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Abstract
We present a detailed derivation of a model to study effects of self-gravitation
from semi-classical gravity, described by the Schrödinger–Newton equation,
employing spin superposition states in inhomogeneous magnetic fields, as pro-
posed recently for experiments searching for gravity induced entanglement.
Approximations for the experimentally relevant limits are discussed. Results
suggest that spin interferometry could provide a more accessible route towards
an experimental test of quantum aspects of gravity than both previous pro-
posals to test semi-classical gravity and the observation of gravitational spin
entanglement.

Keywords: semi-classical gravity, Schrödinger–Newton equation, experimental
tests of quantum gravity

(Some figures may appear in colour only in the online journal)

1. Introduction

Although there is no consensus about the correct quantum theory of gravity at high energies,
there is a prevalent believe that the gravitational field should be quantized in some way. For low
energies, one then assumes perturbative quantum gravity to apply as an effective field theory,
and in nonrelativistic quantum mechanics the Newtonian potential between particles can be
treated in complete analogy to the electromagnetic Coulomb potential.
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Nonetheless, there is no empirical data how quantum matter acts as a source of gravity, and
arguments that quantization would be necessary for theoretical consistency [1, 2] are incon-
clusive [3–5]. A fundamentally semi-classical approach in which spacetime retains its general
relativistic, geometric properties [6–9], therefore, remains, if not plausible, at least possible.

Driven by the tremendous progress of quantum experiments with mesoscopic systems,
the feasibility of experimental tests of this possibility has been explored with growing atten-
tion, a primary route being direct tests of the Schrödinger–Newton (SN) equation [10–13]. It
comprises a nonlinear, self-gravitational potential,

Vself = −Gm2
∫

d3r′
|ψ(t, r′)|2

|r − r′| (1)

in the case of a single point particle, which predicts an inhibition of the dispersion of a free
wave packet [10, 11] as well as modifications for both the dynamics [12] and spectrum [13] of
mesoscopic particles in a harmonic trapping potential.

The SN equation has been demonstrated to follow as the nonrelativistic limit from the semi-
classical Einstein equations as a theory in which curvature of a classical spacetime is sourced by
the expectation value of the stress–energy operator of the quantum matter fields [14, 15]. Note,
however, that the validity of the SN equation as the nonrelativistic limit for a semi-classical
theory has been criticized [16, 17] based on the grounds that it disagrees with the conventional
treatment of quantum manybody systems and its distinctive nonlinear self-gravitation does not
occur in other semi-classical approaches like stochastic gravity [18].

More recently, it has been proposed to observe the generation of spin entanglement between
two particles through a Newtonian gravitational interaction [19, 20]. Motivated by earlier ideas
[21], this approach is based upon the quantum information theoretic definition of quantum ver-
sus classical channels, which is elevated to a definition of ‘quantumness’ of the gravitational
field. The proposed experimental test consists of two particles in adjacent Stern–Gerlach inter-
ferometers, such that the mutual gravitational force between both particles results in observable
entanglement.

As far as the distinction between perturbative quantum gravity and the semi-classical Ein-
stein equations goes, the two experimental approaches of a direct test of the SN equation versus
tests for gravitational entanglement are equivalent. In the nonrelativistic limit, perturbative
quantum gravity results in a linear Schrödinger equation for two particles with a Newtonian
potential

V = − Gm1m2

|r̂1 − r̂2|
, (2)

whereas the SN equation comprises the nonlinear two-particle potential

V = − Gm1m2

|〈r̂1〉 − r̂2|
− Gm1m2

|r̂1 − 〈r̂2〉|
+

∑
particles

Vself. (3)

Experimental confirmation of self-gravitational1 forces [12, 13] would, therefore, definitively
falsify the quantum potential (2), while experimental evidence for entanglement would rule

1 There are, of course, self-forces also for a quantized gravitational field. However, as for any quantum field theory, they
are omitted at tree-level via normal ordering and reappear through loop corrections. Therefore, no self-gravitational
effects are expected at the level of the nonrelativistic Schrödinger equation, contrary to the SN equation where even
the Newtonian potential for a single particle wave function exhibits self-gravitational effects.
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out the SN potential (3). Only if one also considers alternative models which have neither of
those potentials as a limit, the selectivity of both types of experiment differs2.

Although there is justifiable hope for experimental evidence in the near future, the require-
ments regarding large masses, effective cooling, long decoherence times, among others, pose a
challenge. Experimental proposals to detect gravitational spin entanglement [19] are strongly
constrained by acceleration noise requirements [23]. On these grounds, it is important to
consider a variety of ideas for experimental tests, in order to select the most promising scenario.

Here we discuss the possibility to adapt the experimental set-up of a Stern–Gerlach inter-
ferometer, as in reference [19], for the purpose of testing the SN equation. Instead of the two
adjacent interferometers for two particles, we consider a single particle in a single interfer-
ometer. The usual treatment of weak potentials in terms of pure phase shifts is, however, not
necessarily adequate, as it relies on the plane wave approximation, whereas the wave func-
tions in realistic experimental situations are generally well localized. We, therefore, present a
rigorous theoretical treatment with only well-justified approximations.

In section 2 we define the basic model for gravitational self-interaction of a particle with spin
in a superposition of two trajectories. Section 3 discusses the limit of a wide Gaussian wave
function, whereas we discuss the opposite case of a well localized wave function in section 4.
Finally, we discuss experimental consequences in section 5, concluding with a summary of our
results in section 6.

2. Self-gravity in a Stern–Gerlach interferometer

The situation we have in mind is a single spin- 1
2 particle whose trajectory is split in two by a

magnetic field gradient and reunited by an inverse field, allowing for phase dependent interfer-
ence. Figure 1 is an idealized depiction of the set-up, following the protocol by Bose et al [19],
where the field gradient is effectively inverted by a spin flip or switched off by transferring
the spin from the electrons to the nuclei. It also shows the intuitive expectation if self-gravity
is involved: the spin-up and spin-down parts should attract each other and result in slightly
different trajectories. As will become clear from the succeeding discussion, this intuition is,
however, misleading.

The state of this particle is given by

|Ψ(t)〉 = α|↑〉 ⊗
∫

d3r ψ↑(t, r)|r〉+ β|↓〉 ⊗
∫

d3r ψ↓(t, r)|r〉, (4)

with |α|2 + |β|2 = 1 and ψ↑(0, r) = ψ↓(0, r).
In the final state at time T = τ + 2τ acc, we measure the spin in x-direction. We obtain the

reduced density matrix for the spin after tracing out the position degrees of freedom in the
state (4):

ρ̂ =

∫
d3r

(
|α|2|ψ↑|2|↑〉〈↑|+ αβ∗ψ↑ψ

∗
↓|↓〉〈↑|+ α∗βψ∗

↑ψ↓ |↑〉〈↓|+ |β|2|ψ↓|2|↓〉〈↓|
)
. (5)

The expectation value for the spin operator σ̂x = |↑〉〈↓|+ |↓〉〈↑| is then obtained as

〈σ̂x〉 = Tr ρ̂σ̂x = Re

[
2αβ∗

∫
d3r ψ↑ψ

∗
↓

]
. (6)

2 The author is aware of only two physical models of this kind, namely that by Tilloy and Diósi [9] which suggests
objective wave function collapse events as the source for spacetime curvature, as well as the more recent hybrid model
for statistical ensembles of classical spacetimes coupled to quantum matter by Oppenheim [22].
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Figure 1. Schematic of the experimental set-up: a spin- 1
2 particle of mass m is brought

into a spatial superposition state by being exposed to a magnetic field gradient ∂zB for
a time τ acc, with a spin-flip after τ acc/2 resulting to deceleration and a free fall phase of
time τ . The trajectory taken under the self-gravitational influence of the SN equation
slightly differs from the free trajectory, resulting in a different phase shift from the
external acceleration g.

In an ideal interferometric scenario, there is a large overlap of the spatial wave func-
tions, such that the final states differ only by a phase, ψ↑(T , r) ≈ eiΔφψ↓(T, r), and we find
〈σ̂x〉 =

√
1 − δ2 cos(φαβ +Δφ), i.e. constructive and destructive interference depending on

the phase difference, where δ = |α|2 − |β|2 measures the asymmetry of the superposition, and
φαβ is the relative phase between the parameters α and β. If the spatial overlap of the final
wave functions becomes smaller, visibility of interference is suppressed.

In the case of semi-classical gravity, the evolution of the wave function (4) is described by
the Hamiltonian

Ĥ = Î ⊗
(
− h̄2

2m
∇2 + Vext + |α|2U↑ + |β|2U↓

)
+ σ̂z ⊗ Vacc (7)

where σ̂z denotes the third Pauli matrix and Î the identity in spin space. Vacc is a spin depen-
dent potential responsible for the trajectory split which will be homogeneous for the further
discussion and we include an external potential, which will be either negligible or a homoge-
neous acceleration, Vext = mgz, for the subsequent discussion. U↑↓ are the self-gravitational
potentials corresponding to the spatial wave functions ψ↑ and take the explicit form [24, 25]

U↑↓(t, r) =
∫

d3r′|ψ↑↓(t, r′)|2Iρ(r − r′) (8a)

Iρ(d) = −G
∫

d3r d3r′
ρ(r) ρ(r′)

|r − r′ + d| , (8b)

where ρ(r) is the mass density distribution associated with the particle, and Iρ(d) is a function
of only the magnitude d = |d| for spherically symmetric ρ(r). If the particle is approximately
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point-like and, hence, its mass distribution a delta distribution, one recovers the single particle
potential (1).

Crucial about the semi-classical potential in the Hamiltonian (7) is that both spin states are
subject to the same potential which depends on the full state, i.e. the motion of the |↑〉 part
depends on the trajectory of the |↓〉 part and vice versa. Due to this state dependence of the
potentials U↑↓, the Schrödinger equation

0 = α

(
ih̄∂t +

h̄2

2m
∇2 − Vext − Vacc − |α|2U↑ − |β|2U↓

)
|↑〉 ⊗ ψ↑

+ β

(
ih̄∂t +

h̄2

2m
∇2 − Vext + Vacc − |α|2U↑ − |β|2U↓

)
|↓〉 ⊗ ψ↓ (9)

then becomes inseparable, which in turn induces a time dependence of the coefficients α and
β. Assuming that the gravitational potential U↑↓ is weak, however, we can take a perturbative
approach, by first solving the separable equations for U↑↓ = 0, i.e. finding solutions to

ih̄∂tψ
(0)
↑↓ =

(
− h̄2

2m
∇2 − F↑↓(t) · r

)
ψ(0)
↑↓ , (10)

and then solving the now also separable system at nth order

ih̄∂tψ
(n)
↑↓ =

(
− h̄2

2m
∇2 − F↑↓(t) · r + |α|2U(n−1)

↑ + |β|2U(n−1)
↓

)
ψ(n)
↑↓ , (11)

where U(n−1)
↑↓ are calculated from the spatial wave functionsψ(n−1)

↑↓ and we collated the homoge-
neous potentials Vext and Vacc in the force F↑. For the specific acceleration sequence as depicted
in figure 1, the external force is

F↑↓(t) = −m ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g ∓ aez for t ∈

[
0,

τacc

2

]
∪
[
τ +

3τacc

2
, τ + 2τacc

]
,

g ± aez for t ∈
[τacc

2
, τacc

]
∪
[
τ + τacc, τ +

3τacc

2

]
,

g everywhere else.

