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1 Introduction

Gravitational waves (GWs) are one of the newest and most exciting windows into the workings
of gravity. Thanks to the observation of GWs from binary systems by the LIGO-Virgo-KAGRA
(LVK) network of ground-based interferometers [1, 2], and of a gravitational-wave background
(GWB) Ωgw(f) ∼ f2/3 of possibly astrophysical origin in the International Pulsar Timing
Array (IPTA) [3–9], we have acquired a better understanding of the physics of neutron
stars and black-hole binaries, as well as of the behaviour of the gravitational force near
these compact objects and of its propagation across cosmological distances. Both LVK and
third-generation instruments such as the Laser Interferometer Space Antenna (LISA) [10–13],
Einstein Telescope (ET) [14, 15] and DECIGO [16–18] will be able to further probe Einstein’s
theory and its extensions to modified gravity and quantum gravity [19–35].

The detection of a relic primordial GWB [36–38] would be a momentous opportunity to
look into the early universe and the gravitational interaction in extreme curvature or energy
regimes. At the level of fundamental physics it is not easy to construct robust cosmological
models embedded in realistic scenarios of modified or quantum gravity, and even less so to
obtain one such model predicting an observable signal without invoking an ad hoc matter field
dynamics. With a first, rapid scan of the literature we may find five candidates attempting
to fulfil these characteristics, heterogeneous in terms of robustness and predictive power [30]:
nonlocal Starobinsky inflation [39, 40], Brandenberger-Ho non-commutative inflation [41, 42],
the S-brane ekpyrotic universe [43–45], string-gas cosmology [46–51] and multi-fractional
inflation [52]. However, only the last four are possibly able to produce a detectable signal
and only crossing the DECIGO sensitivity curve in the most optimistic cases. A sixth
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model of quantum gravity, nonlocal and non-minimally coupled with radiation, appeared
afterwards with similar characteristics [33]. Recently, however, a more detailed exploration
of the landscape of quantum and string cosmologies [11] singled out three more scenarios
with a signal potentially reaching LISA and the Einstein Telescope:

• A bouncing model with a slow ekpyrotic contraction phase sustained by fast-rolling
Galileons with a non-canonical kinetic term and where perturbations are sourced by a
U(1) gauge field [53–57]. This particle content is the main difference with respect to the
S-brane ekpyrotic scenario of [43–45]. While the original “old” ekpyrotic scenario [58]
was inspired by string-theory concepts, the current model is based on effective quantum
field theory, and is not necessarily tied to a specific quantum-gravity theory.

• A bouncing model where the contracting phase is dominated by a string gas behaving
like a stiff fluid and evolving according to Einstein’s gravity [59]. The main difference
with respect to the string-gas cosmology of [46–51] is that, while the latter model is
based on the behaviour of closed-string modes below the Hagedorn temperature, in [59]
the string thermodynamics was studied above the Hagedorn temperature. This implies
that the free energy of the strings grows with the temperature more slowly than for
ordinary radiation.

• A pre-big-bang model evolving from the string perturbative vacuum, proposed long
ago [60–63] on the grounds of the string cosmological equations, which enjoy T-
duality [64] and may be characterized by a non-singular bounce thanks to all-orders
(higher-curvature) α′ corrections [65, 66].

The first two models are phenomenological because they are not fully embedded in any
high-energy quantum theory of gravity. The third one is based on the modified gravitational
dynamics uniquely fixed, in principle, by the string unification of all fundamental interactions,
at all energy scales including their quantum limit; however, it also contains phenomenological
aspects concerning the (presently unknown) details of the dilaton dynamics in the strong
coupling regime. In any case, all three models above are among the very few in quantum
gravity possibly able to produce a GWB, arising from the vacuum fluctuations of the metric
tensor, with high enough amplitude in the frequency range of third-generation detectors.
They have in common an initial phase of growing curvature scale (described by a contracting
kinematics with the metric of the Einstein frame), preceding the final decelerated expansion
and passing through a non-singular bounce of spacetime curvature. The presence of accelerated
contraction (ȧ < 0, ä < 0, Ḣ < 0) or of super-inflationary expansion (ȧ > 0, ä > 0, Ḣ > 0) in
different metric frames is responsible for a strong blue tilt in the primordial tensor spectrum
(i.e., growing with the frequency).

The first two models have been mainly explored at the level of the primordial tensor and
scalar spectra, while for the third an approximate GWB profile is known (first computed
in [67–70] and recently discussed in [63]). The GWB of none of them, however, has been
studied systematically so far, and the question of whether their signal can reach LISA, ET or
DECIGO remains open. Also, one may wonder whether the common characteristic of having
a contracting phase would produce a unique type of signal. It is the purpose of this paper
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to give an answer to these questions and to complement the analysis of [30] done for other
models of quantum gravity with a blue primordial tensor spectrum. We find that:

• The GWB amplitude of the ekpyrotic model with Galileons is highly suppressed and
unobservable, contrary to the S-brane ekpyrotic scenario of [43–45].

• The string-gas cosmological model following the Atick-Witten conjecture is ruled out
because its signal is too high and violates current bounds, contrary to string-gas models
not adopting this conjecture [48–51].

• Within the theoretically allowed parameter space, the GWB of the pre-big-bang model
reaches the LISA and ET observational window while respecting present bounds. In all
plots, we use the latest ET sensitivity curve for a single 10 km triangular interferometer
with a signal-to-noise ratio 1 and a one-year observation run [15, 71].

To the best of our knowledge, the pre-big-bang model and those studied in [30] are the only
ones motivated by quantum gravity and generating a detectable GWB directly from the
primordial tensor sector. Recently, another bouncing model was proposed where curvature
perturbations evolving through a bounce can trigger the formation of primordial black
holes and also induce a GWB signal with high amplitude crossing also the LISA and ET
windows [72]. However, we do not consider scalar-induced GWBs here.

The paper is organized as follows. Basic expressions connecting the primordial tensor
spectrum and the GWB are recalled in section 1.1. The primordial spectra and the GWB
of the three models above are studied, respectively, in sections 2, 3 and 4. Conclusions are
in section 5. Technical material is relegated to appendices.

1.1 Basic formulæ

Primordial GWs can be described by a small set of quantities and observables, independently
of the underlying model. We denote the primordial tensor and scalar spectra as, respectively,
Pt(k) and Ps(k), where k is the comoving wave-number. From here, one calculates the
tensor-to-scalar ratio at any given pivot scale k = k∗,

r := Pt
Ps

, (1.1)

as well as the tensor and scalar spectral indices

nt := d ln Pt(k)
d ln k

, ns − 1 := d ln Ps(k)
d ln k

. (1.2)

The current estimate for the scalar amplitude is Ps(k∗) ≈ 2.1 × 10−9 at the cosmic microwave
background (CMB) scale k∗ = 0.05 Mpc−1 [73], while ns = 0.9649 ± 0.0042 at 68% confidence
level at the same pivot scale, assuming dns/d ln k = 0 [74, 75]. The upper bound on (1.1)
is r(k∗) < 0.036 at the same scale at 95% confidence level [76].

In general, the amplitude of the GWB is defined as

Ωgw(k, τ0) = 1
ρcrit(τ0)

dρk(τ0)
d ln k

, (1.3)
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where τ0 is the present value of the conformal time τ , defined in terms of the cosmic time
t as τ :=

∫
dt/a(t), where a(t) is the scale factor, ρcrit = 3M2

PlH
2 is the critical density,

M2
Pl = (8πG)−1 is the reduced Planck mass and ρk(τ0) is the energy density of the k-th

Fourier mode of tensor perturbations amplified by the given model of the early universe and
evaluated at the present time τ0. For GWs generated by tensor perturbations, the GWB
spectral shape can be recast as

Ωgw(f) = k2

12a2
0H2

0
Pt(k) T 2(k, τ0)

∣∣∣
k=2πf

, (1.4)

where f = k/(2π) is the GW frequency measured in Hz, a0 is the scale factor today
(a0 = 1), H0 is the value of the Hubble parameter today and T (k, τ0) is the transfer function
encoding how the primordial spectrum evolved after horizon crossing until today [77–79]. The
expressions below are valid for any model where observable perturbations have re-entered
the horizon in the past, either because they were originally generated inside the horizon
and where later expelled out (e.g., by inflation), or because they were generated outside the
horizon in the first place. In the case of instantaneous reheating and a quick transition to
a radiation-dominated phase, which applies to all the models discussed below, one has [80]
(see [81] for an alternative way to express the transfer function)

T 2(k, τ0) = Ω2
m0

[
g∗(Tin)

g∗0

] [
g∗s0

g∗s(Tin)

]4/3 [3j1(kτ0)
kτ0

]2
T 2

eq(k) , (1.5)

where j1 is the first spherical Bessel function, the fitting function g∗(Tin) is [82]

g∗[Tin(k)] = g∗0
A1 + tanh

{
−2.5 log10

[
k/(2π)

2.5×10−12 Hz

]}
A1 + 1 (1.6)

×
A2 + tanh

{
−2.0 log10

[
k/(2π)

6.0×10−9 Hz

]}
A2 + 1 , (1.7)

with g∗0 = 3.36, A1 = (−1 − 10.75/g∗0)/(−1 + 10.75/g∗0), A2 = (−1 − gmax/10.75)/(−1 +
gmax/10.75), gmax = 106.75 for a Standard-Model particle content and the function g∗s(Tin)
is the same as (1.7) upon replacing g∗0 → g∗s0 = 3.91. The fitting function at the end
of (1.5) is [77]

T 2
eq(k) = 1 + 1.57 k

keq
+ 3.42

(
k

keq

)2

, keq = 7.1 × 10−2 Ωmh2 Mpc−1, (1.8)

keq being the comoving wave-number at radiation-matter equality, so that feq ≈ 9.9 × 10−17

(Ωmh2/0.143) Hz, where Ωm = 0.3153 is the matter-energy density and h is the dimensionless
Hubble parameter, which we take at its CMB-scale value h = 0.6736 [73].

