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Abstract

Quantum neural networks (QNN5s) are often challenged with the problem of flat cost function
landscapes during training, known as barren plateaus (BP). A solution to potentially overcome the
problem of the BP has recently been proposed by Cerezo et al In this solution, it is shown that, for
an arbitrary deep quantum layer(s) in QNN:s, a global cost function (all qubits measured in an
n-qubit system) will always experience BP, whereas a local cost function (single qubit measured in
an n-qubit system) can help to alleviate the problem of BP to a certain depth (O(log(#))). In this
paper, we empirically analyze the locality and globality of the cost function in hybrid quantum
neural networks. We consider two application scenarios namely, binary and multi-class
classification, and show that for multiclass classification, the local cost function setting does not
follow the claims of Cerezo et al; that is, the local cost function does not result in an extended
quantum layer’s depth. We also show that for multiclass classification, the overall performance in
terms of accuracy for the global cost function setting is significantly higher than the local cost
function setting. On the other hand, for binary classification, our results show that the local cost
function setting follows the claims of Cerezo et al, and results in an extended depth of quantum
layers. However, the global cost function setting still performs slightly better than the local cost
function.

1. Introduction

One of the greatest scientific revolutions of the 21st century is the development of machine learning (ML)
and neural networks (NNs). Unlike traditional approaches, where explicit programming is required to
perform a specific task, in ML, the machine is trained to learn from data [1] to solve the problems on new
unseen data [2]. Today, ML algorithms have become a favorable choice for almost every plausible task
ranging from healthcare [3] to marketing [4] and fraud detection [5].

Over the last few decades, artificial NN, in particular deep neural networks, have seen tremendous
progress and are proven to be successful for a variety of applications, such as question answering [6], object
detection [7], and social recommendation [8]. Despite their phenomenal success, training NNs faces some
challenges, such as overfitting [9]; in fact, training NN has recently been shown to be an NP-hard problem
[10, 11]. These challenges motivated new efforts to look for alternative approaches to deep learning.

Recently, the advent of noisy intermediate scale quantum (NISQ) devices [12-15] facilitated the
exploration of different (classical) applications for the post-quantum era. Among others, quantum machine
learning (QML) has recently emerged as a potential application of quantum computation as a by-product of
conceptual cross-fertilization of quantum computation and ML [16—18]. QML focuses on achieving the
quantum advantage in ML applications by harnessing the fundamental properties of quantum mechanics,
like superposition and entanglement [19-22]. Quantum advantage essentially entails more efficient
problem-solving than the best existing classical computers. Consequently, many ML algorithms have been
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studied in the quantum domain, such as quantum linear regression [23], balanced k-means clustering [24],
and quantum support vector machines [25-27].

A number of deep learning approaches for quantum systems have also been proposed [28—32]. However,
the majority of these proposals are not suitable for NISQ devices; and those which are, do not have a
one-to-one correspondence with classical artificial NNs [33]. Consequently, there has been a growing
interest in developing hybrid approach (a combination of classical and quantum processing) that is also
compatible with NISQ devices [34]. In the context of quantum neural networks (QNNs), hybrid quantum
neural networks (HQNNS) are frequently been used to analyze the much-anticipated quantum advantage in
QNN applications. The term hybrid in HQNNs essentially entails the classical input preprocessing, classically
post-processing of the QNN’s output, and classical optimization routines. Since the HQNN s entirely
replicate QNN with only the addition of input preprocessing and output post-processing, therefore
HQNN’s analysis is directly applicable to QNNs and vice versa.

