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persone. Questa é una lista per forza di cose incompleta, quindi se mi sono dimenticato di voi

non sentitevi offesi, ma fatemelo sapere con sottili frecciate nei canali adeguati...

In primo luogo ringrazio la mia famiglia per il supporto durante gli studi e aver accettato la

mia bizzarra vocazione per la Fisica.

All’interno dell’accademia sono estremamente grato al mio tutore Karl per avere accettato la

scommessa di avermi come studente e per la pazienza e il supporto continui durante questi

quattro anni. In particolare gli sono grato per avermi guidato nei miei primi anni di ricerca

lasciandomi allo stesso tempo grande libertá nello scegliere che problemi affrontare.
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compagnia e la rivalitá nei giochi di societá e infine Beatriz per aver portato equilibrio in questa

curiosa configurazione.

Per chuidere questa (incompleta) lista un grandissimo ringraziamento agli invasori Veneti

Gabriele e Francesco per l’infinito supporto e i tanti momenti indimenticabili (qui evitiamo un

elenco per ragioni di spazio, non vorrei che questa tesi si trasformasse in un romanzo) assieme

sin dai tempi universitari, a Ennio Gozzi per la guida accademica e personale e a Cristina per

avermi spinto a questa transizione spagnola.

1This part is written in Italian. I did so because there is no language that encompasses all of the people and

I do not like English too much, as many know. Luckily, I can assure you that great translation applications are

present on the Web. I have tested them.
2Per questo gli sono ancora debitore di una cena.
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Summary

This thesis is devoted to several ramifications of the study of the effects of ’t Hooft anomalies

on the low energy physics of quantum systems. While primarily used through their matching

condition to restrict the possible nature of the infrared degrees of freedom of a quantum theory,

in recent years an increasing amount of literature has been developed linking such anomalies

with (measurable) low energy transport properties. In turn, most of these can be characterized

by time independent (i.e. Euclidean) response theory, which has a natural interpretation in

terms of an Euclidean path integral on manifolds of the type Md−1 × S1 in the presence of

sources for the (anomalous) global symmetries. Since the S1 reduction is expected to give rise

to a local effective action, it is possible, at first order in derivatives, that Chern-Simons terms

onMd−1 may arise. This reformulates the problem of anomalous transport in terms of effective

field theory.

These types of problems have attracted quite a lot of attention by diverse communities, notably:

• The theoretical condensed matter community, which is interested in such phenomena as

universal signature of possible topological phases of real materials (e.g. Weyl semi-metals)

• The QCD/Holography communities, which are interested in the resilience of these phe-

nomena at strong coupling and their possible relevance for hadronic physics.

• The theoretical high-energy community, which is interested in the way the universal

Chern-Simons terms may impact the evaluation of partition functions of anomalous the-

ories.

The report will be centered around various applications and extensions of said paradigms which

I have studied during these years of research, in particular:

• The extension of universality arguments for thermal Chern-Simons terms in the presence

of gravitational anomalies. This topic has been most elusive due to the high order at which

gravitational anomalies enter the derivative expansion. However it has been suggested

that examining the theories on curved backgrounds avoids this problem allowing for an

effective field theory formulation. We circumvent the need for a curved background by

carefully analyzing the Callan-Harvey type inflow mechanism for Lorentz anomalies. This

gives a neat derivation of how gravitational Chern-Simons terms in the gravito-magnetic

potential field may arise and it is explained in Chapter 2.

• The issue of anomaly-induced transport in non-relativistic systems. This is studied in

Chapter 4 and comprises both the direct study of a particular class of fermionic critical

points, which have been pointed out to possibly have interesting transport signatures,

as well as a more general study of a class of (warped) non-relativistic theories through

standard tools of anomalous physics. The two studies match in their region of overlap.



• The extension of this paradigm to higher spin towers of conserved currents, which is dis-

cussed in Chapter 5. We point out some interesting examples in two and four dimensions

and briefly discuss how these may be interpreted as mixing between current operators in

non-trivial backgrounds.

Apart from these topics, we also have two introductory/review Chapters (1 and 3) to lay down

some foundational tools that will be needed in the rest of the exposition. We have decided

also to render each Chapter self-complete, with Appendices appearing at the end of individual

Chapters and containing burdensome computational details.

We conclude each Chapter with a small list of possible future studies, according to the author’s

preferences.

It has to be said, that this thesis will reflect the style of the author, that is it will contain

many excursions about the intuition and the ideas behind the construction, while we will avoid

getting into gory details if not needed. Some formulas may thus be slightly imprecise, but in a

way that does not affect the final results.



Resumen

Esta thesis se centra en varias ramificaciones del estudio de los efectos de las anomaĺıas de ’t

Hooft sobre la fisica de baja enerǵıa de los sistemas cuanticos. Utilizadas en pasado a través

de su conservación con el fin de restringir el espectro de las posibles particulas en el infrarrojo,

durante los ultimos años varios articulos han relacionado la presencia de estas anomalias con

propriedades de transporte medibles a bajas energias. La mayor parte de ellas puede ser

caracterizada a traves de teoria de respuesta independiente del tiempo (i.e. Euclidea), que

se puede interpretar naturalmente en terminos de integrales de camino sobre variedades del

tipo Md−1 × S1 con fuentes encendidas para las simetrias anomalas. Al ser esperable que la

reduccion sobre S1 de lugar a una acción efectiva local, es posible que terminos de Chern-Simons

sobre Md−1 aparezcan a primer orden en derivadas. Esto permite reformular el problema del

transporte anomalo en terminos de teoria efectiva.

Estos tipos de problemas han atraido mucho interest por varias comunidades, por ejemplo:

• La comunidad de materia condensada teorica, que está interesada en tales fenomenos

como signales universales de posibles fases topologicas en materiales reales (por ejemplo,

semimetales de Weyl).

• La comunidad de QCD/Holograf́ıa, que está interesada en la resiliencia de estos fenomenos

en regimenes de fuerte acoplo y su posible relevancia para la fisica de los hadrones.

• La comunidad de Fisica Teorica de altas energias, que quiere estudiar la manera en que

estos terminos de Chern-Simons pueden impactar a la evaluación de, por ejemplo, las

funciones de partición en teorias anomalas.

Este texto se centrará en vairas aplicaciones y extensiones de dichos paradigmas, que he estu-

diado durante estos años de investigación, en particular:

• La extensión de los argumentos para la universalidad de los terminos “termicos” de Chern-

Simons derivados por anomalias gravitatorias. Este topico ha sido bastante problematico

por el alto contenido de derivadas de dichas anomalias. Sin embargo, ha sido sugerido

que poner estas teorias sobre fondos curvos pueda resolver estos problemas y permitir la

formulación de una teoria efectiva. Evitaremos la necesidad de un fondo curvo analizando

con cuidado el mecanismo de influjo de Callan y Harvey en el caso de las anomalias de

Lorentz. Esto nos permitira dar una interesante derivación de como estos terminos de

Chern-Simons puedan ser derivados y se explicará en el Capitulo 2.

• El problema de transporte anomalos en sistemas no-relativistas. Esto se estudiará en

el Capitulo 4 y comprenderá el estudio directo de una clase particular de punto criticos

fermionicos, que han sido ipotizados tener interesantes fenomenos de transporte, aśı como

un estudio más general de una clase de dichas teorias no-relativistas con instrumentos de

anomalias cuanticas. Los dos estudios estarán de acuerdo en las regiones de coincidencia.



• La extensión de dichos paradigmas a torres de más alto esṕın de corrientes conservadas,

que se discute en el Capitulo 5. Demonstraremos algunos ejemplos interesantes en dos

y cuatro dimensiones y discutiremos su interpretación en terminos de mezcla entre las

corrientes en fondos no triviales.

Además de estos topicos, también tendremos dos Capitulos introductivos (1 y 3) para introducir

algunos conceptos y intrumentos que serán utiles en el resto de la esposición. Hemos decidido

hacer cada Capitulo autocontenido a través de Apendices en su final que recogen los detalles

más tediosos de las computaciones.

Cada Capitulo se concluye con un pequeño listado de posibles estudios futuros, según las

preferncias del autór.

Hay que decir que esta tesis reflejará el estilo del autor, es decir, contendrá muchas excursiones

sobre la intuición y las ideas detrás de la construcción, mientras que evitaremos entrar en

detalles sangrientos si no es necesario. Por lo tanto, algunas fórmulas pueden ser ligeramente

imprecisas, pero de una manera que no afecta los resultados finales.
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Chapter 1

A Review of ’t Hooft anomalies

1.1 Introduction

Most of this thesis will be concerned with consequences of ’t Hooft anomalies for the low energy

behavior of Quantum Field Theories. This Chapter serves first as a soft introduction on the

subject and as a review of generic results about the form of the effective action for anomalous

theories. This first Chapter will be a quick review of well known methods and properties of

anomalies, which will be put to use in the second Chapter and in various parts of the rest of

this thesis. The focus is onto introducing methods and ideas which are drawn upon in this

work, rather than giving a complete overview of the subject, which would require a thesis by

itself.

Let us begin by stating what an anomaly is. This term is often origin of confusion in the

Quantum Field Theory literature. We will be interested in theories which have either a global

symmetry group G, or a gauge group G. We will denote dynamical gauge fields by lower-case

letter a, b, c and external ones by upper case A,B,C. Since we mostly work with continuous

symmetries, we assume the existence of a current operator jµ which acts as the generator of

said symmetry. The case of discrete symmetries can be phrased along the lines of the discussion

for ’t Hooft anomalies towards the end of the list.

We will distinguish these three types of anomalies:

ABJ Anomalies, introduced first in the seminal papers [1, 2]. They refer to the possibility

that quantum fluctuations of dynamical gauge fields may break a classical global symmetry.

This is translated into a statement about the Noether current jµ which no longer fulfills the

usual Ward identities; in particular

D ? j = cABJP (a) , (1.1)

as an operator statement. It is very important that both sides are quantum operators. Using

the equation above in correlators leads to expressions for the anomaly involving simple Feynman

graphs. ABJ anomalies lead to the impossibility of quantizing certain theories while maintaining

all of their (classical) symmetries.

Gauge Anomalies refer to the case in which a classical gauge symmetry is broken by quantum

fluctuations, that is:

D ? jgauge = cgaugePgauge(a) , (1.2)

11



CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

again, as an operator statement. Since the conservation of a gauge current is a consistency

condition which follows from quantizing the classical equations of motion for the gauge field,

the presence of such anomalies spoils the consistency of the quantum theory. In the perturbative

(Feynman) expansion, this is reflected in a lack of renormalizability due to the impossibility

of applying the Ward identities. The cancellation of gauge anomalies is thus a consistency

condition for any physical theory. Another way of saying it, is that the gauge current implements

a constraint on the Hilbert space of the quantum theory, conservation renders this constraint

consistent and the gauge anomaly spoils such consistency. A more conservative statement is

that the gauge field acquires a further propagating degree of freedom, can become massive,

and it is not clear whether the theory may still be renormalizable in such a regime. For our

purposes cancellation of gauge anomalies can be thought as a set of consistency requirements

on quantum field theories.

’t Hooft Anomalies. These are, in a certain sense, a more general construction than the

previous two, since both ABJ and gauge anomalies may be obtained by gauging parts of the

global symmetry group in question. They concern the fate of the global symmetries of the

theory upon the introduction of external gauge fields A for them. The most general definition,

which applies to both continuous and discrete symmetries, is to look at the properties of the

partition function Z[A] under the gauge transformation A → Aα, where Aα = A + Dα for

continuous symmetries.

Generally the partition function ought to be invariant under such redefinition due to current

conservation, however, in the presence of ’t Hooft anomalies it is allowed to vary by a phase

Z [Aα] = exp

(
i

∫
c’t Hooftα P (A)

)
Z [A] , (1.3)

which makes the modulus of the partition function a well defined object, while the phase is

not1.

For continuous symmetries the above condition is most easily stated in terms of the generating

functional W [A] = log (Z [A]) as

δαW [A] = i

∫
c’t Hooftα P (A) ≡ iAα(A) . (1.4)

For a continuous symmetry (1.3) can be translated as a statement about the one-point function

of the divergence of the current operator by expanding to linear order in α

〈D ? j〉 = c’t Hooft P (A) . (1.5)

Notice that this is not an operator equation, however one may turn it into such by summing

over the As, thus gauging the symmetry. In this sense ’t Hooft anomalies are an obstruction to

the gauging of a global symmetry.

Another equivalent statement comes from taking functional derivatives with respect to A of

(1.3) and then setting A to zero. This gives rise to the well known fact that current correla-

tors of the form 〈Dµj
µjνjρ...〉 are non-vanishing at coincident points. Thus, in a theory with

1The reason for this is that the modulus can usually be defined by Pauli-Villars regularization. Such state-

ment ceases to be true if the theory is no longer CPT invariant, as is the case when one introduces complexified

gauge backgrounds. This seems to be useful in some recent applications [3]

12



1.1. INTRODUCTION

t’Hooft anomalies, only contact terms of the current operators are affected, this constitutes a

characterization of anomalies as a UV phenomenon.

It is important to stress that the symmetry in a theory with ’t Hooft anomalies is not broken

as in the ABJ case: local operators2 continue to transform in irreducible representations of the

symmetry group and the Hilbert space carries the quantum numbers of the global symmetry.

In this thesis we will be always working with ’t Hooft anomalies. From now on we will omit

such prefix and refer to them only as “anomalies”.

Let us now state various pieces of lore about these anomalies, the ones most relevant for this

Chapter will be further discussed in the next Section.

• Anomalies for continuous symmetries can be computed perturbatively using standard

Feynman diagram techniques. They turn out to exist only in even space-time dimension

d = 2m, with P (A) a polynomial starting at order m in A and its derivatives (in the

abelian case P (A) = (dA)m). Taking functional derivatives one finds that the coefficient

c’t Hooft is given at one loop by an (m+1)-gon diagram of currents (in four dimensions it is

the famous triangle diagram). This turns out to be linearly divergent and must be regu-

larized. The finite remainder is scheme independent and gives the anomaly. Furthermore,

it can be shown that this computation at one-loop is actually exact, this can be explained

by noticing that c’t Hooft is a quantized function of the charges of the elementary particles

[4, 5] (in a weakly coupled description), it thus can only change in a discontinuous way.

The one loop term is the only one independent of the continuous parameter ~ and thus

it is the only term that may contribute. Of course a real proof of this statement involves

careful analysis of the possible higher loop diagrams.

• In a quantum theory the generating functional is only defined up to the addition of local

counter-terms. Thus it is plausible that particular counter terms exist (which are not

gauge invariant) that make the anomaly to vanish. Only when such counter-terms do

not exist we may really talk about a ’t Hooft anomaly. In other words, the equations

(1.4) above is defined modulo gauge variations of local functionals of A. This observation

prompts examining the problem of classifying possible anomalies as a cohomological one,

whose solution is discussed in the next Section. This analysis has a further implication

however, that, even for anomalous theories, a local counter-term living in one dimension

higher that cancels the anomaly may always be found. This procedure is called the inflow

mechanism [6]. In modern language, one may think as d + 1 dimensional space-time as

hosting a very massive quantum theory, which at low energy generates the required func-

tional as a topological field theory upon integrating out the massive degrees of freedom.

• While ABJ and gauge anomalies essentially give “destructive” results about the fate of

the symmetries of a quantum theory, ’t Hooft anomalies are very useful in that they

give constructive input about the structure of interacting theories. Indeed, following the

original idea by ’t Hooft, suppose we are given a UV free Quantum Field Theory. At

2To be precise, care is needed in dealing with current operators, indeed we will see later that defining currents

as functional derivative of the effective action leads to objects which do not transform in the correct way under

the anomalous symmetry. This can however be remedied by fixing the contact terms in the current-current

correlators to define covariant currents.
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

high energy it can be described as a set of weakly interacting particles, say Ψi, which

however become strongly interacting at lower energies. In the UV we may compute ’t

Hooft anomalies for its global symmetry G at one-loop. Then, we may add a set of

massless free fields Ψ̃a which are also charged under G, but precisely cancel the ’t Hooft

anomaly of the rest of the matter content3. We can then gauge the G symmetry, since

it is anomaly-free and flow into the strongly interacting, low energy, regime. Here we

find the same free particles Ψ̃a but a different effective description for the Ψi. However

we still can assure that the G current is anomaly-free, since it is gauged, and that the

contribution to its anomaly from the Ψ̃a particles is the same as in the UV. Thus we

conclude that, at low energy, the theory for the Ψi still has the same ’t Hooft anomaly,

that is, the coefficient c’t Hooft is an RG invariant. This is usually called “’t Hooft anomaly

matching”. It is a nice and interesting question, object of much recent studies, to classify

the possible ways in which a certain anomaly may be matched. This gives insights on

the possible G-preserving RG flows that the theory may be subject to. In particular, one

may try and ask whether a topological theory in the infrared may saturate the anomalies

[7].

• While we have only talked about anomalies involving only one symmetry group G, it

is often the case in theories with G = G1 × G2 global symmetry that mixed anomalies

between G1 and G2 may arise. What this means is that the current (non)-conservation

equations take the form

D ? j1,2 = c1,2P1,2(A1, A2) . (1.6)

In these cases it is always possible to find local counter-terms so that either c1 or c2

vanishes. What these equations imply is that it is not possible to gauge both G1 and G2

at the same time in a consistent way. Upon gauging one symmetry the other is broken by

an ABJ anomaly. A prime example is the usual massless Dirac fermion, which classically

has a U(1)V × U(1)A global symmetry. There is however a well known mixed anomaly

between the two U(1)s. Preserving the Maxwell vector symmetry U(1)V and gauging it

leads to an ABJ anomaly for the axial current, which breaks the axial symmetry down

to a discrete subgroup Z2q, with q the charge of the fundamental fermion.

• It is also common (but ultimately inexact) lore that anomalies are only tied to theories

with fermionic degrees of freedom. This will be largely true for the theories we will

examine, and it is the historical way in which perturbative anomalies were computed using

the Fujikawa method (which we review in the next Section). Two important exceptions

are anomalies for discrete symmetries and anomaly matching in the case of bosonization-

type of duality. In this last case the bosonic theory must also reproduce the anomalies on

the fermionic side. A simple and notable example is the chiral anomaly in d = 2 which

is matched by the free boson CFT through a mixed anomaly between momentum and

winding U(1) symmetries.

3As long as the UV description is weakly coupled these are guaranteed to exist, since they are basically the

complex conjugate of the Ψi with interactions turned to zero. If the UV theory is also strongly interacting it is

less clear that such a system always exists.
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1.2. HOW TO COMPUTE ANOMALIES

The classification given above is not precise nor complete. For example conformal anomalies

do not seem to come by inflow from one dimension higher nor satisfy the ’t Hooft matching

conditions, instead they can be shown to be monotonous functions under Lorentz preserving

RG flows [8, 9]. Another interesting aspect not included in our discussion are higher form

symmetries [10], 2-Group symmetries [11, 12], in which the “anomaly” is given by a combination

of external and dynamical gauge field D ? j = c2P (A)Q(b), in this case the symmetry is

maintained in the absence of external sources, however the OPE of the global current operators

is modified so that they may fuse in the Q(b) operator, which is usually a topological current

for extended excitations.4

The rest of the Chapter, which is organized as follows: in Section 1.2 we give a systematic

description of ’t Hooft anomalies for continuous symmetries and generalities for their computa-

tion. This still does not give not a complete list of methods, since we leave of some historically

important points of view such as the triangle diagrams and Schwinger’s point-splitting regular-

ization. The main concern has been to introduce methods which will be relevant for the rest

of the thesis. Very good review books are available, for example [13, 14, 15] and lecture notes

[16, 17, 18]. The formalism developed will be used in the next chapter 2 where we explain

how anomalies constrain the low energy effective action and give general methods to compute

such dependence. This gives us the opportunity to review the corresponding literature and to

state some interesting results about gravitational anomalies. We conclude with remarks about

possible open directions.

1.2 How to compute Anomalies

The primary objective of this section is to explain the mathematical structure behind anomalies,

that is the possible form of P (A) and to give practical methods to determine the “anomaly

coefficient” c’t Hooft.

While the first task is beautifully encoded in the solution of a series of consistency require-

ments for the effective action W [A] which can in turn be converted in a cohomological problem

following Wess and Zumino [19], the second task has no universal solution. For theories with

a perturbative description Feynman diagrams are always available, but for the theories we

are interested in, which will all involve fermionic excitation, a more elegant method has been

proposed by Fujikawa [20].

While the Wess-Zumino conditions are purely geometric-algebraic equations, the Fujikawa

method requires regularizing divergent expressions. This may be done in various ways, but

it turns out that the computations simplify drastically if one uses a gauge invariant regulator.

4Notice that above we have used “anomaly”, indeed the conservation law in the two group case should not

be viewed as an anomaly, but rather as a different group symmetry. Indeed the partition function may be

made gauge invariance by introducing a gauge field BQ for the topological current and suitably changing its

transformation law to cancel the “anomalous” variation. This new transformation law goes under the name of

“two group symmetry”. This is somewhat similar to what happens with axions in the case of ABJ anomalies.

Another way of saying this is that the anomaly is the solution to a cohomological problem, which may be

trivialized by enlarging the space of fields. These two group structures may still be anomalous in the usual

sense, by having the partition function not be gauge invariant under the full two-group by a complex phase.
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

This however has an unwanted consequence in that the partition function thus defined will not

satisfy the Wess-Zumino equations.

Another way to phrase the problem is that current operators, in the presence of an external

gauge field A, are susceptible to redefinitions by polynomials in the external fields:

jµ → jµ + P µ
BZ(A) , (1.7)

in the theory without external gauge fields, such redefinitions correspond to different choices

of contact terms in current correlators. Let us stress that these redefinitions may or may not

be expressible as the addition of local counter-terms to the effective action.

Now, in the presence of ’t Hooft anomalies, there is no reason for these polynomials to be gauge

invariant and indeed one can define two interesting sets of current operators:

Consistent currents J µ, which are defined as being functional derivatives of the effective

action W [A] satisfying the Wess-Zumino equations:

〈J µ1 ..J µn〉 = −i δ

δAµ1
...− i δ

δAµn
W [A] , (1.8)

which are however not gauge invariant operators as we will shortly see.

co-variant currents Jµ which are gauge invariant operators, defined through a co-variant

regularization of the Quantum Field Theory of interest, but cannot be written as functional

derivatives of the effective action W [A].

As we have already mentioned, the two choices may be related by a local polynomial in the gauge

fields P µ
BZ , called a Bardeen-Zumino polynomial. From the definition of co-variant currents, it

follows that P µ
BZ cannot arise as a local counter-term in d dimensions.

With these definitions in mind, we can now enter the core of this Section. To fix some ideas,

in the next Subsection we will always refer to consistent anomalies, while in the following one

we will compute co-variant anomalies. We will then conclude with some well known examples

of anomalies which will be useful for the second part of this chapter.

1.2.1 Consistent anomalies and WZ descent equations

As we have anticipated at the beginning of this Section, there exists a formal way to categorize

possible candidates for quantum anomalies. This starts recalling that gauge transformations

form a group. Specializing to infinitesimal transformations generated by parameters α, β the

group law reads

δαδβ − δβδα = δ[α,β] . (1.9)

It is natural to ask the effective action of a quantum theory to follow such group law, that is:

(δαδβ − δβδα)W [A] = δ[α,β]W [A] . (1.10)

Equation (1.10) is called the “Wess-Zumino consistency condition”. By using (1.4) one may

phrase this as a consistency condition for quantum anomalies:

δαAβ(A)− δβAα(A) = A[α,β](A) , (1.11)

These equations have a wealth of solutions:
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1.2. HOW TO COMPUTE ANOMALIES

1. One notable class is made up of gauge-invariant effective actions δαWinv(A) = 0, which

just give Aα(A) = 0.

2. Another set of solutions is made-up of integrals of arbitrary local (albeit not gauge-

invariant) counter-terms, which are polynomials in A. In this case one may write, in an

appropriate basis δα =
∫
Dµα

a δ
δAaµ

and the consistency condition follows swiftly.

Such local counter-terms should not be responsible for defining anomalies, since they may be

added or subtracted at will to the effective action. Thus it is natural to define the possible

candidates for anomalies as:

Anomalies = {solutions to (1.10), (1.11)}/{local counter − terms} (1.12)

which already starts looking like a cohomological problem. Notice that, while this procedure

does fix the form of the possible (perturbative) anomalies of a theory given its continuous

symmetry group G, it does not fix the coefficient with which they might appear (which may

as well be zero). That needs to be computed directly by different methods once the theory is

fixed.

BRST cohomology and descent equations

The main obstacle to having a well defined cohomological problem is that gauge transformations

with a fixed parameter α are not naturally nihilpotent. The simple way out of this is to promote

gauge parameters to anti-commuting ghosts c valued in the Lie algebra g of G. The BRST

transformation thus defined is usually called s and acts as

sA = Dc , (1.13)

sc =
1

2
[c, c] , (1.14)

which satisfies s2 = 0. The Wess-Zumino condition for the anomaly then becomes

sAc(A) = 0 , (1.15)

and A is defined only modulo s-exact terms.

In many applications, however, it is most convenient to work with an “un-integrated” anomaly,

that is Aα =
∫
Pα(A). Then Pα(A) is also determined by cohomological equations, however

only up to total derivatives, that is

sPc(A) = dQc(A) . (1.16)

Luckily, since the operators d and s can be defined in such a way that {d, s} = 0, this problem

can be embedded in a bigger cohomological machinery to which solutions can be generated.

Indeed let us denote by P p,g a p-form with g insertions of the BRST ghost c (that is, ghost

number g). Naturally we are looking for P d,1 forms defined in the joint cohomology of d and s,

which satisfy

sP d,1(A) = dP d−1,2(A) , (1.17)
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

now suppose we have at our disposal a d+ 2 form P d+2,0(A) which satisfies:

dP d+2,0 = 0 , sP d+2,0 = 0 , (1.18)

that is, it is both closed and gauge invariant. Then we may (locally) write P d+2,0(A) =

dP d+1,0(A). What is now sP d+1,0(A)? This is a d + 1 form with ghost number 1. We can

compute dsP d+1,0(A) = −dsP d+1,0(A) = sP d+2,0(A) = 0 to conclude that sP d+1,0(A) is locally

closed, thus

sP d+1,0(A) = dP d,1(A) . (1.19)

The same reasoning using now nihilpotency of s shows that

sP d,1(A) = dP d−1,2(A) , (1.20)

making P d,1(A) a candidate anomaly. The chain of equations

P d+2,0(A) = dP d+1,0(A) , (1.21)

sP d+1,0(A) = dP d,1(A) , (1.22)

sP d,1(A) = dP d−1,2(A) , (1.23)

... , (1.24)

sP 0,d+1 = 0 , (1.25)

are known as the Wess-Zumino descent equations. This is an extremely powerful result, since it

ultimately allows to encode the information about the anomalous structure of a theory simply

by giving the possible top forms P d+2,0
i (A) and the ’t Hooft coefficients ci. For example, it

simplifies a lot the treatment of mixed anomalies, since in this case there are multiple represen-

tatives for P d,1(A1, A2) which “move” the anomaly between different sectors, but only a single

P d+2,0(A1, A2) to start with. Our task at this point is to find a way to determine the possible

top forms P d+2,0(A).

Invariant polynomials,Chern-Simons forms and transgression

In this section we give a simple class of top forms P d+2,0(A) in the case of a single gauge group,

these are called invariant polynomials. The extension to more than one group (that is mixed

anomalies) is straightforward as one can take the exterior product of invariant polynomials of

lower degree for the two groups.

We start by considering a complex valued n× n matrix X and the space of polynomials from

Cn×n → C which are invariant under GL(n,C) transformations X →MXM−1 and are of fixed

degree m. Next we substitute X with the curvature two-form for a G-valued connection A,

F = dA+A∧A. We take a basis of this vector space which we call P d+2
i (A)5. The Chern-Weyl

theorem (see e.g. [21] for a review) states that these invariant polynomials define closed forms

dP d+2
i = 0. Also, gauge invariance follows from the GL(n,C) invariance we have required

and the transformations property of the curvature F → g−1Fg. The proof of the Chern-Weyl

5The notation is as follows: d + 2 stands for degree of the differential form once we have substituted X for

F , since F is a two-form this is a polynomial of degree m = (d+ 2)/2 and is defined only for even d.
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theorem essentially follows by showing that invariant polynomials may be written as sums and

products of Tr (F n)6, which is a closed form by the Bianchi identity DF = 0 since

dTr (F n) = nTr
(
dF ∧ F n−1

)
= −nTr

(
[A,F ]F n−1

)
= 0 . (1.26)

A nice class of these invariant polynomials is given by the Chern characters

Chn(F ) = Tr (Fm) , (1.27)

which are the starting point in deriving anomalies for e.g. SU(N) symmetries. These can be

extracted from the generating functional

Ch(F ) = Tr
(
eF/2π

)
(1.28)

Another important object which will often appear are the Chern characters cn(F ), which are

extracted from:

c(F ) = det

(
1 +

F

2π

)
, (1.29)

in particular, for e.g. SO(d) bundles, F T = −F and odd terms in the expression above vanish,

in this case (which is of relevance for diffeomorphisms and Lorentz transformations F = R),

one has the Pontryagin classes pn(R) by

c(R) = 1 + p1(R) + p2(R) + ... , (1.30)

with pn a polynomial of degree 2n in the curvature R.

Before closing this part, it will be also useful to give a constructive approach, known as trans-

gression formulas, which gives the form of lower lying terms in the Wess-Zumino descent equa-

tions. They are also very useful in determining the change in Chern-Simons form after a change

in the connection. We will use such formulas in the next Chapter to determine the effects of ’t

Hooft anomalies on thermal effective actions on Md−1 × S1.

The idea is to fix an invariant polynomial P d+2,0(A) and consider two connections A1 and

A2 which are homotopic to each other. This means that At = A1 + t(A2 − A1) is a well

defined connection for each t ∈ [0, 1]. We can then define a curvature Ft = dAt + At ∧ At and

a co-variant derivative Dt. We are interested in computing the difference between invariant

polynomials built out of the two connections P d+2,0(A2)− P d+2,0(A1). The starting point is to

write

P d+2,0(A2)− P d+2,0(A1) =

∫ 1

0

dt
d

dt
P d+2,0(At) , (1.31)

since P d+2,0 depends only on Ft we may use the chain rule. Furthermore we also notice that
d
dt
Ft = Dt(A2 − A1) ≡ Dt∆A, so that:

P d+2,0(A2)− P d+2,0(A1) =

∫ 1

0

dt Tr

(
DtA

∂P d+2,0(At)

∂Ft

)
, (1.32)

6Throughout the text we use Tr to denote the trace in the adjoint representation, while we use trR or just

tr to denote traces in a fixed representation of just the trace of an n× n matrix respectively.
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now one integrates the Dt by parts and uses the Bianchi identity DtFt = 0 to find our first

transgression formula:

P d+2,0(A2)− P d+2,0(A1) = d

∫ 1

0

dt Tr

(
∆A

∂P d+2,0(At)

∂Ft

)
, (1.33)

this implies that the integral of P d+2,0(A) over a closed manifold is a topological invariant of

the gauge bundle.

By our previous discussion the formula above also gives

d
(
P d+1,0(A2)− P d+1,0(A1)

)
= d

∫ 1

0

dt tr

(
∆A

∂P d+2,0(At)

∂Ft

)
, (1.34)

from which a representative of the Chern-Simons form P d+1,0(A) may be extracted by setting

A1 = 0. One can go one step further and derive also a transgression formula for Chern-Simons

terms. While part of it is already present in the line above, it does not satisfy the descent

equation by itself.

We can start just as before by writing the difference between the two Chern-Simons forms as

a time derivative:

P d+1,0(A2)− P d+1,0(A1) =

∫ 1

0

dt
d

dt
P d+1,0(A)

=

∫ 1

0

dt Tr

(
∆A

∂P d+1,0(At)

∂At
+Dt∆A

∂P d+1,0(At)

∂Ft

)
,

(1.35)

notice now a further term, since the Chern-Simons form may also depend on A. We can go a

bit further, taking variations of P d+2,0(A) = dP d+1,0(A) and using δF = DδA gives

Tr

(
∂P d+2,0(A)

∂F
δA

)
= Tr

([
∂P d+1,0(A)

∂A
+D

∂P d+1,0(A)

∂F

]
δA

)
, (1.36)

or
∂P d+1,0(A)

∂A
=
∂P d+2,0(A)

∂F
−D∂P

d+1,0(A)

∂F
. (1.37)

Substituting this into (1.35) and integrating by parts the Dt gives

P d+1,0(A2)− P d+1,0(A1) =

∫ 1

0

dt Tr

(
∆A

∂P d+2,0(At)

∂Ft

)
+ dP̃ d,0(A)

P̃ d,0(A) =

∫ 1

0

dt Tr

(
∆A

∂P d+1,0(A)

∂F

)
.