2 Sourced bounce with fast-rolling Galileons

In the article [57], a non-singular bounce model was proposed as an alternative model for
structure formation in the early Universe. Non-singular bounce models often predict a deeply
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blue scalar spectrum contrary to CMB observations.1 While some ingredients are similar to
the ekpyrotic scenario, such as a slow contraction with an equation of state w ≫ 1, others are
very different, as the observed density and tensor perturbations on CMB scales are generated
by sourced fluctuations, rather than vacuum ones, amounting to a different paradigm. A
specific model was devised using a gauge field resulting in gravitational waves with a specific
chirality [54]. The difference in the spectral index was shown to be remedied by the inclusion
of that gauge field [55, 56]; the scalar spectrum matches current observations and the model
predicts a tensor-to-scalar ratio with values below the upper bound [57]

r ≲ 10−2 . (2.1)

The model involves Galileons with a non-canonical kinetic term and a coupling with a U(1)
gauge field. The action is

S = M2
Pl

∫
d4x

√
|g|
[

R

2 − K(ϕ, X) + G(ϕ, X)□ϕ − I2(ϕ)
(1

4F µνFµν − δ

4 F̃ µνFµν

)]
, (2.2)

where MPl is the reduced Planck mass, ϕ is the Galileon field, Aµ is the U(1) gauge vector,
Fµν = ∂µAν − ∂νAµ, F̃ µν = 1

2ϵµνρσFρσ and δ > 0 is a coupling constant. The functions
K and G in (2.2) are

K(ϕ, X) = [1 − g(ϕ)]X + βX2 − V (ϕ) , (2.3)
G(ϕ, X) = γX , (2.4)

g(ϕ) = 2g0

e
−
√

2
p

ϕ
+ e

bg

√
2
p

ϕ
, V (ϕ) = − 2V0

e
−
√

2
q

ϕ
+ e

bV

√
2
q

ϕ
, (2.5)

where X = −1
2∂µϕ∂µϕ and β, γ and g0 are parameters. The background dynamics of the

Universe is determined by a single scalar field ϕ with a non-trivial kinetic term typical of
Galileons. This model, which is different from others involving Galileons (e.g., [84, 85]),
gives rise to a non-singular bounce and the potential V is chosen in such a way as to obtain
ekpyrotic contraction away from the bounce. The Universe starts at ϕ ≪ −1, far away from
the bounce, with a slow ekpyrotic contraction. As ϕ accelerates towards ϕ = 0, the value of g

increases. Since g(0) > 1 (which we require), at some point in time, g exceeds the critical
value g = 1 and the sign of the kinetic term X in (2.3) becomes negative, giving rise to a
phase of ghost condensation coinciding with the bouncing phase. This is the region in field
space where the null energy condition is violated,2 which in turn triggers the bounce at ϕ = 0.
The Universe continues to roll to positive larger values of the field ϕ > ϕB+, after which
the Lagrangian regains a canonical form and the Universe enters an era of kinetic energy
domination. I, the coupling of the scalar field to the gauge field, is

I(ϕ) = 1
1 + e−a1n(ϕ−ϕB−) , (2.6)

1A notable exception is the model of [83] where a matter bounce produces nearly scale-invariant scalar and
tensor spectra.

2Although the null energy condition is violated, we confirm that the average null energy condition is not
violated.
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where a1 = 1/
√

2q and ϕB− is value of field ϕ at the beginning of the bounce. I(ϕ) is defined
such that during the regime of ekpyrosis, i.e., for large and negative ϕ,

I(ϕ) ≃ ea1nϕ. (2.7)

The values n = 2 or n = −1 lead to scale-invariant sourced perturbations [56]. Introducing
gauge fields can source second-order inhomogeneities that dominate over the first-order
perturbations (characterized by a blue spectrum) at CMB scales. This leads to sourced and
unsourced perturbations that are linearly independent since the equation for perturbations
is linear and creation/annihilation operators of sourced and unsourced fluctuations are
uncorrelated. The total power spectrum is of the form

Ptot = Pv + Ps (2.8)

where Pv is the unsourced or vacuum spectrum and Ps is the sourced spectrum. The
vacuum scalar (Pv

s ) and tensor (Pv
t ) spectra as well as the sourced scalar (Ps

s ) and tensor
(Ps

t ) spectra are [57]

Pv
t (k) =

(
k

HB−

) 6(1+wekp)
1+3wekp γ2

EH2
B−

2π2M2
Pl

,

Pv
s (k) =

(
k

HB−

) 6(1+wekp)
1+3wekp γ2

EH2
B−

48π2M2
Pl

F 2
ζ ,

Ps
t (k) = 2.8 9e4πξ

8πq4ξ6

(
HB−
MPl

)4 ( k

HB−

)nt

,

Ps
s (k) = 2.8 225e4πξ

32πq4ξ6

(
HB−
MPl

)4 ( k

HB−

)ns−1
F 2

ζ ,

(2.9)

where γE is the Euler-Mascheroni constant, q is related to the equation of state of the
ekpyrotic phase by wekp = −1 + 2

3q , ξ is related to the strength of gauge coupling by ξ = nδ

and HB− is the Hubble parameter at the end of the bounce determined by the scale of the
bounce. ns and nt are the spectral indices of scalar and tensor perturbations, respectively.
By choosing n = −2.01, it is possible to obtain a scalar spectral index ns = 0.96, a red
tilted scalar power spectrum in agreement with observations. The tensor-to-scalar ratio r is
determined by the factor Fζ , governing amplification across the bounce. An approximate
expression for Fζ is given by

Fζ = cosh
[∫ τ+

B

τ−
B

dτ ′ ωS(τ ′)
]

, (2.10)

where τ−
B and τ+

B denote the beginning and end of the bounce and ω2
S = z′′/z, where z

during bounce phase is approximately z = a23β/(γ2
Eϕ̇2). It is not easy to write a closed-form

expression for Fζ , except for the case where we assume ϕ̇ to be Gaussian. In [57], the authors
evaluated Fζ semi-analytically. This enhancement is driven by the ω2

S = z′′/z term that
dominates over c2

sk2. The bounce is short enough so that the evolution of modes remains
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under perturbative control, even for the high-k modes. For high-k modes it was checked
numerically, while for other modes it was also verified analytically. All modes are amplified
by the same finite amount. That the growth of perturbations does not lead to divergences
as long as the bounce duration is short can be verified numerically.

Here lies a main qualitative difference between the different spectra. The scalar spectra
are amplified across the bounce while the tensor ones are unchanged. Since the sourced
spectrum is significantly larger compared to the vacuum spectrum, Ptot ≃ Ps and

r ≃ Ps
t

Ps
s

= 4
25

(
1

Fζ

)2

. (2.11)

The sourced tensor spectrum has the same red-tilted spectral index as the scalar spectrum
and is unobservable by current and third-generation interferometers.3 However, the vacuum
perturbations are characterized by a blue spectrum, and although tensor vacuum perturbations
are small compared to the sourced spectrum at CMB scales, the blue spectrum may be
observable at higher frequencies.

After the bounce, kinetic domination takes place. The gauge field in our model can be
either a putative gauge field, or the actual U(1) of electromagnetism. The different options
will imply different reheating epochs and may modify the predicted tensor spectrum. We now
examine the possibility of the gauge field sourcing perturbations as electromagnetic radiation.
It is possible to calculate the scale factor at which the Universe ends a reheating phase with
this assumption. The Universe becomes radiation dominated when the energy density of the
scalar field responsible for the bounce is smaller than the energy density of the gauge field.
The energy density of the scalar field ϕ at the end of the bounce phase is approximately

ρϕ(τB+) ≃ 1
2 ϕ̇2(τB+)[1 − g0 + 3βϕ̇2(τB+)] ≃ g0 − 1

3β
e−2 τB+

T

(
1 − e−2 τB+

T

)
, (2.12)

where τB+ and τB− are the conformal time at the beginning and at the end of the bounce
phase, respectively, and T is a quarter of the duration of bounce phase. During the phase
of kinetic domination, the energy density decays as a−6. Thus, the energy density of the
scalar field during this phase is

ρϕ = g0 − 1
3β

e−2 τB+
T

(
1 − e−2 τB+

T

)(aB

a

)6
. (2.13)

The gauge field energy density attains the maximum

ρA,τB− = D(n) e2πξ

ξ3τ4
B−

, D(n) = 1
4π2

(n − 1)2Γ(2n − 1)
22n+1(n − 2)π , (2.14)

at the bounce, where the expression for D(n) holds for n close to 2. After the bounce, the
energy density decays as a−4 and the gauge field energy density is

ρA,τ = D(n) e2πξ

ξ3τ4
B−

(
aB

a

)4
. (2.15)

3It should be noted that this sourced tensor spectrum is observable in CMB frequencies. It is distinguishable
from the inflationary predictions by the fact that the signal should have a definite chirality, unlike the inflationary
predictions that result in similar contribution to the spectrum from both chiralities.
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From the expressions for energy densities, one can calculate the scale factor corresponding
to which the Universe ends the reheating phase and find that reheating will last for only
a few e-folds.

