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Abstract
Both the path integral measure in field theory (FT) and ensembles of neural networks (NN)
describe distributions over functions. When the central limit theorem can be applied in the
infinite-width (infinite-N) limit, the ensemble of networks corresponds to a free FT . Although an
expansion in 1/N corresponds to interactions in the FT, others, such as in a small breaking of the
statistical independence of network parameters, can also lead to interacting theories. These other
expansions can be advantageous over the 1/N-expansion, for example by improved behavior with
respect to the universal approximation theorem. Given the connected correlators of a FT, one can
systematically reconstruct the action order-by-order in the expansion parameter, using a new
Feynman diagram prescription whose vertices are the connected correlators. This method is
motivated by the Edgeworth expansion and allows one to derive actions for NN FT. Conversely, the
correspondence allows one to engineer architectures realizing a given FT by representing action
deformations as deformations of NN parameter densities. As an example, ϕ4 theory is realized as
an infinite-N NN FT.
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1. Introduction

The last decade has seen remarkable progress in machine learning (ML) in a wide variety of fields, including
traditional ML fields such as natural language processing, image recognition, and gameplay (see [1] for
reviews, and [2] for some breakthroughs in the literature), but also in the physical sciences [3], and more
recently to obtain rigorous results in pure mathematics [4]. This progress has been facilitated in part by the
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Figure 1. In a NN-FT correspondence, ideas from one may give insights into the other. In this paper we are primarily
interested in understanding when NN FT exhibit physical principles such as non-Gaussianity and locality, with an eye towards
applications in both ML and especially physics in the future.

increasing complexity of deep neural networks (NN), both in terms of the number of parameters appearing
in them and their architecture. However, despite their empirical success, the theoretical foundations of deep
NN are still not fully understood. Natural questions emerge:

• Are ideas from the sciences, such as physics, useful in NN theory?
• As it develops, does ML theory lead to progress in the sciences?

A growing literature (see below), gives an affirmative answer to the first, but the second is less clear; it is
applied ML, not theoretical ML, that is primarily used in the sciences.

In this paper we explore both of these questions by further developing a correspondence between NN
and field theory (FT). This connection was already implicit in Neal’s PhD thesis [5] in the 1990’s, where he
demonstrated that an infinite width single-layer NN is (under appropriate assumptions) a draw from a
Gaussian process (GP). This is the so-called NNGP correspondence, and in recent years it has been shown
that most modern NN architectures [6, 7] have a parameter N such that the NN is drawn from a GP in the
N→∞ limit. The NNGP correspondence is of interest from a physics perspective because GPs are
generalized non-interacting (free) FT, and NN provide a novel way to realize them. Non-Gaussianities
emerge at finite-N, which correspond to turning on interactions that are generally non-local, and may be
captured by statistical cumulant functions, known as connected correlators in physics. As we will see, since
Gaussianity in the N→∞ limit emerges by the central limit theorem (CLT), non-Gaussianities may be
studied more generally by parametrically violating necessary conditions of the CLT.

These results provide a first glimpse that there is a more general NN-FT correspondence that should be
developed in its own right, taking inspiration from both physics and ML. In this introduction we will review
the central ideas of the correspondence and introduce principles for understanding the literature, which we
review in part. Readers familiar with the background are directed to section 1.3 for a summary of our results.

1.1. NN-FT correspondence
At first glance, NN and FT seem very different from one another. However, in both cases, the central objects
of study are random functions. The random function ϕ associated to a NN is defined by its architecture, which
is a composition of simpler functions that involves parameters θ. At program initialization, parameters are
drawn as θ ∼ P(θ), yielding a randomly initialized NN, i.e. a random function. In FT, the random functions
are simply the fields themselves, typically described by specifying their probability density function directly,
P(ϕ) = exp(−S[ϕ]), via the Euclidean action functional S[ϕ]; we work in Euclidean signature throughout.

We therefore have two different origins for the statistics of a FT, shown in figure 1. To exemplify the
point, consider a FT defined by an ensemble of networks or fields ϕ : R→ R,

ϕ(x) = aσ(bσ(cx)) a∼ P(a), b∼ P(b), c∼ P(c), (1.1)

where σ : R→ R acts element-wise and is generally taken to be non-linear. Here the statistics of the
ensemble arise from how it is constructed, rather than from the density exp(−S[ϕ]) over functions from
which it is drawn. We will refer to such a description as the parameter space description of a NN FT. The
construction of ϕ defined in (1.1) has two parts, the architecture that defines its functional form, and the
choice of distributions from which the parameters a, b, and c are drawn. This particular architecture is a
feedforward network with depth two, width one, and activation function σ. In this description of the FT, one
does not necessarily know the action S[ϕ], but the theory may nevertheless be studied because the
architecture and parameter densities define its statistics.
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For instance, the correlation functions of a NN FT can be expressed as

G(n)(x1, . . . ,xn) := E[ϕ(x1) . . .ϕ(xn)] =
ˆ

dθP(θ)ϕ(x1) . . .ϕ(xn), (1.2)

where we denote the set of parameters of the NN by θ, and the network / field ϕ depends on parameters
through its architecture. Alternatively, we could provide a function space description of the theory by
specifying the action S[ϕ] and express the correlation functions as

G(n)(x1, . . . ,xn) =

ˆ
Dϕ e−S[ϕ]ϕ(x1) . . .ϕ(xn), (1.3)

as in a first course on quantum FT (QFT). These expressions may be derived from the partition function

Z[J] = E[e
´
ddxJ(x)ϕ(x)], (1.4)

where the parameter space and function space results arise by specifying how the expectation value is
computed,

Z[J] =

ˆ
dθP(θ)e

´
ddxJ(x)ϕ(x) (1.5)

Z[J] =

ˆ
Dϕ e−S[ϕ]+

´
ddxJ(x)ϕ(x). (1.6)

In this work, many calculations will be carried out in terms of a general expectation value E[·] that denotes
agnosticism towards the origin of the statistics; explicit calculations may be carried out by replacing E with
one description or the other, as in passing from a general expression (1.4) to those of parameter space (1.5)
and function space (1.6).

Parameter space and function space provide two different descriptions of a FT, which could be thought of
as different duality frames [8]. When one defines a FT by a NN architecture, the parameter space description
is readily available, but the action is not known, a priori. However, if the parameter distributions are easy to
sample then the fields are also easy to sample: one just initializes NN on the computer. On the other hand, in
FT we normally proceed by first specifying an action; in this case, the probability of a given field
configuration is known because P[ϕ] = exp(−S[ϕ]) is known, but fields are notoriously hard to sample, as
evidenced by the proliferation of Monte Carlo techniques in lattice FT.

1.1.1. Example: NNGP correspondence in parameter space and function space
Let us study an example to make the abstract notions more concrete. Consider a fully-connected feedforward
network ϕ : Rd → R with depth one and width N,

ϕ(x) =
N∑

i=1

d∑
j=1

ai σ (bijxj), a∼N (0,σ2/N), b∼N (0,σ2/d), (1.7)

where σ is an elementwise non-linearity such as tanh or ReLU(z) :=max(0,z). Here, the set of parameters θ
is given by the union of the a-parameters and the b-parameters. As we will see in detail in section 2, if the
parameters are drawn independently then the connected correlation functions

G(2k)
c (x1, . . . ,x2k)∝

1

Nk−1
, (1.8)

and the odd-point correlation functions vanish due to a having zero mean. In the N→∞ limit, also known
as the GP limit, then, the only non-vanishing connected correlator has two points,

G(2)
c (x1,x2) (1.9)

which demonstrates that the theory is Gaussian; this is the NNGP correspondence. Concretely, following [9],
we may compute the two-point function as

G(2)(x,y) = E[ϕ(x)ϕ(y)] =
ˆ

dadbP(a)P(b) ai1σ(bi1j1xj1) ai2σ(bi2j2yj2) (1.10)

where we have used Einstein summation and left the details of the Gaussian parameter densities P(a) and
P(b) implicit. For a fixed choice of σ one may evaluate this integral analytically or via Monte Carlo sampling,
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resulting in the two-point function; analytic integrated results for σ = tanh and σ = Erf are presented in [9].
Since the parameter space calculation establishes Gaussianity of the theory, we infer the action

S[ϕ] =

ˆ
ddxddyϕ(x)G(2)(x,y)−1ϕ(y), (1.11)

where the inverse of the two-point function satisfies
´
ddyG(2)(x,y)−1G(2)(y,z) = δ(d)(x− z).

As a concrete example, we refer the reader to section 4.2, which recalls a NN realization of free scalar FT
from [10] that uses a cos activation. In that case we have

G(2)(x,y)−1 = δ(x− y)(∇2 +m2) (1.12)

which reproduces the usual free scalar action

S[ϕ] =

ˆ
ddxϕ(x)

(
∇2 +m2

)
ϕ(x), (1.13)

in this case realized via a concrete NN architecture.
Thus, in the GP limit, both the parameter space and function space descriptions of the FT are readily

available. Building on [11] using the Edgeworth expansion, we will see methods for computing approximate
actions at finite-N, and we will also develop techniques to engineer desired actions.

1.2. Organizing principles and related work
We have discussed a foundational principle underlying the NN-FT correspondence, that parameter space
and function space provide two different descriptions of the statistics of an ensemble of NN or fields.
Though we have given an example, and there are many more, we are still in very general territory and it is not
clear where to go. Accordingly, we would like to provide other organizing principles:

• NN-for-FT vs. FT-for-NN: are we aiming to better understand physics or ML?
• Fixed Initialization vs. Learning: are we aiming to understand a fixed NN-FT at initialization, or a one-
parameter family of NN-FTs defined by some dynamics, such as ML training dynamics or FT flows?

Much of the existing literature can be classified within each of these principles, and they also set context for
discussing our results. We will first review some results for network ensembles at initialization, and then
during and after training. With these ideas in place, we will turn to the idea of using NN-FT in service of FT.

For literature that is most similar in perspective to this introduction (prior to this reference section), see
[10] and the works that preceded it [8, 12], by subsets of the authors.

1.2.1. Initialization
A NN with parameters θ and parameter distribution P(θ) is initialized on a computer by drawing θ ∼ P(θ)
and inserting them into the architecture, generating a random function ϕ(x) that is sampled from a
distribution P(ϕ) that may or may not be known. In the N→∞ NNGP limit, P(ϕ) is Gaussian. This was
shown for feed forward networks in Neal’s thesis [5], as well as more recently in [6]; was generalized to a
plethora of architectures, e.g. convolutional layers [7, 13, 14], recurrent layers, graph convolutions [15], skip
connections [16], attention [17], and batch /layer normalization in [18], pooling [14], and transformers [19,
20]. The generality of this result arises from the generality in which central limit theorem behavior manifests
itself in NN; see [7] for a systematic treatment in the tensor programs formalism.

Since Gaussianity follows from the central limit theorem, one generally expects non-Gaussianities in the
form of 1/N-corrections. Study of these non-Gaussianities was initiated a few years ago; e.g. [21] computed
leading non-Gaussianities via the connected four-point function, [22] showed for deep feedforward
networks how P(ϕ) is perturbed by 1/N-corrections, [12] proposed using effective FT to model
non-Gaussian P(ϕ) for NN, and [23] developed an effective theory approach and an L/N expansion that
controls feature learning in deep feedforward networks; for concreteness in our examples, we are interested
in the distribution of networks at initialization and take L= 1. This L/N expansion allowed [23] to also study
signal propagation through the network, identify universality classes, and tune hyperparameters to criticality.

Methods borrowed from FT have been useful in studying NNs at initialization. For example, perturbative
methods like Feynman diagrams were employed in [12, 24, 25]. Various schemes for renormalization group
flow, including non-perturbative ones, were applied to NNs in [26]. Global symmetries of NN-FTs were
shown to arise from symmetry invariances of NN parameter distributions in [8]. While the results of this
paper were being finalized, a recent paper [27] brought forward a different diagrammatic approach to
effective FT in deep feedforward networks.
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1.2.2. Learning
Although we do not study the dynamics of learning in this paper, it is a goal for future work. Therefore, we
would like to review some of the literature.

NN may be trained to perform useful tasks via a variety of learning schemes, such as supervised learning
or reinforcement learning, that utilizes a learning algorithm to update the system, such as stochastic gradient
descent. In practice this involves training one or a handful of randomly initialized NN to convergence.
However, in general there is nothing special about the initial networks that were trained; in the absence of
compute limitations, one would prefer to train all the networks and compute an ensemble average at
convergence. Theoretically, this amounts to tracking the distributional flow of the NN ensemble, and in
principle it may be done in either parameter space or function space.

In theN→∞ limit, most known architectures define NN that are draws from GPs. Since the architecture
defines a GP, it could be used as a prior in Bayesian inference, the learning algorithm of interest in Neal’s
original work [5]. On the other hand, gradient descent with continuous time is governed by the neural
tangent kernel (NTK) [28], which becomes deterministic and training time t-independent in the so-called
frozen-NTK limit. In this limit, N→∞ and the NN dynamics is well-approximated by that of a model that
is linear in the NN parameters. This frozen behavior is a vast simplification of the dynamics and is known to
exist for many architectures, such as convolutional NN [29], graph NN [30], recurrent networks [31], and
attention layers [19]. For supervised learning with MSE loss, the NN ensemble trained under gradient
descent remains a GP for all times t, including t→∞, with known mean and covariance; the dynamics
becomes that of kernel regression, with kernel given by the frozen-NTK. How is this related to Neal’s desire to
relate Bayesian inference and trained NN? If all but the last layer’s weights are frozen, then the NTK is the
NNGP kernel and the distribution of the NN ensemble converges to the GP Bayesian posterior as t→∞.

In summary, in the N→∞ limit, the distribution of the NN ensemble is Gaussian. If it undergoes
supervised training with MSE loss, it remains Gaussian at all times and converges to the Bayesian GP
posterior in a particular case [32]. In general, however, gradient descent induces non-Gaussianities.

At finite-N, the NN ensemble is non-Gaussian. In the Bayesian context, this defines a non-Gaussian
prior, and inference may be performed for weakly non-Gaussian priors via a 1/N-expansion [21]. In the
gradient descent context, the NTK is no longer frozen and evolves during training, significantly complicating
the dynamics. Work by Roberts, Yaida, and Hanin develops a theory of an evolving NTK in [23]. They apply
it in detail to fully-connected networks of depth L, demonstrate the relevance of L/N as an expansion
parameter, and develop an effective model for the dynamics. Such 1/N corrections to dynamical NTK were
previously studied by other authors in [24, 33]. Bordelon and Pehlevan have developed a systematic
understanding of the evolution of NTK and parametric interpolations between rich and lazy training
regimes using the framework of dynamical mean FT, see [34]. Some of these authors have studied the
O(1/N) suppressed corrections to training dynamics of finite width Bayesian NNs in [35]. A separate work,
[36], presents close-to-Gaussian NN processes including stationary Bayesian posteriors in the joint limit of
large width and large data set, using 1/N as an expansion parameter. Moreover, the authors of [37] explore a
correspondence between learning dynamics in the continuous time limit and early Universe cosmology, and
[38] analyzes connected correlation functions propagating through NN.

1.2.3. NN-for-FT
NN, including the ones we have discussed thus far, generally have Rn as their domain and therefore naturally
live in Euclidean signature. They define statistical FT that may or may not have analytic continuations to
quantum field theories in Lorentzian signature. Nevertheless, statistical FT are interesting in their own right
and NN-FT provides a novel way to study them.

Using an architecture to define a FT enables a parameter space description that makes sampling, and
therefore numerical simulation on a lattice, easy. If one can determine an easily sampled NN architecture that
engineers standard Euclidean ϕ4 theory, for instance, this could lead to improved results on the lattice by
avoiding Monte Carlo entirely6. This is an engineering problem that is work-in-progress; it is not clear that
the ϕ4 NN-FT realization in this work is easily sampled. Alternatively, by simply fixing an easily sampled
architecture with interesting physical properties such as symmetries and strong coupling, lattice simulation
could be performed immediately.

For uses in fundamental and formal quantum physics, one might wish to know when a NN architecture
defines a QFT. Since NN architectures are usually defined in Euclidean signature, we may instead ask when a
Euclidean FT admits an analytic continuation to Lorentzian signature that defines a QFT. The situation is

6 This lattice approach should be contrasted with works [39] that train a normalizing flow to give proposals for the accept/reject step of
MCMC.
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complicated by the fact that in general we do not know the action, but instead have access to the Euclidean
correlation functions, expressed in parameter space.