(1.38)

Since P d+2(F, ..., F ) is a symmetric polynomial by definition, we can simplify the formulas

above by recognizing that

Tr

(
G(A)

∂P d+2,0(Ft)

∂Ft

)
=
d+ 2

2
P d+2(G(A), Ft, ..., Ft) , (1.39)

which might be useful in practical computations.

The transgression formulas deserve further comments in view of the discussion about anomaly

inflow. The variation sP d+1,0 can be computed by setting A2 = A1 + sA1 and restricting to
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ghost number one. Perhaps more simply, we can use the transgression formula for the trivial

connection At = tA and take the s transformation of that. The general formula is quite

cumbersome, it has however a very important property: it comes in two terms: one, stemming

from P̃ d,0 looks like a local contribution in d dimensions, the other, coming from the remainder

of the formula, is a purely d+ 1 dimensional piece.

This piece will be given by the ghost parameter times a function of the curvature F 7, while

the piece coming from P̃ d,0 will be a total derivative of a function of (A,F ). We can then

improve the current operator of our quantum field theory by including this contribution into

the current. The formula for the anomaly will then look perfectly gauge invariant, i.e. we will

have defined a co-variant anomaly.

Such contribution is usually called a Bardeen polynomial and allows us to define co-variant

currents. A more straightforward way to define this is to recall that consistent currents are

local variations of the effective action, then:

s ? j = s
δ

δA
W [A] =

δ

δA
sW [A] =

δ

δA
A(A) (1.40)

which gives in a straightforward (albeit sometimes tedious) way the Bardeen Polynomials. We

can also use this formalism to introduce in a concise way co-variant anomalies.

As we have already mentioned, the descent procedure gives a candidate consistent anomaly

P d,1(α,A)8 which satisfies the consistency conditions

δβP
d,1(α,A)− δαP d,1(β,A) = P d,1([α, β], A) . (1.41)

Recall that P d,1 appears on the right-hand-side of the conservation law for the consistent cur-

rent. By using the Bardeen Polynomials we can thus define a new quantity P d,1
cov(α,A), namely

the co-variant anomaly, that appears on the right-hand side of the co-variant conservation law.

Since the co-variant current transforms co-variantly under gauge transformations, δαJ = [α, J ]

we conclude

δαP
d,1
cov(β,A) = P d,1

cov([α, β], A) , (1.42)

we can derive the same formula for δβP
d,1
cov(α,A) and, since the commutator is anti-symmetric

we conclude:

δαP
d,1
cov(β,A)− δβP d,1

cov(α,A) = 2P d,1
cov([α, beta], A) , (1.43)

which is the “consistency” condition for the co-variant anomaly. Notice the important factor

of two on the right hand side.

We can also give a more compact albeit formal way of computing the anomaly by packing all

of the Wess-Zumino chain of equation is a single ghost-valued polynomial. This is known as

“Stora’s” approach. The main idea is to define a new exterior derivative d̂ = d + s and a

shifted connection Â = A+ c9. With a bit of algebra one can prove the following “horizontality

condition”10

F̂ (Â) = d̂Â+ Â ∧ Â = F (A) . (1.44)

7Thus transforming co-variantly under gauge transformations.
8For the moment let us treat α as an ordinary gauge parameter.
9Notice this is only a formal definition, since Â is not a differential one-form, one should always thinking of

expanding such formal expressions in pieces with fixed form degree and ghost number.
10This is maybe better known as the “Russian formula”.
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Since F̂ satisfies a Bianchi identity with D̂ = d̂ + [Â, ·] we can write the same transgression

formula for P d+2,0(F̂ ), but now with hatted fields. this leads, after applying the Russian

formula, to the following identity:

d̂P d+1,0(A+ c, F ) = dP d+1,0(A,F ) , (1.45)

which, upon expansion in c, gives back the descent equations. Now one can simply input the

shifted Chern-Simons term above and algebraically expand to in the ghost fields to write down

the full consistent anomaly chain.

As a final comment, it is important to stress that, with no a priori perturbative computa-

tion, there are various candidate P d+2,0 in higher dimensions, constructed e.g. from Tr(F 2)m,

Tr(F 3)l etc. A particular system will have its own combination of such characteristic polynomi-

als. For a given type of free particles there are known formulas giving the anomaly polynomial

in generic dimensions, which is not fixed by consistency alone.

1.2.2 Covariant anomalies and the Fujikawa method

A very general method to compute perturbative anomalies in fermionic theories was developed

by Fujikawa in the ′70s. Let us rewiew the main idea behind it. Let us start from an (Euclidean)

fermionic path integral in an external background:

Z[A] =

∫
DΨDΨ̄e−S+i

∫
?j∧A , (1.46)

under a local G-symmetry transformation with parameter α, of which j is the current,

Ψ→ Uα[Ψ] ≡ Ψα , A→ A+Dα (1.47)

Naively, since the symmetry acts unitarily, the measure changes by

DΨ→ DΨα det

(
δΨ

δΨα

)
= DΨα , (1.48)

while the gauge transformation affects the minimal coupling ?j ∧ A by an additional ?j ∧Dα
term and gauge invariance implies:

Z[A+Dα] = Z[A] ⇐⇒ D ? j = 0 , (1.49)

as in the usual Noether theorem.

This is a correct reasoning were we to integrate over a finite number of variables. The key

insight of Fujikawa is to understand that, in the QFT case, the determinant det
(
δΨ
δΨα

)
is ill-

defined and needs regularization. For the purposes of perturbative anomalies we may just work

at linear order in α and linearize δΨ
δΨα

= 1 + δα. Then

det

(
δΨ

δΨα

)
≈ det (1 + δα) = exp (tr log(1 + δα)) ≈ exp (tr [δα]) (1.50)

and we are led to consider the regularized trace

Tα(τ) = tr
[
δαe
−τR] , (1.51)
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with R an A dependent, co-variant regulator. For Dirac fermions the standard choice is R = /D
2
A.

At this point one may perform the heat-kernel expansion for small τ :

Tα(τ) =
∞∑

n=−k

τ kt(k)
α (A) , (1.52)

and the co-variant anomaly is identified exactly with t
(0)
α (A), so that, one derives the anomaly

equation ∫
(αD ? j) = t(0)

α (A) . (1.53)

In the standard case of chiral anomalies δα = iαγ5 and one can actually show that the regu-

larized trace is independent of τ 11. Then it is possible to compute the anomaly in the limit

τ → ∞ in which it only projects onto zero modes of the Dirac operator. Because of chiral

symmetry one may decompose

/DA =

(
0 DA
D†A 0

)
, (1.54)

so that say left handed zero modes are in ker(DA) while right handed ones are in ker(D†A).

Then, at τ →∞

Tα(τ) = itr(γ5e
− /D2

A) = dim ker(DA)− dim ker(D†A) = index(iDA) , (1.55)

which connects the index theorem with ’t Hooft anomalies. This can be made into a general

statement by proving τ independence in arbitrary dimension. The upshot is that general

formulas for the index of a given differential operator are known, which considerably simplified

the computation of anomalies. This has been used to provide general formulas for the anomalies

of free field representations [22, 23]

In practical cases, one either uses the results from the mathematical literature to compute the

index, or explicitly computes the regularized trace by choosing a convenient basis of one particle

states.

1.2.3 Explicit formulas and notable examples

We conclude this section by giving some notable applications of the formalism described up

until now. We will describe the possible anomalies related to abelian flavor symmetries and

gravitational (or Lorentz) symmetries in low dimensionalities and comment on the general

structure in higher dimensions. We will also discuss some basic aspects of these anomalies,

such as the related conserved currents or the fact that Lorentz and diffeomorphism anomalies

are always of mixed type between each other for Riemannian geometries.

11This follows from expanding the Fermi fields in eigenfunctions of the operator i /D. Since γ5 anticommutes

with it, a left-handed eigenvector with eigenvalue λ is compensated by a right handed one with eigenvalue −λ,

so only zero modes do not cancel in the regulated sum. Hence the τ independence.
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

Ward identities in the presence of external fields

We start by devoting some lines to the explicit description of the form of abelian and diffeomor-

phism anomalies in general dimensionality12 and to setting up some notation. While up until

now we have used mostly coordinate-free formulas, here we adopt a more pragmatic approach.

We work on a general curved d dimensional manifold Md equipped with a metric gµν and an

external gauge field Aµ. We define as usual the Christoffel connection by the compatibility

condition

∇µgαβ = 0 , (1.56)

and the absence of torsion 13 to be

Γνµρ =
1

2
gνα (∂ρgµα + ∂µgρα − ∂αgµρ) , (1.57)

being gµν the inverse metric. The curvature associated with this connection is given by the

familiar Riemann tensor

Rµν
α
β = ∂µΓαν β − ∂νΓαµβ + ΓαµδΓ

δ
νβ − Γαν δΓ

δ
µβ . (1.58)

We will also use in many occasions a vielbein eaµ, with a a fundamental SO(d) index, denoting

Eµ
a its algebraic inverse satisfying

eaµE
µ
a = δµν eaµE

µ
b = δab . (1.59)

We will also introduce a spin connection ωµ
ab for the SO(d) symmetry and demand the com-

patibility condition

∇µe
a
ν = 0 , (1.60)

which fixes the spin connection in terms of the vielbein variables:

ωµ
ab =

1

2
Eνa

(
∂νe

b
µ − ∂µebν + Eσbecµ∂σeνc

)
− (a↔ b) . (1.61)

Since the vielbein satisfies gµν = eaµe
b
νδab the spin connection and the Christoffel symbols are

not independent objects once the compatibility conditions are imposed the relation between

them is

Γαµβe
a
αE

βb = ωµ
ab + Eνa∂µe

b
ν . (1.62)

This formula will allow us to relate diffeomorphism and Lorentz anomalies.

In an anomaly-free theory the effective action is a (gauge invariant) functional of g,Γ, A, F , or

alternatively of the frame variables ea, ωab and the U(1) field. Its variation is given by

δW [g,Γ, A] =

∫
√
g
(
tµνδgµν +Gα

µβδΓµ
α
β + J µδAµ

)
,

δW [e, ω,A] =

∫
|e|
(
tµaδe

a
µ + Sµabδω

ab
µ + J µδAµ

)
,

(1.63)

12The existence of anomalies for the coupling to an external curved geometry was pointed in some early works

[24, 25, 26] out and elaborated on in the seminal paper [27].
13Such conditions will be relaxed in the next chapter in which we will introduce Non-relativistic geometries
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1.2. HOW TO COMPUTE ANOMALIES

In compatible geometries the “spin currents” coming from the dependence on the spin connec-

tion and Christoffel symbols may be re-adsorbed in an improvement for the energy-momentum

tensor, which reads

T µν = tµν +
1

2
∇ρ (Gρµν +Gµνρ −Gνµρ) ,

T µa = tµa +
1

2
Eµb∇c (Scba + Sbac − Sabc) .

(1.64)

Notice that we have used script letters for the improved currents, meaning that they are consis-

tent ones. Finally, Ward identities come from considering diffeomorphism, Lorentz and gauge

variations with parameters (ξµ,Ωab, α) and the nontrivial variations of the external fields:

δξgµν = ∇(µ)ξν) , δξΓ
α
µβ = (LξΓµ)α β +∇µΛα

β , Λα
β = ∂βξ

α (1.65)

δξAµ = LξAµ , δξe
a
µ = Lξeaµ , δξω

ab
µ = Lξωabµ , (1.66)

δΩe
a
µ = Ωa

be
b
µ , δΩω

ab
µ = ∂µΩab + [ωµ,Ω]ab (1.67)

δαAµ = ∂µα , (1.68)

where Lξ denotes the Lie derivative and, for the Christoffel symbols, it acts only on the form

index. Notice that, in the Christoffel case, we may split a “tensorial” variation given by the Lie

derivative from a “connection-like” piece given by Λα
β. Putting everything together the Ward

identity read

∇µT µν + JµF µν − Aν∇µJ µ = 0 (1.69)

Tab − Tba = 0 , (1.70)

∇µJ µ = 0 , (1.71)

with Tab = T µb eµa. These represent the diffeomorphism, Lorentz and U(1) Ward identities. In

the anomalous case the equations above get modified as follows

∇µT µν + JµF µν − AνA = Aν (1.72)

Tab − Tba = Aab , (1.73)

∇µJ µ = A , (1.74)

with
(
A ,Aab ,Aµ

)
being the gauge, Lorentz and diffeomorphism anomalies respectively. To find

the allowed form for the triplet, we need to solve the consistency conditions or, equivalently,

the descent equations, for a fixed dimensionality.

d=2

We start by writing the possible top forms P 4,0 relevant for the anomalies in two dimensions.

There are basically two possibilities:

P 4,0(A) = F ∧ F P 4,0(ω) = tr (Rω ∧Rω) , (1.75)

that is the second Chern character and the first Pontryagin class. For mixed anomalies there

is also the wedge product of the first Chern characters

P 4,0
mixed(A,B) = FA ∧ FB , (1.76)
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

notice that there is no mixed anomaly between A and ω. using the transgression formula we

find the Chern-Simons forms

P 3,0(A) = A ∧ dA P 3,0(ω) = tr

(
ωdω +

2

3
ω3

)
, (1.77)

and the mixed Chern-Simons

P 3,0
mixed = AdFB + xd(A ∧B) , (1.78)

where the second term acts as the Bardeen counterterm in the local QFT and shifts the anomaly

to the desired sector, x = 0 will have the anomaly in the A current, while x = 1 in the B current.

We can now act with the BRST operator s to find the consistent anomalies to be

P 2,1(A) = sF , P 2,1(ω) = sdω , (1.79)

while for the mixed case we have two anomalies

P 2,1
A (A,B) = (1− x)FB P 2,1

B (A,B) = xFA . (1.80)

In the quantum theory these will be multiplied by theory dependent coefficients cA, cg, cAB.

This fixes the previous section’s quantities to be

Ad=2 = cA
√
gεµνFµν , Aabd=2 = cg

√
gεµν∂µω

ab
ν . (1.81)

We now come to the diffeomorphism anomaly. There are two ways to derive its form. One is to

think of Γ as transforming as a connection with parameter Λ as in (1.68) and then integrating

by parts a further time to get the anomaly:

Aµ = c̄g
√
ggβµενρ∂ν∂αΓαρ β . (1.82)

The other one is to use equation (1.62) to link the two Chern-Simons terms:

P 3,0(ω) = P 3,0(Γ)− dtr
(
Γe−1de

)
+

1

3
tr
(
e−1de

)3
(1.83)

where the connection indices in Γ are contracted with vielbeins and (e−1de)abµ = Eνa∂µe
b
ν . The

diffeomorphism anomaly then follows from (minus) the variation of the last two terms on the

right hand side. This presentation is also useful since we may think as those terms as Bardeen

counterterms that move the anomaly between the Lorentz and the diffeomorphism sector14,

thus cg = c̄g upon matching of the two anomalies.

Here we have been quite cavalier about the diffeomorphism group and the descent equations.

In a physical situation the diffeomorphism and/or Lorentz group of the Chern-Simons terms

should be extended to the one of the d+ 1 dimensional manifold where the Chern-Simons term

lives in order to guarantee (up to boundary terms) covariance. For the purpose of the anomalous

Ward identities this is not important, however we will see when dealing with anomalous effective

actions that a proper account of this extension is essential for deriving a consistent effective

action at finite temperature.

14While for the first term this is obvious, the second term is a WZW term and is not a total derivative, its

variation however is, so that it contributes as a local action to the generating functional
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1.2. HOW TO COMPUTE ANOMALIES

Until now we have discussed consistent anomalies. To find the co-variant ones one needs to fix

the Bardeen polynomials. Let us see one example. For the pure U(1) case one may write:

A = 2cA∂µ (
√
gεµνAν) , (1.84)

taking variation with respect to A gives

sJ µ = −2cAε
µν∂νc , (1.85)

so that we may define the co-variant current

Jµ = J µ + 2cAε
µνAν (1.86)

with the co-variant anomaly

∇µJ
µ = 2cAε

µνFµν . (1.87)

Also instructive is to see what happens for the Lorentz anomaly. Here, as one may guess, we

will need to replace the dω term with a curvature15. There the Bardeen counterterm may be

computed from the transgression formula to be dPBZ = dω + 2ω ∧ ω so that the co-variant

anomaly reads

Tab − Tba = 2cgε
µνRω

µνab . (1.88)

In order to get some familiarity with the numerical values of the coefficients cA and cg let us

give the values for a single Weyl fermion of charge q under the (chiral) U(1):

cA =
q2

4π
, cg =

1

192π
, (1.89)

more in general, for a 2d CFT with Kac-Moody levels kL and kR and central charges cL and

cR we have

cA =
kL − kR

2π
, cg =

cL − cR
96π

, (1.90)

d=4

In four dimensions the story is similar, but now there is no Pontryagin class for the purely

gravitational terms. We have

P 6,0(A) = F ∧ F ∧ F , P 6,0(A, ω) = F ∧ p2(Rω) , (1.91)

and two mixed classes purely for U(1):

P 6,0
1,2 (A,B) = FA ∧ FB ∧ FB , P 6,0

2,1 (A,B) = FA ∧ FA ∧ FB . (1.92)

The Chern-Simons term follow from the previous discussion:

P 5,0(A) = A ∧ F ∧ F , (1.93)

P 5,0(A, ω) = F ∧ P 3,0(ω) + xd
(
A ∧ P 3,0(ω)

)
, (1.94)

15Of course, in d = 2 the Lorentz group is Abelian and the curvature is just dω, but let us forget this fact for

a moment for the sake of the argument.
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

and for the mixed U(1)s

P 5,0
1,2 (A,B) = A ∧ FB ∧ FB + yd (A ∧B ∧ FB) (1.95)

P 5,0
1,2 (A,B) = B ∧ FA ∧ FA + zd (A ∧B ∧ FA) . (1.96)

Making contact with our previous discussion, in d = 4:16

A =
√
gεµνρσ

(
cAFµνFρσ + cgtr

[
Rω
µνR

ω
ρσ

])
(1.97)

with the anomaly only in the U(1) sector. The Lorentz anomaly would look like

Aab = cgε
µνρσFµν∂ρω

ab
σ , (1.98)

and the diffeomorphism one

Aµ = cg
√
ggβµετδνρ∂α

(
Fτδ∂νΓ

α
ρ β

)
. (1.99)

Mixed covariant anomalies admit no Bardeen counterterms, so they are uniquely defined. One

gets a Bardeen polynomial for the pure U(1) anomaly for the current and a second one for the

U(1 variation of the stress tensor. The covariant anomalies then read

∇µJ
µ = εµνρσ

(
3cAFµνFρσ + cgtr

[
Rω
µνR

ω
ρσ

])
(1.100)

Tab − Tba = −2cgε
µνρσFµνR

ω
ρσab . (1.101)

Here too, it is useful to give the values for the anomalies of a single Weyl fermion:

cA =
q3

96π2
, cg =

q

768π2
, (1.102)

for multiple species one sums over the charges. In the case of a chiral fermion the anomaly

coefficients (after preserving vector-like symmetries) are given by the formula above with the

understanding that left handed fermions contribute qL and right handed ones −qR.

Higher dimensions

The higher dimensional story tends to be more complicated, as there can be several character-

istic classes to start from and the form of the anomaly polynomial depends on the choice of

free-field representation we work with. Of course the machinery for determining the possible

Chern-Simons terms is still in place and allows us to conclude the following:

• In every even dimensionality there may be (chiral) flavor anomalies for SU(N) gauge

fields, coming from the descent procedure applied to the Chern-character tr (F n), d+2 =

2n.

• Purely gravitational anomalies only exist in d = 2+4k since Pontryagin classes only come

with even powers of the curvature due to the rotation group being SO(d), thus d+2 = 4k

hence the formula before.

16Below Rω may be substituted also with the Riemann tensor.
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• In dimensions d = 4k we can wedge the Pontryagin class of two lower dimensions with a

Chern-class. This gives upon descent mixed gauge-gravitational anomalies in all d = 4k.

In high enough dimension one could in principle also have mixed anomalies in d = 4k+ 2

with k ≥ 1, but we will not study systems of such high dimensionality here.

It is worth pointing out that, in the case of a given particle species, there exist closed formulas

for the generating function of (co-variant) anomaly polynomials in general dimension. For,

example, a well known formula for the anomaly polynomial of a spin 1/2 particle is:

P1/2(A, ω) = trΨ

(
ei

F
2π

)
∧ Â(R) , (1.103)

with the A-roof genus

Â(R) = Pf

(
R/4πi

sinh(R/4πi)

)
, (1.104)

with the Pfaffian Pf. The trace in the first equation is in the relevant flavor representation

for the Fermi field. One is instructed to expand the above as a differential form and pick the

term(s) of the right dimensionality.

1.3 Synopsis

In this first Chapter we have reviewed some well known facts about perturbative anomalies. We

have clarified the difference between the consistent and co-variant formulations, which, albeit

somewhat technical, will be very important in the following presentation. Also, we have given

some practical tools to select the possible representative of an anomaly polynomial and to fix

the coefficient with which it could appear in a given perturbative description.

Let us conclude with some important points that we may have skipped during the presenta-

tion. Although not explicitly stated, perturbative ’t Hooft anomalies are always related to the

presence of “chirality” in the underlying system. That is one has an idempotent operator which

commutes with the Lorentz generators and does not act on spacetime, which allows projection

of the degrees of freedom. Such operator may be e.g. the γd+1 Dirac matrix, the ? Hodge dual.

One should think of the results presented as implying that such a chiral projection has been

made.

From our presentation it would also seem that anomalies are only present in even dimensions

due to the presence of characteristic classes onlv for d + 2 even. This is however not true,

since discrete anomalies (such as the parity anomaly) are present in odd dimensions and can

be related with Chern-Simons forms [28]. Another exception might be given by perturbative

anomalies for higher-form symmetries, which can give rise to odd dimensional characteristic

classes as the gauge field is a general p-form, indeed for p even
∫
dAp is an odd dimensional

topological invariant.

Finall, let us conclude with a more broad point of view, which is meant to justify our interest

in ’t Hooft anomalies throughout this thesis. As we have seen, ’t Hooft anomalies are both RG-

invariants and strongly constrained by algebraic geometry. This makes them great indicators for

universality. Until about ten years ago such universality was in some sense under-appreciated, in

that it was not believed that the specific form of the low energy effective action could be strongly
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CHAPTER 1. A REVIEW OF ’T HOOFT ANOMALIES

constrained by anomalies17, Contrary to expectations, a great deals of progress has been made

in understanding how and when ’t Hooft anomalies can give rise to local contributions upon

integrating out heavy modes. At a more simplisitc level, such contributions show themselves in

the presence of protected, non-dissipative transport phenomena at very long wavelength, which

can be even measured in the laboratory[29, 30].

17The sense in which we mean this is the following: anomalies are not expected to emerge as local contributions

to the effective action, which are those which are well defined by a Wilsonian-type of RG flow.
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Chapter 2

Effective actions and ’t Hooft

anomalies

2.1 History of the problem

Having now finished our small review of ’t Hooft anomalies we come to the main part of

this chapter. While we have already mentioned the role of ’t Hooft anomalies in constraining

possible RG flows to lower energies through their matching, this Chapter will be dedicated to

the dependence of the effective action on S1 ×Md−1 on anomaly coefficients such as cA, cg.

More precisely, we will consider fibrations of S1 over Md−1 which have the local form:

ds2 =
(
dτ + ai(x)dxi

)2
+ hij(x)dxidxj , (2.1)

also endowed with a gauge field:

A = µ(dτ + ai(x)dxi) + bidx
i , (2.2)

so that we allow for a nontrivial holonomy β−1µ on the S1.1 We also have a thermal Killing

vector uµ = ∂τ and the corresponding one-form u = dτ + ai(x)dxi.

While at first sight this may seem like a trivial question, since we have already stated in talking

about the descent equations that anomalies precisely do not appear in a local effective action.

It turns out that, upon dimensionally reducing over S1, they can indeed appear as local Chern-

Simons terms for the effective action W̃ [a, b] onMd−1 [31, 32]. The Chern-Simons terms are a

function of the local U(1) gauge field bi and the gravito-magnetic potential field ai. For example

in d = 4 can be essentially of three types:

W̃ [a, b] =

∫
M3

(cbb b ∧ db+ caa a ∧ da+ cab a ∧ db) , (2.3)

while in d = 2 there are only two terms

W̃ [a, b] =

∫
M1

(ca a+ cb b) (2.4)

1One may also add a dilaton field in front (2.1), this makes the local temperature position dependent but

does not change the conclusions, in fact, it is tempting to think of the inverse temperature as playing a role

analogous to that of the gauge holonomy µ.
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CHAPTER 2. EFFECTIVE ACTIONS AND ’T HOOFT ANOMALIES

with cbb, caa, cab, ca, cb functions of the holonomy βµ and of the inverse temperature β. In

our conventions bi has dimensions of energy, while ai has no dimensions. This, together with

assuming a smooth vacuum limit, fixes the possible terms which may appear:

caa = β−2c(2,0)
aa + β−1µc(1,1)

aa + µ2c(0,2)
aa , (2.5)

and so on. We will be interested in determining the relationship of these dimensionless numbers

with ’t Hooft anomalies.

To answer the previous comment, the presence of Chern-Simons terms onMd−1 can be justified

for two reasons.

1. If the spectrum of KK particles on S1 has no zero modes, one may integrate out the

whole tower of massive states and expect them to give (term by term) rise to a local

effective action. This action is first order in derivatives and should thus satisfy a number

of constraints coming from the mother theory. This will translate into the fact that

holonomy-dependent terms will match the flavor anomalies in d dimensions, and thus they

need not be properly quantized CS terms. The holonomy-independent terms, however,

form a different family, since the temperature tempendence may be re-adsorbed in the

definition of the gravito-magnetic potential field and the diffeomorphism anomalies enter

at higher order in the derivative expansion.

Their usefulness was explained in [33]. The theories may have global anomalies, which are

encoded in the transformation properties of the partition function with respect to large

gauge transformations of the background fields (that is, transformations that cannot be

deformed to the identity and change non-local oservables such as holonomies). These per-

sist upon dimensional reduction and can be matched by Chern-Simons terms. Since global

anomalies sit in finite discrete groups, this reasoning can only determine the coffiecients

of the effective action modulo certain integers. This is to be expected, as a properly quan-

tized Chern-Simons term is invariant under both small and large gauge transformation

and is thus invisible to this line of reasoning.2 Local correlation functions on Md−1 are

sensitive to the full coefficient. This is usually not enough to say that the integer part of

the Chern-Simons term should matter, since such correlators in positions space are purely

contact terms and may be generated by adding a properly quantized Chern-Simons term

to the action, which we are free to do. However here we may raise a further important

point: since our theory was d dimensional to begin with, the Chern-Simons term should

come from a local counterterm in d dimensions! A moment of thinking shows that there

are no such terms and thus the integer part cannot be swept away as usual.

These facts make the latter type of Chern-Simons terms much more problematic to derive

within effective field theory. Our aim in this Chapter is to give a clear physical picture

of how they arise.

2. One may think of anomalous theories as boundary modes of gapped systems living on a

d+ 1 dimensional manifold Nd+1 with boundaryMd+1 via anomaly inflow. Then we may

2To fix some conventions, one may rescale a→ βa′ so that a′ has the right dimensionality, however the large

gauge transformation shift the holonomy by integers instead of integers times 2π, the convenient normalization

to confront with the Chern-Simons quantization condition is a→ β
2πa

′′.
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couple our anomalous theory to such a bulk that cancels the perturbative anomalies. In

this way correlators of the full theory should be independent of the anomaly coefficients.

One may then try to estimate the effective action by reducing the effective action on Nd+1

(which is local) to Md−1. This is in general not a well defined procedure, but it turns

out that specifying the boundary holonomies completely determines the action for the

extended connections. The inflow procedure was pioneered in [34, 35] in the case of flavor

anomalies. Here we extend it to the gravitational case by considering the embedding of

the SO(d) frame rotations into the bulk SO(d + 1). This turns out to fix completely

the anomalous contribution to the effective action. Our strategy then summarizes in the

diagram below:

S1 ×Md−1 Nd−1

Md−1

KK reduction

inflow

KK, fixed holonomies

The history of this problem is quite long, and the formulation in terms of thermal effective

actions may not be the most familiar, so it is useful here to present some of the historical

developments. First, one may think of the effective actions of the type (2.3),(2.4) as comput-

ing (d − 1)-point thermal correlators of electric currents J i and energy currents J iε = T iτ on

Md−1. Indeed one may consider the following ansatz for the one-point functions of said current

operators in the geometries above:

〈J〉 = ca , (2.6)

〈Jε〉 = cb , (2.7)

in d = 2 and

〈J i〉 = cabΩ
i + 2cbbB

i , (2.8)

〈J iε〉 = cabB
i + 2caaΩ

i , (2.9)

with the following conventions: we define electric/magnetic decomposition in the ambient four

dimensional geometry through the one-form u = dτ + aidx
i by

dA = E ∧ u+ (B + 2µΩ) , du = Eg ∧ u+ Ω . (2.10)

The magnetic parts B , Ω are time-independent quantities which descend to two-forms in d− 1

dimensions. There we define

Bi =
1

2
εijkBjk , Ωi = εijk∂jak . (2.11)

One recognizes that these are exactly the possible time-independent responses coming from the

Chern-Simons actions on Md−1. In higher dimensions one would have more insertions of the

magnetic fields, since currents are formally d− 2 forms.
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These in turn can be related to hydrodynamic response functions in the full d-dimensional

space-time to magnetic fields and vorticity3 by interpreting the one-form u as a velocity field.

Of course the constitutive relations above need to be corrected by introducing dissipative terms,

and should allow for a weak time dependence.

Finally there is a standard way to relate the constitutive relations to Euclidean correlators

via the Kubo formulas. In this simplified case in which time dependence is absent and the

Eulidean formalism is thus expected to capture the relevant features, they amount to taking

further functional derivatives to eliminate the external fields and going to momentum space on

Md−1 then, e.g. in d− 4

cbb = lim
k→0

εijl
〈J i(k)J j(−k)〉

ikl
, (2.12)

cab = lim
k→0

εijl
〈J i(k)J jε (−k)〉

ikl
, (2.13)

caa = lim
k→0

εijl
〈J iε(k)J jε (−k)〉

ikl
, (2.14)

up to possible contact terms. In Lorentzian signature, these should be analytically continued

to retarded two-point functions, but in this time-independent case the difference is negligible.

Such formulas can be evaluated in weakly coupled models, such as free fermions [36, 37] and

result to be dependent on the anomaly content of the theory.

For flavor anomalies a justification of the universality of this results comes from consistency of

the hydrodynamic expansion with the Ward-Takahashi identities, since both the response and

the anomaly enter at the same order in the derivative expansion, as it was shown by Son and

Surowka [38].

For gravitational anomalies, while explicit computations both at strong and weak coupling

[39, 37, 40] gave indications of response induced by the gravitational anomaly. The KK analysis

of [32] shows that these Chern-Simons terms arise as regularized sums of the effective actions

of the single Matsubara modes. The hydrodynamics arguments fail to give a proper account of

such effects, since the anomaly only enters the constitutive relations at higher order.

An interesting idea, first proposed in [41] and then expanded upon in [42], is to consider the

theory on a nontrivial curved geometry which asymptotically looks like the thermal cyclinder.

This may either be a cone or an Eulidean cigar:

ds2 = dr2 + f(r)ds2
Md−1

, (2.15)

In this case derivatives in the “radial” direction violate the naive derivative expansion and allow

to use arguments similar to those of Son to fix the response functions. This argument however

fails if the geometry is just an Euclidean cylinder.

Another idea comes from holographic computations [39, 43, 44]. In holography these effects

arise due to the extension of the gravitational Chern-Simons terms to the full group off bulk

diffeomorphisms. Such extension cannot be trivial since the holographic background for a

thermal state is an Euclidean black-hole, which has a non-vanishing extrinsic curvature. The

appearance of the extrinsic curvature also breaks the derivative expansion. In [43] these effects

were shown to be universal and independent on the fine details of the dynamical bulk geometry.

3In that setup that is the name for Ωi.
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The idea here is to further relax these assumptions, dropping the need for dynamical gravity

in the bulk, but basic the universality of the result on metric compatibility and the structure

of the Chern-Simons action. Indeed it is clear, as will be expanded upon later, that the inflow

argument for gravitational terms needs an extension of the gauge group in the bulk. Such

extension cannot be trivial, since the requirement of a single boundary does not allow for a

nowhere-vanishing extrinsic curvature.

In the rest of the Chapter we develop the details of this intuitive picture, setting up the

precise formulation for the inflow and connecting with the previous results, high-lighting the

physical reasons why such line of reasoning indeed works and making contact with a method

for computing partition functions in the presence of nontrivial holonomies.

