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Abstract

We study classical and quantum features of cosmological models based on superstring

theories. In the first part of this work, we consider the emergence of chaos during

the collapse of the universe to a big crunch, which is a potential problem for recently

proposed models in which cosmological history is cyclic. We describe two mechanisms

by which chaos can be avoided. The first requires a matter component with an

equation of state w > 1. The second mechanism, which we term “controlled chaos,”

requires the spacetime to satisfy a set of topological conditions, expressed in terms

of its de Rham cohomology. We present techniques to systematically find solutions

with controlled chaos and classify all solutions for the heterotic superstring theory.

In the second part of this work, we turn to the problem of string pair production in

time–dependent spacetimes. Through studying a specific background corresponding

to two colliding gravitational waves, we show that the spectrum and production rate

for string pairs differ significantly from point particle pairs. These results suggest

unique signatures of string physics that may persist in cosmological spacetimes.
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Chapter 1

Introduction

When I behold this goodly frame, this world
Of heav’n and Earth consisting, and compute
Their magnitudes, this Earth a spot, a grain,
An atom, with the firmament compared
And all her numbered stars, that seem to roll
Spaces incomprehensible ...

Paradise Lost Book VIII, lines 15–20, [90]

Recent years have seen great advances in our understanding of models of quantum

gravity, and in particular superstring theories. A natural application of any such

model is to the physics of the very early universe. A theory of quantum gravity is

clearly required to fully understand this epoch. In addition, it seems unlikely that

Earth–bound experiments will be able to probe the quantum nature of gravity in the

conceivable future. Thus, the early universe provides a convenient (and possibly the

only) laboratory in which these theories may be tested.

We are thus led to ask an essential question: what are the unique features of a

“stringy” cosmology? Do string models of the early universe make any characteris-

tic predictions that might enable us to differentiate them from alternative models?

1



2

Does string theory provide any fundamentally new tools for constructing cosmological

models, or does it merely enable us to embed old mechanisms in a new framework?

In this work, we will touch on some aspects of these questions. Our discussion here

may be divided into two parts. In the first, we focus on classical features of string

cosmology. In the second, we investigate quantum features.

Part I: Chaos and the Classical Dynamics of String Models

One of the most striking predictions of Einstein’s general relativity is that there will

be an end to time. This has been appreciated in the context of some early (closed)

cosmological models, where the universe expands from a big bang singularity, and

re–collapses in a big crunch singularity. Misner, Thorne and Wheeler [92]1 put a fine

point on this issue, calling the prediction of gravitational collapse and the resulting

singularity “the greatest single crisis of physics to emerge from [Einstein’s] equations.”

The inevitable breakdown of Einstein’s equations is known to occur in more general

settings, thanks to the work of Hawking and Penrose [64, 65]. Their theorems imply

that the worldlines of observers will end, presumably in a singularity of some kind, at

a finite time in the future. Furthermore, these same worldlines must have a beginning

at some finite time in the past.

The construction of cosmological models touches upon another facet of this issue.

Logically, either time extends without bound into the future or past, or it does not.

In the conventional big bang model, time had a beginning at some finite time in the

past, and current observations (along with a minimal set of assumptions) seem to

indicate that the universe will continue to expand indefinitely. It may be possible,

however, that cosmic history has a cyclic nature, with repeating phases of expansion

and contraction. At issue here are the details of how the universe navigates the big

crunch/big bang transition. In conventional Einstein gravity, the big crunch and big

1Box 18.1, page 437.



3

bang are singularities, and it is impossible to continue the equations through these

events.

Recently, a model has been proposed in which the universe does possess a cyclic

history [77, 78, 79, 80, 108, 109]. This “cyclic universe” is embedded in a particular

superstring model, and appeals to features of string theory that might enable the

universe to re–emerge after the big crunch event into a subsequent expanding phase.

The big bang and big crunch are therefore not the beginning and end of cosmic

time, but instead merely events in an eternally repeating sequence. Furthermore, a

nearly scale invariant spectrum of density perturbations, required by observation, is

generated during the collapsing phase. The spectrum of gravitational waves produced

in this model is significantly different form that produced in the more conventional

inflationary universe model [16], thus providing a distinctive observational signature.

A potential problem that any cyclic universe model must confront is the presence

of chaos during the collapsing phase. It has been known since the 1940s that, in the

context of Einstein gravity, a collapsing universe will undergo chaotic, anisotropic

oscillations. In cyclic models, it is assumed that the universe is nearly homogeneous

and isotropic during the collapsing phase, with a scale invariant perturbation spec-

trum. Chaotic oscillations arising during this epoch would destroy homogeneity and

isotropy, producing a disordered, “turbulent” spacetime with structure down to arbi-

trarily small scales. In this situation, a big crunch/big bang transition is unlikely to

be describable in a deterministic manner, and it is questionable whether a homoge-

neous and isotropic universe with the long range correlations required by observations

could emerge [95]. Thus, avoiding chaos is an essential feature of cosmological models

with a collapsing phase.

In the first part of this work, we explore the question of how cyclic models can

avoid the emergence of chaos during gravitational collapse. Chapter 2 is devoted to
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reviewing the relevant aspects of the literature regarding the emergence of chaos in

collapsing spacetimes. We introduce the generalized Kasner solution as a description

of the asymptotic dynamics of general relativity near a big crunch singularity. Using

this solution enables chaos to be studied through a simple set of linear inequalities,

known as the stability conditions. Within this approach, it is possible to see that

chaos in vacuum Einstein gravity and superstring models is inevitable.

In Chapter 3 we introduce a new mechanism by which chaos can be avoided. We

show that the inclusion of a matter component whose pressure exceeds its energy den-

sity (equivalently, its equation of state w satisfies w > 1) can allow the universe to

contract smoothly and non–chaotically toward a big crunch. Intriguingly, cyclic mod-

els require a matter component with precisely these properties in order to generate a

scale invariant spectrum of density fluctuations. This chapter summarizes published

work [43], and includes an unpublished body of work on realizing the required matter

component in a higher–dimensional framework.

We next describe a second mechanism by which chaos can be avoided that does

not require the inclusion of additional matter components. This mechanism, which

we term “controlled chaos,” is introduced in Chapter 4. Working in the context

of cosmological models with extra dimensions, such as those based on superstring

theories, we show that the presence or absence of chaos is determined by topological

features of the extra dimensions. For some topologies, chaos is present; for others, it

is not. We give a set of selection rules that enable one to differentiate between these

cases. These rules are based on the menu of matter fields and topological invariants of

the extra dimensional space. We go on to study some simple solutions with controlled

chaos. Most of this chapter represents published work [120].

In Chapter 5 we present a more systematic approach to the controlled chaos

mechanism. This mechanism requires a delicate interplay between the topology of
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the extra dimensional space and a choice of solution to Einstein’s equation. Here, we

present techniques that allow a systematic search for solutions with controlled chaos.

These techniques are inspired by the remarkable connection between the dynamics

of gravitational theories near a big crunch and the root lattices of hyperbolic Kac–

Moody algebras [25, 28, 29], although they are flexible enough to apply to any model

with gravity. We apply them to classify all solutions with controlled chaos for the

heterotic superstring theory. This chapter represents recent work that has not yet

been published.

Part II: Pair Production and Quantum Features of String Models

In the second part of this work, we turn to the quantum regime. We study the pro-

cess of pair production, by which quanta of a field are produced in a time–dependent

background. This process is quite important cosmologically: in all known models

of the early universe, the primordial spectrum of density fluctuations is generated

through a pair production process. If the pair production of strings possesses any

unique features, then it is possible these could manifest themselves in these spectra,

and provide a potential observational mechanism to probe string theory. In addi-

tion, strings in time–dependent backgrounds are currently poorly understood, so any

information that can be gleaned about the theory in this regime is useful.

In Chapter 6, we study the pair production of point particles (as in field theory)

and strings in a specific background. We seek differences between these two cases.

We find that the spectrum of created strings, as well as the overall rate of string

pair production, differs significantly from point particles. The background we use,

corresponding to two colliding gravitational waves, is not of immediate cosmological

relevance. However, these results do establish the fact that, at least in one case, there

are differences between string and point particle pair production. One might hope
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that these differences persist in backgrounds of cosmological interest, and potentially

lead to observable signatures of string theory in the early universe. Thus, while

these results are intriguing, much work remains to be done. This chapter is based on

previously published work by the author [115].



Chapter 2

Chaos near a Big Crunch

...when strait behold the throne
Of Chaos, and his dark pavilion spread
Wide on the wasteful deep; with him enthroned
Sat sable-vested Night, eldest of things

Paradise Lost Book II, lines 959–962, [90]

In this chapter we review the instability of spacetimes undergoing gravitational con-

traction to a big crunch. Our goal is to understand cosmological spacetimes, and in

this context we are accustomed to considering spaces that are both homogeneous and

isotropic. It has been known for some time that these spaces cannot remain homo-

geneous and isotropic during collapse to a big crunch, but instead begin to oscillate

anisotropically and chaotically. This phenomenon is often termed BKL oscillations

or Mixmaster behavior. This occurs under fairly general conditions, including

• Vacuum Einstein gravity in spacetime dimension D < 11,

• Einstein gravity including typical matter and energy sources, such as radiation,

dust or a cosmological constant,

• Low–energy limits of superstring and M–theory models.

7
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This instability presents a problem for cosmological models in which the universe

evolves through the big crunch into a subsequent expanding phase. Given this insta-

bility, it appears unlikely that a homogeneous and isotropic universe could arise from

such a Mixmaster epoch.

It is the purpose of this review to introduce the methods employed to establish

the presence of chaos near a big crunch. This subject has a long history, and the

methods we discuss have been developed by a number of researchers [1, 8, 9, 10, 24,

25, 26, 27, 28, 29, 30, 33, 75, 84, 91]. In the chapters that follow, we will use these

same methods to investigate cases in which it is possible to collapse smoothly to a

big crunch.

2.1 Introduction

The presence of any kind of instability is entirely invisible when we confine our atten-

tion to the homogeneous and isotropic Friedmann–Robertson–Walker (FRW) space-

times that form the basis of modern cosmological models. These spacetimes have the

metric (See Appendix G for the our general relativity conventions)

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
, (2.1)

where dΩ2 is the metric on a unit two–sphere S2, k a measure of the curvature of the

spatial sections, and the scale factor a(t) obeys the Friedmann equation

3

(
ȧ

a

)2

=
∑
i

ρi(a)−
3k

a2
. (2.2)

Here, the ρi are the energy densities of the various matter sources in the model, which

themselves depend on the scale factor a. Often the Friedmann equation is written in

terms of the Hubble parameter H, defined by

H =
ȧ

a
. (2.3)
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From the Friedmann equation (2.2), it appears that a contracting universe collapses

smoothly as a→ 0, and there is no sign of any instability.

To understand the behavior of the universe near a big crunch, it is necessary to

study metrics more general than (2.1). One cannot see the emergence of anything

other than isotropic and homogeneous contraction with (2.1) because the single degree

of freedom a(t) does not allow for the possibility of anything else. When we include

more degrees of freedom, we will see that the homogeneous and isotropic solution is

in fact unstable during a collapsing phase, and therefore (2.1) is no longer valid.

In this chapter we will motivate the remarkable fact that all of the essential features

of cosmological dynamics near a big crunch can be studied through the Kasner metric

ds2 = −dt2 +
d∑
j=1

(t/t0)
2pjdx2

j , (2.4)

where the constants pj are known as the Kasner exponents [75]. We have chosen a

reference time t0 at which the spatial part of the metric is identical to that of flat

space. For later convenience, this metric is written for d + 1 spacetime dimensions.

This metric is extremely useful, for as we shall show below, it captures the asymptotic

behavior of cosmological solutions of general relativity in a particularly simple form.

The Kasner metric is an exact solution of the vacuum Einstein equations provided

that the following Kasner conditions are satisfied

d∑
j=1

pj = 1, (2.5a)

d∑
j=1

p2
j = 1. (2.5b)

In the d–dimensional space whose coordinates are the pj, the first condition defines

a plane called the Kasner plane and the second the Kasner sphere. We will denote

the locus defined by (2.5) as the Kasner circle, although generically this locus will be

the sphere Sd−2.
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Using the Kasner metric the conditions governing the stability or instability of

the spacetime can be expressed very simply as a set of inequalities involving the

Kasner exponents. There are three main types of stability conditions: the gravita-

tional stability conditions, and the electric and magnetic p–form stability conditions.

Therefore, using the Kasner metric as a model, the emergence or absence of chaos

during gravitational collapse is reduced to an algebraic problem involving the Kasner

exponents.

While the the Kasner metric (2.4) is the main focus of this chapter, we will have

cause to introduce a number of other metrics that are useful for illustrating various

aspects of physics near the big crunch. During the later chapters in this work we will

switch back and forth between some of these points of view. In this chapter we will

discuss results using

• A “minisuperspace” exact solution (Section 2.2)

• The “equation of state” w (Section 2.3)

• Power–counting in t (Section 2.4)

• The billiard representation (Section 2.6)

Along the way, we will introduce p–form matter components in Section 2.5 and discuss

their influence on cosmological dynamics.

2.2 The Mixmaster Universe

The Mixmaster universe, first studied by Misner [91], and discussed in detail in Ap-

pendix A, provides an excellent prototype of the dynamics we wish to study. This

universe is similar to a closed FRW universe, in that the spatial sections are all

topologically three–spheres S3. Unlike the FRW case, the S3 is allowed to distort
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anisotropically – that is, the lengths of the three independent great circles are dy-

namical. The spatial sections remain homogeneously curved, and thus the Mixmaster

universe is the (diagonal) Bianchi–IX metric. (For information on the Bianchi classi-

fication, see [42, 103, 111]) The metric itself is

ds2 = −dt2 + a(t)2

3∑
j=1

exp (2βj) (σj)2 (2.6)

where a and the βj are functions of time only. The one–forms σj are functions of

the spatial coordinates only, and define the homogeneous metric on the spatial S3.

In fact the closed FRW solution is included in the Mixmaster universe, being the

isotropic case where all the βj are identical. The three βj are expressed in terms of

two independent variables β+ and β− as follows

β1 = − β+√
2
− β−√

6
(2.7a)

β2 = +
β+√

2
− β−√

6
(2.7b)

β3 =
2β−√

6
(2.7c)

These two variable β± parameterize the possible homogeneity–preserving deforma-

tions of the S3, and the scale factor a parameterizes the change in its volume.

The Einstein equations for this metric yield an analogue of the Friedmann equation

3

(
ȧ

a

)2

=
1

2

(
β̇2

+ + β̇2
−

)
+
Ũ(β+, β−)

2a2
, (2.8)

where Ũ is a function of β+ and β−. Comparing this to the Friedmann equation (2.2)

we recognize that the term involving Ũ is the analogue of the homogeneous curvature

term, but that a new term related to the shape parameters β± has appeared on the

right hand side. The equation above is supplemented by the equations of motion for

the β±, which are

β̈± + 3
ȧ

a
β̇± +

1

2a2

∂Ũ

∂β±
= 0. (2.9)
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Figure 2.1: Trajectories of Mixmaster universes in the (β+, β−) plane. These plots
represent a decrease in the scale factor a by ∼ 10−3.

Equations (2.8) and (2.9) provide a complete closed set of evolution equations for the

Mixmaster universe. Some representative trajectories for these equations are given in

Figure 2.1.

A vital consequence of (2.8) is that isotropic contraction is not possible. For

isotropic contraction, we require that β± = β̇± = 0. However, Ũ < 0 for these values,

and the effective Friedmann equation (2.8) implies that one may not simultaneously

set β̇± = 0. The Mixmaster universe therefore inevitably evolves anisotropically. It

illustrates that, when one includes new degrees of freedom beyond those of the FRW

universe, the universe is rapidly driven away from the FRW solution.

The dynamics of the Mixmaster universe are quite complicated. As discussed in

Appendix A, the potential Ũ is composed of a set of exponentially rising “walls.” As



13

a → 0, the point defined by the β± begins to move more and more rapidly, thanks

to the gravitational blueshifting originating from the equation of motion (2.9). The

point also begins bouncing off of the potential walls with ever–increasing frequency.

It is possible to show that an infinite number of bounces occur before the big crunch

is reached at a = 0. Thus in spacetime, the universe is expanding and contracting

along different directions, with the rates of expansion and contraction changing ever

more rapidly.

The Mixmaster universe is a useful example to have in mind since it is an exact

solution to the Einstein equations which illustrates the instability of isotropic space-

times near a big crunch. In the remainder of this chapter, we will both generalize the

Mixmaster universe (by including non–homogeneous curvature) and simplify it, thus

enabling us to distinguish between universes that undergo Mixmaster behavior and

those that do not.

2.3 The Kasner Universe

In Section 2.2 we considered a universe without matter sources. Here we discuss the

inclusion of matter sources and show that most types of matter cannot affect the

dynamics near the big crunch. We will also show how the dynamics of the Mixmaster

universe can be simplified and understood in terms of the Kasner metric, introduced

in (2.4). Most of the calculations in this section will be carried out for a (d + 1)–

dimensional spacetime, for later convenience. Our primary tool in this section will be

the equation of state, denoted by w. We will see that w determines which quantities

are relevant near a big crunch. Here, we focus on universes without spatial curvature,

deferring the inclusion of curvature to Section 2.4.

We will focus on perfect fluid matter sources. These sources possess a stress–
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energy tensor given by

Tµ
ν = (ρ+ P )uµu

ν + Pδµ
ν (2.10)

where ρ is the energy density, P the pressure, and uµ the flow lines of the fluid.

If the spacetime is homogeneous and isotropic, then we must have uµ = (1, 0, . . . ).

The pressure and energy density are usefully parameterized by w, which is defined in

terms of the pressure and energy density by

w =
P

ρ
=

Tj
j

−T0
0 , (no sum) (2.11)

Usually one considers equations of state that are constant, although w can vary with

time.

The equation of state is useful for our purposes since it determines how the energy

density scales with the volume of spatial slices. To include more general spacetimes,

and in particular the anisotropic ones we focus on in the present work, we consider a

general metric in synchronous gauge

ds2 = −dt2 + h
(d)
ab (t,x)dxadxb (2.12)

where h
(d)
ab is the metric on the d–dimensional spatial slice. We will assume that

the metric is compatible with the flow lines of the fluid, so that we can choose uµ =

(1, 0, . . . ) while the metric is in synchronous form. Now define an effective scale factor

a so that

a2d = deth(d)(t,x), (2.13)

so that the volume of spatial slices varies with time as ad. (Note that this coincides

with the definition of a in the FRW universe). Further, it is useful to define an effective

Hubble parameter H using (2.3) and the effective scale factor a. Then conservation

of stress–energy for the perfect fluid implies that

d ln(ρ)

d ln(a)
= −d (1 + w) , (2.14)
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which is valid if w varies with time. For constant equation of state w, one can integrate

(2.14) and find that

ρ(a) =
ρ0

aX
, X = −d(1 + w) (2.15)

where ρ0 is the energy density when a = 1. The simple relationship between w and

the scaling of energy density with cosmic volume is quite useful for our discussion:

we will frequently need to work in anisotropic spacetimes, and in the perfect fluid

case the energy density of the sources depends only on the total volume of the spatial

slices.

Next we consider a simple anisotropic metric which allows for differential expan-

sion or contraction along different directions in spacetime. In Section 2.4 we will

consider the addition of curvature in addition to anisotropy. A suitable choice is the

Bianchi–I metric in (d+ 1)–dimensional spacetime

ds2 = −dt2 + a2(t)
d∑
j=1

exp (2βj) dx2
j (2.16)

where the βj are functions of time t. This is a generalization of the flat (k = 0) FRW

metric (2.1). As in the Mixmaster universe we remove the degeneracy between a and

the βj through imposing the constraint

d∑
j=1

βj(t) = 0, (2.17)

and therefore a satisfies the requirement of the effective scale factor (2.13). The

Einstein equations arising from this metric are

d(d− 1)

2

(
ȧ

a

)2

− 1

2

d∑
j=1

β̇2
j = ρ, (2.18a)

β̈j + d
ȧ

a
β̇j = 0 (2.18b)

where we have included matter components with total energy density ρ. The second

of these equations is similar to (2.9); the potential is absent since it arose from the
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curvature of spatial slices in the Bianchi–IX metric, whereas the Bianchi–I metric

considered here has flat spatial slices. Equation (2.18b) may be integrated to find

β̇j(t) =
cj
a(t)d

(2.19)

for which the constraint on the βj implies

d∑
j=1

cj = 0. (2.20)

We next define the quantity ρ
(A)
0 via

ρ
(A)
0 =

1

2

d∑
j=1

c2j , (2.21)

which measures the anisotropic nature of the contraction. When ρ
(A)
0 = 0, the universe

is perfectly isotropic. Note that ρ
(A)
0 is constant in time.

Using these results and definitions, the first of the Einstein equations may be

rewritten as

d(d− 1)

2

(
ȧ

a

)2

=
ρ

(A)
0

a2d
+
∑
i

ρ
(i)
0

ad(1+wi)
(2.22)

where we have assumed that the matter components all have constant equations of

state wi, and have energy densities ρ
(i)
0 at a = 1. Note that the resulting equation

is precisely in the form of the Friedmann equation (2.2) but now with an additional

term resulting from the anisotropic nature of the expansion. This new term enters in

the same manner as a matter component with w = 1.

At this point we make a simple, yet crucial, observation: as a→ 0, the component

with the largest value of w will dominate this Friedmann equation. Thanks to the

presence of the anisotropy term in (2.22), all matter components are thus completely

negligible near the big crunch, provided they all satisfy wi < 1. This condition is

satisfied for matter, radiation, homogeneous curvature, and the cosmological constant

contributions to ρ, and therefore these sources are irrelevant near the big crunch. The
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exceptions to this statement are quite important; the w = 1 exception possesses some

important features which we will discuss below, and the w > 1 case will form the

subject of the next chapter in this work.

Given that matter components with w < 1 become negligible near the big crunch,

we can study the resulting asymptotic dynamics of this universe. This is where the

Kasner metric will make its appearance. Dropping the source terms from (2.22) and

using (2.19) one finds

a(t) exp (βj(t)) = (t/t0)
cj+(1/d) (2.23)

which makes our original metric (2.16) precisely the same as the Kasner metric (2.4),

under the identification

pj =
1

d
+ cj (2.24)

In this context, the first Kasner condition (2.5) results from the sum rule (2.20).

The second is a consequence of the effective Friedmann equation (2.22) with matter

sources neglected. These conditions are illustrated geometrically for d = 3 in Figure

2.2.

The arguments in this section have led us to two important conclusions. The

first is that anisotropic (but flat) universes will tend to a Kasner universe near a big

crunch. This occurs even in the presence of matter sources, provided they satisfy

w < 1. The second relates to the behavior once the universe has entered the Kasner

phase. As one can see from the Kasner conditions, isotropic contraction is impossible,

there are no solutions to the Kasner conditions (2.5) with all of the exponents equal.

Thus, we can conclude that, neglecting curvature, universes will tend to an anisotropic

Kasner–like state near a big crunch.
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Figure 2.2: The d = 3 Kasner universe. We are looking at the origin in the −(1, 1, 1)
direction. The Kasner plane is illustrated by the triangle. The Kasner circle , where
the Kasner conditions are satisfied, is shown by the circle labeled K . Note that one
Kasner exponent is always strictly negative, except where K intersects the axes at
the points labeled “Milne.” The isotropic solution, labeled “iso,” is not among the
solutions.
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2.4 The Effects of Curvature

Having established the dynamics of universes without spatial curvature in Section

2.3, we now turn to the more general situation in which the spatial slices are curved.

In this case, we will recover some of the features seen in the Mixmaster model. The

effective Friedmann equation in anisotropic universes (2.22) features an effective en-

ergy density, scaling like 1/a2d, which depends on the anisotropy in the spacetime.

This term dominated all of the other terms in the equation as a → 0, since these

terms scaled too slowly to dominate the anisotropy term. In the homogeneous and

isotropic Friedmann universe, spatial curvature appears in the Friedmann equation

in a term that scales like 1/a2. Thus by an identical argument it might seem as

though curvature terms would grow too slowly to be relevant near the big crunch. In

fact, the situation with curvature is rather more complicated, and in fact gives rise

to significant effects not captured in the flat Kasner universe studied in Section 2.3.

In this section we will explore these features, using as our tool the power law time

dependence of various terms in the Einstein equations.

We begin by observing that the Kasner behavior is universal near a big crunch,

as discussed in the Bianchi–I case in Section 2.3. To introduce curvature, we will use

the generalized Kasner metric

ds2 = −dt2 +
d∑
j=1

(t/t0)
2pj(x)

[
ωj(x)

]2
(2.25)

where

ωj(x) = ω(x)jkdx
k. (2.26)

are functions of the spatial coordinates x, as are the Kasner exponents. This metric

does not have a Bianchi type since we are not assuming homogeneous curvature of

the spatial slices. With this metric, it is possible to study more general spacetimes

in which equal time surfaces are inhomogeneously curved.
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The generalized Kasner metric must satisfy the Einstein equations. Upon substi-

tution of (2.25) into the Einstein equations, it is convenient to group the resulting

terms into two types. The first type is terms involving only time derivatives of metric

components. The second type includes all other terms; for example, those represent-

ing the intrinsic curvature of spatial slices, or gradients of the Kasner exponents. We

will call this second type “spatial gradient terms.” When the Einstein equations are

decomposed in this way, one finds that the time derivative terms scale with cosmic

time t as 1/t2. Thus we can represent each component of the Einstein equations

schematically, at fixed spatial coordinate x, as

A(x)

t2
+
∑
J

BJ(x)

tgJ (x)
= 0 (2.27)

where the index J runs over all spatial gradient terms, and the exponents gJ(x)

measures the scaling of each term with time. The coefficients A(x) are different linear

combinations of the Kasner conditions (2.5). If we neglect the spatial gradient terms

B(x) (as we did with the curvature–free Kasner metric in Section 2.3) then enforcing

the Einstein equations (2.27) results in the familiar Kasner conditions (2.5).

When the spatial gradient terms are included, then the behavior of the metric

(2.25) depends crucially on the values of the gJ relative to the threshold value of 2.

We then have two cases:

• Case 1 (stable) with gJ < 2: In this case, the spatial gradient terms BJ(x)

scale more slowly than the time–derivative terms, and thus scale away to ir-

relevance as t → 0. Because of this, the equations of motion at each spatial

point x decouple from those of its neighbors – a phenomenon sometimes called

ultralocality. To leading order in t, the Einstein equations are satisfied provided

the Kasner conditions are. Therefore, each spatial point acts as an independent

Kasner universe, although the specific Kasner exponents may vary from point
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to point. In this sense, the generalized Kasner metric (2.25) is a kind of ap-

proximation, to leading order in t, of the behavior of generic solutions near the

big crunch.

• Case 2 (unstable) with gJ > 2: When this is the case, then the pure time

derivative terms A(x) are no longer of leading order in t as t → 0. Instead,

the corresponding spatial gradient term grows rapidly enough to dominate the

Einstein equations (2.27) as t → 0. This means that the Kasner metric is no

longer a leading–order approximate solution to the Einstein equations as t→ 0.

If the spatial gradient terms B(x) are initially subdominant, then the universe

will be Kasner–like until they grow to dominate the Einstein equations. When

this occurs, the Kasner behavior is modified.

To discover how the Kasner behavior is modified, it is instructive to return to the

Mixmaster example, discussed in Section 2.2 and Appendix A. The Mixmaster uni-

verse shape parameters β+ and β− behave like the coordinates of a point mass moving

in a triangular potential well. This potential well arose from the (homogeneous) cur-

vature of the spatial slices. Near its minimum at β± = 0, the potential well is nearly

flat, and one can neglect its influence on the equations of motion for the β±, (A.34)

and (2.9). Thus one finds

β̈± + 3
ȧ

a
β̇± = 0 (2.28)

which is identical to the equations (2.18a) found for the βj in Section 2.3. In fact, the

β± are only different linear combinations of the βj, and so in this regime the same

solution goes through as found in the Bianchi–I case. Near the bottom of the potential

well, or equivalently when it is nearly isotropic, the Mixmaster universe behaves like a

Kasner universe. The straight–line trajectory of the (β+, β−) point in the Mixmaster

example corresponds to a Kasner–like epoch of contraction. The exponents for the
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corresponding Kasner universe are related to the velocity components of the point.

This connection is made more explicit in Section 5.4.

The new features from curvature arise when the β± begin to climb one of the

walls of the potential well. The point mass ceases to move in a straight line, but

instead “bounces” off of the wall and returns to the neighborhood of the potential

minimum. This corresponds to the end of one Kasner–like epoch, a rapid change in

the Kasner exponents, and the beginning of a new Kasner–like epoch. We will term

this phenomenon a Kasner bounce. In the context of our schematic Einstein equation

(2.27), this corresponds to one of the spatial gradient terms dominating the Einstein

equations, followed by a change in the gJ , possibly enabling other spatial gradient

terms to dominate later on. For this reason, we will sometimes refer to the B(x)

terms in the Einstein equations, somewhat informally, as dangerous terms.

The generalized Kasner solution (2.25) enables one to express the conditions for

a Kasner bounce (and resulting chaotic behavior) in a very simple manner. These

conditions are known as the gravitational stability conditions (GSCs) [27, 33], take

the form of a set of linear inequalities in the Kasner exponents, and are of essential

importance for much of this work. Terms in the Einstein equations corresponding

to spatial curvature all depend on the βj through ratios of the scale factors (t/t0)
2pj

along different directions. (This can be seen explicitly for the Mixmaster example,

and holds for the generalized Kasner metric as well). Thus returning to the schematic

Einstein equations (2.27), one finds

J = {ijk}, gJ = 2(pi + pj − pk) (2.29)

where we have replaced our index J with a triple of (possibly duplicate) indices

of Kasner exponents. As discussed above, the condition that these terms remain

subdominant is that gJ < 2. This is equivalent to

pi + pj − pk < 1, for all i, j, k. (2.30)
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These inequalities are the GSCs. When all the GSCs are satisfied, the universe

follows smooth Kasner–like behavior to the big crunch; when they are violated, the

spatial gradient terms B(x) will dominate the universe, and it will undergo chaotic

Mixmaster oscillations.

As we might expect from our experience with the Mixmaster example, it is im-

possible to satisfy the GSCs (2.30) and the Kasner conditions (2.5) simultaneously

in the case d = 3. In this case, Einstein gravity in vacuum or with sources satisfying

w < 1 will inevitably enter a Mixmaster phase. This conclusion also holds for all

spatial dimensions up until d = 10, at which point it is now possible to satisfy both

the Kasner and GSCs. Two simple solutions that do satisfy the Kasner conditions

and GSCs when d = 10, and thus do not exhibit chaotic behavior, are

p1 . . . p3 =
1−

√
21

10
, p4 . . . p10 =

7 + 3
√

21

70
(2.31)

which was first discussed by [33], and also

p1 . . . p4 =
2− 3

√
6

20
, p5 . . . p10 =

1 +
√

6

10
(2.32)

These solutions are in fact representative points of open neighborhoods in the Kasner

circle (which in this case is actually S8) for which these constraints are satisfied. In

these neighborhoods, the contraction of the universe remains smooth and Kasner–like

all the way to the big crunch. One can find similar solutions for spatial dimensions

d > 10 as well: these open neighborhoods of the d = 10 Kasner circle can be trivially

extended to higher dimensions by appending Kasner exponents pj = 0 for j > 10.

There has been some speculation that the vanishing of chaos in eleven spacetime

dimensions is related to the fact that this is the maximal dimension for global su-

persymmetry. We will see below that this is just a coincidence, since the unique

supergravity theory in d = 10 possesses additional matter fields which significantly

change its chaotic properties.
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Now that we have introduced the GSCs, we will also introduce some terminology

that will enable us to describe the chaotic properties of a given theory. As described

above, the Kasner conditions (2.5) for (d + 1)–dimensional gravity define a sphere

Sd−2, which we have called the Kasner circle and will denote K. Furthermore, there

are open (but possibly empty) regions on the Kasner circle in which the GSCs are

satisfied. Let us denote these regions by S. Finally, there are points at which the

GSCs are saturated, or in other words satisfied if all the “>” are replaced by “≥.”

We will denote these points by S.

We will need to distinguish between models (currently, the only models are Ein-

stein gravity in various dimensions, but later we will introduce matter content that

comes along with its own stability conditions) and specific solutions to the Kasner

conditions (points on the Kasner circle). First, we consider solutions:

• A solution s ∈ K is non–chaotic when s ∈ S,

• A solution s ∈ K is marginally chaotic when s ∈ S but s /∈ S.

• A solution s ∈ K is chaotic when s /∈ S.

An intuitive way to think about the marginally chaotic solutions is that they are

somehow on the “boundary” of the set of non–chaotic solutions. However, since S

often contains isolated points it is not technically the boundary of S. Note that the

marginally chaotic solutions are considered a subset of the chaotic solutions. This is

because arbitrarily small perturbations of a marginal solution puts it in the chaotic

region. One important example of a marginal solution is the Milne universe, a solution

of the Kasner conditions in any spacetime dimension with

p1 = 1, p2 = · · · = pd = 0, (2.33)

which marginally satisfies the GSCs. This solution crops up frequently, and is relevant

to the cyclic model that we will discuss in more detail in Section 3.1.2.
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Figure 2.3: Various possibilities regarding the stability conditions on the Kasner circle
K. The stability conditions are satisfied in the region S, (the shaded region) and
saturated in S. (a) non–chaotic model. Note that S includes not only the closure of
S but also potentially isolated points. (b) a chaotic model, with possibly some points
at which the stability conditions are marginally satisfied.

Moving on to models, we distinguish two types, depending on the nature of the

solutions that they allow:

• A model is chaotic when S is empty,

• A model is non–chaotic when S is not empty.

These various possibilities are illustrated in Figure 2.3. Under this terminology, Ein-

stein gravity in d < 10 is chaotic, since there are no solutions to the Kasner conditions

and the GSCs. Furthermore, Einstein gravity in d ≥ 10 is non–chaotic, since it pos-

sesses non–chaotic solutions, despite the fact that it possesses chaotic solutions as

well.
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2.5 p–forms and String Models

Up to now we have only discussed the properties of the Einstein equations in vacuum

and with certain types of perfect fluid sources. Now we will consider an important

class of matter components, the p–form fields. These are antisymmetric tensor fields

with action

Sp−form = − 1

(p+ 1)!

∫
eλφF 2

p+1

√
−g ddx, Fp+1 = dAp (2.34)

where we have included an exponential coupling to a scalar field φ, with associated

coupling constant λ. Fp+1 is the field strength (by analogy to electromagnetism) and

is a tensor with p+ 1 indices, while Ap is the potential, with p indices. In this work,

we follow the convention that the “p” in p–form will refer to the number of indices

on the gauge potential. String and supergravity models often contain p–form fields

with precisely this type of exponential coupling to a scalar field, and so understanding

the dynamics of these fields helps us better understand these models. As we will see

below, the analysis of these matter sources result in p–form stability conditions and

systems of inequalities quite similar to those found for the purely gravitational (or

perfect fluid) case above.

2.5.1 p = 0: the free scalar

The presence of simple scalar field φ (which may also be considered a p–form with

p = 0) significantly alters the behavior of the universe near a big crunch [9]. For

the time being we will consider only the case where the scalar field is free – that

is, is massless, has no potential, and has a canonical kinetic term. Assuming that

this scalar field is homogeneous, the wave equation in the Kasner spacetime has the

solution

φ(t) = φ0 + pφ ln(t/t0) (2.35)
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with constants φ0 and pφ. For the homogeneous scalar field it is a simple matter to

include the stress energy from φ into the Einstein equations. When this is done, the

Kasner conditions (2.5) are modified to

d∑
j=1

pj = 1, (2.36a)

d∑
j=1

p2
j = 1− p2

φ. (2.36b)

The stability conditions remain unchanged after the addition of the scalar field.

The presence of the scalar field φ changes in the dynamics of the universe near

the big crunch. For example, without the scalar field there are no isotropic solutions

to the Kasner conditions. With the scalar field, such solutions are now possible. For

example, the choice

pφ = ±
√

1− 1

d
, pj =

1

d
(2.37)

is an isotropic solution to the new Kasner conditions (2.36). In the presence of a

free scalar, one can no longer conclude that the universe will be driven to anisotropy

as the big crunch is approached. In addition, for the isotropic solution (and in a

neighborhood thereof) the GSCs are satisfied. Therefore, it is no longer true that the

universe inevitably enters a chaotic phase as it collapses. Instead, if enough of the

energy density of the universe is in the form of the scalar field (or in other words, if

|pφ| is large enough) then chaos can be avoided. The maximum value of |pφ| is given

by the isotropic solution (2.37), and there exist solutions to the Kasner conditions

(though not necessarily the GSCs) with |pφ| varying from this value down to zero.

The essential difference between the behavior of the universe near the big crunch

with and without the scalar field is that it is now possible to satisfy the gravitational

stability conditions in any spacetime dimension, including the d = 3 case relevant for

our universe. The scalar field can accomplish this for two reasons. For one, the energy

density in a free scalar field scales like 1/t2, or 1/a2d. Equivalently, in the language
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we have developed above, the free scalar field has w = 1. This is precisely the same

dependence on cosmic volume as the leading–order terms in the Einstein equations.

Therefore, while other matter sources grow too slowly near the crunch, the energy

density in the scalar field is able to “keep pace” and thus influence the gravitational

dynamics all the way to the crunch. This is reflected in the fact that the scalar

field Kasner exponent pφ appears in the Kasner conditions (2.36). Furthermore, the

energy density associated with this field is isotropic, and therefore does not imprint

or enhance any pre-existing anisotropy in the metric. Thus, the universe can remain

isotropic all the way to the big crunch and chaos is avoided.

While it is possible when a scalar field present to avoid chaos near the big crunch,

the presence of the scalar field alone is insufficient to guarantee stable contraction.

For example, merely including a scalar field which is subdominant (for example,

|pφ| � 1) it is still possible to satisfy the Kasner conditions (2.36) while violating the

stability conditions. This state of affairs can be summarized by using the terminology

introduced at the end of Section 2.4; Einstein gravity with a free scalar field is a non–

chaotic model. The various possibilities with the free scalar field are represented in

Figure 2.4.

