SLAC-PUB-741
June 1970

(TH)
ANOMALOUS DIMENSIONS AND THE BREAKDOWN OF SCALE

INVARIANCE IN PERTURBATION THEORY*

Kenneth G. Wilson

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

and

Laboratory for Nuclear Studies
Cornell University, Ithaca, New York 148507F

ABSTRACT

Canonical field theory predicts that a zero mass scalar field theory
with a }\¢4 interaction is scale invariant. It is shown here that the re-
normalized perturbation expansion of the >\¢4 theory is not scale irivari—
ant in order 7\2, Matrix elements of the divergence of the dilation current
D“(x) are computed in order 7\2 using Ward identities; it is found that
vH D“(x) is proportional to ?\2¢4(x). It is also shown that the dimension
of the field ¢4 differs from the canonical value in order A and that this
result leads one to expect a >\2¢4 term in V* Du, It is also found that
matrix elements of the composite field ¢4(x) in perturbation theory have
troublesome singularities at short distances which force one to give

¢

careful definitions for equal time commutators and IFFourier transforms

of T products in the Ward identities involving this field.

(Submitted to Phys. Rev.) -

*
Work supported by the U. S. Atomic Energy Commission

TPermancnt address after September, 1970.



I. INTRODUCTION

In a previous paper a new theory of the short distance behavior of strong
interactions was proposed. 1 The theory involved several unfamiliar ideas, in
particular the idea of an "operator product expansion' and the idea that the di-
mensions of quantum fields are changed by interactions between the fields. The
present paper is one of a seriesz designed to make these ideas come alive.
These papers concern nontrivial problems in perturbation theory or soluble
models; they show how operator product expansions or dimensions changing with
the coupling constant are involved in the solution of these problems.

The purpose of this paper is to study a puzzle in renormalization theory.
The puzzle is as follows. Normally, when the unrenormalized Lagrangian is
invariant to a symmetry, the renormalized perturbation expansion for the
Lagrangian is also invariant to the symmetry. This is true for internal sym-
metries such as isotopic spin; it is also true of Lorentz invariance. However,
there is an exception, the exception being scale invariance. 3 For example, the
unrenormalized Lagrangian for the electrodynamics of zero mass electrons is
scale invariant (because the only parameter in the zero mass Lagrangian is the

bare coupling constant e, which is dimensionless). However the renormalized

O’
perturbation expansion for zero mass electrodynamics is not scale invariant.
The renormalized zero mass perturbation expansion was defined by Gell-Mann

and Low.,4 The photon propagator in the zero mass theory has the approximate

5
form:
-1 2, .9\ 2 211
D) = (k% [1 - (eK /127 )fn(k /K )] (1. 1

where ¥ is a reference momentum that is introduced as part of the Gell-Mann-
Low renormalization procedure, and e, is a renormalized coupling constant
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defined relative to the reference momentum. The reference momentum is
necessary for without it the renormalization procedure would replace ultraviolet
divergences by infrared divergences. The form (I.1) is a sum of leading loga-
rithms for each’ order in e « * Incontrast if the renormalized perturbation ex-
pansion were scale invariant, the leading logarithms would be required to sum
to a power of kz.

A tentative explanation will be proposed here for this puzzle. To simplify
matters the 7\4)4 interaction of a scalar field ¢ with zero mass will be discussed
instead of zero mass electrodynamics. At the heart of the explanation is the
result (to be derived in Section 1) that when a renormalized Heisenberg composite
field is defined starting from the product ¢4(x), the resulting field changes its
dimensic;n in the presence of interaction. However, the dimension of the
Lagrangian cannot change, so A must acquire compensating dimensions. Then
A ceases to be a dimensionless constant, and there is no longer any reason to
expect the theory to be scale invariant. This is the essence of the explanation
given in Section III of the puzzle. It will also be explained precisely what is
meant by a change of dimension for ¢4. The idea of the constant )\ changing di~
mensions however will not be discussed in detail; instead it will be argued that
the change of dimension of 4)4 leads to a term proportional to }\2q>4 appearing in
the divergence of the dilation current, spoiling scale invariance.

In this paper the scaling properties of the 7\¢4 theory will be inferred from
Ward identities involving vacuum expectation values of the fields ¢(x), ¢4(x),
and the divergence of the dilation current, called S(x). These Ward identities
will be used to calculate matrix elements of the divergence S(x), given matrix
elements involving only ¢(x) and ¢4(x) . It is possible to calculate matrix ele-

ments of S directly without using the Ward identities; doing so would provide a
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check on the calculations of this paper. A start on such calculations has been
made by Callan, Coleman, and Jackiw, 6 Direct calculations of the matrix ele-
ments of S are not made in this paper because there are many problems involved
with such calculations which do not appear in the calculation of matrix elements
of ¢ alone. Some of these problems do appear in the calculation of matrix
elements of qb4(x) and will be discussed later. But as far as possible this paper
relies on uncontroversial Feynman diagram formulae; this is for simplicity and
to make clear that the breakdown of scale invariance is an inevitable consequence
of these formulae.

In calculating matrix elements of the operator ¢4(x), and in checking Ward
identities involving these matrix elements, problems arise which can be traced
to an age-old problem: What does a T product of operators sucil as T ¢(x) ¢4(y)
mean when x=y? Axiomatic field theorists answer that it is arbitrary in the
sense that one is free to add any term proportional to 84(x~y) or derivatives of
64(x-y) to the T product. 7 Other field theorists take it for granted that the
T product is uniquely defined, without making clear what that definition is. In
order to get consistent results in this paper it will be necessary to specify a
definition of the T product which eliminates the arbitrariness. There will be a
corresponding, precise definition of the equal time commutators which occur
in Ward identities. It will be shown that under normal circumstances the defi-
nition of equal time commutators given in this paper agrees with the customary
one, but in abnormal cases (one of which occurs later in this paper) the two
definitions do not agree. There will also be circumstances where the definition
of the T product given here has to be modified to include subtractions; an example
of this also occurs later in this paper. The definition of the T product given in

this paper may or may not be one that field theorists can agree upon; what is
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essential is that in 23;11 future discussions of Ward identities the definition of the
T product be stated, so that one can handle more easily the kind of problem that
arises later in this paper.

In Section II of this paper the problem of defining T products is analyzed,
with examples showing the problems that can arise. In Section III, which is the
heart of this paper, the Ward identities and explicit formulae for vacuum expec-
tation values of ¢ and <,b4 are written down. These formulae are used to show
that scale invariance holds in order A and breaks down in order Az, to compute
the dimension of <p4 in order A, and to infer that S(x) in order 7\2 is proportional
to ¢4.. In Section IV the operator product expansion for ¢(x) ¢4(y) is discussed;
also the dimensions of the composite field ¢i(x) qu(x) in an isospin one 4)4 theory

are computed and shown to be different for the isospin 0 and isospin 2 components.



II. DEFINITIONS OF T PRODUCTS

The problem of defining T products will be discussed primarily in terms of
an example, the example being the T product of two currents. 8 Consider in

particular the propagator -

4o ®) = ./X'eip'x D, ® (I 1)
D,,® = <QIT}® 1,012 (1.2)

where jM is a conserved current in an unspecified field theory and J;{ means
J d4x. The problem to be discussed here ié this: How is the integral in Eq. (IL.1)
to be calculated,assuming the function Dp.v (x) is known? This is a question which
does not arise much in practice since one is more likely to have an explicit for-
mula for D;.w (p) (via Feynman graphs, or whatever) than for Dp.u (x). However,
Ward identities are derived in x space and then Fourier transformed to momentum
space; if one is deriving a Ward identity for D;w (p), then D;w (p) is defined by
Eq. (II.1) and it becomes a legitimate question to ask whether ambiguities arise
in computing the integral, and how to avoid them if they do occur.

The reason the integral in Eq. (II.1) can cause difficulties is that D”V(x) is
singular at x=0; the singularity at x=0 is such that the integral may be conditionally
convergent or divergent at x=0. If the integral is conditionally convergent, it can

be defined by specifying an order of integration for the four integrations (over

the components of x), but the result may depend on which order is chosen. If the
integral is divergent then it can only be defined by subtracting the divergent
terms.

An example of conditional convergence is provided by a free vector meson
propagator. In this case it will be shown below that the integral in Eq. (L. 1)
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gives different answers depending on whether the x integral or the X0 integral is
performed first. It will also be shown that the usual noncovariant form ‘of D . (p)
is obtained by doing the x integral first. These results will be shown by using
one of the standard derivations of the noncovariant propagator and being careful
when the order of integration is changed. The standard derivation will first be
stated without being careful; the careful derivation will be given afterwards.

