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Présentée par

Thomas Cailleteau
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2.3 La Relativité Générale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Les principes et leur conséquences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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4.2.3 Évolution du facteur d’échelle a(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 L’horizon de l’univers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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5.4 La Cosmologie Quantique à Boucles de manière effective . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 Application des corrections d’inverse volume . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Application des corrections d’holonomie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Les effets possibles observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Les perturbations cosmologiques 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Invariance de jauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Fluctuations quantiques d’un champ scalaire durant l’inflation . . . . . . . . . . . . . . . . . . . 82
6.4 Les perturbations de la métrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Les perturbations scalaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Les perturbations vectorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Les perturbations tensorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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Plus sérieusement pour terminer, avec peu de mots car personnel, je tenais à exprimer la gratitude infinie que
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Introduction

Introduction

Si j’ai vu plus loin que les autres, c’est parce que j’ai été porté sur des épaules de géants.

Newton.

Newton, référant à Galilée, montrait déjà qu’on ne construit jamais ex nihilo. Toujours à partir d’une
élaboration précédente. Dans le domaine des sciences, comme dans celui des arts, en philosophie comme en
ingénierie, les grandes avancées ont presque toujours été dictées par la capacité à intégrer dans un même corpus
des éléments disparates des paradigmes précédents. C’est une situation à laquelle nous faisons face en physique
depuis près d’un siècle. La Mécanique Quantique et la Relativité Générale sont les deux piliers de la science de la
Nature, mais elles ne sont pas conciliées. Le cadre, le fond, le fixe de l’une est, justement, le champ dynamique de
l’autre. L’enjeu d’une gravitation quantique est en un sens celui de l’unification. Mais, plus profondément encore,
c’est celui de la cohérence. Dans certaines circonstances, les petits trous noirs ou l’univers primordial, la physique
convoquée doit être à la fois quantique et relativiste. Dans ces situations, le recours à une théorie quantique
de l’espace-temps n’est pas un luxe lié au fantasme unificateur, mais une nécessité conceptuelle. Il existe de
nombreuses approches pour tenter de résoudre ce problème extraordinairement difficile. La théorie des cordes
est certainement la plus développée. La géométrie non-commutative est sans doute la plus élégante. Nous nous
intéresserons pourtant ici à la Gravitation Quantique à Boucles. Elle présente deux avantages considérables :
elle est modeste, simple si l’on veut, dans la mesure où elle ne se fonde que sur les grands principes bien
compris de la théorie d’Einstein d’une part et de la théorie de Shrödinger, Heisenberg et Pauli d’autre part,
et elle conduit à des prédictions claires. D’un point de vue heuristique ce second point est fondamental. Pour
progresser sur cette voie si délicate, il est indispensable de confronter le modèle à des observations, ce qui fait
aujourd’hui globalement défaut à ce champ de recherche. C’est pourquoi cette thèse a été dédiée à l’étude de
possibles conséquences observationnelles de la gravitation quantique à boucles. Étant donné que les petits trous
noirs n’ont encore jamais été observés, nous nous sommes focalisés sur l’univers primordial. Dans ce cadre, la
théorie fait émerger une image radicalement novatrice : le Big Bang disparâıt et se trouve remplacé par un grand
rebond. Ce sont les conséquences de ce nouveau scénario que nous avons cherché à comprendre. Plus de cent
chercheurs travaillent aujourd’hui à plein temps sur la gravitation quantique à boucles qui vient de fêter ses
vingt-cinq ans. Cet axe d’étude est en pleine effervescence et ce travail s’inscrit dans le renouveau apporté par
les boucles au problème de la quantification du champ gravitationnel. Nous entendons ainsi apporter quelques
éléments de réponse aux conséquences cosmologiques de la proposition.

L’intérêt de ce sujet vient ainsi à mon sens de la possibilité de corroborer avec les observations une théorie
quantique de la gravitation utilisant la formulation des théories de Yang-Mills dont la quantification a rencontré
un évident succès dans l’explication des processus de la physique des particules. La procédure de quantification
nécessite cependant des moyens différents mais elle reste dans l’esprit de la quantification à la Dirac, qui
a d’ailleurs développé la théorie des contraintes, largement utilisée dans ce formalisme. Ces différences dans
la quantification vont alors amener des effets nouveaux permettant de résoudre les problèmes inhérents à la
relativité générale comme la singularité du Big Bang et la définition des conditions initiales. La présence d’un
rebond dans l’évolution de l’univers, par l’utilisation des holonomies et par la quantification de la théorie,
permettant en plus d’amener naturellement une inflation, rend ainsi très intéressant un tel modèle. C’est dans
ce contexte attrayant que nous avons ainsi décidé de regarder l’influence des corrections d’holonomie sur la
cosmologie, à travers l’étude des perturbations du fond diffus cosmologique représentant une véritable empreinte
du passé.

xi
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xii INTRODUCTION

La première partie de ce manuscrit va alors consister à introduire les fondements de la physique qui ont
permis l’élaboration de la théorie de la gravité quantique à boucles. Dans les deux premiers chapitres, nous avons
ainsi présenté les principes, notions et outils de la mécanique classique, quantique et des théories de relativité
qui ont permis dans le troisième chapitre de décrire la construction de la gravité quantique à boucles. Cette
théorie, par la définition de nouvelles variables, les variables d’Ashtekar, reliées à la métrique et à la courbure
de l’espace-temps, va alors pouvoir se ramener à une théorie similaire à celles de Yang-Mills, et l’action de la
relativité générale sous cette formulation mènera à un hamiltonien. Il sera nécessaire alors de développer une
procédure permettant la quantification d’une théorie invariante par changement de coordonnées, et on verra
ainsi l’utilisation d’un nouvel objet, l’holonomie qui permettra d’évaluer la connexion sur une partie de l’espace.
De façon non triviale, cette théorie mènera à un espace-temps discrétisé.

Cette thèse se portant sur l’étude des perturbations dans un modèle d’univers homogène et isotrope, nous
avons consacré la seconde partie à l’introduction des concepts utiles pour comprendre la théorie des perturbations
dans cet univers. Nous avons ainsi commencé dans le premier chapitre par évoquer les notions connues de
cosmologie, avant de s’intéresser dans le second chapitre aux modifications apportées par l’application de la
gravité quantique à boucles à l’univers. En utilisant la formulation due aux variables d’Ashtekar, on verra dans
ce second chapitre qu’il est de même possible de décrire l’univers classique, mais aussi qu’appliquer les méthodes
de quantification développées par la gravité quantique à boucles va permettre l’obtention d’une nouvelle théorie
quantique de la cosmologie, la Cosmologie Quantique à Boucles. Cette théorie va alors être fondamentalement
différente de celle de Wheeler et de DeWitt, et aura alors des conséquences physiques nouvelles : la singularité
du Big Bang n’existera plus et il sera possible de propager la fonction d’onde de l’univers à travers la singularité
initiale. Cependant, nous ne nous sommes pas intéressés aux expressions purement quantiques des équations
du mouvement : nous avons dans la suite utiliser des fonctions que l’on appelle corrections, et qui encodent
les effets quantiques de la théorie de manière effective. Il existe deux corrections principales, la correction
d’holonomie qui apparâıt par le fait d’utiliser les holonomies de la connexion d’Ashtekar, ainsi que la correction
d’inverse-volume donnée lors de la quantification d’un terme inversement lié à un opérateur contenant 0 dans
son spectre de valeurs propres. Introduire ces corrections dans l’hamiltonien classique de la relativité générale
va alors définir une théorie effective de la Cosmologie Quantique à Boucles, dont les équations d’évolution vont
permettre une description des effets globaux de ces corrections : le Big Bang sera bien remplacé par un rebond,
qui, sous certaines conditions, va amener à une phase d’inflation naturelle. Nous avons cherché à appliquer
cette théorie aux perturbations cosmologiques, et les chapitres suivants donneront le formalisme de la théorie
des perturbations dans le cadre de la cosmologie usuelle, ainsi que dans celui de l’approche effective de la
Cosmologie Quantique à Boucles : en prenant le cas classique, les équations du mouvement pour les différents
types de perturbations seront obtenues et leurs spectres dérivés dans les deux approches.

Finalement, durant ma thèse, nous nous sommes intéressés à l’influence que pourraient avoir les corrections
de la Cosmologie Quantique à Boucles sur la forme des spectres de puissance des différentes perturbations : cela
permettra alors de comprendre quelles seraient les conséquences physiques de ce genre de modèle et voir s’il n’est
pas possible de les tester. Dans la dernière partie, nous avons ainsi traité les différents travaux effectués pendant
la thèse, en commençant dans le premier chapitre par évoquer celui utilisant les deux corrections disponibles :
dans un modèle particulier faisant intervenir de façon ad hoc une phase inflationnaire, des études ont montré
les différents effets sur le spectre des corrections prises séparément, menant à de grandes différences avec le cas
classique. Afin de connâıtre leurs effets combinés et voir s’ils ne peuvent pas se compenser, nous avons regardé
qu’elle serait la forme du spectre des perturbations tensorielles dans le cas d’une inflation standard et sous
ces corrections. Cette étude a montré que le spectre, dans la partie infrarouge, présentait une large déviation
par rapport au spectre classique, correspondant à l’influence des corrections d’inverse-volume, alors que dans
sa partie ultraviolette, à cause des corrections d’holonomie, une légère pente était présente qui pouvait être
reliée à un des paramètres fondamentaux de la théorie. Cependant, dans ce travail, les corrections n’avaient
pas été prises en compte pour l’évolution du fond, rendant ce modèle très restrictif mais néanmoins intéressant
pour voir l’action des deux corrections combinées sur les équations du mouvement. Nous avons alors décidé
par la suite de ne considérer que l’influence des corrections d’holonomie en tenant compte de leur action sur le
fond, les corrections d’inverse-volume ayant déjà été étudiées. Pour le scénario d’un rebond suivi d’une phase
d’inflation, nous avons dans le second chapitre dérivé de manières analytique et numérique les spectres de
puissance pour le cas des perturbations tensorielles et obtenu une forme caractéristique : à la limite infrarouge,
le spectre était supprimé en k2, et aux échelles intermédiaires présentait des oscillations avant de redonner dans
le régime ultraviolet le spectre classique. Ce spectre étant spécifique d’un univers à rebond avec inflation, nous
l’avons approximé par une fonction rendant compte de ses caractéristiques, et étudié ensuite si une expérience
future permettrait de l’observer : une analyse de Fisher a été réalisée, montrant qu’il existe un large espace
de paramètres permettant au modèle à rebond d’être observé. Néanmoins, à l’heure actuelle, seul le spectre en
température est bien mesuré, et nous avons alors décidé de regarder l’influence des corrections d’holonomie sur
un tel spectre, en cherchant à dériver celui des perturbations scalaires. Cependant, les contraintes introduites
ici amènent dans le cas des perturbations scalaires, et vectorielles, des termes supplémentaires que l’on sait
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xiii

non-physiques, rendant alors la dynamique mal définie, et il a fallu au préalable régulariser la théorie par
l’introduction de contre-termes : en commençant par le cas des vecteurs et ensuite celui des scalaires, nous
avons enlevé ces termes en modifiant l’hamiltonien de ces perturbations, et regardé alors qu’elles étaient les
modifications apportées sur les équations du mouvement. Ces équations étant plus compliquées et suscitant
encore quelques interrogations, nous n’avons pas cherché à les résoudre ici. Nous avons plutôt terminé notre
travail par l’application d’une méthode utilisant l’équation d’Hamilton-Jacobi à la Cosmologie Quantique à
Boucles, qui s’est avérée par la suite prometteuse dans l’obtention de variables physiques observables ainsi que
de leurs équations du mouvement puisque la démarche utilisée simplifie alors grandement les calculs. Une étude
sur les possibles tests de la théorie par l’évaporation des trous noirs en gravité quantique à boucles a également
été menée mais ne sera pas explicitée dans ce manuscrit.

En résumé, nous avons donc étudié différentes approches des effets cosmologiques de la gravité quantique
à boucles et construit une algèbre close, non perturbative et s’appliquant à tous les modes cosmologiques. Ces
travaux ouvrent de nouvelles pistes mais beaucoup reste encore à faire avant une éventuelle détection fiable de
ces effets.
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Première partie

Vers une nouvelle théorie de la
gravitation

1
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Chapitre 1

La Mécanique Classique,
fondation de la Physique moderne

Les mathématiques sont une grammaire de la nature ; c’est les godasses de la technique. On peut
marcher sans chaussures, mais on va moins loin.

Jean-Marie Souriau

Introduction

Par définition, la mécanique est un domaine des sciences qui permet de rendre compte du mouvement de
tout système matériel sous l’action d’une force. Elle permet ainsi une description de nombreux phénomènes
physiques comme la dynamique d’une particule, de milieux rigides ou bien continus, ainsi que d’autres champs
comme la gravitation et l’électromagnétisme comme on pourra le voir.
Parallèlement, les mathématiques se sont développées et enrichies de manière faramineuse, en interaction
constante avec la physique, et ces nombreux développements appliqués aux problèmes de physique ont énormément
aidé à notre compréhension des phénomènes. La mécanique possède deux points de vue principaux, la mécanique
lagrangienne et la mécanique hamiltonienne. La mécanique lagrangienne est dans un sens plus fonda-
mentale puisqu’elle est basée sur des principes variationnels, plus simples à manipuler et ayant permis le
développement de théories nouvelles qui incorporent les principes de relativité. D’un autre côté, la mécanique
hamiltonienne peut aussi être considérée comme plus fondamentale dans le sens où le formalisme est essentielle-
ment fondé sur la notion d’énergie, et heureusement, ces deux approches sont souvent équivalentes. Cependant,
alors que la mécanique quantique s’est développée à partir du formalisme hamiltonien, la relativité générale a
quant à elle utilisé le formalisme lagrangien, et jusqu’à l’avènement d’une théorie quantique complète de la gra-
vitation, la réunion de ces deux théories reste actuellement un des problèmes majeurs de la physique moderne.
Durant toute sa construction, la mécanique a souffert bien des changements, parfois incroyables, pour finalement
bouleverser notre compréhension du monde. Or l’enseignement que l’on en donne, certes excellent mais trop
compartimenté à mon avis, n’amène pas forcément ce recul permettant d’apprécier pleinement la construction
même des théories de relativité, ou les conséquences presque incroyables de simples postulats. C’est ainsi qu’il
m’a semblé bon dans ces premiers chapitres de commencer par rappeler les (r)évolutions de la mécanique au
cours du temps (de la mécanique classique jusqu’à la relativité générale en passant par la mécanique quantique),
en montrant les postulats et les points forts de cette description, ainsi que quelques ouvertures.
La raison d’être de ce premier chapitre est d’amener à tout lecteur un semblant de point de vue global sur
la mécanique, en commençant par évoquer un formalisme qui me parâıt novateur dans la compréhension plus
profonde de la mécanique, la mécanique symplectique. Au cours des prochains chapitres, des concepts
mathématiques et non forcément connus de prime abord, comme la structure symplectique, les crochets de
Poisson, léquation d’Hamilton-Jacobi, ... vont apparâıtre, ainsi que d’autres notions mathématiques, et ce cha-
pitre est ainsi une tentative d’introduction qui se veut pédagogique, permettant finalement de poser les bases
nécessaires notamment à la construction d’une théorie quantique de la gravitation. On va ainsi voir que les
notions, comme l’action, sont en fait inhérentes à l’espace des variables que l’on considère et qu’elles vont
apparâıtre simplement. Ce domaine étant vaste, de nombreux détails sont passés sous silence, mais j’encourage
tout lecteur souhaitant aller plus loin à lire les ouvrages [2] à [15] dont je me suis très fortement inspiré pour
écrire cette description.
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4 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

1.1 La mécanique newtonienne

Comme toute théorie physique et mathématique, la mécanique se fonde sur des postulats et des principes
que l’expérience tente de vérifier.

Principe d’équivalence de Galilée

Nombreux sont ceux qui ont contribué au développement historique de la mécanique. Par ses travaux nova-
teurs, il est communément admis qu’un des pères fondateurs de la mécanique est Galileo Galilei. Il fût un des
premiers à rendre compte de la dynamique d’un objet via son observation sur la chute libre des corps :

observation sur la chute libre : Dans un champ de pesanteur, sans frottements, deux corps de composi-
tions différentes et lâchés d’une même hauteur arriveront au sol au même instant.

Lois du mouvement de Newton

En se basant entre autre chose sur cette réflexion, Isaac Newton en 1687 a décrit mathématiquement le
comportement d’un corps dans un champ de pesanteur via ses 3 lois du mouvement, correspondant à 3 principes

1. le principe d’inertie : Le mouvement d’un corps isolé est rectiligne et uniforme. Son référentiel définit
un référentiel inertiel (galiléen).

2. le principe d’action et de réaction.
3. le principe fondamental de la dynamique : Soit un corps de masse m (constante) : l’accélération

subie par ce corps dans un référentiel galiléen de coordonnées (t, xa) est proportionnelle à la résultante
des forces qu’il subit : ∑

i

~Fi = mi~a = mi
d2~x

dt2
. (1.1)

Dans l’expression ~F = mi~a, la masse qui entre en jeux est la masse inertielle qui n’a aucun lien avec la gra-
vitation : elle rend simplement compte de l’effort qu’il faut faire pour accélérer ou décélérer un objet. Par contre,
la masse s’exprimant dans le poids ~P = mg~g est bien celle qui rend compte de l’attraction gravitationnelle.

Principe d’équivalence de Newton

Dans ce formalisme, on peut ainsi définir un nouveau principe d’équivalence respectant l’observation sur la
chute des corps par Galilée :

Principe d’équivalence de Newton : Aucune expérience locale ne peut distinguer un système sans ro-
tation, en chute libre, d’un système en mouvement non-accéléré dans un espace sans gravitation.

Lorsqu’un objet est en rotation, il subira des forces d’inerties et son référentiel ne sera alors plus inertiel.
Un objet en chute libre ne sait pas s’il est soumis à la gravité ou non. Ce principe implique que mi = mg, mais
l’implication inverse n’est pas vraie, par exemple si on ne considère cette relation vraie que pour des couplages
à l’ordre zéro en masse.

Principe de relativité

Cependant, il existe un principe sous-jacent encore plus important. En effet, les lois de Newton ne sont pas
valables uniquement à Cambridge à l’époque de Newton mais sont aussi valables n’importe quand et n’importe
où. Ce principe s’appelle le principe de relativité :

Principe de relativité : Toute loi physique s’exprime de manière identique dans tout référentiel inertiel,
et donc doit être indépendante du système de coordonnées utilisé.

Par changement de référentiel, les équations du mouvements doivent conserver la même forme. Pour passer
d’un référentiel inertiel R de coordonnées (t, x) à un autre référentiel inertiel R′ de coordonnées (t′, x′), en
translation rectiligne uniforme à la vitesse V l’un par rapport à l’autre, on pourrait intuitivement penser qu’il
suffit de faire un changement de coordonnées donné par les transformations de Galilée

t′ = t, x′ = x+ V t, (1.2)

laissant les équations de Newton invariantes sous cette transformation. Les transformations de Galilée désignent
ainsi une tentative de groupe de transformations qui permet de lier les systèmes de coordonnées de deux
référentiels galiléens, c’est-à-dire en mouvement relatif uniforme.
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1.2. LA FORMULATION LAGRANGIENNE 5

Repère absolu

Cette relation suppose implicitement une croyance en un espace absolu : tout corps se meut dans un espace
fixe où le temps est partout identique. Les longueurs mesurées sont ainsi indépendantes du mouvement, et le
temps s’écoule partout de la même manière pour tout observateur. La mesure des distances et des intervalles
temporels est donc indépendante du mouvement de l’observateur.

Limites du formalisme newtonien : les équations de Maxwell

Ainsi, avec ces principes, la mécanique newtonienne est capable de décrire beaucoup de situations physiques,
comme le tir d’un projectile, ou bien de confirmer des lois empiriques, comme celles de Johannes Kepler avec
la dynamique d’un corps céleste autour d’un autre corps massif. Cependant, l’étude de l’électromagnétisme ainsi
que les lois en résultant, exprimées par les équations de James C. Maxwell au début des années 1860, vont
mettre en porte-à-faux cette théorie. En effet, supposer que les équations de Maxwell et l’expression de la force
de Lorentz sont compatibles avec les équations de Newton mène à des contradictions : comme l’accélération est
invariante sous une transformation de Galilée, en regardant l’égalité entre les forces de Lorentz des référentiels
R et R′ précédents, on voit que le champ magnétique est invariant par changement de référentiel. Cela semble
impossible puisqu’une charge immobile dans R ne crée par de champ magnétique, tandis que dans R′, cette
même charge à la vitesse −~V devrait en créer un d’après les équations de Maxwell.
De plus, en utilisant le principe de relativité, les équations de propagation ∆ ~E − µ0ε0∂

2
t
~E = 0 dans R et

∆ ~E′ − µ0ε0∂
2
t′
~E′ = 0 dans R′ ont toutes deux pour solution une onde électromagnétique se propageant à la

même vitesse c = (µ0ε0)
1
2 , et cela, quels que soient les référentiels. Or, sur une ligne droite, selon la mécanique

newtonienne tout observateur suivant un photon lui attribuera une vitesse plus petite que celui qui s’en éloigne
en sens inverse. Ainsi, en profitant du mouvement de la Terre sur elle-même, il devrait être possible de voir
qu’un photon, lâché à une distance d d’un observateur et arrivant de l’Est, arrivera plus vite qu’un photon
lâché à une même distance mais venant d’une autre des directions. Des expériences très précises mettant en
jeux des interféromètres ont été réalisées, notamment par Albert Michelson et Edward Morley, et ont
montré que la vitesse de la lumière était la même, quelle que soit la direction : cela était bien prévue par la
théorie de l’électromagnétisme de Maxwell, mais la tension avec la mécanique classique persistait néanmoins.
Pour palier ce problème, des physiciens et mathématiciens comme Henri Poincaré sont arrivés à la conclusion
que, si les équations de Maxwell n’étaient pas fausses puisqu’on les vérifiaient, les transformations de Galilée
devaient être erronées, et que pour résoudre cette incompatibilité, il fallait perdre la notion d’espace-temps
absolu et admettre que les objets pouvaient se contracter. Sous cette contraction des longueurs, la théorie de
l’électromagnétisme donnait des solutions plus simples mais était par nature toujours en contradiction avec les
concepts de la mécanique newtonienne. Il aura fallu attendre 1905 pour qu’Albert Einstein remette en cause
la notion d’espace et de temps absolus et fasse progresser la compréhension de l’espace et du temps vers un
objet mixte, l’espace-temps.

1.2 La formulation lagrangienne

Newton a certes posé les bases de la mécanique, mais il a aussi développé avec Gottfried Leibniz tout un
formalisme mathématique se basant sur des déplacements infinitésimaux, amenant alors le concept d’équation
différentielle comme (1.1) à travers le calcul infinitésimal. Ce formalisme a ainsi permis aux théories physiques
de devenir prédictives1, la position d’un objet à un temps t + dt étant ainsi connue, mais a aussi permis la
définition d’objets mathématiques fondamentaux en mécanique : le lagrangien en est un exemple. C’est ainsi
qu’à partir du calculus, une branche des mathématiques s’est développée, la géométrie différentielle dont
l’une des principales préoccupations est de pouvoir écrire les dérivées partielles de fonctions, les intégrales,
etc, mais avec le soucis constant de définir des opérations et des objets qui soient indépendants du système
de coordonnées choisi. La géométrie différentielle est donc un cadre naturel pour la mécanique qui souhaite
respecter le principe de relativité. Un autre des enjeux de ce domaine mathématique, qui va se révéler très utile
pour la mécanique comme on va le voir par la suite, est de pouvoir faire des calculs différentiels sur un espace
autre que l’espace euclidien Rn, c’est-à-dire sur une variété différentiable quelconque que l’on définit comme
suit :

1Les résultats d’existence et d’unicité du théorème de Cauchy-Lipschitz traduit en fait ce déterminisme.
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6 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

Variété différentiable

Definition 1. Une variété différentiable (ou ’manifold’ en anglais) M de dimension réelle n, est un espace
topologique tel qu’il existe un recouvrement (appelé atlas) de M par des ensembles ouverts Uα (appelé cartes),
indicées par α, et des difféomorphismes (applications bijectives et C∞) : τα : Uα ⊂ M → Vα ⊂ Rn, donnant
les coordonnées qα = τα(q) = (q1, ..., qn) ∈ Rn d’un point pour une carte spécifique q ∈ Uα. On parlera par la
suite de (q1, ..., qn) comme étant un système de coordonnées locales ou de coordonnées généralisées.

Un exemple est la Terre, une 2-sphère qui localement res-
semble à R3 pour laquelle on définit des cartes, comme les relevés
topographiques, les cartes routières, que l’on réunit dans des at-
las, comme les guides routiers de France ou les atlas IGN. Sur
ces cartes, on peut définir différents systèmes de localisation :
un quadrillage, des noms de routes, en fonction des longitudes et
latitudes, etc.

Espace tangent

Definition 2. Soit une courbe paramétrée γ sur M (une tra-
jectoire) γ : t ∈ R → γ(t) ∈ M , le vecteur tangent V à la
courbe γ est l’opérateur différentiel qui agit sur les fonctions et
détecte leur variation au premier ordre. Il s’écrit pour un point
q(t) = (q1(t), ..., qn(t)) sur la courbe paramétrée γ(t) :

∀f ∈ C∞(M), V (f) =̇
df

dt
(γ(t)) =

(
dqi

dt

∂

∂qi

)
f =

(
V i

∂

∂qi

)
f. (1.3)

(V 1, ..., V n) sont les composantes de V . Les vecteurs ∂i =̇ ∂
∂qi , i = 1..n, forment une base de l’espace vectoriel

des vecteurs tangents au point q. On note TqM cet espace vectoriel appelé espace tangent au point q, de
dimension n. L’ensemble des espaces tangents est noté TM=̇ ∪q∈M TqM de rang n, et appelé espace fibré
tangent ou espace tangent2.

Fig. 1.1 – Espace tangent à la variété M .

En physique, on parle d’espace des phases. Par exemple,
pour un oscillateur harmonique amorti, l’espace tangent a pour
composante la position de l’oscillateur q et sa vitesse q̇, et une
trajectoire dans cet espace des phases permet de connâıtre les
caractéristiques dynamiques de l’oscillateur.

Produit scalaire

Definition 3. Soit E un espace vectoriel réel de dimension finie,
un produit scalaire ou métrique, noté g(., .), est une applica-
tion telle que pour deux vecteurs U et V de E,

(U, V ) ∈ E × E → g(U, V ) ∈ R (1.4)

est bilinéaire, symétrique (g(U, V ) = g(V,U)) et non-dégénérée :
g(U,U) = 0 ⇒ U = 0.

En mécanique quantique, on définira un espace de Hilbert pour les fonctions d’ondes, dont le produit
scalaire, positif, entre deux de ces fonctions, permettra de donner un sens physique à ces fonctions : la probabilité
d’être dans un état particulier.

Variété Riemannienne

Definition 4. Une métrique Riemannienne g sur une variété M est un choix de produit scalaire, défini
positif, dans chaque espace tangent TqM , q ∈M . On dit alors que (M, g) est une variété Riemannienne et
que g est la métrique, ou plus généralement le tenseur métrique3. Dans un système de coordonnées locales
q = (q1, .., qn), g s’écrit comme

g =
n∑

i,j=1

gij(q) dqi ⊗ dqj , (1.5)

2Par exemple, la bande de Möbius ou bien le cylindre pour le cercle [3].
3La notion de tenseur sera expliquée peu après.
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1.3. LA TRANSFORMATION DE LEGENDRE 7

avec les composantes gij(q) du tenseur métrique g formant une matrice inversible et symétrique en tout point
q ∈M . Elles sont données par le produit scalaire des vecteurs tangents de la base

gij(q) = g

(
∂

∂qi
,
∂

∂qj

)
. (1.6)

La métrique g donne la distance entre deux points infinitésimalement proches sur toute variété plate ou courbe,
et on note aussi cet élément de longueur

ds2 = gij dx
idxj . (1.7)

Par exemple, sur Rn avec gij = δij , ds2 = δijdx
i ⊗ dxj est la métrique euclidienne et (Rn, g) l’espace

euclidien de dimension n. Cette métrique est définie positive permettant ainsi de définir la norme d’un vecteur
u ∈ Rn selon g(u, u) ≥ 0.

Definition 5. On parle de variété pseudo-Riemannienne lorsque le produit scalaire n’est plus défini positif.
Cela apparâıt quand la signature n’est pas la même pour toutes les composantes.

Par exemple, sur R4 avec les coordonnées cartésiennes (t, x, y, z), la métrique g = −dt ⊗ dt + dxi ⊗ dxi
s’appelle la métrique de Lorentz, et (R4, g) est l’espace de Minkowski qui modélise un espace-temps plat
en relativité restreinte. Avec cette métrique, il n’est ainsi plus possible de définir la norme d’un vecteur comme
précédemment puisque cette norme peut être positive, négative ou nulle.
Une métrique pseudo-Riemannienne g sur une variété M sera très utile puisqu’elle permet de définir notamment
la notion de distance, d’aire et de volume. C’est une structure importante qui intervient dans la formulation de
toute théorie physique.

Expression du lagrangien

On considère le cas simple d’une particule sur Terre, subissant une force découlant d’un potentiel V (q) sous
la forme d’un gradient4. On va notamment considérer l’action du champ de pesanteur V = mggz, dont la force
d’attraction est le poids ~P qui s’écrit Pi = ∂iV . Il est ainsi possible de montrer qu’après multiplication par le
vecteur vitesse vi = q̇i, i = 1..3, on peut écrire l’équation (1.1) comme étant

Ei(L) =̇
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1.8)

pour laquelle on a définit une fonction L,

L = T − V =
1
2
mvivi − V. (1.9)

T est l’énergie cinétique et vivi le produit scalaire sur R3. Cette formulation de l’équation (1.1) permet de ne
pas tenir compte des forces de contraintes, intrinsèques à tout objet et n’intervenant pas dans la dynamique
d’un corps.
L’équation (1.8) ressemble étrangement à une solution d’un principe variationnel très utilisé en physique, no-
tamment en optique5, et il est tout naturel de chercher l’action du système comme étant une fonction scalaire
S. Ainsi, pour un point quelconque de coordonnées q(sa) = qi(sa), i = 1..3, a = 0..3, dans l’espace des confi-
gurations M décrivant l’état (position, valeur d’un paramètre, etc) du système étudié, il existe une fonction
(densité) appelée lagrangien L[q(sa), ∂iq(sa)], qui permet de décrire ce système via le principe variationnel
de Hamilton

δS = δ

(∫
Σ

d4s · L[q(sa), ∂iq(sa)]
)

= 0. (1.10)

Toute solution physique est donnée par l’extrêmisation de cette action et s’obtient alors en résolvant les
équations d’Euler-Lagrange (1.8), découlant de l’annulation du vecteur d’Euler-Lagrange Ei(L).
Un fait intéressant [5] est donné pour une particule libre classique, se déplaçant dans un référentiel inertiel : le
lagrangien doit être proportionnel à la vitesse de la particule au carré L = av2. Poser a = mi

2 permet alors de
donner un sens réel à la masse (inertielle) comme étant un degré interne de la particule qui montre sa capacité
à se mouvoir.

1.3 La transformation de Legendre

La dynamique d’un système est ainsi donnée par le lagrangien, mais il est aussi possible de l’exprimer
différemment via la transformée de Legendre : elle fait appel au gradient du lagrangien. Or ce gradient
définit un nouvel espace, l’espace cotangent.

4Par définition, le gradient appartient à l’espace dual de l’espace tangent.
5Maupertuis a lui même travaillé sur l’expression de la mécanique sous sa forme lagrangienne.
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8 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

espace cotangent

Definition 6. Une forme linéaire sur un espace vectoriel E est une application linéaire sur E à valeur dans
R. L’espace des formes linéaires est appelé espace dual et est noté E∗.

Definition 7. Si f ∈ C∞(M) est une fonction, sa différentielle (ou gradient) en un point q ∈ M est une
forme linéaire sur l’espace tangent TqM , notée df : TqM → R, qui s’exprime au point q selon

(df)q =
∂f

∂qi
dqi. (1.11)

df représente la variation infinitésimale de la fonction f au point q ∈ M dans la direction du vecteur dqi et,
étant linéaire, df ∈ T ∗qM .

Fig. 1.2 – Espace cotangent à M .

En tout point q ∈ M , une forme linéaire, aussi appelée
1−forme, vecteur cotangent ou forme Pfaffiaine, s’écrit

α = αi dq
i ∈ T ∗qM, αi ∈ R, (1.12)

où (α1, ..., αn) sont les composantes de α. Les vecteurs dqi, pour
i = 1..n, forment une base de l’espace vectoriel T ∗qM des vecteurs
cotangents au point q (espace dual de TqM), appelé espace co-
tangent au point q et de dimension n. La collection des es-
paces cotangents T ∗M=̇ ∪q∈M T ∗qM est appelé le fibré cotan-
gent. Une section α ∈ C∞(M,T ∗M) de ce fibré est une 1-forme
ou vecteur contravariant sur M , que l’on peut aussi appeler
champ de vecteurs cotangents. L’ensemble T ∗M possède la
structure naturelle d’une variété différentiable de dimension 2n :
l’information sur les n coordonnées et les n vecteurs tangents y
est contenue.

La base (dq1, .., dqn) de T ∗M est appelée base duale de la base
(
∂
∂q1 , ..,

∂
∂qn

)
de TqM , dont leurs vecteurs

vérifient la relation

dqi
(
∂

∂qj

)
=
∂qi

∂qj
= δij , (1.13)

où δij est le symbole de Kronecker.

Proposition 1. Si
γ : t ∈ [0, 1] → γ(t) ∈M

est une courbe paramétrée et α ∈ T ∗M une 1-forme, alors on définit l’intégrale de α sur la courbe γ par le
membre de droite de l’expression suivante qui est une intégrale ordinaire∫

γ

α=̇
∫
γ

αidq
i =

∫ 1

0

αi(γ(t))
(
dqi

dt

)
dt. (1.14)

On observe que
∫
γ
α ∈ R ainsi définie ne dépend ni du paramétrage de la courbe γ, ni du choix des coordonnées

(qi)i sur M .

Expression de la transformée de Legendre

Fig. 1.3 – Schématisation de la transformée
de Legendre à 1D [4].

On va ici se placer dans le cas simple d’un espace à 1 dimen-
sion pour illustrer graphiquement la notion de la transforma-
tion de Legendre. L(v) (Le lagrangien), fonction d’une unique
variable v (la vitesse), est définie de manière continue pour tous
points (v, L(v)), et en chacun de ces points, il est possible de
définir sa dérivée par

p(v) =̇
dL(v)
dv

. (1.15)

La transformée de Legendre est une manière de décrire la
fonction L(v) et de reproduire entièrement son graphique seule-
ment en fonction de p, et sans aucunes références à v : p sera
la variable indépendante dont les valeurs seront utilisées pour
construire la courbe, comme illustré sur la figure Fig.(1.3). Mais
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1.4. LA FORMULATION HAMILTONIENNE 9

comme les valeurs de v sans celles de L(v) ne sont pas suffisantes pour définir la courbe, les valeurs de p seules ne
suffisent pas. Il est alors nécessaire de construire une fonction H(p) telle que la courbe soit décrite par (p,H(p)),
et son expression est simplement donnée par

H(p) = p v − L(v). (1.16)

Dans le cas général d’un système à plusieurs dimensions, les solutions physiques sont ainsi obtenues dans
l’espace cotangent T ∗qM par la donnée de (q, p, t,H(q, p, t)).

1.4 La formulation hamiltonienne

Dans l’espace des phases (q(t), q̇(t)) ∈ TqM , résoudre les équations de la dynamique avec des conditions
initiales spécifiques y détermine une unique trajectoire. Mais l’espace tangent n’est pas le seul espace (ou
variété) sur lequel les équations du mouvement ont une forme simple. En effet, bien que les équations sur TqM
donnent une expression explicite pour q̇a, les équations d’Euler-Lagrange font intervenir les dérivées secondes
de q(t). En revanche, un changement de variables faisant passer de (qa, q̇a) à (qa, pa), où les pa correspondent
aux moments conjugués, permettra aux équations du mouvement de faire intervenir explicitement les dérivées
premières de ces nouvelles variables (q, p), appelées variables canoniques. Cela revient simplement à effectuer
une transformée de Legendre en définissant les moments conjugués pa selon

pa =̇
∂L

∂q̇a
, (1.17)

et la fonction H(q, p, t)
H(q, p, t) =̇ pa q̇

a − L(q, p, t) (1.18)

que l’on appelle fonction hamiltonienne ou hamiltonien. Cette fonction joue en fait un rôle important en
mécanique puisque pour un système classique, comme un oscillateur harmonique, pa = q̇a et H n’est autre que
l’énergie du système. Les équations d’Euler-Lagrange correspondent dans la formulation hamiltonienne aux
équations 

∂H

∂qi
= − ∂L

∂qi
,

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

.

(1.19)

Ce sont les équations canoniques d’Hamilton, et les solutions physiques sont alors les projections
de (q(t), p(t)) ∈ T ∗qM sur l’espace des configurations q(t) ∈ M . Comme les équations d’Euler-Lagrange, les
équations canoniques d’Hamilton sont des équations différentielles du premier ordre, mais dans un nouveau jeu
de 2n nouvelles coordonnées (q(t), p(t)) ∈ T ∗qM , pouvant être traitées indépendamment les unes des autres, et
qui cependant contiennent les mêmes informations qu’initialement. On parle alors de formalisme canonique.

1.5 Les tenseurs

Il est possible de généraliser les notions de vecteurs et de matrices à des objets à plusieurs dimensions, les
tenseurs. On a vu que la métrique était un tenseur appartenant à l’espace T ∗qM ⊗ T ∗qM.
Plus généralement [22] :

Definition 8. L’espace (TpM)rs est l’espace des tenseurs du type (r, s) sur TpM : un tenseur sur cet espace
est dit r fois contravariants et s fois covariants. C’est l’espace des applications linéaires

T ∗qM ⊗ ...T ∗qM︸ ︷︷ ︸
r fois

⊗TqM ⊗ ...TqM︸ ︷︷ ︸
s fois

→ R, (1.20)

où, par définition, (TpM)10 = TpM et (TpM)01 = T ∗pM . Un champ tensoriel du type (r, s) est une application

t : M → (TM)rs
p → tp ∈ (TpM)rs

où (TM)rs = ∪p∈M (TpM)rs est le fibré tensoriel du type (r, s). L’ensemble des champs tensoriels du type
(r, s) est appelé T rs (M), et sur une carte de M de coordonnées locales (q1, .., qn), on peut représenter t ∈ T rs (M)
dans les bases duales (∂i) et (dxi) selon

t = ti1,..irj1..js
(∂i1)⊗ ...⊗ (∂ir )⊗ (dxj1)⊗ ...⊗ (dxjs). (1.21)
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10 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

Les fonctions ti1,..irj1..js
s’appellent les composantes de t par rapport aux coordonnées (q1, .., qn).

En physique, il est utile d’utiliser les tenseurs puisque ce sont des objets à plusieurs composantes, donc pou-
vant contenir beaucoup d’informations ; on manipule des vecteurs et des matrices dont le formalisme commun
passe par celui des tenseurs, mais c’est surtout parce que l’on connâıt leurs règles de transformation sous un
changement de référentiel que l’on va s’intéresser à leur utilisation. En effet, sous n’importe quel changement
de coordonnées (q1, .., qn) → (q′1, ..., q′n), les composantes de t se transforment toujours selon

(t′)i1,..irj1..js
=
∂q′i1

∂qk1
...
∂q′ir

∂qkr

∂ql1

∂q′j1
...
∂qls

∂q′js
tk1,..kr

l1..ls
. (1.22)

En relativité restreinte, lorsque l’on prend en compte l’espace-temps, on se rend compte qu’en définissant un
vecteur à 4 composantes, un quadri-vecteur, ce vecteur permet de définir des équations du mouvement qui
sont invariantes par changement de coordonnées, et donc respectent le principe de relativité.

1.6 Dérivée de Lie et quantités invariantes

En géométrie différentielle, on va se placer sur des espaces abstraits. Il est alors intéressant de définir des
dérivées d’un objet relatives à la variation d’un autre objet. C’est ainsi que l’on va définir la dérivée de Lie et
en profiter pour introduire des notions d’invariance, très importantes en physique.

La dérivée de Lie

Lors d’un changement de position infinitésimal d’un tenseur sur une variété, il faut non seulement tenir
compte du changement de coordonnées, mais aussi du fait que le tenseur a lui aussi été modifié. Ces deux
effets doivent être combinés pour pouvoir évaluer la valeur d’un champ de tenseur en un point donné après une
telle transformation infinitésimale. Cette transformation du tenseur suivant une trajectoire, caractérisée par la
donnée d’un vecteur, est alors définie par la dérivée de Lie.

Definition 9. Soit V ∈ X (M), un vecteur dans un champ de vecteurs. Soit Φt le flot de V, la propagation
d’une solution q(t) le long de V, définissant une trajectoire γ(t) à partir d’un point initial. Pour un tenseur
T ∈ T (M), l’ensemble de tous les types de tenseurs, on définit la dérivée de Lie de T par rapport à V, LV T
par :

LV T =̇
d

dt

∣∣∣∣
t=0

Φ∗tT = lim
t→0

1
t
[Φ∗tT − T ]. (1.23)

Fig. 1.4 – Schématisation de la dérivée de
Lie [12].

Schématiquement, on compare la déformation de T le long
d’un chemin γ(t), entre le point T (t) et T (t + dt) = Φ∗tT (t),
comme illustré sur la figure Fig.(1.4).

Proposition 2. Cet objet a ainsi quelques propriétés utiles,
notamment :

1. LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS),
2. LXf = Xf = df(X) pour f ∈ F(M) = T 0

0 (M),
3. LXY = XY − Y X =̇ [X,Y ] pour Y ∈ X (M),
4. LX+Y = LX + LY , LλX = λLX pour λ ∈ R,
5. L[X,Y ] = [LX ,LY ] =̇LX ◦ LY − LY ◦ LX ,
6. LX ◦ df = d ◦ LXf sur les fonctions f ∈ F(M).

Pour un système de coordonnées locales (q1, .., qn), définissant les bases duales (∂i)
n
i=1 et (dqi)ni=1 de TpM et

T ∗pM , et une fonction f ∈ F(M), les relations

LV f = V i∂if, LVW = [V i∂i,W j∂j ] = (V i∂iW j −W i∂iV
j) ∂j , (1.24)

LV dqi = d(LV qi) = d(V jδij) = d(V i) = ∂j(V i) dqj = V i,j dq
j , (1.25)

LV ∂i = [V, ∂i] = −V j,i ∂j , (1.26)

permettent de définir la transformation d’un tenseur T ∈ T rs (M) de type (r, s) sous l’action d’un vecteur V par

(LV T )i1...irj1...js
= (LV T )(dqi1 , ..., dqir , ∂j1 , ..., ∂js). (1.27)

Par exemple, pour un tenseur (2, 2), sa dérivée de Lie sous l’action d’un vecteur V = V i∂i est donnée par :

LVAijkl = V mAijkl,m − V i,mA
mj
kl − V j,mA

im
kl + V m,k A

ij
ml + V m,l A

ij
km. (1.28)
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1.6. DÉRIVÉE DE LIE ET QUANTITÉS INVARIANTES 11

Application de la dérivée de Lie : les équations d’Euler-Lagrange

L’évolution temporelle d’une fonction F (qa, q̇a) au cours du temps est donnée par

dF

dt
(qa, q̇a) =

∂F

∂qa
q̇a +

∂F

∂q̇a
q̈a, (1.29)

et on peut définir le vecteur d’évolution lagrangien par

∆L=̇
d

dt
= q̇a

∂

∂qa
+ q̈a

∂

∂q̇a
. (1.30)

En choisissant une 1-forme (un covecteur) telle que

θL =
∂L

∂q̇a
dqa ≡ pa dq

a, (1.31)

les équations du mouvement via les équations d’Euler-Lagrange peuvent alors se réécrire de manière géométrique,
ne dépendant ainsi pas du système de coordonnées :

L∆L
θL − dL = 0. (1.32)

Dans cette equation, ∆, L et θL sont purement géométriques : un champ de vecteur, une 1-forme et une fonction.
Ils ont valeur dans l’espace tangent plutôt que dans l’espace des coordonnées. L’équation (1.32) est utile pour
prouver des théorèmes et obtenir des résultats généraux.

Symétries et vecteurs de Killing

Pour un problème donné, il existe des quantités invariantes suivant la direction d’un vecteur V. Par construc-
tion, la dérivée de Lie d’une telle quantité suivant cette direction V sera nulle, et la dérivée de Lie permet alors
d’avoir accès aux symétries du système : ces symétries seront ainsi données par les directions d’un champ de
vecteurs, suivant lesquelles la dérivation de Lie est nulle.

Definition 10. (champ de vecteur de Killing) Un champ vectoriel K tel que LKG = 0 est appelé champ
de Killing pour la quantité G et est ainsi très utile pour trouver des quantités conservées.

Par exemple, si un système est invariant par translation dans le temps, le vecteur de Killing est donné par
∂t, et la quantité G conservée associée sera telle que LdtG = L∆L

G = 0. Elle s’écrit alors

G = q̇a
∂L

∂qa
− L, (1.33)

et dans le cas de la particule vue plus haut, elle correspond à l’énergie G = H = E = T +V , montrant que si les
équations du mouvement restent inchangées par une translation dans le temps, alors son énergie sera conservée.

Théorème de Noether

Plus généralement, dans le cas où une intégrale fondamentale comme l’action (1.10) est invariante sous un
groupe spécial de transformations continues (par exemple les transformations de coordonnées ou de paramètres),
le lagrangien correspondant doit vérifier certaines conditions qui peuvent être exprimées de manière très concise
en terme du vecteur d’Euler-Lagrange Ej(L) vu dans l’équation (1.8). La formulation résultante de ces condi-
tions est habituellement appelée Théorèmes de Noether, en hommage à Émilie Noether. Ces théorèmes
sont d’une importance considérable en théorie des champs puisqu’ils établissent l’existence et la nature précise
de certaines lois de conservation qui résultent de l’impératif d’invariance. Les quantités conservées sont appelées
les charges et courants de Noether, et sont constantes le long d’une courbe d’extrêmisation de l’intégrale, c’est
à dire qui satisfait les équations d’Euler-Lagrange Ej(L) = 0.
Pour un groupe de transformations à r paramètres ws, indépendants entre eux et tels que les nouvelles coor-
données s’écrivent sous la forme

yj = xj + ξjs(t, x
h)ws +

1
2!
ξjst(t, x

h)wswt + ... = xj + δxj ,

t′ = t+ ζs(t, xh)ws +
1
2!
ζst(t, xh)wswt + ... = t+ δt,

les r quantités [8] appelées courants de Noether

Gs = −Lζs −
∂L

∂ẋj
(ξjs − ẋjζs) = Hζs − pjξ

j
s , (1.34)
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12 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

sont des quantités conservées données par les r relations

Ej(L)(ξjs − ẋjζs) = −dGs
dt

. (1.35)

Cette définition est générale et s’applique à tous les groupes : si par exemple on regarde un système invariant
par translation dans le temps, alors ξj = 0 et ζ = 1 redonnent bien G = H donnée par l’équation (1.33).

1.7 Les formes différentielles

En mécanique, on peut utiliser un langage plus vaste incorporant les tenseurs, moins répandu mais tout
aussi fondamental. En se plaçant dans l’espace cotangent, les variables canoniques qa et les moments conjugués
pa peuvent être traités de manière indépendante, amenant ainsi plus de libertés. L’utilisation du gradient a
conduit à la définition d’une 1-forme qui fait partie d’un ensemble plus grand d’outils mathématiques, les
formes différentielles. On va voir dans ce qui suit comment ces formes différentielles permettent en fait une
description plus riche de la mécanique, notamment en expliquant la provenance du principe variationnel.

Les formes différentielles

L’intérêt des formes différentielles, ou p-forme, est de trouver quels sont les objets que l’on peut intégrer
sur une variété de dimension n, tels que le résultat soit indépendant du système de coordonnées choisi.

Definition 11. En un point q ∈M , un tenseur T ∈ T p0 (M) de degré p est appelé p-formes s’il est
antisymétrique, i.e. s’il change de signe par permutation quelconque de vecteurs Vi ↔ Vj. On note λpq l’espace
des p-formes au point q.

Sur ces p-formes, il est possible alors de définir des opérations, des ’produits’ et des ’dérivées’. On définit
ainsi les opérations suivantes :

Le produit tensoriel

Definition 12. (produit tensoriel) On appelle ⊗ l’opération définissant le produit tensoriel, telle que par
exemple pour deux 1-formes α, β ∈ T ∗qM et deux vecteurs V1, V2 ∈ TqM , on note α ⊗ β le tenseur de degré 2
défini par

(α⊗ β)(V1, V2) = α(V1)β(V2). (1.36)

Le produit extérieur

Definition 13. (produit extérieur) On appelle ∧ l’opération définissant le produit extérieur, telle que par
exemple pour deux 1-formes α, β ∈ T ∗qM et deux vecteurs V1, V2 ∈ TqM , on note α ∧ β la 2-forme définie par

α ∧ β =̇ α⊗ β − β ⊗ α ∈ Λ2
q, (1.37)

avec

(α ∧ β)(V2, V1) = α(V2)β(V1)− α(V1)β(V2) = −(α ∧ β)(V1, V2), (1.38)
α ∧ α = 0 et β ∧ α = −α ∧ β. (1.39)

Si (q1, ..., qn) est un système de coordonnées, (dq1, ..., dqn) une base de T ∗qM , on pose

dqµ1 ∧ dqµ2 ∧ .... ∧ dqµp =
∑

ε(σ)dqµσ1 ⊗ ...⊗ dqµσp =

∣∣∣∣∣∣∣∣
dq1 ... dqn

. .

. .
dq1 ... dqn

∣∣∣∣∣∣∣∣ (1.40)

qui est une p-forme et ε(σ) est la signature des permutations.
La collection Λp=̇ ∪q∈M Λpq est un espace fibré vectoriel sur M , l’espace fibré des p-formes. Par convention, Λ0

est l’espace des 0-formes, c’est à dire des fonctions. Une section ω ∈ C∞(Λp) de ce fibré est ainsi une p-forme
sur M ou champ de tenseurs antisymétriques de degré p, et s’écrit dans la base (1.40) :

ω(q) =
∑

µ1<..<µp

ωµ1,...µp(q)dqµ1 ∧ dqµ2 ∧ .... ∧ dqµp . (1.41)

Les fonctions ωµ1,...µp
(q) sont les composantes de ω dans cette base telles que ωq

(
∂µ1 , .., ∂µp

)
= ωµ1,...µp(q).

Si ωk est une k-forme et ωl est une l-forme sur Rn, alors leur produit extérieur sera une (k + l)-forme. Il est
ainsi possible de définir l’intégrale d’une p-forme, indépendante du système de coordonnées choisi.
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1.7. LES FORMES DIFFÉRENTIELLES 13

Definition 14. Si (q1, .., qn) est un système de coordonnées sur une variété M orientée de dimension p, et si
ω ∈ C∞(Λp) est une p-forme qui s’écrit ω(q) = ωq(q)dq1 ∧ ... ∧ dqn), on définit∫

M

ω=̇
∫
ωq(q)(dq1... dqn). (1.42)

La dérivée extérieure

Definition 15. (dérivée extérieure) Sur une variété M de dimension n, ∀p ∈ (0, .., n) on définit une
opération différentielle d’ordre 1 qui généralise la différentielle d’une fonction. Cette opération est appelée
dérivée extérieure d, et on la définit selon

d : C∞(Λp) → C∞(Λp+1)

β = (βi1..ip) dqi1 ∧ ... ∧ dqip → (dβ)(q) =
(
∂βi1..ip
∂qip+1

)
dqip+1 ∧ dqi1 ∧ ... ∧ dqip . (1.43)

Cette opération est ainsi indépendante du système de coordonnées choisi. Sur R3, pour p = 0, d correspond
au gradient, p = 1 au rotationnel et p = 2 à la divergence. A cause de l’antisymétrie, l’opérateur d vérifie :

∀ω ∈ C∞(Λp) d(dω) = 0. (1.44)

La formule de Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré

Un des corollaires les plus importants de la propriété précédente est la formule de Newton-Leibniz-Gauss-
Green-Ostrogradskii-Stokes-Poincaré, qui permet de retrouver facilement la formule de Green-Riemann ou bien
celle d’Ostrogradskii,

Proposition 3. Si K ⊂ M est un domaine orienté de dimension p, on note ∂K son bord orienté, et si
ω ∈ C∞(Λp−1) est à support compact (c-a-d nulle en dehors d’un ensemble compact), alors∫

K

dω =
∫
∂K

ω. (1.45)

On dit qu’une p-forme ω ∈ C∞(Λp) est fermée si

dω = 0. (1.46)

Pour p ≥ 1, une p-forme est exacte s’il existe α ∈ C∞(Λp−1) telle que

ω = dα. (1.47)

C’est deux notions sont reliées par le lemme de Poincaré : Si M = Rn et p ≥ 1, alors

dω = 0 ⇒ ∃ α ∈ C∞(Λp−1), ω = dα. (1.48)

La dérivée intérieure

Definition 16. (dérivée intérieure) Soit V un champ de vecteurs (vitesse par exemple) sur M , et ω une
k-forme. On definit la dérivée intérieure iV ω de ω par V, une (k − 1)-forme, par la relation :

iV ω = ω(V, .). (1.49)

La formule de Cartan

Une formule importante est la formule de Cartan qui permet de relier la dérivée de Lie d’une forme à ses
dérivées intérieure et extérieure.

Proposition 4. (formule de Cartan) Soit X ∈ X (M),

LX = iX ◦ d+ d ◦ iX . (1.50)
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14 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

La forme Volume et la forme Aire

Sur une variété Riemannienne (M, g) de dimension n, on note (e1, .., en) ∈ TqM une base orthonormée de
l’espace tangent, et (α1, .., αn) ∈ T ∗qM la base duale qui est une base orthonormée de l’espace dual T ∗qM = Λ1

q.
Par conséquent, (αµ1 ∧ ... ∧ αµp)µ1<..<µp forme une base des p-formes ∈ Λpq .
La métrique g induit un produit scalaire < ., . >Λp

q
sur chaque espace des p-formes Λpq , q ∈ M , p ∈ N : la base

(αµ1 ∧ ...∧ αµp)µ1<..<µp est une base orthonormée de Λpq . En particulier, comme dim(Λnq ) = 1, alors on appelle
µvol=̇α1 ∧ ... ∧ αn la forme volume associée à la métrique g. Dans un système de coordonnées (q1, .., qn),
la forme volume s’écrit

µvol =
√
det(g(q))(dq1 ∧ ... ∧ dqn), (1.51)

avec det(g(q)) = |gij(q)| le déterminant de la matrice des composantes de g.
Par exemple, sur R3, la forme volume µvol = dx1∧dx2∧dx3 en coordonnées cartésiennes s’écrit en coordonnées
sphériques µvol = r2sin(θ)dr ∧ dθ ∧ dφ et on a bien le volume défini par

V =
∫
V (M)

µvol. (1.52)

remarque : un objet f multiplié par n fois
√
det(q) sera appelé une densité de poids +n.

En ce qui concerne l’aire d’une surface S de métrique induite h et de coordonnées locales σ1, σ2, elle est
simplement donnée par

A =
∫
S(M)

√
h dσ1 ∧ dσ2. (1.53)

1.8 La structure symplectique

Une structure symplectique sur une variété est une 2-forme différentielle non dégénérée et close.
L’espace T ∗qM possède naturellement une telle structure. Sur une variété symplectique, comme c’est le cas
pour une variété Riemannienne, il existe un isomorphisme naturel entre les champs de vecteurs et les 1-formes,
comme illustré précédemment. On va ainsi voir [9] que

• un champ de vecteurs sur une variété symplectique correspondant à la différentielle d’une fonction est
appelé champ de vecteur hamiltonien.

• un champ vectoriel sur une variété détermine un flux de trajectoires, i.e. un groupe de difféomorphismes
à un paramètre.

• un flux de trajectoires d’un champ de vecteur hamiltonien sur une variété symplectique préserve la struc-
ture symplectique de l’espace des phases.

• un ensemble de champs de vecteurs sur une variété, comme les champs de vecteurs hamiltoniens sur une
variété symplectique, forment une algèbre de Lie dont l’opération entre différents éléments est appelée
crochets de Poisson.

Une variété symplectique

Definition 17. Soit M une variété différentielle de dimension 2n. Une structure symplectique sur M est
une 2-forme différentielle ω, fermée et non-dégénérée, telle que

∀(V,W ∈ TqM) dω = 0 (1.54)

et
∀ V 6= 0, ∃ W ω(V,W ) 6= 0. (1.55)

La paire (M2n, ω) est appelée variété symplectique.

La géométrie d’un espace symplectique est comparable à celle d’un espace euclidien, même si quelques
différences existent néanmoins.

La matrice symplectique

Un des avantages du formalisme hamiltonien est de traiter sur un pied d’égalité les 2n variables (q, p). Dans
un soucis de consistance, on va les renommer ξi, telles que les indices (i, j) vont de 1 à 2n, et les indices (a, b)
de 1 à n. Les n premiers indices seront les q et les n suivant seront les p :

ξi = qi, i ∈ {1 .. n},
ξi = pi−n, i ∈ {(n+ 1) .. 2n}.
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1.8. LA STRUCTURE SYMPLECTIQUE 15

Il est maintenant possible de réécrire les équations d’Hamilton (1.19) dans la forme unifiée ξ̇i = f i(ξ), de sorte
que ces équations s’écrivent f i(ξ) = ∂iH :

ξ̇i =
∂H

∂ξi+n
, i = 1 .. n,

ξ̇i = − ∂H

∂ξi−n
, i = (n+ 1) .. 2n,

ou de forme équivalente
ξ̇i = ωij∂jH, ωij ξ̇

i = ∂jH. (1.56)

On a ainsi introduit ce que l’on appelle la 2n× 2n matrice symplectique Ω, de composantes ωij , donnée par

Ω =
[
0n −11n
11n 0n

]
, (1.57)

ayant comme propriétés
Ω+ = −Ω, Ω2 = −11, Ωt = −Ω. (1.58)

L’espace cotangent T ∗qM est bien une variété de transport puisque les équations canoniques d’Hamilton (1.56)
étant des équations différentielles du premier ordre, les trajectoires ne se croisent pas sur T ∗qM. Les équations
(1.56) définissent un champ de vecteurs sur T ∗qM dont les composantes sont les 2n fonctions ωij∂jH. Les
solutions ξi(t) sont les courbes intégrales de ce champ de vecteur que l’on va appeler champ de vecteurs
dynamique, ou ∆ comme pour TqM . Au même titre que les équations d’Euler-Lagrange établissaient un
champ de vecteur sur TqM, les équations canoniques d’Hamilton établissent un champ de vecteur sur T ∗qM.
Pour f(q, p, t) une fonction dynamique, il est possible de regarder son évolution le long d’une trajectoire, sans
résoudre les équations du mouvement, puisque la dérivée temporelle est donnée par la dérivée de Lie le long du
champ de vecteur dynamique :

L∆f =̇
df

dt
= (∂if) ξ̇i + ∂tf = (∂if)ωij ∂jH + ∂tf. (1.59)

Les crochets de Poisson

Le terme comportant ωij dans l’équation (1.59) est très important et est appelé crochets de Poisson de
f avec H. En général, pour deux fonctions dynamiques f, g ∈ F(T ∗M), leurs crochets de Poisson sont définis
par :

{f, g} =̇ (∂if) ωij (∂jg) =̇
∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
, (1.60)

dont les propriétés sont les mêmes que celles des crochets de Lie : bilinéaire, antisymétrique et satisfaisant
l’identité de jacobi6. De plus, ils satisfont aussi la règle de Leibniz {f, gh} = g{f, h} + {f, g}h. Bilinéarité,
antisymétrie et identité de jacobi sont les propriétés d’une structure algébrique importante : l’algèbre de Lie.
L’espace des fonctions dynamiques F(T ∗M) est ainsi une algèbre de Lie sous les crochets de Poissons, et la
dynamique hamiltonienne peut être étudiée de manière fructueuse du point de vue de ces algèbres qui jouent
un rôle important dans les transitions en mécanique quantique. L’équation (1.59) se réécrit alors en terme des
crochets de Poisson

L∆f =
df

dt
= {f,H}+ ∂tf. (1.61)

En appliquant cette relation aux coordonnées locales ξi, on obtient la relation ξ̇i = {ξi,H} qui est une autre
manière d’écrire les équations canoniques d’Hamilton (1.56). Pour finir, ces crochets de Poisson satisfont les
relations :

{ξi, f} = ωij∂jf,

soit encore {qa, f} =
∂f

∂pa
, {pa, f} = − ∂f

∂qa
, (1.62)

et {ξi, ξj} = ωij ,

soit encore {qa, pb} = −{pb, qa} = δab , {qa, qb} = {pa, pb} = 0. (1.63)

6[[A, B], C] + [[B, C], A] + [[C, A], B] = 0
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16 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

Structure symplectique sur l’espace cotangent

Les équations canoniques d’Hamilton sont des équations différentielles sur l’espace cotangent T ∗M , dont le
vecteur d’évolution est donné par

∆H = ξ̇i∂i = q̇a
∂

∂qa
+ ṗa

∂

∂pa
=
∂H

∂pa
∂

∂qa
− ∂H

∂qa
∂

∂pa
. (1.64)

La transformée de Legendre envoie tout objet géométrique de TM vers un objet géométrique similaire sur T ∗M ,
en particulier ∆L vers ∆H . Plus important, elle envoie θL qui n’est pas une 1-forme vers θ0,

θL =
∂L

∂q̇a
dqa → θ0 = padq

a. (1.65)

La transformée de Legendre et θL dépendent de L d’une telle manière que θL est tout le temps envoyée vers la
même 1-forme canonique θ0 sur T ∗M . On peut alors écrire l’expression géométrique des équations canoniques
d’Hamilton, indépendantes du système de coordonnées locales selon

i∆ω = dH, (1.66)

similaire à l’équation (1.32). Cependant, l’écrire en terme de (q, p) requiert une expression explicite de ω.

Proposition 5. Le fibré cotangent T ∗M possède une structure symplectique naturelle. Dans le jeux de coor-
données (q, p) décrit auparavant, la structure symplectique est donnée par la formule

ω = dpa ∧ dqa, (1.67)

où ω est exacte et dont la 1-forme primitive s’écrit α0 = padq
a.

Pour le moment, tout ce formalisme pourrait parâıtre abstrait et sans grand intérêt si ce n’est dans la
formulation, mais les notions explicitées auparavant vont permettre en fait d’exprimer la mécanique d’un point de
vue plus fondamental et les propriétés vues ici vont avoir de grandes conséquences physiques, en particulier pour
la Gravité Quantique à Boucles, ou Loop Quantum gravity (LQG) en anglais. Notamment, chaque hamiltonien
détermine de façon unique son propre champ de vecteur dynamique ∆. Par contre, s’il existe pour un même
système deux champs de vecteurs ∆1 et ∆2 associés à deux hamiltoniens H1 et H2 respectivement, alors

i∆1ω − i∆2ω = 0 ⇔ d(H1 −H2) = 0 ⇔ H1 −H2 = const, (1.68)

montrant que la dynamique sur T ∗M détermine la fonction hamiltonienne seulement à une constante près, et
reflète ainsi l’indétermination sur l’énergie. On peut de même généraliser en disant que, de la même manière,
toute autre variable dynamique f détermine de façon unique un champ de vecteurs Xf à travers une 1-forme
df suivant

iXf
ω =̇ df. (1.69)

Un champ de vecteurs Xf ∈ X (T ∗M) associé via l’équation (1.69) à une fonction dans F(T ∗M) est appelée
champ de vecteur hamiltonien (Xf est hamiltonien en fonction de f).
Il est maintenant possible de relier l’expression de ω aux crochets de Poisson. En considérant deux variables
f, g ∈ F(T ∗M) et leur champ de vecteurs hamiltoniens respectifs Xf et Xg, en utilisant l’équation (1.59), la
dérivée temporelle d’une fonction f le long du mouvement s’écrit

LXgf = {f, g} = iXgdf = iXf
iXgω = ω(Xg, Xf ), (1.70)

donnant la relation générale liant crochets de Poisson et ω

{f, g} = ω(Xg, Xf ). (1.71)

Remarques : L’équation (1.71) est la définition intrinsèque des crochets de Poisson, ne se référant pas à des
coordonnées quelconques. L’équation (1.70) est à la base de la version hamiltonienne du théorème de Noether,
et il peut être montré que l’identité de Jacobi est une conséquence de la fermeture de ω, i.e. dω = 0.
On a ainsi vu que sur le fibré cotangent, il existait une structure naturelle, riche, appelée structure symplec-
tique et qui s’écrit ω = dpa ∧ dqa. De plus, il est facile de voir que :

Proposition 6. Théorème de Liouville : Le flot hamiltonien préserve la forme symplectique ω et donc
préserve la forme symplectique µvol :

L∆H
ω = d ◦ (i∆H

ω) + i∆H
◦ (dω) = d ◦ (dH) = 0, et L∆H

µvol = 0. (1.72)

En raison de l’invariance de cette 2-forme7, il est possible de construire une fonction scalaire, ou plus
particulièrement une action, qui est une intégrale sur un volume, très utile en physique et dont l’utilisation va
permettre de caractériser en grande partie le système physique étudié.

7L∆H
ω = 0 car dω = 0 et d ◦ d = 0
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1.9. LES CONTRAINTES EN MÉCANIQUE 17

Le groupe symplectique

A une structure euclidienne est associée un groupe de transformations linéaires qui préserve cette structure.
Dans un espace symplectique, le groupe symplectique joue un rôle analogue.

Definition 18. Une transformation linéaire S : M2n →M2n d’un espace symplectique M2n dans lui-même
est appelée symplectique si elle préserve la structure des crochets de Poisson, et donc ω défini par
l’équation (1.67) :

[SV, SW ] = [V,W ], ∀ V,W ∈M2n. (1.73)

L’ensemble de toutes les transformations symplectiques de M2n est appelé groupe symplectique, dénoté
Sp(2n), de déterminant égal à 1.

Matrices symplectiques

Proposition 7. Soit (p1, .., pn, q1, .., qn) un système de coordonnées symplectiques. Soit S : M2n → M2n une
transformation linéaire d’un espace symplectique. Cette transformation est symplectique si et seulement si sa
matrice satisfait la relation

tSΩS = Ω, (1.74)

où Ω est donnée par la matrice (1.57), et tS est la transposée de S.

Une analogie pourrait être faite avec les transformations sous les matrices de Lorentz, pour lesquelles on a

tΛgΛ = g,

où g = diag(−1, 113) alors qu’ici Ω = antidiag(−11, 11).

Théorème de Darboux

Proposition 8. Soit ω une 2-forme différentielle non-dégénérée et fermée, au voisinage d’un point q ∈ M2n.
Alors dans tout le voisinage de q, il est possible de choisir un système de coordonnées (p1, .., pn, q1, .., qn) tel que
la 2-forme ω puisse s’écrire de manière standard

ω =
∑
i=1..n

dpa ∧ dqa. (1.75)

Ce théorème est intéressant puisque pour un système physique, avoir cette expression pour la 2-forme ω va
en quelque sorte déterminer la physique qui y est présente : on peut déjà le voir avec la 1-forme θ0 donnée par
l’équation (1.65) donnant les équations canoniques d’Hamilton (1.66)

1.9 Les contraintes en mécanique

On a ainsi vu qu’en mécanique classique, il existe des outils mathématiques intéressants du point de vue
de l’invariance sous un changement quelconque, naturellement présents dans les espaces considérés. Cependant,
il reste encore à introduire une autre notion, celle de contrainte, qui sera nécessaire pour bien cerner le
concept de covariance de tout système, relativiste ou non. Cette notion sera ainsi utile pour introduire quelques
caractéristiques de relativité puisque la relativité générale correspond à un système totalement contraint.
En physique, il existe des équations supplémentaires donnant des relations entre les différentes variables, et on
décrit ainsi un système en utilisant plus de variables que nécessaire. Ces équations sont appelées contraintes.
Un exemple illustrant cette notion de contrainte est le cas d’un pendule de longueur l dans le plan (x, y) : dans
ce plan, il y a deux variables, x et y, mais on peut exprimer le problème simplement en fonction de l’angle avec
la verticale puisqu’il existe la contrainte x2 + y2 = l2 qui permet de diminuer le nombre de variables.
Une contrainte est généralement notée φ(qa, pa) = 0 et doit donc être une quantité conservée au cours du
mouvement. Par le théorème de Noether, les quantités conservées O sont associées à la présence de symétries
dans le système considéré. Afin de les observer, on peut regarder l’action d’une telle quantité dépendante des
variables de l’espace des phases en lui associant un flux, au même titre que les équations d’Hamilton définissent
un flux d’évolution sous l’action de l’hamiltonien. On définit alors selon un paramètre λ le flux hamiltonien
associé

δλq
a =

dqa

dλ
= {qa,O(λ)}, δλpa =

dpa
dλ

= {pa,O(λ)}, (1.76)

et la transformation précédente, donnant la quantité conservée dans l’équation (1.34), se traduit ainsi par une
variation infinitésimale des coordonnées donnée par

δ(ζ,ξ) x
j = {xj , Gs(ξ, ζ)}, (1.77)

δ(ζ,ξ) pi = {pi, Gs(ξ, ζ)}. (1.78)
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18 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

Ce flux n’a a priori aucun sens physique en général. Ses solutions sont des trajectoires dans l’espace des phases,
le long desquelles l’hamiltonien est inchangé : O étant une quantité conservée, cela se traduit soit sous la forme
de l’équation (1.35), soit également dans le formalisme hamiltonien par

{O,H} = 0. (1.79)

Il en va ainsi de même pour le cas des contraintes, puisqu’étant des quantités conservées, il existe alors des
symétries qui leur sont liées. En mécanique, les contraintes sont incorporées dans les équations en utilisant des
multiplicateurs de Lagrange : pour un système de 2n variables canoniques avec k contraintes φi ≈ 0 (la
contrainte étant une fonction, elle n’est pas nulle partout et l’utilisation de ≈ signifie que si la contrainte est
nulle alors on considère bien des solutions qui sont physiques, et non plus seulement mathématiques), alors
l’hamiltonien total est donné par l’hamiltonien originel plus les contraintes multipliées par les multiplicateurs
de Lagrange λi :

H = Hinit +
k∑
i=1

λiφi. (1.80)

Résoudre les équations canoniques d’Hamilton aura alors comme conséquence que les solutions seront dépendantes
des k multiplicateurs de Lagrange, arbitraires, montrant que l’évolution n’est ainsi plus donnée par une unique
solution déterminée par les conditions initiales, mais dépendra aussi du choix des λi : il existera différentes
solutions mathématiques résultantes des symétries mais dont les conséquences physiques seront identiques. La
méthode pour tenir compte des contraintes a été initialement développée par Dirac et est appelée procédure
de Dirac.
Une situation intéressante pour la mécanique classique et l’électromagnétisme se présente notamment quand
une variable est présente dans le lagrangien mais pas sa dérivée temporelle. Cette variable n’est pas réellement
dynamique et peut être traitée comme un multiplicateur de Lagrange.

Système totalement contraint

Lors de l’amélioration de la mécanique classique par les théories de relativité, il faut prendre en compte
le fait que pour tout changement de coordonnées, comprenant aussi le ’temps’, les équations du mouvement
résultantes doivent rester inchangées. En mécanique, il est possible de faire une reparamétrisation du temps :
on peut ainsi considérer t non plus comme un paramètre d’évolution mais comme une variable canonique, avec
un moment conjugué pt. L’évolution se fera ainsi en fonction d’un paramètre s telle que, par exemple, l’action
des équations de Newton (1.1) s’écrive

S =
∫
ds L(q, q̇, t, ṫ) =

∫
ds ṫ

(
1
2
m
q̇2

ṫ2
− V (q)

)
, (1.81)

où q̇ et ṫ sont les variations de q et t par rapport à s. Dans ce lagrangien, à l’inverse de ce qui a été écrit
précédemment, la coordonnée t n’apparâıt pas, alors que sa dérivée y est pourtant présente. Cette variable t est
alors considérée comme une coordonnée cyclique. Les moments conjugués associés sont alors donnés par

pq =
∂L

∂q̇
= m

q̇

ṫ
, (1.82)

pt =
∂L

∂ṫ
= −

(
1
2
m
q̇2

ṫ2
+ V (q)

)
. (1.83)

On peut définir une contrainte φ(q, t) à partir de l’équation (1.83) pour laquelle on voit que

φ(q, t) = pt +
(

1
2
m
q̇2

ṫ2
+ V (q)

)
= 0, (1.84)

et l’hamiltonien donné par la transformée de Legendre s’écrit

Hc = ptṫ+ pq q̇ − L = ptṫ+
(

1
2
m
q̇2

ṫ
+ V (q)ṫ

)
(1.85)

= ṫ · φ(q, t). (1.86)

De cette manière, on peut se rendre compte que l’hamiltonien est nul (Hc = 0) et est en fait une contrainte
proportionnelle à φ(q, t). H est appelée contrainte hamiltonienne. On peut voir dès à présent que tout
système physique, s’écrivant en fonction des variables (t, q) comme ici, aura non plus un hamiltonien mais des
contraintes. Cela sera ainsi le cas pour toute théorie invariante par reparamétrisation du temps, comme en
relativité où les solutions ne dépendront pas du système de coordonnées choisi et où t sera considéré comme une
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1.10. L’INTÉGRALE INVARIANTE DE POINCARÉ-CARTAN ET LE PRINCIPE DE MOINDRE ACTION19

variable dans l’espace-temps de coordonnées xµ. Quand on utilise des contraintes, on voit que l’hamiltonien total
est composé de l’hamiltonien du système et des contraintes avec leur multiplicateur de Lagrange. Cet hamiltonien
total génère tous les flux possibles du système, venant de l’évolution temporelle ou bien des symétries s’il y en
a. Si l’hamiltonien disparâıt, alors l’hamiltonien total n’est qu’une combinaison linéaire des contraintes, ce qui
est le cas ici. Ainsi,

Htot = Hc = N(t) · φ(q, pq, t, pt, s), (1.87)

où N(t) est appelée lapse function en anglais, et vaut ici N(t) = dt
ds . La dérivée temporelle de N n’apparâıt

pas, montrant que N correspond bien à un multiplicateur de Lagrange : il permet de redéfinir arbitrairement
le temps que l’on choisit en fonction du paramètre d’évolution s. Les équations d’évolution résultantes de la
contrainte hamiltonienne donnée par l’équation (1.87) sont alors données par :

q̇ =
dq

ds
= {q,Htot} = N

pq
m
, ṗq = 0, (1.88)

ṫ =
dt

ds
= {t,Htot} = N, ṗt = 0. (1.89)

Dans notre cas, en mécanique classique, prendre N comme étant constante revient à prendre t proportionnel
à s, et redonne les équations de Newton. L’hamiltonien originel représentant l’énergie E du système est bien
donné par

H = E =
1
2
m

(
dq

dt

)2

+ V (q), (1.90)

avec
ṗt =

∂L

∂t
= 0 → pt = constante. (1.91)

D’après les équations (1.83) et (1.85), on peut alors exprimer pt et H comme étant{
pt = −H = Hc −H,

Hc = pt +H.
(1.92)

En mécanique classique, pt est une constante et on peut considérer que Hc ≡ H + constante sans être nul : on
redéfinit simplement l’énergie du système à une constante près. En relativité, cela sera différent car on parlera
réellement de contraintes et H sera vraiment nul quand on considèrera des solutions physiques. Dans un tel
système, tout se passera comme s’il n’y avait pas une ’évolution temporelle’ puisque l’on utilisera des contraintes.
On peut cependant définir comme précédemment un flux qui sera le semblant de ’dynamique’ que le système
verra.
Ainsi, en mécanique classique, l’évolution du système se fait de façon relative par rapport à une observable t
dont on doit prendre en compte l’évolution au même titre que les autres variables canoniques qi. En relativité,
ce problème d’évolution relative par rapport à une des variables canoniques est très importante puisque, sous un
changement de coordonnées, les équations de la dynamique doivent être inchangées. Or, en mécanique quantique,
le temps est un paramètre extérieur et il sera essentiel et délicat de tenir compte de ce fait dans la création
d’une théorie quantique de la gravitation.
On peut retenir ici que dans toute théorie invariante par changement de coordonnées comprenant la variable t,
il existera un hamiltonien nul et l’évolution sera alors donnée par des contraintes.

1.10 L’intégrale invariante de Poincaré-Cartan et le principe de
moindre action

Dans ce qui suit, on va s’intéresser aux trajectoires possibles d’un système en fonction d’une variable tempo-
relle t que l’on distingue, comme en mécanique classique, des variables canoniques qa. On va surtout se placer
dans un espace à 2n+1 dimensions, de coordonnées (pa, qa, t), a = 1..n, mais un lien avec un système relativiste
sera aussi donné et on va étendre la dimension de l’espace à 2n + 2 en incorporant le moment conjugué à la
variable temporelle.

Proposition 9. Soit M2n+1 une variété différentielle de dimension 2n+ 1 et α une 1-forme sur M . A chaque
point q ∈M , il existe une direction, c’est à dire une ligne droite dans l’espace tangent TqM , ayant pour propriété
que l’intégrale de α le long du bord d’un ’carré infinitésimal contenant cette direction’ est égale à 0 :

dα(V,W ) = 0, ∀ W ∈ TqM. (1.93)

En supposant de plus que la 2-forme dα soit non-singulière, la direction de V est alors déterminée de façon
unique. On l’appelle la direction de vorticité de la forme α. Les courbes intégrales du champ de directions
de vorticité sont appelées lignes de vorticité ou lignes caractéristiques de la forme α (lignes grises sur la
figure Fig.(1.5)).
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20 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

Fig. 1.5 – Tube de vorticité entre deux sur-
faces γ1 et γ2 [4].

Le Théorème de Stokes, défini d’abord en mécanique des
fluides, peut être généralisé pour un espace de dimensions n > 3.
Il permet ainsi de parler de flux de trajectoires possibles pour
un système mécanique, généré par exemple par le champ de vec-
teur (∆H , 1) comme on va le voir, où ∆H est donné par
l’équation (1.64).

Proposition 10. Lemme de Stokes multi-dimensionnel :
Soit γ1 une courbe fermée définissant une surface sur M , les
lignes de vorticités sortantes de cette surface forment un tube de
vorticité, comme illustré sur la figure Fig.(1.5). Les intégrales
d’une 1-forme α le long de deux courbes encerclant le même tube
de vorticité sont les mêmes :

∮
γ1
α =

∮
γ2
α, si γ1 − γ2 = ∂σ, où

σ est une partie du tube de vorticité entre les courbes
γ1 et γ2.

Les équations de Hamilton

Toutes les propositions basiques de la mécanique hamiltonienne proviennent directement du lemme de Stokes.
En prenant au départ R2n+2 comme variété pour M2n+2, avec les coordonnées (pa, qa, t, pt), a = 1..n, on
construit une 1-forme :

αc = padq
a + ptdt. (1.94)

Or, dans le cas général, pour des systèmes même non relativistes, on peut exprimer l’hamiltonien comme étant
donné par la contrainte hamiltonienne, conduisant à la relation entre Hc, H et pt selon l’équation (1.92). En
utilisant cette relation, αc peut s’écrire aussi8

αc = padq
a + [Hc(qa, pa, t, pt)−H(qa, pa)]dt = padq

a −H(qa, pa)dt = α. (1.95)

La forme α correspond donc à la forme αc pour laquelle on ne considère plus t comme une variable canonique,
mais comme un paramètre d’évolution extérieur. Dans le cas de la mécanique classique, on se replace ainsi sur
un espace à 2n+ 1 dimensions.

Proposition 11. Les lignes de vorticité de la forme α = padq
a −Hdt sur l’espace des phases étendu (p, q, t)

de dimension 2n + 1 possède une unique projection sur l’axe t, i.e. ces lignes sont données par les fonctions
p = p(t) et q = q(t). Ces fonctions satisfont le système d’équations différentielles canoniques pour la fonction
hamiltonienne H si on la considère comme étant l’hamiltonien :

dpa
dt

= −∂H
∂qa

,
dqa

dt
=
∂H

∂pa
. (1.96)

Fig. 1.6 – Tube de vorticité entre deux sur-
faces γ1 et γ2 pour (∆H , 1) [4].

Les lignes de vorticité de la forme padqa−Hdt sont les courbes
du flux de trajectoires dans l’espace étendu, i.e. les courbes
intégrales des équations canoniques (1.96). La différentielle de
la forme α est donnée par

dα = dpa ∧ dqa −
∂H

∂pa
dpa ∧ dt−

∂H

∂qa
dqa ∧ dt, (1.97)

dont un vecteur propre de la matrice définie par dα dans
les coordonnées (p, q, t) est (− ∂H

∂qa ,
∂H
∂pa

, 1) de valeur propre 0,
comme illustré sur la figure Fig.(1.6). Autrement dit, lorsque l’on
considère des fonctions F (t, q, p) définissant un champ de vecteur
d’évolution ∆ tel que

∆ =
∂

∂t
− ∂H

∂qa
∂

∂pa
+
∂H

∂pa

∂

∂qa
, (1.98)

alors ce champ vérifie
(dα)(∆) = 0 (1.99)

et est appelé aussi champ de vecteur nul de ω.

8La forme particulière de α provient des travaux d’optiques pour lesquels on peut entre autre citer les noms de Maupertuis et
Huygens, mais elle apparâıt naturellement en relativité [13].
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1.10. L’INTÉGRALE INVARIANTE DE POINCARÉ-CARTAN ET LE PRINCIPE DE MOINDRE ACTION21

En appliquant maintenant le théorème de Stokes sur la forme α, on obtient :

Proposition 12. En supposant que les deux courbes γ1 et γ2 entourent le même tube de vorticité des équations
(1.96), alors les intégrales de la forme α = padq

a −Hdt le long de ces courbes sont les mêmes :∮
γ1

padq
a −Hdt =

∮
γ2

padq
a −Hdt. (1.100)

La forme pdq −Hdt est appelée intégrale invariante de Poincaré-Cartan.

Cela signifie qu’à tout moment, pour tous les points de la trajectoire, la forme α est invariante. De même,
il est possible de montrer, en utilisant le théorème précédent, qu’en se situant sur les plans t = constant, la
2-forme ω = dpi ∧ dqi est une intégrale invariante du flux de trajectoire entre t0 et t1 :∮

γ

pdq =
∫ ∫

σ

dp ∧ dq =
∫ ∫

(φ
t1
t0

)σ

dp ∧ dq. (1.101)

Application : le principe de moindre action de Hamilton

Dans l’espace T ∗qM , on considère une courbe connectant les points x0 = (p0, q
0, t) et x1 = (p1, q

1, t). Les
courbes intégrales des équations de Hamilton sont les seules extrémales de

∫
pdq−Hdt dans la classe des courbes

γ reliant les points x0 et x1 :

δ

∫
γ

(p
dq

dt
−H)dt = pδq|10 +

∫
γ

[(
q̇ − ∂H

∂p

)
δp−

(
ṗ+

∂H

∂q

)
δq

]
dt. (1.102)

Connaissant la transformée de Legendre, et donc la relation entre lagrangien et hamiltonien, ce principe redonne
le principe de moindre action donné initialement par Lagrange en faisant intervenir le lagrangien par p = ∂L

∂q̇ ,∫
γ

(pdq −Hdt) =
∫
γ

(pq̇ −H)dt =
∫
γ

Ldt. (1.103)

En particulier, pour un hamiltonien indépendant du temps, donc conservé, s’écrivant H(p = ∂L
∂q̇ , q) = h, parmis

toutes les courbes q = γ(t) connectant deux points x0 et x1, la trajectoire des équations de la dynamique (1.96)
est un extremum de l’intégrale de l’action ’réduite’∫

γ

p · dq =
∫
γ

pq̇ · dt =
∫
σ

∂L

∂q̇
(t)q̇(t) · dt, (1.104)

qui correspond au principe de moindre action de Maupertuis.

L’action d’un système

En mécanique classique, la fonction action S(q, t) est ainsi donnée par l’intégrale

Sq0,t0(q, t) =
∫
γ

Ldt =
∫
α, (1.105)

et sa différentielle (pour un point initial fixe) est égale à

dS = pdq −Hdt, (1.106)

où p = ∂L
∂q̇ et H = pq̇ − L sont définis à l’aide des vitesses q̇ sur la trajectoire γ. Il faut de plus veiller à ce

qu’une trajectoire dans l’espace des phases n’intersecte pas une autre trajectoire pour que l’extrêmisation de
cette fonction soit correcte.
Dans le cas d’un système relativiste, il faut tenir compte des 2n + 2 variables canoniques (qa, pa, t, pt), et la
fonction action est définie de même par

Sq0,t0(q, t) =
∫
αc, (1.107)

de contrainte hamiltonienne
Hc(qa, pa, t, pt) = 0. (1.108)

On vient ainsi de voir que pour un système, relativiste ou non, par les propriétés de l’espace des phases, le
principe de moindre action intervient naturellement quelles que soient les coordonnées choisies.
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22 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

1.11 Changement de variables : équations de Hamilton-Jacobi

La nature invariante de la relation entre la 1-forme α = pdq−Hdt et ses lignes de trajectoire pose la question
de réécrire les équations du mouvement dans n’importe quel système de 2n+1 coordonnées dans l’espace T ∗qM .
La méthode utilisant des fonctions génératrices pour des transformations canoniques et développée par Hamilton
et Jacobi, est la plus performante des méthodes disponibles pour l’intégration des équations différentielles de
la dynamique. L’idée sous-jacente de la méthode d’Hamilton-Jacobi consiste à ce que, sous une transformation
canonique de coordonnées, la forme des équations du mouvement reste préservée selon les équations d’Hamilton
(1.96). Ainsi, si on réussit à trouver une transformation canonique qui réduit la fonction hamiltonienne sous
une forme telle que les équations peuvent être intégrées, alors on peut aussi intégrer les équations canoniques
originales. Cela revient à déterminer un nombre suffisamment large de solutions à l’équation de Hamilton-Jacobi
dont la fonction génératrice de la transformation canonique désirée en fait partie. On peut remarquer que cette
méthode utilise la structure des coordonnées de l’espace des phases T ∗qM . En utilisant la propriété de l’équation
(1.106), on voit directement que ∂S

∂t = −H(p, q, t) et p = ∂S
∂q . La fonction action satisfait l’équation non linéaire,

différentielle, du premier ordre, qui est appelée équation de Hamilton-Jacobi pour la fonction génératrice
action S

∂S

∂t
+H(

∂S

∂q
, q, t) = 0. (1.109)

Elle établit en fait une relation entre les trajectoires de systèmes mécaniques (rayons lumineux, donnés par H)
et les équations différentielles partielles (les fronts d’onde), et aura permis è Erwin Schrödinger de formuler
sa fameuse équation.

Définition d’une transformation canonique

Dans le formalisme lagrangien, on ne considère que les transformations sur M l’espace des configurations. Un
des avantages du formalisme hamiltonien est d’autoriser des transformations sur T ∗M qui mélangent les variables
canoniques q et p, tout en préservant la nature hamiltonienne des équations du mouvement. La transformation
(qα, pα) → (Qα, Pα)(q, p, t) est alors une transformation canonique si elle préserve la structure symplectique

ω = dpa ∧ dqa = dPa ∧ dQa, (1.110)

et donc les crochets de Poisson. En d’autres termes,

{Qa, Pb} = δab et ∀f, g {f, g}(q,p) = {f, g}(Q,P ). (1.111)

Il existe alors une fonction K(Q,P, t) ∈ F(T ∗M) telle que

Q̇a =
∂K

∂Pa
Ṗa = − ∂K

∂Qa
, (1.112)

servant d’hamiltonien pour les nouvelles variables. Cette transformation détruit la nature de T ∗M dans le sens
où les nouvelles coordonnées Qa ne sont plus uniquement fonction des coordonnées qa et donc ne correspondent
plus aux coordonnées sur M . Elles peuvent cependant à terme simplifier grandement le problème.

Définition des fonctions génératrices F

Pour une fonction génératrice F , il existe plusieurs transformations canoniques possibles. Néanmoins,
connaissant son type, cette fonction mène à une classification complète des transformations canoniques et
permet de spécifier une transformation canonique locale en donnant son type et sa fonction génératrice.
La 2-forme ω étant exacte, il existe une 1-forme θ0 = padq

a dont la dérivée extérieure est ω. Si on considère de
même cette 1-forme construite dans le nouveau jeu de coordonnées obtenu par une transformation canonique
θ1 = PadQ

a, la dérivée extérieure de θ1 est de même ω par l’équation (1.110), et on a ainsi

d(θ0 − θ1) =̇ d(padqa − PadQ
a) = 0, (1.113)

qui est une autre manière de prouver la canonicité de la transformation. D’après le lemme de Poincaré (1.48),
il existe une fonction F ∈ F(T ∗M) telle que

padq
a − PadQ

a =̇ dF. (1.114)

Après quelques manipulations, il est possible d’obtenir dans le cas général une relation liant F , la fonction
génératrice, et les 2 hamiltoniens H et K, s’écrivant :

∂F

∂t
= −H +K − ∂Qa

∂t
Pa. (1.115)
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1.12. LES ÉQUATIONS DE MAXWELL EN THÉORIE DES CHAMPS 23

Cette équation est très utile pour la classification des transformations canoniques. Il est ainsi possible de définir
4 types de fonctions génératrices9

F1(q,Q, t), F2(q, P, t),
F3(p,Q, t), F4(p, P, t), (1.116)

telles que si le Jacobien de la transformation de coordonnées est non-nul, det∂(Q,q)
∂(p,q) 6= 0, alors

pi =
∂F1

∂qi
, Pi = −∂F1

∂Qi
, K = H +

∂F1

∂t
, (1.117)

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
, K = H +

∂F2

∂t
, (1.118)

qi = −∂F3

∂pi
, Pi = −∂F3

∂Qi
, K = H +

∂F3

∂t
, (1.119)

qi = −∂F4

∂pi
, Qi =

∂F4

∂Pi
, K = H +

∂F4

∂t
. (1.120)

L’équation (1.109) correspond au cas où F = S(Q, q) et K = 0, ayant comme conséquence la conservation des
Qa et Pa lors du mouvement : plus particulièrement, les Qa sont les intégrales premières du système (comme par
exemple l’énergie dans le cas d’une invariance par translation dans le temps, le moment cinétique, etc). Des 4
types, on va surtout utiliser par la suite la fonction F1(q,Q), utile pour obtenir une équation d’Hamilton-Jacobi,
mais aussi F2(q, P ) pour la théorie des perturbations canoniques, notamment dans le cas des perturbations
scalaires en cosmologie.

