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1 Introduction

What are the fundamental constituents of matter? What are their fundamental interac-

tions? Such questions play a central role in understanding nature. A fascinating description

of the subatomic world is given by the Standard Model (SM) of particle physics [1–3]; the

framework that describes the electromagnetic, weak and strong interactions. Gravity, the

fourth fundamental interaction, is not part of the SM. In this thesis, gravity does not play

any role – it consitutes a separate problem. In general, the SM is a very successful theory,

having passed impressive experimental tests. Key player in experimental particle physics

is currently the Large Hadron Collider (LHC) at CERN, which led to the breakthrough

discovery of the Higgs particle in 2012 [4, 5].

Despite the success of the SM, there are phenomena that it cannot explain and we have

indications that it is not complete. We do not know the origin of the SM, which shows very

intriguing patterns and features. In order to understand these patterns, physics beyond

the SM might be required [6, 7]. Examples of phenomena that are not incorporated in the

SM, other than gravity, are the matter–antimatter asymmetry in Universe and the dark

matter. The first refers to the observed imbalance between matter and antimatter in the

Universe after the Big Bang, leading to a matter–dominated Universe [8]. The second is a

hypothetical form of matter, which does not interact with electromagnetic forces and for

which the SM does not provide a candidate to explain its properties [9, 10].

How can we search for physics beyond the SM? In general, there are two approaches.

We can perform:

• either direct searches,

where we can try to produce and detect new real particles directly at colliders

• or indirect searches,

where we try to find traces of virtual particles, which are manifestations of quantum

effects, by performing high precision measurements.

Let us now discuss in more detail these two avenues. On the one hand, we can try

to produce particles directly at particle colliders at the “high-energy frontier”. Then, we

can study the decays of these new particles into SM particles with the use of general

purpose detectors. The mass-reach is limited by the energy of the collider. Nowadays, the

most powerful collider is the LHC at CERN, colliding protons at energies up to 13.7 TeV.

Unfortunately, no particles from beyond the SM have been found so far, suggesting that

the particles are too heavy to be produced directly.
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On the other hand, we can also search for New Physics (NP) indirectly through precision

measurements of known decay processes. An essential point in these studies is that we can

probe very high energy scales of NP, much higher than the directly accessible regimes in

particle colliders, thereby moving to the “high precision frontier”. In this case, we utilise

quantum fluctuations, very suppressed processes, and can obtain indirect evidence of new

particles via such quantum effects. The idea is to find and identify processes and observables

which theorists can calculate with high precision and also experimentalists can measure

very precisely. If there are new particles entering, we would find discrepancies between the

measured quantities and the ones calculated in the SM.

Indirect access to NP effects is the main approach we follow in this thesis. The powerful

tool of quantum field theory (QFT) is used in the quest of possible indirect indications of

NP. Working at the “high precision frontier”, the SM offers a particularly interesting sector,

which runs under the terminology of the “flavour sector”. Flavour physics describes the

different interactions between different flavours (i.e. types) of quarks and leptons, which are

the building blocks of matter in the SM. We can obtain very intriguing transitions between

different quark and lepton flavours. In this thesis, we focus on the quark flavour sector.

A particularly promising tool providing reliable tests of the SM flavour dynamics and

searching for signals of NP is given by decays of B mesons. B mesons are bound states of

a bottom anti-quark, which is also known as a “beauty” quark, and a light quark (which

can be either up, down, or strange) or charm quark. In our studies, we present benchmark

B decay processes, which are sensitive to physics from beyond the SM.

We have now reached an interesting era of particle physics, where there is a plethora

of experimental data. A number of puzzling patterns arise in these data sets. This may

indicate that we have finally reached a level of precision where it is possible to reveal such

discrepancies between experimental measurements and theoretical predictions. Unfortu-

nately, the individual precision is not yet high enough to draw definite conclusions. It is

very exciting though that we start to see these puzzles. Moving towards higher precision

in the future, we might eventually be able to establish NP. In this thesis, we will revisit

intriguing cases and also point out new puzzles that had not been observed before.

In general, there are puzzling cases which arise from decays where the observables are

robust with respect to theoretical uncertainties. In this sense, these decays have “simple

dynamics” with respect to strong interactions. The corresponding puzzles are called flavour

anomalies and are associated to a class of decays called semileptonic, which we will introduce

in Chapter 3.1 Additionally, observables related to B0
s → µ+µ− modes [14, 15], which are

1Examples are the ratios R(D), R(D∗) [11], and the angular observable P ′
5 [12,13]. The first observable

refers to ratios between the branching fractions of the decays B → D(∗)ℓν̄ involving taus with respect to

those involving muons or electrons, as we will discuss in Sec. 3.4.3, while P ′
5 arises from an analysis of the
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“rare” decays, are in the spotlight, too. We will further explore these observables in the

B0
(s) → µ+µ− system in the present thesis in Chapter 8.2

On the other hand, there are further puzzles which also have important implications,

playing a central role in understanding flavour physics, but are related to modes with

much more complicated dynamics due to strong interactions. Calculations in this case are

very difficult and a lot of sophistication is required in the analysis of these decays. These

are called non-leptonic decays, and we will extensively discuss them in this thesis. Prime

examples here are the B0
d → J/ψK0 and B0

s → J/ψϕ modes as well as the B → πK and

B0
s → D∓

s K
± channels. Key role in the anomalies observed in this case plays CP violation.

An overview of all these puzzling cases is given in Fig. 1.

In this thesis, studies of CP violation are a primary focus. The term C stands for the

charge conjugation operator and changes a particle into its antiparticle, while the term P

stands for the parity operator, which leads to space inversion. The violation of the CP

symmetry refers to the non-invariance of the weak interactions with respect to a combined

C and P transformation. It was firstly discovered in 1964 through the observation of the

KL → π+π− decay [8]. Today, this phenomenon is also established in B decays and the

charm sector.

CP violation is a topic crucial for our existence. Prime point is the observed baryon

asymmetry in the Universe. Sakharov proposed a set of conditions [16], which must be sat-

isfied in order to have matter and antimatter production at different rates. These conditions

are: baryon number violation, CP violation, as well as conditions where thermodynamic

equilibrium does not hold. Studies of the baryon asymmetry within the SM indicate that

the corresponding CP violation is too small by many orders of magnitude [17], thereby

suggesting new sources of CP violation.

CP violation manifests itself in various ways in B-meson decays. We can categorise the

decays we study as follows:

• the B0
d → J/ψK0

S and B0
s → J/ψϕ decays,

• the B0
s → D∓

s K
± system,

• the B → πK system and

• the rare B0
(s) → µ+µ− decays.

The first three categories include no leptons in the final state and are challenging due to

strong interactions. In these channels, we perform state-of-the-art studies of CP violation

B0 → K∗0µ+µ− channel.
2These observables are the branching fractions B and the mass eigenstate rate asymmetries A∆Γs

, as

we will discuss in detail in Chapter 8.



1 INTRODUCTION 4
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Figure 1: Overview of puzzling cases as described in the text.



1 INTRODUCTION 5

and explore how much space is left for NP. The last category is a simpler case. Although

CP violation in this channel is also interesting, it is not part of our analysis in this thesis.

Instead, we focus on aspects of NP.

B decays offer fascinating strategies to deal with both CP violation and searches for

hints of NP. As a result, the B-meson system receives a lot of attention from both theorists

and experimentalists, having dedicated experiments to explore these decays. LHCb and

Belle II are currently the main players, building on a long history of the exploration of the

flavour sector, but also ATLAS and CMS can make interesting contributions. Concerning

searches of NP in this thesis, we focus on model-independent studies and not constructing

a specific model. Our aim is to find indications of NP, investigating correlations between

observables in various benchmark B decays.

The outline of this thesis is as follows. Firstly, in Chapter 2, we describe the theoretical

framework of the SM. The focus is on the quark flavour sector, both heuristically and in

a more formal way. We introduce the concept of CP violation and discuss the Cabibbo–

Kobayashi–Maskawa mechanism, as well as the unitarity triangle (UT).

Chapter 3 introduces the B-meson system, discussing both charged and neutral B

mesons. We pay special attention to the neutral ones, showing the phenomenon of B0
q–

B̄0
q mixing (where q = d, s), which plays an important role in testing the SM. We provide

the theoretical tools we use in the analyses of B decays and discuss the classification of

these decays according to their final states. We set up the formalism for each of these

classes, analysing their dynamics, and discuss interesting aspects, mostly within the SM

framework. An essential topic in our analysis is related to the determination of the apex of

the UT, as we describe in Chapter 3.4.2.

In Chapter 4, we specifically discuss CP violation in B decays, focusing on how CP

asymmetries arise. We classify the various types of CP violation and present interesting

observables. Having the formalism at hand, we utilise benchmark B decays to further

explore the topic both within and beyond the SM.

Moving to Chapter 5, we study applications of the B0
q–B̄

0
q mixing phenomenon. Central

role in our studies is played by specific parameters which are associated with the mixing

effects, i.e. decay widths, mass differences and CP-violating mixing phases. Key modes for

exploring these parameters are B0
d → J/ψK0

S and B0
s → J/ψϕ, which are considered to

be “golden modes” for analysing CP violation. At the level of precision that we have now

reached, we have to include uncertainties coming from certain decay contributions, which

cannot be calculated reliably from first principles in strong interactions. However, we have

identified ways to take them into account through related control channels. This will result

in a state-of-the-art determination of the mixing parameters. These parameters are then
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further used as key inputs to explore how much room is left for NP in B0
q–B̄

0
q .

Chapter 6 covers the analysis of the B0
s → D∓

s K
± system. These decays allow a theo-

retically clean determination of one of the parameters of the UT, the angle γ. Considering

experimental data, we observe intriguing patterns related to CP violation, suggesting NP

at the decay amplitude level. The same trend also arises in other modes with similar dy-

namics. We shed more light on this puzzling situation, utilising the experimental data and

performing a theoretical analysis. We propose strategies to explore possible NP effects and

generalise the description of these decays to allow for NP at the decay amplitude level.

In Chapter 7, we discuss B → πK decays. The puzzles arising there are a long-standing

issue. We focus on the B0
d → π0KS channel, which is the most interesting channel with

respect to CP violation. Exploiting the current data, we explore the correlations between

the CP asymmetries in this mode, which are theoretically very robust regarding theoret-

ical uncertainties. In doing so, we encounter discrete ambiguities. Although difficult to

remove these ambiguities, one solution is finally left, which shows interesting tension with

respect to the corresponding measurement. We propose a strategy which allows an optimal

determination of the parameters that describe the puzzling effects. This strategy can be

applied in the high precision B physics era, eventually answering the question of whether

these decays imply NP.

Last but not least, in Chapter 8, we present the B0
s → µ+µ− decay, which is a very rare

process in the SM. We expect only 3 out of one billion Bs mesons produced at the LHC to

decay into the final state µ+µ−. After searching for this decay for decades, the LHCb and

CMS collaborations have finally managed to observe the B0
s → µ+µ− channel in 2012 [18],

representing a key result of the previous LHC running. In this thesis, we utilise this very

interesting decay as a probe of NP. In particular, we focus on minimising the impact of

theoretical uncertainties arising within the SM, and employ new observables of B0
s → µ+µ−

to explore possible NP contributions. Applying the results of the NP analysis in B0
q–B̄

0
q

mixing obtained in Chapter 5, we constrain the NP parameter space.

Finally, we note that this thesis covers a broad variety of different processes in flavour

physics. We collect all the main strategies and findings of our analyses in Chapter 9 and

conclude with a brief outlook.
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2 Exploring the Flavour Sector

In this chapter, we set up the stage for exploring the quark flavour sector. We introduce

the SM framework, firstly heuristically and then in a more formal way, and derive the

corresponding Lagrangian. We study the concept of CP violation within the SM and discuss

the Cabibbo-Kobayashi-Maskawa (CKM) mechanism, which is the origin of CP violation.

2.1 The Standard Model in a Nutshell

The SM framework describes the interactions of the elementary particles that we know

today, which are the leptons and the quarks [1–3].3 As we have already mentioned in

Chapter 1, three of the four fundamental forces that act in the universe; the weak, the

electromagnetic and the strong interactions, are incorporated in this framework. The fourth

one, gravity, is not included in the SM. As we will discuss in Sec. 2.1.1, a highlight regarding

the interactions in the SM is that the electromagnetic and weak interactions are “unified”

in an electroweak sector. Thus, the SM compromises two parts, one describing electroweak

interactions and the other referring to strong interactions.

Let us now begin our discussion of the SM first by presenting its main features. An

illustration of the SM is given in Fig. 1. As we know, the fermions, which are the leptons and

quarks, are the building blocks of matter. They arise in three “generations”, which differ in

their mass spectra, with the particles of the first generation being less heavy than those of

the second generation, which are less heavy than those of the third. The forces are mediated

by four vector bosons, thus particles with spin equal to 1, which are: the photon γ for the

electromagnetic force, the charged W± and the neutral Z boson for the electroweak force,

and the gluon for the strong force. These are all gauge bosons, arising in the framework of

gauge theory, as we will discuss below. In addition, on July 4th, 2012, the discovery of a

scalar boson was announced through the independent measurements of ATLAS and CMS,

which was related to the Brout–Englert–Higgs (BEH) mehcanisms [32,33], completing the

current picture of the SM. This particle was the Higgs boson, with spin equal to 0.

The SM utilises gauge theories to implement local symmetries, with special field trans-

formations at each space-time point to ensure that the theory is gauge invariant, thus

unchanged under transformations. A major problem was to assign masses to particles in

this framework. Explicit mass terms would break the gauge symmetries. In order to avoid

that in a consistent way, spontaneous symmetry breaking was introduced. The concept of

3For a detailed discussion of the SM, we provide here a number of interesting textbooks [19–31].
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Figure 2: The Standard Model of elementary particles.

spontaneous symmetry breaking originates from condensed matter physics. In the SM, it

is implemented in the most minimal and simplistic way, utilising the BEH field. The mech-

anism responsible for mass generation, involving this spontaneous symmetry breaking, is

the BEH mechanism, or simply Higgs mechanism. An important note to add is that these

theories are renormalizable4, thus consistent quantum field theories [34].

Let us say a few more words about the masses of the elementary particles. We emphasize

again that to break the symmetry in the most minimal way, an elementary scalar field has

to be added, which is the BEH field (or simply the Higgs field). The Higgs boson is an

excitation of this field. Through the process of electroweak symmetry breaking, the Higgs

field develops a non-vanishing vacuum expectation value. Due to this non-zero expectation

value, the gauge bosons W and Z become massive and as we will discuss later in the thesis,

leptons and quarks also acquire masses via Yukawa interactions with the same Higgs field.

4Renormalizability is an intrinsic feature of quantum field theory. When calculating quantum correc-

tions, infinities (like loops which diverge) might arise. Applying a renormalizable theory, allows these

infinities to be absorbed by properly redefining the couplings, fields and masses of the theory. Renormal-

izability ensures that divergencies and infinities can be absorbed into a finite number of parameters, thus

obtain a finite result. These technicalities will not be directly addressed in this thesis, however it is an

essential feature of the SM.
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On the other hand, the photons are massless, since the corresponding symmetry, the U(1)

symmetry of quantum electrodynamics, remains unbroken. Gluons, mediating the strong

interactions, also remain massless. Last but not least, the Higgs boson also interacts with

the Higgs field, hence it gains mass itself.

2.1.1 Electroweak Interactions

Let us firstly discuss the electroweak (EW) part of the SM, which provides the unified

description of electromagnetic and weak interactions. Historically, the EW sector preceded

the understanding of strong interactions in the SM. The triumph of the SM, and what makes

it such a beautiful theory, is that for the first time we have a unification of two interactions

that were previously viewed as very different and separate. This unification was suggested

independently by Glashow [35], Salam [36] and Weinberg [1] in the late 1960s, and was a

breakthrough discovery, playing a key role in our understanding of the EW interactions.

For their contributions, all three of them were awarded the Nobel Prize in physics in the

year 1979.

In this unified EW sector, the theory of quantum electrodynamics (QED) describes

the electromagnetic part, which generalises the classical electrodynamics with the Maxwell

equations to the quantum level. At the heart of the unified electroweak theory lies the

notion of gauge symmetry, which we will formally discuss in Sec. 2.2.1. Key role to this

framework is the concept of spontaneous symmetry breaking, manifesting through the Higgs

mechanism.

The electromagnetic and weak interactions, though distinct in their manifestations at

low energies, become indistinguishable at high energies, on the order of 246 GeV, which is

the vacuum expectation value of the Higgs field. This unified theory has been extensively

tested, in particular at LEP and SLC colliders (for an overview, see Ref. [37] and references

therein), and confirmed through experiments conducted at particle accelerators such as the

Large Hadron Collider (LHC), which is currently the “main player”.

The electroweak sector of the SM stands as a testament to the power of theoretical

insight and experimental verification. It showcases the remarkable unity underlying the

fundamental forces of nature. In early 1970s, ’t Hooft and Veltman showed that the EW

theory is renormalizable [38], for which they were awarded the Nobel prize in 1999.

2.1.2 Strong Interactions

The second important theoretical framework in the SM is quantum chromodynamics

(QCD). Describing strong interactions between quarks, mediated by the massless gluons,
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QCD operates within the framework of a non-abelian gauge symmetry SUc(3), which is not

spontaneously broken. We note that only quarks can participate in these interactions.

QCD exhibits two regimes: the perturbative regime, related to high energies or short

distances, where perturbation theory can be applied in order to calculate QCD corrections,

and the non-perturbative one, corresponding to low energies, where perturbation theory

cannot be used. Key feature of QCD is asymptotic freedom [39], which implies that the

quarks and gluons have reduced coupling strength at high energies. Asymptotic freedom

results from the self couplings of the gluons in non-abelian gauge theories.

Due to the fact that the coupling αs, describing the strength of the QCD interac-

tions, is small at high energies (perturbative part), these elementary particles behave like

quasi-independent particles. Thus, the feature of asymptotic freedom makes perturbative

calculations of strong interaction effects at small distances possible5. It is important to

recognize the groundbreaking work of D. Gross, F. Wilczek, and D. Politzer, who were

awarded the 2004 Nobel Prize for demonstrating that QCD has the feature of asymptotic

freedom [41–44]. Our knowledge of the complex dynamics regulating strong interactions

within the SM is largely based on their remarkable work.

However, at lower energies/greater distances, where perturbative techniques cannot be

applied, QCD interactions become stronger, with αs value becoming very large, thereby

leading to hadronic bound states. Therefore, quarks and gluons are confined within com-

posite particles known as hadrons. This phenomenon is known as confinement. Confinement

binds quarks and gluons inside hadrons to bind, preventing the particles from being free.

This effect is essential in our studies of meson decays, in particular decays of B meson, since

these processes are non-perturbative and difficult to calculate. Given the complex nature

of confinement and hadronic effects, we explore methodologies and approaches which allow

us to deal with these challenging calculations.

As an epilogue, it is worth mentioning that already in the 1980s researchers started

considering larger gauge groups that would incorporate both QCD and EW sector, aim-

ing towards a Grand Unified Theory (GUT) [45, 46], albeit not experimentally confirmed.

Intrinsic feature of this effort is that when attempting to establish a unified framework of

EW and strong interactions, leptoquark particles emerge, which are capable to experience

both interactions. However, so far, there is no convincing theory to describe QCD and EW

SM in a unified manner.

5Here renormalization group techniques [40] can also be used.
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2.2 Theoretical Ingredients of the Standard Model

Having provided a general description of the SM framework, let us now move on to a more

formal description, looking at the theoretical foundation and derive the Lagrangian.

2.2.1 Gauge Group

The SM is based on the gauge group [25,47]:

SUc(3)× SUL(2)× UY (1), (2.1)

where SUc(3) represents the symmetry of strong interactions described by QCD, while

SUL(2)× UY (1) describes the electroweak interaction.

SUc(3) is a 3rd order unitary group, representing 3×3 matrices acting on three-dimensional

vectors. The quantum number of SUc(3) is “colour”, indicated by the subscript “c”. We

note that only the quarks are subject to the effects of QCD since leptons do not interact

via the strong force. Quarks are triplets under SUc(3) (denoted as 3) with the quantum

numbers “red”, “green” and “blue”. Leptons are singlets under SUc(3) and as a result

they are colour neutral. The group SUL(2) includes all two-dimensional complex unitary

matrices with unit determinant6. The quantum number of the SUL(2) group is the weak

isospin and there are two states (±1/2). The left-handed fields are doublets under SUL(2)

and the right-handed fields are singlets under SUL(2). In the charged weak interactions

which are mediated by the W± bosons, it is only the doublets that participate. Finally, the

UY (1) group includes all one-dimensional complex unitary matrices7. The quantum number

of UY (1) is the hypercharge Y and in principle can be any real number. The hypercharge

can be normalised following the Gell-Mann−Nishijima relation [48,49]:

Q = T3 + Y, (2.2)

where Q is the electric charge and T3 is the third component of the weak isospin of SUL(2).

As already discussed, the symmetry has to be broken in order to give masses to the

particles. In particular, heavy EW gauge bosons W and Z are required to make the in-

teractions “weak”8. As a result of EW symmetry breaking, the U(1) symmetry of QED

remains exact. The strong interactions, described by the SUc(3) symmetry, also remain

unbroken. Consequently, the photons and the gluons are massless particles in this frame-

work, whereas the W and Z gain masses of 80 GeV and 90 GeV, respectively. Now, the

6It is related to the rotation group SO(3), indicating sphere symmetry in 3 dimensions.
7It corresponds to the symmetry of the circle remaining unchanged under rotations in a plane.
8We emphasize that these interactions are not weak because of a small coupling constant but due to the

very heavy gauge bosons.
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SUL(2)×UY (1) symmetry of electroweak interactions is spontaneously broken by the Higgs

mechanism as follows [1, 50,51]:

SUL(2)× UY (1)
SSB−−→ U(1)QED, (2.3)

where SSB stands for the spontaneous symmetry breaking and U(1)QED denotes the sym-

metry group of QED. We point out again that this symmetry breaking, which is needed to

give masses to particles, is done in the most minimal way, adding a single scalar particle.

Looking at the current experimental information on the Higgs, it is very remarkable that

nature really follows this simplistic way.

2.2.2 Standard Model Lagrangian

We can now encode all the above information in the Lagrangian. Following the conven-

tions of [52, 53], we first of all consider the spinor fields ψ, which account for the fermion

generations and for which

ψ̄ = ψ†γ0, (2.4)

where γ0 is one of the Dirac matrices. We write:

γ0 =

 1 0

0 −1

 , γi =

 0
→
σ

−→
σ 0

 , (2.5)

where 1 is the 2×2 unit matrix and
→
σ are the 2×2 Pauli matrices, which are given in the

Appendix A. The full SM Lagrangian consists of the kinetic term Lkin, the Higgs part Lϕ
and the Yukawa part LYukawa, and can be written as follows:

Ltotal = Lkin + Lϕ + LYukawa. (2.6)

Let us examine each term separately [54]. We start with the kinetic part and as a first

step, we consider the case of free fields, i.e. without interactions. This is the kinematic

term of the Dirac spinor, with the Dirac equation for a free Dirac field describing fermions.

The Lagrangian governing the dynamics of the spinor fields is given by:

Lkin = iψ̄(∂µγµ)ψ, µ = 0, 1, 2, 3 , (2.7)

where we introduce the partial derivative acting on ψ.

How do we next include the interaction terms? The interactions for gauge theories are

introduced through the gauge principle, making the symmetry of the SM a local symmetry.

This ensures that the Lagrangian remains invariant under local transformations. To achieve
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this, the partial derivative has to be replaced by the covariant derivative Dµ. In this

procedure, for each generator of our gauge group we have to introduce a gauge field:

Dµ = ∂µ + igwW
µσ + ig′BµY + igsG

µTα. (2.8)

Here, we have the three bosons of the electroweak interaction W µ with the Pauli matrices

σ and the gw which is the coupling for SUL(2), the single hypercharge boson B with the g′

coupling for the UY (1) as well as the eight gluon fields Gµ with the Gell-Mann matrices Tα

(which are given in Appendix A), and the gs coupling for SUc(3). We note at this point,

that these gauge bosons are massless. The kinetic part of the Lagrangian is written as:

Lkin = iψ̄(Dµγµ)ψ. (2.9)

We can now write the kinetic part of the Lagrangian for quarks and leptons. Here, for

simplicity, we focus only on the Qi quarks interaction part. The quarks experience both

the strong and the EW interactions:

Lkin = iQ̄iγµ(∂
µ +

i

2
gwW

µσ +
i

6
g′BµY +

i

2
gsG

µTα)Qi, (2.10)

where only the last term corresponds to the QCD part, with Gµ describing the involvement

of the gluons, while the other terms refer to the EW sector.

For the charged weak interaction, where only Qi doublets participate, thus for the

interaction between the left-handed quarks, which carry weak isospin −1/2, we obtain:

Lweak = iQ̄i,leftγµ(∂
µ +

i

2
gwW

µσ)Qi,left

= i(u d)i,leftγµ(∂
µ +

i

2
gwW

µσ)

u

d


i,left

. (2.11)

Considering that W± = 1√
2
(W1 ∓ iW2), and denoting left as L, we can rewrite the above

equation in the form:

Lweak = iūi,Lγµ∂
µui,L + id̄i,Lγµ∂

µdi,L − g√
2
ūi,LγµW

−µdi,L − g√
2
d̄i,LγµW

+µui,L + ... (2.12)

So far, we have only massless gauge bosons and the gauge symmetry does not allow

explicit mass terms. The symmetry has to be broken in order to introduce mass terms.

Focusing on the weak interactions, we need heavy gauge bosons. A solution to this challenge

of making the bosons heavy can be given through spontaneous symmetry breaking. So, how



2 EXPLORING THE FLAVOUR SECTOR 14

does the EW symmetry breaking work now? In the SM, in the most minimal version, an

elementary scalar field is introduced, the Higgs field ϕ, which is an isospin doublet:

ϕ =

ϕ+

ϕ0

 . (2.13)

This field is responsible for the spontaneous symmetry breaking through developing a non-

vanishing vacuum expectation value, minimizing the Higgs potential V (ϕ) of the SM which

is written as follows:

V (ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2, (2.14)

where µ2 is the mass term and λ is the Higgs self coupling. So, we break the EW symmetry

SUL(2) × UY (1) in such a way that U(1)QED remains unbroken, as presented in Eq. (2.3).

Therefore, we write the Higgs part of the Lagrangian as

Lϕ = (Dµϕ)
†(Dµϕ)− µ2(ϕ†ϕ)− λ(ϕ†ϕ)2, (2.15)

which includes the kinetic term for the Higgs with the couplings to the Higgs potential and

the gauge bosons.

We move now to the third part of the Lagrangian. The Yukawa sector includes interac-

tions between the Higgs and the fermions involving the Yukawa couplings. These couplings

are allowed and can be added by hand. Since the Higgs couples to SUL(2) doublet and

singlet in a gauge invariant way (hence the Lagrangian does not change under transforma-

tions), the LYukawa part of the Lagrangian is written as follows:

−LYukawa = Y d
ijQ̄i,L ϕ dj,R + Y u

ij Q̄i,L ϕ̃ uj,R + Y l
ijL̄i,L ϕ lj,R + h.c. , (2.16)

where h.c. stands for hermitian conjugate, the Q̄ and L̄ denote the quarks and leptons,

while the subscripts L and R stand for left and right, respectively. The fermion fields are

three-component vectors, so all three generations are included. The Y d
ij , Y

u
ij and Y l

ij are

3×3 Yukawa-matrices, which operate in flavour space producing the quark mixing (thus

the couplings between different families), while ϕ̃ is:

ϕ̃ = iσ2ϕ
∗ =

 ϕ0

−ϕ−

 . (2.17)

2.2.3 Quark Mixing in the Standard Model

Let us now have a closer look into the Yukawa interactions, needed to have fermion masses,

which give rise to interesting phenomena like flavour-changing transitions. These transi-

tions play a very important role for this thesis. We explore how these phenomena occur,
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discussing the links between the Yukawa couplings and the quark mixing. Quark mixing

refers to the interaction between different quark generations in the SM. As we will show,

an essential point is the difference between the mass eigenstates and flavour eigenstates.

We are interested in showing how the quarks obtain their masses from the Yukawa

Lagrangian. Starting from Eq. (2.16), we write the Yukawa Lagrangian for the quarks.

We choose ϕ0 to be 1√
2
(υ + h(x)), where υ is the vacuum expectation value of the Higgs

potential and h is the physical Higgs field, thus we obtain [54,55]:

ϕ(x) =

ϕ+

ϕ0

 SSB−−→ 1√
2

 0

υ + h(x)

 . (2.18)

Therefore, the mass terms which are derived from this equation after the symmetry breaking

are the following:

−Lmass = Y d
ij d̄i,L

υ√
2
dj,R + Y u

ij ūi,L
υ√
2
uj,R + h.c. + interaction terms (2.19)

= d̄i,LM
d
ijdj,R + ūi,LM

u
ijuj,R + h.c. + interaction terms , (2.20)

where the different indices describe different quark flavours i, j = 1, 2, 3 and one has to sum

over these. The matrices M f (where f = u, d) can be diagonalised by unitary matrices V f
R ,

V f
L in order to obtain proper mass terms:

M f
diag = V f

LM
fV f†

R . (2.21)

So far, the fermion fields have been expressed in the interaction basis, therefore d, u are

interaction eigenstates. Due to the fact that the V matrices are unitary, satisfying V fV f† =

1, and utilising Eq. (2.21), Eq. (2.20) becomes:

−Lmass = d̄i,LV
d†
L V d

LM
d
ijV

d†
R V d

Rdj,R + ūi,LV
u†
L V u

LM
u
ijV

u†
R V u

Ruj,R (2.22)

= d̄i,LV
d†
L (Md

ij)diagV
d
Rdj,R + ūi,LV

u†
L (Mu

ij)diagV
u
Ruj,R. (2.23)

We now rewrite the quark fields as d̄′i,L = d̄i,LV
d†
L and d′j,R = V d

Rdj,R (and correspondingly

for the up-type quarks), and obtain

−Lmass = d̄′i,L(M
d
ij)diagd

′
j,R + ū′i,L(M

u
ij)diagu

′
j,R, (2.24)

where the quark fields are written in their mass eigenstates, thus the primes denote the

quark mass eigenstates.

The Lagrangian for the charged-current interaction in terms of the weak interaction

eigenstates is written as

Lcc =
g√
2
ūiLγµW

−µdiL +
g√
2
d̄iLγµW

+µuiL. (2.25)
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If we now rewrite the Lagrangian in terms of the quark mass eigenstates, the quark mixing

arises between generations in the charged-current interaction, since every interaction field

is replaced with a combination of the mass eigenstates:

Lcc =
g√
2
ū′iL(V

u
L V

d†
L )ijγµW

−µdiL +
g√
2
d̄′iL(V

d
LV

u†
L )ijγµW

+µuiL, (2.26)

where (V u
L V

d†
L )ij and (V d

LV
u†
L )ij refer to the Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM [56, 57], which will be discussed in Sec. 2.4. We note that as a convention we choose

the weak and mass eigenstates to be equal for the up-type quarks ui = u′j. On the other

hand, the down-type quarks are rotated when going from one basis to the other, thus

di = VCKMd
′
j. We see that within the SM, the analysis for flavour physics actually begins

from a charged-current Lagrangian.

2.3 CP Violation in the SM

In this section, we explore how discrete symmetries, parity and charge conjugation, are

implemented in the SM and focus on the violation of the symmetry called CP through

EW interactions. The operator P stands for parity and is related to space inversion. This

operator flips the sign of the space coordinates, thus for a wavefunction ψ(t, x, y, z) we

obtain:

Pψ(t, x, y, z) = ψ(t,−x,−y,−z). (2.27)

Parity conservation suggests that the physical processes act in an identical way once they are

viewed as in a mirror, simply speaking. Experimental data indicate that parity is conserved

in strong and electromagnetic interactions but is violated in weak interactions. This parity

violation in weak interactions was proposed theoretically in 1957 and was shortly after

established by the Wu experiment [58].

The operator C denotes the charge conjugation which changes a particle into its anti-

particle (or vice versa), therefore changing the sign of the charges of the elementary particles:

C |ψ⟩ = |ψ̄⟩ . (2.28)

We note that the space-time coordinates are not changed in this operation. Similarly to

parity, the charge conjugation is conserved in strong and electromagnetic interactions but

is maximally violated in weak interactions.

Therefore, weak interactions maximally violate parity and charge conjugation. Initially,

it was believed that applying both symmetries would lead to invariance of weak interactions

with respect to the combined C and P, thus the CP transformation. However, it came as a

surprise in 1964 through precision measurements by observing the kaon decay KL → π+π−
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[8] that CP is not a good symmetry of weak interaction. CP violation is a very profound

aspect of particle physics, which also plays a key role in our studies. In the SM, we can

actually accommodate CP violation, and below we will see how we can accomplish this.

Last but not least, we note that a third discrete symmetry is that of time reversal, which

is related to the operator T:

T : t→ −t. (2.29)

Combining the C, P and T operators, the CPT symmetry is a conjecture and appears to

be a very fundamental symmetry in quantum field theory. Any Lorentz invariant local

field theory must obey the combined CPT symmetry. Simply speaking, giving up on CPT

symmetry for local quantum field theories, one would run into serious problems, as the

whole formulation of theoretical physics would break down. Tests are performed on how

well it holds and so far, no CPT violation has been found. The key point is that if CPT

is conserved, then in case there is CP violation, there should also be T violation, so in this

sense they are really closely linked.

2.3.1 CP Violation in Quark Flavour Physics

We continue with the discussion of the origin of CP violation in the quark sector (for

detailed studies see, e.g., [59–62]). Within the SM, CP violation arises in the complex

Yukawa couplings. Since both the kinetic term of the Lagrangian in the interaction basis

and the Higgs part conserve CP symmetry, our starting point is again the Yukawa sector

and the corresponding Lagrangian reads:

−LYukawa = Yijψ̄i,L ϕ ψj,R + Y ∗
ijψ̄j,R ϕ

† ψi,L . (2.30)

Under CP transformation, we obtain:

CP(ψ̄i,L ϕ ψj,R) = ψ̄j,R ϕ
† ψi,L. (2.31)

As a result, the CP-transformed Yukawa Lagrangian takes the form

−LCP
Yukawa = Yij ψ̄j,R ϕ

† ψi,L + Y ∗
ij ψ̄i,L ϕ ψj,R. (2.32)

We observe that if Yij = Y ∗
ij , the Yukawa Lagrangian remains invariant. Therefore, CP

violation appears in the Yukawa complex couplings.

Diagonalising the Yukawa matrices, we arrive again at the Lagrangian in terms of quark

mass eigenstates, as presented in Eq. (2.26). Simplifying the notation regarding the CKM

matrix, we write:

Lcc =
g√
2
ū′i,LVijγµW

−µdi,L +
g√
2
d̄′i,LV

∗
ijγµW

+µui,L. (2.33)
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Applying a CP operation in Eq. (2.33) provides us with the following expression:

LCP
cc =

g√
2
d̄′i,LVijγµW

+µui,L +
g√
2
ū′i,LV

∗
ijγµW

−µdi,L. (2.34)

We observe again that if Vij = V ∗
ij , the Yukawa Lagrangian remains invariant. So, if Vij is

real, there is no CP violation. It is the complex nature of the CKM matrix that gives rise

to CP violation within the SM.

To summarise, the Yukawa couplings, describing the interactions between the Higgs

field and the fermions, give rise to off-diagonal elements in the matrix between the different

generations. After the diagonalization of the Yukawa matrix, these off-diagonal elements

arise in the charged current couplings described by the CKM matrix, thereby suggesting

that this CKM matrix is the source of CP violation in the quark flavour sector.

So, we already see that we can accommodate CP violation, if the CKM matrix is com-

plex. But can we have physical phases in the CKM matrix? Let us answer this question in

the following Section.9

2.4 CKM Matrix

We have already introduced the CKM matrix in a more formal way, discussing how it

connects the flavour states with the mass eigensates and highlighting the important role

that it plays as a source of CP violation. For instance, in Eqs. (2.34) and (2.26), we

see how it enters the Lagrangian via formal arguments. Let us now move on to a more

phenomenological interpretation of this matrix and explore what this implies.

The CKM matrix VCKM = (Vij) [56, 57] is a 3×3 unitary matrix for 3 generations:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (2.35)

which describes the quark mixing effects. It connects the weak interaction eigenstates with

their mass eigenstates. Conventionally, for the up-type quarks, the interaction and the mass

9Another open issue in theoretical physics is the “strong CP problem” (see for instance Refs. [63, 64]).

Simply speaking, the problem is that in principle, there could be CP violation in strong interactions but it

turns out that the phenomenon is very small. So, the question is: Why is CP violation so small in strong

interactions? Proposed solutions include the introduction of pseudoparticles called axions. Readers are

referred to Ref. [65] for further details. However, this issue is not relevant to our studies. Consequently, in

this thesis, we assume that the strong interactions conserve CP symmetry, taking the strong CP problem

aside, without exploring it further.
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Figure 3: Illustration of charged current processes in the SM.

eigenstates are equal while the down-type quarks are being rotated through the following

transformation: 
d

s

b


weak

=


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d′

s′

b′


mass

. (2.36)

By construction the CKM matrix is unitary, thus we may write:

VCKMV
†
CKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



V ∗
ud V

∗
cd V

∗
td

V ∗
us V

∗
cs V

∗
ts

V ∗
ub V

∗
cb V

∗
tb

 =


1 0 0

0 1 0

0 0 1

 = V †
CKMVCKM. (2.37)

The unitarity ensures that there is no flavour-changing neutral current (FCNC) at the tree

level in the SM [3]. Looking at the structure of the Lagrangian given in Eqs. (2.33) and

(2.34), the transition from a down- to an up-type quark is described by the Vud element,

which characterises the corresponding coupling strength. Similarly, the V ∗
ud element enters

the transition from an up to a down type quark. An illustration of these charged-current

processes and the corresponding CKM matrix elements governing them is given in Fig. 3.

In addition to these transitions, there are also CP-conjugate processes. In the first case,

for the CP-conjugate process an anti-down would transition to anti-up quark, still with the

same CKM element as depicted in the left plot of Fig. 3. In the second case, an anti-up

would transition to anti-down quark, again with the same CKM element as shown in the

right plot of Fig. 3.

We have seen that the complex phases are related to the possibility of CP violation.

Can we actually have complex phases in the CKM matrix? In order to explore whether we

might actually have a complex phase in this matrix and to determine how many physical

parameters we have, we perform a counting of the free parameters.
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2.4.1 Counting the Number of Parameters

In the SM, there are 3 generations, so the CKM matrix is a 3×3 unitary matrix. It is useful

though to extend the discussion and assume N fermion generations. The N ×N matrix is

characterised by N2 complex elements and hence 2N2 real parameters. The unity of the

diagonal elements, as given in Eq. (2.37), leads to N normalization constraints and due to

the fact that the off-diagonal elements vanish, there are N2 − N orthogonality relations.

Consequently, the number of constraints in this case is

N +N2 −N = N2. (2.38)

We note that we have the freedom to redefine the up- and down-type quark field phases

as follows:

u
′

i,L = eiξ
u′
i u

′

i,L, (2.39)

d
′

j,L = eiξ
d′
i d

′

j,L, (2.40)

where ξ is an arbitrary convention-dependent phase, which cannot be measured. We em-

phasize that if we had physical observables, these phases would have to cancel.

For the up-type quarks, there areN such quantities and for their down-type counterparts

also N quantities, therefore 2N in total. Concerning the right-handed quark fields, they are

rotated simultaneously in order to maintain the mass terms invariant. In order to ensure the

invariance of the charged-current Lagrangian, we have the following phase transformation

of the CKM matrix elements:

V →


e−ξ(u

′) 0 0

0 e−ξ(c
′) 0

0 0 e−ξ(t
′)



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



eξ(d

′) 0 0

0 eξ(s
′) 0

0 0 eξ(b
′)

 = exp[i(ξu
′

i − ξd
′

i )]Vij.

Having though the freedom to make redefinitions of phases as above, we can apply this to

the CKM matrix to eliminate phases and eventually see how many physical parameters we

actually need.

There are 2N phases leading to 2N−1 phase differences. The number of free parameters

can be determined by subtracting the number of the constraints coming from the unitarity

as well as the number of the phase differences from the total number of the real parameters:

nfree parameters = 2N2 −N2 − 2N + 1

= (N − 1)2. (2.41)
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These parameters can consist of rotation angles and complex phases.

Since the CKM matrix is a unitary matrix, there are (N2 − N)/2 constraints, which

involve the angles that describe the rotations among the N dimensions, which are the Euler

angles that we already mentioned earlier. We find the number of angles by subtracting from

the N2 real parameters the N normalization constraints and the (N2−N)/2 orthogonality

constraints:

nangles = N2 −N − 1

2
(N2 −N)

=
1

2
N(N − 1). (2.42)

The remaining parameters represent the number of complex phases:

nphases = nfree parameters − nangles

= (N − 1)2 − 1

2
N(N − 1)

=
1

2
(N − 1)(N − 2). (2.43)

Therefore, for an N×N unitary matrix, there are N(N − 1)/2 Euler angles, which describe

rotations between the N generations, and (N − 1)(N − 2)/2 complex phases.

Specifically, for the case of N = 2 generations, we obtain no complex phase and there

is only one parameter, which is the Cabibbo angle [56]. Here, we could not accommodate

CP violation through the quark-mixing matrix. On the other hand, moving to N = 3

generations, the 3×3 CKM matrix involves three Euler angles (real parameters) and a

single complex phase. This single complex phase allows us to accommodate CP violation.

The question is whether this phase is different from 0 (or π) or not but in principle, we

may have a CP-violating phase.

Kobayashi and Maskawa were the first who pointed this out in 1973, making a link to

the number of generations and the phenomenon of CP violation [57]. The main conclusion is

that a third generation would be needed in the SM. This is a crucial point for our existence,

as it is one of the requirements for the generation of the baryon asymmetry of the universe,

as proposed by the Sakharov conditions [16], already presented in Sec. 1. So, the counting

of the parameters may look simple but it has profound implications. In 2008, Kobayashi

and Maskawa were rewarded with a Nobel prize for their pioneering work.

Having presented the parameter counting, we discuss how we can parametrize the CKM

matrix. There is freedom of choosing different parametrizations. The one which is typically

used for applications in phenomenological studies is the one advocated by the Particle Data
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Group (PDG) [66]:

VCKM =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23e

iδ13 c23c13

 . (2.44)

This is the “standard parametrization”, where cij ≡ cos θij and sij ≡ sin θij and θij denote

the Euler rotation angles with i, j being the generation labels. The CKMmatrix is expressed

in terms of three Euler angles θ12, θ13 and θ23 and a complex phase δ13, which allows us to

accommodate the CP-violating phenomena in flavour-changing processes in the SM.10

2.4.2 Hierarchy of the CKM Matrix Elements

Looking at the CKM matrix, an interesting question comes up: what is the magnitude

of the CKM matrix elements? Does this matrix show any underlying patterns? In order

to answer this question, we can measure processes, which are governed by certain CKM

matrix elements, and can use them to determine these CKM factors. This procedure can

be quite involved, as hadronic physics enters as well as nuclear physics in some cases. For

an overview of these measurements, the reader is referred to the PDG Review in Ref. [66],

which provides the state-of-the-art status of these measurements. The data reveal a very

intriguing hierarchy, as illustrated in Fig. 4.

Wolfenstein introduced a parametrization to make this hierarchy explicit [69]. The steps

on how to obtain it and the framework of particularly including higher order corrections

are presented in Ref. [70]. We introduce a set of four new parameters, λ, A, ρ and η, and

we need to get back to the PDG parametrization. For this purpose, we use the following

relations:

s12 ≡ |Vus| = λ ≈ 0.22, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη). (2.45)

10We note that in the lepton sector, with the neutrino masses, we have a similar matrix, which is the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [67,68]. For three generations, it is written as:
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 ,

connecting the mass eigenstates (ν1, ν2, ν3) to their flavour eigenstates (νe, νµ, ντ ). The components Uαi

are the PMNS matrix elements. However, the hierarchy is very different than the CKM matrix. It does

not have the hierarchy structures of the quarks. Another tricky part is related to the parameter counting.

For instance, in the case of Majorana neutrinos, there may be two more phases in the PMNS matrix. This

is due to the fact that the states are real and hence have less phase freedom. Here, focusing on the quark

sector, we do not further elaborate on the leptonic mixing matrix.
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λ0 : 𝒪(1)

λ1 : 𝒪(10−1)

λ2 : 𝒪(10−2)
λ3 : 𝒪(10−3)(

d s b

u

c

t )𝒪(1)

𝒪(1)

𝒪(1)

𝒪(10−2 )

𝒪(10−3 )

𝒪(10−3 )

𝒪(10−1 )

𝒪(10−1 )

𝒪(10−2 )

Figure 4: Illustration of the hierarchy of the CKM matrix elements.

Here λ is an expansion parameter related to kaon decays, and more specifically from the

class of decays called semi-leptonic (a term that we will discuss in detail in Sec. 3.4). Now,

we only give the order of λ in Eq. (2.45). As λ is an important parameter, we will elaborate

more on it later in the thesis. The parameter η gives rise to an imaginary part, i.e. complex

CKM matrix elements.

We can now perform a Taylor expansion on every element of the CKM matrix in powers

of λ. Neglecting terms of O(λ4), yields

VCKM =


1− 1

2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.46)

which reflects the hierarchical structure of the CKM matrix elements in terms of order

of λ that we already presented in Fig. 4. As we can see, the transitions between the

same generation are governed by CKM matrix elements of O(1), hence transitions within a

family are strongly favoured. The transitions between the first and second generations are

suppressed by CKM factors ofO(10−1), thus by one power of λ. The transitions between the

second and third generation are suppressed by O(10−2), thus by two powers of λ. Finally,

transitions between the first and third generations are even more suppressed, by O(10−3),

so by at least three powers of λ. Consequently, it becomes clear that this Taylor expansion

is very useful in phenomenological applications. In terms of the experimental precision we

have nowadays, higher-order terms have to be included in the expansion [70].
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2.4.3 Additional requirements for CP violation

As we have already seen, within the SM, CP violation may arise in the Yukawa sector, as we

could have a complex phase in the CKM matrix. In order to have a non-vanishing phase,

at least three fermion generations are required. However, for observable effects violating

the CP symmetry, further requirements are needed.

Closer studies by Jarlskog [71] have shown that another criterion has to be satisfied,

which is related to the following parameter:

JCP = |ℑ(ViαVjβV ∗
iβV

∗
jα)|, (i ̸= j, α ̸= β). (2.47)

This “Jarlskog parameter” characterizes the strength of CP violation in the SM and is

invariant under phase transformations of the CKM matrix.

In particular, CP violation requires that the Jarlskog parameter is different from 0, thus

JCP ̸= 0. Applying the PDG parametrization, we obtain

JCP = s12s13s23c12c23c
2
13 sin δ13, (2.48)

and observe that this parameter is proportional to sin δ13. Indeed, for δ13 = 0 or π, JCP

would vanish and we would not have CP violation. In the Wolfenstein parametrization,

neglecting higher-order terms in λ, JCP takes the following form:

JCP = A2λ6η. (2.49)

So, JCP is proportional to η, which plays the role of the CP-violating weak phase in this case.

The experimental information implies that JCP is O(10−5), suggesting that CP violation is

a small effect.

In addition to the non-vanishing Jarlskog parameter, another condition that needs to

be satisfied in order to have CP violating effects is related to the quark masses and is the

following [71,72]:

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP ̸= 0. (2.50)

These mass factors reflect the feature that if any two quarks of the same charge had the

same mass, the CP-violating phase of the CKM matrix vanishes. This would be like the

case with two generations where the phase can be eliminated. We observe that CP violation

is closely linked to the hierarchy of masses and the number of fermion generations. A better

fundamental understanding of the origin of CP violation in the SM suggests a connection

to the hierarchy in the CKM matrix but it is challenging.

We observe that within the SM, CP violation is a small effect and hence, difficult to

measure. It indeed took until 1964 and came as a surprise to reveal CP violation in the
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neutral kaon system, described by an observable εK [73]. This phenomenon was discovered

through the observation of KL → π+π− decays. It is a manifestation of indirect CP

violation, a term that we will discuss in Sec. 4. In 1999, a non-vanishing value of a quantity

called Re(ε′K/εK) was established [74, 75], characterising CP violation arising directly at

the decay amplitude level of the neutral kaons. CP violation was also observed in the B

meson system in 2001 by the BaBar and Belle experiments [76,77]. It was established in the

B0
d → J/ψKS decay. Here we have a large CP asymmetry of about 70%, thus suggesting a

large effect. However, the decay rates are still small at the order of O(10−4), showing again

that observing CP-violating phenomena is indeed difficult. In 2019, CP violation was also

finally established in the neutral charm system, through the measurement of the difference

between the CP asymmetries of D0 → K+K− and D0 → π+π− channels by the LHCb

Collaboration [78].

2.5 Unitarity Triangles

The unitarity of the CKM matrix, characterised by Eq. (2.37), requires that the rows and

the columns must be orthogonal and normalised. This gives rise to nine relations [79].

Three of them are the normalisation relations, referring to the diagonal elements:

VudV
∗
ud + VusV

∗
us + VubV

∗
ub = 1, (2.51)

VcdV
∗
cd + VcsV

∗
cs + VcbV

∗
cb = 1, (2.52)

VtdV
∗
td + VtsV

∗
ts + VtbV

∗
tb = 1. (2.53)

The other six are the orthogonal relations, corresponding to the non-diagonal elements:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (2.54)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (2.55)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.56)

VcdV
∗
ud + VcsV

∗
us + VcbV

∗
ub = 0, (2.57)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0, (2.58)

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0. (2.59)

These orthogonality relations have the structure of the sum of three complex numbers

adding up to zero, which can be represented in the complex plane as triangles.

We can now apply the Wolfenstein parametrization and explore the magnitude of the

CKM matrix elements in powers of λ, thus check how these triangles would look like [80].
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Figure 5: The two non-squashed triangles of the CKM matrix [80]. The left one represents

the “unitarity triangle” with the apex given by (ρ̄, η̄), as defined in the text, while the right

one is shifted by δγ and the apex is given by (ρ, η).

Eqs. (2.56) and (2.59) are the only two cases that refer to triangles with all three sides of

the same order of magnitude, thus the only non-squashed triangles. In the remaining four

equations, the three terms in the sum are characterised by different powers of λ, thus there

is always one side which is suppressed with respect to the others.

Let us elaborate a bit more on the non-squashed triangle relations:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.60)

VtdV
∗
ud + VtsV

∗
us + VtbV

∗
ub = 0. (2.61)

At leading non-vanishing order, the two non-squashed cases agree with each other, thereby

describing the same triangle, which would be the “unitarity triangle”. However, including

higher order terms in the Wolfenstein expansion, a small difference of O(λ2) rises between

them. One of these relations is then the “unitarity triangle” in the complex plane:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.62)

This is the one that the basis agrees with the real axis. So, one is constructed in a way that

the basis is still aligned with the real axis while the other one is shifted by a tiny δγ = −λ2η
angle with respect to the real axis. An illustration is given in Fig. 5, which is presented in

Ref. [80].

Let us introduce the sides and the angles of the “unitarity triangle”, which is again

shown in Fig. 6. One side of the triangle points along the real axis, having unit length by

definition. The other two sides are [81]:

Rb ≡ |VudV ∗
ub/VcdV

∗
cb| =

(
1− λ2

2

)
1

λ

∣∣∣∣VubVcb

∣∣∣∣ =√ρ̄ 2 + η̄ 2 , (2.63)
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Figure 6: Illustration of a global analysis of the UT in the ρ̄ − η̄ plane by the CKM

Collaboration [82].

Rt ≡ |VtdV ∗
tb/VcdV

∗
cb| =

1

λ

∣∣∣∣VtdVts
∣∣∣∣ [1− λ2

2
(1− 2ρ̄)

]
+O

(
λ4
)
=
√

(1− ρ̄)2 + η̄ 2, (2.64)

which we will discuss in detail in Sec. 3.4.2. The apex is given by (ρ̄, η̄), with

ρ̄ = ρ

(
1− 1

2
λ2
)
, η̄ = η

(
1− 1

2
λ2
)
, (2.65)

where ρ, η and λ are the Wolfenstein parameters. The three angles of the triangle are

defined as

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
(2.66)

and are convention-independent observables.

We can determine the UT using experimental data for appropriate observables and

convert them, with application of theory and assuming the SM, into contours in the ρ̄− η̄

plane. If we had only the SM, all these contours should intersect in one point, the apex of

the UT. If we had NP, we should expect discrepancies. An illustration of these contours

and the corresponding UT are illustrated in Fig. 6, where we see a CKM global fit [82].
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For completeness, we briefly mention here where these contours come from. The in-

direct CP violation in the neutral kaon system with the εK parameter can be converted

into a hyperbola in the ρ̄ − η̄ plane (Sec. 3.4.2). The |Vub| (and |Vcb|) matrix element,

determined by B decays (Sec. 3.4.1), as well as the parameters ∆md and ∆ms, which are

mass differences related to the phenomenon called neutral B meson mixing (Sec. 3.1), lead

to contours that allow the determination of the sides Rb and Rt. CP-violating observables

from the B0
d → J/ψKS decay allow the extraction of the sin 2β and hence the β angle. Sim-

ilarly, measurements of CP-violating effects in B meson decays are converted into direct

information on the angles α and γ (Sec. 6), allowing their determination.

A key goal is to overconstrain the UT, adding more and more constraints. When adding

these constraints, validity of the SM is assumed. Should there be NP entering, then we

would expect discrepancies. Looking at the current data, the apex is already impressively

constrained and the picture looks consistent within the uncertainties. However, there is

still a lot of room for improvement. Subtleties already arise which have to be included, and

this will also be important while moving towards higher precision in the future. Currently

we have for certain CKM parameters discrepancies between different determinations, which

play key role in this thesis. Therefore, a careful analysis of the UT is needed and we will

explicitly study the topic in Sec. 3.4.2.

2.6 Summary

In this chapter, we have set the stage for investigating the quark flavour sector. Beginning

with an overview of the SM framework and discussing the corresponding Lagrangian, we

introduced the concept of CP symmetry violation and discussed the CKM mechanism,

which gives rise to CP violation in the SM. An essential point is the intriguing hierarchical

structure characterising the CKM matrix, as determined by experimental measurements.

Associated to the CKM matrix are the corresponding unitarity triangles, which play an

important role in our studies. We have thoroughly introduced the properties of the UT

in this chapter. Discrepancies arise between different determinations for certain CKM

parameters. Therefore, a careful analysis of the UT is needed in order to unravel the

implications of these deviations, which will be presented in Sec. 3.4.2.

With the framework now established, we proceed to investigate the dynamics of the B

meson system in Chapter 3. B decays govern the sector of quark flavour physics, therefore

the main focus of this thesis is the exploration of the topic of CP violation and searches of

NP through benchmark B transitions.
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3 B Meson System

In our studies, we focus on decays of B mesons, which are hadronic bound states of an

anti-b quark and a light quark. The B-meson system includes both charged and neutral B

mesons. The quark content of the different B mesons is given in Table 1. We note that

from the charged mesons, we only use those with the u quark in the present work, while we

do not study the mesons with the c quark, which are less frequently produced at the LHC.

Regarding neutral B mesons, as we will discuss in detail in Sec. 5, an important feature

is B0
q–B̄

0
q mixing, where q represent the d and s quarks. Thanks to this phenomenon,

B0
q and B̄0

q may transition into each other (so-called flavour-oscillation) before decaying

into a final state f or its CP-conjugate state f̄ , thereby leading to interesting quantum

mechanical phenomena. Decay-time dependent oscillations can give rise to very intriguing

interference effects, also including CP violation. An illustration of neutral B meson mixing

and interference effects is given in Fig. 7.

Key aspect of this thesis is to test the SM through its flavour sector, accommodating

CP violation and searching for physics beyond the SM. In this respect, B mesons are

the main players. B mesons are hadronic states, so there are no free b quark decays.

The quarks are confined inside the hadrons, bound by the exchange of soft gluons. As

we are interested in a clean extraction of electroweak (EW) information on CKM matrix

elements and CP asymmetries, hadronic interactions cause complications. For studies of

CP violation, resolving the hadronic uncertainties are a key part of the analysis.

Decades of research have suggested beautiful strategies, which allow us to control these

uncertainties. Benchmark processes permit us to determine the underlying EW physics even

in a theoretically clean way. The B-meson system is very favourable in this sense. More

specifically, there are two ways to handle these hadronic terms. Firstly, in one strategy, there

are decays where hadronic matrix elements cancel out in the CP asymmetries. Secondly, in

another strategy, there are cases where we can use experimental data in order to determine

the hadronic parameters. In addition, from the point of view of strong interactions, the

B meson is considered to be “heavy”. This leads to certain simplifications, and flavour

symmetries of strong interactions can also be utilised in this case.

Due to all these very interesting features of the B-meson system, big experimental

efforts have been made, also to unveil and explore CP violation. Major “players” in the

beginning were ARGUS at DESY [83–85], as well as CLEO at Cornell [86–88] later, while

the 2000-2010 decade was governed by the e+e− B factories built at SLAC with the BaBar

experiment [76,89], and at KEK with the Belle detector [77,90]. The phenomenon of B0
s–B̄

0
s
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Mesons Quark content Mesons Quark content

B+ ub B0
d db

B− ub B̄0
d db

B+
c cb B0

s sb

B−
c cb B̄0

s sb

Table 1: Quark content of B mesons.

Figure 7: Oscillations between B0
q and B̄0

q before decaying into the final state f (left plot)

and the CP-conjugate final state f̄ (right plot). The mixing phenomenon generates inter-

ference effects between different decay processes.

mixing was discovered in 2006 by Tevatron with CDF [91,92] and D0 experiments [93,94].

LHC has also a very rich B-physics programme, in particular the LHCb experiment [95],

but also ATLAS [96] and CMS [97] can look at specific B-meson decays. The new feature

offered by the LHC are studies of the Bs system, complementing the physics of BaBar and

Belle. Nowadays, it is mostly in the “hands” of LHCb and Belle II and future upgrades,

to further explore the B system and to offer a window towards the SM. Further exciting

options may arise at the FCC-ee collider (for an overview the reader is referred to Ref. [98]).

3.1 The Phenomenon of B0
q–B̄

0
q Mixing

Let us have a closer look at B0
q–B̄

0
q mixing. This phenomenon describes the fact that

neutral B meson oscillates between its matter and antimatter counterpart before it decays.

Within the SM, the mixing is described by loop diagrams, called box topologies, illustrated

in Fig. 8. Here, we discuss the formalism of the neutral B-meson mixing. For a detailed

review, the reader is referred to Ref. [66] and references therein. We mostly follow Ref. [99]

and the lectures notes presented in Ref. [100].
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Figure 8: Box diagrams contributing to B0
q–B̄

0
q in the SM.