2.5.2 p > 0: the re–emergence of chaos

While the addition of the scalar field can make it possible to avoid chaos near the big

crunch, when more general p–form fields are also included then chaotic behavior can

be restored [27, 33]. The equation of motion resulting from the p–form action (2.34)

is [
O · (eλφF )

]µ1µ2···µp
= 0. (2.38)

This is supplemented by the Bianchi identity

[dF ]µ1µ2···µp+2
= 0, (2.39)
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Figure 2.4: The d = 3 Kasner universe with a scalar field, c.f. Figure 2.2. We are
looking at the origin in the −(1, 1, 1) direction. The Kasner plane is shown by the
triangle. Points in the shaded area satisfy the GSCs. . The radius of the Kasner
sphere depends on pφ which is suppressed in this plot. The Kasner circle K depends
on the value of pφ, and several examples are shown by the concentric circles.
(1): The outermost circle shows the Kasner circle K for the case pφ = 0.
(2): For 0 > p2

φ > 1/2, the Kasner circle K is illustrated by the middle (dashed)
circle, and there are both chaotic and non–chaotic solutions. S denotes an arc along
which the GSCs are satisfied, and S are the points at which the GSCs are marginally
satisfied, which all lie on the edge of the triangular shaded region.
(3): For p2

φ > 1/2, K lies entirely within the shaded region, and thus all solutions are
non–chaotic, illustrated by the innermost (solid) circle. The isotropic solution is also
shown, labeled by “iso,” for which p2

φ attains its maximum allowed value of p2
φ = 2/3.
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which is a consistency condition arising from the fact that F = dA. Assuming the

p–form field is homogeneous, these equations can be solved as follows, assuming a

synchronous gauge metric as in (2.12). The equation of motion has the solution

F tj1···jp(t) = f j1···jp
e−λφ√
h

(2.40)

with f j1···jp a constant and
√
h the comoving volume element. These components of

the p–form field (with exactly one time index) are referred to as the electric compo-

nents, by analogy with electromagnetism. The Bianchi identity yields

Fj1···jp+1(t) = bj1···jp+1 , (2.41)

where bj1···jp+1 is constant. Again by analogy with electromagnetism, these compo-

nents of F (with all spatial indices) are referred to as the magnetic components of

the p–form field.

Unlike the scalar field, if a p–form comes to dominate the energy density of the uni-

verse, it tends to drive it to anisotropic contraction and thus chaos. This arises from

the fact that p–forms with p > 0 have anisotropic stress energy tensors; specifically

Tµ
ν =

eλφ

(p+ 1)!

[
Fµα1...αpF

να1...αp − 1

2
δµ
νF 2

]
(2.42)

Except for the scalar field (p = 0) these are always anisotropic. Therefore metrics

that are isotropic cannot satisfy the Einstein equations in the presence of a source of

this type.

The physics in the presence of p–forms turns out to be similar to the situation

with curvature. As we will see in Section 2.6, p–forms lead to new potential walls,

and the occurrence of Kasner bounces.. Therefore, in order to ensure smooth and

Kasner–like contraction to a big crunch, we must ensure that p–form energy densities

remain subdominant. Using the Kasner metric (2.4) and following a similar analysis
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as in Section 2.3, this requirement is expressed as the inequalities

∑
j∈〈p〉

pj −
λpφ
2

> 0, (2.43a)

∑
j∈〈p+1〉

pj −
λpφ
2

< 1. (2.43b)

The notation 〈n〉 refers to a set of n indices with values from 1 . . . d, necessarily

all different. There is one stability condition for each such set. The first of these

inequalities is known as the electric stability condition (ESCs), and the latter as the

magnetic stability condition (MSCs).

A natural application of these results is to the menu of p–forms present in the

low–energy effective actions of superstring theories and M–theory (eleven–dimensional

supergravity). Each of the superstring theories includes a scalar field (the dilaton)

and some include multiple scalars (such as Type IIB). As per our discussion above,

the inclusion of this scalar enables one to satisfy the gravitational stability conditions.

However, one must also take the other p–form fields into account, and when this is

done it is impossible to simultaneously satisfy the electric and magnetic stability

conditions (2.43) [26]. Therefore, all of the superstring models are inevitably chaotic

near a big crunch. In the case of M–theory, there is no scalar field, but one might

hope that since d = 10 pure gravity possesses stable solutions even in the absence of a

scalar field, M–theory might enjoy similar properties. In fact, thanks to the presence

of a three–form in M–theory, it is in fact impossible to satisfy the stability conditions

in this case, and M–theory is inevitably chaotic as well.

2.6 Billiard Representation

The billiard representation provides yet another view on the dynamics of the universe

near the big crunch [25, 28, 29]. It complements the approach using the Kasner
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solution, in that the billiard representation allows us to study the dynamics of the

Kasner bounces. We have already seen in Section 2.2 that the behavior of the Bianchi–

IX model is given by the motion of a point in a potential. With the reparameterization

we will describe below, the dynamics of the universe become even simpler. Near the

big crunch, the potential reduces to a set of sharp walls, and so the point undergoes

geodesic motion between specular reflections from the walls. For a detailed derivation

of this viewpoint in the Mixmaster universe, see Appendix A, especially Section A.3.

We will also rely heavily on this representation in Chapter 5.

We begin with the Mixmaster metric (2.6) and define new variables γj through

γj = ln(a) + βj (2.44)

and the “supermetric” given by

Gjk = 2


0 −1 −1

−1 0 −1

−1 −1 0

 (2.45)

which is seen to have a Lorentzian signature (− + +). We next define variables r, yi

through

r2 = −Gjkγ
jγk, yj = r−1γj. (2.46)

Note that as a→ 0, r →∞. Furthermore, since Gjky
jyk = −1, the yj are constrained

to lie on the future unit hyperboloid. Finally, we define a new time coordinate T

related to proper time intervals ds through

ds = r2 exp

(∑
j

γj

)
dT (2.47)

With these definition, one finds that the dynamics of these variables is given by the

variation of the following effective action

Seff [r, yj] =

∫ (
−1

2

[
d ln r

dT

]2

+
1

2
Gjk

dyj

dT

dyk

dT
− VT (r, yj)

)
dT (2.48)
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In the r →∞ limit, the potential VT is given by

VT (r, yj) ∼
∑
A

cAΘ
(
[wA]j y

j
)

(2.49)

where Θ(x) = 0 for x < 0, and Θ(x) = ∞ for x > 0, and the cA > 0. The potential

describes a set of sharp walls, at positions given by the vectors wA.

Taken together, the action (2.48) describes the geodesic motion of a billiard on a

hyperboloid, undergoing specular reflections from a set of sharp walls defined by the

wA. Thanks to the ultralocal property of gravity near a big crunch, one can think

about each spatial point as decoupling from its neighbors, and is described by its own

independent billiard system. A remarkable property of the walls is that the vectors

wA are precisely the root lattice of the hyperbolic Kac–Moody algebra AE3. It has

been shown that the walls for vacuum Einstein gravity are described by the root

lattice of AEd for arbitrary dimension, which is hyperbolic for d < 10. Any p–forms

that are present lead to additional walls, and it is known that the full set of walls

for the low energy spectrum of string models are described by the root lattices of the

hyperbolic algebras E10 and BE10. It has been observed that a gravitational theory

is chaotic precisely when the underlying Kac–Moody root lattice is hyperbolic [28].

Thus, in addition to providing a useful visualization of the dynamics we wish to study,

th billiard representation hints at some deep properties of gravitational systems.

2.7 Summary

In this Chapter we have reviewed the fundamentals of dynamics near a big crunch

singularity. The universe’s dynamics are typically chaotic, and this behavior is robust

through many spacetime dimensions and various types of matter content. Remark-

ably, much of the dynamics of this strongly gravitating, time–dependent system can

be understood using the simple Kasner metric.
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The most important results of this chapter are the various stability conditions,

(2.30) and (2.43). These conditions enable us to determine the chaotic properties

of a given model by searching for a solution to a set of inequalities. These stability

conditions will be a crucial tool in the following chapters.



Chapter 3

Eliminating Chaos with w > 1

...then raise
From the conflagrant mass, purged and refined
New heav’ns, new earth, ages of endless date...

Paradise Lost Book XII, lines 548–549, [90]

Progress in string and M–theory models have led to the development of new possi-

bilities for the cosmology of the early universe. Recently a model of the universe in

which it undergoes an infinite series of cycles has been proposed [108]. This model,

and indeed any cyclic model, must deal with the potential presence of chaos during its

collapsing phase, for Mixmaster oscillations during the contracting phase can easily

destroy the homogeneity and isotropy required for a viable cosmological model. In

this chapter we will describe a mechanism by which chaos can be avoided. We will

show that if the universe contains a matter component with equation of state w > 1,

then it can contract smoothly and non–chaotically to the big crunch. It is especially

relevant to the cyclic universe model since the additional elements required to avoid

chaos are already present in the model!

We introduce the essential elements of the cyclic model in Section 3.1. We also

35
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describe how its embedding in a M–theory framework enables it to avoid the problems

that have plagued previous attempts at periodic cosmological models. Section 3.2 is

the core result of this chapter. We use the tools developed in the previous chapter

to show that a perfect fluid matter component with w > 1 can eliminate chaos

during the collapsing phase. Intriguingly, such a component is already present in

the cyclic model. We also describe how this new matter component can eliminate

chaos due to p–form fields. Depending on the p–forms that are present, this may

require a threshold value of w greater than unity, and we give expressions for the

new threshold value. In Section 3.3 we go on to consider the problem of realizing the

w > 1 component in the context of a higher dimensional theory. We consider the

more general problem of realizing a matter component with given equation of state

w in a general Kaluza–Klein (KK) compactification. Focusing on the case where the

perfect fluid component is realized as the volume modulus of a KK compactification,

we find that a four–dimensional solution with a given w can only be realized as the

compactification of a discrete family of equivalent higher–dimensional geometries. We

give the behavior of the higher–dimensional metric, the relationship between proper

times in the higher and lower–dimensional frames, and the stress–energy required in

the higher–dimensional theory. We conclude in Section 3.4.

In this chapter, Section 3.1 is a review of part of the literature. Section 3.2

represents published work by the author and collaborators [43]. The results in Section

3.3 are unpublished work by the author.

3.1 The Cyclic Universe

In this section we will give an introduction to the recently proposed cyclic universe

model. We will begin with a brief review of some of the historical ideas surrounding

cyclic universes in Section 3.1.1. This primarily useful as it shows that it is quite
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difficult to accommodate models of this type in the context of conventional physics.

We go on to describe a new idea for a cyclic universe in Section 3.1.2 which avoids

some of the difficulties encountered in past attempts.

3.1.1 Some previous attempts

There are several logical possibilities for the overall history of the cosmos. A conve-

nient enumeration is provided by Tolman [116]. The universe may:

• Type 1 : Evolve for some range of time (finite, semi–infinite, or infinite),

• Type 2 : Exist in a steady state,

• Type 3 : Undergo periodic or “cyclic” behavior.

The current consensus cosmological model is of the first type. Observations to

date, along with minimal theoretical assumptions, indicate that cosmic history be-

gan roughly 13.7 billion years ago, and the universe will continue to evolve into the

indefinite future. The strength of this consensus model is its experimentally verified

predictions for the cosmic microwave background (CMB) [70, 106], the abundance of

light elements produced in big bang nucleosynthesis (BBN), [107, 121] and the details

of large–scale structure formation.

Models of the second type have been considered in the past. However, they

appear to have insurmountable difficulties in explaining current observations. As one

example, it is not possible to explain the CMB and its precisely thermal spectrum in

the context of these models [96]. In addition, it is quite difficult to explain the light

element abundances without BBN.

An early example of a model of the third type was considered by Tolman [116].

He begins by assuming a FRW universe whose scale factor oscillates periodically

between a maximum value amax and a minimum value amin, both of which are nonzero.
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Because this universe is supposed to be periodic, the total entropy cannot increase

from cycle to cycle. Along with the second law of thermodynamics, this requires that

the total entropy S (or the entropy in some finite comoving volume) is related to the

scale factor a by

S(a) =
S0

a3
(3.1)

with S0 a constant. The evolution of the universe is therefore perfectly adiabatic.

Following Tolman we can quickly exclude this possibility, as it requires unrealistic

matter sources. We assume that the universe is flat, as required by observation. Using

the Friedmann equation (2.2) and the conservation equation we find

Ḣ = −1

2
(ρ+ P ) (3.2)

where ρ and P denote the total energy density and pressure of all matter components.

At amin, we require H = 0, as well as Ḣ > 0 in order to reverse the contraction. This

implies the conditions

ρmin = 0, Pmin < 0 (3.3)

which requires a very unusual form of matter [77]. The situation is not substan-

tially improved by the addition of curvature [116], which at any rate is forbidden by

experiment.

Tolman next considers another possibility whereby we allow amin = 0. Since the

Einstein equations break down at this minimum a, Tolman argues that there is no

constraint on ρ and P at amin. Tolman makes the further assumption that, while

the Einstein equations break down, the universe should continue smoothly into a

subsequent expanding phase. Nevertheless, even granting this assumption, there is a

problem: we do not expect the adiabaticity assumption to hold all the way to a = 0.

Adiabaticity can only hold if the rate Γ of reactions keeping the matter species in

equilibrium satisfies Γ � H. As a → 0, H → ∞ and so at some point all reactions
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Figure 3.1: Tolman’s “periodic” universe. Entropy increases with each big crunch/big
bang would lead to the lifetime and maximum size of the universe increasing with
each cycle. Thus, the total lifetime of the universe would be finite.

should fall out of thermal equilibrium [81]. Thus, thermodynamically irreversible

processes will occur, and the entropy of the universe should increase with each pass

through this big bang/big crunch transition [117].

This increase leads to a finite total lifetime of the universe. Let us suppose for

simplicity that we have a radiation–dominated closed universe, and denote the total

entropy during the nth cycle by S
(n)
0 . Suppose the entropy density increases by a

factor A3/2 during each cycle, (this exponent is chosen for later convenience) so that

S
(n+1)
0 = A3/2S

(n)
0 , A > 1. (3.4)

We expect that A will be a constant from cycle to cycle, since the physics will be

identical each time. Now for our universe we have the Friedmann equation

3

(
ȧ

a

)2

=
ρ

(rad)
0

a4
− 3k

a2
, ρ

(rad)
0 ∼

[
S

(n)
0

]4/3
(3.5)

This is is invariant under the transformation

S0 → A3/2S0, a→ Aa, t→ At (3.6)
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Therefore, if the universe has lifetime Ln for the nth cycle, then its lifetime during

the next cycle will be

Ln+1 = ALn (3.7)

Now, thanks to this geometric progression, the total lifetime of the universe Ltot will

be finite. Explicitly, if we are near the end of the nth cycle, the total lifetime of the

universe is

Ltot = Ln + Ln−1 + · · · = Ln
1− A

. (3.8)

The behavior of Tolman’s solution is illustrated in Figure 3.1. Recalling the classi-

fication of cosmological histories on page 37, we see that in attempting to construct

a cyclic model (type 3), we have failed to do anything other than create a baroque

and problematic model with a finite lifetime (type 1). Perhaps the most serious of

the problems we have introduced is that of passing through a big crunch singularity,

and it is not at all clear how this is possible in the context of Einstein gravity.

3.1.2 The cyclic model

A way to construct a cyclic universe model that evades these problems is provided if

we work within the context of string models. One example [77, 78, 79, 80, 108, 109]

is framed in the context of heterotic M–theory [67, 68, 87]. This model postulates a

compact extra dimension which is bounded on either end by infinite orbifold planes,

as in Figure 3.2. There are six other compact dimensions, but these are not important

for the construction of this model, and so we will neglect them. Matter fields (such

as Standard Model particles) are confined to these planes.

In the five–dimensional description [78], the two orbifold planes are located at

positions y+, y−. The five–dimensional bulk is warped, with metric

ds2 = W 2
(
−N2dt2 + dx2

3

)
+ dy2, W = exp (y/L), y− ≤ y ≤ y+, (3.9)
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Figure 3.2: The structure of (a) the S1/Z2 orbifold and (b) the full eleven–dimensional
spacetime in heterotic M–theory.

where the constant L is the curvature radius of the bulk space. The scale factors for

the FRW geometry induced on each plane are given by

a± = exp (y±/L). (3.10)

It is convenient to change coordinates to

a+ = a cosh f, a− = a sinh f (3.11)

where a2 = a2
+ − a2

−. The separation between the branes is

L ln

(
a+

a−

)
= L ln (coth f) (3.12)

The field f is related to a canonically normalized scalar field φ that appears after KK

compactification. With this parameterization, a is the Einstein frame scale factor in

the four–dimensional theory after KK reduction. (We discuss the Einstein frame in

more detail in Section 3.3). However, matter confined to the planes only couples to

a±. Thus gravity behaves slightly differently than normal Einstein gravity, thanks
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Figure 3.3: Evolution of the orbifold plane scale factor a+, the four–dimensional
Einstein frame scale factor a, and the scalar field φ during many cycles of the cyclic
universe. The scale factors have an exponential envelope: c.f. Figure 3.1. The vertical
scale is somewhat suppressed for clarity: many e–folds of expansion occur between
cycles. Curently the field is nearly static (a), but then the universe undergoes a
collapse (b) during which time the scale invariant perturbation spectrum is generated.
The field φ travels to minus infinity and returns (corresponding to the orbifold planes
colliding and rebounding) and returns to (a).

to the presence of the orbifold planes: the Einstein–Hilbert action is a function of a,

while the FRW metrics corresponding to a± appear in the matter field Lagrangians.

We can describe a full cycle of the cyclic model by starting with the present

day. This cycle is illustrated in Figure 3.3. During the present epoch, the distance

between the two planes is approximately constant, and the scale factor a is undergoing

exponential expansion, as current observations seem to indicate. The universe enters

a contracting phase when the planes begin to move together. Quantum fluctuations

on the planes are amplified during this contracting phase. The planes collide, and

then return to their original fixed positions. The fluctuations established during the

contracting phase grow and seed structure formation during the next cycle. BBN and

the formation of the CMB goes through exactly as in the conventional cosmological

model. Eventually, a cosmological constant comes to dominate the universe, and it
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enters an accelerating phase similar to the present day, and the cycle can begin anew.

This model easily evades the problems of the Tolman universe. During the con-

tracting phase, the Einstein frame scale factor a→ 0. However, the branes are moving

together, and as their proper distance goes to zero, f → ∞, and the orbifold plane

scale factors a± are approximately constant. Even though a is the Einstein frame

scale factor in the four–dimensional theory, the metric appearing in the matter field

Lagrangian is that corresponding to a±, and so as far as these fields are concerned

there is no singularity since a± remains finite throughout this process (see the upper

left panel of Figure 3.3). Furthermore, any entropy that is produced will be diluted

away when the universe begins another epoch of exponential expansion. Viewed over

many cycles, a± is a function which, for the most part, is well described by an ex-

ponential envelope function corresponding to eternal de Sitter expansion. Unlike the

Tolman universe, the lifetime of each cycle Ln is therefore the same, and the age of

the universe is infinite.

Another important feature of this model is the possibility of a smooth and non-

singular big crunch/big bang transition. If all we had was the four–dimensional

theory, the situation would be no better than in the Tolman universe. However, the

four–dimensional effective theory is only a kind of projection of the higher dimen-

sional theory. In this viewpoint, there are no curvature singularities: there is only

an (time–dependent) orbifold singularity. String theory has made sense of orbifold

singularities similar to, though not identical to, the one appearing when the branes

come together. Much work has been done developing the precise matching prescrip-

tion for fields across t = 0 [113, 114]. Nonetheless some controversy remains regarding

whether it is possible to smoothly pass through this transition [77, 85, 86, 119].

In this model, a spectrum of nearly scale invariant density fluctuations is produced.

It is more convenient to see this from the four dimensional perspective. Here, there is
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a potential V (φ) for the scalar field φ. This has the higher dimensional interpretation

of an attractive force between the orbifold planes. The condition for a nearly scale

invariant spectrum of density fluctuations is that, while modes of cosmological interest

are leaving the horizon, we have

1

2
φ̇2 ≈ −V (φ) (3.13)

or w � 1 [17, 52]. The cyclic model differs from inflationary models in that it

produces a very small spectrum of gravitational waves at observable scales [16, 79].

3.2 Chaos and a w > 1 Component

In the previous chapter (and especially in Section 2.3) we have discussed perfect fluids

with w ≤ 1. We found that fluids with w < 1 inevitably scale away to irrelevance

as the universe contracts, and thus do not affect the emergence of chaos near the big

crunch. Fluids with w = 1, such as a free scalar field, scale just rapidly enough to

affect the emergence of chaos in certain cases. We will now explore the case where

w > 1. The salient feature here is that it is now possible to eliminate chaos completely

near the big crunch [43].

Fortunately most of the machinery that we require to discuss this result has al-

ready been developed in Chapter 2, and so we need only extend the results quoted

there to the w > 1 case. In Section 3.2.1 we discuss the flat, anisotropic solution

with a w > 1 component. In Sections 3.2.2 and 3.2.3 we discuss the stability of this

solution to gravitational and p–form chaos. In these sections we show that all of the

forms of chaos we have discussed can be eliminated by including a component with

w > wcrit, where wcrit > 1 and depends on the theory under consideration.
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3.2.1 The w > 1 Bianchi–I solution

The effects of a w > 1 component are most readily seen in the context of the flat

Bianchi–I metric (2.16) first introduced in Section 2.3. For convenience, we will repeat

some of the formulae from that section here. The metric (2.16) is

ds2 = −dt2 + a(t)2

d∑
j=1

exp (2βj) dx2
j (3.14)

and the corresponding effective Friedmann equation (2.22) resulting from this metric

is

d(d− 1)

2

(
ȧ

a

)2

=
ρ

(A)
0

a2d
+
∑
i

ρ
(i)
0

ad(1+wi)
, (3.15)

where ρ
(A)
0 is a constant measuring the anisotropy in the metric. Here we have only

a single fluid with equation of state w sourcing the gravitational field, and thus we

will suppress the summation over multiple fluids in the following. The equations for

the βj result in

βj(a) = cj

(
d(d− 1)

2

)1/2 ∫ a

a′=1

[
ρ

(A)
0 + ρ0(a

′)d(1−w)
]−1/2 da′

a′
(3.16)

where we have chosen the constants of integration so that βj = 0 when a = 1. So far,

everything has been completely general for any w greater or less than unity.

In Chapter 2 we considered matter components with w < 1, for which the matter

term in (3.15) became irrelevant as a → 0, and the effective Friedmann equation is

dominated by the anisotropy term. When a w > 1 component is present, the opposite

occurs; it is the anisotropy term that becomes negligible, and the Friedmann equation

is dominated by the perfect fluid term instead. In this case, as a→ 0, we neglect the

anisotropy term in (3.15) and (3.16) to find

a(t) =

(
t

t0

)2/[d(1+w)]

, (3.17a)

βj(t) =
cj

w − 1

[
2

ρ0

(
1− 1

d

)]1/2
[(

t

t0

)(w−1)/(w+1)

− 1

]
(3.17b)
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The integration constants in this solution are chosen so that a = 1 and βj = 0 at a

fixed reference time t0.

This solution possesses the surprising feature that, unlike the w < 1 case, the

universe becomes more isotropic as the big crunch is approached. The key is the

exponent appearing in the expression for βj(t) in (3.17). When w < 1 this exponent

is negative, and thus βj →∞ near the big crunch. On the other hand, when w > 1,

the exponent is positive, and thus βj remain finite as t → 0. Similar behavior may

be seen in the general solution for βj(a) given in (3.16). The βj will remain finite so

long as the integral in (3.16) converges, which requires w > 1.

3.2.2 Gravitational Stability

Using our analysis of the w < 1 case as a template, we now show that the inclusion

of a w > 1 component automatically ensures that the GSCs are satisfied. In our

discussion of the free scalar field (see Section 2.5), we found that this field allowed an

isotropic solution to the Kasner conditions (2.37), and this isotropic solution satisfied

the GSCs. The fact that including a w > 1 component drives the universe to isotropy

suggests that we might eliminate chaos through a similar mechanism.

In Section 2.4, we derived the GSCs by using the generalized Kasner metric (2.25),

which is modeled on the Bianchi–I metric (2.16). The generalized metric is obtained

by starting with the exact Bianchi–I solution and replacing

dxj → ωj(x) = ωjk(x)dxk. (3.18)

The GSCs arise as the conditions that the resulting metric is a leading–order approx-

imation to the exact solution of the Einstein equations. As in the analysis given in

Section 2.4, terms in the Einstein equations may be divided into those arising from
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time derivatives and those involving spatial derivatives as

A(x)

t2
+
∑
J

BJ(t,x) = 0, (3.19)

which should be compared to (2.27). The condition that the generalized Kasner

metric is the leading–order approximation to the exact solution is that the BJ terms

can be neglected as t→ 0, or equivalently that

t2BJ(t,x) → 0 as t→ 0. (3.20)

If one computes the terms BJ , one finds they are all of the form

BJ(t,x) =
BJ(x)

a(t)2
exp (2βi − 2βj − 2βk) (3.21)

where J = {ijk} is a tuple of indices, not necessarily all distinct. Now using this

result in our condition (3.20) we find

t2BJ(t,x) ∼ t2q where q = 1− 2

d(1 + w)
> 0. (3.22)

Because the exponent q is positive, then when w > 1 we are guaranteed that the

B–terms will remain subdominant all the way to the big crunch. Therefore, chaos

will be absent in these models.

3.2.3 p–form Stability

We have now demonstrated that in the case of pure Einstein gravity, a matter com-

ponent with w > 1 can ensure that chaos is absent during a collapsing phase. In

this section, we will consider the case where other forms of matter, specifically the

p–form fields introduced in the last chapter, are present. We will show that a matter

component with w > 1 can still ensure stable contraction. In the purely gravitational

case, we found that w need only be larger than unity to eliminate chaos. In the

p–form case, we will find a threshold equation of state, denoted wcrit(p, λ), such that
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chaos is eliminated for w > wcrit(p, λ). If many p–forms are present, then chaos will

be absent if w exceeds the largest wcrit. Showing this to be the case, and finding the

critical w, is the purpose of this section.

Essentially, the presence of a w > 1 component can eliminate p–form chaos because

it drives the universe to isotropy. Recall that p–forms in an anisotropic universe

promote chaotic behavior for two essential reasons. First, the p–form stress energy

tensor is anisotropic, and thus it tends to enhance anisotropy of the gravitational

background if its energy density dominates. Secondly, the energy density of different

p–form components grow at different rates, depending on precisely which spatial

directions appear in the indices associated to each component. Therefore, anisotropy

can enhance the growth of the energy density in some p–form components.

There are several possible cases we can consider. For example, we have the choice

of whether:

• Case 1 : The p–forms are coupled to the w > 1 component only through the

background spacetime. That is, we introduce a perfect fluid component ρ with

w > 1 and study the dynamics of p–form fields on the resulting spacetime.

• Case 2 : The p–forms are directly coupled to the w > 1 component. This is

the case if the w > 1 component is realized as a scalar field that couples to the

p–forms.

The problem with the first case is that once the background is fixed, there is an

additional free parameter. This parameter is the Kasner exponent associated to the

scalar field exponentially coupled to the p–forms as in (2.34).

We will treat case 2, which has the greatest logical simplicity. We assume there

is a single scalar field φ, which satisfies two conditions:

• Condition 1 : φ provides the w > 1 component,
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• Condition 2 : φ is the only scalar field coupling to p–forms.

The first of these conditions gives the time dependence of the field φ. A scalar field

φ with potential V (φ) is tightly constrained by the equations of motion for φ, and

requirement that its total stress–energy tensor has a given fixed w. The general

solution with these requirements is the scaling solution, given by

a(t) = (t/t0)
2/[d(1+w)] , (3.23a)

φ(t) = σ1pφ ln (t/t0) + φ0, (3.23b)

V (φ) = V0 exp [Aφσ1(φ− φ0)] (3.23c)

where

p2
φ =

2

1 + w

(
1− 1

d

)
= (d− 1)t0H0, (3.24a)

V0 =
1− w

1 + w
·
p2
φ

2t20
=
d(d− 1)

4
H2

0 (1− w), (3.24b)

Aφ = − 2

pφ
, (3.24c)

and we understand pφ to be defined by the positive root. We have introduced the

parameter H0 = H(t0). The parameter σ1 = ±1 determines whether φ is increasing

or decreasing as we approach the big crunch; for σ1 = +1, φ → −∞ at the crunch.

Otherwise, the space of solutions is parameterized by a reference time t0, and a

reference field value φ0. We will take φ0 = 0 for simplicity in the following, since

different values of φ0 do not affect our results. Note that when w = 1 the potential

vanishes and this solution reduces to that given in (2.37).

With these in hand we may now turn to the stress–energy tensor for a p–form that

couples with coupling constant λ to the scalar field φ. Focusing on the 00 component

of the stress–energy tensor for the p–form (2.42), and resolving it into electric and
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magnetic components we obtain

ρ =
eλφ

(p+ 1)!

[
p+ 1

2
F 0j1···jpF 0k1···kpgj1k1 · · · gjpkp

+
1

2
Fm1...mp+1Fn1...np+1g

m1n1 · · · gmp+1np+1

]
(3.25)

It is possible to simplify this further, using the solutions to the equations of motion

for the p–form field derived in the previous chapter, eqs. (2.40) and (2.41), along

with the solutions for the scalar field and scale factor (3.23) and (3.24). Normally the

presence of metric factors in the stress–energy tensor would require us to include the

individual scale factors along the different spatial directions. However, in the w > 1

case, we know that the universe is driven to isotropy, and so we can take the metric

to be that of an isotropic FRW universe.

As in some of the other arguments we have made, the substitution of the isotropic

metric into the p–form stress–energy tensor is really more of a consistency check. If

the p–forms come to dominate, we know that the universe is driven to anisotropy and

the background metric will not be of the isotropic FRW type. So, we assume that the

p–forms do not dominate, and consequently we can take the background spacetime

to be FRW. Next we check that the p–forms do not come to dominate. If they do,

then our starting assumption was inconsistent.

Now, assuming the universe is isotropic and writing everything in terms of a and

w, we find that the electric energy density ρ(E) and magentic energy density ρ(B) scale

as

ρ(E) = ρ
(E)
0 (t/t0)

pE , ρ(B) = ρ
(B)
0 (t/t0)

pB (3.26)

where ρ
(E,B)
0 are the energy densities at t0. The other components of the stress–energy

are related to ρ(E,B) through constant factors of order unity, and thus scale identically.
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p λmin λmax

0 −
√

8/3 0

1 −
√

2/3
√

2/3

2 0
√

8/3

Table 3.1: The stable range for the coupling λ between a p–form field and a scalar
field. For couplings in the range λmin < λ < λmax, a p–form field will not lead to
chaos in an isotropic universe dominated by φ. The table assumes σ1 = +1: for the
opposite sign of σ1, take λ→ −λ in the table.

The exponents pE,B are given by

pE = − 4(d− p)

d(1 + w)
− λσ1

[(
1− 1

d

)
2

1 + w

]1/2

, (3.27a)

pB = − 4(1 + p)

d(1 + w)
+ λσ1

[(
1− 1

d

)
2

1 + w

]1/2

, (3.27b)

(3.27c)

or, for the specific case d = 3, we have

pE = − 4(3− p)

3(1 + w)
− λσ1

2√
3(1 + w)

, (3.28a)

pB = − 4(p+ 1)

3(1 + w)
+ λσ1

2√
3(1 + w)

(3.28b)

These equations obey the electric/magnetic duality for p–forms, which takes the

Hodge dual of the field strength

Fp+1 → (∗Fp+1) = F̃d−p (3.29)

and thus takes p + 1 → d − p. This duality also exchanges electric and magnetic

components of the p–form field, and takes λ→ −λ.

Now that we have the dependence of the electric and magnetic energy densities

we can find the conditions that ensure that they remain subdominant. Based on our

discussion in Sections 2.4 and 2.5, this condition is that these energy densities scale



52

more slowly than 1/t2. Thus, the new p–form stability conditions are

pE > −2 and pB > −2 and w > 1. (3.30)

When these conditions are satisfied for all p–forms present in the theory, p–form chaos

is guaranteed to be absent. There are several equivalent ways to view this result, as

we will discuss below.

One way to view the result (3.30) is as a a constraint on the allowed values of λ

when w is fixed. This case is relevant, for example, when the theory contains a free

scalar field whose potential is neglected. (This condition is actually more general than

it may at first appear, as we discuss in Section 4.2.1. For example, if the potential for

the scalar field is positive–semi–definite, it becomes irrelevant near the big crunch and

the scalar field behaves as a free field.) The free scalar is a matter component with

w = 1, and in a universe with this background equation of state one finds the ranges

summarized in Table 3.1. If these inequalities are satisfied for all of the p–forms

present in the theory, then the contraction to the big crunch will be non–chaotic.

Another viewpoint on the result (3.30) is as a constraint on the lower bound on the

possible values of w for which the contraction is assured to be stable. This perspective

is more useful from model–building perspective; for example, in a theory whose p–

form spectrum and couplings are fixed, it gives a constraint on the potentials used to

generate a w > 1 phase. We will denote the minimum equation of state for a p–form

with coupling λ by wcrit(λ, p). Theories also have a wcrit, which is the maximum

of the wcrit(λ, p) for all of the p–forms in the theory. These do not have a simple

algebraic expression, but are shown in Figure 3.4 for the case d = 3.

There are several extensions that we have not discussed here, but may be analyzed

using the techniques employed in this work:

• Here we have assumed that a single scalar couples universally to all p–forms in

the theory, and the same scalar is responsible for generating a w > 1 component
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Figure 3.4: Stable ranges for λ for p–forms in d = 3. Magnetic components are
unstable below the lower curves, electric ones above the upper curves. The figure
assumes σ1 = +1: for the opposite sign of σ1, take λ→ −λ in the figure.

through its potential. Another possibility is that the w > 1 component is

uncoupled to the p–forms in the theory. Then, the constraint will include a

combination of w, λ, and pφ for the universally coupling scalar.

• In some models we might expect many scalars, with each p–form coupling to

some linear combination of them. This is the generic situation after compacti-

fying a theory with p–forms to a lower–dimensional effective theory. Again, the

constraints will be more involved than in the case considered here.

We will not consider these extensions in the current work, since they can be studied

using the same techniques employed herein. Furthermore, for applications to the

cyclic universe model, the case studied here is sufficient.

3.2.4 Summary

In this section we have seen that the addition of a matter component with w > 1 can

significantly affect the chaotic properties of a theory. For a theory without p–forms,
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the shift in chaotic behavior occurs when w is larger than the threshold value of unity.

For theories with p–forms, where the w > 1 component is realized by a scalar field

φ with potential, the threshold value of w is a function of their couplings to φ which

we have called wcrit(λ, p).

The extension of these results to a time–dependent equation of state is known,

and is discussed in [43]. This is especially relevant for realistic cosmological models,

for which we are not guaranteed that w will be constant in time. One finds that

if w → w̃ as a → 0, chaos is absent provided that w̃ > wcrit, and thus the time

dependence has little effect on the conclusions presented here.

The introduction of a w > 1 component, realized by a scalar field, presents a

puzzle. It is known that the gravitational positive energy condition may be violated

by scalar field systems with exponential potentials of certain types [14, 66]. These

potentials are precisely those that give w > 1 scaling solutions. This may signify

an instability in models with this kind of matter source, and may also make w > 1

components difficult to construct in supersymmetric models. Simple modifications of

purely exponential potentials (e.g., by factors polynomial in φ) still lead to violations

of the positive energy condition [43]. It is as yet unknown whether potentials can be

constructed that yield w > 1 and simultaneously satisfy the positive energy condition.

3.3 The View from Upstairs

In this section we will discuss the situation where our four–dimensional theory is part

of a model involving extra dimensions. We have in mind the cyclic model, where

we have a w > 1 component that arises as the volume modulus of a single extra

dimension. The requirement that the four–dimensional effective theory contains a

component with fixed w has some interesting consequences for higher–dimensional

theory. In this section we will focus on the case where the component is realized
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as the volume modulus of a general Kaluza–Klein (KK) compactification, and show

that this requirement allows one to bootstrap from the four–dimensional to higher

dimensional descriptions. We find that a solution with a given w in four dimensions

can only result from an discrete family of equivalent higher–dimensional geometries.

Specifically, using the bootstrap, we will describe:

• The volume of the higher–dimensional space,

• The required stress–energy in the higher–dimensional space,

• The relation between the Einstein frame proper time in the lower and higher–

dimensional spaces (this possesses some unusual features and big rip singulari-

ties in some cases)

• A relationship to a duality of cosmological perturbation theory propsed in [17].

Again, the case where the scalar φ is the volume modulus is far from the only possi-

bility: however, it is the simplest possibility and enables us to derive many concrete

results. In addition, this assumption is true in the cyclic model that forms the main

application of these results.

The relation between lower and higher dimensional spacetimes can be quite com-

plex. Specifically, different observers can view our four–dimensional spacetime as

either expanding or contracting. Furthermore, observers can disagree about whether

the big crunch occurs at a finite or infinite time in the future. Carefully navigating

these subtleties will be one of the main goals of this section. In Section 3.3.1 we will

give an overview of how KK reduction gives rise to these unusual features. In Section

3.3.2 we will derive the behavior of the metric in four and (4 + n) dimensions, find

the proper times until the big crunch/big bang, and give formulae for the higher–

dimensional stress–energy required to realize a w > 1 component in four dimensions.
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Most of our results are summarized in Table 3.5 and Figure 3.5 near the end of this

Chapter.

3.3.1 Features of the Kaluza–Klein Reduction

KK reduction can have some surprising features in a cosmological (time–dependent)

context. This comes about through the relationship of the effective four–dimensional

Planck length to the “fundamental,” higher dimensional Planck length. If the extra

dimensional space is a n–dimensional compact space, denote by L(4) the effective

four–dimensional Planck length, L(4+n) the (4 + n)–dimensional Planck length, and

Vn the volume of the extra dimensions. Then KK reduction yields the relation

L2
(4) = L2

(4+n)

(
Ln(4+n)

Vn

)
(3.31)

There are some important exceptions to this relation, particularly the “warped”

Randall–Sundrum type compactifications [100, 101, 102], but in this work we will

focus on classic KK models.

Suppose we follow the motion of two comoving test particles. The higher dimen-

sional observer measures the distance between them using rulers calibrated in units

of L(4+n), while the four–dimensional observer uses rulers calibrated by L(4). Let us

suppose that the distance between the points is constant in units of L(4+n), so the

universe appears static from this viewpoint. Using (3.31), we can readily see that

if Vn is decreasing, then L(4) is increasing: thus the “grid” of the four–dimensional

observer’s ruler is expanding relative to the (4 + n)–dimensional observer. Thus, the

four–dimensional observer will see the distance between the particle decrease, and the

universe will appear to be contracting. If Vn is increasing, then the four–dimensional

observer sees an expanding universe. Either way, the changing compactification vol-

ume leads to observers disagreeing on whether the four–dimensional universe is ex-

panding, contracting, or static!
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The relation (3.31) comes about since there are really two metrics in play in

KK reduction. Straightforwardly integrating out the higher dimensional degrees of

freedom results in a four–dimensional action of Brans–Dicke [19] form

SB−D =

∫
[f(φ)R(h) + Lm(φ, ψj, h) + · · · ]

√
−h d4x (3.32)

where f(φ) is a function related to Vn. Typically, in KK reduction it is simply the

volume of an extra–dimensional space. We will call the metric h appearing in this

action, where the Ricci scalar has a prefactor, the Jordan frame metric. This metric

is not uniquely determined, since we can do a φ–dependent conformal transformation

h̃µν = f̃(φ)hµν (3.33)

and thus define a new metric h̃µν , the action for which also has a function multiplying

the Ricci scalar, as well as some additional derivative terms in the “· · · ” part of (3.32).

