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Constantes fondamentales
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Constante de Boltzmann kg =138 x 10723 JK!

Constante de Newton G =6.67x 107" m3.kg!.s2

Constantes et unités de Planck

Energie 1 GeV=1.6x10"10]J
Température 1 GeV=1.16 x 10" K

Masse 1 GeV=1.78 x 10727 kg

Longueur 1GeV 1 =197x10"1m

Temps 1GeV™! =6.65x10"% 5

Masse de Planck Mp; = (hc/G)l/2 =217 x 1078 kg

Longueur de Planck lp = (hG/c?) Y2 2161 %1073 m

1/2

Temps de Planck tp = (hG/C5) =539x 107 s
Tenseurs et dérivations

Tenseur de Lorentz Nuw
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Dérivation directe 0, Yt = %i’f

Dérivation covariante ok, =90 4 T T
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Introduction

Si j’ai vu plus loin que les autres, c’est parce que j’ai été porté sur des épaules de géants.

Newton.

Newton, référant a Galilée, montrait déja qu’on ne construit jamais ex nihilo. Toujours a partir d’une
élaboration précédente. Dans le domaine des sciences, comme dans celui des arts, en philosophie comme en
ingénierie, les grandes avancées ont presque toujours été dictées par la capacité a intégrer dans un méme corpus
des éléments disparates des paradigmes précédents. C’est une situation a laquelle nous faisons face en physique
depuis pres d’'un siecle. La Mécanique Quantique et la Relativité Générale sont les deux piliers de la science de la
Nature, mais elles ne sont pas conciliées. Le cadre, le fond, le fixe de I'une est, justement, le champ dynamique de
I’autre. L’enjeu d’une gravitation quantique est en un sens celui de I'unification. Mais, plus profondément encore,
c’est celui de la cohérence. Dans certaines circonstances, les petits trous noirs ou I'univers primordial, la physique
convoquée doit étre a la fois quantique et relativiste. Dans ces situations, le recours a une théorie quantique
de l'espace-temps n’est pas un luxe lié au fantasme unificateur, mais une nécessité conceptuelle. Il existe de
nombreuses approches pour tenter de résoudre ce probleme extraordinairement difficile. La théorie des cordes
est certainement la plus développée. La géométrie non-commutative est sans doute la plus élégante. Nous nous
intéresserons pourtant ici a la Gravitation Quantique a Boucles. Elle présente deux avantages considérables :
elle est modeste, simple si I'on veut, dans la mesure ou elle ne se fonde que sur les grands principes bien
compris de la théorie d’Einstein d’une part et de la théorie de Shrodinger, Heisenberg et Pauli d’autre part,
et elle conduit a des prédictions claires. D’un point de vue heuristique ce second point est fondamental. Pour
progresser sur cette voie si délicate, il est indispensable de confronter le modele & des observations, ce qui fait
aujourd’hui globalement défaut a ce champ de recherche. C’est pourquoi cette these a été dédiée a ’étude de
possibles conséquences observationnelles de la gravitation quantique a boucles. Etant donné que les petits trous
noirs n’ont encore jamais été observés, nous nous sommes focalisés sur 'univers primordial. Dans ce cadre, la
théorie fait émerger une image radicalement novatrice : le Big Bang disparait et se trouve remplacé par un grand
rebond. Ce sont les conséquences de ce nouveau scénario que nous avons cherché a comprendre. Plus de cent
chercheurs travaillent aujourd’hui & plein temps sur la gravitation quantique a boucles qui vient de féter ses
vingt-cinq ans. Cet axe d’étude est en pleine effervescence et ce travail s’inscrit dans le renouveau apporté par
les boucles au probleme de la quantification du champ gravitationnel. Nous entendons ainsi apporter quelques
éléments de réponse aux conséquences cosmologiques de la proposition.

L’intérét de ce sujet vient ainsi & mon sens de la possibilité de corroborer avec les observations une théorie
quantique de la gravitation utilisant la formulation des théories de Yang-Mills dont la quantification a rencontré
un évident succes dans I’explication des processus de la physique des particules. La procédure de quantification
nécessite cependant des moyens différents mais elle reste dans l'esprit de la quantification ¢ la Dirac, qui
a d’ailleurs développé la théorie des contraintes, largement utilisée dans ce formalisme. Ces différences dans
la quantification vont alors amener des effets nouveaux permettant de résoudre les problemes inhérents a la
relativité générale comme la singularité du Big Bang et la définition des conditions initiales. La présence d’un
rebond dans I’évolution de l'univers, par l'utilisation des holonomies et par la quantification de la théorie,
permettant en plus d’amener naturellement une inflation, rend ainsi tres intéressant un tel modele. C’est dans
ce contexte attrayant que nous avons ainsi décidé de regarder 'influence des corrections d’holonomie sur la
cosmologie, a travers I’étude des perturbations du fond diffus cosmologique représentant une véritable empreinte
du passé.
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xii INTRODUCTION

La premieére partie de ce manuscrit va alors consister a introduire les fondements de la physique qui ont
permis I’élaboration de la théorie de la gravité quantique a boucles. Dans les deux premiers chapitres, nous avons
ainsi présenté les principes, notions et outils de la mécanique classique, quantique et des théories de relativité
qui ont permis dans le troisieme chapitre de décrire la construction de la gravité quantique & boucles. Cette
théorie, par la définition de nouvelles variables, les variables d’Ashtekar, reliées a la métrique et a la courbure
de 'espace-temps, va alors pouvoir se ramener a une théorie similaire a celles de Yang-Mills, et 'action de la
relativité générale sous cette formulation meénera a un hamiltonien. Il sera nécessaire alors de développer une
procédure permettant la quantification d’une théorie invariante par changement de coordonnées, et on verra
ainsi l'utilisation d’un nouvel objet, I’holonomie qui permettra d’évaluer la connexion sur une partie de ’espace.
De facon non triviale, cette théorie menera a un espace-temps discrétisé.

Cette these se portant sur ’étude des perturbations dans un modele d’univers homogene et isotrope, nous
avons consacré la seconde partie a I'introduction des concepts utiles pour comprendre la théorie des perturbations
dans cet univers. Nous avons ainsi commencé dans le premier chapitre par évoquer les notions connues de
cosmologie, avant de s’intéresser dans le second chapitre aux modifications apportées par ’application de la
gravité quantique a boucles & I'univers. En utilisant la formulation due aux variables d’Ashtekar, on verra dans
ce second chapitre qu’il est de méme possible de décrire I'univers classique, mais aussi qu’appliquer les méthodes
de quantification développées par la gravité quantique a boucles va permettre ’obtention d’une nouvelle théorie
quantique de la cosmologie, la Cosmologie Quantique a Boucles. Cette théorie va alors étre fondamentalement
différente de celle de Wheeler et de DeWitt, et aura alors des conséquences physiques nouvelles : la singularité
du Big Bang n’existera plus et il sera possible de propager la fonction d’onde de I'univers a travers la singularité
initiale. Cependant, nous ne nous sommes pas intéressés aux expressions purement quantiques des équations
du mouvement : nous avons dans la suite utiliser des fonctions que 'on appelle corrections, et qui encodent
les effets quantiques de la théorie de maniere effective. Il existe deux corrections principales, la correction
d’holonomie qui apparait par le fait d’utiliser les holonomies de la connexion d’Ashtekar, ainsi que la correction
d’inverse-volume donnée lors de la quantification d’un terme inversement lié a un opérateur contenant 0 dans
son spectre de valeurs propres. Introduire ces corrections dans ’hamiltonien classique de la relativité générale
va alors définir une théorie effective de la Cosmologie Quantique a Boucles, dont les équations d’évolution vont
permettre une description des effets globaux de ces corrections : le Big Bang sera bien remplacé par un rebond,
qui, sous certaines conditions, va amener a une phase d’inflation naturelle. Nous avons cherché a appliquer
cette théorie aux perturbations cosmologiques, et les chapitres suivants donneront le formalisme de la théorie
des perturbations dans le cadre de la cosmologie usuelle, ainsi que dans celui de 'approche effective de la
Cosmologie Quantique a Boucles : en prenant le cas classique, les équations du mouvement pour les différents
types de perturbations seront obtenues et leurs spectres dérivés dans les deux approches.

Finalement, durant ma thése, nous nous sommes intéressés a l'influence que pourraient avoir les corrections
de la Cosmologie Quantique a Boucles sur la forme des spectres de puissance des différentes perturbations : cela
permettra alors de comprendre quelles seraient les conséquences physiques de ce genre de modele et voir s’il n’est
pas possible de les tester. Dans la derniére partie, nous avons ainsi traité les différents travaux effectués pendant
la these, en commencant dans le premier chapitre par évoquer celui utilisant les deux corrections disponibles :
dans un modele particulier faisant intervenir de facon ad hoc une phase inflationnaire, des études ont montré
les différents effets sur le spectre des corrections prises séparément, menant a de grandes différences avec le cas
classique. Afin de connaitre leurs effets combinés et voir s’ils ne peuvent pas se compenser, nous avons regardé
qu’elle serait la forme du spectre des perturbations tensorielles dans le cas d’une inflation standard et sous
ces corrections. Cette étude a montré que le spectre, dans la partie infrarouge, présentait une large déviation
par rapport au spectre classique, correspondant a l'influence des corrections d’inverse-volume, alors que dans
sa partie ultraviolette, a cause des corrections d’holonomie, une légeére pente était présente qui pouvait étre
reliée & un des parametres fondamentaux de la théorie. Cependant, dans ce travail, les corrections n’avaient
pas été prises en compte pour ’évolution du fond, rendant ce modele tres restrictif mais néanmoins intéressant
pour voir I'action des deux corrections combinées sur les équations du mouvement. Nous avons alors décidé
par la suite de ne considérer que l'influence des corrections d’holonomie en tenant compte de leur action sur le
fond, les corrections d’inverse-volume ayant déja été étudiées. Pour le scénario d’un rebond suivi d’'une phase
d’inflation, nous avons dans le second chapitre dérivé de manieres analytique et numérique les spectres de
puissance pour le cas des perturbations tensorielles et obtenu une forme caractéristique : a la limite infrarouge,
le spectre était supprimé en k2, et aux échelles intermédiaires présentait des oscillations avant de redonner dans
le régime ultraviolet le spectre classique. Ce spectre étant spécifique d’un univers a rebond avec inflation, nous
I’avons approximé par une fonction rendant compte de ses caractéristiques, et étudié ensuite si une expérience
future permettrait de ’observer : une analyse de Fisher a été réalisée, montrant qu’il existe un large espace
de parametres permettant au modele a rebond d’étre observé. Néanmoins, & ’heure actuelle, seul le spectre en
température est bien mesuré, et nous avons alors décidé de regarder 'influence des corrections d’holonomie sur
un tel spectre, en cherchant a dériver celui des perturbations scalaires. Cependant, les contraintes introduites
ici ameénent dans le cas des perturbations scalaires, et vectorielles, des termes supplémentaires que 'on sait
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non-physiques, rendant alors la dynamique mal définie, et il a fallu au préalable régulariser la théorie par
I'introduction de contre-termes : en commencant par le cas des vecteurs et ensuite celui des scalaires, nous
avons enlevé ces termes en modifiant I’hamiltonien de ces perturbations, et regardé alors qu’elles étaient les
modifications apportées sur les équations du mouvement. Ces équations étant plus compliquées et suscitant
encore quelques interrogations, nous n’avons pas cherché a les résoudre ici. Nous avons plutot terminé notre
travail par 'application d’une méthode utilisant ’équation d’Hamilton-Jacobi a la Cosmologie Quantique a
Boucles, qui s’est avérée par la suite prometteuse dans I’obtention de variables physiques observables ainsi que
de leurs équations du mouvement puisque la démarche utilisée simplifie alors grandement les calculs. Une étude
sur les possibles tests de la théorie par I’évaporation des trous noirs en gravité quantique a boucles a également
été menée mais ne sera pas explicitée dans ce manuscrit.

En résumé, nous avons donc étudié différentes approches des effets cosmologiques de la gravité quantique
a boucles et construit une algebre close, non perturbative et s’appliquant a tous les modes cosmologiques. Ces
travaux ouvrent de nouvelles pistes mais beaucoup reste encore a faire avant une éventuelle détection fiable de
ces effets.
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Chapitre 1

La Mécanique Classique,
fondation de la Physique moderne

Les mathématiques sont une grammaire de la nature ; c’est les godasses de la technique. On peut
marcher sans chaussures, mais on va moins loin.

Jean-Marie Souriau

Introduction

Par définition, la mécanique est un domaine des sciences qui permet de rendre compte du mouvement de
tout systeme matériel sous I'action d’une force. Elle permet ainsi une description de nombreux phénomeénes
physiques comme la dynamique d’une particule, de milieux rigides ou bien continus, ainsi que d’autres champs
comme la gravitation et 1’électromagnétisme comme on pourra le voir.

Parallelement, les mathématiques se sont développées et enrichies de maniére faramineuse, en interaction
constante avec la physique, et ces nombreux développements appliqués aux problemes de physique ont énormément
aidé a notre compréhension des phénomenes. La mécanique possede deux points de vue principaux, la mécanique
lagrangienne et la mécanique hamiltonienne. La mécanique lagrangienne est dans un sens plus fonda-
mentale puisqu’elle est basée sur des principes variationnels, plus simples a manipuler et ayant permis le
développement de théories nouvelles qui incorporent les principes de relativité. D’un autre coté, la mécanique
hamiltonienne peut aussi étre considérée comme plus fondamentale dans le sens ou le formalisme est essentielle-
ment fondé sur la notion d’énergie, et heureusement, ces deux approches sont souvent équivalentes. Cependant,
alors que la mécanique quantique s’est développée a partir du formalisme hamiltonien, la relativité générale a
quant a elle utilisé le formalisme lagrangien, et jusqu’a I’avenement d’une théorie quantique complete de la gra-
vitation, la réunion de ces deux théories reste actuellement un des problémes majeurs de la physique moderne.
Durant toute sa construction, la mécanique a souffert bien des changements, parfois incroyables, pour finalement
bouleverser notre compréhension du monde. Or ’enseignement que 'on en donne, certes excellent mais trop
compartimenté a mon avis, n’amene pas forcément ce recul permettant d’apprécier pleinement la construction
méme des théories de relativité, ou les conséquences presque incroyables de simples postulats. C’est ainsi qu’il
m’a semblé bon dans ces premiers chapitres de commencer par rappeler les (r)évolutions de la mécanique au
cours du temps (de la mécanique classique jusqu’a la relativité générale en passant par la mécanique quantique),
en montrant les postulats et les points forts de cette description, ainsi que quelques ouvertures.

La raison d’étre de ce premier chapitre est d’amener a tout lecteur un semblant de point de vue global sur
la mécanique, en commengant par évoquer un formalisme qui me parait novateur dans la compréhension plus
profonde de la mécanique, la mécanique symplectique. Au cours des prochains chapitres, des concepts
mathématiques et non forcément connus de prime abord, comme la structure symplectique, les crochets de
Poisson, léquation d’Hamilton-Jacobi, ... vont apparaitre, ainsi que d’autres notions mathématiques, et ce cha-
pitre est ainsi une tentative d’introduction qui se veut pédagogique, permettant finalement de poser les bases
nécessaires notamment a la construction d’une théorie quantique de la gravitation. On va ainsi voir que les
notions, comme l'action, sont en fait inhérentes a ’espace des variables que l'on considere et qu’elles vont
apparaitre simplement. Ce domaine étant vaste, de nombreux détails sont passés sous silence, mais j’encourage
tout lecteur souhaitant aller plus loin & lire les ouvrages [2] & [15] dont je me suis trés fortement inspiré pour
écrire cette description.
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4 CHAPITRE 1. LA MECANIQUE CLASSIQUE

1.1 La mécanique newtonienne

Comme toute théorie physique et mathématique, la mécanique se fonde sur des postulats et des principes
que 'expérience tente de vérifier.

Principe d’équivalence de Galilée

Nombreux sont ceux qui ont contribué au développement historique de la mécanique. Par ses travaux nova-
teurs, il est communément admis qu’'un des peres fondateurs de la mécanique est Galileo Galilei. 11 fit un des
premiers a rendre compte de la dynamique d’un objet via son observation sur la chute libre des corps :

observation sur la chute libre : Dans un champ de pesanteur, sans frottements, deuzx corps de composi-
tions différentes et lachés d’une méme hauteur arriveront au sol au méme instant.

Lois du mouvement de Newton

En se basant entre autre chose sur cette réflexion, Isaac Newton en 1687 a décrit mathématiquement le
comportement d’un corps dans un champ de pesanteur via ses 3 lois du mouvement, correspondant a 3 principes

1. le principe d’inertie : Le mouvement d’un corps isolé est rectiligne et uniforme. Son référentiel définit
un référentiel inertiel (galiléen).

2. le principe d’action et de réaction.

3. le principe fondamental de la dynamique : Soit un corps de masse m (constante) : accélération
subie par ce corps dans un référentiel galiléen de coordonnées (¢, x®) est proportionnelle & la résultante
des forces qu’il subit :

- . d*z
1
Dans I’expression F= m;d, la masse qui entre en jeux est la masse inertielle qui n’a aucun lien avec la gra-
vitation : elle rend simplement compte de I'effort qu’il faut faire pour accélérer ou décélérer un objet. Par contre,
la masse s’exprimant dans le poids P = m,g est bien celle qui rend compte de I’attraction gravitationnelle.

Principe d’équivalence de Newton

Dans ce formalisme, on peut ainsi définir un nouveau principe d’équivalence respectant ’observation sur la
chute des corps par Galilée :

Principe d’équivalence de Newton : Aucune expérience locale ne peut distinguer un systéme sans ro-
tation, en chute libre, d’un systéme en mouvement non-accéléré dans un espace sans gravitation.

Lorsqu’un objet est en rotation, il subira des forces d’inerties et son référentiel ne sera alors plus inertiel.
Un objet en chute libre ne sait pas s’il est soumis a la gravité ou non. Ce principe implique que m; = mg, mais
I’implication inverse n’est pas vraie, par exemple si on ne considere cette relation vraie que pour des couplages
a lordre zéro en masse.

Principe de relativité

Cependant, il existe un principe sous-jacent encore plus important. FEn effet, les lois de Newton ne sont pas
valables uniquement a Cambridge a ’époque de Newton mais sont aussi valables n'importe quand et n’importe
ou. Ce principe s’appelle le principe de relativité :

Principe de relativité : Toute loi physique s’exprime de maniere identique dans tout référentiel inertiel,
et donc doit étre indépendante du systéme de coordonnées utilisé.

Par changement de référentiel, les équations du mouvements doivent conserver la méme forme. Pour passer
d’un référentiel inertiel R de coordonnées (t,z) & un autre référentiel inertiel R’ de coordonnées (t',z'), en
translation rectiligne uniforme & la vitesse V' 1'un par rapport a ’autre, on pourrait intuitivement penser qu’il
suffit de faire un changement de coordonnées donné par les transformations de Galilée

t'=t, ' =x+Vt, (1.2)

laissant les équations de Newton invariantes sous cette transformation. Les transformations de Galilée désignent
ainsi une tentative de groupe de transformations qui permet de lier les systémes de coordonnées de deux
référentiels galiléens, c’est-a-dire en mouvement relatif uniforme.
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Repére absolu

Cette relation suppose implicitement une croyance en un espace absolu : tout corps se meut dans un espace
fixe ou le temps est partout identique. Les longueurs mesurées sont ainsi indépendantes du mouvement, et le
temps s’écoule partout de la méme maniere pour tout observateur. La mesure des distances et des intervalles
temporels est donc indépendante du mouvement de I’observateur.

Limites du formalisme newtonien : les équations de Maxwell

Ainsi, avec ces principes, la mécanique newtonienne est capable de décrire beaucoup de situations physiques,

comme le tir d’un projectile, ou bien de confirmer des lois empiriques, comme celles de Johannes Kepler avec
la dynamique d’un corps céleste autour d’un autre corps massif. Cependant, I’étude de I’électromagnétisme ainsi
que les lois en résultant, exprimées par les équations de James C. Maxwell au début des années 1860, vont
mettre en porte-a-faux cette théorie. En effet, supposer que les équations de Maxwell et ’expression de la force
de Lorentz sont compatibles avec les équations de Newton mene a des contradictions : comme 'accélération est
invariante sous une transformation de Galilée, en regardant 1’égalité entre les forces de Lorentz des référentiels
R et R’ précédents, on voit que le champ magnétique est invariant par changement de référentiel. Cela semble
impossible puisqu’'une charge immobile dans R ne crée par de champ magnétique, tandis que dans R’, cette
méme charge a la vitesse —V devrait en créer un d’apres les équations de Maxwell.
De plus, en utilisant le principe de relativité, les équations de propagation AE — uoeoﬁfﬁ = 0 dans R et
AE' — po€od? E’ = 0 dans R’ ont toutes deux pour solution une onde électromagnétique se propageant a la
méme vitesse ¢ = (,uoé())%, et cela, quels que soient les référentiels. Or, sur une ligne droite, selon la mécanique
newtonienne tout observateur suivant un photon lui attribuera une vitesse plus petite que celui qui s’en éloigne
en sens inverse. Ainsi, en profitant du mouvement de la Terre sur elle-méme, il devrait étre possible de voir
qu’un photon, laché a une distance d d’un observateur et arrivant de I’Est, arrivera plus vite qu’un photon
laché a une méme distance mais venant d’une autre des directions. Des expériences tres précises mettant en
jeux des interférometres ont été réalisées, notamment par Albert Michelson et Edward Morley, et ont
montré que la vitesse de la lumiere était la méme, quelle que soit la direction : cela était bien prévue par la
théorie de I’électromagnétisme de Maxwell, mais la tension avec la mécanique classique persistait néanmoins.
Pour palier ce probleme, des physiciens et mathématiciens comme Henri Poincaré sont arrivés a la conclusion
que, si les équations de Maxwell n’étaient pas fausses puisqu’on les vérifiaient, les transformations de Galilée
devaient étre erronées, et que pour résoudre cette incompatibilité, il fallait perdre la notion d’espace-temps
absolu et admettre que les objets pouvaient se contracter. Sous cette contraction des longueurs, la théorie de
I’électromagnétisme donnait des solutions plus simples mais était par nature toujours en contradiction avec les
concepts de la mécanique newtonienne. Il aura fallu attendre 1905 pour qu’Albert Einstein remette en cause
la notion d’espace et de temps absolus et fasse progresser la compréhension de I’espace et du temps vers un
objet mixte, I’espace-temps.

1.2 La formulation lagrangienne

Newton a certes posé les bases de la mécanique, mais il a aussi développé avec Gottfried Leibniz tout un
formalisme mathématique se basant sur des déplacements infinitésimaux, amenant alors le concept d’équation
différentielle comme (1.1) & travers le calcul infinitésimal. Ce formalisme a ainsi permis aux théories physiques
de devenir prédictives', la position d’un objet & un temps t + dt¢ étant ainsi connue, mais a aussi permis la
définition d’objets mathématiques fondamentaux en mécanique : le lagrangien en est un exemple. C’est ainsi
qu’a partir du calculus, une branche des mathématiques s’est développée, la géométrie différentielle dont
I'une des principales préoccupations est de pouvoir écrire les dérivées partielles de fonctions, les intégrales,
etc, mais avec le soucis constant de définir des opérations et des objets qui soient indépendants du systeme
de coordonnées choisi. La géométrie différentielle est donc un cadre naturel pour la mécanique qui souhaite
respecter le principe de relativité. Un autre des enjeux de ce domaine mathématique, qui va se révéler tres utile
pour la mécanique comme on va le voir par la suite, est de pouvoir faire des calculs différentiels sur un espace
autre que 'espace euclidien R", c’est-a-dire sur une variété différentiable quelconque que I'on définit comme
suit :

1Les résultats d’existence et d’unicité du théoréme de Cauchy-Lipschitz traduit en fait ce déterminisme.
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Variété différentiable

Definition 1. Une variété différentiable (ou 'manifold’ en anglais) M de dimension réelle n, est un espace
topologique tel qu’il existe un recouvrement (appelé atlas) de M par des ensembles ouwverts U, (appelé cartes),
indicées par «, et des difféomorphismes (applications bijectives et C*) : 7o : Uy C M — V,, C R", donnant
les coordonnées q, = 7o(q) = (¢, ...,q") € R™ d’un point pour une carte spécifique q € U,. On parlera par la
suite de (g, ...,q") comme étant un systéme de coordonnées locales ou de coordonnées généralisées.

Un exemple est la Terre, une 2-sphere qui localement res-
semble & R? pour laquelle on définit des cartes, comme les relevés
topographiques, les cartes routieres, que 1’on réunit dans des at-
las, comme les guides routiers de France ou les atlas IGN. Sur
ces cartes, on peut définir différents systéemes de localisation :
un quadrillage, des noms de routes, en fonction des longitudes et
latitudes, etc.

Espace tangent

Definition 2. Soit une courbe paramétrée v sur M (une tra-
jectoire) v : t € R — ~(t) € M, le vecteur tangent V a la
courbe v est Uopérateur différentiel qui agit sur les fonctions et
détecte leur variation au premier ordre. Il s’écrit pour un point
q(t) = (¢*(t),...,q"(t)) sur la courbe paramétrée y(t) :

wrecxon, v = Fe0) = (557) = (v 5) L (13)

(V1 ..., V™) sont les composantes de V . Les vecteurs 0; = gTw 1 = 1..n, forment une base de l’espace vectoriel
des vecteurs tangents au point q. On note TyM cet espace vectoriel appelé espace tangent au point g, de
dimension n. L’ensemble des espaces tangents est noté TM= Uzcpr T,M de rang n, et appelé espace fibré
tangent ou espace tangent?.

En physique, on parle d’espace des phases. Par exemple,
pour un oscillateur harmonique amorti, I’espace tangent a pour
composante la position de l'oscillateur ¢ et sa vitesse ¢, et une

trajectoire dans cet espace des phases permet de connaitre les
m Tn caractéristiques dynamiques de 'oscillateur.

Produit scalaire

°
: n

/“/-_— Definition 3. Soit E un espace vectoriel réel de dimension finie,
q un produit scalaire ou métrique, noté g(.,.), est une applica-

tion telle que pour deux vecteurs U et V de E,

Fia. 1.1 - Espace tangent a la variété M.
(UV)eEXE — gUV)eR (1.4)

est bilinéaire, symétrique (g(U, V) = g(V,U)) et non-dégénérée :
gUU) =0 = U=0.

En mécanique quantique, on définira un espace de Hilbert pour les fonctions d’ondes, dont le produit
scalaire, positif, entre deux de ces fonctions, permettra de donner un sens physique a ces fonctions : la probabilité
d’étre dans un état particulier.

Variété Riemannienne

Definition 4. Une métrique Riemannienne g sur une variété M est un choiz de produit scalaire, défini
positif, dans chaque espace tangent ToM, g € M. On dit alors que (M, g) est une variété Riemannienne et
que g est la métrique, ou plus généralement le tenseur métrique®. Dans un systéme de coordonnées locales
q=(q%,..,q"), g s’écrit comme

9= 9;(q) d¢’ @ d¢’, (1.5)

ij=1

2Par exemple, la bande de M&bius ou bien le cylindre pour le cercle [3].
3La notion de tenseur sera expliquée peu apres.
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avec les composantes g;;(q) du tenseur métrique g formant une matrice inversible et symétrique en tout point
q € M. Elles sont données par le produit scalaire des vecteurs tangents de la base

9ii(@) =g <((;qi’ gqj> : (1.6)

La métrique g donne la distance entre deux points infinitésimalement proches sur toute variété plate ou courbe,

et on note aussi cet élément de longueur o
ds® = g;; da'da?. (1.7)

Par exemple, sur R" avec g;; = 8;5, ds* = §;;dz’ ® da’ est la métrique euclidienne et (R",g) I'espace
euclidien de dimension n. Cette métrique est définie positive permettant ainsi de définir la norme d’un vecteur
u € R™ selon g(u,u) > 0.

Definition 5. On parle de variété pseudo-Riemannienne lorsque le produit scalaire n’est plus défini positif.
Cela apparait quand la signature n’est pas la méme pour toutes les composantes.

Par exemple, sur R* avec les coordonnées cartésiennes (¢,7,y, z), la métrique g = —dt @ dt + dz* @ duw;
s’appelle la métrique de Lorentz, et (R%, g) est 'espace de Minkowski qui modélise un espace-temps plat
en relativité restreinte. Avec cette métrique, il n’est ainsi plus possible de définir la norme d’un vecteur comme
précédemment puisque cette norme peut étre positive, négative ou nulle.

Une métrique pseudo-Riemannienne g sur une variété M sera tres utile puisqu’elle permet de définir notamment
la notion de distance, d’aire et de volume. C’est une structure importante qui intervient dans la formulation de
toute théorie physique.

Expression du lagrangien

On considere le cas simple d’une particule sur Terre, subissant une force découlant d’un potentiel V(q) sous
la forme d’un gradient*. On va notamment considérer I’action du champ de pesanteur V = mygz, dont la force
d’attraction est le poids P qui s’écrit P; = 0;V. 1l est ainsi possible de montrer qu’apres multiplication par le
vecteur vitesse v’ = ¢%, i = 1..3, on peut écrire I’équation (1.1) comme étant

d oL 0L
E(L) = ——— — — = 1.8
(L) dt ¢  O¢* (1.8)
pour laquelle on a définit une fonction L,
1 )
L=T-V = imvlvi -V (1.9)

T est I'énergie cinétique et v;v* le produit scalaire sur R?. Cette formulation de I’équation (1.1) permet de ne
pas tenir compte des forces de contraintes, intrinseques a tout objet et n’intervenant pas dans la dynamique
d’un corps.

L’équation (1.8) ressemble étrangement & une solution d’un principe variationnel tres utilisé en physique, no-
tamment en optique®, et il est tout naturel de chercher ’action du systéme comme étant une fonction scalaire
S. Ainsi, pour un point quelconque de coordonnées q(s*) = ¢*(s%), i = 1..3, a = 0..3, dans I'espace des confi-
gurations M décrivant 1’état (position, valeur d’un parametre, etc) du systéme étudié, il existe une fonction
(densité) appelée lagrangien L{q(s®), d;q(s*)], qui permet de décrire ce systéme via le principe variationnel
de Hamilton

0§ =19 (/E d*s - L[q(s“),@iq(sa)]) =0. (1.10)

Toute solution physique est donnée par 'extrémisation de cette action et s’obtient alors en résolvant les
équations d’Euler-Lagrange (1.8), découlant de ’annulation du vecteur d’Euler-Lagrange F;(L).

Un fait intéressant [5] est donné pour une particule libre classique, se déplacant dans un référentiel inertiel : le
lagrangien doit étre proportionnel & la vitesse de la particule au carré L = av?. Poser a = 5+ permet alors de
donner un sens réel a la masse (inertielle) comme étant un degré interne de la particule qui montre sa capacité

a se mouvoir.

1.3 La transformation de Legendre

La dynamique d’un systeme est ainsi donnée par le lagrangien, mais il est aussi possible de I'exprimer
difféeremment via la transformée de Legendre : elle fait appel au gradient du lagrangien. Or ce gradient
définit un nouvel espace, 1'espace cotangent.

4Par définition, le gradient appartient & Pespace dual de 1’espace tangent.
5Maupertuis a lui méme travaillé sur 1’expression de la mécanique sous sa forme lagrangienne.
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espace cotangent

Definition 6. Une forme linéaire sur un espace vectoriel E est une application linéaire sur E a valeur dans
R. L’espace des formes linéaires est appelé espace dual et est noté E*.

Definition 7. Si f € C(M) est une fonction, sa différentielle (ou gradient) en un point ¢ € M est une
forme linéaire sur l’espace tangent Ty M, notée df : Ty M — R, qui s’exprime au point q selon

(@), = - do' (1.11)

df représente la variation infinitésimale de la fonction f au point ¢ € M dans la direction du vecteur dq’ et,
étant linéaire, df € T*qM.

En tout point ¢ € M, une forme linéaire, aussi appelée
1—forme, vecteur cotangent ou forme Pfaffiaine, s’écrit

a=a;dg €T, M, o; €R, (1.12)

ott (g, ..., v, ) sont les composantes de a. Les vecteurs dq', pour
i = 1..n, forment une base de I’espace vectoriel T; M des vecteurs
m cotangents au point ¢ (espace dual de T, M), appelé espace co-

‘ tangent au point ¢ et de dimension n. La collection des es-

: n paces cotangents T M= Ugen T, M est appelé le fibré cotan-

gent. Une section o € C°(M,T* M) de ce fibré est une 1-forme

/:'/— ou vecteur contravariant sur M, que 'on peut aussi appeler
champ de vecteurs cotangents. L’ensemble T* M possede la

Fic. 1.2 — Espace cotangent & M. structure naturelle d'une variété différentiable de dimension 2n :

I'information sur les n coordonnées et les n vecteurs tangents y
est contenue.

La base (dq', .., dg"™) de T*M est appelée base duale de la base (%ql s %) de T, M, dont leurs vecteurs

vérifient la relation

e aq’
T — — ..
dq (8qj> oq? % (119
ou 0;; est le symbole de Kronecker.

Proposition 1. Si
v:te[0,1] = () e M

est une courbe paramétrée et a € T*M une 1-forme, alors on définit l’intégrale de o sur la courbe v par le
membre de droite de ’expression suivante qui est une intégrale ordinaire

[yaﬁ/ﬁaﬂqi - /Olai(v(t)) (‘fiqt) dt. (1.14)

On observe que f,y a € R ainsi définie ne dépend ni du paramétrage de la courbe v, ni du choix des coordonnées
(q"); sur M.

L(v)

Expression de la transformée de Legendre ] )

On va ici se placer dans le cas simple d’un espace a 1 dimen-
sion pour illustrer graphiquement la notion de la transforma-
tion de Legendre. L(v) (Le lagrangien), fonction d’une unique
variable v (la vitesse), est définie de maniere continue pour tous
points (v, L(v)), et en chacun de ces points, il est possible de
définir sa dérivée par

H(p)

p(v) = T (1.15) o -

La transformée de Legendre est une maniere de décrire la
fonction L(v) et de reproduire entierement son graphique seule-
ment en fonction de p, et sans aucunes références a v : p sera Frq. 1.3 — Schématisation de la transformée
la variable indépendante dont les valeurs seront utilisées pour de Legendre & 1D [4].
construire la courbe, comme illustré sur la figure Fig.(1.3). Mais
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comme les valeurs de v sans celles de L(v) ne sont pas suffisantes pour définir la courbe, les valeurs de p seules ne
suffisent pas. Il est alors nécessaire de construire une fonction H(p) telle que la courbe soit décrite par (p, H(p)),
et son expression est simplement donnée par

H(p) =pv— L(v). (1.16)

Dans le cas général d’un systeme a plusieurs dimensions, les solutions physiques sont ainsi obtenues dans
I'espace cotangent T, M par la donnée de (¢,p,t, H(q,p,t)).

1.4 La formulation hamiltonienne

Dans l'espace des phases (q(t),q(t)) € T,M, résoudre les équations de la dynamique avec des conditions
initiales spécifiques y détermine une unique trajectoire. Mais I’espace tangent n’est pas le seul espace (ou
variété) sur lequel les équations du mouvement ont une forme simple. En effet, bien que les équations sur T, M
donnent une expression explicite pour ¢%, les équations d’Euler-Lagrange font intervenir les dérivées secondes
de ¢(t). En revanche, un changement de variables faisant passer de (g%, ¢%) & (¢%,pa), ol les p, correspondent
aux moments conjugués, permettra aux équations du mouvement de faire intervenir explicitement les dérivées
premieres de ces nouvelles variables (g, p), appelées variables canoniques. Cela revient simplement a effectuer
une transformée de Legendre en définissant les moments conjugués p, selon

OL
e = T, 1.17
Pe = g (1.17)
et la fonction H(q,p,t)
H(g,p,t) = paq® — L(g,p;1t) (1.18)

que l'on appelle fonction hamiltonienne ou hamiltonien. Cette fonction joue en fait un role important en
mécanique puisque pour un systeme classique, comme un oscillateur harmonique, p, = ¢, et H n’est autre que
I’énergie du systeme. Les équations d’Euler-Lagrange correspondent dans la formulation hamiltonienne aux
équations

oH _ oL
dq¢t  Oqt’
- OH
;o= 1.1
q op; (1.19)
. _aH
Pio= g

Ce sont les équations canoniques d’Hamilton, et les solutions physiques sont alors les projections
de (q(t),p(t)) € T; M sur I'espace des configurations ¢(t) € M. Comme les équations d’Euler-Lagrange, les
équations canoniques d’Hamilton sont des équations différentielles du premier ordre, mais dans un nouveau jeu
de 2n nouvelles coordonnées (q(t),p(t)) € T, M, pouvant étre traitées indépendamment les unes des autres, et
qui cependant contiennent les mémes informations qu’initialement. On parle alors de formalisme canonique.

1.5 Les tenseurs

Il est possible de généraliser les notions de vecteurs et de matrices & des objets a plusieurs dimensions, les
tenseurs. On a vu que la métrique était un tenseur appartenant a l'espace T, M & Ty M.
Plus généralement [22] :

Definition 8. L’espace (T,M)} est ’espace des tenseurs du type (r,s) sur T,M : un tenseur sur cet espace
est dit r fois contravariants et s fois covariants. C’est l'espace des applications linéaires

M. TIMeT,M® .. T,M — R, (1.20)

r fois s fois
o1, par définition, (T, M)} = T,M et (T,M)? = T,y M. Un champ tensoriel du type (7, s) est une application
t:M — (TM);
p — tpe(T,M);
ou (TM)} = Upem(TpM)} est le fibré tensoriel du type (r,s). L’ensemble des champs tensoriels du type

(r, s) est appelé 7 (M), et sur une carte de M de coordonnées locales (q*,..,q"™), on peut représenter t € 7. (M)
dans les bases duales (9;) et (dz") selon

=11 (0,) ® .. @ (8;,) @ (da??) @ ... @ (dad?). (1.21)

J1--Js
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i,

Les fonctions L s’appellent les composantes de t par rapport aux coordonnées (¢!, .., ¢").
En physique, il est utile d’utiliser les tenseurs puisque ce sont des objets a plusieurs composantes, donc pou-
vant contenir beaucoup d’informations; on manipule des vecteurs et des matrices dont le formalisme commun
passe par celui des tenseurs, mais c’est surtout parce que I'on connait leurs régles de transformation sous un
changement de référentiel que ’on va s’intéresser a leur utilisation. En effet, sous n’importe quel changement
de coordonnées (¢!, ..,q") — (¢, ...,q¢'"), les composantes de t se transforment toujours selon

()i — 9q" 3¢ 04" 04" i, i,
drds T Pgki " 9gh Og'it T 9gs s
En relativité restreinte, lorsque 'on prend en compte ’espace-temps, on se rend compte qu’en définissant un

vecteur a 4 composantes, un quadri-vecteur, ce vecteur permet de définir des équations du mouvement qui
sont invariantes par changement de coordonnées, et donc respectent le principe de relativité.

(1.22)

1.6 Dérivée de Lie et quantités invariantes

En géométrie différentielle, on va se placer sur des espaces abstraits. Il est alors intéressant de définir des
dérivées d’un objet relatives a la variation d’un autre objet. C’est ainsi que 'on va définir la dérivée de Lie et
en profiter pour introduire des notions d’invariance, tres importantes en physique.

La dérivée de Lie

Lors d’'un changement de position infinitésimal d'un tenseur sur une variété, il faut non seulement tenir
compte du changement de coordonnées, mais aussi du fait que le tenseur a lui aussi été modifié. Ces deux
effets doivent étre combinés pour pouvoir évaluer la valeur d’un champ de tenseur en un point donné apres une
telle transformation infinitésimale. Cette transformation du tenseur suivant une trajectoire, caractérisée par la
donnée d’un vecteur, est alors définie par la dérivée de Lie.

Definition 9. Soit V € X (M), un vecteur dans un champ de vecteurs. Soit ®, le flot de V, la propagation
d’une solution q(t) le long de V, définissant une trajectoire v(t) & partir d’un point initial. Pour un tenseur
T € T(M), ’ensemble de tous les types de tenseurs, on définit la dérivée de Lie de T par rapport a V, LyT
par :

d 1
T= — QT = lim —[®;T — T1. 1.2
LyT= G| 8T = lim @i 1) (1.23)
Schématiquement, on compare la déformation de T le long Vip
d’un chemin ~(t), entre le point T(¢t) et T(¢t + dt) = ®;T(t), L s
. , . dv.(p)
comme illustré sur la figure Fig.(1.4).
Vigy.i(p)

év.i(p)

Proposition 2. Cet objet a ainsi quelques propriétés utiles,
notamment :
1. Lx(T®S)=(LxT)@S+T® (LxS),

va,t'r:d» v.i(p)

2. Lxf=Xf=df(X) pour f e F(M)="T(M), Tléy.e(p)

3. LxY =XY -YX=[X,Y] pourY € X(M),

4. Lxiy =Lx + Ly, Lax = ALx pour A € R,

5. Lixy)=[Lx,Ly]=Lx oLy — Ly oLx, FiG. 1.4 — Schématisation de la dérivée de
6. Lx odf =doLxf surles fonctions f € F(M). Lie [12].

Pour un systéme de coordonnées locales (g, ..,q™), définissant les bases duales (9;);_, et (dg*)™_, de T,M et
T M, et une fonction f € F(M), les relations

Lyf = VO, f, LvW=[V'O,Wig;|= (VoW —W'9;V7)0;, (1.24)

Lydq" = d(Lyq')=d(V?5;)=d(V")=0;(V')dg =V}dg, (1.25)

Lyo; = [V,0)=-V10;, (1.26)

permettent de définir la transformation d’un tenseur 7' € 7" (M) de type (r, ) sous action d’un vecteur V' par
(LyT)2tr = (LyT)(dg™, ..., dg", 05, ..., D;,). (1.27)

Par exemple, pour un tenseur (2,2), sa dérivée de Lie sous l'action d’'un vecteur V = V%9; est donnée par :

Ly A =V™MAY  — VLA — VI AP+ VITAS + VA (1.28)
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Application de la dérivée de Lie : les équations d’Euler-Lagrange
L’évolution temporelle d’une fonction F'(g%, ¢*) au cours du temps est donnée par

dF OF OF
T (40 50 — -a a 1.2
o " d%) ol Tl (1.29)

et on peut définir le vecteur d’évolution lagrangien par

Ap=—=¢" G* . 1.30
=g = op T o (1.30)
En choisissant une 1-forme (un covecteur) telle que
oL
0r = dq” = pg dq“ 1.31
L= g 44" = padd’, (1.31)

les équations du mouvement via les équations d’Euler-Lagrange peuvent alors se réécrire de maniere géométrique,
ne dépendant ainsi pas du systeme de coordonnées :

LA, 0 —dL =0. (1.32)

Dans cette equation, A, L et 8, sont purement géométriques : un champ de vecteur, une 1-forme et une fonction.
Ils ont valeur dans ’espace tangent plutét que dans l'espace des coordonnées. L’équation (1.32) est utile pour
prouver des théoremes et obtenir des résultats généraux.

Symétries et vecteurs de Killing

Pour un probleme donné, il existe des quantités invariantes suivant la direction d’un vecteur V. Par construc-
tion, la dérivée de Lie d’une telle quantité suivant cette direction V sera nulle, et la dérivée de Lie permet alors
d’avoir acces aux symétries du systeme : ces symétries seront ainsi données par les directions d’'un champ de
vecteurs, suivant lesquelles la dérivation de Lie est nulle.

Definition 10. (champ de vecteur de Killing) Un champ vectoriel K tel que LxG = 0 est appelé champ
de Killing pour la quantité G et est ainsi trés utile pour trouver des quantités conservées.

Par exemple, si un systéme est invariant par translation dans le temps, le vecteur de Killing est donné par
0O, et la quantité G conservée associée sera telle que L4:G = La, G = 0. Elle s’écrit alors

. OL
G=i g -

L, (1.33)

et dans le cas de la particule vue plus haut, elle correspond a 'énergie G = H = E =T+ V, montrant que si les
équations du mouvement restent inchangées par une translation dans le temps, alors son énergie sera conservée.

Théoréme de Noether

Plus généralement, dans le cas ol une intégrale fondamentale comme I’action (1.10) est invariante sous un
groupe spécial de transformations continues (par exemple les transformations de coordonnées ou de parametres),
le lagrangien correspondant doit vérifier certaines conditions qui peuvent étre exprimées de maniére tres concise
en terme du vecteur d’Euler-Lagrange E;(L) vu dans I’équation (1.8). La formulation résultante de ces condi-
tions est habituellement appelée Théoremes de Noether, en hommage a Emilie Noether. Ces théorémes
sont d’une importance considérable en théorie des champs puisqu’ils établissent I’existence et la nature précise
de certaines lois de conservation qui résultent de 'impératif d’invariance. Les quantités conservées sont appelées
les charges et courants de Noether, et sont constantes le long d’une courbe d’extrémisation de l'intégrale, c’est
a dire qui satisfait les équations d’Euler-Lagrange F;(L) = 0.

Pour un groupe de transformations & r parametres w®, indépendants entre eux et tels que les nouvelles coor-
données s’écrivent sous la forme

_ . _ 1 _ .
y o= 2 (M) + a0 2t Mt + .. = 27 4 62,
1
t = 4t M w® + 5ggt(lt, sMwiw + ... =t + dt,

les  quantités [8] appelées courants de Noether

oL . . ;
G = —L¢ = 56 = #7¢) = HG = pid, (1.34)
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sont des quantités conservées données par les r relations

P dG
Ej(D)(& - #7¢) = ——~ (1.35)
Cette définition est générale et s’applique a tous les groupes : si par exemple on regarde un systéme invariant
par translation dans le temps, alors £&7 =0 et { = 1 redonnent bien G = H donnée par I’équation (1.33).

1.7 Les formes différentielles

En mécanique, on peut utiliser un langage plus vaste incorporant les tenseurs, moins répandu mais tout
aussi fondamental. En se plagant dans I’espace cotangent, les variables canoniques ¢“ et les moments conjugués
po peuvent étre traités de maniere indépendante, amenant ainsi plus de libertés. L’utilisation du gradient a
conduit a la définition d’une 1-forme qui fait partie d’'un ensemble plus grand d’outils mathématiques, les
formes différentielles. On va voir dans ce qui suit comment ces formes différentielles permettent en fait une
description plus riche de la mécanique, notamment en expliquant la provenance du principe variationnel.

Les formes différentielles

L’intérét des formes différentielles, ou p-forme, est de trouver quels sont les objets que ’on peut intégrer
sur une variété de dimension n, tels que le résultat soit indépendant du systeme de coordonnées choisi.

Definition 11. En un point ¢ € M, un tenseur T € T (M) de degré p est appelé p-formes s’il est
antisymétrique, i.e. s’il change de signe par permutation quelconque de vecteurs V; < V;. On note AL l'espace
des p-formes au point q.

Sur ces p-formes, il est possible alors de définir des opérations, des 'produits’ et des ’dérivées’. On définit
ainsi les opérations suivantes :

Le produit tensoriel

Definition 12. (produit tensoriel) On appelle ® 'opération définissant le produit tensoriel, telle que par
exemple pour deux 1-formes o, 8 € Ty M et deuz vecteurs Vi,Vo € TyM, on note a ® 8 le tenseur de degré 2
défini par

(a® B)(V1,V2) = a(V1)B(V2). (1.36)

Le produit extérieur

Definition 13. (produit extérieur) On appelle A\ lopération définissant le produit extérieur, telle que par
exzemple pour deuz 1-formes a, 3 € Ty M et deuz vecteurs Vi,Va € TyM, on note a A (3 la 2-forme définie par

aNf = a®b-0Q« EAg, (1.37)

avec
(@np)(Vo,V1) = a(V2)B(V1) —a(V1)B(V2) = —(a A B)(V1,Va), (1.38)
aha = 0 et BAa=—aANp. (1.39)

Si (¢, ...,q") est un systéme de coordonnées, (dq*, ..., dg") une base de Ty M, on pose
d¢t ... dq”
dg"t Ndgt? A ... Ndgtr = Z e(o)dghr @ ... @dgtr = | ' (1.40)
dg' .. dg®

qui est une p-forme et €(o) est la signature des permutations.

La collection AP= Uy AL est un espace fibré vectoriel sur M, I'espace fibré des p-formes. Par convention, A
est espace des O-formes, c’est & dire des fonctions. Une section w € C°°(AP) de ce fibré est ainsi une p-forme
sur M ou champ de tenseurs antisymétriques de degré p, et s’écrit dans la base (1.40) :

w(q) = Z Wy ooy (@)dg! Ndgh? Ao A dgh>. (1.41)
M1 <..<tp

Les fonctions wy,, ..., (¢) sont les composantes de w dans cette base telles que w, (81“ ey 8%) = Wy, (Q)-
Si w* est une k-forme et w! est une l-forme sur R™, alors leur produit extérieur sera une (k + I)-forme. 11 est
ainsi possible de définir I'intégrale d’une p-forme, indépendante du systeme de coordonnées choisi.
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Definition 14. Si (¢, ..,q") est un systéme de coordonnées sur une variété M orientée de dimension p, et si
w € C®(AP) est une p-forme qui s’écrit w(q) = wy(q)dg" A ... Adg™), on définit

/M wi/wq(q)(dql...dq"). (1.42)

La dérivée extérieure

Definition 15. (dérivée extérieure) Sur une variété M de dimension n, ¥p € (0,.,n) on définit une
opération différentielle d’ordre 1 qui généralise la différentielle d’une fonction. Cette opération est appelée
dérivée extérieure d, et on la définit selon

d:C®(AP) — C®(APT)

' i 0Bi; i
B=(Bi,.i,) dg"* A..Adg —  (dB)(q) = <5p

Dgiv ) dq» 1 Adg™ A ... Adg'r. (1.43)

Cette opération est ainsi indépendante du systéme de coordonnées choisi. Sur R?, pour p = 0, d correspond

au gradient, p = 1 au rotationnel et p = 2 a la divergence. A cause de I'antisymétrie, 'opérateur d vérifie :

Yw € C(AP) d(dw) = 0. (1.44)

La formule de Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré

Un des corollaires les plus importants de la propriété précédente est la formule de Newton-Leibniz-Gauss-
Green-Ostrogradskii-Stokes-Poincaré, qui permet de retrouver facilement la formule de Green-Riemann ou bien
celle d’Ostrogradskii,

Proposition 3. Si K C M est un domaine orienté de dimension p, on note OK son bord orienté, et si
w € C(AP™Y) est a support compact (c-a-d nulle en dehors d’un ensemble compact), alors

Joao= | w (1.45)

On dit qu'une p-forme w € C*°(AP) est fermée si
dw = 0. (1.46)
Pour p > 1, une p-forme est exacte s'il existe a € C*°(AP~1) telle que
w = da. (1.47)
C’est deux notions sont reliées par le lemme de Poincaré : Si M = R™ et p > 1, alors

do=0 = FJacC®NA), w=da (1.48)

La dérivée intérieure

Definition 16. (dérivée intérieure) Soit V un champ de vecteurs (vitesse par exemple) sur M, et w une
k-forme. On definit la dérivée intérieure iyw de w par V, une (k — 1)-forme, par la relation :

ivw=w(V,.). (1.49)

La formule de Cartan

Une formule importante est la formule de Cartan qui permet de relier la dérivée de Lie d’une forme a ses
dérivées intérieure et extérieure.

Proposition 4. (formule de Cartan) Soit X € X(M),

EXZixod—FdOix. (150)
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La forme Volume et la forme Aire

Sur une variété Riemannienne (M, g) de dimension n, on note (e1,..,e,) € T,M une base orthonormée de

Pespace tangent, et (aq, .., ) € Ty M la base duale qui est une base orthonormée de Iespace dual T; M = Aé.
Par conséquent, (o' A ... Aat?),, < <, forme une base des p-formes € AL.
La métrique g induit un produit scalaire < .,. >;» sur chaque espace des p-formes AP, g€ M, peN:labase
(@t Ao Nat?) < <p, est une base orthonormée de AL. En particulier, comme dim(A7) = 1, alors on appelle
foot=01 A ... A @, la forme volume associée a la métrique g. Dans un systéme de coordonnées (¢, .., ¢"),
la forme volume s’écrit

ool = \/det(g(q))(dg" A ... A dg™), (1.51)

avec det(g(q)) = |9i;(¢)| le déterminant de la matrice des composantes de g.
Par exemple, sur R3, la forme volume p,o; = dz! Adx? Adz? en coordonnées cartésiennes s’écrit en coordonnées
sphériques fi,o; = r2sin(0)dr A df A d¢ et on a bien le volume défini par

V= Lol - (1.52)
V(M)

remarque : un objet f multiplié par n fois \/det(q) sera appelé une densité de poids +n.
En ce qui concerne l'aire d'une surface S de métrique induite h et de coordonnées locales o', o2, elle est
simplement donnée par

A= Vh do' A do?. (1.53)
s(M)

1.8 La structure symplectique

Une structure symplectique sur une variété est une 2-forme différentielle non dégénérée et close.
L’espace T M possede naturellement une telle structure. Sur une variété symplectique, comme c’est le cas
pour une variété Riemannienne, il existe un isomorphisme naturel entre les champs de vecteurs et les 1-formes,
comme illustré précédemment. On va ainsi voir [9] que

e un champ de vecteurs sur une variété symplectique correspondant a la différentielle d’une fonction est

appelé champ de vecteur hamiltonien.

e un champ vectoriel sur une variété détermine un flux de trajectoires, i.e. un groupe de difféomorphismes

a un parametre.

e un flux de trajectoires d’'un champ de vecteur hamiltonien sur une variété symplectique préserve la struc-

ture symplectique de I’espace des phases.

e un ensemble de champs de vecteurs sur une variété, comme les champs de vecteurs hamiltoniens sur une

variété symplectique, forment une algebre de Lie dont I'opération entre différents éléments est appelée
crochets de Poisson.

Une variété symplectique

Definition 17. Soit M une variété différentielle de dimension 2n. Une structure symplectique sur M est
une 2-forme différentielle w, fermée et non-dégénérée, telle que

YV,W € T,M) dw=0 (1.54)

et
YV A0, IW  w(V,W)#0. (1.55)

La paire (M?",w) est appelée variété symplectique.

La géométrie d'un espace symplectique est comparable a celle d'un espace euclidien, méme si quelques
différences existent néanmoins.

La matrice symplectique

Un des avantages du formalisme hamiltonien est de traiter sur un pied d’égalité les 2n variables (g, p). Dans
un soucis de consistance, on va les renommer &, telles que les indices (7, j) vont de 1 & 2n, et les indices (a,b)
de 1 a n. Les n premiers indices seront les g et les n suivant seront les p :

¢ = d, ie{l..n},
& = pi_n, ie{(n+1)..2n}.
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Il est maintenant possible de rééerire les équations d’Hamilton (1.19) dans la forme unifiée £ = fi(¢), de sorte
que ces équations s’écrivent f*(§) = 0"H :

g = W, 1=1. n,
> H
& :faz%_n, t=(n+1)..2n,
ou de forme équivalente
gi == wijajH, wijfi == 3]H (156)

On a ainsi introduit ce que I'on appelle la 2n x 2n matrice symplectique €2, de composantes w?, donnée par

0, -1
Q=" " 1.57
|:]1n O :| ( )
ayant comme propriétés
Qf=-Q, ?=-1, Q'=-Q. (1.58)

L’espace cotangent T,y M est bien une variété de transport puisque les équations canoniques d’Hamilton (1.56)
étant des équations différentielles du premier ordre, les trajectoires ne se croisent pas sur 7,7 M. Les équations
(1.56) définissent un champ de vecteurs sur T,°M dont les composantes sont les 2n fonctions w*/9;H. Les
solutions £(t) sont les courbes intégrales de ce champ de vecteur que I'on va appeler champ de vecteurs
dynamique, ou A comme pour T, M. Au méme titre que les équations d’Euler-Lagrange établissaient un
champ de vecteur sur T; M, les équations canoniques d’Hamilton établissent un champ de vecteur sur 7 M.
Pour f(g,p,t) une fonction dynamique, il est possible de regarder son évolution le long d’une trajectoire, sans
résoudre les équations du mouvement, puisque la dérivée temporelle est donnée par la dérivée de Lie le long du
champ de vecteur dynamique :

df

Lal =

= (Dif) €+ 0uf = (0if) W' O;H + O, f. (1.59)

Les crochets de Poisson

Le terme comportant w* dans I’équation (1.59) est trés important et est appelé crochets de Poisson de
f avec H. En général, pour deux fonctions dynamiques f,g € F(T*M), leurs crochets de Poisson sont définis
par :
g = (0if) w7 (059) = == - — = =, 1.60
{f g} ( ’Lf) ( Jg) 8qa 8pa 8pa aqa ( )
dont les propriétés sont les mémes que celles des crochets de Lie : bilinéaire, antisymétrique et satisfaisant
I'identité de jacobi®. De plus, ils satisfont aussi la régle de Leibniz {f,gh} = g{f, h} + {f, g}h. Bilinéarité,
antisymeétrie et identité de jacobi sont les propriétés d’une structure algébrique importante : 1’algébre de Lie.
L’espace des fonctions dynamiques F(T*M) est ainsi une algébre de Lie sous les crochets de Poissons, et la
dynamique hamiltonienne peut étre étudiée de maniere fructueuse du point de vue de ces algebres qui jouent
un role important dans les transitions en mécanique quantique. I’équation (1.59) se réécrit alors en terme des
crochets de Poisson
daf
EAfZE:{f,H}%—atf. (1.61)
En appliquant cette relation aux coordonnées locales &%, on obtient la relation ¢ = {¢€, H} qui est une autre
maniére d’écrire les équations canoniques d’Hamilton (1.56). Pour finir, ces crochets de Poisson satisfont les
relations :

€, f} = w0,

af B
apa7 {paaf}__

of
0qa’

soit encore {¢*, f} = (1.62)

et {¢,8}=w",
soit encore  {¢%,pp} = —{p»,q°} =6y, {a¢*.¢"} = {pa,pp} = 0. (1.63)

6[[‘47 B],C] + [[Bvc]vA] + [[07 A]vB] =0
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Structure symplectique sur ’espace cotangent

Les équations canoniques d’Hamilton sont des équations différentielles sur 1’espace cotangent T M, dont le
vecteur d’évolution est donné par

o ., 0 OHO  OH 0
P =

Ay =£0;=¢" = -~ :
H= 80 = P G = By ogn g O

(1.64)

La transformée de Legendre envoie tout objet géométrique de T'M vers un objet géométrique similaire sur 7% M,
en particulier Ay, vers Agy. Plus important, elle envoie 8, qui n’est pas une 1-forme vers 6y,

oL
= Di
La transformée de Legendre et 6, dépendent de L d’une telle maniere que 6y, est tout le temps envoyée vers la

méme 1-forme canonique 6y sur T*M. On peut alors écrire I'expression géométrique des équations canoniques
d’Hamilton, indépendantes du systeme de coordonnées locales selon

iaw = dH, (1.66)

0r, dq® — 0y = padq®. (1.65)

similaire & I’équation (1.32). Cependant, I’écrire en terme de (g,p) requiert une expression explicite de w.

Proposition 5. Le fibré cotangent T*M posséde une structure symplectique naturelle. Dans le jeux de coor-
données (q,p) décrit auparavant, la structure symplectique est donnée par la formule

w = dp, N dq®, (1.67)
ol w est exacte et dont la 1-forme primitive s’écrit ag = padq®.

Pour le moment, tout ce formalisme pourrait paraitre abstrait et sans grand intérét si ce n’est dans la
formulation, mais les notions explicitées auparavant vont permettre en fait d’exprimer la mécanique d’un point de
vue plus fondamental et les propriétés vues ici vont avoir de grandes conséquences physiques, en particulier pour
la Gravité Quantique & Boucles, ou Loop Quantum gravity (LQG) en anglais. Notamment, chaque hamiltonien
détermine de facon unique son propre champ de vecteur dynamique A. Par contre, s’il existe pour un méme
systeme deux champs de vecteurs A; et As associés a deux hamiltoniens H; et Hs respectivement, alors

in,w—in,w=0 <& d(H;y—Hy)=0 <& Hy— Hy=const, (1.68)

montrant que la dynamique sur 7% M détermine la fonction hamiltonienne seulement & une constante pres, et
reflete ainsi I'indétermination sur ’énergie. On peut de méme généraliser en disant que, de la méme maniere,
toute autre variable dynamique f détermine de fagon unique un champ de vecteurs Xy a travers une 1-forme
df suivant

ix,w = df. (1.69)

Un champ de vecteurs Xy € X(T*M) associé via I’équation (1.69) & une fonction dans F(T*M) est appelée
champ de vecteur hamiltonien (X, est hamiltonien en fonction de f).

Il est maintenant possible de relier ’expression de w aux crochets de Poisson. En considérant deux variables
f.g € F(I'*M) et leur champ de vecteurs hamiltoniens respectifs X; et X, en utilisant I’équation (1.59), la
dérivée temporelle d’une fonction f le long du mouvement s’écrit

Lx,f=A{f 9} =ix,df =ix,ix,w=w(Xy, Xy), (1.70)
donnant la relation générale liant crochets de Poisson et w
{f,9} = w(Xy, Xp). (1.71)

Remarques : L’équation (1.71) est la définition intrinseque des crochets de Poisson, ne se référant pas a des
coordonnées quelconques. L’équation (1.70) est & la base de la version hamiltonienne du théoréme de Noether,
et il peut étre montré que 'identité de Jacobi est une conséquence de la fermeture de w, i.e. dw = 0.

On a ainsi vu que sur le fibré cotangent, il existait une structure naturelle, riche, appelée structure symplec-
tique et qui s’écrit w = dp, A dg®. De plus, il est facile de voir que :

Proposition 6. Théoréme de Liouville : Le flot hamiltonien préserve la forme symplectique w et donc
préserve la forme symplectique piyop -

Lazw=do (ianzw)+ia, o (dw)=do(dH)=0, et Lay,lvor =0. (1.72)

En raison de linvariance de cette 2-forme”, il est possible de construire une fonction scalaire, ou plus
particulierement une action, qui est une intégrale sur un volume, trés utile en physique et dont 1'utilisation va
permettre de caractériser en grande partie le systeme physique étudié.

7£AHw:0cardw:Oetdod:O
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Le groupe symplectique

A une structure euclidienne est associée un groupe de transformations linéaires qui préserve cette structure.
Dans un espace symplectique, le groupe symplectique joue un role analogue.

Definition 18. Une transformation linéaire S : M?™ — M?™ d’un espace symplectique M>™ dans lui-méme
est appelée symplectique si elle préserve la structure des crochets de Poisson, et donc w défini par
léquation (1.67) :

[SV,SW] = [V, W], Y V,W e M*™. (1.73)

L’ensemble de toutes les transformations symplectiques de M?>" est appelé groupe symplectique, dénoté
Sp(2n), de déterminant égal a 1.

Matrices symplectiques

Proposition 7. Soit (p1,..,Pn,q1, -, qn) un systéme de coordonnées symplectiques. Soit S : M>*" — M?>" une
transformation linéaire d’un espace symplectique. Cette transformation est symplectique si et seulement si sa
matrice satisfait la relation

£SQ0S = Q, (1.74)

ot Q est donnée par la matrice (1.57), et 'S est la transposée de S.

Une analogie pourrait étre faite avec les transformations sous les matrices de Lorentz, pour lesquelles on a
"AgA = g,

ou g = diag(—1, 13) alors qu’ici Q = antidiag(—1,1).

Théoréme de Darboux

Proposition 8. Soit w une 2-forme différentielle non-dégénérée et fermée, au voisinage d’un point ¢ € M?>".
Alors dans tout le voisinage de q, il est possible de choisir un systéme de coordonnées (p1,..,Dn,q1, .-, qn) tel que
la 2-forme w puisse s’écrire de maniére standard

w= Z dp, N dgq. (1.75)

i=1l..n

Ce théoreme est intéressant puisque pour un systeme physique, avoir cette expression pour la 2-forme w va
en quelque sorte déterminer la physique qui y est présente : on peut déja le voir avec la 1-forme 6y donnée par
léquation (1.65) donnant les équations canoniques d’Hamilton (1.66)

1.9 Les contraintes en mécanique

On a ainsi vu qu’en mécanique classique, il existe des outils mathématiques intéressants du point de vue
de l'invariance sous un changement quelconque, naturellement présents dans les espaces considérés. Cependant,
il reste encore a introduire une autre notion, celle de contrainte, qui sera nécessaire pour bien cerner le
concept de covariance de tout systeme, relativiste ou non. Cette notion sera ainsi utile pour introduire quelques
caractéristiques de relativité puisque la relativité générale correspond a un systéme totalement contraint.

En physique, il existe des équations supplémentaires donnant des relations entre les différentes variables, et on
décrit ainsi un systeme en utilisant plus de variables que nécessaire. Ces équations sont appelées contraintes.
Un exemple illustrant cette notion de contrainte est le cas d’un pendule de longueur ! dans le plan (z,y) : dans
ce plan, il y a deux variables, x et y, mais on peut exprimer le probléme simplement en fonction de ’angle avec
la verticale puisqu’il existe la contrainte 2 + y? = % qui permet de diminuer le nombre de variables.
Une contrainte est généralement notée ¢(¢%,p,) = 0 et doit donc étre une quantité conservée au cours du
mouvement. Par le théoreme de Noether, les quantités conservées O sont associées a la présence de symétries
dans le systeme considéré. Afin de les observer, on peut regarder 'action d’une telle quantité dépendante des
variables de ’espace des phases en lui associant un flux, au méme titre que les équations d’Hamilton définissent
un flux d’évolution sous 'action de I’hamiltonien. On définit alors selon un parametre A le flux hamiltonien
associé

dq®

a __ 741 a _ dpa _
org" = —% {a*, ON)},  dapa = o = {pa, O(N)}, (1.76)

et la transformation précédente, donnant la quantité conservée dans I’équation (1.34), se traduit ainsi par une
variation infinitésimale des coordonnées donnée par

S @ = {27,Gu(& 0}, (1.77)
dcoppi = {pi,Gs(§,Q)} (1.78)
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Ce flux n’a a priori aucun sens physique en général. Ses solutions sont des trajectoires dans I'espace des phases,
le long desquelles 'hamiltonien est inchangé : O étant une quantité conservée, cela se traduit soit sous la forme
de I’équation (1.35), soit également dans le formalisme hamiltonien par

{O,H} =0. (1.79)

Il en va ainsi de méme pour le cas des contraintes, puisqu’étant des quantités conservées, il existe alors des
symétries qui leur sont liées. En mécanique, les contraintes sont incorporées dans les équations en utilisant des
multiplicateurs de Lagrange : pour un systéme de 2n variables canoniques avec k contraintes ¢; ~ 0 (la
contrainte étant une fonction, elle n’est pas nulle partout et I'utilisation de = signifie que si la contrainte est
nulle alors on considére bien des solutions qui sont physiques, et non plus seulement mathématiques), alors
I’hamiltonien total est donné par 'hamiltonien originel plus les contraintes multipliées par les multiplicateurs

de Lagrange \! :
k

H = Hpir + Z N, (1.80)
i=1

Résoudre les équations canoniques d’Hamilton aura alors comme conséquence que les solutions seront dépendantes
des k multiplicateurs de Lagrange, arbitraires, montrant que 1’évolution n’est ainsi plus donnée par une unique
solution déterminée par les conditions initiales, mais dépendra aussi du choix des A¢ : il existera différentes
solutions mathématiques résultantes des symétries mais dont les conséquences physiques seront identiques. La
méthode pour tenir compte des contraintes a été initialement développée par Dirac et est appelée procédure
de Dirac.

Une situation intéressante pour la mécanique classique et 1’électromagnétisme se présente notamment quand
une variable est présente dans le lagrangien mais pas sa dérivée temporelle. Cette variable n’est pas réellement
dynamique et peut étre traitée comme un multiplicateur de Lagrange.

Systéme totalement contraint

Lors de I'amélioration de la mécanique classique par les théories de relativité, il faut prendre en compte
le fait que pour tout changement de coordonnées, comprenant aussi le 'temps’, les équations du mouvement
résultantes doivent rester inchangées. En mécanique, il est possible de faire une reparamétrisation du temps :
on peut ainsi considérer ¢ non plus comme un parametre d’évolution mais comme une variable canonique, avec
un moment conjugué p;. L’évolution se fera ainsi en fonction d’un parametre s telle que, par exemple, ’action
des équations de Newton (1.1) s’écrive

S= /ds L(q,q,t,1) = /dszé (;mg —V(q)), (1.81)

ol ¢ et t sont les variations de g et ¢ par rapport a s. Dans ce lagrangien, a l'inverse de ce qui a été écrit
précédemment, la coordonnée ¢t n’apparait pas, alors que sa dérivée y est pourtant présente. Cette variable ¢ est
alors considérée comme une coordonnée cyclique. Les moments conjugués associés sont alors donnés par

_ oL _ 4
P = e =My (1.82)
oL (1 ¢

On peut définir une contrainte ¢(q,t) a partir de ’équation (1.83) pour laquelle on voit que

a0ty =p+ (gms + V) =0 (184

et ’hamiltonien donné par la transformée de Legendre s’écrit

H.

. . 1 > .

= t-¢(q,t). (1.86)

De cette maniere, on peut se rendre compte que 'hamiltonien est nul (H. = 0) et est en fait une contrainte
proportionnelle & ¢(q,t). H est appelée contrainte hamiltonienne. On peut voir dés & présent que tout
systéme physique, s’écrivant en fonction des variables (¢, ¢) comme ici, aura non plus un hamiltonien mais des
contraintes. Cela sera ainsi le cas pour toute théorie invariante par reparamétrisation du temps, comme en
relativité ou les solutions ne dépendront pas du systeme de coordonnées choisi et ou ¢ sera considéré comme une
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variable dans ’espace-temps de coordonnées x*. Quand on utilise des contraintes, on voit que ’hamiltonien total
est composé de I’hamiltonien du systéme et des contraintes avec leur multiplicateur de Lagrange. Cet hamiltonien
total génere tous les flux possibles du systéme, venant de ’évolution temporelle ou bien des symétries s’il y en
a. Si ’hamiltonien disparait, alors '’hamiltonien total n’est qu’une combinaison linéaire des contraintes, ce qui
est le cas ici. Ainsi,

Htot = Hc = N(t) . ¢(Q7pq7taptv S)a (187)
ou N(t) est appelée lapse function en anglais, et vaut ici N(t) = %. La dérivée temporelle de N n’apparait
pas, montrant que N correspond bien a un multiplicateur de Lagrange : il permet de redéfinir arbitrairement
le temps que 'on choisit en fonction du parameétre d’évolution s. Les équations d’évolution résultantes de la
contrainte hamiltonienne donnée par I'équation (1.87) sont alors données par :

. dg Dq .

=2 ={q Hy} =N, =0, 1.88
¢=— {q, Hiot} o Pq (1.88)
.odt
t = % - {t7Htot} == N, ﬁt == 0 (189)

Dans notre cas, en mécanique classique, prendre N comme étant constante revient a prendre ¢ proportionnel
a s, et redonne les équations de Newton. L’hamiltonien originel représentant ’énergie E du systéme est bien
donné par

HeE=tm(% 2+V() (1.90)
M 7 v, '
avec oL
Py = a = 0 — p; = constante. (1-91)

D’apres les équations (1.83) et (1.85), on peut alors exprimer p; et H comme étant

{ pe=—H=H —H,

(1.92)
H.=p + H.

En mécanique classique, p; est une constante et on peut considérer que H, = H + constante sans étre nul : on
redéfinit simplement 1’énergie du systeme a une constante pres. En relativité, cela sera différent car on parlera
réellement de contraintes et H sera vraiment nul quand on considerera des solutions physiques. Dans un tel
systeme, tout se passera comme s’il n’y avait pas une ’évolution temporelle’ puisque ’on utilisera des contraintes.
On peut cependant définir comme précédemment un flux qui sera le semblant de 'dynamique’ que le systeme
verra.

Ainsi, en mécanique classique, ’évolution du systeme se fait de fagon relative par rapport a une observable ¢
dont on doit prendre en compte I’évolution au méme titre que les autres variables canoniques ¢*. En relativité,
ce probléeme d’évolution relative par rapport a une des variables canoniques est trés importante puisque, sous un
changement de coordonnées, les équations de la dynamique doivent étre inchangées. Or, en mécanique quantique,
le temps est un parametre extérieur et il sera essentiel et délicat de tenir compte de ce fait dans la création
d’une théorie quantique de la gravitation.

On peut retenir ici que dans toute théorie invariante par changement de coordonnées comprenant la variable ¢,
il existera un hamiltonien nul et 1’évolution sera alors donnée par des contraintes.

1.10 L’intégrale invariante de Poincaré-Cartan et le principe de
moindre action

Dans ce qui suit, on va s’intéresser aux trajectoires possibles d’'un systéme en fonction d’une variable tempo-
relle ¢ que 'on distingue, comme en mécanique classique, des variables canoniques ¢®. On va surtout se placer
dans un espace & 2n+ 1 dimensions, de coordonnées (pq, ga,t), @ = 1..n, mais un lien avec un systéme relativiste
sera aussi donné et on va étendre la dimension de ’espace a 2n + 2 en incorporant le moment conjugué a la
variable temporelle.

Proposition 9. Soit M?"*+1 une variété différentielle de dimension 2n + 1 et o une I-forme sur M. A chaque
point g € M, il existe une direction, c’est a dire une ligne droite dans l’espace tangent Ty M, ayant pour propriété
que lintégrale de a le long du bord d’un ’‘carré infinitésimal contenant cette direction’ est égale a 0 :

da(V,W) =0, V W e T,M. (1.93)

En supposant de plus que la 2-forme da soit mon-singuliére, la direction de V est alors déterminée de fagon
unique. On appelle la direction de vorticité de la forme «. Les courbes intégrales du champ de directions
de vorticité sont appelées lignes de vorticité ou lignes caractéristiques de la forme « (lignes grises sur la

figure Fig.(1.5)).
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Le Théoreme de Stokes, défini d’abord en mécanique des
fluides, peut étre généralisé pour un espace de dimensions n > 3.
Il permet ainsi de parler de flux de trajectoires possibles pour
un systeme mécanique, généré par exemple par le champ de vec-
teur (Ap,1) comme on va le voir, ot Ay est donné par
Péquation (1.64).

Proposition 10. Lemme de Stokes multi-dimensionnel :
Soit v1 une courbe fermée définissant une surface sur M, les
lignes de vorticités sortantes de cette surface forment un tube de
vorticité, comme illustré sur la figure Fig.(1.5). Les intégrales
d’une 1-forme a le long de deux courbes encerclant le méme tube Fia. 1.5 — Tube de vorticité entre deux sur-
de vorticité sont les mémes : ﬁ{l o= fw @, iy —72 =00, 0U  faces 1 et vy [4].

o est une partie du tube de vorticité entre les courbes

Y1 et ya.

Les équations de Hamilton

Toutes les propositions basiques de la mécanique hamiltonienne proviennent directement du lemme de Stokes.

En prenant au départ R?"*2 comme variété pour M2"*2 avec les coordonnées (pa,qa,t,p:), a = 1..n, on
construit une 1-forme :

Qe = padq® + pydt. (1.94)

Or, dans le cas général, pour des systémes méme non relativistes, on peut exprimer ’hamiltonien comme étant
donné par la contrainte hamiltonienne, conduisant a la relation entre H., H et p; selon I’équation (1.92). En
utilisant cette relation, o, peut s’écrire aussi®

e = Padq® + [He(q" pas t, pe) — H(q", pa)ldt = padq® — H(q%, pa)dt = a. (1.95)

La forme « correspond donc a la forme a. pour laquelle on ne considere plus ¢ comme une variable canonique,
mais comme un parametre d’évolution extérieur. Dans le cas de la mécanique classique, on se replace ainsi sur
un espace a 2n + 1 dimensions.

Proposition 11. Les lignes de vorticité de la forme o = p,dq® — Hdt sur lespace des phases étendu (p,q,t)
de dimension 2n + 1 posséde une unique projection sur l'axe t, i.e. ces lignes sont données par les fonctions
p = p(t) et ¢ = q(t). Ces fonctions satisfont le systéme d’équations différentielles canoniques pour la fonction
hamiltonienne H si on la considere comme étant l’hamiltonien :

dpa ~ OH dq® OH

dt 0q%’ dt  9p,’

(1.96)

Les lignes de vorticité de la forme p,dq®— Hdt sont les courbes
q du flux de trajectoires dans l’espace étendu, i.e. les courbes
intégrales des équations canoniques (1.96). La différentielle de
la forme « est donnée par

-

OH
dpa AN dt — aiqadqa A dt, (197)

H
doz:dpa/\dqa—g

a

dont un vecteur propre de la matrice définie par da dans
les coordonnées (p,q,t) est (— gﬁ, %, 1) de valeur propre 0,
comme illustré sur la figure Fig.(1.6). Autrement dit, lorsque ’on
considere des fonctions F(t, g, p) définissant un champ de vecteur

d’évolution A tel que

Fi1G. 1.6 — Tube de vorticité entre deux sur-

faces 71 et 72 pour (A, 1) [4]. A_Q _OHO  0HO (1.98)
Ot 9q*Opa  Opa Og* '

alors ce champ vérifie
(da)(A) =0 (1.99)

et est appelé aussi champ de vecteur nul de w.

8La forme particuliere de o provient des travaux d’optiques pour lesquels on peut entre autre citer les noms de Maupertuis et
Huygens, mais elle apparait naturellement en relativité [13].
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En appliquant maintenant le théoréeme de Stokes sur la forme «, on obtient :

Proposition 12. En supposant que les deux courbes 1 et o entourent le méme tube de vorticité des équations
(1.96), alors les intégrales de la forme o = p,dq® — Hdt le long de ces courbes sont les mémes :

% Padq® — Hdt = % Padq® — Hdt. (1.100)
71 72

La forme pdq — Hdt est appelée intégrale invariante de Poincaré-Cartan.

Cela signifie qu’a tout moment, pour tous les points de la trajectoire, la forme « est invariante. De méme,
il est possible de montrer, en utilisant le théoreme précédent, qu’en se situant sur les plans ¢ = constant, la
2-forme w = dp; A dq" est une intégrale invariante du flux de trajectoire entre tg et ¢ :

fpdq://dpAdq:// dp A dg. (1.101)
g o ($18)

Application : le principe de moindre action de Hamilton

Dans 'espace T, M, on considere une courbe connectant les points 2% = (po,q°,t) et a' = (p1,q',t). Les
courbes intégrales des équations de Hamilton sont les seules extrémales de [ pdg— Hdt dans la classe des courbes
~ reliant les points 20 et !

dq — ot ._OHN o oH
5[y( po, — H)dt = p6q|0+/7{<q 8p>5p (p—|— % )54 dt. (1.102)

Connaissant la transformée de Legendre, et donc la relation entre lagrangien et hamiltonien, ce principe redonne

le principe de moindre action donné initialement par Lagrange en faisant intervenir le lagrangien par p = %3,

A(pdq—Hdt) =/7(p<i—H)dt= LLdt. (1.103)

En particulier, pour un hamiltonien indépendant du temps, donc conservé, s’écrivant H(p = 88—5, q) = h, parmis

toutes les courbes ¢ = ~(t) connectant deux points 2° et x!, la trajectoire des équations de la dynamique (1.96)
est un extremum de l'intégrale de I’action 'réduite’

oL
[r-da= [ i~ [ SEwiw-a. (1.104)
¥ ¥ 9q
qui correspond au principe de moindre action de Maupertuis.

L’action d’un systeme

En mécanique classique, la fonction action S(q,t) est ainsi donnée par I'intégrale

Sqoute (a0, /Ldt / (1.105)

et sa différentielle (pour un point initial fixe) est égale a

dS = pdq — Hdt, (1.106)
oup = %—5 et H = pg— L sont définis a I'aide des vitesses ¢ sur la trajectoire . Il faut de plus veiller a ce
qu'une trajectoire dans I'espace des phases n’intersecte pas une autre trajectoire pour que l’extrémisation de
cette fonction soit correcte.

Dans le cas d’un systeme relativiste, il faut tenir compte des 2n + 2 variables canoniques (¢%,pa,t,p:), et la
fonction action est définie de méme par

SQO,to(Q7t) :/O‘cv (1107)

de contrainte hamiltonienne
He(q", past, pt) = 0. (1.108)

On vient ainsi de voir que pour un systeéme, relativiste ou non, par les propriétés de ’espace des phases, le
principe de moindre action intervient naturellement quelles que soient les coordonnées choisies.
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1.11 Changement de variables : équations de Hamilton-Jacobi

La nature invariante de la relation entre la 1-forme o = pdgq— Hdt et ses lignes de trajectoire pose la question
de réécrire les équations du mouvement dans n’importe quel systeme de 2n+1 coordonnées dans I'espace T,/ M.
La méthode utilisant des fonctions génératrices pour des transformations canoniques et développée par Hamilton
et Jacobi, est la plus performante des méthodes disponibles pour l'intégration des équations différentielles de
la dynamique. L’idée sous-jacente de la méthode d’Hamilton-Jacobi consiste a ce que, sous une transformation
canonique de coordonnées, la forme des équations du mouvement reste préservée selon les équations d’Hamilton
(1.96). Ainsi, si on réussit & trouver une transformation canonique qui réduit la fonction hamiltonienne sous
une forme telle que les équations peuvent étre intégrées, alors on peut aussi intégrer les équations canoniques
originales. Cela revient a déterminer un nombre suffisamment large de solutions & I’équation de Hamilton-Jacobi
dont la fonction génératrice de la transformation canonique désirée en fait partie. On peut remarquer que cette
méthode utilise la structure des coordonnées de I'espace des phases 7,7 M. En utilisant la propriété de I'équation
(1.106), on voit directement que %—f = —H(p,q,t) et p= %‘ La fonction action satisfait I’équation non linéaire,
différentielle, du premier ordre, qui est appelée équation de Hamilton-Jacobi pour la fonction génératrice
action S

aS aS

— +H(=—,q,t)=0. 1.109

5+ H G0 (1.109)
Elle établit en fait une relation entre les trajectoires de systémes mécaniques (rayons lumineux, donnés par H)
et les équations différentielles partielles (les fronts d’onde), et aura permis ¢ Erwin Schrédinger de formuler

sa fameuse équation.