Fortunately, the Osterwalder–Schrader (OS) theorem [40] of axiomatic FT gives necessary and sufficient
conditions, expressed in terms of the correlators, for the existence of a QFT after continuation. The axioms
include

• Euclidean Invariance. Correlation functions must be Euclidean invariant, which becomes Lorentz invari-
ance after analytic continuation. See [10] for an infinite ensemble of NN architectures realizing Euclidean
invariance.

• Permutation Symmetry. Correlation functions must be invariant under permutations of their arguments,
a collection of points in Euclidean space. This is automatic in NN-FTs with scalar outputs.

• Reflection Positivity. Correlation functions must satisfy a positivity condition known as reflection posit-
ivity, which is necessary for unitarity and the absence of negative-norm states in the analytically continued
theory.

• Cluster Decomposition. Correlation functions must satisfy cluster decomposition, which says that
interactions must shut off at infinite distance. As a condition on connected correlators, cluster
decomposition is

lim
b→∞

G(n)
c (x1, . . . ,xp,xp+1 + b, · · · ,xn + b)→ 0, (1.14)

for any value of 1< p< n. We have assumed permutation symmetry to simplify notation, putting the shifts
into xp+1 into xn.

These ideas were utilized in [10] to define NN quantum FT: a NN-QFT is a NN architecture whose
correlation functions satisfy the OS axioms, and therefore defines a QFT upon analytic continuation. To
date, the only known example is a NN architecture that engineers a standard free scalar FT in d-dimensions,
though we improve the situation in this work by developing techniques to engineer local Lagrangians, which
automatically satisfy the OS axioms. To make further progress on NN-QFT in a general setting, one needs
especially a deeper understanding of reflection positivity and cluster decomposition in interacting NN-FTs;
we study the latter.

1.3. Summary of results and paper organization
Since there are a number of different themes and concepts in this paper, we would like to highlight some of
the major conceptual results:

• Parametric Non-Gaussianity: 1/N and Independence Breaking.
section 2 approaches interactions in NN-FT (non-Gaussianity) by parametrically breaking necessary con-
ditions for the central limit theorem to hold. Violating the infinite-N limit is well studied, but we also sys-
tematically study interactions arising from the breaking of statistical independence, and apply these ideas in
examples.

• Computing Actions with Feynman Diagrams.
In section 3 we develop a general FT technique for computing the action diagrammatically. The coupling
functions are computed with a new type of connected Feynman diagram, whose vertices are the connected
correlators. This is a swapping of the normal role of couplings and connected correlators, which arises from
a ‘duality’ that becomes apparent via the Edgeworth expansion. The technique is also applied to NN-FT,
including an analysis of how actions may be computed in the two regimes of parameteric non-Gaussianity
developed in section 2, 1/N and independence breaking.

• Engineering Actions in NN-FT.
In section 4 we develop techniques for engineering actions in NN-FT. This is to be distinguished from the
approach of section 3: instead of fixing an architecture, computing its correlators, and then computing its
action via Feynman diagrams, in section 4we fix a desired action and develop techniques for designing archi-
tectures that realize the action. Adding a desired term to the action manifests itself in NN-FT by deforming
the parameter distribution, which breaks statistical independence if it is a non-Gaussianity. Using this tech-
nique, local actions may be engineered at infinite-N.

• ϕ4 as a NN-FT.
In section 4.2 we design an infinite width NN architecture that realizes ϕ4 theory, using the techniques that
we developed.

• The Importance of N → ∞ for Interacting Theories. In physics, interesting theories defined by a fixed
action S generally have a wide variety of finite action field configurations, which have non-zero probability
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density. This is potentially at odds with the universal approximation theorem: if a single finite-action con-
figuration cannot be realized by an architecture A, but only approximated, then any NN-FT associated to A
cannot realize the FT associated to S. If the 1/N is an expansion parameter for both non-Gaussianities and
the degree of approximation, as e.g. with single-layer width-N networks, this simple no-go theorem suggests
that exact NN-FT engineering of well-studied theories in physics occurs most naturally at infinite-N, as we
saw in the case of ϕ4 theory.

These are highlights of the paper. For more detailed summaries of results, we direct you to the beginning of
each section.

2. Connected correlators and the central limit theorem

Interacting FT with a Lagrangian description are defined by non-Gaussian field densities exp(−S[ϕ]). If the
non-Gaussianities are small, the theory is close to Gaussian and weakly interacting, in which case correlation
functions may be computed in perturbation theory using Feynman diagrams. The non-Gaussianities are
captured by the higher connected correlation functions, which vanish in the Gaussian limit. They are known
as cumulants in the statistics literature and may be obtained from a generating functionsW[J] as

G(n)
c (x1, . . . ,xn) :=

(
δ

δJ(x1)
. . .

δ

δJ(xn)
W[J]

)∣∣∣∣∣
J=0

, W[J] := lnZ[J]. (2.1)

In the absence of a known Lagrangian description, connected correlators still encode the presence of

non-Gaussianities, since the theory is Gaussian if G(n)
c = 0 for n> 2.

In this section we systematically study non-Gaussianities in NN-FT. Since the parameter space
description exists for any NN-FT, we choose to study non-Gaussianities via connected correlators (rather
than actions), which may be studied in parameter space even when the action is unknown. We are interested
in non-Gaussianities in NN-FT for a number of reasons. In the NN-for-FT direction, it is important for
understanding interactions in the associated FT. Conversely, in the FT-for-NN direction, understanding
non-Gaussianities is important for capturing the statistics of finite networks and networks with correlations
in the parameter distributions, which generally develop during training.

The essential idea in our approach is to recall the origin of Gaussianity, and then parametrically move
away from it. Specifically, many FT defined by NN architectures admit an N→∞ limit in which they are
Gaussian, and the Gaussianity has a statistical origin: the central limit theorem (CLT). The CLT states that
the distribution of the standardized sum of N independent and identically distributed random variables
approaches a Gaussian distribution in the limit N→∞. Therefore we may systematically study
non-Gaussianities in NN FT by violating assumptions of the CLT, e.g. via 1/N corrections and breaking the
independence condition, both of which affect connected correlators.

There are a number of results and themes in this section, which is organized as follows:

• CLT. In section 2.1 we review the CLT from the perspective of cumulant generating functionals, which will
be useful in NN-FT since in general we do not have a simple expression for the action but do have access to
cumulants.

• Independence Breaking. In section 2.2 we introduce how non-Gaussianities may also arise by violating
the statistical independence assumption of the CLT. We characterize this by a family of joint densities with
parameter α that factorize (become independent) when α= 0. We study the α-dependence of cumulants
via Taylor series, showing that α controls non-Gaussianities independently of those arising from 1/N-
corrections. A simple example of independence-breaking induced non-Gaussianities at N=∞ is given in
section 2.2.1.

• Connected Correlators and Interactions in NN-FT. In section 2.3 we study non-Gaussianities in NN-FT,
decomposing the fieldϕ(x) intoN constituent neurons as in [10].We study the case of independent neurons
in section 2.3.1, where we present theN-scaling of connected correlators and also two examples: single-layer
Cos-net, which exhibits full Euclidean symmetry in all of its correlators, and d= 1 ReLU-net, which we show
exhibits an interesting bilocal structure in its two-point and four-point functions.

In section 2.3.2 we turn to breaking neuron independence in NN-FT, building on the independence
breaking results of [10], which gives a new source of interactions and a generalized formula for connec-
ted correlators. Specifically, we introduce a general formalism for the expansion of the cumulant gener-
ating functional in terms of independence-breaking parameters, and therefore the computation of con-
nected correlators. As an example, we deform the Cos-net theory to have non-independent neurons via

8
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non-independent input weights, doing the deformation in a way that preserves Euclidean invariance, and
compute the independence-breaking correction to the connected four-point function.

• Identical-ness Breaking. Interactions may also arise from breaking the identical-ness assumption of the
CLT. See appendix B for an example of aNN-FTwith non-Gaussianities arising from identical-ness breaking.

Equipped with two different types of parameters that induce non-Gaussianity in connected correlators, 1/N
and independence-breaking parameters, we will see how this may be used to approximate actions in section 3.

2.1. Review: CLT from generating functions
In order to understand non-Gaussianities in NN-FTs, it is useful to recall essential aspects of the CLT in the
case of a single random variable, since they carry over to the NN-FT case. We will do so using the language of
generating functions and cumulants (connected correlators), since we may use them to study Gaussianity
and non-Gaussianity even if the NN-FT action is unknown.

Of course, the CLT is among the most fundamental theorems of statistics. There are many variants of it in
the literature, with different sets of assumptions. Here, we will describe a particularly simple version of it and
provide a proof, showing how key assumptions come into play. For a more in depth discussion of the CLT,
see e.g. [41].

Consider N random variables Xi. Assume that they are identical, independent,mean-free, and have finite
variance. The CLT states that the standardized sum

ϕ =
1√
N

N∑
i=1

Xi (2.2)

is drawn from a Gaussian distribution in the limit N→∞. In other words, even if the Xi are sampled from
complicated, non-Gaussian distributions, these details wash out and their sum is drawn from a Gaussian
distribution.

To see the Gaussianity in a way that may be extrapolated to NN-FT, it is useful to introduce generating
functions. The moment generating function of ϕ is defined as

Zϕ[J] := E[e Jϕ] = E[e J
∑

i Xi /
√
N], (2.3)

from which we can extract the moments by taking derivatives,

µϕ
r := E[ϕr] =

( ∂

∂J

)r
Zϕ[J]. (2.4)

In physics language, J is the source, Zϕ[J] is the partition function, and µϕ
r is the rth correlator of ϕ. The

cumulant generating functional (CGF) of ϕ is the logarithm of the moment generating functional

Wϕ[J] := log E[eJϕ] = log E[eJ
∑

i Xi /
√
N], (2.5)

and the cumulants κϕ
r are computed by taking derivatives ofWϕ[J],

κϕ
r :=

( ∂

∂J

)r
Wϕ[J]. (2.6)

A random variable is Gaussian only if its cumulants κϕ
r>2 vanish. Fundamental properties of CGFs include

WX+c[J] = cJ+WX[J], (2.7)

WcX[J] = log E[eJ cx] =WX[cJ] (2.8)

where c ∈ R is a constant, which imply

κX+c
1 = κX

1 + c κX+c
r>1 = κX

r>1 (2.9)

κcX
r = crκX

r , (2.10)

respectively.

9
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We would like to see the Gaussianity of ϕ under CLT assumptions by computing cumulants. This is
possible since κr>2 = 0 is necessary for Gaussianity; conversely, we may study non-Gaussianities in terms of
non-vanishing higher cumulants. Specifically, for a sum of independent random variables the moment
generating function factorizes,

ZX1+···+XN [J] =
N∏
i

ZXi [J]. (2.11)

Consequently, the CGF and the cumulants become

WX1+···+XN [J] =WX1 [J] + · · ·+WXN [J], (2.12)

κX1+···+XN
r = κX1

r + · · ·+κXN
r . (2.13)

Using the identities in (2.10) we can write the cumulants of ϕ as

κϕ
r =

κX1
r + · · ·+κXN

r

Nr/2
. (2.14)

When the Xi are identical this simplifies to

κϕ
r =

κXi
r

Nr/2−1
. (2.15)

The cumulants κϕ
r>2 vanish in the N→∞ limit. To establish that ϕ is Gaussian, we also need to show that κϕ

1

and κϕ
2 are finite. As the Xi are mean-free, κϕ

1 = κXi
1 /

√
N= 0, while κϕ

2 = κXi
2 is finite by assumption. Thus,

ϕ is Gaussian distributed. This is the CLT, cast into the language of cumulants.
We emphasize that this result relies not only on the N→∞ limit, but also on the independence

assumption (2.13).

2.2. Non-Gaussianity from independence breaking
We wish to study the emergence of non-Gaussianity by breaking the independence condition.

To do so, we must parameterize the breaking of statistical independence. Let p(X;α) be a family of joint
distributions on Xi parameterized by a hyperparameter α that must be chosen in order to define the
problem. We choose the family of joint distributions to be of the form

p(X;α= 0) =
∏
i

p(Xi), (2.16)

i.e. p(X) is independent in the α→ 0 limit, but α ̸= 0 in general controls the breaking of independence. Then
we obtain

Wϕ[J] = logE[eJ
∑

i Xi/
√
N] = log

ˆ ∏
j

dXj p(X;α)e
J
∑

i Xi/
√
N (2.17)

which when expanded around α= 0 yields

Wϕ[J] = log

∏
j

Ep(X,α=0)[e
JXj/

√
N] +

∞∑
k=1

αk

k!

ˆ ∏
j

dXj e
J
∑

i Xi/
√
N ∂k

αp(X;α)|α=0

 , (2.18)

where the first term of the log uses independence of p(X;α= 0).
To deal with the α-dependent terms, we generalize a trick appearing regularly in ML, e.g. in the policy

gradient theorem in reinforcement learning. There, the fact that p∂α logp= ∂αp allows us to write

∂αE[O] = E[O∂α logp] (2.19)

for any α-independent operatorO. Generalizing, we define

Pk :=
1

p
∂k
αp, (2.20)

and note that it satisfies the recursion relation

Pk+1 = P1Pk + ∂αPk, (2.21)

10



Mach. Learn.: Sci. Technol. 5 (2024) 015002 M Demirtas et al

which allows for efficient computation. We can then write (2.18) as

Wϕ[J] = log

∏
j

Ep(X,α=0)

[
eJXj/

√
N
]
+

∞∑
k=1

αk

k!
Ep(X,α=0)

[
eJ

∑
i Xi/

√
NPk|α=0

] . (2.22)

In the limit α→ 0, the Xj become independent, and we have

lim
α→0

Wϕ[J] =
∑
j

logEp(Xj)

[
eJXj/

√
N
]
=
∑
j

lim
α→0

WXj/
√
N[J], (2.23)

where ϕ is now a sum of N independent variables Xj, and its CGF is the sum of CGFs of Xj/
√
N, as expected;

details of the calculations are in appendix C.
We have now discussed two mechanisms that result in non-Gaussianities: 1/N corrections and

independence breaking. While one can use either or both of these mechanisms to generate and control
non-Gaussianities, more caution is required to use independence breaking alone, at infinite N. This is
because the non-Gaussianities that are generated by independence breaking might depend on N as well as α.
For example, if the leading corrections to higher cumulants κϕ

r scale as αNar with ar < 0 for all r> 2, ϕ will
be Gaussian regardless of independence breaking. While if ar > 0, κϕ

r will diverge, which is undesirable. In
the following, we will present an example where ar = 0 for all r and the non-Gaussianities are generated by
independence breaking alone.

2.2.1. Example: independence breaking at infinite N
Let us provide an example of independence breaking non-Gaussianities that persist in the N→∞ limit,
showing how one can control higher cumulants by adjusting the correlations between random variables.
Consider the normalized sum of N random variables,

ϕ =
1√
N

N∑
i=1

Xi, (2.24)

where Xi is the product of two random variables ai and hi,

Xi = ai hi. (2.25)

This architecture can be interpreted as the last layer of a fully connected NN, where hi are the outputs of the
neurons in the previous layer, ai/

√
N are the weights, and ϕ is the output. First, let us consider the simple

case where ai and hi are independent, Gaussian random variables7,

P(⃗a, h⃗) = Pind(⃗a, h⃗) = (2πσaσh)
−N exp

(
− 1

2σ2
a

N∑
i=1

a2i −
1

2σ2
h

N∑
i=1

h2i

)
,

where σa and σh are positive and finite. Since ai and hi are independent, so are Xi. The CLT applies and ϕ is
Gaussian.

Next, we will perturb P(⃗a, h⃗) to break independence. To that end, we introduce an auxiliary random
variable H and define,

P(⃗a, h⃗,H) = Pind(⃗a, h⃗,H)

= (2πσaσh)
−N(

√
2πσh)

−1 exp

(
− 1

2σ2
a

N∑
i=1

a2i −
1

2σ2
h

N∑
i=1

h2i −
1

2σ2
h

H2

)
, (2.26)

where we set the standard deviation of H to σh, for simplicity. We then define a correction term,

Pcorr(⃗a, h⃗,H) = Pind(⃗a, h⃗,H) · exp

(
− 1

2σ2
h

N∑
i=1

(hi −H)2
)
. (2.27)

Finally, putting these together we define,

P(⃗a, h⃗,H;α) = (1−α)Pind(⃗a, h⃗)+αPcorr(⃗a, h⃗). (2.28)

7 The word ‘Gaussian’ happens to appear many times in this example. To clarify: though a and h are both Gaussian by construction, ah is
not, and ϕ is Gaussian in the CLT limit.