There is however one distinguished metric we can use, the Einstein frame metric

gµν . This is defined by

gµν = f(φ)hµν (3.34)

The new action looks like

SE−H =

∫
[R(g) + Lm(φ, ψj, g) + · · · ]

√
−g d4x (3.35)

where now the · · · include derivatives of f(φ) which we will neglect for now. This is

the Einstein–Hilbert action for gravity coupled to other fields. The Einstein frame

metric is uniquely determined, and furthermore yields a canonical theory of gravity.

However, the metric appearing in the Lagrangian for matter fields Lm is a combination

of the Einstein frame metric and φ.

There is always an ambiguity in defining the proper metric in the case of Brans–

Dicke and similar theories. One can redefine the metric via a conformal transforma-

tion, and thus change the units of length (the effective Planck length) at will. In this
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work we take the point of view that the proper conformal frame is always the one

in which the action takes the Einstein–Hilbert form. This is the unique conformal

frame in which the Planck length is constant for all observers, and removes the ambi-

guity in Brans–Dicke type theories. It has the consequence that observers in different

dimensionalities may disagree on the Planck length and how it evolves with time.

The relation between the Planck lengths for observers in various dimensionalities is

summed up in the expression (3.31).

For the purposes of this section, it will be more convenient to work not with w,

but with the related variable ε defined by

ε =
3(1 + w)

2
(3.36)

where w = P/ρ as before. In addition, we will use conformal time τ defined through

the flat FRW metric

ds2 = a(τ)2
(
−dτ 2 + dx2

3

)
(3.37)

where τ0 is a fixed reference time. The conformal time metric is more convenient

since it has a a simpler behavior under KK reduction than the proper time. Finally,

in this section we will specialize to the four–dimensional case where d = 3.

The next tool we will require is the scaling solution, already introduced using

proper time and w in (3.23) and (3.24). If ε is constant, then the scaling solution in
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ε range w range a→ 0 as a→ 0 as infinite future

0 < ε < 1 −1 < w < −1/3 t→ 0 τ → −∞ τ → 0
1 < ε <∞ −1/3 < w <∞ t→ 0 τ → 0 τ →∞

Table 3.2: The ranges of conformal time τ and physical time t differ in the d = 3
FRW universe. In both cases the range corresponds to the expanding FRW phase.

terms of conformal time and ε is summed up by

a(τ) = (τ/τ0)
1/(ε−1) , (3.38a)

a(φ) = exp

(
σ1
φ− φ0√

2ε

)
, (3.38b)

φ(a) = σ1

√
2ε ln(a) + φ0, (3.38c)

φ(τ) = σ1
2ε

ε− 1
ln (τ/τ0) + φ0, (3.38d)

V (a) = (3− ε)H2
0a

−2ε, (3.38e)

V (φ) = (3− ε)H2
0 exp

(
−σ1

√
2ε [φ− φ0]

)
(3.38f)

where φ0 = φ(a = 1), and H0 is the proper time Hubble parameter when a = 1,

H0 =
1

εt0
=

1

(ε− 1)τ0
(3.39)

The parameter σ1 = ±1 may be freely chosen. It reflects the choice of φ → ∞ or

φ→ −∞ as a→ 0.

To relate the conformal time to the proper time, we have chosen conventions so

that a = 1 when t = t0 and also when τ = τ0. Furthermore,

t = t0 (τ/τ0)
ε/(ε−1) (3.40)

and

τ0 =
ε

ε− 1
t0. (3.41)

Therefore, while the big crunch/big bang at a → 0 always occurs at t = 0, it may
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occur at either τ = 0 or τ = −∞, depending on the value of ε. The situation is

summed up in Table 3.3.1.

3.3.2 Lifting w to Higher Dimensions

In this section, we describe in detail how the four– and (4+n)–dimensional spacetime

geometries are related. We will find that it is possible to make general statements

about the (4+n)–dimensional spacetime, when the four–dimensional model is under-

going a phase of inflationary or cyclic type.

Higher–Dimensional Metric

In this section, we will derive the expressions relating the metrics in higher and lower

dimensions as a function of ε. We can use this information to draw some general

conclusions regarding the behavior of the noncompact and compact spaces in the

higher–dimensional theory.

The basic method for obtaining a four–dimensional effective theory from a (4+n)–

dimensional one begins with assuming that the full spacetime is the product of a

four–dimensional noncompact space Σ and a compact n–manifold M, with metric

G
(4+n)
MN (xµ, ym) = h(4)

µν (x
µ)⊕ f (n)

mn(t, y
m), (3.42)

with G
(4+n)
MN the full metric, h

(4)
µν the metric on Σ, and f

(n)
mn the metric on M. One

then integrates the full action (including the Einstein–Hilbert term) over M. This

result universally includes Einstein gravity and a minimally coupled scalar field φ,

whose expectation value gives the volume of M. The field φ is the volume modulus

of this compactification. Obtaining this result requires that we define the Einstein

frame metric gµν by

gµν = exp (σ2cφ)hµν , (3.43)



61

and a the scalar field φ by

exp (σ2cφ) =
Vol(M)

Ln(4+n)

= L−n(4+n)

∫
M

√
f dny. (3.44)

The parameter σ2 = ±1 is arbitrary: depending on the sign of σ2, the limit φ→ +∞

corresponds to either M decompactifying, or going to zero volume. The constant c,

given by

c =

√
2n

n+ 2
, (3.45)

is chosen so that φ has a canonically normalized kinetic term in the four–dimensional

effective action. This action is

S =

∫
R(g)− (∂φ)2 − 2V (φ) + · · ·

√
−g d4x, (3.46)

where we have introduced, by hand, a potential V (φ). The action (3.46) is “universal”

in the sense that compactifications of higher–dimensional models with gravity always

yield an action of this form. In general, there will also be other terms that depend

explicitly on properties of M and on other matter fields that are present.

Now we can find the behavior of the compact space M. As discussed above, we

take the Einstein frame metric to be the conformal time FRW metric (3.37). To

simplify our formulae, without loss of generality, we will set φ(a0) = 0 in the scaling

solution (3.38). Now we can use (3.38) and (3.44) to find

Vol(M) = exp
(
σc
√

2ε ln a
)

(3.47)

Where we have defined

σ = σ1σ2. (3.48)

Thus, when σ = +1, the compactification manifold M goes to zero volume as a→ 0.

With σ = −1, the compactification manifold goes to infinite volume as a→ 0. Note

that only the combination σ of our two arbitrary signs σ1 and σ2 is relevant.
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σ ε A as a→ 0 Vn as a→ 0 model

+1 ε > εn A→∞ Vn → 0 cyclic
+1 ε = εn A→ const. Vn → 0
+1 ε < εn A→ 0 Vn → 0 inflationary
−1 all ε A→ 0 Vn →∞ all

Table 3.3: Four–dimensional scaling solutions, where the constant–w component is
realized as the volume modulus of an extra–dimensional compact manifold. Behavior
of the (4+n) dimensional scale factor A, and the volume Vn of the extra–dimensional
space, as the four–dimensional scale factor goes to zero.

Next we can turn to the behavior of the four–dimensional part of the (4 + n)–

dimensional Einstein frame metric. To preserve the FRW symmetry, the full higher–

dimensional metric GMN must be of the form

GMN : ds2 = A(τ)2
(
−dτ 2 + dx2

3

)
+ fmndy

mdyn, (3.49)

where A(τ) is the scale factor along the four noncompact spacetime dimensions, as

seen by the observer in the (4 + n) dimensional spacetime. Focusing on the behavior

of A(τ), and using (3.43) and (3.38), we find

A(φ) = exp

[(
1− σ

√
ε

εn

)
σ1φ√

2ε
,

]
(3.50)

where we have introduced the quantity εn, defined as

εn =
2

c2
= 1 +

2

n
, (3.51)

corresponding to

wn = −1

3
+

4

3n
(3.52)

This is an enormously useful parameter, whose significance will be clarified below.

Since (3.38) tells us that σ1φ → −∞ as a → 0, for any ε, we can use (3.50) to

reveal some general features of the relationship between A and a. Indeed, depending

on ε, σ, and n, the behavior in (4 + n)–dimensional frame can be very different from
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the four–dimensional Einstein frame description, as summarized in Table 3.3. When

σ = −1, then it follows that A→ 0 near the big crunch; thus, both a and A are either

expanding or contracting. When σ = +1, then one finds a richer range of possibilities.

These are determined completely by ε and the number of extra dimensions n. When

ε < εn, then Σ is contracting to zero as a → 0. When ε = εn, then the noncompact

space Σ is static in the (4 + n) dimensional Einstein frame. Finally, for ε > εn, Σ is

actually expanding to infinite scale factor as a→ 0.

These results enable us to make general statements about the behavior of models

in which φ seeds a scale–invariant spectrum of primordial fluctuations. Inflationary

universes have ε � 1, and thus ε < εn, while cyclic universes have ε � 1, and

thus ε > εn. Therefore, inflationary universes will always have A expanding from

zero volume at the big bang, which cyclic universes can have A either expanding or

contracting as the big crunch is approached, depending on the value of σ.

These general statements can change when ε varies with time, an essential feature

of realistic cosmological models [52, 79]. As an example, in cyclic models V (φ) is

often negligible near the big crunch, and thus ε → 3. Then, for the special value of

n = 1, the higher–dimensional Einstein frame scale factor is static as the big crunch

is approached. The statements in Table 3.3 should be taken as giving the behavior

of the (4 + n)–dimensional spacetime during the epoch in which the scale–invariant

primordial perturbation spectrum is being created. To understand how the spacetime

is evolving near the big crunch and after the inflationary or cyclic epochs, one must

have more information about the behavior of ε in these regimes.

Higher–Dimensional Proper Time

Unlike conformal time proper time transforms nontrivially under KK reduction. As

our next step, we derive the full form of the higher–dimensional metric. We can
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reparameterize a general time–dependent metric on the compact space by

fmn = B(τ)2fmn, det f = 1. (3.53)

and therefore encode all of the evolution of the compact metric in the effective scale

factor B. The scaling solution (3.38) enables us to immediately solve for A and B.

One finds

A(τ) =

(
τ

τ0

)α
, B(τ) =

(
τ

τ0

)β
, (3.54)

with,

α =
1− σ

√
ε/εn

ε− 1
, (3.55a)

β =
2σ

n

√
ε/εn

ε− 1
. (3.55b)

We can now see the role played by the parameter εn. From the formula for A, we

can see that when ε = εn, the scale factor for the noncompact space is static, when

viewed from the extra dimensional perspective.

Since we know the conformal time scale factor in four and (4 + n) dimensions,

we can work out the relationships between the proper times in the two frames. If we

denote these by t(4) and t(4+n), then we have

t(4+n)

t
(4+n)
0

=

(
t(4)

t
(4)
0

)E

, E = 1− σ
√
εεn

, (3.56a)

t
(4+n)
0

t
(4)
0

=

[
1− σ

√
εεn

]−1

(3.56b)

These lead to some unusual features, especially for models with accelerated expansion.

Our comments are summed up in Table 3.4.

• Four–dimensional de Sitter : First consider the pure de Sitter limit, where

ε = 0. Some of our formulae break down at this point because the proper
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model σ ε ∆t(4+n) to a = 0 ∆t(4+n) to a = ∞

de Sitter +1 ε = 0 ∞ ∞
inflationary +1 0 < ε < 1/εn ∞ finite

+1 ε > 1/εn finite ∞
all −1 ε > 0 finite ∞

Table 3.4: Proper time in the higher dimensional Einstein frame. Note the unusual
feature that observers for 0 < ε < 1/εn have an infinite proper time from the big
bang, but a finite proper time to future infinity.

time four–dimensional scale factor is an exponential instead of a power law.

Nonetheless, we have

a(τ) = A(τ) =

(
τ

τ0

)−1

, τ0 = −t0,
τ

τ0
= exp

(
− t

t0

)
(3.57)

with τ ∈ (−∞, 0) and t ∈ (−∞,+∞). The proper time coordinates are identical

in four and (4 + n) dimensions. The full metric in (4 + n) dimensions is

ds2 =
1

τ 2
(−dτ 2 + dx2

3) + dy2
n, (de Sitter) (3.58)

Thus the extra dimensions remain static during pure de Sitter expansion in the

four–dimensional effective theory. One may understand why this is so by noting

that in the ε→ 0 limit, the scalar field φ is nearly static. Since it represents the

volume of the compactification manifold, we see that it must be static as well.

• Four–dimensional inflationary : Next let us consider an inflationary uni-

verse, with ε� 1 but ε > 0. When σ = +1, we can readily see from (3.56) that

as t(4) ∈ (0,∞) t(4+n) ∈ (−∞, 0). Therefore, in the four–dimensional theory,

the big crunch/big bang occurred at finite proper time in the past, while in the

(4+n)–dimensional description it occurred at an infinite time to the past. The

metric, to lowest order in ε, is

ds2 =
1

τ 2−2γ
(−dτ 2 + dx2

3) + τ−4γ/ndy2
n, γ = σ

√
ε

εn
(inflationary) (3.59)
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In this case the noncompact directions are undergoing nearly de Sitter evolution,

and the compact directions are either expanding or contracting depending on

the sign of σ.

• Four–dimensional cyclic: We have ε� 1. The ranges of proper time in the

lower and higher–dimensional theories are the same. In this limit, the (4 + n)–

dimension metric is,

ds2 = τ−2γ(−dτ 2 + dx2
3) + t(4/n)γdy2

n, γ =
σ

√
εεn

, (3.60)

For σ = +1, this represents the noncompact directions expanding as the big

bang/big crunch is approached, and contracting compact directions.

Higher–Dimensional Stress–Energy

We now wish to find the (4+n)–dimensional physics that leads to the scalar field with

potential in four dimensions. Specifically, we will find the form of the stress–energy

tensor TM
N in (4 + n) dimensions, corresponding to the scaling solution (3.38). The

stress–energy is calculated assuming that the (4 + n)–dimensional metric takes the

form

fmn = B(τ)2δmn (3.61)

corresponding to the homogeneous and isotropic contraction of flat extra dimensions.

One may just as well carry out our analysis for cases in which M is not Ricci flat,

and one finds terms proportional to the curvature of M added on to our results.

With the time evolution of the (4 + n)–dimensional spacetime in hand, we may
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now substitute in the (4 + n)–dimensional Einstein equations, which read

G0
0 = − 1

A2

[
3

(
A′

A

)2

+
n(n− 1)

2

(
B′

B

)2

+ 3
A′

A

B′

B

]
, (3.62a)

G3
3 = +

1

A2

[
−2

A′′

A
− n

B′′

B
+

(
A′

A

)2

+
n(n− 1)

2

(
B′

B

)2

+ (2n− 3)
A′

A

B′

B

]
,

(3.62b)

Gn
n = +

1

A2

[
−3

A′′

A
− (n− 1)

B′′

B
− (n− 1)(n− 2)

2

(
B′

B

)2

+ (n− 1)
A′

A

B′

B

]
,

(3.62c)

where we have set L(4+n) = 1. Using the Einstein equations, we find the stress energy

tensor is diagonal, with components,

T0
0 = [τ(ε− 1)A]−2 (−3 + ε), (3.63a)

T3
3 = [τ(ε− 1)A]−2 (−3 + ε), (3.63b)

Tn
n = [τ(ε− 1)A]−2 (−3 + ε) [2− σ

√
εεn] . (3.63c)

One can see that the stress–energy tensor vanishes for the unique value of ε = 3,

corresponding to a free massless scalar field in the four–dimensional theory. This is

as we expect, since KK reduction of vacuum Einstein gravity on a Ricci–flat manifold

M yields an effective action without potential for φ.

We now proceed to discuss in detail some cases of interest:

• Four–dimensional de Sitter and inflationary : The stress–energy tensor

corresponding to either the de Sitter or inflationary universe limits is, in the

small ε limit

TM
N = − 3

τ 2γ


1

13

2n

 , (3.64)
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ε range τ range t(4+n) A as a→ 0 B as a→ 0 notes

0 (−∞, 0) (−∞,+∞) 0 const. 1
0 < ε < 1/εn (−∞, 0) (−∞, 0) 0 0 1
ε = 1/εn (−∞, 0) (−∞,∞) 0 0 2

1/εn < ε < 1 (−∞, 0) (0,∞) 0 0
ε = 1 (−∞,∞) (0,∞) 0 0

1 < ε < εn (0,∞) (0,∞) 0 0
ε = εn (0,∞) (0,∞) const. 0
εn < ε (0,∞) (0,∞) ∞ 0

Table 3.5: A summary of some of our results. See also Tables 3.3.1, 3.3, and 3.4.
We have assumed σ = +1 throughout, as well as taking (0,∞) as the range of t(4)

(except in the de Sitter case). We can see that 1/εn is the threshold for a sensible
higher–dimensional stress energy (with no “big rip”) and εn the threshold between
expansion and contraction in the higher dimensional theory. Notes: (1) stress–energy
has−P > ρ along some directions, (2) stress–energy is that of a cosmological constant.

where subscripts denote the number of repetitions of a single factor. One can

see that, despite the fact that the extra dimensions are static, there is a nonzero

pressure along the compact directions.

• Four–dimensional cyclic: For cyclic universes, The stress energy tensor is,

TM
N =

1

ετ 2


1

13 [
−σ√εεn

]
n

 , (3.65)

Unlike the inflationary case, σ appears throughout these formulae. Furthermore,

in contrast to the inflationary case, the pressure along the compact directions

can be either positive (σ = +1) or negative (σ = −1).

Relation to a Duality of Cosmological Perturbation Theory

Our results provide a geometric realization of a duality in cosmological perturbation

theory, introduced in ref. [17]. The duality exchanges an expanding for contracting
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universe, and switches ε→ 1/ε. The range of τ is τ ∈ {−∞, 0} in both cases, to ensure

that modes are exiting the horizon. Remarkably, these dual models produce density

perturbations (though in different gauge–invariant variables) whose spectral indices

are precisely equal, and are thus indistinguishable at late times by measurements of

the scalar power spectrum.

We find this symmetry in our results as well. From (3.55), one can see that the

expression for β is invariant under the combined operation,

ε→ 1/ε, σ → −σ. (3.66)

Since the range of τ does not change, we see that the behavior of the extra dimensional

volume is identical in both cases. Note that, as in [17], this duality holds for any ε. As

in the four–dimensional case considered by these authors, the behavior of a (and, for

us, A) is not invariant under this transformation, as may be seen from the expression

for α in (3.55). However, the dual universes in the four–dimensional description share

a common evolution of M with time in the (4 + n)–dimensional view.

A curious feature of our realization of this duality is the sign flip for σ in (3.66).

Its presence may be understood by considering the solution for φ,

φ(τ) =

√
2ε

ε− 1
ln(τ). (3.67)

This expression is not invariant under ε→ 1/ε, but instead acquires a minus sign. In

a purely four–dimensional situation, this minus sign is irrelevant, as it is correlated

to a minus sign in the expression for V (φ). In the intrinsically (4 + n)–dimensional

case discussed here, it has an important physical role coming from φ representing the

volume of M. To obtain the identical behavior for M, we must therefore flip the sign

of σ. This change does not affect the four–dimensional effective theory, and so the

duality remains exact.
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Figure 3.5: A plot of some special equations of state for σ = 1. Here, w is the
four–dimensional equation of state. The notations above and below the lines refer
to the (4 + n)–dimensional Einstein frame metric. The top line is defined by the
w corresponding to εn, and the bottom by 1/εn. For large n, both w asymptote to
w = −1/3.

3.4 Summary

In this Chapter we have described how introducing a matter component with and

ultra–stiff equation of state can eliminate chaos from gravitational systems. Each

theory with gravity defines a wcrit, and when w > wcrit, chaos is absent. For pure

Einstein gravity in any dimension, wcrit is unity, while theories with p–forms may

require a larger (but always finite) wcrit. This mechanism can eliminate chaos in any

theory with p–form matter, and thus in particular can stabilize models based on the

low–energy effective actions of string theories.

The primary application of this technique is to the recently proposed cyclic model,

for which wcrit = 1. It is interesting that the model already requires a component
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with w > 1 in order to generate a scale–invariant spectrum of density perturbations.

Thus, the results of this chapter show that chaos is naturally absent in this model.

We have also considered the problem of realizing the w > 1 component in mod-

els with extra dimensions. Again, we are motivated by the cyclic model, for which

the w > 1 component is realized through the volume modulus φ and its potential

V (φ) in four dimensions. Remarkably, once the equation of state is fixed in the

four–dimensional theory, it is possible to reconstruct the higher dimensional geome-

try up to a discrete family of equivalent geometries. Some features of these results

are summarized in Table 3.5 and Figure 3.5. A better understanding of the higher

dimensional realization of the w > 1 component may be useful for calculations of the

perturbation spectrum in the cyclic model. Since we have derived results for arbitrary

equation of state w, our results can also assist in constructing models of inflation or

dark energy using higher–dimensional physics.



Chapter 4

Chaos and Compactification

As yet this world was not, and Chaos wild
Reigned where these heav’ns now roll, where earth now rests
Upon her center poised...

Paradise Lost Book V, lines 577–579, [90]

In previous chapters, we have discussed the emergence of chaos near a big crunch,

and described a mechanism by which chaos can be eliminated. These results were

fundamentally classical, and implicitly assume that Einstein’s equations will be valid

arbitrarily close to the big crunch. However, one expects classical general relativity

to break down at a small but finite time before the big crunch is reached, perhaps

of order a Planck time tPL or string time tS. After this point, quantum effects

become significant and we can no longer trust the classical physics that predicts a

chaotic approach to the big crunch. Provided the universe evolves smoothly and non–

chaotically until tPL, it is conceivable that quantum gravity effects allow the universe

to pass smoothly through the big crunch and into a subsequent expanding phase.

Thus in this chapter we take the point of view that chaos need not be completely

eliminated from the classical equations of motion all the way to t = 0, since these

72
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equations break down before then. Instead, we need only ensure that chaos is sup-

pressed or “controlled” until the universe enters the Planck regime. In this chapter

we describe a mechanism by which this can be accomplished for theories with extra

dimensions and p–form matter. Unlike other mechanisms which rely on local fea-

tures of the theory (such as the matter content), this mechanism relies on global

features of the spacetime topology. For some extra–dimensional topologies, chaos

can be controlled until the universe enters the quantum regime. The selection rules

governing this mechanism depend on simple topological invariants of the extra dimen-

sions, namely the de Rham cohomology. A natural application of these results is to

the low–energy effective actions of superstring models, and we give specific solutions

below.

This chapter is organized as follows. We give a heuristic discussion of this mech-

anism, and its range of validity, in Section 4.1. In Section 4.2, we describe how the

mass terms that arise from compactification modify the growth of the energy den-

sity in dangerous modes. We also introduce the relations between properties of the

compactification manifold M and the mass spectrum of various fields in the four–

dimensional action. Using these results, we go on to develop a set of selection rules in

Section 4.3. These rules describe a subset of the stability conditions that, if satisfied,

lead to absence of chaos. We next describe specific solutions with controlled chaos. In

Section 4.4 we describe manifolds and choices of Kasner exponents that control chaos

in vacuum Einstein gravity, and Einstein gravity with perfect fluid matter satisfying

w < 1. In Section 4.5 we find simple examples of solutions for string models with

N = 1 supersymmetry. Section 4.6 summarizes a computer search of the Kasner

sphere and some properties of the more general space of solutions it revealed. We

conclude in Section 4.7.

This chapter is a summary of published work by the author [120], except for the
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contents of Section 4.6 which are unpublished.

4.1 Introduction

The guiding principle behind controlled chaos is that, in a fully uncompactified model,

one finds that chaos arises from dangerous modes that are nearly spatially homoge-

neous along all dimensions. The energy density in these modes scales rapidly enough

to dominate the universe and cause chaos. For some choices of the compactification

manifold M, there are topological obstructions that forbid spatially homogeneous

modes along the compact directions. In the four–dimensional effective theory, this is

reflected in the appearance of large mass terms for the associated degrees of freedom.

If it is possible to obstruct all of the dangerous modes, then chaos is controlled.

The key to the results in this chapter is that this control of the mass spectrum

in four dimensions can allow us to change the dynamics of dangerous modes. Far

from the big crunch, the four–dimensional metric is that of a nearly homogeneous and

isotropic FRW universe, with small perturbations to the metric, matter and KK fields,

and with the Hubble radius H−1 much larger than the compactification length scale

Rc. Dangerous perturbations that formerly led to chaos acquire masses of order the

inverse of the compactification length scale, m ∼ 1/Rc. The presence of mass terms

slows the growth of energy density in these fields, and prevents them from becoming

cosmologically relevant so long as the Hubble parameter is larger than their mass.

When the time until the big crunch becomes less than Rc, or equivalently m < H,

the suppression ceases to operate, and the energy density in the dangerous modes can

grow at their usual unsuppressed rate. However, since the energy density in these

heavy modes has been greatly suppressed relative to light modes up to this point,

they cannot dominate the energy density until the universe has contracted further by

an exponential factor. Typically, the massive modes do not dominate before we enter
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the quantum gravity regime at roughly tPL, at which point the classical evolution

equations cannot be trusted. In these circumstances, we say that chaos has been

“controlled.”

Controlling chaos through compactification is especially relevant for models based

on string– or M–theory, in which the compactification of extra dimensions is an es-

sential element. An excellent example is given by eleven–dimensional supergravity,

whose bosonic sector contains a four–form field strength G4 in addition to the metric.

Without the four–form, pure eleven–dimensional gravity is not chaotic. With the

G4, the theory is chaotic. For some choices of the topology of the compactification

manifold, it is possible to remove the light modes of the four–form field. For these

topologies, the previously chaotic eleven–dimensional supergravity theory will behave

like the non–chaotic eleven–dimensional pure gravity theory.

4.2 Dynamics and Origin of Massive Modes

In this section, we describe the details of the controlled chaos mechanism. The salient

feature of controlled chaos is that dangerous modes are suppressed, relative to 1/t2,

for an adjustable epoch of cosmic history. (See Section 2.4 for an introduction to this

power–counting technique). In Section 4.2.1, we discuss how the growth of dangerous

modes is suppressed by mass terms, and estimate the suppression factor. We give a

simple argument based on a scalar field in an isotropic universe, leaving a discussion

of the general p–form case to Appendix B. Sections 4.2.2 and 4.2.3 describe the

mechanism by which compactification gives the required masses to p–form and metric

degrees of freedom. In both cases, massless modes in the lower dimension can only

exist when M admits p–form or vector fields with certain special properties. In

Section 4.3, we will use these results to give the “selection rules” that express the

correspondence between these special properties of M and the chaotic properties of
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the compactified theory.

4.2.1 Massive and massless modes

The suppression of massive modes in a collapsing universe may be illustrated using

the equation of state w, introduced in (2.10) and (2.11). It is defined as the ratio of

the pressure to energy density for a perfect fluid

w =
P

ρ
=

Tj
j

−T0
0 , (no sum) (4.1)

where we assume that we are in the comoving frame where the stress energy tensor

is diagonal. As we are primarily interested in cosmological models, it is sufficient to

consider the case where the universe is an isotropic, four dimensional FRW model

after compactification. Conservation of stress energy implies that the energy density

ρ of a perfect fluid with equation of state w depends on the scale factor a as

ρ = ρ0a
−3(1+w), (4.2)

where ρ0 is the energy density when a is unity. (See (2.15) and preceding formulae

for a discussion of this result in anisotropic universes).

In a contracting universe, the component with the largest w grows most rapidly,

and eventually dominates the total energy density. A homogeneous, massive scalar

field has a perfect fluid stress energy with equation of state

w =
φ̇2 −m2φ2

φ̇2 +m2φ2
. (4.3)

From equations (4.2) and (4.3) it is readily seen that the energy density of a massive

scalar field must scale more slowly than that of a massless one. A massless scalar

field will always have w = 1, and thus its energy density ρ scales with a as ρ ∼ a−6.

The energy density of a massive scalar will scale with an effective w between zero and

unity, depending on the ratio m/H as follows:
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Figure 4.1: Scaling of the energy density in dangerous modes before and after com-
pactification. Dangerous modes A scale faster than 1/t2 and eventually domiante the
energy density of the universe. When they gain a mass B, they scale more slowly
until m = H at time t1, and then resume their normal scaling behavior.

• m/H � 1 (far from the big crunch): The scalar field’s dynamics is dominated

by the mass term in its potential. Using 〈·〉 to denote the time average, the

virial theorem implies that 〈φ̇2〉 = m2〈φ2〉, and therefore w = 0 [118]. Thus the

energy density in the massive field scales as ρ ∼ a−3, far more slowly than the

massless field.

• m/H � 1 (near the crunch): the mass term has a negligible effect on the field’s

dynamics. In this limit, φ̇2 � m2φ2, and w approaches unity from below. In this

regime, the energy density in massive and massless fields will scale identically

with time.

This behavior is summarized in Figure 4.1. Although we have discussed only the

scalar case above, the same w = 0 scaling when m/H � 1 obtains for general p–form

fields, as discussed in Appendix B.
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Estimated Suppression Factors

Using this equation of state argument, we can estimate the exponential suppression

of the energy density in massive fields. It is important to emphasize that, while the

energy density in massive modes is always growing, it grows more slowly than the 1/t2

scaling required for the field to be cosmologically relevant. Therefore, if we wish to

estimate the importance of a given energy component, we should consider the ratio of

the energy density in the component to 1/t2. This quantity, t2ρ(t), may be thought

of as measuring the ratio of the energy density in a given component to the total

density, for

t2ρ(t) ∼ ρ(t)

H2
∼ ρ(t)

ρtot(t)
, (4.4)

where we have used Planck units. Only when t2ρ(t) is increasing as t→ 0 can a given

component grow to dominate the universe.

We begin by choosing a reference time t0, at the beginning of the contracting

phase. We consider a model where the four–dimensional effective theory begins to

contract with a background equation of state w, so that

a(t) = (t/t0)
2/[3(1+w)], (4.5)

where we have normalized a = 1 when t = t0. Combining this with (4.2), one finds

that for massive modes

t2ρ(t) =
[
t2ρ(t)

]
0
· (t/t0)2w/[1+w], (m/H > 1), (4.6)

where [t2ρ(t)]0 denotes t2ρ(t) evaluated at t0. This equation is valid up untilm/H ∼ 1,

when the mass terms are becoming irrelevant. Denoting by t1 the time at which

m = H, one finds

t1
t0

= RcH0, (4.7)

where we have taken m = 1/Rc. We then have[
t2ρ(t)

]
1

=
[
t2ρ(t)

]
0
· (RcH0)

2w/[1+w], (m/H ∼ 1). (4.8)
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This equation shows the suppression in the fractional energy density in massive modes

during the period in which m/H > 1. The suppression is controlled by the ratio of the

compactification length scale Rc to the Hubble horizon LH = 1/H0 at the beginning

of the contracting phase.

As we approach the big crunch, we have m/H < 1, and the dangerous modes can

grow as usual. We parameterize this growth by an exponent δ, so that

t2ρ(t) = (t/t1)
−δ [t2ρ(t)]

1
, (m/H < 1). (4.9)

when δ > 0, a mode will grow and eventually dominate the energy density of the

universe. One can see by comparing (4.9) to our discussion in Section 2.5 that δ is

merely twice the amount by which a given mode violates the stability conditions.

Typically, δ will be of order one. Now we define a time teq, at which the dangerous

modes have grown sufficiently so that the fractional energy density in dangerous

modes is equal to that at the beginning of the contracting phase, or

[
t2ρ(t)

]
eq

=
[
t2ρ(t)

]
0
. (4.10)

Using (4.8) and (4.9), we find

teq = t0(RcH0)
1+2w/[δ(1+w)] (4.11)

Finally, we define a time tdom, at which the dangerous modes formally dominate the

universe, corresponding to t2ρ(t) ∼ 1. Then one finds

tdom = teq
([
t2ρ(t)

]
0

)1/δ
. (4.12)

Chaos is controlled provided that the dangerous modes do not dominate before a

Planck time from the big crunch, corresponding to tdom < tPL.

Having established the formulae we will need for our estimate, we may now insert

reasonable values for our variables. Let us assume the contraction phase begins when
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m ∼ 1/Rc [t2ρ(t)]1 / [t2ρ(t)]0 teq/tPL

10−1 mPL 10−60 10−29

10−16 mPL 10−45 10−6

10−16 mPL 10−90 10−29

Table 4.1: Examples of the suppression of energy density in massive modes. The first
two entries assume the background equation of state w = 1, the last assumes w � 1.

the Hubble parameter is of order the present value H0 (as occurs in ekpyrotic and

cyclic models). Then, 1/H0 ∼ 1061 LPL. As a first example, we assume that w = 1

during the contraction as is characteristic of compactifications of Kasner universes.

A typical value for δ that arises from working with the p–form spectrum of string

models and gravity is δ = 2, although the precise value of δ will of course depend on

the specific model under consideration. If we take Rc ∼ 10 ·LPL, as an example, then

we find the suppression factor (4.8) at H ∼ m to be

(RcH0)
2w/(1+w) ∼ 10−60. (4.13)

The dangerous modes grow to have the same fractional energy density as they had

at the beginning of the contracting phase at the time

teq ∼ 10−29 tPL. (4.14)

Thus, the dangerous modes cannot grow to be even as relevant as at the beginning

of cosmic contraction, until the universe is well within the quantum regime. We

would need to approach even closer to the big crunch for these modes to dominate

the universe, but at this point we no longer expect our classical equations to be valid.

As another example, we consider a case with large compact dimensions, where m

is of order the weak scale, 10−16 MPL, which corresponds to taking Rc ∼ 1016 LPL.

Now we find that the suppression when the Hubble radius equals the compactification
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scale is

(RcH0)
2w/(1+w) ∼ 10−45, (4.15)

and

teq = 10−6 tPL. (4.16)

Again, we will be well within the quantum gravity regime before the dangerous modes

can potentially dominate.

If w � 1 during the contraction phase, as occurs in ekpyrotic and cyclic models,

the dangerous modes are suppressed by a much greater factor than above. For exam-

ple, let us reconsider the last example with Rc ∼ 1016 LPL, and take w ∼ O(10). We

have the suppression factor at H ∼ m given by

(RcH0)
2w/(1+w) ∼ 10−90, (4.17)

and the time at which the dangerous mode can grow to its original fractional energy

density is

teq = 10−29 tPL. (4.18)

The suppression is thus exponentially more powerful in the w � 1 universe.

Time–Dependent Mass

As a final relevant issue, note that we have taken the mass m of the dangerous

modes to be constant in time. Generally we expect that the mass m of a given

field will be time dependent. This occurs since the field’s mass is determined by

the compactification manifold M, and M will be evolving with time during cosmic

contraction. Let us say that the mass m(t) evolves as

m(t) = m0

(
t

t0

)b
(4.19)
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during the contracting phase, where for simplicity we take w = 1. Then, because the

energy density will go like ρ ∼ m/a3, we find that

t2ρ =
[
t2ρ
]
0

(
t

t0

)1+b

(4.20)

However, the time t1 at which m/H ∼ 1 is now

t1+b1 =
tb0
m0

, (4.21)

and therefore the suppression when m/H ∼ 1 is

[t2ρ]1
[t2ρ]0

= (H0/m0) ∼ (H0Rc,0), (4.22)

where Rc,0 is the characteristic length of M when t = t0. This is precisely the factor

found in the case where m is constant in time (4.8). The difference is that the time

t1, at which m/H ∼ 1, shifts. This shift compensates for the different growth rate of

ρ, with the net result that the suppression factor remains the same.

From the equations above, it is clear that there is a potential problem if b <

−1, which would lead to t2ρ increasing during the contracting phase. However, our

assumption that the universe is of Kasner type excludes this possibility. Field masses

m are related to the compactification length scale Rc by m ∼ 1/Rc. In a Kasner

universe, we expect that Rc ∼ tp, with p a Kasner exponent, or average of several

Kasner exponents. However, the Kasner conditions (2.5) or (2.36) imply that p ≤ 1,

and thus m must vary more slowly than 1/t. This implies that b ≥ −1, and so the

suppression operates as before.

4.2.2 The p–form spectrum

Having established that the massless modes are the only relevant modes near the

big crunch, we now describe how these massless modes are determined in terms of
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the compactification manifold M. The story is familiar from the study of higher–

dimensional models of particle physics [40, 54, 98] although we discuss some special

features of the time dependent situation which must be taken into account. A useful

feature of the p–form mass spectrum is that the existence of massless modes is de-

termined entirely by the topology of M, and not by its metric. This simplifies the

task of finding manifolds M that lead to controlled chaos, since we need only specify

their topological properties.

Time independent compactification

First, we will review the situation for the time independent case. For clarity, we will

neglect here the exponential coupling to the dilaton field, which amounts to an overall

multiplication by eλφ of the Lagrangian density. The coupling is fully accounted for

in the analysis given in Appendix B. We begin with the action for a p–form gauge

potential Ap (2.34) generalized to 4 + n dimensions

S = − 1

(p+ 1)!

∫
dAp · dAp

√
−G d4+nx, (4.23)

where Ap can depend on all coordinates, and has indices along both Σ and M

Ap = [Ap(x
µ, xm)]α1α2...αra1a2...ap−r

. (4.24)

The conventional compactification analysis begins with an expansion of the p–form

Ap as

Ap =
∑
r+s=p

∑
i

α(i)
r ∧ β(i)

s (4.25)

using a basis of s–forms β
(i)
s , with indices and coordinate dependence only along M

β(i)
s =

[
β(i)
s (xm)

]
a1a2...as

. (4.26)

The abstract index i labels the s–form under consideration, and when M is compact

it takes discrete values, infinite in number. The “coefficients” in this expansion are



84

r–forms α
(i)
r , that depend on the noncompact coordinates on Σ, and have indices

along Σ only

α(i)
r =

[
α(i)
r (xµ)

]
α1α2...αr

. (4.27)

It is convenient to choose the gauge d†β
(i)
s = 0, and select the β

(i)
s to be eigenfunctions

of the Hodge–de Rham Laplacian ∆ = dd† + d†d on M, with eigenvalues λ
(i)
s

∆β(i)
s = λ(i)

s β
(i)
s . (4.28)

The β
(i)
s are normalized so that∫

M
β(i)
s · β(j)

s

√
−f dnx = δij. (4.29)

Substituting the expansion (4.25) into the original action (4.23) results in

S = −
∑
i,s

1

(r + 1)!

