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Abstract
Starting with Witten’s twistor string, chiral string theories have emerged that
describe field theory amplitudes without the towers of massive states of con-
ventional strings. These models are known as ambitwistor strings due to their
target space; the space of complexified null geodesics, also called ambitwistor
space. Correlators in these string theories directly yield compact formulæ for
tree-level amplitudes and loop integrands, in the form of worldsheet integrals
fully localized on solutions to constraints known as the scattering equations.
In this chapter, we discuss two incarnations of the ambitwistor string: a ‘vector
representation’ starting in space–time and structurally resembling the Ramond
Neveu–Schwarz (RNS) superstring, and a four-dimensional twistorial version
closely related to, but distinct from Witten’s original model. The RNS-like
models exist for several theories, with ‘heterotic’ and type II models describ-
ing super-Yang–Mills and 10d supergravities respectively, and they mani-
fest the double copy relations directly at the level of the worldsheet models.
In the second half of the chapter, we explain how the underlying models
lead to diverse applications, ranging from extensions to new sectors of theo-
ries, loop amplitudes and to scattering on curved backgrounds. We conclude
with a brief discussion of connections to conventional strings and celestial
holography.
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1. Introduction

The twistor-string of Witten and Berkovits [1–3] marked a turning point in the study of scat-
tering amplitudes, exposing systematic structures that are not apparent from either standard
space–time Lagrangians or from conventional strings. In conventional string theory, the tar-
get space is space–time, whereas for the twistor-string, it is the cotangent bundle of twistor

2



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

space, where twistor space PT is a three-complex-dimensional manifold. The string path inte-
gral localizes onto holomorphic maps from a Riemann surface Σ, the string worldsheet, into
PT. The theory led to formulæ for the complete tree-level S-matrix for four-dimensional super
Yang–Mills of unprecedented simplicity. These have by now been generalized to a great vari-
ety of theories and to loop integrands and beyond. This review will cover many of these
developments. By way of introduction we give a brief history.

1.1. A brief history

The story starts with Nair’s reformulation [4] of the famous Parke–Taylor formula for the
colour-ordered MHV Yang–Mills amplitude

AMHV(1+, . . . , i−, . . . , j−, . . . , n+) =
〈i j〉4

〈12〉〈23〉 · · · 〈(n − 1)n〉〈n1〉 , (1.1)

where the n particles have massless momenta ki = |i]〈i| in spinor helicity notation, and parti-
cles i, j have negative helicity with the rest positive. Nair, in an elegantN = 4 supersymmetric
formulation including the supermomentum conserving delta-function, expressed this as an
integral of a current-algebra correlator over the moduli space of Riemann spheres, CP1s, holo-
morphically embedded in supertwistor space of degree one (i.e., lines in CP

3). In the twistor
string [1–3], Nk−2MHV amplitudes with k negative helicity gluons arise as integrals over the
moduli space of degree k − 1 curves in PT.

A striking output was the formula of Roiban, Spradlin and Volovich (RSV) [5]. They were
able to perform some of the moduli integrals so as to express the full tree-level S-matrix for
N = 4 super Yang–Mills tree-amplitudes as a sum over residues. It was soon observed [6] that
the equations that determine these residues are underpinned by the scattering equations. These
equations determine (n − 3)! sets of n points {σi} ⊂ CP

1 up to Möbius transformations, i.e.
points in the moduli space M0,n, in terms of the n null momenta ki of the scattering particles:

Ei :=
n∑

j=1

ki · k j

σi − σ j
= 0. (1.2)

These equations play a pivotal role in the subsequent story.
It emerged that the twistor-string is equivalent to N = 4 super Yang–Mills coupled to a

certain conformal supergravity [3]. This does imply that attempts to compute Yang–Mills loop
amplitudes via this method would be corrupted by conformal supergravity modes running in
the loops; these are not in any case easy to compute [7].

There were two lines of attack to find analogous formulæ and theories for Einstein (E) grav-
ity, one by improving our understanding of its MHV amplitude and the other via the double
copy [8, 9]. The latter expresses E gravity amplitudes as a ‘square’ of the different colour-
ordered Yang–Mills amplitudes using an inner product, the ‘KLT’ momentum kernel, intro-
duced by Kawai, Lewellen and Tye [10]. Following [11] it was conjectured that the residues
on which the RSV formulæ are supported in fact diagonalize the KLT kernel, so that the dou-
ble copy can be implemented on the RSV formula to produce amplitudes for E gravity in four
dimensions [12]. On the other hand, Hodges had found an optimal version of the MHV formula
for gravity amplitudes [13] in terms of reduced determinants that bore little relation to these
formulæ. This led Cachazo and Skinner to introduce a compact worldsheet formula for N = 8
supergravity amplitudes [14, 15] that was soon seen to arise from a twistor-string for N = 8
supergravity [16]. In this theory, Hodges’ reduced determinants and their generalizations are
obtained from fermion correlators on the worldsheet.
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Cachazo, He and Yuan (CHY) pursued the relationship between the double copy and the
scattering equations, proving that the solutions to the scattering equations do indeed diagonal-
ize the KLT kernel and giving an elegant formulation for its expression as a reduced determinant
onM0,n [17]. Both the double copy and the scattering equations make sense in arbitrary dimen-
sion and the CHY collaboration were soon able to produce expressions for Yang–Mills and
gravity amplitudes in all dimensions [18] that perfectly express the double copy within formulæ
of the form

A =

∫
ILIR

∏n
i=1δ̄(Ei) dσi

vol PSL(2,C) × C3
. (1.3)

Here the δ̄(Ei) are delta-functions that impose the scattering equation (1.2) and the PSL(2) quo-
tient by Möbius transformations on the σi is intended in the Faddeev–Popov sense, reducing
the formula to an (n − 3)-dimensional integral over M0,n, the moduli space of n marked points
on the Riemann sphere. This then localizes on (n − 3)! residues at the solutions to the scattering
equation (1.2).

The factors IL/R are theory dependent, and can depend on polarization or colour data asso-
ciated to particles in the theory; this factorization then gives diagonalized expression of the
double copy. The zero’th copy is when both are associated to colours. For two different colour
orderings, they are given by Parke–Taylor expressions each with denominators like that of
(1.1) but with 〈i j〉 replaced by σi − σ j. The amplitudes are then those of a theory of biadjoint
scalars [19], i.e., φaã(x) with a being an index associate to a Lie algebra g and ã associated
to another g̃; the theory has cubic interactions f abc f̃

ãb̃c̃
φaãφbb̃φcc̃ determined by the two sets

of structure constants f abc and f̃
ãb̃c̃

. If one Parke–Taylor is replaced by a certain reduced
Pfaffian, see (2.38), then the formula yields Yang–Mills amplitudes, and if both are such Pfaf-
fians, one obtains gravity formulæ. CHY soon extended their framework to include remarkable
new expressions for amplitudes of many more theories of interest such as effective theories,
nonlinear-sigma models (NLSM), Born–Infeld (BI) and so on [20, 21].

These formulæ have undoubted theoretical importance in their own right, but the ques-
tion remained as to what physical principles generate them; they look unlike anything that
arises from a space–time action formulation and the conventional string does not localize on
residues in the field theory limit. Such underlying principles should for example give insights
into extensions to loop amplitudes or non-pertubative phenomena. Both the CHY formulæ
and twistor-strings are now understood under the umbrella of ambitwistor-string theories [22].
These are quantum field theories of holomorphic maps from a Riemann surface to projective
ambitwistor space, PA; this is defined to be the complexification of the phase space of a mass-
less particle. In four dimensions, ambitwistor space can be realized as the cotangent bundle of
twistor space, A = T∗PT and of its dual A = T∗PT∗; twistor space is chiral, and dual twistor
space antichiral, so A is ambidextrous, hence its name3. The original twistor-strings can be of
either chirality but can both be understood in this way, and indeed there is an ambidextrous ver-
sion [26] in the same twistor coordinates that generates formulæ that are distinct from those of
RSV and Cachazo–Skinner and we introduce these in section 3. However, the simplest presen-
tation that connects most directly to the CHY formulæ is a presentation of ambitwistor space
analogous to the original Ramond Neveu–Schwarz (RNS) model for the conventional string

3 It was introduced by Witten [23], Isenberg et al [24], as a space on which one can encode general (super) Yang–Mills
fields generalizing Ward’s twistor construction [25] for self-dual Yang–Mills fields.
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and so we start with this in the next section section 2. In particular in section 2.4 we give a
more complete proof of the CHY formulæ by means of BCFW recursion, which is not easily
found in the current literature.

The second half of the review focuses on one of the key applications of the ambitwistor-
string framework, the extension of the tree-level formulæ to those that provide loop integrands.
In section 4 we see that following the usual string paradigm, loop integrands can be constructed
via higher genus worldsheets. However, this yields formulæ that are at least superficially highly
transcendental for loop integrands that should be rational functions. In section 5 we explain
how, by means of a residue theorem, such formulæ can be reduced to ones based on nodal Rie-
mann spheres. We go on to explain various new representations of loop integrands at one and
two loops and further applications to the double copy. In the final section 6 we briefly discuss
further frontiers, extensions to curved backgrounds, and connections with the conventional
string and with celestial holography, providing pointers to the literature.

2. Ambitwistor geometry and models

Ambitwistor-string theories are chiral strings, i.e., quantum theories of holomorphic maps
from a Riemann surface Σ into a complex manifold. The target space, ambitwistor space A,
is the complexification of the real phase space of null geodesics. In d dimensions, points of
A correspond to complex null geodesics in a complexified space–time (M, g) in which the
metric depends holomorphically on the d complex coordinates on M: this can be obtained by
complexification of a real space–time with analytic metric.

There are many real worldline actions for massless particles with different couplings to
background fields and supersymmetry and there is a simple recipe to go from such a real world-
line action to a complex ambitwistor-string action. Here we start with the simplest first-order
version in d-dimensional Minkowski space–time (M, η):

S[X, P] =
1

2π

∫
Pμ dXμ − ẽ

2
P2. (2.1)

In this action, the einbein ẽ is a Lagrange multiplier enforcing the constraint P2 :=
ημνPμPν = 0, and is also the worldline gauge field for the gauge transformations

δXμ = αημνPν δPμ = 0 δẽ = dα, (2.2)

conjugate to this constraint. Thus P must be null and gauge transformations send fields X to X′

along the null translation generated by P. The solutions to the field equations modulo gauge
are null geodesics in space–time, parametrized by the scaling of P. The quantization of this
action leads to the massless Klein–Gordon equation.

The ambitwistor string replaces the worldline with a Riemann surface Σ and complexifies
the target space so that the (Pμ, Xμ) are holomorphic coordinates on the cotangent bundle T∗M
of complexified Minkowski space (M, η)4. The algorithm to obtain an ambitwistor-string starts
by replacing dX in (2.1) by

∂̄eX = dσ̄ ∂σ̄X − eσσ̄ dσ̄ ∂σX, (2.3)

4 For simplicity, we introduce the ambitwistor string for flat Minkowski space; this definition can be extended to a
general curved space–time (M, g) at the cost of some complications. References, as well as a brief discussion, can be
found in section 6.1.
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where σ is a local holomorphic coordinate on Σ. This leads to the bosonic action

Sbos[X, P] =
1

2π

∫
Σ

Pμ ∂̄eX
μ − ẽ

2
P2. (2.4)

For the kinetic term of (2.4) to be invariant, we must take Pμ to be a complex (1, 0)-form,
i.e., with values in the canonical bundle KΣ :=Ω1,0

Σ on the worldsheet. Thus, when eσσ̄ = 0,
Pμ = Pμ

σ dσ where σ is a local holomorphic worldsheet coordinate. We must take both
e := eσσ̄ dσ̄ ∂σ and ẽ to be (0, 1)-forms on Σ with values in holomorphic vector fields TΣ, i.e.,
Beltrami differentials. The worldsheet field e plays the same role as in the conventional string,
parametrizing complex structures on Σ and gauging worldsheet diffeomorphisms, but now in
a chiral model. On the other hand, the geometric interpretation of ẽ is quite different from that
of the ordinary string. It imposes the constraint P2 = 0 and gauges the transformations5

δXμ = αημνPμ, δPμ = 0, δẽ = ∂̄eα := ∂̄α− [α, e]. (2.5)

Here we must take α to transform as a holomorphic vector on the worldsheet. Thus (X, P)
describe a map into complexified cotangent bundle T∗M of complexified space–time, but
imposing the constraint P2 = 0 and quotienting by the gauge symmetry generated by the
geodesic spray P · ∂X reduces the target space of (2.4) to the space of complex null geodesics
A, ambitwistor space, via

p : T∗M|P2=0 → A := T∗M|P2=0 /P · ∂X . (2.6)

A subtlety in this description is that the scaling of Pσ is tied to the that of one-forms on
Σ; P takes values in the canonical bundle of KΣ. Thus there is only a preferred scaling of
the geodesic once a worldsheet coordinate σ has been chosen. This reduces the target space
further to projective ambitwistor space PA, quotienting by the rescalings of P.

Following the double copy, all our models will take the form

S = Sbos + SL + SR, (2.7)

where SL and SR are two independent choices of worldsheet matter. There are a number of
interesting choices outlined in [27], but in order to establish the basic models, we will focus
on the following two worldsheet systems:

Current algebras. The first will be a current algebra with action denoted by SC. It provides
‘currents’ j a ∈ KΣ ⊗ g, where a is a Lie algebra index associated to the Lie algebra g, that
satisfy the OPE

j a(σ) j b(σ′) ∼ k δab

(σ − σ′)2
+

f ab
c j c

σ − σ′ . (2.8)

Here δab is the Killing form and f ab
c the structure coefficients of g, and k the level of the current

algebra. The simplest SC arises from free fermions ρα ∈ K1/2
Σ ⊗ CN with action

Sρ :=
∫

ρα∂̄ρβ δαβ , � j αβ := ραρβ ∈ K ⊗ so(N), k = 1. (2.9)

5 In local coordinates, these gauge transformations can be explicitly expressed as follows. Take e = eσ∂σ = eσσ̄ dσ̄ ∂σ ,
ẽ = ẽσ∂σ = ẽσσ̄ dσ̄ ∂σ and α = ασ∂σ , and similarly χ = χ

√
σ
√
∂σ = χ

√
σ

σ̄ d̄σ
√
∂σ and ε = ε

√
σ
√
∂σ = ε

√
σ

σ̄ dσ̄
√
∂σ ,

where (
√
∂σ ,

√
∂σ̄) is a basis for T1/2

Σ ⊕ T1/2
Σ . Then δẽ and δχ are given by δẽσ = ∂̄ασ − ασ∂eσ + eσ∂ασ , δχ

√
σ =

∂̄ε
√
σ + eσ∂ε

√
σ − 1

2 ε
√
σ ∂eσ .
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We will not in general specify the action in detail, and merely denote it by SC.
Worldsheet superalgebra. This system consists of fermionic spinor Ψμ ∈ K1/2

Σ ⊗ Cd as a

fermionic counterpart to Xμ, and a fermionic gauge field χ ∈ Ω0,1 ⊗ T1/2
Σ with action

SΨ =

∫
ημνΨ

μ∂̄eΨ
ν − χP ·Ψ. (2.10)

The field χ is a gauge field generating degenerate fermionic supersymmetries5

δXμ = εΨμ, δΨμ = εημνPν , δPμ = 0, δẽ = 2εχ, δχ = ∂̄eε. (2.11)

With these ingredients there are three main consistent models mirroring the closed string
models in conventional string theory:

• The biadjoint scalar model is the bosonic model with two current algebras

SBAS := Sbos + SC + SC̃, (2.12)

The two current algebras, SC + SC̃ provide currents ja, j̃ã respectively and generate bi-
adjoint scalar amplitudes correctly.

