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Space–Time Non-Invariance of the Conformal Geometry

and Its Possible Observable Manifestations
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It is supposed that the geometry of the General Relativity flat limit can be described by
semi-direct product of the Special Conformal Transformations and Lorentz groups, locally
isomorphic to Poincare group. The possible observable manifestations of such a supposition
are considered. It is shown that the detected Universe accelerated expansion can be treated
as a purely kinematic effect of the proposed space–time geometry. The radar procedure
of the distance determination in conformal space–time is described. It is shown that the
space intervals conformal contraction gave rise to anomalous violet frequency shift during
the monochromatic signal propagation over the closed path. Its relative value equals the
Hubble constant multiplied by duration of propagation. The predicted phenomenon is the
local manifestation of the cosmologic expansion and, in principle, is accessible to experimental
detection.
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We shall suppose that the geometry of
General Relativity flat limit is defined by the
group

P̄ = SCT ⋊ L (1)

where ⋊ is designation of semi-direct product, L is
the Lorentz group, SCT is the Special Conformal
Transformations group

x′µ = σ−1(x, b){xµ + bµ(x2)},

gµν = ηµν = diag{1,−1,−1,−1},

}

(2)

σ(x, b) = 1 + 2(xb) + (b2)(x2). (3)

SCT (2) are nonlinear (space–time
inhomogeneity) and singular (under σ(x, b) = 0)
but conserving light cone equation (in the domain
free of singularities). The group (1) is locally
isomorphic the Poincare group. As it shown in
[1–3] under choice

xµ = {x0 = ct, x, 0, 0}, bµ =

{

0,−
1

2R0
, 0, 0

}

(4)
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where R0 = ct0 is a parameter with dimension
of length, the light cone generatrix lines
transformations under SCT are

ť(±) =

(

1±
ť

t0

)−1

ť (5)

where (±) corresponds to x = ±ct.
Formula (5) gives the following dependence

of the signal propagation duration t(z) on the red
shift:

t(z) = ť(−)(z) = t0

{

1− (1 + z)−
1

2

}

, (6)

and, correspondingly, the expression

D(z) = ct(z) (7)

for the distance covered by signal.
From (6), (7) and the well known formula

V (z) = c
(1 + z)2 − 1

(1 + z)2 + 1
, (8)

for the relativistic longitudinal Doppler effect
(V is the relative velocity) follows the analytic
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expression defining the Hubble law as a function
on the red shift only

V (z)

D(z)
= t−1

0 f(z) = t−1
0

(1 + z)1/2

(1 + z)2 + 1
·
(1 + z)2 − 1

(1 + z)1/2 − 1
.

(9)
Because of limz→0 f(z) = 2 it will be
obvious that t0 = 2H−1

0 where H0 is the
Hubble constant. Formula (9) reproduce the
contemporary cosmological expansion - relate
experimental data (on interval 0.2 6 z 6 1.7) in
full accordance with observations (see Figs. 1, 2).
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FIG. 1. The function f(z). X-axis coincides with
f(z) = 1, zmax = 0.474, zintercept = 1.315.

FIG. 2. Residual Hubble diagram (from [5]). X-axis
coincides with dotted line zexpmax = 0.46 ± 0.13. (In
colour).

The function f(z) (Fig. 1) in fact coincides
with the heavy dashed line (lower part of Fig. 2)
describing the observable deflections from strictly
linear Hubble law behaviour. By this means the
explicit formula for Hubble law depending on
the red shift only is reproducing the observed
nonlinear deviations without any free parameters
can be obtained as a purely kinematic outcome
of light cone equation invariance under P̄ =

SCT ⋊ L group transformations.
The possibility of an adequate physical

interpretation of SCT supposes the restriction
by singularity-free space–time domain and the
existence of physically significant limit. In the
case (4) SCT is the mapping {x, x0}, singular on
the light cone generating lines

x(±) = −2R0 ± ct, (10)

divining the {x, x0}-plane into four singly-
connected sectors. We shall consider one-to-one
mapping:

open right sector of {x, x0}-plane←→, open
left sector of {x′, x′0}-plane. Because of R0 =
2cH−1

0 the geometry of domain {x > 0, |x0| >
2R0} is practically coinciding with geometry of
pseudoeuclidien semiplane {x > 0, |t| < ∞} as
whole. In so doing (see [6, 7]):

{0, 0} ←→ {0, 0}′, light cone←→ light cone′.
Every straight world line parallel to t-axis maps
into hyperbola

(x′−λ(α))2−c2t′
2
=

(

R0

α

)2

, λ(α) =
R0

α
(2α−1)

(11)
where

α = 1 +
x

2R0
, (1 6 α <∞). (12)

Under conditions (small-neighbourhood
approximation)

∆x

R0
≪ 1,

∆t

t0
≪ 1, (13)

the SCT near {x, x0} origin coincide with Galilei–
Newton transformations from inertial reference
frame (RF) to the uniformly accelerating RF.
Because of t0 ∼ H−1

0 conditions (13) are really
satisfied on the astrophysics scales. The mapping
under consideration is presented on the Figs. 3, 4.