In the derivation of primordial spectra in (2.9), we have assumed the scale factor at
the bounce to be one. However, the transfer function is derived with normalization a0 = 1.
For consistency, we reparametrize a0 as

a0 = aB
ar

aB+

aB+
aB

a0
ar

(2.16)

where ar is the scale factor at the onset of radiation domination. The reheating phase
for this model is dominated by the kinetic term from tB+ to the beginning of radiation
domination, implying

ar
aB+

=
(

tr
tB+

) 1
3

≃
(

HB+
Hr

) 1
3

. (2.17)

From (2.16) and (2.17), we obtain

a0
aB

= 34 × 1013

87 GeV H
1
3
B+H

1
6r M

1
2

Pl . (2.18)

Instantaneous reheating implies Hr ≃ HB+. In our case, the value of HB+ is determined by
the theory of sourced perturbations and is dependent on the parameters of the theory. In
our discussion, we set parameters for sourced perturbations to values optimal for obtaining a
reasonable tensor-to-scalar ratio and a red spectral tilt. This value is around HB+ ≃ 10−5MPl.
We notice that, for the case where the gauge field responsible for sourcing gravitational
waves behaves as radiation, the reheating phase is short, N ∼ 3−4 e-folds, and the spectrum
of GWs is similar to that of the case where reheating is instantaneous. For models with
instant reheating, the transfer function is described in (1.5) and present-day GWB is given
by (1.4). We present our results in figure 1, where we used vacuum tensor spectrum from (2.9)
assuming wekp ≫ 1 which gives4

Pv
t (k) ≃ γ2

Ek2

2π2M2
Pl

. (2.19)

If, instead, we assume that the gauge field responsible for sourced perturbations is not
radiation and is something more exotic such as U(1) axions or dark radiation, then it is
possible to have an extended reheating period where the Universe is dominated by a kinetic
term. We have also examined this possibility. The transfer function in the presence of a
reheating phase is slightly modified and is well known [80]. Figure 1 also shows the GWB
in the presence of a prolonged reheating phase, where we assumed a large reheating period
lasting till the onset of big-bang nucleosynthesis (BBN).

This analysis shows that the predicted GWB will not be observable with the current
sensitivity of GW observatories, nor by third-generation interferometers. Also, the long

4This expression applies to most ekpyrotic models such as the old scenario [58], the new scenario with
instabilities [86–89] and the new scenario without instabilities [90–93] but not to the S-brane scenario [41–43].
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Figure 1. GWB generated by the primordial vacuum tensor spectrum of the ekpyrotic model with
fast-rolling Galileons for the instantaneous reheating scenario with HB+ = Hr = 10−5 MPl (solid thin
curve) and the prolonged reheating scenario with HB+ = 10−5 MPl and Hr = 10−43 MPl (solid thick
curve), compared with the sensitivity curves (dashed) of LVK, SKA, LISA, ET and DECIGO. Also
shown are the CMB and BBN exclusion (where the CMB upper bound is given thickness to improve
visibility in the plot) and, as a thick red segment, the signal detected by PTAs. The bottom plot
captures the high-amplitude part of the GWB.
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reheating scenario is ruled out because it violates the BBN upper bound. This constraint,
however, can be bypassed assuming fewer e-folds of contraction. Considering a contraction
period of N = 55 instead of 60 e-folds, which is the minimum conservatively assumed to
isotropize the universe, is enough to avoid violations of the BBN bound [94].

3 String-gas cosmology with Atick-Witten conjecture

One of the characteristic features of string theory is the existence of the Hagedorn phase
at temperatures close to the string scale Ms, where the energy is not dominated by the
massless modes but rather by the most massive string states, leading to a pressureless
fluid [95–98]. In fact, a canonical description of the thermal phase indicates a limiting
Hagedorn temperature [95, 96]. However, it was also argued that the limiting temperature
only corresponds to the emergence of a thermal tachyonic mode, making the description of the
system in terms of fundamental string excitations invalid [99, 100]. Atick and Witten [101]
conjectured that, at temperatures larger than the Hagedorn temperature TH, the free energy
grows much more slowly than in conventional field theories. Calculations in closed bosonic
string theory [101] indicated that TH is not an upper bound but a point of first-order phase
transition to a thermal ensemble with fewer degrees of freedom than expected from the
zero-temperature string spectrum or from standard point-like particle field theories. This
leads to the Atick-Witten scaling ∼ T 2 of the free energy and, consequently, to a p = ρ

equation of state for the matter content of the early Universe. Such a background also
arises from other, somewhat independent considerations in a setting obeying the holographic
principle, where the p = ρ equation of state saturates the entropy bound [102, 103].

According to [101], the partition function only grows as T 2, hence the authors modeled
the pressure with quadratic, linear and logarithmic terms in temperature. However, for
convenience and transparency we may as well model the pressure in the form [59]

p(T ) = M4
s

[(
T

Ms

)2
+ c1

(
T

Ms

)1+α
]

, |α| ≪ 1 . (3.1)

where α is a real constant.
The possibility of thermal fluctuations being the origin of small inhomogeneities and

anisotropies in the CMB was already proposed by Peebles [104]. The fluid fluctuations
may arise naturally from two different sources. There might be fluctuations in the energy
density and the associated temperature. And, even if there is a unique temperature in a
given volume, there are fluctuations in energy within this volume due to the very statistical
nature of thermal physics. This could also potentially seed primordial fluctuations; see, for
instance, [105–108] and references therein.

The statistical fluctuations in the energy inside a given volume V = L3 is given by

⟨∆E⟩2
L := ⟨E2⟩ − ⟨E⟩2 = ∂2 ln Z

∂β2 = T 2CL

=⇒ ⟨δρ2⟩L = T 2CV

L6 = T 2

L3
∂ρ

∂T
, (3.2)

where CL is the heat capacity of the thermal system for the volume L3. These are classical
random fluctuations that exist in any finite-temperature system as long as the fluid is in local
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thermal equilibrium. Hence, as such there is no need for any seed quantum fluctuations here.5
Therefore, the power spectrum for the seed fluctuations could then be sourced by these sub-
Hubble wavelengths before the bounce [59]. Once the modes become super-Hubble, thermal
correlations over the relevant physical wavelengths can no longer be maintained, then the
coupled metric and matter fluctuations can evolve according to the usual general-relativistic
hydrodynamical differential equations.

A precise understanding of how these statistical fluctuations get encoded in the curva-
ture perturbation ζ at the Hubble crossing, was achieved in [110] for a general extensive
thermodynamic fluid whose pressure p can be an arbitrary function of the temperature T .
The derived curvature power spectrum reads

Pζ = k3ζ2
k = 8

√
3π3A2(Tk) T 2

k ρ′
k

M3
Pl

√
ρk

, (3.3)

where a prime denotes differentiation with respect to T and

A(T ) = 3(1 + w)Ω + 2(3 + R)
6(1 + w)Ω , R = −3

2

[
1 + (1 + w)ρ(2ρ′ + Tρ′′)

Tρ′2

]
, (3.4)

where Ω = ρ/(3M2
PlH

2). The subscript k (which we are going to subsequently drop) refers to
the fact that all these quantities have to be evaluated at horizon crossing, Hk = k/a. Note,
that all the above functions of temperature can be calculated if we know p(T ), as the energy
density is related rather straightforwardly to pressure:

ρ(T ) = T
dp(T )

dT
− p(T ) . (3.5)

The primordial tensor and scalar spectra as functions of the temperature T are [59]

Pt(k) = 2
π2

[
H(k)
MPl

]2
, (3.6)

Ps(k) =
√

3π3c2
1

4

(
Ms
MPl

)3 [T (k)
Ms

]2α

, (3.7)

where Ms is the string mass scale and c1 is the constant coefficient in the O(T 1+α) term in (3.1).
By tuning the parameters c1 and Ms in (3.7), one can easily make the tensor-to-scalar ratio

r = 8
π3

√
3πc2

1

(
H

T

)2 MPl
Ms

(
T

Ms

)2(1−α)
, (3.8)

as large as the upper bound r = 0.036 at k∗ = 0.05 Mpc−1. This, however, turns out to be
ruled out by observations, as we shall see presently.