• The heterotic model has one fermionic matter system SΨ and one current algebra SC, and
generates Yang–Mills amplitudes correctly;

Shet := Sbos + SΨ + SC. (2.13)

• The type II models with two fermionic worldsheet matter systems SΨ, SΨ̃ generate
supergravity amplitudes

SII := Sbos + SΨ + SΨ̃. (2.14)

These models already manifest the double copy, and a naive6 version of the colour-
kinematics duality via the interchangeability of the current algebras with the SΨ systems. In
the double copy, the biadjoint scalar is the zeroth copy, Yang–Mills the single copy and gravity
the double copy.

One can construct many further models with more elaborate choices of worldsheet matter
and all models seem to give rise to amplitudes of some field theory, at least at tree level. These
amplitude formulæ include BI, Dirac–Born–Infeld (DBI), Einstein–Yang–Mills (EYM), har-
monic maps and more, manifesting a more extended double copy, see table 1 and [20, 21, 27].
Only the last models SII correspond to conventional supergravity, yielding IIA or IIB super-
gravity in ten dimensions according to the choice of GSO projection as in conventional string
theory.

2.1. BRST gauge fixing and quantization

On the Riemann sphere in the absence of vertex operators, we can gauge fix by setting each of
the gauge fields to zero (more generally we can fix the gauge fields to lie within the cohomology
class H0,1(Σ, TΣ(−σ1 − · · · − σn)).

6 Naive because of the absence of Jacobi relations, or a suitable analogue of identical relations between SC and SΨ,
see also the discussion in section 2.5.
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Table 1. Theories arising from the different choices of matter models.

SL
SR

SΨ SΨ1,Ψ2 S(m̃)
ρ,Ψ S(Ñ)

YM,Ψ S(Ñ)
YM

SΨ E

SΨ1,Ψ2 BI Galileon

S(m)
ρ,Ψ EM|U(1)m DBI EMS|U(1)m⊗U(1)m̃

S(N)
YM,Ψ EYM extended DBI EYMS|SU(N)⊗U(1)m̃ EYMS|SU(N)⊗SU(Ñ)

S(N)
YM YM NLSM YMS|SU(N)⊗U(1)m̃ gen. YMS|SU(N)⊗SU(Ñ) BS

After gauge fixing a ghost system is introduced for each gauge field, the fermionic
(b, c) ∈ K2

Σ ⊕ TΣ for e, and (b̃, c̃) ∈ K2
Σ ⊕ TΣ for ẽ, and the bosonic (β, γ) ∈ K3/2

Σ ⊕ T1/2
Σ for

χ with free ghost actions

S(b,c) =

∫
b∂̄c, S(b̃,̃c) =

∫
b̃∂̄c̃, S(β,γ) =

∫
β∂̄γ. (2.15)

Invariance under the gauge symmetries is then imposed by considering the cohomology
associated with the BRST operator Q which takes the form (here for the type II models)7

Q =

∮
c

(
Tm +

1
2

Tbc

)
+

c̃
2

P2 + γ P ·Ψ+ γ̃ P · Ψ̃ +
1
2

b̃
(
γ2 + γ̃2

)
, (2.16)

where T m is the holomorphic part of the stress–energy tensor, and T bc = (∂b)c + 2b(∂c). Clas-
sically Q2 vanishes by construction, but, as in standard string theory, the quantum models can
be inconsistent as double contractions can give Q2 
= 0. We have:

• The pure bosonic model Sbos is critical in 26 dimensions. However, for SBAS = Sbos + SC +
SC̃, the critical dimension will depend on the central charges of SC + SC̃.

• The model Shet is critical in 10d with current algebras for E8 × E8 or SO(32).
• The type II models are critical in 10d.

The central charge calculations are analogous to those in conventional string theory.
Although generic anomalies obstruct amplitude interpretations of the correlators, models with
Q2 
= 0 due to a central charge anomaly or even gauge anomalies, can still give well-defined
tree-level amplitudes even though the underlying ambitwistor-string is not consistent8.

2.2. Vertex operators

In string theory, amplitudes are constructed as correlation functions of vertex operators, with
each vertex operator corresponding to an external particle. Vertex operators come in various

7 For a general gauge system generated by currents ja of perhaps different spins or statistics, we have ghosts ca of
opposite statistics and Q =

∮
ca j a + 1

2 bc f ab
c cacb, where f ab

c are the structure constants.
8 This in particular follows when it is possible to add an additional sector Sext to the ambitwistor string that does not
interact with the other fields, and hence does not interfere with the amplitudes for the original fields, but cancels their
anomalies. For example, when the central charge is too low, Sext could be interpreted as additional (compactified)
dimensions to take the dimension up to the critical dimension. However, the extra degrees of freedom would run in
the loops at higher genus.

8
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pictures that depend on how residual gauge freedom is fixed after initial gauge fixing [28–30].
For worldsheet diffeomorphisms, the generic case for multiparticle amplitudes are integrated
vertex operators that require integration over Σ; these can be understood as the perturbations
of the action corresponding to infinitesimal background plane-wave fields. One also needs a
small number of fixed vertex operators that correspond to the same type of particles, but fix
the residual gauge symmetries. These two types of vertex operators are related by pairing the
fixed vertex operator with moduli insertions from the gauge-fixing procedure9. We here give
the basic recipes required for the amplitude formulæ together with some brief intuitions on the
geometry following [22, 27]. More sophisticated derivations are given in [31, 32].

Integrated vertex operators. Space–time fields can be represented on ambitwistor space
via the Penrose transform. This realizes spin s fields on space–time as cohomology classes
H1(PA,O(s − 1)) on projective ambitwistor space PA: these classes can be represented as ∂̄-
closed (0, 1)-forms on PA of homogeneity degree s − 1 in P. For spin s plane-waves of the
form εμ1 . . . εμse

ik·X , such cohomology classes can be written explicitly as

(ε · P)s δ̄(k · P) eik·x ∈ H1(PA,O(s − 1)). (2.17)

Here, we define the complex delta function δ̄(z) for a complex variable z by

δ̄(z) := ∂̄
1
z
= 2πiδ(R z)δ(I z)dz̄. (2.18)

Although expressed on T∗M, the plane wave representative descends to PA as k · P = 0 on the
support of the delta function, so that under X → X + αP, k · X does not change. For s = 1 this
provides the Maxwell version of the ambitwistor Yang–Mills correspondence of Witten and
Isenberg et al [23, 24] and for s = 2 this provides the linear version of the transform for gravity
introduced by LeBrun [33], see [22, 34] for general linear fields.

More generally, our integrated vertex operators all take the form

V :=
∫

w δ̄(k · P) eik·x , (2.19)

where w depends on P and the worldsheet matter fields from SL + SR. With our identification
of OP(1) = KΣ on the worldsheet, w ∈ K2

Σ, and the integrand defines a (1, 1)-form as δ̄(k · P)
has weight −1. In general, to manifest the double copy, we take

w = vLvR, vL, vR ∈ KΣ, (2.20)

and vL, vR are either of the form t · j where j is a current associated to SC and ta ∈ g, or
vL,R = ε · P + k ·Ψε ·Ψ when associated with SΨ. For the models that give the original CHY
formulæ for biadjoint scalar amplitudes, Yang–Mills and gravity, this yields

wBAS := t · j t̃ · j̃, ta ∈ g, t̃ȧ ∈ g̃,

wYM := (ε · P + k ·Ψ ε ·Ψ) t · j,

wgrav := (ε · P + k ·Ψ ε ·Ψ) (ε̃ · P + k · Ψ̃ ε̃ · Ψ̃). (2.21)

9 From the CFT perspective, the fixed vertex operators are more fundamental, and correlators can be equivalently
expressed using fixed vertex operators only, with additional moduli insertions often referred to as picture changing
operators (especially for fermionic symmetries such as (2.11)).

9
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The corresponding vertex operators are required to be Q-closed as part of the BRST quan-
tization. Classically, this is automatic, but quantum mechanically, double contractions with
the P2 term imply that k2 = 0. In those models containing SΨ, double contraction with the
P ·Ψ term further impose that k · ε = 0. Thus quantum consistency implies that our vertex
operators correspond to on-shell fields in Lorentz gauge. (The on-shell condition is not a con-
sequence of the classical ambitwistor Penrose transform.) This gives the correct linear theory
for bi-adjoint scalar and Yang–Mills theory. In the case of the (Q-invariant) gravity vertex
operators, the polarization vectors give the on-shell polarization data for a linearized metric,
gμν = ε(με̃ν) eik·X , B-field Bμν = ε[με̃ν] eik·X and dilaton φ = ε · ε̃ eik·X . These fields form the
NS sector of 10d supergravity but make sense in all dimensions and have become known as fat
gravity.

The array of integrated vertex operators given by (2.21) are all of the form w = vLvR where
vL and vR are one-forms on the worldsheet, either of the form t · j or ε · P + k ·Ψε ·Ψ. This
decomposition gives an elegant microscopic formulation of the double copy with the inter-
changeability of the two types of operator building up from biadjoint scalars as the zero’th
copy to Yang–Mills and then gravity. We note that the biadjoint scalar model also contains
gravitational and gauge sectors and there is also a gravitational sector in the heterotic model
which we briefly discuss in section 2.5.

Fixed vertex operators. For the remainder of this chapter, we focus on the genus-zero case,
higher-genus correlators are discussed in section 4. In all ambitwistor string models, non-trivial
tree-level correlators require three fixed vertex operators, related to the integrated vertex oper-
ators above via moduli insertions. These operators are inserted at three arbitrarily chosen fixed
points on Σ without integration, and saturate the ghost zero modes in the path-integral. Much
of this arises in the same way as conventional string theory. For the three models above these
come in the form

V = cc̃w eik·X . (2.22)

The lack of integration is associated to fixing residual worldsheet diffeomorphism freedom.
Setting the worldsheet gravity e = 0 fixes the coordinates up to the three-dimensional group
of Möbius transformations PSL(2,C). This is a non-compact integration in the path integral,
handled via the Faddeev–Popov procedure by fixing the insertion points of three vertex oper-
ators, (σ1, σ2, σ3) to e.g. (0, 1,∞). The vertex operators remain Q-invariant despite the lack of
integration due to the ghosts c; in the path integral this amounts to only quotienting by gauge
transformations that vanish at these fixed insertions. Since the fermionic ghosts c ∈ Ω0(TΣ)
have three zero modes on the sphere (see appendix B), tree-level correlators must include three
fixed vertex operators to give non-trivial Berezinian integrals10. The ghost correlation function
provides the needed Faddeev–Popov determinant associated to the gauge fixing.

The most novel part in these models, compared to conventional strings, is the descent asso-
ciated to the gauge field ẽ that imposes the P2 = 0 constraint. In this case, the residual gauge
freedom amounts to adding αP to X where α is a holomorphic section of TΣ. When Σ = CP

1,
this is three-dimensional, and is fixed by fixing the values of X(σi) at three values of σ on
the corresponding point of the geodesic. Descent is given by the connecting homomorphism
δ described in (A.4) that implements the Penrose transform from space–time fields to their
corresponding cohomology classes on ambitwistor space.

10 More precisely nc − nb = 3 must match the zero-mode count, where nb,c are the numbers of respective ghost
insertions. The b-ghost insertions can arise from moduli insertions.

10



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

Pictures. The same procedure for the fermionic symmetries associated constraint P ·Ψ or
P · Ψ̃ leads to vertex operators (both fixed and integrated) in different pictures. We denote this
via a superscript (p), with p = −1 or p = 0,

V (p) = cc̃w(p) eik·X , V (p) =

∫
w(p) δ̄(k · P) eik·x , (2.23)

and take again w(p) = v(p)Lv(p)R in line with the double copy, where

v(−1) = δ(γ) ε ·Ψv(0) = ε · P + k ·Ψ ε ·Ψ. (2.24)

Vertex operators in different pictures are related via so-called picture changing operators
Υ = δ(β){Q, β} ∼= δ(β)P ·Ψ (and similarly Υ̃ ∼= δ(β̃) P · Ψ̃);

V (0)(σ) = lim
z→σ

Υ(z)Υ̃(z) V (−1)(σ). (2.25)

Here we have used the notation ‘∼=’ to indicate equality up to ghost terms that do not contribute
to the correlator. Note that the vertex operators of (2.21) are thus given in the picture p = 0;
with v = v(0). At genus zero each bosonic ghost γ has two zero modes, so tree-level correlators
must contain exactly two vertex operators with picture number p = −19.

2.3. Amplitudes

In general amplitudes are obtained as correlation functions of vertex operators with sufficient
fixed vertex operators to precisely saturate the zero-modes of the ghost fields;

A(1, . . . n) = 〈V1V2V3V4 . . .Vn〉. (2.26)

In the supersymmetric cases, two of the fixed vertex operators of the form V (−1) and one of
type V (0). Our first task is to see that the path-integral that defines this correlation function
localizes onto the solutions to the scattering equations.

In all cases, the computation of the correlator involves a worldsheet correlation function of
the w’s of (2.21) which we denote by 〈W〉Σ, as well as the correlators of the c and c̃ ghosts
denoted by 〈CC̃〉Σ. We will return shortly to the task of evaluating these correlators. The PX-
correlator is universal to all models, and we consider it first. Fortunately, we can sidestep the
problem of evaluating the contractions between the X’s in the eik·X factors and P’s in the vertex
operators by taking the eik·X factors into the action in the path-integral, and treating them as
sources in the PX-action. After gauge fixing this action, the full correlation function is then
given by the path integral

〈V1 . . .Vn〉 =
∫

D[X, P]
∫ n∏

i=4

δ̄(ki · P(σi)) dσi 〈CC̃〉Σ 〈W〉Σ eSeff , (2.27)

and we can write the (effective) action with the vertex operator sources as

Seff =
1

2π

∫
Σ

P · ∂̄X +

n∑
i=1

iki·

X(σi) =
1

2π

∫
Σ

(
P · ∂̄X +

n∑
i=1

ki · X(σ)δ̄(σ − σi) dσ

)
.