Définition d’une transformation canonique

Dans le formalisme lagrangien, on ne considere que les transformations sur M ’espace des configurations. Un
des avantages du formalisme hamiltonien est d’autoriser des transformations sur 7% M qui mélangent les variables
canoniques ¢ et p, tout en préservant la nature hamiltonienne des équations du mouvement. La transformation
(¢%, pa) — (Q%, Py)(q,p,t) est alors une transformation canonique si elle préserve la structure symplectique

w =dpg Ndq® = dP, N dQ°, (1.110)

et donc les crochets de Poisson. En d’autres termes,

(@ Py=06y et Vg {f 9twp =1{f9}apr- (1.111)
Il existe alors une fonction K(Q, P,t) € F(T*M) telle que
Q= oK p 9K (1.112)

" 9P, “T O HQe

servant d’hamiltonien pour les nouvelles variables. Cette transformation détruit la nature de T*M dans le sens
ou les nouvelles coordonnées Q% ne sont plus uniquement fonction des coordonnées ¢* et donc ne correspondent
plus aux coordonnées sur M. Elles peuvent cependant a terme simplifier grandement le probléme.

Définition des fonctions génératrices I

Pour une fonction génératrice F', il existe plusieurs transformations canoniques possibles. Néanmoins,
connaissant son type, cette fonction mene & une classification compleéte des transformations canoniques et
permet de spécifier une transformation canonique locale en donnant son type et sa fonction génératrice.

La 2-forme w étant exacte, il existe une 1-forme 6y = p,dqg® dont la dérivée extérieure est w. Si on considere de
méme cette 1-forme construite dans le nouveau jeu de coordonnées obtenu par une transformation canonique
01 = P,dQ%, la dérivée extérieure de 6, est de méme w par I’équation (1.110), et on a ainsi

d(90 — 91) = d(padqa — Paan) = O, (1.113)

qui est une autre maniere de prouver la canonicité de la transformation. D’apres le lemme de Poincaré (1.48),
il existe une fonction F € F(T*M) telle que

Padq® — P,dQ* = dF. (1.114)

Apres quelques manipulations, il est possible d’obtenir dans le cas général une relation liant F', la fonction
génératrice, et les 2 hamiltoniens H et K, s’écrivant :
oF oQ"

o - HTE =,

P,. (1.115)
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Cette équation est tres utile pour la classification des transformations canoniques. Il est ainsi possible de définir
4 types de fonctions génératrices’

Fi(q,@Q,1), Fy(q, Pt),
F3(p, Q, 1), Fy(p, P,t), (1.116)
telles que si le Jacobien de la transformation de coordonnées est non-nul, det %((g’q)) # 0, alors
P = %};2, Qi = g—};j, K=H+ %, (1.118)
Qi:_%ija H:—gg‘i, K:H+%, (1.119)
Qi:_ﬁaij’ Qi:%, K:H+%. (1.120)

L’équation (1.109) correspond au cas ou F' = S(Q, q) et K = 0, ayant comme conséquence la conservation des
Q® et P, lors du mouvement : plus particulierement, les Q® sont les intégrales premiéres du systéme (comme par
exemple I'énergie dans le cas d’une invariance par translation dans le temps, le moment cinétique, etc). Des 4
types, on va surtout utiliser par la suite la fonction Fj (g, @), utile pour obtenir une équation d’Hamilton-Jacobi,
mais aussi Fy(gq, P) pour la théorie des perturbations canoniques, notamment dans le cas des perturbations
scalaires en cosmologie.

1.12 Les équations de Maxwell en théorie des champs

On a entrapergu le fait que pour concilier mécanique newtonienne et électromagnétisme, il fallait se placer

dans l'espace-temps a 4 dimensions de la relativité restreinte, ’espace de Minkowski. Puisque 'on a tous les
éléments nécessaires sauf cette notion d’espace-temps, on va ici présenter 1’électromagnétisme en utilisant ce
qui a été vu précédemment, et cela permettra de faire un lien avec la construction de la gravitation quantique
a boucles.
Soit (M, g) une variété Lorentzienne de dimension 4, on peut montrer que les équations de Maxwell en présence
de sources s’écrivent de fagon géométrique, en faisant intervenir seulement deux champs de 1-formes (des sections
du fibré Al), A et J, qui représentent respectivement le champ électromagnétique (par le potentiel vecteur
A, tel que A = A, dz"), et la densité des charges électriques. Les formes différentielles du champ et des
charges A, J € C°°(A') sont alors reliées par la relation

J = d*dA, (1.121)

ot d* est I'opération adjointe de d. En utilisant leurs propriétés'®, montrées par exemple par I'équation (1.44),
il existe des 2-formes F=dA € C°°(A!), telles que dF'=0, mais aussi d*J = 0. Les équations de Maxwell sont
ainsi retrouvées par I’équation (1.121) dans un espace de Minkowski puisque

— F = dA s’écrit

. 94 5 .
E =grad(V) — B B =rot(A). (1.122)
- J =d*F s’écrit
- . .  OF .
J =rot(B) — 5 P div(E). (1.123)
— dF =0 s’écrit .
= 0B L -
div(B) = 0, ¥ +rot(FE) = 0. (1.124)
— d*J =0 s’écrit
0 —
P div(J) =0, conservation de la charge (1.125)

ot

ol p est la densité volumique de charge, J le courant associé, et E' et B sont respectivement les champs électriques
et magnétiques. Ces deux champs n’ont un réel sens physique qu’'uniquement a travers le tenseur F', au contraire

9Ces fonctions génératrices sont liées entre elles, par exemple Fi(q, Q,t) + PQ = Fx(q, P, t).
OPour d*, d*d* =0
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du quadrivecteur potentiel A,. Le tenseur F' = dA étant une 2-forme, on I'écrit F' = %Fuydm” Ndz¥ = F,, dx*dz”
avec

F/_w = 8,uAu - al/A[L) (1126)

et on appelle F,, le champ tenseur électromagnétique. Cette formulation de fagon géométrique est tres
simple et va permettre une écriture commune pour toute théorie de connexions, ot ici les champs A,, peuvent
étre aussi vues comme des 1-formes de connexion sur un fibré et F' comme une 2-forme de courbure.

Il est intéressant pour comprendre l'origine de la gravité quantique a boucles de voir que 1’électromagnétisme,
sans le savoir au départ de sa construction, est en fait une théorie possédant des contraintes, et donc recourra
a des multiplicateurs de Lagrange dans sa réécriture. Le lagrangien pour une particule libre comme le photon
est donné par

1 1%
L= —Z/dsxFu,,F“ : (1.127)
et les équations du mouvement sont données par les identités de Bianchi
0 F" =0, (1.128)

soit encore les équations (1.122) & (1.125). Les variables canoniques ne seront plus les positions et impulsions,
mais les 4 champs continus contenus dans le potentiel quadrivecteur A,. En utilisant ’expression de F},,, donnée
par 1’équation (1.126), on remarque que les dérivées spatiales de Ag interviennent bien dans le lagrangien, mais
qu’il n’est présent aucun terme dépendant de sa dérivée temporelle : le moment conjugué 7° de Ag est donc nul,
montrant que Ay n’est en fait pas une variable canonique mais un multiplicateur de Lagrange. Il existe alors
dans cette théorie une contrainte. D’autre part, on parle de champs continus. Les équations d’Euler-Lagrange ne
seront plus données par des dérivées partielles mais par des dérivées fonctionnelles. Les moment conjugués
des champs spatiaux seront alors donnés par

E" = Y Foa (1.129)

et représentent le champ électrique donné dans I’équation (1.122) avec la composante A° correspondant ainsi
au potentiel V. L’espace tangent est ainsi pourvu de la structure symplectique

w=dA.(z) NdE*(x), (1.130)
au méme titre que les (¢%, py) précédent, et leurs crochets de Poisson sont alors donnés par
{Ap(2), B*(y)} = 636° (x — y) (1.131)

pour lesquels la variable z agit comme un ’indice continu’ qui labellise les variables aux différents points de
I’espace. Les crochets de Poisson des champs ont la méme définition que ceux utilisés en mécanique, mais
avec comme différence 'utilisation de dérivées fonctionnelles ainsi qu'une intégrale sur les variables spatiales.
L’hamiltonien est de plus donné, par définition, par :

H= /d% <; [E“E® + B*B"] 6a — AoaaE“) , (1.132)

ou B* = %e“chbc est le champ magnétique, fonction des dérivées spatiales de A,. On a vu que 7°, le moment
conjugué de Ay, était tout le temps nul. Sa dérivée temporelle, nulle aussi, est alors donnée par

70 =0={Ay, H} = 0,E, (1.133)
indiquant que dans ce systeme, il existe une contrainte donnée par la loi de Gauss dans le vide
0,E* = div(E) = 0. (1.134)

E? ne peut ainsi pas étre choisi librement, puisqu’il doit étre de divergence nulle. Les contraintes étant les
générateurs des symétries, on peut alors regarder leur action sur le systéeme. Cependant, les variables étant
dépendantes de I’endroit ou on les considere, on peut choisir d’intégrer les contraintes pour regarder leur effet
global selon

G\ = /d% ‘M) - 0,E(x), (1.135)

ol A est une fonction C* locale : cette équation n’est qu’une sommation des contraintes existant en tout
point de I'espace, mais est mieux définie et plus facile & manipuler puisque ’on ne traite plus maintenant des
distributions (via les deltas de Dirac), mais des fonctions de I’espace. De plus, A est arbitraire mais correspond
exactement & Ay, et calculer les crochets de Poisson de G(A) avec I'hamiltonien permet de voir qu’ils sont
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bien nuls, indiquant que les orbites (trajectoires) générées par la contrainte laissent la théorie invariante. Ces
contraintes sont elles-aussi invariantes sous la dynamique et on les appelle contraintes de premiere classe.
Cela va se traduire par une liberté de jauge, la liberté de redéfinir certaines variables par une fonction que
I’on va spécifier en calculant les crochets de Poisson de cette contrainte avec les variables. Ces orbites vont étre
définies par I'information sur les crochets de Poisson suivant

S\E® = {E°GIN} =0,  6xAg = {Aa, G|} = . (1.136)

Le long des orbites, cette contrainte ne va pas modifier le champ électrique, mais le potentiel vecteur peut
étre modifié par le gradient d’une fonction quelconque, ce qui correspond bien & la liberté de jauge usuelle
Ay — A, +06A, = A, + 0, laissant le tenseur F),, invariant, et donc la physique associée. La contrainte
de Gauss est ainsi un générateur d’une transformation de jauge qui s’exprime dans le formalisme hamiltonien
par les crochets de Poisson'!'. D’autre part, la contrainte générée par 7° = 0 n’a pour incidence que la possible
redéfinition de Ay par une fonction quelconque, ce qui est attendu puisque Ag est un multiplicateur de Lagrange
et est donc arbitraire. Pour finir, dans le formalisme hamiltonien, les équations de Maxwell seront données par
I’étude des équations du mouvement de A, et E* telles que

Ay = {Aq, H} = Eo+ 04 Ao, (1.138)
E* = {E",H}=¢",B,. (1.139)

Il n’existe ici pas de choix unique pour les solutions des équations du mouvement puisqu’elles vont dépendre du
choix de Ag : on parle alors d’un choix de jauge, dont on peut citer comme jauges usuelles en électromagnétisme
la jauge de Lorenz, ou bien celle de Coulomb. Cette liberté de jauge est ainsi cruciale pour retrouver les degrés
de liberté physiques du photon qui sont au nombre de deux et qui correspondent aux hélicités : en partant
des 4 composantes de A*, les caractéristiques de A° et I’action de la contrainte de Gauss vont contraindre les
expressions pour retrouver les deux degrés de liberté finaux.

D’autre part, les interactions entre particules, fermions ou bosons, sont rendues possibles par le couplage de deux
champs différents ou non entre eux, et la constante de couplage donnera, comme pour la masse, une propriété
intrinseque supplémentaire a la particule. Pour le photon, décrit par le quadri-potentiel vecteur, il n’existe pas
de termes en A, A,, montrant que les photons n’interagissent pas entre eux. Dans le cas de ’électrodynamique,
avec ’équation de Dirac, l'interaction est donnée dans le lagrangien par un terme supplémentaire possible,
—e\IW“AM\I/ ou e est la charge de I’électron,

1 _ _
L= _ZFWFW + U(iy"0, — m)W — eWy" A, . (1.140)

Or, associer deux lagrangiens ne va plus permettre a la théorie d’étre invariante sous les transformations globales
associées a chaque particules prises séparément. En effet dans ce formalisme, on a vu juste précédemment que
pour retrouver les degrés de liberté physiques a partir des objets mathématiques avec plus de composantes que
nécessaire, il était important de considérer les symétries. L’interaction étant locale, il va falloir que la théorie
complete soit invariante localement, telle qu’ici par exemple, les transformations!?

Ay — Ay +0A, ¥ — e g P N g (1.141)

laissent le Lagrangien (1.140) invariant. Suivant le théoréme de Noether, & chaque symétrie globale est associée
une charge conservée. Ici, pour le cas de I’électron, cette charge correspond a la symétrie A(z) = constante
et est la charge électrique e. Pour compenser le fait que I'on ait effectué une transformation de jauge tout en
souhaitant que la théorie reste invariante sous cette transformation, il est nécessaire de redéfinir les dérivées
usuelles en dérivées dites covariantes selon

Oy — D,y =0, —ieA,. (1.142)
La densité lagrangienne de I’électrodynamisme est alors donnée par

1

L=V(ir"D, —m)¥ 1

F Fr, (1.143)

1 On peut aussi le voir comme dans le cas de 'impulsion générant les translations selon

!’ 6
x =x+ A=Tz = exp[—ilplx = (171')\8—) x,
xr

avec ici

o 5 )
HX = (exp |:7G[)\,E = E,Aa = 5ga ]} — ]1) X. (1.137)

12La composante Ag a été gardée pour la généralisation.
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pour laquelle on a défini maintenant

1
Fyy = == [Dy, Du] = 0,Au = 0, Ay +ic[Ay, Al (1.144)

Plus particulierement, les transformations (1.141) sont caractéristiques d’une transformation du groupe U(1) :
A,, a valeur dans ce groupe, va alors commuter avec A, permettant de retrouver la non-interaction entre
photons.

Ces observations sont ainsi génériques a toute théorie possédant des contraintes générant des symétries,
appelées symétries de jauge, et pour laquelle les solutions des équations du mouvement vont alors contenir
des parametres arbitraires. Cependant en physiques, les observables pertinentes pour étudier un systéme sont
souvent données par des variables qui seront invariantes de jauge, pour lesquelles les équations du mouvement
restent identiques quel que soit le choix des parametres utilisés, et dont les résultats donneront alors la bonne
description.

1.13 Observations sur la mécanique classique

Classiquement, la formulation lagrangienne de la mécanique est ainsi fondée sur I'observation de 'existence
de principes variationnels derriere toute loi fondamentale mettant en jeu un équilibre des forces. On peut ainsi
appliquer ce formalisme & de nombreux autres domaines de la physique et voir que cela convient a la description
de nombreux phénomenes.

En partant de ce postulat, la mécanique newtonienne seule permet de montrer que si on considére une particule
ayant une position ¢(t) dans Pespace & un temps ¢, se déplacant avec une vitesse v = ¢(¢) dans un référentiel
inertiel, alors

— les équations du mouvement sont données par un lagrangien : il faut, pour avoir la dynamique d’une
particule, lui fournir une fonction sur le fibré tangent T'M correspondant a I’espace des phases.

— si de plus le systeme présente des symétries, concretes ou abstraites, il existe alors des quantités conservées
comme par exemple ’énergie, le moment cinétique, et bien d’autres possibilités.

— il existe un espace dual, défini par le fibré cotangent T*M sur lequel le lagrangien est remplacé par
un hamiltonien. Les équations du mouvement y sont équivalentes, mais la structure mathématique du
formalisme hamiltonien est beaucoup plus riche.

— il existe naturellement sur 7*M une structure symplectique correspondant a des formes différentielles,
indépendant du systéme de coordonnées, tenseurs d’ordre (r,0), et donc répondant ainsi parfaitement au
principe de relativité.

— cette structure avec la dynamique donnée par 'hamiltonien, ou plus particulierement le moment conjugué
pt, permet de définir un principe variationnel donnant une action, qui est bien dépendante du lagrangien
comme suggérées par les équations d’Euler-Lagrange.

— pour que la particule (autre que le photon) se mette en mouvement, il faut la doter d’'une quantité in-
trinseque a la particule : sa masse inertielle. Son mouvement devra aussi tenir compte de forces induites
par des potentiels, notamment attractif comme la gravitation. On a ainsi une définition physique de la
notion de masse répondant au principe d’équivalence newtonien.

Pour cela, il suffit de doter 'espace tangent TM = R2" de coordonnées (g, ), d'une simple fonction donnant
la dynamique, le lagrangien. Ce lagrangien rend de plus compte des couplages entre différents phénomenes et
permet de définir toute une structure mathématique riche, trés utile pour comprendre la dynamique du systeme.
Par la suite, c’est en se basant sur cette structure mathématique (qui n’est bien siir pas apparue directement
mais apres beaucoup d’étapes de compréhension) que se sont formées les autres théories, plus completes et
donnant une meilleur description des phénomenes physiques, la mécanique classique n’en étant en fait qu’un cas
limite. On va ainsi voir que pour mieux comprendre notre monde, il va étre nécessaire de remettre en question
cette premiere approche, et construire dans le prochain chapitre, des théories plus fondamentales, les théories
relativistes et quantiques.
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Chapitre 2

La Mécanique moderne

Look deep, deep into nature, and then you will understand everything better.

Albert Einstein, 1951

Introduction

Dans ce chapitre, les théories de relativité restreinte et générale, avec la mécanique quantique, vont étre
présentées de maniere succinte, puisque ’on suppose les concepts abordés ici déja connus. On va ainsi se
contenter d’introduire les notions utiles pour la suite, avec toujours cependant quelques ouvertures, notamment
en relativité restreinte pour laquelle on pourra voir que les équations du mouvements des particules libres sont
en fait déja encodées dans la théorie. Le lecteur plus intéressé pourra consulter les ouvrages [16] a [24].

2.1 La Relativité Restreinte

La relativité restreinte est la premiére théorie & s’étre fondée sur des symétries (de 1’espace-temps). Elle a
ainsi défini la notion de théorie de jauge pour laquelle ’action doit étre invariante sous I'action d’un groupe de
symétrie. On va alors voir dans ce paragraphe que le simple fait d’avoir un espace-temps homogene et isotrope
permet d’obtenir des équations contraignant les phénomeénes qui y sont présents.

2.1.1 Existence naturelle d’une vitesse limite

Dans la construction de la mécanique classique par Newton, aux échelles de vitesses envisagées, le prin-

cipe fondamental de la dynamique et les transformations de Galilée ont été posés de maniere assez intuitive.
Ce faisant, il existe diverses possibilités pour questionner la robustesse des hypotheéses qui y ont été faites.
L’électromagnétisme, en ce qui la concerne, met en jeux des vitesses treés importantes comme pour le photon.
Elle ne dit rien quant au principe d’équivalence mais respecte le principe de relativité, ainsi que la notion de
force : en appliquant une force sur un électron, la force de Lorentz, celui-ci se mettra alors en mouvement. La
mécanique classique et I’électromagnétisme different ainsi sur le choix des transformations de coordonnées : les
équations de Maxwell sont invariantes par transformations de Lorentz et non pas sous les transformations
de Galilée, et une possibilité est donc la remise en cause des transformations de Galilée.
Einstein, en 1905, proposa une solution & ce probléme en se basant sur ’trois’ postulats : le principe de rela-
tivité, le principe de causalité et le fait que le module de la vitesse de la lumiére dans le vide soit indépendant
de I’état de mouvement de la source. Cependant, cette derniere assertion est en fait une conséquence naturelle
des 2 autres postulats et des propriétés d’homogénéité et d’isotropie de I’espace et du temps. Ainsi, pour deux
référentiels en translation rectiligne uniforme selon un axe Ox a la vitesse V' 1'un par rapport a l'autre, les
transformations de coordonnées, dites transformations de Lorentz,

1. définies dans un espace-temps homogeéne et isotrope,
2. ayant une structure de groupe’,

3. respectant le principe de relativité,

4

. respectant le principe de causalité : quel que soit le référentiel, un événement survenant avant un autre
sera toujours considéré comme antérieur,

11’élement neutre s’obtient avec V = 0, I'inverse avec —V, et 'associativité avec le fait que, pusique I’espace étant homogene,
les transformations sont linéaires.

27
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menent naturellement a l'apparition d’une vitesse limite c,
qui est la vitesse de la lumiere dans le vide [16]. Il est possible
d’arriver a cette méme conclusion en observant le trajet d’un
photon se réfléchissant dans un mirroir situé dans un train en
mouvement, comme illustré dans la figure Fig.(2.1). Cela signifie
que pour un mobile en translation a vitesse 1% par rapport a un
référentiel R (¢,7), dans son référentiel propre R’ (7,1), le temps
7 s’écoule plus lentement et il voit les longueurs contractées selon
Vv

V2 . dr’
dr=dt\|1- ar= —_ (2.1)
F1G. 2.1 — trajet d’un rayon lumineux entre ¢ \J1— ‘CL;

deux miroirs dans un train en translation,
selon un passager et selon un observateur
extérieur.

ce qui est a priori contre-intuitif & notre échelle. L’existence de
cette vitesse limite est ainsi une grande nouveauté correspondant
& lapparition d’une ’constante de structure’ de I’espace-temps?.

Il n’y a alors plus de notion d’action instantanée de la part d’une force, montrant I'incompatibilité de la
relativité restreinte avec la mécanique newtonienne.

2.1.2 Transformations de Lorentz

Les transformations dans les deux approches font intervenir des fonctions hyperboliques et ont pour
expression (= 0..3)
't = Atz (2.2)

ou A¥ est la matrice de Lorentz (ici selon une direction et sans tenir compte des rotations)

ct’ v =6 0 0 ct

! - 00 T Vv 1

y = gﬁ g 1 0 Y avec (= = et = T (2.3)
2 0 0 01 z ==

2.1.3 Meétrique de Minkowski

Pour rendre compte de deux référentiels inertiels en translation, on voit qu’il faut se placer dans un espace-
temps & 4 dimensions et que méme la composante temporelle est affectée par la transformation. Une base e, de
cet espace définit une métrique g,, = e,e,, et par changement de coordonnées,

I = €uer, = (Afea)(Ajes) = AfATgas. (2.4)

La seule possibilité pour la métrique est la métrique de Minkowski notée 7,, = diag(—1, 13), tenseur de
rang 2, donnant alors la relation caractérisant la matrice de Lorentz

AN = 1. (2.5)

2.1.4 Quadrivecteurs impulsion et force

En s’aidant notamment de 1’équation (2.1), il est possible de définir alors un nouveau principe fondamental
de la dynamique. Pour une force F' s’éxercant sur un mobile, le quadrivecteur force peut étre défini a partir de
I'impulsion via

_dpr

Kt = — 2.6
dr’ (2:6)

ces deux quadrivecteurs s’écrivant

P“:””(V)( 7 )Z( mw(lé)v ) K”:”(V)< FFV ) 27)

ou F est 'énergie du mobile donnée par la fameuse équation d’Einstein

E =vymc® & E? = p°c® + m2c, (2.8)

et Fy = mc? la masse du mobile au repos, c’est a dire dans son référentiel propre. L’équation (2.8) est le résultat
de la relativité restreinte qui est le moins robuste puisque la composante P° & été postulée comme étant v(v)m

211 existe d’autres visions possibles.
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facteur d’une vitesse que 'on a choisi comme étant c. Cependant, les observations montrent que ce choix est
tout a fait valide : I’équation de ’énergie est alors considérée comme correcte et redonne bien, dans le cas des
petites vitesses, I’expression de I’énergie pour la mécanique newtonienne. D’autre part, ce lien entre masse et
énergie cinétique montre la possibilité de création de masse a partir d’énergie, ce qui est bien observé dans le
cadre des accélérateurs de particules.

L’apparition de tenseurs en relativité restreinte est ainsi naturelle. Elle est liée a la prise en considération d’une
4°me dimension forcant 'utilisation de quadrivecteurs comme P* et de la métrique de Minkowski Nuw- L’équation
(2.6) est alors invariante sous une transformation de Lorentz et se réduit a ’équation classique dans le cas des
petites vitesses. Une autre propriété importante de la relativité restreinte provient du produit P* P, qui est un
scalaire, invariant donc sous les transformations de Lorentz, et vaut

PP, =m?c. (2.9)

Cette propriété va permettre une compréhension profonde de la physique présente sur un espace-temps plat
puisque la détermination de ’existence de particules y est liée, comme on peut le voir juste apres.

2.1.5 Groupe de Poincaré

Les transformations de Lorentz générales sont données par a'* = Alz” + X* ou les X* traduisent une
translation, et forment un groupe, le groupe de Poincaré. Ce groupe de symétries de 1’espace-temps est en
fait tres important puisqu’il détermine une grande partie de la physique sur un espace de Minkowski. Il est
déterminé par 10 générateurs : les 6 parametres de Ay, (3 rotations et 3 boosts) ainsi que les 4 parametres de
translation de X*, satisfaisant ’algebre

(X, Xu] =0, (X Mol = i(nuw Xo = 140 X)), (2.10)
A, Apo] = i(Mpuphov — Muphop — Nuo Moy + Moo pp). (2.11)
Il existe en physique une correspondance assez extraordinaire :
Les particules élémentaires sont associées aux représentations irréductibles du groupe de Poincaré.

En trouvant les Casimirs (C1,C2) de algebre tels que [aCi + bCq, X )] = [aC1 + bC2, Ayy] =0, Va,b € R, et en
cherchant leurs valeurs propres (c1,c2) sur les états du systéme, on va pouvoir définir et classifier les particules
élémentaires : chaque particule sera ainsi désignée par un couple (c1,ca) pour lequel il est possible de donner
un sens physique. Comme on vient de le voir, un des Casimirs n’est autre que le produit des quadrivecteurs
énergie-impulsion entre eux P? = P*P,, et le second est le produit W#W,, ot W# est le pseudo-vecteur de
Pauli-Lubansky [17] :

Ci = P' P, (2.12)
" 1 (e
Cg = WH. WM’ WM = _§€qu0'Apr . (213)
En considérant une particule de masse non-nulle dans son référentiel au repos P* = (m, 0,0, 0), on peut montrer
que ¢; = m? et co = —m?s(s+1) ol s est le spin de la particule, issu d'un moment. Pour une particule de masse

nulle, en se plagant dans son référentiel tel que P* = (p°,0,0,p%), WH* = AP ol ) est ’hélicité de la particule.
En considérant les propriétés de transformations pour le cas de scalaires, vecteurs, champs fermioniques, sous
un changement infinitésimal des coordonnées, il est possible de leur associer des particules définies par leur
masse, leur spin ou leur hélicité. Comme en mécanique classique sauf pour le photon, pour que la particule
puisse avoir un mouvement, on a supposé qu’elle devait étre massive. On peut ainsi voir que pour un champ
scalaire ¢, défini au sens de la relativité restreinte comme étant invariant par transformation de Lorentz, de
masse non-nulle, on observe la correspondance P, — d,, et I’équation P2¢ = m2¢ redonne 1'équation de Klein-
Gordon, avec obligatoirement s = 0 comme attendu par la physique des particules. On peut ainsi trouver a
partir des Casimirs du Groupe de Poincaré que la propagation des particules libres physiques dans un espace
de Minkowski peut étre entre autre® donnée par [17]

1. pour un champ scalaire ¢ : ¥V m, son spin est nul s = 0 et il doit obéir &*
(O+m?) ¢ =0, équation de Klein-Gordon (2.14)
2. pour un champ fermionique % : V m, son spin est s = % et il doit obéir a

(iv"0, —m) Y =0, équation de Dirac (2.15)
(O+m?) ¢ =0. (2.16)

Cela correspond au cas des protons et des électrons.

311 existe d’autres équations qui sont a priori des solutions mathématiques mais non physiques.
4Rappel du D’Alembertien 0 = —9,,0"* = 02 — 02 dans la métrique 1, = diag(—1, 13).
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3. pour un champ vectoriel A* :
— sim #£ 0 alors il est de spin s = 1 et obéit a, en notant F*¥ = gFAY — 0¥ AH,

o FH* + m2AY =0, équation de Proca (2.17)
(O+m?) A* =0. (2.18)

Cela correspond au cas des bosons de jauge W+ pour l'interaction électrofaible.
— si m = 0 alors il est d’hélicité A = £1 et obéit a, en notant F#* = gt AY — 9" A,

O FM =0, équation de Maxwell (2.19)
O A" =0. (2.20)

Cela correspond au cas des photons.

Dans ce formalisme, sous les transformations de Lorentz et non plus celle de Galilée, les équations de Maxwell
pour le photon apparaissent naturellement mettant ainsi fin au paradoxe entre les deux théories classiques, la
mécanique et 1’électromagnétisme.

Afin d’obtenir I’équation de Dirac, il a été fait ’hypothese que les composantes du champ fermionique formaient
un espace vectoriel linéaire permettant la construction d’une représentation du groupe de Poincaré. Cette hy-
pothese, mathématiquement simple, possede en fait une conséquence physique hautement non-triviale : elle
correspond & un principe de superposition et pourrait étre corrélée a ’apparition de la notion de dualité
onde-corpuscule, a la base de la mécanique quantique.

Une simple remarque sur le spin : on traite le cas de particules pour lesquelles on a fait 'hypothese que le spin
était donné par la valeur de la représentation dans laquelle on se plagait. Le spin apparait par la valeur propre
de la norme du moment correspondant aux rotations et boosts dans la matrice de Lorentz : dans le langage
de Dirac J?|etat >= hs(s + 1)|etat > ou J est le moment, et A la constante de Planck. L’existence du spin,
qui peut étre vu comme une charge de Lorentz puisqu’invariant sous ces transformations, est introduit ici
apres compréhension de la mécanique quantique, mais on peut remarquer qu’il est présent lui aussi de part la
structure de I’espace-temps.

En d’autres termes, les particules pouvant exister en relativité restreinte possedent déja quelques apsects quan-
tiques, ou tout du moins sont compatibles avec les idées issues de la premiére quantification, telles le principe
de correspondance de la mécanique quantique :

E — ihdy, p— —ihd. (2.21)

En effet, dans un espace de Minkowski, toute particule X, méme le photon, doit ainsi satisfaire une équation
de Klein-Gordon, dans les bonnes unités,

M?c?
B2
Celle-ci peut se comprendre par l'application de I’équation (2.21) & la définition (2.8) de I’énergie en relativité
restreinte, ce qui est bien le cas comme on peut le voir dans les équations du mouvement. Il est possible d’observer

que le principe de correspondance est simplement donné par

Pt = ( Z;ﬁ ) - —ih( g; ) (2.23)

ol on a montré par 1’équation (1.92) que pour toute théorie & contraintes, comme c’est le cas en relativité,
H., = E 4 p; = 0 pour les solutions physiques. Ici, nous n’avons fait qu’effleurer la mécanique quantique.
Les théories importantes comme ’électrodynamique quantique (QED) ou bien la chromodynamique
quantique (QCD) pour 'interaction forte, ne découlent évidemment pas de la relativité restreinte mais celle-ci
constitue un guide précieux pour invalider beaucoup de théories incorrectes.

On voit ainsi que les effets relativistes ne s’appliquent pas qu’aux objets ayant une vitesse proche de celle de la
lumiere, ni ayant des énergies élevées, mais qu’ils s’appliquent aussi aux objets quantiques. Mécanique classique,
quantique et relativité restreinte sont ainsi tres liées et permettent de définir une premiere approche a la notion
de champs qui composent notre monde. Il est de plus possible d’étendre ces observations au cas du spin s = 2,
correspondant en théorie au graviton, mais des lors des incompatibilités apparaissent : méme si dans cette
théorie on voit que 'espace-temps spécifie un tant soit peu la physique qui doit y étre présente, il existe toujours
des distorsions avec la mécanique newtonienne résultant de I’absence de la gravitation en relativité restreinte.
Il va falloir attendre 1915 pour qu’Einstein lui-méme développe pour cela la théorie de la relativité générale.

O+ )X =0. (2.22)
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2.2 La Mécanique Quantique

Parallelement au probleme de [D'incompatibilité entre
mécanique classique et électromagnétisme, des questions portant
sur la nature de la lumiere étaient aussi posées. Notamment,
en 1859, Gustav Kirchhoff se demandait pourquoi 'intensité

5000k classical theory d’un rayonnement électromagnétique émis par un corps noir,
con une cavité parfaite qui absorbe toute onde électromagnétique
quelque soit sa fréquence ou son angle d’incidence, dépendait non
seulement de la fréquence v de ce rayonnement, mais aussi de la
température du corps noir, comme montré par la figure Fig.(2.2).
En 1899 Max planck apporta une premiere réponse satisfaisante
aux difficultés posées par le corps noir en supposant que

0.8

intensity (arb.)

0.6+

0.4

0.2+

0.0

T T T T T —1
° 500 1000 1500 2000 2500 3000nm les atomes émettent et regoivent
wavelength (nm) . , .
des quantas discrets de rayonnement ayant une énergie
E = hv, avec h = 6.626 - 10734].s, la constante de Planck.

FiG. 2.2 — Intensité du rayonnement en fonc-
tion de sa fréquence et de la température du
Corps noir.

En 1905, Einstein (encore) introduisit I'idée que la lumiére pou-
vait avoir une nature corpusculaire : il expliqua ’effet photo-
électrique en postulant I'existence des photons, sorte de grains
d’énergie lumineuse avec des qualités de particule, et admit que
la fréquence de cette lumiere était liée elle-aussi a 1’énergie E des photons par la relation de Planck. Cette
observation montrait pour la premiere fois la notion de dualité onde-corpuscule.

En 1923, Louis de Broglie supposa que ce qui avait été ainsi postulé pour le photon pouvait étre aussi postulé
pour tous les autres types de particules, comme ’électron. Cette hypothese fut confirmée par I'expérience de
diffraction d’'un flux d’électrons sur 2 trous®, donnant un résultat identique aux photons et montrant que les
électrons pouvaient eux aussi étre interprétés en termes d’ondes.

Ainsi, chaque particule peut étre considérée comme une onde

— d’énergie
E = hv, (2.24)
— et de moment®
h
= —. 2.25
p= (2.25)

Ces réflexions ont alors permis la construction d’une théorie donnant une description tres fidele des phénomenes
microscopiques par la présence de quanta.

2.2.1 Procédure de premiere quantification

En mécanique quantique,

e |’état d’un systeme est représenté par un vecteur dans ’espace de Hilbert. Mathématiquement, un espace
de Hilbert est un espace vectoriel complexe, équipé d’un produit interne faisant intervenir le conjugué d’une
variable, et devant étre complet”. On note |¥ > un élément de cet espace, et < | les éléments duaux tels
que le produit interne entre deux états soit donné par

< \I/2|\I’1 >SF=< \Ifl|\:[/2 > . (226)

En mécanique quantique, les espaces de Hilbert sont souvent de dimension infinie. Par exemple, dans le
cas de l'oscillateur harmonique, ’espace de Hilbert est composé de toutes les fonctions complexes de carré
sommable H = L2(M), fonction soit de = soit de p mais pas des deux en méme temps.
e les observables sont représentées par des opérateurs auto-adjoints, souvent simplement hermitiens, tels
que
AT=A, et < UylAT; >=< ATT,|T; > . (2.27)

En général, deux opérateurs ne commutent pas et on ne peut pas mesurer leur observable simultanément,
ce dont témoignent les incertitudes d’Heisenberg. Les opérateurs, comme par exemple celui donnant
la position d’une particule, auront de plus un spectre de valeurs discréetes possibles, et non plus
continu comme dans le cas classique.

5Donnant le prix nobel en 1937 4 George Thomson et Joseph Davisson.
SDonné par les équations de la relativités restreinte.
"Toute suite de Cauchy dans cet espace converge vers un point de cet espace.
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e Dévolution d’'un tel systéme peut étre donnée selon deux® points de vue : une évolution unitaire d’un vecteur
dans un espace de Hilbert, la vision de Schrodinger, ou bien en gardant 1’état fixé et considérant que
ce sont les observables qui évoluent selon des équations du mouvement, la vision d’Heisenberg.

La mécanique quantique est différente de la mécanique classique. Il n’est pas nécessaire de partir d’un
systeme classique pour le quantifier, mais c’est généralement la procédure adoptée. Il n’y a cependant pas de
correspondance simple entre une théorie classique et une théorie quantique : il existe des théories classiques sans
contrepartie quantique bien définie (multiples possibilités), ou bien des théories quantiques sans aucune analogie
classique. Dans de nombreuses situations, il sera utile de se ramener a un exemple que I'on sait résoudre, et
on va ainsi regarder le cas simple de l'oscillateur harmonique de pulsation w et de masse m a une dimension
subissant un potentiel quadratique. Son lagrangien s’écrit alors

1 1
L= imai‘2 — §w2x2, (2.28)
donnant les équations du mouvement
mi + w?z = 0. (2.29)

Pour faire la transition vers la mécanique quantique, il est plus utile d’utiliser ’espace cotangent et son hamil-
tonien est donné par

1 1
H=—"—"p%+ =w?z? 2.30
5+ 5w (2:30)

avec {x,p} = 1 dont les solutions correspondent & des fonctions sinusoidales que 1’on peut exprimer selon

z(t) = e’ @ttao), (2.31)

Dans la représentation de Schrédinger

Dans le cas de l'oscillateur harmonique, on considere la vision de Schrédinger et utilisation d’une fonction
d’onde évoluant dans le temps ¥(z,t), représentant les différentes composantes du vecteur d’état |¥ > telle
que sur, la base des positions, |¥(t) >= [dz¥(z,t)|z >. La quantification canonique revient & promouvoir
les crochets de Poisson des variables en commutateurs d’observables, notées &, selon la relation

[2,p] = ih{x, p} = ih. (2.32)

Pour les états représentés par des fonctions d’ondes dépendant de z et ¢, & agit par multiplication et p agit par
dérivation, respectant la relation (2.32)

0 (x,t) = 2W(x,t), pU(x,t) = fih%—xqf(x,t). (2.33)

L’opérateur hamiltonien est obtenu en regardant I'action des opérateurs précédents dans ’hamiltonien clas-
sique, et s’écrit ici
- 1
H=——02+ -w? 2.34
570t 5 (2.34)

L’équation du mouvement est alors donnée par I’équation de Schrodinger

HU = ihd, ¥ (2.35)
qui s’obtient [18] de méme en partant de ’équation de Hamilton-Jacobi (1.109).
Comme '’hamiltonien est ici indépendant du temps, la solution est une superposition de fonctions labellisées

par un entier n € N,

U(z,t) = chllln(x,t) telles que Wy, (x,t) = H,(ywx)e 297 ~iFnt (2.36)
ou H,, est un polynéme de Hermite de degré n et E,, est une valeur propre de ’énergie,
1
E,=n+ 3 hw. (2.37)

On parle de mécanique quantique puisque le spectre des opérateurs est discret et fait intervenir des quanta. Ici,
I’énergie minimale est Fy = %w, mais rien n’empéche de renormaliser ’énergie par V = %w2x2 — %w donnant les

8]l existe aussi le point de vue de l'intéraction, mais nous ne nous sommes pas intéressés ici aux autres formalismes de la
mécanique quantique (comme celui de Béhm).
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mémes solutions : cela correspond a l'invariance par redéfinition de I’énergie vue précédemment. Les coefficients
cn, sont ainsi reliés a la probabilité P, = ¢ c,, d’observer un systeme décrit par la fonction d’onde ¥,, telle que

L=< U(B)u(t) >=Y P, = /dz|\1’(x,t)|2. (2.38)

Une remarque peut ainsi étre faite : il est connu que la notion d’espace de Hilbert est reliée a la conservation
de la probabilité et donc a la présence d’un temps externe en fonction duquel est conservé la probabilité. On
peut alors se poser la question si le concept d’espace de Hilbert est toujours nécessaire lorsque ’on cherche a
quantifier une théorie covariante.

Il existe aussi une autre maniere de résoudre les équations, consistant & introduire les opérateurs de création
et d’annihilation, a' et a, tels que

.1 R 41 A
a= E(u}x +ip), et a'= E(wx —ip). (2.39)
Suivant cette définition, ces opérateurs vérifient la relation
[a,a'] =1, (2.40)
et ’hamiltonien est alors donné par
H= (a*& - ;) hw. (2.41)

Cette approche est reliée a la seconde quantification ot on définira un opérateur N = afa, détat propre
|n >, représentant le nombre n de particules de cet état dans un nouvel espace, 'espace de Fock, et d’énergie
E,. 1l existe ainsi un état ne possédant pas de particules, ’'état du vide |0 >, défini par

a0>=0 et afl0>=1> (2.42)
tel que 1'état a n particules |n > est donné par |n >= \/—1;' (dT)n |0 >. La fonction d’onde dans cette base s’écrit
maintenant

W(t) >=>cne”Frlin > . (2.43)
n

Dans la représentation de Heisenberg

Dans cette représentation, les états sont fixés et les opérateurs évoluent dans le temps tels qu’il existe un
opérateur unitaire d’évolution?

| (t) >= U(t)|¥(0) >= Pe "/ 1w (0) > (2.44)
ou P est l’ordonnancement, ou Path order en anglais. Dans le cas ou I'hamiltonien ne dépend pas du temps,
alors U(t) = et Pour passer de la représentation de Schrédinger pour un opérateur A indépendant du
temps, a la représentation d’Heisenberg, il suffit de considérer la relation < Wq(8)|A|W1(t) >=< Uy A(t)| ¥y >,
impliquant que par ce changement de représentation,

Aty =UT () AU (t), (2.45)

évoluant selon I’équation du mouvement de Heisenberg

dA(t) ..
— - =ilH A1) (2.46)

Les opérateurs de création et d’annihilation sont alors donnés dans cette représentation par
a(t) = e~™a(0), a'(t) = e™tal(0), (2.47)

et le nombre de particules 7(t) = a'(t)a(t) = a'(0)a(0), est alors conservé au cours du temps.

9Unitaire UTU = 1.
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2.2.2 Seconde quantification : Théorie quantique des Champs

Lorsque 'on considere 'utilisation de champs qui dépendent non plus d’un ensemble discret de variables
(¢%, pj), mais plutét d’un ensemble de variables continues (¢(z*), w(z#)) telles que {¢(z#), m(y*)} oc 64 (x# —yH},
le formalisme quantique est donné par la théorie quantique des champs. Cette quantification consiste sim-
plement & exprimer des champs continus dans le formalisme hamiltonien en termes d’opérateurs de création
et d’annihilation continus. On va alors quantifier des champs définis sur un espace-temps plat, celui de Min-
kowski décrivant des particules relativistes. Cependant, passer a un espace-temps courbe va amener quelques
changements sur les notions de ’vide’ et de ’particules’ qui vont devoir étre traitées avec attention. Alors
qu’en mécanique quantique, ondes et particules sont des notions complémentaires avec différents domaines de
prédilection, en théorie quantique des champs, ce sont les champs qui sont fondamentaux, et les particules ne
sont que des notions approximatives utiles en certaines circonstances.

On va s’intéresser au cas de 1’équation de Klein-Gordon pour un champ scalaire ¢(z#), de densité lagrangienne

1 1
L=—n"0,60,6 — §m2¢2 (2.48)

redonnant I’équation (2.14) comme équation du mouvement. On peut ainsi voir que ce formalisme est identique
a celui de l'oscillateur harmonique dont les variables ne sont plus x et ¢, mais des champs ¢(x,t) et w(z,t) = ¢ &
valeur sur tout lespace. ¢(z*) n’étant pas une fonction d’onde, dans la représentation de Schrodinger, on devrait
définir une fonctionnelle d’onde complexe W[p(z#*)] qui représenterait ’amplitude de probabilité de trouver le
champ dans cette configuration. On va cependant préférer la représentation de Heisenberg pour laquelle on va
promouvoir ¢ au rang d’opérateur quantique.

Ainsi, une solution & I’équation de Klein-Gordon est 'onde plane

o(at) = goe™ " = goe TR, (2.49)
de vecteur d’onde .
k= (w, k), (2.50)

dont la fréquence doit satisfaire la relation (de 1’énergie)
w? =k +m?. (2.51)

Par rapport a 'oscillateur harmonique, il existe plusieurs solutions possibles pour les oscillations, dépendant
du nombre d’onde k et du signe de la racine carré. Cependant, il est possible d’écrire les solutions les plus
générales en construisant une base complete et orthonormale. Pour cette notion d’orthonormalité, on définit un
produit scalaire dans ’espace des solutions de 1’équation de Klein-Gordon, défini comme une intégrale sur une
hypersurface X3,

(b1, ) = —i /E (610105 — ¢30hp1)d>x = 63 (k — k). (2.52)

Ce produit scalaire est bien indépendant de 'hypersurface sur laquelle on utilise I'intégrale (on peut le voir en
prenant le théoreme de Stokes et ’équation de Klein-Gordon), et est construit & partir de la condition de
wronskien qui normalise correctement les solutions des I’équation de Klein-Gordon,

G- 09" — ¢ - O =i (2.53)
Ainsi construit, le produit scalaire a comme propriété

Sous ce produit scalaire, un ensemble de mode orthogonaux est alors donné par

eikux“’
Vv (@2m)22w’

la normalisation provenant de la condition de Wronskien, tels que ( fis f,;z) = 5(3)(E1 — Eg) Dans la suite, on
va imposer que les modes physiques aient toujours une fréquence positive, et pour considérer ceux de fréquence
négative, on va utiliser le complexe conjugué fi = f_x. On promeut alors les variables classiques comme des
opérateurs sur ’espace de Hilbert, et on impose les relations de commutations

frlah) = (2.55)

(6,0 = [m, 7] =0, [p(t,T),7(t,7)] = i6(Z — 7). (2.56)

Le delta de Dirac demande que les opérateurs a un temps donné commutent partout, excepté aux points spatiaux
de coincidence : cela découle de la demande de causalité (les opérateurs décorellés spatialement ne peuvent pas
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s’influencer les uns les autres). Classiquement, les solutions pouvaient étre données dans la base (2.55), il va en
étre de méme pour les opérateurs : en notant d% et ag les coefficients de I'expansion en mode des opérateurs de
champs, on peut écrire

PN 37 [ N At ey
6.0 = [ @k [acft.) +aLfi (6. 9) (2.57)
ou ces coefficients obéissent aux mémes relations de commutation que les opérateurs d’annihilation et de création,

et ce, grace a la condition de Wronskien, avec cependant une différence due a la présence de plusieurs modes
possibles,

g i) = k.6l ] =0, [ag,al] =6 (F - F). (258)
De méme que pour I'oscillateur harmonique, il existe un vide donné par I’équation az|0 >= 0, W;, et dans une

base de Fock, le nombre de modes excités a la fréquence w; = \/k? + m?, et donc le nombre de particules de
moment k;, s’obtient lui aussi par la relation np = d%&g, tel que

’I’LE1‘|TL1777J27 vy Mgy ey My >= ’I’L,L'|TL17TL27 vy Mgy ey T > (259)

Une remarque sur l'utilisation de la représentation de Fock peut étre ainsi faite. On cherche des états qui res-
pectent I'invariance de Poincaré et qui rendent compte d’une énergie positive. Or les états du vide correspondent
et permettent ainsi de choisir cette représentation de Fock, qui n’en est qu'une parmis tant d’autres.
L’hamiltonien du systeme s’écrit alors

H= /d% [nk + ;5(0)} fwy,, (2.60)

dont le terme en delta est appelé énergie de point zéro. Il est tres important en théorie quantique des
champs!'® puisqu’il signifie que, méme mesuré sur I'état du vide, 1’énergie est infinie (ou au moins dépendant
du cut-off ultraviolet) & cause de l'intégration. Cependant, ce probléme peut étre partiellement résolu par des
méthodes de régularisation supprimant ces divergences de la théorie, et la rendant physiquement mesurable.
Cette théorie appliquée a I’électrodynamisme donne une description quantique qui est en grande concordance
avec les observations. Il est aussi possible de l'appliquer a des théories de jauge non-abéliennes, les théorie
de Yang-Mills, qui remportent un grand succes lorsque l'on regarde les interactions électrofaible et forte.
Cependant, les théories de Yang-Mills se placent dans le cadre de la relativité restreinte, et la gravitation
n’est pas encore prise en compte. La relativité générale, que I'on verra par la suite, montre que 1’espace-temps
n’est plus plat, et une tentative de description des particules dans un tel espace est donnée par la théorie
quantique des champs en espace courbe. Elle essaye d’incorporer les enseignements vues précédemment
dans un espace-temps plus général, et ce afin d’obtenir une théorie viable en présence de gravitation. Le probleme
de la gravitation quantique est plus complexe encore.

2.2.3 Théorie quantique des Champs en espace courbe

En anticipant la suite, on utilise a la place de la métrique de Minkowski une métrique g,,, dynamique, telle
que la densité lagrangienne du champ scalaire précédent s’écrive maintenant

1 1
L=+-g (—29“”DH¢DV¢ —5mie’ - £R¢2> : (2.61)
dont les équations d’Euler-Lagrange redonnent I’équation (2.14) comme équation du mouvement, avec un

terme supplémentaire —{R¢. On parle de couplage minimal a la courbure R lorsque £ = 0. De méme que
précédemment, on impose les relations

[¢7 qb} = [7‘(’, 7T] =0, [¢(t7 f)’ ﬂ-(tv fl)] = 5(f - f,)’ (262)

-

et en considérant une hypersurface 3 spatiale (de normal n#, de métrique ¢, de déterminant ¢, labellisée par
un temps ¢ constant), on définit un produit scalaire sur X

%¢ﬂ=4éfm@M%%@—@%ﬂ> (2.63)

Comme dans un espace plat, on pourrait choisir un jeu de modes de fréquence positive et négative formant une
base des solutions, développer chaque solution en terme de ces modes et interpréter les coefficients selon des
opérateurs de création et d’annihilation. Or a cause de I'invariance par changement de coordonnées, il n’est pas

10Ce terme a été cependant observé pour la premiere fois dans un papier de cosmologie par Yakov Zel’dovich.
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possible de distinguer des modes de fréquences particulieres (positive ou négative), mais il existe toujours une
base possible de solution f;(z#) telle que

¢ = (aifi+alf]), (2.64)

avec a; et a] vérifiant les relations (2.58). On peut définir un vide [0 > tel que a;]0; >= 0, et aussi Ay = a, d;.
Cependant, cette base n’est pas unique. Il existe d’autres bases possibles comme par exemple g;(z*) telle que

¢ =" (bigi +blgp), (2.65)

similaire, mais de vide |04 > avec ici IA)i|Og >=0etfg; = IA)IZA)Z En passant d’un espace plat & un espace courbe, on
perd l'existence d’un ensemble privilégié de modes : dans un espace plat, il était possible de prendre un ensemble
de modes particuliers en demandant qu’ils soient de fréquence positive par rapport a la composante temporelle,
or ici le temps n’est pas défini de fagon non équivoque a cause des possibles changements de coordonnées. On
peut toutefois passer d’une base & une autre en effectuant des transformations de Bogoliubov, implémentées
par deux matrices a;; et 3;; qui définissent les coefficients de Bogoliubov, avec alors

9= (i fi+Biif7),  fi=> (95— Bijg})- (2.66)

J J
Ces matrices satisfont leurs propres conditions de normalisation

Z(aika;k = BikBjk) = bij, Z(aikﬂjk — Biaji) = 0. (2.67)

J J
D’autre part, il est intéressant de remarquer que le nombre de g-particules dans le f-vide est donné par

< Oyligil0F >=" 184/, (2.68)
i

et qu'il n’a aucune raison d’étre nul : un vide 'vide’ d’un certain point de vue est rempli de particules pour
autre point de vue, et les vides ne vont donc pas forcément coincider. Cela est dérangeant pour la définition
d’une particule puisqu’un détecteur en mouvement ne verra pas les méme particules que celui possédant un
mouvement différent. C’est 'effet Unruh [19].

2.2.4 Observations sur la Mécanique Quantique

Le monde est fondamentalement quantique. Cette théorie est devenue nécessaire a la compréhension des
interactions fondamentales que sont 1’électromagnétisme et les forces faible et forte, et sa complexification
via la théorie quantique des champs a permis la construction d’un modele effectif pour les particules dont des
prédictions ont été observées avec une grande précision. Elle inclut les idées de la relativité restreinte, les modeles
relativistes devant émerger de cette théorie fondamentale a la limite classique, et donne un cadre permettant
I'unification de l'interaction faible avec l'interaction électromagnétique.

Cependant, il existe des limites au modele standard des particules élémentaires, notamment :

e beaucoup de propriétés intrinseques des particules comme les nombres quantiques sont introduits arbi-
trairement (de méme pour les masses et les constantes de couplage),

le nombre de familles n’est pas une prédiction du modele,

il ne permet pas d’expliquer I’essentiel de la masse de 'univers,

les constantes de couplage ne convergent pas vers une valeur unique,

il est difficile d’expliquer la masse des neutrinos (mécanisme de see-saw),

la gravitation n’est pas incluse : une quantification perturbative de la gravitation aboutit & une théorie
non-renormalisable.

Il est intéressant de noter que les fondements et postulats de la mécanique quantique sont mathématiques et
moins bien motivés que ceux, comme nous le verrons dans le prochain chapitre, de la mécanique relativiste.
La mécanique pouvant étre exprimée dans un langage unificateur qu’est la géométrie différentielle, il existe
des tentatives de quantification dans ce formalisme connues sous le nom de quantification géométrique, qui
essaye de garder une ressemblance avec le formalisme de la mécanique quantique.

Il est ainsi difficile de concilier gravitation et mécanique quantique. Par exemple, si on regarde au niveau classique
I’évolution d’une particule comme un neutron ultra-froid dans le potentiel gravitationnel terrestre, classiquement,
on s’attendrait a ce que son évolution ne dépende pas de sa masse en vertu du principe d’équivalence, mais
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quantiquement, il en est tout autrement : dans le potentiel V' = mgygz, I’équation de Schrédinger pour ce neutron
en chute libre, d’énergie E, peut se réécrire

h?  d?

- %@\P(z) +mgygz¥(z) = EV. (2.69)

Dans cette équation faisant intervenir un objet quantique dans un champ de gravité classique, on remarque que
les termes en m ne se simplifient pas, violant ainsi le principe de Galilée puisque 'on peut mesurer la masse
de l'objet quantique en regardant sa chute dans le champ de gravitation. Cela a été réalisé par I'expérience
GRANIT [20]. L’interprétation la plus simple consiste & considérer que 'universalité de la chute libre est bien
respectée et que l'effet en question est indépendant de la gravitation puisque la masse intervient déja dans
I’étalement du paquet d’onde pour une particule libre.

La gravitation étant un effet physique important, il est nécessaire d’en tenir compte pour l'obtention d’une
théorie plus fondamentale de la physique. Cependant, appliquer la théorie quantique des champs directement a
la gravitation améne de nouvelles difficultés, notamment conceptuelles comme la définition du vide, mais aussi
des problemes de renormalisation. Méme si ce domaine est encore en développement, on va par la suite adopter
I'idée qu’il faut d’abord définir un cadre quantique propice a la gravitation avant de regarder son interaction
avec les autres forces existantes. Avant cela, il est nécessaire de connaitre exactement ce qu’est la gravitation.
Le prochain paragraphe va alors permettre d’introduire la gravité via son aspect simplement géométrique.

2.3 La Relativité Générale

La mécanique newtonienne permet de comprendre comment un objet se déplace quand il est soumis a des
forces comme la force de gravitation, et la relativité restreinte permet de comprendre quelles sont les lois pour
passer d’un référentiel & un autre lorsque ceux-ci sont en mouvement relatif & une vitesse V. La relativité
générale n’est pas motivée par des résultats empiriques (sauf peut-étre pour 'avancée du périhélie de Mercure)
mais par la contradiction entre la gravitation newtonienne et les principes fondamentaux de l’espace-temps
formulés par la relativité restreinte. Elle va ainsi permettre de concilier ces deux théories par la considération
d’un espace-temps courbe. De méme que pour les paragraphes précédents, cette introduction sera tres breve.

2.3.1 Les principes et leur conséquences
Le principe d’équivalence d’Einstein

En relativité générale, la structure de I’espace-temps est généralisée en se basant sur le principe d’équivalence,
découlant directement de 'universalité de la chute libre,

Principe d’équivalence d’Einstein : En tout point d’espace-temps, il est possible de choisir un systeme de
coordonnées localement inertiel tel que, dans une région suffisamment petite, les lois de la physique prennent
la méme forme que celles pour un systeme de coordonnées cartésiennes non-accéléré en l’absence de gravitation.

Suivant cet énoncé, les lois dans ces référentiels inertiels doivent alors étre localement lorentziennes comme
en relativité restreinte.

Le principe de covariance généralisé

Comme il n’existe pas de référentiel privilégié, d’apres le principe de relativité, ces lois doivent s’écrire de
fagon identique quel que soit le référentiel choisi. Il est alors nécessaire d’obtenir une formulation covariante
des équations, et le principe de covariance généralisé impose ainsi que les lois de la physique soient inva-
riantes sous les changements de coordonnées de I'espace-temps. Les difféomorphismes de I'espace-temps étant le
groupe de jauge de la relativité générale, les quantités physiques observables doivent alors étre invariantes par
difféomorphismes. En relativité restreinte, I'utilisation de tenseurs a permis ’obtention d’équations covariantes,
et il en sera de méme en relativité générale, mais suivant une utilisation plus générale du concept de tenseur.

L’espace-temps courbe

De plus, le champ gravitationnel n’est pas uniforme partout, comme on peut le constater sur Terre ou il
n’est vectoriellement homogeéne nulle part, et deux référentiels infinitésimalement proches ne sont donc plus
équivalents puisque le choix du systeme de coordonnées localement inertiel va différer. D’un point de vue
géométrique, cela signifie donc que l'espace-temps en présence de gravitation n’est plus plat, et possede une
courbure liée au champ gravitationnel. Comme il dépend des objets se mouvant dans ’espace-temps, la courbure
de l'espace-temps est elle-aussi dynamique : un corps massif en mouvement va donc modifier la courbure de
I’espace-temps, qui va elle méme modifier le mouvement de tous les corps présents, et cette dynamique va
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alors étre encodée dans les équations d’Einstein. D’autre part, la mesure d’une distance entre deux points est
donnée par la métrique g,,,, qui doit ainsi varier d’un point a un autre. En langage mathématique : ’espace-temps
forme une variété pseudo-riemannienne, et en se basant sur les résultats de la relativité restreinte, il doit avoir 4
dimensions tel que la métrique soit de signature (—,+, 4+, +) (variété lorentzienne). On va ainsi voir que g, ne
décrit pas seulement les propriétés métriques et causales de I’espace-temps mais aussi le champ gravitationnel.
Elle devient alors un élément dynamique, liée par les équations d’Einstein au tenseur énergie-impulsion décrivant
le contenu en matiere et énergie de 'univers.

2.3.2 La dérivée covariante, la connexion et la courbure

Toutes les équations physiques demandent de comparer la valeur d'un champ (généralement vectoriel ou
tensoriel) en un point avec sa valeur en un autre point. C’est trés exactement ce que permet la notion de
dérivée en espace plat, mais les choses ne se passent plus aussi simplement en espace courbe. En particulier
la dérivée usuelle d'un vecteur ne forme pas un tenseur. Cela peut se voir du point de vue géométrique par
le fait que le résultat dépend du chemin suivi ou du point de vue analytique a cause des termes de dérivation
seconde des coordonnées qui apparaissent lors d’un changement de coordonnées. Ces dérivées secondes sont
nulles dans le cas d’un espace plat mais ne le sont plus dans un espace courbe. Il faudra donc construire un
nouvel objet, la dérivée covariante, qui permet de s’affranchir de ces difficultés et qui se comporte effectivement
de maniere tensorielle. Celle-ci utilisera un autre objet important, le coefficient de connexion. Il s’agit, en
général, d’'un élément additionnel qui doit étre ’donné’ en méme temps que l'espace considéré. Il encode la
maniere dont les points voisins sont connectés et permet donc le calcul de dérivées. Néanmoins, suivant des
hypotheses raisonnables (absence de torsion et compatibilité métrique), la connexion peut s’exprimer en fonction
des dérivées de la métrique. Reste a évaluer la courbure elle-méme : c’est a cette fin qu’est construit le tenseur
de Riemann. Intuitivement, il peut étre vu comme indiquant la différence de variation d’un vecteur suivant le
chemin selon lequel on I’évalue entre deux points voisins. Plus profondément, on peut le comprendre comme le
’champ moteur’ de la dynamique en espace courbe : il renseigne directement sur I'accélération de la séparation
des géodésiques.

La connexion affine et dérivée covariante

On va ainsi chercher un objet qui, via un tenseur, permettra a tout observateur d’évaluer la courbure en un
endroit de l'espace-temps. Mathématiquement, une connexion affine (linéaire) V sur une variété différentiable
M est une application qui associe & un couple de champs vectoriels X, Y € X(M) un champ vectoriel VxY €
X (M) telle que

1. (X,Y) = VxY est R-bilinéaire en X et Y,

2. pour f € F(M), VyxY = fVxY et Vx(fY) = fVxY + (X[f)Y,

Pour connaitre la fagon dont se propage un vecteur quelconque, on définit son action sur la base des vecteurs
de U C M, un ouvert de M de coordonnées locales (¢, ...,q™), telle que

Va,(0;) = T0%. (2.70)

Les m?3 symboles Ffj € F(U) sont les symboles de Christoffel de la connexion V (dans la carte (U, ¢', ..., ¢™)).
Cette connexion donne une information ’locale’ car elle s’exprime dans le référentiel dans lequel on se situe.

Sous un changement de coordonnées, (¢!, ..,¢™) — (¢'%, .., ¢'™), les symboles de Christoffel se réécrivent selon
_— aqi aqj aq/c X 62(]1@ . aq/c

ab — dg'* dq'® dgF ij Ag*dq"*  dqF ’

montrant que les I‘fj ne se transforment pas comme un tenseur. On va pouvoir définir un objet mathématique,
la dérivée covariante VX qui, & partir d’un champ vectoriel € X' (M), va donner un champ tensoriel € 77 (M).

Pour un vecteur X = £'9; dans un systéme de coordonnées, on nomme les composantes de cette dérivée VX
par VX = (D;&") da’ ® 0;, avec

(2.71)

Dy = € = 0,6 + Tiye". (2.72)
Les 8j£i ne se transforment pas comme un tenseur, tandis qu’il suit de la définition de VX que les ffj sont bien

les composantes du tenseurs VX € 77 (M). Appliquer cette définition a tous types de tenseurs de composantes

T;;;: =T(8;,, -, 0;,,dx?, .. dr’") permet de montrer son application générale

Ji--dr J1-Jr Ji--Jr J1-doget

i1 i by i i i1
Dy Tirir = Titr o NS T - Nl e (2.73)
m=1 m=1

D’autre part, la dérivée covariante est reliée a la dérivée de Lie par la relation
LxY =[X,Y]=VxY -VyX (2.74)

qui va permettre de relier la dérivée de Lie aux crochets de Poisson.
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Notion de géodésique et trajectoire

Soit I C R un intervalle et v : I — M : ¢ — ~(t) un chemin. Le champ vectoriel X € X(M) est appelé
autoparallele le long de « si
V4 X =0, (2.75)

que 'on note parfois % = 0. Le champ vectoriel VX est appelé la dérivée covariante de X le long de 7.

N , , i . dq®
Pour un systeme de coordonnées donné, avec X = £'0; et ¥ = F-0;,

_ (A€ kdd
VX = (dt e dt)az (2.76)

montrant que V5X ne dépend des valeurs de X que le long de . En géométrie, une courbe ~y est appelée une
géodésique si 7y est autoparallele le long de v, i.e. V47 = 0. Cette notion est importante en physique puisque
I’on s’attend a ce qu’un corps suive une trajectoire telle que les vecteurs vitesses y soient tangents en tous points,
et donc que % soit autoparallele le long de 7. Dans le systeme de coordonnées y(t) = (¢*)™, cette condition
s’exprime selon

§ + i’ d" =0, (2.77)

qui est ’équation des géodésiques, donnant ici les trajectoires de corps libres. Cette équation correspond ainsi
au principe fondamental de la dynamique d’un corps dans un espace-temps courbe, donc soumis a la gravitation
qui n’est plus une force : elle est universelle et ne dépend pas de la masse de la particule, comme voulu par
le principe d’équivalence. Les corps vont alors suivre les géodésiques qui tiennent compte de la déformation de
I’espace-temps, encodée dans les symboles de Christoffel F; 4> comme pour les forces inertielles ' dont fait partie
la force de Coriolis.

Courbure et torsion d’une connexion affine, identités de Bianchi
Pour V une connexion sur M, on définit la torsion de V comme étant ’application bilinéaire
T: XM)xXM) — X(M)
(X,)Y) - T(X,Y)=VxY -VyX —[X,Y], (2.78)
et la courbure de V est ’application trilinéaire
F: X(M)xX(M)xX(M) — X(M)
(X,Y,Z2) — FX)Y)Z=Vx(VyZ)-Vy(VxZ)-VxyZ, (2.79)

avec T(X,Y) = —T(Y,X) et F(X,Y) = —F(Y, X). Dans un systéeme de coordonnées donné, les composantes
du tenseur de torsion sont données par
k k k k

17 = dz"(T(9;,05)) = Ij; — T'j;. (2.80)
Si la torsion est nulle, alors I‘fj = I‘?i et une telle connexion est appelée symétrique. En relativité générale, le
tenseur de courbure est le tenseur de Riemann dont les composantes s’écrivent

R;‘kl = dxi(F(aj7ak)al) = dxi([Dj7Dk]al) = Ffj,k - Zj,l + FZ‘ 7i€n - Zj ;n (2.81)

qui, une fois contracté avec le tenseur métrique, permet d’obtenir deux quantités importantes en relativité
générale, le tenseur de Ricci et le scalaire de Riemann

Rj = R}u = z]z - ng,l + Zfin - in et R=Rj (2.82)

La connexion pseudo-Riemannienne

On a ainsi défini un tenseur permettant d’évaluer la courbure le long du trajet, le tenseur de Riemann, qui
est considéré comme dynamique en relativité générale. Cependant, nous n’avons exprimé pour le moment que
la courbure en fonction de la connexion, sans avoir les moyens de connaitre son évolution. Ce que 1’on observe
est la mesure des distances entre deux points proches, et ce via le tenseur métrique g,,, qui donne I'élément de
longueur

ds® = g, dxtdz”. (2.83)

HPour le cas d’une particule de masse m soumise & une force F, ’équation des géodésiques s’écrit simplement
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Selon la courbure, la distance entre deux points dans I’espace-temps va changer : par exemple, sur un plan ou
sur une sphere, la distance entre deux méme points ne sera la méme. C’est la métrique qui va ainsi permettre
de connaitre la géométrie de ’espace-temps, dynamique. Dans la construction de la théorie, pour retrouver
les résultats en espace-temps plat, on demande que la connexion soit une connexion métrique, c’est a dire
Vg = 0, et sans torsion Ffj = I’;‘? . On peut alors montrer que la seule connexion possible est la connexion
riemannienne ou connexion de Levi-Civita sur (M, g) et que pour tous systemes de coordonnées, la forme

générale de la connexion pour les espaces Riemanniens, s’écrit

1
Iy = 59“ [9i,5 + 9jti — Gijl- (2.84)

Un tenseur de courbure pour une connexion sans torsion va alors vérifier les identités de Bianchi

Z R;kl = O’ Z R;kl; m 07 (285)

cycl(g,k,l) cycl(k,l,m)
et possede aussi les propriétés

Rijri = —Rjint,  Rijri = Riijs Rékz = *Rz'lk- (2.86)

2.3.3 Les équations d’Einstein

FEinstein, dans sa tentative de construction d’une nouvelle théorie de la gravitation, a amené une nouvelle
compréhension de notre monde : la gravitation n’est plus une simple force, mais est dictée par la courbure de
I’espace-temps, qui elle-méme est influencée par le contenu en matiére et énergie de I'univers. La dynamique d’un
tel systeme devant étre vérifiée dans tous les référentiels, les équations doivent ainsi étre tensorielles. Ce sont les
équations d’Einstein, supposant que la courbure de ’espace-temps, donnée par G*”, doit étre proportionnelle
au contenu en matiere-énergie du systéme, donné par le tenseur d’énergie-impulsion 7T#”, selon

GM = KT . (2.87)

TH est le flux de la p®™° composante de la quadri-impulsion suivant la direction v, et doit s’annuler en I’absence
de contenu. Il peut se décomposer selon

— T9 la densité d’énergie,

— TY le flux d’énergie a travers la surface unitaire suivant la direction i,

— T% le flux de la i*™° composante d’impulsion dans la direction 7 par unité de surface,

— T le flux de la i®™° composante d’impulsion dans la direction j par unité de surface

et contenant les termes de cisaillement,

— T la densité de la i®™® composante d’impulsion,
et est donc de rang 2 puisque ’on parle de densités. Il doit de plus étre de divergence nulle, donnant la condition
de conservation de l’énergie

T =0, (2.88)

montrant que ce tenseur est symétrique!? THY = TVH,
Concernant le tenseur G*”, il rend compte de la géométrie de ’espace-temps et doit donc étre construit avec
les objets disponibles pour décrire la variété. On demande donc a ce qu’il soit

— une indication de la courbure, nul dans un espace-temps plat,
construit avec le tenseur de Riemann R, I'objet géométrique concordant avec le premier point,

— linéaire en tenseur de Riemann, afin d’avoir la théorie la plus simple,

— symétrique et de rang 2 a cause du tenseur énergie-impulsion et de I’équation d’Einstein,

— de divergence nulle.
Cette derniere condition G*”; = 0, liée aux identités de Bianchi, garantit le fait que T}}” = 0 et permet ainsi
de laisser libre le choix du systeme de coordonné, et donc de respecter le principe de covariance généralisé.
En effet, les équations d’Einstein, au nombre de dix, servent a donner I’évolution de la géométrie de I'espace-
temps, et il est alors nécessaire de donner dix conditions initiales pour g,,. Cependant, la conservation du
tenseur énergie-impulsion doit nécessairement imposer 4 lois de conservation, indépendamment de la géométrie,
amenant une sous-détermination de la théorie. Les quatres degrés de liberté qui disparaissent par application
de cette condition de divergence nulle sur G, se répercutent sur g,, et correspondent ainsi a la la liberté sur

12Par exemple,
T% = (flux d’énergie)=(densité d’énergie)*(vélocité moyenne du flux d’énergie)’

=(densité de masse)*(vélocité moyenne du flux de masse)’=(densité de moment)=7°
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le systeme de coordonnées. Cette condition représente une condition d’invariance de jauge.
Il existe un unique tenseur respectant les conditions précédentes, le tenseur d’Einstein donné par

1
G = Ry — §Q’WR — Agu, (2.89)

ou A est une constante apparaissant naturellement dans la construction, reliée a la constante cosmologique.
La relativité générale doit posséder a la limite en champ faible la méme forme que la mécanique newtonienne,
notamment on doit étre capable de retrouver I’équation de Poisson. Cela permet de fixer la constante de
proportionnalité entre G, et T, comme étant

K=—, (2.90)

ou G est la constante de Newton.
Cette démarche a été celle suivie par Einstein, mais il est aussi possible de la dériver a partir d’une formulation
lagrangienne, comme ’a fait initialement David Hilbert en donnant une action pour la relativité générale.
Cette action doit se comporter comme une quantité scalaire sous un changement de coordonnées, et il est assez
simple de trouver une densité lagrangienne telle que § = fz duL. 1l existe la forme volume donnée par I’équation
(1.51) et qui a été montrée comme étant une quantité conservée par difféomorphisme!® : la mesure du est ainsi
donnée dans notre cas par d*z,/—g.

L’autre scalaire auquel on puisse penser et encodant la courbure est simplement donné par le scalaire de
Riemann R, tel que 'action finale s’écrive

1
T2k

S /d4x-\/—g~R+Smat. (2.91)
b

Dans ce formalisme, avec le principe variationnel, les équations d’Einstein sont alors obtenues par la variation

de ’action selon la métrique

oS
7(59 = O == G#y - KTpu- (292)
nv
Cette action d’Einstein-Hilbert n’est cependant pas la seule action possible, et il existe d’autres formulations
possibles donnant les méme résultats, comme ’action de Plebanski.

2.3.4 Observations sur la relativité générale

La relativité générale en tant que théorie géométrique donne ainsi une nouvelle conception de I’espace-temps,

non plus absolu comme en mécanique newtonienne, mais évolutive pour laquelle le champ dynamique correspond
au tenseur métrique g,,,,. Cette absence d’espace-temps fixe se nomme ’invariance de fond’, et correspond a
Iinvariance de ’action sous l'effet de difféomorphismes. Cette théorie est vérifiée avec une grande précision dans
notre systeme solaire, donnant notamment ’explication de la déviation de I’avancée du périhélie de Mercure, ou
plus simplement au quotidien permettant I'utilisation des systémes de positionnement par satellites de maniere
assez précise, mais aussi dans le cas de champs forts avec I'observation des étoiles a neutron, via notamment les
pulsars binaires'4, corroborant les effets non-perturbatifs prédits par la théorie.
Cependant, les hypotheses qui ont été faites dans sa construction sont discutables, et il est nécessaire de chercher
a améliorer notre compréhension de la gravitation puisque elle présente certains défauts comme la présence
d’une singularité de ’espace-temps en cosmologie. Des théories ’classiques’ gardant les idées fondamentales de
la relativité générale, comme l'invariance de fond, ont ainsi été développées afin de résoudre ces problémes
(théories f(R), scalaire-tenseur,...). Néanmoins, le travail effectué par Einstein a permis une grande avancée
scientifique, et afin d’avoir une meilleure compréhension de la gravitation, une démarche logique est alors de
regarder quels pourraient étre ses aspects quantiques.

13Un changement de coordonnée peut étre vu comme une transformation infinitésimale donnée par 6q = {q, H(6t)} et le théoreme
de Liouville (1.72) peut s’appliquer.

14Une étoile & neutrons en rotation constituant 'une des horloges les plus précises possibles, la rotation d’un tel astre, en champ
fort, autour d’'un compagnon massif dans un systéme binaire serré, constitue un test idéal pour les théorie des gravitation étendue
(type scalaire-tenseur).
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Chapitre 3

La Gravité Quantique a Boucles

Introduction

La relativité générale dans sa conception ignore complétement la physique quantique qui devient importante
lors de la mise en jeux de grandes énergies, et elle va donc nécessairement ne plus donner une description
physique dans certains régimes. Notamment,

e il existe dans cette théorie des singularités, comme le Big Bang, ou le continuum se déchire et ot ’espace-

temps cesse d’exister, montrant que cette théorie cesse d’étre prédictive.

e il en va de méme dans le cas des Trous Noirs qui émettent un rayonnement de température proportion-
nelle & A, la température de Hawking [25], et pour lesquels Papproximation semi-classique menant &
I’expression de cette température devient invalide a la fin du processus d’évaporation.

e la gravité se couple universellement avec toutes les formes d’énergie. En théorie quantique des champs, on
s’attend a ce que cette théorie soit renormalisable, ce qui n’est actuellement pas le cas. Il n’y a ainsi pas
pour le moment de cadre théorique pour une possible unification ! de toutes les interactions.

e il n’y a pas besoin d’atteindre le niveau de ’échelle de Planck pour voir des effets quantiques apparaitrent,
et une théorie de I'univers qui ne fait nullement référence a h ne peut étre correcte.

D’autre part, en électrodynamique classique, pour le cas de ’atome d’hydrogene, les états d’énergie minimum ne
sont pas limités et peuvent prendre une valeur nulle, rendant la matiere instable car I’électron pourra alors tomber
sur le noyau. L’application des principes quantiques, en raison de la valeur non-nulle de la constante de Planck,
montre que 1’état d’énergie minimal doit nécessairement avoir une valeur finie non nulle, —me*/2h? ~ —13.6eV.
Ce résultat contraint la ’trajectoire’ des électrons autour de ce noyau, et on espere ainsi qu’en faisant intervenir
I’aspect quantique de la gravitation, comme pour le cas de I’atome d’hydrogene, les différents problémes pourront
étre résolus. La gravitation sous son aspect quantique prendra place au moins aux échelles de Planck, mais des
effets quantiques pourront aussi se faire ressentir aux échelles classiques. Quantifier la gravitation reviendra ainsi
a quantifier la géométrie de I'espace-temps et une attention toute particuliere devra étre portée sur la notion
de temps.

Le lagrangien de la relativité générale est donné via laction d’Einstein-Hilbert (2.91). En examinant cette
équation, on remarque que comme dans le cas de électromagnétisme, il existe des multiplicateurs de Lagrange
cachés : les composantes de la métrique g°° et ¢°% sont présentes sans leur dérivée temporelle et vont s’exprimer
selon la lapse fonction N et un vecteur similaire, le shift vecteur N¢ telles que ¢%° = ﬁ et g% = %—: Cela
implique donc que seules les composantes spatiales de la métrique doivent étre considérées comme variables de
configuration ¢g%°, de moments conjugués P,; liés & la courbure extrinséque. Ces multiplicateurs de Lagrange
vont ainsi étre associés comme dans le cas de I’électromagnétisme a des contraintes, et I’hamiltonien total ne sera
en fait qu’une combinaison linéaire de ces contraintes, comme dans I'exemple en mécanique classique Sec.(1.9).
Il y aura la contrainte de Difféomorphismes liée au shif vecteur N et dont le flux généré sera associé aux
difféomorphismes spatiaux, mais aussi la contrainte hamiltonienne qui représente I'invariance de la théorie
sous le choix de toutes les déformations possibles de I’hypersurface spatiale suivant NV, différent en tous ses
points. Il y a ainsi 6 degrés de liberté donnés par la métrique spatiale, et 4 contraintes qui vont au final nous
laisser avec seulement 2 degrés de liberté, comme dans la théorie de Maxwell.

IDemander I'unification résulte plus d’une démarche historique (Maxwell unifiant I’électrodynamisme et le magnétisme, ou bien
le modéle de Glashow-Salam-Weinberg pour la force électrofaible) et esthétique que d’une nécessité conceptuelle.

43
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3.1 Les théories de Yang-Mills et les holonomies

Cette partie termine I'introduction des notions mathématiques et physiques utiles dans la compréhension et
la construction d’une théorie quantique de la gravitation. Comme on le verra par la suite, il existe des nouvelles
variables, appelées variables d’Ashtekar qui font de la relativité générale une théorie proche d’une théorie
de Yang-Mills (voir [26]), mais avec quelques subtilités, rendant possible application de certaines méthodes de
quantification.

Les théories de Yang-Mills

Les théories de Yang-Mills sont une généralisation de la théorie de 1’électromagnétismen, dont le groupe
de transformation est abélien, a des groupes de transformations non-abéliens. Etonnement, jusqu’au groupe
SU(5) — SU(3) x SU(2) x U(1), on a été capable de décrire via de telles théories les interactions faibles
(via SU(2) faisant apparaitre naturellement les bosons Z,W¥) et fortes (via SU(3) pour la chromodynamique
quantique et 1'utilisation des gluons). Hélas, la généralisation la plus simple & SU(5) pour la grande unification
ne fonctionne pas. Le modele standard de la physique des particules ainsi construit permet de décrire grace aux
théories de Yang-Mills les interactions physiques observées, mais toutes les tentatives pour briser des groupes
plus compliqués se sont avérées jusqu’alors infructueuses.

Dans le cas des équations de Maxwell, on utilisait des quadri-vecteurs, mais il est possible de généraliser en
utilisant des potentiels vecteurs A, composés d'une collection de matrices, éléments d’une algebre (ayant comme
opération les crochets de Poisson ou plutét les commutateurs). Le potentiel vecteur peut ainsi s’écrire selon

Ay =D AT (3.1)

ou les AL sont ses composantes dans la base des matrices T? des générateurs de 1'algebre. De méme que pour
Péquation (1.142), il est possible de définir une dérivée covariante pour des transformations internes dans le
groupe, et non plus pour des transformations de coordonnées dans ’espace-temps, telle que

i i %
Dy =L+ 59- A, - T", (3.2)

ou g, comme e, est une constante de couplage. On a ainsi obtenu la dérivée covariante de Yang-Mills. Dans
le cas général, les matrices T satisfont des relations de commutation propres au groupe considéré, telles que

[T, T =i f/¥ . T, (3.3)

ol les f7* sont les constantes de structure de I’algebre qui, une fois connues, permettent de la caractériser
complétement. Une algebre tres utile pour la suite? est I’algébre su(2) formée a partir du groupe SU(2). Une
base est donnée par les matrices de Pauli ¢’, hermitiennes,

() () (L) e

qui satisfont les relations de commutations avec les constantes de structure f7% = 2¢k

(08, 07] = 2Tk ok, (3.5)

D’autre part, en électromagnétisme, le groupe des transformation de jauge est U(1), abélien, et les champs
commutent [A4,, A,] = 0. On a vu que 'on pouvait définir le champ tenseur électromagnétique F),,, aussi appelé
tenseur de Faraday, comme s’écrivant F),, = 0,4, — 0, A, et cette expression est assez similaire a celle donnée
pour le tenseur de Riemann par 1’équation (2.81). Il existe ainsi une construction géométrique commune au
tenseur de Faraday et au tenseur de Riemann, a travers un formalisme mathématique, le calcul de Cartan
appliqué aux formes différentielles, tres employé en gravité quantique a boucles. Sur un fibré, on définit une
1-forme de connexion w € A' & partir de la définition de la connexion donnée par I’équation (2.70),

Vx0; = wé(X)@i — w;» = Fi»kdmk, (3.6)

J
ainsi quune 2-forme de courbure F en lien avec I'équation (2.79)

F(X,Y)0; = F/(X,Y)0;, (3.7)
Ces formes doivent satisfaire les équations de structure de Cartan

dw} + wi AW = F}, (3.8)

2Les variables de Ashtekar sont fondées sur des potentiel vecteurs & valeur dans su(2).
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permettant de définir Uexpression des courbures (1.144) et (2.81). Ce formalisme simplifie beaucoup les calculs
et donne un cadre commun a la relativité générale et aux théories de Yang-Mills pour lesquelles on voit les
potentiels vecteurs comme des connexions sur un fibré particulier.