∫ (
dα(i)

r · dα(i)
r + λ(i)

s α
(i)
r · α(i)

r

) √
−h d4x, (4.30)

where we have rescaled the α
(i)
r by a constant in order to canonically normalize the

kinetic terms. This demonstrates that a single p–form in 4+n dimensions yields many

r–forms α
(i)
r after compactification, whose masses m

(i)
r are related to the eigenvalues

λ
(i)
s by

(
m

(i)
r

)2

= λ
(i)
s . These are the Kaluza–Klein modes or KK modes. The operator

∆ has a positive semi–definite spectrum on manifolds which, likeM, have a Euclidean

metric. Therefore the effective masses are all real.

The (p−s)–forms with zero effective mass are determined entirely by the topology

of M, and not by its metric structure. As discussed above, massless (p − s)–forms

arise from s–forms βs satisfying ∆β
(i)
s = 0, conventionally termed harmonic forms

or zero modes. Hodge’s decomposition theorem [41, 94] states that the number of

harmonic s–forms is equal to the dimension of Hs (M), the sth de Rham cohomology

class of M. The dimension dimHs (M) is also known as the sth Betti number of M,

conventionally denoted bs(M). This is a topological invariant, which does not change
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Figure 4.2: Simple examples of cohomology in two dimensions, discussed in the text.
Some representative submanifolds, and the four–dimensional mass spectra for a p–
form with a single index along these spaces are shown.

under smooth deformations of M and its associated metric structure. The Poincaré

duality theorem [88, 89] gives a simple geometric interpretation of these cohomology

classes. Roughly speaking, for orientable M, the quantity dimHs (M) counts the

number of s–dimensional submanifolds that can “wrap” M, and cannot be smoothly

contracted to zero. In this counting, two submanifolds are considered equivalent if one

can be smoothly deformed into the other. Thus, for every inequivalent noncontractible

submanifold of M with dimension s, a p–form gives rise to a massless (p − s)–form

field after compactification.

Some examples of this construction are given in Figure 4.2. In the figure we focus

on b1 = dimH1 (X) for each space, and give the mass spectra for p–forms with one

index along the relevant manifold. The sphere S2 has b1 = 0, since any loop (one–

dimensional submanifold) can be smootly contracted to zero. The torus T2 has b1 = 2

since there are two independent submanifolds, labeled by a and b. The real projective

space RP2 (or Klein bottle) is obtained by taking the disk and identifying antipodal
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points. It is not orientable and is therefore unsuitable for KK compactification, since

one cannot integrate fields over RP2. It has b1 = 0, despite the fact that there is

a one–dimensional submanifold. This submanifold is not detected by cohomology

since the submanifold has the unusual property that if it wraps RP2 twice it can

then be contracted to zero. This example illustrates a property known as torsion

which is occasionally found in manifolds that are suitable for compactification, such

as some Calabi–Yau spaces. The nontrivial submanifold on RP2 is detected by the

fundamental group topological invariant π1RP2 = Z2, but this is not relevant to

p–form compactification.

Time dependent compactification

The case where the compactification manifold M changes with time introduces new

features, but in the end does not substantially modify the conclusions reached above.

The main difference is that it is no longer possible to assume that the eigenbasis

of forms β
(i)
s defined by (4.28) depends only on the compact coordinates xm. In

particular, the forms will depend on time. This introduces additional cross terms

which must be taken into account. Below, we will neglect the variation of M along

directions xM other than time. We denote by d|M the exterior derivative tangent to

the manifold M. Thus

dβ(j)
s = d|Mβ(i)

s + dt ∧ β̇(i)
s . (4.31)

We may now use our freedom to choose the basis modes β
(i)
s , and define the modes

β
(i)
s (t) with λ

(i)
s (t) > 0 to be the instantaneous eigenforms of the Hodge–de Rham

operator, restricted to act on M only

∆|Mβ(i)
s (t) = λ(i)

s (t)β(i)
s (t). (4.32)

We find it convenient to relax the requirement that the zero modes β
(i)
s (t) with λ

(i)
s = 0

be eigenforms of the Hodge–de Rham Laplacian. Instead, we will merely require that
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they be representatives of the de Rham cohomology of M. Inspection of the reduced

action shows that this condition is sufficient to guarantee that the zero modes still

result in massless form fields. Furthermore, we adopt the normalization convention∫
M
β(i)
s · β(j)

s

√
−f dnx = δij

∫ √
−f dnx. (4.33)

This differs from the usual normalization convention (4.29) by only a multiplicative

constant in the static case. It has the advantage of not introducing any spurious time

dependence of the β
(i)
s from the changing volume of M. Maintaining this normaliza-

tion condition requires ∫
M
β̇(i)
s · β(j)

s

√
−f dnx = 0. (4.34)

With these conventions and definitions, we find that the p–form action (4.23) splits

into two parts, S1 and S2, with

S1 = −
∑
s,i

1

(r + 1)!

∫
dα(i)

r · dα(i)
r + λ(i)

s (t)α(i)
r · α(i)

r

√
−G d4+nx (4.35)

and

S2 = −
∑
s,i

2

(r + 1)!

∫
(α(i)

r ∧ β̇(i)
s ) · (α̇(i)r ∧ β

(i)
s ) + (α(i)

r · α(i)
r )(β̇(i)

s · β̇(i)
s )
√
−G d4+nx,

(4.36)

where terms that are identically zero due to mismatched indices are not included.

Again, we have rescaled the α
(i)
r to obtain canonically normalized kinetic terms. The

terms in S2 threaten to substantially modify the action in the time dependent case.

However, these terms vanish or are negligible. The first term is zero due to our

normalization convention (4.33) and its consequence (4.34). The second term is a

contribution to the effective mass of α
(i)
r . For the λ

(i)
s = 0 modes, the representatives

β
(i)
s of the de Rham cohomology are time–independent, and so the β̇2 terms vanish.

When λ
(i)
s > 0, the additional contribution to the effective mass will be positive, but

since these modes are already massive it will not change the qualitative features of
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their behavior. Thus, time dependent compactifications do not substantially modify

the p–form spectrum; massless modes are still given by the de Rham cohomology of

M.

4.2.3 The gravitational spectrum

A key property of KK reduction is that degrees of freedom in the full metric GMN

appear in lower dimensions as metric, vector, and scalar degrees of freedom. As in

the p–form compactification discussed above, the masses of these fields depend on the

properties of the compactification manifold M. In contrast to the p–form case, the

masses are not determined by the cohomology of M, but by the existence of Killing

fields on M. The properties of KK reduction, along with our discussion of chaos

in Chapter 2, provide some useful simplifications. Since some of the metric degrees

of freedom in the higher dimensional theory appear as zero– and one–forms, chaos

arising from these degrees of freedom can be suppressed if they acquire a mass, just

as in the conventional p–form case.

As an explicit example of the reduction process, and of how chaos in higher and

lower dimensions are related, we consider below the simple case with a single extra

dimension [9]. The KK reduction begins with a reparameterization [3, 40, 97] of the

metric

GMN =

e−cφgµν + e2cφAµAν e2cφAν

e2cφAµ e2cφ

 , (4.37)

where we assume that Aµ and φ are independent of the fifth dimension. We substitute

this metric into the Einstein–Hilbert action and integrate over the fifth dimension.

The coefficient c, defined in (3.45), assumes the value
√

2/3 so that the scalar field φ

has a canonically normalized kinetic term in the resulting action

S =

∫
R(g)− (∂φ)2 − 1

4
e
√

6φFµνF
µν
√
−g d4x, (4.38)
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with Fµν = ∂µAν − ∂νAµ. This describes Einstein gravity coupled to a scalar field

φ, and a vector field with φ–dependent coupling. It can be seen that all of the

five–dimensional metric degrees of freedom in (4.37) are reproduced in this four–

dimensional action, in the guise of a KK vector Aµ, and a KK scalar φ. Furthermore,

the vector term in the action possesses an exponential coupling to φ, of the type

introduced in (2.34).

Our starting point, the five dimensional pure gravity theory, is chaotic since the

GSCs cannot be satisfied for any choice of the Kasner exponents. After reduction,

chaos also inevitably arises since the gravitational and one–form stability conditions

cannot be satisfied simultaneously. (This is because the value of the KK vector

coupling, λ =
√

6, is outside the stable range shown in Table 3.1) Thus violations of

the gravitational stability conditions in five dimensions can appear as violations of

the p–form stability conditions in four dimensions.

In this example, chaotic properties are left unchanged after dimensional reduction.

As we will discuss in more detail below, the preservation of chaos is not a generic

feature of KK reduction in dimensions greater than one. The mass spectrum for KK

vectors in the the general case of n > 1 extra dimensions is derived in Appendix C.

There, we show that these masses are zero only when M possesses Killing vectors.

(This calculation parallels standard treatments of KK reduction [40], but in these

treatments the fact thatMmay not possess isometries is often not emphasized.) Each

Killing field on M gives rise to a massless vector in the four–dimensional effective

theory; thus by analogy with the p–form case we may term these gravitational zero

modes. Since the only compact one–dimensional manifold is S1, and since any one–

dimensional manifold possesses a Killing vector, the n = 1 case discussed here is in a

sense degenerate.
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4.3 Selection Rules for the Stability Conditions

With the tools developed in the previous sections, we are now prepared to discuss

conditions on M that result in controlled chaos. We will show that stability con-

ditions for the metric and p–form fields, introduced in Chapter 2, are modified by

compactification. Not all of the stability conditions remain relevant, and only a sub-

set need be satisfied to ensure that chaos is controlled. This subset is defined by

the selection rules that are the focus of this section. The selection rules that de-

termine when a stability condition remains relevant are given for matter fields in

Section 4.3.1, and for gravitational modes in 4.3.2. The selection rules, in turn, are

determined by the de Rham cohomology (in the p–form case) and existence of Killing

vectors (in gravitational case) of the compactification manifold M. Here, we focus

on discussing the origin of the selection rules. Once established, we will use them to

find compactifications that control chaos in Sections 4.4, 4.5 and 4.6.

4.3.1 The p–form selection rules

As discussed in Section 2.5, each component of a p–form field results in an ESC or

MSC, given in (2.43), which expresses whether the energy density in that component

scales rapidly enough to dominate the energy density of the universe and cause chaos.

This analysis assumes that all dimensiona are noncompact. If the component gains a

mass by compactification, then we have shown in Section 4.2.1 that it always scales

too slowly to be cosmologically relevant, and therefore we should ignore the corre-

sponding stability condition. Thus we should ignore all electric and magnetic stability

conditions involving indices that do not correspond to massless p–form modes. This

results in the p–form selection rule, which is

The p–form Selection Rule: When dimHs (M) = 0 for some s, then
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of the p–form stability conditions,∑
j∈〈p〉

pj −
λpφ
2

> 0 (electric), (4.39a)

∑
j∈〈p+1〉

pj −
λpφ
2

< 1 (magnetic), (4.39b)

ignore those with exactly s Kasner exponents along the compact space
M. Retain only those stability conditions with s exponents along M and
dimHs (M) 6= 0. If the reduced subset of stability conditions are satisfied,
then chaos is absent.

In the following, we will use the results of previous sections to prove this rule, and

give some simple examples of its use.

This rule arises from considering the p–form modes that give rise to massless fields

after compactification. From Section 4.2.2, we know that a p–form Ap gives rise to a

massless r–form αr if and only if Ap is of the form

Ap = αr ∧ βs (4.40)

where βs ∈ Hs (M), and r+ s = p. Since dβs = 0, this gauge potential results in the

field strength

Fp+1 = (dα)r+1 ∧ βs. (4.41)

When the energy density of this field is calculated, one finds a stability condition

involving exactly s Kasner exponents along M, and the remainder along Σ. Since

only stability conditions of this type correspond to massless modes, they are the only

ones that should be retained.

The case (4.41) deals only with field strengths having at least one index along the

noncompact space Σ. In fact, the same selection rule applies when all indices of the

field strength are along M. In this case, the field strength must satisfy the Bianchi

identity and the Gauss law

dFp+1 = 0, d†Fp+1 = 0. (4.42)
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Field strengths of this type are commonly termed nonzero modes [54]. These degrees

of freedom correspond to fluxes that can be “turned on” while satisfying the p–form

equations of motion, and have attracted much interest recently in the string theory

community due to their applications in superstring phenomenlogy and so–called flux

compactifications [15, 39, 74]. The conditions (4.42) imply that Fp+1 is harmonic,

and by Hodge’s theorem the number of such forms is given by dimHp+1 (M). When

dimHp+1 (M) vanishes, we cannot have a p–form field strength with all indices along

M, and we should therefore delete the corresponding stability condition, with (p+1)

Kasner exponents along M. Thus this case falls under the p–form selection rule as

well.

The selection rule may be illustrated by comparing compactification on a sphere

Sn and a torus Tn. These manifolds encompass the best and worst case scenarios

for controlling chaos through compactification. The sphere has the minimum number

of massless modes for any orientable compact manifold, while the torus has massless

modes for every dimension and involving every combination of indices on M. There-

fore compactification on Tn and Sn will have very different influences on chaotic

behavior.

Compactification on Tn does not modify any of the p–form stability conditions.

The cohomology classes of the torus are

dimHr (Tn) =
n!

r!(n− r)!
, 0 ≤ r ≤ n. (4.43)

If we realize the torus as Rn/Zn, with coordinates θ1, . . . θn, then we may choose the

following set of generators for the rth de Rham class,

ωr = dθj1 ∧ dθj2 ∧ · · · ∧ dθjr , (4.44)

where {jr} are any set of distinct indices on Tn. Therefore, massless modes exist for

p–form fields with any combination of indices along the Tn. Any p–form stability
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condition that appears in the noncompactified theory will remain in the compactified

theory.

By contrast, compactification on a sphere Sn, with n > 1, deletes many of the

stability conditions. The sphere has only two nonzero cohomology groups, each of

unit dimension

dimHr (Sn) =


1, for r = 0 and r = n

0, otherwise.

(4.45)

The class H0 (Sn) is generated by the constant scalar function on Sn, while the class

Hn (Sn) is generated by the volume form,

ωn =
√
g dθ1 ∧ dθ2 ∧ · · · ∧ dθn, (4.46)

where gmn is the metric, g = det gmn, and θj the coordinates on the sphere. Massless

modes therefore contain either no indices along the Sn, or all indices at once. This

implies that the only surviving stability conditions are those with either no internal

Kasner exponents, or all internal Kasner exponents together. In the case where

n > p, none of the internal Kasner exponents appear at all, and only those stability

conditions involving Kasner exponents on Σ survive.

Our statement of the selection rule is the strongest possible in the generic case,

and fortunately also the most conservative in terms of deleting the minimum number

of stability conditions. Manifolds with a specific relationship between the frames ωj

appearing in the generalized Kasner metric (2.25) and the cohomology representatives

of M may require that we delete additional p–form stability conditions. For example,

consider the case in which M factors as M = M1 ×M2, both topologically and

metrically. A straightforward application of the selection rules results in retaining

all stability conditions with s indices along M whenever dimHs (M) 6= 0. These

stability conditions correspond to p–form modes with s1 indices along M1 and s2
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indices alongM2, with s1+s2 = s. However, in general a massless mode will not exist

for every choice of s1 and s2, and therefore we may be able to delete additional stability

conditions. We should only retain the even smaller subset of stability conditions with

s1 Kasner indices along M1 and s2 indices along M2 when dimHs1 (M1) 6= 0 and

dimHs2 (M2) 6= 0. Generally, however, we do not expect any special relationship

between the ωj and the cohomology classes. In this example, we have imposed the

condition by hand that the ωj point only along exactly one of M1 or M2. Examples

such as this one must be considered on a case–by–case basis, and lie beyond the scope

of our selection rule.

4.3.2 The gravitational selection rules

The selection rules for the gravitational stability conditions arise in a manner similar

to those for the p–form modes. We identify the degree of freedom corresponding

to each of the gravitaional stability conditions (2.30), and then ignore the stability

condition if the degree of freedom gains a mass through compactification. Unlike the

p–form case, in general one must also check that the masses gained in this way satisfy

m2 ≥ 0. In this work, we make the assumption that all of the masses of KK vectors

are real.

With the assumption that KK vectors have real masses, we arrive at the gravita-

tional selection rule, which is

The Gravitational Selection Rule: When M possesses no Killing
vectors, retain only the subset of gravitational stability conditions

pi + pj − pk < 1, all triples i, j, k, (4.47)

with all three Kasner exponents along Σ, or all three along M, and ignore
stability conditions with a mixture of exponents along both Σ and M.

In proceeding, we are guided by the KK reduced Jordan frame action (C.8). There
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are three cases we need to consider: all indices along Σ, all indices along M, and a

mixture of indices:

• Case 1 : Three indices along Σ. These GSCs should be retained, as the cor-

responding modes do not gain a mass from compactification. These represent

the metric degrees of freedom in the lower dimensional theory.

• Case 2 : Three indices alongM. Physically, these correspond to metric degrees

of freedom of the compact space M. These appear as scalar fields in the lower

dimensional theory, but can result in a subtle form of chaos. Violations of

these stability conditions appears as a chaotic system of interacting scalars in

the lower dimensional theory. Thus, to ensure that all degrees of freedom are

evolving smoothly to the big crunch, we should retain these stability conditions.

• Case 3 : Mixed. The “mixed” stability conditions are those with Kasner ex-

ponents along both Σ and M. These appear as the kinetic and mass terms

for the KK vectors in (C.8). When the compact space M possesses no Killing

vectors, then all of these vector fields acquire a mass and become cosmologically

irrelevant. Thus, we can delete the stability conditions in this case.

WhenM possesses even one Killing vector, then in general none of the mixed stability

conditions can be discarded. This is because a single Killing field will generally involve

all indices along M, and also results in a vector field with arbitrary indices on Σ. As

in the p–form case, there can be special cases where additional stability conditions

may be deleted. However, as we are more interested in the generic case we will not

discuss examples here.
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4.4 Examples: Pure Gravity models

The previous sections have established that compactification allows us to ignore a

number of the gravitational and p–form stability conditions. At this point, it is

natural to ask if there are examples where enough stability conditions are deleted to

control chaos. We will show in this and succeeding sections that this is indeed the

case. In this section, we will focus on the case of models with Einstein gravity alone.

This should be understood to be either vacuum Einstein gravity, or Einstein gravity

with arbitrary perfect fluid sources satisfying w < 1. These matter sources become

irrelevant during a contracting phase, as described in Section 2.3.

4.4.1 n = 1 and the S1/Z2 orbifold

The simplest case, with n = 1 extra dimensions (discussed in Section 4.2.3) is also

a somewhat exceptional one. This is because there is exactly one compact one di-

mensional manifold, the circle S1. Regardless of the metric on the S1, it will always

possess a Killing vector, and so no gravitational stability conditions can be deleted.

Furthermore, H1 (S1) is nonzero, and so no p–form stability conditions are deleted.

Therefore, all chaotic models remain chaotic when compactified on S1.

To eliminate chaos when n = 1, we must consider a more general class of spaces

than manifolds. For Einstein gravity without matter, a simple example that elimi-

nates chaos when n = 1 is given by the orbifold S1/Z2, previously discussed in Ref.

[43]. If we take a coordinate θ on S1, ranging from [−π, π], then the orbifold results

from identifying the S1 under the reflection θ → −θ. This takes Gµθ → −Gµθ, and

thus the Killing field is projected out, giving mass to all the KK vectors. The resulting

action for massless fields in four dimensions is then

S =

∫
R(g)− (∂φ)2

√
−g d4x, (4.48)
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in comparison with the classic KK result (4.38). Being only Einstein gravity with

a scalar field, this theory is not chaotic. We will discuss compactification on this

particular orbifold in more detail when we discuss string and M–theory solutions

with controlled chaos.

4.4.2 n > 1 and Einstein manifolds

When we have n > 1 extra dimensions, then chaos can be eliminated by compactifying

on a manifold without continuous isometries, and therefore without Killing vectors.

This deletes the mixed gravitational stability conditions, as discussed in Section 4.3.2.

The remaining stability conditions can always be satisfied: for example, we can take

all of the Kasner exponents to be equal to each other, and all of the compact Kasner

exponents equal to each other. This is of course subject to the assumption, discussed

at the end of Section 4.3.2, that the mass matrix for the KK vectors has no negative

eigenvalues.

While we have seen that the masses of the KK vectors are determined by isometric

properties of M, there is a useful class of manifolds for which these properties are

themselves determined by the topology, specifically by the de Rham cohomology. In

this case, the gravitational and p–form selection rules are determined entirely by the

cohomology ofM. These are the Einstein manifolds, which are Riemannian manifolds

equipped with a metric gMN satisfying

RMN(g) = λgMN , (4.49)

with λ arbitrary. When M is Einstein, the number of Killing vectors is given by

dimH1 (M) [12]. One example of a solution with controlled chaos is then obtained

by taking M to be an isotropically evolving Einstein manifold with dimH1 (M) = 0.

There are many examples of Einstein manifolds with this property. One class of
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examples are the complex projective spaces CPn [88] with de Rham cohomology

dimHs (CPnC ) =


1 if s even,

0 if s odd,

(4.50)

where nC is the complex dimension, and n = 2nC . These are Einstein manifolds

if equipped with the Fubini–Study metric [41]. Other important examples are the

Calabi–Yau spaces, [54, 98] with

dimHs (MCY ) =



1, s = 0, 6,

0, s = 1, 5,

h1,1 s = 2, 4,

2(1 + h2,1) s = 3.

(4.51)

These manifolds have Ricci–flat metrics, and so are Einstein manifolds. The param-

eter h1,1 counts the number of Kähler moduli, and must be nonzero. The parameter

h2,1 counts the number of complex structure moduli. In principle, h2,1 can vanish

in some cases, for example the Eguchi–Hanson space EH3, though it is generically

nonzero.

4.5 Examples: Doubly Isotropic String models

In the previous section we gave examples of pure gravity models for which chaos

can be controlled. These examples had no p–form matter and so did not involve the

p–form selection rules. Now, we will describe examples that include p–form fields.

We will focus on the low–energy bosonic sectors of string models. We will discuss

several solutions with controlled chaos in string models with N = 1 supersymmetry

in ten dimensions, and will show how these solutions are interrelated by string duality

relationships.
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Figure 4.3: Doubly–isotropic solutions and the Kasner circle. The doubly isotropic
solutions DI take a “slice” of the Kasner circle, which may intersect with the non–
chaotic regions S of the circle. There may also be other non–chaotic regions that are
not doubly isotropic. See also Figure 2.3.

For simplicity, we focus on regions on the Kasner sphere near what we will term

doubly isotropic solutions. These are schematically illustrated in Figure 4.3. Doubly–

isotropic solutions are choice of Kasner exponents such that a Kasner exponents

take the value pa, and b take the value pb, with a + b = D − 1. These are the

simplest solutions we can consider, since they correspond to both the compact and

non–compact parts of spacetime evolving isotropically. In the absence of a dilaton,

the Kasner conditions (2.5) result in a quadratic equation for pa and pb, and therefore

two solutions for each choice of a and b. When a dilaton is present, then there are

two one–parameter families of pa and pb, which depend on the value of the dilaton

“Kasner exponent” pφ. These solutions are given in (D.10) and (D.11). Only models

that are isotropic in three noncompact directions are of interest cosmologically, and

so we fix a = 3. The KK reduction of such models results in an isotropic universe

with p1 . . . p3 = 1/3, corresponding to a FRW universe dominated by a component

with equation of state w = 1.

It is important to emphasize that the specific examples that we will discuss are
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only representative points of an open region on the Kasner circle for which chaos

is controlled, chosen so that the Kasner exponents assume a particularly simple,

symmetric form. For a given compactification, the selection rules define a reduced

set of stability conditions, which in turn define an open region of the Kasner circle

for which all stability conditions are satisfied. When this open region is non–empty,

then chaos is controlled. Thus, there will be choices of the Kasner exponents with

controlled chaos in open neighborhoods of all of the solutions discussed herein.

For string models with N = 1 supersymmetry in ten dimensions (Type I and

heterotic), the simple class of doubly isotropic solutions is sufficient to give examples

of solutions with controlled chaos. As we will discuss in more detail below, some

of our solutions are related to others through standard string duality relationships.

Interestingly, we find that theories with N = 2 supersymmetry (Type II) do not

admit compactifications that lead to controlled chaos with doubly isotropic solutions.

Unfortunately, we have found no examples where the compactification manifold could

be a Calabi–Yau, thanks to the fact that the only vanishing cohomology class for

Calabi–Yau spaces is H1 (M) = 0.

In the following, we will always give the Kasner exponents in the Einstein con-

formal frame, defined in Section 3.3.1. Conventionally, the bosonic sector of string

theory actions is presented in the string frame form, in which the Ricci scalar ap-

pears in the action multiplied by a factor involving the string theory dilaton Φ. The

formulae giving the relation between the metric and couplings in the Einstein and

string frames are given in Appendix D and the relevant p–form couplings are given

in Table D.1. In particular, note that we will refer to the dilaton field φ which is

φ = Φ/
√

2. (4.52)

This is useful for us in that φ has a canonical kinetic term in the ten–dimensional

Einstein frame.



101

A theme common to our examples is the compatibility of our results concerning

controlled chaos and the duality relationships connecting various string theories. In

Section 4.5.1 we first examine the E8 × E8 heterotic theory in detail. Through a

combination of string duality relationships and compactifications we will be able to

discuss its limits in eleven, ten, five and four dimensions. In particular, the S–duality

relating the E8×E8 heterotic string and M–theory [67, 68] is made apparent by relating

the ten dimensional heterotic solution with controlled chaos and the compactification

of eleven dimensional M–theory on S1/Z2. We will then discuss all compactifications

of doubly isotropic solutions with controlled chaos for string theories with N = 1

supersymmetry in ten dimensions. We give four representative solutions, two each

for the heterotic and Type I theories. We show that these four solutions organize into

two pairs of solutions, related by the S–duality connecting the heterotic SO(32) and

Type I strings [98, 99].

It is important to keep in mind some features of the space of string solutions with

controlled chaos. Each compactification we discuss, defined by the vanishing de Rham

cohomology classes, defines an open region on the Kasner circle where chaos is con-

trolled. Our restriction to doubly isotropic models, in turn, takes a one dimensional

“slice” out of this open region. In our examples, we give a representative point from

the “slice” where the Kasner exponents assume a convenient and symmetric form.

Thus we have found the compactifications that admit doubly isotropic solutions, but

the choices of Kasner exponents are not unique.

4.5.1 The heterotic string and M–theory

Here we focus on the E8×E8 heterotic theory, in the neighborhood of a specific choice

of Kasner exponents. Using string duality relationships and compactification, we will

discuss the various guises of this solution in eleven, ten, five and four dimensions
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theory spacetime dim p1 . . . p3 p4 . . . p9 p10 pφ

M–theory Σ×M× S1/Z2 11 -0.1206 0.0662 0.9644

het E8 × E8 Σ×M 10 0 1/6
√

5/6
“braneworld” Σ× S1/Z2 5 0.0105 0.9686 0.2486

FRW Σ 4 1/3
√

2/3

Table 4.2: The solution discussed in the text for the E8 × E8 heterotic string in
various dimensions. The Kasner exponent pφ is a combination of the dilaton and
volume modulus for the compactified dimensions. Chaos is controlled provided that
H3 (M) = 0.

[67, 68, 87], summarized in Table 4.2. We will make extensive use of the formulae

relating compactified Kasner universes in various dimensions given in Appendix D.

While the specific solution we discuss also controls chaos for the SO(32) heterotic

theory in ten dimensions, string dualities for this theory do not enable us to discuss

the five dimensional and M–theory limits. To begin, we consider the heterotic theory

in Einstein frame, where it contains the metric GMN , dilaton φ, one–form A1 and two–

form B2. The dilaton couples to the one– and two–forms via exponential couplings

of the type (2.34), with λ1 = −1/
√

2, and λ2 = −
√

2.

Without compactification, one finds violations of the ESCs and MSCs for the

choice of Kasner exponents

p1 . . . p3 = 0, p4 . . . p9 = 1/6, pφ =
√

5/6 (10D). (4.53)

We assume that p1 . . . p3 lie along the noncompact spacetime Σ, and p4 . . . p9 lie along

the compact manifold M. In this solution, the magnetic stability conditions are

violated for the magnetic component of H3 = dB2 with all three indices along M.

None of the GSCs are violated.

Applying the selection rules introduced in Section 4.3.1, we find that chaos is

controlled by compactifying on a six–manifold M with H3 (M) = 0, such as S6 or

CP3. The choice of CP3 has the advantage that it has H1
(
CP3

)
= 0, and is an
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Einstein manifold if given the Fubini–Study metric. From the discussion in Section

4.4 we know that such manifolds have special properties with respect to gravitational

chaos, and so this manifold may be a useful starting point for models that differ

from the doubly isotropic ones. Unfortunately, a Calabi–Yau space will always have

dimH3 (M) > 0, and is thus unsuitable for rendering this solution non chaotic.

The four dimensional limit of the solution (4.53) possesses a simple form. This is

obtained by compactifying on the six–manifold M, resulting in

p1 . . . p3 = 1/3, (4D). (4.54)

This describes a collapsing, flat FRW universe dominated by a perfect fluid with

w = 1. The w = 1 component is a combination of the dilaton and the volume

modulus arising from the KK reduction of the heterotic theory on the six–manifold

M.

String duality relationships imply that the (strongly coupled) E8 × E8 heterotic

theory is obtained by compactifying M–theory on the orbifold S1/Z2 [67, 68, 87].

Phenomenology implies that the orbifold S1/Z2 is somewhat larger than the com-

pactification six manifold M. Thus, depending on the scale of interest, the strongly

coupled heterotic theory can appear four, five, or eleven dimensional. The five and

eleven dimensional limits of the solution (4.53) are not as simple as the ten and four

dimensional views, but are nonetheless instructive.

This duality relationship implies that the heterotic string in ten dimensions can be

described by eleven dimensional M–theory on Σ×M×S1/Z2. The eleven dimensional

lifting of (4.53) to M–theory yields Kasner exponents whose precise expression is not

very illuminating, but whose approximate numerical values are

p1 . . . p3 = −0.1206, p4 . . . p9 = 0.0662, p10 = 0.96442 (11D). (4.55)

This describes a rapidly shrinking orbifold, a slowly contracting six–manifold M, and

a slowly expanding noncompact space.
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To see that the compactification of M–theory on Σ×M×S1/Z2 leads to controlled

chaos requires us to consider some subtle features of the theory. The bosonic sector

of M–theory includes only the graviton and a four form field strength F4 = dA3.

Our selection rules are only strictly applicable to the case where the compactification

space is a manifold, an assumption which fails to include orbifolds such as S1/Z2. The

approach most convenient here follows usual techniques [67, 68, 87] for determining

the spectrum after compactification. Specifically, we compactify M–theory on S1,

and then impose the identification θ → −θ. The presence of the Chern–Simons

term A3 ∧F4 ∧F4 in the M– theory Lagrangian requires that F4 → −F4 under parity

transformations, of which the identification θ → −θ is an example. Thus, the massless

components of F4 on Σ×M×S1/Z2 are those with exactly one index along the S1/Z2.

Before compactification, the eleven–dimensional solution given above violates the

p–form stability conditions for three components of the four form field. The first

and second are electric, with the first having three indices along Σ, and the second

having two along Σ and one along M. The third is magnetic, with one index along

S1/Z2 and three along M. The magnetic component is rendered massive by the

condition H3 (M) = 0, and so we can neglect this stability condition. The two

electric components are rendered massive since they do not have exactly one index

along the S1/Z2, and their stability conditions can be neglected as well. Thus, chaos

is controlled in the M–theory limit.

The five dimensional guise of our solution, obtained by KK reducing the eleven

dimensional form on the six– manifold M, describes a “braneworld” with structure

Σ× S1/Z2. This yields the solution,

p1 . . . p3 = 0.01048, p10 = 0.9686, pψ = 0.24804. (5D) (4.56)

The scalar field ψ is the volume modulus of the six–manifold M. This solution

describes a nearly static Σ and a rapidly contracting orbifold. This solution bears a
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sol’n p1 . . . p3 p4 . . . p9 pφ theories zero betti

A 0 1/6 +
√

5/6 heterotic b3
B 0 1/6 −

√
5/6 Type I b3

C 1/3 0 +
√

2/3 Type I b1, b2
D 1/3 0 −

√
2/3 heterotic b1, b2

Table 4.3: Representative string theory solutions with controlled chaos and isotropic
behavior along the noncompact and compact directions. Each compactification leads
to open regions of the Kasner circle with controlled chaos, and we have given a
representative point for each open region here. The string theories which exhibit
controlled chaos for each solution are shown, as well as the Betti numbers bj =
dimHj (M) of M that are required to vanish.

suggestive similarity to the set–up studied in the ekpyrotic/cyclic scenario. In these

models, near the big crunch, the five–dimensional spacetime approaches the Milne

solution

p1 . . . p9 = 0, p10 = 1. (4.57)

This solution is in fact on the boundary of the open region of the Kasner sphere for

which our example solution (4.53) exhibits controlled chaos. This is predicated on

the assumptions that w = 1 in the four–dimensional theory all the way to the big

crunch, and that compactification is the only mechanism for controlling chaos. In

the ekpyrotic/cyclic scenarios, there is a long w � 1 phase during the contraction,

in which the energy density in p–form modes is exponentially suppressed [43]. This

suppression further reduces the time tdom at which dangerous modes can formally

dominate the universe. Therefore, in the full model, the onset of chaos will be delayed

far beyond what our estimates, based only on the compactification mechanism, would

suggest.
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4.5.2 The heterotic and Type I strings

Having focused in detail on a single compactification of a single string theory, we

now focus on finding all compactifications with controlled chaos and doubly isotropic

Kasner exponents. There are four doubly isotropic examples with controlled chaos,

with representative choices of the Kasner exponents summarized in Table 4.3. The

E8 × E8 and SO(32) heterotic theories exhibit the same chaotic behavior, since their

p–form spectrum and couplings to the dilaton are identical; these theories differ only

in the gauge groups for their non–abelian gauge multiplets. One may also include the

ten–dimensional (noncritical) bosonic string, which contains only the Neveu–Schwarz

fields of the heterotic string and no gauge fields. One finds that chaos is controlled in

the ten dimensional bosonic string in the same solutions (A and D) as in the heterotic

string.

In the absence of any compactification, these examples are all chaotic. None of

them suffer from gravitational chaos, and in all cases the chaotic behavior arises from

the p–form fields alone. Upon compactification to four dimensions, these models all

result in a FRW universe dominated by a free scalar field with w = 1.

The examples given in Table 4.3 include not only models that go to weak coupling

at the crunch, (A and C) but also models where the dilaton runs to strong coupling

(B and D). The fact that the solutions include both those where the string theory

goes to strong and weak coupling is interesting from a model building perspective.

The dilaton is never static in the solutions discussed here, a feature also found in

some cosmological models based on string theory. In the ekpyrotic/cyclic models, for

example, the string coupling goes to zero at the big crunch. In pre big–bang models,

on the other hand, the dilaton goes to strong coupling at the crunch [48]. Thus the

controlled chaos mechanism may be relevant to both scenarios.

The heterotic SO(32) and Type I theories are related by an S–duality transforma-
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tion [98, 99], and this symmetry is respected by our examples here. Under this duality,

the string frame actions of the heterotic SO(32) and Type I theories are related by

G
(I)
MN = e−ΦhG(het) (4.58a)

Φ(I) = −Φ(het) (4.58b)

with the p–form fields remaining unchanged. Carefully working through the resulting

transformation of the Einstein frame Kasner exponents, one finds that the spatial Kas-

ner exponents are unchanged, while p
(I)
φ = −p(het)

φ . Therefore, S–duality exchanges

the pairs of solutions A ↔ B and C ↔ D. More information on string dualities and

Kasner exponents may be found in Appendix D and in [83].

The properties of string theories regarding controlled chaos appear correlated to

their supersymmetry properties in ten dimensions. The N = 1 theories, (heterotic,

Type I, and M–theory on S1/Z2) possess simple compactifications that control chaos.

The Type IIA/B theories and uncompactified M–theory, with N = 2 supersymmetry,

have no doubly isotropic solutions with controlled chaos.

It is natural to expect that the N = 1 and N = 2 string theories will have different

characteristics with respect to controlled chaos. There is a useful formulation of the

dynamics of gravity near a big crunch, discussed briefly in Section 2.6 and in great

detail in Chapter 5. In this formulation, the dynamics of metric and p–form fields is

recast as the motion of a billiard ball in a hyperbolic space, undergoing reflections

from a set of walls. The walls correspond to p–form kinetic terms and curvature terms

in the Einstein equations. The positions and orientations of these walls are identical

for all of the N = 1 theories, and different from the common set of walls shared by

the N = 2 theories [28]. Our suppression of the energy density in massive p–form and

gravitational modes amounts to “pushing back” these walls. Thus, it is not surprising

that we should find that N = 1 and N = 2 models have different characteristics with

respect to controlling chaos.
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4.6 Examples: A Computer Search

Here we describe a more thorough search for solutions of the stability conditions

as truncated by the selection rules. This search was carried out using a computer

program that searches the Kasner sphere for solutions with controlled chaos. During

this search, solutions with controlled chaos for the N = 2 theories were found. We

also find additional solutions for the N = 1 theories. No solutions with dimH1 (M)

were discovered. In Chapter 5 we describe a systematic method for finding solutions

with controlled chaos, and the computer search we discuss below provides a useful

check against the results we will present in that chapter.

The program makes use of a explicit parameterization of the Kasner sphere for

the Einstein–scalar system. For a spacetime with a free scalar field, recall that there

are d+ 1 Kasner exponents, where we have grouped the metric exponents pj and the

scalar field exponent pφ together. Furthermore, we are searching for solutions that

are isotropic in three spatial dimensions, and so three of the spatial exponents should

be identical. Denote by p3 the value of the Kasner exponents along the noncompact

directions, and p1, . . . p6 the exponents along the compact directions. Because of the

Kasner conditions (2.36), the exponents must satisfy

A =
6∑
j=1

pj, B =
6∑
j=1

p2
j , (4.59)

where

A = 1− 3p3, B = 1− 3p2
3 − p2

φ (4.60)

The Kasner circle associated with each choice (p3, pφ) is an S4 of radius ρ, with

ρ2 = B − A2

6
(4.61)

When ρ2 > 0, there is a nontrivial space of solutions. When ρ2 = 0, there is a single

solution, corresponding to the doubly isotropic solutions discussed above. When



109

ρ2 < 0, there are no solutions to the Kasner conditions. Not every value of (p3, pφ)

admits solutions to the Kasner conditions.