11
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Since the action is now linear in X, and there is no further X-dependence in the path-integral, we
can integrate out the X-field. Its zero-modes provide d momentum-conserving delta-functions,
while the non-zero-modes localize the P path-integral onto the solution to the equations of
motion of this action:

∂̄Pμ =

n∑
i=1

ikiμ δ̄(σ − σi). (2.28)

On the sphere, these have a unique solution given by

Pμ(σ) =
∑

i

kiμ

σ − σi
. (2.29)

This solution can be substituted into the delta-functions (and into the w’s) yielding

δ̄(ki · P(σi)) = δ̄(Ei), Ei :=
∑
j
=i

ki · k j

σi j
, σi j = σi − σ j. (2.30)

We now see that the delta-functions impose the scattering equations Ei = 0. Thus the path
integral localizes to

〈V1 . . .Vn〉 = δd

(
n∑

i=1

ki

) ∫ n∏
i=4

δ̄(ki · P(σi)) dσi 〈CC̃〉Σ 〈W〉Σ. (2.31)

The correlator of the three c’s and c̃’s is elementary and gives a numerator factor of
(σ12σ23σ31)2. With this we define the CHY measure

dμCHY
n := (σ12σ23σ31)2

n∏
i=4

δ̄(ki · P(σi)) dσi =

∏n
i=1δ̄(Ei) dσi

vol PSL(2,C) × C3
. (2.32)

In the second equality here we have identified one factor of σ12σ23σ31 as the Faddeev–Popov
determinant for the action of Möbius transformations on the sphere with n points, and the
second factor as that for the action of the residual gauge symmetries (2.5) associated to trans-
lations along the lightray. This is now a measure on the moduli space M0,n, the moduli space
of n points in CP

1 modulo Möbius transformations.
To finish the correlation function computation we need to evaluate 〈W〉Σ. Because of the

construction of the w’s as w = vLvR, where vL and vR are constructed from independent
worldsheet matter systems, this correlation function naturally factorizes as

〈W〉Σ = ILIR, (2.33)

where IL, IR are respectively the correlators of the vL’s and vR’s. This gives the final amplitude
formula as

ACHY
n =

∫
dμCHY

n In, In := IL
n IR

n . (2.34)

All ambitwistor strings give formulæ of this CHY form with IL, IR given as follows.
For the current algebra SC this correlation function is standard, breaking up into single-

trace and multi-trace terms. The single-trace terms are a sum over permutations α ∈ Sn of

12
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tr(tα(1) . . . tα(n)) PT(α) where the PT(α) are Parke–Taylor factors defined by

PT(α) =
n∏

i=1

1
σα(i)α( j)

. (2.35)

The multi-trace terms are also part of the field theory defined by the ambitwistor string, and can
be interpreted as tree amplitudes with one of the scalars of the corresponding gravity theory
running along an internal propagator [3, 35, 36].

The most interesting ingredient is the correlator arising from the vL’s when SL = SΨ leading
to the CHY Pfaffian, defined via a skew symmetric the 2n × 2n matrix

M :=

(
A C

−Ct B

)
, (2.36)

with components

Ai j :=
ki · k j

σi j
, Bi j :=

εi · ε j

σi j
, Ci j :=

⎧⎪⎪⎨⎪⎪⎩
ε j · ki

σi j
, i 
= j,

−
∑

k

εi · kk

σik
, i = j.

(2.37)

The matrix has a two-dimensional kernel on the support of the scattering equations given by
the row vectors (1, . . . , 1|0, . . . , 0) and (σ1, . . . , σn|0, . . . , 0). This allows us to define a reduced
Pfaffian by

Pf′(M) =
1
σ12

Pf(M12), (2.38)

where M12 is M with the first two rows and columns deleted. Importantly, this reduced Pfaffian
is permutation invariant. We now have the main statement that the correlation function of the
vL’s from SΨ is given as

〈v0
1v

0
2v3 . . . vn〉 = Pf′(M). (2.39)

With these ingredients, we have now arrived at the original three main CHY formulæ,

In = ILIR =

⎧⎪⎪⎨⎪⎪⎩
PT(α) PT(β), Biadjoint scalar

PT(α) Pf′(M), Yang − Mills theory

Pf′(M) Pf′(M̃), NS gravity.

(2.40)

2.4. Proof of the CHY formulæ

The CHY formulæ (2.34) and (2.40) are strikingly compact, valid for all multiplicity and all
dimensions, with a tantalizing worldsheet origin. They are quite remote from standard for-
mulations of field theory scattering amplitudes; so how do we know they correctly describe
amplitudes? A straightforward sanity check verifies that they give the correct three- and four-
particle amplitudes, which is already nontrivial at four points. In this section, we give a full
proof for the ambitwistor string correlators ACHY

n for any number of external particles. Along
the way, we will gain a better understanding of the role the scattering equations play for

13
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massless amplitudes, and explore how they relate geometric factorization in the moduli space
M0,n to kinematic factorization of the scattered particles which occurs when partial sums of
the momenta become null.

The proof is based on the Britto–Cachazo–Feng–Witten (BCFW) recursion relation for
scattering amplitudes [37–40], reviewed in chapter 1 [41]. Employed constructively, the
BCFW recursion allows us to build the full tree-level S-matrix recursively from lower point
amplitudes, using the three-particle amplitudes as seeds. Thus, BCFW also guarantees that any
proposed expression satisfying the recursion relation, with the correct three-point seed ampli-
tudes, is a representation of the S-matrix. This means that we can prove the CHY formulæ for
Yang–Mills and gravity by verifying that they obey the assumptions that lead to the BCFW
recursion relations.

BCFW recursion. The on-shell recursion relations exploit elementary complex analysis and
knowledge of singularities of the amplitudes. The poles occur precisely at factorization chan-
nels of the amplitude when a partial sum of the external momenta becomes null so that some
intermediate propagator becomes singular. If the theory is both local and unitary, then these
poles are all simple with residues given by the sum of products of two tree amplitudes

lim
K2

I →0
K2

I An =
∑

r

AnI+1(KI , r)An̄I+1(−KI , r), (2.41)

where KI =
∑

i∈I ki is the partial sum of momenta of the particles i ∈ I, and the sum is over
polarization states r that can run in the propagator;here we have denoted the sets of external par-
ticles in each of the subamplitudes by I and Ī, with multiplicities nI = |I| and nI + nĪ = n. This
is the content of the optical theorem, here restricted to tree-level amplitudes (stripped of their
momentum-conserving delta-functions). It ensures that tree-level amplitudes are meromorphic
functions of the external momenta, with only simple poles.

This allows us to harness the power of complex analysis in which one can reconstruct a
holomorphic function on the Riemann sphere from its residues. To exploit this idea, we choose
a complex one-parameter deformation of the external momenta,

k1 → k̂1(z) = k1 + zq, kn → k̂n(z) = kn − zq, (2.42)

where z is a complex variable and qμ is a reference vector satisfying q2 = q · k1 = q · kn = 0
such that all external particles remain on-shell11. Then Cauchy’s residue theorem allows us
to express the original undeformed amplitude as the sum over all other residues, including a
boundary term B∞ from a potential residue as z →∞,

An =
1

2iπ

∮
z=0

An(z)
z

=
∑
I,rI

1
K2

I

AnI+1(zI , rI)An̄I+1(zI , rI) + B∞. (2.43)

If for some good choices of q, the boundary term vanishes, B∞ = 0, a theory is on-shell
constructible. The remaining residues away from infinity correspond to singular kinematic con-
figurations, where the optical theorem guarantees that the amplitude factorises into a product
of on-shell lower-particle amplitudes, giving the BCFW recursion for scattering amplitudes.
Thus the tree S-matrix can be built from three-point amplitudes. This is the case for theories
such as Yang–Mills, gravity [42] or indeed any 4d renormalizable QFT [43]; see the review
chapter 1 [41], or [44–47].

11 For particles transforming in non-trivial representations of the little group, the polarization vectors have to be shifted
as well, which is best seen in covariant gauge, see e.g. [42] for details.
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Figure 1. Boundary divisor M0,nI+1 ×M0,n̄I+1 ⊂ ∂̂M0,n of the moduli space, corre-
sponding to a pair of marked spheres ΣI and ΣĪ . We parametrize the spheres by x ∈ ΣI,
and σ ∈ ΣĪ , with a nodal point σI ∈ ΣĪ and xI = ∞ ∈ ΣI, and subject to σ = σI + εx.
Depicted is the case for n = 6, with I = {1, 2, 3} and Ī = {4, 5, 6}.

Factorization proof of the CHY representation. The CHY formulæ will satisfy the BCFW
recursion (2.43) if we can prove that it satisfies factorization (2.41) and B∞ = 0. The solution
to the recursion is unique, given appropriate three-point seeds, and so we can deduce that the
CHY formulæ give valid representations of the amplitude. We will use this strategy following
reference [48].

Recalling the general structure of ACHY
n , we can see that the formulæ only have poles when

there are residues where a subset I of the marked points collide,

σi = σI + εxi for i ∈ I and ε→ 0. (2.44)

This parametrizes a boundary ∂M̂0,n of the (Deligne–Mumford compactified [30, 49]) moduli
space, corresponding to a separating degeneration of the worldsheet into a pair of spheres con-
nected by a node σI, see figure 1. Thus, the CHY formula only generates poles when solutions
to the scattering equations approach the boundary of the moduli space. We now show that this
can only happen if the corresponding KI is null.

The scattering equations relate these boundaries ∂M̂0,n to the factorization channels of the
amplitude as follows. The key observation is that the scattering equations descend naturally
onto the two component spheres ΣI and ΣĪ ,

Ei =

⎧⎨⎩
1
ε
E (I)

i i ∈ I

E (̄I)
i i ∈ Ī,

(2.45)

where the equality holds to leading order in the degeneration parameter ε, and where E (I) and
E (̄I) are the scattering equations on ΣI and ΣĪ respectively,

E (I)
i :=

∑
j∈I

ki · k j

xi j
, E (̄I)

i :=
∑
p∈̄I

ki · kp

σip
+

ki · KI

σiI
, (2.46)
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with KI =
∑

i∈I ki the momentum of the internal propagator12. Under the degeneration (2.44)
and on the support of the full scattering equations, both of these sets of scattering equations
are of O(ε). This guarantees that also the momentum K2

I = O(ε) of the propagator connecting
the two sub-amplitudes is on-shell because

K2
I =

1
2

∑
i, j∈I

ki · k j =
∑
i, j∈I
i 
= j

xiki · k j

xi − x j
=
∑
i∈I

xiE (I)
i = O(ε). (2.47)

The scattering equations thus map the boundary of the moduli space to factorization channels,
with singular kinematic configurations. This property lies at the heart of the CHY formalism,
and it is the reason the scattering equations are universal to massless theories, elegantly encod-
ing massless propagators. The role of the integrand on the other hand is to determine which
poles occur in the amplitude, and to provide the correct numerator structure—all information
specific to a given theory.

The essence of factorization in this framework now reduces to a straightforward scaling
argument in the degeneration parameter ε to determine the degrees of and residues at the
poles arising for the factorization channels. Consider first the measure dμCHY

n : the scattering
equations and factors dσi descend naturally to ΣI ,̄I , each providing one power of ε for particles
i ∈ I. The only subtlety stems from Möbius invariance on ΣI, which allows us to fix xm = 1
for some m ∈ I, such that dσm = dε. Moreover, on the support of the remaining scattering
equations, one equation enforces the constraint K2

I = O(ε). Combining all these factors, we
see that the measure factorizes neatly into

dμn = ε2(nI−1) dε
ε
δ̄
(
K2

I + εF
)

dμnI+1 dμn̄I+1. (2.48)

Here, the measure dμnI+1 is the natural CHY measure for the sphere ΣI; with nI marked points
corresponding to the external particles and the additional nodal point associated with the inter-
nal propagator. As we saw above, the delta-function restricts K2

I to vanish to order ε, thereby
restricting to singular kinematic configurations. The factor F denotes a function of the marked
points and kinematics, and will drop out of the final formula for a unitary theory with simple
poles.

At this point, we can see that the integrand In for a theory respecting the factorization
property (2.41) must split into respective integrands on each sphere;

In = ε−2(nI−1)
∑
states

InI+1 In̄I+1. (2.49)

We can phrase this equivalently as a condition on the ‘half-integrands’IL/R, now with a scaling
factor of ε−(nI−1). This property can easily be verified for the Parke–Taylor factors, and was
proven for the reduced Pfaffian Pf′M in [48]. For the bi-adjoint scalar, Yang–Mills theory and
gravity we can then combine the behaviour of the measure (2.48) and the integrands (2.49),

An =
∑
states

∫
dε
ε
δ̄
(
K2

I + εF
) (

dμnI+1InI+1
)(

dμn̄I+1In̄I+1
)
, (2.50)

12 In these expressions, we implicitly gauge-fixed the nodal point (from the perspective of ΣI) to xI = ∞.

16



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

to see that the amplitude exhibits factorization properties in line with the optical theorem and
the BCFW recursion,

An =
1

K2
I

∑
states

AnI+1An̄I+1. (2.51)

The pole structure of the amplitude is thus determined by an interplay between the integrand
and the measure including the scattering equations: while the measure guarantees the correct
form for all possible poles, the integrand selects a subset of the poles suitable for the theory, and
determines the residue on the pole via the factorized integrands InI+1 and In̄I+1. For example,
for a Parke–Taylor factor, we only find a pole when the subset I is connected in the cyclic
ordering of the Parke–Taylor.

The boundary term: for both gravity and Yang–Mills theory, the absence of the boundary
term can be verified in covariant gauge [42] with a careful choice of shift vector q = ε1. Con-
sidering the shift (2.42) in the limit z →∞, the two shifted momenta become to leading order
k1,n = ±zq, so that the amplitude has an interpretation as a hard light-like particle propagating
in a soft background. On the support of the scattering equations, the dominant contribution
to the amplitude then stems from the boundary of moduli space where σn − σ1 = ε, with the
degeneration parameter ε scaling as z−1. The calculation for the overall scaling behaviour in z is
then lengthy but straightforward: we find that the measure scales as dμCHY ∼ z−2, whereas the
integrands13 behave as PT ∼ z and Pf′M ∼ z0. For both gauge theory and gravity, this ensures
that the boundary term vanishes,

B∞ = lim
z→∞

ACHY
n = 0. (2.52)

This concludes our proof of the CHY representation for Yang–Mills theory and gravity.

2.5. Discussion

The ambitwistor string theories of this section are not simply vehicles to arrive at CHY for-
mulæ, but contain much more information. In section 4 we will see that they provide a stepping
stone to loop integrands. Here we mention other features. Theories often contain extra vertex
operators beyond those originally envisaged. These extend the tree formulæ to amplitudes
of more elaborate theories combining gravity, gauge theory and scalars. Furthermore, dif-
ferent forms of worldsheet matter lead to different theories, and different representations of
ambitwistor space give different amplitude representations. We also make some brief remarks
on connections with the colour-kinematic duality.

Although the model SBAS leads directly to the CHY biadjoint scalar amplitude formula
above, it also contains gauge theory and gravity vertex operators that lead to formulæ for
gauge and gravity amplitudes. These were initially hard to interpret with the simplest having
IR =

∏
iεi · P(σi) for the gauge theory, and doubled for the gravity theory. They are now under-

stood to be parts of a 4th order gauge theory that is conformally invariant in 6d as described in
[50] and a 6th order gravity theory whose linearization is given in [35], see [51] for discussion
of these theories in 6d.