(12)

The solution of (11) is then given by (cf appendix A)

ψ(n)
↑↓ (t, r) = eiϕ↑↓(t,r)χ(n)

↑↓ (t, r − u↑↓(t)) (13)

ϕ↑↓(t, r) =
m
h̄

r · u̇↑↓(t) −
m
2h̄

∫ t

0
dt′ u̇↑↓(t′)2, (14)

where u↑(t) solves the equations of motion

ü↑↓(t) =
F↑↓(t)

m
with u↑↓(0) = u̇↑↓(0) = 0, (15)

and χ(n)
↑↓ (t, r) solves the Schrödinger equation in the rest frame,

ih̄χ̇(n)
↑↓ (t, r) = − h̄2

2m
∇2χ(n)

↑↓ (t, r) + U(n−1)(t, r + u↑↓(t))χ↑↓(t, r), (16)
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with the same initial conditions χ↑(0, r) = ψ↑(0, r) and the potentials

U(n)(t, r) =
∫

d3r′
(
|α|2

∣∣∣χ(n)
↑ (t, r′ − u↑(t))

∣∣∣2 + |β|2
∣∣∣χ(n)

↓ (t, r′ − u↓(t))
∣∣∣2) Iρ(r − r′). (17)

At order n = 0 the solutions differ only through the classical trajectories u↑ and their wave
functions are identical, χ(0)

↑ = χ(0)
↓ . Hence, if we introduce

Ũ(t, r) =
∫

d3r′
∣∣χ(0)(t, r′)

∣∣2Iρ(r − r′), (18)

we have

U(0)(t, r) = |α|2Ũ(t, r − u↑(t)) + |β|2Ũ(t, r − u↓(t)), (19)

and the zeroth and first order Schrödinger equations to be solved are

ih̄χ̇(0)(t, r) = − h̄2

2m
∇2χ(0)(t, r), (20a)

ih̄χ̇(1)
↑ (t, r) =

(
− h̄2

2m
∇2 + |α|2Ũ(t, r) + |β|2Ũ(t, r +Δu(t))

)
χ(1)
↑ (t, r), (20b)

ih̄χ̇(1)
↓ (t, r) =

(
− h̄2

2m
∇2 + |α|2Ũ(t, r −Δu(t)) + |β|2Ũ(t, r)

)
χ(1)
↓ (t, r). (20c)

The difference Δu = u↑ − u↓ can be straightforwardly obtained from the equations of motion
(15) and is independent of the external force g. For the specific acceleration sequence as in
figure 1 it solves

Δü =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2a for t ∈

[
0,

τacc

2

]
∪
[
τ +

3τacc

2
, τ + 2τacc

]
,

−2a for t ∈
[τacc

2
, τacc

]
∪
[
τ + τacc, τ +

3τacc

2

]
,

0 everywhere else,

(21)

with Δu(0) = Δu̇(0) = 0. It also follows immediately that for the sum u↑ + u↓ = −gt2. The
phase (14) will generally depend on the external force. For g in z-direction, we find

Δϕ(t, z) = ϕ↑ − ϕ↓ =
m
h̄

(
zΔu̇(t) + g

∫ t

0
dt′ t′Δu̇(t′)

)
(22)

=
m
h̄

((
z +

gt2

2

)
Δu̇(t) − g

2

∫ t

0
dt′ t′2Δü(t′)

)
. (23)

Note that this phase difference depends solely on the classical trajectories. Self-gravity effects
manifest themselves only in the evolution of the wave functions χ↑. Excluding the first term
proportional to Δu̇, one finds the global phase

ϕg(t) = −mg
2h̄

∫ t

0
dt′ t′2Δü(t′)

t=T
= − mag

2h̄
τ 2

acc(τ + τacc). (24)

6
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where the second equality is the final phase at the end of the sequence as in figure 1 after
time T = τ + 2τ acc, which reproduces the well known result [26]. The spin expectation value
according to equation (6) is then obtained as

〈σ̂x〉(n)(t) =
√

1 − δ2 Re

[
eiφαβ

∫
dz ei Δϕ(t,z)

χ(n)
↑

(
t, z +

gt2

2
− Δu

2

)
χ(n)
↓

∗
(

t, z +
gt2

2
+

Δu
2

)]
=
√

1 − δ2 Re

[
ei(φαβ+ϕg(t))

∫
dz exp

(
i m
2h̄

(2z +Δu)Δu̇ )

)
χ(n)
↑ (t, z)χ(n)

↓
∗

(t, z +Δu)
]

(25)

where φαβ is the relative phase between the coefficients α and β.
For the discussion of self-gravitational corrections, it is advantageous to consider two dif-

ferent cases separately: first, the situation of a point-like particle in which the spreading of the
wave function is large compared to the particle size; second, the opposite situation where the
particle is well localized.

3. Point-like particle with Gaussian wave function

We assume spherically symmetric, Gaussian initial conditions. Then we find at the lowest order
n = 0 the free solutions with probability density

∣∣χ(0)(t, r)
∣∣2 = (

2πA(0)(t)
)−3/2

exp

(
− r2

2A(0)(t)

)
(26)

with A(0)(t) = A0 + h̄2t2/(4m2A0), and the potential

Ũ(t, r) =
(
2πA(0)(t)

)−3/2
∫

d3r′ exp

(
− r′2

2A(0)(t)

)
Iρ(r − r′) (27a)

≈ −Gm2

r
erf

⎛⎝√ r2

2A(0)(t)

⎞⎠ . (27b)

The potential (27a) can be evaluated analytically and its derivation is presented in appendix B.
It is spherically symmetric and obtains its time dependence solely through the time dependence
of A(0)(t). Equation (27b) assumes a small particle radius, R �

√
A(0)(t).

In order to proceed further, we make a second approximation [27, 28], assuming
that—despite the nonseparability of the SN equation—the wave function remains a separable
Gaussian,

χ(1)
↑↓ (t, r) ≈ Υ(t, x, y)

(
2πA↑↓

)−1/4
exp

[
−
(
z − 〈z〉↑↓

)2

4A↑↓

(
1 − iB↑↓

h̄

)
+ i

〈p〉↑↓z + f ↑↓
h̄

]
. (28)

7



Class. Quantum Grav. 38 (2021) 245009 A Großardt

Throughout this article we write p for the momentum in z-direction, and the second moments
are defined as

A↑↓(t) = 〈z2〉↑↓ − 〈z〉2
↑↓ (29a)

B↑↓(t) = 〈zp+ pz〉↑↓ − 2〈z〉↑↓〈p〉↑↓ (29b)

C↑↓(t) = 〈p2〉↑↓ − 〈p〉2
↑↓, (29c)

which satisfy at any time 4A↑↓C↑↓ − B2
↑↓ = h̄2. Furthermore, we introduce the phase

f ↑↓(t) = f 0 −
〈z〉↑↓〈p〉↑↓

2
− h̄2

4m

∫ t

0

dt′

A↑↓(t′)
, (30)

chosen such that the wave function (28) solves the Schrödinger equation in the absence of the
gravitational potential. The first and second moments satisfy the equations of motion

∂t〈z〉↑↓ =
〈p〉↑↓

m
(31a)

∂t〈p〉↑↓ = −〈∂zV↑↓〉 (31b)

∂tA↑↓ =
B↑↓
m

(31c)

∂tB↑↓ =
2C↑↓

m
− 2〈(z − 〈z〉↑↓)(∂zV↑↓)〉 (31d)

∂tC↑↓ = −〈(p− 〈p〉↑↓)(∂zV↑↓) + (∂zV↑↓)(p− 〈p〉↑↓)〉, (31e)

where the potential V↑ is the one from equations (20b) and (20c).
In principle, all expectation values need to be evaluated with the wave function χ(1)

↑↓ at first
order. However, the expectation values of the gravitational potential are already of higher order
and can, therefore, be evaluated using the zeroth order wave function χ(0) at the same level of
approximation. The potential Ũ has the symmetries

〈Ũ (t, r −Δu〉 = 〈Ũ (t, r +Δu〉 (32a)

〈∂zŨ (t, r −Δu〉 = −〈∂zŨ (t, r +Δu〉 (32b)

〈z∂zŨ (t, r −Δu〉 = 〈z∂zŨ (t, r +Δu〉. (32c)

With the results from appendix C, noting that 〈z〉↑ = 〈p〉↑ = 0 if evaluated with the zeroth order
wave function χ(0), and writing again δ = |α|2 − |β|2, we have

∂t〈p〉↑↓ =
1
2

(δ ∓ 1)〈∂zŨ(t, r +Δu)〉0

=
Gm2

2Δu2
(δ ∓ 1)

(
exp

(
−Δu2

4A(0)

)
Δu√
πA(0)

− I−0

(
Δu√
2A(0)

))
(33a)

8
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∂tB↑↓ =
2C↑↓

m
− (1 ± δ)〈z∂zŨ(t, r)〉0 − (1 ∓ δ)〈z∂zŨ(t, r +Δu)〉0

=
2C↑↓

m
+

Gm2

6
√
πA(0)

⎡⎣1 ± δ + (1 ∓ δ)

⎛⎝(
3 +

12 A(0)

Δu2

)

× exp

(
−Δu2

4A(0)

)
− 12

√
πA(0)3

Δu3
I−0

(
Δu√
2A(0)

)⎞⎠⎤⎦ (33b)

∂tC↑↓ = −1 ± δ

2
m∂t〈Ũ(t, r)〉0 −

1 ∓ δ

2
m∂t〈Ũ(t, r −Δu)〉0

=
Gm3

2
∂t

(
1 ± δ√
πA(0)

+
1 ∓ δ

Δu
I−0

(
Δu√
2A(0)

))
, (33c)

with the integral

I−0 (σ) =
∫ ∞

0
dρ

e−ρ2

√
π

(erf(ρ+ σ) − erf(ρ− σ)) (34)

as defined in appendix C. Given the initial conditions 〈z〉↑(0) = 〈p〉↑(0) = 0, A↑(0) = A0, as
well as ∂tA↑|t=0 = 0 we must then solve

∂2
t 〈z〉↑↓ = − Gm

2A(0)
(δ ∓ 1)F1

(
Δu√
2A(0)

)
(35a)

∂2
t A↑↓ =

h̄2

2m2A0
− 2Gm√

πA0
+

7Gm

6
√
πA(0)

[
(1 ± δ) + (1 ∓ δ)F2

(
Δu√
2A(0)

)]
(35b)

with

F1(σ) =
I−0 (σ)
2σ2

− e−σ2/2

√
2πσ

(35c)

F2(σ) =
6

14σ3

(
(σ3 + 2σ)e−σ2/2 + (σ2 − 1)

√
2πI−0 (σ)

)
. (35d)

Approximations to the functions F1 and F2 can be found in appendix C.