This sphere of solutions is not centered on the origin. It is both displaced and

rotated. First define a vector ~x in R6 as a function of the four angles θ1, . . . θ4 on the

Kasner circle by

x1 = 0, (4.62a)

x2 = cos θ1, (4.62b)

x3 = sin θ1 cos θ2, (4.62c)

x4 = sin θ1 sin θ2 cos θ3, (4.62d)

x5 = sin θ1 sin θ2 sin θ3 cos θ4, (4.62e)

x6 = sin θ1 sin θ2 sin θ3 sin θ4 (4.62f)

This is just the standard embedding of S4 in R5, with x1 a spectator dimension. Next

we define a rotation matrix by

R =
(
~c1 ~c2 ~c3 ~c4 ~c5 ~c6

)
(4.63)

with

~c1 =
(
1 −1 0 0 0 0

)
/
√

2, (4.64a)

~c2 =
(
1 1 −2 0 0 0

)
/
√

6, (4.64b)

~c3 =
(
1 1 1 −3 0 0

)
/
√

12, (4.64c)

~c4 =
(
1 1 1 1 −4 0

)
/
√

20, (4.64d)

~c5 =
(
1 1 1 1 1 −5

)
/
√

30, (4.64e)

~c6 =
(
1 1 1 1 1 1

)
/
√

6, (4.64f)

The column vectors ~c1, . . .~c5 are thus an orthonormal basis for vectors in R6 with
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vanishing “trace.” Now form the product

~y = R~x =
5∑
j=1

xj~cj (4.65)

This rotates the circle away from the 23456 plane. Note that thanks to the properties

of the ~cj, we have ∑
j

yj = 0,
∑
j

y2
j = 1. (4.66)

Finally, define the Kasner exponents by

pj = ρyj +
A

d
(4.67)

It is readily seen that these satisfy the Kasner conditions. This procedure there-

fore parameterizes the full Kasner circle in terms of the four angles θ1 · · · θ4. This

procedure is easily generalized to any number of dimensions.

With this parameterization in hand, the problem of finding solutions with con-

trolled chaos amounts to traversing all values of the four angles θ1, · · · θ4 and the

two variables p3 and pφ. Then one checks that the stability conditions are satisfied

for a given set of nonzero cohomology classes. In practice, a gridding of the sphere

turns out to be impractical – the grid must be extremely fine to capture any solu-

tions with controlled chaos: for example, a 102 grid points per dimension yields 1012

required chaos checks, and each chaos check is computationally expensive. Instead,

the program uses a weighting function and crawls over the Kasner circle, attempting

to minimize the amount by which the stability conditions are violated. Within the

program, it is also possible to specify the symmetry of the solution, and both marginal

and non–chaotic solutions can be displayed.

A summary of the results of this computer search is given in Table 4.4. We have

used a notation in which exponents give the number of times an exponent is repeated:

for example,

a2b4 → (a, a, b, b, b, b) (4.68)
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theory zero Betti sol’n pφ p3 pj type

het b1 1 +2
√

2/5 1/5 −3/5, (1/5)5 marginal

” b1, b2 2=D −
√

2/3 1/3 06 non–chaotic

” b3 3=A +
√

5/6 0 (1/6)6 non–chaotic
IIA b1, b2 1 0 0 −2/3, (1/3)5 marginal

” b1, b2 2 −2
√

2/5 1/5 −3/5, (1/5)5 marginal
” b1, b2, b3 3 non–chaotic

IIB b1, b2 1 0 0 −2/3, (1/3)5 marginal
” b2, b3 2 0 1/5 (−1/5)4, (3/5)2 marginal
” b2, b3 3 0 1/3 (−1/3)3, (1/3)3 marginal
” b1, b2, b3 4 non–chaotic

Table 4.4: Some representative solutions with controlled chaos in string models with
N = 1 and N = 2 in ten dimensions. Of the N = 1 models, only the heterotic is
shown. Milne solutions are left out of this table. See text for solution notation.

It is clear from the table that non–chaotic solutions exist in the N = 2 theories,

although the only ones found thus far are those that require all possible cohomology

classes to vanish, probably too stringent a requirement for interesting compactifica-

tions. As in Table 4.3, some of these solutions are connected by string dualities.

The formulae governing these transformations are given in Section D.3. For example,

denote by “Milne” the solution with

Milne : pφ = 0, p3 = 0, 05, 1. (4.69)

Then, for example

IIA2 = T6 ·Milne (4.70)

and

het1 = S ·T6 ·Milne (4.71)

where S denotes S–duality and Tn denotes T–duality along xn, respectively. The

presence of T–duality symmetries is especially surprising, since they map a small

(compactified) dimension into a large one.
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Overall, there are two main conclusions we can draw from in Table 4.4. The first

is that solutions with controlled chaos exist for string models with N = 2 supersym-

metry. This was not entirely clear from the analysis of doubly isotropic solutions in

Section 4.5. Focusing on the heterotic string, we can also conclude that it appears

that either b3 = 0, or b1 = b2 = 0 in order for solutions with controlled chaos to exist.

This fact will provide a useful check for the results we discuss in the next chapter.

4.7 Conclusions

The results presented here build on the many years of previous research in the behavior

of general relativity near a big crunch. Previous research has primarily focused on

“local” properties of theories with gravity, such as the dimensionality of spacetime,

or the types and interactions of matter fields, and has revealed how these influence

the emergence of chaos. Here we have investigated “global” features, in particular the

topology of spacetime. We have found that these features can lead to a suppression

of chaos in many models of interest. The control of chaos can be expressed simply in

terms of selection rules for the gravitational and p–form stability conditions. These

in turn can be used to find compactifications of chaotic theories in which chaos is

suppressed right up to the quantum gravity regime.

Our results bear an intriguing connection to some cosmological models that are

founded on current ideas in string and M–theory. Among the simple examples of

string theory solutions with controlled chaos, we find those that resemble both the

ekpyrotic/cyclic [78, 108] and pre–big bang [48] scenarios. For future models, this

work suggests a method to control chaotic behavior near a big crunch that does

not require postulating additional interactions and matter fields, or depending on

higher order corrections to the Einstein equations. While this work sheds no light

on the behavior of these models in the quantum gravity regime or through the big
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crunch/big bang transition, it provides a natural mechanism that ensures that the

universe evolves smoothly so long as classical physics may be trusted.

Recent work suggests that maintaining this smooth contraction during the classical

regime may be sufficient to allow a nonsingular quantum evolution through a big

crunch/big bang transition. One approach to this problem begins from the fact that,

in string and M–theory, the degrees of freedom during the quantum regime are very

different from those of the classical regime studied here. The fundamental degrees

of freedom are extended objects, such as strings and branes. As one approaches

the scale set by their tension, classical general relativity breaks down, and these

extended objects become the relevant degrees of freedom. In particular, it is the

evolution of these strings and branes that one should study near the big crunch.

Working within the context of the ekpyrotic/cyclic scenario, it was found in [119]

that if the universe is sufficiently smooth and homogeneous at the beginning of the

quantum regime, the fundamental excitations (M2 branes) evolve smoothly through

the big crunch with negligible backreaction. This suggests that a sufficiently smooth

“in” state can evolve through the big crunch to a smooth “out” state, precisely

what one requires for cosmology. This result complements the present work. The

mechanism described herein can be viewed as providing the required conditions for

smooth classical evolution before the Einstein equations break down, preparing the

universe for nonsingular quantum evolution through the big crunch.

Our results have further implications for high energy theory and phenomenology.

String models and M–theory require compactification in order to produce the cor-

rect number of observed noncompact dimensions. Obtaining the correct low energy

physics, such as N = 1 supersymmetry in four dimensions or the correct number of

lepton generations, puts constraints on the compactification manifold M, many of

which are topological in nature. Even with these constraints, there still seems to be a
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large number of possible choices for M. Controlling chaos through compactification

in cosmological models with a collapsing phase places additional constraints on M.

Thus in the context of these cosmological models one obtains additional viewpoints

on string phenomenology

These results also inspire more speculative scenarios. When the universe enters a

chaotic regime, the Kasner exponents will undergo an infinite number of “jumps” to

different points on the Kasner sphere as the big crunch is approached. We also might

expect that the topology of M is changing at the same time. For example, there are

situations in string theory where the topology of M can change dynamically, such as

the conifold [23, 55, 110] or flop [4] transitions. If the combination of Kasner exponents

and topology lead to controlled chaos, then the universe will subsequently contract

smoothly to the big crunch. In this way, the universe will have dynamically selected

not only some properties of M, but also a “preferred” cosmological solution near the

big crunch. Analysis of such a scenario would require a much deeper understanding

of cosmology in the quantum gravity regime than is currently available, clearly an

important topic for further research.



Chapter 5

Enumeration of Solutions

He took the golden compasses, prepared
In God’s eternal store, to circumscribe
This universe, and all created things:
One foot he centered, and the other turned
Round through the vast profundity obscure
And said, “Thus far extend, thus far thy bounds,
This be thy just circumference, O world.”

Paradise Lost Book VII, lines 225–231, [90]

In the previous chapter, we introduced a mechanism to control chaos thruogh com-

pactification. Each compactification, described by its vanishing Betti numbers, de-

fines a set of linear inequalities in the Kasner exponents. For a typical string model

there are ∼ 102 of these conditions. If these inequalities are simultaneously satisfied,

then chaos is controlled by the compactification. The problem of finding solutions to

controlled chaos thus amounts to determining whether a system of inequalities pos-

sesses a solution. We have presented some solutions with special symmetry properties

in the previous chapter, but no systematic techniques for finding solutions other than

hit–or–miss.

In this chapter, we describe techniques that allow one to systematically find solu-

115
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tions with controlled chaos. For a given model and compactification, these techniques

make it straightforward to

• determine the existence of solutions with controlled chaos,

• explicitly parameterize the set of solutions,

• find all solutions with desired isotropy properties.

These techniques owe much to the billiard picture of gravitational dynamics near a

big crunch, as developed by a number of researchers. In this picture, the evolution of

a gravitational system is mapped into the motion of a point in an auxiliary spacetime.

The point undergoes motion under the influence of conservative forces, which as the

big crunch is approached take the form of a set of sharp “walls.” This picture has

led to fascinating connections between the gravitational dynamics of certain string

models, and the root lattices of certain Kac–Moody algebras. We will depend heavily

on this representation in this chapter.

This chapter is organized as follows. Section 5.1 is largely a review of the billiard

representation. We introduce this representation, and describe the metric structure

of the auxiliary spacetime for pure gravity and string models. We also introduce

the concept of relevant walls, which enable the full set of stability inequalities to be

reduced to a much smaller and more manageable set. The discussion in this section is

based primarily on [25, 27, 28, 29]. In Section 5.2 we describe the conditions necessary

for chaos to be avoided in the billiard picture. We embed the w ≥ 1 mechanism,

described in Chapter 3, in the billiard picture. We also give an interpretation of the

controlled chaos mechanism, and describe the technique by which solutions can be

found. In Section 5.3 we analyze all compactifications of the heterotic string theory.

We discriminate those that possess solutions with controlled chaos, and those that

do not. In Section 5.4 we complete the connection with previous work by giving the
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mapping between the billiard picture and the Kasner exponent picture. Here we give

formulae relating the trajectory of the point in the billiard representation to a specific

Kasner exponent. We then apply these formulae in worked examples.

The work in this section represents unpublished work by the author.

5.1 Introduction: Cosmology as Billiards

Up to now, we have primarily considered the gravitational and p–form stability con-

ditions as a set of inequalities that may (or may not) be satisfied for choices of the

Kasner exponents satisfying the Kasner conditions. In the following we will change

perspective somewhat. We show in Appendix A that the dynamics of the universe

can be described in terms of the motion of a point mass, under the influence of conser-

vative forces, in an auxiliary Lorentzian spacetime. These forces arise from potentials

taking the form of exponential walls, and collisions with these walls correspond to the

Kasner bounces characteristic of chaotic behavior. Here we will develop this point of

view more systematically, setting the stage for our analysis later in the chapter.

A basic idea in the billiard picture is that we are viewing the time evolution of

the universe in terms of the time evolution of the spatial d–metric. The configuration

space of this dynamical system is thus the “space of metrics,” which sometimes goes by

the name superspace [92]. (There is no connection to supersymmetry implied) Points

in superspace are d–metrics of physical space. In addition, there is often a natural

metric structure on superspace, and we can thus define a supermetric giving the

“distance” between two infinitesmally close metrics. In this chapter, we will take all

metrics to be of the generalized Kasner type (2.25). These metrics are parameterized

by the d functions of time γj. We can think of the generalized Kasner metrics as a

d–dimensional slice of superspace, with coordinates γj on the slice. In the following,

by considering the action for generalized Kasner universes, we will find the associated
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canonical supermetric on the space of scale factors. These supermetrics will be crucial

to the analysis of these theories with respect to controlled chaos.

This section is largely a review of results from the literature. We especially make

use of [25, 29] and the descriptions therein for constructing the billiard system corre-

sponding to a given gravitational theory. In these references, the generalized Kasner

metric is parameterized in terms of a vector βµ, which is related to our vector γµ (to

be defined below) by βµ = −γµ. We have chosen to keep the γµ parameterization

for consistency with the rest of this work. Also, our naming conventions for the wall

forms (also to be defined below) differ from those in the literature.

5.1.1 Vacuum Gravity

We first consider the case of pure Einstein gravity, which also covers the case of

matter sources satisfying w < 1. After computing the Ricci scalar for this metric

(described for the d = 3 case in Appendix A) and integrating by parts, one arrives at

the effective action

S =

∫
N−1e

P
j γ

j

(∑
j

[
γ̇j
]2 −∑

j,k

γ̇j γ̇k

)
−Ne

P
j γ

j

U(γ) dt (5.1)

The potential Ugrav(γ) is a sum of terms of the form

exp
(
2
[
γi − γj − γk

])
, (5.2)

and describes the influence of spatial curvature and inhomogeneity of the universe.

The natural choice for the lapse function N is

N = e
P

j γ
j

, (5.3)

which makes the action that of a point moving under the influence of conservative

forces. The corresponding potential is denoted by V (γ) and is given by

V (γ) = e2
P

j γ
j

Ugrav(γ) (5.4)



119

This point moves in an auxiliary Lorentzian spacetime, whose corresponding super-

metric is given by

(1/2)Giju
ivj =

∑
j

ujvj −
∑
jk

ujvk (5.5)

with inverse

Gijuivj =
d

d− 1

∑
j

ujvj −
2

d− 1

∑
jk

ujvk (5.6)

with

Gij =


d−2
d−1

for i = j,

− 1
d−1

for i 6= j

(5.7)

For example, in d = 3 we have

Gij =


0 −1 −1

−1 0 −1

−1 −1 0

 Gij =
1

2


1 −1 −1

−1 1 −1

−1 −1 1

 (5.8)

The “timelike” direction in this metric is that corresponding to the collective coor-

dinate γ1 + γ2 + · · · , which one can see is simply the volume of spatial slices in the

physical spacetime.

It has been pointed out that in the limit that the volume goes to zero, there is a

choice of time coordinate so that the potential V (γ) is a sum of sharp wall potentials.

We describe this in Appendix A for the Mixmaster universe example. With this

choice of time, the point undergoes geodesic motion in regions far from the walls and

reflects specularly when it encounters a wall. The point is therefore confined to the

region defined by

e2
P

j γ
j

U(γ) ∼ 0 =⇒ 2γi +
∑
m

γm < 0, where m 6= i, j, k (5.9)

This is the analogue of the gravitational stability conditions introduced earlier; when

it is satisfied, the geodesic motion of the point corresponds to smooth Kasner–like
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contraction. It can be re–expressed by introducing a 1–form, called the wall form,

corresponding to this stability condition. Thus,

wijk|mγ
m < 0, wijk,m =


2 for m = i,

1 for m 6= i, j, k,

0 for m = j, k

(5.10)

where the wall form is indexed by the subscripts before the “|,” and its components

indexed by the subscript afterwards. These wall forms describe the gravitational walls

arising from spatial curvature.

It is also convenient to introduce additional walls to simplify the problem. Note

that everything is symmetric under the interchange γi ↔ γj for any i, j, and so our

configuration space is somewhat redundant. We can fix this redundancy by imposing

the requirement that

γ1 > γ2 > · · · > γd (5.11)

through the introduction of the inequalities

γj − γj−1 < 0, j = 2 . . . d (5.12)

which correspond to symmetry walls

wj|m =


1 for m = j,

−1 for m = j − 1,

0 otherwise.

(5.13)

These walls restrict the point to move in a wedge of the full configuration space.

The symmetry walls are somewhat different than the gravitational walls. Hitting

a gravitational wall corresponds to a Kasner bounce, as introduced in Chapter 2. On

the other hand, hitting a symmetry wall corresponds to a reshuffling of the labels on
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the γj as one grows to be larger than another. In addition, one should perhaps think

about the “<” as being “≤” in order to not exclude solutions with some degree of

isotropy. These subtleties will not be vitally important to us, but it is good to keep

the differences between the symmetry walls and the gravitational walls in mind.

Not all of the walls we have introduced are independent; some are “hidden” behind

other walls. Algebraically, we say a wall is “hidden” behind others if the corresponding

inequality is a linear combination of other inequalities with positive coefficients. A

wall is a relevant wall it it is not hidden. All of the inequalities are consequences of

the relevant ones, or equivalently all of the wall forms are linear combinations of the

relevant wall forms with positive coefficients. In the case of pure gravity, the relevant

walls are

γj − γj−1 < 0 j = 2 . . . d, 2γ1 + γ2 + · · ·+ γd−2 (5.14)

which correspond to the d wall forms w1,d−1,d|m and wj|m for j = 2 . . . d.

5.1.2 String Actions

For applications to string models, we must carry through a similar analysis for the

corresponding gravitational action. It differs in that the Ricci scalar couples non-

trivially to the dilaton Φ through

Sstr =

∫
e−2Φ

(
R[G] + 4(∂Φ)2

)
+ · · ·

√
−G d10x (5.15)

Following a calculation similar to the case for vacuum Einstein gravity, we insert the

Ricci scalar for the generalized Kasner metric and integrate by parts. In this case it

turns out to be more convenient to rescale the dilaton field and define

γ0 = 2Φ−
∑
j

γj. (5.16)

Unlike the dilaton, the new parameter γ0 is invariant under T–duality transformations

(see Section D.3.1). In the literature, it is sometime referred to as the shifted dilaton.
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These steps result in the effective action

S =

∫
N−1e−γ

0

(
−
[
γ̇0
]2

+
∑
j

[
γ̇j
]2)−Ne−γ

0

Ugrav(γ) dt (5.17)

Clearly the natural choice for the lapse function is

N = e−γ
0

. (5.18)

As in the case of pure Einstein gravity, we have the action for a point moving in a

Lorentzian auxiliary spacetime, with supermetric

G00 = −1, Gjk = δjk (5.19)

and so the parameter γ0 plays the role of “time” for the point. Because of this

correspondence, we will use Greek indices to refer to components of the tuple γµ =

(γ0, γj). It should be clear when the index is referring to the physical spacetime or

the auxiliary spacetime.

The contributions to the potential V (γ) coming from the metric are all of the form

exp
(
2
[
−γ0 + γi − γj − γk

])
(5.20)

and thus give rise to gravitational walls

wijk|m =


−1 for m = 0, i

1 for m = j, k

0 otherwise

(5.21)

which should be compared to the walls in the pure gravity case.

To fully analyze string models it is necessary to include p–form fields. If in the

string frame metric the p–form field is coupled to the dilaton Φ through

S = − 1

(p+ 1)!

∫
eλΦF 2

p+1

√
−G d10x, Fp+1 = dAp (5.22)
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then after using the solutions to the p–form equations of motion, one finds that the

electric components give rise to the inequalities

γj1 + γj2 + · · ·+ γjp − 1

2

(
λ

2
+ 1

)(
γ0 +

∑
j

γj

)
< 0 (5.23)

and the magnetic modes yield

−γj1 − γj2 + · · · − γjp+1 +
1

2

(
λ

2
− 1

)
γ0 +

1

2

(
λ

2
+ 1

)∑
j

γj < 0 (5.24)

These inequalities in the γµ are analogues of the electric and magnetic stability con-

ditions used previously in this work. These give rise to the p–form walls and wall

forms in the same manner as the other stability conditions. As in the pure gravity

case, we also include a set of symmetry walls.

5.1.3 Relevant walls and Kac–Moody Root Lattices

Above we have found the full set of wall forms for pure gravity and string models.

As mentioned, some of the walls are “hidden” behind others. By focusing on the set

of relevant walls we find a remarkable connection with the root lattices of hyperbolic

Kac–Moody algebras. Excellent references for the algebraic structure and represen-

tation of Kac–Moody algebras are [51, 73], and for background material on Dynkin

diagrams and Cartan matrices one can turn to [49, 72]. Henceforth, when discussing

string models we will focus on the heterotic string theory, although it is possible to

extend this analysis to the full set of string models in a straightforward way.

First consider the pure gravity case. A wall is irrelevant if it is a linear combination

of other wall forms with positive coefficients: this corresponds to its inequality being

implied by the satisfaction of other inequalities. The relevant walls for pure gravity

in d+ 1 spacetime dimensions are

w1 = w1,d−1,d, wj for j = 2 . . . d (5.25)
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Figure 5.1: Dynkin diagrams for the relevant walls in two theories. For pure gravity
in d + 1 spacetime dimensions, one obtains the Dynkin diagram of AEd. For the
uncompactified heterotic string, one obtains the diagram for BE10.

for a total of d walls. All of these walls have squared norm of 2 in the supermetric

(5.6). Now, we can calculate the Cartan matrix AAB for this set of vectors, where

AAB = 2
wA · wB
wA · wA

(5.26)

and A,B index the wall forms, running from 1 . . . d. The resulting Cartan matrix for

d > 3 is given by

AAB =



2 for A = B,

−1 for |A−B| = 1 and A,B ∈ 2 . . . 9

−1 for (A,B) = (1, 2) or (A,B) = (1, d− 1)

0 otherwise

(5.27)

This is the Cartan matrix for the Kac–Moody algebra AEd, whose Dynkin diagram

is shown in Figure 5.1. For d = 3, one obtains the Dynkin diagram of AE3, also

shown in the figure. Thus, there is a natural identification between the simple roots

of a hyperbolic Kac–Moody algebra and the relevant gravitational walls.
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Now let us turn to a string model, in particular the heterotic string. We have the

metric and dilaton, as well as p–forms with p = 1, 2 and the same coupling λ = −2

to the dilaton in string frame. There are many wall forms here, but they are all

consequences (sums with positive coefficients) of the smaller subset of relevant walls

given by

−γ0 − γ7 − γ8 − γ9 < 0 w0 magnetic H3 (5.28a)

γ1 < 0 w1 electric F2 (5.28b)

γj − γj−1 < 0 wj symmetry, with j = 2 . . . 9 (5.28c)

Now using the supermetric corresponding to string actions (5.19), we find the Cartan

matrix

AAB =



2 for A = B 6= 1

1 for A = B = 1

−1 for |A−B| = 1 and A,B ∈ 2 . . . 9,

−1 for (A,B) = (7, 0) or (0, 7)

−1 for (A,B) = (2, 1),

−2 for (A,B) = (1, 2)

(5.29)

This is the Cartan matrix for the Kac–Moody algebra BE10, illustrated in Figure 5.1.

This correspondence enables one to compactly prove some facts about the chaotic

properties of these theories. Away from the walls, the actions tell us that the point

described by the γµ moves along null lines. Thus, it is possible to project its motion

onto the hyperboloid defined by

Gµνy
µyν = −1 (5.30)

Through the definitions

ρ2 = −Gµνγ
µγν , yµ = ρ−1γµ (5.31)
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Figure 5.2: If the motion of the universe point is along null lines in γj space, then
its trajectory t is contained in the light cone C+ has a projection P (t) onto the
hyperboloid H having unit Lorentzian separation from the origin.

as illustrated in Figure 5.2. This is in accord with other results whereby gravitational

dynamics are recast as motion on a manifold of negative curvature [34].

If the cone W+ defined by the simultaneous satisfaction of all of the stability

inequalities is completely contained in the forward light cone1 C+ in γµ space, then

the motion of the point on this hyperboloid is confined to a patch of finite volume.

(Looking ahead, this is illustrated in Figure 5.4 on page 131) This means that all

trajectories for the point will hit a wall after a finite time. This is precisely equivalent

to the statement that a Kasner bounce will inevitably occur, or that it is impossible

to satisfy all of the stability conditions for the model.

Now the two algebras AEd (for d < 10) and BE10 are examples of strictly hyper-

bolic Kac–Moody algebras. For these algebras, the cone defined by the simple roots

lies within the forward light cone. Therefore, we can immediately conclude that these

1By our conventions, as the universe approaches the crunch the corresponding point moves in
the −γ0 direction. Thus, the “forward” light cone points downward in our figures.
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theories will be chaotic. This is a special case of a general result that theories whose

billiards are root lattices of hyperbolic Kac–Moody algebras are inevitably chaotic.

Not all models with p–forms and gravity lead to Kac–Moody root lattices: it is a

special feature of string models and pure gravity that they result in wall lattices with

such unique properties.

5.2 Avoiding Chaos in Billiards

In the previous section we described the emergence of a particular lattice of walls that

determine the dynamics of various models with gravity near a big crunch. Now we

will describe how it is possible to use properties of this lattice to determine whether

chaos is controlled or not.

In Section 5.2.1 we describe how the elimination of chaos with a w ≥ 1 fluid

appears in this framework. Section 5.2.2 contains the central result of this chapter.

We describe how to use the wall lattice to determine the chaotic properties of a theory,

and to find non–chaotic solutions.

5.2.1 The w ≥ 1 Cases

Let us first consider how chaos is avoided by a scalar field in Einstein gravity. With

a scalar field, the effective action becomes

S =

∫
N−1e

P
j γ

j

(∑
j

[
γ̇j
]2 −∑

j,k

γ̇j γ̇k +
[
γ̇φ
]2)−Ne

P
j γ

j

U(γ) dt (5.32)

where γφ = φ is our scalar field. The notation reflects the fact that it appears in

the kinetic term of this action in the same way as an additional scale factor. The

supermetric is precisely the old pure gravity supermetric but with

Gφφ = +1, Gjφ = 0. (5.33)
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Figure 5.3: Two mechanisms by which chaos is avoided, viewed in the billiard picture.
Left panel: with the addition of a free scalar field, the universe point can move in a
new direction γφ along which there are no walls. Right panel: with a w > 1 fluid, the
mass–shell condition for the point is modified, and its trajectory becomes more and
more timelike.

and so in particular it still has the same signature. The potential includes all of the

previous gravitational terms, plus a new term arising from the magnetic components

(spatial gradients) of φ. This new term is subdominant to the gravitational walls in

any spacetime dimension.

The essential reason that the scalar field enables the system to avoid chaos is

that we have added a new degree of freedom (the scalar field) without adding any

new walls. The point can thus “escape” the wall system by moving along the new

direction γφ. As an example, recall that γj moves along a null line when far away

from the walls. We can now choose the null ray,

γµ =


−1 for µ = 1 . . . d,

±
√
d(d− 1) for µ = φ

(5.34)

This vector misses the gravitational walls (though it skirts the symmetry walls, which

is not important here). This state of affairs is illustrated in Figure 5.3.
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Now we turn to the w > 1 case. We have the action

S =

∫
N−1e

P
j γ

j

(∑
j

[
γ̇j
]2 −∑

j,k

γ̇j γ̇k

)
−Ne

P
j γ

j

[ρ(γ) + U(γ)] dt (5.35)

where ρ is our w > 1 fluid, and by the conservation equation we have

ρ(γ) = ρ0 exp

(
−(1 + w)

∑
j

γj

)
(5.36)

Varying with respect to N and setting the usual gauge N = e
P
γ gives the Friedmann

equation or mass–shell condition

1

2
Gjkγ̇

j γ̇j = −ρ = −ρ0 exp

(
(1− w)

∑
j

γj

)
(5.37)

Noting that
∑

j γ
j → −∞ as we approach the big crunch, we see that there are three

possibilities,

• Case 1 : w < 1. As we approach the big crunch, the term above decreases

exponentially to zero. The mass–shell condition is unchanged, and the universe

point moves along null rays.

• Case 2 : w = 1. The argument to the exponential vanishes, and the new term is

a constant addition to the mass–shell condition. It corresponds to adding a mass

to the universe point, and it therefore moves along timelike linear trajectory.

• Case 3 : w > 1. Now the new term grows as the big crunch is approached.

This means that regardless of the initial trajectory, the universe point follows

a trajectory that asymptotes to the purely isotropic solution where all γj are

equal.

These various cases are illustrated in Figure 5.3. By changing the mass–shell condition

for the billiard, the w > 1 fluid causes its trajectory to become ever more timelike.

The billiard point can thereby avoid the cone formed by the gravitational walls. A

similar analysis for the case with p–forms yields an analogous interpretation.
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5.2.2 The Weight Lattice

Now we will describe how to determine whether chaos is avoided using properties of

the wall lattice. We will focus on the situation where no w > 1 fluids are present,

and as we will see avoiding chaos will occur for reasons more closely akin to the free

scalar case described above. The results we describe here will be especially relevant

to our analysis of the effect of chaos on compactification in the next section.

Essentially, there are two possibilities. Let us denote, following [25], the forward

light cone in the γ space by C+, and the cone where all of the stability inequalities

are satisfied by W+. Then, as illustrated in Figure 5.4,

1. Case 1, W+ ⊂ C+. The projection of the billiard motion onto the forward

light cone is a finite volume patch. Models of this type are inevitably chaotic:

the billiard moves along a null ray which inevitably hits a wall. (See left panel

of Figure 5.4) Models of this type are chaotic.

2. Case 2, W+ 6⊂ C+. In this case there are points outside the light cone that

satisfy the stability inequalities. Since W+ is convex, this means there exists

null rays (and thus solutions of the equations of motion) that never intersect a

wall. (See right panel of Figure 5.4) Models of this type are non–chaotic.

Now, the cone C+ contains all lightlike (and null) vectors. So W+ 6⊂ C+ if and only if

W+ contains spacelike vectors. Therefore, the question of whether a model is chaotic

or not is reduced to the question of whether W+ contains spacelike vectors.

There is a simple and systematic way of determining whether this is the case. This

works whether or not the wall lattice is of Kac–Moody type. This method does require

that the number of wall forms is equal to the dimension of the γ–space, which holds

true for all the examples we consider here. Recall each of our wall forms determines
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Figure 5.4: Left frame: a case where the cone W+ in which the stability inequalities
are satisfied is contained within the light cone C+. All vectors in W+ are timelike
and the model is chaotic. Right frame: a case where W+ is not contained within
C+. Therefore there exist null trajectories (Kasner universes) where the stability
inequalities are always satisfied.

a stability inequality by

wA|mγ
m < 0 (5.38)

Next define a set of vectors ΛB dual to the wall forms, which anticipating the appli-

cation to Kac–Moody algebras we call the weights, by

GmnwA|mΛB|n = δAB (5.39)

and a set of coweights Λ∨ by raising the index

Λ∨
A
|m

= GmnΛA|n (5.40)

If the set of weights is linearly independent and complete (which will be the case for

all examples here) the γm in terms of the coweights by

γm = −
∑
A

cAΛ∨
A
|m

(5.41)

Now the inequalities take the form∑
B

cBwA|mΛ∨
B
|m

= cA > 0. (5.42)
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This means that we have a complete parameterization of W+ in terms of the cA. Any

tuple of cA, such that all of the cA are positive, leads by this construction to a point

in W+.

This parameterization of W+ is quite useful. It is not quite the same thing as a

parameterization of the space of solutions: recall that the solutions to the equations

of motion are piecewise linear null trajectories contained in W+, while this is a pa-

rameterization of W+ itself. Nonetheless, using this parameterization we can make

strong statements about what kinds of solutions can exist.

There are three classes of coweight, determined by the norm of the coweight vector

in the appropriate supermetric:

• Timelike, or Λ∨
A ·Λ∨

A < 0 : This direction inside W+ remains within the future

light cone C+.

• Null, or Λ∨
A · Λ∨

A = 0 : This direction corresponds to the edge of W+ touching

the forward light cone C+. This is the only class of coweight for which the

coweight vector is the same as a solution to the equations of motion. The

corresponding solutions have a wall at infinity, or in other words are marginally

chaotic solutions.

• Spacelike Λ∨
A · Λ∨

A > 0 : These correspond to rays in W+ that lie outside

the forward light cone. By our arguments above, this implies the existence of

non–chaotic solutions.

So, the question of classifying the chaotic properties of the theory comes down to a

question of the norms of the coweights. If there are coweights with positive norm,

then there exist non–chaotic solutions in a given theory. Otherwise, chaos (or, at

best, marginal behavior) is inevitable.
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5.3 Controlled Chaos for the Heterotic String

Here we apply the formal results that we have been developing to find the solutions

with controlled chaos in the heterotic string. We compactify to 0 + 1 dimensions,

which enables us to scan all possible solutions. Based on our selection rules, we

know that setting a Betti number bj = 0 allows us to delete stability conditions (or

inequalities) with exactly j indices along the compact space. One can readily see that

any compactification with b1, b3 6= 0 cannot delete any of the relevant walls for the

heterotic string. Furthermore, setting b4, . . . , b9 = 0 does not delete any walls, even

irrelevant ones. Thus, we will focus on the first three Betti numbers b1, . . . , b3.

If we choose a compactification with b1 = 0 or b3 = 0, then some of the relevant

walls are deleted. The analysis becomes somewhat nontrivial since deleting a relevant

wall “exposes” the irrelevant walls hidden behind it. We will be careful to account

for these new walls, and find that it leads to nontrivial transformations of the original

Kac–Moody root lattice.

In this manner, each compactification defines a new set of coweights, and thus

the BE10 root lattice of the uncompactified theory “mutates” into other root lattices.

Some (but not all) of these correspond to the root lattices of other Kac–Moody

algebras. We consider the following cases:

• The uncompactified case in Section 5.3.1,

• The compactification with b3 = 0, which controls chaos, in Section 5.3.2,

• The compactification with b1 = 0, which fails to control chaos, in Section 5.3.3,

• The b1 = b2 = 0 compactification, which controls chaos, in Section 5.3.4.

We go on to summarize our findings in Section 5.3.5.
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5.3.1 The uncompactified heterotic string

To begin, we consider the uncompactified heterotic string, or what is completely

equivalent, one compactified on a space where all de Rham cohomology classes are

nontrivial. (For example, the torus T9). This is in accord with known results that the

billiard is invariant under toroidial compactification [25] as well as our considerations

in Chapter 4. The set of relevant walls, which determine the root vectors, are

−γ0 − γ7 − γ8 − γ9 < 0 w0 magnetic H3 (5.43a)

γ1 < 0 w1 electric F2 (5.43b)

γj − γj−1 < 0 wj symmetry, with j = 2 . . . 9 (5.43c)

These give rise to the following set of coweight vectors and norms

Λ∨
A
|m

=



−1 0 0 0 0 0 0 0 0 0

−3 1 1 1 1 1 1 1 1 1

−3 0 1 1 1 1 1 1 1 1

−3 0 0 1 1 1 1 1 1 1

−3 0 0 0 1 1 1 1 1 1

−3 0 0 0 0 1 1 1 1 1
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(5.44)

where each coroot is given by a row in the matrix. Since there are no spacelike

coweights, we can conclude that the theory is inevitably chaotic. This is in accord

with previous results.
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5.3.2 The b3 = 0 Case

Here the full set of relevant walls is

−γ0 − γ8 − γ9 < 0 w0 magnetic F2 (5.45a)

γ1 < 0 w1 electric F2 (5.45b)

γj − γj−1 < 0 wj symmetry, with j = 2 . . . 9 (5.45c)

We can see that setting b3 = 0 has eliminated the magnetic H3 wall and exposed the

magnetic F2 wall. The root vectors give rise to the Dynkin diagram shown in Figure

5.5. This Dynkin diagram does not appear to correspond to a named Kac–Moody

algebra.

One finds the corresponding coweights and norms

Λ∨
A
|m

=
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A · Λ∨

A =
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(5.46)

It is readily seen that some of the coweights are spacelike. Thus, compactification

with b3 = 0 enables chaos to be controlled. This is in accord with our results from

Chapter 4, where we found solutions with controlled chaos for the heterotic string

and b3 = 0.
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Figure 5.5: Wall forms arising after compactification of the heterotic string with
b3 = 0. The original wall lattice BE10 mutates into the root lattice of an unnamed
Kac–Moody algebra.

5.3.3 The b1 = 0 Case

Setting b1 = 0 results in the set of walls

−γ0 − γ7 − γ8 − γ9 < 0 w0 magnetic H3 (5.47a)

γ1 + γ2 < 0 w1 electric H3 (5.47b)

γj − γj−1 < 0 wj symmetry, with j = 2 . . . 9 (5.47c)

This choice has deleted the electric F2 wall and exposed the electric H3 one. These

root vectors generate a Cartan matrix corresponding to the (strictly) hyperbolic Kac–

Moody algebra DE10, shown in Figure 5.6. Because DE10 is hyperbolic, we expect

that chaos is not controlled. This is confirmed when the coweights and their norms
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Figure 5.6: Wall forms arising after compactification of the heterotic string with
b1 = 0. The original wall lattice BE10 mutates into an the strictly hyperbolic Kac–
Moody diagram for DE10. Chaos is not controlled.

are computed, giving

Λ∨
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|m

=
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(5.48)

Above, for simplicity of presentation, we have multiplied Λ∨
1 and Λ∨

2 by 2 to give them

integer components. As expected, there are no spacelike coweight vectors. Thus the

cone W+ is completely contained within the forward light cone and the theory is

chaotic. We can conclude that setting b1 = 0 is not sufficient to ensure that chaos is

controlled.

5.3.4 The b1 = b2 = 0 Case

As we have found, b1 = 0 is not a sufficient condition to control chaos. We already

know that setting b1 = b3 = 0 will control chaos, since b3 = 0 does. The only case
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left is the b1 = b2 = 0 case. This yields stability inequalities

−γ0 − γ7 − γ8 − γ9 < 0 w0 magnetic H3 (5.49a)

−γ0 + γ1 − γ8 − γ9 < 0 w1 gravitational (5.49b)

γj − γj−1 < 0 wj symmetry, with j = 2 . . . 9 (5.49c)

where the additional condition b2 = 0 has deleted all of the electric walls, exposing a

gravitational wall.