Ainsi dans les théories de Yang-Mills, la courbure est obtenue selon

9 i
[D,,D,] = —§FWT , (3.9)

dont ’expression de F| /i,/ dans le cas général est alors donnée par
Fl, =04, — 0,Al + gei* Al A%, (3.10)

similaire & I’équation (1.144). De méme que dans I’équation (1.128), les équations du mouvement sont alors
données par la relation
D, F" =0, (3.11)

et le lagrangien, comme dans ’équation (1.127), est donné maintenant en utilisant la trace
1 3 % v
L= ~1 d°z k), F*". (3.12)

Le champ conjugué au potentiel vecteur A’ est alors comme auparavant le champ électrique E¢ = F2¢, et la
loi de Gauss trouvée dans 1’équation (1.133) est alors donnée par

D E® = 0. (3.13)

La contrainte de Gauss est maintenant définie par l'expression G[\] = [d®z - X' - (D,E®)", générant une
transformation de jauge ‘ 4 - .

{AL G[X} = O\ + geTR ATNF = (D N, (3.14)

et les variables canoniques étant des éléments d’un algebre, soient des matrices, on peut écrire de maniére
générale cette transformation selon

Al = GAAGT + Gr0,G 1t = GaD,GYY et E@=GLE Gy, (3.15)

avec G = exp[—iA*T,] les matrices de la représentation du groupe, de générateurs T,,. Cette transformation est
plus compliquée que dans le cas de 1’électromagnétisme puisque dans les théories de Yang-Mills, a la différence
de I’électromagnétisme, le tenseur de Faraday se transforme lui aussi sous une transformation de jauge, et
les champs électromagnétiques correspondant ne seront donc plus des observables adéquats. Cependant, il est
toujours possible de construire des observables qui soient invariantes de jauge, dont des exemples sont les
holonomies.

Les holonomies

En électromagnétisme, selon la vision de Faraday, le champ électromagnétique peut étre percu comme
un ensemble de lignes remplissant tout l’espace et reliant 2 objets chargés entre eux. Cependant, la grande
découverte de Faraday et Mazwell a été de comprendre que ce champ est une entité autonome dont la structure
peut étre déterminée indépendamment des charges électriques : en I'absence de ces charges, on peut tout de
méme imaginer que ces lignes, dites de Faraday, soient toujours présentes et forment des courbes fermées dans
I’espace, des boucles. Le champ électromagnétique est alors vu a travers la propagation d’une déformation de ces
lignes dont la forme varie sous l'action des lignes voisines ainsi que des charges électriques, comme une vague se
propageant dans l'océan, et la lumieére n’est rien d’autre qu’un des mouvements ondulatoires rapides des lignes
de champs. Ces déformations sont variables et régies par les équations de Mazwell, qui représentent en un point
de 'espace le vecteur tangent a une ligne de Faraday.

En considérant un espace rempli de telles boucles, il est alors possible de regarder quelles propriétés on peut en
tirer. Sur une courbe fermée C, de surface S et de normale 77, d’apres le théoréeme de Stokes, la circulation du
potentiel vecteur est donnée par

7{0[_;’ A= / Pz (V x A)® -ng = / d?z (e Fye - ng). (3.16)
c s s

montrant que la circulation du potentiel vecteur sur une courbe fermée permet d’obtenir le champ tenseur
électromagnétique F*¥. Le faire sur toutes les courbes présentes permet alors de connaitre la valeur des champs
électromagnétiques en tout point de l'espace. L’équation (3.16) a pu étre exprimée en fonction de F),, grace
a l’absence de termes non-linéaires dans l’expression, et on voit ainsi directement que la généralisation aux
théories de Yang-Mills va s’avérer plus compliquée. D’autre part, sous une transformation de jauge, le terme
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supplémentaire est un gradient 9, A qui n’aura aucun effet sur la valeur de la circulation quand on considére une
courbe fermée : son intégrale donnera une différence de deux méme termes puisque le point initial correspond au
point final, et le résultat sera alors invariant de jauge. Dans le cas d’une théorie de Yang-Mills, les transformations
de jauge sont beaucoup plus compliquées et la circulation du potentiel vecteur le long d’une courbe fermée ne
sera pas un invariant. Il faut donc une notion plus élaborée de circulation d’un potentiel vecteur, ce qui est le
cas des holonomies, qui correspondent a ’exponentiation de I’équation précédente pour des boucles fermées.
On cherche ainsi un outil qui permettrait de voir quelle est I’évolution d’un champ, en regardant comment un
objet est déformé quand on le déplace sur ce champ. On a déja vu en relativité générale qu’il existait le transport
parallele, et on pourrait utiliser cette notion le long d’un chemin fermé et voir ce que cela apporterait sur la
connaissance du champ. Ainsi, si par exemple on propage auto-parallelement le champ électrique E¢ = E2T"
le long d’une courbe v(t), alors selon 1’équation (2.75), sa dérivée covariante de Yang-Mills doit étre nulle :

44 (t)D,E* =0, (3.17)

ou y*(t) = %(t) est le vecteur tangent a la courbe. On a ainsi I’équation résultante qui s’exprime selon

Y2 (£)0aEP(t) = —igy*(t) Aa(t) E° (1), (3.18)

oll A, et E® sont évalués au méme point de la courbe. Apres intégration de cette équation, on obtient
t
Eb(t) = E*(0) fz‘g/ ds - 4*(s)Aa(s)E"(s), (3.19)
0

et on peut encore utiliser cette solution par itération sur un chemin intermédiaire 4%(s) en remplacant E°(s)
par son expression, et avoir ainsi comme en théorie des champs

Eb(t) Z <(ig)"/tdt1..dtn A9 (t1) Ag, (t1) ... q'/“"(tn)Aan(tn)) E®(0) (3.20)

"0 1> 28,20

= U(A,7)(t) E°(0). (3.21)

U(A,~) est appelé propagateur paralléle, correspondant & une matrice dont prendre la trace permettra
d’obtenir un scalaire, donc invariant sous toute transformation de jauge et pouvant s’écrire

U0 =P |eap (g | s (64,05 )| = i_oj S ( s ’?“(S)Aa(S))n e

Il propage parallelement la solution du point v%(0) au point y*(t), et lorsque ces deux points correspondent,
donc quand on propage la solution sur un chemin fermé, U(A,~) est alors appelé une holonomie ou boucle
de Wilson.

Dans le cas de I’électromagnétisme, le groupe est U(1) et les potentiels vecteurs commutent : P n’a alors aucune
incidence sur le résultat et on retrouve la notion usuelle d’une exponentielle. Ainsi, dans le cas d’un groupe
abélien, le propagateur n’est que l'exponentielle de la circulation du potentiel vecteur le long d’une courbe,
et on a alors réussi via une exponentiation a généraliser la notion de circulation dans le cas d’une théorie de
Yang-Mills. Une conséquence importante est donnée par le théoréme de Giles que 1’on peut résumer selon

Proposition 13. (Théoréme de Giles) Connaissant la trace des holonomies le long de toutes les boucles
présentes sur une variété, pour un potentiel vecteur donné, il est alors possible de construire a partir de ces
traces des objets invariants de jauge pour ce potentiel vecteur.

Plus particulierement, les observables devront étre invariantes sous la contrainte de Gauss et sous une

autre contrainte, telles que leur addition soit la contrainte des difféomorphismes (spatiaux). Les holonomies
ainsi construites seront invariantes sous cette contrainte et représenteront des observables possibles pour toute
théorie invariante par difféomorphismes : elles ne dépendent pas du chemin choisi. Les traces des holonomies vont
ainsi aider a la construction d’observables qui seront fonctions des connexions, et ce résultat va étre intéressant
quand on s’intéressera a la gravitation au niveau quantique sous la représentation des boucles.
En électromagnétisme et pour les théories de Yang-Mils, on a vu qu’il était possible de considérer le champ
tenseur électromagnétique F' comme une 2-forme de courbure. La construction de la gravité quantique a boucles
s’est inspirée de celle amenant aux théories de Yang-Mills, afin d’exprimer la relativité générale en terme de
potentiels et de champs électriques, et a I’aide du calcul de Cartan pour des formes différentielles, on va pouvoir
construire cette théorie comme une théorie de connexions.
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3.2 Le formalisme ADM

On souhaite quantifier la relativité générale. Les procédures de quantification établies dans le formalisme

canonique sont rigoureuses et bien décrites, et il va étre important de connaitre par la suite I’hamiltonien de
la relativité générale. On a vu auparavant que pour toute théorie invariante par reparamétrisation du temps,
il y avait 'apparition de contraintes, et cela va étre le cas ici. De plus, en mécanique quantique, la variable
temporelle joue le role d’'un parametre externe, ce qui ne l'est pas en relativité générale, et on va ainsi choisir
une métrique qui va permettre de définir la notion de 'temps’, tout en gardant une liberté sur cette variable
par l'utilisation de multiplicateurs de Lagrange. On va ainsi se placer dans le formalisme ADM, développé
initialement en 1959 par Richard Arnowitt, Stanley Deser et Charles W. Misner.
Ce formalisme correspond & la décomposition de 1’espace-temps en choisissant de définir les coordonnées comme
composées d'une coordonnée t € R représentant le temps, et de 3 autres ® € ¥ représentant 1’espace. La variété
M est ainsi définie par M = R x X, et on appelle usuellement ¥; ’hypersurface spatiale au temps ¢, ayant
une topologie quelconque. Ce faisant, on brise la notion de covariance qui traite indifféremment espace et temps
comme une méme entité, puisque ’on choisit explicitement les variables. On verra par la suite que 'apparition
de contraintes va permettre de rétablir finalement cette covariance, et permettra de méme de définir une notion
d’hamiltonien. On parlera ainsi de la relativité générale en terme de formalisme canonique (hamiltonien), et
non plus covariant (lagrangien).

Décomposition de ’espace-temps

La direction du temps est caractérisée par un vecteur t* dont les trajectoires sont les courbes paramétrées
par t, et telles que chaque hypersurface spatiale est labellisée par t = constante. On définit n* comme étant le
vecteur normal & ¥ selon g,,n*n” = s ol s est la signature de la métrique [27] : pour s = —1 (Lorentzien), on
a la signature (—, 4+, +, +) et pour s = 1 (Euclidien), on a la signature (+, +, 4+, +). Dans la suite, on va surtout
se placer dans le cas lorentzien, et on fera surtout apparaitre s quand il le sera nécessaire.

On peut ainsi définir la métrique spatiale sur 3;, a = 1..3,

Gab = Gab — S Ma N, (3.23)

et le vecteur t# peut étre décomposé en deux composantes [28],
normale et tangente a 3; selon

t* = Nn® + N°. (3.24)

Comme on ’a vu précédemment, N est la lapse fonction
permettant de définir un choix pour I’évolution de la composante
temporelle. N est le shift vecteur et permet de méme de définir F1G. 3.1 — Décomposition ADM [14].
un choix pour I’évolution des composantes spatiales. Ce sont ainsi
un scalaire et un vecteur définis sur ¥; qui refletent la liberté de choisir les composantes de la métrique et
correspondent aux multiplicateurs de Lagrange. De plus, on peut définir la métrique de I’espace-temps pour
cette décomposition par I'élément de longueur

ds® = s - N2dt* + qup(Ndt + daz®)(NPdt + dz®). (3.25)
On définit la courbure extrinséque comme étant

1
Kab = iﬁnqab (326)

qui est tres proche de la dérivée temporelle de la métrique spatiale
dab = Ltqab = 2N Kap + LN<Gap- (3.27)

La courbure extrinseque montre comment ’hypersurface spatiale est incurvée par rapport a ’espace-temps,
et comment ainsi sa métrique y évolue. Par exemple si on prend une feuille de papier dépliée, sa courbure
(intrinseque) est nulle, mais si on en fait un cylindre, sa courbure (extrinseque) ne 'est pas. Métrique spatiale
et courbure extrinseque vont ainsi étre les variables permettant la construction de la formulation hamiltonienne
de la gravité. Les variables de configuration sont ainsi g, et leurs moments conjugués P, liés & la valeur de
Ky selon Péquation (3.27), et Paction d’Einstein-Hilbert (2.91) peut alors s’écrire

1
s= L / it / Bz (P4ay — [N*Ha + IN|H)), (3.28)
2K R >

de crochets de Poisson
{qap(t, ), Pt ")} = 2%5?662)53(90 —a'). (3.29)
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L’hamiltonien total est bien donné par une somme de (densités de) contraintes, H, la contrainte de moments,
H la contrainte hamiltonienne, tel que

1
Hyoy = */ d*z (N“H, + |N|H), (3.30)
2K »

ou les densités de contraintes sont bien str des fonctions compliquées des variables canoniques, fonctions du
temps.

L’algebre des déformations dans le formalisme ADM.

En électrodynamisme, il y a conservation de la charge si et seulement si la contrainte de Gauss est préservée
au cours du temps. En relativité générale, dans le formalisme canonique, il va en étre de méme impliquant alors
la conservation de ’énergie du systeme :

Conservation des contraintes dans le temps <« V,T"" = 0.

L’évolution étant donnée par les crochets de Poisson avec I’hamiltonien total, les contraintes doivent alors
satisfaire la relation

{HtotaHtot} = {Ha + H» Ha + H} = 0 - {Ha7Ha} + {HvH} + {Ha7H} + {H7 Ha} = 0 (331)

On a ainsi l'obligation que les différents crochets de Poisson doivent étre soit nuls, soit proportionnels a une
combinaison linéaire des contraintes existantes

{H,H,} =aH +bH,, {H, H,}=cH+dH,, etc (3.32)

telles que I'équation (3.31) soit vérifée. On parle ainsi de contraintes de premiére classe lorsqu’en pre-
nant les crochets de Poisson entre deux contraintes, le résultat est une combinaison linéaire des contraintes.
Il est ainsi possible de calculer les crochets de Poisson entre les
différentes contraintes intégrées H[N®] = Js d*xN"H,, et T'en-
semble des crochets de Poisson permettra de donner ’algebre des
difféomorphismes dont les éléments seront les contraintes : elle
permettra de voir comment se déforme I'hypersurface spatiale au
cours de déplacements successif. On obtient ainsi ’algébre des
déformations donnée selon

(HNY), BN} = —wf [LxeN"], (3.33) N,
{H[N®|,H[N]} = —2kH [LyaN], (3.34) :
{H[N:], H[No]} = s 26H [q**(Ny - Ny — N~ Nup)] - (3.35)

Fic. 3.2 — [Illustration de laction de
Par rapport & une algebre de Lie donnée par ’équation (3.3), deux contraintes hamiltoniennes successives
on peut remarquer que ’équation (3.35) fait intervenir dans Par- donnée par 1’équation (3.35) [51].

gument la variable canonique ¢?°, et la constante de structure

pour ces crochets de Poisson n’en est donc plus une puisqu’elle

est devenue dynamique.

Ce qu’il faut retenir ici est que cette algebre sera a la base de celle exprimée avec les variables d’Ashtekar,
ou on a tenu compte ici, fait important, de la signature de I’espace-temps. L’action de cette algebre sera un peu
plus explicitée lorsque 'on utilisera les variables d’Ashtekar amenant une autre contrainte.

Deux relations en fonction des contraintes expriment le tenseur d’Einstein G, donné par I’équation (2.89) : en
considérant ici le cas du vide, elles s’écrivent

H H,
Gntn” = LN Guntq, = e (3.36)

2/det(q)’ 2/det(q)

Lorsque les contraintes sont nulles, on a alors défini ce que I'on appelle la surface des contraintes et les
solutions des équations du mouvement analogues aux équations d’Einstein, sont alors physiques : on parle
usuellement de systéme on-shell. En effet, si on considere le shift vecteur comme dépendant des variables de
I’espace des phases, alors pour tout crochets de Poisson d’une quantité F' avec la contrainte de difféomorphisme,
il existe un terme supplémentaire donné par {F, N®}H, qui peut trés bien étre non nul en dehors de la surface
de contrainte. On ne pourra alors pas définir action de (3.33) comme étant une simple dérivée de Lie sur
I’hypersurface spatiale, donc un difféomorphisme, sauf lorsque la contrainte est nulle.

Les deux équations précédentes sont des projections sur des directions orthogonales a I’hypersurface spatiale,
et il faut aussi regarder { H[N], P*"} contenant les projections spatiales pour étre siir que G, = 0. Il est de plus
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possible de faire le méme raisonnement une fois la matiere ajoutée et obtenir les équations G, = k1), et dans
le formalisme canonique, la covariance de la théorie sera alors maintenue par la conservation des contraintes
dans le temps. Ce formalisme ADM a d’abord été utilisé par la géométrodynamique dont la quantification a
conduit a I’équation de Wheeler-DeWitt, insatisfaisante, et c’est sur ces bases que se fondera la gravité quantique
a boucles.

3.3 Définition des variables d’Ashtekar

Définition des triades

En chaque point d’une hypersurface spatiale, il est possible de définir un repére par un champ de vecteurs
tridimensionnel, les triades efd,, dont leurs covecteurs, appelés cotriades e’ dx® telles que elel = 4] et
efe; = 0y, permettent d’exprimer la métrique spatiale selon

Gab = €L€}dij. (3.37)

Les indices a,b = 1..3 sont les indices spatiaux de I’hypersurface courbe, alors que les indices i, 7 = 1..3 sont des
indices internes correspondant & un espace-temps plat de métrique® 0;;. La métrique ainsi définie est invariante
sous les rotations locales SO(3) : e, — O’el, et sachant qu'il existe un double recouvrement de SO(3) par SU(2),
les cotriades peuvent étre vues comme des 1-formes & valeur dans su(2). Elles possedent ainsi 3 degrés de liberté
rotationnels supplémentaires qui vont se traduire par 'apparition d’une nouvelle contrainte, la contrainte de
Gauss®*. On parle alors d’espace des phases étendu en ayant rajouté des degrés de liberté supplémentaires.
Dans la suite, on se situera sur cet espace, dans lequel les solutions seront physiques lorsque la contrainte de
Gauss sera nulle. On voit par I’équation (3.37) que la donnée des cotriades permet de définir la métrique spatiale
et on va pouvoir définir une des variables d’Ashtekar qui utilisent cette formulation. Comme précédemment,
il faut introduire la courbure extrinseque, donnée par 1’équation (3.26), pour définir le moment conjugué de
la métrique spatiale. On introduit ainsi une 1-forme K! & valeur dans su(2) qui permet de définir dans cette
formulation la courbure extrinséque comme étant :

KabiK(ian). (3.38)

On va de plus introduire la densité de triades E{ de poids +1, définie selon

1 .
Efigeabceijke{)e’j = /det(q)ef, (3.39)

qui permet de reconstruire la métrique spatiale par la relation
det(q) - ¢** = ELE26", (3.40)

et de déterminant 1
det(E®) = detF = geijkeabcEi“E;’Eg. (3.41)

K étant symétrique, elle doit nécessairement satisfaire la contrainte
Gi=e;uKFE! =0, (3.42)

et dans ce jeu de variables, l'action (3.28) s’écrit®
1 . .
S = 27/ dt/ d*x (280 K] — [NG; + N“H, + NH]), (3.43)
Kk Jr pX

olt A% est un nouveau multiplicateur de Lagrange. L’espace des phases étendu de coordonnées (K!, E®) est ainsi
équipé d’une structure symplectique de crochets de Poisson

{Ki(2), EX(y)} = r6%516% ( — ). (3.44)

D’autre part, on peut voir qu’il existe une transformation canonique ne modifiant pas les crochets de Pois-
son : pour un parametre v non nul, cette transformation s’obtient par le changement de variables (K, F) —
(VK =yK,VE = %)7 et une conséquence importante est que la contrainte (3.42) n’est pas modifiée par cette
transformation :

Gi=e;uKrFEr = ejkl(v)Kg(W)Ela =0. (3.45)

30n parle de métrique de Cartan-Killing sur su(2).

40n peut directement le voir en se rappelant les caractéristiques de 1’équation (3.13) o il va falloir rédéfinir une nouvelle dérivée
covariante.

50n peut montrer que le terme canonique s’écrit P2, = 2EfKZL
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On parle alors d’'une transformation de Weyl qui consiste a faire une "homothétie’ sur la métrique, ici
Qab — %’. Cette transformation va apporter une nouvelle liberté sur la théorie et v € C*, une constante, est
appelée parametre de Barbero-Immirzi. Pour différentes valeurs de ~, la procédure de quantification vue
apres va mener a des résultats différents, et donc a des théories différentes.

Dans cet espace de phase, on possede certes toute 'information de la relativité générale, mais cette théorie
n’est pas similaire a une théorie de Yang-Mills. Pour ce faire, il est nécessaire de définir une contrainte de
Gauss faisant intervenir une nouvelle connexion, variable conjuguée de la densité de triades, donnant alors une
dérivation covariante comme dans I’équation (3.2). Cette connexion est appelée connexion d’Ashtekar.

Il faut introduire en plus une information donnée par la contrainte de Gauss qui s’obtient en définissant une
connexion conjuguée a la densité de triades par la définition d’une nouvelle dérivée covariante, la connexion

d’Ashtekar.

Dérivée covariante et connexion d’Ashtekar

En relativité générale, on a introduit la dérivée covariante pouvant s’appliquer sur des tenseurs. Ici, on va
étendre la notion de dérivée covariante spatiale, D, agissant sur les indices a, b, & des tenseurs ayant des indices
dans s0(3) et qui sera compatible avec les triades. On introduit alors la notion de connexion de spin I'* en
demandant que la dérivée covariante soit métrique, Dye; = 0, et de facon identique & I'équation (2.72), elle
s’écrit alors pour la densité de triades EY

Do E{=0,E} + €, s Ef = 0. (3.46)

Le fait que cette dérivée soit métrique permet de trouver une expression pour la connexion de spin selon les

triades et cotriades,

I, = §€Ukez {8{,6{1 — 8ae{7 + e?efﬁbeq , (3.47)

soit encore en termes des densités de triades E et de leur dual :

(3.48)

a

i | P k k ¢l ! k Op(det EY)
T = _55 J Ej [&Eb - abEa + EkEaach - EGW

Sous la transformation précédente, on peut voir directement que (VT =T.

Que cherche-t-on? On a vu dans les théories de Yang-Mills que I'on pouvait avoir une dérivée covariante
de la forme D, E® = 9,E® + ¢AFE ot A est une connexion formant une structure symplectique avec le champ
électrique E* ({4, E}). D’autre part, dans le formalisme ADM, on a vu que la variable canonique était la
métrique spatiale ¢?°, donnée ici par la densité de triades E?, et que son moment conjugué Py était 1ié a la
courbure extrinséque K ;. On va donc chercher une connexion A’ la connexion d’Ashtekar, qui soit la variable
conjuguée a la densité de triades EZ, devant contenir I'information sur K?. On va alors regarder la dérivée
covariante et la contrainte G; donnée par I’équation (3.45), telle qu’apres modifications,

G = 0+eguVKVE! = 0,(VE) + €, [0 + (VKD E])
D (MES). (3.49)

On voit ainsi que ’équation (3.49) correspond a une contrainte de Gauss, non intégrée. Elle suggeére comme
connexion, dans le cas général,

Al =T + K. (3.50)

qui, avec la densité de triade, posséde étonnement une structure symplectique (A?, E]b), de crochets de Poisson

{AL(2), B} (y)} = r70,630% (x — y). (3.51)

Ce sont ces deux variables, que I'on appelle variables d’Ashtekar a valeur dans su(2) (en fait so(3)), introduites

en 1986 par Abhey Ashtekar, et A’ est appelée connexion d’Ashtekar. En définissant 7; = —50;, elles
s’écrivent _ '

A(r) = Aymdx® et E(T) = E}7'0,, (3.52)

et permettent de définir la formes de courbure
koo k k pi Ad
Fy = ZB[QAH + eijAZAi (3.53)
donnée par les équations de structure de Cartan pour la courbure®

) 1 ) ; .
F=dA+ANA=dA'T, + S[T;, THA' N AT = (ERTy)dx® A da. (3.54)

6La démonstration de la théorie en utilisant principalement les formes a été faite de maniére compléte dans [13].
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L’action d’Einstein-Hilbert pour ces variables est alors donnée par
1 Ny )
S=— / dt/ P’z (2E3A; — NG+ N"Ho + NHD , (3.55)
2K R »

ou les densités de contraintes sont alors

1. la densité de contrainte de Gauss
G = D,E} = 0,E¢ + €\ AREY, (3.56)

2. la densité de contrainte de moments

Ho = F B, (3.57)
3. la densité de contrainte hamiltonienne
E¢EY y o
_ \deEﬂ {Ffbek] —21 +72)K};Kg]] . (3.58)

La contrainte de Gauss génere des transformations de jauge de su(2) sur les variables, comme dans le cas des
théories de Yang-Mills :

S Ay = {4, G} = DuX' 0B} = {E],G[\} = [E, \]}. (3.59)

La contrainte de moments génere des orbites qui sont liées aux difféfomorphismes spatiaux puisqu’elle est
constituée en partie de termes qui en sont responsables. La contrainte qui génerera des difféomorphismes spa-
tiaux pures est donnée par une combinaison linéaire de la contrainte de moments avec la contrainte de Gauss,
et on parle ainsi de contrainte de Difféomorphismes

Dy = Ho — Al (DyE?). (3.60)

Pour voir que cette contrainte est bien liée aux difféomorphismes spatiaux, on peut intégrer cette contrainte
avec un champ de vecteurs test N telle que D[N?] = i J d3xN*D,, regarder les crochets de Poisson de cette
contrainte avec une fonction dépendant des coordonnées canoniques f(E, A) et voir que l'on obtient :

{D[Na]7f(E7A)}N£N”f- (361)

L’orbite générée par la contrainte dans ’espace des phases est simplement proportionnelle a la dérivée de Lie le
long de N®. La contrainte hamiltonienne quant a elle généere I’évolution temporelle en terme de la composante
't’ des coordonnées. Ce choix de coordonnées n’a a priori aucun sens physique privilégié. La relativité générale
est un systeme totalement contraint et ’hamiltonien total Hy,; sera alors donné par une combinaison linéaire
de toutes les contraintes utilisant des multiplicateurs de Lagrange

Hioy = i / #x [NG; + N°D, + NH] = G[\] + D[N“] + H[N]. (3.62)

Les équations d’Hamilton données & partir de cette équation (3.62) redonneront exactement les équations d’Ein-
stein comme dans le formalisme ADM. On voit ainsi que la relativité générale écrite en terme des variables
d’Ashtekar est une théorie de jauge & valeur dans su(2), invariante de fond, similaire & une théorie de Yang-
Mills, avec un hamiltonien total proportionnel a 3 autres contraintes supplémentaire et devant étre nul lorsque
I’on consideére des solutions physiques. La relativité générale étant une théorie de I'espace-temps, méme sous
cette formulation, elle va rester tres différente d’une théorie de Yang-Mills : il va falloir développer une nouvelle
méthode de quantification qui tiendra compte de l'invariance de fond.

Remarque sur le parameétre de Barbero-Immirzi

Ce parametre met en évidence une liberté supplémentaire dans le choix des variables. Cependant, dans la
théorie classique, il est possible de montrer [29] que la contrainte hamiltonienne est invariante vis-a-vis de ce
parametre. En effet, 1 ’équation (3.58) peut s’écrire en utilisant les propriétés de symétries et la définition de la
connexion d’Ashtekar A% :

a b
H=¢l

— L (20,TF + €8, (I — KMK)) + H.,, 3.63
k \/m ( b ( b b )) vy ( )
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oul H, contient tous les termes en 7. Ce terme est en fait proportionnel a la contrainte de Gauss, et peut ainsi
se réécrire comme la dérivée covariante de la courbure extrinseque, symétrique K., = Kp,, multipliée par un
symbole de Levi-Civita, antisymétrique,

H, ~ "D, K. =0, (3.64)

montrant que dans le cas classique, il est nécessairement nul. Dans le cas d’un univers homogene et isotrope,
la contrainte de Gauss sera automatiquement satisfaite et les équations classiques de la cosmologie, comme
I’équation de Friedmann, seront bien retrouvées. Le parametre v ne va apparaitre dans la théorie effective
que par l'intermédiaire des corrections issues lors de la procédure de quantification de la cosmologie quantique
a boucles.

L’algebre des contraintes

Pour étudier I'algebre résultante des variables d’Ashtekar, on va comme auparavant intégrer les contraintes,
données alors par I’équation (3.62). Deux contraintes de Gauss vont donner la relation

{G[N], Glul} = G\ pre?™), (3.65)

et regarder l'effet consécutif de deux de ces contraintes sur une variable est équivalent a évaluer I’action de cette
contrainte sur la variable avec comme argument le commutateur des fonctions tests. Dans le cas ou on regarde
les contraintes de Difféomorphisme, on obtient

{D|N®], D[M"]} = D[LnaM"], (3.66)

et leffet d’un difféomorphisme sur un autre va simplement correspondre a modifier la fonction test finale en
combinant les deux fonctions tests considérées, indépendantes des variables canoniques. Cela revient alors a
laisser ’espace fixe et a appliquer directement une combinaison des deux fonctions tests. En regardant son
action sur la contrainte de Gauss, on a donc directement en appliquant ’argument précédent :

{DIN®), GIA]} = G[Lxe - (3.67)

De plus, la contrainte hamiltonienne n’a aucune influence sur la déformation due a la contrainte de Gauss

{H[N],G[A]} =0, (3.68)
et de méme qu’auparavant,
{D|N®], HIM]} = H[LNaM]. (3.69)
Enfin, les crochets de Poisson entre deux hamiltoniens redonneront une contrainte de Difféomorphisme
{H[N], H[M]} = D[K"] (3.70)
ou K* = %(N M — MO,N). Sans surprises, l'algébre correspond bien & celle du formalisme ADM et va

redonner les méme résultats. On peut remarquer que K® n’est pas seulement une combinaison des dérivées des
fonctions tests, mais fait intervenir les variables canoniques. Cela signifie que méme si les crochets de Poisson
de deux contraintes hamiltoniennes sont proportionnels a un difféomorphisme, le facteur de proportionnalité
n’est plus une constante, mais une fonction. A l'inverse des constantes de structure vues pour les groupes
précédents, le groupe des difféomorphisme va faire intervenir des fonctions de structure, dépendant du
temps et complexifiant la maniére de quantifier : une conséquence de la promotion des variables canoniques en
tant qu’'opérateurs est de risquer de compromettre la fermeture de I’algebre. Il pourra alors exister des termes
en plus dans le résultat des crochets de Poisson apreés quantification qui, a la limite classique, vont tendre vers
0, mais resteront présents au niveau quantique, pouvant fausser les résultats : on parle ainsi d’anomalies. Pour
garder la cohérence de la physique sous-jacente au probleme, on doit alors tout faire pour que l’algebre reste
fermée en faisant disparaitre ces anomalies a 'aide de termes supplémentaires, les contre-termes que 1'on
utilisera par la suite.

3.4 Couplage a la matiere

Dans les modeles que I'on considérera en cosmologie quantique a boucles ou Loop Quantum Cosmo-
logy (LQC) en anglais, on utilisera au départ comme champ de matiére contenu dans 1'univers, le champ le plus
simple que I'on puisse considérer et qui en cosmologie usuelle s’est révélé avoir de grandes conséquences phy-
siques, le champ d’inflaton. Il est cependant possible de définir d’autres champs [30]. Plus particulierement,
on écrit comme auparavant

1
Smatter = d4$ V 7d€t(g) <29uya,usoa#(p - V(SD)) (371)
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permettant de définir le moment conjugué 7 de ce champ

m = +/det(q) ¢, (3.72)

ainsi que la relation de crochets de Poisson

{o(x),m(y)} = 0°(z —y). (3.73)

On peut ainsi écrire la contrainte totale résultante en fonction des variables d’Ashtekar

N -
Htotfmatter = dgw\/ﬁ (7T2 + 6" E?Ejb 8a<p ab(p + det(q) V(SO)) + Nz aa% (374)
el\q

donnant la contribution du champ scalaire aux différents termes des contraintes

D[N = / BN - a0, (3.75)
Ho[N] /d3N m BB et JITEV() (3.76)
m = x a e 1(;1 . .

. o /det B | 2\/det B¢ “TY 4

Il est de méme possible de définir pour ce champ les densités d’énergie p et de pression P telles que

1 §Hpa
S , 3.77
P V|det E 0N (3.77)
1 6Hpa
= ! (3.78)

N6 /Jdet E

On peut remarquer ici qu’il n’est pas fait allusion & la connexion A%. Cela est pour le moment normal puisque
la matiere est constituée indépendamment de I’espace-temps, et seul son couplage va influencer la déformation
de 'espace-temps en vertu des équations d’Einstein.

Une remarque peut aussi étre faite a partir de ce que l'on a vu en relativité restreinte, ou étudier le groupe de
transformation via ses Casimirs permettait de trouver naturellement les champs qui doivent y étre présents. Ici,
la situation n’est pas aussi simple et la matiere a été ajoutée de facon plus arbitraire.

Jusqu’a maintenant, en utilisant de nouvelles variables et au niveau ’classique’, nous n’avons fait que ré-
exprimer l'action de la relativité générale sous une forme similaire a un hamiltonien dans une théorie de Yang-
Mills, pour laquelle il existe une procédure de quantification connue. Dans ce qui suit, on va va chercher a
comprendre ce qui fait de la gravité quantique a boucles une théorie différente dans la maniere de quantifier, et
montrer alors ses enseignements quant & la structure de notre espace-temps.

3.5 La quantification

La quantification des contraintes dans le cas du formalisme ADM se fait en utilisant les composantes de la
métrique spatiale g,; comme variables de configuration. Cela a amené a la fameuse équation de Wheeler-
DeWitt pour le cas d’une fonction d’onde ®[q,p]

H®[gay) = 0. (3.79)

Cependant, 'espace de Hilbert nécessaire est tres mal défini, notamment dans la définition du produit sca-
laire. En utilisant les variables d’Ashtekar, la fonction d’onde peut étre fonction de la connexion ®(A%). On
parle ainsi de la représentation des connexions, et les représentations similaires ont été utilisées lors de la
quantification des théories de Maxwell et de Yang-Mills. Ici cependant, la métrique est associée aux densités de
triades EY, et le pendant naturel du travail de Wheeler et de De Witt aurait été de considérer la fonction
d’onde ®(E¢). Cela correspond a la premiere différence avec le cas habituel qui, notamment plus tard lors du
choix des fonctions génératrices pour I’équation de Hamilton-Jacobi, va amener quelques différences subtiles.
La prédiction principale de la gravité quantique a boucles, comme attendu pour une théorie quantique, va étre
la discrétisation du spectre des opérateurs géométriques, comme le volume ou 'aire, qui deviendra importante
a I’échelle de Planck et négligeable a grande échelle, retrouvant ainsi une description continue de ’espace-temps.
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La quantification non-perturbative de la relativité : le programme de Dirac

Nous passons ici en revue tres rapidement les grandes étapes de la procédure de quantification dans la mesure
ou celle-ci n’est pas essentielle pour la dimension cosmologique.
Le programme de Dirac appliqué a la quantification canonique de systemes généralement covariants peut se
faire de deux manieres : soit on commence par résoudre classiquement les contraintes, on identifie I’espace des
phases réduit, et on quantifie la théorie en trouvant la représentation de ’algebre des observables physiques dans
I’espace de Hilbert, soit on procede d’abord & la quantification puis on résout les contraintes. Dans un systeme
a 4 dimensions, il est difficile de trouver les vrais degrés de liberté de la relativité générale. En gravité quantique
a boucles, on va ainsi d’abord quantifier et résoudre les contraintes ensuite. On procede ainsi par étapes :

1. obtention d’une représentation des variables de I’espace des phases de la théorie, promues en tant qu’opérateurs
sur un espace de Hilbert cinématique, Hgin, et satisfaisant la relation de commutation [ , | =idh{ , }.

2. promotion des contraintes en tant qu’opérateurs sur Hgn.

3. caractérisation de I’espace des solutions des contraintes et définition du produit interne correspondant qui
définit la notion de probabilités. On définit ainsi '’espace de Hilbert physique Hppys.

4. obtention d’un ensemble complet d’observables invariantes de jauge, les observables de Dirac.

Exemple : la particule reparamétrisée

Un exemple simple [33] d’un tel programme est la particule reparamétrisée, non-relativiste, de masse m
d’action (1.81) et de contrainte hamiltonienne (1.84). Il est possible d’appliquer ce programme tel que

1. Tespace de Hilbert cinématique dans ce cas 1a n’est autre que Hy;, = L£2(R?), 'espace des fonctions de
carré sommable pour des fonctions d’onde ¥(q,t), et on définit le produit interne par

<o = / ddt $(q,t)0(a. ). (3.80)

2. la promotion des variables de l’espace des phases en opérateurs auto-adjoints satisfaisant la relation de
commutation donne simplement § = ¢, t = ¢t de moments conjugués p, = —ihaa—q, = —z'haa—t.

3. la contrainte (1.84) devient ici”
0 0?

Va0 0
C = —ih o h o +V(g), (3.81)

dont C’|\Il >= 0 n’est rien d’autre que 1’équation de Schrodinger.

4. Les solutions sont ainsi les solutions de I’équation de Schrodinger que 'on peut caractériser par leurs
conditions initiales définies & un temps to : U(q) = ¥(q,t = to), et I'espace de Hilbert physique est ainsi
'espace usuel Hypys = L2(R) de produit interne

<0 >p i/dq $(a)¥(q)- (3.82)

Les solutions de I’équation de Schrédinger, a cause de leur invariance par rapport a ¢, ne sont pas re-
normalisables dans Hy;, au sens du produit scalaire donné par I’équation (3.80). Ceci est une propriété
générique des solutions des contraintes lorsque ces contraintes ont un spectre continu.

5. Les observables doivent commuter avec les contraintes et pour le cas d’une particule libre V(¢) = 0, il
existe simplement deux observables indépendantes

(t —to), Oz = Py, (3.83)

les valeurs de g et p; at =ty € C. On peut aussi remarquer que dans Hppys, lorsque t = to, ces observables
se résument bien a la position pour O; et au moment pour Os.

Dans cet exemple, on a simplement reproduit la procédure standard de quantification, qui redonne bien
I’équation de Schrodinger pour une particule non-relativiste. On voit ainsi que la dynamique, comme dans
le cas classique, est bien contenue dans les contraintes quantiques et on pourra appliquer cette procédure au cas
de la relativité générale.

"Dans le cas de systémes plus compliqués, il faut aussi tenir compte de Pordre dans lequel on applique les opérateurs, et cette
étape est souvent non-triviale.
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La Gravité Quantique a Boucles

Dans cette théorie, la premiere étape consiste a promouvoir les variables canoniques au rang d’opérateurs
et a choisir un espace de Hilbert cinématique tel que les variables de configuration soient les connexions : on
considere ainsi un espace contenant un ensemble de fonctionnelles ®(A) qui sont de carré sommable par rapport
a une certaine mesure. On définit la connexion comme un opérateur multiplicatif

ALD(A) = AL - B(A), (3.84)
et les densités de triades comme des dérivées fonctionnelles

Ed(A) B(A), (3.85)

vérifiant les relations de commutation,
{/Alf], EAJZ’} = —ih- ﬁ75g5§§3(x — ). (3.86)

On doit maintenant promouvoir les contraintes de Gauss et de Moment en termes d’équations entre opérateurs
sur des états quantiques. Il est possible de montrer que ces contraintes, en tant qu’opérateurs, génerent les méme
symétries que classiquement, et on doit ainsi imposer I'invariance pour les fonctions d’ondes sous les contraintes :
les états qui sont invariants sous ces deux contraintes sont les états cinématiques. En résumé, en commencgant
par un espace de Hilbert vierge, IC, la procédure de quantification doit alors passer par les différentes étapes
suivantes :

K G4 1co Mo a1y 1. (3.87)

Un des problemes encore majeur a I’heure actuelle est la quantification de la contrainte hamiltonienne permettant
de trouver les états dynamiques, et donc les observables physiques. D’une part, méme au niveau classique,
cette contrainte ne permet pas une action géométrique simple puisqu’elle génere 1’évolution par rapport a une
variable 2° dans les équations d’Einstein, ce qui n’est pas visible facilement par son action sur les variables
spatiales. D’autre part, 'opérateur résultant doit avoir une densité de +1. Mais il existe dans la contrainte
hamiltonienne un terme avec au dénominateur \/det(q), donc de densité —1. Or, méme si sur une variété de
géométrie quelconque il existe le delta de Dirac de densité +1, il n’existe pas d’objet de densité +2 qui pourrait
permettre de bien quantifier la contrainte (multiplier deux deltas de Dirac entre eux ne construira pas un tel
objet). Une astuce permet néanmoins de passer outre ce probleéme : introduite par Thomas Thiemann en 1996,
elle consiste a remarquer que les crochets de Poisson du volume

1 —
V= / d3x\/det(q) = 5 / d*z\[|E¢EY Bl eqp. (3.88)

a 17b
|

Vetlq)

permettant ainsi d’écrire la contrainte hamiltonienne (dans le cas ici ot ¥ = 4, H et H®* deviennent des fonctions
polynomiales en A)

avec la connexion A?, donnent

{A(lfa V} = ijkeabw (389)

H[N] = / dBrN{AF V}FEF eabe, (3.90)

1l serait alors possible de quantifier cette contrainte en passant par les commutateurs, mais A et F vont entrainer
Papparition de distributions, ¢f I’équation (3.86), rendant difficile une définition de leur opérateurs quantiques
correspondants : par exemple, la présence en facteur des densités de triades F s’appliquant au méme point va
faire apparaitre au niveau quantique des deltas de Dirac tels que §(x — ) = §(0) une fois appliqués sur ®(A),
qui n’est pas une distribution bien définie. Dans le cas de la théorie quantique des champs, le fond étant fixé,
on peut utiliser les techniques de régularisation permettant de passer outre ces problemes. Or, pour une théorie
nécessitant d’étre invariante du fond, imposer la régularisation briserait cette invariance.

Ainsi, le fait de ne pas savoir comment travailler de facon mathématiquement rigoureuse avec des ’distri-
butions’ d’ondes ®(A), dépendantes des connexions et invariantes sous toute transformation de jauge et de
difféomorphismes, a mené au développement d’une représentation alternative appelée représentation des
boucles. Dans une telle représentation, le produit interne nécessaire a la définition compléte de l'espace de
Hilbert va apparaitre le plus simplement et naturellement possible et permettra de traiter le cas des distribu-
tions. Il sera donné a l'aide de la mesure d’Ashtekar-Lewandowski du 4z, invariante sous les contraintes
cinématiques.
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La représentation des boucles et les réseaux de spin

Les travaux de Lee smollin et de Ted Jacobson sur l'utilisation des holonomies avec les variables d’Ash-
tekar, ont amené Lee Smollin et Carlo Rovelli a exploré cette nouvelle représentation donnant son nom a la
gravité quantique a boucles.

D’apres le théoreme de Giles, les traces des holonomies sur une 3-surface 3 constituent une base pour les fonc-
tions de la connexion invariantes de jauge, ce qui en font des solutions possibles pour la contrainte de Gauss.
On décompose ainsi un état sur cette base des holonomies en posant

®lA] =) ®hh, 4] (3.91)

ou la somme est effectuée sur toutes les boucles fermées possibles. Les holonomies, qui sont des matrices, sont
ainsi définies comme précédemment par

h[A] = Tr (79 {e:cp <— fi dsﬁ“(s)A;(s)nﬂ) € SU(2). (3.92)

et utiliser les coefficients ®[y] consistera & travailler dans la représentation des boucles. Il est possible de
voir l'analogie avec la représentation de moments en mécanique quantique pour laquelle la base des états est
exp(ikz) labellisée par un nombre d’onde k et, avec 'expression ®(z) = [ dk ®(k) exp(ikz), on travaille ici avec
les coefficients du développement ®(k).

Les connexions étant des 1-formes, il est tout naturel de les intégrer sur un chemin appartenant & ¥, permettant
de travailler avec des fonctions et non plus des distributions. Les autres opérateurs que l'on traite sont les
densités de triades Ef et sont associées par définition a des 2-formes par 1’équation (3.39). On s’attend alors
a ce que leur intégration sur une 2-surface en fasse des opérateurs bien définis sur Hy;,, et on parle, apres
intégration, de flux de densité de triades Fg(E), de fonction test f¢ € SU(2) pour une surface S € X de
co-normale n, :

FI|E) = / Po-ngELfT € SU). (3.93)
s
L’algebre de ces variables canoniques est alors donnée par
(A,BEY =6 — {h,[A],FLE]} = kv Int(v,S) - hy [A(fim)] (3.94)

ou Int(,S) =1 si v intercepte S, 0 sinon.
Pour lalgebre su(2), il y a une infinité de matrices possibles autre que celles de Pauli qui vérifient les relations
de commutation [0}, 0;] = 2i€;j404 : ce sont des matrices (2j + 1) x (2j + 1), j = £, 1,..., qui sont appelées des

(

représentations avec la relation pour les générateurs 7}’ ) dans la représentation j

La représentation la plus compacte (utilisant les matrices de Pauli avec j =
damentale.

Il existe ainsi différentes représentations possibles
pour construire une connexion et ses holonomies, et
I’espace, au méme titre que dans la théorie de Max-
well, est ainsi vu comme un ensemble de boucles label-
lisées par leur spin correspondant a la représentation
utilisée sur la boucle pour définir la connexion : elles
sont enchevétrées les unes avec les autres et reliées au
niveau de noeuds. Les holonomies étant des matrices,
il est possible d’évaluer au niveau de ces noeuds l'ac-
tion de ces matrices possédant un spin j différent pour
chacune : on les ’contracte’ en utilisant des objets ap-
pelés intertwiners, des produits tensoriels utilisant
€ijk €t 5;, qui sont au final analogues aux coefficients
de Clebsch-Gordan. Le résultat est ainsi appelé
réseau de spins : un graphe avec des noeuds et des
lignes colorées par les spins j indiquant la dimension
des matrices pour les holonomies.

) est appelée représentation fon-

1
2

F1a. 3.3 — Exemple de réseau de spin [33]
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On peut alors définir deux opérateurs géométriques :

e l’opérateur d’aire : en utilisant 1’équation (1.53), pour une surface de métrique induite hqp

NgMyp
hab = Gab — 2 (3.96)

oxb dze
€abe— —=
9ol Ho2

est la normale & la surface, de coordonnées locales o!, o2, et 'aire en fonction des densités de triades

s’exprime selon
Ag[Ef] = / do'do® [ E¢EL61nany. (3.98)
s

L’opérateur correspondant s’exprime en utilisant 'opérateur du flux des densités de triades, donnant ainsi
finalement [13]

Ng =

(3.97)

AxW, = 8mliygnery Y Vil + DWs, (3.99)

ol lplanck = % = 10733 cm, est la longueur de Planck. Une aire est définie par le fait qu'une boucle

transporte avec elle une surface dont la valeur de l'aire dépend de son spin. L’aire minimale n’est pas
0 mais Al%,,,. ;. avec A = 44/3m7y, faisant intervenir le parameétre de Barbero-Immirzi. Une application
possible est le calcul de ’entropie des trous noirs qui dépend classiquement de sa surface, et dont la loi est
donnée par 'équation de Hawking-Bekenstein. Regarder le cas des trous noirs en gravité quantique
a boucles permet de retrouver admirablement cette méme loi, donnant ainsi la valeur possible v ~ 0.69. 11
serait néanmoins préférable que cette valeur particuliere émerge pour des raisons plus fondamentales ou
que le calcul de I'entropie ne fasse pas directement apparaitre v : ce sujet de recherche est actuellement
activement étudié.

e l’opérateur de volume intervient au niveau des noeuds et en donne un sens physique : en chaque noeud,
il existe un grain de volume dont la valeur est donnée par le nombre de liens le joignant.

F1G. 3.4 — exemple d’espace fait de grains [31].

On peut ainsi voir I'espace-temps comme un ensemble de grains de volume, reliés par des boucles définissant
des surfaces, comme sur la figure Fig.(3.5).

La dynamique de 1’espace-temps

L’évolution 'temporelle’ de la structure de I’espace-temps va étre donnée par la condition sur la contrainte
hamiltonienne HV = 0 : pour une ’portion’ de I'espace A, la contrainte hamiltonienne peut ainsi s’écrire en
fonction des holonomies selon

HA[N] =Y N(A)-Tr(hiha{h;",V}) (3.100)
A

et chaque action des holonomies sur une boucle va permettre la création de nouveaux noeuds, donc de nouveaux
quantas de volumes, et complexifier alors I’espace-temps. On parle de mousse de spin (ou spinfoam en anglais),
donnant la dynamique d’un réseau de spin que ’on représente par des polygones, comme indiqué sur la figure
Fig.(3.5). Cette approche, développée notamment par Carlo Rovelli & Marseille, n’est pas encore achevée, des
points restent encore a élucider : par exemple, certains des états physiques n’ont pas été obtenus, ou bien le
parametre de Barbero-Immirzi introduit une liberté encore mal comprise puisque la dynamique n’est pas définie
de facon parfaitement non équivoque, etc. Dans la suite, nous allons surtout nous intéresser a son approximation
semi-classique dans le but d’obtenir des prédictions cosmologiques.
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Fia. 3.5 — exemple de mousse de spin évoluant suivant 1’axe vertical, avec I’action de la contrainte hamiltonienne
[33].

3.6 Observations sur la Gravité Quantique a Boucles

Le champ gravitationnel est une entité physique fondamentale sur laquelle les autres champs évoluent. La
construction des théories décrivant ces phénomenes est intéressante en ce sens qu’en cherchant a respecter les
symétries présentes, il devient nécessaire de définir de nouvelles dérivées, les dérivées covariantes, qui aménent a
I'existence d’une expression commune des tenseurs de courbure. Dans ce formalisme commun qu’est la géométrie
différentielle, les théories de gravitation et de Yang-Mills généralisant les autres champs, peuvent étre traitées
ensemble d’une fagon plus ou moins similaire lors des étapes de quantification.

La gravité quantique a boucles, une des approches possibles pour la gravitation, suppose que la relativité générale
n’est pas a remettre en cause mais que la procédure usuelle de quantification ne lui est pas adaptée. Elle cherche
simplement a donner un cadre quantique pour 1’évolution de tous les champs, sans pour autant prétendre a
I'unification des différentes forces.

Une conséquence importante est la discrétisation de ’espace-temps représenté par des grains de volume associés
a une aire, et dont le spectre de mesure n’est plus continu mais discret. Le fait qu’il existe une aire minimale lui
permet de ne pas posséder de divergence ultraviolette, faisant de cette théorie de gravité quantique une théorie
bien définie. Des résultats intéressant ont été obtenus, notamment pour la thermodynamique des trous noirs
[34]. D’autre part, on s’attend alors & ce qu’aux grandes échelles les résultats redonnent ceux du cas continu,
I’étude de la limite classique étant aussi un point de recherche actuel.

Comme on vient de le voir, de nombreux aspects restent encore a développer. L’obtention d’une théorie quan-
tique définitive de la gravitation n’est pas encore achevée, mais il existe cependant, en plus de la gravité quan-
tique a boucles et de son extension a la théorie des Mousses de Spin, d’autres théories. On peut citer entre autres

e la Théorie des cordes. Cette approche propose une nouvelle théorie de gravité, basée sur I'introduction
de dimensions supplémentaires sur lesquelles vivent des cordes, dont les modes propres de vibrations
correspondent a des particules.

e la théorie CDT pour Causal Dynamical Triangulation, similaire a la théorie des Mousses de Spin,
considérant ’espace-temps & ’échelle de Planck comme étant en perpétuel changement & cause des fluc-
tuations quantiques.

e la supergravité essayant d’appliquer les avantages de la supersymétrie a une théorie non locale.

e la GFT pour Group Field Theory et la géométrie non-commutative ol la quantification passe par
le formalisme des groupes non-abéliens.

Certes il est nécessaire de proposer de nouvelles alternatives aux théories actuelles, puisque par définition
elles s’avereront un jour fausses, mais il est encore plus important de pouvoir les tester. Les modifications
intéressantes prédites par de telles théories prennent place a ’échelle de Planck, donc aux tres petites distances
et grandes énergies, et il est difficile, voire impossible, a ’heure actuelle d’observer directement les phénomenes
en résultants. Néanmoins, il est attendu que 'univers soit passé au moins un jours dans un régime quantique, de
type Big Bang, avant de croitre jusqu’a sa forme actuelle. Les effets agissant a ’échelle de Planck ont put alors
laisser des empreintes, méme infimes, mais qui en raison de cette croissance faramineuse, ont put étre étirées
jusqu’a atteindre une taille observable.
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La Cosmologie Quantique : vers une
explication de notre univers.
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Chapitre 4

Le modele standard de la Cosmologie

Il est important de remarquer que la cosmologie est un champ de recherche singulier. En effet, au contraire des
autres domaines de sciences, I’'observateur est dans le systeme, ne peut reproduire ’expérience et, ne connaissant
que I’état final correspondant a son époque, est obligé d’interpoler vers le passé pour comprendre I'histoire de
I'univers. Cependant, des modeles cosmologiques n’en sont pas moins disponibles et permettent d’interpréter
assez correctement les observations. Dans les prochains chapitres, on va introduire les notions de cosmologie
nécessaires a la compréhension du travail effectué en cosmologie quantique a boucles, en se concentrant sur le
calcul des spectres primordiaux, mais sans développer énormément le cadre dans lequel elles se situent. Il existe
une tres grande littérature sur la cosmologie et je ne citerai que les articles et livres sur lesquels je me suis basé.
Pour approfondir, tout lecteur pourra consulter entre autre les références [35] a [38], ainsi que celles qui y sont
données.

4.1 Breve introduction historique du modele standard A-CDM

Lorsqu’en 1915 Einstein proposa sa théorie de la relativité générale, il considéra immédiatement des tests
possibles dans notre systéme solaire (comme ’explication de 'avancée du périhélie de Mercure), et proposa aussi
une description possible de notre univers. Cependant, bien qu’elle fit basée sur le principe cosmologique,
formulé pour la premiere fois par I'astrophysicien Edward Arthur Milne,

Principe cosmologique : L’univers dans son ensemble est homogéne et isotrope (invariance par transla-
tion et rotation dans lespace) sans qu’il ne puisse exister de point privilégié jouant un réle particulier,

les modeles considérés a I’époque devaient aussi étre statiques ou stationnaires. Dans ses équations, Ein-
stein considéra la constante A comme superflue puisqu’elle expliquait un univers en expansion, l’enleval et
trouva avec des physiciens comme Willem De Sitter des solutions cosmologiques statiques intéressantes, ne
décrivant pas réellement notre univers. On peut aussi citer le cas du physicien allemand Karl Schwarzchild,
qui en 1915 sur le front Russe, dans une tranchée et souffrant, trouva la premieére solution pour la métrique qui
porte son nom [39], permettant de décrire la géométrie d’un trou noir statique, une singularité dans I’espace-
temps possédant un horizon.
Quelques années plus tard, en 1922, des physiciens comme le russe Alexander Friedmann[40], en parallele
avec Georges Lemaitre, Howard Robertson et Arthur Walker, tenterent de relacher la condition de
stationnarité. Ils obtinrent des équations d’évolution pour I'univers qui furent approuvées par les observations
sur 'expansion de 'univers par Edwin Hubble [41] en 1929. Dans ce modele, I'univers s’expand & partir de
la singularité du Big Bang. Dans les années 1940, ce modele de l'univers fut raffiné par George Gamow [42]
(ainsi que Phillip Peebles & Princeton) introduisant la notion de nucléosynthése primordiale permettant
d’expliquer la formation des noyaux lors d’une phase dominée par les photons, ainsi que la quantité d’hydrogene
observée. On parle alors du modéle du Big Bang chaud. Une des conséquences d’un tel modele est que les
photons, produits peu de temps apres le Big Bang, devraient pouvoir encore étre observés sous la forme d’un
fond homogene de radiation ayant un spectre de corps noir, dont la température actuelle se situerait autour de
quelques degrés Kelvin, soit des longueurs d’onde correspondant aux ondes radio.
En 1964, deux radio-astronomes, Arno Penzias et Robert Wilson, utiliserent une antenne dédiée aux com-
munications pour faire des observations radio de la Voie Lactée et découvrirent un signal inattendu, homogene
et isotrope, qu’ils attribuerent a un bruit expérimental impossible & éliminer. Par chance, Penzias possédait un
ami au MIT, Bernard Burke, qui avait suivit un séminaire donné par Peebles sur la nucléosyntheése primordiale
et lexistence du fond relique, qui le mit en contact avec le groupe de Princeton. C’est ainsi que fut découvert le

Isa ’plus grande erreur’!
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fond diffus cosmologique? ou CMB en anglais pour ’Cosmic Microwave Background’, ayant bien un spectre
de corps noir aujourd’hui mesuré a la température Ty = 2.726K. C’était la premiere fois qu'un modele cosmo-
logique a été vérifié expérimentalement, donnant une grande crédibilité au domaine de la cosmologie.

Il restait cependant quelques problemes encore inexpliqués, comme le probleme d’horizon ou de platitude qui,
lorsque ’on remontait dans le temps vers le Big Bang, montraient que I’expansion de I'univers n’avait pas assez
duré pour expliquer les observations. Ces problemes furent résolus par I'introduction d’une phase d’expansion
intensément accélérée de I'univers, que 'on appelle inflation, et dont les conséquences physiques ont bien été
confirmées par des expériences comme COBE puis WMAP, par 1’étude des anisotropies expliquées par les
fluctuations quantiques du champ d’inflaton.

Aujourd’hui, le modele standard de la cosmologie est considéré comme étant le modele A—C' DM ou la constante
cosmologique A, éventuellement associée a 1’énergie du vide, serait responsable de ’accélération observée de I'uni-
vers, et CDM pour Cold Dark Matter correspondant a la masse manquante de 'univers et qui expliquerait
entre autre les courbes de rotation des galaxies ou bien la forme de ’amas du Boulet, mais surtout I’amplitude
du spectre de la matiere.

4.2 Description d’un univers homogene et isotrope

4.2.1 La métrique de Friedmann-Lemaitre-Robertson-Walker

L’univers homogene et isotrope est le systéeme physique dynamique le plus simple que I'on puisse imaginer
puisqu’il est extrémement symétrique. En prenant en compte ces considérations de symétrie, il est possible
de déterminer les métriques qui lui siéent et qui correspondent aux métriques de Friedmann-Lemaitre-
Robertson-Walker (FLRW)

2
1— kr?

ici en coordonnées sphériques. La variable ¢ est le temps cosmologique, k est le facteur de courbure, étant nul
dans le cas d’un espace plat, valant —1 si 'univers est ouvert (hyperbolique) ou +1 si l'univers est fermé (surface
elliptique). Le facteur d’échelle a(t) rend compte de I’expansion de l'univers permettant de définir la notion de
distance physique ’a(t) 7’ & partir de la distance comobile r, et le rayon de courbure est alors donné par

ds* = —dt* +a(t)? +72d6? + r?sin*0de? | | (4.1)

R =Y On définit de plus le temps conforme 7 tel que

VIkl

dt = a(n)dn, (4.2)

en choisissant N = a(n) (le temps cosmologique est donné par N = 1), rendant la métrique (4.1) conforme a
une métrique de Minkowski ds?, décrivant une 4-hypersurface statique

dr?

1—kr?

L’univers étant en expansion, les longueurs d’onde subiront de fagon similaire a l'effet Doppler, un décalage
vers le rouge que 'on appelle redshift z, défini selon
Ao 1
l4+2=—+=—:, 4.4
AT T aw 44
ou on a normalisé le facteur d’échelle aujourd’hui a ag = 1. Cette variable est importante puisqu’elle permet
de donner une notion d’évolution du facteur d’échelle en cosmologie. De méme, le taux d’expansion de I'univers
est donné par le paramétre de Hubble qui permet de définir la vitesse a laquelle s’écartent deux points dans
I'univers,

ds* = a*(n)dsi; = —a*(n) dn* + a(n)? +r2d6? + r?sin?0de? | . (4.3)

H_lda

e 4.5
adt’ (45)

et dont la mesure actuelle, notamment par WMAP-7ans [43], donne
Hy=100-h km.s~ ' .Mpc™* avec h=0.72+0.08. (4.6)

Le tenseur énergie-impulsion est établi en fonction des propriétés du fluide cosmique, et on va ainsi considérer
I'univers rempli du fluide le plus simple possible mais intéressant, un gaz idéal de particules sans interactions.
Il peut ainsi s’écrire selon

2 48
T/u/ = _ﬁ 59’“’ = puy Uy +pgw/7 (47)
ol u, est un quadrivecteur vitesse, et ol la densité d’énergie du fluide est donnée par p = —T9, et sa pression

par p = %T;. Il contient toutes les composantes possibles de I'univers comme la matiere baryonique, les photons,
neutrinos et autres composés invisibles.

2Dans la vie de tous les jours, le CMB est responsable d’un peu de la neige sur les téléviseurs cathodiques.
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4.2.2 Dynamique de 'univers : I’équation de Friedmann

L’univers évolue avec le temps. Il passera par des phases d’expansion ou de contraction, avec des phases
d’accélérations ou de décélérations, ce dont rendra compte H et sa dérivée. Le facteur d’échelle a(n), avec le
parametre de Hubble, permettent ainsi de comprendre la dynamique de 'univers dont les équations d’évolution
sont données par les équations d’Einstein (2.87). En utilisant la métrique FLRW dans le cas d’un fluide parfait,
la dynamique du facteur d’échelle est obtenue par I’équation de Friedmann

N
a K Ak
H*=(-) =2p+= - = 4.8
(a) 3P T3 T (48)
ainsi que ’équation de Raychaudhuri

i A
=—glp+3)+3, (4.9)

ou on a utilisé I'équation de conservation de 1’énergie obtenue a partir des identités de Bianchi
p+3H(p+p)=0. (4.10)

Ces 3 équations sont considérées comme les équations clés de la cosmologie puisqu’elles permettent de rendre
compte de I’évolution de I'univers en fonction d’un contenu en matiere arbitraire. On définit souvent des variables

sans dimensions qui représentent le rapport de chaque constituant sur la densité critique cosmologique que 1'on
3H?

nommera pec = =.— (& ne pas confondre avec celle que l'on verra par la suite),
A k Di
BT C ) ER (4.10)

ou p; sont les densités d’énergie pour les différents constituants de la matiere et du rayonnement. L’équation de
Friedmann sans dimension s’écrit ainsi

O + Qe + Q= 1, (4.12)

et les différentes observations montrent qu’actuellement
Qr=0+£0.01, Qpo=0.73 Q0 =0.27. (4.13)

Cela signifie qu’aujourd’hui, 73% de 1'univers est constitué d’énergie noire responsable de son accélération, ainsi
que d’environ 23% de matiere noire non-relativiste, invisible et qui n’interagit que gravitationnellement, alors
que la matiere visible ne correspond qu’a 4%. On peut ainsi réécrire I’équation de Friedmann en terme des
différentes densités d’énergie des constituants,

R

H2
3

(pm + P+ pa) (4.14)

ol p,, représente la somme entre la matiére non-relativiste (pyr) et la matiere relativiste comme les neutrinos

et le rayonnement (pg), avec

3k A
pr = —. (4.15)

Pk = —">
ka?’ K

D’autre part, pression et densité d’énergie ne sont pas indépendantes mais sont reliées par une équation d’état
D=wp (4.16)

caractérisée par un parametre d’état w, tel que chaque type de constituant aura son propre parametre d’état
lui correspondant.

4.2.3 Evolution du facteur d’échelle a(t)

L’équation de conservation de I’énergie (4.10) permet ainsi de définir I’évolution de la densité d’énergie p;
pour chaque composante en fonction de a(t) et de son parametre d’état w;

pilt) ~ a(t) =20, (4.17)

Suivant la domination de telle ou telle composante, on arrive a connaitre comment évolue le facteur d’échelle,
puisque pour w # —1 I’équation de Friedmann (4.8) nous indique que

a(t) ~ t3Tw . (4.18)
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Ainsi, lorsqu’il y a la

— domination de la matiére non-relativiste pyp :
w =0 et alors p = a~> avec a ~ ¢3 montrant bien que dans un univers en expansion H > 0, la matiere
contenue dans le volume V = a3(t) doit bien se diluer.

— domination du rayonnement pp :
w = % et on obtient directement p ~ a™% et a ~ t2. De méme que pour la matiere, il y a une dilution
en a®, mais 1’énergie étant proportionnelle & la fréquence, il faut tenir compte du redshift apportant un
facteur a(t) supplémentaire.

— domination de la constante cosmologique pj :
w = —1 et la densité d’énergie est indépendante du facteur d’échelle, avec le parameétre de Hubble constant.
Dans ce cas la, 'univers subit une expansion appelée expansion de De Sitter caractérisée par un facteur
d’échelle croissant en a ~ et ot H; est constant durant cette période.

Dans notre univers, en regardant les expressions des densités d’énergie, on voit suivant la valeur de a(t) que
I’univers est passé par une phase de domination par le rayonnement jusqu’a un certain moment zg.. ol matiere
et rayonnement étaient en équilibre, avant de subir une phase de domination par la matiere qui a cédé le pas a
celle, actuelle, de domination par la constante cosmologique.

4.2.4 L’horizon de 'univers

Contenu de la finitude de la vitesse de la lumiere, il existe une distance, I’horizon des particules dy qui
définit la distance maximale que la lumiere a pu parcourir depuis le moment a = 0. Les photons, voyageant sur
des métriques nulles, ont put parcourir une distance depuis le Big Bang (a 77 = 79 en temps conforme) égale a

dg = a(n) ! dn. (4.19)

7o

Cette distance évolue différemment suivant I’époque a cause des différentes dominations. Tant que ’expansion
de l'univers est régie par une loi en a(t) ~ t"™ avec n < 1, il est possible de relier cette distance causale au rayon
de Hubble Ry (t) = H ' =a/a

n

d =
H 1—n

Ry, (4.20)

et voir quune longueur physique X n’est observable que si elle se trouve & 'intérieur de I’horizon A < H~!. Par
la suite, nous n’utiliserons pas cette notion de longueur & cause des transformées de Fourier effectuées, mais
nous utiliserons plutét le nombre d’onde k qui s’exprime en fonction de la longueur physique A = 2wa/k, tel
que pour

i < 1 — T’échelle de longueur A est en dehors de I’horizon,
a

i > 1 — ’échelle de longueur A est a l'intérieur de I’horizon.

a

Cette notion de longueur (mode) dans et en dehors de I'horizon est trés importante puisque comme nous le
verrons, lorsqu’un mode est trop grand, il se trouve figé dans son évolution.

4.2.5 Les problemes observationnelles du modele de Big Bang chaud

Le modele du Big Bang chaud sans inflation est tres intéressant puisque ses prédictions concordent avec les
observations. Cependant, en comparant calculs et données, on se rend compte qu’il existe certaines incompati-
bilités nécessitant quelques hypotheéses supplémentaires. Ces problémes sont ainsi énumérés comme suit :

1. Probléeme d’homogénéité : les inhomogénéités, responsables de la formation des structures dans 1'uni-
vers, sont instables & cause de la gravitation et donc devraient croitre avec le temps. Or a grande échelle,
I’univers observé est tres homogene et isotrope, en accord avec le principe cosmologique. Il existe cepen-
dant de grandes déviations par rapport a cette homogénéité, illustrées par les galaxies, amas de galaxies.
Pourquoi 'univers est-il donc si uniforme & grande échelle, alors qu’il existe des mécanismes capables de
produire des agglomérations de matiere 7

2. Probléme de ’horizon (1) : en comparant deux points de deux régions quelconques sur la carte du fond
diffus cosmologique, on observe seulement une infime anisotropie en température, de 'ordre de 10~°. Cela
implique que I'univers, au moment du découplage était thermalisé, au moins dans une région dont la taille
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actuelle est celle de notre horizon observable, et donc que ces zones ont été a un moment en contact causal.
Or, les distances en jeux sont trop grandes par rapport a la distance que peut parcourir un photon depuis
le Big Bang et les échanges d’informations (énergie, chaleur,..) entre deux points ne peuvent se faire que
dans un méme cone de lumiere. Comment se fait-il alors que I'univers ait thermalisé sur des échelles plus
grandes que 1’horizon ?
3. Probléme de I’horizon (2) : on observe environ 108 particules dans notre univers. Or, pour un horizon
tel qu’il est aujourd’hui, il ne devrait exister qu’environ 10 particules. Comment se fait-il que 'univers
soit si grand et contienne autant de particules ?

4. Probleme de la platitude : il est possible de regarder 1’évolution de la courbure telle que
k

a2H?

Cette équation montre que 2 — 1 décroit au cours du temps. Pour que 'univers soit plat actuellement

Qo ~ 1, il faudrait qu’au temps de Planck (10~%3s), donc proche du Big Bang,

Q—1=0(10"%), (4.22)

QO =Qp+ 0 QO-1= (4.21)

donc que I'univers soit plus plat que maintenant. Tout changement infime dans les valeurs des parametres
impliquerait une physique grandement différente a notre époque. Ce probleme est aussi appelé 'probleme
du fine-tuning’ puisqu’il faut fixer les conditions initiales avec une tres grande précision. Pourquoi faut-il
que les conditions initiales soient si particuliéres pour que notre univers soit ainsi maintenant ?

5. Probleme des monopoles magnétiques ou ’probleme des reliquats exotiques’ : lorsque l'univers
était treés dense et chaud, d’apres les Théories de Grande unification (GUT), a cause de brisures
de symétries, il devrait y avoir émergence de particules lourdes et stables, notamment les monopdles
magnétiques. Or, durant la phase GUT, un grand nombre de ces particules auraient du étre produite
lorsque la température était importante, et elles devraient avoir persisté, devenir dominantes et étre ob-
servables a notre époque. Cependant aucune observation de telles particules n’a été faite, et seule une
possible dilution importante et rapide pourrait leur donner une densité suffisamment faible pour ne pas
étre observées.

Pour passer outre ces problemes, le modele du Big Bang nécessite une modifications dans ses hypotheses :
I'univers a du subir une période primordiale pendant laquelle les longueurs physiques A ont évolué plus rapide-
ment que I’horizon H~' : ainsi, deux photons que nous observons aujourd’hui, émis d’une méme surface mais
apparemment causalement déconnectés dans deux zones de ciel, ont la méme température puisqu’ils ont pu
dans le passé étre en contact causal, expliquant ainsi la grande homogénéité et isotropie de I'univers. Proposée
par Alan Guth, I'inflation est une phase d’expansion adiabatique® tres rapide de I'univers en un temps treés
court.

4.2.6 Le modele standard de l’inflation

L’inflation se produit quand les échelles de distance physiques A ~ a évoluent plus rapidement que le rayon
de Hubble H~!. Cela implique donc que pour qu’il y ait inflation,

dt

. . d
inflation <= 71

):d>0 — (p+3p) <0 (4.23)
ol on a utilisé I’équation de Raychaudhuri (4.9) et le fait que, durant cette période, la constante cosmologique
ne pouvait pas étre dominante, ce qui aurait impliqué qu’elle n’ait cessé de 1’étre depuis lors. On voit ainsi que
cette expansion accélérée ne peut se faire que pour des fluides de parametre d’état w < f%, et qu’elle n’a pas pu
exister durant des périodes de domination du rayonnement ou de la matiere. Elle a donc di nécessairement se
produire avant la phase de nucléosynthese primordiale pour laquelle le modele est en accord avec les observations
d’aujourd’hui.

Nombre d’e-fold N

On définit le nombre d’e-fold N entre le début de I'inflation a; et la fin de I'inflation a; selon

af

NzM()zHAW—m, (4.24)

a;

3Les équations usuelles de la cosmologie peuvent ainsi étre utilisées lors d’une transition entre deux phases de domination.
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permettant de rendre compte de la croissance rapide du facteur d’échelle lors de cette période : il montre
littéralement ’de combien le facteur d’échelle a grimpé la fonction exponentielle’. Pour résoudre le probleme de
I’horizon et les autres, les contraintes conduisent a chaque fois & un nombre d’e-fold similaire, au moins N ~ 60,
qui correspond donc a une inflation longue.

Le champ d’inflaton ¢

La maniere la plus simple de produire une équation d’état w = —1 est de considérer un champ scalaire pour
lequel le terme potentiel domine par rapport au terme cinématique. On va ainsi considérer le cas du champ
d’inflaton ¢, donnant lieu & une expansion de De Sitter dans un espace de métrique FLRW (4.1), plat & = 0.
Son lagrangien est donné via ’action

1
S = / d*z /=g {29"”8,#3%0‘/(@) ; (4.25)

dont les équations d’Euler-Lagrange nous donnent 1’équation de Klein-Gordon en temps cosmologique

" . Vi
¢+ 3Hp — e +0,V(p) =0. (4.26)

On remarque qu’il existe maintenant un terme de friction 3H ¢ qui va intervenir lors de I’expansion de 'univers.
Les expressions des densités d’énergie py et de pression pg sont obtenues par ’exploitation du tenseur d’énergie-
impulsion correspondant,

2 5(£mat\/ _g) 0Lmat
T, = - = guwLlmat — 2 4.2
' N T e A T 2
oL
= - “ Her 4.2
88H¢a o+ g'*L, (4.28)
tel que pour un tel champ,
22 v 2
Too = pp = & 4 V(o) + T, (4:29)
22 2
¢ (Vo)

Dans la suite, on va regarder Veffet de perturbations quantiques dp(Z, t) autour de la solution correspondant &
un univers homogene et isotrope @(t) dont la densité d’énergie et de pression pour ce fond correspondent &

22
Too = pp = = + V (@), (4.31)
22
Ti=ps =5~ Vip). (4:32)
Lorsque ’équation suivante est vérifiée
Vip) > ¢ (4.33)

I’énergie potentielle domine sur ’énergie cinétique, et ce fluide vérifie alors la relation

Py = —Py. (4.34)

Dans ce cas 1a, si le champ d’inflaton domine sur les autres composantes, alors il meénera a une phase d’inflation.

Les conditions de roulement lent (Slow-roll)

Imposer les conditions, avec V' = 9,V et V" = 0,,V,

1. condition 1 :
2 (v')? >
o< Vip) = 7 < H?, (4.35)

2. condition 2 :
p<3Hp = V" <« H?, (4.36)
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dont fait partie la condition (4.33), a pour conséquence une descente du potentiel lente pour ce champ : on
parle alors de conditions de roulement lent, ou slow-roll en anglais. Dans ce régime, ’équation de Friedmann

correspondante est alors donnée selon
8rG
~

3

H2 V(p), (4.37)
et ’équation de Klein-Gordon est donnée par
3Hp = —V'(p). (4.38)

Il sera utile pour la suite de définir des parametres de slow-roll tels qu’en temps cosmologique

H @2 1 (VN
= —— =4d1G—= = — 4.
‘ w2 =" T TG <V> ’ (4.39)
1 V// 1 V//
— ) =z_ 4.4
g 87rG<V) 3H? (440)
$
6 = —e=—— 4.41
NS T (4.41)
ou en temps conforme
H 90/2
(p”
§ = n_€:1_H<p" (4.43)

Le parametre € permet de regarder de combien varie le parametre de Hubble durant I'inflation, et en utilisant
entre autre ’équation de Raychaudhuri (4.9), il est nécessaire d’avoir € < 1 et |n| < 1 pour que Uinflation ait
lieu :

inflation <<= e<1 et n<1.

De plus, comme on va regarder des équations au premier ordre en perturbations, il est possible de voir que
durant l'inflation é,n = O (62,772), et donc que ces parametres peuvent étre considérés comme constant. Le
nombre d’e-fold est alors donné, en notant ¢; and ¢y les valeurs du champ au début et a la fin de I'inflation,

par
Pr

N ~ —8nG % de. (4.44)
Pi
La fin de l'inflation se produit lorsque I’énergie potentielle du champ d’inflaton devient plus petite que son
énergie cinétique. L’énergie du champ, qui se met a osciller dans son potentiel, est alors transférée du champ
aux particules selon le mécanisme de reheating responsable de la création des particules présentes aujourd’hui,
et dont nous ne parlerons pas dans la suite.
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4.3 Résumé : histoire de notre univers dans le modele A — CDM

La cosmologie et 'astrophysique sont des domaines trés complexes puisqu’elles utilisent toutes les théories
physiques, aussi bien celle des particules que la physique des plasma, en passant par la physique nucléaire
et la chimie. Appliquer notamment la thermodynamique & I'univers permet d’obtenir une expression pour sa
température T', qui évolue suivant le facteur d’échelle au méme titre que lors d’une dilution

~— 4.45

a0 (4.45)
En remontant vers le Big Bang, on voit ainsi que les températures en jeu devaient étre colossales, et appliquer les
théories physiques qui correspondent aux différentes échelles d’énergie permet ainsi de caractériser I'univers lors
de son évolution. Selon le modele standard [37], 'histoire de notre univers peut étre succinctement décrit par :

o T ~ 10%°K : GUT, z = 10%2, E = 10'6TeV :
a cette température, seule l'interaction gravi-
tationnelle n’était pas unifiée aux trois autres
interactions. Lorsque la température diminue,
les théories GUT (Grand Unified Theory)
prédisent qu’'un mécanisme de type Higgs brisa
la symétrie pour aboutir au groupe de symétrie
du modele standard de la physique des parti-
cules SU(3) ® SU(2) @ U(1).

o T =~ 10'°K : brisure électrofaible, z = 106, F =
1TeV : a cette échelle d’énergie (~ 300GeV),
le mécanisme de Higgs est censé avoir brisé la
symétrie SU(2) ® U(1) pour différencier les in-
teractions électromagnétiques et faible.

e T ~ 10'3K : transition de phase quark-hadrons, F1G. 4.1 — Résumé de I’histoire de notre univers en fonc-

2 =103, E = 1GeV : jusqu’a ce qu’il ait atteint tion de I’évolution du facteur d’échelle.

cette température, I'univers était composé d’un
plasma de particules (plasma de quarks, gluons,
photons, électrons, etc) en constante interaction. A 108K , les quarks ont été confinés par l'interaction
forte sous forme de hadrons (dont les nucléons).

o T =~ 10'%K : nucléosynthese primordiale, z = 10'°, E = 1MeV : & partir des nucléons formés, les premiers
noyaux sont alors créés en commengant par les plus légers (deutérium, tritium). En effet, aux alentours de
101K, les protons et les neutrons ont commencé & interagir lors de collisions : n 4+ p — D 4+ ~, puis vers
10°K, ce sont les éléments plus lourds (*H, et *H,) qui se sont formés jusqu’au lithium (°L; et "L;). C’est
au cours de la nucléosynthese primordiale que les neutrinos se sont découplés, se propageant librement
depuis lors. Ils forment un rayonnement de fond dont la température actuelle est de 1.96K [44].

o T ~ 65 000K : égalité rayonnement-matiere : jusqu’a ce qu’il ait atteint cette température, la dynamique
de l'univers était donnée par les particules relativistes. La transition a eu lieu autour de ¢ ~ 310 000 ans
apres la singularité initiale. Par la suite, I'univers a subi une phase de domination par la matiere.

® Tyee = 3 700K : recombinaison, z ~ 1100, E = 0.3eV : la valeur de la température au moment du
découplage est donnée par I’équation d’équilibre thermique d’ionisation de Saha, qui correspond a une
énergie inférieure a celle d’ionisation de I’hydrogene (13.6eV). Ceci s’explique par le fait que les photons
sont 10'° fois plus nombreux que les électrons. Ainsi, méme avec une énergie moyenne du milieu inférieure
au seuil de réaction, il restait suffisamment de photons pour ioniser la matiere. AT=37 00K, I’équilibre
thermique est rompu et les électrons commencent a se coupler aux baryons pour former les premiers
atomes neutres : c’est la recombinaison. Les photons qui interagissaient par diffusion Thomson avec les
électrons acquierent un libre parcours moyen plus grand que la taille de I'univers : c’est le découplage et
on parle de surface de derniére diffusion. Les photons qui sont issus de cette surface sont ainsi appelés
fond diffus cosmologique.

e T =~ 15K : formation des grandes structures, z = 10, F = 0.01eV : suivant les observations actuelles,
les galaxies sont regroupées en amas, eux-méme formant des super-amas le long de filaments plus denses,
mais le processus de formation de ces super-structures n’est pas encore parfaitement compris a ce jours.
Les simulations a N corps permettent d’expliquer les observations concernant la formation de ces grandes
structures en considérant de plus la présence de matiére noire froide, autrement dit non-relativiste, lors
du découplage.

e T ~ 2.725K : aujourd’hui, z = 0, £ = 0.0002eV : I'univers que nous observons est actuellement fortement
inhomogene a petite échelle et contient des galaxies réunies en amas et en super-amas. Il est en expansion
accélérée et le fond diffus cosmologique possede une température de 2.725 £+ 0.001K.



tel-00749162, version 2 - 7 Nov 2012

Chapitre 5

La Cosmologie Quantique a Boucles

L’univers moderne, tel que la machine et ’homme en étaient arrivés a le comprendre, n’avait pas
besoin de Créateur. Il n’avait pas de place en réalité pour un Créateur. Ses régles de fonctionnement
n’autorisaient que tres peu de bricolage et ne souffraient aucune révision majeure. Il n’avait jamais
eu de début, et n’aurait jamais de fin. Il ne connaissait que des cycles d’expansion et de contraction,
aussi suivis et aussi bien réglés que les saisons de I’Ancienne Terre.