3.1. Symmetric case

Let us first focus on the case δ = 0. Defining Δz = 〈z〉↑ − 〈z〉↓, Δp = 〈p〉↑ − 〈p〉↓ we have

∂2
t Δz =

Gm
A(0)

F1

(
Δu√
2A(0)

)
, Δp = m∂tΔz, (36)

and we find that in this case the behavior of the second moments is identical for the spin up
and down components: A↑ ≡ A, B↑ ≡ B, C↑ ≡ C, where A solves (35b) and

B = mȦ, C =
h̄2 + m2Ȧ2

4A
. (37)

9
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We can then evaluate the integral in equation (25) and find

〈σ̂x〉 = e−γSN cos(φαβ +Δφ) (38a)

with

γSN =
C(Δu +Δz)2 − B(Δu +Δz)(mΔu̇ +Δp) + A(mΔu̇ +Δp)2

2h̄2 (38b)

Δφ = −mgt2

2h̄
Δu̇ +

mg
h̄

∫ t

0
dt′ t′Δu̇(t′). (38c)

At the final time T = τ + 2τ acc we have Δu = Δu̇ = 0 and, thus,

〈σ̂x〉 f = e−γSN cos
(
φαβ + ϕg

)
, (39)

which yields the usual oscillation ϕg without any self-gravitational effect on the phase. The
additional exponential dampening factor suppresses the visibility of the interference pattern.
Note that Δz as well as Δp are self-gravitational corrections of order G, implying that the
dampening factor is of quadratic order in G. We can, thus, approximate A, B, and C by their
unperturbed values and find

γ0
SN =

1
8A0

(
Δz2 + 4A2

0
Δp2

h̄2 − 2Δz
Δp
m

T +
Δp2

m2
T2

)
. (40)

It must be remarked that the expansion chosen at the beginning with the Schrödinger
equation (11) technically implies that all results here, which are for n = 1, are only accurate to
linear order in G. However, it is easy to see that, due to the occurrence of the quadratic terms of
Δz and Δp, the dampening factor γSN will always be of one order higher than the phase. At the
next order n = 2 we would find corrections to the phase quadratic in G and cubic corrections
to γSN. Therefore, we may use the result (40) as an appropriate approximation, nonetheless.

Consider the concrete situation in which the particle of radius R is split to its maximum sep-
arationΔumax = aτ 2

acc/2 in a short time τ acc � τ , such that Δumax �
√

A0 � R. We then can
approximately assume constant separation throughout the experiment and neglect the spread-
ing of the wave function, i.e. take A(0) ≈ A0 constant. One finds Δz ≈ Gmt2/(4Δumax) and the
second term in equation (40) dominates:

γ0
SN ≈ G2m4τ 2A0

8h̄2Δu4
max

� Gm4τ 2

8h̄2R2
. (41)

3.2. Asymmetrical case

For the general case δ �= 0, first note that

〈z〉↑↓ = (−δ ± 1)
Δz
2

and 〈p〉↑↓ = (−δ ± 1)
Δp
2

(42)

with the solutions of equation (36) unaltered. We can further write

A↑↓ = A(0) + A+ ± δA−, (43)

10
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where A± are of order G. Hence, calculating the expectation value (25) from the wave function
(28), and considering terms up to linear order in G for the phase and of quadratic order for the
dampening, we find at the final time T = τ + 2τ acc:

〈σ̂x〉 =
√

1 − δ2e−γSN cos
(
φαβ + ϕg +ΔφSN

)
(44a)

ΔφSN =
δm
2h̄

(
Ȧ− − Ȧ(0)A−

A(0)

)
t=T

+
δ h̄
2m

∫ T

0
dt

A−(t)
A(0)(t)2

(44b)

γSN = γ0
SN + δ2m2 4h̄2A2

− + 4m2A2
0Ȧ2

− − 4h̄2A−Ȧ−T + h̄2Ȧ2
−T2

4h̄2(4m2A2
0 + h̄2T2)

. (44c)

The integral in equation (44b) is easier evaluated after threefold partial integration, as
demonstrated in appendix D.

Now we introduce the frequency ω = h̄/(2mA0) and express the acceleration a in terms of
the frequency Ω4 = a2/(2A0), such that with the solutions to (21) one finds

η(t) =
Δu√

2A0(1 + ω2t2)

=
Ω2

√
1 + ω2t2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2 for t ∈
[
0,

τacc

2

]
,

t2 − 1
2

(2t − τacc)
2 for t ∈

[τacc

2
, τacc

]
,

1
2
τ 2

acc for t ∈ [τacc, τ + τacc],

1
2
τ 2

acc − (t − τ − τacc)2 for t ∈
[
τ + τacc, τ +

3τacc

2

]
,

(t − τ − 2τacc)
2 for t ∈

[
τ +

3τacc

2
, τ + 2τacc

]
.

(45)

Then A± are the solution of

∂2
t A+ =

7Gm
6
√
πA0

× 1 + F2 (η(t))√
1 + ω2t2

− 2Gm√
πA0

(46a)

∂2
t A− =

7Gm
6
√
πA0

× 1 − F2 (η(t))√
1 + ω2t2

, (46b)

with A± and their time derivatives vanishing at t = 0. The function F2 vanishes for the sum of
both equations which, therefore, can be integrated to yield

A+ + A− =
Gm

ω2
√
πA0

(
7
3
− ω2t2 − 7

3

√
1 + ω2t2 +

7ωt
3

arcsinh(ωt)

)
. (47)

Up to linear order in G one finds the phase shift

ΔφSN = δ
mω

2h̄

[
Ȧ−(T)
ω

− 2ωTA−(T)
1 + ω2T2

+

∫ T

0
dt

4ω A−(t)
(1 + ω2t2)2

]
. (48)

11
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The wave function width A0 became absorbed in the frequency ω. The expression in square
brackets can be found through numerical integration and depends only on the two frequency
values ω and Ω, as well as the times τ and τ acc. In order to determine the phase difference, the
particle mass enters as a third parameter through the dimensionless prefactor.

In the experimental situations of interest, the spin dependent acceleration results from a
magnetic field gradient, i.e. ma = μB∂zB with the Bohr magneton μB. Assuming a spherical
particle of radius R and mass density ρ, and taking into account that we are in the limit where
R2 � A0, we find that

ε =
ω

Ω
�

√
3h̄2

√
2 8πρμB∂zBR6

≈ 10−7

(
ρ

g cm−3

)−1/2(
∂zB

T m−1

)−1/2( R
μm

)−3

. (49)

Hence, for realistic parameters where self-gravity plays a role, we will usually have
ε � 1. Introducing the dimensionless time parameter θ = Ωt, and assuming also ωt � 1, we
can approximate the phase (48) by

ΔφSN ≈ Gδ

√
m5

2π h̄3ω
φ̃ (50)

where, defining the dimensionless Aδ = ω2
√
πA0A−/(Gm), φ̃ solves

∂θφ̃ =
∂2
θAδ(θ)
ε

− 2εθ∂θAδ(θ) + 2εAδ(θ) (51a)

∂2
θAδ(θ) =

7ε2

6
(1 − F2(η)). (51b)

We have F2(η) ≈ 1 for small η but F2 → 0 like 1/η as η � 1. Assuming that τ acc � 2/Ω we
can then, in a rather crude approximation, neglect F2 entirely, finding Aδ ≈ 7ε2θ2/12 and, in
conclusion, φ̃ ≈ 7εθ3/36. Reinserting everything, we find

ΔφSN ≈ δ Gm2aT3

2
√

2π h̄A0
. (52)

4. Localized particle

In the previous section we considered a Gaussian wave function much wider than the particle
radius R. In the opposite case of a well localized particle, regardless of the shape of the wave
function, we can approximate the potential (18) by Taylor expansion around r − r′ = 0 to
quadratic order [12, 24]. We must, however, take into account that in equations (20b) and
(20c) we also have the occurrence of Ũ(t, r ±Δu) with the offset ±Δu acting on the wave
function at r. For a generic offset s = sez in z-direction and for a spherically symmetric mass
distribution ρ(r), we can approximate:

Ũ(n)
↑↓ (t, r + s) =

∫
d3r′

∣∣∣χ(n)
↑↓ (t, r′)

∣∣∣2Iρ(|r + s − r′|)

= Iρ(s) + I′ρ(s)
(

z − 〈z〉(n)
↑↓

)
+

I′ρ(s)

2s

(
x2 + 〈x2〉(n) + y2 + 〈y2〉(n)

)
+

I′′ρ (s)

2

(
z2 − 2z〈z〉(n)

↑↓ + 〈z2〉(n)
↑↓

)
, (53)

12
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where we assumed 〈x〉(n) = 〈y〉(n) = 0 without loss of generality. Note that Iρ and I′′ρ are sym-
metric, whereas I′ρ is antisymmetric. In the limit s → 0 we find I′ρ(0) = 0, I′ρ(s)/s → I′′ρ (0) and,
therefore, the known result

Ũ(n)
↑↓ (t, r) = Iρ(0) +

I′′ρ (0)

2

(
r2 + 〈r2〉(n)

↑↓ − 2z〈z〉(n)
↑↓

)
. (54)

We begin with noticing that the potential (53) is exactly separable, and that the considera-
tions in equations (18)–(20c) can be generalized to higher orders n to yield the Schrödinger
equations

ih̄χ̇(n)
↑↓ (t, z) =

(
− h̄2

2m
∂2

z + V (n−1)
↑↓ (t, z)

)
χ(n)
↑ (t, z) (55a)

with the potentials

V (n)
↑ (t, z) = |α|2Ũ(n)

↑ (t, r) + |β|2Ũ(n)
↓ (t, r +Δu) (55b)

V (n)
↓ (t, z) = |α|2Ũ(n)

↑ (t, r −Δu) + |β|2Ũ(n)
↓ (t, r). (55c)

Defining Δz(n) = 〈z〉(n)
↑ − 〈z〉(n)

↓ , as well as k±(Δu) = I′′ρ (0) ± I′′ρ (Δu), we can then follow the
derivation (31a)–(31e) of the equations of motion for the first and second moments which take
the much simpler form

∂t〈z〉(n)
↑↓ =

〈p〉(n)
↑↓

m
(56a)

∂t〈p〉(n)
↑↓ =

δ ∓ 1
2

(
I′ρ(Δu) + I′′ρ (Δu)Δz(n−1)

)
(56b)

∂tA
(n)
↑↓ =

B(n)
↑↓

m
(56c)

∂tB
(n)
↑↓ =

2 C(n)
↑↓

m
−
(
k+(Δu) ± δ k−(Δu)

)
A(n−1)
↑↓ (56d)

∂tC
(n)
↑↓ = −1

2

(
k+(Δu) ± δ k−(Δu)

)
B(n−1)
↑↓ . (56e)

We can express the first moments through the single equation

∂2
t Δz(n) = − 1

m

(
I′ρ(Δu) + I′′ρ (Δu)Δz(n−1)

)
, (57)

together with the sum 〈z〉(n)
↑ + 〈z〉(n)

↓ = −δΔz(n).