At high temperature, the string gas behaves like a stiff fluid p ≃ ρ and the gravitational
setting is Einstein’s gravity, so that the standard Friedmann equations hold and

H2 ∝ ρ ∝ T 2 ∝ a−6 . (3.9)
5Even in the vacuum dominated case, the initial fluctuations can be seeded classically to mimic the

Bunch-Davies vacuum [109].
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Therefore, the energy scale of the model is TH ∼ Ms ≲ T ∼ |H|. From the horizon crossing
relation k = a|H|, we have k ∝ a−2 and

Pt ∝ a−6 , Ps ∝ a−6α ,
d

d ln k
= −1

2
d

d ln a
, (3.10)

so that the tensor and scalar spectral indices (1.2) are constant and given by

nt = 3 , ns − 1 = 3α . (3.11)

The tensor spectrum (3.6) can thus be written as

Pt(k) = r(k∗) Ps(k∗)
(

k

k∗

)nt

, (3.12)

which we plugged into (1.4) to get the spectral shape shown in figure 2.
As the reader can see, the signal predicted by this model is too strong and is excluded

by all present constraints. The problem is the high tensor index in (3.11), two orders of
magnitude higher than the minimum tilt required for detection in DECIGO, ET and LISA
(nt ≳ 0.06−0.34) [35]. At r = 0.036, the curve hits the Gaia bound around Ωgw(f = 5 ×
10−12 Hz) ≈ 7 × 10−12 [111]. The tensor-to-scalar ratio must be reduced down to r ∼ 10−18 to
cross the signal detected by PTA, with which it is compatible.6 To shift past the IPTA-SKA
curve, it must be r < 5×10−22, at which point the parameter space of the model becomes too
compressed to yield a realistic scenario. In the meanwhile, the BBN bound Ωgw < 5 × 10−6

truncates the top of all these signals before they can reach the cut-off frequency, which is
much larger than the range depicted in the plot [30].

As we warned in the introduction, this model is phenomenological and there are several
points which need further theoretical study. First, a matter bounce takes place thanks to
T-duality in string theory, which relates short to large distances R ↔ 1/R. However, just
around the bounce event, one assumes Einstein gravity for simplicity. There are examples of
quantum gravity where the inception of the Einstein regime is extremely close to the Planck
scale [112] but, in general, in the deep ultraviolet regime above the Hagedorn temperature
gravity might be described by some modified action. However, to extract such dynamics is
a difficult and yet unsolved problem. This issue, taken on board also in previous literature
on the subject [48, 49], will obviously need further study.

Second, from the scale hierarchy reported below (3.9) is clear that the modes exiting the
horizon during the contraction phase before the bounce have very high momenta. For these
modes to stretched to cosmological scales, a mechanism for extending these wave-lengths from
the Planck scale (or some order of magnitude away from it) to present-day low-multipole scales
must be implemented in the model. In [59], some tentative solutions to this problem were
advanced. One is to have a phase of inflation with mild slow roll stretching the wave-lengths
to cosmological scales. This phase would be insufficient per se to sustain a long-enough
early-universe acceleration with the observed CMB spectrum. However, it would constitute

6Compare the reconstructed posterior distribution for ngw ≃ nt in figure 5 of [4], where the tilt ngw of the
GWB Ωgw(f) ∼ fngw coincides with the primordial tensor tilt nt in this case. The string-gas tilt nt = 3 falls
well within the likelihood region for a wide range of reheating temperatures.
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Figure 2. GWB for the bouncing model of string-gas cosmology with Atick-Witten conjecture with
r = 0.036, 10−18, 5 × 10−22 (increasing thickness) at the CMB pivot scale (where the upper bound
is given thickness to improve visibility in the plot), compared with the sensitivity curves (dashed)
of LVK, SKA, LISA, ET and DECIGO. Also shown are the BBN exclusion region and, as a thick red
segment, the signal detected by IPTA. The bottom plot captures the high-amplitude part of the GWB.

– 13 –



J
C
A
P
0
9
(
2
0
2
4
)
0
5
8

a watering down of the original idea of having an actual alternative to inflation. Another
stretching mechanism could involve a cyclic phase of growth [59]. None of this has been
explored in detail and will be critical to have under control the reformulation of the primordial
tensor power spectrum (3.6) as the power law (3.12).

4 Pre-big-bang cosmology

A possible example of primordial tensor perturbations peaked at high frequencies, with
a strongly blue-tilted low-frequency regime of spectrum, is provided by the so-called Pre-
Big-Bang (PBB) scenario [60, 61], based on the scale-factor duality of the string cosmology
equations [64]. Such symmetry is a peculiar property of string theory, and is a crucial ingredient
not only to fix the slope of the primordial spectrum [67–69] but also, as confirmed by recent
results [65, 66], to implement a smooth transition from the initial growing curvature (PBB)
regime to the standard regime of decreasing curvature evolution. According to this model,
the evolution of our Universe, characterized by decelerated expansion (at intermediate times),
decreasing temperature and curvature, weak gravitational coupling, should be preceded in
time by an almost specularly symmetric phase of accelerated expansion, increasing curvature,
increasing density and temperature and growing coupling. Such a dual counterpart of the
present one describes a “pre-big-bang” evolution from a flat, cold, empty initial state with
negligible interactions to a final high-curvature, high-energy, explosive bounce, marking the
transition to the more standard cosmological regime (see, e.g., [113] for a recent non-technical
introduction, and [114] for a more detailed and complete discussion).

Here we recall the derivation of the associated GWB in a self-contained way. We shall
introduce the spectral energy density of the relic GW radiation present today inside our
cosmic horizon, and produced by a simple model of PBB scenario which satisfies all present
observational constraints and depends on four constant parameters (see also [63]). Two of
these parameters control the inflationary growth of the scale factor and of the string coupling
in the high-energy regime preceding the bounce; the other ones control the beginning and
the end of the axion-dominated phase occurring after the curvature bounce. We recall that
the presence of a dust-like phase dominated by the oscillations of the Kalb-Ramond axion
is in general needed in the PBB scenario to obtain (via the curvaton mechanism) a flat
spectrum of scalar metric perturbations [115, 116].

At present, the first two parameters are largely arbitrary, while the other two may vary
in a rather small range of values. We stress, however, that the dependence of the amplitude
of the GWB on the full set of the above four parameters is given and discussed, for the first
time, in this paper. We have neglected a possible further parameter, the effective propagation
speed of tensor perturbations during the high curvature string phase, as it seems to have
small effects on the energy density of the GW spectrum.7

Let us now compute the spectral energy density in critical units of the GWB, eq. (1.3)
with k0 ⩽ k ⩽ k1, in such a way that all modes k of eq. (1.3) satisfy the condition kτ0 ≳ 1
(i.e., they are all inside our present Hubble horizon, k ≳ k0 = τ−1

0 ). The highest mode
k1 = τ−1

1 is the maximum amplified frequency crossing the horizon just at the end of the
7On the contrary, the effective sound speed of scalar curvature perturbations and of axion perturbations is

important for the production of primordial black holes, as discussed, e.g., in [117] for the PBB scenario.
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phase of PBB inflation. Higher frequency modes (k ≫ k1) can, in principle, be included into
eq. (1.3), but their amplitude is exponentially suppressed [118–120] and their contribution to
Ωgw is negligible. For the explicit computation of Ωgw, two comments must be made.

The first is that, even if we are working in general with a higher-dimensional spacetime
manifold (an unavoidable choice in the string theory context), we are mainly interested in
the tensor perturbations of the four-dimensional metric, δgµν = hµν , assuming that the extra
spatial dimensions are today compactified with frozen dynamics. However, this does not
mean that we are neglecting the possible effects of the higher-dimensional geometry during
its initial, non-trivial evolution: indeed, all such higher-dimensional contributions will be
included into the canonical equation which controls the dynamics of hµν [61, 63, 114].

The second point is that, as usual, we are interested in the contributions to Ωgw arising
from the cosmological amplification of the quantum vacuum fluctuations of the metric tensor.
This implies that we can describe the amplification of tensor perturbations as a quantum
(or semi-classical) field-theory process of production of pairs of gravitons from the initial
vacuum state (see, e.g., [114]) and we can write, for each mode k, the differential energy
density of the amplified perturbations as follows:

dρk(τ0) = 2k ⟨nk(τ0)⟩ d3k

(2π)3 = k4

π2 ⟨nk(τ0)⟩ d ln k , (4.1)

where 2 is the number of polarization states and ⟨nk(τ0)⟩ the number density of produced
gravitons at the final epoch τ0. The last equality follows from assuming an isotropic final
distribution.

To obtain ⟨nk⟩ and then Ωgw, we need now to solve the evolution equation for the
Fourier component of the (Mukhanov-Sasaki) canonical variable, vk(τ), defined by putting in
canonical form the quadratic action for the tensor fluctuation mode hk [121]:

v′′
k +

(
k2 − ξ′′

ξ

)
vk = 0 . (4.2)

Here a prime denotes differentiation concerning the conformal time, vk = ξhk and ξ(τ) is
the so-called “pump field” which controls, according to the above equation, the dynamics
of the perturbation modes in the given background.

In the model we are considering, the background may be approximated as a sequence
of various cosmic phases, and in each of them the pump field ξ is characterized by a simple
power-law behaviour. In particular, in the initial PBB regime −∞ < τ ⩽ −τ1, starting
asymptotically from the string perturbative vacuum and approaching the curvature bounce
at τ = −τ1, we have two different phases with the following (canonically normalized) pump
field behaviour [63]:

ξ ∼ MPl√
2

(−τ)1/2, τ < −τs ; ξ ∼ MPl√
2

(−τ)β−1, −τs < τ < −τ1 . (4.3)

The parameter β describes the high-energy growth of the dilaton and the dynamics of the
internal dimensions, while the time scale τs is a free parameter which marks the transition
from the low-energy initial phase to a possible late-time attractor, where spacetime curvature
stays frozen at the value controlled by the fundamental string mass scale [122]. In both
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phases, the evolution of the pump field takes into account not only, as usual, the inflationary
growth of the scale factor but also the additional string-theory effects [61, 114], such as the
dynamics of the extra dimensions and the growth of the string coupling controlled by the
scalar dilaton field (see also [70, 122]).