Similarly Shet contains vertex operators for a 4th order gravity that is conformally invariant in
4d and is thought to agree [50] in 4d with that found by Berkovits and Witten [3], but extends

13 If the shifted particles are non-adjacent in the planar ordering α, this improves to PT(α) ∼ z0
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to all dimensions [36]. What is remarkable in both these examples is that the ambitwistor-
string models are able to generate amplitudes for complete theories including gauge and gravity
sectors, albeit ones that are pathological with higher-order equations of motion.

Like the conventional string, the type II gravity models SII require a GSO projection to
project out unwanted states; we only gave vertex operators consistent with the GSO projection
that are even under (γ,Ψ) → (−γ,−Ψ) and similarly for (γ̃, Ψ̃). These models also admit a
Ramond sector constructed in the usual way from the Ψ spin-field, with vertex operators for
NS–R and R–R sectors as in the conventional string in addition to the NS–NS vertex operators
introduced above. They require the GSO projection to be applied independently to the ‘tilded’
and ‘untilded’ states to yield the 10d type IIA and IIB supergravity theories [31]. In principle,
correlators give amplitude formulæ for all sectors and any multiplicity, but Ramond-sector
correlators are hard to compute explicitly beyond three and four points. Again we see that the
ambitwistor-string model naturally completes the NS–NS–sector CHY-formulæ to the well-
known type-II supergravity theories.

Soon after their original formulæ, CHY introduced expressions for amplitudes in many
more theories [20, 21], going beyond E, to include BI, DBI, NLSM, Einstein–Maxwell (EM),
EYM, Yang–Mills scalar (YMS) and even galileons. Further forms of worldsheet matter can be
introduced to yield models that generate these formulæ as in table 1. Here for example SΨ1,Ψ2

is an N = 2 version of the worldsheet superalgebra [32] discussed above, and we refer to [27]
for full details of all the models.

Potentially the most remarkable of these models would be that for EYM, critical in
10d. However, it has twice as many gluon vertex operators as appropriate for conventional
Yang–Mills theory and describes amplitudes for a theory with action

∫
tr (B ∧ DA

∗FA) where A
is a standard gauge field, and B a Lie-algebra valued one-form serving as a Lagrange multiplier
for the Yang–Mills equations on A.

The proof of the novel CHY formulæ arising from the massless theories listed in table 1
is not immediate: the factorization arguments extend to these models, but the BCFW shift is
not directly applicable because of higher powers of momentum dependence in the vertices of
many of these theories. However, different on-shell recursion relations generalizing the BCFW
construction [52, 53], can be used instead. The arguments given above then extend to the whole
zoo of theories with CHY-representations with only minor adjustments.

Shortly after the original ambitwistor string [22], a pure spinor analogue was introduced
in [54], and its corresponding amplitude formulæ verified in [55]. Models based on the
Green–Schwarz worldline model appears in [56], and progress towards 11d models from their
worldline counterparts are treated in [57, 58]. Conformally invariant models, describing 6d
biadjoint scalar theory, 4d gauge theory and 2d gravity, were introduced in [59].

Color-kinematics duality. The double copy [8] is built into the structure of the CHY formulæ
and the ambitwistor string vertex operators. This is much as in the conventional string, where
vertex operators are a product of left and right moving parts; however, here in the ambitwistor
string, both are holomorphic on the worldsheet. In a field theory framework, the double copy is
build on colour-kinematics duality [60]: it asserts that Yang–Mills amplitudes can be expressed
as a sum over trivalent graphs Γ of the form

A =
∑
Γ

NΓ cΓ
DΓ

, (2.53)

where cΓ are the colour factors associated with the graph with vertices determined by the Lie
algebra structure constants, DΓ the propagator denominators associated to Γ and NΓ the kine-
matic numerators depending on the polarizations and momenta. If polynomial in the momenta
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they are said to be local. Colour-kinematic duality is the assertion that they can be constructed
so as to satisfy the same identities as the colour factors cΓ that arise as a consequence of Jacobi
identities. This implies a double copy in the following form: that by replacing the cΓ by another
set of NΓ, we obtain E gravity amplitudes or loop integrands [9]. Although such local kinematic
numerators are known to exist at low loop order, their general theory and underlying kinematic
algebra structure remains obscure. The CHY formulæ have provided a powerful tool for con-
struction of such numerators starting with [19] followed by a construction for local numerators
in [61] based on the EYM formulæ, see also [9, 62–64] for more recent works with many more
references to progress in this very active area.

The structure of the colour factors is best understood in the language of free Lie algebras or
Lie polynomials [65–67]. These are embedded in the geometry of the boundary structure of
M0,n and play a key role [65] in the CHY formula and in the polytope constructions of [68].
See [69, 70] for more on numerators in this framework.

3. The twistor-string and the 4d ambitwistor string

For the models discussed in the previous section, the P2 = 0 constraint is gauged in the quan-
tum theory. Nevertheless, the fact that P2 has vanishing OPE with itself14 allows this constraint
to be solved essentially classically so that the integrated vertex operators are Penrose transforms
of the space–time fields on PA and hence localize on the scattering equations. In this section
we discuss models in which the P2 = 0 constraint is solved explicitly rather than gauged, using
spinors classically before quantization. We achieve this by setting

Pαα̇ = λαλ̃α̇, α = 0, 1, α̇ = 0̇, 1̇, (3.1)

where λα, λ̃α̇ are two-component spinors defined up to (λα, λ̃α̇) → (sλα, s−1λ̃α̇) for s 
= 0.
Both the original twistor-string and the 4d ambitwistor-string have the same classical target,

PA, now specifically in four dimensions and so coincides with the original 4d ambitwistor
space. However there is now the freedom to make different choices of twists for the line bundles
associated with the scalings of the spinorsλα and λ̃α̇. This leads to two distinct models (perhaps
three models if one includes a ‘dual-twistor’-string). They even share some of their vertex
operators, and so we present them alongside each other. The 4d ambitwistor-string is most
analogous to the RNS type models introduced above and so we present its amplitude formulæ
first.

The term ambitwistor space arose from the fact that in four dimensions, A is both the
cotangent bundle of chiral projective twistor space PT and its antichiral dual, PT∗. We can
supersymmetrize so that twistor space T = C4|N has coordinates Z = (λα,μα̇,χI), where χI

are fermionic coordinates with I an N -component R-symmetry index. Similarly we denote a
dual twistor by Z̃ = (λ̃α̇, μ̃α, χ̃I) ∈ T

∗ with the duality defined by

Z · Z̃ :=λαμ̃
α + μα̇λ̃α̇ + χIχ̃I . (3.2)

The original supersymmetric ambitwistor space of [23, 24] is a supersymmetric extension of
the space of scaled complex null geodesics which we shall again denote by A and can be
expressed as

A := {(Z, Z̃) ∈ T× T
∗|Z · Z̃ = 0}/{Z · ∂Z − Z̃ · ∂Z}. (3.3)

14 Chiral strings for which this is not the case are discussed in section 6.2.
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Figure 2. Illustration of ambitwistor space. A fixed twistor Z ∈ PT corresponds to a
totally null two-plane on space–time, known as an α-plane; similarly for Z̃ ∈ PT∗ and
β-planes. When Z · Z̃ = 0, these planes intersect in a light-ray L.

To see the connection with null geodesics, we first introduce the supertwistor incidence
relations

μα̇ = (ixαα̇ − θIαθ̃α̇I )λα, χI = θIαλα, (3.4)

which defines an α-plane, a totally null self-dual 2|3N -plane in complex Minkowski space
M4|4N with coordinates (xαα̇, θIα, θ̃α̇I ). A β-plane, again a totally null 2|3N -plane, but now
anti-self-dual, is given by the dual-twistor incidence relations

μ̃α = (−ixαα̇ − θIαθ̃α̇I )λ̃α̇, χ̃I = θ̃α̇I λ̃α̇. (3.5)

An α-plane and a β-plane intersects in a super-null geodesic when Z · Z̃ = 0. Fixing
(Z, Z̃) ∈ A, the coordinates (x, θ, θ̃) in super Minkowski space then vary over a 1|2N -
dimensional super light ray as illustrated in figure 2. Note that ambitwistor space A is a phase
space with symplectic potential

Θ =
i
2

(Z · dZ̃ − Z̃ · dZ) = Pαα̇ dxαα̇ + fermionic coordinates. (3.6)

For more details on twistor- and ambitwistor space, as well as the twistor correspondence, we
refer the reader to the excellent reviews and textbooks [71–75].

Both the twistor-string and the 4d ambitwistor string consist of worldsheet fields (Z, Z̃) on
the worldsheet Riemann surface Σ and taking values in T× T∗ tensored with line bundles on
Σ. For the 4d ambitwistor string, (Z, Z̃) are valued also in the spin bundle K1/2

Σ , whereas for
the twistor-string, Z takes values in a line bundle L → Σ of degree d � 0 and Z̃ in KΣ ⊗ L∗. In
both cases the action is based on the symplectic potential which together with the constraint
Z · Z̃ = 0 imposed by a Lagrange multiplier a ∈ Ω(0,1)

Σ gives

S =
1

2π

∫
Σ

Z̃ · ∂̄eZ − Z · ∂̄Z̃ + aZ · Z̃. (3.7)
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With either of the above choices for the line bundles for (Z, Z̃), Θ takes values in the canonical
bundle KΣ so that the integral is well-defined. The gauge symmetry associated with a imple-
ments the quotient by Z · ∂Z − Z̃ · ∂Z̃ . The key distinction15 between the two theories at this
stage is the assignment of degrees of the line bundles for (Z, Z̃) on the worldsheet.

As before we should include worldsheet gravity by starting with the operator ∂̄e = dσ̄∂σ̄ −
eσσ̄ dσ̄ ∂σ . We gauge fix eσσ̄ = 0 = a leading to the usual ghost (b, c)-system and ghosts (u, v)
for a, leading to the BRST operator

Q =

∫
cT + u Z · Z̃, (3.8)

where T is the worldsheet stress tensor. The potential gauge anomaly vanishes precisely for
maximal supersymmetry with N = 4. To have vanishing central charge, we must include addi-
tional worldsheet matter, which for super Yang–Mills theory we take to be a current algebra
SC with central charge c = 12.

Amplitudes are again obtained as correlation functions of vertex operators. In the following
we just give integrated vertex operators (they simply differ by factors of c and u from their
fixed counterparts), and divide by the volume of GL(2,C) in the final formula, understood in
the usual Faddeev–Popov sense.

In order to construct vertex operators, we need to encode plane waves on twistor space.
This is achieved by the Penrose transform, which realizes massless fields of helicity h as coho-
molgy classes H1(PT,O(2h − 2)) and H1(PT∗,O(−2h − 2)) on bosonic twistor space or its
dual, and these can be represented as ∂̄-closed as (0, 1) forms of homogeneity ±2h − 2 on T

or T∗ respectively. For Maxwell super-momentum eigenstates with bosonic four-momentum
kαα̇ = κακ̃α̇ and fermionic supermomenta qI or q̃I , we have on twistor and dual twistor space
respectively

a =

∫
ds
s
δ̄2(κα − sλα)eis([μ κ̃]+χI q̃I) ∈ H1(PT,O), (3.9)

ã =

∫
ds
s
δ̄2(κ̃α̇ − sλ̃α̇)eis(〈μ̃ κ〉+χ̃I qI) ∈ H1(PT∗,O). (3.10)

As before, for a complex variable z, δ̄(z) = ∂̄(1/z) is a complex double delta-function (0, 1)-
form. These representatives encode the full supermutliplet, and the individual fields can be
identified as the coefficients in the expansion in χI, each an element of the cohomology class
H1(PT,O(2h − 2)) with the appropriate helicity h. For each field, the (dual) twistor repre-
sentatives are related to space–time fields by explicit integral formulæ [73]. Using these it is
straightforward to check that at N = 0, a and ã are representatives for classes in H1

∂̄
(PT) and

H1
∂̄
(PT∗) respectively that generate Maxwell field momentum eigenstates κ̃α̇κ̃β̇ eik·x and con-

jugate. These degree-zero cohomology classes pull back to ambitwistor space A and combine
to give the spin-1 plane wave representative (2.17). For gravity the relationship is more subtle.

Yang–Mills vertex operators. For both the twistor-string and the 4d ambitwistor-string,
the Yang–Mills vertex operators are constructed from the representatives above, multiplied
by current-algebra generators t · j as for the ‘vector’ models discussed in the last section.
In the twistor string, vertex operators are built from the supertwistor representatives a(Z) ∈
H1(PT,O) with full N = 4 supersymmetry; for these, the expansion in χI gives the full

15 Strictly speaking, for the realization A = T∗PT we should base the action on the symplectic potential Θ = iZ̃ · dZ;
this differs from that above by the exact form d(Z · Z̃) adding an exact term to the stress–energy tensor.
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spin-1 supermultiplet represented on twistor space. In the ambitwistor string, vertex operators
can also be constructed from the dual ã(Z̃) ∈ H1(PT∗,O), again with maximal supersymmetry.
Explicitly,

V′
a =

∫
Σ

aa j · ta, Ṽa =

∫
Σ

ãa j · ta, (3.11)

where a is a particle label, a = 1, . . . , n. These vertex operators are straightforwardly consistent
and Q-invariant. However, the supermomenta qI and q̃I are not independent, but are Fourier
transforms of each other; a uniform representation is obtained by a fermionic Fourier transform
on V′

a, giving

Va =

∫
dsa

sa
δ̄2|N (κa − saλ | qi − siχ) j · ta, eisa[μ κ̃a], (3.12)

where for a fermionic variable χ, δ(χ) = χ.

3.1. Yang–Mills amplitudes in the 4d ambitwistor string

Nk−2MHV Yang–Mills amplitudes can be obtained as correlation functions of the above vertex
operators, taking k from dual twistor space and n − k from twistor space:

A =
〈
Ṽ1 . . . ṼkVk+1 . . .Vn

〉
. (3.13)

The current algebra correlator gives the usual Parke–Taylor factor (together with some multi-
trace terms to be discussed later). As before, we take the exponentials from the vertex operators
into the action to provide source terms∫

Σ

k∑
i=1

isi, (〈μ̃κi〉+ χ̃ · qi)δ̄(σ − σi) +
n∑

p=k+1

isp [μ κ̃p] δ̄(σ − σp). (3.14)

With these sources, the equations of motion for Z and W become

∂̄Z =
k∑

i=1

si(κi, 0, qi) δ̄(σ − σi), ∂̄W =
n∑

p=k+1

sp

(
κ̃p, 0, 0

)
δ̄(σ − σp).