11



Mach. Learn.: Sci. Technol. 5 (2024) 015002 M Demirtas et al

When α= 0, the second term vanishes and both ai and hi are independent. As we turn on α> 0, the ai remain
independent, but correlations are induced between the hi through a direct coupling to H in Pcorr(⃗a, h⃗).

To quantify the non-Gaussianity of ϕ as a function of α, we compute the CGF,

Wϕ[J] = logE[eJ
∑

i Xi/
√
N]

= log

ˆ N∏
i=1

dai dxiP(⃗a, h⃗,H;α)e
J
∑

i ai hi/
√
N. (2.29)

As P(⃗a, h⃗,H;α) is Gaussian, (2.29) can be evaluated analytically to give

Wϕ[J] = log

[
(1−α)

(
N

N− J2σ2
aσ

2
h

)N/2

+α

(
NN/2(N− J2σ2

aσ
2
h)

1−N
2√

N− (N+ 1)J2σ2
aσ

2
h

)]
. (2.30)

The odd cumulants vanish, as the ϕ ensemble has a Z2 symmetry ϕ →−ϕ (due to evenness of P(a)), while
the even cumulants κϕ

r can be computed by taking derivatives ofWϕ[J]. For example, the second and the
fourth cumulants are

κϕ
2 = σ2

aσ
2
h(1+α), (2.31)

κϕ
4 = σ4

aσ
4
h

(
9α− 3α2 +

6+ 12α

N

)
. (2.32)

In the limit N→∞,α→ 0, the second cumulant is finite while all higher cumulants vanish, and ϕ is
Gaussian as expected. At finite α> 0, all even cumulants are finite and in general nonzero. The ability to tune
α thus allows one to control the degree of non-Gaussianity of ϕ. Note that breaking independence in the large
N limit is not a particularly efficient way to sample from a non-Gaussian distribution of a single variable.

2.3. Connected correlators in NN-FT
We wish to establish that the ideas exemplified above—that non-Gaussianities may arise via finite-N
corrections or independence breaking—generalize to continuum NN-FT.

In outline, one may think of this conceptually as passing from a single random variable ϕ (0d FT) to a
discrete number of random variables ϕi (lattice FT), and finally to a continuous number of random variables
ϕ(x) (continuum FT), where x ∈ Rd. This is a textbook procedure in the context of the function-space path
integral. Here we wish to instead emphasize the general procedure and parameter space perspective.

Consider the case that the continuum field ϕ(x) is built out of neurons hi(x) [10] as

ϕ(x) =
1√
N

N∑
i=1

hi(x). (2.33)

If the hi(x) are independent, the CLT states that ϕ(x) is Gaussian in the limit N→∞. This is the essence of
the NNGP correspondence.

Motivated by the single variable case, we will study non-Gaussianities arising from both finite-N
corrections and breaking of the independence condition. The CGF of ϕ(x) is

Wϕ[J] = logZϕ[J] =
∞∑
r=1

ˆ r∏
i=1

ddxi
J(x1) . . . J(xr)

r!
G(r)
c (x1, . . . ,xr), (2.34)

where we have performed a series expansion in terms of the cumulants, a.k.a. the connected correlation

functions G(r)
c of ϕ. This is a straightforward generalization of (2.5) to the continuum. When the odd-point

functions vanish the connected four-point function is

G(4)
c (x1, . . . ,x4) = G(4)(x1, . . . ,x4)− (G(2)(x1,x2)G

(2)(x3,x4)+ 2 perms), (2.35)

which will capture leading-order non-Gaussianities in many of our examples.
In the following, we will quantify non-Gaussianities in terms of non-vanishing cumulants, as well as

directly in the action via an Edgeworth expansion.

12



Mach. Learn.: Sci. Technol. 5 (2024) 015002 M Demirtas et al

2.3.1. Finite-N corrections with independent neurons
We first study non-Gaussianities in the case where the neurons hi(x) are i.i.d. but N is finite, e.g. single
hidden layer networks, shown in [42]. We can express the CGF (2.34) in terms of the connected correlation
functions of the neurons,

Wϕ(x)[J] = logE

[
exp

(
1√
N

N∑
i=1

ˆ
ddxJ(x)hi(x)

)]

=
∞∑
r=1

ˆ r∏
i=1

ddxi
J(x1) · · · J(xr)

r!

G(r)
c,hi

(x1, · · · ,xr)
Nr/2−1

. (2.36)

This result relies on the fact that for independent hi, the expectation of the product is the product of the
expectations, which turns the first expression into a sum on neuron CGFs. For identically distributed
neurons the sum gives a factor of N, and the normalization 1/

√
N gives the r-dependent N-scaling. This

result lets us express the connected correlators of ϕ(x) in terms of the connected correlators of hi(x),

G(r)
c (x1, · · · ,xr) =

G(r)
c,hi

(x1, · · · ,xr)
Nr/2−1

. (2.37)

This N-scaling implies

lim
N→∞

G(r>2)
c (x1, · · · ,xr) = 0, (2.38)

establishing Gaussianity in the limit.

2.3.1.1. Examples: single layer Cos-net and ReLU-net
We will now consider two single hidden layer architectures with finite N and i.i.d. parameters. While the
methods we describe in this section can be employed to study NN with arbitrary depth L> 1, inducing
statistical correlations among neurons [42], single hidden layer architectures suffice to demonstrate their
utility.

2.3.1.2. ReLU-net
First, we will consider an architecture with a single hidden layer and ReLU activation functions. As ReLU
activations are ubiquitous in ML applications, this is a natural example to study. Consider

ϕ(x) =W1
i R(W

0
ijxj) where R(z) =

{
z, for z⩾ 0

0, otherwise
, (2.39)

with d= dout = 1,W0 ∼N (0,
σ2
W0
d ),W1 ∼N (0,

σ2
W1
N ).

We compute the two-point function in the parameter space description (1.2) to obtain

G(2)
c,ReLU(x,y) =

σ2
W0
σ2
W1

2
(R(x)R(y)+R(−x)R(−y)) , (2.40)

which has a factorized structure in the terms that one might call bi-local: the function depends independently
on x and y, regardless of any relation between them. This result is exact and does not receive 1/N corrections.
Non-Gaussianities induced by 1/N corrections manifest as a nonzero 4-pt connected correlation function,

G(4)
c,ReLU(x1,x2,x3,x4) =

1

N

(
15σ4

W0
σ4
W1

4d2

∑
j=±1

R( j x1)R( jx2)R( jx3)R( jx4)


−

σ4
W0
σ4
W1

4d2

 ∑
P(abcd)

∑
j=±1

R( j xa)R( j xb)R(−j xc)R(−j xd)

). (2.41)

As expected, G(4)
c,ReLU(x1,x2,x3,x4) scales as 1/N.
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2.3.1.3. Cos-net
Next, let us study a single hidden layer network with cosine activation functions. The NN-FT associated to
Cos-net (and its generalizations) is Euclidean invariant [10], which is interesting on physical grounds, e.g. to
satisfy one of the OS axioms to establish an NN-QFT. Euclidean invariance may be established using the
mechanism of [8] for determining symmetries from parameter space correlators, which absorbs symmetry
transformations into parameter redefinitions, yielding invariant correlators when the relevant parameter
distributions are invariant under the symmetry.

Cos-net was defined in [10], where its 2-point function and connected 4-point function were also
computed. The architecture is

ϕ(x) =W1
i cos(W

0
ijxj + b0i ) (2.42)

whereW1 ∼N (0,σ2
W1
/N),W0 ∼N (0,σ2

W0
/d), and b0 ∼ Unif[−π,π]. As before, the correlation functions

are computed in parameter space (1.2). The 2-pt function

G(2)
c,Cos(x1,x2) =

σ2
W1

2
e−

1
2dσ

2
W0

(∆x12)
2

(2.43)

is manifestly translation invariant, with∆x12 = x1 − x2. The 4-pt correlation function is

G(4)
c,Cos(x1,x2,x3,x4) =

σ4
W1

8N

∑
P(abcd)

(
3e−

σ2
W0

(∆xab+∆xcd)
2

2d − 2e−
σ2
W0((∆xab)

2+(∆xcd)
2)

2d

)
, (2.44)

where∆xij := xi − xj and P(abcd) denotes the three independent ways of drawing pairs (xa,xb),(xc,xd) from
the list of external vertices (x1,x2,x3,x4).

We see the manifest Euclidean invariance of these correlators, and that non-Gaussianities are encoded in
G(4)
c,Cos as a 1/N corrections.

2.3.2. Generalized connected correlators from independence breaking
We now wish to generalize our theories and connected correlators to including the possibility that
non-Gaussianities arise not only from 1/N-corrections, but also from independence breaking, e.g. by
developing correlations between the neurons hi(x). Previously, [10, 42] studied mixed non-Gaussianities at
finite N and statistical correlations among neurons.

Generalizing our approach from section 2.2, we parameterize breaking of statistical independence by
promoting the distribution of neurons P(h) to depend on a vector of hyperparameters α⃗ ∈ Rq, P(h; α⃗).

Since independence is necessary for Gaussianity via the CLT, and we will sometimes wish to perturb
around the Gaussian fixed point, we require

P(h; α⃗= 0⃗) =
∏
i

P(hi), (2.45)

where the hyperparameter vector α⃗must be chosen as part of the architecture definition. From this
expression, the neurons become independent when α⃗= 0.

For a general P(h; α⃗), the CGF is

Wϕ[J] = log

[ˆ ( N∏
i=1

Dhi

)
P(h; α⃗)e

1√
N

N∑
i=1

´
dxhi(x)J(x)

]
. (2.46)

For small values of α, we can expand P(h; α⃗),

P(h; α⃗) = P(h; α⃗= 0)+
∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!
∂αs1

· · ·∂αsr
P(h; α⃗)

∣∣∣
α⃗=0

. (2.47)

Analogous to the single variable case, we define

Pr,{s1,··· ,sr} :=
1

P(h; α⃗)
∂αs1

· · ·∂αsr
P(h; α⃗) (2.48)

satisfying the recursion relation

Pr+1,{s1,··· ,sr+1} =
1

r+ 1

r+1∑
γ=1

(P1,sγ + ∂αsγ
)Pr,{s1,··· ,sr+1}\sγ . (2.49)
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Finally, we can expand (2.34) in α⃗,

Wϕ[J] = log

[
eWϕ,α⃗=0[J] +

∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x) · Pr,{s1,··· ,sr}

∣∣
α⃗=0

]]
, (2.50)

whereWϕ,α⃗=0[J] is given in (2.36). This form ofWϕ[J]makes it clear how one can tune N and α⃗ to generate
and manipulate non-Gaussianities; for details see appendix C.

For appropriately small independence breaking hyperparameter α⃗, and other attributes of the
architecture, the ratio of second term to first term in the logarithm of (2.50) is small. In such cases, one can
approximate (2.50) using Taylor series expansion log(1+ x)≈ x around x= 0. The CGF becomes

Wϕ[J] =Wϕ,α⃗=0[J] +

q∑
s=1

αs

eWϕ,α⃗=0[J]

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x) · P1,s

∣∣
α⃗=0

]
, (2.51)

and the cumulants

G(r)
c (x1, · · · ,xr) =

∂rWϕ[J]

∂J(x1) · · ·∂J(xr)

∣∣∣
J=0

,

= G(r),i.i.d.
c + α⃗ ·∆G(r)

c +O(α⃗2). (2.52)

are proportional to α⃗ at the leading order. The leading order expression in α⃗ is evaluated in (C.21).

2.3.2.1. Example: single layer Cos-net
Let us exemplify the non-Gaussianities generated by statistical independence breaking of a single layer
Cos-net architecture given in (2.42). We can break this independence by modifying the distribution from
which the weightsW0

ij (an N × dmatrix) are sampled

P(W0) = cexp

[
−
∑
i,j

 d

2σ2
W0

(W0
ij)

2 +
αIB

N2

∑
i1,j1,i2,j2

(W0
i1j1)

2(W0
i2j2)

2

], (2.53)

where c is a normalization constant. The rotational invariance preserving term αIB(Tr(W
0TW0))2

N2 introduces
mixing between the weightsW0

ij and parametric independence is explicitly broken. The degree of
independence breaking can be controlled by tuning αIB.

We wish to compute the connected correlation functions to quantify the non-Gaussianities generated by
independence breaking. In general, this is a difficult problem. However, when αIB ≪ 1, we can perform a
perturbative expansion in αIB. Setting d= 1 for simplicity, we obtain

G(2)
c,Cos(x1,x2) =

αIBσ
4
W0
σ2
W1
e−

σ2
W0

(∆x12)
2

2

2N

[
−
(
1− 5σ2

W0
(∆x12)2 +σ4

W0
(∆x12)4

)
N

+σ2
W0
(∆x12)

2

]
, (2.54)

G(4)
c,Cos(x1, · · · ,x4) = G(4)

c,Cos
i.i.d.

(x1, · · · ,x4)+
αIBσ

4
W0σ4

W1

8N2

∑
P(abcd)

[
6−

(
2σ2

W0(∆x2ab +∆x2cd)

+2σ4
W0∆x2ab∆x2cd

)
e−

σ2
W0
2 (∆x2ab+∆x2cd) +

(
3+ 3σ2

W0(∆xab +∆xcd)
2
)
e−

σ2
W0
2 (∆xab+∆xcd)

2

]
,

(2.55)

to leading order in αIB, where G
(4)
c,Cos
i.i.d.

(x1, · · · ,x4) is obtained at d= 1 from (2.44). Non-Gaussianities at finite

N, and αIB ̸= 0 still preserve the translation invariance of the 2nd and 4th cumulants of Cos-net architecture.
We refer the reader to appendix B.2 for details, where we also compute leading order non-Gaussian

corrections to first two cumulants in a single hidden layer Gauss-net at αIB ̸= 0, finite N, for d= 1.

3. Computing actions from connected correlators

In section 2 we systematically studied non-Gaussianities in NN FT by parametrically violating two
assumptions of the CLT: infinite-N and independence. The study was performed at the level of connected
correlators, rather than actions, because every NN-FT admits a parameter space description of connected
correlators, even if an action is not known.
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In this section we will develop these techniques for calculating actions from connected correlators,
including in terms of Feynman diagrams in which the connected correlators are vertices. More specifically:

• Field Density from Connected Correlators: Edgeworth Expansion. In section 3.1 we review how know-
ledge of the cumulants of a single random variable may be used to approximate its probability density, and
then we generalize to the FT case, which has a continuum of random variables. This gives an expression for
P[ϕ] = exp(−S[ϕ]) in terms of connected correlation functions. We present an explicit example in the case
of a single variable.

• Computing the Actionwith FeynmanDiagrams.Given the Edgeworth expansion, we develop a method to
compute the action perturbatively via Feynman diagrams, which becomes clear due to a formal similarity
between the Edgeworth expansion and the partition function of a FT. This is a result that is applicable to
general FT.

• NN FT Actions. In section 3.3 we specify the analysis of section 3.2 to the case of NN FT. We derive the
leading order form of the action for the case of non-Gaussianities induced either by 1/N-corrections or
independence breaking.

• NN FT Examples. In section 3.4 we derive the leading-order action in 1/N for concrete NN architectures.

3.1. Field density from connected correlators: Edgeworth expansion
The Edgeworth expansion from statistics (see e.g. [43] for a textbook statistics description and [11] for an
ML study) can be used to construct the probability density from the cumulants. The key observation which
allows the Edgeworth expansion to be applied in a FT is that the normal relation for the generating function
in terms of the action

eW[J] =

ˆ
dϕ e−S[ϕ]+Jϕ (3.1)

can be inverted to express the action in terms of the generating functional. Adding a source term in the
exponent, mapping J→ i J and integrating over J, we have

ˆ
dJeW[i J]−i Jϕ =

ˆ
dJe−i Jϕ

ˆ
dϕ ′e−S[ϕ ′]+i Jϕ ′

= e−S[ϕ] (3.2)

where
ˆ

dJei J(ϕ
′−ϕ) = δ[ϕ ′ −ϕ] (3.3)

has been used. Deforming the J integration contour back to real J then results in

P[ϕ] = e−S[ϕ] =

ˆ
dJeW[J]−Jϕ, (3.4)

This gives the probability density and action in terms ofW[J]. This result can also be thought of as arising
from an inverse Fourier transform of the characteristic function.