In the subsequent post-bouncing regime −τ1 < τ ⩽ τ0, the cosmic evolution is decelerated
and we may have in principle three phases with the following pump-field behaviour [63]:

ξ ∼ MPl√
2

τ, − τ1 < τ < τσ; ξ ∼ MPl√
2

τ2, τσ < τ < τd; ξ ∼ MPl√
2

τ, τd < τ < τeq. (4.4)

Here we are assuming that the extra-dimensional geometry and the string coupling (i.e.,
the dilaton) are frozen after the bounce, so that the pump field simply coincides with the
scale factor. Here, again, we have two free parameters: the time scale τσ, marking the
beginning of the dust-like phase dominated by the axion oscillations, and the time scale
τd, marking the epoch of axion decay associated with the conventional reheating (source of
the CMB radiation that we are presently observing) and corresponding to the beginning
of the standard post-big-bang evolution.8

As discussed in previous papers [63, 115, 116], instead of τσ and τd we can conveniently
use as parameters the corresponding curvature scales Hσ := H(τσ) and Hd := H(τd) which
can be expressed in terms of the (unknown) mass m of the Kalb-Ramond axion and of its
initial amplitude σi after the bounce:

Hσ ≃ m

(
σi

MPl

)4
, Hd ≃ m

(
m

MPl

)2
. (4.5)

For a consistent model, the allowed values of the parameters m and σi must satisfy the scale
hierarchy MPl ≳ H1 ≳ Hσ ≳ Hd. In addition, we have the obvious condition Hd > HN ,
where HN ∼ (1 Mev)2/MPl is the nucleosynthesis scale of the standard cosmological scenario.

Given the full model of background evolution from the initial state at τ → −∞ down
to the present epoch τ0, and given the power-law behaviour of ξ in the various phases, we
can now work in the so-called “sudden approximation” [119] by imposing on the pump
field to be continuous at the transitions scales, and solving, in each phase, the canonical
equation (4.2). We recall that, in general, for a pump field given by ξ = (MPl/

√
2)|τ/τ1|α, the

exact solution for hk obtained from (4.2) can be written in terms of the first- and second-kind
Hankel functions, H

(1)
ν , H

(2)
ν , as

hk(τ) = vk

ξ
=
(

2τ1
M2

Pl

) 1
2 ∣∣∣∣ τ

τ1

∣∣∣∣ν [A+(k)H(2)
ν (kτ) + A−(k)H(1)

ν (kτ)
]

, (4.6)

where ν = −α + 1/2. The complete solution for hk(τ), describing its evolution from −∞ to
τ0, is then obtained by solving the canonical equation in the various phases and matching
hk and h′

k at the transition scales.
In our model, in particular, we have four transitions (at τs, τ1, τσ, τd), which means

five different phases of background evolution (see eqs. (4.3) and (4.4)), which implies five
8There is also the final matter-dominated phase completing the cosmic evolution from the equality epoch τeq

down to the present epoch τ0. However, such a phase only affects the very low frequency modes k < keq = τ−1
eq ,

whose amplitude is so small (because of the strongly blue-tilted spectrum) to be fully negligible for this paper.

– 16 –



J
C
A
P
0
9
(
2
0
2
4
)
0
5
8

different solutions like (4.6), and thus ten different coefficients A±(k) to be determined
at the various epochs. The continuity of hk and h′

k only gives eight conditions. The two
remaining conditions are obtained by imposing on the canonical variable to initially describe
a positive-frequency mode normalized to the quantum fluctuations of the Bunch-Davies
vacuum, namely, by imposing vk = (1/

√
2k) exp(−ikτ) for τ → −∞: this implies (using the

large-argument limit of the Hankel functions [114]) A− = 0 and A+ =
√

π/4 for the solution
describing perturbations in the initial regime τ → −∞.

With such a canonical normalization, the sought value of the number density ⟨nk(τ0)⟩ of
produced gravitons is then automatically obtained from the coefficient A−(k) of the first-kind
Hankel function describing the perturbation mode hk(τ) in the final regime τ → +∞ (actually,
for our purpose, in the limit τ → τ0). More precisely, one finds (see, e.g., [114])

⟨nk(τ0)⟩ = 4
π

|A−(k)|τ=τ0
. (4.7)

By performing the above computation and varying k in the allowed frequency range we find
that there are, in principle, four different branches of the energy density spectrum (1.3), (4.1),
depending on the epochs of horizon crossing of the various modes. Noting that the axion-
dominated phase is expected to occur soon after the bounce, in order to have a short duration
with respect to the preceding high-curvature string phase (namely, τd/τσ ≪ τ1/τs) we may
consistently assume that all modes re-entering the horizon before, during, or soon after the
axion phase are amplified modes leaving the horizon during the high-curvature string phase.
This means, in other words, that we can work with the following hierarchy of wave-number
scales: k1 ⩾ kσ ⩾ kd > ks, where ki := τ−1

i is the limiting frequency of a mode crossing
the horizon at the transition epoch τi.

To obtain the explicit (parameter-dependent) form of the GWB, it is useful to first
compute the frequency ratios of the four scales ki. We note that in our model there are
two phases of radiation-dominated evolution (i.e., a ∼ τ ∼ H−1/2) for −τ1 < τ < τσ and
for τ > τd, one phase of matter-dominated evolution (i.e., a ∼ τ2 ∼ H−2/3) for τσ < τ < τd,
and one phase where the string frame scale factor undergoes a de Sitter-like evolution (i.e.,
a ∼ |τ |−1) for −τs < τ < −τ1. By defining the convenient parameters

zs := τs

τ1
= k1

ks
, zσ := τσ

τ1
= k1

kσ
, zd := τd

τ1
= k1

kd
, (4.8)

controlling the time extension of the pre-bouncing high curvature regime and of the two
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post-bouncing, non-standard phases, we find9 (using eq. (4.5))

zσ = k1
kσ

= H1a1
Hσaσ

=
(

H1
Hσ

) 1
2

≃
(

H1
MPl

) 1
2
(

m

MPl

)− 1
2
(

σi

MPl

)−2
,

zd

zσ
= kσ

kd
= Hσaσ

Hdad
=
(

Hσ

Hd

) 1
3

≃
(

m

MPl

)− 2
3
(

σi

MPl

) 4
3

,

zs

zd
= kd

ks
= kd

k1

k1
ks

= zs
Hdad

H1a1
= zs

Hd

H1

ad

aσ

aσ

a1
≃ zs

(
H1
MPl

)− 1
2
(

m

MPl

) 7
6
(

σi

MPl

) 2
3

. (4.9)

By inverting the above relations we can also express σi and m in terms of H1 and of the
parameters zs, zσ and zd as follows:

σi

MPl
≃
(

H1
MPl

) 1
6

z
1
4
d z

− 7
12

σ ,
m

MPl
≃
(

H1
MPl

) 1
3

z−1
d z

1
3
σ . (4.10)

Let us now give an example of full computation of the spectral distribution (1.3) for
the highest frequency branch of the spectrum (kσ < k < k1) and for a generic epoch τ (late
enough, however, to have all such modes inside the horizon, kτ ≫ 1). To this purpose, let us
express the energy density of the perturbations in terms of their (time-dependent) proper
frequency ω scaling in time like the inverse scale factor, ω(τ) = k/a(τ). From eqs. (1.3)
and (4.1), we obtain

Ωgw(k, τ) = ω4

π2ρcrit(τ) ⟨nω(τ)⟩ , kσ < k < k1. (4.11)

The modes we are considering are amplified by the pump field (4.3) of the high-curvature
string phase, and the canonical equations (4.6), (4.7) then give [114]

⟨nω(τ)⟩ ≃
(

ω

ω1

)−1−|3−2β|
=
(

k

k1

)−1−|3−2β|
. (4.12)

Also, it is convenient to express the critical density ρcrit in terms of the critical fraction
of radiation energy density, Ωr = ρr/ρcrit, so that, referring to radiation produced at the
axion-decay scale, we have

ρcrit(τ) = ρr(τ)
Ωr(τ) = 3M2

PlHd

Ωr(τ)

(
ad

a

)4
. (4.13)

Finally, for each mode of proper frequency ω(τ) we can express its ω4 contribution to
eq. (4.11) as

ω4 =
(

k

a

)4
=
(

k

k1

)4 (H1a1
a

)4
. (4.14)

9Conventions: we denote with ω the usual (time-dependent) proper frequency evolving in time like the
inverse scale factor, ω(t) ≡ k/a(t). Hence, the proper frequency crossing the horizon at the given time t1,
ω1 = H1 = H(t1), and evaluated at a general time t, is given by ω1(t) = H(t1)a(t1)/a(t) ≡ H1a1/a. The
time-dependent scale factor obviously disappears in the ratios of two frequency scales so that, for instance,
ω1/ωσ = H1a1/Hσaσ = k1/kσ.
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Combining all these results and using eq. (4.5) we then find, for the considered band of
frequency,

Ωgw(k, τ) = Ωr(τ)
Ωr0

ΩPBB

(
k

k1

)3−|3−2β|
, kσ < k < k1, τ > τd, (4.15)

where Ωr0 ≡ Ωr(τ0) ≈ 4.15 × 10−5h−2 is the present critical fraction of radiation energy
density (including neutrinos) and we have defined the constant (parameter dependent)
dimensionless amplitude

ΩPBB := Ωr0

(
H1
MPl

)2
(

mMPl
σ2

i

)4/3

= Ωr0

(
H1
MPl

)2 (zσ

zd

)2
. (4.16)

For simplicity we have absorbed all numerical factors of order of unity into the unknown
scale H1. Obviously, the result (4.15) is also valid if applied in particular to the present
epoch τ = τ0, with Ωr(τ) = Ωr0.