(3.15)

Since (Z, Z̃) are worldsheet spinors, the solutions exist and are unique, given by

Z(σ) =
k∑

i=1

si(κi, 0, qi)
σ − σi

, Z̃(σ) =
n∑

p=k+1

sp

(
κ̃p, 0, 0

)
σ − σp

. (3.16)

Thus the correlator localizes on the integrals

A =

∫
PT(α) dμ(4d)

n , (3.17)

where dμ(4d)
n is the 4d polarized scattering equations (explained below) measure:
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dμ(4d)
n :=

∏n
a=1 dσa dsa/sa

vol GL(2,C)

k∏
i=1

δ̄2
(
κ̃i − si λ̃(σi)

)
×

n∏
p=k+1

δ̄2|N (κp − sp λ(σp) | qp − spχ(σp)
)
.

This can be expressed in homogeneous coordinates on the Riemann sphere σα̃ = 1
s (1, σ) using

the notation (i j) = σiα̃σ
α̃
j (with indices raised and lowered by the usual skew symmetric εα̃β̃ ,

but note that these here are not Lorentz spinor indices) as follows;

Z(σ) =
k∑

i=1

(κi, 0, qi)
(σ σi)

, Z̃(σ) =
n∑

p=k+1

(κ̃p, 0, 0)
(σ σp)

, (3.18)

where we have rescaled W and Z by a factor of 1/s. Then

dμ(4d)
n =

∏n
a=1 d2σa

vol GL(2,C)

k∏
i=1

δ̄2
(
κ̃i − λ̃(σi)

)
×

n∏
p=k+1

δ̄2|N (κp − λ(σp) | qp − χ(σp)
)
. (3.19)

This defines a residue formula on G(2, n), the 2n − 4-dimensional Grassmannian of two-planes
in n-dimensions parametrized by the σaα̃ modulo GL(2,C). This measure has several notable
features:

• The 2n variables σaα̃ are supported on the polarized scattering equations

λ̃α̇(σi) = κ̃iα̇, λα(σp) = κpα, (3.20)

for i = 1 . . . k and p = k + 1 . . . n. These imply the ordinary scattering equations for σa;
defining P(σ)αα̇ = λ(σ)αλ̃(σ)α̇ it is straightforward to show that P has simple poles at
σa with residue ka and that ka · P(σa) = 0 follows on the support of (3.20). However, the
polarized scattering equations also incorporate the choice of polarization data via the sa,
and are refined to give just those A(n − 3, k − 2) solutions appropriate to NkMHV degree,
where A(p, q) are the Eulerian numbers16 [12].

• For maximal supersymmetry, the measure dμ(4d)
n only depends on the MHV sector, not

the specific helicity assignment of the n gluons. However, this ‘dihedral symmetry’ of the
NkMHV amplitude is not manifest, and the above formulæ require a choice of helicity
assignment, here with the first k particles of negative helicity.

• The measure contains 2n bosonic delta functions but only 2n − 4 integrals; with the
difference due to the vol (GL(2,C)) quotient. The remaining delta-functions encode
momentum-conserving delta functions, as can be seen from

n∑
p=k+1

κpκ̃p =

n∑
p=k+1

κ̃p

k∑
j=1

κ j

(p j)
= −

k∑
j=1

κ jκ̃ j, (3.21)

where we used the first (second) set of delta functions in (3.19) to get the first (second)
equality; similarly we obtain supermomentum conservation

∑n
a=1κ̃aqa = 0.

• The amplitude formula (3.17) can be verified at N = 0 by integrating out the moduli in
equation (3.22) in [6], see [75] for details.

• While maximal supersymmetry with N = 4 naively seems to double the spectrum of the
model, both vertex operators (3.11) are representatives of the same space–time field, as

16 Satisfying the recursion A(p, q) = (p− q)A(p− 1, q − 1) + (q + 1)A(p− 1, q).

23



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

established by the Penrose transform that maps, for example, the same ASD Maxwell field
to an element of H1(PT,O(−4)) or to one in H1(PT∗,O). Thus vertex operators V′ on PT

and Ṽ on PT∗ represent the same space–time multiplet for N = 4.
• The model also contains vertex operators for non-minimal conformal gravity states,

believed to coincide with the analogous states in the original twistor string [2]. The
full model is understood to give amplitudes for this combined N = 4 super-conformal
combination of conformal gravity and Yang–Mills theory, with the multi-trace terms in
the current correlator corresponding to interactions mediated by scalars of conformal
supergravity.

3.2. The twistor-string formulæ

Soon after the original twistor-string, RSV [5] simplified its correlation function to give the
(historically) first fully localized worldsheet formula for a field theory amplitude. We present
it out of historical order because it has additional moduli integrals compared to the formulæ
discussed so far. This formula also requires N = 4 supersymmetry for anomaly cancellation
and for the expression to be well-defined. It does then have the benefit of manifesting the full
dihedral symmetry of the NkMHV amplitude irrespective of the specific helicities of individual
gluons. In contrast, the ambitwistor string formulæ do not manifest this symmetry.

The key distinction from the 4d ambitwistor-string is that the twistors Z are understood to be
sections of line bundles L →Σ of degree d > 0, and the dual twistors Z̃ sections of L∗ ⊗ KΣ.
Moreover, only twistorial vertex operators are used so that it is more natural to refer to the
model as a twistor-string. At genus zero and degree d, the maps Z : Σ→ PT have moduli
Mr ∈ T, r = 0, . . . , d given by

Z(σ) =
d∑

r=0

Mr σ
r, Mr = (mrα, mα̇

r , mI
r), (3.22)

where σ is an affine coordinate on Σ = CP
1 and the mI

r are fermionic with the remaining
components of the Mr bosonic.

At N = 4, the vertex operators (3.11) or (3.12) contain the full multiplet including gluons
of both helicities. The full tree-level Yang–Mills super-amplitude is obtained as the correlator
of n such vertex operators of one type or other. There are no contractions between the vertex
operators beyond the current algebra which give the usual Parke–Taylor factor, with the usual
caveats about multi-trace terms. Thus the path-integral immediately localizes onto the zero-
modes (3.22), yielding the amplitude formula

An =

∫
d4d+4|4d+4M

vol GL(2)

n∏
a=1

dσa dsa

sa
δ̄2(κa − saλ(σa)) eisa([μκ̃a]+χI q̃aI ) PT(α).

(3.23)

In order to simplify this further, we can formally integrate out the moduli mα̇
r , mI

r. Since they
only appear in the exponentials, this leads to additional delta-functions,

An =

∫
d2d+2mrα

vol GL(2)

n∏
a=1

dσa dsa

sa
δ̄2(κa − saλ(σa)) ×

d∏
r=0

δ2|4

(
n∑

a=1

σr
asaκ̃aα

)
PT(α). (3.24)

In this formula, (3.22) gives λ(σa) =
∑

rmrασ
r
a. Once the GL(2) quotient is taken into account,

there are four more delta-functions than integrals encoding supermomentum conservation.
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This can be made explicit by summing the arguments of the (d + 1) δ̄2|4-functions, multi-
plied by mrα, and using the support of the first n delta-functions. Thus the moduli integrals
over (sa, σa, mrα) modulo GL(2,C) can be performed against the remaining delta functions
to give a sum of residues multiplied by the momentum conservation delta-functions. This is
analogous to the 4d-ambitwistor string, but with an additional 2d + 2 moduli integrals and
delta-functions.

• The fermionic delta functions relate the MHV degree k of the amplitude to the degree of
the line bundle by k = d − 1

• In [5, 6], the formula was shown to be parity invariant, which is far from manifest, with a
number of further checks. A BCFW recursion proof was given in [76].

• In [3, 77] it was shown that one can further introduce vertex operators forN = 4 supercon-
formal gravity. There are two multiplets, one containing the ASD Weyl tensor, determined
by a divergence-free vector field f (Z) · ∂Z and realized in the twistor-string by the vertex
operator f · Z̃, and one containing the SD Weyl tensor, given by a one-form g(Z) · ∂Z.
Correlators involving these states are more complicate because the Z̃ factors must be
contracted completely before one can reduce to a moduli integral17.

• The equivalence with the 4d ambitwistor formula was proved in [75]; it essentially uses
the moduli integrals in the twistor string formula (3.23) to perform a twistor-transform
of d + 1 of the cohomology classes in the vertex operators. This for example maps an
element of H1(PT,O(−4)) describing an ASD Maxwell field to that in H1(PT∗,O) for
the same field.

• Both in the twistor string and in the ambitwistor string, a number of open questions remain.
In the twistor string, we do not include vertex operators Ṽa constructed from dual twistor
cohomology classes, but there does not seem to be a good reason not to. Related to this,
gauging the current Z · Z̃ in the 4d ambitwistor string should also result in a sum over the
degree of line bundle associated to the gauge field a, but this does not seem to play a role
in the amplitude formulæ; see also [75].

3.3. Einstein supergravity models and amplitudes

The twistor string forN = 8 Einstein supergravity was introduced by Skinner [16] as the model
underpinning the earlier Cachazo–Skinner formula [14] (proved in [15]). A 4d ambitwistor ver-
sion was then introduced in [26]. Again, both have essentially the same underlying worldsheet
model but with different worldsheet assignments of twists for the twistor and dual twistor tar-
get fields and ghosts. We focus here on the 4d ambitwistor version for brevity; see [14, 16] for
the twistor-string version. These have the advantage of full permutation invariance, at the price
of additional moduli integrals.

In order to break conformal invariance we introduce skew bilinear forms on twistor space
and its dual, the infinity twistor and its dual. When non-degenerate, these encode a cosmo-
logical constant and a gauging of R-symmetry. Although the model was originally introduced
incorporating a cosmological constant, here we restrict to the Minkowski space model and its
amplitudes. In this case the infinity twistor have rank 2 and we will denote contractions with a
pair of twistors by 〈Z1, Z2〉 := 〈λ1λ2〉 and with a pair of dual twistors by [Z̃1, Z̃2] := [λ̃1 λ̃2].

We introduce a worldsheet superalgebra by extending the target to include (ρ, ρ̃) ∈ T× T∗

that are parity reversed, taking values in CN|4 ⊗ K1/2
Σ (rather than C4|N ); they are taken to

17 Only f · Z̃ and its conjugate need to be used in the 4d ambitwistor model.
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be worldsheet spinors in both the twistor-string and the 4d ambitwistor string versions. An
additional set of constraints are gauged, and including the original Z · Z̃, the total set of currents
that are gauged in this model becomes

Ka =
(
Z · Z̃, ρ · ρ̃, Z̃ · ρ, [Z̃, ρ̃], Z · ρ̃, 〈Z, ρ〉, 〈ρ, ρ〉, [ρ̃, ρ̃]

)
. (3.25)

In the BRST quantization, this introduces corresponding ghosts (βa, γa), together with the
fermionic (b, c) ghosts as before [78], and leads to a BRST Q-operator

Q =

∫
cT + γaKa −

i
2
βaγ

bγc Ca
bc, (3.26)

where Ca
bc are the structure constants of the current algebra Ka. The model again has a potential

gauge anomaly, whose coefficient vanishes for N = 8 maximal supersymmetry.
In these E gravity models, Q-invariance implies that vertex operators are built from

∂̄-closed (0, 1)-forms h of weight two on twistor space, as well as h̃ on dual twistor space
for the ambitwistor string. For momentum eigenstates, h and h̃ are

ha =

∫
dsa

s3
a
δ̄2|N (κa − saλ|qa − saχ) eisa[μ κ̃a],

h̃a =

∫
dsa

s3
a
δ̄2(κ̃a − saλ̃) eisa(〈μ̃ κa〉+χ̃rqr

a).

These yield two types of vertex operators, appearing in integrated or fixed form, here integra-
tion being with respect to ghost zero modes. The ghosts ν = (γ3, γ4), ν̃ = (γ5, γ6) each have
one zero mode that are fixed by the insertion of one each of

Vh =

∫
Σ

δ2(ν)h, Ṽ h̃ =

∫
Σ

δ2(ν̃)h̃. (3.27)

The remaining particles are represented by integrated vertex operators

Vh =

∫ [
Z̃,

∂h
∂Z

]
+

[
ρ̃,

∂

∂Z

]
ρ · ∂h

∂Z
, Ṽ h̃ =

∫ 〈
Z,

∂h̃

∂Z̃

〉
+

〈
ρ,

∂

∂Z̃

〉
ρ̃ · ∂h̃

∂Z̃
.

(3.28)

Amplitudes are now given by the worldsheet correlation function

M =

〈
Ṽ h̃1

k∏
i=2

Ṽ h̃i

n−1∏
p=k+1

VhpVhn

〉
. (3.29)

The correlator of the (ρ, ρ̃) fermion system is given by the determinant of the following n × n
matrix:

H =

(
H 0
0 H̃

)
, (3.30)
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where, for i, j ∈ {1, . . . , k} and p, q ∈ {k + 1, . . . , n}

Hi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈i j〉
(i j)

, i 
= j,

−
k∑

l=1,l 
=i

Hil, i = j,
H̃pq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[pq]
(pq)

, p 
= q,

−
n∑

r=k+1,r 
=p

H̃pr, p = q.

(3.31)

The off-diagonalelementHi j comes from the contraction of the ρ-term in the ith vertex operator
with the ρ̃-term in the jth, and the diagonal elements of H stem from the first term in the
integrated vertex operator (3.28). By an analogous calculation as for Yang–Mills theory, we
then obtain the gravity amplitudes

Mn =

∫
dμ(4d)

n det′(H), (3.32)

where det′ H is the determinant omitting a row and column from each of H̃ and H correspond-
ing to the fixed vertex operators; the answer is independent of this choice because each has
kernel (1, . . . , 1).

• Through lack of space we do not include the Cachazo–Skinner twistor-string gravity for-
mula, but refer the reader to [14–16]. The equivalence between these formulæ above
follows the corresponding story for Yang–Mills, see [75].

• It is possible to consider higher rank versions of the infinity twistor with bosonic rank
four corresponding to the inclusion of a cosmological constant [79] and higher rank in
the fermionic directions corresponding to gauged supergravity theories with gauged R-
symmetry [80]. The Skinner model [16] was originally formulated in this way. Corre-
sponding amplitude formulæ with non-zero cosmological constant have been explored in
[81–83] but remain conjectural.

• Comparison between the Yang–Mills versus gravity formula and the corresponding CHY
formula restricted to 4d makes clear that the CHY Pfaffian must be equal to det′ H. This
is shown via analyticity and conformal field theorie (CFT) arguments in [84] and used to
extend the formulæ to include EYM amplitudes improving [85].

• The double copy is not manifest in these formulæ. To see it, one must integrate out the
sa coordinates in the polarized scattering equations measure. This yields a second det′ H
multiplied by the CHY measure, providing a geometric origin to this second ‘copy’ in the
gravity formulæ [86]. See also [87, 88] which include some interesting extensions.

• The polarized scattering equations have been extended to higher dimensions, including 6d
in [86, 89], 10 & 11d in [90], with underlying models in 5 & 6d in [91]. These 6d formulæ
are distinct from the earlier ones of [92–94] which give twistor-string like expressions for
D5 and M5-branes. The corresponding Yang–Mills and gravity formulæ however become
awkward for odd numbers of particles, an issue that does not arise in the brane theories,
since brane amplitudes are only nontrivial for even numbers of particles.