Then to apply the Edgeworth expansion for a single random variable ϕ, we writeW[J] in terms of
cumulants

W[J] =
∞∑
r=1

κr

r!
Jr, (3.5)

which lets us write

P[ϕ] = exp

[ ∞∑
r=3

κr

r!
(−∂ϕ)

r

]ˆ
dJeκ2

J2

2 +κ1J−Jϕ,

= exp

[ ∞∑
r=3

κr

r!
(−∂ϕ)

r

]
e−

(ϕ−κ1)
2

2κ2 , (3.6)

where the Gaussian integral has been performed by mapping J→ iJ (alternatively, working with the
characteristic function the whole time) and we have neglected the normalization factor. We have an
expression for the density Pϕ as an expansion around the Gaussian with mean κ1 and variance κ2.
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The result may be extended to the FT case, where ϕ is replaced by ϕ(x), a continuum of mean free
random variables. Then the relation is

e−S[ϕ] =
1

Z
exp

( ∞∑
r=3

(−1)r

r!

ˆ r∏
i=1

ddxiG
(r)
c (x1, . . . ,xr)

δ

δϕ(x1)
· · · δ

δϕ(xr)

)
e−SG[ϕ], (3.7)

where the GP action SG is defined as

SG[ϕ] =
1

2

ˆ
ddx1d

dx2ϕ(x1)G
(2)
c (x1,x2)

−1ϕ(x2), (3.8)

To the extent that there is a perturbative ordering to the correlators through some expansion parameter
(such as 1

N or independence breaking), this expression can be evaluated perturbatively to systematically
construct an action from the cumulants8.

3.1.1. 1D example: sum of N uniform random variables
Let us demonstrate the Edgeworth expansion in a simple example. Consider the standardized sum of N i.i.d.
random variables sampled from a uniform distribution

ϕ =
1√
N

N∑
i=1

Xi, Xi ∼ Unif(−1/2,1/2) ∀i. (3.10)

The cumulants of Xi are

κXi
1 = 0, (3.11)

κXi
r =

Br

r
for r⩾ 2, (3.12)

where Br is the rth Bernoulli number9. Plugging this into (2.15), the cumulants of ϕ are

κϕ
r =

Br

rNr/2−1
. (3.13)

At finite N, the cumulants κϕ
r>2 are nonzero and ϕ is non-Gaussian. Using these cumulants, we can write

down the probability distribution function of ϕ via an Edgeworth expansion,

Pϕ =
1

Z
exp

[ ∞∑
r=3

κϕ
r

r!
(−∂ϕ)

r

]
e−ϕ2/2κϕ

2

=
1

Z
exp

[ ∞∑
r=3

Br

r!rNr/2−1
(−∂ϕ)

r

]
e−ϕ2/B2 (3.14)

Truncating the sum at r= 4, expanding the exponential, and keeping terms up to O(1/N) we get

Pϕ =
1

Z

[
1+κϕ

4

(
1

8(κϕ
2 )

2
− 1

4(κϕ
2 )

3
ϕ2 +

1

24(κϕ
2 )

4
ϕ4

)
+O(1/N3/2)

]
e−ϕ2/2κϕ

2 ,

=
1

Z ′ exp

[
−

(
1

2κϕ
2

+
κϕ
4

4(κϕ
2 )

3

)
ϕ2 +

κϕ
4

24(κϕ
2 )

4
ϕ4 +O(1/N3/2)

]
,

=
1

Z ′ exp

[(
−6+

18

5N

)
ϕ2 − 36

5N
ϕ4 +O(1/N3/2)

]
, (3.15)

where on the second line we absorbed the constant term into the normalization constant Z′. At order O(N0),
the exponent in (3.15) is quadratic and ϕ is Gaussian distributed. Gaussianity is then broken by a quartic
interaction at order O(1/N).

8 In the finite-dimensional version of the Edgeworth expansion, it is sometimes convenient to further express the powers of derivatives in
terms of probabilist’s Hermite polynomials using

(−∂x)
r e−

x2

2 =: Hr(x) e
− x2

2 , (3.9)

In the FT case, using Hermite polynomials provides no obvious advantage.
9 Br vanishes for odd r ⩾ 2. First few nonzero Bernoulli numbers are: B2 =

1
6
,B4 =− 1

30
,B6 =

1
42
.
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Table 1. The Edgeworth expansion for P[ϕ] and the interaction expansion of Z[J] are formally related by a change of variables, given here
up to constant factors. Due to this relationship, non-local couplings and connected correlators may both be computed by appropriate
connected Feynman diagrams.

Field picture Source picture

Field ϕ(x) J(x)
CGF W[J] = log(Z[J]) S[ϕ] =− log(P[ϕ])

Cumulant G(r)
c (x1, . . . ,xr) gr(x1, . . . ,xr)

It is worth noting that the cumulants of ϕ are given by simple closed form expressions, see equation
(3.13), while Pϕ involves a perturbative expansion in 1/N. This is in contrast to weakly coupled FT, where we
often start from a simple action expressed in closed form and calculate the connected correlation functions
via a perturbative expansion in the coefficients of interaction terms.

3.2. Computing the action with Feynman diagrams
In a FT a powerful tool for organizing a perturbation expansion is with Feynman diagrams. Just as Feynman
diagrams can be used to compute the cumulants perturbatively in an expansion parameter from an action,
they can also be used to compute the action perturbatively from the cumulants. To understand the
derivation, recall the expression for the partition function

eW[J] = Z[J] = c ′ exp

( ∞∑
r=3

ˆ r∏
i=1

ddxi gr(x1, · · · ,xr)
δ

δJ(x1)
· · · δ

δJ(xr)

)
e−S0[J], (3.16)

where we have introduced couplings gr instead of gr/r!,

S0[J] =

ˆ
dx1dx2J(x1)∆(x1,x2)J(x2), (3.17)

and∆(x1,x2) is the free propagator. The expression (3.16) arises by taking the usual expression for the
partition function

Z[J] =

ˆ
Dϕ e−Sfree[ϕ]−Sint+

´
ddxJ(x)ϕ(x) (3.18)

and replacing the ϕ’s in the interaction terms

Sint =
∞∑
r=3

ˆ r∏
i=1

ddxi gr(x1, . . . ,xr)ϕ(x1) . . .ϕ(xr) (3.19)

by δ/δJ’s. Pulling the J-derivatives outside of the
´
Dϕ in (3.18) and performing the Gaussian integral yields

(3.16). These manipulations closely mirror the Edgeworth expansion.
The Edgeworth expansion (3.7) is related to the partition function (3.16) by a simple change of variables,

given in table 1, which one might think of as a duality map between a field picture and a source picture. This
relationship between the Edgeworth expansion and the partition function immediately tells us that the

analog of gr(x1, . . . ,xn) are the connected correlation functions G(r)
c (x1, · · · ,xr) in (3.7).

We may therefore compute the couplings gr(x1, . . . ,xn) in the same way that we compute the connected

correlators G(r)
c (x1, · · · ,xr). In a weakly coupled FT, one can compute the connected correlation functions

G(r)
c (x1, · · · ,xr) in terms of the couplings gr(x1, · · · ,xr) perturbatively via Feynman diagrams. An Edgeworth

expansion allows us to do the converse and compute the couplings gr(x1, · · · ,xr) in terms of the connected

correlation functions G(r)
c (x1, · · · ,xr). The similarity between (3.7) and (3.16) suggests that the terms in the

expansion for gr(x1, · · · ,xr) can be represented by Feynman diagrams, whose vertices are connected
correlators, e.g.
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Table 2. Feynman rules for computing gr from each connected diagram with G
(n)
c vertices.

Feynman Rules for gr(x1, . . . ,xr).
1. Internal points associated to vertices are unlabeled, for diagrammatic simplicity. Propagators therefore connect

to internal points in all possible ways.
2. For each propagator between zi and zj,

Zi – – – – Zj = G(2)
c (zi,zj)

−1. (3.22)

3. For each vertex,

4. Divide by symmetry factor and insert overall (−).

in the case of a six-point vertex. Notably, the vertex is itself a function and lines enter the n-point vertex at n
locations.

To compute the coupling gr(x1, . . . ,xr) in terms of Feynman diagrams, one sums over all connected

r-point Feynman diagrams made out of G(n)
c vertices. By convention, we do not label internal points on the

vertices, in order to simplify the combinatorics. For instance, the four-point coupling g4(x1, . . . ,x4) has a
diagram

where it is to be understood that connections to internal points in a vertex appear in all possible
combinations. Analytic expressions may be obtained from the diagrams via the Feynman rules given in

table 2. If G(2)
c (xi,yj)−1 = δ2SG

δϕ(xi)δϕ(yj)
involves differential operators, it can be evaluated by Fourier

transformation, see appendix D

As an example, let us compute a contribution to the quartic coupling g4(x1,x2,x3,x4) from a G(4)
c vertex

g4(x1, . . . ,x4) =− 1

4!

[ˆ
dy1dy2dy3dy4G

(4)
c (y1,y2,y3,y4)G

(2)
c (y1,x1)

−1G(2)
c (y2,x2)

−1

×G(2)
c (y3,x3)

−1G(2)
c (y4,x4)

−1 + perms
]
+ . . . (3.24)

where the dots represent contributions from other diagrams, and ‘perms’ represents other diagrams from
permutations over internal points. A combinatoric factor of 4! from summing over internal points cancels
out the prefactor 1/4! from Edgeworth expansion.

The Edgeworth expansion (3.7) involves an infinite sum. Correspondingly, computing gr(x1, · · · ,xr)
requires summing over infinitely many Feynman diagrams. When all but finitely many terms in the
expansion are parametrically suppressed, the expansion can be truncated at finite order to provide an
approximation of gr(x1, · · · ,xr). We will apply these rules to concrete examples later in this section and
demonstrate how approximations to gr(x1, · · · ,xr) can be obtained systematically.
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While our focus is on NN FT, we emphasize that Edgeworth expansions can be utilized in any FT where
the connected correlation functions are known, and the expansion in (3.7) is not divergent.

3.2.1. Example: non-local ϕ4 theory
Aside from any application in NN-FT, it is interesting to study the self-consistency of the Edgeworth
expansion. We do so in a famous case, ϕ4 theory, generalized to the case of non-local quartic interactions, in
order to demonstrate the ability of the Edgeworth method to handle non-locality. Consider the action

S[ϕ] =

ˆ
ddx1d

dx2
1

2
ϕ(x1)G

(2)
G,ϕ(x1,x2)

−1ϕ(x2)

+
1

4!

ˆ
ddx1d

dx2d
dx3d

dx4λ(x1,x2,x3,x4)ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4), (3.26)

where G(2)
G,ϕ(x1,x2)

−1 and λ(x1,x2,x3,x4) are both totally symmetric, and G(2)
G,ϕ(x1,x2)

−1 is the operator

in the free action SG[ϕ]. We denote the free propagator D(x1,x2) so that
´
ddx ′G(2)

G,ϕ(x1,x2)
−1

D(x ′,x2) = δd(x1 − x2). We can then expand G(2)
c (x1,x2) in λ(x1,x2,x3,x4), and at leading order,

G(2)
c (x1,x2) = D(x1,x2)+

1

2

ˆ
ddy1 · · ·ddy4λ(y1,y2,y3,y4)D(x1,y1)D(y2,y3)D(y4,x2), (3.27)

where the 1
2 is a symmetry factor. Similarly,

G(4)
c (x1, · · · ,x4) =

ˆ
ddx ′1 · · ·d

dx ′4λ(x
′
1,x

′
2,x

′
3,x

′
4)D(x1,x

′
1)D(x2,x

′
2)D(x3,x

′
3)D(x4,x

′
4)

+O(λ2). (3.28)

There are no other connected correlators that have contributions at O(λ). To perform an Edgeworth
expansion, we first need to write down the inverse propagator,

G(2)
c (x1,x2)

−1 = G(2)
G,ϕ(x1,x2)

−1 − 1

2

ˆ
ddx3d

dx4λ(x1,x2,x3,x4)D(x3,x4)+O(λ2). (3.29)

Given (3.29), it is easy to verify that
ˆ

dx ′G(2)
c (x1,x

′)−1G(2)
c (x ′,x2) = δ(x1 − x2)+O(λ2). (3.30)

At this point, let us introduce a shorthand notation to improve readability, rewriting
´
ddx1d

dx2G
(2)
c (x1,x2),´

ddx1d
dx2G

(2)
c (x1,x2)−1 and

´
ddx1 · · ·ddx4G(4)

c (x1, · · · ,x4) as,

Gxy = Dxy +
1

2
λ1234D1xD23D4y +O(λ2), (3.31)

G−1
xy = G(2)

G,ϕ(x,y)
−1 − 1

2
λxy12D12 +O(λ2), (3.32)

G1234 = λ1 ′2 ′3 ′4 ′D1 ′1D2 ′2D3 ′3D4 ′4 +O(λ2), (3.33)

respectively. Finally, we obtain the Edgeworth expansion at O(λ) by plugging in (3.29) and (3.28) into (3.7),

P[ϕ] =
1

Z
exp

(
1

4!
G1234δ1δ2δ3δ4

)
exp

(
−1

2
ϕxG

−1
xy ϕy

)
+O(λ2), (3.34)

where δ1 := δ/δϕ(x1). Expanding the first exponential and performing the derivatives we obtain

P[ϕ] =
1

Z

[
1− λ1234

8
D12D34 −

λ1234

4!
ϕ1ϕ2ϕ3ϕ4

]
exp

(
−1

2
ϕxG

(2)
G,ϕ(x,y)

−1ϕy

)
+O(λ2), (3.35)

with λ1234 :=
´
ddx1 · · ·ddx4λ(x1, · · · ,x4), and ϕx := ϕ(x). The second term does not depend on ϕ and can be

absorbed into the normalization factor, resulting in

P[ϕ] =
1

Z ′ exp

(
−1

2
ϕxG

(2)
G,ϕ(x1,x2)

−1ϕy −
λ1234

4!
ϕ1ϕ2ϕ3ϕ4

)
+O(λ2). (3.36)

We have recovered the ϕ4 action at O(λ), as expected.
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3.3. General interacting actions in NN-FT
We now study the Edgeworth expansion in NN FT. We will modify the general analysis of the previous
section to the case where non-Gaussianities are generated by the two mechanisms we described in section 2,
namely, by violating assumptions of the CLT by finite N corrections and independence breaking.

3.3.1. Interactions from 1/N-corrections
As we discussed in section 2.3.1, non-Gaussianities arising due to 1/N corrections result in connected
correlation functions that scale as

G(r)
c (x1, · · · ,xr)∝

1

Nr/2−1
, (3.37)

for a single hidden layer network. At largeN, the action can be approximated systematically by organizing the
Edgeworth expansion in powers of 1/N, calculating the couplings via Feynman diagrams, and truncating at a
fixed order in 1/N.

To do so, we need to know how the couplings scale with N. We have studied a case in (3.25) where only

the even-point correlators are non-zero, and clearly there is a 1/N contribution to g4 from a single G(4)
c

vertex; any higher order correlator G(r>4)
c contributes at 1/Nr/2−1 and higher. Consider now contributions to

the couplings gr>4. There is a tree-level 1/Nr/2−1 contribution from a single G(r)
c vertex and there are

1/Nn/2−1 contributions from a G(n>r)
c vertex with an appropriate number of loops; both are more

suppressed than the 1/N contribution to g4. Finally, consider contributions from V number of G(n<r)
c

vertices. Forming a connected diagram requires nV > r, which implies V⩾ 2 and therefore the contribution
is of order 1/N⩾n−1, which is more suppressed than 1/N since n begins at 3 in the Edgeworth expansion.
Therefore, the single-vertex tree-level contribution to g4 is the leading contribution in 1/N.

The quartic coupling g4(x1,x2,x3,x4), at leading order in G(4)
c ∝ 1/N, is

g4(x1, . . . ,x4) = − 1

4!

[ˆ
dy1dy2dy3dy4G

(4)
c (y1,y2,y3,y4)G

(2)
c (y1,x1)

−1G(2)
c (y2,x2)

−1

×G(2)
c (y3,x3)

−1G(2)
c (y4,x4)

−1 + perms

]
+O

(
1

N2

)
, (3.38)

We may compute this coupling in a NN-FT by first computing G(4)
c in parameter space.