As before, in the symmetric case δ = 0 we find A(n)
↑↓ = A(n) which satisfy

∂3
t A(n) = − 1

m

(
2k+(Δu)Ȧ(n−1) +Δu̇k′+(Δu)A(n−1)

)
. (58)

13
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The Schrödinger equations (55a) are then solved by the squeezed coherent states

χ(n)
↑↓ (t, z) =

(
2πA(n)

)−1/4
exp

⎡⎢⎣−
(

z − 〈z〉(n)
↑↓

)2

4A(n)

(
1 − i

h̄
B(n)

)
+ i

〈p〉(n)
↑↓ z + f (n)

↑↓
h̄

⎤⎥⎦ , (59)

with 4A(n)C(n) − B(n)2 = h̄2 and

f (n)
↑↓ (t) = f 0 −

〈z〉(n)
↑↓ 〈p〉(n)

↑↓
2

− h̄2

4m

∫ t

0

dt′

A(n)(t′)
. (60)

With the wave functions (59) we can calculate the spin expectation value (25) and find

〈σ̂x〉 = e−γSN cos
(
φαβ + ϕg

)
, (61a)

with γSN defined as in equation (38b). As before, there is no phase shift due to self-gravity.
The only observable effect is in the dampening γSN.

For the general case of δ �= 0, we write again A(1)
↑↓ = A(0) + A+ ± δA−, which must satisfy

∂3
t A± = −Δu̇

m
A(0)k′±(Δu) − h̄2t

m3A0
k±(Δu). (62)

We find equation (44a) with the phase (44b) and the dampening (44c) for the spin expectation
value.

4.1. Self-interaction potential

In order to proceed, we give an explicit form of the self-interaction Iρ as defined in
equation (8b). If the mass distribution ρ(r) is a solid sphere of radius R, the integrals can be
evaluated and one finds [32]

Isph
ρ (d) = −Gm2

R
×

⎧⎪⎪⎨⎪⎪⎩
6
5
− 2

(
d

2R

)2

+
3
2

(
d

2R

)3

− 1
5

(
d

2R

)5

for d � 2R,

R
d

for d � 2R.

(63)

However, for a realistic composite particle one must take into account that ρ is peaked around
the locations of the constituent atoms and generally has a Gaussian distribution of a width
corresponding to the Debye–Waller length σ [12, 25]. Whereas the mutual gravitational forces
between different atoms result in the self-interaction potential Isph

ρ , one must also include the
sum of self-interactions for each atom of mass ma given by

Iatom
ρ (d) = −Gmma

d
erf

(
d√
2σ

)
. (64)

Disregarding the irrelevant constant term in Isph
ρ , both potentials become comparable for

d ∼
√

ma/(ρσ), with Iatom
ρ dominating for smaller distances and becoming negligible as d

exceeds said value. For the experimental situations we have in mind, we typically find R �√
ma/(ρσ) � σ of the order of micro-, nano-, and picometers, respectively.
In order to obtain equations of motion that are simple enough to be integrated analytically,

yet a good approximation, we thus consider the three intervals from 0 to σ, to 2R, and to infinity,
and approximate the derivatives of Iρ = Isph

ρ + Iatom
ρ for each of them separately. We define

14
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Table 1. Atomic mass ma [29], mass density ρ [29], atomic localization length σ at 0.1 K
[30, 31], and corresponding frequencies ΩSN and ωSN for selected elements.

Material ma(u) ρ(g cm−3) σ(pm) ΩSN(s−1) ωSN(s−1)

Diamond 23.011 3.520 5.71 0.044 9.93 × 10−4

Silicon 28.086 2.329 6.96 0.096 8.06 × 10−4

Tungsten 183.84 19.30 3.48 0.695 2.31 × 10−3

Osmium 190.23 22.57 2.77 0.996 2.52 × 10−3

Gold 196.97 19.32 4.66 0.464 2.33 × 10−3

ω2
SN = Gm/R3 and Ω2

SN =
√

2/πGma/(3σ3), with values given in table 1 for some materials,
and for each of the contributions proportional to ΩSN and ωSN, respectively, we only keep the
leading order term and we can neglect Iatom

ρ for d > 2R. We then find:

I′ρ(d) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mΩ2
SNd + mω2

SNd for d ∈ [0, σ )

mΩ2
SN

√
π

2
3σ3

d2
+ mω2

SNd for d ∈ [σ, 2R )

mω2
SN

R3

d2
for d ∈ [2R,∞ )

(65a)

and for k− and its derivative

k−(d) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mΩ2

SN
9d2

10σ2
+ mω2

SN
9d
8R

for d ∈ [0, σ )

mΩ2
SN + mω2

SN
9d
8R

for d ∈ [σ, 2R )

mΩ2
SN + mω2

SN for d ∈ [2R,∞ ) .

(65b)

k′−(d) ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mΩ2
SN

9d
5σ2

+ mω2
SN

9
8R

for d ∈ [0, σ)

−mΩ2
SN

9
√

2πσ3

d4
+ mω2

SN
9

8R
for d ∈ [σ, 2R)

−mΩ2
SN

9
√

2πσ3

d4
− mω2

SN
6R3

d4
for d ∈ [2R,∞).

(65c)

With these approximations, we can then solve

∂2
t Δz = − 1

m
I′ρ(Δu), (66a)

∂3
t A− = −Δu̇

m
A(0)k′−(Δu) − h̄2t

m3A0
k−(Δu), (66b)

piecewise in the different intervals.

4.2. Spin expectation value

With the sequence pictured in figure 1, i.e. with the solution to (21), we find that Δu reaches a
maximum value Δumax = aτ 2

acc/2 after the acceleration time τ acc. As in the previous section,
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we can write the resulting spin expectation value after the final time T = τ + 2τ acc as

〈σ̂x〉 =
√

1 − δ2e−γ0
SN−γδSN cos

(
φαβ + ϕg +ΔφSN

)
, (67)

where the phase and dampening are obtained as in equations (44b) and (44c).
The solutions of equations (66) depend on whether or not Δumax exceeds the atomic local-

ization scale σ and the particle radius R, respectively. As a measure for the spreading of the
wave function, we introduce the abbreviation

ξ =
h̄τ

2mA0
. (68)

In the limiting case where τ acc � τ , one can then approximate

γ0
SN ≈ ω4

effτ
4Δu2

max

16ξA0

(
2
ξ
+

ξ

2

)
, (69a)

with the effective frequencies

ω2
eff =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ω2
SN + ω2

SN for Δumax ∈ [0, σ)

3

√
π

2
σ3

Δu3
max

Ω2
SN + ω2

SN for Δumax ∈ [σ, 2R)

R3

Δu3
max

ω2
SN for Δumax ∈ [2R,∞).

(69b)

The δ dependent phase and additional dampening are

ΔφSN ≈ δτ 2

4

((
ξ

3
− 1

ξ

)
ω2

1 +

(
ξ +

1
ξ
−
(
2 + ξ2

)
arctan ξ

)
ω2

2

)
+ δΔφint (70a)

γδ
SN ≈ δ2τ 4

1 + ξ2

(((
ξ

6
+

1
4ξ

)
ω2

1 −
1
4ξ

ω2
2

)2

+

(
ξ2

12
ω2

1

)2
)

, (70b)

with the frequencies

ω2
1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
9Δu2

max

10σ2
Ω2

SN +
9Δumax

8R
ω2

SN for Δumax ∈ [0, σ)

Ω2
SN +

9Δumax

8R
ω2

SN for Δumax ∈ [σ, 2R)

Ω2
SN + ω2

SN for Δumax ∈ [2R,∞),

(70c)

ω2
2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for Δumax ∈ [0, σ)(
1

10
+ 6

√
π

2

(
1 − σ3

u3
max

))
Ω2

SN for Δumax ∈ [σ, 2R)(
1

10
+ 6

√
π

2

(
1 − σ3

u3
max

))
Ω2

SN −
(

1 +
2R3

Δu3
max

)
ω2

SN for Δumax ∈ [2R,∞).

(70d)
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In addition, we need to evaluate the integral phases Δφint, which are discussed in appendix
D. As before, we assume τ acc � τ . For the narrow separation with Δumax � σ, they take the
simple form Δφint = −τ 2ξω2

1/6, resulting in the total phase

Δφnarrow
SN ≈ −3δτ 2

8

(
ξ +

3
ξ

)(
Δu2

max

5σ2
Ω2

SN +
Δumax

4R
ω2

SN

)
. (71)

For Δumax > σ the integral phases can be expressed by the general form:

Δφint =
τ 2

4

[((
1

10
+ 6

√
π

2
κΩ

)
Ω2

SN + κωω
2
SN

)
ζ(ξ) − 2ξ

3
ω2

1

]
, (72a)

with

ζ(ξ) =

(
ξ +

1
ξ

)((
ξ +

1
ξ

)
arctan ξ − 1

)
(72b)

and the Δumax dependent coefficients

κΩ ≈

⎧⎪⎪⎨⎪⎪⎩
σ3

Δu3
max

− 1 for Δumax ∈ [σ, 2σ)

1 − 15
σ3

Δu3
max

for Δumax ∈ [2σ,∞),
(72c)

κω ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9(Δumax − σ)
4R

for Δumax ∈ [σ, 2σ)

9Δumax

8R
for Δumax ∈ [2σ, 2R)

3 − 9Δumax

8R
+

2R3

Δu3
max

for Δumax ∈ [2R, 4R)

− 30R3

Δu3
max

− 1 for Δumax ∈ [4R,∞).

(72d)

Note that the integral phase changes its sign from negative to positive for some Δumax ∈
[σ, 2σ), depending on the argument of ζ.