To this end, parameterized quantum circuits (PQCs) emerged as promising quantum versions of artificial
neurons [18, 22, 35-38]. PQCs are classically optimizable quantum circuits and are robust against device
errors [39]. PQCs, followed by data embedding, are often called QNNs. QNNs have been proposed for
various applications, such as transfer learning [40], generative modeling [41-45] and classification [22, 39,
46-51]. Analogous to classical NNs, where classical parameters are optimized during training, in HQNNS,
the quantum parameters need to be optimized too [18, 30, 35, 46, 52], which is not a straightforward task.
Therefore, a significant amount of research has been focused on the development of the quantum landscape
theory [53], which explores the properties of HQNNs (or QML in general) cost function landscapes.
Recently, there have been some interesting results in QNN’s training landscapes, such as the presence of
barren plateaus (BP) [54, 55], the existence of sub-optimal local minima [56], noise effects in cost function
landscapes [57-60] and a global or local definition of the cost function to somehow overcome the (BP)
problem [55, 61].

In this paper, we empirically investigate the globality and locality of the cost function in relation to the
occurrence of BP in HQNN:Ss for real-world applications, typically binary and multi-class classification. The
globality and locality of the cost function in HQNNS essentially mean all and single qubit measurements
respectively, in the underlying PQC a.k.a hidden quantum layers'.

1.1. Related work

The phenomenon of BP is rapidly becoming a pressing challenge in QNNss training, first demonstrated in
[54]. The BP is the phenomenon when the gradients in the cost function landscapes become exponentially
flat with system size and are not further optimizable to reach the global minimum. In the introductory study
on BP occurrence during QNN training [54], the authors showed that for randomly initialized PQCs of
O(poly(n)), the variance of partial derivatives of the parameters vanishes exponentially with the number of
qubits. However, their results were based on the fact that the PQCs subject to training forms 2-design, i.e. the
ability to sample all the unitaries in Hilbert space. The PQCs capable of forming a 2-design are usually
considered to be more expressible and in practice, a sufficiently deep PQC can approximate a 2-design,

e.g. hardware efficient ansatz of depth O(poly(n)) [62, 63].

The flat cost function landscapes make QNNs untrainable, resulting in significant performance
deterioration, which limits QNN’s use in real-world applications. The trainability (parameters subject to
training are being optimized after every epoch) of QNNs has become challenging due to the problem of BPs.
To this end, there have been some efforts to study the root cause of BPs in QNNs, which eventually would
lead to a potential solution to avoid or at least delay the occurrence of BPs. Some recent studies reported
possible causes of BPs, such as the noise levels in high-depth quantum circuits [57, 64—67], the approach used
to encode the data into PQCs [22], and the type of entanglement being used [68]. These root causes of BPs in
QNN provided important insights that may lead to solutions. Consequently, a number of solutions have
been proposed, including careful parameter initialization strategies in random PQCs [48, 69]. Another study
[70] proposing the layer-wise training of QNNs shows that by incrementally increasing the underlying PQC’s
depth, the generalization can be reduced by a significant amount, showing enhanced trainability of QNNs.
The initial study on BPs in QNNs [54] proved the existence of BPs for PQCs whose unitary transformation
forms a 2-design, i.e. the underlying PQCs exhibit the maximum possible expressibility, ultimately leading to
a conclusion that the underlying PQCs should indeed be very expressible to get exposed to BPs. This
conclusion linked the occurrence of BPs with underlying PQC’s expressibility. To this end, there have been
some recent works analyzing the PQC’s expressibility with respect to gradient magnitudes [37, 55, 71].

1 From this point onward we use PQC, ansatz, and quantum layers interchangeably.
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In [71], the authors show that expressible PQCs are more susceptible to BP as compared to the PQCs
having lesser expressibility. However, expressible PQCs are still a favorable choice due to their potential to
provide solutions for a wide range of problems. These results connect the BPs with the underlying PQC’s
depth in QNNs. A recent study investigated the existence of BPs for shallow PQCs in comparison with deep
PQCs in [55], where it has been shown that by making the phenomenon of BP dependent on the cost
function, it can be extended to shallow circuits (see section 2.3). Their results lead to the conclusion that
along with other sources of flat cost function landscape, the underlying ansatz’s’ expressibility and cost
function’s globality can also induce the so-called BPs. The authors reported in [55], that the global cost
function (all qubit measurement in an n-qubit system), irrespective of PQC’s depth, will experience BP,
whereas the local cost function (single-qubit measurement in an n-qubit system) will have a delayed
occurrence of BP and hence allows more expressibility. The cost function globality and locality from the BP
aspect is separately discussed in section 2.3. While these results are relevant in standalone QNN:gs, it is not
clear how all these phenomena affect the trainability of HQNNS, which are of significant importance in
NISQ regime.