In summary, the leading-order in 1/N action for a single layer NN-FT is

S= SG +

ˆ
ddx1 . . .d

dx4 g4(x1, . . . ,x4)ϕ(x1) . . .ϕ(x4)+O

(
1

N2

)
, (3.40)

where g4 at O(1/N) is given in (3.39), under the assumption that the odd-point functions are zero, as in the
architectures of section 3.4.

3.3.2. Interactions from independence breaking
Non-Gaussianities generated via independence breaking alone are qualitatively different than those from
1/N corrections.

We wish to determine the leading-order action due to independence breaking. Focusing on the case
where independence breaking is controlled by a single parameter α for simplicity, it follows from (2.52), that
the connected correlation functions scale as

G(r)
c (x1, · · · ,xr)∝ α ∀r> 2 (3.41)

at N→∞ limit, since the connected correlators G(r),free
c |r>2 of the free theory vanish.
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As a result, each coupling gr(x1, · · · ,xr) receives contributions from tree-level diagrams of all connected
correlators, at leading order in α. More generally, at any given order in α, there are infinitely many diagrams
from all connected correlators to gr(x1, · · · ,xr). For example, the expansion for g4(x1,x2,x3,x4) at O(α)

includes terms proportional to G(2n)
c (x1, · · · ,x2n) for all n> 1,

g4(x1,x2,x3,x4) =−
∞∑
n=2

(−1)2n

(2n)!

[ˆ
dy1 · · ·dy2nG(2n)

c (y1, . . . ,y2n)G
(2)
c (y1,x1)

−1

×G(2)
c (y2,x2)

−1G(2)
c (y3,x3)

−1G(2)
c (y4,x4)

−1
2n−1∏
m=5

G(2)
c (ym,ym+1)

−1 + perms

]
+O(α2),

(3.42)

where summing over internal points yi cancels out
1
2n! prefactor from each G(2n)

c . The terms in the
parenthesis constitute an infinite sum.

This structure makes it impossible to systematically approximate gr(x1, · · · ,xr) with a finite number of
terms via a perturbative expansion in α, unless some other structure correlates with it. Note that this is a
feature of NN FT where non-Gaussianities are generated only by independence breaking. Approximation via
a finite number of terms would be possible in cases where connected correlation functions scale with both α
and 1/N. In the limit of N→∞, the leading-order in α action for a NN-FT is

S= SG +
∞∑
r=4

ˆ
ddx1 . . .d

dxr gr(x1, . . . ,xr)ϕ(x1) . . .ϕ(xr)+O(α2), (3.44)

where gr>4’s are computed similar to (3.43). Such an action can not be approximated by a finite truncation,
unless the theory exhibits additional structure.

3.4. Example actions in NN-FT
Next, we exemplify the Feynman rules from section 3.2 in a few single layer NN architecture examples at
finite width and i.i.d. parameters, and evaluate the leading order in 1/N quartic coupling and NN-FT action.
The quartic coupling is

g4(x1, · · · ,x4) =− 1

4!

[ˆ
ddy1 · · ·ddy4G(4)

c (y1, · · · ,y4)G(2)
c (y1,x1)

−1 · · ·G(2)
c (y4,x4)

−1 + perms

]
, (3.45)

at O(1/N). When G(2)
c (x1,y1)−1 involves differential operators, we use the methods from appendix D to

evaluate g4.

3.4.1. Single layer Cos-net
Recall the Cos-net architecture introduced earlier, ϕ(x) =W1

i cos(W
0
ijxj + b0i ), forW

1 ∼N (0,σ2
W1
/N),

W0 ∼N (0,σ2
W0
/d), and b0 ∼ Unif[−π,π]. We will consider the case where all parameters are independent

and non-Gaussianities arise due to finite N corrections. To evaluate the leading order quartic coupling for

this NNFT, let us first compute the inverse propagator G(2)
c,Cos(x1,x2)

−1, starting from the 2-pt function

G(2)
c,Cos(x1,x2) =

σ2
W1

2
e−

σ2
W0

(x1−x2)
2

2d , (3.46)

and inversion relation
´
ddyG(2)

c,Cos(x,y)
−1G(2)

c,Cos(y,z) = δd(x− z). Translation invariance of the 2-pt function

and delta function constraints G(2)
c,Cos(x,y)

−1 as a translation invariant operator. Then, performing a Fourier
transformation of the 2-pt function and its inverse operator, followed by an inverse Fourier transformation,
we obtain

G(2)
c,Cos(x,y)

−1 =
2σ2

W0

σ2
W1
d
e−

σ2
W0

∇2
x

2d δd(x− y), (3.47)
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where∇2
x := ∂2/∂x2. Here, we use (D.3) to evaluate the quartic coupling as,

gCos4 (x1, · · · ,x4) =−
ˆ

ddp1 · · ·ddp4 G̃(4)
c,Cos(p1, . . . ,p4) G̃

(2)
c,Cos(−p1)

−1 · · · G̃(2)
c,Cos(−p4)

−1

× e−i p1x1···−ip4x4 , (3.48)

where G̃(4)
c,Cos(p1, · · · ,p4) is from (B.8), and G̃(2)

c,Cos(−p)−1 =
2σW0√
dσ2

W1

e
dp2

2σ2
W0 . Using this,

gCos4 (x1,x2,x3,x4) =−
4
√
6π3/2σ4

W0

Nd2σ4
W1

∑
P(abcd)

e−
σ2
W0

∇2
rabcd

6d +
8πσ4

W0

Nd2σ4
W1

∑
P(ab,cd)

e−
σ2
W0

(∇2
rab

+∇2
rcd

)

2d . (3.49)

We introduce the abbreviation rabcd := xa + xb − xc − xd, and P(abcd) = 12 refers to the number of ways
ordered list of indices a, c,b,d ∈ {1,2,3,4} can be chosen. Similarly, rab := xa − xb, and P(ab, cd) = 12 is the
number of ways ordered pairs (a, c),(b,d) ∈ {1,2,3,4} can be drawn.

With this, Cos-net field theory action at O(1/N) is

SCos[ϕ] =
2σ2

W0

σ2
W1
d

ˆ
ddxϕ(x)e−

σ2
W0

∇2
x

2d ϕ(x) −
ˆ

ddx1 · · ·ddx4

[
4
√
6π3/2σ4

W0

Nd2σ4
W1

∑
P(abcd)

e−
σ2
W0

∇2
rabcd

6d

−
8πσ4

W0

Nd2σ4
W1

∑
P(ab,cd)

e−
σ2
W0

(∇2
rab

+∇2
rcd

)

2d

]
ϕ(x1) · · ·ϕ(x4)+O(1/N2). (3.50)

The NNGP action is local, but the leading order quartic interaction is non-local.

3.4.2. Single layer Gauss-net
As our next example, consider the output of a single-layer Gauss-net

ϕ(x) =
W1

i exp(W
0
ijxj + b0i )√

exp[2(σ2
b0
+

σ2
W0
d x2)]

, (3.51)

for parameters drawn i.i.d. fromW0 ∼N (0,
σ2
W0
d ),W1 ∼N (0,

σ2
W1
N ), and b0 ∼N (0,σ2

b0
). The propagator is

identical to Cos-net FT, and so is G(2)
c,Gauss(x1,x2)

−1. We evaluate Gauss-net quartic coupling g4, using (D.3),

and (B.12) for G̃(4)
c,Gauss, as

gGauss4 (x1, · · · ,x4) =−
4
√
2π3/2σ4

W0√
3N2d4σ4

W1

∑
P(abcd)

[
d2N+ 2σ4

W0
−

σ5
W0
(d−σ2

W0
∇2

rabcd)

d3/2

]
e−

σ2
W0

∇2
rabcd

6d

+
8πσ4

W0

N2d4σ4
W1

∑
P(ab,cd)

[
d2N+ 6σ4

W0
− 4d3σ5

W0
+

σ6
W0

d
+

(
2σ7

W0

d3/2
−

σ8
W0

d2

)
(∇2

rab +∇2
rcd)

+
σ10
W0

d3
∇2

rab∇
2
rcd

]
e−

σ2
W0

(∇2
rab

+∇2
rcd

)

2d , (3.52)

where P(ab, cd) and P(abcd) are defined as before.
Thus, Gauss-net FT action at O(1/N),

SGauss[ϕ] =
2σ2

W0

σ2
W1
d

ˆ
ddxϕ(x)e−

σ2
W0

∇2
x

2d ϕ(x) +

ˆ
ddx1 · · ·ddx4 gGauss4 ϕ(x1) · · ·ϕ(x4), (3.53)

differs from Cos-net FT at the level of quartic interaction.

4. Engineering actions: generalities, locality, andϕ4 theory

In section 3 we used the Edgeworth expansion and a ‘duality’ between fields and sources to compute
couplings (including non-local ones) in the action as connected Feynman diagrams whose vertices are given

by the usual connected correlators G(n)
c (x1, . . . ,xn). This general FT result is applicable in NN-FT of fixed

architectures, but it does not answer the question of how to engineer an architecture that realizes a given
action.
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In this section we study how to design actions of a given type by deforming a Gaussian theory by an
arbitrary operator. The result is simple and exploits the duality between the parameter-space and
function-space descriptions of a FT. The main results are:

• Action Deformations. We develop a mechanism for expressing an arbitrary deformation of a Gaussian
action as a deformation of the parameter density of a NN-FT.

• Local Lagrangians.We utilize the mechanism to engineer local interactions.
• ϕ4 Theory as a NN-FT. Using a previous result that achieves free scalar FT as a NN-FT, we engineer local
ϕ4 theory as an NN-FT.

• Cluster Decomposition.We develop an approach to cluster decomposition, another notion of locality that
is weaker than local interactions.

We also discuss why it might have been expected that ϕ4 theory (and other well-studied FT) arises naturally
at infinite-N.

To begin our analysis, consider the partition function of a Gaussian theory

ZG[J] = EG[e
´
ddx J(x)ϕ(x)], (4.1)

where we have labelled both the partition function and the expectation with a G subscript to emphasize
Gaussianity.

Now we wish to define a deformed theory that differs from the original only by an operator insertion,
treating it in both function space and parameter space. The deformed partition function is given by

Z[J] = EG[e
−λ
´
ddx1...d

dxrOϕ(x1,...,xr)e
´
ddx J(x)ϕ(x)], (4.2)

whereOϕ is a non-local operator (though it may be chosen to be local) that has a subscript ϕ, denoting that
it may depend on ϕ and its derivatives. In the function space, the partition function of the Gaussian theory is

ZG[J] =

ˆ
Dϕ e−SG[ϕ]+

´
ddxJ(x)ϕ(x), (4.3)

and the operator insertion corresponds to a deformation of the partition function to

Z[J] =

ˆ
Dϕ e−S[ϕ]+

´
ddxJ(x)ϕ(x) (4.4)

where the action has been deformed

SG[ϕ]→ S[ϕ] = SG[ϕ] +λ

ˆ
ddx1 . . .d

dxrOϕ(x1, . . . ,xr). (4.5)

We may treat this theory in perturbation theory in the usual way: correlators in the non-Gaussian theory are
expanded perturbatively in λ and evaluated using the Gaussian expectation EG, which utilizes the Gaussian
action when expressed in function-space.

How is this deformation expressed in parameter space, i.e. how do we think of this deformation from a
NN perspective? In parameter space, the Gaussian partition function is

ZG[J] =

ˆ
dθPG(θ)e

´
ddxJ(x)ϕθ(x), (4.6)

We remind the reader that in such a case Gaussianity is not obvious, but requires a judicious choice of
parameter density P(θ) and architecture ϕθ(x) such that we have a NN GP via the CLT. In parameter space,
the deformation yields

Z[J] =

ˆ
dθPG(θ) e

−λ
´
ddx1...d

dxrOϕθ
(x1,...,xr)e

´
ddxJ(x)ϕθ(x), (4.7)

where we assume that where the operatorOϕθ
does not involve an explicit ϕ(x), but instead its parameter

space representation; we will exemplify this momentarily. Again, correlators may be computed in
perturbation theory in λ by expanding and evaluating in the Gaussian expectation, this time in the
parameter space formulation.

We emphasize that if the function space and parameter space descriptions (4.3) and (4.6) represent the
same partition function, then the deformed theories (4.4) and (4.7) are the same theory. That is, we see how
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an arbitrary deformation of the action induces an associated deformation of the parameter space description.
We will use this in section 4.2 to engineer ϕ4 theory as a NN FT, and in 4.1 we will more explicitly deform a
NN GP.

We end our general discussion with some theoretical considerations in NN FT, interpreting a
non-Gaussian deformationOϕθ

in terms of the framework of section 2, and also taking into account the
universal approximation theorem.

A non-Gaussian deformationOϕθ
must violate an assumption of the CLT. The architecture itself is still

the same ϕθ(x) as in the Gaussian theory. Instead, in (4.7) we may interpret the operator insertion as

P(θ) := PG(θ) e
−λ
´
ddx1...d

dxrOϕθ
(x1,...,xr), (4.8)

i.e. same architecture, but with a deformed parameter distribution. This makes it clear that our
non-Gaussian theory is still at infinite-N and therefore cannot receive non-Gaussianities in 1/N-corrections.
Instead, it receives non-Gaussianities because the deformed parameter distribution has independence
breaking via the non-trivial relationship amongst the parameters in the deformation. There may also exist
schemes for controlling non-Gaussian deformations in 1/N, instead of via independence breaking, but it is
beyond our scope.

Was it inevitable that systematic control over non-Gaussianities arises most naturally via independence
breaking rather than 1/N-corrections? The general answer is not clear, but we may use the control over
non-Gaussianities to yield common theories, such as ϕ4 theory in the next section. In that context we may
ask a related question: was it inevitable that we obtain common interacting theories via independence
breaking rather than 1/N corrections? This question has a better answer. Finite action configurations of a
common theory, say ϕ4 theory

S[ϕ] =

ˆ
ddx

[
ϕ(x)(∇2 +m2)ϕ(x)+

λ

4!
ϕ(x)4

]
, (4.9)

are not arbitrary functions, since there may be some functions ϕ(x) that have infinite action. However, finite
action configurations are still fairly general functions, and since they have finite action they occur with
non-zero probability in the ensemble.

On the other hand, there are universal approximation theorems for NN, where the error in the
approximation to a target function may decrease with increasingN. In such a case this theorem that is usually
cited as a feature in ML may actually be a bug: at finite-N there exist functions that cannot be explicitly
realized by a fixed architecture, but only approximated. We therefore find it reasonable to expect that there is
at least one finite-action configuration ϕ(x) in ϕ4 theory that cannot be realized by a finite-N NN of fixed
architecture; in such a case, a NN-FT realization of ϕ4 theory must be at infinite-N. This comment only
scratches the surface, but we find the interplay between universal approximation theorems and realizable FT
at finite-N to be worthy of further study.

4.1. Non-Gaussian deformation of a NNGP
To make the general picture more concrete, we would like to consider non-Gaussian deformations of any NN
GP. The main result is that we may deform any NNGP by any operator we like, which breaks independence by
deforming the parameter density, explaining the origin of non-Gaussianities by violating the independence.

As before, we consider a field built out of neurons,

ϕθ(x) =
1√
N

N∑
i=1

ai hi(x) (4.10)

where the full set of parameters θ is realized by the set of parameters ai and the set of parameters θh of the
post-activations or neurons h. This equation forms the field out of a linear output layer with weights ai
acting on the post-activations, which could themselves be considered as the N-dimensional output of
literally any NN. If the reader wishes, one may take ϕ to be a single-layer network by further choosing

hi(x) = σ(bijxj + ci) (4.11)

with σ : R→ R a non-linear activation function such as ReLU or tanh; with this additional choice we now
have θh comprised of b-parameters and c-parameters. Taking the parameter densities PG(a) and PG(θh) to be
independent and N→∞, ϕ(x) = ϕθ(x) is drawn from a GP; we have again used a subscript G to emphasize
that these are the parameter densities of the Gaussian theory.
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Deforming the Gaussian theory by an operator insertion, which in general is non-Gaussian, we have

Z[J] =

ˆ
dadθh PG(a)PG(θh) e

−λ
´
ddx1...d

dxrOϕa,θh
(x1,...,xr)e

´
ddxJ(x)ϕθ(x). (4.12)

We may interpret the operator insertion as deforming the independent Gaussian parameter density
PG(a)PG(θh) to a non-trivial joint density

P(a,θh) = PG(a)PG(θh)e
−λ
´
ddx1...d

dxrOϕa,θh
(x1,...,xr). (4.13)

The partition function is then

Z[J] =

ˆ
dadθh P(a,θh)e

´
ddxJ(x)ϕθ(x), (4.14)

an infinite-N non-Gaussian NN-FT where the operator insertion deforms the parameter density. At
initialization, if one draws the parameters θh first, one may think of this as affecting the density from which
the a-parameters are drawn; the draws of a-parameters are no longer independent.