1.12 Les équations de Maxwell en théorie des champs

On a entraperçu le fait que pour concilier mécanique newtonienne et électromagnétisme, il fallait se placer
dans l’espace-temps à 4 dimensions de la relativité restreinte, l’espace de Minkowski. Puisque l’on a tous les
éléments nécessaires sauf cette notion d’espace-temps, on va ici présenter l’électromagnétisme en utilisant ce
qui a été vu précédemment, et cela permettra de faire un lien avec la construction de la gravitation quantique
à boucles.
Soit (M, g) une variété Lorentzienne de dimension 4, on peut montrer que les équations de Maxwell en présence
de sources s’écrivent de façon géométrique, en faisant intervenir seulement deux champs de 1-formes (des sections
du fibré Λ1), A et J , qui représentent respectivement le champ électromagnétique (par le potentiel vecteur
Aµ tel que A = Aµdx

u), et la densité des charges électriques. Les formes différentielles du champ et des
charges A,J ∈ C∞(Λ1) sont alors reliées par la relation

J = d∗dA, (1.121)

où d∗ est l’opération adjointe de d. En utilisant leurs propriétés10, montrées par exemple par l’équation (1.44),
il existe des 2-formes F =̇dA ∈ C∞(Λ1), telles que dF =̇0, mais aussi d∗J = 0. Les équations de Maxwell sont
ainsi retrouvées par l’équation (1.121) dans un espace de Minkowski puisque

– F = dA s’écrit

~E = ~grad(V )− ∂ ~A

∂t
, ~B = ~rot( ~A). (1.122)

– J = d∗F s’écrit

~J = ~rot( ~B)− ∂ ~E

∂t
, ρ = div( ~E). (1.123)

– dF = 0 s’écrit

div( ~B) = 0,
∂ ~B

∂t
+ ~rot( ~E) = 0. (1.124)

– d∗J = 0 s’écrit
∂ρ

∂t
+ div( ~J) = 0, conservation de la charge (1.125)

où ρ est la densité volumique de charge, ~J le courant associé, et E et B sont respectivement les champs électriques
et magnétiques. Ces deux champs n’ont un réel sens physique qu’uniquement à travers le tenseur F , au contraire

9Ces fonctions génératrices sont liées entre elles, par exemple F1(q, Q, t) + PQ = F2(q, P, t).
10Pour d∗, d∗d∗ = 0
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24 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

du quadrivecteur potentiel Aµ. Le tenseur F = dA étant une 2-forme, on l’écrit F = 1
2Fµνdx

µ∧dxν = Fµνdx
µdxν

avec
Fµν = ∂µAν − ∂νAµ, (1.126)

et on appelle Fµν le champ tenseur électromagnétique. Cette formulation de façon géométrique est très
simple et va permettre une écriture commune pour toute théorie de connexions, où ici les champs Aµ peuvent
être aussi vues comme des 1-formes de connexion sur un fibré et F comme une 2-forme de courbure.
Il est intéressant pour comprendre l’origine de la gravité quantique à boucles de voir que l’électromagnétisme,
sans le savoir au départ de sa construction, est en fait une théorie possédant des contraintes, et donc recourra
à des multiplicateurs de Lagrange dans sa réécriture. Le lagrangien pour une particule libre comme le photon
est donné par

L = −1
4

∫
d3xFµνF

µν , (1.127)

et les équations du mouvement sont données par les identités de Bianchi

∂µF
µν = 0, (1.128)

soit encore les équations (1.122) à (1.125). Les variables canoniques ne seront plus les positions et impulsions,
mais les 4 champs continus contenus dans le potentiel quadrivecteur Aµ. En utilisant l’expression de Fµν donnée
par l’équation (1.126), on remarque que les dérivées spatiales de A0 interviennent bien dans le lagrangien, mais
qu’il n’est présent aucun terme dépendant de sa dérivée temporelle : le moment conjugué π0 de A0 est donc nul,
montrant que A0 n’est en fait pas une variable canonique mais un multiplicateur de Lagrange. Il existe alors
dans cette théorie une contrainte. D’autre part, on parle de champs continus. Les équations d’Euler-Lagrange ne
seront plus données par des dérivées partielles mais par des dérivées fonctionnelles. Les moment conjugués
des champs spatiaux seront alors donnés par

Ea =
δL

δȦa
= F 0a (1.129)

et représentent le champ électrique donné dans l’équation (1.122) avec la composante A0 correspondant ainsi
au potentiel V . L’espace tangent est ainsi pourvu de la structure symplectique

ω = dAa(x) ∧ dEa(x), (1.130)

au même titre que les (qa, pb) précédent, et leurs crochets de Poisson sont alors donnés par

{Ab(x), Ea(y)} = δab δ
3(x− y) (1.131)

pour lesquels la variable x agit comme un ’indice continu’ qui labellise les variables aux différents points de
l’espace. Les crochets de Poisson des champs ont la même définition que ceux utilisés en mécanique, mais
avec comme différence l’utilisation de dérivées fonctionnelles ainsi qu’une intégrale sur les variables spatiales.
L’hamiltonien est de plus donné, par définition, par :

H =
∫
d3x

(
1
2
[
EaEb +BaBb

]
δab −A0∂aE

a

)
, (1.132)

où Ba = 1
2ε
abcFbc est le champ magnétique, fonction des dérivées spatiales de Aa. On a vu que π0, le moment

conjugué de A0, était tout le temps nul. Sa dérivée temporelle, nulle aussi, est alors donnée par

π̇0 = 0 = {A0,H} = ∂aE
a, (1.133)

indiquant que dans ce système, il existe une contrainte donnée par la loi de Gauss dans le vide

∂aE
a = div(E) = 0. (1.134)

Ea ne peut ainsi pas être choisi librement, puisqu’il doit être de divergence nulle. Les contraintes étant les
générateurs des symétries, on peut alors regarder leur action sur le système. Cependant, les variables étant
dépendantes de l’endroit où on les considère, on peut choisir d’intégrer les contraintes pour regarder leur effet
global selon

G[λ] =
∫
d3x · λ(x) · ∂aEa(x), (1.135)

où λ est une fonction C∞ locale : cette équation n’est qu’une sommation des contraintes existant en tout
point de l’espace, mais est mieux définie et plus facile à manipuler puisque l’on ne traite plus maintenant des
distributions (via les deltas de Dirac), mais des fonctions de l’espace. De plus, λ est arbitraire mais correspond
exactement à A0, et calculer les crochets de Poisson de G(λ) avec l’hamiltonien permet de voir qu’ils sont
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1.12. LES ÉQUATIONS DE MAXWELL EN THÉORIE DES CHAMPS 25

bien nuls, indiquant que les orbites (trajectoires) générées par la contrainte laissent la théorie invariante. Ces
contraintes sont elles-aussi invariantes sous la dynamique et on les appelle contraintes de première classe.
Cela va se traduire par une liberté de jauge, la liberté de redéfinir certaines variables par une fonction que
l’on va spécifier en calculant les crochets de Poisson de cette contrainte avec les variables. Ces orbites vont être
définies par l’information sur les crochets de Poisson suivant

δλE
a = {Ea, G[λ]} = 0, δλAa = {Aa, G[λ]} = ∂aλ. (1.136)

Le long des orbites, cette contrainte ne va pas modifier le champ électrique, mais le potentiel vecteur peut
être modifié par le gradient d’une fonction quelconque, ce qui correspond bien à la liberté de jauge usuelle
Aµ → Aµ + δAµ = Aµ + ∂µλ laissant le tenseur Fµν invariant, et donc la physique associée. La contrainte
de Gauss est ainsi un générateur d’une transformation de jauge qui s’exprime dans le formalisme hamiltonien
par les crochets de Poisson11. D’autre part, la contrainte générée par π0 = 0 n’a pour incidence que la possible
redéfinition de A0 par une fonction quelconque, ce qui est attendu puisque A0 est un multiplicateur de Lagrange
et est donc arbitraire. Pour finir, dans le formalisme hamiltonien, les équations de Maxwell seront données par
l’étude des équations du mouvement de Aa et Ea telles que

Ȧa = {Aa,H} = Ea + ∂aA0, (1.138)
Ėa = {Ea,H} = εabc∂bBc. (1.139)

Il n’existe ici pas de choix unique pour les solutions des équations du mouvement puisqu’elles vont dépendre du
choix de A0 : on parle alors d’un choix de jauge, dont on peut citer comme jauges usuelles en électromagnétisme
la jauge de Lorenz, ou bien celle de Coulomb. Cette liberté de jauge est ainsi cruciale pour retrouver les degrés
de liberté physiques du photon qui sont au nombre de deux et qui correspondent aux hélicités : en partant
des 4 composantes de Aµ, les caractéristiques de A0 et l’action de la contrainte de Gauss vont contraindre les
expressions pour retrouver les deux degrés de liberté finaux.
D’autre part, les interactions entre particules, fermions ou bosons, sont rendues possibles par le couplage de deux
champs différents ou non entre eux, et la constante de couplage donnera, comme pour la masse, une propriété
intrinsèque supplémentaire à la particule. Pour le photon, décrit par le quadri-potentiel vecteur, il n’existe pas
de termes en AµAν , montrant que les photons n’interagissent pas entre eux. Dans le cas de l’électrodynamique,
avec l’équation de Dirac, l’interaction est donnée dans le lagrangien par un terme supplémentaire possible,
−eΨ̄γµAµΨ où e est la charge de l’électron,

L = −1
4
FµνF

µν + Ψ̄(iγµ∂µ −m)Ψ− eΨ̄γµAµΨ. (1.140)

Or, associer deux lagrangiens ne va plus permettre à la théorie d’être invariante sous les transformations globales
associées à chaque particules prises séparément. En effet dans ce formalisme, on a vu juste précédemment que
pour retrouver les degrés de liberté physiques à partir des objets mathématiques avec plus de composantes que
nécessaire, il était important de considérer les symétries. L’interaction étant locale, il va falloir que la théorie
complète soit invariante localement, telle qu’ici par exemple, les transformations12

Aµ → Aµ + ∂µλ, Ψ → e−ieλ(x) Ψ, Ψ̄ → eieλ(x) Ψ̄ (1.141)

laissent le Lagrangien (1.140) invariant. Suivant le théorème de Noether, à chaque symétrie globale est associée
une charge conservée. Ici, pour le cas de l’électron, cette charge correspond à la symétrie λ(x) = constante
et est la charge électrique e. Pour compenser le fait que l’on ait effectué une transformation de jauge tout en
souhaitant que la théorie reste invariante sous cette transformation, il est nécessaire de redéfinir les dérivées
usuelles en dérivées dites covariantes selon

∂µ → Dµ = ∂µ − ieAµ. (1.142)

La densité lagrangienne de l’électrodynamisme est alors donnée par

L = Ψ̄(iγµDµ −m)Ψ− 1
4
FµνF

µν , (1.143)

11On peut aussi le voir comme dans le cas de l’impulsion générant les translations selon

x
′
= x + λ = Tx = exp[−iλp]x =

„
1− iλ

∂

∂x

«
x,

avec ici

δλX =

„
exp

»
−G[λ, Ea =

δ

δAa
, Aa =

δ

δEa
]

–
− 11

«
X. (1.137)

12La composante A0 a été gardée pour la généralisation.
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26 CHAPITRE 1. LA MÉCANIQUE CLASSIQUE

pour laquelle on a défini maintenant

Fµν = − 1
ie

[Dµ, Dν ] = ∂µAµ − ∂νAµ + ie [Aµ, Aν ]︸ ︷︷ ︸
=0

. (1.144)

Plus particulièrement, les transformations (1.141) sont caractéristiques d’une transformation du groupe U(1) :
Aµ, à valeur dans ce groupe, va alors commuter avec Aν permettant de retrouver la non-interaction entre
photons.

Ces observations sont ainsi génériques à toute théorie possédant des contraintes générant des symétries,
appelées symétries de jauge, et pour laquelle les solutions des équations du mouvement vont alors contenir
des paramètres arbitraires. Cependant en physiques, les observables pertinentes pour étudier un système sont
souvent données par des variables qui seront invariantes de jauge, pour lesquelles les équations du mouvement
restent identiques quel que soit le choix des paramètres utilisés, et dont les résultats donneront alors la bonne
description.

1.13 Observations sur la mécanique classique

Classiquement, la formulation lagrangienne de la mécanique est ainsi fondée sur l’observation de l’existence
de principes variationnels derrière toute loi fondamentale mettant en jeu un équilibre des forces. On peut ainsi
appliquer ce formalisme à de nombreux autres domaines de la physique et voir que cela convient à la description
de nombreux phénomènes.
En partant de ce postulat, la mécanique newtonienne seule permet de montrer que si on considére une particule
ayant une position q(t) dans l’espace à un temps t, se déplaçant avec une vitesse v = q̇(t) dans un référentiel
inertiel, alors

– les équations du mouvement sont données par un lagrangien : il faut, pour avoir la dynamique d’une
particule, lui fournir une fonction sur le fibré tangent TM correspondant à l’espace des phases.

– si de plus le système présente des symétries, concrètes ou abstraites, il existe alors des quantités conservées
comme par exemple l’énergie, le moment cinétique, et bien d’autres possibilités.

– il existe un espace dual, défini par le fibré cotangent T ∗M sur lequel le lagrangien est remplacé par
un hamiltonien. Les équations du mouvement y sont équivalentes, mais la structure mathématique du
formalisme hamiltonien est beaucoup plus riche.

– il existe naturellement sur T ∗M une structure symplectique correspondant à des formes différentielles,
indépendant du système de coordonnées, tenseurs d’ordre (r, 0), et donc répondant ainsi parfaitement au
principe de relativité.

– cette structure avec la dynamique donnée par l’hamiltonien, ou plus particulièrement le moment conjugué
pt, permet de définir un principe variationnel donnant une action, qui est bien dépendante du lagrangien
comme suggérées par les équations d’Euler-Lagrange.

– pour que la particule (autre que le photon) se mette en mouvement, il faut la doter d’une quantité in-
trinsèque à la particule : sa masse inertielle. Son mouvement devra aussi tenir compte de forces induites
par des potentiels, notamment attractif comme la gravitation. On a ainsi une définition physique de la
notion de masse répondant au principe d’équivalence newtonien.

Pour cela, il suffit de doter l’espace tangent TM = R2n de coordonnées (q, q̇), d’une simple fonction donnant
la dynamique, le lagrangien. Ce lagrangien rend de plus compte des couplages entre différents phénomènes et
permet de définir toute une structure mathématique riche, très utile pour comprendre la dynamique du système.
Par la suite, c’est en se basant sur cette structure mathématique (qui n’est bien sûr pas apparue directement
mais après beaucoup d’étapes de compréhension) que se sont formées les autres théories, plus complètes et
donnant une meilleur description des phénomènes physiques, la mécanique classique n’en étant en fait qu’un cas
limite. On va ainsi voir que pour mieux comprendre notre monde, il va être nécessaire de remettre en question
cette première approche, et construire dans le prochain chapitre, des théories plus fondamentales, les théories
relativistes et quantiques.
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Chapitre 2

La Mécanique moderne

Look deep, deep into nature, and then you will understand everything better.

Albert Einstein, 1951

Introduction

Dans ce chapitre, les théories de relativité restreinte et générale, avec la mécanique quantique, vont être
présentées de manière succinte, puisque l’on suppose les concepts abordés ici déjà connus. On va ainsi se
contenter d’introduire les notions utiles pour la suite, avec toujours cependant quelques ouvertures, notamment
en relativité restreinte pour laquelle on pourra voir que les équations du mouvements des particules libres sont
en fait déjà encodées dans la théorie. Le lecteur plus intéressé pourra consulter les ouvrages [16] à [24].

2.1 La Relativité Restreinte

La relativité restreinte est la première théorie à s’être fondée sur des symétries (de l’espace-temps). Elle a
ainsi défini la notion de théorie de jauge pour laquelle l’action doit être invariante sous l’action d’un groupe de
symétrie. On va alors voir dans ce paragraphe que le simple fait d’avoir un espace-temps homogène et isotrope
permet d’obtenir des équations contraignant les phénomènes qui y sont présents.

2.1.1 Existence naturelle d’une vitesse limite

Dans la construction de la mécanique classique par Newton, aux échelles de vitesses envisagées, le prin-
cipe fondamental de la dynamique et les transformations de Galilée ont été posés de manière assez intuitive.
Ce faisant, il existe diverses possibilités pour questionner la robustesse des hypothèses qui y ont été faites.
L’électromagnétisme, en ce qui la concerne, met en jeux des vitesses très importantes comme pour le photon.
Elle ne dit rien quant au principe d’équivalence mais respecte le principe de relativité, ainsi que la notion de
force : en appliquant une force sur un électron, la force de Lorentz, celui-ci se mettra alors en mouvement. La
mécanique classique et l’électromagnétisme diffèrent ainsi sur le choix des transformations de coordonnées : les
équations de Maxwell sont invariantes par transformations de Lorentz et non pas sous les transformations
de Galilée, et une possibilité est donc la remise en cause des transformations de Galilée.
Einstein, en 1905, proposa une solution à ce problème en se basant sur ’trois’ postulats : le principe de rela-
tivité, le principe de causalité et le fait que le module de la vitesse de la lumière dans le vide soit indépendant
de l’état de mouvement de la source. Cependant, cette dernière assertion est en fait une conséquence naturelle
des 2 autres postulats et des propriétés d’homogénéité et d’isotropie de l’espace et du temps. Ainsi, pour deux
référentiels en translation rectiligne uniforme selon un axe Ox à la vitesse V l’un par rapport à l’autre, les
transformations de coordonnées, dites transformations de Lorentz,

1. définies dans un espace-temps homogène et isotrope,

2. ayant une structure de groupe1,

3. respectant le principe de relativité,

4. respectant le principe de causalité : quel que soit le référentiel, un événement survenant avant un autre
sera toujours considéré comme antérieur,

1L’élement neutre s’obtient avec V = 0, l’inverse avec −V , et l’associativité avec le fait que, pusique l’espace étant homogène,
les transformations sont linéaires.

27
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28 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

Fig. 2.1 – trajet d’un rayon lumineux entre
deux miroirs dans un train en translation,
selon un passager et selon un observateur
extérieur.

mènent naturellement à l’apparition d’une vitesse limite c,
qui est la vitesse de la lumière dans le vide [16]. Il est possible
d’arriver à cette même conclusion en observant le trajet d’un
photon se réfléchissant dans un mirroir situé dans un train en
mouvement, comme illustré dans la figure Fig.(2.1). Cela signifie
que pour un mobile en translation à vitesse ~V par rapport à un
référentiel R (t, r), dans son référentiel propre R′ (τ, l), le temps
τ s’écoule plus lentement et il voit les longueurs contractées selon
~V

dτ = dt

√
1−

~V 2

c2
, d~l =

d~r′√
1− ~V 2

c2

, (2.1)

ce qui est a priori contre-intuitif à notre échelle. L’existence de
cette vitesse limite est ainsi une grande nouveauté correspondant
à l’apparition d’une ’constante de structure’ de l’espace-temps2.

Il n’y a alors plus de notion d’action instantanée de la part d’une force, montrant l’incompatibilité de la
relativité restreinte avec la mécanique newtonienne.

2.1.2 Transformations de Lorentz

Les transformations dans les deux approches font intervenir des fonctions hyperboliques et ont pour
expression (µ = 0..3)

x′µ = Λµνx
ν , (2.2)

où Λµν est la matrice de Lorentz (ici selon une direction et sans tenir compte des rotations)
ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 avec β =
V

c
et γ =

1√
1− V 2

c2

. (2.3)

2.1.3 Métrique de Minkowski

Pour rendre compte de deux référentiels inertiels en translation, on voit qu’il faut se placer dans un espace-
temps à 4 dimensions et que même la composante temporelle est affectée par la transformation. Une base eµ de
cet espace définit une métrique gµν = eµeν , et par changement de coordonnées,

g′µν = e′µe
′
ν = (Λαµeα)(Λβνeβ) = ΛαµΛβνgαβ . (2.4)

La seule possibilité pour la métrique est la métrique de Minkowski notée ηµν = diag(−1, 113), tenseur de
rang 2, donnant alors la relation caractérisant la matrice de Lorentz

tΛηλ = η. (2.5)

2.1.4 Quadrivecteurs impulsion et force

En s’aidant notamment de l’équation (2.1), il est possible de définir alors un nouveau principe fondamental
de la dynamique. Pour une force ~F s’éxerçant sur un mobile, le quadrivecteur force peut être défini à partir de
l’impulsion via

Kµ =
dPµ

dτ
, (2.6)

ces deux quadrivecteurs s’écrivant

Pµ = mγ(V )
(

c
~V

)
=
(

E
c

mγ(V ) ~V

)
, Kµ = γ(V )

(
~F ·~V
c
~F

)
, (2.7)

où E est l’énergie du mobile donnée par la fameuse équation d’Einstein

E = γmc2 ⇔ E2 = ~p2c2 +m2c4, (2.8)

et E0 = mc2 la masse du mobile au repos, c’est à dire dans son référentiel propre. L’équation (2.8) est le résultat
de la relativité restreinte qui est le moins robuste puisque la composante P 0 à été postulée comme étant γ(v)m

2Il existe d’autres visions possibles.
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2.1. LA RELATIVITÉ RESTREINTE 29

facteur d’une vitesse que l’on a choisi comme étant c. Cependant, les observations montrent que ce choix est
tout à fait valide : l’équation de l’énergie est alors considérée comme correcte et redonne bien, dans le cas des
petites vitesses, l’expression de l’énergie pour la mécanique newtonienne. D’autre part, ce lien entre masse et
énergie cinétique montre la possibilité de création de masse à partir d’énergie, ce qui est bien observé dans le
cadre des accélérateurs de particules.
L’apparition de tenseurs en relativité restreinte est ainsi naturelle. Elle est liée à la prise en considération d’une
4ème dimension forçant l’utilisation de quadrivecteurs comme Pµ et de la métrique de Minkowski ηµν . L’équation
(2.6) est alors invariante sous une transformation de Lorentz et se réduit à l’équation classique dans le cas des
petites vitesses. Une autre propriété importante de la relativité restreinte provient du produit PµPµ qui est un
scalaire, invariant donc sous les transformations de Lorentz, et vaut

PµPµ = m2c4. (2.9)

Cette propriété va permettre une compréhension profonde de la physique présente sur un espace-temps plat
puisque la détermination de l’existence de particules y est liée, comme on peut le voir juste après.

2.1.5 Groupe de Poincaré

Les transformations de Lorentz générales sont données par x′µ = Λµνx
ν + Xµ où les Xµ traduisent une

translation, et forment un groupe, le groupe de Poincaré. Ce groupe de symétries de l’espace-temps est en
fait très important puisqu’il détermine une grande partie de la physique sur un espace de Minkowski. Il est
déterminé par 10 générateurs : les 6 paramètres de Λµν (3 rotations et 3 boosts) ainsi que les 4 paramètres de
translation de Xµ, satisfaisant l’algèbre

[Xµ, Xν ] = 0, [Xµ,Λνσ] = i(ηµνXσ − ηµσXν), (2.10)
[Λµν ,Λρσ] = i(ηµρΛσν − ηνρΛσµ − ηµσΛρν + ηνσΛρµ). (2.11)

Il existe en physique une correspondance assez extraordinaire :

Les particules élémentaires sont associées aux représentations irréductibles du groupe de Poincaré.

En trouvant les Casimirs (C1, C2) de l’algèbre tels que [aC1 + bC2, Xµ] = [aC1 + bC2,Λµν ] = 0, ∀a, b ∈ R, et en
cherchant leurs valeurs propres (c1, c2) sur les états du système, on va pouvoir définir et classifier les particules
élémentaires : chaque particule sera ainsi désignée par un couple (c1, c2) pour lequel il est possible de donner
un sens physique. Comme on vient de le voir, un des Casimirs n’est autre que le produit des quadrivecteurs
énergie-impulsion entre eux P 2 = PµPµ, et le second est le produit WµWµ où Wµ est le pseudo-vecteur de
Pauli-Lubansky [17] :

C1 = Pµ · Pµ, (2.12)

C2 = Wµ ·Wµ, Wµ = −1
2
εµνρσΛνρXσ. (2.13)

En considérant une particule de masse non-nulle dans son référentiel au repos Pµ = (m, 0, 0, 0), on peut montrer
que c1 = m2 et c2 = −m2s(s+1) où s est le spin de la particule, issu d’un moment. Pour une particule de masse
nulle, en se plaçant dans son référentiel tel que Pµ = (p0, 0, 0, p0), Wµ = λPµ où λ est l’hélicité de la particule.
En considérant les propriétés de transformations pour le cas de scalaires, vecteurs, champs fermioniques, sous
un changement infinitésimal des coordonnées, il est possible de leur associer des particules définies par leur
masse, leur spin ou leur hélicité. Comme en mécanique classique sauf pour le photon, pour que la particule
puisse avoir un mouvement, on a supposé qu’elle devait être massive. On peut ainsi voir que pour un champ
scalaire φ, défini au sens de la relativité restreinte comme étant invariant par transformation de Lorentz, de
masse non-nulle, on observe la correspondance Pµ → ∂µ et l’équation P 2φ = m2φ redonne l’équation de Klein-
Gordon, avec obligatoirement s = 0 comme attendu par la physique des particules. On peut ainsi trouver à
partir des Casimirs du Groupe de Poincaré que la propagation des particules libres physiques dans un espace
de Minkowski peut être entre autre3 donnée par [17]

1. pour un champ scalaire φ : ∀ m, son spin est nul s = 0 et il doit obéir à4

(� +m2) φ = 0, équation de Klein-Gordon (2.14)

2. pour un champ fermionique ψ : ∀ m, son spin est s = 1
2 et il doit obéir à

(iγµ∂µ −m) ψ = 0, équation de Dirac (2.15)
(� +m2) ψ = 0. (2.16)

Cela correspond au cas des protons et des électrons.
3Il existe d’autres équations qui sont a priori des solutions mathématiques mais non physiques.
4Rappel du D’Alembertien � = −∂µ∂µ = ∂2

t − ∂2
x dans la métrique ηµν = diag(−1, 113).
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30 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

3. pour un champ vectoriel Aµ :
– si m 6= 0 alors il est de spin s = 1 et obéit à, en notant Fµν = ∂µAν − ∂νAµ,

∂µF
µν +m2Aν = 0, équation de Proca (2.17)

(� +m2) Aµ = 0. (2.18)

Cela correspond au cas des bosons de jauge W± pour l’interaction électrofaible.
– si m = 0 alors il est d’hélicité λ = ±1 et obéit à, en notant Fµν = ∂µAν − ∂νAµ,

∂µF
µν = 0, équation de Maxwell (2.19)

� Aµ = 0. (2.20)

Cela correspond au cas des photons.

Dans ce formalisme, sous les transformations de Lorentz et non plus celle de Galilée, les équations de Maxwell
pour le photon apparaissent naturellement mettant ainsi fin au paradoxe entre les deux théories classiques, la
mécanique et l’électromagnétisme.
Afin d’obtenir l’équation de Dirac, il a été fait l’hypothèse que les composantes du champ fermionique formaient
un espace vectoriel linéaire permettant la construction d’une représentation du groupe de Poincaré. Cette hy-
pothèse, mathématiquement simple, possède en fait une conséquence physique hautement non-triviale : elle
correspond à un principe de superposition et pourrait être corrélée à l’apparition de la notion de dualité
onde-corpuscule, à la base de la mécanique quantique.
Une simple remarque sur le spin : on traite le cas de particules pour lesquelles on a fait l’hypothèse que le spin
était donné par la valeur de la représentation dans laquelle on se plaçait. Le spin apparâıt par la valeur propre
de la norme du moment correspondant aux rotations et boosts dans la matrice de Lorentz : dans le langage
de Dirac J2|etat >= ~s(s + 1)|etat > où ~J est le moment, et ~ la constante de Planck. L’existence du spin,
qui peut être vu comme une charge de Lorentz puisqu’invariant sous ces transformations, est introduit ici
après compréhension de la mécanique quantique, mais on peut remarquer qu’il est présent lui aussi de part la
structure de l’espace-temps.
En d’autres termes, les particules pouvant exister en relativité restreinte possèdent déjà quelques apsects quan-
tiques, ou tout du moins sont compatibles avec les idées issues de la première quantification, telles le principe
de correspondance de la mécanique quantique :

E → i~∂t, ~p→ −i~~∂. (2.21)

En effet, dans un espace de Minkowski, toute particule X, même le photon, doit ainsi satisfaire une équation
de Klein-Gordon, dans les bonnes unités,

(� +
M2c2

~2
)X = 0. (2.22)

Celle-ci peut se comprendre par l’application de l’équation (2.21) à la définition (2.8) de l’énergie en relativité
restreinte, ce qui est bien le cas comme on peut le voir dans les équations du mouvement. Il est possible d’observer
que le principe de correspondance est simplement donné par

Pµ =
(

pt
~p

)
→ −i~

(
∂t
∂a

)
(2.23)

où on a montré par l’équation (1.92) que pour toute théorie à contraintes, comme c’est le cas en relativité,
Hc = E + pt ≈ 0 pour les solutions physiques. Ici, nous n’avons fait qu’effleurer la mécanique quantique.
Les théories importantes comme l’électrodynamique quantique (QED) ou bien la chromodynamique
quantique (QCD) pour l’interaction forte, ne découlent évidemment pas de la relativité restreinte mais celle-ci
constitue un guide précieux pour invalider beaucoup de théories incorrectes.
On voit ainsi que les effets relativistes ne s’appliquent pas qu’aux objets ayant une vitesse proche de celle de la
lumière, ni ayant des énergies élevées, mais qu’ils s’appliquent aussi aux objets quantiques. Mécanique classique,
quantique et relativité restreinte sont ainsi très liées et permettent de définir une première approche à la notion
de champs qui composent notre monde. Il est de plus possible d’étendre ces observations au cas du spin s = 2,
correspondant en théorie au graviton, mais dès lors des incompatibilités apparaissent : même si dans cette
théorie on voit que l’espace-temps spécifie un tant soit peu la physique qui doit y être présente, il existe toujours
des distorsions avec la mécanique newtonienne résultant de l’absence de la gravitation en relativité restreinte.
Il va falloir attendre 1915 pour qu’Einstein lui-même développe pour cela la théorie de la relativité générale.
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2.2. LA MÉCANIQUE QUANTIQUE 31

2.2 La Mécanique Quantique

Fig. 2.2 – Intensité du rayonnement en fonc-
tion de sa fréquence et de la température du
corps noir.

Parallèlement au problème de l’incompatibilité entre
mécanique classique et électromagnétisme, des questions portant
sur la nature de la lumière étaient aussi posées. Notamment,
en 1859, Gustav Kirchhoff se demandait pourquoi l’intensité
d’un rayonnement électromagnétique émis par un corps noir,
une cavité parfaite qui absorbe toute onde électromagnétique
quelque soit sa fréquence ou son angle d’incidence, dépendait non
seulement de la fréquence ν de ce rayonnement, mais aussi de la
température du corps noir, comme montré par la figure Fig.(2.2).
En 1899 Max planck apporta une première réponse satisfaisante
aux difficultés posées par le corps noir en supposant que

les atomes émettent et reçoivent
des quantas discrets de rayonnement ayant une énergie

E = hν, avec h = 6.626 · 10−34J.s, la constante de Planck.

En 1905, Einstein (encore) introduisit l’idée que la lumière pou-
vait avoir une nature corpusculaire : il expliqua l’effet photo-
électrique en postulant l’existence des photons, sorte de grains
d’énergie lumineuse avec des qualités de particule, et admit que

la fréquence de cette lumière était liée elle-aussi à l’énergie E des photons par la relation de Planck. Cette
observation montrait pour la première fois la notion de dualité onde-corpuscule.
En 1923, Louis de Broglie supposa que ce qui avait été ainsi postulé pour le photon pouvait être aussi postulé
pour tous les autres types de particules, comme l’électron. Cette hypothèse fut confirmée par l’expérience de
diffraction d’un flux d’électrons sur 2 trous5, donnant un résultat identique aux photons et montrant que les
électrons pouvaient eux aussi être interprétés en termes d’ondes.

Ainsi, chaque particule peut être considérée comme une onde
– d’énergie

E = hν, (2.24)

– et de moment6

p =
h

λ
. (2.25)

Ces réflexions ont alors permis la construction d’une théorie donnant une description très fidèle des phénomènes
microscopiques par la présence de quanta.

2.2.1 Procédure de première quantification

En mécanique quantique,
• l’état d’un système est représenté par un vecteur dans l’espace de Hilbert. Mathématiquement, un espace

de Hilbert est un espace vectoriel complexe, équipé d’un produit interne faisant intervenir le conjugué d’une
variable, et devant être complet7. On note |Ψ > un élément de cet espace, et < Ψ| les éléments duaux tels
que le produit interne entre deux états soit donné par

< Ψ2|Ψ1 >
∗=< Ψ1|Ψ2 > . (2.26)

En mécanique quantique, les espaces de Hilbert sont souvent de dimension infinie. Par exemple, dans le
cas de l’oscillateur harmonique, l’espace de Hilbert est composé de toutes les fonctions complexes de carré
sommable H = L2(M), fonction soit de x soit de p mais pas des deux en même temps.

• les observables sont représentées par des opérateurs auto-adjoints, souvent simplement hermitiens, tels
que

A† = A, et < Ψ2|AΨ1 >=< A†Ψ2|Ψ1 > . (2.27)

En général, deux opérateurs ne commutent pas et on ne peut pas mesurer leur observable simultanément,
ce dont témoignent les incertitudes d’Heisenberg. Les opérateurs, comme par exemple celui donnant
la position d’une particule, auront de plus un spectre de valeurs discrètes possibles, et non plus
continu comme dans le cas classique.

5Donnant le prix nobel en 1937 à George Thomson et Joseph Davisson.
6Donné par les équations de la relativités restreinte.
7Toute suite de Cauchy dans cet espace converge vers un point de cet espace.
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32 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

• l’évolution d’un tel système peut être donnée selon deux8 points de vue : une évolution unitaire d’un vecteur
dans un espace de Hilbert, la vision de Schrödinger, ou bien en gardant l’état fixé et considérant que
ce sont les observables qui évoluent selon des équations du mouvement, la vision d’Heisenberg.

La mécanique quantique est différente de la mécanique classique. Il n’est pas nécessaire de partir d’un
système classique pour le quantifier, mais c’est généralement la procédure adoptée. Il n’y a cependant pas de
correspondance simple entre une théorie classique et une théorie quantique : il existe des théories classiques sans
contrepartie quantique bien définie (multiples possibilités), ou bien des théories quantiques sans aucune analogie
classique. Dans de nombreuses situations, il sera utile de se ramener à un exemple que l’on sait résoudre, et
on va ainsi regarder le cas simple de l’oscillateur harmonique de pulsation ω et de masse m à une dimension
subissant un potentiel quadratique. Son lagrangien s’écrit alors

L =
1
2
mẋ2 − 1

2
ω2x2, (2.28)

donnant les équations du mouvement
mẍ+ ω2x = 0. (2.29)

Pour faire la transition vers la mécanique quantique, il est plus utile d’utiliser l’espace cotangent et son hamil-
tonien est donné par

H =
1

2m
p2 +

1
2
ω2x2, (2.30)

avec {x, p} = 1 dont les solutions correspondent à des fonctions sinusöıdales que l’on peut exprimer selon

x(t) = x0e
i(ωt+α0). (2.31)

Dans la représentation de Schrödinger

Dans le cas de l’oscillateur harmonique, on considère la vision de Schrödinger et l’utilisation d’une fonction
d’onde évoluant dans le temps Ψ(x, t), représentant les différentes composantes du vecteur d’état |Ψ > telle
que sur, la base des positions, |Ψ(t) >=

∫
dxΨ(x, t)|x >. La quantification canonique revient à promouvoir

les crochets de Poisson des variables en commutateurs d’observables, notées x̂, selon la relation

[x̂, p̂] = i~{x, p} = i~. (2.32)

Pour les états représentés par des fonctions d’ondes dépendant de x et t, x̂ agit par multiplication et p̂ agit par
dérivation, respectant la relation (2.32)

x̂Ψ(x, t) = xΨ(x, t), p̂Ψ(x, t) = −i~∂
∂x

Ψ(x, t). (2.33)

L’opérateur hamiltonien est obtenu en regardant l’action des opérateurs précédents dans l’hamiltonien clas-
sique, et s’écrit ici

Ĥ = − ~2

2m
∂2
x +

1
2
ω2x2. (2.34)

L’équation du mouvement est alors donnée par l’équation de Schrödinger

ĤΨ = i~∂tΨ (2.35)

qui s’obtient [18] de même en partant de l’équation de Hamilton-Jacobi (1.109).
Comme l’hamiltonien est ici indépendant du temps, la solution est une superposition de fonctions labellisées
par un entier n ∈ N,

Ψ(x, t) =
∑
n

cnΨn(x, t) telles que Ψn(x, t) = Hn(
√
ωx)e−

1
2ωx

2−iEnt, (2.36)

où Hn est un polynôme de Hermite de degré n et En est une valeur propre de l’énergie,

En =
(
n+

1
2

)
~ω. (2.37)

On parle de mécanique quantique puisque le spectre des opérateurs est discret et fait intervenir des quanta. Ici,
l’énergie minimale est E0 = ~

2ω, mais rien n’empêche de renormaliser l’énergie par V = 1
2ω

2x2− ~
2ω donnant les

8Il existe aussi le point de vue de l’intéraction, mais nous ne nous sommes pas intéressés ici aux autres formalismes de la
mécanique quantique (comme celui de Böhm).
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2.2. LA MÉCANIQUE QUANTIQUE 33

mêmes solutions : cela correspond à l’invariance par redéfinition de l’énergie vue précédemment. Les coefficients
cn sont ainsi reliés à la probabilité Pn = c∗ncn d’observer un système décrit par la fonction d’onde Ψn telle que

1 =< Ψ(t)|Ψ(t) >=
∑
n

Pn =
∫
dx|Ψ(x, t)|2. (2.38)

Une remarque peut ainsi être faite : il est connu que la notion d’espace de Hilbert est reliée à la conservation
de la probabilité et donc à la présence d’un temps externe en fonction duquel est conservé la probabilité. On
peut alors se poser la question si le concept d’espace de Hilbert est toujours nécessaire lorsque l’on cherche à
quantifier une théorie covariante.
Il existe aussi une autre manière de résoudre les équations, consistant à introduire les opérateurs de création
et d’annihilation, â† et â, tels que

â =
1√
2ω

(ωx̂+ ip̂), et â† =
1√
2ω

(ωx̂− ip̂). (2.39)

Suivant cette définition, ces opérateurs vérifient la relation

[â, â†] = 1, (2.40)

et l’hamiltonien est alors donné par

Ĥ =
(
â†â+

1
2

)
~ω. (2.41)

Cette approche est reliée à la seconde quantification où on définira un opérateur N̂ = â†â, d’état propre
|n >, représentant le nombre n de particules de cet état dans un nouvel espace, l’espace de Fock, et d’énergie
En. Il existe ainsi un état ne possédant pas de particules, l’état du vide |0 >, défini par

â|0 >= 0 et â†|0 >= |1 > (2.42)

tel que l’état à n particules |n > est donné par |n >= 1√
n!

(
â†
)n |0 >. La fonction d’onde dans cette base s’écrit

maintenant

|Ψ(t) >=
∑
n

cne
−iEnt|n > . (2.43)

Dans la représentation de Heisenberg

Dans cette représentation, les états sont fixés et les opérateurs évoluent dans le temps tels qu’il existe un
opérateur unitaire d’évolution9

|Ψ(t) >= U(t)|Ψ(0) >= Pe−i
R
Hdt|Ψ(0) > (2.44)

où P est l’ordonnancement, ou Path order en anglais. Dans le cas où l’hamiltonien ne dépend pas du temps,
alors U(t) = e−iHt. Pour passer de la représentation de Schrödinger pour un opérateur Â indépendant du
temps, à la représentation d’Heisenberg, il suffit de considérer la relation < Ψ2(t)|Â|Ψ1(t) >=< Ψ2|Â(t)|Ψ1 >,
impliquant que par ce changement de représentation,

Â(t) = U†(t)ÂU(t), (2.45)

évoluant selon l’équation du mouvement de Heisenberg

dÂ(t)
dt

= i[H, Â(t)]. (2.46)

Les opérateurs de création et d’annihilation sont alors donnés dans cette représentation par

â(t) = e−iωtâ(0), â†(t) = eiωtâ†(0), (2.47)

et le nombre de particules n̂(t) = â†(t)â(t) = â†(0)â(0), est alors conservé au cours du temps.

9Unitaire U†U = 1.
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34 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

2.2.2 Seconde quantification : Théorie quantique des Champs

Lorsque l’on considère l’utilisation de champs qui dépendent non plus d’un ensemble discret de variables
(qi, pj), mais plutôt d’un ensemble de variables continues (φ(xµ), π(xµ)) telles que {φ(xµ), π(yµ)} ∝ δ4(xµ−yµ},
le formalisme quantique est donné par la théorie quantique des champs. Cette quantification consiste sim-
plement à exprimer des champs continus dans le formalisme hamiltonien en termes d’opérateurs de création
et d’annihilation continus. On va alors quantifier des champs définis sur un espace-temps plat, celui de Min-
kowski décrivant des particules relativistes. Cependant, passer à un espace-temps courbe va amener quelques
changements sur les notions de ’vide’ et de ’particules’ qui vont devoir être traitées avec attention. Alors
qu’en mécanique quantique, ondes et particules sont des notions complémentaires avec différents domaines de
prédilection, en théorie quantique des champs, ce sont les champs qui sont fondamentaux, et les particules ne
sont que des notions approximatives utiles en certaines circonstances.
On va s’intéresser au cas de l’équation de Klein-Gordon pour un champ scalaire φ(xµ), de densité lagrangienne

L = −1
2
ηµν∂µφ∂νφ−

1
2
m2φ2 (2.48)

redonnant l’équation (2.14) comme équation du mouvement. On peut ainsi voir que ce formalisme est identique
à celui de l’oscillateur harmonique dont les variables ne sont plus x et t, mais des champs φ(x, t) et π(x, t) = φ̇ à
valeur sur tout l’espace. φ(xµ) n’étant pas une fonction d’onde, dans la représentation de Schrödinger, on devrait
définir une fonctionnelle d’onde complexe Ψ[φ(xµ)] qui représenterait l’amplitude de probabilité de trouver le
champ dans cette configuration. On va cependant préférer la représentation de Heisenberg pour laquelle on va
promouvoir φ au rang d’opérateur quantique.
Ainsi, une solution à l’équation de Klein-Gordon est l’onde plane

φ(xµ) = φ0e
ikµx

µ

= φ0e
−iωt+i~k·~x, (2.49)

de vecteur d’onde
kµ = (ω,~k), (2.50)

dont la fréquence doit satisfaire la relation (de l’énergie)

ω2 = ~k2 +m2. (2.51)

Par rapport à l’oscillateur harmonique, il existe plusieurs solutions possibles pour les oscillations, dépendant
du nombre d’onde ~k et du signe de la racine carré. Cependant, il est possible d’écrire les solutions les plus
générales en construisant une base complète et orthonormale. Pour cette notion d’orthonormalité, on définit un
produit scalaire dans l’espace des solutions de l’équation de Klein-Gordon, défini comme une intégrale sur une
hypersurface Σ,

(φ1, φ2) = −i
∫

Σ

(φ1∂tφ
∗
2 − φ∗2∂tφ1)d3x = δ(3)(k − k′). (2.52)

Ce produit scalaire est bien indépendant de l’hypersurface sur laquelle on utilise l’intégrale (on peut le voir en
prenant le théorème de Stokes et l’équation de Klein-Gordon), et est construit à partir de la condition de
wronskien qui normalise correctement les solutions des l’équation de Klein-Gordon,

φ · ∂tφ∗ − φ∗ · ∂tφ = i. (2.53)

Ainsi construit, le produit scalaire a comme propriété

(f, g) = −(f∗, g) = (f, g)∗. (2.54)

Sous ce produit scalaire, un ensemble de mode orthogonaux est alors donné par

f~k(x
µ) =

eikµxµ√
(2π)22ω

, (2.55)

la normalisation provenant de la condition de Wronskien, tels que (f~k1 , f~k2) = δ(3)(~k1 − ~k2). Dans la suite, on
va imposer que les modes physiques aient toujours une fréquence positive, et pour considérer ceux de fréquence
négative, on va utiliser le complexe conjugué f∗k = f−k. On promeut alors les variables classiques comme des
opérateurs sur l’espace de Hilbert, et on impose les relations de commutations

[φ, φ] = [π, π] = 0, [φ(t, ~x), π(t, ~x′)] = iδ(~x− ~x′). (2.56)

Le delta de Dirac demande que les opérateurs à un temps donné commutent partout, excepté aux points spatiaux
de cöıncidence : cela découle de la demande de causalité (les opérateurs décorellés spatialement ne peuvent pas
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2.2. LA MÉCANIQUE QUANTIQUE 35

s’influencer les uns les autres). Classiquement, les solutions pouvaient être données dans la base (2.55), il va en
être de même pour les opérateurs : en notant â†~k et â~k les coefficients de l’expansion en mode des opérateurs de
champs, on peut écrire

φ̂(t, ~x) =
∫
d3k

[
â~kf~k(t, ~x) + â†~k

f∗~k (t, ~x)
]

(2.57)

où ces coefficients obéissent aux mêmes relations de commutation que les opérateurs d’annihilation et de création,
et ce, grâce à la condition de Wronskien, avec cependant une différence due à la présence de plusieurs modes
possibles,

[â~k, â~k′ ] = [â†~k, â
†
~k′

] = 0, [â~k, â
†
~k′

] = δ(3)(~k − ~k′). (2.58)

De même que pour l’oscillateur harmonique, il existe un vide donné par l’équation â~k|0 >= 0, ∀~k, et dans une
base de Fock, le nombre de modes excités à la fréquence ωi =

√
k2
i +m2, et donc le nombre de particules de

moment ki, s’obtient lui aussi par la relation n̂~k = â†~k
â~k, tel que

n̂~ki
|n1, n2, ..., ni, .., nj >= ni|n1, n2, ..., ni, .., nj > . (2.59)

Une remarque sur l’utilisation de la représentation de Fock peut être ainsi faite. On cherche des états qui res-
pectent l’invariance de Poincaré et qui rendent compte d’une énergie positive. Or les états du vide correspondent
et permettent ainsi de choisir cette représentation de Fock, qui n’en est qu’une parmis tant d’autres.
L’hamiltonien du système s’écrit alors

H =
∫
d3k

[
n̂~k +

1
2
δ(0)

]
~ωk, (2.60)

dont le terme en delta est appelé énergie de point zéro. Il est très important en théorie quantique des
champs10 puisqu’il signifie que, même mesuré sur l’état du vide, l’énergie est infinie (ou au moins dépendant
du cut-off ultraviolet) à cause de l’intégration. Cependant, ce problème peut être partiellement résolu par des
méthodes de régularisation supprimant ces divergences de la théorie, et la rendant physiquement mesurable.
Cette théorie appliquée à l’électrodynamisme donne une description quantique qui est en grande concordance
avec les observations. Il est aussi possible de l’appliquer à des théories de jauge non-abéliennes, les théorie
de Yang-Mills, qui remportent un grand succès lorsque l’on regarde les interactions électrofaible et forte.
Cependant, les théories de Yang-Mills se placent dans le cadre de la relativité restreinte, et la gravitation
n’est pas encore prise en compte. La relativité générale, que l’on verra par la suite, montre que l’espace-temps
n’est plus plat, et une tentative de description des particules dans un tel espace est donnée par la théorie
quantique des champs en espace courbe. Elle essaye d’incorporer les enseignements vues précédemment
dans un espace-temps plus général, et ce afin d’obtenir une théorie viable en présence de gravitation. Le problème
de la gravitation quantique est plus complexe encore.

2.2.3 Théorie quantique des Champs en espace courbe

En anticipant la suite, on utilise à la place de la métrique de Minkowski une métrique gµν , dynamique, telle
que la densité lagrangienne du champ scalaire précédent s’écrive maintenant

L =
√
−g
(
−1

2
gµνDµφDνφ−

1
2
m2φ2 − ξRφ2

)
, (2.61)

dont les équations d’Euler-Lagrange redonnent l’équation (2.14) comme équation du mouvement, avec un
terme supplémentaire −ξRφ. On parle de couplage minimal à la courbure R lorsque ξ = 0. De même que
précédemment, on impose les relations

[φ, φ] = [π, π] = 0, [φ(t, ~x), π(t, ~x′)] =
i√
−g

δ(~x− ~x′), (2.62)

et en considérant une hypersurface Σ spatiale (de normal nµ, de métrique qab de déterminant q, labellisée par
un temps t constant), on définit un produit scalaire sur Σ

(φ1, φ2) = −i
∫

Σ

d3x
√
q nµ(φ1Dµφ

∗
2 − φ2Dµφ

∗
1). (2.63)

Comme dans un espace plat, on pourrait choisir un jeu de modes de fréquence positive et négative formant une
base des solutions, développer chaque solution en terme de ces modes et interpréter les coefficients selon des
opérateurs de création et d’annihilation. Or à cause de l’invariance par changement de coordonnées, il n’est pas

10Ce terme a été cependant observé pour la première fois dans un papier de cosmologie par Yakov Zel’dovich.
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36 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

possible de distinguer des modes de fréquences particulières (positive ou négative), mais il existe toujours une
base possible de solution fi(xµ) telle que

φ̂ =
∑
i

(âifi + â†if
∗
i ), (2.64)

avec âi et â†i vérifiant les relations (2.58). On peut définir un vide |0f > tel que âi|0f >= 0, et aussi n̂fi = â†i âi.
Cependant, cette base n’est pas unique. Il existe d’autres bases possibles comme par exemple gi(xµ) telle que

φ̂ =
∑
i

(b̂igi + b̂†ig
∗
i ), (2.65)

similaire, mais de vide |0g > avec ici b̂i|0g >= 0 et n̂gi = b̂†i b̂i. En passant d’un espace plat à un espace courbe, on
perd l’existence d’un ensemble privilégié de modes : dans un espace plat, il était possible de prendre un ensemble
de modes particuliers en demandant qu’ils soient de fréquence positive par rapport à la composante temporelle,
or ici le temps n’est pas défini de façon non équivoque à cause des possibles changements de coordonnées. On
peut toutefois passer d’une base à une autre en effectuant des transformations de Bogoliubov, implémentées
par deux matrices αij et βij qui définissent les coefficients de Bogoliubov, avec alors

gi =
∑
j

(αijfj + βijf
∗
j ), fi =

∑
j

(α∗ijgj − βijg
∗
j ). (2.66)

Ces matrices satisfont leurs propres conditions de normalisation∑
j

(αikα∗jk − βikβ
∗
jk) = δij ,

∑
j

(αikβjk − βikαjk) = 0. (2.67)

D’autre part, il est intéressant de remarquer que le nombre de g-particules dans le f-vide est donné par

< 0f |n̂gi|0f >=
∑
j

|βij |2, (2.68)

et qu’il n’a aucune raison d’être nul : un vide ’vide’ d’un certain point de vue est rempli de particules pour
autre point de vue, et les vides ne vont donc pas forcément cöıncider. Cela est dérangeant pour la définition
d’une particule puisqu’un détecteur en mouvement ne verra pas les même particules que celui possédant un
mouvement différent. C’est l’effet Unruh [19].

2.2.4 Observations sur la Mécanique Quantique

Le monde est fondamentalement quantique. Cette théorie est devenue nécessaire à la compréhension des
interactions fondamentales que sont l’électromagnétisme et les forces faible et forte, et sa complexification
via la théorie quantique des champs a permis la construction d’un modèle effectif pour les particules dont des
prédictions ont été observées avec une grande précision. Elle inclut les idées de la relativité restreinte, les modèles
relativistes devant émerger de cette théorie fondamentale à la limite classique, et donne un cadre permettant
l’unification de l’interaction faible avec l’interaction électromagnétique.
Cependant, il existe des limites au modèle standard des particules élémentaires, notamment :

• beaucoup de propriétés intrinsèques des particules comme les nombres quantiques sont introduits arbi-
trairement (de même pour les masses et les constantes de couplage),

• le nombre de familles n’est pas une prédiction du modèle,
• il ne permet pas d’expliquer l’essentiel de la masse de l’univers,
• les constantes de couplage ne convergent pas vers une valeur unique,
• il est difficile d’expliquer la masse des neutrinos (mécanisme de see-saw),
• la gravitation n’est pas incluse : une quantification perturbative de la gravitation aboutit à une théorie

non-renormalisable.

Il est intéressant de noter que les fondements et postulats de la mécanique quantique sont mathématiques et
moins bien motivés que ceux, comme nous le verrons dans le prochain chapitre, de la mécanique relativiste.
La mécanique pouvant être exprimée dans un langage unificateur qu’est la géométrie différentielle, il existe
des tentatives de quantification dans ce formalisme connues sous le nom de quantification géométrique, qui
essaye de garder une ressemblance avec le formalisme de la mécanique quantique.
Il est ainsi difficile de concilier gravitation et mécanique quantique. Par exemple, si on regarde au niveau classique
l’évolution d’une particule comme un neutron ultra-froid dans le potentiel gravitationnel terrestre, classiquement,
on s’attendrait à ce que son évolution ne dépende pas de sa masse en vertu du principe d’équivalence, mais
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2.3. LA RELATIVITÉ GÉNÉRALE 37

quantiquement, il en est tout autrement : dans le potentiel V = mggz, l’équation de Schrödinger pour ce neutron
en chute libre, d’énergie E, peut se réécrire

− ~2

2mi

d2

dz2
Ψ(z) +mggzΨ(z) = EΨ. (2.69)

Dans cette équation faisant intervenir un objet quantique dans un champ de gravité classique, on remarque que
les termes en m ne se simplifient pas, violant ainsi le principe de Galilée puisque l’on peut mesurer la masse
de l’objet quantique en regardant sa chute dans le champ de gravitation. Cela a été réalisé par l’expérience
GRANIT [20]. L’interprétation la plus simple consiste à considérer que l’universalité de la chute libre est bien
respectée et que l’effet en question est indépendant de la gravitation puisque la masse intervient déjà dans
l’étalement du paquet d’onde pour une particule libre.
La gravitation étant un effet physique important, il est nécessaire d’en tenir compte pour l’obtention d’une
théorie plus fondamentale de la physique. Cependant, appliquer la théorie quantique des champs directement à
la gravitation amène de nouvelles difficultés, notamment conceptuelles comme la définition du vide, mais aussi
des problèmes de renormalisation. Même si ce domaine est encore en développement, on va par la suite adopter
l’idée qu’il faut d’abord définir un cadre quantique propice à la gravitation avant de regarder son interaction
avec les autres forces existantes. Avant cela, il est nécessaire de connâıtre exactement ce qu’est la gravitation.
Le prochain paragraphe va alors permettre d’introduire la gravité via son aspect simplement géométrique.

2.3 La Relativité Générale

La mécanique newtonienne permet de comprendre comment un objet se déplace quand il est soumis à des
forces comme la force de gravitation, et la relativité restreinte permet de comprendre quelles sont les lois pour
passer d’un référentiel à un autre lorsque ceux-ci sont en mouvement relatif à une vitesse V . La relativité
générale n’est pas motivée par des résultats empiriques (sauf peut-être pour l’avancée du périhélie de Mercure)
mais par la contradiction entre la gravitation newtonienne et les principes fondamentaux de l’espace-temps
formulés par la relativité restreinte. Elle va ainsi permettre de concilier ces deux théories par la considération
d’un espace-temps courbe. De même que pour les paragraphes précédents, cette introduction sera très brève.

2.3.1 Les principes et leur conséquences

Le principe d’équivalence d’Einstein

En relativité générale, la structure de l’espace-temps est généralisée en se basant sur le principe d’équivalence,
découlant directement de l’universalité de la chute libre,

Principe d’équivalence d’Einstein : En tout point d’espace-temps, il est possible de choisir un système de
coordonnées localement inertiel tel que, dans une région suffisamment petite, les lois de la physique prennent
la même forme que celles pour un système de coordonnées cartésiennes non-accéléré en l’absence de gravitation.

Suivant cet énoncé, les lois dans ces référentiels inertiels doivent alors être localement lorentziennes comme
en relativité restreinte.

Le principe de covariance généralisé

Comme il n’existe pas de référentiel privilégié, d’après le principe de relativité, ces lois doivent s’écrire de
façon identique quel que soit le référentiel choisi. Il est alors nécessaire d’obtenir une formulation covariante
des équations, et le principe de covariance généralisé impose ainsi que les lois de la physique soient inva-
riantes sous les changements de coordonnées de l’espace-temps. Les difféomorphismes de l’espace-temps étant le
groupe de jauge de la relativité générale, les quantités physiques observables doivent alors être invariantes par
difféomorphismes. En relativité restreinte, l’utilisation de tenseurs a permis l’obtention d’équations covariantes,
et il en sera de même en relativité générale, mais suivant une utilisation plus générale du concept de tenseur.

L’espace-temps courbe

De plus, le champ gravitationnel n’est pas uniforme partout, comme on peut le constater sur Terre où il
n’est vectoriellement homogène nulle part, et deux référentiels infinitésimalement proches ne sont donc plus
équivalents puisque le choix du système de coordonnées localement inertiel va différer. D’un point de vue
géométrique, cela signifie donc que l’espace-temps en présence de gravitation n’est plus plat, et possède une
courbure liée au champ gravitationnel. Comme il dépend des objets se mouvant dans l’espace-temps, la courbure
de l’espace-temps est elle-aussi dynamique : un corps massif en mouvement va donc modifier la courbure de
l’espace-temps, qui va elle même modifier le mouvement de tous les corps présents, et cette dynamique va

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



38 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

alors être encodée dans les équations d’Einstein. D’autre part, la mesure d’une distance entre deux points est
donnée par la métrique gµν qui doit ainsi varier d’un point à un autre. En langage mathématique : l’espace-temps
forme une variété pseudo-riemannienne, et en se basant sur les résultats de la relativité restreinte, il doit avoir 4
dimensions tel que la métrique soit de signature (−,+,+,+) (variété lorentzienne). On va ainsi voir que gµν ne
décrit pas seulement les propriétés métriques et causales de l’espace-temps mais aussi le champ gravitationnel.
Elle devient alors un élément dynamique, liée par les équations d’Einstein au tenseur énergie-impulsion décrivant
le contenu en matière et énergie de l’univers.

2.3.2 La dérivée covariante, la connexion et la courbure

Toutes les équations physiques demandent de comparer la valeur d’un champ (généralement vectoriel ou
tensoriel) en un point avec sa valeur en un autre point. C’est très exactement ce que permet la notion de
dérivée en espace plat, mais les choses ne se passent plus aussi simplement en espace courbe. En particulier
la dérivée usuelle d’un vecteur ne forme pas un tenseur. Cela peut se voir du point de vue géométrique par
le fait que le résultat dépend du chemin suivi ou du point de vue analytique à cause des termes de dérivation
seconde des coordonnées qui apparaissent lors d’un changement de coordonnées. Ces dérivées secondes sont
nulles dans le cas d’un espace plat mais ne le sont plus dans un espace courbe. Il faudra donc construire un
nouvel objet, la dérivée covariante, qui permet de s’affranchir de ces difficultés et qui se comporte effectivement
de manière tensorielle. Celle-ci utilisera un autre objet important, le coefficient de connexion. Il s’agit, en
général, d’un élément additionnel qui doit être ’donné’ en même temps que l’espace considéré. Il encode la
manière dont les points voisins sont connectés et permet donc le calcul de dérivées. Néanmoins, suivant des
hypothèses raisonnables (absence de torsion et compatibilité métrique), la connexion peut s’exprimer en fonction
des dérivées de la métrique. Reste à évaluer la courbure elle-même : c’est à cette fin qu’est construit le tenseur
de Riemann. Intuitivement, il peut être vu comme indiquant la différence de variation d’un vecteur suivant le
chemin selon lequel on l’évalue entre deux points voisins. Plus profondément, on peut le comprendre comme le
’champ moteur’ de la dynamique en espace courbe : il renseigne directement sur l’accélération de la séparation
des géodésiques.

La connexion affine et dérivée covariante

On va ainsi chercher un objet qui, via un tenseur, permettra à tout observateur d’évaluer la courbure en un
endroit de l’espace-temps. Mathématiquement, une connexion affine (linéaire) ∇ sur une variété différentiable
M est une application qui associe à un couple de champs vectoriels X,Y ∈ X (M) un champ vectoriel ∇XY ∈
X (M) telle que

1. (X,Y ) → ∇XY est R-bilinéaire en X et Y ,
2. pour f ∈ F(M), ∇fXY = f∇XY et ∇X(fY ) = f∇XY + (Xf)Y ,

Pour connâıtre la façon dont se propage un vecteur quelconque, on définit son action sur la base des vecteurs
de U ⊂M , un ouvert de M de coordonnées locales (q1, ..., qm), telle que

∇∂i(∂j) = Γkij∂k. (2.70)

Les m3 symboles Γkij ∈ F(U) sont les symboles de Christoffel de la connexion∇ (dans la carte (U , q1, ..., qm)).
Cette connexion donne une information ’locale’ car elle s’exprime dans le référentiel dans lequel on se situe.
Sous un changement de coordonnées, (q1, .., qm) → (q′1, .., q′m), les symboles de Christoffel se réécrivent selon

Γ̄cab =
∂qi

∂q′a
∂qj

∂q′b
∂q′c

∂qk
Γkij +

∂2qk

∂q′a∂q′b
· ∂q

′c

∂qk
, (2.71)

montrant que les Γkij ne se transforment pas comme un tenseur. On va pouvoir définir un objet mathématique,
la dérivée covariante ∇X qui, à partir d’un champ vectoriel ∈ X (M), va donner un champ tensoriel ∈ T1(M).
Pour un vecteur X = ξi∂i dans un système de coordonnées, on nomme les composantes de cette dérivée ∇X
par ∇X = (Djξ

i) dxj ⊗ ∂i, avec
Djξ

i = ξi;j = ∂jξ
i + Γijkξ

k. (2.72)

Les ∂jξi ne se transforment pas comme un tenseur, tandis qu’il suit de la définition de ∇X que les ξi;j sont bien
les composantes du tenseurs ∇X ∈ T1(M). Appliquer cette définition à tous types de tenseurs de composantes
T i1..irj1..jr

= T (∂i1 , ..., ∂is , dx
j1 , .., dxjr ) permet de montrer son application générale

DkT
i1..ir
j1..jr

= T i1..irj1..jr ,k
+

r∑
m=1

Γimkl T
i1..l..ir
j1..jr

−
s∑

m=1

ΓlkjmT
i1...ir
j1..l..jr

. (2.73)

D’autre part, la dérivée covariante est reliée à la dérivée de Lie par la relation

LXY = [X,Y ] = ∇XY −∇YX (2.74)

qui va permettre de relier la dérivée de Lie aux crochets de Poisson.
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2.3. LA RELATIVITÉ GÉNÉRALE 39

Notion de géodésique et trajectoire

Soit I ⊂ R un intervalle et γ : I → M : t → γ(t) un chemin. Le champ vectoriel X ∈ X (M) est appelé
autoparallèle le long de γ si

∇γ̇X = 0, (2.75)

que l’on note parfois dX
dt = 0. Le champ vectoriel ∇γ̇X est appelé la dérivée covariante de X le long de γ.

Pour un système de coordonnées donné, avec X = ξi∂i et γ̇ = dqi

dt ∂i,

∇γ̇X =
(
dξi

dt
+ Γijkξ

k dq
j

dt

)
∂i, (2.76)

montrant que ∇γ̇X ne dépend des valeurs de X que le long de γ. En géométrie, une courbe γ est appelée une
géodésique si γ̇ est autoparallèle le long de γ, i.e. ∇γ̇ γ̇ = 0. Cette notion est importante en physique puisque
l’on s’attend à ce qu’un corps suive une trajectoire telle que les vecteurs vitesses y soient tangents en tous points,
et donc que γ̇ soit autoparallèle le long de γ. Dans le système de coordonnées γ(t) = (qi)mi=1, cette condition
s’exprime selon

q̈i + Γijkq̇
j q̇k = 0, (2.77)

qui est l’équation des géodésiques, donnant ici les trajectoires de corps libres. Cette équation correspond ainsi
au principe fondamental de la dynamique d’un corps dans un espace-temps courbe, donc soumis à la gravitation
qui n’est plus une force : elle est universelle et ne dépend pas de la masse de la particule, comme voulu par
le principe d’équivalence. Les corps vont alors suivre les géodésiques qui tiennent compte de la déformation de
l’espace-temps, encodée dans les symboles de Christoffel Γijk, comme pour les forces inertielles 11 dont fait partie
la force de Coriolis.

Courbure et torsion d’une connexion affine, identités de Bianchi

Pour ∇ une connexion sur M , on définit la torsion de ∇ comme étant l’application bilinéaire

T : X (M)×X (M) → X (M)
(X,Y ) → T (X,Y )=̇∇XY −∇YX − [X,Y ], (2.78)

et la courbure de ∇ est l’application trilinéaire

F : X (M)×X (M)×X (M) → X (M)
(X,Y, Z) → F (X,Y )Z=̇∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z, (2.79)

avec T (X,Y ) = −T (Y,X) et F (X,Y ) = −F (Y,X). Dans un système de coordonnées donné, les composantes
du tenseur de torsion sont données par

T kij = dxk(T (∂i, ∂j)) = Γkij − Γkji. (2.80)

Si la torsion est nulle, alors Γkij = Γkji et une telle connexion est appelée symétrique. En relativité générale, le
tenseur de courbure est le tenseur de Riemann dont les composantes s’écrivent

Rijkl = dxi(F (∂j , ∂k)∂l) = dxi([Dj , Dk]∂l) = Γilj,k − Γikj,l + ΓnljΓ
i
kn − ΓnkjΓ

i
ln. (2.81)

qui, une fois contracté avec le tenseur métrique, permet d’obtenir deux quantités importantes en relativité
générale, le tenseur de Ricci et le scalaire de Riemann

Rjl = Rijil = Γilj,i − Γiij,l + ΓnljΓ
i
in − ΓnijΓ

i
ln et R = Rii. (2.82)

La connexion pseudo-Riemannienne

On a ainsi défini un tenseur permettant d’évaluer la courbure le long du trajet, le tenseur de Riemann, qui
est considéré comme dynamique en relativité générale. Cependant, nous n’avons exprimé pour le moment que
la courbure en fonction de la connexion, sans avoir les moyens de connâıtre son évolution. Ce que l’on observe
est la mesure des distances entre deux points proches, et ce via le tenseur métrique gµν qui donne l’élément de
longueur

ds2 = gµνdx
µdxν . (2.83)

11Pour le cas d’une particule de masse m soumise à une force F , l’équation des géodésiques s’écrit simplement

m∇q̇ q̇ = F ↔ q̈i + Γi
jk q̇j q̇k =

F i

m
.
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40 CHAPITRE 2. MÉCANIQUE QUANTIQUE ET RELATIVITÉ

Selon la courbure, la distance entre deux points dans l’espace-temps va changer : par exemple, sur un plan ou
sur une sphère, la distance entre deux même points ne sera la même. C’est la métrique qui va ainsi permettre
de connâıtre la géométrie de l’espace-temps, dynamique. Dans la construction de la théorie, pour retrouver
les résultats en espace-temps plat, on demande que la connexion soit une connexion métrique, c’est à dire
∇g = 0, et sans torsion Γkij = Γkji. On peut alors montrer que la seule connexion possible est la connexion
riemannienne ou connexion de Levi-Civita sur (M, g) et que pour tous systèmes de coordonnées, la forme
générale de la connexion pour les espaces Riemanniens, s’écrit

Γkij =
1
2
gkl[gil,j + gjl,i − gij,l]. (2.84)

Un tenseur de courbure pour une connexion sans torsion va alors vérifier les identités de Bianchi∑
cycl(j,k,l)

Rijkl = 0,
∑

cycl(k,l,m)

Rijkl; m = 0, (2.85)

et possède aussi les propriétés

Rijkl = −Rjikl, Rijkl = Rklij , Rijkl = −Rijlk. (2.86)

2.3.3 Les équations d’Einstein

Einstein, dans sa tentative de construction d’une nouvelle théorie de la gravitation, a amené une nouvelle
compréhension de notre monde : la gravitation n’est plus une simple force, mais est dictée par la courbure de
l’espace-temps, qui elle-même est influencée par le contenu en matière et énergie de l’univers. La dynamique d’un
tel système devant être vérifiée dans tous les référentiels, les équations doivent ainsi être tensorielles. Ce sont les
équations d’Einstein, supposant que la courbure de l’espace-temps, donnée par Gµν , doit être proportionnelle
au contenu en matière-énergie du système, donné par le tenseur d’énergie-impulsion Tµν , selon

Gµν = κTµν . (2.87)

Tµν est le flux de la µème composante de la quadri-impulsion suivant la direction ν, et doit s’annuler en l’absence
de contenu. Il peut se décomposer selon

– T 00 la densité d’énergie,
– T 0i le flux d’énergie à travers la surface unitaire suivant la direction i,
– T ii le flux de la ième composante d’impulsion dans la direction i par unité de surface,
– T ij le flux de la ième composante d’impulsion dans la direction j par unité de surface

et contenant les termes de cisaillement,
– T i0 la densité de la ième composante d’impulsion,

et est donc de rang 2 puisque l’on parle de densités. Il doit de plus être de divergence nulle, donnant la condition
de conservation de l’énergie

Tµν;ν = 0, (2.88)

montrant que ce tenseur est symétrique12 Tµν = T νµ.
Concernant le tenseur Gµν , il rend compte de la géométrie de l’espace-temps et doit donc être construit avec
les objets disponibles pour décrire la variété. On demande donc à ce qu’il soit

– une indication de la courbure, nul dans un espace-temps plat,
– construit avec le tenseur de Riemann R, l’objet géométrique concordant avec le premier point,
– linéaire en tenseur de Riemann, afin d’avoir la théorie la plus simple,
– symétrique et de rang 2 à cause du tenseur énergie-impulsion et de l’équation d’Einstein,
– de divergence nulle.

Cette dernière condition Gµν ;µ = 0, liée aux identités de Bianchi, garantit le fait que Tµν;µ = 0 et permet ainsi
de laisser libre le choix du système de coordonné, et donc de respecter le principe de covariance généralisé.
En effet, les équations d’Einstein, au nombre de dix, servent à donner l’évolution de la géométrie de l’espace-
temps, et il est alors nécessaire de donner dix conditions initiales pour gµν . Cependant, la conservation du
tenseur énergie-impulsion doit nécessairement imposer 4 lois de conservation, indépendamment de la géométrie,
amenant une sous-détermination de la théorie. Les quatres degrés de liberté qui disparaissent par application
de cette condition de divergence nulle sur Gµν se répercutent sur gµν et correspondent ainsi à la la liberté sur

12Par exemple,

T 0j = (flux d’énergie)=(densité d’énergie)*(vélocité moyenne du flux d’énergie)j

=(densité de masse)*(vélocité moyenne du flux de masse)j=(densité de moment)=T j0
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2.3. LA RELATIVITÉ GÉNÉRALE 41

le système de coordonnées. Cette condition représente une condition d’invariance de jauge.
Il existe un unique tenseur respectant les conditions précédentes, le tenseur d’Einstein donné par

Gµν = Rµν −
1
2
gµνR− Λgµν , (2.89)

où Λ est une constante apparaissant naturellement dans la construction, reliée à la constante cosmologique.
La relativité générale doit posséder à la limite en champ faible la même forme que la mécanique newtonienne,
notamment on doit être capable de retrouver l’équation de Poisson. Cela permet de fixer la constante de
proportionnalité entre Gµν et Tµν comme étant

κ =
8πG
c4

, (2.90)

où G est la constante de Newton.
Cette démarche a été celle suivie par Einstein, mais il est aussi possible de la dériver à partir d’une formulation
lagrangienne, comme l’a fait initialement David Hilbert en donnant une action pour la relativité générale.
Cette action doit se comporter comme une quantité scalaire sous un changement de coordonnées, et il est assez
simple de trouver une densité lagrangienne telle que S =

∫
Σ
dµL. Il existe la forme volume donnée par l’équation

(1.51) et qui a été montrée comme étant une quantité conservée par difféomorphisme13 : la mesure dµ est ainsi
donnée dans notre cas par d4x

√
−g.

L’autre scalaire auquel on puisse penser et encodant la courbure est simplement donné par le scalaire de
Riemann R, tel que l’action finale s’écrive

S =
1
2κ

∫
Σ

d4x ·
√
−g ·R+ Smat. (2.91)

Dans ce formalisme, avec le principe variationnel, les équations d’Einstein sont alors obtenues par la variation
de l’action selon la métrique

δS
δgµν

= 0 ⇔ Gµν = κTµν . (2.92)

Cette action d’Einstein-Hilbert n’est cependant pas la seule action possible, et il existe d’autres formulations
possibles donnant les même résultats, comme l’action de Plebanski.

2.3.4 Observations sur la relativité générale

La relativité générale en tant que théorie géométrique donne ainsi une nouvelle conception de l’espace-temps,
non plus absolu comme en mécanique newtonienne, mais évolutive pour laquelle le champ dynamique correspond
au tenseur métrique gµν . Cette absence d’espace-temps fixe se nomme ’invariance de fond’, et correspond à
l’invariance de l’action sous l’effet de difféomorphismes. Cette théorie est vérifiée avec une grande précision dans
notre système solaire, donnant notamment l’explication de la déviation de l’avancée du périhélie de Mercure, ou
plus simplement au quotidien permettant l’utilisation des systèmes de positionnement par satellites de manière
assez précise, mais aussi dans le cas de champs forts avec l’observation des étoiles à neutron, via notamment les
pulsars binaires14, corroborant les effets non-perturbatifs prédits par la théorie.
Cependant, les hypothèses qui ont été faites dans sa construction sont discutables, et il est nécessaire de chercher
à améliorer notre compréhension de la gravitation puisque elle présente certains défauts comme la présence
d’une singularité de l’espace-temps en cosmologie. Des théories ’classiques’ gardant les idées fondamentales de
la relativité générale, comme l’invariance de fond, ont ainsi été développées afin de résoudre ces problèmes
(théories f(R), scalaire-tenseur,...). Néanmoins, le travail effectué par Einstein a permis une grande avancée
scientifique, et afin d’avoir une meilleure compréhension de la gravitation, une démarche logique est alors de
regarder quels pourraient être ses aspects quantiques.

13Un changement de coordonnée peut être vu comme une transformation infinitésimale donnée par δq = {q, H(δt)} et le théorème
de Liouville (1.72) peut s’appliquer.

14Une étoile à neutrons en rotation constituant l’une des horloges les plus précises possibles, la rotation d’un tel astre, en champ
fort, autour d’un compagnon massif dans un système binaire serré, constitue un test idéal pour les théorie des gravitation étendue
(type scalaire-tenseur).
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Chapitre 3

La Gravité Quantique à Boucles

Introduction

La relativité générale dans sa conception ignore complètement la physique quantique qui devient importante
lors de la mise en jeux de grandes énergies, et elle va donc nécessairement ne plus donner une description
physique dans certains régimes. Notamment,

• il existe dans cette théorie des singularités, comme le Big Bang, où le continuum se déchire et où l’espace-
temps cesse d’exister, montrant que cette théorie cesse d’être prédictive.

• il en va de même dans le cas des Trous Noirs qui émettent un rayonnement de température proportion-
nelle à ~, la température de Hawking [25], et pour lesquels l’approximation semi-classique menant à
l’expression de cette température devient invalide à la fin du processus d’évaporation.

• la gravité se couple universellement avec toutes les formes d’énergie. En théorie quantique des champs, on
s’attend à ce que cette théorie soit renormalisable, ce qui n’est actuellement pas le cas. Il n’y a ainsi pas
pour le moment de cadre théorique pour une possible unification 1 de toutes les interactions.

• il n’y a pas besoin d’atteindre le niveau de l’échelle de Planck pour voir des effets quantiques apparâıtrent,
et une théorie de l’univers qui ne fait nullement référence à ~ ne peut être correcte.

D’autre part, en électrodynamique classique, pour le cas de l’atome d’hydrogène, les états d’énergie minimum ne
sont pas limités et peuvent prendre une valeur nulle, rendant la matière instable car l’électron pourra alors tomber
sur le noyau. L’application des principes quantiques, en raison de la valeur non-nulle de la constante de Planck,
montre que l’état d’énergie minimal doit nécessairement avoir une valeur finie non nulle, −me4/2~2 ≈ −13.6eV.
Ce résultat contraint la ’trajectoire’ des électrons autour de ce noyau, et on espère ainsi qu’en faisant intervenir
l’aspect quantique de la gravitation, comme pour le cas de l’atome d’hydrogène, les différents problèmes pourront
être résolus. La gravitation sous son aspect quantique prendra place au moins aux échelles de Planck, mais des
effets quantiques pourront aussi se faire ressentir aux échelles classiques. Quantifier la gravitation reviendra ainsi
à quantifier la géométrie de l’espace-temps et une attention toute particulière devra être portée sur la notion
de temps.
Le lagrangien de la relativité générale est donné via l’action d’Einstein-Hilbert (2.91). En examinant cette
équation, on remarque que comme dans le cas de électromagnétisme, il existe des multiplicateurs de Lagrange
cachés : les composantes de la métrique g00 et g0a sont présentes sans leur dérivée temporelle et vont s’exprimer
selon la lapse fonction N et un vecteur similaire, le shift vecteur Na telles que g00 = 1

N2 et g0a = Na

N2 . Cela
implique donc que seules les composantes spatiales de la métrique doivent être considérées comme variables de
configuration gab, de moments conjugués Pab liés à la courbure extrinsèque. Ces multiplicateurs de Lagrange
vont ainsi être associés comme dans le cas de l’électromagnétisme à des contraintes, et l’hamiltonien total ne sera
en fait qu’une combinaison linéaire de ces contraintes, comme dans l’exemple en mécanique classique Sec.(1.9).
Il y aura la contrainte de Difféomorphismes liée au shif vecteur Na et dont le flux généré sera associé aux
difféomorphismes spatiaux, mais aussi la contrainte hamiltonienne qui représente l’invariance de la théorie
sous le choix de toutes les déformations possibles de l’hypersurface spatiale suivant N , différent en tous ses
points. Il y a ainsi 6 degrés de liberté donnés par la métrique spatiale, et 4 contraintes qui vont au final nous
laisser avec seulement 2 degrés de liberté, comme dans la théorie de Maxwell.

1Demander l’unification résulte plus d’une démarche historique (Maxwell unifiant l’électrodynamisme et le magnétisme, ou bien
le modéle de Glashow-Salam-Weinberg pour la force électrofaible) et esthétique que d’une nécessité conceptuelle.
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44 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

3.1 Les théories de Yang-Mills et les holonomies

Cette partie termine l’introduction des notions mathématiques et physiques utiles dans la compréhension et
la construction d’une théorie quantique de la gravitation. Comme on le verra par la suite, il existe des nouvelles
variables, appelées variables d’Ashtekar qui font de la relativité générale une théorie proche d’une théorie
de Yang-Mills (voir [26]), mais avec quelques subtilités, rendant possible l’application de certaines méthodes de
quantification.

Les théories de Yang-Mills

Les théories de Yang-Mills sont une généralisation de la théorie de l’électromagnétismen, dont le groupe
de transformation est abélien, à des groupes de transformations non-abéliens. Etonnement, jusqu’au groupe
SU(5) → SU(3) × SU(2) × U(1), on a été capable de décrire via de telles théories les interactions faibles
(via SU(2) faisant apparâıtre naturellement les bosons Z,W±) et fortes (via SU(3) pour la chromodynamique
quantique et l’utilisation des gluons). Hélas, la généralisation la plus simple à SU(5) pour la grande unification
ne fonctionne pas. Le modèle standard de la physique des particules ainsi construit permet de décrire grâce aux
théories de Yang-Mills les interactions physiques observées, mais toutes les tentatives pour briser des groupes
plus compliqués se sont avérées jusqu’alors infructueuses.
Dans le cas des équations de Maxwell, on utilisait des quadri-vecteurs, mais il est possible de généraliser en
utilisant des potentiels vecteurs Aµ composés d’une collection de matrices, éléments d’une algèbre (ayant comme
opération les crochets de Poisson ou plutôt les commutateurs). Le potentiel vecteur peut ainsi s’écrire selon

Aµ =
∑
i

AiµT
i, (3.1)

où les Aiµ sont ses composantes dans la base des matrices T i des générateurs de l’algèbre. De même que pour
l’équation (1.142), il est possible de définir une dérivée covariante pour des transformations internes dans le
groupe, et non plus pour des transformations de coordonnées dans l’espace-temps, telle que

Dµ = ∂µ11 +
i

2
g ·Aiµ · T i, (3.2)

où g, comme e, est une constante de couplage. On a ainsi obtenu la dérivée covariante de Yang-Mills. Dans
le cas général, les matrices T i satisfont des relations de commutation propres au groupe considéré, telles que

[T i, T k] = i · f jkl · T l, (3.3)

où les f jkl sont les constantes de structure de l’algèbre qui, une fois connues, permettent de la caractériser
complètement. Une algèbre très utile pour la suite2 est l’algèbre su(2) formée à partir du groupe SU(2). Une
base est donnée par les matrices de Pauli σi, hermitiennes,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.4)

qui satisfont les relations de commutations avec les constantes de structure f ijk = 2εijk

[σi, σj ] = 2iεijkσk. (3.5)

D’autre part, en électromagnétisme, le groupe des transformation de jauge est U(1), abélien, et les champs
commutent [Aµ, Aν ] = 0. On a vu que l’on pouvait définir le champ tenseur électromagnétique Fµν , aussi appelé
tenseur de Faraday, comme s’écrivant Fµν = ∂µAν − ∂νAµ, et cette expression est assez similaire à celle donnée
pour le tenseur de Riemann par l’équation (2.81). Il existe ainsi une construction géométrique commune au
tenseur de Faraday et au tenseur de Riemann, à travers un formalisme mathématique, le calcul de Cartan
appliqué aux formes différentielles, très employé en gravité quantique à boucles. Sur un fibré, on définit une
1-forme de connexion ω ∈ Λ1 à partir de la définition de la connexion donnée par l’équation (2.70),

∇X∂j = ωij(X)∂i → ωij = Γijkdx
k, (3.6)

ainsi qu’une 2-forme de courbure F ij en lien avec l’équation (2.79)

F (X,Y )∂j = F ij (X,Y )∂i, (3.7)

Ces formes doivent satisfaire les équations de structure de Cartan

dωij + ωik ∧ ωkj = F ij , (3.8)

2Les variables de Ashtekar sont fondées sur des potentiel vecteurs à valeur dans su(2).
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3.1. LES THÉORIES DE YANG-MILLS ET LES HOLONOMIES 45

permettant de définir l’expression des courbures (1.144) et (2.81). Ce formalisme simplifie beaucoup les calculs
et donne un cadre commun à la relativité générale et aux théories de Yang-Mills pour lesquelles on voit les
potentiels vecteurs comme des connexions sur un fibré particulier.
Ainsi dans les théories de Yang-Mills, la courbure est obtenue selon

[Dµ, Dν ] = −g
2
F iµνT

i, (3.9)

dont l’expression de F iµν dans le cas général est alors donnée par

F iµν = ∂µA
i
ν − ∂νA

i
µ + gεijkAjµA

k
ν , (3.10)

similaire à l’équation (1.144). De même que dans l’équation (1.128), les équations du mouvement sont alors
données par la relation

DµF
µν = 0, (3.11)

et le lagrangien, comme dans l’équation (1.127), est donné maintenant en utilisant la trace

L = −1
4

∫
d3xF iµνF

iµν . (3.12)

Le champ conjugué au potentiel vecteur Aia est alors comme auparavant le champ électrique Eai = F 0a
i , et la

loi de Gauss trouvée dans l’équation (1.133) est alors donnée par

DaE
a = 0. (3.13)

La contrainte de Gauss est maintenant définie par l’expression G[λi] =
∫
d3x · λi · (DaE

a)i, générant une
transformation de jauge

{Aia, G[λc]} = ∂aλ
i + gεijkAjaλ

k = (Daλ)i, (3.14)

et les variables canoniques étant des éléments d’un algèbre, soient des matrices, on peut écrire de manière
générale cette transformation selon

A′a = GλAaG
−1
λ +Gλ∂aG

−1
λ = GλDaG

−1
λ et E

′a = GλE
aG−1

λ , (3.15)

avec Gλ = exp[−iλaTa] les matrices de la représentation du groupe, de générateurs Ta. Cette transformation est
plus compliquée que dans le cas de l’électromagnétisme puisque dans les théories de Yang-Mills, à la différence
de l’électromagnétisme, le tenseur de Faraday se transforme lui aussi sous une transformation de jauge, et
les champs électromagnétiques correspondant ne seront donc plus des observables adéquats. Cependant, il est
toujours possible de construire des observables qui soient invariantes de jauge, dont des exemples sont les
holonomies.

Les holonomies

En électromagnétisme, selon la vision de Faraday, le champ électromagnétique peut être perçu comme
un ensemble de lignes remplissant tout l’espace et reliant 2 objets chargés entre eux. Cependant, la grande
découverte de Faraday et Maxwell a été de comprendre que ce champ est une entité autonome dont la structure
peut être déterminée indépendamment des charges électriques : en l’absence de ces charges, on peut tout de
même imaginer que ces lignes, dites de Faraday, soient toujours présentes et forment des courbes fermées dans
l’espace, des boucles. Le champ électromagnétique est alors vu à travers la propagation d’une déformation de ces
lignes dont la forme varie sous l’action des lignes voisines ainsi que des charges électriques, comme une vague se
propageant dans l’océan, et la lumière n’est rien d’autre qu’un des mouvements ondulatoires rapides des lignes
de champs. Ces déformations sont variables et régies par les équations de Maxwell, qui représentent en un point
de l’espace le vecteur tangent à une ligne de Faraday.
En considérant un espace rempli de telles boucles, il est alors possible de regarder quelles propriétés on peut en
tirer. Sur une courbe fermée C, de surface S et de normale ~n, d’après le théorème de Stokes, la circulation du
potentiel vecteur est donnée par∮

C
~ds · ~A =

∫
S

d2x (~∇× ~A)a · na =
∫
S

d2x (εabcFbc · na). (3.16)

montrant que la circulation du potentiel vecteur sur une courbe fermée permet d’obtenir le champ tenseur
électromagnétique Fµν . Le faire sur toutes les courbes présentes permet alors de connâıtre la valeur des champs
électromagnétiques en tout point de l’espace. L’équation (3.16) a pu être exprimée en fonction de Fµν grâce
à l’absence de termes non-linéaires dans l’expression, et on voit ainsi directement que la généralisation aux
théories de Yang-Mills va s’avérer plus compliquée. D’autre part, sous une transformation de jauge, le terme
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46 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

supplémentaire est un gradient ∂µλ qui n’aura aucun effet sur la valeur de la circulation quand on considère une
courbe fermée : son intégrale donnera une différence de deux même termes puisque le point initial correspond au
point final, et le résultat sera alors invariant de jauge. Dans le cas d’une théorie de Yang-Mills, les transformations
de jauge sont beaucoup plus compliquées et la circulation du potentiel vecteur le long d’une courbe fermée ne
sera pas un invariant. Il faut donc une notion plus élaborée de circulation d’un potentiel vecteur, ce qui est le
cas des holonomies, qui correspondent à l’exponentiation de l’équation précédente pour des boucles fermées.
On cherche ainsi un outil qui permettrait de voir quelle est l’évolution d’un champ, en regardant comment un
objet est déformé quand on le déplace sur ce champ. On a déjà vu en relativité générale qu’il existait le transport
parallèle, et on pourrait utiliser cette notion le long d’un chemin fermé et voir ce que cela apporterait sur la
connaissance du champ. Ainsi, si par exemple on propage auto-parallèlement le champ électrique Ea = Eai T

i

le long d’une courbe γa(t), alors selon l’équation (2.75), sa dérivée covariante de Yang-Mills doit être nulle :

γ̇a(t)DaE
b = 0, (3.17)

où γ̇a(t) = dγa

dt (t) est le vecteur tangent à la courbe. On a ainsi l’équation résultante qui s’exprime selon

γ̇a(t)∂aEb(t) = −igγ̇a(t)Aa(t)Eb(t), (3.18)

où Aa et Eb sont évalués au même point de la courbe. Après intégration de cette équation, on obtient

Eb(t) = Eb(0)− ig

∫ t

0

ds · γ̇a(s)Aa(s)Eb(s), (3.19)

et on peut encore utiliser cette solution par itération sur un chemin intermédiaire γ̇a(s) en remplaçant Eb(s)
par son expression, et avoir ainsi comme en théorie des champs

Eb(t) =
∞∑
n=0

(
(−ig)n

∫
t1≥...≥tn≥0

dt1..dtn γ̇a1(t1)Aa1(t1) ... γ̇an(tn)Aan(tn)
)
Eb(0) (3.20)

= U(A, γ)(t) Eb(0). (3.21)

U(A, γ) est appelé propagateur parallèle, correspondant à une matrice dont prendre la trace permettra
d’obtenir un scalaire, donc invariant sous toute transformation de jauge et pouvant s’écrire

U(A, γ)(t) = P
[
exp

(
−ig

∫ t

0

ds · γ̇a(s)Aa(s)
)]

≡
∞∑
n=0

(−ig)n

n!
P
(∫ t

0

ds · γ̇a(s)Aa(s)
)n

. (3.22)

Il propage parallèlement la solution du point γa(0) au point γa(t), et lorsque ces deux points correspondent,
donc quand on propage la solution sur un chemin fermé, U(A, γ) est alors appelé une holonomie ou boucle
de Wilson.
Dans le cas de l’électromagnétisme, le groupe est U(1) et les potentiels vecteurs commutent : P n’a alors aucune
incidence sur le résultat et on retrouve la notion usuelle d’une exponentielle. Ainsi, dans le cas d’un groupe
abélien, le propagateur n’est que l’exponentielle de la circulation du potentiel vecteur le long d’une courbe,
et on a alors réussi via une exponentiation à généraliser la notion de circulation dans le cas d’une théorie de
Yang-Mills. Une conséquence importante est donnée par le théorème de Giles que l’on peut résumer selon

Proposition 13. (Théorème de Giles) Connaissant la trace des holonomies le long de toutes les boucles
présentes sur une variété, pour un potentiel vecteur donné, il est alors possible de construire à partir de ces
traces des objets invariants de jauge pour ce potentiel vecteur.