We find the coweights and norms
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=
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(5.50)

where we have multiplied the first eight coweights by two in order to give them integer

coefficients. The presence of a single coweight of positive norm implies that chaos is

controlled in this model.

This set of walls does not define a Kac–Moody algebra. The wall forms fail to

satisfy the condition Aij ≤ 0 for i 6= j required of a generalized Cartan matrix

Aij. Thus there is no Dynkin diagram for this set of walls. Nevertheless, the p–

form and symmetry walls alone correspond to the simple roots of E
(1)
9 , the untwisted

affine extension of the finite Lie algebra E8. We have drawn its Dynkin diagram
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Figure 5.7: Wall forms arising after compactification of the heterotic string with
b1 = b2 = 0. The original wall lattice BE10 mutates into a gravitational wall “G,”
together with a set of walls corresponding to the affine Kac–Moody algebra E

(1)
9 .

Taken together, the full set of p–form and gravitational walls do not form a Kac–
Moody lattice.

in Figure 5.7, where we have indicated the node corresponding to the gravitational

wall. Because the full set of walls do not correspond to a generalized Cartan matrix,

we cannot use any algebraic properties to characterize the chaotic properties of the

system. However, our techniques using the coweight vectors still applies.

5.3.5 Summary

The full descent of wall forms in the compactification of the heterotic string is shown

in Figure 5.8. We have described explicitly the b1 = 0, b1 = b2 = 0 and b3 = 0

cases in the preceding text. From this we have found that any compactification with

b1 = b2 = 0 or b3 = 0 will control chaos. (Naturally, setting additional Betti numbers

to zero will also control chaos) For completeness, all of the possibilities are shown

in the Figure. The Betti numbers b4 . . . b9 do not participate at all in the control of

chaos through compactification to 0 + 1 dimensions.

We should note that not all of the possible compactifications preserve the Kac–

Moody algebra structure of the uncompactified heterotic string. In particular, when

a compactification exposes a gravitational wall (as in the b1 = b2 = 0, b1 = b3 = 0 and

b2 = b3 = 0 cases) then it may occur that the full set of walls cannot be expressed

as a Dynkin diagram, though the p–form walls alone can be. The only case with

an exposed gravitational wall that does have a Dynkin diagram seems to be the
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Figure 5.8: Transformation of the wall lattice in compactification of the heterotic
string to 0 + 1 dimensions. In some cases only the p–form walls have an associated
Dynkin diagram: for them, we have denoted the gravitational wall by “G” and given
the name of the p–form Dynkin diagram. Not all of the Dynkin diagrams are named.
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Figure 5.9: Relationship between the billiard picture and the Kasner sphere. The
billiard moves along the null cone: null rays on the cone are thus points on the
Kasner sphere K. Regions inside W+ are in S, the boundary of W+ is S̄. Compare
Figure 2.3 on p. 25.

b1 = b2 = b3 = 0 compactification, which ends up removing all p–form walls and

yielding the relevant wall set of pure gravity with a scalar field in 9 + 1 dimensions.

5.4 From Coweights to Kasner Exponents

In this section we will complete the connection between the work in the billiard picture

and our previous work in terms of Kasner exponents. We have already shown how to

test for existence of solutions with controlled chaos by computing the norms of the

coweights. In the billiard picture it is then possible to construct explicit trajectories in

the γj space with controlled chaos. Here we will show how to find the corresponding

Kasner exponents.

The relationship between the Kasner sphereK and the billiard picture is illustrated

in Figure 5.9. The billiard moves along null rays contained within the wall cone
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W+. If chaos is controlled, there are rays in the null cone that are contained in

W+, illustrated by the shaded region in the figure. The velocity components of the

universe point give the Kasner exponents, and so the null cone can be viewed as a

cone over the Kasner circle K. In order to precisely relate the velocity of the universe

point to the Kasner exponents, it is necessary to account for differences between the

string and Einstein frame, as well as the different time coordinates used with these

two pictures. Below we will focus on string models for definiteness.

5.4.1 Between Kasner and Billiard

Here we introduce the general technique to transform trajectories in the billiard space

to Kasner exponents, and the inverse process as well.

From Billiard to Kasner

Solutions to the equations of motion (away from the walls) are of the form

γj = ΓjtBS + Γj0, γ0 = Γ0tBS + Γ0
0 (5.51)

where Γµ = (Γ0,Γj) is a null vector in the string action supermetric. The time

coordinate tBS is the string frame billiard time coordinate, defined by the choice of

gauge N = exp (−γ0) and the string frame action (5.17). The first step is to convert

to string frame proper time tPS. This is accomplished through the relationship

NdtBS = dtPS =⇒ exp
(
−Γ0tBS

)
dtBS = dtPS (5.52)

which yields

tBS = − 1

Γ0
ln
(
−Γ0tPS

)
(5.53)

where we have discarded an irrelevant additive constant. With this choice of signs,

as tBS → +∞, tPS → 0+ if Γ0 < 0. We can immediately use this relationship to find
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the string frame Kasner exponents via

G
(S)
jk =

(
tPS
t0

)p(S)
j

δjk =⇒ p
(S)
j = −Γj

Γ0
(5.54)

we can also find the string frame dilaton Kasner exponent through the definition of

the shifted dilaton γ0 in (5.16) through

Φ =
1

2

(
γ0 +

∑
j

γj

)
=⇒ Φ = −1

2

(
1 +

∑
j

Γj

Γ0

)
ln tPS (5.55)

where we have dropped an additive constant. This gives the dilaton Kasner exponent

p
(S)
Φ = −1

2

(
1 +

∑
j

Γj

Γ0

)
(5.56)

As a check, we can check that the resulting Kasner exponents satisfy the string frame

Kasner conditions

∑
j

p
(S)
j = 1 + 2p

(S)
Φ ,

∑
j

[
p

(S)
j

]2
= 1 (5.57)

The first is satisfied by the definition of p
(S)
Φ , while the second is satisfied if

∑
j

[
Γj
]2

=
[
Γ0
]2
, (5.58)

which is precisely our original requirement that Γµ is a null vector.

Now that we have the string frame Kasner exponents, we can transform to the

Einstein frame with canonically normalized dilaton φ. The relevant transformations

are

pφ =
p

(S)
Φ /

√
2

1− p
(S)
Φ /4

, pj =
p

(S)
j − p

(S)
Φ /4

1− p
(S)
Φ /4

(5.59)

where the exponents pφ and pj satisfy the Kasner conditions (2.36), again as a con-

sequence of the fact that Γµ is null.
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From Kasner to Billiard

Now, let us assume that we have a set of Kasner exponents in the Einstein frame. We

wish to determine the trajectory Γµ in the billiard space. If we invert the formulae

(5.59) we find

p
(S)
Φ =

√
2pφ

1 + pφ/
√

8
, p

(S)
j =

pj + pφ/
√

8

1 + pφ/
√

8
(5.60)

Now, note that the transformations between the billiard trajectory Γµ and the string

frame Kasner exponents depended only on the ratios between Γ0 and Γj. Thus Γµ

and λΓµ define the same trajectory. We can fix this degeneracy by setting, say, Γ0

to a fixed value and then finding the other components of Γµ in terms of this. The

formulae from the previous section therefore give

Γj = −Γ0p
(S)
j (5.61)

The remaining formulae give no new information, reflecting the fact that Γ0 is freely

specifiable.

5.4.2 Examples

Now we will give some examples of these transformations and their applications in

finding solutions with controlled chaos. First, we embed a doubly–isotropic solution

found in Chapter 4 into the billiard picture. As a second example, we enumerate all

marginal solutions to the b1 = 0 compactification and given the corresponding Kasner

exponents.

Embedding of a Known Solution

Here we consider the embedding of a known solution with controlled chaos in the

billiard picture. We will use the solution A from Table 4.3. In the Einstein frame,
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we have

p1 . . . p3 = 0, p4 . . . p9 = 1/6, pφ =
√

5/6 (5.62)

This yields the string frame exponents

p
(S)
Φ =

√
5

3

(
1 +

√
5/3

4

)−1

∼ 0.976 (5.63)

p
(S)
1 . . . p

(S)
3 =

1

4

√
5

3

(
1 +

√
5/3

4

)−1

∼ 0.244

p
(S)
4 . . . p

(S)
9 =

(
1

6
+

1

4

√
5

3

)(
1 +

√
5/3

4

)−1

∼ 0.370

Now in terms of Γ0, our billiard trajectory is defined by the velocity

Γm = Γ0(−1, 0.244︸ ︷︷ ︸
×3

, 0.370︸ ︷︷ ︸
×6

) (5.64)

Now recall that in Section 5.2.2 we introduced a parameterization of the wall cone

W+ in terms of the coweights Λ∨
A
|m and coefficients cA given by

γm = −
∑
A

cAΛ∨
A
|m

(5.65)

which satisfies all of the stability conditions if all cA > 0. We can determine the cA

by noting that

cA = wA|mγ
m, γm = ΓmtBS + Γm0 (5.66)

where Γm0 is an irrelevant constant that we set to zero. (It determines whether the

trajectory begins in W+ when tBS = 0) Using our solution for Γm and the wall forms

for the b3 = 0 compactification, we have

c0 = −Γ0 · 0.260, c1 = −Γ0 · 0.244, c4 = −Γ0 · 0.126, (5.67)

with all other cA = 0. Clearly the trajectory will be in W+ if we choose Γ0 = −1.

Since the walls c2 . . . c9 are all symmetry walls, then chaos is still avoided despite the
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fact that some of these cA vanish. The important thing is that the p–form stability

inequalities are satisfied, thanks to the fact that c0 and c1 are positive.

As we expect, from looking at (5.46) we can see that c1 and c4 are both spacelike,

while c0 is timelike. The convexity of W+ ensures that any linear combination of

these coweights (with positive coefficients cA) is in the wall coneW+, and the timelike

weight c0 is present in this linear combination in order to “pull” the spacelike vectors

onto the null cone, and thus satisfy the mass–shell constraint. It is also useful to

note that the coweights c0, c1 and c4 are the only coweights compatible with doubly

isotropic solutions, since they are the only coweights left invariant by permutations of

the coordinates {γ1, γ2, γ3} and {γ4, . . . , γ9}. Thus an examination of the coweights

for a given theory enables one to classify the possible solutions with controlled chaos

and specific isotropy properties.

There is an important subtlety to this analysis. Our derivation of the coweights

and their use in determining solutions with controlled chaos assumed that the string

model was fully compactified down to 0 + 1 dimensions. Physically interesting solu-

tions are those where three dimensions remain uncompactified. For these directions,

the walls corresponding to p–form components in these directions are not deleted by

compactification. In the present case, and using the isotropy along {γ1, γ2, γ3} the

only relevant wall in this subset is

−γ0 − γ1 − γ2 − γ3 = −0.268 < 0 (5.68)

arising from the magnetic component of H3. This stability inequality is satisfied in

this case. In the general case, when one wishes to interpret some of the dimensions

as noncompact, it is necessary to check that additional stability inequalities of this

type are satisfied.
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Finding Marginal Solutions

Now we show how to go from the billiard picture to the Kasner exponent picture.

Along the way, we will illustrate the power of the techniques we have discussed in

this chapter by showing how one may classify all marginal solutions to the stability

conditions in a given compactification. We will work within the b1 = 0 compactifica-

tion of the heterotic string. Instead of deriving new solutions with controlled chaos

(which in any case we have proved do not exist for this compactification), we will

examine the structure of marginal solutions, thus making contact with some of the

results found via the computer search in Table 4.4.

The coweights and their norms are given in (5.48). One can readily see that there

are three null coweights: c1, c2 and c9. Each of these corresponds to a marginal

solution. Up to symmetries, at least in the fully compactified case, these are the only

possible marginal solutions. These correspond to the following sets of Einstein frame

Kasner exponents

c1 = (−3, 1, . . . , 1︸ ︷︷ ︸
×9

) pφ =
√

8/9, pj = (1/9, . . . 1/9︸ ︷︷ ︸
×9

) (5.69)

c2 = (−3,−1, 1, . . . , 1︸ ︷︷ ︸
×8

) pφ =
2
√

2

5
pj = (−3/5, 1/5, . . . , 1/5︸ ︷︷ ︸

×8

) (5.70)

c9 = (−1, 0, . . . , 0︸ ︷︷ ︸
×8

, 1) pφ = 0 pj = (0, . . . , 0︸ ︷︷ ︸
×8

, 1) (5.71)

Of these solutions, it is seen from the coweights of the uncompactified heterotic string

(5.44) that c1 and c9 are common. They arise from marginally satisfying the magnetic

H3 stability condition. The marginal solution corresponding to c2 is new to the

b1 = 0 compactification. It would violate the electric F2 stability condition in the

uncompactified heterotic string. This inequality is replaced by the electricH3 stability

condition after compactification, which is marginally satisfied by c2.

As a final calculation, we can check to see which dimensions can be made non-
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compact without destroying the marginal nature of these solutions. Since c1 and c9

are inherited from the uncompactified heterotic string (5.44) these solutions remain

marginal when any dimensions are uncompactified. For the c2 solution, the direction

along which we have the −3/5 Kasner exponent must be along a compact direction

in order to satisfy the electric F2 stability condition.

5.5 Conclusions

In this chapter we have developed systematic techniques to study string solutions with

controlled chaos. Using these techniques, it is possible to determine the existence of

solutions and explicitly construct them for any compactification. In addition, we

have shown how to systematically find solutions with any desired degree of isotropy,

generalizing the doubly–isotropic solutions discovered through a computer search.

While the methods we describe are rooted in the emergence of Kac–Moody root

lattices in the dynamics of string models, they do not require that the set of relevant

walls possess any special properties. Thus, they can be applied to the dynamics of

general gravitating systems.

An unfortunate outcome of the analysis in this chapter is the discovery that is

is impossible to control chaos by compactifying the heterotic string on a manifold

with b1 = 0. This means that the simplest compactifications of string theory are

incompatible with controlled chaos. However it is far from clear that phenomenology

requires a “classic” Calabi–Yau compactification. In recent years, string phenome-

nologists have been focusing on more general set–ups involving fluxes and D–branes.

The techniques developed in this chapter are sufficiently general to be applicable to

this wider class of compactifications as well.



Chapter 6

Pair Production of Strings and

Point Particles

...when they come to model heav’n
And calculate the stars, how they will wield
The mighty frame, how build, unbuild, contrive
To save appearances, how gird the sphere
With centric and eccentric scribbled o’er,
Cycle and epicycle, orb in orb.

Paradise Lost Book VIII, lines 79–84, [90]

In this chapter we turn from the classical realm and explore a quantum phe-

nomenon. In particular, we study the process of pair production in time–dependent

backgrounds. We will find that the process occurs quite differently, depending on

whether the fundamental degrees of freedom are point particles (as in quantum field

theory) or strings. The results we describe suggest specific signatures of the string

pair creation phenomenon that may survive into the regime of strong gravitational

fields.

In a sense, this work is an attempt to go beyond the effective field theory ap-

149
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proximation to string theory. Strings come along with a mass scale, set by the string

tension α′. There are many aspects of string physics where they behave differently

than any theory of point particles: examples include the behavior of their scattering

amplitudes [57, 58, 59] or their propagation on certain singular spaces such as orb-

ifolds [37, 38, 98]. Despite the fact that strings are decidedly not point particles, in

the long–wavelength limit λ �
√
α′ these differences often vanish, and it is possible

to describe string physics by an effective theory of point particles [21, 44, 45, 46, 105].

This is the effective field theory approximation. It enables one to study many features

of the theory that would be extremely difficult to analyze using worldsheet methods.

On the other hand, by casting the theory in a point particle framework, some aspects

of “stringy” physics are obscured. The work described in this chapter is an effort to

recover some of those stringy effects.

Our calculation reveals two specific differences between the string and point–

particle results. We focus on excited string states, and compare their pair production

rate and spectrum to those of point particles with the same mass. We can summarize

the differences we find as follows:

• Rate : The production rate for excited strings goes like ∼ exp (−Astrm2) for

large m. This is strongly suppressed relative to the point particle rate, which

goes like ∼ exp (−Aptm).

• Spectrum (1): At tree level in field theory, only identical particles are pro-

duced (ie, e+e− but not µ+e−). In the case of the string, it is possible to produce

pairs at different mass levels and states.

• Spectrum (2): In field theory, the production rate as a function of the wave-

length λ of produced particles is independent of λ in the λ → ∞ limit. In

strings, one sees the production rate vanish as λ→∞ for pairs of strings at the

same excitation level.
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All of these features can be explained in the context of certain simple features of the

string spectrum and scattering amplitudes, as we discuss in more detail later in this

chapter.

This chapter is organized as follows: In Section 6.2 we discuss the perturbative

approach to calculating pair production, using field theory as a guide to the string

calculation. In Section 6.3 we describe a specific background, involving the collision of

two plane gravitational waves, for which the perturbative calculation may be applied.

In Section 6.4 we perform the explicit string calculation and discuss its properties.

Finally, we present our conclusions in Section 6.5. We also include two appendices

with additional details on some elements of our work. The four–point amplitude

describing pair production is discussed in Appendix E, and a more detailed account

of perturbatively computing Bogolubov coefficients is given in Appendix F.

We would like to point out that the material in Sections 6.2.5 and 6.3 is primarily

the work of a co–author in a collaborative effort [115]. We include these sections in

this work to support the continuity of the argument.

6.1 Introduction

The pair production process is of paramount importance in modern cosmological mod-

els. One example is provided by the inflationary universe. This model has provided

such a successful paradigm for the early universe thanks to its elegant solution of the

horizon, flatness, and monopole problems [61]. One of its most decisive and experi-

mentally testable consequences is its prediction of an (almost) scale–free spectrum of

density perturbations and gravitational waves [7]. These fluctuations are produced by

what is essentially the pair production of quanta in the early universe. Furthermore,

during (p)reheating after inflation, we again have a time–dependent background, and

pair production is responsible for transferring the energy density in the inflaton field
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to other degrees of freedom. Essentially all known cosmological models depend on

pair production to seed the initial spectrum of density perturbations required by

observation.

The phenomenon of pair production itself has been studied for many years. An

excellent analogy for this process is an atom coupled to an external electromagnetic

field. At a time far in the past, we imagine the atom is prepared in its ground state. If

the external field evolves with time (perhaps due to a passing electromagnetic wave)

the atom may transition into an excited state. Precisely the same physics is at work

for quantum fields in time–dependent backgrounds. The quantum field may initially

be in its vacuum state, corresponding to an absence of particles. Through its coupling

to the background that is changing with time, it may transition to an excited state.

This excited state corresponds to the presence of particles.

A recurring theme of this chapter is the interplay between the classical and quan-

tum features of pair production. For the most part, we will focus on the study of

quantum fields propagating in classical backgrounds (although in the string case it

is sometimes unavoidable to consider the quantum nature of the gravitational field).

On the one hand, the pair production process can often (but not always) be studied

using only the classical equations of motion, and thus does not necessarily involve

truly “quantum” phenomena such as Feynman loops. In this sense it involves many

classical aspects. On the other hand, the boundary conditions used to solve the clas-

sical equations of motion are those set by the quantum theory, and moreover the pair

production becomes physically irrelevant in the ~ → 0 limit. Thus there are some

necessarily quantum features here as well.

We can give a rough guide to the relationship between classical and quantum

phenomena in the pair production process. Consider again the case of the electro-

magnetic field, carrying an energy E(ω) dω in the modes with angular frequencies
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between ω and ω + dω. In quantizing, we are accustomed to resolving these modes

into quanta, each carrying an energy ~ω. Thus the number of quanta N(ω) in each

mode is,

N(ω) =
E(ω)

~ω
(6.1)

As ~ → 0, each quantum carries less and less energy, and each mode of the field

corresponds to a larger and larger number of quanta. In the limit that we hold

E(ω) dω fixed, and take ~ → 0, we expect that quantum aspects of the field will scale

away, and we should recover the classical physics of the electromagnetic field.

Now let us turn to the somewhat different situation of pair production in a time–

dependent background. We take an arbitrary quantum field propagating on a fixed

background. It turns out that (for the cases of interest here) the number of “quanta”

of the field N(ω) that are produced in a given mode is independent of ~, and can

be computed using the classical equations of motion. Therefore classical physics

determines the left hand side of (6.1). However, physically observable quantities,

such as the energy density produced in this way, will vanish in the ~ → 0 limit, as a

consequence of (6.1). As in the case of the electromagnetic field, we recover classical

physics in the ~ → 0 limit, though in a slightly different way.

A second theme in this chapter is the relationship between the string worldsheet

theory and the corresponding effective field theory. Recently [47, 60] the pair creation

of strings in a cosmological setting was estimated using effective field theory methods.

In this work the excited states of the string are treated as massive particles for which

the usual field theory calculation applies. One makes contact with string physics by

considering the effect of the exponential Hagedorn [5, 62] growth of the density n(m)

of string states of mass m, approximated by

n(m) ∼ exp (m/TH), TH =
1

2π
√
α′c⊥/6

, (6.2)

where c⊥ is the central charge of the transverse modes alone: c⊥ = 24 for the bosonic
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string considered here. TH is the Hagedorn temperature. Taking this into account,

one finds that while the production rate of a single massive state is small, the rapid

growth in the number of states (6.2) can give rise to a significant cumulative effect.

Here we test this effective field theory approximation in a weak–field limit, where

string pair creation may be computed exactly. Although our real interest is strong

gravitational fields, such as those that arise in cosmology, the formalism does not yet

exist to calculate pair production of strings here (see [82] for an interesting approach

to this and [119] for a calculation in a more specific background). Nevertheless inter-

esting surprises can be seen already for weak fields. Among them, we find that the

enhancement of the production of excited string states due to the growing density of

states discussed above is greatly suppressed due to the mild hard scattering behavior

of the string.

To carry out our calculation of string pair production, we use the familiar idea

that a curved geometry can be represented as a coherent state of gravitons [53, 54,

97, 98]. For weak gravitational fields this gives a prescription relating S–matrix

amplitudes on a weakly curved spacetime to a sum of those on Minkowski spacetime

with multiple graviton vertex operators inserted. To lowest order in the closed string

coupling, the pair production of strings is thus the four–point process gg → AB,

with two gravitons g interacting to produce two strings in states A and B. This

approach has the advantage of leading to a controlled calculation using standard string

perturbation theory, but there are many other conceptual and technical obstacles to

an understanding of strings in general time–dependent backgrounds. Among them are

the subtleties involved in interpreting the S–matrix for strings on curved backgrounds

(see, for example, [22, 71]). More generally, in any quantum theory including gravity,

the inevitable formation of singularities as predicted by the singularity theorems [64,

65] implies the absence of asymptotically trivial “in” and “out” regions required to
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define an S–matrix .

We confront these issues in our analysis in this chapter. We construct a specific

geometry describing the collision of two small amplitude plane waves which we embed

in an exact nonlinear solution of Einstein’s equations. An analysis of the full solution

shows the formation of a spacelike singularity in the future of the collision of the

plane waves, and also how by making the amplitude of both waves sufficiently small

we may push the singularity arbitrarily far into the future of the initial collision

region. Consequently perturbation theory is valid for an arbitrarily long period, and

we believe the S–matrix formalism can be used to understand the physics in this

region. This is as it should be, for the possible formation of a big crunch in our future

should not prevent us from understanding physics today!

In this work we primarily focus on the pair production of long–wavelength string

states. Since the theory of pair creation in field theory is well developed [13, 35], and

since string theory should have an effective field theory description valid for λ�
√
α′,

one might ask why we expect there to be differences between string and point particle

pair creation in this regime. When viewed as the four–point process gg → AB, then

certainly for massless states A and B, with wavelengths λ �
√
α′, all momentum

scales in the scattering process are well below the string scale. On the other hand,

to produce excited string states, with masses m ∼ 1/
√
α′, then the typical graviton

momenta and momentum exchange will in fact be greater than 1/
√
α′. This is beyond

the validity of effective field theory, and indeed previous investigations have revealed

uniquely “stringy” behavior in this regime [57, 58, 59]. Thus, it is reasonable to

expect the pair production of massive strings might be fundamentally different from

the pair production of massive particles.
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6.2 Pair Production in Weak Gravitational Fields

In this section we will introduce the techniques we use to analyze the pair production

of strings and point particles. We will focus on the regime of weak gravitational fields,

since this enables a perturbative calculation on the string worldsheet. In Section 6.2.1

we discuss the calculation of pair production in quantum field theory, focusing on

the technique of Bogolubov coefficients. In Section 6.2.2 we discuss examples where

pair production is perturbative or non–perturbative. We describe the method by

which pair production may be calculated by a perturbation series in quantum field

theory in Section 6.2.3. In Section 6.2.4 we generalize this treatment to the string.

We also discuss some of the new features that arise in string theory that are not

present in the field theory case. We touch on some of these problems in Section 6.2.5.

Here, we show that our second order results are unchanged by corrections to the

background spacetime required for the consistency of the string theory. Appendix F

is also relevant to this section: there, we show that the perturbative treatment we

employ is equivalent to the usual calculation using Bogolubov coefficients.

6.2.1 General Technique

The canonical method to study pair production is the use of Bogolubov coefficients.

This technique can be used for both strong and weak backgrounds, provided one can

solve the equations of motion for the relevant quantum field. Let us begin with the

action for some real field φ with action

Sφ =

∫
L[φ] dDx (6.3)

One begins the quantization process by decomposing the field into a complete set of

modes {uj, u∗j} so that

φ(x) =
∑
j

ajuj(x) + a†ju
∗
j(x) (6.4)
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where j some indexing variable (possibly continuous), and so we interpret the sum-

mation in the generalized sense of Dirac: summation over the discrete values of j and

integration over the continuous ones. The mode functions uj are usually taken to be

positive frequency with respect to some time coordinate t in the sense that

i
d

dt
uj = λuj, λ > 0. (6.5)

The u∗j are the complex conjugates of the uj, and are the negative frequency modes.

We wish to impose the equal–time commutation relations

[φ(x), π(y)] = iδD(x− y), [φ(x), φ(y)] = [π(x), π(y)] = 0, (6.6)

where π is the canonical momentum defined by Sφ, and also promote the aj to oper-

ators satifsying

[aj, a
†
k] = δjk, [aj, ak] = [a†j, a

†
k] = 0, (6.7)

and wish for the Hamiltoninan corresponding to the action be of the form

H =
∑
j

(
ωjaja

†
j + · · ·

)
(6.8)

These requirements uniquely fix the normalization of the modes uj. Finally, we can

define the vacuum as the state annihilated by all the lowering operators

aj|0〉 = 0, ∀j (6.9)

which, again, is uniquely defined by the choice of mode functions {uj, u∗j}. Of special

importance is the fact that the vacuum is determined by the choice of mode functions,

and different mode functions lead to different vacuum states.

The only arbitrary choice in this construction is the choice of the complete set of

modes {uj, u∗j}. We are also free to choose a different complete set {uj, u∗j}, which

will lead to a quantization of the field that is, in general, inequivalent to the first one.
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The inequivalence is measured by the Bogolubov coefficients αjk and βjk, defined by

ai =
∑
j

αijaj + β∗ija
†
j (6.10)

When the coefficients βjk = 0, the quantizations are equivalent since the two vacua

are equal, and we can build the uj as linear combinations of the uj. Otherwise,

the quantizations are inequivalent. This is sometimes expressed using the number

operator relative to the different quantizations

Nj = a†jaj, N j = a†jaj. (6.11)

It satisfies the relation

〈0|Nj|0〉 =
∑
k

|βkj|2 (6.12)

which is not zero when βjk 6= 0. Thus, the vacuum relative to one quantization

contains particles relative to the other.

This framework can be used to describe pair production in a time–dependent

background. To do this one usually considers a situation in which the spacetime

is asymptotically trivial in the far past and future, and constructs a quantum field

theory based on a “natural” set of modes. These sets of modes define the “in” and

“out” vacua, respectively. The relevant Bogolubov transformation is that between

these two quantum field theories. The general idea is that a mode can start out

as a positive frequency mode in the “in” quantum field theory, then evolve through

the spacetime into a mixture of positive and negative frequency modes in the “out”

quantum field theory. When this occurs, we said that pair production has occurred.

6.2.2 Perturbative vs. Non–Perturbative Pair Production

In one sense computing the Bogolubov transformation involves only classical physics.

One takes the boundary condition that the field φ(x) obeys φ = uj in the far past,
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where uj is some positive frequency mode in the “in” mode set. This corresponds

to taking φ to be in its vacuum state in the far past. One then evolves φ according

to the classical equations of motion. The resulting field φ is then decomposed into

modes of the “out” mode set. If any negative frequency modes are present in this

expansion, the β Bogolubov coefficient will be nonzero. It may be that this “classical”

contribution vanishes, at which point one must look at loops and other features of

quantum field theory. In the case we are interested in for the current work, the

classical contribution will dominate.

In this work we are concerned with the case where the pair production rate is

perturbative in some parameter characterizing the geometry. The literature on pair

production has examples of both non–perturbative and perturbative pair production

rates. Schwinger’s classic calculation of e+e− production in an electric field [104] is

essentially non–perturbative. For a particle of charge e, mass m, and spin J in an

electric field E, the production rate Γ per unit time and volume is

Γ =
2J + 1

8π3

∞∑
n=1

[
(−1)(2J+1)(n+1)

(
eE

n

)2

exp

(
−πnm

2

|eE|

)]
(6.13)

As the electric field E is taken to zero, the pair production rate vanishes faster than

any power of E. The same features are also seen in more recent calculations with

open strings [6, 20]. In the open string case there is also an instability at large E

corresponding to a “tearing” of the string.

An example with a different behavior is provided by the pair production of scalars

of mass m in a flat FRW spacetime that undergoes a brief period of expansion [11].

In this example we have the metric

ds2 = a(η)2
(
−dη2 + dx2

3

)
, a2(η) = 1 + b tanh(ρη), (6.14)

and the number of particles produced in each mode k = (ω,~k) is found to be

N~k =
sinh2 [π(ω+∞ − ω−∞)/2ρ]

sinh(πω+∞/ρ) sinh(πω−∞/ρ)
(6.15)
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where

ω(η) =
[
|~k|2 + a(η)2m2

]1/2
, ω±∞ = ω(±∞). (6.16)

For b� 1 the number of pairs produced goes like ∼ b2m4 for small b. Thus one might

hope that for small values of bm2 it would be possible to treat this problem in some

kind of perturbative expansion. It is backgrounds of this type that we will focus on

in this work.

6.2.3 Field Theory

In the case of field theory, the perturbative analysis of pair production can be realized

quite straightforwardly through the addition of new vertices in the Feynman diagrams

of the theory. This point of view is developed in more detail in Appendix F, where

it is shown that this technique yields precisely the same results as the more standard

Bogolubov coefficient calculation. The field theory case is useful for our present

purposes as it provides a prototype for the string calculation. Note that this technique

is not applicable to all pair production scenarios – for example, one cannot use it to

compute the Schwinger pair production rate (6.13). One expands the metric about

Minkowski space

gµν = ηµν + h(1)
µν + h(2)

µν + · · · , (6.17)

where h
(1)
µν is the first order metric perturbation, and h

(2)
µν +. . . , the corrections required

at successively higher order so that the full metric gµν satisfies the Einstein equations.

If we consider a massive minimally coupled scalar field with action

Sφ = −1

2

∫ (
gµν∂µφ∂νφ+m2φ2

)√
−g dDx, (6.18)

Then the expansion (6.17) of the metric gives a corresponding perturbative expansion

of the action,

Sφ = S(0)
φ + S(1)

φ + S(2)
φ + · · · (6.19)
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as well as a series of terms S(n)
φ at nth order in the perturbation.

This allows a perturbative evaluation of the n–point functions in the background,

denoted by 〈· · · 〉b, in terms of the same quantities 〈· · · 〉0 in Minkowski space with

additional insertions. For any combination of fields O, the expansion of the action

(6.19) inserted into the path integral yields,

〈O〉b = 〈O〉0 +

∫
〈TOkΣ

(1)
−k〉0

dDk

(2π)D
+

∫
〈TOk′Σ

(2)
−k′〉0

dDk′

(2π)D
+ · · · (6.20)

where Σ(1) and Σ(2) are the new vertices that appear to first and second order in

perturbations. These are determined by the expansion (6.19) of the action

Σ(1) = iS(1)
φ , (6.21a)

Σ(2) = iS(2)
φ − 1

2

[
S(1)
φ

]2
. (6.21b)

The statements that we have made for the n–point functions have analogues for the

S–matrix . However, defining an S–matrix involves a choice of asymptotic “in” and

“out” states. Therefore this prescription really only makes sense when the spacetime

in question is asymptotically Minkowski. In other cases it may be necessary to modify

the definition of asymptotic states.

At this point, it is possible to see how even a weak gravitational background can

lead to pair production. Pair production is the process with no “in” particles and two

“out” particles. While forbidden by momentum conservation in Minkowski space,

in the perturbed spacetime each term in the S–matrix carries three momenta; the

two momenta of the “out” particles and the momentum carried by the new vertices

Σ(n). Thus two positive energy particles can appear in the “out” state if one of the

terms Σ
(n)
k supplies the “missing” momentum. So, the amplitude to pair produce two

particles with momenta k1, k2 will be nonzero provided that we have Σ
(n)
−k1−k2 6= 0.

More physically the missing momentum is coming from the background gravitons.
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Figure 6.1: Analogies between string and point particle pair production calculations.
Time runs in the upward direction in these diagrams. (a) the pair production of
point particles can be thought of as reflection from spacetime curvature, shown by
wavy lines (b) the analogous picture for the string worldsheet (c) spacetime curvature
approximated by gravitons interacting with the point particle, giving a Feynman
diagram (d) analogue for the string (e) the graviton absorption corresponds to adding
two graviton vertex operators to any correlation function computed on the worldsheet
(f) in the worldsheet picture, some off–shell propagating intermediate states (and their
corrections to the correlation function) are included automatically in the calculation.
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6.2.4 String Theory

Strings in time–dependent spacetimes are currently poorly understood. There are

many difficult technical obstacles to formulating a consistent string theory in a non-

trivial background. One is that the consistency requirements of the worldsheet the-

ory lead to an infinite number of constraints on physical states, which are difficult

to solve simultaneously. Another problem is that string interactions are rooted in

the S–matrix approach, and string field theory is a topic still very much under de-

velopment. Furthermore, even in very simple cases, such as the linear dilaton model

[2, 93] the spectrum of physical states can change quite dramatically when the theory

is formulated on a nontrivial background. We will encounter some of these problems

in the current work, but fortunately we do not need to confront them directly in order

to extract sensible results from our technique.

Following the same procedure as the field theory calculation, one may insert the

perturbative expansion of the metric gµν = ηµν + h
(1)
µν + h

(2)
µν + · · · into the conformal

gauge string worldsheet action

S = − 1

2πα′

∫
gµν(X)∂Xµ∂Xν d2z. (6.22)

Now, the successive metric perturbations h
(n)
µν are chosen to satisfy the string beta

function equations.

First order

As is well known [53, 54, 97, 98] the expansion of the metric leads to the insertion

of graviton vertex operators in worldsheet correlation functions. For example, if we

wish to study the S–matrix element involving two string states A and B then we
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must compute the worldsheet correlation function

〈
VA(kA)VB(kB)

〉
b
=
〈
VA(kA)VB(kB)

〉
0
+

1

4πgc

∫
h(1)
µν (k

′)
〈
VA(kA)VB(kB)Vµνg (k′)

〉
0

dDk′

(2π)D
+ · · · (6.23)

where VA,B(kA,B) are the vertex operators for the created strings in states A and

B, Vµνg (k′) is a graviton vertex operator integrated over the worldsheet representing

the metric perturbation, and we have absorbed a factor of gc in each of the vertex

operators. The metric perturbation h
(1)
µν appears as the polarization tensor of the

background graviton.

The first–order contribution to pair creation (6.23) vanishes when A and B are

massive, due to momentum conservation when the graviton is on–shell (as it must be

for a consistent string amplitude). Nevertheless, (6.23) is related to the phenomenon

of particle transmutation, by which a string can change its mass and spin as it passes

through a gravitational background [31, 32, 69, 112]. We will not investigate this phe-

nomenon in the current work, but for weakly curved spacetimes it could in principle

be studied within the S–matrix framework we apply herein.

Second order

Ideally we would be able to continue this expansion to higher order in the metric

perturbation, by analogy to the field theory case. However, at second order issues

arise in the string theory that make the situation somewhat more complex. For one,

consistency of the of the string amplitude (6.23) requires that each of the vertex

operators appearing in be a conformal tensor of weight (h, h) = (1, 1), or in other

words satisfy the physical state conditions. As is well known, this is equivalent to

imposing the linearized Einstein equations on h
(1)
µν . At second order in the expansion

of worldsheet amplitudes, a graviton vertex operator with polarization h
(2)
µν appears.
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To define a consistent theory, the second–order perturbation h
(2)
µν must satisfy the

second–order β–function equations for the worldsheet theory [97]. In general, this

means that h
(2)
µν with not in fact satisfy the physical state conditions. Thus, the

string amplitude with the corresponding vertex operator will not be consistent.

Another issue that arises is the presence of a nonzero one–point functions or

tadpoles for some fields. Tadpole cancellation is one of many consistency checks for

superstring theories [53, 54, 97, 98]. Typically, tadpoles refer to nonzero one–point

functions for massless fields with k2 = 0. In the situation we study here, one–point

functions for massless fields automatically vanish, but in a slight abuse of terminology

we will use the term “tadpole” to refer to a nonvanishing one–point function for a

massive field as well.

Taking our prescription literally, to compute the S–matrix elements on our back-

ground to second order involves inserting two graviton vertex operators into the rele-

vant correlation functions. For massive fields A, the tadpole is zero at first order due

to momentum conservation. At second order in the metric perturbation, the tadpole

for some state A in the background is therefore given by〈
VA(kA)

〉
b
=
〈
VA(kA)Vg(k1)Vg(k2)

〉
+ · · · (6.24)

with Vg(k) = 1
4πgc

h
(1)
µνVµνg (k). This expression does not vanish for the examples we

consider. A nonvanishing tadpole is an indication that the classical equations of

motion are not exactly obeyed by the background solution. This is to be expected,

as here we will use a background solution that solves the leading–order equations of

motion for massless string excitations, but we have ignored the massive excitations

and higher corrections. The presence of the tadpole is telling us that the equations

of motion for these massive fields forbid setting them to zero throughout spacetime.

Furthermore, in a curved background the vertex operators and states should change,

which we have not taken into account. We expect that the failure of the tadpole to
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vanish is due to some combination of all of these effects.