By following the same procedure for the other (lower frequency) branches of the spectrum,
and turning to the more conventional frequency variable10 f = k/(2π), we obtain that the
full GWB can be written synthetically as

Ωgw(f) =



ΩPBB

(
f

f1

)3−|3−2β|
, fσ ≲ f ≲ f1

Ωgw(f1)
(

fσ

f1

)3−|3−2β| ( f

fσ

)1−|3−2β|
, fd ≲ f ≲ fσ

Ωgw(fσ)
(

fd

fσ

)1−|3−2β| ( f

fd

)3−|3−2β|
, fs ≲ f ≲ fd

Ωgw(fd)
(

fs

fd

)3−|3−2β| ( f

fs

)3
, f ≲ fs

(4.17)

where the three ratios of frequency scales fσ/f1, fd/fσ, fs/fd can be expressed in terms
of the parameters zs, zσ, zd (or m, σi, H1) according to eq. (4.9). We may note, for a
better explanation of the above spectrum, that the higher frequency regime with interval
f ϵ [fσ, f1] concerns modes which exit the horizon in the string phase and re-enter in an
early radiation-dominated phase, while modes with f ϵ [fd, fσ] exit in the string phase but
re-enter in a matter-dominated phase: hence the transfer function is different and yields the
additional f−2 spectral factor for β ≈ 0. Also, modes with f ϵ [fs, fd] exit the horizon in the
same phase as before and re-enter in the standard big-bang radiation phase. Finally, the
lowest frequency modes f < fs with the strongly blue spectrum Ω ∼ f3 exit the horizon
in a low-energy phase which is stiff and contracting in the Einstein frame, with pump field
ξ(τ) ∼ (−τ)1/2. Very simple plots for the time evolution of the effective horizon, illustrating
how modes belonging to different spectral regimes may cross (in and out) the horizon, can
be found, for instance, in [114, 123].

10Note that the initial normalisation of the spectrum to the quantum fluctuations of the vacuum, leading to
the results (4.7), (4.11), is performed as usual in units ℏ = 1. Hence, ω = 2πf .
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It is also important to note that, for f > f1, the spectrum is exponentially suppressed as
Ωgw(f) = ΩPBB exp [−(f − f1)/f1], so that a smooth interpolation of all the branches can
be given by the following expression proven in appendix A:

Ωgw(f) = ΩPBB f3
(
f2 + f2

s

)− |3−2β|
2

(
f2 + f2

d

)−1 (
f2 + f2

σ

) (
f2 + f2

1

) |3−2β|−3
2

× exp
(

− f

f1
+ arctan f

f1

)
. (4.18)

The smoothing of the piecewise profile (4.17) does not change the underlying scenario because
the transition epochs from one phase to another are of very short, negligible duration
compared with the time extension of such phases.

There are now two important points to be stressed. The first is that the overall GWB,
and in particular the peak amplitude, is controlled not only by the bouncing curvature scale
H1 but also by the parameters m and σi and, thus, by the details of the post-bounce evolution.
This implies, in particular, that the amplitude may result strongly suppressed with respect
to the natural value fixed by the fundamental string mass scale Ms, even for the highest
frequency modes crossing the horizon at such scale.

The second point concerns the number of parameters controlling the shape of the spectrum.
There are four time (or curvature) scales and one dimensionless number, the power β of
the pump field in the string phase; see (4.3). However, these five parameters must satisfy
an important phenomenological condition. The PBB scenario we are considering, in fact,
besides producing relic GW radiation must also produce a suitable large-scale background
of scalar curvature perturbations with a nearly flat spectrum, in order to be compatible
with CMB observations.

This is known to be possible via the curvaton mechanism [124–126] triggered by the Kalb-
Ramond axion [115, 116], but this imposes constraints on the previous spectral parameters [63].
In particular, the primordial scalar amplitude Ps(k∗) and spectral index ns must be in
agreement with the observational results reported below (1.2). By imposing such conditions
on the scalar perturbations produced by the PBB model we are considering, whose spectrum
is controlled by the same set of parameters as the GWB of (4.17) or its smooth version (4.18),
we can then eliminate one of the previous five parameters and fix, for instance, the transition
scale H1 as a function of zs, β, m, σi and of the two observables Ps(k∗) and ns. This is done
in appendix B.1, where we conclude that the parameter space of the model is

{β, zs, zd, zσ} . (4.19)

Without assuming any prior on these parameters, one can plot (4.18) and find some
general trends. For instance, the larger β, the smaller the amplitude, so that, in practice,
only values of β near zero generate a detectable signal. Also, as the parameter zd increases,
the spectral shape is squeezed and the peak becomes narrower but neither its frequency nor
its amplitude vary appreciably. On the other hand, the parameter zσ changes the shape but
not much the frequency peak or the amplitude, while the parameter zs which affects both
the range and the amplitude of the intermediate plateau or slope.

However, the four parameters (4.19) do obey a non-trivial set of theoretical priors
determined in appendix B.2. Within this space, in appendix B.3 we circumscribe the region in
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Figure 3. The shaded area shows the allowed region in the (log10 zs, log10 zd) plane for the limiting
case β = 0 and σi = MPl, which maximizes the peak amplitude of the primordial GWB. The maximal
allowed intensity is reached for parameter values lying on the dashed straight line marking the right
border of the region, corresponding to log10(H1/MPl) ≈ −3.29, as explained in appendix B.3.

the parameter space where the peak amplitude of the GWB is maximized. This happens for
β = 0, σi = MPl, zσ determined by eq. (B.13) and the values of zs and zd shown in figure 3.

Any given set of parameters zs, zd, zσ satisfying eq. (B.13) together with all other con-
straints, and implementing the additional limiting condition log10(H1/MPl) ≈ −3.29, produces
a GWB with a peak of maximum intensity Ωmax

gw ∼ 10−11 −10−10 (eq. (B.15)). For phe-
nomenological reasons, however, we are interested not only in the maximal amplitude but
also in the maximal extension in frequency (in particular, towards small frequencies) of the
allowed spectral region. This last property can be easily obtained by choosing, among all
possible combinations of parameters producing the maximal amplitude, the combination
selecting the maximal allowed value of zs (i.e., zs ≈ 1022.3), together with the corresponding
minimal value of zd (i.e., zd ≈ 102.19), together with the associated minimal value of zσ

(i.e., zσ ≈ 1, according to eq. (B.13)).
The GWB (4.18) with the above numerical values of the parameters (satisfying σi = MPl)

and with β = 0 provides the border of the shaded area in figure 4 within which the primordial
GWB of pre-big-bang cosmology with maximal peak amplitude falls. Such region respects
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Figure 4. The shaded area is the maximal allowed region for the GWB (4.18) extended in the
low-frequency range, with all its parameters satisfying the self-consistency constraints (B.7)–(B.11).
We have also plotted four possible spectra corresponding to different sets of parameters giving rise
to different kinematic details of the phases of earlier, non-standard cosmic evolution, preceding and
following the curvature bounce.

known constraints obtained from the observations of millisecond pulsars [127], which imply
Ωgw ≲ 10−8 at a frequency scale f ∼ 10−8 Hz. It is also consistent with large-scale CMB con-
straints on the tensor spectrum. In the frequency range of IPTA, the maximal GWB amplitude
is smaller than the signal detected [3, 5–8] and is therefore consistent with those observations.

For an illustrative purpose, in figure 4 we have also plotted a few examples of GWBs
produced by different sets of parameters satisfying all required constraints. The plotted
spectra maximize neither the peak amplitude nor the extension in frequency but they are
well inside the border of the allowed region and they can still produce a detectable signal
within the LISA and the ET frequency range.

5 Discussion

In this paper, we have continued the study by [30] of the tensor-produced primordial GWB
in bouncing scenarios embedded in, or inspired by, semi-classical models, quantum gravity
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and string theory. A grand summary of our past and present results is the following.

• Cosmological models of string and quantum gravity such as inflation in flux compactifica-
tion (see [128, 129] for reviews), nonlocal Starobinsky inflation [39, 40], Wheeler-DeWitt
quantum cosmology [130–135] and various incarnations of loop quantum cosmology [136–
140] generate a red-tilted primordial tensor spectrum (nt < 0) and the resulting GWB
is not enhanced with respect to the standard inflationary one. It is thus unobservable
by present and planned interferometers [30].

• Scenarios such as Brandenberger-Ho non-commutative inflation [41, 42], multi-fractional
inflation [52] and the conformal early universe in nonlocal quantum gravity [33] also
generate a blue tensor spectrum but the primordial GWB amplitude can only reach the
DECIGO window [30, 33]. These models may allow for a strong signal at CMB scales
already within observability reach but this is a fixed prediction only for the conformal
early-universe scenario [33].