3.1.1 Formalism of B0
q–B̄

0
q Mixing

Let us assume that we have a B0
q -meson state at time t = 0. Here, for simplicity, we refer to

the B0
q state simply as B0. Any differences between Bs and Bd, will be explicitly denoted

by the corresponding quark label. Due to the time evolution, the initial B0 state evolves

into the following linear combination:

|B(t)⟩ = a(t)
∣∣B0
〉
+ b(t)

∣∣B̄0
〉
, (3.1)

where the states |B0⟩ and
∣∣B̄0
〉
have the same mass and a(t), b(t) are time-dependent

coefficients. Introducing B(t) as a state vector:

B(t) =

 a(t)

b(t)

 , (3.2)

in the subspace of B0 and B̄0 and following Schrödinger equation, we obtain:

i
dB

dt
= HB =⇒ i

d

dt

 a(t)

b(t)

 = H

 a(t)

b(t)

 . (3.3)

The Hamiltonian H is a 2× 2 matrix, which can explicitly be written in terms of the mass

matrix M and the decay matrix Γ as follows:

H =M − i

2
Γ =

M11 − i
2
Γ11 M12 − i

2
Γ12

M21 − i
2
Γ21 M22 − i

2
Γ22

 . (3.4)

The next step is to solve the Schrödinger equation by calculating the eigenvalues and

the eigenstates. We consider the equation for the determinant:∣∣∣∣∣∣M − i
2
Γ− κ M12 − i

2
Γ12

M∗
21 − i

2
Γ∗
21 M − i

2
Γ− κ

∣∣∣∣∣∣ = 0, (3.5)
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leading to the eigenvalues κ±:

κ± =M − i

2
Γ±

√
(M12 −

i

2
Γ12)(M∗

21 −
i

2
Γ∗
21). (3.6)

The eigenstates |BH⟩ and |BL⟩, where H stands for “heavy” and L for “light”, are written

as follows:

|BH⟩ = p
∣∣B0
〉
+ q

∣∣B̄0
〉
, (3.7)

|BL⟩ = p
∣∣B0
〉
− q

∣∣B̄0
〉
, (3.8)

where the p and the q are determined by solving: M − i
2
Γ M12 − i

2
Γ12

M∗
21 − i

2
Γ∗
21 M − i

2
Γ

 p

q

 = κ±

 p

q

 . (3.9)

Consequently, we obtain the ratio:

q

p
= ±

√
M∗

21 − i
2
Γ∗
21

M12 − i
2
Γ12

, (3.10)

where we consider |q/p| = 1, so choosing a convention where CP |B0⟩ =
∣∣B̄0
〉

3.1.2 Expressions for the Time Evolution

The time-dependent mass eigenstates can be writtten as

|BH(t)⟩ = e−imH t−
1
2
ΓH t |BH(0)⟩ = e−imH t−

1
2
ΓH t(p

∣∣B0
〉
+ q

∣∣B̄0
〉
), (3.11)

|BL(t)⟩ = e−imLt−
1
2
ΓLt |BL(0)⟩ = e−imLt−

1
2
ΓLt(p

∣∣B0
〉
− q

∣∣B̄0
〉
), (3.12)

where the decomposition of the states |B0⟩ and
∣∣B̄0
〉
is:∣∣B0

〉
=

1

2p
(|BH⟩+ |BL⟩) , (3.13)

∣∣B̄0
〉
=

1

2q
(|BH⟩ − |BL⟩) . (3.14)

Combining the above expressions, we obtain:∣∣B0(t)
〉
=

1

2p

[
e−imH t−

1
2
ΓH t(p

∣∣B0
〉
+ q

∣∣B̄0
〉
) + e−imLt−

1
2
ΓLt(p

∣∣B0
〉
− q

∣∣B̄0
〉
)
]

=
1

2

(
e−imH t−

1
2
ΓH t + e−imLt−

1
2
ΓLt
) ∣∣B0

〉
+

q

2p

(
e−imH t−

1
2
ΓH t − e−imLt−

1
2
ΓLt
) ∣∣B̄0

〉
.

(3.15)
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Introducing the functions

g+ =
1

2

(
e−imH t−

1
2
ΓH t + e−imLt−

1
2
ΓLt
)
, (3.16)

g− =
1

2

(
e−imH t−

1
2
ΓH t − e−imLt−

1
2
ΓLt
)
, (3.17)

we can rewrite |B0(t)⟩, and in a similar way
∣∣B̄0(t)

〉
, in a more compact way:∣∣B0(t)

〉
= g+(t)

∣∣B0
〉
+ g−(t)

q

p

∣∣B̄0
〉
, (3.18)

∣∣B̄0(t)
〉
= g−(t)

p

q

∣∣B0
〉
+ g+(t)

∣∣B̄0
〉
. (3.19)

Denoting the following combination of heavy and light masses as M and the combination

of heavy and light decay rates as Γ:

M = (mH +mL)/2, (3.20)

Γ = (ΓH + ΓL)/2, (3.21)

while the difference between heavy and light masses as ∆m and the difference between light

and heavy decay rates as ∆Γ:

∆m = mH −mL, (3.22)

∆Γ = ΓL − ΓH , (3.23)

the functions g+ and g− are rewritten as follows:

g+ =
1

2
eiMte−Γt/2

(
ei

1
2
∆mt e−

1
4
∆Γt + e−i

1
2
∆mt e

1
4
∆Γt
)
= e−Γt/2

(
ei∆mt/2 + e−i∆mt/2

2

)
, (3.24)

g− =
1

2
eiMte−Γt/2

(
ei

1
2
∆mt e−

1
4
∆Γt − e−i

1
2
∆mt e

1
4
∆Γt
)
= e−Γt/2

(
ei∆mt/2 − e−i∆mt/2

2

)
. (3.25)

In the last equation, for simplicity, we assumed the B0
d system, where the decay rate differ-

ence is tiny, thus ∆Γd ≈ 0. Due to this, we could choose a phase convention that allowed

us to remove the factor eiMt. For the Bs system though, the ∆Γs is sizeable.

Consequently, for the simplified case of B0
d meson, we write:

g+ = e−Γt/2 cos
∆mt

2
, (3.26)

g− = e−Γt/2 i sin
∆mt

2
, (3.27)
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we finally obtain the expressions for the time evolution of the B0 and B̄0: 11

∣∣B0(t)
〉
= e−Γt/2

(
cos

∆mt

2

∣∣B0
〉
+ i sin

∆mt

2

q

p

∣∣B̄0
〉)

, (3.28)

∣∣B̄0(t)
〉
= eΓt/2

(
−i sin ∆mt

2

p

q

∣∣B0
〉
+ cos

∆mt

2

∣∣B̄0
〉)

. (3.29)

We will utilise these time-dependent vector states later in this thesis to calculate the time-

dependent decay rates and observables.

Having set up the formalism, let us now discuss the parameters which are related to the

mixing phenomenon and which also play important role in our studies.

3.1.3 Mixing Parameters

Associated to the mixing effects are the phases ϕd and ϕs for the Bd and the Bs meson

system, respectively, as well as the mass difference ∆mq (q ∈ {u, s}) and the decay width

difference ∆Γq, which were introduced in Eqs. (3.22) and (3.23).

The SM expressions for the mixing phases, originating from box topologies (shown in

Fig. 8), are:

ϕSM
d = 2β = 2arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
= 2 tan−1

(
η̄

1− ρ̄

)
, (3.30)

ϕSM
s = −2δγ = −2arg (VtsV

∗
tb) ≈ −2λ2η̄ +O(λ4) , (3.31)

We highlight that the ϕSM
d phase is related to the 2β UT angle, defined in Sec. 2.5. We also

note that for the ϕSM
s phase, the dependence on the apex of the UT is doubly Cabibbo-

suppressed due to the λ2 term. These phases are measured through CP violating processes,

which we will discuss in more detail in the next Chapters.

Regarding the mass difference, we have the relation:

∆mq = 2 |M q
12| , (3.32)

where in the SM the mass element M q
12 is given as [101]:

|M q
12|

SM =
G2

Fm
2
W

12π2
mBq |VtqVtb|

2 S0(xt) η2BB̂Bqf
2
Bq . (3.33)

Here, GF is the Fermi constant, mW is theW mass, mBq is the Bq mass, S0(xt) is the Inami–

Lim function [102] describing the top quark mass dependence, η2B is a short-distance QCD

11In an analogous way, we would work for the case of the B0
s system. The only difference is that in the

expressions of g±, we would not be able to set ∆Γ to zero.
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correction factor [103,104], B̂Bq is the renormalisation group invariant bag parameter, and

fBq is the Bq decay constant. Since

|M q
12|SM ∝ |VtqVtb|2, (3.34)

we can rewrite the CKM matrix elements in terms of the UT apex and the experimental

inputs. Using the Wolfenstein parametrisation [69,70], we have for q = d:

|VtdVtb| = λ|Vcb|
√
(1− ρ̄)2 + η̄ 2 +O

(
λ7
)
, (3.35)

= λ|Vcb|
√
1− 2ρ̄+R2

b (3.36)

= λ|Vcb|
√

1− 2Rb cos γ +R2
b +O

(
λ7
)
, (3.37)

where we have used R2
b = ρ̄2+ η̄2 and ρ̄ = Rb cos γ, following the definitions in Sec. 2.5. We

note that |VtdVtb|, hence ∆mSM
d , depends at leading order on ρ̄ and η̄. On the other hand,

for q = s we have:

|VtsVtb| = |Vcb|
[
1− λ2

2
(1− 2ρ̄)

]
+O

(
λ6
)
, (3.38)

= |Vcb|
[
1− λ2

2
(1− 2Rb cos γ)

]
+O

(
λ6
)
, (3.39)

where |VtsVtb|, hence ∆mSM
s depends on UT at next-to-leading order in λ.

All these relations will be very useful in our numerical analysis, allowing us to get

clean SM predictions for the mixing parameters (Sec. 5.4). This is closely linked to the

determination of the UT apex as we will discuss in Sec. 3.4.2. In addition, clean SM results

will help us to explore how much space is still left for NP, as we will present in Chapter 5.

3.2 Weak Decays

Let us now move on to the discussion of the B-meson transitions. As we know, hadrons

decay via the weak interactions. Before discussing specific decays, we firstly introduce the

theoretical tools that we utilise in our analysis and discuss the different categories of the

B-meson decays.

Interactions are represented by Feynman diagrams. These diagrams are powerful tools,

which allow us to have an intuitive description of decay processes by converting them into

mathematical expressions for quantum field theory calculations. Two different topologies

contribute to these decays, allowing us to categorize them into different classes of Feynman

diagrams: “tree” and “penguin” (loop) topologies, as shown in Fig. 9.
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Figure 9: Examples of decay topologies: tree (left), penguin (middle) and box (right).

We mention that there are decays that arise at the tree level at the leading order. On

the other hand, there are transitions, especially those coming from flavour-changing neutral

currents, which in the SM do not arise at the tree level because of the GIM mechanism [3],

but may emerge at the loop level. In addition, there are cases where both trees and

penguins can contribute but the tree contribution is suppressed via a tiny CKM factor,

therefore playing a less important role than the penguins at lowest order. Other examples

are “annihilation” and “exchange” topologies, which are actually types of tree topologies,

as well as “box” topologies. The latter fall under the category of the loop diagrams and

can, for instance, arise along with EW penguins. Fig. 9 provides an illustration of the main

categories we listed here, to give an impression of how these topologies look like.

Classifying according to the final state of the decays, there are three different categories:

the leptonic, the semileptonic and the non-leptonic decays. In the following Sections, we

will explicitly discuss the different dynamics of these decays and illustrate the corresponding

Feynman diagrams. Let us firstly present the way to simplify the weak decays calculations

and then specifically discuss the formalism of the three different decay classes.

3.2.1 Theoretical tools

Starting point of any analysis is to calculate the amplitude of the weak decays of B mesons.

We have to deal with EW interactions, governed by exchanges ofW and Z bosons, occuring

at the EW scale, thus corresponding to O(100 GeV), as well as with processes which are

governed by energies of the decaying b quark, which has a mass of about 5 GeV. The various

energy scales characterising the B meson decays suggest that different aspects of QCD are

probed. Therefore, in order to be able to calculate the decay amplitudes at all energy

regimes, it is essential to construct effective field theories.

One can apply an effective field theory picture by integrating out the heavy degrees

of freedom. Low energy-effective Hamiltonians describe the given decays. These effective
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Hamiltonians involve operators and their corresponding coefficients. As we will see in the

following sections, the effective theory is a very powerful tool both in the SM (particularly

for QCD corrections in the category of the non-leptonic decays) and for NP studies. Con-

cerning the latter, effective Hamiltonians provide an efficient way for accounting NP effects

by simply adding new operators into the equation, and allowing short-distance coefficients

of SM operators to take values deviating from the SM.

Consequently, the effective theory approach has two aspects. The first one is to integrate

out the heavy degrees of freedom and to have a description of low-energy processes, allowing

us to look at different quark-level transitions and write the corresponding operators for that.

The second one is to generalise the theory in order to include possible NP contributions. In

the case of extensions of the SM, we examine whether new operators emerge (or not). This

allows us to deal with NP in a model-independent way, thus without specifying a model.

However, if we assume specific NP scenario, one could express the Wilson coefficients in

terms of the parameters of the new theory. Keeping these in mind, we now move on and

discuss in practice how we apply these effective theories, introducing each one of the three

different decay classes separately.

3.3 Leptonic Decays

From the point of view of strong interactions, the simplest class is given by the leptonic

decays. In these channels, only leptons appear in the final state, such as B− → ℓν̄, where

ℓ = e, µ or τ . The Feynman diagram that describes this process is illustrated12 in Fig. 10.

In the SM, the quarks of the decaying hadron annihilate into aW boson. These decays have

the simplest hadronic structure, since there are no hadrons in the final state. Here, we first

discuss these charged leptonic channels. We also note that there are neutral leptonic decays

of the kind B0
q → ℓ+ℓ−. However, these channels have different dynamics (loop processes)

and we explore them separately. We will explicitly study B0
q → µ+µ− in Chapter 8.

3.3.1 The Decay Amplitudes and Decay Rates

Applying the Feynman rules, the Feynman diagram contributing in the SM, shown in

Fig. 10, can be converted into a mathematical expression for the transition amplitude.

Thus, we write the amplitude for this decay as follows [99]:

A(B− → ℓν̄) = − g22
8
Vub[ūℓγ

α(1− γ5)vν ]

[
gαβ

k2 −M2
W

]
⟨0|ūγβ(1− γ5)b|B−⟩, (3.40)

12We also show the interior gluons in the Feynman diagram.
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ℓ

ℓ

Figure 10: Topology for the B-meson leptonic decay in the SM.

where we have two parts: the Dirac spinors for the outgoing leptons, representing the spinor

fields of the fermions as described by the Dirac equation, and the hadronic matrix element,

encoding the physics of strong interactions. Therefore,

Dirac spinors: ūℓγ
α(1− γ5)vν ,

hadronic matrix element: ⟨0|ūγβ(1− γ5)b|B−⟩.

Furthermore, g2 is the gauge coupling of the SUL(2)
13, Vub is the corresponding CKM

matrix element, k is the four-momentum carried by W , MW is the W mass and α and β

are Lorentz indices. Due to the fact that k2 =M2
B ≪M2

W , we can write

1

k2 −M2
W

−→ − 1

M2
W

≡ −
(

8GF√
2g22

)
. (3.41)

“Integrating out” the heavy W boson, Eq. (3.40) is rewritten as:

A(B− → ℓν̄) =
GF√
2
Vub [ūℓγ

α(1− γ5)vν ] ⟨0|ūγα(1− γ5)b|B−⟩, (3.42)

where we used gαβγ
β = γα. The hadronic matrix element includes all the hadronic physics.

There are no other QCD effects from strong interactions in the final state. The matrix

element can be parametrised as

⟨0|ūγα(1− γ5)b|B−⟩ = ⟨0|ūγαγ5b|B−⟩ = ifBqα, (3.43)

where fB is the B-meson decay constant, an important input for phenomenological studies

that we will explore further later in our analysis, and qα the four momentum of the decaying

meson. We note that

⟨0|ūγαb|B−⟩ = 0 (3.44)

13The gauge coupling of the SUL(2) is already introduced in Sec. 2.2.2. Here, to be consistent with the

notation in Ref. [99], we denote it as g2.
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since the B− meson is a pseudoscalar particle.

Having the transition amplitude available, we can calculate the decay rate Γ. The decay

rates describe decay probabilities, and are proportional to the squared decay amplitudes.

In order to derive the decay rates, we have to perform the corresponding phase-space

integration over all components of pℓ and pν
14, denoting the momenta of the lepton and

neutrino, respectively:

Γ =

∫
d3pℓ

(2π)32Eℓ

d3pν
(2π)32Eν

(2π)4

2EB
δ4(pB − pℓ − pν)

∣∣A(B− → ℓν̄)
∣∣2 . (3.45)

The Eℓ,ν,B terms denote the energy of the particles and the four dimensional delta function

ensures the energy-momentum conservation.

Now, we can also write the expression for the branching ratio, which is defined as:

B(B− → ℓ−ν̄ℓ) = Γ(B− → ℓ−ν̄ℓ) τB− , (3.46)

where τB− is the lifetime of the B− meson. In the SM, this quantity, which measures the

probability that a B− meson decays into the final state ℓ−ν̄ℓ, takes the following form [105]:

B(B− → ℓ−ν̄ℓ)|SM =
G2

F

8π
|Vub|2MB−m2

ℓ

(
1− m2

ℓ

M2
B−

)2

f 2
B−τB− . (3.47)

We note that the mass of the neutrino has been neglected. We highlight the fact that the

branching ratio is proportional to the squared lepton mass, indicating helicity suppression.

What values do we obtain for the branching ratios of the leptonic B decays? Before

answering this question, let us note/summarise here some key points for these transitions.

The leptonic decays of charged B mesons are CKM-suppressed in the SM due to the tiny

value of |Vub| which is proportional to the term λ3. In addition, they are helicity suppressed

since the SM contribution to the decay amplitude is proportional to the square of the mass

of the lepton. The hierarchy of the masses of the electrons, muons and taus is also to be

considered. Due to these reasons, for transitions with muonic and electronic modes, we

obtain very small SM branching ratios, O(10−7) and O(10−10), respectively.

More specifically, the decays with muons in the final state have been observed, and for

the B− → µ−ν̄µ channel the measured branching fraction is [106]:

B(B− → µ−ν̄µ) = (6.46±2.22(stat)±1.60(syst))×10−7 = (6.46±2.74(tot))×10−7, (3.48)

while for electrons only an upper bound is available [107]:

B(B+ → e+νe) < 9.8× 10−7. (3.49)

14We note that in order to derive the decay rates, we apply Dirac algebra relations, summing over the

spins of the leptons in the final state and neglecting the neutrino masses.
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The large mass of the tau makes the helicity suppression ineffective in the B− → τ ν̄

decays. However, the challenging τ reconstruction makes this mode difficult to handle

from an experimental point of view. Nevertheless, data for this channel have already been

reported and the corresponding branching fraction is [108]:

B(B− → τ ν̄) = (1.79+0.56
−0.49(stat)

+0.46
−0.51(syst))× 10−4. (3.50)

Considering effects from beyond the SM, NP may lift the helicity suppression, as we will

discuss for neutral leptonic B decays in Sec. 8. Detailed discussions of specific constraints

on NP and SM predictions as well as interpretations in the searches of NP and comparisons

with the SM can be found on Ref. [105].

3.3.2 The Effective Hamiltonian within the SM and beyond

Let us now focus on how the low-energy effective Hamiltonian arises and analyze the pro-

found feature of integrating out the very heavy W boson. We will show in practice how we

make the transition from the full to the effective theory.

Working again with the B− → ℓν̄ decay, we guide the way towards the theoretical tools

that we apply and which we briefly introduced in the previous Section. The starting point

is the Feynman diagram that describes this process in the “full theory”, which is illustrated

on the left-hand side of Fig. 11. In the “effective theory”, we integrate out the W boson

and the propagator is contracted to a point, illustrated by a blob here. In a more formal

way, we can describe the process by a 4-Fermi operator. As a historical point, we mention

that Fermi did not know where suc operators came from, studying the nuclear β decay in

1933 [109] . However, nowadays, we know that the origin of the charged-current operator

is in the exchange of a W boson, within the SM. Hence we can resolve what it is happening

in this blob, which is illustrated in the diagram on the right-hand side of Fig. 11.

Therefore, at low energy scale we simplify the theory, as certain degrees of freedom can

be integrated out. We highlight again that this is the effective description of a B meson

decay, mediated by the very heavy W boson and this works because the energy release of

the decaying b quark is much smaller than the W mass.

This effective theory description leads to the following effective Hamiltonian in the SM,

which is constructed in such a way that the transition amplitude we presented above can

be calculated through a matrix element of the following Hamiltonian [105]:

Heff =
4GF√

2
Vqb
[
CVLOℓ

VL

]
+ h.c. , (3.51)

where the four-fermion operator is given by

Oℓ
VL

= (q̄γµPLb)(ℓ̄γµPLνℓ), (3.52)
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Figure 11: Illustration of going from the “full theory” to an “effective theory”, integrating

out the W boson.

where q = u and we define PL ≡ (1− γ5)/2. Thus, there is only one operator contributing

in the SM.

This concept is very powerful, and even though it might look unnecessarily complicated

for the case of the SM Hamiltonian where only one operator contributes, it becomes very

important in the case where we allow for NP effects. Therefore, if we go beyond the SM

and assume that we have NP entering far above the EW scale, we can integrate out these

heavy NP particles in an analogous way as we integrated out the heavy W boson.

Then we can write the Hamiltonian including NP effects. Here, as an example, we

examine the case of NP contributions on (Pseudo-)Scalar operators. The reason to focus

on new (Pseudo-)Scalar contributions is due to the interesting point that they could in

principle lift the helicity suppression, thereby enhancing the branching ratio. In general

though, the Hamiltonian could have more operators.15. Therefore, for our specific example

here, following from Eq. (3.51), we obtain

Heff =
4GF√

2
Vqb
[
CVLOℓ

VL
+ Cℓ

SOℓ
S + Cℓ

POℓ
P

]
+ h.c. , (3.53)

where again q = u and the following four-fermion operators arise:

Oℓ
S = (q̄b)(ℓ̄PLνℓ), (3.54)

Oℓ
P = (q̄γ5b)(ℓ̄PLνℓ), (3.55)

which we do not have in the SM. Therefore, the corresponding Wilson coefficients in the

SM take the values CVL = 1, Cℓ
S = 0, Cℓ

P = 0. The coefficients Cℓ
S, C

ℓ
P allow model-

15Here, for the charged leptonic Hamiltonian in Eq. (3.53), we only show the left-handed current-current

operators and the new (Pseudo-)Scalar ones. However, there could be more, such as the right-handed

operators. Similarly, we can write the Hamiltonian for the neutral neutral leptonic decays, which we will

explicitly show and discuss in Chapter 8, (where the right-handed operators will be denoted as primed).

More details can be found in Ref. [110].
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independent studies of such decays. Moreover, in case of having a specific model, one could

calculate these coefficients and express them in terms of parameters of this model. So, we

have presented a theoretical framework which is very powerful, especially for NP studies,

and which we will use throughout this thesis.

3.3.3 Note: What About Neutral Leptonic B0
q → ℓ+ℓ− Decays?

So far, we have discussed the case of charged leptonic decays, which are caused by flavour-

changing charged-current interactions. However, the neutral leptonic decays, rising from

flavour-changing neutral currents, are also very interesting and powerful. The neutral ones

have different dynamics, not arising at the tree level in the SM but only from loop processes,

and are very rare processes. However, they do have similar features. In our studies the rare

leptonic transitions are key players and we discuss them in detail in Chapter 8, highlighting

the points of the helicity suppression and the structure with the B(s) decay constant, where

all hadronic physics is encoded since, as we have already mentioned, gluons do not couple

to the leptonic final states.

3.4 Semileptonic Decays

In this decay class, both leptons and hadrons appear in the final state. The general structure

is more complicated. Here, both the initial and the final states involve the binding of

hadrons. There are also strong interactions between the initial and final state particles.

Let us consider now semileptonic decays like B̄0
d → D+ℓνℓ, illustrated in Fig. 12, where

we also show gluons, which are responsible for hadronic binding and hadronic effects. Start-

ing from the Feynman diagrams of the b→ c case, we write the decay amplitude in a similar

way as in the leptonic case [99]:

A(B̄0
d → D+ℓνℓ) = − g22

8
Vcb[ūℓγ

α(1− γ5)vν ]

[
gαβ

k2 −M2
W

]
⟨D+|c̄γβ(1− γ5)b|B̄0

d⟩ (3.56)

=
GF√
2
Vcb [ūℓγ

α(1− γ5)vν ] ⟨D+|c̄γα(1− γ5)b|B̄0
d⟩, (3.57)

utilising again that k2 ∼ M2
B ≪ M2

W . Taken that ⟨D+|c̄γαγ5b|B̄0
d⟩ = 0, since both D+ and

B0
d are pseudoscalar particles, the transition matrix element can be written as follows [99]:

⟨D+(k)|c̄γαb|B̄0
d(p)⟩ = F1(q

2)

[
(p+ k)α −

(
M2

B −M2
D

q2

)
qα

]
+ F0(q

2)

(
M2

B −M2
D

q2

)
qα,

(3.58)

where q ≡ p−k. The quantities F1(q
2) and F0(q

2) are form factors of the B̄ → D transitions.

The form factors are non-perturbative objects and, as a result, we cannot calculate them
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ℓ

ℓ

Figure 12: Topology for semileptonic B-meson decays in the SM.

in perturbation theory. We notice that in the semileptonic decays, the hadronic matrix

element involves two form factors while in the leptonic case the matrix element depends

only on one decay constant. Therefore, due to these hadronic form factors in the transition

amplitude calculation, the structure of the semileptonic decays is more complicated than

the leptonic case. We note that the following normalisation condition [111] holds, which

can be generalised for all B → P transitions, where P denotes a pseudoscalar meson:

FB→P
1 (0) = FB→P

0 (0). (3.59)

This is an important point that we will use for our calculations in the next Chapters.

Having calculated the decay amplitude, we can obtain the expressions for the differential

decay rate, which leads to the full branching ratio once we integrate over q2. So, for the

B → Dℓν̄ℓ transition, assuming again the SM, the differential decay rate can be written in

the following form [111–114]:

dΓ(B → Dℓν̄ℓ)

dq2
=

G2
F |Vcb|

2

192 π3m3
B

q2 −m2
ℓ

(q2)2

[
(q2 −m2

ℓ)
2

q2

]1/2 [
(m2

B −m2
D − q2)2

4q2
−m2

D

]1/2
[
(m2

ℓ + 2q2)(q2 − (mB −mD)
2)(q2 − (mB +mD)

2)
[
FB→D
1 (q2)

]2
+ 3m2

ℓ(m
2
B −m2

D)
2
[
FB→D
0 (q2)

]2 ]
, (3.60)

where |Vcb| is the CKM matrix element and FB→D
1 (q2), FB→D

0 (q2) the form factors for the

B → D transitions parametrising the corresponding quark-current matrix element, as in

Eq. (3.58). We note that a similar expression holds for the B → πℓν̄ℓ modes, where instead

of |Vcb|, the |Vub| matrix element enters.

We mention that the expression in Eq. (3.60) is the general one which applies also for the

taus. But since in our studies we are interested in decays only with electrons and muons,
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which are light leptons, we can neglect the lepton masses. Then, we can rewrite the above

equation for the B → P transitions in a more compact way, for mℓ = 0 [115]:

dΓ(B̄ → Pℓν̄ℓ)

dq2
=
G2

F |Vrb|
2

192 π3

[
mB Φ

(
mP

mB

,

√
q2

mB

)]3 [
FB→P
1 (q2)

]2
, (3.61)

where Φ(x, y) is the phase-space function, which is defined as:

Φ(x, y) ≡
√

[1− (x+ y)2][1− (x− y)2]. (3.62)

This decay rate expression is the one we will utilise in Sec. 5.3 and Sec. 6.6. We note that

only the FB→P
1 (q2) form factor survives when we have vanishing lepton masses.

3.4.1 Determining |Vub| and |Vcb| elements

In our studies, an important point is the determination of the CKM matrix elements, in

particular |Vub| and |Vcb|, which are necessary for the extraction of the UT apex, as we will

see in the following Section. Having determined the decay rate of the semileptonic decays,

we discuss how this rate allows us to obtain the CKM elements.

Recalling the differential decay rate expression in Eq. (3.60), it becomes clear that, if

we know the hadronic form factors, we can determine the |Vcb| element from the measured

rate. This is actually the method that researchers follow, making use of lattice results16.

Such determinations of the |Vcb| element, where for the decay rate measurement, the final

state hadron of the corresponding decay is considered to be a specific meson are called

“exclusive”. This approach can be applied not only to the B̄d → D+ transitions which we

examine here as an example, but also to other decay modes coming from the same quark

level transition, for instance B → D∗ℓν or further excited D-meson states.

Consequently, knowing the form factors, one can determine |Vcb|. However, determining

the form factors is the difficult part. In the 1990s, for the b → c decays, the concept of

heavy quark effective theory (HQET) was developed [116, 117], allowing simplifications,

which are applied in the determinations of |Vcb|. The concept of HQET goes beyond the

scope of this thesis and we will not elaborate this framework further. All the form factors

are related to one function, the Isgur–Wise function in the heavy quark limit. This method

works only for b→ c case, which is a so-called “heavy to heavy” transition, since charm is

considered to be a heavy quark as well. The form factors are calculated non-perturbatively

and encode all the low-energy hadronic physics information. For their calculations, either

the method of lattice-QCD or the approach of light-cone sum rules (LCSR) is applied. We

16There has been excellent progress in lattice results over the recent years and later in the thesis we will

discuss the form factors in more detail.
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note that lattice-QCD calculations work better at high momentum regions, thus high q2,

while LCSR works better at low q2 regions, so near q2 = 0 [118].

In an analogous way, we can write the differential decay rate for the b → uℓν̄ℓ tran-

sitions, for instance the B → πℓν̄ decays. Knowing the corresponding form factors, we

can determine the CKM matrix element |Vub| from the measured rates. This is again an

exclusive determination since we focus on specific final state meson.17

In addition to these exclusive determinations, other methods have been developed for ob-

taining the CKM elements. Another approach for obtaining |Vub| and |Vcb| is the “inclusive
determination”, where the measurement of the decay rate refers to the sum over all possi-

ble final states. We only mention here that concepts like the heavy quark expansions can

be performed and are implemented in the corresponding state-of-the-art calculations [118].

Again, this topic is beyond the scope of the thesis.

The main message of this discussion is that there are different approaches of determining

the CKM matrix elements |Vub| and |Vcb|, utilising semileptonic decays: the exclusive and

inclusive determinations. The current experimental values for |Vub| and |Vcb| using the two

different approaches are the following:

|Vub|incl = (4.19± 0.17)× 10−3 [119] , |Vub|excl = (3.51± 0.12)× 10−3 [120], (3.63)

|Vcb|incl = (42.16± 0.50)× 10−3 [121], |Vcb|excl = (39.10± 0.50)× 10−3 [120]. (3.64)

Even though these two approaches should yield results that agree with each other, we

observe that tensions arise between the inclusive and exclusive values. More specifically,

the |Vub| results differ by 3.9 standard deviations and the |Vcb| values differ by 4.3 standard

deviations. This is a long-standing issue, and as we will discuss in the following Section,

these deviations have profound impacts on the UT apex extraction as well as in the NP

searches (Chapter 5). They lead to different pictures for the allowed parameter space for

NP in B0
q–B̄

0
q mixing, making it important to further investigate their origin and eventually

resolve them. So, special care is needed when using the |Vub| and|Vcb| matrix elements.

As a final remark, we emphasize again that the semileptonic decays are prime players

for extracting the CKM elements. Another way of determining the CKM elements though

is via the leptonic decays, which we already described in Sec. 3.3. For instance, the decay

of a B− meson to muon and neutrino, could also be used for such determinations using

17We note though that contrary to the b → c case, here we have a heavy to light transition. HQET

does not apply in the b→ u modes, since it does not seem to work sufficiently when both heavy and light

quarks are involved. In this case, other theoretical tools like lattice QCD have to be used for the theoretical

calculations. We note again that these methodologies are not part of our studies.
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the decays constants as inputs. However, the level of precision in the leptonic modes is not

competitive to the semileptonic ones.

3.4.2 Key Application: UT Apex Determination Through Rb and γ

The Unitarity Triangle (UT) plays a central role in our studies. Determinations of the

UT parameters mainly result from global UT analyses [122, 123]. However, these analyses

include inputs which could be affected by NP contributions in B0
q–B̄

0
q mixing. Therefore,

we cannot rely on them in order to obtain the SM predictions. Instead, we have a careful

look at the analyses of the determination of the apex of the UT following our studies in

Refs. [81, 124]. The extraction of the UT apex is a key application of the semileptonic de-

cays. Here, we present the impact of the tensions that arise between inclusive and exclusive

determinations of the CKM matrix elements |Vub| and |Vcb|. The knowledge of the UT apex

is needed for SM predictions of the B0
q–B̄

0
q mixing parameters, namely the CP-violating

phases ϕq and the mass difference ∆Mq. As we will see later in our studies, the SM predic-

tions are crucial in order to explore how much space for NP is available.

Following our analysis in Refs. [81,124], we choose to extract the apex of the UT relying

only on two observables, the UT side Rb and the angle γ, trying to keep possible contam-

ination of input parameters from NP effects to a minimum level18. Let us discuss in more

detail how we determine the UT apex in this case.

First of all, the Rb, defined in Eq. (2.63), depends on the CKM elements |Vub| and |Vcb|.
Therefore, knowing |Vub| and |Vcb| from semileptonic decays allows us to fix the Rb side of

the UT. More specifically, we can fix a circle in the ρ̄− η̄ plane with radius Rb around the

origin. Using in addition information on γ, we can determine the apex of the UT, since:

ρ̄+ iη̄ = Rb e
iγ. (3.65)

As Rb depends on |Vub| and |Vcb|, it is affected by the tensions that arise between the

various theoretical and experimental approaches. We will present the values separately

for the inclusive and the exclusive case below. Trying to better understand the situation

[125–128], a third possibility is used, where we combine the exclusive |Vub| with the inclusive

|Vcb| value, referring to this scenario as hybrid. As a result, in our analysis, we use and

explicitly show our results for the inclusive, exclusive and hybrid cases.

Making use of Eq. (2.63), we have all input parameters available and we calculate the

18Here, we only use tree charged-current processes.
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Determination ρ̄ η̄

Inclusive 0.160± 0.025 0.404± 0.022

Exclusive 0.144± 0.022 0.365± 0.018

Hybrid 0.134± 0.021 0.338± 0.017

Table 2: Values of the UT apex ρ̄ and η̄ for the inclusive, exclusive and hybrid case.

Rb side for the three cases, finding:

Rb,incl = 0.434± 0.018 , (3.66)

Rb,excl = 0.392± 0.014 , (3.67)

Rb,hybrid = 0.364± 0.013 . (3.68)

The inclusive differs from the exclusive result by 2.4 standard deviations. The hybrid value

differs from the inclusive by 3.7 and from the exclusive by 1.5 standard deviations.

Regarding the angle γ, we use the numerical value:

γavg = (68.4± 3.3)◦, (3.69)

which is an average value coming from determinations on the one hand, from B → DK

decays and on the other hand, from an isospin analysis of B → ππ, ρπ, ρρ modes. Here, we

only present this value since it is necessary for pinning down the UT apex. However, as this

angle plays an important role in our studies, we will discuss in detail in the following Chap-

ters how we determined it through the different decay processes and what its implications

are in studies of CP violation and NP effects.

Having the numerical values for the angle γ and the Rb side for the inclusive, exclusive

and hybrid case, we can perform a fit and we finally obtain the coordinates (ρ̄, η̄) of the UT

apex [81]. We note that the analysis in Ref. [81] was performed in collaboration with K.

De Bruyn, who brought to our attention and utilised the GammaCombo framework [129],

in order to produce the corresponding plots. Following these lines, we obtain results for ρ̄

and η̄, which are presented in Table 2 for all three cases.

To visualise the results, we provide an illustration of these solutions in Fig. 13 using

the “Mathematica” tool [130]. The green contour represents the γ value, the orange band

shows the Rb side and the yellow region indicates the area where γ and Rb contours overlap.

The contours are shown for 39% confidence level (CL) and 87% CL. The top plot corre-

sponds to the inclusive case, the middle to the exclusive and the bottom plot to the hybrid
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Figure 13: UT apex determination using the angle γ and the side Rb for the inclusive,

exclusive and hybrid case. The plots show the angle γ (green), the side Rb (orange) and the

overlap region between these two observables (yellow). The hyperbola |εK | (blue contour)

is also illustrated for comparison [81].



3 B MESON SYSTEM 49

case. The same plot also presents the |εK | hyperbola (blue contour), which we discuss below.

The parameter |εK|

Most of the observables that constrain the UT apex originate from B decays. However, the

|εK | observable describes “indirect” CP violation in the neutral kaon system. This is the

observable where CP violation was discovered in 1964. This indirect CP violation comes

from the fact that the mass eigenstates KL,S of the K0 system, characterised by the K0–K̄0

mixing phenomenon, are not CP eigenstates. More specifically, the state KL is dominated

by the CP-odd eigenstate, but it also has a tiny admixture of the CP-even eigenstate. The

latter may decay into the final π+π− state via CP-conserving interactions. Review on the

topic can be found for instance on Refs. [131–133].

In this thesis we focus on decays of B mesons but not on the kaon system. However,

the |εK | parameter provides interesting insights in our analysis. Therefore, we provide the

formalism, which is needed for the numerical analysis.

Formalism

The SM expression for εK is given by [134]:

|εK | =
G2

Fm
2
WmKf

2
K

6
√
2π2∆mK

κϵB̂K |Vcb|2λ2η̄
[
|Vcb|2(1− ρ̄)ηEWtt ηtt S(xt)− ηut S(xc, xt)

]
, (3.70)

where we note the strong dependence on the |Vcb| value, since it is proportional to the square
and fourth power of the |Vcb| element. Here, we have GF = 1.1663787× 10−11 MeV−2 [66],

which is the Fermi constant, mW and mK are the W and kaon masses, respectively:

mW = (80 377± 12) MeV [66], mK = (497.611± 0.013) MeV [66], (3.71)

the kaon decay constant fK = (155.7± 0.3) MeV [135], the mass difference between the

K0
S and K0

L mass eigenstates ∆mK = (0.005289± 0.000010) ps−1 [66], and the kaon bag

parameter B̂K = 0.7625 ± 0.0097 [135]. The parameter κϵ = 0.94 ± 0.02 [136] is a multi-

plicative correction factor coming from long-distance contributions that are not included in

the kaon bag parameter. The functions

S(xt) = S0(xt) + S0(xc)− 2S0(xc, xt) , S(xc, xt) = S0(xc)− S0(xc, xt) (3.72)

are combinations of the Inami–Lim functions (coming from box topologies) given by [102]:

S0(xi) = xi

[
1

4
+

9

4(1− xi)
− 3

2(1− xi)2
− 3x2i lnxi

2(1− xi)3

]
, (3.73)
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S0(xi, xj) =
xixj
xi − xj

[
1

4
+

3

2(1− xi)
− 3

4(1− xi)2

]
lnxi

+
xjxi
xj − xi

[
1

4
+

3

2(1− xj)
− 3

4(1− xj)2

]
lnxj −

3xixj
4(1− xi)(1− xj)

, (3.74)

where xi ≡ [m̄i(m̄i)/mW ]2 with i = c, t and m̄i(m̄i) is the running mass of quark i in

the MS scheme (a renormalization scheme) evaluated at the scale (m̄i). For the charm

quark we have m̄c(m̄c) = (1.278± 0.013) GeV [135]. For the top quark, for which we

have mt = (172.69± 0.30) GeV [66], the pole mass (value observed experimentally) is

converted into m̄t(m̄t) = (162.19 ± 0.30) GeV, using the RunDec tool [137, 138]. We

note that for the latter case, we ignore light-quark mass effects and use experimental

data for the mass of Z boson mZ = (91.1876± 0.0021) GeV [66] and the QCD coupling

αs(mZ) = 0.1179 ± 0.0009 [66]. Last but not least, ηEWtt , ηtt and ηut are correction factors

to S(xt) and S(xc, xt) [134, 139]. The factor ηEWtt = 0.990 ± 0.004 [139] shows the im-

pact of next-to-leading order (NLO) electroweak corrections based on the first calculations

of two-loop electroweak effects on εK . The factor ηtt = 0.550 ± 0.023 [134] parametrises

the QCD corrections and is known to next-to-leading-logarithmic (NLL) precision. The

ηut = 0.402 ± 0.005 [134] is also due to QCD corrections and is known to next-next-to-

leading-logarithmic (NNLL) precision.

Numerical Values

Following from Eq. (3.70), the measured value of the CP-violating observable |εK | in the

SM describes a hyperbola in the ρ̄− η̄ plane:

η̄ =
|εK |

A−Bρ̄
. (3.75)

We obtain the SM predictions, utilising the inclusive, exclusive and hybrid values of ρ̄ and

η̄ given in Table 2. Since |εK |SM depends only on |Vcb|, the inclusive scenario also covers

the hybrid one. Therefore, the SM values are:

|εK |SM = (2.54± 0.22)× 10−3 Inclusive/Hybrid, (3.76)

|εK |SM = (1.74± 0.15)× 10−3 Exclusive. (3.77)

Regarding A and B, the values for the inclusive (thus also hybrid) and exclusive cases are

given as follows:

A = (6.94± 0.40)× 10−3, B = (5.11± 0.35)× 10−3 Inclusive/Hybrid, (3.78)

A = (5.36± 0.32)× 10−3, B = (3.78± 0.27)× 10−3 Exclusive. (3.79)
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Let us now compare these SM predictions with the experimental value [66]

|εK | = (2.228± 0.011)× 10−3. (3.80)

We observe that this result differs from the inclusive/hybrid case by 1.4 standard deviations

while it differs from the exclusive case by 3.2 standard deviations. Even though there seems

to be a preference for the inclusive/hybrid case, the uncertainty on the SM value is not

sufficient to draw conclusions.

Fig. 13 shows that the blue contour, indicating the |εK | observable, lies below the yellow

region (overlap area between γ and Rb) in the inclusive scenario, while it is completely above

the yellow region in the exclusive case. On the other hand, in the hybrid determination, the

contour lies between those of the inclusive and exclusive cases while overlaps completely

with the yellow solution, giving the most consistent picture of the UT apex within the SM.

This illustrates again the strong dependence on |Vcb|. In the future, it will be interesting to

see how the interplay between |εK | and the UT will evolve and this could help to understand

the tensions between the inclusive and exclusive determinations of |Vub| and |Vcb|.

3.4.3 Impact of New Physics in Semileptonic Decays

Discussing the impact of NP in semileptonic decays, we generalise the low-energy effective

Hamiltonian to allow for NP effects19 as in Eq. (3.53):

Heff =
4GF√

2
Vqb
[
CVLOℓ

VL
+ Cℓ

SOℓ
S + Cℓ

POℓ
P

]
+ h.c. . (3.81)

Similarly to the leptonic case, there is only one operator contributing in the SM, the Oℓ
VL
,

indicating that the construction of the effective theories is convenient in the NP searches.

We would like to mention here that an interesting point related to the tau semileptonic

modes is given by the ratios of the branching fractions of the decays with taus with respect

to decays with muons or electrons. We have the ratios R(D) and R(D∗) defined as follows:

R(D) =
B(B → Dτντ )

B(B → Dℓνℓ)
, (3.82)

R(D∗) =
B(B → D∗τντ )

B(B → D∗ℓνℓ)
, (3.83)

where ℓ = e, µ. These ratios are excellent tools to test lepton flavour universality (LFU) in

charged-current processes. The SM predictions are very precise, since there is a minimal

19In the most general case, there could be more operators, thus right-handed as well as tensor operators

can also be included. Here, we focus again on the (Pseudo-)Scalar contributions similarly to Eq. (3.53).
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Figure 14: Overview of measurements of the R(D) and R(D∗) ratios [11].

dependence on the form factor20 of the B → D(∗) transitions and they do not depend at all

on the |Vcb| matrix elements. The corresponding HFLAV predictions are [11]:

R(D)SM = 0.298± 0.004 (3.84)

R(D∗)SM = 0.254± 0.005. (3.85)

These ratios have been measured by BaBar, Belle and LHCb collaborations and the

current world average is given as follows [11]:

R(D) = 0.339± 0.026± 0.014 (3.86)

R(D∗) = 0.295± 0.010± 0.010. (3.87)

We note that a new measurement of these ratios has recently been reported by LHCb [140]:

R(D) = 0.441 ± 0.060 ± 0.066 and R(D∗) = 0.281 ± 0.018 ± 0.024. This has not yet been

included in the current HFLAV overview in Ref. [11].

Comparing the theoretical predictions with the experimental world averages, there are

tensions up to the level of 3.3 σ. An overview21 of all the measurements of these ratios as well

20Neglecting the lepton masses for the semileptonic decays later on, there is only one form factor con-

tributing, while for the taus, due to their heavy mass which cannot be neglected, there are two form factors

entering. Thus, comparing the tau mode (with two form factors) with the muon or electron modes (having

one form factor), in the R(D(∗)) ratios the form factors do not fully cancel but they are still considered to

be very robust theoretically.
21An alternative illustration is provided in Appendix C.
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as the SM predictions are given in Fig. 14. In this thesis, we are not exploring further these

ratios. However, it is a very intriguing topic, and as in NP studies it is usually assumed that

NP enters via the tau leptons, these ratios serve as an excellent probe for physics beyond

the SM. This is due to the fact that semileptonic decays with taus in the final state, can

be sensitive to NP effects due to their large mass. Thus, in the future it will be important

to further study these modes. Last but not least, we mention that B → K(∗)ℓ+ℓ− modes

offer also interesting probes for tests of LFU in FCNC processes [141–146].

3.5 Non-leptonic decays

In this category, the final state consists only of hadrons. Therefore, the hadronic sector here

is much more complicated in comparison with the leptonic and the semileptonic decays. The

hadronic effects are very difficult to handle, making these transitions the most challenging

B decays. The process describing the non-leptonic decays is given as follows:

b→ q1q̄2d(s) where q1, q2 ∈ {u, d, c, s}. (3.88)

Regarding the Feynman diagrams of the non-leptonic B decays, there are three different

cases depending on the flavour content of the final state. We observe that in the case the

quarks q1 and q2 are not the same and they are either u or c, only tree topologies appear.

In the case where the quarks q1 and q2 are equal and are either u or c, then we have both

tree and penguin diagrams contributing. In the last case, if again the quarks q1 and q2

are equal but they are either d or s, only penguin diagrams contribute. Fig. 15(a) depicts

the tree topologies, Fig. 15(b) shows the QCD (gluonic) penguin, while Fig. 15(c) and (d)

illustrate the electroweak (EW) penguins.

The examples in Fig. 15 can also help us to understand better the terminology which is

used regarding the Feynman diagrams. Thus, the tree diagrams include no loops22 whereas

the penguins are the loop topologies, where the W boson reconnects back to the quark line

from which it was emitted. There are two kinds of penguin diagrams, the QCD penguins,

where the gluon is the emitted particle from the loop, and the electroweak penguins, where

the emitted particle from the loop is either a photon or a Z boson.

3.5.1 Operator Product Expansion

Our starting point for the challenging case of non-leptonic B decays is to use again the low

energy effective Hamiltonian Heff framework. The tool we use in order to calculate this

Hamiltonian and deal with effects of strong interactions of QCD is the “Operator Product

Expansion” (OPE) [147–149]. Applying the OPE,

22In tree diagrams, the W boson leads to a different quark line than the line that starts out as b quark.
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(a)

(b)

(c) (d)

Figure 15: Topologies for non-leptonic B decays: (a) tree diagrams, (b) QCD penguins, (c)

and (d) EW penguins.

• the exchange of the very heavy W boson can be approximated to a point-like four-

quark interaction and

• the local four-quark operator is interpreted as a four-quark interaction vertex with

the Wilson coefficient being the respective coupling constant.
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Figure 16: Illustration of different energy regimes for weak B decays.

As a result, the low-energy effective Hamiltonian takes the schematic form:

Heff ∝ GF

∑
i

Ci(µ)×Oi + terms suppressed by (1/M2
W ), (3.89)

where µ indicates the renormalization scale, which separates the regimes of low energy from

the high energy regimes [116]. The Ci(µ) coefficients refer to the short-distance effects and

include all the QCD interactions above the scale µ. On the other hand, we have the Oi

operators and when calculating the amplitude of a specific decay process, we have to deal

with the hadronic matrix elements. They refer to the long distance effects and include the

low energy contributions below the scale µ. The short-distance part is the one that can be

calculated in perturbation theory. However, the long-distance part, referring to the matrix

elements, requires non-perturbative techniques. The situation though is already simplified

compared to the original case, allowing for a systematic framework to calculate and include

higher-order QCD corrections. An illustration of the different energy scales for the B-meson

decays is given in Fig. 16.

In a nutshell, the OPE technique allows us to separate the short-distance part or the

high energy scale part, where we can make perturbative calculations in QCD, from the non-

perturbative part of QCD, which leads to the hadronic binding and which in perturbation

theory we cannot calculate, therefore non-perturbative methods are required.

Writing the low-energy effective Hamiltonian for the non-leptonic decays in a formal

way, we obtain:

Heff =
GF√
2
λCKM

∑
k

Ck(µ)Qk, (3.90)
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where the transition matrix element is:

⟨f |Heff| i⟩ =
GF√
2
λCKM

∑
k

Ck(µ)⟨f |Qk(µ)| i⟩. (3.91)

Here, f and i denote the final and initial state, respectively, λCKM is a CKM factor, Ck(µ)

are the Wilson coefficients, which are the perturbative quantities, and the ⟨f |Qk(µ)| i⟩
denote the hadronic matrix elements, which are the non-perturbative objects. We highlight

that the quantity Qk is a local operator arising from both QCD and EW interactions while

the coefficients Ck(µ) are couplings related to the vertices described by the corresponding

Qk.

Taken that non-leptonic B decays may have both tree and penguin topologies, we have

many more operators compared to the leptonic and the semi-leptonic decays:

• Qjr
1 and Qjr

2 : current-current operators

• Qr
3, Q

r
4, Q

r
5 and Qr

6: QCD penguin operators

• Qr
7, Q

r
8, Q

r
9 and Qr

10: EW penguin operators,

where r ∈ {d, s} and j ∈ {u, c}. The structure of the operators is given in Appendix B.

The effective Hamiltonian takes the following form:

Heff =
GF√
2

[∑
j=u,c

V ∗
jrVjb

{ 2∑
k=1

Ck(µ)Q
jr
k +

10∑
k=3

Ck(µ)Q
r
k

}]
, (3.92)

and applies to any non-leptonic B decay in the SM.

How did we derive the Heff for the non-leptonic decays?

Let us use as an example the pure tree decay B̄0
d → K−D+. Note that in terms of

colour flow, the tree topologies are divided into two categories: colour-allowed and colour-

suppressed ones. In the colour-allowed tree diagrams, the quark and antiquark pair, which

is generated by the W boson, end up in the same meson, while in the colour-suppressed

trees, the quark and antiquark coming from the W end up in different final mesons. An

illustration of these Feynman diagrams is given in Fig. 17, where the left plot corresponds

to the colour-allowed tree topologies, using the B0
d → K−D+ decay as an example, while

the right plot refers to the colour-suppressed tree topologies as seen in the B̄0
d → D0π0

decay. It becomes clear that at the leading-order Feynman diagram in the colour-allowed

case, the colour indices of the K− meson and the B̄0
d–D

+ system run independently from

each other. So, there are two independent colour degrees of freedom in the colour-allowed

case (denoted as α and β), while there is only one in the colour-suppressed (α index).
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Figure 17: Colour-allowed tree (left) and colour-suppressed tree (right) topology.

Figure 18: Effective theory picture: Integrating out the W boson leads to the effective

theory with the four quark operator O2. We note that the indices α and β are colour

indices of the SU(3)C group.

Let us continue with exploring the B0
d → K−D+ transition. As previously, applying the

Feynman rules, we evaluate the transition amplitude in the SM (using the notation of [99]):

A(B̄0
d → K−D+) = − g22

8
V ∗
usVcb [s̄γ

ν(1− γ5)u]

[
gνµ

k2 −M2
W

]
[c̄γµ(1− γ5)b] . (3.93)

Due to the fact that k2/M2
W ≪ 1, as we have already seen before, we integrate out the

heavy W boson:
gνµ

k2 −M2
W

→ −
(

8GF√
2g22

)
gνµ, (3.94)

thus we move from the full theory to the effective one, obtaining the four quark operator

O2. A depiction of this process, which is now described by the current-current operator

O2 ≡ [s̄αγµ(1− γ5)uα] [c̄βγ
µ(1− γ5)bβ] , (3.95)

where the α and β indices denote the colour of the SU(3)C gauge group, is given in Fig. 18.
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Figure 19: Impact of factorizable QCD effects, going from the full (left plot) to an effective

theory (right plot).

Figure 20: Impact of non-factorizable QCD effects, going from the full (left plot) to an

effective theory (right plot).

Therefore, we obtain the following effective Hamiltonian:

Heff =
GF√
2
V ∗
usVcb [s̄αγµ(1− γ5)uα] [c̄βγ

µ(1− γ5)bβ] ≡
GF√
2
V ∗
usVcbC2O2. (3.96)

Let us now explore the impact of QCD, due to the exchange of gluons, since so far we

have not included QCD corrections. There are two cases:

• factorizable QCD corrections, depicted in Fig. 19. These effects result in the Wil-

son coefficient C2 acquiring a dependence on the renormalization scale µ, therefore

C2(µ) ̸= 1, and

• non-factorizable QCD corrections, depicted in Fig. 20, which lead to the generation

of a second current–current operator O1 and the renormalization of the operator O2.

The O1 operator is defined as

O1 ≡ [s̄αγµ(1− γ5)uβ] [c̄βγ
µ(1− γ5)bα] . (3.97)
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Finally, we may write the low-energy effective Hamiltonian in the following form:

Heff =
GF√
2
V ∗
usVcb [C1(µ)O1 + C2(µ)O2] , (3.98)

or in a more compact and general way:

Heff =
GF√
2

[∑
j=u,c

V ∗
jrVjb

{ 2∑
k=1

Ck(µ)Q
jr
k

}]
. (3.99)

This expression is in the form of Eq. (3.92), taking only tree topologies into account (pur-

ple part). The Wilson coefficients C1(µ) and C2(µ) [150–152] can be calculated through

“matching” between the full and the effective theory. More specifically, the first step is

to calculate the QCD corrections both in the full theory, explicitly considering the W ex-

change, and in the effective theory, where the W boson is integrated out. Then we express

the transition amplitude, as presented in Eq. (3.91), in terms of the Wilson coefficients and

the matrix elements which are now QCD-corrected.

We highlight that the results for the Wilson coefficients Ck(µ) contain log(µ/MW ) terms

which become large for renormalization scales µ in the GeV regime, thus for µ = O(mb),

which is the scale that governs the hadronic matrix elements of the operators Ok. So,

what should we do? Utilise the renormalization-group improved perturbation theory. The

transition matrix element ⟨f |Heff| i⟩ cannot depend on the chosen renormalization scale µ.

This implies a renormalization group equation:

µ
d

dµ
⟨f |Heff| i⟩ = 0. (3.100)

Its solution can be written in the following form:

C⃗(µ) = Û(µ,MW ) · C⃗(MW ), (3.101)

where the initial conditions of C⃗(MW ) describe the short-distance physics at high-energy

scales. Through Eq. (3.101), the following terms of the Wilson coefficients can be system-

atically summed up:

αns

[
log

(
µ

MW

)]n
(LO), αns

[
log

(
µ

MW

)]n−1

(NLO), ... . (3.102)

As this goes beyond the scope of our analysis, the reader is referred to Ref. [104] for a

detailed discussion.

Continuing with the expression of the effective Hamiltonian, our final step is to move

forward and allow for penguin topologies to enter. Therefore, having both tree and penguin



3 B MESON SYSTEM 60

contributions, the operator basis is further enhanced. Recalling the unitarity of the CKM

matrix, we apply the relation:

V ∗
urVub + V ∗

crVcb + V ∗
trVtb = 0 (r ∈ {d, s}). (3.103)

The top quark, just like in the case of theW boson, is a heavy degree of freedom. Therefore,

both the W boson and the top quark, which enters through penguins, are integrated out,

as well as the Z bosons. Consequently, we obtain the expression we have already shown in

Eq. (3.92), which we repeat here:

Heff =
GF√
2

[∑
j=u,c

V ∗
jrVjb

{ 2∑
k=1

Ck(µ)Q
jr
k +

10∑
k=3

Ck(µ)Q
r
k

}]
, (3.104)

where the blue part refers to the penguin contributions. We highlight once again that the

effective Hamiltonian is the prime theoretical tool for the analysis of the weak decays and

the neutral meson mixing phenomenon, not only for the B mesons that we are interested

in for this thesis but also for the kaons and the D mesons.

Formalism of Decay Amplitudes

Since we have presented the low-energy effective Hamiltonian, we can also provide the

formalism for the decay amplitudes for both the B̄ → f̄ process, where f denotes the final

state, and the CP-conjugate process B → f . Applying Eq. (3.104), we obtain:

A(B̄ → f̄) = ⟨f̄ |Heff|B̄⟩

=
GF√
2

[∑
j=u,c

V ∗
jrVjb

{
2∑

k=1

Ck(µ)⟨f̄ |Qjr
k (µ)|B̄⟩+

10∑
k=3

Ck(µ)⟨f̄ |Qr
k(µ)|B̄⟩

}]
, (3.105)

A(B →f) = ⟨f |H†
eff|B⟩

=
GF√
2

[∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)⟨f |Qjr†
k (µ)|B⟩+

10∑
k=3

Ck(µ)⟨f |Qr†
k (µ)|B⟩

}]
. (3.106)

These are the most general expressions in the SM. We will explicitly make use of these

important relations in our studies of CP violation, as we will discuss in detail in Chapter 4.

3.5.2 The Concept of Factorisation

As we mentioned, the non-leptonic decays are very challenging due to the hadronic effects.

When we want to calculate a transition amplitude specifically for a given decay, we face the
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problem that now we have to calculate matrix elements of four-quark operators23. These

are very complicated objects. So, how can we handle them?

A very important concept that helps us to deal with such decays with involved dynamics

and derive the non-leptonic B decays amplitudes, is the framework of “factorisation”. More

specifically, the hadronic matrix elements of four-quark operators are factorised/separated

into the product of hadronic matrix elements of quark currents [153]. There are decays like

B → Dπ transitions, that factorisation is really intuitive and is the most obvious strategy.

The main advantage is that the theoretical description of the decay amplitude calculation

gets simplified. In the factorised expressions the decay constant for the decay products

(mesons in the final state) are involved as well as the form factors, which we obtain from

semi-leptonic decays.