As a final precisation, let us add that the Chern-Simons coefficients introduced above are

universal objects as far as the anomalous symmetry is unbroken. By either explicitly breaking

it in the UV by a relevant deformation (as studied e.g. in [45]) or by making background gauge

field dynamical, to have an ABJ anomaly [46] the coefficients may run. In some cases this

can be simply traced back to wavefunction renormalization of the gauge fields, however the

problem is far from understood. In this aspect, the results presented from now on assume that

no explicit breaking can be present at any energy scale and only ’t Hooft anomalies are allowed.

2.2 Geometric argument and Abelian Inflow

We use this Section as a warm-up to concretely present the machinery at work in a simpler

setup, review the arguments of [34] and put them under a slightly different light which will

reveal useful in the next Section.

The geometric setup is given by equations (2.1),(2.2). We consider a theory with a U(1) flavor

anomaly cA and determine the dependence of the effective action on Md−1 on cA. A way to

evaluate this was given in [34] by considering an auxiliary connection Â with no holonomy

around the S1. In our gauge choice this just means

Â = bidx
i , (2.16)

it is also important that the electric field4 Ê = iudÂ = 0 is vanishing, while for the full

connection Ê = dµ. In the same way the magnetic fields are slightly different B = db + µda

while B̂ = db. This is the key property of the hatted connection which helps in practical

computations, since top-degree forms of the hatted connection will automatically vanish.

Now let us give a practical flavor of how this connection enters in the computation of the

partition function by a small geometrical detour. Our objective here is to compute the partition

function on a fibration of S1 overMd−1 for an anomalous quantum field theory, in the presence

of nontrivial holonomies. Let us call it Z[A] for short. This computation is of course extremely

complicated, however we might be intersted in the phase of Z[A], which should be determined by

’t Hooft anomalies (we assume this to be the case). Since we are interested in the contribution

4Since we have a Killing vector uµ, electric and magnetic fields are defined by decomposing the curvature

F = E ∧ u+B.
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coming from non-trivial holonomies we could as well compute

Z[A]Z∗[Â] . (2.17)

This setup is not gauge invariant, since both partition functions suffer from ’t Hooft anomalies

but only the first one will transform non-trivially.

We can make the setup gauge invariant by imagining a fictitious bulk connecting the two copies

of our spacetime with opposite orientation, the bulk connection will need to interpolate between

A and Â at the two ends, and as such is it somewhat constrainted, thus we examine instead

Z[A, Â]inv = Z[A]e−icAP
d+1(Abulk)Z∗[Â] , (2.18)

where, for perturbative anomalies, P d+1 is just a Chern-Simons form, as introduced previously,

while cA is the anomaly coefficient of the theory. In this setup the boundary theories are

anomaly-free, this means that the contribution of the anomaly coefficient to the effective action

should vanish. Thus Z[A, Â]inv is a real number and we may evaluate

Z[A]Z∗[Â] = eicAP
d+1(Abulk) . (2.19)

In writing these expressions, we should make sure that the right-hand-side is not a functional of

the bulk interpolation between the connections A, Â. If this can be shown, then the right hand

side is secretly a functional of A , Â and we may in particular take well defined “boundary”

variations, which we denote as a δ̂, that is, variations of the boundary conditions for the bulk

functional.

A shortcoming of this formulation is that the interpolating connections may be not simple to

define. However we can alternatively think of evaluating the same quantity by gluing a one-

sided bulk to both Z[A] and Z[Â]. This is consistent provided the integral on a closed d + 1

surface with boundary conditions coming from each piece is trivial. In a one-sided bulk the

gauge field should interpolate between the boundary connection and a trivial one where the

local S1 shrinks to zero. Then we may also write

Z[A]Z∗[Â] = eicA[P d+1(A)−P d+1(Â)] , (2.20)

where on the right-hand side we mean bulk extensions. The advantage of this formula is that

the right hand side may be evaluated with the help of transgression formulas. An artistic

interpretation of this whole construction can be found in Figure 2.1.

Until now we have been somewhat careless about boundary terms. Recall that the transgression

formula leads a two-term expression in which the second one is a total derivative. There will

be then two kinds of contributions to (2.20) depending on whether they enter as bulk integrals

or through boundary values.

We have already discussed that the Chern-Simons action in the anomaly inflow mechanism

does two things: it cancels the consistent anomalies, but also provides Bardeen polynomials to

render the current operators co-variant. The last of these came from the total derivative part

in the transgression formula, so that we may identify the generator of the effective action for

co-variant currents as the purely bulk piece of the transgression formula. Our goal is then to

find a compact expression for such co-variant effective action. This also clarifies a point that
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Figure 2.1: Steps of the inflow construction. From top-left to bottom right: holonomy-

dependence of the phase of Z[A], anomaly cancellation through inflow, inflow ”piece by piece”,

full trivialized bulk description.
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the careful reader may have already noticed was missing in our discussion, that is what current

operators is the effective action (2.4), (2.3) describing. The answer is that we will take it to

describe co-variant current correlators.

A second point of great importance is to understand why the seemingly d + 1 dimensional

expression for the co-variant effective action obtained from the inflow argument should be

describing a d− 1 dimensional effective action instead. The intuitive picture is that the d + 1

dimensional effective action is not computed on arbitrary bulk gauge field configurations. All

admissible gauge fields have fixed components on Md−1 and fixed holonomies around the S1

at the boundary. This second condition, since the S1 will be contractible in the bulk, will fix

certain two dimensional integrals of the curvature over the bulk “cigar” obtained by extending

the S1 in the bulk. Doing these integrals effectively lands on a d− 1 dimensional contribution.

Let us now come to the formalization of the above arguments in the simplest case of pure U(1)

anomalies in d = 2 and d = 4. Most expressions readily generalize, although they become more

cumbersome.

In the U(1) case the formulas can be simplified quite a bit. This is due the following property

(which is proved in [34]):in our variables, the transgression P d+1(A)−P d+1(Â) is a polynomial

of strictly positive degree in du = da. This allows to use the formal identity 1 = d (u/da) to

simplify:

P d+1(A)− P d+1(Â) = d
( u
da

) [
P d+1(A)− P d+1(Â)

]
= d

(
u ∧ P

d+1(A)− P d+1(Â)

da

)
− u ∧ P

d+2(A)− P d+2(Â)

da
,

= V (A) + dW (A) .

(2.21)

In the notation above, V (A) generates the effective action for the co-variant currents, which

will be our main interest in this Section. We write more clearly these important formulas once

again

V (A) = cAu ∧
P d+2(A)− P d+2(Â)

da
, (2.22)

W (A) = −cAu ∧
P d+1(A)− P d+1(Â)

da
, (2.23)

where we have restored (minus) the anomaly coefficient for the anomaly cancellation on the

boundary.

The evaluation is further simplified since both terms are wedged with u. Then only the magnetic

part of the forms inside P d+1 and P d+2 may give a nonzero contribution. Let us see a couple

of examples.

In d = 2 we have P 4(A) = dA ∧ dA so

u ∧ P
4(A)− P 4(Â)

da
= u ∧ µ

2da ∧ da+ 2µda ∧ db
da

= u ∧
(
µ2da+ 2µdb

)
, (2.24)

while

u ∧ P
3(A)− P 3(Â)

da
= u ∧ µb , (2.25)
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on the other hand, in d = 4 P 6 = dA3 so that:

u ∧ P
6(A)− P 6(Â)

da
= u ∧

(
3µdb2 + 3µ2da ∧ db+ µ3da2

)
, (2.26)

while

u ∧ P
5(A)− P 5(Â)

da
= u ∧ b ∧

(
2µdb+ µ2da

)
. (2.27)

How does one derive the Chern-Simons action from this formulation? There are basically two

ways.

One is to take functional derivative with respect to the magnetic sources. For W this is

trivial, since it is already a suface term, while for V one has to use the fact that the magnetic

sources only can enter through their curvature and may integrate by parts. This is the method

described in [34], which is extremely elegant and allows for rather compact formulas in arbitrary

dimension. One then ends up with the expression for the currents on the physical boundary,

and may further notice that, since they are proportional to u, they can be reduced onto the

base manifold. Confronting this with the effective Chern-Simons description fixes the effective

action. Let us see this in the examples above:

In d = 2 we have

V (A)d=2 = cAu ∧
(
µ2da+ 2µdb

)
, (2.28)

upon variation this gives rise to a boundary term

? J ∧ δb+ ?Jε ∧ δa = 2cAuµ ∧ δb+ cAuµ
2 ∧ δa (2.29)

which is compatible with a co-variant Chern-Simons action

Wcov[a, b]
d=2 = cA β

∫ (
2µb+ µ2a

)
. (2.30)

Notice that the current J satisfies the co-variant anomaly equation (in our choice of back-

ground)5

d ? J = 2cAdA = 2cAd(µu) . (2.31)

The consistent current ?J = ?J − cAuµ comes from the full action and satisfies the consistent

anomaly

d ? J = cAdA . (2.32)

In four dimensions the procedure is similar, although slightly longer, starting from

V (A)d=4 = cAu ∧
(
3µdb2 + 3µ2da ∧ db+ µ3da2

)
(2.33)

which gives

? J ∧ δb+ ?Jε ∧ δa = cAu
(
6µdb+ 3µ2da

)
∧ δb+ cAu

(
2µ3da+ 3µ2db

)
∧ δa (2.34)

5Is is useful here to comment a bit on how the equation below should be interpreted. Usually one is not

allowed to identify chemical potential gradients and electric fields in anomalous quantum field theories (we

expand on this point further through the Chapter). This always generates a great deal of confusion. However,

as long as we are in thermal equilibrium, such identification can be justified [34]. The divergence equation below

should be interpreted in this way.

39



CHAPTER 2. EFFECTIVE ACTIONS AND ’T HOOFT ANOMALIES

from which

Wcov[a, b]
d=4 = cA β

∫ (
3µb db+ 3µ2a db+ µ3a da

)
. (2.35)

Which indeed gives a currents satisfying the co-variant anomaly

d ? J = 3cAdA ∧ dA . (2.36)

the consistent current, on the other hand, is ?J = ?J−cA u∧(4db+ 2da) satisfies the consistent

anomaly

d ? J = cA dA ∧ dA . (2.37)

However, we might also want to derive directly the dimensional reduction by starting with the

full Chern-Simons action. While this maybe somewhat less elegant in general, it give s a clear

physical intuition about the problem and will be of great use in extending the treatment to

gravitational anomalies, in which the simple functional differentiation is not sufficient. The

tactic here can be resumed in isolating the bulk derivatives of the holonomy and use the

regularity conditions to fix their value and dimensionally reduce the system to d−1 dimensions.

For flavor symmetries this is not very convenient, since Bardeen-Zumino polynomials have to be

added essentially by hand to find the co-variant currents, however there are no such polynomials

for the gravitational case.

To continue the discussion, however, it is useful to properly set up the problem of bulk extensions

so as to make the computation of the effective action as clear as possible. We do this, as well

as discuss the incorporation of gravitational anomalies, in the next Section.

2.3 Thermal & abelian inflow from bulk extensions

In this section we introduce the generalization of the inflow arguments for gravitational and

mixed-gravitational anomalies. We will work always in terms of Lorentz anomalies, however the

conclusions are the same for the diffeomorphism case, since the two are related by a Bardeen

counterterm. We will consider mainly embedding in a bulk with only one boundary, since those

are the relevant ones to capture the purely gravitational contributions.

The main idea is that, to define the inflow, we need to continue the boundary Riemannian

geometry into the bulk. This can be done in several ways, but we will stress that all allowed

ways should be co-variant under diffeomorphisms. The simplest such procedure is to start from

a boundary geometry equipped with a compatible vielbein ea, ∇µe
a
ν = 0 and a spin connection

determined by the previous equation. In embedding this into the bulk geometry we introduce an

extended vielbein eA, with A an SO(d+1) index. Notice that this is a double extension in both

the “form” components, which now are eAM , M = 0, .., d and the tangent space components.

We will also treat in more detail the extension of Abelian gauge fields, which will be useful in

giving an alternative derivation of the Chern-Simons action in d − 1 dimensions. In this case

there is no group extension, but regularity conditions in the bulk should be carefully imposed.

To make this compatible with the boundary geometry we ask the following

1. The restriction of eA on Md−1 × S1 coincides (up to gauge transformations) with ea.
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2. In the bulk the compatibility condition is automatically updated to ∇Me
A
N = 0. This

fixes univocally the form of the bulk spin connection ωAB.

3. We will consider extensions with vanishing extrinsic curvature KMN at the boundary.

While a nontrivial extrinsic curvature in the bulk is needed to “close off” the manifold,

boundary extrinsic curvature only results in the necessity of adding K-dependent counter-

terms to the effective action. This is well known from standard anomaly inflow, but in

our cases it will only produce unnecessary clutter.

4. As far as the gauge field is concerned, it needs to have a fixed boundary along the S1

given by µβ, as well as a regular bulk extension. Since the S1 is contractible inside the

bulk, this will give us also some local regularity conditions in a given coordinate system

for the field strength at the point where the S1 shrinks to zero size.

This is by no means the most general extension, it is however the most familiar one. Another

interesting idea may be to extend the boundary Riemannian geometry to a Newton-Cartan

geometry in the bulk. We will introduce such geometries in Chapter 3 with a different end,

however it would be an interesting case to study on its own.

Before going forward it will be useful to present an intuitive picture of the role of extrinsic

curvature and of the regularity conditions for the gauge field. For that we examine the simplest

extension of S1 into an Euclidean cigar/ disk. If τ ∼ τ + β is the coordinate on the S1, we

consider metrics of the type

ds2 =
dR2

f(R)
+ f(R)dτ 2 , (2.38)

we furthermore choose the boundary to lay at, say R = R0 and f(R→ R0) = 1 +O(R−R0)2.

The normal vector to the S1 is just n = f(R)1/2∂R, which is normalized to unity. Defining nM
in the obvious way, the metric reads gMN = nMnN + hMN . The extrinsic curvature is defined

as

KMN =
1

2
LnhMN , (2.39)

in our coordinates this just reads

Kττ =
1

2
f(R)1/2∂Rf(R) . (2.40)

As one can check this indeed vanishes at the boundary6. Now we would like to deal with a

geometry with only one boundary. In these coordinates the only possibility is to shrink the τ

cycle to zero size for some R = RH . Assuming this is a simple zero we have f(R → RH) =

f ′(RH)(R−RH) +O(R−RH)2. Then we may notice that the scalar∫
RH

dτ
√
hK =

1

2
βf ′(RH) , (2.41)

with K = KMNh
MN , is non-vanishing. Furthermore, the geometry is even more constrained,

since we may introduce a coordinate ρ2 = (R−RH) to write, near RH

ds2 =
4ρ2

f ′(RH)
+ f ′(RH)ρ2dτ 2 , (2.42)

6More precisely, the scalar
∫ √

hK vanishes, when one deals with the other end of the geometry it is always

possible to raise or lower indices to make the resulting expressions vanishing or divergent. The scalar we have

just introduced will however be a constant.
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which is just the metric on a cone with angular coordinate θ = f ′(RH)
2

τ . Imposing the absence

of conical defects, that is θ ∼ θ + 2π and taking in account the periodicity of τ we get

f ′(RH) = 4πβ−1 , (2.43)

and the integral (2.41) becomes just 2π. From this it should be clear that, in regular, one

sided geometries bulk extrinsic curvature is strongly constrained by the boundary holonomy∫
dτ = β. In our story something very similar will be used to fix the thermal part of the

effective Chern-Simons action.

We can also add a gauge field to this story, at the boundary this is given by just A = µdτ ,

with µ a constant. In the bulk this must be extended. Particularly important is the presence

of a non-vanishing curvature FτR. Regularity would amount to ask the holonomy to vanish

at the center RH of the cigar, while assuming that no electric charge seats there also fixes

FτR)(RH) = 0.

Computing the effective action with this extension, however, raises various subtleties, due to

the presence of boundary Bardeen-Zumino currents. This discussion has already been widely

addressed in the context of holography [47] and Quantum Field Theory [48]. In the holographic

context, solutions to the dynamical equations allow for an unspecified boundary holonomy,

which leads to different consistent currents after computation. In quantum field theory the

explanation is the following. Let Ztwisted[A] be the partition function obtained in a background

with trivial holonomy for the external gauge fields but with twisted boundary conditions around

the thermal circle for the dynamical fields

Ψ(τ − β) = e−βµ(−)FΨ(τ) , (2.44)

for non anomalous theories, one can alternatively give a non-vanishing holonomy to the gauge

field which twists the Hamiltonian of the system, but leaves boundary conditions untouched.

In the anomalous case such large gauge transformation gives rise to a non-trivial θ-term which

is finite under partial integration, schematically

Ztwisted[A] = Zuntwisted(A′) exp
(
−cAβP̃ d−1(A′, R)

)
. (2.45)

Once we attach a bulk for the inflow mechanism, the system is invariant under such change,

which may however be achieved through a bulk gauge transformation in the extra direction.

The right-hand side above will be represented by the bulk extension with nontrivial boundary

holonomy, while the left-hand side will have a trivial holonomy at the boundary, but a nontrivial

one (equal to −βµ) at RH . The invariant quantity, which is given by the bulk integral of the

field strength, is of course fixed and gauge invariant. We will choose this second option in the

calculations to follow.

After the extension is defined, one may ask in a meaningful way how this impacts the Chern-

Simons term in the inflow mechanism. To answer such question it is useful to decompose the

bulk spin connection in the following way:

ω =
1

2
ωabJab +BaHa , (2.46)

with Jab the SO(d) generators for the boundary rotations and Ha the generators of the coset

SO(d+ 1)/SO(d). The way to define the splitting will be natural once an approriate gauge for

the metric is fixed.
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It is then meaningful to define the following transgression form from SO(d) to SO(d+ 1):

Id+1(ωab, Ba) = P d+1(SO(d+ 1))− P d+1(SO(d)) , (2.47)

with the right hand side defined by the transgression formula of the second kind (1.35) applied

to At = ωabJab + tBaHa. Since Ba is an SO(d) vector, it follows from the transgression formula

that Id+1 is gauge invariant under SO(d). Furthermore, if we keep the extrinsic curvature

vanishing, also the transformation generated by Ha cannot reach the boundary. We have thus

splitted the contribution from the Lorentz anomaly from a co-variant contribution coming from

the bulk extension. The main goal of this Section is to study the properties of (2.47) to argue

how it fixes the purely temperature dependent Chern-Simons terms in the low energy effective

action.

The discussion above has been for purely gravitational anomalies. The extension to mixed

anomalies is simply given by wedging (2.47) with the appropriate Chern-class for the U(1)

connection.

2.3.1 ADM gauge and relevant quantities

Let us start by fixing a convenient gauge for our study. This will be instrumental to define the

splitting of the rotation group as well as in deriving explicit formulas for evaluation. There are

two such choices from the author’s perspective. Let nM be the normal vector to the foliation

we want to introduce, one such choice is to set iNω
AB = 0. Another, more convenient choice is

to use the Feffermann-Graham gauge in ADM coordinates

ds2 = dr2 + hµνdx
µdxν , (2.48)

with hµν reducing to the boundary metric at r → 07. In this coordinates the extrinsic curvatures

is Kµν = 1
2
ḣµν . In this coordinates one will have a fictitious singularity near the point where

the S1 shrinks to zero size (the choice of such bulk point is also a coordinate artifact), however

physical quantities will be singularity-free. We also have the usual ADM decomposition for the

Christoffel symbols

Γrµν = Kµν , Γµνr = −hµρKρν , (2.49)

given the metric (2.48) we may define the vielbein eA = (dr , ea) with eaµe
b
νδab = hµν . This also

defines the splitting of the generators of SO(d + 1), since we take the a indeces to transform

under the SO(d) subgroup. It remains to impose the compatibility conditions to determine the

spin connection components ωab and Ba = ωar. We will do this with care since their form will

be needed.

Explicitly the compatibility condition reads

0 = ∇Me
A
N = ∂Me

A
N − ΓPMNe

A
P − ωMA

Be
B
N . (2.50)

We solve these equations component by component starting with A = r which gives

Kµν = Ba
µeνa , Ba

r = 0 , (2.51)

7We choose the radial coordinate so that the normal vector points towards the tip of the cigar.
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or

Ba
µ = KµνE

νa . (2.52)

This is a very important formula for us, since it allows to conclude that one needs to extend

the spin connection to SO(d+1) in the presence of extrinsic curvature. Recalling the definition

of Kµν one finds explicitly

Ba
µ = ėaµ − eνb ˙(

ebµE
νa
)
, (2.53)

where the second term arises to assure that Ba transforms as a vector under SO(d). The rest

of the equations give constraints involving eaµ. Setting N = r gives the same constraint that we

have already solved, the remaining two equations read

ėaµ −KµνE
νa − ωrabebν = 0 , (2.54)

∂µe
a
ν − Γρµνe

a
ρ − ωµabebν = 0 , (2.55)

so that ωµ
ab is given by the usual SO(d) formula, while

ωr
ab = Eµbeνc

˙(
ecµE

νa
)
, (2.56)

this allows to write in a coordinate-free manner

Ba = Lωn ea , (2.57)

with Lωn = Ln−[ω, ·] is a lie derivative co-variantized with respect to SO(d). With the boundary

conditions of vanishing extrinsic curvature it is simple to see that, as we approach the boundary,

the field Ba dies off, while ωab naturally coincides with the boundary spin connection. This

last observation is important, since it implies that total derivative terms in the transgression

formula (2.47) do not give any contribution.

Let us also consider a simplified setup in which we extend as before S1 to an Euclidean cigar

in these coordinates. The metric reads

ds2 = dr2 + h(r)dτ 2 , (2.58)

in confronting with the previous coordinate R, we have

dR

dr
=
√
h(r) , h(r) = f(R(r)) , (2.59)

so that the regularity condition reads, if r(RH) = 1

f ′(RH) = lim
r→1

ḣ(r)√
h(r)

= 2
˙√
h(1) = 4πβ−1 , (2.60)

Using this we can evaluate the gauge field B = KττE
τdτ , which is

Bτ =
1

2
f ′(R(r)) , (2.61)

where the prime denotes derivative with respect to R. Notice that the scalar invariant we had

used before
∫ √

hK =
∫
B is just the line integral of the gauge field B. One can generalize this

situation to the case at hand. First let us suppose that the bulk geometry has also a global
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Killing vector βM extending the boundary thermal isometry. In this case we may define a frame

field βA = eAMβ
M which is co-variantly constant

∇Mβ
A = 0 , (2.62)

this equation follows from asking the vielbein eA to be invariant under the isometry generated

by βM up to a frame rotation. One we have this vector at our disposal, we may use it to

contract A indices, and define the holonomies

wβ[e] =

∮
√
γeAMβAdx

M , (2.63)

wβ[B] =

∮
√
γBA

MβAdx
M , (2.64)

where the integral can be thought as being taken around the S1 at some fixed bulk coordinate

r and γ is the induced metric. The first line computes the length of the local thermal circle,

while the second is the extrinsic curvature invariant we had introduced before, as one can check

by direct computation.

In treating flavor and mixed anomalies, we will also need to extend the gauge field into the

bulk. Following our previous discussion we will choose a gauge such that:

Ar = 0 (2.65)

and

lim
r→0

Aτ = 0 , lim
r→1

Aτ = −µ , (2.66)

through

A = g(r)(dτ + ai(x)dxi) + bidx
i , (2.67)

with limr→0 g(r) = 0, limr→1 g(r) = −µ.

2.3.2 Extension independence and the eta-invariant

A key fact which we need in order to justify our computation is the ability to evaluate the bulk

Chern-Simons action through a simple choice of background.

In the Abelian case this is not very hard to show. The idea is to take two geometries with

different bulk extensions, say A1 and A2 with bulks N1 and N2. The gauge fields need to

coincide (up to small gauge transformations) at the boundary of N1,2. We can then take the

Chern-Simons action for A2, reverse its orientation and glue it back to the one for A1. This

gives the variation of the Chern-Simons action due to the bulk extension, and it is evaluated

as a Chern-Simons term on a closed manifold.

In this evaluation one can always single out an integral of the curvature over the two Euclidean

cigars (which together are topologically a sphere). Since we have chosen the holonomies to

coincide on the common “boundary” S1 this makes the first Chern-class to vanish and so does

the full integral. This is a particular application of a general statement regarding extension

independence (mathematically, cobordism invariance) of fermionic partition functions.

For the general, gravitational case, there is no such simple proof of background independence,

but there are explicit arguments for a given system which use the APS η invariant. It is
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well known, see e.g. [49, 50, 51], that the path integral for a Dirac fermion in the presence of

background gauge field and spin connection can be made a well defined object (in a geometrical

sense) by defining it though a massive bulk fermion subject to particular boundary conditions.

This path integral can be shown to give

Z(bulk) = |ZDirac|e−iπηN /2 (2.68)

with the APS η invariant:

ηN =
∑
λ

sign(λ) , (2.69)

with λ the eigenvalues of the Dirac operator in the bulk and the convention sign(0) = 1 and an

appropriate regularization. This is a generalization of the perturbative result of the anomaly

inflow, in which the phase of |ZDirac| is cancelled by a Chern-Simons term. Here the presence

of the η invariant signals possible non-perturbative anomalies.

From this it is possible to define a partition function for the Dirac fermion which is independent

of the bulk extensions of the fields on N :

ZΨ[A] = |ZΨ| exp

(
i

∫
N
P d+1(A)

)
exp (πiηN/2) , (2.70)

While the Chern-Simons term gives the perturbative anomalies, the η invariant carries global

information only. The η invariant has nice properties under gluing and cutting of manifold. In

particular, if N1 and N2 are glued together through a common boundary M, then

exp (πiηN1) exp (−πiηN2) = exp (πiηN1∪−N2) , (2.71)

furthermore, due to the APS index theorem, on a closed manifold N̄ the two terms are related

by the index theorem

I =

∫
N̄
P d+1(A)− η/2 , (2.72)

thus if the index is even the difference in the phase of ZΨ[A] between different extensions

cancels. This property makes the expression (2.70) independent on the chosen bulk extension

of the fields.

Thus, if our proposal for the phase of the partition function is sensible, it needs to be extension-

independent too. It is important to notice that, in equation (2.70), the putative Chern-Simons

term for an SO(d) spin connection contains the SO(d) Riemannian curvature extended in the

bulk. Our idea then can be resumed by saying that the extension of the Riemann tensor from

SO(d) to SO(d+ 1) gives a way to compute the η invariant. Let us give some intuition behind

this, although a completely general argument is still lacking.

One clue comes by using Feffermann-Graham coordinates to evaluate the gravitational Chern-

Simons terms for SO(d + 1) on a closed manifold N . This can be done by evaluating the

respective Pontryagin class on a new manifold P with boundary N . This gives a relation

between the SO(d) Chern-Simons term and the SO(d) invariant part given by the transgression.

For example, in the case of p1(R)

p1(SO(d+ 1)) = p1(SO(d)) +
∇JB

a

2π
∧ ∇JB

a

2π
, (2.73)
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on a closed three manifold for which the four dimensional p1(SO(d + 1)) is trivial, this gives

the desired relation by looking at (2.72).

Another interesting idea may come from something that often works for flavor anomalies. When

one wants to study global anomalies [52, 53], one looks for elements of the global symmetry

group which cannot be deformed to the identity. However, it is often the case that such elements

can be seen as continuously connected to the identity if one extends the symmetry group. This

indeed happens for rotations, for example a parity transformation in two dimensions cannot

be brought to the identity by an SO(2) rotation, but it can be brought to the identity by a

continuous SO(3) transformation (of course, disregarding the action on the added dimension).

In such a framework, one may try and see non-perturbative anomalies as perturbative anomalies

of extended groups. In would be nice to understand our construction in these terms, however

one cannot embed the T transformation which gives rise to the global gravitational anomalies

in SO(3).

A way to phrase our construction then is the following: starting from the extension-invariant

partition function we may want to compute the phase when the boundary fermions live on a

cylinder. The total phase will be independent on the extension, however the single terms η/2

and
∫
P d+1(A) are not. If one chooses to keep the bulk fields SO(d) connections, one needs to

go through a complicated analysis to determine the η invariant for the bulk Dirac operator (This

is not simply given by the index theorem, since the bulk manifold is not closed). Otherwise, one

may extend the Chern-Simons term in a co-variant way, incorporating the result of a difficult

computation of the η invariant in a geometric substitution.

This is not guaranteed to always work, indeed there is no a-priori way to argue that no further

d − 1 Chern-Simons contributions appear in the η invariant. In some systems this does not

happen, in which case the substitution rule of [54, 55, 56] holds. For more complicated systems,

however (e.g. gravitons and gravitinos) the may be further massless modes in the bulk near the

coordinate singularity which should be treated with care. These may contribute to the formula

for the partition function and give further Chern-Simons terms in d− 1 dimensions. These will

be however properly quantized, as the global anomalies for such systems have been determined

by using the index theorems such as (2.72).

The explanation of such contributions are an interesting object for future studies and, if com-

puted, would finally seal the deal on this by now long story of thermal Chern-Simons terms.

This also allows to give a tentative explanation for the coefficient of such Chern-Simons terms

1. They are not completely fixed by analyzing the global anomalies. Indeed, such analysis

is blind to properly quantized Chern-Simons terms in d − 1 dimensions, which however

cannot descend from any local counterterm in d dimensions. One explanation in view of

what we have said before is that the contributions of further massless modes at coordi-

nate singularities cancel on closed manifolds (since they have two such singularities with

opposite orientation).

2. They are not completely fixed by perturbative anomalies either, for the (speculative)

reasons above.

Rather they are fixed by a more complicated procedure which should insist on defining a

bordism invariant partition function for the anomalous theory. This needs to contain both
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kinds of anomalies which interact in non-obvious ways. In what follows we will assume to work

with a system to which the substitution rule applies and show explicitly how it arises by the

bulk extension SO(d)→ SO(d+ 1).

2.3.3 A different perspective on Abelian inflow

Let us go through the two dimensional case for simplicity. The Chern-Simons term is just

P 3,0(A) = −cA
∫
A ∧ dA , (2.74)

and we decompose A = µ ∧ u + b, thus isolating the holonomy. Now we evaluate the Chern-

Simons action with fixed boundary holonomy explicitly, and subtract the cuadratic part in the

b-field. The linear part in b reads

− cA
∫

2d (µu) ∧ b+ cA

∫
M2

µu ∧ b , (2.75)

using the fact that the holonomy integrated over the Euclidean cylinder is fixed and dimen-

sionally reducing the second term we get (and taking into account the minus sign from the

inflow)

W (b) = cAβ

∫
µ b , (2.76)

the co-variant Chern-Simons action is found by adding back the Bardeen-Zumino polynomial

to be

Wcov(b) = 2cAβ

∫
µ b , (2.77)

as it should. Notice that in this case we did not need any variation but only to properly taking

into account the analytic continuation into the bulk with fixed holonomies. Alternatively, we

may work in our gauge choice and extract directly the co-variant Chern-Simons action.

Now we deal with the effective action for the energy current. In our background choice the

Chern-Simons term simply reads

− cA
∫

d

dr
(g(r)2)drdτ ∧ a , (2.78)

which can be evaluated using the boundary conditions on g(r) to give

Wcov(a, b) = 2cAβ

∫
µ b+ cAβ

∫
µ2a . (2.79)

The proof of the same statements in four dimension is completely analogous. In that case to it

is apparent that the boundary conditions on the holonomy uniquely fix the answer.

2.3.4 Computing the transgression Id+1

Now we may come to the expression for Id+1, which we have introduced in (2.47). We first derive

a formal representation, then we evaluate its boundary variation in a simple bulk extension to

give the effective action. It pays to start with a formal computation at the level of Lie algebra.
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We consider a subalgebra h of the full Lie algebra g and the splitting g = j⊕h such that [j, j] ∈ j

, [j, h] ∈ h and [h, h] ∈ j. Using components Ji, Ha this reads

[Ji, Jj] = fij
kJk , (2.80)

[Ha, Hb] = hab
iJi , (2.81)

[Ji, Ha] = lia
bHb , (2.82)

the Ji generate a subgroup J of G and the Ha generate the coset G/J . We will work with e a

g-valued connection AG and split it into

AG = AJ +BH , AJ = AiJJi , BH = Ba
HHa . (2.83)

Let us give also the formulas for our specific case. Recall the splitting (2.46). The commutation

relations between the generators Jab, Ha take the form

[Jab, Jcd] = fab,cd
efJef , (2.84)

[Ha, Hb] = hab
efJef , (2.85)

[Jab, Hc] = lab,c
dHd , (2.86)

with fab,cd
ef the SO(d) structure constants, hab

ef = δeaδ
f
b − δfaδeb and lab,c

d = δacδ
d
b − δdaδbc.