• The GWB of the S-brane ekpyrotic universe [43–45] has a very low amplitude at
CMB scales and it can reach the DECIGO window only if the tensor spectral index
is running [30]. In some extreme but not very realistic cases, it can even reach the
ET window. The ekpyrotic scenario with Galileons and a U(1) gauge field studied
here [53–57] predicts a sourced tensor amplitude which is observable only on CMB
frequency range, while the vacuum GWB is unobservable in all other upcoming GWB
observations. It is likely that the same conclusions apply also to the new expyrotic
scenario [86–93], since the primordial tensor spectrum is the same (2.19) and its steep
slope upwards would result either in a very low tensor-to-scalar ratio or to a violation
of the BBN bound, or to both.

• The GWB of string-gas cosmology is highly sensitive to the underlying assumptions. If
the signal is produced below the Hagedorn temperature [46–51], then the tensor spectrum
is mildly blue-tilted and its associated GWB can reach at most the DECIGO sensitivity
window assuming small or no running of the spectral indices [30]. If, as explored here,
it is produced above the Hagedorn temperature [59], then it becomes too high and is
observationally excluded. A possible way out of this would be to revise the assumptions
underlying the model, in particular, to be already in Einstein’s gravity regime (3.9)
when the primordial spectra were produced. Relaxing this condition and allowing
generation of the spectra before recovering Einstein’s gravity might yield different
results. In section 3, we also noted some theoretical holes in the model that should be
filled in order to understand whether our conclusions on its phenomenology are robust.

• The only model so far striking a balance between observability in the high-frequency
range and observational consistency is the pre-big-bang scenario [60–63]. We found
that its primordial GWB has a convex shape with an intermediate flat plateau. The
parameter space of the model is tightly constrained theoretically but it still gives enough
phenomenological freedom, to the point that this GWB can comfortably fall within the
sensitivity window of both LISA and ET. When the parameter β is close to zero, in
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this range of frequencies the GWB of this model is a single power law

Ωgw(f) ∼ fngw , ngw = 2 + nt ≃ 3 − |3 − 2β| ≈ 0 . (5.1)

When zd grows, the signal becomes a broken power law,

Ωgw(f) ∼
{

fngw,1 , f ≪ f̄

fngw,2 , f ≫ f̄
, (5.2)

where the slopes depend on where the transition scale f̄ lies in the model’s scales
hierarchy and on whether the intermediate plateau is extended enough:

f̄ = fd : ngw,1 ≃ 3 − |3 − 2β| ≈ 0 , ngw,2 ≃ 1 − |3 − 2β| ≈ −2 ,

f̄ = fs : ngw,1 ≈ 3 , ngw,2 ≃ 3 − |3 − 2β| ≈ 0 , (5.3)
f̄ = fs ≃ fd : ngw,1 ≈ 3 , ngw,2 ≃ 1 − |3 − 2β| ≈ −2 .

Overall, among all these early-universe scenarios only the pre-big-bang model is of interest for
LISA and ET. Both the single- and the broken-power-law shapes (5.1) and (5.3) fit the two
simplest templates commonly used for inflationary models [141] and they could be submitted
to the same type of analysis performed in [142] as well as to a discussion on degeneracies and
model selection when compared with alternative candidates with similar spectral shapes.

In general, the higher the signal-to-noise ratio, the smaller the error on the parameters
of the spectral shape, as has been verified for a variety of cases [35, 141, 142]. Thus, for the
PBB model one would be able to identify the corner of the parameter space such that the
tilt or tilts of the GWB (and, thus, β) would be determined with an accuracy of, say, 1%
by LISA and ET in their respective observability window.

In the case of the broken power law, the sharper the transition from one slope to the other
with respect to the sensitivity curve the more difficult the determination of the parameters,
due to the fact that the binning of the data introduces a certain level of coarse graining
of short-range features [143]. We do not expect to have this problem for the PBB model,
since the aforementioned transition is gentle enough (figure 4). These and other aspects of
the PBB model (like, for instance, the possible contributions of shear and bulk viscosity
arising at high-energies and affecting the high frequency regimes of the spectrum [144]) will
deserve to be explored in a near future.
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A Smooth interpolation of a broken power law

Suppose we have a piecewise continuous function f(x) : R+ → R+ such that, in each interval,
its behaviour is given by a power law f(x) ∼ xm. Then, we can define a sequence of exponents
m1, m2, . . . and interval extrema x1,2, x2,3, . . . such that xi,i+1 < xi+1,i+2. The derivative of
the logarithm of the function with respect to the logarithm of its argument is simply given by

d ln f(x)
d ln x

= m1 + (m2 − m1)Θ(ln x − ln x1,2) + (m3 − m2)Θ(ln x − ln x2,3) + . . . , (A.1)

where Θ is the Heaviside step function: Θ(y) = 1 for y ⩾ 0 and Θ(y) = 0 otherwise. Let
us approximate the Heaviside function with a logistic function:

Θ(y − y0) ≃ 1
1 + e−l(y−y0) , (A.2)

where l is a positive constant and the greater l the better the approximation. Substituting
the latter into (A.1) and defining a different l for each Θ, we have in compact form

d ln f(x)
d ln x

= m1 +
N−1∑
i=1

mi+1 − mi

1 + ( x
xi,i+1

)−li+1
. (A.3)

We can moreover rewrite the last equality with respect to the x-derivative as

d ln f(x)
dx

= m1
x

+
N−1∑
i=1

mi+1 − mi

x

1
1 + ( x

xi,i+1
)−li+1

. (A.4)

Integrating the last expression, we obtain

ln f(x) = ln A + ln(xm1) +
N−1∑
i=1

ln(xli+1 + x
li+1
i,i+1)(mi+1−mi)/li+1 ,

where A is a constant, and finally

f(x) = A xm1
N−1∏
i=1

(
xli+1 + x

li+1
i,i+1

)(mi+1−mi)/li+1

= A xm1
(
xl2 + xl2

1,2

)(m2−m1)/l2 (
xl3 + xl3

2,3

)(m3−m2)/l3 × . . . . (A.5)

If we wish to introduce an exponential cut-off for x > xN,N+1 such that f(x) ∼
exp[−(x − xN,N+1)/xN,N+1], then we have to add to (A.1) an additional contribution given
by (−x/xN,N+1 − mN+1)Θ(ln x − ln xN,N+1). Let us denote xN,N+1 ≡ xM and lN+1 ≡ l.
Following the same steps as before, one finds upon integration and exponentiation that

f(x) = A xm1
N−1∏
i=1

(
xli+1 + x

li+1
i,i+1

)(mi+1−mi)/li+1 (
xl + xl

M

)−mN+1/l

× exp
[
−(x/xM )1+l

2F1(1, 1 + 1/l, 2 + 1/l, −(x/xM )l)
1 + l

]
, (A.6)
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where 2F1(a, b, c, z) is the Gauss hypergeometric function. Translating into the general
language we introduced before for the power spectrum of (4.17), we have m1 = 3, m2 =
3 − |3 − 2β|, m3 = 1 − |3 − 2β| , m4 = 3 − |3 − 2β|, x1,2 = fs, x2,3 = fd and x3,4 = fσ and
xM = f1, so that (setting li = l for all i)

Ωsmooth
GW (f) = A f3

(
f l + f l

s

)− |3−2β|
l
(
f l + f l

d

)− 2
l
(
f l + f l

σ

) 2
l

×
(
f l + f l

1

) |3−2β|−3
l F(f, f1, l) , (A.7)

where we defined the function F(f, f1, l) as the exponential cutoff appearing in the last line
of (A.6). Setting l = 2, we obtain (4.18):

Ωsmooth
gw (f) = A f3

(
f2 + f2

s

)− |3−2β|
2

(
f2 + f2

d

)−1 (
f2 + f2

σ

) (
f2 + f2

1

) |3−2β|−3
2

× exp
(

− f

f1
+ arctan f

f1

)
. (A.8)

The integration constant A is fixed to match the asymptotic behaviour in the limit f → 0
with the explicit formula given in (4.17),

Ωgw(f) f→0
≃ ΩPBB (fσ)2(fd)−2(fs)−|3−2β|(f1)|3−2β|−3f3, (A.9)

while for the smooth interpolation (A.8)

Ωsmooth
gw (f) f→0

≃ A (fσ)2(fd)−2(fs)−|3−2β|(f1)|3−2β|−3f3, (A.10)

which yields A = ΩPBB.

B Parameter space of the PBB model

In this appendix, we show that the parameter space of the PBB model is {β, zs, zd, zσ}
(section B.1) and we discuss the theoretical priors on these parameters (section B.2). We
also determine the region in parameter space for which the promordial GWB amplitude is
maximized (section B.3). In view of a numerical implementation of these conditions and to
emphasize orders of magnitude, it may be useful to work with base-10 logarithmic expressions.