We note that factorisation is not a universal feature but is process dependent. The

concept of factorisation plays central role in our analysis. We will explicitly make use of

this tool in Chapters 5 and 6, and further elaborate on the formalism. We already highlight

here that there are decays where factorisation is expected to work very well, as in the case

of “colour-allowed” b → c transitions. Key example in this category is the B0
s → D+

s K
−

decay, which is one of the main transitions we study in this thesis. We will discuss this

channel in Sec. 6.5. On the other hand, in colour-suppressed decays, it is expected not to

work so well. An interesting example in this case, is the B → J/ψKS decay which we will

discuss in Sec 5.2 and Sec. 5.3.

Factorisation and colour-allowed decays

Let us now see in practice how we may factorise the hadronic matrix elements. For this

purpose, we once again make use of the B̄0
d → D+K− decay, utilising the Feynman diagram

in Fig. 21. We firstly have to calculate the transition amplitude. We encounter the hadronic

matrix elements of the operators O1,2. We need to consider the SU(NC) colour-algebra

relation [99]:

T aαβT
a
γδ =

1

2

(
δαδδβγ −

1

NC

δαβδγδ

)
(3.107)

=
1

2
δαδδβγ −

1

2

δαβδγδ
NC

, (3.108)

which allows us to write the operator O1 as:

O1 =
1

NC

O2 + 2
(
s̄αT

a
αβuβ

)
V–A

(
c̄γT

a
γδbδ
)
V–A

. (3.109)

23In the case of semileptonic decays, the matrix elements literally factorise automatically as the gluons

do not “talk” with the lepton antineutrino pair. However, this is not happening in the non-leptonic case

due to the gluon exchanges between the quarks in the final states.
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Figure 21: Feynman diagram for the B̄0
d → D+K− decay within the effective theory.

Here, for completeness, we note that one can straightforwardly show that this is the ex-

pression of O1 by simply plugging Eq. (3.108) into Eq. (3.109):

O1 =
1

NC

O2 +
1

2
2

(
s̄αδαδ︸ ︷︷ ︸uβ

)
V–A

(
c̄γδβγ︸ ︷︷ ︸ bδ

)
V–A

− 1

2
2

1

NC

(
s̄α δαβuβ︸ ︷︷ ︸

)
V–A

(
c̄γ δγδbδ︸︷︷︸

)
V–A

=
1

NC

O2 + ( s̄δ uβ )V–A ( c̄β bδ )V–A︸ ︷︷ ︸− 1

NC

( s̄α uα )V–A ( c̄γ bγ )V–A︸ ︷︷ ︸
=

1

NC

O2 + O1 − 1

NC

O2. (3.110)

Therefore, rearranging the operator and utilising the colour algebra relation for SU(NC),

we can rewrite the operator O1 as in Eq. (3.109). This allows us to obtain the amplitude:

⟨K−D+|Heff |B̄0
d⟩ =

GF√
2
V ∗
usVcb

[( C1

NC

+ C2

)
⟨K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0

d⟩

+ 2C1⟨K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d⟩
]
. (3.111)

We introduce the important quantity a1:

a1 =
C1

NC

+ C2 ∼ 1, (3.112)

which is the phenomenological “colour factor” governing the “colour-allowed” decays.

We can now factorise the hadronic matrix elements as follows:

⟨K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0
d⟩|fact = ⟨K−| [s̄αγµ(1− γ5)uα] |0⟩⟨D+| [c̄βγµ(1− γ5)bβ] |B̄0

d⟩

= ifK × F
(B→D)
0 (M2

K) × (M2
B −M2

D), (3.113)

where fK is the kaon decay constant, F
(B→D)
0 (M2

K) is a hadronic form factor and (M2
B−M2

D)

refers to the kinematical factor. Regarding the second term in Eq. (3.111), we notice that
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it vanishes in factorisation:

⟨K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d⟩
∣∣
fact

= ⟨K−|(s̄α T aαβ uβ)V–A|0⟩⟨D+|(c̄γ T aγδ bδ)V–A|B̄0
d⟩ = 0, (3.114)

as the mesons are colour-singlets, thereby implying that α = β and γ = δ. The T aαβ, T
a
γδ

are traceless and as a result the above term vanishes.

Factorisation and colour-suppressed decays

So far, our working example is the “colour-allowed” tree decay B̄0
d → D+K−. Moving to

the case of “colour-suppressed” trees, such as the B̄0
d → D0π0 mode shown in Fig. 17 (right

plot), we can repeat the same steps in the decay amplitude calculation, keeping in mind

that now in Eq. (3.111), instead of the quantity a1, the following combination is introduced:

a2 = C1 +
C2

NC

∼ 0.25. (3.115)

The a2 parameter is the “colour-supprression” factor. In this case, there is only one colour

index, running the whole Feynman diagram. A more formal description of the a2 factor

will be presented in Sec. 5.3.1.

3.5.3 Remarks Concerning the Colour Factors: The µ dependence

The Wilson coefficients depend on the renormalization scale µ24. When calculating the

whole matrix element, the transition amplitude does not depend on µ. The factorised

hadronic matrix element in Eq. (3.113) is a µ independent quantity. This shows that

factorisation can not be exact. It also indicates that the µ dependence should come from

non-factorisable effects. So, the interesting question, studied by Buras in Ref. [154], is to

explore how the phenomenological coefficients depend on µ. The a1 combination is very

robust with respect to the µ dependence while the a2 is very strongly dependent on the

renormalization scale. From this observation, one can already see that factorisation for

colour-allowed decays are on much better ground than in the colour suppressed decays. A

detailed analysis can be found in Ref. [155].

24Regarding the Wilson coefficients, we note that renormalization scheme dependence arises at the next-

to-leading order. Calculating the overall amplitude, it is the scheme dependence of the matrix element

which ensures that finally this dependence cancels out.



3 B MESON SYSTEM 64

3.5.4 Developments Beyond Naive Factorisation

We note here that the concept of factorisation has a long history [153,156–160]. Originally,

it simply started as the separation of the hadronic matrix elements of four-quark operators

into the product of hadronic matrix elements of quark currents. This “naive factorisation”

can be justified in weak decays in the large-NC limit [156,161–163]. Phenomenologically, it

was a very important concept to deal theoretically with non-leptonic decays. Developments

around 2000 led to the concept of “QCD factorisation” (QCDF) [164,165]. This framework

puts factorisation on a more solid ground for certain decay classes, providing the formalism

to obtain the decay amplitudes in the heavy quark limit.

QCDF applies to B meson decays of the following kind:

B̄ →M
{Heavy or Light}
1 M

{Light}
2 (3.116)

where the meson M
{Heavy or Light}
1 picks up the spectator quark. The corresponding decay

amplitude in QCDF takes the following form:

A(B̄ →M1M2)|QCDF = ⟨M2|ζ2|0⟩⟨M1|ζ1|B̄⟩︸ ︷︷ ︸× [1 + non-factorisable corr. +O(ΛQCD/mb)]︸ ︷︷ ︸,
[naive factorisation] [hard scattering picture] (3.117)

where ζ1,2 are bilinear quark currents. In this approach, in addition to naive factorisation,

one can also calculate non-factorisable corrections within a hard scattering picture utilising

the heavy quark limit25. These non-factorisable effects are determined through perturbation

theory. On top of these, there also other non-factorisable effects of non-parturbative nature

which may arise at ΛQCD/mb, where ΛQCD denotes the scale parameter of QCD. These

terms appear as power corrections in ΛQCD/mb, giving rise to the main limitations of the

theoretical accuracy.

Closely related to QCDF is the framework of the soft collinear effective theory (SCET)

[166, 167]. SCET is simply speaking an alternative formulation of QCDF, which is very

important in studies in collider physics. For completeness, we mention that further inter-

esting approaches have been developed such as the perturbative hard-scattering technique

(PQCD) for non-leptonic decays [168, 169]. These frameworks go beyond the scope of this

thesis, thus we will not further elaborate on them.

3.5.5 Prime Strategy: Ratios with Partner Semileptonic Decays

In addition to determinations of the CKM elements, the semileptonic channels are also

useful in other applications. They are particularly of key importance in the analysis of

25Simply speaking, the hard scattering picture refers to the exchange of high energetic gluons, called

“hard gluons”, in non-factorisable Feynman diagrams, where perturbation theory would still apply.
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non-leptonic decays. One of our goals is to determine the colour factors |a1|, |a2| from
the data and to have a reference to check how well factorisation works. The calculation

of the non-leptonic decay rates depends on CKM matrix elements and on hadronic form

factors, arising in the factorisation approach. Thus, it becomes important to minimise

their impact. For this purpose, the semileptonic modes can be used in order to create

ratios with the branching fractions of non-leptonic decays [170]. These ratios indeed allow

us to minimise the dependence on both:

• |Vub| and |Vcb| matrix elements and

• hadronic form factors,

while determining the colour factors and testing the factorisation hypothesis.

Consequently, we create ratios between the non-leptonic B decays and their partner B

semileptonic transitions. For the non-leptonic channels, we utilise the decay rate Γ, and

knowing that Γ ∝ |Afact|2, we consider the expression of the factorised decay amplitude.

Similarly, for the semileptonic modes, we recall the expression of the decay rate in Eq. (3.61).

We point out again that for these determinations we only refer to semileptonic decays that

involve electrons or muons, which are well measured, but not to taonic modes. We will

explicitly use this methodology with the ratios of semileptonic decays and provide the

corresponding formalism in Sec. 5.3 and Sec. 6.6.

3.6 Reserved Threads: Insights on New Physics in the B System

The final topic we introduce to complete our presentation of the B-meson system is the

impact of NP. Searches of possible hints from beyond the SM will be explored and explicitly

discussed in the next Chapters. Here, we briefly present the status of NP searches and

discuss in a heuristic manner how NP effects may enter in the B-meson decays.

One can search for NP particles directly at the high-energy frontier, as done by ATLAS

and CMS at the LHC. So far, no new particles have been found. As an illustration, a plot

by the ATLAS Collaboration [171] is given in Fig. 22, showing limits on masses of NP

particles, arising in a plethora of different NP models. These are mapped out by assuming

specific models – resulting in exclusion limits. Similar plots with bounds for direct NP

searches are also provided by CMS.

In this thesis though, we follow a different approach. As already mentioned in Chapter 1,

we use precision physics and search for indirect signals of NP. We can probe much higher

energy scales than directly at colliders. NP particles, too heavy to be directly produced,

could still leave their footprints on these decays and rare processes. In this case, we would
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Figure 22: Exclusion limits (95% CL) for direct searches of NP with ATLAS [171].

get deviations between the theoretical predictions and the experimental measurements,

thereby indicating the presence of NP.

So, more specifically, we assume that we have very heavy NP entering, far beyond the

EW scale26. In an effective field theory picture27 the heavy degrees of freedom of NP would

be integrated out. In the low-energy effective Hamiltonian, these NP effects would then

only be manifested through:

i) the Wilson coefficients of SM operators, taking values different from the SM or

ii) new operators, which might arise and which we do not have in the SM. However, no

new particle fields would be present in these operators.

26We assume that NP is very heavy, otherwise we would have seen it
27As we discussed for the SM how the W , Z bosons and top quarks are integrated out, the same can be

done for NP particles.
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We emphasize that this powerful effective field theory approach is a model-independent

method.

Why do we prefer model-independent searches?

Alternatively, one could utilise models. Such models can also be applied on given flavour

processes and one can calculate everything in terms of parameters of these models. Thus,

one can use processes to specifically constrain parameters of the specific models. How-

ever, this specific model might not be realised in Nature. Therefore, we prefer having a

model-independent analysis and for this we apply effective field theory. We have already

seen earlier in the Chapter that this method is very useful for the description of the B

decays but so far, we had only studied it within the SM. Now, we can go beyond the SM.

We highlight again that as we have not seen any new particles up to the TeV regime28 we

assume very NP.

Consequently, let us summarize how we explore the impact of NP effects in a schematic

way. For NP searches:

• either we assume a specific model, as it is assumed in the exclusions plots in Fig. 22,

and we study what happens for flavour processes in such models

• or one uses the model-independent effective field theory, noting that it assumes very

heavy NP. Integrating out the heavy degrees of freedom, the NP only manifests

through changes of Wilson coefficient function or/and new operators.29 Having the

effective Hamiltonian as a starting point, there are two options for NP to enter [172]:

– In the first case, NP can modify the Wilson coefficients in such a way that they

have two parts; the SM and the NP part, in which also new CP-violating phases

may arise through complex phases:

Ck → CSM
k + CNP

k .

– In the second case, new operators could appear. This new operator basis, where

new sources of flavour and CP violation are taken into account (noting that there

can also be operators with more complicated structures or Dirac matrices), takes

the form:

28unless particles are very elusive and have escaped detection, thus having invisible particles of low energy
29In this case, we are left with operators and Wilson coefficients, so we can in a model-independent way

explore NP effects. We mention that in principle, one could also take specific models and work in a similar

way as people do for these direct searches. But this is not the strategy we follow in this thesis.
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New operator → {QSM
k , QNP

l }.

Therefore, the operator basis can be enhanced from the NP. Due to this enhance-

ment, operators which are either not present or strongly suppressed within SM

may eventually play an important role.

In the following Chapters, we will elaborate more on the NP searches studying specific,

benchmark B-meson decays and will propose strategies that will allow us to explore how

much room for NP there is in the different B modes.

3.7 Synopsis

In this chapter we have discussed the B-meson system, which is a prime player in quark

flavour physics. Firstly, focusing on the neutral B mesons, we introduced the important

feature of the B0
q–B̄

0
q mixing. Since this phenomenon offers great opportunities to test the

SM, we set up the formalism and explicitly discussed the associated mixing parameters. As

we will see later, the mixing parameters are very useful in our analysis. Obtaining their

SM predictions, we can also utilise them to constrain the parameter space for NP.

Providing an introduction to the weak interactions of quarks and the theoretical tools

we use in the analysis of the decays, we classify the B decays according to their final

state. There are three categories – leptonic, semileptonic and non-leptonic decays – and

we investigate each one of them separately. The starting point is the derivation of the

decay amplitude and the corresponding low-energy effective Hamiltonian, applying effective

theories. Having the transitions amplitudes, we also determined the decay rates, and as a

result the branching ratios, which are important observables in our studies.

The case of the leptonic decays is the simplest one as there are no strong interaction

effects of the final-state particles. We described their dynamics using as an example a

charged leptonic B decay. We pointed out the differences that may arise due to different

leptons in the final state. We highlighted features, like the helicity suppression, that play

an essential role in obtaining SM predictions and constraints on NP through the branching

ratio. Similar strategies can be applied for the neutral leptonic B decays, which we will

present in Chapter 8.

The second category, the semileptonic B transitions, is another interesting class of

decays. We have seen that one of the most important aspects is the determination of the

CKM matrix elements |Vub| and |Vcb|. We specifically discussed how these quantities can

be extracted with the help of semileptonic decays. Different approaches can be used to

obtain |Vub| and |Vcb|, the exclusive and inclusive determinations. The remarkable point

is that tensions arise between these two determinations, which is a long-standing puzzle.
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This requires specific care when making predictions as well as on how to deal with the

corresponding CKM matrix elements. In particular, we emphasized the importance of

not making averages, but carefully examining every case separately. In addition, a third

possibility, which is a hybrid combination of exclusive |Vub| and inclusive |Vcb| values, is
explored. Hopefully, in the future, with better analysis, this puzzle will be resolved. These

CKM matrix elements enter in a plethora of SM calculations. Here, we focused on utilising

them for determining the apex of the UT.

A key application of the semileptonic B decays is the extraction of the coordinates of

the UT apex, which is a central topic of our analysis. For the SM determination of the UT

in this Chapter, we chose to use only two observables, the angle γ and the side Rb, since

they are less prone to be affected by NP effects. The Rb side is determined through the

|Vub| and |Vcb| matrix elements, thereby the unresolved discrepancies between inclusive and

exclusive determinations play a crucial role. We performed fits using γ and Rb as inputs

and taking into account all three cases (inclusive, exclusive and hybrid), we extracted the

ρ̄ and η̄ values. Sizeable differences were found between these cases, advocating that it is

important in the future to resolve these deviations. The solutions were also compared with

a constraint coming from the |εK |, which could help to eventually solve this puzzle. In

Chapter 5, we will use this analysis for further exploring NP effects in B0
q–B̄

0
q mixing.

The last class of decays, the non-leptonic ones, is the most complicated case due to the

presence of the hadronic effects, which are very difficult to handle. We discussed the low-

energy effective Hamiltonians which set the theoretical stage for analysing these decays. We

utilised the OPE which allows the separation of the short-distance from the long-distance

contributions. The short-distance contributions are encoded in perturbatively calculable

Wilson coefficients while the long-distance physics is described by hadronic matrix elements

of four-quark operators. A very important concept for dealing with the hadronic matrix

elements is factorisation. Here, we provided its framework and more technical details will

follow later on, while discussing specific B decays. In addition, we briefly introduced the

method of combining information between non-leptonic and semileptonic decays in order to

simplify the analysis and extract useful information on testing the factorisation hypothesis.

We will present the corresponding formalism in Chapters 5 and 6. The rich phenomenology

of the non-leptonic decays makes them prime candidates for studying CP violation and we

will discuss this in detail in the subsequent Chapter 4.

So far, we have mostly focused on the description of the SM framework, while giving

some information about NP. For completeness, we provided a heuristic description of how

NP contributions can enter in the B decays. Once again, we highlighted that in our analysis

we aim at indirect searches at the high precision frontier. In the next Chapters, we will

explicitly explore NP contributions and obtain constraints for various benchmark processes.
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4 CP Violation in B Meson Decays

CP violation is a central topic in our studies and B-meson decays are the main actors in

exploring this topic. As we have already stated, CP violation in the SM arises from complex

phases in the CKM matrix. In this chapter, we will focus on how CP asymmetries arise

and explore the interesting observables which are offered through benchmark B decays. A

detailed analysis of the topic can be found i.e. in Refs. [99,173–176].

4.1 Direct CP Violation in SM

Let us firstly discuss the type of CP violation that originates directly at the level of the

decay amplitudes. The CP asymmetry is defined as follows:

ACP ≡ Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
=

|A(B → f)|2 − |A(B̄ → f̄)|2

|A(B → f)|2 + |A(B̄ → f̄)|2
. (4.1)

As introduced in Chapter 3, the leptonic and semileptonic classes of decays involve only a

single weak amplitude in the SM. As a result, dealing with the squared absolute value of

the amplitudes |A(B → f)|2 and |A(B̄ → f̄)|2 in Eq. (4.1), these quantities are the same

for the decay and its CP-conjugate. Therefore, the ACP = 0, meaning that these decay

classes do not manifest direct CP violation. On the other hand, the non-leptonic decays

(characterised by strong interactions), having different topologies and with different CKM

factors at play, involve more than one weak amplitude, thus they can generate this type

of CP violation. So, we consider the non-leptonic transitions and discuss the concept of

“direct” CP violation, presenting the formalism in the SM.

Regarding the decay amplitudes, we recall the formalism given in Eqs. (3.105) and

(3.106). In order to introduce the same hadronic matrix elements in the decay amplitudes

A(B → f) = ⟨f |H†
eff|B⟩ and A(B̄ → f̄) = ⟨f̄ |Heff|B̄⟩, we have to perform CP operations.

Since the strong interactions are invariant under CP transformations and taken that

(CP)†(CP) = 1̂, (4.2)

we rewrite the decay amplitudes as follows:

A(B → f) =
GF√
2

[∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)⟨f |(CP)†(CP)Qjr†
k (µ)(CP)†(CP)|B⟩

+
10∑
k=3

Ck(µ)⟨f |(CP)†(CP)Qr†
k (µ)(CP)†(CP)|B⟩

}]
.

(4.3)
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Due to the relations

(CP)|B⟩ = eiϕCP(B)|B̄⟩, (4.4)

(CP)|f⟩ = eiϕCP(f)|f̄⟩, (4.5)

where ϕCP(B) and ϕCP(f) are convention-dependent phases, and

(CP)Qjr†
k (CP)† = Qjr

k , (4.6)

(CP)Qr†
k (CP)† = Qr

k, (4.7)

we rewrite the decay amplitude as follows:

A(B → f) = ei[ϕCP(B)−ϕCP(f)]

×GF√
2

[∑
j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)⟨f̄ |Qjr
k (µ)|B̄⟩+

10∑
k=3

Ck(µ)⟨f̄ |Qr
k(µ)|B̄⟩

}]
. (4.8)

As a result, the hadronic matrix elements here are the same as those entering Eq. (3.105).

However, regarding the CKM elements, still one amplitude has the CKM factors while the

other has the complex conjugate of these factors.

Finally, we can write the amplitudes for the decay and the CP-conjucate case:

A(B → f) = ⟨f |H†
eff|B⟩ = ei[ϕCP(B)−ϕCP(f)]

[
e−iφ1|A1|eiδ1 + e−iφ2|A2|eiδ2

]
, (4.9)

A(B̄ → f̄) = ⟨f̄ |Heff|B̄⟩ = e+iφ1|A1|eiδ1 + e+iφ2|A2|eiδ2 , (4.10)

where |A1,2|eiδ1,2 are CP-conserving “strong” amplitudes involving the hadronic matrix

elements of the four-quark operators and δ1,2 are CP-conserving phases arising from the

hadronic matrix elements, which indicates the important role that hadronic physics plays

here. Thus, we have:

|Aj|eiδj =
∑
k

Ck(µ)× ⟨f |Qj
k(µ)|B⟩, (4.11)

where we repeat that Ck(µ) refers to the perturbative QCD part while the ⟨f |Qj
k(µ)|B⟩ term

encodes the hadronic dynamics of the decay. The phases φ1,2 are CP-violating weak phases

coming from the CKM elements VjrV
∗
jb. The term ei[ϕCP(B)−ϕCP(f)] contains the convention-

dependent phase factors. These quantities cancel in all physical observables, in particular

in the CP asymmetries. We point out that in the SM, Eqs. (4.9) and (4.10) present the

most general structure of the amplitudes of the weak B → f and B̄ → f̄ decays.

Using the above equations for the decay amplitudes, we obtain:

ACP =
2|A1||A2| sin(δ1 − δ2) sin(φ1 − φ2)

|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(φ1 − φ2) + |A2|2
, (4.12)

which is the “direct” CP asymmetry.
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Requirements and Applications

Based on Eq. (4.12), we note that one needs at least two decay amplitudes for having direct

CP violation, since a non-vanishing value of ACP is generated through the interference

between the two weak amplitudes.

Consequently, the criteria for having direct CP violation ACP ̸= 0 are:

1) |A1| ≠ 0 and |A2| ≠ 0,

2) φ1 − φ2 ̸= 0, π,

3) δ1 − δ2 ̸= 0, π.

If one looks at specific decays, the difference φ1 − φ2 is usually related to the CKM

angle γ, which is the δ13 phase in the PDG parametrization. When measuring the direct

CP asymmetry, the angle γ can be determined. However, the strong amplitudes |A1,2|eiδ1,2
entering Eq. (4.12) suffer from hadronic uncertainties. Therefore, in order to extract γ,

these hadronic uncertainties have to be taken into account. Strategies have been developed

over the years to determine this angle, while handling the hadronic matrix elements. For

this purpose, pure tree B → DK decays play a key role. One can utilise amplitude

relations between these modes to eliminate hadronic matrix elements. Measuring the direct

asymmetries, the angle γ can eventually be extracted. Therefore, this is a very useful

application of direct CP violation. We provide more information in Sec. 4.3.

4.2 CP Violation Induced Through B0
q–B̄

0
q Mixing

Non-vanishing CP violating asymmetries require certain conditions to be met and these

conditions arise from interference between two weak decay amplitudes. However, we can

also obtain interference effects through B0
q–B̄

0
q mixing in the time-dependent decay rates.

4.2.1 CP Violation in Mixing

CP violation in mixing can be probed by considering flavour specific B-meson decays where

the final states are specific to the B0 or B̄0 meson. A prime example is given by semileptonic

decays, where the charge of the lepton determines whether we have initially present B0 or

a B̄0 meson. Particularly interesting are decay processes, where we have final states which

can only be reached if the initially present B0 meson oscillates into a B̄0 or vice versa. Then

the asymmetry, assuming B̄0(0) = B̄0 and B0(0) = B0, takes the following form:

Γ(B̄0(t) → Xℓ+)− Γ(B0(t) → Xℓ−)

Γ(B̄0(t) → Xℓ+) + Γ(B0(t) → Xℓ−)
=

1− |q/p|4

1 + |q/p|4
. (4.13)
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We observe that this observable can take a non-vanishing value only if30:

|q/p| ≠ 1. (4.14)

We note that CP violation in B0
q–B̄

0
q mixing is very small in the SM, at the order of

O(10−4), and strongly experimentally constrained. Experimental measurements of such

“wrong charge” lepton asymmetries have been made (i.e. in Ref. [177]) and upper bounds

have been studied in Ref. [178]. In the following, we will neglect those tiny effects.

We emphasize that for the time-dependence formulae below, we use the assumption:

|q/p| = 1. (4.15)

4.2.2 Time-Dependent CP Asymmetries

Interference effects arise when both B0
q and B̄

0
q decay into the same final state. An illustra-

tion of these effects was given in Fig. 7. Interference through mixing and the decay signals

another type of CP violation. Let us firstly examine the case where the neutral B mesons

decay into a final state which is a CP-eigenstate, thus Eq. (4.5) reads as follows:

(CP)|f⟩ = ±|f⟩. (4.16)

Before defining the time-dependent CP asymmetry, let us introduce some of the key

quantities in our studies, assuming |q/p| = 1:

ξ
(q)
f = e−iΘ

(q)
M12

A(B̄0
q → f)

A(B0
q → f)

, ξ
(q)

f̄
= e−iΘ

(q)
M12

A(B̄0
q → f̄)

A(B0
q → f̄)

. (4.17)

These observables describe mathematically the interference effects and are convention-

independent with

Θ
(q)
M12

= π + 2arg(V ∗
tqVtb)− ϕCP(Bq), (4.18)

where ϕCP(Bq) cancels in the amplitude ratio. In addition, starting again from Eqs. (3.16)

and (3.17) while utilising Eqs. (3.20)-(3.23)31, we obtain:

|g(q)± (t)|2 = 1

4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2 e−Γqt cos(∆mqt)

]
=
e−Γqt

2

[
cosh

1

2
∆Γqt± cos(∆mqt)

]
(4.19)

30We note that neutral kaons and D mesons also show mixing effects between particles and anti-particles

and we can also have |q/p| deviating from 1 in these cases.
31We note that here we present the formulas for the general case of Bq. Thus, we do not simplify things

by assuming only the case of the Bd system, where ∆Γd is negligible, as in Eqs. (3.26) and (3.27).
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g
(q)
− (t) g

(q)
+ (t)∗ =

1

4

[
e−Γ

(q)
L t − e−Γ

(q)
H t + 2 i e−Γqt sin(∆mqt)

]
=
e−Γqt

2

[
sinh

1

2
∆Γqt+ i sin(∆mqt)

]
, (4.20)

g
(q)
− (t)∗g

(q)
+ (t) =

1

4

[
e−Γ

(q)
L t − e−Γ

(q)
H t − 2 i e−Γqt sin(∆mqt)

]
=
e−Γqt

2

[
sinh

1

2
∆Γqt− i sin(∆mqt)

]
, (4.21)

Combining the above formulas, the decay rate can be written as follows:

Γ(
(—)

B0
q (t) → f) =

[
|g(q)∓ (t)|2 + |ξ(q)f |2|g(q)± (t)|2 − 2Re

{
ξ
(q)
f g

(q)
± (t)g

(q)
∓ (t)∗

}]
Γ̃f , (4.22)

where Γ̃f denotes the “unevolved” decay rate32, calculated from |A|2 with the usual phase-

space integration.

Now, we keep in mind that the “untagged” decay rates correspond to the average of the

decay rate of the B0
q going into the final state f and the B̄0

q decaying into the same final

state f . Utilising Eq. (4.22), we obtain:

⟨Γ(Bq(t) → f)⟩ ≡ Γ(B0
q (t) → f) + Γ(B̄0

q (t) → f)

∝ [cosh(∆Γqt/2)−A∆Γ(Bq → f) sinh(∆Γqt/2)] e
−Γqt, (4.23)

where we mention again that ∆Γs is sizeable while ∆Γd ≈ 0. We can now write the

time-dependent CP asymmetry as follows:

ACP(t) ≡
Γ(B0

q (t) → f)− Γ(B̄0
q (t) → f)

Γ(B0
q (t) → f) + Γ(B̄0

q (t) → f)

=

[
Adir

CP(Bq → f) cos(∆mqt) +Amix
CP (Bq → f) sin(∆mqt)

cosh(∆Γqt/2)−A∆Γ(Bq → f) sinh(∆Γqt/2)

]
, (4.24)

where we have separated the two types of CP violation. The first one, Adir
CP, stands for

the direct CP-violating contributions (already introduced in Sec. 4.1). The second part,

Amix
CP , refers to the interference between the different decay amplitudes coming from the

mixing and is called mixing-induced CP violation. The sizeable ∆Γs gives access to another

observable, the A∆Γ. Consequently, only in the decay of the B0
s meson we get access to

the latter observable. So, for the decays of the B0
d meson, the time-dependent asymmetry

takes the form:

ACP(t) = Adir
CP(Bd → f) cos(∆mqt) +Amix

CP (Bd → f) sin(∆mqt), (4.25)

32Analogous expressions can be written for the CP-conjugate states.
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since ∆Γd is equal to 0, thereby the denominator in Eq. (4.24) gets equal to 1.

In terms of the ξ(q) observable, these CP asymmetries are written as follows:

Adir
CP(Bq → f) ≡

|A(B0
q → f)|2 − |A(B̄0

q → f̄)|2

|A(B0
q → f)|2 + |A(B̄0

q → f̄)|2
=

1−
∣∣ξ(q)f

∣∣2
1 +

∣∣ξ(q)f

∣∣2 (4.26)

Amix
CP (Bq → f) ≡

2 Im ξ
(q)
f

1 +
∣∣ξ(q)f

∣∣2 , A∆Γ(Bs → f) ≡
2Re ξ

(s)
f

1 +
∣∣ξ(s)f ∣∣2 . (4.27)

The three observables satisfy the relation:[
Adir

CP(Bq → f)
]2

+
[
Amix

CP (Bq → f)
]2

+
[
A∆Γ(Bq → f)

]2
= 1, (4.28)

consequently, they are not independent from each other.

It becomes clear that the quantity ξ
(q)
f includes all the necessary information to calculate

the asymmetries. Following the definition in Eq. (4.17) and utilising the expressions of the

decay amplitudes in Eqs. (4.9) and (4.10), we calculate ξ
(q)
f as follows:

ξ
(q)
f = ∓ e−iϕq

[
e+iφ1 |A1|eiδ1 + e+iφ2|A2|eiδ2
e−iφ1|A1|eiδ1 + e−iφ2 |A2|eiδ2

]
, (4.29)

where the “∓” sign comes from the CP eigenvalue. Let us remind the reader that φ1, φ2

are weak phases, δ1, δ2 strong phases and ϕq = 2arg(V ∗
tqVtb) the B

0
q–B̄

0
q mixing phase. As

we have already seen in Eqs. (3.30) and (3.31), we have:

ϕd = +2β, ϕs = −2δγ, (4.30)

where β and δγ are related to the UT angles. We note that:

e−iϕCP(f) = ±1 due to Eq. (4.16). (4.31)

We mention that an analogous methodology can be applied for decays where the final

state is not a CP-eigenstate but again both the B0
q and B̄0

q mesons decay into the same

final state f . Prime example in this case is the Bs → D±
s K

∓ system, which we will study

in detail in Chapter 6.

What do we learn from Eq. (4.29)?

In order to determine the CP asymmetries, we have to calculate the observable in Eq. (4.29).

Still discussing the formalism in the SM framework, in this equation, CP-violating phases

φ1 and φ2 enter, which come from complex phases in the CKM matrix elements. The

|A1|eiδ1 and |A2|eiδ2 quantities encode the hadronic matrix elements, suffering from hadronic
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uncertainties. So, examining Eq. (4.29), we observe that if there is only one amplitude, for

instance |A1|, while the other amplitude (i.e., the |A2|) vanishes, we obtain:

ξ
(q)
f = ∓ e−iϕq

[
e+iϕf/2|Mf |eiδf
e−iϕf/2|Mf |eiδf

]
= ∓ e−i(ϕq−ϕf ). (4.32)

Thus, the hadronic matrix element |Mf |eiδf fully cancels in this equation and we are only

left with the difference of the decay phases and the ϕq. No hadronic uncertainties remain.

In this case, the criteria for direct CP violation given in Sec. 4.1 are no longer satisfied, and

as a result Adir
CP vanishes:

Adir
CP(Bq → f) = 0. (4.33)

The mixing-induced CP asymmetry is the only one that survives:

Amix
CP (Bq → f) = ± sin(ϕq − ϕf ) = ± sinϕ, (4.34)

where ϕ is the CP-violating weak phase difference that governs the asymmetry. We empha-

size that Amix
CP is free from hadronic uncertainties. Consequently, the time-dependent CP

asymmetry given in Eq. (4.24) takes the following form for ∆Γq = 0:

ACP(t) = ± sinϕ sin(∆Mqt). (4.35)

The best setting for studying this special case is provided by the B0 → J/ψKS decay, which

we will explicitly discuss in Chapter 5. Another instructive example is the B0
d → π+π−,

which we will discuss below.

Concluding, the main message is that if the decay is dominated by only one CKM

amplitude, all the hadronic contributions would cancel out and the direct CP violation

would vanish. Then, only the mixing induced CP asymmetry is left, which would be a

clean observable.

4.2.3 Application: Extraction of the UT Angle α

Let us discuss an interesting application of the analysis of the CP asymmetries through

the B0
d → π+π− decay. This channel is characterised by colour-allowed trees, which give

the leading contributions, but also include penguin corrections. An illustration of the

corresponding topologies is given in Fig. 23. The final state of this channel is a CP-even

eigenstate, thus its CP-eigenvalue is equal to +1.

The decay amplitude is written as [179,180]:

A(B0
d → π+π−) = λ(d)u

(
Aucc + Aupen

)
+ λ(d)c Acpen + λ

(d)
t Atpen , (4.36)
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(a) (b)

Figure 23: Colour-allowed tree (left) and penguin (right) topologies for the B0
d → π+π−

decay.

where λ
(d)
j ≡ VjdV

∗
jb are the CKM factors with j ∈ {u, c, t}, the Aucc denotes the amplitude

from the “current–current” contributions while the Ajpen indicate the “penguin” amplitudes.

All three CKM factors are of the same order in λ (specifically O(λ3)). In contrast to the

colour-allowed trees, the QCD penguins amplitudes, as loop processes, are suppressed with

respect to the tree, so we expect them to be smaller33. Using the unitarity relation between

the CKM factors:

VtdV
∗
tb = −VudV ∗

ub − VcdV
∗
cb, (4.37)

we can eliminate one factor:

λ
(d)
t = −λ(d)u − λ(d)c , (4.38)

thereby simplifying the amplitude equation:

A(B0
d → π+π−) = λ(d)u

(
Aucc + Aupen − Atpen

)
+ λ(d)c

(
Acpen − Atpen

)
. (4.39)

Then the term referred as “tree” is:

T = λ(d)u
(
Aucc + Aupen − Atpen

)
, 34 (4.40)

while the “penguin” term is:

P = λ(d)c
(
Acpen − Atpen

)
, (4.41)

33How small they are is a challenge related to QCD and we will not elaborate more on this topic. We

only mention that using factorisation, it can be estimated that penguins are at the level of 20% of the tree.
34For completeness, we mention that the current-current operators Au

cc include both tree and exchange

contributions.
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As a result, we can rewrite the decay amplitude as [181,182]:

A(B0 → π+π−) = T + P (4.42)

= |T |eiδT eiγ + |P |eiδP (4.43)

= |T |eiδT
(
eiγ + reiδ

)
, (4.44)

where we factored out the weak phase γ = arg (−VudV ∗
ub/VcdV

∗
cb), introduced r = |P |/|T |

and used δ ≡ δP − δT for the strong phases.

The time-dependent CP asymmetry is given by [180,183]:

ACP(t)(Bd → π+π−) ≡ Γ(B0
d(t) → π+π−)− Γ(B̄0

d(t) → π+π−)

Γ(B0
d(t) → π+π−) + Γ(B̄0

d(t) → π+π−)

= Adir
CP cos(∆mdt) +Amix

CP sin(∆mdt) . (4.45)

Let us firstly recall the quantity ξ, which encodes all the necessary information. Following

Refs. [179,184] and with the amplitude given in Eqs. (4.44) we have:

ξ
(d)

π+π− = −e−iϕdA(B̄
0 → π+π−)

A(B0 → π+π−)
(4.46)

= −e−iϕd
[
e−iγ + reiδ

eiγ + reiδ

]
, (4.47)

where γ has flipped its sign in A(B̄0 → π+π−). Due to the interference between trees and

penguins we could get a direct CP asymmetry. These parameters also enter the mixing-

induced CP asymmetry.

We observe though that if we neglect the penguin contributions, which are loop sup-

pressed35 and assume that the decay is fully dominated by the colour-allowed tree topology,

the situation becomes simpler. Then the ξ
(d)

π+π− gets the form:

ξ
(d)

π+π− = e−iϕde−2iγ = −e−i(ϕd+2γ) (4.48)

where the hadronic amplitudes cancel. We note that in the SM ϕd = 2β. Key relation36

here is:

ϕd + 2γ = −2α , (4.49)

35As mentioned earlier, a generic estimate suggests that the penguin contributions are up to 20% of the

tree contributions.
36For completeness, we mention that in the most general case, we allow also for NP effects and we have:

ϕd + 2γ = ϕNP
d − 2α

Here, we discuss things in the SM, thus we assume that ϕNP
d = 0.
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which is commonly reported as a measurement of the CKM angle α. Regarding the CP

asymmetries then we obtain:

Adir
CP =

1−
∣∣ξ(d)π+π−

∣∣2
1 +

∣∣ξ(d)π+π−

∣∣2 ≈ 0, Amix
CP =

2 Im ξ
(d)

π+π−

1 +
∣∣ξ(d)π+π−

∣∣2 ≈ − sin(2α). (4.50)

As a result, we write the time-dependent CP asymmetry in the following form

ACP(t)(Bd → π+π−) = − sin(2α) sin(∆md t), (4.51)

which allows the α determination since sin(2α) can be measured.

However, penguins do contribute. So, it is important to take them into account and the

question is how big these penguin contributions are. Interestingly, using isospin relations,

the penguin corrections can be included. Thus, we write the isospin relations37 [185,186]:

√
2A(B+ → π+π−) = A(B0

d → π+π−) +
√
2A(B0

d → π0π0). (4.52)

This allows the determination of α. A similar relation holds also for the CP-conjugate

modes. We note that this strategy has experimentally been applied to B → ππ and in a

similar way can be applied to B → ρπ and B → ρρ and even a combination can be utilised

for obtaining α. The latest experimental determination is given as follows [187]

α = (85.2+4.8
−4.3)

◦ . (4.53)

We emphasize that it is important that we have determined the angle α for one more

reason; this value can also be used in order to obtain γ. To do this, we convert this result,

thus the ϕd + 2γ into a γ value. Let us discuss this in the coming Section.

4.3 Summary Thread: Different Ways of Determining γ

The CKM angle γ plays a major role in our analysis. In order to prepare the setting,

we provide here an overview of different γ determinations. We have already presented in

Eq. (3.69) the value which we utilise for the UT apex extraction and which will be used in

our analyses, especially when information relevant to the UT apex is required. Let us now

give more information on how we obtain this result.

37We will explicitly discuss the isospin relations of the B → ππ system and the corresponding amplitude

parametrization in Chapter 7.
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Pure Tree B0
s → D∓

s K
± Decays

Traditionally, for the determinations of γ, pure level tree decays of the kind B → DK

have been in the focus. Particularly interesting transitions, falling into this category, is

the B0
s → D∓

s K
± system. A detailed analysis of these decays is provided in Chapter 6,

as they play central role in our studies for this thesis. However, for completeness, we also

briefly address the topic here. Due to the B0
s–B̄

0
s mixing phenomenon, interference effects

arise between these decay channels, leading to a time-dependent rate asymmetry. The

corresponding observables of this asymmetry allow a theoretically clean determination of

ϕs + γ, where ϕs is a B
0
s − B̄0

s mixing phase. As this phase can be determined through the

decay B0
s → J/ψϕ, even in the presence of NP contributions in B0

s − B̄0
s mixing, we can

actually extract γ. These decays historically are considered to be very robust with respect to

NP but we have now reached the level of precision where we start seeing puzzling patterns.

LHCb reported a surprisingly large value of the angle γ of the UT38, making a convoluted

analysis in the B0
s → D∓

s K
± system [189]. In order to gain a better understanding of this

result, a transparent analysis of the corresponding CP asymmetries has been performed

[115,190]. Paying also special attention to discrete ambiguities, the LHCb picture has been

confirmed. Updating the value of ϕs =
(
−5+1.6

−1.5

)◦
, including penguin corrections in the

B0
s → J/ψϕ modes [191], the LHCb result shifts to the value [115,190]:

γBs→DsK =
(
131+17

−22

)◦
, (4.54)

which is in tension with the regime of 70◦. This value would require NP contributions

at the decay amplitude level. Even though, so far, we have focused on SM studies, for

completeness here, we give a few details regarding NP searches. In the presence of NP, the

UT angle γ enters as an effective angle, so Eq. (4.54) can be written as

γeff ≡ γ + δγNP, (4.55)

where γ is the CKM value while δγNP refers to the NP part. Investigating branching ratios

of individual modes, as discussed in [115,190], puzzling patterns arise also at the branching

ratio level, which one would expect if there is NP entering at the decay amplitude level.

Complementing the analysis with decays with similar dynamics, consistent patterns are

found, making the intriguing situation even more exciting. In Ref. [115,190] a model inde-

pendent strategy has been presented, describing that data can be accommodated with NP

38A new measurement was recently reported by LHCb [188]. This new result only uses Run II data and

has not been included in the world average yet, so we will not use it in our analysis. However, it is very

interesting to explore further. We point out, as we will also see in detail in Chapter 6, that the main points

arising from our Bs → DsK studies and the strategies we propose, especially regarding NP studies, still

hold and provide very useful insights.
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contributions at the level of 30% of the SM amplitudes. We note that model-dependent

studies have also been discussed in Refs. [192–194].

Pure Tree B → DK Decays

Even though these B0
s → D∓

s K
± studies are recent developments, the B → DK tree

transitions through various time-independent studies are key modes for γ determinations

[195, 196]. In the latter case, direct CP violation is utilised while the interference effects

are different from the B0
s → D∓

s K
± system, where mixing-induced CP-violation plays the

central role. The latest average from the LHCb collaboration of γ coming from time-

independent analyses of B+ → D(∗)h+ and B0 → Dh decays only, where h is pion, kaon or

K∗, is [197] 39

γB→DK = (64.9+3.9
−4.5)

◦ . (4.56)

In principle, this value could also have a NP component. NP would enter differently as there

are topologies, like color-suppressed modes, that do not contribute to the B0
s → D∓

s K
±

system and the sensitivity on γ now arises from different interference effects. In such a

simultaneous fit to a variety of B decays, NP effects may be averaged out, thus resulting in

an effective angle that can not be quantified. In order to better understand what happens

in these modes, it would be important to have individual measurements of the different

modes aiming to perform them with highest precision, instead of making averages.

Decays Involving Penguins: B → ππ, ρπ, ρρ

The other interesting system which can be used is provided by B → ππ, ρπ, ρρ modes

[185, 199]. The sensitivity to γ, specifically referring to the B0 → π+π− decay, which

we will later use in our analysis of the B → πK system, comes from mixing-induced CP

violation [200]. In this case, we determine α from an isospin analysis, as discussed above,

and we convert its value into γ through Eq. (4.48). The ϕd value, which is measured in the

B0
d → J/ψK0 channel and corrected for contributions from penguin topologies, is given as

follows [191,201]:

ϕd =
(
44.4+1.6

−1.5

)◦
. (4.57)

Combining the result for ϕd+2γ in Eq. (4.53) with the measurement of ϕd in Eq. (4.57),

we find the value:

γiso = (72.6+4.3
−4.9)

◦ , (4.58)

39LHCb Collaboration performs such γ measurements using self-tagging charged or neutral decays. For

more details, the reader is referred to Refs. [197,198].
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which could be affected by possible NP at the amplitudes through penguin topologies40.

Other Useful Modes Including Penguins: Bs → K+K−, Bd → π+π−

In addition, we mention that there is another interesting way of extracting the angle γ,

proposed in Ref. [202, 203]. This strategy utilises the U-spin symmetry and combines the

direct and the mixing-induced CP asymmetries of the Bd → π+π− modes with the penguin-

dominated Bs → K+K− decay41 without relying on information from the branching ratios.

The result:

γ = (65+11
−7 )◦, (4.59)

agrees excellently with the γ values from the B → DK decays. In our numerical analysis,

and due to the dynamics of the Bs → K+K− decay, we will not explore further this value.

Final Average Value of γ Utilised in our Numerical Analysis

We note that the two γ determinations in Eqs. (4.56) and (4.58), which have different

origin, are consistent within 1.1 standard deviations. We also see that both approaches

have similar precision. This allows us to average the two results yielding the value that we

already presented in Eq. (3.69). For completeness, we repeat it here:

γavg = (68.4± 3.3)◦. (4.60)

However, we highlight that in the future, with improved precision, differences between the

two approaches might become more significant. Then using an averaged value will no longer

be justified, as these deviations might hint NP.

40We mention that the penguins are the preferred avenue for NP. However, in principle, NP could also

enter through the tree topologies.
41LHCb recently reported the first observation of CP violation in the Bs → K+K− decay, suggesting

significant differences in the direct asymmetries between the B0
d → π+π− and B0

s → K−π+ as well as the

B0
s → K−K+ and B0

d → π−K+ modes.
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4.4 Closing Remarks

CP violation plays a very important role in the B system studies. So far, we have provided

the formalism within the SM framework. The various types of CP violation can be classified

as follows [204]:

• CP violation in decay

This type of CP violation refers to the case where the rate of a B meson decaying

into a final state f is different from the rate of the B̄ (anti-B) decaying into the CP

conjugate final state f̄ . As we had already mentioned, the neutral B mesons are

characterised by the mixing phenomenon while in charged mesons there is no mixing.

Therefore, this case is the only type of CP violation that can occur in both charged

and neutral mesons.

• CP violation in mixing

This type refers only to the neutral B mesons. In the SM, it is very small and experi-

mentally strongly constrained, so in the following these effects will not be considered.

• CP violation coming through the interference provided by B0
q–B̄

0
q mixing

This case again refers only to neutral mesons. It corresponds to cases where both B0

and B̄0 decay into the same final state.

Non-leptonic decays play the key role for studying CP violation in the SM because of

interference effects that arise. We have decays that despite the challenge to calculate the

hadronic matrix elements, allow us to test the SM descripion of CP violation in a very clean

way. There are transitions where these hadronic matrix elements either exactly cancel out

or to a very good approximation. There are two options [205]:

⋄ either we use amplitude relations to eliminate the hadronic matrix elements. In

this case, exact relations utilising pure tree decays (i.e. B± → K±D modes) are

distinguished from relations arising from flavour symmetries of strong interactions,

such as Bq → ππ, πK,KK decays

⋄ or in the case of neutral Bq mesons, mixing-induced CP violation may arise from

interference effects between mixing and decay. If there is only a single CKM amplitude

dominating the decay, the hadronic matrix elements cancel in the CP asymmetries.

Benchmark decay here is the B0
d → J/ψKS channel, which we will study in detail in

the subsequent Chapter.

In the next Chapters, we will utilise benchmark decays that will help us to further

explore the topic not only within the SM but also in searches of NP.
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Intermezzo: CP Violation Roadmap

Decays with Different Dynamics

CP Violation in  
different manifestations

Bd → J/ψKS Bs → J/ψϕ,

dominated by trees but  
also penguin contamination

Powerful Application  
The Unitarity Triangle

Bs → D±
s K∓

and related modes

pure tree decays

B → πK

dominated by penguins

Rare Decays

from EW penguins  
and box topologies

B → μμ
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5 B0
d → J/ψK0

S, B
0
s → J/ψϕ:

Penguins & New Physics in B0
q–B̄

0
q

Having discussed the concept of CP violation in B mesons and introduced B0
(s)–B̄

0
(s) mixing

within the SM, we can now study applications of this phenomena and explore effects of NP.

Key decays for this endeavour are the B0
d → J/ψK0

S and B0
s → J/ψϕ modes. Historically,

these channels have received a lot of attention and are considered to be the “golden modes”

for CP violation in B decays.

A problem that we encounter with these two decays is that the corresponding expressions

include doubly Cabibbo suppressed terms, which are difficult to calculate. Prime quantities

associated with mixing phenemona characterising these channels are the mixing phases ϕd

and ϕs. Therefore, we have to pay special attention in their determination. In order to deal

with the penguin effects in the determination of the mixing phases, we propose a formalism

that employs the SU(3) flavour symmetry and utilises CP violation measurements. This

formalism will be applied to the data leading to the current results for the mixing phases and

the penguin parameters. These results will be combined with information from branching

ratios, allowing us to determine the hadronic parameters. A new strategy is suggested,

which relies on information from semileptonic decays and provides factorisation tests in the

corresponding colour-suppressed decays.

Our next goal is to explore how much space for NP is left through the current available

data. Since the knowledge of the UT apex is needed in our analysis, we will utilise the results

of the UT studies in Sec. 3.4.2, highlighting again the importance of studying separately the

inclusive and exclusive determinations. Considering NP scenarios and performing future

projections, we will discuss the impact of improved precision on key input quantities. This

chapter is based on our work presented on Refs. [81,124,191,201,206,207].

5.1 Setting the Stage

The decays B0
d → J/ψK0

S and B0
s → J/ψϕ, caused by b̄ → c̄cs̄ quark level transitions,

are dominated by colour-suppressed tree diagrams but they also receive contributions from

penguin topologies, which are doubly Cabibbo suppressed. The topologies that characterise

these two systems are illustrated in Fig. 24. We note, here, that the B0
s → J/ψϕ mode

receives also contributions from exchange and penguin-annihilation topologies but as they

are expected to be small, we neglect them in our analysis.
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(a) (b)

(c) (d)

Figure 24: Topologies characterising the golden modes: (a) Colour-suppressed tree topology

for B0
d → J/ψK0

S decay, (b) penguin topology for B0
d → J/ψK0

S decay: doubly Cabibbo

suppressed, (c) colour-suppressed tree topology for B0
d → J/ψϕ decay and (d) penguin

topology for B0
d → J/ψϕ decay: doubly Cabibbo suppressed.

5.1.1 Decay Amplitudes

Having introduced the Feynman diagrams for the channels we are interested in, we can

write the decay amplitudes for these modes. Firstly, we work with the Bd → J/ψK0
S,

which is a decay into a CP eigenstate with eigenvalue −1. Within the SM, we write [208]:

A(B0
d → J/ψK0

S) = λc

(
Ac

′

tree + Ac
′

pen

)
+ λuA

u′

pen + λtA
t′

pen , (5.1)
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where Atree refers to the tree contributions while Apen describes the penguin topologies with

internal quarks c, u, t respectively. We note here, that keeping the notation of Ref. [208],

the primes are used to denote the b̄→ c̄cs̄ transitions. The terms λq, with q standing again

for c, u, t quarks are the usual CKM factors λq ≡ VqsV
∗
qb: We can eliminate λt,

42 using the

unitarity of the CKM matrix and applying the Wolfenstein parametrization [69], we obtain

the following expression for the decay amplitude43 [191,208]:

A
(
B0
d → J/ψKS

)
=

(
1− λ2

2

)
A′
[
1 + ϵa′eiθ

′
eiγ
]
. (5.2)

This is a general parametrization of the decay amplitude in the SM. Here, A′ is the hadronic

amplitude while a′eiθ
′
denotes the penguin parameter and they can be written with the help

of the tree and the penguin topologies as [191,208]:

A′ ≡ λ2A
(
Ac

′

tree + Ac
′

pen − At
′

pen

)
, (5.3)

a′eiθ
′ ≡ Rb

(
Au

′
pen − At

′
pen

Ac
′
tree + Ac′pen − At′pen

)
, (5.4)

where A ≡ |Vcb|/λ2, and Rb the UT side.The factor ϵ suppresses the contributions from the

penguin topologies and is written in terms of the Wolfenstein parameter λ as [191]:

ϵ ≡ λ2

1− λ2
= 0.05238± 0.00035 , (5.5)

where the numerical value is based on the measurement of the Flavour Lattice Averaging

Group (FLAG) of the CKM element |Vus| = 0.2231± 0.0007 [209]. Therefore, we see that

the quantity a′eiθ
′
enters in a doubly Cabibbo-suppressed way.

Ignoring the time evolution, the “unevolved” transition amplitudes of the neutral B

meson decays into a CP final eigenstate f can be expressed in a compact way as follows

[208,210]:

A(B0
q → f) ≡ Nf

[
1− bfe

iρf e+iγ
]
, (5.6)

A(B̄0
q → f) ≡ ηfNf

[
1− bfe

iρf e−iγ
]
, (5.7)

42We utilise the relation [99]

V ∗
urVub + V ∗

crVcb + V ∗
trVtb = 0 (r ∈ {d, s}),

as we already introduced earlier in Chapter 2.
43Here, the amplitude has been written for the KS final state, neglecting CP violation in the neutral

kaon system.
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where ηf is the CP-eigenvalue of the f final state, Nf is a normalisation factor for which

we have the following substitution:

Nf →
(
1− λ2

2

)
A′ , (5.8)

while bf shows the relative contribution of penguins with respect to tree contributions, ρf

is the CP-conserving strong phase while γ is the weak phase and we have:

bfe
iρf → −ϵa′eiθ′ . (5.9)

The same holds for the B0
s -meson counterpart of the B0

d → J/ψKS decay, which is the

B0
s → J/ψϕ channel, arising from replacing the down spectator quark by a strange quark.

The difference is that now we have two vector mesons in the final state, therefore there is an

admixture of different CP eigenstates. The system can be described with three polarization

states: the CP-even 0 and ∥ eigenstates and the CP-odd ⊥ eigenstates. Therefore, the

system has more complicated dynamics as the hadromic parameters depend on the final

state configuration. The decay amplitude though is completely analogous to Eq. (5.2), so

it is written as [210–212]:

A
(
B0
s → (J/ψϕ

)
f
) =

(
1− λ2

2

)
A′
f

[
1 + ϵa′fe

iθ′f eiγ
]
, (5.10)

where f refers to the different configurations {0, ∥,⊥} of the final state of the vector meson.

We note that, in principle, the A′
f amplitude and the a′f , θ

′
f penguin parameters should

be considered for each polarisation state f individually. Applying naive factorisation for

the hadronic matrix elements, the penguin parameters do not depend on the final-state

configuration f [210]. In the remainder of the text, we label the penguin parameters of

this vector–vector decay channel as a′V and θ′V . Here, we focus on polarisation-independent

measurements in the analysis of the current data, following the experimental analyses of

CP violation in these channels. It would be important in the future measurements to have

also a polarisation-dependent analysis.
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5.1.2 The CP Asymmetries in B0
(s) → J/ψX System

The three asymmetries, defined in Sec. 4.2, depend on the penguin parameters bf and ρf ,

as well as the B0
q–B̄

0
q mixing phase ϕq as follows [210]:

Adir
CP(Bq → f) =

2bf sin ρf sin γ

1− 2bf cos ρf cos γ + b2f
, (5.11)

ηfAmix
CP (Bq → f) =

[
sinϕq − 2bf cos ρf sin(ϕq + γ) + b2f sin(ϕq + 2γ)

1− 2bf cos ρf cos γ + b2f

]
(5.12)

ηfA∆Γ(Bq → f) = −

[
cosϕq − 2bf cos ρf cos(ϕq + γ) + b2f cos(ϕq + 2γ)

1− 2bf cos ρf cos γ + b2f

]
, (5.13)

where ηf is the CP eigenvalue of the final state f .

5.1.3 Dictionary for CP Violating Phases

The CP-violating phase ϕq is experimentally accessible through the CP asymmetry arising

from the interference of the B0
q–B̄

0
q mixing and the decay processes of Bq to the final CP

eigenstate f . It can be written as:

ϕq ≡ ϕSM
q + ϕNP

q , (5.14)

where ϕSM
q denotes the SM part which is determined with the UT and ϕNP

q describes contri-

butions from potential new sources of CP violation lying beyond the SM. However, due to

the presence of the doubly Cabibbo suppressed penguin topologies, the mixing-induced CP

asymmetry allows us to measure an effective phase ϕeff
q,f which is connected to ϕq through:

ϕeff
q,f = ϕq +∆ϕfq , (5.15)

where ∆ϕfq is a hadronic phase shift. This phase shift is a function of the penguin pa-

rameters a and θ and it measures the ratio of the penguin over tree contributions. It is

decay-channel specific and it arises from non-perturbative, strong interaction effects. There-

fore, it shows the impact of penguins on the effective mixing phases. If there were only

contributions from tree topologies, we would get ∆ϕfq = 0. Since there are contributions

from the doubly Cabibbo suppressed penguins, the hadronic phase shift ∆ϕfq is of the order

of 0.5
◦
[208,211,213–219].

Starting from the quantity [211,212]:

sin
(
ϕeff
q,f

)
≡ ηfAmix

CP (Bq → f)√
1−

(
Adir

CP(Bq → f)
)2 = sin

(
ϕq +∆ϕfq

)
, (5.16)
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which allows the determination of the effective mixing phase experimentally, and utilising

Eqs. (5.11) and (5.12), we obtain:

sin∆ϕfq =
−2bf cos ρf sin γ + b2f sin 2γ(

1− 2bf cos ρf cos γ + b2f
)√

1−
(
Adir

CP(B → f)
)2 , (5.17)

cos∆ϕfq =
1− 2bf cos ρf cos γ + b2f cos 2γ(

1− 2bf cos ρf cos γ + b2f
)√

1−
(
Adir

CP(B → f)
)2 . (5.18)

Here, we have allowed for the penguin effects, i.e. bf ̸= 0. These relations yield

tan∆ϕfq = −

[
2bf cos ρf sin γ − b2 sin 2γ

1− 2bf cos ρf cos γ + b2f cos 2γ

]
. (5.19)

We highlight that in the case there is no doubly Cabibbo-suppressed penguin contribu-

tions, i.e. bf = 0, the expressions of the CP asymmetries would take the simplified form

Adir
CP = 0 , ηfAmix

CP = sinϕq , (5.20)

therefore, the ϕq would be determined directly from the mixing-induced CP asymmetry.

However, when allowing for the penguin effects, additional information is needed in order

to correctly interpret the experimental measurements and determine the mixing phase ϕq,

distinguishing these phases from the effective ones.