The non-~time ordered matrix element
p;w (x) = <21 ju(x) jy(O)l Q> (I1. 3)

(where j“ is now the vector meson field) is

- [ o-iP*x :
b, ® = fp P b0 (. 4

,, ) = 21 0(p)) 8(6°-m (-g,,, + p,,/m") (IL.5)

where m is the vector meson mass, '/L‘) means (21r)-4 fd4p, and 9(x0) is the usual
9
i = > 0
6 function.” The T product Dp.v(x) vaW(X) when X, 0; for X <0

D“V(x) = pvu(-x)., The propagator Dw(p) is

on
~ 3 +ip-xf ~iqex
Dw(p)—j;dx0 fd x e A P,y @

0 . .
3. ipex f +igex
+f dxofd X e e e (LL. 6)
Exchanging the order of integration so that the x integral is done first one gets
a 6 -function (either 83(p—q) or 83(p+g)) . Doing the q integration next eliminates

the §-function; then one does the x, integral, leaving

0

o0
=L 1 1 -
DI,U) (p) - 27!'1 j: dqo { qo__po_i€ p““} (qO’B) + q0+ pO pV,J(qO’ (13)] (II“ 7)

o0
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Using the explicit form for p‘w (p) gives

_ 2 ., 2 2. -1 . 2
D“v(p) = {—gw + p#py/m } i(p"-m +ie€) T - 18u0 SV O/m (. 8)

where & _ is the Kronecker &; the § .8 . term is the noncovariant piece.
uo ) po vo
The integrals in Eq. (II. 6) can be done more carefully using convergence
factors to make all integrals absolutely convergent. The orders of integration

can then be exchanged legitimately. With convergence factors one has .
w w ] -
b w=fax [ v faa [ {el(p“”'x s, g
o n 0% A v

X exp {—axo—ar— elqol— elgg} | (I1. 9)

where the x integral has been written in terms of polar coordinates (d€ is the
solid angle differential). The constants o and € (which must be positive) make
the integrals absolutely convergent. By putting lower limits 7 and 6 on the X,
and x integrations one can study different orders of integration for the x integral.
Thus to find the result of performing the x integral before the X integral in
Eq. (II. 1), one takes the following limit in Eq. (II.9): €—0 first (to get the gq
integration correct before taking any other limits), @ —0 second, 6 — 0 third,
and 7—0 last. To do the x integration last one takes the limits in the order
e —0 first, then n—0, then ¢ —0, then 6—0,.

The integral with convergence factors present can be computed explicitly

when a, €,m, and 6 are small, neglecting small terms. The result is

_ " 2-1( 1 4 (n+0) 27M6
Dyy ) =Dgy,, (P) + (mm ) { 38 T3 %00 o} [m [(77—0—15)]+ oz_nzm]
(IL. 10)



where DS;.w(p) is the standard form for D;w (p) given by Eq. (I.8). If » and 0
are both small but of the same order, the second term is of order 1; terms of
order m, 0, etc., have been dropped. If 6 — 0 keeping 7 fixed the second term

vanishes, leaving the standard form; but if 7 —0 keeping 6 fixed one gets

1

p,®=0g,w+umD (2o, Lo,  @w

Hence the order of integration matters in Eq. (II.1); to get the standard form
for Duv (p) one must write

D, () =Lim(n~0){{@0+4

For any finite 7 the point x=0 is excluded from the integral. However,

N .
3 °
dxo} f a’x e'P XDw(x) (IL. 12)

except for this point the function D#V (%) is covariant (the Fourier transform of
the noncovariant piece of D#V (p) is proportional to 64(x) and vanishes if x#0).
So the noncovariance in D“V (p) is entirely due to the noncovariant definition of
the integral in Eq. (II.12). This result can be shown directly. If Duu (p) is
computed in a Lorentz frame moving in the z direction with velocity v, using
Eq. (II.12) in the moving frame, and then Lorentz transformed back to the fixed

frame, one gets (by transforming Eq. (II.8)) a function D‘w(p,v):

(?[_J,O + VS,.L?:) (8V0 + VSV 3)
(1—v2)m2

.2 2. -1 2\ .
D;w(p,v) = i(p”-m"+i€) (—guy+pupv/m )—1

(1. 13)
The function DP«V (p, v) must also result if one transforms the integral of Eq. (II.12)
from the moving frame to the fixed frame. Since DMV (x) is covariant, the only

change is in the boundary of integration; one gets

. . ) 2.1/21 ip-x
Dl_w(p,v) = Lim (m—0) 4 0[|.\0—VX3| -n(1-v) ] e D (X

pv

(1. 14)
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i.e., the region |x0—vx3| < n(l-—vz) 1/2 is excluded from the range of integration.
Since the scale of 7 does not matter one can also specify the excluded region as
Ixg~vXgl <M. The difference between DHV (p,v) and D;w(p) must come from the

difference in the excluded regions. That is

D_(ps¥) -D__(p) = Lim _[ -f a*x ™D (IL. 15)
K H n—0|"R, “R H
1 2
where Rl is the region lx0| <m, |x0-vx3l > 7 and R2 is the region |x0| > 7,

1Xy=VXgl < 7.

The regions R1 and Rz both collapse in the limit 7 —+~0, so for the limit
mn —~0 to be nonzero D;w (x) has to be singular withi_n these regions. Both regions
are spacelike relative to the origin except for a region of linear size m. The
function DIJV (¥) is singular only on the light cone and at x=0; these singularities
lie in the region of linear size 7, and must be strong enough to overcome the
small volume of integration. It is worth showing explicitly how the singularity
of D“V(x) at x=0 results in a nonzero limit, for in doing so one can deduce a
general rule for when the integral of a T product may be noncovariant.

The explicit form of D;w (x) is known; it islo

D,,(® = [—gw - ;llg V#VV] D (%) (L. 16)

where D 0(x) is the free propagator in x space for a scalar particle:

D (x) = f e PTX i(pz-—m2+i€)—1 (T.17)
P
For small x
Dy(®) = - (471'2)_1 (xz-ie)‘l : (L. 18)
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The most singular term in DIJV (x) for small x is

D“V(x) (Zvrzmz) -1 {—g‘wx2 + 4x“xu} (x2-~i€)n3 (IL. 19)

Without affecting the limit (II. 15) the regions Rl and R, can be redefined to lie

0 where tO and r 0 are small but held fixed as

N +0. Within this region both Duu (x) and e'’®"* can be approximated by small x

within the region RINERS tO’ V|ﬁ>.<~| <rT

expansions; as will be shown later only the leading terms from these expansions
contribute to the limit (II. 15). Only the leading terms will be discussed explicitly.
Also for simplicity only the 00 component of DV-V (0) will be discussed. Approxi-

mating DOO(O) by Eq. (II.19) gives

A=D_(0,v) -D_(0) = Lim f —f d4x (211'2m2)_1 (—x2+ 4x2)
00 00 0
n—0 R1 R,

-3
X (xg —352 - i€) ~ (L. 20)

and R, are now

The regions Rl 2

R1: |x0|<~q, |x0-vx3| >, |x0{<t0, and Ix1< r,

9 and IXI<T

0’ 0
The X integrations can be done explicitly; it is easily seen that terms depending
onrg, will not contribute in the limit m —0. With such terms dropped, the

integrals have the explicit form

1 1 1
A——(27rm2) fd {lr l+x0+|ra|-—x0+i€+r i +ie]

¢ .

—1f0 1 1 1 1

+(27m12) dxo[r T T T Tx Tie T 4% T ox +ie] (1.2
] a "0 a b "0
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where

r, = (xo-n)/v (I.22)
) = (x0+n)/v (I, 23)

(the symmetry for X0 ™ X of Eq. (II.20) was used to eliminate integrals with
X < 0). The X integrals can also be done explicitly; the result is independent

of t() when 7 is small and gives

A=(-i/m?) VPl (L. 24)

which agrees with Eq. (II.13). !

The reason one can generalize the above calculation easily is that its quali-
tative features can all be determined by scaling arguments. The terms in A
which stay finite for 17 —0 are unaffected by tO and rc, and in the leading approxi-
mation DIJV (x) depends only on x not on m2 except as an overall factor. Hence 7
becomes the only dimensional parameter in the integrals. So to get qualitatively
the dependence of the integrals on 7 one can replace X and X by the dimensionless
variables y0=x0/'r), ¥ =§/ﬂ, and collect factors of 7. When Yo and y are of order

1 the limits defining R, and Rz do not depend on 1. So in Eq. (II.20) the substi-

1

tution gives

-3
A= 'é —f 774d4y (27r2m2)-1772<—y2+4y3) W—G(y§~xz—ie)
| 71 Rz
4 .2 2-1{ 2  2\(2 2 Y°
= f—f dy (2r7m") (—y +4y0)<y0—y -ie (IL. 25)
Ry By ”

which is independent of 1; the regions R1 and R2 are11

Ryt ¥l <1, 1y,-vygl > 1

Ryt 1yt > 1, 1¥,-Vygl <1
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Thus from a scaling argument one sees that A will be a constant for » —0
(however only an explicit calculation can show that the constant does not vanish).
One might worry about the effects of the light cone singularity (y0= Iy but yo;éO)
on the scaling analysis, but one can see by vtracing through the detailed calcula-
tion that the i€ in xz—ie mak_es the light cone singularity integrable and does not
destroy the scaling arguments (provided one does not choose tO and r, so that

2 2

- ='
0~ %o 0¢)

The importance of the scaling arguxﬁent is that if one had extra powers of

t

X O X, in the numerator of Eq. (II.20), the scaling argument shows that A would
vanish. This can be verified by explicit calculation. This means that A does
po

not change if one puts e X in the integral, since the terms p-x, (p-x)z,v ete.,

in the expansion of e®"* do not contribute in the limit 7—0. Likewise less
singular terms in Duv (x) do not contribute to the limit. Hence the explicit cal-

culation gives the more general result
D, .(P,V) - D, .(p) = (-i/mz) vz/(l—vz) | (0. 26)
00 00'P ) :

in agreement with Eq. (II. 13).