B.1 Reducing the number of parameters

First, we show that the transition scale H1 is not independent and can be fixed by the
other parameters,

H1 = H1(β, zs, zd, zσ) . (B.1)

By using previous results [63, 117], obtained under the natural assumption that the pivot
scale belongs to the low-frequency band of the scalar spectrum (i.e., k∗ < ks), the condition
on H1 following from the normalization of the scalar spectrum can be written as

(
H1
MPl

) 5−ns
2

= 2π2

T 2(σi)
Ps(k∗) z1−ns−2β

s

( H∗
MPl

)− 1
2
(

mMPl
σ2

i

) 1
3
ns−1

= 2π2

T 2(σi)
Ps(k∗) z1−ns−2β

s

(
H∗
MPl

zd

zσ

)− ns−1
2

, (B.2)
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where we have recast m and σi according to (4.10), H∗ is the curvature scale at the epoch in
which the pivot mode k∗ re-enters the horizon and T (σi) is the transfer function connecting the
amplitude of the primordial axion fluctuations to the final amplitude of the scalar curvature
modes of metric perturbations. A numerical integration of the scalar perturbation equations
gives the simple result [116]

T (σi) ≃ 0.13 σi

MPl
+ 0.25 MPl

σi
− 0.01 , (B.3)

where σi can be expressed in terms of the z parameters as in (4.10). To obtain H∗, we
can conveniently refer to the equilibrium scale by noting that k∗ ≃ 5keq. This implies
H

1/2
∗ ≃ 5H

1/2
eq . On the other hand, it is known that the Hubble parameter at radiation-

matter equality is given by Heq ≃ 1.6 × 105H0 ≈ 9.5 × 10−56MPl. We thus obtain(
H∗
MPl

)1/2
≈ 1.5 × 10−27 . (B.4)

Now we can then express the normalization (B.2) in terms of the four parameters {β, zs, zd, zσ}
(and of known experimental numbers) as follows:

log10

(
H1
MPl

)
= 2

5 − ns

{
log10

[
4.2π2

T 2(σi)

]
− 9 + (1 − ns)(log10 1.5 − 27) (B.5)

+ (1 − ns − 2β) log10 zs + ns − 1
2 (log10 zσ − log10 zd)

}
,

where we have used Ps(k∗) = 2.1 × 10−9. It should be noted that T 2(σi) also contains H1
through (4.10) but the solution for H1 can always be numerically obtained, in general, for
any given set of values of the four independent parameters.

Finally, the other important quantity appearing in the GWB (4.17) is today’s value of
the highest amplified frequency mode f1, which is given by

f1 = ω1(τ0)
2π

= H1a1
2πa0

= H1
2π

a1
aσ

aσ

ad

ad

aeq

aeq
a0

≃ H1
2π

(
Hσ

H1

) 1
2
(

Hd

Hσ

) 2
3
(

Heq
Hd

) 1
2
(

H0
Heq

) 2
3

=

= H
1
2
1

2π

(
zσ

zd

) 1
2 H

2
3
0

H
1
6eq

≃ 3.9 × 1011

2π

(
H1
MPl

) 1
2
(

zσ

zd

) 1
2

Hz . (B.6)

B.2 Theoretical priors

Having thus determined that the parameter space is {β, zs, zd, zσ}, let us now turn to the
priors we can impose on it theoretically.

A first condition concerns the parameter β controlling the power-law behaviour of the
primordial GW spectrum at high frequencies, which is constrained to be in the range

0 ⩽ β < 3 . (B.7)

The lower limit is due to the assumption of growing string coupling (needed to implement
a smooth bouncing transition [65, 66, 122]), while the upper limit has to be imposed to
avoid background instabilities [145].
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We have then a number of constraints following from the (already mentioned) hierarchy
of the transition frequency scales, which must satisfy the conditions f1 ≳ fσ > fd > fs.
They imply

1 ≲ zσ < zd < zs . (B.8)

In addition, for an efficient implementation of the curvaton mechanism based on the oscillations
of the Kalb-Ramond axion, the axion background field must be oscillating when it becomes
dominant (at the curvature scale Hσ). From the axion dynamical equations, one finds [115,
116] that the oscillating regime starts at the scale Hm ≃ m. This leads to the condition
Hm ⩾ Hσ, which implies σi ⩽ MPl and which, by using eq. (4.10), can be written in
logarithmic form as

log10

(
H1
MPl

)
+ 3

2 log10 zd − 7
2 log10 zσ ⩽ 0 . (B.9)

Also, to be consistent with the established results of the post-inflationary scenario, we
may expect that the reheating produced by the axion decay at the scale Hd, and marking
the beginning of the standard cosmological evolution, occurs before the BBN scale, Hbbn ≃
(1 MeV)2/MPl. This implies Hd > Hbbn from which, using eqs. (4.5) and (4.10), we have
the constraint

log10

(
H1
MPl

)
− 3 log10 zd + log10 zσ > −42 − log10 4 , (B.10)

where we have used MPl ≈ 2 × 1018 GeV.
Finally, the conditions concerning the scalar perturbation spectrum must be imposed

not only at the pivot frequency scale k∗ but also, in principle, to all frequency scales included
into the multipole expansion of the CMB anisotropy, and constrained by observational
data. This means, in other words, that also the highest frequency modes klss presently
constrained by large scale structure (LSS) observations must be below the lowest frequency
branch of the axion perturbation spectrum [63, 117], and this implies klss < ks, where
klss ∼ 3 Mpc−1 ≈ 60 k∗, namely H

1/2
lss ≃ 60 H

1/2
∗ . The condition klss/ks = (klss/k1)zs < 1

then leads to yet another constraint that can be written as follows. Since

k1
klss

= H1a1
Hlssalss

= H1
Hlss

a1
aσ

aσ

ad

ad

alss
≃ H1

Hlss

(
Hσ

H1

) 1
2
(

Hd

Hσ

) 2
3
(

Hlss
Hd

) 1
2

=
(

H1
MPl

) 1
2
(

H∗
MPl

)− 1
2
(

H∗
Hlss

) 1
2
(

Hσ

Hd

)− 1
6

,

from eqs. (4.5) and (4.10) we get Hσ/Hd = (zd/zσ)3 and from (B.4) we obtain

log10 zs < 26 − log10 9 + 1
2 log10

(
H1
MPl

)
+ 1

2 (log10 zσ − log10 zd) . (B.11)

B.3 Maximizing the signal

Given the condition (B.6) on H1/MPl, the amplitude and the frequency distribution of
the GWB (4.17) or (4.18) are fully determined by β, zs, zd, zσ. These four parameters are
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not completely free, as they must satisfy a non-trivial set of self-consistency conditions
(appendix B). Taking into account these constraints on the parameters, we can determine
the maximal allowed region for the PBB signal in the spectral plane (Ωgw, f). Let us first
notice that, thanks to the condition (B.7), the GWB (4.18) may be possibly decreasing only
in the frequency branch fd ⩽ f ⩽ fσ. The peak of the spectrum may thus be located either
at f1 or at fd, with corresponding amplitudes

Ωgw(f1) = Ωr0

(
H1
MPl

)2 (zσ

zd

)2
, Ωgw(fd) = Ωr0

(
H1
MPl

)2
z

|3−2β|−3
d . (B.12)

In the first case, given the constraints (B.8), the maximal amplitude can be reached for
the limiting values zd ≃ zσ, which imply however Hd ≃ Hσ: hence, in that case, the axion
starts decaying as soon as it becomes dominant, and there is not enough time for an efficient
curvaton mechanism. Also, in that case, the maximal amplitude would correspond to a
frequency range f ∼ f1, in general too high for the sensitivity of present detectors.

In the second case with the peak at fd, given again the constraints (B.7) and (B.8),
the maximal amplitude can be obtained either in the limit zd ≃ zσ → 1 or in the limit
β → 0. Discarding the first possibility (for the same reasons as before), in order to find
the allowed region for the GW signal of maximal intensity we will thus concentrate on the
limiting case β = 0 which, as we will see, automatically leads to a peak located in frequency
ranges possibly accessible to third-generation detectors.

It should be noted, in addition, that the limiting amplitude reached at fd for β = 0
is only controlled by the ratio H1/MPl, whose maximal allowed value is bounded by the
constraints (B.9): hence, the amplitude of the GWB approaches its allowed maximum in
the limit in which the condition (B.9) is saturated by the equality

log10 zσ = 2
7 log10

(
H1
MPl

)
+ 3

7 log10 zd . (B.13)

This result has two important consequences.
First of all, by using eq. (4.10), we can check that the above condition is equivalent

to the condition σi = MPl, and this uniquely fixes the transfer function (B.3) leading to
the constant numerical value T 2 ≈ 0.137. Second, by inserting into the above condition
the general expression (B.6) for H1, and solving for the variable log10 zσ, we can eliminate
zσ everywhere and confine our discussion of the maximum allowed spectrum to a two-
dimensional parameter space spanned by the variables {log10 zs, log10 zd}, with β = 0, zσ

given by eq. (B.13) and H1 given by

log10

(
H1
MPl

)
≃ 14

37 − 9ns

[
log10

(
4.2π2

0.137

)
− 9 + (1 − ns)(log10 1.5 − 27)

+ (1 − ns) log10 zs + 2
7(1 − ns) log10 zd

]
. (B.14)

We can now easily impose all constraints (B.8)–(B.11) and evaluate, in such a context,
both the allowed region of parameter space and the maximal allowed value of the peak
amplitude. It turns out (see figure 3), that the maximal value of eq. (B.14) compatible with
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the given constraints corresponds to log10(H1/MPl) ≈ −3.29, so that the expected maximum
intensity of the primordial GWB is given by

Ωmax
gw = Ωr0

(
H1
MPl

)2
≈ 10−10.6 . (B.15)

The allowed values of the parameters compatible with this maximal intensity (and with the
imposed constraints) are in the range 18.7 ≲ log10 zs ≲ 22.3 and 2.19 ≲ log10 zd ≲ 14.9,
as shown in figure 3. The corresponding value of zσ is given by eq. (B.13) and lies in the
range 0 ≲ log10 zσ ≲ 5.5.
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