5.1.4 Branching Ratio

An interesting observable to work with, after having determined the decay amplitudes, is the

branching ratio. Working with the Bs → J/ψK0
S channel, the experimental time-integrated

untagged rate is written as [220]:

B(Bs → J/ψK0
S) ≡

1

2

∫ ∞

0

⟨Γ(Bs(t) → J/ψK0
S)⟩dt

=
1

2

∫ ∞

0

[
Γ(B0

s (t) → J/ψK0
S) + Γ(B̄0

s (t) → J/ψK0
S)
]
dt. (5.21)

The “theoretical” branching ratio is defined by the untagged decay rate at a decay time

t = 0 [208]. The conversion relation between the experimental and the theoretical branching

ratio for this channel is written as [221]:

B
(
Bs → J/ψK0

S

)
theo

=

[
1− y2s

1 +A∆Γ(Bs → J/ψK0
S) ys

]
B
(
Bs → J/ψK0

S

)
. (5.22)
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We the determine the observable A∆Γ(Bs → J/ψK0
S), thus we fix the conversion factor

utilising the effective lifetime [221]:

τ effJ/ψK0
S
≡
∫∞
0
t ⟨Γ(Bs(t) → J/ψK0

S)⟩ dt∫∞
0
⟨Γ(Bs(t) → J/ψK0

S)⟩ dt
(5.23)

=
τBs

1− y2s

[
1 + 2A∆Γ(Bs → J/ψK0

S) ys + y2s
1 +A∆Γ(Bs → J/ψK0

S) ys

]
. (5.24)

Similar relations can be written for the other B0
q → J/ψX channels.

5.2 Obtaining the Phases ϕq through B0
(s) → J/ψX Decays

To determine the CP-violating phases ϕq and to get the picture from the current data, we

perform a simultaneous analysis, using not only the two decays that we introduced in the

previous Sections but also a number of partner decays that enter in a Cabibbo–favoured

way. Applying SU(3) flavour symmetry of strong interactions, we make use of the following

channels: the B0
s → J/ψK0

S [211, 222] and B0
d → J/ψπ0 modes [210, 215], which are the

key control channels for the B0
d → J/ψK0

S decay, as well as B0
d → J/ψρ0 [210–212], which

is the main control mode for the B0
s → J/ψϕ decay. Let us describe our strategy in more

detail below.

5.2.1 The Status from the Current Data

First of all, we work with the B0
s → J/ψK0

S channel, which is the U -spin44 partner of the

B0
d → J/ψK0

S, thus we interchange all strange and down quarks. The SM decay amplitude

can be written as follows [208]:

A
(
B0
s → J/ψK0

S

)
= −λA

[
1− aeiθeiγ

]
, (5.25)

where the hadronic parameters are defined in analogy to Eqs. (5.3) and (5.4):

A ≡ λ2A
(
Actree + Acpen − Atpen

)
, (5.26)

aeiθ ≡ Rb

(
Aupen − Atpen

Actree + Acpen − Atpen

)
. (5.27)

Since these are b̄ → dcc̄ quark level transitions, we use unprimed parameters. Again, the

amplitude is a general parametrization within the SM, relying only on the unitarity of the

44The U -spin symmetry is a subgroup of the SU(3) flavour symmetry of strong interactions that relates

down and strange quarks to each other.
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CKM matrix. In Eq. (5.25), aeiθ enters the decay amplitude in a Cabibbo-allowed way.

Due to the absence of the Cabibbo suppression factor ϵ, the penguin effects are amplified

in these b̄→ dcc̄ modes with respect to their b̄→ s̄cc̄ counterparts.

The other partner decay of B0
d → J/ψK0

S is the B0
d → J/ψπ0, where we replace the

strange spectator quark with a down quark. Neglecting exchange and penguin-annihilation

topologies, the SM decay amplitude takes the form [215]:
√
2A(B0 → J/ψπ0) = λA

[
1− aeiθeiγ

]
, (5.28)

where A and aeiθ are defined in a similar way as in Eqs. (5.3) and (5.4). The factor of
√
2

is related to the normalization of the π0 wavefunction. We note again the absence of the

factor ϵ.

So far, we have introduced the amplitudes of the partner decays of the B0
d → J/ψK0

S

channel, where we have the pseudoscalar mesons K0
S and π0 in the final state. Now, we

move to B0
s → J/ψϕ with its partner decay B0

d → J/ψρ0, originating from b̄→ dcc̄ quark-

level transitions, where we have two vector mesons in the final state. In analogy to the

structure of the decay amplitude in Eq. (5.10), we have:

A(B0
d → [J/ψ ρ0]f ) = −λAf

[
1− af e

iθf eiγ
]

(5.29)

for a given final state configuration f ∈ {0, ∥,⊥} with

Af ≡ λ2A
(
Ac

′

tree,f + Ac
′

pen,f − At
′

pen,f

)
, (5.30)

af e
iθf ≡ Rb

(
Aupen,f − Atpen,f

Actree,f + Acpen,f − Atpen,f

)
. (5.31)

Similar to the B0
s → J/ψϕ decay, an angular analysis of the decay products of the vector

mesons is needed [210].

Taking these five decays into account and using the CP asymmetries, we can perform a

simultaneous analysis and finally determine the mixing phases ϕd and ϕs, as it is presented

in Ref. [191]. The interplay between these channels follows the scheme illustrated in Fig. 25.

Starting with the B0
s → J/ψK0

S decay, the mixing phase ϕs (not the effective one) is required

in order to determine the ∆ϕd penguin shift from B0
s → J/ψK0

S. The ∆ϕd is needed in

order to extract ϕd from B0
d → J/ψK0

S. The mixing phase ϕd (again, not the effective one)

is needed as an input to determine the ∆ϕs penguin shift from B0
d → J/ψρ0, which is then

required in order to get the phase ϕs using the CP asymmetries of the B0
s → J/ψϕ decay.

Due to the SU(3) symmetry, the following relations hold:

a′ = a, θ′ = θ, (5.32)

A′ = A . (5.33)
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Figure 25: Interplay between the B → JψX modes in the determination of the ϕq phases

and the dependence on the hadronic penguin shifts

However, we should note that the SU(3) flavour symmetry globally works up to corrections

at the 20% level. Therefore, the Eqs. (5.32) and (5.33) get SU(3)-breaking corrections.

In Eq. (5.32), these corrections can enter only through non-factorisable effects while in

Eq. (5.33) through both factorisable and non-factorisable corrections. This happens because

in the factorisation approximation, in the ratio presented in Eq. (5.26), the hadronic form

factors and the decay constants cancel, while this not the case for the hadronic amplitude

presented in Eq. (5.27).

We emphasize here that Eq. (5.32) does not imply that a and θ for the vector modes

are the same as for the pseudoscalar modes. Moreover, in factorisation these penguin

parameters would not dependent on the polarization state. From now on, we will denote

the penguin parameters for the vector case as aV and θV while for the pseudoscalar, simply

as a and θ.

Using external input on the angle γ 45 and combining it with the values of the direct

and mixing-induced CP asymmetries which are shown in Table 3, we perform the combined

analysis of the five B0 → J/ψX decays. The SU(3) symmetry relations in Eq. (5.32)

indicate that the penguin parameters of the B0
d → J/ψK0, B0

s → J/ψK0
S and B0

d → J/ψπ0

decays are equal to one another. Similarly, the penguin parameters of the B0
s → J/ψϕ and

B0
d → J/ψρ0 are equal. Our assumptions are that, due to lack of sensitivity on the current

data, we ignore SU(3)-breaking effects, polarisation-dependent effects as well as exchange

and penguin-annihilation topologies contributions.

45We mention here that in our analysis in Ref. [191] we had used the value of γ coming only from B → DK

decays. For the updated results presented at the CKM 2021 conference [201], we used γ = (64.9 ± 4.5)◦

which was the most recent value from B → DK modes reported by the LHCb collaboration [197].
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Decay Channels Adir
CP ηAmix

CP References

B0
s → J/ψK0

S −0.28± 0.42 0.08± 0.41 [223]

B0
d → J/ψK0 −0.007± 0.018 0.690± 0.018 [187]

B0
d → J/ψπ0 0.04± 0.12 0.86± 0.14 [187]

B0
s → J/ψϕ 0.006± 0.013 −0.085± 0.025 [224]

B0
d → J/ψρ0 −0.064± 0.059 0.66± 0.15 [225]

Table 3: Values of the direct Adir
CP and mixing-induced Amix

CP CP Asymmetries of the five

B0 → J/ψX used for the simultaneous fit.

Fit Results for the Penguin Parameters and the Mixing Phases

The solutions of the fit for the vector–pseudoscalar final state are [191]:

a = 0.13+0.16
−0.10 , θ =

(
173+34

−43

)◦
, ϕd =

(
44.4+1.6

−1.5

)◦
. (5.34)

These correspond to a hadronic phase shift ∆ϕd =
(
−0.73+0.60

−0.91 ± 1.4
)◦
.

The solutions of the fit for the vector–vector final state are [191]:

aV = 0.043+0.082
−0.037 , θV =

(
306+ 48

−112

)◦
, ϕs =

(
−5.0+1.6

−1.5

)◦
, (5.35)

and correspond to a hadronic phase shift ∆ϕs = (0.1± 0.5)◦.

These ϕd and ϕs mixing phases include corrections from penguin contributions. In order

to see the impact of the penguin topologies we compare the values of ϕd and ϕs coming

from the fit with the corresponding experimental input, thus the effective phases ϕeff
d,J/ψK0

and ϕeff
s,J/ψϕ, respectively:

ϕeff
d,J/ψK0 = (43.6± 1.4)◦ , (5.36)

ϕeff
s,J/ψϕ = (−4.1± 1.3)◦. (5.37)

Consequently, the comparison between Eqs. (5.34) and (5.36) as well as Eqs. (5.35) and

(5.37) indicates the non-negligible impact of the penguin contributions. Fig. 26 illustrates

the two-dimensional confidence regions of this simultaneous fit of the five B0 → J/ψX

decay channels for the penguin parameters and the mixing phases ϕd and ϕs arising from

the CP asymmetries. The fit is performed using the GammaCombo framework [129], which

as we already mentioned in Sec. 3.4.2 was originally developed by the LHCb collaboration.

Comparing the fit solutions (a, θ) and (aV , θV ), i,e. the blue areas on the top left and

right panel of Fig. 26, we note that even though the results are compatible, the shape of the
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Figure 26: Simultaneous fit for the penguin parameters a, θ, aV , θV and mixing phases ϕd

and ϕs from the CP asymmetries utilising the five B0 → J/ψX decay channels [191]. The

plots are produced with GammaCombo.

contours (confidence regions) show the different dynamics between the vector–pseudoscalar

and the vector–vector final states. The contours for the CP asymmetries, Amix
CP and Adir

CP

are added only for illustration.

We also observe, in the lower panel of Fig. 26, that there is a strong correlation between

a and ϕd for the vector–pseudoscalar final states while the correlation between aV and ϕs is

a lot smaller for the vector–vector final states. As we already mentioned, within the current

precision, there is agreement between the three polarisation states in the B0
s → J/ψϕ decay.

However, in the future upgrade programmes of LHCb and Belle II, reaching higher precision

and providing improved input measurements, may allow to observe and resolve differences.
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Determining the Available NP Space

Recalling Eq. (5.14), we can now compare the current values of the mixing phases with

the SM predictions and find the possible available space for the NP contributions. Here, in

order to be consistent with the numerical analysis within this section, we present the values

given in Ref. [191] for the inclusive and exclusive case.46

Firstly, for the Bs system, following the definition of the SM predictions for the mixing

phase ϕs, given in (3.31), and utilising the UT apex coordinates, we obtain the SM values.

Then, combining this SM prediction with the fit value of the mixing phase in Eq. (5.35),

we determine the NP phases as follows:

ϕSM
s = (−2.49± 0.14)◦, ϕNP

s = (−2.5± 1.6)◦, Inclusive, (5.38)

ϕSM
s = (−2.15± 0.11)◦, ϕNP

s = (−2.9± 1.6)◦, Exclusive. (5.39)

We note that the precision on the ϕNP
s result is limited by the experimental fit in Eq. (5.35).

Thus, ϕs is a powerful probe for NP and it will be interesting to see how the picture evolves

in the future. In addition, improvements in the measurements of the CP asymmetries of all

five B0
q → J/ψX channels are also important in order to be able to discover possible NP

in the Bs mixing.

Similarly, for the Bd system, starting from the SM prediction of ϕd in Eq. (3.30) and

combining it with the fit solution in Eq. (5.34), we obtain:

ϕSM
d = (52.7± 2.4)◦, ϕNP

d = (−8.3± 2.8)◦, Inclusive, (5.40)

ϕSM
d = (45.7± 2.0)◦, ϕNP

d = (−1.3± 2.6)◦, Exclusive. (5.41)

The situation for ϕd is different from the case for ϕs. The precision on ϕNP
d is limited by

the SM prediction uncertainty. It becomes clear that there is significant difference between

the inclusive and exclusive case, which already indicates the necessity of resolving the

discrepancies between the |Vub| and |Vcb| determinations for NP studies utilising the B0
d–B̄

0
d

mixing phase.

5.2.2 Improving the data

Our strategy can be exploited in the future high precision era, where significant improve-

ments in uncertainties of the penguin parameters and their impact on the mixing phases

are expected. Studies and analyses regarding the increased luminosity expected from the

46Here, this is sufficient since we are interested in showing the main strategy. In the following Sections,

where we will perform a careful analysis of the NP effects, we will provide the most recent predictions and

explore all three cases, the inclusive, exclusive and hybrid in order to draw our conclusions.
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HL-LHC and Belle II can be found in Refs. [226–228]. Here, in order to show the potential

that our strategy has and how effective it can be, we compare the current precision with

future benchmark scenarios in a simplified way, without taking into account the experimen-

tal challenges of the different decay channels or the time scales that these improvements

would require.

More specifically, we choose two benchmark scenarios [191] and keep the central values of

the current data. First, we divide all the experimental uncertainties by a factor of 2 and then

by a factor of 5. Fig. 27 shows the central values of the penguin parameters and the mixing

phases (denoted by dots) with the associated uncertainties for both the current precision

(blue colour) and the two future scenarios; the red lines show the improved uncertainties

by a factor of 2 while the greens denote the improvement by a factor of 5.

Interestingly, we note that already an improvement of the experimental precision by

a factor of 2 would have a large impact on the determination of the penguin parameters,

allowing to establish non-zero penguin contributions. This demonstrates that the measure-

ments of the CP asymmetries of all five B0 → J/ψX decays are equally important.

Controlling the penguin contributions has a large impact on the knowledge of the phases

ϕq. What we get from the numerics is that in the future, we can pin down NP with

significance of more than five standard deviations47. More specifically, regarding the phase

ϕs, it becomes clear that it is possible to control penguins with precision that allows to

establish non-zero NP phases ϕNP
s with significance of more than 5σ. Regarding ϕd though,

NP contributions are limited by the large uncertainties of the SM predictions. Hopefully, in

the future the discrepancies between inclusive and exclusive |Vub| and |Vcb| will be resolved.

5.3 Information from the Branching Ratio

Having utilised the information from the CP asymmetries for extracting the penguin param-

eters and mixing phases, we can make use of the measurements of the branching fractions to

study the dynamics of the five B0 → J/ψX decays. The theoretical framework to calculate

decay amplitudes and therefore branching ratios is given by factorisation, which we already

introduced in Chapter 3.

The SM structure for the tree amplitude of a B0
q meson, where q ∈ {s, d}, decaying

into J/ψ (vector) and a pseudoscalar P meson can be written in factorisation as follows

47We note that for the illustration of ϕNP
s and ϕNP

d phases, we chose to work with the value coming from

the exclusive case.
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Figure 27: Penguin parameters and mixing phases for current precision (blue), an improved

precision by a factor of 2 (red) and an improved precision by a factor of 5 (green).

[104,163,229]:

A(B0
q → J/ψP )|treefact =

GF√
2
Vcq′V

∗
cb a2 ⟨J/ψP |(c̄γµc)(b̄γµq)|B0

q ⟩|fact,

=
GF√
2
Vcq′V

∗
cb a2 ⟨J/ψ|(c̄γµc)|0⟩︸ ︷︷ ︸ ⟨P |(b̄γµq)|B0

q ⟩︸ ︷︷ ︸ ,
=
GF√
2
Vcq′V

∗
cb a2 mJ/ψfJ/ψε

µ
J/ψ

[
pBµ + pPµ −

(
m2
B −m2

P

q2

)
qµ

]
f+
B→P (q

2).

(5.42)
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Here GF is the Fermi constant, Vcq′ and Vcb denote CKM matrix elements, a2 is a phe-

nomenological “colour suppression” factor, mJ/ψ is the mass and fJ/ψ the decay constant

of the J/ψ meson, εJ/ψ is its polarisation vector, f+
B→P is the hadronic B → P form factor,

pB and pP are the four momentum vectors of the B and pseudoscalar mesons, respectively,

and qµ = pBµ − pPµ their momentum transfer.

We can generalise the decay amplitude in order to allow for penguin effects as well.

Specifically, for the B0
d → J/ψπ0 decay, the generalised amplitude can be written as [191]:

√
2 A(B0

d → J/ψπ0) =
GF√
2
VcdV

∗
cb mJ/ψ fJ/ψf

+
Bd→π(m

2
J/ψ) (pBµ + pKµ) · εµJ/ψ

×
(
1− aeiθeiγ

)
× a2(B

0
d → J/ψπ0) , (5.43)

where a2(B
0
d → J/ψπ0) is a generalisation of the naive colour-suppression factor.

We calculate the CP averaged branching ratio:

2 B(B0
d → J/ψπ0) = τBd

G2
F

32π
|VcdVcb|2 m3

Bd

[
fJ/ψf

+
Bd→π(m

2
J/ψ)

]2 [
Φ

(
mJ/ψ

mBd

,
mπ0

mBd

)]3
× (1− 2a cos θ cos γ + a2)×

[
a2(B

0
d → J/ψπ0)

]2
, (5.44)

where τBd is the lifetime of the B0
d meson, Φ is the phase-space function defined in Eq. (3.62)

and the factor 2 on the left-hand side is again related to the π0 wave function. The value

of the decay constant, using the most recent lattice QCD result [230] is:

fJ/ψ = (410.4± 1.7) MeV . (5.45)

Regarding the form factors, there are different approaches that can be used in order to

determine their values. Here, we work with the results from the lattice QCD approach.

The values that we obtain using FLAG [209] are the following:

f+
Bd→π(m

2
J/ψ) = 0.371± 0.069 , (5.46)

f+
Bd→K(m

2
J/ψ) = 0.645± 0.022 , (5.47)

f+
Bs→K(m

2
J/ψ) = 0.470± 0.024 . (5.48)

Here we had to extrapolate the results from high q2 to the low kinematic point of q2 = m2
J/ψ.

For this purpose, we followed the Bourrely–Caprini–Lellouch (BCL) parametrisation [231].

Our goal is to determine the parameter a2 for the B → J/ψ modes. Let us discuss this

parameter and its determination in more detail below.
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5.3.1 The parameter a2

The quantity a2 is the phenomenological “colour suppression” factor, as already introduced

in Eq. (3.115). In factorisation, it is written as follows:

a2 = C1 +
C2

3
, (5.49)

where C1 and C2 are the short-distance Wilson coefficients of the current–current operators

O1 and O2, respectively:

O1 =
(
c̄αγµ(1− γ5)q

′
β

) (
b̄βγ

µ(1− γ5)cα
)
≡ (c̄αq

′
β)V−A(b̄βcα)V−A , (5.50)

O2 =
(
c̄βγµ(1− γ5)q

′
β

) (
b̄αγ

µ(1− γ5)cα
)
≡ (c̄βq

′
β)V−A(b̄αcα)V−A . (5.51)

Naive factorisation predicts [155]:

a2 = 0.21± 0.05 . (5.52)

The factor a2 depends strongly on the renormalisation scale µ (contrary to a1 for colour-

allowed mesons) reflecting that factorisation is not expected to work well for such colour-

suppressed decays.

Using the values of form factors in Eqs. (5.46)–(5.48) we can determine the parameter

a2, utilising Eq. (5.42) and the penguin parameters a and θ. Thus, for B0
d → J/ψπ0, we

have:

|a2(B0
d → J/ψπ0)|2 × (1− 2a cos θ cos γ + a2) = 0.145± 0.055 , (5.53)

leading
====⇒

to
a2(B

0
d → J/ψπ0) = 0.363+0.066

−0.079 . (5.54)

In analogy, we obtain for the B0
d → J/ψK0 and B0

s → J/ψK0
S decays:

|a′2(B0
d → J/ψK0)|2 × (1 + 2ϵa cos θ cos γ + ϵ2a2) = 0.0714± 0.0059 , (5.55)

leading
====⇒

to
a′2(B

0
d → J/ψK0) = 0.268+0.011

−0.012 , (5.56)

|a2(B0
s → J/ψK0

S)|2 × (1− 2a cos θ cos γ + a2) = 0.097± 0.013 , (5.57)

leading
====⇒

to
a2(B

0
s → J/ψK0

S) = 0.296+0.024
−0.027 . (5.58)

The numerical results in Eqs. (5.56) and (5.58) agree surprisingly well with the factorisation

range in Eq. (5.52). The a2 result for the decay B0
d → J/ψπ0 has larger uncertainties,

which arises from the uncertainty of the corresponding form factor in Eq. (5.46), showing
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Figure 28: The differential branching ratio of B0
d → π−ℓ+νℓ using the FLAG (purple

contour) and HFLAV (green contour) parametrisations.

the limitations of the lattice calculations. When it comes to lower q2, the limited precision

of the lattice calculations gets amplified. We can illustrate this feature by plotting the

differential branching ratio of the B0
d → π−ℓ+νℓ semileptonic partner decay for different q2

bins, as given in Fig. 28. As we can see, the band is wider in the lower q2 regions.

Using FLAG parametrisation [209], which was also used in order to calculate the form

factor f+
Bd→π in Eq. (5.46), the differential branching ratio of the B0

d → π−ℓ+νℓ decay in

the limit mℓ → 0 is written as:

dB
dq2

(B0
d → π−ℓ+νℓ) = τBs

[
dΓ

dq2
(B0

d → π−ℓ+νℓ)

]
, (5.59)

= τBs

[
G2

F

24π3
|Vub|2η2EWp3π

[
f+
Bd→π(q

2)
]2]

, (5.60)

= τBs

[
G2

F

24π3
|Vub|2η2EW

[
mBd

2
Φ

(
mπ

mBd

,
q

mBd

)]3 [
f+
Bd→π(q

2)
]2]

, (5.61)

where ηEW = 1.0066 ± 0.0050 [232] denotes the one-loop electroweak correction factor.

Fig. 28 illustrates the corresponding contour with purple colour. The differential rate was

measured by the BaBar and Belle collaborations. The uncertainties are due to the form

factor parametrisation. This curve is compared to another contour, denoted by green colour

in Fig. 28, which uses the HFLAV parametrisation that combines lattice QCD and light–

cone sum–rule calculations. This leads to the following value of the form factor:

f+
Bd→π(m

2
J/ψ) = 0.487± 0.018 , (5.62)
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which agrees much better with the value of the form factor in Eq. (5.48). As we can see,

there is a large discrepancy between the two contours, showing the issues that arise when

using the form factors and illustrating the necessity to minimise the dependence on them

when determining the parameters a2 from the data.

5.3.2 Utilising Semileptonic Decays

It is essential to determine the parameters a2 in a clean way from the data and to obtain

insights into how well factorisation works. In order to do so, it is important to handle

the form factors, which are difficult to calculate, as there are challenges with extrapolating

lattice results and handling the theoretical uncertainties. Therefore, following the strategy

introduced in Sec. 3.5.4, we use semileptonic decays and more specifically, we construct ra-

tios between the branching fractions of the B0 → J/ψX and corresponding partner decays,

which allow us to avoid the form factor dependence.

Let us firstly work with the decay B0
d → J/ψπ0. Its partner semileptonic decay is

B0
d → π−ℓ+νℓ which has the same form factor dependence. Therefore, constructing the

following ratio

Rπ
d ≡ Γ(B0

d → J/ψπ0)

dΓ/dq2|q2=m2
J/ψ

(B0
d → π−ℓ+νℓ)

=
B(B0

d → J/ψπ0)

dB/dq2|q2=m2
J/ψ

(B0
d → π−ℓ+νℓ)

, (5.63)

= 3π2

(
1− λ2

R2
b

)(
fJ/ψ
ηEW

)2

× (1− 2a cos θ cos γ + a2)×
[
a2(B

0
d → J/ψπ0)

]2
, (5.64)

the |Vub| matrix element and the form factors fully cancel, thereby allowing a clean extrac-

tion of |a2(B0
d → J/ψπ0)|. However, it still requires knowledge of the penguin parameters.

In the above equation, we have used the relation∣∣∣∣VcdVcbVub

∣∣∣∣2 = 1− λ2

R2
b

+O(λ4), (5.65)

neglecting the O(λ4) corrections.

Regarding the numerical analysis, we use the B0
d → J/ψπ0 branching ratio, given in

PDG [233]. For the differential branching ratio of B → πℓν we use the following experi-

mental average for the q2 = m2
J/ψ bin [187]:

dB
dq2|q2=[8,10] GeV2

(B → πℓν) = (6.44± 0.43)× 10−6 GeV−2. (5.66)

This value is an average of the BaBar and Belle measurements, assuming isospin symmetry

in order to combine the experimental data from both B0
d → π−ℓ+νℓ and B+ → π0ℓ+ν
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channels. Finally, we obtain the following value of the ratio Rπ
d [191]:

Rπ
d = (2.58± 0.23)× 10−6 MeV2 . (5.67)

Utilising this result with Eq. (5.64), as well as the penguin parameters in Eq. (5.34), we

finally determine the value a2 as follows:∣∣a2(B0
d → J/ψπ0)

∣∣2 × (1− 2a cos θ cos γ + a2) = (0.0832± 0.0079) , (5.68)

|a2(B0
d → J/ψπ0)| = 0.275+0.018

−0.023 . (5.69)

This result agrees better with naive factorisation, in Eq. (5.52) [155], than the form-factor

based result in Eq. (5.54), showing the advantages of using our strategy with the semilep-

tonic decays. The central value in Eq. (5.54) is larger, a fact that is related to the dis-

crepancies between FLAG and HFLAV parametrisations (as shown in Fig. 28), while the

uncertainties are also larger, due to the fact that the form factor in Eq. (5.46) has large

uncertainties.

A similar ratio can be constructed for the B0
s → J/ψK0

S decay. Its semileptonic partner

is the B0
s → K−ℓ+νℓ channel. Thus, we write

RK
s ≡ Γ(B0

s → J/ψK0
S)

dΓ/dq2|q2=m2
J/ψ

(B0
s → K−ℓ+νℓ)

=
B(B0

s → J/ψK0
S)

dB/dq2|q2=m2
J/ψ

(B0
s → K−ℓ+νℓ)

. (5.70)

However, we cannot determine the rate RK
s yet. Even though the LHCb collaboration has

given a first measurement of the branching fraction of the B0
s → K−ℓ+νℓ channel [234], a

measurement of the differential branching fraction is not available yet. Therefore, the form

factors information is needed and we still use the value of Eq. (5.58).

Last but not least, for the B0
d → J/ψK0 decay, there is no semileptonic partner. As a

result, for this case, the form factor information in the analysis will be required. For the

value of a2 we use Eq. (5.56).

We illustrate the correlation of the effective colour-suppression factors of the various

decays with the size a of the penguin parameters in Fig. 29. So, we show the values of

a2 as functions of a, and the corresponding uncertainty contours, for the B0
s → J/ψK0

S

(green), B0
d → J/ψπ0 (brown) and B0

d → J/ψK0 (blue) decay channels. We point out that

comparing with naive factorisation [155] deviations arise at the (30–40)% level. This may

appear to be large. However, we should keep in mind that this is a class of decays where

factorisation is not expected to work well.
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Figure 29: The effective colour-suppression factors in terms of the size a of the penguin

parameters [201].

5.4 Towards NP in B0
q–B̄

0
q Mixing

Let us now move towards NP and perform careful studies to explore the allowed parameter

space for NP in Bq-meson mixing. For this purpose, as we already saw earlier, we have

to compare the SM predictions of the B0
q–B̄

0
q mixing parameters with the corresponding

experimental values. This will allow us to constrain possible NP contributions in the neutral

Bq-meson mixing.

Our first step is to properly determine the mixing parameters in the SM. We highlight

that these parameters strongly depend on the CKMmatrix elements and the determinations

of the UT apex. Recalling the UT analysis in Sec. 3.4.2, we will discuss the impact that the

different experimental inputs (related to CKM factors) have on the NP parameter space.

Here, we will study each one of the inclusive, exclusive and hybrid case separately.

Following the definitions of the SM predictions for the mixing phases ϕd and ϕs given in

Eqs. (3.30) and (3.31), respectively, and utilising the UT apex coordinates for the inclusive,

exclusive and hybrid case, we obtain the SM values [81] presented in Table 4.

We also obtain the numerical predictions for the mass difference ∆mq between the heavy

and light mass eigenstates of the neutral Bq-meson system, defined in Eq. (3.32). We use

the values of the masses of the Bs and Bd system [66]:

mBd = 5279.66± 0.12 MeV, mBs = 5366.92± 0.10 MeV, (5.71)

where the mass element M q
12 in the SM is given in Eq. (3.33). Finally, the results for the

mass difference in the SM are shown in Table 5.
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Case ϕSM
d ϕSM

s

Inclusive (51.4± 2.8)◦ (−2.30± 0.13)◦

Exclusive (46.2± 2.3)◦ (−2.08± 0.10)◦

Hybrid (42.6± 2.2)◦ (−1.93± 0.10)◦

Table 4: SM predictions for the mixing phases ϕSM
d and ϕSM

s for the inclusive, exclusive and

hybrid case.

Case ∆mSM
d ∆mSM

s

Inclusive (0.513± 0.040) ps−1 (17.23± 0.87) ps−1

Exclusive (0.439± 0.033) ps−1 (14.80± 0.76) ps−1

Hybrid (0.510± 0.037) ps−1 (17.19± 0.87) ps−1

Table 5: SM predictions for the mass differences ∆mSM
d and ∆mSM

s for the inclusive, exclu-

sive and hybrid case.

The experimental values for ∆md and ∆ms are [120,235]:

∆md = (0.5065± 0.0019) ps−1 , (5.72)

∆ms = (17.7656± 0.0057) ps−1 . (5.73)

Comparing the SM predictions with the experimental values, we find that the latter are

more precise (one to two orders of magnitude). A combined analysis of lattice and light-cone

sum rules (LQSR) [236] gives similar results. We note that in the exclusive scenario, the

∆md SM prediction differs from the corresponding measured value by 2 standard deviations

while the ∆ms SM value differs from the experimental one by 3 standard deviations. We

also observe that the central values in the exclusive scenario are smaller than those of the

inclusive and exclusive cases, following the pattern of the value of the |Vcb| CKM matrix

element.

5.4.1 Introducing the NP parameters

Our next goal is to quantify the impact of NP in the neutral Bq-meson mixing. In general,

we may write:

M
(q)
12 =M q,SM

12

(
1 + κqe

iσq
)
, (5.74)
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Figure 30: Contours on the σq-κq plane. The left panel shows the dependence on the ρ

parameter while the right one indicates the dependence on the ϕNP
q phase.

where we introduce the NP parameters κq and σq while the SM mass M q,SM
12 is given in

Eq. (3.33). We can now generalise the expression of the mixing parameters in such a way

that we have two parts, the SM and the NP one, following [237]:

∆mq = ∆mSM
q +∆mNP

q = ∆mSM
q

∣∣1 + κqe
iσq
∣∣ , (5.75)

ϕq = ϕSM
q + ϕNP

q = ϕSM
q + arg

(
1 + κqe

iσq
)
. (5.76)

The parameter κq describes the size of the NP effects while the σq is a complex phase

accounting for additional CP-violating effects. This is a model independent parametrisation

in the sense that we make no assumptions concerning the NP origin.

Following Eq. (5.75) we obtain the first constraint from the ∆mq parameter and the κq

in terms of σq can be written as follows [237]:

ρd ≡
∣∣∆mq/∆m

SM
q

∣∣ =√1 + 2κq cosσq + κ2q , (5.77)

κq = − cosσq ±
√
ρ2q − sin2 σq . (5.78)

An illustration of the contours in the σq-κq plane for different values of ρ is given in the left

panel of Fig. 30. As an example, we vary the value of ρ between 1.2 and 0.8. We choose a

step of 0.1 and the upper contour corresponds to ρ = 1.2 while the lower to ρ = 0.8.

The second constrain on the NP parameters comes from the ϕq. The parameter κq as a

function of σq is [237]:

κq =
tanϕNP

q

sinσq − cosσq tanϕNP
q

, (5.79)

for a given value of ϕNP
q . We provide the corresponding plot in the right panel of Fig. 30.

in the σq-κq plane for different ϕNP
q values. As an example, we pick a few values of the
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Case κd σd κs σs

Inclusive 0.121+0.056
−0.055

(
261+37

−35

)◦
0.045+0.048

−0.033

(
312+37

−77

)◦
Exclusive 0.156+0.093

−0.084

(
347+21

−25

)◦
0.205+0.064

−0.059

(
347.6+8.5

−9.8

)◦
Hybrid 0.031+0.057

−0.031

(
104+256

−104

)◦
0.053+0.046

−0.034

(
309+34

−65

)◦
Table 6: Values of the NP parameters κq, σq for the Bs and Bd systems in Scenario I for

inclusive, ecxlusive and hybrid case.

NP phase between 0◦ < σq < 180◦ and 180◦ < σq < 360◦, corresponding to positive and

negative ϕNP
q , respectively.

With the help of Eqs. (5.75) and (5.76), we explore two different NP scenarios. The first

one, namely Scenario I is the most general case, having the least assumptions. The second

case that we consider, Scenario II, assumes Flavour Universal NP (FUNP). The purpose

of the latter is to explore the impact of additional assumptions on the allowed parameter

space for NP in B0
q–B̄

0
q mixing.

5.4.2 Exploring NP Scenarios

Scenario I

The first scenario, which as we mentioned is the most general, uses the UT side Rb and the

angle γ as inputs for the SM predictions. The only assumption in this case is that there is

no NP in Rb and γ.

Therefore, we utilise the UT apex determination, which does not rely on information

from mixing in order to determine the SM predictions of ∆mq and ϕq. These predictions

are compared with their measured values and allow us to constrain the NP parameters.

Here, the NP parameter space is determined separately for the Bd and the Bs system, thus

(κd, σd) and (κs, σs) are obtained independently from each other. The results, obtained

from GammaCombo, are presented in Table 6.

In order to guide the eye, a simplified version of the κd and σd fit is shown in Fig. 31.

Including the constraints from ∆md and ϕd we show the plots for the Bd system for the

inclusive, exclusive and hybrid case. We draw the individual constraints from ϕd and ∆md

and show the central value48 of the κd and σd for all three cases (indicated by black dot).

Similarly, Fig. 32 illustrates the κs and σs correlation. A more sophisticated fit for both

Bd and Bs systems, produced using the GammaCombo tool, is given in Ref. [81]. It shows

48Here, since the allowed regions can be read off from the overlap of the countours from ϕq and ∆mq,

we do not add the error bands for the κq and σq points in the plot.
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Figure 31: Simplified version of the fit for the NP parameters in the Bd system for Scenario I.

We show the central values of κd and σd (denoted as black dot) for the inclusive (top),

exclusive (middle) and hybrid (bottom) case including the constraints from ϕd and ∆md.
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Figure 32: Simplified version of the fit for the NP parameters in the Bs system for Scenario I.

We show the central values of κs and σs (denoted as black dot) for the inclusive (top),

exclusive (middle) and hybrid (bottom) case including the constraints from ϕs and ∆ms.
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that the conclusions regarding the presence of NP are different for the three cases. In the

inclusive case, the κs is compatible with 0 while κd is different from 0 at the 2.2 σ level.

In the exclusive determination, the κd deviates from 0 at the 1.9 σ level, whereas κs differs

from zero at the 3.5 σ level, suggesting a strong hint of NP. Last but not least, in the hybrid

case, the κd is compatible with 0 while κs deviates at the 1.6 σ level.

Scenario II

For the second NP scenario, we have the FUNP case, where we assume that [81]:

(κd, σd) = (κs, σs), (5.80)

thus the NP contributions are equal in the Bd and Bs system. This is not a Minimal

Flavour Violation scenario, in which there would be no CP-violating NP phase, but it can

be realised in NP models with U(2) symmetry [238,239].

Here, we do not determine the UT apex based on the side Rb and the angle γ but in-

stead the fit relies on the Rb and Rt sides. This is a very useful method, in particular when

discrepancies between the various γ determinations arise. Therefore, possible NP in γ will

not affect the findings. Let us make a small parenthesis here to describe this alternative

way of the UT determination.

Unitarity Triangle Apex through Rb and Rt side

Recalling the definition in Eq. (2.64), the side Rt can be written as [81]:

Rt =
1

λ

∣∣∣∣VtdVts
∣∣∣∣ [1− λ2

2
(1− 2ρ̄)

]
+O

(
λ4
)
. (5.81)

The ratio of the CKM matrix elements |Vtd| and |Vts| is expressed in terms of the B0
q–B̄

0
q

mixing parameters as follows [81]:∣∣∣∣VtdVts
∣∣∣∣ = ξ

√
mBs∆m

SM
d

mBd∆m
SM
s

. (5.82)

Here the SU(3)-breaking parameter ξ is the ratio of bag parameters and decay constants of

the Bd and the Bs systems that can be calculated on the lattice. We obtain [135,240]:

ξ ≡
fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.212± 0.016 . (5.83)
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Determination ρ̄ η̄

Inclusive 0.180± 0.014 0.395± 0.020

Exclusive 0.163± 0.013 0.357± 0.017

Hybrid 0.153± 0.013 0.330± 0.016

Table 7: Values of the UT apex ρ̄ and η̄, determined from the Rb and Rt sides, for the

inclusive, exclusive and hybrid case.

The individual results for the decay constant and bag parameters are [135,240]:

fBd

√
B̂Bd = (210.6± 5.5) MeV , (5.84)

fBs

√
B̂Bs = (256.1± 5.7) MeV . (5.85)

The advantage of this ratio compared to the individual results is that uncertainties cancel,

making it cleaner. Using the values of the masses of the Bs and Bd system given in Eq. (5.71)

and the experimental values for ∆md and ∆ms given in Eqs. (5.72) and (5.73), we obtain

the ratio of the CKM matrix elements:∣∣∣∣VtdVts
∣∣∣∣ = 0.2063± 0.0004± 0.0027 . (5.86)

Here, the first uncertainty corresponds to experimental measurements while the second one

is due to the lattice input.

Therefore, the Rt side can be determined.49 However, in this case we have to make the

assumption that we use SM expressions for the mixing parameters ∆md and ∆ms.

UT Apex Results through Rb and Rt

Having determined Rt, we can now make a fit to the Rb and Rt sides and we obtain the

results [81] in Table 7. Comparing these results with the ones that relies on information

from γ shown in Table 2, we notice that there is a similar precision for η̄ while ρ̄ is a factor

2 more precise.

Consequently, the extraction of the UT apex coordinates utilising Rb and Rt is more

precise than the determination through Rb and γ, presented in Sec. 3.4.2. On the other

hand, Rt requires the SM expressions of ∆md and ∆ms and as a result, possible NP con-

tributions in B0
q -B̄

0
q mixing are ignored.

49We mention here that since we will revisit the discussion about the side Rt in Chapter 8, we will gather

the corresponding values in Table 17, for completeness.
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Case κd = κs = κ σd = σs = σ

Inclusive 0.057+0.040
−0.026 (294+34

−53)
◦

Exclusive 0.203+0.062
−0.057 (347.7+7.4

−8.3)
◦

Hybrid 0.043+0.049
−0.036 (326+32

−90)
◦

Table 8: Values of κd = κs = κ and σd = σs = σ in the NP Scenario II for the inclusive,

exclusive and hybrid case.

Obtaining the NP Parameters in Scenario II

Let us finally define the NP space using the FUNP assumption. An important con-

sequence of this assumption is that in the ratio ∆md/∆ms, any NP contributions cancel.

Therefore, the Rt (defined in Eq. (5.81)) will not receive any contributions from NP at order

λ2. Employing the UT apex, coming from Rb and Rt, we obtain the SM values of ∆mq

and ϕq without relying on γ. These SM predictions are compared with the experimental

counterparts and lead to constraints on κ and σ. The GammaCombo fit results [81] are

presented in Table 8.

Comparing Scenario I and Scenario II

Comparing the values from Scenario II with the results from Scenario I, where the UT apex

was relying on Rb and γ, we observe that they are similar to the κs and σs parameters for

the inclusive, exclusive and hybrid case, indicating that the Bs system dominates the fits.

A comparison between the two scenarios allows us to test the FUNP assumption and

explore its impact on the constraints on the parameter space of NP in B0
q -B̄

0
q mixing.

Within uncertainties, the FUNP case interpolates between Bd and Bs system, with Bs still

playing the dominant role. So, the FUNP scenario seems to be compatible with Scenario

I for both Bd and Bs, which means that we can not rule out FUNP assumption50. Fig. 33

illustrates the correlation between κd and κs. The three contours represent the three Rb

solutions (for the inclusive, exclusive and hybrid case) while the black diagonal line denotes

that κd = κs, which is used in the FUNP scenario. We observe again that all three solutions

are compatible with the FUNP assumption.

50A comparison between the fit solutions for the Bd and Bs systems coming from GammaCombo is

presented in Ref. [81] and for completeness we add it in Appendix D.
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Figure 33: Comparing the inclusive, exclusive and hybrid scenarios through a combined fit

for κd and κs. The black diagonal line denotes the FUNP scenario, where κd = κs. The

analysis has been made using GammaCombo fit.

5.4.3 Future Improvements

In the future, it will be important to achieve increased precision on the key input mea-

surements. Let us firstly discuss the case of improvements on the NP parameters κq and

σq. Regarding the phases ϕq, it is only the ϕSM
s which is more precisely known than the

corresponding experimental value. On the other hand, the ϕSM
d phase is limited by the UT

apex knowledge and particularly the Rb side. The ∆m
SM
d and ∆mSM

s parameters have large

uncertainties due to non-perturbative terms. As it is difficult to improve these calculations

and it is not easy to predict the associated time-scale, we avoid future estimates. As a

result, we focus on the |Vcb| matrix element, the lattice calculations and the UT apex.

We get a feeling of the future prospects, by making the hypothetical assumption that

each one of the above mentioned input parameters is reduced by 50%. The corresponding

values are presented in Table 9, where we compare the current results (Scenario I) of κq

and σq for the inclusive, exclusive and hybrid case for both the Bd and Bs systems with

the 50% improved precision on each one of the parameters: |Vcb|, lattice and UT apex [81].

We obtain interesting findings, which of course depend on these assumptions.

Regarding the Bs-meson system, we note that the precision on κq and σq is limited by the

lattice uncertainty. The impact from improvements on the UT apex seems to be negligible,

especially for the phase ϕs. From the scenarios that we consider, it is the exclusive case

which assumes improvement from lattice that appears to be the most exciting. Such a case,
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κd σd

Scenario Inclusive Exclusive Hybrid Inclusive Exclusive Hybrid

Current 0.121+0.056
−0.055 0.156+0.093

−0.084 0.031+0.057
−0.031

(
261+37

−35

)◦ (
347+21

−25

)◦ (
104+256

−104

)◦
|Vcb|50% improv. 0.121+0.056

−0.055 0.156+0.089
−0.081 0.031+0.056

−0.031

(
261+37

−35

)◦ (
347+21

−24

)◦ (
104+256

−104

)◦
lattice50% improv. 0.121+0.056

−0.055 0.156+0.074
−0.069 0.031+0.050

−0.031

(
261+31

−31

)◦ (
347+21

−22

)◦ (
104+256

−104

)◦
UT Apex50% improv. 0.121+0.037

−0.036 0.156+0.078
−0.071 0.031+0.046

−0.031

(
261+31

−28

)◦ (
347+10

−15

)◦ (
104+256

−104

)◦
κs σs

Current 0.045+0.048
−0.033 0.205+0.064

−0.059 0.053+0.046
−0.034

(
312+37

−77

)◦ (
347.6+8.5

−9.8

)◦ (
309+34

−65

)◦
|Vcb|50% improv. 0.045+0.046

−0.032 0.205+0.058
−0.053 0.053+0.044

−0.033

(
312+37

−73

)◦ (
347.6+8.5

−9.4

)◦ (
309+33

−61

)◦
lattice50% improv. 0.045+0.032

−0.028 0.205+0.042
−0.040 0.053+0.030

−0.029

(
312+36

−47

)◦ (
347.6+8.5

−8.8

)◦ (
309+31

−39

)◦
UT Apex50% improv. 0.045+0.048

−0.033 0.205+0.064
−0.059 0.053+0.046

−0.034

(
312+37

−77

)◦ (
347.6+8.5

−9.7

)◦ (
309+34

−64

)◦
Table 9: Results for NP parameters κq and σq, assuming a hypothetical scenario of reducing

the uncertainty on the |Vcb| matrix element, the lattice calculations and the UT apex by

50%. Both Bd and Bs systems are studied for the inclusive, exclusive and hybrid case [81].

would suggest NP in B0
s–B̄

0
s with a significance of more than 5 standard deviations.

As far as the Bd-meson system is concerned, the situation is different. We demonstrate

in our studies that, the UT apex plays a limiting factor. We note that it is the inclusive

scenario which assumes improvement on the UT apex the one that stands out. In order

to fully explore the potentials of this system, progress on the UT apex has to be made.

Things are very different from the Bs-system where the SM prediction of ϕs is more robust.

Consequently, searches of NP in B0
s -B̄

0
s mixing are more promising than in the Bd-system.

Of course, it is of key importance to manage to constrain NP in both the Bd and Bs systems

as much as possible.

Another essential point regarding future prospects is related to NP in the angle γ. As we

have already mentioned, there are two ways of determining γ and with the current data, they

are in good agreement with each other. However, these measurements have different origin.

If in the future, there is improved precision on the input quantities of these measurements,

the different γ determinations might show significant discrepancies due to NP effects. In

this case, it would no longer be justified to perform an average of the different results, as

we performed here. Therefore, the UT analysis should be revisited. Then, independent

information from additional observables would be necessary to resolve such a situation,

which could also provide exciting new opportunities in NP searches, not only in γ but also

in B0
q -B̄

0
q mixing, which is strongly correlated with the UT apex coordinates.
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As we also discussed the case of determining the UT without using γ information but

the Rt side instead, we highlight the issue in this case, which is the SM determination of

the Rt. Utilising additional assumptions like the FUNP, we make sure that in ratios like

∆md/∆ms , any NP contributions drop out, thus remain SM-like.

5.5 To sum up

In this Chapter we have presented a detailed analysis of the B0
d → J/ψK0 and B0

s → J/ψϕ

channels, discussing the state-of-the-art picture of the penguin effects. Special care has

to be taken in the extraction of the mixing phases ϕq. The determination of ϕd from the

B0
d → J/ψK0 channel and ϕs from the B0

s → J/ψϕ is limited due to penguin effects.

We are entering a phase where hadronic uncertainties have to be included. Therefore,

we have developed a strategy of including these corrections with the help of data. Having

employed SU(3) flavour symmetry, we have made use of the corresponding control channels,

which are the B0
d → J/ψπ0, B0

s → J/ψK0
S and B0

d → J/ψρ0 modes. All these five channels

have been used in a simultaneous fit. Since their mixing-induced asymmetries depend on

ϕq, this analysis allows the extraction of the mixing phases and the hadronic parameters,

taking directly the penguin effects into account.

Considering future scenarios, we have highlighted again how essential it is to improve the

precision on Rb side and eventually resolve the |Vub| and |Vcb| inclusive-exclusive tensions as
these are limiting factors concerning ϕd determination. Regarding ϕs, it will be important

for polarization-dependent measurements from B0
s → J/ψϕ to become available. As we

have shown in these scenarios that it will be possible to obtain non-zero contributions to ϕs

with more than 5 σ, it becomes clear that the penguin uncertainties have to be controlled

and that the five channels we have used can be benchmark channels for CP violation studies.

Moreover, we have utilised information from branching ratios in order to determine

the effective colour suppression factors a2. These parameters can be used as reference for

future QCD calculations, thus to help gain insight into the dynamics of the B0 → J/ψP

decays. In order to extract the a2 factors in a theoretically clean way and to minimise

the dependence on hadronic formn factors, we have introduced ratios of the B0 → J/ψP

modes that we are interested in, with their semi-leptonic partner decays. The results are

in the ballpark of theoretical predictions, suffering though from large uncertainties. They

also show the impact of non-factorisable SU(3) breaking effects, where no deviation from

the SU(3) limit has been indicated within the current precision. Therefore, the SU(3)-

based strategy suggested in our analysis works well and it can offer exciting potential for

establishing new sources of CP violation in the future.

Having the SM predictions of the mixing parameters as inputs, we have moved towards
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our main goal, which is to explore the allowed parameter space for NP. We have introduced

the NP parameters κq and σq and have explored two different NP scenarios. In the first

scenario, we have constrained the NP parameters separately for the Bs and the Bd system

in a model-independent way. We have shown that out of the three cases, it is the exclusive

one for the Bs system that gives a strong NP evidence.

In the second scenario, we have assumed Flavour Universal NP, thus NP contributions

are the same in the Bs and Bd system and as a result, NP effects are dropped out in the

∆md/∆ms ratio. As we have noted, the Bs system is the dominant one. Comparing the

three cases for the CKM matrix elements, we have found that in the exclusive one the fit

contours overlap well with those coming from the general NP case for the Bs system while

in the inclusive and hybrid case the shapes are different. Thus, the FUNP assumption

might not be realised in the nature, although we can not exclude such kind of NP given

the current uncertainties.

Moving to the high precision era, we have performed future projections for the main

input parameters, thus the CKM matrix elements, the UT apex as well as the lattice

calculations. Interestingly, we have demonstrated that in the Bd system the UT apex plays

a limiting factor and progress on the UT apex is required in order to fully explore this

system’s potential. Contrary to Bd, in the Bs system we do not have this issue as the SM

prediction of the phase ϕs is more robust. Therefore, NP searches in the neutral mixing of

Bs system are more promising than in the Bd. However, constraining NP in both systems

as much as possible is of key importance. Last but not least, essential future prospect is

also related to the UT angle γ, because improved precision on the input quantities might

lead to discrepancies between the different γ determinations due to NP, which will not allow

anymore an averaged result as it is used here.
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CP Violation in  
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Performing combined fit with their control channels                      

allows the determination of the mixing phases 
including the impact of penguins on CP asymmetries

ϕd,s
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6 The B0
s → D∓

s K
± System

In this Chapter we explore the B0
s → D∓

s K
± system, which is a very interesting example of

non-leptonic decays, offering a powerful probe for testing the SM description of CP violation

[241–243]. In the SM, the channels B̄0
s → D+

s K
− and B0

s → D+
s K

− with their counterparts

decaying into the CP-conjugate final stateD−
s K

+ originate from pure tree topologies caused

by b → cūs and b̄ → ūcs̄ quark-level processes, respectively, as shown in Fig. 34(a,b).

Dealing with neutral B0
s mesons, the phenomenon of B0

s–B̄
0
s mixing occurs. Due to B0

s–

B̄0
s mixing, interference effects arise between the B̄0

s → D+
s K

− and B0
s → D+

s K
− decay

processes. Therefore, the B0
s → D∓

s K
± system allows a theoretically clean determination

of the phase ϕs+γ. As the mixing phase ϕs is determined through B0
s → J/ψϕ and similar

modes [191,211,212,220,244], it finally leads to the extraction of γ.

Historically, these decays were considered very robust with respect to NP contributions.

However, we have now reached the level of precision that allows us to see puzzling patterns.

One of these puzzles, which was also our motivation to further explore the B0
s → D+

s K
−

system, was a surprisingly large γ value which was reported by LHCb Collaboration [189]

γ =
(
128+17

−22

)◦
. (6.1)

This result is in tension with the regime of 70◦, which is given by global analyses of the

UT [122, 187, 233, 245] as illustrated in Fig. 35. Could this value indicate physics beyond

the SM?

In order to answer this question, we complement our analysis with information from

branching ratios. Extracting the individual branching ratios of the B0
s → D+

s K
− decays

and combining with information from semi-leptonic B(s) decays, we arrive at yet another

tension with SM predictions, which we also obtain in other decays with similar dynamics.

In view of all these puzzles, we need to shed more light on the situation. Therefore,

we develop a model-independent strategy and generalise our analysis of the B0
s → D∓

s K
±

system in order to include NP effects.

The outline of this Chapter is the following: first, we provide the theoretical framework,

having a closer look at CP violation and discussing the ϕs+ γ determination, while paying

special attention to discrete ambiguities. We determine the individual branching ratios of

the B0
s → D+

s K
− and B0

s → D−
s K

+ decay channels from the experimental data. We convert

them into effective colour factors |a1|, which characterise the colour-allowed tree decays, and

obtain the corresponding SM predictions. We extract the |a1| parameters in the cleanest

possible way with respect to uncertainties from CKM parameters and form factors, utilising
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(a) (b)

Figure 34: Colour-allowed tree topologies for the B0
s → D∓

s K
± system in the SM.

γ ≈ (70 ± 7)o

γ = (128+17
−22)o

γ ≈ (70 ± 7)o

γ = (128+17
−22)o

Figure 35: Tension between the angle γ form the global UT analyses (shaded brown area)

and the result from the LHCb Collabration (shaded red area) in Ref. [189].

B(s) semileptonic decays. In view of the puzzles that arise, we propose a model-independent

framework to reveal possible NP effects. We apply our strategy to the data and explore

the space left for NP. We finally summarise our conclusions. The chapter is based on our

studies in Refs. [115,190] and the proceedings contributions [206,207,246–248].

For completeness, we emphasize that we only focus on the value of γ (and related

observables) reported in Ref. [189], which was the available data when our papers discussed
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in this thesis were published. Very recently, the LHCb Collaboration came up with a

new analysis of the B0
s → D∓

s K
± system, reporting a standalone RUN II measurement

corresponding to γ = (74± 11)◦ [188]. By the time the present manuscript was submitted,

this result had not been included in the average of the γ values yet. Hence, for the numerical

analysis of this thesis, we will not take it into account. However, this is a very interesting

result, where the large uncertainties still leave a lot of room, and needs to be further

explored. Despite of what the future data will bring, the key points of our proposed

strategies and the main results arising from our studies still hold and provide useful insights,

setting the basis for future explorations of these decays.

6.1 Standard Model Amplitudes

Our starting point is to express the SM amplitude as:

A(B0
s → D+

s K
−) = ⟨K−D+

s |Heff(B
0
s → D+

s K
−)|B0

s ⟩ , (6.2)

where Heff is the low-energy effective Hamiltonian of the system. A similar relation can

also be written for the CP-conjugate case. Following here the notation of Ref. [242], we

denote the CKM factors51 as υs, ῡs, υ
∗
s , ῡ

∗
s and the hadronic matrix elements as Ms, M̄s.

The decay amplitude is rewritten as follows:

A(B̄0
s → D+

s K
−) =

GF√
2
ῡsM̄s, (6.3)

A(B0
s → D+

s K
−) = (−1)LeiϕCP

GF√
2
υ∗sMs, (6.4)

where L is the angular momentum of the final state system, which in this case is equal to

0, and ϕCP is a convention dependent CP-phase. This phase arises from performing CP

operations, as was already presented in Eqs. (4.4) and (4.5). Similarly, for the CP-conjugate

final state:

A(B̄0
s → D−

s K
+) =

GF√
2
υsMs, (6.5)

A(B0
s → D−

s K
+) = (−1)LeiϕCP

GF√
2
ῡ∗sM̄s. (6.6)

Let us recall Sec. 4.2.2, where we introduced the quantities ξ and ξ̄ which measure

the strength of the interference effects. Employing the CP transformations in Eqs. (4.4)

51These CKM factors are products of CKM matrix elements.
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and (4.5), we can now write these physical observables for the B0
s → D∓

s K
± system as

follows [242]:

ξs = −e−iϕs
[
eiϕCP

A(B̄0
s → D+

s K
−)

A(B0
s → D+

s K
−)

]
, (6.7)

ξ̄s = −e−iϕs
[
eiϕCP

A(B̄0
s → D−

s K
+)

A(B0
s → D−

s K
+)

]
. (6.8)

The next step is to implement the formulas of the decay amplitudes in the above expressions.

Therefore, the ϕCP phase gets cancelled by the amplitude ratios and we obtain the simpler

form:

ξs = −(−1)Le−i(ϕs+γ)
[

1

xseiδs

]
, (6.9)

ξ̄s = −(−1)Le−i(ϕs+γ)
[
xse

iδs
]
. (6.10)

Here, the hadronic parameter xs and the strong phase δs are introduced. The parameter

xs is defined as in Ref. [242]

xs = Rbas, (6.11)

where Rb is the UT side, while for as:

ase
iδs = e−i[ϕCP(D)−ϕCP(K)]Ms

M s

. (6.12)

The phases ϕCP are cancelled in the ratio of the hadronic matrix elements.

Due to the structure of Eqs. (6.9) and (6.10), we utilise the product of the two parameters

and arrive at a theoretically clean relation:

ξs × ξ̄s = e−i2(ϕs+γ), (6.13)

where the non-perturbative hadronic parameter xse
iδs cancels. This relation allows the

extraction of ϕs + γ, once ξs and ξ̄s are determined. So, let us see in the following Section

how we determine them.

6.2 CP Asymmetries

Due to the B0
s–B̄

0
s oscillations, and having both neutral mesons decaying into the same final

state f , interference effects arise between B0
s–B̄

0
s mixing and the decay processes. These

effects lead to the time-dependent rate asymmetry, which takes the following form for the

B0
s → D∓

s K
± system [242,243]:

ACP (t) =
Γ(B0

s (t) → f)− Γ(B̄0
s (t) → f)

Γ(B0
s (t) → f) + Γ(B̄0

s (t) → f)
=

C cos(∆ms t) + S sin(∆ms t)

cosh(ys t/τBs) +A∆Γ sinh(ys t/τBs)
. (6.14)
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This asymmetry allows us to probe the corresponding CP-violating effects. Here, f is the

D+
s K

− final state, the ∆ms ≡ m
(s)
H − m

(s)
L describes the mass difference of the Bs mass

eigenstates, as we already introduced in Eq. (3.22), and ys is defined as

ys ≡
∆Γs
2 Γs

= 0.062± 0.004, (6.15)

where ∆Γs ≡ Γ
(s)
L −Γ

(s)
H is the decay width difference, as in Eq. (3.23), and Γs ≡ τ−1

Bs
is the

inverse of the average lifetime of the Bs system. The numerical value of ys corresponds to the

current experimental average [233]. The coefficients of the oscillatory terms cos(∆mst) and

sin(∆mst) are the observables C and S, respectively, which are now expressed as follows52:

C =
|A(B0

s → D+
s K

−)|2 − |A(B̄0
s → D+

s K
−)|2

|A(B0
s → D+

s K
−)|2 + |A(B̄0

s → D+
s K

−)|2
=

1− |ξs|2

1 + |ξs|2
, (6.16)

S =

(
2

1 + |ξs|2

)
Im ξs, (6.17)

with S indicating the mixing induced CP violation. Due to the sizeable differential decay

width ∆Γs, we get access to a third observable, the A∆Γ:

A∆Γ =

(
2

1 + |ξs|2

)
Re ξs. (6.18)

We remind the reader that the A∆Γ depends on the other two asymmetries, satisfying the

sum rule:

∆SR ≡ 1− C2 − S2 −A2
∆Γ = 0. (6.19)

As we can see from the above relations, the absolute value of ξs can be determined from

the measured value of C while information from S and A∆Γ allows the extraction of the

imaginary and real part of ξs, respectively, through the relations

|ξs| =
√

1− C

1 + C
, Re ξs =

A∆Γ

1 + C
, Im ξs =

S

1 + C
, (6.20)

fixing ξs in the complex plane from the data. Therefore, we can determine ξs unambiguously

from the measured observables.