The clock synchronization and the radar
distance definition under conformal geometry
conditions are distinct from ones in the
Special Relativity (SR) where (1) duration of
signal propagation in forward

(

∆tAB = tB − t0A
)
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FIG. 3. The right sector of {x, x0}. The line coinciding
with t-axis is mapped to hyperbola α = 1. (In colour).
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FIG. 4. The part of left sector {x′, x′0}. Small-
neighbourhood of space–time domain of the co-
ordinate origin {0, 0}′ is a model of contemporary part
of Universe where real experiments and observations
have been carried out. (In colour).

and backward (∆tAB = tA − tB) directions are
coinciding in every inertial RF, (2) the choice of
t0A is arbitrary, and (3) tB

(

t0A, tA
)

= 1
2

(

t0A + tA
)

.
These combined statements fails in conformal
geometry. As it is evident from (5) the ∆tAB =
∆tBA condition cannot be satisfied. Nevertheless
the basic definition

∆tr
def
=

1

2
(∆tAB +∆tBA) =

1

2

(

tA − t0A
)

(14)

and, correspondingly, the radar distance Dr =
c∆tr holds true (see [7]). Remember, this
process can be realized practically in the small-
neighbourhood approximation only.

The infinitesimal length (dx) and
duration (dt) transformations under SCT in

line with definitions dx′
def
= dx′(x, t)|dt=0,

dt
′ def

= dt′(x, t)|dx=0 defined by formulae

dx′ =
dx

(

1 +
x

2R0

)2

+

(

ct

2R0

)2 ,

dt
′
=

dt
(

1 +
x

2R0

)2

+

(

ct

2R0

)2











































(15)

are parametrically dependent on t and x,
correspondingly (see [2, 7]).

If the point of observation coincides with the
co-ordinate origin we have after integration (15)
the following expressions:

∆x′ = ∆x

(

1 +
∆x

2R0

)−1

, ∆t′ = 2t0 arctan
∆t

2t0
,

(16)
which define the conformal transformations of
length and time intervals. Here ∆t = ∆tr = tA/2
defined by formula (14) and measured by the clock
in coordinate origin.

The small-neighbourhood approximation
gives

∆x′ ∼= ∆x

(

1−
∆x

2R0

)

, ∆t′ = ∆t. (17)

Using the notation ∆t = t = tA
2 we obtain

the formula defining the conformal contraction of

Nonlinear Phenomena in Complex Systems Vol. 17, no. 4, 2014



454 L. M. Tomilchik

length:

∆x′ = ∆x−
1

2

c

t0
t2 (∆x = ct). (18)

Let us consider a signal propagation between
two parallel perfectly reflecting mirrors divided by
distance

∆x = xB − xA = ct ( in RF ) (19)

where we use the notation t for ∆t = tA
2 .

The corresponding distance in RF ′ under
condition ∆x

R0
≪ 1 is

∆x′ ∼= ∆x−
(∆x)2

2R0
= ct−

c

2t0
t2. (20)

It is looking out as uniformally accelerating
(WB = c

t0
) motion of point B towards the point

A with a time-dependent velocity

VB(t) = WBt =
1

2
cH0t. (21)

The final result can be described as an effect of the
monochromatic wave reflection from the mirror
which is moving to the point of observation with
velocity VB(t).

The well-known formula for the frequency
change in the normal incidence case gives

νref = νinc
1 + V

c

1− V
c

∣

∣

∣

∣

∣

V/c≪1

∼= νinc

(

1 +
2V

c

)

. (22)

The relative violet frequency shift is

∆ν

ν
=

νref − νinc
νinc

=
2V

c
. (23)

If V = V (t) is the instantaneous velocity
(instantaneous reflection case) then it follows
from (21), (23) that

∆ν

ν
= 2WBt = H0t. (24)

In the case when V = V (t) is the average
velocity the result will be ∆ν

ν = 1
2H0t. Such

an anomalous violet frequency shift can be,
in principle, observed experimentally. If the
reflection is multiple, the individual time intervals
(under the accepted approximation) will be
summarized.

In summary it may be said that the
observed accelerating Universe phenomenon can
be described as the purely kinematic conformally-
invariant approach without using the dark energy
concept. This approach predicts: the form of
the experimental Residual Hubble diagram by
further increase of cosmological red shift, and
the existence of anomalous violet frequency drift
during the monochromatic signal propagation
over the closed path as a local manifestation of
the cosmological expansion.
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