Recalling that we are interested in cases in which BH vanishes at the boundary, the transgression

formula becomes

I[AJ , BH ] =

∫ 1

0

dttr

[
∂tAt ∧

∂P d+2(At)

∂Ft

]
, (2.87)

with the interpolating connection At = AJ + tBH . As for the connection, the curvature Ft also

admits a split

Ft = Ft,J + Ft,H , (2.88)

with

Ft,J = (dAJ + AJ ∧ AJ) + t2BH ∧BH = FJ + t2BH ∧BH , (2.89)

and

Ft,H = t (dBH + [AJ , BH ]) ≡ t∇JBH . (2.90)

The strategy is then to expand the partial derivative in (2.87) and compute the non-vanishing

traces. This can become increasingly hard as the dimensionality grows since

1. The number of possible characteristic polynomials which enters P d+2 gets significantly

bigger in more than four dimensions. For specific theories the way in which they appear

is known and fixed, but the expressions can become far from trivial.

2. One needs to know how to decompose the trace operation over the so(d+1) Lie algebra in

traces over the chosen so(d) subalgebra. Which is a cumbersome exercise in representation

theory.

It is instructive to guess first what non-trivial terms may arise. In the end we are mostly

interested in contributions that are of low order in derivatives over Md−1, indeed the Chern-

Simons terms we wish to fix are the lowest order of them all compatible with gauge invariance.
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Recall that I is, by definition, an j-invariant expression. j-invariant building blocks are polyno-

mials in BH , ∇JBH and the curvature FJ . The latter can either combine between themselves

as characteristic polynomials of the j algebra, of contract with the BHs. The way in this such

contractions appear is however fixed by the form of Ft,J . The precise form of the final answer

heavily depends on the choice of j. What we may point out is the existence of a universal term,

which exists even for vanishing FJ . This reads

I[BH , A
flat
J ] = P(m)

a1,...,am
[Ba1

H ∧ (∇JBH)a2 ∧ ... ∧ (∇JBH)am ] , 2m− 2 = d , (2.91)

where P(m) contains the different traces coming from the characteristic polynomial P d+2. Notice

that a nontrivial contribution to Pm should always be present in d = 4k + 2 by the k+1-th

power of the first Pontryagin class, which would give

Pm=2k+2 ∼ δa1a2 ...δam−1am , (2.92)

also, knowing that pure gravitational anomalies only exist in d = 2 + 4k already tells us that

this is where such term will appear. In other even dimensions one can still get a mixed anomaly

with a lower dimensional gravitational contribution. In this case one will get a characteristic

class of the U(1) bundle times a Pr with r < m.

Let us treat an important example, for g = so(d + 1), j = so(d) and d = 2, one starts with

P 4 = p1 the first Pontryagin class and:

I[BH , A
flat
J ]d=2 = 2 [Ba ∧∇ωBa] , (2.93)

while in d = 4 there is no such term since the P 6(SO(5)) vanishes identically. Also, for d = 2

one may compute the full trace and show that the universal piece is the complete answer:

I[BH , AJ ]d=2 = 2 [Ba ∧∇JBa] , (2.94)

this will be the main ingredient in our examples in two and four dimensions. The four dimen-

sional case comes by wedging the U(1) curvature F with the previous equation.

For further terms, it will be useful to make contact with the substitution rule of [35]. The

authors of the paper introduce an auxiliary gauge field AT = 2πTu and argue that the correct

Chern-Simons terms may be derive by using the normal inflow methods, as in the abelian case,

but substituting P d+2 with P d+2
T given by

P d+2
T = P d+2

{
pk(R)→ pk(R)−

(
dAT
2π

)2

∧ pk−1(R)

}
, (2.95)

with pk the k-th Pontryagin class and p0 = −1, while R is the SO(d) curvature. In their case

the auxiliary gauge field had to introduced somewhat “ad-hoc”. In our case, however, as the

reader might have guessed, it will come naturally from the embedding into SO(d + 1) and is

roughly the value of Ba at the tip of the geometry (given a particular choice of coordinates).

The formulas above should serve as a first step in proving the substitution formula, however

evaluating higher traces appears to be necessary test our hypotesis. This is a daunting task.

We can however simplify it considerably by looking at the generating function of the Pontryagin

classes

det

(
I +

tR

2π

)
=
∑
k

t2kpk(R) , (2.96)
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and evaluate it for the SO(d+ 1) extension. In this case the matrix R reads:

R =

(
Rab +Ba ∧Bb ∇JB

a

∇JB
a 0

)
, (2.97)

using an SO(d) transformation (recall that I is invariant, so it is allowed) we can set ∇JB
a to

have only one non-vanishing component. Then the determinant can be computed by cancelling

rows and columns to be

det

(
I +

tR

2π

)
= det

(
I +

t(Rab +Ba ∧Bb

2π

)
− t2∇JB

a∇JB
a

(2π)2
det

(
I +

tR′

2π

)
, (2.98)

The first term is just the generator of Pontryagin classes for the J-connections, which is going

to be subtracted by the the transgression. In the second term R′ is the SO(d − 1) curvature,

since we have subtracted terms in the direction of Ba. Expanding this in t we find that, upon

transgression:

pk(R)→ pk(RJ)− ∇JB
a∇JB

a

(2π)2
pk−1(R′) , (2.99)

which is our “adapted” substitution rule. Notice that it looks very similar to the one proposed

in [54, 35], but it is more apt to the dimensional reduction we are about to perform. Indeed, the
∇JBa∇JBa

(2π)2
terms will be reduced over an Euclidean cigar and give rise to Chern-Simons terms

in the gravito-magnetic potential field, while the contributions from higher Pontryagin classes

make up further topological terms allowed from nontrivial SO(d − 1) bundles on Md−1. It

thus remains to prove the connection between our Ba field and the gravito-magnetic potential

Chern-Simons terms.

2.3.5 Thermal inflow in d = 2, 4

To study the bulk integral of the Chern-Simons term it is convenient to fix a nice extension

into the bulk and use the independence on such extension to generalize the computation. We

will thus study metrics of the form (in the Fefferman-Graham gauge)

ds2 = dr2 + h(r)(dτ + ai(x)dxi)2 + γij(x)dxidxj , (2.100)

with h(r) chosen in such a way that:

1. The boundary extrinsic curvature vanishes limr→0Kµν = 0. For us this will translate in

lim
r→0

˙√
h(r) = 0 . (2.101)

2. At the coordinate singularity, say r = 1 , it fulfills

lim
r→1

˙√
h(r) = 2πβ−1 (2.102)

so that there is no conical singularity there.
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Notice that we take the metric on Md−1 to be constant in the r direction. This can be done

without problems since we only need one cycle to shrink to zero size. We also do not introduce

any r-dependence in the gravito-magnetic potential field, which greatly simplifies our task. The

vielbein for this metric is very simple (we split the index a into 0, i for simplicity)

er = dr , (2.103)

e0 =
√
h(r)(dτ + aidx

i) , (2.104)

ei = êijdx
j , (2.105)

with êi the boundary vielbein on Md−1. The inverse vielbein is, instead

Er = ∂r (2.106)

E0 = h(r)−1/2∂τ , (2.107)

Ei = Êj
i ∂j − h(r)−1/2Êj

i aj∂τ , (2.108)

now a straightforward but lengthy computation gives the compatible spin connection:

Br = Bi = 0 , (2.109)

B0 =
˙√
h(r)(dτ + aidx

i) , (2.110)

ωr
ab = 0 , (2.111)

ωµ
i0 =

1

2
δkµÊ

ji
(
∂je

0
k − ∂ke0

j

)
, (2.112)

ωµ
ij =

1

2
ω̂µ

ij + e0
µ

1

2
ÊkiÊlj

(
∂le

0
k − ∂ke0

l

)
, (2.113)

with this in hand we may compute the boundary variation δ̂ of I. A quick computation shows,

in d = 2

δId=2(B,ω) = −4cg

∫
Ba ∧∇JδBa , (2.114)

where we have restored (minus) the gravitational anomaly cg and dropped boundary terms

which vanish due to the absence of extrinsic curvature. If we fix the boundary holonomy of

Bathe second term must vanish one integrated over two dimensions and thus the action should

not depend on the chosen bulk extension.

We thus evaluate it in our background above and find

Id=2(B,ω) = 2cgε
01

∫
C

d

dr

(
˙√
h(r)

)2

drdτ ×
∫
adx = 2cg β

(
˙√
h(1)

)2

ε01

∫
adx (2.115)

where C is the Euclidean cigar. Since only the radial derivative of B0 can contribute, this gives

rise to a total derivative contribution which is then evaluated at the coordinate singularity

r = 1. Now we use the regularity condition to compute

Id=2(B,ω) = 8π2cgβ
−1

∫
a(x)dx , (2.116)

which coincides with the classical result [41].
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We have thus fixed the thermal Chern-Simons action to be

W d=2(a) = 8π2cg β
−1

∫
a(x)dx , (2.117)

as a consequence of properly implementing the inflow mechanism in a diffeomorphism invariant

bulk.

A very similar reasoning can be done in four dimensions, here one furthermore needs a gauge

background for the U(1) field. Let us first start with a system with no holonomy, then

A = bi(x)dxi , (2.118)

doesn’t need any bulk extension, the exact same computation as before, now starting with

Id=4(B,ω) = −2cm

∫
F ∧Ba ∧∇JBa , (2.119)

This gives for the Chern-Simons action

W d=4(a, b) = 8π2cmβ
−1

∫
db ∧ a , (2.120)

as expected.

In the presence of holonomy for the A field, we may also have further terms in which the chemical

potential enters. The ones coming from the gauge anomaly have already been discussed. For

the gravitational case one notices that, yet another time, the relevant terms group together in

a total radial derivative, now of the form:

− cm
∫
∂r

(
g(r)(

˙√
h(r))2

)
dτdr

∫
a ∧ da (2.121)

which gives the further term to complete

W d=4(a, b) = 8π2cmβ
−1

∫
a ∧ db+ 8π2cmβ

−1

∫
µa ∧ da , (2.122)

consistent with the previous literature.

2.3.6 Higher dimensional generalizations

The main identity that bring to generalization in higher dimension is the fact that, in the

background above, higher dimensional terms of the form∫
Ba ∧∇JBa ∧

(
∇JB

b∇JBb

)m
=

∫
C
dτdr

d

dr

(
˙h1/2
)2m+2

∫
a ∧ (da)2m . (2.123)

Notice that the spin connection drops out from the equations since only B0 is non-vanishing.

Integrating over the Euclidean cigar then gives a factor of β(2πβ−1)2m+2, so that such term will

descend to the d− 1 dimensional Chern-Simons action:∫
Ba ∧∇JBa ∧

(
∇JB

b∇JBb

)m
= (2π)2m+2β−(2m+1)

∫
Md−1

a ∧ (da)2m . (2.124)
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Such a term, as we have already anticipated, will be present in any dimension d = 2 + 4k, and,

together with flavor gauge fields, also in d = 4k due to the replacement of the first Pontryagin

class. It gives a universal representative for coming from the bulk extension of SO(d) to

SO(d+ 1). It can be checked that this conclusion coincides with the replacement rule for p1(R)

given that we remember that each p1 will give a factor of 2∇JB
a ∧ ∇JBa taking into account

the trace.

We can now also discuss in more detail the substitution rule we have derived previously, and

in particular the role of the tensor R′ which has not been completely specified. As anticipated,

R′ is computed from RJ by projecting out the tangent space directions of the vector ∇JB
a.

Computing such gradient in our gauge choice:

∇JB
0 = (dB0, ωi0 ∧B0) , (2.125)

shows that such procedure serves to eliminate the a-dependent parts from the curvature tensor,

so that R′ indeed is the curvature associated to the spin connection on Md−1.

Applying the substitution rule to higher characteristic classes or, in our notation, computing

the transgression for higher characteristic classes, gives higher derivative Chern-Simons terms

of the form:

(2π)2r+2β−(2r+1)

∫
Md−1

a ∧ (da)r ∧ P d−2−2r(SO(d− 1)) , (2.126)

which are, however, only relevant in dimensions d = 6 and higher and have not been studied

extensively. They gives rise to higher derivative contributions to the Chern-Simons action on

Md−1.x‘

2.4 Conclusions and future directions

In this Chapter we have reviewed a general construction to determine certain Chern-Simons

terms in the thermal effective action in d − 1 dimensions and how this allows to relate them

to ’t Hooft anomalies. We have further given a new construction, which takes inspiration from

the holographic treatment, which explains the presence of fractionally quantized, but otherwise

appropriate Chern-Simons terms through careful analysis of the anomaly inflow mechanism

and the necessity for a non-trivial embedding of the Lorentz group SO(d) in SO(d + 1) in

order to have a co-variant topological theory in the bulk. The properties of this extension turn

out to be rather universal, and are essentially fixed by regularity conditions and the boundary

values of certain holonomies. This perspective further allows for a different justification of the

replacement rule [55, 35].

It would be nice to generalize and more clearly formulate the set of constraints given by this

“geometric” extension through tools of algebraic geometry, which may also help to generalize

this analysis to different systems. Particularly interesting for the author seems to be the

question of whether there exist a bulk extension through anomaly inflow of anomalous partition

function for arbitrary data (gauge fields, holonomy, discrete data such as spin structure...), or,

through geometric reasoning, some of these partition functions may be shown to vanish.

Another nice direction for further study may be the derivation of Cardy formulas for Super-

symmetric theories, [32], which are essentially found by embedding the Chern-Simons terms on
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Md−1 in a full super-gravity multiplet. The inflow analysis may help to clarify the generality

of such arguments.

It is also important to point out the possible restrictions on this construction. Indeed it is

well known that the substitution rule’s answer does not coincide with the perturbation theory

computation for gravitinos and gravitons [57]. The lack of agreement could however be solved

by adding a properly quantized Chern-Simons term in d − 1 dimensions. An important point

to explain is why the inflow strategy here must be modified and how. For the first part of the

question we have a (partial) answer, since the inflow mechanism actually needs the definition of

a massive bulk system in order to be carried out precisely. For fermions this is not a problem,

nor it is for p forms in d = 2p dimensions, in in this case one may make the bulk theory

“topologically” massive by adding a Chern-Simons interaction. For higher spin particles the

situation is more subtle, as there is no obvious way to introduce e.g. massive spin 2 fields. The

Dai-Freed-like formula for the partition function (2.70) then is not guaranteed to apply8.

Understanding the way in which the inflow mechanism should be modified poses an interesting

question for the future.

8It is true that, for example in the gravitino case, one can gauge fix in order to end up with lower spin

degrees of freedom, however it is not at all clear that such a gauge fix can be imposed globally in the bulk. This

is not a problem for the computation of e.g. perturbative anomalies, since in that case only the geometry very

close to the boundary is meaningful, but in our computation we have seen that the d − 1 dimensional locally

gauge invariant terms arise from physics near the “apparent” singularity. A similar comment was made in [41].

We think such situation deserves further study.
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Chapter 3

Non-relativistic geometries

3.1 Introduction

In this chapter we switch gears and treat a couple of specific problems related to non-relativistic

systems. The topic of classifying the possible low energy effective actions related to (emergent)

non-relativistic invariance at low energy is receiving a renewed amount of attention during the

last years.

One motivation for this resurgence may be found in the description of fractional quantum Hall

systems, which at low energy can often be thought as interacting non-relativistic fermions in a

magnetic field[58]. Another very interesting direction has been the treatment of non-relativistic

gravitational theory, that is, dynamical theories of gravity whose first order formulation de-

scribes a non-relativistic gauge theory (and thus are seen as particular, non-Riemannian, ge-

ometries). From our point of view this is indeed an interesting direction, since this also classifies

the possible contributions to the effective action W [A] of a non-relativistic system.

Our studies here thread between the two fields, in that we study the linear response (equiva-

lently, the quadratic part of the effective action) of a particular class of non-relativistic fermionic

systems and argue for the emergence of some non-universal features in a particular “warped”

limit. To do this one must first specify which kind of non-relativistic theory we are talking

about and then introduce an appropriate way to couple it to a non-relativistic geometry. This

is done in the next Section 3.2. Once this is taken care of, it is possible to study in full general-

ity the (linear) dependence of the theory’s one-point functions on the external Non-relativistic

data, that is setting up an appropriate linear response theory. This is done in Section 4.1,

focusing on a particular class of systems. At this point, if universal features appear in the

computations, one may try to explain them via an effective field theory reasoning akin to what

we have developed in the first two Chapters of this thesis. This is done is Section 4.2, arguing

that non-trivial anomalies may emerge in a particular limit, hence generating universal features

in the linear response.

We will now introduce some preliminary notions about non-relativistic groups. A simple way to

think about them may be as the set of Inonu-Wigner contractions of the relativistic Poincaré

algebra ISO(D − 1, 1). As a matter of convention, the discussion for the most part can be

carried out in either Euclidean or Lorentzian signatures. We denote the space-time dimension

by D = d+1, with d being the dimension of space(-time) where the residual SO(d) (SO(d−1, 1))
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rotations acts. Usually this is a spatial slice, in our case it will not be. Then we describe Non-

relativistic groups, such as the Galilei group Gald as symmetry groups of D = d+1 dimensional

systems.

Inonu-Wigner contractions of a Lie algebra g are performed by introducing an auxiliary param-

eter c in the definition of the generators in such a way that the c → ∞ limit is well defined.

A generic way to implement this construction is to divide the Lie algebra in two sub-spaces

g = h⊕ j in such a way that:

[j, j] ∈ j , [h, j] ∈ h , [h, h] ∈ j , (3.1)

or, in components:

[Ja, Jb] = cab
cJc , [Hi, Ja] = dia

jHj , [Hi, Hj] = fij
aJa . (3.2)

To each such decomposition of g we may associate a contraction by the redefinitions1:

Hi → cH̃i , (3.3)

taking the limit c→∞ and eliminating c from the equations the algebra now results in

[Ja, Jb] = cab
cJc , [H̃i, Ja] = dia

jH̃j , [H̃i, H̃j] = 0 . (3.4)

The most famous example is the Galilei group. This comes by taking the Poincaré generators(
Jab, P a

)
and fix a direction (say 0) to separate them in j =

(
JAB, P 0

)
and h =

(
J0A, PA

)
with a = (0, A). We re-scale J0A = cGa, PA = cPA and call P 0 = H to get the non-trivial

commutators

[JAB, JCD] = δACJBD + ... [JAB, PC ] = δACPB − δBCPA , (3.5)

[JAB, GC ] = δACGB − δBCGA , [GA, H] = PA , (3.6)

where the dots stand for the usual permutations of the SO(d) Lie algebra. One can be more

general and also notice that the last term in (3.4) may admit a central extension N , for example

in the Galilei case this is the particle number symmetry

[GA, PB] = δABN . (3.7)

This construction allows to generate various other new Non-relativistic algebras. Another

example which will be important for us is the Carroll algebra[59, 60, 61]. Physically, this

corresponds to a high energy limit in which one moves to an extremely boosted frame.

This is obtained by taking j =
(
JAB, PA

)
and h =

(
J0A, P 0

)
. Re-scaling J0A = c−1CA and

P 0 = c−1Π and taking c→ 02 we get the algebra:

[JAB, JCD] = δACJBD + ... [JAB, PC ] = δACPB − δBCPA , (3.8)

[JAB, CC ] = δACCB − δBCCA , [CA, PB] = δABΠ . (3.9)

1This is a particular case of a more generic procedure, called Lie algebra expansions, which will however not

need here.
2For this reason, the Carroll algebra is usually called an “ultra-relativistic” limit.
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This algebra turns out to have no interesting central extension in D > 3 (in D = 3 one may

use the SO(2) epsilon tensor εAB). One can also have more general “brane”-like algebras, by

selecting different subgroups SO(p) of SO(D). These are object of much recent study, however

we will not have anything to say about them.

One thing that we still may add from the purely algebraic perspective is that at this point

one may also think of adding scaling generators to this algebra. One usually does this by

first introducing the dilatation generator D asking that all of the generators have prescribed

scaling dimensions. In the Galilei case, since the central extension must be dimensionless and

normalizing D such that [D,PA] = PA, [D,GA] = −GA then [D,H] = 2H and there is only

one such extension. For Carroll there is a whole family of them with

[D,PA] = PA , [D,CA] = (z − 1)CA , [D,Π] = zΠ . (3.10)

These algebras should describe Carrollian-Lifshitz theories. We will be particularly interested

in the special case z = 0, which we will call the warped limit.

Having introduced the Non-relativistic algebras which will be relevant for our presentation, we

now move to describe the geometry in which such algebras may be realized.

3.2 Newton-Cartan and Carrollian geometries

In this Section we describe the kind of geometric data that will be needed in describing non-

relativistic theory on arbitrary manifold. From the Quantum Field Theory perspective, it is

clear that coupling to a Riemannian geometry is problematic, since the stress tensor would

have to satisfy the full SO(D) Ward identities

Tµν − Tνµ = 0 , (3.11)

while such symmetry is clearly absent from our system. One may want to solve this problem by

breaking general co-variance, which however we would like to keep since it assures energy and

momentum conservation, which will be present in the systems of interest. One thus needs a

diffeomorphism-co-variant geometric formulation which also only allows for a “reduced” tangent

space symmetry.

There are various possible such formulations, which roughly speaking boil down to the kind of

non-relativist algebra that the underlying Quantum Theory has as its symmetries. We will start

with the most well known such geometry, Newton-Cartan geometries, following the presentation

of [62], which are the most well known and are apt to describe Galileian theories and we will

also introduce Carrollian geometries [63], which are the natural setup for Carrollian theories.

This introduces a set of omnipresent ingredients, such as the non-vanishing torsion, which will

speed up our later presentation. There is, of course, also a first order formulation of these,

which we present for Carrollian theories in 4.2.

3.2.1 Newton-Cartan Geometry

Newton-Cartan Geometry starts with assuming the existence of a nowhere-vanishing one form

n, which can be loosely thought as describing the non-relativistic direction. This is sometimes
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taken to be closed dn = 0, but in our case the non-vanishing of dn will be crucial. Together

with this one-form, one can define a symmetric tensor hµν whose kernel is spanned by n:

nµh
µν = 0 . (3.12)

In the intuitive picture of n defining a foliation of the ambient space-time, hµν can be thought

as defining an (inverse) metric on the D− 1 dimensional slices. For our purposes it will also be

useful to introduce (co)-frame variables Eµ
A satisfying3:

Eµ
AE

ν
B δAB = hµν , Eµ

Anµ = 0 (3.13)

At this point one would like to introduce algebraic inverses of our data to be able to define e.g.

a metric on the ambient space-time. These are a vector field vµ and a symmetric tensor hµν
(or, equivalently a frame eAµ ) satisfying the algebraic relations

vµnµ = 1 , hµνv
µ = 0 , hµρhρν = δµν − vµnν ≡ P µ

ν , (3.14)

for the vielbein fields this means

eAµ v
µ = 0 , eAµE

ν
A = δµν − vµnν , eAµE

µ
B = δAB . (3.15)

This also allows us to define a metric on our D dimensional manifold

gµν = nµnν + hµν . (3.16)

In contrast to the Riemannian case, where the analog of hµν , the metric gµν is an invertible

D × D matrix with a unique inverse, in the Newton-Cartan case we deal with non-invertible

algebraic objects. This is reflected in the algebraic relations above, which are insufficient to

fully determine
(
vµ, hµν , e

A
µ

)
. This gives rise to the Milne-boost redundancy:

vµ → vµ + hµνγµ , hµν → hµν − (nµP
ρ
ν + nνP

ρ
µ) γρ + nµnνh

αβγαγβ , (3.17)

eAµ → eAµ − nµEρAγρ , (3.18)

which has the natural interpretation of a geometric implementation of boost symmetry.

Now that we have some pieces in place we still need to define parallel transport in this geometry,

to do that we need to fix a connection Γρµν . While in the Riemannian setup one usually requires

metric compatibility, in the Newton-Cartan case it is natural to require the boost-invariant

quantities to be co-variantly conserved:

∇µnν = ∇µh
αβ = 0 . (3.19)

the first equation relates the exterior derivative of the foliation vector to the torsion Tµν =

(Γρµν − Γρνµ)nρ as

− dn = T , (3.20)

on the other hand, taking into account also the second equation one obtains a more complete

formula

Γρµν = vρ∂µnν + Γ̂ρµν [h] + hρσn(νFµ)σ , (3.21)

3Although here we use the Kronecker delta δAB , in our applications this will be substituted by the Minkowsky

metric ηAB
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Where Γ̂ρµν [h] is the usual expression for the Christoffels with h instead of the metric g and

Fµν is an undetermined two form. In the absence of torsion this form il closed, and so it may be

thought of as defining a U(1) connection, which is precisely the central extension of the Galilei

algebra. Always in this case, one can check that imposing A to transform as

Aµ → Aµ + P ν
µγν −

1

2
nµh

αβγαγβ , (3.22)

renders the connection boost invariant. Such a redefinition is not possible in the presence of

torsion. One can also run a similar story for the spin connection by solving the equation

∇µE
ν
A = 0 , (3.23)

which gives

ωABµ = ω̂ABµ [e] + nµ E
νAEρBFνρ . (3.24)

Linearizing this set of transformations and computing their commutators indeed confirms that

this geometry gives a representation of the Galilei algebra with central extension.

One might want to simplify the geometry in two ways:

1. Eliminate the central extension.

2. Defined a preferred frame where Milne boost are not present (after all, many theories

have reduced rotation symmetry but still no boosts).

The first item essentially amounts to not assume that F is a closed two form, however it should

still transform under Milne boosts to have an invariant connection. The lack of an invariant

connection doesn’t have to be a problem, however it raises the interesting question of how to

properly define geometric and topological invariant in the non-relativistic setting. The second

item can also be taken care of as shown in [64]. The idea is to impose a further, non-boost-

invariant condition which specifies a preferred frame. This condition can be the co-variant

constancy of vµ (equivalently of hµν). This gives the equations:

∇µv
ν =

1

2
hανLvhαµ (3.25)

∇µhαβ = n(αLvhβ)µ , (3.26)

since the Lie derivative is not boost invariant, one may choose a boosted frame which makes

the right-hand-side to vanish4. When working in this setup we will simplify the notation by

renaming (vµ , nµ) = (lµ , lµ). We will also set the two-form F to zero.

3.2.2 Carrollian geometries

A close relative of this construction allows also the define Carrollian geometries [63]. As we

have discussed in the Introduction, the Carroll group arises as an Inonu-Wigner contraction in

which the roles of momenta PA and P 0 are reversed in their belonging to the sub-algebras H

4Since this is essentially given by the extrinsic curvature of the foliation, there may be issues with imposing

such equation globally, for our purposes we will be content with restricting to geometries in which this is possible.
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or J. This gives a hint that Carrollian geometries may be defined by inverting the roles of nµ
and eAµ in the Galilei case. This prompts one to start with a vector field vµ and a metric on

spatial slices hµν with

vµhµν = 0 , (3.27)

alternatively, we introduce a frame eAµ . The inverse variables are introduced algebraically as

before, but this time we will have a Carrollian boost symmetry instead:

nµ → nµ + hµνκ
µ , hµν → hµν − (vµP ν

ρ + vνP µ
ρ)κ

ρ + vµvνhαβκ
ακβ , (3.28)

while

Eµ
A → Eµ

A − v
µeρAκ

ρ . (3.29)

In the same spirit as before, the connection is determined by demanding co-variant constancy

of the boost invariant data

∇µv
µ = ∇µhαβ = 0 . (3.30)

The determination of the connection through this procedure turns out to be more complicated

than in the Galileian case. Let us give some plausibility for this conclusion before giving the

results. First one may consider the torsion Tµν defined as in the Galilei case; now this quantity

is not boost invariant (we had to contract a nρ to define it), so the extra data will be expressed

in a more convoluted way. Secondly, now the extrinsic curvature of the slices Kµν = 1
2
Lvhµν is

not a boost invariant object and thus may appear at various stages of the construction.

After a tedious but straightforward computation one finds [63]:

Γρµν = −vρ∂µnν + Γ̂ρµν [h]− nνhρσKµσ − vρXµν +
1

2
hρσYσµν , (3.31)

with Xµν = ∇µnν and Yσµν undetermined apart from the properties vσYσµν = vνYσµν = 0.

Notice that indeed the torsion is not as simple as in the Galilei case and given by

Γρµν − Γρνµ = −vρ
(
∂µnν − ∂νnµ + 2X[µν]

)
+ hρσ

(
Yσ[µν] − 2n[νKµ]σ

)
. (3.32)

A nice solution proposed in [63] which simplifies the equations, is to introduce a vector field Mµ

and to use hµνM
ν as a Stueckelberg field to cancel parts of the boost variation of the geometry.

This allows to define the boost invariant quantities5

n̂µ = nµ − hµνMν Êµ
A = Eµ

A + vµeAνM
ν , (3.33)

and find solutions for Xµν and Yρµν such that the connection and torsion now simply read

Γρµν = −vρ∂µn̂ν + Γ̂ρµν [ĥ]− n̂ν ĥρσKµσ + n̂µĥ
ρσKνσ , (3.34)

Γρµν − Γρνµ = −vρ (∂µn̂ν − ∂νn̂µ)− 2ĥρσn̂[νKµ]σ . (3.35)

Notice that imposing the extrinsic curvature to vanish we go back to a situation similar to

Newton-Cartan without boosts.

5Notice that, since Mµ is a Stueckelberg field, the boost co-variant algebraic equations for orthogonality still

hold, albeit “hatting” the redefined variables everywhere.
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3.2.3 The view from D + 1

A nice interpretation of these construction comes from embedding these non-relativistic ge-

ometries in a higher dimensional space-time. While giving an intuitive picture for some of the

properties of these geometries, this point of view will also be helpful to tie the discussion with

the anomaly-inflow type of argument that we have already put forward in the previous Chapter.

The higher dimensional interpretation for Galileian geometries is quite well known that one

may start from a D+ 1 dimensional manifold with a null isometry nM∂M . Then the metric can

be taken in local coordinates to be of the form

ds2
D+1 = 2nµdx

µ (du+ Aµdx
µ) + hµνdx

µdxν , (3.36)

with all fields u-independent functions and hµν of rank D + 1− 2 = d− 1. There are actually

infinite ways to choose the fields Aµ and hµν for the metric to have this form, indeed:

Aµ → Aµ + χµ hµν → hµν + nµχν + nνχµ , (3.37)

all do the trick. Requiring the rank of hµν to be conserved by this transformation (which are

just the orthogonality conditions in the Galileian setup) fixes the one-form χµ to give back the

Milne boosts χµ = P µ
ν γν − 1

2
nµh

αβγαγβ. Finally, one can check that the symmetric part of the

connection induced on the d dimensional manifold coincides with the one in (3.21) provided

F = dA. The torsion, which is absent since the higher dimensional geometry, can be found

sitting in the co-variant derivative of the null generator ∇MnN = −TMN .

The physical idea behind this construction is that fields in D + 1 dimensions will decompose

according to their null momentum in the u direction. This is simply the charge under the

central U(1)6 of the Galilei group. One may then perform a null Kaluza Klein reduction to end

up with a tower of Galileian invariant theories. While this process readily generates free theory

examples, since in this case the KK modes decouple, it does not generate interacting example

with a finite number of particle species. It can be used, however, to derive some properties of

effective actions.

One example regards the presence of perturbative (non-conformal) anomalies in Galileian theo-

ries. Since even dimensional Galileian theories can be loosely thought of null reductions of odd

dimensional standard QFTs and vice-versa, one can exclude them automatically to have such

perturbative anomalies7 (for D+1 odd it is obvious, since perturbative anomalies are only even

dimensional, for D + 1 even it follows from the fact that the dimensional reduction only gives

rise to Chern-Simons terms, which would require holonomy around the null direction.). Con-

formal anomalies however can still be present, and have indeed been studied in the literature

[65, 66].

The Carrollian case has a similar but less known story. In this case the Carrollian geometry

does not come from null reduction, but from null embeddings.

6In order to have U(1) rather than R we need to take the null direction as a compact circle.
7One small counterargument could exist for theories which cannot be realized by integrating out a tower of

KK modes, which then would evade this kind of argument. However anomalies are essentially independent from

interactions and free Galileian theories admit a bulk interpretation.
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To define a null embedding we can choose a light-cone coordinate, say u, and define our surface

through the equation:

u = u0 = constant , (3.38)

the fact that the normal vector to the foliation ∂Mu is null gives the condition guu = 0 for the

ambient metric. Diffeomorphisms that preserve the null surface are given by:

x′µ = fµ(xν , u) . (3.39)

Let us parametrize the inverse metric as:

g−1 = 2vµ∂µ ⊗ ∂u + hµν∂µ ⊗ ∂ν , (3.40)

then the diffeomorphisms preserving the surface act on g−1 as:(
g−1
)′

= 2vµ∂µ ⊗ ∂u + (hµν + vµ∂uf
ν + vν∂uf

µ) ∂µ ⊗ ∂ν , (3.41)

displaying the transformation properties of hµν . This are still not the Carroll transformations.

However one can play a similar game as in the Galileian case, requiring that the rank of h be

D − 1, this incidentally also defines nµ as the kernel of hµν . Then transformations of the form

above preserving nµh
µν = 0 and nµv

µ = 1 are precisely the Carrollian diffeomorphisms.