Even more generally one deduces the following general rule. Let
TOl(x) 02(0) be a T product of two arbitrary local operators Ol(x) and 02(0).
It does not matter whether these operators are scalars, spinors, tensors, or

whatever. Let

M(p) = feip"x CAITO,(x) O,(0)1B> (L. 27)
X

be the Fourier transform of an arbitrary matrix element of the T product. If
the matrix element itself scales as x—4+d as x —0, withd > 0, then M(p) is
covariant and independent of the order of integration. The hypothesis of operator

product expansions1 predicts that no matter what matrix element is considered
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leading short distance behavior of the matrix element will be a function of X only
except for an overall factor (as was the case for DMV (x)), so that the scaling
analysis applies.

The conventional integral for DHV (p) can be divergent. The current of a free
Dirac field gives a simple éxample of this. The divergence is simply the well-
known divergence in the lowest order vacuum polarization diagram for electro-
dynamics. However, we are not calculating vacuum polarization here, so the
divergences cannot be removed by a renormalization. The calculation here is of
the Fourier transform of the propagator of the current; to remove these diver-
gences, the Fourier transform integral must be subtracted. As usual with
subtractions, there is some arbitrariness in the exact form of the subtracted

integral. The calculation will be described briefly. The current j“(x) is
1,0 = 19Xy, Y0 (IL. 28)

where ¢ is a free Dirac field and :... : denotes Wick ordering. The propagator

D (x) is now
py

D,, (%) = =TT y, 8,(x) 3, S4(-%) (II. 29)

where

Sy(®) = if e P X (y“p +m) (132—m2+i€)"1
p
P
= {3 K )
(17 V“+m DO(x) (. 30)
When x is small the most singular term in So(x) is

S,(x) = i(2r)) "L x, (x2-ie) 2 (II. 31
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As a result

-4 2 2 . -4
D‘W(x) o T (gp,u b 2x# XV) (x"-i€) (I, 32)

for small x. The integ'ralfD“V (x) e'Pr® d3§diverges as x, —0; from a scaling

0
argument the divergence should be proportional to x63. The divergence can come
only from x|~ X, in the integral so it is legitimate to use the approximation (II. 32)

in doing the calculation of the divergence. The integral can now be done explicitly

and gives

3_ ipe " -3
fd £e1P X D“V (x) = (i/67%) lxol {—gMV + 5“0 Bv 0} (1. 33)

There can also be terms of order |x0|f2, lxol_l, etc. So computing the integral
of Eq. (II. 12) gives a divergent result. The way to avoid this divergence is to

subtract the integral so that the scaling argument predicts convergence. The

ip-x,

simplest subtraction is to subtract a Taylor's series expansion of e :one
defines12
D _(p) =f {eip'x -1 -ipex+ 1 (p-x)z}D (%) (T. 34)
3% o 2 [13%

The leading singularity of the integrand now scales as x—3 instead of x—e. As a

result the scaling arguments show that D,uv (p) is finite and covariant. The terms
subtracted are a quadratic polynomial in p. In effect one has subtracted infinite
constants multiplying p2, p, and 1 from the old form of D“V(p). As usual, one

is always free to add finite constants times p2, p, or 1to DHV (p); to keep D

(p)

p

covariant the added terms must also be covariant.

Even for cases like the free vector meson propagator where the unsubtracted
integral is finite, one is free to use a subtracted integral to define Dw)(p) . One
can make as many subtractions as one likes, but one subtraction is sufficient to

define a covariant form for Duv ).



Axiomatic field .theorists have shouted since prehistoric times that the
Fourier transforms of T products are ambiguous. There is an excellent dis-
cussion of the role of these ambiguities in renormalization theory in Bogoliubov
and Shirkov. 5 Nevertheless the popular view is that a Fourier transform such
as D#V (p) is a unique and even physical quantity at least relative to a given
Lorentz frame. The axiomatic view must in the end replace the popular view,
since the ambiguity in D;w (p) in examples like the Dirac current of a free fermion
field is beyond question. Unfortunately, much experience has been acquired with
the unsubtracted form of the definition of Duv (p) and more general transforms
like M(p) in Eq. (II.27). One must now distinguish two problems. The first is,
given that the standard definition of the Fourier transform exists, to show in
practical situations that no physics is changed by using a subtracted formula
instead. This may not be trivial to demonstrate but is not a very rewarding
subject to pursue. The second question is what happens to the physics when sub-
tractions are necessary. There is already one example known where the necessity
for a subtraction changes a current algebra prediction, namely the Adler-Bell-
Jackiw-Schwinger anomaly which changes the current algebra prediction of the
° lifetime. 13 One must be prepared to find other applications where sub-
tractions have nontrivial effects. It is certainly worth looking for such effects,
especially when the use of conventional Ward identities gives unsatisfactory
results, as in 71 decay. 14

It may heli) in understanding the problem of the ambiguity in D“V (p) if one
can understand why it was possible for nonaxiomaticists to conclude that Duv (p)
is unique. The reason lies, I believe, in a conscious or unconscious assumption
that nonaxiomaticists make about the nature of field theory. The assumption is

this: any local operator, such as a current, becomes an observable when
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averaged over a region of space, the time being held fixed. By an "observable',
I mean an operator which can be multiplied by itself or by other fields, without
producing singularities. The best way to show that this assumption is made is

to look at the popularly accepted form for an equal time commutator. The equal
time commutator of two 100;11 fields O 1 and O,(y) is expected to be a sum of

& ~functions and derivatives of §-functions in the spatial variables X and ¥ These
d-functions can be eliminated by averaging Ol(x) say over a region of space; if
p(i(‘) is an averaging function then [ ﬁ (%) Ol(xo,gg) d3§, Oz(xo, X)] is completely
free of singularities. Even more, one assumes that the unequal time commutator
[j;-o(g‘() Ol(XO’ X) d3§, 0 2(yo, Z)] is continuous and differentiable in Yo for Yoo

This assumption is implicit in the equal time commutator formula

[Ol(xo’i‘)’ 62("0’3’)] =1 [01(X0,§), [H oz(xo’X)D (IL. 35)

where H is the Hamiltonian and the double commutator is again expected to be a
sum of §-functions. If the unequal time commutator were not differentiable in

Yo at Yo% then the equal time commutator with O, would diverge.

2
Given the assumption that integration with x makes operator products be
smooth in time, it is easy to derive the usual form of the Ward identity for
DHV (p) from the definition (II.12). One writes
oy =10 f (5% %) 0 s -
p Duu(p) Lim (n—0) ; iV¥ e D“V(x) 6 IXOI n (II. 36)
Integrating by parts, one gets

pqu.V(p) = lim p—0) feip‘x [iVuD'Lw(X)] 9[|x0| -77]

X

+ 1 feip-x DOV(X) [6(}{0—'77) - 8(x0+1))J (IL. 37)

X

-17 -



0 is never zero

in the integral, v <QITj“(x) jV(O)IQ> = <QITV”jM(x) jV(O)ISD = 0. So the first

Since j# is assumed to be conserved, V“j“(x) is zero, and since x

term vanishes and one is left with the surface terms. These terms may be

written as follows. Let

Qp, xoi = f d3;_g e R'X ip(Xge2) (IL. 38)
Then
ip.m -ip,m
D, ® = Lim (1~0) 1 <m[e a5, @-e 00 Q(B,-n)llm
| (IL. 39)

According to the assumption stated above, the products Q(p,n) jv (0) and jV(O) Qp, -m)

should be free of any singularity for 7 —0, in which case the limit gives
p”DW(p) =1 <Q|[Q(g, 0), J‘V(O)]ISD (LI 40)

which is the usual Ward identity relating p” D;.w (p) to an equal time commutator.
If the assumption that Q(p,m) is an observable breaks down, 15 the limit (II. 39)
may not behave like a commutator, since the expression for finite n is not a
commutator. An example of this occurs in Section III,

The assumption that integrating an operator over space only gives an ob-
servable is a basic tenet of canonical field theory, since one builds the Hamailtonian
of a canonica} theory out of space-averaged operators, and the Hamiltonian has to
be an observable. The assumption has been rejected by axiomatic field theory
from the beginiling since the currents and other local products in free field
theories violate this'assumption (as is shown by the example of a divergent propa-
gator discussed earlier). In axiomatic field theory one assumes only that
operators averaged over space and time give observables; this hypothesis was

formally stated by Wightman but the idea dates back to the discussion of
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measurability of fieids by Bohr and Rosenfeld. 16 Unfortunately the assumption
that space-time averéges give observables is not very helpful in dealing with the
specific problems posed by the singularities of T products.