1.2. Contribution

In this paper, we empirically analyze how BP affects the performance of HQNNs with respect to cost
function globality and locality. We consider two real-world applications, namely: binary classification and
multi-class classification. In our evaluation, we consider a single hardware-efficient periodic ansatz structure
and vary the number of measurement observables (single and all-qubit observables in an n-qubit system).
We train the PQCs (with both global and local cost functions) for different widths (number of qubits) and
depths (number of times the PQC is repeated). The training results are then analyzed to verify the existence
of BPs in HQNNS. Furthermore, PQCs with both global and local cost functions are compared to investigate
the impact of the cost function globality and locality during HQNNSs training. Our results demonstrate that
for multiclass classification, HQNN s with global cost function setting perform significantly better than
HQNNSs with local cost function setting. However, for binary classification, both global and local function
settings achieve comparable performance.

1.3. Organization

The rest of the paper is organized as follows: section 2 provides an overview of QNNs and their general
structure. Moreover, the details about the hybrid QNNs and cost function globality and locality are also
presented in this section. The complete methodology and experimentation details are presented in section 3.
The experimental setup, along with dataset specifications are discussed in section 4. Section 5 presents

and discusses the results of both PQCs (global and local) for binary and multi-class classification. The
performance of both the PQC structures is also compared in this section. Finally, section 6 concludes the

paper.

2. Background

In this section, we provide a brief background on QNNs and HQNNs. We discuss the general architecture of
QNNs and describe it in detail. We also provide a brief background on data encoding approaches as used in
this work. Furthermore, we discuss how parameter gradients are calculated in QNNs. We then provide
similar details for HQNNS. Finally, we briefly define what cost functions are and discuss their globality and
locality in the context of QNNss.

2.1. QNNs
QNN contain parameterized gate operations [47, 72]. A typical architecture of QNN is depicted in figure 1.
QNN typically work in four steps, namely; (a) qubit initialization (b) classical to quantum feature mapping,
a.k.a data encoding (c) unitary evolution via a PQC, and (d) qubit measurements which eventually give the
output of the final network. The qubit initialization step is the definition of the number of qubits and is often
dependent on the input size and the adopted data encoding strategy. The embedding or feature mapping step
is usually not trained and optimized during the whole learning process, although there have been proposals
to make the state preparation routines trainable [73]. The mapped features are then passed to the following
PQC where they are trained and optimized for a particular application [31, 52, 74]. The optimization is
usually performed by defining and minimizing a cost function.

Feature mapping from classical to quantum (x — E(x)) is a crucial step while constructing QNNs and
may significantly impact the overall learning process. The most common embedding techniques for encoding

2 In PQC context, ansatz is a quantum subroutine consisting of a sequence of gates applied to specific wires.
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Figure 1. Typical QNN Architecture. The first box (from left) is the feature mapping step which prepares the quantum state
[x) = 191,92, - - - qa), which is then processed by PQC, i.e, |¢) = U (0) and finally the measurement is performed, i.e.

Ify = {#0l¢).

classical data into quantum states in QNN are amplitude and angle embedding. Amplitude embedding [39]
encodes the input into the qubit state vector. Equation (1) typically represents amplitude embedding, which
can encode 2" input features into an n-qubit system. A limitation of amplitude encoding is the requirement
of normalized classical vectors leading to one less dimensional representation. Angle encoding [75], on the
other hand, encodes the data into qubit rotation angles and is conjectured to be more suitable for QNN [48,
76]. Equation (2) is a typical representation of angle encoding. Angle encoding usually encodes a single input
feature per qubit and hence can encode 7 input features into an n-qubit system,

xl on

e b =D xili) (1)