Plus particulièrement, les observables devront être invariantes sous la contrainte de Gauss et sous une
autre contrainte, telles que leur addition soit la contrainte des difféomorphismes (spatiaux). Les holonomies
ainsi construites seront invariantes sous cette contrainte et représenteront des observables possibles pour toute
théorie invariante par difféomorphismes : elles ne dépendent pas du chemin choisi. Les traces des holonomies vont
ainsi aider à la construction d’observables qui seront fonctions des connexions, et ce résultat va être intéressant
quand on s’intéressera à la gravitation au niveau quantique sous la représentation des boucles.
En électromagnétisme et pour les théories de Yang-Mils, on a vu qu’il était possible de considérer le champ
tenseur électromagnétique F comme une 2-forme de courbure. La construction de la gravité quantique à boucles
s’est inspirée de celle amenant aux théories de Yang-Mills, afin d’exprimer la relativité générale en terme de
potentiels et de champs électriques, et à l’aide du calcul de Cartan pour des formes différentielles, on va pouvoir
construire cette théorie comme une théorie de connexions.
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3.2. LE FORMALISME ADM 47

3.2 Le formalisme ADM

On souhaite quantifier la relativité générale. Les procédures de quantification établies dans le formalisme
canonique sont rigoureuses et bien décrites, et il va être important de connâıtre par la suite l’hamiltonien de
la relativité générale. On a vu auparavant que pour toute théorie invariante par reparamétrisation du temps,
il y avait l’apparition de contraintes, et cela va être le cas ici. De plus, en mécanique quantique, la variable
temporelle joue le rôle d’un paramètre externe, ce qui ne l’est pas en relativité générale, et on va ainsi choisir
une métrique qui va permettre de définir la notion de ’temps’, tout en gardant une liberté sur cette variable
par l’utilisation de multiplicateurs de Lagrange. On va ainsi se placer dans le formalisme ADM, développé
initialement en 1959 par Richard Arnowitt, Stanley Deser et Charles W. Misner.
Ce formalisme correspond à la décomposition de l’espace-temps en choisissant de définir les coordonnées comme
composées d’une coordonnée t ∈ R représentant le temps, et de 3 autres xa ∈ Σ représentant l’espace. La variété
M est ainsi définie par M = R × Σ, et on appelle usuellement Σt l’hypersurface spatiale au temps t, ayant
une topologie quelconque. Ce faisant, on brise la notion de covariance qui traite indifféremment espace et temps
comme une même entité, puisque l’on choisit explicitement les variables. On verra par la suite que l’apparition
de contraintes va permettre de rétablir finalement cette covariance, et permettra de même de définir une notion
d’hamiltonien. On parlera ainsi de la relativité générale en terme de formalisme canonique (hamiltonien), et
non plus covariant (lagrangien).

Décomposition de l’espace-temps

La direction du temps est caractérisée par un vecteur tµ dont les trajectoires sont les courbes paramétrées
par t, et telles que chaque hypersurface spatiale est labellisée par t = constante. On définit nµ comme étant le
vecteur normal à Σt selon gµνnµnν = s où s est la signature de la métrique [27] : pour s = −1 (Lorentzien), on
a la signature (−,+,+,+) et pour s = 1 (Euclidien), on a la signature (+,+,+,+). Dans la suite, on va surtout
se placer dans le cas lorentzien, et on fera surtout apparâıtre s quand il le sera nécessaire.

Fig. 3.1 – Décomposition ADM [14].

On peut ainsi définir la métrique spatiale sur Σt, a = 1..3,

qab = gab − s na nb, (3.23)

et le vecteur tµ peut être décomposé en deux composantes [28],
normale et tangente à Σt selon

ta = Nna +Na. (3.24)

Comme on l’a vu précédemment, N est la lapse fonction
permettant de définir un choix pour l’évolution de la composante
temporelle.Na est le shift vecteur et permet de même de définir
un choix pour l’évolution des composantes spatiales. Ce sont ainsi
un scalaire et un vecteur définis sur Σt qui reflètent la liberté de choisir les composantes de la métrique et
correspondent aux multiplicateurs de Lagrange. De plus, on peut définir la métrique de l’espace-temps pour
cette décomposition par l’élément de longueur

ds2 = s ·N2dt2 + qab(Nadt+ dxa)(N bdt+ dxb). (3.25)

On définit la courbure extrinsèque comme étant

Kab =
1
2
Lnqab, (3.26)

qui est très proche de la dérivée temporelle de la métrique spatiale

q̇ab ≡ Ltqab = 2NKab + LNcqab. (3.27)

La courbure extrinsèque montre comment l’hypersurface spatiale est incurvée par rapport à l’espace-temps,
et comment ainsi sa métrique y évolue. Par exemple si on prend une feuille de papier dépliée, sa courbure
(intrinsèque) est nulle, mais si on en fait un cylindre, sa courbure (extrinsèque) ne l’est pas. Métrique spatiale
et courbure extrinsèque vont ainsi être les variables permettant la construction de la formulation hamiltonienne
de la gravité. Les variables de configuration sont ainsi qab, et leurs moments conjugués P ab, liés à la valeur de
Kab selon l’équation (3.27), et l’action d’Einstein-Hilbert (2.91) peut alors s’écrire

S =
1
2κ

∫
R
dt

∫
Σ

d3x
(
P abq̇ab − [NaHa + |N |H]

)
, (3.28)

de crochets de Poisson
{qab(t, x), P cd(t, x′)} = 2κδa(cδ

b
d)δ

3(x− x′). (3.29)
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48 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

L’hamiltonien total est bien donné par une somme de (densités de) contraintes, Ha la contrainte de moments,
H la contrainte hamiltonienne, tel que

Htot =
1
2κ

∫
Σ

d3x (NaHa + |N |H) , (3.30)

où les densités de contraintes sont bien sûr des fonctions compliquées des variables canoniques, fonctions du
temps.

L’algèbre des déformations dans le formalisme ADM.

En électrodynamisme, il y a conservation de la charge si et seulement si la contrainte de Gauss est préservée
au cours du temps. En relativité générale, dans le formalisme canonique, il va en être de même impliquant alors
la conservation de l’énergie du système :

Conservation des contraintes dans le temps ⇔ ∇µTµν = 0.

L’évolution étant donnée par les crochets de Poisson avec l’hamiltonien total, les contraintes doivent alors
satisfaire la relation

{Htot,Htot} = {Ha +H,Ha +H} = 0 → {Ha,Ha}+ {H,H}+ {Ha,H}+ {H,Ha} = 0. (3.31)

On a ainsi l’obligation que les différents crochets de Poisson doivent être soit nuls, soit proportionnels à une
combinaison linéaire des contraintes existantes

{H,Ha} = aH + bHa, {Ha,Ha} = cH + dHa, etc (3.32)

telles que l’équation (3.31) soit vérifée. On parle ainsi de contraintes de première classe lorsqu’en pre-
nant les crochets de Poisson entre deux contraintes, le résultat est une combinaison linéaire des contraintes.

Fig. 3.2 – Illustration de l’action de
deux contraintes hamiltoniennes successives
donnée par l’équation (3.35) [51].

Il est ainsi possible de calculer les crochets de Poisson entre les
différentes contraintes intégrées ~H[Na] =

∫
Σ
d3xNaHa, et l’en-

semble des crochets de Poisson permettra de donner l’algèbre des
difféomorphismes dont les éléments seront les contraintes : elle
permettra de voir comment se déforme l’hypersurface spatiale au
cours de déplacements successif. On obtient ainsi l’algèbre des
déformations donnée selon

{ ~H[Na], ~H[N b]} = −κ ~H
[
LNaN b

]
, (3.33)

{ ~H[Na],H[N ]} = −2κH [LNaN ] , (3.34)

{H[N1],H[N2]} = s · 2κ ~H
[
qab(N1 ·N2,b −N2 ·N1,b)

]
.(3.35)

Par rapport à une algèbre de Lie donnée par l’équation (3.3),
on peut remarquer que l’équation (3.35) fait intervenir dans l’ar-
gument la variable canonique qab, et la constante de structure
pour ces crochets de Poisson n’en est donc plus une puisqu’elle
est devenue dynamique.

Ce qu’il faut retenir ici est que cette algèbre sera à la base de celle exprimée avec les variables d’Ashtekar,
où on a tenu compte ici, fait important, de la signature de l’espace-temps. L’action de cette algèbre sera un peu
plus explicitée lorsque l’on utilisera les variables d’Ashtekar amenant une autre contrainte.
Deux relations en fonction des contraintes expriment le tenseur d’Einstein Gµν donné par l’équation (2.89) : en
considérant ici le cas du vide, elles s’écrivent

Gµνn
µnν =

sH

2
√
det(q)

, Gµνn
µqνa = − sHa

2
√
det(q)

. (3.36)

Lorsque les contraintes sont nulles, on a alors défini ce que l’on appelle la surface des contraintes et les
solutions des équations du mouvement analogues aux équations d’Einstein, sont alors physiques : on parle
usuellement de système on-shell. En effet, si on considère le shift vecteur comme dépendant des variables de
l’espace des phases, alors pour tout crochets de Poisson d’une quantité F avec la contrainte de difféomorphisme,
il existe un terme supplémentaire donné par {F,Na}Ha qui peut très bien être non nul en dehors de la surface
de contrainte. On ne pourra alors pas définir l’action de (3.33) comme étant une simple dérivée de Lie sur
l’hypersurface spatiale, donc un difféomorphisme, sauf lorsque la contrainte est nulle.

Les deux équations précédentes sont des projections sur des directions orthogonales à l’hypersurface spatiale,
et il faut aussi regarder {H[N ], Pµν} contenant les projections spatiales pour être sûr que Gµν = 0. Il est de plus
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3.3. DÉFINITION DES VARIABLES D’ASHTEKAR 49

possible de faire le même raisonnement une fois la matière ajoutée et obtenir les équations Gµν = κTµν , et dans
le formalisme canonique, la covariance de la théorie sera alors maintenue par la conservation des contraintes
dans le temps. Ce formalisme ADM a d’abord été utilisé par la géométrodynamique dont la quantification a
conduit à l’équation de Wheeler-DeWitt, insatisfaisante, et c’est sur ces bases que se fondera la gravité quantique
à boucles.

3.3 Définition des variables d’Ashtekar

Définition des triades

En chaque point d’une hypersurface spatiale, il est possible de définir un repère par un champ de vecteurs
tridimensionnel, les triades eai ∂a, dont leurs covecteurs, appelés cotriades eiadx

a telles que eai e
j
a = δji et

eai e
i
b = δab , permettent d’exprimer la métrique spatiale selon

qab = eiae
j
bδij . (3.37)

Les indices a, b = 1..3 sont les indices spatiaux de l’hypersurface courbe, alors que les indices i, j = 1..3 sont des
indices internes correspondant à un espace-temps plat de métrique3 δij . La métrique ainsi définie est invariante
sous les rotations locales SO(3) : eia → Oije

j
a, et sachant qu’il existe un double recouvrement de SO(3) par SU(2),

les cotriades peuvent être vues comme des 1-formes à valeur dans su(2). Elles possèdent ainsi 3 degrés de liberté
rotationnels supplémentaires qui vont se traduire par l’apparition d’une nouvelle contrainte, la contrainte de
Gauss4. On parle alors d’espace des phases étendu en ayant rajouté des degrés de liberté supplémentaires.
Dans la suite, on se situera sur cet espace, dans lequel les solutions seront physiques lorsque la contrainte de
Gauss sera nulle. On voit par l’équation (3.37) que la donnée des cotriades permet de définir la métrique spatiale
et on va pouvoir définir une des variables d’Ashtekar qui utilisent cette formulation. Comme précédemment,
il faut introduire la courbure extrinsèque, donnée par l’équation (3.26), pour définir le moment conjugué de
la métrique spatiale. On introduit ainsi une 1-forme Ki

a à valeur dans su(2) qui permet de définir dans cette
formulation la courbure extrinsèque comme étant :

Kab=̇Ki
(ae

i
b). (3.38)

On va de plus introduire la densité de triades Eai de poids +1, définie selon

Eai =̇
1
2
εabcεijke

j
be
k
c =

√
det(q)eai , (3.39)

qui permet de reconstruire la métrique spatiale par la relation

det(q) · qab = Eai E
b
jδ
ij , (3.40)

et de déterminant
det(Eai ) = detE =

1
3!
εijkεabcE

a
i E

b
jE

c
k. (3.41)

Kab étant symétrique, elle doit nécessairement satisfaire la contrainte

Gj=̇εjklKk
aE

a
l = 0, (3.42)

et dans ce jeu de variables, l’action (3.28) s’écrit5

S =
1
2κ

∫
R
dt

∫
Σ

d3x
(
2Eaj K̇

j
a −

[
ΛjGj +NaHa +NH

])
, (3.43)

où Λi est un nouveau multiplicateur de Lagrange. L’espace des phases étendu de coordonnées (Ki
a, E

a
i ) est ainsi

équipé d’une structure symplectique de crochets de Poisson

{Ki
a(x), E

b
j (y)} = κδbaδ

i
jδ

3(x− y). (3.44)

D’autre part, on peut voir qu’il existe une transformation canonique ne modifiant pas les crochets de Pois-
son : pour un paramètre γ non nul, cette transformation s’obtient par le changement de variables (K,E) →
((γ)K = γK, (γ)E = E

γ ), et une conséquence importante est que la contrainte (3.42) n’est pas modifiée par cette
transformation :

Gj=̇εjklKk
aE

a
l = εjkl

(γ)Kk
a

(γ)Eal = 0. (3.45)
3On parle de métrique de Cartan-Killing sur su(2).
4On peut directement le voir en se rappelant les caractéristiques de l’équation (3.13) où il va falloir rédéfinir une nouvelle dérivée

covariante.
5On peut montrer que le terme canonique s’écrit P abq̇ab = 2Ea

i K̇i
a.
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50 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

On parle alors d’une transformation de Weyl qui consiste à faire une ’homothétie’ sur la métrique, ici
qab → qab

γ2 . Cette transformation va apporter une nouvelle liberté sur la théorie et γ ∈ C∗, une constante, est
appelée paramètre de Barbero-Immirzi. Pour différentes valeurs de γ, la procédure de quantification vue
après va mener à des résultats différents, et donc à des théories différentes.
Dans cet espace de phase, on possède certes toute l’information de la relativité générale, mais cette théorie
n’est pas similaire à une théorie de Yang-Mills. Pour ce faire, il est nécessaire de définir une contrainte de
Gauss faisant intervenir une nouvelle connexion, variable conjuguée de la densité de triades, donnant alors une
dérivation covariante comme dans l’équation (3.2). Cette connexion est appelée connexion d’Ashtekar.
Il faut introduire en plus une information donnée par la contrainte de Gauss qui s’obtient en définissant une
connexion conjuguée à la densité de triades par la définition d’une nouvelle dérivée covariante, la connexion
d’Ashtekar.

Dérivée covariante et connexion d’Ashtekar

En relativité générale, on a introduit la dérivée covariante pouvant s’appliquer sur des tenseurs. Ici, on va
étendre la notion de dérivée covariante spatiale, Da, agissant sur les indices a, b, à des tenseurs ayant des indices
dans so(3) et qui sera compatible avec les triades. On introduit alors la notion de connexion de spin Γka en
demandant que la dérivée covariante soit métrique, Dae

j
b = 0, et de façon identique à l’équation (2.72), elle

s’écrit alors pour la densité de triades Eaj

DaE
a
j =̇∂aE

a
j + εljkΓ

k
aE

a
l = 0. (3.46)

Le fait que cette dérivée soit métrique permet de trouver une expression pour la connexion de spin selon les
triades et cotriades,

Γia =
1
2
εijkebk

[
∂be

j
a − ∂ae

j
b + ecje

l
a∂be

l
c

]
, (3.47)

soit encore en termes des densités de triades Eai et de leur dual :

Γia = −1
2
εijkEbj

[
∂aE

k
b − ∂bE

k
a + EckE

l
a∂cE

l
b − Eka

∂b(det Eai )
det Eai

]
. (3.48)

Sous la transformation précédente, on peut voir directement que (γ)Γ = Γ.
Que cherche-t-on ? On a vu dans les théories de Yang-Mills que l’on pouvait avoir une dérivée covariante
de la forme DaE

b = ∂aE
b + εAE où A est une connexion formant une structure symplectique avec le champ

électrique Ea ({A,E}). D’autre part, dans le formalisme ADM, on a vu que la variable canonique était la
métrique spatiale qab, donnée ici par la densité de triades Eai , et que son moment conjugué Pab était lié à la
courbure extrinsèque Kab. On va donc chercher une connexion Aia, la connexion d’Ashtekar, qui soit la variable
conjuguée à la densité de triades Eai , devant contenir l’information sur Ki

a. On va alors regarder la dérivée
covariante et la contrainte Gj donnée par l’équation (3.45), telle qu’après modifications,

Gj = 0 + εjkl
(γ)Kk

a
(γ)Eal = ∂a((γ)Eaj ) + εljk[Γ

k
a + ((γ)Kk

a )]((γ)Eal )

= (γ)Da((γ)Eaj ). (3.49)

On voit ainsi que l’équation (3.49) correspond à une contrainte de Gauss, non intégrée. Elle suggère comme
connexion, dans le cas général,

Aia = Γia + γKi
a (3.50)

qui, avec la densité de triade, possède étonnement une structure symplectique (Aia, E
b
j ), de crochets de Poisson

{Aia(x), Ebj (y)} = κγδbaδ
i
jδ

3(x− y). (3.51)

Ce sont ces deux variables, que l’on appelle variables d’Ashtekar à valeur dans su(2) (en fait so(3)), introduites
en 1986 par Abhey Ashtekar, et Aia est appelée connexion d’Ashtekar. En définissant τi = − i

2σi, elles
s’écrivent

A(τ) = Aiaτidx
a et E(τ) = Eai τ

i∂a, (3.52)

et permettent de définir la formes de courbure

F kab =̇ 2∂[aA
k
b] + εkijA

i
aA

j
b (3.53)

donnée par les équations de structure de Cartan pour la courbure6

F = dA+A ∧A = dAiTi +
1
2
[Ti, Tj ]Ai ∧Aj = (F kabTk)dx

a ∧ dxb. (3.54)

6La démonstration de la théorie en utilisant principalement les formes a été faite de manière complète dans [13].
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3.3. DÉFINITION DES VARIABLES D’ASHTEKAR 51

L’action d’Einstein-Hilbert pour ces variables est alors donnée par

S =
1
2κ

∫
R
dt

∫
Σ

d3x
(
2Eai Ȧ

i
a −

[
λjGj +NaHa +NH

])
, (3.55)

où les densités de contraintes sont alors

1. la densité de contrainte de Gauss

Gj = DaE
a
j = ∂aE

a
j + εljkA

k
aE

a
l , (3.56)

2. la densité de contrainte de moments

Ha = F jabE
b
j , (3.57)

3. la densité de contrainte hamiltonienne

H =
Eai E

b
j√

|det Eai |

[
F kabε

ij
k − 2(1 + γ2)K [i

aK
j]
b

]
. (3.58)

La contrainte de Gauss génère des transformations de jauge de su(2) sur les variables, comme dans le cas des
théories de Yang-Mills :

δGA
i
a = {Aia, G[λ]} = Daλ

i δGE
a
i = {Eai , G[λ]} = [E, λ]ai . (3.59)

La contrainte de moments génère des orbites qui sont liées aux difféomorphismes spatiaux puisqu’elle est
constituée en partie de termes qui en sont responsables. La contrainte qui génèrera des difféomorphismes spa-
tiaux pures est donnée par une combinaison linéaire de la contrainte de moments avec la contrainte de Gauss,
et on parle ainsi de contrainte de Difféomorphismes

Da = Ha −Aia(DbE
b
i ). (3.60)

Pour voir que cette contrainte est bien liée aux difféomorphismes spatiaux, on peut intégrer cette contrainte
avec un champ de vecteurs test Na telle que D[Na] = 1

2κ

∫
d3xNaDa, regarder les crochets de Poisson de cette

contrainte avec une fonction dépendant des coordonnées canoniques f(E,A) et voir que l’on obtient :

{D[Na], f(E,A)} ∼ LNaf. (3.61)

L’orbite générée par la contrainte dans l’espace des phases est simplement proportionnelle à la dérivée de Lie le
long de Na. La contrainte hamiltonienne quant à elle génère l’évolution temporelle en terme de la composante
’t’ des coordonnées. Ce choix de coordonnées n’a a priori aucun sens physique privilégié. La relativité générale
est un système totalement contraint et l’hamiltonien total Htot sera alors donné par une combinaison linéaire
de toutes les contraintes utilisant des multiplicateurs de Lagrange

Htot =
1
2κ

∫
d3x

[
λjGj +NaDa +NH

]
= G[λ] +D[Na] +H[N ]. (3.62)

Les équations d’Hamilton données à partir de cette équation (3.62) redonneront exactement les équations d’Ein-
stein comme dans le formalisme ADM. On voit ainsi que la relativité générale écrite en terme des variables
d’Ashtekar est une théorie de jauge à valeur dans su(2), invariante de fond, similaire à une théorie de Yang-
Mills, avec un hamiltonien total proportionnel à 3 autres contraintes supplémentaire et devant être nul lorsque
l’on considère des solutions physiques. La relativité générale étant une théorie de l’espace-temps, même sous
cette formulation, elle va rester très différente d’une théorie de Yang-Mills : il va falloir développer une nouvelle
méthode de quantification qui tiendra compte de l’invariance de fond.

Remarque sur le paramètre de Barbero-Immirzi

Ce paramètre met en évidence une liberté supplémentaire dans le choix des variables. Cependant, dans la
théorie classique, il est possible de montrer [29] que la contrainte hamiltonienne est invariante vis-à-vis de ce
paramètre. En effet, l ’équation (3.58) peut s’écrire en utilisant les propriétés de symétries et la définition de la
connexion d’Ashtekar Aia :

H = εijk
Eai E

b
j√

det E

(
2∂aΓkb + εkmn(Γ

m
a Γnb −Km

a K
n
b )
)

+Hγ , (3.63)
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52 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

où Hγ contient tous les termes en γ. Ce terme est en fait proportionnel à la contrainte de Gauss, et peut ainsi
se réécrire comme la dérivée covariante de la courbure extrinsèque, symétrique Kab = Kba, multipliée par un
symbole de Levi-Civita, antisymétrique,

Hγ ∼ εabcDaKbc = 0, (3.64)

montrant que dans le cas classique, il est nécessairement nul. Dans le cas d’un univers homogène et isotrope,
la contrainte de Gauss sera automatiquement satisfaite et les équations classiques de la cosmologie, comme
l’équation de Friedmann, seront bien retrouvées. Le paramètre γ ne va apparâıtre dans la théorie effective
que par l’intermédiaire des corrections issues lors de la procédure de quantification de la cosmologie quantique
à boucles.

L’algèbre des contraintes

Pour étudier l’algèbre résultante des variables d’Ashtekar, on va comme auparavant intégrer les contraintes,
données alors par l’équation (3.62). Deux contraintes de Gauss vont donner la relation

{G[λ], G[µ]} = G[λjµkεijk], (3.65)

et regarder l’effet consécutif de deux de ces contraintes sur une variable est équivalent à évaluer l’action de cette
contrainte sur la variable avec comme argument le commutateur des fonctions tests. Dans le cas où on regarde
les contraintes de Difféomorphisme, on obtient

{D[Na], D[M b]} = D[LNaM b], (3.66)

et l’effet d’un difféomorphisme sur un autre va simplement correspondre à modifier la fonction test finale en
combinant les deux fonctions tests considérées, indépendantes des variables canoniques. Cela revient alors à
laisser l’espace fixe et à appliquer directement une combinaison des deux fonctions tests. En regardant son
action sur la contrainte de Gauss, on a donc directement en appliquant l’argument précédent :

{D[Na], G[λ]} = G[LNaλ]. (3.67)

De plus, la contrainte hamiltonienne n’a aucune influence sur la déformation due à la contrainte de Gauss

{H[N ], G[λ]} = 0, (3.68)

et de même qu’auparavant,
{D[Na],H[M ]} = H[LNaM ]. (3.69)

Enfin, les crochets de Poisson entre deux hamiltoniens redonneront une contrainte de Difféomorphisme

{H[N ],H[M ]} = D[Ka] (3.70)

où Ka = Ea
i E

bi

det(q) (N∂bM −M∂bN). Sans surprises, l’algèbre correspond bien à celle du formalisme ADM et va
redonner les même résultats. On peut remarquer que Ka n’est pas seulement une combinaison des dérivées des
fonctions tests, mais fait intervenir les variables canoniques. Cela signifie que même si les crochets de Poisson
de deux contraintes hamiltoniennes sont proportionnels à un difféomorphisme, le facteur de proportionnalité
n’est plus une constante, mais une fonction. A l’inverse des constantes de structure vues pour les groupes
précédents, le groupe des difféomorphisme va faire intervenir des fonctions de structure, dépendant du
temps et complexifiant la manière de quantifier : une conséquence de la promotion des variables canoniques en
tant qu’opérateurs est de risquer de compromettre la fermeture de l’algèbre. Il pourra alors exister des termes
en plus dans le résultat des crochets de Poisson après quantification qui, à la limite classique, vont tendre vers
0, mais resteront présents au niveau quantique, pouvant fausser les résultats : on parle ainsi d’anomalies. Pour
garder la cohérence de la physique sous-jacente au problème, on doit alors tout faire pour que l’algèbre reste
fermée en faisant disparâıtre ces anomalies à l’aide de termes supplémentaires, les contre-termes que l’on
utilisera par la suite.

3.4 Couplage à la matière

Dans les modèles que l’on considérera en cosmologie quantique à boucles ou Loop Quantum Cosmo-
logy (LQC) en anglais, on utilisera au départ comme champ de matière contenu dans l’univers, le champ le plus
simple que l’on puisse considérer et qui en cosmologie usuelle s’est révélé avoir de grandes conséquences phy-
siques, le champ d’inflaton. Il est cependant possible de définir d’autres champs [30]. Plus particulièrement,
on écrit comme auparavant

Smatter =
∫
d4x
√
−det(g)

(
−1

2
gµν∂µϕ∂µϕ− V (ϕ)

)
(3.71)
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3.5. LA QUANTIFICATION 53

permettant de définir le moment conjugué π de ce champ

π =
√
det(q) ϕ̇, (3.72)

ainsi que la relation de crochets de Poisson

{ϕ(x), π(y)} = δ3(x− y). (3.73)

On peut ainsi écrire la contrainte totale résultante en fonction des variables d’Ashtekar

Htot−matter =
∫
d3x

N√
det(q)

(
π2 + δij Eai E

b
j ∂aϕ ∂bϕ+ det(q) V (ϕ)

)
+Naπ ∂aϕ, (3.74)

donnant la contribution du champ scalaire aux différents termes des contraintes

Dm[Na] =
∫
d3xNaπ · ∂aϕ, (3.75)

Hm[N ] =
∫

Σ

d3xN

[
π2

2
√
det Eai

+
Eai E

b
j

2
√
det Eai

∂aϕ∂bϕ+
√
det Eai V (ϕ)

]
. (3.76)

Il est de même possible de définir pour ce champ les densités d’énergie ρ et de pression P telles que

ρ =
1√
|det E

δHmat

δN
, (3.77)

P = − 1
N

δHmat

δ
√
|det E

. (3.78)

On peut remarquer ici qu’il n’est pas fait allusion à la connexion Aia. Cela est pour le moment normal puisque
la matière est constituée indépendamment de l’espace-temps, et seul son couplage va influencer la déformation
de l’espace-temps en vertu des équations d’Einstein.
Une remarque peut aussi être faite à partir de ce que l’on a vu en relativité restreinte, où étudier le groupe de
transformation via ses Casimirs permettait de trouver naturellement les champs qui doivent y être présents. Ici,
la situation n’est pas aussi simple et la matière a été ajoutée de façon plus arbitraire.

Jusqu’à maintenant, en utilisant de nouvelles variables et au niveau ’classique’, nous n’avons fait que ré-
exprimer l’action de la relativité générale sous une forme similaire à un hamiltonien dans une théorie de Yang-
Mills, pour laquelle il existe une procédure de quantification connue. Dans ce qui suit, on va va chercher à
comprendre ce qui fait de la gravité quantique à boucles une théorie différente dans la manière de quantifier, et
montrer alors ses enseignements quant à la structure de notre espace-temps.

3.5 La quantification

La quantification des contraintes dans le cas du formalisme ADM se fait en utilisant les composantes de la
métrique spatiale qab comme variables de configuration. Cela a amené à la fameuse équation de Wheeler-
DeWitt pour le cas d’une fonction d’onde Φ[qab]

ĤΦ[qab] = 0. (3.79)

Cependant, l’espace de Hilbert nécessaire est très mal défini, notamment dans la définition du produit sca-
laire. En utilisant les variables d’Ashtekar, la fonction d’onde peut être fonction de la connexion Φ(Aia). On
parle ainsi de la représentation des connexions, et les représentations similaires ont été utilisées lors de la
quantification des théories de Maxwell et de Yang-Mills. Ici cependant, la métrique est associée aux densités de
triades Eai , et le pendant naturel du travail de Wheeler et de De Witt aurait été de considérer la fonction
d’onde Φ(Eai ). Cela correspond à la première différence avec le cas habituel qui, notamment plus tard lors du
choix des fonctions génératrices pour l’équation de Hamilton-Jacobi, va amener quelques différences subtiles.
La prédiction principale de la gravité quantique à boucles, comme attendu pour une théorie quantique, va être
la discrétisation du spectre des opérateurs géométriques, comme le volume ou l’aire, qui deviendra importante
à l’échelle de Planck et négligeable à grande échelle, retrouvant ainsi une description continue de l’espace-temps.
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54 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

La quantification non-perturbative de la relativité : le programme de Dirac

Nous passons ici en revue très rapidement les grandes étapes de la procédure de quantification dans la mesure
où celle-ci n’est pas essentielle pour la dimension cosmologique.
Le programme de Dirac appliqué à la quantification canonique de systèmes généralement covariants peut se
faire de deux manières : soit on commence par résoudre classiquement les contraintes, on identifie l’espace des
phases réduit, et on quantifie la théorie en trouvant la représentation de l’algèbre des observables physiques dans
l’espace de Hilbert, soit on procède d’abord à la quantification puis on résout les contraintes. Dans un système
à 4 dimensions, il est difficile de trouver les vrais degrés de liberté de la relativité générale. En gravité quantique
à boucles, on va ainsi d’abord quantifier et résoudre les contraintes ensuite. On procède ainsi par étapes :

1. obtention d’une représentation des variables de l’espace des phases de la théorie, promues en tant qu’opérateurs
sur un espace de Hilbert cinématique, Hkin, et satisfaisant la relation de commutation [ , ] = i~{ , }.

2. promotion des contraintes en tant qu’opérateurs sur Hkin.

3. caractérisation de l’espace des solutions des contraintes et définition du produit interne correspondant qui
définit la notion de probabilités. On définit ainsi l’espace de Hilbert physique Hphys.

4. obtention d’un ensemble complet d’observables invariantes de jauge, les observables de Dirac.

Exemple : la particule reparamétrisée

Un exemple simple [33] d’un tel programme est la particule reparamétrisée, non-relativiste, de masse m
d’action (1.81) et de contrainte hamiltonienne (1.84). Il est possible d’appliquer ce programme tel que

1. l’espace de Hilbert cinématique dans ce cas là n’est autre que Hkin = L2(R2), l’espace des fonctions de
carré sommable pour des fonctions d’onde Ψ(q, t), et on définit le produit interne par

< φ,ψ > =̇
∫
dqdt ¯φ(q, t)ψ(q, t). (3.80)

2. la promotion des variables de l’espace des phases en opérateurs auto-adjoints satisfaisant la relation de
commutation donne simplement q̂ = q, t̂ = t de moments conjugués p̂q = −i~∂∂q , p̂t = −i~∂∂t .

3. la contrainte (1.84) devient ici7

Ĉ = −i~∂
∂t

− ~2 ∂
2

∂q2
+ V (q), (3.81)

dont Ĉ|Ψ >= 0 n’est rien d’autre que l’équation de Schrödinger.

4. Les solutions sont ainsi les solutions de l’équation de Schrödinger que l’on peut caractériser par leurs
conditions initiales définies à un temps t0 : Ψ(q) = Ψ(q, t = t0), et l’espace de Hilbert physique est ainsi
l’espace usuel Hphys = L2(R) de produit interne

< φ,ψ >p =̇
∫
dq ¯φ(q)ψ(q). (3.82)

Les solutions de l’équation de Schrödinger, à cause de leur invariance par rapport à t, ne sont pas re-
normalisables dans Hkin au sens du produit scalaire donné par l’équation (3.80). Ceci est une propriété
générique des solutions des contraintes lorsque ces contraintes ont un spectre continu.

5. Les observables doivent commuter avec les contraintes et pour le cas d’une particule libre V (q) = 0, il
existe simplement deux observables indépendantes

Ô1 = q̂ − p̂q
m

(t̂− t0), Ô2 = p̂q, (3.83)

les valeurs de q et pq à t = t0 ∈ C. On peut aussi remarquer que dans Hphys, lorsque t̂ = t0, ces observables
se résument bien à la position pour Ô1 et au moment pour Ô2.

Dans cet exemple, on a simplement reproduit la procédure standard de quantification, qui redonne bien
l’équation de Schrödinger pour une particule non-relativiste. On voit ainsi que la dynamique, comme dans
le cas classique, est bien contenue dans les contraintes quantiques et on pourra appliquer cette procédure au cas
de la relativité générale.

7Dans le cas de systèmes plus compliqués, il faut aussi tenir compte de l’ordre dans lequel on applique les opérateurs, et cette
étape est souvent non-triviale.
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3.5. LA QUANTIFICATION 55

La Gravité Quantique à Boucles

Dans cette théorie, la première étape consiste à promouvoir les variables canoniques au rang d’opérateurs
et à choisir un espace de Hilbert cinématique tel que les variables de configuration soient les connexions : on
considère ainsi un espace contenant un ensemble de fonctionnelles Φ(A) qui sont de carré sommable par rapport
à une certaine mesure. On définit la connexion comme un opérateur multiplicatif

ÂiaΦ(A) = Aia · Φ(A), (3.84)

et les densités de triades comme des dérivées fonctionnelles

Êai Φ(A) = −iκγ δ

δAia
· Φ(A), (3.85)

vérifiant les relations de commutation,[
Âia, Ê

b
j

]
= −i~ · κγδab δijδ3(x− y). (3.86)

On doit maintenant promouvoir les contraintes de Gauss et de Moment en termes d’équations entre opérateurs
sur des états quantiques. Il est possible de montrer que ces contraintes, en tant qu’opérateurs, génèrent les même
symétries que classiquement, et on doit ainsi imposer l’invariance pour les fonctions d’ondes sous les contraintes :
les états qui sont invariants sous ces deux contraintes sont les états cinématiques. En résumé, en commençant
par un espace de Hilbert vierge, K, la procédure de quantification doit alors passer par les différentes étapes
suivantes :

K Gj−→ K0
Ha−→ Hkin

H−→ H. (3.87)

Un des problèmes encore majeur à l’heure actuelle est la quantification de la contrainte hamiltonienne permettant
de trouver les états dynamiques, et donc les observables physiques. D’une part, même au niveau classique,
cette contrainte ne permet pas une action géométrique simple puisqu’elle génère l’évolution par rapport à une
variable x0 dans les équations d’Einstein, ce qui n’est pas visible facilement par son action sur les variables
spatiales. D’autre part, l’opérateur résultant doit avoir une densité de +1. Mais il existe dans la contrainte
hamiltonienne un terme avec au dénominateur

√
det(q), donc de densité −1. Or, même si sur une variété de

géométrie quelconque il existe le delta de Dirac de densité +1, il n’existe pas d’objet de densité +2 qui pourrait
permettre de bien quantifier la contrainte (multiplier deux deltas de Dirac entre eux ne construira pas un tel
objet). Une astuce permet néanmoins de passer outre ce problème : introduite par Thomas Thiemann en 1996,
elle consiste à remarquer que les crochets de Poisson du volume

V =
∫
d3x
√
det(q) =

1
6

∫
d3x
√
|Eai EbjEckεijkεabc (3.88)

avec la connexion Aia donnent

{Akc , V } =
Eai E

b
j√

det(q)
εijkεabc, (3.89)

permettant ainsi d’écrire la contrainte hamiltonienne (dans le cas ici où γ = i, H et Ha deviennent des fonctions
polynomiales en A)

H[N ] =
∫
d3xN{Akc , V }F kabεabc. (3.90)

Il serait alors possible de quantifier cette contrainte en passant par les commutateurs, mais A et E vont entrâıner
l’apparition de distributions, cf l’équation (3.86), rendant difficile une définition de leur opérateurs quantiques
correspondants : par exemple, la présence en facteur des densités de triades E s’appliquant au même point va
faire apparâıtre au niveau quantique des deltas de Dirac tels que δ(x− x) = δ(0) une fois appliqués sur Φ(A),
qui n’est pas une distribution bien définie. Dans le cas de la théorie quantique des champs, le fond étant fixé,
on peut utiliser les techniques de régularisation permettant de passer outre ces problèmes. Or, pour une théorie
nécessitant d’être invariante du fond, imposer la régularisation briserait cette invariance.
Ainsi, le fait de ne pas savoir comment travailler de façon mathématiquement rigoureuse avec des ’distri-
butions’ d’ondes Φ(A), dépendantes des connexions et invariantes sous toute transformation de jauge et de
difféomorphismes, a mené au développement d’une représentation alternative appelée représentation des
boucles. Dans une telle représentation, le produit interne nécessaire à la définition complète de l’espace de
Hilbert va apparâıtre le plus simplement et naturellement possible et permettra de traiter le cas des distribu-
tions. Il sera donné à l’aide de la mesure d’Ashtekar-Lewandowski dµAL, invariante sous les contraintes
cinématiques.

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



56 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

La représentation des boucles et les réseaux de spin

Les travaux de Lee smollin et de Ted Jacobson sur l’utilisation des holonomies avec les variables d’Ash-
tekar, ont amené Lee Smollin et Carlo Rovelli a exploré cette nouvelle représentation donnant son nom à la
gravité quantique à boucles.
D’après le théorème de Giles, les traces des holonomies sur une 3-surface Σ constituent une base pour les fonc-
tions de la connexion invariantes de jauge, ce qui en font des solutions possibles pour la contrainte de Gauss.
On décompose ainsi un état sur cette base des holonomies en posant

Φ[A] =
∑
γ

Φ[γ]hγ [A] (3.91)

où la somme est effectuée sur toutes les boucles fermées possibles. Les holonomies, qui sont des matrices, sont
ainsi définies comme précédemment par

hγ [A] = Tr

(
P
[
exp

(
−
∮
γ

dsγ̇a(s)Aia(s)τi

)])
∈ SU(2). (3.92)

et utiliser les coefficients Φ[γ] consistera à travailler dans la représentation des boucles. Il est possible de
voir l’analogie avec la représentation de moments en mécanique quantique pour laquelle la base des états est
exp(ikx) labellisée par un nombre d’onde k et, avec l’expression Φ(x) =

∫
dkΦ(k) exp(ikx), on travaille ici avec

les coefficients du développement Φ(k).
Les connexions étant des 1-formes, il est tout naturel de les intégrer sur un chemin appartenant à Σ, permettant
de travailler avec des fonctions et non plus des distributions. Les autres opérateurs que l’on traite sont les
densités de triades Eai et sont associées par définition à des 2-formes par l’équation (3.39). On s’attend alors
à ce que leur intégration sur une 2-surface en fasse des opérateurs bien définis sur Hkin, et on parle, après
intégration, de flux de densité de triades F fS (E), de fonction test f i ∈ SU(2) pour une surface S ∈ Σ de
co-normale na :

F fS [E] =
∫
S

d2x · naEai f i ∈ SU(2). (3.93)

L’algèbre de ces variables canoniques est alors donnée par

{A,E} = δ → {hγ [A], F fS [E]} = κγ · Int(γ, S) · hγ
[
Ai(f iτi)

]
(3.94)

où Int(γ, S) = 1 si γ intercepte S, 0 sinon.
Pour l’algèbre su(2), il y a une infinité de matrices possibles autre que celles de Pauli qui vérifient les relations
de commutation [σi, σj ] = 2iεijkσk : ce sont des matrices (2j + 1)× (2j + 1), j = 1

2 , 1, ..., qui sont appelées des
représentations avec la relation pour les générateurs T (j)

i dans la représentation j

T
(j)
i T

(j)
i = −j(j + 1)11. (3.95)

La représentation la plus compacte (utilisant les matrices de Pauli avec j = 1
2 ) est appelée représentation fon-

damentale.

Fig. 3.3 – Exemple de réseau de spin [33]

Il existe ainsi différentes représentations possibles
pour construire une connexion et ses holonomies, et
l’espace, au même titre que dans la théorie de Max-
well, est ainsi vu comme un ensemble de boucles label-
lisées par leur spin correspondant à la représentation
utilisée sur la boucle pour définir la connexion : elles
sont enchevêtrées les unes avec les autres et reliées au
niveau de noeuds. Les holonomies étant des matrices,
il est possible d’évaluer au niveau de ces noeuds l’ac-
tion de ces matrices possédant un spin j différent pour
chacune : on les ’contracte’ en utilisant des objets ap-
pelés intertwiners, des produits tensoriels utilisant
εijk et δij , qui sont au final analogues aux coefficients
de Clebsch-Gordan. Le résultat est ainsi appelé
réseau de spins : un graphe avec des noeuds et des
lignes colorées par les spins j indiquant la dimension
des matrices pour les holonomies.
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3.5. LA QUANTIFICATION 57

On peut alors définir deux opérateurs géométriques :

• l’opérateur d’aire : en utilisant l’équation (1.53), pour une surface de métrique induite hab

hab = qab −
nanb
n2

, (3.96)

où

na = εabc
∂xb

∂σ1

∂xc

∂σ2
(3.97)

est la normale à la surface, de coordonnées locales σ1, σ2, et l’aire en fonction des densités de triades
s’exprime selon

AS [Eai ] =
∫
S

dσ1dσ2
√
Eai E

b
jδ
ijnanb. (3.98)

L’opérateur correspondant s’exprime en utilisant l’opérateur du flux des densités de triades, donnant ainsi
finalement [13]

ÂΣΨs = 8πl2Planckγ
∑
i

√
ji(ji + 1)Ψs, (3.99)

où lPlanck =
√

G~
c3 = 10−33 cm, est la longueur de Planck. Une aire est définie par le fait qu’une boucle

transporte avec elle une surface dont la valeur de l’aire dépend de son spin. L’aire minimale n’est pas
0 mais ∆l2Planck avec ∆ = 4

√
3πγ, faisant intervenir le paramètre de Barbero-Immirzi. Une application

possible est le calcul de l’entropie des trous noirs qui dépend classiquement de sa surface, et dont la loi est
donnée par l’équation de Hawking-Bekenstein. Regarder le cas des trous noirs en gravité quantique
à boucles permet de retrouver admirablement cette même loi, donnant ainsi la valeur possible γ ≈ 0.69. Il
serait néanmoins préférable que cette valeur particulière émerge pour des raisons plus fondamentales ou
que le calcul de l’entropie ne fasse pas directement apparâıtre γ : ce sujet de recherche est actuellement
activement étudié.

• l’opérateur de volume intervient au niveau des noeuds et en donne un sens physique : en chaque noeud,
il existe un grain de volume dont la valeur est donnée par le nombre de liens le joignant.

Fig. 3.4 – exemple d’espace fait de grains [31].

On peut ainsi voir l’espace-temps comme un ensemble de grains de volume, reliés par des boucles définissant
des surfaces, comme sur la figure Fig.(3.5).

La dynamique de l’espace-temps

L’évolution ’temporelle’ de la structure de l’espace-temps va être donnée par la condition sur la contrainte
hamiltonienne HΨ = 0 : pour une ’portion’ de l’espace ∆, la contrainte hamiltonienne peut ainsi s’écrire en
fonction des holonomies selon

H∆[N ] =
∑
∆

N(∆) · Tr(hihk{h−1
k , V }) (3.100)

et chaque action des holonomies sur une boucle va permettre la création de nouveaux noeuds, donc de nouveaux
quantas de volumes, et complexifier alors l’espace-temps. On parle de mousse de spin (ou spinfoam en anglais),
donnant la dynamique d’un réseau de spin que l’on représente par des polygones, comme indiqué sur la figure
Fig.(3.5). Cette approche, développée notamment par Carlo Rovelli à Marseille, n’est pas encore achevée, des
points restent encore à élucider : par exemple, certains des états physiques n’ont pas été obtenus, ou bien le
paramètre de Barbero-Immirzi introduit une liberté encore mal comprise puisque la dynamique n’est pas définie
de façon parfaitement non équivoque, etc. Dans la suite, nous allons surtout nous intéresser à son approximation
semi-classique dans le but d’obtenir des prédictions cosmologiques.
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58 CHAPITRE 3. LA GRAVITÉ QUANTIQUE

Fig. 3.5 – exemple de mousse de spin évoluant suivant l’axe vertical, avec l’action de la contrainte hamiltonienne
[33].

3.6 Observations sur la Gravité Quantique à Boucles

Le champ gravitationnel est une entité physique fondamentale sur laquelle les autres champs évoluent. La
construction des théories décrivant ces phénomènes est intéressante en ce sens qu’en cherchant à respecter les
symétries présentes, il devient nécessaire de définir de nouvelles dérivées, les dérivées covariantes, qui amènent à
l’existence d’une expression commune des tenseurs de courbure. Dans ce formalisme commun qu’est la géométrie
différentielle, les théories de gravitation et de Yang-Mills généralisant les autres champs, peuvent être traitées
ensemble d’une façon plus ou moins similaire lors des étapes de quantification.
La gravité quantique à boucles, une des approches possibles pour la gravitation, suppose que la relativité générale
n’est pas à remettre en cause mais que la procédure usuelle de quantification ne lui est pas adaptée. Elle cherche
simplement à donner un cadre quantique pour l’évolution de tous les champs, sans pour autant prétendre à
l’unification des différentes forces.
Une conséquence importante est la discrétisation de l’espace-temps représenté par des grains de volume associés
à une aire, et dont le spectre de mesure n’est plus continu mais discret. Le fait qu’il existe une aire minimale lui
permet de ne pas posséder de divergence ultraviolette, faisant de cette théorie de gravité quantique une théorie
bien définie. Des résultats intéressant ont été obtenus, notamment pour la thermodynamique des trous noirs
[34]. D’autre part, on s’attend alors à ce qu’aux grandes échelles les résultats redonnent ceux du cas continu,
l’étude de la limite classique étant aussi un point de recherche actuel.
Comme on vient de le voir, de nombreux aspects restent encore à développer. L’obtention d’une théorie quan-
tique définitive de la gravitation n’est pas encore achevée, mais il existe cependant, en plus de la gravité quan-
tique à boucles et de son extension à la théorie des Mousses de Spin, d’autres théories. On peut citer entre autres

• la Théorie des cordes. Cette approche propose une nouvelle théorie de gravité, basée sur l’introduction
de dimensions supplémentaires sur lesquelles vivent des cordes, dont les modes propres de vibrations
correspondent à des particules.

• la théorie CDT pour Causal Dynamical Triangulation, similaire à la théorie des Mousses de Spin,
considérant l’espace-temps à l’échelle de Planck comme étant en perpétuel changement à cause des fluc-
tuations quantiques.

• la supergravité essayant d’appliquer les avantages de la supersymétrie à une théorie non locale.
• la GFT pour Group Field Theory et la géométrie non-commutative où la quantification passe par

le formalisme des groupes non-abéliens.

Certes il est nécessaire de proposer de nouvelles alternatives aux théories actuelles, puisque par définition
elles s’avèreront un jour fausses, mais il est encore plus important de pouvoir les tester. Les modifications
intéressantes prédites par de telles théories prennent place à l’échelle de Planck, donc aux très petites distances
et grandes énergies, et il est difficile, voire impossible, à l’heure actuelle d’observer directement les phénomènes
en résultants. Néanmoins, il est attendu que l’univers soit passé au moins un jours dans un régime quantique, de
type Big Bang, avant de crôıtre jusqu’à sa forme actuelle. Les effets agissant à l’échelle de Planck ont put alors
laisser des empreintes, même infimes, mais qui en raison de cette croissance faramineuse, ont put être étirées
jusqu’à atteindre une taille observable.

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



Deuxième partie

La Cosmologie Quantique : vers une
explication de notre univers.
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Chapitre 4

Le modèle standard de la Cosmologie

Il est important de remarquer que la cosmologie est un champ de recherche singulier. En effet, au contraire des
autres domaines de sciences, l’observateur est dans le système, ne peut reproduire l’expérience et, ne connaissant
que l’état final correspondant à son époque, est obligé d’interpoler vers le passé pour comprendre l’histoire de
l’univers. Cependant, des modèles cosmologiques n’en sont pas moins disponibles et permettent d’interpréter
assez correctement les observations. Dans les prochains chapitres, on va introduire les notions de cosmologie
nécessaires à la compréhension du travail effectué en cosmologie quantique à boucles, en se concentrant sur le
calcul des spectres primordiaux, mais sans développer énormément le cadre dans lequel elles se situent. Il existe
une très grande littérature sur la cosmologie et je ne citerai que les articles et livres sur lesquels je me suis basé.
Pour approfondir, tout lecteur pourra consulter entre autre les références [35] à [38], ainsi que celles qui y sont
données.

4.1 Brève introduction historique du modèle standard Λ-CDM

Lorsqu’en 1915 Einstein proposa sa théorie de la relativité générale, il considéra immédiatement des tests
possibles dans notre système solaire (comme l’explication de l’avancée du périhélie de Mercure), et proposa aussi
une description possible de notre univers. Cependant, bien qu’elle fût basée sur le principe cosmologique,
formulé pour la première fois par l’astrophysicien Edward Arthur Milne,

Principe cosmologique : L’univers dans son ensemble est homogène et isotrope (invariance par transla-
tion et rotation dans l’espace) sans qu’il ne puisse exister de point privilégié jouant un rôle particulier,

les modèles considérés à l’époque devaient aussi être statiques ou stationnaires. Dans ses équations, Ein-
stein considéra la constante Λ comme superflue puisqu’elle expliquait un univers en expansion, l’enleva1 et
trouva avec des physiciens comme Willem De Sitter des solutions cosmologiques statiques intéressantes, ne
décrivant pas réellement notre univers. On peut aussi citer le cas du physicien allemand Karl Schwarzchild,
qui en 1915 sur le front Russe, dans une tranchée et souffrant, trouva la première solution pour la métrique qui
porte son nom [39], permettant de décrire la géométrie d’un trou noir statique, une singularité dans l’espace-
temps possédant un horizon.
Quelques années plus tard, en 1922, des physiciens comme le russe Alexander Friedmann[40], en parallèle
avec Georges Lemâıtre, Howard Robertson et Arthur Walker, tentèrent de relâcher la condition de
stationnarité. Ils obtinrent des équations d’évolution pour l’univers qui furent approuvées par les observations
sur l’expansion de l’univers par Edwin Hubble [41] en 1929. Dans ce modèle, l’univers s’expand à partir de
la singularité du Big Bang. Dans les années 1940, ce modèle de l’univers fut raffiné par George Gamow [42]
(ainsi que Phillip Peebles à Princeton) introduisant la notion de nucléosynthèse primordiale permettant
d’expliquer la formation des noyaux lors d’une phase dominée par les photons, ainsi que la quantité d’hydrogène
observée. On parle alors du modèle du Big Bang chaud. Une des conséquences d’un tel modèle est que les
photons, produits peu de temps après le Big Bang, devraient pouvoir encore être observés sous la forme d’un
fond homogène de radiation ayant un spectre de corps noir, dont la température actuelle se situerait autour de
quelques degrés Kelvin, soit des longueurs d’onde correspondant aux ondes radio.
En 1964, deux radio-astronomes, Arno Penzias et Robert Wilson, utilisèrent une antenne dédiée aux com-
munications pour faire des observations radio de la Voie Lactée et découvrirent un signal inattendu, homogène
et isotrope, qu’ils attribuèrent à un bruit expérimental impossible à éliminer. Par chance, Penzias possédait un
ami au MIT, Bernard Burke, qui avait suivit un séminaire donné par Peebles sur la nucléosynthèse primordiale
et l’existence du fond relique, qui le mit en contact avec le groupe de Princeton. C’est ainsi que fût découvert le

1sa ’plus grande erreur’ !
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62 CHAPITRE 4. LE MODÈLE STANDARD DE LA COSMOLOGIE

fond diffus cosmologique2 ou CMB en anglais pour ’Cosmic Microwave Background’, ayant bien un spectre
de corps noir aujourd’hui mesuré à la température T0 = 2.726K. C’était la première fois qu’un modèle cosmo-
logique a été vérifié expérimentalement, donnant une grande crédibilité au domaine de la cosmologie.
Il restait cependant quelques problèmes encore inexpliqués, comme le problème d’horizon ou de platitude qui,
lorsque l’on remontait dans le temps vers le Big Bang, montraient que l’expansion de l’univers n’avait pas assez
duré pour expliquer les observations. Ces problèmes furent résolus par l’introduction d’une phase d’expansion
intensément accélérée de l’univers, que l’on appelle inflation, et dont les conséquences physiques ont bien été
confirmées par des expériences comme COBE puis WMAP, par l’étude des anisotropies expliquées par les
fluctuations quantiques du champ d’inflaton.
Aujourd’hui, le modèle standard de la cosmologie est considéré comme étant le modèle Λ−CDM où la constante
cosmologique Λ, éventuellement associée à l’énergie du vide, serait responsable de l’accélération observée de l’uni-
vers, et CDM pour Cold Dark Matter correspondant à la masse manquante de l’univers et qui expliquerait
entre autre les courbes de rotation des galaxies ou bien la forme de l’amas du Boulet, mais surtout l’amplitude
du spectre de la matière.

4.2 Description d’un univers homogène et isotrope

4.2.1 La métrique de Friedmann-Lemâıtre-Robertson-Walker

L’univers homogène et isotrope est le système physique dynamique le plus simple que l’on puisse imaginer
puisqu’il est extrêmement symétrique. En prenant en compte ces considérations de symétrie, il est possible
de déterminer les métriques qui lui siéent et qui correspondent aux métriques de Friedmann-Lemâıtre-
Robertson-Walker (FLRW)

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

]
, (4.1)

ici en coordonnées sphériques. La variable t est le temps cosmologique, k est le facteur de courbure, étant nul
dans le cas d’un espace plat, valant −1 si l’univers est ouvert (hyperbolique) ou +1 si l’univers est fermé (surface
elliptique). Le facteur d’échelle a(t) rend compte de l’expansion de l’univers permettant de définir la notion de
distance physique ’a(t) r’ à partir de la distance comobile r, et le rayon de courbure est alors donné par
R = a(t)√

|k|
. On définit de plus le temps conforme η tel que

dt = a(η)dη, (4.2)

en choisissant N = a(η) (le temps cosmologique est donné par N = 1), rendant la métrique (4.1) conforme à
une métrique de Minkowski ds2M décrivant une 4-hypersurface statique

ds2 = a2(η)ds2M = −a2(η) dη2 + a(η)2
[

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

]
. (4.3)

L’univers étant en expansion, les longueurs d’onde subiront de façon similaire à l’effet Doppler, un décalage
vers le rouge que l’on appelle redshift z, défini selon

1 + z =
λ0

λ(t)
=

1
a(t)

, (4.4)

où on a normalisé le facteur d’échelle aujourd’hui à a0 = 1. Cette variable est importante puisqu’elle permet
de donner une notion d’évolution du facteur d’échelle en cosmologie. De même, le taux d’expansion de l’univers
est donné par le paramètre de Hubble qui permet de définir la vitesse à laquelle s’écartent deux points dans
l’univers,

H =
1
a

da

dt
, (4.5)

et dont la mesure actuelle, notamment par WMAP-7ans [43], donne

H0 = 100 · h km.s−1.Mpc−1 avec h = 0.72± 0.08. (4.6)

Le tenseur énergie-impulsion est établi en fonction des propriétés du fluide cosmique, et on va ainsi considérer
l’univers rempli du fluide le plus simple possible mais intéressant, un gaz idéal de particules sans interactions.
Il peut ainsi s’écrire selon

Tµν = − 2√
−g

δS

δgµν
= ρuµuν + pgµν , (4.7)

où uµ est un quadrivecteur vitesse, et où la densité d’énergie du fluide est donnée par ρ = −T 0
0 , et sa pression

par p = 1
3T

i
i . Il contient toutes les composantes possibles de l’univers comme la matière baryonique, les photons,

neutrinos et autres composés invisibles.
2Dans la vie de tous les jours, le CMB est responsable d’un peu de la neige sur les téléviseurs cathodiques.

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



4.2. DESCRIPTION D’UN UNIVERS HOMOGÈNE ET ISOTROPE 63

4.2.2 Dynamique de l’univers : l’équation de Friedmann

L’univers évolue avec le temps. Il passera par des phases d’expansion ou de contraction, avec des phases
d’accélérations ou de décélérations, ce dont rendra compte H et sa dérivée. Le facteur d’échelle a(η), avec le
paramètre de Hubble, permettent ainsi de comprendre la dynamique de l’univers dont les équations d’évolution
sont données par les équations d’Einstein (2.87). En utilisant la métrique FLRW dans le cas d’un fluide parfait,
la dynamique du facteur d’échelle est obtenue par l’équation de Friedmann

H2 =
(
ȧ

a

)2

=
κ

3
ρ+

Λ
3
− k

a2
, (4.8)

ainsi que l’équation de Raychaudhuri

ä

a
= −κ

6
(ρ+ 3p) +

Λ
3
, (4.9)

où on a utilisé l’équation de conservation de l’énergie obtenue à partir des identités de Bianchi

ρ̇+ 3H(ρ+ p) = 0. (4.10)

Ces 3 équations sont considérées comme les équations clés de la cosmologie puisqu’elles permettent de rendre
compte de l’évolution de l’univers en fonction d’un contenu en matière arbitraire. On définit souvent des variables
sans dimensions qui représentent le rapport de chaque constituant sur la densité critique cosmologique que l’on
nommera ρcc = 3H2

κ (à ne pas confondre avec celle que l’on verra par la suite),

ΩΛ =
Λ

3H2
, Ωk = − k

a2H2
, Ωm =

∑
i

ρi
ρcc

, (4.11)

où ρi sont les densités d’énergie pour les différents constituants de la matière et du rayonnement. L’équation de
Friedmann sans dimension s’écrit ainsi

Ωm + Ωk + ΩΛ = 1, (4.12)

et les différentes observations montrent qu’actuellement

Ωk = 0± 0.01, ΩΛ0 = 0.73 Ωm0 = 0.27. (4.13)

Cela signifie qu’aujourd’hui, 73% de l’univers est constitué d’énergie noire responsable de son accélération, ainsi
que d’environ 23% de matière noire non-relativiste, invisible et qui n’interagit que gravitationnellement, alors
que la matière visible ne correspond qu’à 4%. On peut ainsi réécrire l’équation de Friedmann en terme des
différentes densités d’énergie des constituants,

H2 =
κ

3
(ρm + ρk + ρΛ) , (4.14)

où ρm représente la somme entre la matière non-relativiste (ρNR) et la matière relativiste comme les neutrinos
et le rayonnement (ρR), avec

ρk = − 3k
κa2

, ρΛ =
Λ
κ
. (4.15)

D’autre part, pression et densité d’énergie ne sont pas indépendantes mais sont reliées par une équation d’état

p = wρ (4.16)

caractérisée par un paramètre d’état w, tel que chaque type de constituant aura son propre paramètre d’état
lui correspondant.

4.2.3 Évolution du facteur d’échelle a(t)

L’équation de conservation de l’énergie (4.10) permet ainsi de définir l’évolution de la densité d’énergie ρi
pour chaque composante en fonction de a(t) et de son paramètre d’état wi

ρi(t) ∼ a(t)−3(1+wi). (4.17)

Suivant la domination de telle ou telle composante, on arrive à connâıtre comment évolue le facteur d’échelle,
puisque pour w 6= −1 l’équation de Friedmann (4.8) nous indique que

a(t) ∼ t
2

3(1+w) . (4.18)
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64 CHAPITRE 4. LE MODÈLE STANDARD DE LA COSMOLOGIE

Ainsi, lorsqu’il y a la

– domination de la matière non-relativiste ρNR :
w = 0 et alors ρ = a−3 avec a ∼ t

2
3 montrant bien que dans un univers en expansion H > 0, la matière

contenue dans le volume V = a3(t) doit bien se diluer.
– domination du rayonnement ρR :
w = 1

3 et on obtient directement ρ ∼ a−4 et a ∼ t
1
2 . De même que pour la matière, il y a une dilution

en a3, mais l’énergie étant proportionnelle à la fréquence, il faut tenir compte du redshift apportant un
facteur a(t) supplémentaire.

– domination de la constante cosmologique ρΛ :
w = −1 et la densité d’énergie est indépendante du facteur d’échelle, avec le paramètre de Hubble constant.
Dans ce cas là, l’univers subit une expansion appelée expansion de De Sitter caractérisée par un facteur
d’échelle croissant en a ∼ eHIt où HI est constant durant cette période.

Dans notre univers, en regardant les expressions des densités d’énergie, on voit suivant la valeur de a(t) que
l’univers est passé par une phase de domination par le rayonnement jusqu’à un certain moment zdec où matière
et rayonnement étaient en équilibre, avant de subir une phase de domination par la matière qui a cédé le pas à
celle, actuelle, de domination par la constante cosmologique.

4.2.4 L’horizon de l’univers

Contenu de la finitude de la vitesse de la lumière, il existe une distance, l’horizon des particules dH qui
définit la distance maximale que la lumière a pu parcourir depuis le moment a = 0. Les photons, voyageant sur
des métriques nulles, ont put parcourir une distance depuis le Big Bang (à η = η0 en temps conforme) égale à

dH = a(η)
∫ η

η0

dη. (4.19)

Cette distance évolue différemment suivant l’époque à cause des différentes dominations. Tant que l’expansion
de l’univers est régie par une loi en a(t) ∼ tn avec n < 1, il est possible de relier cette distance causale au rayon
de Hubble RH(t) = H−1 = a/ȧ

dH =
n

1− n
·RH , (4.20)

et voir qu’une longueur physique λ n’est observable que si elle se trouve à l’intérieur de l’horizon λ ≤ H−1. Par
la suite, nous n’utiliserons pas cette notion de longueur à cause des transformées de Fourier effectuées, mais
nous utiliserons plutôt le nombre d’onde k qui s’exprime en fonction de la longueur physique λ = 2πa/k, tel
que pour

k

aH
� 1 −→ l’échelle de longueur λ est en dehors de l’horizon,

k

aH
� 1 −→ l’échelle de longueur λ est à l’intérieur de l’horizon.

Cette notion de longueur (mode) dans et en dehors de l’horizon est très importante puisque comme nous le
verrons, lorsqu’un mode est trop grand, il se trouve figé dans son évolution.

4.2.5 Les problèmes observationnelles du modèle de Big Bang chaud

Le modèle du Big Bang chaud sans inflation est très intéressant puisque ses prédictions concordent avec les
observations. Cependant, en comparant calculs et données, on se rend compte qu’il existe certaines incompati-
bilités nécessitant quelques hypothèses supplémentaires. Ces problèmes sont ainsi énumérés comme suit :

1. Problème d’homogénéité : les inhomogénéités, responsables de la formation des structures dans l’uni-
vers, sont instables à cause de la gravitation et donc devraient crôıtre avec le temps. Or à grande échelle,
l’univers observé est très homogène et isotrope, en accord avec le principe cosmologique. Il existe cepen-
dant de grandes déviations par rapport à cette homogénéité, illustrées par les galaxies, amas de galaxies.
Pourquoi l’univers est-il donc si uniforme à grande échelle, alors qu’il existe des mécanismes capables de
produire des agglomérations de matière ?

2. Problème de l’horizon (1) : en comparant deux points de deux régions quelconques sur la carte du fond
diffus cosmologique, on observe seulement une infime anisotropie en température, de l’ordre de 10−5. Cela
implique que l’univers, au moment du découplage était thermalisé, au moins dans une région dont la taille
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4.2. DESCRIPTION D’UN UNIVERS HOMOGÈNE ET ISOTROPE 65

actuelle est celle de notre horizon observable, et donc que ces zones ont été à un moment en contact causal.
Or, les distances en jeux sont trop grandes par rapport à la distance que peut parcourir un photon depuis
le Big Bang et les échanges d’informations (énergie, chaleur,..) entre deux points ne peuvent se faire que
dans un même cône de lumière. Comment se fait-il alors que l’univers ait thermalisé sur des échelles plus
grandes que l’horizon ?

3. Problème de l’horizon (2) : on observe environ 1088 particules dans notre univers. Or, pour un horizon
tel qu’il est aujourd’hui, il ne devrait exister qu’environ 10 particules. Comment se fait-il que l’univers
soit si grand et contienne autant de particules ?

4. Problème de la platitude : il est possible de regarder l’évolution de la courbure telle que

Ω = Ωm + ΩΛ Ω− 1 =
k

a2H2
. (4.21)

Cette équation montre que Ω − 1 décrôıt au cours du temps. Pour que l’univers soit plat actuellement
Ω0 ∼ 1, il faudrait qu’au temps de Planck (10−43s), donc proche du Big Bang,

Ω− 1 = O(10−64), (4.22)

donc que l’univers soit plus plat que maintenant. Tout changement infime dans les valeurs des paramètres
impliquerait une physique grandement différente à notre époque. Ce problème est aussi appelé ’problème
du fine-tuning’ puisqu’il faut fixer les conditions initiales avec une très grande précision. Pourquoi faut-il
que les conditions initiales soient si particulières pour que notre univers soit ainsi maintenant ?

5. Problème des monopoles magnétiques ou ’problème des reliquats exotiques’ : lorsque l’univers
était très dense et chaud, d’après les Théories de Grande unification (GUT), à cause de brisures
de symétries, il devrait y avoir émergence de particules lourdes et stables, notamment les monopôles
magnétiques. Or, durant la phase GUT, un grand nombre de ces particules auraient du être produite
lorsque la température était importante, et elles devraient avoir persisté, devenir dominantes et être ob-
servables à notre époque. Cependant aucune observation de telles particules n’a été faite, et seule une
possible dilution importante et rapide pourrait leur donner une densité suffisamment faible pour ne pas
être observées.

Pour passer outre ces problèmes, le modèle du Big Bang nécessite une modifications dans ses hypothèses :
l’univers a du subir une période primordiale pendant laquelle les longueurs physiques λ ont évolué plus rapide-
ment que l’horizon H−1 : ainsi, deux photons que nous observons aujourd’hui, émis d’une même surface mais
apparemment causalement déconnectés dans deux zones de ciel, ont la même température puisqu’ils ont pu
dans le passé être en contact causal, expliquant ainsi la grande homogénéité et isotropie de l’univers. Proposée
par Alan Guth, l’inflation est une phase d’expansion adiabatique3 très rapide de l’univers en un temps très
court.

4.2.6 Le modèle standard de l’inflation

L’inflation se produit quand les échelles de distance physiques λ ∼ a évoluent plus rapidement que le rayon
de Hubble H−1. Cela implique donc que pour qu’il y ait inflation,

inflation ⇐⇒ d

dt

(
λ

H−1

)
= ä > 0 ⇐⇒ (ρ+ 3p) < 0 (4.23)

où on a utilisé l’équation de Raychaudhuri (4.9) et le fait que, durant cette période, la constante cosmologique
ne pouvait pas être dominante, ce qui aurait impliqué qu’elle n’ait cessé de l’être depuis lors. On voit ainsi que
cette expansion accélérée ne peut se faire que pour des fluides de paramètre d’état w < − 1

3 , et qu’elle n’a pas pu
exister durant des périodes de domination du rayonnement ou de la matière. Elle a donc dû nécessairement se
produire avant la phase de nucléosynthèse primordiale pour laquelle le modèle est en accord avec les observations
d’aujourd’hui.

Nombre d’e-fold N

On définit le nombre d’e-fold N entre le début de l’inflation ai et la fin de l’inflation af selon

N = ln

(
af
ai

)
= HI(tf − ti), (4.24)

3Les équations usuelles de la cosmologie peuvent ainsi être utilisées lors d’une transition entre deux phases de domination.

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



66 CHAPITRE 4. LE MODÈLE STANDARD DE LA COSMOLOGIE

permettant de rendre compte de la croissance rapide du facteur d’échelle lors de cette période : il montre
littéralement ’de combien le facteur d’échelle a grimpé la fonction exponentielle’. Pour résoudre le problème de
l’horizon et les autres, les contraintes conduisent à chaque fois à un nombre d’e-fold similaire, au moins N ∼ 60,
qui correspond donc à une inflation longue.

Le champ d’inflaton ϕ

La manière la plus simple de produire une équation d’état w = −1 est de considérer un champ scalaire pour
lequel le terme potentiel domine par rapport au terme cinématique. On va ainsi considérer le cas du champ
d’inflaton ϕ, donnant lieu à une expansion de De Sitter dans un espace de métrique FLRW (4.1), plat k = 0.
Son lagrangien est donné via l’action

S =
∫

d4x
√
−g

[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (4.25)

dont les équations d’Euler-Lagrange nous donnent l’équation de Klein-Gordon en temps cosmologique

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ ∂ϕV (ϕ) = 0. (4.26)

On remarque qu’il existe maintenant un terme de friction 3Hϕ̇ qui va intervenir lors de l’expansion de l’univers.
Les expressions des densités d’énergie ρφ et de pression pφ sont obtenues par l’exploitation du tenseur d’énergie-
impulsion correspondant,

Tµν = − 2√
−g

δ(Lmat
√
−g)

δgµν
= gµνLmat − 2

δLmat
δgµν

(4.27)

= − ∂L
∂∂µφ

∂aφ+ gµαL, (4.28)

tel que pour un tel champ,

T00 = ρϕ =
ϕ̇2

2
+ V (ϕ) +

(∇ϕ)2

2a2
, (4.29)

Tii = pϕ =
ϕ̇2

2
− V (ϕ)− (∇ϕ)2

6a2
. (4.30)

Dans la suite, on va regarder l’effet de perturbations quantiques δϕ(~x, t) autour de la solution correspondant à
un univers homogène et isotrope ϕ̄(t) dont la densité d’énergie et de pression pour ce fond correspondent à

T00 = ρϕ̄ =
ϕ̇2

2
+ V (ϕ), (4.31)

Tii = pϕ̄ =
ϕ̇2

2
− V (ϕ). (4.32)

Lorsque l’équation suivante est vérifiée
V (ϕ) � ϕ̇2, (4.33)

l’énergie potentielle domine sur l’énergie cinétique, et ce fluide vérifie alors la relation

pϕ ' −ρϕ. (4.34)

Dans ce cas là, si le champ d’inflaton domine sur les autres composantes, alors il mènera à une phase d’inflation.

Les conditions de roulement lent (Slow-roll)

Imposer les conditions, avec V ′ = ∂ϕV et V ′′ = ∂ϕϕV ,

1. condition 1 :

ϕ̇2 � V (ϕ) =⇒ (V ′)2

V
� H2, (4.35)

2. condition 2 :
ϕ̈� 3Hϕ̇ =⇒ V ′′ � H2, (4.36)
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4.2. DESCRIPTION D’UN UNIVERS HOMOGÈNE ET ISOTROPE 67

dont fait partie la condition (4.33), a pour conséquence une descente du potentiel lente pour ce champ : on
parle alors de conditions de roulement lent, ou slow-roll en anglais. Dans ce régime, l’équation de Friedmann
correspondante est alors donnée selon

H2 ' 8πG
3

V (ϕ), (4.37)

et l’équation de Klein-Gordon est donnée par

3Hϕ̇ = −V ′(ϕ). (4.38)

Il sera utile pour la suite de définir des paramètres de slow-roll tels qu’en temps cosmologique

ε = − Ḣ

H2
= 4πG

ϕ̇2

H2
=

1
16πG

(
V ′

V

)2

, (4.39)

η =
1

8πG

(
V ′′

V

)
=

1
3
V ′′

H2
, (4.40)

δ = η − ε = − ϕ̈

Hϕ̇
, (4.41)

ou en temps conforme

ε = 1− H′

H2
= 4πG

ϕ′
2

H2
, (4.42)

δ = η − ε = 1− ϕ′′

Hϕ′
. (4.43)

Le paramètre ε permet de regarder de combien varie le paramètre de Hubble durant l’inflation, et en utilisant
entre autre l’équation de Raychaudhuri (4.9), il est nécessaire d’avoir ε � 1 et |η| � 1 pour que l’inflation ait
lieu :

inflation ⇐⇒ ε < 1 et η < 1.

De plus, comme on va regarder des équations au premier ordre en perturbations, il est possible de voir que
durant l’inflation ε̇, η̇ = O

(
ε2, η2

)
, et donc que ces paramètres peuvent être considérés comme constant. Le

nombre d’e-fold est alors donné, en notant ϕi and ϕf les valeurs du champ au début et à la fin de l’inflation,
par

N ' −8πG
∫ ϕf

ϕi

V

V ′
dϕ. (4.44)

La fin de l’inflation se produit lorsque l’énergie potentielle du champ d’inflaton devient plus petite que son
énergie cinétique. L’énergie du champ, qui se met à osciller dans son potentiel, est alors transférée du champ
aux particules selon le mécanisme de reheating responsable de la création des particules présentes aujourd’hui,
et dont nous ne parlerons pas dans la suite.
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68 CHAPITRE 4. LE MODÈLE STANDARD DE LA COSMOLOGIE

4.3 Résumé : histoire de notre univers dans le modèle Λ− CDM

La cosmologie et l’astrophysique sont des domaines très complexes puisqu’elles utilisent toutes les théories
physiques, aussi bien celle des particules que la physique des plasma, en passant par la physique nucléaire
et la chimie. Appliquer notamment la thermodynamique à l’univers permet d’obtenir une expression pour sa
température T , qui évolue suivant le facteur d’échelle au même titre que lors d’une dilution

T (t) ∼ 1
a(t)

. (4.45)

En remontant vers le Big Bang, on voit ainsi que les températures en jeu devaient être colossales, et appliquer les
théories physiques qui correspondent aux différentes échelles d’énergie permet ainsi de caractériser l’univers lors
de son évolution. Selon le modèle standard [37], l’histoire de notre univers peut être succinctement décrit par :

Fig. 4.1 – Résumé de l’histoire de notre univers en fonc-
tion de l’évolution du facteur d’échelle.

• T ≈ 1026K : GUT , z = 1032, E = 1016TeV :
à cette température, seule l’interaction gravi-
tationnelle n’était pas unifiée aux trois autres
interactions. Lorsque la température diminue,
les théories GUT (Grand Unified Theory)
prédisent qu’un mécanisme de type Higgs brisa
la symétrie pour aboutir au groupe de symétrie
du modèle standard de la physique des parti-
cules SU(3)⊗ SU(2)⊗ U(1).

• T ≈ 1016K : brisure électrofaible, z = 1016, E =
1TeV : à cette échelle d’énergie (∼ 300GeV),
le mécanisme de Higgs est censé avoir brisé la
symétrie SU(2) ⊗ U(1) pour différencier les in-
teractions électromagnétiques et faible.

• T ≈ 1013K : transition de phase quark-hadrons,
z = 1013, E = 1GeV : jusqu’à ce qu’il ait atteint
cette température, l’univers était composé d’un
plasma de particules (plasma de quarks, gluons,
photons, électrons, etc) en constante interaction. À 1013K, les quarks ont été confinés par l’interaction
forte sous forme de hadrons (dont les nucléons).

• T ≈ 1010K : nucléosynthèse primordiale, z = 1010, E = 1MeV : à partir des nucléons formés, les premiers
noyaux sont alors créés en commençant par les plus légers (deutérium, tritium). En effet, aux alentours de
1011K, les protons et les neutrons ont commencé à interagir lors de collisions : n+ p → D + γ, puis vers
109K, ce sont les éléments plus lourds (3He et 4He) qui se sont formés jusqu’au lithium (6Li et 7Li). C’est
au cours de la nucléosynthèse primordiale que les neutrinos se sont découplés, se propageant librement
depuis lors. Ils forment un rayonnement de fond dont la température actuelle est de 1.96K [44].

• T ≈ 65 000K : égalité rayonnement-matière : jusqu’à ce qu’il ait atteint cette température, la dynamique
de l’univers était donnée par les particules relativistes. La transition a eu lieu autour de t ≈ 310 000 ans
après la singularité initiale. Par la suite, l’univers a subi une phase de domination par la matière.

• Tdec = 3 700K : recombinaison, z ∼ 1 100, E = 0.3eV : la valeur de la température au moment du
découplage est donnée par l’équation d’équilibre thermique d’ionisation de Saha, qui correspond à une
énergie inférieure à celle d’ionisation de l’hydrogène (13.6eV). Ceci s’explique par le fait que les photons
sont 1010 fois plus nombreux que les électrons. Ainsi, même avec une énergie moyenne du milieu inférieure
au seuil de réaction, il restait suffisamment de photons pour ioniser la matière. À T = 3 700K, l’équilibre
thermique est rompu et les électrons commencent à se coupler aux baryons pour former les premiers
atomes neutres : c’est la recombinaison. Les photons qui interagissaient par diffusion Thomson avec les
électrons acquièrent un libre parcours moyen plus grand que la taille de l’univers : c’est le découplage et
on parle de surface de dernière diffusion. Les photons qui sont issus de cette surface sont ainsi appelés
fond diffus cosmologique.

• T ≈ 15K : formation des grandes structures, z = 10, E = 0.01eV : suivant les observations actuelles,
les galaxies sont regroupées en amas, eux-même formant des super-amas le long de filaments plus denses,
mais le processus de formation de ces super-structures n’est pas encore parfaitement compris à ce jours.
Les simulations à N corps permettent d’expliquer les observations concernant la formation de ces grandes
structures en considérant de plus la présence de matière noire froide, autrement dit non-relativiste, lors
du découplage.

• T ≈ 2.725K : aujourd’hui, z = 0, E = 0.0002eV : l’univers que nous observons est actuellement fortement
inhomogène à petite échelle et contient des galaxies réunies en amas et en super-amas. Il est en expansion
accélérée et le fond diffus cosmologique possède une température de 2.725± 0.001K.
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Chapitre 5

La Cosmologie Quantique à Boucles

L’univers moderne, tel que la machine et l’homme en étaient arrivés à le comprendre, n’avait pas
besoin de Créateur. Il n’avait pas de place en réalité pour un Créateur. Ses règles de fonctionnement
n’autorisaient que très peu de bricolage et ne souffraient aucune révision majeure. Il n’avait jamais
eu de début, et n’aurait jamais de fin. Il ne connaissait que des cycles d’expansion et de contraction,
aussi suivis et aussi bien réglés que les saisons de l’Ancienne Terre.

Dan Simmons, Les cantiques d’Hyperion, la chute d’Hyperion

5.1 Introduction

Appliquer les notions de la relativité générale à un modèle d’univers homogène et isotrope conduit à une
description suffisamment fiable pour expliquer les observations. Cependant, et pour des raisons similaires à celles
annoncées précédemment, la description de l’univers à l’échelle de Planck par le modèle standard est erronée et
il est nécessaire d’incorporer les aspects quantiques. Il est possible de le faire de manière perturbative, redonnant
les théories attendues à la limite basse énergie, mais les descriptions effectives résultantes ne vont généralement
pas permettre de donner une évolution déterministe lors du passage à travers la singularité. Les approches
non-perturbatives comme celle de la gravité quantique à boucles sont fondées sur des idées plus profondes et on
s’attend à ce que leurs équations pour la dynamique restent bien définies lors de l’ère de Planck, permettant à la
fonction d’onde de l’univers de passer à travers la singularité et de rendre compte d’une évolution déterministe.
Ce faisant, cette simple réflexion engendre de nouvelles questions puisqu’elle autorise l’existence d’un ’avant’ la
prétendue singularité :

– La première et la plus naturelle : qu’y a-t-il de l’autre côté ? Comment la singularité classique est-elle
résolue ?

– Comment émerge notre univers classique de la théorie quantique ?
– Si on considère un scénario faisant intervenir un rebond, alors l’univers est en contraction avant la singu-

larité et les anisotropies, évoluant en fonction du facteur d’échelle selon a−6(η), vont crôıtre et dominer
dans les équations d’Einstein. Comment une nouvelle théorie de la gravitation va-t-elle prendre en compte
l’évolution de ces anisotropies ?

– Doit-on encore introduire des principes, conditions à la limite au moment du Big Bang, ou bien les
équations quantiques d’Einstein se suffisent-elles à elles-même ? Cette question fait référence aux conditions
initiales de l’univers, inconnues, obligeant la détermination de la fonction d’onde de l’univers à partir de ses
caractéristiques actuelles, par exemple le ’no boundary proposal’ introduit par Hartle et Hawking.

– Un fait intéressant a été remarqué par Carlo Rovelli [45] : en mécanique statistique, il est possible de
montrer qu’un système va pouvoir être décrit en fonction d’un degré de liberté physique qui va jouer
naturellement le rôle de variable temporelle. L’émergence du temps est une interrogation très importante
dans la construction d’une théorie quantique de la gravitation : mécanique quantique (temps externe) et
relativité (variable quelconque) n’ont pas le même rapport au temps. À partir des caractéristiques de la
fonction d’onde de l’univers, une variable spécifique va-t-elle se détacher en fonction de laquelle l’évolution
des quantités physiques va pouvoir être définie ?

Cependant, le modèle standard classique permet de décrire relativement bien l’univers 10−36 secondes après la
singularité, montrant que les effets quantiques doivent uniquement être important durant ce très court lapse de
temps et rapidement cesser d’agir ensuite. En particulier dans un scénario de rebond, ces effets vont agir comme
une nouvelle force répulsive qui est complètement negligeable lorsque la courbure de l’espace-temps est faible,
mais qui crôıt rapidement dans le régime de Planck jusqu’à totalement dominer l’effet de la gravitation créé
par une densité de matière de l’ordre de 1097kg.m−3. Dans le cas où cette force de répulsion est suffisamment
importante, elle pourrait être responsable de l’existence d’une phase inflationaire.

69
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70 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

Le défi de cette nouvelle approche est ainsi d’importer les corrections quantiques qui vont permettre une des-
cription de l’univers à l’échelle de Planck, et redonner ensuite les résultats attendus par le modèle standard de la
cosmologie avec, pourquoi pas, la possibilité de légères modifications qui autoriseraient l’observation des effets
quantiques. Des critiques ont par ailleurs été faites quant à la validité de la théorie ici présentée puisqu’elle
ne découle pas vraiment de la gravité quantique à boucles comme c’est le cas pour la cosmologie vis à vis de
la relativité générale. Elle ne fait que s’en inspirer. L’approche cosmologique issue de la gravité quantique à
boucles est appelée Spin Foam cosmology, plus fondamentale mais plus difficile à mettre en œuvre. La gravité
quantique à boucles décrit localement l’espace-temps, et l’univers étant homogène et isotrope, on peut regarder
comment agissent les effets quantiques et les incorporer dans la théorie classique, permettant alors une approche
effective qui va permettre de faire ressortir les caractéristiques principales des effets quantiques : on parle alors
de la théorie de la Cosmologie Quantique à Boucles, dont des descriptions sont par exemple données dans
les références [14] et [47], et les détails plus techniques dans [46] et [51].

5.2 La cosmologie usuelle sous le formalisme de la Gravité Quan-
tique à Boucles

En cosmologie quantique à boucles, on considère un espace-temps homogène et isotrope régi par la métrique
FLRW (4.3) tel que l’hypersurface spatiale Σ soit de topologie R3. N’étant ainsi pas compact, de nombreuses
intégrales spatiales faisant intervenir des champs homogènes vont alors diverger. Cependant, en raison de cette
même homogénéité, il est possible de regarder une cellule fiducielle V, définie par les coordonnées comobiles et
de de métrique non-dynamique 0qab. Cette cellule sera ainsi de volume fini défini

v0 =
∫
ν

d3x
√

0q. (5.1)

Il est maintenant possible de faire de la physique dans le volume physique observé V0, donné par V0 = a3v0,
lui aussi fini à a(t) fixé. Il est nécessaire de veiller une fois les calculs finis à ce que les résultats physiques ne
dépendent pas du choix de ce volume. Dans cette cellule, on définit les triades 0eai = δai , donnant un repère
métrique de l’hypersurface spatiale, et les co-triades 0eia = δia (aussi notée 0wia ) permettant de définir de même
qu’en gravité quantique à boucles les variables de connexion et de densité de triades. Pour un univers plat k = 0,
la partie homogène X̄ d’une variable X définissant le fond est donnée par

X̄ =
1
V0

∫
d3x ·X, (5.2)

et les variables d’Ashtekar homogènes, dépendant uniquement du temps t (ici, non pas le temps cosmologique
mais le temps défini par la métrique ADM (3.25)) s’écrivent comme

Āa = γk̄(t) δia τi et Ēa = p̄(t) δai τ
i. (5.3)

La connexion de spin Γia, donnée par l’équation (3.47), ne fait intervenir que des dérivées spatiales des densités
de triades, sa composante homogène est nécessairement nulle. Dans la littérature, la connexion est définie selon
c̃ = γk̄ et les variables sont ensuite normalisées pour que les contraintes ne fassent plus finalement intervenir
l’information sur la cellule fiducielle. Cela n’est qu’une convention. Nous adopterons celle donnée par Martin
Bojowald pour laquelle les intégrations spatiales sur les variables homogènes feront intervenir V0 et seront
régularisées naturellement ensuite, et ce afin de garder une certaine lisibilité dans les calculs.
Selon ce choix, les variables d’Ashtekar sont symétriques et satisfont automatiquement les contraintes de Gauss
(3.56) et de moments (3.57), et donc de Difféomorphisme D[N̄a] = 0. Elles possèdent de plus une relation de
crochets de Poisson donnée par l’équation (3.51) et permettent de définir la structure symplectique sous-jacente
pour la partie homogène selon

1
κγ

∫
Σ

d3xȦiaE
a
i =

3
κ

(∫
V0

d3x

)
˙̄kp̄ → Ωgrav =

3V0

κ
dk̄ ∧ dp̄. (5.4)

Les nouveaux crochets de Poisson correspondant pour les variables du fond (k̄, p̄) sont alors donnés par

{k̄, p̄} =
κ

3V0
. (5.5)

Ainsi, la contrainte hamiltonienne totale classique réunissant la partie gravitationnelle (3.58) de variables (k̄, p̄)
et la partie matière (3.76) correspondant à un champ scalaire de variables (ϕ̄, π̄), sera donnée par

H
(0)
RG[N̄ ] =

1
2κ

∫
V0

d3xN̄

[
−6
√
p̄k̄2 + 2κ

(
π̄2

2p̄
3
2

+ p̄
3
2V (ϕ̄)

)]
, (5.6)
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5.2. LA COSMOLOGIE USUELLE SOUS LE FORMALISME DE LA GRAVITÉ QUANTIQUE À BOUCLES71

où la matière homogène possède les crochets de Poisson

{ϕ̄, π̄} =
1
V0
. (5.7)

La plupart du temps, on utilisera le temps conforme et la métrique sera celle donnée par la suite par l’équation
(4.3) : nous utilisons ainsi la convention

˙= ∂η. (5.8)

En comparant cette métrique à celle du formalisme ADM donnée par l’équation (3.25), il est possible alors de
regarder l’expression des différents éléments que l’on va utiliser en fonction du facteur d’échelle. Ainsi, utiliser
les définitions données précédemment en temps conforme permet d’obtenir les relations

N̄ =
√
p̄ = a(η), N̄a = 0, (5.9)

eia = a(η)δia, eai =
1

a(η)
δai , (5.10)

p̄ = a2(η). (5.11)

Dans le formalisme hamiltonien, les équations du mouvement pour une variable homogène X̄ sont données par
les crochets de Poisson {X̄,H(0)

RG}. Pour être plus rigoureux, il serait cependant nécessaire de tenir compte de
l’effet des perturbations sur l’évolution du fond et c’est ce que l’on appelle l’effet de back-reaction. Mal-
heureusement, cette approche s’avère être très compliquée et nous n’en tiendrons pas compte dans la suite. En
considérant l’évolution du fond comme étant découplée de celle des perturbations, les équations du mouvement
des variables (k̄, p̄, ϕ̄, π̄) sont données en temps conforme par les équations

˙̄p =
dp̄

dη
= {p̄, H(0)

RG[N̄ ]} = 2p̄k̄, (5.12)

˙̄k =
dk̄

dη
= {k̄, H(0)

RG[N̄ ]} = −1
2
k̄2 +

κ

2

(
− π̄2

2p̄2
+ p̄V (ϕ̄)

)
, (5.13)

˙̄ϕ =
dϕ̄

dη
= {ϕ̄,H(0)

RG[N̄ ]} =
π̄

p̄
, (5.14)

˙̄π =
dπ̄

dη
= {π̄,H(0)

RG[N̄ ]} = −p̄2∂ϕ̄V (ϕ̄), (5.15)

et il est possible d’en tirer les équations classiques vues au chapitre précédent. En utilisant l’équation (5.11) don-
nant la relation entre le facteur d’échelle et p̄, on voit directement que l’équation (5.12) correspond exactement
à la définition du paramètre de Hubble, H = k̄ :

˙̄p
2p̄

=
ȧ

a
= k̄ → k̄ = H. (5.16)

L’équation (5.13) n’est ainsi rien d’autre que l’équation de Raychaudhuri pour un champ scalaire, donnée par
l’équation (4.9) : les équations (3.77) et (3.78) avec ces variables redonnent bien les expressions de la densité
d’énergie et de pression trouvées précédemment :

ρ =
π̄2

2p̄3
+ V (ϕ̄), (5.17)

P =
π̄2

2p̄3
− V (ϕ̄). (5.18)

Combiner les équations (5.14) et (5.15) redonne finalement l’équation de Klein-Gordon en temps conforme

¨̄ϕ+ 2k̄ ˙̄ϕ+ p̄∂ϕ̄V (ϕ̄) = 0, (5.19)

et il ne reste plus que l’équation de Friedmann qui est simplement retrouvée en utilisant les définitions précédentes
mais aussi en utilisant le fait que N étant un multiplicateur de Lagrange, non dynamique,

ṗN = {pN ,Htot} = −δHtot

δN
= 0 → H2 =

κ

3
p̄ρ. (5.20)

Cela termine ainsi la démonstration que, dans ce formalisme, toutes les équations usuelles de la cosmologie sont
bien retrouvées.
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72 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

5.3 La quantification pour la Cosmologie Quantique à Boucles

Comme pour les modèles de quantification des mini-super-espace, la réduction des variables est faite
au niveau classique à cause des symétries, mais les méthodes de quantification utilisées seront celles de la gravité
quantique à boucles : cette quantification est inéquivalente à celle généralement adoptée dans les théories de
cosmologie quantique. Elle va donc mener à des prédiction sensiblement différentes. Usuellement, lorsque l’on
effectue la quantification à la Wheeler-DeWitt pour la métrique FLRW, on se place dans la représentation p, ϕ
et on pose p̂ et ϕ̂ comme multiplicateur sur les états, avec

ĉΨ = i~γ
κ

3
∂Ψ
∂p

, p̂ϕΨ = −i~∂Ψ
∂ϕ

. (5.21)

La version quantique de la contrainte hamiltonienne est appelée l’équation de Wheeler-De Witt. Dans le cas
d’un champ scalaire sans masse, il est possible d’utiliser ce champ comme variable ’temps’ et d’avoir le volume
de l’univers comme observable de Dirac. Cependant, même si à grande échelle, on retrouve bien les prédictions
de la relativité générale version quantique, la singularité initiale est toujours présente et ne disparâıt pas de
façon tout à fait générique par la quantification.
Dans la suite, on ne souhaite pas s’étendre sur les détails de la quantification et très peu d’étapes seront données.
On va simplement tâcher de montrer comment apparaissent les modifications qui permettront de rendre compte
des deux effets quantiques principaux, nouveaux, inhérents à l’étude de l’univers par la gravité quantique à
boucles. Les caractéristiques de ces effets pourront ainsi être décrits en terme de fonctions mathématiques, que
l’on nomme correction d’inverse-volume et correction d’holonomie, et qui pourront être introduites à la
main dans les équations classiques conduisant à la théorie effective que l’on va étudier.