• Twistorial models in 10d that solve the P2 = 0 constraint have been introduced using
‘impure’ 10d twistors in [95, 96] and pairs of pure twistors in [97].

• There exists a two-twistor representation of the space of massive particles [98] and its
complexification can be used as a target space for a massive twistor string [99]. This yields
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Figure 3. Schematic loop expansion of the amplitude. In worldsheet models such as the
ambitwistor string, g-loop amplitudes correspond to correlators on genus-g Riemann
surfaces.

massive amplitudes in four dimensions including half-integral spins and manifest super-
symmetry in formulæ localized again on the polarized scattering equations. These formulæ
also arise by dimensional reduction from 6d and were first found in [86] (again preceded
by related massive amplitude formulæ in [94]). Such massive formulæ have also been used
to construct one-loop integrands [100].

• Both the twistor-string and the ambitwistor-string formulæ naturally embed [101, 102]
into the Grassmannians of [103], where they can be related to twistor-string formulæ
for leading singularities and BCFW terms. In 6d a Lagrangian Grassmannian approach
LG(n, 2n) was proposed in [94] that facilitates the comparison [104] between the different
6d amplitude formulæ [89, 94].

4. Loop amplitudes at higher genus

The ambitwistor string not only provides a beautiful geometric explanation of the CHY for-
mulæ but it allows us to extend these tree-level amplitude formulæ in a variety of directions.
One important such avenue are extensions of the worldsheet CHY formulæ to loop ampli-
tudes. On a practical level, it is clear that the only way to approach this problem is via a
model—guessing loop-level formulæ is simply not generally feasible.

In the first instance, as a closed-string worldsheet model, we will see that g-loop amplitudes
in the ambitwistor string should be given by correlators over genus-g Riemann surfaces; this
is already a significant simplification from the super Riemann surfaces usually encountered
in the superstring [30]. The full amplitude then has a perturbative expansion as a sum over
topologies, schematically expressed in figure 3.

In this section, we aim to give a sketch of the correspondence between higher-genus corre-
lators and loop amplitudes, many additional details can be found in the original papers carrying
out the calculations at one [31, 105] and two loops [106, 107]. The focus, both here and in the
original papers, lies on the RNS model SII describing supergravity, because the others models
are ‘contaminated’ by their unphysical gravitational states propagating in the loop18. Rather
than providing a fully self-contained derivation of the loop amplitudes, we emphasize here the
key features distinguishing the ambitwistor string from the superstring, and reflecting its field
theory nature. We will encounter this repeatedly via calculations that bear, superficially, a close
similarity to the superstring [110–116], but with considerable simplifications and important
differences, all originating in the chiral nature of the ambitwistor string and its supersymmetry
structure—the worldsheet super gauge algebra discussed in section 2, as opposed to the world-
sheet super-diffeomeorphisms familiar from the superstring. In the superstring, the fermionic
constraint squares to give the stress–energy tensor generating worldsheet diffeomorphisms, so

18 Progress for the twistorial models has also been rather limited, see [7, 100, 108, 109].

28



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

Figure 4. The homology basis at genus two.

the correlator is an integral over the moduli space of a supermanifold. In the ambitwistor string
on the other hand, the worldsheet fermionic symmetry squares to give P2 which, in generating
translations along the geodesics, does not complicate the moduli space of the Riemann surface.

4.1. From higher-genus correlators to loop amplitudes

The ambitwistor string provides a clear prescription for calculating loop amplitudes as a cor-
relator over a higher-genus worldsheet. Our first goal will be to understand this prescription,
before we proceed to evaluate the correlator.

The correlator: the genus-g ambitwistor string correlator with n vertex operators involves an
integral over the moduli space Mg,n, stemming from the integration over inequivalent metrics
under conformal transformations [117, 118]. A convenient description of this moduli space
(up to genus three) is given by the period matrix, which is defined as follows. For a genus-g
Riemann surface, we choose a homology basis of cycles AI and BI, with I = 1, . . . , g such that
the intersection form is canonical, as illustrated in figure 4 for genus two. Transformations act-
ing on the homology basis (AI, BI) while leaving the intersection form invariant are known as
modular transformations, and form the modular group Sp(2g,Z). If we normalize the holomor-
phic abelian differentials ωI against the A-cycles, then the period matrix ΩIJ = Ω(IJ) is given
by the B-periods;∮

AI

ωJ = δIJ ,
∮

BI

ωJ = ΩIJ . (4.1)

Up to genus three, Mg,n can then be parametrized by such period matrices Ω up to the modular
group as the dimension count for these two spaces agrees up to genus three, with dim Mg,n =
3g − 3 and dim Ω = 1

2 g(g + 1). This is particularly simple in the case of the torus, where the
moduli space is parametrized by the complex parameter τ ∈ F , where

F =

{
τ ∈ C| |τ | � 1, −1

2
� Re(τ ) � 1

2

}
, (4.2)

is the fundamental domain obtained by quotienting the upper half-plane by the Dehn twists
generating the modular group PSL(2,Z), see figure 5.

At loop level, the GSO projection—required to restrict to the correct supergravity degrees
of freedom—results in a sum over worldsheet spin structures κ ∈ (Z/2Z)2g. Since the GSO
projection is implemented independently for each of the two chiral spinors, this leads to a dou-
ble sum over spin structures whose relative phases ηκ, ηκ̃ are entirely determined by modular
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Figure 5. A graphic depiction of the residue theorem on the fundamental domain for
g = 1. Illustrated on the left is the localisation of the integrand on solutions to u = 0 on
the support of the remaining scattering equations. This is equal to the integrand, now
localised on the boundary τ = i∞ of the moduli space, with the two expressions related
by a residue theorem on the fundamental domain.

invariance and unitarity [119]. The n-particle g-loop ambitwistor string correlator can then be
schematically expressed for g > 1 as follows:

A(g)
n =

∫
Mg,n

∏
I�J

dΩIJ

∑
κ,κ̃

ηκηκ̃

〈
3g−3∏
r=1

brb̃r δ̄(〈μrP
2〉 )

2g−2∏
α=1

ΥαΥ̃α

n∏
i=1

Vi

〉
κκ̃

. (4.3)

The torus is exceptional needing one fixed vertex operator due to the remaining symmetry and
associated zero mode of the c and c̃ ghosts; the first product are then nontrivial with a single
entry. Here μr ∈ Ω(0,1) ⊗ T (1,0)

Σ is a Beltrami differential, and Υα, Υ̃α are the picture changing
operators introduced in section 2.2.

A key feature is that the additional delta-functions, δ̄(〈μrP2〉) enforces that P2 vanishes.
These form an important part of the loop-level scattering equations, as we will see below, and
give nb new constraints, with nb = 1 on the torus and nb = 3g − 3 at higher genus leading
again to a sum over residues as at tree-level. Moreover, we note that for g � 1, not all picture-
changing operatorsΥαΥ̃α can be absorbed by the vertex operators; this will affect the structure
of the integrand.

Scattering equations: since the correlator only depends on X via the exponentials in the
vertex operators, the PX-path integral can be evaluated following the same strategy as at
tree-level. As discussed in section 2, the X zero-mode integral then gives d = 10 momentum-
conserving delta-functions, and the non-zero modes localize P onto the solution to its equations
of motion (2.28). Although the genus-g Green’s function for the PX-system is complicated19,
the equations of motion fortunately have a simple solution in terms of holomorphic and
meromorphic differentials;

Pμ(z) = �I
μ ωI +

∑
i

kiμ ωi,∗(z). (4.4)

19 Appendix A of reference [111] serves as an excellent summary for CFTs on higher-genus worldsheets.
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It is traditional at higher genus to use the worldsheet coordinate z rather than σ to avoid con-
fusion when simplifying the resulting amplitude formulæ, see section 5. Here, in the second
term, the meromorphic differentialsωi j are so-called Abelian differentials of the third kind, i.e.,
one-form in z, with a simple poles at two marked points zi, z j with respective residues ±1; z∗ is
a reference point, but momentum conservation ensures that P has no pole at that point. The first
term arises because, at loop level, the equations ∂̄P = 0 admits homogeneous solutions �I

μωI ,
given by the holomorphic differentials ωI multiplied by the zero-modes �I

μ. The path integral
now includes an integral over these zero-modes, named to suggest already their role as the loop
momentum of the amplitude.

The scattering equations—both geometrically and from the CFT point-of-view—still play
the same role as at tree-level, enforcing the constraint P2 = 0, now however on the genus-g
worldsheet. As evident from the correlator, there are now two types of constraints: n scattering
equations (or n − 1 on the torus, due to its translation invariance) are still associated to the
moduli of the insertion points of the vertex operators, and resemble the tree-level constraints,

Ei = Resi P2 = 2ki · P(zi). (4.5)

In contrast to tree-level however, these constraints are not sufficient to ensure P2 = 0 on higher-
genus surfaces due to the homogeneous solutions. This is reflected in the additional nb delta-
functions in the correlator, which provide the remaining constraints. They are best parametrized
by expanding P, on the support of the remaining scattering equationsEi, into a basis of quadratic
holomorphic differentials,

P2 = u dz2, P2 = uIJ ωIωJ , (4.6)

given here at one and two loops respectively. The new, loop-level scattering equations then
enforce u = 0 and uIJ = 0 respectively. For fixed loop momenta �I, these constraints are solved
by localizing the moduli ΩIJ themselves so that, as we will see, the loop integrand reduces to
a sum of residues in Mg,n.

Loop amplitudes: the ambitwistor string thus leads to the following formulæ,

A(g)
n = δ10

(
n∑

i=1

ki

) ∫ g∏
I=1

d10�I I(g)
n , (4.7)

where the integral is over the zero-modes �I
μ of Pμ, and the ‘loop integrand’ I(g)

n is given by an
integral over the moduli space Mg,n

20,

I(g)
n =

∫
Mg,n

∏
I�J

dΩIJ δ̄(uIJ)
∏

i

δ̄
(
ResiP

2
)
Ichi

n Ĩchi
n . (4.8)

The chiral integrands Ichi
n stem from the remainder of the correlator, including the sum over

spin structures, and contain the non-trivial chiral partition functions Zchi
κ of all fields, as well

as Pfaffian factors from the Ψ, Ψ̃ correlators.
For brevity, we only give explicit expressions for even spin structures at one loop; this cov-

ers many cases of interest, as odd spin structures do not contribute in d � 9 dimensions or
for four particles at g � 3. Formulæ for odd spin structures and two-loops can be found in

20 Note that for the torus, this only contains n − 1 scattering equations Ei = Resi P2 as discussed above.
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[31, 106, 107] respectively. For an even spin structure δ,

Ichi
n =

∑
δ

(−1)δ Zchi
δ Pf(Mδ), with Mδ =

(
A −CT

C B

)
, (4.9)

where the chiral partition function Zchi
δ = ϑδ(0|τ )4 η(τ )−12 is given in terms of Jacobi theta-

functions and the Dedekind eta-function, and where Mδ is a 2n × 2n matrix with components
Aii = Bii = 0, Cii = −εi · P(zi) and

Ai j = ki · k j Sδ(zi j|τ ), Ci j = εi · k j Sδ(zi j|τ ), Bi j = εi · ε j Sδ(zi j|τ ).

(4.10)

The structure of the matrix is reminiscent of that at tree-level, but its components now depend
on the punctures zi via the Green’s function for the fermion Ψ-system; the Szegö kernel

Sδ(z − w|τ ) =
ϑ1(0|τ )

ϑ1(z − w|τ )
ϑδ(0|τ )

ϑδ(z − w|τ )

√
dz
√

dw. (4.11)

Four particle amplitude: for four external particles, these amplitude expressions simplify
drastically, and the sum over spin structures can be performed explicitly. In this case the chiral
integrand is commonly written as Ichi

4 = KY (g), where K is a universal kinematic prefactor
defined by the tree amplitudes A(0)

4 = KK̃/stu, and

Y (1) = K
4∏

i=2

dzi, Y (2) = K(sΔ14Δ23 − tΔ12Δ34). (4.12)

Here,Δi j = εIJωI(zi)ωJ(z j) denotes the natural modular form of weight−1 on a g = 2 Riemann
surface, and s = 2k1 · k2 and t = 2k1 · k4 are Mandelstam variables.

4.2. Properties and further developments

Since supergravity amplitudes are—in contrast to the superstring—not UV finite, the
ambitwistor string correlators (4.7) are divergent and so should be understood as formal expres-
sions only before regularization. The natural object of interest is the loop integrand I(g)

n and is
well-defined. This loop integrand has indeed many interesting properties:

• First and foremost, I(g)
n is an integral over the moduli space Mg,n of marked Riemann sur-

faces. Aspects of modular invariance, while far from manifest, follow as a consequence of
the GSO projection and the resulting sum over spin structures [31, 107]. However, mod-
ular transformations affect the loop momentum �I, so (4.8) should be interpreted in the
first instance as an integral over a specific fundamental domain and the integrand is not
in itself expected to be modular invariant; full modular invariance is only restored after
accounting for the transformation properties of the loop momenta. Unlike in the super-
string case, modular invariance does not guarantee finiteness of the amplitude, and, as we
will see in the next section, we are dealing with field theory loop integrands, so that the
moduli integral over the zero modes �I that remain to be performed are infinite.

• In analogy with the tree-level ambitwistor string correlator, and in contrast with the super-
string, the moduli space integrals in I(g)

n are fully localized on solutions to loop-level
scattering equations. This is evident in the explicit formulæ (4.8), but also has a clear
CFT origin since both the integration measure and the delta-function insertions are tied to
the dimension of the moduli space dim Mg,n = n + 3g − 3.
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• The correlator formulæ (4.8) also exhibit a tantalizing resemblance to the superstring
amplitude in the chiral splitting formalism [117, 120]. This manifests itself both via
closely analogous calculations (compare, for example, the two-loop calculations in
[107, 110–115]) and in the final answer; in fact the same chiral half-integrandsY (g) appear
in the superstring

A(g)
S
= KK̃

∫
Mg,4

∣∣∣∣∣∣
∏
I�J

dΩIJ

∣∣∣∣∣∣
2 ∫

d�
∣∣Y (g)

∣∣2 ∏
i< j

|E(zi, z j)|
α′si j

2 |C(�I)|2, (4.13)

and the ambitwistor string for n = 4 particles. Here the product over the prime form
E(zi, z j) and the chiral splitting factor C(�I) form the loop-level Koba–Nielsen factor char-
acteristic of the string. Gaining a better understanding of the close similarity between such
different theories—the superstring and supergravity—still remains an open problem. Var-
ious recent developments have aimed to clarify various aspects, such as the role of loop
momentum in string theory [121], the ambitwistor string moduli integrals [32], detail of
the chiral splitting in the ambitwistor string [122], and the relation to other chiral strings
[123–126].

The obvious counterpart to the problem of relating the ambitwistor string and the superstring
concerns the field theory status of these formulæ. Many important properties of field theory
integrands are obscured on the higher genus worldsheet; in particular, it remains mysterious
how expressions such as (4.8) could possible give rise to the simple rational functions of the
external kinematics and loop momenta that constitute the supergravity integrand. In the words
of the original paper [31], this would surely require ‘miraculous simplifications’. In the next
section, we will see investigate these ‘miraculous simplifications’, and explore many of their
consequences.