In the above equations (69)–(72), we have considered the lowest order contributions in the
limit τ acc � τ , while keeping Δumax constant, implying that the acceleration a scales accord-
ingly with τ acc. Due to the approximations made in equations (65), the expressions for the
different regimes do not transition into each other continuously at the boundaries Δumax = σ
and Δumax = 2R, but provide a good approximation if Δumax is sufficiently far from those
values.

Solutions for the phase and dampening can be obtained, in principle, also for the general case
without the approximation τ acc � τ . The analytic expressions will, however, become rather
lengthy, and for the estimation of the order of magnitude of observable effects desired here,
the approximate equations provided are sufficient. If the exact expressions (63) and (64) are to
be used without the approximations in equations (65), the differential equations for A− and Δz
likely have to be solved numerically. Nonetheless, the methods outlined here are applicable in
order to arrive at the results in a specific situation to desired precision.

Finally, the resulting phase and dampening in the regime of an intermediate wave function
width, σ <

√
A0 < 2R, can be straightforwardly obtained by simply setting ΩSN = 0 in the

above equations.
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4.3. Wave packet spreading beyond localization length

Before we discuss the experimental consequences of our considerations thus far, let us consider
one more special case. A wave function that is initially very well localized and, therefore, has
a large momentum uncertainty will spread very fast. If ξ2A0 > σ2, it will eventually spread
beyond the size where Iatom

ρ contributes significantly. Assuming
√

A0 � σ (otherwise we can
simply neglect the contributions from Iatom

ρ altogether), we find the time τ s where the wave
function reaches this limit to be

τs ≈
2m
h̄

√
A0σ =

τσ

ξ
√

A0
. (73)

We then have to evaluate equations (66) with ΩSN �= 0 only for t < τ s and ΩSN = 0 for later
times. We still assume that the wave function is narrow compared to the particle size at all
times—otherwise the approximations in this section are no longer valid and we need to also
account for the considerations in section 3.

In the case Δumax > 4R, one finds effectively the result for an intermediate wave function
where ΩSN = 0 with some additional terms, in total:

γ0
SN ≈ τ 4Δu2

max

16ξA0

[(
2
ξ
+

ξ

2

)
R6

Δu6
max

ω4
SN +

8τ 4σ6

9ξ7τ 4
accA3

0

Ω4
SN

]
(74a)

ΔφSN ≈ −δτ 2

4

[(
ξ

3
+

1
ξ

)
ω2

SN + ζ(ξ)

(√
π

2
42σ3

Δu3
max

Ω2
SN +

28R3

Δu3
max

ω2
SN

)
+

1
ξ2

arctan(ξ)

(
18τ 4σ2Δu2

max

5ξ4τ 4
accA

2
0

Ω2
SN +

(
1 +

2R3

Δu3
max

)
ω2

SN

)]
(74b)

γδ
SN ≈ δ2τ 4

1 + ξ2

[((
ξ

6
+

1
2ξ

(
1 +

R3

Δu3
max

))
ω2

SN

+
9τ 4σ2Δu2

max

10ξ5τ 4
accA2

0

Ω2
SN

)2

+

(
ξ2

12
ω2

SN

)2
]
. (74c)

In the limit ξ →∞ we can approximate further:

γ0
SN ≈ R6

32A0Δu4
max

ω4
SNτ

4 � γδ
SN (75a)

ΔφSN ≈ −δ2 7πR3

2Δu3
max

ξ2ω2
SNτ

2 (75b)

γδ
SN ≈ δ

ξ2

144
ω4

SNτ
4. (75c)

One finds that in this limit the short time for which the wave function is narrow compared to the
atomic localization length scale σ plays no significant role and one can entirely ignore the con-
tributions from Iatom

ρ . Equation (75) are identical to what is obtained from equations (69)–(72)
in the limit of large ξ and for Δumax > 4R.

5. Discussion

In a proper treatment of the self-gravitational interaction due to semi-classical gravity, we found
expressions for both the phase shift and the dampening of the visibility for interferometric spin

18



Class. Quantum Grav. 38 (2021) 245009 A Großardt

measurements. We studied both the case of a point-like particle in a Gaussian state and localized
systems. Let us now turn to the discussion of possible experimental tests of these effects.

5.1. Decoherence due to acceleration noise

In the previous sections, we treated the external acceleration g as a constant. We found that
the phase and loss of visibility from self-gravity decouple from the external phase due to g.
However, in most situations where the self-gravitational effects are relevant, the external phase
will be large. Even small variations of g will then lead to significant changes of the observed
spin expectation value, and in repeated measurements the phase shifts will cancel and result in
an additional loss of visibility [23].

For a quantitative description, assume that the acceleration in z-direction is normal dis-
tributed around g = 〈g〉 with deviation Δg over the time scale T of the experiment. We assume
for simplicity (without great impact on the result) that g is a constant during a single experi-
mental run and only varies between repetitions. We must then average the gravitational phase
∼ cos νg and find

〈cos νg〉 =
(
2πΔg2

)−1/2
∫

dg exp

(
− (g − 〈g〉)2

2Δg2

)
cos νg

= e−ν2Δg2/2 cos ν〈g〉. (76)

Hence, there is an additional dampening exp(−γΔg) of the phases ϕg and φSN which in the
case of the single sequence with (24) takes the form

γΔg =
m2a2Δg2

8h̄2 τ 4
acc(τ + τacc)2 ≈ 1

2

(
mΔgτΔumax

h̄

)2

, (77)

with the last equality assuming τ acc � τ and Δumax = aτ 2
acc/2 as before.

5.2. Experimental requirements and comparison with previous proposals

The scenario depicted in figure 1 is based on the proposal by Bose et al [19]. In order to
observe gravitational spin entanglement between two particles, they propose two adjacent
Stern–Gerlach interferometers. For the study of the SN effects, a single interferometer is suffi-
cient. In table 2 we list the expected phase and visibility loss for different scenarios, including
the original proposal by Bose et al. A more detailed discussion can be found in appendix E.

We find that with the very parameters suggested by Bose et al in order to barely achieve the
required spin entanglement, and especially when reducing the field gradient to minimize the
separation Δumax, self-gravity already can amount to large effects, suggesting that feasibility
requirements for a test of self-gravity might be orders of magnitude below those to detect
gravitational entanglement. We discuss some scenarios below.

In a recent preprint, Hatifi and Durt [33] pursue the same idea of a test of the SN equation
in a Stern–Gerlach interferometer as described by Bose et al3. They consider only the situ-
ation where the wave function is small compared to the particle radius and correctly assert
that an asymmetric superposition is required in order to observe a phase shift. However,
their derivation seems fundamentally flawed as the alleged effect is based on the constant

3 The author only became aware of reference [33] when this present work had already been far advanced; as the
employed methods vary between both works and the unpublished work by Hatifi and Durt seems to have substantial
shortcomings, we refrain from referencing it elsewhere in the text.
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Table 2. Parameters of previous proposals and expected effect. The first three columns
show the parameters proposed by Bose et al [19] for entanglement tests (with a lower
value for the field gradient in the second column) and the proposal by Hatifi and Durt
[33] similar to ours. The fourth and fifth columns are possible scenarios to observe a
phase shift in an asymmetric superposition, for a localized and wide wave function,
respectively. The last column shows a symmetric scenario where the loss of visibility
becomes observable. Numbers are only order of magnitude estimates.

Obs. phase (δ > 0)

Parameter Bose et al Hatifi & Durt Narrow Wide w.f. δ = 0 wide w.f.

Particle radius (μm) 0.9 1 0.11 0.024 0.55
Acc. time τ acc (s) 0.5 0.5 �τ �τ �τ
Flight time τ (s) 2.5 1 0.002 0.15 1
Gradient ∂zB (T m−1) 106 104 106 105 105 105

Trap frequency (Hz) 106 0.02 109 0.1 10−7

Acceleration a(m s−2) 10−3 10−3 0.05 0.7 10−4

Init. w.f. width (m) 10−13 10−9 10−13 ≈R ≈R
Max. sep. Δumax (m) 10−4 ≈R 10−4 �10−7 ≈R ≈R
Spreading ratio ξ 106 0.01 106 0.01 10−7

Sym. loss of vis. γ0
SN 10−6 0.4 10−12 �10−12 �1 1

Assym. loss γδ
SN/δ

2 0.5 10−9 10−13 �1 —
Phase ΔφSN/δ −87 106 −10−4 −100 1 —
Max. Δg(m s−2) 10−17 10−15 10−16 10−8 10−6 10−13

contribution of the gravitational self-energy to the potential (54). As is evident from our deriva-
tions, the constant contribution to Iρ appears nowhere, only its derivatives enter into any observ-
able quantity. The intuition behind the considerations in reference [33] seems to be a mental
split of the wave function into two particles of masses |α|2m and |β|2m, respectively. Then one
would obtain differing gravitational self-energies which result in differing overall phases. If
the constant self-energy is instead properly included in the derivation, it enters as a constant
in the Schrödinger equation (11). ψ↑ and ψ↓ then attain equal overall phases which lead to
no observable effect. Instead, as shown in table 2 and detailed in appendix E, the parameters
suggested by Hatifi and Durt do not result in an observable phase.

From the comparison of the two proposals we see that the particle mass, flight time, and
acceleration are not the only relevant parameters. The considerably more localized wave func-
tion in the proposal by Bose et al results in a much larger phase. Intuitively, this is easily
understood if one considers the different contributions to the phase by themselves and notices
that the dominant contribution, by far, results from the integral in (30). In the case of an
asymmetrical superposition, the gravitational potential is split asymmetrically, as well, and the
spreading of the wave function slows down differently for the spin-up and spin-down parts.
The integrand is proportional to A−1, implying that a narrower wave function contributes more
strongly.

Using this insight in order to search for a suitable experimental scenario, we find (cf table 2
and appendix E) that an observable phase can be achieved in the case of a localized wave func-
tion for reasonable acceleration noise below 10−8 m s−2, as achieved in drop tower experiments
[34]. For the scenario of a wide wave function with the approximation (52) for the phase, accel-
eration noise requirements are even less stringent, however at the cost of requiring a very low
trap frequency.
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As the phase shift requires an asymmetrical superposition which may be somewhat more
difficult to prepare and measure, it is worth looking into the δ-independent part γ0

SN of the loss
of visibility. Unfortunately, the results show that this scenario probably requires unrealistically
low trap frequencies and puts considerably stronger limits on acceleration noise.

6. Conclusion

Our analysis suggests that a direct test for semi-classical gravitational self-interaction on spin
interference poses considerably less constraining requirements on experiments than suggested
tests of gravitational entanglement [19, 20]. The requirements may also be easier to achieve
than comparable optomechanical tests of self-gravity [12, 13]. Interestingly, and contrary to
these previous proposals, due to the important role of acceleration noise as a limiting decoher-
ence effect, the best parameter regime appears to be that of wide wave functions for particles
of relatively small masses.