Dan Simmons, Les cantiques d’Hyperion, la chute d’Hyperion

5.1 Introduction

Appliquer les notions de la relativité générale & un modeéle d’univers homogene et isotrope conduit & une
description suffisamment fiable pour expliquer les observations. Cependant, et pour des raisons similaires a celles
annoncées précédemment, la description de 'univers a 1’échelle de Planck par le modele standard est erronée et
il est nécessaire d’incorporer les aspects quantiques. Il est possible de le faire de maniére perturbative, redonnant
les théories attendues a la limite basse énergie, mais les descriptions effectives résultantes ne vont généralement
pas permettre de donner une évolution déterministe lors du passage a travers la singularité. Les approches
non-perturbatives comme celle de la gravité quantique a boucles sont fondées sur des idées plus profondes et on
s’attend a ce que leurs équations pour la dynamique restent bien définies lors de I’eére de Planck, permettant a la
fonction d’onde de I'univers de passer a travers la singularité et de rendre compte d’une évolution déterministe.
Ce faisant, cette simple réflexion engendre de nouvelles questions puisqu’elle autorise ’existence d’un ’avant’ la
prétendue singularité :

— La premiere et la plus naturelle : qu’y a-t-il de l'autre c6té? Comment la singularité classique est-elle

résolue 7

— Comment émerge notre univers classique de la théorie quantique ?

— Si on consideére un scénario faisant intervenir un rebond, alors I'univers est en contraction avant la singu-
larité et les anisotropies, évoluant en fonction du facteur d’échelle selon a=%(n), vont croitre et dominer
dans les équations d’Einstein. Comment une nouvelle théorie de la gravitation va-t-elle prendre en compte
I’évolution de ces anisotropies ?

— Doit-on encore introduire des principes, conditions a la limite au moment du Big Bang, ou bien les
équations quantiques d’Einstein se suffisent-elles a elles-méme 7 Cette question fait référence aux conditions
initiales de I'univers, inconnues, obligeant la détermination de la fonction d’onde de I'univers a partir de ses
caractéristiques actuelles, par exemple le 'no boundary proposal’ introduit par Hartle et Hawking.

— Un fait intéressant a été remarqué par Carlo Rovelli [45] : en mécanique statistique, il est possible de
montrer qu’'un systéme va pouvoir étre décrit en fonction d’'un degré de liberté physique qui va jouer
naturellement le role de variable temporelle. L’émergence du temps est une interrogation tres importante
dans la construction d’une théorie quantique de la gravitation : mécanique quantique (temps externe) et
relativité (variable quelconque) n’ont pas le méme rapport au temps. A partir des caractéristiques de la
fonction d’onde de 'univers, une variable spécifique va-t-elle se détacher en fonction de laquelle I’évolution
des quantités physiques va pouvoir étre définie ?

Cependant, le modele standard classique permet de décrire relativement bien I'univers 1073 secondes apres la
singularité, montrant que les effets quantiques doivent uniquement étre important durant ce tres court lapse de
temps et rapidement cesser d’agir ensuite. En particulier dans un scénario de rebond, ces effets vont agir comme
une nouvelle force répulsive qui est completement negligeable lorsque la courbure de I'espace-temps est faible,
mais qui croit rapidement dans le régime de Planck jusqu’a totalement dominer 'effet de la gravitation créé
par une densité de matiere de I'ordre de 10°"kg.m~3. Dans le cas o1 cette force de répulsion est suffisamment
importante, elle pourrait étre responsable de ’existence d’une phase inflationaire.

69
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Le défi de cette nouvelle approche est ainsi d’importer les corrections quantiques qui vont permettre une des-
cription de 'univers a 1’échelle de Planck, et redonner ensuite les résultats attendus par le modele standard de la
cosmologie avec, pourquoi pas, la possibilité de légeres modifications qui autoriseraient ’observation des effets
quantiques. Des critiques ont par ailleurs été faites quant a la validité de la théorie ici présentée puisqu’elle
ne découle pas vraiment de la gravité quantique a boucles comme c’est le cas pour la cosmologie vis a vis de
la relativité générale. Elle ne fait que s’en inspirer. L’approche cosmologique issue de la gravité quantique a
boucles est appelée Spin Foam cosmology, plus fondamentale mais plus difficile & mettre en ceuvre. La gravité
quantique a boucles décrit localement ’espace-temps, et I'univers étant homogene et isotrope, on peut regarder
comment agissent les effets quantiques et les incorporer dans la théorie classique, permettant alors une approche
effective qui va permettre de faire ressortir les caractéristiques principales des effets quantiques : on parle alors
de la théorie de la Cosmologie Quantique a Boucles, dont des descriptions sont par exemple données dans
les références [14] et [47], et les détails plus techniques dans [46] et [51].

5.2 La cosmologie usuelle sous le formalisme de la Gravité Quan-
tique a Boucles

En cosmologie quantique a boucles, on considére un espace-temps homogene et isotrope régi par la métrique
FLRW (4.3) tel que I'hypersurface spatiale ¥ soit de topologie R3. N’étant ainsi pas compact, de nombreuses
intégrales spatiales faisant intervenir des champs homogenes vont alors diverger. Cependant, en raison de cette
méme homogénéité, il est possible de regarder une cellule fiducielle V, définie par les coordonnées comobiles et
de de métrique non-dynamique °qq,;,. Cette cellule sera ainsi de volume fini défini

voz/d?’z\/@. (5.1)

Il est maintenant possible de faire de la physique dans le volume physique observé Vg, donné par Vo = a3y,
lui aussi fini & a(t) fixé. 11 est nécessaire de veiller une fois les calculs finis & ce que les résultats physiques ne
dépendent pas du choix de ce volume. Dans cette cellule, on définit les triades “e? = §¢, donnant un repére
métrique de ’hypersurface spatiale, et les co-triades el = §¢ (aussi notée “w? ) permettant de définir de méme
qu’en gravité quantique a boucles les variables de connexion et de densité de triades. Pour un univers plat £ = 0,
la partie homogene X d’une variable X définissant le fond est donnée par

X:i/d%.x (5.2)

‘/O b

et les variables d’Ashtekar homogenes, dépendant uniquement du temps ¢ (ici, non pas le temps cosmologique
mais le temps défini par la métrique ADM (3.25)) s’écrivent comme

Ay =~k(t) 6L 7 et E*=p(t) 68 T (5.3)

La connexion de spin I'2| donnée par '’équation (3.47), ne fait intervenir que des dérivées spatiales des densités
de triades, sa composante homogene est nécessairement nulle. Dans la littérature, la connexion est définie selon
¢ = vk et les variables sont ensuite normalisées pour que les contraintes ne fassent plus finalement intervenir
I'information sur la cellule fiducielle. Cela n’est qu'une convention. Nous adopterons celle donnée par Martin
Bojowald pour laquelle les intégrations spatiales sur les variables homogenes feront intervenir Vj et seront
régularisées naturellement ensuite, et ce afin de garder une certaine lisibilité dans les calculs.

Selon ce choix, les variables d’Ashtekar sont symétriques et satisfont automatiquement les contraintes de Gauss
(3.56) et de moments (3.57), et donc de Difféomorphisme D[N?] = 0. Elles possédent de plus une relation de
crochets de Poisson donnée par I’équation (3.51) et permettent de définir la structure symplectique sous-jacente
pour la partie homogene selon

1 N 3 .
— dBl’AZaE? = — (/ d3$> kﬁ - Qgrav =
Vo

RY J» K

a
K

dk A dp. (5.4)

Les nouveaux crochets de Poisson correspondant pour les variables du fond (k,p) sont alors donnés par

K

{k,p} = 7 (5.5)

Ainsi, la contrainte hamiltonienne totale classique réunissant la partie gravitationnelle (3.58) de variables (k, p)
et la partie matiere (3.76) correspondant & un champ scalaire de variables (@, ), sera donnée par

_ 1 _ _ —2 3
H;gg[N] =5 /V BPzN {—6\/5142 + 2k (27;3 +sz(¢)>} , (5.6)
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ou la matiere homogene possede les crochets de Poisson

{p.7} = . (5.7)

La plupart du temps, on utilisera le temps conforme et la métrique sera celle donnée par la suite par I’équation
(4.3) : nous utilisons ainsi la convention

= 0,. (5.8)

En comparant cette métrique & celle du formalisme ADM donnée par ’équation (3.25), il est possible alors de
regarder I'expression des différents éléments que I'on va utiliser en fonction du facteur d’échelle. Ainsi, utiliser
les définitions données précédemment en temps conforme permet d’obtenir les relations

N = /p = a(n), N® =0, (5.9)
L =a(n)s! et = L ga

€q = a(n)d,; ) o7, (5.10)

p=a*(n). (5.11)

Dans le formalisme hamiltonien, les équations du mouvement pour une variable homogene X sont données par
les crochets de Poisson {X, HI(%OC),}. Pour étre plus rigoureux, il serait cependant nécessaire de tenir compte de
Peffet des perturbations sur 1’évolution du fond et c’est ce que 'on appelle I'effet de back-reaction. Mal-
heureusement, cette approche s’avere étre tres compliquée et nous n’en tiendrons pas compte dans la suite. En
considérant 1’évolution du fond comme étant découplée de celle des perturbations, les équations du mouvement
des variables (k, p, @, 7) sont données en temps conforme par les équations

) dp _ _
p o= ﬁ = {p, Hyp[N]} = 20k, (5.12)
P e 72
. dp _ ¢ O T

= L ={p Hy,IN]} ==, 5.14
® dn {80 RG[ ]} 7 ( )
. dm _ 2 (0) [ 2 _
=T {7, Hrg [N} = =070,V (9), (5.15)

et il est possible d’en tirer les équations classiques vues au chapitre précédent. En utilisant I’équation (5.11) don-
nant la relation entre le facteur d’échelle et p, on voit directement que 'équation (5.12) correspond exactement
a la définition du parametre de Hubble, H =k :

:g:l_c - k=M. (5.16)

%H’Uh

L’équation (5.13) n’est ainsi rien d’autre que I’équation de Raychaudhuri pour un champ scalaire, donnée par
léquation (4.9) : les équations (3.77) et (3.78) avec ces variables redonnent bien les expressions de la densité
d’énergie et de pression trouvées précédemment :

771_2

po= 5m VO (5.17)
P = Q%—V(cp). (5.18)

Combiner les équations (5.14) et (5.15) redonne finalement ’équation de Klein-Gordon en temps conforme
¢+ 2kp + POV (@) = 0, (5.19)

et il ne reste plus que ’équation de Friedmann qui est simplement retrouvée en utilisant les définitions précédentes
mais aussi en utilisant le fait que IV étant un multiplicateur de Lagrange, non dynamique,

5Htot
ON

. K _
pn ={pn, Hiot} = — =0—-H = gpp. (5.20)

Cela termine ainsi la démonstration que, dans ce formalisme, toutes les équations usuelles de la cosmologie sont
bien retrouvées.
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5.3 La quantification pour la Cosmologie Quantique a Boucles

Comme pour les modeéles de quantification des mini-super-espace, la réduction des variables est faite
au niveau classique a cause des symétries, mais les méthodes de quantification utilisées seront celles de la gravité
quantique a boucles : cette quantification est inéquivalente & celle généralement adoptée dans les théories de
cosmologie quantique. Elle va donc mener a des prédiction sensiblement différentes. Usuellement, lorsque 1'on
effectue la quantification a la Wheeler-De Witt pour la métrique FLRW, on se place dans la représentation p, ¢
et on pose p et ¢ comme multiplicateur sur les états, avec

Kk OW v

eV = ih’ygaa—p, PV = —ihg—w. (5.21)
La version quantique de la contrainte hamiltonienne est appelée I’équation de Wheeler-De Witt. Dans le cas
d’un champ scalaire sans masse, il est possible d’utiliser ce champ comme variable 'temps’ et d’avoir le volume
de l'univers comme observable de Dirac. Cependant, méme si a grande échelle, on retrouve bien les prédictions
de la relativité générale version quantique, la singularité initiale est toujours présente et ne disparait pas de
fagon tout a fait générique par la quantification.
Dans la suite, on ne souhaite pas s’étendre sur les détails de la quantification et tres peu d’étapes seront données.
On va simplement tacher de montrer comment apparaissent les modifications qui permettront de rendre compte
des deux effets quantiques principaux, nouveaux, inhérents a 1’étude de 'univers par la gravité quantique a
boucles. Les caractéristiques de ces effets pourront ainsi étre décrits en terme de fonctions mathématiques, que
I’on nomme correction d’inverse-volume et correction d’holonomie, et qui pourront étre introduites a la
main dans les équations classiques conduisant a la théorie effective que 'on va étudier.

5.3.1 Au niveau cinématique

Afin de respecter au mieux les symétries d’un univers ho-
mogene et isotrope, mais aussi parce que c’est le motif possédant
des directions orthogonales le plus simple que l'on puisse
construire, on va considérer une partie de I'univers comme étant
contenue dans une cellule fiducielle représentée par un cube (voir
figure Fig.(5.1)). En cosmologie quantique & boucles, les variables
de configuration sont les holonomies h.(A), considérée ici sur des
lignes droites paralleles aux arrétes du cube et véhiculant le spin
le plus simple possible 7 = %, ainsi que les flux des densités de
triades F. g [E] pour des 2-surfaces S, paralleles elles-aussi aux
surfaces du cube'. Un rapide calcul permet de montrer que pour FIG- ?~1 — Cellule élémentaire ou les spins
le systéme de variables homogenes (A%, E%) et en utilisant la J = 3 sont transportés parallelement aux
définition de I’holonomie donnée par 1’équation (3.92), ’holono- arrétes de la cellule [47].
mie, prise sur une arréte e de longueur y pour la métrique qqp et
dans la direction k, peut s’écrire

< THf

r 1 - 1 -
he(A)=P emp/A = eMFTE = cos <2ufyk) 1o + 2sin (Q,u’yk:) Tk- (5.22)

e

De méme, le flux de densité de triade défini par 1’équation (3.93), pour ce chemin, est donné par
FIE) = / d*z - na B f ~ BA(S, f), (5.23)
s

ou A(S, f) est laire d’une cellule élémentaire. L’holonomie est ici composée d’une somme de fonctions
élémentaires N, (k)=e2#7* dépendant de k, des fonctions presque périodiques? puisque p est dynamique.
On peut de plus utiliser p comme variable représentative du flux de densité de triade, et ce & cause de 1’ho-
mogénéité et de I'isotropie. Les variables quantiques élémentaires utilisées sont alors données par les opérateurs

N, (k) et p dont les relations de commutation sont dictées par les crochets de Poisson issus de 'équation (3.94)
= Ky i -
{Nu(k), p} = ?5/\/#(/?) (5.24)

Les états quantiques, vérifiant la contrainte de Gauss et de Difféomorphisme, sont représentés par des fonctions
presque périodiques ¥ (k) de la connexion k, comme étant une combinaison linéaire et discréte d’ondes planes

U(k) =Y apetink, (5.25)

1On peut faire ’analogie avec la cristallographie avec des mailles cubiques centrées.
20n parle de fonctions cylindriques.



tel-00749162, version 2 - 7 Nov 2012

5.3. LA QUANTIFICATION POUR LA COSMOLOGIE QUANTIQUE A BOUCLES 73

Ces états n’étant pas des intégrales [ cl,uoz(u)eéwfC mais une somme discrete, Uespace de Hilbert correspondant
HIT? n’est plus celui utilisé pour la quantification & la Wheeler-DeWitt, L?(R, dk), et les solutions prédites

kin

par la cosmologie quantique a boucles sont ainsi des le départ différentes. Une base orthonormale de Hw" est
donnée par les fonctions N, (k) satisfaisant les relations
< NNy >=08, 1 (5.26)

ou, malgré I'utilisation des ondes planes, il apparait le delta de Kronecker au lieu d’un Dirac. Les actions des
opérateurs sont données de plus par

N o _ o Ed _ -
N, (B)U(E) = exp (;/wk:> U(k) et pUk) = —i%ﬁlﬂ(k). (5.27)
Il serait possible de définir ici ’opérateur k en considérant la dérivée de N, par rapport & p, mais (k) possédant
un spectre discret en ji,, il n’est pas possible de définir k¥ = —i‘;—‘l’ : cette absence de continuité va rendre la

cosmologie quantique a boucles différente de 'approche de Wheeler et DeWitt, puisqu’elle brise une hypothése
du théoreme d’unicité de Stones-VonNeumann?, et cela apparait fondamentalement en raison de I'invariance de
fond de la théorie [52].
D’autre part, p étant un opérateur auto-adjoint, il est utile et plus facile de prendre la représentation dans
laquelle il est diagonal, et d’utiliser les fonctions ¥(u). L’action des holonomies est alors plus simple puisqu’elle
correspond a une translation, et p a une multiplication :

- kyh

No¥ (1) = ¥(p+ ), P (i) = == 1 (). (5.28)

Dans cette représentation, 'action de la contrainte hamiltonienne sur la partie cinématique n’a pas été encore

définie. L’opérateur k n’étant pas défini, on se rend compte en étudiant la contrainte donnée par I’équation
(5.6), qu'il va falloir exprimer F fb o k2 en terme d’opérateurs fiables, les holonomies.

5.3.2 Au niveau dynamique : corrections d’holonomie et d’inverse-volume

Les contraintes de Gauss et de Difféomorphisme étant vérifiées, il ne reste qu’a quantifier la contrainte hamil-
tonienne, et plus particulierement les termes en Ffb et £ en fonction des opérateurs de flux et des holonomies.

Correction d’holonomie

En raison de la géométrie du systeéme, on va considérer une %€ 0a
plaquette carré [J;; comme pour la figure Fig.(5.3.2), de longueur «
d’aréte . Par ce choix de configuration, apres avoir obtenu l'ex- <
pression de hp,;, il est maintenant possible d’exprimer simple- pim—1
ment Ffb en terme des holonomies ’
—2e%Q, Y (p)—1 °e%9,
L J h (1) h(.li) A Ja
" . hp, =1 Oeloe{) J J
Fjp=-2 lim Tr = T 220, (5.29) (
Arg—0 Arg y2 i)

oll Arp est laire de la plaquette, proportionnelle & p? et hg,; est

I’holonomie autour de cette plaquette 0_‘:9
€0,
ho,, = hy 'hy hjh;. (5.30)
L’aire minimale en gravité quantique & boucles n’est pas nulle Plaquette O,
mais Alfﬂ avec A = 4v/37, et la limite g — 0 n’est ainsi pas parallele & une surface du cube [54].

dans D’essence de la théorie mere. Une premiere approche a été

alors de considérer la limite y — VA qui correspond au to—scheme, mais cela présente des défauts comme le
fait que la densité maximale d’énergie possible évoluait avec le volume fiduciel. En fait, la définition de 'aire
donnée par ’équation (3.98) montre qu’elle doit nécessairement étre proportionnelle & p et donc au facteur
d’échelle au carré : les distances physiques évoluent elles-aussi en fonction de la dynamique de 'univers. Une
plaquette possede ainsi une aire Arp = p? - p, qui correspond & 'aire minimale : dans ce modele, tous les spins
sont identiques et valent j = % Dans cette nouvelle approche, appelée fi—scheme en anglais, la longueur d’une

arréte devrait donc plutot étre donnée par
_ A
fi= ,/5 L. (5.31)

3Le théoreme d’unicité de Stone-VonNeumann montre que pour un systéme de nombre fini de degrés de liberté, toutes les
représentations quantiques sont équivalentes.
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Cependant, ce choix est encore tres controversé et nous noterons en toute généralité
_ _3 1
p=06-p° avec f€ [—5, 0]. (5.32)

D’autre part, connaissant 'expression d’une holonomie donnée par I’équation (5.22), il est possible de calculer
hg,, en utilisant la définition (5.30). Apres quelques calculs faisant notamment intervenir les relations de I'algebre
su(2), on obtient la relation

Triry(hgi; — 1)) = =25 sin’ (uk). (5.33)
permettant de montrer que, dans la limite ou u — [, quelque soit la valeur de (3,
- i0 sm?(ﬂ\fﬂf)
Flywi) = et (U i) (5.3)

est un opérateur bien défini dans la théorie : F% fait ainsi intervenir des fonctions presque périodiques, comme
une composition de NV (k). Pour ce qui nous intéresse, il n’est pas utile de poursuivre plus loin dans la quanti-
fication de Ffb, et ce que I’on montre ici est que I'utilisation des holonomies en cosmologie quantique a boucles

a pour conséquence de donner un opérateur de connexion k£ comme étant un sinus cardinal. Au niveau effectif,
on va alors considérer les équations classiques (de la relativité générale), tenir compte des effets des opérateurs
quantiques par des corrections fideles, et en regarder les effets premiers. La premiere correction possible est la
correction d’holonomie qui consiste, comme on vient de le voir, & remplacer k selon

- sin(fivk

k— # (5.35)

wy

Correction d’inverse-volume

Au niveau quantique, I’équation de Wheeler-DeWitt correspondante peut s’écrire, en considérant ’hamilto-
nien de matiere,

A " EE sz@k) .
HY(u,¢o)=|(N — + Hpar | $(pu,¢) =0. 5.36
Le point souligné par cette notation est la définition de I'opérateur (N \/%) En effet, cet opérateur se

comporte comme 'inverse d’une densité de triades a une puissance quelconque, p~", et est dans la théorie mal
défini, notamment a la limite classique. Il est cependant possible d’utiliser une astuce pour quantifier cette
divergence [53, 55] qui consiste & utiliser I'expression de {A,V} donnée par 1’équation (3.89), et au niveau
effectif, le spectre obtenu pourra étre reproduit par une correction de la forme

a(p,dE)=1+p (%l)n +O(p, ), (5.37)

avec 3 et n des nombres positifs. Cette correction « est appelée correction d’inverse-volume et est considérée
comme étant la seconde des corrections majeures a apporter a la contrainte hamiltonienne, en faisant le rem-
placement

1 a(p,0F)

N )
VdetE vdetE

(5.38)

Commentaire

Il est ainsi possible de voir qu’a grande échelle, lorsque p est grand, I’évolution est celle de la relativité

générale, alors qu’au niveau du régime de Planck, p petit, les expressions des corrections vont amener des
différences qui vont encoder les modifications géométriques dues aux effets quantiques.
Par un traitement purement quantique, dans le cas de modeles résolubles avec rebond, il a été trouvé que la
fonction d’onde de I'univers donnée par une équation semblable & (5.36) pouvait se propager a travers ce qui
apparait classiquement comme la singularité du Big Bang, montrant que cette théorie quantique de la gravitation
pouvait étre définie dans le régime de Planck (voir figure Fig.(5.2)).

5.4 La Cosmologie Quantique a Boucles de maniere effective

Au niveau effectif, 'ajout de corrections dans les contraintes va nécessairement modifier I’expression des
équations du mouvement, et les observables en résultant vont par conséquent amener des modifications dans
la description du modele standard. Dans ce qui suit, on va surtout s’intéresser a la correction d’holonomie, et
dans une moindre mesure a la correction d’inverse-volume, afin de voir comment la dynamique est modifiée.
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F1G. 5.2 — Dans un univers k = 0, A = 0 en contraction puis en expansion, évolution d’une fonction d’onde de
l'univers dans le cas d’une quantification & la Wheeler-DeWitt (& gauche), et de la Cosmologie Quantique a
Boucles (& droite). [47]

5.4.1 Application des corrections d’inverse volume

Lorsque ’on considere la correction d’inverse-volume, on s’emploie a effectuer la transformation donnée par
Péquation (5.38), ce qui n’est possible que pour la contrainte hamiltonienne puisque les autres contraintes ne font
pas intervenir de terme en (detE)~™. On va ainsi pour la partie homogene modifier la contrainte hamiltonienne
de la gravité par une correction @, et de la matiere par une correction 7, telles que la contrainte totale s’exprime
selon

_ 1 _ _ =2
High rv[N] = o /V &>z N [—6%/131{:2 +2k (u;;g - ng(gp))} . (5.39)
0

Equations du mouvement

Les équations d’évolution des variables homogenes sont données de fagon similaire aux équations (5.12) a
(5.15), mais en raison de la dépendance des corrections en p(n), elles devront maintenant tenir compte des
dérivées partielles de ces corrections. Un calcul simple montre que dans ce cas

p=2pak — H=ak (5.40)

permettant de définir le parametre de Hubble modifié H = ak. Pour la matiére (un champ scalaire), on obtient

. T
G =i, (5.41)
p
telle que maintenant densité d’énergie et pression s’écrivent
V@), Pl V() (5.42)
=V—F = y— — .
ainsi que I’équation de Klein-Gordon*
N AN _
p+¢ <2ka - 1/> + prdzV (@) = 0. (5.43)
L’équation de Friedman, en temps conforme, s’écrit alors
oM K
— =0 Z=a-p 5.44
3N — H=agpp, (5.44)

et on voit que la correction d’inverse-volume, introduite comme un facteur multiplicatif pour la contrainte ha-
miltonienne gravitationnelle, agit en conséquence comme un facteur multiplicatif dans ’équation de Friedmann.
Conséquences cosmologiques des corrections d’inverse-volume

Si on raisonne en temps cosmologique, I’équation (5.44) s’écrit

)
H? zézgp:dg (‘p_ +V> (5.45)

et lorsque le facteur d’échelle est trés grand et sa dérivée non-nulle, la correction & étant proche de 1, on retrouve
bien la dynamique classique attendue. Lorsque 'on s’intéresse a I’échelle de Planck, le Big Bang n’est pas résolu.

4En anticipant sur la suite, lorsque I’on considére des corrections identiques pour la matiere et la gravitation, Q = 7 = @, on
obtiendra toujours des équations pour une variable X similaires & I’équation (5.43)

X+X<2H—g> +V(E©Q)-X=0
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5.4.2 Application des corrections d’holonomie

Lorsque l'on consideére la correction d’holonomie, on s’emploie & effectuer la transformation donnée par
l’équation (5.35). Seules les contraintes hamiltoniennes sont non-nulles et la contrainte totale s’écrira

o o (IR o (2 s ivie)

p2

0 _
Ht(ot),holo[N] (546)

2%

Par la suite, la correction d’holonomie va apparaitre dans de nombreux termes, et tout en conservant une
forme en sinus cardinal, on va utiliser dans le cas général la notation
. sin(nfivk) . .
k—K[n=———""" VneN, Kn=0]=k, (5.47)
npy
ou n est un entier pour que la correction puisse étre comme initialement décomposable sur une base N, =
exp [%,u’yk]. En utilisant ’équation (5.32), on peut montrer que

_Dpop
5.48
7 op (5.48)
et on définit les relations importantes pour la suite
_IOK[n - -
D 8}£ ] =3 (k- cos(nfivk) — K[n]) , (5.49)
ainsi que
K _
aaz{"] = cos(njivk). (5.50)
Ce terme allant intervenir constamment par la suite, on pose
Q = cos(2fvk), (5.51)

découlant majoritairement de I’équation (5.50).

Equations du mouvement
De méme que pour les cas précédents, il est possible de trouver des équations d’évolution pour les variables
homogenes similaires aux équations (5.12) & (5.15). Les variables étant fonctions de i = f(p(n)) et de k, il sera

nécessaire de tenir compte de leurs dérivées partielles, compliquant grandement les équations comme pour k,
mais heureusement les résultats se simplifieront aussi tres facilement. La modification n’étant perceptible que

sur p et 127 un calcul simple permet de montrer que
p=2pK[2] — H=K]2] (5.52)
permettant de définir le parametre de Hubble modifié H = K [2], et

X - K T2

k=kK[2] - - =. 5.53
2-55 (553)
Concernant la matiere, on obtient ~
T
p==, 5.54
7 (5.54)
et I’équation de Klein-Gordon possede la méme forme que classiquement,
¢+ 2K (2] +pos;V(p) =0, (5.55)

avec pour ces corrections, une modification qui n’est due uniquement qu’a I'expression de H. Dans cette équation,
comme celles que 'on verra plus tard pour les perturbations, on se rendra compte que les équations avec
les corrections d’holonomie seront trés proches de celles obtenues dans le cas classique, a la différence que
le parametre de Hubble aura une évolution différente au niveau de 1’échelle de Planck, et que des termes
supplémentaires apparaitront.

D’autre part, I’expression de la densité d’énergie correspond exactement a celle trouvée classiquement par
Péquation (5.17), et en utilisant sa définition (3.77), on peut montrer qu’il existe une premiére équation de
Friedmann® donnée par

K[1)* = = pp. (5.56)

5Lorsque p devient grand, i — 0 et K[1] — k = H.
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En utilisant ’équation (5.56) précédente et la définition (3.77) de la densité d’énergie & Paide de la dérivée de
la contrainte®, il est possible d’établir la seconde équation de Friedmann donnée par

e =2 = o (1- 2)), (5.57)
ou on a défini une nouvelle densité critique, p. s’écrivant
3 1
= —— ——. 5.58
P 2% (5:58)

Dans le cas ot p. — 400, on retrouve les équations classiques dans notre univers, pour lequel la densité d’énergie
est tres faible en comparaison de p., constante, valant

~10%" kg.m3. (5.59)

Pe = KY2A

Cette densité d’énergie critique dépend de la valeur du parametre de Barbero-Immirzi, et la dynamique de
I’univers observée va pouvoir ainsi contraindre sa valeur. Une des équations de Raychaudhuri tres utile pour la
suite est donnée en combinant les équations (5.49), (5.50) et (5.53)

dK [2]

H=—==K[2°-Q

% (5.60)

et il est aussi possible de voir que
0=1-272 (5.61)

s’annulant lorsque p = p./2.

Conséquences cosmologiques des corrections d’holonomies

Les corrections d’holonomies, par rapport aux corrections d’inverse-volume, vont amener un scenario plus
novateur, ayant la possibilité d’éclaircir certains points obscures du modele standard de la cosmologie. Les points
essentiels sont :

1. Pexistence d’un grand rebond, Big Bounce en anglais.

L’équation de Friedmann modifiée (5.58) est une des ’révolutions’ engendrées par la cosmologie quantique
a boucles. En effet, le terme de droite gp est toujours positif, impliquant en relativité générale que a
n’est jamais nul : I'univers soit s’étend pour toujours a partir du Big Bang, soit se contracte jusqu’au
Big Crunch. Mais dans 1’équation (5.58), @ peut en plus devenir nulle lorsque p = p. engendrant ainsi
I’apparition d’un rebond quantique : dans le passé de cet évenement, I'univers se contracte tandis que
dans le futur il s’expand. Une force répulsive est ainsi créé et va avoir comme conséquence de 'repousser’
la matiére en amenant un univers en expansion, comme illustré par la figure Fig.(5.3). Cette force est
ainsi due a la nature quantique de la géométrie. En cosmologie quantique a boucles, il est alors possible
d’obtenir une succession de ces phases de contraction et d’expansion, et pourquoi pas d’obtenir un univers
dit cyclique, sans singularités.

Une curieuse analogie peut étre faite avec ce qui se passe lors des effondrements des étoiles sur elles-mémes :
lorsque le noyau approche une certaine densité critique, une nouvelle force répulsive entre en jeux stoppant
I’effondrement et menant alors aux étoiles & neutrons et aux naines blanches, stables. Cette force est une
conséquence de la statistique de Fermi-Dirac et elle est associée a la nature quantique de la matiere.

Ce phénomene n’est rendu possible qu’a cause du signe négatif présent dans le terme correctif. Cette
résolution de la singularité n’est pas triviale puisque par exemple, en théorie des branes, ’équation de
Friedmann recoit elle aussi une correction en p?, mais elle est accompagnée d’un signe positif ne permet-
tant pas au bounce de se produire. On peut aussi voir qu’a cause de la fonction sin(k), la courbure k peut
étre infinie sans que les équations ne divergent, permettant ainsi d’avoir une théorie effective bien définie
au niveau du rebond.

D’autre part, une telle résolution d’une singularité ne contredit pas les théoremes standards sur les sin-
gularités élaborés par Penrose et Hawking. En effet, ces théorémes ne sont pas applicables en cosmologie
quantique a boucles car les équations d’Einstein classiques sont modifiées par les corrections dues a la
géométrie quantique dans la théorie. Il en va de méme pour les théoremes plus récents dus a Borde, Guth
et Vilenkin [48] : ils ne référent pas aux équations d’Einstein mais sont motivés par le scenario d’une
inflation éternelle. Cependant, en cosmologie quantique a boucles, la phase pré-Rebond de contraction ne
permet plus un tel scenario. Les différents travaux sur la résolution des singularités dans cette théorie
[49, 50] pourraient montrer que de telles théorémes existeraient aussi en cosmologie quantique & boucles.

6Dans notre écriture, il faut diviser cette définition par Vy pour ne pas avoir de référence & la cellule fiducielle.
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2. lexistence d’une phase d’inflation naturellement présente : en considérant 'univers primordial constitué

d’un champ scalaire, puisque c’est le modele le plus simple que l'on puisse construire, I’évolution sera régie
par I’équation de Klein-Gordon

¢+ 2K [2]p + pOsV (p) = 0, (5.62)

et se fera de concert avec le fond a cause du parametre de Hubble. Cependant, dans le scénario précédent,
I'univers avant le bounce était en contraction, H = K[2] < 0 va alors jouer comme un terme d’anti-
friction : quelles que soient les conditions initiales pour le champ, la dynamique engendrée par le fond
va nécessairement le faire monter sur son potentiel, possiblement assez haut. Dans la phase d’expansion,
le terme comportant le parametre de Hubble va jouer de nouveau un réle de friction, et on pourra alors
retrouver un comportement slow-roll pour ce champ qui, suivant sa valeur au moment du bounce, pourrait
engendrer une longue phase d’inflation. L’inflation est alors naturellement engendrée par un champ scalaire
qui redonne, apres le rebond, le comportement décrit dans le modele standard de la cosmologie, et ce,
sans qu’il ne soit nécessaire de recourir a des conditions initiales artificielles. Le scenario d’un tel champ
scalaire est appelé scénario en aileron de requin, ou shark fin scenario, et son évolution est donnée
par la figure Fig.(5.4).

10"3 secondes
Rayonnement cosmologique fossile

10 secondes
Premiéres galaxies

GRAND REBOND

Univers préexistant
.

1038 seconde
Inflation quantique

107 secondes
Aujourd'hui

F1a. 5.3 — évolution de l'univers & travers un rebond ((©Bruno Bourgeois).

quantum slow—roll reheating

bounce 21 inflation

mt

10 2 30

domain of the standard cosmology

_1t

F1a. 5.4 — évolution du champ scalaire en fonction du temps dans un univers en rebond [56)

La physique étant différente a 1’échelle de Planck, on peut s’attendre a ce que les effets quantiques en-

gendrent des modifications observables. La discrétisation de 1’espace-temps et une nouvelle description de la
physique proche d’une pseudo-singularité sont les deux caractéristiques importantes d’une théorie quantique de
la gravitation qui permettraient de penser a de nouveaux effets possibles que I’on pourrait tester.
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5.5 Les effets possibles observables

L’énergie de Planck ( 1019GeV) est de 15 ordres de grandeur au dessus des capacités des accélérateurs actuels
de particules, et d’environ 8 ordres de grandeur par rapport a la plus énergétique des particules observées du
rayonnement cosmique. La longueur de Planck est de 20 ordres plus basse que le rayon d’un proton, et en terme
de temps de Planck (10~%%s), de plus de 20 ordres de grandeur au dela de la précision donnée par les horloges
atomiques disponibles. Des expériences directes en laboratoire sont donc inenvisageables pour tester les effets
quantiques recherchés. Cependant, grace a la cosmologie et ’astrophysique mettant en jeu des phénomeénes
de tres hautes énergies, comme les supernovae, trous noirs et autres objets exotiques, il est éventuellement
envisageable d’étudier leurs caractéristiques pour en tirer des informations sur leur possible structure quantique.

Les sursauts gamma : brisure de l’invariance de Lorentz ?

On vient de le voir, dans une théorie quantique de gravitation, on s’attend a ce que I’espace-temps ait une
forme granulaire, fait de quanta de volume a I’échelle de Planck. Il a été émis I'idée qu’en ce propageant sur
cette structure granulaire, les rayons lumineux, de longueur d’onde A, devaient étre eux aussi affectés par ces
effets quantiques, méme s’ils ont un impact extrémement faible. Pour ces rayons lumineux, A ~ 1072 m et
on peut naturellement s’attendre & ce qu’ un effet quantique ait une action lpignck/A ~ 1023 plus faible sur
ces longueurs d’onde. Cependant, une supernova émettant un sursaut gamma se situe a une distance d’environ
10%°m de nous, soit 1037 longueur d’ondes, donnant la possibilité aux effets quantiques d’agir éventuellement
suffisamment longtemps pour modifier la propagation de ce rayon lumineux, et ainsi étre visibles. Il a notamment
été postulé dans certains modeles [57] que la relation de dispersion pour des photons serait modifiée selon

E E?
1+ Xm + O <E2>] N (563)

planck

2p? = E?

avec x de 'ordre de I'unité, et E = hr 'énergie d’un photon de fréquence v. Suivant cette relation, des photons
de différentes énergies et donc de différentes longueurs d’onde devraient arriver a des temps différents dans un
détecteur. Un léger retard dans larrivé des photons a été observé [58] pour la supernova GRB 050910, mais
les mécanismes mis en jeu pour les phénomenes astrophysiques, comme les supernovae ou les étoiles a neutron
responsables de sursauts gamma, ne sont pas connus précisément et il reste encore beaucoup de libertés possibles
dans la compréhension de ces objets. Ainsi, ces photons ont pu étre émis au centre de I’objet et n’en sont sortis
qu’a des temps différents a cause de mécanismes internes, amenant un décalage dans l'ordre d’arrivée. Cette
idée sur la modification de la relation de dispersion est tres arbitraire et ne peut pas se déduire rigoureusement
de la théorie mére. Dans le cas d’un toy model [59] en cosmologie quantique & boucles, des calculs similaires ont
été effectués, et le résultat attendu est de méme une modification de cette relation de dispersion, telle que pour
une onde polarisée de fréquence v et de nombre d’onde k

ve ~ k(1 F 2xlptanck |k]) + O(K?). (5.64)

La correction apportée dépend dans ce cas du signe de I’hélicité de I’onde donnant a I’espace-temps quantique
un aspect biréfringent. Par rapport a la relation (5.63), I’équation (5.64) est plus restrictive puisqu’elle fait
intervenir en plus la polarisation de ’onde, et donc contraint mieux les effets quantiques. Si ce modele s’avére
théoriquement correcte, il est déja invalidé par les mesures faites en radioastronomie pour lesquelles 1’étude
de sources radio [60] émettant des ondes polarisées dans un large panel de longueur d’onde a montré que la
polarisation ne change pas avec la longueur d’onde, impliquant y < 10~3. Paradoxalement, dans ce modele, les
équations de Maxwell apparaissant ne sont pas invariantes de Lorentz, et il faudrait le raffiner pour vraiment
en avoir une meilleure compréhension.

La brisure de l'invariance de Lorentz est un sujet longuement débattu. Il existe cependant des arguments en
sa défaveur, apportés notamment par Carlo Rovelli [13] : si un observateur mesure la longueur minimale de
la théorie, alors un autre observateur subissant un boost devrait mesurer une longueur plus petite a cause des
contractions de Lorentz, et cela rendrait la théorie quantique incohérente. Cependant cette réflexion ne tient
justement pas compte des enseignements de la mécanique quantique : ce ne sont pas les valeurs propres du
spectre de I'opérateur de mesure qui devraient subir les contractions de Lorentz, mais leurs valeurs moyennes.
Le spectre étant alors inchangé, 1’existence d’une valeur minimale ne brise ainsi pas l'invariance de Lorentz.
A Theure actuelle, si cette brisure devait se produire, il n’y en a pour le moment aucune évidence, et il est
nécessaire de chercher un autre moyen d’observer les effets quantiques.
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Les perturbations cosmologiques

L’étude des sursauts gamma, méme si potentiellement intéressante, n’est pas suffisante pour contraindre le
modele. Nous allons plutot nous intéresser a ce qui s’est passé lorsque 'univers était dans un état de tres haute
énergie, a I’ere de Planck durant laquelle les effets quantiques ont pu vraiment dominer et modifier 1’évolution
que l'on connait habituellement. Aujourd’hui, ces effets sont potentiellement observables par 1’étude du fond
diffus cosmologique, et nous allons surtout nous focaliser par la suite sur les perturbations qui encodent en fait
le passé de notre univers.

F1a. 5.5 — Fond diffus cosmologique attendu par le satellite PLANCK.
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Chapitre 6

Les perturbations cosmologiques

A Torigine, il y a le silence. Un seul point de lumiére au centre de la table. Puis au premier cube
posé, la basse se met en route. La gimmick démarre. Et au fur et & mesure qu’on ajoute des cubes
et des étoiles, un monde sonore entre en vie. Un coeur bat, des connexions s’établissent. Une galaxie
est née.

Arthur de Pas, Reactable

6.1 Introduction

Dans le modele cosmologique actuel, notre univers a subi une phase inflationaire primordiale I’ayant rendu
homogene en grande partie, et qui est paradoxalement & 1’origine des inhomogénéités observées. Une explication
plausible quant a l'origine de la formation des structures au sein de l'univers serait l'apparition de petites
perturbations dans le champ d’inflaton, qui auraient crit au cours du temps pour initier ces structures : une fois
I’univers arrivé dans la phase de domination par la matiere, les inhomogénéités, de 'ordre de LGN 1075, auraient
été amplifiées par effondrement gravitationnel et ont put ainsi former les structures actuellement observables.
Ces perturbations quantiques dans le champ de matiere ont eu des conséquences sur la métrique, et les équations
d’évolution de ces perturbations sont alors données par les équations de la relativité générale. Généralement, dans
toute théorie linéaire des perturbations cosmologiques, la croissance de ces petites inhomogénéités de matiere,
de longueur d’onde plus petite que le rayon de Hubble (A < H~1), est donnée par une équation newtonienne en
temps cosmologique!

d? d o k? K
olt v? = g—i est le carré de la vitesse du son dans le milieu, et ou les perturbations ont été écrites sur une base
d’onde planes
op 1 / 3 o
—(z,t) = d°k oz, e, 6.2
@)= - (6.2)

Une des propriétés les plus utiles de I'inflation, en dehors de la résolution des différents problemes cosmologiques,
est la génération des spectres de densité de perturbations en température, mais aussi en polarisation permettant
de sonder les effets des ondes gravitationnelles (avec le mode B). Durant l'inflation, la longueur d’onde d’une
fluctuation quantique devient plus grande que le rayon de Hubble et son amplitude devient alors ’gelée’ a
cause de la perte de causalité entre les différents modes. Cela se verra par le terme de friction H P qui devient
dominant. De plus, selon la théorie quantique des champs, un espace vide n’est pas totalement vide et possede
une énergie : il est rempli de fluctuations quantiques de tous les champs possibles et de toutes longueurs d’onde
possibles, et Uinflation va successivement geler les différents modes. Une fois I'inflation terminée, le rayon de
Hubble en croissant plus vite que le facteur d’échelle, des modes vont ré-entrer dans le rayon de Hubble : cela
se produit durant les périodes de domination par la matiere ou le rayonnement, générant les perturbations de
matiére (et de température) observées dp via ’équation de Poisson. Leur spectre de puissance va ainsi posséder
une signature distincte de 'inflation, que 1’on peut observer par 1’étude du fond diffus cosmologique. Ainsi, pour
comprendre l'existence des structures de 'univers a travers le scénario de l'inflation, il faut retenir que
— les fluctuations quantiques du champ d’inflaton sont excitées durant l'inflation et étirées jusqu’aux échelles
cosmologiques,
— ces fluctuations, par les équations de la relativité générale, vont induire des perturbations sur la métrique
qui vont de méme étre portées jusqu’aux échelles cosmologiques,

1Rappel : la convention prise dans ce manuscrit est d’utiliser = = Oy , la dérivée en temps conforme.

81
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— la gravité agit comme un 'messager’ puisqu’elle communique aux baryons les perturbations générées par
un mode qui est devenu plus petit que 1’échelle de ’horizon une fois I'inflation terminée. Les photons,
jusqu’au moment du découplage, vont interagir avec la matiére et contenir eux-aussi cette information
sur les perturbations. Observer les photons du fond diffus cosmologique permettra alors de contraindre
I’évolution des perturbations durant ’inflation.

Les équations considérées par la suite étant similaires, nous allons commencer par regarder I’exemple des per-
turbations pour un champ scalaire, et introduire ensuite les différents types de perturbations de la métrique
ainsi que les spectres de puissance correspondant.

Nous nous sommes basés sur les références [26] et [61] ol tous les calculs présentés ici peuvent y étre trouvés,
ainsi que celles vues au chapitre Chap.4.

6.2 Invariance de jauge

En relativité générale, choisir une jauge consiste a choisir un systeme de coordonnées, et donc un choix de
paramétrisation des hypersurfaces spatiales. Une transformation entre deux choix de coordonnées est appelée
transformation de jauge et est donnée par la dérivée de Lie correspondante. En physique, on est souvent
intéressé par des quantités seulement dépendantes des caractéristiques physiques du systeme, et non pas du
choix de mesure de 'observateur. On parle alors de quantités invariantes de jauge.

Dans le cas d’'un changement infinitésimal de coordonnée généré par un champ de vecteur &

at — ot =t + (), (6.3)
une quantité ( quelconque sera transformée au premier ordre selon
Q =Q+LenQV, (6.4)
et toute quantité invariante de jauge doit alors satisfaire la condition
LenQ© = 0. (6.5)

Ce résultat est connu sous le nom de Lemme de Stewart-Walker. Comme on le verra par la suite, il en existe une
infinité puisque toutes combinaisons de quantités invariantes de jauge donnent aussi des quantités invariantes
de jauge. En cosmologie, on souhaite comparer deux espace-temps proches : celui donné par la métrique FLRW
et celui perturbé. Le meilleur moyen est donc d’obtenir ces quantités invariantes de jauge, et pour ce faire, il
existe deux fagons possibles de procéder :

— Soit on identifie les combinaisons des perturbations qui donnent des quantités invariantes de jauge :
I'inconvénient est de devoir passer souvent par des difficultés techniques importantes, mais les résultats
seront physiques,

— Soit on choisit une jauge dans laquelle on fait les calculs : plus simple pour les calculs, mais des libertés
de jauge non physiques peuvent apparaitre et ne pas permettre une bonne compréhension des résultats.

Dans la suite, nous allons utiliser la premiere facon et obtenir directement ces quantités par une méthode
canonique. Nous allons cependant regarder auparavant qu’elles sont leurs expressions habituelles en cosmologie
et voir leur sens physique, et leur évolution sera obtenue a partir des équations du mouvement des perturbations.

6.3 Fluctuations quantiques d’un champ scalaire durant I’inflation

On va s’intéresser a ’évolution des perturbations d’un champ scalaire quelconque x, dans le cadre d’une
évolution de type inflationaire, et obtenir ainsi les définitions des différents vides que ’on va rencontrer.

champ scalaire non massif durant une inflation de De Sitter
On s’intéresse au cas d’un fond de De Sitter, a ~ et ot H; est constant. La résolution des équations étant

plus simple dans ’espace de Fourier, on va regarder les modes de Fourier du champ scalaire x, définis selon

3
§X(X,t)=/ (;lr)l;meik'xéxk(t). (6.6)

La dynamique d’un champ scalaire dans la métrique FLRW étant donnée par ’équation (4.26), les variables
dans ’espace de Fourier auront leur évolution dictée par I’équation analogue

& et 30 L+ e = 0 (6.7)
dr2 Xk dt Xk ) Xk =Y, .

dont une étude qualitative permet de montrer que
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— pour des longueurs d’onde & I'intérieur de I’horizon A < H~!, le nombre d’onde correspondant satisfait
la relation k& > a H. Pour ces modes, il est alors possible de négliger le terme de friction 37—(%5)(1{ tel que

d? k2
—0Xk +

i i = 0. (6.:8)

a?
Cette équation du mouvement est similaire & celle d’un oscillateur harmonique dont la fréquence va varier
avec le temps & cause du terme en a?, et dont les solutions donneront des fluctuations qui devraient osciller
pour des modes a l'intérieur de I'horizon.

— pour des longueurs d’onde plus grandes que 1’échelle de I’horizon, A > H~!, le nombre d’onde correspon-
dant satisfait la relation k < a H et le terme k?/a? peut étre négligé tel que

@ ) H d Oxk =
a2 Xk +3 pr Xk =0, (6.9)
montrant que des modes superhorizons doivent étre constants (% xx ~ < — 0).
En résumé, il est donc possible que des modes de longueurs d’ondes A ~ a/k, initialement a U'intérieur de
I’horizon, oscillent jusqu’a ce qu’ils atteignent une taille de 'ordre du rayon de Hubble, et se figent ensuite.
D’autre part, en se plagant en temps conforme, le facteur d’échelle devra évoluer en conséquence selon

1
a(n) = — < 0). 6.10
() == (1<0) (6.10)
Dans cette formulation, il est possible de ramener Iéquation (6.7) & une équation de type Schrodinger en
effectuant le changement de variable

Uy
Oy = —X 11
Xk == (6.11)

tel que le champ lié uy, évolue selon

e + <k2 - Z) uie = 0. (6.12)

L’équation (6.12) correspond a une particule d’énergie E(k) = k2 dans un potentiel effectif dépendant du temps
de la forme V() = & = 2 et se déplacant dans un espace plat. Il est alors possible de formuler son action selon

a n?
1, 1 7
Sk = / dn [zui -3 (k2 - Z) ui} : (6.13)

qui est l'action d’un simple oscillateur harmonique de masse % évoluant dans le temps, et de relations de

commutations canoniques
Uy - Opux — Uk - Opuge = —i. (6.14)

Pour un mode k fixé, on voit que dans différents régimes dépendant de la valeur de a(n), 'équation (6.12)
va donner différentes solutions, et ce mode pourra étre caractérisé par la donnée de |kn| puisque

= —]4;77, (615)

Plus précisément, ce mode correspondra

1. & un mode subhorizon k > aH; lorsque |kn| > 1, et ’équation (6.12) se simplifie en
it + k2uge = 0, (6.16)

de solution une onde plane

e*ikn
V2k
Cette solution (6.17) est la solution correspondant & un vide de Minkowski, c-a-d pour un espace plat,
ce qui est plutot cohérent, puisqu’a la limite ultraviolette, pour des longueurs d’onde plus petites que
I’échelle de I'horizon, on s’attend a ce qu'un espace-temps plat soit une bonne approximation, et donc que
les modes ayant cette taille oscillent a I'intérieur sans empreinte de courbure.

Uk =

(6.17)

2. & un mode superhorizon k < aH; lorsque |kn| < 1, et "équation (6.12) se simplifie en

e — guk =0, (6.18)
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de solution

ux = B(k)a(n) (k< aH;). (6.19)
La constante d’intégration B(k) s’obtient par la continuité des solutions des modes sub et superhorizon,
telle que

H;
|uk| ~ pour des modes superhorizon. (6.20)
V2k3
On vient de voir qu’il était possible de caractériser par des arguments heuristiques la solution pour tous les
modes, mais il existe néanmoins une solution analytique & ’équation (6.12),

I PP 6.2
= (1+1). 21
=" ( ,m) (6.21)

Cette solution correspond au vide de Bunch-Davies et redonne dans les différentes limites les solutions
obtenues précédemment. Par la suite, nous déciderons de prendre comme condition initiale pour la perturbation
du champ, soit un mode correspond & un espace plat (comme maintenant) et donc un vide de Minkowski, soit
de prendre un vide de Bunch-Davies correspondant a I'absence de particules dans un espace de type De Sitter,
comme dans le cas de 'inflation.

Champ scalaire massif durant une inflation de De Sitter

Il est de méme possible de refaire une analyse similaire dans le cas cette fois-ci d’un champ scalaire de masse
m, et de potentiel V(x) = %miXQ, qui est plus intéressant. L’équation de Klein-Gordon issue de 1’équation
(4.26) est alors donnée comme ’équation (6.12) selon

i + [k2 + V()] we =0, (6.22)
ou V(n) est le potentiel effectif de la particule qui tient compte de mi, et tel que pour une évolution de De
Sitter

2 2\ 2 L (m?
Vn) = (mX — 2’Hi) a“(n) = 7z 2] (6.23)
n* \H;
En notant

9 m?
Vi = (4 - H’g) , (6.24)

léquation (6.22) peut se réécrire sous la forme

1 1
. 2 2
Uk + |:k - ? (VX — 4>:| Uk = O7 (625)
dont la solution générique pour v, réelle s’écrit [62] comme combinaison linéaire de fonctions évoluées
we = V=7 [e1 (k) HED (<) + ca (k) HP (—kn)| (6.26)

ou H, l(,i) et H l(,i) sont respectivement les fonctions de Hankel du premier et second ordre. Si de plus, on impose
que dans le régime ultraviolet k > aH (—kn > 1) telle que la solution corresponde & une solution en onde plane
e~ /\/2k comme on l'attend & tres petite échelle, alors avec

2 e . 2 (e =
HVY (23> 1) ~ 4/ — 8% 5) H@ (2> 1)~y | — e (5% F), (6.27)
X T X T

ca(k) =0cet c1(k) = @ eilxts)s par la condition de wronskien. La solution exacte devient alors

e = g eilnt+3)s \/anéi)(f]m)’ (6.28)

et avec

HV(x < 1) ~ \/2/me™F 2773 (Eg;%) xTx, (6.29)

les modes superhorizon sont donnés par

Hk k 2 7 Vx )
[0xK| =~ modes superhorizon. (6.30)
VK3 \aH;

ol Hy, est la valeur du parametre de Hubble quand un certain mode k sort de I’horizon. Par analogie avec la
définition des parametres de slow-roll, on définit pour ce champ un parametre n, = (mi /3HZ) < 1, tel que

3
5~ Vx (6.31)

qui rendra compte de 1’évolution de 'amplitude du spectre.
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Définition du spectre de Puissance

L’équation (6.22) est linéaire et correspond donc a celle d’un champ libre. Les observables associées au champ
sont donc toutes déterminées par sa fonction de corrélation a deux points, i.e. toute I'information se trouve dans
le spectre de puissance défini non plus en prenant la moyenne sur les configurations classiques < xxx_x >, mais
en prenant la valeur moyenne quantique < 0|xkX—-x|0 >. Dans les modeles d’inflation & un champ, le spectre
primordial a donc nécessairement une statistique gaussienne puisqu’il n’y a pas de corrélations non-aléatoires
entre les fluctuations des différentes longueurs d’onde.

Il est nécessaire avant tout d’identifier I’état du champ |0 > & considérer, et les modes associés solutions de
léquation (6.22). Une des forces de l'inflation est que son autocohérence impose le choix de I’état |0 > puisque,
pour les temps 7 tels que |kn| > 1, i.e. pour les échelles k & l'intérieur du rayon de Hubble, le terme dépendant
explicitement du temps dans I’équation (6.22) est négligeable et il existe alors des solutions, de norme positive
asymptotiquement, de la forme e~ **" dans ce régime. Les quanta créés par les opérateurs de création associés
a ces modes se comportent alors comme des particules sans masse habituelles. Si ces modes contiennent n
particules a ces temps, alors en remontant dans le passé 1’énergie des fluctuations du champ diverge comme
n/a* et dépasse rapidement celle du champ classique homogene Y : les conditions de réalisation de I'inflation
cessent d’étre vérifiées. L’état du champ 4 est donc nécessairement le vide associé aux modes solutions de
'équation (6.22), vérifiant la condition aux limites u o e=**" pour |kn| > 1 [63], et ces solutions peuvent étre
exprimées a l’aide des fonctions de Hankel.

La composante k du champ x peut se décomposer sur des opérateurs de création et d’annihilation aL et ax

Xie = xr(m)an + xi(mal (6.32)
vérifiant la relation de commutation canonique
et ou
[ak,a,q =1 (6.34)
Par convention, on choisit de définir le spetre de puissance tel que pour un vide donné
k2 . sin(kr
OG0 = [ e = [ a2 p (6.35)
permettant d’obtenir ’expression pour ce spectre
k3 9
Py (k) = 5 Ixxl™ (6.36)

Plus rigoureusement, dans un fond quasi De Sitter

~ Durant l'inflation, le parametre de Hubble n’est pas exactement constant mais change avec le temps selon
H = —¢ H? (expansion quasi De Sitter), ot € est le parametre de slow-roll. Pour une telle évolution du fond,

pour de faible valeur de e,

1 1 a 1
= ———— —~ — (2 . .
a(n) Hnd =0 et il (24 3e) (6.37)

En posant m2/H? = 3n, et en considérant de faibles valeurs de 7, et €, on pose

3
=g +e—1)y. (6.38)

Les modes superhorizon étant quasiment gelés, il est intéressant pour connaitre les caractéristiques de I'inflation
de regarder ces modes, donc des échelles de distances plus grandes que celle de I'horizon. Leur spectre est alors

donné selon ) -
_ H k T
Pox (k) = (%) (aH) : (6.39)

On définit I'indice spectrale ns, indiquant justement comment la pente du spectre évolue

dln Py
Ney — 1 = Tn kX =3—-2uy =21, — 2e. (6.40)

On peut voir que dans le cas d’un spectre en inflation slow-roll, il est quasiment invariant d’échelle, avec
seulement une faible pente (tilt en anglais) influencée par la masse du champ ainsi que par l'inflation via le
parametre €, et on remarque que Pamplitude des fluctuations des modes superhorizon ne dépend (presque) pas
de la valeur de la fluctuation lorsque ce mode sort de I'horizon et devient gelé.
On parle de

— spectre bleu si ns, > 1 (le plus de puissance est dans la zone ultraviolet)

— spectre rouge si ns,, < 1 (le plus de puissance est dans la zone infrarouge)
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6.4 Les perturbations de la métrique

Le champ d’inflaton étant un champ scalaire, il va subir des perturbations lors de l'inflation suivant le
scenario précédemment esquissé, époque ot on le considére comme dominant par rapport aux autres compo-
santes possibles. Il va induire des perturbations dans le tenseur énergie-impulsion et donc dans la métrique, et
réciproquement via les équations d’Einstein, des perturbations dans la métrique vont induire des perturbations

dans la matiere. .
d0p = 01}, <= |0Ru, — 55 (9uwR)| =81G6T,, <= dgu- (6.41)

On va s’intéresser aux quantités qui seront invariantes de jauge puisqu’elles représenteront les degrés de
liberté physiques du systeme. En relativité générale, il existe 6 degrés de liberté qui vont se répartir dans les
perturbations. On va ainsi considérer

1. les perturbation du champ de matiere, U'inflaton, telles que p(x,t) = @(t) + do(x, t)

2. les perturbations de la métrique g, = gu» + dg,, pPouvant étre décomposées selon

— des perturbations scalaires possédant 2 degrés de liberté scalaires,

— des perturbations vectorielles possédant 2 degrés de liberté vectoriels et apparaissant lorsque les
champs présentent de la vorticité : ce n’est pas le cas avec le champ d’inflaton,

— des perturbations tensorielles possédant 2 degrés de liberté tensoriels, qui sont les vrais degrés de
liberté de la métrique en ce sens qu’ils sont présents méme lorsque I'on considére un espace vide.

On va considérer par la suite des perturbations au premier ordre, donc linéaires, et chaque type de perturbations
va alors évoluer indépendamment des autres : les équations vont étre découplées, et on va pouvoir étudier chaque
type de perturbation séparément. Bien sir, cela n’est vrai que jusqu’a un certain point et il faudrait considérer,
pour étre plus rigoureux, une interaction aux ordres suivants entre les différentes perturbations.

6.5 Les perturbations scalaires

Dans le cas des perturbations scalaires (¢, B, 1, E), la métrique perturbée s’écrit sous la forme suivante

ds* = a*(n) [-(1+2¢)dn® + 2B;dnda’ + (1 —2v)6;; + Ey;) da’ da’], (6.42)
avec .
Eij = 281'8]‘E, ou encore Eij = <816] — g 6ij V2> E, (643)
et
B; = 0,B. (6.44)
Les équations étant plus simples dans I’espace de Fourier, il est utile pour la suite de noter que
E;; =— <k2j) k’E, ouencore E;; = (3’ — kzj) E, (6.45)
et
ki
B; = —ZEB. (6.46)

Sous une transformation de jauge

Lorsque 'on s’intéresse aux perturbations scalaires, le champ de transformation de jauge £# que I’on considére
est composé uniquement de scalaires, £ et £° tels que

& = (€°,0%). (6.47)

Sous un changement induit par £, on peut montrer que les perturbations scalaires se transforment selon

6 = ¢+ + Zfo, (6.48)
B = B-¢ +¢ (6.49)
$ o= ¥ - =& (6.50)
E = E+¢, (6.51)
et pour le champ d’inflaton s
Sp =0dp+p&°. (6.52)

Connaissant leur évolution sous une transformation infinitésimale, il est facile ici de combiner les différentes
perturbations afin d’en tirer des quantités invariantes de jauge Q = Q.
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Quantités invariantes de jauge
Les potentiels de Bardeen

En étudiant les équations (6.48) & (6.51) avec (6.52), on définit des potentiels invariants de jauge, les po-
tentiels de Bardeen [64] sclon

{>:¢+%%{(B—E’)a}, (6.53)

\Il:w—g(B—E), (6.54)
concernant la métrique, et de méme pour la matiere
5o = G 4 & (B _ E) 7 (6.55)
avec la perturbation de la densité d’énergie invariante de jauge donnée par

50D = §p + p (B - E) ‘ (6.56)

La perturbation de courbure comobile R

La courbure intrinseque d’une hypersurface spatiale 3 de temps conforme 7 constant est donnée par
4
GR = ?VQ ¥, (6.57)

ou v est généralement appelée perturbation de la courbure. En considérant une transformation de jauge
nous faisant nous placer sur I’hypersurface d’un observateur comobile, I'expansion étant isotrope et le flux
d’énergie mesuré par cet observateur étant nul, on choisit d¢com = 0 telle que

R =1+ Hif (6.58)

est invariante de jauge. Cette variable est appelée la perturbation de courbure comobile R et représente
le potentiel gravitationnel sur une hypersurface comobile ot d¢ = 0 (R est reliée & ¢ et dip)

R = 1/)|5¢:0 : (6.59)

La perturbation de courbure sur des tranches d’espace de densité d’énergie constante (

Dans le cas ol on se place sur une hypersurface telle que la densité d’énergie mesurée est uniforme, sans
perturbations dp = 0, alors la quantité

=1+ H%p (6.60)

est la la perturbation de courbure sur des tranches d’espace de densité d’énergie constante (, elle
aussi invariante par construction, et elle représente de méme le potentiel gravitationnel pour des hypersurfaces
de densité d’énergie uniforme (¢ est reliée a ¥ et dp)

¢ =Vlsp0- (6.61)

Les variables de Mukhanov-Sasaki

Si on choisit une jauge telle que par ce choix, on se situe sur une hypersurface spatiale plate, donc sans
courbure g = ¥ + HoT = 0, alors la quantité

¢ _ ¢

=0+ —¢ = —

Q=199 Hw o

est la perturbation du champ d’inflaton dans cette jauge, invariante par construction, appelée v la variable de
Mukhanov-Sasaki [65] [66] sous sa forme

R (6.62)

v=aQ =+pQ. (6.63)
Elle représente le potentiel de I'inflaton sur des hypersurfaces spatiales plates.
Q= 5¢|5¢:0 : (6.64)

Les fluctuations quantiques du champ d’inflaton sont étroitement liées aux perturbations de la métrique,
non seulement a cause des équations d’Einstein, mais aussi par soucis de I'invariance de jauge. Il n’existe en fait
qu’'un unique degré de liberté possible pour le cas des perturbations scalaires, donné par la combinaison de dp
et de ¥ : en jauge longitudinale quand £ = B = 0, il existe une contrainte ¥ = ¢, diminuant de 1 le nombre
de degré de liberté. Ce degré de liberté physique est ainsi donné par I'une ou 'autre des quantités invariante de
jauge précédentes, dont il faut étudier le spectre pour en tirer des conséquences physiques.
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Spectre de puissance primordial pour les perturbations scalaires

Lorsqu’un mode sort de 1’horizon, il devient gelé. Cependant, 1’horizon croit avec le temps et un tel mode
peut alors tres bien ré-entrer et générer des perturbations qui sont transmises aux baryons et aux photons par
I’action de la gravité : par exemple, une perturbations du potentiel gravitationnel induit une perturbation dans
la densité d’énergie grace a I’équation de Poisson

V2 = 4nGp. (6.65)

Avant le découplage, les photons interagissent énormément avec la matiere et les perturbations vont alors
se communiquer aux photons. Cela va induire une distribution anisotrope de la température de ces photons,
dont la perturbation de température 6T /T est reliée & la perturbation du potentiel gravitationnel. Le spectre
en résultant est actuellement treés bien mesuré et son étude permet de tester les modeles qui ont prédit une
forme particuliere dépendant des parametres cosmologiques. C’est une des manieres privilégiées de tenter de
comprendre 'histoire de 'univers, et d’en tirer les valeurs des parametres dans le cadre du modele standard de
la cosmologie, le modele A-CDM.

Les équations d’évolution pour les perturbations

En utilisant les équations d’Einstein pour les potentiels de Bardeen (6.53) précédents et dans le cas d’un
champ scalaire comme matiere, les équations du mouvement concernant la métrique sont données par

. .. . . oV

b +H (2111 + «1>) Ty (H n 2H2> = g (<p5<p6‘f - pwa@m) : (6.66)
. K ¢ -GI -2 —av GI
+H- b = g@égoGI, (6.68)

avec en plus la partie non-diagonale des équations imposant la condition

AP—-T)=0—->P=1U. (6.69)
Une combinaison des équations précédentes permet de donner I’équation de mouvement pour le potentiel ®
telle que, avec ici ¢ = 1,

<'I'>+2(H—g)ti)—c§V2<I>+2(H—H:Z><I>—O. (6.70)

Concernant les perturbations de matiere, la dynamique est de méme donnée par ’équation de Klein-Gordon
perturbée

~GI -GI 2 GI ) 2 262‘/ GI - GI T x 28‘/
635" + 2M8pCT — V2655 — (H+212) @ + 0 G200 =W 4 &) 205 . (6.71)

Si maintenant on introduit les quantités correspondant aux variables de Mukhanov-Sasaki

v o= adp’l + 20, (6.72)
z = a%, (6.73)

telles que v = a@ = /pQ = z - R, alors "équation (6.70) peut se réécrire selon

i - V2y— 2y =0, (6.74)

z

59 = / dn Bzﬂ - % (k:2 — i) 02] (6.75)

d’un champ scalaire de potentiel variable avec le temps. On a ainsi retrouvé dans ce jeu de variables invariantes
de jauge une équation de la forme (6.12) qui, de la méme manicre que pour les exemples précédents, peut se
résoudre sachant qu’ici & la fin de l'inflation, z = a¢/H = av/2emp. Le spectre de puissance primordial de R
pour les modes superinflations est ainsi donné par

k3 o |2 1 A S A T
Prt) = 55 | 7| = 5pee (27r> (H> AR(H) (6.76)

qui découle de I’action
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d’amplitude A%, ou on a introduit
nr —1=3—2v =2n— 6e. (6.77)

Le spectre attendu est ainsi quasiment invariant d’échelle dans le cas des perturbations scalaires. Dans le cas
des modes superinflations, il est possible de remarquer que

Rk ~ C'k ~ 07 (678)

montrant que quel que soit le mode considéré, le spectre va quasiment étre constant : deux modes tres proches
subiront la méme évolution et seront régis par quasiment les mémes équations, tels que leurs valeurs de Ry ne
peuvent étre elles aussi que similaires.

6.6 Les perturbations vectorielles

Dans le cas des perturbations vectorielles, S, et F,, la métrique perturbée s’écrit habituellement sous la
forme suivante

ds* = a*(n) [—dn® + 2S,dndz® + (Sap + Fap) da®da’], (6.79)
avec

Fup = Fap+ Fia TF: Fy= —%(kan + K, F,). (6.80)
Ces perturbations doivent de plus étre de divergence nulle, donc transverses
0%S, =0, 0°F, =0. (6.81)

Les variables invariantes de jauge sont de méme obtenues sous une transformation de jauge générée cette fois-ci
par le vecteur

¢ =(0,¢"), (6.82)

telles que . ' o
oF" =¢" 0SSt =¢", (6.83)

et la variable invariante de jauge la plus simple pour la métrique peut s’écrire alors
ol =85~ F', (6.84)

Le tenseur énergie-impulsion du fluide parfait perturbé et générant de la vorticité est donné par I’expression

o 0 —a*((p+p)v' + pS')
((5Tﬁ) = <—a2((p+p)vi +pSi) 2a2p(7r,(;) +F7(ji)) ) (6.85)

ot 7 et v* sont de méme de divergence nulle, la perturbation v* étant reliée a la perturbation de la quadri-vitesse

d’un observateur comobile selon )
K3

(5ut) = (0, %). (6.86)
On définit une autre quantité invariante de jauge
Vi=v' 4 8 (6.87)

permettant de donner dans le cas usuel, les équations du mouvement

1 . .
- ﬁAJZ = k(p+pV*, (6.88)

1 . .
fﬁan (a*0") = kpr', (6.89)

ot A est le laplacien spatial. La combinaison (p + p)V, invariante de jauge, intervient dans le tenseur énergie-
impulsion, et pour un fluide sans terme de cisaillement anisotropique, 7* = 0, ou bien si I'univers est dominé
par de la matiere sans pression p = 0, elle correspond en principe a une observable physique. Il faut cependant
remarquer que dans le cas d’un champ scalaire composant le fluide, il n’existe pas de terme de vorticité v* = 0,
ni de cisaillement 7% = 0, et ces perturbations ne sont plus physiques, uniquement de jauge [67]. Dans le cas olt
il n’existerait que de la vorticité (par exemple si on considérait en plus un champ électromagnétique), quel que
soit le mode de Fourier considéré of, I'équation (6.89) donne alors comme solution

Cie

('9t(a20,i€) =0— crf‘( =2

(6.90)
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ot C}, est une constante par rapport au temps, qui, une fois les équations (6.88) et (6.90) combinées, permet de
donner la solution pour la vorticité

. k20
Vi~ (6.91)

a173w

Les perturbations de la métrique ainsi que la vorticité du fluide sont en fait diluées lors de I'expansion de
I'univers jusqu’a devenir négligeables : c’est la raison pour laquelle généralement on ne les prend que tres peu
en compte en cosmologie. Cependant, dans le cas d’un univers en contraction dominé par la matiere w = 0,
V¥ croit tandis que le facteur d’échelle décroit, et le cas de I'approche perturbative est dans ce cas 1a sujette &
caution puisqu’elle peut devenir incohérente a partir d’un certain point dans la valeur des perturbations.

6.7 Les perturbations tensorielles

Dans le cas des perturbations tensorielles hgp, il est possible de montrer que la métrique s’écrit habituellement
sous la forme
Guv = a*(1) [=d7® + (8ap + hap) dz*dz”] (6.92)

avec |h;j| < 1. Ces perturbations correspondent aux ondes gravitationnelles qui se propagent sur une trame de
métrique FLRW et, comme pour la métrique, possedent 6 degrés de liberté dont 2 seulement sont physiques :
ce tenseur est de trace et de divergence nulles

6%hay, =0 et %hgy = 0. (6.93)

Le tenseur hg,, étant invariant de jauge, les degrés de liberté restant sont les polarisations de ces ondes,
généralement indiquées par A = +, X qui correspondent a l'orientation des axes de symétrie des oscillations
de l'onde, voir figure Fig.(6.1). Ses composantes h et hy sont donc les 2 degrés de liberté physiques et on peut
décomposer les perturbations sur une base telle que le tenseur hyp s’écrive

hap = hyely +hy el (6.94)

oll e et X sont les tenseurs de polarisation,

1 0 0 0 1 0
ef=10 -1 0 e =110 0 (6.95)
0 0 O 0 0 0
vérifiant les propriétés suivantes
€ab = €ba, k%qp =0, €4 =0, (6.96)
ean(—k,A) = esp(k,N), D eny(k,N)e™ (k) = 4. (6.97)

A

O C» OO0
O ) O _:’O

phase
2 n

F1G. 6.1 — polarisation correspondant aux ondes gravitationnelles.

Dans le cas du champ d’inflaton, il n’existe pas de termes sources générant des perturbations tensorielles :
les équations du mouvement, données par les équations d’Einstein perturbées, sont en fait les méme pour i et
h« que ’on note par la suite uniquement h, et s’écrivant dans ’espace de Fourier

hi + 2Hhy 4+ K2hy = 0. (6.98)

Un simple changement de variable
mpj
vk =6 —= h 6.99
K N (6.99)
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permet de ramener I’équation (6.98) & celle d’'un champ scalaire non massif, que 'on va faire évoluer dans un
espace quasiment de De Sitter.

i + <k2 - Z) v = 0. (6.100)

La résolution d’un tel systéme ayant déja été donnée dans la section Sec.(6.3), les modes tensorielles superhorizon

évoluent selon .
H E \z2 "7
_ 101
|Uk| (271’) (aHk) ) (6 0 )

3
vr - (6.102)

Pour ces modes, le spectre de puissance est défini par

2 k:3| 2
— v
m}%l on2 Kk

k‘3
Pr(k) = 53 Z |hie|® = 4 x , (6.103)
)

dont 'expression pour les modes superhorizon s’obtient par la relation

8 (HIN\P RN L (kT
P = () (o) =4 (i) (0100

la variable np correspondant a 'indice spectral donnant la pente du spectre selon

_ dinPr
"= ik

=3—2up = —2e. (6.105)

Comme dans le cas des perturbations scalaires, ce spectre est lui aussi presque invariant d’échelle, "amplitude
A% de chacun des modes ne dépendant que de la valeur du parametre de Hubble au moment ol ces modes
sortent de I’horizon durant 'inflation.

Le modele de l'inflation prédit que dans un régime de roulement lent, les perturbations de densité et les ondes
gravitationnelles doivent avoir un spectre de puissance quasiment invariant d’échelle, en k~2¢. Chaque spectre
est caractérisé par son amplitude et son indice spectral, mais il est possible de lier le spectre scalaire (z = a‘%)
a ce spectre tensoriel (z = a) par une relation de consistance. Pour cela, on définit le rapport d’amplitude
scalaire-tenseur

2

1 H
1 2 —_
WAT _ 1008 <27rmp1)

%A2 B 2
25 'R %(26) 1( H )

2ﬂ'mp1

nl S

= (6.106)

qui implique une relation de cohérence ente I’amplitude des spectres et leurs indices spectraux selon

T nr

- =——, 6.107

5 5 (6.107)
et dans le cas d’une inflation slow-roll, cette relation est obligatoirement satisfaite : cela va ainsi correspondre
a une signature distinctive de I'inflation que I'on va chercher a observer.

6.8 Etude des différents spectres

Les spectres considérés ici correspondent aux spectres des perturbations évalués & la fin de 'inflation, donnant
alors les conditions initiales pour les perturbations générées par la suite, et il est alors possible d’obtenir les
spectres angulaires mesurés aujourd’hui découlant des spectres primordiaux.

Jusqu’au moment du découplage, rayonnement et matiere interagissaient et I'information sur les perturbations
était ainsi transmise aux photons. A partir de la derniére surface de diffusion, de tels photons vont ainsi voyager
a travers 'univers, subissant des effets physiques comme l'effet Doppler résultant de la dilution de I'espace-
temps, et une partie de ce rayonnement va finalement nous parvenir sous la forme d’un fond diffus cosmologique
presque isotrope.

Ainsi, la température Ty d’un photon observée aujourd’hui selon une direction e peut étre reliée & sa température
Tr au moment de son émission, telle que

To ~ TE[l + @0(6)], (6108)

ot O(e,®,¥, E, h;j,...) est appelé contraste de température, dépendant des perturbations de la métrique.
Plus généralement, © contient les contributions de presque tous les phénomeénes agissant sur le photon
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o L’effet Sachs-Wolfe propre indiquant qu’une zone plus dense sera plus chaude, et qu’un photon émis dans
un puit de potentiel possedera un décalage spectral gravitationnel supplémentaire.

o L’effet Sachs-Wolfe intégré dépendant de I’histoire du photon entre son émission et sa réception, et qui
rendra notamment compte des effets d’'un champ gravitationnel dépendant du temps dans lequel évolue
le photon.

e L’effet Doppler traduisant un décalage spectral di au fait que I’émetteur et le récepteur n’ont pas la méme
vitesse.

D’autre part, la diffusion Thomson va polariser ce rayonnement dans la direction perpendiculaire au plan
de diffusion, et les perturbations via cette diffusion vont alors pouvoir induire des modifications sur cette
polarisation : les perturbations tensorielles vont générer une polarisation B, dite magnétique, tandis que toutes
les polarisations vont générer une polarisation F, dite électrique. Observer les spectres en température et en
polarisation permettra alors d’obtenir de nombreuses informations sur les perturbations cosmologiques, ce que
se proposent de faire les nouvelles expériences sur le fond diffus cosmologique.

En cosmologie observationnelle, on va vouloir comparer deux directions différentes. On va pour cela utiliser la
fonction de corrélation a deux points qui ne dépend que de I’angle entre ces deux directions. Il va étre commode
alors de la développer sur une base de polyndémes de Legendre

20+1
< B(no, €1)0(no, e2) >= 701131(61,62) (6.109)

l

permettant de définit le spectre de puissance angulaire C, fonction d’un multipdle [ correspondant a une échelle
angulaire. Pour un champ de température gaussien, cette fonction caractérise completement la distribution de
température. Le fond diffus cosmologique ayant été émis en tous points de 'univers, un point quelconque va voir
ce rayonnement arriver dans un angle solide de 47 : une sphere autour de lui. On va donc décomposer le contraste
de température sur une base d’harmoniques sphériques Y}, ce qui correspond & effectuer une transformée de
Fourier sur une sphere, et obtenir ainsi

O(no, k 747{)@1 )Y (F)Yim (€). (6.110)

Les spectres angulaires seront alors donnés par la relation

1P =2 [ S X (g0, )Y s ), (6.111)

m=—2

ou X et Y prennent les valeurs ©, F ou B, et on peut regarder les 4 spectres théoriques attendus donnés par
la figure Fig.(6.2).

Il existe en cosmologie de nombreux parametres physiques rendant compte des caractéristiques de notre univers
et des phénomenes qui devraient s’y étre produits : valeur de la courbure, profondeur optique, etc. A chaque
jeu de parametres correspond un scénario cosmologique dont les caractéristiques, comme la durée de l'inflation,
peuvent étre déterminées connaissant les relations du modele. Il est ainsi possible de voir 'influence de chaque
parametre sur la forme des spectres et de comprendre alors ’évolution de 'univers en comparant les spectres
théoriques aux spectres mesurés, donnés par exemple en observant directement O, ~ %‘770' Cette méthode,
conjointement avec d’autres observations astrophysiques, permet ainsi de contraindre les différents modeles
existants, et a ce jour, le modele A-CDM semble étre le plus juste.

Pour plus de précision techniques, j’encourage tout lecteur a consulter la référence [26].
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F1G. 6.2 — Spectres T — T, T — E, E — E et B — B induits par les modes scalaires (& gauche) et tensoriels (a
droite) pour un modele inflationaire [26].
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Chapitre 7

Perturbations générales en Cosmologie
Quantique a Boucles

Dans la suite, la théorie des perturbations cosmologiques va étre exprimée selon la formulation de la cos-

mologie quantique a boucles. Ce chapitre sera alors trés important puisqu’il permettra de comprendre tous les
travaux effectués durant cette these, en montrant les aspects physiques et techniques.
Historiquement, les calculs étant plus simples pour ces perturbations, les perturbations tensorielles [69], en
parallele avec les perturbations vectorielles [70], ont été d’abord étudiées avec les corrections issues de la gra-
vité quantique a boucles. Ce n’est que bien plus tard, une fois 'approche développée, que cette démarche a
été appliquée réellement au cas des perturbations scalaires. La difficulté dans 'obtention des spectres de puis-
sance ne provient pas vraiment de la procédure mise en ceuvre pour générer les équations du mouvement, mais
plutot de celle menant a une algebre des contraintes close. En effet, modifier les contraintes C;, de Gauss, de
Difféomorphisme et Hamiltonienne, par les corrections de la théorie va trés certainement modifier leur algebre
telle que maintenant il va exister des termes supplémentaires dans les crochets de Poisson

{Ci,Cj} = Z-’;-(A, E)Ck+./4” (71)

Ces termes A;; sont appelées anomalies. Les contraintes ainsi modifiées vont définir un nouveau champ de
vecteurs rendant compte de I’évolution du systeme qui n’est plus tangent a la surface des contraintes. Les so-
lutions engendrées ne respecteront ainsi plus les caractéristiques physiques, comme la covariance des équations
ou les symétries présentes initialement, et les résultats aprés quantification ne seront alors plus cohérents avec
les solutions attendues a la limite classique. La premiére étape dans une théorie effective est alors de chercher
a supprimer ces anomalies : A;; = 0. Une procédure [29] mise en place en cosmologie quantique & boucles
dans le cas des corrections d’inverse-volume consiste a ajouter des contre-termes adéquats aux contraintes, et
obtenir ainsi des contraintes corrigées. Utiliser ces nouvelles contraintes permettra alors d’obtenir finalement des
solutions qui pourront correspondre a des solutions physiques : les corrections quantiques seront bien présentes
et la limite classique redonnera correctement les bonnes équations.