5. From higher genus to the nodal sphere

Despite the compactness of the formulæ, the higher genus correlators are hard to compute
and would seem to give highly transcendental functions rather than the rational functions we
expect for field theory integrands. Remarkably one can relate the complicated higher-genus
correlators of the previous section to the familiar rational functions of field theory integrands.
In doing so we obtain a new formulation for loop integrands on the Riemann sphere but with
an extra node or double point for each loop order. We also gain control over which fields run
in the loop and can therefore generate loop integrand formulæ for the full range of theories in
different dimensions that the CHY framework applies to, taking us far beyond the restriction
to type II supergravity in 10d of the previous section.

5.1. Residue theorem to the nodal sphere

The key insight [127, 128] is that the full correlator can, via residue theorems, be localised
on the boundaries of the moduli space, corresponding geometrically to Riemann spheres with
pairs of identified points called a node; these are non-separating degenerations. At one loop,
this is achieved by a residue theorem on the moduli space M1,n, trading the localisation on
one of the higher-genus scattering equations, u = 0, for a localisation on the non-separating
boundary divisor τ = i∞. This residue theorem, illustrated in figure 5, relies on three properties
of the integrand: modular invariance, complete localisation on the scattering equations, and
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Figure 6. Nodal expansion of the amplitude. The g-loop integrand can be expressed as
a fully localised integral over a g-nodal sphere.

the presence of a simple pole at the non-separating boundary divisor. Once localised on the
nodal sphere, the integrand simplifies drastically, resembling closely a forward limit of an
(n + 2)-particle tree amplitude.

To illustrate this further, consider the integrand I(1)
n with the change of variables q = e2iπτ ,

designed to manifest the pole at the non-separating divisor q = 0. Introducing also a short-hand
for better readability, the residue theorem implies that

I(1)
n :=

∫
M1,n

dq
q

δ̄(u)I(q)
RT
=

∫
M1,n

dq
u

δ̄(q)I(q) =
1
�2

∫
M0,n+2

I(0). (5.1)

The first equality is the definition of the short-hand, all remaining terms in (4.8) have been
absorbed into I(q). The residue theorem, in the second equality, relates this expression to the
boundary divisor q = 0, and in the final equality we have used that u = �2 on the nodal sphere.
Thus, contrary to the string, the integrand I(1)

n is localised on the boundary divisor, reflecting
the field-theory status of the ambitwistor string.

While more involved, the argument can be extended to two loops [107, 129], suggesting that
the loop expansion in the ambitwistor string has two equivalent representations: an expansion
in the worldsheet genus as in figure 3, and a nodal expansion as illustrated in figure 6.

5.2. The integrand on the nodal sphere

On the nodal sphere, the one-loop integrand takes the following simple form:

I
(1)
n =

1
�2

∫
M0,n+2

dμ(nod)
1,n I (1), dμ(nod)

1,n ≡
∏

Aδ̄
(
E (nod)

A

)
dσA

vol SL(2,C) × C3
. (5.2)

Here the index A runs over the particle labels i = 1, . . . , n, as well as the two marked points
σ+ and σ− describing the node. The nodal scattering equations E (nod)

A , given by the torus scat-
tering equations E (1)

i on the non-separating boundary, closely resemble the tree-level scattering
equations for n + 2 particles in a forward limit,

E (nod)
± = ±

∑
i

� · ki

σ±i
, E (nod)

i =
ki · �
σi+

− ki · �
σi−

+
∑
j
=i

ki · k j

σi j
. (5.3)

Geometrically, they impose that the quadratic differential P(1) = P2(σ) − �2 ω2
+− vanishes

globally on the sphere, where Pμ is now given by

Pμ(σ) = �μω+−(σ) +
n∑

i=1

kμi dσ
σ − σi

, ω+−(σ) =
σ+− dσ

(σ − σ+)(σ − σ−)
. (5.4)

This is a consequence of the residue theorem, which traded precisely the constraint u = 0 for
the localisation on the boundary divisor. As expected, the integrand on the nodal sphere is
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thus localised on P2 = uω2
+− = �2 ω2

+−. The nodal scattering equations can then be written
compactly as

E (nod)
A = ResA P(1) = ResA

(
P2 − �2 ω2

+−
)
. (5.5)

On the nodal sphere, the double copy relations provide an extraordinary ‘free lunch
theorem’: although the genus-one representation of the loop integrand only exists for 10d type
II supergravity (via the RNS ambitwistor string), nodal sphere expressions exist in any dimen-
sion D � 10, as well as for super Yang–Mills [127]. This is achieved by combining the forward
limit interpretation of the nodal sphere formulæ with the insights from the double copy, which
motivates worldsheet integrands of the form

I (1)
sYM = I (1)

col I (1)
susy, I (1)

sugra = I (1)
susy Ĩ (1)

susy. (5.6)

The ‘kinematic’ half-integrand I (1)
susy is the nodal sphere limit of the chiral loop integrand Ichi

n

and can be rigorously derived, whereas the forward-limit interpretation of the nodal sphere
formalism suggests that its colour counterpart can be obtained by ‘gluing’ the colour indices
of the loop punctures in the tree-level expression. This leads to a cyclic sum over Parke–Taylor
factors with the colour ‘running in the loop’, analogous to the illustration in figure 7. The
half-integrands thus take the form [128]

I (1)
susy = I (1)

NS + I (1)
R , I (1)

col =
∑
ρ∈Sn

tr
(
Tρ(a1) . . .Tρ(an)

)
σ+ ρ(1)σρ(1) ρ(2) . . . σρ(n) −σ− +

. (5.7)

Due to its ambitwistor-string origin, and following the corresponding analysis in the superstring
[130], contributions from individual GSO sectors can be identified in I (1)

susy;

I (1)
NS =

∑
r

Pf ′(Mr
NS

)
, I (1)

R = − cD

σ2
+−

Pf (M2). (5.8)

In the Ramond contribution, cD is a dimension-dependentconstant, and the matrix M2 is defined
as on the torus (4.9), but with the nodal sphere Szegö kernel

S2 = σ−1
i j

(√
σi+σ j−
σi−σ j+

+

√
σi−σ j+

σi+σ j−

)
.

The NS-contribution I (1)
NS manifests the forward-limit interpretation,

Mr
NS = Mtree

n+2 | �2=0, ε+=εr , ε−=(εr)† , (5.9)

where the additional particles at the nodal points σ± have back-to-back momenta ±�, and the
sum runs over a basis εr of polarisation vectors for these two particles.

Similar representations exist for NS–NS-gravity and pure Yang–Mills theory in various
dimensions [128], obtained by replacing I (1)

susy with I (1)
NS. The forward-limit has also been suc-

cessfully used to construct nodal sphere representation for other theories, including the bi-
adjoint scalar [131–134] and EYM theory [135], and played an important role in gaining a
better understanding of nodal scattering equations [132] in non-supersymmetric theories.

35



J. Phys. A: Math. Theor. 55 (2022) 443007 Topical Review

Figure 7. Interpretation of the Ilin representation of loop integrands as (n + 2)-particle
tree diagrams, summed over different ways of ‘cutting open’ the loop.

It is striking that in all of these formulæ, the integrand has the same simplicity as a tree-level
amplitude, and is in particular a rational function of the kinematic data. The residue theorem
thus resolves the puzzle of how a field theory integrand can emerge from the complicated
higher-genus expressions of the last section21.

5.3. Representation of the loop integrand

The remarkable similarity of the loop integrand I(1)
n to tree-amplitudes in a forward limit has

another important consequence: after evaluating the moduli space integrals, the loop integrand
appears in a non-standard representation on momentum space. This is already evident from
the general form of the (5.2), which involves inverse quadratic powers of the loop momentum
only via the overall factor �−2, whereas the nodal scattering equation (5.3) depend linearly
on �. This intuition can be made precise by factorisation arguments analogous to section 2.4,
showing that the integrand contains poles at 2� · K + K2 instead of the conventional Feynman
loop propagators (�+ K)2 [128].

Fortunately this novel, ‘linear’ representation can be obtained from the standard loop inte-
grand by a simple prescription, based on a deformation and residue theorem reminiscent of
the BCFW recursion [138]. This can be achieved as follows: shift the loop momentum in
the standard representation Istd by �→ �̃ = �+ η, where η points in some auxiliary dimen-
sion such that � · η = ki · η = εi · η = 0, and the Lorentz invariants are unaffected except for
�2 → �2 + η2 ≡ �2 + ζ. Cauchy’s residue theorem then relates the Istd, expressed now as the
residue at ζ = 0, to a sum of terms where all but one of the propagators are linear. A further
shift in the loop momentum �→ �− Ka, where Ka =

∑
i∈Ia

ki is the sum of external momenta
in a propagator Da, brings all remaining quadratic propagators into the form �−2, and gives the
linear representation of the loop integrand;

Istd =
∑
Γ

N
(
�, �2

)∏
a∈ΓDa

� Ilin =
1
�2

∑
Γ

∑
a∈Γ

N
(
�− Ka, −2� · Ka + K2

a

)∏
b 
=a(Db − Da)|�→�−Ka

. (5.10)

Here Da = (�+ Ka)2 are the standard Feynman loop propagators, and we have kept the depen-
dence on �2 explicit in the numerators N(�, �2) for better readability. At this stage, it is easily
verified that the remaining propagators in Ilin are of the form 2� · K + K2 expected from the
nodal scattering equations22. Schematically, the sum over different propagators a in Ilin can be

21 At one loop, this is strongly reminiscent of the Feynman tree theorem [136, 137], but the nodal representations
extend to higher loop order, as we will see in section 5.5.
22 In the simplest case when the numerators are independent of �2, the residue theorem reduces to repeated partial
fraction identities, followed by shifts in the loop momentum �→ �− Ka as above;
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given an interpretation as different ways of ‘cutting open’ the loop, with each term associated
to a tree-diagram involving two back-to-back on-shell momenta ±�̃ = ±(�+ η); see figure 7.

The procedure (5.10) serves as an algorithm for deriving the linear representation Ilin from
a standard integrand Istd. To date, there exists no general algorithm for the reverse direction,
impacting our ability to apply established integration techniques as in review chapters 1 and 3
[41, 139] for its evaluation. On the other hand, its non-standard structure also has clear advan-
tages: as we shall see below, the forward-limit structure facilitates the extension of tree-level
results to loop level, impacting the double copy at loop level (section 5.4), and allowing for
scattering equations-based formulæ for the bi-adjoint scalar at one loop [131–134].

1∏
aDa

=
∑

a

1
Da
∏

b 
=a(Db − Da)
, where Da = (�+ Ka)2 and Ka =

∑
i∈Ia

ki. (5.11)

Following an alternative direction, there has also been work on obtaining standard loop inte-
grands with Feynman propagators from the scattering equations formalism in [140–143], but at
the cost of more complicated expressions, and the origin of these formulæ from the ambitwistor
string correlator remains unclear.

5.4. Double copy at loop level

At loop level, the double copy is conjectural, but explicit constructions exist for loop intgrands
in a variety of theories, [8, 144–151], see also the review chapter 2 [9]. In the ambitwistor string,
the first incarnation of the double copy at loop level can already be found in the structure of the
worldsheet integrands (5.6). Extending the corresponding tree-level result, the BCJ relations
also embed straightforwardly [152],

n−1∑
j=1

� · k12... j

σ12 . . . σ j+σ+ ( j+1) . . . σn−σ−1
= 0, mod E(nod)

a . (5.12)

We can make contact with the double copy on momentum space by expanding both the
Yang–Mills integrand IYM and the gravity integrand Igrav in a Dixon–Del Duca–Maltoni
half-ladder basis,

IYM =
∑
ρ∈Sn

c(+, ρ,−)IYM(+, ρ,−), Igrav =
∑
ρ∈Sn

N(+, ρ,−)IYM(+ρ,−), (5.13)

where IYM(+, ρ,−) are colour-ordered Yang–Mills integrands. Both the colour factors

c(+, ρ,−) = f a+aρ(1)b1 f b1aρ(2)b2 . . . f bn−1aρ(n)a− δa+a− , (5.14)

and the kinematic numerators N(+, ρ,−) are associated to cubic diagrams forming a ‘half-
ladder’, with legs+ and− at opposite endpoints, as on the right of figure 7. If such an expansion
can be found, the integrands Igrav and IYM are related by replacing the colour factors by the
numerators N, and so they satisfy the double copy structure. Such numerators N(+, ρ,−) are
also known as BCJ numerators or master numerators, since they generate the numerators for all
other diagrams by Jacobi relations. For the ambitwistor string integrands I (1), this expansion
becomes

I (1)
col =

∑
ρ∈Sn

c(+, ρ,−)
σ+ρ(1) . . . σρ(n)−σ−+

, I (1)
kin

∼=
∑
ρ∈Sn

N(+, ρ,−)
σ+ρ(1) . . . σρ(n)−σ−+

, (5.15)
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and is guaranteed to exist due the one-loop KLT orthogonality [152, 153] on the support of the
nodal scattering equations, as expressed by the ∼=-symbol. Various strategies have been suc-
cessfully used to determine the BCJ numerators N for supersymmetric and non-supersymmetric
theories [152–155], often generalising tree-level methods by exploiting the forward-limit
structure of the loop integrand, and some constructions have been extended to two loops [156].
The relative ease with which BCJ numerators can be constructed in the linear, ambitwistor-
string inspired integrand representation stands in stark contrast to the status in the standard
representation, where serious obstacles arise already for six external particles at one loop
[157, 158], see also [152, 153] for a concise juxtaposition.

5.5. Two loops

The nodal sphere formalism has been successfully extended to two loops [107, 129]. In this
case, the residue theorem is more subtle, but it remains true that the full integrand localises on
the maximal non-separating boundary of the moduli space, corresponding to a bi-nodal sphere,
parametrised by four ‘loop marked points’, one pair per node,

I
(2)
4 =

KK̃∏
I(�

I)2

∫
M0,4+2g

c(g)
(
J (g)Y (g)

)2
4+4∏
A=1

′
δ̄(EA). (5.16)

The resulting integrand formula, presented here for n = 4 particles for simplicity, takes the
form of an integral over the moduli space M0,n+2g, fully localised on solutions to the nodal
scattering equations EA = 0. While the structure is reminiscent of the one-loop case, new fea-
tures appear as well; in particular the factors c(g) and J (g) arise from the degeneration of Mg,n

to M0,n+2g. We briefly discuss these ingredients below, more detailed expositions, as well as
n-point formulæ for supergravity and super Yang–Mills theory (constructed again using the
double copy) can be found in the original paper [107].