For the sake of concreteness, consider the case of the single-layer network and take a general non-local
quartic deformation. Then the operator insertion is

e−
´
ddx1...d

dx4 g4(x1,...x4)ϕa,b,c(x1)...ϕa,b,c(x4), (4.15)

where Einstein summation is implied and we have absorbed the overall λ into the definition of the non-local
coupling g4(x1, . . . ,x4). Inserting the equation for the NN

ϕa,b,c(x) =
1√
N
aiσ(bijxj + ci), (4.16)

into the deformation, we obtain

e−
´
ddx1...d

dx4 g4(x1,...x4)ai1 ...ai4σ(bi1 j1 xj1+ci1 )...σ(bi4 j4 xj4+ci4 )/N
2

, (4.17)

which defines a deformed parameter density

P(a,b, c) = PG(a)PG(b)PG(c)e
−
´
ddx1...d

dx4 g4(x1,...x4)ai1 ...ai4σ(bi1 j1 xj1+ci1 )...σ(bi4 j4 xj4+ci4 )/N
2

. (4.18)

Then

Z[J] =

ˆ
dadbdc P(a,b, c)e

´
ddxJ(x)ai σ(bijxj+ci)/

√
N (4.19)

is the partition function of a infinite-N NN-FT, as we impose limN→∞, with quartic non-Gaussianity
induced by the breaking of independence in the joint parameter density P(a,b, c).

4.2.ϕ4 theory as a NN FT
To end this section and demonstrate the power of this technique, we would like to engineer the first
interacting theory that any student learns: local ϕ4 theory. The action is

S[ϕ] =

ˆ
ddx

[
ϕ(x)(∇2 +m2)ϕ(x)+

λ

4!
ϕ(x)4

]
. (4.20)

Following our prescription, we

• Engineer the NNGP. Using the result of [10], we take

ϕa,b,c(x) =
∑
i

ai cos(bijxj + ci)√
b2i +m2

, (4.21)

where the sum runs from 1 toN=∞, bi is the vector that is the ith row of the matrix bij, and the parameter
densities of the Gaussian theory are

PG(a) =
∏
i

e
− N

2σ2
a
ai ai

(4.22)
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PG(b) =
∏
i

PG(bi) with PG(bi) = Unif(Bd
Λ) (4.23)

PG(c) =
∏
i

PG(ci) with PG(ci) = Unif([−π,π]), (4.24)

where Bd
Λ is a d-sphere of radius Λ. The density PG(bi) is not independent in the vector index j, but all that

is needed for Gaussianity is independence in the i index, which is clear due to the product nature of PG(b).
The power spectrum (Fourier-transform of the two-point function) is

G(2)(p) =
σ2
a(2π)

d

2vol(Bd
Λ)

1

p2 +m2
, (4.25)

which becomes the standard free scalar result 1/(p2 +m2) by a trivial rescaling

ϕa,b,c(x) =

√
2vol(Bd

Λ)

σ2
a(2π)

d

∑
i,j

ai cos(bijxj + ci)√
b2i +m2

. (4.26)

This NN GP is equivalent to the free scalar theory of massm in d Euclidean dimensions, with

G(2)(p) =
1

p2 +m2
, (4.27)

where Λ plays the role of a hard UV cutoff on the momentum.
• Introduce theOperator Insertion. Given the NNGP above, or any other NNGP realizing the free scalar FT,
we wish to insert the operator

e−
λ
4!

´
ddxϕa,b,c(x)

4

, (4.28)

associated to a local ϕ4 interaction.
• Absorb the Operator into a Parameter Density Deformation. The non-Gaussian operator insertion
deforms the parameter density to

P(a,b, c) = PG(a)PG(b)PG(c) e
− λ

4!

´
ddxϕa,b,c(x)

4

, (4.29)

where for ϕa,b,c(x) it is to be understood that the RHS of (4.26) is inserted, yielding an expression that is
only a function of a’s, b’s, and c’s.

• Write the Partition Function. We then have a partition function for the deformed theory, given by

Z[J] =

ˆ
dadbdc P(a,b, c) e

´
ddxJ(x)ϕa,b,c(x), (4.30)

where again it is to be understood that we insert the RHS of (4.26) for ϕa,b,c and (4.29) for P(a,b, c); there
are no explicit fields in the expression, it depends only on the architecture (which includes parameters a,b,c)
and the joint parameter density.

Thus, the architecture (4.26) and parameter density (4.29) realize local ϕ4 theory via the partition function
(4.30). We discuss the connections between GPs, locality, and translation invariance in appendix E.

Let us briefly address RG flows. The definition of a fixed non-Gaussian theory here involves the choice of
a fixed value of λ, in addition to the choice of a fixed value of Λ that was implicit in the fixing of the GP.
From that starting point, decreasing Λ while keeping the correlators fixed induces an RG flow for λ governed
by the usual Callan–Symanzik equation. In the language of the NN architecture, this is interpreted as a flow
in the parameter density that is necessary to fix the correlators as Λ is decreased.

4.3. Cluster decomposition and space independence breaking
We now turn to a weaker notion of locality: cluster decomposition. Given a field ϕ(x) (or NN in our context)

we say that it satisfies cluster decomposition if all connected correlation functions G(r)
c (x1, . . . ,xr) asymptote

to zero in the limit where the separation between any two space points xi,xj, i ̸= j is taken to∞,

lim
|xi−xj|→∞

G(r)
c (x1, . . . ,xr) = 0. (4.31)
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If the probability density function of ϕ has the form

P(ϕ) =
1

Z
exp

(
−
ˆ

dxL

(
x,ϕ(x),

∂ϕ

∂x
, . . . ,

∂nϕ

∂xn

))
(4.32)

where Z is a normalization constant and n is finite, we say that ϕ(x) has a local Lagrangian density. This is a
stronger notion of locality compared to cluster decomposition, as any theory with a local Lagrangian density
satisfies cluster decomposition, but the converse is not true [44].

Checking whether a theory satisfies cluster decomposition requires knowledge of the asymptotic
behavior of correlation functions, but not the probability density function. As calculating the probability
density function of an NN-FT is more challenging than computing the correlation functions, checking
cluster decomposition is easier than determining whether there exists a local Lagrangian density that
describes the system.

The main result we describe in this section is a framework that enables engineering NN architectures that
satisfy cluster decomposition.

4.4. Space independent FT
We will perform our analysis by studying, and then moving away from, a case with a very strong assumption:
FT that are defined by fields that have independent statistics at different space (or space) points xI. We call
these FT space independent (SI) FT. While one can still view such fields as random functions defined on a
continuously differentiable space, in general the field configurations are discontinuous; avoiding this would
require statistical correlations between nearest neighbors, violating the assumption. This ‘d-dimensional’ FT
is really a collection of uncountably many independent 0-d theories. This means that the partition function
factorizes

ZϕSI [J] = E[e
´
ddxIJ(xI)ϕ(xI)] =

∏
I

EϕSI [e
J(xI)ϕ(xI)], (4.33)

where the product runs over all space points xI. This form is agnostic about the origin of the statistics and
may be specified in either the function space or parameter space description. In parameter space,
independent statistics at different space points xI means that the SI theory has partition function

ZϕSI [J] =
∏
i

ˆ
dθIPI(θI)e

J(xI)ϕθI (xI), (4.34)

i.e. each space point xI has its own ensemble of NN ϕθI(xI) with its own set of parameters θI that is
independent of θJ for I ̸= J. In function space, independence means that

ZϕSI [J] =
∏
I

ˆ
DϕI e

−S[ϕ(XI)]+J(xI)ϕ(xI), (4.35)

i.e. the action is such that the path integral factorizes. An immediate consequence of this factorization is that
the action cannot contain derivatives of ϕ(xI), as these would depend on the value of ϕ not only at point xI,
but a local neighborhood around it. Then, the action is of the form,

S(ϕ(xI)) = V[ϕ(xI)], (4.36)

which, turning the product into a sum in the exponent, gives the more canonical form

ZϕSI[J] =

ˆ (∏
I

DϕI

)
e−
´
ddxI (V[ϕ(XI)]−J(xI)ϕ(xI)). (4.37)

This is a FT with a potential, but no derivatives. The field values at different points of space are independent
random variables. If they are identically distributed V[ϕ(xI)] is fixed ∀I and the different factors in ZSI[J]
enjoy an SL permutation symmetry, where the number of space points L is infinite in the continuum limit.

Before introducing correlations between the field values at different space points, let us first study the
statistics of the SI theory. Denote the cumulants of ϕ at a given point xI as κϕ

r (xI). For simplicity, we will
assume that the field values at different space points are identically distributed, i.e. κϕ

r (xI) = κϕ
r is fixed for all

I, which will also be important for translation invariance. We also assume that they are mean free, κϕ
1 = 0.

Next, we consider the CGF, which takes the form
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WϕSI [J] = log
(
ZϕSI [J]

)
= log

(∏
I

EϕSI [e
J(xI)ϕ(xI)]

)
,

=

ˆ
dx log

(
EϕSI [e

J(x)ϕ(x)]
)
,

=

ˆ
dxW[J;x], (4.38)

whereW[J;x] is the CGF of ϕ at space point x. Just as the partition function Z[J] factorizes into a product of
partition functions associated to individual space points, the CGFW[J] = logZ[J] becomes a sum (or integral,
in this case). The connected correlators are easily computed by taking derivatives10 , where ∂J(xI)/∂J(xJ) =
δ(xI − xJ),

G(n)
c (x1, . . . ,xn) =

(
n∏

I=1

∂

∂J(xI)

)
WϕSI [J],

=

ˆ
dx

(
n∏

I=1

∂

∂J(xI)

)
W[J;x]. (4.39)

and the connected correlation functions of SI networks ϕSI simplifies to

G(n)
c (x1, . . . ,xn) =

ˆ
dx
( ∂

∂J(x)

)n
W[J;x]

n∏
I=1

δ(x− xI),

=

ˆ
dxκϕ

n

n∏
I=1

δ(x− xI), (4.40)

with n delta functions. The n-point connected correlator is nonzero only when x1 = x2 = · · ·= xn, and its
magnitude is determined by κϕ

n .
The correlation functions can be written in terms of the connected correlators. For example, the two

point function of ϕ is

G(2)(x1,x2) = Eϕ[ϕ(x1)ϕ(x2)],

= κϕ
2 δ(x1 − x2)+ (κϕ

1 )
2

= κϕ
2 δ(x1 − x2). (4.41)

As ϕ(x1) and ϕ(x2) are independent and mean free, G(2)
ϕSI

(x1,x2) is nonzero only when x1 = x2. Similarly, the
four point function is

G(4)(x1,x2,x3,x4) = κϕ
4 δ(x1 − x2)δ(x1 − x3)δ(x1 − x4)+ (κϕ

2 )
2 (δ(x1 − x2)δ(x3 − x4)

+δ(x1 − x3)δ(x2 − x4)+ δ(x1 − x4)δ(x2 − x3)) . (4.42)

The statistics of the theory is completely determined by the space independence assumption and the
cumulants κϕ

r . The general n-point function can be expressed as

G(n)(x1, . . . ,xn) =
∑
α∈Sn

∏
r∈α

G(r)
ϕSI,c

(x1, . . . ,xn), (4.43)

where Sn denotes partitions of the set {1, . . . ,n}.

4.5. Space-time independence breaking
Clearly we do not want to stop with SI theories. We will now introduce correlations between different space
points to ‘stitch together’ the L 0-dimensional theories (associated to the SI fields) into a d-dimensional FT.
This requires modifying the theory in some way so that there are non-trivial correlations between field values
at different points.

One way to do so is to define new field variables Φ(xI) as a function of the SI fields ϕ(xI),

Φ(xI) = Φ(ϕ(x1), . . . ,ϕ(xL)) . (4.44)

10 We remind the reader that space derivatives are ill-defined, as ϕ(x) is discontinuous everywhere. However, derivatives with respect to
J(xI) are still well defined.
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As the value of Φ at site xI in principle depends on the values of ϕ at all space points, Φ(xI) and Φ(xJ) are
correlated in general, even when I ̸= J. The statistics of Φ(xI) are then determined by the functional form of
(4.44), as well as the statistics of ϕ(xI). However, such a general formulation (4.44) is unwieldy, and we
therefore simplify the picture.

We will describe a family of architectures where Φ(xI) is constructed by a simpler ansätz, a smearing of
ϕ(a)a∈{x1,··· ,xL} across all space points, and write down a necessary and sufficient condition to satisfy cluster
decomposition. Consider the architecture,

Φ(xI) =

ˆ ∞

−∞
daf(xI − a)ϕ(a) (4.45)

for some continuous and differentiable function f(xI − a). First, note that although a generic draw of ϕ(a) is
discontinuous due to independence across different points in space, Φ(xI) is rendered continuous by the
smearing. Furthermore, if the function f is nonzero everywhere, Φ(xI) will have correlations between all
pairs of lattice sites.

We wish to check whether cluster decomposition is satisfied, and therefore need to compute correlation
functions of Φ(x). The Φ-correlators are given by

G(n)
Φ (x1, . . . ,xn) = Eϕ [Φ(x1) · · ·Φ(xn)] ,

= Eϕ

[
n∏

i=1

ˆ
dai f(xi − ai)ϕ(ai)

]
. (4.46)

As f does not depend on ϕ, we can carry out the expectation value over ϕ to obtain

G(n)
Φ (x1, . . . ,xn) =

ˆ n∏
i=1

dai f(xi − ai)G
(n)
ϕ (a1, . . . ,an), (4.47)

where G(n)
ϕ (a1, . . . ,an) is the n-point correlation function of ϕ. The only contribution to the connected

correlator of Φ(x) comes from the connected piece of G(n)
ϕ (a1, . . . ,an) with n delta functions11,

G(n)
c (x1, . . . ,xn) = κϕ

n

ˆ
dx

n∏
i=1

dai f(xi − ai)δ(x− ai). (4.48)

Evaluating the integral, we obtain

G(n)
c (x1, . . . ,xn) = κϕ

n

ˆ
dx

n∏
i

f(xi − x). (4.49)

Cluster decomposition is satisfied if and only if (4.49) asymptotes to zero in the limit where the separation
between any two of the space points xI,xJ is taken to∞. Any smearing function f (x) that decays faster than
1/x asymptotically satisfies this condition12.

4.5.1. Example: Gaussian smearing
We now present an example with a particular choice of the smearing function f and show that the resulting
theory satisfies cluster decomposition. Let

f(x) = e−
x2

β , (4.50)

Φ(x) =

ˆ
dae−

(x−a)2

β ϕ(a), (4.51)

for some β > 0. As before, we will consider a case where ϕ(x) at different space points are identically
distributed, with cumulants κn

ϕ.
13 Following equation (4.49), the cumulants of Φ(x) are then given by

11 The remaining terms factorize and do not contribute to the connected correlator.
12 Note that the SI theory automatically satisfies cluster decomposition as the connected correlator, cf (4.40), vanishes unless all space
points coincide.
13 As ϕ(x) are identically distributed, the cumulants do not depend on the space coordinates x.
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G(n)
c (x1, . . . ,xn) = κϕ

n

ˆ
dx

n∏
i=1

e−
(xi−x)2

β ,

= κϕ
n

√
πβ

n
exp
[
Mijxi xj/β

]
, (4.52)

where

Mij =

{
2
n − 2, if i = j
2
n , otherwise

(4.53)

This matrix is negative semidefinite, with eigenvalues λ1 = · · ·= λn−1 =−β/2, λn = 0, and the eigenvector

corresponding to λn is (1, · · · ,1). Consequently, the cumulant G(n)
c (x1, . . . ,xn) vanishes when any of the xi

are taken to be large, unless they coincide x1 = · · ·= xn. This theory thus satisfies cluster decomposition.
The dependence of the connected correlators (4.52) on the space coordinates xi is completely determined

by the choice of smearing function f, while their magnitudes depend both on f as well as the cumulants κn
ϕ.