We note that analogous relations hold for f̄ , thus the CP-conjugate D−
s K

+ final state,

where C, S and A∆Γ are replaced by C, S and A∆Γ, respectively. Similarly, we obtain the

following sum rule:

∆SR ≡ 1− C
2 − S

2 −A2

∆Γ = 0. (6.21)

52The notation now is in line with Refs. [115,190].
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Observables

C = −0.73± 0.15 C = +0.73± 0.15

S = +0.49± 0.21 S = +0.52± 0.21

A∆Γ = +0.31± 0.32 A∆Γ = +0.39± 0.32

Table 10: CP-violating B0
s → D∓

s K
± observables corresponding to the LHCb analysis [189].

Again, we extract ξ̄s from the measured values of the three observables. The observables

corresponding to the LHCb analysis [189] are collected in Table 10, taking the proper sign

conventions into account and having added the statistical and systematic uncertainties in

quadrature. For completeness, we mention that these measured values are consistent with

the sum rules in Eqs. (6.19) and (6.21):

∆SR = 0.13± 0.36, ∆SR = 0.04± 0.40. (6.22)

6.3 Determining γ and Resolving Ambiguities

We already introduced Eq. (6.13), which is one of the relations that play the central role in

our analysis and we described in the previous Section how both ξs and ξ̄s can be determined

through the asymmetries C, S, A∆Γ and C, S, A∆Γ, respectively. Therefore, Eq. (6.13)

allows the extraction of ϕs + γ using only the observables. Since ϕs is already determined

through B0
s → J/ψϕ and similar modes [191,211,212,220,244], we extract the UT angle γ.

We note that due to the multiplicative factor of two, which is associated with this phase,

we obtain a twofold ambiguity, modulo 180◦.

The observables A∆Γ and A∆Γ play an important role in the reduction of the number

of the ambiguities. More specifically, if only measurements of C and S were available, we

would obtain a twofold ambiguity for ξs, and similarly for ξ̄s. Consequently, when applying

Eq. (6.13), we would have a fourfold ambiguity for 2(ϕs + γ), resulting in an eightfold

ambiguity for ϕs + γ, thus for γ itself. However, combining the information obtained from

Ss, S̄s, A∆Γs and Ā∆Γs , the number of discrete ambiguities can be reduced, as it is pointed

out in Refs. [242, 243]. We are then left with a twofold ambiguity, which can further be

resolved. Thus, A∆Γs and Ā∆Γs are crucial to resolve ambiguities.

In the SM framework, due to the fact that Eqs. (6.9) and (6.10) rely on the structure

of the corresponding decay amplitudes, the following relations hold

|ξ̄s| =
1

|ξs|
=

√
(1 + C)

(1− C)
, C + C = 0, (6.23)
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which were assumed by the LHCb Collaboration in their analysis [189]. LHCb performed a

sophisticated fit to their data, taking relevant correlations into account, and obtained the

following picture:

|ξ̄s| = 0.37+0.10
−0.09, ϕs + γ =

(
126+17

−22

)◦
, δs = (−2+13

−14)
◦, [modulo 180◦], (6.24)

where we have omitted the solutions modulo 180◦ and used ϕs = (−1.7± 1.9)◦ in order to

convert the value of γ in Eq. (6.1) into ϕs + γ. Using an updated value of ϕs =
(
−5+1.6

−1.5

)◦
,

as we already introduced in Eq. (5.35), which is the average of the corresponding measure-

ments and includes corrections from doubly Cabibbo-suppressed penguin topologies, [191]

we obtain

γ =
(
131+17

−22

)◦
. (6.25)

This result is in tension with the SM, which suggests a value of γ at the regime of 70◦. In

view of this puzzling value and as LHCb performed an intricate analysis to obtain their

results, working under the assumption C +C = 0, it is crucial to transparently understand

the situation. Let us see how we can achieve this.

Applying Eq. (6.23) using the measured value of C, which is given in Table 10, we

obtain:

|ξs| = 2.53+1.43
−0.59, |ξ̄s| = 0.40± 0.13. (6.26)

Using the following combinations of the observables:

⟨S⟩+ ≡ S + S

2
= 0.50± 0.15, ⟨S⟩− ≡ S − S

2
= 0.02± 0.15 (6.27)

⟨A∆Γ⟩+ ≡ A∆Γ +A∆Γ

2
= 0.35± 0.23, ⟨A∆Γ⟩− ≡ A∆Γ −A∆Γ

2
= 0.04± 0.23, (6.28)

we are able to determine ϕs + γ as well as δs with the help of experimental data, utilising

the following relations [115,190,242,243]:

tan(ϕs + γ) = − ⟨S⟩+
⟨A∆Γ⟩+

= −1.45+0.73
−2.76, (6.29)

tan δs =
⟨S⟩−

⟨A∆Γ⟩+
= 0.04+0.70

−0.40. (6.30)

The situation is illustrated in Fig. 36. As we can see on the left-hand side plot, the points

where the contours coming from the tangent function and the line corresponding to the

value of (tanϕs + γ) intersect, are the ϕs + γ solutions. There is a twofold solution for

ϕs + γ arising from the measured observables:

ϕs + γ = (−55+18
−22)

◦ ∨ (125+22
−18)

◦. (6.31)
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Figure 36: Illustration of the determination of ϕs+γ (left) and δs (right) [115], as described

in the text.

Similarly, on the right-hand side plot in Fig. 36, for the CP-conserving strong phase δs, the

numerical values corresponding to the LHCb measurements give

δs = (182+34
−22)

◦ ∨ (2+34
−22)

◦. (6.32)

Taking the signs of ⟨S⟩+ and ⟨A∆Γ⟩+ into account and using the relations

⟨S⟩+√
1− C2

= +cos δs sin(ϕs + γ),
⟨A∆Γ⟩+√
1− C2

= − cos δs cos(ϕs + γ), (6.33)

we observe that (ϕs+γ) ∼ −55◦ and 125◦ are associated with δs ∼ 180◦ and 0◦, respectively.

Regarding ⟨S⟩− and ⟨A∆Γ⟩−, they are both proportional to sin δs, and this is also reflected

by their small experimental values. The case of δs ∼ 180◦ would be in huge conflict with

factorization, which predicts δs ∼ 0◦, as we will discuss in more detail in Subsection 6.5.

Consequently, we can single out the final solution ϕs + γ = (125+22
−18)

◦ with δs = (2+34
−22)

◦,

thereby excluding the solutions modulo 180◦.

Therefore, we find excellent agreement between this transparent picture and the LHCb

analysis. The result in Eq. (6.25), despite its significant uncertainty, is much larger than

the regime of 70◦, indicating a discrepancy at the 3σ level. Could this tension indicate NP

entering the B0
s → D∓

s K
± system?

This puzzle would require new sources of CP violation. It could not arise from any long

distance effects since the determination of the angle γ is theoretically clean. CP-violating

NP effects could, in principle, enter through B0
s–B̄

0
s mixing. However, the experimental

value of ϕs which we use in the analysis already includes these effects. Therefore, such

new contributions would only enter directly at the level of the decay amplitude of the

B0
s → D∓

s K
± system. As a result, they would manifest themselves also in the corresponding
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branching ratios. So, in order to answer the above question and shed more light on this

puzzling situation, a closer look at the branching ratios is required. Let us explore all these

quantities in detail in the subsequent Section.

6.4 Theoretical Branching Ratios

Information from branching ratios will complement the CP-violating observables and as we

will describe in the following Sections, they will give rise to a second puzzling situation.

We first determine the individual branching ratios for the different decay channels.

We consider B̄0
s and B

0
s decays into the final state D+

s K
−. Due to B0

s–B̄
0
s mixing effects,

we have to distinguish between the time-integrated “experimental” branching ratios [220]

Bexp =
1

2

∫ ∞

0

[
Γ(B̄0

s (t) → D+
s K

−) + Γ(B0
s (t) → D+

s K
−)
]
dt, (6.34)

and the “theoretical” branching ratios where these effects are switched off, thus for decay

time t = 0,

Bth ≡ 1

2

[
B(B̄0

s → D+
s K

−)th + B(B0
s → D+

s K
−)th

]
, (6.35)

where the factor of 1/2 arises from the average of the B̄0
s and B0

s decays. We have to

disentangle the interference effects between the two decay paths arising from B0
s–B̄

0
s mixing:

B(B̄0
s → D+

s K
−)th = |A(B̄0

s → D+
s K

−)|2ΦPh τBs (6.36)

B(B0
s → D+

s K
−)th = |A(B0

s → D+
s K

−)|2ΦPh τBs . (6.37)

Here ΦPh is the phase-space factor defined as

ΦPh ≡ 1

16 πmBs

Φ

(
mDs

mBs

,
mK

mBs

)
, (6.38)

where the meson masses mBs , mDs and mK enter the phase-space function, which we have

already presented in Eq. (3.62).

The “theoretical” and the “experimental” branching ratios are related to each other as

follows [221]:

Bth =

[
1− y2s

1 +A∆Γsys

]
Bexp. (6.39)

Using the definition of ξs in Eq. (6.7), we may write

Bth =
1

2

(
1 + |ξs|2

)
Bth(B

0
s → D+

s K
−) (6.40)

=
1

2

(
1 + |ξs|−2

)
Bth(B̄

0
s → D+

s K
−), (6.41)
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allowing us to determine the individual theoretical branching ratios [115,190]:

B(B0
s → D+

s K
−)th = 2

(
1

1 + |ξ|2

)
Bth, (6.42)

B(B̄0
s → D+

s K
−)th = 2

(
|ξ|2

1 + |ξ|2

)
Bth = |ξ|2B(B0

s → D+
s K

−)th. (6.43)

The Bth can be determined from the experimental branching ratio through Eq. (6.39).

Analogous expressions hold for the B0
s and B̄0

s decays into the final state D−
s K

+, replacing

Bexp, Bth, A∆Γs and ξs through their counterparts B̄exp, B̄th, Ā∆Γs and ξ̄, respectively.

Unfortunately, separate measurements of the experimental branching ratios for these final

states have not yet been reported. However, the following average is available

⟨Bexp⟩ ≡
1

2

(
Bexp + B̄exp

)
=

1

2
Bexp
Σ , (6.44)

Bexp
Σ ≡ Bexp + B̄exp = (2.27± 0.19)× 10−4, (6.45)

where the numerical value in Eq. (6.45) is given in Ref. [233]. In the SM framework, the

following relations hold:

B(B̄0
s → D+

s K
−)th

SM
= B(B0

s → D−
s K

+)th (6.46)

B(B0
s → D+

s K
−)th

SM
= B(B̄0

s → D−
s K

+)th, (6.47)

Bth
SM
= B̄th. (6.48)

Consequently, assuming SM relations for the amplitudes, as was also done by the LHCb

collaboration [189], we obtain [243]:

Bth = B̄th =

[
1− y2s

1 + ys⟨A∆Γ⟩+

]
⟨Bexp⟩. (6.49)

Using the numerical values in Eqs. (6.15), (6.28) and (6.44), we determine the value of

Bth [115,190]:

Bth = (1.10± 0.09)× 10−4 (6.50)

and finally obtain the values of the individual theoretical branching ratios characterising

the B0
s → D∓

s K
± system:

B(B̄0
s → D+

s K
−)th = (1.94± 0.21)× 10−4, (6.51)

B(B0
s → D+

s K
−)th = (0.26± 0.12)× 10−4. (6.52)

These results follow from the current data, through Eqs. (6.42), and (6.43) and the |ξs|,
which is extracted from the experimental study of CP violation [115,190]. Here, we assume
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Parameters CP conjugate Values

Bth B̄th (1.10± 0.09)× 10−4

B(B̄0
s → D+

s K
−)th B(B0

s → D−
s K

+)th (1.94± 0.21)× 10−4

B(B0
s → D+

s K
−)th B(B̄0

s → D−
s K

+)th (0.26± 0.12)× 10−4

Table 11: Theoretical branching ratios characterising the B0
s → D∓

s K
± system, assuming

the SM framework, as discussed in the text [115].

vanishing NP contributions to the corresponding amplitudes. We note that due to our

assumption of the SM, the theoretical branching ratios of these decays are equal to their

CP conjugates. We collect the values for the individual decay channels in Table 11.

We have determined the individual branching ratios of the two decay channels from

the data. For the theoretical SM interpretation, these branching ratios are converted into

quantities |a1|, which are phenomenological colour factors that characterise colour-allowed

tree decays, as we have already introduced in Sec. 3.5.2. Let us discuss below how we obtain

these |a1| factors.

6.5 Factorisation

Due to the impact of strong interactions, it is challenging to calculate the non-leptonic

B-meson decays. The factorisation approach is a particularly useful tool for the calculation

of the decay amplitudes and the branching ratios. As already discussed in Sec. 3.5.2, the

hadronic matrix elements of the corresponding four-quark operators are factorised into the

product of the matrix elements of their quark currents. Factorisation is not a universal

feature of non-leptonic B decays. It is expected to work well in decay transitions that

originate only from colour-allowed tree topologies [153, 159, 170]. A lot of effort has been

put also in QCDF for these decays [164–166]. Prime examples where factorisation is on

solid ground are the b → c transitions like the B̄0
s → D+

s K
− channel, which plays a key

role in our analysis, as well as the decays B̄0
s → D+

s π
− and B̄0

d → D+
d K

−. Let us now see

factorisation at work.

6.5.1 Introduction to Partner Decays and Branching Ratio Comparison

Let us firstly discuss the B̄0
d → D+

d K
− and B0

d → D+
s π

− modes, which are the partner

decays of the B̄0
s → D+

s K
− and B0

s → D+
s K

− modes, respectively. They originate from

the same quark-level processes while differing only through the spectator quarks. We note

that the Bs modes receive additional contributions from exchange topologies, while their
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Masses Values Masses Values

mBs (5366.88± 0.14) MeV mDd (1869.66± 0.05) MeV

mBd (5279.64± 0.12) MeV mK (493.677± 0.016) MeV

mDs (1968.34± 0.07) MeV mπ (139.5704± 0.0002) MeV

Table 12: Meson masses relevant for our numerical analysis [233]

Bd counterparts do not have such contributions. We can determine the branching ratios of

the partner decays and compare them with the results collected in Table 11.

Working with the B̄0
d → D+

d K
− and B̄0

s → D+
s K

− channels, we may determine the

following ratio [115]∣∣∣∣TDsKTDdK

∣∣∣∣2 ∣∣∣∣1 + EDsK
TDsK

∣∣∣∣2 = τBd
τBs

mBs

mBd

[
Φ(mDd/mBd ,mK/mBd)

Φ(mDs/mBs ,mK/mBs)

] [
B(B̄0

s → D+
s K

−)th
B(B̄0

d → D+
d K

−)

]
, (6.53)

where the TDsK and TDdK amplitudes describe colour-allowed tree topologies, while EDsK

denotes the exchange topologies. The SU(3) flavour symmetry of strong interactions implies

TDsK ≈ TDdK . (6.54)

The SU(3)-breaking corrections only arise from spectator quarks. The current experimental

branching ratio, which is CP-averaged, reads as follows [233]:

B(B̄0
d → D+

d K
−) = (1.86± 0.20)× 10−4. (6.55)

Using the value of B(B̄0
d → D+

d K
−) in Table 11, the meson masses in Table 12 and the

average lifetime of the B0
s meson [233]

τBs = (1.527± 0.011) ps, (6.56)

we obtain ∣∣∣∣TDsKTDdK

∣∣∣∣ ∣∣∣∣1 + EDsK
TDsK

∣∣∣∣ = 1.03± 0.08. (6.57)

Similarly, we use the B0
d → D+

s π
− and B0

s → D+
s K

− decays and determine [115]∣∣∣∣TKDsTπDs

∣∣∣∣2 ∣∣∣∣1 + EKDs
TKDs

∣∣∣∣2 = τBd
τBs

mBs

mBd

[
Φ(mDs/mBd ,mπ/mBd)

Φ(mDs/mBs ,mK/mBs)

] [
B(B0

s → D+
s K

−)th
B(B0

d → D+
s π

−)

]
, (6.58)
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where the TKDs , TπDs and EKDs describe the corresponding colour-allowed tree and ex-

change topologies, respectively. Due to the SU(3) flavour symmetry, we have

TKDs ≈ TπDs . (6.59)

The current experimental CP-averaged branching ratio is [233]:

B(B0
d → D+

s π
−) = (2.16± 0.26)× 10−5. (6.60)

Using again the values in Tables 11 and 12 as well as the average lifetime of the B0
d meson

[233]:

τBd = (1.519± 0.004) ps, (6.61)

we determine the ratio: ∣∣∣∣TKDsTπDs

∣∣∣∣ ∣∣∣∣1 + EKDs
TKDs

∣∣∣∣ = 1.11± 0.26. (6.62)

The findings in Eqs. (6.57) and (6.62) are consistent with a small impact of the exchange

topologies, which was also found in Refs. [243,249]. We will examine the situation in more

detail in a following Section.

As a next step, we compare the B̄0
d → D+

d π
− and B̄0

s → D+
s π

− decays , arising from

b → cūd quark-level processes, with the B̄0
s → D+

s K
− and B̄0

d → D+
d K

− channels, which

are related through the U-spin symmetry of strong interactions [242, 243]. We determine

the ratio∣∣∣∣TDdπTDsπ

∣∣∣∣2 ∣∣∣∣1 + EDdπ
TDdπ

∣∣∣∣2 = τBs
τBd

mBd

mBs

[
Φ(mDs/mBs ,mπ/mBs)

Φ(mDd/mBd ,mπ/mBd)

] [
B(B̄0

d → D+
d π

−)

B(B̄0
s → D+

s π
−)th

]
(6.63)

with the colour-allowed tree amplitudes TDdπ, TDsπ and the exchange topologies EDdπ. The

values for the experimental branching ratios are the following [233]:

B(B̄0
d → D+

d π
−) = (2.52± 0.13)× 10−3, (6.64)

B(B̄0
s → D+

s π
−)exp = (3.00± 0.23)× 10−3. (6.65)

We can convert the experimental B̄0
s → D+

s π
− branching ratio into the theoretical one,

utilising the relation [221]

B(B̄0
s → D+

s π
−)th = (1− y2s)B(B̄0

s → D+
s π

−)exp. (6.66)

Using the values in Tables 11 and 12 with the average Bs and Bd lifetimes, we obtain [115]∣∣∣∣TDdπTDsπ

∣∣∣∣ ∣∣∣∣1 + EDdπ
TDdπ

∣∣∣∣ = 0.91± 0.04. (6.67)
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(a) (b)

Figure 37: Exchange topologies for (a) the B̄0
s → D+

s K
− and (b) the B̄0

s → K+D−
s decays.

Comparing with Eq. (6.57), the results agree within the uncertainties.

So far, we have found consistent branching ratios with the partner decays and have

already presented the first information on exchange topologies. We can now gain insights

for more decay channels. In the following Secs. 6.5.2 and 6.5.3, we will discuss how we can

determine separately the ratios of the colour-allowed tree amplitudes as well as the terms

rE, defined as

rE = |1 + E/T | , (6.68)

which include the ratios of exchange over tree topologies.

6.5.2 Theoretical Prediction of aDsK
1

Let us now focus on the B̄0
s → D+

s K
− decay, which is caused by b → cūs quark-level

transition. This decay receives an additional contribution from an exchange topology which

involves the spectator quark and is not factorisable. An illustration of this topology is

given in Fig. 37a. However, experimental data indicate that these exchange topologies play

a minor role as they contribute to the decay amplitudes at the few-percent level [249].

Within the SM, we may write the amplitude of the B̄0
s → D+

s K
− mode as follows:

ASM
B̄0
s→D+

s K− =
GF√
2
V ∗
usVcb fK FBs→Ds

0 (m2
K) (m

2
Bs −m2

Ds) a
DsK
1 eff , (6.69)

where GF is the Fermi constant, V ∗
usVcb is a factor of CKM matrix elements, fK the kaon

decay constant, and FBs→Ds
0 (m2

K) a form factor parametrising the hadronic b → c quark-

current matrix element, as presented in Eq. (3.58). As we have already mentioned, there

is a variety of approaches for calculating the form factors, most notably lattice QCD [209,

250,251]. The parameter

aDsK1 eff = aDsK1

(
1 +

EDsK
TDsK

)
(6.70)
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describes the deviation from naive factorisation. The parameter aDsK1 characterises the non-

factorisable effects entering the colour-allowed tree amplitude TDsK , while EDsK describes

the non-factorisable exchange topologies, which were introduced in Eq. (6.53).

Within the QCD factorisation approach, the a1 parameters for colour-allowed B̄ → Dπ

and B̄ → DK decays, which arise from b→ cūd, b→ cūd quark-level transitions, are found

as |a1| ≈ 1.07, with uncertainties at the percent level, showing a quasi-universal behaviour

[164]. As we have noted, factorisation is expected to work very well in this decay class.

This is also indicated by the fact that the parameter a1 has a stable behaviour under

the QCD renormalization group evolution [154, 155], as discussed in Sec. 3.5.3. This is in

contrast to the a2 coefficient characterising colour-suppressed decays, where factorisation

is not expected to work well53.

The current state-of-the-art results within QCD factorisation for the B̄0
d → D+

d K
−,

B̄0
d → D+

d π
− and B̄0

s → D+
s π

− decays, which are related to one another through the SU(3)

flavour symmetry of strong interactions, are given as [252,253]:

|aDdK1 | = 1.0702+0.0101
−0.0128 (6.71)

|aDdπ1 | = 1.073+0.012
−0.014 , (6.72)

|aDsπ1 | = 1.0727+0.0125
−0.0140 . (6.73)

Here, we observe an essentially negligible difference of the values of their |a1| parameter.

Recently, in Ref. [254], even QED effects have been studied. These effects are small and

fully included within the uncertainties.

We may now obtain the |a1| parameter of B̄0
s → D+

s K
−, utilising the B̄0

d → D+K−

channel, which differs only through the spectator quarks and use:

|aDsK1 | = 1.07± 0.02, (6.74)

where in view of SU(3)-breaking effects in the spectator quarks, we have doubled the tiny

uncertainty, considering the spread of the SU(3)-related values in Eq. (6.71). Moving on

to the impact of the exchange topologies, we note that in the B̄0
s → D+

s K
− decay this

topology is non-factorizable and we cannot calculate it reliably from first principles. As we

will see next, we use experimental data in order to constrain this contribution.

53Interestingly though, as we have already seen in Chapter 5, for decays of the kind B̄0
d → J/ψπ0,

experimental data give values for a2(B̄
0
d → J/ψπ0) that are surprisingly consistent with the picture of

naive factorisation [191].
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Constraints on Exchange Topologies

With the help of the |aDdK1 | and |aDsK1 | values and the form-factor ratio [127]∣∣∣∣FBs→Ds
0 (m2

K)

FBd→Dd
0 (m2

K)

∣∣∣∣ = 1.01± 0.02, (6.75)

we may calculate the ratio of the colour-allowed tree amplitudes [115, 190], which enters

the expression in Eq. (6.57):∣∣∣∣TDsKTDdK

∣∣∣∣ = [FBs→Ds
0 (m2

K)

FBd→Dd
0 (m2

K)

] [
m2
Bs

−m2
Ds

m2
Bd

−m2
Dd

] ∣∣∣∣aDsK1

aDdK1

∣∣∣∣ = 1.03± 0.03. (6.76)

This ratio finally allows us to obtain the result for the parameter [115,190]

rDsKE ≡
∣∣∣∣1 + EDsK

TDsK

∣∣∣∣ = 1.00± 0.08, (6.77)

which follows from experimental data. We note that no anomalous behaviour of the ex-

change topology, that could come from large rescattering or other non-factorizable effects,

is indicated. There is consistency with Refs. [243,249].

Similarly, using the values of the |aDdπ1 | and |aDsπ1 | parameters, the ratio of the form

factors [127] ∣∣∣∣FBs→Ds
0 (m2

π)

FBd→Dd
0 (m2

π)

∣∣∣∣ = 1.01± 0.02, (6.78)

and the masses in Table 12, we obtain the colour-allowed tree amplitude ratio entering in

Eq. (6.67): ∣∣∣∣TDdπTDsπ

∣∣∣∣ =
[
FBd→Dd
0 (m2

π)

FBs→Ds
0 (m2

π)

][
m2
Bd

−m2
Dd

m2
Bs

−m2
Ds

] ∣∣∣∣ aDπ1

aDsπ1

∣∣∣∣ = 0.99± 0.03. (6.79)

This finally leads to the result

rDdπE ≡
∣∣∣∣1 + EDdπ

TDdπ

∣∣∣∣ = 0.92± 0.05. (6.80)

Again, there is no anomalous behaviour of the exchange topologies with respect to the

theoretical estimates. The current state-of-the-art results in Eqs. (6.77) and (6.80) are

consistent with those obtained in Refs. [243,249].

Another interesting decay which gives us information about the exchange topologies is

the B̄0
s → D+π− channel. It arises only from exchange diagrams and it is related to the

exchange contribution in B̄0
s → D+

s K
− decay through the SU(3) symmetry, replacing the



6 THE B0
s → D∓

s K
± SYSTEM 137

pair of dd̄ quarks by ss̄. Regarding the experimental status, constraints on its branching

ratio have not yet been reported. There is only the following upper bound available [187]:

B(B0
s → D∗∓π±)exp < 6.1× 10−6 (90% C.L.) . (6.81)

Last but not least, we discuss the B̄0
d → D+

s K
− decay, which also originates only from

exchange topologies. It differs from the B̄0
s → D+

s K
− channel only through the down quark

of the B̄0
d meson in the initial state. Therefore, through SU(3) symmetry, the following

relations for the amplitudes are obtained:

A(B̄0
d → D+

s K
−) ≡ VcbV

∗
udE

′
DsK , (6.82)

A(B̄0
s → D+

s K
−) ≡ VcbV

∗
us (TDsK + EDsK). (6.83)

Employing these relations, we may write the following expression:∣∣∣∣ E ′
DsK

TDsK + EDsK

∣∣∣∣2 = τBs
τBd

mBd

mBs

[
Φ(mDs/mBs ,mK/mBs)

Φ(mDs/mBd ,mK/mBd)

] ∣∣∣∣VusVud

∣∣∣∣2 [ B(B̄0
d → D+

s K
−)

B(B̄0
s → D+

s K
−)th

]
. (6.84)

Experimentally the following branching ratio is measured [187]:

B(B̄0
d → D+

s K
−) = (2.7± 0.5)× 10−5. (6.85)

Using the values for the CKM elements [233] and the results in Table 11, we finally obtain:∣∣∣∣ E ′
DsK

TDsK + EDsK

∣∣∣∣ = 0.08± 0.01. (6.86)

This result provides direct access to the size of the exchange contribution and agrees ex-

cellently with the picture in Eq. (6.77). Due to the non-factorisable contributions to the

exchange amplitude, as pointed out in [243, 249], a large strong phase difference between

the colour-allowed tree amplitudes and the exchange topologies is indicated. This feature is

also supported by data for other modes. The current uncertainties do not allow us to draw

further conclusions. Consequently, the ranges we consider in Eq. (6.77) are conservative

assessments of the impact of the exchange topologies.

6.5.3 Theoretical Prediction of aKDs
1

The amplitude of the decay B̄0
s → K+D−

s , which is caused by b → uc̄s processes, can be

expressed in a similar manner as the amplitude of the B̄0
s → D+

s K
− decay (b→ c process).

In the SM, we write

ASM
B̄0
s→K+D−

s
=
GF√
2
V ∗
csVub fDs F

Bs→K
0 (m2

Ds) (m
2
Bs −m2

K) a
KDs
1 eff , (6.87)
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with the corresponding CKM factors are replaced correspondingly, the Ds decay constant

fDs , and the form factor FBs→K
0 (m2

Ds
) which parametrises the hadronic matrix element of

the b→ u transition and the parameter

aKDs1 eff = aKDs1

(
1 +

EKDs
TKDs

)
. (6.88)

As in Eq. (6.70), the coefficient aKDs1 describes non-factorisable contributions entering the

colour-allowed TKDs tree amplitude, while the EKDs amplitude arises from non-factorisable

exchange topologies. The exchange topology is illustrated in Fig. 37b.

In this case, even though it is also a colour-allowed channel, there may be significant

non-factorisable effects, as the heavy-quark arguments for QCD factorisation in b→ c tree-

level transitions do not apply in this case [164]. Using Eq. (6.74) as guidance, we assume

the following value as a reference point:

|aKDs1 | = 1.1± 0.1. (6.89)

Interestingly, the strong phase difference δs in Eq. (6.24), with a central value close to 0◦,

agrees excellently with factorisation, thereby supporting factorisation also in the b → uc̄s

channel54.

Constraints on Exchange Topologies

We continue now with the ratios entering in Eq. (6.62), and consider the B̄0
d → π+D−

s

decay. Its amplitude takes the same form as Eq. (6.87). Due to the fact that this channel

does not receive any contributions from exchange topologies, we obtain

aπDs1 eff = aπDs1 . (6.90)

Applying the SU(3) flavour symmetry to the spectator quarks, we assume

|aπDs1 | = |aKDs1 | = 1.1± 0.1, (6.91)

with the numerical value in Eq. (6.89). We can now write the ratio of the colour-allowed

tree topologies as follows:∣∣∣∣TKDsTπDs

∣∣∣∣ =
[
FBs→K
0 (m2

Ds
)

FBd→π
0 (m2

Ds
)

][
m2
Bs

−m2
K

m2
Bd

−m2
π

] ∣∣∣∣aKDs1

aπDs1

∣∣∣∣ = 1.15± 0.19, (6.92)

54We emphasize here again that if factorisation didn’t work, we would expect a much bigger phase

difference δs. This small value of δs though shows that factorisation is supported even in the b → uc̄s

channel, where in general, it appears to be on less solid ground.
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where we utilise the meson masses in Table 12 and Eq. (6.91). The Bs → K and Bd → π

form factors, describing SU(3)-breaking effects, are calculated with QCD light cone sum

rules in Ref. [255]. Therefore, the ratio of form factors is:[
FBs→K
0 (m2

Ds
)

FB→π
0 (m2

Ds
)

]
= 1.12± 0.11. (6.93)

Finally, the ratio in Eq. (6.92) and the numerical result in Eq. (6.62) allow the determination

of the quantity

rKDsE ≡
∣∣∣∣1 + EKDs

TKDs

∣∣∣∣ = 0.97± 0.17, (6.94)

which folllows from the experimental data. We observe a pattern similar to the constraints

in Eqs. (6.77) and (6.80), although with larger uncertainty.

The decay B̄0
s → D−π+ is related to the exchange contribution to B̄0

s → D−
s K

+ channel.

The branching ratio has not been measured but only an upper bound is available.

In addition, the B̄0
d → D−

s K
+ is related to the exchange topology of the B̄0

s → K+D−
s

channel, which differs only through the down quark of the initial B̄0
d meson. A measurement

of the corresponding branching ratio is not yet available [187]. Using the experimental

results in Table 11 and Eq. (6.85), we write∣∣∣∣ E ′
DsK

TKDs + EKDs

∣∣∣∣2 = τBs
τBd

mBd

mBs

[
Φ(mDs/mBs ,mK/mBs)

Φ(mDs/mBd ,mK/mBd)

] ∣∣∣∣VubVcsVcbVud

∣∣∣∣2
[

B(B̄0
d → D−

s K
+)

B(B̄0
s → K+D−

s )th

]
,

(6.95)

where ∣∣∣∣VubVcsVcbVud

∣∣∣∣ = [ λRb

1− λ2/2

] [
1 +O(λ2)

]
= 0.089± 0.005, (6.96)

having used the Wolfenstein parameterization with Rb denoting the UT side from the origin

to the apex [122]. Therefore, we obtain:∣∣∣∣ E ′
DsK

TKDs + EKDs

∣∣∣∣ = 0.09± 0.02, (6.97)

which is in excellent agreement with Eq. (6.86). The hadronic matrix elements of the

exchange amplitudes scale with the product of the decay constants. Thus, fBdsfDsfK for

our modes, we obtain that E ′
DsK

≈ EKDs . We finally consider the numerical range

rKDsE = 1.00± 0.08, (6.98)

which is fully consistent with (6.94), although giving a sharper picture. Comparing with

our analysis regarding the B̄0
s → K+D−

s decay, this range is similar as the one for rDsKE in

Eq. (6.77).
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6.6 Information from Semileptonic Decays

Our next step is to extract the |a1| parameters of the B̄0
s → D+

s K
− and B̄0

s → K+D−
s

channels from the data in the cleanest possible way. For this purpose, it is important to

minimise the dependence on uncertainties from CKM parameters and hadronic form factors.

In order to achieve this, semileptonic decays provide again a very useful tool [153,164,249].

The experimental results of |a1| can then be compared with the corresponding theoretical

expectations. It is interesting to see whether we will encounter another puzzling situation.

6.6.1 Extracting the Experimental Value of |aDsK
1 |

We can now determine |a1| in a clean way, utilising information from B(s) semileptonic

decays. We firstly discuss the B̄0
s → D+

s K
− mode. As we already mentioned, it originates

from a b → c transition and its partner semileptonic decay is the B̄0
s → D+

s ℓν̄ℓ. We

introduce the following ratio [153,164,249]:

RD+
s K− ≡ B(B̄0

s → D+
s K

−)th

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)
/dq2|q2=m2

K

. (6.99)

We remind the reader that the differential branching ratio is related to the differential rate

through the average lifetime τBs of the Bs meson:

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)

dq2
= τBs

[
dΓ
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)

dq2

]
. (6.100)

The B̄0
s → D+

s ℓ
−ν̄ℓ differential rate has recently been measured by the LHCb collaboration

[256]. We apply the Caprini–Lellouch–Neubert (CLN) parametrisation [257] of the relevant

form factor with the following parameters:

|Vcb| = (41.4± 1.3)× 10−3, (6.101)

G(0) = 1.102± 0.034, (6.102)

ρ2 = 1.27± 0.05, (6.103)

resulting from the LHCb analysis [256]. Using Eq. (6.100) with the value of τBs in Eq. (6.56)

to convert the differential rate into the differential branching ratio, we finally obtain 55

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)

dq2

∣∣∣∣∣
q2=m2

K

= (3.97± 0.47)× 10−3 GeV−2. (6.104)

55For completeness and to be consistent with our analysis in [115,190], we mention that we have calculated

the uncertainty neglecting correlations between the parameters. Taking them into account would reduce

the error but for our numerical analysis, we prefer to use the larger uncorrelated error, also in view of the

different form factors parametrizations that can be used.
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We note that in the future, it would be useful if the experimental Collaborations provided

measurements of the differential rates at the relevant q2 bins. As a result, there would be

no need to use different form factor parametrisations. The numerical values in Table 11

and in Eq. (6.104) yield

RD+
s K− = 0.05± 0.01. (6.105)

Utilising Eqs. (6.36) and (3.62) with (6.100) and (3.61), the ratio RD+
s K− in Eq. (6.99)

can be written as

RD+
s K− = 6π2f 2

K |Vus|2|aDsK1 eff |2XDsK , (6.106)

where the CKM matrix element |Vcb| cancels. We note that for the momentum transfer

q2 = m2
K the same phase space-functions enter the semileptonic and non-leptonic B̄0

s decays.

The term XDsK includes the following masses and the corresponding form factor ratio:

XDsK =
(m2

Bs
−m2

Ds
)2

[m2
Bs

− (mDs +mK)2][m2
Bs

− (mDs −mK)2]

[
FBs→Ds
0 (m2

K)

FBs→Ds
1 (m2

K)

]2
, (6.107)

where the relevant meson masses are collected in Table 12. The ratio of hadronic form

factors for q2 = m2
K is close to the normalisation given in Eq. (3.59) and the form-factor

information from lattice QCD studies [209,250,251] yields:[
FBs→Ds
0 (m2

K)

FBs→Ds
1 (m2

K)

]
= 1.00± 0.03. (6.108)

The product of the kaon decay constant fK and the CKM factor |Vus| can be extracted from

data for leptonicK decays, yielding fK |Vus| = (35.09±0.04±0.04)MeV [258]. Consequently,

with the numerical value in Eq. (6.105), we determine

|aDsK1 eff | = 0.82± 0.09. (6.109)

Using the expression in (6.70) with the numerical value of rDsKE given in Eq. (6.77) to take

the exchange topology contributions into account, we obtain the result

|aDsK1 | = 0.82± 0.11, (6.110)

which follows from the data and is very robust with respect to the hadronic form factors in

Eq. (6.108). We observe that the result has a surprisingly small central value. Comparing

it with the corresponding theoretical expectation in Eq. (6.74), it differs at the 2.2σ level.
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6.6.2 Extracting the Experimental Value of |aKDs
1 |

We discuss now the B̄0
s → K+D−

s channel, which originates from a b→ u transition. We use

the rate of the theoretical branching ratio of this transition with the differential branching

ratio of its partner semileptonic decay B̄0
s → K+

s ℓν̄ℓ:

RK+D−
s
≡ B(B̄0

s → D−
s K

+)th

dB
(
B̄0
s → K+ℓ−ν̄ℓ

)
/dq2|q2=m2

Ds

= 6π2f 2
Ds|Vcs|

2|aKDs1 eff |2XKDs , (6.111)

in analogy to Eqs. (6.99) and (6.106). The product of the Ds decay constant fDs and

the CKM factor |Vcs| can be determined from leptonic Ds decays measurements, yielding

fDs|Vcs| = (250.9± 4.0)MeV [258]. The term XKDs is written as

XKDs =
(m2

Bs
−m2

K)
2

[m2
Bs

− (mK +mDs)
2][m2

Bs
− (mK −mDs)

2]

[
FBs→K
0 (m2

Ds
)

FBs→K
1 (m2

Ds
)

]2
. (6.112)

Even though the semileptonic B̄0
s → K+ℓν̄ℓ channel has recently been observed by the

LHCb collaboration and a first measurement of its branching ratio is available [234], the

corresponding differential decay rate for various q2 bins has not yet been reported.

As a result, in order to be able to determine the ratio RK+D−
s
from the data, we apply

the SU(3) flavour symmetry: instead of using the semileptonic B̄0
s → K+ℓν̄ℓ, we make

use of its partner decay B0
d → π+ℓ−ν̄ℓ. For this channel, we do have measurements of the

differential rate by the BaBar and Belle collaborations [187,233].

We introduce now the following ratio:

R
SU(3)

K+D−
s
≡ B(B̄0

s → D−
s K

+)th

dB
(
B̄0 → π+ℓ−ν̄ℓ

)
/dq2|q2=m2

Ds

= 6π2f 2
Ds|Vcs|

2|aKDs1 eff |2XSU(3), (6.113)

where in the expression of XSU(3) different phase-space factors enter, in contrast to the

decay ratios considered above e.g., in Eq. (6.112), and we have:

XSU(3) =

[
1− m2

K

m2
Bs

]2 [Φ( mK
mBs

,
mDs
mBs

)]
[
Φ
(
mπ
mB
,
mDs
mBs

)]3
[
FBs→K
0 (m2

Ds
)

FB→π
1 (m2

Ds
)

]2
. (6.114)

The non-perturbative form factors have been determined with lattice QCD [259, 260] and

QCD light-cone sum rule analyses [255,261]. The ratio of form factors can be written as[
FBs→K
0 (m2

Ds
)

FB→π
1 (m2

Ds
)

]2
=

[
FBs→K
0 (m2

Ds
)

FBs→K
1 (m2

Ds
)

]2 [
FBs→K
1 (m2

Ds
)

FB→π
1 (m2

Ds
)

]2
. (6.115)

We assume that the first ratio satisfies the relation in Eq. (3.59) for q2 = m2
Ds
, in view of

the currently large experimental B(B̄0
s → D−

s K
+)th uncertainty, and as a result it is close



6 THE B0
s → D∓

s K
± SYSTEM 143

0 5 10 15 20 25
]2 [GeV2q

0

2

4

6

8

10

]
-2

 G
eV

6
 [1

0
2

)/
dq

lν 
+  l- π 

→0
(B

Bd

Average Belle + BaBar

 BCL fit (3 + 1 parameter)    
 Data & LQCD (FLAG) & LCSR    

-3 0.12 (theo) ] x 10± 0.09 (exp) ±|= [ 3.67 
ub

 |V   

 Fit prob.:   47%   

HFLAV
2021

Figure 38: Result of the fit for the BCL parametrization to the averaged q2, as given in [11].

to 1. This agrees with the analysis in Ref. [262]. It would be important to have a dedicated

lattice QCD study of this form-factor ratio in the future. The second ratio of form factors

represents the SU(3)-breaking corrections. Using the results for q2 = 0 given in Ref. [255]

and neglecting again the q2 = m2
Ds

evolution, we have[
FBs→K
1 (m2

Ds
)

FB→π
1 (m2

Ds
)

]
= 1.12± 0.12. (6.116)

If we apply the formalism of Ref. [255] to perform a study of the q2 evolution and

determine the form factors at q2 = m2
Ds
, we obtain:

FBs→K
1 (m2

Ds) = 0.366± 0.028, (6.117)

FB→π
1 (m2

Ds) = 0.323± 0.028, (6.118)

yielding [
FBs→K
1 (m2

Ds
)

FB→π
1 (m2

Ds
)

]
= 1.13± 0.13, (6.119)

As this result is in excellent agreement with Eq. (6.116), the effect of the evolution of q2 is

negligible within the given errors.

Last but not least, we determine the value of RK+D−
s
in Eq. (6.113) using the following

experimental value of the differential semileptonic branching ratio [187]:

dB
(
B̄0 → π+ℓ−ν̄ℓ

)
/dq2|q2=m2

Ds
= (7.14± 0.46)× 10−6 GeV−2, (6.120)
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and the theoretical branching ratio for the B̄0
s → D−

s K
+ decay in Table 11. We note that

the most recent fit for the differential B̄0 → π+ℓ−ν̄ℓ branching ratio presented by HFLAV56

is shown in Fig. 38. We obtain

RK+D−
s
= 3.64± 1.70. (6.121)

This yields the effective value

|aKDs1 eff | = 0.77± 0.20 (6.122)

utilising Eq. (6.113). Finally, the range for rKDsE in Eq. (6.98) yields

|aKDs1 | = 0.77± 0.21. (6.123)

We find again a pattern that favours a central value smaller than the theoretical refer-

ence value given in Eq. (6.89). Even though factorisation may here not work as well as

in the B̄0
s → D+

s K
− decay, this result is another intriguing observation. Comparing with

Eq. (6.110), the uncertainty is now significantly larger. Due to the large current uncertain-

ties, we can again not draw further conclusions.

We stress that it would be very interesting and important to reduce both the theoretical

and the experimental uncertainties. It is also desirable to have in the future a measurement

of the differential decay rate of the B̄0
s → K+

s ℓν̄ℓ channel, therefore to be able to implement

this rate directly into Eq. (6.111). This semileptonic mode would also be very useful for an

analysis of the B̄0
s → K+K− decay [263].

6.7 Puzzles in the |a1| parameters

When we compare the theoretical predictions with the values arising from the data, both

|aDsK1 | and |aKDs1 | show a similar pattern with the experimental central values being much

smaller than the theoretical ones. Let us now see whether we observe similar trends in B(s)

decays with similar dynamics.

We firstly discuss the decay B̄0
d → D+

d K
−, arising from b→ cūs processes in analogy to

the B̄0
s → D+

s K
− channel. There are no exchange topologies in this mode. Utilising again

the information from semileptonic decays, following the same strategy that we presented

above, we introduce the ratio

RD+
d K

− ≡ B(B̄0
d → D+

d K
−)

dB
(
B̄0
d → D+

d ℓ
−ν̄ℓ
)
/dq2|q2=m2

K

= 6π2f 2
K |Vus|2|a

DdK
1 |2XDdK , (6.124)

56We mention that in Fig. 28 we had already produced the contour that corresponds to the values of the

differential branching ratio of the B̄0 → π+ℓ−ν̄ℓ channel in the HFLAV parametrisation. In that plot we

had made the comparison between the HFLAV and the FLAG parametrisation. Here, we show the plot as

it is presented in Ref. [11].



6 THE B0
s → D∓

s K
± SYSTEM 145

which allows us to extract the |aDdK1 | from the data. We define the differential branching

ratio of the B̄0
d → D+

d ℓ
−ν̄ℓ decay at the relevant value of q2 = m2

K , applying the CLN

parametrisation [257] with the parameters [187]:

ηEWG(1)|Vcb| = (42.00± 1.00)× 10−3, (6.125)

ρ2 = 1.131± 0.033, (6.126)

and the lifetime τBd in Eq. (6.61). We obtain the value: 57

dB
(
B̄0
d → D+

d ℓ
−ν̄ℓ
)
/dq2|q2=m2

K
= (3.65± 0.23)× 10−3 GeV−2. (6.127)

The term XDdK is written as:

XDdK =
(m2

Bd
−m2

Dd
)2

[m2
Bd

− (mDd +mK)2][m2
Bd

− (mDd −mK)2]

[
FBd→Dd
0 (m2

K)

FBd→Dd
1 (m2

K)

]2
, (6.128)

The form-factor ratio, in accordance with the normalisation condition (3.59), is:[
FBd→Dd
0 (m2

K)

FBd→Dd
1 (m2

K)

]
= 1, (6.129)

and with the meson masses in Table 12, we obtain

|aDdK1 | = 0.83± 0.05. (6.130)

We may now compare this result with the theoretical value in Eq. (6.71). The central value

is again significantly smaller, showing a discrepancy at the at the 4.8σ level.

The next decay that we study is B̄0
d → D+

d π
−, which is the U -spin partner of the

B̄0
s → D+

s K
− channel [242]. We introduce

RD+π− ≡ B(B̄0
d → D+

d π
−)

dB
(
B̄0
d → D+

d ℓ
−ν̄ℓ
)
/dq2|q2=m2

π

= 6π2f 2
π |Vud|2|a

Ddπ
1 eff |

2XDdπ. (6.131)

The experimental differential semileptonic branching ratio for q2 = m2
π is [187],

dB
(
B̄0
d → D+

d ℓ
−ν̄ℓ
)
/dq2|q2=m2

π
= (3.80± 0.24)× 10−3 GeV−2, (6.132)

while fπ|Vud| = (127.13± 0.02) MeV [258] and

XDdπ =
(m2

Bd
−m2

Dd
)2

[m2
Bd

− (mDd +mπ)2][m2
Bd

− (mDd −mπ)2]

[
FBd→Dd
0 (m2

π)

FBd→Dd
1 (m2

π)

]2
. (6.133)

57We do not take correlations between the parameters into account, as in Eq. (6.104). Including them,

leads to a smaller uncertainty but we prefer to keep the more conservative uncorrelated uncertainty, fol-

lowing Refs. [115,190].
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The term aDdπ1 eff takes the exchange topology into account and we have:

aDdπ1 eff = aDdπ1

(
1 +

EDdπ
TDdπ

)
. (6.134)

With these numerical values, we obtain:

|aDdπ1 eff | = 0.83± 0.03. (6.135)

Assuming rDdπE = rDsKE with the numerical value in Eq. (6.77), we find

|aDdπ1 | = 0.83± 0.07 . (6.136)

Comparing this result with the theoretical prediction in Eq. (6.71), we observe again that

the experimental value is much smaller, differing at the 3.3σ level.

We continue with the decay B̄0
s → D+

s π
− which differs from the B̄0

d → D+
d π

− channel

only through the spectator quarks. As there is no contribution from exchange topologies

in this mode, we have a cleaner setting. We introduce

RD+
s π− ≡ B(B̄0

s → D+
s π

−)th

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)
/dq2|q2=m2

π

= 6π2f 2
π |Vud|2|aDsπ1 |2XDsπ (6.137)

and in analogy to the discussion above the term XDsπ is

XDsπ =
(m2

Bs
−m2

Ds
)2

[m2
Bs

− (mDs +mπ)2][m2
Bs

− (mDs −mπ)2]

[
FBs→Ds
0 (m2

π)

FBs→Ds
1 (m2

π)

]2
. (6.138)

In order to determine the theoretical branching ratio of B̄0
s → D+

s π
−, we use Eqs. (6.66)

and (6.64), and get:

B(B̄0
s → D+

s π
−)th = (2.99± 0.23)× 10−3. (6.139)

For the differential rate of the semileptonic B̄0
s → D+

s ℓ
−ν̄ℓ decay, we apply the CLN

parametrisation with the parameters given by the LHCb collaboration in Ref. [256]. We

obtain:

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)
/dq2|q2=m2

π
= (4.12± 0.46)× 10−3 GeV−2, (6.140)

where we used the B̄0
s lifetime in Eq. (6.56). We finally arrive at the result:

|aDsπ1 | = 0.87± 0.06 , (6.141)

which we compare with the theoretical value in Eq. (6.71). The central value is again too

small, with a discrepancy at the 3.2σ level.
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Last but not least, we consider the counterpart decay of B̄0
s → K+D−

s , which is the

B̄0
d → π+D−

s channel. It only differs through the spectator quarks and does not receive any

contributions from exchange topologies. We introduce

Rπ+D−
s
≡ B(B̄0

d → π+D−
s )

dB
(
B̄0 → π+ℓ−ν̄ℓ

)
/dq2|q2=m2

Ds

= 6π2f 2
Ds|Vcs|

2|aπDs1 |2XπDs (6.142)

with

XπDs =
(m2

Bd
−m2

π)
2

[m2
Bd

− (mπ +mDs)
2][m2

Bd
− (mπ −mDs)

2]

[
FBd→π
0 (m2

Ds
)

FBd→π
1 (m2

Ds
)

]2
, (6.143)

where we have again assumed that the form-factor ratio still satisfies the relation in Eq. (3.59)

for q2 = m2
Ds
, i.e., is close to 1. A dedicated lattice QCD study of this form-factor ratio

would be really useful for future analysis. Using the experimental differential branching

ratio [187]:

dB
(
B̄0 → π+ℓ−ν̄ℓ

)
/dq2|q2=m2

Ds
= (7.14± 0.46)× 10−6 GeV−2, (6.144)

we finally determine

|aπDs1 | = 0.78± 0.05 . (6.145)

This result is consistent with the value in Eq. (6.123), although with significantly smaller

uncertainty. The experimental value differs from the theoretical reference value in Eq. (6.91)

at the 2.9σ level.

Summarising, we had a detailed look at B(s) decays with similar dynamics. We observed

again a similar pattern, with the parameters following from the data being smaller than

the corresponding theoretical values:

B̄0
d → D+

d K
−decay: |aDdK1 | = 0.83± 0.05, differs at 4.8σ level,

B̄0
d → D+

d π
−decay: |aDdπ1 | = 0.83± 0.07, differs at 3.3σ level,

B̄0
s → D+

s π
−decay: |aDsπ1 | = 0.87± 0.06, differs at 3.2σ level,

B̄0
d → π+D−

s decay: |aπDs1 | = 0.78± 0.05, differs at 2.9σ level.

We illustrate and compare the experimental and theoretical SM values of the |a1| parame-

ters for various decay processes in Fig. 39. The left panel shows decays which are caused by

b→ cūs and b→ cūd processes. The right panel illustrates decays originating from b→ uc̄s

transitions. We also show in one plot these results for the various |a1| parameters coming

from the experimental data and compare them with the theoretical SM expectations in Ap-

pendix E.1. We note that in Ref. [249], the same pattern was found for B̄0
d → D+

d π
− and
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Figure 39: Experimental and theoretical SM values of the |a1| parameters for various decay

processes. The left panel illustrates decays which are caused by b → cūs and b → cūd

processes while the right panel shows decays originating from b→ uc̄s transitions.

B̄0
d → D+

d K
− decays with |a1| values smaller than one. It has also recently been discussed

within QCD factorisation also for B̄0
s → D+

s π
− in Ref. [253].

So far, we have only considered the SM framework. We have identified an intriguing

result for the angle γ arising from measurements of CP violation in the B0
s → D∓

s K
±

system. This picture is complemented by information from the branching ratios, which is

encoded in the parameters a1. We note that the latter puzzle is not related to CP violation.

Before moving on to generalise this description to allow also for contributions coming from

NP in Sec. 6.8, let us still point out some further remarks in the next Section.

6.7.1 Further Remarks

Possible NP Effects in Semileptonic Modes

Recalling Eq. (3.61) for the semileptonic B → Pℓν̄ℓ decays, we note that we have assumed

the SM for the semileptonic decay amplitude. The corresponding modes may be affected by

physics from beyond the SM [264–267]. It is possible to include NP effects in such decays,

as discussed in Refs. [105, 110, 268, 269]. A popular scenario in the literature suggests that

NP should enter exclusively through couplings to heavy leptons. In the case of τ leptons,

we remind here the reader about the discussion regarding the ratios R(D) and R(D∗) in

Sec. 3.4.3. However, in our analysis we utilise experimental data for semileptonic B(s)

decays having only electrons and muons in the final states. As a result, should NP enter

via taus, our studies would not be affected. In analogy, for determinations of |Vub| and |Vcb|
in Chapter 3, only B(s) decays to ℓ = e, µ were used.
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Power Corrections

As we already presented in Fig. 39, the experimental values of |a1| are much smaller than

the theoretical ones for various b→ cūs(d) and b→ uc̄s modes. Following from this feature,

recent analyses within scenarios for physics beyond the SM have been studied [192–194].

Within the SM, a suppression of the |a1| parameters could arise from universal power-

suppressed corrections of order ΛQCD/mb [252]. However, such effects would not explain

the intriguing γ value coming from the CP-violating observables of the B0
s → D∓K± decays,

as it would require new sources of CP violation. We note that in Refs. [270,271] NP effects

in non-leptonic B meson tree-level decays are also discussed.

Regarding QCD factorisation, we highlight again that we have puzzles in the |a1|, not
only in the b→ c transitions, where factorisation is expected to work excellently, but also in

channels like B̄0
s → K+D−

s and B̄0
d → π+D−

s , where this framework is on less solid ground.

Interestingly, in our analysis in the previous Sections, there was no indication of anomalous

enhancement due to the exchange topologies, which could arise from large non-factorisable

effects. The small strong phase δs in Eq. (6.24) also supports the factorisation picture.

Anomalously enhanced power corrections are also disfavoured by these observations.

6.8 Pursuing New Physics

In view of these puzzles that we have extensively discussed in the previous Sections, we

generalise our discussion and extend our analysis to include NP effects in B̄0
s → D∓

s K
±.

6.8.1 Generalising the Amplitudes

The decay amplitudes consist of the SM and the NP part:

Amplitude = PSM + PNP = PSM

(
1 +

PNP

PSM

)
. (6.146)

We generalise the transition amplitudes of the four decays as follows:

A(B̄0
s → D+

s K
−) = A(B̄0

s → D+
s K

−)SM

[
1 + ρ̄ eiδ̄e+iφ̄

]
, (6.147)

A(B0
s → D+

s K
−) = A(B0

s → D+
s K

−)SM
[
1 + ρ eiδe−iφ

]
, (6.148)

A(B0
s → D−

s K
+) = A(B0

s → D−
s K

+)SM

[
1 + ρ̄ eiδ̄e−iφ̄

]
, (6.149)

A(B̄0
s → D−

s K
+) = A(B̄0

s → D−
s K

+)SM
[
1 + ρ eiδe+iφ

]
. (6.150)

Here ρ̄ and ρ describe the strength of the NP contributions to b→ cūs and b̄→ ūcs̄ quark-

level transitions with respect to the corresponding SM amplitudes, respectively, with δ̄, δ
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denoting CP-conserving strong phases while φ̄, φ are CP-violating NP phases58:

ρ̄ eiδ̄eiφ̄ ≡ A(B̄0
s → D+

s K
−)NP

A(B̄0
s → D+

s K
−)SM

, ρ eiδe−iφ ≡ A(B0
s → D+

s K
−)NP

A(B0
s → D+

s K
−)SM

, (6.151)

ρ̄ eiδ̄e−iφ̄ ≡ A(B0
s → D−

s K
+)NP

A(B0
s → D−

s K
+)SM

, ρ eiδe+iφ ≡ A(B̄0
s → D−

s K
+)NP

A(B̄0
s → D−

s K
+)SM

. (6.152)

Using these parametrisations of NP effects, we may generalise the expressions of the branch-

ing ratios and the CP asymmetries, which are related to decay amplitudes.

6.8.2 Direct CP Asymmetries

The definitions of the direct CP asymmetries for the B0
s → D∓

s K
± system are:

Ādir
CP ≡ |A(B0

s → D−
s K

+)|2 − |A(B̄0
s → D+

s K
−)|2

|A(B0
s → D−

s K
+)|2 + |A(B̄0

s → D+
s K

−)|2
, (6.153)

Adir
CP ≡ |A(B0

s → D+
s K

−)|2 − |A(B̄0
s → D−

s K
+)|2

|A(B0
s → D+

s K
−)|2 + |A(B̄0

s → D−
s K

+)|2
. (6.154)

In the SM framework, these direct asymmetries vanish, as reflected by the following decay

amplitude relations:

|A(B̄0
s → D+

s K
−)SM| = |A(B0

s → D−
s K

+)SM|, (6.155)

|A(B0
s → D+

s K
−)SM| = |A(B̄0

s → D−
s K

+)SM|. (6.156)

In contrast to the SM, NP contributions may generate non-vanishing direct CP asymmetries.

Applying the generalised amplitude Eqs. (6.147) and (6.150), in Eqs. (6.153)-(6.154), we

obtain

Ādir
CP =

2 ρ̄ sin δ̄ sin φ̄

1 + 2 ρ̄ cos δ̄ cos φ̄+ ρ̄2
, (6.157)

Adir
CP =

2 ρ sin δ sinφ

1 + 2 ρ cos δ cosφ+ ρ2
. (6.158)

Therefore, provided we have non-vanishing CP-conserving and CP-violating phases, the

direct CP asymmetries do not vanish, in line with the general requirements for direct CP

violation.