5.3.1 Au niveau cinématique

Fig. 5.1 – Cellule élémentaire où les spins
j = 1

2 sont transportés parallèlement aux
arrêtes de la cellule [47].

Afin de respecter au mieux les symétries d’un univers ho-
mogène et isotrope, mais aussi parce que c’est le motif possédant
des directions orthogonales le plus simple que l’on puisse
construire, on va considérer une partie de l’univers comme étant
contenue dans une cellule fiducielle représentée par un cube (voir
figure Fig.(5.1)). En cosmologie quantique à boucles, les variables
de configuration sont les holonomies he(A), considérée ici sur des
lignes droites parallèles aux arrêtes du cube et véhiculant le spin
le plus simple possible j = 1

2 , ainsi que les flux des densités de
triades F fS [E] pour des 2-surfaces S, parallèles elles-aussi aux
surfaces du cube1. Un rapide calcul permet de montrer que pour
le système de variables homogènes (Āia, Ē

a
i ) et en utilisant la

définition de l’holonomie donnée par l’équation (3.92), l’holono-
mie, prise sur une arrête e de longueur µ pour la métrique qab et
dans la direction k, peut s’écrire

he(A)=̇P exp

∫
e

A = eµγk̄τk = cos

(
1
2
µγk̄

)
112 + 2sin

(
1
2
µγk̄

)
τk. (5.22)

De même, le flux de densité de triade défini par l’équation (3.93), pour ce chemin, est donné par

F fS [E] =
∫
S

d2x · naEai f i ∼ p̄A(S, f), (5.23)

où A(S, f) est l’aire d’une cellule élémentaire. L’holonomie est ici composée d’une somme de fonctions
élémentaires Nµ(k̄)=̇e

i
2µγk̄ dépendant de k̄, des fonctions presque périodiques2 puisque µ est dynamique.

On peut de plus utiliser p̄ comme variable représentative du flux de densité de triade, et ce à cause de l’ho-
mogénéité et de l’isotropie. Les variables quantiques élémentaires utilisées sont alors données par les opérateurs
N̂µ(k̄) et ˆ̄p dont les relations de commutation sont dictées par les crochets de Poisson issus de l’équation (3.94)

{Nµ(k̄), p̄} =
κγ

3
iµ

2
Nµ(k̄). (5.24)

Les états quantiques, vérifiant la contrainte de Gauss et de Difféomorphisme, sont représentés par des fonctions
presque périodiques Ψ(k̄) de la connexion k̄, comme étant une combinaison linéaire et discrète d’ondes planes

Ψ(k̄) =
∑
n

αne
i
2µnk̄. (5.25)

1On peut faire l’analogie avec la cristallographie avec des mailles cubiques centrées.
2On parle de fonctions cylindriques.
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5.3. LA QUANTIFICATION POUR LA COSMOLOGIE QUANTIQUE À BOUCLES 73

Ces états n’étant pas des intégrales
∫
dµα(µ)e

i
2µγk̄ mais une somme discrète, l’espace de Hilbert correspondant

Hgrav
kin n’est plus celui utilisé pour la quantification à la Wheeler-DeWitt, L2(R, dk̄), et les solutions prédites

par la cosmologie quantique à boucles sont ainsi dès le départ différentes. Une base orthonormale de Hgrav
kin est

donnée par les fonctions Nµ(k̄) satisfaisant les relations

< Nµ|Nµ′ >= δµ,µ′ (5.26)

où, malgré l’utilisation des ondes planes, il apparâıt le delta de Kronecker au lieu d’un Dirac. Les actions des
opérateurs sont données de plus par

N̂µ(k̄)Ψ(k̄) = exp

(
i

2
µγk̄

)
Ψ(k̄) et ˆ̄pΨ(k̄) = −iκγ~

3
d

dk̄
Ψ(k̄). (5.27)

Il serait possible de définir ici l’opérateur ˆ̄k en considérant la dérivée de Nµ par rapport à µ, mais Ψ(k̄) possédant
un spectre discret en µn, il n’est pas possible de définir ˆ̄kΨ = −idΨdµ : cette absence de continuité va rendre la
cosmologie quantique à boucles différente de l’approche de Wheeler et DeWitt, puisqu’elle brise une hypothèse
du théorème d’unicité de Stones-VonNeumann3, et cela apparâıt fondamentalement en raison de l’invariance de
fond de la théorie [52].
D’autre part, ˆ̄p étant un opérateur auto-adjoint, il est utile et plus facile de prendre la représentation dans
laquelle il est diagonal, et d’utiliser les fonctions Ψ(µ). L’action des holonomies est alors plus simple puisqu’elle
correspond à une translation, et p̂ à une multiplication :

N̂αΨ(µ) = Ψ(µ+ α), ˆ̄pΨ(µ) =
κγ~
6
µΨ(µ). (5.28)

Dans cette représentation, l’action de la contrainte hamiltonienne sur la partie cinématique n’a pas été encore
définie. L’opérateur ˆ̄k n’étant pas défini, on se rend compte en étudiant la contrainte donnée par l’équation
(5.6), qu’il va falloir exprimer F kab ∝ k̄2 en terme d’opérateurs fiables, les holonomies.

5.3.2 Au niveau dynamique : corrections d’holonomie et d’inverse-volume

Les contraintes de Gauss et de Difféomorphisme étant vérifiées, il ne reste qu’à quantifier la contrainte hamil-
tonienne, et plus particulièrement les termes en F kab et Eai en fonction des opérateurs de flux et des holonomies.

-

6

�

?

-

�

6
?

oeai ∂a

oeaj∂a

−oeai ∂a

−oeaj∂a

h
(µ)
i

h
(µ)
j

h
(µ)−1
i

h
(µ)−1
j

Plaquette �ij ,
parallèle à une surface du cube [54].

.

Correction d’holonomie

En raison de la géométrie du système, on va considérer une
plaquette carré �ij comme pour la figure Fig.(5.3.2), de longueur
d’arête µ. Par ce choix de configuration, après avoir obtenu l’ex-
pression de h�ij

, il est maintenant possible d’exprimer simple-
ment F kab en terme des holonomies

F kab = −2 lim
Ar�→0

Tr

(
h�ij

− 11
Ar�

τk
)

0eia
0ejb
γ2

. (5.29)

où Ar� est l’aire de la plaquette, proportionnelle à µ2 et h�ij
est

l’holonomie autour de cette plaquette

h�ij
= h−1

j h−1
i hjhi. (5.30)

L’aire minimale en gravité quantique à boucles n’est pas nulle
mais ∆l2pl avec ∆ = 4

√
3πγ, et la limite µ → 0 n’est ainsi pas

dans l’essence de la théorie mère. Une première approche a été
alors de considérer la limite µ→

√
∆ qui correspond au µ0−scheme, mais cela présente des défauts comme le

fait que la densité maximale d’énergie possible évoluait avec le volume fiduciel. En fait, la définition de l’aire
donnée par l’équation (3.98) montre qu’elle doit nécessairement être proportionnelle à p̄ et donc au facteur
d’échelle au carré : les distances physiques évoluent elles-aussi en fonction de la dynamique de l’univers. Une
plaquette possède ainsi une aire Ar� = µ2 · p̄, qui correspond à l’aire minimale : dans ce modèle, tous les spins
sont identiques et valent j = 1

2 . Dans cette nouvelle approche, appelée µ̄−scheme en anglais, la longueur d’une
arrête devrait donc plutôt être donnée par

µ̄ =

√
∆
p̄
lpl. (5.31)

3Le théorème d’unicité de Stone-VonNeumann montre que pour un système de nombre fini de degrés de liberté, toutes les
représentations quantiques sont équivalentes.
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74 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

Cependant, ce choix est encore très controversé et nous noterons en toute généralité

µ̄ = δ · p̄β avec β ∈ [−1
2
, 0]. (5.32)

D’autre part, connaissant l’expression d’une holonomie donnée par l’équation (5.22), il est possible de calculer
h�ij

en utilisant la définition (5.30). Après quelques calculs faisant notamment intervenir les relations de l’algèbre
su(2), on obtient la relation

Tr[τk(h�ij − 11)] = −εijk
2

sin2(µγk̄). (5.33)

permettant de montrer que, dans la limite où µ→ µ̄, quelque soit la valeur de β,

F̂ kabΨ(µ) = εkij
0eia

0ejb

̂(
sin2(µ̄γk̄)

(µ̄γ)2

)
Ψ(µ) (5.34)

est un opérateur bien défini dans la théorie : F̂ kab fait ainsi intervenir des fonctions presque périodiques, comme
une composition de Nµ̄(k̄). Pour ce qui nous intéresse, il n’est pas utile de poursuivre plus loin dans la quanti-
fication de F kab, et ce que l’on montre ici est que l’utilisation des holonomies en cosmologie quantique à boucles
a pour conséquence de donner un opérateur de connexion ˆ̄k comme étant un sinus cardinal. Au niveau effectif,
on va alors considérer les équations classiques (de la relativité générale), tenir compte des effets des opérateurs
quantiques par des corrections fidèles, et en regarder les effets premiers. La première correction possible est la
correction d’holonomie qui consiste, comme on vient de le voir, à remplacer k̄ selon

k̄ −→ sin(µ̄γk̄)
µ̄γ

. (5.35)

Correction d’inverse-volume

Au niveau quantique, l’équation de Wheeler-DeWitt correspondante peut s’écrire, en considérant l’hamilto-
nien de matière,

ĤΨ(µ, φ) =

[
̂(

N
EE√
detE

) ̂(
sin2(µ̄γk̄

(µ̄γ)2

)
+ Ĥmat

]
Ψ(µ, φ) = 0. (5.36)

Le point souligné par cette notation est la définition de l’opérateur
̂(
N EE√

detE

)
. En effet, cet opérateur se

comporte comme l’inverse d’une densité de triades à une puissance quelconque, p̄−n, et est dans la théorie mal
défini, notamment à la limite classique. Il est cependant possible d’utiliser une astuce pour quantifier cette
divergence [53, 55] qui consiste à utiliser l’expression de {A, V } donnée par l’équation (3.89), et au niveau
effectif, le spectre obtenu pourra être reproduit par une correction de la forme

α(p̄, δE) = 1 + β

(
l2Pl
p̄

)n
+O(p̄, δE), (5.37)

avec β et n des nombres positifs. Cette correction α est appelée correction d’inverse-volume et est considérée
comme étant la seconde des corrections majeures à apporter à la contrainte hamiltonienne, en faisant le rem-
placement

1√
detE

−→ α(p̄, δE)√
detE

. (5.38)

Commentaire

Il est ainsi possible de voir qu’à grande échelle, lorsque p̄ est grand, l’évolution est celle de la relativité
générale, alors qu’au niveau du régime de Planck, p̄ petit, les expressions des corrections vont amener des
différences qui vont encoder les modifications géométriques dues aux effets quantiques.
Par un traitement purement quantique, dans le cas de modèles résolubles avec rebond, il a été trouvé que la
fonction d’onde de l’univers donnée par une équation semblable à (5.36) pouvait se propager à travers ce qui
apparâıt classiquement comme la singularité du Big Bang, montrant que cette théorie quantique de la gravitation
pouvait être définie dans le régime de Planck (voir figure Fig.(5.2)).

5.4 La Cosmologie Quantique à Boucles de manière effective

Au niveau effectif, l’ajout de corrections dans les contraintes va nécessairement modifier l’expression des
équations du mouvement, et les observables en résultant vont par conséquent amener des modifications dans
la description du modèle standard. Dans ce qui suit, on va surtout s’intéresser à la correction d’holonomie, et
dans une moindre mesure à la correction d’inverse-volume, afin de voir comment la dynamique est modifiée.
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5.4. LA COSMOLOGIE QUANTIQUE À BOUCLES DE MANIÈRE EFFECTIVE 75

Fig. 5.2 – Dans un univers k = 0,Λ = 0 en contraction puis en expansion, évolution d’une fonction d’onde de
l’univers dans le cas d’une quantification à la Wheeler-DeWitt (à gauche), et de la Cosmologie Quantique à
Boucles (à droite). [47]

5.4.1 Application des corrections d’inverse volume

Lorsque l’on considère la correction d’inverse-volume, on s’emploie à effectuer la transformation donnée par
l’équation (5.38), ce qui n’est possible que pour la contrainte hamiltonienne puisque les autres contraintes ne font
pas intervenir de terme en (detE)−n. On va ainsi pour la partie homogène modifier la contrainte hamiltonienne
de la gravité par une correction ᾱ, et de la matière par une correction ν̄, telles que la contrainte totale s’exprime
selon

H
(0)
tot,IV [N̄ ] =

1
2κ

∫
V0

d3xN̄

[
−6ᾱ

√
p̄k̄2 + 2κ

(
ν̄
π̄2

2p̄
3
2

+ p̄
3
2V (ϕ̄)

)]
. (5.39)

Équations du mouvement

Les équations d’évolution des variables homogènes sont données de façon similaire aux équations (5.12) à
(5.15), mais en raison de la dépendance des corrections en p̄(η), elles devront maintenant tenir compte des
dérivées partielles de ces corrections. Un calcul simple montre que dans ce cas

˙̄p = 2p̄ᾱk̄ → H = ᾱk̄ (5.40)

permettant de définir le paramètre de Hubble modifié H = ᾱk̄. Pour la matière (un champ scalaire), on obtient

˙̄ϕ = ν̄
π̄

p̄
, (5.41)

telle que maintenant densité d’énergie et pression s’écrivent

ρ = ν̄
π̄2

2p̄3
+ V (ϕ̄), P = ν̄

π̄2

2p̄3
− V (ϕ̄), (5.42)

ainsi que l’équation de Klein-Gordon4

¨̄ϕ+ ˙̄ϕ
(

2k̄
ν̄

ᾱ
−

˙̄ν
ν̄

)
+ p̄ν̄∂ϕ̄V (ϕ̄) = 0. (5.43)

L’équation de Friedman, en temps conforme, s’écrit alors

δM

δN
= 0 → H2 = ᾱ

κ

3
p̄ρ, (5.44)

et on voit que la correction d’inverse-volume, introduite comme un facteur multiplicatif pour la contrainte ha-
miltonienne gravitationnelle, agit en conséquence comme un facteur multiplicatif dans l’équation de Friedmann.

Conséquences cosmologiques des corrections d’inverse-volume

Si on raisonne en temps cosmologique, l’équation (5.44) s’écrit

H2 = ᾱ
κ

3
ρ = ᾱ

κ

3

(
ϕ̇2

2ν̄
+ V

)
(5.45)

et lorsque le facteur d’échelle est très grand et sa dérivée non-nulle, la correction ᾱ étant proche de 1, on retrouve
bien la dynamique classique attendue. Lorsque l’on s’intéresse à l’échelle de Planck, le Big Bang n’est pas résolu.

4En anticipant sur la suite, lorsque l’on considère des corrections identiques pour la matière et la gravitation, Ω̄ = ν̄ = ᾱ, on
obtiendra toujours des équations pour une variable X similaires à l’équation (5.43)

Ẍ + Ẋ

 
2H−

˙̄Ω

Ω̄

!
+ V (Ω̄) ·X = 0

.
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76 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

5.4.2 Application des corrections d’holonomie

Lorsque l’on considère la correction d’holonomie, on s’emploie à effectuer la transformation donnée par
l’équation (5.35). Seules les contraintes hamiltoniennes sont non-nulles et la contrainte totale s’écrira

H
(0)
tot,holo[N̄ ] =

1
2κ

∫
V0

d3xN̄

[
−6
√
p̄

(
sin(µ̄γk̄)

µ̄γ

)2

+ 2κ
(
π̄2

2p̄
3
2

+ p̄
3
2V (ϕ̄)

)]
. (5.46)

Par la suite, la correction d’holonomie va apparâıtre dans de nombreux termes, et tout en conservant une
forme en sinus cardinal, on va utiliser dans le cas général la notation

k̄ −→ K [n] =
sin(nµ̄γk̄)

nµ̄γ
∀n ∈ N∗, K [n = 0] = k̄, (5.47)

où n est un entier pour que la correction puisse être comme initialement décomposable sur une base Nµ =
exp

[
1
2µγk̄

]
. En utilisant l’équation (5.32), on peut montrer que

β =
p̄

µ̄

∂µ̄

∂p̄
, (5.48)

et on définit les relations importantes pour la suite

p̄
∂K [n]
∂p̄

= β
(
k̄ · cos(nµ̄γk̄)−K [n]

)
, (5.49)

ainsi que
∂K [n]
∂k̄

= cos(nµ̄γk̄). (5.50)

Ce terme allant intervenir constamment par la suite, on pose

Ω =̇ cos(2µ̄γk̄), (5.51)

découlant majoritairement de l’équation (5.50).

Équations du mouvement

De même que pour les cas précédents, il est possible de trouver des équations d’évolution pour les variables
homogènes similaires aux équations (5.12) à (5.15). Les variables étant fonctions de µ̄ = f(p̄(η)) et de k̄, il sera
nécessaire de tenir compte de leurs dérivées partielles, compliquant grandement les équations comme pour ˙̄k,
mais heureusement les résultats se simplifieront aussi très facilement. La modification n’étant perceptible que
sur ˙̄p et ˙̄k, un calcul simple permet de montrer que

˙̄p = 2p̄K [2] → H = K [2] (5.52)

permettant de définir le paramètre de Hubble modifié H = K [2], et

˙̄k = k̄K [2]− κ

2
π̄2

p̄2
. (5.53)

Concernant la matière, on obtient
˙̄ϕ =

π̄

p̄
, (5.54)

et l’équation de Klein-Gordon possède la même forme que classiquement,

¨̄ϕ+ 2K [2] ˙̄ϕ+ p̄∂ϕ̄V (ϕ̄) = 0, (5.55)

avec pour ces corrections, une modification qui n’est due uniquement qu’à l’expression deH. Dans cette équation,
comme celles que l’on verra plus tard pour les perturbations, on se rendra compte que les équations avec
les corrections d’holonomie seront très proches de celles obtenues dans le cas classique, à la différence que
le paramètre de Hubble aura une évolution différente au niveau de l’échelle de Planck, et que des termes
supplémentaires apparâıtront.
D’autre part, l’expression de la densité d’énergie correspond exactement à celle trouvée classiquement par
l’équation (5.17), et en utilisant sa définition (3.77), on peut montrer qu’il existe une première équation de
Friedmann5 donnée par

K [1]2 =
κ

3
p̄ρ. (5.56)

5Lorsque p̄ devient grand, µ̄ → 0 et K [1] → k̄ = H.
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5.4. LA COSMOLOGIE QUANTIQUE À BOUCLES DE MANIÈRE EFFECTIVE 77

En utilisant l’équation (5.56) précédente et la définition (3.77) de la densité d’énergie à l’aide de la dérivée de
la contrainte6, il est possible d’établir la seconde équation de Friedmann donnée par

H2 = K [2]2 =
κ

3
p̄ρ

(
1− ρ

ρc

)
, (5.57)

où on a défini une nouvelle densité critique, ρc s’écrivant

ρc =
3
κγ2

1
µ̄2p̄

. (5.58)

Dans le cas où ρc → +∞, on retrouve les équations classiques dans notre univers, pour lequel la densité d’énergie
est très faible en comparaison de ρc, constante, valant

ρc =
3

κγ2∆
∼ 1097 kg .m−3. (5.59)

Cette densité d’énergie critique dépend de la valeur du paramètre de Barbero-Immirzi, et la dynamique de
l’univers observée va pouvoir ainsi contraindre sa valeur. Une des équations de Raychaudhuri très utile pour la
suite est donnée en combinant les équations (5.49), (5.50) et (5.53)

Ḣ =
dK [2]
dη

= K [2]2 − Ω
κ

2
π̄2

p̄2
, (5.60)

et il est aussi possible de voir que
Ω = 1− 2

ρ

ρc
, (5.61)

s’annulant lorsque ρ = ρc/2.

Conséquences cosmologiques des corrections d’holonomies

Les corrections d’holonomies, par rapport aux corrections d’inverse-volume, vont amener un scenario plus
novateur, ayant la possibilité d’éclaircir certains points obscures du modèle standard de la cosmologie. Les points
essentiels sont :

1. l’existence d’un grand rebond, Big Bounce en anglais.
L’équation de Friedmann modifiée (5.58) est une des ’révolutions’ engendrées par la cosmologie quantique
à boucles. En effet, le terme de droite κ

3ρ est toujours positif, impliquant en relativité générale que ȧ
n’est jamais nul : l’univers soit s’étend pour toujours à partir du Big Bang, soit se contracte jusqu’au
Big Crunch. Mais dans l’équation (5.58), ȧ peut en plus devenir nulle lorsque ρ = ρc engendrant ainsi
l’apparition d’un rebond quantique : dans le passé de cet évènement, l’univers se contracte tandis que
dans le futur il s’expand. Une force répulsive est ainsi créé et va avoir comme conséquence de ’repousser’
la matière en amenant un univers en expansion, comme illustré par la figure Fig.(5.3). Cette force est
ainsi due à la nature quantique de la géométrie. En cosmologie quantique à boucles, il est alors possible
d’obtenir une succession de ces phases de contraction et d’expansion, et pourquoi pas d’obtenir un univers
dit cyclique, sans singularités.
Une curieuse analogie peut être faite avec ce qui se passe lors des effondrements des étoiles sur elles-mêmes :
lorsque le noyau approche une certaine densité critique, une nouvelle force répulsive entre en jeux stoppant
l’effondrement et menant alors aux étoiles à neutrons et aux naines blanches, stables. Cette force est une
conséquence de la statistique de Fermi-Dirac et elle est associée à la nature quantique de la matière.
Ce phénomène n’est rendu possible qu’à cause du signe négatif présent dans le terme correctif. Cette
résolution de la singularité n’est pas triviale puisque par exemple, en théorie des branes, l’équation de
Friedmann reçoit elle aussi une correction en ρ2, mais elle est accompagnée d’un signe positif ne permet-
tant pas au bounce de se produire. On peut aussi voir qu’á cause de la fonction sin(k̄), la courbure k̄ peut
être infinie sans que les équations ne divergent, permettant ainsi d’avoir une théorie effective bien définie
au niveau du rebond.
D’autre part, une telle résolution d’une singularité ne contredit pas les théorèmes standards sur les sin-
gularités élaborés par Penrose et Hawking. En effet, ces théorèmes ne sont pas applicables en cosmologie
quantique à boucles car les équations d’Einstein classiques sont modifiées par les corrections dues à la
géométrie quantique dans la théorie. Il en va de même pour les théorèmes plus récents dus à Borde, Guth
et Vilenkin [48] : ils ne réfèrent pas aux équations d’Einstein mais sont motivés par le scenario d’une
inflation éternelle. Cependant, en cosmologie quantique à boucles, la phase pré-Rebond de contraction ne
permet plus un tel scenario. Les différents travaux sur la résolution des singularités dans cette théorie
[49, 50] pourraient montrer que de telles théorèmes existeraient aussi en cosmologie quantique à boucles.

6Dans notre écriture, il faut diviser cette définition par V0 pour ne pas avoir de référence à la cellule fiducielle.
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78 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

2. l’existence d’une phase d’inflation naturellement présente : en considérant l’univers primordial constitué
d’un champ scalaire, puisque c’est le modèle le plus simple que l’on puisse construire, l’évolution sera régie
par l’équation de Klein-Gordon

¨̄ϕ+ 2K [2] ˙̄ϕ+ p̄∂ϕ̄V (ϕ̄) = 0, (5.62)

et se fera de concert avec le fond à cause du paramètre de Hubble. Cependant, dans le scénario précédent,
l’univers avant le bounce était en contraction, H = K [2] < 0 va alors jouer comme un terme d’anti-
friction : quelles que soient les conditions initiales pour le champ, la dynamique engendrée par le fond
va nécessairement le faire monter sur son potentiel, possiblement assez haut. Dans la phase d’expansion,
le terme comportant le paramètre de Hubble va jouer de nouveau un rôle de friction, et on pourra alors
retrouver un comportement slow-roll pour ce champ qui, suivant sa valeur au moment du bounce, pourrait
engendrer une longue phase d’inflation. L’inflation est alors naturellement engendrée par un champ scalaire
qui redonne, après le rebond, le comportement décrit dans le modèle standard de la cosmologie, et ce,
sans qu’il ne soit nécessaire de recourir à des conditions initiales artificielles. Le scenario d’un tel champ
scalaire est appelé scénario en aileron de requin, ou shark fin scenario, et son évolution est donnée
par la figure Fig.(5.4).

Fig. 5.3 – évolution de l’univers à travers un rebond ( c©Bruno Bourgeois).

Fig. 5.4 – évolution du champ scalaire en fonction du temps dans un univers en rebond [56]

La physique étant différente à l’échelle de Planck, on peut s’attendre à ce que les effets quantiques en-
gendrent des modifications observables. La discrétisation de l’espace-temps et une nouvelle description de la
physique proche d’une pseudo-singularité sont les deux caractéristiques importantes d’une théorie quantique de
la gravitation qui permettraient de penser à de nouveaux effets possibles que l’on pourrait tester.
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5.5. LES EFFETS POSSIBLES OBSERVABLES 79

5.5 Les effets possibles observables

L’énergie de Planck ( 1019GeV) est de 15 ordres de grandeur au dessus des capacités des accélérateurs actuels
de particules, et d’environ 8 ordres de grandeur par rapport à la plus énergétique des particules observées du
rayonnement cosmique. La longueur de Planck est de 20 ordres plus basse que le rayon d’un proton, et en terme
de temps de Planck (10−44s), de plus de 20 ordres de grandeur au delà de la précision donnée par les horloges
atomiques disponibles. Des expériences directes en laboratoire sont donc inenvisageables pour tester les effets
quantiques recherchés. Cependant, grâce à la cosmologie et l’astrophysique mettant en jeu des phénomènes
de très hautes énergies, comme les supernovae, trous noirs et autres objets exotiques, il est éventuellement
envisageable d’étudier leurs caractéristiques pour en tirer des informations sur leur possible structure quantique.

Les sursauts gamma : brisure de l’invariance de Lorentz ?

On vient de le voir, dans une théorie quantique de gravitation, on s’attend à ce que l’espace-temps ait une
forme granulaire, fait de quanta de volume à l’échelle de Planck. Il a été émis l’idée qu’en ce propageant sur
cette structure granulaire, les rayons lumineux, de longueur d’onde λ, devaient être eux aussi affectés par ces
effets quantiques, même s’ils ont un impact extrêmement faible. Pour ces rayons lumineux, λ ∼ 10−12 m et
on peut naturellement s’attendre à ce qu’ un effet quantique ait une action lplanck/λ ∼ 10−23 plus faible sur
ces longueurs d’onde. Cependant, une supernova émettant un sursaut gamma se situe à une distance d’environ
1025m de nous, soit 1037 longueur d’ondes, donnant la possibilité aux effets quantiques d’agir éventuellement
suffisamment longtemps pour modifier la propagation de ce rayon lumineux, et ainsi être visibles. Il a notamment
été postulé dans certains modèles [57] que la relation de dispersion pour des photons serait modifiée selon

c2p2 = E2

[
1 + χ

E

Eplanck
+O

(
E2

E2
planck

)]
, (5.63)

avec χ de l’ordre de l’unité, et E = hν l’énergie d’un photon de fréquence ν. Suivant cette relation, des photons
de différentes énergies et donc de différentes longueurs d’onde devraient arriver à des temps différents dans un
détecteur. Un léger retard dans l’arrivé des photons a été observé [58] pour la supernova GRB 050910, mais
les mécanismes mis en jeu pour les phénomènes astrophysiques, comme les supernovae ou les étoiles à neutron
responsables de sursauts gamma, ne sont pas connus précisément et il reste encore beaucoup de libertés possibles
dans la compréhension de ces objets. Ainsi, ces photons ont pu être émis au centre de l’objet et n’en sont sortis
qu’à des temps différents à cause de mécanismes internes, amenant un décalage dans l’ordre d’arrivée. Cette
idée sur la modification de la relation de dispersion est très arbitraire et ne peut pas se déduire rigoureusement
de la théorie mère. Dans le cas d’un toy model [59] en cosmologie quantique à boucles, des calculs similaires ont
été effectués, et le résultat attendu est de même une modification de cette relation de dispersion, telle que pour
une onde polarisée de fréquence ν et de nombre d’onde k

ν± ∼ |k|(1∓ 2χlplanck|k|) +O(k3). (5.64)

La correction apportée dépend dans ce cas du signe de l’hélicité de l’onde donnant à l’espace-temps quantique
un aspect biréfringent. Par rapport à la relation (5.63), l’équation (5.64) est plus restrictive puisqu’elle fait
intervenir en plus la polarisation de l’onde, et donc contraint mieux les effets quantiques. Si ce modèle s’avère
théoriquement correcte, il est déjà invalidé par les mesures faites en radioastronomie pour lesquelles l’étude
de sources radio [60] émettant des ondes polarisées dans un large panel de longueur d’onde a montré que la
polarisation ne change pas avec la longueur d’onde, impliquant χ < 10−3. Paradoxalement, dans ce modèle, les
équations de Maxwell apparaissant ne sont pas invariantes de Lorentz, et il faudrait le raffiner pour vraiment
en avoir une meilleure compréhension.
La brisure de l’invariance de Lorentz est un sujet longuement débattu. Il existe cependant des arguments en
sa défaveur, apportés notamment par Carlo Rovelli [13] : si un observateur mesure la longueur minimale de
la théorie, alors un autre observateur subissant un boost devrait mesurer une longueur plus petite à cause des
contractions de Lorentz, et cela rendrait la théorie quantique incohérente. Cependant cette réflexion ne tient
justement pas compte des enseignements de la mécanique quantique : ce ne sont pas les valeurs propres du
spectre de l’opérateur de mesure qui devraient subir les contractions de Lorentz, mais leurs valeurs moyennes.
Le spectre étant alors inchangé, l’existence d’une valeur minimale ne brise ainsi pas l’invariance de Lorentz.
A l’heure actuelle, si cette brisure devait se produire, il n’y en a pour le moment aucune évidence, et il est
nécessaire de chercher un autre moyen d’observer les effets quantiques.
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80 CHAPITRE 5. LA COSMOLOGIE QUANTIQUE À BOUCLES

Les perturbations cosmologiques

L’étude des sursauts gamma, même si potentiellement intéressante, n’est pas suffisante pour contraindre le
modèle. Nous allons plutôt nous intéresser à ce qui s’est passé lorsque l’univers était dans un état de très haute
énergie, à l’ère de Planck durant laquelle les effets quantiques ont pu vraiment dominer et modifier l’évolution
que l’on connâıt habituellement. Aujourd’hui, ces effets sont potentiellement observables par l’étude du fond
diffus cosmologique, et nous allons surtout nous focaliser par la suite sur les perturbations qui encodent en fait
le passé de notre univers.

Fig. 5.5 – Fond diffus cosmologique attendu par le satellite PLANCK.
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Chapitre 6

Les perturbations cosmologiques

A l’origine, il y a le silence. Un seul point de lumière au centre de la table. Puis au premier cube
posé, la basse se met en route. La gimmick démarre. Et au fur et à mesure qu’on ajoute des cubes
et des étoiles, un monde sonore entre en vie. Un coeur bat, des connexions s’établissent. Une galaxie
est née.

Arthur de Pas, Reactable

6.1 Introduction

Dans le modèle cosmologique actuel, notre univers a subi une phase inflationaire primordiale l’ayant rendu
homogène en grande partie, et qui est paradoxalement à l’origine des inhomogénéités observées. Une explication
plausible quant à l’origine de la formation des structures au sein de l’univers serait l’apparition de petites
perturbations dans le champ d’inflaton, qui auraient crû au cours du temps pour initier ces structures : une fois
l’univers arrivé dans la phase de domination par la matière, les inhomogénéités, de l’ordre de δρ

ρ ∼ 10−5, auraient
été amplifiées par effondrement gravitationnel et ont put ainsi former les structures actuellement observables.
Ces perturbations quantiques dans le champ de matière ont eu des conséquences sur la métrique, et les équations
d’évolution de ces perturbations sont alors données par les équations de la relativité générale. Généralement, dans
toute théorie linéaire des perturbations cosmologiques, la croissance de ces petites inhomogénéités de matière,
de longueur d’onde plus petite que le rayon de Hubble (λ < H−1), est donnée par une équation newtonienne en
temps cosmologique1

d2

dt2
δ~k + 3H

d

dt
δ~k + v2

s

k2

a2
δ~k =

κ

2
ρMδ~k (6.1)

où v2
s = ∂p

∂ρ est le carré de la vitesse du son dans le milieu, et où les perturbations ont été écrites sur une base
d’onde planes

δρ

ρ
(x, t) =

1
(2π)

3
2

∫
d3k δ~k(t) e

i~k·~x. (6.2)

Une des propriétés les plus utiles de l’inflation, en dehors de la résolution des différents problèmes cosmologiques,
est la génération des spectres de densité de perturbations en température, mais aussi en polarisation permettant
de sonder les effets des ondes gravitationnelles (avec le mode B). Durant l’inflation, la longueur d’onde d’une
fluctuation quantique devient plus grande que le rayon de Hubble et son amplitude devient alors ’gelée’ à
cause de la perte de causalité entre les différents modes. Cela se verra par le terme de friction HΦ̇ qui devient
dominant. De plus, selon la théorie quantique des champs, un espace vide n’est pas totalement vide et possède
une énergie : il est rempli de fluctuations quantiques de tous les champs possibles et de toutes longueurs d’onde
possibles, et l’inflation va successivement geler les différents modes. Une fois l’inflation terminée, le rayon de
Hubble en croissant plus vite que le facteur d’échelle, des modes vont ré-entrer dans le rayon de Hubble : cela
se produit durant les périodes de domination par la matière ou le rayonnement, générant les perturbations de
matière (et de température) observées δρ via l’équation de Poisson. Leur spectre de puissance va ainsi posséder
une signature distincte de l’inflation, que l’on peut observer par l’étude du fond diffus cosmologique. Ainsi, pour
comprendre l’existence des structures de l’univers à travers le scénario de l’inflation, il faut retenir que

– les fluctuations quantiques du champ d’inflaton sont excitées durant l’inflation et étirées jusqu’aux échelles
cosmologiques,

– ces fluctuations, par les équations de la relativité générale, vont induire des perturbations sur la métrique
qui vont de même être portées jusqu’aux échelles cosmologiques,

1Rappel : la convention prise dans ce manuscrit est d’utiliser ˙ =̇ ∂η , la dérivée en temps conforme.
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82 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

– la gravité agit comme un ’messager’ puisqu’elle communique aux baryons les perturbations générées par
un mode qui est devenu plus petit que l’échelle de l’horizon une fois l’inflation terminée. Les photons,
jusqu’au moment du découplage, vont interagir avec la matière et contenir eux-aussi cette information
sur les perturbations. Observer les photons du fond diffus cosmologique permettra alors de contraindre
l’évolution des perturbations durant l’inflation.

Les équations considérées par la suite étant similaires, nous allons commencer par regarder l’exemple des per-
turbations pour un champ scalaire, et introduire ensuite les différents types de perturbations de la métrique
ainsi que les spectres de puissance correspondant.
Nous nous sommes basés sur les références [26] et [61] où tous les calculs présentés ici peuvent y être trouvés,
ainsi que celles vues au chapitre Chap.4.

6.2 Invariance de jauge

En relativité générale, choisir une jauge consiste à choisir un système de coordonnées, et donc un choix de
paramétrisation des hypersurfaces spatiales. Une transformation entre deux choix de coordonnées est appelée
transformation de jauge et est donnée par la dérivée de Lie correspondante. En physique, on est souvent
intéressé par des quantités seulement dépendantes des caractéristiques physiques du système, et non pas du
choix de mesure de l’observateur. On parle alors de quantités invariantes de jauge.
Dans le cas d’un changement infinitésimal de coordonnée généré par un champ de vecteur ξµ

xµ → x̃µ = xµ + ξµ(x), (6.3)

une quantité Q quelconque sera transformée au premier ordre selon

Q̃ = Q+ LξµQ(0), (6.4)

et toute quantité invariante de jauge doit alors satisfaire la condition

LξµQ(0) = 0. (6.5)

Ce résultat est connu sous le nom de Lemme de Stewart-Walker. Comme on le verra par la suite, il en existe une
infinité puisque toutes combinaisons de quantités invariantes de jauge donnent aussi des quantités invariantes
de jauge. En cosmologie, on souhaite comparer deux espace-temps proches : celui donné par la métrique FLRW
et celui perturbé. Le meilleur moyen est donc d’obtenir ces quantités invariantes de jauge, et pour ce faire, il
existe deux façons possibles de procéder :

– Soit on identifie les combinaisons des perturbations qui donnent des quantités invariantes de jauge :
l’inconvénient est de devoir passer souvent par des difficultés techniques importantes, mais les résultats
seront physiques,

– Soit on choisit une jauge dans laquelle on fait les calculs : plus simple pour les calculs, mais des libertés
de jauge non physiques peuvent apparâıtre et ne pas permettre une bonne compréhension des résultats.

Dans la suite, nous allons utiliser la première façon et obtenir directement ces quantités par une méthode
canonique. Nous allons cependant regarder auparavant qu’elles sont leurs expressions habituelles en cosmologie
et voir leur sens physique, et leur évolution sera obtenue à partir des équations du mouvement des perturbations.

6.3 Fluctuations quantiques d’un champ scalaire durant l’inflation

On va s’intéresser à l’évolution des perturbations d’un champ scalaire quelconque χ, dans le cadre d’une
évolution de type inflationaire, et obtenir ainsi les définitions des différents vides que l’on va rencontrer.

champ scalaire non massif durant une inflation de De Sitter

On s’intéresse au cas d’un fond de De Sitter, a ∼ eHIt où HI est constant. La résolution des équations étant
plus simple dans l’espace de Fourier, on va regarder les modes de Fourier du champ scalaire χ, définis selon

δχ(x, t) =
∫

d3k
(2π)3/2

eik·x δχk(t). (6.6)

La dynamique d’un champ scalaire dans la métrique FLRW étant donnée par l’équation (4.26), les variables
dans l’espace de Fourier auront leur évolution dictée par l’équation analogue

d2

dt2
δχk + 3H

d

dt
δχ̇k +

k2

a2
δχk = 0, (6.7)

dont une étude qualitative permet de montrer que
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6.3. FLUCTUATIONS QUANTIQUES D’UN CHAMP SCALAIRE DURANT L’INFLATION 83

– pour des longueurs d’onde à l’intérieur de l’horizon λ � H−1, le nombre d’onde correspondant satisfait
la relation k � aH. Pour ces modes, il est alors possible de négliger le terme de friction 3H d

dt δχk tel que

d2

dt2
δχk +

k2

a2
δχk = 0. (6.8)

Cette équation du mouvement est similaire à celle d’un oscillateur harmonique dont la fréquence va varier
avec le temps à cause du terme en a2, et dont les solutions donneront des fluctuations qui devraient osciller
pour des modes à l’intérieur de l’horizon.

– pour des longueurs d’onde plus grandes que l’échelle de l’horizon, λ� H−1, le nombre d’onde correspon-
dant satisfait la relation k � aH et le terme k2/a2 peut être négligé tel que

d2

dt2
δχk + 3H

d

dt
δχk = 0, (6.9)

montrant que des modes superhorizons doivent être constants ( ddtχk ∼ 1
a → 0).

En résumé, il est donc possible que des modes de longueurs d’ondes λ ∼ a/k, initialement à l’intérieur de
l’horizon, oscillent jusqu’à ce qu’ils atteignent une taille de l’ordre du rayon de Hubble, et se figent ensuite.
D’autre part, en se plaçant en temps conforme, le facteur d’échelle devra évoluer en conséquence selon

a(η) = − 1
Hiη

(η < 0). (6.10)

Dans cette formulation, il est possible de ramener l’équation (6.7) à une équation de type Schrödinger en
effectuant le changement de variable

δχk =
uk

a
, (6.11)

tel que le champ lié uk évolue selon

ük +
(
k2 − ä

a

)
uk = 0. (6.12)

L’équation (6.12) correspond à une particule d’énergie E(k) = k2 dans un potentiel effectif dépendant du temps
de la forme V (η) = ä

a = 2
η2 et se déplaçant dans un espace plat. Il est alors possible de formuler son action selon

δSk =
∫

dη

[
1
2
u̇2
k −

1
2

(
k2 − ä

a

)
u2
k

]
, (6.13)

qui est l’action d’un simple oscillateur harmonique de masse ä
a évoluant dans le temps, et de relations de

commutations canoniques
u∗k · ∂ηuk − uk · ∂ηu∗k = −i. (6.14)

Pour un mode k fixé, on voit que dans différents régimes dépendant de la valeur de a(η), l’équation (6.12)
va donner différentes solutions, et ce mode pourra être caractérisé par la donnée de |kη| puisque

k

aHi
= −k η. (6.15)

Plus précisément, ce mode correspondra

1. à un mode subhorizon k � aHi lorsque |kη| � 1, et l’équation (6.12) se simplifie en

ük + k2uk = 0, (6.16)

de solution une onde plane

uk =
e−ikη√

2k
. (6.17)

Cette solution (6.17) est la solution correspondant à un vide de Minkowski, c-a-d pour un espace plat,
ce qui est plutôt cohérent, puisqu’à la limite ultraviolette, pour des longueurs d’onde plus petites que
l’échelle de l’horizon, on s’attend à ce qu’un espace-temps plat soit une bonne approximation, et donc que
les modes ayant cette taille oscillent à l’intérieur sans empreinte de courbure.

2. à un mode superhorizon k � aHi lorsque |kη| � 1, et l’équation (6.12) se simplifie en

ük −
ä

a
uk = 0, (6.18)
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84 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

de solution
uk = B(k)a(η) (k � aHi). (6.19)

La constante d’intégration B(k) s’obtient par la continuité des solutions des modes sub et superhorizon,
telle que

|uk| ∼
Hi√
2k3

pour des modes superhorizon. (6.20)

On vient de voir qu’il était possible de caractériser par des arguments heuristiques la solution pour tous les
modes, mais il existe néanmoins une solution analytique à l’équation (6.12),

uk =
e−ikη√

2k

(
1 +

i

kη

)
. (6.21)

Cette solution correspond au vide de Bunch-Davies et redonne dans les différentes limites les solutions
obtenues précédemment. Par la suite, nous déciderons de prendre comme condition initiale pour la perturbation
du champ, soit un mode correspond à un espace plat (comme maintenant) et donc un vide de Minkowski, soit
de prendre un vide de Bunch-Davies correspondant à l’absence de particules dans un espace de type De Sitter,
comme dans le cas de l’inflation.

Champ scalaire massif durant une inflation de De Sitter

Il est de même possible de refaire une analyse similaire dans le cas cette fois-ci d’un champ scalaire de masse
mχ et de potentiel V (χ) = 1

2m
2
χχ

2, qui est plus intéressant. L’équation de Klein-Gordon issue de l’équation
(4.26) est alors donnée comme l’équation (6.12) selon

ük +
[
k2 + V (η)

]
uk = 0, (6.22)

où V (η) est le potentiel effectif de la particule qui tient compte de m2
χ, et tel que pour une évolution de De

Sitter

V (η) =
(
m2
χ − 2H2

i

)
a2(η) =

1
η2

(
m2

H2
i

− 2
)
. (6.23)

En notant

ν2
χ =

(
9
4
−
m2
χ

H2
i

)
, (6.24)

l’équation (6.22) peut se réécrire sous la forme

ük +
[
k2 − 1

η2

(
ν2
χ −

1
4

)]
uk = 0, (6.25)

dont la solution générique pour νχ réelle s’écrit [62] comme combinaison linéaire de fonctions évoluées

uk =
√
−η
[
c1(k)H(1)

νχ
(−kη) + c2(k)H(2)

νχ
(−kη)

]
, (6.26)

où H(1)
νχ et H(2)

νχ sont respectivement les fonctions de Hankel du premier et second ordre. Si de plus, on impose
que dans le régime ultraviolet k � aH (−kη � 1) telle que la solution corresponde à une solution en onde plane
e−ikη/

√
2k comme on l’attend à très petite échelle, alors avec

H(1)
νχ

(x� 1) ∼
√

2
πx

ei(x−
π
2 νχ−π

4 ) ,H(2)
νχ

(x� 1) ∼
√

2
πx

e−i(x−
π
2 νχ−π

4 ), (6.27)

c2(k) = 0 et c1(k) =
√
π

2 ei(νχ+ 1
2 )π

2 par la condition de wronskien. La solution exacte devient alors

uk =
√
π

2
ei(νχ+ 1

2 )π
2
√
−η H(1)

νχ
(−kη), (6.28)

et avec

H(1)
νχ

(x� 1) ∼
√

2/π e−i
π
2 2νχ− 3

2

(
Γ(νχ)
Γ(3/2)

)
x−νχ , (6.29)

les modes superhorizon sont donnés par

|δχk| '
Hk√
2k3

(
k

aHi

) 3
2−νχ

modes superhorizon. (6.30)

où Hk est la valeur du paramètre de Hubble quand un certain mode k sort de l’horizon. Par analogie avec la
définition des paramètres de slow-roll, on définit pour ce champ un paramètre ηχ = (m2

χ/3H2
i ) � 1, tel que

3
2
− νχ ' ηχ (6.31)

qui rendra compte de l’évolution de l’amplitude du spectre.
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6.3. FLUCTUATIONS QUANTIQUES D’UN CHAMP SCALAIRE DURANT L’INFLATION 85

Définition du spectre de Puissance

L’équation (6.22) est linéaire et correspond donc à celle d’un champ libre. Les observables associées au champ
sont donc toutes déterminées par sa fonction de corrélation à deux points, i.e. toute l’information se trouve dans
le spectre de puissance défini non plus en prenant la moyenne sur les configurations classiques < χkχ−k >, mais
en prenant la valeur moyenne quantique < 0|χ̂kχ̂−k|0 >. Dans les modèles d’inflation à un champ, le spectre
primordial a donc nécessairement une statistique gaussienne puisqu’il n’y a pas de corrélations non-aléatoires
entre les fluctuations des différentes longueurs d’onde.
Il est nécessaire avant tout d’identifier l’état du champ |0 > à considérer, et les modes associés solutions de
l’équation (6.22). Une des forces de l’inflation est que son autocohérence impose le choix de l’état |0 > puisque,
pour les temps η tels que |kη| � 1, i.e. pour les échelles k à l’intérieur du rayon de Hubble, le terme dépendant
explicitement du temps dans l’équation (6.22) est négligeable et il existe alors des solutions, de norme positive
asymptotiquement, de la forme e−ikη dans ce régime. Les quanta créés par les opérateurs de création associés
à ces modes se comportent alors comme des particules sans masse habituelles. Si ces modes contiennent n
particules à ces temps, alors en remontant dans le passé l’énergie des fluctuations du champ diverge comme
n/a4 et dépasse rapidement celle du champ classique homogène χ̄ : les conditions de réalisation de l’inflation
cessent d’être vérifiées. L’état du champ û est donc nécessairement le vide associé aux modes solutions de
l’équation (6.22), vérifiant la condition aux limites u ∝ e−ikη pour |kη| � 1 [63], et ces solutions peuvent être
exprimées à l’aide des fonctions de Hankel.
La composante k du champ χ̂ peut se décomposer sur des opérateurs de création et d’annihilation a†k et ak

χ̂k = χk(η)âk + χ∗k(η)â
†
−k, (6.32)

vérifiant la relation de commutation canonique

[χ̂k(η), ∂ηχ̂k(η)] = i, (6.33)

et où [
âk, â

†
k

]
= 1. (6.34)

Par convention, on choisit de définir le spetre de puissance tel que pour un vide donné

〈0|χ(x, η)χ(x + r, η)|0〉 =
∫

k2

2π2
dk · eikr|χk|2 =

∫
d ln k · sin(kr)

kr
· Pχ(k), (6.35)

permettant d’obtenir l’expression pour ce spectre

Pχ(k) =
k3

2π2
|χk|2. (6.36)

Plus rigoureusement, dans un fond quasi De Sitter

Durant l’inflation, le paramètre de Hubble n’est pas exactement constant mais change avec le temps selon
Ḣ = −εH2 (expansion quasi De Sitter), où ε est le paramètre de slow-roll. Pour une telle évolution du fond,
pour de faible valeur de ε,

a(η) = − 1
H

1
η(1− ε)

et
ä

a
≈ 1
η2

(2 + 3ε) . (6.37)

En posant m2
χ/H

2 = 3ηχ et en considérant de faibles valeurs de ηχ et ε, on pose

νχ '
3
2

+ ε− ηχ. (6.38)

Les modes superhorizon étant quasiment gelés, il est intéressant pour connâıtre les caractéristiques de l’inflation
de regarder ces modes, donc des échelles de distances plus grandes que celle de l’horizon. Leur spectre est alors
donné selon

Pδχ(k) =
(
Hk

2π

)2(
k

aH

)3−2νχ

. (6.39)

On définit l’indice spectrale nδχ indiquant justement comment la pente du spectre évolue

nδχ − 1 =
dlnPδχ
dln k

= 3− 2νχ = 2ηχ − 2ε. (6.40)

On peut voir que dans le cas d’un spectre en inflation slow-roll, il est quasiment invariant d’échelle, avec
seulement une faible pente (tilt en anglais) influencée par la masse du champ ainsi que par l’inflation via le
paramètre ε, et on remarque que l’amplitude des fluctuations des modes superhorizon ne dépend (presque) pas
de la valeur de la fluctuation lorsque ce mode sort de l’horizon et devient gelé.
On parle de

– spectre bleu si nδχ > 1 (le plus de puissance est dans la zone ultraviolet)
– spectre rouge si nδχ < 1 (le plus de puissance est dans la zone infrarouge)
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86 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

6.4 Les perturbations de la métrique

Le champ d’inflaton étant un champ scalaire, il va subir des perturbations lors de l’inflation suivant le
scenario précédemment esquissé, époque où on le considère comme dominant par rapport aux autres compo-
santes possibles. Il va induire des perturbations dans le tenseur énergie-impulsion et donc dans la métrique, et
réciproquement via les équations d’Einstein, des perturbations dans la métrique vont induire des perturbations
dans la matière.

δϕ⇐⇒ δTµν ⇐⇒
[
δRµν −

1
2
δ (gµνR)

]
= 8πGδTµν ⇐⇒ δgµν . (6.41)

On va s’intéresser aux quantités qui seront invariantes de jauge puisqu’elles représenteront les degrés de
liberté physiques du système. En relativité générale, il existe 6 degrés de liberté qui vont se répartir dans les
perturbations. On va ainsi considérer

1. les perturbation du champ de matière, l’inflaton, telles que ϕ(x, t) = ϕ̄(t) + δϕ(x, t)
2. les perturbations de la métrique gµν = ḡµν + δgµν pouvant être décomposées selon

– des perturbations scalaires possédant 2 degrés de liberté scalaires,
– des perturbations vectorielles possédant 2 degrés de liberté vectoriels et apparaissant lorsque les

champs présentent de la vorticité : ce n’est pas le cas avec le champ d’inflaton,
– des perturbations tensorielles possédant 2 degrés de liberté tensoriels, qui sont les vrais degrés de

liberté de la métrique en ce sens qu’ils sont présents même lorsque l’on considère un espace vide.
On va considérer par la suite des perturbations au premier ordre, donc linéaires, et chaque type de perturbations
va alors évoluer indépendamment des autres : les équations vont être découplées, et on va pouvoir étudier chaque
type de perturbation séparément. Bien sûr, cela n’est vrai que jusqu’à un certain point et il faudrait considérer,
pour être plus rigoureux, une interaction aux ordres suivants entre les différentes perturbations.

6.5 Les perturbations scalaires

Dans le cas des perturbations scalaires (φ,B, ψ,E), la métrique perturbée s’écrit sous la forme suivante

ds2 = a2(η)
[
−(1 + 2φ)dη2 + 2Bi dη dxi + ((1− 2ψ)δij + Eij) dxi dxj

]
, (6.42)

avec

Eij = 2∂i∂jE, ou encore Eij =
(
∂i∂j −

1
3
δij ∇2

)
E, (6.43)

et
Bi = ∂iB. (6.44)

Les équations étant plus simples dans l’espace de Fourier, il est utile pour la suite de noter que

Eij = −2
(
kikj
k2

)
k2E, ou encore Eij =

(
δij
3
− kikj

k2

)
E, (6.45)

et
Bi = −iki

k
B. (6.46)

Sous une transformation de jauge

Lorsque l’on s’intéresse aux perturbations scalaires, le champ de transformation de jauge ξµ que l’on considère
est composé uniquement de scalaires, ξ et ξ0 tels que

ξµ = (ξ0, ∂aξ). (6.47)

Sous un changement induit par ξµ, on peut montrer que les perturbations scalaires se transforment selon

φ̃ = φ + ξ̇0 +
ȧ

a
ξ0 , (6.48)

B̃ = B − ξ0 + ξ̇ (6.49)

ψ̃ = ψ − ȧ

a
ξ0 ; (6.50)

Ẽ = E + ξ , (6.51)

et pour le champ d’inflaton
δ̃ϕ = δϕ+ ˙̄ϕ ξ0. (6.52)

Connaissant leur évolution sous une transformation infinitésimale, il est facile ici de combiner les différentes
perturbations afin d’en tirer des quantités invariantes de jauge Q̃ = Q.
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6.5. LES PERTURBATIONS SCALAIRES 87

Quantités invariantes de jauge

Les potentiels de Bardeen

En étudiant les équations (6.48) à (6.51) avec (6.52), on définit des potentiels invariants de jauge, les po-
tentiels de Bardeen [64] selon

Φ = φ +
1
a

d

dη

[(
B − Ė

)
a
]
, (6.53)

Ψ = ψ − ȧ

a

(
B − Ė

)
, (6.54)

concernant la métrique, et de même pour la matière

δϕ(GI) = δϕ + ˙̄ϕ
(
B − Ė

)
, (6.55)

avec la perturbation de la densité d’énergie invariante de jauge donnée par

δρ(GI) = δρ + ρ̇
(
B − Ė

)
. (6.56)

La perturbation de courbure comobile R

La courbure intrinsèque d’une hypersurface spatiale Σ de temps conforme η constant est donnée par

(3)R =
4
a2
∇2 ψ, (6.57)

où ψ est généralement appelée perturbation de la courbure. En considérant une transformation de jauge
nous faisant nous placer sur l’hypersurface d’un observateur comobile, l’expansion étant isotrope et le flux
d’énergie mesuré par cet observateur étant nul, on choisit δφcom = 0 telle que

R = ψ + Hδφ
φ̇

(6.58)

est invariante de jauge. Cette variable est appelée la perturbation de courbure comobile R et représente
le potentiel gravitationnel sur une hypersurface comobile où δφ = 0 (R est reliée à ψ et δϕ)

R = ψ|δφ=0 . (6.59)

La perturbation de courbure sur des tranches d’espace de densité d’énergie constante ζ

Dans le cas où on se place sur une hypersurface telle que la densité d’énergie mesurée est uniforme, sans
perturbations δρ = 0, alors la quantité

ζ = ψ + Hδρ
ρ̇

(6.60)

est la la perturbation de courbure sur des tranches d’espace de densité d’énergie constante ζ, elle
aussi invariante par construction, et elle représente de même le potentiel gravitationnel pour des hypersurfaces
de densité d’énergie uniforme (ζ est reliée à ψ et δρ)

ζ = ψ|δρ=0 . (6.61)

Les variables de Mukhanov-Sasaki

Si on choisit une jauge telle que par ce choix, on se situe sur une hypersurface spatiale plate, donc sans
courbure ψflat = ψ +Hδτ = 0, alors la quantité

Q = δφ+
φ̇

H
ψ ≡ φ̇

H
R (6.62)

est la perturbation du champ d’inflaton dans cette jauge, invariante par construction, appelée v la variable de
Mukhanov-Sasaki [65] [66] sous sa forme

v = aQ =
√
p̄ Q. (6.63)

Elle représente le potentiel de l’inflaton sur des hypersurfaces spatiales plates.

Q = δφ|δψ=0 . (6.64)

Les fluctuations quantiques du champ d’inflaton sont étroitement liées aux perturbations de la métrique,
non seulement à cause des équations d’Einstein, mais aussi par soucis de l’invariance de jauge. Il n’existe en fait
qu’un unique degré de liberté possible pour le cas des perturbations scalaires, donné par la combinaison de δϕ
et de ψ : en jauge longitudinale quand E = B = 0, il existe une contrainte ψ = φ, diminuant de 1 le nombre
de degré de liberté. Ce degré de liberté physique est ainsi donné par l’une ou l’autre des quantités invariante de
jauge précédentes, dont il faut étudier le spectre pour en tirer des conséquences physiques.
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88 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

Spectre de puissance primordial pour les perturbations scalaires

Lorsqu’un mode sort de l’horizon, il devient gelé. Cependant, l’horizon crôıt avec le temps et un tel mode
peut alors très bien ré-entrer et générer des perturbations qui sont transmises aux baryons et aux photons par
l’action de la gravité : par exemple, une perturbations du potentiel gravitationnel induit une perturbation dans
la densité d’énergie grâce à l’équation de Poisson

∇2ψ = 4πGρ. (6.65)

Avant le découplage, les photons interagissent énormément avec la matière et les perturbations vont alors
se communiquer aux photons. Cela va induire une distribution anisotrope de la température de ces photons,
dont la perturbation de température δT/T est reliée à la perturbation du potentiel gravitationnel. Le spectre
en résultant est actuellement très bien mesuré et son étude permet de tester les modèles qui ont prédit une
forme particulière dépendant des paramètres cosmologiques. C’est une des manières privilégiées de tenter de
comprendre l’histoire de l’univers, et d’en tirer les valeurs des paramètres dans le cadre du modèle standard de
la cosmologie, le modèle Λ-CDM.

Les équations d’évolution pour les perturbations

En utilisant les équations d’Einstein pour les potentiels de Bardeen (6.53) précédents et dans le cas d’un
champ scalaire comme matière, les équations du mouvement concernant la métrique sont données par

Ψ̈ +H
(
2Ψ̇ + Φ̇

)
+ Φ

(
Ḣ+ 2H2

)
=

κ

2

(
˙̄ϕδϕ̇GI − p̄

∂V

∂ϕ
δϕGI

)
, (6.66)

∆Ψ− 3H(Ψ̇ +H ·Φ) =
κ

2

(
˙̄ϕδϕ̇GI − ˙̄ϕ2Φ + p̄

∂V

∂ϕ
δϕGI

)
, (6.67)

Ψ̇ +H ·Φ =
κ

2
ϕ̄δϕGI , (6.68)

avec en plus la partie non-diagonale des équations imposant la condition

∆(Φ−Ψ) = 0 → Φ = Ψ. (6.69)

Une combinaison des équations précédentes permet de donner l’équation de mouvement pour le potentiel Φ
telle que, avec ici c2s = 1,

Φ̈ + 2
(
H −

¨̄ϕ
˙̄ϕ

)
Φ̇ − c2s∇2 Φ + 2

(
Ḣ − H

¨̄ϕ
˙̄ϕ

)
Φ = 0. (6.70)

Concernant les perturbations de matière, la dynamique est de même donnée par l’équation de Klein-Gordon
perturbée

δϕ̈GI + 2Hδϕ̇GI −∇2δϕGI −
(
Ḣ+ 2H2

)
Φ + a2 ∂

2V

∂ϕ2
δϕGI = ϕ̇GI(3Ψ̇ + Φ̇)− 2a2 ∂V

∂ϕ
Φ. (6.71)

Si maintenant on introduit les quantités correspondant aux variables de Mukhanov-Sasaki

v ≡ a δϕGI + zΨ , (6.72)

z ≡ a
ϕ̇

H
, (6.73)

telles que v = aQ =
√
p̄Q = z · R, alors l’équation (6.70) peut se réécrire selon

v̈ − ∇2 v − z̈

z
v = 0 , (6.74)

qui découle de l’action

δS =
∫

dη

[
1
2
v̇2 − 1

2

(
k2 − z̈

z

)
v2

]
(6.75)

d’un champ scalaire de potentiel variable avec le temps. On a ainsi retrouvé dans ce jeu de variables invariantes
de jauge une équation de la forme (6.12) qui, de la même manière que pour les exemples précédents, peut se
résoudre sachant qu’ici à la fin de l’inflation, z = aφ̇/H = a

√
2εmPl. Le spectre de puissance primordial de R

pour les modes superinflations est ainsi donné par

PR(k) =
k3

2π2

∣∣∣vk
z

∣∣∣2 =
1

2mPl
2ε

(
Hk

2π

)2(
k

aH

)nR−1

≡ A2
R

(
k

aH

)nR−1

(6.76)
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6.6. LES PERTURBATIONS VECTORIELLES 89

d’amplitude A2
R, où on a introduit

nR − 1 = 3− 2ν = 2η − 6ε. (6.77)

Le spectre attendu est ainsi quasiment invariant d’échelle dans le cas des perturbations scalaires. Dans le cas
des modes superinflations, il est possible de remarquer que

Ṙk ' ζ̇k ' 0, (6.78)

montrant que quel que soit le mode considéré, le spectre va quasiment être constant : deux modes très proches
subiront la même évolution et seront régis par quasiment les mêmes équations, tels que leurs valeurs de Rk ne
peuvent être elles aussi que similaires.

6.6 Les perturbations vectorielles

Dans le cas des perturbations vectorielles, Sa et Fa, la métrique perturbée s’écrit habituellement sous la
forme suivante

ds2 = a2(η)
[
−dη2 + 2Sa dη dxa + (δab + Fab) dxa dxb

]
, (6.79)

avec
Fab = Fa,b + Fb,a TF : Fab = − i

k
(kaFb +KbFa). (6.80)

Ces perturbations doivent de plus être de divergence nulle, donc transverses

∂aSa = 0, ∂aFa = 0. (6.81)

Les variables invariantes de jauge sont de même obtenues sous une transformation de jauge générée cette fois-ci
par le vecteur

ξµ = (0, ξi), (6.82)

telles que
δF i = ξi, δSi = ξ̇i, (6.83)

et la variable invariante de jauge la plus simple pour la métrique peut s’écrire alors

σi = Si − Ḟ i. (6.84)

Le tenseur énergie-impulsion du fluide parfait perturbé et générant de la vorticité est donné par l’expression

(δTαβ ) =

(
0 −a2((ρ+ p)vi + ρSi)

−a2((ρ+ p)vi + ρSi) 2a2p(π(i
,j) + F

(i
,j))

)
(6.85)

où πi et vi sont de même de divergence nulle, la perturbation vi étant reliée à la perturbation de la quadri-vitesse
d’un observateur comobile selon

(δuµ) = (0,
vi

a
). (6.86)

On définit une autre quantité invariante de jauge

V i = vi + Si (6.87)

permettant de donner dans le cas usuel, les équations du mouvement

− 1
2a2

∆σi = κ(ρ+ p)V i, (6.88)

− 1
2a4

∂η
(
a2σi

)
= κpπi, (6.89)

où ∆ est le laplacien spatial. La combinaison (ρ+ p)V i, invariante de jauge, intervient dans le tenseur énergie-
impulsion, et pour un fluide sans terme de cisaillement anisotropique, πi = 0, ou bien si l’univers est dominé
par de la matière sans pression p = 0, elle correspond en principe à une observable physique. Il faut cependant
remarquer que dans le cas d’un champ scalaire composant le fluide, il n’existe pas de terme de vorticité vi = 0,
ni de cisaillement πi = 0, et ces perturbations ne sont plus physiques, uniquement de jauge [67]. Dans le cas où
il n’existerait que de la vorticité (par exemple si on considérait en plus un champ électromagnétique), quel que
soit le mode de Fourier considéré σik, l’équation (6.89) donne alors comme solution

∂t(a2σik) = 0 → σik =
Cik
a2
, (6.90)
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90 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

où Cik est une constante par rapport au temps, qui, une fois les équations (6.88) et (6.90) combinées, permet de
donner la solution pour la vorticité

V ik ∼
k2Cik
a1−3w

. (6.91)

Les perturbations de la métrique ainsi que la vorticité du fluide sont en fait diluées lors de l’expansion de
l’univers jusqu’à devenir négligeables : c’est la raison pour laquelle généralement on ne les prend que très peu
en compte en cosmologie. Cependant, dans le cas d’un univers en contraction dominé par la matière w = 0,
V ik crôıt tandis que le facteur d’échelle décrôıt, et le cas de l’approche perturbative est dans ce cas là sujette à
caution puisqu’elle peut devenir incohérente à partir d’un certain point dans la valeur des perturbations.

6.7 Les perturbations tensorielles

Dans le cas des perturbations tensorielles hab, il est possible de montrer que la métrique s’écrit habituellement
sous la forme

gµν = a2(τ)
[
−dτ2 + (δab + hab) dxadxb

]
, (6.92)

avec |hij | � 1. Ces perturbations correspondent aux ondes gravitationnelles qui se propagent sur une trame de
métrique FLRW et, comme pour la métrique, possèdent 6 degrés de liberté dont 2 seulement sont physiques :
ce tenseur est de trace et de divergence nulles

δabhab = 0 et ∂ahab = 0. (6.93)

Le tenseur hab étant invariant de jauge, les degrés de liberté restant sont les polarisations de ces ondes,
généralement indiquées par λ = +,× qui correspondent à l’orientation des axes de symétrie des oscillations
de l’onde, voir figure Fig.(6.1). Ses composantes h+ et h× sont donc les 2 degrés de liberté physiques et on peut
décomposer les perturbations sur une base telle que le tenseur hab s’écrive

hab = h+ e
+
ab + h× e

×
ab, (6.94)

où e+ et e× sont les tenseurs de polarisation,

e+ =

1 0 0
0 −1 0
0 0 0

 e− =

0 1 0
1 0 0
0 0 0

 (6.95)

vérifiant les propriétés suivantes

eab = eba, kaeab = 0, eaa = 0, (6.96)

eab(−k, λ) = e∗ab(k, λ),
∑
λ

e∗ab(k, λ)eab(k, λ) = 4. (6.97)

Fig. 6.1 – polarisation correspondant aux ondes gravitationnelles.

Dans le cas du champ d’inflaton, il n’existe pas de termes sources générant des perturbations tensorielles :
les équations du mouvement, données par les équations d’Einstein perturbées, sont en fait les même pour h+ et
h× que l’on note par la suite uniquement h, et s’écrivant dans l’espace de Fourier

ḧk + 2Hḣk + k2hk = 0. (6.98)

Un simple changement de variable
vk = a

mPl√
2
hk (6.99)
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6.8. ÉTUDE DES DIFFÉRENTS SPECTRES 91

permet de ramener l’équation (6.98) à celle d’un champ scalaire non massif, que l’on va faire évoluer dans un
espace quasiment de De Sitter.

v̈k +
(
k2 − ä

a

)
vk = 0. (6.100)

La résolution d’un tel système ayant déjà été donnée dans la section Sec.(6.3), les modes tensorielles superhorizon
évoluent selon

|vk| =
(
Hk

2π

)(
k

aHk

) 3
2−νT

, (6.101)

où
νT '

3
2
− ε. (6.102)

Pour ces modes, le spectre de puissance est défini par

PT (k) =
k3

2π2

∑
λ

|hk|2 = 4× 2
m2
pl

k3

2π2
|vk|2 , (6.103)

dont l’expression pour les modes superhorizon s’obtient par la relation

PT (k) =
8

mPl
2

(
Hk

2π

)2(
k

aH

)nT

≡ A2
T

(
k

aH

)nT

, (6.104)

la variable nT correspondant à l’indice spectral donnant la pente du spectre selon

nT =
dlnPT
dln k

= 3− 2νT = −2ε. (6.105)

Comme dans le cas des perturbations scalaires, ce spectre est lui aussi presque invariant d’échelle, l’amplitude
A2
T de chacun des modes ne dépendant que de la valeur du paramètre de Hubble au moment où ces modes

sortent de l’horizon durant l’inflation.
Le modèle de l’inflation prédit que dans un régime de roulement lent, les perturbations de densité et les ondes
gravitationnelles doivent avoir un spectre de puissance quasiment invariant d’échelle, en k−2ε. Chaque spectre
est caractérisé par son amplitude et son indice spectral, mais il est possible de lier le spectre scalaire (z = aϕ

′

H )
à ce spectre tensoriel (z = a) par une relation de consistance. Pour cela, on définit le rapport d’amplitude
scalaire-tenseur

T

S
=

1
100A

2
T

4
25A

2
R

=
1

1008
(

H
2πmPl

)2

4
25 (2ε)−1

(
H

2πmPl

)2 = ε. (6.106)

qui implique une relation de cohérence ente l’amplitude des spectres et leurs indices spectraux selon

T

S
= −nT

2
, (6.107)

et dans le cas d’une inflation slow-roll, cette relation est obligatoirement satisfaite : cela va ainsi correspondre
à une signature distinctive de l’inflation que l’on va chercher à observer.

6.8 Étude des différents spectres

Les spectres considérés ici correspondent aux spectres des perturbations évalués à la fin de l’inflation, donnant
alors les conditions initiales pour les perturbations générées par la suite, et il est alors possible d’obtenir les
spectres angulaires mesurés aujourd’hui découlant des spectres primordiaux.
Jusqu’au moment du découplage, rayonnement et matière interagissaient et l’information sur les perturbations
était ainsi transmise aux photons. A partir de la dernière surface de diffusion, de tels photons vont ainsi voyager
à travers l’univers, subissant des effets physiques comme l’effet Doppler résultant de la dilution de l’espace-
temps, et une partie de ce rayonnement va finalement nous parvenir sous la forme d’un fond diffus cosmologique
presque isotrope.
Ainsi, la température T0 d’un photon observée aujourd’hui selon une direction e peut être reliée à sa température
TE au moment de son émission, telle que

T0 ∼ TE [1 + Θ0(e)], (6.108)

où Θ(e,Φ,Ψ, E, hij , ...) est appelé contraste de température, dépendant des perturbations de la métrique.
Plus généralement, Θ contient les contributions de presque tous les phénomènes agissant sur le photon
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92 CHAPITRE 6. LES PERTURBATIONS COSMOLOGIQUES

• L’effet Sachs-Wolfe propre indiquant qu’une zone plus dense sera plus chaude, et qu’un photon émis dans
un puit de potentiel possèdera un décalage spectral gravitationnel supplémentaire.

• L’effet Sachs-Wolfe intégré dépendant de l’histoire du photon entre son émission et sa réception, et qui
rendra notamment compte des effets d’un champ gravitationnel dépendant du temps dans lequel évolue
le photon.

• L’effet Doppler traduisant un décalage spectral dû au fait que l’émetteur et le récepteur n’ont pas la même
vitesse.

D’autre part, la diffusion Thomson va polariser ce rayonnement dans la direction perpendiculaire au plan
de diffusion, et les perturbations via cette diffusion vont alors pouvoir induire des modifications sur cette
polarisation : les perturbations tensorielles vont générer une polarisation B, dite magnétique, tandis que toutes
les polarisations vont générer une polarisation E, dite électrique. Observer les spectres en température et en
polarisation permettra alors d’obtenir de nombreuses informations sur les perturbations cosmologiques, ce que
se proposent de faire les nouvelles expériences sur le fond diffus cosmologique.
En cosmologie observationnelle, on va vouloir comparer deux directions différentes. On va pour cela utiliser la
fonction de corrélation à deux points qui ne dépend que de l’angle entre ces deux directions. Il va être commode
alors de la développer sur une base de polynômes de Legendre

< θ(η0, e1)θ(η0, e2) >=
∑
l

2l + 1
4π

ClPl(e1, e2), (6.109)

permettant de définit le spectre de puissance angulaire Cl, fonction d’un multipôle l correspondant à une échelle
angulaire. Pour un champ de température gaussien, cette fonction caractérise complètement la distribution de
température. Le fond diffus cosmologique ayant été émis en tous points de l’univers, un point quelconque va voir
ce rayonnement arriver dans un angle solide de 4π : une sphère autour de lui. On va donc décomposer le contraste
de température sur une base d’harmoniques sphériques Ylm, ce qui correspond à effectuer une transformée de
Fourier sur une sphère, et obtenir ainsi

Θ̂(η0, k) = 4π
∑
lm

Θ̂l(k)Y ∗lm(~k)Ylm(e). (6.110)

Les spectres angulaires seront alors donnés par la relation

(2l + 1)2CXYl =
2
π

∫
k2dk

2∑
m=−2

X
(m)∗
l (η0, k)Y

(m)
l (η0, k), (6.111)

où X et Y prennent les valeurs Θ, E ou B, et on peut regarder les 4 spectres théoriques attendus donnés par
la figure Fig.(6.2).
Il existe en cosmologie de nombreux paramètres physiques rendant compte des caractéristiques de notre univers
et des phénomènes qui devraient s’y être produits : valeur de la courbure, profondeur optique, etc. À chaque
jeu de paramètres correspond un scénario cosmologique dont les caractéristiques, comme la durée de l’inflation,
peuvent être déterminées connaissant les relations du modèle. Il est ainsi possible de voir l’influence de chaque
paramètre sur la forme des spectres et de comprendre alors l’évolution de l’univers en comparant les spectres
théoriques aux spectres mesurés, donnés par exemple en observant directement Θobs ∼ δT

T

∣∣
η0

. Cette méthode,
conjointement avec d’autres observations astrophysiques, permet ainsi de contraindre les différents modèles
existants, et à ce jour, le modèle Λ-CDM semble être le plus juste.
Pour plus de précision techniques, j’encourage tout lecteur à consulter la référence [26].
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6.8. ÉTUDE DES DIFFÉRENTS SPECTRES 93

Fig. 6.2 – Spectres T − T , T − E, E − E et B − B induits par les modes scalaires (à gauche) et tensoriels (à
droite) pour un modèle inflationaire [26].

Fig. 6.3 – Spectre T − T , WMAP-7years
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Chapitre 7

Perturbations générales en Cosmologie
Quantique à Boucles

Dans la suite, la théorie des perturbations cosmologiques va être exprimée selon la formulation de la cos-
mologie quantique à boucles. Ce chapitre sera alors très important puisqu’il permettra de comprendre tous les
travaux effectués durant cette thèse, en montrant les aspects physiques et techniques.
Historiquement, les calculs étant plus simples pour ces perturbations, les perturbations tensorielles [69], en
parallèle avec les perturbations vectorielles [70], ont été d’abord étudiées avec les corrections issues de la gra-
vité quantique à boucles. Ce n’est que bien plus tard, une fois l’approche développée, que cette démarche a
été appliquée réellement au cas des perturbations scalaires. La difficulté dans l’obtention des spectres de puis-
sance ne provient pas vraiment de la procédure mise en œuvre pour générer les équations du mouvement, mais
plutôt de celle menant à une algèbre des contraintes close. En effet, modifier les contraintes Ci, de Gauss, de
Difféomorphisme et Hamiltonienne, par les corrections de la théorie va très certainement modifier leur algèbre
telle que maintenant il va exister des termes supplémentaires dans les crochets de Poisson

{Ci, Cj} = fkij(A,E)Ck +Aij . (7.1)

Ces termes Aij sont appelées anomalies. Les contraintes ainsi modifiées vont définir un nouveau champ de
vecteurs rendant compte de l’évolution du système qui n’est plus tangent à la surface des contraintes. Les so-
lutions engendrées ne respecteront ainsi plus les caractéristiques physiques, comme la covariance des équations
ou les symétries présentes initialement, et les résultats après quantification ne seront alors plus cohérents avec
les solutions attendues à la limite classique. La première étape dans une théorie effective est alors de chercher
à supprimer ces anomalies : Aij = 0. Une procédure [29] mise en place en cosmologie quantique à boucles
dans le cas des corrections d’inverse-volume consiste à ajouter des contre-termes adéquats aux contraintes, et
obtenir ainsi des contraintes corrigées. Utiliser ces nouvelles contraintes permettra alors d’obtenir finalement des
solutions qui pourront correspondre à des solutions physiques : les corrections quantiques seront bien présentes
et la limite classique redonnera correctement les bonnes équations.
En cosmologie, toutes les composantes perturbées de la métrique δgµν sont dynamiques et sont considérées
comme les variables de configuration. Cela n’est cependant pas le cas en gravité quantique à boucles puisque les
variables concernent uniquement la métrique spatiale, à partir de laquelle sont construites les variables d’Ashte-
kar. Dans le formalisme ADM, les perturbations des composantes g00 et g0i seront alors encodées dans la lapse
fonction, δN , ainsi que dans le shift vecteur, δN i. Afin d’obtenir les variables usuelles invariantes de jauge dans
le formalisme canonique, il ne faut plus seulement regarder les combinaisons possibles des variables d’Ashtekar
perturbées, mais faire aussi intervenir par une procédure adéquate les transformations induites sur les multipli-
cateurs de Lagrange. Une telle procédure a été développée dans le cadre de la cosmologie quantique à boucles
[71] mais peut cependant se généraliser à toute théorie s’exprimant dans le formalisme canonique. Elle a ainsi pu
être appliquée au cas des corrections d’inverse-volume pour les perturbations scalaires, permettant l’obtention
d’un spectre de puissance [55] modifié rendant compte des effets quantiques amenés par la théorie effective.
En s’inspirant des références citées auparavant, on va maintenant introduire le formalisme des perturbations
cosmologiques considérées du point de vue canonique, sans chercher à appliquer tel ou tel type de perturbation,
sauf dans certains exemples.

95
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96 CHAPITRE 7. PERTURBATIONS GÉNÉRALES EN COSMOLOGIE QUANTIQUE À BOUCLES

7.1 Perturbations des variables canoniques

En gravité quantique à boucles, les variables sont les variables d’Ashtekar (A,E) pour la gravité, et (ϕ, π)
dans le cas d’un champ scalaire comme celui de l’inflaton. De même qu’en relativité générale, il est possible de
considérer ces variables comme pouvant être perturbées selon

Aia = Āia + δAia, Eai = Ēai + δEai , ϕ = ϕ̄+ δϕ, π = π̄ + δπ, (7.2)

avec
δab = Eai E

j
b ⇔ Ejb =

1
p̄
δjb −

1
p̄2
δEai δ

ijδab, (7.3)

Les variables homogènes, constituant le fond, sont données par les équations (5.3) et leur évolution est issue
de la contrainte totale donnée par l’équation (5.6). Les perturbations n’étant pas homogènes, elles vont aussi
dépendre par ailleurs des variables d’espaces, telles que maintenant leurs crochets de Poisson sont donnés par
des distributions

{δKi
a(η, x), δE

b
j (η, y)} = κδijδ

b
aδ(x− y) (7.4)

et
{δϕ(η, x), δπ(η, y)} = δ(x− y). (7.5)

On s’intéresse à une théorie linéaire des perturbations dans laquelle l’évolution des perturbations est donc
obtenue par des équations du mouvement au premier ordre dans les perturbations. Or, dans le formalisme
canonique, ce sont les crochets de Poisson d’une perturbation avec la contrainte totale qui permettent d’obtenir
ces équations, faisant ainsi intervenir une dérivé fonctionnelle par rapport à la perturbation conjuguée. La
contrainte totale étant ’polynômiale’ dans ses perturbations, une dérivation va diminuer son ordre de 1. Les
équations du mouvement devant être linéaires, il est nécessaire que le résultat issu des crochets de Poisson
soit lui aussi d’ordre 1, montrant alors qu’il est suffisant de considérer l’expression des contraintes perturbées
jusqu’au second ordre uniquement.
Il va ainsi être nécessaire de regarder le déterminant des densités de triades det(Eai ) à l’ordre 2 puisque l’on
fera intervenir ses formes

√
detE et 1√

detE
, mais aussi la perturbation de la connexion de spin δΓia en utilisant

sa définition donnée par l’équation (3.48). On va ainsi considérer le fait que

detEai = p̄3

[
1 +

δEdd
p̄

+
1

2p̄2
δiaδE

a
i δ
j
bδE

b
j −

1
2p̄2

δiaδE
a
j δ
j
bδE

b
i

]
(7.6)

et
δΓia =

1
2p̄
·Xijb

ca · ∂bδEcj +
1

2p̄2
Y ijklabc δE

b
j∂kδE

c
l (7.7)

où
Xijb
ca = ε ijc δ

b
a − ε ibc δ

j
a + εijbδca + ε iba δ

j
c . (7.8)

On peut exprimer Y ijklabc de façon similaire à Xijb
ca , mais son expression, en plus d’être longue, ne nous sera pas

utile. Ici, il n’a pas encore été fait allusion au type de la perturbation que l’on considère, mais déjà, suivant
ses caractéristiques possibles (divergence ou trace nulle, symétrie), on peut observer que δΓia aura son terme
1
2p̄ · X

ijb
ca · ∂bδEcj de modifié : cette remarque est importante puisque c’est dans ce terme uniquement qu’est

encodé en quelque sorte l’information sur le type de la perturbation.
Par ailleurs, en utilisant l’expression de la métrique la plus généralement perturbée, ainsi que la définition de
la densité de triade, la perturbation δEai est donnée par

δEai = p̄

[
−2ψδai + (δai ∂

d∂d − ∂a∂i)E − c1∂
aFi − c2∂iF

a − 1
2
hai

]
, (7.9)

telle que

δiaδE
a
i = 0 pour les perturbations tensorielles et vectorielles. (7.10)

∂iδEai = ∂aδE
a
i = 0 pour les perturbations tensorielles. (7.11)

Concernant l’expression de δKi
a (et de façon similaire δπ), son obtention n’est pas si simple. En effet, dans

la théorie effective, les expressions des contraintes perturbées vont devoir être modifiées par des corrections
quantiques, changeant ainsi l’évolution temporelle entre deux tranches d’hypersurface. En conséquence, les
perturbations de la courbure extrinsèque vont elles aussi être modifiées puisqu’elles dépendent de la dynamique
de l’espace-temps et il serait possible alors d’obtenir leur expression en utilisant directement leur définition
donnée par l’équation (3.26). Cependant, dans le formalisme canonique, il existe une approche plus rapide
consistant à regarder la courbure extrinsèque en fonction de la métrique spatiale et de sa dérivée temporelle,
comme dans l’équation (3.27). La densité de triades étant liée à la métrique spatiale, on va ainsi regarder les
équations du mouvement modifiées pour δEai et en tirer facilement l’expression de δKi

a.

te
l-0

07
49

16
2,

 v
er

si
on

 2
 - 

7 
N

ov
 2

01
2



7.1. PERTURBATIONS DES VARIABLES CANONIQUES 97

Expression des densités de contrainte perturbées

En gravité quantique à boucles, les contraintes s’expriment selon

Dgrav[Na] =
1
κγ

∫
Σ

d3xNa
[(
∂aA

j
b − ∂bA

j
a

)
Ebj −Aja∂bE

b
j

]
, (7.12)

Dmat[Na] =
∫

Σ

d3xNaπ∂aϕ, (7.13)

Hgrav[N ] =
1
2κ

∫
Σ

d3xN
Eai E

b
j√

det Eai

[
F kabε

ij
k − 2(1 + γ2)K [i

aK
j]
b

]
, (7.14)

F kab = ∂aA
k
b − ∂bA

k
a + εkijA

i
aA

j
b, (7.15)

Hmat[N ] =
∫

Σ

d3xN

[
π2

2
√
det Eai

+
Eai E

b
j

2
√
det Eai

∂aϕ∂bϕ+
√
det Eai V (ϕ)

]
, (7.16)

et il faudra par la suite tenir compte des perturbations de la lapse function et du shift vecteur

N = N̄ + δN et Na = N̄a + δNa, (7.17)

telles que les contraintes perturbées, au second ordre, soient données par

H[N ] =
∫

Σ

d3x
[
N̄
(
H0 +H2

)
+ δN̄H1

]
, (7.18)

D[Na] =
∫

Σ

d3x
[
N̄a
(
D0 +D2

)
+ δN̄aD1

]
. (7.19)

En comparant la métrique perturbée pour chaque type de correction avec la métrique ADM de même perturbée,
on voit que

– pour les perturbations tensorielles,
δN = 0 et δNa = 0, (7.20)

montrant directement que les densités de contrainte au premier ordre n’auront pas d’implications sur la
dynamique,

– pour les perturbations vectorielles,

δN = 0 et δNa = Sa, (7.21)

montrant directement que la densité de contrainte hamiltonienne au premier ordre n’aura pas d’implica-
tions sur la dynamique,

– pour les perturbations scalaires
δN = N̄φ et δNa = ∂aB, (7.22)

montrant que toutes les densités vont intervenir dans la dynamique.
Les perturbations tensorielles et vectorielles exprimées ici sont de trace nulle, impliquant que des termes tels
δiaδE

a
i et δai δK

i
a présents dans les densités de contrainte vont disparâıtre. Pour ces mêmes perturbations, les

perturbations des multiplicateurs de Lagrange, N et Na, sont en partie nulles, indiquant que certaines den-
sités de contrainte d’ordre 1 n’influenceront pas l’évolution des variables. Les perturbations scalaires sont les
perturbations les plus générales puisqu’aucun terme ne peut disparâıtre à cause de leurs propriétés : il faut
tenir compte de toutes les densités de contrainte et de tous les termes présents à l’intérieur des expressions
des densités. Lorsque l’on va incorporer les corrections quantiques, on va modifier ces densités de contrainte et
chercher des contre-termes qui rendront les crochets de Poisson entre les contraintes fermés. Il y a ainsi deux
manières de procéder :

1. soit on regarde les propriétés des perturbations et on simplifie les contraintes, permettant alors aux contre-
termes ajoutés d’avoir une expression très simple. C’est la démarche qui a été entreprise initialement et
dont l’enseignement nous a amené à la seconde possibilité.

2. soit on regarde le cas général, qui correspond en fait à étudier le cas des perturbations scalaires, et on
obtient alors les équations générales permettant de trouver les expressions des contre-termes. On peut
de plus se ramener au premier cas en mettant à zéro les contre termes qui n’intervenaient pas dans la
résolution des anomalies.

Les contraintes modifiées par l’ajout de contre-termes dans la première démarche ne seront pas identiques à
celles de la seconde et amèneront une dynamique totalement différente. Cette seconde approche nous semble la
plus justifiée puisqu’elle ne fait pas de distinctions sur les perturbations et donne une algèbre close dans tous
les cas.
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98 CHAPITRE 7. PERTURBATIONS GÉNÉRALES EN COSMOLOGIE QUANTIQUE À BOUCLES

D’autre part, on va donner l’expression des densités de contrainte de Difféomorphisme uniquement à l’ordre 1
puisque N̄a = 0. Cela est due à une propriété commune à toutes les perturbations, et l’argument concernant le
cas des perturbations tensorielles et vectorielles pourraient être repris. Cependant, cela touche uniquement la
partie homogène du shift vecteur qui intervient dans l’expression de toutes les variables, même non-perturbées,
n’ ayant par là même aucune conséquence sur la clotûre de l’algèbre lorsque l’on regarde les perturbations.
On va ainsi donner l’expression des différentes densités dont on aura besoin par la suite.