Xon =1

N cos (x@) —sin (x@>
j j
Sy = ® U; where U;:= ) i . 2)
im1 sin (xj(')) cos (xj(’))

Optimization is the ultimate goal in all ML tasks. In traditional ML, optimization is done by defining some
cost function. The value of the cost function is then processed by an optimization algorithm, like gradient
descent, which determines the cost minimizing direction by taking the derivative with respect to each
parameter. In PQCs, the output, i.e. expectation value of observable(s), can be written as a quantum function
(f(0)), which is parameterized by 6 = 6,,6,,.... The partial derivatives of (f{¢)) can be expressed as a linear
combination of other quantum functions. This is typically done by the same PQC, with only a difference in
shift argument, leading to the fact that the same PQC architecture can be used to calculate the partial
derivatives. The calculation of the partial derivative of a PQC using its parameter shifted instances is called
the parameter shift rule [77, 78], and is shown in the following equation, where s is the shift argument,

af  flOi+s) —f(0; —s)
a0 > . (3)

2.2. HQNNs

Due to the limitations imposed by NISQ devices (mainly in the number of qubits), HQNNSs are frequently
used to analyze the quantum advantage of QNNs. HQNNSs perform a particular learning task by exploiting
both classical and quantum devices for training and optimization. In a typical HQNN architecture, a general
QNN architecture (figure 1) is entirely replicated, as shown in figure 2. The only difference is the input
preprocessing before passing it to QNN and classically postprocessing the output of QNN and interpreting it
in a meaningful way.

The input preprocessing in HQNNS is generally performed to downscale the input size. This
preprocessing step is important to cope with the limited number of qubits available in NISQ devices. The
downscaling of input is usually performed through some dimensionality reduction algorithm or a classical
layer with fewer neurons. It is important to note here that the input preprocessing step is not always needed
and is dependent on the size of the input, the strength of the target quantum device, and the type of data
encoding strategy used. Once the input data is within a reasonable limit, it is then passed to QNN to be
mapped to quantum feature space and trained using a PQC, as discussed in section 2.1. Finally, the output of
QNN is post-processed classically to obtain the final prediction/output. The postprocessing is usually done
by a classical neuron layer, where a classical optimization routine is also defined. The non-linearity between
the hidden layers in classical NN is one of the major factors behind their tremendous success. On the other
hand, the quantum operations are naturally linear and inducing non-linearity between quantum layers is
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Figure 2. General Architecture of HQNN. The blue and yellow shaded regions are classical and quantum parts respectively. The
dotted line from input to QNN represents the case when no input preprocessing is required and the data is directly passed to
QNN.

challenging. This is where the HQNNSs provide an added advantage along with input downscaling.
The classical neurons layer at the end of QNN allows the application of a familiar non-linear activation from
traditional ML.

2.3. Cost function

In ML, the cost function is usually used to evaluate the model’s performance. The cost function typically
measures how wrong the model is in finding a relation between the input and output. In other words, the
cost function tells us how badly the model is performing. The objective of an ML model is to determine the
optimal set of values for model parameters by finding the global minima of the cost function. This is
typically done via an optimization algorithm. For classification problems, cross-entropy is a very popular and
frequently used cost function. Similarly, gradient-based optimization algorithms such as Adam optimizer are
commonly used. The optimizer iteratively updates the parameters by calculating the partial derivatives of the
cost function with respect to model parameters until the best set of parameters (global minima) is reached.
In PQCs, the output of PQCs can be differentiated using the parameter shift rule [77, 78].

In [54], where the issue of BPs in QNN has first been discussed, the authors proved that for
hardware-efficient ansatz, the BPs occur for the ansatz depth of order, O(poly(n)). However, in a recently
proposed solution to tackle BPs in QNNs [55], the authors claimed that the issue of BPs in relation to the
underlying ansatz expressibility could be alleviated by making it dependent on the cost function.
Consequently, two cost functions have been studied in QNN [55], namely: global cost functions and local
cost functions. These functions are described in the following equations:

Co=Tr [oGV(e) I40) (o] V(6) } with O =1—0)(0| (4)

G =Tr[0V(®) )0 V(B)']  with oLzl_%Z|o><o|j®1j (5)

j=1

where 1; represents the identity operation on all qubits except j.