Although our main motivation here has been to engineer NN architectures that satisfy cluster
decomposition, smearing layers offer great flexibility in manipulating the connected correlators and might be
useful in designing NN with other desired properties.

5. Conclusions

In this paper we continued the development of NN FT (NN-FT), a new approach to FT in which a theory is
specified by a NN architecture and a parameter density. This description enables a parameter space
description of the statistics, yielding a different method for computing correlation functions. For a more
detailed introduction to NN-FT, see the introduction and references therein.

We focused on three foundational aspects of NN-FT: non-Gaussianity, actions, and locality. Via the CLT,
many architectures admit an N→∞ limit in which the associated NN-FT is Gaussian, i.e. a generalized free
FT. In the ML literature, these are called NNGPs. In section 2 we demonstrated that interactions arise from
parametrically violating assumptions of the CLT, yielding non-Gaussianities arising from 1/N-corrections, as
well as the breaking of statistical independence and the identicalness assumption. These interactions are
apparent via parameter-space calculations of connected correlation functions, but manifest themselves as
non-Gaussianities in the field density P[ϕ] = exp(−S[ϕ]). In section 3 we developed a technique that allows
for the action to be computed from the connected correlation functions, via connected Feynman diagrams.
This is an inversion of the usual approach in FT: we compute coupling functions in terms of connected
correlators, rather than the other way around. The technique was applied to NN-FT, including an analysis
involving the parametric non-Gaussianities we studied. In section 4 we studied how to design architectures
that realize a given action. We do so by deforming an NNGP by an operator insertion that, from a
function-space perspective, corresponds to a deformation of the GP action. However, since we know the
architecture we may also express the deformation in parameter space, in which case the non-Gaussianity
associated to a given deformation of the action has a natural interpretation as a deformation of the NN
parameter density. That is, the interactions arise from independence breaking. We apply this technique to
induce local interactions, and derive an architecture that realizes ϕ4 theory as an infinite NN-FT.
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Appendix A. ContinuumHermite polynomials

Let us first recall the definition of continuum Hermite polynomials for convenience,

H(ϕ,x1, · · · ,xn) = (−1)neSG
δ

δϕ(x1)
· · · δ

δϕ(xn)
e−SG . (A.1)

Defining

Si =
δSG

δϕ(xi)
, Si,j =

δ2SG
δϕ(xi)δϕ(xj)

, (A.2)

the first six Hermite polynomials are,

H1(ϕ,x1) = S1,

H2(ϕ,x1,x2) = S1S2 − S1,2,

H3(ϕ,x1,x2,x3) = S1S2S3 − S1,2S3[3],

H4(ϕ,x1,x2,x3,x4) = S1S2S3S4 − S1,2S3S4[6] + S1,2S3,4[3],

H5(ϕ,x1,x2,x3,x4,x5) = S1S2S3S4S5 − S1,5S2S3S4[10] + S1,2S3,4S5[15],

H6(ϕ,x1,x2,x3,x4,x5,x6) = S1S2S3S4S5S6 − S1,6S2S3S4S5[15]

+ S1,2S3,4S5S6[45]− S1,2S3,4S5,6[15], (A.3)

where the square brackets denote sums over all terms with a given index structure, for example
S1,2S3[3] = S1,2S3 + S1,3S2 + S2,3S1.

Appendix B. Details of examples

B.1. ReLU-net cumulants at finiteN, i.i.d. parameters
Let us study the output distribution of a single hidden layer network at width N, ReLU activation function,
d= dout = 1, given by

ϕ(x) =W1
i R(W

0
ijxj) where R(z) =

{
z, for z⩾ 0

0, otherwise
. (B.1)

The parameters are sampled i.i.d.W0 ∼N (0,
σ2
W0
d ),W1 ∼N (0,

σ2
W1
N ), and bias= 0. The 2-pt function is

G(2)
c,ReLU(x,y) = σ2

W0
σ2
W1

(
R(x)R(y)+R(−x)R(−y)

)
/2, and higher order cumulants are

G(4)
c,ReLU(x1, · · · ,x4) =

1

N

(
15σ4

W0
σ4
W1

4d2

∑
j=±1

R( j x1)R( jx2)R( jx3)R( jx4)


−

σ4
W0
σ4
W1

4d2

 ∑
P(abcd)

∑
j=±1

R( j xa)R( j xb)R(−j xc)R(−j xd)

), (B.2)

G(6)
c,ReLU(x1, · · · ,x6) =

1
N2

[
225σ6

W0
σ6
W1

2d3

∑
j=±1

R( jx1)R( jx2)R( jx3)R( jx4)R( jx5)R( jx6)


−

∑
P(abcdef)

(
9σ6

W0
σ6
W1

4d3

∑
j1=±1

R( j1xa)R( j1xb)R( j1xc)R( j1xd)

∑
j2=±1

R( j2xe)R( j2xf)


−

σ6
W0
σ6
W1

4d3

∑
j1=±1

R( j1xa)R( j1xb)

∑
j2=±1

R( j2xc)R( j2xd)

∑
j3=±1

R( j3xe)R( j3xf)

)], (B.3)
where P(abcd) denotes all combinations of non-identical a,b, c,d drawn from {1,2,3,4}, and similarly for
P(abcdef).
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B.2. Cos-net cumulants at finiteN, non-i.i.d. parameters
The output of a single hidden layer, finite N, fully connected feedforward network with cosine activation
function is given by,

ϕ(x) =W1
i cos(W

0
ijxj + b0i ). (B.4)

For i.i.d. parameters, e.g.W1 ∼N (0,σ2
W1
/N),W0 ∼N (0,σ2

W0
/d), and b0 ∼ Unif[−π,π], the 2-pt function is

given by G(2)
c,Cos(x,y) =

σ2
W1
2 e−

1
2dσ

2
W0

(x−y)2 . For simplicity, we focus on the d= 1 case; the statistical
independence of first linear layer weights can be broken by a hyperparameter αIB ≪ 1, then the correlated
weight distribution is

P(W0) = cexp

[
−
∑
i

 (W0
i )

2

2σ2
W0

+
αIB

N2

∑
i1,i2

(W0
i1)

2(W0
i2)

2

], (B.5)

where c is a normalization constant. The cumulative non-Gaussian effects due to finite width and non-i.i.d.
parameters alter all correlation functions, including the 2-pt function at finite width. Using perturbation
theory at leading order in αIB, the 2nd and 4th cumulants are evaluated as the following,

G(2)
c,Cos(x1,x2) =

αIBσ
4
W0
σ2
W1
e−

σ2
W0

(∆x12)
2

2

2N

[(
1+σ2

W0
(∆x12)

2
)
−
(
1− 5σ2

W0
(∆x12)2 +σ4

W0
(∆x12)4

)
N

]
, (B.6)

G(4)
c,Cos(x1,x2,x3,x4) =

σ4
W1

8N

∑
P(abcd)

[(
− 2e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2 + 3e−
σ2
W0

(∆xab+∆xcd)
2

2

)

+
αIBσ

4
W0

N

(
− 6e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2 + 3e−
σ2
W0

(∆xab+∆xcd)
2

2 + 3σ2
W0
(∆xab +∆xcd)

2

× e−
σ2
W0

(∆xab+∆xcd)
2

2 − 2σ2
W0

(
(∆xab)

2 +(∆xcd)
2
)
e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2

− 2σ4
W0
(∆xab)

2(∆xcd)
2e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2

)]
, (B.7)

where∆xij := xi − xj. The Fourier transformation of this cumulant at αIB = 0 is

G̃(4)
c,Cos =

3π3/2σ4
W1

√
d

2
√
2NσW0

[
e
− p21d

2σ2
W0

(
δd(p1 + p2)δ

d(p1 + p3)δ
d(p4 − p1)+ δd(p2 − p1)δ

d(p1 + p3)

× δd(p1 + p4)+ δd(p1 + p2)δ
d(p3 − p1)δ

d(p1 + p4)
)]

−
πσ4

W1
d

2Nσ2
W0

[
e
− (p21+p22)d

2σ2
W0 δd(p1 + p4)δ

d(p2 + p3)

× e
− (p21+p22)d

2σ2
W0 δd(p1 + p3)δ

d(p2 + p4)+ e
− (p21+p23)d

2σ2
W0 δd(p1 + p2)δ

d(p3 + p4)

]
+ p1 ↔ p2,p3,p4, (B.8)

where use the convention ei(p1x1+p2x2+p3x3+p4x4).
Next, we present another example where non-Gaussianities arise due to both finite width and non-i.i.d.

parameters.

B.3. Gauss-net at finiteN, non-i.i.d. parameters
We define the Gauss-net architecture as a single hidden layer, width N, feedforward network with
exponential activation function, and an overall normalizing factor, such that the output is

ϕ(x) =
W1

i exp(W
0
ijxj + b0i )√

exp[2(σ2
b0
+

σ2
W0
d x2)]

. (B.9)

For i.i.d. parameter distributions,W0 ∼N (0,
σ2
W0
d ),W1 ∼N (0,

σ2
W1
N ), and b0 ∼N (0,σ2

b0
), the 2-pt function

is G(2)
c,Gauss(x,y) =

σ2
W1
2 e−

1
2dσ

2
W0

(x−y)2 , identical as Cos-net. We break the statistical independence of the first

33



Mach. Learn.: Sci. Technol. 5 (2024) 015002 M Demirtas et al

linear layer weights similar to the previous example, at d= 1. Then, the 2nd and 4th order cumulants at
leading order in αIB are,

G(2)
c,Gauss(x1,x2) =−

αIBσ
4
W0
σ2
W1

2N
e−

σ2
W0

(∆x12)
2

2

[(
σ2
W0
X2
12 − 1

)
−
(
1+ 5σ2

W0
X2
12 +σ4

W0
X4
12

)
N

]
, (B.10)

and,

G(4)
c,Gauss(x1,x2,x3,x4) =

3σ4
W1

exp

(
−σ2

W0
(x21−2x1(x2+X34)+x22−2x2X34+(∆x34)

2)
2

)
4N

+
αIBσ

4
W0
σ4
W1

4N2

(
3exp

(
−
σ2
W0

(
x21 − 2x1(x2 +X34)+ x22 − 2x2X34 +(∆x34)2

)
2

)

− 3σ2
W0
(X12 +X34)

2 exp

(
−
σ2
W0

(
x21 − 2x1(x2 +X34)+ x22 − 2x2X34 +(∆x34)2

)
2

)

−
∑

P(abcd)

(
3e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2 −σ2
W0

(
X2
ab +X2

cd

)
e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2

+σ4
W0
X2
abX

2
cd e

−
σ2
W0((∆xab)

2+(∆xcd)
2)

2

))
−
∑

P(abcd)

σ4
W1

4N
e−

σ2
W0((∆xab)

2+(∆xcd)
2)

2 , (B.11)

where Xij := xi + xj, and∆xij := xi − xj.
At αIB = 0, the Fourier transformation of this cumulant becomes the following

G̃(4)
c,Gauss =

π3/2σ4
W1

2
√
2N2d3/2σW0

[
e
− p21d

2σ2
W0 (d2N− dp21σ

2
W0

+ 2σ4
W0
)
(
δd(p1 + p2)δ

d(p1 + p3)

× δd(p4 − p1)+ δd(p2 − p1)δ
d(p1 + p3)δ

d(p1 + p4)+ δd(p1 + p2)δ
d(p3 − p1)δ

d(p1 + p4)
)]

−
πσ4

W1

2N2σ2
W0
d

[(
d2(N+ p21p

2
2)− 2d(p21 + p22)σ

2
W0

+ 6σ4
W0

)(
e
− (p21+p22)d

2σ2
W0 δd(p1 + p4)δ

d(p2 + p3)

× e
− (p21+p22)d

2σ2
W0 δd(p1 + p3)δ

d(p2 + p4)

)
+
(
d2(N+ p21p

2
3)− 2d(p21 + p23)σ

2
W0

+ 6σ4
W0

)
e
− (p21+p23)d

2σ2
W0

× δd(p1 + p2)δ
d(p3 + p4)

]
+ p1 ↔ p2,p3,p4, (B.12)

using the same convention as Cos-net.

B.4. Non-Gaussianity from non-identical parameter distributions
We discussed examples of NN architectures where non-Gaussianities arise at various widths, from the choice
of identical but correlated parameter distributions. In addition to this, it is possible to violate CLT through
independently drawn dissimilar NN parameter distributions; this too induces non-Gaussianities in NN
output distributions. Let us present an architecture where non-Gaussianities at infinite width limit arise due
to dissimilar and independent parameter distributions. Consider the NN architecture with output

ϕ(xk) =
N∑

j=−N

e−
j2

σ2 WL
j h

L−1
j (xk)+ bL, (B.13)

with parameters drawn fromW1 ∼N (0,σ2
WL
), bL ∼N (0,σ2

bL
), and hL−1

j (xk) denotes the output of jth

neuron in (L− 1)th hidden layer, from input xk. The presence of the prefactor e
− j2

σ2 at the jth node of final
linear layer leads to dissimilarities in the final layer parameter distributions. Let us study the first three
leading order cumulants at limN→∞,

G(2)
c (x1,x2) = lim

N→∞

N∑
j=−N

e−
2j2

σ2 σ2
WL
E[hL−1

j (x1)h
L−1
j (x2)] =

√
π

2
σσ2

WL
E[h(x1)h(x2)], (B.14)
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G(4)
c (x1, · · · ,x4) =

√
π

4
σσ4

WL

[
3E[h(x1) · · ·h(x4)]−

∑
P(abcd)

E[h(xa)h(xb)]E[h(xc)h(xd)]
]
, (B.15)

and

G(6)
c (x1,x2,x3,x4,x5,x6) =

√
π

6
σσ6

WL

[
15E[h(x1)h(x2)h(x3)h(x4)h(x5)h(x6)]− 3

∑
P(abcdef)(

E[h(xa)h(xb)h(xc)h(xd)]E[h(xe)h(xf)]− 2E[h(xa)h(xb)]E[h(xc)h(xd)]E[h(xe)h(xf)]
)]

. (B.16)

We used h(x) := hL−1(x), and identities E[(WL
j )

6] = 15σ6
W1
, E[(WL

j )
4] = 3σ4

W1
. All these cumulants are

nonvanishing at limN→∞; similarly, one can show that other higher order cumulants are non-vanishing
too, adding non-Gaussianities to the output distribution.

Appendix C. CGF and Edgeworth expansion for NNFT

We express the output of a single hidden layer width N NN as a sum over N continuous variables

ϕ(x) =
1√
N

N∑
i=1

hi(x), (C.1)

where hi(x) are the outputs of each neuron before they get summed up into the final output.

C.1. Finite N and I.I.D. parameters
The CGF for i.i.d. parameters P(h; α⃗= 0⃗) =

∏N
i=1Pi(hi) become the following

Wϕ(x)[J] = logE

[
e

1√
N

N∑
i=1

´
dxJ(x)hi(x)

]

= log

[
N∏

i=1

ˆ
Dhi Pi(hi) exp

(
1√
N

ˆ
dxJ(x)hi(x)

)]

=N log

[ ∞∑
r=0

r∏
i=1

ˆ
dxi

G(r)
hi
(x1, · · · ,xr)J(x1) · · · J(xr)

r!Nr/2

]

=
∞∑
r=0

r∏
i=1

ˆ
dxi

G(r)
c,hi

(x1, · · · ,xr)J(x1) · · · J(xr)
r!Nr/2−1

(C.2)

where J(x) and hi(x) are the source current and output of ith neuron, respectively. In the second last step, we
have used the following relation,

∞∑
r=0

r∏
i=1

ˆ
dxi

G(r)
hi
(x1, · · · ,xr)J(x1) · · · J(xr)

r!Nr/2
= e

∞∑
r=0

1

r!Nr/2

´ ( r∏
i=1

dxi
)
G(r)
c,hi

(x1,··· ,xr)J(x1)···J(xr)
. (C.3)

Lastly, we useW[J] =
∞∑
r=0

( r∏
i=1

´
dxi
)G(r)

c (x1,··· ,xr)J(x1)···J(xr)
r! to obtain

G(r)
c (x1, · · · ,xr)J(x1) · · · J(xr) =

G(r)
c,hi

(x1, · · · ,xr)J(x1) · · · J(xr)
Nr/2−1

, (C.4)

with a N-scaling of cumulants, as expected.