Densités de contrainte de Difféomorphisme

Lorsque l’on considère les contraintes de Difféomorphisme, on ne va s’intéresser qu’à l’ordre 1 en densité.
En utilisant la définition de cette contrainte et en exploitant les propriétés de symétries de Xijb

ca , cette densité
s’écrit ainsi dans le cas général

Dgrav = p̄∂aδK
d
d − p̄∂dδK

d
a − k̄∂dδE

d
a . (7.23)

De même, on va considérer la matière comme étant un champ scalaire, et sa densité est donnée par

Dmat = π̄∂aδϕ. (7.24)

Ces expressions ne seront intéressantes que dans le cas des perturbations vectorielles et scalaires puisqu’elles
n’interviendront pas dans le cas des perturbations tensorielles pour lesquelles δNa = 0.

Densités de contrainte hamiltoniennes

Concernant la partie gravitationnelle, dans le cas général, tous les ordres en densité doivent intervenir pour la
contrainte hamiltonienne perturbée. Sans tenir compte des propriétés des perturbations, il est possible d’obtenir :

– la densité de contrainte à l’ordre 0 donnée par l’expression classique

2κ · H(0) = −6
√
p̄k̄2, (7.25)

– la densité de contrainte à l’ordre 1 donnée par l’expression

2κ · H(1) = −4
√
p̄δKd

d −
k̄2

√
p̄
δEdd +

2√
p̄
∂j∂cδE

c
j , (7.26)

Cette expression est la même quelque soit le type de perturbation considéré : le terme ∂j∂cδEcj apparâıt
à cause de δΓia et va donc faire intervenir Xijb

ca . Cependant, à cause des symétries présentes, le résultat
sera unique.

– la densité de contrainte à l’ordre 2, donnée par l’expression

2κ · H(2) =
√
p̄(δbi δK

i
aδ
a
j δK

j
b − δai δK

i
aδ
b
jδK

j
b )− 2

k̄√
p̄
δKi

aδE
a
i (7.27)

−1
2
k̄2

p̄
3
2
δjaδE

a
i δ
i
bδE

b
j +

1
4
k̄2

p̄
3
2
δiaδE

a
i δ
j
bδE

b
j +

1
p̄

3
2
Zcidjab · (∂cδEai )(∂dδEbj ), (7.28)

+1
1
p̄

3
2
Y kjilbdc ε

ab
k · ∂a

(
δEdj ∂iδE

c
l

)
, (7.29)

avec Zcidjab qui ne dépend que l’expression de Xijb
ca par l’équation (7.8)

Zcidjab =
1
4
εefk ε

k
mnX

mjd
be Xnic

af − εiek X
kjd
be δca − εcik X

kjd
ba +

1
2
δiaε

ce
k X

kjd
be . (7.30)

Cette densité a été obtenue à l’aide des équations (7.6) et (7.7) introduites dans la contrainte hamiltonienne
donnée par l’équation (3.63), en se souvenant qu’elle ne dépend pas du paramètre de Barbero-Immirzi.

Le terme correspondant à l’équation (7.29) ne va pas être pris en compte puisqu’il va correspondre à un terme de
bord, n’ayant aucune influence sur les dérivations fonctionnelles considérées par la suite. On peut ainsi l’oublier
et voir qu’une intégration par partie est simplement donnée ici par∫

d3xA∂aB = [AB]a,∂Σ −
∫
d3xB∂aA = 0−

∫
d3xB∂aA. (7.31)

D’autre part, ces contraintes sont les plus générales possibles, et seul le terme Zcidjab (∂cδEai )(∂dδE
b
j ) va changer

suivant le type de perturbation considéré : si la perturbation est symétrique, sans trace, ou bien si elle fait
intervenir des dérivées spatiales, etc, les densités de contrainte au second ordre seront alors vraiment différentes,
au contraire de celles du premier ordre. On peut ainsi voir que
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7.1. PERTURBATIONS DES VARIABLES CANONIQUES 99

→ δabδ
ijδcd · (∂cδEai )(∂dδEbj ) perturbations tensorielles (7.32)

Zcidjab · (∂cδEai )(∂dδEbj ) → 0 perturbations vectorielles (7.33)

→ −1
2
δcaδ

d
b δ
ij · (∂cδEai )(∂dδEbj ) perturbations scalaires (7.34)

Concernant la matière, la contrainte hamiltonienne possède différentes contributions suivant les termes
cinétique, potentiel et spatial, et on peut la décomposer selon

HM [N̄ ] =
∫

Σ

d3xN̄
[(
H(0)
π +H(0)

ϕ

)
+
(
H(2)
π +H(2)

∇ +H(2)
ϕ

)]
, (7.35)

HM [δN ] =
∫

Σ

d3δN
[
H(1)
π +H(1)

ϕ

]
. (7.36)

Les différentes densités de contrainte sont alors données par
– à l’ordre 0 pour les variables du fond

H(0)
π =

π̄2

2p̄3/2
, (7.37)

H(0)
ϕ = p̄3/2V (ϕ̄), (7.38)

– à l’ordre 1

H(1)
π =

π̄δπ

p̄3/2
− π̄2

2p̄3/2

δjcδE
c
j

2p̄
, (7.39)

H(1)
ϕ = p̄3/2

[
V,ϕ(ϕ̄)δϕ+ V (ϕ̄)

δjcδE
c
j

2p̄

]
, (7.40)

– à l’ordre 2

H(2)
π =

1
2
δπ2

p̄3/2
− π̄δπ

p̄3/2

δjcδE
c
j

2p̄
+

1
2
π̄2

p̄3/2

[
(δjcδE

c
j )

2

8p̄2
+
δkc δ

j
dδE

c
j δE

d
k

4p̄2

]
, (7.41)

H(2)
∇ =

1
2
√
p̄δab∂aδϕ∂bδϕ, (7.42)

H(2)
ϕ =

1
2
p̄3/2V,ϕϕ(ϕ̄)δϕ2 + p̄3/2V,ϕ(ϕ̄)δϕ

δjcδE
c
j

2p̄
+ p̄3/2V (ϕ̄)

[
(δjcδE

c
j )

2

8p̄2
−
δkc δ

j
dδE

c
j δE

d
k

4p̄2

]
. (7.43)

Anomalies et équations du mouvement par les crochets de Poisson

Lorsque l’on s’intéresse aux équations du mouvement et à la clôture de l’algèbre, on va considérer les crochets
de Poisson de toutes les variables présentes dans le modèle

{·, ·} = {·, ·}k̄,p̄ + {·, ·}δK,δE + {·, ·}ϕ̄,π̄ + {·, ·}δϕ,δπ (7.44)

où

{·, ·}k̄,p̄ :=
κ

3V0

[
∂·
∂k̄

∂·
∂p̄
− ∂·
∂p̄

∂·
∂k̄

]
, (7.45)

{·, ·}δK,δE := κ

∫
Σ

d3x

[
δ·

δδKi
a

δ·
δδEai

− δ·
δδEai

δ·
δδKi

a

]
, (7.46)

{·, ·}ϕ̄,π̄ :=
1
V0

[
∂·
∂ϕ̄

∂·
∂π̄

− ∂·
∂π̄

∂·
∂ϕ̄

]
, (7.47)

{·, ·}δϕ,δπ :=
∫

Σ

d3x

[
δ·
δδϕ

δ·
δδπ

− δ·
δδπ

δ·
δδϕ

]
. (7.48)

Résolution des anomalies

Dans le cas classique, aucune modification n’est apportée aux contraintes et on peut alors calculer les cro-
chets de Poisson à l’ordre 2 que l’on peut séparer selon
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100 CHAPITRE 7. PERTURBATIONS GÉNÉRALES EN COSMOLOGIE QUANTIQUE À BOUCLES

– les crochets de Poisson entre les contraintes de Difféomorphismes

{Dgrav[Na
1 ], Dgrav[Na

2 ]} = 0, (7.49)
{Dmat[Na

1 ], Dmat[Na
2 ]} = 0, (7.50)

{Dgrav[Na
1 ], Dmat[Na

1 ]} = 0, (7.51)

– les crochets de Poisson entre les contraintes de Difféomorphismes et Hamiltonienne

{Hgrav[N ], Dgrav[Na]} = −Hgrav[δNa∂aδN ], (7.52)
{Hgrav[N ], Dmat[Na]} = 0, (7.53)

et
{Hmat[N ], Dgrav+mat[Na]} = −Hmat(δNa∂aδN ], (7.54)

– les crochets de Poisson entre les contraintes hamiltoniennes

{Hgrav[N1],Hgrav[N2]} = Dgrav

[
N̄

p̄
∂a(δN2 − δN1)

]
, (7.55)

{Hmat[N1],Hmat[N2]} = Dmat

[
N̄

p̄
∂a(δN2 − δN1)

]
, (7.56)

et
{Hgrav[N1],Hmat[N2]} − (N1 ↔ N2) = 0. (7.57)

Cependant, l’algèbre que l’on cherche à clore est celle correspondant aux contraintes ’totales’

H(m+g) = Hmat +Hgrav, (7.58)
D(m+g) = Dmat +Dgrav, (7.59)

et dans le cas classique, elle correspond à l’algèbre suivante

{D(m+g)[Na
1 ], D(m+g)[Na

2 ]} = 0, (7.60)
{H(m+g)[N ], D(m+g)[Na]} = −H(m+g)[δNa∂aδN ], (7.61)

{H(m+g)[N ],H(m+g)[M ]} = D(m+g)

[
N̄

p̄
∂a(δM − δN)

]
. (7.62)

On peut la comparer à celle obtenue dans le formalisme ADM, donnée par les équations (3.33) à (3.35), et
voir que, sans surprises, dans le cas Lorentzien de la cosmologie quantique à boucles, les crochets de Poisson
sont exactement identiques à ceux de la relativité générale, à un signe près. Ce signe n’est pas un problème
puisqu’il vient du choix que l’on a fait de prendre la connexion d’Ashtekar Aia comme variable de configuration,
et la densité de triades Eai comme moment conjugué, impliquant le changement de signe dans la définition des
crochets de Poisson.
Dans les calculs précédents, aucune hypothèse n’a été faite sur le type des perturbations considérées. Les
propriétés de symétrie et d’antisymétrie de Zcidjab conduisent exactement aux même termes dans les crochets
de Poisson : simplement avec la définition de Zcidjab qui rend compte de toutes les perturbations possibles, les
différents termes qui en sont issus vont se simplifier.
Lorsque les contraintes seront corrigées par une fonction quelconque f(k̄, p̄) et perturbées, leurs crochets de
Poisson vont être modifiés et il sera nécessaire d’introduire des contre-termes. Par exemple, dans le cas d’une
contrainte hypothétique de la forme

H = f(k̄, p̄)δEai δK
i
a + autres termes, (7.63)

les crochets de Poisson pourraient donner

{H[N1],H[N2]} = H[N2 −N1] +A1 (7.64)

avec
A1 =

∫
d3xδEai ∂a∂

i(δN2 − δN1) · F1(f, ∂k̄f, ∂p̄f, ...). (7.65)

Il existe alors une anomalie A1 avec la fonction F1 qui ne peut s’annuler. On va ainsi tenter de résoudre cette
anomalie par l’introduction de contre-termes, ici α, donnant une contrainte modifiée indicée par Q

HQ = (f(k̄, p̄) + α)δEai δK
i
a + autres termes, (7.66)
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7.1. PERTURBATIONS DES VARIABLES CANONIQUES 101

telle que maintenant
{HQ[N1],HQ[N2]} = HQ[N2 −N1] +A2 (7.67)

avec
A2 =

∫
d3xδEai ∂a∂

i(δN2 − δN1) · F2(f, ∂k̄f, ∂p̄f, α, ∂k̄α, ∂p̄α, ...). (7.68)

Chercher à satisfaire F2 = 0 va permettre de donner une expression pour α en fonction de f(k̄, p̄), et résoudra
ainsi le problème d’anomalie. La contrainte ainsi modifiée aura une algèbre close permettant à la théorie effective
d’être cohérente avec le système physique initial. Dans la suite, on pourra aussi voir que pour les mêmes raisons
que dans le cas classique, les anomalies ne vont pas dépendre de Zcidjab · (∂cδEai )(∂dδEbj ), et l’expression des
contre-termes sera générique à tous types de perturbations.

Obtention des équations d’évolution des perturbations

Dans ce formalisme, ce qui nous intéresse surtout est de pouvoir trouver les équations du mouvement des
perturbations qui incorporeront les corrections quantiques. Les perturbations de la métrique sont données à
travers l’expression des multiplicateurs de Lagrange, mais aussi dans l’expression de δEai . On va ici décrire
la démarche conduisant aux équations du mouvement, en illustrant le cas des perturbations tensorielles qui
correspond au cas le plus simple. Pour une variable perturbée quelconque, sans corrections,

δX = {δN, δNa, δEai , δK
i
a, δϕ, δπ}, (7.69)

l’équation d’évolution est donnée par

δẊ =̇ {δX,H(m+g)[N ] +D(m+g)[Na]}, (7.70)

avec obligatoirement ṗN = ṗNa = 0.
Dans le cas des perturbations tensorielles, la contrainte totale est donnée uniquement par la contrainte hamil-
tonienne H(0)

(m+g) +H(2)
(m+g) dans laquelle on a tenu compte de δiaδE

a
i = δai δK

i
a = 0 et ∂aδEai = ∂iδEai = 0.

La densité de triades perturbée étant donnée par

δEai = −1
2
p̄hia, (7.71)

l’équation δĖai constitue de ce fait une équation différentielle du premier ordre en la perturbation, proportion-
nelle1 à δKi

a : appliquer l’équation (7.70) pour trouver l’équation du mouvement de δEai

Ėai = {δEai ,Htot[N̄ ]} = −1
2

(
˙̄phai + p̄ḣai

)
= −

[
p̄ δKj

b δ
ab δij − k̄ δEai

]
(7.72)

va donner l’expression pour δKi
a qui, dans le cas classique, s’écrit

δKi
a =

1
2
ḣia +

k̄

2
hia, (7.73)

où on a utilisé l’équation (5.12) pour le fond. Dans le formalisme canonique, connâıtre l’expression de la métrique
spatiale et des contraintes conduit naturellement à l’expression de δKi

a, comme suggéré précédemment. Et c’est
une fois son expression connue que regarder l’équation d’évolution de δK̇i

a va nous permettre d’obtenir l’équation
différentielle du second ordre pour les perturbations. Dans le cas classique, utiliser l’équation (7.70) pour δKi

a,
permet de retrouver ici l’équation du mouvement pour les ondes gravitationnelles

ḧia + 2k̄ḣia −∇2hia = 0, (7.74)

et comparer cette équation avec l’équation classique (6.98), avec maintenant k̄ = H le paramètre de Hubble en
temps conforme, montre bien que dans ce formalisme, on retrouve les équations classiques. On peut procéder
de la même manière pour la matière où, dans le cas d’un champ scalaire, regarder δϕ̇ et δπ̇ redonnera bien
l’équation de Klein-Gordon perturbée.
Dans le cas des perturbations tensorielles, δN et δNa étant nuls, il n’y a pas d’autres équations disponibles.
Cependant, cela n’est pas le cas lorsque l’on considère les perturbations scalaires pour lesquelles l’équation
d’évolution δK̇i

a ne va donner que l’équation (6.66). Les équations (6.67), (6.68) et (6.69) sont en fait obtenues
à partir des conditions ṗN = ṗNa = 0 impliquant les relations

ṗN =
δH(m+g)

δN
= 0, et δṗNa =

δD(m+g)

δNa
= 0. (7.75)

1Généralement, les indices i et a peuvent être interchangés pour la forme des perturbations que l’on considère ici.
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102 CHAPITRE 7. PERTURBATIONS GÉNÉRALES EN COSMOLOGIE QUANTIQUE À BOUCLES

On voit ainsi que dans ce formalisme, les résultats classiques concernant les perturbations peuvent de nouveau
être obtenus ici sans passer directement par les équations d’Einstein, ce qui peut simplifier un tant soit peu
les calculs. Lorsque l’on va incorporer les corrections d’inverse-volume ou d’holonomies, la modification des
contraintes va alors pouvoir se répercuter sur l’équation (7.70), générant alors des modifications dans toute
les équations du mouvement : c’est de cette façon que l’on va pouvoir étudier l’influence des corrections sur
l’évolution des perturbations.
Cependant, les équations ne correspondent pas forcément à celles de variables invariantes de jauge, et on va
voir que de telles variables peuvent elles-aussi s’obtenir en regardant une transformation infinitésimale, générée
dans le formalisme canonique par les contraintes à l’aide des crochets de Poisson.

7.2 Transformation de jauge dans le formalisme canonique

En relativité générale, la forme des transformations de jauge d’un champ est donnée par la dérivée de Lie et
correspond à un changement de coordonnées. Après quantification, on s’attend en gravité quantique à ce que
l’espace-temps ne soit plus représenté par une variété continue, et il n’est alors pas facile d’intuiter l’analogue
des transformations de jauge classiques données par l’équation (6.3). Il existe cependant un avantage dans la
formulation canonique : les transformations de jauge peuvent directement être exprimées à partir des crochets de
Poisson des champs avec les contraintes, comme pour les équations (1.77), et classiquement, les résultats obtenus
avec la dérivée de Lie sont bien reproduits. Cette approche peut être généralisée à toute théorie effective de la
gravitation, comme la cosmologie quantique à boucles en regardant en plus les corrections issues de la théorie
quantique. Modifier les contraintes par des corrections quelconques aura pour conséquence une modification
des équations du mouvement pour les différentes quantités, mais aussi de la forme des variables invariantes de
jauge, amenant de nouveaux effets que l’on cherche à comprendre et à observer.
Par ailleurs, certaines composantes de la métrique jouant le rôle de multiplicateurs de Lagrange ne sont pas des
variables de l’espace des phases dynamique, et seules les transformations de jauge pour la métrique spatiale via
les variables d’Ashtekar vont être déterminées directement. Cependant, ces variables dans leurs équations du
mouvement vont dépendre de ces multiplicateurs de Lagrange par les contraintes qui sont eux même reliés aux
perturbations à travers les équations (7.21) et (7.22). Il est possible dans le formalisme canonique de trouver
indirectement [71] la forme des transformations de N et Na, et de construire alors les variables invariantes
de jauge de la relativité générale. Dans ce qui suit, nous allons illustrer la démarche en ne s’intéressant qu’à
l’expression de ces variables pour les perturbations scalaires.
Une transformation de jauge est générée selon

q′ = q + δεµq, où δεµq = {q,Htot[εµ]}, (7.76)

et utilise les mêmes contraintes que pour déterminer l’évolution dynamique (ε = dt). Cependant, elle n’influence
pas la dynamique et les équations du mouvement pour q′ doivent aussi être donnée par une équation similaire
à celles pour q

(q′). = {q′,Htot[N ′µ]}. (7.77)

Cela implique [51] que les multiplicateurs de Lagrange doivent eux aussi être perturbés N ′µ = Nµ + δεN
µ

pour que le formalisme reste correct. Dans le cas général, il est possible de décomposer εµ sur une hypersurface
spatiale, de normale na et de vecteurs tangents sai , selon

εa = ε0na + εisai . (7.78)

En se plaçant dans le formalisme ADM, on va s’intéresser à une évolution selon le champ de vecteur d’évolution
ta = Nna +Na, et une transformation de jauge selon ce vecteur est alors donnée par [72] :

εa =
ε0

N
ta + (εi − N i

N
ε0) sai =̇ ξ0 ta + ξi sai . (7.79)

Dans le choix quelconque de coordonnées (t, xi) de la métrique ADM (3.25), ξ0 correspond à la perturbation dt
et ξi à dxi. Lorsque l’on considère le cas des scalaires, la transformation peut être générée par le vecteur

ξµ = (ξ0, ∂aξ) (7.80)

qui, dans notre cas avec N̄a = 0, implique que sous cette transformation de jauge

ε0 = δN = N̄ξ0, εa = δNa = ∂aξ. (7.81)

En considérant une théorie des perturbations linéaires, dans le cas où le vecteur de la transformation infi-
nitésimale est donc du premier ordre dans sa transformation, les contraintes génératrices des transformations de
jauge doivent être du second ordre pour les mêmes raisons liées à l’évolution d’une perturbation, et leur densité
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7.2. TRANSFORMATION DE JAUGE DANS LE FORMALISME CANONIQUE 103

devra alors être du premier ordre. On considère une transformation de jauge d’une quantité X de l’espace des
phases comme étant générée selon

δ[ξ0,ξ]X=̇{X,H(2)[N̄ξ0] +D(2)[∂aξ]} (7.82)

où, dans cette notation,

H(2)[δN ] =
1
2κ

∫
Σ

d3x δN
[
H(1)
grav + 2κ(H(1)

π +H(1)
ϕ )
]
, (7.83)

D(2)[δNa] =
1
κ

∫
Σ

d3x δNa
[
D(1)
grav + κ(D(1)

ϕ )
]
. (7.84)

Cette démarche correspond exactement à celle utilisée en relativité générale, où on peut montrer [71] que

{X̄ + δX,D[ξa]} = Lξa(X̄ + δX), (7.85)

la contrainte de Difféomorphisme étant l’analogue de la dérivée de Lie dans le formalisme canonique.
Les transformations de jauge sont finalement données par les densités de contrainte au premier ordre dans les
perturbations alors que les équations du mouvement des variables invariantes de jauge seront par conséquent2

données par les densités au second ordre dans les perturbations.
Une conséquence importante dans la détermination des variables invariantes de jauge est l’expression de la
variation de la dérivée temporelle d’une perturbation dans le formalisme canonique. Lorsque l’on a abordé
les potentiels de Bardeen (6.53), on a vu que leur construction faisait intervenir des dérivées temporelles des
perturbations. Dans ce formalisme, il existe [71] une relation liant la transformation de jauge de la dérivée d’une
perturbation δẊ à la dérivée temporelle de la transformation de jauge de cette variable, selon

δ[ξ0,ξ](δẊ)− (δ[ξ0,ξ]δX). = {δX, {Htot[N ] +Dtot[Na],Htot[N̄ξ0] +Dtot[∂a]}}. (7.86)

En utilisant l’algèbre (7.60) dont la seule contribution au premier ordre dans les crochets de Poisson est
donnée par

{Htot[N ],Htot[N̄ξ0]} = Dtot [∂aξ0] +O(2), (7.87)

la relation (7.86) devient
δ[ξ0,ξ](δẊ)− (δ[ξ0,ξ]δX). = δ[0,ξ0]δX. (7.88)

Lorsque l’on modifiera les contraintes par les corrections quantiques, l’algèbre déformée va induire une modifi-
cation de l’équation précédente, et les effets quantiques vont alors se répercuter sur la forme des variables de
jauge, en plus des équations du mouvement.
Dans le cas des perturbations scalaires, en temps conforme et dans le cas classique avec les variables d’Ashtekar,
il est simple de voir que sous cette formulation, les différentes variables se transforment selon

δ[ξ0,ξ]δK
i
a = ∂i∂a(ξ0 + k̄ξ)− k̄2

2
ξ0δ

i
a +

κ

2

[
p̄V (ϕ̄)−

˙̄ϕ2

2

]
ξ0δ

i
a, (7.89)

δ[ξ0,ξ]δE
a
i = 2k̄p̄ξ0δai + p̄(δai ∆ξ − ∂a∂iξ), (7.90)

δ[ξ0,ξ]δϕ =
π̄

p̄
ξ0, (7.91)

δ[ξ0,ξ]δπ = π̄∆ξ − p̄2∂ϕ̄V (ϕ̄)ξ0, (7.92)

alors que pour les variables du fond, (k̄, p̄, ϕ̄ et π̄), les transformations de jauge sont du second ordre : le fond
est alors considéré comme invariant.
La détermination de la forme des transformations de δN et δNa, donc de φ et B intervenant dans les potentiels
de Bardeen, doit ainsi se faire en demandant que la forme des équations du mouvement soit elle-aussi conservée
sous une transformation de jauge. En utilisant les équations (7.89) à (7.92), on voit que sous l’action de ξµ

donnée par l’équation (7.80), les différentes perturbations se transforment selon

δ[ξ0,ξ]φ = ξ̇o + k̄ξ0, (7.93)
δ[ξ0,ξ]ψ = −k̄ξ0, (7.94)
δ[ξ0,ξ]E = ξ, (7.95)

δ[ξ0,ξ]B = −ξ0 + ξ̇, (7.96)
δ[ξ0,ξ]δϕ = ϕ̄ξ0, (7.97)

qui correspondent bien aux transformations dans le cas classique, et dont la combinaison permet de redonner
les potentiels de Bardeen usuels ainsi que les autres quantités invariantes de jauge introduites dans le chapitre
précédent.

2Cela est montré dans le chapitre Chap.(13) utilisant l’équation d’Hamilton-Jacobi pour obtenir ces variables.
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104 CHAPITRE 7. PERTURBATIONS GÉNÉRALES EN COSMOLOGIE QUANTIQUE À BOUCLES

7.3 Commentaires

Le formalisme présenté ici n’est ainsi qu’une réécriture de la cosmologie usuelle dans le formalisme cano-
nique, en terme de nouvelles variables, les variables d’Ashtekar. Les perturbations de ces variables sont ainsi
reliées aux perturbations de la métrique, mais aussi du champ, et regarder les équations du mouvement redonne
bien les équations attendues pour les perturbations cosmologiques. Dans ce formalisme, l’algèbre des contraintes
est naturellement close, aucune anomalie n’apparâıt : utiliser les variables de la métrique ADM (3.25) à partir
desquelles la gravité quantique à boucles est construite, donne une algèbre close et les équations de conservation
sont respectées. La détermination des variables invariantes de jauge, comme les équations du mouvement, ne se
fait non plus par la dérivée de Lie mais par les crochets de Poisson, et il est possible de montrer que ces deux
approches sont équivalentes.
Cependant la formulation présentée ici n’est en rien quantique puisque notre intérêt va se porter sur le côté ef-
fectif de la théorie. Après quantification, nous avons vu que deux corrections majeures de la théorie ressortaient
et pouvaient être décrites qualitativement par des fonctions reproduisant la forme des spectres des opérateurs
de courbure et de triade-inverse. Ces corrections correspondent à la fonction f(k̄, p̄, δE) présentée plus avant
dont l’action dans les contraintes classiques va avoir tendance à briser la fermeture de l’algèbre. La méthode
proposée pour rétablir une algèbre close est l’introduction de contre-termes dans les contraintes, telle l’équation
(7.66), dont l’expression obtenue en considérant la nouvelle anomalie comme étant nécessairement nulle va par
conséquent modifier les contraintes et clore l’algèbre. Ces contraintes ainsi obtenues peuvent alors être utilisées
pour trouver les solutions physiques tenant compte des corrections quantiques, et vont à la limite classique
redonner les bons résultats. Cette méthode vantant l’utilisation de contre-termes est toute-fois discutable sur
ses conséquences physiques, mais on verra qu’elle est tout à fait correcte.
Jusqu’à maintenant, les résultats ont surtout été obtenus en considérant le cas des corrections d’inverse-volume,
et malgré l’existence d’une procédure générique à toutes corrections, le cas des corrections d’holonomie a été
peu regardé. Cela peut s’expliquer par le fait que ces corrections sont plus complexes, en ce sens qu’il ne faut
plus tenir compte uniquement de la variable p̄ intervenant de manière compliquée dans les corrections, mais
aussi de k̄ qui rend les équations des anomalies et du mouvement plus difficiles à manipuler.
Durant la thèse, en suivant la démarche ainsi développée, nous avons regardé l’impact des corrections d’holono-
mies sur les perturbations tensorielles, vectorielles puis scalaires. Naturellement, le cas le plus intéressant pour
comprendre l’influence des corrections quantiques est celui des perturbations scalaires que nous avons développé
plus avant : ce cas est le plus ’conservatif’ puisqu’il garde une expression des contraintes qui n’est pas modifiée
à cause des conditions de divergence et de trace nulles de certaines perturbations.

Ainsi s’achève l’introduction à la Gravité Quantique à Boucles et son application à la cosmologie par la
Cosmologie Quantique à Boucles.
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Troisième partie

Corrections d’holonomie et
perturbations cosmologiques
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Chapitre 8

Influence des deux corrections sur les
perturbations tensorielles en
Cosmologie Quantique à Boucles

Introduction

Dans le cas des perturbations tensorielles, des études ont été réalisées par notre groupe afin de regarder
l’influence des corrections d’holonomie [73][74] et d’inverse-volume [75], prises séparément, sur la forme du
spectre de puissance. En première approximation, nous avons considéré le cas où l’évolution de l’univers dans
sa phase d’expansion devait subir une phase d’inflation dictée par le modèle slow-roll et cela nous a alors permis
d’obtenir une expression analytique pour ces spectres. En nous basant sur les travaux de Bojowald et al [69],
nous avons montré que les corrections d’holonomies engendraient une légère pente dépendant du paramètre
de Barbero-Immirzi γ, donnant un spectre bleu ou rouge suivant la valeur de ce paramètre, mais aussi une
évolution en k2 (pour une raison différente de celle vue par la suite) dans la partie infrarouge où les corrections
d’inverse-volume prévoient, elles, une forte déviation par rapport au cas classique.
Connaissant les caractéristiques de ces deux corrections sur la forme du spectre, nous avons voulu savoir dans
ce premier travail si combiner les corrections d’inverse-volume (données par ᾱ = S et ν̄ = D ici) et d’holonomie
pour ces perturbations pouvaient amener une compensation des effets quantiques et redonner le spectre classique,
ou bien quelque chose de complètement différent.
Pour ce faire, nous nous sommes de même basés sur l’article [69] et avons redérivé les équations du mouvement
pour les variables du fond et pour les perturbations. L’expression des densités de contraintes utilisée ici ne
présente aucun contre-termes mais il a été fait le remplacement k̄ → K [2] dans l’équation classique (7.27) :
cela est due à une étude [70] préliminaire dans le cas des perturbations vectorielles qui a montré que dans ce
cas là, les anomalies pouvaient être simplement résolues en imposant le choix n = 2 précédent. L’idée que les
perturbations tensorielles sont trop restrictives dans l’expression de leurs contraintes était déjà présente ici, et
on va dans cette étude s’intéresser finalement au premier cas où l’algèbre est close en ayant fait un choix sur les
corrections, mais sans avoir eu recours aux contre-termes.
Les équations intéressantes obtenues correspondent à l’équation de Friedmann modifiée

H2 =
κ

3
p̄ρ

(
S − ρ

ρc

)
, (8.1)

ainsi que l’équation du mouvement pour les perturbations

ḧk +

(
2H− Ṡ

S

)
ḣk + (S2k2 +M2(a))h = 0. (8.2)

Dans cette équation, les corrections dues aux holonomies sont encodées dans le terme M2(a), ainsi que dans
l’évolution du paramètre de Hubble. Après un changement de variable de la forme

Φk = a(η)
hk√
S
, (8.3)

l’équation d’évolution de Φk a été obtenue et résolue dans le cas particulier d’une inflation slow-roll. Les spectres
tenant compte des deux corrections ont pu alors être dérivés dans les différents régimes.
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The cosmological primordial power spectrum is known to be one of the most promising observable to

probe quantum gravity effects. In this article, we investigate how the tensor power spectrum is modified by

loop-quantum-gravity corrections. The two most important quantum terms, holonomy and inverse

volume, are explicitly taken into account in a unified framework. The equation of propagation of

gravitational waves is derived and solved for one set of parameters.
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I. INTRODUCTION

The inflationary scenario is currently the favored para-
digm to describe the first stages of the evolution of the
Universe (see, e.g., [1] for a recent review). Although still
debated, it has received many experimental confirmations,
including from the WMAP 5-year results [2], and solves
most cosmological paradoxes.

On the other hand, a fully quantum theory of gravity is
necessary to investigate situations where general relativity
(GR) breaks down. The big bang is an example of such a
situation where the backward evolution of a classical
space-time comes to an end after a finite amount of time.
Among the theories willing to reconcile the Einstein grav-
ity with quantum mechanics, loop quantum gravity (LQG)
is appealing as it is based on a nonperturbative quantization
of 3-space geometry (see, e.g., [3] for an introduction).
Loop quantum cosmology (LQC) is a finite, symmetry
reduced model of LQG suitable for the study of the whole
Universe as a physical system (see, e.g., [4]).

In this article, we consider the influence of LQC correc-
tions to general relativity on the production and propaga-
tion of gravitational waves during inflation. We first derive
the equation of propagation of gravity waves with both
holonomy and inverse-volume corrections. This equation
is then reexpressed with the commonly used cosmological
variables. It is finally solved for a specific set of parameters
and the primordial power spectrum is derived. The aim of
this work is to conclude our previous studies [5,6] where,
respectively, only holonomy and only inverse-volume cor-
rections were considered. By combining both terms, we
show that the inverse-volume correction dominates over

the holonomy one and dictates the overall shape of the
tensor spectrum.
Quite a lot of work has already been devoted to gravi-

tational waves in LQC [7]. Our approach assumes the
background to be described by the standard slow-roll infla-
tionary scenario whereas LQC corrections are taken into
account to compute the propagation of tensor modes. This
approach is heuristically justified (to decouple the physical
effects) and intrinsically plausible (as, on the one hand, the
LQC-driven superinflation can only be used to set the
proper initial conditions to a standard inflationary stage if
the horizon and flatness problems are both to be solved [8]
and as, on the other hand, it seems that the quantum bounce
can trigger on a standard inflationary phase [9]). In addi-
tion, very few studies so far have taken into account both
the holonomy and the inverse-volume corrections. This
latter term is somehow more speculative than the former
one as it was shown to exhibit a fiducial cell dependence
(see, e.g., [10]). For the sake of completeness it is however
obviously worth considering the fully corrected propaga-
tion of gravitational waves.

II. EQUATION OF PROPAGATION FOR THE
GRAVITON

The derivation of the equation of propagation of gravi-
tational waves with both holonomy and inverse-volume
corrections extensively uses the material developed in
[11]: notations, conventions, and framework of this work
are the same and will not be explicitly restated. We begin
by considering a Friedmann-Lemaitre-Robertson-Walker
universe with a spatial metric qab which will be perturbed
to account for gravitational waves. Hereafter, N and Na

are, respectively, the lapse function and the shift function.
The metric components read as follows:

g00 ¼ �N2 þ qabN
aNb ¼ �a2ð�Þ; (1)
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g0a ¼ qabN
b ¼ 0; (2)

gab ¼ qab ¼ a2ð�Þð�ab þ habÞ: (3)

As usual in the formalism of LQC, we use the Ashtekar
variables for an homogeneous and isotropic background:
the connection �Ai

a, and the triad density �Ea
i . They can be

written as a function of two other variables ð �k; �pÞ as
�E a
i ¼ �p�a;

i
�Ai
a ¼ �Ki

a þ ��i
a

�Ki
a ¼ �k�i

a;

��i
a ¼ 0; �Na ¼ 0; �N ¼ ffiffiffiffi

�p
p

:
(4)

Hamilton-Jacobi equations will be used to determine the
perturbed part of the Ashtekar variables. The Hamiltonian
constraint reads as

H½N� ¼ 1

2�

Z
�
d3xNj detEj�ð1=2ÞEa

jE
b
k

� ð�ijkFi
ab � 2ð1þ �2ÞKi

½bK
j
a�Þ; (5)

where Fi
ab ¼ @aA

i
b � @bA

i
a þ �ijkAj

aAk
b is the field

strength. The Hamiltonian for a matter field � is given by

Hmatter ¼
Z

d3x

�
1

2

p2
� þ Ea

i E
b
i @a�@b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detEc
j j

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEc

j j
q

Vð�Þ
�
: (6)

With Eq. (4) and these Hamiltonians, the background is
described by

Hfond
G ½ �N� ¼ 1

2�

Z
�
d3x �N½�6

ffiffiffiffi
�p

p
k2�; (7)

and

Hmatter½ �N� ¼
Z
�
d3x

�
1

2

p2
�

�pð3=2Þ þ �pð3=2ÞVð�Þ
�
: (8)

Perturbing the canonical variables (and going through the
appropriate Poisson bracket) leads to:

HG½ �N� ¼ 1

2�

Z
�
d3x �N

�
�6

ffiffiffiffi
�p

p
�k2 �

�k2

2 �p3=2
ð�Ec

j�E
d
k�

k
c�

j
dÞ

þ ffiffiffiffi
�p

p ð�Kj
c�Kk

d�
c
k�

d
j Þ �

2 �kffiffiffiffi
�p

p ð�Ec
j�K

j
cÞ

� 1

�p3=2
ð�cd�

jkEc
j�

ef@e@fE
d
kÞ
�
; (9)

where only the tensor perturbations (i.e. gravitational
waves) are considered in �Ea

i .
This classical Hamiltonian is to be modified by quantum

corrections. Because loop quantization is based on holon-
omies, i.e. exponentials of the connection rather than direct
connection components, one needs to substitute in the
gravitational sector

�k ! sinðm ��� �kÞ
m ���

; (10)

where �� is a new parameter related to the action of the
fundamental Hamiltonian on a lattice state. In addition,
because of inverse powers of the densitized triad which,
when quantized, becomes an operator with zero in the
discrete part of its spectrum, the matter and gravitational
Hamiltonians must be modified by introducing the function

�ð �p; �Ea
i Þ ¼ 1þ �qn ¼ 1þ �

�
l2PL
�p

�
n
: (11)

At a semiclassical level, i.e. q � 1, the same parametric
form of � can be used in both the matter Hamiltonian and
the gravitational Hamiltonian. However, the two positive
and real valued constants � and n may differ from one
sector to another. In the following, ðS; �s; sÞ and ðD;�d; dÞ
will therefore denote ð�; �; nÞ for the gravitational sector
and the matter sector, respectively. With these two correc-
tions, the Hamiltonians read

Heff
g ½ �N� ¼ 1

2�

Z
�
d3x �NSð �pÞ

�
�6

ffiffiffiffi
�p

p �
sin ��� �k

���

�
2
�
; (12)

Hmatter½ �N� ¼
Z
�
d3x

�
1

2
DðqÞ p2

�

�pð3=2Þ þ �pð3=2ÞVð�Þ
�
; (13)

with Heff
G the effective gravitational Hamiltonian describ-

ing the homogeneous background. The equations of mo-
tion for ð �k; �pÞ, i.e. the background equations, can be
obtained in the Hamiltonian formalism

_�p ¼ f �p;Heff
G ½ �N� þHmatter½ �N�g; _�k

¼ f �k;Heff
G ½ �N� þHmatter½ �N�g; (14)

leading to

_�p ¼ 2 � �p � Sð �p; �EÞ �
�
sinð2 ��� �kÞ

2 ���

�
; (15)

_�k ¼ �

3V0

@Hmatter

@ �p
� �p

@S

@ �p
�
�
sinð ��� �kÞ

���

�
2

� S

2

��
sinð ��� �kÞ

���

�
2 þ 2 �p

@

@ �p

�
sinð ��� �kÞ

���

�
2
�
: (16)

The same modification is applied to the perturbed gravi-
tational Hamiltonian. Denoting HPhen

G the effective per-

turbed quantum-corrected gravitational Hamiltonian, it
reads with both holonomy and inverse-volume corrections
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HPhen
G ½N� ¼ 1

2�

Z
�
d3x �NSð �p; �Ea

i Þ
�
�6

ffiffiffiffi
�p

p �
sin ��� �k

���

�
2

� 1

2 �p3=2

�
sin ��� �k

���

�
2ð�Ec

j�E
d
k�

k
c�

j
dÞ

þ ffiffiffiffi
�p

p ð�Kj
c�Kk

d�
c
k�

d
j Þ �

2ffiffiffiffi
�p

p
�
sin2 ��� �k

2 ���

�

�ð�Ec
j�K

j
cÞ � 1

�p3=2
ð�cd�

jkEc
j�

ef@e@fE
d
kÞ
�
:

(17)

We now turn to the equation of motion of the graviton. The
perturbed densitized triad is

�Ea
i ¼ � 1

2
�phai : (18)

As has been done for the homogeneous canonical varia-
bles, it is possible to define the equation of motion for the
perturbations:

� _Ea
i ¼ f�Ea

i ;H
Phen
G ½ �N�þHmatter½ �N�g

¼ �f�Kj
bðxÞ;�Ea

i ðyÞg
�

�ð�Kj
bÞ
ðHPhen

G ½ �N�þHmatter½ �N�Þ;

� _Ki
a ¼ f�Ki

a;H
Phen
G ½ �N�þHmatter½ �N�g

¼ f�Ki
aðxÞ;�Eb

j ðyÞg
�

�ð�Eb
j Þ
ðHPhen

G ½ �N�þHmatter½ �N�Þ:

This leads to

� _Ea
i ¼ � 1

2
ð _�phai þ �p _hai Þ (19)

¼ �Sð �p; �EÞ �
�
�p � �Kl

c � �c
a � �b

i �
�
sinð2 ��� �kÞ

2 ���

�

� �Ea
i

�
: (20)

By combining those equations and using the expression of
_�p, one obtains the expression of �Ki

a as a function of hia
and of _hia. The expression of �Ki

a is

�Ki
a ¼ 1

2S
_hia þ 1

2

�
sinð2 ��� �kÞ

2 ���

�
hia: (21)

The equation of motion will lead to another derivative with
respect to �. The Hamilton-Jacobi equation for the per-
turbed connection can now be used to find the final equa-
tion of propagation for gravitational waves:

� _Ki
a ¼ 1

2

� €hia
S
� 1

S2
@S

@�
� _hia þ

�
sinð2 ��� �kÞ

2 ���

�
_hia

þ hia � @

@�

�
sinð2 ��� �kÞ

2 ���

��

¼ f�Ki
aðxÞ; �Eb

j ðyÞg
�

�ð�Eb
j Þ
ðHPhen

G ½ �N� þHmatter½ �N�Þ:

As

�HPhen
G

�ð�Eb
j Þ

¼ 1

2�

Z
�
d3ðxÞ � �N � �S

�ð�Eb
j Þ
½. . .�

þ 1

2�

Z
�
d3ðxÞ �NS

�
� 2

2 �pð3=2Þ

�
sinð ��� �kÞ

���

�
2

� ð�Ec
l � �l

b � �j
cÞ � 2ffiffiffiffi

�p
p

�
sinð2 ��� �kÞ

2 ���

�
�Kj

b

� 2

�pð3=2Þ ð�bd � �jk � �ef@e@fð�Ed
kÞÞ

�
;

where ½. . .� stands for the term beginning with

½�6
ffiffiffiffi
�p

p ðsin ��� �k
��� Þ2 � � � �� in (17), one obtains (with

�ef@e@fð�Ed
kÞ ¼ r2ð�Ed

kÞ ¼ � 1
2
�p � r2hdk)

f�Ki
a; �E

b
j g
�HPhen

G

�ð�Eb
j Þ

¼ 1

2

ffiffiffiffi
�p

p �S

�ð�Eb
j Þ
½. . .�

þ 1

2
S

�
1

2

�
sinð ��� �kÞ

���

�
2
hia

�
�
sinð2 ��� �kÞ

2 ���

�

�
� _hia
S
þ

�
sinð2 ��� �kÞ

2 ���

�
hia

�
þr2hia

�

(22)

¼ 1

2

� €hia
S
� 1

S2
@S

@�
_hia þ

�
sinð2 ��� �kÞ

2 ���

�
_hia þ hia

@

@�

�
�
sinð2 ��� �kÞ

2 ���

��
� �

�Hmatter½ �N�
�ð�Eb

j Þ
: (23)

After quite a lot of algebra, the equation of motion of the
graviton can be derived:

1

2

�
€hia þ 2S

�
sinð2 ��� �kÞ

2 ���

�
_hia

�
1� �p

S

@S

@ �p

�

� S2r2hia þ S2TQh
i
a

�
þ SAi

a ¼ �S�i
Qa
; (24)

where
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TQ ¼ �2

�
�p

��

@ ��

@ �p

�
ð ���Þ2

�
sinð ��� �kÞ

���

�
4
;

�i
Qa

¼ 1

3V0

@Hmatter

@ �p

��Ec
j�

j
a�i

c

�p

�
cosð2 ��� �kÞ þ �Hmatter

�ð�Ea
i Þ

;

Ai
a ¼ 1

2

ffiffiffiffi
�p

p �S

�ð�Ea
i Þ
½. . .�

� �p
@S

@ �p
cosð2 ��� �kÞ

�
sinð ��� �kÞ

���

�
2
hia:

As usual, requiring an anomaly-free constraint algebra in
the presence of quantum corrections requires Ai

a to van-
ish. It should be noticed that the inverse-volume correction
is involved in each term, through the S and D factors,
whereas the holonomy correction is only involved in the
_hia term, in TQ and in �i

Qa
.

It is worth studying a bit more into the details of this
�i

Qa
source term as it seems to have been misunderstood in

several works. In particular, it has often been either ne-
glected or miscomputed. Without holonomy and inverse-
volume correction, this term reads as

�i
a ¼

�
1

3V0

@Hmatter

@ �p

��Ec
j�

j
a�i

c

�p

�
þ �Hmatter

�ð�Ea
i Þ
�
; (25)

with, in this case,

Ea
i ¼ �p�a

i ; �Ea
i ¼ � 1

2
�phai ;

detE ¼ 1

3!
�abc�

ijkEa
i E

b
jE

c
k:

(26)

At the zeroth order in gravitational perturbation, one can
show that

�H matter ¼
Z
�
d3x �N

�
1

2

p2
	

�pð3=2Þ þ �pð3=2ÞVð	Þ
�
; (27)

and the nonlinear Hmatter is given by

Hmatter ¼ �Hmatter þ
Z
�
d3x �N

1

4
ffiffiffiffi
�p

p �Ea
i �E

b
j�

j
a�i

b

�
�
1

2

p2
	

�p3
� Vð	Þ

�
; (28)

thus leading to

�Hmatter

�ð�Ea
i Þ

¼ �N

2

�Eb
jffiffiffiffi
�p

p �j
a�i

b

�
1

2

p2
	

�p3
� Vð	Þ

�
: (29)

Restricting to the first order in perturbation, the derivative
with respect to �p can be evaluated and one finally obtains

1

3V0

@Hmatter

@ �p

�Ec
j�

j
a�i

c

�p
¼ ��Hmatter

�ð�Ea
i Þ

: (30)

This easily establishes that classically �i
a ¼ 0. However,

when LQC corrections are taken into account the source

term may not vanish anymore (because of the derivative of
D with respect to �p for the inverse-volume correction and
because of the cosine term for the holonomy one).
When only inverse-volume corrections are considered,

the source term is still given by Eq. (25) but the matter
Hamiltonian now reads

Hmatter ¼ �HmatterþHð�Þ
matter

¼
Z
�
d3x �N

��
Dð �p;�Ea

i Þ
1

2

p2
	

�pð3=2Þ þ �pð3=2ÞVð	Þ
�

þ 1

4
ffiffiffiffi
�p

p �Ea
i �E

b
j�

j
a�i

b

�
Dð �p;�Ea

i Þ
1

2

p2
	

�p3
�Vð	Þ

��
;

(31)

which leads, at the leading order, to

�Hmatter

�ð�Ea
i Þ

¼ �N

��Eb
j

2
ffiffiffiffi
�p

p �j
a�i

b

�
1

2

p2
	

�p3
� Vð	Þ

�

þ p2
	

2 �pð3=2Þ
�D

�ð�Ea
i Þ
�
; (32)

and

1

3V0

@Hmatter

@ �p

�Ec
j�

j
a�i

c

�p
¼ �N

1

3

��Ec
j�

j
a�i

c

�p

��
� 3

4

D

�pð5=2Þ p
2
	

þ 3

2

ffiffiffiffi
�p

p
Vð	Þ þ @D

@ �p

p2
	

2

1

�pð3=2Þ

�
:

(33)

We finally obtain

�i;ðIVÞ
Qa

¼ 1

3V0

��Ec
j�

j
a�i

c

�p

�
@Hmatter

@ �p
þ �Hmatter

�ð�Ea
i Þ

¼ p2
	

2 �pð3=2Þ

�
1

3

��Ec
j�

j
a�i

c

�p

�
@D

@ �p
þ �D

�ð�Ea
i Þ
�
: (34)

However, because of the anomaly-free condition (see
Eq. (27) of [11]), this term is vanishing. This means that,

at the leading order, �i;ðIVÞ
Qa

¼ 0.

Considering now the holonomy correction alone, one
can expand the cosine term in �i

Qa
and show that

�i;ðholoÞ
Qa

¼ �2 ���sin2ð ��� �kÞ 1

3V0

@ �Hmatter

@ �p

��Ec
j�

j
a�i

c

�p

�
:

Considering simultaneously the two types of corrections
and using the explicit expression of the matter Hamil-
tonian, one obtains the full LQC source term

�i;ðLQCÞ
Qa

¼ �2 ���sin2ð ��� �kÞ 1

3V0

@ �Hmatter

@ �p

��Ec
j�

j
a�i

c

�p

�
;

(35)
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as expected from the vanishing inverse-volume source
term.

III. SCHRÖDINGER EQUATION FOR THE
FOURIER MODES

The energy density and the pressure of the cosmological
fluid can be written as


 ¼ 1

V0 �p
ð3=2Þ

�Hmatter

� �N
; p ¼ � 1

�NV0

�Hmatter½ �N�
�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp Þ

:

(36)

With the Hamiltonian constraint, one obtains

0 ¼ 1

2�

Z
�
d3xS

�
�6

ffiffiffiffi
�p

p �
sinð ��� �kÞ

���

�
2
�
þ �Hmatter

� �N
; (37)

which finally leads to


 ¼ 3

�

S

�p

�
sinð ��� �kÞ

���

�
2
: (38)

Defining H as the Hubble parameter with respect to the
conformal time ðH ¼ a�1dað�Þ=d�ÞÞ, we obtain the
quantum Friedmann equations

H 2 ¼ S2
�
sinð2 ��� �kÞ

2 ���

�
2 ¼ S2

�p

S

�

3



�
1� ��2�2 �

3

�p

S



�
;

(39)

which lead, with 
c ¼ 3=ð� ��2�2 �pÞ, to

H 2 ¼ a2
�

3



�
S� 



c

�
: (40)

This equation, which has already been found in [12],
includes all the LQC corrections and shows that the hol-
onomy term, leading to the bounce, is the most important
one as far as the background in concerned. This conclusion
will be radically modified for perturbations.

The equation of motion for the graviton can now be
reexpressed in terms of the commonly used cosmological
variables. By taking into account Eq. (38) and ��2 �p ¼ l2PL,
one obtains

S2TQ ¼ �2

�
�p

��

@ ��

@ �p

�
ðS ���Þ2

�
sinð ��� �kÞ

���

�
4 ¼ �

3

a2


c


2:

(41)

The multiplicative factor of _hia in Eq. (24) can be reex-
pressed as a function of the Hubble parameter

2S

�
sinð2 ��� �kÞ

2 ���

��
1� �p

S

@S

@ �p

�
¼ 2H

�
1� 1

2

a

_a

_S

S

�
: (42)

Finally, the source term can be explicitly computed

�i
Qa

¼ hia
S





c

�p

2

�

�

_�2

DðqÞa2
�
1� 1

6

_D

D

a

_a

��
:

As in [11], we use the effective parametrization S ¼ 1þ
�sðqÞ�ðs=2Þ with q ¼ ða=lPLÞ2. The equation of propagation
can now be written as

€hþ 2
_a

a

�
1� 1

2

@ lnðSÞ
@ lnðaÞ

�
_h� ðS2r2 þM2ðaÞÞh ¼ 0;

(43)

with

M2ðaÞ ¼ �




c

a2
�
2

3

�

_�2

DðqÞa2
�
1� 1

6

_D

D

a

_a

��
: (44)

This can be usefully expressed as an equation for the
spatial Fourier transform hk of h

€h k þ 2
_a

a

�
1� 1

2

a

_a

_S

S

�
_hk þ ðS2k2 �M2ðaÞÞhk ¼ 0: (45)

The variables are changed according to 	k ¼ hka=
ffiffiffi
S

p
,

leading to a Schrödinger-like equation

€	k þ
�
S2k2 �

�
€a

a
þM2ðaÞ� _a

a

_S

S
þ 3

4

� _S

S

�
2 � 1

2

€S

S

��
	k ¼ 0:

(46)

IV. POWER SPECTRUM

The main question to address is to investigate if one
correction, either holonomy or inverse volume, dominates
over the other as far as the production of gravitational
waves during inflation is concerned. The system describing
the dynamics is

H 2 ¼ a2
�

3



�
S� 



c

�
;

0 ¼ €�k þ 2
_a

a

�
1� 1

2

a

_a

_D

D

�
_�k þ a2DV;�ð�Þ;

0 ¼ €	k þ
�
S2k2 �

�
€a

a
þM2ðaÞ � _a

a

_S

S
þ 3

4

� _S

S

�
2

� 1

2

€S

S

��
	k;

which is unfortunately much too difficult to be analytically
solved. We therefore turn to the approach developed in
[5,6]. The background evolution is assumed to be classical
(D � 1) with the scale factor given by the usual slow-roll
approximation að�Þ ¼ l0j�j�1��. In this case, the effective

Schrödinger equation ½ d2

d�2 þ Ekð�Þ � Vð�Þ�	kð�Þ ¼ 0,

reads, to first order in �s, as

Ekð�Þ ¼ S2k2 ¼
�
1þ 2�s

�
lPL
l0

�
sj�jsð1þ�Þ

�
k2; (47)
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Vð�Þ ¼ 2þ 3�

�2
þ 6

�

1


c

ð1þ 4�Þ
l20

j�j�2ð1��Þ

þ �s

�
lPL
l0

�
s
�
� 12

�

1


c

ð1þ 4�Þ
l20

j�js�2þ�ðsþ2Þ

þ sð1þ 2�Þj�jsð1þ�Þ�2

� 1

2
sðs� 1þ �ð2s� 1ÞÞj�jsð1þ�Þ�2

�
: (48)

To implement initial conditions, we consider the limit � !
�1where the adiabatic vacuum holds. Of course, if higher
order terms in �s were to be included, the vacuum would
not be the same anymore. However, we have checked that
the adiabaticity condition would still be fulfilled in the
relevant wave number range.

It is possible to solve analytically this equation, at least
for one set of parameters: s ¼ 2 and � ¼ 0. It becomes

d2	k

d�2
þ

��
1þ 2�s

�
lPL
l0

�
2
�2

�
k2 � 2

�2

�
1� 3

�

1


c

1

l20

�

� �s

�
lPL
l0

�
2
�
� 12

�

1


c

1

l20
þ 1

��
	k ¼ 0: (49)

By appropriate changes of variables, this equation can be
turned into a Whittaker equation. The solution can be
expressed with Kummer functions and the Wronskian
condition 	k@�	

þ
k �	þ

k @�	k ¼ 16i�=M2
PL allows one

to normalize the modes. The field is then given at the end
of inflation by

	kðcÞ ¼ 2
ffiffiffiffiffiffiffi
2�

p

MPLðk
ffiffiffiffiffiffi
2Z

p Þ1=4 e
ði=2Þ�ae�ði=2Þccð1=4Þþ�

�U

�
1

2
þ�� v; 1þ 2�; ic

�
; (50)

and the resulting primordial tensor power spectrum is

PTðkÞ ¼ 16

M2
PL

k3�2�H2
0ð

ffiffiffiffiffiffi
2Z

p Þ�2�

���������ðb� 1Þ
�ðaÞ e�ði=2Þ�v

��������
2

;

(51)

with

a ¼ 1

2
þ�� v ¼ 1

2
þ 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2l2PL

9l20

s

þ iffiffiffiffiffiffiffiffiffiffiffiffiffi
32Zk2

p
�
k2 � Z

�
1� 4

�2l2PL
l20

��
; (52)

b ¼ 1þ 2� ¼ 1þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2l2PL

9l20

s
; (53)

v ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffi
32Zk2

p
�
k2 � Z

�
1� 4

�2l2PL
l20

��
; (54)

where Z ¼ ðlPL=l0Þ2�s and �2 ¼ 3=ð�
cl
2
PLÞ. The ultra-

violet limit of this spectrum can be easily derived and leads
to

PUV
T ðkÞ ¼ 16�3

�
lPL
l20

�
2
�
1þ 3

2

Z

k2
ð1� 4�Þ

�
k�ð4=3Þ!; (55)

with ! ¼ �2l2PL=l
2
0. On the other hand, the infrared limit is

given by

PIR
T ðkÞ ¼ 16�3

�
lPL
l0

�
2ðZð1� 4!ÞÞ�ð3=2Þk3e�

ffiffiffiffiffiffiffiffiffi
ðZ=8Þ

p
ðð1�4!=kÞÞ:

(56)

Those results show that the k ! þ1 limit of the power
spectrum is in agreement with the general relativistic be-
havior with the addition of a slight tilt. The ultraviolet
spectrum is nearly asymptotically scale invariant. This is
not surprising as both the holonomy correction (encoded in

the k�ð4=3Þ! term) and the inverse-volume correction [en-
coded in the (1þ 3

2
Z
k2
ð1� 4�Þ) term], taken individually,

lead to this behavior. The infrared limit is more interesting
as, in this case, the holonomy and inverse-volume correc-
tions lead to very different spectra. The result obtained here
shows that the power spectrum is exponentially divergent,
in exact agreement with the limit obtained with the inverse-
volume correction alone. This proves that, under the stan-
dard inflationary background evolution hypothesis, the
inverse-volume term strongly dominates over the holon-
omy one. This is to be contrasted with the background
evolution in the very remote past where the holonomy term
alone leads to the replacement of the singularity by a
bounce.

V. CONCLUSION

This work derives the fully LQC-corrected equation of
motion for gravitational waves. This equation is expressed
in terms of cosmological variables and is explicitly solved
for a given set of parameters in a standard inflationary
background. It is shown that the spectrum remains expo-
nentially infrared divergent, as for a pure inverse-volume
correction. This reinforces the use of primordial gravita-
tional waves as a strong probe of loop quantum gravity
effects. The next step is naturally to build a fully consistent
model which includes all the corrections for both the
perturbations and the background.
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Conclusion

Dans le cas particulier où on regarde l’univers uniquement dans sa phase d’expansion et subissant une in-
flation slow-roll, il existe une résolution analytique simple des équations conduisant au spectre de puissance.
D’autre part, nous n’avons pas non plus considéré de correction quantique sur la matière comme dans les travaux
précédents : cela nous a ainsi permis de comparer ce spectre avec ceux obtenus par les études précédentes.
Les résultats obtenus pour l’expression analytique des spectres dans les équations (55) et (56) de l’article
montrent une domination des corrections d’inverse-volume à la limite infrarouge, et des corrections d’holonomies
à la limite ultraviolette, tels que le spectre est finalement donné par la figure Fig.(8.1).

Fig. 8.1 – Spectres de Puissance obtenu pour
différentes valeurs du paramètre de Hubble
initial.

Ainsi, aux grandes échelles, une divergence exponentielle est tou-
jours présente, et aux petites échelles il existe une très légère
pente dépendant du paramètre de Barbero-Immirzi : cette signa-
ture caractéristique du spectre pourrait alors être comparée avec
les observations. Cependant, en cosmologie, il existe l’échelle de
longueur correspondant au rayon de Hubble telle qu’au delà de
cette longueur, il n’est plus possible de faire des observations :
cela va se traduire par l’existence d’un nombre d’onde kmin en
dessous duquel le spectre ne pourra pas être mesuré. Les effets
quantiques étant très importants aux grandes échelles, il se pour-
rait qu’ils ne soient finalement pas visibles s’ils sont à des nombres
d’onde plus petits que kmin, et le spectre classique serait alors
essentiellement obtenu. Néanmoins, il serait toujours possible de
mesurer la pente du spectre qui caractériserait alors la valeur du
paramètre γ.
Ce travail prospectif s’est surtout révélé important pour com-
prendre l’action conjuguée des différentes corrections, ce qui
n’avait jamais été regardé auparavant. On voit en effet par
l’équation (12) dans l’article qu’elles n’agissent pas de la même
manière : regarder la correction d’inverse-volume revient à multi-
plier la contrainte par une fonction corrective, alors que la correc-
tion d’holonomie va transformer les termes en k̄ et k̄2 à l’intérieur
de ces contraintes. Cela va alors se répercuter dans le calculs des
crochets de Poisson et donc dans l’équation (8.1) où S est en fac-
teur de la partie classique, alors que la correction d’holonomie va
donner un terme supplémentaire en ρ2. Les travaux suivant ont cependant invalidé l’utilisation des corrections
d’holonomies dans cette approche, mais il est tout de même intéressant de voir que l’équation du mouvement
pour les perturbations fait apparâıtre un terme en S2∇2h, soit après transformée de Fourier S2k2h, provenant
ici du terme S · ∂δE∂δE dans la contrainte, mais aussi un terme spécifique

(
2H− Ṡ

S

)
en facteur de ḣ, comme

pour l’équation de Klein-Gordon (5.43) avec ᾱ = ν̄.
Ce premier travail a surtout eu l’avantage d’être une introduction au formalisme de la cosmologie quantique à
boucles, en nous permettant de nous familiariser avec l’utilisation des contraintes et des crochets de Poisson,
mais aussi avec la forme spécifique des corrections d’inverse-volume et d’holonomie. Elle se place néanmoins
dans un cadre vraiment très restrictif en raison des hypothèses faites sur l’évolution de l’univers et l’absence de
correction sur le fond, et ne correspond pas exactement à une situation physique réelle même si la forme globale
des spectre s’est révélée être correcte par la suite.
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Chapitre 9

Etude de l’influence des corrections
d’holonomie sur le spectre des
perturbations tensorielles

Introduction

L’étude des perturbations en cosmologie quantique à boucles ayant surtout été réalisée jusqu’à mainte-
nant avec les corrections d’inverse-volume, nous avons voulu regarder le cas des perturbations tensorielles en
considérant uniquement les corrections d’holonomie en prenant réellement en compte l’existence du rebond dans
l’obtention des spectres analytiques et numériques. Une telle étude avait déjà été partiellement réalisée pour un
potentiel non-massif [76], donnant des solutions exactement résolubles. Les spectres analytique et numérique
obtenus dans ce modèle présentent une forme en k2 avec en plus des oscillations, et redonnent dans la limite
ultraviolette un comportement classique.
On souhaitait de plus tenir compte de l’existence d’une phase inflationaire, et cela a été directement possible
en considérant dans notre cas le scénario de l’aileron de requin [56] où un large jeu de paramètres permet
d’amener une inflation slow-roll standard. Cela n’était a priori pas évident puisque, dans le cas du vide, on
s’est rendu compte que les effets répulsifs induits par une géométrie quantique menaient certes à une phase de
superinflation, mais elle n’était pas suffisamment importante pour amener ensuite une phase d’inflation.
En se basant sur ces travaux ainsi que sur [69], nous avons commencé par regarder un peu plus en détails les
caractéristiques du scénario de l’aileron de requin, avant de nous intéresser à proprement parler aux spectres de
puissance prenant en compte l’existence d’un rebond suivi d’une inflation. Le modèle analytique développé est
simpliste mais il nous a permis de jouer sur différents paramètres afin de comprendre la physique se cachant
derrière la forme du spectre : la largeur du rebond ∆η ainsi que la valeur des corrections d’holonomies qui
agissaient, par M(a) dans l’équation (8.2), et finalement ε le premier paramètre de slow-roll. Les observables
ont ainsi été corrélées aux paramètres effectifs, que nous avons ensuite corrélé aux paramètres fondamentaux
de la théorie. Spectre analytique et spectre numériques ont pu ensuite être comparés.
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Loop quantum cosmology provides an efficient framework to study the evolution of the Universe

beyond the classical Big Bang paradigm. Because of holonomy corrections, the singularity is replaced by

a ‘‘bounce.’’ The dynamics of the background is investigated into the details, as a function of the

parameters of the model. In particular, the conditions required for inflation to occur are carefully

considered and are shown to be generically met. The propagation of gravitational waves is then

investigated in this framework. By both numerical and analytical approaches, the primordial tensor

power spectrum is computed for a wide range of parameters. Several interesting features could be

observationally probed.

DOI: 10.1103/PhysRevD.81.104049 PACS numbers: 04.60.Pp, 04.60.Bc, 98.80.Cq, 98.80.Qc

I. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative and
background-independent quantization of general relativity.
Based on a canonical approach, it uses Ashtekar variables,
namely, SU(2) valued connections and conjugate densi-
tized triads. The quantization is obtained through holono-
mies of the connections and fluxes of the densitized triads
(see, e.g., [1] for an introduction). Basically, loop quantum
cosmology (LQC) is the symmetry reduced version of
LQG (although it is fair to underline that the relations
with the full theory are still to be investigated into the
details). While predictions of LQC are very close to those
of the old quantum geometrodynamics theory in the low
curvature regime, there is a dramatic difference once the
density approaches the Planck scale: the big bang is re-
placed by a big bounce due to huge repulsive quantum
geometrical effects (see, e.g., [2] for a review). Among the
successes of LQC, one can cite: the excellent agreement
between the trajectories obtained in the full quantum the-
ory and the classical Friedman dynamics as far as the
density in much below the Planck scale, the resolution of
past and future singularities, the ‘‘stability’’ of states which
remain sharply peaked even after many cycles (in the k ¼

1 case), and the fact that initial conditions for inflation are
somehow naturally met. The latter point is especially
appealing as the inflationary scenario is currently the fa-
vored paradigm to describe the first stages of the evolution
of the Universe (see, e.g., [3] for a recent review).
Although still debated, it has received many experimental
confirmations, including from the WMAP 7-Years results
[4], and solves most cosmological paradoxes. It is rather
remarkable that, as will be explained in this paper, the
canonical quantization of general relativity naturally leads
to inflation without any fine tuning. Inflation would have
been unavoidably predicted by LQC, independently of its
usefulness in the cosmological paradigm.
Two main quantum corrections are expected from the

Hamiltonian of LQG when dealing with a semiclassical
approach, as will be the case in this study mostly devoted to
potentially observable effects. The first one comes from the
fact that loop quantization is based on holonomies, i.e.
exponentials of the connection rather than direct connec-
tion components. The second one arises for inverse powers
of the densitized triad, which when quantized become an
operator with zero in its discrete spectrum thus lacking a
direct inverse. As the status of ‘‘inverse volume’’ correc-
tions is not clear due to the fiducial volume cell depen-
dence, this work focuses on the holonomy term only and
derives, for the first time in a fully consistent way, the
entire dynamics up to the explicit computation of the tensor
power spectrum. The background evolution is first studied
and a specific attention is paid to the investigation of the
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inflationary stage following the bounce. Then, analytical
formulas are given for the primordial tensor spectrum for
either a pure de Sitter or a slow-roll inflation. Finally,
numerical results are given for many values of the parame-
ters of the model.

II. BACKGROUND DYNAMICS

In general, many different evolutionary scenarios are
possible within the framework of LQC. However, all of
them have a fundamental common feature, namely, the
cosmic bounce. As we will show, the implementation of
a suitable matter content also generically leads to a phase
of inflation. This phase is nearly mandatory in any mean-
ingful cosmological scenario since our current understand-
ing of the growth of cosmic structures requires—among
many other things—inflation in the early universe. It is
therefore important to study the links between the infla-
tionary paradigm and the LQC framework, as emphasized,
e.g., in [5].

The demonstration that a phase of superinflation can
occur due to quantum gravity effects was one of the first
great achievements of LQC [6]. This result was based on
the so-called inverse volume corrections. It has however
been understood that such corrections exhibit a fiducial cell
dependence, making the physical meaning of the associ-
ated results harder to understand. As reminded in the
introduction, other corrections also arise in LQC, due to
so-called holonomy terms, which do not depend on the
fiducial cell volume. Those corrections lead to a dramatic
modification of the Friedmann equation which becomes

H2 ¼ �

3
�

�
1� �

�c

�
; (1)

where � is the energy density, �c is the critical energy
density, H is the Hubble parameter, and � ¼ 8�G. In
principle, �c can be viewed as a free parameter of theory.
However, its value is usually determined thanks to the
results of area quantization in LQG. Then,

�c ¼
ffiffiffi
3

p
16�2�3

m4
Pl ’ 0:82m4

Pl; (2)

where value � ’ 0:239 has been used, as obtained from the
computation of the entropy of black holes [7]. Should the
inverse volume corrections be included, this would modify
the background dynamics by some additional factors.

As it can easily be seen from Eq. (1), a general predic-
tion associated with models including holonomy correc-
tions is a bounce which occurs for � ¼ �c. The appearance
of this �2 term with the correct negative sign is a highly
nontrivial and appealing feature of this framework which
shows that the repulsive quantum geometrical effects be-
come dominant in the Planck region. The very quantum
nature of spacetime is capable of overwhelming the huge
gravitational attraction. The dynamics of models with hol-
onomy corrections was studied in several articles [5,8–10].

In this paper we further perform a detailed and consistent
study of a universe filled with a massive scalar field in this
framework. The global dynamics of such models was
firstly studied in Ref. [8]. Recently, it was pointed out in
Ref. [9] that the ‘‘standard’’ slow-roll inflation is triggered
by the preceding phase of quantum bounce. This general
effect is due to the fact that the universe undergoes con-
traction before the bounce, resulting in a negative value of
the Hubble factor H. Since the equation governing the
evolution of a scalar field in a Friedmann-Robertson-
Walker universe is

€�þ 3H _�þm2� ¼ 0; (3)

the negative value of H during the prebounce phase acts as
an antifriction term leading to the amplification of the
oscillations of field �. In particular, when the scalar field
is initially at the bottom of the potential well with some

small nonvanishing derivative _�, then it is driven up the
potential well as a result of the contraction of the universe.
This situation is presented in Fig. 1.
To some extent, it is therefore reasonable to say that the

LQC framework solves both the two main ‘‘problems’’ of
the big bang theory: the singularity (which is regularized
and replaced by a bounce) and the initial conditions for
inflation (which are naturally set by the antifriction term).
However, this shark fin evolution (see caption of Fig. 1)

is not the only possible one. In particular, a nearly sym-
metric evolution can also take place, as studied in
Ref. [10]. Those different scenarios can be distinguished
by the fraction of kinetic energy at the bounce. When the
energy density at the bounce is purely kinetic, the evolution
of the field is symmetric. When a small fraction of poten-
tial energy is introduced, which is the general case, the
symmetry is broken and the field behaves as in the shark fin
case. It is however important to underline that we consider
only scenarios where the contribution from the potential is
subdominant at the bounce, as it would otherwise be

slow roll
inflation

quantum
bounce

domain of the standard cosmology

reheating

10 10 20 30
mt

1

1

2

3

FIG. 1 (color online). Shark fin-type evolution of a scalar field
for m ¼ 10�3mPl. The (red) dot represents the point where the
initial conditions in classical cosmology are usually set.

MIELCZAREK et al. PHYSICAL REVIEW D 81, 104049 (2010)

104049-2

119
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



necessary to include quantum backreaction effects [11].
The effective dynamics would then be more complicated
and could not be anymore described by Eq. (1).

In order to perform qualitative studies of the dynamics
of the model, it is useful to introduce the variables

x :¼ m�ffiffiffiffiffiffiffiffi
2�c

p and y :¼
_�ffiffiffiffiffiffiffiffi
2�c

p : (4)

Since the energy density of the field is constrained (� �
�c), the inequality

x2 þ y2 � 1 (5)

has to be fulfilled. The x2 term corresponds to the potential
part while the y2 corresponds to the kinetic term. The case
x2 þ y2 ¼ 1 corresponds to the bounce, when the energy
density reaches its maximum.

In Fig. 2, exemplary evolutionary paths in the x� y
phase plane are shown. For all the presented cases, the
evolution begins at the origin (in the limit t ! �1), and
then evolves (dashed line) to the point on the circle x2 þ
y2 ¼ 1. Finally, the field moves back to the origin for t !
þ1 (solid line). However, the shapes of the intermediate
paths are different. The x ¼ 0 case corresponds to the
symmetric evolution which was studied in Ref. [10] (if
the bounce is set at t ¼ 0, the scale factor is an even
function of time and the scalar field is an odd function).
In this case, the field is at the bottom of the potential well
exactly at the bounce (H ¼ 0). This is however a very

special choice of initial conditions. In the case x ¼ffiffiffi
2

p
=2, the potential term and kinetic term contribute

equally at the bounce. In this case, both deflation and
inflation occur. However one observes differences in their
duration. The third case, x ¼ 1, corresponds to the domi-
nation of the potential part at the bounce. In this case,
symmetric phases of deflation and inflation also occur

(both the scale factor and the field being this time even

functions). However in this situation, as well as in x ¼ffiffiffi
2

p
=2 case, the effect of quantum backreaction should be

taken into account. The dynamics can therefore signifi-
cantly differ from the one computed with Eq. (1).
In Fig. 3 we show some exemplary evolutions of the

scalar field for different contributions from the potential
part at the bounce. In Fig. 4, the corresponding evolutions
of the scale factor are displayed. It can easily be seen that
the value of �max increases with the fraction of potential
energy at the bounce. Since the total energy density is
constrained, �max must satisfy

x 0

x
2

2

x 1

1 0.5 0.5 1 x

1

0.5

0.5

1

y

FIG. 2 (color online). Exemplary phase trajectories of the
scalar field with m ¼ mPl.

x 0

x 0.01

x 0.02

10 0 10 20 mt

1
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4

FIG. 3. Time evolution of the scalar field. Different evolu-
tionary scenarios leading to a slow-roll inflation phase are
displayed. The bottom (solid) line represents the symmetric
case. The middle (dotted) line represents the shark fin-type
evolution mostly investigated in this paper. The top (dashed)
line corresponds to a larger fraction of potential energy. For all
curves m ¼ 0:01mPl.
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x 0.01
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FIG. 4. Time evolution of the scale factor. Different evolu-
tionary scenarios leading to a slow-roll inflation phase are
displayed. The bottom (solid) line represents the symmetric
case. The middle (dotted) line represents the shark fin-type
evolution. The top (dashed) line corresponds to a larger fraction
of potential energy. For all curves m ¼ 0:01mPl.
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j�maxj �
ffiffiffiffiffiffiffiffi
2�c

p
m

: (6)

The values of �max associated with different evolutionary
scenarios were computed in [5,9,10]. The conclusion of
those studies is that the necessary conditions for inflation
are generically met. Only in the case of a symmetric
evolution does the value of �max become too small in
some cases. In particular, for m ¼ 10�6mPl one obtains
�max ¼ 2:1mPl for a symmetric evolution. The correspond-

ing number of e-folds can be computed with N ’ 2� �2

m2
Pl

,

which gives N ’ 28. By introducing a small fraction of
potential energy (as in the shark fin case), the number of e-
folds can be appropriately increased. In addition to the
usual arguments, this requirement is also set by the recent
WMAP 7-Years results [4]. Based on those observations,
the value of the scalar spectral index was indeed measured
to be nS ¼ 0:963� 0:012. As for a massive slow-roll
inflation the relation

nS ¼ 1� 1

�

m2
Pl

�2
(7)

holds, one obtains �obs ¼ 2:9� 0:5mPl. Since the consis-
tency relation �max >�obs must be fulfilled, the symmet-
ric evolution with m ¼ 10�6mPl (for which
�max ¼ 2:1mPl <�obs) is not favored by the WMAP 7-
Years observations. As already mentioned, higher values of
� can be easily reached if some contribution from the
potential term is introduced (this supports the shark fin
scenario). The number of e-folds will therefore be naturally
increased in this way. However it remains bounded by

above: since N ’ 2� �2

m2
Pl

, Eq. (6) leads to the constrain:

N � 4��c

m2m2
Pl

: (8)

The value of the parameter �c can be fixed by Eq. (2).
However, this expression is based on the computation of
the area gap as performed in LQG. This, in general, can be
questioned [12]. In particular, in the framework of reduced
phase space quantization of LQC, the value of �c remains a
free parameter [13]. Moreover, a particular value of the
Barbero-Immirzi parameter (imposed by black hole en-
tropy considerations) has been used. Therefore, the value
of �c can, in general, differ and it is worth investigating
how the variation of �c can alter the dynamics of the
model. In particular, we have studied how the shark fin
scenario can be modified by different choices of �c. In
Fig. 5, the evolution of the field is displayed as a function
of the value of the critical energy density. As expected, the
larger �c, the higher the maximum value reached by the
field. It can be seen that �max approaches the usually
required value �3mPl for �c �m4

Pl, making the whole

scenario quite natural.

III. GRAVITATIONALWAVES IN LQC

Although quite a lot of work has already been devoted to
gravitational waves in LQC [14], this study aims at treat-
ing, for the first time, the problem in a fully self-consistent
way with an explicit emphasis on the investigation of the
spectrum that can be used as an input to study possible
experimental signatures.
The equation for tensor modes in LQC is given (see, e.g.,

[15]) by

d2

d�2
hia þ 2aH

d

d�
hia �r2hia þm2

Qh
i
a ¼ 0; (9)

where hia are gravitational perturbations, � is the confor-
mal time, and the factor due to the holonomy corrections is
given by

m2
Q
:¼ 16�Ga2

�

�c

�
2

3
�� V

�
: (10)

This factor acts as an effective mass term. For convenience
we introduce the variable

u ¼ ah�ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p ¼ ah�ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p ; (11)

where h11 ¼ �h22 ¼ h�, h12 ¼ h21 ¼ h�. Then, performing
the Fourier transform

uðx; �Þ ¼
Z d3k

ð2�Þ3 ukð�Þe
ik�x; (12)

one can rewrite the equation as

d2

d�2
ukð�Þ þ ½k2 þm2

eff�ukð�Þ ¼ 0; (13)

where k2 ¼ k � k and

m2
eff

:¼ m2
Q � a00

a
¼ a2

�

2

�
p� 1

3
�

�
: (14)

It is worth underlining that the final expression of meff has
no explicit dependence upon the critical energy density �c.
In Eq. (14), both m2

Q and a00=a depend on �c. However

since

a00

a
¼ a2

�
2�

3
�

�
1� �

�c

�
� �

2
ð�þ pÞ

�
1� 2�

�c

��
; (15)

the factors depending on �c cancel out precisely. This is
perhaps not a coincidence and this could exhibit the con-
servation of classical symmetries while introducing the
quantum corrections.
The next step consists in quantizing the Fourier modes

ukð�Þ. This follows the standard canonical procedure.
Promoting this quantity to be an operator, one performs
the decomposition

û kð�Þ ¼ fkð�Þb̂k þ f	kð�Þb̂y�k; (16)
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where fkð�Þ is the so-called mode function which satisfies
the same equation as ukð�Þ, namely, Eq. (13). The creation

(b̂yk) and annihilation (b̂k) operators fulfill the commuta-

tion relation ½b̂k; b̂yq� ¼ �ð3Þðk� qÞ.
The problem is now shifted to the resolution of a

Schrödinger-like Eq. (13) which can be used to compute
the observationally relevant quantities. In particular, the
correlation function for tensor modes is given by

h0jĥabðx; �Þĥbaðy; �Þj0i ¼
Z 1

0

dk

k
P Tðk; �Þ sinkrkr

; (17)

where P T is the tensor power spectrum and j0i is the
vacuum state. In our case, P T can be written as

P Tðk; �Þ ¼ 64�G

a2ð�Þ
k3

2�2
jfkð�Þj2: (18)

This spectrum is the fundamental observable associated
with gravitational wave production. As will be shown in
the next sections, very substantial deviations from the usual
shape are to be expected within the LQC framework.

IV. ANALYTICAL INVESTIGATION OF THE
POWER SPECTRUM

In this section we perform analytical studies of gravita-
tional wave creation in the scenario previously described.
In particular, we derive approximate formulas for the
tensor power spectrum at the end of inflation. In the next
section we will compare this result with numerical
computations.

In the considered model, the evolution is split into three
parts: contraction, bounce, and slow-roll inflation. For this
model, the effective mass square is defined as follows

m2
effð�Þ ¼

8>><
>>:
0 for �< �i ���:
k20 for �i � ��< �< �i:
�ð�2 � 1

4Þ 1
�2 for �> �i:

(19)

Basically, the phenomenological parameters entering the
model are therefore:
(i) �i—the beginning of the inflation.
(ii) ��—the width of the bounce.
(iii) k0—which is approximately equal to the value of

meff at the bounce (when H ¼ 0). It can therefore
be related with the energy scale of the bounce.

(iv) �—which is related to slow-roll parameter 	 by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 þ 3	

q
¼ 3

2 þ 	þOð	2Þ, where 	 
 1.

For the considered model, we have k20 � 0. This comes

from the fact that we consider the particular shark fin-type
of evolution where the bounce is dominated by the kinetic
energy term. Therefore when y � x [see Eq. (4)], Eq. (14)

simplifies to m2
eff ¼ a2� _�2=6 � 0, leading to k20 


m2
effðt ¼ tbounceÞ � 0.
A matching should be performed between the three

considered phases. It can be done, as displayed in Fig. 6,
with transition matrices defined as follows:

M :¼ fkð�Þ f	kð�Þ
@�fkð�Þ @�f

	
kð�Þ

" #
; (20)

where the Wronskian condition implies

Wðfkð�Þ; f	kð�ÞÞ :¼ detM ¼ i: (21)

The inverse of the transition matrix is then given by

M�1 :¼ �i
@�f

	
kð�Þ �f	kð�Þ

�@�fkð�Þ fkð�Þ
" #

: (22)

10 10 20 30
mt
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3

FIG. 5 (color online). The shark fin-type evolution of the
scalar field for m ¼ 10�3mPl. Curves from bottom to top were
computed for �c ¼ 10�6, 10�4, 10�2, 1, and 100½m4

Pl�, respec-
tively.

M1 M2 M3 M4

0i i

2

i
2

0

k0
2

m2
eff

FIG. 6 (color online). Evolution of the effective mass used in
the analytical approximation [Eq. (19)]. On this plot, 	 is set to
zero as an example. The dashed line represents the case without a
bounce. The points where the transfer matrices are computed in
our model are also indicated.
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The three first transition matrices are

M1 ¼
e�ikð�i���Þffiffiffiffi

2k
p eikð�i���Þffiffiffiffi

2k
p

�i
ffiffi
k
2

q
e�ikð�i���Þ i

ffiffi
k
2

q
eikð�i���Þ

2
4

3
5; (23)

M2 ¼
e�i�ð�i���Þffiffiffiffiffi

2�
p ei�ð�i���Þffiffiffiffiffi

2�
p

�i
ffiffiffiffi
�
2

q
e�i�ð�i���Þ i

ffiffiffiffi
�
2

q
ei�ð�i���Þ

2
4

3
5; (24)

M3 ¼
e�i��iffiffiffiffiffi

2�
p ei��iffiffiffiffiffi

2�
p

�i
ffiffiffiffi
�
2

q
e�i��i i

ffiffiffiffi
�
2

q
ei��i

2
4

3
5; (25)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k20

q
: (26)

In the last region, mode functions can be written as

fkð�Þ ¼ 
kgkð�Þ þ �kg
	
kð�Þ; (27)

where

gkð�Þ ¼ ffiffiffiffiffiffiffiffi��
p ffiffiffiffi

�

4

r
ei�ð2�þ1Þ=4Hð1Þ

� ð�k�Þ; (28)

H�ðxÞ being a Hankel function of the first kind. The mode
functions gkð�Þ correspond to another decomposition of
the field ûkð�Þ in the form:

û kð�Þ ¼ gkð�Þâk þ g	kð�Þây�k: (29)

The creation (âyk) and annihilation (âk) operators fulfill the
commutation relation ½âk; âyq� ¼ �ð3Þðk� qÞ. Because de-
compositions (16) and (29) are equivalent, based on
Eq. (27) and on the Wronskian conditions for the mode
functions fk and gk, one obtains:

b̂k
b̂y�k

" #
¼ 
k �	

k

�k 
	
k

� �
âk
ây�k

� �
; (30)

which corresponds to a Bogoliubov transformation with
coefficients 
k and �k. Because of the commutation rela-
tion of the creation and annihilation operators we have
j
kj2 � j�kj2 ¼ 1. It is clear from Eq. (30) that if �k �
0 particles are created from the vacuum, just because

b̂kj0i ¼ �	
kâ

y
�kj0i. By matching the three regions, the

unknown coefficients 
k and �k can be determined:


k

�k

� �
¼ M�1

4 M3M
�1
2 M1

1
0

� �

¼ M�1
4

eikð����i Þð�cos½�����ik sin½����Þffiffiffiffi
2k

p
�

eikð����i Þð�ik cos½������sin½����Þffiffiffiffi
2k

p

2
4

3
5; (31)

where M4 is given by

M4 ¼ gkð�Þ g	kð�Þ
@�gkð�Þ @�g

	
kð�Þ

� �
�¼�i

; (32)

the mode function gk being given by Eq. (28). In the
special case corresponding to a de Sitter inflation (	 ¼ 0
and � ¼ 3

2 ), the mode functions given by Eq. (28) simplify

to the Bunch-Davies vacuum

gkð�Þj�¼ð3=2Þ ¼ gB-Dk ð�Þ ¼ e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
: (33)

In general, the amplitude of the mode function during
inflation can be written as

jfkj2 ¼ jgkj2j
k � �kj2 þ 4<ð
	
k�kg

	
kÞ<gk: (34)

As we are interested in the spectrum at the end of inflation
(� ! 0�), the approximation

Hð1Þ
� ðxÞ ’ � i

�
�ð�Þ

�
x

2

���
(35)

holds and, based on this, one can easily see that for a slow-
roll inflation (	 
 1):

lim
�!0�

<gkð�Þ
=gkð�Þ ¼ Oð	Þ: (36)

Therefore, the leading order contribution from Eq. (34)
becomes

lim
�!0�

jfkj2 ¼ jgkj2j
k � �kj2: (37)

With this approximation, the tensor power spectrum at the
end of inflation takes the form

P TðkÞ ¼ 16

�

�
H

mPl

�
2
�
k

aH

��2	j
k � �kj2: (38)

The coefficients 
k and �k are computed from Eq. (31).
Since the resulting expression for j
k � �kj2 is very long,
it is not explicitly given here. It exhibits the correct ultra-
violet (UV) behavior, namely, limk!1j
k � �kj2 ¼ 1.
Therefore, the UV spectrum simplifies to

0.1 1 10 100
k

1

2

T T
dS

FIG. 7. Analytical tensor power spectra, normalized to the
non-LQC-corrected spectrum, for three different values of k0
in the 	 ¼ 0 case. The parameters are: k0 ¼ 0 (solid line), k0 ¼
1:5 (dashed line), k0 ¼ 3 (dotted line), �i ¼ �1, and �� ¼ 1.

MIELCZAREK et al. PHYSICAL REVIEW D 81, 104049 (2010)

104049-6

123
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



P Tðk ! 1Þ ¼ 16

�

�
H

mPl

�
2
�
k

aH

��2	
: (39)

In Fig. 7, spectra, as obtained from Eq. (38), are dis-
played for different values of k0 and normalized to the
usual non-LQC corrected spectrum. In Fig. 8, the width of
the bounce �� is varied. In both cases, 	 is vanishing.

The main features that can be drawn from those plots are
the following:

(i) The power is suppressed in the infrared (IR) regime.
This is a characteristic feature associated with the
bounce.

(ii) The UV behavior agrees with the standard general
relativistic picture.

(iii) Damped oscillations are superimposed with the
spectrum around the ‘‘transition’’ momentum k	
between the suppressed regime and the standard
regime.

(iv) The first oscillation behaves like a ‘‘bump’’ that can
substantially exceed the UV asymptotic value.

(v) The parameter k0 basically controls the amplitude of
the oscillations whereas �� controls their
frequency.

V. NUMERICAL INVESTIGATIONOF THE POWER
SPECTRUM

To perform a more detailed analysis, we have also fully
numerically solved the system of coupled differential
equations which leads to both the evolution of the modes
and of the background:

d2fk
dt2

¼ �H
dfk
dt

�
�
k2

a2
þ �

6
ð3p� �Þ

�
fk; (40)

dH

dt
¼ 1

2
�ð�þ pÞ

�
2
�

�c

� 1

�
; (41)

da

dt
¼ Ha; (42)

d�

dt
¼ ��

a3
; (43)

d��

dt
¼ �a3�; (44)

where

� ¼ �2
�

2a6
þm2

2
�2 and p ¼ �2

�

2a6
�m2

2
�2 (45)

are, respectively, the energy density and pressure of the
scalar field whereas �� is the momentum.

To compute the evolution of the modes, the initial con-
dition was assumed to be the Minkowski vacuum

fk ¼ e�ik�ffiffiffiffiffi
2k

p : (46)

This approximation is valid for the subhorizontal modes.
Therefore, in the numerical computations we have evolved
only modes that were subhorizontal at the initial time.
In Fig. 9, the analytical spectrum Eq. (38) evaluated as

explained in the previous section is compared with the full
numerical computation. The overall agreement is very
good with slight deviations due to subtle dynamical effects.
The UV tilt associated with the slow-roll parameter is
perfectly recovered. The values of parameters H, k0, and
	 were determined from the evolution of the background.
In turn, the parameters �i and �� were fixed to fit the
numerical data.
The mass of the scalar field is, of course, the key

physical parameter of this model. The canonically chosen
value (around 10�6mPl) may not be especially meaningful

0.1 1 10 100
k

1

T T
dS

FIG. 8. Analytical tensor power spectra, normalized to the
non-LQC-corrected spectrum, for two different values of ��
in the 	 ¼ 0 case. The parameters are: �� ¼ 0 (solid line),
�� ¼ 10 (dashed line), k0 ¼ 1, and �i ¼ �1.

numerical

analytical

10 4 0.001 0.01 0.1 1 10
k

10 4

0.001

0.01

0.1

T

FIG. 9 (color online). Comparison of numerical and analytical
spectra [Eq. (38)] for m ¼ 10�2mPl. In the IR region the spectra
behave as P T / k2 while in the UV region they behave as P T /
k�2	, where 	 
 1 is the slow-roll parameter. Here: H ¼
0:037mPl, 	 ¼ 0:0246, k0 ¼ 0:037mPl, �i ¼ �750, and
�� ¼ 10.
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in this approach as the standard requirements of inflation
are substantially modified by the specific history of the
Hubble radius. This value is nonetheless still the mostly
preferred one.