Given these new complexities, it appears that problems are beginning to develop

with the technique of inserting new vertex operators at second order. Nevertheless,

by considering each of these new problems, we will argue in Sections 6.2.5 that useful

results can be obtained from the second order expansion. Therefore, for the purpose

of studying pair production we will use the prescription

〈AB|S|vac〉 =

1

(4πgc)2

∫
S2

h(1)
µν (k

′)h(1)
στ (k

′′)
〈
VA(kA)VB(kB)Vµνg (k′)Vστg (k′′)

〉
0

dDk′

(2π)D
dDk′′

(2π)D
(6.25)

where VA,B(kA,B) are the vertex operators for the pair created string states A and

B. In defining this S–matrix element it is understood as usual that the positions

of three of the vertex operators are fixed and the remaining one is integrated over

the worldsheet. This prescription does not involve a term at first order in the metric

perturbation, since the pair production of massive states is forbidden to this order

by momentum conservation. Furthermore corrections to the vertex operators and

background solution, which should be included in a more complete analysis, only

affect this S–matrix element at higher orders in h
(1)
µν .

6.2.5 Coherent states

The existence of non–zero “tadpoles,” or 3–point functions 〈VgVgVN〉 where VN denote

the vertex operators for level N string states, implies that turning on a nontrivial

gravitational background will, at second order, produce a nontrivial background of

excited states. The question we must address is whether we can still trust the pair

production results that we will extract at this order. By studying an analogous

situation in field theory, we will argue that the corrections to the pair production

amplitudes appear at higher order, and thus our second order results may be trusted.
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The production of excited string states can be modeled in field theory as the pair

production of a massive scalar field χ via interactions with a massless scalar field H,

representing the graviton. This can be realized with the action

S =

∫
ddx

(
−1

2
(∂H)2 − 1

2
(∂χ)2 − 1

2
m2χ2 + λH2χ− 1

2
µH2χ2

)
. (6.26)

The presence of the λ coupling implies that we cannot turn on a background field for

H without also exciting a background value for χ, as a consequence of the equations

of motion

−�H = 2λHχ+ . . . (6.27)

−�χ+m2χ = λH2 + . . . .. (6.28)

The µ coupling gives rise to pair creation of χ quanta in the presence of a nontrivial

‘graviton’ background H. Before calculating this effect we must first deal with the

background. Assuming χ = 0 +O(H2) these equations may be solved perturbatively

to second order in H as (here
∫

dk̃ =
∫

dd−1k/(2ω), ω = |k0| which is valid for

massless and massive particles)

H(x) = H0(x) =

∫
dk̃
(
α∗(k)eik.x + α(k)e−ik.x

)
+O(H3

0 ), (6.29)

χ(x) = λ

∫
ddy Gret(x, y)H

2
0 (y) +O(H3

0 ), (6.30)

where Gret(x, y) is the retarded propagator for a scalar of mass m and we have chosen

the following boundary conditions

lim
t→−∞

χ(x) = 0. (6.31)

It is well known that in field theory a nontrivial background may be described by a

coherent state. The initial state contains only gravitons and may be described by

|vac, t→ −∞〉 = e−
1
2

R
dk̃|α|2e

R
dk̃αa†|0〉. (6.32)
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Whereas the final state is a coherent state of both ‘gravitons’ and χ quanta

|vac, t→ +∞〉 = e−
1
2

R
dk̃|β|2e−

R
dk̃ 1

2
|α|2e

R
dk̃αa†e

R
dk̃βd†|0〉. (6.33)

Here a†/a, d†/d are the conventionally defined creation/annihilation operators for H

and χ respectively, and β(k) is the generated background for χ

lim
t→+∞

χ(x) =

∫
dk̃
(
β∗(k)eik.x + β(k)e−ik.x

)
. (6.34)

We now compute the amplitude to create a pair of χ quanta. Because of the nontrivial

background for χ as t → +∞ we must redefine the creation/annihilation operators

as d̃ = d− β. This is the analogue of canceling the tadpole in the string theory. The

β are also determined by the condition that the amplitude to create a single particle

must vanish (tadpole cancellation)

〈vac, t→ +∞|
√

2ωd̃S|vac, t→ −∞〉 = 0. (6.35)

Now the amplitude to create a single pair of χ quanta with momenta (k3, k4) is

A[vac→ 2] = 〈vac, t→ +∞|
√

2ω3d̃(k3)
√

2ω4d̃(k4)S|vac, t→ −∞〉, (6.36)

where S is the S–matrix . Utilizing the fact that the amplitude to create a single

particle must vanish and expanding A[vac→ 2] to second order we find after making

uses of conservation of energy and momentum

A[vac→ 2] =

∫
dk̃1

∫
dk̃2 α(k1)α(k2)×

〈0|
√

2ω3d(k3)
√

2ω4d(k4)Sa
†(k1)a

†(k2)|0〉+O(H3
0 ). (6.37)

This is a very simple result: to second order in perturbations, the amplitude to create

a pair of particles is determined by the amplitude for two gravitons to convert to two

χ quanta. Furthermore, at second order the result is independent of the modifications

to the creation operators required to cancel the tadpole. This suggests that our string

results will be reliable, even though we will not carry out the modifications to the

vertex operators required to cancel the tadpole in the string case.
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6.3 Background

In this section we shall construct a specific example of a perturbative geometry for

which our approach may be applied. In doing so we shall also uncover some of

the inevitable limitations of the perturbative approach. The issue we must address

is whether it makes sense to define a perturbative S–matrix on a time-dependent

spacetime, due to the inevitable formation of spacelike singularities or black holes, as

predicted by the singularity theorems [64, 65].

We study a background corresponding to two colliding plane gravitational waves.

There has been much work in the general relativity community on understanding

these spacetimes and their singularities [56]. Many results are known for so–called

“shock” gravitational waves, where (in the appropriate coordinates) the wave profile

is a δ–function. These wave spacetimes are always singular. The prototypical exact

solution for gravitational shock waves is due to Khan and Penrose [76], illustrated in

Figure 6.3. One can see that the worldlines of all observers come to an end, either in

a curvature singularity to the future of the wave collision region, or in a milder fold

singularity in regions that are spacelike separated from the collision. Furthermore,

spacetime in the future of the collision region is strongly curved, and so it is not clear

whether the S–matrix in this spacetime (even granting that it could be defined) is

probing the collision region or the strongly curved region IV.

In our case, we also consider colliding gravitational waves, illustrated in Figure

6.2. These are not shock waves. Instead, the gravitational wave packets possess a

small amplitude A and are smoothed over some characteristic width L. To study pair

production in the collision region of these waves, we require the spacetime to be more

akin to the superposition of two linearized waves than the strongly nonlinear Khan–

Penrose case. We will find that our setup shares some, but not all of the features

of the Khan–Penrose spacetime. On the positive side, spacetime curvature in the
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Figure 6.2: The spacetime in which we calculate the pair production of strings and
point particles. Two gravitational waves of characteristic width L, amplitude A, and
polarizations hL,R collide. In regions of type A, far from the waves, spacetime is
Minkowski space and no pair production occurs. Spacetime interior to the waves
B is curved but possesses a null Killing vector, and so no pairs are produced. Pair
production is localized to the collision region C, which is curved and possesses no
Killing vector. Pairs produced in this region propagate into region IV, which is
where we define the “out” region of our S–matrix . Eventually perturbation theory
breaks down at a time ∼ L2/A from the interaction region.
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Figure 6.3: The colliding shock gravitational wave spacetime of Khan and Penrose.
The gravitational waves themselves are shown with heavy lines. Region I is flat
Minkowski space. The spacetime in region IV (which is timelike separated from
the collision) terminates in a curvature singularity. The spacetime in regions II and
III terminates in a fold singularity, beyond which it is impossible to continue the
spacetime.

future of the collision event is small, and the curvature of the spacetime is localized

there up to fourth order in perturbation theory. On the negative side, perturbation

theory eventually breaks down after a time proportional to L2/A, and we fully expect

that this spacetime develops a singularity similar to that in the shock wave case.

Nevertheless, we use the fact that perturbation theory is valid for a significant time

after the collision to argue that the S–matrix on this spacetime is well–defined, at

least to second order.

We introduce our metric in Section 6.3.1, and embed this metric in an exact

solution to Einstein’s equation, the Einstein–Rosen wave. This enables us to show

that a Kasner–type singularity forms in the future, although it can form arbitrarily

far in the future by adjusting the parameters of the incoming waves. In Section

6.3.2, we use the Einstein–Rosen solution to perturbatively construct the higher order

corrections to our metric. We show that the metric is uncorrected (and thus the
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singularity is invisible to perturbation theory) up to fourth order in the perturbations.

We use this to argue that our second–order results should therefore be protected from

the influence of the singularity.

6.3.1 Colliding plane waves

One of the simplest and best studied time–dependent geometries is the pp–wave. This

is a solution of Einstein’s vacuum equations with metric given by

ds2 = 2du dv +H(u,X)du2 + dX i dXi, (6.38)

where H(u,X) is a harmonic function, satisfying

∇2H(u,X) = 0. (6.39)

These solutions may easily be extended to include nontrivial dilaton and NS 2-form

sources. However, for simplicity of presentation we shall concentrate on pure vacuum

solutions. We will focus on the class of “exact” plane waves for which

H(u,X) = Aij(u)X
iXj with

∑
i

Aii(u) = 0. (6.40)

All pp–wave spacetimes admit a null Killing vector ∂
∂v

and this allows a global defini-

tion of null time. As a consequence, the natural “in” and “out” field theory vacua are

chosen by decomposing modes into positive and negative frequency with respect to

this time, and since this is a global definition we find that for a free field |0〉in = |0〉out

implying the absence of particle creation [50]. (This is true provided we make the con-

ventional choice of vacua. If the plane wave geometry is not asymptotically Minkowski

at past and future infinity then the reasons for this choice are less clear).

In order to obtain a background with pair creation we will consider a spacetime

describing the collision of two plane waves. Treating the amplitude of each wave A
(α)
ij
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as small, then at the linearized level this will be described by the metric

ds2 = 2dudv + A+
ij(u)X

iXjdu2 + A−
ij(v)X

iXjdv2 + dX idXi +O(A2). (6.41)

and the two waves pass through each other undisturbed. The O(A2) terms will include

interactions between the waves. If the amplitude of each wave is localized around a

given null time, for example if we take

A+
ij(u) ≈ A exp (−u2/L2) (6.42)

then at leading order the interaction region will be localized near (|u| < L, |v| < L).

However, at higher orders we will see that there is a long tail in the future lightcone of

the interaction region in which perturbations grow, eventually leading to a singularity.

Fortunately all this can be seen explicitly in a concrete example where A+
ij and A−

ij

are both diagonal. In this case it is straightforward to lift the linearized metric (6.41)

to an exact nonlinear solution of Einstein’s equations. To see this, first perform a

linearized gauge transformation to take the metric to the form

ds2 = 2dudv + (δij + hij(u, v))dX
idXj +O(A2). (6.43)

where

hij(u, v) = 2

∫ ∫
A+
ij(u) du du+ 2

∫ ∫
A−
ij(v) dv dv. (6.44)

This metric is a special case of a more general class of solutions given by

ds2 = 2eΓ(u,v)dudv + α(u, v)
∑
i

e2βi(u,v)dx2
i , (6.45)

where
∑

i βi = 0. This is the form of an exact set of solutions to Einstein’s equations

known as Einstein–Rosen waves. They satisfy

∂u∂vα = 0 and ∂u(α∂vβi) + ∂u(α∂vβi) = 0. (6.46)
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This form is invariant under transformations

u→ f(u), (6.47a)

v → g(v), (6.47b)

exp(Γ) → exp(Γ)/(f,ug,v). (6.47c)

We may use this freedom to set

α = (u+ v)
√

2 = t, (6.48a)

z = (u− v)
√

2, (6.48b)

in which case the βi satisfy

1

t

∂

∂t

(
t
∂βi
∂t

)
− ∂2βi
∂z2

= 0. (6.49)

It is straightforward to see that as t→ 0 the solutions to this equation behave as

βi → ci(z) + di(z) ln t. (6.50)

The resulting solution describes a Kasner metric where the Kasner exponents are

functions of z. Consequently the generic collision of two plane waves will result in an

anisotropic singularity [122].

The existence of a singularity should cause us no surprise, it arises as a simple

consequence of the singularity theorems. Although the singularity theorems do not

strictly apply here as we have no matter, compactifying the geometry on one direction

gives us a theory with gravity and a scalar field which does satisfy the singularity

criteria. In the present context it implies that perturbation theory will inevitably

breakdown in a finite time period. In the traditional definition of an S–matrix theory,

the “out” state is defined at future infinity, thus it would seem at first sight impossible

to define an S–matrix on a spacetime with a singularity at future infinity.
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6.3.2 Perturbative solution

Our approach to dealing with the fundamental issue of singularities is a pragmatic

one,. If there exists a long period of time for which perturbation theory is valid,

then the S–matrix should describe physics in that period. Let us now construct

the perturbative solution to Einstein’s equations. This will enable us to check that

nonlinear corrections remain small at low orders in the perturbation expansion, and

to explore the breakdown of perturbation theory. To be consistent with the metric

(6.43), we take βi ∼ O(A), α ∼ 1 +O(A2) and Γ ∼ O(A2). The perturbed metric up

to and including 3rd order in perturbations is

α = 1 + A2(α+(u) + α−(v)) +O(A4), (6.51)

βi = A(βi+(u) + βi−(v))− 1

2
A3(α+(u)βi−(v) + α−(v)βi+(u)) +O(A4), (6.52)

Γ = −1

4
A2
∑
i

βi+(u)βi−(v) +O(A4), (6.53)

where

α′′+(u) = −1

4

∑
i

βi 2+,u,

α′′−(v) = −1

4

∑
i

βi 2−,v. (6.54)

We are assuming that β+(u) and β−(v) are localized functions, for instance with a

Gaussian profile β+ = exp(−u2/L2) and β− = exp(−u2/L2). From this it is clear

that up to 3rd order in A, βi and Γ are both bounded functions localized near the

interaction region u = v = 0. However, as a consequence of (6.54), α is not bounded.

We choose the solution

α+(u) = −1

4

∫ u

−∞
du1

∫ u1

−∞

∑
i

βi 2+,u2
(u2), (6.55)
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and similarly for α−(v). From this it is clear that as u → +∞, then α+(u) →

C+ +D+u, where,

D+ = −1

4

∫ ∞

−∞
du
∑
i

βi 2+,u 6= 0. (6.56)

Trying to remove this divergence by adding the homogeneous solution −D+u causes

α−(u) to diverge as u → −∞. This is the first indication that perturbation theory

breaks down at late times. On dimensional grounds, D+ ∼ O(1)/L and so this

coordinate system breaks down at u ≈ L/A2, v ≈ L/A2. Evidently by making A

sufficiently small, we can push this region arbitrarily far into the causal future of the

interaction region.

Remarkably, to 3rd order in A, the growth of α is a coordinate artifact and does not

reflect a genuine breakdown of perturbation theory. One may show this by removing

the linear growth in u by means of the following coordinate transformation,

xi → xi(1 +
A2

2
(D+u+D−v)) +O(A3), (6.57)

u → u+
A2

4
D+~x

2 +O(A3), (6.58)

v → v +
A2

4
D−~x

2 +O(A3). (6.59)

Similarly all components of the Riemann tensor are finite and supported only near

u = v = 0. In fact we must go to 4th order in perturbations to see the first signal

that perturbation theory is breaking down. An explicit calculation shows that certain

components of the Riemann tensor diverge linearly for large u and v in any orthonor-

mal frame. However, unsurprisingly this only occurs when u ≈ L/A2, v ≈ L/A2. So

again we may push the inevitable breakdown of perturbation theory off to arbitrarily

far in the future of the region of interest.

In what follows we shall only compute the string amplitudes to second order in

the background perturbations. As we have seen, at second order the collision of two

plane waves results in a localized interaction region and no pathologies occur. Thus
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there will be no problem interpreting our amplitudes. If we continue the amplitude

calculations to higher order in perturbations, we may expect to see mildly pathological

behavior associated with the eventual breakdown in perturbation theory. However,

it should always be possible to separate this from the information which describes

the interaction region. These above observations show the fundamental limitations of

the application of the S–matrix formalism to a time-dependent geometry, these issues

would not arise in a more Schrödinger–like prescription where we consider the state at

a given time, rather than the transition amplitude to a state at future infinity. This

suggests that string field theory or a similar formalism may be a more appropriate

way to consider time-dependent spacetimes.

6.4 Pair Production

The first nonvanishing contribution to string pair production arises from the four–

point amplitude with two incoming gravitons. In this section we discuss this ampli-

tude for an explicit set of string states, and obtain results in accord with previous

investigations on the high–energy behavior of string scattering amplitudes [57, 58, 59].

This suggests that the behavior we observe here may hold for more general excited

string states as well. A detailed calculation of the relevant amplitude may be found

in Appendix E.

We calculate the pair creation of “representative” string states given in oscillator

notation by

|ε; k〉 = (N !)−1εµ1µ1...µNµN

(
N∏
j=1

α
µj

−1α̃
µj

−1

)
|0; k〉, (6.60)

where we assume that N > 1. This set of states includes a unique scalar state at

each excitation level N , which provides the most direct comparison with field theory

results.
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Clearly the polarization ε must be symmetric under the interchange of two holo-

morphic indices. The physical state conditions are satisfied provided that

m2 =
4

α′
(N − 1). (6.61a)

kµjεµ1µ1...µj ...µNµN
= 0, for all j. (6.61b)

ηµjµkε...µj ...µk... = 0, for all j, k. (6.61c)

along with similar conditions for the barred indices. These states will have unit norm

provided that

〈ε; k|ε; k〉 = 1 if εµ1µ1...µj ...µNµN εµ1µ1...µj ...µNµN
= 1. (6.62)

The vertex operators corresponding to these states are given by

VN(k) = gcεµ1µ1...µNµN

(
2

α′

)N
:

[
N∏
j=1

∂Xµj∂Xµj

]
eik·X(z, z) : (6.63)

where we have included a factor of the closed string coupling gc as is conventional.

As we are interested in comparing string results to those in field theory, we focus

on the production of “long wavelength” string states, or equivalently those whose

spatial momenta are small in comparison with 1/
√
α′. Since we are also considering

the production of very massive states, the relevant process is therefore one in which

the pair of strings are created nearly on threshold. In order to fix notation, we take

k± to be the momenta of the created strings, and −kL,R the momenta of the incoming

gravitons, so that the equation for conservation of momentum is

k+ + k− + kL + kR = 0. (6.64)

We further take the created strings to be scalar representative states of excitation

levels N±. For simplicity of exposition we take the incoming gravitons to possess

momentum in the t, x plane only. Working in the center of mass frame, and focusing
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Figure 6.4: Variables used in the string scattering calculation. Left panel: two gravi-
tons with polarizations hL,R and momenta kL,R scatter to produce to strings at ex-
citation levels N± and momenta k±. Right panel: we focus on the production of
long–wavelength massive strings with masses m± and spatial momenta δk± by gravi-
tons of energy ω.

on the case where the outgoing strings are created nearly on threshold, it is convenient

to parameterize the momenta as

k+ = (m+, 0, 0) + (δω+, δkx, δ~kT ), (6.65a)

k− = (m−, 0, 0) + (δω−,−δkx,−δ~kT ), (6.65b)

kL = (−ω,−ω, 0) + (−δωL,−δk′x, 0), (6.65c)

kR = (−ω,+ω, 0) + (−δωR,+δk′x, 0), (6.65d)

Momentum conservation and the mass–shell conditions imply that that we may choose

δkx and δ~kT to be the independent variables in the problem. The various kinematic

variables are illustrated in Figure 6.4.

For our discussion, we will find it useful to define the additional parameters

a = N+ −
α′t

4
, (6.66a)

b = N− −
α′u

4
, (6.66b)

where t and u are the conventional Mandelstam variables. For the problem at hand,

when the strings are produced with zero spatial momenta, these variables are given
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by

s = m2
+ +m2

− + 2m+m−, (6.67a)

t = −m+m−, (6.67b)

u = −m+m−. (6.67c)

It will be important for our argument below that in the case where an identical pair

is produced with zero spatial momentum, these variables are all 4/α′ multiplied by

integers.

With this parameterization of the momenta, standard techniques in string pertur-

bation theory give the following leading–order term in the string S–matrix

ε+µ1µ1···µN+
µN+

ε−ν1ν1···νN−νN−
εLσσε

R
ττ (N+!)−1(N−!)−1×

16πi

α′
g2
c

(
α′

2

)N++N− N+∏
j=1

k
µj

R k
µj

R

N−∏
k=1

k
νj

R k
νj

R η
στηστ×

[
Γ(a)Γ(b)

Γ(a+ b)

]2
sin(πa) sin(πb)

sin[π(a+ b)]
. (6.68)

This amplitude is then multiplied by the metric perturbations and integrated ac-

cording to equation (6.25). There are two key features of this amplitude that differ

substantially from the field theory case.

The first remarkable feature of this amplitude is that the production of identical

string pairs vanishes at zero spatial momentum. This follows directly from the be-

havior of the sine functions appearing in the amplitude (6.68). When N+ = N− = N ,

and when the spatial momentum of the created pair vanishes, then using (6.66) and

(6.67) and the string mass shell condition we find

a = b = 2N − 1, (6.69)

and therefore the trigonometric factors vanish. For field theory, examination of the

S–matrix element arising from (6.20) reveals that the pair production amplitude is
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independent of kx,T in the long–wavelength limit. For strings, by contrast, it appears

that the pair production vanishes as a power law in the long–wavelength limit. Similar

behavior obtains whenever the condition a, b ∈ Z is satisfied, which occurs for pairs

of excitation levels such as

(N+, N−) = (2, 5), (2, 10), (2, 17), (3, 9), . . . (6.70)

in addition to the N+ = N− cases corresponding to the creation of identical pairs.

When N± are such that a /∈ Z and b /∈ Z, then the production of these string pairs

are independent of spatial momentum in the long wavelength limit, similar to the

field theory case.

This behavior is a consequence of some fundamental features of string theory.

Recall that the open string Veneziano amplitude is essentially uniquely determined

by the presence of poles corresponding to excited string states, as well as worldsheet

duality [53, 54, 97, 98]. The closed string amplitudes are in a sense products of open

string amplitudes, with additional sine factors to ensure that all of poles that occur

in the product are simple ones. Again, the closed string amplitudes are essentially

uniquely determined by basic features of the theory. Thus different sine factors are

zero when the s, t or u Mandelstam variables correspond to a physical string state and

compensate for some of the poles arising from the gamma functions in the amplitude.

In our case, when the string pairs are produced with zero spatial momentum, the s

Mandelstam variable corresponds to an on–shell string state, but the t and u variables

are the negative of on–shell values. Thus the sine functions have zeros, but now

the gamma functions have no poles, and so the amplitude vanishes. Of course, this

argument requires that we establish exactly some additional integers appearing in the

arguments to the gamma functions, and this is done in Appendix E. The vanishing

of this amplitude holds not only for the leading term in the S–matrix , but for terms

of all orders in k appearing in this amplitude.
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The second key difference between the string and field theory pair production

amplitudes is an exponential suppression of the string pair production rate. To explore

this feature we consider the case where excitation level of both strings is approximately

N , in which case a ∼ b ∼ 2N from (50). Applying Stirling’s approximation to the

gamma function factors in (49) we find

Γ(2N)4

Γ(4N)2
=

2π

N
2−8N

(
1 +

1

8N
+ · · ·

)
N � 1. (6.71)

Therefore, the string amplitude falls off exponentially with m2, in contrast to the

polynomial dependence of the field theory result. This behavior is characteristic of

hard scattering string processes. As we have remarked earlier, typically we expect

pair production rates in field theory to fall off exponentially with mass. However,

recall that when studied with the S–matrix approach employed herein, there are

actually two effects at play. The first is the structure of the field theory amplitude

connecting the incoming gravitons to the outgoing particles. The second is the number

of gravitons, or Fourier coefficients of the metric perturbations. In field theory, the

former behaves polynomially with mass, while the second drops off exponentially. For

strings on the same background (that is, with the same Fourier coefficients for metric

perturbations) both factors fall off exponentially. Thus fewer pairs are produced.

Again, this may be understood using simple string physics. In studies of string

amplitudes, one of the kinematic regions of interest [57, 58, 59] is the so–called “hard

scattering” limit

s→∞, t/s fixed. (6.72)

This is precisely the limit of interest when we look at particles of the same mass and

look at the limit in which m → ∞. In the hard scattering limit, string amplitudes

behave as

amplitude ∼ e−sf(θ) (6.73)
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where f(θ) > 0. This is precisely the behavior observed in our results. It indicates

that, just as the scattering of strings is softer than that of point particles at high

energy, so too the pair production of strings is reduced.

6.5 Conclusions

In this work we have studied the pair production of excited strings in a time–

dependent background. The specific background we consider consists of two colliding

plane gravitational waves. Through studying the singularity structure of this back-

ground, as well as the nature of corrections needed to cancel “tadpole” diagrams,

we have concluded that reliable results may be obtained through standard S–matrix

methods at second order in the gravitational wave amplitude. Our calculations re-

vealed two essential differences between the field and string theory results. The pair

production of identical string states is suppressed for certain pairs of excitation num-

bers of the outgoing strings; most significantly, the production of identical string

states vanishes in the infinite wavelength limit. In addition, the overall production

of strings is suppressed relative to point–particle results, which may be viewed as a

consequence of the mild hard scattering behavior of string amplitudes.

Our results are especially relevant to questions regarding the pair production of

strings in cosmological spacetimes. In particular, these results may have implications

for one motivation for the current work, in which the pair production of strings is

studied using an effective field theory approximation [47, 60]. The suppression of

production of excited string states suggests that, despite the exponentially growing

Hagedorn density of states, effective field theory provides an overestimate of the

production of individual string states.

Of course, we have established these results using techniques that are reliable only

when spacetime is nearly Minkowski. Nevertheless, our findings suggest phenomena
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that may also be present in the strong field regime. It would be quite interesting to

know if these effects persist in more highly curved, time–dependent backgrounds. If

so, it would be an example of a uniquely “stringy” signature of relevance to cosmology,

providing further clues to the role of quantum gravity in the early universe.



Chapter 7

Conclusions

How soon hath thy prediction, seer blest,
Measured this transient world, the race of time
Till time stand fixed: beyond is all abyss,
Eternity, whose end no eye can reach.

Paradise Lost Book XII, lines 552–556, [90]

Returning to the questions posed in the Introduction, it appears that string theory

gives cosmological model–builders a host of new tools, as well as new problems. Both

the classical and quantum dynamics of these models are quite nontrivial.

In the classical regime, we have seen that embedding a cosmological model in a

string theory enables one to construct a viable cyclic universe model, with unique (and

observable) predictions. On the other hand, one must confront the problem of chaos

near a big crunch. In a sense, this originates from the fact that string models include

many degrees of freedom. These new degrees of freedom can be a boon to those

searching for an embedding of the Standard Model in string theory. However, this

multiplicity of degrees of freedom can present problems cosmologically. Normally one

assumes that many of the degrees of freedom are “frozen” to simplify the analysis of

string compactifications. We have seen that not only can this assumption be violated
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in cosmological settings, but that these neglected degrees of freedom can dominate

the universe and lead to chaotic dynamics, destroying the homogeneity and isotropy

of the universe.

We have presented two mechanisms by which this chaotic behavior can be avoided.

One involves including a matter field with ultra–stiff equation of state w > 1. It

appears that matter of this type is already required in the cyclic model in order to

generate a scale–invariant spectrum of density fluctuations. We also showed that the

topology of spacetime can affect the emergence of chaos. This is interesting from a

model–building perspective, since the same invariants that relate to the appearance of

chaos also relate to some features of the four–dimensional, low–energy effective field

theory. In cyclic universes that avoid chaos by this mechanism, these new constraints

may help to select preferred string compactifications.

In the quantum regime we have found that there are some important differences

between point particle and string pair production, an essential process in all cosmo-

logical models. Our results are not directly applicable to cosmological situations as

yet: there are a great number of technical obstacles that must be surmounted before

this phenomenon can be investigated in the strongly curved backgrounds relevant for

cosmology. However, we have shown that in one well–defined spacetime, the spec-

trum of created strings and point particles differs significantly. If these effects persist

into the strong–field regime, it might be possible to find stringy “signatures” in the

primordial perturbation spectrum, potentially providing an experimental means to

probe quantum gravity through the early universe.

Let us descend now therefore from this top
Of speculation; for the hour precise
Exacts our parting hence...

Paradise Lost Book XII, lines 588–590, [90]



Appendix A

The Bianchi-IX “Mixmaster”

Universe

The Mixmaster universe provides a useful example of gravitational chaos. We show

how the dynamics of this (exact) solution to general relativity can be reduced to the

motion of a point in a potential. This is a great simplification, but as we might expect

in a chaotic system, the equations of motion are not integrable. We go on to develop

the billiard approach for the Mixmaster model, and derive explicitly the connection

between the Mixmaster universe and the overextended affine Lie algebra AE3.

The Mixmaster universe is based on the Bianchi–IX model. The spatial sections

of the universe are therefore homogeneous, though we allow anisotropic evolution.

The metric is

ds2 = −N2 dt2 +
∑
j

exp (2γj)σ
2
j (A.1)

where the lapse N and the functions γj depend on the coordinate time t only. The
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one–forms σj are given by

σ1 = cosψ dθ + sinψ sin θ dφ, (A.2a)

σ2 = sinψ dθ − cosψ sin θ dφ, (A.2b)

σ3 = dψ + cos θ dφ. (A.2c)

These enjoy the useful property

dσj =
1

2
εjmn σ

m ∧ σn. (A.3)

This is reminiscent of the commutation relations for the generators of SU(2). This

group manifold is topologically equivalent to the sphere S3, identical to that of our

spatial sections. We are thus modeling each spatial slice as this group manifold. A

natural choice for the vierbeins is thus

et = N dt, (A.4a)

ej = exp (γj)σj. (A.4b)

We will follow the convention that letters a, b, c . . . are used to denote both timelike

and spacelike indices, while j, k, l . . . are used for spacelike indices only.

A.1 Einstein equations and effective action

The first Mauer–Cartan structure equation

dea = ωab ∧ eb (A.5)

is used to find the spin connection ωab. To this end one computes

dej =
γ̇j
N
et ∧ ej +

1

2
εjnm

[
+1
j

−1
n

−1
m

]
en ∧ em (A.6)
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where “ ˙ ” indicates derivatives with respect to the coordinate time t, and we have

introduced the compact notation[
A
a
B
b
C
c

]
= exp (Aγa +Bγb + Cγc) (A.7)

since these exponential factors are quite common in the following expressions. The

equation (A.5) is solved for the spin connection to yield

ωjt =
γ̇j
N
ej, (A.8a)

ωjk =
1

2

([
+1
j

−1
k

−1
c

]
+
[ −1
j

+1
k

−1
c

]
−
[ −1
j

−1
k

+1
c

])
εjkc e

c. (A.8b)

These are the only nonvanishing components of the spin connection.

The second of the Mauer–Cartan equations gives the curvature form θab through

θab = dωab + ωac ∧ ωcb (A.9)

which in turn yields the Riemann tensor through the relation

θab =
1

2
Ra

bcd e
c ∧ ed (A.10)

Once the Ricci tensor is calculated, we impose the Einstein equations in vacuum by

requiring

Rab = Rµν = 0 (A.11)

This step of the calculation is somewhat more involved, and we will go through the

arguments below.

We begin by calculating θtj. Applying the second Mauer–Cartan equation one

finds

θtj =
1

N2

(
γ̈j + γ̇2

j −
Ṅ

N
γ̇j

)
et ∧ ej + · · · (A.12)

where · · · represent terms which vanish upon contraction to form the Ricci tensor.

This is the only contribution to Rt
t, and therefore we find

Rt
t =

1

N2

∑
j

(
γ̈j + γ̇2

j −
Ṅ

N
γ̇j

)
(A.13)
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The equations of motion in vacuum (Einstein equations) imply that Rt
t = 0.

Next we turn to θjk. Straightforwardly applying the second Mauer–Cartan equa-

tion (A.9) leads to a large number of terms, however many of them will not contribute

to the Ricci tensor, and we will drop them here. Equation (A.9) implies

θjk = dωjk︸︷︷︸
a

+ωjl ∧ ωlk︸ ︷︷ ︸
b

+ωjt ∧ ωkt︸ ︷︷ ︸
c

(A.14)

We will go through each term in detail. From term (a) one can neglect the time

derivatives since these lead to terms of the form et ∧ ec, with c 6= j, k, which vanish

upon contraction. One does obtain the term

(a) =
1

4

(
+
[ −1
j

+1
k

−1
c

]
+
[

+1
j

−1
k

−1
c

]
−
[ −1
j

−1
k

+1
c

]) [ −1
m

−1
n

+1
c

]
εjkcεcmn e

m ∧ en (A.15)

Using the properties of the ε tensor, one can replace

εjkcεcmn → 2δjmδkn (A.16)

and therefore

(a) =
1

4

(
2
[ −2
j

0
k

0
c

]
+ 2

[
0
j
−2
k

0
c

]
− 2

[ −2
j

−2
k

2
c

])
ej ∧ ek (A.17)

The next term of interest is (b). One finds an expression similar to that of (a), and

upon applying the identity

εjrcεrkd e
c ∧ ed = δckδdj (A.18)

one finds

(b) =
1

4

(
−2
[

0
j
−2
k

0
c

]
+
[

2
j
−2
k

−2
c

]
−
[ −2
j

2
k
−2
c

]
+
[ −2
j

−2
k

2
c

])
ej ∧ ek (A.19)

Combining (a) and (b) we find

(a) + (b) =
1

4

(
2
[ −2
j

0
k

0
c

]
+
[

2
j
−2
k

−2
c

]
−
[ −2
j

2
k
−2
c

]
−
[ −2
j

−2
k

2
c

])
ej ∧ ek (A.20)
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The final term (c) is simply

(c) =
γ̇j γ̇k
N2

ej ∧ ek (A.21)

These three terms are the only ones that contribute to the Ricci tensor. Upon con-

tracting one finds

Rj
j =

1

N2

(
γ̈j + γ̇j

[
−Ṅ
N

+
∑
k

γ̇k

])
(A.22)

+
[ −2
j

0
k

0
c

]
+

1

2

([
2
j
−2
k

−2
c

]
−
[ −2
j

2
k
−2
c

]
−
[ −2
j

−2
k

2
c

])
(A.23)

where the triplet {jkc} is understood to be some permutation of (123), and no sum

is implied by repeated j indices. Again, the equations of motion imply that Rj
j = 0.

The equations of motion for the γj, (A.13) and (A.22), are precisely those found

by variations of the action

Seff [γ] =

∫
e

P
m γm

(
1

2N2
Gjkγ̇

j γ̇k − U(γ)

)
N dt (A.24)

where we have written the γj with raised indices for later convenience, and also defined

the potential

U(γ) =
1

2

([
2
j
−2
k

−2
c

] [ −2
j

2
k
−2
c

] [ −2
j

−2
k

2
c

])
−
[ −2
j

0
k

0
c

]
−
[

0
j
−2
k

0
c

]
−
[

0
j

0
k
−2
c

]
(A.25)

as well as the metric (or, properly speaking, the supermetric)

Gjk = 2


0 −1 −1

−1 0 −1

−1 −1 0

 , and Gjk =
1

4


+1 −1 −1

−1 +1 −1

−1 −1 +1

 (A.26)

This metric has eigenvalues (−4, 2, 2) and is therefore of Lorentzian signature. Con-

sequently, the action (A.24) encodes the dynamics of a (3 + 1)–dimensional universe

in the motion of a point particle, under forces, in a (2 + 1)–dimensional auxiliary

Lorentzian spacetime. The mass–shell condition for the particle is found by variation

of (A.24) with respect to N , yielding

1

2N2
Gjkγ̇

j γ̇k + U(γ) = 0, (A.27)
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J AJ (γ1, γ2, γ3) (β1, β2, β3) (β+, β−)

−1 −1 (−2, 0, 0) (-2/3)(+2,-1,-1) +
√

2/3(+
√

3,+1)

−2 −1 (0,−2, 0) (-2/3)(-1,+2,-1) +
√

2/3(−
√

3,+1)

−3 −1 (0, 0,−2) (-2/3)(-1,-1,+2) +
√

2/3(0,−2)

+1 1/2 (+2,−2,−2) (+4/3)(+2,-1,-1) −
√

8/3(+
√

3,+1)

+2 1/2 (−2,+2,−2) (+4/3)(-1,+2,-1) −
√

8/3(−
√

3,+1)

+3 1/2 (−2,−2,+2) (+4/3)(-1,-1,+2) −
√

8/3(0,−2)

Table A.1: Table of exponential walls and their amplitudes appearing in the Mix-
master universe. These quantities are defined in (A.28).

which is roughly the analogue of the Friedmann equation, an idea we develop in the

next section. The potential is a sum of exponential “walls,” for

U(γ) =
∑
J

AJ exp
(
[wJ ]jγ

j
)

(A.28)

where the various amplitudes AJ and wall vectors wJ are summarized in A.1.

A.2 The β–parameterization

Here we discuss a parameterization of the degrees of freedom in (A.24) that reveals

a useful connection to the FRW universe. It is also more closely related to the

parameterization used by Misner [91]. Instead of the three γj, define a variable a and

three βj, defined by

γj = log(a) + βj (A.29)

where we relax the superscript on the βj. To ensure a unique definition of a, we

enforce the constraint ∑
j

βj = 0. (A.30)

With this constraint, the volume of the spatial sections is a3, and therefore a is the

effective FRW scale factor for the Mixmaster universe.
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Since only two of the βj are independent, we will parameterize them in terms of

two variables, β+ and β−. These are defined by

β+ =
1√
2

(−β1 + β2) (A.31a)

β− =
1√
6

(−β1 − β2 + 2β3) (A.31b)

with inverse transformations

β1 = − β+√
2
− β−√

6
(A.32a)

β2 = +
β+√

2
− β−√

6
(A.32b)

β3 =
2β−√

6
(A.32c)

When one chooses to examine the system in physical time (N = 1) the energy

condition (A.27) reads

3

(
ȧ

a

)2

=
1

2

(
β̇2

+ + β̇2
−

)
+
Ũ(β)

2a2
(A.33)

where Ũ(β)/a2 = U(γ), all that has been done is to factor out the dependence on

a. This potential is illustrated in Figure A.1. The associated wall forms after this

factoring are given in Table A.1. Note that, when the β̇ = 0, corresponding to

the isotropic case, then we recover precisely the Friedmann equation (2.2). Since

Ũ(β = 0) < 0, we also recover the correct sign for the curvature term. The equations

of motion for the β± variables are

β̈± + 3
ȧ

a
β̇± +

1

2a2

∂Ũ

∂β±
= 0 (A.34)

and therefore the β± move in a potential well with blueshifting. This potential also

grows stronger as the big crunch is approached, and the scale factor a→ 0.
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Figure A.1: The potential Ũ . on the (β+, β−) plane. Contours are plotted logarith-
mically: thus each contour is at a level higher than the last by a factor of e. Near
the origin, Ũ < 0, which forbids isotropic contraction. All of the contours shown are
positive, and the potential asymptotes to zero along the three “troughs” radiating
from the origin. When the point moves along these troughs, the Mixmaster universe
is near the Milne solution of the Kasner conditions.
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A.3 The γ–parameterization

We now use another parameterization of the degrees of freedom. This parameteri-

zation is most useful very near the big crunch, where the dynamics of the universe

reduces to a “billiard” moving on a hyperboloid, undergoing specular reflections from

a set of sharp walls. The remarkable feature of this wall system is that is is defined

by the root lattice of a Kac–Moody algebra, a connection which exists in pure gravity

in all dimensions and is common to other models including gravity.