If the intention is to distinguish experimentally between the Newtonian potentials (2) and
(3)—which disregarding the critical views cited in the introduction amounts to distinguishing
gravity sourced according to the semi-classical Einstein equations from perturbative quan-
tum gravity—the experiments outlined here can be as informative as the outcome of tests
of gravitational entanglement. Accounting for the fact that known alternative suggestions for
semi-classical gravity, which could be ruled out by entanglement experiments but not by the
test proposed here, are either in conflict with observation [21, 35] or can be tested by other
means [9, 22, 36], the direct test of the SN equation can considerably constrain the possibility
of semi-classical models.

In order to proceed towards an experimental test of the self-gravitational effects described
in this paper, a more detailed study of the relevant parameter regimes is required, including rel-
evant decoherence effects and measurement uncertainties. The methods introduced here can be
employed for carrying out these detailed studies. A more precise numerical analysis is desir-
able, as the parameter regime with the presumably best conditions for an experimental test is,
unfortunately, also the one least accessible to good analytical approximations.
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Appendix A. Schrödinger equation with homogeneous force

We recall a theorem that clarifies the well known behavior of the Schrödinger equation in a
homogeneous potential, namely that the evolution of the wave function is the same as in the
rest frame except for a shift of the full wave function, corresponding to its acceleration, and an
additional phase:

ψ(t, r) solves the Schrödinger equation

ih̄ψ̇(t, r) = − h̄2

2m
∇2ψ(t, r) + (V(t, r) − F(t) · r)ψ(t, r) (A.1)
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with a homogeneous force F(t) and an arbitrary potential V(t, r), if and only if

ψ(t, r) = eiϕ(t,r)χ(t, r − u(t)) (A.2)

ϕ(t, r) =
m
h̄

r · u̇(t) − m
2h̄

∫ t

0
dt′ u̇(t′)2, (A.3)

where u(t) solves the classical equations of motion for the force F,

ü(t) =
F(t)
m

with u(0) = u̇(0) = 0, (A.4)

and χ(t, r) solves the Schrödinger equation in the rest frame with shifted potential,

ih̄χ̇(t, r) = − h̄2

2m
∇2χ(t, r) + V(t, r + u(t))χ(t, r), (A.5)

with the same initial conditions χ(0, r) = ψ(0, r).
The proof is a straightforward calculation and left as an exercise for the reader’s

entertainment.

Appendix B. Self-gravitational potential

We calculate the potential (27a) for a Gaussian wave function:

Ũ(t, r) = (2πA)−3/2
∫

d3r′ exp

(
− r′2

2A

)
Iρ(r − r′)

=
1√

2πA3

∫ ∞

0
dr′ r′2 exp

(
− r′2

2A

)∫ 1

−1
du Iρ(

√
r2 + r′2 − 2rr′u)

=
1√

2πA3

∫ ∞

0
dr′

r′

r
exp

(
− r′2

2A

)∫ |r+r′|

|r−r′ |
ds sIρ(s). (B.1)

For a solid sphere with (63) one finds

∫ |r+r′|

|r−r′ |
ds sIρ(s) = −2Gm2R

∫ |r+r′ |/(2R)

|r−r′ |/(2R)

⎧⎪⎨⎪⎩
12
5

x − 4x3 + 3x4 − 2
5

x6 for x � 1

1 for x � 1

⎫⎪⎬⎪⎭ dx

= −2Gm2R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I1(R, r, r′) for |r + r′| � 2R,

I2(R, r, r′) for |r − r′| � 2R < |r + r′| ,

I3(R, r, r′) for 2R < |r − r′| .

(B.2)
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with

I1 =

∫ |r+r′ |/(2R)

|r−r′ |/(2R)

(
12
5

x − 4x3 + 3x4 − 2
5

x6

)
dx (B.3)

I2 =

∫ 1

|r−r′ |/(2R)

(
12
5

x − 4x3 + 3x4 − 2
5

x6

)
dx +

∫ |r+r′|/(2R)

1
dx (B.4)

I3 =

∫ |r+r′ |/(2R)

|r−r′ |/(2R)
dx. (B.5)

For r � R we then must integrate

Ũ(t, r) = − 1√
2πA3

2Gm2R
r

[∫ 2R−r

0
dr′ r′ exp

(
− r′2

2A

)
I1

+

∫ 2R+r

2R−r
dr′ r′ exp

(
− r′2

2A

)
I2 +

∫ ∞

2R+r
dr′ r′ exp

(
− r′2

2A

)
I3

]
, (B.6)

for R < r � 2R we integrate

Ũ(t, r) = − 1√
2πA3

2Gm2R
r

[∫ 2R−r

0
dr′ r′ exp

(
− r′2

2A

)
I1

+

∫ 2R+r

2R−r
dr′ r′ exp

(
− r′2

2A

)
I2 +

∫ ∞

2R+r
dr′ r′ exp

(
− r′2

2A

)
I3

]
, (B.7)

whereas for r > 2R we integrate

Ũ(t, r) = − 1√
2πA3

2Gm2R
r

[∫ r−2R

0
dr′ r′ exp

(
− r′2

2A

)
I3

+

∫ r+2R

r−2R
dr′ r′ exp

(
− r′2

2A

)
I2 +

∫ ∞

r+2R
dr′ r′ exp

(
− r′2

2A

)
I3

]
, (B.8)

which are all equal. In the limit R �
√

A we find

Ũ(t, r) ≈ −Gm2

r

(
erf

(√
r2

2A

)
− 1

5

√
2

πA3
rR2e−

r2
2A

)
+ O(R4/A2). (B.9)

Appendix C. Expectation values of gravitational potential

For the potential

Ũ(t, r) = −Gm2

r
erf

(√
r2

2A

)
(C.1)
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we calculate the expectation values (33a)–(33c) in the zeroth order wave function

|ψ(t, r)|2 = (2πA)−3/2 exp

(
− r2

2A

)
. (C.2)

Note that we only need to consider the real valued absolute value of the wave function, since we
will only consider expectation values of functions of position, not momentum. The potential

Vs(t, r) = Ũ(t, |r + s|) =
∫

d3r′|ψ(t, r′)|2Iρ(r + s − r′) (C.3)

has the symmetries

〈V−s〉 = 〈Vs〉, 〈∂zV−s〉 = −〈∂zVs〉, 〈z∂zV−s〉 = 〈z∂zVs〉. (C.4)

With the probability current

j =
ih̄
2m

(
ψ∇ψ∗ − ψ∗∇ψ

)
, ⇔ 2ψ∗∇ψ = ∇|ψ|2 + 2im

h̄
j, (C.5)

and the continuity equation

∇ · j = −∂t|ψ(t, r)|2, (C.6)

we can show (cf also the supplemental material of reference [25])

〈(∇Vs) · p + p · ∇Vs〉 = −ih̄
∫

d3r
∫

d3r′
[
|ψ(t, r)|2|ψ(t, r′)|2∇2I(r + s − r′)

+ 2|ψ(t, r′)|2ψ∗(t, r)(∇ψ(t, r)) · ∇I(r + s − r′)
]

= −2m
∫

d3r
∫

d3r′|ψ(t, r′)|2I(r + s − r′)∇ · j

= 2m
∫

d3r
∫

d3r′|ψ(t, r′)|2∂t|ψ(t, r)|2I(r + s − r′)

= 2m〈∂tV−s〉
= m∂t〈Vs〉, (C.7)

where the last step is due to the symmetry of the wave function, and equivalently, if the wave
function is separable and s in z-direction,

〈(∂zVs)p+ p∂zVs〉 = m∂t〈Vs〉. (C.8)

We evaluate the time derivative and gradient of the potential (C.1) in the limit R → 0 by first
introducing the dimensionless variables

ρ2 =
r2

2A
, σ2 =

s2

2A
, ξ2 =

(r + s)2

2A
= ρ2 + σ2 + 2uρσ, (C.9)
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with which we find

Vs = − Gm2

√
2 A

f (ξ), f (ξ) =
erf (ξ)
ξ

, (C.10)

∂xVs =
Gm2

2A

√
1 − u2ρ cos ϕ

ξ
f ′(ξ), (C.11)

∂zVs =
Gm2

2 A
uρ+ σ

ξ
f ′(ξ), (C.12)

r · ∇Vs =
Gm2

√
2A

ρ2 + uρσ
ξ

f ′(ξ), (C.13)

x∂xVs =
Gm2

√
2A

(1 − u2)ρ2 cos2 ϕ

ξ
f ′(ξ), (C.14)

z∂zVs =
Gm2

√
2A

u2ρ2 + uρσ
ξ

f ′(ξ). (C.15)

We first define the functions

g±
σ (ρ) =

e−ρ2

√
π

(erf(ρ+ σ) ± erf(ρ− σ)) (C.16)

with the derivatives

g+
σ
′
(ρ) =

4
π

e−2ρ2−σ2
cosh(2ρσ) − 2ρg+

σ (ρ) (C.17)

g−
σ
′(ρ) = − 4

π
e−2ρ2−σ2

sinh(2ρσ) − 2ρg−
σ (ρ) (C.18)

and the integr3als

I±n (σ) =
∫ ∞

0
dρ ρng±

σ (ρ)

=
ρn+1

n + 1
g±
σ (ρ)

∣∣∣∣∞
0

−
∫ ∞

0
dρ

ρn+1

n + 1
g±
σ
′(ρ) (C.19)

I+n (σ) = − 4e−σ2

π(n + 1)

∫ ∞

0
dρ ρn+1e−2ρ2

cosh(2ρσ) +
2

n + 1
I−n+2(σ)

= − e−σ2

π
√

2n+1(1 + n)
Γ
(

1 +
n
2

)
M

(
1 +

n
2

,
1
2

,
s2

2

)
+

2
n + 1

I−n+2(σ) (C.20)

I−n (σ) =
4e−σ2

π(n + 1)

∫ ∞

0
dρ ρn+1e−2ρ2

sinh(2ρσ) +
2

n + 1
I−n+2(σ)

=
e−σ2

σ

π
√

2n+1
Γ

(
n + 1

2

)
M

(
n + 3

2
,

3
2

,
σ2

2

)
+

2
n + 1

I−n+2(σ) (C.21)
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where M is Kummer’s hypergeometric function of the first kind and Γ the gamma function.
This allows to recursively write all integrals in terms of I0 and I1, specifically

I+1 (σ) =
e−σ2/2

√
2π

(C.22)

I−1 (σ) =
erf(σ)√

π
− e−σ2/2 erf(σ/

√
2)√

2π
(C.23)

I−2 (σ) =
1
2

I−0 (σ) − e−σ2/2σ

2
√

2π
(C.24)