The appearance of the Stueckelberg field Mµ can also be justified in a similar way. If one

decomposes hµν = ĥµν + vµMν + vνMµ, the transformations properties of hµν under boosts

may be adsorbed entirely by Mµ. If one writes the metric for this system the answer is:

ds2 = 2du (Φdu− n̂µdxµ) + hµνdx
µdxν , (3.42)

with Φ = −nµMµ + 1
2
hρσM

ρMσ. Notice here there is no U(1) redefinition of nµ that makes a

further central term appear, since it is adsorbed by the presence of M .

We can now try to make a similar reasoning regarding perturbative anomalies in the Carrollian

case. Now an even dimensional Carrollian system is seen as a null embedding in a D+1 = d+2

odd dimensional bulk. In the bulk we may have a topological theory which creates a consistent

anomaly on the Carrollian manifold upon inflow without any contradiction. This in principle

allow Carrollian theory to have a richer structure in this respect than Galileian ones, which we

will study in Section 4.2.
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Chapter 4

Lifshitz fermions and universality

4.1 Torsional response for Lifshitz fermions

In this Chapter we begin the study of the response properties of a particular class of d = 4

fermionic systems. A representative of this class is given by a massive Dirac fermion in an axial

background field bµ, with action

S =

∫
d4xΨ̄

(
i /D −m+ γ5/b

)
Ψ . (4.1)

This action has been widely used in the literature as a continuous toy model describing a

quantum (i.e. zero temperature) phase transition between a trivial gapped system (insulator)

and a system of two Weyl fermions (Weyl-semimetal). The analysis of the RG flow is extremely

simple since the model is free. One first finds the energy bands for the system:

ε(k)2
± = k2 +m2 + b2 ± 2|b|

√
m2 + (b̂ · k)2 , (4.2)

where we have taken bµ to be a spatial vector. The bands responsible for the low energy behavior

are those for which the minus sign is chosen above. The low energy phase is determined by

the respective magnitude of b ,m. For |b| > |m| the lowest bands touch at ~k± = ±α~b, where

α =
√

1−m2/b2 may be interpreted as a screening factor for the chiral charge. In the opposite

case the system is gapped, with the gap given by ∆gap = 2
√
m2 − b2. The theory at low energy

is then either described by a massive Dirac fermion, which can be integrated out, or a couple

of two Weyl fermions with a nontrivial axial field bµeff = αbµ and action

Seff =

∫
d4xΨ̄eff

(
i /D + γ5/beff

)
Ψeff . (4.3)

In this phase one may extract a nontrivial chiral effective action by rotating away the axial

vector though a chiral transformation, the chiral anomaly then gives an effective action:

W [A, beff ]−W [A, 0] =
1

24π2

∫
d4xbeff ∧ AdA , (4.4)

which gives rise to a non-trivial electric current in a background magnetic field, which is a

signature of the low energy phase.
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Less studied is the quantum critical point of this model, which appears as the difference |m|−|b|
approaches zero. It is simple to expand the energy bands in this regime to give:

ε2/m2 =
k2
⊥
m2

+
(k · b̂)4

4m4
+O

(
(k · b/m)6

)
, (4.5)

so that the model enjoys an emergent Lifshitz scaling symmetry anisotropic scaling z = 1/2 (see

Figure below).1 It would be interesting to determine whether this critical point also possesses

Figure 4.1: Lowest energy bands of the fermionic system (4.1). The figure shows the dispersion

relation as function of p⊥ and the anisotropic momentum p3. The left figure is the insulating

phase. The right figure the is deep in the Weyl semi-metal phase and the middle figure shows

the critical point in between the two.

some distinctive feature. In this case it cannot directly come from chiral physics, since the

vanishing of beff may be interpreted as a decoupling of the U(1)A symmetry. It was however

shown in [67] using an holographic model [68, 69] that nontrivial correlators of the stress tensor

of the theory are present in the vicinity of the critical point, giving rise to an anisotropic, non-

dissipative Hall viscosity once the system is put at finite temperature.2 It has been known for a

long time [70] that such terms may only arise if both rotational invariance and either parity or

time reversal are broken. Both breakings come in this model directly from the introduction of

the external axial field. However in both low energy phases, rotational invariance is effectively

restored up to the contribution from the chiral anomaly. Thus such an observable, if present,

must be a property of the critical point.

To properly answer this question from a field theoretical perspective, we employ a simplified

1Notice we use a convention where the “isotropic” directions scale uniformly, while the b̂ direction scales by

a factor λz.
2Since the precise definition of the operators entering in the Kubo relations requires some formalism in this

case, the precise discussion of the observables we will be interested in is developed in 4.1.1
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two-band model for the critical Lifshitz fermion:

SLif =

∫
d4x

{
χ†

[
iσA∂A +

σ · b̂
b

(
i∂ · b̂

)2
]
χ

}
, (4.6)

where we denote the Lorentz group indices in the remaining SO(1, 2) directions using capital

Latin letters A,B,C. This model indeed reproduces (4.5) up to the desired order. It can

also be interpreted in a more transparent way by using representations of the SO(1, 2) Clifford

algebra instead, which amounts to introducing χ̄ = χ†iσ · b̂ so that the Lagrangian takes the

form of the one for a 2 + 1 dimensional Dirac fermion with a momentum-dependent mass

µ(p) = i
(
p · b̂

)2

/b. A nice property of this system is that is still charge conjugation invariant,

so that one may also define it for a Majorana representation ϕ of SO(1, 2). We can take

for example γA = (iσ3, σ2,−σ1) and the charge conjugation matrix C = iσ2. The Majorana

condition reads Cχ̄T = χ.

Furthermore, we can also generalize the scaling exponent to be an arbitrary z = 1/2n, n ∈ N
to find the model:

Sz =

∫
d4x

{
ϕ̄
(
iγA∂A

)
ϕ+ s ϕTM(∂ · b̂)1/2zC−1ϕ

}
, (4.7)

where M(∂ · b̂) =
←−
∂ · b̂b̂ ·

−→
∂ and s = ±1 sets the sign of the mass. We are also working in units of

b = 1 for simplicity, this is not a problem since it cam be reinstated by dimensional analysis and

is a dimensionless parameter according to the Lifshitz scaling. Taking z = 1/2n as anticipated

allows the model to remain local. Symmetry-wise, our model respects charge conjugation,

however breaks time reversal (due to the 2+1 dimensional mass term) and rotational invariance.

The Lifshitz scaling symmetry can be seen as acting as follows:

xA → λxA x · b→ λzx · b ϕ→ λ−(1+z/2)ϕ . (4.8)

One may ask whether the model (4.7) may be obtained from the fermionic Lagrangian via a

specific deformation too:

Seff → Seff +
n∑
s=2

∫
d4xλsOs , (4.9)

with specific (fine tuned) λs.

The answer is positive, at least at intermediate energy scales. Indeed one may try to add

irrelevant operators to cancel all derivatives up to the 1/z-th at the band touching point k = 0.

These deformations are simply given by higher spin chiral currents, schematically:

Os = bµ1 ...bµsΨ̄γ5γ
µ1∂µ2 ...∂µsΨ . (4.10)

Imposing the dispersion relation to have Lifshitz scaling 1/z at small momenta and |b| = m

fixes

λ2s =
(1/2)s
s!

m1−2s 2s ≤ 1/z . (4.11)

So that one can indeed reach the higher z critical point by fine tuning a finite number of

couplings3.

3This procedure can only be seen as working for intermediate energy scales, indeed in the far UV the theory

should be UV completed.
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The next step that will be crucial for our computations is the coupling of this model to curved

space-time. Now is where our introduction to non-relativistic geometries starts to pay off.

Notice that the model 4.7 still has SO(2, 1) symmetry. This leads us to a version of Newton-

Cartan geometry where the boosts have been fixed by canceling the extrinsic curvature. In the

notation of Section 3.2 the model should couple through:

Sz[e
A, l] =

∫ √
−g
{
ϕ̄
(
iγAEµ

A∇µ

)
ϕ+ s ϕTM(∇l)

1/2zC−1ϕ
}
, (4.12)

where we introduce the shorthand notation ∇l = lµ∇µ, with the understanding that, in the

flat space-time limit, lµ = bµ. The co-variant derivative ∇µ acts through the Newton-Cartan

connection and through the spin connection ωABµ , which in this case we may take simply as

given by the usual formula in terms of the triad eAµ .

Using this background we can write down the Ward identities obeyed by the theory and intro-

duce its relevant currents. The general variation of the action reads:

δSz[e
a, l] =

∫
√
g
(
tµaδe

A
µ + pµδlµ + SµABδω

AB
µ + ΩµνδTµν

)
, (4.13)

being Tµν the torsion. We will call tµA the “isotropic stress tensor” and pµ the “anisotropic

momentum current”. The equation above is meant to signify that variations of the inverse

triad and lµ are to be re-expressed as variations of eAµ , lµ through the equations:

δEν
B = −Eµ

BE
ν
Aδe

A
µ − lνE

µ
Bδlµ (4.14)

δlν = −lµEν
Aδe

A
µ − lνlµδlµ. (4.15)

The Ward identities then come from the diffeomorphism and Lorentz variations of the Sz, on

our fields they act as:

δξlµ = ∇µ(ξνlν)− Tνµξν , (4.16)

δξe
A
µ = ∇µ(ξνeAν )− ξλωλABeBµ , (4.17)

for the diffeomorphism generated by ξµ and

δΩlµ = 0 (4.18)

δΩe
A
µ = ΩA

Be
B
µ . (4.19)

for tangent space rotations generated by ΩAB = −ΩBA. The last term in (4.17) is not co-

variant under tangent space transformations, as is the case for connections. However we may

combine it together with a Lorentz variation with ΩAB
ξ = ξλωλ

AB to cancel it. We will use such

”co-variantized” variation in what follows.

Another useful organizing principle is to make the Lorentz symmetry manifest, which allows

us to split the equations in irreps of SO(1, 2) and will be very useful for the Kubo formulation.

This means that we split any vector field V µ = V lµ + V AEµ
A. This splitting makes sense in the

absence of boosts, otherwise the parameters
(
V, V A

)
will mix among themselves. This allows

to split e.g. the diffeomorphism generator:

ξµ = θlµ + ξAEµ
A , (4.20)
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and rewrite (4.16)(4.17) as

δθlµ = ∂µθ − θGµ , (4.21)

δθe
A
µ = 0 , (4.22)

δξlµ = −TAµξA , (4.23)

δξe
A
µ = ∇µξ

A . (4.24)

Finally, Ward identities have a more compact form if we use the explicit dependence of ωABµ
and Tµν on the data

(
eAµ , lµ

)
. This allows us to define

τµA = tµA +
1

2
lµ(∇B −GB)σBA

+
1

2

[
EµB(∇C −GC) (sCBA + sBAC − sABC) +∇lσBA

]
,

(4.25)

and

πµ = pµ − (∇ν −Gν) Λνµ , (4.26)

where ∇l ≡ lµ∇µ, Gν = lµTµν whereas sABC and σAB are defined through the splitting of the

spin connection by

SµAB = EµCsCAB + lµσAB . (4.27)

Finally in integrating by parts in the presence of torsion it is useful to keep in mind the following

equality
1
√
g
∂µ
√
g = Γνµν = Γννµ +Gµ . (4.28)

After all this preparation work we write down the Ward identities:

(∇µ −Gµ) τµA = TAµπ
µ , (4.29)

(∇µ − 2Gµ)πµ = 0 , (4.30)

eµ[Aτ
µ
B] = 0 . (4.31)

which can be recast by further saturating the contracted space-time indices through

τµA = EµBτBA + lµΣA , (4.32)

πµ = EµAπA + lµπ , (4.33)

into the form

(∇A −GA) τAB +∇lΣ
B = TBAπ

A +GBπ , (4.34)

(∇A − 2GA) πA +∇lπ = 0 , (4.35)

τ[AB] = 0 , (4.36)

while Lifshitz invariant implies:

τAA + zπ = 0 , (4.37)

which may be derive via the following Weyl rescalings:

δσlµ = −zσlµ , (4.38)

δσe
A
µ = −σeAµ . (4.39)
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Equations (4.34),(4.35),(4.36) reflect conservation of energy and momentum in both the isotropic

and anisotropic directions and the Lorentz symmetry for τAB, which may be thought of an ef-

fective stress tensor living in d = 3 dimensions. It is important to notice that, in contrast with

the fully isotropic case, the current components (τAB, πA,ΣA, π) sit in different multiplets. This

allows for a wider variety of nontrivial correlations which we will explore in the next Section.

4.1.1 Lifshitz hydrodynamics and Kubo formulas

The aim of this section it to develop an “hydrodynamic” theory of response for systems coupled

to the geometry discussed above. This will allow us to link Quantum Field Theory correlators to

low energy observables and give a clear definition of “anisotropic Hall viscosity”. The theory of

non-relativistic hydrodynamics has a long story, indeed it precedes relativistic hydrodynamics.

However the usual discussion rests essentially on the natural identification of the fluid velocity

vector uµ with the Newton-Cartan vector field vµ. In our case this is not possible, since lµ is

space-like rather than time-like. One must then introduce the fluid velocity in an independent

manner and explain the differences with respect to the “usual” setup.

As mentioned before, it is expedient to decompose:

uµ = θlµ + vAEµ
A , (4.40)

in the absence of boosts θ is an invariant of the flow and thus may be taken as a separate piece

of data. One can then simply discriminate flow with θ = 0 and θ 6= 0. For θ = 0 (which is

the case we will be mostly interested in) it makes sense to normalize vAvA = −1 so that we

might bring vA = (1, 0, 0) to rest by a local Lorentz transformation. The interpretation for the

curious role of θ comes from the fact that the usual stress tensor multiplet, to which the fluid

velocity is expected to couple as a chemical potential through4:

W [u, T ] =

∫
uµTµ0 , (4.41)

splits in the τAB and πA currents. The θ component then just acts as a chemical potential for

the abelian current πA, and will exactly behave as one through the whole formulation.

Lifshitz Hydrodynamics

Hydrodynamics is then constructed by considering the most generic one-point functions for

conserved currents in an expansion through gradients of the velocity. In our case this is achieved

by splitting5

∇µvA = lµ∇lvA + eBµ (σ̂AB + ηABΘ + εABω) , (4.42)

in terms of the shear σ̂AB = ∇(AvB) − 1
2
ηAB∇Cv

C , the expansion Θ = ∇Cv
C and the vorticity

ω = εABCvA∇BvC , with εAB = εABCv
C . In the Newton-Cartan setup, however, we have

4Here we use Tµν to denote the stress tensor in anisotropic theories, this is the same notation as the one for

the torsion, but it only appears in this formula. Henceforth the letter T will always denote torsion.
5In hydrodynamics one usually considers quantities orthogonal to the flow vector vA. Gradients automatically

are so due to the normalization condition. It is however convenient to consider all Lorentz indices form now on

to be orthogonalized with respect to vA, we dispense the required projectors to avoid cluttering.
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another piece of independent data given by the torsion, which does not appear in any co-

variant derivatives of the above type. It is then necessary to include this piece of data into the

formalism by also expanding the torsion tensor as:

Tµν = 2(l[µe
A
ν]GA + eA[µe

B
ν]

(
ζ[BvA] + εABm

)
) , (4.43)

this essentially amounts to an electric-magnetic decomposition in the 2+1 anisotropic directions,

with “electric” field ζA and “magnetic field mεAB, plus a vector field GA. It is then clear that D

dimensional hydrodynamics in our geometry will be similar to d dimensional relativistic hydro

with an additional electromagnetic field, which is a very well-known subject. The “data” that

enter in the hydrodynamic expansion are just functionals of

(σ̂AB , Θ , ω , ζA , m , GA) . (4.44)

The link with quantum field theory correlators is found by expanding this set of data in the

fluid rest frame and extracting their dependence on geometry. Taking functional derivatives

then gives the desired relations. In our case we will need the formulas for a time-dependent,

but otherwise constant, background. The formulas in the other cases are very simple to derive

once the analogy between torsion and electromagnetism has been understood.

The main new feature of this expansion is in the fact that ∇µu
ν only contains the geometric

response to triad perturbations. This follows from co-variant constancy of lµ so that

∇µu
ν = lν∂µθ + Eν

a∇µv
A , (4.45)

and

∇µv
A = ωAµ Bv

B , (4.46)

in the rest frame. As one can imagine, the missing response in the gradients of lµ can be found

in the torsion. Indeed, to first order in the backgrounds of interest for us

∇µv
A ∼ ∂te

A
µ ζA ∼ Eµ

A∂tlµ . (4.47)

Anisotropic Hall viscosity

Now the time is ripe to properly define the observables we are going to compute. To do so it is

useful to have a short excursion to the isotropic case to introduce the concept of Hall viscosity.

According to the standard definition the viscosity tensor encodes the response in the spatial

components of the stress tensor (called strain tensor) to external gradients of the velocity fields:

〈τµν〉 = ηµνρσ∇ρuσ +O(∇2) , (4.48)

with ηµνρσ = ηνµρσ = ηµνσρ by rotation invariance and exchange symmetry of the two-point

functions. There is a further decomposition according to the last exchange symmetry in a

“Dissipative” and “Hall” parts:

ηµνρσD = ηρσµνD , ηµνρσH = −ηρσµνH . (4.49)

The dissipative part gives rise to the standard shear and bulk viscosities, upon decomposing ηD

in symmetric irreps of the rotation group. This divides the response to the traceless symmetric
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part of velocity gradients from that to the divergence of the velocity field. Such quantities are

usually not universal and strongly depend on the presence of interactions, see for example [71]

for a review of their definition through the Kubo formalism.

The non-dissipative part may only exist in 2 + 1 dimensions for isotropic systems, due to the

absence of appropriate tensor structures in higher dimensionality. In D = 2 + 1 one writes

PH
µνρσ =

1

4
(hµρενσ + hνρεµσ + hµσενρ + hνσεµρ) , (4.50)

with εµν = εµνρu
ρ and hµν = gµν + uµuν . A nice feature of this coefficients is that, in various

systems, it has a universal form. Thus we can be hopeful that our free field construction will

compute a meaningful quantity.

To construct odd tensor structures in higher dimensionalities one needs the presence of another

vector field V µ to contract into the epsilon tensor, that is, one needs an-isotropy6. Now using

ε̃µν = εµνρσVρuσ to construct the projector

P̃H
µνρσ =

1

4
(hµρε̃νσ + hνρε̃µσ + hµσ ε̃νρ + hνσ ε̃µρ) . (4.51)

This is not however the only tensor structure with the required properties, in fact

Π(1)
µνρσ = VµVρε̃νσ , Π(2)

µνρσ = Π(1)
νµσρ , Π(3)

µνρσ = Π(1)
µνσρ + Π(1)

νµρσ , (4.52)

also satisfy the required conditions. Thus one expects four independent Hall viscosity compo-

nents to be present. In our setting V µ = bµ = lµ and saturating such indices we find two “Hall”

projectors:

PABCD = ε(A(CηB)D) , (4.53)

εAB = εABCv
C , (4.54)

together with three relevant operators coming from the stress tensor multiplet (τAB , πA , ΣA).

The then write down the most general expansion for the one point functions of these operators

in the projectors above and the hydrodynamical data (4.44):

〈τAB〉 = ηABCDτ σ̂CD (4.55)

〈πA〉 = ηπεABζB + ηπΣεAB∇lvB (4.56)

〈ΣA〉 = ηΣεAB∇lvB + ηπΣεABζB (4.57)

where ηABCDτ = ητP
ABCD. To derive Kubo formulae for the above coefficients we expand to

first order in the external geometric data, setting vA = (1, 0, 0) to its rest frame value:

〈τAB〉 = ηABCDτ Eµ
C∂teµD (4.58)

〈πA〉 = ηπεABEµ
B∂tlµ + ηπΣεABlµ∂teµB (4.59)

〈ΣA〉 = ηΣεABlµ∂teµB + ηπΣεABEµ
b ∂tlµ . (4.60)

6It is also possible to implement an-isotropic with objects not transforming in the fundamental representation,

such as higher rank tensors, for example [72]. We will have nothing to say about such constructions here.
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Upon functional differentiation with respect to eAµ , lµ, we find the Kubo formulae:

ητ = lim
ω→0

−i
ω
PABCD
H (Gττ

ABCD(ω, 0) + CABCD(ω, 0)) (4.61)

ηπ = lim
ω→0

−i
ω
εABGππ

AB(ω, 0) (4.62)

ηΣ = lim
ω→0

−i
ω
εAB

(
GΣΣ
AB(ω, 0) + CAB(ω, 0)

)
(4.63)

ηπΣ = lim
ω→0

−i
ω
εABGΣπ

AB(ω, 0) , (4.64)

s where we have defined the retarded Green’s function

GUV (ω,~k) =

∫
d4xei(ωt−

~k·~x)tr (ρβ[U(~x, t), V (0, 0)]) θ(t) , (4.65)

and CABCD, CAB stand for contact terms which arise due to the explicit connection dependence

of the relevant operators. For our specific model they are computed in Appendix 4.A. Standard

one-loop calculations will lead to the viscosities in the next Section.

4.1.2 Evaluation of Hall viscosity and interpretation

Before coming down to the final results it is useful to collect some information coming form

time reversal symmetry and Lifshitz invariance. First, it is a straightforward computation to

determine the scaling dimension of the four Hall viscosities
(
ητ , ηπ , ηΣ , ηπΣ

)
by looking at

the Kubo formulas and applying (4.38) and (4.39). This gives

[ητ ]L = 2 + z , [ηπ]L = 3z , [ηΣ]L = 4− z , [ηπΣ]L = 2 + z . (4.66)

furthermore, all of these coefficients need to be odd under time reversal. Since we work in a

thermal state, the temperature is the only dimensionfull parameter according to the Lifshitz

scaling, thus we conclude

ητ ∼ sT 2+z , ηπ ∼ sT 3z , ηΣ ∼ sT 4−z , ηπΣ ∼ sT 2+z . (4.67)

For the Kubo formulas we will also need the expressions for the improved currents in our model.

These are given by

τAB = iχTβ(A

↔
∇B)χ , πA = iχTβA

↔
∇lχ , (4.68)

ΣA =
s

2z
χT
[←−
∇ lM(∇l)

1/2z−1−→∇A +
←−
∇AM

1/2z−1(∇l)
−→
∇ l

]
C−1χ+

1

2
∇BσBA , (4.69)

having introduced for commodity the basis of βA matrices defined by βA = C−1γA. They may

be represented as β0 = −1, β1 = −σx, β2 = σz. For A a spatial index these fulfill {βA, C−1} = 0

, [β1, β2] = 2C−1.

To evaluate the two point correlators we first continue these expressions to Euclidean signature

following [73]. Then we evaluate the imaginary time Feynman diagrams by summing over

internal Matsubara frequencies ωm = 2πT (m + 1/2) using the integral representation of the

fermionic sums
1

β

∑
n

f(ωn) =
1

2

∫
C

dz

2πi
tanh (βz/2) f(z) . (4.70)
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where C is a contour encircling the poles of the hyperbolic tangent. The answer thus obtained

is continued to Lorentzian frequencies

G(ω,~k) = −iGE(ω + iε,~k) , (4.71)

while momentum sums are evaluated with the help of the integral representations

ηD(s) =
1

Γ(s)

∫ ∞
0

dt ts−1nF (t) , (4.72)

for the Dirichlet eta function and

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
= 2

∫ π/2

0

dφ sin(φ)2b−1 cos(φ)2a−1 , (4.73)

for the Euler beta function. We give details of the various computations in Appendix 4.B and

of the determination of Seagull terms in Appendix 4.A to avoid clutter of the presentation.

One interesting thing that comes from these computations is the absence of constant terms in

the “Hall” part of the two point functions of our operators, which means that there is no δ(ω)

singularity in the viscosities, as should be the case for a non-dissipative contribution.

After a long but straightforward computation we are led to the following result, in accordance

with the expectations described above:

ηπ =
s

4π2

z

3z + 1
T 3zΓ(3z)ηD(3z) , (4.74)

ητ =
s

4π2
T 2+z z(z + 4)

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) , (4.75)

ηπΣ =
s

4π2
T 2+z (z + 4)

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) , (4.76)

ηΣ =
s

4zπ2
T 4−z (6− z)

(5− z)(3− z)
Γ(4− z)ηD(4− z) . (4.77)

It holds that ητ = zηπΣ. In this way, rescaling Σ → zΣ the last three viscosities obey the

compact relation

ηHall(ξ) = z
s

4π2
T ξ

(ξ + 2)

(ξ + 1)(ξ − 1)
Γ(ξ)ηD(ξ) , (4.78)

being ξ their Lifshitz scaling dimension.

It is interesting here to discuss the question of universality of these results. First we may ask

ourselves whether interactions might modify such predictions. On the one hand the coefficients

of the anisotropic viscosity do not appear to be protected by any quantization condition, on

the other hand it is not possible to construct marginal deformations to introduce interactions.

Furthermore, it may be that, at very low energy, the introduction of such interactions leads to

another free Lifshitz theory, in which case our prediction would apply. This should make clear

to which extent the result above should be trustworthy.

While the numerical values for the viscosities thus computed do not seem universal, we may

focus on the interesting (warped) limit in which z → 0, where all of the above vanish at zero

temperature apart from:

lim
z→0

ηπ =
s

24π2
. (4.79)

74



4.2. UNIVERSALITY IN THE WARPED LIMIT

Which is somehow reminiscent of a result obtained from Chern-Simons theory. Indeed an hint

for dimensional reduction in this limit comes from the density of states of the free system,

which scales as ρ(ε) ∼ ε1+z, interpolating between the four-dimensional z = 1 result and the

three dimensional z = 0 one. Indeed it is plausible that, upon regularization of a tower of KK

modes coming from reducing the anisotropic direction, a Chern-Simons term is generated by

integrating out the massive 2 + 1 dimensional fermion in the standard way. This would give

rise to an action7

W [l]3d = −s κ
4π

∫
l ∧ dl , (4.80)

with κ the regulated sum over the KK modes. We would need − sκ
8π

= s
48π2 to match our previous

computation. As usual, what really makes sense is the difference between the Chern-Simons

coefficients for s and −s. Assuming the anisotropic direction to be compact with anti-periodic

boundary conditions (so that the KK modes are all gapped) then κ is given by regulating

κ =
1

2π

∞∑
n=1

(2n− 1)2 = − 1

12π
, (4.81)

where the factor 1/π comes from the momentum integrals and (2n − 1) is the momentum in

the anisotropic direction of the mode, the final result is obtain by ζ-function regularization.

Putting all together one indeed finds8:

− sκ

4π
=

s

48π2
. (4.82)

This computation, of course, should be taken cum grano salis as it required various assumptions

which are not fully justified. Its purpose is to show that the warped value for the viscosity can

indeed be inferred by universal considerations. In the next section we will develop the effective

theory for a warped Lifshitz theory with Carrollian boosts, showing how it indeed predicts the

appearance of the same type of coefficient and how it can be related to a “torsional” anomaly.

4.2 Universality in the warped limit

Prompted by the results presented in the previous Section, we elaborate more about the be-

havior of the system in the warped limit. While a partial explication of our results was given

by dimensionally reducing over the anisotropic direction, here we study the purely four di-

mensional perspective. First, keeping the same geometric setup we show that a Fujikawa-type

computation indeed suggests a new torsional anomaly to be present in the warped limit, we

then discuss a brief history of such appearances in the literature pointing out the relevant dif-

ferences in our case, finally we examine warped theories such as those introduced in [75, 76]

and expand on the study of their anomalies initiated in [77]. The last part will comprise most

7This should be thought as the differentce between the actions for positive and negative s, as it happens in

the case of the 2 + 1 dimensional fermion which has properly quantized Hall conductivity, even though a single

massive fermions only gives half the amount.
8A similar conclusion is reached by inspecting the standard computation of Chern-Simons terms at finite

temperature [74].
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of the Section, as it requires the introduction of a first-order formalism for Carrollian theories

to simplify the study of the consistency conditions. The final conclusion is that torsion seems

indeed to behave as a “chiral” U(1) field in the warped limit and we give an intuitive picture

of why it is so. This results were published in [78].

4.2.1 Torsional contributions to the fermionic determinant

We start by fixing the free Majorana action (4.7). We also introduce a dimensionless (according

to the Lifshitz counting) parameter q in order to capture the usual scaling dimensions by

rescaling ∇l derivatives to ∇l/q and normalizing the anisotropic kinetic term by an overall

factor of q, so that now it is given by sqM(∇l/q). This procedure introduces a spurionic Weyl

symmetry, which acts by:

q → λ−1q (lµ , Eµ
A)→ λ(lµ , Eµ

A) , Ψ→ λ3/2Ψ . (4.83)

We will require such transformations to be preserved in the quantum theory. This leads to an

identification of q in the warped limit as a coupling with torsion.

We then split a diffeomorphism generator ξµ = θlµ + ξAEµ
A and take ξA to zero. We consider

the regularized trace of the fermionic diffeomorphism variation:

T (δΨ) = lim
τ→0

tr
[
δΨe

−R[τ ]
]
, (4.84)

with a co-variant regulator R. We fix R by demanding:

1. eR to have finite trace, that is to decay fast enough in all directions in momentum space.

2. R to be co-variant under Lifshitz transformations and invariant up to a rescaling of the

τs.

3. R needs to couple consistently to the background geometry.

4. We will also assume the regulator respects the spurionic scaling symmetry. This fixes

how q should appear. Notice that this means that the τs may not transform under such

a symmetry.

The simplest candidate which satisfies these requirements is given by

R = A†A , (4.85)

with A related to the Dirac operator as

A = iτ1γ
a∇a/q + sτ2 (i∇l/q)

1/z , (4.86)

and we have the freedom of introducing two independent regulators for the isotropic and

anisotropic part of the kinetic term. In performing the computation, we will take the τs

small but finite, and take the warped limit before the τ → 0 limit. Furthermore, since we are

interested in T -odd terms, we focus on those terms which are proportional to the odd parameter

s. We will perform the computation in both two and four dimensions, the further work needed

is very little, but warped theories have been mostly studied in the two dimensional case and

having such results will be useful for cross-checks.
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D = 2

We start by examining the two dimensional case. Here there is only one γ matrix which is the

identity. Using the standard manipulations presented in Appendix 4.C we find the following

expansion for the regulator:

R = τ 2
1∇⊥/q2 + is

1/z∑
k

ckτ1τ2(∇l/q)
kGµE

µ(∇l/q)
1/z−k + τ 2

2 (i∇l/q)
2/z . (4.87)

This expansion can readily be combined with a basis of plane waves to evaluate the trace order

by order. Indeed, since δΨ = θ (∇l + ikl) in this basis:

T (δΨ)D = tr
[
θ∇le

−R[∇ ;τ ]
]

=

∫
ddka
(2π)d

∫
dkl

(2π)
θ(∇l + ikl)e

R[∇+ik ;τ ] , (4.88)

expansion around the Gaussian contribution leads to a heat-kernel expansion in τ1 and τ2 of

the following form:

T (δΨ)D=2 =
∑
a1,a2

T a1,a2D=2 τ
a1
1 τa22 , (4.89)

with a1 , a2 either integers or multiples of z. We are interested in terms in which both a1 and

a2 are O(z), which give rise to the finite contributions in the warped limit9. We also demand

these contributions to be proportional to s. This simplifies the analysis a lot. Introducing

rescaled variables ka = q τ−1
1 ua, kl = q τ−z2 v and using that c1/z = 1/z we get only the following

contribution:

T 0,−2z
D=2 = θ

sq2

z(2π)2

∫
dudv v1+1/z exp(−u2 − v2/z)EµGµ , (4.90)

going to polar coordinates this reduces to a combination of Euler’s Beta and Gamma functions

that give:

T 0,−2z
D=2 = θ

sq2

4π
Λ2z

2

Γ(z + 1/2)

Γ(1/2)
EµGµ . (4.91)

We now take the warped limit and substitute εµνTµν = 2EµGµ which is valid in D = 2 to get

the warped anomaly:

AD=2(θ) =

∫
√
g θ

sq2

8π
εµνTµν . (4.92)

D = 4

Very similar methods lead to the four-dimensional result. Here the expansion of the regulator

happens to be slightly for complex due to the nontrivial Clifford algebra:

R[τ ] = τ 2
1∇2
⊥/q−

iτ 2
1

2
εabcγaTbc∇l/q+isγ

a

1/z∑
k

ckτ1τ2(∇l/q)
kGa(∇l/q)

1/z−k+τ 2
2 (i∇l/q)

2/z+R[Rω ; τ ] ,

(4.93)

9By dimensional analysis, we do not expect any finite contributions away from said limit.