En cosmologie, toutes les composantes perturbées de la métrique dg,, sont dynamiques et sont considérées
comme les variables de configuration. Cela n’est cependant pas le cas en gravité quantique a boucles puisque les
variables concernent uniquement la métrique spatiale, & partir de laquelle sont construites les variables d’Ashte-
kar. Dans le formalisme ADM, les perturbations des composantes gog et go; seront alors encodées dans la lapse
fonction, 6N, ainsi que dans le shift vecteur, SN?. Afin d’obtenir les variables usuelles invariantes de jauge dans
le formalisme canonique, il ne faut plus seulement regarder les combinaisons possibles des variables d’Ashtekar
perturbées, mais faire aussi intervenir par une procédure adéquate les transformations induites sur les multipli-
cateurs de Lagrange. Une telle procédure a été développée dans le cadre de la cosmologie quantique a boucles
[71] mais peut cependant se généraliser & toute théorie s’exprimant dans le formalisme canonique. Elle a ainsi pu
étre appliquée au cas des corrections d’inverse-volume pour les perturbations scalaires, permettant 1’obtention
d’un spectre de puissance [55] modifié rendant compte des effets quantiques amenés par la théorie effective.
En s’inspirant des références citées auparavant, on va maintenant introduire le formalisme des perturbations
cosmologiques considérées du point de vue canonique, sans chercher a appliquer tel ou tel type de perturbation,
sauf dans certains exemples.

95
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7.1 Perturbations des variables canoniques

En gravité quantique & boucles, les variables sont les variables d’Ashtekar (A, F) pour la gravité, et (¢, )
dans le cas d’un champ scalaire comme celui de I'inflaton. De méme qu’en relativité générale, il est possible de
considérer ces variables comme pouvant étre perturbées selon

Al = AL +6AL E'=FE*+0EY, ©o=¢+dp, w=7-+0m, (7.2)

avec

. 1 1 .
50 =E'E] & El= 55; = OB 0u, (7.3)

Les variables homogenes, constituant le fond, sont données par les équations (5.3) et leur évolution est issue
de la contrainte totale donnée par I’équation (5.6). Les perturbations n’étant pas homogenes, elles vont aussi
dépendre par ailleurs des variables d’espaces, telles que maintenant leurs crochets de Poisson sont donnés par
des distributions

{0K}(n,x),0E2(n,y)} = k05006(x — y) (7.4)

et

{op(n, x),0m(n,y)} = 6(x —y). (7.5)
On s’intéresse a une théorie linéaire des perturbations dans laquelle ’évolution des perturbations est donc
obtenue par des équations du mouvement au premier ordre dans les perturbations. Or, dans le formalisme
canonique, ce sont les crochets de Poisson d’une perturbation avec la contrainte totale qui permettent d’obtenir
ces équations, faisant ainsi intervenir une dérivé fonctionnelle par rapport & la perturbation conjuguée. La
contrainte totale étant ’polynomiale’ dans ses perturbations, une dérivation va diminuer son ordre de 1. Les
équations du mouvement devant étre linéaires, il est nécessaire que le résultat issu des crochets de Poisson
soit lui aussi d’ordre 1, montrant alors qu’il est suffisant de considérer I’expression des contraintes perturbées
jusqu’au second ordre uniquement.
Il va ainsi étre nécessaire de regarder le déterminant des densités de triades det(E?) a l'ordre 2 puisque l'on
fera intervenir ses formes v/det E et , mais aussi la perturbation de la connexion de spin 6"} en utilisant

\/det
sa définition donnée par I’équation (3.48). On va ainsi considérer le fait que
a 5Ed 1 7 a sJ b 7 a sJ b
det B} = 1+ —=+ —5 OE}0,0E] — % 25a5E 0y 0 E; (7.6)
D
et
i _ ib W5kl ¢ b
oIy, = 2p - XUb. g, OE; + ﬁYagc OB Ok B} (7.7)
X0 = iigh — iP5 4 b5, + €iP8. (7.8)

On peut exprimer Y;gfl de facon similaire & X*°, mais son expression, en plus d’étre longue, ne nous sera pas
utile. Ici, il n’a pas encore été fait allusion au type de la perturbation que ’on considere, mais déja, suivant
ses caractéristiques possibles (divergence ou trace nulle, symétrie), on peut observer que 6" aura son terme
% - XUb . Op0ES de modifié : cette remarque est importante puisque c’est dans ce terme uniquement qu’est
encodé en quelque sorte 'information sur le type de la perturbation.

Par ailleurs, en utilisant I’expression de la métrique la plus généralement perturbée, ainsi que la définition de

la densité de triade, la perturbation 6 E est donnée par

1
SEY = p | =268 + (62090, — 0°0;)E — c10°F; — c0; F* — Shi| (7.9)
telle que
SLOE* = 0 pour les perturbations tensorielles et vectorielles. (7.10)
OB = 0,0E" = 0 pour les perturbations tensorielles. (7.11)

Concernant Pexpression de §K (et de facon similaire §7), son obtention n’est pas si simple. En effet, dans
la théorie effective, les expressions des contraintes perturbées vont devoir étre modifiées par des corrections
quantiques, changeant ainsi I’évolution temporelle entre deux tranches d’hypersurface. En conséquence, les
perturbations de la courbure extrinseque vont elles aussi étre modifiées puisqu’elles dépendent de la dynamique
de 'espace-temps et il serait possible alors d’obtenir leur expression en utilisant directement leur définition
donnée par I'équation (3.26). Cependant, dans le formalisme canonique, il existe une approche plus rapide
consistant a regarder la courbure extrinseque en fonction de la métrique spatiale et de sa dérivée temporelle,
comme dans I’équation (3.27). La densité de triades étant liée a la métrique spatiale, on va ainsi regarder les
équations du mouvement modifiées pour E® et en tirer facilement 'expression de §K .
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Expression des densités de contrainte perturbées

En gravité quantique a boucles, les contraintes s’expriment selon

a 1 a j j j
DyranlN] = = | d3zN [(&LA{) - abAg) jo AgabEﬂ : (7.12)
Dpat[N?] = / A N0, (7.13)
b
Hgyoo[N] = x d%Nﬂ [F’“ el —9(1 +72)K[iKﬂ} (7.14)
grav 2% . \/m ab®k a~*b | .
Fl, = 0,Af — 0,AF + el AL A], (7.15)
Hpu[N] = d3xN + ——= DapOhp + \/det BV , 7.16
matN] /E o /det B | 2yJdet B "7 Vi) (7.16)
et il faudra par la suite tenir compte des perturbations de la lapse function et du shift vecteur
N=N+J0N e N*=N®+5N°, (7.17)
telles que les contraintes perturbées, au second ordre, soient données par
H[N] = / &z [N (H*+H?*) + 0NH'], (7.18)
b
DIN] = / d*x [N* (D° + D?) + N*D'] . (7.19)
b

En comparant la métrique perturbée pour chaque type de correction avec la métrique ADM de méme perturbée,
on voit que
— pour les perturbations tensorielles,
ON=0 e O6N*=0, (7.20)

montrant directement que les densités de contrainte au premier ordre n’auront pas d’implications sur la
dynamique,
— pour les perturbations vectorielles,

SN=0 et &N*=5° (7.21)

montrant directement que la densité de contrainte hamiltonienne au premier ordre n’aura pas d’implica-
tions sur la dynamique,
— pour les perturbations scalaires
SN=N¢ et ON*=09"B, (7.22)

montrant que toutes les densités vont intervenir dans la dynamique.

Les perturbations tensorielles et vectorielles exprimées ici sont de trace nulle, impliquant que des termes tels
SiSE® et 626K} présents dans les densités de contrainte vont disparaitre. Pour ces mémes perturbations, les
perturbations des multiplicateurs de Lagrange, N et N¢, sont en partie nulles, indiquant que certaines den-
sités de contrainte d’ordre 1 n’influenceront pas I’évolution des variables. Les perturbations scalaires sont les
perturbations les plus générales puisqu’aucun terme ne peut disparaitre a cause de leurs propriétés : il faut
tenir compte de toutes les densités de contrainte et de tous les termes présents a l'intérieur des expressions
des densités. Lorsque 'on va incorporer les corrections quantiques, on va modifier ces densités de contrainte et
chercher des contre-termes qui rendront les crochets de Poisson entre les contraintes fermés. Il y a ainsi deux
manieres de procéder :

1. soit on regarde les propriétés des perturbations et on simplifie les contraintes, permettant alors aux contre-
termes ajoutés d’avoir une expression tres simple. C’est la démarche qui a été entreprise initialement et
dont I’enseignement nous a amené a la seconde possibilité.

2. soit on regarde le cas général, qui correspond en fait a étudier le cas des perturbations scalaires, et on
obtient alors les équations générales permettant de trouver les expressions des contre-termes. On peut
de plus se ramener au premier cas en mettant a zéro les contre termes qui n’intervenaient pas dans la
résolution des anomalies.

Les contraintes modifiées par I’ajout de contre-termes dans la premiere démarche ne seront pas identiques a
celles de la seconde et ameneront une dynamique totalement différente. Cette seconde approche nous semble la
plus justifiée puisqu’elle ne fait pas de distinctions sur les perturbations et donne une algebre close dans tous
les cas.
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D’autre part, on va donner 'expression des densités de contrainte de Difféomorphisme uniquement a ’ordre 1
puisque N = 0. Cela est due & une propriété commune & toutes les perturbations, et ’argument concernant le
cas des perturbations tensorielles et vectorielles pourraient étre repris. Cependant, cela touche uniquement la
partie homogene du shift vecteur qui intervient dans I'expression de toutes les variables, méme non-perturbées,
n’ ayant par la méme aucune conséquence sur la clotire de I'algebre lorsque ’on regarde les perturbations.

On va ainsi donner 'expression des différentes densités dont on aura besoin par la suite.

Densités de contrainte de Difféomorphisme

Lorsque l'on considére les contraintes de Difféomorphisme, on ne va s’intéresser qu’a 'ordre 1 en densité.
En utilisant la définition de cette contrainte et en exploitant les propriétés de symétries de X7’ cette densité
s’écrit ainsi dans le cas général

Dyrav = pOaOKG — pOg6 K2 — kD0 EL. (7.23)

De méme, on va considérer la matiere comme étant un champ scalaire, et sa densité est donnée par
Dinat = T 0. (7.24)

Ces expressions ne seront intéressantes que dans le cas des perturbations vectorielles et scalaires puisqu’elles
n’interviendront pas dans le cas des perturbations tensorielles pour lesquelles N = 0.

Densités de contrainte hamiltoniennes

Concernant la partie gravitationnelle, dans le cas général, tous les ordres en densité doivent intervenir pour la
contrainte hamiltonienne perturbée. Sans tenir compte des propriétés des perturbations, il est possible d’obtenir :
— la densité de contrainte a ’ordre 0 donnée par I'expression classique

2k - HO = —6/pk?, (7.25)

— la densité de contrainte a ’ordre 1 donnée par ’expression

k2 2 .
2 - HWY = —4/pd K3 — ——6E% + —ﬁajacéE;, (7.26)

VP VP
Cette expression est la méme quelque soit le type de perturbation considéré : le terme 67 0.0 Ef apparait

a cause de 0T et va donc faire intervenir X7°. Cependant, & cause des symétries présentes, le résultat
sera unique.

— la densité de contrainte a ’ordre 2, donnée par I’expression

26-HP = /p(oPIKLIOK] —5?6K36§6K£)—2\%6K;5E$ (7.27)
1]%2]' a i b 11%21', a sj b 1 cidj a b
—525—%5(15& S0EY + Zﬁ—%éa(SEi §I0E" + %Zab - (00E)(040EY), (7.28)
1 .
+1 Vet - 9, (SETO,0EF) (7.29)
pZ

avec Z;?)dj qui ne dépend que I'expression de X° par 1’équation (7.8)

203 = i) b XX — X - X o X (7.30)
Cette densité a été obtenue & l’aide des équations (7.6) et (7.7) introduites dans la contrainte hamiltonienne
donnée par 1’équation (3.63), en se souvenant qu’elle ne dépend pas du parameétre de Barbero-Immirzi.

Le terme correspondant & 1’équation (7.29) ne va pas étre pris en compte puisqu’il va correspondre & un terme de

bord, n’ayant aucune influence sur les dérivations fonctionnelles considérées par la suite. On peut ainsi 'oublier

et voir qu’une intégration par partie est simplement donnée ici par

/ d*rA0,B = [AB]a 05 — / d*zBO,A =0 — / d*zBo, A. (7.31)

D’autre part, ces contraintes sont les plus générales possibles, et seul le terme Zgzdj (8C5E$)(8d5E;-’) va changer
suivant le type de perturbation considéré : si la perturbation est symétrique, sans trace, ou bien si elle fait
intervenir des dérivées spatiales, etc, les densités de contrainte au second ordre seront alors vraiment différentes,
au contraire de celles du premier ordre. On peut ainsi voir que
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—  Ggp0iised. (805Ef)(8d5E?) perturbations tensorielles (7.32)

Z;Zdj . (BCJEf)(achE;?) — 0 perturbations vectorielles (7.33)
1 g

— —562(5?5” . (805Ef)(8d(5E§’) perturbations scalaires (7.34)

Concernant la matiere, la contrainte hamiltonienne possede différentes contributions suivant les termes
cinétique, potentiel et spatial, et on peut la décomposer selon

Hy[N] = / PPN {(HSP) +H§£>) + (H,(f) +HY +H§)ﬂ : (7.35)
b

Hy[0N] = / &N [H,@ + ng} . (7.36)
b

Les différentes densités de contrainte sont alors données par
— a l’ordre 0 pour les variables du fond

=2

™
HO = e (7.37)
HO = pPPV(p), (7.38)
— alordre 1
— =2 §ISE¢
o 77671'_ T 0oLy
HY = T a2 (7.39)
SI0EC
MY = PP Ve(@8+V(e) =3 (7.40)
— a l'ordre 2
o 16n°  mom OES 1 72 [(86ES)*  0RSISESSEY -
T 2p2 A2 2p 2 p3/2 8p2 + 4p2 ’ (7.41)
1
H2 = 5 VP00 60045, (7.42)
1 B B __8I6ES [ (835E5)? ks OESSEY
HP = 3 B2V 00 (2)36 + PV, ()dp 2]3] P2V (@) 8}32] - d4p2j . (7.43)

Anomalies et équations du mouvement par les crochets de Poisson

Lorsque 'on s’intéresse aux équations du mouvement et a la cloture de I’algebre, on va considérer les crochets
de Poisson de toutes les variables présentes dans le modele

=1 e T doxee {0 Yo {0 Jopon (7.44)
ol
o dep = % [;gé - SI;SIJ 7 (7.45)
bdorar = K/Zd% [55(2(3 55(2;.1 - 55653 55(;(3} : (7.46)
{}er = Vio {38@37? - 387-”;9@} ; (7.47)
U Yopon = /ZdB:c L;;p(;;f - 5(;7?;;0} : (7.48)

Résolution des anomalies

Dans le cas classique, aucune modification n’est apportée aux contraintes et on peut alors calculer les cro-
chets de Poisson a ’ordre 2 que ’on peut séparer selon
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— les crochets de Poisson entre les contraintes de Difféomorphismes

{Dgrav[Nf]aDgT'av [N;]} = 07 (749)
{Dmat[NfLDmat[Nza]} = 07 (750)
{Dgrav[N{l]vaat[Nf]} - 07 (751)

— les crochets de Poisson entre les contraintes de Difféomorphismes et Hamiltonienne

{Hyras V), Dyran NI} = — Hypaa[SN0,0N], (7.52)
{Hg'mv [N]7 Dnat [Na}} = 07 (753)
et
{Hmut [N]7 Dg'r'cw-i—mat [Na]} = _Hmat (5Na8a6N]v (754)
— les crochets de Poisson entre les contraintes hamiltoniennes
N a
{ngav[Nl]y Hg’rav[N2]} = Dgrav |:Z_78 (5N2 - 5N1):| 3 (755)
N
{Hmat[Nl]a Hmat[NQ]} = Dmat |:pa (5N2 - §N1):| s (756)
et
{ngav[N1]7Hmat[N2]} - (Nl A NZ) =0. (757)

Cependant, ’algebre que l'on cherche a clore est celle correspondant aux contraintes 'totales’

Himtg) = Hmat + Hgrao, (7.58)
D(m+g) = Dmat + Dgrav, (7.59)

et dans le cas classique, elle correspond a ’algebre suivante

{D(m+9) [NT], Dt g) N3]} = 0, (7.60)
{H(m+g) [N], D(imtg) [N°]} = —Hm+g) [(ENaaaéN]v (7.61)
(Honsp N Hons M1} = Doy | S0%0M =) (7.6

On peut la comparer & celle obtenue dans le formalisme ADM, donnée par les équations (3.33) a (3.35), et
voir que, sans surprises, dans le cas Lorentzien de la cosmologie quantique & boucles, les crochets de Poisson
sont exactement identiques a ceux de la relativité générale, & un signe pres. Ce signe n’est pas un probléeme
puisqu’il vient du choix que I'on a fait de prendre la connexion d’Ashtekar AY comme variable de configuration,
et la densité de triades £ comme moment conjugué, impliquant le changement de signe dans la définition des
crochets de Poisson.

Dans les calculs précédents, aucune hypotheése n’a été faite sur le type des perturbations considérées. Les
propriétés de symétrie et d’antisymétrie de Zszd] conduisent exactement aux méme termes dans les crochets
de Poisson : simplement avec la définition de Z;Zdj qui rend compte de toutes les perturbations possibles, les
différents termes qui en sont issus vont se simplifier.

Lorsque les contraintes seront corrigées par une fonction quelconque f(k,p) et perturbées, leurs crochets de
Poisson vont étre modifiés et il sera nécessaire d’introduire des contre-termes. Par exemple, dans le cas d’une
contrainte hypothétique de la forme

H = f(k,p)dESSK + autres termes, (7.63)
les crochets de Poisson pourraient donner
{H[N1], H[N2]} = H[Ny — Ni| + Ay (7.64)

avec

Ay = /d?’xéE;’@aai@Ng —ON1) - Fi(f, 0p f, Opf, o.)- (7.65)

Il existe alors une anomalie 4; avec la fonction F; qui ne peut s’annuler. On va ainsi tenter de résoudre cette
anomalie par l'introduction de contre-termes, ici o, donnant une contrainte modifiée indicée par @

Hg = (f(k,p) + a)dEXSK! + autres termes, (7.66)
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telle que maintenant
{Ho[N1], Ho[N2]} = Hg[N2 — Ni] + A2 (7.67)

avec

Ay = / dBLSE 0,0 (SNy — ONy) - Fo(f, Opf, 05 f. v, O, Opar, ...). (7.68)

Chercher & satisfaire F, = 0 va permettre de donner une expression pour « en fonction de f(k,p), et résoudra
ainsi le probleme d’anomalie. La contrainte ainsi modifiée aura une algebre close permettant a la théorie effective
d’étre cohérente avec le systeme physique initial. Dans la suite, on pourra aussi voir que pour les mémes raisons
que dans le cas classique, les anomalies ne vont pas dépendre de Z;Zdj . (5‘65Ef)(8d5Ejl?), et Iexpression des
contre-termes sera générique a tous types de perturbations.

Obtention des équations d’évolution des perturbations

Dans ce formalisme, ce qui nous intéresse surtout est de pouvoir trouver les équations du mouvement des
perturbations qui incorporeront les corrections quantiques. Les perturbations de la métrique sont données a
travers l'expression des multiplicateurs de Lagrange, mais aussi dans I’expression de JE{'. On va ici décrire
la démarche conduisant aux équations du mouvement, en illustrant le cas des perturbations tensorielles qui
correspond au cas le plus simple. Pour une variable perturbée quelconque, sans corrections,

6X = {6N,0N* SE* 6K, 60,0}, (7.69)
I’équation d’évolution est donnée par
5X = {5X, H(m+g) [N] + D(m+g) [Na]}a (7'70)

avec obligatoirement py = pye = 0.

Dans le cas des perturbations tensorielles, la contrainte totale est donnée uniquement par la contrainte hamil-
tonienne HESLQ + Hgiz+g) dans laquelle on a tenu compte de §{6E¢ = 525K = 0 et 0,0 E¢ = 0'6ES = 0.

La densité de triades perturbée étant donnée par

1 .
OB} = ~3phi, (7.71)

I’équation 5E'§‘ constitue de ce fait une équation différentielle du premier ordre en la perturbation, proportion-
nelle! & §K! : appliquer 'équation (7.70) pour trouver I’équation du mouvement de § B¢

B¢ = {0B¢, Hoa [N} = 3 (90§ +pht) = — [p6K] 0 65 — ko] (7.72)

va donner Iexpression pour dK, qui, dans le cas classique, s’écrit

OK! = %h; + gh;, (7.73)
ol on a utilisé ’équation (5.12) pour le fond. Dans le formalisme canonique, connaitre ’expression de la métrique
spatiale et des contraintes conduit naturellement & I'expression de § K, comme suggéré précédemment. Et c’est
une fois son expression connue que regarder I'équation d’évolution de 6 K I va nous permettre d’obtenir I’équation
différentielle du second ordre pour les perturbations. Dans le cas classique, utiliser I'’équation (7.70) pour § K,
permet de retrouver ici ’équation du mouvement pour les ondes gravitationnelles

hi 4 2khi — V2Rl =0, (7.74)

et comparer cette équation avec ’équation classique (6.98), avec maintenant k = H le parametre de Hubble en
temps conforme, montre bien que dans ce formalisme, on retrouve les équations classiques. On peut procéder
de la méme manieére pour la matiere ol, dans le cas d’un champ scalaire, regarder §¢ et d7 redonnera bien
I’équation de Klein-Gordon perturbée.

Dans le cas des perturbations tensorielles, N et 6 N® étant nuls, il n’y a pas d’autres équations disponibles.
Cependant, cela n’est pas le cas lorsque 'on considere les perturbations scalaires pour lesquelles 1’équation
d’évolution §K? ne va donner que 'équation (6.66). Les équations (6.67), (6.68) et (6.69) sont en fait obtenues
a partir des conditions py = py« = 0 impliquant les relations

_ Hmig)
SN

0Dmtg) _

Lt . (7.75)

PN 0, et Jpnya=

1Généralement, les indices i et a peuvent étre interchangés pour la forme des perturbations que I’on consideére ici.
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On voit ainsi que dans ce formalisme, les résultats classiques concernant les perturbations peuvent de nouveau
étre obtenus ici sans passer directement par les équations d’Einstein, ce qui peut simplifier un tant soit peu
les calculs. Lorsque 1'on va incorporer les corrections d’inverse-volume ou d’holonomies, la modification des
contraintes va alors pouvoir se répercuter sur I’équation (7.70), générant alors des modifications dans toute
les équations du mouvement : c’est de cette facon que l'on va pouvoir étudier I'influence des corrections sur
I’évolution des perturbations.

Cependant, les équations ne correspondent pas forcément a celles de variables invariantes de jauge, et on va
voir que de telles variables peuvent elles-aussi s’obtenir en regardant une transformation infinitésimale, générée
dans le formalisme canonique par les contraintes a ’aide des crochets de Poisson.

7.2 Transformation de jauge dans le formalisme canonique

En relativité générale, la forme des transformations de jauge d’un champ est donnée par la dérivée de Lie et
correspond & un changement de coordonnées. Apres quantification, on s’attend en gravité quantique & ce que
I’espace-temps ne soit plus représenté par une variété continue, et il n’est alors pas facile d’intuiter 'analogue
des transformations de jauge classiques données par ’équation (6.3). Il existe cependant un avantage dans la
formulation canonique : les transformations de jauge peuvent directement étre exprimées & partir des crochets de
Poisson des champs avec les contraintes, comme pour les équations (1.77), et classiquement, les résultats obtenus
avec la dérivée de Lie sont bien reproduits. Cette approche peut étre généralisée a toute théorie effective de la
gravitation, comme la cosmologie quantique & boucles en regardant en plus les corrections issues de la théorie
quantique. Modifier les contraintes par des corrections quelconques aura pour conséquence une modification
des équations du mouvement pour les différentes quantités, mais aussi de la forme des variables invariantes de
jauge, amenant de nouveaux effets que ’on cherche a comprendre et & observer.

Par ailleurs, certaines composantes de la métrique jouant le role de multiplicateurs de Lagrange ne sont pas des
variables de ’espace des phases dynamique, et seules les transformations de jauge pour la métrique spatiale via
les variables d’Ashtekar vont étre déterminées directement. Cependant, ces variables dans leurs équations du
mouvement vont dépendre de ces multiplicateurs de Lagrange par les contraintes qui sont eux méme reliés aux
perturbations a travers les équations (7.21) et (7.22). Il est possible dans le formalisme canonique de trouver
indirectement [71] la forme des transformations de N et N, et de construire alors les variables invariantes
de jauge de la relativité générale. Dans ce qui suit, nous allons illustrer la démarche en ne s’intéressant qu’a
I’expression de ces variables pour les perturbations scalaires.

Une transformation de jauge est générée selon

¢ =q+0eq, ou buq={q, Hiot|e"]}, (7.76)

et utilise les mémes contraintes que pour déterminer I’évolution dynamique (e = dt). Cependant, elle n’influence
pas la dynamique et les équations du mouvement pour ¢’ doivent aussi étre donnée par une équation similaire
a celles pour ¢

(¢') = {d, Hiu[N"™]}. (7.77)

Cela implique [51] que les multiplicateurs de Lagrange doivent eux aussi étre perturbés N’ = NH 4 § N#
pour que le formalisme reste correct. Dans le cas général, il est possible de décomposer €* sur une hypersurface
spatiale, de normale n® et de vecteurs tangents s{, selon

€@ = 4 €'l (7.78)

En se placant dans le formalisme ADM, on va s’intéresser a une évolution selon le champ de vecteur d’évolution
t* = Nn® + N%, et une transformation de jauge selon ce vecteur est alors donnée par [72] :
0 i

oo Mg eon g 0

Dans le choix quelconque de coordonnées (¢, %) de la métrique ADM (3.25), £° correspond & la perturbation dt
et £ a dx'. Lorsque 'on considere le cas des scalaires, la transformation peut étre générée par le vecteur

& = (£0,0%¢) (7.80)
qui, dans notre cas avec N® = 0, implique que sous cette transformation de jauge
€0 =0N = N&, €*=06N*=09%. (7.81)

En considérant une théorie des perturbations linéaires, dans le cas ou le vecteur de la transformation infi-
nitésimale est donc du premier ordre dans sa transformation, les contraintes génératrices des transformations de
jauge doivent étre du second ordre pour les mémes raisons liées a I’évolution d’une perturbation, et leur densité
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devra alors étre du premier ordre. On considere une transformation de jauge d’une quantité X de ’espace des
phases comme étant générée selon

3y, X={X, HP[NE] + DP[0°¢]} (7.82)
ou, dans cette notation,
H®[EN] = i / d*x 6N [ngav + 2k(HM +pr1))} : (7.83)
by
1
D®[§N] = = / Bz SN [Dé}lw + k(DY )} . (7.84)
KJs

Cette démarche correspond exactement & celle utilisée en relativité générale, ott on peut montrer [71] que
{X +6X,D[("]} = Lea(X + 6X), (7.85)

la contrainte de Difféomorphisme étant I’analogue de la dérivée de Lie dans le formalisme canonique.

Les transformations de jauge sont finalement données par les densités de contrainte au premier ordre dans les
perturbations alors que les équations du mouvement des variables invariantes de jauge seront par conséquent?
données par les densités au second ordre dans les perturbations.

Une conséquence importante dans la détermination des variables invariantes de jauge est l'expression de la
variation de la dérivée temporelle d’'une perturbation dans le formalisme canonique. Lorsque 'on a abordé
les potentiels de Bardeen (6.53), on a vu que leur construction faisait intervenir des dérivées temporelles des
perturbations. Dans ce formalisme, il existe [71] une relation liant la transformation de jauge de la dérivée d’une
perturbation 6X & la dérivée temporelle de la transformation de jauge de cette variable, selon

co,€] (6X) — (O1¢0,610X)" = {0X, {Hyot[N] + Dot [N?], Hiot[N&o] + Diot[0a]}} (7.86)

En utilisant 1’algebre (7.60) dont la seule contribution au premier ordre dans les crochets de Poisson est
donnée par )
{Hzot[N], Hiot [IN§o]} = Dior [0%60] + O(2), (7.87)

la relation (7.86) devient .
Oleo,&1(0X) — (00 £10X)" = 0,650 X (7.88)

Lorsque 'on modifiera les contraintes par les corrections quantiques, 1’algebre déformée va induire une modifi-
cation de I’équation précédente, et les effets quantiques vont alors se répercuter sur la forme des variables de
jauge, en plus des équations du mouvement.

Dans le cas des perturbations scalaires, en temps conforme et dans le cas classique avec les variables d’Ashtekar,
il est simple de voir que sous cette formulation, les différentes variables se transforment selon

. . I = N -2
0o, 0K = 0'0a(So + kE) — 35052 t3 [pV(<P) - 2] €00y (7.89)
Oigo.c10BF = 2kp&odf + P67 AE — 0°9;8), (7.90)
Oga, 10 = gfo, (7.91)
Sjgo.c10m = TAE— POV (p)o, (7.92)

alors que pour les variables du fond, (k, p, @ et 7), les transformations de jauge sont du second ordre : le fond
est alors considéré comme invariant.

La détermination de la forme des transformations de § N et dN®, donc de ¢ et B intervenant dans les potentiels
de Bardeen, doit ainsi se faire en demandant que la forme des équations du mouvement soit elle-aussi conservée
sous une transformation de jauge. En utilisant les équations (7.89) a (7.92), on voit que sous l'action de &
donnée par 1’équation (7.80), les différentes perturbations se transforment selon

Sleo.c)® = So + Ko, (7.93)
Oleo.) ¥ = —kéo, (7.94)
Ogo ) B =&, (7.95)
Sy, 1B = —€o + &, (7.96)
O1¢0,610% = Po, (7.97)

qui correspondent bien aux transformations dans le cas classique, et dont la combinaison permet de redonner
les potentiels de Bardeen usuels ainsi que les autres quantités invariantes de jauge introduites dans le chapitre
précédent.

2Cela est montré dans le chapitre Chap.(13) utilisant I’équation d’Hamilton-Jacobi pour obtenir ces variables.
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7.3 Commentaires

Le formalisme présenté ici n’est ainsi qu’une réécriture de la cosmologie usuelle dans le formalisme cano-
nique, en terme de nouvelles variables, les variables d’Ashtekar. Les perturbations de ces variables sont ainsi
reliées aux perturbations de la métrique, mais aussi du champ, et regarder les équations du mouvement redonne
bien les équations attendues pour les perturbations cosmologiques. Dans ce formalisme, [’algebre des contraintes
est naturellement close, aucune anomalie n’apparait : utiliser les variables de la métrique ADM (3.25) & partir
desquelles la gravité quantique a boucles est construite, donne une algebre close et les équations de conservation
sont respectées. La détermination des variables invariantes de jauge, comme les équations du mouvement, ne se
fait non plus par la dérivée de Lie mais par les crochets de Poisson, et il est possible de montrer que ces deux
approches sont équivalentes.

Cependant la formulation présentée ici n’est en rien quantique puisque notre intérét va se porter sur le coté ef-
fectif de la théorie. Apres quantification, nous avons vu que deux corrections majeures de la théorie ressortaient
et pouvaient étre décrites qualitativement par des fonctions reproduisant la forme des spectres des opérateurs
de courbure et de triade-inverse. Ces corrections correspondent & la fonction f(k,p,dE) présentée plus avant
dont ’action dans les contraintes classiques va avoir tendance & briser la fermeture de 'algebre. La méthode
proposée pour rétablir une algebre close est I'introduction de contre-termes dans les contraintes, telle I’équation
(7.66), dont 'expression obtenue en considérant la nouvelle anomalie comme étant nécessairement nulle va par
conséquent modifier les contraintes et clore 'algebre. Ces contraintes ainsi obtenues peuvent alors étre utilisées
pour trouver les solutions physiques tenant compte des corrections quantiques, et vont a la limite classique
redonner les bons résultats. Cette méthode vantant I'utilisation de contre-termes est toute-fois discutable sur
ses conséquences physiques, mais on verra qu’elle est tout a fait correcte.

Jusqu’a maintenant, les résultats ont surtout été obtenus en considérant le cas des corrections d’inverse-volume,
et malgré l'existence d’une procédure générique a toutes corrections, le cas des corrections d’holonomie a été
peu regardé. Cela peut s’expliquer par le fait que ces corrections sont plus complexes, en ce sens qu’il ne faut
plus tenir compte uniquement de la variable p intervenant de maniere compliquée dans les corrections, mais
aussi de k qui rend les équations des anomalies et du mouvement plus difficiles & manipuler.

Durant la these, en suivant la démarche ainsi développée, nous avons regardé 'impact des corrections d’holono-
mies sur les perturbations tensorielles, vectorielles puis scalaires. Naturellement, le cas le plus intéressant pour
comprendre 'influence des corrections quantiques est celui des perturbations scalaires que nous avons développé
plus avant : ce cas est le plus ’conservatif’ puisqu’il garde une expression des contraintes qui n’est pas modifiée
a cause des conditions de divergence et de trace nulles de certaines perturbations.

Ainsi s’achéve 'introduction a la Gravité Quantique a Boucles et son application a la cosmologie par la
Cosmologie Quantique a Boucles.



tel-00749162, version 2 - 7 Nov 2012

Troisieme partie

Corrections d’holonomie et
perturbations cosmologiques

105






tel-00749162, version 2 - 7 Nov 2012

Chapitre 8

Influence des deux corrections sur les
perturbations tensorielles en
Cosmologie Quantique a Boucles

Introduction

Dans le cas des perturbations tensorielles, des études ont été réalisées par notre groupe afin de regarder
I'influence des corrections d’holonomie [73][74] et d’inverse-volume [75], prises séparément, sur la forme du
spectre de puissance. En premiere approximation, nous avons considéré le cas ou ’évolution de 1'univers dans
sa phase d’expansion devait subir une phase d’inflation dictée par le modele slow-roll et cela nous a alors permis
d’obtenir une expression analytique pour ces spectres. En nous basant sur les travaux de Bojowald et al [69],
nous avons montré que les corrections d’holonomies engendraient une légere pente dépendant du parametre
de Barbero-Immirzi v, donnant un spectre bleu ou rouge suivant la valeur de ce parametre, mais aussi une
évolution en k? (pour une raison différente de celle vue par la suite) dans la partie infrarouge ot les corrections
d’inverse-volume prévoient, elles, une forte déviation par rapport au cas classique.

Connaissant les caractéristiques de ces deux corrections sur la forme du spectre, nous avons voulu savoir dans
ce premier travail si combiner les corrections d’inverse-volume (données par & = S et 7 = D ici) et d’holonomie
pour ces perturbations pouvaient amener une compensation des effets quantiques et redonner le spectre classique,
ou bien quelque chose de completement différent.

Pour ce faire, nous nous sommes de méme basés sur Uarticle [69] et avons redérivé les équations du mouvement
pour les variables du fond et pour les perturbations. L’expression des densités de contraintes utilisée ici ne
présente aucun contre-termes mais il a été fait le remplacement k — K[2] dans Iéquation classique (7.27) :
cela est due & une étude [70] préliminaire dans le cas des perturbations vectorielles qui a montré que dans ce
cas la, les anomalies pouvaient étre simplement résolues en imposant le choix n = 2 précédent. L’idée que les
perturbations tensorielles sont trop restrictives dans I’expression de leurs contraintes était déja présente ici, et
on va dans cette étude s’intéresser finalement au premier cas ou 'algebre est close en ayant fait un choix sur les
corrections, mais sans avoir eu recours aux contre-termes.

Les équations intéressantes obtenues correspondent a ’équation de Friedmann modifiée

2 _ kK_ P
_ g2 8.1
M= <pp ( pc> ; (8.1)
ainsi que 1’équation du mouvement pour les perturbations
hy + <2H - 5) hy + (S?*k* + M?(a))h = 0. (8.2)

Dans cette équation, les corrections dues aux holonomies sont encodées dans le terme M?(a), ainsi que dans
I’évolution du parametre de Hubble. Aprés un changement de variable de la forme

By = a(n) "L (3.3)

2

I’équation d’évolution de @, a été obtenue et résolue dans le cas particulier d’une inflation slow-roll. Les spectres
tenant compte des deux corrections ont pu alors étre dérivés dans les différents régimes.
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The cosmological primordial power spectrum is known to be one of the most promising observable to
probe quantum gravity effects. In this article, we investigate how the tensor power spectrum is modified by
loop-quantum-gravity corrections. The two most important quantum terms, holonomy and inverse
volume, are explicitly taken into account in a unified framework. The equation of propagation of
gravitational waves is derived and solved for one set of parameters.
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I. INTRODUCTION

The inflationary scenario is currently the favored para-
digm to describe the first stages of the evolution of the
Universe (see, e.g., [1] for a recent review). Although still
debated, it has received many experimental confirmations,
including from the WMAP 5-year results [2], and solves
most cosmological paradoxes.

On the other hand, a fully quantum theory of gravity is
necessary to investigate situations where general relativity
(GR) breaks down. The big bang is an example of such a
situation where the backward evolution of a classical
space-time comes to an end after a finite amount of time.
Among the theories willing to reconcile the Einstein grav-
ity with quantum mechanics, loop quantum gravity (LQG)
is appealing as it is based on a nonperturbative quantization
of 3-space geometry (see, e.g., [3] for an introduction).
Loop quantum cosmology (LQC) is a finite, symmetry
reduced model of LQG suitable for the study of the whole
Universe as a physical system (see, e.g., [4]).

In this article, we consider the influence of LQC correc-
tions to general relativity on the production and propaga-
tion of gravitational waves during inflation. We first derive
the equation of propagation of gravity waves with both
holonomy and inverse-volume corrections. This equation
is then reexpressed with the commonly used cosmological
variables. It is finally solved for a specific set of parameters
and the primordial power spectrum is derived. The aim of
this work is to conclude our previous studies [5,6] where,
respectively, only holonomy and only inverse-volume cor-
rections were considered. By combining both terms, we
show that the inverse-volume correction dominates over
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the holonomy one and dictates the overall shape of the
tensor spectrum.

Quite a lot of work has already been devoted to gravi-
tational waves in LQC [7]. Our approach assumes the
background to be described by the standard slow-roll infla-
tionary scenario whereas LQC corrections are taken into
account to compute the propagation of tensor modes. This
approach is heuristically justified (to decouple the physical
effects) and intrinsically plausible (as, on the one hand, the
LQC-driven superinflation can only be used to set the
proper initial conditions to a standard inflationary stage if
the horizon and flatness problems are both to be solved [8]
and as, on the other hand, it seems that the quantum bounce
can trigger on a standard inflationary phase [9]). In addi-
tion, very few studies so far have taken into account both
the holonomy and the inverse-volume corrections. This
latter term is somehow more speculative than the former
one as it was shown to exhibit a fiducial cell dependence
(see, e.g., [10]). For the sake of completeness it is however
obviously worth considering the fully corrected propaga-
tion of gravitational waves.

II. EQUATION OF PROPAGATION FOR THE
GRAVITON

The derivation of the equation of propagation of gravi-
tational waves with both holonomy and inverse-volume
corrections extensively uses the material developed in
[11]: notations, conventions, and framework of this work
are the same and will not be explicitly restated. We begin
by considering a Friedmann-Lemaitre-Robertson-Walker
universe with a spatial metric g,;, which will be perturbed
to account for gravitational waves. Hereafter, N and N¢
are, respectively, the lapse function and the shift function.
The metric components read as follows:

800 = —N* + g, NN = —a*(n), (D
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80a = qabNb = 0» (2)

8ab = Yap = 02(77)(5ab + hab)- (3)

As usual in the formalism of LQC, we use the Ashtekar
variables for an homogeneous and isotropic background:
the connection A}, and the triad density E¢. They can be
written as a function of two other variables (k, p) as
Al =K + T

E? = poo Ki, = k&,

N =1F.
Hamilton-Jacobi equations will be used to determine the

perturbed part of the Ashtekar variables. The Hamiltonian
constraint reads as

_ _ “4)
=0  Ne=0

1
H[N] = P [E d*xN| det| "2 EIED
X (€3 Fi, —2(1 + y2)KEbK;']), (5)

where Fi, = 9,AL — 9,AL + €*ALAL is the field
strength. The Hamiltonian for a matter field ® is given by

1 p2 + E“Eb9 Do, D
Hmalter = [d3x<_ pCI) : — b
2 | detE|

+ 4/l detEjIV(d))). (6)

With Eq. (4) and these Hamiltonians, the background is
described by

_ 1 _
HEM[N] = — f d*xN[—6+/pk?], 7
2k Js
and
Hyaol¥1 = [ (2224 5onv). @
matter - s X EW P . ( )

Perturbing the canonical variables (and going through the
appropriate Poisson bracket) leads to:

_ 1 _ __ Q2 .
HG[N]= 7. fz d3xN[—6J5k2 T (8ESSE]8%5Y)
+ JP(8KL6K:8;89) — 2% (SESSKY)
p cOR 0,0; ﬁ jORe
1 .
- W(b‘cd&kEib‘efaeafEf)], (9)

where only the tensor perturbations (i.e. gravitational
waves) are considered in 0EY.

This classical Hamiltonian is to be modified by quantum
corrections. Because loop quantization is based on holon-
omies, i.e. exponentials of the connection rather than direct
connection components, one needs to substitute in the
gravitational sector
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_ sin(mayk
— Snmyh) (10)

mupy

where g is a new parameter related to the action of the

fundamental Hamiltonian on a lattice state. In addition,

because of inverse powers of the densitized triad which,
when quantized, becomes an operator with zero in the
discrete part of its spectrum, the matter and gravitational

Hamiltonians must be modified by introducing the function

B \n
a(p, SES) =1+ Ag" =1+ A(%) ) (11)

At a semiclassical level, i.e. ¢ < 1, the same parametric
form of « can be used in both the matter Hamiltonian and
the gravitational Hamiltonian. However, the two positive
and real valued constants A and n may differ from one
sector to another. In the following, (S, A, s) and (D, Ay, d)
will therefore denote (a, A, n) for the gravitational sector
and the matter sector, respectively. With these two correc-
tions, the Hamiltonians read

HETN) = o /. d3xNS(p)[—6\/§<Sir;§y7E)2], (12)

_ 1 2
Hano 91 = de(—D(q) _’(’3?2)+ﬁ<3/2)V(<1>)), (13)
p) 2 p

with HE' the effective gravitational Hamiltonian describ-
ing the homogeneous background. The equations of mo-
tion for (k, p), i.e. the background equations, can be
obtained in the Hamiltonian formalism

]._7 = {1_7’ Hg;ff[l\_]] + I"Imaner[]v]};iE

= {]E, Hg;ff[N] + Hmatter[]\_/]}r (14)
leading to
. e sin(2 k)
p=2-p-5(.00)- (M50 as)
14

fo K M 08 (Sin(ﬂyi))Z
3Vo dp ap y

ST (sin(@yk)\2 d (sin(ayk)\2
__[(Sln(_m )) +2ﬁ__(sm(_;w )) ] (16)
2 wy ap\ uy

The same modification is applied to the perturbed gravi-
tational Hamiltonian. Denoting HE™" the effective per-
turbed quantum-corrected gravitational Hamiltonian, it
reads with both holonomy and inverse-volume corrections

024040-2
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1 _ in i yk\2
HEI[N] = 5 j; BxNS(p, 5E7)[—6J‘5(Slll_fyy )

1 fsinpyk
(M) (SESSEY8ES])
2p3/2
— 2 (sin2ayk
+ p(aKéaKkafaéf)——_(f)
\/_ dYk"Yj \/E 21“”}/

X (8ESSK! ) — (8,467 ES6%T 0, afEd)]

3/2

amn

We now turn to the equation of motion of the graviton. The
perturbed densitized triad is

1
OE! = =2 pht. (18)

As has been done for the homogeneous canonical varia-
bles, it is possible to define the equation of motion for the
perturbations:

8E§1 = {6E7’ then[]\_/] + Hmatler[N]}

= —{8K](x), SE¢(y)} (HZPN INT + H e [N ),

8(8K7)
SKI = {aKm HPhen[N] + Hmatter[N]}

= {8K.,(x), SEL(»)}

5(5Eb) (then [N+ Hmatter[N]).

This leads to

. 1 . .
SE¢ = = (ph{ + pht) (19)

= —S(p, OE) - [ﬁ - 5K - 8- 8t — (73‘1“(2‘_‘ 7];))
co 2y

. SE?:I. (20)

By combining those equations and using the expression of
p, one obtains the expression of 8K/, as a function of /,
and of h’,. The expression of 6K/ is

1 sin(2,a'yk)>hz. @1

. 1 ..
SKi =—h;+—< L
28 2\ 2ay

The equation of motion will lead to another derivative with
respect to 1. The Hamilton-Jacobi equation for the per-
turbed connection can now be used to find the final equa-
tion of propagation for gravitational waves:

PHYSICAL REVIEW D 81, 024040 (2010)

SKi — l[h 1 as N (s1n(2,uyk))hfl

2Ls s 877 “ 2@y
i <sm(2,uyk))]
an\ 2uy
. o _ _
= {5K§,(x), SE?(y)}W (H(P;hen[N] + Hmatter[N])'
J
As
SHPMen 1 _ 88
=— | &x-N-
S(3ET) 2k [z WV Semm ]
1 _ 2 sin(@yk)\2
+— | FNS| -
s S o~ (M)
X (587 - 8} o1) = = (AT
JP\ 24y

i Bu 9 0.0,0,5ED) |

where [...] stands for the term beginning with
[—6\/]7(%)2 —--+] in (17), one obtains (with
8¢9,0,(8E}) = VX (SE}) = —1p - V*hi)

SHE™ 1 — 8S
5(5ED) Eﬁa(aE]b.)["']

1 1 sin(@yk)\2. .
+—S[—(M) B,
212\ ay

B (sinifyy@)

(5 () v

(22)

{6Ki, 6EP} s

_ l[@ L aSu . (L(Z_Mk))h o L
2L S2an 2y an
" (sin(mwa)] _ o SHmael N

2y

8(6 Ej?)
After quite a lot of algebra, the equation of motion of the
graviton can be derived:

7, in(23yk)\ :; p o
—[h;, + 2S<L( Y ))h;<1 —E—f)
2 24y S dp

— Vi + szrgh;] T SAL= kST, (24)

(23)

where
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T, = —2(3 a—“)(' )z(sm(“ 7")),
a0

ry
A 1 oH 5E68/ 5t SH
H i _ mdtter( ) 2 k mdtter’
% 3V, ap P cos2avk) + 8(SE?)
) 1 6S
Al =— ..
a J—a(aEa)[ ]
k
- p—S cos(2a k)<M> hi.
ap ry

As usual, requiring an anomaly-free constraint algebra in
the presence of quantum corrections requires A, to van-
ish. It should be noticed that the inverse-volume correction
is involved in each term, through the S and D factors,
whereas the holonomy correction is only involved in the
hi, term, in T, and in HiQ“

It is worth studying a bit more into the details of this
IT ’Q source term as it seems to have been misunderstood in
several works. In particular, it has often been either ne-
glected or miscomputed. Without holonomy and inverse-
volume correction, this term reads as

1—[,‘ _ [L aHm_atter <5Ejf)\{45i) 6Hmatlerj|’ (25)
3V, ap P 5(8E)
with, in this case,
1
Ef = pbf,  OE{=—Zph,

1 (26)
detE = 5 €gpe€* E{EVE.

At the zeroth order in gravitational perturbation, one can
show that

_ (1 P
— 3 L e
H patter .[E d xN(2 FEE +

and the nonlinear H ., 1S given by

ﬁ<3/2>V(¢)), @7)

_ _ ] o
Hmalter = Hmatter + fE d3XN75E?5Ef 5{1 5;,

I

1 P2
x (5—? V() (28)
thus leading to
OH pyer _N SEb J si 1 p¢
5o~z @il ve) @

Restricting to the first order in perturbation, the derivative
with respect to p can be evaluated and one finally obtains

L a Hmatter 6E5 Bé 510 — 5Hrnatter (30)
3Vy ap D S(8EY)”
This easily establishes that classically = 0. However,

when LQC corrections are taken into account the source

111

PHYSICAL REVIEW D 81, 024040 (2010)

term may not vanish anymore (because of the derivative of
D with respect to p for the inverse-volume correction and
because of the cosine term for the holonomy one).

When only inverse-volume corrections are considered,
the source term is still given by Eq. (25) but the matter
Hamiltonian now reads

- (3)
H, matter ~ H matter +H matter

= [E d3x]\7|:<D(P, 5E“)— (3_/2) + P(3/2)V(¢)>

1 - 1P
+—6E‘.‘6E’?6{l5’(D p,SE!) = =2 —V )]
45 O OEILSL(D(p. 8BNS 25~ V()

(3D
which leads, at the leading order, to

8Hmatter_ 8 7 J 1(1 %f’ )
S(8EY) [2[56 2y V9

Py
" 2pB/2 5(515“ ] (32)

and

1 OHper OEj0450 Nl(é‘Eﬁé’ab‘é)[ 3D,
3V, dp p 3 b 4 6T

+3 J_V(¢)+aDp¢ 1 ]

2 pBA ]
(33)
We finally obtain

L(1v) _ L (5EJC 84 516) OH mager | OHnmatier
Qu 3V, p ap S(8EY)

2 ¢ SJ Qi
1 /6ES6,6L\ oD oD
—_Pe [_< I >__+ ] (34)
2p%PL3\ b Jop  S8(BE)
However, because of the anomaly-free condition (see
Eq. (27) of [11]), this term is vanishing. This means that,

at the leading order, H’Q(al Y — 0.

Considering now the holonomy correction alone, one
can expand the cosine term in ITj, and show that

. oH SESS, 5!
Hz,(holo) YT SlIl2 ) — matter( Jj C).
0, pysin®(ay )3V0 ap 5

Considering simultaneously the two types of corrections
and using the explicit expression of the matter Hamil-
tonian, one obtains the full LQC source term

: oH SES 845!
Hz,(LQC) T 2 D matter( ),
0, Aysin*(@y )3‘/0 T 5

(35)
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as expected from the vanishing inverse-volume source
term.

III. SCHRODINGER EQUATION FOR THE
FOURIER MODES

The energy density and the pressure of the cosmological
fluid can be written as

_ 1 6Hmatter _ 1 5Hmatler[N]
P =1 =672 SN P~ & T ——
Vop N NVo 8(y/] detE])

(36)

With the Hamiltonian constraint, one obtains

1 3 — sin(,&'y/g))2i| OH nayter
- 3xS| —64/ 4+
0 P ,[zd xS[ 6 p( iy SN (37)

which finally leads to
3 8 fsin(@yk)\2
el ar )
Defining JH as the Hubble parameter with respect to the

conformal time (H = a~'da(n)/dn)), we obtain the
quantum Friedmann equations

in(2@yk)\? p p
a2 S2<sm( Ry )) ey gp(l PN LY )

(3%)

24y S3 35°)
(39)
which lead, with p, = 3/(k@a>y?p), to
H2= azgp(S - ﬁ). (40)

This equation, which has already been found in [12],
includes all the LQC corrections and shows that the hol-
onomy term, leading to the bounce, is the most important
one as far as the background in concerned. This conclusion
will be radically modified for perturbations.

The equation of motion for the graviton can now be
reexpressed in terms of the commonly used cosmological
variables. By taking into account Eq. (38) and @?p = I3,
one obtains

. — 7 4 2
el
%% 3 pe

(41

T
Q|
"Q;l‘tl

The multiplicative factor of 7, in Eq. (24) can be reex-
pressed as a function of the Hubble parameter

(L)1) (128

Finally, the source term can be explicitly computed

I :h_zﬁé[,,_ ¢’ (1_12z)]
% S p.2 D(g)a* 6Da)l
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As in [11], we use the effective parametrization S = 1 +
A, (q)~6/? with ¢ = (a/lp;)?. The equation of propagation
can now be written as

T R R O A P e P
(43)
with
2y = o P 2? _i _1Da
M(a)—Kpca<3,0 D(q)az<1 6Dd>)' “44)

This can be usefully expressed as an equation for the
spatial Fourier transform A, of h

. ; 1abs\.
i+ 29(1 ¢ §)hk + (S22 — M2(a))h, = 0. (45)
a 2aS

The variables are changed according to ¢, = ha/ VS,
leading to a Schrodinger-like equation

b (o253 3o

(46)

IV. POWER SPECTRUM

The main question to address is to investigate if one
correction, either holonomy or inverse volume, dominates
over the other as far as the production of gravitational
waves during inflation is concerned. The system describing
the dynamics is

H? = azfp(S—ﬁ),
3 Pe

. ; 1aD\.
0=o, + 29(1 —fﬂ,f)cp,{ + @DV (),
a 2aD ’

0=y + {52k2 — (g + M?(a) — g % + %(%)2
19

which is unfortunately much too difficult to be analytically
solved. We therefore turn to the approach developed in
[5,6]. The background evolution is assumed to be classical
(D = 1) with the scale factor given by the usual slow-roll
approximation a(n) = I[y|n|~'~¢. In this case, the effective
Schrodinger equation [dd—;z + E(n) — V(np)ldi(n) =0,

reads, to first order in A, as

l s
Ey(n) = S22 = [1 + ZAS(%) |n|f<“f>]k2, @7)
0

024040-5
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2436, 6 1 (1+4¢
7 ke 5

+—As<é£)x[__lz_l_glj%ffz|np—2+ds+ﬁ
Iy K P, I5

+ s(1 + 2€)|y|s1Fe-2

V(n) = || =209

- %s(s — 1+ €(2s — 1))|n|s(1+f>*2]. (48)

To implement initial conditions, we consider the limit n —
—oo where the adiabatic vacuum holds. Of course, if higher
order terms in A, were to be included, the vacuum would
not be the same anymore. However, we have checked that
the adiabaticity condition would still be fulfilled in the
relevant wave number range.

It is possible to solve analytically this equation, at least
for one set of parameters: s = 2 and € = 0. It becomes

2
Lo (v an (Yo - (-2 L0
dn? ly n K pely
1211
—)\S<l"—L>[ = 1]]¢k=0. (49)
Iy K pel

By appropriate changes of variables, this equation can be
turned into a Whittaker equation. The solution can be
expressed with Kummer functions and the Wronskian
condition ¢;d,¢; — ¢ d, ¢, = 16iw/Mp allows one
to normalize the modes. The field is then given at the end
of inflation by

227
My, (kn/2Z)'/*

><U<2+,u—v l+2,u,zc) (50)

e(i/Q)#aef(i/Z)CC(l/4)+p.

di(c) =

and the resulting primordial tensor power spectrum is

Prlk) = 22 T 20 2(v/2Z) 20 T(b( )1) -
a

(51)
with
1 1,3 8y?13
=—+tpu—v==+41+

TRV T 9
. 272
i vl

+ K2 — z<1 - 4—”)), 52

\/322k2< I 0%
8y*L3

b=1+2,u,=1+—1+ s (53)
2 912

i (k2 2(1 4 721%1)) (54)
U = - - - [
N7 2
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where Z = (Ip; /1p)* A, and y?> = 3/(kp.13;). The ultra-
violet limit of this spectrum can be easily derived and leads
to

[ 32
PR = 167 () (145 50 e e, (s5)

with @ = y213; /3. On the other hand, the infrared limit is
given by

!
PR(K) = 167 (PL) (Z(1 — 4a))~ /D43 D1 ~40/0)

(56)

Those results show that the k — +oo limit of the power
spectrum is in agreement with the general relativistic be-
havior with the addition of a slight tilt. The ultraviolet
spectrum is nearly asymptotically scale invariant. This is
not surprising as both the holonomy correction (encoded in
the k=43 term) and the inverse-volume correction [en-
coded in the (1 +32 55 Z (1 — 4€)) term], taken individually,
lead to this behavior. The infrared limit is more interesting
as, in this case, the holonomy and inverse-volume correc-
tions lead to very different spectra. The result obtained here
shows that the power spectrum is exponentially divergent,
in exact agreement with the limit obtained with the inverse-
volume correction alone. This proves that, under the stan-
dard inflationary background evolution hypothesis, the
inverse-volume term strongly dominates over the holon-
omy one. This is to be contrasted with the background
evolution in the very remote past where the holonomy term
alone leads to the replacement of the singularity by a
bounce.

V. CONCLUSION

This work derives the fully LQC-corrected equation of
motion for gravitational waves. This equation is expressed
in terms of cosmological variables and is explicitly solved
for a given set of parameters in a standard inflationary
background. It is shown that the spectrum remains expo-
nentially infrared divergent, as for a pure inverse-volume
correction. This reinforces the use of primordial gravita-
tional waves as a strong probe of loop quantum gravity
effects. The next step is naturally to build a fully consistent
model which includes all the corrections for both the
perturbations and the background.
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Conclusion

Dans le cas particulier ol on regarde I'univers uniquement dans sa phase d’expansion et subissant une in-
flation slow-roll, il existe une résolution analytique simple des équations conduisant au spectre de puissance.
D’autre part, nous n’avons pas non plus considéré de correction quantique sur la matiere comme dans les travaux
précédents : cela nous a ainsi permis de comparer ce spectre avec ceux obtenus par les études précédentes.

Les résultats obtenus pour lexpression analytique des spectres dans les équations (55) et (56) de Darticle
montrent une domination des corrections d’inverse-volume a la limite infrarouge, et des corrections d’holonomies
a la limite ultraviolette, tels que le spectre est finalement donné par la figure Fig.(8.1).
Ainsi, aux grandes échelles, une divergence exponentielle est tou-
jours présente, et aux petites échelles il existe une tres légere
pente dépendant du parametre de Barbero-Immirzi : cette signa-
ture caractéristique du spectre pourrait alors étre comparée avec

. . . . , - —— H,=001

les observations. Cependant, en cosmologie, il existe 1’échelle de 10 o o

longueur correspondant au rayon de Hubble telle qu’au dela de 10 e By 201

cette longueur, il n’est plus possible de faire des observations : 101 H=os
— GR(H=0.1)

10"

cela va se traduire par l'existence d’'un nombre d’onde k;;,, en
dessous duquel le spectre ne pourra pas étre mesuré. Les effets
quantiques étant tres importants aux grandes échelles, il se pour-

Tensorial power spectrum P_(k)

/\)—\\\\\\\\\\\\\\\\I.\"\

rait qu’ils ne soient finalement pas visibles s’ils sont a des nombres 10°

d’onde plus petits que k., et le spectre classique serait alors 10°
essentiellement obtenu. Néanmoins, il serait toujours possible de 10°
mesurer la pente du spectre qui caractériserait alors la valeur du \ .
parametre 7. TN

Ce travail prospectif s’est surtout révélé important pour com- I ey e e r T ey err M Mrarretrr Ry
prendre l'action conjuguée des différentes corrections, ce qui 10 102 10" 1 10 10°

n’avait jamais été regardé auparavant. On voit en effet par Hodes wave numberk
léquation (12) dans l'article qu’elles n’agissent pas de la méme
maniere : regarder la correction d’inverse-volume revient a multi-
plier la contrainte par une fonction corrective, alors que la correc-
tion d’holonomie va transformer les termes en k et k2 & Pintérieur
de ces contraintes. Cela va alors se répercuter dans le calculs des
crochets de Poisson et donc dans ’équation (8.1) olt S est en fac-
teur de la partie classique, alors que la correction d’holonomie va
donner un terme supplémentaire en p?. Les travaux suivant ont cependant invalidé 1'utilisation des corrections
d’holonomies dans cette approche, mais il est tout de méme intéressant de voir que ’équation du mouvement
pour les perturbations fait apparaitre un terme en S?V?2h, soit apres transformée de Fourier S2k2h, provenant

F1a. 8.1 — Spectres de Puissance obtenu pour
différentes valeurs du parametre de Hubble
initial.

ici du terme S - QYEOJE dans la contrainte, mais aussi un terme spécifique (27’( — %) en facteur de h, comme

pour I'équation de Klein-Gordon (5.43) avec & = b.

Ce premier travail a surtout eu 'avantage d’étre une introduction au formalisme de la cosmologie quantique a
boucles, en nous permettant de nous familiariser avec I'utilisation des contraintes et des crochets de Poisson,
mais aussi avec la forme spécifique des corrections d’inverse-volume et d’holonomie. Elle se place néanmoins
dans un cadre vraiment tres restrictif en raison des hypotheses faites sur I’évolution de 'univers et 1’absence de
correction sur le fond, et ne correspond pas exactement a une situation physique réelle méme si la forme globale
des spectre s’est révélée étre correcte par la suite.
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Chapitre 9

Etude de 'influence des corrections
d’holonomie sur le spectre des
perturbations tensorielles

Introduction

L’étude des perturbations en cosmologie quantique a boucles ayant surtout été réalisée jusqu’a mainte-
nant avec les corrections d’inverse-volume, nous avons voulu regarder le cas des perturbations tensorielles en
considérant uniquement les corrections d’holonomie en prenant réellement en compte ’existence du rebond dans
I'obtention des spectres analytiques et numériques. Une telle étude avait déja été partiellement réalisée pour un
potentiel non-massif [76], donnant des solutions exactement résolubles. Les spectres analytique et numérique
obtenus dans ce modele présentent une forme en k% avec en plus des oscillations, et redonnent dans la limite
ultraviolette un comportement classique.

On souhaitait de plus tenir compte de l'existence d’une phase inflationaire, et cela a été directement possible
en considérant dans notre cas le scénario de aileron de requin [56] ou un large jeu de parameétres permet
d’amener une inflation slow-roll standard. Cela n’était a priori pas évident puisque, dans le cas du vide, on
s’est rendu compte que les effets répulsifs induits par une géométrie quantique menaient certes a une phase de
superinflation, mais elle n’était pas suffisamment importante pour amener ensuite une phase d’inflation.

En se basant sur ces travaux ainsi que sur [69], nous avons commencé par regarder un peu plus en détails les
caractéristiques du scénario de I'aileron de requin, avant de nous intéresser a proprement parler aux spectres de
puissance prenant en compte ’existence d’un rebond suivi d’une inflation. Le modele analytique développé est
simpliste mais il nous a permis de jouer sur différents parametres afin de comprendre la physique se cachant
derriére la forme du spectre : la largeur du rebond An ainsi que la valeur des corrections d’holonomies qui
agissaient, par M (a) dans 'équation (8.2), et finalement € le premier parametre de slow-roll. Les observables
ont ainsi été corrélées aux parametres effectifs, que nous avons ensuite corrélé aux parametres fondamentaux
de la théorie. Spectre analytique et spectre numériques ont pu ensuite étre comparés.
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Inflation in loop quantum cosmology: Dynamics and spectrum of gravitational waves
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Loop quantum cosmology provides an efficient framework to study the evolution of the Universe
beyond the classical Big Bang paradigm. Because of holonomy corrections, the singularity is replaced by
a “bounce.” The dynamics of the background is investigated into the details, as a function of the
parameters of the model. In particular, the conditions required for inflation to occur are carefully
considered and are shown to be generically met. The propagation of gravitational waves is then
investigated in this framework. By both numerical and analytical approaches, the primordial tensor
power spectrum is computed for a wide range of parameters. Several interesting features could be

observationally probed.

DOI: 10.1103/PhysRevD.81.104049

L. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative and
background-independent quantization of general relativity.
Based on a canonical approach, it uses Ashtekar variables,
namely, SU(2) valued connections and conjugate densi-
tized triads. The quantization is obtained through holono-
mies of the connections and fluxes of the densitized triads
(see, e.g., [1] for an introduction). Basically, loop quantum
cosmology (LQC) is the symmetry reduced version of
LQG (although it is fair to underline that the relations
with the full theory are still to be investigated into the
details). While predictions of LQC are very close to those
of the old quantum geometrodynamics theory in the low
curvature regime, there is a dramatic difference once the
density approaches the Planck scale: the big bang is re-
placed by a big bounce due to huge repulsive quantum
geometrical effects (see, e.g., [2] for a review). Among the
successes of LQC, one can cite: the excellent agreement
between the trajectories obtained in the full quantum the-
ory and the classical Friedman dynamics as far as the
density in much below the Planck scale, the resolution of
past and future singularities, the ““stability’” of states which
remain sharply peaked even after many cycles (in the k =
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1 case), and the fact that initial conditions for inflation are
somehow naturally met. The latter point is especially
appealing as the inflationary scenario is currently the fa-
vored paradigm to describe the first stages of the evolution
of the Universe (see, e.g., [3] for a recent review).
Although still debated, it has received many experimental
confirmations, including from the WMAP 7-Years results
[4], and solves most cosmological paradoxes. It is rather
remarkable that, as will be explained in this paper, the
canonical quantization of general relativity naturally leads
to inflation without any fine tuning. Inflation would have
been unavoidably predicted by LQC, independently of its
usefulness in the cosmological paradigm.

Two main quantum corrections are expected from the
Hamiltonian of LQG when dealing with a semiclassical
approach, as will be the case in this study mostly devoted to
potentially observable effects. The first one comes from the
fact that loop quantization is based on holonomies, i.e.
exponentials of the connection rather than direct connec-
tion components. The second one arises for inverse powers
of the densitized triad, which when quantized become an
operator with zero in its discrete spectrum thus lacking a
direct inverse. As the status of ““‘inverse volume” correc-
tions is not clear due to the fiducial volume cell depen-
dence, this work focuses on the holonomy term only and
derives, for the first time in a fully consistent way, the
entire dynamics up to the explicit computation of the tensor
power spectrum. The background evolution is first studied
and a specific attention is paid to the investigation of the

© 2010 The American Physical Society
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inflationary stage following the bounce. Then, analytical
formulas are given for the primordial tensor spectrum for
either a pure de Sitter or a slow-roll inflation. Finally,
numerical results are given for many values of the parame-
ters of the model.

II. BACKGROUND DYNAMICS

In general, many different evolutionary scenarios are
possible within the framework of LQC. However, all of
them have a fundamental common feature, namely, the
cosmic bounce. As we will show, the implementation of
a suitable matter content also generically leads to a phase
of inflation. This phase is nearly mandatory in any mean-
ingful cosmological scenario since our current understand-
ing of the growth of cosmic structures requires—among
many other things—inflation in the early universe. It is
therefore important to study the links between the infla-
tionary paradigm and the LQC framework, as emphasized,
e.g., in [5].

The demonstration that a phase of superinflation can
occur due to quantum gravity effects was one of the first
great achievements of LQC [6]. This result was based on
the so-called inverse volume corrections. It has however
been understood that such corrections exhibit a fiducial cell
dependence, making the physical meaning of the associ-
ated results harder to understand. As reminded in the
introduction, other corrections also arise in LQC, due to
so-called holonomy terms, which do not depend on the
fiducial cell volume. Those corrections lead to a dramatic
modification of the Friedmann equation which becomes

eS8 o

where p is the energy density, p. is the critical energy
density, H is the Hubble parameter, and x = 87G. In
principle, p. can be viewed as a free parameter of theory.
However, its value is usually determined thanks to the
results of area quantization in LQG. Then,

NG

Pc
where value y = 0.239 has been used, as obtained from the
computation of the entropy of black holes [7]. Should the
inverse volume corrections be included, this would modify
the background dynamics by some additional factors.

As it can easily be seen from Eq. (1), a general predic-
tion associated with models including holonomy correc-
tions is a bounce which occurs for p = p.. The appearance
of this p? term with the correct negative sign is a highly
nontrivial and appealing feature of this framework which
shows that the repulsive quantum geometrical effects be-
come dominant in the Planck region. The very quantum
nature of spacetime is capable of overwhelming the huge
gravitational attraction. The dynamics of models with hol-
onomy corrections was studied in several articles [5,8—10].
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In this paper we further perform a detailed and consistent
study of a universe filled with a massive scalar field in this
framework. The global dynamics of such models was
firstly studied in Ref. [8]. Recently, it was pointed out in
Ref. [9] that the “‘standard” slow-roll inflation is triggered
by the preceding phase of quantum bounce. This general
effect is due to the fact that the universe undergoes con-
traction before the bounce, resulting in a negative value of
the Hubble factor H. Since the equation governing the
evolution of a scalar field in a Friedmann-Robertson-
Walker universe is

é +3Hp + m2ep =0, 3)

the negative value of H during the prebounce phase acts as
an antifriction term leading to the amplification of the
oscillations of field ¢. In particular, when the scalar field
is initially at the bottom of the potential well with some
small nonvanishing derivative ¢, then it is driven up the
potential well as a result of the contraction of the universe.
This situation is presented in Fig. 1.

To some extent, it is therefore reasonable to say that the
LQC framework solves both the two main ‘“problems” of
the big bang theory: the singularity (which is regularized
and replaced by a bounce) and the initial conditions for
inflation (which are naturally set by the antifriction term).

However, this shark fin evolution (see caption of Fig. 1)
is not the only possible one. In particular, a nearly sym-
metric evolution can also take place, as studied in
Ref. [10]. Those different scenarios can be distinguished
by the fraction of kinetic energy at the bounce. When the
energy density at the bounce is purely kinetic, the evolution
of the field is symmetric. When a small fraction of poten-
tial energy is introduced, which is the general case, the
symmetry is broken and the field behaves as in the shark fin
case. It is however important to underline that we consider
only scenarios where the contribution from the potential is
subdominant at the bounce, as it would otherwise be

3 [ 1
quantum A slow—roll reheating
bounce 2 | inflation
I
% j
-10 1 10 2 30 mt
i domain of the standard cosmology
_iLbo

FIG. 1 (color online). Shark fin-type evolution of a scalar field
for m = 10 3mp,. The (red) dot represents the point where the
initial conditions in classical cosmology are usually set.

104049-2
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necessary to include quantum backreaction effects [11].
The effective dynamics would then be more complicated
and could not be anymore described by Eq. (1).

In order to perform qualitative studies of the dynamics
of the model, it is useful to introduce the variables

P md yi= -2 (4)

N
zl
o

Since the energy density of the field is constrained (p =
p.), the inequality

P +yr=1 &)

has to be fulfilled. The x? term corresponds to the potential
part while the y? corresponds to the kinetic term. The case
x> + y? = 1 corresponds to the bounce, when the energy
density reaches its maximum.

In Fig. 2, exemplary evolutionary paths in the x — y
phase plane are shown. For all the presented cases, the
evolution begins at the origin (in the limit t — —o0), and
then evolves (dashed line) to the point on the circle x> +
y?> = 1. Finally, the field moves back to the origin for  —
+o0 (solid line). However, the shapes of the intermediate
paths are different. The x = 0 case corresponds to the
symmetric evolution which was studied in Ref. [10] (if
the bounce is set at t = 0, the scale factor is an even
function of time and the scalar field is an odd function).
In this case, the field is at the bottom of the potential well
exactly at the bounce (H = 0). This is however a very
special choice of initial conditions. In the case x =
\/5/ 2, the potential term and kinetic term contribute
equally at the bounce. In this case, both deflation and
inflation occur. However one observes differences in their
duration. The third case, x = 1, corresponds to the domi-
nation of the potential part at the bounce. In this case,
symmetric phases of deflation and inflation also occur

FIG. 2 (color online). Exemplary phase trajectories of the
scalar field with m = mp.
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FIG. 3. Time evolution of the scalar field. Different evolu-
tionary scenarios leading to a slow-roll inflation phase are
displayed. The bottom (solid) line represents the symmetric
case. The middle (dotted) line represents the shark fin-type
evolution mostly investigated in this paper. The top (dashed)
line corresponds to a larger fraction of potential energy. For all
curves m = 0.01mp.

(both the scale factor and the field being this time even
functions). However in this situation, as well as in x =
\/5/ 2 case, the effect of quantum backreaction should be
taken into account. The dynamics can therefore signifi-
cantly differ from the one computed with Eq. (1).

In Fig. 3 we show some exemplary evolutions of the
scalar field for different contributions from the potential
part at the bounce. In Fig. 4, the corresponding evolutions
of the scale factor are displayed. It can easily be seen that
the value of ¢, increases with the fraction of potential
energy at the bounce. Since the total energy density is
constrained, ¢, must satisfy

a
10%0 ¢
10% x=0.02
1026
1019

x=0.0‘1
oy e
105 X=
=20 20 mt

FIG. 4. Time evolution of the scale factor. Different evolu-
tionary scenarios leading to a slow-roll inflation phase are
displayed. The bottom (solid) line represents the symmetric
case. The middle (dotted) line represents the shark fin-type
evolution. The top (dashed) line corresponds to a larger fraction
of potential energy. For all curves m = 0.01my,.
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.
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| el = Y22C. 6)

m

The values of ¢,,,, associated with different evolutionary
scenarios were computed in [5,9,10]. The conclusion of
those studies is that the necessary conditions for inflation
are generically met. Only in the case of a symmetric
evolution does the value of ¢,,,, become too small in
some cases. In particular, for m = 10 %mp, one obtains
G max = 2.1mp; for a symmetric evolution. The correspond-

ing number of e-folds can be computed with N = 277"5—22,
Pl

which gives N = 28. By introducing a small fraction of
potential energy (as in the shark fin case), the number of e-
folds can be appropriately increased. In addition to the
usual arguments, this requirement is also set by the recent
WMAP 7-Years results [4]. Based on those observations,
the value of the scalar spectral index was indeed measured
to be ng =0.963 £0.012. As for a massive slow-roll
inflation the relation

1 mlz,1

T P?
holds, one obtains ¢,, = 2.9 = 0.5myp,. Since the consis-
tency relation ¢ . > ¢, must be fulfilled, the symmet-
ric  evolution with m =10"%mnp  (for  which
G max = 2.1mp; < ¢byp,) 1s not favored by the WMAP 7-
Years observations. As already mentioned, higher values of
¢ can be easily reached if some contribution from the
potential term is introduced (this supports the shark fin
scenario). The number of e-folds will therefore be naturally
increased in this way. However it remains bounded by
above: since N = 277;%, Eq. (6) leads to the constrain:

)

ns=1

4mp,
< 1TPe 8
e, ®)

N

The value of the parameter p. can be fixed by Eq. (2).
However, this expression is based on the computation of
the area gap as performed in LQG. This, in general, can be
questioned [12]. In particular, in the framework of reduced
phase space quantization of LQC, the value of p. remains a
free parameter [13]. Moreover, a particular value of the
Barbero-Immirzi parameter (imposed by black hole en-
tropy considerations) has been used. Therefore, the value
of p. can, in general, differ and it is worth investigating
how the variation of p. can alter the dynamics of the
model. In particular, we have studied how the shark fin
scenario can be modified by different choices of p.. In
Fig. 5, the evolution of the field is displayed as a function
of the value of the critical energy density. As expected, the
larger p., the higher the maximum value reached by the
field. It can be seen that ¢, approaches the usually
required value ~3mp for p. ~ my,, making the whole
scenario quite natural.
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III. GRAVITATIONAL WAVES IN LQC

Although quite a lot of work has already been devoted to
gravitational waves in LQC [14], this study aims at treat-
ing, for the first time, the problem in a fully self-consistent
way with an explicit emphasis on the investigation of the
spectrum that can be used as an input to study possible
experimental signatures.

The equation for tensor modes in LQC is given (see, e.g.,
[15]) by

—zhi +2aHihi — V2hi, + m3hi, = 0 ©)]
d'ﬂz a dn a a Q'a 4
where £, are gravitational perturbations, 7 is the confor-
mal time, and the factor due to the holonomy corrections is
given by

2
m = 167rGa2ﬁ(—p - v). (10)
Pe\3

This factor acts as an effective mass term. For convenience
we introduce the variable

Y= ahg _ ahg
V167G 167G’

where hi = —h} = hg, hl = h} = hg. Then, performing
the Fourier transform

(11)

&’k -
u(x, n) = [W i (n)e’™, (12)
one can rewrite the equation as
d2
d—ﬂzuk(n) + [k + mlu () = 0, (13)
where k> = k - k and
a’ K 1
m2y 1= sz—;=a2§|:p—§pi|. (14)

It is worth underlining that the final expression of mg has
no explicit dependence upon the critical energy density p..
In Eq. (14), both m2Q and a"/a depend on p.. However
since

%" = a2[23—Kp<1 = ﬁ) - g(p + p)(l - i—/:)]» (15)

the factors depending on p. cancel out precisely. This is
perhaps not a coincidence and this could exhibit the con-
servation of classical symmetries while introducing the
quantum corrections.

The next step consists in quantizing the Fourier modes
ug(n). This follows the standard canonical procedure.
Promoting this quantity to be an operator, one performs
the decomposition

() = fr(mby + f;:(ﬂ)l;tk, (16)

104049-4
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FIG. 5 (color online). The shark fin-type evolution of the
scalar field for m = 10~ 3myp,. Curves from bottom to top were
computed for p, = 1076, 1074, 1072, 1, and 100[my,], respec-
tively.

where f(n) is the so-called mode function which satisfies
the same equation as uk(n) namely, Eq. (13). The creation
(bJr) and annihilation (bk) operators fulfill the commuta-
tion relation [y, b{] = 6 (k — q).

The problem is now shifted to the resolution of a
Schrodinger-like Eq. (13) which can be used to compute
the observationally relevant quantities. In particular, the
correlation function for tensor modes is given by

sinkr

. 7?T(k 77) A7

(Olag(x, WAL (y, m)I0) =

where Prp is the tensor power spectrum and |0) is the
vacuum state. In our case, P can be written as

647G k3

Wﬂ) ﬁ|fk(77)|2 (18)

fPT(k, 77) =

This spectrum is the fundamental observable associated
with gravitational wave production. As will be shown in
the next sections, very substantial deviations from the usual
shape are to be expected within the LQC framework.

IV. ANALYTICAL INVESTIGATION OF THE
POWER SPECTRUM

In this section we perform analytical studies of gravita-
tional wave creation in the scenario previously described.
In particular, we derive approximate formulas for the
tensor power spectrum at the end of inflation. In the next
section we will compare this result with numerical
computations.

In the considered model, the evolution is split into three
parts: contraction, bounce, and slow-roll inflation. For this
model, the effective mass square is defined as follows

PHYSICAL REVIEW D 81, 104049 (2010)

0 forn<mn, — An.
mgff(n) = k2 for n;, — An < n < ni.
- l)% for n > n,.

(19)

Basically, the phenomenological parameters entering the
model are therefore:

(i) m;,—the beginning of the inflation.

(i) Am—the width of the bounce.

(iii) kog—which is approximately equal to the value of
mege at the bounce (when H = 0). It can therefore
be related with the energy scale of the bounce.

(iv) v—which is related to slow-roll parameter € by

v = 1’%4' 3e =%+ € + O(€?), where € < 1.

For the considered model, we have k% = (. This comes
from the fact that we consider the particular shark fin-type
of evolution where the bounce is dominated by the kinetic
energy term. Therefore when y > x [see Eq. (4)], Eq. (14)
simplifies to m2; = a’k$*/6 = 0, leading to i} =~
mgff(t = Thounce) = 0.