In this parameterization, we keep the γj as defined in the action (A.24) and

perform some additional reparameterizations. First we define new coordinates {r, yj}

as follows

r2 = −Gjkγ
jγk, yj =

γj

r
(A.35)

and then note that

Gjky
jyk = −1 (A.36)

Thus, the coordinates {yj} run over the future unit hyperboloid. Next we fix the

gauge and choose a new time coordinate T by

N = exp

(∑
j

γj

)
, dT =

dt

r2
(A.37)

With these redefinitions, the action (A.24) becomes

Seff [r, y
j] =

∫ (
−1

2

[
d ln r

dT

]2

+
1

2
Gjk

dyj

dT

dyk

dT
− VT (r, yj)

)
dT (A.38)

where the new potential VT is defined by

VT (r, yj) = r2 exp

(
2
∑
j

γj

)
U(γ) (A.39)

A remarkable feature of this potential comes from the fact that U(γ) is a sum of

exponentials whose arguments are linear in the γj. This means that

VT =
∑
A

r2CA exp [2rwA(y)] (A.40)
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Figure A.2: The structure of the sharp walls appearing near the big crunch. The
billiard moves on the unit hyperboloid H and reflects from the sharp walls denoted by
the heavy lines. The symmetry walls Sjk result from the interchange of yj ↔ yk. They
serve to “mod out” the discrete symmetries of the problem. A single gravitational
wall G1 is shown, corresponding to the stability condition mentioned in the text. The
additional walls G2 and G3 are suppressed for clarity.

where the sum is over all wall forms, indexed by A. But one can see that

Lim
x→∞

[
x2 exp (xy)

]
= Θ(y) =


∞, when y > 0,

0, when y < 0.

(A.41)

and therefore as we approach the big crunch the walls become perfectly sharp. There-

fore, the dynamics on the system is that of a billiard ball moving on a hyperboloid

with sharp walls. The geometry of this system is illustrated in Figure A.2.

Because of the symmetry of the system, we can make it somewhat less degenerate.

We can fix the symmetry by imposing the condition y3 > y2 > y1, which corresponds
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to adding two walls to the system:

[w32]j = (0,−1, 1, ), [w21]j = (−1, 1, 0) (A.42)

Finally, some walls are hidden behind other walls and can be removed without loss

of generality from the wall system. The only relevant wall in this case is

[w1]j = (2, 0, 0) (A.43)

Define the inner product matrix AIJ of these forms as follows

AIJ = Gjk[wI ]j[wJ ]k (A.44)

Taking the inner product of these walls using the metric (A.26), we find

AIJ = 2


2 −1 0

−1 2 −2

0 −1 2

 (A.45)

Remarkably, this is the Cartan matrix of the strictly hyperbolic Kac–Moody algebra

AE3. Thus these walls are precisely the simple roots of AE3. The connection between

Kac–Moody algebras and Mixmaster dynamics is explored in more depth in Chapter

5.



Appendix B

Virial Theorem for p–forms

Below, we treat the case of a general p–form field with coupling to the dilaton φ,

in a collapsing universe. We concern ourselves with the case where spacetime is

isotropic, as this is the cosmologically relevant situation after compactification. We

show that far from the big crunch, the energy density in massive fields evolves like

that of a pressureless fluid, ρ ∼ 1/(comoving volume). We will first recast the p–form

dynamics in Hamiltonian form. This allows us to apply the virial theorem and stress

energy conservation to obtain the scaling in energy density far from the crunch. The

p–form action with mass term and dilaton coupling is

S = − 1

(p+ 1)!

∫ (
dA · dA+m2A · A

)
eλφ

√
−G dDx, (B.1)

where we have fixed the coordinate gauge so that

ds2 = −n2dt2 + hjkdx
jdxk. (B.2)

We choose the canonical coordinates to be the gauge potential Aα1...αp . The corre-

sponding canonical momenta are

Πj1...jp = −F tj1...jpneλφ
√
h (B.3)
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where h = dethij. Passing to the Hamiltonian, we find

H =
1

2

∫
ñ
(
Π · Π + he2λφF (B) · F (B)

+ he2λφm2A · A− he2λφAtα2...αp∂aΠ
aα2...αp

)
dD−1x (B.4)

where we use a rescaled lapse function ñ = ne−λφ/
√
h, and denote the magnetic com-

ponents of Fp by F (B). Dot products are taken with respect to the metric hij. The

last term in the integral shows that the “electric” gauge field modes Atj2...jp−1 appear

as Lagrange multipliers necessary to enforce the Gauss’s law constraint, but are oth-

erwise nondynamical [36]. We will choose the Coloumb gauge, in which Atj2...jp = 0,

and drop this constraint term from now on.

The Hamiltonian is in fact exactly that of a set of simple harmonic oscillators.

After decomposing the functions Ap in an appropriate orthonormal set of Fourier

components, different Fourier modes decouple and the Hamiltonian is quadratic in

Π and A. The electric field modes appear as the kinetic terms, and the magnetic

field and mass terms correspond to the potential of the oscillators. The oscillator

potential is time dependent, both due to the appearance of e2λφh and individual

metric components in the magnetic and mass terms.

We are primarily interested in the dynamics of the p–form far from the big crunch.

In this regime, we may view the changing scale factors as slowly varying parameters

in our Hamiltonian. They will change the spring constants on a timescale given by t,

the proper time to the big crunch. The dynamical timescale (typical period) for the

oscillator Hamiltonian is given by the mass term. Thus, we expect that the fractional

change in the fundamental angular frequency ω of the oscillator system over a typical

cycle will be

δω

ω
∼ 1

ωt
(B.5)

Provided we are at a time t � ω−1, we will be in the adiabatic regime, and we may
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take the oscillation frequencies to be constants. This corresponds to the m/H � 1

regime that concerns us.

To find how the energy density scales with time, we apply the virial theorem and

stress energy conservation. The adiabatic condition (B.5) implies that we may neglect

the time variation of the metric and dilaton over a single cycle. For our Hamiltonian,

the virial theorem then implies that the time average 〈·〉 of the potential energy is

equal to that of the kinetic energy, or

〈Π · Π〉 = e2λφγ〈F (B) · F (B) +m2A · A〉. (B.6)

In the virialized system, there are two possible regimes, corresponding to either the

F (B) ·F (B) term or the m2A ·A term dominating. We will consider both of these cases

in turn.

The stress energy for the p–form field is

Tµ
ν =

eλφ

(p+ 1)!

[
(p+ 1)Fµα2...αpF

να2...αp

− 1

2
δµ
νF 2 + pm2Aµα2...αp−1A

να2...αp−1 − m2

2
δµ
νA2

]
(B.7)

We will find it convenient to break the stress energy into three parts

Tµ
ν = T (E)

µ
ν

+ T (B)
µ
ν

+ T (m)
µ
ν

(B.8)

corresponding to the energy in electric modes, magnetic modes, and the mass term.

It is sufficient to consider a single component of Fp, since different components will

be uncorrelated and therefore will have vanishing time average. The electric modes

give rise to a contribution

T (E)
µ
ν

= δµ
ν eλφ

2(p+ 1)!
|F 2

(E)| ×


−1 if F (E) has index µ,

+1 otherwise.

(B.9)
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while the magnetic modes give

T (B)
µ
ν

= δµ
ν eλφ

2(p+ 1)!
F 2

(B) ×


+1 if F (B) has index µ,

−1 otherwise.

(B.10)

and the mass term yields

T (m)
µ
ν

= δµ
ν eλφ

2(p+ 1)!
m2A2 ×


+1 if A has index µ,

−1 otherwise.

(B.11)

Note that F (B) cannot have any timelike indices, nor can A thanks to our gauge

choice. Thus the contributions to the energy density ρ = −T0
0 are all positive.

First, we consider the case where the mass term dominates in the virial relationship

(B.6). This corresponds to inhomogeneities in the p–form field being negligible. The

virial result implies that 〈|F 2
(E)|〉 = m2〈A2〉. Due to our gauge choice, A and F (E) have

the same combination of p spatial indices, and therefore contributions to the pressure

components Tj
j coming from T (E)

j
j
and T (m)

j
j
exactly cancel. The vanishing pressure

reveals that the effective equation of state is that of dust, w = 0.

When the magnetic terms dominate the virial result (B.6), we obtain a slightly

different effective equation of state. Here it is necessary to average over polariza-

tions of Fp, since unlike F (E) and A, F (E) and F (B) do not enjoy any relationships

between their indices. Regardless of polarization, the sum of stress energy tensors

T (E) and T (B) has vanishing trace. This, combined with isotropy, implies the pressure

components are given by

Tj
j = −T0

0

d
. (B.12)

This corresponds to the equation of state of radiation, which in four dimensional

spacetime is w = 1/3.

Physically, this result may be understood in simple terms. Far from the big crunch,

the contraction of space is very slow in comparison to the mass of the p–form field.
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Thus, the corresponding particles are far from being relativistic, and behave as a

dust of approximately comoving mass points. Their energy density therefore scales

in inverse proportion to the comoving volume. The case where magnetic components

dominate the virial relationship corresponds to a relativistic gas of particles. This

yields the equation of state of radiation, as we expect.



Appendix C

Kaluza–Klein Reduction with

Vectors

In this appendix we consider the general Kaluza–Klein reduction of Einstein gravity

with an arbitrary number of extra dimensions. We focus on the gravitational degrees

of freedom, and are primarily concerned with computing the effective masses of all

Kaluza–Klein vector fields We will find that these masses are zero only when M pos-

sesses Killing vectors. This calculation parallels standard treatments of Kaluza–Klein

reduction [40], but in these treatments the fact that M may not possess isometries

is often not emphasized. For n > 1 extra dimensions, we will generalize the decom-

position given in (4.37) using the vielbein formalism. We begin by defining one form

fields eA = eM
AdxM so that,

ds2 = eAeBηAB, (C.1)
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with ηAB the (4 + n)–dimensional Minkowski metric. The eM
A are chosen so that

hµν = eµ
αeν

βηαβ, (C.2a)

fmn = em
aen

bδab, (C.2b)

eµ
a = Kaj(xm)Ajµ(x

µ), (C.2c)

em
α = 0, (C.2d)

where δab the Euclidean flat space metric. The Kaj are a basis for vector fields on M,

indexed by j, that depend only on the compact coordinates xm. The coefficients in

this expansion are the Ajµ, which depend only the noncompact coordinates xµ. The

Ajµ, known as Kaluza–Klein vectors, will emerge after compactification as vector fields

on the noncompact space Σ. The commutators of the Kaj define a set of structure

constants f jkl

[Kj, Kk] = f jklK
l. (C.3)

The calculation is most conveniently carried out using an orthonormal basis {êa, êα}

given by

êα = eα êa = ea −KajAjµdx
µ, (C.4)

in which the line element assumes the simple form ds2 = êαêβηαβ + êaêbδab. In the

event that some of the Kaj are Killing fields onM, then the lower dimensional theory

will possess a gauge symmetry. The Killing fields are generators of the isometry group

of M, and this isometry group reemerges as the gauge group in the lower dimensional

theory. This motivates the definition of a “field strength” F i
µν as

F i = dAi +
1

2
f ijkAj ∧ Ak. (C.5)

In the general case, the Killing fields alone do not provide a full basis for vector fields

on M. Thus, in addition to the massless modes (if any) of the gauge theory, there

will also be an infinite set of massive gauge fields in the lower dimensional theory.
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In order to derive the mass spectrum in the lower dimension explicitly, we may

use the vielbeins to decompose the gravitational action in 4+n dimensions. The spin

connections are

ω̂ab = ωab −
1

2
(∇bK

j
a −∇aK

j
b )A

j
βe

β, (C.6a)

ω̂aβ =
1

2
Kj
aF

j
αβe

α +∇(bK
j
a)A

j
β ê

β, (C.6b)

ω̂αβ = ωαβ +
1

2
Kj
bF

j
αβ ê

b, (C.6c)

where ωab and ωαβ are the spin connections defined by the metrics fmn on M, and

hµν on Σ, respectively. Using these spin connections to compute the Ricci scalar, one

obtains

R(G) = R(h) +R(f)− 1

4
Kj
aK

kaF j
µνF

kµν − 2∇(cK
j
d)∇

(cKkd)AjµAkµ. (C.7)

We see that a mass term for the Aj has appeared. Upon integrating over the compact

coordinates, one arrives at the Jordan frame action

S =

∫ (
W (f)R(h)− S(f)− 1

4
αjkF

j
µνF

kµν − βjkA
jµAkµ

) √
h d4x. (C.8)

where

W (f) =

∫
M

√
f dnx (C.9a)

S(f) = −
∫
M
R(f)

√
f dnx (C.9b)

αjk =

∫
M
KjaK

a
k

√
f dnx (C.9c)

βjk = 2

∫
M
∇(cKjd)∇(cK

d)
k

√
f dnx. (C.9d)

The W (f) factor may be removed by a rescaling of the metric hµν , putting the action

in the Einstein frame form. The S(f) term will yield a system of scalar fields, of which

φ in our five dimensional reduction (4.37) is an example. Applying the Gram–Schmidt

orthonormalization process to the Kj, one can reduce αjk = δjk, giving the vectors a
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canonical kinetic term. Thus, we see Kaluza–Klein reduction of pure gravity results

in a theory with scalars and vector fields, generalizing the n = 1 result discussed

above.

Of crucial importance to the present work is that massless Kaluza–Klein vectors

are in one–to–one correspondence with Killing fields on M, or equivalently the zero

eigenvalues of βjk. This follows from the fact that βjk functions as a mass matrix

for the Kaluza–Klein vector fields. Since βjk is symmetric, we are guaranteed that

m2 will be real for all modes. In our discussion of p–form fields, we were able to

apply powerful results regarding the Hodge–de Rham operator ∆ that guaranteed

that m2 ≥ 0, regardless of the topology and metric structure of M. In the present

situation, we have no guarantee that the masses of Kaluza–Klein vectors will satisfy

m2 ≥ 0, or equivalently that the eigenvalues of the mass matrix are nonnegative.

In this work we will assume that all eigenvalues of the mass matrix are nonnega-

tive, so that m2 ≥ 0 for all Kaluza–Klein vectors. In the general case, it is necessary

to compute αjk and βjk for each manifold of interest, and then check that this as-

sumption holds on a case–by–case basis. A simple example is provided by the n–torus

Tn. Realizing the torus as Rn/Zn, with coordinates (θ1 . . . θn) ranging on (0, 2π), a

convenient basis for vector fields on Tn is provided by

K(a,n) =

√
2

(2π)n/2
θ̂a ×


cosnθ, for n ≥ 0,

sinnθ, for n < 0

(C.10)

where n ∈ Z, the θ̂a are unit vectors associated to each coordinate, and (a, n) label

each basis field, replacing the abstract indices used above. Substituting this into (C.9)

we find

α(a,n)(b,m) = δabδnm, (C.11a)

β(a,n)(b,m) = 2n2δabδnm. (C.11b)
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The Kaluza–Klein vector fields are therefore canonically normalized, with masses
√

2n

for n = 0, 1, 2 . . . , showing our assumption is valid in this case. More sophisticated

examples may be found in the literature. As explained in Chapter 4, the m2 ≥ 0

assumption will enable us to treat p–forms and Kaluza–Klein vectors on the same

footing.



Appendix D

Kasner Universes in Various

Dimensions and Frames

In this appendix we collect various useful formulae related to Kasner universes in a

variety of dimensions and conformal frames. The formulae in this section are used

throughout this text and are collected here for convenience. We give the relation

between string and Einstein frame actions, and the transformation of p–form cou-

plings in Section D.1.1. The formulae relating Kasner exponents before and after

compactification are given in D.1.2. Expressions for the Kasner exponents in doubly

isotropic Kasner universes are given in D.1.3. Various useful formulae for transform-

ing between different conformal frames are given in D.2. String dualities map Kasner

universes into different Kasner universes: we give the expressions relating the two

sets of exponents in D.3. Additional useful facts about Kasner universes and string

models can be found in [83].
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theory p = 0 1 2 3 4 notes

I 1/
√

2
√

2

het −1/
√

2 −
√

2

IIA 3/
√

2 −
√

2 1/
√

2

IIB 2
√

2 ±
√

2 0 −
√

2 for NS–NS two–form
M 0 no dilaton, D = 11

Table D.1: Einstein frame couplings for the p–form menu of various string and M–
theory models.

D.1 Key Results

D.1.1 String and Einstein frame couplings

One of the key results we use is the relation between the string frame actions and the

Einstein frame one. The string frame action is of the form

Sstring =

∫ (
e−2Φ

[
R(G(S)) + 4(∂Φ)2

]
−
∑
j

eλ
(S)
j ΦF 2

pj+1

) √
−G(S) d10x (D.1)

where the λ
(S)
j are the string frame couplings to the dilaton field, and G(S) the string

frame metric. The defining feature of the string frame action, for any string model,

is the e2Φ in front of the Ricci scalar, together with the normalization (and wrong

sign!) of the kinetic term for the dilaton. One arrives at the Einstein frame action

by the transformation

G
(E)
MN = e−Φ/2G

(S)
MN (D.2)

resulting in

SEinstein =

∫ (
R(G(E))− (∂φ)2 −

∑
j

eλ
(E)
j φF 2

pj+1

) √
−G(E) d10x (D.3)
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where we have defined

φ = Φ/
√

2, (D.4a)

λ
(E)
j =

√
2

(
λ(S) +

8− 2pj
4

)
, (D.4b)

The field φ, which we shall refer to as the “dilaton” below, is canonically normalized,

and the couplings between the dilaton and p–forms have transformed. In the following,

we will always use the Einstein frame couplings, and so will drop the superscript (E)

for clarity in notation.

D.1.2 Compactified Kasner Universes

We begin with a (1 + d+ n)–dimensional Kasner universe with exponents

(ri, sj) i = 1 . . . d, j = 1 . . . n. (D.5)

Compactifying the last n dimensions results in a (d+1)–dimensional Kasner universe

with matter. Define

ŝ =
1

d− 1

n∑
j=1

sj. (D.6)

Then, in the (d + 1)–dimensional Einstein frame, the resulting universe has Kasner

exponents

pi =
ri + ŝ

1 + ŝ
. (D.7)

There will also be n2 scalars and n vector fields in the 4D theory. One of these is the

usual Kaluza–Klein scalar φ representing the volume of the compact dimensions. It

will behave as φ = q ln t, where

q =
(d− 1)ŝ

1 + ŝ

√
1

n
+

1

d− 1
. (D.8)

It is possible to show that the compactification of a Kasner universe always results in

a w = 1 universe in the lower dimension.
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D.1.3 Doubly Isotropic Solutions

Doubly–isotropic Kasner universes are those for which in which d Kasner exponents

take the value pd, and n take the value pd, with d+ n = D − 1. These are primarily

useful in the context of Kasner universes in higher dimensions, where they correspond

to an isotropically evolving (d+1)–dimensional noncompact space and an isotropically

evolving n–dimensional compact space.

In the absence of a dilaton, the Kasner conditions (2.5) result in a quadratic

equation for pd and pn, and therefore two solutions for each choice of d and n. First

define the discriminant

∆ = [dn(d+ n− 1)]1/2 . (D.9)

Then the two branches are given by

p
(±)
d =

d±∆

d(n+ d)
, (D.10a)

p(±)
n =

n∓∆

n(n+ d)
. (D.10b)

These two branches are the only doubly–isotropic solutions without a dilaton. When

a dilaton is present, then there are two one–parameter families of pd and pn, which

depend on the value of the dilaton “Kasner exponent” pφ, and satisfy the Kasner

conditions (2.36). In the string case (which is the only one we consider) we set d = 3

and n = 6 and obtain

p
(±)
6 =

2±
√

16− 18p2
φ

17
, (D.11a)

p
(±)
3 =

1− 6p6

3
. (D.11b)

These expressions are consistent with the fact that the maximum possible value of pφ

in ten spacetime dimensions is pφ = 8/9.
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D.2 Different Conformal Frames

Throughout this section, we use the convention in use for the rest of this work, that d

denotes the number of spatial dimensions in a (d+1)–dimensional spacetime. The key

to transforming between conformal frames is the transformation of the Ricci scalar.

Under the substitution

hij = e2ωgij (D.12)

one finds

R(h) = e−2ω
(
R(g)− d(d− 1)(∂ω)2 + · · ·

)
(D.13)

we go on to enumerate some important special cases.

A general Einstein–scalar system has the action

SEinstein−scalar =

∫
eAψ

(
R(h)−B(∂ψ)2

) √
h dd+1x, (D.14)

under the transformation

hij = e2Cψgij (D.15)

the action is mapped into another of the same form (D.14) with,

Ã = A+ (d− 1)C, (D.16a)

B̃ = B + d(d− 1)C2. (D.16b)

Note that generally ψ is not canonically normalized in either frame. The p–form

action is defined by

Sp−form =

∫
eλψF 2

p+1

√
h dd+1x. (D.17)

under the transformation

hij = e2Cψgij (D.18)

it is mapped into a similar form with

λ̃ = λ+ C(d− 1− 2p). (D.19)
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Now we have the tools required to analyze the specific case of the string frame

action. The string frame is defined by the NS–NS action

Sstr =

∫
e−2Φ

(
R(h) + 4(∂Φ)2 + · · ·

) √
h dd+1x, (D.20)

which can be transformed into Einstein frame with a canonically normalized dilaton

field φ. The usual transformation with

ω =
2

d− 1
Φ (D.21)

puts the action in Einstein frame∫
R(g)− 4

d− 1
(∂Φ)2√g dd+1x. (D.22)

the further definition of

φ = Φ ·
√

4

d− 1
(D.23)

canonically normalizes the dilaton to yield∫
R(g)− (∂φ)2√g dd+1x. (D.24)

Returning to the p–form transformation rule and specializing to d = 9, we find

that the combined conformal transformation and rescaling of φ yield

φ = Φ/
√

2, (D.25a)

λ̃ =
√

2

(
λ+ 2

10− 2(p+ 1)

8

)
. (D.25b)

D.3 String Dualities

Various string actions are connected by duality transformations. These dualities also

map Kasner universes to other Kasner universes. Here we give the formulae relating

the Kasner exponents in these dual universes.
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D.3.1 T–duality

T–duality is a symmetry of the string frame action in string theories. Dualizing a

single dimension involves the transformation

ρj →
α′

ρj
, (D.26a)

Φ → Φ− ln

(
ρj√
α′

)
. (D.26b)

we will use units where α′ = 1 for convenience. We wish to find how the Einstein

frame Kasner exponents change under the T–duality transformation. We begin with

the Einstein frame, proper time metric and dilaton

ds2 = −dt21 +
∑
j

t2pjdxj, φ = q ln t1. (D.27)

This results in the string frame metric

ds2 = t
q/
√

2
1

(
−dt21 +

∑
j

t2pjdx2
j

)
, Φ =

√
2 ln t1. (D.28)

Denoting the string frame proper time before dualization as t2, we find that

t2 = t
1+ q

2
√

2

1 , (D.29a)

ds2 = −dt22 +
∑
j

t2qjdx2
j , (D.29b)

qj =
pj + q

2
√

2

1 + q

2
√

2

, (D.29c)

Φ =

√
2q

1 + + q

2
√

2

ln t2. (D.29d)

where the string frame Kasner exponents qj have been defined. Now we may apply

the T–duality. This defines a new set of exponents, rj, by

rj =


−qj if we dualize along xj,

+qj otherwise.

(D.30)
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further define

σ = sum of qj along dualized directions. (D.31)

Now, apply the duality. This keeps the metric in the proper time gauge, but changes

the Kasner exponents as above, and shifts the dilaton to

Φ̃ =

( √
2q

1 + + q

2
√

2

− σ

)
ln t2 (D.32)

Now we can descend back down to the Einstein frame again. This defines the Einstein

frame proper time after dualization t3, given by

t3 = t

σ
4
+ 1

1+
q

2
√

2

2 (D.33)

and gives the expressions for the (canonically normalized) dilaton and Einstein frame

Kasner exponents sj, which are

φ̃ =

q
1+ q

2
√

2

− σ√
2

σ
4

+ 1
1+ q

2
√

2

, (D.34a)

sj =

σ
4
−

q

2
√

2

1+ q

2
√

2

+ rj

σ
4

+ 1
1+ q

2
√

2

(D.34b)

Clearly these are rather complicated formulae. As a simple example, consider the

Milne solution

p1 · · · p8 = 0, (D.35a)

p9 = 1, (D.35b)

φ = const. (D.35c)

T–dualizing on x9 results in

s1 · · · s8 = 1/5, (D.36a)

s9 = −3/5, (D.36b)

φ̃ = −2
√

2

5
ln t. (D.36c)
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Another example is the isotropic solution

p1 · · · p9 = 1/9, (D.37a)

φ =
√

8/9. (D.37b)

dualizing on x9 gives

s1 · · · s8 = 1/5, (D.38a)

s9 = −3/5, (D.38b)

φ̃ = +
2
√

2

5
ln t. (D.38c)

D.3.2 S–duality of SO(32) heterotic/ Type I

The heterotic SO(32) and Type I SO(32) string actions possess the S–duality given

by

hI = e−Φhethhet, ΦI = −Φhet (D.39)

we can follow a similar (though somewhat simpler) path to the one used for T–

duality to find how the Einstein frame actions change under this transformation. Let

us assume that we begin in the heterotic theory. Then, the string frame metric and

dilaton are

Φhet =
√

2q ln t1, (D.40a)

ds2
het = tq/

√
2

(
−dt21 +

∑
j

t2pjdx2
j

)
. (D.40b)

applying the S–duality results in

ΦI = −
√

2q ln t1, (D.41a)

ds2
I = t−q/

√
2

(
−dt21 +

∑
j

t2pjdx2
j

)
. (D.41b)

but, this is exactly the string frame action for the original solution, with q → −q!

Thus, the behavior under S–duality is much simpler than that under T–duality.



Appendix E

The 1 + 1 → N +M String

Amplitude

Standard techniques in string perturbation theory give the form of the four–point

string S–matrix amplitude as

M =
8πi

α′g2
c

〈: c(z+)c̃(z+)V+
k+

(z+) :: c(z−)c̃(z−)V−k−(z−) : ×

: c(zL)c̃(zL)VLkL
(zL) :: VRkL

(zR) :〉 (E.1)

where the fact that this expression is to be integrated over the unfixed vertex operator

position is understood. We have also suppressed the momentum conservation factor,

so that the full S–matrix element is

S4(k+, k−, kL, kR) = (2π)26δ26(k+ + k− + kL + kR)M (E.2)

In this work, we take V+
k+

(z+) and V−k−(z−) to be representative states at level N+

and N−, respectively, and VLkL
(zL) and VRkL

(zR) to be the massless graviton states.

We fix the three vertex operator positions z+ = 0, z− = 1 and zL = ∞. Next, using

momentum conservation and the transverse property of the polarization tensors of
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each state, it is possible to put the matrix element in the form〈
:

N+∏
j=1

(
∂Xµj +

iα′

2

[
κµj +

k
µj

R

z

])
::

N−∏
k=1

(
∂Xνk − iα′

2

[
κνk +

kνk
R

1− z

])
: ×

:

(
∂Xσ +

iα′

2

[
zκσ − kσ−

])
::

(
∂Xτ − iα′

2

[
κτ

z
−

kτ−
z(1− z)

])
:

〉
×

zα
′k+·kR/2(1− z)α

′k−·kR/2. (E.3)

multiplied by its complex conjugate from the antiholomorphic sector, multiplied by

an overall factor

8πig2
c

α′

(
2

α′

)N+M+2

(E.4)

and of course the appropriate polarization tensor for each state. In this expression we

have defined, κσ = kσ+ +kσ−. This expression for the amplitude results from evaluating

the ghost path integral and contractions between the ∂X and eikX terms, as well as

between two eikX terms. The remaining contractions are those between two ∂X terms.

Given this pattern of contractions, each possible contraction of operators results

in an integral of the form∫
C

za−1+m1 z̄a−1+n1(1− z)b−1+m2(1− z̄)b−1+n2 d2z

= 2π
Γ(a+m1)Γ(b+m2)Γ(1− a− b− n1 − n2)

Γ(a+ b+m1 +m2)Γ(1− a− n1)Γ(1− b− n2)
(E.5)

For m1,m2, n1, n2 ∈ Z. We can simplify our discussion by focusing on the leading

terms in this expression. Our concern in the present work is on the production of

long–wavelength, highly excited string states. Thus, we parameterize the momenta
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in the problem as

k+ = (m+, 0, 0) + (δω+, δk+
x , δ

~k+
T ), (E.6a)

k− = (m−, 0, 0) + (δω−, δk−x , δ
~k−T ), (E.6b)

kL = (−ω,−ω, 0) + (−δωL,−δkLx ,−δ~kLT ), (E.6c)

kR = (−ω,+ω, 0) + (−δωR,−δkRx ,−δ~kRT ), (E.6d)

where we assume that δk, δω � m±. We focus on the case where

0 = δ~kLT = δ~kRT , (E.7a)

δkx = δk+
x = −δk−x , (E.7b)

Now applying the mass–shell conditions and momentum conservation, we find, ω =

m++m−
2

and furthermore, δ~kT = δ~k+
T = −δ~k−T , and δk′x = δkLx = −δkRx . We can take

the two remaining free variables to be δkx and δ~kT . The mass–shell conditions further

imply,

δω± =
(δkx)

2 + (δ~kT )2

2m±
+O(k4

x,T ), (E.8)

and δωL = δk′x, δω
R = δk′x. So now we can reexpress all variables in terms of δkx

and δ~kT , by noting, δk′x = δω++δω−

2
. Now returning to the expression (E.5), we can

see that

a− 1 = (α′/2)k+ · kR = N+ − 1 + ∆ + δ+R, (E.9a)

b− 1 = (α′/2)k− · kR = N− − 1 + ∆ + δ−R, (E.9b)

with ∆ = [(N+ − 1)(N− − 1)]1/2 and,

δ−R =
α′

2

(
m−

2
δω+ +

[
m+ + 2m−

2

]
δω− − ωδkx

)
, (E.10a)

δ+R =
α′

2

(
m+

2
δω− +

[
m− + 2m+

2

]
δω+ + ωδkx

)
, (E.10b)
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At this point we have all of the information we need to compute each term in the

amplitude. In order to find the dominant term, it suffices to examine each of the

possible contractions between momentum vectors and polarization tensors. These are

given by, (kR · e+, kR · e−) = O(
√
α′m) and (κ · e+, κ · e−, κ · eL, k− · eL, κ · eR, k− · eR) =

O(
√
α′δk). Thus it is seen that the term with the greatest number of kR contracted

with polarization tensors will be dominant. It will be convenient to rewrite the integral

(E.5) as

π
Γ(a+m1)Γ(b+m2)Γ(1− a− b− n1 − n2)

Γ(a+ b+m1 +m2)Γ(1− a− n1)Γ(1− b− n2)
=

sin[π(a+ n1)] sin[π(b+ n2)]

sin[π(a+ b+ n1 + n2)]

Γ(a+m1)Γ(b+m2)

Γ(a+ b+m1 +m2)

Γ(a+ n1)Γ(b+ n2)

Γ(a+ b+ n1 + n2)
(E.11)

From our discussion above, the leading term with have the largest possible number

of kR contractions, implying m1 = n1 = −N+ and m2 = n2 = −N−. (This depends

somewhat on the pattern of contractions involving the graviton polarization tensors,

but this turns out to be unimportant in the final result) Thus we find the value of

the integral to be

sin[π(∆ + δ+R)] sin[π(∆ + δ−R)]

sin[π(2∆ + δ+R + δ−R)]

[
Γ(∆ + δ+R)Γ(∆ + δ−R)

Γ(2∆ + δ+R + δ−R)

]2

(E.12)

From this it is possible to work backwards and obtain the full S–matrix expression,

although we will not require the full amplitude.

A key feature of this amplitude is its behavior when ∆ ∈ Z. The leading term

derived above clearly vanishes as δ±R → 0 in this case, due to the structure of the

zeros of the sine functions. While we have only displayed the leading order term

above, this behavior in fact holds for all of the terms contributing to this amplitude.

This can be seen from the structure of the integral over the complex plane used to

derive (E.12). Regardless of the pattern of contractions corresponding to a given

term, the arguments to all of the gamma functions appearing in (E.12) are positive.
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Since the gamma function has no zeros, and only has poles for negative values of the

argument, the amplitude must vanish when ∆ ∈ Z and δ±R → 0.



Appendix F

Pair Production via the S–matrix

In this appendix we carry out explicit calculations of the pair production rate using

both S–matrix and Bogolubov coefficient techniques. This provides a check that,

while the two methods differ, the end result is precisely the same (for a related

analysis, see also [63]). We study a minimally coupled scalar field in D 6= 2 spacetime

dimensions, with action

Sφ = −1

2

∫ (
gµν∂µφ∂νφ+m2φ2

)√
−g dDx, (F.1)

Our gravitational background is defined by

gµν = a(t)2ηµν (F.2)

where the “scale factor” a(t) is an arbitrary function of time. In order to better make

contact with the examples considered in this work, we will assume that a(t) is unity,

except for a localized “bump” of small amplitude near t = 0. Thus, there will be

well–defined “in” and “out” regions where the geometry is Minkowski space.

For future convenience we define a field variable ψ, given by

φ(t, xj) = a(t)1−D/2ψ(t, xj). (F.3)

222



223

We Fourier expand ψ along the spatial coordinates, so ψ(t, xj) = ψk(t)e
ikjx

j
, and

define g(t) = a1/n, n = 1
D/2−1

, and

∆(t) =
(
g(t)2n − 1

)
m2 − g̈

g
, (F.4)

With these replacements, the action for ψ becomes

Sψ = −1

2

∫ (
−ψ̇2

k + ω2
kψ

2
k + ∆(t)ψ2

k

) dD−1k

(2π)D−1
dt, (F.5)

where ω2
k = m2 + k2 as usual. The equation of motion for ψk is

ψ̈ +
[
ω2
k + ∆(t)

]
ψ = 0. (F.6)

F.1 Bogolubov Coefficient Calculation

Now, we will calculate precisely what the β Bogolubov coefficient is in the theory

described in the previous section. Because the perturbation to the action is localized

in time, the canonical Minkowski vacuum is a natural choice for the “in” and “out”

regions, and so

uj(t, x) = ūj(t, x) = e−iωt+ikjx
j

, u∗j(t, x) = ū∗j(t, x) = e+iωt−ikjx
j

, (F.7)

We now consider the following (approximate) solution to the equation of motion for

ψ

ψk(t) =
1√

2ω(k)

(
e−iωkt + βk,−k′(t)e

iωkt
)

(F.8)

along with the boundary condition that βk,−k(t) → 0 as t → −∞. This boundary

condition ensures that ψk(t) is a pure positive–frequency mode in the “in” region.

Using the definitions above, it is clear that βk,−k(t) at t = +∞ is the Bogolubov βk,−k

coefficient.

Substituting our solution (F.8) into the wave equation, and making the assumption

that β � 1, we find

β̈k,−k + 2iωkβ̇k,−k = −∆(t)e−2iωkt (F.9)
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This equation has the solution

βk,−k(t) = −
∫ t

t′=−∞
e−2iωkt

′
∫ t′

t′′=−∞
∆(t′′) dt′ dt′′ → i

2ωk
∆(2ωk), (F.10)

where in the last step we have taken t → +∞. Note that our derivation is self–

consistent even in ∆(t) is large; we have only assumed that βk(t) � 1 and thus we

only need require that ∆(ω)/ω is small.

To compare with the S–matrix calculation, we must switch to the Lorentz–invariant

particle states, defined by

|k〉 =
√

2ωka
+
k |0〉. (F.11)

When this is done, one arrives at the invariant matrix element describing the particle

production process,

M (|0〉 → |k,−k〉) = −∆(2ωk) (F.12)

We will see in the next section how precisely the same result is obtained using con-

ventional field theory techniques.

F.2 S–matrix Calculation

The S–matrix element may be calculated using the rules of standard flat–space quan-

tum field theory. The calculation is much simpler than using the Bogolubov coefficient

method. In quantum field theory, if we have a perturbation to the action δS[ψ], then

S =

∫
vol

〈0|iδS[ψ]|k1k2〉 (F.13)

where we “contract” any ψ appearing in the perturbation according to the rule,

ψ(x)|k1〉 = e−ik1·x|0〉 (F.14)

In our situation, we have δS = −∆(t)ψ2/2. Again, after including the factor of two

from summing over the two possible contractions with the final state momenta, we
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find that,

S = −i
∫
e−i(k1+k2)·x∆(t) dDx, (F.15)

which is precisely the Fourier transform of ∆(t). Imposing momentum conservation,

we find the invariant matrix element,

M (|0〉 → |k,−k〉) = −∆(2ωk) (F.16)

which is precisely the one found by other means in the previous section.



Appendix G

Conventions

Throughout this work we use a spacetime with a “mostly plus” signature. Our con-

ventions for spacetime and general relativity are those of Misner, Thorne and Wheeler

[92]. We also use natural units throughout this work, and set 8πG = 1. Where rele-

vant, we use d to denote the number of spatial (noncompact) dimensions, and D for

the total dimensionality of spacetime; thus D = d+ 1.

When discussing compactification, we assume that spacetime has the form Σ ×

M, with M a compact manifold. Indices M,N,P . . . denote directions in the total

spacetime Σ×M, while µ, ν . . . denotes directions along Σ and m,n, p . . . along M.

GMN denotes the total metric, with hµν the metric on Σ and fmn the metric on M.

In later sections we will need to distinguish between coordinate indices and tangent

space indices on Σ ×M. We use A,B,C... for tangent space indices along the full

space, α, β... for those along Σ, and a, b... for those along M.
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wcrit(λ, p), 48, 53, 54

weight vectors, 131

wn, 62

zero modes
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p–form, 84

gravitational, 89
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