Some general conclusions of this section are as follows:

1. The precise definition for the Fourier transform of a T product
in common

2. T products in x-space are covariant; any noncovariance in their
Fourier transforms are entirely due to the noncovariant n-limit
chosen to define the Fourier integral.

3. The definition (II.12) is capable of giving divergent results in
which case a subtracted definition, as in Eq. (II.34), will have
to be used instead.

4. If the integral of a T product is defined as in Eq. (II.12), then
the equal time commutators appearing in Ward identities must

be defined as a limit as in Eq. (II.39).
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II. SCALE INVARIANCE AND PERTURBATION THEORY

To begin this section the commutators of the generator of scale transfor-
mations will be derived., Ward identities for the dilation current will then be
written for matrix elements involving the fields ¢ and ¢>4 of the 7\¢4 theory. It
will be assumed to start with that all integrals of T products are conventionally
defined and all Ward identities have their customary form. The exceptions will
be discussed later.

If the field theory is scale invariant, 17 then there exists a set of unitary

transformations U(s) with the property
+ d
U'(s) ¢(x) U(s) =5 ¢(s%) (IL 1)

The constant d is called the dimension of ¢. The unitary transformations U(s)
can be written in terms of an infinitesimal generator D:

-i(fn s)D

U(s) = e (I0I. 2)

The logarithm of s appears in the exponent so that U(s) will satisfy the composi-
tion law

U(s) U(Sl) = U(ssl) (1. 3)
Let s be 1+¢ with € small. Then from Eq. (II.1) one derives
i[D, o] = (a++'v,) o4 (L. 4)

For each composite field in the theory there will be a corresponding commutator.

In particular |
i [D, qb4(x):l = (dT + x”vu) o*(%) (IIL. 5)

where dI is the dimension of <[>4(x) . The generator D is expected to be the integral

of a local "dilation current" Dy(x):
3 .
D =fD0(x) d°x (IIL. 6)
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The current D“ must be conserved if scale invariance holds, in which case D is
time independent.
Now consider the Ward identities. To allow for the breakdown of scale

invariance, let D“ have a divergence S:
vHD () = 8(x (II.7)

and consider the matrix element
M(%ge0e X ) = j); <ejr B(Ep) o0 B(X) S(y) |2 (I11. 8)

where 127 is the vacuum state. Substituting vH D“ for S and integrating by parts,

the conventional calculation gives18

M(xyeee X)) = f VN (T B(K) e e B(x) | ad>
y

+idQlT {(d+x1- ) <p(x1)} (xy) - - ,cp(xn)lsz)

+o. o+ 1€QIT $lx)) Py . {(d+xn- v) ¢(xn)} | 2>
(II. 9)
The integral of the gradient vanishes and one is left with the commutatdrs. It
is convenient to bring the derivatives Vl’ etc., outside the T product, which
results in further equal time commutator terms. However, these further
commutators cancel in pairs,,19 Consider the case n=2, for example. Then the

result of moving the gradients is

M(x;,%,) =1 (2d+x « V +x, - V) (]t $(x,) b(x,) | QD
-1 XlO 6(X10 _XZO) (Q , [‘P(‘(l) ’ ¢(X2)]t Q >

1%, 8(x; 0= X50) (Q|[¢(x2), ¢(x1)]|9> (TI. 10)
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The two commutator terms cancel. This is true for all n; so

M(X eooX ) =1 (nd + x, * V1+ cee tx 0V ) K(xpeeux ) (1)

1
where

K(xp. 0% ) = QT q>(x1).,.¢(xn)|9> (1. 12)

The Ward identity (III. 11) is the starting point of the analysis of this section.
If scale invariance is exact, M must vanish. So we shall try to make the functions
M(xl. o .xn) vanish in perturbation theory. The dimension d will be treated as a
fudge factor chosen to make M vanish if possible. This will be possible in order
A but not in order 7\2. Having found that the functions M cannot vanish in order 7\2,
they will be calculated explicitly and used to infer the form of V“DM.

Next some explicit perturbation formulae will be written out for vacuum ex-
pectation values involving ¢(x) and ¢4(x). Only connected graphs will be con-
sidered (disconnected graphs will be discussed later)., Let Kc(xl. . .xn) be the
connected part of {Q|T ¢>(xl) coe ¢>(xn)| Q2> and let Wc(xl' . .xn,y) be the connected
part of the matrix element {Q|T D(xp) e e PX) :¢4(y):l Q). By :¢4(y): is meant
a Heisenberg field which reduces to the Wick product :qb4(x): in the free field

limit. In the interaction representation one defines (before renormalization)

W(Xl' . .xn,y) ={Q|T ¢I(x1) cpI(xz) vos qu(xn) :qbf(y): exp {-—i Af :qb?(z) }I Q>
z (IIL. 13)

where ¢I(x) is the scalar field in the interaction representation. Wc is the con-
nected part of W. The matrix elements Kc will be quoted to order 7\2, the matrix
elements WC to order A only. The vacuum expectation value Wc(y) will not be
computed since it can be renormalized to zero by subtracting a c-number from
the Heisenberg field :¢4:, Matrix elements involving products of two or more
Heisenberg fields :¢4: will not be discussed; hopefully the analysis of the Wc
functions is sufficient to determine the properties of :q.‘)4:. The nonzero,
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unrenormalized graphs for K and W (to order )\2 and A respectively) are:

(x -ip_ (X X))
Py n-1"n-1 "n
Kc(xl’”' ff f R Kc(pl"”’pn—l)
Py P
1Pz Pna (L. 14)
K (p) =D(p) =D (p) + 96 ia? Dg(p) T %, 4% (IIL. 15)

where D(p) is the interacting meson propagator, D 0(p) the free meson propagator
with zero mass, and Z(pz, AZ) is the Feynman graph shown in Fig. la computed

with a cutoff A. Formulae are:

Dy® =" +ie)”t - (L. 16)
Z(pz,Az) = f p(qz,Az) D (a-p) (OI.17)
q
2 .2 .
pta® 8% =1 J D& Dy(a Dyfk,A) D (a-k,A) (. 18)
k
Dk, 4) = A% A%yt (II1. 19)

p(qz, AZ) is the Feynman graph shown in Fig. 1b, also with a cutoff. Calculation

of p and 2 in the limit of large cutoff gives (see the Appendix)
2 .2 2 -1 ; 2
p(Q s AY) = - (167 " M [(—qz—le)/A ] (IIL. 20)
Z(qz, Az) =-(5127 -1 2 fn [( -q —1e)/A ] + cA2 + clq2 (OI.21)

where ¢ and c, are numerical constants; terms of order qz/l\.2 or smaller for

large A have been dropped. These formulae are relatively simple because the
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mass of ¢ is zero. Further formulae:
2 .2 2 2 2 2
x {1- 12 P[(Pl+l32) » A ] - 122 P[(PI+P3) s A ]— 12 AP[(PZ+P3) s A ]}
(IIm. 22)

It is a nuisance to write out terms which differ only by a permutation of the

momenta so in the following formulae only the number of such terms will be given:

= 2 - - -
Kc(pl...ps) = ~576 A Do(pl)...DO(ps) DO( pl ps){DO(p1+p2+p3)

+9 permutations} ‘ (1. 23)
~ip.+(x;-Y) -ip_+(x_-9
W (Xge e X ) =f...fe L R W (0;---P) (I1L. 24)
P, P,
W (P10 = 96 A Do) Dy(Py) | (b3, A7) +Z(p5 A7)} (1. 25)

_ 2 .2
W,(9,PysP3oD,) = 24 Dy(p;) Do(g) DolPy) DBy {1- 12 10 [(pyt0,)% 4%)
+ 5 permutations of the A term} (1. 26)

Wc(pl, cee ,pG) =-576 i) Do(pl). . .DO(pG) {Do(p1+p2+p3) + 19 permutations}
(1. 27)

The renormalized formulae for Kc and Wc are obtained by modifying 2 and
p and redefining the coupling constant but otherwise using the formulae given
above. The renormalized 2. is obtained by dropping the constants ¢ and 1 and
replacing A2 by an arbitrarily chosen but fixed '"reference momentum' « 2 .
Likewise the renormalized p is obtained by replacing A2 by « 2. The renor-

malized functions 2. R and pR are

2 @) =-p121) " ¢’ m [(—qz—ic)/fc 2] (II1. 28)

- 24 -



and

pr(@d = - 167 [(-aPiey/?] (1. 29

The rationalization of these modifications is as follows.