Equation (3) refers to global cost functions, while equation (4) refers to local cost functions respectively.
It is important to note here that both these equation represents the global and local cost function setting for
an example of state preparation, where the goal is to find a gate sequence that prepares a target state |1)). The
observable O acts on all qubits in the global cost function setting, and it acts on a single qubit in the local cost
function setting.

Furthermore, in [55], the authors assume that the ansatz subject to training forms a 2-design. Their main
results show that for a global cost function, irrespective of the ansatz depth (O(1),O(log(n)),
O(poly(log(n))), O(poly(n))), the problem of BPs will always occur. However, in the case of the local cost
function, the gradient’s variance vanishes at worst polynomially, and the QNN is, therefore, trainable up to a
depth of order (O(log(n))). The BPs start appearing for depth of order (O(poly(#))) for local cost function
and in between these regions, there is a transition region where gradients decay from polynomial to
exponential.

3. Methodology

In this paper, we empirically analyze the recently proposed solution to somehow tackle the problem of BPs
for shallow ansatzes in QNNs [55]. The solution aims to potentially delay the occurrence of BP, which
enables an extended ansatz depth (more expressibility), resulting in a greater number of trainable
parameters, and eventually leading to better performance. Although the proposed solution in [55] considers
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Figure 3. Complete HQNN architecture used in this work. (a) HQNN architecture for multiclass classification. The input is
passed to the dimensionality reduction algorithm in the case of amplitude encoding, whereas the data is directly passed to QNN
when data encoding is done via angle encoding. The blue lines are connected in the case of the local cost function and both blue
and red lines are connected in the case of the global cost function. The blue and green shaded region denotes the input
preprocessing and output post-processing respectively. (b) HQNN architecture update for binary classification. The classical
dense layer in (a) is replaced with a single neuron. The red and blue lines are the same as in (a).

the standalone implementation of QNNs, we analyze its relevance in HQNNS for real-world applications. We
typically consider two application scenarios for our analysis, namely, binary and multi-class classification.
The complete architecture of HQNN used for our analysis is shown in figure 3.

The methods in [55] apply to our HQNN design since the HQNNs used in this paper completely
replicate the general QNN architecture from figure 1, with two additions: (a) input preprocessing to cope
with the limitations of NISQ devices (mainly in the number of qubits), and (b) classical post-processing, to
produce the final (classical) prediction of the network.

3.1. Components of HQNNs
We now discuss the three main components of our HQNN: input preprocessing (blue shaded region in
figure 3), QNN, and output postprocessing (green shaded region in figure 3).

3.1.1. Input preprocessing

The input preprocessing step in HQNNS is typically performed because of the limited number of qubits
available in NISQ devices. As discussed in section 2.2, the input dimensionality can be reduced by applying
some dimensionality reduction algorithm or a classical layer with fewer neurons. Furthermore, the
application of dimensionality reduction is dependent on the input feature size (to encode) and the type of
data encoding strategy. We also reduce the input feature dimension of our input data to cope with the
limitations of NISQ devices for one of the encoding schemes used in this paper, which we discuss in
section 4.1, where we discuss the details of datasets used for both the target applications considered in this
paper.
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Figure 4. Parameterized quantum circuits used in HQNN architecture. n denotes the width of quantum layers or in other words
the number of qubits used. On the other hand, m denotes the number of times the ansatz (blue shaded region) is repeated before
the measurement (light gray shaded region).

3.1.2. QNN construction

After the input preprocessing step, the next step is the construction of QNN. The QNN construction is a
four-step process, as discussed in section 2.1. The first step is qubit initialization, which defines the total
number of qubits and their initial state. The number of qubits (to define and initialize) is dependent on the
size of input features and the type of data encoding. Furthermore, the qubit(s) can be initialized in any
random state. However, in QNN context, the qubits are usually initialized in the ground state, i.e.