58For a detailed analysis of how one defines these NP parameters, the reader is referred to Ref. [115].
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6.8.3 Branching Ratio Observables

We have already introduced the ratios R of theoretical branching ratios with the differential

branching ratios of their corresponding semileptonic decay channels. In the presence of NP,

we use CP-averaged ratios ⟨R⟩ as follows:

⟨RDsK⟩ ≡
B(B̄0

s → D+
s K

−)th + B(B0
s → D−

s K
+)th[

dB
(
B̄0
s → D+

s ℓ
−ν̄ℓ
)
/dq2 + dB (B0

s → D−
s ℓ

+νℓ) /dq2
]
|q2=m2

K

, (6.159)

⟨RKDs⟩ ≡
B(B̄0

s → K+D−
s )th + B(B0

s → K−D+
s )th[

dB
(
B̄0
s → K+ℓ−ν̄ℓ

)
/dq2 + dB (B0

s → K−ℓ+νℓ) /dq2
]
|q2=m2

Ds

, (6.160)

which take the form:

⟨RDsK⟩ = 6π2f 2
K |Vus|2|aDsK1 eff |2XDsK

[
1 + 2 ρ̄ cos δ̄ cos φ̄+ ρ̄2

]
, (6.161)

⟨RKDs⟩ = 6π2f 2
Ds|Vcs|

2|aKDs1 eff |2XKDs

[
1 + 2 ρ cos δ cosφ+ ρ2

]
. (6.162)

We note here that for vanishing direct CP asymmetries, we have ⟨RDsK⟩ = RD+
s K− and

⟨RKDs⟩ = RK+D−
s
. We can introduce the following quantities:

b̄ =
⟨RDsK⟩

6π2f 2
K |Vus|2|a

DsK
1 eff |2XDsK

, (6.163)

b =
⟨RKDs⟩

6π2f 2
Ds
|Vcs|2|aKDs1 eff |2XKDs

, (6.164)

where for the effective values of |a1 eff | we use the product of the theoretical expectations

in Eqs. (6.74) and (6.89), which are obtained within QCD factorisation, and the numerical

values of rDsKE and rKDsE in Eqs. (6.77) and (6.98), respectively, yielding:

|aDsK1 eff | = 1.07± 0.09, |aKDs1 eff | = 1.1± 0.13. (6.165)

Regarding the ratios R, we use the experimental values in Eqs. (6.105) and (6.121). Finally,

the parameters b̄ and b take the following form:

b̄ ≡ ⟨B(B̄0
s → D+

s K
−)th⟩

B(B̄0
s → D+

s K
−)SMth

= 1 + 2 ρ̄ cos δ̄ cos φ̄+ ρ̄2, (6.166)

b ≡ ⟨B(B̄0
s → K+D−

s )th⟩
B(B̄0

s → K+D−
s )

SM
th

= 1 + 2 ρ cos δ cosφ+ ρ2, (6.167)

Within the SM, these observables would be equal to 1. However, using the values in

Eqs. (6.165), (6.105) and (6.121), these parameters take the values

b̄ = 0.58± 0.16, b = 0.50± 0.26. (6.168)

The deviations of the branching ratio observables b̄ and b from the value of 1 reflect the

puzzling picture coming from the |a1| parameters presented in Fig. 39.
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6.8.4 Generalised Expressions for ξs and ξ̄s

As we noted above, for the CP-violating phenomena in the B0
s → D∓

s K
± system, interfer-

ence effects between B0
s–B̄

0
s mixing and decay processes play a key role and are described

by the physical observables ξs and ξ̄s. We generalise their expressions to allow for NP

contributions with new sources of CP violation as follows:

ξs = ξSMs

[
1 + ρ̄ eiδ̄e+iφ̄

1 + ρ eiδe−iφ

]
, ξ̄ = ξ̄SMs

[
1 + ρ eiδe+iφ

1 + ρ̄ eiδ̄e−iφ̄

]
. (6.169)

Using the SM expressions in Eqs. (6.9) and (6.10), interchanging the NP parameters ρ, δ,

φ and ρ̄, δ̄, φ̄, we write:

ξs = −e−i(ϕs+γ)
[

1

xseiδs

][
1 + ρ̄ eiδ̄e+iφ̄

1 + ρ eiδe−iφ

]
, (6.170)

ξ̄s = −e−i(ϕs+γ)
[
xse

iδs
] [1 + ρ eiδe+iφ

1 + ρ̄ eiδ̄e−iφ̄

]
. (6.171)

Introducing a phase ∆φ, the above relations are rewritten as:

ξs = −|ξs|e−iδse−i(ϕs+γ)ei∆φ, (6.172)

ξ̄s = −|ξ̄s|e+iδse−i(ϕs+γ)ei∆φ̄, (6.173)

where

tan∆φ =
ρ sin(φ− δ) + ρ̄ sin(φ̄+ δ̄) + ρ̄ρ sin(δ̄ − δ + φ̄+ φ)

1 + ρ cos(φ− δ) + ρ̄ cos(φ̄+ δ̄) + ρ̄ρ cos(δ̄ − δ + φ̄+ φ)
, (6.174)

tan∆φ̄ =
ρ̄ sin(φ̄− δ̄) + ρ sin(φ+ δ) + ρρ̄ sin(δ − δ̄ + φ+ φ̄)

1 + ρ̄ cos(φ̄− δ̄) + ρ cos(φ+ δ) + ρρ̄ cos(δ − δ̄ + φ+ φ̄)
. (6.175)

In the SM case, the product ξs× ξ̄s is central for studying CP violation. We rewrite the

generalised product as follows:

ξs × ξ̄s =
(
ξSMs × ξ̄SMs

) [1 + ρ eiδe+iφ

1 + ρ eiδe−iφ

][
1 + ρ̄ eiδ̄e+iφ̄

1 + ρ̄ eiδ̄e−iφ̄

]
, (6.176)

= e−i2(ϕs+γ)

[
1 + ρ eiδe+iφ

1 + ρ eiδe−iφ

][
1 + ρ̄ eiδ̄e+iφ̄

1 + ρ̄ eiδ̄e−iφ̄

]
, (6.177)

where again the hadronic parameter xs with its strong phase δs cancels.
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We may then write the first ratio in Eq. (6.177), expressing the NP parameters in terms

of the direct CP asymmetries, using:

1 + ρ eiδe+iφ

1 + ρ eiδe−iφ
= e−i∆Φ

√
1−Adir

CP

1 +Adir
CP

(6.178)

where we introduce a phase ∆Φ, which is given through:

cos∆Φ =

√
1−Adir

CP

1 +Adir
CP

[
1 + 2ρ cos δ cosφ+ ρ2 cos 2φ

1 + 2ρ cos(δ − φ) + ρ2

]
, (6.179)

sin∆Φ =

√
1−Adir

CP

1 +Adir
CP

[
−2ρ cos δ sinϕ+ ρ2 sin (−2ϕ)

1 + 2ρ cos (δ − ϕ) + ρ2

]
, (6.180)

and

tan∆Φ = −
[

2ρ cos δ sinφ+ ρ2 sin 2φ

1 + 2ρ cos δ cosφ+ ρ2 cos 2φ

]
. (6.181)

In an analogous way, we express the second ratio in Eq. (6.177) in terms of the direct

asymmetries Ādir
CP and the corresponding counterparts for the phase ∆Φ̄ that are related to

ρ̄, φ̄ and δ̄.

We may now rewrite the product ξs× ξ̄s with the help of the direct CP asymmetries as

ξs × ξ̄s = e−i2(ϕs+γ)

√[
1−Adir

CP

1 +Adir
CP

] [
1− Ādir

CP

1 + Ādir
CP

]
e−i(∆Φ+∆Φ̄). (6.182)

Moreover, applying Eqs. (6.172) and (6.173), the product of ξs × ξ̄s takes the form

ξs × ξ̄s = |ξs| |ξ̄s| e−i2(ϕs+γ) ei(∆φ+∆φ̄) (6.183)

where

|ξs| |ξ̄s| =
∣∣∣∣A(B̄0

s → D+
s K

−)

A(B0
s → D+

s K
−)

∣∣∣∣ ∣∣∣∣A(B̄0
s → D−

s K
+)

A(B0
s → D−

s K
+)

∣∣∣∣
=

∣∣∣∣A(B̄0
s → D−

s K
+)

A(B0
s → D+

s K
−)

∣∣∣∣ ∣∣∣∣A(B̄0
s → D+

s K
−)

A(B0
s → D−

s K
+)

∣∣∣∣
=

√[
1−Adir

CP

1 +Adir
CP

] [
1− Ādir

CP

1 + Ādir
CP

]
. (6.184)

Comparing Eqs. (6.182) and (6.183)-(6.184), we note that the CP-violating NP phase shifts

satisfy the following sum rule:

∆Φ +∆Φ̄ = − (∆φ+∆φ̄) . (6.185)
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We can further simplify the expression of the product of the two physical observables ξs

and ξ̄s: ∣∣ξ × ξ̄
∣∣2 = [1−Adir

CP

1 +Adir
CP

] [
1− Ādir

CP

1 + Ādir
CP

]
. (6.186)

We note that for vanishing direct CP asymmetries, the squared product in Eq. (6.186) is

equal to 1. However, for non-vanishing direct asymmtries, we obtain∣∣ξ × ξ̄
∣∣2 = 1 + ϵ, (6.187)

yielding

ξs × ξ̄s =
√
1 + ε e−i[2(ϕs+γ)+∆Φ+∆Φ̄. (6.188)

Using the observable C in Eq. (6.16) and its CP-conjugate C̄, we obtain

C + C̄ = − ε

1 + |ξs|2
(
1 + C̄

)
. (6.189)

Regarding the term 1 + |ξs|2, we recal the relation of |ξs| in terms of the observable C:

|ξ|2 = (1− C)

(1 + C)
(6.190)

1 + |ξ|2 = 2

(1 + C)
. (6.191)

Therefore, we obtain the following expression which generalises the relation in Eq. (6.23)

that was assumed by the LHCb collaboration in Ref. [189]:

−1

2
ϵ =

C + C̄

(1 + C)
(
1 + C̄

) = Adir
CP + Ādir

CP +O((Adir
CP)

2). (6.192)

Finally, we arrive at the following result [115,190], which is the generalisation of Eq. (6.13)

for the presence of NP:

ξ × ξ̄ =

√√√√1− 2

[
C + C̄

(1 + C)
(
1 + C̄

)]e−i[2(ϕs+γ)+∆Φ+∆Φ̄]. (6.193)

We emphasize that this product is theoretically clean, as in the SM. Making use of the

observables of the time-dependent rate asymmetries of the B0
s → D∓

s K
± system, the cor-

responding product of ξ and ξ̄ can still be determined. We notice that now the UT angle

γ, due to the CP-violating NP phases, enters with a shift. Consequently, it results in an
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“effective” angle [115,190]

γeff ≡ γ + δγNP, (6.194)

≡ γ +

(
∆Φ+∆Φ̄

)
2

(6.195)

= γ − (∆φ+∆φ̄)

2
. (6.196)

We highlight here the following regarding the extraction of the γ value. When perform-

ing combined fits to the data using various B decays, as discussed for instance in Ref. [197],

NP effects might be averaged out to some extend. Thus, it might yield an effective angle

with NP contributions which cannot transparently be quantified, in contrast to Eq. (6.194).

Instead of these fits, it will be important to look for patterns being in tension with SM

utilising individual γ determinations. The main goal then is to perform these analyses with

the highest possible precision. In this respect, the strategy that we follow here, exploring

CP violation in the B0
s → D∓

s K
± system and studying the branching ratios which are

associated to these channels as well as their partner decays, is a prime example.

6.8.5 Correlations of New Physics Parameters

Our next step is to apply our new model-independent formalism to the currently available

measurements [115,190]. Employing the direct CP asymmetry Adir
CP and the branching ratio

observable b, we can obtain correlations between the NP parameters. Therefore, we may

determine ρ as function of the CP-violating phase φ with the help of

ρ =

√√√√[b− 1 + 2 cos2 φ]±

√
[b− 1 + 2 cos2 φ]2 −

[
(b− 1)2 +

(
bAdir

CP

tanφ

)]
. (6.197)

Similar expression hold for the CP-conjugate quantities, allowing the extraction of the NP

parameter ρ̄ as function of φ̄.

Since we are interested in applying our method to the current experimental data, we

set the strong phases equal to 0◦, thus

δ = δ̄ = 0◦, (6.198)

in order to be consistent with the LHCb assumption C = −C̄. This implies vanishing direct

CP asymmetries Ādir
CP and Adir

CP as we can see in Eqs. (6.157) and (6.158), in agreement

with the B → DK data within the current uncertainties [233]. Factorisation also favours

the small δs phases, especially for the b → c mode B̄0
s → D+

s K
−. Therefore, the strong
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Figure 40: Illustration of the NP parameter ρ̄ as function of the CP-violating phase φ̄,

utilising the branching ratio observable b̄ (left panel) and the corresponding analysis for ρ

and φ, using the observable b (right panel) [115].

phase difference δs result, which is presented in Eq. (6.24), within the uncertainties would

be fully consistent with this picture.

Let us now assume vanishing strong phases, as in Eq. (6.198) and use the branching

ratio information encoded in the observables b and b̄. Then the expressions of the NP

parameters ρ̄ and ρ in terms of the CP-violating NP phases, presented in Eq. (6.197), take

the simplified form:

ρ̄ = − cos φ̄±
√
b̄− sin2 φ̄, (6.199)

ρ = − cosφ±
√
b− sin2 φ. (6.200)

Using the values of b and b̄ in Eq. (6.168), we illustrate the constraints on NP parameters

in Fig. 40. The green contour shows the NP parameter ρ̄ as a function of the phase φ̄ for

the central value of the observable b̄. The blue one represents the corresponding analysis of

ρ in terms of ϕ for the b central value. In order to include uncertainties, we vary the values

of the observable b̄ and b within the 1σ range, leading to the contours in lighter colours.

We may also calculate correlations between the NP parameters in the φ̄–φ plane as well

as at the ρ̄–ρ plane, utilising the time-dependent rates of the B0 → D∓
s K

±. Looking at

Eqs. (6.174) and (6.175) and using the assumption in Eq. (6.198), we obtain

tan∆φ =
ρ sinφ+ ρ̄ sin φ̄+ ρ̄ρ sin(φ̄+ φ)

1 + ρ cosφ+ ρ̄ cos φ̄+ ρ̄ρ cos(φ̄+ φ)
. (6.201)

Now, Eq. (6.196) under the assumption of setting the strong phases equal to 0 in Eq. (6.198)

implies:

∆φ = ∆φ̄ = γ − γeff = −(61± 20)◦, (6.202)
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where, summarising the picture from analyses of CP violation in tree-level decays of the

kind B → DK [187], γ = (70 ± 7)◦ is the UT value [187, 233] and γeff corresponds to the

result in Eq. (6.25).

Let us stress here a few points regarding the angle γ and the ∆φ phase. As we have

stated before, γ is determined with the help of pure tree decays, where large CP violation

has not been observed. As we already work in the case where the strong phases are equal to

0◦, the direct CP asymmetries vanish. Therefore, we ensure we do not encounter any issues

with direct CP violation in modes with similar dynamics. In addition, this condition allows

us to be consistent with the LHCb assumption for C and C̄. Generalising this analysis and

measuring every decay channel separately is very important. What we would also like to

emphasize regarding the NP phase shift is that it is extracted in a theoretically clean way

from the data. In particular, it does not rely on SM predictions of the ξ and ξ̄ observables,

a significant finding which is non-trivial.

Obtaining the NP Constraints

In order to convert the measured observables in constraints on the NP parameter space,

Eq. (6.201) plays a central role. Firstly, utilising again the values of b and b̄ in Eq. (6.168),

we implement the expressions of Eqs. (6.199) and (6.200) into Eq. (6.201). As the experi-

mental value of ∆φ is given in Eq. (6.202), we can determine φ as a function of φ̄, thereby

fixing contours in the φ̄–φ plane. This is illustrated in the left panel of Fig. 41. Interest-

ingly, at least one of the CP-violating phases has to take a non-trivial value, highlighting

the need for new sources of CP violation.

Finally, having the values of φ̄ and φ, we may use again ρ̄(φ̄) and ρ(φ) in Eqs. (6.199)

and (6.200), allowing us to obtain the correlations in the ρ̄–ρ plane. Each point is linked

with a specific value of the CP-violating NP phases φ̄ and φ, illustrated in the right panel

of Fig. 41. In order to show this better, we pick, as an example, four random points in

the φ̄–φ plane, illustrated as square, circle, diamond and star in Fig. 41, and we show

the corresponding values in the ρ̄–ρ plane. The sets of values that we have used are the

following:

(ρ, φ) = (−0.43, 37.0◦), (ρ̄, φ̄) = (−0.64, 49.6◦) (6.203)

(ρ, φ) = (−0.48, 40.3◦), (ρ̄, φ̄) = (0.58, 229.0◦) (6.204)

(ρ, φ) = (0.40, 146.0◦), (ρ̄, φ̄) = (1.14, 221.0◦) (6.205)

(ρ, φ) = (0.36, 209.0◦), (ρ̄, φ̄) = (−0.74, 49.2◦). (6.206)
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Figure 41: NP parameter correlations for the central values of the current experimental

data in the φ̄–φ plane (left) and the ρ̄–ρ plane (right), as discussed in the text. We have

indicated four points (square, circle, diamond and star) to illustrate the connection in the

two correlations, and have highlighted the SM point [115].

We note that the SM point, which corresponds to the origin (0, 0) in the ρ̄–ρ plane, is

excluded. The points of ρ and ρ̄ are bounded to values below two. Last but not least,

the gaps between the contours arise from the algebraic structure of the corresponding

expressions and are in particular related to the fact that the values of b and b̄ are smaller

than 1. We explore how the plots in Fig. 41 change for different values of b and b̄ in

Appendix E.2.
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Figure 42: Impact of uncertainties of the input quantities b̄, b and ∆φ in the full ρ̄–ρ plane

(left) and focusing only on the positive values of ρ̄ and ρ (right) [115,190].

We emphasize that Fig. 41 shows the NP parameters correlations for the central values

of the current experimental data. The four different colours represent the four different

combinations that we obtain for the product ρρ̄ in Eq. (6.201). This is due to the different

signs before the square root in the Eqs. (6.199) and (6.200), giving rise to two solutions for

every ρ and ρ̄.

The interesting point following from the ρ̄–ρ plot is that it would be possible for values

as small as in the regime around 0.5 to accommodate the central values of the current

data. Therefore, this would resolve the puzzling patterns in both the measurements of CP

violation as well as in the branching ratios. We would then have NP contributions at he

level of 50% of the SM amplitudes, a feature that we also observe in the NP parameter sets

in Eqs. (6.203)–(6.206).

Let us now move on and explore the NP parameters correlations including uncertainties.

Varying each of the input quantities b̄, b and ∆φ separately, we illustrate their impact on

the contours in the ρ̄–ρ plane. As it is shown in the left panel of Fig. 42, each one of the

three contours with the pale colours corresponds to one of the input parameters. In the

right panel of Fig. 42, we zoom in to the positive values of ρ and ρ̄. We nicely see now that

we could accommodate the current data with NP contributions at the level of 30% of the

SM amplitudes.

Concluding, we have presented a NP analysis which, in the future, will serve as bench-

mark as the data improve, allowing us to narrow down specific models and scenarios. In

view of this, we mention again that specific NP scenarios which could affect the decays

B(s) → D(s)π and B → DK were studied with respect to the branching ratios and the

puzzles that are associated with them for these channels in Refs. [192–194]. Another inter-
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esting example of such kind of physics beyond the SM entering the B0
s → D∓

s K
± system is

the one that involves left-handed W ′ bosons [192]. As we have demonstrated in our analy-

sis, this offers an exciting probe for CP-violating NP phases. These first proposed models

have potential challenges with collider data for direct NP searches and could be interesting

illustrations of possible scenarios.

6.9 Conclusion

The pure tree B0
s → D∓

s K
± decays and their CP conjugates play a key role in testing the

SM. Due to interference effects, CP-violating asymmetries arise, allowing theoretical clean

determinations of the UT angle γ within the SM. Performing an analysis of these CP asym-

metries measured by the LHCb Collaboration, and paying special attention to resolving

ambiguities, we find an intriguing γ value, consistent with the LHCb measurement.59 This

result is in tension with the values suggested by the global UT analyses at the 3σ level. We

note that these tensions cannot be explained through non-factorisable effects

This intriguing case is complemented by a second puzzle which arises from the analysis

of the branching ratios of the B0
s → D∓

s K
± decays as well as modes with similar dynamics.

More specifically, starting from experimental branching ratios, we determine the individual

theoretical ones. The B0
(s)–B̄

0
(s) mixing effects are properly taken into account. Associated

to the branching ratios are the parameters |a1|, where we clearly observe tensions between

theoretical predictions and experimental results. This is not only for the B̄0
s → D+

s K
−

decay but also for the B̄0
s → K+D−

s channel.

In particular, within QCD factorisation, the SM predictions for the |a1| parameters

suggest a value of 1.07 with uncertainties at the percent level. Concerning the experimental

values, our goal is to minimise the impact of the CKM matrix elements |Vcb| and |Vub| as well
as the uncertainties of hadronic form factors. In order to achieve that, we have introduced

ratios of the B̄0
s → D+

s K
− and B̄0

s → K+D−
s branching ratios with the differential rates

of semileptonic B̄0
s → D+

s ℓ
−ν̄ℓ and B̄0

s → K+
s ℓ

−ν̄ℓ decays, respectively. As a result, we

determine |aDsK1 | and |aKDs1 | from the data in a clean way.

For the b → c modes, factorisation is expected to work very well [164]. Examples are

the B̄0
d → D+

d K
−, B̄0

d → D+
d π

− and B̄0
s → D+

s π
− channels, which are tree decays and

have dynamics similar to the B̄0
s → D+

s K
−. In these channels, we observe again the same

pattern for the |a1| parameters with the experimental values being small with respect to

59The new LHCb Run II measurement, which was recently reported in Ref. [188], is interesting and

needs to be further explored. This value has not yet been included in the average of the γ measurements,

hence we did not use it in the present numerical analysis. Despite this measurement, the key points of our

strategies still hold.



6 THE B0
s → D∓

s K
± SYSTEM 161

QCD factorisation [249, 253]. The tensions between theory and experiment in this case

are even up to 4.8σ. In the case of the b → u transition, like the B̄0
d → π+D−

s channel,

which has similar dynamics to B̄0
s → K+D−

s , factorisation is on less solid ground. However,

we find a similar pattern with theoretical predictions being larger than the experimental

results. Due to large uncertainties though, we cannot yet draw any further conclusions in

this case.

In view of these intriguing results, we have generalised our analysis and allow for NP

contributions with new sources of CP violation. We have suggested a model-independent

strategy utilising the CP-violating observables. This results in an effective angle γeff , which

enters the generalised expressions with a CP-violating NP phase shift.

As we know, NP effects with new sources of CP violation can generate direct CP asym-

metries. We highlight that the general formalism we have proposed holds also for non-

vanishing direct CP violation. However, LHCb uses the assumption of C+ C̄ = 0, as in the

SM. As a result, our strategy allows us to go beyond this condition. In order to obtain the

full picture, it would be important that the LHCb generalises its analysis correspondingly.

In our numerical analysis, where we explore what the measurements imply for NP, we

also make an assumption to have vanishing CP-conserving phases. This would then be

consistent with LHCb and would correspond to the strict limit in factorisation. Employing

our formalism to the current data, we obtain correlations between the NP parameters of

the b→ cūs and b→ uc̄s modes. We find strongly correlated NP effects, which could have

large CP-violating phases. Interestingly, we find that we can accommodate the data with

NP contributions as small as 30% of the SM amplitudes.

A summary of our strategy is presented in Fig. 43. Our analysis has three main pillars:

• Focusing on CP Violation: we utilise the CP asymmetries C, S, A∆Γ and their CP

conjugates, which allow the unambiguous determination of ξ and ξ̄ from the data.

The gemeralised ξ × ξ̄ product, accounting for NP effects, leads to the theoretically

clean extraction of γeff ≡ γ + γNP. The angle γNP, depending on NP parameters, is

determined using information on γ from other processes.

• Utilising Branching Ratios: we combine the branching fractions of the non-leptonic

decays with the differential branching fractions of their semi-leptonic partners, which

allow a theoretically clean extraction of the |a1| parameters. Constraining exchange

contributions using control channels, we complement the data with theoretical |a1|
predictions. This allows the determination of the b and b̄ quantities.

• Mapping out the NP Parameter Space: we utilise the three observables γeff , b and b̄

and obtain correlations between the NP parameters ρ(φ) and ρ̄(φ̄), allowing us to

explore the available space for NP.
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New Physics

Puzzle in CP Violation:

tensions theory vs experiment: 

Towards New Physics

Model Independent Strategy

NP parameters

ρ, ρ̄, φ, φ̄ Effective NP angle

γNP = f (ρ, ρ̄, φ, φ̄)

Correlations between  
NP parameters

ρ(φ), ρ̄(φ̄)

Puzzle in Branching Ratios:

γUT angle  clean extractions of

tension with SM:        level

B0
s → D∓

s K± system B0
s → D∓

s K± & similar modes

Theoretically clean

New Physics  
contributions  

at the          level

3σ

in the amplitudes?

4.8σup to level

30 %

|a1 |

γeff = γ + γNP

Figure 43: Illustration of the strategy to search for NP in the B0
s → D∓

s K
± system [190].

Our formalism can be utilised in future measurements of the B0
s → D∓

s K
± system,

taking also the semileptonic decays B̄0
s → D+

s ℓ
−ν̄ℓ and B̄

0
s → K+

s ℓ
−ν̄ℓ into account. It will

be exciting to see how the data will evolve in the future high-precision physics era. Will we

finally be able to establish new sources of CP violation in the B0
s → D∓

s K
± system?
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7 The B → πK System

In this Chapter, we explore another case of non-leptonic decays, the B → πK transitions.

As already discussed, theory calculations in this category suffer from uncertainties due

to the presence of hadronic matrix elements. In order to handle the associated hadronic

uncertainties, we apply flavour symmetries of strong interactions. These symmetries allow

us to relate the amplitudes of the B → πK decays to those of two other systems: the

B → ππ and the B → KK channels. As a result, the matrix elements can either be

eliminated or determined by experimental data.

The B → πK system of decays consists of four channels: B+ → π+K0, B+ → π0K+,

B0
d → π−K+ and B0

d → π0K0. Inconsistencies arise among the branching ratios and the

CP asymmetries of these four channels, resulting in a puzzling situation. This B → πK

puzzle is a long standing problem (see for instance Refs. [179,186,200,272–277]). Here, we

will revisit this puzzle and try to shed more light on the situation and possible resolutions.

Discussing the topologies of these modes, one would naively assume that the contri-

butions that play the leading role are the tree topologies. However, this is not the case.

These contributions are strongly suppressed because of the tiny CKM matrix element |Vub|.
Consequently, these decays are dominated by QCD penguin topologies. In addition, EW

penguins also play an important role.

As an example, we illustrate the Feynman diagrams contributing to the B0
d → π0K0

channel in Fig 44. As we can see, for this b→ qq̄s transition, we have the colour-suppressed

tree, the gluonic penguin as well as the colour-suppressed and the colour-allowed EW pen-

guins. In our analysis, we will pay special attention to the B0
d → π0K0 decay. This is an

important mode since it is the only one that exhibits mixing-induced CP violation, thereby

making it a great candidate for testing the SM.

In view of searches for physics beyond the SM, we highlight that EW penguins offer a

promising path for NP effects to enter [186, 278–280], making the B → πK channels very

promising for NP searches. Considering that NP contributions are related to new sources of

CP violation arising from CP-violating observables, it becomes more clear why B0
d → π0K0,

with its mixing-induced CP asymmetry, is so important.

In this Chapter, starting from the deviations between the experimental measurements

of the B-factories and the SM predictions, we will present a state-of-the-art analysis. We

will explore the correlations between the CP asymmetries and obtain an updated picture.

We will suggest a new strategy which permits the determination of the parameters that

describe the EW penguin contributions. This new method can be applied to the data
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(a) (b)

(c) (d)

Figure 44: Feynman diagrams for the B0
d → π0Ks decay: (a) colour-suppressed tree, (b)

colour-suppressed EW penguin, (c) QCD (gluonic) penguin, (d) colour-allowed EW pen-

guin.

allowing us to constrain the parameter space for NP. For this purpose, we will utilise both

charged and neutral B → πK modes. In the future, this strategy can be fully exploited,

offering insights into the EW penguin sector. This Chapter follows our analysis presented

in Refs. [281–284].
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7.1 Amplitude Parametrization for the B → πK Modes

Let us first express the amplitudes of the four B → πK modes with the help of the

flavour topologies which are relevant to these decays. In the SM we obtain correspondingly

[272,273,285,286]:

A
(
B0
d → π−K+

)
= −[(P̂ − 1

3
P̂C
EW ) + (T̂ + P̂C

EW )], (7.1)

√
2A
(
B0
d → π0K0

)
= (P̂ − 1

3
P̂C
EW )− (Ĉ + P̂EW ), (7.2)

A
(
B+ → π+K0

)
= (P̂ − 1

3
P̂C
EW ) + Â, (7.3)

√
2A
(
B+ → π0K+

)
= −[(P̂ − 1

3
P̂C
EW ) + (T̂ + P̂C

EW ) + (Ĉ + P̂EW ) + Â], (7.4)

where T̂ describes the colour-allowed trees while Ĉ the colour-suppressed trees, P̂ denotes

the QCD penguins, P̂EW denotes the color-allowed EW penguin whereas P̂C
EW the color-

suppressed EW penguin contributions and Â stands for annihilation. We notice that the am-

plitudes of B0
d → π−K+ and B+ → π+K0 have contributions only from colour-suppressed

EW penguins while the B0
d → π0K0 and B+ → π0K+ amplitudes have additional contri-

butions from colour-allowed EW penguins.

Employing the isospin symmetry of strong interactions, the above amplitudes can be

rewritten as follows, using the parametrization of Ref. [186]:

A(B0
d → π−K+) = P ′

[
1 +

2

3
aCe

i∆Cqeiωeiϕ rce
iδc − reiδeiγ

]
, (7.5)

√
2A(B0

d → π0K0) = −P ′
[
1− reiδeiγ +

{
eiγ −

(
1− 2

3
aCe

i∆C

)
qeiϕeiω

}
rce

iδc

]
, (7.6)

A(B+ → π+K0) = −P ′
[
1 + ρce

iθceiγ − 1

3
âCe

i∆Ĉqeiωeiϕ rce
iδc

]
, (7.7)

√
2A(B+ → π0K+) = P ′

[
1 + ρce

iθceiγ −
{
eiγ −

(
1− 1

3
âCe

i∆Ĉ

)
qeiϕeiω

}
rce

iδc

]
. (7.8)

Let us introduce all the parameters in these expressions. The normalization factor P ′ is

defined as:

P ′ ≡ λ3A√
ϵ
(P ′

t − P ′
c) , (7.9)

where P ′
t and P ′

c are the strong QCD penguin amplitudes with internal t and c quarks

exchanges, respectively, and the primes indicate that we deal with b̄ → s̄ transitions.
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Moreover, ϵ ≡ λ2/(1− λ2) is given in Eq. (5.5), where λ ≡ |Vus| = 0.2231±0.0007 following

[209], and A ≡ |Vcb|/λ2 = 0.8227+0.0066
−0.0136 given in Ref. [69,70].

In Eqs. (7.5)-(7.8), the parameter qeiϕeiω describes the EW penguin contributions and

is given by the following expression:

qeiϕeiω ≡ −

(
P̂

′
EW + P̂

′C
EW

T̂ ′ + Ĉ ′

)
. (7.10)

The ϕ and ω are CP-violating and CP-conserving phases, repsectively. In these equations,

we have also the parameters aC and âC , which are related to colour-suppressed EW pen-

guins, and the CP-conserving phases ∆C and ∆Ĉ for the B0
d and B+ decays, respectively,

for which:

aCe
i∆C ≡ P̂

′C
EW

P̂
′
EW + P̂

′C
EW

. (7.11)

Due to isospin symmetry, the following relation holds:

aC = âC , ∆C = ∆Ĉ . (7.12)

We observe that these quantities enter with the parameters q and ϕ, which are EW penguin

parameters, playing an important role in our analysis.

Finally, the hadronic parameters entering Eqs. (7.5)-(7.8) are defined as follows:

reiδ =

(
λ2Rb

1− λ2

)[
T ′ − (P ′

t − P ′
u)

P ′
t − P ′

c

]
, (7.13)

rce
iδc =

(
λ2Rb

1− λ2

)[
T ′ + C ′

P ′
t − P ′

c

]
, (7.14)

ρce
iθc =

(
λ2Rb

1− λ2

)[
P ′
t − P̃ ′

u −A′

P ′
t − P ′

c

]
≈ 0, (7.15)

ρne
iθn =

(
λ2Rb

1− λ2

)[
C ′ + (P ′

t − P ′
u)

P ′
t − P ′

c

]
= rce

iδc − reiδ, (7.16)

where P̃ ′
u is a QCD penguin amplitude, A′ an annihilation amplitude and T ′, C ′ are the

colour-allowed and the colour-suppressed tree contributions, respectively. Introducing the

normalized amplitudes

T̂ ′ = |VubV ∗
us|T ′ and Ĉ ′ = |VubV ∗

us|C ′, (7.17)

we rewrite the hadronic parameters for the QCD penguin and the tree topologies as

reiδ ≡ T̂ ′ − P̂ ′
tu

P ′ and rce
iδc ≡ T̂ ′ + Ĉ ′

P ′ , (7.18)

with P̂ ′
tu indicating the difference between QCD penguin amplitudes with t and u quarks.
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7.2 Determining the Hadronic Parameters

Let us determine the hadronic parameters we introduced above. The parameters reiδ and

rce
iδc are non-perturbative terms, thus difficult to calculate. In order to determine them

we use the B → ππ system, which has been extensively studied in [186]. More specifically,

we utilise the SU(3) symmetry of strong interactions, which relates the B → πK with the

B → ππ system. This allows us to convert the B → ππ parameters into the corresponding

B → πK ones.

7.2.1 Information from the B → ππ System

Let us now give the structure of the amplitudes of the B → ππ decays. There are three

modes: the B+ → π+π0, B0
d → π+π− and B0

d → π0π0 channel. Their amplitudes receive

contributions from colour-allowed trees (T ), colour-suppressed trees (C), penguins (P), ex-

change topologies (E), and penguin-annihilation topologies (PA). Using the parametriza-

tion given in Refs. [186,275], we have:

√
2A(B+ → π+π0) = −T̃ eiγ(1 + xei∆)(1 + q̃e−iβe−iγ) (7.19)

A(B0
d → π−π+) = −T̃ (eiγ − deiθ) (7.20)

√
2A(B0

d → π0π0) = P

[
1 +

x

d
eiγei(∆−θ) + q̃

(
1 + xei∆

d
e−iθe−iβ

)]
, (7.21)

where d, x are the hadronic parameters describing the B → ππ decays and θ, ∆ are their

strong phases. The factors T̃ and P are expressed as

T̃ = λ3ARb(T − Ptu + E − PAtu) , (7.22)

P = λ3A(Pt − Pc) , (7.23)

with Ptq denoting the difference between penguin topologies with internal t and q quarks and

PAtu the corresponding difference between penguin-annihilation topologies. The parameter

q̃ describes the EW penguin topologies [200,287]

q̃ ≡
∣∣∣∣PEW + PC

EW

T + C

∣∣∣∣ ∼ 1.3× 10−2

∣∣∣∣VtdVub
∣∣∣∣ ∼ 3× 10−2, (7.24)

where T = λ3ARbT and C = λ3ARbC. However, the EW penguins play a minor role and

their effect on d, θ, x and ∆ is negligible due to the current uncertainties [186]. This picture

could change in the future with more sophisticated analyses. Considering the deiθ and xei∆,
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we introduce:

deiθ ≡ − 1

Rb

Ptc + PAtc

T − Ptu + E − PAtu

, (7.25)

xei∆ ≡ C + Ptu − E + PAtu

T − Ptu + E − PAtu

. (7.26)

Our next step is to consider the CP asymmetries, as presented in Chapter 4. Reminding

the reader about Eq. (4.25), we specifically write the time-dependent CP asymmetry for

the decay of a B0
d meson into a final state which is an eigenstate of the CP operator:

ACP(t) ≡
Γ(B̄0

d(t) → f)− Γ(B0
d(t) → f)

Γ(B̄0
d(t) → f) + Γ(B0

d(t) → f)
= AfCP cos(∆mdt) + SfCP sin(∆mdt) . (7.27)

With the expressions of the decay amplitudes, we obtain the direct and mixing induced

CP asymmetries of the B0
d → π+π− channel. These asymmetries are expressed in terms of

the parameters in Eq. (7.25), the mixing phase ϕd in Eq. (4.57) [191, 201], which includes

penguin corrections, and the angle γ in Eq. (4.60), as

Aπ
−π+

CP =
2d sin θ sin γ

1− 2d cos θ cos γ + d2
, (7.28)

Sπ
−π+

CP = −
[
d2 sinϕd − 2d cos θ sin(ϕd + γ) + sin(ϕd + 2γ)

1− 2d cos θ cos γ + d2

]
. (7.29)

The experimental values of these asymmetries, available in PDG [66] are

Aπ
−π+

CP = 0.31± 0.03, Sπ
−π+

CP = −0.67± 0.03. (7.30)

This allows us to determine the d and θ parameters purely from data. We obtain their

values:

d = 0.58± 0.08, θ = (150.6± 4.1)◦. (7.31)

Similarly, we write the CP asymmetries of the B0
d → π0π0 decay in terms of the param-

eters in Eq. (7.26):

Aπ
0π0

CP =
−2dx sin(θ −∆) sin γ

d2 + 2dx cos(θ −∆) cos γ + x2
, (7.32)

Sπ
0π0

CP = −
[
d2 sinϕd + 2dx cos(θ −∆) sin(ϕd + γ) + x2 sin(ϕd + 2γ)

d2 + 2dx cos(θ −∆) cos γ + x2

]
. (7.33)

The mixing-induced CP asymmetry of this channel is not yet measured. As a result, in

order to extract the values of x and ∆ from the data, we utilise ratios of branching ratios.

The first ratio we use is the following:

Rππ
+− ≡ 2

MB+

MBd

Φ(mπ/MBd ,mπ/MBd)

Φ(mπ0/MB+ ,mπ/MB+)

[
B(B+ → π+π0)

B(B0
d → π+π−)

]
τB0

d

τ+B
, (7.34)



7 THE B → πK SYSTEM 171

Mode B[×10−6] Mode B[×10−6]

B0 → π0π0 1.59± 0.26 B̄0 → π0K̄0 9.9± 0.5

B0 → π+π− 5.12± 0.19 B̄0 → π+K− 19.6± 0.5

B+ → π+π0 5.5± 0.4 B+ → π+K0
S 23.7± 0.8

B+ → π0K+ 12.9± 0.5

Table 13: Branching ratios of the B → ππ and the B → πK decays [233]

where Φ is the usual phase-space function Φ(X, Y ) =
√

[1− (X + Y )2][1− (X − Y )2] with

the values of the masses following Ref. [66]. The experimental values for the lifetimes are

τB+/τB0
d
= 1.076± 0.004 [66,288] and for the branching ratios [66]:

B(B+ → π+π0) = (5.5± 0.4)× 10−6, (7.35)

B(B0
d → π+π−) = (5.12± 0.19)× 10−6. (7.36)

We collect all the values of the branching ratios of these decays in Table 13. Consequently,

the experimental value for the ratio Rππ
+− is:

Rππ
+− = 2.00± 0.16. (7.37)

In terms of the hadronic parameters this ratio is written as

Rππ
+− =

1 + 2x cos∆ + x2

1− 2d cos θ cos γ + d2
, (7.38)

which leads to the following relation between x and ∆:

x = − cos∆±
√
rπRππ

+− − sin2∆, (7.39)

where

rπ ≡ 1− 2d cos θ cos γ + d2. (7.40)

The second ratio we introduce is the following:

Rππ
00 ≡ 2

Φ(mπ/MBd ,mπ/MBd)

Φ(mπ0/MBd ,mπ0/MBd)

[
B(B0

d → π0π0)

B(B0
d → π+π−)

]
, (7.41)

where B(B0
d → π+π−) = (5.12 ± 0.19) × 10−6 [66], which is also listed in Table 13. Thus,

the experimental value is

Rππ
00 = 0.621± 0.104 . (7.42)
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Figure 45: Determination of the parameters x and ∆ with the help of the ratios Rππ
00 and

Rππ
+−. The direct CP asymmetry Aπ

0π0

CP resolves the two-fold ambiguity.

We then obtain

Rππ
00 =

d2 + 2dx cos(∆− θ) cos γ + x2

1− 2d cos θ cos γ + d2
, (7.43)

which leads to

x = −d cos γ cos(∆− θ)±
√
rπRππ

00 − (1− cos2(∆− θ))d2 . (7.44)

The system of Eqs. (7.39) and (7.44) allows us to fix contours in the ∆–x plane, as

illustrated in Fig. 45. The blue contour corresponds to the ratio Rππ
00 while the mangenta

curve to the Rππ
+− ratio. The points where the contours intersect provide the values of x and

∆. We observe that there are two points of intersection, resulting in two solutions. This

ambiguity can be resolved by using the measured value of the direct CP asymmetry of the

B0
d → π0π0 channel [66]:

Aπ
0π0

CP = 0.33± 0.22, (7.45)

which generates the dotted contour in cyan in Fig. 45 [281]. Finally, we obtain:

x = 1.06± 0.09 , ∆ = −(54.0± 12.3)◦. (7.46)

This determination of the hadronic parameters coming from the B → ππ system is

theoretically clean. It only depends on the experimental values of the CP asymmetries, the

angle γ and the phase ϕd. There are no assumptions beyond the SM parametrizations. Now,

that we have determined the parameters x, ∆, d, θ, we continue with the determination of

the B → πK parameters r, δ and rc, δc.
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7.2.2 Numerical Results for the Hadronic Parameters of the B → πK System

Regarding the parameters r and δ, we use the relation

reiδ = −e
−i∆SU(3)

ξSU(3)

[ ϵ
d
e−iθ

]
, (7.47)

where ∆SU(3) and ξSU(3) describe non-factorizable U-spin-breaking corrections. We assume

these non-factorizable effects at the level of 20%:

ξSU(3) = 1.0± 0.2, ∆SU(3) = (0± 20)◦. (7.48)

We will discuss the parameters d and θ in Sec 7.2.1. In addition, we define

rππc eiδ
ππ
c ≡ ϵRb

[
T + C

Ptc + PAtc

]
= − ϵ

deiθ
(1 + xei∆) , (7.49)

leading to the following expression with the help of the SU(3) flavour symmetry:

rce
iδc = rππc eiδ

ππ
c = ξrcSU(3)r

ππ
c ei(∆

rc
SU(3)

+δππc ) , (7.50)

where ξrcSU(3) and ∆rc
SU(3) parametrize the SU(3)-breaking effects, allowing again for such

effects of up to 20%:

ξrcSU(3) = 1.0± 0.2, ∆rc
SU(3) = (0± 20)◦. (7.51)

With the value of ϵ = 0.0535± 0.0002 [122] and the hadronic parameters from the B → ππ

system determined in Sec 7.2.1, the results following from Eqs. (7.47) and (7.50) are

reiδ = (0.09± 0.03) ei(29.4±20.4)◦ , (7.52)

rce
iδc = (0.18± 0.04) ei(1.7±21.3)◦ . (7.53)

We note that in the analysis of the B → πK as well as the B → ππ and B → KK modes,

no indication of anomalous large non-factorizable SU(3)-breaking corrections or exchange

and penguin-annihilation topologies contribution has been found [263,281,289].

Information from the B → KK System

Regarding the hadronic parameter ρc, which is doubly Cabibbo-suppressed, we make use

of the B → KK system [186, 290]. More specifically, employing the U -spin symmetry

of strong interactions, we may utilise data from B+ → K+K̄0. Following the analysis

presented in [289], we the obtain:

ρc = 0.03± 0.01 , θc = (2.6± 4.6)◦ . (7.54)
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7.3 Electroweak Penguin Parameters q and ϕ in the SM

Let us now focus on the parametrization of the EW penguin parameters q and the CP-

violating phase ϕ. Our starting point is Eq. (7.10), which we repeat here for convenience:

qeiϕeiω ≡ −

(
P̂ ′
EW + P̂

′C
EW

T̂ ′ + Ĉ ′

)
. (7.55)

We remind the reader that ω is the CP-conserving phase. In the SM, in order to calculate

this parameter, we utilise the general expressions of the four-quark operators and recal

the structure of the Qk given in Appendix B. Applying then the SU(3) symmetry to the

hadronic matrix elements, and with the help of the Wilson coefficients and the UT triangle

side Rb, we obtain [200,291,292]:

qeiϕeiω ≡ −3

2λ2Rb

[
C9(µ) + C10(µ)

C1(µ) + C2(µ)

]
︸ ︷︷ ︸Rq (7.56)

= (0.68± 0.05) Rq . (7.57)

The parameter Rq describes the SU(3)-breaking corrections and can be written as the ratio

of the following operator matrix elements [200,292]:

Rq =
⟨πK|Q̄1 − Q̄2|B+⟩
⟨πK|Q̄1 + Q̄2|B+⟩

, where Q̄i =
1

2

(
Q̄u
i − Q̄d

i

)
. (7.58)

Regarding its numerical value, we allow for SU(3)-breaking corrections of 30%, following

the analysis in Ref. [293]:

Rq = 1.00± 0.3. (7.59)

Based on expected future progress on lattice calculations [293], a theory benchmark scenario

can be assumed of Rq = 1.00± 0.05.

Concerning the Wilson coefficients in Eq. (7.56), we note the following: for the Q7 and

Q8 EW penguin operators, the coefficients C7 and C8, respectively, are tiny, thus they

can be neglected. On the other hand, the coefficients C9 and C10 are sizeable. Hence,

we have connected the corresponding Q9 and Q10 penguin operators with the current-

current operators Q1 and Q2, which are related to the tree amplitudes [294], applying Fierz

transformations:

Qu,d
9 |Fierz = Qu,d

1 , Qu,d
10 |Fierz = Qu,d

2 . (7.60)

In the SU(3) limit, the strong phase ω vanishes. Performing numerical studies, values

of up to 10◦ would not have any impact on our analysis. The feature of small values for
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the ω phase is model-independent [292]. In our studies, we set ω = 0◦. Within the SM,

the CP-violating phase ϕ vanishes. Consequently, if ϕ gets a sizeable value, this would be

a signal of NP. Therefore, it is important to test whether there are any deviations from the

SM values and if these deviations indicate NP.

7.4 CP Violation in B → πK Decays

Our next step is to study CP violation. A reliable SM prediction of the mixing-induced

and the direct CP asymmetries is essential in order to search for signs of NP. Therefore,

we will focus on the B0
d → π0Ks channel, which is the only B → πK mode that exhibits

mixing-induced CP violation. Before examining this channel in more detail and dive into

the analysis of the CP-violating asymmetries, let us briefly present here important aspects

of the other key observables, which are given by the branching ratios of the B → πK

decays.

Branching Ratios

Regarding the branching fractions, we can determine ratios between the different B → πK

channels, following Refs. [200,292,295]:

R ≡
[
B(B0

d → π−K+)

B(B+ → π+K0)

]
τB+

τB0
d

, (7.61)

Rc ≡ 2

[
B(B+ → π0K+)

B(B+ → π+K0)

]
, (7.62)

Rn ≡ 1

2

[
B(B0

d → π−K+

B(B0
d → π0K0)

]
. (7.63)

With the values of the corresponding branching ratios in Table 13, we can determine the

experimental values of these ratio [281]:

R = 0.89± 0.04, Rc = 1.09± 0.06, Rn = 0.99± 0.06 . (7.64)

With the help of the hadronic parameters, we can rewrite the above ratios [281]. The

ratio R involves only colour-suppressed EW penguins, described by

ãC ≡ aC cos(δc +∆C). (7.65)

Expanding in terms of the small r and rc and the tiny ρc parameters, we obtain

R = 1− 2 r cos δ cos γ + 2 rc ãC q cosϕ− 2ρc cos θc cos γ +O(r2(c), ρ
2
c) . (7.66)
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On the other hand, the ratios Rc and Rn depend on the EW penguin parameters q and ϕ.

Expanding again in terms of the small r and rc of the order of O(0.1), we obtain

Rc = 1− 2 rc cos δc(cos γ − q cosϕ) +O(r2c) , (7.67)

Rn = 1− 2rc cos δc(cos γ − q cosϕ) +O(r2(c)) . (7.68)

With the help of the numerics in Eq. (7.64), we get the following interesting relation [281]:

Rc −Rn = 0 +O(r2(c)) = 0.10± 0.08, (7.69)

which is satisfied by the experimental data at the 1σ level.

Let us now discuss the special case with ϕ = 0◦, including SM, but also allowing for

NP contributions through values of q that are not SM-like. Neglecting contributions from

colour-suppressed EW penguins, the above ratios are rewritten as follows [186]:

R =
1− 2r cos δ cos γ + r2

1 + ρ2c + 2ρc cos γ cos θc
, (7.70)

Rn =
1

b
(1− 2r cos δ cos γ + r2) , (7.71)

Rc = 1 +
r2crq − 2ρcrc cos(δc − θc)(1− q cos γ)− 2(−q + cos γ)rc cos δc

1 + ρ2c + 2ρc cos γ cos θc
, (7.72)

where we have introduced:

b ≡ 1− 2r cos δ cos γ + r2 + 2rc cos δc(−q + cos γ) + 2r cos(δ − δc)rc(−1 + q cos γ)

+ r2c (1 + q2 − 2q cos γ) , (7.73)

rq = 1− 2q cos γ + q2. (7.74)

The tiny parameter ρc is also included, as presented in Ref. [281].

7.4.1 CP Violation in the B0
d → π0KS Decay

Let us now focus on the B0
d → π0KS channel, which is a CP-odd eigenstate, and specifically

discuss the CP asymmetries, starting again from the expression of the time-dependent CP

asymmetry. Recalling Eq. (7.27), we have

ACP(t) =
Γ(B̄0(t) → π0KS)− Γ(B0(t) → π0KS)

Γ(B̄0(t) → π0KS) + Γ(B0(t) → π0KS)

= Aπ
0KS

CP cos(∆mt) + Sπ
0KS

CP sin(∆mt). (7.75)
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The direct CP asymmetry takes the form

Aπ
0KS

CP =
|Ā00|2 − |A00|2

|Ā00|2 + |A00|2
, (7.76)

where we have used the notation

A00 = A
(
B0 → π0KS

)
, (7.77)

Ā00 = A
(
B̄0 → π0K̄S

)
. (7.78)

The mixing-induced CP asymmetry, arising from interference between B0
d–B̄

0
d mixing and

decay processes of B0
d and B̄0

d mesons into the final state π0KS, is written as:

Sπ
0KS

CP =
2|A00Ā00|

|Ā00|2 + |A00|2
sin(2β − 2ϕπ0KS

)

=
2|A00Ā00|

|Ā00|2 + |A00|2
sin(ϕd − arg(Ā00A

∗
00)), (7.79)

where 2β denotes the CP-violating B0
d–B̄

0
d mixing phase ϕd. We also introduce the angle

between the decay amplitude A00 and its CP conjugate Ā00 :

2ϕπ0KS
= arg(Ā00A

∗
00) ≡ ϕ00. (7.80)

Regarding the angle ϕ00, utilising the parametrizations of the amplitudes, we obtain the

following expression for the SM case corresponding to ϕ = 0◦ [281]:

tanϕ00|ϕ=0◦ = 2

(
Q

W

)
sin γ , (7.81)

where

Q = r cos δ − rc cos δc + qr2c − qrrc cos(δ − δc)

− (r2c − 2rrc cos(δ − δc) + r2) cos γ ,

W = 1− 2(qr2c − rc cos δc + r cos δ − qrrc cos(δ − δc)) cos γ − 2qrc cos(δc)

+ (r2c − 2rrc cos(δ − δc) + r2) cos(2γ) + q2r2c . (7.82)

Since ϕ00 plays a central role in our analysis, our next step is to discuss how we can

determine this angle.
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7.4.2 Isospin Analysis

As we already introduced in the previous Section, we can measure the angle ϕ00 through

Eq. (7.79). The calculation of ϕ00 requires the determination of the decay amplitudes. For

this purpose, we will make use of isospin relations.

Having as a starting point the isospin analysis [285], the B → πK decays involve a weak

Hamiltonian which has two terms, the ∆I = 0 and ∆I = 1 components:

Heff = H∆I=0 +H∆I=1, (7.83)

where the ∆I = 0 piece leads to a final state with I = 1/2 whereas the ∆I = 1 term leads

to both I = 1/2 and I = 3/2 final states. More specifically, for B → πK decays, the initial

B meson states have I = 1/2 while the πK final states are decomposed into both I = 1/2

and I = 3/2 final states.

A key parameter in these studies is the amplitude A3/2, which corresponds to isospin

I = 3/2, and its CP conjugate Ā3/2. Applying the isospin relations [272,293], we may write

3A3/2 ≡
√
2A(B0

d → π0K0) + A(B0 → π−K+), (7.84)

3Ā3/2 ≡
√
2A(B̄0

d → π0K̄0) + A(B̄0 → π+K−), (7.85)

where

3A3/2 ≡ 3|A3/2|eiϕ3/2 (7.86)

= −(T̂ ′ + Ĉ ′)eiγ +
(
P̂ ′
EW + P̂

′C
EW

)
(7.87)

= −
[
T̂ ′ + Ĉ ′

]
(eiγ − qe+iϕ). (7.88)

Here, we have made use of Eq. (7.55) and note that the term |T̂ ′+Ĉ ′| normalizes Eq. (7.135).

This quantity can be expressed with the help of the B+ → π+π0 channel utilising the SU(3)

symmetry. Assuming vanishing strong phase (as a convention), we obtain

T̂ ′ + Ĉ ′ = |T̂ ′ + Ĉ ′|eiγ. (7.89)

The amplitude |T̂ ′ + Ĉ ′| can be determined with the help of the SU(3) flavour symmetry

as follows [296]:

|T̂ ′ + Ĉ ′| = RT+C

∣∣∣∣VusVud

∣∣∣∣√2|A(B+ → π+π0)| . (7.90)

where RT+C = |T ′ + C ′|/|T + C| parametrizes SU(3)-breaking effects. The calligraphic

|T + C| amplitude is determined via the B+ → π+π0 decay while the |T ′ + C ′| aplitude
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corresponds to its B → πK counterpart. The numerical value of RT+C (which was used in

the analysis in Ref. [281]) is

RT+C = 1.2± 0.2 . (7.91)

Therefore, the amplitude of 3A3/2 can be determined for a given qeiϕ.

Similarly, the amplitude 3Ā3/2 can be written as

3Ā3/2 ≡ 3|Ā3/2|eiϕ̄3/2 (7.92)

= −
[
T̂ ′ + Ĉ ′

]
(e−iγ − qe−iϕ) , (7.93)

where we observe the relation ϕ̄3/2 = −ϕ3/2. We note again that ω = 0◦ while the EW

penguin parameters take the SM values60 q = 0.66 and ϕ = 0◦. Thus, the value of 3Ā3/2

can also be determined. Finally, we obtain the following numerical values:

3A3/2 ≡ A3/2 = (0.3− 0.8i) · 10−3, (7.94)

3Ā3/2 ≡ Ā3/2 = (0.3 + 0.8i) · 10−3, (7.95)

which, as we have already discussed, represent sides of the isospin triangles in the complex

plane. At this point, we are only interested in the central values, as we will use them for

illustrating the corresponding triangles. In the coming Sections, we will discuss in detail

how we construct the isospin triangles in the complex plane. For this purpose, we will

utilise these values and apply the isospin relations in Eqs. (7.84)-(7.85).

7.4.3 Isospin Triangles in the Complex Plane - Neutral B Decays

Before we continue our analysis, we adopt a notation for the amplitudes that is analogous

to the one in Eqs. (7.77)-(7.78) in order to simplify the expressions and write

A−+ = A
(
B0 → π−K+

)
, Ā−+ = A

(
B̄0 → π+K−) , (7.96)

A+0 = A
(
B+ → π+K0,

)
Ā+0 = A

(
B− → π−K̄0

)
, (7.97)

A0+ = A
(
B+ → π0K+

)
, Ā0+ = A

(
B− → π0K−) . (7.98)

An analogous notation can be applied for the branching ratios of the corresponding decay

channels.

60We note that in order to be consistent with our published analysis, for the rest of the Chapter, we will

use the numerics as given in Ref. [281].
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Decay Channel ACP SCP

B̄0
d → π+K− −0.082± 0.006 −

B̄0
d → π0K̄0 0.00± 0.13 0.58± 0.17

B+ → π+KS −0.017± 0.016 −

B+ → π0K+ 0.037± 0.021 −

Table 14: Direct and mixing induced CP asymmetries for the B → πK system as presented

in Ref. [281].

We firstly study the case of the decays of the neutral B mesons. We have to determine

the quantities |A00|, |Ā00| as well as |A−+| and |Ā−+|. For this purpose, we make use of the

direct CP asymmetries (as already given in Eq. (7.76))

Aπ
0KS

CP =
|Ā00|2 − |A00|2

|Ā00|2 + |A00|2
, Aπ

−K+

CP =
|Ā−+|2 − |A−+|2

|Ā−+|2 + |A−+|2
, (7.99)

and the branching ratios, which can be expressed as linear combinations of the amplitudes

as follows:

B00 =
1

2

[
|Ā00|2 + |A00|2

]
, B−+ =

1

2

[
|Ā−+|2 + |A−+|2

]
. (7.100)

Solving the above system, we are able to determine the lengths of the decay amplitudes

and their CP-conjugates. We obtain:

|A00| =
√

B00(1− Aπ
0KS

CP ), (7.101)

|A−+| =
√

B−+(1− Aπ
−K+

CP ), (7.102)

|Ā00| =
√

B00(1 + Aπ
0KS

CP ), (7.103)

|Ā−+| =
√

B−+(1 + Aπ
−K+

CP ). (7.104)

The current values of the branching ratios in the B → πK channels are presented in

Table 13 while the measurements of the CP asymmetries are given in Table 14.

Having all the necessary formulae and numerical values, we are now ready to draw isospin

triangles in the complex plane. Visualising things via triangles will help us to determine

the angles ϕ00 and eventually, resolve any ambiguities and obtain the final “correct” ϕ00

value. Let us explain the methodology below.
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We keep Aπ
0KS

CP as a free parameter and substitute the values of the other asymmetries

and branching ratios. This allows us to calculate |A00| and |Ā00| by utilising the 3A3/2 and

3Ā3/2 values determined in Sec 7.4.1. We can then construct the following systems in the

complex x–y plane:

x2 + y2 = 2|A00|2, (x−ℜ[A3/2])
2 + (y + ℑ[A3/2])

2 = |A−+|2, (7.105)

x2 + y2 = 2|Ā00|2, (x−ℜ[Ā3/2])
2 + (y −ℑ[Ā3/2])

2 = |Ā−+|2. (7.106)

We get 4 possible combinations between A00 and Ā00, hence 4 angles between the two

different solutions.