77



CHAPTER 4. LIFSHITZ FERMIONS AND UNIVERSALITY

withR[Rω ; τ ] a torsion-independent part which will not concern us. Expanding the exponential

in (4.88) and looking for the same kind of terms as before now also leads to a single integral

that may be evaluated with the same methods as in the D = 2 case to give

T 0,−3z
D=4 = θ

sq3Λ3z
2

8π2

Γ(3z/2 + 1/2)

Γ(1/2)
εabcGaTbc . (4.94)

Using now

εabcGaTbc =
1

4
εµνρσTµνTρσ , (4.95)

we find

T 0,−3z
D=4 = θ

sq3Λ3z
2

32π2

Γ(3z/2 + 1/2)

Γ(1/2)
εµνρσTµνTρσ , (4.96)

whose warped limit gives the anomaly

AD=4(θ) =

∫
√
g θ

sq3

32π2
εµνρσTµνTρσ . (4.97)

Let us notice in both cases the similarity with the standard (co-variant) chiral anomaly in

D = 2, 4. A tentative dictionary would be that, in the warped limit, the torsion plays a

role akin to an electromagnetic field, while the parameter q is the charge. Of course one may

use the fact that torsion is dimension-full according to the spurious counting to adsorb q into

its normalization, similarly to what happens in standard electrodynamics. It is also worth

noticing that the physical significance of q, if any, comes from the fact that we have imposed

the spurionic symmetry in our regularization scheme, otherwise it could have been seen as a

remainder of the regularization of the anomalous trace.

4.2.2 Gauging the Carroll algebra

After having studied the co-variant anomalies in our fermionic theory we move onto a con-

sistency check from the Wess-Zumino conditions introduced in Chapter 1. To do so we will

introduce a first order formulation of the warped Carroll algebra which we expect to describe

the warped limit of our theory. A justification of the emergence of Carrollian boosts will be

given in (4.2.4). Let us start by recalling the Carroll algebra with the scaling generator, for the

most part it is safe to think that z = 0

[JAB, JCD] = δACJBD + ... [JAB, PC ] = δACPB − δBCPA , (4.98)

[JAB, CC ] = δACCB − δBCCA , [CA, PB] = δABΠ (4.99)

[D,PA] = PA , [D,CA] = (z − 1)CA , [D,Π] = zΠ . (4.100)

We not introduce a Lie-algebra-valued connection A which in components reads:

A = nΠ + eAPA + fACA +
1

2
ωABJAB , (4.101)

to which one may associate a curvature

F = dA+
1

2
[A,A] = F (Π)Π + F (C)ACA + F (P )APA +

1

2
F (J)ABJAB , (4.102)
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which in components is

F (Π) = (dn− fa ∧ ea) , (4.103)

F (C)a = Dfa , (4.104)

F (P )a = Dea , (4.105)

F (J)ab = dωab +
1

2
[ω, ω]ab , (4.106)

with D shorthand for the co-variant derivative with respect to the SO(d) spin connection.

Gauge transformations correspond to δαA = Dα, D = d+ [A, ] with:

α = θΠ + ξAPA + λACA + ΩABJAB , (4.107)

so that the gauge variation reads in components:

δαA = δαn Π + δαe
A PA + δαf

A CA + δαω
AB JAB

=
(
dθ + λAeA − ξAfA

)
Π +

(
DξA + ΩA

Be
B
)
PA

+
(
DλA + ΩA

Bf
B
)
CA +DΩABJAB ,

(4.108)

It is notationally useful to also introduce a one form Σ = λAeA− ξAfA so that under Carrollian

boosts n→ n+ Σ. While this fields respect the gauge algebra, the do not, in general, allow the

implementation of diffeomorphisms. This is a familiar problem from the gauging of the Poincaré

algebra, where imposing diffeomorphisms of A to be realizable as gauge transformations is

usually achieved through the constraint of vanishing torsion F (P )a = 0. Once this equation is

imposed one notices two facts:

1. The SO(D) spin connection becomes expressible in terms of the vielbein, seen as the

“momentum” components of the gauge field.

2. A diffeomorphism generated by the vector field ξµ may be interpreted as a P a transfor-

mation generated by the parameter ξa = iξe
a. This is a consequence of the identity

LξA = iξF + δαξA , αξ = iξA . (4.109)

This follows from rewriting the Lie derivative on the left hand side as combination of a

gauge transformation plus a spurious term i+ ξF . The curvature constraints in this case

make such a term drop out. In general such spurious terms do not cancel, however one

may either forget about the transformation laws of some components of the connection by

making them not independent, or perform a “compensating” gauge transformation with

only certain non-zero components to take care of them. Indeed the Lie derivative on the

right hand-side is only defined modulo gauge transformations.

We are tasked to solved a similar problem for the Carroll group. In general there are many so-

lutions. This is not a novelty, since in the Poincaré case one may define a so called Weitzenbock

connection which comes by trivializing the SO(D) curvature.

Here we do not attempt to give a complete analysis of what possible constraints can be imposed

on the Carrollian geometries, but we point out one which makes the Wess-Zumino problem
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particularly simple to solve. Also, prompted by our previous results, we want to find constraints

which allow the curvature associated to the Π generator to be non-vanishing. This will play

the role of the torsion in the Carrollian geometry. Recall also that the “isotropic” part of the

torsion in the geometric formulation does not have to vanish, thus we may expect a kind of

Weitzenbock-like constraint to exist, indeed in two dimensions the Carrollian connection takes

the Weitzenbock form [77].

Based on these ideas we can introduce three sets of constraints:

1. F (Π) = F (P )A = 0. This constraint is the natural generalization of the torsion-less

condition for the Poincaré algebra. It allows to re-express the spin connection ωABµ and

boost connection fAµ in terms of the fields nµ and eAµ . The splitting of the diffeomorphisms

ξµ = θvµ+ξAEµ
A is also recovered once one imposes ive

A = iEAn = 0. This is the approach

used in [79] to construct a version of Carrollian gravity. After solving the curvature

constraints one finds the usual vielbein expression for ωAB, while

fAµ = nµv
νEρA∂[νnρ] + EνA∂[µnν] + SABeµB , (4.110)

with SAB a symmetric tensor. This conditions however to dot allow for torsion field to

be introduced in the Carrollian geometry and thus we will not use them.

2. F (C)A = 0 , F (P )A = 0. Here the second constraint will fix the spin connection, while

the first defines a Stueckelberg one-form M through the equation

dM = fA ∧ eA , (4.111)

whose consistency can be checked by explicitly taking the exterior derivative and using

the curvature constraints, which yield

d
(
fA ∧ eA

)
= DfA ∧ eA − fA ∧DeA = F (C)A ∧ eA − fA ∧ F (P )A = 0 . (4.112)

The transformation properties of M under CA and PA follow from the definition to be

δP,CM = Σ . (4.113)

These exactly cancel the transformation properties of n and allow to define a boost-

invariant one-form

n̂ = n−M , (4.114)

so that

F (Π) = dn̂ , (4.115)

becomes an Abelian curvature. This is not totally trivial, since the gauge variation of F (Π)

is a combination of the constraints. The formulas above should be confronted with (3.33)

and (3.35). The shortcoming of these constraints is that only a subset (although not too

restricted) of diffeomorphisms is expressible through gauge transformations. To see this

it is useful to introduce algebraic inverses for n and eA and decompose diffeomorphisms as

usual ξµ = θvµ + ξAEµ
A. Now of course this decomposition is not uniquely defined, since

Eµ
A is not boost invariant. However there are two classes of transformations, depending
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on which ξA can be made to vanish or not. The first class can be realized by a gauge

transformation with gauge parameter α = θivA, supplemented by a pure boost Σθ =

βAe
A = θivdn. The second class is not completely expressible as gauge transformations,

indeed the condition coming from (4.109) requires iξdn = β̃aea. Taking the interior

product with v and using the standard formulas for Lie derivation gives a condition on v

0 = ivLξn = −iLξvn . (4.116)

transformations So that only generators ξµ subject to this may be allowed. The simplest

family of such solutions comes from requiring just Lξv = 0. This are essentially the

so called Carrollian diffeomorphisms [80]. To get a better idea of their form, suppose

that vµ = (1,~0) in certain coordinates, then the condition above just tells us ∂vξ
µ = 0.

Alternatively, one might ask directly iξF (Π) to be a pure translation. This gives the

condition Lξn̂ = 0.

3. F (C)A = 0 , F (J)AB = 0 This is the aforementioned analog of the Weitzenbock con-

straints, from which it should indeed come as an ultra-relativistic limit. These can be

solved as follows: first one notices that, in the absence of SO(d) curvature, the equation

F (C)A = DfA = 0 has the solution

fA = DMA , (4.117)

for a zero form MA. This is consistent with the constraints since F (C)A = D2MA =

F (J)ABM
B = 0. As one might expect MA will be the analog of the Stueckelberg field M

above. As before we can construct an invariant curvature

F̄ = d(n−MAeA) = F (Π)−MAF (P )A . (4.118)

The main difference is that now the field n−MAeA transforms as follows

δα(n−MAeA) = dθ − d(MAξA) . (4.119)

Apart from these equations, one needs to solve for the spin connection ωAB, which is now

taken as a flat SO(d) connection. At the moment we do not have a clear way to implement

diffeomorphisms with this set of constraints, we will mainly use it for comparison, since

it gives essentially equivalent solutions to the consistency conditions.

The main point of the construction above is that, both in option 2. and 3. there exists an

“emergent” abelian curvature, constructed out of the “anisotropic” translation curvature F (Π)

and the Stueckelberg field MA (or M). This will be important since it allows to write explicit

solutions to the Wess-Zumino consistency conditions even though the standard definition of

Chern-Simons terms is not applicable.

4.2.3 Chern-Simons terms and the consistency conditions

Let us now come to the explicit construction of the possible “candidate” anomalies for warped

Carrollian theories. Before that, it is important to stress what is usually the problem in con-

structing such quantities in non-relativistic theories. To understand that, we must return to

81



CHAPTER 4. LIFSHITZ FERMIONS AND UNIVERSALITY

Chapter 1, where we had introduced invariant polynomials PD+2,0(A) and used the decomposi-

tion into characteristic polynomials tr (Fn) to prove their closedness and gauge invariance. The

main problem is that most non-relativistic algebras are not semi-simple, they thus (usually)

lack a non-degenerate invariant metric to define the trace operation. Some exceptions exist see

e.g. [81], if certain central extensions are considered, but they tend to be special to D = 3. As

the author sees it, there are two ways-out with respect to the consistency conditions:

1. One finds other solutions, which are not given by the descent procedure starting with a

characteristic polynomial PD+2,0(A).

2. There exists a constrained subset of curvatures F ′ for which a characteristic polynomial

might be defined, giving a candidate anomaly.

In this instance, we will find that solution 2. will come into play in our problem. However,

this might be a nice arena for future studies. The way the story plays out at this point should

be clear. We have seen that the gauged-Carroll algebra admits an abelian curvature F on the

constraint surface. From this we may construct characteristic polynomials

PD+2,0(A′) = Fm 2m = D + 2 , (4.120)

which will give rise to a chain of descent equation leading a representative of the anomaly. It

needs to be stressed that PD+2,0(A′) is a characteristic polynomial only after the constraints are

imposed, in particular dPD+2,0(A) = g(constraints) so closure is achieved only on the constraint

surface. Before going forward a last comment is in order. Upon introducing a scaling generator

in the Carroll algebra on has the following dimensional assignments:

[n] = z , [f ] = −1 + z , [e] = 1 , (4.121)

[θ] = z , [λ] = −1 + z , [ξ] = 1 . (4.122)

consistency conditions require characteristic polynomials to be dimensionless. A quick check

shows that [Fm] = mz, so that only in the warped limit do such representatives exist. This

is the manifestation of a familiar problem in defining torsional contributions to the anomaly

polynomial. The story is most known in four dimensions, where a regulator-dependent contri-

bution to the chiral anomaly arises in the presence of torsion. This is proportional to the cutoff

scale Λ2 times a characteristic polynomial known as the Nieh-Yan density [82]:

Λ2NY [e] = Λ2

∫ (
T a ∧ Ta −Rab ∧ ea ∧ eb

)
. (4.123)

This is, of course, because torsion is dimension-full according to the standard Weyl scaling and

such term should then be regularized away in a well defined QFT10. The workaround to this

problem is usually that the system has a well defined length scale with which to normalize the

torsion (for example in a QFT in AdS space-time one may use the cosmological constant). In

our case the solution is that, in the warped scaling regime, the torsion is actually dimensionless.

Now we can write the possible consistent anomalies11

10There are physical exceptions [83, 84] in which one may argue that Λ2 should represent a bulk cutoff

coming from anomaly inflow, e.g. the mass gap in the bulk theory, then these terms may appear, however their

interpretation from the effective field theory perspective is not clear to the author.
11Here we do not consider conformal anomalies nor diffeomorphism ones, which were studied by Jensen [77]

using a second order formulation. Our aim is to clarify the role played by “torsion” which in that work was not

accounted for.
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D=2

Here the characteristic polynomial is

P 4,0(A′) = cΠ

{
F ∧ F , (2.) ,

F̄ ∧ F̄ , (3.)
(4.124)

with either F = dn̂ of F̄ = d
(
n−MAe

A
)

depending on the chosen constraints. The Chern-

Simons term is

P 3,0(A′) = cΠ

{
n̂ ∧ F , (2.) ,(
n−MAe

A
)
∧ F̄ , (3.)

. (4.125)

Taking the gauge variation leads to the exterior derivative of the consistent anomaly.

P 2,1(A′) = cΠ

{
θF , (2.) ,(
θ −MAξ

A
)
F̄ , (3.)

. (4.126)

Which reproduces our expectations coming from our previous Fujikawa computation, which of

course could have no terms in the boost gauge field since it had to be turned to zero.

This looks like a pure “translational” anomaly in both cases, however we can also analyze the

possible Bardeen counter-terms, which are local two-forms in the constrained fields. In this

example there is only one such term which one may write:

BD=2 = x

{
n ∧M , (2.) ,

n ∧ eAMA , (3.)
. (4.127)

whose variation can give the following contribution to the anomaly polynomial (after possibly

partial integration):

sBD=2 = −x

{
θ dM + Σ ∧ n , (2.) ,

θ d(eAMA) + Σ ∧ n , (3.)
(4.128)

this can be used to move part of the θ anomaly into the boost sector, in such a way that, when

dn = 0, the anomaly is purely given by a functional of the boost parameter Σ. In the absence

of a boost gauge field, this gives back the results of Jensen [77].

D=4

The story here, as one may expect, is completely analogous, only that one starts with the

characteristic polynomial

P 6,0(A′) = cΠ

{
F ∧ F ∧ F , (2.) ,

F̄ ∧ F̄ ∧ F̄ , (3.)
(4.129)

which gives the Chern-Simons term

P 5,0(A′) = cΠ

{
n̂ ∧ F ∧ F , (2.) ,(
n−MAe

A
)
∧ F̄ ∧ F̄ , (3.)

, (4.130)

83



CHAPTER 4. LIFSHITZ FERMIONS AND UNIVERSALITY

and the anomaly

P 4,1(A′) = cΠ

{
θF ∧ F , (2.) ,(
θ −MAξ

A
)
F̄ ∧ F̄ , (3.)

, (4.131)

matching the Fujikawa computation.

In the case (2.) in which the SO(3) curvature was non-vanishing, one can also have the mixed

characteristic polynomial

P̃ 6,0(A′) = cSO(3) F ∧ tr [F (J) ∧ F (J)] , (4.132)

which gives a mixed (as we will see momentarily) anomaly between SO(3) and the “an-isotropic

translations”

P̃ 4,1(A′) = cSO(3) θ tr [F (J) ∧ F (J)] . (4.133)

However it is not clear whether this possible anomaly is reproduced by the Lifshitz system in

the warped limit (it might be also that simply cSO(3) = 0).

Here also we may study the possible Bardeen counter-terms In this case there are three possible

terms (we only write case (2.) for simplicity):

BnnM = x n ∧M ∧ dn , (4.134)

BnMM = y n ∧M ∧ dM , (4.135)

BSO(3),n̂ = z n̂ ∧ P 3,0(ω) . (4.136)

The first two term essentially do the same thing as in the two dimensional case, making the

anomaly appear through boosts, while the third term allows to move the mixed anomaly to the

Lorentz sector.

Matching the dimensional reduction

Recall that, in the previous Section, we has derived an effective description for the warped limit

physics by integrating out the fermionic modes in the anisotropic direction, with boundary

conditions admitting no zero KK mode. Since we have now derived the form of the consistent

anomalies for the warped theory directly, we may apply the inflow arguments of Chapter 2 to

check this statement. The argument essentially matches the abelian construction, since one may

think as the anisotropic vector bµ as describing the holonomy around the anisotropic direction.

The co-variant effective action12 then turns out to be

Wcov[n] = cΠb

∫
n , (4.137)

and, in three dimensions

Wcov[n] = 3cΠb

∫
ndn , (4.138)

which match our predictions if we make n dimensionless by a factor of b and give the warped

fermion the anomaly of a free chiral fermion.

The careful reader might have noticed that, in the previous Section, we had computed a time-

dependent response (viscosity), while the effective theory developed in Chapter 2 only covered

12Let us fix the case 2. geometry for simplicity.
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time independent response. The reason this works is that we are dealing with zero temperature

observables in the warped limit, then Lorentz symmetry relates the momentum and frequency

responses. Indeed one can explicitly computes the momentum dependence of the πAπB cor-

relators in the Lifshitz model and it can be seen to match the ηπ coefficient in the warped

limit.

4.2.4 Warped fermions

In this final part, we present examples of warped theories and give a physical explanation for

the anomalies derived above. Furthermore, we show that, at the classical level, the Lifshitz

theory (4.7) indeed admits a Carroll boost generator and identify its warped limit.

Warped CFTs

We start by presenting free models of warped conformal theories, these reproduce the two

dimensional fermionic theories proposed in the literature [76, 77]. One could ask the question

of whether interacting warped CFTs exist. This is not clear, however, at least at the Lagrangian

level, we will see that there are no relevant operators.

Let us first start by presenting the Ward identities. One can couple the warped theory to a

Carrollian geometry as the one introduced in 3.2 and derive the Ward identities for the currents

by standard manipulations:

1
√
g
∂µ
√
gπµ = 0 , (4.139)

1
√
g
Dµ
√
gtµa = 0 , (4.140)

eµaπ
µ = 0 , (4.141)

1

2
√
g
Dµ
√
gSµab − t[ab] = 0, (4.142)

taa = 0 , (4.143)

with the same notation as Chapter 1 and πµ denoting the translation current coming from

variation of nµ. The third line above is the boost Ward identity which should be fulfilled to

promote a Lifshitz scaling theory to a Carrollian one.

To construct free fermionic theories we need to define a Clifford algebra for the Carroll group.

An idea is to use the higher dimensional embedding for this theories to define a consistent

contraction of the SO(D, 1) Clifford algebra. This indeed may be used, for example, to derive

the Levy-Leblond representation for Galileian free-fermions [85], for which one should take

(Γ±)2 = 0 , {Γ+,Γ−} = 2I , {ΓA,ΓB} = 2hABI , {Γn,ΓA} = 0 . (4.144)

Notice that non-trivial commutators are encoded in twice-contravariant tensors in the non-

relativistic geometry (for the Galilei group these are the inverse metric hµν and the null gen-

erator nM) For our simplified purposes we may indulge in lesser generality and use the insight

coming from above to work out the Carrollian case. Here the invariant tensor is given by vµvν
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and we use the further gamma matrix (which is associated to the orthogonal direction in the

embedding formulation) to define charge conjugation, the algebra then is spanned by matrices

ΓA, Γn satisfying

(Γn)2 = I , {ΓA,ΓB} = 0 , {Γn,ΓA} = 0 , (4.145)

together with a charge conjugation matrix ΓC which satisfies13

CΓAC−1 = (ΓA)† ≡ Γ̃A , {ΓC,Γn} = 0 ,
(
ΓC
)2

= −I. (4.146)

The representations of this algebra admit a block-diagonal splitting as:

Γn =

(
I 0

0 −I

)
, ΓA =

(
0 γA

0 0

)
, ΓC =

(
0 C
−C 0

)
, (4.147)

with γA Clifford matrices of SO(d) and C the charge conjugation matrix of such reduced Clifford

algebra. With this we can define the rotation and boosts generators through the products of

two gamma matrices:

CA =
1

4
[ΓA,Γn] = −1

2

(
0 γa

0 0

)
= −1

2
ΓA , (4.148)

ΩAB =
1

4
[Γ[A, Γ̃B]] =

(
γAB 0

0 −γAB

)
, (4.149)

with γAB = 1
4
[γA, γB]. Since the representation has a block-diagonal form, as with the repre-

sentations of the standard Clifford algebra we may have either reduced “Weyl” representations,

which are boost invariant and constructed via the projector P− = 1
2

(I− Γn), or two-component

representations, which in the literature are called “BC”. We will denote the spinors of the first

one by ϕ and the second one by Ψ = (χ , ϕ). The Lagrangian can be written down by using

the Dirac operator /D = ΓADA + ΓnDv and the projector P−. The “BC” representation also

allows for a Majorana condition, which we will always impose.

Another important observation is that both systems allow for “mass terms” qϕ̄ϕ14 and qΨ̄Ψ.

In the Galilei case similar terms indeed appear and may be related to the null momentum by

dimensional reduction of the D+ 1 Dirac operator. Here the mass terms should be interpreted

as boundary terms to allow a consistent null embedding.

By expanding in components we find the following two Lagrangians:

SWeyl =

∫
ddx
√
g (iϕ̄Dvϕ+ qϕ̄ϕ) , (4.150)

and

SBC =

∫
√
g
(
iϕTC−1γADAϕ+ 2iχTC−1Dvϕ+ 2qχTC−1ϕ

)
. (4.151)

A first interesting observation regards the dimensions of the spinors and of the mass parameter

q. For the “Weyl” spinor

[ϕ] = (D − 1)/2 , [q] = 0 , (4.152)

13This is needed since nihilpotent matrices cannot be Hermitian.
14The bar here is the one in the SO(d) Clifford algebra.
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and, for the “BC” system:

[χ] = D/2 , [ϕ] = (D − 2)/2 , [q] = 0 . (4.153)

It is important that the boost-invariant component has different dimensions in the two repre-

sentations. This will allow to identify which of them represents the warped limit of our Lifshitz

theory. Further, the mass term is a dimensionless (hence marginal) perturbation, in stark con-

trast with the general case. Indeed, Jensen [77] pointed out that there exist infinitely many

such operators in the form of On = iΨ̄ (iDv)
n /DΨ. Their presence makes the theory non-local

in the vµ direction. Recall that, in our discussion of the Lifshitz system, we had imposed a

spurionic symmetry involving the parameter q. In this warped realization we can do the same.

This makes such operator forbidden since they break the spurionic symmetry15. Finally, since

the bi-linear χTϕ is already marginal, no higher powers of the fermions can result in relevant

operators, which are perturbatively forbidden.

We can now examine the dynamics and the currents of these theories. Let us start with the

“Weyl” case. The dynamical equations read:

iDvϕ+ qϕ = 0 , (4.154)

which basically force ϕ to be a plane wave with fixed momentum. It is interesting to also define

the conserved currents, in particular the anisotropic momentum current πµ which turns out to

be

πµ =
1

2
iϕ̄vµDvϕ , (4.155)

which satisfies the boost Ward identity πA = 0 so that, on-shell

πµ = qvµϕ̄ϕ . (4.156)

This fixes how q appears in correlators involving the current. For the “BC” system the story

is similar. The dynamical equations

iDvϕ+ qϕ = 0 , (4.157)

iγADAϕ+ (iDv − q)χ = 0 , (4.158)

determine the plane wave momentum and give an inversion formula to find χ as a function of

ϕ, since χ appeared as a Lagrange multiplier it is not a dynamical degree of freedom. Currents

are given by more complex formulas, such as

πµ = vµ
(
i {χ̄Dvϕ+ ϕ̄Dvχ} −

1

2
L
)

+ iEµ
A

(
ϕ̄γADvϕ

)
, (4.159)

which, after substituting the solution to the dynamical equations ϕ = eiqxv b̃ , χ = e−iqxvb −
i

2q
eiqxvγADAb̃ simplifies to

πµ =
q

2
vµ b̃ b . (4.160)

15Strictly speaking, one may evade this argument by fine-tuning the marginal couplings to be proportional

to qn+1
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Which is also proportional to q. This simplification is not a coincidence, in fact, we may use it

to define a convenient change of variables for the quantum theory:

ϕ = eiqxvη , (Weyl) (4.161)

ϕ = eiqxv b̃ , χ = e−iqxvb− i

2q
eiqxvγADAb̃ , (BC) (4.162)

so that η transforms projectively under translations and boosts:

η → e−iq(θ+λAx
A)η , (4.163)

while the multiplet Z =
(
b , b̃

)
has a “chiral” transformation

Z → eiqΓ
n(θ+λAx

A)Z . (4.164)

The actions then simplify to

SWeyl = i

∫
√
gη̄Dvη , (4.165)

and

Sbc = i

∫
√
gZTC−1DvZ , (4.166)

explaining the name “BC” representation. From this we may understand why translations

in xv led to anomalous contributions, since they effectively behave as chiral rotations, being

q the chiral charge of the fermion. This is not possible for standard translations, since then

momentum is a dimension-full quantity. Indeed, direct computations in D = 2 show that

these systems have a Kac-Moody algebra stemming from the translation current, which is in

accordance with our results for the anomaly. Another nice consistency check, using the classical

formula for chiral anomalies, is that our co-variant anomaly indeed has the right coefficients to

allow the interpretation of q as chiral charge.

The warped limit of the Lifshitz fermion

We finally trace the connection between our starting point, the Lifshitz fermion (4.7) and the

models introduced above. To do this we will match scaling dimensions and show the presence

of the Carrollian Ward identity in the as z → 0. The first point is immediate, since

[ϕ]z = (D − 2 + z)/2 (4.167)

we should identify it with the boost invariant component of a “BC” representation. Furthermore

in flat space-time

iγA∇Aϕ = sq (i∇v/q)
1/z ϕ . (4.168)

Excluding zero modes we may write this as

i∇vϕ = q
(
iγA∇A/sq

)z
ϕ , (4.169)

which in the warped limit reads

i∇vϕ = qϕ . (4.170)
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Then we can inspect the formula for the anisotropic translation current πµ which we have given

in (4.68). Upon plugging in the equation above this reduces to

πA ∼ qϕTβAϕ = 0 , (4.171)

since βA are symmetric and ϕ is a Grassmann variable. We thus have the classical Ward identity

πA = 0 , (4.172)

Which ensures Carrollian boost symmetry to emerge in the warped limit.

4.3 Conclusions and future directions

In this Chapter we have studied some interesting and perhaps universal properties of non-

relativistic fermions. We have used the tools of Newton-Cartan geometry to compute their

response to external perturbations in the absence of interactions at one-loop. We have also

argued that, if the dynamical critical exponent z is brought to zero, the features that we have

shown are universal. This may be seen as a manifestation of anomalous physics that emerges

in such limit.

We finish this Chapter with a list of possible interesting directions for future studies.

1. Full characterization of linear response. This is an interesting but extremely cumbersome

task, since computations in anisotropic systems are much more complicated than isotropic

ones. However, some ideas such as the analogy between torsion and electromagnetic field

may provide still some useful insights.

2. Generic computations of warped anomalies. In this presentation we have characterized

warped anomalies through a Fujikawa computation and the Wess-Zumino consistency con-

dition. It would be nice to directly apply the Fujikawa computation to the free warped

theory, so that we may directly match the anomaly coefficients, which we only have done

through indirect comparison with the chiral anomaly. This is not completely straightfor-

ward, as most boost invariant regulators seem to have flat directions. Another possibility

would be to compute the triangle diagrams. They however are quite more involved than

in the isotropic case and it is not clear how to characterize the possible regularization

procedure, indeed, scheme independence in the original ABJ paper rests heavily upon

Lorentz invariance.

3. Non-relativistic Clifford algebras. We have suggested studying contractions of SO(D, 1)

Clifford algebras might be a useful tool to systematically study non-relativistic fermions.

Furthermore, it would be usable to define non-relativistic super-symmetry algebras.

4. Chern-Simons terms for non simply-laced algebras. We have shown an instance of a sys-

tem not admitting a non-degenerate bi-linear form on its algebra still having characteristic

polynomials on a constraint surface. It would be nice to establish the generality of such

happening.

We hope to address at least some of these questions in future studies.
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Appendices to Chapter 4

4.A Seagull terms

In this appendix we inspect the possible contact (Seagull) terms arising in the Kubo formulas.

Seagull terms are found in quantum field theory due to the explicit dependence of the curved

space-time operators on the spin (or Christoffel) connection. For our model such a dependence

will only arise through differentiation of the spin connection

δρµδ
A
D

δ

δeDρ (x)
ων

BC(y) ≡ ZABC
µνα ∂αδ(x− y) , (4.173)

where, in the flat space-time limit,

ZABC
µνα =

1

2

(
ηναδ

B
µ δ

C
A + δCα δ

B
Aδ

µ
ν − δBα δCµ δAν

)
− (B ↔ C) . (4.174)

Such terms, when present, may contribute in a finite way to the transport coefficients by a

one-loop diagram with no external momenta present. The external momentum is carried by

the derivative of the delta function, so that in order to compute viscosities we set α = 0. Apart

from these, other contact terms may arise by functional differentiation of the vielbein itself.

These do not carry any derivative of the vielbein and so do not contribute to the viscosity

tensor. We will disregard such contributions.

Let us start from the correlators of two τ . In this case one has to compute the classic contact

term of a free fermionic stress tensor. This is a well known computation, see for example [86],

the final result gives:

CABCD(x, y) = − i

16
δABχ

T (x)

({
1

4
[βB, βD], β0

})
χ(x)∂0δ(x− y) + A↔ B ,C ↔ D (4.175)

which in momentum space gives the contact term integral we will compute in the next section.

There are three further cases to be examined. The first is the correlator of two anisotropic

momentum currents πA, πB. Seagull terms in this case arise from the dependence of the

anisotropic current on torsion. Since we work with the SO(1, 2) connection only, no such

dependence arises in the co-variant derivative and the contact term vanishes.

A second contact term may contribute to the ΣAΣB correlator due to the vielbein dependence

of Σ. To start, recall that in position space this reads

CAB =
∂ΣA

∂ωνCD
ZBCD
µνα ∂αδ(x− y)lµ , (4.176)

where the last lµ projects on the right component of the vielbein variation. We will be interested

of the part of said contact term which is proportional to εAB, thus encoding the non-dissipative

viscosity. Using the expression above for Z it can be shown that

ZBCD
µνα lµ =

1

2
lνδ

D
α δ

BC − (B ↔ C) , (4.177)
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thus the only contributions to the contact term will come from derivatives ∇l in Σ. We divide

them in two parts, the first stemming from the unimproved strain Σ̂ and the latter from the

improvement term coming from the spin current.

For the first term we have, using the formula for the unimproved ΣA

∂Σ̂A

∂ωCDν
=
s

z

(
1

2z
− 1

)
lνχT

[←−
∂ l

↔
∂AC

−1βCC
−1βDC

−1 +
−→
∂ l

↔
∂AβCC

−1βD

]
M1/2z−2χ

+
s

z
χT
[←−
∂ AC

−1βCC
−1βDC

−1 +
−→
∂ AβCC

−1βD

]
M1/2z−1χ

(4.178)

up to terms orthogonal to lν . Going to momentum space and remembering that one of the

two β matrices is the identity because of (4.177), one is left with an anti-commutator βDC
−1 +

C−1βD = 0 if D is spatial. So the whole contribution vanishes.

The second term gives

∂ΣA
imp

∂ωCDν
=
s

z
lν∂Bχ

T

[(
1

2z
− 1

)
M1/2z−2

↔
∂ l

(←−
∂ lγ

BAC−1γCD −
−→
∂ lγ

CDγBAC−1
)]

χ

+
s

z
lν∂Bχ

T
[
M1/2z−1

(
γBAC−1γCD + γCDγBAC−1

)]
χ .

(4.179)

This simplifies in a considerable way in momentum space and at zero external frequency

∂ΣA
imp

∂ωCDν
(q) = lν

s

2z2
qBχT |q · l|1/z−2XCD

AB χ , (4.180)

with

XCD
AB = γBAC−1γCD + γCDγBAC−1 . (4.181)

The expression for X is given by either a commutator or an anticommutator depending on

whether CD = 0i or CD = ij. In our case the relevant part will be

XCD
AB = [γCD, γAB]C−1

(
δC0 − δD0

)
, (4.182)

one may now use the Lorentz algebra

[γCD, γAB] = ηCAγDB + (cyclic) , (4.183)

to simplify the expression further. The final result, for the cases of our interest, reads

∂ΣA
imp

∂ωCDν
(q) = lν

s

4z2
χT |q · l|1/z−2

(
q0C

−1βAβD + qDC
−1βA

)
δC0 χ . (4.184)

One last contact term may come from the ΣA πB correlator, and can be seen either through

the torsion dependence of ΣA or through the spin connection dependence of πA. The first of

the two is simpler to compute, since the only dependence on torsion comes from the GBσBA
term in the definition of Σ, recalling the definition of Gµ one has

δGµ = −lν (∂νδlµ − ∂µδlν)− δlν(dl)νµ , (4.185)

this gives a seagull contribution to ηπΣ only if the derivative is in the time direction and δlµ is

in a spatial direction. This is of course not possible, so this last contact term is also zero.
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4.B Relevant Feynman graphs and Matsubara sums

In this section of the supplemental material we give the detailed calculations of the 3D Hall

viscosity. The main steps of the procedure have already been outlined in the main text.