The function 2. occurs in two.different formulae; the modifications have a
different significance in the two cases. This is also true of the function p. When
2 is a correction to the propagator, the modifications amount to a mass and
wave function renormalization. In particular, replacing ¢ by zero ensures that

the renormalized mass is zero through order }\2; replacing ¢, by 0 and A2 by

1
K 2 are both wave function renormalizations. It is necessary to introduce the
arbitrary parameter ¥ (which has the dimensions of a mass) into the theory be-
cause there is no naturally occurring parameter with the dimensions of a mass
to replace the cutoff inside the logarithm. The value of £ is unimportant since
changing « only changes the normalization of the field ¢, which is arbitrary.
Similarly, when p is a correction to Kc(p,pl,pz) the modification of p is a

coupling constant renormalization; when p is replaced by £, one must also re-

R
place A by a renormalized coupling constant A ‘° The renormalized coupling
constant depends on k in the sense that if ¥ is changed to k' one must change

Ay to Ao with

AK' = }‘K + (9 ;\i/47r2) in (k '2/K 2) + order (7\3) (1. 30)

in order that Kc(pl,pz, p3) be independent of the choice of k. 20

When X is a first order contribution to Wc(pl,pz) the modifications have a

different interpretation. If the unrenormalized formula for Wc(pl’ pz) is Fourier



transformed to x-space, one obtains (see the appendix):
_ 6 2 -2 2 -2
Wc(xl,xz,y) = (3/167) ) Do(xz-y) [(xl—y) —ie] +D0(x1-y) [(xz-y) —ie]
-192 A2 D (x,-y) D (X~
Me &%) Do(x;=¥) Dlxp=y)
~-96xic {D (X,-Y) 84(x -y) + D (x,-9) 64(x —y)» (OI. 31)
1 (7072 1 01 2 :

where D 0(x) is the Fourier transform of Do(p) ,» and the first term is correct only
for X4y and X,~¥ DONZero. The term proportional to ¢ can be rewritten

—967\CA2 <t qu(xl) ¢I(x2) :qSIz (v): |ﬂ>: Replacing ¢ by 0 is equivalent to sub-
tracting -96¢ AAZ :qbz(x): from the unrenormalized operator :¢>4(x) :« This sub-
traction is one of two needed to define a finite renormalized form of the Heisenberg
field :¢4(x) :« The other subtraction needed to define the renormalized form of
:¢4(x): is a subtraction proportional to A, :¢>4:. This subtraction is generated
when one replaces A by x in the function p, p being considered as a correction

to the function Wc(pl,pz,p3,p4). Replacing cq by 0 in Wc(pl,pz) is simply a
redefinition of the Fourier transform of Wc(xl,xz,y):

When Wc(xl,xz,y) is Fourier transformed, the ¢, term in Wc(xl,xz,y) wil_l

1
not contribute because by definition the points X=y and X,=y are excluded from
the region of integration (see Section II). However, the unsubtracted Fourier
transform of Wc(xl,xz, y) diverges because of the singularities [(xl—y)z - ie] -2
and [(xz-y)2 - ie] -2 in the first term of Eq. (II.31). 21 This means the Fourier
transform must be subtracted. The unsubtracted Fourier transform would be

W (B1,Py) = -/X. f o 171 P22 W (x,5%,, 0) (IIL. 32)

1 %2
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The singular term for x, — 0 in the integrand has the form

1
ip,-x -2
2%y . 6 2_s)

e (3/167) A D(Xg) <x1 ie .

The singular term in x so one cannot approximate the x

1 2 2

dependence of the singular term. One cannot subtract this term unchanged be-

is present for any x

cause it does not go to zero fast enough when X . To avoid an infrared diver-

gence one subtracts

-2

iK X
(8/167) A D y(x,) (xi - ie)

o 1 eipz'xz
where Ku is any four-vector with magnitude K“K“ =-K 2. Putting in the factor
eiK "%1 does not change the dependence of the subtraction on p 1 and Py, SO it is
a legitimate modification. The renormalized, subtracted formula for Wc(pl,pz)
is

ip,*x. ip,°x
_ 171 2“2
Wc(Pl,Pz) —f f le e Wc(xl,xz,o)

X1 %2
6 exy 1Py %y 2 . \2
-(3/167 )A, © e Do(xz) (Xl—IE)
i ex, ip,°x -2
- (3/16 1r6) A, © 2 e 11 DO(xl) (xg - ie) ] (. 33)

with Areplaced by, in Wc(xl,xz, 0) (and the ¢ and cq terms dropped). This for-
mula reproduces the renormalized form of Wc(pl,pz) (given by Eq. (III.25) with
A, replacing A and ZR replacing 2.).

The subtractions in Eq. (II.33) depend on Py and P, in the form
{D 0(pz) + D O(pl)} ; hence one is always free to change the formula for Wc(pl,pz)
by adding a finite constant times {Do(pl) +D 0(pz)} . Changing ZR back towards

2 by replacing ¥ by A and adding the ¢, term is exactly a change in Wc(pl,pz)

1

of this type. Hence 1 is a subtraction constant which one is free to set equal to

ZeYro.
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Now study the matrix elements of the divergence of the dilation current,

using the Ward identity (IOI.11). First note that

-ip,s(x,=x ) =ip__.°(x _.-X)
(nd+x1=V1+...+xn-Vn)e 171w g ol n-1"n

(1. 34)

: -ipy(xy7X) -ip -Gk X))

=(nd+p1~V teeutp 0V )e 171 n o "n-l n-17n

Py Ph-1
Using Egs. (III.11) and (III. 14) and an integration by parts one gets
-ip,*(x,-X ). -ip _1-(x,_1-x )
M(xl...xn)=f.,.f e LM e MM Myp . )
P1 P

(1. 35)

with

M(P«+ P, ;) = i(nd - 4(0-1) - p,° vpl—. ee=Pp_q° vpn_l)K(pl. .+, _;) (II.36)

The connected part of M is related to the connected part of K by the same equation.

One can also define

V(xl...xn,y)=f QT B(xq) «o v DX ) :¢4(y): S(z)| 2> (TI. 37
Z
and obtain
-ip,(x,~y) -ip_+(x _-¥)
V(xg.. X ) ={f e L 17 e BN V(p,...p) (UL38)
’ P
1 n

with
V(p...p)=i(nd+ -4n-p.*V_ -...-P *V )W(p,..p) (I1. 39)
1 n dI 1 Py nopy 1 n

It is straightforward to obtain explicit formulae for the connected parts of M to

second order in A and the connected parts of V to first order in 7\'\_ . The
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dimensions d and dI'will be left as unknowns for the moment. For example
. . ' 20, =1
Mc(p) =i(2d -4 -—p-vp) D(p) =i(2d -4 -p-° Vp)x i(p~+1ie)

x{1+ (37\;9;/16 7r4) !ln[(—-pz—ie)/if 2]} (III. 40)
Separating the term where Vp acts on (p2+i €)—1 from the term where V p acts on

the logarithm, this becomes

M (p) =1i(2d-2) D(p) - 1 (6 xi/16 7r4)D0(p) (II.41)

But to order 7\3 , one can replace Do(p) by D(p) in the second term. The resulting

formula for Mc(p) and analogous formulae for other Mc and VC functions are:

M () =i [Zd ~2-332 /(sﬁ] D(p) (III. 42)

M (PysPgsPg) =1 (4d =4 - 92, /2) Kc(pl,pz,p:i) (L. 43)

M (Py-+-Pg) =i (6d-6) K_(P)-+Pg) (III. 44)

V (0.,0.) =i(2d+d -6 W (0.,p.) + 32 (875 1 [D (@) +D (p)] (IIL. 45)
eV 1’Y2 dI eV 1’h2 K oVl oV

V (Pyee Py = i(4d+dI—8—9)\K/7r2) W_(Py+e Py (IIL. 46)

V (Pye+-Pg) =1(6d+d ~10) W (Py...Py) (III. 47)

Equation (III. 45) for Vc(pl, pz) is incorrect because its derivation assumes
that Wc(pl, pz) is unsubtracted. The correct formula will be derived later.