• Moduli: the residue theorem localises the integrand on the non-separating boundary, where
qII = eiπΩII = 0. In this limit, the remaining moduli, given by the off-diagonal components
of the period matrix, become cross-ratios of the nodal marked points σI± ,

qIJ = e2iπΩIJ =
σI+J+σI−J−

σI+J−σI−J+
. (5.17)

The measure is then naturally expressed in terms of all marked points (including the nodes)
modulo Möbius transformation, leading to a Jacobian J (g) with

∏
I<J

dqIJ

qIJ
=

J (g)

vol SL(2,C)
, J (g) =

1
σ1+2+σ1+2−σ1−2+σ1−2−

∏
I±

dσI± .

(5.18)

The analogous change of variables in the scattering equations results in another copy of
the same Jacobian factor. The cross-ratio factor c(2) = 1/(1 − q12) originates in the degen-
eration of the moduli space M2,n to M0,n+4; to be precise, from mapping the last modular
parameter q12 to the nodal sphere [107]. It can be given a concrete physical interpretation
in projecting out unphysical poles from the integrand I(2)

n .
• Nodal scattering equations: on the nodal sphere, Pμ takes the following form;

Pμ(σ) = �I
μ ωI+I− (σ) +

∑
i

kiμ

σ − σi
dσ, (5.19)
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where ωI+I−(σ) are the genus-two holomorphic abelian differentials in the maximal
non-separating degeneration. In this limit, these differentials acquire simple poles at the
corresponding nodes:

ωI =
ωI+I−

2πi
, ωI+I−(σ) =

(σI+ − σI− ) dσ
(σ − σI+ )(σ − σI− )

, (5.20)

The nodal scattering equations can then be compactly expressed as the vanishing of a
meromorphic quadratic differential P(g) with only simple poles,

EA = ResσA P
(g), P

(2) = P2 − (�IωI+I−)2 + (�2
1 + �2

2)ω1+1−ω2+2− . (5.21)

Note in particular the last term, a novel feature at genus two that plays a crucial role in
obtaining the correct loop propagators23.

• Integrand: the chiral integrand is defined straightforwardly by the nodal sphere-limit of
the genus-two expression, Y = Y (2)|nodal, and can be calculated using (5.20).

5.6. Further topics

The nodal sphere formulation of loop integrands proved to be a starting point for many further
exciting avenues of research.

• At the level of the worldsheet model, the simple structure of one-loop correlators, sup-
ported on a nodal sphere is reflected by the presence of a so-called ‘gluing operator’
in the ambitwistor string [159]. This gluing operator Δ encodes the propagator of the
target-space field theory, and is thus a BRST-invariant but non-local worldsheet operator.
Genus zero correlators with an insertion ofΔ directly give the one-loop integrand formulæ
(5.2) localized on the nodal sphere, without need for further simplifications. Extensions to
higher loops are currently not known.

• Focussing on the integrand expressions, there has been tremendous progress on extending
many of the tree-level evaluation techniques to loop level, [160–163].

• The nodal sphere, and in particular the forward limit structure of the integrand, also
inspired loop formulæ in the twistorial models [100]. These were obtained from a forward
limit of the 6d spinorial tree-level amplitudes mentioned in section 3.

• Very recently, a proposal has also appeared for one-loop correlators in massive φ4 the-
ory on de Sitter spacetime, based on the nodal sphere [164]. This builds on earlier
work expressing (tree-level) de Sitter ‘cosmological correlators’ as worldsheet integrals,
supported on so-called cosmological scattering equations, which are now differential
operators expressed as functions of the conformal generators [165].

• Finally, the ambitwistor string progress at loop level has also inspired calculations and
proposals in the full superstring. In reference [166], the authors used an ambitwistor-
string-inspired method, based on forward limits of the moduli space integrals, to construct
one-loop matrix elements with insertions of operators D2kFn and D2kRn in the tree-level
effective action. Progress has also been made at higher loop orders, where the double
copy and the close relation between the ambitwistor string and the superstring chiral inte-
grands has been used to propose a formula for the three-loop four-particle superstring

23 And is closely related to the absence of a straightforward Feynman tree-theorem at two loops.
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integrand [91]. This is achieved by constructing first an expression on the three-nodal
sphere using BCJ numerators, and then lifting this to a fully modular invariant proposal
for the superstring chiral integrand on a g = 3 Riemann surface.

6. Frontiers

As we have seen, ambitwistor-strings give one of the most direct routes from a physical theory
to compact formulæ for tree amplitudes and loop integrands. Despite these successes, many
open questions remain and it is questionable as to whether it will one day be possible to under-
stand these worldsheet models as providing secure basic formulations of physical theories. To
consolidate them, more work needs to be done to relate them to more standard fully nonlin-
ear formulations of physical theories, either via field theory, string theory or holography. We
briefly expand on these connections.

6.1. Curved backgrounds

Amplitudes on curved backgrounds are a relatively new subject with the frontier being, until
recently, at three points at tree level. They provide a stepping stone to connect with conven-
tional nonlinear field theory. Spaces of complexified null geodesics make good sense on an
analytic curved space with metric g(x)μν [33] and one can ask whether ambitwistor strings can
be defined on such curved ambitwistor spaces. In particular in the RNS models of section 2 we
can replace P2 → H = gμν(x)PμPν + · · ·. It was shown in [167] that, in the type II case, curved
analogues of the constraints H, G = Ψ · P and G̃ = Ψ̃ · P can be constructed so that they satisfy
the flat space OPEs iff they are obtained from a solution to the NS–NS-sector of 10d type II
supergravity. This can be used to construct vertex operators and amplitudes at three points on a
plane wave [168, 169], and one can similarly encode the Yang–Mills equations in the heterotic
model [170]. This provides a completely different perspective to that pursued in the 1970s
and 1980s when space–time field equations in 4d were shown [24, 34, 171] to correspond to
the existence of formal neighbourhoods of A inside PT× PT∗ or supersymmetric extensions
[23, 172]. In the ambitwistor string, the field equations are encoded in the quantum consistency
of the worldsheet model on a curved ambitwistor space. In all these cases and unlike the con-
ventional string, one can use field redefinitions to make the gauge-fixed action linear, so that
correlators are relatively easy to compute. However, the complexity of the curved background
constraints makes it problematic to identify the generic integrated vertex operators.

The 4d twistor models and twistor-strings can also be defined on curved backgrounds built
from curved twistor spaces. These are equivalent to curved but self-dual Yang–Mills or E back-
grounds, which are integrable. Exploiting this integrability, one can construct amplitudes of
arbitrary multiplicity [83, 173, 174], with explicit formulæ for certain classes of backgrounds.

6.2. Relationship with conventional, null and chiral strings

All the amplitude formulæ we have discussed localize on the solutions to the scattering
equations. These equations were first obtained by Fairlie [175, 176] in a semiclassical study of
string solutions, and made famous in the work of Gross and Mende [177, 178], where they were
shown to govern the string path integral in the limit of high energy scattering at fixed angle
(s � 1/α′). The scattering equations thus play a prominent role both in the α′ →∞ limit and
in the field theory limit α′ → 0, albeit indirectly via the ambitwistor string. This clash, with the
scattering equations appearing in both the low tension and high tension field theory limit, has
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so far impeded attempts to connect the ambitwistor string directly with conventional strings.
In this context, it is interesting to note that the α′ →∞ limit can also be understood as a null
limit in which the worldsheet becomes null ruled by null geodesics [124].

More generally Siegel proposed that so-called chiral string theories could be obtained by
flipping certain worldsheet boundary conditions [123], so that both left-moving and right-
moving modes in the conventional string become holomorphic on the worldsheet in the sec-
torized chiral string. A bosonic such model had already been introduced in [179], and pure
spinor versions discussed in [180]. In these models both the left moving and right-moving
Virasoro constraints become holomorphic but commute with each other and each satisfies the
holomorphic Virasoro algebra. Ambitwistor have a similar character in the sense that Xμ and∫ σ Pμ can be thought of as being independent holomorphic functions on the worldsheet playing
roles as different combinations of left and right movers. However, the ambitwistor-string only
contains one holomorphic Virasoro generator, P · ∂X. The gauged constraint P2 is analogous
to difference between the two Virasoro generators, but has trivial OPE with itself, even on a
curved background. This reflects the degeneration of the two copies of the Virasoro algebra to
a Galilean conformal algebra [124, 125]. On the other hand, in the model of [179], the gauged
constraint P2 is replaced by a more general quadratic expression in P and ∂X

P2 →H :=Aμν(X)PμPν + BμνPμ∂Xν + C(x)μν∂Xμ∂Xν , (6.1)

that is constrained to obey a nontrivial OPE. The imposition of these OPEs yields field
equations for the background with a finite number of α′ corrections. However, since the OPE
of H with itself is nontrivial, there no longer appears to be a reduction to ambitwistor space
nor localization on the scattering equations. The connections between sectorized strings, null
strings and ambitwistor strings are now well studied in different models [124, 125, 180, 181],
see also [182, 183]. For example, versions of T-duality become possible in sectorized strings
whereas they are not in the ambitwistor-string [184].

The amplitude formulæ to which such sectorized chiral strings give rise appear to be
problematic. The Koba–Nielsen factor of the conventional string, consisting of a product∏

i< j|σi j|α
′si j , is replaced by a product

∏
i< j(σi j/σ̄i j)α

′si j so that the branching would seem to
make the contour prescription problematic. This is resolved in the work of Mizera who uses
twisted cohomology and residues to define the amplitudes of these theories [185]. As α′ →∞
he shows localization on the scattering equations.

6.3. Celestial holography and soft theorems

Celestial holography [186] seeks to understand the S-matrices of massless theories by re-
expressing them as correlation functions for theories on the conformal boundary of asymptot-
ically flat space–times, I , the light-cone at infinity. This approach emerged from the study
of connections between soft theorems for amplitudes and asymptotic BMS symmetries of
space–time [187, 188], and aims to establish a holographic dictionary for the S-matrix from I
or the celestial sphere [189, 190]. In an asymptotically simple space–time, all light rays reach
I and we can represent ambitwistor space A = T∗IC as the cotangent bundle of the com-
plexification of null infinity. Both the RNS and 4d twistor ambitwistor models can be expressed
in this representation [191–193] and from this perspective, the connection between soft theo-
rems and asymptotic symmetries can be understood directly at the level of the vertex operators
as generators of supertranslations and super-rotations in their soft limits. The ambitwistor
strings then provide an underpinning theory for the generation of so-called celestial ampli-
tudes—S-matrix elements based at I , with asymptotic states in a conformal primary basis on
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the (d − 2)-sphere of null generators of I , [193]. In this formulation the recently discovered
gravitational ‘w1+∞-symmetry’ [194] can be seen as arising directly from the geometry of the
asymptotic twistor space at I [195]. With this, the worldsheet OPE of the ambitwistor string
vertex operators generate the tree-level celestial OPE coefficients of the conformal primaries
[195–197].
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Appendix A. Penrose transform

The Penrose transform for a general ambitwistor space PA maps spin s fields on space–time
to elements of H1(PA,O(s − 1)), with the classes corresponding to spin s plane-waves of the
form εμ1 . . . εμse

ik·X mapping to (ε · P)s δ̄(k · P) eik·x .
Briefly, this follows by taking a cohomology class φ ∈ H1(PA,O(s − 1)) on PA, pulling

it back to p∗φ on PT∗M|P2=0, the lightcone inside the projective cotangent bundle, where
it becomes necessarily trivial as there is no first cohomology on this space for the given
homogeneity weights. Thus we can find g of weight s − 1 on T∗M|P2=0 such that

p∗φ = ∂̄g, e.g. for φ in (2.17) g = (ε · P)s eik·X

k · P
. (A.1)

Then we can obtain the field via

(ε · P)s eik·x = P · ∂Xg. (A.2)

Since g is defined up to the gauge freedom, δg = (ε · P)s−1eik·X (or indeed some a general global
holomorphic function of P), we have the usual gauge freedom

δ(εμ1 . . . εμse
ik·X) = k(μ1εμ2 . . . εμs) eik·X . (A.3)

This can be proven more abstractly as follows. The Penrose transform is the connecting map

H0(PT∗MP2=0,O(s))/P · ∂X ×
(
H0(PT∗MP2=0,O(s − 1))

) δ−→ H1(PA,O(s − 1)), (A.4)

from the long exact sequence in cohomology arising from the short exact sequence:
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0 →O(s − 1)PA →O(s − 1)T∗M
P2=0

P·∂X−−−→ O(s)T∗M
P2=0

→ 0 (A.5)

that defines the functions on PA, see [22, 34] for a full discussion.

Appendix B. Conformal field theory basics

In this appendix, we present a lightning review of some aspects of chiral two-dimensional CFTs
particularly relevant for the ambitwistor string. For a more extensive introduction, we refer the
interested reader to the multitude of excellent textbooks, for example [28, 29, 118, 198–200].

All ambitwistor string models are two-dimensional CFTs with a local action in terms of a set
of fields defined over a closed Riemann surface Σ, referred to as the worldsheet. These fields
can be characterized by their statistics (bosonic vs fermionic) and their conformal weight, as
well as additional quantum numbers such as the spin structure at higher genus. The conformal
weight of a field Φ is a pair of half-integers (h, h̄) ∈ Z/2Z× Z/2Z labeling the transformation
properties of Φ under two-dimensional conformal transformations24. Since 2d local conformal
transformations are equivalent to holomorphic coordinate transformations, we can identify the
conformal weight with the form degree. This means that Φ is section of (h, h̄) powers of the
holomorphic and antiholomorphic canonical bundles Kh

Σ ⊗ Kh̄
Σ, i.e.

Φ ∈ Ω0(Σ, Kh
Σ ⊗ Kh̄

Σ). (B.1)

Here, negative weights are to be interpreted as sections of the respective tangent bundles, using
the isomorphism K−1

Σ
∼= TΣ. Equivalently, Φ may be expressed locally in affine worldsheet

coordinates z as

Φ(z, z̄) = φh,̄h (dz)h (dz̄)h̄. (B.2)

In the ambitwistor string, we will only encounter chiral CFTs, known as βγ-systems (for
bosons) or bc-systems (for fermions). We will describe these jointly below, keeping track of
the statistics via a variable ε, with ε = −1 for fermionic statistics, and ε = 1 for bosons. A
chiral CFT is then defined by the action

S =
1

2π

∫
b∂̄c, (B.3)

in conformal gauge. The fields b has conformal weight (h, 0), giving conformal weight
(1 − h, 0) to the conjugate field c. Fields such as these with conformal weight h̄ = 0 are often
referred to as ‘left-moving’. The OPE between these conjugate fields is

c(z) b(w) ∼ 1
z − w

, b(z) c(w) ∼ − ε

z − w
. (B.4)

A standard calculation gives the holomorphic stress–energy tensor

Tbc = −h b∂c + (1 − h) (∂b)c. (B.5)

From this expression, we find the central charge anomaly as (twice) the coefficient of the fourth
order pole in the T(z)T(w) OPE,

c = 2ε
(
6h2 − 6h + 1

)
. (B.6)

24 A field is called primary if its conformal weights are well-defined.
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Finally we note the following useful formula for the number of zero modes nb and nc of the
two fields on a Riemann surface of genus g, derived via the Riemann–Roch theorem,

nc − nb =
1
2

(2h − 1)χ, with χ = 2(1 − g). (B.7)
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