In Fig. 10, the spectra computed for three different mass
values are displayed. As expected, the UV value of the
spectrum scales as m2, since during inflation P T �H2 �
m2. It is also clear that the region of oscillations becomes
broader while lowering the value of m.

In Fig. 11, we show how the spectrum is modified by
different choices of �c. It is clear that increasing �c leads to
an amplification of the spectrum. The dependence is how-
ever not very strong. As it was shown in Section II, the
increase of �c leads to an increase of the field displacement
�max. This dependence was shown to be rather weak. Since
P T �H2 �m2�2, the increase of � due to the depen-
dence upon �c will result in an amplification of the power
spectrum. This is in agreement with the numerical results.
From Fig. 11, it can also be noticed that increasing �c

amplifies the oscillatory structure.

The numerical investigations performed for this work
have shown that the quantity R defined as

R :¼ P Tðk ¼ k	Þ
P standard

T ðk ¼ k	Þ
; (47)

basically evolves as

R ’
�
mPl

m

�
0:64

; (48)

where k	 is the position of the highest peak in the power
spectrum and P standard

T ðkÞ is a standard inflationary power
spectrum [see e.g. Eq. (39)] which overlaps with P TðkÞ
for k ! 1. The function (48) was obtained by fitting
the numerical data in the mass range m ¼ 5�
10�5mPl . . . 10

�1mPl. Because of numerical instabilities,
it was not possible to perform computations for lower
values of the inflaton mass. The numerically obtained
values of R together with the approximation given by
Eq. (48) are given in Fig. 12. This parametrization is useful
for phenomenological purposes. Interestingly, R can be-
come very high for low values of the mass of the field. This
partially compensates for the lower overall normalization
of the spectrum and can become a very specific feature of
the model. In particular, for the massm 
 10�6mPl (which
is the value preferred by some estimations), extrapolating
the relation (48) leads to R 
 8000. If the relation still
holds in this range, the effect is very significant, and could
have important observational consequences.
Finally, to make basic studies easier, we performed a

rough parametrization of the full spectrum:

P T ¼ 16

�

�
H

mPl

�
2 ð k

aHÞ�2	

1þ ðk	=kÞ2
�
1þ 4R� 2

1þ ðk=k	Þ2
�
; (49)

leading to

P ds
T ¼ 16

�

�
H

mPl

�
2 1

1þ ðk	=kÞ2
�
1þ 4R� 2

1þ ðk=k	Þ2
�
; (50)

in the specific case of de Sitter inflation. In both cases, the

m 10 2mPl

m 10 3mPl

m 10 4mPl

10 4 0.001 0.01 0.1 1 10
k

10 6

10 4

0.01

T

FIG. 10 (color online). Numerically computed power spectra
for m ¼ 10�4, 10�3, 10�2mPl (from bottom to top in the UV
range).

c 10 m4
Pl

c 0.01 m4
Pl

c 0.0001 m4
Pl

10 4 0.001 0.01 0.1 1 10
k

10 7

10 6

10 5

10 4

0.001

0.01

T

FIG. 11 (color online). Numerically computed power spectra
for �c ¼ 10�4, 10�2, 10m4

Pl (from bottom to top in the UV

range) with m ¼ 10�3mPl.

0.0001 0.001 0.01 0.1
m

1

10

100

1000

R

FIG. 12 (color online). Ratio defined by Eq. (47) as a function
of inflaton mass in Planck units. Dots are values obtained from
the numerical computations. The straight line is the fit given by
Eq. (48).
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classical behavior is recovered in the limit k ! 1. The
point for introducing the R factor the way it was done
becomes clear when calculating the value of the spectra at
k ¼ k	. For a modified de Sitter spectrum [Eq. (50)], we
get

P ds
T ðk ¼ k	Þ ¼ R

16

�

�
H

mPl

�
2
: (51)

Thanks to the relation (48), the number of the free parame-
ters can be decreased in a phenomenological analysis.

As shown on Fig. 13, this formula correctly reproduces
the main features, namely, the IR power suppression, the
bump, and the UV limit. Oscillations are missed but due to
momentum integration there is little hope that they can

observationally be seen on a cosmological microwave
background (CMB) spectrum.
To conclude this section, we have schematically repre-

sented the evolution of the Hubble radius (RH :¼ 1=jHj),
together with the physical modes, in Fig. 14. This helps to
understand the shape of the obtained spectra.
We consider the modes that are initially (at time t1)

shorter than the Hubble radius. For those modes, the nor-

malized solution is given by the Minkowski vacuum fk ¼
e�ik�=

ffiffiffiffiffi
2k

p
. Therefore, the initial power spectrum takes the

form P T � k3jfkj2 � k2. Starting from the largest scales,
the modes cross the Hubble radius. This is possible since
the Hubble radius undergoes contraction faster than any
particular length scale. While crossing the horizon, the
shape of the spectrum becomes frozen in the initial P T �
k2 form. Then, the modes evolve through the bounce (at
time t2) until the beginning of inflation (at time t3). The
main consequence of the transition of modes through the
bounce is the appearance of additional oscillations in the
spectrum. This issue was studied in detail in Ref. [16],
where the spectrum at time t3 was calculated for the
symmetric bounce model. After the bounce, modes with
wavelengths shorter than �	 start to reenter the Hubble
radius. The superhorizon modes � > �	ðk < k	Þ hold the
k2 spectrum, with, however, some oscillatory features due
to the bounce. Modes with � < �	ðk > k	Þ cross the hori-
zon again during the phase of inflation. For them, the
spectrum agrees with the standard slow-roll inflation spec-
trum P T � k�2	 where 	 
 1. The small tilt is due to a
slow increase of the Hubble radius. Contributions from
different modes are then slightly different. At the end of
inflation (at time t4) the spectrum is therefore suppressed
(P T � k2) for k < k	 and exhibits the inflationary shape
(P T � k�2	) for k > k	. The spectrum is also modified by
the oscillations due to the bounce. This corresponds to the
computations of this paper. The particular mode with
wavelength �	 (wave number k	) should be studied in
more detail. The size of this mode overlaps with the size
of the Hubble radius at the beginning of inflation: k	 ’
aðt3ÞHðt3Þ. The physical length �	 at the scale factor aðtÞ is
therefore equal to �	ðtÞ ’ aðtÞ=½aðt3ÞHðt3Þ�. This scale
grows with the cosmic expansion and it is crucial, from
the observational point of view, to determine its present
size (at time t5). The case drawn in Fig. 14 corresponds to a
present size of �	 greater than the size of the horizon. This
is indeed rather unlikely that the present value of �	 is
below the size of horizon just because the spectrum of
scalar perturbations should then exhibit deviations from
the nearly scale invariant inflationary prediction. Up to
now, there is no observational evidence for such deviations.
A remaining possibility would however be that the (slight)
observed lack of power in the CMB spectrum of anisotro-
pies could be due to the effects of the bounce. However, the
present size of �	 would then be comparable with the size
of horizon. This leads to the question: why should those

10 5 10 4 0.001 0.01 0.1 1 10
k

10 4

0.001

0.01

0.1

1
T

FIG. 13 (color online). Comparison of the numerical spectrum
for m ¼ 10�2mPl with formulas (49) and (50). The solid (blue)
line corresponds to (49) while the dashed (red) line corresponds
to (50).

FIG. 14 (color online). Schematic picture of evolution of the
Hubble radius (solid line) and of the different length scales
(dashed lines) for the considered model of the universe.
Different times are distinguished: t1 time when the initial con-
ditions are set; t2 bounce (H ¼ 0); t3 beginning of inflation; t4
end of inflation; t5-present epoch of dark energy domination.
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two scales overlap right now? This is rather unnatural, and
would lead to a new coincidence problem. However, as it
was estimated in Ref. [9], these two scales can indeed
overlap in the standard inflationary scenario for quite
natural values of the parameters. There is therefore a
glimpse of hope that the scale �	 is at least not to much
bigger than the size of horizon. This could allow us to see
some UV features due to the bounce as the oscillations also
affect sightly the inflationary part of the spectrum. These
are however secondary effects and it is not clear whether
they were not smoothed away during the radiation domi-
nation era. Moreover, in the region where those effects
could be expected, errors due to the cosmic variance
become significant. This is an unavoidable observational
limitation which cannot be bettered, even by the improve-
ment of resolution of the future CMB experiments.

Another limitation in studying the effects of LQC comes
from the fact that the derived modifications can also appear
in other bouncing cosmologies. In particular, within the
model of quintom bounce, the discussed effects of sup-
pression and oscillations were also pointed out [17,18].
The amplitude of tensor perturbations at the peak was,
however, not predicted to be as high as in LQC. An addi-
tional amplification on the very large scales was also
predicted in the quintom model. Despite these differences,
at the observationally accessible low scales, the effects due
to the LQC bounce and the quintom bounce are mostly
indistinguishable. Therefore, complementary observatio-
nal methods have to be proposed to distinguish between
such models. A possible distinction could be given e.g.
from the analysis of non-Gaussianity production within
LQC.

VI. CONCLUSIONS

This study establishes the full background dynamics in
bouncing models with holonomy corrections. Although
this has already been claimed before, we confirm that
due to the sudden change of sign of the Hubble parameter,
inflation is nearly unavoidable. In this paper, we have
considered a particular model of inflation where the con-
tent of the universe is dominated by a massive scalar field.
We have investigated the details by both analytical and
numerical studies the primordial power spectrum of gravi-
tational waves. It exhibits several characteristic features,
namely, a P T / k2 IR power suppression, oscillations, and
a bump at k	. In the UV regime, the standard inflationary
spectrum P T / k�2	 is recovered. The primordial tensor
power spectrum transforms into B-type CMB polarization.
The performed investigations therefore open the window

for observational tests of the model, in particular, through
the amplification which occurs while approaching k ! k	.
The observed structures correspond to the UV region in the
spectrum. If the present scale �	 � 1=k	 is not much larger
than the size of horizon, then the effects of the bounce
should be, in principle, observable. In particular, one
should expect amplification, rather than suppression of
the B-type polarization spectrum at the low multipoles.
The suppression for k < k	 becomes dominant at the much
larger scale, probably far above the horizon. While the
B-type polarization has not been detected yet, there are
huge efforts in this direction. Experiments such as
PLANCK [19], BICEP [20], or QUIET [21] are (partly)
devoted to the search of the B mode. Even with present
observational constraints, one can already exclude some
evolutionary scenarios and possible values of the parame-
ters; in particular, the inflaton mass m and position of the
bump k	 in the spectrum. We address this interesting issue
elsewhere [22]. There are also still several points to study
around this model:
(i) How is the scenario modified when quantum back-

reaction is taken into account (in particular when the
potential energy of the field in not negligible at the
bounce)?

(ii) How is the power spectrum modified by inverse-
volume terms in this framework? Although the
background dynamics should not be fundamentally
altered, the spectrum could be significantly
modified.

(iii) How do those results compare with models dealing
with classical bounces (see, e.g., [23])? If the IR
power suppression is probably a generic feature
of bounces, the detailed features are model-
dependent.

Together with the known success of LQC (The singu-
larity resolution, the correct low-energy behavior, etc.), the
facts that (1) inflation naturally occurs and (2) observatio-
nal features can be expected from the model, are strong
cases for loop cosmology. Those two points are the main
results of this paper.
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Conclusion

Dans cette étude, nous avons bien observé la présence de l’inflation. Le fait qu’elle apparaisse naturellement
en cosmologie quantique à boucles, sans ’ajustement fin’ nécessaire est une des grandes forces de ce modèle.
L’approche analytique a permis de voir les caractéristiques principales d’un spectre sous l’action d’un rebond :

• le spectre dans la limite infrarouge évolue en k2 : cela peut se comprendre par le fait que les grandes
distances, dans un univers en contraction, sortent de l’horizon avec le spectre du vide de Minkowski, se
figent et ne subissent pas ensuite l’inflation.

• le spectre dans la limite ultraviolette est bien quasiment invariant d’échelle comme attendu.
• entre ces deux régimes, le spectre présente des oscillations : au niveau du rebond, tous les modes sont en

contact causal et oscillent plus ou moins longtemps suivant la largeur de ce rebond.
• suivant la valeur des corrections au moment du rebond, l’amplitude du spectre sera changée et la première

oscillation, correspondant à l’oscillation la plus importante. Elle pourrait alors être beaucoup plus grande
que la valeur du spectre à la limite ultraviolette et avoir peut-être une conséquence observable.

L’étude numérique a permis l’obtention d’un spectre similaire, avec cependant une différence dans la limite
infrarouge où on peut observer un léger décalage entre la pente en k2 et la première oscillation : cela est
du à l’existence dans la dynamique de l’univers d’une phase de superinflation [77] [78]. Il pourrait ici s’agir
d’une caractéristique permettant de distinguer un rebond ’quantique’ d’un rebond ’classique’ [79]. On a pu
ainsi confirmer ce qui avait été observé par le modèle analytique, et voir aussi que suivant la masse du champ
d’inflaton, l’amplitude du spectre dans sa partie classique correspondait bien à une évolution en m2, comme
dans une inflation slow-roll. L’étude faite par [76] n’a considéré que le rebond puisque le champ de matière est
non-massif, et ce spectre a été courbé sous l’action de l’inflation, ce que corrobore finalement notre travail.
La forme du spectre de puissance étant compliquée, nous avons décidé pour une étude future d’en utiliser une
description effective. Nous avons alors défini une fonction approximative qui encode ses caractéristiques aux
limite ultraviolette et infrarouge, et seule la plus grande des oscillations est prise en compte, comme illustré sur
la figure Fig.(13) de l’article. On a ainsi paramétré le spectre par l’amplitude R de la première oscillation par
rapport à la valeur du spectre à la limite classique, et par le nombre d’onde correspondant à la position de cette
amplitude k∗, tels que son expression soit donnée par

PT =
PSTDT

1 +
(
k∗
k

)2
1 +

4R− 2

1 +
(
k
k∗

)2

 , (9.1)

avec PSTDT l’expression du spectre de puissance standard. Puisqu’il est possible de rattacher les caractéristiques
du spectre aux paramètres fondamentaux de la théorie, comparer ce spectre primordial avec les observations
nous renseignera sur la physique prédite par ce modèle.
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Chapitre 10

Observations possibles du rebond par
les perturbations tensorielles en
Cosmologie Quantique à Boucles

Introduction

Actuellement, les modes B n’ont jamais pu être observés lors d’une étude du fond diffus cosmologique, mais
des limites ont été obtenues sur les amplitudes du spectre. Le spectre en température des photons est, quant à
lui, très bien mesuré par WMAP, et aussi très bien décrit par le modèle Λ-CDM.
Dans le travail précédent, on a vu que le rebond induisait une évolution en k2 pour les petites valeurs de nombres
d’onde, ainsi que des oscillations dans le spectre primordial. La question de l’existence de ces structures dans
celui en température reste ouverte puisque l’équation du spectre scalaire tenant compte des corrections d’holo-
nomies n’ayant pas encore été dérivée, sa forme reste hypothétique. Le spectre de puissance des perturbations
tensorielles dans ce modèle de rebond ayant pu être dérivé par le travail précédent, nous avons voulu savoir si
des expériences futures comme le projet CORE avaient une chance de pouvoir détecter les effets dus au bounce.
Nous avons pour cela considéré en première approche le spectre primordial donné par l’approximation (9.1)
précédente, et regarder l’influence sur les spectres attendus de l’amplitude R et de la position k? de la première
oscillation. Nous avons ainsi intégré cette composante primordiale avec celle donnant les effets de lentille gravi-
tationnelle, et les spectres obtenus ont alors été paramétrés par le jeu de paramètres

θi = k?, R, nT , T/S, τ, (10.1)

les autres paramètres étant donnés par les paramètres cosmologiques mesurés par WMAP-7ans.

Fig. 10.1 – Spectre de puissance en
température avec les données de WMAP-
7ans, pour le modèle du rebond (pointillés)
et pour la prédiction du modèle standard (ti-
rets) : les barres d’erreur pour les petites va-
leur de k étant grande à cause de la variance
cosmique, on ne peut rien conclure sur la
validité du modèle du rebond par rapport au
modèle standard [77].

L’étape suivante a alors consisté à regarder quel serait l’es-
pace des valeurs de R et de k? qui permettrait à une expérience
d’observer les effets du rebond. Pour cela, une analyse de Fisher1

a alors été réalisée et nous a permis de regarder le rapport signal-
sur-bruit attendu en fonction de ces paramètres. Nous avons ainsi
obtenu les gammes de valeurs qui pourraient être observées, et
étudié alors quelles seraient les conséquences sur les possibles va-
leurs des paramètres fondamentaux comme la masse du champ
d’inflaton ou bien la valeur de son énergie potentielle au moment
du bounce.
Avec les arguments précédents, il est aussi envisageable que les
perturbations scalaires subissent les caractéristiques du rebond
et voient une partie de leur spectre supprimée pour de faibles
valeurs du nombre d’onde. Le spectre en température actuelle-
ment observé ne permet pas de conclure sur la présence de cette
suppression, mais on peut cependant penser que k? devrait être
plus petit que celui correspondant au rayon de Hubble : suivant
cette hypothèse, nous avons alors dérivé des contraintes sur la
valeur des paramètres en utilisant les données actuelles.

1Voir les références [80], [81] et [82] pour plus de détails.
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Cosmological models where the standard big bang is replaced by a bounce have been studied for

decades. The situation has, however, dramatically changed in the past years for two reasons: first, because

new ways to probe the early Universe have emerged, in particular, thanks to the cosmic microwave

background, and second, because some well grounded theories—especially loop quantum cosmology—

unambiguously predict a bounce, at least for homogeneous models. In this article, we investigate into the

details the phenomenological parameters that could be constrained or measured by next-generation

B-mode cosmic microwave background experiments. We point out that an important observational

window could be opened. We then show that those constraints can be converted into very meaningful

limits on the fundamental loop quantum cosmology parameters. This establishes the early Universe as an

invaluable quantum gravity laboratory.

DOI: 10.1103/PhysRevD.82.123520 PACS numbers: 98.80.Es, 04.60.Bc, 98.70.Vc, 98.80.Qc

I. INTRODUCTION

The big-bang paradigm is unquestionably a major
achievement of contemporary science. However, in parallel
to its successes it raises some very fundamental questions.
Among them are of course the dark matter and dark energy
issues. Nevertheless, the big-bang singularity remains, in
itself, one of the greatest puzzles of thewhole approach. It is
a nearly unavoidable prediction of general relativity where
the theory is, precisely, not correct anymore. Solving the
singularity by replacing the big bang by a big bounce is one
of the main achievements of loop quantum cosmology
(LQC) [1] as a symmetry reduced version of the loop
quantum gravity scheme to nonperturbatively quantize gen-
eral relativity in a background invariant way [2].

Moreover, if the Universe is assumed to be filled with a
scalar field described by a self-interaction potential well,
the contracting phase—preceding the big bounce—can set
the field in the appropriate conditions for a phase of slow-
roll inflation to start just after the bounce. In the specific
(and simple) case of a massive scalar field, and in the
framework of an effective LQC universe, only a tiny
amount of potential energy at the bounce is necessary for
a long enough phase of inflation to be naturally generated

[3–5]. In effective LQC, it is therefore possible both to
solve the big-bang singularity and to generate the specific
conditions necessary for inflation to take place. Finally,
and this is the key point addressed by this paper, such a
model can, in principle, be tested: The quantum fluctua-
tions leading to the cosmological perturbations observed in
the cosmic microwave background (CMB) anisotropies,
though still stretched to astronomical size by inflation,
experienced the influence of the contraction phase and
of the bounce. As a consequence, the statistical properties
of cosmological perturbations are potentially distorted as
compared to the standard inflationary prediction. This
finally translates into distortions in the angular power
spectra of CMB anisotropies.
Up to now, only corrections to tensor modes of the

cosmological perturbations have been rigorously derived
in LQC [6], potentially leaving a footprint on the CMB B
mode. Although not yet detected and marginally within the
aims of the Planck satellite, the measurement of B-mode
polarization will be the core of the future CMBPol/B-Pol
missions [7]. We therefore investigate a possible detection
of the big bounce using future B-mode measurements, by
considering first the phenomenological aspects and then
turning to the fundamental parameters.
Our paper is organized as follows. In Sec. II, we describe

how the B-mode power spectrum is distorted in a
fbouncingþ inflationaryg universe as compared to the
standard prediction from inflation and argue that this dis-
tortion can be parametrized by two phenomenological

*julien.grain@ias.u-psud.fr
†aurelien.barrau@cern.ch
‡cailleteau@lpsc.in2p3.fr
xjakub.mielczarek@uj.edu.pl

PHYSICAL REVIEW D 82, 123520 (2010)

1550-7998=2010=82(12)=123520(12) 123520-1 � 2010 The American Physical Society

132 CHAPITRE 10. OBSERVATION DU REBOND
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



parameters (denoted k? and R) encoding the properties of
the bounce. The question of a possible detection of the
bounce with the B-mode angular power spectrum translates
into the determination of specific values of the two phe-
nomenological parameters describing the distorted shape
of the tensor power spectrum. Then, Sec. III is devoted to a
brief presentation of the Fisher analysis we have used to
define the signal-to-noise ratio associated with the cosmo-
logical parameters shaping the B-mode power spectrum.
We apply this approach to the specific case of k? and R,
assuming the experimental characteristics of the future
CMBPol/B-Pol missions, and present our numerical results
in Sec. IV. In Sec. V, the range of phenomenological
parameters leading to a possible detection is translated
into possible values of the more fundamental LQC parame-
ters. We finally discuss our results and conclude in Sec. VI.

II. CMB B MODE WITH A BOUNCE

A. Primordial power spectrum for tensor modes

Many articles [8] have been devoted to the study of
gravitational waves in LQC. We focus in this paper on
the simplest (and, in our opinion, most convincing) sce-
nario (essentially developed in Refs. [3,4]): a universe
filled with a single massive scalar field. This accounts
impressively well for the observed Universe: Before the
bounce, the Hubble parameter is negative (therefore acting
as an antifriction term) and makes the field climb up its
potential. After the bounce, the Hubble constant becomes
positive (therefore a friction term) and naturally leads to
a standard phase of slow-roll inflation. It is remarkable
that inflation naturally occurs without any fine-tuning.

The main characteristics of a ‘‘bouncy’’ power spectrum
for tensor modes are the following:

(i) The IR part is k2 suppressed. This is due to the
freezing of very large-scale modes in the
Minkowski vacuum. Those modes indeed exit the
horizon long before the bounce and naturally exhibit
a quadratic spectrum.

(ii) The UV part is identical to the standard prediction.
Small scales indeed experience a history basically
similar to that of the big-bang scenario: They exit
the horizon during inflation and reenter later, lead-
ing to the standard nearly scale-invariant spectrum.

(iii) Intermediate scales, around k � k?, exhibit both a
bump of amplitude R and damped oscillations. This
is mostly due to the fact that all modes are inevita-
bly in causal contact at the bounce (the Hubble
parameter vanishes, therefore leading to an infinite
Hubble radius).

Those characteristics have been fully determined by
numerically solving the equations of motion of tensor
perturbations with LQC corrections propagating in a
fbouncingþ inflationaryg universe [4]. It is worth under-
lining that those equations of motion, as obtained in

Ref. [6], are derived from an algebra which is anomaly-
free at all orders and can be safely used throughout the
entire history of the bouncing universe. This may not be
true anymore with scalar perturbations.
In our previous work [4], two possible phenomenologi-

cal descriptions of the primordial tensor power spectrum
have been proposed. The first, and more complicated,
description introduces three phenomenological parameters
to approximate the shape of the time-dependent effective
mass of gravity waves propagating in the LQC universe. It
captures all the detailed characteristics of the primordial
power spectrum. The interested reader is referred to Sec. 4
of Ref. [4] for a detailed discussion.
The second, and simpler one, is summarized by the

following equation:

P T ¼ 16

�

�
H

mPl

�
2 ðk=aHÞnT
1þ ðk?=kÞ2

�
1þ 4R� 2

1þ ðk=k?Þ2
�
; (1)

where H is the Hubble constant at horizon crossing after
the bounce. It is more than enough to compute potentially
observable effects. In the above formula,

P STD
T � 16

�

�
H

mPl

�
2
�
k

aH

�
nT

stands for the power spectrum corresponding to the stan-
dard inflationary universe, while

P T

P STD
T

¼ 1

1þ ðk?=kÞ2
�
1þ 4R� 2

1þ ðk=k?Þ2
�

corresponds to the LQC corrections. This spectrum is
completely determined by four parameters: R and k?,
encoding the LQC corrections, the spectral index nT , and
the normalization, given by the tensor-to-scalar ratio T=S
defined in the UV limit. In the following, the values chosen
for T=S correspond to an amplitude of the scalar perturba-
tions given by the WMAP 7-yr best fit, i.e., AS ’ 2:49�
10�9. Though this value assumes a power-law shape for
the scalar power spectrum (which is not guaranteed in a
bouncy universe), this is only a matter of convention and
any change in AS can be reabsorbed in a new convention
for T=S. Nevertheless, this choice makes sense in the UV
limit and allows us to remain consistent with the standard
B-mode parametrization. The damped oscillations are
approximated by an envelope function, and k? is simply
interpreted as the wave number associated with the modes
crossing out the horizon when the phase of slow-roll
inflation starts. This parameter will therefore decrease as
the number of e-folds of inflation increases.

B. B-mode angular power spectrum

The B-mode angular power spectrum is made of two
components:
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(i) the primordial part, due to gravity waves produced in

the early Universe, denoted C
B;prim
‘ in the following,

and
(ii) the secondary component, due to lensing converting

E mode into B mode, denoted CB;lens
‘ .

1. Primordial component

The shape of the primordial part of CB
‘ is driven both by

the phenomenological parameters describing the primor-
dial tensor power spectrum [k?, R, nT , and T=S if one uses
Eq. (1) to parametrize P T] and by standard cosmological
parameters (in particular, ��, �CDM, �k, and the optical
depth to reionization �).

First of all, to understand qualitatively how LQC modi-

fies the B-mode angular power spectrum, CB;LQC
‘ can be

roughly approximated by

CB;LQC
‘ ¼ CB;STD

‘

1þ ð‘?=‘Þ
�
1þ 4R� 2

1þ ð‘=‘?Þ
�
: (2)

In the above, ‘? ¼ k?=kH, where kH � 2:3� 10�4 Mpc�1

is the Hubble wave number today, andCB;STD
‘ stands for the

B-mode power spectrum as obtained without LQC correc-
tions (i.e., the B mode obtained by assuming the standard
power law for the primordial tensor power spectrum
parametrized with nT and T=S). From this simple parame-
trization, two regimes can easily be identified, depending
on the value of k?=kH. For k?=kH > 1, the LQC B-mode
power spectrum exhibits

(i) a suppression of power for ‘ < ‘? and
(ii) a bump around ‘� ‘? and
(iii) coincides with the standard inflationary prediction

for ‘ > ‘?.

For k?=kH < 1, the IR suppression corresponds to length
scales which are much greater than the observable scales,
and the LQC-corrected B-mode power spectrum

(i) exhibits a boost of power at large angular scales
corresponding to the tail of the bump in P T and

(ii) coincides with the standard inflationary prediction
at intermediate and small angular scales.

To perform amore detailed analysis, the phenomenologi-
cal spectra presented in Sec. II A have then been used as
inputs for the primordial tensor perturbations and then
converted into observable CB

‘ spectra by using CAMB [9].

Figure 1 gives an example of how the angular power spec-
trum is distorted due to the bounce by using Eq. (1) as an
input for the tensor spectrum and assuming two different
values of the ‘‘transition’’ length scale k? ¼ 10�4 and
10�2 Mpc�1. These numerically computed B-mode power
spectra are not fundamentally different from the zeroth
order approximation of CB

‘ given in Eq. (2), although they

show some slightly different features.
In Fig. 2, the resulting B-mode spectra with and without

the damped oscillations are displayed for the same values

of the transition length scale k?. For k? < kH, neglecting
the damped oscillations inP T leads to an overestimation of
the boost at a large angular scale. For k? > kH, using
Eq. (1) results in an overestimation of the power just after
the bump located at ‘?. The effects of oscillations are
always small (the IR suppression and the bump at k? are
by far the more important observational features) and can
be accounted for in Eq. (1) by just considering an effective
bump Reff slightly smaller than R for k > k?.
In Fig. (3), the primordial B-mode power spectrum is

shown for different values of ��, �CDM, and �k and for
two values of k?. For k? > kH, the main effect is a shift in
the overall power spectrum without changing its shape.
For k? < kH, varying the parameters leads to a shift in ‘
for multipoles greater than�10 and to a slight suppression
of power for ‘ < 10.

FIG. 1 (color online). Standard (blue curve) and typical
bounce-modified (green curve) CB

‘ spectra for two values of

k?. Other cosmological parameters are given by WMAP 7-yr
best fit plus R ¼ 10, nT ¼ �0:012, T=S ¼ 0:05, and � ¼ 0:087.

FIG. 2 (color online). B-mode power spectrum computed with
(black curves) and without (green curves) oscillations in the
bouncy primordial power spectrum of tensor modes for two
values of k?. (Other cosmological parameters are as in Fig. 1.)
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Finally, the primordial part of the B-mode angular
power spectrum is also shaped by the optical depth to
reionization �. The associated impact can be inferred
from the simple expression given by Eq. (2) and is similar
to what happens in the standard case. Reionization leads
first to a boost of power at large angular scales, roughly
scaling as ð1� e��Þ2, and second to a slight suppression
at smaller angular scales scaling as e�2�.

2. Lensing component

The lensing part of the CMB B mode being given by the
convolution of the E-mode power spectrum with the de-
flection field power spectrum, its computation implicitly
assumes that the primordial power spectrum of scalar
perturbations is known. Unfortunately, the LQC-corrected
scalar power spectrum is still being debated, and the exact
shape of the secondary component of the Bmode cannot be
a priori safely computed. However, this secondary compo-

nent will be considered as a nuisance parameter (i.e., as
an additional noise) spoiling the primordial component
used to estimate the cosmological parameters. As a con-
sequence, a reasonable estimate of the lensing B mode is
sufficient to investigate the detectability of LQC parame-
ters by using the CMB signal generated by primordial
gravity waves.
The lensing B mode without LQC correction is fixed by

our theoretical knowledge of the deflection field and by our
observational knowledge of the temperature (denoted T
mode hereafter) and E-mode angular power spectra of the
CMB. Any strong modifications of the lensing B-mode
power spectrum therefore implicitly assume strong distor-
tions of the T-mode and E-mode angular power spectra.
As those spectra are well measured, it is not worth consid-
ering a substantial modification of the lensing component.
This would anyway be a subdominant effect when com-
pared to other uncertainties.

Some CB;lens
‘ spectra are displayed in Fig. 4. One is

simply derived from the standard inflationary prediction,
the amplitude and spectral index of the scalar perturbations
being fixed to their WMAP 7-yr best fit values, and the
others are obtained by boosting the primordial scalar power
spectrum for wave numbers smaller than the Hubble scale.
It clearly shows that as long as unrealistic values of the
boost (e.g., 10 000) are not considered, the shape of the
lensing-induced B-mode power spectrum can safely be
fixed to its standard prediction.

III. DETECTING THE BOUNCE: THE STRATEGY

A. Parametrizing the B-mode power spectrum

In view of the previous results, the primordial compo-
nent of the B-mode angular power spectrum is determined
by the five following parameters: k?, R, nT , T=S, and �,
denoted �i hereafter. The other cosmological parameters

FIG. 3 (color online). B-mode power spectrum computed for different values of ��, �CDM, and �k and for k? ¼ 10�4 Mpc�1

(left panel) and k? ¼ 10�2 Mpc�1 (right panel). Other cosmological parameters are k? ¼ 10�2 Mpc�1, R ¼ 10, nT ¼ �0:012,
T=S ¼ 0:05, and � ¼ 0:087.

FIG. 4 (color online). Lensing-induced B mode assuming that
scalar perturbations might be boosted for k < kH .
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will be fixed to the WMAP 7-yr best fit, and the lensing-
induced Bmode will be fixed to its standard prediction. We
will also neglect the effect of damped oscillations. The

effect of oscillations on C
B;prim
‘ can anyway be recasted in

the ‘‘language’’ of Eq. (1) by introducing an effective
bump Reff . Using Eq. (1) to parametrize the primordial
tensor power spectrum therefore provides a reliable de-
scription of the physics at play in LQC in all cases by
considering that the detectable values of R are to be inter-
preted as an effective bump.

Although k?, R, nT , and T=S can be translated into
fundamental LQC parameters and specific initial condi-
tions, we first leave them free as ‘‘generic phenomenologi-
cal parameters’’ so that they can be used to study different
bouncing scenarios (see, e.g., [10] for a recent ‘‘classical
bounce’’ investigation). Even if it was explicitly derived in
a LQC framework, our parametrization is indeed quite
general.

B. Fisher analysis

In this framework, the question of a potential detection
of the bounce in the B-mode anisotropies translates into
specific values for R and k?. To forecast the errors on the
determination of those two parameters, we used a Fisher
analysis method, as described in Ref. [11]. (See also last
part of Ref. [11] for a more elaborated approach.) The
(5� 5) Fisher matrix reads

Fij ¼ 1

2

X
‘

1

�2
‘

@CB
‘

@�i

���������i¼ ��i

@CB
‘

@�i

���������i¼ ��j

; (3)

where CB
‘ ¼ C

B;prim
‘ þ CB;lens

‘ stands for the fprimordialþ
lensingg B-mode spectrum and �‘ is the error on the
B-mode power spectrum recovery. We consider only the
sampling and noise variance, i.e.,

�2
‘ ¼

2

ð2‘þ 1Þfsky
�
CB
‘ þ N‘

B2
‘

�
2
;

where B2
‘ and N‘ are the power spectra of the Gaussian

beam and the instrumental noise of the experiment, respec-
tively, and fsky is the fraction of the sky used in the

analysis. For a CMBPol/B-Pol-like mission, we relied on
the experimental specifications of experimental probe of
inflationary cosmology EPIC-2m [12] with an 8 arcmin
beam, a noise level of 2:2 �K-arcmin, and a foreground
separation accurate enough for a CMB power spectrum
estimation using 70% of the sky.

To investigate the influence of degeneracies between
parameters, the signal-to-noise ratio (SNR) for the �i pa-
rameters is computed in three different ways, performing
partial marginalization. We first assume a complete
ignorance of the other four parameters, which results in

SNR ¼ �i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½F�1�ii

p
. Then we assume a perfect knowledge

of the other parameters leading to SNR ¼ �i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Fii��1

p
.

Finally, we consider that only one parameter is known. If

it is the jth one, this translates to SNR ¼ �i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½F�1�ii

p
,

with F the (4� 4) block of the Fisher matrix built by
discarding the jth raw and column. We finally search for
the values of �i � k? and R such that SNR> 1 ð3Þ to
define the 1� ð3�Þ detectable values of these two
parameters.

IV. DETECTING THE BOUNCE:
PHENOMENOLOGICAL PARAMETERS

A. Detecting the transition length scale k?

The value of k? is first varied from 10�6 to 1 Mpc�1.
The fiducial values for the other four parameters are
fR; nT; T=S; �g ¼ f100; 0; 0:05; 0:087g from which four
classes of models are generated by varying the parameters
one by one:
(i) class A: R 2 ½10; 10 000�;
(ii) class B: nT 2 ½�0:1; 0�;
(iii) class C: T=S 2 ½10�4; 10�1�;
(iv) class D: � 2 ½0; 0:15�.
As shown in Fig. 5, which displays the SNR for k? under

different partial marginalizations, k? is poorly degenerate
with T=S and �. (The dashed horizontal lines stand for 1�,
2�, and 3� detections.) However, it is strongly degenerate
first with R for k? < 10�3 Mpc�1, second with nT for
10�3 < k? < 10�1 Mpc�1, and third with R and T=S for
k? > 10�1 Mpc�1. (As demonstrated in the next section,
k? is equally degenerate with T=S and R for k? >
10�1 Mpc�1 because R and T=S are strongly degenerate
in this regime.) The ðk?; nTÞ degeneracy does not affect the
potential detection of k? as the fully marginalized SNR is
already greater than 3 in the range where this degeneracy is
dominant. However, comparing the solid-black and solid-

FIG. 5 (color online). SNR for k? by performing partial mar-
ginalization. This shows that k? is mainly degenerate with R
except for the tiny range k? � 10�2–10�1 Mpc�1, where the
main degeneracy is with the tensor spectral index. Horizontal
lines stand for 1�, 2�, and 3� detection (from bottom to top).
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blue curves shows that the range of 1�-detectable values
of k? is enhanced from ½1:5� 10�4; 3� 10�1� Mpc�1 to
½3� 10�6; 9� 10�1� Mpc�1 if the ðk?; RÞ degeneracy is
broken. As a consequence, breaking this degeneracy could
greatly enhance the potential of detection.

In Figs. 6 and 7, the fully marginalized SNR for k? is
shown for four values of R and four values of T=S, re-
spectively. In both cases, this signal-to-noise ratio first
increases with k? as long as k? < 10�2 Mpc�1 and then
decreases for higher values of k?. Higher values of k?
indeed translate into a boost of the B-mode power for
higher values of ‘, and the LQC distortion of CB

‘ is there-

fore located at multipoles with a smaller cosmic variance,
explaining why the SNR first increases with k?. However,
when k? becomes greater than �10�2 Mpc�1, the bump
is shifted to ‘ > 100 and the B-mode power is strongly
suppressed for ‘ < 100. As a consequence, for such high

values of k?, the primordial part at large angular scales is
hardly detectable because of its very faint power, and the
boost at higher multipoles is completely masked by the
lensing-induced B mode, thus explaining why the SNR
decreases for those higher values of k?.
Moreover, our numerical investigations show that the

shape of the SNR displayed in Figs. 6 and 7 is the same for
all the considered models, which allows us to safely derive
a range of detectable values of k?. The 1� and 3� limits for
a detection of k? are given in Table I. As one should have
expected, the detection becomes possible for k? � kH.
Nevertheless, a detection of k? < kH is still possible as
the tail of the bumpmay affect the B-mode power spectrum
shape at large angular scales. As previously stated, this
latter possibility clearly requires to break the ðk?; RÞ de-
generacy. On the one hand, in the marginalized case, the
minimum detectable value of k? is affected by the values of
T=S and only very mildly depends on R, nT , and �. On the
other hand, the maximum detectable value of k? depends
on both T=S and R but does not depend on the specific
values of nT and �.

B. Detecting the bump R

Studying R is more intricate as additional degeneracies
have to be considered. Our fiducial model is given by
fk?; nT; T=S; �g ¼ f10�3 Mpc�1; 0; 0:05; 0:087g, and R is
varied from 1 to 105. As for k?, we built four classes of
models by varying each parameter:
(i) class A: k?½Mpc�1� 2 ½10�5; 10�2�;
(ii) class B: nT 2 ½�0:1; 0�;
(iii) class C: T=S 2 ½10�4; 10�1�;
(iv) class D: � 2 ½0; 0:15�.
In Fig. 8, R is shown to be degenerate with different

cosmological parameters. Depending on the value of k?, R
is either mainly degenerate with k? (for low k? values) or
with T=S (for high k? values). It was already clear from
Fig. 5 that the ðk?; RÞ degeneracy is broken for 10�3 <
k? < 10�1 Mpc�1. However, R starts to be strongly degen-
erate with T=S for k? > 10�3 Mpc�1. This explains first
why the marginalized SNR decreases for higher values of
R and second why k? appeared to be equally degenerate
with T=S and R (see Fig. 5). The transition from the
ðk?; RÞ-degeneracy regime to the ðT=S; RÞ-degeneracy re-
gime occurs when k? becomes close to the current Hubble
scale. We stress that for k? � 10�3 Mpc�1, the dichotomy
between the ðk?; RÞ- and ðT=S; RÞ-degeneracy regimes is
not meaningful as R is here equally degenerate with k?,
T=S, and nT . Nevertheless, such an intricate situation
corresponds to a very narrow range of k? (see the
bottom-right panel of Fig. 8).
Because of this k?-dependent degeneracy, meaningful

results concerning the detection of R also necessarily
depend on k?. For each class of model, we provide results
for k? ¼ 10�5, 10�4, 10�3, and 10�2 Mpc�1, as summa-
rized in Table II. If degeneracies are indeed broken

FIG. 6 (color online). Fully marginalized SNR for k? with
R ¼ 10, 102, 103, and 104. (Horizontal lines are as in Fig. 5.)

FIG. 7 (color online). Fully marginalized SNR for k? with
T=S ¼ 10�4, 10�3, 10�2, and 10�1. (Horizontal lines are as in
Fig. 5.)
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(i.e., no marginalization over fk?; nT; T=S; �g), the SNR
increases for higher values of R. This remains true if
marginalization is performed for k? � kH [i.e., in the
ðk?; RÞ-degeneracy regime], allowing us to derive a lowest
detectable value of R. In the remaining cases [i.e., in the
ðT=S; RÞ-degeneracy regime], the SNR decreases for
higher values of R, leading to upper limits on R. As can
be concluded from Table II, a detection of R requires one
to break the degeneracies if k? � kH, while a detection
up to a couple of thousands is possible without breaking
the degeneracies if k? � kH.

V. DETECTING THE BOUNCE:
COSMOLOGICAL INTERPRETATION

A. Fundamental parameters of the LQC universe

Let us now translate those constraints into constraints on
the fundamental parameters of LQC. Interestingly, it can
be shown that the fundamental parameters (describing
either the field itself, the initial conditions, or the LQC
corrections) are quite simply related with the observable
parameters previously defined, i.e., k?, R, nT , and T=S. To
derive the following relations, we took into account the
LQC corrections for the background dynamics (which

leads to the bounce) and for the propagation of gravita-
tional waves [4].
First of all, the bump amplitude is well approximated

by R � ðmPl=m�Þ0:64 (see our detailed analysis presented

in [4]) with mPl ¼ 1:22� 1019 GeV the Planck mass and
m� the inflaton mass, i.e.,

Vð�Þ ¼ 1
2m

2
��

2:

Second, by computing the expansion of the Universe
since the time when k? crossed the horizon and rewriting
the different terms entering this ratio [in particular, the
number of e-folds during inflation being given by Ninf �
ð4�=m2

PlÞ
R�max

0 ðV=V 0Þd�], one can show that the transition

scale k? is given by

k? ¼
4�3=2ffiffi

3
p m�

mPl
�max

exp
�
2��2

max

m2
Pl

�
TRH

Teq

�
gRH
geq

�
1=3ð1þ zeqÞ

; (4)

where �max is the maximum value of the field, m� is its

mass, TRH and gRH are the reheating temperature and the
corresponding number of degrees of freedom, respectively,
and Teq ’ 0:75 eV, zeq ’ 3196, and geq ’ 3:9 are the

temperature, red shift, and degrees of freedom at matter-
radiation equality, respectively (see, e.g., Sec. 3.4.4 of

TABLE I. Ranges of detectable values of k? inMpc�1 by assuming complete ignorance (upper
part) and perfect knowledge (lower part) of the other cosmological parameters.

Full marginalization

Model 1� 3�
(A) R

104 [1:5� 10�4, 6� 10�1] [5� 10�4, 4� 10�1]

10 [1:5� 10�4, 1:5� 10�1] [3� 10�4, 8� 10�2]

(B) nT
0 [1:2� 10�4, 3� 10�1] [2:5� 10�4, 2� 10�1]

�0:1 [1:2� 10�4, 3� 10�1] [2:5� 10�4, 2� 10�1]

(C) T=S
10�1 [1:2� 10�4, 5� 10�1] [6� 10�4, 2:5� 10�1]

10�4 [3� 10�4, 8� 10�2] [1:2� 10�3, 3� 10�2]

(D) �
0.15 [1:2� 10�4, 3� 10�1] [3� 10�4, 2� 10�1]

0.01 [2� 10�4, 3� 10�1] [4� 10�4, 2� 10�1]

No marginalization

Model 1� 3�
(A) R

104 All range accessible [2� 10�6, 1]

10 [2� 10�5, 1] [6� 10�5, 7� 10�1]

(B) nT
0 [9� 10�6, 1] [� 10�5, 1]

�0:1 [9� 10�6, 1] [2� 10�5, 1]

(C) T=S
10�1 [9� 10�6, 1] [10�5, 1]

10�4 [9� 10�6, 6� 10�1] [2� 10�5, 3� 10�1]

(D) �
0.15 [10�5, 1] [2� 10�5, 1]

0.01 [10�5, 1] [2� 10�5, 1]
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Ref. [13]). In addition, numerical investigations have
shown that �max can be straightforwardly related
with the ‘‘initial conditions’’ or, more precisely, with the
physical conditions at the bounce:

�max � �bounce þmPl ¼
� ffiffiffiffiffiffiffiffi

2�c

p
m�

�
xþmPl: (5)

In this expression, �bounce, �c, and x2 ¼ Vð�bounceÞ=�c

correspond, respectively, to the value of the scalar field,
the total energy density, and the fraction of potential en-
ergy at the bounce. The value of the total energy density
at the bounce could be considered as a free parameter of
the theory. However, if the Barbero-Immirzi parameter is
taken at the value required to recover the Bekenstein black
hole entropy, i.e., � ’ 0:239, this leads to �c � 0:82m4

Pl.

The number of e-folds during inflation is given by �c and
by the ratio x=m�, through

Ninf � 2�

m2
Pl

�� ffiffiffiffiffiffiffiffi
2�c

p
m�

�
xþmPl

�
2
:

For the above-given value of �c, a minimum amount of 60
e-folds during inflation is achieved if x � 1:64m�=mPl.

It is worth noticing that the number of fundamental
parameters is smaller than the number of phenomenologi-

cal ones [TRHðgRHÞ1=3 acting as a unique effective para-
meter] which leads to a kind of consistency relations for
the LQC parameters. Moreover, the ðk?; R; T=SÞ degener-
acies being partially broken by restricting the cosmological
interpretation to LQC, the detection of a LQC-induced
bounce is a priori more likely than the general detection
of a bounce. However, we adopt a conservative approach
and keep track of the different degeneracies appearing at
the phenomenological level by using the fully marginal-
ized limits derived on k? and R.

B. Detecting fundamental parameters

1. Probing the model with future B-mode experiments

As previously explained, the LQC corrections to scalar
modes are not yet known. As a first hypothesis, we there-
fore assume that the temperature spectrum (the one which
is very well measured by WMAP and is about to be still
improved by Planck) is not affected. In this case, nearly
no constraint can be put with current data and the study
is purely prospective. The question we want to answer is

FIG. 8 (color online). SNR for R in the class A model (see the text) with different marginalization options. (Horizontal lines are
as in Fig. 5.)
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then the following: In which range should the fundamental
parameters lie for the LQC effects to be detected through
the B-mode spectrum modifications? The amplitude
of the expected bump is set by the mass of the field, and
the value of the transition scale k? is set by both the
mass of the field and the initial conditions. From the
observational viewpoint, k? is by far the most important
parameter. We will therefore translate the detectable
range of k? into detectable regions in the ðm�;�maxÞ and
ðm�; xÞ planes.

The first estimate can be very easily obtained. Basically,
the IR suppression predicted by the model becomes ob-
servable when k? is high enough (otherwise, the suppres-
sion occurs only on superhorizon scales). This translates
into an upper limit on �max and therefore into an upper
limit on x. By assuming the usual m� � 10�6 value, the

numerical analysis leads to x < 2� 10�6: The bounce can
be discriminated from the standard prediction when x is
very small. It means that the LQC effects appear in the
B-mode spectrum when the universe is strongly dominated
by kinetic energy at the bounce. This is a consistent con-
clusion as backreaction effects should anyway be added
when the potential energy becomes important.

From the detection viewpoint, a more refined estimate
can be obtained by using the details of the previous analy-

sis. In this case we require not only that the features of the
fbouncingþ inflationaryg model differ from that standard
prediction but also that they can be detected by themselves.
This is by far more constraining. In this case, the effects
become observable when k? lies within a restricted
interval. For a fixed value of m�, the lower (upper) bound

on k? can still be translated into an upper (lower) limit on
�max (except for a tiny parameter space corresponding to
unrealistically small values of �max) and therefore into an
upper (lower) limit on x. On the opposite, for a fixed value
of x, the lower (upper) bound on k? is translated into a
lower (upper) limit on m�. Translating ‘‘detectable k?’’

into ‘‘detectable ðm�;�max; xÞ’’ is, however, plagued by

two types of uncertainties. First of all, neither the reheating
temperature nor the number of degrees of freedom are
known. We will therefore let TRH vary from 1010 to 1016

and gRH vary from its standard model value to its super-
symmetry value. Second, the detectable range of k? de-
pends on the values of the other cosmological parameters.
From the fully marginalized 1� detection presented in
Table I, we define three possible ranges of detectable
values of k?:
(i) pessimistic: ½3� 10�4; 8� 10�2� Mpc�1,
(ii) intermediate: ½2� 10�4; 3� 10�1� Mpc�1, and
(iii) optimistic: ½1:5� 10�4; 6� 10�1� Mpc�1.

TABLE II. Range of detectable values of R. Because of degeneracies, the range of detectability mainly depends on T=S and k?.

ðk?; RÞ-degeneracy regime ðk? < kHÞ
k? ¼ 10�5 Mpc�1 k? ¼ 10�4 Mpc�1

Marg. Not marg. Marg. Not marg.

Model 1�ð3�Þ 1�ð3�Þ 1�ð3�Þ 1�ð3�Þ
(A) No det. >3� 102ð>3� 103Þ No det. >3ð>30Þ
(B) nT

0 No det. >200 (1200) No det. >1:3 (15)

�0:1 No det. >300 (3000) No det. >2 (30)

(C) T=S
10�1 No det. >400 (1000) No det. >3:5 (30)

10�4 No det. >1100ð105Þ No det. >10 (700)

(D) �
0.15 No det. >200 (1500) No det. >2 (15)

0 No det. >200 (1500) No det. >2 (15)

ðT=S; RÞ-degeneracy regime (k? > kH)
k? ¼ 10�3 Mpc�1 k? ¼ 10�2 Mpc�1

Model Marg. Not marg. Marg. Not marg.

1�ð3�Þ 1�ð3�Þ 1�ð3�Þ 1�ð3�Þ
(A) <100 (no det.) >1 at 6� <25 (no det.) >1 at 30�
(B) nT

0 <200 and ½600; 104�(30) >1 at 8� <100 (no det.) >1 at 40�
�0:1 <100 (no det.) >1 at 6� <8 (no det.) >1 at 30�

(C) T=S
10�1 <200 and ½500; 104�ð<2Þ >1 at 6� <100 (no det.) >1 at 40�
10�4 No det. >1:2 (20) No det. >6 (20)

(D) �
0.15 <104 (20) >1 at 8� <100 (3) >1 at 40�
0 <150 and [300,22 000] ð<60Þ >1 at 8� <2 and [4100] (no det.) >1 at 40�
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We stress out that this last uncertainty is mainly associated
with the upper bound on k?. This means that the lower
(upper) limit on xðm�Þ will be mainly affected by uncer-

tainties on other cosmological parameters than the

transition scale, especially R and T=S. (We recall that the
above defined detectable ranges account for the different
degeneracies. In particular, this range is greatly broadened
if the degeneracies with either R, T=S, or both are broken.

FIG. 9 (color online). 1� detection of ð�max;m�Þ (left panel) and ðx;m�Þ (right panel) as would be obtained from a detection of k? in
the B-mode power spectrum by assuming three different values of the ‘‘reheating parameter,’’ i.e., TRHðgRHÞ1=3 ¼ 1010, 1013, and
1016 GeV. Three ranges of detectable k? are considered (see the core of the text), and lighter to darker blue runs from the most
optimistic to the less optimistic case.
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This considerably widens the achievable region of LQC-
parameter space. However, as our ‘‘translation’’ is solely
based on the potential detection of k?, conservative fore-
casts should incorporate our ‘‘ignorance’’ of, e.g., R.)

Our numerical results are summarized in Fig. 9. It dis-
plays the detectable regions in the ðm�;�maxÞ and ðm�; xÞ
planes for different values of the reheating parameters:

TRHðgRHÞ1=3 ¼ 1010, 1013, and 1016 GeV. Lighter to
darker blue goes from the most optimistic to the most
pessimistic ranges of detectable k?.

The left panels of this figure clearly show that the results
do not depend a lot on the choice of the detectable k?
range. The conclusions are therefore robust with respect to
changes of R, nT , T=S, and �.

The detection region for ðm�; xÞ lies between two

straight lines. Their slopes are fixed, first, by Teq, geq,

zeq, and TRHðgRHÞ1=3 and, second, by k?;max for the lower

line and k?;min for the upper line, with k?;maxðminÞ the upper
(lower) bound of the detectable values of k?. On defining

�RH ¼ 4�3=2

TRH

Teq

�
gRH
geq

�
1=3ð1þ zeqÞ

ffiffiffi
3

p ;

the transition scale is recast as a function of m� and x as

follows:

k? ¼
�RH

�
ð

ffiffiffiffiffiffi
2�c

p
mPl

Þxþm�

�

exp

�
2�
m2

Pl

ðð
ffiffiffiffiffiffi
2�c

p
m�

ÞxþmPlÞ2
� :

Except in a very narrow range, a variation of either x orm�

would mostly influence k? via the exponential. We can
therefore approximate the numerator by a constant, dubbed
�x;m�

, to get

x

�
mPl

m�

�
� m2

Plffiffiffiffiffiffiffiffi
2�c

p
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð�x;m�

�RH=k?Þ
2�

s
� 1

3
5: (6)

As �RH decreases for higher values of TRHðgRHÞ1=3, this
roughly explains why the slope of the detectable region in
the ðm�; xÞ plane shifts down for higher reheating tempera-

tures. Moreover, the logarithmic dependence of this de-

tectable region with TRHðgRHÞ1=3 underlines the robustness
of our results.

Finally, a detection of k? essentially constrains the val-
ues of the ratio ðx=m�Þ, explaining why a wide band in the
ðm�; xÞ plane is a priori detectable, including large values

of x and m�. Nevertheless, the fact that arbitrary small

values of x can be detected means, once again, that the
LQC effects appear when the universe is strongly domi-
nated by kinetic energy at the bounce. (Moreover, and as
explained before, m� � 10�6mPl being favored, this trans-

lates into a detectable value of x� 10�6.)

Let us summarize our results. Calling 	ð�RH; k?Þ the
right-hand side of Eq. (6), a detection of the LQC-induced
bounce is obtained if

x

�
mPl

m�

�
2 ½	ð�RH; k?;maxÞ; 	ð�RH; k?;minÞ�:

However, discriminating between the standard inflation-
ary prediction and the LQC prediction requires only
that

x

�
mPl

m�

�
� 	ð�RH; k?;minÞ:

(We recall here that higher values of k? lead to smaller
values of 	.)
It should also be pointed out that k? can also be directly

related to �obs (the value of the field when the pivot mode
crossed the horizon), which is itself related with the tilt of
the scalar spectrum [14]. The results based on this method
are basically the same.

2. Constraining the parameters with available data

Most of the corrections to the spectrum are not due to
subtle LQC effects on the propagation of physical modes
but to the bounce in itself. Unless some quite surprising
cancellation occurs, it is therefore reasonable to assume
that scalar modes are in fact modified in a quite similar
way. Under this assumption, one can already use the cur-
rent data to constrain the model. As no k2 infrared sup-
pression is observed in the scalar power spectrum, it means
that x > 2� 10�6. Stated otherwise, most of the parameter
space of the theory is in agreement with the data. This is
important as it was demonstrated that most of the para-
meter space also leads to a long enough inflation phase
(with more than 60 e-folds; see [5]).

VI. CONCLUSION

In this article, we have carefully investigated how next-
generation B-mode CMB experiments could probe big
bounce footprints. Under very general assumptions, it
was demonstrated that, as far as phenomenological pa-
rameters are concerned, a substantial parameter space
could be investigated. Furthermore, it was pointed out
that this also makes quantum gravity effects possibly ob-
servable, especially in the LQC framework.

Remarks

Recently, a similar and independent study has been
released [15]. It relies on the use of k? and m� as cosmo-

logical parameters and can be viewed as a kind of
‘‘mixing’’ of the phenomenological and fundamental ap-
proaches here developed. Moreover, the number of e-folds
is set to a fixed value of 60. This turns out to break the
ðT=S; RÞ degeneracy—those two phenomenological pa-
rameters being both unambiguously determined by m�
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only—and one should therefore consider our analysis as
more conservative. The latter is based on scalar perturba-
tions with a parametrization involving a jump at a given
transition wave number but no additional bump. From a
joint likelihood analysis on temperature CMB power spec-
trum fromWMAP 7-yr matter power spectrum from SDSS
and SNIa ‘‘Union’’ compilation, a similar upper limit on
the transition scale of the order of 2:44� 10�4 Mpc�1 has
been derived.

Second, the cosmological interpretation in terms of a
bouncing universe induced by LQC obviously depends on
the robustness of the underlying model. In particular,
such a bouncing scenario is achieved by considering a
homogeneous universe only, and the bounce may not sur-
vive in models incorporating inhomogeneous degrees
of freedom. Such an open question is still debated.
Nevertheless, the above presented study remains relevant

for two reasons: First of all, the phenomenological results
displayed in Sec. IV, though apparently motivated by LQC,
apply to any models predicting a tensor power spectrum
with a shape identical to the here-assumed one. Second,
though previous studies pinned down that the bounce may
not survive to inhomogeneities [16], some recent studies
based on the dipole approximation of loop quantum gravity
suggest the opposite [17].
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[17] M.V. Battisti, A. Marcianò, and C. Rovelli, Phys. Rev. D
81, 064019 (2010).M.V. Battisti and A. Marcianò,
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144 CHAPITRE 10. OBSERVATION DU REBOND

Conclusion

En conclusion, ce travail nous a permis d’observer l’existence d’un large espace des paramètres pour k? et
R qui rendrait le modèle testable par de futures observations. Cela laisse donc présager qu’une expérience aura
une probabilité non-nulle de pouvoir mesurer un spectre sur lequel les effets quantiques seraient observables.
Cependant, seules les perturbations tensorielles ont ici été prises en compte. Le spectre en température étant
très bien mesuré, il serait plus intéressant de regarder l’influence des corrections d’holonomies sur le spectre de
puissance primordial correspondant aux perturbations scalaires. Or, pour ces perturbations, l’algèbre donnée
par les contraintes modifiées n’est pas close et il est nécessaire de faire disparâıtre les anomalies. L’approche
qui considère l’ajout de contre-termes ayant obtenu de bons résultats pour les corrections d’inverse-volume, il
serait possible de l’utiliser et faire de même pour le cas des corrections d’holonomie. Une démarche progressive
va alors consister à regarder d’abord le cas perturbations vectorielles, et ensuite de complexifier en regardant
celui des perturbations scalaires.
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Chapitre 11

Résolution des anomalies dans le cas
perturbations vectorielles.

Introduction

Les travaux précédents se basent tous sur une expression identique des contraintes dans le cas des corrections
d’holonomie [69]. Cette contrainte, qui s’écrit uniquement en fonction des densités de contraintes d’ordre 0 et 2, a
d’abord été exprimée dans le cas des perturbations vectorielles [70] pour lesquelles on a utilisé la correspondance

k̄ → K [n] . (11.1)

Cette modification va alors engendrer une anomalie qui a été annulée par le choix n = 2 dans le sinus cardinal.
Cependant, ce choix est très restrictif et aurait pu ne pas marcher. D’ailleurs, lorsque l’on essaye de procéder de
façon similaire avec les perturbations scalaires, on se rend compte qu’il n’est possible d’annuler l’anomalie que
jusqu’à un certain ordre en k̄, ce qui est insatisfaisant dans le régime non-perturbatif au moment du rebond.
Heureusement, cette méthode n’est pas la seule existante, et il est possible d’ajouter des contre-termes comme
expliqué dans un chapitre précédent : l’algèbre est alors close à tous les ordres.
Nous avons ici cherché à remédier au problème des anomalies introduit par la correspondance (11.1) en ayant
recours aux contre-termes dans le cas des perturbations vectorielles. La contrainte hamiltonienne gravitationnelle
est alors donnée par

SQgrav[N ] =
1
2κ

∫
Σ

d3x
[
N̄(C(0) + C(2))

]
, (11.2)

où

C(0) = −6
√
p̄ (K[1])2 , (11.3)

C(2) = − 1
2p̄3/2

(K[1])2 (1 + α1)(δEcj δE
d
kδ
k
c δ
j
d) +

√
p̄(δKj

c δK
k
d δ
c
kδ
d
j )

− 2√
p̄

(K[v1]) (1 + α2)(δEcj δK
j
c ), (11.4)

faisant intervenir les contre-termes α1 et α2, et un paramètre libre v1.
Il peut être montré qu’en cosmologie quantique à boucles, la contrainte de Difféomorphisme ne peut subir aucune
modification due aux corrections. Cependant, par soucis de généralité, nous avons souhaité voir si cela s’avérait
génériquement correcte. On a ainsi considéré la contrainte de Difféomorphisme comme s’écrivant

DQ
grav[N

a] =
1
κ

∫
Σ

d3xδN c
[
−p̄(∂kδKk

c )− (K[v2]) δkc (∂dδE
d
k)
]
, (11.5)

et les anomalies pourront être annulées par les termes en α1 et α2, mais aussi par le choix possible des paramètres
v1 et v2. Le travail effectué a alors consisté à calculer les crochets de Poisson et trouver les équations régissant
l’expression des contre-termes précédents, en considérant le cas d’un champ scalaire, et nous avons finalement
observé comment était modifiée l’algèbre, et par conséquent les équations du mouvement.
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Abstract
We investigate vector perturbations with holonomy corrections in the
framework of loop quantum cosmology. Conditions to achieve anomaly
freedom for these perturbations are found at all orders. This requires the
introduction of counter-terms in the Hamiltonian constraint. We also show that
anomaly freedom requires the diffeomorphism constraint to hold its classical
form when scalar matter is added although the issue of a vector matter source,
required for full consistency, remains to be investigated. The gauge-invariant
variable and the corresponding equation of motion are derived. The propagation
of vector modes through the bounce is finally discussed.

PACS numbers: 98.80.Jk, 04.60.Pp

(Some figures may appear in colour only in the online journal)

1. Introduction

In the canonical formulation of general relativity, the Hamiltonian is a sum of constraints. In
particular, within the Ashtekar framework [1], the Hamiltonian is a sum of three constraints:

HG[Ni, Na, N] = 1

2κ

∫
�

d3x(NiCi + NaCa + NC) ≈ 0, (1)

where κ = 8πG, (Ni, Na, N) are Lagrange multipliers, Ci is called the Gauss constraint,
Ca is the diffeomorphism constraint and C is the Hamiltonian constraint. The sign ‘≈’ means
equality on the surface of constraints (i.e. weak equality). One can also define the corresponding
smeared constraints as follows:

C1 = G[Ni] = 1

2κ

∫
�

d3x NiCi, (2)

0264-9381/12/085009+13$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1
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C2 = D[Na] = 1

2κ

∫
�

d3x NaCa, (3)

C3 = S[N] = 1

2κ

∫
�

d3x NC, (4)

that is, such that HG[Ni, Na, N] = G[Ni]+D[Na]+S[N]. The Hamiltonian is a total constraint
which is vanishing for all multiplier functions (Ni, Na, N).

Because HG[Ni, Na, N] ≈ 0 at all times, the time derivative of the Hamiltonian
constraint is also weakly vanishing, ḢG[Ni, Na, N] ≈ 0. The Hamiltonian equation ḟ =
{ f , HG[Mi, Ma, M]} therefore leads to

{HG[Ni, Na, N], HG[Mi, Ma, M]} ≈ 0, (5)

which, when explicitly written, means

{G[Ni] + D[Na] + S[N], G[Mi] + D[Ma] + S[M]} ≈ 0. (6)

Due to the linearity of the Poisson bracket, one can straightforwardly find that condition (5) is
fulfilled if the smeared constraints belong to a first class algebra

{CI, CJ} = f K
IJ

(
Aj

b, Ea
i

)
CK . (7)

In (7), the f K
IJ(A

j
b, Ea

i ) are structure functions which, in general, depend on the phase space
(Ashtekar) variables (Aj

b, Ea
i ). The algebra of constraints is fulfilled at the classical level due

to general covariance. To prevent the system from escaping the surface of constraints, leading
to an unphysical behavior, the algebra must also be closed at the quantum level. In addition,
it was pointed out in [2] that the algebra of quantum constraints should be strongly closed
(off-shell closure). This means that relation (7) should hold in the whole kinematical phase
space, and not only on the surface of constraints (on-shell closure). This should remain true
after promoting the constraints to quantum operators.

Loop quantum gravity (LQG) [3] is a promising approach to quantize gravity, based on
a canonical formalism parametrized by Ashtekar variables. The methods of LQG applied to
cosmological models are known as loop quantum cosmology (LQC) [4]. In LQC, quantum
gravity effects are introduced by holonomies of Ashtekar connection. This replacement is
necessary because connection operators do not exist in LQG. Rewriting classical constraints
in terms of holonomies leads to two types of quantum corrections: the so-called inverse-volume
and holonomy corrections. Because the constraints are quantum modified, the corresponding
Poisson algebra might not be closed:{

CQ
I , CQ

J

} = f K
IJ

(
Aj

b, Ea
i

)
CQ

K +AIJ. (8)

Here, AIJ stands for the anomaly term which can appear due to the quantum modifications.
For consistency (closure of algebra),AIJ is required to vanish. The conditionAIJ = 0 implies
some restrictions on the form of the quantum corrections. In this paper, we will study this
requirement to find a consistent way for introducing quantum holonomy corrections to the
vector perturbations.

The question of the construction of an anomaly-free algebra of constraints is
especially interesting to address inhomogeneous LQC. Perturbations around the cosmological
background are indeed responsible for structure formation in the Universe. This gives a chance
to link quantum gravity effects with astronomical observations. In the particular case of the
flat FLRW background, the Ashtekar variables can be decomposed as follows:

Ai
a = γ k̄δi

a + δAi
a and Ea

i = p̄δa
i + δEa

i , (9)
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where k̄ and p̄ parametrize the background phase space, and γ is the so-called Barbero–Immirzi
parameter.

The issue of anomaly freedom for the algebra of cosmological perturbations was
extensively studied for inverse-volume corrections. It was shown that this requirement can
be fulfilled for first-order perturbations. This was derived for scalar [5, 6], vector [7] and
tensor perturbations [8]. It is worth mentioning that, for the tensor perturbations, the anomaly
freedom is automatically satisfied. Based on the anomaly-free scalar perturbations, predictions
for the power spectrum of cosmological perturbations were also performed [9]. This gave a
chance to put constraints on some parameters of the model using observations of the cosmic
microwave background radiation [10].

The aim of this paper is to address the issue of anomaly freedom for the holonomy-
corrected vector perturbations in LQC. It was shown in [7], that these perturbations can be
anomaly free up to the fourth order in the canonical variable k̄. This, however, is not sufficient
to perform the analysis of the propagation of vector modes through the cosmic bounce. Vector
perturbations with higher order holonomy corrections were also recently studied [11]. It was
shown there that, in this case, an anomaly-free formulation can be found for the gravitational
sector. In this paper, we apply a different method, which is based on the introduction of counter-
terms in the Hamiltonian constraint. We show that the anomaly-freedom conditions for vector
modes with holonomy corrections can be fulfilled in this way. The method is similar to the
one used by Bojowald et al in the case of cosmological perturbations with inverse-volume
corrections. As we will see, the counter-terms do not introduce any higher order holonomy
corrections. This way of fulfilling the anomaly freedom is therefore different from what was
done in [11], where higher order terms were involved. Moreover, in [11], the issue of anomaly
freedom was studied for the gravity sector only and the formulation suffers from ambiguities.
In our study, scalar matter is introduced. The presence of this matter term fixes the ambiguity
associated with the holonomy correction. It should be underlined that without a vector matter
source, one cannot rigorously prove the anomaly cancellation. However, as will be shown in
the next sections, our approach is meaningful as the equations derived are, as in [7], compatible
with the vector matter assuming πa = 0 but Va �= 0.

Holonomy corrections arise while regularizing classical constraints, when expressing the
Ashtekar connection in terms of holonomies. In particular, the regularization of the curvature
of the Ashtekar connection Fi

ab leads to the factor
( sin(μ̄γ k̄)

μ̄γ

)2
, which simplifies to k̄2 in the

classical limit μ̄ → 0. However, the Ashtekar connection does not appear only because of
Fi

ab; in the classical perturbed constraints, terms linear in k̄ are also involved. In principle,
such terms should be holonomy corrected. However, there is no direct expression for them,
analogous to the regularization of the Fi

ab factor. Nevertheless, one can naturally expect that k̄
factors are corrected by the replacement4

k̄ → sin(nμ̄γ k̄)

nμ̄γ
, (10)

where n is some unknown integer. It should be an integer because, when quantizing the theory,
the eiγ k̄ factor is promoted to be the shift operator acting on the lattice states. If n was not
an integer, the action of the operator corresponding to einγ k̄ would be defined in a different
basis. Another issue is related with the choice of μ̄, which corresponds to the so-called lattice
refinement. Models with a power-law parametrization μ̄ ∝ p̄β were discussed in detail in the
literature. While, in general, β ∈ [−1/2, 0], it was pointed out that the choice β = −1/2
is favored [13]. This particular choice is called the μ̄−scheme (new quantization scheme).
Studies in this paper are performed for the general power-law case μ̄ ∝ p̄β .

4 This was derived rigorously e.g. for the Bianchi II model [12].
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For the sake of simplicity, we use the notation

K[n] :=
{

sin(nμ̄γ k̄)

nμ̄γ
for n ∈ Z/{0},

k̄ for n = 0,
(11)

for the holonomy correction function. The introduction of holonomy corrections is therefore
performed by replacing k̄ → K[n]. However, factors k̄2 are simply replaced by K[1]2, because
they arise from the curvature of the Ashtekar connection. For the linear terms, the integers are
parameters to be fixed.

2. Vector perturbations with holonomy corrections

Vector modes within the canonical formulation were studied in [7]. It was shown there that

δEa
i = −p̄(c1∂

aFi + c2∂iF
a), (12)

where c1 + c2 = 1 and the divergence-free condition δi
aδEa

i = 0 is fulfilled. The values of
c1 and c2 depend on the gauge choice. However, due to the Gauss constraint, only symmetric
variables are invariant under internal rotations. This is the case for δE (a

i), which is consequently
independent of the specific choices of c1 and c2, and should be preferred. The perturbation of
the shift vector is parametrized as δNa = Sa.

We consider the quantum holonomy-corrected Hamiltonian constraint given by

SQ[N] = 1

2κ

∫
�

d3x
[
N̄

(
C(0) + C(2)

)]
, (13)

where

C(0) = −6
√

p̄(K[1])2, (14)

C(2) = − 1

2p̄3/2
(K[1])2(1 + α1)

(
δEc

j δEd
k δk

cδ
j
d

) +
√

p̄
(
δK j

c δKk
dδ

c
kδ

d
j

)
− 2√

p̄
(K[v1]) (1 + α2)

(
δEc

j δK j
c

)
. (15)

Holonomy corrections were introduced by replacing k̄ → K[n]. Two counter-term functions
α1 and α2, whose interest will be made clear later, were also added. In the classical limit
K[n] → k̄, and αi = αi( p̄, k̄) → 0, with i = 1, 2. We have assumed here that αi are functions
of the background variables only, and that v1 is an integer to be fixed. The Hamiltonian
constraint (13) corresponds to the one investigated in [7], while setting αi = 0. However, as
we will show, it is necessary to introduce these additional factors, which vanish in the classical
limit. These factors can, of course, also be viewed as contributions from the two counter-terms

SC1 = − α1

2κ

∫
�

d3x
N̄

2p̄3/2
(K[1])2 (

δEc
j δEd

k δk
cδ

j
d

)
, (16)

SC2 = − α2

2κ

∫
�

d3x
2N̄√

p̄
(K[v1])

(
δEc

j δK j
c

)
(17)

to the holonomy-corrected Hamiltonian constraint.
A similar method of counter-terms was successfully applied for perturbations with inverse-

volume corrections. In that case, it was possible to fix the counter-terms so as to make the
algebra anomaly free. In this paper, we follow the same path so as to find explicit expressions
for α1 and α2.

4
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For the sake of completeness, we also introduce holonomy corrections to the
diffeomorphism constraint, as follows:

DQ[Na] = 1

κ

∫
�

d3xδNc
[− p̄

(
∂kδKk

c

) − (K[v2])δk
c

(
∂dδEd

k

)]
, (18)

where v2 is an unknown integer. It is worth emphasizing here that within LQG,
the diffeomorphism constraint is fulfilled at the classical level while constructing the
diffeomorphism-invariant spin network states. If LQC was really derived from the full
LQG theory, the classical form of the diffeomorphism constraint should therefore be used.
However, at this early stage of the understanding of LQC, it might be safe to allow for
some generalizations by introducing the holonomy correction also to the diffeomorphism
constraint. This hypothesis was already studied in [14] in the case of holonomy-corrected
scalar perturbations. It was assumed there that the holonomy correction function was given by
K[2]. In this work, we prefer to keep a more general expression K[v2] with a free v2 parameter.
We will investigate whether this additional modification can help to fulfil the anomaly-freedom
conditions.

In order to investigate the algebra of constraints, the Poisson bracket has to be defined.
We start with the gravity sector for which the Poisson bracket can be decomposed as follows:

{·, ·} = κ

3V0

(
∂·
∂ k̄

∂·
∂ p̄

− ∂·
∂ p̄

∂·
∂ k̄

)
+ κ

∫
�

d3x

(
δ·

δδKi
a

δ·
δδEa

i

− δ·
δδEa

i

δ·
δδKi

a

)
. (19)

The algebra of constraints (13) and (18) shall now be investigated. Using the Poisson
bracket (19), we find

{SQ[N1], SQ[N1]} = 0, (20){
DQ

[
Na

1

]
, DQ

[
Na

2

]} = 0, (21)

{SQ[N], DQ[Na]} = N̄√
p̄
BDQ[Na] + N̄

κ
√

p̄

∫
�

d3xδNcδk
c

(
∂dδEd

k

)
δEd

kA, (22)

where B := (1+α2)K[v1]+K[v2]−2K[2] andA is the anomaly function which, for reasons
that shall be made clear later, is decomposed into two parts A = A1 +A2, where

A1 = BK[v2], (23)

A2 = 2K[2] p̄
∂K[v2]

∂ p̄
− 1

2
(K[1])2 cos(v2μ̄γ k̄) − 2K[1] p̄

∂K[1]

∂ p̄
cos(v2μ̄γ k̄)

+ (1 + α2)K[v1]K[v2] − 1

2
K[1]2(1 + α1). (24)

This decomposition was made such that, in the classical limit (μ̄ → 0), both contributions to
the anomaly vanish separately. Using the relation

p̄
∂K[n]

∂ p̄
= (k̄ cos(nμ̄γ k̄) − K[n])β, (25)

the second contribution can be rewritten as

A2 = −2βK[2]K[v2] + (1 + α2)K[v1]K[v2] + (2β − 1/2)(K[1])2 cos(v2μ̄γ k̄)

− 1
2 (K[1])2(1 + α1). (26)

The full anomaly term is given by

A = 2(1 + α2)K[v1]K[v2] − 1
2 (K[1])2(1 + α1) − 2(1 + β)K[2]K[v2] + K[v2]2

+ (2β − 1/2)(K[1])2 cos(v2μ̄γ k̄). (27)

5
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Figure 1. Pictorial representation of the hypersurface deformation algebra.

3. Anomaly freedom in the gravity sector

The requirement of the anomaly freedom for the gravity sector reads as A = 0. Under this
condition, the algebra of constraints becomes closed but deformed, in particular

{SQ[N], DQ[Na]} = DQ

[
N̄√

p̄
BNa

]
. (28)

The structure of spacetime is therefore also modified. This is illustrated in figure 1, where one
can note that the Hamiltonian and diffeomorphism constraints generate gauge transformations
in directions, respectively, normal and parallel to the hypersurface.

In the classical limit, B → 0 and both the transformations commute at the perturbative
level.

3.1. The no counter-terms case

Let us start by analyzing the conditionA = 0 without any counter-term (i.e. with α1 = α2 = 0).
This case corresponds to the one studied in [7], generalized by the contribution from the
corrected diffeomorphism constraint. It was shown in that work that, if v2 = 0, the anomaly-
freedom condition can be satisfied up to the k̄4 order only. Here, we investigate whether this
might be improved by the additional correction made to the diffeomorphism constraint.

By setting α1 = α2 = 0, the anomaly term given by (27) can be expanded in powers of
the canonical variable k̄ as follows:
A

(μ̄γ )2
= 1

12

(
20 − 4v2

1 − v2
2 + 8β − 8v2

2β
)
x4 + 1

720

(−224 + 12v4
1 − 220v2

2 + 40v2
1v

2
2

+ 17v4
2 − 128β + 80v2

2β + 48v4
2β

)
x6 +O(x8), (29)

where we have defined x := μ̄γ k̄ and x ∈ [0, π ]. Clearly, in the classical limit μ̄ → 0, the
anomaly tends to zero. Requiring the anomaly cancellation up to the fourth order leads to the
condition

20 − 4v2
1 − v2

2 + 8β − 8v2
2β = 0. (30)

It can be shown that the condition of anomaly cancellation up to orders higher than four
cannot be met. For β = −1/2 (μ̄−scheme), the above equation simplifies to the quadratic
Diophantine equation

16 − 4v2
1 + 3v2

2 = 0. (31)

This equation can be reduced to a Pell-type equation and solved for an infinite number of
pairs of integers (v1, v2). The first-three solutions are (2, 0), (4, 4) and (14, 16). The first
one (2, 0) corresponds to the case studied in [7], where the diffeomorphism constraint was

6
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kept at its classical form. The value v1 = 2 obtained in this case was also used to fix the
ambiguity for the holonomy-corrected tensor perturbations [8]. If the holonomy-modified
diffeomorphism constraint is used, the ambiguity cannot be fixed anymore due to the infinite
number of solutions to equation (31).

As we have shown, the modification of the diffeomorphism constraint does not help with
satisfying the anomaly-freedom conditions in the absence of counter-terms. In this case, the
anomaly freedom can be fulfilled up to the fourth order in x. In the semi-classical limit x � 1,
the anomaly cancellation up to the fourth order might be a good approximation. However,
when approaching the bounce, where x = π

2 , contributions from higher order terms become
significant, and the effects of the anomaly cannot be neglected anymore. Studies of vector
perturbations during the bounce phase cannot be performed in such a setup. In order to study
vector perturbations through the bounce, the anomaly cancellation at all orders is required.
This probably makes the introduction of counter-terms mandatory.

3.2. The general case

Let us consider the general case with non-vanishing counter-terms. In this case, the requirement
A = 0 can be translated into a relation between the two counter-terms α1 and α2:

α1 = −1 + 4(1 + α2)
K[v1]K[v2]

K[1]2
− 4(1 + β)

K[2]K[v2]

K[1]2
+ 2

K[v2]2

K[1]2
+ (4β − 1) cos(v2μ̄γ k̄).

(32)

With this choice for the α1 function, the anomaly is removed. However a significant ambiguity
remains. Namely, the function α2 together with the parameters v1 and v2 remains undetermined.
A particularly interesting case corresponds to the choice α2 = 0. This determines α1. Of course,
this also works the other way round: one can set α1 = 0 and derive the correct expression for
α2. Therefore, two special cases, heuristically motivated, where one of the counter-terms is
vanishing, are worth studying:

α1 = −1 + 4
K[v1]K[v2]

K[1]2
− 4(1 + β)

K[2]K[v2]

K[1]2
+ 2

K[v2]2

K[1]2
+ (4β − 1) cos(v2μ̄γ k̄), (33)

α2 = 0, (34)

and

α1 = 0, (35)

α2 = −1 + 1

4

(K[1])2

K[v1]K[v2]
+ (1 + β)

K[2]

K[v1]
− 1

2

K[v2]

K[v1]
− (β − 1/4)

(K[1])2 cos(v2μ̄γ k̄)

K[v1]K[v2]
.

(36)

To conclude, at least one counter-term is necessary to fulfil the anomaly-freedom conditions
for the gravity sector.

3.3. The B = 0 case

Another possible way to fix the ambiguity in the choice of the α1 and α2 functions could be
to set B = 0. With this restriction, the anomaly cancellation is fulfilled by imposing A2 = 0
as A1 ∝ B = 0. As mentioned earlier, both A2 and A1 separately tend to zero in the classical
limit, making this decomposition meaningful.
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In this case, the Poisson bracket between the Hamiltonian and diffeomorphism constraints
is just

{
SQ[N], DQ[Na]

} = 0. The conditions B = 0 and A2 = 0 can be translated into
expressions for the α1 and α2 functions:

α1 = −1 + 4(1 − β)
K[2]K[v2]

K[1]2
− 2

K[v2]2

K[1]2
+ (4β − 1) cos(v2μ̄γ k̄), (37)

α2 = −1 + 2K[2] − K[v2]

K[v1]
. (38)

The expressions for α1 and α2 are parametrized by the integers v1 and v2 only. However, the
dependence upon v1 vanishes when α2 is used in the Hamiltonian constraint.

The derived expressions for α1 and α2 do contain K[n] functions in the denominators. In
principle, α1 and α2 could therefore diverge for some values of k̄. However, in the counter-
terms SC1 and SC2, α1 is multiplied by K[1]2 and α2 by K[v1]. The subsequent cancellation
prevents any physical divergence from occurring.

4. Introducing matter

We have shown that the gravity sector of the vector perturbations with holonomy corrections
can be made anomaly free. We will now extend this result by introducing the scalar matter.
The matter Hamiltonian does not depend on the Ashtekar connection and is therefore not
subject to holonomy corrections. Furthermore, for vector perturbations, δN = 0. The matter
Hamiltonian is perturbed up to the second order as follows:

Hm[N] = H̄m + δHm =
∫

�

d3xN̄(C(0)
m + C(2)

m ), (39)

where

C(0)
m = p̄3/2

[
1

2

π̄2

p̄3
+ V (ϕ̄)

]
. (40)

The value of C(2)
m is given by

C(2)
m = 1

2

δπ2

p̄3/2
+ 1

2

√
p̄δab∂aδϕ∂bδϕ + 1

2
p̄3/2V,ϕϕ (ϕ̄)δϕ2 +

(
1

2

π̄2

p̄3/2
− p̄3/2V (ϕ̄)

)
δk

cδ
j
dδEc

j δEd
k

4p̄2
,

(41)

where we have used the condition δi
aδEa

i = 0. The matter diffeomorphism constraint is
given by

Dm[Na] =
∫

�

d3xδNaπ̄ (∂aδϕ). (42)

The total Hamiltonian and diffeomorphism constraints are

Stot[N] = SQ[N] + Hm[N], (43)

Dtot[N
a] = DQ[Na] + Dm[Na]. (44)

The resulting Poisson brackets are the following:

{Stot[N1], Stot[N1]} = 0, (45){
Dtot

[
Na

1

]
, Dtot

[
Na

2

]} = 0, (46)

8
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{Stot[N], Dtot[N
a]} = N̄√

p̄
BDQ[Na] + N̄

κ
√

p̄

∫
�

d3xδNcδk
c

(
∂dδEd

k

)
δEd

kA

+ [cos(v2μ̄γ k̄) − 1]

√
p̄

2

(
π̄2

2p̄3
− V (ϕ̄)

) ∫
�

d3xN̄∂c(δNa)δ j
aδEc

j

+ π̄

p̄3/2

∫
�

d3xN̄(∂aδNa)δπ − p̄3/2Vϕ(ϕ̄)

∫
�

d3xN̄(∂aδNa)δϕ. (47)

Anomaly freedom requires B = 0, A = 0, v2 = 0 (classical diffeomorphism constraint) and
also δϕ = 0 = δπ . The latter conditions δϕ = 0 = δπ are due to the fact that metric scalar
perturbations are not considered. Consistently, scalar field perturbations are vanishing too. In
fact, one could set δϕ = 0 = δπ from the very beginning but, without assuming this, it can be
shown that the condition δϕ = 0 = δπ in fact resulting from the anomaly freedom.

The associated counter-terms are given by (37) and (38) with v2 = 0. Two non-vanishing
counter-terms are required in contrast to the gravity sector, where only one counter-term was
sufficient to fulfil the anomaly-freedom conditions. The integer v1 remains undetermined,
but the dependence upon this parameter cancels out in the Hamiltonian constraint. Namely,
applying the counter-terms (37) and (38) with v2 = 0, we find that the anomaly-free
Hamiltonian constraint is given by

SQ
free[N] = 1

2κ

∫
�

d3x
[
N̄

(
C(0)

free + C(2)

free

)]
, (48)

where

C(0)

free = −6
√

p̄(K[1])2, (49)

C(2)

free = − 1

2p̄3/2
[4(1 − β)K[2]k̄ − 2k̄2 + (4β − 1)K[1]2]

(
δEc

j δEd
k δk

cδ
j
d

)
+

√
p̄
(
δK j

c δKk
dδ

c
kδ

d
j

) − 2√
p̄
(2K[2] − k̄)

(
δEc

j δK j
c

)
. (50)

The gravitational diffeomorphism constraint holds its classical form (v2 = 0). This is in
agreement with LQG expectations. Interestingly, this can also be obtained here as a result of
anomaly freedom.

The obtained anomaly-free Hamiltonian (48) is determined up to the choice of the μ̄

functions. There are no other remaining ambiguities. The μ̄ function appears in definition
of the K[n] function. Because of this, there is also an explicit appearance of the factor β in
equation (50). The choice β = −1/2 is preferred by various considerations [13]. Recently, this
value was shown to be required also by the conditions on the anomaly-free scalar perturbations
with holonomy corrections [15]. For this choice of the β parameter, the remaining freedom
is a parameter of proportionality in relation μ̄ ∝ p̄−1/2. This parameter can be written as√

�, so μ̄ = √
�/p̄. The parameter � has interpretation of physical area, around which the

elementary holonomy is defined. It is expected that � ∼ l2
Pl, where lPl is the Planck length.

However, determination of the accurate value of � is subject to empirical verifications.
It is worth noting about the Hamiltonian constraint (48) that the effective holonomy

corrections, due to the counter-terms, are no longer almost periodic functions, defined as
follows [16]:

f (k̄) =
∑

n

ξn eiμ̄γ k̄n. (51)

In this expression, n runs over a finite number of integers and ξn ∈ C. This does not lead to any
problem at the classical level. However, difficulties may appear when going to the quantum
theory on lattice states. This is because the quantum operator corresponding to k̄ does not exist
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in contrast to the K[n] functions, which are almost periodic functions. This problem does not
exist if the gravitational sector, without any matter content, is considered alone. However, the
diffeomorphism constraint then has to be holonomy corrected, as studied previously. In such a
case, the background terms in the anomaly-free gravitational Hamiltonian are almost periodic
functions. The loop quantization can therefore be directly performed.

5. Gauge-invariant variable

The coordinate transformation xμ → xμ + ξμ generates a tensor–gauge transformation. In
the case of vector modes, the coordinate transformation is parametrized by the shift vector
Na = ξ a, where ξ a

,a = 0, Therefore, the resulting gauge transformation is generated by
the diffeomorphism constraint δξ f = { f , DQ[ξ a]}. The corresponding transformations for the
canonical variables are

δξ

(
δEa

i

) = {
δEa

i , DQ[ξ a]
} = −p̄∂iξ

a, (52)

δξ

(
δKi

a

) = {
δKi

a, DQ[ξ a]
} = K[v2]∂aξ

i. (53)

Based on the equation of motion Ėa
i = {Ea

i , HG}, and definition (12), one finds the expression
of δKi

a. The dot means differentiation with respect to the conformal time, since we have chosen
N̄ = √

p̄. Using equations (52) and (53) one finds

δξ Fa = ξ a, (54)

δξ Sa = ξ̇ a + (2K[2] − K[v1](1 + α2) − K[v2])ξ a. (55)

Based on this, one can define a gauge-invariant variable

σ a := Sa − Ḟa − (2K[2] − K[v1](1 + α2) − K[v2])︸ ︷︷ ︸
=−B

Fa, (56)

such that δξσ
a = 0.

6. Equations of motion

In this section, we derive the equation of motion for the gauge-invariant variable found in the
previous section.

For the sake of completeness, we recall that the equations of motion for the background
part are

˙̄p = N̄2
√

p̄(K[2]), (57)

˙̄k = − N̄√
p̄

[
1

2
(K[1])2 + p̄

∂

∂ p̄
(K[1])2

]
+ κ

3V0

(
∂H̄m

∂ p̄

)
, (58)

where H̄m = V0N̄C(0)
m and N̄ = √

p̄. For a free scalar field, an analytical solution to these
equations can be found [17]:

p̄ = (
1
6 γ 2�π2

ϕκ + 3
2 κπ2

ϕt2
)1/3

. (59)

This solution represents a symmetric bounce.
The diffeomorphism constraint δ

δδNa Dtot[Na] = 0 leads to the equation

p̄
(
∂kδKk

a

) + (K[v2])δk
a

(
∂dδEd

k

) = κπ̄∂a(δϕ). (60)

10
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Using the symmetrized variables

δK(i
a) = 1

2

[
(2K[2] − K[v1](1 + α2))

(
Fa,

i + Fi
,a
) + (

Fa,
i + Fi

,a
)̇ − (

Sa,
i + Si

,a
)]

= − 1
2

(
σa,

i + σ i
,a
) + 1

2 K[v2]
(
Fa,

i + Fi
,a
)
, (61)

and

δE (i
a) = −p̄ 1

2

(
Fa,

i + Fi
,a
)
, (62)

equation (60) can be rewritten as

− p̄

2
∇2σa = κπ̄∂a(δϕ). (63)

Because δϕ = 0 (from the anomaly-free condition), the symmetric diffeomorphism constraint
simplifies to the Laplace equation ∇2σa = 0. Since, the spatial slice is flat (� = R

3) there are
no boundary conditions on σa. This restricts the possible solutions of the Laplace equation to
σa = ba + dc

axc, where ba and dc
a are sets of constants. However, because σa is a perturbation

(there is no contribution from the zero mode),∫
�

d3xσa = 0, (64)

as required from the consistency of the perturbative expansion. This is also the reason why
the first-order perturbation of the Hamiltonian is vanishing,

∫
�

C(1) d3x = 0. Condition (64)
implies ba = 0 and dc

a = 0, which leads to σa = 0. This shows that our gauge-invariant
variable σa is identically equal to zero in the absence of the vector matter, in agreement with
earlier studies [18]. This can also be proved by expanding σa into Fourier modes.