The first application of Eqs. (II.42) - (II.47) is to show that scale invariance
breaks down in ordér }\3 . To determine the validity of scale invariance the
equations for Mc will be discussed order by order (the equations for VC will be
discusscd later). In the free field limit the only nonzero MC is Mc(p) and it too
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is zero if d=1. This agrees with the known result that the free field theory is
scale invariant and ¢ has dimension 1. To first order in 7‘/{ , Mc(p) and
Mc(pl,pz,p3) do not trivially vanish, but by setting d=1 both are zero. So we
infer that scale invariance holds to order A and d is 1 to this order. In order
7\5 the situation is as follows. Mc(bl, ««Pg) vanishes because Kc(pl. ..Pg) is
already of order 7\? and 6d-6 is zero to order 1. The function Mc(pl,pz,p3)
cannot vanish: Kc(pl,pz,p3) is of order AK and d is already determined to be 1

through order A, 80
M _(P{,PysPg) = -1 (92, /2) K (P;,Py,P5) (101. 48)
The function Mc(p) vanishes to order )\i if d is
d=1+3%/(16 1) (ILL. 49)

The nonvanishing of Mc(pl,pz,pB) in order 7\? means S(x) is nonzero in order
7\}2{ , 50 scale invariance breaks down in this order. It does not help to change d
in order to make Mc(pl,pz,ps) vanish in order xi; this would require a change
in d of order A which would make Mc(p) nonzero in order Ao which would be
even worse. It will be assumed in what follows that d is given by Eq. (II.49). 22
It appears that scale invariance is exact through order A K° If so the quantities

Vc must vanish to order AK . Consider first Vc(pl,pz,p3,p4) . Since

Wc(pl,pz,p3,p4) is of order 1, Vc vanishes only if
2
4d+d =8+ /7 (II.50)
Since d is already known, this gives
2
d1=4+9)\K/1r (II.51)

So the dimension of :¢4(x): changes in order )\K . To order AK s Vc(pl. . ,pG)

vanishes (note that Wc(pl" . °pG) is itself of order A
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Before examining Vc(pl, pz), the correct Ward identity for Vc(pl,pz) must
be obtained. To do so requires careful attention to the definition of Fourier
transforms.23 For Vc(pl,pz) we shall use the standard definition (Vc(xl,xz,y)
will turn out to be zero so the standard definition exists). So

) . ip,ex, ip,°x
o . 4 4 171 7272
Vc(pl’pz) = Lim (7 O)f d le d'x, e e Vc(xl,xz,O)

2
|x10|>77 |X20|>7)
(II.52)

The region 121 97%g0! <7 is also excluded from the integral. By analogy with

Eq. (OI.11)
Vc(xl,xz, 0) =i(2d + dl + Xy Vl + Xo* V2) Wc(xl,xz, 0) (IIL. 53)

When this is substituted in Eq. (III.52) one can integrate by parts giving

ipl-x1 ip2°x2
Vc(pl,pz) = Lim (n—0) 1(2d+d1—8—p1- Vp -pz.Vp )f f e e WC(XI’XZ’ 0)
1 2 x1 x2

+ Lim (n —0) E(7,P;,P,) (. 54)

where the integral over X, and Xy still excludes |x10| <m, lxzol < 7, and

|x10—x20| < 7. The term E("r;,plpz) is the sum of surface terms, It turns out

that the surface terms at |x m are negligible but the surface terms at

10 %20 =
X1g = EMOL Xyq = %7 have to be computed giving

E("I ’ pl’ pz) = i.{; _{; ‘—XIO S(Xlo—n) + XlO 6(X10+7)) —Xzo 5(X20"TI)
172

ipl-x1 eipz-xz

+Xo0 8(x20+77)] e Wc(xl, Xgs 0) (OI. 55)

with the regions lxlol <7, etc., excluded still. Because of the &-functions, the

factors %10 and Xgq Are of order 7, so only the singular part of Wc(xl,xz, 0) is
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is important in the integral; for example the integrals with x_ = =+ 7 come pre-

10

dominately from small x lience E is approximately

10

1p 'X2

Em.pypp) =-inf [ {S(XIO—n>+5(xlo+n)}e (31, /167%) D (x)(xic
Xl X

pyx) 6 2 . -2
_.m.[-/; {5(:{20—77)+ 8(x20+77)]e (3}\K /16T ) Do(xl)(x2~1e)
172
(II. 56)
These integrals can be performed explicitly giving
4
E(M,P,P,) = - (3, /8™ ){Do(pl) + DO(pZ)} (OI.57)
To complete the construction of the Ward identity one must replace the unsub-
tracted Fourier transform of Wc in Eq. (OI.54) by its subtracted form. The
result is
V(0P = 1(2d+d1 ~8-py- ¥, <Py vpz) W_(P;,P,)
-3 /87 Dy +D ) + Lim(—0) Fm,ppy (59
with
6 -
F(1,P:Py) = 1(‘>d+d -8-p,"V b, Py p2>f f (32, /167) (L. 59)
iKex, ip,°X _ iKex, ip,°x > o
X {e 1 e 272 DO(xz) (_\'i—ie) 2+e 2o 1 1 ( 1)(\7—1€) -

with lxlol <m, etc., omitted from the integral. The integrals give 7n-dependent
constants multiplying the functions DO(p2) and DO(pl) . Using the values d=1, dI=4

to lowest order, one finds that I*(n ,pl,p.)):o. Using these values for d and dI in
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Eq. (II.58), one has(correct through order }\K):

- (32, /8774) {Do(pl) +D0(p2)} (1. 60)

This Ward identity has an extra term which does not appear in the conventional

form [:Eq° (aoI. 39)]. It is not caused by the subtractions in Wc(pl,pz). It came

from the surface terms E(7 ,pl,pz) arising when Xq VWC(XI’XZ’ 0) and

Xo* VWC(xl,xz, 0) were integrated by parts in the integralof Eq. (I.52). According

to the conventional analysis givenearlier (cf. Eq. (IIL. 10)) these surface terms should
have cancelled. Theywould have vanished had the assumption underlying the conventional
analysis been correct. Namely if J d3£1 Wc(xl,xz, 0) were a smooth function of

X410 at x10=0 (and likewise for S dgggz Wc(xl,xz, 0) at Xy 0=0) then the integral

(1. 55) for E(n, Pys pz) would have been of order 7. In practice the integral

fds,ggl Wc(xl,xz, 0) is of order |x l—l for X107 0 and cancels the explicit factor

10
X140 in Eq. (III.55); hence E(7n ,pl,pz) has a finite, nonzero limit for n—0.

Using the explicit renormalized formula for Wc(p 1,p2) to order A, » one finds
that Eq. (III.60) gives Vc(pl,pz) = 0. So all the functions Vc vanish to order Ao
as expected, and the field :¢4(x): has a dimension dI given by Eq. (II.51).

Since Mc(pl, pz,pS) does not vanish, the operator S(x) (the divergence of
DM(X)) is nonzero. Can it be identified? It has been shown that all connected
matrix elements of S(x) vanish in order 7\,% except for Mc(pl,pz, pg), and
Mc(pl,pz,p3) is proportional to Kc(pl,pz,p3), or to be precise Mc in order xi

is proportional to Kc in order A Transforming to x space, and using the
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perturbation formula which defines Kc in order A <0 Ed. (III. 48) becomes
M (%%, %,%,) = = (932/2) [ <QIT ¢.(x,) 6-(x,) 6.(x.) 6.(x,) :62@):|2> (uL. 61
1% X0 %y 2 ¥ Pr¥p) Prig) PriXy) 0 () -09)
A comparison of this formula with Eq. (III.8) suggests that
2 . 4
S(x) = - (9, /2) :¢ (): (0. 62)

This hypothesis gives back Eq. (III. 61) and also makes all other connected matrix
elements Mc vanish to order xi .

~ Can one understand how a term proportional to :¢4(x): appears in the diver-
gence of D? It will be shown that this is to be expected, given that the operator
:¢4(x): changes its dimension in order A+ To simplify matters consider not

S(x) but the integral
S Pxs = dD/dx (I 63)
The operator D must contain an explicit time dependence proportional to xOH,

where H is the Hamiltonian; 17 this is necessary to give the xOVO¢(x) term in the

commutator of D with ¢. So let

D =x0H+DA (1. 64)
The formula for dD/dx0 is
dD _ &b . .
L -2 _i[p,H -H 1[DA,H] (IIL. 65)
0 0
The Hamiltonian contains the interaction term
HI = AK fd3§ :¢4(x): : (1. 66)
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The contribution of HI to dD/de is HI - i[D A’HIJ . The commutator of D A with

:qb4(x): is
4 . 4 :
Dps i (x):) =-i (d1+§°Z) 1P (X): (01, 67)
Integrating over X, and using an integration by parts on the gradient term

[D A,HI} = -1(d,-3) H, (III. 68)

So the contribution of the interaction to dD/de is - (d;-4) H, which is
-2 (d1-4)f d?’g@ :¢4(x):. Using Eq. (II.51), thisis (—9}3/%2) S d.335 :¢4(x);. According
to Eq. (1II.62) the total dD/d.x0 is half of this so there must also be a contribution
to dD/de from the unperturbed part of the Hamiltonian. This analysis shows
that a term of order 7\,% :qb4(x): is to be expected in v D“(x), given that :¢4(x):
changes its dimension in order 3 K*

To conclude this section the various assumptions and undiscussed problems
will be listed. The above discussion concerned only connected graphs but it can
be shown that the conclusions are unchanged by the disconnected graphs (such as
. the products of two propagators in the four-point function). The matrix elements
of two or more :qb4(x): fields were not computed (thus avoiding the problems
associated with the product T :¢4(x): :¢4(y): when x=y). In deriving Ward identities
the surface terms at time + e were assumed to vanish; this should be checked by
explicit calculation of the matrix elements of D“(x) ,» since one is dealing with a
zero mass theory. In second order in }\K » for which DH is not conserved, it was
assumed that the equal time commutator of D(x) with ¢ could still bé computed
from the matrix element MC(P) as if D were conserved; this will have to be checked
by explicit calculation. 22 However, even if this assumption is incorrect it will

not change the calculation of Mc(pl,pz,pg) to order }\% , since this calculation
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involves the commutator of D with ¢ only to order Ao So whatever the commutator

2

i :¢4(x): term in S(x); there may

of D with ¢ is in order )\i' , there will still be a A
be other terms also. The presence of the ,\’26 :¢>4(x): term in S(x) makes it likely
that the equal time commutz_a.tor of D(xo) with ¢(x) will diverge in order 7\?:{ . This
is because the integral (IiI.8) which defines M(xl,xz) diverges in order xi if 8(x)
is xi :¢4(x) :; this in turn is a consequence of the nonintegrable singularity of

W(xl,xz,y) for y—-X;0r X in order A

2

Given that the interaction :¢>4(x): changes its dimension in order A why
does not the free part of the Hamiltonian aiso change its dimension in order A ?