We can now illustrate the decay amplitudes and angles in the complex plane. The

above systems represent circles, as shown in Appendix F.1. We fistly discuss the system

in Eq. (7.105). Starting with 3A3/2, we draw a line that starts at (0, 0) and ends at

(0.3,−0.8), as calculated in Sec 7.4.2. With the middlepoint (0, 0), we draw a circle with

radius
√
2|A00|. A second circle is drawn, where the middlepoint is (0.3,−0.8) and the

radius is |Ā−+|. The two circles intersect in two points, which fix the A00. This system of

the two intersecting circles and the corresponding triangles is illustrated in the left panel

of Fig 46. The blue lines denote the A00 (pointing towards the intersecting points), the

orange one is the amplitude A3/2 and the yellow lines, completing the triangles, denote the

A−+ side. Similarly, we obtain the picture for the CP-conjugate case, which is described in

Eq. (7.106). The corresponding circles and triangles are shown in the right panel of Fig. 46,

where the red lines denote the Ā00 while the green ones show the Ā−+ sides. We show all

isospin triangles which relate the A00 and A−+ to the A3/2 amplitude as well as those that

relate the Ā00 and Ā−+ to the Ā3/2 in Fig. 47, using the same colours as in Fig. 46.

In this way, we eventually determine ϕ00, which is the angle between A00 and Ā00.

Having shown all the amplitude triangles, we provide specifically an illustration of the

angle ϕ00 in Fig. 48. The two A00 and Ā00 sides and the corresponding angle are denoted

in red. The dashed lines represent the CP-conjugate case. As we have already mentioned,

there are four (combinations) orientations of the A00 and Ā00 amplitudes, therefore four

angles ϕ00. We discuss how we utilise this angle in more detail in the following Section.

7.4.4 Correlations Between Mixing Induced and Direct CP Asymmetries

Let us now see how we obtain the mixing-induced CP asymmetry as a function of the direct

CP asymmetry Aπ
0KS

CP . The generalised expression for the mixing-induced CP violation,

which we have already introduced in Eq. (7.79), is written as [212,293]:

Sπ
0KS

CP =

√
1− (Aπ

0KS
CP )2 sin(ϕd − ϕ00). (7.107)
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Figure 46: System of the two intersecting circles and the corresponding triangles. The two

solutions for A00 are given in the left panel while the two Ā00 solutions for the CP-conjugate

case are shown in the right panel.

2A00

A−+

3A3/2 A−+

2A00

3Ā3/2 Ā−+

Ā−+

2Ā00

2Ā00

Figure 47: Triangles that relate the A00 and A−+ to the fixed A3/2 amplitude as well as the

triangles for the CP conjugate case.

This relation, which correlates the two CP asymmetries, plays a central role in our analysis.

The direct CP asymmetry can be measured. The value of the angle ϕ00 has already been

determined as we discussed in the previous Section. As a result, we are able to make a

prediction of the mixing-induced CP asymmetry through Eq. (7.107).

Employing ϕ00, we obtain a four-fold ambiguity for this angle since the triangles can

be flipped around the A3/2 and Ā3/2 axes. The four orientations of the triangles, that we

collectively show in Fig. 47, can be illustrated separately in Fig. 49. The solid triangles

refer to the B0
d → π0K0

S case whereas the dashed one corresponds to its CP conjugate case.
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Figure 48: Illustration of the angle ϕ00.

The four angles, hence orientations, are denoted by different colours: (a) green, (b) blue,

(c) grey and (d) orange. Starting from Fig. 49(a), we firstly flip the dashed triangle around

Ā3/2 and we arrive at the second orientation in Fig. 49(b). Then, flipping the solid triangle

around the A3/2 axis, we obtain Fig. 49(c). Finally, we flip the dashed triangle around Ā3/2

and get the last orientation in Fig. 49(d).

Varying the values of Aπ
0KS

CP in Eq. (7.107), using the mixing phase ϕd as input and with

ϕ00 at hand, we calculate the correlation between the direct and the mixing induced CP

asymmetry of the B0
d → π0K0

S decay [186,293]. The four possibilities for the angle ϕ00 lead

to four branches for Sπ
0KS

CP in the Sπ
0KS

CP − Aπ
0KS

CP plane. The corresponding plots for the

central values are presented in Fig. 50, where the colours of the branches are labelled with

the same colour as the four ϕ00 angles in Fig. 49. For completeness, these four contours for

the central values are also shown in Appendix F.2.

We finally illustrate the correlations between Sπ
0KS

CP and Aπ
0KS

CP , taking the experimental

errors and uncertainties of the parameters RT+C and Rq into account. Fig. 51 provides the

full picture. The colours of the branches still correspond to the colours of the ϕ00 angles and

matches the description in Fig. 50. We also present the current experimental measurements

for the direct and the mixing-induced CP asymmetries with the associated uncertainties

(black), which are given in Table 14. Moreover, the red vertical band shows the prediction

coming from the sum rule [281], which we will discuss in the next pages.

We note that additional narrow bands are illustrated in Fig. 51 that correspond to future

scenarios. More specifically, we consider the following benchmark case [293]:

RT+C = 1.22± 0.02, (7.108)

Rq = 1.00± 0.05. (7.109)

In this case, only the expected theory uncertainties are taken into account, based on ex-
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Figure 49: The four ϕ00 solutions, as discussed in the text. The A00 and Ā00 are denoted by

purple, the dashed lines represent the CP conjugate cases and the four angles are denoted

by (a) green, (b) blue, (c) grey and (d) orange.
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Figure 50: Plots of the mixing-induced CP asymmetry in terms of the direct CP asymmetry

(central values). The four branches correspond to the four angles ϕ00 shown in Fig. 49.
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Figure 51: Correlations between Sπ
0KS

CP and Aπ
0KS

CP taking the uncertainties into account.

The current data for the CP asymmetries (black cross) and the sum rule prediction (red

band) are also shown. The narrow bands correspond to a future scenario.

pected future progress in lattice calculations.

Sum Rules

An interesting test of the SM is given by the sum rule, which is defined with the help of

the branching ratios as follows [297,298]:

∆
(I)
SR = Aπ

±K∓

CP + Aπ
±K0

CP

B(B+ → π+K0)

B(B0
d → π−K+)

τB0

τB+

− Aπ
0K±

CP

2B(B+ → π0K+)

B(B0
d → π−K+)

τB0

τB+

− Aπ
0K0

CP

2B(B0
d → π0K0)

B(B0
d → π−K+)

= 0 +O(r2(c), ρ
2
c) . (7.110)

Utilising the current measurements of branching ratios and CP asymmetries, as presented

in Tables 13 and 14, we obtain the experimental value [281]:

∆
(I)
SR|exp = −0.15± 0.14. (7.111)

We are also interested in calculating the SM prediction for the sum rule. For this

purpose, we discuss further the direct asymmetries, rewriting them also in terms of the

hadronic parameters. We obtain the following expression [281]:

Aπ
−K+

CP ≡ Adir
CP(B

0
d → π−K+) =

4

3
rc ãSq sinϕ− 2r sin δ sin γ +O(r2(c)), (7.112)

where the colour-suppressed EW penguin contribution ãS is defined as:

ãS ≡ aC sin(δc +∆C) . (7.113)
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We note that for small phases δc and ∆C , the parameter ãS is strongly suppressed. Com-

bining Eqs. (7.112) and (8.33), and using the values of the hadronic parameters, we can

determine ãS and ãC through:

ãS q sinϕ =
3(Aπ

−K+

CP + 2r sin δ sin γ)

4rc
, (7.114)

ãC q cosϕ =
R− 1 + 2r cos δ cos γ + 2ρc cos θc cos γ

2rc
. (7.115)

Similarly, we express the other direct CP asymmetries [281], yielding:

Aπ
+K0

CP ≡ Adir
CP(B

+ → π+K0) = 2ρc sin θc sin γ − 2

3
ãSqrc sinϕ+O(r2c , ρ

2
c) ,

Aπ
0K+

CP ≡ Adir
CP(B

+ → π0K+) = 2ρc sin θc sin γ − 2rc sin δc[sin γ − q sinϕ]

− 2

3
ãSqrc sinϕ+O(r2c , ρ

2
c) ,

Aπ
0K0

CP ≡ Adir
CP(B

0
d → π0K0) = 2rc sin δc[sin γ − q sinϕ] +

4

3
ãSqrc sinϕ

− 2r sin δ sin γ +O(r2(c)) , (7.116)

where we have expanded again in terms of the the small rc and the tiny ρc.

We return now to the calculation of the SM prediction of the sum rule. The sub-leading

terms lead to the following expression [281]:

∆
(I)
SR = 2qrc

[
r sin(δc − δ) + ρc sin(δc − θc)

1− 2r cos δ cos γ + r2

]
sin(γ − ϕ). (7.117)

Using the values of the hadronic parameters in Sec. 7.2.2 and the SM values of the EW

penguin parameters q and ϕ in Sec. 7.4.2, we find the SM value:

∆
(I)
SR|SM = −0.009± 0.013. (7.118)

Comparing the experimental value in Eq. (7.111) and the SM prediction in Eq. (7.118), we

see that the experimental result for the sum rule is consistent with zero as well as the SM

value within uncertainties.

Last but not least, since we have presented the direct CP asymmetries in terms of the

hadronic parameters, we also discuss the case of vanishing CP violation in the EW penguins,
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thus for ϕ = 0◦. In this case, the direct asymmetries can be rewritten as [186,281]:

Aπ
−K+

CP =
−2r sin δ sin γ

1− 2r cos δ cos γ + r2
, (7.119)

Aπ
+K0

CP =
2ρc sin θc sin γ

1 + 2ρc cos θc cos γ + ρ2c
, (7.120)

Aπ
0K+

CP = −2rc sin δc sin γ − 2ρc sin θc sin γ + 2qρcrc sin(δc − θc)

Rc(1 + ρ2c + 2ρc cos γ cos θc)
, (7.121)

Aπ
0K0

CP = Aπ
0KS

CP =
2 sin γ

b

[
− r sin δ + rc(qr sin(δ − δc) + sin δc)

]
, (7.122)

where we have included the tiny ρc parameter as in [281].

7.4.5 Obtaining the Final Single Solution

The different orientations of the isospin triangles have left us with a four-fold ambiguity.

Our goal now is to resolve these ambiguities and determine the correct contour in the

Aπ
0KS

CP –Sπ
0KS

CP plane.

The first parameter we consider is the strong phase δc [293]. Let us describe how we work

with this parameter. We have already provided the expression of the direct CP asymmetry

of the B0 → π−K+ channel in Eq. (7.119), rewriting it here as

A−+ =
−2r sin δ sin γ

rr
, (7.123)

where we simplified it by expressing the denominator in the following form

rr = 1− 2r cos δ cos γ + r2. (7.124)

The value of A−+ is known. As a result, we can extract the parameter r in terms of δ. We

recall the expression:

rc =
|T̂ + Ĉ|√

B−+

√
rr, (7.125)

where we employ again the SU(3) flavour symmetry and obtain:

rc =
√
2

∣∣∣∣VusVud

∣∣∣∣RT+C

√
B(B+ → π0π+)

B(B0
d → π−K+)

τB0
d

τB+

√
rr. (7.126)

Therefore, utilising the expressions for rc, A−+, and b in Eq. (7.73), we determine the

quantity Rn = rr/b = const in such a way that it depends only on δ and δc. The values

that correspond to |δc| < 90◦ can be found on the contours in Fig. 51a while those that refer
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Figure 52: (a) Resolving the discrete ambiguity and pinning down the correct contour in

the Aπ
0KS

CP –Sπ
0KS

CP plane, coming from the isospin relations [300, 301]. (b) Illustration of

ϕ± in terms of Aπ
0KS

CP for the correct triangle configuration. The current SM constraint in

Eq. (7.130) is given by the petrol horizontal band.

to |δc| > 90◦ can be found on the contours in Fig. 51b. The range of δc has been calculated

in Eq. (7.53). This leads to the conclusion that only the upper (green) contour in Fig. 51a

is allowed. This also agrees with the picture associated to the value of rc, since the lower

contour of Fig. 51a leads to large values of rc, thus allowing again only the upper contour.

The final correct contour is illustrated in Fig. 52a. In addition to the (world-averaged)

current data (black cross), we also show a new Belle II measurement for the CP asym-

mmetries [299] denoted as the orange cross. This measurement agrees better with the

isospin results within uncertainties. This is an interesting development to explore further,

especially once it is included in the current world average.

Another tool that can be used for resolving the ambiguities is the angle ϕ± between the

amplitudes A−+ ≡ A(B0
d → π−K+) and Ā−+ ≡ A(B̄0

d → π+K−), defined as [302]:

ϕ± = Arg
[
Ā−+A

∗
−+

]
. (7.127)

Every triangle configuration is associated with an angle ϕ±, allowing us to illustrate contours

of ϕ± in terms of the direct CP asymmetry (as shown in Appendix F.3). For ϕ = 0◦, we

can write [281]:

tanϕ±|ϕ=0◦ =
−r2 sin 2γ + r sin(γ − δ) + r sin(γ + δ) + C±

1 + r2 cos 2γ − r cos(γ − δ)− r cos(γ + δ) +B±
, (7.128)
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where

B± =
4

3
qrc[ãC − r cos γ(ãC cos δ + ãS sin δ) +

1

3
qrc(ã

2
C + ã2S)],

C± =
4

3
qrrc sin γ(ãC cos δ + ãS sin δ) . (7.129)

Utilising the hadronic parameters, we can determine the numerical values of B± and C±,

and as a result the tanϕ±|ϕ=0◦ , thus the value of ϕ± in the SM. We find [281]:

ϕ± = 2r cos δ sin γ +O(r2(c)) = (8.7± 3.5)◦ . (7.130)

This additional constraint is illustrated as the petrol horizontal band in Fig. 52b. As shown

in Appendix F.3, following our analysis in [281], the blue and the orange contours from the

triangle analysis are excluded by this constraint. Moreover, there is tension with the grey

contour, which is already eliminated due to the range of δc. Therefore, Fig. 52b shows the

angle ϕ± in terms of Aπ
0KS

CP for the final triangle configuration (green contour). We observe

for this configuration a tension with the SM prediction for ϕ± at the 1 σ level.

How to Resolve the B → πK Puzzle?

Let us focus on the current world average of the CP asymmetries (black cross in Fig. 52a).

We will not explore the new Belle II measurement further, since it is not included in the

world average yet.61 Since there is a discrepancy between the experimental data and the

constraint following from the triangle construction, as shown in Fig. 52a, we are interested

in examining how this puzzle can be resolved.

One way is through a change in the data. Prime candidate is the branching ratio (due

to the large experimental uncertainty on B0 → π0K0). In Ref. [281], an interesting example

has been illustrated where lowering the branching ratio’s central value (by 2.5 σ) and at

the same time moving the central value of the mixing-induced CP asymmetry up (by 2.5 σ)

gives a picture consistent with the SM. Hence, it seems challenging to fulfil all constraints

simultaneously in order to achieve agreement with the SM in this case.

On the other hand, this tension might imply effects of NP. As we have already discussed,

a very promising avenue for NP to enter is through the EW penguin sector, which is

characterised by the q and ϕ parameters. The sensitivity to new sources of CP violation is

a key point here.62

61We note that the new Belle II measurement agrees better with the theoretical solution arising from the

triangles. It will be interesting to monitor how the situation will evolve in the future.
62We also mention here for completeness that there could be NP scenarios with extra Z ′ bosons, where

we may have links with anomalies in rare B decays.
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7.5 New Strategy to Determine q and ϕ

In the first part of this Chapter, after providing the technical details, we focused on the

determination of correlations between the mixing-induced and the direct CP asymmetry of

the B0 → π0KS channel. Comparing the corresponding SM predictions for the CP asymme-

tries coming from Eq. (7.107) and the triangle analysis with the experimental data, tensions

arise. More specifically, in the Aπ
0KS

CP –Sπ
0KS

CP plane in Fig. 52, we see the deviation between

the green contour, reflecting the theory prediction for the CP asymmetries, and the black

cross denoting the data. As a result, revisiting this B → πK puzzle and considering the

picture we obtained from the current data, there could be NP entering in the EW penguin

sector, which is characterised by q and ϕ. The importance of these EW penguin parameters

q and ϕ in studying possible NP effects require a careful analysis of their determination.

This brings us to the second part of our analysis. In the following Sections, we present

a new method of determining these EW penguin parameters. So far, we have only worked

with the neutral B → πK decays. Here, our first step is to utilise the charged B → πK

modes, which exhibit only direct CP violation.

7.5.1 Utilising Charged B → πK Decays

Similar to the case of neutral B → πK modes, our starting point are the isospin relations:

3A3/2 ≡
√
2A(B+ → π0K+) + A(B+ → π+K0), (7.131)

3Ā3/2 ≡
√
2A(B− → π0K−) + A(B− → π−K̄0), (7.132)

which we may write using a simplified notation for the decay amplitudes as follows:

3A3/2 =
√
2A0+ + A+0, (7.133)

3Ā3/2 =
√
2Ā0+ + Ā+0. (7.134)

As we have already discussed, with the help of the direct CP asymmetries and the CP-

averaged branching ratios, the isospin relations represent triangles in the complex plane,

assuming a given value of |A3/2| = |Ā3/2|. In analogy to the case of the neutral B → πK

modes, we have:

3A3/2 ≡ 3|A3/2|eiϕ3/2 = −
[
T̂ ′ + Ĉ ′

]
(eiγ − qe+iϕ), (7.135)

3Ā3/2 ≡ 3|Ā3/2|eiϕ̄3/2 = −
[
T̂ ′ + Ĉ ′

]
(e−iγ − qe−iϕ). (7.136)
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The term (eiγ − qeiϕ) can be expressed as follows:

(eiγ − qeiϕ) = cos γ + i sin γ − q cosϕ− iq sinϕ

= (cos γ − q cosϕ)

[
1 + i

(
sin γ − q sinϕ

cos γ − q cosϕ

)]
. (7.137)

In a similar way, we can rewrite the term (e−iγ − qe−iϕ).

To construct the amplitude triangles for the charged B → πK decays, it is useful to

draw them in such a way that the amplitudes |A+0| and |Ā+0| coincide. We consider two

circles: one with (0, 0) as centre and 3|A3/2| as a radius and the other one with (|A+0|, 0)
as middlepoint and

√
2A0+ as a radius. In the example we study here, we consider the

SM values of q and ϕ. For a given value |A3/2| = |Ā3/2|, we have the following system of

equations:

x2 + y2 = 3|A3/2|, (x− |A+0|)2 + y2 = 2|A0+|2, (7.138)

x2 + y2 = 3|A3/2|, (x− |A+0|)2 + y2 = 2|Ā0+|2, (7.139)

where the second system stands for the CP-conjugate case. Eq. (7.138) represents two circles

which intersect in two points. These circles are indicated by green colour in Fig. 53a. The

points of intersection guide the construction of the triangles, which is indicated by the blue

solid lines. The full picture is given in Appendix F.4. Similarly, Eq. (7.139) represents two

circles, which are denoted by black. The small black circle is the same as the small green one.

There are again two intersection points and the pink dashed lines show the corresponding

triangles. In Fig. 53b, we zoom in and show one orientation of the isospin triangles of the

charged B → πK decays (where the pink dashed one stands for the CP-conjugate case),

where we see which decay amplitude corresponds to every side of the triangle.

Since the triangles can be flipped around the A3/2 and Ā3/2 axes, we have again a

four-fold ambiguity for ∆ϕ3/2, which is determined as follows [281]:

∆ϕ3/2 ≡ ϕ3/2 − ϕ̄3/2. (7.140)

This difference between the phases ϕ3/2 of the decay amplitude A3/2 and ϕ̄3/2 of the am-

plitude Ā3/2 is given by ∆ϕ3/2 = 2ϕ3/2, due to the relation ϕ̄3/2 = −ϕ3/2. We also note

that the relative orientation of the triangles, which is the angle between the amplitudes

A+0 ≡ A(B+ → π+K0) and Ā+0 ≡ A(B− → π−K̄0), is given by

ϕc ≡ Arg
[
Ā+0A

∗
+0

]
= O(1◦). (7.141)

Employing the amplitude parametrization given in Eq. (7.7) and neglecting the colour-

suppressed EW penguin contributions, we obtain

tanϕc =
−ρ2c sin 2γ − ρc sin(γ − θc)− ρc sin(γ + θc)

1 + ρ2c cos 2γ + ρc cos(γ − θc) + ρc cos(γ + θc)
. (7.142)
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Figure 53: (a) Constructing the isospin triangles for the charged B → πK decays, applying

Eqs. (7.138)-(7.139). (b) Illustration of the isospin triangles for the charged B+ → π0K+

and B+ → π+K0 modes (solid blue), and for the CP-conjugate case (dashed pink).

7.5.2 Extracting the Parameters q and ϕ

Let us now discuss the new strategy we have developed for extracting the EW penguin

parameters, as presented in Ref. [281]. Utilising the phase difference ∆ϕ3/2 introduced in

Eq. (7.140), we firstly work with the amplitudes A3/2.

We recall that for the strong phase ω = 0◦, we have the condition |A3/2| = |Ā3/2|. Using
the definitions in Eqs. (7.135)-(7.136), we obtain

Ā3/2

A3/2

= eϕ̄3/2−ϕ3/2 =
e−iγ − qe−iϕ

eiγ − qeiϕ
. (7.143)

Multiplying both the numerator and the denominator with the factor (e−iγ− qe−iϕ), we get

eϕ̄3/2−ϕ3/2 =
e−2iγ − qe−i(ϕ+γ) − qe−i(ϕ+γ) + q2e−2iϕ

1− qei(ϕ−γ) − qe−i(ϕ−γ) + q2
. (7.144)

Let us now introduce √
N = 3

∣∣∣∣ A3/2

T̂ + Ĉ

∣∣∣∣ , (7.145)

which again comes from Eq. (7.135). Our next step is to provide the relation between N

and q. For this purpose, we make use of the following identities:

eix = cos(x) + i sin(x) (7.146)

sin(x± y) = sin x cos y ± cosx sin y (7.147)

cos(x± y) = cos x cos y ∓ sinx sin y, (7.148)
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and Eq. (7.135) implies 3
∣∣A3/2

∣∣∣∣∣T̂ + Ĉ
∣∣∣
2

− sin2(ϕ− γ) =
[
q − cos(ϕ− γ)

]2
. (7.149)

Hence, taking the square root of this expression, we solve the equation for q and obtain

q = cos(ϕ− γ)±

√√√√√
 3
∣∣A3/2

∣∣∣∣∣T̂ + Ĉ
∣∣∣
2

− sin2(ϕ− γ) (7.150)

= cos(ϕ− γ)±

√√√√ 3
∣∣A3/2

∣∣(
T̂ + Ĉ

) + cos2(ϕ− γ)− 1, (7.151)

where the trigonometric identity sin2(x) + cos2(x) = 1 has been used.

Combining the two expressions

√
Nei

(ϕ̄3/2−ϕ3/2)
2 =

√
N

[
cos

(
ϕ̄3/2 − ϕ3/2

2

)
+ i sin

(
ϕ̄3/2 − ϕ3/2

2

)]
(7.152)

and

e−iγ − qe−iϕ = cos γ − q cosϕ− i (sin γ − q sinϕ) , (7.153)

we are able to determine both cos
(
(ϕ̄3/2 − ϕ3/2)/2

)
and sin

(
(ϕ̄3/2 − ϕ3/2)/2

)
, yielding

tan

(
ϕ̄3/2 − ϕ3/2

2

)
=

sin γ − q sinϕ

cos γ − q cosϕ
. (7.154)

Then we introduce the useful notation [281]:

c = ±
√
N cos

(
ϕ3/2 − ϕ̄3/2

2

)
= cos γ − q cosϕ, (7.155)

s = ±
√
N sin

(
ϕ3/2 − ϕ̄3/2

2

)
= sin γ − q sinϕ. (7.156)

These expressions get the form:

c = ±
√
N cos

(
∆ϕ3/2

2

)
, (7.157)

s = ±
√
N sin

(
∆ϕ3/2

2

)
. (7.158)
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Finally, for obtaining the relation between N and q, we write

N = 1− 2q cos(γ − ϕ) + q2 (7.159)

= 1− 2q cosϕ cos γ − 2q sinϕ sin γ + q2 (7.160)

= 1− 2 cos(γ − c) cos γ − 2(sin γ − s) sin γ + q2, (7.161)

where we implemented the expressions of c and s in the latter expression. Consequently,

q2 = N + 1− 2c cos γ − 2s sin γ, (7.162)

q = ±
√
N + 1− 2c cos γ − 2s sin γ. (7.163)

So far, we have determined the parameter q. The final step is to also provide a relation

between the phase ϕ and N . As a result, recalling Eqs. (7.155) and (7.156), we obtain

q cosϕ = cos γ − c, (7.164)

q sinϕ = sin γ − s, (7.165)

yielding

tanϕ =
sinϕ

cosϕ
=

sin γ − s

cos γ − c
. (7.166)

Consequently, both the EW penguin parameters q and ϕ can be determined. We collect

the important relations of our strategy in Fig. 54.

Δϕ3/2 = ϕ3/2 − ϕ̄3/2, N = 3 A3/2
̂T + Ĉ

c = ± N cos ( Δϕ3/2
2 ), s = ± N sin ( Δϕ3/2

2 )
q = ± N + 1 − 2c cos γ − 2s sin γ

tan ϕ = sin γ − s
cos γ − c

Figure 54: Important relations for determining the EW penguin parameters q and ϕ.
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7.5.3 Constraints on ϕ–q Plane Utilising Charged B → πK Decays

As we have already mentioned, concerning the charged B → πK system, there is a four-fold

ambiguity for the ∆ϕ3/2. For every value of ∆ϕ3/2, we solve a quadratic equation which

leads to two contours in the q − ϕ plane, thus eight contours in total.

Similarly to the neutral case, we can eliminate contours by considering

ϕ0+ = Arg
[
Ā0+A

∗
0+

]
, (7.167)

which is the angle between the A0+ ≡ A(B+ → π0K+) and Ā0+ ≡ A(B− → π0K−) decay

amplitudes. This angle can be obtained from the triangle construction and depends on ϕ.

In addition, we consider the theoretical prediction, as presented in Ref. [281]:

tanϕ0+ = 2rc

[
cos δc sin γ −

(
cos δc −

1

3
ãC

)
q sinϕ

]
+O(r2(c), ρc) , (7.168)

with the colour-suppressed EW penguin parameter ãC which has already been introduced

in Sec 7.4. The theoretical value depends on both q and ϕ.

Fig. 55 illustrates the contours coming from the triangle analysis in the q − ϕ plane.

The contours are denoted by purple, green, grey and orange. In addition to the angle

ϕ0+, we impose another constraint, which is related to the parameter Rc and leads to the

cyan dotted line. We observe that the contours coming from the triangle analysis show

discontinuities around the values of q ∼ 1 and ϕ ∼ 70◦. This is due to the fact that |A3/2|
cannot become arbitrarily small and as a result, the corresponding decay amplitudes cannot

form triangles anymore.

Let us now discuss in more detail the constraint coming from the Rc, thus the ratio of

the CP-averaged branching fractions of the charged B → πK decays defined in Eq. (7.67).

Utilising the strong phase δc and the parameters rc and ρc and setting [281]:

ARc ≡ r2c , (7.169)

BRc ≡ 2rc [cos δc cosϕ− (rc − ρc cos(θc − δc)) cos(γ − ϕ)] , (7.170)

CRc ≡
[
1 + 2ρc cos θc cos γ + ρ2c

]
[1−Rc]− 2ρcrc cos(θc − δc)

− 2rc cos δc cos γ + r2c , (7.171)

we obtain a relation between q and Rc in the following compact way [281]:

q =
−BRc ±

√
B2
Rc

− 4ARcCRc

2ARc

. (7.172)
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Figure 55: Contours in the q − ϕ plane, arising from the triangle analysis of the charged

B → πK decays, where constraints have been imposed as discussed in the text. The contour

Rc gives rise to the cyan dotted line [281].

This allows us to convert the measured value of Rc, using also the numerical values of δc,

rc and ρc, into the cyan dotted contour in the q − ϕ plane in Fig. 55, complementing the

analysis. This contour is in excellent agreement with two of the contours coming from the

triangle construction as well as with the SM values for q and ϕ.

7.5.4 Utilizing Mixing-Induced CP Violation in B0 → π0KS Decay

Let us discuss how we can get further information for the q and ϕ determination and obtain

a sharper picture. For this purpose, we work again with the B0 → π0KS channel and utilise

the mixing-induced CP asymmetry Sπ
0KS

CP . This allows us to extract the phase ϕ00.

With the help of the values of the hadronic parameters and the mixing-induced CP

asymmetry, the following expression can be obtained, which provides another contour in

the q–ϕ plane [281]:

q =
−Bc +

√
B2
c − 4AcDc

2Ac
, (7.173)
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where

Ac ≡ r2c (− tanϕ00 cos 2ϕ− sin 2ϕ) , (7.174)

Bc ≡ 2rc cos δc(tanϕ00 cosϕ+ sinϕ)− 4

3
ĉ+Ac

−(2r2c − 2rcr cos(δc − δ))(− tanϕ00 cos(γ + ϕ)− sin(γ + ϕ)) (7.175)

Dc ≡ − tanϕ00 − (2rc cos δc − 2r cos δ)(tanϕ00 cos γ + sin γ)

+ (r2c + r2 − 2rcr cos(δc − δ))(− tanϕ00 cos 2γ − sin 2γ)

+
4

3
ãC qrc(− tanϕ00 cosϕ− sinϕ) +

4

9
q2(ã2S + ã2C)Ac

+
4

3
(− tanϕ00 cos(γ + ϕ)− sin(γ + ϕ))(r2c ĉ+ − rcr(ãC cos δ + ãS sin δ)) (7.176)

with

ĉ+ ≡ ãC q cos δc + ãS q sin δc . (7.177)

We can now calculate the value of ϕ00 using the current measurement of Sπ
0KS

CP , which

we have presented in Table 14, and implement it in Eqs. (7.173)-(7.176) in order to convert

the mixing-induced CP asymmetry into another contour in the q–ϕ plane. We obtain [281]:

ϕ00 = (7.7± 12.1)◦. (7.178)

This results in the purple contour illustrated in Fig. 56a, where contributions from colour-

suppressed EW penguin topologies are included. In the same plot, we also show the contours

coming from the isospin analysis that are in agreement with the Rc constraint.

7.5.5 Illustrating a Future Scenario

The strategy we presented in Sec. 7.5.4 can be used to illustrate a future application. We

assume a scenario, as given in [281]:

Sπ
0KS

CP = 0.67± 0.042, Aπ
0KS

CP = −0.07± 0.042, ϕ00 = (0.9± 3.3)◦. (7.179)

Including colour-suppressed EW penguin effects, we assume that the uncertainty of

Sπ
0KS

CP is the same as Aπ
0KS

CP . The resulting picture is illustrated in Fig. 56b. The purple

contour shows the constraint coming from Sπ
0KS

CP . The experimental uncertainties are those

given in Eq. (7.179) and are illustrated by the solid purple line. We also take into account

the theoretical uncertainties, which are the SU(3) uncertainties related to the hadronic
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Figure 56: (a) Constraints in the q–ϕ plane utilising information from the mixing-induced

CP asymmetry Sπ
0KS

CP . (b) Illustrating a future application of our strategy considering a

scenario for measurement of mixing induced CP asymmetry [281].

parameters which we use in order to determine q in Eq. (7.173). The theoretical uncer-

tainties are denoted by the dashed purple line. We observe that the experimental and the

theoretical precision can be matched, which is very promising for future analyses.

Fig. 56b also shows the four contours (blue, green, orange, gray) coming from the triangle

analysis. We note that the contours which remain after taking into account constraints from

the phase ϕ0+ and the ratio Rc [281].

7.6 Concluding

In this Chapter, we have discussed the B → πK system, which is another interesting

case of non-leptonic decays. As we have emphasized numerous times through this thesis,

in this class of decays, we have to deal with the challenging hadronic matrix elements

entering through the low-energy effective Hamiltonian. This system is dominated by loop

topologies. In addition to the QCD penguin diagrams, EW penguins also play an important

role. Therefore, we had to pay special attention to the EW penguin sector in our studies.

Our first goal was to present a state-of-the-art analysis. Utilising expressions of the

decay amplitudes of the B → πK channels, we applied a specific parametrization [186],

which introduces hadronic parameters. In order to determine these parameters, we made

use of the powerful tool of the SU(3) flavour symmetry of the strong interactions. This

allowed us to obtain relations between the B → πK decay amplitudes and those of the

B → ππ and B → KK systems. Experimental information for the hadronic parameters of

the latter systems are available. Consequently, employing the SU(3) flavour symmetry, we
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converted the hadronic parameters of these systems into their B → πK counterparts and

finally extracted their values.

Our next step was to study CP violation in the B → πK system. The key mode for

these studies is the B0
d → π0K0 channel, which is the only one that exhibits mixing-induced

CP violation. Therefore, we aimed at obtaining correlations between the corresponding

direct and the mixing-induced CP asymmetries. For this purpose, a central role was played

by an isospin analysis, while keeping the theoretical assumptions as minimal as possible.

Isospin relations between the amplitudes of the neutral B → πK decays allowed us to

represent these amplitudes as triangles in the complex plane. The different orientations of

these triangles result in different contours in the Aπ
0KS

CP –Sπ
0KS

CP plane, describing correlations

between the CP asymmetries. These contours can be obtained in a very clean way within the

SM, and we can unambiguously pick the final contour. Comparing it with the experimental

values of the CP asymmetries, we revealed tensions between this final contour, which reflects

the theory SM predictions, and the data.

These tensions could be resolved either via a change in the values of the measured

observables or assuming NP in the EW penguin sector. A recent highlight was a new

Belle II measurement [299], which shifted towards the direction of the band characterising

the SM correlation. However, the uncertainties of these measurements are unfortunately

still too large to draw any definite conclusions. In addition, the new results for these CP

asymmetries have not yet been included in the corresponding world average. Therefore, we

did not explore the situation in further detail, although it will be very interesting to follow

the future experimental developments.

In the last part of our analysis, we focused on the EW sector since EW penguins could

offer an avenue for effects of new particles to enter the B → πK channels. The puzzling

patterns in the data with respect to the SM could be an indication of NP of this kind.

Consequently, the EW penguin parameters q and ϕ played a key role. We proposed a new

strategy to extract these parameters from the data. Our method exploited both neutral

and charged B → πK channels, employing again isospin relations between their decay

amplitudes. Applying our strategy to the current data, we obtained contours in the ϕ–q

plane. In order to get a more complete picture and actually determine q and ϕ, we utilised

additional information from the mixing-induced CP asymmetry of the B0
d → π0KS decay.

This methodology was also applied to a future benchmark scenario assuming experi-

mental and theoretical progress. We found that the experimental precision can match the

theoretical uncertainties, thereby demonstrating the power of the method. Therefore, im-

plementing our strategy to future data from Belle II as well as the LHCb upgrade(s) will

offer exciting new opportunities - either by confirming again the SM or eventually revealing

NP with new sources of CP violation.
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8 Rare B0
q → µ+µ− Decays

Other interesting cases that provide reliable tests of the SM flavour dynamics and work as

powerful probes of NP are the decays mediated by b → sℓ+ℓ− quark-level transitions. In

this Chapter we mostly focus on one of the decays originating from these processes, which

is the B0
s → µ+µ−. This is a purely leptonic mode.

Having already introduced the leptonic decays in Sec. 3.3, we now present the formalism

specifically for the neutral B0
s meson decaying into the final state µ+µ−. In an analogous

way, we can approach the B0
d → µ+µ− mode, which we will also explore in the following

Sections. It is worth noting that the decays of the neutral B0
(s) meson into the final states

e+e− and τ+τ− are also interesting. However, so far, they have received less attention, both

theoretically and experimentally. We will not elaborate more on these modes but for the

interested reader, more information can be found in Ref. [303].

The B0
s → µ+µ− decay is a flavour-changing neutral current (FCNC) process, thus a

transition involving different quark flavours but of the same electric charge. Within the SM,

these decays are forbidden at the tree level. The leading contributions arise from one-loop

diagrams; the box and penguin topologies, as illustrated in Fig. 57. They are theoretically

very clean as they involve only the Bs decay constant. In addition, in the SM these decays

are helicity suppressed by a factor (m2
µ/M

2
Bs
), where mµ denotes the mass of the muon and

MBs the mass of the Bs meson [304]. Therefore, these decays are strongly suppressed and

thus very rare. Experiments had been searching the B0
s → µ+µ− decay for decades [305].

The first observation of this decay was announced by the LHCb and CMS collaborations in

2012, with the result that about three out of one billion B0
s mesons decay into µ+µ− [18].

The corresponding plot for the LHC Run I analysis in given in the Appendix G.

Useful and interesting observables are connected to the B0
s → µ+µ− channel and one

of them is the branching ratio. As we have already discussed in previous Chapters, the

phenomenon of the B0
s–B̄

0
s mixing leads to time-dependent decay rates. The sizeable decay

width difference ∆Γs gives access to another interesting observable, the mass-eigenstate

rate asymmetry Aµµ
∆Γs

, which is connected to the effective lifetime τµµ [306, 307]. Fig. 58

shows the B0
s → µ+µ− and B0 → µ+µ− branching ratio measurements for the combined

results by ATLAS, CMS and LHCb (left plot), and the most recent LHCb data (right plot),

comparing the experimental results with the SM predictions.

This decay offers an excellent path to search for physics beyond the SM, as NP could

have an impact on the FCNC sector. There could be new particles entering the loop

diagrams or might even arise at the tree level. Examples of NP scenarios are Z ′ models,
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Figure 57: Feynman diagrams describing the B0
s → µ+µ− decay in the SM: box (left) and

penguin (right) topologies.

Figure 58: Branching fraction measurements for B0
s → µ+µ− and B0 → µ+µ−, combining

the ATLAS, CMS and LHCb 2011-2016 data [14] (left) and the 2021 results by the LHCb

Collaboration [15] (right). The SM point in both plots is denoted by the red cross. The

ellipses are likelihood contours for different confidence levels for every experiment.

leptoquarks and models with extended Higgs sectors (see for instance Refs. [308–312]). A

significant characteristic of the B0
s → µ+µ− decay is that it is sensitive to NP leading to

scalar and pseudoscalar contributions, which are described by complex coefficients S and

P , respectively. In terms of these quantities, the branching ratio is expressed as

B ∝ fBs m
2
µ (|P |2 + |S|2), (8.1)

where fBs is the decay constant of the Bs meson. As we mentioned before, this channel is

characterised by helicity suppression in the SM, which is reflected by m2
µ. We note that the

scalar and pseudoscalar operators can lift this helicity suppression and as a result, NP may

enhance or reduce the branching ratio. Thus, as we will discuss in the following Sections,
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• this decay is a probe of NP with new scalar and pseudoscalar contributions and

• NP can be studied by measuring the Aµµ
∆Γs

observable and compared with the SM

predictions. When allowing for NP effects, this observable is fully unconstrained.

A detailed analysis of NP searches in the leptonic modes in a model-independent way is

given in Refs. [303,313].

In the following Sections, we will mainly explore puzzling patterns that are related to

the branching fractions B of the B0
q → µ+µ− channel and the Aµµ

∆Γs
observable [14,15]. For

completeness, we mention that on top of these, there are more puzzling cases, which are

called flavour anomalies. An example of such a flavour anomaly is the angular observable

P ′
5. Recently, CMS [13] reported results, coming from the angular analysis of the decay

B0 → K∗0µ+µ−, which are in good agreement with the corresponding LHCb measurements

[12], hence confirming the tension in P ′
5. In addition, there is the RK(∗) observable, which is

the ratio of the branching fractions of the decay B → K(∗)µ+µ− to the decay B → K(∗)e+e−.

In the previous years, this ratio was also suggesting tensions with the SM. However, a new

LHCb measurement in December 2022 [144,314] reported values which are compatible with

the SM. The RK(∗) ratio offer tests of lepton flavour universality (LFU) (see Sec. 8.2.5).

Both P ′
5 and RK(∗) involve decays mediated by b→ sℓ+ℓ− transitions. The analysis of these

rare semileptonic decays can also offer links to the purely leptonic modes (see for instance

Refs. [145,146,315]). Therefore, flavour anomalies are very interesting but they go beyond

the scope of this thesis, hence we will not study them here.

We also note, even though this is not the topic of this Chapter, that CP violation has

interesting manifestations in these rare decays. For the rare semileptonic decays, RK(∗)

is such an example. For the leptonic B0
q → µ+µ− modes, it was very recently found in

Ref. [315] that there are very constrained regions in the observable space for searches of

new CP-violating (pseudo)-scalar contributions.

Returning to the central point of our analysis, we remind the reader of the discussions

in Sec. 3.4.2 as well as in Chapter 5 about the discrepancies that arise between the mea-

surements of the CKM matrix elements. These unresolved tensions have an impact on the

UT apex determination and the NP searches in B0
q–B̄

0
q mixing. In addition, they may also

affect other NP searches, such as the B0
s → µ+µ− branching ratio measurements. The

application of these results on the rare leptonic modes is the main topic of this Chapter.

The outline of this Chapter is the following: We firstly set the stage for the B0
s → µ+µ−

decay, presenting the quantities and observables that play the key role in our studies. We

aim at exploring whether there is room for NP in this case and focus on the branching

ratio which is a probe of NP with new (pseudo)-scalar contributions. Additionally, for

constraining NP, the dependence on the |Vcb| and |Vub| CKM matrix elements has to be
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minimised. This can be achieved by introducing the ratio between the branching fraction of

the B0
s → µ+µ− channel and the mixing parameter ∆ms, as pointed out in Refs. [316–318].

Here, we properly take into account NP contributions to B0
q–B̄

0
q mixing. Hence, we allow

for possible NP not only in the branching fraction but also in the ∆ms in this ratio. For this

purpose, we apply our results from the general, model-independent NP analysis presented

in Chapter 5. This allows us to provide an interesting alternative constraint on NP entering

through the (pseudo)-scalar sector. Last but not least, similar strategies can be applied

to the B0
d → µ+µ− decay. However, we have to be careful, because here a different CKM

factor enters. Instead of the |Vts| we have the |Vtd| matrix element, which is a factor of λ

smaller in the Wolfenstein parametrization. This means that there is a suppression of λ2

in the branching ratio, making this mode even more rear. As a result, this channel has not

been observed yet and only upper bounds of the branching ratio are available. The main

points of this Chapter follow our analysis presented in Refs. [81,124].

8.1 Setting the Theoretical Framework

Our starting point is the effective Hamiltonian which describes the b → sℓ+ℓ− transitions.

Having already introduced the leptonic decays in Sec. 3.3, we now consider the B0
q → ℓ+ℓ−

process and obtain in the SM [104]:

Heff = −GF√
2

[
α

2π sin2 θW

]
V ∗
tbVtqηY Y0(xt)(b̄q)V−A(ℓ̄ℓ)V−A + h.c. , (8.2)

where GF is the Fermi constant, α = e2/4π the QED fine structure constant, θW the weak

mixing angle, V ∗
tbVtq denotes the product of the CKM matrix elements, ηY = 1.0113 [319] a

perturbative QCD correction and Y0(xt) the Inami–Lim function describing the top-quark

mass dependence [102].63

Having the low-energy effective Hamiltonian allows us to calculate the transition matrix

element. Within the SM, it is only the matrix element of the axial-vector operator which

contributes to the Hamiltonian, which has the structure O10 = (b̄γµPLs) ⊗ (µ̄γµγ5µ). At

this point, we make a small parenthesis and discuss the structure of the matrix elements,

including also the case of physics beyond the SM. In general, the matrix element for the

B0
s decays caused by b→ sℓ+ℓ− processes consists of two parts:

⟨ℓ+ℓ−|Oi|B0
s ⟩ = ⟨ℓ+ℓ−|Oℓℓ

i |0⟩ ⊗ ⟨0|Oqq
i |B0

s ⟩, (8.3)

where ⟨ℓ+ℓ−|Oℓℓ
i |0⟩ denotes the leptonic matrix element while ⟨0|Oqq

i |B0
s ⟩ is the hadronic

matrix element including the non-perturbative strong interaction effects. We emphasize

63The term ηY Y0(xt) describes the short-distance physics.
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Leptonic Part Oℓℓ Hadronic Part Oqq

Scalar Scalar

Scalar Pseudoscalar

Pseudoscalar Scalar

Pseudoscalar Pseudoscalar

Vector Vector

Vector Axial-Vector

Axial-Vector Vector

Axial-Vector Axial-Vector

Tensor Tensor

Scalar (S) Pseudoscalar (P) Vector (V) Axial-Vector (A) Tensor (T)

1 γ5 γµ γµγ5 γµγν−γµγν

Table 15: Possible combinations between the leptonic and the hadronic part.

that gluons do not couple to the leptons, and as a result, we have perfect factorisation.64

Therefore, we obtain the scheme

O = Oℓℓ ⊗Oqq, (8.4)

where Oℓℓ is the leptonic and Oqq is the hadronic part. Depending on the possible combi-

nations between the leptonic and the hadronic part, the matrix element can be scalar (S),

pseudoscalar (P), vector (V), axial-vector (A) or tensor (T). Due to Lorentz invariance,

these possible combinations are presented in Table 15.

Let us now write the decay amplitude of the B0
s → µ+µ− channel:

A(B0
s → µ+µ−) = ⟨µ+µ−|Heff|B0

s ⟩

=
GF√
2

∑
i

Ci(µ) × ⟨µ+µ−|Oi|B0
s ⟩. (8.5)

64In comparison to the non-leptonic decays that we extensively studied in the previous Chapters, here

things are much simpler. This is due to the fact that factorisation arises automatically, since gluons do not

couple to ℓ+ℓ−, as we have already mentioned in Chapter 3.
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We remind here the reader that Ci are the Wilson coefficients, which are obtained within

perturbation theory. They are well defined in the SM and can be affected by NP. The term

⟨µ+µ−|Oi|B0
s ⟩ is the non-perturbative part.

Recalling Eq. (8.3), we observe that concerning the hadronic matrix element part, only

the ⟨0|(b̄q)V−A|B0
q ⟩ term is required. Taking into account that B0

s is a pseudoscalar meson,

the vector current piece vanishes. Then, in analogy to Eq. (3.43), the matrix element is

simply given by the fBq decay constant. Regarding the leptonic part in Eq. (8.3), it can be

expressed in terms of Dirac spinors and apply Dirac algrebra [320]. Consequently, out of

all the general possible combinations presented in Table 15, those that finally contribute to

the B0
s → µ+µ− decay, are the following:

• scalar⊗pseudoscalar,

• pseudoscalar⊗pseudoscalar,

• axial-vector⊗axial-vector,

where we mention again that we consider also structures that are not present in the SM.

We can now present the operators that contribute to the non-perturbative B0
s matrix

element for the B0
s → µ+µ− channel:

• OS = mb(b̄PRs)⊗ (µ̄µ) O′
S = mb(b̄PLs)⊗ (µ̄µ)

• OP = mb(b̄PRs)⊗ (µ̄γ5µ) O′
P = mb(b̄PLs)⊗ (µ̄γ5µ)

• O10 = (b̄γµPLs)⊗ (µ̄γµγ5µ) O′
10 = (b̄γµPRs)⊗ (µ̄γµγ5µ),

where mb is the mass of the b quark and

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2
. (8.6)

Finally, the effective Hamiltonian with the help of these operators can be written as follows

[304,306,311,312]:

Heff = − GF√
2π
V ∗
tsVtbα [C10O10 + C ′

10O
′
10 + CSOS + C ′

SOS + CPOP + C ′
PO

′
P ] . (8.7)

The only contribution in SM comes from the operator O10 with a real coefficient. Hence,

in the SM we have C10 = CSM
10 for which:

CSM
10 = −ηY Y0(xt) sin−2 θW . (8.8)
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The numerical value for this coefficient is [311]:

CSM
10 = −4.134 . (8.9)

The coefficients C ′
10, C

(′)
S and C

(′)
P in Eq. (8.7) do not contribute in the SM. However,

they can play an important role if there is physics entering from beyond the SM. We note

for completeness that the coefficients C10 and C
′
10 are dimensionless while the C

(′)
S and C

(′)
P

have dimension [GeV]−1.

8.1.1 Observables and Important Quantities

Concerning the decay observables, we start with the branching ratio for the B0
s → µ+µ−

decay. The time-integrated branching ratio measured experimentally is [220]:

B(Bs → µ+µ−) ≡ 1

2

∫ ∞

0

⟨Γ(Bs(t) → µ+µ−)⟩ dt. (8.10)

The theoretical branching fraction of the decay B0
s → µ+µ− at lowest order in the SM takes

the form [311]:

B(Bs → µ+µ−)th =
τBsG

4
Fm

4
W sin4 θW
8π5

∣∣CSM
10

∣∣2 |VtsV ∗
tb|2f 2

BsmBsm
2
µ

√
1−

4m2
µ

m2
Bs

. (8.11)

Here, we highlight again the importance of the decay constant, which encodes all the

hadronic physics. It is a non-perturbative parameter and is calculated with lattice QCD.

The values of fBs , reviewed in [135], are presented in Fig. 59. Moreover, the branching ratio

exhibits helicity suppression, which is reflected by the m2
µ factor.

The conversion relation between the thoeretical and the experimental branching ratio,

which we have already discussed in previous Sections and especially in Sec. 6.4, is:

B(Bs → µ+µ−)th =
1− y2s

1 + ysAµµ
∆Γs

B̄(Bs → µ+µ−). (8.12)

Here, the second interesting observable arises, which is the Aµµ
∆Γs

. We remind the reader

that we get access to this observable due to the sizeable ∆Γs. As discussed in [306,311,312],

Aµµ
∆Γs

takes the values:

Aµµ
∆Γs

∈ [−1, 1] (8.13)

Aµµ
∆Γs

= +1 in SM. (8.14)

This observable can be determined from measurements of the Bs → µ+µ− effective lifetime,

defined as [306,313]:

τ sµµ ≡
∫∞
0
t⟨Γ(Bs(t) → µ+µ−)⟩dt∫ ∫∞

0
⟨Γ(Bs(t) → µ+µ−)⟩dt

. (8.15)
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Figure 59: Lattice QCD results for the decay constant for the Bs meson [135].

The expression of Aµµ
∆Γs

in terms of the effective lifetime is the following:

Aµµ
∆Γs

=
1

ys

[
(1− y2s)τ

s
µµ − (1 + y2s)τBs

2τBs − (1− y2s)τ
s
µµ

]
. (8.16)

We note that there are recent measurements of τ sµµ by ATLAS [321], CMS [322] and the

LHCb Collaboration [15], allowing us to derive bounds of Aµµ
∆Γs

. However, the uncertainties

are very large to constrain the observable [315].

For completeness, we also rewrite the conversion relation in terms of τ sµµ and obtain:

B(Bs → µ+µ−)th =

[
2− (1− y2s)

τ sµµ
τBs

]
B̄(Bs → µ+µ−). (8.17)

Considering the experimental results, the branching fraction of the B0
s → µ+µ− decay

has been measured by the CMS [323], with the most recent update given in Ref. [324],

LHCb [325] and ATLAS [326] collaborations.65

At this point, let us introduce the following quantities which describe the pseudoscalar

and scalar operators, O
(′)
P and O

(′)
S , respectively [313]:

P =
C10 − C ′

10

CSM
10

+
M2

Bs

2mµ

(
mb

mb +ms

)(
CP − C ′

P

CSM
10

)
(8.18)

65As a comment regarding b→ sℓℓ anomalies, we note that averages for these results have been performed

by multiple groups [327–329].
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S =

√
1− 4

m2
µ

M2
Bs

M2
Bs

2mµ

(
mb

mb +ms

)(
CS − C ′

S

CSM
10

)
(8.19)

where we have to pay special attention to the dependence on the mass of the muon mµ. We

recall Eq. (8.11), where m2
µ reflects the helicity suppression. The expressions of P and S

suggest that the helicity suppression can be lifted by the C
(′)
P and C

(′)
S coefficients, entering

with a factor 1/mµ. These quantities can be defined as:

P ≡ |P |eiϕP , (8.20)

S ≡ |S|eiϕS , (8.21)

where ϕP and ϕS are CP-violating phases. Within the SM, these quantities by definition

take the values

P |SM = 1, (8.22)

S|SM = 0, (8.23)

and they will be very useful later on, especially when using the generalised expression of

the branching ratios, allowing for NP contributions.

Last but not least, we present the CP-violating rate asymmetry for the B0
s → µ+µ−

decay. We emphasize that, so far, the expressions for the rates were helicity summed. Here,

for the discussion of CP violation, it is important to look at decays with specific lepton

helicities. A flavour-tagged analysis would give access to the following CP-violating decay

rate [311]

Γ(B0
s (t) → µ+

λ µ
−
λ )− Γ(B̄0

s (t) → µ+
λ µ

−
λ )

Γ(B0
s (t) → µ+

λ µ
−
λ ) + Γ(B̄0

s (t) → µ+
λ µ

−
λ )

=
Cλµµ cos(∆mst) + Sµµ sin(∆mst)

cosh ( yst
τBs

) +Aµµ
∆Γ sinh (

yst
τBs

)
, (8.24)

with λ = L,R denoting the helicity of the ℓ+ℓ− pair. The following observables arise:

Cλµµ = −ηλ
[
2|P s

µµS
s
µµ| cos(φP − φS)

|P s
µµ|2 + |Ssµµ|2

]
, (8.25)

Sµµ =
|P s
µµ|2 sin(2φP − ϕNP

s )− |Ssµµ|2 sin(2φS − ϕNP
s )

|P s
µµ|2 + |Ssµµ|2

, (8.26)

where we have generalised the expressions and allowed for NP. We repeat that φP and

φS are CP-violating phases. The phase ϕNP
s arises from possible CP-violating NP effects

originating from the B0
s–B̄

0
s mixing. We note that in the SM, both these CP asymmetries are

zero.66 We stress that the observable Cλµµ depends on the muon pair helicity: Cλµµ = −ηλCµµ.
66We mention that ηL = +1 and ηR = −1.
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Hence, it is difficult to measure. On the other hand, the observable Sµµ, as well as the Aµµ
∆Γ,

do not depend on the helicity of the muons.

As it is difficult to measure the decays with muon helicities, we now sum over the

helicities. We obtain:

Γ(B0
s (t) → µ+µ−)− Γ(B̄0

s (t) → µ+µ−)

Γ(B0
s (t) → µ+µ−) + Γ(B̄0

s (t) → µ+µ−)
=

Sµµ sin(∆mst)

cosh(yst/τBs) +Aµµ
∆Γ sinh(yst/τBs)

. (8.27)

For completeness, we also write the observable Aµµ
∆Γ in terms of the pseudoscalar and scalar

contributions and finally have [306,311]:

Aµµ
∆Γ =

|P s
µµ|2 cos(2φP − ϕNP

s )− |Ssµµ|2 cos(2φS − ϕNP
s )

|P s
µµ|2 + |Ssµµ|2

. (8.28)

We emphasize that this observable is fully unconstrained within its physical range [−1, 1]

when allowing for NP. We also stress that in all three observables; Cλµµ, Sλµµ and Aµµ
∆Γ, the

decay constant fBs cancels, making them theoretically clean. These three observables are

not independent of one another, since they satisfy the relation:

C2
µµ + S2

µµ +Aµµ
∆Γ

2 = 1 , (8.29)

which we have already applied before, i.e. in Eq. (6.19).

8.2 Searching for New Physics

Let us now move towards searches of NP in the leptonic modes. The B0
s → µ+µ− chan-

nel is sensitive to scalar and pseudoscalar lepton densities, which enter the O
(′)
S and O

(′)
P

operators. The corresponding Wilson coefficients CP and CS are largely unconstrained.

Recalling Eqs. (8.18) and (8.19), the scalar and pseudoscalar operators can lift the helicity

suppression. Since NP may enhance or reduce the branching ratio, this decay channel is

a sensitive probe of NP with new scalar and pseudoscalar contributions. In principle, NP

could modify the branching ratio of the leptonic modes also through B0
q–B̄

0
q mixing.67 How-

ever, NP in B0
q–B̄

0
q mixing is already taken into account through the experimental values

of the mixing parameters.

Following these lines, the branching ratio is a key observable for exploring NP in the

(pseudo)-scalar sector. So, our starting point is the expression of the measured branching

67In other words, B0
q–B̄

0
q mixing could enter and lead to subtleties regarding the measurement of the

experimental branching ratio and the comparison with the SM predictions.
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Parameter Value Parameter Value

fBs 230.3± 1.3 MeV [135] B̂s 1.232± 0.053 [135,240]

τBs,H 1.624± 0.009 ps [120] B̂s/B̂d 1.008± 0.025 [135,240]

τ sµµ 2.07± 0.29 ps [325] 2ys ≡ ∆Γs/Γs 0.128± 0.007 [120]

τBs 1.520± 0.005 ps [120] 2yd ≡ ∆Γd/Γd 0.001± 0.010 [120]

Table 16: Values for the decay constants, effective lifetimes, bag parameters and width

difference parameters, which are used in the determination of the SM branching ratios of

the B0
q → µ+µ− system.

ratio, where we allow for NP contributions. We obtain [81,304]:

B̄(Bs → µ+µ−) =
τBsG

4
FM

4
W sin4 θW

8π5

∣∣CSM
10 VtsV

∗
tb

∣∣2
(1− ys)

f 2
BsMBsm

2
µ

√
1− 4

m2
µ

M2
Bs

×
1 +Aµµ

∆Γs
ys

1 + ys

(
|P s
µµ|2 + |Ssµµ|2

)
(8.30)

= B̄(Bs → µ+µ−)SM ×
1 +Aµµ

∆Γs
ys

1 + ys

(
|P s
µµ|2 + |Ssµµ|2

)
. (8.31)

We have already given the expression of the observable Aµµ
∆Γs

in Eq. (8.28). We collect input

values that are used in the determination of the SM branching ratio of the B0
q → µ+µ−

decay in Table 16.68

8.2.1 Constraining New Physics

A key quantity in order to constrain the NP parameter space is given by the ratio between

the measured and the SM branching ratios [306]:

R ≡ B(Bs → µ+µ−)

B(Bs → µ+µ−)SM
. (8.32)

Applying Eq. (8.30), this ratio can be rewritten as

R =

[
1 +Aµµ

∆Γs
ys

1 + ys

] (
|P s
µµ|2 + |Ssµµ|2

)
. (8.33)

68We note that the lifetime of the heavy Bs mass eigenstate τBs,H can be expressed in terms of the τBs

and ys as τBs
/(1− ys).
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By definition, this quantity is equal to 1 in the SM. Let us firstly simplify the discussion

and show the contour we can derive in the |P |–|S| plane.69 If ys is not taken into account

in the comparison between theory and experiment, then the expression takes the simple

form:

R = |P s
µµ|2 + |Ssµµ|2, (8.34)

which fixes a circle in the |P |–|S| plane. Combining the SM prediction70 given in Ref. [330]

B̄(Bs → µ+µ−)|SM = (3.66± 0.14)× 10−9, (8.35)

and the measured value coming given in the analysis in Ref. [329]:

B̄(Bs → µ+µ−) = (2.85+0.34
−0.31)× 10−9 , (8.36)

we determine:

R = 0.779+0.098
−0.090. (8.37)

This value gives rise to the orange circular band in Fig. 60.