A matching should be performed between the three
considered phases. It can be done, as displayed in Fig. 6,
with transition matrices defined as follows:

| fitn)  fi(n)
M"[a,,fk(n) anZ(n)} 20)

where the Wronskian condition implies
W(fi(n), fi(n)) == detM = i. (2D

The inverse of the transition matrix is then given by

S 9afiGm) —fi(n)
Mo ’[—a,,fkw) fn | *
mzeff
Kl
M-
ot
- An m o

FIG. 6 (color online). Evolution of the effective mass used in
the analytical approximation [Eq. (19)]. On this plot, € is set to
zero as an example. The dashed line represents the case without a
bounce. The points where the transfer matrices are computed in
our model are also indicated.
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The three first transition matrices are

e~ ik(n;—An) eik(ni—An)
M, = 7 v (23)
_i\/ge—lk(m—An) i\/gelk(m—An)
e*i(l(r/,-f ) ei!l(n,-*An)
M, = oo L e
_i\/ge—lﬂ(m—An) ,-\/gezn(m—m

— 20 20

e im; ;i
M; = : o | (25)
Q=R +i (26)

In the last region, mode functions can be written as

fi(n) = arg(m) + Brgi(n), (27)

where

where

T .
gi(n) = J—_n\/;em(z””/ Y (—kn),  (28)

H ,(x) being a Hankel function of the first kind. The mode
functions g(n) correspond to another decomposition of
the field iy (n) in the form:

i (n) = gi(may + gi(mal,. (29)

The creation (&;E) and annihilation (dy ) operators fulfill the
commutation relation [dy, Ez:;] = 60 (k — q). Because de-
compositions (16) and (29) are equivalent, based on
Eq. (27) and on the Wronskian conditions for the mode
functions f; and g;, one obtains:

|:l§kk :| - [Zi glk( ][ a&‘f_kk ] (30)

which corresponds to a Bogoliubov transformation with
coefficients «; and B;. Because of the commutation rela-
tion of the creation and annihilation operators we have
la|> — |By]?> = 1. It is clear from Eq. (30) that if 8, #
0 particles are created from the vacuum, just because
by |0y = Bial, |0). By matching the three regions, the
unknown coefficients «; and B, can be determined:

_ _ 1
AR

e An=1)(Q) cos[AnQ]—iksin[AnQ])
— M-! V2kQ)
M4 [e”‘m""i‘(—ikcos[AnQ]—Q sinfAnQ]) }’ GD

2k

where My is given by

_[ am g
““‘[%&w>a£xmLﬁ; (32)
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the mode function g, being given by Eq. (28). In the
special case corresponding to a de Sitter inflation (e = 0
and v = %), the mode functions given by Eq. (28) simplify
to the Bunch-Davies vacuum

—ikn .
2Dz = &BP(m) = & o (1 - é) (33)

In general, the amplitude of the mode function during
inflation can be written as

If:l? = lgil*lay — Bil> + 40 (e} Brgi)Ngs. (34)

As we are interested in the spectrum at the end of inflation
(n — 07), the approximation

HO () = — }Tru)(g)*" 35)

holds and, based on this, one can easily see that for a slow-
roll inflation (e < 1):

NRegw(n) = 0(e). (36)

lim

=0 Jgi(n)
Therefore, the leading order contribution from Eq. (34)
becomes

nﬁ_{gf|fk|2 = lgllay — Bil* (37

With this approximation, the tensor power spectrum at the
end of inflation takes the form

P (k) = 1—6(1)2( ¢ )_klak S NCRET

m \mp;) \aH

The coefficients «; and B, are computed from Eq. (31).
Since the resulting expression for |a;, — B|? is very long,
it is not explicitly given here. It exhibits the correct ultra-
violet (UV) behavior, namely, lim;_|a; — Bil*> = 1.
Therefore, the UV spectrum simplifies to

Pr/PrPS

0.1 1 10 100
FIG. 7. Analytical tensor power spectra, normalized to the
non-LQC-corrected spectrum, for three different values of k

in the € = 0O case. The parameters are: k, = 0 (solid line), k, =
1.5 (dashed line), ky = 3 (dotted line), n; = —1, and An = 1.
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Pr/PrsS

1 1

0.1 1 10 100

k

FIG. 8. Analytical tensor power spectra, normalized to the
non-LQC-corrected spectrum, for two different values of An
in the € =0 case. The parameters are: An = 0 (solid line),
An = 10 (dashed line), ky = 1, and n; = —1.

Pk — o) = &(ﬂf( k )725. (39)

T \mp;) \aH

In Fig. 7, spectra, as obtained from Eq. (38), are dis-
played for different values of k; and normalized to the
usual non-LQC corrected spectrum. In Fig. 8, the width of
the bounce A7 is varied. In both cases, € is vanishing.

The main features that can be drawn from those plots are
the following:

(i) The power is suppressed in the infrared (IR) regime.
This is a characteristic feature associated with the
bounce.

(i) The UV behavior agrees with the standard general
relativistic picture.

(iii)) Damped oscillations are superimposed with the
spectrum around the “transition” momentum k,
between the suppressed regime and the standard
regime.

(iv) The first oscillation behaves like a ““bump” that can
substantially exceed the UV asymptotic value.

(v) The parameter k basically controls the amplitude of
the oscillations whereas Am controls their
frequency.

V. NUMERICAL INVESTIGATION OF THE POWER
SPECTRUM

To perform a more detailed analysis, we have also fully
numerically solved the system of coupled differential
equations which leads to both the evolution of the modes
and of the background:

&Pfy _ g dfe K Kk,

o H ar [_a2 + ¢ (Bp P)]f % (40)
dH _1 p
) k(p + p)(2 o 1), (41)

PHYSICAL REVIEW D 81, 104049 (2010)

da _ p, (42)
dt
dp _ Ty
@ =22 43
= p (43)
T — o3¢, (44)
dt
where
2 2 2 2
T M 5 Ty _m” .,
=_9% 4+ -_% _
P=55617 ¢ and p 26 2 ¢ (45)

are, respectively, the energy density and pressure of the
scalar field whereas 7, is the momentum.

To compute the evolution of the modes, the initial con-
dition was assumed to be the Minkowski vacuum

e—ikn
fk - \/ﬁ( .

This approximation is valid for the subhorizontal modes.
Therefore, in the numerical computations we have evolved
only modes that were subhorizontal at the initial time.

In Fig. 9, the analytical spectrum Eq. (38) evaluated as
explained in the previous section is compared with the full
numerical computation. The overall agreement is very
good with slight deviations due to subtle dynamical effects.
The UV tilt associated with the slow-roll parameter is
perfectly recovered. The values of parameters H, ky, and
€ were determined from the evolution of the background.
In turn, the parameters 7; and An were fixed to fit the
numerical data.

The mass of the scalar field is, of course, the key
physical parameter of this model. The canonically chosen
value (around 10~ %mp) may not be especially meaningful

(46)

Pr
0.1}
numerical

0.01 +
0.001

1074k analytical

. . . . . _k
1074 0.001  0.01 0.1 1 10

FIG. 9 (color online). Comparison of numerical and analytical
spectra [Eq. (38)] for m = 10™2my,. In the IR region the spectra
behave as P « k> while in the UV region they behave as Py «
k=2€, where € < 1 is the slow-roll parameter. Here: H =
0.037mp;, € =0.0246, ko= 0.037mp, m; = —750, and
An =10.
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Pr
0.01} m=10"2mp
\ m=10"mp,

107}
m=10"*mp

107
Y R Y TR YR R

FIG. 10 (color online). Numerically computed power spectra
for m = 1074, 1073, 10~ 2myp, (from bottom to top in the UV
range).

in this approach as the standard requirements of inflation
are substantially modified by the specific history of the
Hubble radius. This value is nonetheless still the mostly
preferred one.

In Fig. 10, the spectra computed for three different mass
values are displayed. As expected, the UV value of the
spectrum scales as m?, since during inflation Pr ~ H* ~
m?. It is also clear that the region of oscillations becomes
broader while lowering the value of m.

In Fig. 11, we show how the spectrum is modified by
different choices of p.. It is clear that increasing p, leads to
an amplification of the spectrum. The dependence is how-
ever not very strong. As it was shown in Section II, the
increase of p. leads to an increase of the field displacement
¢® max- This dependence was shown to be rather weak. Since
Pr ~ H?> ~ m>¢?, the increase of ¢ due to the depen-
dence upon p. will result in an amplification of the power
spectrum. This is in agreement with the numerical results.
From Fig. 11, it can also be noticed that increasing p,
amplifies the oscillatory structure.

Pr

001| Pe=10m'n

0.001 + 0.=0.01 ,,,41,l w
L il —
T

1075 i \

1076

:=0.0001 m*p
1077+

L L L I{

10°*  0.001 0.01 0.1 1 10

FIG. 11 (color online). Numerically computed power spectra
for p. = 1074, 1072, 10my, (from bottom to top in the UV
range) with m = 10" 3mp,.
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1000 |

100

10

00001 0.001 0.01 0.1

FIG. 12 (color online). Ratio defined by Eq. (47) as a function
of inflaton mass in Planck units. Dots are values obtained from

the numerical computations. The straight line is the fit given by
Eq. (48).

The numerical investigations performed for this work
have shown that the quantity R defined as

Ri=— 1% 47
g)§rtandard(k — k*) ( )

basically evolves as

0.64
R = (@) , (48)
m

where k, is the position of the highest peak in the power
spectrum and P§an4ad(k) is a standard inflationary power
spectrum [see e.g. Eq. (39)] which overlaps with Pr(k)
for k— oo. The function (48) was obtained by fitting
the numerical data in the mass range m =35 X
10 3mp, ... 10" 'mp,. Because of numerical instabilities,
it was not possible to perform computations for lower
values of the inflaton mass. The numerically obtained
values of R together with the approximation given by
Eq. (48) are given in Fig. 12. This parametrization is useful
for phenomenological purposes. Interestingly, R can be-
come very high for low values of the mass of the field. This
partially compensates for the lower overall normalization
of the spectrum and can become a very specific feature of
the model. In particular, for the mass m = 10~ ®myp, (which
is the value preferred by some estimations), extrapolating
the relation (48) leads to R = 8000. If the relation still
holds in this range, the effect is very significant, and could
have important observational consequences.

Finally, to make basic studies easier, we performed a
rough parametrization of the full spectrum:

16 HY\ ()7 4R -2
Pr= ?<m_m) 1+ (k,-;/k)z[ 1+ (k/k*)z]’ @)
leading to
& _ E(i)Z 1 4R — 2

in the specific case of de Sitter inflation. In both cases, the
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Pr
1.

0.1} &
0.01F 4
0.001 ¢ i
1074

- k

105 10* 0.001 0.01 0.1 1 10

FIG. 13 (color online). Comparison of the numerical spectrum
for m = 10~ 2mp, with formulas (49) and (50). The solid (blue)
line corresponds to (49) while the dashed (red) line corresponds
to (50).

classical behavior is recovered in the limit k — oo. The
point for introducing the R factor the way it was done
becomes clear when calculating the value of the spectra at
k = k.. For a modified de Sitter spectrum [Eq. (50)], we
get

P8k =k,) = RE(E)Z. (51)

T \Mp|

Thanks to the relation (48), the number of the free parame-
ters can be decreased in a phenomenological analysis.

As shown on Fig. 13, this formula correctly reproduces
the main features, namely, the IR power suppression, the
bump, and the UV limit. Oscillations are missed but due to
momentum integration there is little hope that they can

length e

Hubble
radius

~~e

~~e

[ ] time

t|3 inflation 7|f4 ts

l
t1 contraction to

FIG. 14 (color online). Schematic picture of evolution of the
Hubble radius (solid line) and of the different length scales
(dashed lines) for the considered model of the universe.
Different times are distinguished: #; time when the initial con-
ditions are set; t, bounce (H = 0); t; beginning of inflation; #4
end of inflation; 75-present epoch of dark energy domination.
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observationally be seen on a cosmological microwave
background (CMB) spectrum.

To conclude this section, we have schematically repre-
sented the evolution of the Hubble radius (Ry := 1/|H]),
together with the physical modes, in Fig. 14. This helps to
understand the shape of the obtained spectra.

We consider the modes that are initially (at time #;)
shorter than the Hubble radius. For those modes, the nor-
malized solution is given by the Minkowski vacuum f; =
e~ k1 /\/2k. Therefore, the initial power spectrum takes the
form Pr ~ k3| f;|> ~ k. Starting from the largest scales,
the modes cross the Hubble radius. This is possible since
the Hubble radius undergoes contraction faster than any
particular length scale. While crossing the horizon, the
shape of the spectrum becomes frozen in the initial Pr ~
k* form. Then, the modes evolve through the bounce (at
time #,) until the beginning of inflation (at time #3). The
main consequence of the transition of modes through the
bounce is the appearance of additional oscillations in the
spectrum. This issue was studied in detail in Ref. [16],
where the spectrum at time #; was calculated for the
symmetric bounce model. After the bounce, modes with
wavelengths shorter than A, start to reenter the Hubble
radius. The superhorizon modes A > A.(k < k) hold the
K2 spectrum, with, however, some oscillatory features due
to the bounce. Modes with A < A,(k > k,) cross the hori-
zon again during the phase of inflation. For them, the
spectrum agrees with the standard slow-roll inflation spec-
trum Pr ~ k%€ where € << 1. The small tilt is due to a
slow increase of the Hubble radius. Contributions from
different modes are then slightly different. At the end of
inflation (at time ¢4) the spectrum is therefore suppressed
(Py ~ k?) for k < k, and exhibits the inflationary shape
(Py ~ k™€) for k > k.. The spectrum is also modified by
the oscillations due to the bounce. This corresponds to the
computations of this paper. The particular mode with
wavelength A, (wave number k.) should be studied in
more detail. The size of this mode overlaps with the size
of the Hubble radius at the beginning of inflation: k, =
a(t3)H(t3). The physical length A, at the scale factor a(r) is
therefore equal to A.(r) = a(r)/[a(t3)H(t3)]. This scale
grows with the cosmic expansion and it is crucial, from
the observational point of view, to determine its present
size (at time f5). The case drawn in Fig. 14 corresponds to a
present size of A, greater than the size of the horizon. This
is indeed rather unlikely that the present value of A, is
below the size of horizon just because the spectrum of
scalar perturbations should then exhibit deviations from
the nearly scale invariant inflationary prediction. Up to
now, there is no observational evidence for such deviations.
A remaining possibility would however be that the (slight)
observed lack of power in the CMB spectrum of anisotro-
pies could be due to the effects of the bounce. However, the
present size of A, would then be comparable with the size
of horizon. This leads to the question: why should those
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two scales overlap right now? This is rather unnatural, and
would lead to a new coincidence problem. However, as it
was estimated in Ref. [9], these two scales can indeed
overlap in the standard inflationary scenario for quite
natural values of the parameters. There is therefore a
glimpse of hope that the scale A, is at least not to much
bigger than the size of horizon. This could allow us to see
some UV features due to the bounce as the oscillations also
affect sightly the inflationary part of the spectrum. These
are however secondary effects and it is not clear whether
they were not smoothed away during the radiation domi-
nation era. Moreover, in the region where those effects
could be expected, errors due to the cosmic variance
become significant. This is an unavoidable observational
limitation which cannot be bettered, even by the improve-
ment of resolution of the future CMB experiments.

Another limitation in studying the effects of LQC comes
from the fact that the derived modifications can also appear
in other bouncing cosmologies. In particular, within the
model of quintom bounce, the discussed effects of sup-
pression and oscillations were also pointed out [17,18].
The amplitude of tensor perturbations at the peak was,
however, not predicted to be as high as in LQC. An addi-
tional amplification on the very large scales was also
predicted in the quintom model. Despite these differences,
at the observationally accessible low scales, the effects due
to the LQC bounce and the quintom bounce are mostly
indistinguishable. Therefore, complementary observatio-
nal methods have to be proposed to distinguish between
such models. A possible distinction could be given e.g.
from the analysis of non-Gaussianity production within
LQC.

VI. CONCLUSIONS

This study establishes the full background dynamics in
bouncing models with holonomy corrections. Although
this has already been claimed before, we confirm that
due to the sudden change of sign of the Hubble parameter,
inflation is nearly unavoidable. In this paper, we have
considered a particular model of inflation where the con-
tent of the universe is dominated by a massive scalar field.
We have investigated the details by both analytical and
numerical studies the primordial power spectrum of gravi-
tational waves. It exhibits several characteristic features,
namely, a P « k? IR power suppression, oscillations, and
a bump at k... In the UV regime, the standard inflationary
spectrum P o k~2€ is recovered. The primordial tensor
power spectrum transforms into B-type CMB polarization.
The performed investigations therefore open the window
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for observational tests of the model, in particular, through
the amplification which occurs while approaching k — k..
The observed structures correspond to the UV region in the
spectrum. If the present scale A, ~ 1/k, is not much larger
than the size of horizon, then the effects of the bounce
should be, in principle, observable. In particular, one
should expect amplification, rather than suppression of
the B-type polarization spectrum at the low multipoles.
The suppression for k < k.. becomes dominant at the much
larger scale, probably far above the horizon. While the
B-type polarization has not been detected yet, there are
huge efforts in this direction. Experiments such as
PLANCK [19], BICEP [20], or QUIET [21] are (partly)
devoted to the search of the B mode. Even with present
observational constraints, one can already exclude some
evolutionary scenarios and possible values of the parame-
ters; in particular, the inflaton mass m and position of the
bump k.. in the spectrum. We address this interesting issue
elsewhere [22]. There are also still several points to study
around this model:

(1) How is the scenario modified when quantum back-
reaction is taken into account (in particular when the
potential energy of the field in not negligible at the
bounce)?

(i) How is the power spectrum modified by inverse-
volume terms in this framework? Although the
background dynamics should not be fundamentally
altered, the spectrum could be significantly
modified.

(iii) How do those results compare with models dealing
with classical bounces (see, e.g., [23])? If the IR
power suppression is probably a generic feature
of bounces, the detailed features are model-
dependent.

Together with the known success of LQC (The singu-
larity resolution, the correct low-energy behavior, etc.), the
facts that (1) inflation naturally occurs and (2) observatio-
nal features can be expected from the model, are strong
cases for loop cosmology. Those two points are the main
results of this paper.
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Conclusion

Dans cette étude, nous avons bien observé la présence de I'inflation. Le fait qu’elle apparaisse naturellement
en cosmologie quantique a boucles, sans ’ajustement fin’ nécessaire est une des grandes forces de ce modele.
L’approche analytique a permis de voir les caractéristiques principales d’un spectre sous ’action d’un rebond :

o le spectre dans la limite infrarouge évolue en k? : cela peut se comprendre par le fait que les grandes
distances, dans un univers en contraction, sortent de 1’horizon avec le spectre du vide de Minkowski, se
figent et ne subissent pas ensuite U'inflation.

e le spectre dans la limite ultraviolette est bien quasiment invariant d’échelle comme attendu.

e entre ces deux régimes, le spectre présente des oscillations : au niveau du rebond, tous les modes sont en
contact causal et oscillent plus ou moins longtemps suivant la largeur de ce rebond.

e suivant la valeur des corrections au moment du rebond, I’amplitude du spectre sera changée et la premiere
oscillation, correspondant a ’oscillation la plus importante. Elle pourrait alors étre beaucoup plus grande
que la valeur du spectre a la limite ultraviolette et avoir peut-étre une conséquence observable.

L’étude numérique a permis ’obtention d’un spectre similaire, avec cependant une différence dans la limite

infrarouge oll on peut observer un léger décalage entre la pente en k% et la premiere oscillation : cela est
du & Dexistence dans la dynamique de I'univers d’une phase de superinflation [77] [78]. Il pourrait ici s’agir
d’une caractéristique permettant de distinguer un rebond ’quantique’ d’un rebond ’classique’ [79]. On a pu
ainsi confirmer ce qui avait été observé par le modele analytique, et voir aussi que suivant la masse du champ
d’inflaton, Pamplitude du spectre dans sa partie classique correspondait bien & une évolution en m?, comme
dans une inflation slow-roll. L’étude faite par [76] n’a considéré que le rebond puisque le champ de matiére est
non-massif, et ce spectre a été courbé sous ’action de l'inflation, ce que corrobore finalement notre travail.
La forme du spectre de puissance étant compliquée, nous avons décidé pour une étude future d’en utiliser une
description effective. Nous avons alors défini une fonction approximative qui encode ses caractéristiques aux
limite ultraviolette et infrarouge, et seule la plus grande des oscillations est prise en compte, comme illustré sur
la figure Fig.(13) de article. On a ainsi paramétré le spectre par amplitude R de la premiere oscillation par
rapport a la valeur du spectre a la limite classique, et par le nombre d’onde correspondant a la position de cette
amplitude k., tels que son expression soit donnée par

71D 4R —2
Pr = Pr 1+ , (9.1)

- 2 2
L+ (%) 1+ ()

avec P%YTD I’expression du spectre de puissance standard. Puisqu’il est possible de rattacher les caractéristiques
du spectre aux parametres fondamentaux de la théorie, comparer ce spectre primordial avec les observations
nous renseignera sur la physique prédite par ce modele.
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Chapitre 10

Observations possibles du rebond par
les perturbations tensorielles en
Cosmologie Quantique a Boucles

Introduction

Actuellement, les modes B n’ont jamais pu étre observés lors d’une étude du fond diffus cosmologique, mais

des limites ont été obtenues sur les amplitudes du spectre. Le spectre en température des photons est, quant a
lui, treés bien mesuré par WMAP, et aussi tres bien décrit par le modele A-CDM.
Dans le travail précédent, on a vu que le rebond induisait une évolution en k2 pour les petites valeurs de nombres
d’onde, ainsi que des oscillations dans le spectre primordial. La question de 'existence de ces structures dans
celui en température reste ouverte puisque 1’équation du spectre scalaire tenant compte des corrections d’holo-
nomies n’ayant pas encore été dérivée, sa forme reste hypothétique. Le spectre de puissance des perturbations
tensorielles dans ce modele de rebond ayant pu étre dérivé par le travail précédent, nous avons voulu savoir si
des expériences futures comme le projet CORE avaient une chance de pouvoir détecter les effets dus au bounce.
Nous avons pour cela considéré en premiere approche le spectre primordial donné par I'approximation (9.1)
précédente, et regarder 'influence sur les spectres attendus de 'amplitude R et de la position k, de la premiere
oscillation. Nous avons ainsi intégré cette composante primordiale avec celle donnant les effets de lentille gravi-
tationnelle, et les spectres obtenus ont alors été paramétrés par le jeu de parametres

0; =k, Rynp, T/S, T, (10.1)
les autres parametres étant donnés par les parametres cosmologiques mesurés par WMAP-7ans.

L’étape suivante a alors consisté a regarder quel serait 1’es-

pace des valeurs de R et de k, qui permettrait a une expérience
d’observer les effets du rebond. Pour cela, une analyse de Fisher! A
a alors été réalisée et nous a permis de regarder le rapport signal- ]
sur-bruit attendu en fonction de ces parametres. Nous avons ainsi
obtenu les gammes de valeurs qui pourraient étre observées, et
étudié alors quelles seraient les conséquences sur les possibles va-
leurs des parametres fondamentaux comme la masse du champ
d’inflaton ou bien la valeur de son énergie potentielle au moment
du bounce.
Avec les arguments précédents, il est aussi envisageable que les
perturbations scalaires subissent les caractéristiques du rebond
et voient une partie de leur spectre supprimée pour de faibles
valeurs du nombre d’onde. Le spectre en température actuelle-
ment observé ne permet pas de conclure sur la présence de cette
suppression, mais on peut cependant penser que k, devrait étre
plus petit que celui correspondant au rayon de Hubble : suivant
cette hypothese, nous avons alors dérivé des contraintes sur la
valeur des parametres en utilisant les données actuelles.

+1)C]T J2m (uK?)
Mo,
e
Lf::m
g
e

Fic. 10.1 — Spectre de puissance en
température avec les données de WMAP-
Tans, pour le modeéle du rebond (pointillés)
et pour la prédiction du modele standard (ti-
rets) : les barres d’erreur pour les petites va-
leur de k étant grande a cause de la variance
cosmique, on ne peut rien conclure sur la
validité du modele du rebond par rapport au
modele standard [77].

IVoir les références [80], [81] et [82] pour plus de détails.
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Cosmological models where the standard big bang is replaced by a bounce have been studied for
decades. The situation has, however, dramatically changed in the past years for two reasons: first, because
new ways to probe the early Universe have emerged, in particular, thanks to the cosmic microwave
background, and second, because some well grounded theories—especially loop quantum cosmology—
unambiguously predict a bounce, at least for homogeneous models. In this article, we investigate into the
details the phenomenological parameters that could be constrained or measured by next-generation
B-mode cosmic microwave background experiments. We point out that an important observational
window could be opened. We then show that those constraints can be converted into very meaningful
limits on the fundamental loop quantum cosmology parameters. This establishes the early Universe as an

invaluable quantum gravity laboratory.

DOI: 10.1103/PhysRevD.82.123520

I. INTRODUCTION

The big-bang paradigm is unquestionably a major
achievement of contemporary science. However, in parallel
to its successes it raises some very fundamental questions.
Among them are of course the dark matter and dark energy
issues. Nevertheless, the big-bang singularity remains, in
itself, one of the greatest puzzles of the whole approach. Itis
a nearly unavoidable prediction of general relativity where
the theory is, precisely, not correct anymore. Solving the
singularity by replacing the big bang by a big bounce is one
of the main achievements of loop quantum cosmology
(LQC) [1] as a symmetry reduced version of the loop
quantum gravity scheme to nonperturbatively quantize gen-
eral relativity in a background invariant way [2].

Moreover, if the Universe is assumed to be filled with a
scalar field described by a self-interaction potential well,
the contracting phase—preceding the big bounce—can set
the field in the appropriate conditions for a phase of slow-
roll inflation to start just after the bounce. In the specific
(and simple) case of a massive scalar field, and in the
framework of an effective LQC universe, only a tiny
amount of potential energy at the bounce is necessary for
a long enough phase of inflation to be naturally generated
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[3-5]. In effective LQC, it is therefore possible both to
solve the big-bang singularity and to generate the specific
conditions necessary for inflation to take place. Finally,
and this is the key point addressed by this paper, such a
model can, in principle, be tested: The quantum fluctua-
tions leading to the cosmological perturbations observed in
the cosmic microwave background (CMB) anisotropies,
though still stretched to astronomical size by inflation,
experienced the influence of the contraction phase and
of the bounce. As a consequence, the statistical properties
of cosmological perturbations are potentially distorted as
compared to the standard inflationary prediction. This
finally translates into distortions in the angular power
spectra of CMB anisotropies.

Up to now, only corrections to tensor modes of the
cosmological perturbations have been rigorously derived
in LQC [6], potentially leaving a footprint on the CMB B
mode. Although not yet detected and marginally within the
aims of the Planck satellite, the measurement of B-mode
polarization will be the core of the future CMBPol/B-Pol
missions [7]. We therefore investigate a possible detection
of the big bounce using future B-mode measurements, by
considering first the phenomenological aspects and then
turning to the fundamental parameters.

Our paper is organized as follows. In Sec. II, we describe
how the B-mode power spectrum is distorted in a
{bouncing + inflationary} universe as compared to the
standard prediction from inflation and argue that this dis-
tortion can be parametrized by two phenomenological

© 2010 The American Physical Society
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parameters (denoted ky, and R) encoding the properties of
the bounce. The question of a possible detection of the
bounce with the B-mode angular power spectrum translates
into the determination of specific values of the two phe-
nomenological parameters describing the distorted shape
of the tensor power spectrum. Then, Sec. I1I is devoted to a
brief presentation of the Fisher analysis we have used to
define the signal-to-noise ratio associated with the cosmo-
logical parameters shaping the B-mode power spectrum.
We apply this approach to the specific case of k, and R,
assuming the experimental characteristics of the future
CMBPol/B-Pol missions, and present our numerical results
in Sec. IV. In Sec. V, the range of phenomenological
parameters leading to a possible detection is translated
into possible values of the more fundamental LQC parame-
ters. We finally discuss our results and conclude in Sec. VI.

II. CMB B MODE WITH A BOUNCE

A. Primordial power spectrum for tensor modes

Many articles [8] have been devoted to the study of
gravitational waves in LQC. We focus in this paper on
the simplest (and, in our opinion, most convincing) sce-
nario (essentially developed in Refs. [3,4]): a universe
filled with a single massive scalar field. This accounts
impressively well for the observed Universe: Before the
bounce, the Hubble parameter is negative (therefore acting
as an antifriction term) and makes the field climb up its
potential. After the bounce, the Hubble constant becomes
positive (therefore a friction term) and naturally leads to
a standard phase of slow-roll inflation. It is remarkable
that inflation naturally occurs without any fine-tuning.

The main characteristics of a ““bouncy’” power spectrum
for tensor modes are the following:

(i) The IR part is k> suppressed. This is due to the
freezing of very large-scale modes in the
Minkowski vacuum. Those modes indeed exit the
horizon long before the bounce and naturally exhibit
a quadratic spectrum.

(i) The UV part is identical to the standard prediction.
Small scales indeed experience a history basically
similar to that of the big-bang scenario: They exit
the horizon during inflation and reenter later, lead-
ing to the standard nearly scale-invariant spectrum.

(ii1) Intermediate scales, around k = k., exhibit both a
bump of amplitude R and damped oscillations. This
is mostly due to the fact that all modes are inevita-
bly in causal contact at the bounce (the Hubble
parameter vanishes, therefore leading to an infinite
Hubble radius).

Those characteristics have been fully determined by
numerically solving the equations of motion of tensor
perturbations with LQC corrections propagating in a
{bouncing + inflationary} universe [4]. It is worth under-
lining that those equations of motion, as obtained in
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Ref. [6], are derived from an algebra which is anomaly-
free at all orders and can be safely used throughout the
entire history of the bouncing universe. This may not be
true anymore with scalar perturbations.

In our previous work [4], two possible phenomenologi-
cal descriptions of the primordial tensor power spectrum
have been proposed. The first, and more complicated,
description introduces three phenomenological parameters
to approximate the shape of the time-dependent effective
mass of gravity waves propagating in the LQC universe. It
captures all the detailed characteristics of the primordial
power spectrum. The interested reader is referred to Sec. 4
of Ref. [4] for a detailed discussion.

The second, and simpler one, is summarized by the
following equation:

?T:L"’(if (k/aH)™ [1+ R ] (1)

7 \mpi) 1+ (ke/k)? 1+ (k/ky)?

where H is the Hubble constant at horizon crossing after
the bounce. It is more than enough to compute potentially
observable effects. In the above formula,

STD_16<H>2(k)nr
pso = 2 () (=
m \mp;) \aH

stands for the power spectrum corresponding to the stan-
dard inflationary universe, while

PS5O 1 + (k. /k)>

P, 1 [ 4R -2 ]

1+ (k/ky)?

corresponds to the LQC corrections. This spectrum is
completely determined by four parameters: R and k,,
encoding the LQC corrections, the spectral index ny, and
the normalization, given by the tensor-to-scalar ratio 7/S
defined in the UV limit. In the following, the values chosen
for T/S correspond to an amplitude of the scalar perturba-
tions given by the WMAP 7-yr best fit, i.e., Ag =2.49 X
107°. Though this value assumes a power-law shape for
the scalar power spectrum (which is not guaranteed in a
bouncy universe), this is only a matter of convention and
any change in A ¢ can be reabsorbed in a new convention
for T/S. Nevertheless, this choice makes sense in the UV
limit and allows us to remain consistent with the standard
B-mode parametrization. The damped oscillations are
approximated by an envelope function, and k, is simply
interpreted as the wave number associated with the modes
crossing out the horizon when the phase of slow-roll
inflation starts. This parameter will therefore decrease as
the number of e-folds of inflation increases.

B. B-mode angular power spectrum

The B-mode angular power spectrum is made of two
components:

123520-2
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(i) the primordial part, due to gravity waves produced in
the early Universe, denoted C?’prim
and

(ii) the secondary component, due to lensing converting

E mode into B mode, denoted Cf‘lens.

in the following,

1. Primordial component

The shape of the primordial part of C# is driven both by
the phenomenological parameters describing the primor-
dial tensor power spectrum [k, R, ny, and T/S if one uses
Eq. (1) to parametrize P;] and by standard cosmological
parameters (in particular, Q 5, Qcpwm, 4, and the optical
depth to reionization 7).

First of all, to understand qualitatively how LQC modi-
fies the B-mode angular power spectrum, Cf’LQC can be

roughly approximated by
cps™P 4R —2
L [1 + ] )
1+ (€./0) 1+ (€/€)

In the above, €, = k,/ky, where ky; ~ 2.3 X 107* Mpc~!
is the Hubble wave number today, and C f’STD stands for the
B-mode power spectrum as obtained without LQC correc-
tions (i.e., the B mode obtained by assuming the standard
power law for the primordial tensor power spectrum
parametrized with ny and 7/S). From this simple parame-
trization, two regimes can easily be identified, depending
on the value of ky/ky. For k,/ky > 1, the LQC B-mode
power spectrum exhibits

(i) a suppression of power for € < €, and

(i1) a bump around € ~ €, and

(iii) coincides with the standard inflationary prediction

for € > €.

BLQC __
c, =

For k,/ky < 1, the IR suppression corresponds to length
scales which are much greater than the observable scales,
and the LQC-corrected B-mode power spectrum

(i) exhibits a boost of power at large angular scales

corresponding to the tail of the bump in P; and

(ii) coincides with the standard inflationary prediction

at intermediate and small angular scales.

To perform a more detailed analysis, the phenomenologi-
cal spectra presented in Sec. Il A have then been used as
inputs for the primordial tensor perturbations and then
converted into observable C% spectra by using CAMB [9].
Figure 1| gives an example of how the angular power spec-
trum is distorted due to the bounce by using Eq. (1) as an
input for the tensor spectrum and assuming two different
values of the “transition” length scale k, = 10~* and
1072 Mpc~!. These numerically computed B-mode power
spectra are not fundamentally different from the zeroth
order approximation of C§ given in Eq. (2), although they
show some slightly different features.

In Fig. 2, the resulting B-mode spectra with and without
the damped oscillations are displayed for the same values
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FIG. 1 (color online). Standard (blue curve) and typical
bounce-modified (green curve) Cf spectra for two values of
ky. Other cosmological parameters are given by WMAP 7-yr
best fit plus R = 10, ny = —0.012, T/S = 0.05, and 7 = 0.087.
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FIG. 2 (color online). B-mode power spectrum computed with
(black curves) and without (green curves) oscillations in the
bouncy primordial power spectrum of tensor modes for two
values of k. (Other cosmological parameters are as in Fig. 1.)

of the transition length scale k. For k, < ky, neglecting
the damped oscillations in Py leads to an overestimation of
the boost at a large angular scale. For k, > ky, using
Eq. (1) results in an overestimation of the power just after
the bump located at €. The effects of oscillations are
always small (the IR suppression and the bump at k, are
by far the more important observational features) and can
be accounted for in Eq. (1) by just considering an effective
bump R slightly smaller than R for k > k.

In Fig. (3), the primordial B-mode power spectrum is
shown for different values of Q,, Qcpym, and Q, and for
two values of k. For k, > kg, the main effect is a shift in
the overall power spectrum without changing its shape.
For k, < ky, varying the parameters leads to a shift in €
for multipoles greater than ~10 and to a slight suppression
of power for € < 10.
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FIG. 3 (color online). B-mode power spectrum computed for different values of Q,, Qcpy, and Q; and for k, = 10™* Mpc™
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(left panel) and k, = 1072 Mpc ™! (right panel). Other cosmological parameters are k, = 1072 Mpc~ !, R = 10, ny = —0.012,

T/S = 0.05, and 7 = 0.087.

Finally, the primordial part of the B-mode angular
power spectrum is also shaped by the optical depth to
reionization 7. The associated impact can be inferred
from the simple expression given by Eq. (2) and is similar
to what happens in the standard case. Reionization leads
first to a boost of power at large angular scales, roughly
scaling as (1 — e~ 7)?, and second to a slight suppression
at smaller angular scales scaling as e 2".

2. Lensing component

The lensing part of the CMB B mode being given by the
convolution of the E-mode power spectrum with the de-
flection field power spectrum, its computation implicitly
assumes that the primordial power spectrum of scalar
perturbations is known. Unfortunately, the LQC-corrected
scalar power spectrum is still being debated, and the exact
shape of the secondary component of the B mode cannot be
a priori safely computed. However, this secondary compo-

Lensing B mode
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1 OCI L - - - - Standard lensing a
------------ Boost=10 for k<ky
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X
2 e
l: 107°
N
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E 107
=
10_6 C 1 1 1
1 10 100 1000
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FIG. 4 (color online). Lensing-induced B mode assuming that
scalar perturbations might be boosted for k < k.

nent will be considered as a nuisance parameter (i.e., as
an additional noise) spoiling the primordial component
used to estimate the cosmological parameters. As a con-
sequence, a reasonable estimate of the lensing B mode is
sufficient to investigate the detectability of LQC parame-
ters by using the CMB signal generated by primordial
gravity waves.

The lensing B mode without LQC correction is fixed by
our theoretical knowledge of the deflection field and by our
observational knowledge of the temperature (denoted T
mode hereafter) and E-mode angular power spectra of the
CMB. Any strong modifications of the lensing B-mode
power spectrum therefore implicitly assume strong distor-
tions of the T-mode and E-mode angular power spectra.
As those spectra are well measured, it is not worth consid-
ering a substantial modification of the lensing component.
This would anyway be a subdominant effect when com-
pared to other uncertainties.

Some CP'*™ spectra are displayed in Fig. 4. One is
simply derived from the standard inflationary prediction,
the amplitude and spectral index of the scalar perturbations
being fixed to their WMAP 7-yr best fit values, and the
others are obtained by boosting the primordial scalar power
spectrum for wave numbers smaller than the Hubble scale.
It clearly shows that as long as unrealistic values of the
boost (e.g., 10000) are not considered, the shape of the
lensing-induced B-mode power spectrum can safely be
fixed to its standard prediction.

III. DETECTING THE BOUNCE: THE STRATEGY

A. Parametrizing the B-mode power spectrum

In view of the previous results, the primordial compo-
nent of the B-mode angular power spectrum is determined
by the five following parameters: ky, R, ny, T/S, and 7,
denoted 6; hereafter. The other cosmological parameters
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will be fixed to the WMAP 7-yr best fit, and the lensing-
induced B mode will be fixed to its standard prediction. We
will also neglect the effect of damped oscillations. The
effect of oscillations on CJ*™ can anyway be recasted in
the “language” of Eq. ( 1) by introducing an effective
bump R.. Using Eq. (1) to parametrize the primordial
tensor power spectrum therefore provides a reliable de-
scription of the physics at play in LQC in all cases by
considering that the detectable values of R are to be inter-
preted as an effective bump.

Although k,, R, ny, and T/S can be translated into
fundamental LQC parameters and specific initial condi-
tions, we first leave them free as ““generic phenomenologi-
cal parameters” so that they can be used to study different
bouncing scenarios (see, e.g., [10] for a recent “‘classical
bounce” investigation). Even if it was explicitly derived in
a LQC framework, our parametrization is indeed quite
general.

B. Fisher analysis

In this framework, the question of a potential detection
of the bounce in the B-mode anisotropies translates into
specific values for R and k,. To forecast the errors on the
determination of those two parameters, we used a Fisher
analysis method, as described in Ref. [11]. (See also last
part of Ref. [11] for a more elaborated approach.) The
(5 X 5) Fisher matrix reads

1 aCck

1Z ack
i =3 A? 96,

0,=0, 00

, 3)

0,=0;

where CB = CoP™ + B stands for the {primordial +
lensing} B- mode spectrum and A, is the error on the
B-mode power spectrum recovery. We consider only the
sampling and noise variance, i.e.,

2 N,
2 B + 4
At (2€ + 1) f gy (C Bz)

where B% and N, are the power spectra of the Gaussian
beam and the instrumental noise of the experiment, respec-
tively, and fg, is the fraction of the sky used in the
analysis. For a CMBPol/B-Pol-like mission, we relied on
the experimental specifications of experimental probe of
inflationary cosmology EPIC-2m [12] with an 8 arcmin
beam, a noise level of 2.2 uK-arcmin, and a foreground
separation accurate enough for a CMB power spectrum
estimation using 70% of the sky.

To investigate the influence of degeneracies between
parameters, the signal-to-noise ratio (SNR) for the 6; pa-
rameters is computed in three different ways, performing
partial marginalization. We first assume a complete
ignorance of the other four parameters, which results in

SNR = 0,/4/[F~'];;. Then we assume a perfect knowledge
of the other parameters leading to SNR = 8,/+/[F;]~".

CHAPITRE 10. OBSERVATION DU REBOND

PHYSICAL REVIEW D 82, 123520 (2010)

Finally, we consider that only one parameter is known. If

it is the jth one, this translates to SNR = 6, /[ F '],
with F the (4 X 4) block of the Fisher matrix built by
discarding the jth raw and column. We finally search for
the values of 6, = k, and R such that SNR > 1 (3) to
define the 1o (30) detectable values of these two
parameters.

IV. DETECTING THE BOUNCE:
PHENOMENOLOGICAL PARAMETERS

A. Detecting the transition length scale k&,
The value of k, is first varied from 107® to 1 Mpc™.
The fiducial values for the other four parameters are
{R, ny, T/S, 7} = {100, 0, 0.05, 0.087} from which four
classes of models are generated by varying the parameters
one by one:

(i) class A: R € [10, 10000];

(i) class B: ny € [—0.1,0];

(iii) class C: T/S € [1074,1071];

(iv) class D: 7 € [0, 0.15].

As shown in Fig. 5, which displays the SNR for k&, under
different partial marginalizations, k. is poorly degenerate
with 7'/S and 7. (The dashed horizontal lines stand for 1o,
20, and 30 detections.) However, it is strongly degenerate
first with R for k, < 1072 Mpc~!, second with n; for
1073 <k, <10"! Mpc™', and third with R and T/S for
k, > 107" Mpc~'. (As demonstrated in the next section,
ks is equally degenerate with 7/S and R for k, >
107! Mpc™! because R and T/S are strongly degenerate
in this regime.) The (k4, ny) degeneracy does not affect the
potential detection of k, as the fully marginalized SNR is
already greater than 3 in the range where this degeneracy is
dominant. However, comparing the solid-black and solid-

R=1000, ny=0, T/S=0.05, 7=0.087

1000.0 Fl ----. n:{gxi:::igzi:ﬂllzed 3
° R kl:mvm o=~ ]
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FIG. 5 (color online). SNR for ky by performing partial mar-
ginalization. This shows that k, is mainly degenerate with R
except for the tiny range k, ~ 1072—10"! Mpc™!, where the
main degeneracy is with the tensor spectral index. Horizontal
lines stand for 1o, 20, and 30 detection (from bottom to top).
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blue curves shows that the range of 1o-detectable values
of k, is enhanced from [1.5 X 1074,3 X 107'] Mpc™! to
[3xX107%9 X 107!'] Mpc™! if the (k4, R) degeneracy is
broken. As a consequence, breaking this degeneracy could
greatly enhance the potential of detection.

In Figs. 6 and 7, the fully marginalized SNR for k&, is
shown for four values of R and four values of T/S, re-
spectively. In both cases, this signal-to-noise ratio first
increases with k, as long as k, < 1072 Mpc™! and then
decreases for higher values of k4. Higher values of ky
indeed translate into a boost of the B-mode power for
higher values of ¢, and the LQC distortion of C?’ is there-
fore located at multipoles with a smaller cosmic variance,
explaining why the SNR first increases with k,. However,
when k, becomes greater than ~10~2 Mpc™~!, the bump
is shifted to € > 100 and the B-mode power is strongly
suppressed for € < 100. As a consequence, for such high

n,=0, T/S=0.05, 7=0.087
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FIG. 6 (color online). Fully marginalized SNR for k, with
R =10, 102, 103, and 10*. (Horizontal lines are as in Fig. 5.)
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FIG. 7 (color online). Fully marginalized SNR for k, with
T/S =10"% 1073, 1072, and 10~!. (Horizontal lines are as in
Fig. 5.)
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values of k,, the primordial part at large angular scales is
hardly detectable because of its very faint power, and the
boost at higher multipoles is completely masked by the
lensing-induced B mode, thus explaining why the SNR
decreases for those higher values of k.

Moreover, our numerical investigations show that the
shape of the SNR displayed in Figs. 6 and 7 is the same for
all the considered models, which allows us to safely derive
arange of detectable values of k. The 10 and 3¢ limits for
a detection of k, are given in Table I. As one should have
expected, the detection becomes possible for ky = ky.
Nevertheless, a detection of k, < kg is still possible as
the tail of the bump may affect the B-mode power spectrum
shape at large angular scales. As previously stated, this
latter possibility clearly requires to break the (ky, R) de-
generacy. On the one hand, in the marginalized case, the
minimum detectable value of k is affected by the values of
T/S and only very mildly depends on R, ny, and 7. On the
other hand, the maximum detectable value of k, depends
on both 7/S and R but does not depend on the specific
values of ny and 7.

B. Detecting the bump R

Studying R is more intricate as additional degeneracies
have to be considered. Our fiducial model is given by
{ky, ny, T/S, 73 = {1073 Mpc~1, 0,0.05, 0.087}, and R is
varied from 1 to 10°. As for k,, we built four classes of
models by varying each parameter:

(i) class A: k,[Mpc~'] € [1073,1072];

(ii) class B: ny € [—0.1,0];

(iii) class C: T/S € [1074,107'];

(iv) class D: 7 € [0, 0.15].

In Fig. 8, R is shown to be degenerate with different
cosmological parameters. Depending on the value of ky, R
is either mainly degenerate with k, (for low k, values) or
with T'/S (for high k, values). It was already clear from
Fig. 5 that the (ky, R) degeneracy is broken for 1073 <
k, < 107! Mpc~'. However, R starts to be strongly degen-
erate with T/S for k, > 1073 Mpc~!. This explains first
why the marginalized SNR decreases for higher values of
R and second why k, appeared to be equally degenerate
with T/S and R (see Fig. 5). The transition from the
(k4, R)-degeneracy regime to the (7/S, R)-degeneracy re-
gime occurs when k, becomes close to the current Hubble
scale. We stress that for k, ~ 1072 Mpc ™!, the dichotomy
between the (k,, R)- and (T'/S, R)-degeneracy regimes is
not meaningful as R is here equally degenerate with k,,
T/S, and ny. Nevertheless, such an intricate situation
corresponds to a very narrow range of k, (see the
bottom-right panel of Fig. 8).

Because of this ky-dependent degeneracy, meaningful
results concerning the detection of R also necessarily
depend on k.. For each class of model, we provide results
for k, = 1073, 1074, 1073, and 1072 Mpc~!, as summa-
rized in Table II. If degeneracies are indeed broken
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TABLE 1. Ranges of detectable values of k, in Mpc~! by assuming complete ignorance (upper
part) and perfect knowledge (lower part) of the other cosmological parameters.

Full marginalization

Model 30
(A) R
10* [1.5X 1074, 6 X 1071] [5X 1074, 4 x 1071]
10 [1.5X 1074, 1.5 X 107 1] [3X 1074, 8 X 1072]
(B) nr
0 [1.2X107%,3X 1071 [25X 1074, 2 X 1071
-0.1 [1.2X 1074, 3 X 1071] [25X 1074, 2% 1071]
(©) T/S
107! [1.2X 1074, 5 X 1071] [6X 1074, 2.5 X 1071
1074 [3X 1074, 8 X 1072 [1.2 X 1073, 3 X 1072]
(D) T
0.15 [1.2X107%,3X 107" [3X1074, 2% 1071]
0.01 [2X 1074, 3 %X 107 [4X107%, 2% 107"
No marginalization
Model 30
(A) R
10* All range accessible [2X107°, 1]
10 [2X 1075, 1] [6X107°,7x 1071
(B) nr
0 [9X 1079, 1] [ X 1075, 1]
-0.1 [9 X 1076, 1] [2X 1073, 1]
© T/S
107! [9%X107°, 1] [1073, 1]
1074 [9X 1076, 6 X 107! [2X107%,3 %X 1071
(D) T
0.15 (1072, 1] [2 X 1072, 1]
0.01 (1073, 1] [2 X 1073, 1]

(i.e., no marginalization over {ky, ny, T/S, 7}), the SNR
increases for higher values of R. This remains true if
marginalization is performed for k, = ky [i.e., in the
(k4, R)-degeneracy regime], allowing us to derive a lowest
detectable value of R. In the remaining cases [i.e., in the
(T/S, R)-degeneracy regime], the SNR decreases for
higher values of R, leading to upper limits on R. As can
be concluded from Table II, a detection of R requires one
to break the degeneracies if k, = ky, while a detection
up to a couple of thousands is possible without breaking
the degeneracies if kx, = ky.

V. DETECTING THE BOUNCE:
COSMOLOGICAL INTERPRETATION

A. Fundamental parameters of the LQC universe

Let us now translate those constraints into constraints on
the fundamental parameters of LQC. Interestingly, it can
be shown that the fundamental parameters (describing
either the field itself, the initial conditions, or the LQC
corrections) are quite simply related with the observable
parameters previously defined, i.e., ky, R, ny, and T/S. To
derive the following relations, we took into account the
LQC corrections for the background dynamics (which

leads to the bounce) and for the propagation of gravita-
tional waves [4].

First of all, the bump amplitude is well approximated
by R = (mp/my4)*®* (see our detailed analysis presented
in [4]) with mp, = 1.22 X 10" GeV the Planck mass and
mg, the inflaton mass, i.e.,

V(g) = 3m3 ¢,

Second, by computing the expansion of the Universe
since the time when k, crossed the horizon and rewriting
the different terms entering this ratio [in particular, the
number of e-folds during inflation being given by N;; =
(47 /m3) [ (V/V')d ], one can show that the transition
scale k, is given by

42 my ®
V3 mp 7 Max

) () P+ )

eq \8eq

ki =

4)
exp(277 4”;—,‘

Pl
where ¢, is the maximum value of the field, my is its
mass, Try and gry are the reheating temperature and the
corresponding number of degrees of freedom, respectively,
and Toq =0.75 eV, z,q=3196, and g., =3.9 are the
temperature, red shift, and degrees of freedom at matter-
radiation equality, respectively (see, e.g., Sec. 3.4.4 of
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as in Fig. 5.)

Ref. [13]). In addition, numerical investigations have
shown that ¢, can be straightforwardly related
with the “initial conditions” or, more precisely, with the
physical conditions at the bounce:

V2P “)x Y mp. (5
mg

d)max = d’bounce + mp; = (

In this expression, ¢bounce’ Pe> and x* = V(d’bounce)/pc
correspond, respectively, to the value of the scalar field,
the total energy density, and the fraction of potential en-
ergy at the bounce. The value of the total energy density
at the bounce could be considered as a free parameter of
the theory. However, if the Barbero-Immirzi parameter is
taken at the value required to recover the Bekenstein black
hole entropy, i.e., y = 0.239, this leads to p. = 0.82mj,.
The number of e-folds during inflation is given by p,. and
by the ratio x/m, through

2 V2 2
Ninf = —W[< pc)x + mpl] .

2
mp L\ My

For the above-given value of p., a minimum amount of 60
e-folds during inflation is achieved if x = 1.64m¢,/ Mpy.
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It is worth noticing that the number of fundamental
parameters is smaller than the number of phenomenologi-
cal ones [Try(gry)'/? acting as a unique effective para-
meter] which leads to a kind of consistency relations for
the LQC parameters. Moreover, the (ky, R, T/S) degener-
acies being partially broken by restricting the cosmological
interpretation to LQC, the detection of a LQC-induced
bounce is a priori more likely than the general detection
of a bounce. However, we adopt a conservative approach
and keep track of the different degeneracies appearing at
the phenomenological level by using the fully marginal-
ized limits derived on k, and R.

B. Detecting fundamental parameters
1. Probing the model with future B-mode experiments

As previously explained, the LQC corrections to scalar
modes are not yet known. As a first hypothesis, we there-
fore assume that the temperature spectrum (the one which
is very well measured by WMAP and is about to be still
improved by Planck) is not affected. In this case, nearly
no constraint can be put with current data and the study
is purely prospective. The question we want to answer is
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TABLE II. Range of detectable values of R. Because of degeneracies, the range of detectability mainly depends on 7/S and k.

(ky, R)-degeneracy regime (k, < k)

ky = 107> Mpc™! ke = 107* Mpc™!
Marg. Not marg. Marg. Not marg.

Model 1o(3o) 1o(3o) 1o(3o) 10(3o)
(A) No det. >3 X 102(>3 X 10%) No det. >3(>30)
(B) nr

0 No det. >200 (1200) No det. >1.3 (15)

—0.1 No det. >300 (3000) No det. >2 (30)
© T/S

107! No det. >400 (1000) No det. >3.5 (30)

1074 No det. >1100(10%) No det. >10 (700)
(D) T

0.15 No det. >200 (1500) No det. >2 (15)

0 No det. >200 (1500) No det. >2 (15)
(T/S, R)-degeneracy regime (k, > ky)

ke = 1073 Mpc™! ke = 1072 Mpc ™!
Model Marg. Not marg. Marg. Not marg.
1o(3o) lo(3o) 1o(3o) 1o0(3o)

(A) <100 (no det.) >1 at 60 <25 (no det.) >1 at 300
(B) nr

0 <200 and [600, 10*](30) >1 at 80 <100 (no det.) >1 at 400

—0.1 <100 (no det.) >1 at 60 <8 (no det.) >1 at 300
© T/S

107! <200 and [500, 10*](<2) >1 at 60 <100 (no det.) >1 at 400

10 No det. >1.2 (20) No det. >6 (20)
(D) T

0.15 <10* (20) >1 at 8o <100 (3) >1 at 400

0 <150 and [300,22 000] (<60) >1 at 8o <2 and [4100] (no det.) >1 at 400

then the following: In which range should the fundamental
parameters lie for the LQC effects to be detected through
the B-mode spectrum modifications? The amplitude
of the expected bump is set by the mass of the field, and
the value of the transition scale k, is set by both the
mass of the field and the initial conditions. From the
observational viewpoint, k, is by far the most important
parameter. We will therefore translate the detectable
range of k, into detectable regions in the (m4, ¢max) and
(m, x) planes.

The first estimate can be very easily obtained. Basically,
the IR suppression predicted by the model becomes ob-
servable when k, is high enough (otherwise, the suppres-
sion occurs only on superhorizon scales). This translates
into an upper limit on ¢,,,, and therefore into an upper
limit on x. By assuming the usual m, =~ 107 value, the
numerical analysis leads to x < 2 X 10~%: The bounce can
be discriminated from the standard prediction when x is
very small. It means that the LQC effects appear in the
B-mode spectrum when the universe is strongly dominated
by kinetic energy at the bounce. This is a consistent con-
clusion as backreaction effects should anyway be added
when the potential energy becomes important.

From the detection viewpoint, a more refined estimate
can be obtained by using the details of the previous analy-

sis. In this case we require not only that the features of the
{bouncing + inflationary} model differ from that standard
prediction but also that they can be detected by themselves.
This is by far more constraining. In this case, the effects
become observable when k, lies within a restricted
interval. For a fixed value of m,, the lower (upper) bound
on k, can still be translated into an upper (lower) limit on
dmax (€xcept for a tiny parameter space corresponding to
unrealistically small values of ¢,,,,) and therefore into an
upper (lower) limit on x. On the opposite, for a fixed value
of x, the lower (upper) bound on k, is translated into a
lower (upper) limit on mg. Translating “detectable k,”
into “‘detectable (14, ¢y, X)” is, however, plagued by
two types of uncertainties. First of all, neither the reheating
temperature nor the number of degrees of freedom are
known. We will therefore let Tgy vary from 100 to 10'6
and gry vary from its standard model value to its super-
symmetry value. Second, the detectable range of k, de-
pends on the values of the other cosmological parameters.
From the fully marginalized 1o detection presented in
Table I, we define three possible ranges of detectable
values of k,:

(i) pessimistic: [3 X 1074,8 X 1072] Mpc ™',

(ii) intermediate: [2 X 104, 3 X 10~'] Mpc™~!, and

(iii) optimistic: [1.5 X 1074,6 X 10~!] Mpc™!.
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We stress out that this last uncertainty is mainly associated
with the upper bound on k,. This means that the lower
(upper) limit on x(m4) will be mainly affected by uncer-

tainties on other cosmological parameters than the
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transition scale, especially R and T/S. (We recall that the
above defined detectable ranges account for the different
degeneracies. In particular, this range is greatly broadened
if the degeneracies with either R, T/S, or both are broken.

1o detection, Try(ggs)/?=10"° GeV

T T T TV
.

PR T NS HN SN VSN SR NS S T L

1x107®

2x107® 3x107® 4x107® 5x107®

mass of the scalar field (m,/mp)

1o detection, Try(ggy)/?=10" GeV

T T T TV
.

PR N ST A SN VS S NSNS S L W

1x107®

2x107® 3x107® 4x1078 5x1078

mass of the scalar field (m,/mp)

1o detection, Try(gg)/?=10'® GeV

T T T oS
N
O

z
3
e
.

1
1x107®

1 1 1
2x107® 3x107® 4x107® 5x1078

mass of the scalar field (m,/mp)

Lo detection of (¢, m ) (left panel) and (x, m ) (right panel) as would be obtained from a detection of k, in

the B-mode power spectrum by assuming three different values of the “reheating parameter,” i.e., Try(gry)"/> = 10'°, 10", and
10'6 GeV. Three ranges of detectable k, are considered (see the core of the text), and lighter to darker blue runs from the most
optimistic to the less optimistic case.
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This considerably widens the achievable region of LQC-
parameter space. However, as our “‘translation” is solely
based on the potential detection of k, conservative fore-
casts should incorporate our ‘“‘ignorance” of, e.g., R.)

Our numerical results are summarized in Fig. 9. It dis-
plays the detectable regions in the (114, ¢y,x) and (m 4, x)
planes for different values of the reheating parameters:
Tru(gri)'? = 10'°, 10'3, and 10'° GeV. Lighter to
darker blue goes from the most optimistic to the most
pessimistic ranges of detectable k.

The left panels of this figure clearly show that the results
do not depend a lot on the choice of the detectable ky
range. The conclusions are therefore robust with respect to
changes of R, ny, T/S, and 7.

The detection region for (mg, x) lies between two
straight lines. Their slopes are fixed, first, by Teq, Zeqs
Zeg» and Try(grpy)'/? and, second, by Ky yay for the lower
line and k, i, for the upper line, with k, ;ax(min) the upper
(lower) bound of the detectable values of k4. On defining

4732
ARH:TRH srir)!/3 1+ \/5’
7 (8) 0 + 2

8eq

the transition scale is recast as a function of mg, and x as
follows:

ARH[(\/EE))C + m¢]

Mpy

k, = .
2.
exp| 22 (0250 + |

Except in a very narrow range, a variation of either x or m
would mostly influence k4 via the exponential. We can
therefore approximate the numerator by a constant, dubbed
Mox,myo to get

mpy . m%l ln(lu“x,md,ARH/k*)_
(0m) = [,/ T

As Agy decreases for higher values of Tgy(gry)"/?, this
roughly explains why the slope of the detectable region in
the (m4, x) plane shifts down for higher reheating tempera-
tures. Moreover, the logarithmic dependence of this de-
tectable region with Ty (gry)'/? underlines the robustness
of our results.

Finally, a detection of k, essentially constrains the val-
ues of the ratio (x/m), explaining why a wide band in the
(mg, x) plane is a priori detectable, including large values
of x and mg. Nevertheless, the fact that arbitrary small
values of x can be detected means, once again, that the
LQC effects appear when the universe is strongly domi-
nated by kinetic energy at the bounce. (Moreover, and as
explained before, my ~ 10~%mp, being favored, this trans-
lates into a detectable value of x ~ 107°.)
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Let us summarize our results. Calling a(Agy, ky) the
right-hand side of Eq. (6), a detection of the LQC-induced
bounce is obtained if

m

x(i) S [a(ARH’ k*,max)r a(ARH’ k*,min)]-
me

However, discriminating between the standard inflation-

ary prediction and the LQC prediction requires only

that

x<@) = a(ARH’ k*,min)-
Mg

(We recall here that higher values of k, lead to smaller
values of «a.)

It should also be pointed out that k, can also be directly
related to ¢, (the value of the field when the pivot mode
crossed the horizon), which is itself related with the tilt of
the scalar spectrum [14]. The results based on this method
are basically the same.

2. Constraining the parameters with available data

Most of the corrections to the spectrum are not due to
subtle LQC effects on the propagation of physical modes
but to the bounce in itself. Unless some quite surprising
cancellation occurs, it is therefore reasonable to assume
that scalar modes are in fact modified in a quite similar
way. Under this assumption, one can already use the cur-
rent data to constrain the model. As no k? infrared sup-
pression is observed in the scalar power spectrum, it means
that x > 2 X 107°. Stated otherwise, most of the parameter
space of the theory is in agreement with the data. This is
important as it was demonstrated that most of the para-
meter space also leads to a long enough inflation phase
(with more than 60 e-folds; see [5]).

VI. CONCLUSION

In this article, we have carefully investigated how next-
generation B-mode CMB experiments could probe big
bounce footprints. Under very general assumptions, it
was demonstrated that, as far as phenomenological pa-
rameters are concerned, a substantial parameter space
could be investigated. Furthermore, it was pointed out
that this also makes quantum gravity effects possibly ob-
servable, especially in the LQC framework.

Remarks

Recently, a similar and independent study has been
released [15]. It relies on the use of k, and m, as cosmo-
logical parameters and can be viewed as a kind of
“mixing” of the phenomenological and fundamental ap-
proaches here developed. Moreover, the number of e-folds
is set to a fixed value of 60. This turns out to break the
(T/S,R) degeneracy—those two phenomenological pa-
rameters being both unambiguously determined by m
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only—and one should therefore consider our analysis as
more conservative. The latter is based on scalar perturba-
tions with a parametrization involving a jump at a given
transition wave number but no additional bump. From a
joint likelihood analysis on temperature CMB power spec-
trum from WMAP 7-yr matter power spectrum from SDSS
and SNIa “Union” compilation, a similar upper limit on
the transition scale of the order of 2.44 X 10~* Mpc~! has
been derived.

Second, the cosmological interpretation in terms of a
bouncing universe induced by LQC obviously depends on
the robustness of the underlying model. In particular,
such a bouncing scenario is achieved by considering a
homogeneous universe only, and the bounce may not sur-
vive in models incorporating inhomogeneous degrees
of freedom. Such an open question is still debated.
Nevertheless, the above presented study remains relevant
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for two reasons: First of all, the phenomenological results
displayed in Sec. IV, though apparently motivated by LQC,
apply to any models predicting a tensor power spectrum
with a shape identical to the here-assumed one. Second,
though previous studies pinned down that the bounce may
not survive to inhomogeneities [16], some recent studies
based on the dipole approximation of loop quantum gravity
suggest the opposite [17].
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Conclusion

En conclusion, ce travail nous a permis d’observer I'existence d’un large espace des parametres pour k, et
R qui rendrait le modele testable par de futures observations. Cela laisse donc présager qu'une expérience aura
une probabilité non-nulle de pouvoir mesurer un spectre sur lequel les effets quantiques seraient observables.
Cependant, seules les perturbations tensorielles ont ici été prises en compte. Le spectre en température étant
trés bien mesuré, il serait plus intéressant de regarder I'influence des corrections d’holonomies sur le spectre de
puissance primordial correspondant aux perturbations scalaires. Or, pour ces perturbations, ’algebre donnée
par les contraintes modifiées n’est pas close et il est nécessaire de faire disparaitre les anomalies. L’approche
qui considere ’ajout de contre-termes ayant obtenu de bons résultats pour les corrections d’inverse-volume, il
serait possible de I'utiliser et faire de méme pour le cas des corrections d’holonomie. Une démarche progressive
va alors consister a regarder d’abord le cas perturbations vectorielles, et ensuite de complexifier en regardant
celui des perturbations scalaires.
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Chapitre 11

Résolution des anomalies dans le cas
perturbations vectorielles.

Introduction

Les travaux précédents se basent tous sur une expression identique des contraintes dans le cas des corrections
d’holonomie [69]. Cette contrainte, qui s’écrit uniquement en fonction des densités de contraintes d’ordre 0 et 2, a
d’abord été exprimée dans le cas des perturbations vectorielles [70] pour lesquelles on a utilisé la correspondance

k—K[n]. (11.1)

Cette modification va alors engendrer une anomalie qui a été annulée par le choix n = 2 dans le sinus cardinal.
Cependant, ce choix est tres restrictif et aurait pu ne pas marcher. D’ailleurs, lorsque 1’on essaye de procéder de
fagon similaire avec les perturbations scalaires, on se rend compte qu’il n’est possible d’annuler ’anomalie que
jusqu’a un certain ordre en k, ce qui est insatisfaisant dans le régime non-perturbatif au moment du rebond.
Heureusement, cette méthode n’est pas la seule existante, et il est possible d’ajouter des contre-termes comme
expliqué dans un chapitre précédent : 'algebre est alors close a tous les ordres.

Nous avons ici cherché & remédier au probléeme des anomalies introduit par la correspondance (11.1) en ayant
recours aux contre-termes dans le cas des perturbations vectorielles. La contrainte hamiltonienne gravitationnelle
est alors donnée par

S, IN] = % /E @z [N(C® + @), (11.2)
ol
c® = —6vp(K[1]), (11.3)
C® =~y (RIIP (1-+ 1) GEOBL8LS) + VRGKIKS o)
— 2 (Kl) (1 + a2) (ESOKD), (11.4)

7

faisant intervenir les contre-termes oy et ao, et un parametre libre v;.

Il peut étre montré qu’en cosmologie quantique a boucles, la contrainte de Difféomorphisme ne peut subir aucune
modification due aux corrections. Cependant, par soucis de généralité, nous avons souhaité voir si cela s’avérait
génériquement correcte. On a ainsi considéré la contrainte de Difféomorphisme comme s’écrivant

1 _ k k d

DY, IN = * / BoN® [~p(OR5KY) — (Klva]) 65 (0 ED)] | (11.5)
b

et les anomalies pourront étre annulées par les termes en a1 et aip, mais aussi par le choix possible des parametres

v1 et vy. Le travail effectué a alors consisté a calculer les crochets de Poisson et trouver les équations régissant

I’expression des contre-termes précédents, en considérant le cas d’un champ scalaire, et nous avons finalement

observé comment était modifiée I'algebre, et par conséquent les équations du mouvement.
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Abstract

We investigate vector perturbations with holonomy corrections in the
framework of loop quantum cosmology. Conditions to achieve anomaly
freedom for these perturbations are found at all orders. This requires the
introduction of counter-terms in the Hamiltonian constraint. We also show that
anomaly freedom requires the diffeomorphism constraint to hold its classical
form when scalar matter is added although the issue of a vector matter source,
required for full consistency, remains to be investigated. The gauge-invariant
variable and the corresponding equation of motion are derived. The propagation
of vector modes through the bounce is finally discussed.

PACS numbers: 98.80.Jk, 04.60.Pp

(Some figures may appear in colour only in the online journal)

1. Introduction

In the canonical formulation of general relativity, the Hamiltonian is a sum of constraints. In
particular, within the Ashtekar framework [1], the Hamiltonian is a sum of three constraints:

. 1 .
HG[N', N“,N] = 2—/ d3x(N’Ci + N“C, + NC) = 0, (1)
K Js

where k = 87 G, (N',N* N) are Lagrange multipliers, C; is called the Gauss constraint,
C, is the diffeomorphism constraint and C is the Hamiltonian constraint. The sign ‘X’ means
equality on the surface of constraints (i.e. weak equality). One can also define the corresponding
smeared constraints as follows:

| :
C; = GIN'] = _/ dxN'C;, )
2K b

0264-9381/12/085009+13$33.00 © 2012 IOP Publishing Ltd  Printed in the UK & the USA 1
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1
C, = D[N“] = — / d&*x NC,, (3)
ZK b))
1 3
C3 =S[N] = — d’x NC, 4
2K )

that is, such that Hg[N', N*, N] = G[N']+ D[N“]+ S[N]. The Hamiltonian is a total constraint
which is vanishing for all multiplier functions (N?, N¢, N).

Because Hg[N!,N%,N] =~ 0 at all times, the time derivative of the Hamiltonian
constraint is also weakly vanishing, H(‘,[Ni, N% N] = 0. The Hamiltonian equation f =
{f, Hg[M!, M?, M1} therefore leads to

{HG[N', N, N1, Hg[M', M*, M1} ~ 0, 5
which, when explicitly written, means
{GIN'] + D[N“] + S[N], GIM'] 4+ D[M*] + S[M]} ~ 0. ©6)

Due to the linearity of the Poisson bracket, one can straightforwardly find that condition (5) is
fulfilled if the smeared constraints belong to a first class algebra

(€1, Cry = X, (4], Ef)Ck. )

In (7), the f K 1 (Aj , Ef') are structure functions which, in general, depend on the phase space
(Ashtekar) variables (Aj , E{'). The algebra of constraints is fulfilled at the classical level due
to general covariance. To prevent the system from escaping the surface of constraints, leading
to an unphysical behavior, the algebra must also be closed at the quantum level. In addition,
it was pointed out in [2] that the algebra of quantum constraints should be strongly closed
(off-shell closure). This means that relation (7) should hold in the whole kinematical phase
space, and not only on the surface of constraints (on-shell closure). This should remain true
after promoting the constraints to quantum operators.

Loop quantum gravity (LQG) [3] is a promising approach to quantize gravity, based on
a canonical formalism parametrized by Ashtekar variables. The methods of LQG applied to
cosmological models are known as loop quantum cosmology (LQC) [4]. In LQC, quantum
gravity effects are introduced by holonomies of Ashtekar connection. This replacement is
necessary because connection operators do not exist in LQG. Rewriting classical constraints
in terms of holonomies leads to two types of quantum corrections: the so-called inverse-volume
and holonomy corrections. Because the constraints are quantum modified, the corresponding
Poisson algebra might not be closed:

{C2,C2) = X, (AL EF)CE + Ay ®)

Here, A,; stands for the anomaly term which can appear due to the quantum modifications.
For consistency (closure of algebra), A, is required to vanish. The condition .A;; = 0 implies
some restrictions on the form of the quantum corrections. In this paper, we will study this
requirement to find a consistent way for introducing quantum holonomy corrections to the
vector perturbations.

The question of the construction of an anomaly-free algebra of constraints is
especially interesting to address inhomogeneous LQC. Perturbations around the cosmological
background are indeed responsible for structure formation in the Universe. This gives a chance
to link quantum gravity effects with astronomical observations. In the particular case of the
flat FLRW background, the Ashtekar variables can be decomposed as follows:

Al = yks, + AL and E¢ = ps¢ + OEY, ®)
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where k and p parametrize the background phase space, and y is the so-called Barbero—Immirzi
parameter.

The issue of anomaly freedom for the algebra of cosmological perturbations was
extensively studied for inverse-volume corrections. It was shown that this requirement can
be fulfilled for first-order perturbations. This was derived for scalar [5, 6], vector [7] and
tensor perturbations [8]. It is worth mentioning that, for the tensor perturbations, the anomaly
freedom is automatically satisfied. Based on the anomaly-free scalar perturbations, predictions
for the power spectrum of cosmological perturbations were also performed [9]. This gave a
chance to put constraints on some parameters of the model using observations of the cosmic
microwave background radiation [10].

The aim of this paper is to address the issue of anomaly freedom for the holonomy-
corrected vector perturbations in LQC. It was shown in [7], that these perturbations can be
anomaly free up to the fourth order in the canonical variable k. This, however, is not sufficient
to perform the analysis of the propagation of vector modes through the cosmic bounce. Vector
perturbations with higher order holonomy corrections were also recently studied [11]. It was
shown there that, in this case, an anomaly-free formulation can be found for the gravitational
sector. In this paper, we apply a different method, which is based on the introduction of counter-
terms in the Hamiltonian constraint. We show that the anomaly-freedom conditions for vector
modes with holonomy corrections can be fulfilled in this way. The method is similar to the
one used by Bojowald et al in the case of cosmological perturbations with inverse-volume
corrections. As we will see, the counter-terms do not introduce any higher order holonomy
corrections. This way of fulfilling the anomaly freedom is therefore different from what was
done in [11], where higher order terms were involved. Moreover, in [11], the issue of anomaly
freedom was studied for the gravity sector only and the formulation suffers from ambiguities.
In our study, scalar matter is introduced. The presence of this matter term fixes the ambiguity
associated with the holonomy correction. It should be underlined that without a vector matter
source, one cannot rigorously prove the anomaly cancellation. However, as will be shown in
the next sections, our approach is meaningful as the equations derived are, as in [7], compatible
with the vector matter assuming 7, = 0 but V, # 0.

Holonomy corrections arise while regularizing classical constraints, when expressing the
Ashtekar connection in terms of holonomies. In particular, the regularization of the curvature
of the Ashtekar connection F(jb leads to the factor (%)2, which simplifies to k2 in the
classical limit & — 0. However, the Ashtekar connection does not appear only because of
F ;b; in the classical perturbed constraints, terms linear in k are also involved. In principle,
such terms should be holonomy corrected. However, there is no direct expression for them,
analogous to the regularization of the F, ;b factor. Nevertheless, one can naturally expect that k
factors are corrected by the replacement*

_ sin(nayk)

k— ———,

nuy

where 7 is some unknown integer. It should be an integer because, when quantizing the theory,
the €l7* factor is promoted to be the shift operator acting on the lattice states. If n was not
an integer, the action of the operator corresponding to "% would be defined in a different
basis. Another issue is related with the choice of i, which corresponds to the so-called lattice
refinement. Models with a power-law parametrization ji o« p? were discussed in detail in the
literature. While, in general, 8 € [—1/2, 0], it was pointed out that the choice § = —1/2
is favored [13]. This particular choice is called the ji—scheme (new quantization scheme).
Studies in this paper are performed for the general power-law case i o p°.

(10)

4 This was derived rigorously e.g. for the Bianchi IT model [12].
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For the sake of simplicity, we use the notation
sk for e 7,/{0),
Kln] :=§_ "™ an

k for n=0,
for the holonomy correction function. The introduction of holonomy corrections is therefore
performed by replacing k — K[n]. However, factors k? are simply replaced by K[1]?, because
they arise from the curvature of the Ashtekar connection. For the linear terms, the integers are
parameters to be fixed.

2. Vector perturbations with holonomy corrections

Vector modes within the canonical formulation were studied in [7]. It was shown there that
SE! = —p(c10“F; + c20;F“), (12)

where ¢; + ¢, = 1 and the divergence-free condition SéSEf = 0 is fulfilled. The values of
c1 and ¢, depend on the gauge choice. However, due to the Gauss constraint, only symmetric
variables are invariant under internal rotations. This is the case for $E¢;), which is consequently
independent of the specific choices of ¢; and c¢;, and should be preferred. The perturbation of
the shift vector is parametrized as N = S°.

We consider the quantum holonomy-corrected Hamiltonian constraint given by

1 _
SOINT = - / EAN(CO + )], (13)
2k )
where
C? = —6,/p(K[1])?, (14)
1 . .
c?® = _ (KUD> (1 + ) (SESSELsE8)) + /p(SKISK578)

2532
2

NG

Holonomy corrections were introduced by replacing k — K[n]. Two counter-term functions
o and a,, whose interest will be made clear later, were also added. In the classical limit
K[n] — k, and o = a;(p, l_c) — 0, with i = 1, 2. We have assumed here that «; are functions
of the background variables only, and that v; is an integer to be fixed. The Hamiltonian
constraint (13) corresponds to the one investigated in [7], while setting o; = 0. However, as
we will show, it is necessary to introduce these additional factors, which vanish in the classical
limit. These factors can, of course, also be viewed as contributions from the two counter-terms

(K[vi]) (1 + a2) (SESSKY). s5)

g

_ 3 2 c d ko]

Sci A dx2133/2 (K[1D)* (BESSE(8:8y). 6
a [ 5 2N -

Ser = — 2 | dBxZZ (K[vi1)(SESSK 17

=5 | v EEK) a7

to the holonomy-corrected Hamiltonian constraint.

A similar method of counter-terms was successfully applied for perturbations with inverse-
volume corrections. In that case, it was possible to fix the counter-terms so as to make the
algebra anomaly free. In this paper, we follow the same path so as to find explicit expressions
for @y and «s.

4
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For the sake of completeness, we also introduce holonomy corrections to the
diffeomorphism constraint, as follows:

DCIN“] = % / dx8N[—p(SKY) — (Klva])8E (3.8E]) ], (18)
z

where v, is an unknown integer. It is worth emphasizing here that within LQG,
the diffeomorphism constraint is fulfilled at the classical level while constructing the
diffeomorphism-invariant spin network states. If LQC was really derived from the full
LQG theory, the classical form of the diffeomorphism constraint should therefore be used.
However, at this early stage of the understanding of LQC, it might be safe to allow for
some generalizations by introducing the holonomy correction also to the diffeomorphism
constraint. This hypothesis was already studied in [14] in the case of holonomy-corrected
scalar perturbations. It was assumed there that the holonomy correction function was given by
K[2]. In this work, we prefer to keep a more general expression K[v,] with a free v, parameter.
We will investigate whether this additional modification can help to fulfil the anomaly-freedom
conditions.

In order to investigate the algebra of constraints, the Poisson bracket has to be defined.
We start with the gravity sector for which the Poisson bracket can be decomposed as follows:

K (90 9 0 N 5 5
= (=2 22 ) i | : - ). (19)
3V \okdp  9p ok . 86Ki 88EY  SSES 80K

The algebra of constraints (13) and (18) shall now be investigated. Using the Poisson
bracket (19), we find

{SC[MV ], S2[N11} = 0, (20)

{pe[vi]. D[Ns]} =0, @

N N
SC[N], DC[N“]} = —=BDC[N“] 4+ —= / d*xSN°SK (3,8 EQ)SELA, (22
{[][]}ﬁ[]Kﬁzx(dk)km

where B := (1 +a2)K[v;]+K[v,] — 2K[2] and A is the anomaly function which, for reasons
that shall be made clear later, is decomposed into two parts A = A; + A,, where

A, = BK[v,], (23)
Ay = 2K[2]ﬁ8Ka[f)2] - l(K[l])z cos(vajiyk) — 2K[1]138K[.1] cos(vajiyk)
P 2 ap
+ (1 + a)K[v JK[v,] — %sz(l +ay). 24)

This decomposition was made such that, in the classical limit (ix — 0), both contributions to
the anomaly vanish separately. Using the relation

_0K[n] - _ -

P 0 (kcos(nuyk) — K[n])8, (25)
the second contribution can be rewritten as
Ay = —2BK[2]K[v2] + (1 + a2)K[vi1K[v2] + (28 — 1/2) (K[1])* cos(v2 iy k)

— SKID*(A +ay). (26)
The full anomaly term is given by
A=201+a)K[viIK[v2] — 3K[ID*( + ap) — 2(1 + HK2]K[v,] 4 K[v,]*

+ (28 — 1/2)(K[11)* cos(va iy k). 27)
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Figure 1. Pictorial representation of the hypersurface deformation algebra.

3. Anomaly freedom in the gravity sector

The requirement of the anomaly freedom for the gravity sector reads as A = 0. Under this
condition, the algebra of constraints becomes closed but deformed, in particular

N
SC[N], D2[N“]} = D? [—_BN”] ) 28
{ } 7 (28)

The structure of spacetime is therefore also modified. This is illustrated in figure 1, where one
can note that the Hamiltonian and diffeomorphism constraints generate gauge transformations
in directions, respectively, normal and parallel to the hypersurface.

In the classical limit, B — 0 and both the transformations commute at the perturbative
level.

3.1. The no counter-terms case

Letus start by analyzing the condition .A = 0 without any counter-term (i.e. witha; = ap = 0).
This case corresponds to the one studied in [7], generalized by the contribution from the
corrected diffeomorphism constraint. It was shown in that work that, if v, = 0, the anomaly-
freedom condition can be satisfied up to the k* order only. Here, we investigate whether this
might be improved by the additional correction made to the diffeomorphism constraint.
By setting o = ap = 0, the anomaly term given by (27) can be expanded in powers of
the canonical variable k as follows:
w_—“i)z = %(20 —4v} —v3 + 88 — 8u3B)x* + 7—;0(—224 + 120} — 22003 + 400303
+ 17v3 — 1288 + 80v3 B + 48v38)x° + O (x%), (29)

where we have defined x := ﬂyl_c and x € [0, w]. Clearly, in the classical limit # — 0, the
anomaly tends to zero. Requiring the anomaly cancellation up to the fourth order leads to the
condition

20 — 4v] — v; + 88 — 8v38 = 0. (30)

It can be shown that the condition of anomaly cancellation up to orders higher than four
cannot be met. For § = —1/2 (ft—scheme), the above equation simplifies to the quadratic
Diophantine equation

16 — 4v} + 3v3 = 0. (€1

This equation can be reduced to a Pell-type equation and solved for an infinite number of
pairs of integers (v, vy). The first-three solutions are (2,0), (4,4) and (14, 16). The first
one (2, 0) corresponds to the case studied in [7], where the diffeomorphism constraint was

6
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kept at its classical form. The value v; = 2 obtained in this case was also used to fix the
ambiguity for the holonomy-corrected tensor perturbations [8]. If the holonomy-modified
diffeomorphism constraint is used, the ambiguity cannot be fixed anymore due to the infinite
number of solutions to equation (31).

As we have shown, the modification of the diffeomorphism constraint does not help with
satisfying the anomaly-freedom conditions in the absence of counter-terms. In this case, the
anomaly freedom can be fulfilled up to the fourth order in x. In the semi-classical limit x < 1,
the anomaly cancellation up to the fourth order might be a good approximation. However,
when approaching the bounce, where x = 7, contributions from higher order terms become
significant, and the effects of the anomaly cannot be neglected anymore. Studies of vector
perturbations during the bounce phase cannot be performed in such a setup. In order to study
vector perturbations through the bounce, the anomaly cancellation at all orders is required.
This probably makes the introduction of counter-terms mandatory.

3.2. The general case

Let us consider the general case with non-vanishing counter-terms. In this case, the requirement

A = 0 can be translated into a relation between the two counter-terms o and «:

Klv; K K[2]K K[v,]?
[v1]K[v,] 41+ p) [2]1K[v2] + [v2]
K[1]? K[17? K[17?

+ (4B — 1) cos(vaivk).
32)

ap=—14+4(1+ o)

With this choice for the ) function, the anomaly is removed. However a significant ambiguity
remains. Namely, the function o, together with the parameters v; and v, remains undetermined.
A particularly interesting case corresponds to the choice o = 0. This determines ;. Of course,
this also works the other way round: one can set «; = 0 and derive the correct expression for
a,. Therefore, two special cases, heuristically motivated, where one of the counter-terms is
vanishing, are worth studying:

~ K[v1 K[vs] K[2[K[vs] K[l .
a]__1+4W_4(1+ﬂ) K[ +2K[1]2 + (4B — 1) cos(vauyk), (33)
o = 0. (34)
and
o =0, (35)
1 (K] K[2]  1K[v (K[1])? cos(vajiyk)
S T e et D _ -l g 14
“ 2Kkl T T PR T 2R P T Y T Rk )

(36)

To conclude, at least one counter-term is necessary to fulfil the anomaly-freedom conditions
for the gravity sector.