In order to have non-vanishing (physical) vector modes σa, a source term in equation (63)
therefore has to be present. With ‘vector matter’, this reads as [7]

− 1

2p̄
∇2σa = 8πG(ρ + P)Va, (65)

where ρ and P are the energy density and pressure of the vector matter and Va is a matter
perturbation vector. If (ρ + P)Va �= 0 then σa �= 0, so physical vector perturbations are
expected. However, it should be pointed out that proving that the formulation remains anomaly
free in the presence of the vector matter remains an open issue. This could be checked, e.g.,
by introducing an electromagnetic field in the Hamiltonian formulation [19]. We leave this
problem to be analyzed elsewhere.

Due to the Gauss constraint, we introduce the symmetrized variable

Si
a := σ i

,a + σa,
i. (66)

The equation of motion for this variable reads as

− 1

2

d

dη
Si

a − 1

2
(2K[2] + B)Si

a +AF (i
,a) = κ p̄δT (i

a)
, (67)

where

δT i
a = 1

p̄

[(
1

3V0

∂H̄m

∂ p̄

) (
δEc

j δ
j
aδ

i
c

p̄

)
+ δHm

δδEa
i

]
. (68)

For the scalar matter δT i
a = 0. The same holds for tensor modes [20] (the reasons are the same

because δi
aδEa

i = 0 and δN = 0). When imposing the anomaly-freedom conditions A = 0
and B = 0, equation (67) simplifies to

− 1

2

d

dη
Si

a − 1

2
(2K[2])︸ ︷︷ ︸

= 1
p̄

d p̄
dη

Si
a = 0, (69)
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with fully determined coefficients. Of course, without vector matter, as discussed above, the
variable Si

a is equal to zero and equation (69) is trivially satisfied. However, the presence of a
non-vanishing contribution from Va allows for non-trivial solutions of equation (69). In such
a case, equation (69) leads to

Si
a = const

p̄
= const

a2
. (70)

For a symmetric bounce driven by a free-scalar field

Si
a ∝ 1(

2π

3
√

3
γ 3l2

Pl + t2
)1/3

. (71)

The evolution is smooth through the bounce. The amplitude of the perturbations grows during
the contraction and decreases in the expanding phase. The maximum amplitude is reached
at the transition point (bounce). Moreover, this evolution is independent of the length of the
considered mode, as can be seen by performing a Fourier transform of the function σa. Because
of this, there is a significant difference with respect to tensor and scalar perturbations. For
the scalar and tensor perturbations, the evolution is different depending on whether the mode
length is shorter or longer than the Hubble horizon. In particular, on super-horizon scales, the
amplitude of the scalar and tensor perturbations is frozen. In contrast, for the vector modes there
is no such effect. Therefore, in an expanding Universe, the amplitude of vector modes decreases
with respect to the super-horizon tensor and scalar perturbations. The contribution from vector
modes becomes negligible during the expansion phase. However, the situation reverses in the
contracting phase, before the bounce. Then, the amplitude of the vector perturbations grows
with respect to the super-horizon tensor and scalar perturbations. Therefore, on very large
scales the vector perturbations can play an important role, e.g. leading to the generation of
large-scale magnetic fields [21]. This could lead to a new tool to explore physics of the (very)
early Universe.

7. Summary and conclusions

In this paper, we have studied the issue of anomaly cancellation for vector modes with
holonomy corrections in LQC. Our strategy is based on the introduction of counter-terms
in the holonomy-corrected Hamiltonian constraint. In our study, we have also introduced
possible holonomy corrections to the diffeomorphism constraint. We have shown, first, that
the anomaly cancellation cannot be achieved without counter-terms. Holonomy corrections
to the diffeomorphism constraint do not help significantly to fulfil the anomaly-freedom
conditions, that are anyway satisfied up to the fourth order in the canonical variable k̄. Then,
we have studied the anomaly issue for the gravitational sector with two counter-terms. We
have shown that the conditions of anomaly freedom can be met with at least one non-vanishing
counter-term. The resulting effective holonomy corrections are almost periodic functions, only
if the diffeomorphism constraint is holonomy corrected. Subsequently, we have investigated
the issue of anomaly cancellation when a matter scalar field is added. In this case, the closure
conditions are more restrictive and fully determine the form of the resulting Hamiltonian
constraint. Moreover, this requires that the diffeomorphism constraint holds its classical form,
in agreement with LQG expectations. Because of this, the effective holonomy corrections,
which take into account contributions from the counter-terms, are no longer almost periodic
functions. We have found the gauge-invariant variable and the corresponding equation of
motion. The solution to this equation was also given. We have analyzed this solution for the
symmetric bounce model to point out that the vector perturbations pass smoothly through the

12

157
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



Class. Quantum Grav. 29 (2012) 085009 J Mielczarek et al

bounce, where their amplitude reaches its maximum but finite value. The work performed here
for scalar matter should be extended to vector matter to fully address the considered issue.

In [15], we address the related issue of anomaly freedom for scalar perturbations with
holonomy corrections. This is most important from the observational viewpoint.
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Conclusion

En considérant uniquement la partie gravitationnelle, l’algèbre obtenue a pour expression{
SQgrav[N1], SQgrav[N1]

}
= 0,

{
DQ
grav[N

a
1 ], DQ[Na

2 ]
}

= 0, (11.6){
SQgrav[N ], DQ

grav[N
a]
}

=
N̄√
p̄
BDQ

grav[N
a] +

N̄

κ
√
p̄

∫
Σ

d3xδN cδkc (∂dδE
d
k)δE

d
kA. (11.7)

On observe ainsi un terme N̄√
p̄
BDQ[Na] en plus de l’anomalie. Cette unique anomalie est une fonction de α1

et α2 et peut s’écrire aussi avec le terme B, et plusieurs cas de figures sont alors possibles pour annuler cette
anomalie. Cependant, lorsque l’on tient compte de la matière, d’autres anomalies apparaissent et imposent
notamment le choix v2 = 0 et B = 0 : le premier montre bien que la contrainte de Difféomorphisme ne peut pas
être modifiée, et le second provient du fait que dans le résultat {S(m+g)[N ], D(m+g)ot[Na]}, seule la contrainte de
Difféomorphisme gravitationnelle intervient alors qu’il aurait fallu en plus celle de la matière. Les contre-termes
sont alors donnés par

α1 = −1 + 4(1− β)
K[2]k̄
K[1]2

− 2
k̄2

K[1]2
+ (4β − 1), (11.8)

α2 = −1 +
2K[2]− k̄

K[v1]
, (11.9)

donnant des contraintes qui ne vont dépendre que de K [1] et de K [2], et non plus de K [v1]. D’autre part, les
contraintes vont dépendre du facteur β intervenant dans l’expression de µ̄, mais ici rien ne nous spécifie la valeur
qu’il doit avoir. Il a ensuite été possible de trouver les variables invariantes de jauge, régies par les équations du
mouvement qui sont exactement celles trouvées classiquement si la matière n’était pas scalaire.
Cette méthode nous a ainsi premièrement permis de voir qu’il n’était pas nécessaire de corriger la contrainte de
Difféomorphisme, comme attendu dans la théorie. Ensuite, nous n’avons ici considéré que les contre-termes pour
les termes en K [n] qui modifient la contrainte. Il aurait aussi été possible d’en mettre à chaque terme composant
la contrainte, notamment le terme en δKδK, et voir s’il n’était pas possible de trouver d’autres expressions
pour les contre-termes, mais nous avons pensé que c’était suffisant dans un premier temps de procéder comme
nous l’avons fait. L’anomalie ainsi obtenue ne nous donnait qu’une seule équation pour deux inconnues, et il a
fallu prendre en compte la matière pour avoir réellement toutes les conditions nécessaires : ces contre-termes
ont alors donné une algèbre qui ne dépendait pas de v1, montrant qu’il n’existe ainsi ici qu’une unique solution
pour ce modèle.
Un point important est l’utilisation de la matière : pour que des perturbations vectorielles soient générées, il est
nécessaire de prendre en compte un fluide présentant de la vorticité. Or, le champ que l’on a considéré jusqu’à
présent est le champ d’inflaton. Il a été utile pour résoudre les anomalies mais ne va pas donner un sens physique
aux perturbations vectorielles. Quoiqu’il en soit, ce travail est une prémisse à celui plus intéressant pour les
observations et qui concerne les perturbations scalaires.te
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Chapitre 12

Résolution des anomalies dans le cas
perturbations scalaires.

Introduction

En suivant la démarche entreprise dans le travail précédent, nous nous sommes intéressés au cas des per-
turbations scalaires en présence d’un champ d’inflaton. Ce champ étant scalaire, les résultats obtenus seront
alors cohérents avec la théorie classique, et les conséquences de notre travail auront bien un sens physique. Nous
n’avons pas corrigé la contrainte de Difféomorphisme, mais il est possible de montrer que le faire reviendrait
exactement à prendre son argument nul, et donc à ne finalement pas mettre de correction. Comme nous l’avons
expliqué, les perturbations scalaires n’ont pas de propriétés de divergence et de trace nulles : les contraintes
seront celles correspondant au cas général et comporteront tous les termes initiaux. On va alors regarder les
densités de contraintes hamiltoniennes à tous les ordres et introduire les corrections d’holonomies par la cor-
respondance (11.1). Contrairement au cas des perturbations vectorielles, afin d’être le plus général possible,
nous avons considéré des contre-termes en face de chacun des termes dans les densités de contraintes : cela
va grandement compliquer les calculs et aussi les expressions des anomalies, mais aura pour avantage d’avoir
définitivement les expressions générales. Nous avons ainsi introduits 9 contre-termes, 10 si on compte celui in-
troduit dans la matière. Il existera cependant 13 équations pour les anomalies rendant le système sur-contraint :
fort heureusement, il existe bien une solution, et elle est unique.
Ce travail suit exactement la même démarche que celle entreprise pour les perturbations vectorielles : une fois les
expressions des contraintes obtenues par la résolution des anomalies, les expressions pour les variables de jauge
ainsi que leurs équations du mouvement ont été déterminées, en particulier l’équation de Mukhanov-Sasaki.
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Abstract
Holonomy corrections to scalar perturbations are investigated in the loop
quantum cosmology framework. Due to the effective approach, modifications of
the algebra of constraints generically lead to anomalies. In order to remove those
anomalies, counter terms are introduced. We find a way to explicitly fulfill the
conditions for anomaly freedom and we give explicit expressions for the counter
terms. Surprisingly, the μ̄-scheme naturally arises in this procedure. The gauge-
invariant variables are found and equations of motion for the anomaly-free
scalar perturbations are derived. Finally, some cosmological consequences are
discussed qualitatively.

PACS numbers: 04.60.Pp, 04.60.Bc

(Some figures may appear in colour only in the online journal)

1. Introduction

Loop quantum gravity (LQG) is a tentative non-perturbative and background-independent
quantization of general relativity (GR) [1]. Interestingly, it has now been demonstrated that
different approaches, based on canonical quantization of GR, on covariant quantization of GR
and on formal quantization of geometry lead to the very same LQG theory. Although this
is rather convincing, a direct experimental probe is still missing. One can easily argue that
cosmology is the most promising approach to search for observational features of LQG or,
more specifically, to its symmetry-reduced version, loop quantum cosmology (LQC) [2].

Much effort has been devoted to the search of possible footprints of LQC in cosmological
tensor modes (see [3]). At the theoretical level, the situation is easier in this case as the
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algebra of constraints is automatically anomaly free. But, as far as observations are concerned,
scalar modes are far more important. They have already been observed in great detail by
WMAP [4] and are currently even better observed by the Planck mission. The question of a
possible modification of the primordial scalar power spectrum (and of the corresponding TT
Cl spectrum) in LQC is therefore essential in this framework.

Gravity is described by a set of constraints. However, for the (effective) theory to be
consistent, it is mandatory that the evolution generated by the constraints remains compatible
with the constraints themselves. This is always true if their mutual Poisson brackets vanish
when evaluated in fields fulfilling the constraints, i.e. if they form a first-class algebra. This
means that the evolution and the gauge transformations are associated with vector fields that are
tangent to the manifold of null constraints. This obviously holds at the classical level. However,
when quantum modifications are added, the anomaly freedom is not anymore automatically
ensured. Possible quantum corrections must be restricted to those which close the algebra.
This means that, for consistency reasons, the Poisson brackets between any two constraints
must be proportional to one constraint of the algebra. This paper is devoted to the search for
such an algebra for scalar perturbations.

Our approach will follow the one developed by Bojowald et al in [5]. There are two main
quantum corrections expected from LQC: inverse volume terms, basically arising for inverse
powers of the densitized triad, which when quantized become an operator with zero in its
discrete spectrum thus lacking a direct inverse, and holonomy corrections coming from the
fact that loop quantization is based on holonomies, rather than direct connection components.
In [5], the authors focused exclusively on inverse volume corrections. Here, we extend with
work to the holonomy corrections. Scalar perturbations with holonomy corrections have been
studied in [6]. However, the issue of anomaly freedom was not really addressed. Recently,
a new possible way of introducing holonomy corrections to the scalar perturbations was
proposed in [7]. Although it was interestingly shown that the formulation is anomaly free, the
approach is based on the choice of the longitudinal gauge and the extension of the method
to the gauge-invariant case is not straightforward. In contrast, the approach developed in our
paper does not rely on any particular choice of gauge and the gauge-invariant cosmological
perturbations are easily constructed.

The theory of anomaly-free scalar perturbations developed in this paper is obtained on a
flat FRW background, such that the line element is given by

ds2 = a2[−(1 + 2φ) dη2 + 2∂aB dη dxa + ((1 − 2ψ)δab + 2∂a∂bE ) dxa dxb], (1)

where φ, ψ , E and B are scalar perturbation functions. The matter content is assumed to be a
scalar field. This will allow us to investigate the generation of scalar perturbations during the
phase of cosmic inflation while taking into account the quantum gravity effects.

Our analysis of the scalar perturbations is performed in the Hamiltonian framework
developed in [5, 8]. As was shown there, the background variables are (k̄, p̄, ϕ̄, π̄ ), while
the perturbed variables are (δKi

a, δEa
i , δϕ, δπ ). The Poisson bracket for the system can be

decomposed as follows:

{·, ·} = {·, ·}k̄,p̄ + {·, ·}δK,δE + {·, ·}ϕ̄,π̄ + {·, ·}δϕ,δπ , (2)

where

{·, ·}k̄,p̄ := κ

3V0

[
∂·
∂ k̄

∂·
∂ p̄

− ∂·
∂ p̄

∂·
∂ k̄

]
, (3)

{·, ·}δK,δE := κ

∫



d3x

[
δ·

δδKi
a

δ·
δδEa

i

− δ·
δδEa

i

δ·
δδKi

a

]
, (4)
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{·, ·}ϕ̄,π̄ := 1

V0

[
∂·
∂ϕ̄

∂·
∂π̄

− ∂·
∂π̄

∂·
∂ϕ̄

]
, (5)

{·, ·}δϕ,δπ :=
∫




d3x

[
δ·

δδϕ

δ·
δδπ

− δ·
δδπ

δ·
δδϕ

]
. (6)

Here, V0 is the volume of the fiducial cell and κ = 8πG.
The holonomy corrections are introduced by the replacement k̄ → K[n] in the classical

Hamiltonian. We follow the notation introduced in [9], where

K[n] :=

⎧⎪⎨
⎪⎩

sin(nμ̄γ k̄)

nμ̄γ
for n ∈ Z/{0},

k̄ for n = 0,

(7)

for the correction function. In cases where k̄ appears quadratically, the integer n is fixed
to 2 (see [9]). In the other cases, the integers remain to be fixed from the requirement of
anomaly freedom. The coefficient γ is the Barbero–Immirzi parameter and μ̄ ∝ p̄β where
−1/2 � β � 0. In what follows, the relation

p̄
∂

∂ p̄
K[n] = [k̄ cos(nμ̄γ k̄) − K[n]]β (8)

will be useful.
The organization of the paper is as follows. In section 2, the holonomy-corrected

gravitational Hamiltonian constraint is defined. We calculate the Poisson bracket of the
Hamiltonian constraint with itself and with the gravitational diffeomorphism constraint. In
section 3, scalar matter is introduced. The Poisson brackets between the total constraints for
the system under consideration are calculated. In section 4, the conditions for anomaly freedom
are solved and the expressions for the counter terms are derived. Based on this, in secton 5,
equations of motion for the scalar perturbations are derived. The system of equations is then
investigated in the case of the longitudinal gauge. Finally, gauge-invariant variables are found
and the equations for the corresponding Mukhanov variables are derived. In section 6, we
summarize our results and draw out some conclusions.

2. Scalar perturbations with holonomy corrections

The holonomy-modified Hamiltonian constraint can be written as

HQ
G [N] = 1

2κ

∫



d3x
[
N̄

(
H(0)

G +H(2)
G

) + δNH(1)
G

]
, (9)

where

H(0)
G = −6

√
p̄(K[1])2,

H(1)
G = −4

√
p̄(K[s1] + α1)δ

c
jδK j

c − 1√
p̄
(K[1]2 + α2)δ

j
cδEc

j + 2√
p̄
(1 + α3)∂c∂

jδEc
j ,

H(2)
G =

√
p̄(1 + α4)δK j

c δKk
dδ

c
kδ

d
j −

√
p̄(1 + α5)

(
δK j

c δ
c
j

)2

− 2√
p̄
(K[s2] + α6)δEc

j δK j
c − 1

2p̄3/2
(K[1]2 + α7)δEc

j δEd
k δk

cδ
j
d

+ 1

4p̄3/2
(K[1]2 + α8)

(
δEc

j δ
j
c

)2 − 1

2p̄3/2
(1 + α9)δ

jk
(
∂cδEc

j

)(
∂dδEd

k

)
.

The standard holonomy corrections are parametrized by two integers s1 and s2. The αi are
counter terms, which are introduced to remove anomalies. Those factors are defined so that

3
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they vanish in the classical limit (μ̄ → 0). The counter terms could be, in general, functions
of all the canonical variables.

In principle, one could also consider other terms that are indeed allowed in the general
case, e.g. Mabcd

i j ∂aδKi
b∂cδK j

d multiplied by some new anomaly terms. Such terms are not present
in the classical Hamiltonian but may however appear at the quantum level. In this study, we
have only considered counter terms depending on functions which may be present at the
classical level and which depend on the gravitational background variables only.

In our approach, the diffeomorphism constraint holds the classical form

DG[Na] = 1

κ

∫



d3xδNc
[
p̄∂c

(
δd

k δKk
d

) − p̄
(
∂kδKk

c

) − k̄δk
c (∂dδEd

k )
]
. (10)

In general, the diffeomorphism constraint could also be holonomy corrected. This possibility
was studied, e.g., in [6]. Because the underlying LQG maintains diffeomorphism covariance
and because the isotropic LQC (about which the scalar perturbation theory is developed)
is obtained by solving the diffeomorphisms classically, one can justifiably assume that
diffeomorphism constraints and their algebra retain the classical form. Due to this, in this
paper, the diffeomorphism constraint is not modified by the holonomies. It is worth stressing
that the classicality of the diffeomorphism constraint is also imposed by the requirement of
anomaly cancellation. Namely, if one replaces k̄ → K[n] in (10), the condition n = 0 would
anyway be required by the introduction of scalar matter. Indeed, the Poisson bracket {HQ

M, DQ
G}

leads to an anomaly term proportional to (cos(nμ̄γ k̄)− 1), which is vanishing only for n = 0.
In fact, the same condition was obtained for vector modes with holonomy corrections [9].

Let us now calculate the possible Poisson brackets for the constraints HQ
G [N] and DG[Na].

2.1. The {HQ
G , DG} bracket

Using the definition of the Poisson bracket (2), we derive{
HQ

G [N], DG[Na]
} = −HQ

G [δNa∂aδN] + B DG[Na]

+
√

p̄

κ

∫



d3xδNa(∂aδN)A1 + N̄
√

p̄k̄

κ

∫



d3xδNa
(
∂iδKi

a

)
A2

+ N̄

κ
√

p̄

∫



d3xδNi(∂aδEa
i )A3 + N̄

2κ
√

p̄

∫



d3x(∂aδNa)
(
δEb

i δ
i
b

)
A4, (11)

where

B = N̄√
p̄

[−2K[2] + k̄(1 + α5) + K[s2] + α6], (12)

and

A1 = 2k̄(K[s1] + α1) + α2 − 2K[1]2, (13)

A2 = α5 − α4, (14)

A3 = −K[1]2 − p̄
∂

∂ p̄
K[1]2 − 1

2
α7 + k̄(−2K[2] + k̄(1 + α5) + 2K[s2] + 2α6), (15)

A4 = α8 − α7. (16)

The functions A1, . . . ,A4 are the first anomalies coming from the effective nature of
the Hamiltonian constraint. Later, we will set them to zero so as to fulfill the requirement of
anomaly freedom. This will lead to constraints on the form of the counter terms.

Besides the anomalies, the
{
HQ

G , DG
}

bracket contains the −HQ
G [δNa∂aδN] term, which

is expected classically. There is also an additional contribution from the diffeomorphism
constraint B DG[Na]. This term is absent in the classical theory. This is however consistent as,
for μ̄ → 0, the B function tends to zero.

4
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2.2. The {HQ
G , HQ

G } bracket

The next bracket is as follows:{
HQ

G [N1], HQ
G [N2]

} = (1 + α3)(1 + α5)DG

[
N̄

p̄
∂a(δN2 − δN1)

]

+ N̄

κ

∫



d3x∂a(δN2 − δN1)
(
∂iδKi

a

)
(1 + α3)A5

+ N̄

κ p̄

∫



d3x(δN2 − δN1)
(
∂ i∂aδEa

i

)
A6 + N̄

κ

∫



d3x(δN2 − δN1)
(
δa

i δKi
a

)
A7

+ N̄

κ p̄

∫



d3x(δN2 − δN1)
(
δi

aδEa
i

)
A8, (17)

where

A5 = α5 − α4, (18)

A6 = (1 + α9)(K[s1] + α1) − (1 + α3)(K[s2] + α6) + K[2](1 + α3)

−2K[2] p̄
∂α3

∂ p̄
+ 1

2

(
K[1]2 + 2p̄

∂

∂ p̄
K[1]2

)
∂α3

∂ k̄
− k̄(1 + α3)(1 + α5), (19)

A7 = 4K[2] p̄
∂

∂ p̄
(K[s1] + α1) −

(
K[1]2 + 2p̄

∂

∂ p̄
K[1]2

)
∂

∂ k̄
(K[s1] + α1)

+
(

1 + 3

2
α5 − 1

2
α4

)
(K[1]2 + α2) − 2(K[s2] + α6)(K[s1] + α1)

+2K[2](K[s1] + α1), (20)

A8 = 1

2
(K[s2] + α6)(K[1]2 + α2) − (K[s1] + α1)(K[1]2 + α7)

+ 3

2
(K[s1] + α1)(K[1]2 + α8) − 1

2
K[2](K[1]2 + α2)

+ K[2] p̄
∂

∂ p̄
(K[1]2 + α2) − 1

4

(
K[1]2 + 2p̄

∂

∂ p̄
K[1]2

)
∂

∂ k̄
(K[1]2 + α2). (21)

The A5, . . . ,A8 are the next four anomalies. Moreover, the diffeomorphism constraint is
multiplied by the factor (1 + α3)(1 + α5).

2.3. The {DG, DG} bracket

The Poisson bracket between the diffeomorphism constraints is as follows:{
DG

[
Na

1

]
, DG

[
Na

2

]} = 0. (22)

3. Scalar matter

In this section, we introduce scalar matter. The scalar matter diffeomorphism constraint is

DM[Na] =
∫




δNaπ̄ (∂aδϕ). (23)

The scalar matter Hamiltonian can be expressed as

HQ
M[N] = HM[N̄] + HM[δN], (24)

5
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where

HM[N̄] =
∫




d3xN̄
[(
H(0)

π +H(0)
ϕ

) + (
H(2)

π +H(2)
∇ +H(2)

ϕ

)]
, (25)

HM[δN] =
∫




d3δN
[
H(1)

π +H(1)
ϕ

]
. (26)

The factors in equations (25) and (26) are

H(0)
π = π̄2

2p̄3/2
,

H(0)
ϕ = p̄3/2V (ϕ̄),

H(1)
π = π̄δπ

p̄3/2
− π̄2

2p̄3/2

δ
j
cδEc

j

2p̄
,

H(1)
ϕ = p̄3/2

[
V,ϕ (ϕ̄)δϕ + V (ϕ̄)

δ
j
cδEc

j

2p̄

]
,

H(2)
π = 1

2

δπ2

p̄3/2
− π̄δπ

p̄3/2

δ
j
cδEc

j

2p̄
+ 1

2

π̄2

p̄3/2

[(
δ

j
cδEc

j

)2

8p̄2
+ δk

cδ
j
dδEc

j δEd
k

4p̄2

]
, (27)

H(2)
∇ = 1

2

√
p̄(1 + α10)δ

ab∂aδϕ∂bδϕ,

H(2)
ϕ = 1

2
p̄3/2V,ϕϕ (ϕ̄)δϕ2 + p̄3/2V,ϕ (ϕ̄)δϕ

δ
j
cδEc

j

2p̄
(28)

+ p̄3/2V (ϕ̄)

[(
δ

j
cδEc

j

)2

8p̄2
− δk

cδ
j
dδEc

j δEd
k

4p̄2

]
. (29)

Here, we have introduced the counter term α10 in the factor H(2)
∇ . Thanks to this, the Poisson

bracket between two matter Hamiltonians takes the following form:

{
HQ

M[N1], HQ
M[N2]

} = (1 + α10)DM

[
N̄

p̄
∂a(δN2 − δN1)

]
. (30)

As will be explained later, the appearance of the front factor (1+α10) will allow us to close the
algebra of total constraints. In principle, other prefactors could have been expected; however,
they do not help removing anomalies.

3.1. Total constraints

The total Hamiltonian and diffeomorphism constraints are as follows:

Htot[N] = HQ
G [N] + HQ

M[N], (31)

Dtot[N
a] = DG[Na] + DM[Na]. (32)

The Poisson bracket between two total diffeomorphism constraints is vanishing:{
Dtot

[
Na

1

]
, Dtot

[
Na

2

]} = 0. (33)

The bracket between the total Hamiltonian and diffeomorphism constraints can be decomposed
as follows:{
Htot[N], Dtot[N

a]
} = {

HQ
M[N], Dtot[N

a]
} + {

HQ
G [N], DG[Na]

} + {
HQ

G [N], DM[Na]
}
. (34)

6
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The first bracket in sum (34) is given by{
HQ

M[N], Dtot[N
a]

} = −HQ
M[δNa∂aδN]. (35)

The second contribution to equation (34) is given by (11), while the last contribution is
vanishing: {

HQ
G [N], DM[Na]

} = 0. (36)

The Poisson bracket between the two total Hamiltonian constraints can be decomposed in the
following way:

{Htot[N1], Htot[N2]} = {
HQ

G [N1], HQ
G [N2]

} + {HM[N1], HM[N2]}
+ [{

HQ
G [N1], HM[N2]

} − (N1 ↔ N2)
]
. (37)

The contribution from the last brackets can be expressed as{
HQ

G [N1], HM[N2]
} − (N1 ↔ N2) =

= 1

2

∫



d3xN̄(δN2 − δN1)

(
π̄2

2p̄3
− V (ϕ̄)

)
(∂c∂

jδEc
j )A9

+ 3
∫




d3xN̄(δN2 − δN1)

(
π̄δπ

p̄2
− p̄Vϕ(ϕ̄)δϕ

)
A10

+
∫




d3xN̄(δN2 − δN1)
(
δc

jδKc
j

) (
π̄2

2p̄3
− V (ϕ̄)

)
p̄A11

+ 1

2

∫



d3xN̄(δN2 − δN1)
(
δ j

cδEc
j

) (
π̄2

2p̄3

)
A12

+ 1

2

∫



d3xN̄(δN2 − δN1)
(
δ j

cδEc
j

)
V (ϕ̄)A13, (38)

where

A9 = ∂α3

∂ k̄
, (39)

A10 = K[2] − K[s1] − α1, (40)

A11 = − ∂

∂ k̄
(K[s1] + α1) + 3

2
(1 + α5) − 1

2
(1 + α4), (41)

A12 = −1

2

∂

∂ k̄
(K[1]2 + α2) + 5(K[s1] + α1) − 5K[2] + K[s2] + α6, (42)

A13 = 1

2

∂

∂ k̄
(K[1]2 + α2) + K[s1] + α1 − K[2] − K[s2] − α6. (43)

The functions A9, . . . ,A13 are the last five anomalies.

4. Anomaly freedom

The requirement of anomaly freedom is equivalent to the conditionsAi = 0 for i = 1, . . . , 13.
Let us start form the condition A9 = 0. Since α3 cannot be a constant, this condition

implies α3 = 0. The condition A10 = 0 gives α1 = K[2] − K[s1]. Using this, the condition
A1 = 0 can be written as α2 = 2K[1]2 − 2k̄K[2]. The conditions A2 = 0 and A5 = 0 are
equivalent and lead to α4 = α5. Based on this, the requirement A11 = 0 leads to

1 + α4 = ∂K[2]

k̄
= cos(2μ̄γ k̄) =: �. (44)

7
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For the sake of simplicity, we have defined here the �-function. With the use of this, the
condition A6 = 0 leads to

α6 = K[2](2 + α9) − K[s2] − k̄�. (45)

So equation (42) simplifies to

A12 = α9K[2]. (46)

Therefore, requiring A12 = 0 is equivalent to the condition α9 = 0. Furthermore, A4 = 0
gives α7 = α8. The expression for α7 can be derived from the condition A3 = 0. Namely,
using equation (45), one obtains

α7 = 2(2β − 1)K[1]2 + 4(1 − β)k̄K[2] − 2k̄2�. (47)

The conditionA13 = 0 is fulfilled by using the expressions derived for α1, α2 and α6. The last
two anomalies (20) and (21) can be simplified to

A7 = 2(1 + 2β)(�K[1]2 − K[2]2), (48)

A8 = k̄(1 + 2β)(K[2]2 − �K[1]2). (49)

The anomaly-freedom conditions for those last terms,A7 = 0 andA8 = 0, are fulfilled if and
only if β = −1/2.

It is also worth noting that the function B given by equation (12) is equal to zero when the
expression obtained for α6 is used. There is finally no contribution from the diffeomorphism
constraint in the {HQ

G , DG} bracket.
Using the anomaly-freedom conditions given above, the bracket between the total

Hamiltonian constraints simplifies to

{Htot[N1], Htot[N2]} = �Dtot

[
N̄

p̄
∂a(δN2 − δN1)

]
+ (α10 − α4)DM

[
N̄

p̄
∂a(δN2 − δN1)

]
.

(50)

The closure of the algebra of total constraints implies the last condition α10 = α4 = � − 1.
To summarize, the counter terms allowing the algebra to be anomaly free are uniquely

determined, and are given by

α1 = K[2] − K[s1], (51)

α2 = 2K[1]2 − 2k̄K[2], (52)

α3 = 0, (53)

α4 = � − 1, (54)

α5 = � − 1, (55)

α6 = 2K[2] − K[s2] − k̄�, (56)

α7 = − 4K[1]2 + 6k̄K[2] − 2k̄2�, (57)

α8 = − 4K[1]2 + 6k̄K[2] − 2k̄2�, (58)

α9 = 0, (59)

α10 = � − 1. (60)

8

169
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



Class. Quantum Grav. 29 (2012) 095010 T Cailleteau et al

It is straightforward to check that the counter terms α1, . . . , α10 are vanishing in the classical
limit (μ̄ → 0), as expected.

Those counter terms are defined up to the two integers s1 and s2, which appear in (51) and
(56). However, in Hamiltonian (9), the factor α1 appears with K[s1] and the factor α6 appears
with K[s2]. Namely, we have K[s1] + α1 = K[2] and K[s2] + α6 = 2K[2] − k̄�. Therefore,
the final Hamiltonian will not depend on the parameters s1 and s2. No ambiguity remains to
be fixed.

Moreover, the anomaly cancellation requires

β = − 1
2 , (61)

which fixes the functional form of the μ̄ factor. The fact that anomaly freedom requires
β = −1/2 is a quite surprising result. The exact value of β is highly debated in LQC. The
only a priori obvious statement is that β ∈ [−1/2, 0]. The choice β = −1/2 is called the
μ̄-scheme (new quantization scheme) and is preferred by some authors for physical reasons
[10]. Our result seems to show that the μ̄-scheme is embedded in the structure of the theory
and this gives a new motivation for this particular choice of quantization scheme. The quantity
μ̄2 p̄ can be interpreted as the physical area of an elementary loop along which the holonomy
is calculated. Because, in the μ̄-scheme, μ̄2 ∝ p̄−1, the physical area of the loop remains
constant. This elementary area is usually set to be the area gap � derived in LQG. Therefore,
in the μ̄-scheme,

μ̄ =
√

�

p̄
. (62)

4.1. Algebra of constraints

Taking into account the previous conditions of anomaly freedom, the non-vanishing Poisson
brackets for the gravity sector are as follows:{

HQ
G [N], DG[Na]

} = − HQ
G [δNa∂aδN], (63)

{
HQ

G [N1], HQ
G [N2]

} = �DG

[
N̄

p̄
∂a(δN2 − δN1)

]
. (64)

This clearly shows that the gravity sector is anomaly free. The remaining non-vanishing
brackets are as follows:

{HM[N], Dtot[N
a]} = − HM[δNa∂aδN], (65)

{HM[N1], HM[N2]} = �DM

[
N̄

p̄
∂c(δN2 − δN1)

]
. (66)

The algebra of total constraints therefore takes the following form:{
Dtot

[
Na

1

]
, Dtot

[
Na

2

]} = 0, (67)

{Htot[N], Dtot[N
a]} = − Htot[δNa∂aδN], (68)

{Htot[N1], Htot[N2]} = Dtot

[
�

N̄

p̄
∂a(δN2 − δN1)

]
. (69)

Although the algebra is closed, there are however modifications with respect to the classical
case, due to presence of the factor � in equation (69). Therefore, not only the dynamics, as a
result of the modification of the Hamiltonian constraint, is modified but the very structure of the

9
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Figure 1. Pictorial representation of the hypersurface deformation algebra (69).

spacetime itself is also deformed. This is embedded in the form of the algebra of constraints.
The hypersurface deformation algebra generated by (69) is pictorially represented in figure 1.

As � ∈ [−1, 1], the shift vector

Na = �
N̄

p̄
∂a(δN2 − δN1) (70)

appearing in (69) can change sign in time.
In order to see when this might happen, let us express the parameter � as

� = cos(2μ̄γ k̄) = 1 − 2
ρ

ρc
, (71)

where ρ is the energy density of the matter field and

ρc = 3

κγ μ̄2 p̄
= 3

κγ�
. (72)

In the low-energy limit, ρ → 0, the classical case (� → 1) is correctly recovered. However,
while approaching the high-energy domain, the situation drastically changes. Namely, for
ρ = ρc/2, the shift vector (70) becomes null. At this point, the maximum value of the Hubble
parameter is also reached. The maximum allowed energy density is ρ = ρc and corresponds
to the bounce. Then the shift vector (70) fully reverses with respect to the low-energy limit.
One can interpret this peculiar behavior as a geometry change. Namely, when the universe
is in its quantum stage (ρ > ρc/2), the effective algebra of constraints shows that the space
is Euclidian. At the particular value ρ = ρc

2 , the geometry switches to the Minkowski one
[11]. This will become even clearer when analyzing the Mukhanov equation in section 5. The
consequences of this have not yet been fully understood, but it is interesting to note that this
model naturally exhibits properties related to the Hartle–Hawking no-boundary proposal [12].

5. Equations of motion

Once the anomaly-free theory of scalar perturbations with holonomy corrections is constructed,
the equations of motion for the canonical variables can be derived. This can be achieved through
the Hamilton equation

ḟ = { f , H[N, Na]}, (73)

where the Hamiltonian H[N, Na] is the sum of all constraints

H[N, Na] = HQ
G [N] + HM[N] + DG[Na] + DM[Na]. (74)

10
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5.1. Background equations

Based on the Hamilton equation (73), the equations for the canonical background variables
are as follows [13]:

˙̄k = − N̄

2
√

p̄
K[1]2 − N̄

√
p̄

∂

∂ p̄
K[1]2 + κ

2

√
p̄N̄

[
− π̄2

2p̄3
+ V (ϕ̄)

]
, (75)

˙̄p = 2N̄
√

p̄K[2], (76)

˙̄ϕ = N̄
π̄

p̄3/2
, (77)

˙̄π = − N̄ p̄3/2V,ϕ (ϕ̄). (78)

In the following, we choose the time to be conformal by setting N̄ = √
p̄. The ‘·’ then means

differentiation with respect to conformal time η.
Equations (77) and (78) can be now combined into the Klein–Gordon equation

¨̄ϕ + 2K[2] ˙̄ϕ + p̄V,ϕ (ϕ̄) = 0. (79)

Equation (76), together with the background part of the Hamiltonian constraint

1

V0

∂H

∂N̄
= 1

2κ
[−6

√
p̄(K[1])2] + p̄3/2

[
π̄2

2p̄3
+ V (ϕ̄)

]
= 0, (80)

leads to the modified Friedmann equation

H2 = p̄
κ

3
ρ

(
1 − ρ

ρc

)
. (81)

Another useful expression is

3K[1]2 = π̄2

2p̄2
+ p̄V (ϕ̄). (82)

HereH stands for the conformal Hubble factor

H :=
˙̄p

2p̄
= K[2]. (83)

The energy density and pressure of the scalar field are given by

ρ = π̄2

2p̄3
+ V (ϕ), (84)

P = π̄2

2p̄3
− V (ϕ). (85)

For the purpose of further considerations, we also derive the relation

κ

(
π̄2

2p̄2

)
= k̄K[2] − ˙̄k, (86)

which comes from equation (75) combined with (80).

11
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5.2. Equations for the perturbed variables

The equations for the perturbed parts of the canonical variables are as follows:

δĖa
i = −N̄

[√
p̄�δK j

c δ
c
i δ

a
j −

√
p̄�

(
δK j

c δ
c
j

)
δa

i − 1√
p̄
(2K[2] − k̄�)δEa

i

]
+δN(2K[2]

√
p̄δa

i ) − p̄
(
∂iδNa − (∂cδNc)δa

i

)
, (87)

δK̇i
a = N̄

[
− 1√

p̄
(2K[2] − k̄�)δKi

a

− 1

2p̄3/2
(−3K[1]2 + 6k̄K[2] − 2k̄2�)δEc

j δ
j
aδ

i
c

+ 1

4p̄
3
2

(−3K[1]2 + 6k̄K[2] − 2k̄2�)(δEc
j δ

j
c )δ

i
a + δik

2p̄
3
2

∂a∂dδEd
k

]

+1

2

[
− 1√

p̄
(3K[1]2 − 2k̄K[2])δi

aδN + 2√
p̄
(∂a∂

iδN)

]

+δi
c(∂aδNc) + κδN

√
p̄

2

[
− π̄2

2p̄3
+ V (ϕ̄)

]
δi

a

+κN̄

[
− π̄δπ

2p̄5/2
δi

a +
√

p̄

2
δϕ

∂V (ϕ̄)

∂ϕ̄
δi

a +
(

π̄2

2p̄3/2
+ p̄3/2V (ϕ̄)

)
δ

j
cδEc

j

4p̄2
δi

a

+
(

π̄2

2p̄3/2
− p̄3/2V (ϕ̄)

)
δi

cδ
j
aδEc

j

2p̄2

]
, (88)

δϕ̇ = δN

(
π̄

p̄3/2

)
+ N̄

(
δπ

p̄3/2
− π̄

p̄3/2

δ
j
cδEc

j

2p̄

)
, (89)

δπ̇ = −δN
(
p̄3/2V,ϕ (ϕ̄)

) + π̄ (∂aδNa)

− N̄

[
−

√
p̄�δab∂a∂bδϕ + p̄3/2V,ϕϕ (ϕ̄)δϕ + p̄3/2V,ϕ (ϕ̄)

δ
j
cδEc

j

2p̄

]
. (90)

5.3. Longitudinal gauge

As an example of application, we will now derive the equations in the longitudinal gauge. In
this case, the E and B perturbations are set to zero. The line element (1) therefore simplifies to

ds2 = a2[−(1 + 2φ) dη2 + (1 − 2ψ)δab dxa dxb], (91)

where φ and ψ are two remaining perturbation functions and a is the scale factor. From the
metric above, one can derive the lapse function, the shift vector and the spatial metric:

N = a
√

1 + 2φ, (92)

Na = 0, (93)

qab = a2(1 − 2ψ)δab. (94)

The lapse function can be expanded for the background and perturbation part as N = N̄ + δN,
where

N̄ =
√

p̄ = a, (95)

12

173
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



Class. Quantum Grav. 29 (2012) 095010 T Cailleteau et al

δN = N̄φ. (96)

Using equation (94), the perturbation of the densitized triad is expressed as

δEa
i = −2p̄ψδa

i . (97)

The time derivative of this expression will also be useful and can be written as

δĖa
i = −2p̄(2K[2]ψ + ψ̇ )δa

i . (98)

Let us now find the expression for the perturbation of the extrinsic curvature δKi
a in terms

of the metric perturbations φ and ψ . For this purpose, one can apply expression (97) to the
left-hand side of (87). The resulting equation can be solved for δKi

a, leading to

δKi
a = −δi

a

1

�

(
ψ̇ + k̄�ψ + K[2]φ

)
. (99)

The time derivative of this variable is given by

δK̇i
a = δi

a

1

�

[
−ψ̈ − ˙̄k�ψ + ψ̇

(
�̇

�
− k̄�

)
+ φK[2]

�̇

�
− φK̇[2] − K[2]φ̇

]
. (100)

Applying (100) to the left-hand side of (88), the equation containing the diagonal part as well
as the off-diagonal contribution is easily obtained. The off-diagonal part leads to

∂a∂
i(φ − ψ) = 0. (101)

This translates into ψ = φ. In what follows, we will therefore consider φ only. The diagonal
part of the discussed equation can be expressed as

φ̈ + φ̇

[
3K[2] − �̇

�

]
+ φ

[
K̇[2] + 2K[2]2 − K[2]

�̇

�

]
= 4πG�

[ ˙̄ϕδϕ̇ − p̄δϕV,ϕ (ϕ̄)
]
. (102)

One can now use the diffeomorphism constraint

κ
δH[N, Na]

δ(δNc)
= p̄∂c

(
δd

k δKk
d

) − p̄
(
∂kδKk

c

) − k̄δk
c (∂dδEd

k ) + κπ̄ (∂cδϕ) = 0. (103)

With the expressions for δKi
a and δEa

i , it can be derived that

∂c
[
φ̇ + φK[2]

] = 4πG� ˙̄ϕ∂cδϕ. (104)

The next equation comes from the perturbed part of the Hamiltonian constraint:

δH[N, Na]

δ(δN)
= 1

2κ

[
−4

√
p̄K[2]δc

jδK j
c − 1√

p̄

(
3K[1]2 − 2k̄K[2]

)
δ j

cδEc
j + 2√

p̄
∂c∂

jδEc
j

]

+ π̄δπ

p̄3/2
− π̄2

2p̄3/2

δ
j
cδEc

j

2p̄
+ p̄3/2

[
V,ϕ (ϕ̄)δϕ + V (ϕ̄)

δ
j
cδEc

j

2p̄

]
= 0. (105)

Using the expressions for δKi
a and δEa

i , this can be rewritten as

�∇2φ − 3K[2]φ̇ − [
K̇[2] + 2K[2]2

]
φ = 4πG�

[ ˙̄ϕδϕ̇ + p̄δϕV,ϕ (ϕ̄)
]
. (106)

The last equality comes from (89) and (90):

δϕ̈ + 2K[2]δϕ̇ − �∇2δϕ + p̄V,ϕϕ (ϕ̄)δϕ + 2p̄V,ϕ (ϕ̄)φ − 4 ˙̄ϕφ̇ = 0. (107)

Equations (102), (104) and (106) can be now combined into

φ̈ + 2

[
H−

( ¨̄ϕ
˙̄ϕ + ε

)]
φ̇ + 2

[
Ḣ−H

( ¨̄ϕ
˙̄ϕ + ε

)]
φ − c2

s ∇2φ = 0, (108)
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with the quantum correction

ε = 1

2

�̇

�
= 3K[2]

(
ρ + P

ρc − 2ρ

)
, (109)

and the squared velocity

c2
s = �. (110)

The squared velocity of the perturbation field φ is equal to �. Because −1 � � � 1, the
speed of perturbations is never super-luminal. However, for � < 0, perturbations become
unstable (c2

s < 0). This corresponds to the energy density regime ρ >
ρc

2 , where the phase of
super-inflation is expected.

At the point ρ = ρc

2 , the velocity of the perturbation field φ is vanishing. Therefore,
perturbations do not propagate anymore when approaching ρ = ρc

2 , where the Hubble factor
reaches its maximal value. Moreover, at this point, the quantum correction ε → ∞. Because
of this, equation (108) diverges and cannot be used to determine the propagation of the
perturbations. However, as shown in the next section, the equation for the gauge-invariant
Mukhanov variable does not exhibit such a pathology.

It is interesting to note that the equations of motion derived in this subsection are the
same as those found in [7]. This is quite surprising, because they were derived following
independent paths. In this approach, we have introduced the most general ‘sine’ form for the
holonomy corrections to the Hamiltonian, parametrized by some unknown integers. Then,
by adding counter terms, anomalies in the algebra of constraints were removed. It has been
argued that one could obviously also add other functions agreeing with the classical limit.
On the other hand, the method proposed in [7] is based on the diagonal form of the metric
in the longitudinal gauge. This enables one to introduce holonomy corrections in almost the
same way as in the case of a homogeneous model but with an argument which depends on the
spatial position also. It was then shown that a system defined in this way stays on-shell, that
is, is free of anomalies. Nevertheless, it is possible to show that starting from the Hamiltonian
constraint given in [7] and performing a Taylor expansion around K̄i

a and Ēa
i , one obtains

exactly the same Hamiltonian constraint (9) with our values for the counter terms (51)–(60).
The non-trivial equivalence of both approaches may suggest uniqueness in defining a theory
of scalar perturbations with holonomy corrections in an anomaly-free manner.

5.4. Gauge-invariant variables and Mukhanov equation

Considering the scalar perturbations, there is only one physical degree of freedom. As was
shown in [14], this physical variable combines both the perturbation of the metric and the
perturbation of matter. The classical expression on this gauge-invariant quantity is

v = a(η)

(
δϕGI +

˙̄ϕ
H�

)
, (111)

and its equation of motion is given by

v̈ − ∇2v − z̈

z
v = 0, (112)

where

z = a(η)
˙̄ϕ
H . (113)

In the canonical formalism with scalar perturbations, the gauge transformation of a
variable X under a small coordinate transformation

xμ → xμ + ξμ, ξμ = (ξ 0, ∂aξ ) (114)

14
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is given by (see [8] for details)

δ[ξ 0,ξ ]X =̇ {X, H (2)[N̄ξ 0] + D(2)[∂aξ ]}, (115)

and it is straightforward to see that, classically,

δ[ξ 0,ξ ]v = 0. (116)

This means that v is diffeomorphism invariant and can be taken as an observable.
Taking into account the holonomy corrections introduced in this paper, the � function

will modify the gauge transformations of the time derivative of a variable X , so that

δ[ξ 0,ξ ]Ẋ − (δ[ξ 0,ξ ]X )̇ = � · δ[0,ξ 0]X. (117)

Using this relation and gauge transformations of the metric perturbations

δ[ξ 0,ξ ]ψ = − K[2]ξ 0, (118)

δ[ξ 0,ξ ]φ = ξ̇ 0 + K[2]ξ 0, (119)

δ[ξ 0,ξ ]E = ξ, (120)

δ[ξ 0,ξ ]B = ξ̇ , (121)

one can define the gauge-invariant variables (Bardeen potentials) as

� = φ + 1

�
(Ḃ − Ë ) +

(
K[2]

�
− �̇

�

)
(B − Ė ), (122)

� = ψ − K[2]

�
(B − Ė ), (123)

δϕGI = δϕ +
˙̄ϕ
�

(B − Ė ). (124)

The normalization of these variables was set such that, in the longitudinal gauge (B = 0 = E ),
we have � = φ, � = ψ and δϕGI = δϕ. It is possible to define the analogous of the Mukhanov
variable (111):

v :=
√

p̄

(
δϕGI +

˙̄ϕ
K[2]

�

)
. (125)

Writing the equations for � and δϕGI, which are

�̈ + 2

[
H−

( ¨̄ϕ
˙̄ϕ + ε

)]
�̇ + 2

[
Ḣ−H

( ¨̄ϕ
˙̄ϕ + ε

)]
� − c2

s ∇2� = 0 (126)

and

δϕ̈GI + 2K[2]δϕ̇GI − �∇2δϕGI + p̄V,ϕϕ (ϕ̄)δϕGI + 2p̄V,ϕ (ϕ̄)� − 4 ˙̄ϕGI
�̇ = 0, (127)

one obtains the equation for variable (125):

v̈ − �∇2v − z̈

z
v = 0, (128)

z =
√

p̄
˙̄ϕ

K[2]
, (129)

which corresponds to the Mukhanov equation for our model. As we see, the difference between
the classical and the holonomy-corrected case is the factor � in front of the Laplacian. This
quantum contribution leads to a variation of the propagation velocity of the perturbation v.
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This is similar to the case of the perturbation φ considered in the previous subsection. The
main difference is that there is no divergence for ρ = ρc/2 and the evolution of perturbations
can be investigated in the regime of high energy densities. It is once again worth noting that
for ρ > ρc/2, � becomes negative and equation (128) changes from a hyperbolic form to an
elliptic one. This basically means that the time part becomes indistinguishable from the spatial
one. This can be interpreted as a transition from a Minkowskian geometry to an Euclidean
geometry, as mentioned earlier.

Finally, it is also possible to define the perturbation of curvatureR such that

R = v

z
. (130)

Based on this, one can now calculate the power spectrum of scalar perturbations. This opens
new possible ways to study quantum gravity effects in the very early universe. Promising
applications of the derived equations will be investigated elsewhere.

6. Summary and conclusions

In this paper, we have investigated the theory of scalar perturbations with holonomy corrections.
Such corrections are expected because of quantum gravity effects predicted by LQG. They
basically come from the regularization of the curvature of the connection at the Planck scale.
Because of this, the holonomy corrections become dominant in the high-curvature regime.
The introduction of ‘generic-type’ holonomy corrections leads to an anomalous algebra of
constraints. The conditions of anomaly freedom impose some restrictions on the form of the
holonomy corrections. However, we have shown that the holonomy corrections, in the standard
form, cannot fully satisfy the conditions of anomaly freedom. In order to solve this difficulty,
additional counter terms were introduced. Such counter terms tend to zero in the classical
limit, but play the role of regularizators of anomalies in the quantum (high-curvature) regime.
The method of counter terms was earlier successfully applied to cosmological perturbations
with inverse-triad corrections [5].

We have shown that, thanks to the counter terms, the theory of cosmological perturbations
with holonomy corrections can be formulated in an anomaly-free way. The anomaly freedom
was shown to be fulfilled not only for the gravity sector but also when taking into account
scalar matter. The requirements of anomaly freedom were used to determine the form of the
counter terms. Furthermore, conditions for obtaining an anomaly-free algebra of constraints
were shown to be fulfilled only for a particular choice of the μ̄ function, namely for the μ̄-
scheme (new quantization scheme). This quantization scheme was shown earlier to be favored
because of the consistency of the background dynamics [10]. Our result supports these earlier
claims.

In our formulation, the diffeomorphism constraint holds its classical form, in agreement
with the LQG expectations. The obtained anomaly-free gravitational Hamiltonian contains
seven holonomy modifications. It was also necessary to introduce one counter term into the
matter Hamiltonian in order to ensure the closure of the algebra of total constraints. There is no
ambiguity in defining the holonomy corrections after imposing the anomaly-free conditions.
The only remaining free parameter of the theory is the area gap � used in defining the μ̄

function. This quantity can however be possibly fixed with the spectrum of the area operator in
LQG. Based on the equations derived in this paper, it will also be possible to put observational
constraints on the value of � and, hence, on the critical energy density ρc.

Based on the studied anomaly-free formulation, equations of motion were derived. As
an example of application, we studied the equations in the longitudinal gauge. We have
also found the gauge-invariant variables, which are holonomy-corrected versions of the

16
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Bardeen potentials. Using this, we have derived the equation for the Mukhanov variable.
This equation can be directly used to compute the power spectrum of scalar perturbations with
quantum gravitational holonomy corrections. Similar considerations were studied in the case
of inverse-triad corrections [15]. In that case, observational consequences have been derived
and compared with CMB data [16, 17].
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Conclusion

Ce travail a finalement présenté de nombreux intérêts : en plus d’être celui qui a le premier résolu le problème
des anomalies pour les corrections d’holonomie, il va montrer des conséquences physiques importantes.
La démarche ayant été la même que celle entreprise pour les perturbations vectorielles, certaines conclusions
seront alors similaires à celles présentées auparavant, et confirmeront le travail précédent. On peut voir que

1. regarder conjointement les contraintes gravitationnelles et de matière permet de résoudre toutes les ano-
malies présentes : il a fallu cependant ajouter un contre-terme α10 dans la densité de contrainte de la
matière au seconde ordre. Cela a permis de donner une expression non-équivoque pour tous les contre-
termes qui, une fois introduits dans les contraintes leur permettent de ne plus dépendre de paramètres
inconnus comme ici s1 et s2.

2. deux contre-termes doivent être nuls : α3 et α9, qui correspondent dans les contraintes aux seuls termes
faisant intervenir des doubles dérivées spatiales de δEai . Ces termes s’écrivent dans le cas général en fonction
de Xijk

ab et Zijkab , et leurs propriétés de symétries et d’antisymétries ont montré [83] qu’ils n’intervenaient
pas dans la fermeture de l’algèbre : les contre-termes ainsi trouvés ne vont pas dépendre du choix des
perturbations et seront alors les plus généraux possibles.

3. lorsque l’on a regardé le cas des perturbations vectorielles, nous avons exactement eu les mêmes équations
pour les anomalies sauf que l’on a considéré uniquement αS6 = αV1 et αS7 = αV2 comme non nuls, et
nous n’avons pas tenu compte de certains termes dans les contraintes (δiaδE

a
i = 0, ...). Il est possible de

montrer que les expressions des anomalies trouvées ici redonnent les expressions des anomalies pour les
perturbations vectorielles.

4. aucune supposition n’a été faite sur la valeur de β dans l’expression de µ̄. Cependant, dans le cas des
perturbations scalaires, les expressions des anomalies supplémentaires vont dépendre de β telles que la
seule possibilité pour qu’elles soient nulles est de considérer β = − 1

2 . Cette valeur correspond à celle
privilégiée par la théorie, et elle apparâıt directement ici, donnant un argument supplémentaire en faveur
du µ̄-scheme.

5. l’algèbre des contraintes est donnée par{
D(m+g)[Na

1 ], D(m+g)[Na
2 ]
}

= 0, (12.1){
H(m+g)[N ], D(m+g)[Na]

}
= −H(m+g)[δNa∂aδN ], (12.2){

H(m+g)[N1],H(m+g)[N2]
}

= D(m+g)

[
Ω
N̄

p̄
∂a(δN2 − δN1)

]
, (12.3)

où la seule modification provient du terme Ω, présent dans l’expression δKδK dans la contrainte hamil-
tonienne,

Ω = cos(2µ̄γk̄) = 1− 2
ρ

ρc
. (12.4)

Lorsque Ω est positif, donc pour des densités d’énergie supérieures à ρc/2, on retrouve bien le cas Lorentzien
(s = −1) que l’on observe habituellement. Cependant, lorsque l’on s’approche du rebond, il existe en ρc/2
un point particulier où la fonction s’annule et change de signe. On se retrouve alors avec une algèbre
correspondant au cas Euclidien (s = 1). Cela se voit aussi dans les équations du mouvement pour lesquelles
il existe le terme Ωk2. Les conséquences physiques de cette observation ne sont pas encore comprises, mais
on peut penser [84] ici au ’no-boundary proposal’ de James Hartle et Stephen Hawking. Plus
généralement, le recours à des métriques euclidiennes a été depuis longtemps une astuce en cosmologie
quantique : la rotation de Wick améliore la convergence des intégrales de chemin, et permet une meilleure
définition de le fonction d’onde de l’univers. Il est intéressant que ce processus souvent supposé de façon ’ad
hoc’ apparaisse naturellement ici. Cependant, dans ce principe c’est la métrique globale qui est influencée
alors que dans notre cas, cela est du uniquement aux perturbations.

6. lorsque l’on va regarder les perturbations tensorielles, on va utiliser le fait que δN = δNa = 0, donnant
l’algèbre précédente totalement nulle, comme dans notre tout premier travail. Cependant,les contraintes
maintenant utilisées sont totalement différentes de celles ayant permis les travaux précédents, et il va être
nécessaire de refaire les études présentées dans les chapitres précédents avec ces nouveaux contre-termes.

7. une autre approche [85] plus conservative puisqu’elle utilise directement les perturbations dans les holo-
nomies, a obtenu les même résultats que notre travail pour le cas des perturbations scalaires : l’algèbre est
inchangée et faire un développement limité des contraintes de l’approche conservative redonne exactement
les contraintes modifiées obtenues ici. Cependant, elle ne considère que le cas des variables diagonales alors
que les perturbations ne le sont pas forcément : elle n’est pas invariante de jauge.

8. à cause de la déformation de l’algèbre via l’équation (12.3), la définition des variables invariantes de jauge
va être elle-aussi modifiée : l’équation (7.88) dans notre cas est alors donnée par

δ[ξ0,ξ](δẊ)− (δ[ξ0,ξ]δX). = Ω δ[0,ξ0]δX. (12.5)
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A priori sans grande conséquence, les variables invariantes de jauge usuelles vont maintenant faire inter-
venir des termes en Ωn où n ∈ Z, et leur expression en ρc/2 va alors être très différente du cas classique.
De même, leurs équations du mouvement vont ressembler à celles obtenues classiquement, l’équation (126)
de l’article analogue à l’équation (6.70), mais la présence des termes en Ω va avoir des effets très impor-
tants. Les solutions obtenues dans une étude préliminaire montre qu’elles peuvent diverger à cet instant,
notamment à cause du fait que proche du rebond, Ω < 0, donnant des solutions en exponentielles réelles.

Ce travail permet ainsi de considérer l’effet des corrections d’holonomies dans le cas général où on ne tient pas
compte du type des perturbations. Les variables de jauge vont alors avoir une équation du mouvement similaire à
celle de Mukhanov-Sasaki, mais avec des potentiels effectifs spécifiques à chaque type de perturbations. L’étape
suivante sera ainsi de chercher à résoudre ces équations et trouver les solutions utiles dans l’obtention des
spectres de puissance, afin de pouvoir comparer théorie et observations.
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Chapitre 13

Invariance de jauge et équation de
Hamilton-Jacobi

Enfin, il existe un dernier sujet auquel nous nous sommes intéressés et qui concerne plus une étude de
mécanique analytique qu’une étude en cosmologie. Il existe une méthode permettant de dériver assez directement
les variables invariantes de jauge dans le formalisme canonique. Elle utilise pour cela l’équation de Hamilton-
Jacobi. Cette méthode a d’abord été appliquée dans le formalisme ADM [1], et nous avons trouvé intéressant
de l’appliquer à celui de la cosmologie quantique à boucles : quelle que soit la contrainte, modifiée ou non,
la procédure à suivre est la même, et peu de dérivations sont nécessaires. Dans la suite, nous avons surtout
considéré le cas des perturbations scalaires.
En utilisant les variables d’Ashtekar dans l’espace de Fourier, on va décomposer les perturbations sur une base
rendant compte de leur propriétés. On va ainsi définir deux nouvelles variables qui vont simplifier les calculs et
qui correspondront en fait aux perturbations de la métrique (ψ,E)

γ1 = 2p̄ψ, γ2 = p̄k2E. (13.1)

Leurs moments conjugués πi seront alors obtenus par l’utilisation d’une fonction génératrice, similaire à celles
que l’on a introduite dans le premier chapitre, et la première étape consistera ainsi en un changement de
variables (A,E) → (γ, π). Une fois les contraintes exprimées avec ces nouvelles variables, résoudre l’équation
de Hamilton-Jacobi reviendra ici à trouver une fonction génératrice S dont nous connaissons la forme, telle que
maintenant

H

(
γ, π =

∂S

∂γ
, η,

∂S

∂η

)
= 0, D

(
γ, π =

∂S

∂γ
, η,

∂S

∂η

)
= 0. (13.2)

Une fois cette fonction trouvée, il sera alors possible de définir les variables invariantes de jauge en utilisant les
densités de contraintes au premier ordre, ainsi que leurs équations du mouvement par les densités du second
ordre.
Il est cependant nécessaire pour que cette méthode marche d’avoir une algèbre auparavant close : certaines
anomalies apparâıtront lorsque l’on considérera les crochets de Poisson des densités de contrainte au premier
ordre, mais toutes les autres n’apparâıtront que si on calcule les crochets de Poisson entre les densités de
contraintes au second ordre, ce qui n’est pas fait ici. Quoiqu’il en soit, combiner l’approche précédente avec
cette méthode permet d’avoir une algèbre close et les équations du mouvement pour les variables invariantes de
jauge.
Cette méthode a été appliquée aux corrections d’holonomies, redonnant exactement ce que nous avons trouvé au
chapitre précédent. Elle a de même été appliquée aux corrections d’inverse-volume et l’expression des variables
invariantes de jauge présente une légère différence avec celle obtenue dans des travaux précédents [55] : les
variables invariantes de jauge ont une expression différente mais le terme en s2k2 trouvé ici et dans [55] s’avère
être le même, ne dénigrant en rien leurs travaux suivants. Nous avons aussi considéré le cas où les deux corrections
étaient prises simultanément, et on retrouve le fait que les corrections n’agissent pas de la même façon : l’étude
des crochets de Poisson pour les contraintes au premier ordre montre que dans ce cas, les contre-termes devraient
être une multiplication des contre-termes trouvés séparément. Cependant, cela reste une hypothèse et il faudrait
vraiment mener les calculs à leur terme.
Cette méthode est ainsi générique à toute théorie présentant des contraintes, et son application présente certains
avantages : notamment pour le cas des perturbations scalaires avec les corrections d’holonomie, l’obtention des
équations du mouvement pour les perturbations ont été longues et laborieuses à obtenir, et il en a été encore plus
pour l’obtention de celles des variables invariantes de jauge. Or cette méthode s’est avérée être directe, propre
et efficace, et a aussi permis de trouver une partie des anomalies : pour tout travail futur dans le formalisme
canonique, elle pourrait ainsi s’avérer utile.
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Gauge invariance in loop quantum cosmology: Hamilton-Jacobi and Mukhanov-Sasaki
equations for scalar perturbations
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Gauge invariance of scalar perturbations is studied together with the associated equations of motion.

Extending the methods developed in Hamiltonian general relativity, the Hamilton-Jacobi equation is

investigated into the details in the framework of loop quantum gravity. The gauge-invariant observables

are built, and their equations of motions are reviewed both in the Hamiltonian and Lagrangian approaches.

This method is applied to scalar perturbations with either holonomy or inverse-volume corrections.

DOI: 10.1103/PhysRevD.85.123534 PACS numbers: 98.80.Qc

I. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative and
background-independent quantization of general relativity
[GR] (see [1] for reviews). Recently, it has been realized
that different views, based on canonical quantization of
GR, on covariant quantization of GR and on formal quan-
tization of geometry lead to the very same LQG frame-
work. Although other approaches are still much debated,
this makes LQG a very promising model to address the
outstanding question of quantum gravity.

The application of LQG ideas to the universe as a whole
is called loop quantum cosmology [LQC] (see [2] for
reviews). This is basically the symmetry-reduced version
of the theory. So far, LQC proved to be interesting both as a
model of the earlyUniverse, solving the big bang singularity,
and as a way of possibly testing LQG ideas. At the effective
level, LQC modifies the usual paradigm by two main cor-
rections: the inverse-volume terms, basically arising for
inverse powers of the densitized triad,whichwhen quantized
become an operator with zero in its discrete spectrum thus
lacking a direct inverse, and holonomy corrections coming
from the fact that loop quantization is based on holonomies,
rather than direct connection components.

To investigate the observational consequences of those
LQC-induced modifications, it is most useful to construct
rigorously gauge-invariant variables. It is well known, even
in standard GR, that among the solutions of field equations
for perturbed variables, some are unphysical modes corre-
sponding to a mere coordinate transformations.

In this article, we basically extend the method intro-
duced in [3]. We start with first order constraints in the
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric.
Then, using a generating function, the variables (perturba-
tions of the densitized triads and their conjugate momenta)
are changed according to ð�K; �EÞ ! ð�m;�mÞ. The first
order constraints are reexpressed as functions of ð�m;�mÞ.
The gauge-invariant variables ðQ;PÞ are obtained thanks to
a natural generating function S and the dynamics is derived
through anomaly-free second order constraints in terms of

ðQ;PÞ. Then, the Mukhanov variables v, R, and z are
given. Finally, the method is applied to the case of LQC
with both holonomy and inverse-volume corrections.
This approach exhibits several advantages:
(i) the treatment is purely Hamiltonian with easy

computations,
(ii) the Mukhanov variables v and R are obtained di-

rectly and the equation of motion is easily found
without using Bardeen potentials,

(iii) it helps to construct an anomaly-free algebra by
imposing relations on the Poisson brackets,

(iv) the z variable can be found without ambiguity and
in a quite simple way,

(v) the generating functions are clearly defined, easy to
handle and allow one to trace back deeply the origin
of gauge invariance,

(vi) it works for any kind of constraint theory.
The paper is organized as follows. In the two first

sections, we introduce the framework of loop quantum
cosmology and some elements of analytical mechanics
useful to implement the Hamilton-Jacobi method. Then,
we show the main steps of the proposed procedure and its
application to the cases of holonomy and inverse-volume
corrections.

II. LOOP QUANTUM COSMOLOGY
FRAMEWORK

In general relativity, when the Arnowitt-Deser-Misner
(ADM) formalism is chosen, space-time is foliated into a
family of spacelike 3-surfaces and the dynamics is given
by constraints. The fundamental variables are the space
metric qab, together withN, the lapse function, and Na, the
shift vector, which describe how the ‘‘leaves’’ of the folia-
tion are welded together. The metric is written as

ds2 ¼ �N2dt2 þ qabðdxa þ NadtÞðdxb þ NbdtÞ: (1)

In the LQC formalism, the spatial metric is expressed in
terms of triads eia that are related to the spatial metric by
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qab _¼eiae
i
b: (2)

The first basic variable (for a detailed introduction, see [1])
is the Ashtekar connection:

Ai
a ¼ �i

a þ �Ki
a; (3)

where � is the Barbero-Immirzi parameter, �i
a is the spin

connection and Ki
a is the extrinsic curvature. The second

one is the densitized triad:

Ea
i ¼ ðdeteiaÞeai : (4)

The conjugate variables follow the symplectic structure

fAi
aðxÞ; Eb

j ðyÞg ¼ ���i
j�

b
a�

3ðx� yÞ; (5)

where � ¼ 8�G. The canonical Einstein-Hilbert action in
this formalism reads as

SEH ¼
Z

dt

�Z d3x

��
_Ai
aE

a
i �G½�i� �D½Na� �H½N�

�
;

(6)

where G½�i� is the Gauss constraint, D½Na� is the
diffeomorphism constraint, and H½N� is the Hamiltonian
constraint. The diffeomorphism constraint generates defor-
mations of a spatial slice so that, when it is satisfied, spatial
geometry does not depend on the choice of space coordi-
nates. General covariance of the space-time geometry (in-
cluding the time coordinate) is ensured by the Hamiltonian
constraint. Finally, as a set of triad vectors can be rotated
without changing the metric, there is an additional SO(3)
gauge freedom. Invariance of the theory under those rota-
tions is guaranteed by the Gauss constraint. This latter
constraint will be solved explicitly by the parametrization
we use for the variables.

Taking into account perturbations in a FLRW universe,
one has to deal with the perturbed spatial metric ��ab such
that

qab ¼ a2ð�ab þ ��abÞ; (7)

where aðtÞ is the scale factor. The perturbed Ashtekar
variables will then be related to the perturbed metric and
it is straightforward to see that the background and per-
turbed densitized triad obeying Ea

i ¼ �Ea
i þ �Ea

i are

�E a
i ¼ �p�a

i ¼ a2�a
i ; (8)

and

�Ea
i ¼ 1

2
�pð���a

i þ ��d
d � �a

i Þ: (9)

On the other hand, the extrinsic curvature Ki
a is given by

Ki
a ¼ �Ki

a þ �Ki
a ¼ �k�i

a þ �Ki
a: (10)

The homogeneous and isotropic background ð �p; �kÞ satisfies
f �k; �pg ¼ �

3
; (11)

and the perturbed part ð�Ea
i ; �K

b
j Þ fulfills

f�Ki
aðxÞ; �Eb

j ðyÞg ¼ ��i
j�

b
a�

3ðx� yÞ: (12)

In [3], the original variables are the spatial perturbed
metric ��ab and its conjugate momentum ��ab. As �Ea

i is
linear in ��, as it can be seen in Eq. (9), it is possible to
follow the same procedure, with only minor modifications
due to the fact that now the fundamental variables are �E
and �K.
The study of the homogeneous and isotropic universe is

an important first step for any tentative theory of quantum
cosmology. In the framework of LQC, this led to the
famous replacement of the big bang by a big bounce.
Investigating perturbations is the next logical step to probe
possible deviations from the standard model. This has
already been studied in many articles (see, e.g., [4]),
especially for gravitational waves and subsequent conse-
quences on the B-mode spectrum of the cosmological
microwave background (CMB).
We now turn to the study of scalar perturbations of the

metric (�, c , B and E) that are observationally relevant as
they can be used to compute the well measured tempera-
ture CMB spectrum. The perturbed FLRW metric in con-
formal time can be written as

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ 2@aB � dxad�
þ ðð1� 2c Þ�ab þ 2@a@bEÞdxadxb�: (13)

Comparing this expression with Eq. (1), one obtains the
perturbed lapse function and perturbed shift vector as

�N ¼ �N�; �Na ¼ @aB: (14)

Using the definition of the densitized triad, one can also see
that

�Ea
i ¼ �pð�2c�a

i þ ð�a
i�� @i@

aÞEÞ: (15)

Starting from Eq. (15), all the useful equations will be
derived using a clear algorithm.

III. HAMILTON-JACOBI EQUATION

This section is heavily based on [5].

A. Canonical transformations

When dealing with general transformations of coordi-
nates, one has to consider the simultaneous transformations
of independent coordinates and momenta, qi and pi to a
new set Qi and Pi, through (invertible) equations :

Qi ¼ Qiðq; p; tÞ; (16)

Pi ¼ Piðq; p; tÞ: (17)

Theses equations basically define a transformation from a
point in the phase space to another one. In the Hamiltonian
mechanics framework, only those transformations for
which the new Q, P are canonical coordinates are interest-
ing. This means that there exists a function KðQ;P; tÞ such
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that the equations of motion in the new set are in the
Hamiltonian form:

_Q i ¼ @K

@Pi

; _Pi ¼ � @K

@Qi

: (18)

Transformations for which Eqs. (18) are fulfilled are said to
be canonical.

The function K plays the role of the Hamiltonian in the
new coordinate set. For the treatment to be fully generic,
for all systems with the same number of degrees of free-
dom, Eqs. (18) must be the equations of motion in the new
coordinates and momenta whatever the initial form of H.
No matter wether one deals with an harmonic oscillator or
with a two-dimensional Keplerian problem. If Qi and Pi

are to be canonical coordinates, they must satisfy the
‘‘modified’’ Hamilton principle

�
Z
ðPi

_Qi � KðQ;P; tÞÞdt ¼ 0; (19)

whereas, as usual,

�
Z
ðpi _qi �Hðq; p; tÞÞdt ¼ 0: (20)

Both equations will be satisfied if the integrands are con-
nected by the relation:

�ðpi _qi �Hðq; p; tÞÞ ¼ Pi
_Qi � KðQ;P; tÞ þ dF

dt
; (21)

and both sets verify the Poisson bracket:

fq; pg ¼ fQ;Pg ¼ 1: (22)

F is especially useful when mixing half of the old variables
with the new variables and will then be considered as a
bridge between the two sets of canonical variables. It is
called the generating function of the transformation. On
can define 4 such generating functions:

F1ðq;Q; tÞ; F2ðq; P; tÞ; F3ðp;Q; tÞ;
F4ðp; P; tÞ;

(23)

with the following properties:

pi ¼ @F1

@qi
; Pi ¼ �@F1

@Qi

; (24)

K ¼ H þ @F1

@t
; (25)

pi ¼ @F2

@qi
; Qi ¼ @F2

@Pi

; (26)

K ¼ H þ @F2

@t
; (27)

qi ¼ �@F3

@pi

; Pi ¼ � @F3

@Qi

; (28)

K ¼ H þ @F3

@t
; (29)

qi ¼ �@F4

@pi

; Qi ¼ @F4

@Pi

; (30)

K ¼ H þ @F4

@t
: (31)

In the particular case where, for instance,

F3ðp;Q; tÞ ¼ �p �Q; (32)

Eq. (28) gives

q ¼ Q; P ¼ p; (33)

which corresponds to the identity transformation.

B. Hamilton-Jacobi equation

In order to solve a problem of mechanics, it is useful to
formulate it with the best suited variables, for example, the
angle-action variables. Then, one solves the Hamilton-
Jacobi equation written thanks to a generating function S,
which changes initial variables to new appropriate coordi-
nates. The equation is basically given by

H

�
qi; pi ¼ @S

@qi

�
¼ �i: (34)

For gravity, one has to deal with constraints, as introduced
in the previous sections. General methods to solve the
Hamilton-Jacobi equation in this case, with �i ¼ 0, are
given in [6].

IV. FIRST CHANGE OF VARIABLES ð�m;�mÞ
In this section, we show in some details the way to

proceed in order to find easily the gauge-invariant quanti-
ties. This ‘‘algorithm’’ of resolution, originally used in [3]
but not fully detailed, can be applied in many situations
where perturbations are considered (see, for instance, [7]).
The Hamilton-Jacobi framework has already been exten-
sively studied and used in general relativity, as, e.g., in [7],
but the method presented here focuses on the goal of
directly deriving some gauge-invariant variables useful
for observations.
It will now be detailed in the case of general relativity

but expressed with variables that can be further used in the
framework of loop quantum gravity, as investigated in the
last section of this article.

A. New variables

Following [3], we define, from an appropriate generating
function, two ‘‘new’’ variables � and their conjugate mo-
menta �, related to �K and �E, so that the equations are
simplified. This is nothing else than reexpressing the per-
turbations E and c . Fundamentally, this does not bring any
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new physical information as it is possible to obtain the very
same results starting directly from c and E.

We will use the Fourier transformed variables such that,
for instance,

�Ea
i ðk; tÞ ¼

Z
d3xe�ik�x�Ea

i ðx; tÞ; (35)

leading to

�Ea
i ðk; tÞ ¼

Z
d3xe�ik�x �p

�
�2c ð�a

i Þ þ
�
�a
i �

kik
a

k2

�
k2E

�
:

(36)

Working in Fourier space greatly simplifies most equations
and can add some freedom. In our case, we define two
vectors Am (m ¼ 1,2) in the Fourier space such that

A1
ai ¼ a�a

i ; (37)

A2
ai ¼ b

�
�a
i �

kik
a

k2

�
: (38)

The variables a and b depend on the choice of the basis but,
as we will show later, the final results do not depend on
them. The scalar product of these vectors is proportional to
2k2. This is in sharp contrast with the situation studied
in [3] where one had

A1
L ¼ �a

i ; (39)

A2
L ¼ kik

a

k2
� 1

3
�a
i : (40)

The difference is due to the choice of the perturbation: in
our case we use E, whereas the ‘‘standard’’ 	 was used in
[3] leading to

�Ea
i ðk;tÞ¼

Z
d3xe�ik�x �p

�
�2c ð�a

i Þþ
�
kik

a

k2
�1

3
�a
i

�
k2	

�
:

It is easy to see that A1
L � A2

L ¼ 0. However, this is not in
principle necessary and both approaches are strongly re-
lated and lead to the same results. Having defined theses
vectors, instead of working with c and E, we will use two
other variables �m (m ¼ 1,2) such that

�Ea
i ðk; tÞ ¼ �1A

1
ai þ �2A

2
ai: (41)

As suggested before, these new variables are just related
with the perturbations through

a�1 ¼ 2 �pc ; (42)

b�2 ¼ �pk2E: (43)

Using Eq. (41), one can express them in terms of �E so that

a�1 ¼ kak
i

k2
�Ea

i ; (44)

b�2 ¼ � 1

2

�
3
kak

i

k2
�Ea

i � �Ed
d

�
: (45)

Taking the trace of (41) indeed leads to

�Ed
d ¼ 3a�1 þ 2b�2; (46)

and expressing �1 as a function of �2 in Eq. (41), one
obtains:

�Ea
i ¼

1

3
�Ed

d�
a
i þ b�2

�
1

3
�a
i �

kik
a

k2

�
: (47)

This can be expressed as

�Ea
i ¼

1

3
�Ed

dA
1
L � b�2A

2
L; (48)

by replacing ��ij (as used in [3]) by �Ea
i . This is the first

bridge between the two approaches. When solving this
equation by multiplying by A2�1

L , one naturally obtains
Eqs. (44) and (45).
Furthermore, we can show that both approaches are in

fact fully equivalent. Starting from one, for example, using
	, we can derive the expression of �m when E is used in
terms of �L

m. This can be simply performed by using Eq. (9)
which relates ��ij with �E

a
i . To be consistent with [3], we

redefine (due to our conventions) the variables as

�p��a
i ¼ �p�L

1A
1
L þ �p�L

2A
2
L: (49)

Noticing that, from Eq. (9),

�p��a
i ¼ �Ed

d�
a
i � 2�Ea

i ; (50)

we can reexpress the approach of [3] as:

�L
1 ¼ 1

3
��d

d; (51)

�L
2 ¼ 1

2

�
3
kika
k2

��a
i � �i

a��
a
i

�
: (52)

From Eqs. (9), (41), (49), and (50), it follows that

�p��a
i ¼ �p�L

1�
i
a þ �p�L

2

�
kik

a

k2
� 1

3
�a
i

�
(53)

¼ a�1�
a
i þ 2b�2

kika
k2

: (54)

Taking the trace gives:

�p�L
1 ¼ a�1 þ 2b

3
�2; (55)

and Eq. (53) becomes

�p�L
2

�
kik

a

k
� 1

3
�a
i

�
¼ 2b�2

�
kik

a

k
� 1

3
�a
i

�
: (56)

This leads to the expected equations:

2b�2 ¼ �p�L
2 ; (57)
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a�1 ¼ �p

�
�L
1 � 1

3
�L
2

�
: (58)

Reexpressing them as functions of �E, with Eqs. (50)–(52)
leads to Eqs. (44) and (45).

B. Generating function S�

In the framework of perturbed LQC, the canonical var-
iables are �K and their conjugates �E. We have seen that it
is possible to make a transformation from �E to �m. To this
aim, we have to define the corresponding conjugate varia-
bles �m of �m, which will depend on �K. As reminded
above, there exists 4 generating functions allowing one to
define new sets of variables. In our case, we define the
momentum with a generating function S� such that

�m / @S�
@�m

; (59)

where S� is then a function of �m. As � is a function of �E,

the momenta do not depend on �E and we can therefore set

S� ¼ c�Ki
aA

m
ai�m; (60)

where c is a constant. At this stage, we might consider two
cases. First, one may chose to have �m as canonical coor-
dinates and �m as their conjugate momenta:

�K ¼ q; �E ¼ p; �m ¼ Q; �m ¼ P:

(61)

In this case, S� will be similar to a f1ðq;QÞ function and

the conjugate momenta are

�m ¼ � @S�
@�m

¼ �c�Ki
aA

m
ai: (62)

In the second case, as �m are related to �E ¼ p, one might
want to have now �m as canonical coordinates and �m as
their conjugate momenta:

�K ¼ q; �E ¼ p; �m ¼ P; �m ¼ Q:

(63)

In this case, S� will be similar to a f2ðq; PÞ function and the
conjugate momenta are

�m ¼ @S�
@�m

¼ c�Ki
aA

m
ai: (64)

Comparing both cases, one can see that changing c ! �c
exchanges one case for the other one. From now on,
we focus on the first case: the �m will be the canonical
coordinates, and �m their conjugate momenta.
Nevertheless, considering either � ¼ Q or � ¼ P, the
algorithm naturally leads to the same correct gauge-
invariant variables. In our choice, those variable are pre-
cisely the Mukhanov variables. Remaining as general as
possible, one can finally write:

�1 ¼ �ac�Kd
d; (65)

�2 ¼ �cb

�
�Kd

d �
kaki
k2

�Ki
a

�
: (66)

It is useful for the following computations to reexpress �K
as a function of �m such that

�Ki
a ¼ aia�1 þ bia�2; (67)

where

aia ¼ a1�
i
a þ a2

kika
k2

; (68)

bia ¼ b1�
i
a þ b2

kika
k2

: (69)

Multiplying Eq. (67) by �cAm
ia leads to conditions on a1,

b1, a2 and b2 through

�m ¼ �cAm
iaðaia�1 þ bia�2Þ; (70)

and, consequently,

�Ki
a ¼ � 1

ca

kika
k2

�1 þ 1

2bc

�
3
kika
k2

� �i
a

�
�2: (71)

One can then multiply the previous equation by �Ea
i so as

to obtain:

�Ki
a�E

a
i ¼ ��Ea

i

ca

kika
k2

�1 þ �Ea
i

2bc

�
3
kika
k2

� �i
a

�
�2

¼ � 1

c
ð�1�1 þ �2�2Þ: (72)

As explained in the next section, this might be interpreted
as a conservation equation.

C. Poisson brackets

We now have defined the conjugate momenta �m of �m.
As for the original Ashtekar variables, these new ones will
obey some Poisson bracket relations. Going through the
computation leads to

f�m;�ng ¼ �c�mn: (73)

The transformation can be said to be canonical as the
variables have a symplectic structure such that the new
Poisson bracket is related to the old one through

f�m;�ng ¼ f�Ki
aðxÞ; �Ea

i ðxÞg�mn: (74)

In the next sections, we will consider a universe filled with
matter, and, in particular, with a massive scalar field �’,
with its conjugate momentum ��, so that f �’; ��g ¼ 1, their
perturbations being given by �’ and ��. For simplicity
and without any lack of generality, we therefore set
�c ¼ 1. So,

f�m;�ng ¼ �mn: (75)
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Using Eq. (72), we see that

�Ki
a�E

a
i

f�Ki
aðxÞ; �Ea

i ðxÞg
¼ � �m�m

f�m;�mg : (76)

As we have chosen the �m, related to �E, as the canonical
coordinates (instead of �K in the usual theory), this leads
to the appearance of a minus sign in the previous equation.

The new set of symplectic variables, �m and �m, is now
well defined as

a�1 ¼ kak
i

k2
�Ea

i ; (77)

b�2 ¼ � 1

2

�
3
kak

i

k2
�Ea

i � �Ed
d

�
; (78)

�1 ¼ �ac�Kd
d; (79)

�2 ¼ �bc

�
�Kd

d �
kaki
k2

�Ki
a

�
: (80)

Their Poisson brackets are given by

f�1; �1g ¼ f�2; �2g ¼ 1; (81)

f�1; �2g ¼ f�2; �1g ¼ 0: (82)

As explained before, at this stage, nothing new emerges.
This transformation is just useful to obtain simpler
equations.

D. First order constraints in the term of ð�a; �aÞ
To use the new set of variables, we now have to reex-

press the constraints in terms of �m and �m. With the
Ashtekar variables, for a universe filled with a massive
scalar field ’ (with conjugated momentum �), the diffeo-
morphism constraints in the ADM formalism reads as

D½Na� ¼
Z
�
d3x½ �NaðDð0Þ þDð2ÞÞ þ �NaDð1Þ�; (83)

at first order in constraint densities. In fact, as in this case
�Na ¼ 0, only the Dð1Þ term remains. Its gravitational and
matter components are

D ð1Þ
G ¼ 1

�
ð� �k�k

c@dð�Ed
kÞ þ �p@cð�Kd

dÞ � �p@dð�Kd
c ÞÞ;
(84)

D ð1Þ
M ¼ ��ð@c�’Þ: (85)

As far as the Hamiltonian constraints are concerned, one
has

H½N� ¼
Z
�
d3x½ �NðH ð0Þ þH ð2ÞÞ þ �NH ð1Þ�; (86)

where the first order constraint densities are

H ð1Þ
G ¼ 1

2�

�
�4

ffiffiffiffi
�p

p
�k�Kd

d �
1ffiffiffiffi
�p

p �k2�Ed
d þ

2ffiffiffiffi
�p

p @c@
j�Ec

j

�
;

(87)

H ð1Þ
� ¼ ����

�p3=2
� ��2

2 �p3=2

�Ed
d

2 �p
; (88)

H ð1Þ
’ ¼ �p3=2

�
V;’ð �’Þ�’þ Vð �’Þ�E

d
d

2 �p

�
: (89)

As in [3], we define �0 ¼ �’, and �0 ¼ ��, such that �a

(a ¼ 0, 1, 2) correspond to the old canonical coordinates
‘‘q’’ and f�a; �ag ¼ 1. The expressions of �a represent the
‘‘maximal’’ and ‘‘fundamental’’ decomposition of the per-
turbations. What was done so far is nothing else than a
decomposition of the theory in terms of those perturba-
tions. Gauge-invariant variables are derived from first or-
der constraints. After a Fourier transformation, and using
Eqs. (41) and (71), both first order constraints can now be
expressed as functions of ð�a; �aÞ such that

H ð2Þ½�N� ¼ �NðH ð1Þ
G þH ð1Þ

M Þ

¼ �Nffiffiffiffi
�p

p
�
2 �p �k

c�

�1

a
þ _�’�0 þ b�2

�
ð2 �k2 � � _�’2Þ

þ �p2V0�0 þ a�1

�

�
�k2 þ 3 �k2 � 3

2
� _�’2

��
;

(90)

and

D ð2Þ½�Na� ¼ �NaðDð1Þ
G þDð1Þ

M Þ

¼ i �pðka�NaÞ
�
� _�’�0 þ

�k

�p

a�1

�
þ 1

c�

�2

b

�
;

(91)

where V0 and V 00 refer, respectively, to the first and second
derivative with respect to the scalar field ’. The notation

H ð2Þ½�N� and Dð2Þ½�Na� are used, in agreement with
most papers, to emphasize that those expressions are in
fact second order ones due to �N and �Na factors. We have
also simplified the results by using the Friedmann equation
(calculations are derived in the Appendix):

�k 2 ¼ �

3

� _�’2

2
þ �pV

�
; (92)

and the fact that the equation of motion for the background
variables reads as

_�’ ¼ ��

�p
: (93)

We have thus expressed the first order constraint densities
(90) and (91), as functions of the new set of symplectic
coordinates ð�a;�aÞ. In the next section, we will show that
it is possible to make a final transformation toward a new
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set of coordinates ðQ;PÞ, meaningful for cosmology and
gauge invariance, using a generating function S and the
Hamilton-Jacobi equations.

V. GAUGE TRANSFORMATION AND THE
MUKHANOV-SASAKI EQUATION

To describe physical effects, one has to deal with gauge-
invariant quantities. The goal of this section is to address
the specific issue of gauge invariance within the canonical
formalism.