I−3 (σ) = I−1 (σ) − e−σ2
σ

4π
− e−σ2/2 erf(s/

√
2)(1 + σ2)

4
√

2π

=
erf(σ)√

π
− e−σ2

σ

4π
− e−σ2/2 erf(σ/

√
2)(5 + σ2)

4
√

2π
(C.25)

I−4 (σ) =
3
2

I−2 (σ) − e−σ2/2σ(3 + σ2)

8
√

2π

=
3
4

I−0 (σ) − e−σ2/2σ(9 + σ2)

8
√

2π
. (C.26)

For the Gaussian wave function (C.2) we then find the expectation values

〈Vs〉 = −Gm2

√
2A

2√
π

∫ ∞

0
dρ ρ2e−ρ2

∫ 1

−1
du f (ξ)

= −
√

2
πA

Gm2

σ

∫ ∞

0
dρ ρe−ρ2

∫ ρ+σ

|ρ−σ|
dξ erf(ξ)

=

√
2
A

Gm2

σ

[∫ ∞

0
dρ

2ρ sinh(2ρσ)

πe2ρ2+σ2 − I−2 (σ) − σI+1 (σ)

]
= −Gm2

√
2A

I−0 (σ)
σ

(C.27)

〈∂zVs〉 =
Gm2

2A
2√
π

∫ ∞

0
dρ ρ2e−ρ2

∫ 1

−1
du

uρ+ σ

ξ
f ′(ξ)

=
Gm2

2
√
πAσ2

∫ ∞

0
dρ ρe−ρ2

∫ ρ+σ

|ρ−σ|
dξ (ξ2 − ρ2 + σ2) f ′(ξ)

=
Gm2

√
πAσ

∫ ∞

0
dρ ρe−ρ2

[
erf(ρ+ σ) + erf(ρ− σ) − 1

σ

∫ ρ+σ

|ρ−σ|
dξ erf(ξ)

]

=
Gm2

Aσ2

[∫ ∞

0
dρ

2ρ sinh(2ρσ)

πe2ρ2+σ2 − I−2 (σ)

]

=
Gm2

Aσ

(
e−σ2/2

√
2π

− I−0 (σ)
2σ

)
(C.28)
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〈r · ∇Vs〉 =
Gm2

√
2A

2√
π

∫ ∞

0
dρ ρ2e−ρ2

∫ 1

−1
du

ρ2 + uρσ
ξ

f ′(ξ)

=
Gm2

√
2πAσ

∫ ∞

0
dρ ρe−ρ2

∫ ρ+σ

|ρ−σ|
dξ (ξ2 + ρ2 − σ2) f ′(ξ)

=
2Gm2

√
2πAσ

∫ ∞

0
dρ

ρ2

eρ2

×
[

erf(ρ+ σ) − erf(ρ− σ) − 1
ρ

∫ ρ+σ

|ρ−σ|
dξ erf(ξ)

]

=

√
2Gm2

√
Aσ

[∫ ∞

0
dρ

2ρ sinh(2ρσ)

πe2ρ2+σ2 − σI+1 (σ)

]

= −Gm2e−σ2/2

2
√
πA

(C.29)

〈z∂zVs〉 =
Gm2

√
2A

2√
π

∫ ∞

0
dρ ρ2e−ρ2

∫ 1

−1
du

u2ρ2 + uρσ
ξ

f ′(ξ)

=
Gm2

2
√

2πAσ3

∫ ∞

0
dρ ρe−ρ2

∫ ρ+σ

|ρ−σ|
dξ (ξ4 − 2ξ2ρ2 + ρ4 − σ4) f ′(ξ)

=

√
2Gm2

√
πAσ

∫ ∞

0
dρ

ρ2

eρ2

×
[

erf(ρ+ σ) − erf(ρ− σ) −
∫ ρ+σ

|ρ−σ|
dξ

ξ2 − ρ2

ρσ2
erf(ξ)

]

=

√
2Gm2

3
√

Aσ3

[∫ ∞

0
dρ

2ρ sinh(2ρσ)

πe2ρ2+σ2 (1 + σ2 − 2ρ2)

−
∫ ∞

0
dρ

4ρ2σ cosh(2ρσ)

πe2ρ2+σ2 − σ3I+1 (σ) + 2I−4 (σ)

]

=
Gm2

√
2Aσ3

(
I−0 (σ) − e−σ2/2σ(2 + σ2)√

2π

)
(C.30)

〈z∂zV0〉 =
Gm2

√
2A

2√
π

∫ ∞

0
dρ ρ2e−ρ2

∫ 1

−1
du u2ρ f ′(ρ)

=
2
√

2Gm2

3
√
πA

∫ ∞

0
dρ ρ3e−ρ2

f ′(ρ)

= − Gm2

6
√
πA

. (C.31)
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We did not succeed at integrating I−0 analytically. Although it turns out (cf figure C1) that
the integral itself is well approximated by the function

K(σ) = 1 − e−σ2

(
1 −

√
2
π
σ +

2
π
σ2

)
, (C.32)

which shows the same behavior in the limits σ → 0 and σ →∞, this approximation does not
result in the correct limiting behavior for the important functions

F1(σ) =
I−0 (σ)
2σ2

− e−σ2/2

√
2πσ

(C.33)

F2(σ) =
6

14σ3

(
(σ3 + 2σ)e−σ2/2 + (σ2 − 1)

√
2πI−0 (σ)

)
. (C.34)

found in the main text as determining the evolution equations for the first and second moments.
These functions have the limiting behavior

F1(σ) ∼ σ

3
√

2π
asσ → 0 (C.35)

F1(σ) ∼ 1
2σ2

as σ →∞ (C.36)

F2(σ) ∼ 1 as σ → 0 (C.37)

F2(σ) ∼ 3
√

2π
7σ

as σ →∞. (C.38)

We can approximate these functions with the correct limiting behavior by

F1(σ) ≈ 1
2σ2

(
1 − e−σ2

(
1 + σ2 − 1

3

√
2
π
σ3 + κ1σ

4

))
with κ1 ≈ 0.47 (C.39)

F2(σ) ≈ 3
√

2π
7σ

(
1 − e−σ2

(
1 − 7σ

3
√

2π
+ σ2 − κ2σ

3

))
with κ2 ≈ 0.28, (C.40)

where the values for κ1,2 are obtained by numerical minimization of the integrated squared
difference between the approximation and the exact function. The functions and their approx-
imations are plotted in figure C2.

Appendix D. Integral contribution to the phase

The phase difference ΔφSN acquires a contribution from the integral in (30):

Δ f int = − h̄
4m

∫ T

0
dt

(
1

A↑(t)
− 1

A↓(t)

)
≈ h̄

2m

∫ T

0
dt

A−(t)
A(0)(t)2

, (D.1)
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Figure C1. Difference between the exact form of I−0 (σ), as per numerical integration,
and the approximation K(σ). The left pane shows both functions for σ-values reaching
from 0 to 5. The right pane shows the difference between both plots, which tends to zero
for large σ.

Figure C2. Difference between the exact form and the approximation of F1 (left pane)
and F2 (right pane).

where we made use of the representation (43) and expanded to linear order in G. We can write

h̄
2mA(0)(t)2

= ∂3
t Z(t) (D.2)

with

Z(t) =
mt
2h̄

[(
2A0m

h̄t
+

h̄t
2mA0

)
arctan

(
h̄t

2mA0

)
− 1

]
. (D.3)

Hence, after threefold integration by parts, we find

Δ f int = A−Z̈ − Ȧ−Ż + Ä−Z
∣∣∣T
0
+Δφint. (D.4)

We substitute the time variable by x(t) = h̄t/(2mA0) with X = x(T ) and find

Δφint = −
∫ T

0
(∂3

t A−)Z(t)dt

=

∫ X

0
k1(x)

x3

1 + x2
ζ(x)dx +

∫ X

0
k2(x)x2ζ(x)dx, (D.5)
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where we used equation (62) with

k1(x) =
4mA2

0

h̄2 k−(Δu) (D.6)

k2(x) =
2 m2A3

0

h̄3 Δu̇k′−(Δu) (D.7)

ζ(x) =

(
x +

1
x

)((
x +

1
x

)
arctan x − 1

)
. (D.8)

Solving equation (21), defining ξa = x(τ acc) and λ = 4am2A2
0/h̄2, yields

Δu(t) = λυ(x), and Δu̇(t) =
h̄λ

2mA0
υ′(x), (D.9)

with

υ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 for x ∈ [0,
ξa

2
)

−x2 + 2ξax − ξ2
a

2
for x ∈ [

ξa

2
, ξa)

ξ2
a

2
for x ∈ [ξa, X − ξa)

−(X − x)2 + 2ξa(X − x) − ξ2
a

2
for x ∈ [X − ξa, X − ξa

2
)

(X − x)2 for x ∈ [X − ξa

2
, X).

(D.10)

Defining and using the approximations (65b) and (65c) we find

k1 ≈ λ

a

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ω2
SN

9λ2

10σ2
υ(x)2 + ω2

SN
9λ
8R

υ(x) for υ(x) ∈ [0,
σ

λ
)

Ω2
SN + ω2

SN
9λ
8R

υ(x) for υ(x) ∈ [
σ

λ
,

2R
λ

)

Ω2
SN + ω2

SN for υ(x) ∈ [
2R
λ

,∞).

(D.11)

k2 ≈ λυ′(x)
4a

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω2
SN

9λ2

5σ2
υ(x) + ω2

SN
9λ
8R

for υ(x) ∈ [0,
σ

λ
)

−Ω2
SN

9
√

2πσ3

λ3υ(x)4
+ ω2

SN
9λ
8R

for υ(x) ∈ [
σ

λ
,

2R
λ

)

−Ω2
SN

9
√

2πσ3

λ3υ(x)4
− ω2

SN
6R3

λ3υ(x)4
for υ(x) ∈ [

2R
λ

,∞).