3.3. The B = 0 case

Another possible way to fix the ambiguity in the choice of the «; and «, functions could be
to set B = 0. With this restriction, the anomaly cancellation is fulfilled by imposing A, = 0
as A; o« B = 0. As mentioned earlier, both A, and A, separately tend to zero in the classical
limit, making this decomposition meaningful.
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In this case, the Poisson bracket between the Hamiltonian and diffeomorphism constraints
is just {S[N], DY[N“]} = 0. The conditions B = 0 and A, = 0 can be translated into
expressions for the «; and «; functions:

KR2IK[v:]  Kvo]?
K[1]? K[1]?

ay=—1+4(1-p) + (4B — 1) cos(vafiyk),  (37)

2K[2] = K][v,]
a 1+ Ko1] . (38)
The expressions for «; and o, are parametrized by the integers v; and v, only. However, the
dependence upon v; vanishes when «; is used in the Hamiltonian constraint.

The derived expressions for | and «; do contain K[#] functions in the denominators. In
principle, «; and o, could therefore diverge for some values of k. However, in the counter-
terms S¢; and S¢», o is multiplied by K[1]? and «> by K[v;]. The subsequent cancellation
prevents any physical divergence from occurring.

4. Introducing matter

We have shown that the gravity sector of the vector perturbations with holonomy corrections
can be made anomaly free. We will now extend this result by introducing the scalar matter.
The matter Hamiltonian does not depend on the Ashtekar connection and is therefore not
subject to holonomy corrections. Furthermore, for vector perturbations, 6N = (. The matter
Hamiltonian is perturbed up to the second order as follows:

Hu[N] = Hy + 8Hy = / ExN(CL + D), (39)
s
where
o _ ap|ln ’ -
C=p"|z=+V@@|. (40)
2 p?
The value of C) is given by
1672 1 1 1 72 k87 SECSEY
@ _ -~ [osab 7 1602+ [ = —— — 532y (g)| <4k
CY = S + 2\/1;5 0489 0p0¢ + P Vo (@)3e” + (2 7P V(go)) 452
(4D
where we have used the condition §§E¢ = 0. The matter diffeomorphism constraint is
given by
Dn[N%] = / dxSNTT (3,89). (42)
b
The total Hamiltonian and diffeomorphism constraints are
Si[N1 = SC[N] + Hn[N], 43)
Di[N“] = DC[N“] + Dy[N“]. (44)
The resulting Poisson brackets are the following:
{Stot[M1], St [N1]} = 0, 45)
{Dlot[Nil]v Dtot[Ng]} =0, (46)
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an N Orara N / 3 c ok d d

{Stot N1, Dot [IN“} ﬁBD [N“] + /) d’x6N' 85(8d8Ek)8EkA
= /-2
+ [cos(vajiyk) — 1P (”— - V@)) f N9, (SN®)SISES
2 2 p3 > a J
+ 2| BN NS — 52V, (@) | BN (0,6N)8 47)
e a P Vel@ . a ®.

Anomaly freedom requires B = 0, A = 0, v, = 0 (classical diffeomorphism constraint) and
also 8¢ = 0 = §m. The latter conditions ¢ = 0 = §x are due to the fact that metric scalar
perturbations are not considered. Consistently, scalar field perturbations are vanishing too. In
fact, one could set §¢ = 0 = §x from the very beginning but, without assuming this, it can be
shown that the condition §¢ = 0 = §x in fact resulting from the anomaly freedom.

The associated counter-terms are given by (37) and (38) with v, = 0. Two non-vanishing
counter-terms are required in contrast to the gravity sector, where only one counter-term was
sufficient to fulfil the anomaly-freedom conditions. The integer v; remains undetermined,
but the dependence upon this parameter cancels out in the Hamiltonian constraint. Namely,
applying the counter-terms (37) and (38) with v, = 0, we find that the anomaly-free
Hamiltonian constraint is given by

1 _
2N = 5 [ R+ ) @
K Jx
where
C = —6/pKID?, (49)
1 - ‘ )
2 = T [4(1 — BK[2]k — 2k + (48 — DK *1(SESSE] 5:57)
. 2 - .
+ /ﬁ(aKgaKga,ﬁaj) ~ 7 (2K[2] — k) (8E{SK]). (50)
Iz

The gravitational diffeomorphism constraint holds its classical form (v, = 0). This is in
agreement with LQG expectations. Interestingly, this can also be obtained here as a result of
anomaly freedom.

The obtained anomaly-free Hamiltonian (48) is determined up to the choice of the [
functions. There are no other remaining ambiguities. The @ function appears in definition
of the K[n] function. Because of this, there is also an explicit appearance of the factor § in
equation (50). The choice 8 = —1/2 is preferred by various considerations [13]. Recently, this
value was shown to be required also by the conditions on the anomaly-free scalar perturbations
with holonomy corrections [15]. For this choice of the 8 parameter, the remaining freedom
is a parameter of proportionality in relation i oc p~'/2. This parameter can be written as
VA, s0 i = «/A/p. The parameter A has interpretation of physical area, around which the
elementary holonomy is defined. It is expected that A ~ 11%1, where Ip; is the Planck length.
However, determination of the accurate value of A is subject to empirical verifications.

It is worth noting about the Hamiltonian constraint (48) that the effective holonomy
corrections, due to the counter-terms, are no longer almost periodic functions, defined as
follows [16]:

flky =Y g, e, 51)
In this expression, n runs over a finite number of integers and &, € C. This does not lead to any

problem at the classical level. However, difficulties may appear when going to the quantum
theory on lattice states. This is because the quantum operator corresponding to k does not exist

9
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in contrast to the K[n] functions, which are almost periodic functions. This problem does not
exist if the gravitational sector, without any matter content, is considered alone. However, the
diffeomorphism constraint then has to be holonomy corrected, as studied previously. In such a
case, the background terms in the anomaly-free gravitational Hamiltonian are almost periodic
functions. The loop quantization can therefore be directly performed.

5. Gauge-invariant variable

The coordinate transformation x* — x* 4 &£ generates a tensor—gauge transformation. In
the case of vector modes, the coordinate transformation is parametrized by the shift vector
N® = &9, where £ , = 0, Therefore, the resulting gauge transformation is generated by
the diffeomorphism constraint 8; f = {f, D?[£“]}. The corresponding transformations for the
canonical variables are

5 (8Ef') = (SE{, D°[§"} = —pdi&*, (52)

3¢ (8K.) = 8K, D2[£“]} = K[v,]0,&". (53)

Based on the equation of motion Ei“ = {E{, Hg}, and definition (12), one finds the expression
Qf SK "1 The dot means differentiation with respect to the conformal time, since we have chosen
N = /p. Using equations (52) and (53) one finds

8eF* = E°, (54)
8:8“ = &+ (2K[2] — K[vi1(1 + o) — K[v,])E“. (55)
Based on this, one can define a gauge-invariant variable
0% =58 — F* — 2K[2] — K[vi](1 + a2) — K[v2]) F*, (56)
=B

such that §zo¢ = 0.

6. Equations of motion

In this section, we derive the equation of motion for the gauge-invariant variable found in the
previous section.

For the sake of completeness, we recall that the equations of motion for the background
part are

p = N2/p(KL2D), (57)
T e s ] 4 (2
k=-— [Z(K[l]) + g5 (KILD } * ( T ) (58)

where H,, = VONCI(I?) and N = /p. For a free scalar field, an analytical solution to these
equations can be found [17]:

_ 1/3

p= (s v Am)k + 5 km ) i, (59)
This solution represents a symmetric bounce.

The diffeomorphism constraint ﬁDm [N] = 0 leads to the equation

P(3kSKY) + (K[v21)85 (38E]) = k73, (8¢). (60)

10

155



tel-00749162, version 2 - 7 Nov 2012

156 CHAPITRE 11. PERTURBATIONS VECTORIELLES ET ANOMALIES

Class. Quantum Grav. 29 (2012) 085009 J Mielczarek et al

Using the symmetrized variables

8Ky = 1 [KI2] — Kvil(1 + o)) (Fo + F' o) + (F + Flo) — (So. + 5°4)]

=—3(0a"+ 0" ) + 3KWI(F, + F' 4), (61)
and

SEV = —p3(F' +F' ). (62)
equation (60) can be rewritten as

- gvz% = K7 0,(59). (63)

Because §¢ = 0 (from the anomaly-free condition), the symmetric diffeomorphism constraint
simplifies to the Laplace equation V2o, = 0. Since, the spatial slice is flat (X = R?) there are
no boundary conditions on a,. This restricts the possible solutions of the Laplace equation to
0, = b, + dx., where b, and d, are sets of constants. However, because o, is a perturbation
(there is no contribution from the zero mode),

/ &ro, = 0, (64)
)

as required from the consistency of the perturbative expansion. This is also the reason why
the first-order perturbation of the Hamiltonian is vanishing, | s C M dx = 0. Condition (64)
implies b, = 0 and d, = 0, which leads to o, = 0. This shows that our gauge-invariant
variable o, is identically equal to zero in the absence of the vector matter, in agreement with
earlier studies [18]. This can also be proved by expanding o, into Fourier modes.

In order to have non-vanishing (physical) vector modes o, a source term in equation (63)
therefore has to be present. With ‘vector matter’, this reads as [7]

1
— ?V2aa =8nG(p + P)V,, (65)
D

where p and P are the energy density and pressure of the vector matter and V, is a matter
perturbation vector. If (o + P)V, # 0 then o, # 0, so physical vector perturbations are
expected. However, it should be pointed out that proving that the formulation remains anomaly
free in the presence of the vector matter remains an open issue. This could be checked, e.g.,
by introducing an electromagnetic field in the Hamiltonian formulation [19]. We leave this
problem to be analyzed elsewhere.

Due to the Gauss constraint, we introduce the symmetrized variable

GZ = oi,a + aa,i. (66)
The equation of motion for this variable reads as
1d
—Ed—cs’ — —(2K[2] +B)S + AF" ) =k psT' pe (67)
where
L[ (1 0H,\ (SEj&s\  8H,
8T! = = + : (68)
3V0 ap p dSEY

For the scalar matter (STa’ = 0. The same holds for tensor modes [20] (the reasons are the same
because §/8E¢ = 0 and SN = 0). When imposing the anomaly-freedom conditions A = 0
and B = 0, equation (67) simpliﬁes to

1d

ldg ! (2K[2])6’ =0, (69)
2d \%f—’

il=
sle
S

11
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with fully determined coefficients. Of course, without vector matter, as discussed above, the
variable &' is equal to zero and equation (69) is trivially satisfied. However, the presence of a
non-vanishing contribution from V,, allows for non-trivial solutions of equation (69). In such
a case, equation (69) leads to

const const

S, = 5 = T (70)
For a symmetric bounce driven by a free-scalar field
: 1
S « . (71)
@ 21 1/3
(35775 +17)

The evolution is smooth through the bounce. The amplitude of the perturbations grows during
the contraction and decreases in the expanding phase. The maximum amplitude is reached
at the transition point (bounce). Moreover, this evolution is independent of the length of the
considered mode, as can be seen by performing a Fourier transform of the function o,,. Because
of this, there is a significant difference with respect to tensor and scalar perturbations. For
the scalar and tensor perturbations, the evolution is different depending on whether the mode
length is shorter or longer than the Hubble horizon. In particular, on super-horizon scales, the
amplitude of the scalar and tensor perturbations is frozen. In contrast, for the vector modes there
is no such effect. Therefore, in an expanding Universe, the amplitude of vector modes decreases
with respect to the super-horizon tensor and scalar perturbations. The contribution from vector
modes becomes negligible during the expansion phase. However, the situation reverses in the
contracting phase, before the bounce. Then, the amplitude of the vector perturbations grows
with respect to the super-horizon tensor and scalar perturbations. Therefore, on very large
scales the vector perturbations can play an important role, e.g. leading to the generation of
large-scale magnetic fields [21]. This could lead to a new tool to explore physics of the (very)
early Universe.

7. Summary and conclusions

In this paper, we have studied the issue of anomaly cancellation for vector modes with
holonomy corrections in LQC. Our strategy is based on the introduction of counter-terms
in the holonomy-corrected Hamiltonian constraint. In our study, we have also introduced
possible holonomy corrections to the diffeomorphism constraint. We have shown, first, that
the anomaly cancellation cannot be achieved without counter-terms. Holonomy corrections
to the diffeomorphism constraint do not help significantly to fulfil the anomaly-freedom
conditions, that are anyway satisfied up to the fourth order in the canonical variable k. Then,
we have studied the anomaly issue for the gravitational sector with two counter-terms. We
have shown that the conditions of anomaly freedom can be met with at least one non-vanishing
counter-term. The resulting effective holonomy corrections are almost periodic functions, only
if the diffeomorphism constraint is holonomy corrected. Subsequently, we have investigated
the issue of anomaly cancellation when a matter scalar field is added. In this case, the closure
conditions are more restrictive and fully determine the form of the resulting Hamiltonian
constraint. Moreover, this requires that the diffeomorphism constraint holds its classical form,
in agreement with LQG expectations. Because of this, the effective holonomy corrections,
which take into account contributions from the counter-terms, are no longer almost periodic
functions. We have found the gauge-invariant variable and the corresponding equation of
motion. The solution to this equation was also given. We have analyzed this solution for the
symmetric bounce model to point out that the vector perturbations pass smoothly through the
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bounce, where their amplitude reaches its maximum but finite value. The work performed here
for scalar matter should be extended to vector matter to fully address the considered issue.

In [15], we address the related issue of anomaly freedom for scalar perturbations with
holonomy corrections. This is most important from the observational viewpoint.
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Conclusion

En considérant uniquement la partie gravitationnelle, I’algebre obtenue a pour expression

{SgQrav[Nl]vséQrav[Nl]} = 0, {ngv[NﬁvDQ[Nél]} =0, (11'6)
N N
{52,,IN], D, [N} = ﬁzspg?m[zva]ju—ﬁ 7 /Z d3xdN* (0,0 EHSELA. (11.7)

On observe ainsi un terme %BDQ[N ] en plus de 'anomalie. Cette unique anomalie est une fonction de oy
et ag et peut s’écrire aussi avec le terme B, et plusieurs cas de figures sont alors possibles pour annuler cette
anomalie. Cependant, lorsque 'on tient compte de la matiere, d’autres anomalies apparaissent et imposent
notamment le choix vo = 0 et B = 0 : le premier montre bien que la contrainte de Difféomorphisme ne peut pas
étre modifiée, et le second provient du fait que dans le résultat {S(,,1¢)[N], D(m+g)0t[IN ]}, seule la contrainte de
Difféomorphisme gravitationnelle intervient alors qu’il aurait fallu en plus celle de la matiére. Les contre-termes
sont alors donnés par

1. 1.2
@ = _1+4(1_5)%1§§]]]2€_2H<T1}2+(45_1)’ (11.8)
2K[2] — k

ay = -1+ (11.9)

donnant des contraintes qui ne vont dépendre que de K[1] et de K[2], et non plus de K [v;]. D’autre part, les
contraintes vont dépendre du facteur § intervenant dans ’expression de ji, mais ici rien ne nous spécifie la valeur
qu’il doit avoir. Il a ensuite été possible de trouver les variables invariantes de jauge, régies par les équations du
mouvement qui sont exactement celles trouvées classiquement si la matiere n’était pas scalaire.

Cette méthode nous a ainsi premierement permis de voir qu’il n’était pas nécessaire de corriger la contrainte de
Difféomorphisme, comme attendu dans la théorie. Ensuite, nous n’avons ici considéré que les contre-termes pour
les termes en K [n] qui modifient la contrainte. Il aurait aussi été possible d’en mettre & chaque terme composant
la contrainte, notamment le terme en JKJ0K, et voir s’il n’était pas possible de trouver d’autres expressions
pour les contre-termes, mais nous avons pensé que c’était suffisant dans un premier temps de procéder comme
nous l'avons fait. L’anomalie ainsi obtenue ne nous donnait qu’une seule équation pour deux inconnues, et il a
fallu prendre en compte la matieére pour avoir réellement toutes les conditions nécessaires : ces contre-termes
ont alors donné une algebre qui ne dépendait pas de v, montrant qu’il n’existe ainsi ici qu’une unique solution
pour ce modele.

Un point important est 1'utilisation de la matiere : pour que des perturbations vectorielles soient générées, il est
nécessaire de prendre en compte un fluide présentant de la vorticité. Or, le champ que I'on a considéré jusqu’a
présent est le champ d’inflaton. 11 a été utile pour résoudre les anomalies mais ne va pas donner un sens physique
aux perturbations vectorielles. Quoiqu’il en soit, ce travail est une prémisse a celui plus intéressant pour les
observations et qui concerne les perturbations scalaires.



tel-00749162, version 2 - 7 Nov 2012

160

CHAPITRE 11. PERTURBATIONS VECTORIELLES ET ANOMALIES



tel-00749162, version 2 - 7 Nov 2012

Chapitre 12

Résolution des anomalies dans le cas
perturbations scalaires.

Introduction

En suivant la démarche entreprise dans le travail précédent, nous nous sommes intéressés au cas des per-
turbations scalaires en présence d’'un champ d’inflaton. Ce champ étant scalaire, les résultats obtenus seront
alors cohérents avec la théorie classique, et les conséquences de notre travail auront bien un sens physique. Nous
n’avons pas corrigé la contrainte de Difféomorphisme, mais il est possible de montrer que le faire reviendrait
exactement & prendre son argument nul, et donc a ne finalement pas mettre de correction. Comme nous 1’avons
expliqué, les perturbations scalaires n’ont pas de propriétés de divergence et de trace nulles : les contraintes
seront celles correspondant au cas général et comporteront tous les termes initiaux. On va alors regarder les
densités de contraintes hamiltoniennes a tous les ordres et introduire les corrections d’holonomies par la cor-
respondance (11.1). Contrairement au cas des perturbations vectorielles, afin d’étre le plus général possible,
nous avons considéré des contre-termes en face de chacun des termes dans les densités de contraintes : cela
va grandement compliquer les calculs et aussi les expressions des anomalies, mais aura pour avantage d’avoir
définitivement les expressions générales. Nous avons ainsi introduits 9 contre-termes, 10 si on compte celui in-
troduit dans la matiere. Il existera cependant 13 équations pour les anomalies rendant le systéme sur-contraint :
fort heureusement, il existe bien une solution, et elle est unique.

Ce travail suit exactement la méme démarche que celle entreprise pour les perturbations vectorielles : une fois les
expressions des contraintes obtenues par la résolution des anomalies, les expressions pour les variables de jauge
ainsi que leurs équations du mouvement ont été déterminées, en particulier I’équation de Mukhanov-Sasaki.
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Abstract

Holonomy corrections to scalar perturbations are investigated in the loop
quantum cosmology framework. Due to the effective approach, modifications of
the algebra of constraints generically lead to anomalies. In order to remove those
anomalies, counter terms are introduced. We find a way to explicitly fulfill the
conditions for anomaly freedom and we give explicit expressions for the counter
terms. Surprisingly, the fi-scheme naturally arises in this procedure. The gauge-
invariant variables are found and equations of motion for the anomaly-free
scalar perturbations are derived. Finally, some cosmological consequences are
discussed qualitatively.

PACS numbers: 04.60.Pp, 04.60.Bc

(Some figures may appear in colour only in the online journal)

1. Introduction

Loop quantum gravity (LQG) is a tentative non-perturbative and background-independent
quantization of general relativity (GR) [1]. Interestingly, it has now been demonstrated that
different approaches, based on canonical quantization of GR, on covariant quantization of GR
and on formal quantization of geometry lead to the very same LQG theory. Although this
is rather convincing, a direct experimental probe is still missing. One can easily argue that
cosmology is the most promising approach to search for observational features of LQG or,
more specifically, to its symmetry-reduced version, loop quantum cosmology (LQC) [2].
Much effort has been devoted to the search of possible footprints of LQC in cosmological
tensor modes (see [3]). At the theoretical level, the situation is easier in this case as the

0264-9381/12/095010+17$33.00 © 2012 IOP Publishing Ltd  Printed in the UK & the USA 1
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algebra of constraints is automatically anomaly free. But, as far as observations are concerned,
scalar modes are far more important. They have already been observed in great detail by
WMAP [4] and are currently even better observed by the Planck mission. The question of a
possible modification of the primordial scalar power spectrum (and of the corresponding TT
C; spectrum) in LQC is therefore essential in this framework.

Gravity is described by a set of constraints. However, for the (effective) theory to be
consistent, it is mandatory that the evolution generated by the constraints remains compatible
with the constraints themselves. This is always true if their mutual Poisson brackets vanish
when evaluated in fields fulfilling the constraints, i.e. if they form a first-class algebra. This
means that the evolution and the gauge transformations are associated with vector fields that are
tangent to the manifold of null constraints. This obviously holds at the classical level. However,
when quantum modifications are added, the anomaly freedom is not anymore automatically
ensured. Possible quantum corrections must be restricted to those which close the algebra.
This means that, for consistency reasons, the Poisson brackets between any two constraints
must be proportional to one constraint of the algebra. This paper is devoted to the search for
such an algebra for scalar perturbations.

Our approach will follow the one developed by Bojowald et al in [5]. There are two main
quantum corrections expected from LQC: inverse volume terms, basically arising for inverse
powers of the densitized triad, which when quantized become an operator with zero in its
discrete spectrum thus lacking a direct inverse, and holonomy corrections coming from the
fact that loop quantization is based on holonomies, rather than direct connection components.
In [5], the authors focused exclusively on inverse volume corrections. Here, we extend with
work to the holonomy corrections. Scalar perturbations with holonomy corrections have been
studied in [6]. However, the issue of anomaly freedom was not really addressed. Recently,
a new possible way of introducing holonomy corrections to the scalar perturbations was
proposed in [7]. Although it was interestingly shown that the formulation is anomaly free, the
approach is based on the choice of the longitudinal gauge and the extension of the method
to the gauge-invariant case is not straightforward. In contrast, the approach developed in our
paper does not rely on any particular choice of gauge and the gauge-invariant cosmological
perturbations are easily constructed.

The theory of anomaly-free scalar perturbations developed in this paper is obtained on a
flat FRW background, such that the line element is given by

ds? = a*[— (1 + 2¢) dn? + 28,Bdn dx® + ((1 — 2¥)8up + 20,9,E) dx® dx], (1)

where ¢, ¥, E and B are scalar perturbation functions. The matter content is assumed to be a
scalar field. This will allow us to investigate the generation of scalar perturbations during the
phase of cosmic inflation while taking into account the quantum gravity effects.

Our analysis of the scalar perturbations is performed in the Hamiltonian framework
developed in [5, 8]. As was shown there, the background variables are (I_c, p, ¢, ), while
the perturbed variables are (81(};, SE?, 8¢, ). The Poisson bracket for the system can be
decomposed as follows:

=000 0 bekse + {0 gz + {0 dsgums ()
where
k [9-9 09
=3 e et ©
N T N S 3
b oo 2= K/Z ¢ [&sKg, 5SE¢  SOE! 551{5] ’ @
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1[]a 0 d- 0-
{ '}(ﬁ,r_r ===, 5
Vo ldpdmr  dm dg
5 6 5 6
R P | ©)
- 88 88T 887 88¢

Here, V} is the volume of the fiducial cell and ¥k = 87 G. B
The holonomy corrections are introduced by the replacement k — K[x] in the classical
Hamiltonian. We follow the notation introduced in [9], where

sin(nﬁyl_c)
K[n] := W for ne Z/{O}, %

k for n=0,

for the correction function. In cases where k appears quadratically, the integer n is fixed
to 2 (see [9]). In the other cases, the integers remain to be fixed from the requirement of
anomaly freedom. The coefficient y is the Barbero-Immirzi parameter and ji o p? where
—1/2 < B < 0. In what follows, the relation

ﬁa%K[n] = [kcos(nuyk) — K[n]]p ®)
will be useful.

The organization of the paper is as follows. In section 2, the holonomy-corrected
gravitational Hamiltonian constraint is defined. We calculate the Poisson bracket of the
Hamiltonian constraint with itself and with the gravitational diffeomorphism constraint. In
section 3, scalar matter is introduced. The Poisson brackets between the total constraints for
the system under consideration are calculated. In section 4, the conditions for anomaly freedom
are solved and the expressions for the counter terms are derived. Based on this, in secton 5,
equations of motion for the scalar perturbations are derived. The system of equations is then
investigated in the case of the longitudinal gauge. Finally, gauge-invariant variables are found
and the equations for the corresponding Mukhanov variables are derived. In section 6, we
summarize our results and draw out some conclusions.

2. Scalar perturbations with holonomy corrections
The holonomy-modified Hamiltonian constraint can be written as
1 —
HEIN] = 5 /Z Ex[N(HY +HE) + SNHE], 9)
where
Hg' = —6v/p(K[1])%,
: 1 . 2 .
HY = —4/p(Kls1] + a1)88K) — — (K[11? + 02)8/8E¢ + —= (1 + 3)9.078ES,
¢ ! NG TP

p i c = i 5¢)2
HE = /P + ag)SKISKESE8 — /(1 + as) (SKI5S)

—i(K[ 1+ a6)SESSKI — ! (K[11? + o7)SESSEL Sk

N A A T ORI O
1 2 coj)\2 1 ik c d
+4ﬁ3/2 (K[11* 4 ) (8E§S))" — W(l+tx9)81 (39:8E5) (3a8EY).

The standard holonomy corrections are parametrized by two integers s; and s,. The «; are
counter terms, which are introduced to remove anomalies. Those factors are defined so that

3
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they vanish in the classical limit (z — 0). The counter terms could be, in general, functions
of all the canonical variables.

In principle, one could also consider other terms that are indeed allowed in the general
case, e.g. Mf‘jb“d aaaK;;acaK j multiplied by some new anomaly terms. Such terms are not present
in the classical Hamiltonian but may however appear at the quantum level. In this study, we
have only considered counter terms depending on functions which may be present at the
classical level and which depend on the gravitational background variables only.

In our approach, the diffeomorphism constraint holds the classical form

DGIN“] = % /Z d*x8N° [ po. (8{8KY) — p(aksKY) — ksk(348E)] . (10)

In general, the diffeomorphism constraint could also be holonomy corrected. This possibility
was studied, e.g., in [6]. Because the underlying LQG maintains diffeomorphism covariance
and because the isotropic LQC (about which the scalar perturbation theory is developed)
is obtained by solving the diffeomorphisms classically, one can justifiably assume that
diffeomorphism constraints and their algebra retain the classical form. Due to this, in this
paper, the diffeomorphism constraint is not modified by the holonomies. It is worth stressing
that the classicality of the diffeomorphism constraint is also imposed by the requirement of
anomaly cancellation. Namely, if one replaces k— K[n] in (10), the condition n = 0 would
anyway be required by the introduction of scalar matter. Indeed, the Poisson bracket {H, g Dg}
leads to an anomaly term proportional to (cos(njiy k) — 1), which is vanishing only for n = 0.
In fact, the same condition was obtained for vector modes with holonomy corrections [9].
Let us now calculate the possible Poisson brackets for the constraints Hg [N] and Dg[N4].

2.1. The {HQ, D¢} bracket

Using the definition of the Poisson bracket (2), we derive
{HOIN, DGIN“1} = —H2[SN“8,6N] + B DIN]

p N.J/pk .
+£’ f dAxSN(8,6N) A, + Nk / d*xSN(9;8K") A,
K Jx K =

N / 3 o N 3 b
+—— | &xSN'(0,8EY)As + —/ Bx(3,6N) (SEPS) Ay, (11)
7 Jx e o (/%)
where B
N _
B = —[-2K[2] + k(1 + as) + K[s>] + as], (12)
vp
and
Ap = 2k(K[s1] + a1) 4 an — 2K[1]?, (13)
./42 = 05 — 04y, (14)
_ 0 1 - -
A = —K[1]* — pa—ﬁK[l]z = 5o T k(=2K[2] + k(1 + as) + 2Kls2] + 2ax6), (15)
Ay = ag — a7. (16)
The functions Ay, ..., A4 are the first anomalies coming from the effective nature of

the Hamiltonian constraint. Later, we will set them to zero so as to fulfill the requirement of
anomaly freedom. This will lead to constraints on the form of the counter terms.

Besides the anomalies, the {HGQ , DG} bracket contains the —Hg [6N“0,6N] term, which
is expected classically. There is also an additional contribution from the diffeomorphism
constraint B Dg[N“]. This term is absent in the classical theory. This is however consistent as,
for it — 0, the B function tends to zero.

4
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2.2. The {HQ, Hg} bracket

The next bracket is as follows:

N
{HEIN:], HZ[N>1} = (1 + a3)(1 + a5)Dg [;a“(aNz -~ 8N1>}
N / d’x3“ (8N, — N1 ) (9:8K.) (1 + a3) As
K Jx

N . N .
+— | &x(8N, — 8N1)(3'9,0E}") As + — / d*x(8N> — 8N1) (8¢8K%).As
K Js

K_p )
+ ﬁ d*x(8N, — 8Ny ) (8L8E}") As, (17)
KpJx
where
As = a5 — oy, (18)
As = (1 + o) (K[s1] + o) — (1 4+ a3) (Ks2] + «6) + K[2](1 + o3)
okt 4 L (kg 4 2p ki) 22
2K[2]p o5 + 5 <K[1] +2paﬁK[1] ) ok k(1+oa3)(1+as), (19)

0 0 0
A; = 4K[2]133—13(K[S1] +ap) — (K[lf +213£K[112> ﬁ(K[sll + o)

1
+ (1 + %Ols - 5064) K11 + o2) — 2(K[s52] + 0t6) (K511 + et1)

F2K2](K[s1] 4+ ay1), (20)
1
Ag = 5 (Kls2] + a6) (K[11* + 02) — (K[s1] + 1) (K[11* + o7)
3 1
+ 5 Klsi] + o) (K11 + ag) — 5K[2](K[1]2 + o)

1
+K[2]ﬁi_(ﬁ<[1]2 +a) -~ <K[1]2 + 2153_K[1]2) i(sz +a). (21)
ap 4 ap ok

The As, ..., Ag are the next four anomalies. Moreover, the diffeomorphism constraint is
multiplied by the factor (1 + «3) (1 + as).

2.3. The {Dg, Dg} bracket

The Poisson bracket between the diffeomorphism constraints is as follows:
{Ds[N{], Dg[N5]} = 0. (22)

3. Scalar matter

In this section, we introduce scalar matter. The scalar matter diffeomorphism constraint is

Dy[N] = / SN (8,8¢). (23)
b
The scalar matter Hamiltonian can be expressed as

H2[N1 = Hy[N]+ Hu[5N], 24)
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where

Hy[N] = / EN[(H? + HO) + (HP + 1T +HP)]. (25)
z

Hy[8N] = / &sN [HP +HP]. (26)
)

The factors in equations (25) and (26) are
o_ T
T

HY =PV (o),
mom w2 SlSES
P22 2p

HY =

SISEC
HD = p? [m@)aww@ zﬁf],

_ j c — / c)? ' ¢
HO — 16n%  7wom 8:OE; n 12 | (88E7)"  S88I8ETSEL @27)
. 252 PR 2p 2 8p? 4p? ,
] — a
He = 2V/B(1 +@10)5 b pdsde.
@ _1ap 5)80% + p°?V (& i j
R, = 5P Vo (9)3¢7 + P77V, (9)0¢ 2p (28)
SISES)’  8kSISESSEY
532 (G (5:9F AL i A, 2
+ 07"V (@) [ 85 4p? =

Here, we have introduced the counter term « in the factor H(vz ). Thanks to this, the Poisson
bracket between two matter Hamiltonians takes the following form:

N
{HSIN1, HYIN>1} = (1 + a10) Dy [Ea“(azvz -~ 8N1>} : (30)

As will be explained later, the appearance of the front factor (1 + () will allow us to close the
algebra of total constraints. In principle, other prefactors could have been expected; however,
they do not help removing anomalies.

3.1. Total constraints

The total Hamiltonian and diffeomorphism constraints are as follows:

H[N] = H2[N] + H2[N], (31)

Diot[N“] = DGIN“] + Du[N“]. (32)
The Poisson bracket between two total diffeomorphism constraints is vanishing:
{D[N{], D[ N5]} = 0. (33)

The bracket between the total Hamiltonian and diffeomorphism constraints can be decomposed
as follows:

{HoIN1, DiIN“1} = {HZINT, DiN“1} + {HEINT, DGIN“1} + |HEINT, DuIN“1}.  (34)

6
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The first bracket in sum (34) is given by

{HSIN1, Du[N“1} = —HZ[SN"3,5N1. (35)
The second contribution to equation (34) is given by (11), while the last contribution is
vanishing:

{HSIN1, DyIN“1} = 0. (36)
The Poisson bracket between the two total Hamiltonian constraints can be decomposed in the
following way:
{Ho N1, HolN21) = {HEIN1, HGIN>1} + {HulNi1, HulN-1)

+ [{HEINI, HuN2T) = (N1 < No)]. (37)
The contribution from the last brackets can be expressed as

{HEINI1, Hy[N>1} — (N < No) =
1 _ 7? B} —
= 5/2 d3xN(8N2 — 6Ny) (2—133 — V((p)) (868’8Ej)A9
_ )
+3 / XN (N, — 5Ny <’;—f — WYy (@)&o) Au
)}
—2

+ f AN (SN — 5N (555K°) (2”—1)3 - V(¢)> AL
)}

+ % /E &*xN (8N, — 8Ny) (8/8ES) (2”—;3) A

+ % /E PxN(8N; — 8Ny) (818ES5)V (@) Ass, (38)
where

do

Ay =2, (39)

Ao = K[2] = Ks1] — a1, (40)

A =~ 51 + )+ 2 (1 +a5) = 2(1+ ), @1)

ok 2 2

Ap = —%%(K[l]z +a2) + 5(K[s1] + o) — SK[2] + K[s2] + a6, (42)

Az = %%(K[l]2 +a2) + Ks1] + a1 — K[2] — K[s2] — a. (43)
The functions Ao, ..., A3 are the last five anomalies.

4. Anomaly freedom

The requirement of anomaly freedom is equivalent to the conditions 4; = O fori =1, ..., 13.

Let us start form the condition A9 = 0. Since a3 cannot be a constant, this condition
implies a3 = 0. The condition A;y = 0 gives «; = K[2] — K[s;]. Using this, the condition
A; = 0 can be written as oy = 2K[1]*> — 2kK[2]. The conditions A, = 0 and As = 0 are
equivalent and lead to a4 = 5. Based on this, the requirement .4;; = 0 leads to

0K[2] _ -
4oy = = =cos(2uyk) =: Q. 44)
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For the sake of simplicity, we have defined here the Q-function. With the use of this, the
condition Ag = 0 leads to

as = K[21(2 + a9) — K[s2] — kS2. (45)
So equation (42) simplifies to
A = aK[2]. (46)

Therefore, requiring A1, = 0 is equivalent to the condition o9 = 0. Furthermore, 44 = 0
gives a; = ag. The expression for a7 can be derived from the condition .43 = 0. Namely,
using equation (45), one obtains

a7 =228 — DK[1)? + 4(1 — BKK[2] — 2k*S2. 47)
The condition A3 = 0 is fulfilled by using the expressions derived for «, &, and o. The last

two anomalies (20) and (21) can be simplified to

A7 =2(1 +2B8)(QK[11? — K[2]%), (48)

As = k(1 +28)(K[2)? — QK[11%). (49)

The anomaly-freedom conditions for those last terms, A7 = 0 and Ag = 0, are fulfilled if and
only if 8 = —1/2.

It is also worth noting that the function B given by equation (12) is equal to zero when the
expression obtained for «g is used. There is finally no contribution from the diffeomorphism
constraint in the {H Q D¢} bracket.

Using the anomaly-freedom conditions given above, the bracket between the total
Hamiltonian constraints simplifies to

N N
{Hiot[N1], Hiot[N21} = QDo [53“(51% - 5Nl)i| + (a0 — a4)Dy [;3“(51\/2 - 5N1)i| .
(50)

The closure of the algebra of total constraints implies the last condition ajp = g = Q2 — 1.
To summarize, the counter terms allowing the algebra to be anomaly free are uniquely
determined, and are given by

o = K[2] — K[s1], (51D
o = 2K[1]? — 2kK[2], (52)
a3 =0, (53)
=1, (54)
ws=Q— 1, (55)
ag = 2K[2] — K[s,] — k<2, (56)
a7 = — 4K[11* 4 6kK[2] — 2k*R2, (57)
ag = — 4K[1]* + 6kK[2] — 2k*R2, (58)
a9 =0, (59)
ap=Q— 1. (60)
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It is straightforward to check that the counter terms «/, . .., «j¢ are vanishing in the classical
limit (;z — 0), as expected.

Those counter terms are defined up to the two integers s; and s,, which appear in (51) and
(56). However, in Hamiltonian (9), the factor «; appears with K[s;] and the factor o appears
with K[s,]. Namely, we have K[s;] + «; = K[2] and K[s;] + a6 = 2K[2] — k2. Therefore,
the final Hamiltonian will not depend on the parameters s; and s,. No ambiguity remains to
be fixed.

Moreover, the anomaly cancellation requires

=1 (61)

which fixes the functional form of the j factor. The fact that anomaly freedom requires
B = —1/2 is a quite surprising result. The exact value of 8 is highly debated in LQC. The
only a priori obvious statement is that 8 € [—1/2,0]. The choice § = —1/2 is called the
[-scheme (new quantization scheme) and is preferred by some authors for physical reasons
[10]. Our result seems to show that the ji-scheme is embedded in the structure of the theory
and this gives a new motivation for this particular choice of quantization scheme. The quantity
it p can be interpreted as the physical area of an elementary loop along which the holonomy
is calculated. Because, in the fi-scheme, ﬂz l0d 13", the physical area of the loop remains
constant. This elementary area is usually set to be the area gap A derived in LQG. Therefore,
in the u-scheme,

_ A
m=.l=- (62)
p

4.1. Algebra of constraints

Taking into account the previous conditions of anomaly freedom, the non-vanishing Poisson
brackets for the gravity sector are as follows:

{HSIN1, DGIN“1} = — HE[SN“3,8N], (63)
N
[HSIN:1, HZIN:1} = @Dg [Ea“(éN2 - SNl)] ) (64)

This clearly shows that the gravity sector is anomaly free. The remaining non-vanishing
brackets are as follows:

{Hu[N1, Dit[N“1} = — Hy[SN“040N1, (65)
N
{Hu[M ], Hu[N21} = QDy [58 (8N, — 5N1)] . (66)
The algebra of total constraints therefore takes the following form:
{Dtot [Nil]y Dmr[Nf]} =0, (67)
{Htot[N]’ Dtot[Na]} = - Htot[(SNaaa(SN], (68)
N
{Htot[Nl]a Htot[Nz]} = Dot [958 (0N, — 5Nl)i| . (69)

Although the algebra is closed, there are however modifications with respect to the classical
case, due to presence of the factor €2 in equation (69). Therefore, not only the dynamics, as a
result of the modification of the Hamiltonian constraint, is modified but the very structure of the

9
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N _
N = —cos(2fvk)0* (6 Ny — 0N7)
-<— P

Ny

Figure 1. Pictorial representation of the hypersurface deformation algebra (69).

spacetime itself is also deformed. This is embedded in the form of the algebra of constraints.
The hypersurface deformation algebra generated by (69) is pictorially represented in figure 1.
As Q € [—1, 1], the shift vector

N
N = Q=93%(8N, — 5N}) (70)
p

appearing in (69) can change sign in time.
In order to see when this might happen, let us express the parameter <2 as

Q = cosiiyk) =1 -22 1)

c

where p is the energy density of the matter field and
3 3

Kyp2p Ky A’

In the low-energy limit, p — 0, the classical case (&2 — 1) is correctly recovered. However,
while approaching the high-energy domain, the situation drastically changes. Namely, for
p = pc/2, the shift vector (70) becomes null. At this point, the maximum value of the Hubble
parameter is also reached. The maximum allowed energy density is p = p. and corresponds
to the bounce. Then the shift vector (70) fully reverses with respect to the low-energy limit.
One can interpret this peculiar behavior as a geometry change. Namely, when the universe
is in its quantum stage (p > p./2), the effective algebra of constraints shows that the space
is Euclidian. At the particular value p = %, the geometry switches to the Minkowski one
[11]. This will become even clearer when analyzing the Mukhanov equation in section 5. The
consequences of this have not yet been fully understood, but it is interesting to note that this
model naturally exhibits properties related to the Hartle—Hawking no-boundary proposal [12].

(72)

5. Equations of motion

Once the anomaly-free theory of scalar perturbations with holonomy corrections is constructed,
the equations of motion for the canonical variables can be derived. This can be achieved through
the Hamilton equation

f=1{f, HIN, N1}, (73)
where the Hamiltonian H[N, N¢] is the sum of all constraints

HIN, N1 = HS[N] + Hy[N] + DGIN“] 4+ Dy[N]. (74)

10
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5.1. Background equations

Based on the Hamilton equation (73), the equations for the canonical background variables
are as follows [13]:

r_ v 2 2

k= 2\/_K 1] Nf K[l] fN[ +V(<p)} (75)

p =2N,/pK[2], (76)

. .7

Y= NW, )
= —Np?V,(9). (78)

In the following, we choose the time to be conformal by setting N = /p. The -’ then means
differentiation with respect to conformal time 7.
Equations (77) and (78) can be now combined into the Klein—-Gordon equation

¢ +2K[21¢ + pV,(¢) = 0. (79)
Equation (76), together with the background part of the Hamiltonian constraint

1 0H

__=_ 3/2
TR [6f<11< [11)] [2 +V(<p>} (80)

leads to the modified Friedmann equation

_K p

Another useful expression is

H?

72
K[ = 5= + pV(@). (82)

Here H stands for the conformal Hubble factor

H = 2_ = K[2]. (83)

The energy density and pressure of the scalar field are given by

—2

7

p= 2—133 + Vi), (84)
7.—[2

P= 2—133 —V(p). (85)

For the purpose of further considerations, we also derive the relation
7’ . -
K (2_[32> = kK[2] — &, (86)
which comes from equation (75) combined with (80).

11
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5.2. Equations for the perturbed variables

The equations for the perturbed parts of the canonical variables are as follows:

SEf = —N [\/EQSKgafsj — VPQ(sK]5)8¢ — %(21&[2] - l_cQ)(SEl.“]
p
+8N(2K[21y/p8¢) — p(3:8N* — (3.5N)5?), (87)
.. _ 1 - .
8K! = N | ——= (2K[2] — kQ)SK!
[ VP

—(=3K[1]* + 6kK[2] — 2k*Q)SEC8/6!

I;s/z Jrae
1 2 7 72 c QNS 8" d
- (—=3K[1]* + 6kK[2] — 2K*Q) (SE$8))8], + — 04040}
4p2 2p2
+1[ ! GK[1]*> — 2kK[2])8!8N + 2 @ afazv)}
2L Vb ‘ N
= =)
i ¢ p T | i
+8°(0,0N°) + KSN*/T— [_F + V((p):| st
N ndm i \/__ 3V(<p) i ~3/2 818 JL i
+KN|: _5/25a —5 —8 4 2_3/2 + V(@) i 5
72 afafsEC.
T 32y ) el
+ (21;3/2 p V(<ﬂ)) T } (88)
T\ o fdm & SLES
so=on () + (W TP ) "
81t = =8N (p°*V.y(@)) + 7 (3,6N“)
N = b ~3/2 - ~3/2 - 8£8Ej
— N | =P8 8,058¢ + p°*V.p ()80 + 7V o (&) 5 | (90)

5.3. Longitudinal gauge

As an example of application, we will now derive the equations in the longitudinal gauge. In
this case, the E and B perturbations are set to zero. The line element (1) therefore simplifies to

ds? = @®[— (1 +2¢) dn> + (1 — 29)8p dx* dx"], 1)

where ¢ and v are two remaining perturbation functions and a is the scale factor. From the
metric above, one can derive the lapse function, the shift vector and the spatial metric:

N=a1+2¢, (92)

N =0, 93)

Gap = @ (1 = 298, 94)
The lapse function can be expanded for the background and perturbation part as N = N + 8N,
where

N=.\p=a, (95)

12
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SN = N¢. (96)
Using equation (94), the perturbation of the densitized triad is expressed as

SE{! = —2pyé. 97)
The time derivative of this expression will also be useful and can be written as

SE{ = =2p2K[21y + )8 (98)

Let us now find the expression for the perturbation of the extrinsic curvature §K! in terms
of the metric perturbations ¢ and . For this purpose, one can apply expression (97) to the
left-hand side of (87). The resulting equation can be solved for K, leading to

. A
0K, = =8, (¥ + kQy +K[21¢). ©9)
The time derivative of this variable is given by
| .o Q- Q . .
3K, = 8;5 [—w —kQy + <§ — kQ) + ¢K[2]§ — ¢K[2] — K[z]cp} . (100)

Applying (100) to the left-hand side of (88), the equation containing the diagonal part as well
as the off-diagonal contribution is easily obtained. The off-diagonal part leads to

3.0'(¢p — ) = 0. (101)

This translates into ¥ = ¢. In what follows, we will therefore consider ¢ only. The diagonal
part of the discussed equation can be expressed as

¢+¢ [3K[2] - 5} + ¢ [K[Z] + 2K[2]* — K[Z]a}
= 4 GQ[p5p — popV.y(9)]. (102)
One can now use the diffeomorphism constraint
SH[N, N¢ _ _ - -
a([Tv)] = p.(8{8K%) — p(kSKY) — kK (348E) + k7 (3.8¢) = 0. (103)
With the expressions for §K! and §E¢, it can be derived that
3. [¢ + ¢KI21] = 47 GQ§d.5¢. (104)
The next equation comes from the perturbed part of the Hamiltonian constraint:
SH[N, N°] 1 - ; 1 2 ¢ 4 2 .
——— = — | -4/ pK[2]65K) — — (3K[1]- — 2kK][2]) 8!8 ES + —=0.0/SE¢
3G 2K[ /PKI[21858K! ﬁ( [1] [])Cf+ﬁ ,,]
AL SSTEY IV .0 ) B 105
+ P32 - 207 2p +p 0 (@)0p + V(@) 2% =0. (105)

Using the expressions for §K! and SE¢, this can be rewritten as
QV%¢ — 3K[21¢ — [KI2] + 2K[21*] ¢ = 4G [¢8¢ + pSeV,(@)]. (106)
The last equality comes from (89) and (90):
8¢ + 2K[218¢ — QV28¢ + pV.4y (9)3p + 2V, (@) —4gh =0.  (107)
Equations (102), (104) and (106) can be now combined into

<j$+2[H—(32+e>}¢3+2[ﬂ—ﬁ(@+e>}¢—c§v2¢=o, (108)
7 7

13
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with the quantum correction

1 P
e =2 a2 (109)
2Q Pe — 2:0
and the squared velocity
=Q. (110)

The squared velocity of the perturbation field ¢ is equal to Q2. Because —1 < Q < 1, the
speed of perturbations is never super-luminal. However, for 2 < 0, perturbations become
unstable (c? < 0). This corresponds to the energy density regime p > &, where the phase of
super-inflation is expected.

At the point p = £, the velocity of the perturbation field ¢ is vanishing. Therefore,
perturbations do not propagate anymore when approaching p = %, where the Hubble factor
reaches its maximal value. Moreover, at this point, the quantum correction € — 0co. Because
of this, equation (108) diverges and cannot be used to determine the propagation of the
perturbations. However, as shown in the next section, the equation for the gauge-invariant
Mukhanov variable does not exhibit such a pathology.

It is interesting to note that the equations of motion derived in this subsection are the
same as those found in [7]. This is quite surprising, because they were derived following
independent paths. In this approach, we have introduced the most general ‘sine’ form for the
holonomy corrections to the Hamiltonian, parametrized by some unknown integers. Then,
by adding counter terms, anomalies in the algebra of constraints were removed. It has been
argued that one could obviously also add other functions agreeing with the classical limit.
On the other hand, the method proposed in [7] is based on the diagonal form of the metric
in the longitudinal gauge. This enables one to introduce holonomy corrections in almost the
same way as in the case of a homogeneous model but with an argument which depends on the
spatial position also. It was then shown that a system defined in this way stays on-shell, that
is, is free of anomalies. Nevertheless, it is possible to show that starting from the Hamiltonian
constraint given in [7] and performing a Taylor expansion around I?[‘; and Iz:i", one obtains
exactly the same Hamiltonian constraint (9) with our values for the counter terms (51)—(60).
The non-trivial equivalence of both approaches may suggest uniqueness in defining a theory
of scalar perturbations with holonomy corrections in an anomaly-free manner.

5.4. Gauge-invariant variables and Mukhanov equation

Considering the scalar perturbations, there is only one physical degree of freedom. As was
shown in [14], this physical variable combines both the perturbation of the metric and the
perturbation of matter. The classical expression on this gauge-invariant quantity is

v=a(n) (&pGI + gﬂ!) : (111)
H
and its equation of motion is given by
b — V2 — Sy =0, (112)
z
where .
@
=a(n)—. 113
z (n)H (113)

In the canonical formalism with scalar perturbations, the gauge transformation of a
variable X under a small coordinate transformation

W g = (80, 0%) (114)

14
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is given by (see [8] for details)

Sig0.6X = (X, HP[NE"] + DD [0}, (115)
and it is straightforward to see that, classically,
(S[EO’S]U =0. (116)

This means that v is diffeomorphism invariant and can be taken as an observable.
Taking into account the holonomy corrections introduced in this paper, the €2 function
will modify the gauge transformations of the time derivative of a variable X, so that

Bieoe1X — (Bpen.e1X) = 2 - 8o, 01X, (117)
Using this relation and gauge transformations of the metric perturbations
Sieo. e = — KI218°, (118)
S0 = &+ KI2JE°, (119)
g0 =&, (120)
Sg0.61B = &, (121)
one can define the gauge-invariant variables (Bardeen potentials) as
d=¢+ LB-iy+ K@y _ @ (B—E) (122)
- Q Q Q ’
K[2] .
U=y —-———B-E), (123)
Q
Gl ¢ :
1) =8<p+§(B—E). (124)

The normalization of these variables was set such that, in the longitudinal gauge (B =0 = E),
we have ® = ¢, ¥ = ¢ and 8¢ ! = 8¢. It is possible to define the analogous of the Mukhanov
variable (111):

vi=1/p <5¢G‘ + iw) . (125)

K[2]

Writing the equations for ¥ and §¢%', which are

£1'1+2[H—(ﬁ+e>}b+2[ﬂ—?{<§+e)}\y—c§v2xy=o (126)
¢ ¢
and

8% + K286 — QY280 + V.0 ()59 + 25V, ()W — 45" = 0, (127)

one obtains the equation for variable (125):

i — Qv —p=0, (128)
Z
e= V-2 (129)
K[2]

which corresponds to the Mukhanov equation for our model. As we see, the difference between
the classical and the holonomy-corrected case is the factor 2 in front of the Laplacian. This
quantum contribution leads to a variation of the propagation velocity of the perturbation v.

15
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This is similar to the case of the perturbation ¢ considered in the previous subsection. The
main difference is that there is no divergence for p = p./2 and the evolution of perturbations
can be investigated in the regime of high energy densities. It is once again worth noting that
for p > p./2, Q becomes negative and equation (128) changes from a hyperbolic form to an
elliptic one. This basically means that the time part becomes indistinguishable from the spatial
one. This can be interpreted as a transition from a Minkowskian geometry to an Euclidean
geometry, as mentioned earlier.
Finally, it is also possible to define the perturbation of curvature R such that

R = ; (130)
Based on this, one can now calculate the power spectrum of scalar perturbations. This opens
new possible ways to study quantum gravity effects in the very early universe. Promising
applications of the derived equations will be investigated elsewhere.

6. Summary and conclusions

In this paper, we have investigated the theory of scalar perturbations with holonomy corrections.
Such corrections are expected because of quantum gravity effects predicted by LQG. They
basically come from the regularization of the curvature of the connection at the Planck scale.
Because of this, the holonomy corrections become dominant in the high-curvature regime.
The introduction of ‘generic-type’ holonomy corrections leads to an anomalous algebra of
constraints. The conditions of anomaly freedom impose some restrictions on the form of the
holonomy corrections. However, we have shown that the holonomy corrections, in the standard
form, cannot fully satisfy the conditions of anomaly freedom. In order to solve this difficulty,
additional counter terms were introduced. Such counter terms tend to zero in the classical
limit, but play the role of regularizators of anomalies in the quantum (high-curvature) regime.
The method of counter terms was earlier successfully applied to cosmological perturbations
with inverse-triad corrections [5].

We have shown that, thanks to the counter terms, the theory of cosmological perturbations
with holonomy corrections can be formulated in an anomaly-free way. The anomaly freedom
was shown to be fulfilled not only for the gravity sector but also when taking into account
scalar matter. The requirements of anomaly freedom were used to determine the form of the
counter terms. Furthermore, conditions for obtaining an anomaly-free algebra of constraints
were shown to be fulfilled only for a particular choice of the i function, namely for the -
scheme (new quantization scheme). This quantization scheme was shown earlier to be favored
because of the consistency of the background dynamics [10]. Our result supports these earlier
claims.

In our formulation, the diffeomorphism constraint holds its classical form, in agreement
with the LQG expectations. The obtained anomaly-free gravitational Hamiltonian contains
seven holonomy modifications. It was also necessary to introduce one counter term into the
matter Hamiltonian in order to ensure the closure of the algebra of total constraints. There is no
ambiguity in defining the holonomy corrections after imposing the anomaly-free conditions.
The only remaining free parameter of the theory is the area gap A used in defining the i
function. This quantity can however be possibly fixed with the spectrum of the area operator in
LQG. Based on the equations derived in this paper, it will also be possible to put observational
constraints on the value of A and, hence, on the critical energy density po..

Based on the studied anomaly-free formulation, equations of motion were derived. As
an example of application, we studied the equations in the longitudinal gauge. We have
also found the gauge-invariant variables, which are holonomy-corrected versions of the
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Bardeen potentials. Using this, we have derived the equation for the Mukhanov variable.
This equation can be directly used to compute the power spectrum of scalar perturbations with
quantum gravitational holonomy corrections. Similar considerations were studied in the case
of inverse-triad corrections [15]. In that case, observational consequences have been derived
and compared with CMB data [16, 17].
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Conclusion

Ce travail a finalement présenté de nombreux intéréts : en plus d’étre celui qui a le premier résolu le probleme
des anomalies pour les corrections d’holonomie, il va montrer des conséquences physiques importantes.
La démarche ayant été la méme que celle entreprise pour les perturbations vectorielles, certaines conclusions
seront alors similaires a celles présentées auparavant, et confirmeront le travail précédent. On peut voir que

1. regarder conjointement les contraintes gravitationnelles et de matiere permet de résoudre toutes les ano-
malies présentes : il a fallu cependant ajouter un contre-terme a1y dans la densité de contrainte de la
matiere au seconde ordre. Cela a permis de donner une expression non-équivoque pour tous les contre-
termes qui, une fois introduits dans les contraintes leur permettent de ne plus dépendre de parametres
inconnus comime ici 1 et so.

2. deux contre-termes doivent étre nuls : a3 et ag, qui correspondent dans les contraintes aux seuls termes
faisant intervenir des doubles dérivées spatiales de d E*. Ces termes s’écrivent dans le cas général en fonction
de X(ﬁk et Z;%k7 et leurs propriétés de symétries et d’antisymétries ont montré [83] qu’ils n’intervenaient
pas dans la fermeture de 'algebre : les contre-termes ainsi trouvés ne vont pas dépendre du choix des
perturbations et seront alors les plus généraux possibles.

3. lorsque l'on a regardé le cas des perturbations vectorielles, nous avons exactement eu les mémes équations
pour les anomalies sauf que I'on a considéré uniquement ag = a) et a§ = a) comme non nuls, et
nous n’avons pas tenu compte de certains termes dans les contraintes (550E® = 0, ...). Il est possible de
montrer que les expressions des anomalies trouvées ici redonnent les expressions des anomalies pour les

perturbations vectorielles.

4. aucune supposition n’a été faite sur la valeur de 8 dans l'expression de . Cependant, dans le cas des
perturbations scalaires, les expressions des anomalies supplémentaires vont dépendre de 3 telles que la
seule possibilité pour qu’elles soient nulles est de considérer 3 = —%. Cette valeur correspond a celle
privilégiée par la théorie, et elle apparait directement ici, donnant un argument supplémentaire en faveur
du fi-scheme.

5. lalgebre des contraintes est donnée par

{Dn+9)[NT], Dim4) N3]} = 0, (12.1)
{H(mﬂ)[N],D(mﬂ)[Na]} = —H(ntg)[0N"0a0N], (12.2)
N ..

{H(nl+g) [Nl], H(m+g) [NQ]} = D(m+g) an ((SNQ - 5N1) 3 (123)
ou la seule modification provient du terme €2, présent dans ’expression d K§K dans la contrainte hamil-
tonienne,

Q = cos(2fivk) =1 — 22 (12.4)

(&

Lorsque Q est positif, donc pour des densités d’énergie supérieures & p./2, on retrouve bien le cas Lorentzien
(s = —1) que l'on observe habituellement. Cependant, lorsque I’on s’approche du rebond, il existe en p./2
un point particulier ou la fonction s’annule et change de signe. On se retrouve alors avec une algebre
correspondant au cas Euclidien (s = 1). Cela se voit aussi dans les équations du mouvement pour lesquelles
il existe le terme Qk2. Les conséquences physiques de cette observation ne sont pas encore comprises, mais
on peut penser [84] ici au 'no-boundary proposal’ de James Hartle et Stephen Hawking. Plus
généralement, le recours a des métriques euclidiennes a été depuis longtemps une astuce en cosmologie
quantique : la rotation de Wick améliore la convergence des intégrales de chemin, et permet une meilleure
définition de le fonction d’onde de I'univers. Il est intéressant que ce processus souvent supposé de fagon 'ad
hoc’ apparaisse naturellement ici. Cependant, dans ce principe c’est la métrique globale qui est influencée
alors que dans notre cas, cela est du uniquement aux perturbations.

6. lorsque I'on va regarder les perturbations tensorielles, on va utiliser le fait que 6N = §N® = 0, donnant
I’algebre précédente totalement nulle, comme dans notre tout premier travail. Cependant,les contraintes
maintenant utilisées sont totalement différentes de celles ayant permis les travaux précédents, et il va étre
nécessaire de refaire les études présentées dans les chapitres précédents avec ces nouveaux contre-termes.

7. une autre approche [85] plus conservative puisqu’elle utilise directement les perturbations dans les holo-
nomies, a obtenu les méme résultats que notre travail pour le cas des perturbations scalaires : 'algebre est
inchangée et faire un développement limité des contraintes de ’approche conservative redonne exactement
les contraintes modifiées obtenues ici. Cependant, elle ne considere que le cas des variables diagonales alors
que les perturbations ne le sont pas forcément : elle n’est pas invariante de jauge.

8. & cause de la déformation de l’algebre via I’équation (12.3), la définition des variables invariantes de jauge
va étre elle-aussi modifiée : ’équation (7.88) dans notre cas est alors donnée par

Olen.e] (0X) = (3, 10X) = Q .10 X. (12.5)
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A priori sans grande conséquence, les variables invariantes de jauge usuelles vont maintenant faire inter-
venir des termes en Q" ot n € Z, et leur expression en p./2 va alors étre tres différente du cas classique.
De méme, leurs équations du mouvement vont ressembler & celles obtenues classiquement, 1’équation (126)
de larticle analogue a ’équation (6.70), mais la présence des termes en {2 va avoir des effets trés impor-
tants. Les solutions obtenues dans une étude préliminaire montre qu’elles peuvent diverger a cet instant,
notamment & cause du fait que proche du rebond, 2 < 0, donnant des solutions en exponentielles réelles.

Ce travail permet ainsi de considérer I'effet des corrections d’holonomies dans le cas général ou on ne tient pas
compte du type des perturbations. Les variables de jauge vont alors avoir une équation du mouvement similaire a
celle de Mukhanov-Sasaki, mais avec des potentiels effectifs spécifiques a chaque type de perturbations. L’étape
suivante sera ainsi de chercher & résoudre ces équations et trouver les solutions utiles dans ’obtention des
spectres de puissance, afin de pouvoir comparer théorie et observations.
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Chapitre 13

Invariance de jauge et équation de
Hamilton-Jacobi

Enfin, il existe un dernier sujet auquel nous nous sommes intéressés et qui concerne plus une étude de
mécanique analytique qu’une étude en cosmologie. Il existe une méthode permettant de dériver assez directement
les variables invariantes de jauge dans le formalisme canonique. Elle utilise pour cela ’équation de Hamilton-
Jacobi. Cette méthode a d’abord été appliquée dans le formalisme ADM [1], et nous avons trouvé intéressant
de Tappliquer & celui de la cosmologie quantique a boucles : quelle que soit la contrainte, modifiée ou non,
la procédure a suivre est la méme, et peu de dérivations sont nécessaires. Dans la suite, nous avons surtout
considéré le cas des perturbations scalaires.

En utilisant les variables d’Ashtekar dans I’espace de Fourier, on va décomposer les perturbations sur une base
rendant compte de leur propriétés. On va ainsi définir deux nouvelles variables qui vont simplifier les calculs et
qui correspondront en fait aux perturbations de la métrique (¢, E)

Y1 =2pY, 2 =pk’E. (13.1)

Leurs moments conjugués m; seront alors obtenus par I'utilisation d’une fonction génératrice, similaire a celles
que 'on a introduite dans le premier chapitre, et la premiere étape consistera ainsi en un changement de
variables (A, E) — (v, 7). Une fois les contraintes exprimées avec ces nouvelles variables, résoudre I’équation
de Hamilton-Jacobi reviendra ici a trouver une fonction génératrice S dont nous connaissons la forme, telle que

maintenant
0s 0§ oS 0§
H('yﬂr,n,) =0, D<’y,7r,7],) =0. (13.2)
oy o oy On

Une fois cette fonction trouvée, il sera alors possible de définir les variables invariantes de jauge en utilisant les
densités de contraintes au premier ordre, ainsi que leurs équations du mouvement par les densités du second
ordre.
Il est cependant nécessaire pour que cette méthode marche d’avoir une algebre auparavant close : certaines
anomalies apparaitront lorsque I'on considérera les crochets de Poisson des densités de contrainte au premier
ordre, mais toutes les autres n’apparaitront que si on calcule les crochets de Poisson entre les densités de
contraintes au second ordre, ce qui n’est pas fait ici. Quoiqu’il en soit, combiner I'approche précédente avec
cette méthode permet d’avoir une algebre close et les équations du mouvement pour les variables invariantes de
jauge.
Cette méthode a été appliquée aux corrections d’holonomies, redonnant exactement ce que nous avons trouvé au
chapitre précédent. Elle a de méme été appliquée aux corrections d’inverse-volume et ’expression des variables
invariantes de jauge présente une légere différence avec celle obtenue dans des travaux précédents [55] : les
variables invariantes de jauge ont une expression différente mais le terme en s2k? trouvé ici et dans [55] s’avere
étre le méme, ne dénigrant en rien leurs travaux suivants. Nous avons aussi considéré le cas ou les deux corrections
étaient prises simultanément, et on retrouve le fait que les corrections n’agissent pas de la méme fagon : I’étude
des crochets de Poisson pour les contraintes au premier ordre montre que dans ce cas, les contre-termes devraient
étre une multiplication des contre-termes trouvés séparément. Cependant, cela reste une hypothese et il faudrait
vraiment mener les calculs a leur terme.
Cette méthode est ainsi générique a toute théorie présentant des contraintes, et son application présente certains
avantages : notamment pour le cas des perturbations scalaires avec les corrections d’holonomie, I’obtention des
équations du mouvement pour les perturbations ont été longues et laborieuses a obtenir, et il en a été encore plus
pour 'obtention de celles des variables invariantes de jauge. Or cette méthode s’est avérée étre directe, propre
et efficace, et a aussi permis de trouver une partie des anomalies : pour tout travail futur dans le formalisme
canonique, elle pourrait ainsi s’avérer utile.
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Gauge invariance of scalar perturbations is studied together with the associated equations of motion.
Extending the methods developed in Hamiltonian general relativity, the Hamilton-Jacobi equation is
investigated into the details in the framework of loop quantum gravity. The gauge-invariant observables
are built, and their equations of motions are reviewed both in the Hamiltonian and Lagrangian approaches.
This method is applied to scalar perturbations with either holonomy or inverse-volume corrections.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a nonperturbative and
background-independent quantization of general relativity
[GR] (see [1] for reviews). Recently, it has been realized
that different views, based on canonical quantization of
GR, on covariant quantization of GR and on formal quan-
tization of geometry lead to the very same LQG frame-
work. Although other approaches are still much debated,
this makes LQG a very promising model to address the
outstanding question of quantum gravity.

The application of LQG ideas to the universe as a whole
is called loop quantum cosmology [LQC] (see [2] for
reviews). This is basically the symmetry-reduced version
of the theory. So far, LQC proved to be interesting both as a
model of the early Universe, solving the big bang singularity,
and as a way of possibly testing LQG ideas. At the effective
level, LQC modifies the usual paradigm by two main cor-
rections: the inverse-volume terms, basically arising for
inverse powers of the densitized triad, which when quantized
become an operator with zero in its discrete spectrum thus
lacking a direct inverse, and holonomy corrections coming
from the fact that loop quantization is based on holonomies,
rather than direct connection components.

To investigate the observational consequences of those
LQC-induced modifications, it is most useful to construct
rigorously gauge-invariant variables. It is well known, even
in standard GR, that among the solutions of field equations
for perturbed variables, some are unphysical modes corre-
sponding to a mere coordinate transformations.

In this article, we basically extend the method intro-
duced in [3]. We start with first order constraints in the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.
Then, using a generating function, the variables (perturba-
tions of the densitized triads and their conjugate momenta)
are changed according to (6K, 8E) — (vy,,, 7,,). The first
order constraints are reexpressed as functions of (y,,, 7,,).
The gauge-invariant variables (Q, P) are obtained thanks to
a natural generating function $ and the dynamics is derived
through anomaly-free second order constraints in terms of

1550-7998,/2012/85(12)/123534(16)

123534-1
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(Q, P). Then, the Mukhanov variables v, R, and z are
given. Finally, the method is applied to the case of LQC
with both holonomy and inverse-volume corrections.

This approach exhibits several advantages:

(i) the treatment is purely Hamiltonian with easy
computations,

(i1) the Mukhanov variables v and R are obtained di-
rectly and the equation of motion is easily found
without using Bardeen potentials,

(iii) it helps to construct an anomaly-free algebra by
imposing relations on the Poisson brackets,

(iv) the z variable can be found without ambiguity and
in a quite simple way,

(v) the generating functions are clearly defined, easy to
handle and allow one to trace back deeply the origin
of gauge invariance,

(vi) it works for any kind of constraint theory.

The paper is organized as follows. In the two first
sections, we introduce the framework of loop quantum
cosmology and some elements of analytical mechanics
useful to implement the Hamilton-Jacobi method. Then,
we show the main steps of the proposed procedure and its
application to the cases of holonomy and inverse-volume
corrections.

II. LOOP QUANTUM COSMOLOGY
FRAMEWORK

In general relativity, when the Arnowitt-Deser-Misner
(ADM) formalism is chosen, space-time is foliated into a
family of spacelike 3-surfaces and the dynamics is given
by constraints. The fundamental variables are the space
metric q,,,, together with N, the lapse function, and N¢, the
shift vector, which describe how the “‘leaves’ of the folia-
tion are welded together. The metric is written as

ds®> = —N2dt* + q,,(dx® + Nedt)(dx + NPdr). (1)

In the LQC formalism, the spatial metric is expressed in
terms of triads e/, that are related to the spatial metric by

© 2012 American Physical Society
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The first basic variable (for a detailed introduction, see [1])
is the Ashtekar connection:

Ay =T+ vK, 3)

where v is the Barbero-Immirzi parameter, I'; is the spin
connection and K, is the extrinsic curvature. The second
one is the densitized triad:

E¢ = (dete!)e?. %)
The conjugate variables follow the symplectic structure
{AL(x), E2(0)} = ky85858°(x — y), Q)

where k = 87 G. The canonical Einstein-Hilbert action in
this formalism reads as

Sgy = f dt[ f %AZE;’ — G[A'] — D[N?] — H[N]],
(6)

where G[A’] is the Gauss constraint, D[N¢] is the
diffeomorphism constraint, and H[N] is the Hamiltonian
constraint. The diffeomorphism constraint generates defor-
mations of a spatial slice so that, when it is satisfied, spatial
geometry does not depend on the choice of space coordi-
nates. General covariance of the space-time geometry (in-
cluding the time coordinate) is ensured by the Hamiltonian
constraint. Finally, as a set of triad vectors can be rotated
without changing the metric, there is an additional SO(3)
gauge freedom. Invariance of the theory under those rota-
tions is guaranteed by the Gauss constraint. This latter
constraint will be solved explicitly by the parametrization
we use for the variables.

Taking into account perturbations in a FLRW universe,
one has to deal with the perturbed spatial metric 67y,; such
that

Gab = az(aab + 5’}/ab)’ (7)

where a(z) is the scale factor. The perturbed Ashtekar
variables will then be related to the perturbed metric and
it is straightforward to see that the background and per-
turbed densitized triad obeying E¢ = E¢ + SE¢ are

E¢ = ps¢ = a8, ®)

and
SE} = 3p(=8y{ + 8- 8. ©)
On the other hand, the extrinsic curvature K’ is given by
K. = K. + 6K = k8!, + 6K (10)
The homogeneous and isotropic background (p, k) satisfies

E o=
k=5 an

and the perturbed part (§EY, 6K?) fulfills
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{Ki(x), SEV(»)} = k81883 (x — ). (12)

In [3], the original variables are the spatial perturbed
metric 87, and its conjugate momentum §7%°. As SE¢ is
linear in Jy, as it can be seen in Eq. (9), it is possible to
follow the same procedure, with only minor modifications
due to the fact that now the fundamental variables are 0 F
and 6K.

The study of the homogeneous and isotropic universe is
an important first step for any tentative theory of quantum
cosmology. In the framework of LQC, this led to the
famous replacement of the big bang by a big bounce.
Investigating perturbations is the next logical step to probe
possible deviations from the standard model. This has
already been studied in many articles (see, e.g., [4]),
especially for gravitational waves and subsequent conse-
quences on the B-mode spectrum of the cosmological
microwave background (CMB).

We now turn to the study of scalar perturbations of the
metric (¢, ¢, B and E) that are observationally relevant as
they can be used to compute the well measured tempera-
ture CMB spectrum. The perturbed FLRW metric in con-
formal time can be written as

ds®> = a*>(n)[—(1 + 2¢)dn? + 20,B - dx*dn
+ (1 = 2¢)8,, + 20,0,E)dx*dx"]. (13)

Comparing this expression with Eq. (1), one obtains the
perturbed lapse function and perturbed shift vector as

SN=N¢; SN = 9B, (14)

Using the definition of the densitized triad, one can also see
that

SE® = p(—248¢ + (87A — 9,0E).  (15)

Starting from Eq. (15), all the useful equations will be
derived using a clear algorithm.

III. HAMILTON-JACOBI EQUATION

This section is heavily based on [5].

A. Canonical transformations

When dealing with general transformations of coordi-
nates, one has to consider the simultaneous transformations
of independent coordinates and momenta, g; and p; to a
new set Q; and P;, through (invertible) equations :

Qi = Qi(q’ D t)’ (16)

P, = Pi(q, p,1). (17)

Theses equations basically define a transformation from a
point in the phase space to another one. In the Hamiltonian
mechanics framework, only those transformations for
which the new Q, P are canonical coordinates are interest-
ing. This means that there exists a function K(Q, P, t) such
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that the equations of motion in the new set are in the
Hamiltonian form:

. 0K . 0K
0=, P = - .
90,

Transformations for which Eqs. (18) are fulfilled are said to
be canonical.

The function K plays the role of the Hamiltonian in the
new coordinate set. For the treatment to be fully generic,
for all systems with the same number of degrees of free-
dom, Eqgs. (18) must be the equations of motion in the new
coordinates and momenta whatever the initial form of H.
No matter wether one deals with an harmonic oscillator or
with a two-dimensional Keplerian problem. If Q; and P,
are to be canonical coordinates, they must satisfy the
“modified”” Hamilton principle

(18)

5 f(P,Q,- — K(Q, P, t))dt =0, (19)
whereas, as usual,
o [(pidi ~ Hig. p.par =0 20)

Both equations will be satisfied if the integrands are con-
nected by the relation:

. dF
A(plCIl_H(q:p’ t))ZPle_K(Q:P’ t)+z’ (21)
and both sets verify the Poisson bracket:

{e.pr=1{0. Pr=1. (22)

F is especially useful when mixing half of the old variables
with the new variables and will then be considered as a
bridge between the two sets of canonical variables. It is
called the generating function of the transformation. On
can define 4 such generating functions:

Fi(q, 0, 1), Fy(q, P, 1), Fs3(p, 0, 1), o3
F4(p’ P’ t)’
with the following properties:
oF oF
pi=——  Pi=--= (24)
9q; 90,
JIF
K=H+—L, (25)
at
OF, OF,
;= —, ;= , 26
Pi= G Qi =7 P, (26)
JdF.
K=H+—2, (27)
at
oF JIF
q; = — 3, P,':_ 3, (28)
ap; 90,
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IF,

K=H+—, 29
Y (29)
dF, OF,
= - , i == y 30
qi 37, 0 aP, (30)
oF
K=H+—2 (31)
ot
In the particular case where, for instance,
Fiy(p, Q. ) = —p- 0, (32)
Eq. (28) gives
q9=20, P=p, (33)

which corresponds to the identity transformation.

B. Hamilton-Jacobi equation

In order to solve a problem of mechanics, it is useful to
formulate it with the best suited variables, for example, the
angle-action variables. Then, one solves the Hamilton-
Jacobi equation written thanks to a generating function S,
which changes initial variables to new appropriate coordi-
nates. The equation is basically given by

0S5
H(Qi: pi= aq») = a; (34)

For gravity, one has to deal with constraints, as introduced
in the previous sections. General methods to solve the
Hamilton-Jacobi equation in this case, with «; = 0, are
given in [6].

IV. FIRST CHANGE OF VARIABLES (v,,, 7))

In this section, we show in some details the way to
proceed in order to find easily the gauge-invariant quanti-
ties. This “algorithm” of resolution, originally used in [3]
but not fully detailed, can be applied in many situations
where perturbations are considered (see, for instance, [7]).
The Hamilton-Jacobi framework has already been exten-
sively studied and used in general relativity, as, e.g., in [7],
but the method presented here focuses on the goal of
directly deriving some gauge-invariant variables useful
for observations.

It will now be detailed in the case of general relativity
but expressed with variables that can be further used in the
framework of loop quantum gravity, as investigated in the
last section of this article.

A. New variables

Following [3], we define, from an appropriate generating
function, two “‘new’” variables y and their conjugate mo-
menta 77, related to 6K and SF, so that the equations are
simplified. This is nothing else than reexpressing the per-
turbations E and . Fundamentally, this does not bring any
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new physical information as it is possible to obtain the very
same results starting directly from ¢ and E.

We will use the Fourier transformed variables such that,
for instance,

SE(k, 1) = [ e KXSE(x, 1), (35)
leading to
a — 3y, —ikx 5 a a kike 2
S8E(k,t) = | d’xe ™ p| —24(869) + 8i—7kE.
(36)

Working in Fourier space greatly simplifies most equations
and can add some freedom. In our case, we define two
vectors A (m = 1,2) in the Fourier space such that

Al, = as¢, (37

k'ka
A% = b(8§’ - ) (38)

The variables a and b depend on the choice of the basis but,
as we will show later, the final results do not depend on
them. The scalar product of these vectors is proportional to
2k?. This is in sharp contrast with the situation studied
in [3] where one had

Al =89, (39)
o _ ki 1

A7 2 3 6¢. (40)

The difference is due to the choice of the perturbation: in
our case we use E, whereas the ““standard” u was used in
[3] leading to

: kke 1
oEf(kn) = [xe p(~2p60) + (S~ 351 o).

It is easy to see that A} - A? = 0. However, this is not in
principle necessary and both approaches are strongly re-
lated and lead to the same results. Having defined theses
vectors, instead of working with ¢ and E, we will use two
other variables vy,, (m = 1,2) such that

SE(k 1) = y,AL, + y,A2, 41

As suggested before, these new variables are just related
with the perturbations through

ay, =2py, (42)

by, = pk*E. 43)
Using Eq. (41), one can express them in terms of §E so that

k ki
k2

ay, = OE¢, 44)

185
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1/ k,ki
by, = ——(3 “2 OE¢ — 5EZ). (45)
2 k
Taking the trace of (41) indeed leads to
5EZ = 3ay1 + 2b')/2, (46)

and expressing y; as a function of y, in Eq. (41), one
obtains:

1 1 k;k°
SE¢ = —SE48¢ + by,|= 8¢ — —-). 47
i 3 a%¥i ’YZ<3 i k2 ) ( )
This can be expressed as
1
oL} = §5EZA£ — by,A?, (48)

by replacing 8v;; (as used in [3]) by SE{. This is the first
bridge between the two approaches. When solving this
equation by multiplying by A27!, one naturally obtains
Egs. (44) and (45).

Furthermore, we can show that both approaches are in
fact fully equivalent. Starting from one, for example, using
M, we can derive the expression of v,, when FE is used in
terms of % This can be simply performed by using Eq. (9)
which relates 0v;; with 0E{. To be consistent with [3], we
redefine (due to our conventions) the variables as

PoY{ = pyiAL + pYSAL. (49)
Noticing that, from Eq. (9),

poy? = SEISY — 28EY, (50)

we can reexpress the approach of [3] as:

1
=370 (51)
1(,kk, .

Vi = §<3757? - 5257?) (52)

From Egs. (9), (41), (49), and (50), it follows that

kR 1
p57?=p755;+p75( —55?) (53)

kik,
Taking the trace gives:
2b
pyi=avit =57 (55)

and Eq. (53) becomes

kik® 1 kik® 1

PY> X &

This leads to the expected equations:

2by, = P4, (57)
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_ 1
ay, = p(vlL - 57%)' (58)
Reexpressing them as functions of 6 E, with Egs. (50)-(52)
leads to Eqgs. (44) and (45).

B. Generating function S,

In the framework of perturbed LQC, the canonical var-
iables are 6K and their conjugates 6 E. We have seen that it
is possible to make a transformation from o E to y,,. To this
aim, we have to define the corresponding conjugate varia-
bles ,, of v,,, which will depend on 6K. As reminded
above, there exists 4 generating functions allowing one to
define new sets of variables. In our case, we define the
momentum with a generating function S, such that

T,y & —L, (59)

Ym
where S, is then a function of y,,. As y is a function of 6E,
the momenta do not depend on 6 E and we can therefore set

S, = cSKLA™My,, (60)

where c is a constant. At this stage, we might consider two
cases. First, one may chose to have vy, as canonical coor-
dinates and 7, as their conjugate momenta:

6K =g, 6E = p, 7, = P.

(61)

Ym = O,

In this case, S, will be similar to a f(g, Q) function and
the conjugate momenta are
as,

——Y = —cSKLA™. (62)
Y m

T =

In the second case, as v,, are related to SE = p, one might
want to have now 7, as canonical coordinates and v,, as
their conjugate momenta:

60K = g, 6E = p, YVYm = P, T, = 0.

(63)

In this case, S, will be similar to a f, (g, P) function and the
conjugate momenta are

A A
Ty = —— = cOK, A, (64)

Ym
Comparing both cases, one can see that changing c — —c¢
exchanges one case for the other one. From now on,
we focus on the first case: the y,, will be the canonical
coordinates, and 4, their conjugate momenta.
Nevertheless, considering either y = Q or y = P, the
algorithm naturally leads to the same correct gauge-
invariant variables. In our choice, those variable are pre-
cisely the Mukhanov variables. Remaining as general as
possible, one can finally write:

PHYSICAL REVIEW D 85, 123534 (2012)

m = —acéKf,’, (65)
kk; .
T = —cb(5Kff - k2l SKZ). (66)

It is useful for the following computations to reexpress 6 K
as a function of 7r,, such that

8Ki = al,m + b, (67)
where
. . k'k
al = ad) + ay =", (68)
) ) k'k

Multiplying Eq. (67) by —cA?, leads to conditions on ay,
by, a, and b, through

m, = —cAl(alm + bimy), (70)
and, consequently,

1 Kk 1 kik
—__~"a <3 a

5K} =

ca k? m 2bc k? _62)77-2' 7

One can then multiply the previous equation by 0E¢{ so as
to obtain:

. SEY kik SEY( kik .
sKioEs — — 2Lt Khap (OB (3KK
am ca k? 71 2bc< K2 a>7T2
1
= _2(71771 + Y1) (72)

As explained in the next section, this might be interpreted
as a conservation equation.

C. Poisson brackets

We now have defined the conjugate momenta 7, of y,,.
As for the original Ashtekar variables, these new ones will
obey some Poisson bracket relations. Going through the
computation leads to

{ymr 7Tn} = KC5mn' (73)

The transformation can be said to be canonical as the
variables have a symplectic structure such that the new
Poisson bracket is related to the old one through

{ym 7.} = {8K4(x), SE] (X)}5,,. (74)

In the next sections, we will consider a universe filled with
matter, and, in particular, with a massive scalar field ¢,
with its conjugate momentum 77, so that {@, 7} = 1, their
perturbations being given by 8¢ and 8. For simplicity
and without any lack of generality, we therefore set
kc = 1. So,

{’Ym’ 7Tf’l} = 6171]1' (75)
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Using Eq. (72), we see that
5K SE¢ YT
(KL SEX )} e 7

(76)

As we have chosen the vy,,, related to 6 E, as the canonical
coordinates (instead of 6K in the usual theory), this leads
to the appearance of a minus sign in the previous equation.