However, this quantity does not allow us to separate the scalar and pseudoscalar contri-

butions. As a result, there could still be a large amount of NP present. How do we resolve

this situation? We use the measurement of the effective lifetime τ sµµ which allows us to

convert τ sµµ into bounds on Aµµ
∆Γs

. The second constraint is given by Aµµ
∆Γs

, assuming P s
µµ

and Ssµµ are real:

Aµµ
∆Γs

= cosϕNP
s

[
(P s

µµ)
2 − (Ssµµ)

2

(P s
µµ)

2 + (Ssµµ)
2

]
. (8.38)

This fixes straight lines in the |P |–|S| plane, denoted by the green lines in Fig. 60. Conse-

quently, knowing R and Aµµ
∆Γs

, we can not only separate the (pseudo)-scalar contributions

but also fully determine |P s
µµ| and |Ssµµ|. The recent measurements of the effective lifetime

provided by ATLAS [321], CMS [322] and LHCb [15] are the following:

τ sµµ|ATLAS 2023 = (0.99± 0.45) ps . (8.39)

τ sµµ|CMS 2022 = (1.83± 0.23) ps , (8.40)

τ sµµ|LHCb 2021 = (2.07± 0.29) ps , (8.41)

and give rise to values of Aµµ
∆Γs

. Unfortunately though, these first experimental constraints

have very large uncertainties. The yielded values of Aµµ
∆Γs

are not even within the range of

−1 ≤ Aµµ
∆Γs

≤ 1. Hence, it is important to measure it further in the future.

69In terms of notation, we simplify the labels in the axes.
70At this point, for simplicity, we do not consider the implications arising from the inclusive and exclusive

determinations of the CKM parameters.
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Figure 60: Constraints on |P | and |S| plane.

Summarising, Fig. 60 shows the current constraints in the |P |–|S| plane, reflected by the

orange circular band, as well as future constraints related to the Aµµ
∆Γs

observable, denoted

by the green straight lines. Consequently, the branching ratio and the Aµµ
∆Γs

complement

each other in identifying and discriminating NP.

Here, we have given a first impression of how we derive the ratio R and the correspond-

ing plot. In order to achieve this, we have simplified the discussion. Hence, we have not

discussed yet how the uncertainties of the relevant CKM matrix elements affect these stud-

ies. Below, we will properly present the impact that the different determinations of these

quantities –inclusive, exclusive and hybrid– have on the NP searches in the leptonic modes.

8.2.2 Minimising the impact of CKM elements in New Physics Searches

Our starting point is again the measured branching ratio, which is given in Eq. (8.30). As

we see, the SM prediction depends on the CKM element |Vts|. Following the Wolfenstein

parametrisation [69,70]:

|VtsVtb| = λ|Vcb|
[
1− λ2

2
(1− 2ρ̄)

]
+O

(
λ6
)
, (8.42)

we observe that |Vts| is determined through the UT apex solution and the CKM element

|Vcb|. As a result, the branching ratio is proportional to the square of |Vcb|, thus again

depending on the exclusive and inclusive determinations. It becomes clear that it is impor-
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tant to study every case (inclusive, exclusive and hybrid) separately. Unfortunately, this is

usually not done “properly” in the literature.

Consequently, we can obtain the SM predictions of the branching ratio for the inclusive,

exclusive and hybrid case:

B̄(Bs → µ+µ−) = (3.81± 0.11)× 10−9 , Inclusive, (8.43)

B̄(Bs → µ+µ−) = (3.27± 0.10)× 10−9 , Exclusive, (8.44)

B̄(Bs → µ+µ−) = (3.80± 0.10)× 10−9 Hybrid. (8.45)

We observe again the variation depending on the CKM parametrization. We note that the

spread between inclusive, hybrid and exclusive case is wider than the uncertainties.

Comparing now our SM predictions with the experimental value of the branching ratio

given in Eq. (8.36), we are able to constrain the parameters |P s
µµ| and |Ssµµ|, in the way we

described in Sec. 8.2.1. The numerical values for the ratio R for the inclusive, exclusive and

hybrid case are the following:

R = 0.748+0.092
−0.084, Inclusive, (8.46)

R = 0.871+0.107
−0.098, Exclusive, (8.47)

R = 0.750+0.100
−0.094, Hybrid. (8.48)

Here, we would like to note that for the numerical analysis and the plots in this Chapter, we

utilise the value of the experimental branching ratio in Eq. (8.36) in order to be consistent

with our published analysis in Ref. [81]. The most recent measured value though includes

also the 2022 CMS measurement reported in Ref. [322]. For completeness, we mention that

the new world average then is B(Bs → µ+µ−) = (3.45 ± 0.29) × 10−9 [120]. Interestingly,

this value is larger than the exclusive SM prediction in Eq. (8.44) which would give rise to

a value of R larger than 1.

We point out that Eq. (8.33) can also be written as [311]

R =

[
1 + ys cos(2φP − ϕNP

s )

1 + ys

]
|P s
µµ|2 +

[
1− ys cos(2φS − ϕNP

s )

1 + ys

]
|Ssµµ|2 . (8.49)

Having the numerical values of the ratios R for inclusive, exclusive and hybrid case, and

utilising the above expression, we derive the |P |–|S| plot. The corresponding band is given

in Fig. 61 (purple) and presented for inclusive, exclusive and hybrid case. We note that

for our studies we assume the scenario where NP phases for the pseudo-scalar and scalar

contributions are zero (or π), so we have φP = 0 (or π) and φS = 0 (or π). The phase ϕNP
s

is the usual phase determined through the B0
s → J/ψϕ channel, as discussed in Chapter 5.
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Figure 61: Constraints in the |P |–|S| plane coming from the ratio R (purple) and the Rsµ

(green), for the inclusive (top), exclusive (middle) and hybrid (bottom) case of the CKM

parameters, as discussed in the text. We assume that φP = 0 (or π) and φS = 0 (or π).
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We obtain the contours, thus the constraints, that correspond to the branching ratio of the

B0
s → µ+µ− decay for all three cases.

Our next goal is to eliminate the dependence on |Vcb| when allowing for NP. How can we

achieve this? Key quantity, which can be used in order to minimise the impact of |Vcb| and
UT apex, as suggested in Refs. [316–318], is the ratio with the Bs mass difference ∆ms:

Rsµ ≡ B̄(Bs → µ+µ−)

∆ms

. (8.50)

Looking at Rsµ in the SM the CKM factor in Eq. (8.42) cancels in this ratio, as we will

discuss below. However, we have to correct for the possible NP effects entering the B0
q -B̄

0
q

mixing. This is now possible following the analysis presented in [81,124].

Let us study the situation in more detail. We refer again to Fig. 61, which illustrates

constraints from the branching ratio of B0
s → µ+µ−. Comparing the light purple contours

in these plots, we observe how the NP searches with the branching ratio depend on |Vcb|
and the UT apex. In order to minimise this dependence, we utilise the Eq. (8.50), repeating

here that in the SM, the state-of-the-art picture for ∆ms (as it is already introduced in

Sec. 3.1.3) is [81]

∆ms|SM ≡ 2|M s
12|SM =

G2
Fm

2
W

12π2
mBs|VtsVtb|2S0(xt)η2BB̂Bsf

2
Bs . (8.51)

Combining it with the SM expression for the branching ratio we obtain:

RSM
sµ =

τBs
1− ys

3G2
Fm

2
W sin4 θW
4π3

|CSM
10 |2

S0(xt)η2BB̂Bs

m2
µ

√
1− 4

m2
µ

m2
Bs

. (8.52)

Interestingly, the CKM elements fully drop out in the SM. Moreover, the decay constant

also cancels out. Here, only the bag parameter survives and takes the value [135,240]:

B̂Bs = (1.232± 0.053) . (8.53)

However, the ∆ms could also be affected by NP contributions. Including NP contribu-

tions, the term ∆ms can be written, as presented in Sec. 5.4.1, in the following form [81]:

∆ms = ∆ms|SM
∣∣1 + κqe

iσq
∣∣ , (8.54)

where κs and σs denote NP parameters. Consequently, we now allow for NP effects in

both branching ratio B̄(Bs → µ+µ−) and mass difference ∆ms. We obtain the generalised

expression for Rsµ as follows [81]:

Rsµ = RSM
sµ ×

1 +Aµµ
∆Γs

ys

1 + ys

|P s
µµ|2 + |Ssµµ|2√

1 + 2κs cosσs + κ2s
. (8.55)
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Here, due to the NP parameters κs and σs in Rsµ, a dependence on the CKM matrix

elements is introduced. However, this dependence is much weaker than the one that we

originally had. We highlight again the main advantage of our strategy, which is the fact

that the leading dependence on the CKM factors in RSM
sµ , cancels out due to the ratio with

respect to ∆ms.

Having introduced all the formulas, we can now finalise our analysis and determine the

values of RSM
sµ and Rsµ. Firstly, Eq. (8.52), leads to the numerical result [81]:

RSM
sµ = (2.22± 0.10)× 10−10 ps , (8.56)

which is similar to the result coming from the analysis presented in Ref. [317]

RSM
sµ = (2.042+0.083

−0.058)× 10−10 ps . (8.57)

Then, Eq. (8.50) combining the experimental measurements of branching ratio in Eq. (8.36)

and the mass difference ∆ms in Eq. (5.73), we obtain:

Rsµ = (1.60± 0.19)× 10−10 . (8.58)

Comparing the values of RSM
sµ and Rsµ, utilising Eq. (8.55) and the results coming from the

general, model-independent NP fit in Sec. 5.4.2, we obtain extra contours, thus constraints

in the |P |–|S| plane. These contours are denoted in Fig. 61 with green colour, and are

presented for the inclusive, exclusive and hybrid case. Illustrating this alternative constraint

in the |P |–|S| plane, it becomes again clear that the choice of the CKM factor and the apex

of the UT enters now only through NP in B0
s–B̄

0
s mixing.

8.2.3 Utilising the B0
d → µ+µ− decay

So far, the considerations regarding NP studies have been presented for the B0
s → µ+µ−

decay. In principle, they can also be applied to the B0
d → µ+µ− channel. However, as we

already mentioned in the introduction of this Chapter, the matrix element which enters

now is |Vtd| (instead of |Vts|). |Vtd| is a factor of λ smaller than |Vts| in the Wolfenstein

parametrization, leading to a suppression of λ2 in the branching ratio. As a result, this

channel is very rare and has not been observed yet. Only upper limits are provided by the

LHCb [325], ATLAS [326] and CMS [323]. The most stringent result is the following upper

bound [329]:

B̄(Bd → µ+µ−) < 0.26× 10−9 . (8.59)

In addition, a combined analysis with B0
s → µ+µ−, as presented in [328], leads to the

following average value of branching ratio:

B̄(Bd → µ+µ−) = (0.56± 0.70)× 10−10 . (8.60)
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The uncertainty is still too big to draw any conclusions. It will be really interesting though

to measure this decay and compare with the SM.

An interesting point is that we can combine the branching ratio information from both

the B0
s → µ+µ− and the B0

d → µ+µ− channel. Creating the ratio of these branching

fractions provides a determination of the UT side Rt. As we already discussed in Sec. 5.4.2,

utilising the Rt and Rb sides, we are able to determine the UT apex without relying on

information from the angle γ. This is important, in particular, when searching for possible

NP effects entering the γ measurements.

However, using the sides Rb and Rt in the extraction of the apex of the UT, has a main

limitation related to the determination of the Rt. Following Eq. (5.81), the Rt side depends

on the ratio of CKM matrix elements |Vtd/Vts|. The processes which are used to determine

Rt can also be affected by NP contributions. Exploring this situation in Sec. 5.4.2, we

determined the matrix elements ratio using the B0
q–B̄

0
q mixing parameters. Here, we study

the determination of Rt with the help of the rare decays B0
q → µ+µ−.

Our starting point is to use the SM expressions of the B0
s → µ+µ− branching fractions

given in Eqs. (8.11) and (8.12). Analogous relations can be written for theB0
d → µ+µ− mode

which allows us to calculate the ratio of these branching fractions. In order to avoid the

|Vtd/Vts| dependence, we recall the definition of the Rt side in Eq. (5.81) and consequently,

rewrite |Vtd/Vts| in terms of the Rt. As a result, we obtain the following ratio [81]:

B̄(Bd → µ+µ−)

B̄(Bs → µ+µ−)

∣∣∣∣
SM

= λ2R2
t

[
1 +

λ2

2
(1− 2ρ̄)

]2 √m2
Bd

− 4m2
µ√

m2
Bs

− 4m2
µ

f 2
Bd

f 2
Bs

1− ys
1− yd

. (8.61)

Regarding the values of Rt, we use those that we determined from our previous UT analysis

in Sec. 5.4.2. These values correspond to the η̄ and ρ̄ solutions presented in Table 7, thus

arising from the fit to the Rb and Rt sides of the UT. These Rt values are collected now in

Table 17. Concerning the ratio of the decay constants, we use fBs/fBd = 1.209±0.005 [135].

Therefore, using the numerical values of the parameters entering Eq. (8.61), we obtain the

SM ratio of the branching ratios of the leptonic decays for all three cases; inclusive, exclusive

and hybrid. We collect the corresponding results in Table 17. We observe that within the

current precision, the differences between these three cases are negligible.

Comparing now the SM values with the experimental result [328]

B̄(Bd → µ+µ−)

B̄(Bs → µ+µ−)
= 0.019± 0.024 , (8.62)

where the average branching ratio of the Bd → µ+µ− in Eq. (8.60) has been used, we find
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Case Rt
B̄(Bd → µ+µ−)

B̄(Bs → µ+µ−)

∣∣∣∣
SM

Inclusive 0.910± 0.012 0.0282± 0.0019

Exclusive 0.909± 0.012 0.0281± 0.0018

Hybrid 0.909± 0.012 0.0281± 0.0017

Table 17: Results for the ratios B̄(Bd→µ+µ−)

B̄(Bs→µ+µ−)

∣∣∣
SM

for the inclusive, exclusive and hybrid case.

These ratios are calculated using the Rt values for all three cases, which we obtained from

our previous analysis in Sec. 5.4.2, as discussed in the text.

an uncertainty of 125%. This result would then lead to the following value of Rt:

Rt = 0.77± 0.48 , (8.63)

which has an uncertainty of the factor 40 larger than the values of Rt given in Table 17. The

precision on the ratio of branching fractions scales with the precision on R2
t . This indicates

that more precise measurements of the branching ratios of the rare leptonic decays in the

future will allow us to further explore the NP studies in B0
q–B̄

0
q mixing.

8.2.4 Future Prospects

It becomes clear from the discussion above that the ratio of the branching fractions of the

B0
s → µ+µ− and the B0

d → µ+µ− decays provides an alternative way to determine the UT

side Rt. However, as we have already presented in Sec. 5.4.2, where we obtained Rt utilising

∆md and ∆ms measurements, additional assumptions about flavour universal NP (FUNP)

are required, so that the ratios of Bd and Bs observables still remain SM-like. Thus, it is

not sufficient to allow for a general model-independent strategy for searching for NP.

The current experimental uncertainties though are still very large to allow us to fully

explore this alternative determination of the Rt side. In the future, LHCb expects to reduce

the branching fractions uncertainties on the ratios of the leptonic decays. More specifically,

they expect a reduction on the uncertainty on the ratio of branching fractions to 34% by

2025 and to 10% by the end of the HL-LHC era [228]. We can illustrate the potential of the

upgrade programme of the LHCb collaboration. For this purpose, we will now not consider
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the SM values of Rt in Table 17. Instead, we will assume the following

Rt = 0.932± 0.024 Inclusive, (8.64)

Rt = 0.930± 0.021 Exclusive, (8.65)

Rt = 0.930± 0.021 Hybrid. (8.66)

These are the SM values of Rt calculated from ρ̄ and η̄ given in Table 2, hence the solutions

of the UT apex determined through the side Rb and the angle γ, as discussed in Sec. 3.4.2.

Therefore, the future prospects for the side Rt are [81]:

Rt = 0.93± 0.16 (2025) , (8.67)

Rt = 0.931± 0.047 (Upgrade II) . (8.68)

The main uncertainties still come from the measurements of the branching fractions while

all the other uncertainties combined contribute only at the level of 1% level, thus they can

be neglected.

Another useful application of the ratios of the branching fractions of the leptonic Bd

and Bs modes is the following quantity [303]:

Uds
µµ ≡

√
|P d
µµ|2 + |Sdµµ|2

|P s
µµ|2 + |Ssµµ|2

, (8.69)

=

τBs
τBd

1− y2d
1− y2s

1 +Ad
∆Γyd

1 +As
∆Γys

√
m2
Bs

− 4m2
µ√

m2
Bd

− 4m2
µ

(
fBs
fBd

)2 ∣∣∣∣VtsVtd
∣∣∣∣2 B̄(Bd → µ+µ−)

B̄(Bs → µ+µ−)

1/2

. (8.70)

Therefore, presenting it in a compact way:

Uds
µµ ∝

[∣∣∣∣VtsVtd
∣∣∣∣2 B̄(Bd → µ+µ−)

B̄(Bs → µ+µ−)

]1/2
, (8.71)

we observe that it requires knowledge of the side Rt via the term |Vts/Vtd|. The main

advantage of using this ratio compared to the individual branching ratios of the leptonic

modes is that common parameters and uncertainties drop out. Within the SM, the quantity

Uds
µµ is equal to 1, offering a very powerful test of the SM, as any deviation from 1 would

be a hint of NP.
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8.2.5 Testing Lepton Flavour Universality with Semileptonic b → sℓ+ℓ− Modes

Before closing this Chapter, we make a small parenthesis and present a recent highlight

related to the analysis of the rare semileptonic B decays, which are mediated by b→ sℓ+ℓ−

transitions. An important feature of the SM is the Lepton Flavour Universality (LFU),

hence the universality of electroweak couplings across different lepton flavours.

A very useful and theoretically clean observable which plays a key role in testing the LFU

is the ratio RK(∗) which combines information from the B → K(∗)µ+µ− and B → K(∗)e+e−

channels.71 It is defined as follows:

⟨RK⟩ ≡
Γ(B− → K−µ+µ−) + Γ(B+ → K+µ+µ−)

Γ(B− → K−e+e−) + Γ(B+ → K+e+e−)
. (8.72)

In an analogous way, we define RK∗ . In the SM, this ratio is equal to 1 with excellent

precision. The data used to indicate values for RK(∗) in the regime of 0.8, hence suggesting

a deviation from the SM at the level of 3 σ. This would be a hint of electron-muon

universality violation in the SM.

However, in December 2022, new results were reported by the LHCb Collaboration

which were compatible with 1 [144,314]:

⟨RK⟩ = 0.949± 0.05, for momentum transfer q2 ∈ [1.1, 6.0] GeV. (8.73)

A similar pattern was found for the RK∗ . These results seem to agree with LFU, bringing

new perspectives for testing the electron-muon universality. On the other hand, the differ-

ential rates for B → Kµ+µ−, which are experimentally not updated yet, are still too low

with respect to the SM predictions. Deviations at the level of 3.5σ level have been found in

comparison with the state-of-the-art calculations. This still suggests possible NP through

these decays.

Hence, it is important to search how much space for electron-muon universality violation

is possibly still left for this NP, which is now constrained by ⟨RK⟩. Ref. [146] indicates that
there is still significant room for violating the electron-muon universality, if there is CP-

violating NP entering. In the future, it would be important to perform experimental studies

focusing on differences in the CP asymmetries between the b → se+e− and b → sµ+µ−

modes in order to test LFU.

71We note that the RK(∗) observable is one of the two cases for testing possible violation of LFU. The

second case refers to the ratio R(D(∗)) which we already presented in Sec. 3.4.3.
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8.3 Summary

In this Chapter, we have discussed the rare leptonic decays B0
q → µ+µ−, which are excellent

probes for searches of NP. We set up the theoretical framework, highlighting again that

this is the simplest class of B decays. Particularly interesting is the sensitivity to non-SM

pseudoscalar and scalar sectors, which may lift the helicity suppression. Useful observables

are the branching ratios and the Aµµ
∆Γs

.

Throughout this thesis, and especially in Chapters 3 and 5, we have explicitly pointed

out how the discrepancies between the different determinations of the CKM factors have

an impact on both the UT apex determination and the searches of NP in B0
q–B̄

0
q mixing.

Here, we studied how they affect other interesting NP searches, focusing on the branching

ratio of the B0
s → µ+µ− modes.

As a first step, we introduced the ratio between the experimental and the SM branching

fractions of the B0
s → µ+µ− decay. We determined its value for the inclusive, exclusive and

hybrid CKM determination. We explored how our choice of the CKM input values was

reflected on the |P |–|S| plane. As a result, we obtained constraints on the allowed space

for the pseudoscalar and scalar NP contributions in the leptonic decays, coming from the

branching ratio. Key role in constraining this parameter space plays the Aµµ
∆Γs

observable.

Recent pioneering measurements linked to the effective lifetime of the B0
q → µ+µ− channel

allow the determination of the Aµµ
∆Γs

. Unfortunately, the uncertainties are currently too

large to draw any conclusion but in the future, it will be important to obtain improved

measurements.

Given that the branching ratio depends on |Vcb|, our next goal was to eliminate its

dependence when allowing for NP. For this purpose, we utilised the ratio of the branching

ratio of the B0
s → µ+µ− mode with respect to the mass difference ∆ms. In the SM, the

dependence on the CKM factors cancels in this ratio. However, the mixing parameter ∆ms

could in principle be affected by NP. Therefore, we generalised our approach in order to

include possible NP effects to B0
s–B̄

0
s mixing. As a result, the NP parameters κs and σs

appeared in the ratio Rsµ. Due to these NP parameters, a dependence on CKM matrix

elements entered. However, the dependence on the CKM matrix elements is weaker now.

Making use of our numerical results, coming from our most general analysis for the NP

parameters in Chapter 5, we obtained alternative constraints on the |P |–|S| plane for the

inclusive, exclusive and hybrid case. Therefore, following this strategy, the CKM parameters

and the apex of UT enter only via NP in B0
s–B̄

0
s mixing.

So far, this analysis has been performed in the B0
s → µ+µ− channel. In principle, we can

follow the same methodology in B0
d → µ+µ−. However, here we do not have access to Aµµ

∆Γs

since ∆Γd is tiny. This channel has not been observed yet. It will be important in the future
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to have accurate branching ratio data, so to be able to apply the above considerations here

as well. Ratios of the branching fractions of B0
d → µ+µ− and B0

s → µ+µ− in the SM are also

interesting players. These ratios provide an alternative determination of the UT side Rt.

Current experimental uncertainties related to the branching fractions are unfortunately too

large. However, more precise experimental searches in the future will allow us to further

explore studies of NP in the B0
q–B̄

0
q mixing. Last but not least, we introduced another

interesting quantity Uds
µµ, which is proportional to this ratio as well as to |Vts/|Vtd|. Since

in the SM, this quantity is equal to 1, it can be utilised as a powerful test of the SM by

determining its value and comparing with the SM.
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9 Conclusions

As demonstrated throughout this thesis, studies of CP violation and searches of physics

beyond the SM through decays of B mesons are at the core of quark flavour physics. In

order to have a clear picture of the theoretical framework, we have provided a detailed

overview of the SM description of CP violation and discussed the dynamics of the B-meson

system. Working at the high precision frontier, we have explored CP violation and have

been searching for indirect signals of NP through benchmark B decays. Theoretical ap-

proaches, such as effective field theories, are powerful tools in the analysis of these decays,

both within the SM and for accounting NP contributions. Utilising the B transitions and

their observables, we have suggested strategies, which are very promising and have revealed

exciting future prospects. In this Chapter, we summarise the key findings of our studies.

We have emphasized that CP violation manifests itself in different ways. This allows us

to categorise the different decays according to their dynamics. Examining CP violation in

every category from a theoretical perspective, we gained useful insights and presented high-

lights that may also point towards possible hints of NP. Consequently, we have discussed:

• decays which are dominated by tree topologies but also receive important corrections

from penguins, such as the B0
d → J/ψK0

S and B0
s → J/ψϕ modes,

• pure tree transitions, like the B0
s → D∓

s K
± system and modes with similar dynamics,

• decays that are dominated by penguin topologies, like the B → πK system,

• rare processes arising from EW penguins and box topologies, i.e. B0
q → µ+µ− .

This outline represents our main research pillars.

The first category refers to the B0
d → J/ψK0

S and B0
s → J/ψϕ channels, which are

the “golden modes” for analysing CP violation in B decays. Involving neutral B0
q mesons,

B0
q–B̄

0
q mixing provides interesting interference effects. The mixing phases ϕq, which are

associated to this phenomenon, have played a key role in our analysis. Both B0
d → J/ψK0

S

and B0
s → J/ψϕ are colour-suppressed tree modes with penguin contributions, which are

doubly-Cabibbo suppressed. The theoretical precision of the ϕq phases is limited by the

presence of these penguin effects. However, we have reached a level of sophistication, where

hadronic uncertainties from the doubly Cabibbo-suppressed penguin topologies must be
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included for proper interpetation of the data. Since we cannot calculate these contribu-

tions from first principles, we use control channels, more specifically the B0
d → J/ψπ0,

B0
s → J/ψK0

S and B0
d → J/ψρ0 modes, which do not suffer from this suppression. We

have developed a combined strategy of the original two modes and their control channels,

employing the SU(3) flavour symmetry of strong interactions. This analysis utilises infor-

mation from the mixing-induced CP asymmetries, which depends on the ϕq phases. As a

result, the strategy allows us to determine the mixing phases, properly including the impact

of the penguin effects on the CP asymmetries. In this way, we obtain state-of-the-art values

of these phases.

These mixing phases, in particular ϕd, play an important role, in the analysis of the UT.

In order to put them into context, we have performed a determination of the UT apex that

is considered to be robust with respect to NP. We have chosen to determine it via the angle

γ and the side Rb, which depends on |Vub| and |Vcb|. These CKM matrix elements can be

determined through methods utilising inclusive and exclusive semileptonic B-meson decays.

Interestingly, there are deviations between the results arising from these two methods. This

long-standing issue requires special attention. Consequently, we consider separately the

inclusive and exclusive values of these parameters. In addition, we consider another hybrid

case, combining exclusive |Vub| and inclusive |Vcb| values. We have determined the UT apex

by performing a fit to γ and Rb for all these three cases and have found sizeable differences

between these determinations. A proper treatment, resolving these differences, is essential

in order to identify NP contributions in future.

The UT apex enters the SM prediction for the B0
q–B̄

0
q mixing parameters. Comparing

the SM predictions with the experimental values, we explore the remaining space for NP

effects in this phenomena. On the one hand, for the Bs system, an impressive precision for

ϕs has been obtained. On the other hand, the SM prediction of ϕd suffers from significant

uncertainties. Introducing NP parameters κq and σq for the size of NP effects and the

phase for additional CP-violating effects, respectively, we have performed fits exploring the

available space for NP in B0
q–B̄

0
q mixing. Making future projections, we have shown that

NP searches in the Bs system are more promising than the Bd for testing the SM. However,

we are interested in constraining NP as much as possible in both systems. Future prospects

of improvement are also related to the angle γ of the UT.

Discussing other perspectives of decays of a B0
q meson into J/ψ (vector) and a P (pseu-

doscalar) meson, the branching ratio of these modes plays also an important role. We

have proposed a method where we have combined this observable from B0
s → J/ψK0

S and

B0
d → J/ψπ0 channels with information from the branching fractions of their semileptonic

partner modes; B0
s → K−ℓ+νℓ and B0

d → π−ℓ+νℓ. This method allows the extraction of

the colour-suppression factor |a2| in a theoretically clean way. Comparing the resulting
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values with naive factorisation, we have found that they are in the ballpark of theoreti-

cal predictions. This is a surprising finding, suggesting that factorisation in the colour-

suppressed modes works better than naively expected. This also gives us confidence that

non-factorisable SU(3) breaking corrections for the penguin effects should be under control.

When moving to higher precision, this strategy can be used to further explore the impact of

these non-factorisable SU(3) breaking effects, providing valueable insights into the physics

of strong interactions.

The second category we discussed is given by pure tree decays, i.e., the B0
s → D∓

s K
±

system. This analysis is of central importance in this thesis. These B0
s → D∓

s K
± decays

allow a theoretically clean extraction of the UT angle γ, despite being non-leptonic decays.

This system reveals two puzzling cases, which are connected to each other. The first puzzle

is in CP violation measurements, reflected by the γ angle. Comparing the experimentally

measured γ value with the one coming from the global UT analyses, deviations arise. Should

this puzzle eventually be confirmed by future data, we would have a “smoking-gun” signal

of CP-violating NP at the amplitude level. If there are NP effects entering at the decay

amplitude, they should also manifest themselves in the branching ratios, which suggests

the second puzzle. The phenomenological colour factor |a1| is the key quantity.

The |a1| factor is determined theoretically using the framework of factorisation. Factori-

sation is expected to work very well for the b→ c transitions. Introducing the ratio between

the branching fractions of the non-leptonic B̄0
s → D+

s ℓν̄ℓ decay and its semileptonic partner

B̄0
s → D+

s ℓν̄ℓ, we have determined the experimental values of |a1| in a clean way from the

data. We follow the same strategy in other b→ c decays with similar dynamics, and extract

the corresponding experimental |a1|. Comparing these |a1| values, we have found intriguing

deviations up to 4.8σ, with the experimental results being surprisingly small with respect

to the theoretical ones. Interestingly, a similar pattern appears in b → u transitions, such

as B0
s → D−

s K
+ and similar modes, despite factorisation being on less solid ground in this

case. Here the uncertainties involved are still very large though, so that we cannot yet draw

any further conclusions.

In view of these puzzling patterns, we have allowed for NP and presented a model-

independent strategy in order to include such NP effects with new sources of CP violation.

We have generalised the expressions that provide the extraction of γ utilising the CP-

violating observables. Regarding direct CP asymmetries, LHCb asumed that C = −C̄,
which holds in the SM. However, we have seen that this assumption can be affected by

NP. Hence, we have generalised this relation in a way that it also holds in the presence of

NP effects. Introducing NP parameters, we have applied our strategy to the current data

and obtained correlations between these parameters. NP effects are found to be strongly
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correlated and could have large CP-violating phases. We have shown that NP effects of

moderate size could accommodate the data. It will be exciting to see how the data will

evolve in the future and whether it will be possible to finally establish new sources of CP

violation exploiting our strategy.

The third category refers to decays which are penguin dominated. The main focus

here is on the B → πK system, which is another non-leptonic system of decays. They

are dominated by QCD penguins but EW penguins, and especially the colour-allowed ones,

play also a prominent role. Hence, we have paid special attention to the EW penguin sector.

For studies of CP violation, the most interesting B → πK channel is B0
d → π0KS, which is

the only mode exhibiting mixing-induced CP violation. Thus, measuring CP violation in

this channel with highest precision is particularly interesting.

Isospin relations between charged and neutral B → πK decay amplitudes can be utilised

in order to obtain correlations between the mixing-induced and the direct CP asymmetry

of the B0
d → π0KS channel. These correlations set a particularly clean reference in the

SM. Eliminating discrete ambiguities, only one solution finally survives. This solution

following from the isospin analysis turns out to show tension with the measurement. In

order for this puzzle to be resolved, either the experimental data should “move” in order to

become consistent with the SM, or NP effects in the EW penguin sector should be present.

Interestingly, a new Belle II measurement of the CP asymmetries of this channel has recently

been reported, which moved towards the SM prediction. It will be very interesting to follow

the future experimental developments. Will the long-standing B → πK puzzle finally be

resolved or will we find NP in the EW penguin sector?

Concerning NP searches in this channel, EW penguins offer an interesting way for ef-

fects of new particles to enter. Introducing parameters q and ϕ, which characterise these

penguin topologies, we have proposed a new strategy to extract their values from the data.

Applying this strategy to a future benchmark scenario, we have found that the experimen-

tal precision can match the theoretical predictions. This shows how powerful this method

is. In the future, with data from Belle II and the LHCb Upgrade(s), this method can offer

useful insights into the EW penguin sector and finally, either confirm the SM or reveal NP

with new sources of CP violation.

The last category focuses on rare decays which are pure loop processes. In this thesis,

we have explored the purely leptonic and very clean B0
q → µ+µ− system. Our main focus

is on studies of NP. In this respect, we get a nice application of the constraints on NP in

B0
q–B̄

0
q mixing.

The first important observable is the branching ratio, which exhibits helicity suppression
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in the SM. Interestingly, this suppression could be lifted by new (pseudo)-scalar contribu-

tions. Thus, NP may enhance or reduce the branching ratio, which depends on |Vts|.
Utilising unitarity relations, this CKM element is determined through |Vcb| and the apex

of the UT. Consequently, NP searches with branching ratios also depend on |Vcb| and the

UT apex (which plays a minor role entering only via higher order corrections), thereby

yielding again dependence on inclusive and exclusive determinations. In other words, CKM

parameters have an impact on NP studies. In order to determine NP in the (pseudo)-scalar

sector, it is essential to minimise this dependence on the CKM parameters.

For this purpose, key quantity is the ratio between the B0
s → µ+µ− branching ratio and

the mixing parameter ∆ms. In the SM, the CKM elements drop out. However, we have to

allow for possible NP in B0
q–B̄

0
q mixing. Hence, we have included NP effects in ∆ms, using

our NP results on B0
q–B̄

0
q mixing, and generalised the above mentioned ratio. This allows us

to constrain the (pseudo)-scalar parameters. Similar considerations can be applied to the

B0
d → µ+µ− mode. However, this channel has not been observed yet and only upper bounds

on the decay rate are currently available. In the future, it will be exciting to measure the

branching fraction of this mode, and to compare with the one from B0
s → µ+µ− exploring

the ratio of these two branching ratios.

The second interesting observable for constraining NP is Aµµ
∆Γs

. Recent measurements

of the effective lifetime τ sµµ by ATLAS, CMS and LHCb allow us to convert these values

into bounds on Aµµ
∆Γs

. However, unfortunately, the current uncertainties are too large to

draw further conclusions and we need improved measurements in the future. Concerning

the Bd → µ+µ− mode, we do not have access to Aµµ
∆Γs

, since ∆Γd is negligibly small.

In the future, it will be important to focus on the topic of CP violation, which is also

very interesting in these rare leptonic decays but has not received a lot of attention. As

already suggested in the literature, e.g., in Ref. [313], the mixing-induced CP asymmetry

will play a central role in this endeavour. Finally, regarding other rare decays, semileptonic

modes offer also very useful insights, including studies of CP violation.

Concluding, where do we stand now with our exploration of the flavour sector? Through-

out this thesis, we have provided theoretical work that allows us to utilise experimental input

and interpret measurements. This shows that theory and experiment are closely connected.

The studies presented in this thesis are very promising for the future data taking, moving

towards the high-precision frontier. The study of CP violation is particularly interesting,

also in the context of NP. Hence, it is desirable to obtain improved measurements of CP

violation for the channels we have discussed. The arising puzzling patterns could be indirect

indications of NP. Moving towards higher and higher precision, the LHCb Upgrade(s) and

Belle II are the key players in this quest. Our main goal is to perform the best testing of
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the SM in this sector, bringing the analysis to a higher level of precision, and check whether

these studies will finally allow us to establish new sources of CP violation.

Looking at the broader picture, if deviations from the SM are finally established in the

future, this would be a spectacular result. The next question would be to explore specifically

the underlying NP. In this case, further deviations would be expected to emerge in other

observables and processes, and correlations would allow us to narrow down the underlying

NP framework. Another central point would be: Can we also find directly new particles at

colliders? Would the LHC be sufficient? Are the new particles so elusive that we have not

observed them yet or do we have to move to the high–energy frontier? Such findings would

be very interesting in the context of future collider physics studies, going beyond the LHC.

This would open up a completely new era in particle physics research. Exciting times lie

ahead – we should all stay tuned.



9 CONCLUSIONS 231
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ϕd,s

Bs → D±
s K∓

& related modes

•Intriguing puzzles in CP violation 
                         and in branching ratio 
  
•Utilising our model independent 
strategy in high precision era of B 
physics        may establish new 
                     sources of CP Violation

B → πK
These modes also indicate interesting puzzles 

Highlights 
•Key mode                    : the only one exhibiting    
mixing-induced CP asymmetry  

                    

•New Strategy for extracting         

B0
d → π0KS

Aπ0KSCP − Sπ0KSCP

ϕ, q EW penguin parameters

correlations
obtain

Aπ0KSCP , Sπ0KSCP - New Belle II measurement of Might resolve 
              puzzleB → πK

Decays with Different Dynamics

CP Violation in  
different manifestations

Rare Decays

CP Violation: also interesting here 
Highlights 

•Branching ratio 

           

B0
q → μ+μ−

Rsμ = B̄ (Bs → μ+μ−)/Δms

    minimises leading dependence on 
         when allowing for New Physics |Vcb |

•         : next interesting observable 
  but we need better measurements 

•                       can also offer useful  
 applications but is not measured yet
Bd → μ+μ−

Aμμ
ΔΓs

in the (Pseudo)-Scalar sector 

•Future: CP violation searches with 
 mixing-induced CP asymmetry
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Appendix

A Pauli and Gell-Mann Matrices

The Pauli matrices
→
σ = [σ1, σ2, σ3] are written as:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (A.1)

The Gell-Mann matrices Lα are given as:

L1 =


0 1 0

1 0 0

0 0 0

 , L2 =


0 −i 0

i 0 0

0 0 0

 , L3 =


1 0 0

0 −1 0

0 0 0

 , (A.2)

L4 =


0 0 1

0 0 0

1 0 0

 , L5 =


0 0 −i

0 0 0

i 0 0

 , L6 =


0 0 0

0 0 1

0 1 0

 , (A.3)

L7 =


0 0 0

0 0 −i

0 i 0

 , L8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (A.4)
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B Qk Operators

1) Current-Current Operators

Qjr
1 = (r̄αjβ)V−A(j̄βbα)V−A (B.1)

Qjr
2 = (r̄αjα)V−A(j̄βbβ)V−A (B.2)

2) QCD Penguin Operators

Qr
3 = (r̄αbα)V−A

∑
q′

(q̄′βq
′
β)V−A (B.3)

Qr
4 = (r̄αbβ)V−A

∑
q′

(q̄′βq
′
α)V−A (B.4)

Qr
5 = (r̄αbα)V−A

∑
q′

(q̄′βq
′
β)V+A (B.5)

Qr
6 = (r̄αbβ)V−A

∑
q′

(q̄′βq
′
α)V+A (B.6)

3) Ew Penguin Operators

Qr
7 =

3

2
(r̄αbα)V−A

∑
q′

eq̄′(q̄
′
βq

′
β)V+A (B.7)

Qr
8 =

3

2
(r̄αbβ)V−A

∑
q′

eq̄′(q̄
′
βq

′
α)V+A (B.8)

Qr
9 =

3

2
(r̄αbα)V−A

∑
q′

eq̄′(q̄
′
βq

′
β)V−A (B.9)

Qr
10 =

3

2
(r̄αbβ)V−A

∑
q′

eq̄′(q̄
′
βq

′
α)V−A (B.10)

We note that α and β are SUC(3) indices, q
′ ∈ {u, d, c, s, b}, V ±A refers to γµ(1± γ5) and

the eq denote the electrical charges.
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C Puzzles in the Measurements of the

R(D) and R(D∗) Ratios

Figure 62: Measurements of the ratio R(D) (left) and R(D∗) (right) [11]. The green band

corresponds to the current world average while the red band to the SM prediction suggesting

the tension between theory and experiment.
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D GammaCombo fits for the κq–σq

NP parameters
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Figure 63: Comparison between the Scenario I (for the Bd and Bs system) and Scenario II

fits for κq and σq, which parametrise NP contributions in B0
q–B̄

0
q mixing for the inclusive

(left), exclusive (right) and hybrid (bottom) case [124].
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E Additional Illustrations Related to

B0
s → D∓

s K
± System

E.1 Plot for the |a1| parameter

0.6 0.8 1.0 1.2

| Ds
1 |

| DdK
1 |

| KDs
1 |

| DsK
1 |

| Ds
1 |

| Dd
1 |

Experimental Values Theoretical Values

Figure 64: Comparing the |a1| experimental and theoretical SM values for various decay

processes [115], as discussed in Chapter 6.
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E.2 Different Scenarios for φ̄, φ, ρ̄, ρ Correlations inB0
s → D∓

s K
±

Changing the central values of b and b̄ observables

1. When b = 1 and b̄ = 1 (SM case)

2. When b = 1 and b̄ = 1.4
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3. When b = 1.4 and b̄ = 1

Comments

i. When both b and b̄ are equal to 1, thus as in the SM case, we get connected lines in the

(ρ, ρ̄) plot.

ii. When b is 1 and b̄ either greater or smaller than 1, we obtain a vertical “gap” area

around ρ̄ = 0. The further we move away from 1 (either to bigger or to smaller values), the

bigger the gap area becomes.

iii. On the other hand, when b̄ = 1 and b are either greater or smaller than 1, we get a

horizontal “gap” area around ρ = 0. Similarly to the previous case, the gap gets bigger if

we move away from 1.

iv. Finally, when neither b nor b̄ is 1, there are no connected lines in the ρ̄–ρ plane and

we have “gaps” along both the ρ axis and the ρ̄ axis (just like the plot we obtain for the

current data in Fig. 41).

We also notice in all these cases that the points of 0o and 180o in the φ̄–φ, as well as

the (0,0) points on the ρ̄–ρ plane, are not included. How can we approach the (0,0) point

in the (ρ, ρ̄) plot? In the way we have constructed the plots, we realise that even though ρ

and ρ̄ depend on b and b̄, respectively, the values of ρ and ρ̄ are derived from the pairs of

φ and φ̄, for which we obtain, following Eq. (6.201):

0 = tan∆φ(1 + ρ cosφ+ ρ̄ cos φ̄+ ρρ̄ cos (φ̄+ φ))− ρ sinφ− ρ̄ sin φ̄− ρρ̄ sin (φ̄+ φ).

Then, we check what changes in the determination of φ and φ̄ and the only parameter that

enters in their derivation is the tan(∆φ), thus the ∆φ.
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F Plots for the B → πK System

F.1 Constructing the neutral triangles
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Figure 68: Circles providing the two A00 solutions (intersecting points) in the left panel

and the Ā00 solutions for the CP-conjugate case in the right panel.
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Figure 69: The drawing of the triangles with the help of the circles.



F PLOTS FOR THE B → πK SYSTEM 241

F.2 Sπ
0KS

CP -Aπ0KS

CP Correlations
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Figure 70: Correlations between Sπ
0KS

CP and Aπ
0KS

CP for the central values. The four branches

correspond to the four different ϕ00 angles.
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F.3 The angle ϕ±

-0.3 -0.2 -0.1 0.0 0.1 0.2

-80

-60

-40

-20

0

20

40

(a)

-0.3 -0.2 -0.1 0.0 0.1 0.2

-80

-60

-40

-20

0

20

40

(b)

Figure 71: Angle ϕ± in terms of the direct asymmetry for every triangle configuration [281].

The petrol horizontal band gives the constraint from the current SM prediction for the ϕ±

value in Eq. (7.130). The red vertical band shows the sum rule prediction. The colours

correspond to the colours of the four ϕ00 angles, thus (a) includes the green and the blue

band and (b) the grey and the orange. The narrow bands show a future theory scenario.
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F.4 Constructing the charged triangles
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Figure 72: (a) System of Eqs. (7.138)-(7.139) and the corresponding isospin triangles. (b)

Zooming in to show the triangles for the central values of the charged B → πK decays.

F.5 Determination of the EW parameters q and ϕ
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Figure 73: Contours in the ϕ-q plane following the triangle analysis for the charged B → πK

decays, before imposing any constraints [281].
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G CMS and LHCb combined results

for B0
s → µ+µ−

Figure 74: The signal candidates with a combined fit sharing signal and nuisance parameters

as described in [331].
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Figure 75: Measurements of the branching ratios of B0
s → µ+µ− and B0 → µ+µ−, from the

LHCb and CMS collaborations, the combined results as well as the SM predictions [332].
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A Tale of Beauty and Puzzles

Since ancient times, people try to obtain a deeper understanding of the Universe and

unravel its secrets. Questions like “what is nature made of?” or “what are the fundamental

interactions?” are at the heart of this quest. The theory that describes the subatomic world,

giving answers to such questions, is the Standard Model (SM) of particle physics.

The SM classifies the elementary constituents of the matter and explains their interac-

tions. The building blocks of matter are leptons and quarks. There are six types of leptons,

the “electron” and “electron neutrino”, the “muon” and “muon neutrino” as well as the

“tau” and “tau neutrino”. Leptons exist independently. There are also six different types

of quarks, called flavours, the “up” and “down”, “charm” and “strange”, “top” and “bot-

tom”. Each one of these also has an anti-particle associated with it. Contrary to leptons,

quarks bind together and form either triplets, called baryons, or doublets, called mesons,

which are combinations of a quark and an anti-quark.

In addition, the SM describes the forces that govern the interactions. The fundamental

forces which act in the universe are four: the strong, the weak, the electromagnetic and

the gravitational. The SM describes three of them, as gravity is not part of the SM. These

forces are mediated by particles called bosons: the photon γ for electromagnetism, the W

and Z bosons for the weak force, the gluon for the strong force. In 2012, the breakthrough

discovery of another particle, the Higgs boson, completed the SM picture. The Higgs boson

is responsible for giving mass to particles. A full description of the SM of particle physics

is given in Fig. 1.

The SM is a successful theory, but it is incomplete, as there are still unresolved issues and

phenomena it cannot explain. Looking at the bigger picture, among these challenges, one

of the key questions is: Why does matter dominate over antimatter in our universe? When

trying to understand this baryon asymmetry within the SM framework, the predictions fall

short by many orders of magnitude. What could be missing? CP violation! Let us explore

this term. CP symmetry suggests that the laws of physics should remain unchanged if

particles are swapped with their antiparticles and spatial coordinates are inverted. Violation

of this symmetry indicates that the behaviour of particles and antiparticles differs, pointing

to possible effects of physics beyond the SM.

In general, there are two approaches for searching for New Physics (NP):

• the direct way, where we try to find new particles at colliders at very high energies,

• the indirect way, where we perform calculations of very high precision.



Figure 1: The Standard Model of particle physics (Image: Daniel Dominguez/CERN) [333].

CP violation is an excellent probe for searching for physics beyond the SM in an indirect

way. This approach allows us to detect signs of new interactions or particles that may

be too heavy to be directly observed at colliders. The most powerful collider is currently

the Large Hadron Collider (LHC), which plays a key role in experimental particle physics.

In order to explore CP violation in the laboratory, B mesons are fantastic tools. More

specifically, B mesons are bound states of an anti-bottom quark and a light quark (up,

down, strange or even charm). So, their decays are important for both testing the SM and

searching for NP.

In this dissertation, I have presented a beautiful tale of beauty and puzzles. What is

beauty? It is just another name for the bottom quark. And what do we mean by the

term “puzzles”? It refers to the deviations that might arise between SM predictions and

experimental data. So, we focus on decays with puzzling patterns where CP violation plays

the key role. One of the main theoretical tools we utilize to explore these phenomena is

quantum field theory (QFT). Simply speaking, QFT provides a theoretical framework for

describing the behaviour and the interactions between subatomic particles, combining the

principles of quantum mechanics and relativity.

B mesons can decay into other particles, referred to as the final state. There are three

types of final states: those consisting only of leptons, those that include both leptons and

mesons, and those made up exclusively of mesons with no leptons. In our analysis, we focus

on the following decays:



Meson Quark Content Meson Quark Content

K+ us̄ D+
s cs̄

K− ūs D−
s c̄s

K0 ds̄ π+ ud̄

K̄0 d̄s π− ūd

J/ψ cc̄ π0 uū−dd̄√
2

ϕ ss̄

Table 1: Quark content of various mesons.

• B0
d → J/ψK0

S and B0
s → J/ψϕ,

• B0
s → D∓

s K
±,

• B → πK,

• B0
(s) → µ+µ−,

where J/ψ, K, ϕ, D and π are mesons while µ denotes the “muon” lepton. For completeness,

the quark content of these mesons is shown in Table 1. These processes have very different

and, in some cases, very complicated dynamics, providing us with a broader and thus more

complete picture of our field. They serve as benchmark cases for studying CP violation and

exploring NP, as they are very sensitive to new particles and interactions.

Fortunately, we live in a time where there is a plethora of experimental data. These data

sets of the measured observables can be compared to the corresponding theory predictions.

What do we observe in these cases? Within the studies presented in this thesis, we have

found intriguing discrepancies between the theory and the measurements. It is very exciting

that we have reached a level of precision, where it is possible to reveal such discrepancies.

These puzzling cases suggest that there is room for NP! These first hints are very promising,

especially in view of the future era of B physics, where even higher precision will be achieved.

Our strategy in the study of each one of these decays involves the following steps:

i) We perform theoretical analyses.

ii) We utilise the experimental data.

iii) We compare theory with experiment, resulting in puzzling patterns in these processes.

iv) We aim at answering the question: are these puzzles really signals of New Physics?



Each decay studied in this thesis shows very interesting patterns and offers very useful

insights in the exploration of CP violation. It is important to keep improving the measure-

ments of CP violation in these benchmark processes, which highlights the close connection

between theory and experiment. We have proposed methods which can be fully exploited

in the future as we move towards more accurate measurements. These methods allow us

to better understand and interpret the results, which are very promising in the context of

potential NP searches. The upcoming upgrades to the LHCb detector as well as the Belle II

experiment, leading to more precise measurements, will play a key role in these endeavours.

Our main goal is to test the SM as thoroughly as possible and, by utilizing our analysis,

hopefully identify New Physics and reveal new sources of CP violation. In the bigger

picture, if significant deviations from the SM are finally established in the future, it would

mark a breakthrough result, opening up a completely new era in particle physics studies.

Exciting developments are just around the corner – stay tuned for what’s next!



OUR STUDIES IN A NUTSHELL
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Een Verhaal van Beauty en de Puzzels

Sinds de oudheid proberen mensen een dieper begrip van het Universum te verkrijgen en

de geheimen ervan te ontrafelen. Vragen zoals “waar is de natuur uit opgebouwd?” of “wat

zijn de fundamentele interacties?” staan centraal in deze zoektocht. De theorie die de sub-

atomaire wereld beschrijft en antwoorden geeft op dergelijke vragen, is het Standaardmodel

(SM) van de deeltjesfysica.

Het SM classificeert de elementaire bestanddelen van materie en legt uit hoe ze inter-

acteren. De bouwstenen van materie zijn leptonen en quarks. Er zijn zes soorten leptonen:

“elektron” en “elektron neutrino”, “muon” en “muon neutrino”, evenals “tau” en “tau neu-

trino”. Leptonen bestaan onafhankelijk van elkaar. Er zijn ook zes verschillende soorten

quarks, genaamd smaken: “up” en “down”, “charm” en “strange”, “top” en “bottom”. Elk

van deze heeft ook een bijbehorend antideeltje. In tegenstelling tot leptonen binden quarks

zich samen en vormen ze ofwel triplets, genaamd baryonen, of doublets, genaamd mesonen,

die combinaties zijn van een quark en een antiquark.

Daarnaast beschrijft het SM de krachten die de interacties tussen de deeltjes bepalen.

De fundamentele krachten die in het universum werkzaam zijn, zijn er vier: de sterke

kernkracht, de zwakke kernkracht, de elektromagnetische kracht en de gravitatiekracht.

Het SM beschrijft er drie van, aangezien zwaartekracht geen onderdeel is van het SM. Deze

krachten worden overgebracht door deeltjes die bosonen worden genoemd: de foton γ voor

de elektromagnetisme, de W - en Z-bosonen voor de zwakke kernkracht, en het gluon voor

de sterke kernkracht. In 2012 voltooide de belangrijke ontdekking van een ander deeltje, het

Higgs-boson, het beeld van het SM. Het Higgs-deeltje is verantwoordelijk voor het geven

van massa aan de deeltjes. Een volledige beschrijving van het SM van de deeltjesfysica is

te zien in Fig. 2.

Het SM is een succesvolle theorie, maar het is incompleet, aangezien er nog steeds

onopgeloste problemen en fenomenen zijn die het niet kan verklaren. Als we naar het grotere

geheel kijken, is een van de belangrijke vragen: Waarom domineert materie over antimaterie

in ons universum? Bij pogingen om deze baryonische asymmetrie binnen het kader van het

SM te begrijpen, schieten de voorspellingen tekort met vele ordes van grootte. Wat zou

er kunnen ontbreken? CP-violatie! Laten we deze term verkennen. CP-symmetrie duid

aan dat de natuurwetten onveranderd zouden moeten blijven als deeltjes worden verwisseld

met hun antideeltjes en de ruimtelijke coördinaten worden omgekeerd. Schending van deze

symmetrie duidt erop dat het gedrag van deeltjes en antideeltjes verschilt, wat wijst op

mogelijke effecten van fysica die verder gaan dan het SM.



Figure 2: Het Standaardmodel van de deeltjesfysica (Afbeelding: Daniel Dominguez,

CERN) [333].

In het algemeen zijn er twee benaderingen om naar Nieuwe Fysica (NP) te zoeken:

• de directe manier, waarbij we proberen nieuwe deeltjes te vinden bij deeltjesversnellers

bij zeer hoge energieën,

• de indirecte manier, waarbij we berekeningen met een zeer hoge precisie uitvoeren.

CP-violatie is een uitstekende manier om te zoeken naar fysica die verder gaat dan het SM op

een indirecte manier. Deze benadering stelt ons in staat om tekenen van nieuwe interacties

of deeltjes te detecteren die mogelijk te zwaar zijn om direct waargenomen te worden bij

deeltjesversnellers. De krachtigste deeltjesversneller is momenteel de Large Hadron Collider

(LHC), die een sleutelrol speelt in de experimentele deeltjesfysica. Om CP-violatie in het

laboratorium te onderzoeken, zijn B-mesonen fantastische hulpmiddelen. In het specifiek

zijn B-mesonen gebonden toestanden van een anti-bottom quark en een licht quark (up,

down, strange of zelfs charm). Hun verval is dus belangrijk zowel voor het testen van het

SM als voor het zoeken naar NP.

In deze dissertatie heb ik een prachtig verhaal gepresenteerd over beauty en de puzzels.

Wat is beauty? Het is gewoon een andere naam voor de bottomquark. En wat bedoelen we

met de term ”puzzels”? Het verwijst naar de afwijkingen die kunnen optreden tussen de

voorspellingen van het SM en experimentele gegevens. Daarom richten we ons op verval-

processen met puzzelende patronen waarbij CP-violatie een sleutelrol speelt. Een van de



Meson Quarkinhoud Meson Quarkinhoud

K+ us̄ D+
s cs̄

K− ūs D−
s c̄s

K0 ds̄ π+ ud̄

K̄0 d̄s π− ūd

J/ψ cc̄ π0 uū−dd̄√
2

ϕ ss̄

Table 2: Quarkinhoud van mesonen.

belangrijkste theoretische hulpmiddelen die we gebruiken om deze fenomenen te verkennen,

is de kwantumveldentheorie (QFT). Eenvoudig gezegd biedt QFT een theoretisch kader

voor het beschrijven van het gedrag en de interacties tussen subatomaire deeltjes, door de

principes van de kwantummechanica en relativiteit te combineren.

B-mesonen kunnen vervallen in andere deeltjes, die de eindtoestand worden genoemd.

Er zijn drie typen eindtoestanden: degene die uitsluitend uit leptonen bestaan, degene die

zowel leptonen als mesonen bevatten, en degene die uitsluitend uit mesonen bestaan zonder

leptonen. In onze analyse richten we ons op de volgende vervalprocessen:

• B0
d → J/ψK0

S en B0
s → J/ψϕ,

• B0
s → D∓

s K
±,

• B → πK,

• B0
(s) → µ+µ−,

waarbij J/ψ, K, ϕ, D en π mesonen zijn, terwijl µ het “muon” lepton aanduidt. Voor de

volledigheid wordt de quarkinhoud van deze mesonen weergegeven in Table 2. Deze pro-

cessen hebben zeer verschillende en, in sommige gevallen, zeer ingewikkelde dynamica, wat

ons een breder en dus vollediger beeld van ons vakgebied geeft. Ze dienen als benchmarks

voor het bestuderen van CP-violatie en het verkennen van NP, omdat ze zeer gevoelig zijn

voor nieuwe deeltjes en interacties.

Gelukkig leven we in een tijd waarin er een overvloed aan experimentele gegevens

beschikbaar is. Deze gegevenssets van de gemeten observabelen kunnen worden vergeleken

met de bijbehorende theoretische voorspellingen. Wat observeren we in deze gevallen?

Binnen de studies die in dit proefschrift worden gepresenteerd, hebben we intrigerende



discrepanties tussen de theorie en de metingen gevonden. Het is zeer opwindend dat we

een precisieniveau hebben bereikt waarop het mogelijk is om dergelijke discrepanties te

onthullen. Deze puzzelende gevallen suggereren dat er ruimte is voor NP! Deze eerste aan-

wijzingen zijn veelbelovend, vooral met het oog op het toekomstige tijdperk van B-fysica,

waar nog hogere precisie zal worden bereikt.

Onze strategie bij het bestuderen van elk van deze vervallen omvat de volgende stappen:

i) We voeren theoretische analyses uit.

ii) We maken gebruik van de experimentele gegevens.

iii) We vergelijken theorie met experiment, wat leidt tot puzzelende gevallen in deze

processen.

iv) We streven ernaar de vraag te beantwoorden: zijn deze puzzels echt signalen van

Nieuwe Fysica?

Elke verval dat is geanaliseerd in dit proefschrift laat zeer interessante patronen zien

en biedt waardevolle inzichten in de verkenning van CP-violatie. Het is belangrijk om de

metingen van CP-violatie in deze benchmarks voortdurend te verbeteren, wat de nauwe

verbinding tussen theorie en experiment onderstreept. We hebben methoden voorgesteld

die in de toekomst volledig benut kunnen worden zodra nauwkeuriger metingen beschikaar

zijn. Deze methoden stellen ons in staat de resultaten beter te begrijpen en te interpreteren,

wat veelbelovend is in de context van mogelijke zoektochten naar NP. De aankomende

upgrades van de LHCb-detector en het Belle II-experiment, die zullen leiden tot meer

precieze metingen, zullen een sleutelrol spelen in deze inspanningen.

Ons belangrijkste doel is om het SM zo grondig mogelijk te testen en, door gebruik

te maken van onze analyse, hopelijk Nieuwe Fysica te identificeren en nieuwe bronnen van

CP-violatie te onthullen. Op de lange termijn, als er in de toekomst significante afwijkingen

van het SM worden vastgesteld, zou dit een baanbrekend resultaat markeren en een volledig

nieuw tijdperk in de deeltjesfysica openen. Spannende ontwikkelingen liggen in het verschiet

– blijf op de hoogte van wat komen gaat!
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