammer also addressed the question
whether any of the considered systems supports an excited Efimov state. Figure[I6|
shows a parametric plot ((Ep. /Bg"))l/ 2 versus (Ep, /B(;))l/ 2y which describes the
region in the two-body parameter space that supports a three-body state above
Bg"). They found that the °C system might exhibit an excited Efimov state close
to the threshold. The ®He halo nucleus was not considered by Canham and Ham-
mer since it is expected to have P-wave resonance in the neutron-core subsystem.
This feature raises also the question whether a three-body force is required for
consistent renormalization in this system. A successful description of the effective
three-body system would furthermore lead to the exciting problem of describing
8He (the effective five-body problem) within the short-range EFT.

4.5 Challenges and Opportunities II
Currently, calculations for observables have only been performed up to N2LO in

the EFT expansion. A computation up to N3LO would provide further information
on the convergence radius of the short-range EFT. This is also required to fulfill
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the original promise of outstanding accuracy for few-body observables in the few-
nucleon sector.

The inclusion of Coulomb effects has also to be addressed in the near future. It
is known in the two-body case how to calculate the scattering of, for example, two
protons. This problem has not been solved to full satisfaction in the three-body
case although it is crucial for the calculation of scattering processes relevant to
nuclear astrophysics such pd — *He . Progress in this direction is also required
for further applications of the short-range EFT in the four-nucleon sector such as
a calculation of the cross sections for the processes commonly denoted as HEP
(*He+p — *He+e* +V,) and HEN (PHe+n — “He+7).

The calculation of such four-body processes will furthermore require the devel-
opment of numerical tools which facilitate the calculation of the corresponding
scattering amplitudesE] With such tools at hand, the existence of further universal
correlation lines could be explored (e.g. the correlation between nucleon—triton
scattering length and binding energy as presented for example in (115))).

5 Final Words

We have demonstrated that the short-range EFT is an excellent tool to analyze
the properties of systems whose constituents exhibit a large two-body scattering
length.

Atomic physics provides a good testing ground and gives additional justifi-
cation to analyze the more general (scattering length dependent) implications for
such systems. It furthermore gives challenges to find solutions to problems that are
not encountered in the nuclear physics case such as, for example, deeply bound
two-body states that need to be accounted for in a sound manner.

The short-range EFT has also provided an alternative perspective on the topic
of three-body forces. The importance of three-body forces depends strongly on
the resolution at short distances of the chosen approach. In EFT approaches to
nuclear systems that employ pionic degrees of freedom, the first three-body forces
are generally required at higher orders in the EFT expansion. There is therefore
nothing fundamental about a three-body force, but it is rather a further necessary
tool to account for unknown short-distance physics.

It has also been shown that pionic degrees of freedom are irrelevant to the
description of a number of important quantities such as the triton bound state
or the a-particle. A number of observables have been computed beyond leading
order and excellent agreement with experiment and/or calculations using realistic
internucleon was found.

We have tried to supply a number of open problems that should be addressed
in the near future. We hope they are understood not as barriers but as exceptional
chances for the short-range EFT to largely extend its current region of applicabil-

ity.
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