(D.12)
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Labeling the different cases in ascending order by ki
1,2 and υ j, where i ∈ {1, 2, 3} and

j ∈ {1, 2, 3, 4, 5}we need to find the integrals

Ki j
1 (xa, xb) =

∫ xb

xa

ki
1(υ j(x))

x3

1 + x2
ζ(x) dx (D.13)

Ki j
2 (xa, xb) =

∫ xb

xa

ki
2(υ j(x))x2ζ(x) dx. (D.14)

The Ki j
1 can all be evaluated analytically. We also see immediately that Ki3

2 = 0, since υ is
constant for the middle interval, and find analytical expressions for all K1 j

2 , Ki1
2 , and Ki5

2 , leaving
us with K22

2 , K24
2 , K32

2 , K34
2 . For those, note that υ(X − x) = υ(x). Hence, for xa,b � X we can

approximate

Ki2
2 (xa, xb) + Ki4

2 (X − xa, X − xb) ≈ X2ζ(X)
∫ xb

xa

ki
2

(
−x2 + 2ξax − ξ2

a

2

)
dx. (D.15)

The integral phase can then be obtained for the following five distinct cases:

(a) λξ2
a < 2σ (narrow separation):

Δφint =

2∑
n=1

[
K11

n (0, ξa/2) + K12
n (ξa/2, ξa) + K13

n (ξa, X − ξa)

+ K14
n (X − ξa, X − ξa/2) + K15

n (X − ξa/2, X)
]

≈ −3h̄ω2
SNτ

3Δumax

32mRA0
(D.16)

(b) 2σ � λξ2
a < 4σ (medium separation): we then find λυ(x1a) = σ for

x1a = ξa

(
1 −

√
1
2
− σ

λξ2
a

)
>

ξa

2
(D.17)

and hence

Δφint =

2∑
n=1

[
K11

n (0, ξa/2) + K12
n (ξa/2, x1a) + K22

n (x1a, ξa)

+ K23
n (ξa, X − ξa) + K24

n (X − ξa, X − x1a)

+ K14
n (X − x1a, X − ξa/2) + K15

n (X − ξa/2, X)
]

≈ Ω2
SNτ

2

4

[(
6

√
π

2

(
σ3

Δu3
max

− 1

)
+

1
10

)
ζ(X) − 2X

3

]
+

ω2
SNτ

2

4

[
9(Δumax − σ)

4R
ζ(X) − 3XΔumax

4R

]
(D.18)

(c) 4σ � λξ2
a < 4R (medium separation): we then find λυ(x1b) = σ for x1b =

√
σ/λ and

hence

Δφint =

2∑
n=1

[
K11

n (0, x1b) + K21
n (x1b, ξa/2) + K22

n (ξa/2, ξa)
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+ K23
n (ξa, X − ξa) + K24

n (X − ξa, X − ξa/2)

+ K25
n (X − ξa/2, X − x1b) + K15

n (X − x1b, X)
]

≈ Ω2
SNτ

2

4

[(
6

√
π

2

(
1 − 15σ3

Δu3
max

)
+

1
10

)
ζ(X) − 2X

3

]
+

ω2
SNτ

2

4

[
9Δumax

8R
ζ(X) − 3XΔumax

4R

]
(D.19)

(d) 4R � λξ2
a < 8R (large separation): this implies 4σ < λξ2

a , hence λυ(x1b) = σ as before,
and we find λυ(x2a) = 2R for

x2a = ξa

(
1 −

√
1
2
− 2R

λξ2
a

)
>

ξa

2
(D.20)

and hence

Δφint =
2∑

n=1

[
K11

n (0, x1b) + K21
n (x1b, ξa/2) + K22

n (ξa/2, x2a)

+ K32
n (x2a, ξa) + K33

n (ξa, X − ξa) + K34
n (X − ξa, X − x2a)

+ K24
n (X − x2a, X − ξa/2)

+ K25
n (X − ξa/2, X − x1b) + K15

n (X − x1b, X)
]

≈ Ω2
SNτ

2

4

[(
6

√
π

2

(
1 − 15σ3

Δu3
max

)
+

1
10

)
ζ(X) − 2X

3

]
+

ω2
SNτ

2

4

[(
9Δumax

8R
− 2R3

Δu3
max

− 3

)
ζ(X) − 2X

3

]
(D.21)

(e) 8R � λξ2
a (large separation): again, this implies λυ(x1b) = σ, and we find λυ(x2b) = 2R

for x2b =
√

2R/λ and hence

Δφint =

2∑
n=1

[
K11

n (0, x1b) + K21
n (x1b, x2b) + K31

n (x2b, ξa/2)

+ K32
n (ξa/2, ξa) + K33

n (ξa, X − ξa)

+ K34
n (X − ξa, X − ξa/2) + K35

n (X − ξa/2, X − x2b)

+ K25
n (X − x2b, X − x1b) + K15

n (X − x1b, X)
]

≈ Ω2
SNτ

2

4

[(
6

√
π

2

(
1 − 15σ3

Δu3
max

)
+

1
10

)
ζ(X) − 2X

3

]
+

ω2
SNτ

2

4

[(
30R3

Δu3
max

+ 1

)
ζ(X) − 2X

3

]
(D.22)

The approximations in the last lines, respectively, are obtained under the assumption that
ξa � X, i.e. τ acc � τ ≈ T and X ≈ h̄τ/(2mA0), making use of the approximation (D.15), as
well as R � σ and ΩSN � ωSN.
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Appendix E. Phase shift an visibility loss for different scenarios

We detail the calculations on which the values listed in table 2 are based.
The proposal by Bose et al suggests to use a microdiamond of m = 10−14 kg (R ≈ 0.9 μm),

as well as times τ acc = 0.5 s and τ = 2.5 s. The acceleration results from a field gradient of
∂zB ≈ 106 T m−1 which amounts to a ≈ 1 mm s−2. The suggestion to initially release the parti-
cle from ∼1 MHz traps implies

√
A0 ≈ 0.1 pm. Hence, at least initially we are very obviously

in the localized regime and have Δumax ≈ 100 μm � R. We find ξ ≈ 1.3 × 106.
As ξ2A0 � σ2, we are clearly in the situation discussed in section 4.3. One finds γ0

SN ≈ 6 ×
10−7 and, therefore, no suppression of visibility due to self-gravity in the symmetric situation
δ = 0. If, however, we allow for an asymmetry δ �= 0, we find both the additional dampening
γδ

SN ≈ 0.5δ2 as well as the phase ΔφSN ≈ −87δ of the order of unity. Note, however, that for
γΔg to remain below unity one requires Δg � 4 × 10−17 m s−2, imposing very strong limits
on the allowed acceleration noise [23].

Equation (75) suggest that the phase becomes the larger, the smaller Δumax. Limiting
Δumax also results in a smaller effect of acceleration noise. Putting the value at the limit
Δumax ∼ 4R, where the approximations (75) just remain valid and one requires a field gra-
dient ∂zB ∼ 31 kT m−1, we find a phase of ΔφSN ≈ −2 × 106δ with the symmetric γ0

SN ≈ 0.4
now also of the order of unity. The requirement from acceleration noise is loosened to Δg �
10−15 m s−2.

The experimental parameters suggested by Hatifi and Durt [33] are a micron sized parti-
cle with a mass of 5.5 × 10−15 kg with an initial wave function spread of

√
A0 = 1 nm �

R ≈ 1 μm, τ acc = 0.5 s as before, and τ = 1 s. The field gradient is supposed to be the same
as chosen by Bose et al, which due to the scaling with the inverse mass results in Δumax ∼
180 μm. Despite being small compared to the particle size, the wave function width is actually
wider than the atomic localization length scale and we are in the regime where Iatom

ρ does not
contribute and we effectively haveΩSN = 0. Hatifi and Durt do not explicitly suggest a material
for the microsphere, hence we assumeωSN ≈ 10−3 s−1. For these values, we find that—besides
negligible loss of visibility from self-gravity—the phase ofΔφSN ≈ −5 × 10−5 is likely unob-
servable, and deviates significantly from the observable phase claimed in their preprint. The
constraints from acceleration noise, on the other hand, still require Δg � 10−16 m s−2 for an
observable phase.

As discussed in the main text, we must maximize the integral contribution to the phase shift,
in order to find a feasible scenario to observe it. Therefore, we start from equation (75b), allow
for the maximum spread ξ2A0 ∼ R2 and the minimum Δumax ∼ 4R for which this limit does
still apply, finding

ΔφSN ∼ −δ
7π3ρ2R10ω2

SN

18 h̄2 . (E.1)

With the values in table 1, one finds an observable phase for a particle of R ∼ 110 nm for
silicon or R ∼ 56 nm for osmium. If Δg is the largest possible value such that decoherence
from acceleration noise does not lead to complete loss of visibility, and we consider τ acc � τ ,
we find that the acceleration must be

a � 96m3Δg2

π h̄2ρ
. (E.2)

This implies that observation is feasible, for instance, for a field gradient ∂zB ∼ 105 T m−1

with a flight time τ ∼ 2 ms and a particle released from a gigahertz trap, if acceleration noise
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in the kilohertz range of the spectrum can be kept below 10−8 m s−2, as achieved in drop tower
experiments [34].

Finally, consider the scenario of a wide wave function with the approximation (52) for the
phase. The conditions for this approximation amount toΔumax �

√
A0 � R. The requirement

of negligible spreading implies a maximum time τ ∼ ρR5/h̄, with which one finds the ideal
parameters R ∼ 24 nm and τ ∼ 150 ms. With these values, one achieves a phase of the order
of unity, which is visible for acceleration noise below Δg ∼ 10−6 m s−2.

In the scenario of a symmetric wave function, if one again requires Δg to take the largest
possible value to avoid decoherence, equation (69a) can be written

γ0
SN ≈ ω4

effτ
2 h̄2

32m2A0Δg2

(
1 +

4
ξ2

)
�
(
ω2

effreff

Δg

)2

, (E.3)

where the latter inequality stems from the requirement that the wave function does not spread
beyond reff .

In the narrow regime, where Iatom
ρ contributes significantly, we haveωeff = ΩSN and reff = σ,

implying that for an observable loss of visibility, γ0
SN ∼ 1, we must have acceleration noise

below 6 × 10−14 m s−2 for silicon or 3 × 10−12 m s−2 for osmium.
For wider wave functions up to the particle radius, we require a minimum radius

R ∼ Δg/ω2
SN for any given acceleration noise. However, we must also require Δumax � R in

order to find the effective frequency not be suppressed, which together with the requirement
τ acc � τ implies

Δg �
(
μB∂zBτ 2

ρ

)1/4

ω2
SN. (E.4)

For silicon with τ ∼ 1 s and ∂zB ∼ 106 T m−1 this amounts to an acceleration noise below
5 × 10−12 m s−2.

Finally, let us briefly look at the wide wave function regime with the dampening approxi-
mated by equation (41). The requirement γ0

SN ∼ 1 can be written as

τR5 ∼ 9h̄

4
√

2π2Gρ2
∼ 5 × 10−32 s m5, (E.5)

where acceleration noise needs to remain below Δg ∼
√

2π GρR/3. This can be achieved for
τ ∼ 1 s, R ∼ 550 nm, andΔg < 10−13m s−2. The limit on acceleration noise drops proportion-
ally with growing particle radius, resulting to a decreased time τ . However, the requirement
A0 � R2 implies a trap frequency ∼Gρτ , which becomes feasible only for times τ �1 s and,
therefore, poses much stricter constraints on acceleration noise.
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