The new set of symplectic variables, vy, and m,,, is now
well defined as

k k'
a1 =3 OEY, (77)

1/ k,ki
b’}/2 = - 5( 5Ea - 5E§), (78)
m = —ac8K§,", (79)

kek; .
my = —bc(SKj e a). (80)
Their Poisson brackets are given by

{71, 77'1} = {72, 77'2} =1, (81)
{y1, ma} ={y2 m} =0. (82)

As explained before, at this stage, nothing new emerges.
This transformation is just useful to obtain simpler
equations.

D. First order constraints in the term of (y,, 77,)

To use the new set of variables, we now have to reex-
press the constraints in terms of vy, and ,. With the
Ashtekar variables, for a universe filled with a massive
scalar field ¢ (with conjugated momentum 7), the diffeo-
morphism constraints in the ADM formalism reads as

D[N“] = fz B[N (DO + D) + sNeDID] (83)

at first order in constraint densities. In fact, as in this case
N =0, only the D'V term remains. Its gravitational and
matter components are

DY = %(_Igglgad(aEz) + . (8K9) — pay(8KY)),
(34)

DY = #5.80). (85)

As far as the Hamiltonian constraints are concerned, one
has

H[N] = fz PANHO + HP) + SNH D], (86)

where the first order constraint densities are

187
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1 . 1 - 2

HG = —(—4 pk6K4 — —=k*SES + —aCan‘E‘f),
G 2K \/1_7 d \/IT7 d \/12? J

(87)

g_[-(#) _ o . ’7_7'2 (SEZ (88)

P2 2p2 2p

d
HO = p”[m(@)éqo + v(c;v)‘s;;;d]. (89)

As in [3], we define vy = ¢, and 7y = &, such that vy,
(a =0, 1, 2) correspond to the old canonical coordinates
“q” and {vy,, m,} = 1. The expressions of 7y, represent the

max1ma1” and ‘““fundamental” decomposition of the per-
turbations. What was done so far is nothing else than a
decomposition of the theory in terms of those perturba-
tions. Gauge-invariant variables are derived from first or-
der constraints. After a Fourier transformation, and using
Egs. (41) and (71), both first order constraints can now be
expressed as functions of (y,, 7,) such that

H O[N] = SN(H Y + H )
SONPPET

JPL ek a

o+ 2200 — ki)
K

3 .

+ pViye + ( K + 3k — EKQ_DZ):I,

(90)

and
DO[sN*] = N4 (DY + DY)
. ka 1 7=
= lp(ka5N“)[ oyo+ =y — —2]

P K ck b

1)

where V' and V" refer, respectively, to the first and second
derivative with respect to the scalar field ¢. The notation
HP[6N] and DP[SN“] are used, in agreement with
most papers, to emphasize that those expressions are in
fact second order ones due to 6N and ON* factors. We have
also simplified the results by using the Friedmann equation
(calculations are derived in the Appendix):

=2
k2= g(% + pv), (92)

and the fact that the equation of motion for the background
variables reads as

¢ = (93)

"B\:]l

We have thus expressed the first order constraint densities
(90) and (91), as functions of the new set of symplectic
coordinates (y,, 77,). In the next section, we will show that
it is possible to make a final transformation toward a new
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set of coordinates (Q, P), meaningful for cosmology and
gauge invariance, using a generating function S and the
Hamilton-Jacobi equations.

V. GAUGE TRANSFORMATION AND THE
MUKHANOV-SASAKI EQUATION

To describe physical effects, one has to deal with gauge-
invariant quantities. The goal of this section is to address
the specific issue of gauge invariance within the canonical
formalism.

A. Gauge invariance in the canonical formalism

In a canonical formulation, gauge transformations are
directly generated by Poisson brackets of the fields with the
constraints. In the covariant language, gauge transforma-
tions are studied as perturbation transformations under the
coordinate change

XMt — _Xfu/ = x* + é‘:p“(x), (94)

generated by vector fields £#. Under this coordinate trans-
formation, any tensor field receives a correction given by
its Lie derivative along £#. As defined in [8], the part of the
transformation relevant for the scalar modes can be
parametrized by two scalar functions £° and & such that

Er = (& 078 95)

Along this vector, a variable X will undergo a transforma-
tion given in the canonical formalism by

Sip g X=X HOINE] + DP[o“¢Th (96)

where
HP[8N] = [ BxHD[5N], 97)
DI[SN] = [ d*xDY[SN]. (98)

It is easy to relate the canonical approach to the Lie
derivative by noticing that

{X + 86X, D[¢4]} = ﬁsg()_( + 8X). (99)

In the framework of LQC, using the densitized constraints
(84)—(89) in Eq. (96), one expresses the transformations of
basics variables as

S0 OEF = 2pk £y8¢ — p(8¢Kk* — k,k)E — (100)

1- . ) -
5[§0y§]5Kla = _§k2§08; - kukl(fo + kf)

K{ & ;
+§<_E+ pV)g()(Sa, (101)
5[50,5]5€0 = ¢éo, (102)

PHYSICAL REVIEW D 85, 123534 (2012)
8[§O‘§]S7T = _1_7 ¢ kzg - [)ZV/fo. (103)

With these expressions and the definition of vy, and 7,,,
it is easy to see that

S0, ey HP[SN]={HP[6N] HO[N ]+ DP9 ¢Ty =0,
810 gD P[SN]={DP[5N] HA[NE] + D [o°£]} =0,

which means that the first order constraints (90) and (91)
are gauge-invariant. Another way to see this is to compute
directly the Poisson brackets:

{HP[8N,], HP[8N,]} = 0, (104)
{HO[8N], DD[6NT} = 0, (105)
{DP[5N¢], DP[SNST = 0, (106)

and replace the 6N and 6 N by their £* equivalents. What
is shown here has been noticed in [3]. As it will be
emphasized in the next section, this means that to obtain
gauge-invariant quantities, the algebra should not only be
anomaly-free, but should also have null first order Poisson
brackets.

B. Gauge invariance with the
Hamilton-Jacobi equation

In the Hamilton-Jacobi equation, the momentum is ex-
pressed in terms of a generating function S and a new
transformation is performed. As stated in [3], there are
differences between the classical case where standard
Hamiltonians are used, and the case studied here where we
rely on constraints and reduce the phase space. In the latter
case, the Hamilton-Jacobi-like equation has to be directly
solved. As the total first order constraint (density) has to be
null for all 6N and 6N“, which play similar (although
slightly different) roles, one can separate the equations and
solve the two Hamilton-Jacobi-like expressions:

H <2>[5N]<7a, m, = ;j ) =0, (107)

MY
D<2)[5N“](7w o —

67a> —0. (108)

Because H @[6N] and DP[SN“] are linear in (y,, 7,) in
(90) and (91), the more “‘natural” generating function to
consider is a quadratic function S = f,(y, = ¢, P,) such
that

S =13AupYa¥s + BaVaPa (109)

where A,p is a 3 X 3 matrix. Taking into account the
properties of the generating function, the conjugate variable
of P, is given by

aS

=—=B,vy,. 11
Q2 8P2 aYa ( 0)
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To show where the gauge invariance of the new variables O,
and P, comes from, one can synthetically write that

H P[SN]=(8N)(E 7y +2pys)
=(ON)(E,Aup +24) Yy + E.B,Py),  (111)
and
DO[6N] =i (k. 6N M7, + Apys)
=i (keON)N(MAup + Ap)yy + M B, Py).
(112)

As constraints they have to vanish, and considering P, and
v, as independent, it is possible to find B, and A, through 4
equations:

E,B,=0, M,B, =0, (113)
E A + 2, =0, (114)
MaAab + Ab = 0. (115)

With the expression of Q, given in (110), and using
Eq. (113), one can see that, with our choice of generating
function:

Ore0,6102 = Badpg 174
= B {vo HP(NE) + DD (996)}
= B{Ya (NEN(E 7, + Zpy5)}
+ B{ya (09 (M m, + Ayyy)},
= (N&)) - B,E, + (9°¢) - B,M, = 0. (116)

This shows that O, is basically gauge-invariant because of
the relations (113) and not because of the anomaly freedom
of the algebra. The gauge invariance can also be seen by
expressing Q, in terms of (8 E, 8 ¢), and using (100). Finally,
it is possible to define a set of 3 new variables (Q;, P},), and
the function S by S =1A,,Y.Y» + BapYaPs. Making this
choice and applying the procedure described above leads to
simple equations showing that Q, * Q,. This means that
there is a unique consistent choice for Q, and the previous
case is therefore preferred.

As far as the generating function is concerned, we could
also have chosen S = f(y, = ¢, Q) and found the con-
jugate momentum P;. This would however have led to
P, = —Q, and the situation would have been equivalent.
Moreover, it is also possible to consider a generating
function such that

S = f34(p.{Q, P}) = JA ), + By, Py (117)

Following the same procedure would lead to some new
gauge-invariant functions. However, they do not exhibit
any interesting physical feature. In the following, we will
therefore focus on the generating function given by

189
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Eq. (109), leading to Q = Q, as a Mukhanov variable
and P = P, as its momentum.

C. Anomaly freedom in the Hamilton-Jacobi approach

To be consistent, that is to ensure that the evolution
generated by the constraints remains compatible with the
constraints themselves, the theory must be anomaly-free.
In our case, using the same synthetic formulation as in
(111) and (112), one can compute the Poisson brackets:

{HP[SN,] HO[8N,]} = 0,
{HP[8N], DP[SNT} = (BN)(BN“) (2 M, — E,A,),
{DD[6N¢], DD[SNST} = 0.
The total first order constraint MV[SN, 6N] leads to
{M[1], MY[2]} = [N, SN“I(Z M, — E,A,). (118)

To close algebra, that is to cancel anomalies, one has to
require that

S M,—E,A,=0. (119)

Using Egs. (114) and (115):
(114) X M, = E,A My, + 2, ,M, = 0, (120)
(115) X E;, = M AL E, + AJE, = 0. (121)

Combining those equations with (119), the condition for
anomaly freedom reads as

EaAabe = MaAabEb’ (122)

which is fulfilled only if A,;, is a symmetric matrix, with
thus only 6 unknown parameters. This corresponds to a
fully solvable problem. The condition of anomaly freedom
allows one to completely determine without ambiguity the
equations of motion for the gauge-invariant variables.

D. Mukhanov equation in general relativity

As perturbations can, a priori, be analyzed through
different choices of gauges (for instance, the Newton gauge
where B = E = 0), it is useful to provide gauge-invariant
quantities (related to y,, 6N and dN?) that are physically
relevant to investigate observational consequences, the
Bardeen potentials [9]:

¢=¢+%(B—E)+3—[(B—E), (123)

v =y —HB-E), (124)

where H is the conformal Hubble parameter. As we are
dealing with a universe filled with a massive scalar field ¢,
it will also undergo gauge-invariant perturbations &¢5'.
Gravity and matter perturbations are of course linked and
we shall focus on the linear order, as often in perturbation
theory. As derived in [8] [this follows from the definition
96)1:
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8¢% = 8¢ + $(B — E). (125)

When dealing with all the scalar perturbations, there are 2
degrees of freedoms. This equation generates a constraint
and only 1 degree of freedom remains. Usually, the rele-
vant variable used in cosmology is called the Mukhanov-
Sasaki variable v, originally found in [10] and governed by
the associated Mukhanov-Sasaki equation:

d*v

d—nz+Av—§u=o, (126)

where
v= a(n)[ﬁgoGI + %(I)], (127)
7= a(n)%. (128)

When this variable is found, and after performing a Fourier
transform, it is easy to compute the power spectrum of
the conserved curvature perturbation. As reviewed, e.g.,
in [11]:

v=2"R, (129)
B v
Prk)=— | (130)
T
The spectral index is, for example, given by
d(Pg)
ng—1= . (131)
' d(k) | k=,

This power spectrum Pg(k, 1), typically representing the
state of the universe at the end of inflation, is a mandatory
input to compute observables, in particular, in the CMB).

VL. SECOND CHANGE OF VARIABLES (Q, P)

In order to compute physical effects, one needs gauge-
invariant variables. We have shown that the generating
function, defined in Eq. (109), will lead to such gauge-
invariant observables. In the following, we will precisely
show that Q and P are the Mukhanov variables fulfilling
the correct equations of motion.

A. Expression of the gauge-invariant variables

Using the requirement (107) with xc =1 leads to
conditions on A,, and B,, through (114). They can be
written as

HOBNI=0=1-E+yy-&o+yi- &+ v &

(132)
where
2pk .
¢="P%p + &8, (133)
a
. 2pk
o = Ape + LAm + p*v/, (134)
a

PHYSICAL REVIEW D 85, 123534 (2012)
Y 3.
& =Ane+PEA, + z(—k2 32— —K¢>>, (135)
a K 2
. 2pk b
£ = And + Tty + 20— kp). (136)

Considering now Eq. (108), we are led to
D(z)[(SNa]ZOZIE‘i“yOE()‘i"}/]E] +‘)/2'Ez,

(137)
where

E =B, (138)
E0 = bQ._D — Aga, (139)

— ab k
(=2 :—T+A12, (140)

K p
B, = Ay, (141)

This system is much simpler than in the ADM formalism
and can be explicitly solved. Taking into account Eq. (108),
one we can directly fix:

By, = Ay =0, Ap = bé,

(142)

This choice for Ay, and A, leads to consider, in Eq. (107),
only 3 equations for 5 unknown variables. One can check
that the conditions (142), implemented in Eq. (136), make
it vanish. This choice is therefore obviously correct.
Moreover, as it will be made clear in the following, it is
not necessary to determine all the coefficients of A,;,. Let
us now focus on B,. Equation (133) leads to a relation
between the terms of B,:

pa

2pk
B, will be kept as an irreducible degree of freedom and we
will show that any gauge-invariant quantity will just be, at
the end, proportional to the fundament B, choice.

The new variable Q defined in Eq. (110) can be ex-
pressed in terms of 7y, such that, finally, using ay, =
—2p i, one obtains:

B, B,. (143)

0= Bo(5€0 = g‘"k avl) = Bo(5¢’ +2 ¢), (144)

which is similar to v in (127) if one chooses By = \/p =
a(m). It can also be noticed that it is independent of the
choice of the base. Of course, one can also choose to invert
Eq. (143),
2pk
ag

and define the gauge-invariant variable as

0 B, (145)
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2p k _2pB
Q:Bl(_—p770+71) P 1( op +‘//>
a ¢ a

(146)

which is a function of the perturbed curvature variable R:
2pB,
a

Q=_

R. (147)

In the following, we will focus on the case for which Q « v
but the other choice would also be possible and the same
method would lead to similar results. In the next step, we
will keep B, free, until the last step, and derive the equa-
tions of motion for Q, and therefore for v, the Hamiltonian
formulation and how to find the expression for z.

B. Hamiltonian expression and equations of motions

A general expression has been found for a gauge-
invariant quantity Q which is related to the Mukhanov
variables. As the generating functions S, and S are known,
it is possible to find the Hamiltonian, and therefore the
Lagrangian, from which the equation of motion for Q can
be derived. The classical results can then be obtained
elegantly in the canonical formalism. Considering y; and
7y, as pure gauge variables, as explained into the details in
[6], we should avoid using any function explicitly depend-
ing on them as they do not contribute to the dynamics.

As we know the Hamiltonian as a function of (6K, 6E)
and as we have derived the expression of the generating
functions, it is possible to express the second order con-
straints, that are governing the dynamics of perturbations,
in terms of the new set of variables (Q, P). Using the
notations of [3], the known variables can be inverted and

one can easily find, with B, = f(k, p):
_0
op = B +[y1, v2l (148)
0
_ Ago
om = ByP + B 0 +1lyi 7.l (149)
0
Ao
= —Q BoP + Ly 72l (150)
_ . ¢
Wz—bB*QJF[?’p 2] (151)
0

To go further in studying the dynamics, let us notice that,
as Q is gauge invariant,

SsnoneQ={0, HI[SN] + DP[SNT} = 0.  (152)

The evolution of O (and this is true for any gauge-invariant
variable) is thus given by the second order constraint
densities:

191
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0 ={0, N(HO + H@) + No(DO + D)
+ HO[SN] + DI[sNT}
= {0, NHO + NeDO} + {0, HO[5N]
+ DASN] + {0, NH? + N*D?}
=0+ Ssy5nQ +{O NH? + NeD?}.  (153)
So,
0 ={0, NH® + N*D?)}. (154)

In our case, these constraint densities are, with N¢ = 0:

1 .
HO = —ﬁ(aiajsK{.aKg — (8K%)?)

16
+5 57 s - ,/ 5%9.600,8¢
P

1 A A a
T2V oo(@)397 + [OES] (155)
As OF is related to vy, through Eq. (41), we should not
consider functions depending on it. Moreover, as
A
i

one can write, after taking the Fourier transformation and
using Eq. (71):

p 3 2 T 2
HS = d3kﬁ[— e
[ 2kl2 (be)> ¢® a b Kﬁz

+ k(K> + [JV”))/(Z)]. (157)

The ¢ parameter enters the equation only quadratically,
therefore the choice of the generating function §,, (either
y=P or y= Q) does not enter the final result.
However, we do not have yet expressed the Hamiltonian
for the gauge-invariant variables. It is necessary to use
Egs. (148) in (157) and to add the relevant terms associated
with the derivative with respect to time of the generating
function,

oS 1., .
— =AY} + BoyoP + f(Yo V)
om 2
1 0\ , By
— 4 +Bop 158
> OO<BO> B, 0. (158)

To avoid inconsistencies, Q and P terms should not be
taken into account. The gauge-invariant Hamiltonian con-
straint for Q and P is thus:

= [ () a5

1 A
+ PQ(—ﬂ+ 220 4 )] (159)
kc? k D B
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where

_Ago Am + A0 Aoo ERN
a p

3k .
pv" + —2K 2.
(160)

In order to recover the usual Hamiltonian formulation, the
cross terms in P and Q in the previous equation should
vanish. However, looking at (159), it is clear that this cross

terms will give the expression of Agy, as a function of %
0

Looking at I', we see that the square and the derivative with
respect to time of Ay, are involved. One should also notice
that it is not really Q which enters the expression of the

Hamiltonian, but rather y = 2 =6 + % . Its conjugate

momentum is thus ByP. Indeed looking at the Poisson
bracket, one sees that

{Q. P} = {Byx, P} =

which is quite similar to the case B, = 1. Moreover, even if
By is not defined for now on, it is possible to find the
general form of the equation of motion.

Thus, to cancel the cross term, we set

{x, ByP} =1, (161)

52 A B
LA P L R (162)
C2Pk 14 By
and so
— '_2 A
P e _Byg
Ay = —K——=—— p—. 163
00 3T PBO (163)
With Eq. (134):
Ao 1 <— / ¢ _ By '—)
20— (5 — k= 52D 164
a 2w\ T T P, ¢ (164)

Finally, with the expressions of Ay, Ag;, and By, one can
see that the Hamiltonian is independent of a and b, which
means that the result is also independent of the normaliza-
tion choice for the vectors A”.. One can also solve (135) to
find A, but this is physically unuseful. One can also study
the equations of evolution: once §E is known, it is natu-
rally possible to obtain the exact value of 0K by studying
SE. This leads to valuable informations on 7r,.

Taking into account Egs. (163) and (164), it is
now possible to refine the expression of the Hamiltonian
(159) as

O (O e

where I'p is finally given by

B\ 1 d (_B,

Iy =T+(=) ———(p= 1
0wt (@) om0
By\2 B} d(_BO)
=I—(=) - 2—(p=) 167

(Bo) p dn pBS (on

PHYSICAL REVIEW D 85, 123534 (2012)

the second equation being obtained by using the corre-
sponding Lagrangian for By = 1 and then setting v =

JFO, with
1/ &2\
E(K%). (168)

To establish this expression, we have used the
Raychaudhuri equation (written in conformal time

V= VP

T_i2+ pV" + 3x32 + ZK%[_)V/ -

H=k=R-3&, (169)
and the Klein-Gordon equation:
o +2kp+pV =0. (170)
The Hamilton equations thus lead to
. OHS By \2
0=—"9= (—0) P, (171)
aP JP

o OHY (DY
P = 0 (B—()) I3,0, (172)

and the general equation of motion is given by
LY.
-2 +T 173
0-230) - (R)e+ a0 = (73)

Reexpressing P in term of O with (171) leads to consider a
Lagrangian such that

r=| ?(B%)[QZ ST,0°1 (T4

The Euler-Lagrange equations lead to the same equation of
motion as (173).

Classically, the Mukhanov equation is derived from the
action:

S = [dnfd%%[vz + (—k2 +§)v2]. (175)

The variable v was here defined with By = /p.
Remembering that k = p , using the Hamilton equations

with (173), and the Euler—Lagrange equation [or directly by
comparing Eqs. (174) and (175)], a clear correspondence
between the equation of motion can be seen:

(k2 )v =0, (176)
Z

i+ T —k—)v=0. (177)

With these equations, it is possible to recover z by
simply solving:

= T+R+2+k (178)

IS IR H

which is satisfied classically for

- @. (179)
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This method allowed us to find gauge-invariant variables
and their equations of evolution, starting from an anomaly-
free algebra in an easy way. In loop quantum gravity,
corrections to the classical theory are expected and this
will change the expression for the constraints, leading to a
modified algebra. The requirement of anomaly freedom is
not necessary to obtain the gauge-invariant Q and P, only a
vanishing Poisson bracket for the first order constraints is
required. But, of course, full physical consistency can only
be achieved if the algebra is closed. Thus, as in the previous
sections where the case of general relativity expressed with
Ashtekar variables was studied, we will consider in the
following the effects of the two main corrections from
LQC, that is the holonomy and the inverse-volume correc-
tions. Moreover, an easier way to obtain the Mukhanov-
Sasaki variable is to set first By = 1 and then recover z
when using v so that the corresponding Lagrangian has the
same form as in Eq. (175) from the modified Hamiltonian.

VII. APPLICATIONS

We now consider constraints modified with respect to
the classical case. In the following, we focus only on the
steps useful to find the associated gauge-invariant
Mukhanov variables, without going into the details of the
calculations. The missing steps can easily be rebuilt using
the techniques given above.

We still consider a universe filled with a massive scalar
field ¢. The diffeomorphism constraint holds its classical
form and, in all the following considerations, it will still be
given by Eq. (83). Moreover, the expressions of vy, and 7,
do not rely on the shape of the constraints, but on the shape
of the metric. In the following, expressions (77)—(80) will
therefore be used. What will be modified are the
Hamiltonian constraints where counter terms have been
added in order to cancel the anomalies so as to have a
closed algebra. In the following, we will give the expres-
sions of the first and second orders for these constraints.
The interested reader can refer to the appendix where,
starting from the zeroth order constraints, the equations
of motion for the background variables are derived. To be
as general as possible, we will keep the same notation
where a and b are unknown.

A. Inverse-volume case

Following [8], where anomaly freedom was found in the
case of inverse-volume corrections (&, 7, &), we introduce
unknown functions (f, g, f1, f2, .-+, &1, &2, - - . ) Which will
play the role of counter terms. We consider thus the
Hamiltonian densities given by

—(1 + g)k*SE¢

7

HY =2ﬁ[ 4(1 + f)Jpkskd —
2 afaEc] (180)

v
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7o 72 SEY
3{£:>=a[(1+f1)’;3/ 0+ ) zp]
(181)

d

OF
HY = [+ 1)V (@000 + V(@) z—pd] (182)
In this case, the Friedmann equation is

=2
ak? = K(” L~ pV) (183)
3\2 p?

and, by definition,

o= (184)

i
"B.| 3

Going ahead as in the classical case, Eq. (108) gives the
relation between B, and B; such that
__(U+f)a ¢
LU+ 2pak
Setting By = 1, the gauge-invariant Mukhanov-like vari-
able is then

(185)

aS (1+f) &
=—=90¢p+ 186
apP 1+f) ak (186)
Proceeding as before to solve the Hamilton-Jacobi-like
equations, Eq. (136) has to be fulfilled, which can be
expressed here as

b - K @>
b= -akervo 52 en -] as
K 2 v
In our approach, this condition is satisfied if
g = —2f, (188)

fr=2f1. (189)

We have thus recovered exactly the relations given in [8] so
as to have an anomaly-free algebra. This is of course not
surprising as Eq. (187) is related to the condition of anom-
aly freedom that was pointed out in Eq. (119).

In [8], the second order of the corrections a(p, §E?) and
v(p, SEY) also had to be taken into account, but as they are
proportional to S E and thus to vy, and y,, we do not need to
consider these terms. So,

(a®, v?) = f(y,, y,) — ignored. (190)

The second order constraint density with N = 0 can thus
be written as
HO = —\/5(5,25;!5@51(5 — (8K9)?)

7
+=0 +gl)

o —
5 3/2 + 5 (1t g5 )Pk e

1
+ 5+ 8PPV, o (9)8¢7 + [8E]L (191
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In this case, the cross term PQ are vanishing if one imposes
the following condition on Ag:

_ (e p (+f) 1
Ao = "(:7) KA+ Grgy PP

The Hamiltonian can therefore be written as

gy = [0+ o) + Twiper] oy

A
Iy = K[k25(1 +gs) + k(1 + ge)pV" + =2
p

A & 3 (&) A2
—2aﬂﬁ+—a<§) + (1 +g1)_—020:|. (194)
2 \v p

a v
_ ’ p
_ [P +gy) d p
)

where € is the Hubble parameter in the classical limit. The
Lagrangian can be written as

3 .
L3 = [%(vz + (—s2k2 + f)uz), (197)
Z

d
— —5(1 + gy + 22+ € + d—e, (198)
n

Let us define now

where

Ia ESH

and
s?=ap(l+g)(1+gs)=ap(l+g +gs). (199

Classically, the conserved curvature perturbation is given
by

k
R=y+25p="1 (200)
@ Z
In the case of inverse-volume corrections, from the pre-
vious equation and considering Eq. (195), one can natu-
rally suggest in our approach:

o D 1+ 1) &
e (5P ak 20D

which is close but not exactly similar to the expression
given in [12]. In fact, the propagation speed for the pertur-
bations derived in [12] is given by

s%aper = C_Y2(1 - f3): (202)

whereas, in our case, it is given by Eq. (199). Nevertheless,
it is possible to mix the equations for the anomalies found
in [8] and derive the expressions:

PHYSICAL REVIEW D 85, 123534 (2012)

a’=a6v and fy+ g +g5=0. (203)
It shows that, at least for the propagation speed for the
perturbations, results (199) and (202) are exactly the same.
In this study, we have given some arguments to establish
the function z. Although it would, in principle, be possible
to check its consistency, using Eq. (198), this would lead to
lengthy calculations that have not yet been carried out. It is
however clear that our choice is associated with a correct
Lagrangian. It might be that both solutions are physically
equivalent. We let this question opened for future studies.

B. Q-LQC model—holonomy corrections

We now focus on the case of holonomy corrections and
we use the notations of [13].

The first order corrected constraints, with counter terms
a; not yet fixed but introduced to close the algebra, are
given by

1
HY = ﬂ<—4\/§(K[sl] + a))5K!

1 2 .
—(K[1P + a,)0E% + —_aCaJBE;?), (204)

VP VP

7"7'677'_ 72 BEZ

HY = d (205)
ﬁ3/2 21_)3/2 2p
oY = 5l v (5)8 5 OF 206
¢ =D V‘P(¢)¢+V(¢)E’ (206)
where we use the notation (n # 0):
in(n@yk
K [n] SRAYR). (207)
nwy

One also has to deal with the Klein-Gordon equation,

T=po (208)

¢ = —pigV(e) — 2K[2]e, (209)

and the Raychaudhuri equation,
= - @2
= kK[2] - 97, (210)
with
Q= cos(2ayk). (211)

Moreover, holonomy corrections lead to a modified
Friedmann equation. The energy density p is basically
defined through

=2
KUP=5(5+ V@) =Sp 1)

and the Friedmann equation is given by
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2 _ 2 K _r
H?=K2P =3 pp(l pc), 213)

where

3
Pe= —3-2= (214)
ky*@*p
is the critical energy density. Applying the same procedure
as previously, one can derive the relation between B, and
B 1-

a—go
2p(K[s,] + al)

The related gauge-invariant variable is then (with the usual
choice B, = 1):

B, = (215)

Q=20d¢+ . (216)

%}
(K[s1] + ay)
In this case, the condition (136) reads as

which is again a necessary condition appearing when
{H?, Dg} is considered and which has to be fulfilled to
have an anomaly-free algebra. By this procedure, we have
two unknown counter terms «; and «,, and the previous
equation gives a relation between them:

a, = 217 — 2k(K[s,] + a,). (218)

In [13], the anomaly was removed with a; = K[2] —
IK[s,] and thus a, = 2K[1]* — 2kIK[2] which will be
used in the following. The second order Hamiltonian con-
straint density is thus modified so that

HO = \2/—5- Q - (85096KL5KE — (5K9)?)
167 1_
E W + 5P pY ZVW(GD)‘SQD

+ 5 Q- \[p8?a, 500,60 + [SE]  (219)

One obtains

_0.P ¢
AOO = QK 3 —K[Z], (220)
and
Ay _ 1 (- ) ¢* )
o Y T Y ami) (221)
Tg = QK+ pV"' — L P2 + 3k p?
@ 2 K[2]

+ 2kQpV’ (222)

KEZ] E(%?f

The Mukhanov equation in conformal time (N = /p),
remembering that [K[2] = %, is

195
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0+ 2K[2]0 + T'qQ = 0. (223)
As previously, it is possible to find z through
Z diK[2
B O I P T C1 SV
Z dnm

which is fulfilled for

VP
K[21™
This corresponds exactly to what was found, following
another path based on the Bardeen potentials, in [13]. As

in the previous case, we have recovered the Mukhanov
Lagrangian.

7= (225)

C. General case: Inverse-volume and
holonomy corrections

In this section, we will not address the issue of anomaly
freedom for the case where both corrections are taken into
account. We will just focus on defining the Mukhanov
variable by the method previously developed. Naturally,
it will be expressed as a function of the counter terms. We
will see that this case can be solved as if corrections were
mostly independent, as suggested in [12].

In this case, the first order constraint densities can be
defined, as in the previous cases, by

3_[8) — %[—4\/5([&[51] + a,)8Ky
1
- ﬁ(ml]z + )0 EY

for the gravitational sector and,

2
+Z acajaE;], (226)
p

72 d

V(l +f2)2 3/2 2_ B

HW =51+ 1) T @27)
p

SE?
g_[g) — 1—)3/2[(1 +f3)V¢(¢)5§p + V(¢)T;]’ (228)

for the matter sector.
The Friedmann-like equation is given by

5 =2
al[1P = g(% K pv), (229)
with the definition
=92 (230)
p

Going ahead as previously, one obtains again a relation
between B, and B;:

(1+f1)a @

Bim =0+ 25 atGs] + an) 0

(231)
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As a fully closed algebra has not yet been found, we are
compelled to keep «; unknown. Using previous results
from [12,13], it is however probable that the solution will
soon be derived.

Setting By = 1, the gauge-invariant Mukhanov-like
variable is then

1+ f1) @
1+ f) a(K[s ]+ a))

as
=—=9§%¢p + . 232
Q=-5=9%¢ ¥ (232)
Following the same procedure as in the previous sections
when solving the Hamilton-Jacobi-like equations, we have
to fulfill, in particular, Eq. (136), which can be expressed
here as

&2 = U[-aQRILs )+ @) + @z — 2K[1T)

K &?
w22 en -] (233)
and vanishes for
2k(K[s1] + ay) + a, — 2K[1]> =0, (234)
fa=2f1. (235)

This corresponds to conditions already found when holon-
omy or inverse-volume corrections were taken into account
independently.

Previous works on tensor perturbations where both cor-
rections were included have shown that the corrections act
independently on the equations of motion. As the inverse-

volume correction acts on the \/dl—(E) terms and holonomy
et

corrections act on the k terms, a guess can be made: in the
final algebra of constraints, it should be sufficient to simply
multiply the algebra found for the holonomy case by the
appropriate counter terms found for inverse-volume cor-
rections. Of course, this assumption can be debated be-
cause of the derivative which will be implied, but at least at
the first order, it seems to be correct.

At this stage, it is difficult to go much ahead. However,
the previous results lead us to assume

L= D 1+ f1) @ (236)

Ve +g) U+ 1) al<s ]+ a))

This remains to be fully demonstrated.

VIII. CONCLUSION

This article builds on the innovative ideas given in [3]
and develops them so that they can be used in the frame-
work of loop quantum cosmology. Going through succes-
sive changes of variables by using this kind of generating
functions, we have set a scheme useful to study cosmo-
logical perturbations with complicated Hamiltonians:
using our definition of gauge-invariant variables, the ap-
propriate Mukhanov-Sasaki variables appear naturally and

PHYSICAL REVIEW D 85, 123534 (2012)

directly. Both the cases of inverse-volume and of holon-
omy corrections were considered. In principle, it is also
possible to study, in such an easy way, any other kind of
correction that can be set up by constraints. Moreover,
the Hamilton-Jacobi method is very general and can be
used in different frameworks, in particular, in particle
physics where gauge invariance plays a crucial role.
Nevertheless, this work is not fully independent from the
previous ones: the expressions for all the counter terms
cannot be obtained directly from this method and a good
procedure should be to first analyze the corrected con-
straints following the Hamilton-Jacobi approach, obtaining
the expression of some Poisson brackets and fundamental
gauge-invariant variables, and then performing the calcula-
tions for the remaining Poisson brackets. At this stage, the
anomalies can be removed by choosing the appropriate
counter terms and some new feature can appear (e.g. the
fi-scheme for the holonomies [13]). It is then possible to
derive completely the equation of motion for the Mukhanov-
Sasaki variables v where the Lagrangian is as in (197).

Several developments are expected. First, although rea-
sonable, some guesses had to be made. They should be
checked in details by going though the full exhaustive
computation, in particular, by studying the equations of
motion for the Bardeen potentials when inverse-volume
corrections are taken into account.

Second, the method should be applied again when
counter terms for the holonomy + inverse-volume case
will have been found. This work is already on the way.

Finally, those gauge-invariant variables should now be
used to investigate cosmological consequences at the ob-
servational level.

APPENDIX: EQUATIONS OF MOTION

In this appendix, we give an example of how to derive
the equations of motion for the background variables when
holonomy and inverse-volume corrections are taken into
account together. The classical limit corresponds to & — 0
or K[n]— k. At the lowest order, the diffeomorphism
constraints are null, we therefore consider in the following
only the Hamiltonian constraints which are given, for
gravity and for matter, by

HYIN] = % f dBxN(—6ak[114/p). (237)

and

o _
Tatpv@) e

HOIN] = f d3xN<172
The background variables are linked through

{ém=§, (239)

{, 7} = 1. (240)
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For instance, the conformal Hubble parameter found with
p = a*(m) is given by

- | . .
H =L — —{p, HOIN] + HYIN
75 = 35 (P HYIN] + HIN)
1 . . .
=7_5[‘i_i_—i‘l] (241)
2p 3Lok op ap ok
1 «ap (aHYIN
= ——_56—_(6 G_[N]+O) (242)
2p 3 ap\ ok
1 «p
=_— — = (—12y/palk]2 24
753 2 1 2VPak(2) (243)
H =L = aK2] (244)
2p
Moreover, the energy density p is defined by
1 6&H, v
p=——20m VT 4y (245)

P2 N 2 pP

and is linked to gravity through an equation of motion

(1]

(2]

(3]
(4]

5—‘}(1{ +D)\% =0, (246)
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which gives the Friedmann-like equation

K (D 2 K

24
2p 3 (247)

Using the previous relations, the Friedmann equation is

thus

given by
H? = (aK[2]))? = a(aK[1]) - cos*(ayk)  (248)
= a(aK[1P)(1 - (ay)’K[1]) (249)
= a(% pp)(l - é ﬁ) (250)
K _ _
=§pp(a _E)’ 251)

where, as usual when using the holonomies within the &
scheme, the critical energy density is defined by Eq. (214).
Moreover, similarly, the Raychaudhuri equation is given by

k= akk2] - (— —}))aﬂ«[l? - (252)

K @*
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198 CHAPITRE 13. INVARIANCE DE JAUGE ET EQUATION DE HAMILTON-JACOBI

Conclusion

On voit ainsi que dans le formalisme canonique, les équations donnant et I’expression des variables invariantes
de jauge et leur équation du mouvement, sont obtenues tres facilement. Pour obtenir I’expression de ces variables,
il suffit de ne considérer que le fait que les perturbations de la fonction Lapse d N et du shift vecteur IN® sont
elles aussi des multiplicateurs de Lagrange, ayant ainsi comme conséquence le fait que

J(H[N]+ DIN®]) _ 6HW[N] _

Hon = 3(ON) ~(6N) - Hl=0 o
a (1) a
i 6(H[J(\Sf(]54]rvaD)[N D _ 5[;(5][5?)’ | _oop_o (13.4)

Les équations du mouvement ne concernent alors que les contraintes a ’ordre 2 dans les perturbations, et le fait
que 'on doit ajouter % pour avoir I’équation de la forme classique peut se comprend par le fait d’utiliser la
contrainte 58 58
HE  =H? (¢, =2 + with == 13.5

EOM q, g Pn Pn an ( )
comme vu au premier chapitre, avec % qui est du second ordre, donc n’intervenant pas dans l'obtention de
I’expression des variables invariantes de jauge.
L’équation d’Hamilton-Jacobi a beaucoup été utilisée dans I'obtention d’une théorie quantique de la gravitation,
et on voit ici qu’elle possede d’autres aspects tres attrayant. Il est ainsi bon de connaitre son existence et peut-
étre de l'utiliser dans des travaux futurs.
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Conclusion et perspectives

Marty McFly :
Wait a minute, Doc. Ah... Are you telling me that you built a time machine... out of a DeLorean ?
Dr. Emmett Brown :
The way I see it, if you're gonna build a time machine into a car, why not do it with some style ?

Robert Zemeckis, ”Back to the future”, 1985

La recherche d’une théorie quantique de la gravitation est devenue aujourd’hui un des enjeux majeurs de
la physique. De nombreux modeles, comme la théorie des cordes ou bien la gravité quantique a boucles pour
ne citer que les théories considérées comme les plus importantes, ont ainsi été proposés, donnant tous des
interprétations et des conséquences physiques tres différentes dont les effets apparaissent surtout a 1’échelle
de Planck. Cependant, méme s’ils présentent des caractéristiques attrayantes, il est nécessaire de discriminer
les modeles et utiliser éventuellement notre univers comme moyen de discrimination. Or, a nos échelles de
longueur et d’énergie, il n’existe pas a ’heure actuelle d’expériences permettant une observation directe des
effets quantiques prédits, mais il pourrait étre possible de le faire indirectement avec I’étude du fond diffus
cosmologique, des trous noirs ou bien des sursauts gamma.

Durant la theése, nous nous sommes intéressés a la théorie de la gravité quantique a boucles, et plus par-
ticulierement son application a la cosmologie : au contraire de la théorie des cordes, elle ne recourt pas a de
lourdres hypothéses supplémentaires mais utilise simultanément les concepts de cette théorie avec ceux de la
mécanique quantique, sans avoir a ajouter de nouveaux postulats. La gravité quantique a boucles n’a ainsi pas
la prétention d’unifier les différentes forces observées mais plutot de donner un cadre quantique a la gravitation
dans lequel pourront évoluer tous les champs. Cette théorie est d’autant plus intéressante a regarder que sa
construction utilise un formalisme commun avec celui des théories de jauge : considérer la gravitation non plus
comme une entité géométrique mais comme un champ a part entiere va donner une théorie similaire aux théories
de Yang-Mills, pour lesquelles les procédure de quantification ont été largement développées.

L’objectif de ma theése a ainsi été de regarder quels étaient les effets observables possibles prédits par la
cosmologie quantique a boucles, en s’intéressant plus particulierement aux corrections quantiques apportées
par les holonomies. Depuis quelques années maintenant, la communauté s’est surtout concentrée sur ’étude des
corrections d’inverse-volume, remettant a plus tard celle sur les corrections d’holonomie. Nous avons ainsi utilisé
une théorie effective dans laquelle ont été incorporées ces corrections, et regardé quelles étaient les modifications
apportées sur I’évolution des perturbations cosmologiques. Ces perturbations peuvent étre en partie observées
indirectement dans le fond diffus cosmologique, et I’étude des spectres de puissance va alors donner de précieuses
indications sur 'existence ou non de tels effets quantiques. Nous aurons alors la possibilité de tester la validité
de ces modeles, ou tout du moins de les contraindre.

Mon premier travail a ainsi consisté a regarder les effets des deux corrections de la cosmologie quantique a
boucles sur I’évolution des perturbations tensorielles. Des travaux avaient étudié les effets des corrections prises
séparément, mais en imposant I’évolution du fond comme étant celle d’un fond De Sitter : j’ai ainsi suivi la
méme démarche et vu que le spectre de puissance était modifié par les contributions des deux effets. Cependant,
ce travail a été une introduction et un entrainement a ce qui a suivi.

Concernant les corrections d’holonomie, seules les équations du mouvement des perturbations vectorielles
et tensorielles avaient été obtenues dans le cas d’une algebre close, et & part dans une étude [56], le spectre
de puissance pour les perturbations tensorielles n’avait jamais été regardé. Ce spectre ne tenait compte que
de la présence du rebond, et nous avons alors cherché a I’améliorer en incorporant naturellement une phase
inflationaire. Les résultats obtenus ont alors donné un spectre spécifique a un modele de rebond, mais possédant
en plus les caractéristiques de l'inflation (et d’une superinflation) qui va apparaitre naturellement.

Par certains arguments, il a été montré qu’'un tel spectre primordial devrait étre générique a tout modele de
rebond suivi d’une inflation, et nous avons alors décidé d’en étudier les conséquences observationnelles. Apres
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avoir regardé 'influence des différents parametres sur la forme du spectre, nous avons tenté de savoir si une
future expérience avait la possibilité de distinguer les effets quantiques du spectre angulaire obtenu dans le
modele standard. Il en a résulté comme conclusion qu'un large espace de parametres pouvant signer un rebond
était disponible et qu’il n’était pas impossible ainsi d’observer les effets quantiques.

Cependant, cette étude a porté sur les modes B générés par les perturbations tensorielles, non encore
observés. Le spectre en température étant treés bien mesuré, nous avons dans tous les travaux suivants chercher
a obtenir le spectre de puissance pour les perturbations scalaires tenant compte des corrections d’holonomie.
Par une démarche progressive, nous avons modifié les contraintes corrigées en ajoutant des contre-termes et vu
comment ils permettaient de résoudre les anomalies dans le cas général, donnant ainsi de nouvelles contraintes.
Pour ce faire, il a été impératif de considérer le cas ou 3 = —%, favorisant ainsi le fi-scheme : ce schéma est
cohérent du point de vue de I’évolution des échelles de longueur en fonction du facteur d’échelle, et c’est celui
que nous avons considéré par la suite.

D’autre part, ces contre-termes peuvent étre appliqués a toutes les perturbations, permettant de penser que
les travaux précédents ne sont en fait pas strictement valides et qu’il devient tout juste possible d’étudier les
effets physiques des corrections d’holonomies. Pour ce faire, il est judicieux de regarder les variables invariantes
de jauge, dont les expressions tiennent maintenant compte des corrections. Un travail, qui s’est avéré par la suite
prospectif, a consisté a appliquer une méthode utilisant les équations d’Hamilton-Jacobi, permettant avec les
expressions des contraintes d’obtenir tres facilement les variables invariantes de jauge ainsi que leurs équations du
mouvement, telles qu’elles peuvent s’écrire en terme d’un lagrangien similaire a celui d’un oscillateur harmonique
massif évoluant dans le temps. Dans toute étude future sur les perturbations dans le formalisme canonique, il va
étre recommandé d’utiliser cette méthode, notamment lorsque 1’on regardera 'influence des deux corrections.
Les modifications apportées par les termes en €2 ont finalement des conséquences importantes dans ce modele :
lorsque €2 devient négatif, on observe un changement de signature de la métrique effective. Dans ce régime, le
temps n’existerait plus, et il n’y aurait alors pas d’évolution : on ne pourrait ainsi pas propager les solutions a
travers le rebond. A I’heure actuelle, les conséquences ne sont que partiellement comprise et aucun avis définitif
n’est encore consensuel.

Ce travail a ainsi permis de comprendre l’effet des corrections d’holonomies sur les perturbations cosmolo-
giques, avec une algebre des contraintes modifiée close. Les résultats donnés ici ont été retrouvés par une autre
démarche, confirmant la solidité de notre approche. Il reste cependant encore beaucoup & faire si ’on souhaite
étudier completement les perturbations en cosmologie quantique & boucles. Ne serait-ce que pour le cas des
corrections d’holonomie ou il faut chercher a résoudre les équations modifiées :

e pour les perturbations scalaires

b — QAv — zv =0, ou =z= \/‘EKLE] (13.6)

e pour les perturbations vectorielles, il faudrait tenir compte d’un fluide permettant d’avoir de la vorticité.

e pour les perturbations tensorielles
h, +hi | 2K[2] — al QAR =0 (13.7)

qui peut se ramener a une forme similaire a I’équation de Mukhanov-Sasaki par le changement de variable
ah

75 (13.8)

v =

On voit d’ores et déja les difficultés analytiques et numériques qui apparaissent, la fonction ) évoluant avec le
temps jusqu’a s’annuler. Des travaux préliminaires sur les perturbations tensorielles ont montré que les solutions
divergeaient en 2 = 0, correspondant au moment ot p = p./2 donc prés du rebond (la densité d’énergie croit
treés rapidement proche du rebond). Un travail est en cours afin d’obtenir analytiquement les solutions en ces
instants. Il est de méme possible de regarder le cas des perturbations scalaires, mais le potentiel effectif f va
diverger en de nombreux endroits, donnant le cas le plus compliqué a traiter.

Dans les études précédentes, nous n’avons pas considéré le cas des anisotropies, et il serait aussi important
de voir leur implication sur la physique, notamment pour comprendre ce qui se passe quand une des directions
est en contraction et les deux autres en expansion. Les équations ne vont pas réellement étre plus compliquées
mais plus nombreuses, et il est encore nécessaire de développer le formalisme pour les perturbations. Il faudrait
aussi tenir compte des effets de back-reaction : cela est certes possible, mais va nécessiter beaucoup de travail
supplémentaire, les équations du mouvement du fond et des perturbations étant alors énormément modifiées :
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par exemple [86], il faudra tenir compte de terme en racine carré des densités d’énergies.

D’autre part, les corrections d’holonomie et les corrections d’inverse-volume vont avoir des conséquences différentes
sur la forme des spectres, et il serait intéressant de regarder maintenant comment se transforment les équations
d’évolution des variables invariantes de jauge sous ’action conjuguée des deux corrections : chaque correction va-
t-elle avoir un effet découplé de I’autre correction ? Vont-elles se compenser ou bien s’additionner, défavorisant la
théorie effective 7 Comme souligné précédemment, il serait assez simple d’obtenir ces variables et ces équations
par la méthode d’Hamilton-Jacobi (cela ayant été en fait partiellement fait dans le chapitre précédent), mais
pour le moment, il vaut mieux étudier séparément les corrections afin d’avoir une idée de leurs influences sur
le spectre. Une remarque peut cependant étre faite puisque le terme 2 dans les équations provient du terme
"OKOK’ dans la contrainte hamiltonienne : lorsque 'on considerera ’action des deux corrections, on devrait
observer la présence d’'un terme a2 6K dK dont il faudra étudier 'influence a tous les moments de 'univers.

Durant cette these, nous avons ainsi développé le modele permettant de tenir compte des corrections d’ho-
lonomie lors de I’étude des perturbations cosmologiques. La démarche menant a son élaboration s’est faite de
maniere progressive et logique, suivant les difficultés et les besoins que nous avons rencontrés. Nous avons ainsi
dérivé les équations d’évolution des variables invariantes de jauge pour tous type de perturbations, mais il reste
cependant encore beaucoup & faire avant de pouvoir peut-étre observer un jours une empreinte de ces effets
quantiques, et remonter ainsi dans le passé.
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Autres articles publiés

Deux autres articles ont été réalisés durant cette these

et je souhaitais compléter ce mansucrit en les y incorporant.
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This Letter aims at showing that the observation of evaporating black holes should allow the usual
Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full
Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between
competing models. We conclude that contrarily to what was commonly thought, the discreteness of the
area in LQG leads to characteristic features that qualify evaporating black holes as objects that could

reveal quantum gravity footprints.

DOI: 10.1103/PhysRevLett.107.251301

Introduction.—Loop quantum gravity (LQG) is a prom-
ising framework to nonperturbatively quantize general
relativity (GR) in a background invariant way (see [1] for
introductory reviews). Interestingly, it has now been dem-
onstrated that different approaches, based either on quan-
tizations (covariant or canonical) of GR, or on a formal
quantization of geometry lead to the very same LQG
theory. As for any tentative theory of quantum gravity,
experimental tests are, however, still missing. Trying to
find possible observational signatures is obviously a key
challenge. In this article we address the following question:
could there be objects in the contemporary Universe whose
observation would lead to a clear signature of LQG?
Fortunately, the answer turns out to be positive. Although
small black holes have not yet been directly observed, they
could have been formed by different mechanisms in the
early Universe (see, e.g., [2] for a recent review) or even by
particle collisions. We do not review here the well-known
possible production mechanisms, but instead we focus on
how to use the evaporation of microscopic black holes to
investigate the discriminating power of the emitted spec-
trum. Three different possible signatures will be suggested.
Although one should be careful when pushing the limits of
the LQG approach to black holes to the microscopic limit,
our results rely on features of the area spectrum and are
rather insensitive to small modifications in the theoretical
framework.

Theoretical framework.—The state counting for black
holes in LQG relies on the isolated horizon framework
(see, e.g., [3] for an up-to-date detailed review). The

0031-9007/11/107(25)/251301(5)
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isolated horizon is introduced as a boundary of the under-
lying manifold before quantization. For a given area A of a
Schwarzschild black hole horizon, the physical states arise
from a punctured sphere whose punctures carry quantum
labels (see, e.g., [4] for a detailed analysis). Two labels
(j, m) are assigned to each puncture, j being a spin half-
integer carrying information about the area and m being its
corresponding projection carrying information about the
curvature. They satisfy the conditions

N
A—A=8myl3 ) 1/jp(j,, +1)=A+A (D
p=1

where vy is the fundamental Barbero-Immirzi parameter of
LQG, A is a “smearing” area and p labels the different
punctures, and

N
> om,=0, 2)
p=1

which corresponds to the requirement of a horizon with
spherical topology. Many specific features of the entropy
were derived in this framework [5]. Although the propor-
tionality between the entropy and the area is indeed recov-
ered (when choosing correctly the y parameter) in the
classical limit, the quantum structure still leaves a clear
footprint at microscopic scales.

Long ago, Bekenstein and Mukhanov postulated that
due to quantum gravitational effects the area of a black
hole should be proportional to a fundamental area of the
order of the Planck area [6] (the argument has recently

© 2011 American Physical Society
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been updated in [7]). This led to the idea of possible
exciting probes of quantum gravity through associated
lines in the evaporation spectrum. However, following
the pioneering work of Rovelli [8], it was soon realized
that the situation is drastically different in LQG where the
spacing of the energy levels decreases exponentially with
the energy, therefore closing any hope for detection [9]. In
(the first paper of) [5] a possible observational effect was
suggested based on an exact computation of entropy and
the observation of an effective discretization of it. In this
Letter we readdress this issue and show that at least three
different signatures can in fact be expected. Two of them
are, as it could be expected, related with “Planck scale”
black holes, whereas the last one works also for larger
black holes.

Emission lines in the Planck regime.—We first consider
the evaporation of a black hole in the deep quantum
regime. To this aim, we have developed a dedicated and
optimized algorithm. It is based on the ideas given in [3]
and it was enhanced with an efficient numeration scheme
using a breadth-first search. As the projection constraint is
very time consuming, this improvement is mandatory to
perform the computation up to high enough Planck areas.
The evaporation is considered both according to the pure
Hawking law and according to the LQG theory. In each
case, we model the evaporation by expressing the proba-
bility of transition as the exponential of the entropy differ-
ence multiplied by the gray body factor. Arguments for the
reliability and generality of this approach are given in [10].
As it can be seen from Fig. 1, some specific lines associated
with the transitions occurring in the very last stages of the
evaporation can be identified in the LQG spectrum,
whereas the pure Hawking spectrum is naturally smooth.
Two subtle points have to be taken into account. First, the
usually assumed ‘“‘optical limit” of the gray body factors
induces a heavy distortion of the spectrum. The use of
exact gray body factors, obtained by solving the quantum
wave equations in the curved background of the black hole,
is in this case mandatory. To be maximally conservative,
we have used the very same gray body factors in the
Hawking case and in the LQG case. Any difference, as
could be possibly expected due to an LQG-inspired metric
modification (see, e.g., [11]), would only make the dis-
crimination between models easier. We have also assumed
that the Hawking evaporation stops at the same mass as
expected in LQG (namely 0.4Mp;), once again to be as
conservative as possible. Second, even if one focuses on
the ‘“high energy” emission, say above 0.15Mp,, the con-
tribution from states with a lower temperature is far from
being negligible. We have therefore pushed the computa-
tion of the area states, together with their multiplicity, up to
200Ap to ensure that the number of missed quanta remain
smaller than a few percent.

Several Monte Carlo simulations were carried out to
estimate the circumstances under which the discrimination

) LQG —
20000 - b R
18000 F— RMS 0.06511 |
16000 -
14000 -
12000 —
10000 |-
8000 |-
6000 -
4000 F-
2000 - _L I
oE r— sl i a i o Sl 1 g I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Energy(E_pl)
Hawking i
Hawking
1400 Entries 1000000
Mean 0.1712
1200 RMS 0.06446 |
1000 |
800 [—
600 [—
400 [
200 [
O E Il Il 4
0.15 0.2 0.25 0.3 0.35 0.4 0.45
Energy(E_pl)
Mukhanov
Mukhanov
Entries 1000000J
M 0.1712
5000 AMS. 0.0654
4000
3000
2000
1000
0 ILHAJ‘L [ L
01 0.5 0.2 0.25 0.3 0.35 0.4 0.45
Energy(E_pl)

FIG. 1 (color online). Spectrum of emitted particles in LQG, in
the pure Hawking case, and in the Mukhanov-Bekenstein ap-
proach, from top to bottom.

between LQG and the standard behavior is possible. At
each step, the energy of the emitted particle is randomly
obtained according to the relevant statistics and to the
(spin-dependent) gray body factor. Most simple statistical
tests fail to capture the intricate nature of the specific LQG
features. We have therefore chosen to use a (slightly im-
proved) Kolmogorov-Smirnov (KS) test. The KS statistics
quantifies the distance between the cumulative distribution
functions of the distributions and can be used for a system-
atic study of possible discrimination (see, e.g., [12]). By
investigating the KS excess as a function of the energy, we
have optimized the relevant interval for each relative error.
As this latter is assumed to be known, it is meaningful to
use it as an input for the statistical procedure. Figure 2
shows the number of black holes that should be observed,
for different confidence levels and as a function of the
relative error on the energy reconstruction, to discriminate

251301-2
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FIG. 2 (color). Number of evaporating black holes that have to
be observed as a function of the relative error on the energy
reconstruction of the emitted leptons for different confidence
levels (the gray scale corresponds to the number of standard
deviations). The first row corresponds to the discrimination
between LQG and the Hawking hypothesis and the second row
between LQG and the Mukhanov-Bekenstein hypothesis.

the models. Clearly with either enough black holes or a
relatively small error, a discrimination is possible, there-
fore leading to a clear LQG signature. To still remain
maximally conservative, we have only considered emitted
leptons. For a detector located nearby the black hole, and
due to the huge Lorentz factors, the electrons, muons, and
taus can be considered as stable, whereas quarks do not
have enough time to fragment into hadrons.

For the sake of completeness, we have finally imple-
mented a KS test between the LQG spectrum and the
Bekenstein-Mukhanov one. Once again, the discrimination
is possible with an even smaller number of black holes as
the lines are sitting at clearly different places.

Even if the Hawking and Mukhanov hypotheses are not
expected to be reliable in the Planck era, this analysis
shows that a discrimination between LQG and other tenta-
tive approaches is possible.

Low-energy emission in the Planck regime.—There is a
second specific feature associated with the end point of the
evaporation process. In LQG, the last transitions take place
at definite energies, of the order of the Planck scale,
associated with the final lines of the mass spectrum. On
the other hand, in the usual Hawking picture, the most
natural way to implement a minimal mass is to assume a
truncation of the standard spectrum ensuring energy con-
servation. Even if no minimal mass is assumed, the spec-
trum has to be truncated to ensure that the black hole does

not emit more energy than it has. This is also the case in
some string gravity models [13]. This leads to the impor-
tant consequence that the energy of the emitted quanta will
progressively decrease and asymptotically tend to zero. It
is possible to distinguish this “low-energy’’ emission as-
sociated with the end point from the (much more numer-
ous) “low-energy” particles emitted before (when the
black hole temperature was lower) thanks to the dynamics
of the process. For example, as soon as one considers
¥ rays with energies lower than 8 X 10° GeV, the ‘“‘end
point” emission will take place at least 100 ws after the
initial emission, making both signals easily distinguish-
able. Those “relic” quanta will be emitted with mean
energies decreased by a factor 1/4 at each step (for scalars
and fermions). The time interval between consecutive
emissions will typically increase with decreasing energies
as E73. At 100 TeV, the mean interval is around 1 s. This
feature of the ““standard” spectrum is therefore very differ-
ent from the absence of low-energy particles expected in
the LQG case.

This probe should, however, be considered with care as
it is less reliable than the two other ones suggested in this
Letter, being dependent on the specific assumption made
for the evaporation end point in the Hawking case.

Peaks in the higher-mass regime.—Up to now, the analy-
sis was mostly focused on lines associated with the dis-
creetness of the area, as could be seen on Fig. 1. However,
LQG specific features also lead to broader peaks in the
spectrum, with a clear pseudoperiodicity, as shown in
Fig. 3. Those peaks are associated with the ““large scale”
structure of the area spectrum. This periodicity has been
discussed in much detail (see [3] and references therein).
We have observed this behavior up to 200Ap; with an exact
computation of the area eigenvalues and we have checked
it up to 400Ap, with a dedicated Monte Carlo Markov chain
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FIG. 3 (color online). Instantaneous spectrum of a ~100 keV
black hole taking into account the LQG modulation of the
entropy.
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(MCMC) algorithm. Although some recent arguments sug-
gest that this periodicity is damped for higher masses [14],
they cannot rule out the possibility of a “revival” of the
periodicity at larger areas (or even in the asymptotic limit),
so it is relevant to study the possible observational effects
that this periodicity would have in the macroscopic regime,
in agreement with the assumption made in most of the
literature on the subject. We here assume that it remains
valid up to arbitrary large masses. This is not an unavoid-
able prediction of LQG but this is clearly a possibility that
arises, to the best of our knowledge, only in this frame-
work. This makes it a potentially interesting probe. The
mean area gap dA between peaks can be shown to be
independent of the scale. As, for a Schwarzschild black
hole, dA = 327mMdM and T = 1/(87wM), this straightfor-
wardly means that dM /T = cte where dM refers to the
mass gap between peaks. This is the key point for detec-
tion: in units of temperature, which is the natural energy
scale for the emitted quanta, the mass gap does not de-
crease for increasing masses. Any observable feature asso-
ciated with this pseudoperiodicity can therefore be
searched for through larger black holes.

This opens up the question of a possible detection of
LQG effects with evaporating primordial black holes
(PBHs) in astrophysical circumstances. If PBHs were
formed with a continuous mass spectrum n;(M;), where
the subscript i stands for initial values, it is now deformed
according to n(M) « M? for M < M, and n(M) = n,(M)
for M > M, where M, =~ 10" g is the initial mass of a
black hole whose lifetime is of the order of the age of the
Universe. This is just due to the Hawking evaporation
leading to dM/dt = M~2. In such a case, it is easy to
show that the peak structure of the instantaneous spectrum
will be immediately washed out. The convolution of the
individual spectra with the mass distribution will lead to a
Hawking-like E~3 integrated spectrum. We have checked
this expected behavior with a Monte Carlo simulation. It
should also be pointed out that the peak structure of the
“end-of-the-life”” spectrum, which is superimposed with
the lines, is not due to the pseudoperiodic structure of the
entropy but to transitions to the last states, i.e., with the
discreteness of the area eigenvalues.

However, this does not at all close the issue of observing
LQG features with astrophysical PBHs. The continuous
mass spectrum (typically scaling as M ~5/2) was a hypothe-
sis historically associated with a possible high normaliza-
tion of the primordial power spectrum (or a very blue tilt)
which is ruled out by CMB observations. Realistic models
for PBH formation are now associated with phase transi-
tions (see, e.g., [15]) or other phenomena leading to black
holes formed at a given mass M. If this mass is smaller
than M., those black holes have already disappeared. If
M. > M., that is if the horizon mass at the formation time
was larger that 10'° g, those black holes are evaporating so
slowly that their mass has nearly not changed. As not only

the mass loss rate but also the area loss rate does decrease
with the mass (dA/dt « 1/M), the peak structure exhibited
in Fig. 3 should be observed from such black holes. In this
case, the instantaneous spectrum, together with its peak
structure, can directly be probed. If the mass is higher than
typically 10'7 g the black hole will emit only massless
particles, that is photons (~ 12%) and neutrinos (~ 88%).
The electromagnetic signal is not anymore contaminated
by vy rays due to the decay of neutral pions as quarks cannot
be emitted. Although the redshift integration will slightly
smear out the structures, a very clean signature can there-
fore be expected as no mass integration is involved
anymore in the possibly observed signal. In addition, one
can show that the total number of photons received per

second by a detector of area S can be written as ® ~
104”;%(%)2& where p, = 3H?/87G is the “cosmo-
logical” critical density and ppgy is the density of primor-
dial black holes. This leads to a macroscopic signal for
quite a large range of masses and densities.

Conclusion.—In this Letter, we have shown that the
specific features of the area of black holes in loop quantum
gravity can lead to observational signatures. Although
detecting evaporating black holes is in itself a challenge,
we have established that footprints of the underlying quan-
tum gravity theory might indeed be observed in this way.
This opens a possible new window to probe LQG.
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Loop quantum cosmology yields two kinds of quantum corrections to the effective equations of motion
for cosmological perturbations. Here we focus on the holonomy kind and we study the problem of the
closure of the resulting algebra of constraints when a scalar field is considered in the matter Hamiltonian.
Up to now, tensor, vector and scalar perturbations were studied independently, leading to different algebras
of constraints. The structures of the related algebras were imposed by the requirement of anomaly freedom.
In this article we show that the algebra can be modified by a very simple quantum correction, holding for all
types of perturbations. The Mukhanov-Sasaki equations of motion are similarly modified by a simple term.

DOI: 10.1103/PhysRevD.86.087301

I. INTRODUCTION

Loop quantum gravity (LQG) is a promising framework
for a background-invariant non-perturbative quantization
of general relativity—see Ref. [1] for introductory reviews.
The theory can be derived from different paths, going from
a formal quantization of geometry to covariant or canoni-
cal quantizations of general relativity, all yielding the same
theory. In the canonical formulation, the loop quantization
is obtained by choosing the holonomy of the gravitational
connection and the flux of the densitized triad as basic
variables. Loop quantum cosmology (LQC) is the symme-
try reduced version of LQG. Although a rigorous complete
derivation from the full theory is still missing, LQC utilizes
key elements of LQG for studying quantum corrections of
the cosmological dynamics. These corrections turn out to
be negligible at low curvature, and important where the
energy density approaches the Planck scale pp,. They give
rise to a strong effective repulsive force which replaces the
big bang by a big bounce (see e.g., Ref. [2] for a review).

As for any tentative theory of quantum gravity, experi-
mental tests are still missing, and searching for observatio-
nal signatures is obviously a key challenge. Cosmological
perturbations, which are directly related to measurable
spectra, provide the best link to observation. Here we con-
sider the theory of linear cosmological perturbations in
the Hamiltonian framework [3]. The theoretical analysis
of these perturbations can be guided by a consistency
requirement: the absence of anomalies that would jeopard-
ize the closure of the effective constraint algebra. This
requirement has been so far separately analyzed for scalar,
vector, and tensor perturbations, leading to different cor-
rections to the constraints. This work focuses on the issue of
finding a unique self-consistent algebra of constraints mak-
ing the approach consistent for any kind of perturbation. We

1550-7998/2012/86(8)/087301(5)
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present a consistent constraint structure suitable for all
types of perturbations, and leading to a simple modification
of the gauge-invariant Mukhanov-Sasaki equation of mo-
tion. This shows the overall consistency of the theory and
indicates that results of the analysis of the scalar perturba-
tions must be taken into account to study tensor modes.
LQC generates two main classes of effective corrections
to the constraints, called the inverse-volume corrections and
the holonomy corrections [2]. The closure of the algebra of
cosmological perturbations has been extensively studied for
inverse-volume corrections. It was explicitly shown that
closure can indeed be achieved. This was demonstrated
for scalar [4,5], vector [6] and tensor modes [7]. Using
the anomaly-free scalar perturbations, predictions for the
power spectrum were also obtained [8]. This allowed to put
constraints on some parameters of the model using obser-
vations of the cosmic microwave background radiation [9].
Here, we focus on the holonomy corrections—appearing
because of the use of the holonomy of the Ashtekar connec-
tion. It is worth emphasizing that for tensor modes, the
algebra is automatically anomaly-free. For this reason, sev-
eral works were devoted to the phenomenology of holonomy-
corrected tensor perturbations (see e.g., Ref. [10]). The
anomaly-free algebra for vector modes was studied in
Ref. [11] and recently fully derived, including matter, in
Ref. [12]. The scalar algebra was obtained in Ref. [13].

II. THEORETICAL FRAMEWORK

LQC is formulated in the canonical language. Because
of general covariance the canonical Hamiltonian is a com-
bination of constraints C;. Consistency requires that the
constraints are preserved under the evolution they gener-
ate. This is assured in the classical theory by the closure of
the Poisson algebra of the constraints

© 2012 American Physical Society
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{1, C,} = XA, E9)Ck, (1)

where C;, I = 1, 2, 3, are the Gauss, diffeomorphism and
Hamiltonian constraints and fX,,(AJ, E¢) are structure
functions which, in general, depend on the phase space
(Ashtekar) variables (A, E¢). In LQC, quantum correc-
tions can be studied as effective modifications of the
Hamiltonian constraint. In doing so, anomalies generically
appear: the modified constraints C? do not form a closed
algebra anymore:

{C8, 9} = X, (A, ENCE + Ay, 2)

The anomalous term A;; can be removed by carefully
adjusting the form of the quantum correction to the
Hamiltonian constraint. This is achieved by adding suitable
“counterterms’ that vanish in the classical limit. The
resulting deformed algebra can be phenomenologically
very rich.

In the case of a flat Friedmann-Lemaitre-Robertson-
Walker background, the Ashtekar variables can be decom-
posed as follows:

L = yki + 8Al, and E{ = po¢ + SEY,  (3)

where k and p parametrize the background phase space,
and vy is the Barbero-Immirzi parameter. The variation
of the connection receives contributions from the fluctua-
tions of both the intrinsic and extrinsic curvature:
SAL = 8Tl + ySKL.

III. PERTURBATIONS

Taking into account the form of the perturbed variables
(3), we introduce a general expression for the variation of
the spin connection as

A L i
T = g XL 00OE; + 3 Vil BE[0,OE], (@)
where
XU = ellsh — eitol + s, + sl (5)

Y7* has an expression similar to X7/, but more compli-
cated: it is not needed here explicitly, because it appears
only as a boundary term in the second-order term of the
Hamiltonian constraint (16) in a way that does not affect
the equations of motion. The information about what kind
of perturbations we consider (scalar, vector or tensor per-
turbations) is coded in the term ﬁxi&,”ab SES.

The variation of the densitized triad can be decomposed
as follows:

OE} = 13[—2!/!8? + (89999, — 999;)E — ¢,0°F;

1
- CzaiFa _Eh?], (6)
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where the first two terms ¢ and E correspond to scalar
modes, the terms with F; and F“ to vector modes and the
term with A¢ to the tensor mode. Vector modes are trans-
verse, and tensor modes are transverse and traceless. These
conditions constrain §E¢ and 6K, as well as the lapse SN
and the shift vector ON“. In particular, vanishing trace
implies

0,0E¢ = 6¢6K, = 0. 7

Tensor and vector perturbations satisfy this condition, so
that in these cases the terms containing these expressions
disappear from the constraints. The form of the metric in the
case of vector and tensor modes implies that the variation of
the lapse is zero: N = 0. Therefore, some first-order con-
straints do not influence the perturbed dynamics.

For vector modes, the variation of the shift corresponds
to one of the two degrees of freedom indicated with S, and
F,: 6N* = §%. For tensor modes instead, the transverse-
ness, i.e., null divergence, implies

dSEY = 9,0E¢ = 0. (8)

As above, the form of the metric for tensor modes implies
6N = 0 for the shift, so that some further first-order terms
do not contribute to the dynamics.

Scalar perturbations are the more general: no term dis-
appears and all the constraints contribute to define the
perturbed dynamics. We have

SN =N¢ and 6N = 9°B, 9)

where N is the unperturbed part of the lapse N = N + 6N
and ¢ and B are scalar fields.

If we turn on the quantum corrections by modifying the
Hamiltonian constraint, anomalies appear and we have to
add counterterms in order to make the Poisson algebra
closed. In previous works, these counterterms were found
considering separately the case of each kind of modes. The
tensor and vector cases were simpler because of the vanish-
ing of several terms in the constraints, as observed. The
scalar case, on the other hand, is from this perspective the
most general one, since all the constraint terms are present. It
is indeed easy to see that the counterterms that adjust the
Hamiltonian for the scalar case [13] work also for the vector
and tensor cases, thus providing a general solution to the
closure of the algebra. Therefore starting from the scalar case
it is possible to define a unique closed algebra of modified
constraints, with the most general counterterms, giving back
correct counterterms for scalar and tensor perturbations
when imposing transverseness and vanishing trace.

IV. CONSTRAINTS

We consider the algebra of the diffeomorphism and
Hamiltonian constraints (see Ref. [2] for the expression
of the constraints in terms of the variables (3)). In each
constraint, gravity and matter—here modeled by a single
scalar field with canonical variables (¢, 7)—contribute.

087301-2
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A. Diffeomorphism constraint

The diffeomorphism constraint can be decomposed as
D[N%] = f APx[NY(DO + D) + sNeDD]. (10)
3

Since we are considering an FLRW background metric, the
shift N = N% + SN has zero N°. This implies that the
diffeomorphism constraint can be considered at the first
order.

Using the symmetry properties of (5) we can write the
constraint for the gravitational part as

kD, = pd, K3 — pa,8K3 — kd,SEY, (11)
and for the matter part as
D, = 7,00. (12)

Recall that for tensor modes 6 N¢ = (0, therefore D, and
D,, play a role only for scalar and vector perturbations.

B. Hamiltonian constraint

We consider the gravitational part of the Hamiltonian
constraint up to the second order

H[N] = fz BANHO + H@) + SNHD].  (13)

Using again the symmetry properties of (5), the expansion
of the constraint given in Ref. [2] gives

2k HO = —6,/pk?, (14)
at zeroth order and
HO =SKd K d 2 7 c

VP VP

at first order, for all kinds of perturbations. On the other
hand, the second order turns out to be

koo,
2kH? = —2— 5K.SE¢
N

+ /p(8¢8K:595K]) — 85K 875K})
1k, . . , A
+7 E(ﬁgaEgagsEf. — 284,0E(5},6E")

1 ..
+ =Y e, (SEY0,SEY)
p2

+ 74 (0:0E)(040E)) (16)
p

and is different depending on the mode considered. The
difference is only in the term Z°i/. Its explicit form reads
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Zcidj

1 ef _k mjd ic
ab T Zek €EmnXpe Xuf —
+

ieykid sc _ _ciykid
€ Xpe O — €' Xpy

1, :
5 8h ey, (17)

Imposing the conditions that define each mode and using
(5), we obtain that the term Z;;d’(GCSE?)(ad(SE?) in (16) is
respectively

8,568 - (9.6E¢)(9,6E?) for tensor modes,  (18)

0 for vector modes, (19)

1 .
- 55,‘;62’5” - (0.8E#)(9,8E?) for scalar modes.  (20)

This term is the only one that takes different forms when
restricted to perturbations of the scalar, vector or tensor
types. It follows that only the counterterms originating
from this term will differ from one another for different
types of perturbations.

V. QUANTUM CORRECTIONS

In the classical case, the algebra is closed

{D(m"'g)[Nf]’ D(m+g)[N§]} =0, 21

{H(m+g)[N]x D(m+g)[Na]} = _H(m+g)[5Na6a 3N]’ (22)

N
{Hops o[N1] Hope o [N>T} = D(mg)[;aa(azvz - 6N1>].
(23)

D, does not undergo corrections from quantum effects
[14]. We add quantum corrections at an effective level by
replacing in the Hamiltonian constraint

r_, sin(ayk
my

(24)

as a result of the quantization of the holonomies [15]. The
parameter [, proportional to the ratio between the Planck
length and the scale factor, carries the information on the
scale at which quantum corrections become relevant. This
yields the quantum-corrected Friedmann equations

2
H? =5p(1 —ﬂ) _ 25)
3 Pe p
where H and ZH are the Hubble rate respectively in cosmic
time and in conformal time, p is the energy density and
p. = 0.4pp, is the energy density at which a repulsive
quantum-gravity force appears, removing the classical ini-
tial singularity [2]. The appearance of anomalies in the
Poisson brackets when applying the holonomy correction,

087301-3



tel-00749162, version 2 - 7 Nov 2012

216

BRIEF REPORTS
{H[N M] [N, M]} = D[6°N]+ A,
Ay Ay
(26)

is contrasted by inserting counterterms a; in FH ) and
HD such that, for instance, (15) becomes in our case

O sin(s; i yk) cspi

VP VP

Ry
©2))

Requiring A ; = 0 therefore leads to a system of equations
which allows to find the expressions of the counter-terms.
Fortunately, when taking into account all the other con-
straints, there is a unique solution in the case of holonomy
corrections. For the explicit form of the resulting constraints,
we refer the reader to the literature (see Ref. [13]). The same
modified constraints have been found in Ref. [16], where the
counterterms of Ref. [13] appear naturally after a Taylor
expansion of the holonomies of the perturbed Ashtekar
connection.

We are here interested in the structure of the resulting
closed algebra.

VI. RESULTS

Remarkably, the resulting quantum-corrected algebra
valid for all different kind of perturbations is obtained
with a single structure modification (21)—(23). This appears
in the last Eq. (23), which becomes

{H 4[Nt ] Hipys o[ N2 ]}
- QD(,,ﬁg)[% 59(8N, — 6N1):|, (28)
where
Q =cosQayk)=1- 2p£. (29)

c

The single € factor represents the quantum correction. It
goes to 1 in the classical limit. This simple correction
appears also in the definition of the evolution of the pertur-
bations using gauge-invariant observables.

A. Mukhanov-Sasaki equations of motion

Whatever the kind of perturbations, due to the modified
constraints, the Poisson brackets

d
%(5X)i{5X, H,odgifieal N1 + D[N]}, (30)
therefore lead to a modified evolution in time or under

small transformations, and so is the definition of gauge-
invariant variables. Finally, using the Hamilton-Jacobi

1 o (h /E 2 . 2 .
_ _((M) + az)a{.SE;: + =970, OE:.
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equation [13,17], or merging the equations of motion for
the different perturbations [13], the correction to the
Mukhanov-Sasaki [18] equation of motion for gauge-
invariant perturbations of scalar and tensor type vgr) can
be derived. In conformal time, this is given by

Zll

UIS/(T) QV US(T) ﬂUS(T) = O (31)

Zs(T)
which reduces to the classical equation when  — 1. This
equation holds for both scalar and tensor perturbations.
Since we have considered the simple case of a scalar field,
there is no vorticity and therefore there is no physical
solution corresponding to vector perturbations.

For scalar perturbations, the Mukhanov variables in the
quantum case are given by

Us=\/_<

If we impose the divergence and the trace to be zero, we
obtain for tensor modes

vy = \/%h and zr = \/g (33)

where h represents the two degrees of freedom of K.
Inserting (33) into (31) we obtain the following form of
the equations of motion for tensor perturbations:

Q'
Q

3{¢) wd = For ()

hi" + hi ’<25{ ) - QV2hi = 0. (34)

This equation is clearly different from what has been used
in previous works because of the general expression for the
effective constraints. It is not only obviously different from
standard cosmology but also from first results obtained in
LQC. This  term deforms the algebra and will inevitably
lead to different observational consequences. The closure
requirements modifies the equation of motion for all types
of perturbations.

VII. CONCLUSIONS

We have presented a consistent framework for the study
of perturbations in loop quantum cosmology. It is possible
to write down a unique quantum-corrected algebra. This
has a simple form, and the same quantum correction holds
for all the different kinds of perturbations.

This simple correction also appears in the Mukhanov-
Sasaki equation, and consists in the insertion of the single
factor (29), which becomes relevant only when the matter
energy density approaches the Planck scale.

We notice that there exist a small region in the strong
quantum regime where ) becomes negative. This yields a
change of signature of the effective metric [13,19] associ-
ated to the appearance of divergences in the equation of
motion of cosmological perturbations. As a consequence,
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new observable features could appear since the value of
tensor modes would be higher than in the classical case.
This have to be further investigated, possibly going beyond
the effective treatment.

—
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The existence of a single deformed closed algebra of
constraints for all kind of perturbations, as exhibited in this
work, is a strong case for the self-consistency of effective

LQC.
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Formule de Baker-Hausdorff

La formule de Baker-Hausdorff est utile ici lorsque 1’on cherche & calculer ’holonomie sur un motif carré.
Les commutateurs entre différentes matrices de Pauli vont intervenir.

In (eXe¥)=X+Y + %[X, Y]+ 1—12 (X, [X, Y]] - [V, [X,Y]]) — i[y, (X, [X, Y]] + ... (13.9)

Les symboles de Levi Civita

En physique, ces symboles sont tres importants, et il est judicieux de faire un bref rappel sur ces outils. Pour
(1,7, k) variant de 1 & 3, et en utilisant la convention d’Einstein (tout indice répété est sommsé)

cin = 5 = )k = i)(k — j)
€ijk€tmn = 0i1(0jmOkn — 0jndkm) — Oim(0510kn — OjnOkt) + din(0510km — OjmOxr)
€ijk€imn = 0jmOkn — 0jndkm
€ijk€ijn = 20kn
e,;jkeijk = 3!

Dérivation de I’expression du spectre de puissance

< 0|o(n, &) (n, & + 7)|0 > — _. /d?’k . d3q . eiﬁlxezq'(r+r’) . UZUq(S(E‘F Q)

1 +oo ) 2 T " ) )
= . dk - k / dng/ df - sin(0) - e oS Ly
(2m)? /—oo 0 0 ©) i
2 Hoo i d (1 _,
_ . dk - k2 2 do - — [ — —ikrcos(0)
(2m)3 /,oo [V /0 df <ik;re
1 toodk . sin(kr)
= . by BN TN I Dbt Sk
), E e ()

oo dk sin(kr)
_/0 ko kr Po(k)

3

soit
Py(k) = T|Uk|2 (13.10)
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Abstract

La relativité générale est la théorie rendant compte de la gravitation via une déformation de l’espace-
temps. Son application & I'Univers permet, dans le modele A-CDM, de bien rentre compte des observations
cosmologiques. Cependant, & 1’échelle de Planck, la théorie ne fonctionne plus et s’avere incohérente. Pour
résoudre ce probleme, il est sans doute essentiel de tenir compte des effets quantiques. Depuis prés d’un siecle,
concilier relativité générale et mécanique quantique est considéré comme une priorité de la physique théorique.
La tache s’avere néanmoins extraordinairement difficile et cette these est consacrée a I'une des pistes les plus
sérieuses : la gravitation quantique a boucles.

Pour aller de 'avant dans cette démarche nécessaire mais complexe, des confrontation avec des données
expérimentales seraient essentielles. Nous nous sommes ainsi intéressés aux perturbations cosmologiques générées
dans ce cadre. Nous avons étudié en détails les conséquences phénoménologiques des corrections de cosmologie
quantique a boucles aux modes tensoriels dans un modele d’univers en rebond. Une analyse de Fisher a été
développée pour comparer ces prédictions aux éventuelles futures observations. Pour les autres modes, nous
nous sommes placés dans un formalisme spécifique incluant le calcul de contre-termes permettant de prévenir
I’apparition d’anomalies dans la structure de l'algebre des contraintes. Ce formalisme a été appliqué aux cas
des perturbations vectorielles puis scalaires. Les équations du mouvement invariantes de jauges permettant de
calculer les spectres ont alors été dérivées.

Abstract

General relativity describes gravity as a deformation of space-time. Applied to the Universe as a whole, it
explains well cosmological observations in the A-CDM paradigm. However, at the Planck scale, the theory is
not anymore self-consistent. It is most probably necessary to include quantum effects. For a century, this has
been considered as one of the main challenges for theoretical physics. This is however an extremely difficult aim
to reach and this thesis is devoted to one of the main proposal : Loop Quantum Gravity. To go ahead in the
construction of any quantum theory of gravity, it would be most useful to compare predictions with observations.
To this aim, we have studied cosmological perturbations in this framework. We have investigated into the details
the phenomenological consequences of loop quantum cosmology corrections in a bouncing universe. A Fisher
analysis was carried out to compare the predictions with future data. For the other modes, we have used a
specific formalism to include counterterms that prevent anomalies from appearing in the algebra of constraints.
This formalism was applied to vector and scalar perturbations. The gauge-invariant equations of motion leading
to the calculation of measurable spectra were derived.

Disponible en version électronique a ’adresse : http://tel.archives-ouvertes.fr/tel-00749162
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