C.2. Correlated parameters at finiteN
Let α⃗= {α1, · · · ,αq} be parameters breaking statistical independence between neurons. For small α⃗, one can
write

P(h; α⃗) = P(h; α⃗= 0⃗)+
∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!
∂αs1

· · ·∂αsr
P(h; α⃗)

∣∣∣
α⃗=0

. (C.5)
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One can define the rth derivative as ∂αs1
· · ·∂αsr

P(h; α⃗) = P(h; α⃗)Pr,{s1,··· ,sr}; the recursive relation satisfied
by Pr,{s1,··· ,sr} is

Pr+1,{s1,··· ,sr+1} =
1

r+ 1

r+1∑
γ=1

(P1,sγ + ∂αsγ
)Pr,{s1,··· ,sr+1}\sγ . (C.6)

With this, the NN parameter distribution can be expressed as

P(h; α⃗) = P(h; α⃗= 0⃗)+
∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!
P(h; α⃗)Pr,{s1,··· ,sr}

∣∣
α⃗=0

(C.7)

Next, let us derive the CGF for the NN functional distribution,

Wα⃗[J] = log

[ˆ
DhP(h; α⃗)e

1√
N

N∑
i=1

´
dxhi(x)J(x)

]

= log

[
N∏

i=1

EPi(hi)

[(
1+

∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!
Pr,{s1,··· ,sr}

∣∣
α⃗=0

)
e

1√
N

´
dxhi (x)J(x)

]]

= log

[
eWfree[J] +

∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!

N∏
i=1

EPi(hi)

[
e

1√
N

´
dxhi(x)J(x) · Pr,{s1,··· ,sr}

∣∣
α⃗=0

]]
. (C.8)

The last line is obtained using

N∏
i=1

EPi(hi)

[
e

1√
N

´
dx J(x)hi(x)

]
= exp

(
N

∞∑
r=0

ˆ r∏
i=1

dxi
G(r)
c,hi

(x1, · · · ,xr)J(x1) · · · J(xr)
r!Nr/2−1

)
= eWfree[J]. (C.9)

At limN→∞, we obtainWfree[J] =
´
dx1dx2

J(x1)G
(2)
c,hi

(x1,x2) J(x2)

2 .
The partition function of a FT is related to its CGF as

Z[J(x)] = E[ei
´
J(x)ϕ(x)] =

N∏
i=1

ˆ
DhPi(hi)e

i√
N

´
dxJ(x)hi(x). (C.10)

Under the transformation J→ i J, the CGF becomes,

W[J] =
∞∑
r=1

ˆ r∏
j=1

dxj
ir

r!
G(r)
c (x1, · · · ,xr)J(x1) · · · J(xr) =:

∞∑
r=1

ˆ r∏
j=1

dxj
ir

r!
G(r)
c Jr, (C.11)

the inverse Fourier transform of which, up to renormalization, is

P[ϕ]∝
ˆ

DJeW[J]−i
´
dxJ(x)ϕ(x)

=

ˆ
DJe

∞∑
r=1

´
dx1···dxr i

r

r!G
(r)
c (x1,··· ,xr) Jr− i

´
dxJ(x)ϕ(x)

=

ˆ
DJe

∞∑
r=3

´
dx1···dxr i

r

r!G
(r)
c (x1,··· ,xr) Jr

e−i
´
dx J(x)ϕ(x) e

i
´
dx1 G

(1)
c (x1) J1
1! −

´
dx1dx2 G

(2)
c (x1,x2) J2
2!

=

ˆ
DJe

∞∑
r=3

´
dx1···dxr (−1)r

r! G(r)
c (x1,··· ,xr)∂r

e−i
´
dx J(x)ϕ(x)

× ei
´
dx1 J(x1)G

(1)
c (x1)− 1

2

´
dx1 dx2 J(x1)G

(2)
c (x1,x2)J(x2), (C.12)

where ∂r =
δ

δϕ(x1)
· · · δ

δϕ(xr)
. Next, we evaluate the integral associated with the Gaussian process,

ˆ
DJe−i

´
dx1 J(x1)ϕ(x1)+i

´
dx1 J(x1)G

(1)
c (x1)− 1

2

´
dx1 dx2 J(x1)G

(2)
c (x1,x2)J(x2), (C.13)
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using a change of variables J ′(x)→ J(x)+ i
´
dx ′G(2)

c (x,x ′)−1[ϕ(x ′)−G(1)
c (x ′)] that keeps the measure of

the source DJ→ DJ ′ invariant. We obtain

−SG =−i

ˆ
dxJ(x)[ϕ(x)−G(1)

c (x)]− 1

2

ˆ
dx1dx2 J(x1)G

(2)
c (x1,x2) J(x2)

= −1

2

ˆ
dx1 dx2

[
J(x1)+ i

ˆ
dx ′G(2)

c (x1,x
′)−1[ϕ(x ′)−G(1)

c (x ′)]

]
G(2)
c (x1,x2)

[
J(x2)

+ i

ˆ
dx ′ ′G(2)

c (x2,x
′ ′)−1[ϕ(x ′ ′)−G(1)

c (x ′ ′)]
]
− 1

2

ˆ
dx ′ ′ dx ′ dx1 dx2 [ϕ(x

′ ′)−G(1)
c (x ′ ′)]

×G(2)
c (x ′ ′,x2)

−1G(2)
c (x2,x1)G

(2)
c (x1,x

′)−1 [ϕ(x ′)−G(1)
c (x ′)]

=−1

2

ˆ
dx1 dx2 J

′(x1)G
(2)
c (x1,x2) J

′(x2)−
1

2

ˆ
dxdx ′ [ϕ(x)−G(1)

c (x)]G(2)
c (x,x ′)−1

× [ϕ(x ′)−G(1)
c (x ′)] (C.14)

An integration over J′ results in the distribution

e−
1
2

´
dxdx ′ [ϕ(x)−G(1)

c (x)]G(2)
c (x,x ′)−1 [ϕ(x ′)−G(1)

c (x ′)],

such that

P[ϕ] = e

∞∑
r=3

´
dx1···dxr (−1)r

r! G(r)
c (x1,··· ,xr)∂r

e−
1
2

´
dxdx ′ [ϕ(x)−G(1)

c (x)]G(2)
c (x,x ′)−1 [ϕ(x ′)−G(1)

c (x ′)]. (C.15)

We obtain perturbative corrections around the Gaussian field density by expanding the first exponential
term in (C.15) as a series; contributions from higher order cumulants become increasingly less significant in
most cases.

C.3. 4-pt function at finiteN, non-i.i.d. parameters
Next, we evaluate the 4-pt function of this NNFT with the following CGF

Wϕ[J] = log

[
eWϕ,α⃗=0[J] +

∞∑
r=1

q∑
s1,··· ,sr=1

αs1 · · ·αsr

r!

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x) · Pr,{s1,··· ,sr}

∣∣
α⃗=0

]]
. (C.16)

For appropriately small α⃗, the ratio of the second term in the logarithm to the first is small, and one can
Taylor expand log(1+ x)≈ x to obtain,

Wϕ[J] =Wϕ,α⃗=0[J] +

q∑
s=1

αs

eWϕ,α⃗=0[J]

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x) · P1,s

∣∣
α⃗=0

]
. (C.17)

The 4-pt function is obtained as G(4)
c (x1, · · · ,x4) = ∂4Wϕ[J]

∂J(x1)···∂J(x4)
∣∣
J=0

. We abbreviate

M=

q∑
s=1

αs

eWϕ,α⃗=0[J]

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x) · P1,s

∣∣
α⃗=0

]
, (C.18)

then, G(4)
c (x1, · · · ,x4) = ∂4Wϕ,α⃗=0[J]

∂J(x1)···∂J(x4)

∣∣∣
J=0

+ ∂4M
∂J(x1)···∂J(x4)

∣∣∣
J=0

.

Next, we evaluate the fourth J-derivative ofM and turn the source J off,

∂4M

∂J1 · · ·∂J4

∣∣∣
J=0

=

q∑
s=1

αs

eWϕ,α⃗=0[J]

(
N∏

i=1

EPi(hi)

[ˆ
ddx1 · · ·ddx4

hi(x1) · · ·hi(x4)
N2

e
1√
N

´
ddxhi(x)J(x)P1,s

∣∣
α⃗=0

]

+
∑

P(abce)

[(
∂Wϕ,α⃗=0[J]

∂Ja

∂Wϕ,α⃗=0[J]

∂Jb
−

∂2Wϕ,α⃗=0[J]

∂Ja∂Jb

) N∏
i=1

EPi(hi)

[ˆ
ddxcd

dxe
hi(xc)hi(xe)

N

· e
1√
N

´
ddxhi(x)J(x) · P1,s

∣∣
α⃗=0

]
−
(
∂Wϕ,α⃗=0[J]

∂Ja

∂Wϕ,α⃗=0[J]

∂Jb

∂Wϕ,α⃗=0[J]

∂Jc
−

∂2Wϕ,α⃗=0[J]

∂Ja∂Jb

·
∂Wϕ,α⃗=0[J]

∂Jc
+

∂3Wϕ,α⃗=0[J]

∂Ja∂Jb∂Jc

) N∏
i=1

EPi(hi)

[ˆ
ddxe

hi(xe)√
N

e
1√
N

´
ddxhi(x)J(x)P1,s

∣∣
α⃗=0

]
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+

(
∂Wϕ,α⃗=0[J]

∂J1

∂Wϕ,α⃗=0[J]

∂J2

∂Wϕ,α⃗=0[J]

∂J3

∂Wϕ,α⃗=0[J]

∂J4
+

∂2Wϕ,α⃗=0[J]

∂Ja∂Jb

∂2Wϕ,α⃗=0[J]

∂Jc∂Je

−
∂Wϕ,α⃗=0[J]

∂Ja

∂Wϕ,α⃗=0[J]

∂Jb

∂2Wϕ,α⃗=0[J]

∂Jc∂Je
+

∂3Wϕ,α⃗=0[J]

∂Ja∂Jb∂Jc

∂Wϕ,α⃗=0[J]

∂Je
−

∂4Wϕ,α⃗=0[J]

∂J1∂J2∂J3∂J4

)
×

N∏
i=1

EPi(hi)

[
e

1√
N

´
ddxhi(x)J(x)P1,s

∣∣
α⃗=0

]
−

N∏
i=1

EPi(hi)

[ˆ
ddxbd

dxcd
dxe

hi(xb)hi(xc)hi(xe)

N3/2

× e
1√
N

´
ddxhi(x)J(x)P1,s

∣∣
α⃗=0

]
∂Wϕ,α⃗=0[J]

∂Ja

])∣∣∣∣∣
J=0

:= α⃗ ·∆G(4)
c (x1, · · · ,x4),

where we use the abbreviation J(xi) := Ji. In the mean-free case,

∂Wϕ,α⃗=0[J]

∂Ja

∣∣∣
J=0

=
∂3Wϕ,α⃗=0[J]

∂Ja∂Jb∂Jc

∣∣∣
J=0

= 0, (C.19)

∂4Wϕ,α⃗=0[J]

∂J1∂J2∂J3∂J4

∣∣∣
J=0

= G(4),i.i.d.
c (x1, · · · ,x4),

∂2Wϕ,α⃗=0[J]

∂Ja∂Jb

∣∣∣
J=0

= G(2),i.i.d.
c (xa,xb). (C.20)

Thus, the 4-pt function is

G(4)
c (x1, · · · ,x4) = G(4),i.i.d.

c (x1, · · · ,x4)

+

q∑
s=1

αs

eWϕ,α⃗=0[J=0]

(
N∏

i=1

EPi(hi)

[ˆ
ddx1 · · ·ddx4

hi(x1) · · ·hi(x4)
N2

P1,s

∣∣
α⃗=0

]

+
∑

P(abce)

[
−G(2),i.i.d.

c (xa,xb)
N∏

i=1

EPi(hi)

[ˆ
ddxcd

dxe
hi(xc)hi(xe)

N
P1,s

∣∣
α⃗=0

]

+
(
G(2),i.i.d.
c (xa,xb)G

(2),i.i.d.
c (xc,xe)−G(4),i.i.d.

c (x1, · · · ,x4)
) N∏

i=1

EPi(hi)

[
P1,s

∣∣
α⃗=0

]])
,

= G(4),i.i.d.
c (x1, · · · ,x4)+ α⃗ ·∆G(4)

c (x1, · · · ,x4)+O(α⃗2). (C.21)

at leading order.

Appendix D. Fourier transformation trick forG(2)
c (x,y)−1

Let us evaluate the expression

ˆ
dy1 · · ·dynG(n)

c (y1, · · · ,yn)G(2)
c (y1,x1)

−1 · · ·G(2)
c (yn,xn)

−1, (D.1)

when G(2)
c (yi,xi)−1 involves differential operators. The integrals over yi cannot be directly evaluated as the

eigenvalues of each G(2)
c (yi,xi)−1 are unknown. To avoid this problem, we substitute the operators and

cumulant with their Fourier transformations,
ˆ

ddy1 · · ·ddyn ddp1 · · ·ddpn ddq1 · · ·ddqn ddr1 · · ·ddrn G̃(n)
c (p1, · · · ,pn) G̃(2)

c (q1, r1)
−1

· · · G̃(2)
c (qn, rn)

−1 ei y1(p1+q1)+ir1x1···+i y1(pn+qn)+irnxn

=

ˆ
ddp1 · · ·ddpn ddr1 · · ·ddrn G̃(n)

c (p1, · · · ,pn) G̃(2)
c (−p1, r1)

−1 · · · G̃(2)
c (−pn, rn)

−1e
i

n∑
j=1

rjxj
. (D.2)

Here f̃ is the Fourier transformation of f, and we obtained the second line by evaluating yi integrals to get
δd(pi + qi), then integrating qi variables.

When G(2)
c is translation invariant, we have G(2)

c (yi,xi)−1 ∝ δd(yi − xi), leading to further simplification
of the above expression as,

ˆ
ddp1 · · ·ddpn G̃(n)

c (p1, · · · ,pn) G̃(2)
c (−p1)

−1 · · · G̃(2)
c (−pn)

−1e−i p1x1···−ipnxn . (D.3)

We exemplify this expression for Cos-net and Gauss-net architectures.
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Appendix E. Gaussian processes: locality and translation invariance

Any Gaussian process (GP) can be described as a function space distribution given by action S,

S=

ˆ
dxdy f(x)G(2)

c (x,y)−1 f(y), (E.1)

where G(2)
c (x,y)−1 is the precision function, related to the GP kernel by the inversion formula

ˆ
dyG(2)

c (x,y)−1K(y,z) = δ(x− z). (E.2)

A local GP can be defined as a family of functions with a completely diagonalizable precision operator,
resulting in the action

S=

ˆ
dxf(x)G(2)

c (x)−1 f(x), (E.3)

with the inversion relation simplified into

G(2)
c (x)−1K(x,z) = δ(x− z). (E.4)

This can be seen by considering G(2)
c (x,y)−1 = δ(x− y)Σ(x) and performing the integral over y in equation

(E.2). A Gaussian process can always be written in a local basis, as we will show below.

E.1. Gaussian process action in the local basis
Any Gaussian Process f (x), when evaluated at a discrete set of inputs {xi}i, forms a multivariate Gaussian
distribution. The covariance matrix of a multivariate Gaussian is a real symmetric matrix, and thus can be
diagonalized. We can use this diagonalization procedure on the Gaussian process distribution itself, thereby
rewriting it with a kernel proportional to a Dirac delta function,

S=−1

2

ˆ
ddxi d

dxl f(xi)G
(2)
c (xi,xl)

−1 f(xl),

=−1

2

ˆ
ddxi d

dxjd
dxkd

dxlf(xi)V(xi,xj)D(xj,xk)V
−1(xk,xl)f(xl),

=−1

2

ˆ
ddxk

[ˆ
ddxi V(xi,xk)f(xk)

]
Σ(xk)

[ˆ
ddxlV

−1(xk,xl)f(xl)

]
,

=−1

2

ˆ
ddxϕT(x)Σ(x)ϕ(x), (E.5)

where ϕ(x) :=
´
ddy f(y)V(y,x) and last step of (E.5) is obtained by xk −→ x. D(x,y) is defined as

D(xi,xl) = δ(xi − xl)Σ(xi) =
´
ddxjddxkV−1(xi,xj)G

(2)
c (xj,xk)−1V(xk,xl).
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