4.B.1 Computation of ηπ

We start with the computation of the πAπB correlator. Since we are interested only in the

contributions to the Hall viscosity tensor we will always implicitly extract the part of the

correlators that goes like the appropriate projector. The πAπB correlator in computed by the

Lorentzian continuation of the following Euclidean diagram

〈πA(−ω, 0)πB(ω, 0)〉 =
1

β

∑
n

∫
d2kdk3

(2π)3
tr
[
S(k, ωn)βAS(k, ω + ωn)βBk

2
3

]
(4.186)

where ω = 2πmT is a bosonic Matsubara frequency.The discrete sum runs over fermionic

frequencies ωn = (2n+ 1)πT . In Majorana notation the fermionic propagator is

S(p) =
(
βApA + sM(p)1/2zC−1

)−1
, βA = C−1γA . (4.187)

We begin by evaluating the Dirac trace. It is useful to employ the following identity, which can

be checked by representing β0 = −1, β1 = −σx, β2 = σz, C = −iσy

tr
[
βAβBC

−1
]

= 2εAB , (4.188)

where εAB = εABCu
C and uC represents the time direction.

In (4.186) the trace can be saturated only in the case in which an M(k) contribution comes

from the first propagator and a βCω
C ≡ −ω one from the second. The contribution from the

internal Matsubara frequency cancels because of the ordering of the matrices.

Thus we are led to

〈πA(−ω, 0)πB(ω, 0)〉H = εABω
4s

4π2

∫ ∞
0

dk3k
1/z+2
3

∫ ∞
0

dkkg(ε, ω) , (4.189)

where

g(ε, ω) =
∑
n

1

ω2
n + ε2(k, k3)

1

(ω + ωn)2 + ε2(k, k3)
, ε2(k, k3) = k2 + k

2/z
3 , (4.190)

is the Matsubara sum. Since ω is a bosonic Matsubara frequency it evaluates to

g(ε, ω) = − tanh(βε/2)

8ε(ε2 + ω2/4)
, (4.191)

which is half of the Dirac result, as we have no antiparticles.

We’ll be eventually interested in continuing the result to the Lorentzian sector to extract the

response via the Kubo formula. This is done by the replacement ω = 2πmT → i(ωL + i0),

followed by the limit of zero frequency. In our case such limit can be taken quite directly.
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This is a consequence of the transport being non-dissipative and follows from the vanishing of

the density of states ρππAB(ω) = ImGππ
AB(ω) as the frequency is set to zero. One can explicitly

check this by computing the residue of the integrand of Gππ, which scales as ω3z+1. A similar

reasoning hold for the other integrals. We will then take the ω → 0 limit inside the integral

after performing the Matsubara sums.

At this point we divide vacuum from thermal contributions through the identity

tanh(x/2) = 1− 2nF (x) , (4.192)

where nF (x) = 1/(1 + ex) is the Fermi-Dirac distribution. Since the vacuum has no intrinsic

Lifshitz scaling parameter, its contribution vanishes in any sensible regulation scheme. On the

other hand, the thermal part gives the Hall conductivity to be

ηπ =
s

4π2

∫ ∞
0

dk3k
1/z
3

∫ ∞
0

dkk
nF (βε(k, k3))

ε(k, k3)3
. (4.193)

Changing variables to u = βk
1/z
3 , v = βk and then to polar coordinates u = ρ cos(φ), v =

ρ sin(φ) we find

ηπ =
s

4π2
T 3zI3z , (4.194)

where

I3z = z

∫ ∞
0

duu3z

∫ ∞
0

dvv
nF (
√
u2 + v2)

(u2 + v2)3/2
=

= z

∫ ∞
0

dρρ3z−1nF (ρ)

∫ π/2

0

dφ sin(φ) cos(φ)3z =
z

3z + 1
Γ(3z)ηD(3z) ,

(4.195)

so that

ηπ =
s

4π2
T 3z z

3z + 1
Γ(3z)ηD(3z) . (4.196)

The same integration technique will be used all of the other computations.

4.B.2 Computation of ηπΣ

We proceed to compute the Hall viscosity stemming from the correlator between π and Σ. The

contribution splits into two parts, one given by the unimproved Σ

Σ̂A =
s

z
χTM1/2z−1

(←−
∂ νl

ν−→∂ A +
←−
∂ Al

ν−→∂ ν

)
C−1χ (4.197)

and one coming from the improvement term ∂BσBA. The first is given by the graph

〈Σ̂A(−ω, 0)πB(ω, 0)〉 =
1

β

∑
n

∫
d2kdk3

(2π)3
tr
[
S(k, ωn)C−1kA

s

z
|k3|1/z−2k3S(k, ω + ωn)βBk3

]
.

(4.198)

The trace is evaluated in a similar way as before, only that now we will need a βCω
C and a

βDk
D contribution from the propagators. It gives a factor −2εBDk

Dω. Performing the angular

integral over the isotropic momenta we have

〈Σ̂A(−ω, 0)πB(ω, 0)〉 =
2s

4π2
εABω

∫ ∞
0

dk3k
1/z
3

∫ ∞
0

dkk3g(ε, ω) , (4.199)
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so that

ηπΣ(2pf) =
2s

4zπ2
T 2+zIz+2 , (4.200)

where

I2+z =
z

4

∫ ∞
0

duuz
∫ ∞

0

dvv3nF (
√
u2 + v2)

(u2 + v2)3/2
=

=
z

4

∫ ∞
0

dρρz+1nFρ

∫ π/2

0

dφ sin(φ)3 cos(φ)z =
1

2(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) .

(4.201)

We thus find

ηπΣ(2pf) =
s

4π2
τ z+2m3 1

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2). (4.202)

For the improvement term we need to compute

1

2
〈σ0A(−ω)πB(ω)〉 =

1

4

∑
n

∫
d2kdk3

(2π)3

s|k3|1/z

z
tr
[
S(k, ωn)βAC

−1S(k, ω + ωn)βB
]
, (4.203)

The trace gives16

tr
[
S(k, ωn)βAC

−1S(k, ω + ωn)βB
]

= 2εAB
ωn(ωn + ω) + ε(k, k3)2

(ω2
n + ε(k, k3)2((ωn + ω)2 + ε(k, k3)2)

. (4.204)

This is simplified by employing the identity ωn(ωn + ω) = 1/2(ω2
n + (ω + ωn)2 − ω2) to

εAB

[
1

ω2
n + ε(k, k3)2

+
1

(ωn + ω)2 + ε(k, k3)2
− ω2

(ω2
n + ε(k, k3)2)((ωn + ω)2 + ε(k, k3)2)

]
.

(4.205)

The first two sums give the same result 1
β

∑
n

1
(ωn+ω)2+ε(k,k3)2

= − tanhβε(k,k3)/2
4ε(k,k3)

while the third

vanishes in the ω → 0 limit. Thus

εAB
1

2
〈σ0A(−0)πB(0)〉 = −

∫
d2kdk3

4(2π)3

s|k3|1/z

z

1

ε(k, k3)
tanh(βε(k, k3)/2)

=
s

4π2
T 2+z

∫ ∞
0

duuz
∫ ∞

0

dvv
nF (
√
u2 + v2)

(u2 + v2)1/2
=

=
s

4π2
T 2+z

∫ ∞
0

dρρz+1

∫ π/2

0

dφ sin(φ) cos(φ)z =
s

4π2
T 2+z 1

(z + 1)
Γ(z + 2)ηD(z + 2) .

(4.206)

Summing the two contributions

ηπΣ =
s

4π2
T 2+z (z + 4)

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) . (4.207)

16As both A and B are spatial, the only way to get an ε tensor is that the matrices from the two propagators

contract between each other.
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4.B.3 Computation of ητ

We now compute the intrinsic 2 + 1 dimensional thermal Hall viscosity, for which one should

compute both the two point function ττ and the seagull term CABCD. The first is given by the

integral

〈τAB(−ω, 0)τCD(ω, 0)〉 =
1

β

∑
n

∫
d2kdk3

(2π)3
tr
[
S(k, ωn)β(AS(k, ω + ωn)β(CkB)kD)

]
. (4.208)

We are interested in the contribution proportional to PABCD of this correlator. To get the right

factors it is sufficient to work with one combination of indices, symmetrization takes care of

recovering the full structure. Computing the trace we find

〈τAB(−ω, 0)τCD(ω, 0)〉H = ωPABCD
2s

4π2

∫ ∞
0

dk3k
1/z

∫ ∞
0

dkk3g(ε, ω) = zPABCDη
πΣ(2pf) .

(4.209)

Confronting this with ηπΣ we deduce that

ητ (2pf) = zηπΣ(2pf) =
s

4π2
T z+2 z

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) . (4.210)

In momentum space the seagull term is given by

CABCD(ω) =
δAC
16

1

β

∑
n

∫
d2kdk3

(2π)3
tr
[
β[AC

−1βB]ωS(k, ωn)
]

+ A↔ B ,C ↔ D , (4.211)

the trace is computed as before and the index structure organizes to give a projector, so

CABCD(ω) = ωPABCD
s

4π2
T 2+zz

∫ ∞
0

duuz
∫ ∞

0

dvv
nF (
√
u2 + v2)

(u2 + v2)1/2

= ωPABCD
s

4π2
T 2+z 1

(z + 1)
Γ(z + 2)η(z + 2) .

(4.212)

Summing all up we get the relation

ητ = zηπΣ =
s

4π2
T 2+z z(z + 4)

(z + 1)(z + 3)
Γ(z + 2)ηD(z + 2) . (4.213)

4.B.4 Computation of ηΣ

Finally we compute the value of ηΣ. We can divide the problem in three parts: the first

coming from the correlators of the unimproved strains Σ̂, the second coming from the corre-

lator of one of these with the improvement term and the last one stemming from the contact

terms. The unimproved correlator vanishes, since it contains a term kAkB which should be

antisymmetrized..

The improvement term gives a contribution

ηΣ
imp = lim

ω→0
〈σ0A(−ω)Σ̂B(ω)〉εAB , (4.214)
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which reads in terms on Feynman diagrams

ηΣ
imp = lim

ω→0

1

β

∑
n

∫
d2kdk3

(2π)3
tr

[
|k3|1/zk−1

3 kBC
−1S(k, ωn)|k3|1/zk−1

3

1

2
βAC

−1S(k, ωn + ω)

]
.

(4.215)

The odd part of the trace may be computed by bringing up one term with the an-isotropic

momentum and one β matrix

ηΣ
imp = lim

ω→0

1

z2

s

2π2

1

β

∑
n

∫ ∞
0

dk3

∫ ∞
0

dkk3k
3/z−2
3 g(ε, ω)

=
s

8π2z
T 4−z

∫
dρρ3−znF (ρ)

∫ π/2

0

dφ sin(φ)3 cos(φ)

=
s

4zπ2
T 4−zΓ(4− z)ηD(4− z)

(5− z)(3− z)
.

(4.216)

Finally one has to evaluate the contributions from the contact term through the Feynman

diagram

ηΣ
ct =

1

2z2

1

β

∑
n

∫
d2kdk3

(2π)3
tr

[
|k3|1/z−2 1

2

(
ωnC

−1βAβB + kAC
−1βB

)
S(k, ωn)

]
εAB . (4.217)

The trace gives

tr

[
|k3|1/z−2 1

2

(
ωnC

−1βAβB + kBC
−1βA

)
S(k, ωn)

]
εAB = 1− |k3|2/z

ω2
n + ε(k, k3)2

, (4.218)

the first term is a vacuum contribution which we regulate to zero. The second Matsubara sum

can be easily computed so that

ηΣ
ct =

s

4zπ2

∫ ∞
0

dρρ3−znF (ρ)

∫ π/2

0

dφ sin(φ) cos(φ)2−z =
s

4zπ2
T 4−zΓ(4− z)ηD(4− z)

(3− z)
. (4.219)

Putting everything together

ηΣ =
s

4zπ2
T 4−z (6− z)

(5− z)(3− z)
Γ(4− z)ηD(4− z) . (4.220)

The three viscosities ητ , ηΣ and ηπΣ can be compactly re-expressed (provided we redefine

Σ→ zΣ) as functions of their scaling dimension ξ

η(ξ)/z =
s

4π2
T ξ

(ξ + 2)

(ξ + 1)(ξ − 1)
Γ(ξ)ηD(ξ) . (4.221)

4.C Expansion of the regulated Jacobian

In this first Appendix we give the expansion of the regulator and the computation of the

gravitational contributions to the anomaly in four dimensions. Recall that we have defined

R = A†A , A = iτ1γ
a∇a/q + sτ2 (i∇v/q)

1/z , (4.222)
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in this appendix we will drop factors of q for ease of notation, they are straightforward to

re-establish The regulator then can be computed by expanding

τ 2
1 γ

aγb∇a∇b + isτ1τ2[γa∇a, (i∇v)
1/z] + τ 2

2 (i∇v)
2/z , (4.223)

the last term does not give any interesting space-time dependence and is the source for the

anisotropic Gaussian term. We then need to compute various commutators, these are given by

the formula

[∇µ,∇ν ] = −T ρµν∇ρ +Rab
µνJab , (4.224)

with Jab the SO(d) rotation generator.

γaγb∇a∇b = ∇2
⊥ +

i

2
εabcγc[∇a,∇b] =

= ∇2
⊥ − i

i

2
εabcγcTab∇v +

1

4
εabcεefgγcγ

gRab
ef ,

(4.225)

the first term will contribute the the Gaussian integral, the second to the torsional anomaly

while the third may be further massaged into

1

4
εabcεefgγcγ

gRab
ef =

1

2
R− i

2
εabcRabcfγ

f . (4.226)

We also have the commutator

γa[∇a,∇v] = −γaGa∇v +
i

2
εefgγ

aγgRav
ef . (4.227)

which appears in is[γa∇a, (i∇v)
1/z] repeatedly. The leading term in the plane wave expansion

is given by 1/z times such commutator, multiplied by the plane wave momentum k
1/z−1
v .

Passing to a plane wave basis for the computation of the trace and rescaling the momenta as

ka = Λ1ua, kv = Λz
2v one is led to the following integral expansion

J(θ) =
θ

(2π)d
τ 1−d

1 τ−z2

∫
dd−1ua

∫
dxv

(
∇v + iτ−z2 v

)
exp

(
−uaua − v2/z

)
×

× exp
(
iτ1u

a∇a − τ 2
1

(
∇2
⊥ −R

)
+ iτ 2

1 ε
abcγaTbc(∇v + ivτ−z2 )+

+sτ1τ2

1/z∑
k

ck∇k
vγ

a
{
Ref
avγef +Ga(∇v + ivτ−z2 )

} (
∇v + ivτ−z2

)1/z−k

τ 2
2

{
(∇v + ivτ−z2 )2/z − τ−2

2 v2/z
})

.

(4.228)

Notice that all terms with indices a, b, c... in the non-Gaussian part decay at least as 1τ1 or τ2 so

that our expansion will terminate at the third order in four dimensions an at the second order

in two dimensions. The torsional part is particularly simple, since the Tab contribution already

comes in as τ 2
1 . In this case the only contribution comes together with the highest weight term

in Ga to give the integral in the main text. Recall also that, in order to preserve the spurionic

symmetry, τ2 = q1/z−1τ̃2.

In the absence of torsion, one could hope to find further contributions from the Riemann tensor

in four dimensions, however there seems to be no such contribution from our system. In any

case the evaluation of gravitational anomalies using the Fujikawa technique is known to be

cumbersome and this question should be further studied by Super-symmetric methods.
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Chapter 5

Anomalous transport & higher spin

symmetry

5.1 Introduction

We conclude this thesis with a somewhat lighter and more speculative chapter, which concerns

the possible interplay between ’t Hooft anomalies and higher spin symmetry.

The underlying idea is that, in theories which have an (infinite) tower of higher spin conserved

currents, one may use the higher spin symmetry to constrain the “anomalous” effective actions

introduced in Chapter one. The end result is that the full tower of higher spin currents, when

evaluated e.g. in a thermal state, should gain non-trivial one point functions akin to those

presented in Chapter 2 for their lower spin relatives, with coefficients related by the higher spin

symmetry.

While it is by now established that, in dimensions bigger than d = 2 and in flat space-time,

higher spin theories need to be free [87], there are of course many interacting CFTs in two

dimensions displaying interesting higher spin algebras. Our examples will mainly concern free

realizations, with the idea that such relations may be used to detect the departure from the

free-field fixed point, since interactions will softly break the higher spin symmetry [88].

The main part of this Chapter will include examples of this phenomenon which are computed

in perturbation theory, which are given by free fermions and, surprisingly, Maxwell theory (or

a self-dual p-form field in d = 2p dimensions). This will also allow to tell an interesting story

about the duality current in Maxwell and the Zilch [89, 90].

In the two dimensional case we will see that the algebraic nature of such response coefficients

is efficiently encoded in the Jonquierre relations for the polylogarithm. In four dimensional a

similar interpretation can be made for some of them by compactifying the theory on an S2 with

n units of magnetic flux.

Two dimensional theories also allow for a direct interpretation of this occurrence in terms of

the transformation laws of the (quasi)-primary conserved currents under e.g. diffeomorphisms

and their mixing, which in this case can be found rather explicitly for finite transformations.

Finally, there has been work during the last years [91, 92, 93] in defining higher spin effective ac-

tions for free theories, making the higher spin symmetry manifest. We review such formulation

and comment on its possible uses in view of the results presented.
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At this point it is useful to introduce some basic formalism, so that the presentation in the rest

of the Chapter will be smoother. Most of the material is taken from the papers cited above and

the lectures [94]. First, we will call higher-spin currents of spin s traceless symmetric tensors

Jµ1...µs :

Jµ1...µi...µj ...µss = Jµ1...µj ...µi...µss , Jµ1...µis
...µs
µi

= 0 , (5.1)

which are also conserved:

∂µJ
µµ2...µs
s = 0 . (5.2)

A practical way to define these operators is to take symmetric conserved currents jµ1...µss and

take a linear combination of them which imposes the tracelessness condition:

Jµ1...µss = jµ1...µss + α2

(
P (2)
µ1µ2

(∂)jµ3...µss−2 + permutations
)

+ ... , (5.3)

with P (2) a symmetric polynomial in the derivatives. The sum eventually ends with the lower

spin current of the multiplet s = 2 s = 1, even though in some case one may need to include

scalars and improvement terms, as is familiar in the discussion of e.g. the stress tensor of a free

scalar field.

Since the stress tensor Jµν2 = T µν is also part of the multiplet (and as such it is traceless) such

higher spin theories tend to be conformal. From the point of view of conformal field theory the

higher spin currents are conformal (quasi)-primaries which obey conservation laws. As such

they all must have protected dimension and saturate the unitarity bound:

∆s = d− 2 + s . (5.4)

Once the current Js are obtained, they may be repackaged conveniently in a generating function

J(x, z) with x the space-time coordinates and zµ is an auxiliary vector field which is null

zµzµ = 0. Then one may define:

Js(x, z) = Js(x)µ1...µszµ1 ...zµs , J(x, z) =
∑
s

1

s!
Js(x, z) , (5.5)

so that the higher spin currents may be extracted from Taylor expansion of J(x, z) in the zs.

A similar generating functional, which does not require z to be null, can be set up for the js.

The conservation and tracelessness conditions can then be expressed as a single equation for

the functional J(x, z). To this end one defined a differential operator Dµ which frees indices in

real space:

Dµ =

(
d

2
− 1 + z · ∂z

)
∂

∂zµ
− 1

2
zµ �z . (5.6)

The conservation law reads

∂µD
µJ(x, z) = 0 , (5.7)

while tracelessness is guaranteed by the choice of Dµ. One can alternatively free indices with

normal derivatives ∂/∂zµ, then the tracelessness equation reads

�zJ(x, z) = 0 . (5.8)

A simple examples comes from two dimensional theories. In this case on the plane with metric

ds2 = 2dzdz̄ null vectors have only z ( or z̄) non-vanishing component. The generating function
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then automatically projects currents onto their purely holomorphic (or anti-holomorphic) parts.

As it should be, since in two dimensions the unitarity bound is saturated by zero twist operators

which have (h, h̄) = (0, s) , (s, 0). While in higher dimensions such factorization in two towers

needs not to happen, in our cases it will be enforced by the presence of the chirality projector

(1± γd+1) for Dirac fields and (1± s ?) /2 for Maxwell fields1.

The improvement procedure to define traceless symmetric currents may be streamlined if one

considers writing an Ansatz:

Js(x, z) = Φ†fs

(
z ·
←−
∂ , z ·

−→
∂
)

Φ , (5.9)

with Φ the free particle field. The idea is to impose the equation ∂µD
µJs as a differential

equation for fs(u, v), to do this one first acts directly with the operator Dµ, whose explicit

action will depend also on the type of field Φ used, then substitutes by hand z ·
←−
∂ = u,

z ·
−→
∂ = v. For example, for a scalar φ one finds(

d

2
− 1

)
(∂u + ∂v) f

φ
s (u, v) +

(
u∂2

u + v∂2
v

)
fφs (u, v) = 0 , (5.10)

for a scalar and
d

2
(∂u + ∂v) f

ψ
s (u, v) +

(
u∂2

u + v∂2
v

)
fψs (u, v) = 0 , (5.11)

for a (Dirac) fermion. The solutions to these equations are degree s polynomials in u and v

which can be found by an Ansatz of the type:

fs(u, v) =
s∑

k=0

ck,su
kvs−k , ck,s = (−)scs−k,s . (5.12)

One can use radial coordinates to simplify the equation further. The final solution is given in

terms of Gegenbauer polynomials, for example:

fφs (u, v) =
s∑

k=0

(−)k

k!(k + (d− 4)/2)!(s− k + (d− 4/2))!(s− k)!
ukvs−k , (5.13)

and

fψ(u, v) =
s∑

k=0

(−)k

k!(k + (d− 2)/2)!(s− k + (d− 2)/2)!(s− k)!
ukvs−k . (5.14)

In some case (for example the Maxwell field) these equations further simplify and are given

essentially by fs(u, v) ≈ (u− v)s.

5.2 Some direct computations

In this Section we present some direct computations giving support for the ideas presented

in the introduction. Since we will be dealing with free theories most of the observables we

will be interested in are computable either by statistical sums or by simple one-loop diagrams.

1s depends on the signature chosen and the dimension, as does the square of the Hodge operator
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The main difficulty which may arise is efficiently packing the computation for all values of the

spin and regularizing (possible) divergences in Feynman graphs. We will work mostly in an

Euclidean setup at finite temperature, that is on Rd−1 × S1.

More to the point, we will compute d/2-point functions of particular components of the higher-

spin currents

J is = J0...0i
s , (5.15)

with i a spatial index, to extract their dependence on external magnetic and gravito-magnetic

fields as well as temperature and chemical potentials. This is of course only a partial study,

in the sense that one may also think of using Generalized-Gibbs-Ensembles of higher spin con-

served charges, using the higher (spatial)-spin components etc. We could not find a straight-

forward way to incorporate these generalizations at the present time, one problem being that

higher spin (odd) chemical potentials lead to diverging contributions to the partition function

from antiparticle states.

5.2.1 2d and 4d Fermions

We start by examining the most notable case of free fermionic theories. Since we work in

d = 2, 4 we will always be able to split a Dirac fermion Ψ in its Weyl components (χL, χR).

Since the observables we are interested in show up in chiral (higher spin) currents, we might

as well restrict to a single Weyl fermion χ to simplify the discussion. Our first task is to

write down the generating function for higher spin currents in these models. It is important

to remember that the definition of higher spin currents for free fields is rather simple in flat

space-time and in the absence of external fields, however it is not simple nor clearly possible in

arbitrary curved metrics. The expressions given here are thus valid in flat space-time. It is also

possible to extend them in the case of linearized perturbations, which is useful in constructing

contact terms for perturbative computations.

In dealing with fermions it is actually useful to treat the γ-matrix index in a slightly differ-

ent way as the others to simplify the resulting expressions. Then we will define the lowest

component of the current multiplet as

Ja = χ†σaχ , (5.16)

and higher spin currents Jaµ1...µss roughly as

Jaµ1...µss = χ†σa
↔
∂
µ1

...
↔
∂
µs

χ+ lower spin , (5.17)

with χ†
↔
∂
µ

χ = 1
2

(
χ†∂µχ− ∂µχ†χ

)
. These will satisfy:

∂µJ
aµµ2...µs
s = 0 , Eµ

a∂µJ
aµ1...µs = 0 , (5.18)

as a consequence of the Dirac equation. Is is also simple to prove that the following holds

Eµi
a J

aµ1...µi...µs = 0 , (5.19)

due to the Dirac equation. The tracelessness condition is harder to impose, it is however

simplified in d = 2, 6, 10... due to the possibility of making the Weyl fermions real. For our

examples we won’t need it directly.
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2d fermions and Jonquierre relations

The simplest case is given by two dimensional fermions. since d = 2 we will be interested

in one-point functions of the higher spin currents in the presence of chemical potentials and

temperature. Since we are working in a free-particle picture, these might be computed through

standard thermal sums involving the Fermi-Dirac distributions. These sums at first sight look

like very complicated functions of temperature and chemical potential. However it turns out

that, with higher spin currents, they simplify considerably upon employing the Jonquierre

relations for the Lis function:

Lis(e
2πix) + (−)sLis(e

−2πix) =
(2πi)s

s!
Bs(x) , (5.20)

with Bs(x) the Bernoulli polynomials. This is the higher spin analogue of what happens in the

case of chiral transport, e.g. in the lowest Landau level [16].

The higher spin currents we consider are holomorphic operators constructed from the stress

tensor T (w) = ψ
↔
∂ψ. Here we denote with ω the holomorphic variable (in Euclidean signature),

∂ = ∂/∂ω and ψ(ω) the holomorphic component of the Fermi field. We will work with complex

fermions, so that we may turn on a U(1) chemical potential. One may also construct a tower of

“flavor” currents, which generate the stress tensor via the Sugawara construction. The explicit

expression for the non-vanishing components of the currents in question is

Js = csψ
†
(↔
∂
)s−1

ψ . (5.21)

Since in d = 2 there are only two null vectors (up to rescalings), the expressions introduced in the

previous Section would lead to two independent components for the higher spin currents, which

are the holomorphic and anti-holomorphic parts. The currents J0...0i which we are interested

in will be (minus) the difference between the two2. We should fix a normalization cs for the

currents. In this case it is convenient to fix it so that the obey the W1+∞ algebra [95]. In the

holomorphic coordinates this just means cs = 1.

To compute the one-point functions it is convenient to go to Lorentizan signature in the light-

cone coordinates

w± = t± x , (5.22)

and perform the mode expansion for the free fields:

ψ(w±) =

∫
ω≥0

dω

2π

(
eiωw±α± + e−iω2±β†

)
, (5.23)

with α and β satisfying canonical commutation relations. The derivatives just act on this

expansion by bringing down factors of ω±. The one point functions are defined as

〈Js〉 = tr
[
e−β(H−µQ)Js

]
, (5.24)

and may be computed by plugging in the mode expansions. Here one may use the explicit

expression (5.21) of use (5.11). The final result is written an an integral of the Fermi-Dirac

distribution over particle and anti-particle states of fixed ω, which reads

〈Js〉 =

∫ ∞
0

dω

2π

(
ωs−1

eβ(k−µ) + 1
+ (−)s

ωs−1

eβ(k+µ) + 1

)
(5.25)

2For chiral fermions one of the two will vanish of course.
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where the first term comes from the particle sum and the second from the anti-particle sum.

Recalling that

Lis(−z) = − 1

(s− 1)!

∫ ∞
0

dt
ts−1

1 + et/z
, (5.26)

and the Jonquierre inversion formulas (5.20), this leads to

〈Js〉 = −(s− 1)!

2πs!

(
2πiβ−1

)s
Bs

(
1

2
+
µβ

2πi

)
, (5.27)

so that, for a chiral species

〈J0...0i
s 〉 =

(s− 1)!

2πs!

(
2πiβ−1

)s
Bs

(
1

2
+
µβ

2πi

)
≡ Fs(µ, β) , (5.28)

the expressions reported do not seem real, however upon expansion one finds, setting β−1 = T :

F1 = µ (5.29)

F2 =
µ2

2
+
π2T 2

6
(5.30)

F3 =
µ3

3
+

1

3
π2µT 2 (5.31)

F4 =
µ4

4
+

7π4T 4

60
+

1

2
π2µ2T 2 (5.32)

F5 =
µ5

5
+

7

15
π4µT 4 +

2

3
π2µ3T 2 (5.33)

F6 =
µ6

6
+

31π6T 6

126
+

7

6
π4µ2T 4 +

5

6
π2µ4T 2 (5.34)

F7 =
µ7

7
+

31

21
π6µT 6 +

7

3
π4µ3T 4 + π2µ5T 2 (5.35)

F8 =
µ8

8
+

127π8T 8

120
+

31

6
π6µ2T 6 +

49

12
π4µ4T 4 +

7

6
π2µ6T 2 (5.36)

F9 =
µ9

9
+

127

15
π8µT 8 +

124

9
π6µ3T 6 +

98

15
π4µ5T 4 +

4

3
π2µ7T 2 (5.37)

F10 =
µ10

10
+

511π10T 10

66
+

381

10
π8µ2T 8 + 31π6µ4T 6 +

49

5
π4µ6T 4 +

3

2
π2µ8T 2 (5.38)

We see that the first two lines indeed coincide with known results from two dimensions, while the

other lines are predictions of higher spin symmetry. The purely temperature dependent pieces

can be traced back to the transformations property of the Ws currents under diffeomorphisms.

Upon matching conventions, these results coincide with those of [96] where these quantities

were computed using the a nontrivial black-hole background.
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4d fermions and reduction

This computation gives us also some mileage regarding the situation for four dimensional

fermions in a magnetic field. Indeed, recall that a system of fermions on R2 × S2 with n

units of magnetic flux on the S2

1

2π

∫
S2

F = n , (5.39)

gives rise, in the infrared, to n chiral model which behaves as 2d chiral fermions. All other

modes, which live in higher Landau levels, are gapped by a factor proportional to
√
n. In the

limit of big n (i.e. big magnetic field) we may thus effectively compactify the system to two

dimensions and read the magnetic response for the higher spin currents from the lines above.

This fixes the coefficients such as

J0....0i
s = ds(µ, T )Bi Bi = εi0zz̄FS2 , (5.40)

in the hydrodynamic expansion for the higher spin currents. Other response functions need to

be computed explicitly via the Kubo formalism, in a way very similar to the one exposed in

the next example.

5.2.2 Maxwell fields and Zilches

Another interesting application regards Maxwell fields (as well as p forms in d = 2p dimensions,

for which Maxwell fields are the first non-trivial case after free scalars in d = 2). In this case

the story is less known so we will give a short review. We start with Maxwell theory, without

matter, in d = 4. The Maxwell equations and the Bianchi identities read

d ? F = 0 (5.41)

dF = 0 , (5.42)

or, in components

∂µF
µν = 0 , (5.43)

∂µF̃
µν = 0 , F̃ µν =

1

2
εµνρσFρσ . (5.44)

These couple of equations are invariant under the electromagnetic duality transformation which

rotates F and F̃ between each other. At the classical level such a transformation may be

generated by a “duality current”

jµD ∼ εµνρσ
(
AνFρσ − CνF̃ρσ

)
, (5.45)

where dC = ?F . This is not a well defined operator on the Hilbert space due to lack of gauge

invariance, nor is local in the fields Aµ. At the quantum level the transformations generated

by the duality action are broken in nontrivial curved backgrounds since one finds [97]

F ∧ F = cMtr [R ∧R] . (5.46)
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This breaks the duality symmetry since the left hand side is duality-invariant. This idea can

be generalized [98] to treat the divergence of the current jµD, so that a similar equation hold

d ? jD = c̃Mtr [R ∧R] , (5.47)

which looks strikingly similar to the chiral anomaly equation for Dirac fermions (see for ex-

ample [99, 100] for studies on this matter). One may indeed ask whether the presence of

an “anomalous” divergence also gives rise to non-trivial one point functions in e.g. gravito-

magnetic potential backgrounds. One may try to do a direct computation for the duality current

[101, 102], however it is not clear whether this has a well defined, gauge invariant meaning.

Another approach, initiated in [89] and followed up in [90] is to realize that one may build a

tower of (odd) higher-spin currents over the duality current which starts at spin 3 with the

Zilch [103, 104]

Zµνρ = Fα
(µ

↔
∂ νF̃ρ)α , (5.48)

which is a local, gauge-invariant operator. At this level the similarity with chiral currents

may be further appreciated by decomposing the field strength in self-dual and anti-self-dual

components F = F+ +F− and F̃ = F+−F−. Then indeed one sees that the Zilch separates into

two currents with only (anti)self-dual components, much like the chiral current of a fermionic

system. In fact, one may work with chiral two forms directly, which we have avoided since it

turns out to be more cumbersome.