A. Gauge invariance in the canonical formalism

In a canonical formulation, gauge transformations are
directly generated by Poisson brackets of the fields with the
constraints. In the covariant language, gauge transforma-
tions are studied as perturbation transformations under the
coordinate change

x	 ! x	0 ¼ x	 þ 
	ðxÞ; (94)

generated by vector fields 
	. Under this coordinate trans-
formation, any tensor field receives a correction given by
its Lie derivative along 
	. As defined in [8], the part of the
transformation relevant for the scalar modes can be
parametrized by two scalar functions 
0 and 
 such that


	 ¼ ð
0; @	
Þ: (95)

Along this vector, a variable X will undergo a transforma-
tion given in the canonical formalism by

�½
0;
�X _¼fX;Hð2Þ½ �N
0� þDð2Þ½@a
�g; (96)

where

Hð2Þ½�N� ¼
Z

d3xH ð2Þ½�N�; (97)

Dð2Þ½�Na� ¼
Z

d3xDð2Þ½�Na�: (98)

It is easy to relate the canonical approach to the Lie
derivative by noticing that

f �Xþ �X;D½
a�g ¼ L ~

ð �Xþ �XÞ: (99)

In the framework of LQC, using the densitized constraints
(84)–(89) in Eq. (96), one expresses the transformations of
basics variables as

�½
0;
��Ea
i ¼ 2 �p �k 
0�

a
i � �pð�a

i k
2 � kak

iÞ
; (100)

�½
0;
��Ka
i ¼ � 1

2
�k2
0�

i
a � kak

ið
0 þ �k
Þ

þ �

2

�
� _�’

2
þ �pV

�

0�

i
a; (101)

�½
0;
��’ ¼ _�’
0; (102)

�½
0;
��� ¼ � �p _�’k2
� �p2V 0
0: (103)

With these expressions and the definition of �m and �m,
it is easy to see that

�½
0;
�Hð2Þ½�N�¼ fHð2Þ½�N�;Hð2Þ½ �N
0�þDð2Þ½@a
�g¼ 0;

�½
0;
�Dð2Þ½�N�¼ fDð2Þ½�Na�;Hð2Þ½ �N
0�þDð2Þ½@a
�g¼ 0;

which means that the first order constraints (90) and (91)
are gauge-invariant. Another way to see this is to compute
directly the Poisson brackets:

fHð2Þ½�N1�; Hð2Þ½�N2�g ¼ 0; (104)

fHð2Þ½�N�; Dð2Þ½�Na�g ¼ 0; (105)

fDð2Þ½�Na
1 �; Dð2Þ½�Na

2 �g ¼ 0; (106)

and replace the �N and �Na by their 
	 equivalents. What
is shown here has been noticed in [3]. As it will be
emphasized in the next section, this means that to obtain
gauge-invariant quantities, the algebra should not only be
anomaly-free, but should also have null first order Poisson
brackets.

B. Gauge invariance with the
Hamilton-Jacobi equation

In the Hamilton-Jacobi equation, the momentum is ex-
pressed in terms of a generating function S and a new
transformation is performed. As stated in [3], there are
differences between the classical case where standard
Hamiltonians are used, and the case studied here where we
rely on constraints and reduce the phase space. In the latter
case, the Hamilton-Jacobi-like equation has to be directly
solved. As the total first order constraint (density) has to be
null for all �N and �Na, which play similar (although
slightly different) roles, one can separate the equations and
solve the two Hamilton-Jacobi-like expressions:

H ð2Þ½�N�
�
��;�� ¼ @S

@��

�
¼ 0; (107)

D ð2Þ½�Na�
�
��;�� ¼ @S

@��

�
¼ 0: (108)

BecauseH ð2Þ½�N� andDð2Þ½�Na� are linear in ð�a; �aÞ in
(90) and (91), the more ‘‘natural’’ generating function to
consider is a quadratic function S ¼ f2ð�a ¼ q; P2Þ such
that

S ¼ 1
2A������ þ B���P2; (109)

where A�� is a 3� 3 matrix. Taking into account the

properties of the generating function, the conjugate variable
of P2 is given by

Q2 ¼ @S

@P2

¼ Ba�a: (110)
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To show where the gauge invariance of the new variablesQ2

and P2 comes from, one can synthetically write that

H ð2Þ½�N�¼ð�NÞðEa�aþ�b�bÞ
¼ð�NÞððEaAabþ�bÞ�bþEaBaP2Þ; (111)

and

D ð2Þ½�Na� ¼ i � ðkc�NcÞðMa�a þ�b�bÞ
¼ i � ðkc�NcÞððMaAab þ�bÞ�b þMaBaP2Þ:

(112)

As constraints they have to vanish, and considering P2 and
�a as independent, it is possible to findBa and Aab through 4
equations:

EaBa ¼ 0; MaBa ¼ 0; (113)

EaAab þ �b ¼ 0; (114)

MaAab þ�b ¼ 0: (115)

With the expression of Q2 given in (110), and using
Eq. (113), one can see that, with our choice of generating
function:

�½
0;
�Q2 ¼ Ba�½
0;
��a

¼ Baf�a;H ð2Þð �N
0Þ þDð2Þð@a
Þg
¼ Baf�a; ð �N
0ÞðEa�a þ�b�bÞg

þ Baf�a; ð@a
ÞðMa�a þ�b�bÞg;
¼ ð �N
0Þ � BaEa þ ð@a
Þ � BaMa ¼ 0: (116)

This shows that Q2 is basically gauge-invariant because of
the relations (113) and not because of the anomaly freedom
of the algebra. The gauge invariance can also be seen by
expressingQ2 in terms of ð�E; �’Þ, and using (100). Finally,
it is possible to define a set of 3 new variables ðQb; PbÞ, and
the function S by S ¼ 1

2Aab�a�b þ Bab�aPb. Making this

choice and applying the procedure described above leads to
simple equations showing that Qb / Q2. This means that
there is a unique consistent choice for Q2 and the previous
case is therefore preferred.

As far as the generating function is concerned, we could
also have chosen S ¼ f1ð�a ¼ q;Q1Þ and found the con-
jugate momentum P1. This would however have led to
P1 ¼ �Q2 and the situation would have been equivalent.
Moreover, it is also possible to consider a generating
function such that

S ¼ f3;4ðp; fQ;PgÞ ¼ 1
2Aab�a�b þ Ba�aP3;4: (117)

Following the same procedure would lead to some new
gauge-invariant functions. However, they do not exhibit
any interesting physical feature. In the following, we will
therefore focus on the generating function given by

Eq. (109), leading to Q ¼ Q2 as a Mukhanov variable
and P ¼ P2 as its momentum.

C. Anomaly freedom in the Hamilton-Jacobi approach

To be consistent, that is to ensure that the evolution
generated by the constraints remains compatible with the
constraints themselves, the theory must be anomaly-free.
In our case, using the same synthetic formulation as in
(111) and (112), one can compute the Poisson brackets:

fHð2Þ½�N1�; Hð2Þ½�N2�g ¼ 0;

fHð2Þ½�N�; Dð2Þ½�Na�g ¼ ð�NÞð�NaÞð�aMa � Ea�aÞ;
fDð2Þ½�Na

1 �; Dð2Þ½�Na
2 �g ¼ 0:

The total first order constraint Mð1Þ½�N; �Na� leads to
fMð1Þ½1�;Mð1Þ½2�g ¼ ½�N; �Na�ð�aMa � Ea�aÞ: (118)

To close algebra, that is to cancel anomalies, one has to
require that

�aMa � Ea�a ¼ 0: (119)

Using Eqs. (114) and (115):

ð114Þ �Mb ¼ EaAabMb þ�aMa ¼ 0; (120)

ð115Þ � Eb ¼ MaAabEb þ�aEa ¼ 0: (121)

Combining those equations with (119), the condition for
anomaly freedom reads as

EaAabMb ¼ MaAabEb; (122)

which is fulfilled only if Aab is a symmetric matrix, with
thus only 6 unknown parameters. This corresponds to a
fully solvable problem. The condition of anomaly freedom
allows one to completely determine without ambiguity the
equations of motion for the gauge-invariant variables.

D. Mukhanov equation in general relativity

As perturbations can, a priori, be analyzed through
different choices of gauges (for instance, theNewton gauge
where B ¼ E ¼ 0), it is useful to provide gauge-invariant
quantities (related to �a, �N and �Na) that are physically
relevant to investigate observational consequences, the
Bardeen potentials [9]:

� ¼ �þ d

d�
ðB� _EÞ þH ðB� _EÞ; (123)

� ¼ c �H ðB� _EÞ; (124)

where H is the conformal Hubble parameter. As we are
dealing with a universe filled with a massive scalar field ’,
it will also undergo gauge-invariant perturbations �’GI.
Gravity and matter perturbations are of course linked and
we shall focus on the linear order, as often in perturbation
theory. As derived in [8] [this follows from the definition
(96)]:
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�’GI ¼ �’þ _�’ðB� _EÞ: (125)

When dealing with all the scalar perturbations, there are 2
degrees of freedoms. This equation generates a constraint
and only 1 degree of freedom remains. Usually, the rele-
vant variable used in cosmology is called the Mukhanov-
Sasaki variable v, originally found in [10] and governed by
the associated Mukhanov-Sasaki equation:

d2v

d�2
þ �v� €z

z
v ¼ 0; (126)

where

v ¼ að�Þ
�
�’GI þ _�’

H
�

�
; (127)

z ¼ að�Þ _�’

H
: (128)

When this variable is found, and after performing a Fourier
transform, it is easy to compute the power spectrum of
the conserved curvature perturbation. As reviewed, e.g.,
in [11]:

v ¼ z � R; (129)

P RðkÞ ¼ k3

�2

��������vk

z

��������2

: (130)

The spectral index is, for example, given by

ns � 1 ¼ dðPRÞ
dðkÞ

��������k¼k?

: (131)

This power spectrum PRðk; �Þ, typically representing the
state of the universe at the end of inflation, is a mandatory
input to compute observables, in particular, in the CMB).

VI. SECOND CHANGE OF VARIABLES ðQ;PÞ
In order to compute physical effects, one needs gauge-

invariant variables. We have shown that the generating
function, defined in Eq. (109), will lead to such gauge-
invariant observables. In the following, we will precisely
show that Q and P are the Mukhanov variables fulfilling
the correct equations of motion.

A. Expression of the gauge-invariant variables

Using the requirement (107) with �c ¼ 1 leads to
conditions on Aab and Ba, through (114). They can be
written as

H ð2Þ½�N� ¼ 0 ¼ 1 � 
þ �0 � 
0 þ �1 � 
1 þ �2 � 
2;

(132)

where


 ¼ 2 �p �k

a
B1 þ _�’B0; (133)


0 ¼ A00
_�’þ 2 �p �k

a
A01 þ �p2V 0; (134)


1 ¼ A01
_�’þ 2 �p �k

a
A11 þ a

�

�
�k2 þ 3 �k2 � 3

2
� _�’

�
; (135)


2 ¼ A02
_�’þ 2 �p �k

a
A21 þ b

�
ð2 �k2 � � _�’Þ: (136)

Considering now Eq. (108), we are led to

D ð2Þ½�Na� ¼ 0 ¼ 1 ��þ �0 ��0 þ �1 ��1 þ �2 ��2;

(137)

where

� ¼ B2; (138)

�0 ¼ b _�’� A02; (139)

�1 ¼ ab

�

�k

�p
þ A12; (140)

�2 ¼ A22: (141)

This system is much simpler than in the ADM formalism
and can be explicitly solved. Taking into account Eq. (108),
one we can directly fix:

B2 ¼ A22 ¼ 0; A02 ¼ b _�’; A12 ¼ �ab

�

�k

�p
:

(142)

This choice for A02 and A12 leads to consider, in Eq. (107),
only 3 equations for 5 unknown variables. One can check
that the conditions (142), implemented in Eq. (136), make
it vanish. This choice is therefore obviously correct.
Moreover, as it will be made clear in the following, it is
not necessary to determine all the coefficients of Aab. Let
us now focus on Ba. Equation (133) leads to a relation
between the terms of Ba:

B1 ¼ � _�’a

2 �p �k
� B0: (143)

B0 will be kept as an irreducible degree of freedom and we
will show that any gauge-invariant quantity will just be, at
the end, proportional to the fundament B0 choice.
The new variable Q defined in Eq. (110) can be ex-

pressed in terms of �a such that, finally, using a�1 ¼
�2 �pc , one obtains:

Q ¼ B0

�
�’� _�’

2 �p �k
� a�1

�
¼ B0

�
�’þ _’

�k
c

�
; (144)

which is similar to v in (127) if one chooses B0 ¼ ffiffiffiffi
�p

p ¼
að�Þ. It can also be noticed that it is independent of the
choice of the base. Of course, one can also choose to invert
Eq. (143),

B0 ¼ � 2 �p �k

a _�’
� B1; (145)

and define the gauge-invariant variable as
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Q ¼ B1

�
� 2 �p

a

�k
_�’
�0 þ �1

�
¼ � 2 �pB1

a

� �k
_�’
�’þ c

�
;

(146)

which is a function of the perturbed curvature variable R:

Q ¼ � 2 �pB1

a
R: (147)

In the following, we will focus on the case for whichQ / v
but the other choice would also be possible and the same
method would lead to similar results. In the next step, we
will keep B0 free, until the last step, and derive the equa-
tions of motion forQ, and therefore for v, the Hamiltonian
formulation and how to find the expression for z.

B. Hamiltonian expression and equations of motions

A general expression has been found for a gauge-
invariant quantity Q which is related to the Mukhanov
variables. As the generating functions S� and S are known,

it is possible to find the Hamiltonian, and therefore the
Lagrangian, from which the equation of motion for Q can
be derived. The classical results can then be obtained
elegantly in the canonical formalism. Considering �1 and
�2 as pure gauge variables, as explained into the details in
[6], we should avoid using any function explicitly depend-
ing on them as they do not contribute to the dynamics.

As we know the Hamiltonian as a function of ð�K; �EÞ
and as we have derived the expression of the generating
functions, it is possible to express the second order con-
straints, that are governing the dynamics of perturbations,
in terms of the new set of variables ðQ;PÞ. Using the
notations of [3], the known variables can be inverted and
one can easily find, with B0 ¼ fð �k; �pÞ:

�’ ¼ Q

B0

þ ½�1; �2�; (148)

�� ¼ B0Pþ A00

B0

Qþ ½�1; �2�; (149)

�1 ¼ A01

B0

Q� a _�’

2 �p �k
B0Pþ ½�1; �2�; (150)

�2 ¼ b
_’

B0

Qþ ½�1; �2�: (151)

To go further in studying the dynamics, let us notice that,
as Q is gauge invariant,

��N;�NaQ _¼fQ;Hð2Þ½�N� þDð2Þ½�Na�g ¼ 0: (152)

The evolution ofQ (and this is true for any gauge-invariant
variable) is thus given by the second order constraint
densities:

_Q ¼ fQ; �NðH ð0Þ þH ð2ÞÞ þ �NaðDð0Þ þDð2ÞÞ
þH ð2Þ½�N� þDð2Þ½�Na�g

¼ fQ; �NH ð0Þ þ �NaDð0Þg þ fQ;H ð2Þ½�N�
þDð2Þ½�Na�g þ fQ; �NH ð2Þ þ �NaDð2Þg

¼ 0þ ��N;�NaQþ fQ; �NH ð2Þ þ �NaDð2Þg: (153)

So,

_Q ¼ fQ; �NH ð2Þ þ �NaDð2Þg: (154)

In our case, these constraint densities are, with �Na ¼ 0:

H ð2Þ ¼ 1

2�

ffiffiffiffi
�p

p ð�c
k�

d
j�K

j
c�Kk

d � ð�Kd
dÞ2Þ

þ 1

2

��2

�p3=2
þ 1

2

ffiffiffiffi
�p

p
�ab@a�’@b�’

þ 1

2
�p3=2V;’’ð �’Þ�’2 þ ½�Ea

i �: (155)

As �E is related to �m through Eq. (41), we should not
consider functions depending on it. Moreover, as

@S�
@�

¼ fð�m; _�mÞ; (156)

one can write, after taking the Fourier transformation and
using Eq. (71):

HS ¼
Z

d3k
�p

2�

�
3

2

�2
2

ðbcÞ2 �
2

c2
�1

a

�2

b
þ �

�2
0

�p2

þ �ðk2 þ �pV 00Þ�2
0

�
: (157)

The c parameter enters the equation only quadratically,
therefore the choice of the generating function S� (either

� ¼ P or � ¼ Q) does not enter the final result.
However, we do not have yet expressed the Hamiltonian
for the gauge-invariant variables. It is necessary to use
Eqs. (148) in (157) and to add the relevant terms associated
with the derivative with respect to time of the generating
function,

@S

@�
¼ 1

2
_A00�

2
0 þ _B0�0Pþ fð�m; _�mÞ

¼ 1

2
_A00

�
Q

B0

�
2 þ _B0

B0

PQ: (158)

To avoid inconsistencies, _Q and _P terms should not be
taken into account. The gauge-invariant Hamiltonian con-
straint for Q and P is thus:

HS
GI ¼

Z d3k

2

��
B0

Pffiffiffiffi
�p

p
�
2 þ �B0

� ffiffiffiffi
�p

p
Q

B0

�
2

þ PQ

�
1

�c2
_�’2

�k
þ 2

A00

�p
þ 2

_B0

B0

��
; (159)
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where

�B0
¼

_A00

�p
� 2� _�’

A01

a
þ A2

00

�p2
þ k2 þ �pV 00 þ 3�

2
_�’2:

(160)

In order to recover the usual Hamiltonian formulation, the
cross terms in P and Q in the previous equation should
vanish. However, looking at (159), it is clear that this cross

terms will give the expression of A00, as a function of
_B0

B0
.

Looking at �, we see that the square and the derivative with
respect to time of A00 are involved. One should also notice
that it is not really Q which enters the expression of the

Hamiltonian, but rather � ¼ Q
B0

¼ �’þ _’
�k
c . Its conjugate

momentum is thus B0P. Indeed, looking at the Poisson
bracket, one sees that

fQ;Pg ¼ fB0�; Pg ¼ f�; B0Pg ¼ 1; (161)

which is quite similar to the case B0 ¼ 1. Moreover, even if
B0 is not defined for now on, it is possible to find the
general form of the equation of motion.

Thus, to cancel the cross term, we set

_�’2

c2 �p �k
þ 2�

A00

�p2
þ 2

_B0

B0

¼ 0 (162)

and so

A00 ¼ ��
�p

2

_�’2

�k
� �p

_B0

B0

: (163)

With Eq. (134):

A01

a
¼ � 1

2 �k

�
�pV 0 � �

_�’3

2 �k
� �p

_B0

B0

_�’

�
: (164)

Finally, with the expressions of A00, A01, and B0, one can
see that the Hamiltonian is independent of a and b, which
means that the result is also independent of the normaliza-
tion choice for the vectors Am

ai. One can also solve (135) to
find A11 but this is physically unuseful. One can also study
the equations of evolution: once �E is known, it is natu-
rally possible to obtain the exact value of �K by studying
� _E. This leads to valuable informations on �a.

Taking into account Eqs. (163) and (164), it is
now possible to refine the expression of the Hamiltonian
(159) as

HS
GI ¼

Z d3k

2

��
B0

Pffiffiffiffi
�p

p
�
2 þ �B0

� ffiffiffiffi
�p

p
Q

B0

�
2
�
; (165)

where �B0
is finally given by

�B0
¼ �þ

� _B0

B0

�
2 � 1

�p

d

d�

�
�p
_B0

B0

�
; (166)

¼ ��
� _B0

B0

�
2 � B2

0

�p

d

d�

�
�p
_B0

B3
0

�
; (167)

the second equation being obtained by using the corre-
sponding Lagrangian for B0 ¼ 1 and then setting v ¼ffiffiffiffi
�p

p
Q, with

�¼k2 þ �pV 00 þ 3� _�’2 þ 2�
_�’
�k
�pV 0 � 1

2

�
�

_�’2

�k

�
2
: (168)

To establish this expression, we have used the
Raychaudhuri equation (written in conformal time
�N ¼ ffiffiffiffi

�p
p

):

_H ¼ _�k ¼ �k2 � �

2
_�’2; (169)

and the Klein-Gordon equation:

€�’þ 2 �k _�’þ �pV 0 ¼ 0: (170)

The Hamilton equations thus lead to

_Q ¼ @HS
GI

@P
¼

�
B0ffiffiffiffi
�p

p
�
2
P; (171)

_P ¼ � @HS
GI

@Q
¼ �

� ffiffiffiffi
�p

p
B0

�
2
�B0

Q; (172)

and the general equation of motion is given by

€Q� 2

� ffiffiffiffi
�p

p
B0

�
d

d�

�
B0ffiffiffiffi
�p

p
�
_Qþ �B0

Q ¼ 0: (173)

Reexpressing P in term of _Q with (171) leads to consider a
Lagrangian such that

L ¼
Z d3k

2

�
�p

B2
0

�
½ _Q2 � �B0

Q2�: (174)

The Euler-Lagrange equations lead to the same equation of
motion as (173).
Classically, the Mukhanov equation is derived from the

action:

S ¼
Z

d�
Z

d3k
1

2

�
_v2 þ

�
�k2 þ €z

z

�
v2

�
: (175)

The variable v was here defined with B0 ¼ ffiffiffiffi
�p

p
.

Remembering that �k ¼ _�p
2 �p , using the Hamilton equations

with (173), and the Euler-Lagrange equation [or directly by
comparing Eqs. (174) and (175)], a clear correspondence
between the equation of motion can be seen:

€vþ
�
k2 � €z

z

�
v ¼ 0; (176)

€vþ ð�� _�k� �k2Þv ¼ 0: (177)

With these equations, it is possible to recover z by
simply solving:

€z

z
¼ ��þ k2 þ �k2 þ _�k; (178)

which is satisfied classically for

z ¼
ffiffiffiffi
�p

p
_�’

�k
: (179)
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This method allowed us to find gauge-invariant variables
and their equations of evolution, starting from an anomaly-
free algebra in an easy way. In loop quantum gravity,
corrections to the classical theory are expected and this
will change the expression for the constraints, leading to a
modified algebra. The requirement of anomaly freedom is
not necessary to obtain the gauge-invariantQ and P, only a
vanishing Poisson bracket for the first order constraints is
required. But, of course, full physical consistency can only
be achieved if the algebra is closed. Thus, as in the previous
sections where the case of general relativity expressed with
Ashtekar variables was studied, we will consider in the
following the effects of the two main corrections from
LQC, that is the holonomy and the inverse-volume correc-
tions. Moreover, an easier way to obtain the Mukhanov-
Sasaki variable is to set first B0 ¼ 1 and then recover z
when using v so that the corresponding Lagrangian has the
same form as in Eq. (175) from the modified Hamiltonian.

VII. APPLICATIONS

We now consider constraints modified with respect to
the classical case. In the following, we focus only on the
steps useful to find the associated gauge-invariant
Mukhanov variables, without going into the details of the
calculations. The missing steps can easily be rebuilt using
the techniques given above.

We still consider a universe filled with a massive scalar
field ’. The diffeomorphism constraint holds its classical
form and, in all the following considerations, it will still be
given by Eq. (83). Moreover, the expressions of �a and �a

do not rely on the shape of the constraints, but on the shape
of the metric. In the following, expressions (77)–(80) will
therefore be used. What will be modified are the
Hamiltonian constraints where counter terms have been
added in order to cancel the anomalies so as to have a
closed algebra. In the following, we will give the expres-
sions of the first and second orders for these constraints.
The interested reader can refer to the appendix where,
starting from the zeroth order constraints, the equations
of motion for the background variables are derived. To be
as general as possible, we will keep the same notation
where a and b are unknown.

A. Inverse-volume case

Following [8], where anomaly freedom was found in the
case of inverse-volume corrections ð ��; �
; ��Þ, we introduce
unknown functions (f; g; f1; f2; . . . ; g1; g2; . . . ) which will
play the role of counter terms. We consider thus the
Hamiltonian densities given by

H ð1Þ
G ¼ ��

2�

�
�4ð1þ fÞ ffiffiffiffi

�p
p

�k�Kd
d �

1ffiffiffiffi
�p

p ð1þ gÞ �k2�Ed
d

þ 2ffiffiffiffi
�p

p @c@
j�Ec

j

�
; (180)

H ð1Þ
� ¼ �


�
ð1þ f1Þ ����

�p3=2
� ð1þ f2Þ ��2

2 �p3=2

�Ed
d

2 �p

�
;

(181)

H ð1Þ
’ ¼ �p3=2

�
ð1þ f3ÞV;’ð �’Þ�’þ Vð �’Þ�E

d
d

2 �p

�
: (182)

In this case, the Friedmann equation is

�� �k2 ¼ �

3

�
�


2

��2

�p2
þ �pV

�
; (183)

and, by definition,

_�’ ¼ �

��

�p
: (184)

Going ahead as in the classical case, Eq. (108) gives the
relation between B0 and B1 such that

B1 ¼ �ð1þ f1Þ
ð1þ fÞ

a

2 �p

_�’

�� �k
B0: (185)

Setting B0 ¼ 1, the gauge-invariant Mukhanov-like vari-
able is then

Q ¼ @S

@P
¼ �’þ ð1þ f1Þ

ð1þ fÞ
_�’

�� �k
c : (186)

Proceeding as before to solve the Hamilton-Jacobi-like
equations, Eq. (136) has to be fulfilled, which can be
expressed here as


2 ¼ b

�

�
� �� �k2ð2fþ gÞ þ �

2

_�’2

�

ð2f1 � f2Þ

�
: (187)

In our approach, this condition is satisfied if

g ¼ �2f; (188)

f2 ¼ 2f1: (189)

We have thus recovered exactly the relations given in [8] so
as to have an anomaly-free algebra. This is of course not
surprising as Eq. (187) is related to the condition of anom-
aly freedom that was pointed out in Eq. (119).
In [8], the second order of the corrections �ð �p; �Ea

i Þ and

ð �p; �Ea

i Þ also had to be taken into account, but as they are
proportional to �E and thus to �1 and �2, we do not need to
consider these terms. So,

ð�ð2Þ; 
ð2ÞÞ ¼ fð�1; �2Þ ! ignored: (190)

The second order constraint density with �Na ¼ 0 can thus
be written as

H ð2Þ ¼ ��

2�

ffiffiffiffi
�p

p ð�c
k�

d
j�K

j
c�Kk

d � ð�Kd
dÞ2Þ

þ �


2
ð1þ g1Þ��

2

�p3=2
þ ��

2
ð1þ g5Þ

ffiffiffiffi
�p

p
k2�’2

þ 1

2
ð1þ g6Þ �p3=2V;’’ð �’Þ�’2 þ ½�Ea

i �: (191)
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In this case, the cross term PQ are vanishing if one imposes
the following condition on A00:

A00 ¼ ��

� _�’

�


�
2 �p

2 �k

ð1þ f1Þ
ð1þ fÞ

1

ð1þ g1Þ : (192)

The Hamiltonian can therefore be written as

HS
GI ¼

Z d3k

2

�
�
ð1þ g1Þ

�
Pffiffiffiffi
�p

p
�
2 þ �IVð

ffiffiffiffi
�p

p
QÞ2

�
; (193)

where

�IV ¼ �

�
k2 ��ð1þ g5Þ þ �ð1þ g6Þ �pV 00 þ

_A00

�p

� 2 ��
A01

a

_�’

�

þ 3

2
��

� _�’

�


�
2 þ �
ð1þ g1ÞA

2
00

�p2

�
: (194)

Let us define now

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p

�
ð1þ g1Þ

s
Q; (195)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
ð1þ g1Þ

�p

s
d

d�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p

�
ð1þ g1Þ

s �
; (196)

where � is the Hubble parameter in the classical limit. The
Lagrangian can be written as

L S
GI ¼

Z d3k

2

�
_v2 þ

�
�s2k2 þ €z

z

�
v2

�
; (197)

where

€z

z
¼ � �
ð1þ g1Þ�IV þ s2k2 þ �2 þ d�

d�
; (198)

and

s2 ¼ �� �
ð1þ g1Þð1þ g5Þ ¼ �� �
ð1þ g1 þ g5Þ: (199)

Classically, the conserved curvature perturbation is given
by

R ¼ c þ
�k
_�’
�’ ¼ v

z
: (200)

In the case of inverse-volume corrections, from the pre-
vious equation and considering Eq. (195), one can natu-
rally suggest in our approach:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p

�
ð1þ g1Þ

s ð1þ f1Þ
ð1þ fÞ

_�’

�� �k
; (201)

which is close but not exactly similar to the expression
given in [12]. In fact, the propagation speed for the pertur-
bations derived in [12] is given by

s2paper ¼ ��2ð1� f3Þ; (202)

whereas, in our case, it is given by Eq. (199). Nevertheless,
it is possible to mix the equations for the anomalies found
in [8] and derive the expressions:

�� 2 ¼ �� �
 and f3 þ g1 þ g5 ¼ 0: (203)

It shows that, at least for the propagation speed for the
perturbations, results (199) and (202) are exactly the same.
In this study, we have given some arguments to establish
the function z. Although it would, in principle, be possible
to check its consistency, using Eq. (198), this would lead to
lengthy calculations that have not yet been carried out. It is
however clear that our choice is associated with a correct
Lagrangian. It might be that both solutions are physically
equivalent. We let this question opened for future studies.

B. �-LQC model—holonomy corrections

We now focus on the case of holonomy corrections and
we use the notations of [13].
The first order corrected constraints, with counter terms

�i not yet fixed but introduced to close the algebra, are
given by

H ð1Þ
G ¼ 1

2�

�
�4

ffiffiffiffi
�p

p ðK½s1� þ �1Þ�Kd
d

� 1ffiffiffiffi
�p

p ðK½1�2 þ �2Þ�Ed
d þ

2ffiffiffiffi
�p

p @c@
j�Ec

j

�
; (204)

H ð1Þ
� ¼ ����

�p3=2
� ��2

2 �p3=2

�Ed
d

2 �p
; (205)

H ð1Þ
’ ¼ �p3=2

�
V;’ð �’Þ�’þ Vð �’Þ�E

d
d

2 �p

�
; (206)

where we use the notation (n � 0):

K ½n� _¼ sinðn �	� �kÞ
n �	�

: (207)

One also has to deal with the Klein-Gordon equation,

�� ¼ �p _�’; (208)

€�’ ¼ � �p@ �’Vð �’Þ � 2K½2� _�’; (209)

and the Raychaudhuri equation,

_�k ¼ �kK½2� ��
_�’2

2
; (210)

with

� _¼ cosð2 �	� �kÞ: (211)

Moreover, holonomy corrections lead to a modified
Friedmann equation. The energy density � is basically
defined through

K ½1�2 ¼ �

3

� _�’2

2
þ �pVð �’Þ

�
¼ �

3
�p�; (212)

and the Friedmann equation is given by
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H 2 ¼ K½2�2 ¼ �

3
�p�

�
1� �

�c

�
; (213)

where

�c ¼ 3

��2 �	2 �p
(214)

is the critical energy density. Applying the same procedure
as previously, one can derive the relation between B0 and
B1:

B1 ¼ � a _�’

2 �pðK½s1� þ �1ÞB0: (215)

The related gauge-invariant variable is then (with the usual
choice B0 ¼ 1):

Q ¼ �’þ _�’

ðK½s1� þ �1Þ c : (216)

In this case, the condition (136) reads as

0 ¼ 2 �kðK½s1� þ �1Þ � 2K½1�2 þ �2; (217)

which is again a necessary condition appearing when

fHQ
G;D

Q
Gg is considered and which has to be fulfilled to

have an anomaly-free algebra. By this procedure, we have
two unknown counter terms �1 and �2, and the previous
equation gives a relation between them:

�2 ¼ 2K½1�2 � 2 �kðK½s1� þ �1Þ: (218)

In [13], the anomaly was removed with �1 ¼ K½2� �
K½s1� and thus �2 ¼ 2K½1�2 � 2 �kK½2� which will be
used in the following. The second order Hamiltonian con-
straint density is thus modified so that

H ð2Þ ¼
ffiffiffiffi
�p

p
2�

�� � ð�c
k�

d
j�K

j
c�Kk

d � ð�Kd
dÞ2Þ

þ 1

2

��2

�p3=2
þ 1

2
�p3=2V;’’ð �’Þ�’2

þ 1

2
�� � ffiffiffiffi

�p
p

�ab@a�’@b�’þ ½�Ea
i �: (219)

One obtains

A00 ¼ ���
�p

2

_�’2

K½2� ; (220)

and

A01

a
¼ � 1

2K½2�
�
�pV 0 ���

_�’3

2K½2�
�
; (221)

�� ¼ �k2 þ �pV 00 � �

2

_�

K½2� _�’2 þ 3�� _�’2

þ 2�� �pV 0 _�’

K½2� �
1

2

�
�� _�’

K½2�
�
2
: (222)

The Mukhanov equation in conformal time ( �N ¼ ffiffiffiffi
�p

p
),

remembering that K½2� ¼ _�p
2 �p , is

€Qþ 2K½2� _Qþ ��Q ¼ 0: (223)

As previously, it is possible to find z through

� €z

z
¼ �� �� � k2 þK½2�2 þ dK½2�

d�
; (224)

which is fulfilled for

z ¼
ffiffiffiffi
�p

p
K½2� _�’: (225)

This corresponds exactly to what was found, following
another path based on the Bardeen potentials, in [13]. As
in the previous case, we have recovered the Mukhanov
Lagrangian.

C. General case: Inverse-volume and
holonomy corrections

In this section, we will not address the issue of anomaly
freedom for the case where both corrections are taken into
account. We will just focus on defining the Mukhanov
variable by the method previously developed. Naturally,
it will be expressed as a function of the counter terms. We
will see that this case can be solved as if corrections were
mostly independent, as suggested in [12].
In this case, the first order constraint densities can be

defined, as in the previous cases, by

H ð1Þ
G ¼ ��

2�

�
�4

ffiffiffiffi
�p

p ðK½s1� þ �1Þ�Kd
d

� 1ffiffiffiffi
�p

p ðK½1�2 þ �2Þ�Ed
d þ

2

�p
@c@j�E

c
j

�
; (226)

for the gravitational sector and,

H ð1Þ
� ¼ �
ð1þ f1Þ ����

�p3=2
� �
ð1þ f2Þ ��2

2 �p3=2

�Ed
d

2 �p
; (227)

H ð1Þ
’ ¼ �p3=2

�
ð1þ f3ÞV;’ð �’Þ�’þ Vð �’Þ�E

d
d

2 �p

�
; (228)

for the matter sector.
The Friedmann-like equation is given by

��K½1�2 ¼ �

3

�
�


2

��2

�p2
þ �pV

�
; (229)

with the definition:

_�’ ¼ �

��

�p
: (230)

Going ahead as previously, one obtains again a relation
between B0 and B1:

B1 ¼ �ð1þ f1Þ
ð1þ fÞ

a

2 �p

_�’

��ðK½s1� þ �1ÞB0: (231)
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As a fully closed algebra has not yet been found, we are
compelled to keep �1 unknown. Using previous results
from [12,13], it is however probable that the solution will
soon be derived.

Setting B0 ¼ 1, the gauge-invariant Mukhanov-like
variable is then

Q ¼ @S

@P
¼ �’þ ð1þ f1Þ

ð1þ fÞ
_�’

��ðK½s1� þ �1Þ c : (232)

Following the same procedure as in the previous sections
when solving the Hamilton-Jacobi-like equations, we have
to fulfill, in particular, Eq. (136), which can be expressed
here as


2 ¼ b

�
½� ��ð2 �kðK½s1� þ �1Þ þ �2 � 2K½1�2Þ

þ �

2

_�’2

�

ð2f1 � f2Þ

�
; (233)

and vanishes for

2 �kðK½s1� þ �1Þ þ �2 � 2K½1�2 ¼ 0; (234)

f2 ¼ 2f1: (235)

This corresponds to conditions already found when holon-
omy or inverse-volume corrections were taken into account
independently.

Previous works on tensor perturbations where both cor-
rections were included have shown that the corrections act
independently on the equations of motion. As the inverse-
volume correction acts on the 1ffiffiffiffiffiffiffiffiffiffi

detðEÞ
p terms and holonomy

corrections act on the �k terms, a guess can be made: in the
final algebra of constraints, it should be sufficient to simply
multiply the algebra found for the holonomy case by the
appropriate counter terms found for inverse-volume cor-
rections. Of course, this assumption can be debated be-
cause of the derivative which will be implied, but at least at
the first order, it seems to be correct.

At this stage, it is difficult to go much ahead. However,
the previous results lead us to assume

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�p

�
ð1þ g1Þ

s ð1þ f1Þ
ð1þ fÞ

_�’

��ðK½s1� þ �1Þ : (236)

This remains to be fully demonstrated.

VIII. CONCLUSION

This article builds on the innovative ideas given in [3]
and develops them so that they can be used in the frame-
work of loop quantum cosmology. Going through succes-
sive changes of variables by using this kind of generating
functions, we have set a scheme useful to study cosmo-
logical perturbations with complicated Hamiltonians:
using our definition of gauge-invariant variables, the ap-
propriate Mukhanov-Sasaki variables appear naturally and

directly. Both the cases of inverse-volume and of holon-
omy corrections were considered. In principle, it is also
possible to study, in such an easy way, any other kind of
correction that can be set up by constraints. Moreover,
the Hamilton-Jacobi method is very general and can be
used in different frameworks, in particular, in particle
physics where gauge invariance plays a crucial role.
Nevertheless, this work is not fully independent from the
previous ones: the expressions for all the counter terms
cannot be obtained directly from this method and a good
procedure should be to first analyze the corrected con-
straints following the Hamilton-Jacobi approach, obtaining
the expression of some Poisson brackets and fundamental
gauge-invariant variables, and then performing the calcula-
tions for the remaining Poisson brackets. At this stage, the
anomalies can be removed by choosing the appropriate
counter terms and some new feature can appear (e.g. the
�	-scheme for the holonomies [13]). It is then possible to
derive completely the equation of motion for theMukhanov-
Sasaki variables v where the Lagrangian is as in (197).
Several developments are expected. First, although rea-

sonable, some guesses had to be made. They should be
checked in details by going though the full exhaustive
computation, in particular, by studying the equations of
motion for the Bardeen potentials when inverse-volume
corrections are taken into account.
Second, the method should be applied again when

counter terms for the holonomyþ inverse-volume case
will have been found. This work is already on the way.
Finally, those gauge-invariant variables should now be

used to investigate cosmological consequences at the ob-
servational level.

APPENDIX: EQUATIONS OF MOTION

In this appendix, we give an example of how to derive
the equations of motion for the background variables when
holonomy and inverse-volume corrections are taken into
account together. The classical limit corresponds to �� ! 0
or K½n� ! �k. At the lowest order, the diffeomorphism
constraints are null, we therefore consider in the following
only the Hamiltonian constraints which are given, for
gravity and for matter, by

Hð0Þ
G ½ �N� ¼ 1

2�

Z
d3x �Nð�6 ��K½1�2 ffiffiffiffi

�p
p Þ; (237)

and

Hð0Þ
M ½ �N� ¼

Z
d3x �N

�
�


��2

2 �p3=2
þ �p3=2Vð �’Þ

�
: (238)

The background variables are linked through

f �k; �pg ¼ �

3
; (239)

f �’; ��g ¼ 1: (240)
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For instance, the conformal Hubble parameter found with
�p ¼ a2ð�Þ is given by

H ¼ _�p

2 �p
¼ 1

2 �p
f �p;Hð0Þ

G ½ �N� þHð0Þ
M ½ �N�g

¼ 1

2 �p

�

3

�
@�
@ �k

@�
@ �p

� @�
@ �p

@�
@ �k

�
(241)

¼ 0� 1

2 �p

�

3

@ �p

@ �p

�
@Hð0Þ

G ½ �N�
@ �k

þ 0

�
(242)

¼ 1

2 �p

�

3

ffiffiffiffi
�p

p
2�

ð�12
ffiffiffiffi
�p

p
��K½2�Þ (243)

H ¼ _�p

2 �p
¼ ��K½2�: (244)

Moreover, the energy density � is defined by

� _¼ 1

�pð3=2Þ
�Hm

� �N
¼ �


2

��2

�p3
þ V; (245)

and is linked to gravity through an equation of motion

�

� �N
ðH þDÞð0Þtot ¼ 0; (246)

which gives the Friedmann-like equation

��K½1�2 ¼ �

3

�
�


2

��2

�p2
þ �pV

�
¼ �

3
�p�: (247)

Using the previous relations, the Friedmann equation is
thus given by

H 2 ¼ ð ��K½2�Þ2 ¼ ��ð ��K½1�2Þ � cos2ð �	� �kÞ (248)

¼ ��ð ��K½1�2Þð1� ð �	�Þ2K½1�2Þ (249)

¼ ��

�
�

3
�p�

��
1� 1

��

�

�c

�
(250)

¼ �

3
�p�

�
��� �

�c

�
; (251)

where, as usual when using the holonomies within the �	
scheme, the critical energy density is defined by Eq. (214).
Moreover, similarly, the Raychaudhuri equation is given by

_�k ¼ �� �kK½2� �
�
�p

��

@ ��

@ �p

�
��K½1�2 � �

2

_�’2

�

: (252)
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198 CHAPITRE 13. INVARIANCE DE JAUGE ET ÉQUATION DE HAMILTON-JACOBI

Conclusion

On voit ainsi que dans le formalisme canonique, les équations donnant et l’expression des variables invariantes
de jauge et leur équation du mouvement, sont obtenues très facilement. Pour obtenir l’expression de ces variables,
il suffit de ne considérer que le fait que les perturbations de la fonction Lapse δN et du shift vecteur δNa sont
elles aussi des multiplicateurs de Lagrange, ayant ainsi comme conséquence le fait que

ΠδN =
δ(H[N ] +D[Na])

δ(δN)
=
δH(1)[δN ]
δ(δN)

= 0 ⇒ H(1) = 0 (13.3)

ΠδNa =
δ(H[N ] +D[Na])

δ(δNa)
=
δD(1)[δNa]
δ(δNa)

= 0 ⇒ D(1) = 0. (13.4)

Les équations du mouvement ne concernent alors que les contraintes à l’ordre 2 dans les perturbations, et le fait
que l’on doit ajouter ∂S

∂η pour avoir l’équation de la forme classique peut se comprend par le fait d’utiliser la
contrainte

H
(2)
EOM = H(2)

(
q,
∂S

∂q

)
+ pη with pη =

∂S

∂η
(13.5)

comme vu au premier chapitre, avec ∂S
∂η qui est du second ordre, donc n’intervenant pas dans l’obtention de

l’expression des variables invariantes de jauge.
L’équation d’Hamilton-Jacobi a beaucoup été utilisée dans l’obtention d’une théorie quantique de la gravitation,
et on voit ici qu’elle possède d’autres aspects très attrayant. Il est ainsi bon de connâıtre son existence et peut-
être de l’utiliser dans des travaux futurs.
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Quatrième partie

Conclusion
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Conclusion et perspectives

Marty McFly :
Wait a minute, Doc. Ah... Are you telling me that you built a time machine... out of a DeLorean ?
Dr. Emmett Brown :
The way I see it, if you’re gonna build a time machine into a car, why not do it with some style ?

Robert Zemeckis, ”Back to the future”, 1985

La recherche d’une théorie quantique de la gravitation est devenue aujourd’hui un des enjeux majeurs de
la physique. De nombreux modèles, comme la théorie des cordes ou bien la gravité quantique à boucles pour
ne citer que les théories considérées comme les plus importantes, ont ainsi été proposés, donnant tous des
interprétations et des conséquences physiques très différentes dont les effets apparaissent surtout à l’échelle
de Planck. Cependant, même s’ils présentent des caractéristiques attrayantes, il est nécessaire de discriminer
les modèles et utiliser éventuellement notre univers comme moyen de discrimination. Or, à nos échelles de
longueur et d’énergie, il n’existe pas à l’heure actuelle d’expériences permettant une observation directe des
effets quantiques prédits, mais il pourrait être possible de le faire indirectement avec l’étude du fond diffus
cosmologique, des trous noirs ou bien des sursauts gamma.

Durant la thèse, nous nous sommes intéressés à la théorie de la gravité quantique à boucles, et plus par-
ticulièrement son application à la cosmologie : au contraire de la théorie des cordes, elle ne recourt pas à de
lourdres hypothèses supplémentaires mais utilise simultanément les concepts de cette théorie avec ceux de la
mécanique quantique, sans avoir à ajouter de nouveaux postulats. La gravité quantique à boucles n’a ainsi pas
la prétention d’unifier les différentes forces observées mais plutôt de donner un cadre quantique à la gravitation
dans lequel pourront évoluer tous les champs. Cette théorie est d’autant plus intéressante à regarder que sa
construction utilise un formalisme commun avec celui des théories de jauge : considérer la gravitation non plus
comme une entité géométrique mais comme un champ à part entière va donner une théorie similaire aux théories
de Yang-Mills, pour lesquelles les procédure de quantification ont été largement développées.

L’objectif de ma thèse a ainsi été de regarder quels étaient les effets observables possibles prédits par la
cosmologie quantique à boucles, en s’intéressant plus particulièrement aux corrections quantiques apportées
par les holonomies. Depuis quelques années maintenant, la communauté s’est surtout concentrée sur l’étude des
corrections d’inverse-volume, remettant à plus tard celle sur les corrections d’holonomie. Nous avons ainsi utilisé
une théorie effective dans laquelle ont été incorporées ces corrections, et regardé quelles étaient les modifications
apportées sur l’évolution des perturbations cosmologiques. Ces perturbations peuvent être en partie observées
indirectement dans le fond diffus cosmologique, et l’étude des spectres de puissance va alors donner de précieuses
indications sur l’existence ou non de tels effets quantiques. Nous aurons alors la possibilité de tester la validité
de ces modèles, ou tout du moins de les contraindre.

Mon premier travail a ainsi consisté à regarder les effets des deux corrections de la cosmologie quantique à
boucles sur l’évolution des perturbations tensorielles. Des travaux avaient étudié les effets des corrections prises
séparément, mais en imposant l’évolution du fond comme étant celle d’un fond De Sitter : j’ai ainsi suivi la
même démarche et vu que le spectre de puissance était modifié par les contributions des deux effets. Cependant,
ce travail a été une introduction et un entrâınement à ce qui a suivi.

Concernant les corrections d’holonomie, seules les équations du mouvement des perturbations vectorielles
et tensorielles avaient été obtenues dans le cas d’une algèbre close, et à part dans une étude [56], le spectre
de puissance pour les perturbations tensorielles n’avait jamais été regardé. Ce spectre ne tenait compte que
de la présence du rebond, et nous avons alors cherché à l’améliorer en incorporant naturellement une phase
inflationaire. Les résultats obtenus ont alors donné un spectre spécifique à un modèle de rebond, mais possédant
en plus les caractéristiques de l’inflation (et d’une superinflation) qui va apparâıtre naturellement.

Par certains arguments, il a été montré qu’un tel spectre primordial devrait être générique à tout modèle de
rebond suivi d’une inflation, et nous avons alors décidé d’en étudier les conséquences observationnelles. Après
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avoir regardé l’influence des différents paramètres sur la forme du spectre, nous avons tenté de savoir si une
future expérience avait la possibilité de distinguer les effets quantiques du spectre angulaire obtenu dans le
modèle standard. Il en a résulté comme conclusion qu’un large espace de paramètres pouvant signer un rebond
était disponible et qu’il n’était pas impossible ainsi d’observer les effets quantiques.

Cependant, cette étude a porté sur les modes B générés par les perturbations tensorielles, non encore
observés. Le spectre en température étant très bien mesuré, nous avons dans tous les travaux suivants chercher
à obtenir le spectre de puissance pour les perturbations scalaires tenant compte des corrections d’holonomie.
Par une démarche progressive, nous avons modifié les contraintes corrigées en ajoutant des contre-termes et vu
comment ils permettaient de résoudre les anomalies dans le cas général, donnant ainsi de nouvelles contraintes.
Pour ce faire, il a été impératif de considérer le cas où β = − 1

2 , favorisant ainsi le µ̄-scheme : ce schéma est
cohérent du point de vue de l’évolution des échelles de longueur en fonction du facteur d’échelle, et c’est celui
que nous avons considéré par la suite.

D’autre part, ces contre-termes peuvent être appliqués à toutes les perturbations, permettant de penser que
les travaux précédents ne sont en fait pas strictement valides et qu’il devient tout juste possible d’étudier les
effets physiques des corrections d’holonomies. Pour ce faire, il est judicieux de regarder les variables invariantes
de jauge, dont les expressions tiennent maintenant compte des corrections. Un travail, qui s’est avéré par la suite
prospectif, a consisté à appliquer une méthode utilisant les équations d’Hamilton-Jacobi, permettant avec les
expressions des contraintes d’obtenir très facilement les variables invariantes de jauge ainsi que leurs équations du
mouvement, telles qu’elles peuvent s’écrire en terme d’un lagrangien similaire à celui d’un oscillateur harmonique
massif évoluant dans le temps. Dans toute étude future sur les perturbations dans le formalisme canonique, il va
être recommandé d’utiliser cette méthode, notamment lorsque l’on regardera l’influence des deux corrections.
Les modifications apportées par les termes en Ω ont finalement des conséquences importantes dans ce modèle :
lorsque Ω devient négatif, on observe un changement de signature de la métrique effective. Dans ce régime, le
temps n’existerait plus, et il n’y aurait alors pas d’évolution : on ne pourrait ainsi pas propager les solutions à
travers le rebond. A l’heure actuelle, les conséquences ne sont que partiellement comprise et aucun avis définitif
n’est encore consensuel.

Ce travail a ainsi permis de comprendre l’effet des corrections d’holonomies sur les perturbations cosmolo-
giques, avec une algèbre des contraintes modifiée close. Les résultats donnés ici ont été retrouvés par une autre
démarche, confirmant la solidité de notre approche. Il reste cependant encore beaucoup à faire si l’on souhaite
étudier complètement les perturbations en cosmologie quantique à boucles. Ne serait-ce que pour le cas des
corrections d’holonomie où il faut chercher à résoudre les équations modifiées :

• pour les perturbations scalaires

v̈ − Ω∆v − z̈

z
v = 0, où z =

√
p̄

˙̄ϕ
K [2]

(13.6)

• pour les perturbations vectorielles, il faudrait tenir compte d’un fluide permettant d’avoir de la vorticité.

• pour les perturbations tensorielles

ḧia + ḣia

(
2K [2]− Ω̇

Ω

)
− Ω∆hia = 0 (13.7)

qui peut se ramener à une forme similaire à l’équation de Mukhanov-Sasaki par le changement de variable

v =
ah√
Ω
. (13.8)

On voit d’ores et déjà les difficultés analytiques et numériques qui apparaissent, la fonction Ω évoluant avec le
temps jusqu’à s’annuler. Des travaux préliminaires sur les perturbations tensorielles ont montré que les solutions
divergeaient en Ω = 0, correspondant au moment où ρ = ρc/2 donc près du rebond (la densité d’énergie crôıt
très rapidement proche du rebond). Un travail est en cours afin d’obtenir analytiquement les solutions en ces
instants. Il est de même possible de regarder le cas des perturbations scalaires, mais le potentiel effectif z̈

z va
diverger en de nombreux endroits, donnant le cas le plus compliqué à traiter.

Dans les études précédentes, nous n’avons pas considéré le cas des anisotropies, et il serait aussi important
de voir leur implication sur la physique, notamment pour comprendre ce qui se passe quand une des directions
est en contraction et les deux autres en expansion. Les équations ne vont pas réellement être plus compliquées
mais plus nombreuses, et il est encore nécessaire de développer le formalisme pour les perturbations. Il faudrait
aussi tenir compte des effets de back-reaction : cela est certes possible, mais va nécessiter beaucoup de travail
supplémentaire, les équations du mouvement du fond et des perturbations étant alors énormément modifiées :
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par exemple [86], il faudra tenir compte de terme en racine carré des densités d’énergies.
D’autre part, les corrections d’holonomie et les corrections d’inverse-volume vont avoir des conséquences différentes
sur la forme des spectres, et il serait intéressant de regarder maintenant comment se transforment les équations
d’évolution des variables invariantes de jauge sous l’action conjuguée des deux corrections : chaque correction va-
t-elle avoir un effet découplé de l’autre correction ? Vont-elles se compenser ou bien s’additionner, défavorisant la
théorie effective ? Comme souligné précédemment, il serait assez simple d’obtenir ces variables et ces équations
par la méthode d’Hamilton-Jacobi (cela ayant été en fait partiellement fait dans le chapitre précédent), mais
pour le moment, il vaut mieux étudier séparément les corrections afin d’avoir une idée de leurs influences sur
le spectre. Une remarque peut cependant être faite puisque le terme Ω dans les équations provient du terme
’δKδK’ dans la contrainte hamiltonienne : lorsque l’on considèrera l’action des deux corrections, on devrait
observer la présence d’un terme αΩ δK δK dont il faudra étudier l’influence à tous les moments de l’univers.

Durant cette thèse, nous avons ainsi développé le modèle permettant de tenir compte des corrections d’ho-
lonomie lors de l’étude des perturbations cosmologiques. La démarche menant à son élaboration s’est faite de
manière progressive et logique, suivant les difficultés et les besoins que nous avons rencontrés. Nous avons ainsi
dérivé les équations d’évolution des variables invariantes de jauge pour tous type de perturbations, mais il reste
cependant encore beaucoup à faire avant de pouvoir peut-être observer un jours une empreinte de ces effets
quantiques, et remonter ainsi dans le passé.
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Autres articles publiés

Deux autres articles ont été réalisés durant cette thèse

et je souhaitais compléter ce mansucrit en les y incorporant.
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This Letter aims at showing that the observation of evaporating black holes should allow the usual

Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full

Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between

competing models. We conclude that contrarily to what was commonly thought, the discreteness of the

area in LQG leads to characteristic features that qualify evaporating black holes as objects that could

reveal quantum gravity footprints.

DOI: 10.1103/PhysRevLett.107.251301 PACS numbers: 04.70.Dy, 04.60.Pp

Introduction.—Loop quantum gravity (LQG) is a prom-
ising framework to nonperturbatively quantize general
relativity (GR) in a background invariant way (see [1] for
introductory reviews). Interestingly, it has now been dem-
onstrated that different approaches, based either on quan-
tizations (covariant or canonical) of GR, or on a formal
quantization of geometry lead to the very same LQG
theory. As for any tentative theory of quantum gravity,
experimental tests are, however, still missing. Trying to
find possible observational signatures is obviously a key
challenge. In this article we address the following question:
could there be objects in the contemporary Universe whose
observation would lead to a clear signature of LQG?
Fortunately, the answer turns out to be positive. Although
small black holes have not yet been directly observed, they
could have been formed by different mechanisms in the
early Universe (see, e.g., [2] for a recent review) or even by
particle collisions. We do not review here the well-known
possible production mechanisms, but instead we focus on
how to use the evaporation of microscopic black holes to
investigate the discriminating power of the emitted spec-
trum. Three different possible signatures will be suggested.
Although one should be careful when pushing the limits of
the LQG approach to black holes to the microscopic limit,
our results rely on features of the area spectrum and are
rather insensitive to small modifications in the theoretical
framework.

Theoretical framework.—The state counting for black
holes in LQG relies on the isolated horizon framework
(see, e.g., [3] for an up-to-date detailed review). The

isolated horizon is introduced as a boundary of the under-
lying manifold before quantization. For a given area A of a
Schwarzschild black hole horizon, the physical states arise
from a punctured sphere whose punctures carry quantum
labels (see, e.g., [4] for a detailed analysis). Two labels
(j, m) are assigned to each puncture, j being a spin half-
integer carrying information about the area andm being its
corresponding projection carrying information about the
curvature. They satisfy the conditions

A� � � 8��‘2P
XN

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
� Aþ�; (1)

where � is the fundamental Barbero-Immirzi parameter of
LQG, � is a ‘‘smearing’’ area and p labels the different
punctures, and

XN

p¼1

mp ¼ 0; (2)

which corresponds to the requirement of a horizon with
spherical topology. Many specific features of the entropy
were derived in this framework [5]. Although the propor-
tionality between the entropy and the area is indeed recov-
ered (when choosing correctly the � parameter) in the
classical limit, the quantum structure still leaves a clear
footprint at microscopic scales.
Long ago, Bekenstein and Mukhanov postulated that

due to quantum gravitational effects the area of a black
hole should be proportional to a fundamental area of the
order of the Planck area [6] (the argument has recently
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been updated in [7]). This led to the idea of possible
exciting probes of quantum gravity through associated
lines in the evaporation spectrum. However, following
the pioneering work of Rovelli [8], it was soon realized
that the situation is drastically different in LQG where the
spacing of the energy levels decreases exponentially with
the energy, therefore closing any hope for detection [9]. In
(the first paper of) [5] a possible observational effect was
suggested based on an exact computation of entropy and
the observation of an effective discretization of it. In this
Letter we readdress this issue and show that at least three
different signatures can in fact be expected. Two of them
are, as it could be expected, related with ‘‘Planck scale’’
black holes, whereas the last one works also for larger
black holes.

Emission lines in the Planck regime.—We first consider
the evaporation of a black hole in the deep quantum
regime. To this aim, we have developed a dedicated and
optimized algorithm. It is based on the ideas given in [3]
and it was enhanced with an efficient numeration scheme
using a breadth-first search. As the projection constraint is
very time consuming, this improvement is mandatory to
perform the computation up to high enough Planck areas.
The evaporation is considered both according to the pure
Hawking law and according to the LQG theory. In each
case, we model the evaporation by expressing the proba-
bility of transition as the exponential of the entropy differ-
ence multiplied by the gray body factor. Arguments for the
reliability and generality of this approach are given in [10].
As it can be seen from Fig. 1, some specific lines associated
with the transitions occurring in the very last stages of the
evaporation can be identified in the LQG spectrum,
whereas the pure Hawking spectrum is naturally smooth.
Two subtle points have to be taken into account. First, the
usually assumed ‘‘optical limit’’ of the gray body factors
induces a heavy distortion of the spectrum. The use of
exact gray body factors, obtained by solving the quantum
wave equations in the curved background of the black hole,
is in this case mandatory. To be maximally conservative,
we have used the very same gray body factors in the
Hawking case and in the LQG case. Any difference, as
could be possibly expected due to an LQG-inspired metric
modification (see, e.g., [11]), would only make the dis-
crimination between models easier. We have also assumed
that the Hawking evaporation stops at the same mass as
expected in LQG (namely 0:4MPl), once again to be as
conservative as possible. Second, even if one focuses on
the ‘‘high energy’’ emission, say above 0:15MPl, the con-
tribution from states with a lower temperature is far from
being negligible. We have therefore pushed the computa-
tion of the area states, together with their multiplicity, up to
200APl to ensure that the number of missed quanta remain
smaller than a few percent.

Several Monte Carlo simulations were carried out to
estimate the circumstances under which the discrimination

between LQG and the standard behavior is possible. At
each step, the energy of the emitted particle is randomly
obtained according to the relevant statistics and to the
(spin-dependent) gray body factor. Most simple statistical
tests fail to capture the intricate nature of the specific LQG
features. We have therefore chosen to use a (slightly im-
proved) Kolmogorov-Smirnov (KS) test. The KS statistics
quantifies the distance between the cumulative distribution
functions of the distributions and can be used for a system-
atic study of possible discrimination (see, e.g., [12]). By
investigating the KS excess as a function of the energy, we
have optimized the relevant interval for each relative error.
As this latter is assumed to be known, it is meaningful to
use it as an input for the statistical procedure. Figure 2
shows the number of black holes that should be observed,
for different confidence levels and as a function of the
relative error on the energy reconstruction, to discriminate
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FIG. 1 (color online). Spectrum of emitted particles in LQG, in
the pure Hawking case, and in the Mukhanov-Bekenstein ap-
proach, from top to bottom.
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the models. Clearly with either enough black holes or a
relatively small error, a discrimination is possible, there-
fore leading to a clear LQG signature. To still remain
maximally conservative, we have only considered emitted
leptons. For a detector located nearby the black hole, and
due to the huge Lorentz factors, the electrons, muons, and
taus can be considered as stable, whereas quarks do not
have enough time to fragment into hadrons.

For the sake of completeness, we have finally imple-
mented a KS test between the LQG spectrum and the
Bekenstein-Mukhanov one. Once again, the discrimination
is possible with an even smaller number of black holes as
the lines are sitting at clearly different places.

Even if the Hawking and Mukhanov hypotheses are not
expected to be reliable in the Planck era, this analysis
shows that a discrimination between LQG and other tenta-
tive approaches is possible.

Low-energy emission in the Planck regime.—There is a
second specific feature associated with the end point of the
evaporation process. In LQG, the last transitions take place
at definite energies, of the order of the Planck scale,
associated with the final lines of the mass spectrum. On
the other hand, in the usual Hawking picture, the most
natural way to implement a minimal mass is to assume a
truncation of the standard spectrum ensuring energy con-
servation. Even if no minimal mass is assumed, the spec-
trum has to be truncated to ensure that the black hole does

not emit more energy than it has. This is also the case in
some string gravity models [13]. This leads to the impor-
tant consequence that the energy of the emitted quanta will
progressively decrease and asymptotically tend to zero. It
is possible to distinguish this ‘‘low-energy’’ emission as-
sociated with the end point from the (much more numer-
ous) ‘‘low-energy’’ particles emitted before (when the
black hole temperature was lower) thanks to the dynamics
of the process. For example, as soon as one considers
� rays with energies lower than 8� 105 GeV, the ‘‘end
point’’ emission will take place at least 100 �s after the
initial emission, making both signals easily distinguish-
able. Those ‘‘relic’’ quanta will be emitted with mean
energies decreased by a factor 1=4 at each step (for scalars
and fermions). The time interval between consecutive
emissions will typically increase with decreasing energies
as E�3. At 100 TeV, the mean interval is around 1 s. This
feature of the ‘‘standard’’ spectrum is therefore very differ-
ent from the absence of low-energy particles expected in
the LQG case.
This probe should, however, be considered with care as

it is less reliable than the two other ones suggested in this
Letter, being dependent on the specific assumption made
for the evaporation end point in the Hawking case.
Peaks in the higher-mass regime.—Up to now, the analy-

sis was mostly focused on lines associated with the dis-
creetness of the area, as could be seen on Fig. 1. However,
LQG specific features also lead to broader peaks in the
spectrum, with a clear pseudoperiodicity, as shown in
Fig. 3. Those peaks are associated with the ‘‘large scale’’
structure of the area spectrum. This periodicity has been
discussed in much detail (see [3] and references therein).
We have observed this behavior up to 200APl with an exact
computation of the area eigenvalues and we have checked
it up to 400APl with a dedicated Monte Carlo Markov chain

relative error

0 0.05 0.1 0.15 0.2 0.25 0.3

nu
m

be
r 

of
 B

H
s

200

400

600

800

1000

1200

1400

1600

1800

2000

310×

0

1

2

3

4

5

Discrimination LQG/Hawking

relative error
0 0.05 0.1 0.15 0.2 0.25 0.3

nu
m

be
r 

of
 B

H
s

50

100

150

200

250

310×

0

1

2

3

4

5

6

Discrimination LQG/Mukhanov

FIG. 2 (color). Number of evaporating black holes that have to
be observed as a function of the relative error on the energy
reconstruction of the emitted leptons for different confidence
levels (the gray scale corresponds to the number of standard
deviations). The first row corresponds to the discrimination
between LQG and the Hawking hypothesis and the second row
between LQG and the Mukhanov-Bekenstein hypothesis.
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FIG. 3 (color online). Instantaneous spectrum of a �100 keV
black hole taking into account the LQG modulation of the
entropy.
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(MCMC) algorithm. Although some recent arguments sug-
gest that this periodicity is damped for higher masses [14],
they cannot rule out the possibility of a ‘‘revival’’ of the
periodicity at larger areas (or even in the asymptotic limit),
so it is relevant to study the possible observational effects
that this periodicity would have in the macroscopic regime,
in agreement with the assumption made in most of the
literature on the subject. We here assume that it remains
valid up to arbitrary large masses. This is not an unavoid-
able prediction of LQG but this is clearly a possibility that
arises, to the best of our knowledge, only in this frame-
work. This makes it a potentially interesting probe. The
mean area gap dA between peaks can be shown to be
independent of the scale. As, for a Schwarzschild black
hole, dA ¼ 32�MdM and T ¼ 1=ð8�MÞ, this straightfor-
wardly means that dM=T ¼ cte where dM refers to the
mass gap between peaks. This is the key point for detec-
tion: in units of temperature, which is the natural energy
scale for the emitted quanta, the mass gap does not de-
crease for increasing masses. Any observable feature asso-
ciated with this pseudoperiodicity can therefore be
searched for through larger black holes.

This opens up the question of a possible detection of
LQG effects with evaporating primordial black holes
(PBHs) in astrophysical circumstances. If PBHs were
formed with a continuous mass spectrum niðMiÞ, where
the subscript i stands for initial values, it is now deformed
according to nðMÞ / M2 for M<M� and nðMÞ � niðMÞ
for M>M� where M� � 1015 g is the initial mass of a
black hole whose lifetime is of the order of the age of the
Universe. This is just due to the Hawking evaporation
leading to dM=dt / M�2. In such a case, it is easy to
show that the peak structure of the instantaneous spectrum
will be immediately washed out. The convolution of the
individual spectra with the mass distribution will lead to a
Hawking-like E�3 integrated spectrum. We have checked
this expected behavior with a Monte Carlo simulation. It
should also be pointed out that the peak structure of the
‘‘end-of-the-life’’ spectrum, which is superimposed with
the lines, is not due to the pseudoperiodic structure of the
entropy but to transitions to the last states, i.e., with the
discreteness of the area eigenvalues.

However, this does not at all close the issue of observing
LQG features with astrophysical PBHs. The continuous

mass spectrum (typically scaling asM�5=2) was a hypothe-
sis historically associated with a possible high normaliza-
tion of the primordial power spectrum (or a very blue tilt)
which is ruled out by CMB observations. Realistic models
for PBH formation are now associated with phase transi-
tions (see, e.g., [15]) or other phenomena leading to black
holes formed at a given mass Mc. If this mass is smaller
than M�, those black holes have already disappeared. If
Mc >M�, that is if the horizon mass at the formation time
was larger that 1015 g, those black holes are evaporating so
slowly that their mass has nearly not changed. As not only

the mass loss rate but also the area loss rate does decrease
with the mass (dA=dt / 1=M), the peak structure exhibited
in Fig. 3 should be observed from such black holes. In this
case, the instantaneous spectrum, together with its peak
structure, can directly be probed. If the mass is higher than
typically 1017 g the black hole will emit only massless
particles, that is photons (� 12%) and neutrinos (� 88%).
The electromagnetic signal is not anymore contaminated
by � rays due to the decay of neutral pions as quarks cannot
be emitted. Although the redshift integration will slightly
smear out the structures, a very clean signature can there-
fore be expected as no mass integration is involved
anymore in the possibly observed signal. In addition, one
can show that the total number of photons received per

second by a detector of area S can be written as ��
104 �PBH

�c
ð1017 g

M Þ2S, where �c ¼ 3H2=8�G is the ‘‘cosmo-

logical’’ critical density and �PBH is the density of primor-
dial black holes. This leads to a macroscopic signal for
quite a large range of masses and densities.
Conclusion.—In this Letter, we have shown that the

specific features of the area of black holes in loop quantum
gravity can lead to observational signatures. Although
detecting evaporating black holes is in itself a challenge,
we have established that footprints of the underlying quan-
tum gravity theory might indeed be observed in this way.
This opens a possible new window to probe LQG.
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PRL 107, 251301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

251301-4

210
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



E. Fernández-Borja, Phys. Rev. D 77, 104024 (2008); I.
Agullo et al., Phys. Rev. D 80, 084006 (2009).

[6] J. Bekenstein and V. Mukhanov, Phys. Lett. B 360, 7
(1995).

[7] G. Dvali, C. Gomez, and S. Mukhanov,
arXiv:1107.0870v1.

[8] C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996).
[9] C. Rovelli, Helv. Phys. Acta 69, 582 (1996).
[10] S. Massar and R. Parentani, Nucl. Phys. B575, 333

(2000).
[11] E. Alesci and L. Modesto, arXiv:1101.5792v1.

[12] G. R. Shorack and J. A. Wellner, Empirical Processes with
Application to Statistics (Society for Industrial & Applied
Mathematics, Philadelphia, 2009).

[13] S. Alexeyev et al., Classical Quantum Gravity 19, 4431
(2002).

[14] J. Fernando Barbero G. and E. J. S. Villaseñor, Phys. Rev.
D 83, 104013 (2011); X. Cao and A. Barrau,
arXiv:1111.1975v1; J. Fernando Barbero G. and E. J. S.
Villaseñor, Phys. Rev. D 77, 121502 (2008).

[15] K. Jedamzik and J. C. Niemeyer, Phys. Rev. D 59, 124014
(1999).

PRL 107, 251301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

16 DECEMBER 2011

251301-5

211
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



212
te

l-0
07

49
16

2,
 v

er
si

on
 2

 - 
7 

N
ov

 2
01

2



Consistency of holonomy-corrected scalar, vector, and tensor perturbations
in loop quantum cosmology
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Loop quantum cosmology yields two kinds of quantum corrections to the effective equations of motion

for cosmological perturbations. Here we focus on the holonomy kind and we study the problem of the

closure of the resulting algebra of constraints when a scalar field is considered in the matter Hamiltonian.

Up to now, tensor, vector and scalar perturbations were studied independently, leading to different algebras

of constraints. The structures of the related algebras were imposed by the requirement of anomaly freedom.

In this article we show that the algebra can be modified by a very simple quantum correction, holding for all

types of perturbations. The Mukhanov-Sasaki equations of motion are similarly modified by a simple term.

DOI: 10.1103/PhysRevD.86.087301 PACS numbers: 98.80.Jk, 98.80.Qc, 04.60.�m

I. INTRODUCTION

Loop quantum gravity (LQG) is a promising framework
for a background-invariant non-perturbative quantization
of general relativity—see Ref. [1] for introductory reviews.
The theory can be derived from different paths, going from
a formal quantization of geometry to covariant or canoni-
cal quantizations of general relativity, all yielding the same
theory. In the canonical formulation, the loop quantization
is obtained by choosing the holonomy of the gravitational
connection and the flux of the densitized triad as basic
variables. Loop quantum cosmology (LQC) is the symme-
try reduced version of LQG. Although a rigorous complete
derivation from the full theory is still missing, LQC utilizes
key elements of LQG for studying quantum corrections of
the cosmological dynamics. These corrections turn out to
be negligible at low curvature, and important where the
energy density approaches the Planck scale �P‘. They give
rise to a strong effective repulsive force which replaces the
big bang by a big bounce (see e.g., Ref. [2] for a review).

As for any tentative theory of quantum gravity, experi-
mental tests are still missing, and searching for observatio-
nal signatures is obviously a key challenge. Cosmological
perturbations, which are directly related to measurable
spectra, provide the best link to observation. Here we con-
sider the theory of linear cosmological perturbations in
the Hamiltonian framework [3]. The theoretical analysis
of these perturbations can be guided by a consistency
requirement: the absence of anomalies that would jeopard-
ize the closure of the effective constraint algebra. This
requirement has been so far separately analyzed for scalar,
vector, and tensor perturbations, leading to different cor-
rections to the constraints. This work focuses on the issue of
finding a unique self-consistent algebra of constraints mak-
ing the approach consistent for any kind of perturbation.We

present a consistent constraint structure suitable for all
types of perturbations, and leading to a simple modification
of the gauge-invariant Mukhanov-Sasaki equation of mo-
tion. This shows the overall consistency of the theory and
indicates that results of the analysis of the scalar perturba-
tions must be taken into account to study tensor modes.
LQC generates two main classes of effective corrections

to the constraints, called the inverse-volume corrections and
the holonomy corrections [2]. The closure of the algebra of
cosmological perturbations has been extensively studied for
inverse-volume corrections. It was explicitly shown that
closure can indeed be achieved. This was demonstrated
for scalar [4,5], vector [6] and tensor modes [7]. Using
the anomaly-free scalar perturbations, predictions for the
power spectrum were also obtained [8]. This allowed to put
constraints on some parameters of the model using obser-
vations of the cosmic microwave background radiation [9].
Here, we focus on the holonomy corrections—appearing

because of the use of the holonomy of the Ashtekar connec-
tion. It is worth emphasizing that for tensor modes, the
algebra is automatically anomaly-free. For this reason, sev-
eral works were devoted to the phenomenology of holonomy-
corrected tensor perturbations (see e.g., Ref. [10]). The
anomaly-free algebra for vector modes was studied in
Ref. [11] and recently fully derived, including matter, in
Ref. [12]. The scalar algebra was obtained in Ref. [13].

II. THEORETICAL FRAMEWORK

LQC is formulated in the canonical language. Because
of general covariance the canonical Hamiltonian is a com-
bination of constraints CI. Consistency requires that the
constraints are preserved under the evolution they gener-
ate. This is assured in the classical theory by the closure of
the Poisson algebra of the constraints
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fCI; CJg ¼ fKIJðAj
b; E

a
i ÞCK; (1)

where CI, I ¼ 1, 2, 3, are the Gauss, diffeomorphism and

Hamiltonian constraints and fKIJðAj
b; E

a
i Þ are structure

functions which, in general, depend on the phase space

(Ashtekar) variables ðAj
b; E

a
i Þ. In LQC, quantum correc-

tions can be studied as effective modifications of the
Hamiltonian constraint. In doing so, anomalies generically

appear: the modified constraints CQI do not form a closed
algebra anymore:

fCQI ; CQJ g ¼ fKIJðAj
b; E

a
i ÞCQK þAIJ: (2)

The anomalous term AIJ can be removed by carefully
adjusting the form of the quantum correction to the
Hamiltonian constraint. This is achieved by adding suitable
‘‘counterterms’’ that vanish in the classical limit. The
resulting deformed algebra can be phenomenologically
very rich.

In the case of a flat Friedmann-Lemaı̂tre-Robertson-
Walker background, the Ashtekar variables can be decom-
posed as follows:

Ai
a ¼ � �k�i

a þ �Ai
a and Ea

i ¼ �p�a
i þ �Ea

i ; (3)

where �k and �p parametrize the background phase space,
and � is the Barbero-Immirzi parameter. The variation
of the connection receives contributions from the fluctua-
tions of both the intrinsic and extrinsic curvature:
�Ai

a ¼ ��i
a þ ��Ki

a.

III. PERTURBATIONS

Taking into account the form of the perturbed variables
(3), we introduce a general expression for the variation of
the spin connection as

��i
a ¼ 1

2 �p
Xijb
ca @b�E

c
j þ

1

2 �p2
Yijkl
abc�E

b
j @k�E

c
l ; (4)

where

Xijb
ca ¼ �ijc �b

a � �ibc �
j
a þ �ijb�ca þ �iba �

j
c: (5)

Yijkl
abc has an expression similar to Xijb

ca , but more compli-

cated: it is not needed here explicitly, because it appears
only as a boundary term in the second-order term of the
Hamiltonian constraint (16) in a way that does not affect
the equations of motion. The information about what kind
of perturbations we consider (scalar, vector or tensor per-

turbations) is coded in the term 1
2 �p X

ijb
ca @b�E

c
j .

The variation of the densitized triad can be decomposed
as follows:

�Ea
i ¼ �p

�
�2c�a

i þ ð�a
i @

d@d � @a@iÞE� c1@
aFi

� c2@iF
a � 1

2
hai

�
; (6)

where the first two terms c and E correspond to scalar
modes, the terms with Fi and Fa to vector modes and the
term with hai to the tensor mode. Vector modes are trans-
verse, and tensor modes are transverse and traceless. These
conditions constrain �Ea

i and �K
i
a, as well as the lapse �N

and the shift vector �Na. In particular, vanishing trace
implies

�i
a�E

a
i ¼ �a

i �K
i
a ¼ 0: (7)

Tensor and vector perturbations satisfy this condition, so
that in these cases the terms containing these expressions
disappear from the constraints. The form of themetric in the
case of vector and tensor modes implies that the variation of
the lapse is zero: �N ¼ 0. Therefore, some first-order con-
straints do not influence the perturbed dynamics.
For vector modes, the variation of the shift corresponds

to one of the two degrees of freedom indicated with Sa and
Fa: �N

a ¼ Sa. For tensor modes instead, the transverse-
ness, i.e., null divergence, implies

@i�Ea
i ¼ @a�E

a
i ¼ 0: (8)

As above, the form of the metric for tensor modes implies
�Na ¼ 0 for the shift, so that some further first-order terms
do not contribute to the dynamics.
Scalar perturbations are the more general: no term dis-

appears and all the constraints contribute to define the
perturbed dynamics. We have

�N ¼ �N� and �Na ¼ @aB; (9)

where �N is the unperturbed part of the lapse N ¼ �N þ �N
and � and B are scalar fields.
If we turn on the quantum corrections by modifying the

Hamiltonian constraint, anomalies appear and we have to
add counterterms in order to make the Poisson algebra
closed. In previous works, these counterterms were found
considering separately the case of each kind of modes. The
tensor and vector cases were simpler because of the vanish-
ing of several terms in the constraints, as observed. The
scalar case, on the other hand, is from this perspective the
most general one, since all the constraint terms are present. It
is indeed easy to see that the counterterms that adjust the
Hamiltonian for the scalar case [13] work also for the vector
and tensor cases, thus providing a general solution to the
closure of the algebra. Therefore starting from the scalar case
it is possible to define a unique closed algebra of modified
constraints, with the most general counterterms, giving back
correct counterterms for scalar and tensor perturbations
when imposing transverseness and vanishing trace.

IV. CONSTRAINTS

We consider the algebra of the diffeomorphism and
Hamiltonian constraints (see Ref. [2] for the expression
of the constraints in terms of the variables (3)). In each
constraint, gravity and matter—here modeled by a single
scalar field with canonical variables ð’;�Þ—contribute.
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A. Diffeomorphism constraint

The diffeomorphism constraint can be decomposed as

D½Na� ¼
Z
�
d3x½ �NaðDð0Þ þDð2ÞÞ þ �NaDð1Þ�: (10)

Since we are considering an FLRW background metric, the
shift Na ¼ �Na þ �Na has zero �Na. This implies that the
diffeomorphism constraint can be considered at the first
order.

Using the symmetry properties of (5) we can write the
constraint for the gravitational part as

�Dg ¼ �p@a�K
d
d � �p@d�K

d
a � �k@d�E

d
a; (11)

and for the matter part as

D m ¼ ��@a�’: (12)

Recall that for tensor modes �Na ¼ 0, therefore Dg and

Dm play a role only for scalar and vector perturbations.

B. Hamiltonian constraint

We consider the gravitational part of the Hamiltonian
constraint up to the second order

H½N� ¼
Z
�
d3x½ �NðH ð0Þ þH ð2ÞÞ þ �NH ð1Þ�: (13)

Using again the symmetry properties of (5), the expansion
of the constraint given in Ref. [2] gives

2�H ð0Þ ¼ �6
ffiffiffiffi
�p

p
�k2; (14)

at zeroth order and

2�H ð1Þ ¼ �4
ffiffiffiffi
�p

p
�Kd

d �
�k2ffiffiffiffi
�p

p �Ed
d þ

2ffiffiffiffi
�p

p @j@c�E
c
j ; (15)

at first order, for all kinds of perturbations. On the other
hand, the second order turns out to be

2�H ð2Þ ¼ �2
�kffiffiffiffi
�p

p �Ki
a�E

a
i

þ ffiffiffiffi
�p

p ð�b
i �K

i
a�

a
j�K

j
b � �a

i �K
i
a�

b
j�K

j
bÞ

þ 1

4

�k2

�p
3
2

ð�i
a�E

a
i �

j
b�E

b
j � 2�j

a�Ea
i �

i
b�E

b
j Þ

þ 1

�p
3
2

Ykjil
bdc�

ab
k @að�Ed

j@i�E
c
l Þ

þ 1

�p
3
2

Zcidj
ab ð@c�Ea

i Þð@d�Eb
j Þ (16)

and is different depending on the mode considered. The

difference is only in the term Zcidj
ab . Its explicit form reads

Zcidj
ab ¼ 1

4
�efk �kmnX

mjd
be Xnic

af � �iek X
kjd
be �c

a � �cik X
kjd
ba

þ 1

2
�i
a�

ce
k Xkjd

be : (17)

Imposing the conditions that define each mode and using

(5), we obtain that the term Zcidj
ab ð@c�Ea

i Þð@d�Eb
j Þ in (16) is

respectively

�ab�
ij�cd � ð@c�Ea

i Þð@d�Eb
j Þ for tensor modes; (18)

0 for vector modes; (19)

� 1

2
�c
a�

d
b�

ij � ð@c�Ea
i Þð@d�Eb

j Þ for scalar modes: (20)

This term is the only one that takes different forms when
restricted to perturbations of the scalar, vector or tensor
types. It follows that only the counterterms originating
from this term will differ from one another for different
types of perturbations.

V. QUANTUM CORRECTIONS

In the classical case, the algebra is closed

fDðmþgÞ½Na
1 �; DðmþgÞ½Na

2 �g ¼ 0; (21)

fHðmþgÞ½N�; DðmþgÞ½Na�g ¼ �HðmþgÞ½�Na@a�N�; (22)

fHðmþgÞ½N1�; HðmþgÞ½N2�g ¼ DðmþgÞ
� �N

�p
@að�N2 � �N1Þ

�
:

(23)

Dg does not undergo corrections from quantum effects

[14]. We add quantum corrections at an effective level by
replacing in the Hamiltonian constraint

�k ! sinð ��� �kÞ
���

(24)

as a result of the quantization of the holonomies [15]. The
parameter ��, proportional to the ratio between the Planck
length and the scale factor, carries the information on the
scale at which quantum corrections become relevant. This
yields the quantum-corrected Friedmann equations

H2 ¼ �

3
�

�
1� �

�c

�
¼ H 2

�p
; (25)

whereH andH are the Hubble rate respectively in cosmic
time and in conformal time, � is the energy density and
�c � 0:4�P‘ is the energy density at which a repulsive
quantum-gravity force appears, removing the classical ini-
tial singularity [2]. The appearance of anomalies in the
Poisson brackets when applying the holonomy correction,
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�
H

�
N;

sinð ��� �kÞ
���

�
; H

�
N;

sinð ��� �kÞ
���

��
¼ D½@aN� þAi;

(26)

is contrasted by inserting counterterms 	i in H ð1Þ and

H ð2Þ such that, for instance, (15) becomes in our case

H ð1Þ
G ¼ �4

ffiffiffiffi
�p

p �
sinðs1 ��� �kÞ

s1 ���
þ 	1

�
�c
j�K

j
c

� 1ffiffiffiffi
�p

p
��
sinð ��� �kÞ

���

�
2 þ 	2

�
�j
c�Ec

j þ
2ffiffiffiffi
�p

p @j@c�E
c
j :

(27)

RequiringAi ¼ 0 therefore leads to a system of equations
which allows to find the expressions of the counter-terms.
Fortunately, when taking into account all the other con-
straints, there is a unique solution in the case of holonomy
corrections. For the explicit form of the resulting constraints,
we refer the reader to the literature (see Ref. [13]). The same
modified constraints have been found in Ref. [16], where the
counterterms of Ref. [13] appear naturally after a Taylor
expansion of the holonomies of the perturbed Ashtekar
connection.

We are here interested in the structure of the resulting
closed algebra.

VI. RESULTS

Remarkably, the resulting quantum-corrected algebra
valid for all different kind of perturbations is obtained
with a single structure modification (21)–(23). This appears
in the last Eq. (23), which becomes

fHðmþgÞ½N1�; HðmþgÞ½N2�g

¼ �DðmþgÞ
� �N

�p
@að�N2 � �N1Þ

�
; (28)

where

� ¼ cosð2 ��� �kÞ ¼ 1� 2
�

�c

: (29)

The single � factor represents the quantum correction. It
goes to 1 in the classical limit. This simple correction
appears also in the definition of the evolution of the pertur-
bations using gauge-invariant observables.

A. Mukhanov-Sasaki equations of motion

Whatever the kind of perturbations, due to the modified
constraints, the Poisson brackets

d

d

ð�XÞ _¼f�X;Hmodified½N� þD½Na�g; (30)

therefore lead to a modified evolution in time or under
small transformations, and so is the definition of gauge-
invariant variables. Finally, using the Hamilton-Jacobi

equation [13,17], or merging the equations of motion for
the different perturbations [13], the correction to the
Mukhanov-Sasaki [18] equation of motion for gauge-
invariant perturbations of scalar and tensor type vSðTÞ can
be derived. In conformal time, this is given by

v00
SðTÞ ��r2vSðTÞ �

z00SðTÞ
zSðTÞ

vSðTÞ ¼ 0; (31)

which reduces to the classical equation when� ! 1. This
equation holds for both scalar and tensor perturbations.
Since we have considered the simple case of a scalar field,
there is no vorticity and therefore there is no physical
solution corresponding to vector perturbations.
For scalar perturbations, the Mukhanov variables in the

quantum case are given by

vS ¼ ffiffiffiffi
�p

p �
�’þ �’0

H
�

�
and zS ¼

ffiffiffiffi
�p

p �’0

H
: (32)

If we impose the divergence and the trace to be zero, we
obtain for tensor modes

vT ¼
ffiffiffiffiffi
�p

�

r
h and zT ¼

ffiffiffiffiffi
�p

�

r
; (33)

where h represents the two degrees of freedom of hia.
Inserting (33) into (31) we obtain the following form of
the equations of motion for tensor perturbations:

hia
00 þ hia

0
�
2H ��0

�

�
��r2hia ¼ 0: (34)

This equation is clearly different from what has been used
in previous works because of the general expression for the
effective constraints. It is not only obviously different from
standard cosmology but also from first results obtained in
LQC. This� term deforms the algebra and will inevitably
lead to different observational consequences. The closure
requirements modifies the equation of motion for all types
of perturbations.

VII. CONCLUSIONS

We have presented a consistent framework for the study
of perturbations in loop quantum cosmology. It is possible
to write down a unique quantum-corrected algebra. This
has a simple form, and the same quantum correction holds
for all the different kinds of perturbations.
This simple correction also appears in the Mukhanov-

Sasaki equation, and consists in the insertion of the single
factor (29), which becomes relevant only when the matter
energy density approaches the Planck scale.
We notice that there exist a small region in the strong

quantum regime where � becomes negative. This yields a
change of signature of the effective metric [13,19] associ-
ated to the appearance of divergences in the equation of
motion of cosmological perturbations. As a consequence,
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new observable features could appear since the value of
tensor modes would be higher than in the classical case.
This have to be further investigated, possibly going beyond
the effective treatment.

The existence of a single deformed closed algebra of
constraints for all kind of perturbations, as exhibited in this
work, is a strong case for the self-consistency of effective
LQC.
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221

Formule de Baker-Hausdorff

La formule de Baker-Hausdorff est utile ici lorsque l’on cherche à calculer l’holonomie sur un motif carré.
Les commutateurs entre différentes matrices de Pauli vont intervenir.

Ln (eXeY ) = X + Y +
1
2
[X,Y ] +

1
12

([X, [X,Y ]]− [Y, [X,Y ]])− 1
24

[Y, [X, [X,Y ]]] + ... (13.9)

Les symboles de Levi Civita

En physique, ces symboles sont très importants, et il est judicieux de faire un bref rappel sur ces outils. Pour
(i, j, k) variant de 1 à 3, et en utilisant la convention d’Einstein (tout indice répété est sommé)

εijk =
1
2
(j − i)(k − i)(k − j)

εijkεlmn = δil(δjmδkn − δjnδkm)− δim(δjlδkn − δjnδkl) + δin(δjlδkm − δjmδkl)

εijkεimn = δjmδkn − δjnδkm

εijkεijn = 2δkn

εijkε
ijk = 3!

Dérivation de l’expression du spectre de puissance

< 0|v̂(η, ~x)v̂(η, ~x+ ~r)|0 > =
1

(2π)3
·
∫
d3k · d3q · ei~k·~xei~q·(~x+~r) · v∗kvqδ(~k + ~q)

=
1

(2π)3
·
∫
d3k · e−i~k·~r|vk|2

=
1

(2π)3
·
∫ +∞

−∞
dk · k2

∫ 2π

0

dφ

∫ π

0

dθ · sin(θ) · e−ikrcos(θ) · |vk|2

=
2π

(2π)3
·
∫ +∞

−∞
dk · k2|vk|2

∫ π

0

dθ · d
dθ

(
1
ikr

e−ikrcos(θ)
)

=
1

(2π)2
·
∫ +∞

0

dk

k
· k3 · |vk|2

(
2
sin(kr)
kr

)
=
∫ +∞

0

dk

k
· sin(kr)

kr
Pv(k)

soit

Pv(k) =
k3

2π̄2
|vk|2 (13.10)
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Abstract

La relativité générale est la théorie rendant compte de la gravitation via une déformation de l’espace-
temps. Son application à l’Univers permet, dans le modèle Λ-CDM, de bien rentre compte des observations
cosmologiques. Cependant, à l’échelle de Planck, la théorie ne fonctionne plus et s’avère incohérente. Pour
résoudre ce problème, il est sans doute essentiel de tenir compte des effets quantiques. Depuis près d’un siècle,
concilier relativité générale et mécanique quantique est considéré comme une priorité de la physique théorique.
La tâche s’avère néanmoins extraordinairement difficile et cette thèse est consacrée à l’une des pistes les plus
sérieuses : la gravitation quantique à boucles.
Pour aller de l’avant dans cette démarche nécessaire mais complexe, des confrontation avec des données
expérimentales seraient essentielles. Nous nous sommes ainsi intéressés aux perturbations cosmologiques générées
dans ce cadre. Nous avons étudié en détails les conséquences phénoménologiques des corrections de cosmologie
quantique à boucles aux modes tensoriels dans un modèle d’univers en rebond. Une analyse de Fisher a été
développée pour comparer ces prédictions aux éventuelles futures observations. Pour les autres modes, nous
nous sommes placés dans un formalisme spécifique incluant le calcul de contre-termes permettant de prévenir
l’apparition d’anomalies dans la structure de l’algèbre des contraintes. Ce formalisme a été appliqué aux cas
des perturbations vectorielles puis scalaires. Les équations du mouvement invariantes de jauges permettant de
calculer les spectres ont alors été dérivées.

Abstract

General relativity describes gravity as a deformation of space-time. Applied to the Universe as a whole, it
explains well cosmological observations in the Λ-CDM paradigm. However, at the Planck scale, the theory is
not anymore self-consistent. It is most probably necessary to include quantum effects. For a century, this has
been considered as one of the main challenges for theoretical physics. This is however an extremely difficult aim
to reach and this thesis is devoted to one of the main proposal : Loop Quantum Gravity. To go ahead in the
construction of any quantum theory of gravity, it would be most useful to compare predictions with observations.
To this aim, we have studied cosmological perturbations in this framework. We have investigated into the details
the phenomenological consequences of loop quantum cosmology corrections in a bouncing universe. A Fisher
analysis was carried out to compare the predictions with future data. For the other modes, we have used a
specific formalism to include counterterms that prevent anomalies from appearing in the algebra of constraints.
This formalism was applied to vector and scalar perturbations. The gauge-invariant equations of motion leading
to the calculation of measurable spectra were derived.

Disponible en version électronique à l’adresse : http://tel.archives-ouvertes.fr/tel-00749162
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