- If this were to happen then scale invariahce would break down in order A instead
of )\i . This is another question that will not be discussed here.

The analysis of this section has been carried through for the zero mass A¢4
theory. One may ask, why not work with the finite mass theory instead? The
reason for not using the nonzero mass theory is that when the mass is nonzero
the divergence S(x) contains a term proportional to :¢2(x) :, which is nonzero in
the free field limit, This means the matrix elements M(xl. . .xn) will be nonzero
in the free field limit. To show that S(x) contains a term proportional to 7\’% :¢4(x):
in addition one must calculate matrix elements of :qbz(x): to order }\i; one must
also argue that terms proportional to :¢4(x): are not permitted to occur as part
of the renormalization of :¢2(x) :. The argument cannot be rigorous, for if one
is flexible enough about how one renormalizes there is no argument that forbids
the use of finite :¢4(x): counterterms in renormalizing :¢>2(x):° Furthermore the
zero mass case is discussed because it is only for the zero mass case that the
canonical Lagrangian formulation of the 7\¢>4'theory predicts scale invariance,

so it is only for the zero mass case that there is a contradiction between the

prediction and perturbation theory calculations.
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In the renormalization of Wc(p 1’ pz) the constant ¢y was interprected as a
subtraction constant. It is possible to give the constant cq a different interpre-
tation. If one defines the renormalized form of :¢4(x): to include a subtraction
proportional to cq ) V“V“ ¢:, this will also eliminate the cq term from Wc(pl,pz),

This is because the matrix element .

ip.-x ip,°x
ff e L1772 2<QIT¢I(x1) o,(%p) 16,(0) V#V“¢I(O):|Q> (IIL. 69)
%1 %2
2

2
to {D 0(pl) +D 0(pz)}, which is exactly the form of the ¢

computed by Feyrman rules, is {—pi -p } D O(pl) D 0(pz). This is proportional

1 term in Eq. (II.25)
(using Eq. (II.21) for 2). This procedure for eliminating the 1 term is more
conventional than to interpret cyasa subtraction in a Fourier integral. Unfor-
tunately the procedure is nonsensical. The field :¢IVMV“ ¢I: vanishes because
¢I(x) satisfies the free field equation V“V“ cpI(x) =0, This means that :¢ VMV# ¢:
also vanishes in lowest order so subtracting it from :¢4(x): does not change
:¢4(x): in order A Furthermore the integral in Eq. (III.69) should vanish since
integrand vanishes. However the Feynman rules give a nonzero result for this
integral. There is nothing wrong with this; the term given by the Feynman rules
is a term which in x space involves ©&-functions of Xy OT X, which one is always
allowed to add to a T product, even if one of the operators in the T product
vanishes. While there is nothing wrong with adding §-functions to the T product,
it is not a sensible thing to do. In any case ¢y is a subtraction constant in a
Fourier integral. It does not matter whether it is recognized as such or snuck
in by the device of subtracting :¢ Vﬂvu ¢: from :<¢>4(x): and using the Feynman
rules to introduce a subtraction in the definition of integrals of T products in-

volving :¢ Vuv“q):o
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IV. MISCELLANY

In the previous section, it was necessary to know the behavior of the matrix
element {Q|T b(x) b(%,) :¢4(y):|§2) for X ==y Or X, —y. This behavior was
determined by explicit caleulation. This is a problem which can be understood
in general in terms of operator product expansions. 24 In this section the operator
product expansion for T ¢(x) :qb4(y): will be discussed through order A, using the
matrix element W(x,,%,Y) of :¢4(y) ;o At the end of this section the dimension of
the field :¢2(x): will be calculated through order A for the case of an isospin 1
field ¢; it will be shown that the isospin 2 component of :¢2: has a different di~
mension (in order AK) than the isospin 0 component of :¢2(x):. A similar isospin
splitting was postulated in a previous paper1 to explain the AI=1/2 rule in weak
interactions.

In the free field theory the operator product expansion for the product

T $(X) :¢4(y): is derived from the Wick expansion of this product:

T ¢(x) 10" (9): = 4 Dyx-p) %) + 100 6°(9):

=4D(x-y) 67 + 0"+ (¥ - ' W Y 0w+ (VY

In the final form of this formula, functions of (x-y) multiply local operators at the
point y; any such formula is called an operator product expansion, The expansion
is an expansion in terms of x-y and makes sense when x~y is small. In perturba-

tion theory one looks for a generalization of Eq. (IV. 1) in the form

T 6" (: = T, C (x5 O, () (IV. 2
where the Cn(x—y) are functions of x-y and On(y) are local fields at y. The functions
Cn(x—y) may be singular as x—y. The operators On(y) are Heisenberg operators
whose matrix elements will be functions of Ay the functions Cn(x—y) can also
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change with A One can separate the two dependencies because only Cn(x—y) can
depend on x and because the same functions Cn(x~y) must occur no matter which
matrix element of T ¢(x) :¢4(y): one studies, To first order in A K perturbation
theory is scale invariant, which restr;icts the behavior of the functions Cn(x—y) .

As shown in a previous paper, 1 Cn(x) must scale as

[ 1 1)
a —-a-a
C,(s%) = sL n I-jcn(x) (IV. 3)

where dn is the dimension of the operator On(x) . If

d =d o+, d; (V.4
and
Cn(x) = Cno(x) + A, Cnl(x) (IV.5)
then the expansion of Eq. (IV.2) to order A gives
d -
C_n(sx) = s{ no % Cno(x) (IV.6)
no
[dn0'5]
C (%) =5 {(dnl -9, /™ Col® s+ Cnl(x)} (V.

(The dimensions d and d1 are taken from Egs. (II.49) and (II1.51).)

To learn something about the functions C,(x-) and the operators 0,(y in
order Ao We study the matrix element W(xl,x,y) for x near y. The function
W(xl,x, y) has no disconnected diagrams (given that the vacuum expectation value
< :qb4(y):l9> is renormalized to zero) so W(xl,x,y) = Wc(xl,x,y) which is given

by the renormalized form of Eq. (III.31):

-2 -2
W(xl,x,y)_ = (3/16 7r6) A, Do(xl-y) [(x—y)z—-ie] + Do(x-y) [(Xl-y)2 —ie] ] (Iv.8)
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.. ..25
In terms of z=x-y this is

-2
2 - - -
W(xl,x,y) =(3/16 7r6) A, (z -i€) 2 Do(xl—y) - (47r2) 1 (ZZ-i(:‘) 1[(x1—y)2-i€] }
(IvV.9)
There are only two terms when W(xl,x? y) is expanded in z. Comparing with the

operator product expansion, one should have
Wy, %,3) =2 Co(2) <RIT ¢ixy) O ()] 2D (IV. 10)

From the scaling law (IV.6) the term proportional to (zz-ie)_2 must involve an
operator On of dimension dn0=1 while the term proportional to (zz—ie)'~1 must
involve an operator On of dimension 3. There is o_nly one operator of dimension 1,
namely ¢ itself. The coefficient (z 2-—i€)_1 is a Lorentz scalar so it must involve

a scalar field 0, On must be odd in ¢ since ¢ :q§4: is odd. The only possibilities
are VMV” ¢(x) and :¢3(x) :« These are not linearly independent because they are
related by the field equation of the ¢4 theory; it is convenient to regard VNV” ¢

as the dependent field, so the only field left is :¢3:. So the expansion for

W(xl,x,y) should be26
W(xg,%,9) = C,(2) CRIT 9(x) 611D + Cyl2) <RI T 6(x)) :6°(n:12> (IV. 11)

The first matrix element is in lowest order the free propagator; comparing with

Eq. (IV.9) gives
C,(z) =(3/16 7r6) A (@ - ie)’2 (IV. 12)

The matrix element {Q|T ¢(xy) :¢3(y) :|@> vanishes in order 1 and has not been

computed here to order A the function Cy(2) is known in order 1 from Eq. (IV.1)
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to be 4D0(z). Comparison of Eqs. (IV.8) and (IV.11) gives
3 6 2. 17
et $(x,) 19 (v):] 2> = (3/647 ) A, [(x1~y) —ic] (IV.13)

The most singular term in the operator product expansion of T ¢(x) :¢>4(y):
is the term Cl(x—y) &(y) beca;lse ¢(y) is the field of lowest dimension in the
expansion. It is this term that has caused all the troubles with subtractions and
breakdown of conventional Ward identities in Section III. To order Ay this term
does not affect the other connected functions Wc(xl,xz,xs,x,y), etc., because
Cl(z) is of order A and the connected parté of {Q|T ¢(x1) ¢(x2)¢(x3)¢>(y)| Q>,
ete., vanish in order 1.