The expectation from our intuition based on chiral fields turns out to be consistent: quantizing

Maxwell theory in a cylinder [89] one finds

〈Z00i〉
8

45
π2T 4Ωi Ωi = εijk∂jak , (5.49)

with ai the gravito-magnetic potential field. Introducing as in Chapter 1 the one-form uµ this

comes from a constitutive relation of the type

〈Zµνρ〉 = σZu(µuνΩρ) , (5.50)

so that

〈Z00i〉 =
σZ
3

Ωi . (5.51)

The coefficient σZ may also be computed by utilizing the linear response formalism to relate it

to a two-point function of the Zilch with the Maxwell stress tensor

Tµν = FµαFν
α − 1

4
gµνF

2 , (5.52)

by

σZ = 6 lim
~p→0

−i
2pk

εijk
(
G00i,0j(p) + C00i,0j(p)

)
, (5.53)

where

Gµνρ,αβ(x− y) = −i
〈
[Zµνρ(x), Tαβ(y)]

〉
Θ(t− t′) , (5.54)

Cµνρ,αβ(x− y) = 2i

〈
δZµνρ(x)

δgαβ(y)

〉
, (5.55)
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with Cµνρ,αβ a seagull term. The computations of such correlators is similar in spirit to what

already done in Chapter 3. One goes to Euclidean signature to perform the thermal Matsubara

sums and then continues the frequency dependence into the Lorentzian realm. Also, since the

only quantity that enters the correlators is the field strength, it is convenient to employ the

following gauge-invariant rules for the Wick contractions:

Fµν(p)Fρσ(q) = (2π)−4δ(p+ q)Lµνρσ(p) , (5.56)

Lµνρσ(q) = − 4

q2
q[µgν][σqρ] . (5.57)

Here we are interested in generalizing these methods to the full higher spin tower of Zilches.

We show in appendix 5.B that, although we work in higher dimension, they can be written

explicitly as

Z(s)
µ1...µs

= F(µ1
α
↔
∂µ2 ...

↔
∂µs−1F̃µs)α . (5.58)

The key point which allows such simplification, as opposed to the Dirac case, is the fact that

Maxwell fields are real. The currents above can be verified to be conserved and traceless

on-shell.

Now one must find a convenient way to repackage the result for all the higher spin tower by

examining the correlators for arbitrary spin. In Appendix (5.B) we construct the explicit form

of the contact term by coupling the system to linearized gravity. After this has been done one

finds:

Cµ1...µs,αβ(x− y) = −(s− 2)

2

(
F(µ1γ

↔
∂µ2 ...

↔
∂µs−2F̃µs−1

δ − F(µ1
δ
↔
∂µ2 ...

↔
∂µs−2F̃µs−1γ

) δΓγµs)δ
δgαβ(y)

+O(∂Γ) .

(5.59)

To be precise, these are the parts of the contact terms which do not vanish in the momentum

space integral due to the identity:

εναβγLµαβγ(q) = 0 . (5.60)

After performing the needed Wick contractions the correlators read:

Gµ1...µs,αβ(p) =
−i
2β

∑
n

∫
d3~k

(2π)3
(−)(s−3)/2εµ1

στγ
(p

2
− k
)
µ2
...
(p

2
− k
)
µs−1

[
Lµsσαξ(k)Lτγβ

ξ(p− k)

+ Lµsσβξ(k)Lτγα
ξ(p− k)

]
,

(5.61)

while:

Cµ1...µs,αβ(p) = (s− 2)ipγ
1

β

∑
n

∫
d3~k

(2π)3
(−)(s−3)/2kµ2 ...kµs−2

[
εµ1(α

στδβ)µs−1Lµsγστ (k)

− εµ1γδτδµs−1(αLµsβ)δτ (k)

]
.

(5.62)
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At this point we set most indices equal to 0 apart from one, which has the effect of multiplying

the result by powers of the internal Matsubara frequency. To give the results in a concise way

it is very useful to introduce the following integrals:

I
(a,b,c)
D =

1

β

∑
n

∫
dDk

(2π)D
|~k|2aω2c

n

(ω2
n + |~k|2)b

, (5.63)

where ωn = 2πnT are the bosonic Matsubara frequencies. Depending on the way the integration

is performed we may encounter divergences. We follow [46, 105] and start by using dimensional

regularization to do the momentum space integral first. Since D = d− 1 is odd the divergences

are automatically canceled. Afterwards we perform the Matsubara sums, which can be done

by zeta function regularization. The details can be found in Appendix 5.A. The final result is

rather compact and reads:

I
(a,b,c)
D = TD+1+2(a−b+c)2−D/2+1(2π)D/2+2(a−b+c) Γ(a+D/2)Γ(b− a−D/2)

Γ(D/2)Γ(b)
ζ(−D−2(a− b+c)) .

(5.64)

We now write

G00...0i,0j(p) = iεijkp
kIGs , (5.65)

C00...0i,0j(p) = iεijkp
kICs , (5.66)

where, by inspection:

IGs =
2

s

[
s− 2

3

(
I

(1,1,n)
3 − 2I

(1,2,n+1)
3

)
− 4

3
I

(1,2,n+1)
3 − I(0,1,n+1)

3 + 2I
(0,2,n+2)
3

]
, (5.67)

ICs = −2

s
(s− 2)

(
1

3
I

(1,1,n)
3 − I(0,1,n+1)

3

)
. (5.68)

for odd values of the spin. Even values of s lead to vanishing contributions. Let us first look

at the case s = 3, which was already computed by other methods in [89]:

IG3 =
2

3

(
1

3
I

(1,1,0)
3 − 2I

(1,2,1)
3 − I(0,1,1)

3 + 2I
(0,2,2)
3

)
=

8

135
π2T 4 , (5.69)

IC3 = −2

3

(
1

3
I

(1,1,0)
3 − I(0,1,1)

3

)
=

4

135
π2T 4 . (5.70)

Hence:

σZ =
8

15
π2T 4 , (5.71)

which reproduces the known result once the factor 3 difference in our conventions is taken

into account. For generic spin one may expect a very complicated answer, however using the

identity:

ζ(−s) = (−)s
Bs+1

s+ 1
, (5.72)
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which is nontrivial for odd spins, together with the representation of Ia,b,c3 one finds a remarkably

simple result:

σ
(s)
Z =

4

π2
(2πT )s+1 |Bs+1|

s+ 1
. (5.73)

Notice how this resembles very closely the structure shown by the two dimensional computa-

tion, since the Bernoulli numbers are the lowest order terms in the expansion of the Bernoulli

polynomials.

5.3 Effective actions with HS couplings

We have seen through various examples that an underlying organizing principle given by the

higher spin symmetry may emerge for the tower of currents constructed from a representative

which suffers ’t Hooft anomalies. In this Section we make some steps toward answering two

questions:

1. Are the transport coefficients extracted from the perturbative computations a function of

the lower spin ’t Hooft anomalies?

2. Is there a compact way to formulate them through an effective action treatment?

The answer to the first question is probably yes. This can be most easily appreciated in two

dimensions, where a clear characterization of higher spin algebras exists for CFTs. Take for

example the W1+∞ algebra spanned by the fermionic currents. This schematically reads in

mode expansion [95] (W s
m are the Fourier modes of Js, the Virasoro generators are W 0

m in this

convention):

[W s
n,W

s′

m ] =
s+s′∑
s′′=0

gs′′
m+nW s+s′−s′′

m+n + δss
′
δm+n,0cs(m) , (5.74)

there are two important facts for our discussion

1. The central charges cs(m) = fs(m)c are proportional to the central charge of the under-

lying CFT.

2. There is central extension only for generators of equal spin.

The first point tells us that higher spin “anomalies” are not independent from the diffeomor-

phism anomaly, since they are uniquely determined by the central charge. The second point

gives a tentative explanation for the emergence of nontrivial one-point functions. Indeed on the

right-hand side, the lower spin term signals the mixing of the W s currents with the Virasoro

generators under a diffeomorphism. Such mixing means that, one the cylinder, the W s will

pick up a nontrivial one-point function due to the Schwartzian transformation of the Virasoro

generators. This line of reasoning should be generalized to higher dimensions.

What we have said above essentially answers most of our second question, however let us

conclude this Chapter by presenting a way to justify this in higher dimensions and to uncover

some possible interesting phenomena which should be studied.
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First however, we must introduce another bit of formalism to represent geometrically linearized

higher spin symmetries.

Such representations work well for free fields in flat space-time, which is what we are interested

in at the moment, and have been developed starting from the paper [91]. The basic idea is to

interpret the 2d coordinates appearing in the higher spin generating functions for the currents

as defining the proper geometry in which the HS theory lives. This will turn out to be a

non-commutative space-time

This representation is simpler to develop for symmetric-conserved, but not traceless currents

js, since in this case the auxiliary variables are simply flat space coordinates. The starting

point is the introduction of higher spin gauge fields Asµ1...µs and the minimal coupling

S[Φ, As] = S[Φ] +
∑
s

∫
ddx jµ1...µss Asµ1...µs . (5.75)

We also introduce a generating function for the As:

A(x, z) =
∑
s

1

s!
Asµ1...µsz

µ1 ...zµs . (5.76)

Conservation and tracelessness of the currents translates in invariance of the effective action

under the following gauge transformations:

δαA
s
µ1....µs

= ∂µ1α
s−1
µ2...µs

, (5.77)

for conservation and

δεA
s
µ1...µs

= δµ1µ2ε
s−2
µ3...µs

, (5.78)

for tracelessness. Of course symmetrization is left implicit. These gauge transformations form

the linearized higher spin symmetry of the system. It will also be useful to throw away the spin

0 part of the minimal coupling, which does not correspond to any invariance, and view As as

a one-form which is in a spin s representation of the rotation group.

Our aim is to rewrite the minimal coupling in terms of the generating functions A(x, z) and

J(x, z). This is done as in [91] by introducing the Wigner transform of currents and sources.

The final answer is that the minimal coupling can be written as an ordinary (spin one) cou-

pling in a non-commutative 2d dimensional space-time with coordinates (xµ, zα) and nontrivial

commutators

[xµ, zα] = iδµα . (5.79)

As it is well known, this may be represented as flat 2d dimensional space-time endowed with the

non-commutative Moyal product ?M , which treats xµ, zα as canonically conjugated variables

and acts as

f(x, z) ?M g(x, z) = f(x, z)e
1
2(
←−
∂ x·
−→
∂ z−

←−
∂ z ·
−→
∂ x)g(x, z) . (5.80)

The nice property about this construction is that (linearized) higher spin transformations are

naturally realized by considering a one-form A3 on this non-commutative space and the gauge

3To be precise, all forms from here on will have no dzα components. It would be nice to understand how to

make this formulation look more co-variant.
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transformations4:

δαA = dxα + [A,α]?M , (5.81)

with the commutator constructed from the Moyal product and α is just the generating function

for the gauge transformations αs on the non-commutative space-time. It is thus, if not certain,

at least plausible, the HS effective actions may be constructed by imposing gauge invariance

under (5.81). This brings us in a natural way to the concept of consistent anomalies for these

theories by imposing the non-commutative Wess-Zumino consistency condition:

(δα1δα2 − δα2δα1)W [A] = δ[α1,α2]?M
W [A] . (5.82)

it was proposed in [106] that one can recycle the usual construction of Chern-Simons terms

to give formal solution to the integrated descent equations, that is one needs to integrate

over ddxddz to show the consistency conditions. This is because the integration over the non-

commutative space-time is cyclic under the Moyal product. This gives rise to non-commutative

Chern-Simons terms in 2(d+ 1) dimensions

� P d+1,0(A)�=
(d+ 2)

2

∫
dd+1x

∫
dd+1z P d+2(A,Ft, ..., Ft)?M , (5.83)

upon gauge variation this give a representative for possible higher spin anomalies. Such repre-

sentative, however, cannot explain the nontrivial one point functions of higher spin currents,

since is only comes with (d + 2/2) powers of the gauge field, while higher spin currents one-

point functions can have s powers of the spin one chemical potentials. These terms should be

rather investigated as a way to describe the higher spin central extensions for the gauge current

algebra. One can in principle apply directly the procedure developed in Chapter 2 to define

the effective action. Its evaluation on non-commutative space, however, is a very complicated

task.

We have anyhow presented such a construction for the Chern-Simons term to make a stronger

argument for the explanation given at the start of the Section.

In this language, the idea is that in the presence of nontrivial holonomies (or temperature) there

may be mixing between the spin s current operator Jµ1...µss and the lower spin currents Jν1...νrr ,

r < s, with coefficients proportional to the external gauge field. In particular the higher spin

gauge symmetry implies (through the Ward identity) that there may be a term Aµ1J
µ2...µs−1

s−1

in such mixing. Since we know that Jµ1 has nontrivial one-point functions due to the U(1)

anomaly, these are “exported”, through the mixing, to the whole higher spin tower. Notice

that, although powers of µs appear, the proportionality coefficient will always be the spin one

anomaly.

5.4 Closing remarks

In this Chapter we have seen how, in free theories, the diffeomorphism and U(1) anomalies give

rise to non-trivial one-point functions for the whole higher spin tower. We have given some

4Here we do not talk about the scaling transformations, although they also have an expression in terms of

non-commutative geometry.
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practical examples in which they can be computed in both two and four dimensions and argued

that they should be explained through the mixing between the operators of the tower upon

the introduction of non-trivial holonomies or non-zero temperature. We have also reviewed a

possible formulation of consistent anomalies for higher spin theories, arguing that it should give

rise to a non-trivial extension of the effective action for the spin 1 and 2 currents derived in

Chapter 2. The precise form of this extension is however very hard to determine apart from

some simple terms.
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5.A. REGULARIZATION OF I(A,B,C)

Appendices to Chapter 5

5.A Regularization of I(a,b,c)

Here we briefly show how to regulate the various divergent integrals appearing in the thermal

computations. We will use a mix of ζ-function and dimensional regularization. This is quite

suitable, since the spatial integral happens to be in an odd number of dimensions and thus it

will get automatically regulated. We wish to compute

I
(a,b,c)
D =

1

β

∑
n

∫
dDk

(2π)D
|~k|2aω2c

n

(ω2
n + |~k|2)b

. (5.84)

We start with the spatial part, which can be expressed in terms of

I
(a,b)
D (∆) =

∫
dD~k

(2π)D
|~k|2a

(∆ + |~k|2)b
. (5.85)

Changing to spherical coordinates and using the integral representation of Euler’s beta function

B(u, v) =

∫ ∞
0

dyyu−1(1 + y)−v−u , (5.86)

gives immediately

I(a,b)(∆) =
∆D/2+a−b

(4π)D/2Γ(D/2)

Γ(a+D/2)Γ(b− a−D/2)

Γ(b)
. (5.87)

Our initial integral has now become

I
(a,b,c)
D = T (2πT )D+2(a−b+c) (1 + (−)2c

) ∞∑
n=0

nD+2(a−b+c)I
(a,b)
D (1) . (5.88)

The final sum is regulated by using zeta function regularization ζ(s) =
∑∞

n=1
1
ns

. Notice that

the whole expression vanishes when c is half integer, which is the case for even spin Zilches.

Algebraic simplifications then give

I
(a,b,c)
D = TD+1+2(a−b+c)2−D/2+1(2π)D/2+2(a−b+c) Γ(a+D/2)Γ(b− a−D/2)

Γ(D/2)Γ(b)
ζ(−D−2(a− b+c)) ,

(5.89)

which is perfectly well defined for D = 3.

In order to obtain the final expression in the main text, one uses that

ζ(−s) = (−)s
Bs+1

s+ 1
, (5.90)

where Bn are the Bernoulli numbers, e.g. B2 = 1/6, B4 = −1/30 etc. Direct computa-

tion shows that all the relevant integrals are proportional to each other with proportionality

constants independent of the powers c of the frequency.
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5.B Higher Zilches and contact terms

In this section we explicitly verify the conservation for the higher Zilch currents and derive

from these currents the contact terms for the Kubo formula computation. We omit for sim-

plicity unimportant normalization factors. We start by showing that the current is conserved

∂µZ
(s)
µµ2...µs = 0. In order to do this, one expands

Z(s)
µµ2...µs

=
1

s

(
Fµ

α
↔
∂ (µ2 ...

↔
∂µs−1F̃µs)α + F(µ2

α
↔
∂µ3 ...

↔
∂µs)F̃µα

)
+
s− 2

s
F(µ2

α
↔
∂µ
↔
∂µ3 ...

↔
∂µs−1F̃µs)α .

(5.91)

When applying the divergence, the last term vanishes due to the equation of motion �Fµν =

�F̃µν = 0. This happens since its contraction with the two sided derivative reads
↔
∂

+

µ

↔
∂
µ

=
↔
� ,

where
↔
∂

+

µ =
→
∂µ +

←
∂µ. The first two terms give a contribution

∂µZ(s)
µµ2...µs

=
1

s

(
Fµ

α
↔
∂ (µ2 ...

↔
∂µs−1∂

µF̃µs)α + ∂µF(µ2
α
↔
∂µ3 ...

↔
∂µs)F̃µα

)
, (5.92)

where we have already dropped the other combination which vanishes due to Maxwell’s equation

∂µF
µν = ∂µF̃

µν = 0.

The remaining terms have to be manipulated a bit in order to show that they cancel. To do this

one uses the Bianchi identity and the antisymmetry in αµ to substitute ∂µFµ2α by −1
2
∂µ2Fµα

and the same for F̃ . This results in

∂µZ(s)
µµ2...µs

= − 1

2s
∂(µ2

(
F µα

↔
∂µ3 ...

↔
∂µs)F̃µα

)
. (5.93)

Since the number of double sided derivatives is odd, the expression is both symmetric and

anti-symmetric in F ↔ F̃ so it vanishes.

Tracelessness follows in a similar way. In fact, using the equation of motion we can rewrite the

trace of the Zilches as

Z(s)µ
µµ3...µs =

2

s(s− 1)
F µα

↔
∂ (µ3 ...

↔
∂µs)F̃µα −

(s− 2)(s− 3)

4s(s− 1)
∂µF(µ3

α
↔
∂µ4 ...

↔
∂µs−1∂

µF̃µs)α

+
s− 2

s(s− 1)

(
Fµ

α
↔
∂ (µ3 ...

↔
∂µs−1∂

µF̃µs)α − ∂µF(µ3
α
↔
∂µ4 ...

↔
∂µs)F̃µα

)
,

(5.94)

which is immediately seen to vanish term by term once the Bianchi identity is used to simplify

the second line. Notice that is is critical for the spin to be odd in order for the computation to

work out. Having constructed a conserved spin-s Zilch in flat space-time we wish to extend it

to the curved case to extrapolate the contact terms relevant to our calculation.

Now we move on to compute the contact term, by making the partial derivatives co-variant.

We will work only at linear level in the curved metric and, in order to do this, it is expedient

to rewrite the currents as

Z(s)
µ1...µs

=
s−2∑
k=0

cs,k∂(µ2 ...∂µkFµ1
α∂µk+1

...∂µs−1−kF̃µs)α , (5.95)
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where cs,k = (−)k

2s−2

(
s−2
k

)
. To co-variantize we simply replace partial derivatives with co-variant

ones, and to linear order we only have to worry of a single co-variant derivative at a time, so

that we may write

Z(s)
µ1...µs

=
s−2∑
k=0

cs,k

k∑
i=0

∂(µ2 ...∇µi ...∂µkFµ1
α∂µk+1

...∂µs−1−kF̃µs)α−∂(µk+1
...∂µs−1−kFµ1

α∂µ2 ...∇µi ...∂µkF̃µs)α ,

(5.96)

where the minus sign is a consequence of the odd number of derivatives.

The metric dependence of the above expression comes from three different places. The first,

which will not contain external momenta when we perform the integral in momentum space,

is through the contraction of the α indices between F and F̃ . The second contribution can

be obtained by expanding the co-variant derivatives acting on the µj indices in terms of the

Christoffel symbols. Those terms with derivatives acting on the Christoffel symbols will involve

higher orders of the external momenta when we integrate and thus can be dropped. The

remaining ones will be of the form

Γγ(µiµj∂µ2 ...∂γ...∂µkFµ1
α∂µk+1

...∂µs−1−kF̃µs)α , (5.97)

and

Γγ(µiµ1∂µ2 ...∂µkFγ
α∂µk+1

...∂µs−1−kF̃µs)α , (5.98)

and the same with F ↔ F̃ . These terms come into various combinations in the complete sum

but for our purposes it is enough to argue that they will cancel term by term. To see this, one

takes the functional derivative with respect to the external metric and goes to Fourier space.

After performing Wick contractions, what remains is an integral of the form

1

β

∑
n

∫
d3~q

(2π)3
(...) εµi

αβγLµjαβγ(q) , (5.99)

where the dots stand for a combination of momenta and the rightmost part comes from the

Wick contraction. The point is that such formula vanishes identically since

εµ
αβγLναβγ =

1

q2
εµ
αβγ (qνqβδαγ − qαqβδνγ − qνqγδαβ + qαqγδνβ) = 0. (5.100)

Finally, the last source of contact terms are those cases in which one acts with the co-variant

derivative on the contracted index α. In position space, they give a contribution

s−2∑
k=0

cs,k

k∑
i=0

Γγµiα

(
∂(µ2 ......∂µkFµ1γ∂µk+1

...∂µs−1−kF̃µs)
α − ∂µk+1

...∂µs−1−kFµ1
α∂µ2 ...∂µkF̃µs)γ

)
+O(∂Γ) ,

(5.101)

where the µi-th derivative is missing. Since the indices are all symmetrized, the sum over i just

gives a factor of k. Manipulating the binomial coefficient, one can recast the whole expression

as

− s− 2

2
Γγ(µ1α

(
Fµ2γ

↔
∂µ3 ...

↔
∂µs−1F̃µs)

α − Fµ2α
↔
∂µ3 ...

↔
∂µs−1F̃µs)γ

)
+O(∂Γ) . (5.102)

Finally using

δΓγµν(x)

δgαβ(y)
|g=δ =

1

2

[
−δ(α

µ δ
β)
ν ∂

γδ(x− y) + δ(α
ν δ

β)γ∂µδ(x− y) + δ(α
µ δ

β)γ∂νδ(x− y)
]
, (5.103)

one arrives at the momentum space expression for the contact terms.
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Discussion and Outlook

We dedicate this last Section to a small overview of relevant results and of open problems which

may be of future interest.

In Chapter 2 we have studied how the ’t Hooft anomalies of a Quantum Field Theory fix uni-

vocally the form of certain Chern-Simons terms in the effective action on curved backgrounds.

We saw that, in the gravitational case, the full perturbative anomaly contributes to such terms

ans the general substitution rule of [55] can be seen as a consistency condition for the Callan-

Harvey inflow mechanism. This prompts the natural question of whether this philosophy of

“group extension” may be used to derive equally interesting results elsewhere. In order to do

so, however, we need first to develop more formal methods to characterize the phenomenon in

full generality.

Another line of research which has seen growing interest is about the fate of such Chern-Simons

terms when the effective action is computed in a time-dependent (e.g. quenched) state. In this

case even perturbative field theory computations are very hard, since they must use a real time

approach and only few results have been found at strong coupling using holography see e.g.

[107, 108]. It is not clear whether the inflow arguments can give any hint about what happens

in these cases. Perhaps there is some hope for some particular class of states which might be

represented geometrically, such as boundary states for CFTs.

Finally there might be still something to say about ’t Hooft anomalies for higher form sym-

metries [10], even though our results at the moment only apply to U(1) higher form symmetry

and mixed anomalies with non-abelian 0-form ones (our formalism is not apt to treat dis-

crete symmetries). Nevertheless these Abelian symmetries have been used in the last years in

interesting constructions for hydrodynamic theories involving magnetic one-form symmetries

[109, 110, 111, 112].

In Chapter 3 We have introduced some basic notation and well known realizations of non-

relativistic symmetry groups. This Chapter was instrumental for the presentation of specific

results in Chapter 4.

In Chapter 4 we have examined interesting transport phenomena that arise in fermionic

Lifshitz systems and their warped limit explanation in terms of torsional anomalies. While

the discussion for generic z did not show any universality, it did allow to develop a parallel

between the usual hydrodynamic expansion and the introduction of torsion in non-relativistic

geometries: torsion works as an external gauge field as far as transport is concerned. This

should be studied further, although precise computation can be quite challenging as already

mentioned.

In the second part of the Chapter we have shown an example of a system in which torsional

anomalies are actually well defined (i.e. regulator independent objects). This is still a topic

of debate in the condensed matter literature due to the often alluring possibility of treating

torsion as an external electromagnetic field. We also have shown that, in the case of Carrollian

systems, nontrivial solutions to the consistency conditions do exist, albeit only when curvature

constraints are imposed. This is in contrast to the case of Galileian theories, where flavor

and diffeomorphism anomalies are absent, at least in even dimensionality. The construction

of Non-Relativistic Chern-Simons terms and their connection with consistency conditions for
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non-relativistic groups should be studied further.

In Chapter 5, finally, we have examined the way in which the anomalous one-point functions

derived in Chapter 2 are reflected in the cases in which the systems has an underlying higher spin

symmetry. We have shown interesting examples in which this phenomenon appears, including

Maxwell theory, which does not have a local, gauge-invariant chiral current of spin one, but

does have an higher spin tower of well defined chiral currents (Zilches). We have argued that

the higher spin symmetry determines the temperature and chemical potential dependence of

the transport coefficients since it fixes the way in which the higher spin currents mix upon going

from flat space to a non-trivial state. Thus such transport coefficients are not independent of

the lower spin anomalies. Furthermore, even for higher spin chemical potential, it is plausible

that Chern-Simons terms might be defined which incorporate the whole higher spin tower, thus

rendering all of the higher spin one-point functions in principle computable from the lower spin

ones. While this was an interesting topic to research, we do not see the reason to study it

further.
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Conclusiones

Dedicamos esta última sección a una pequeña descripción general de los resultados relevantes

y de los problemas abiertos que pueden ser de interés futuro.

En el Caṕıtulo 2 hemos estudiado cómo las anomaĺıas de ’t Hooft de una teoŕıa de campo

cuántico fijan uńıvocamente la forma de ciertos términos de Chern-Simons en la acción efectiva

sobre fondos curvos. Vimos que, en el caso gravitacional, la anomaĺıa perturbativa completa

contribuye a tales términos y la regla general de sustitución de [55] puede verse como una

condición de consistencia para el mecanismo de inflow de Callan-Harvey. Esto lleva a la pre-

gunta natural de si esta filosof́ıa de “extensión de grupo” puede usarse para obtener resultados

igualmente interesantes en otros lugares. Para hacerlo, sin embargo, primero necesitamos de-

sarrollar métodos más formales para caracterizar el fenómeno en general.

Otra ĺınea de investigación que ha visto un interés creciente es sobre el destino de dichos

términos de Chern-Simons cuando la acción efectiva se calcula en un estado dependiente del

tiempo (por ejemplo, un “quench”). En este caso, incluso los cálculos de la teoŕıa de campo

perturbativo son muy dif́ıciles, ya que deben usar un formalismo en tiempo real y solo se han

encontrado pocos resultados en acoplamiento fuerte usando holograf́ıa, ver p. Ej. [107, 108].

No está claro si los argumentos de “inflow” pueden dar alguna pista sobre lo que sucede en

estos casos. Quizás haya alguna esperanza para una clase particular de estados que podŕıan

representarse geométricamente, como los estados “boundary” para CFT.

Finalmente, aún podŕıa haber algo que decir sobre las anomaĺıas ’t Hooft para simetŕıas de

forma superior [10], a pesar de que nuestros resultados en este momento solo se aplican a la

simetŕıas U(1) de forma más alta y anomaĺıas mixtas con no-abelianas de forma 0 (nuestro

formalismo no es apto para tratar simetŕıas discretas). Sin embargo, estas simetŕıas abelianas

se han utilizado en los últimos años en construcciones interesantes para teoŕıas hidrodinámicas

que involucran simetŕıas magnéticas de uno forma [109, 110, 111, 112].

En el Caṕıtulo 3 Hemos introducido algunas notaciones básicas y realizaciones bien conocidas

de grupos de simetŕıa no relativistas. Este Caṕıtulo fue instrumental para la presentación de

resultados espećıficos en el Caṕıtulo 4.

En el Caṕıtulo 4 hemos examinado interesantes fenómenos de transporte que surgen en los

sistemas fermiónicos de Lifshitz y su explicación en el ĺımite “warped” en términos de anomaĺıas

torsionales. Si bien la discusión sobre z genérico no mostró ninguna universalidad, permitió

desarrollar un paralelo entre la expansión hidrodinámica habitual y la introducción de la torsión

en geometŕıas no relativistas: la torsión funciona como un campo electromagnetico externo en

lo que respecta al transporte . Esto debeŕıa estudiarse más a fondo, aunque el cálculo preciso

puede ser bastante dif́ıcil como ya se mencionó.

En la segunda parte del Caṕıtulo, hemos mostrado un ejemplo de un sistema en el que las

anomaĺıas torsionales están realmente bien definidas (es decir, son objetos independientes del

regulador). Esto sigue siendo un tema de debate en la literatura de materia condensada debido a

la posibilidad a menudo atractiva de tratar la torsión como un campo electromagnético externo.

También hemos demostrado que, en el caso de los sistemas Carrollianos, existen soluciones no

triviales a las condiciones de consistencia, aunque solo cuando se imponen restricciones de

curvatura. Esto contrasta con el caso de las teoŕıas galileanas, donde las anomaĺıas de sabor
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y difeomorfismo están ausentes, al menos en una dimensionalidad par. La construcción de

términos de Chern-Simons no relativistas y su conexión con las condiciones de consistencia

para grupos no relativistas deben estudiarse más a fondo.

En el Caṕıtulo 5, finalmente, hemos examinado la forma en que las funciones anómalas de un

punto derivadas en el Caṕıtulo 2 se reflejan en los casos en que los sistemas tengan una simetŕıa

de esṕın más alta subyacente. Hemos mostrado ejemplos interesantes en los que aparece este

fenómeno, incluida la teoŕıa de Maxwell, que no tiene una corriente quiral local, invariante de

gauge, de esṕın uno, pero tiene una torre de esṕın más alto de corrientes quirales bien definidas

(Zilches).

Hemos argumentado que la mayor simetŕıa de esṕın determina la dependencia de la temperatura

y el potencial qúımico de los coeficientes de transporte, ya que fija la forma en que las corrientes

de esṕın más altas se mezclan entre ellas al pasar del espacio plano a un estado no trivial. Por

lo tanto, dichos coeficientes de transporte no son independientes de las anomaĺıas de esṕın

inferiores. Además, incluso para un potencial qúımico de esṕın superior, es posible que se

definan los términos de Chern-Simons que incorporan la torre de esṕın superior completa,

haciendo que todas las funciones de un punto de esṕın superior sean en principio computables

a partir de las de esṕın inferior. Si bien este fue un tema interesante para la investigación, no

vemos la razón para estudiarlo más a fondo.
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currents, w 1+ algebra, and anomalies. Physical Review D, 80(8):084034, 2009.

[97] AD Dolgov, IB Khriplovich, AI Vainshtein, and Valentin I Zakharov. Photonic chiral

current and its anomaly in a gravitational field. Nuclear physics B, 315(1):138–152, 1989.

[98] Ivan Agullo, Adrian del Rio, and Jose Navarro-Salas. Electromagnetic duality anomaly

in curved spacetimes. Physical review letters, 118(11):111301, 2017.

[99] Chang-Tse Hsieh, Yuji Tachikawa, and Kazuya Yonekura. Anomaly of the Electromag-

netic Duality of Maxwell Theory. Phys. Rev. Lett., 123(16):161601, 2019.

126



BIBLIOGRAPHY

[100] Chang-Tse Hsieh, Yuji Tachikawa, and Kazuya Yonekura. Anomaly inflow and p-form

gauge theories. 3 2020.

[101] Artur Avkhadiev and Andrey V. Sadofyev. Chiral vortical effect for bosons. Phys. Rev.

D, 96:045015, Aug 2017.

[102] Naoki Yamamoto. Photonic chiral vortical effect. Physical Review D, 96(5):051902, 2017.

[103] Daniel M Lipkin. Existence of a new conservation law in electromagnetic theory. Journal

of Mathematical Physics, 5(5):696–700, 1964.

[104] TWB Kibble. Conservation laws for free fields. Journal of Mathematical Physics,

6(7):1022–1026, 1965.

[105] Artur Avkhadiev and Andrey V Sadofyev. Chiral vortical effect for bosons. Physical

Review D, 96(4):045015, 2017.

[106] Loriano Bonora, Maro Cvitan, P Dominis Prester, Stefano Giaccari, and Tamara
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