The analysis of the other connected matrix elements Wc(xl,xz,xs,x,y), ete.,
for small X~y is complicated and will not be given.

In a previous paper1 it was postulated that there would be specific local fields
of isospin 1/2 and 3/2 involved in nonleptonic weak interactions, and that these
fields have different dimensions, the isospin 1/2 field being of lower dimension
than the isospin 3/2 field. If this is true it was shown that the AI=1/2 rule is
universal, with all AI=3/2 decays being suppressed by a power of (m/mw) where

m is a strong interaction macs (~ 1 BeV) and M,,, is the weak boson mass or the

W
equivalent. The assumption is not true of the free quark model. In the free
quark model the relevant local fields are the isospin 1/2 and 3/2 parts of the
Wick product :juoz(x) j: B(x): with jp.oz(x) being the chiral SU(3) currents of the
model; both AI=1/2 and AI=3/2 components of the Wick product have dimension 6.
So it is worthwhile to consider how perturbation theory changes the dimensions

’ of such a Wick product. To simplify the calculation a simple Wick product

;q;i(x) qu(x): is discussed, where ¢>i(x) (i=1,2, or 3) are the components of an

2 12
isospin 1 scalar field. The interaction Lagrangian density will be - A[Ziqbi(X)] .
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Consider the matrix element
Nj %Y%) = T ¢,x) ¢, 9y (2) byl 2 (IV. 14)

To order A this matrix element (before renormalization) is given by

3 -ips(x-2) _-iq-(y-2)
Nijkﬂ(x’y’z) = '/;: 4 e e Nijki(p’q) (IV. 15)

1]k,l(p,c}) Dy(® Dy(a) [ ﬂ Sjk

+ (A2 1r2) (813‘ 5ka+ Sik 5).2 + ‘o‘u Bjk) p [(p+q)2, Az] (IV. 16)

where p is defined by Eq. (II1.18). The field :<;bi(x) qu(x): has isospin 0 and
isospin 2 components. The isospin 0 component is Zi :qbiz:; the isospin two
components can be written as the traceless tensor :¢i¢.: -1/3 813’ Ek :¢12<:.

There is a corresponding decomposition of N, k!l(p N
le!l(p ,d) =8, 8 i NoPsa) + (3,8 2+ 8,y ajk - 2/3 sijakﬂ) N,(P, ) (IV.17)

where N, is the isospin 0 component of N_,, , and N2 the isospin 2 component.

0 ijke
Using Eq. (IV.16) and using the renormalized form of p (Eq. (IiI.29)), one gets
Ny(P> @ = (2/3) Dy(p) D (a) ll +(5 2 /27 m | (-ora)” - e/ 2]‘ (IV. 18)
2
No(P,q) =D (p) Dy(q) {1 + (7\,{/2 7r2) n [(‘(P'FQ)Z ~ie)/k ]‘ (IV.19)

The renormalization is a wave function renormalization (with different renormali-
zation constants for the isospin 0 and isospin 2 components of :qbiqu ). Let dO and
dz be the dimensions of the isospin 0 and isospin 2 components, respectively, of

:¢i¢j:° The Ward identities which scale invariance imposes in NO and N2
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are

i(2d + dO -8 - p- Vp -q- vq) No(p,q) =0 (IV.20)

i(2d + d2 -8 -p- Vp -q- vq) N2(p,q) =0 (Iv.21
As in the case of the neutral field theory of Section III, d is 1 through order Ay
Explicit calculation using Egs. (IV.18) and (IV.19) gives

d,=2+2.,5 (AK/wz) (IV.22)

0
d, =2+ /1> (IV.23)
2 K ¢

so in order >‘:< the dimensions dO and d:2 indeed differ,
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APPENDIX

In this appendix the calculation of p(pz, Az) and Z(pz, Az) (Egs. (I0.17) and
(OI.18)) will be described briefly. Then the calculation of the Foﬁrier transform
of Wc(pl,pz) (Egs. (III.25) zu_ld (I]I..Zl)w) will be discussed. The calculation of
P(Pz, Az) is a standard Feynman diagfam calculation. The answer for finite A

can be obtained exactly in closed form, the result being
2 2 2,2 2,.2 2,.2
pa?, A% = (1/167%) {2-24%/q%) m(1-42/AP) - m(-a%/AD

21/2
)/

2
+ (1-4A%/AY? |z 4A2/q — 1 (A. 1)
(1-4A /qZS +1
X 2., 2., . 2 2 .
with q~ being replaced by q”+i¢ if necessary. For q° << A” this reduces to
2 2 2,.2
pla®s AD = - (1/167%) I (-g°/A%) (4.2)

giving Eq. (1II.20). For q2 > Az p is proportional to A4(q2)—2 n (qz/Az). The
formula for Z(pZ,AZ) is

£e% A =1 [ o Af [@p?+ " (4.9
q
The function p drops off rapidly enough at large q2 so that the integral for 2
converges (for finite A). The function 2. will be calculated first for spacelike
p, and then determined for timelike p through analytic continuation. For space-
like p one can choose a Lorentz frame in which Py is 0. In this frame the integral
over q, can be rotated from the real axis to the imaginary axis (counterclockwise).

The result can be written in terms of Euclidean four vectors
2 2 2771
2ep% a3 = [ p-a? A3 [lan?] (4.4
q
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where q is the four vector ((11,q2,q3,q 4) (and similarly for p) and q2 is

q:i + qg + qg + qi (and similarly for q-p and p2). The integral over q can be

performed in hyperspherical coordinates:

q, =qcos 7 . (A.5)
q, =qsin 6 cos ¢ ' (A.6)
q3=qsin6 sin ¢ cos Y \ (A.7
q4=qsine sin ¢ sin Y (A.8)
f=(27r)‘4 _{;wquq _{ﬁ sin 6 do ]O-W sin ¢d¢_{2ﬂd¢/ (A.9)
q

Performing the angular integrations gives
2 22-1(P 3 2 2 ®° 2
S-p%, A% = @) ,{; q” p(-q7, A%) dq+(1/8ﬂ2)f ap(-a%, A) dg  (A.10)
p

When p2 is small compared to A2, the integrals can be computed using the approxi-
mate form for p (Eq. (A.2)) except in a constant term (the second integral with p

replaced by 0). The result is Eq. (III.21) with
2.2-1 (" 2 .2
c= (871 A%)" ,{ ap(-q~,A%) dg (A.11)

and cy = 3(1024 7r4)_1, The constant ¢ is independent of A because p depends
only on the ratio (q2/A2) .

In Fourier transforming Wc(pl’ p,) the only integral which is not already
known is an integral of the form

u(x) = fe_ip°x fi [(—pz—ie)/Az] (A.12)
p
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For x=0 this is highly divergent, but for ‘x;éO the eprnent serves as a convergence
factor. If one wishes to be careful ong can insert an explicit convergence factor,
say exp {—lpom = 1P4IM = 1P,IM - |p3m} with n > 0, Py to Py being the components
of p. Then one writes

Qn[(—pz—‘ie)/Az} - fww'l

A2 2
e-1wA R +1e)] dw (A.13)
0

After substituting this formula in Eq. (A.12) the p integration can be done ex-

plicitly, leaving

[+ ]
u(x) = (i/16 7r2) f w3 exp { —ix2/4w } dw (A.14)
0

(if the convergence factor is inserted in Eq. (A.12) the result is to cutoff the
integral (A.14) for w < "72). One can change variables to v = w_l and then com-

pute the integral giving
u(x) = (1/i 7r2) (><2-ie)'2 (A. 15)

The i€ is present because x2 needs an imaginary part -ie to ensure that the

integral (A.14) converges.
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cause difficulties, namely the singularity in the product T ¢(x) :¢4(y): for

x —y and only this problem will be discussed.

For background, see Refs. 1, 2, and references cited therein. Ideas com-
pletely analogous to operator product expansions and scale invariance have
been developed independently for classical statistical mechanics by Kadanoff.
See L. Kadanoff, Phys. Rev. Letters 23, 1430 (1969) and references cited
therein.

The zero mass propagator D 0(z) behaves as (zz)_1 for all z,

It seems a bit strange that other local ficlds such as V“V“ :¢3(y): do not occur
in this expansion; presumably they will be involved in higher orders in 7\’{ .
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Fig. 1

(a) Feynman graph for self energy function 2.

(b) Feynman graph for p.