[1))®" = |0)®", where n is the total number of qubits. We also initialize the qubits in the ground state for all
the experiments performed.

The second step in HQNN construction is data encoding which encodes the classical input data to
quantum states so that a quantum device can process it. We use two of the frequently used encoding
techniques in HQNN s, namely angle (in RY rotations) and amplitude encoding.

The third step in QNN construction is the development of PQC where the encoded features are trained
and optimized. The PQC contains single-qubit parameterized gates, which are (trainable) parameter-
dependent gates, and multi-qubit gates for qubit entanglement. For the construction of PQC in our HQNN
design, we use a single hardware-efficient periodic ansatz structure, first with global cost function (as shown
in figure 4(a)) which we name as global PQC and then with local cost function (as shown in figure 4(b))
which we name as local PQC. We typically use single parameterized unitary (R, (6)) per qubit and nearest
neighbor entanglement’ (because of the limitations of NISQ devices) using CNOT gate.

The last step in the QNN construction is qubit measurement, which is also a part of PQC construction.
A qubit can be measured on an arbitrary basis, but the computational basis (also known as the eigenbasis of
0?) is commonly used in QNNs. We also measure the qubits in o basis in all the experiments to get the
output of QNN.

3.1.3. Classical postprocessing

The last step in the HQNN construction is to post-process the measurement results of the enclosed QNN
since the qubit measurement collapses the quantum state to a classical value that can be processed classically.
We use a classical dense neuron layer, where all the neurons are connected to all the measured qubits in
QNN, which is a single qubit in the case of the local cost function (blue lines in figure 3) and all the qubits in
the case of global function (both blue and red lines in figure 3). The cost function is then defined based on
which the optimization routine iteratively optimizes the parameters until the solution is reached.

3.2. Size of HQNN’s

The total number of trainable parameters in a network governs the size of the network and can help in a fair
inter-models comparison. For the HQNN s used in this paper, we generalize the following two equations to
determine the total number of trainable parameters.

Po=nxm (6)

PC:N+(Nx”m) (7)

3 Nearest neighbor entanglement implies that neighboring qubits are entangled, where the first qubit is considered a neighbor to the last
qubit.
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where Pq is the total quantum trainable parameters in the underlying network and P is the total classical
trainable parameters. In equation (6), n and m denote the width and depth of the quantum circuit/layers,
respectively. N and n,, in equation (7) represent the number of neurons (classical) in the last layer and the
number of measured qubits, respectively. N depends on the total number of classes in the dataset. Therefore,
in this paper, N = 10 for multi and N =2 for binary classification.

4. Experimental setup

In this section, we discuss the experiments we performed, including the datasets we used for training the
HQNNS for both target applications (binary and multi-class classifications) and the classical parameters
specifications of HQNN .

4.1. Dataset specifications

4.1.1. Multiclass classification

The sklearn digit dataset (handwritten digit images) is used to train the HQNNSs [79]. The reason for
choosing this particular dataset over some similar yet more popular datasets, such as MNIST, is because of
the smaller input feature size, which is more suitable for NISQ devices. The sklearn’s digit dataset contains a
total of approximately 1797 samples, with a total of 10 classes and 180 samples per class. The training and
testing data is divided into 75% and 25% respectively. Each data point is an image of 8 x 8 which results in
an input feature dimension of 64.

As discussed in section 2.1, angle encoding encodes # features into an n-qubit system. Consequently, to
encode the features with a dimension of 64, it would need 64 qubits, which is a relatively large number for
NISQ devices. Therefore, we use an input dimensionality reduction algorithm, namely, principal component
analysis (PCA), whenever we use angle encoding in this paper. The input dimension is reduced to a
reasonable range, details of which are presented later in figure 5(a), where n typically denotes the width of
PQC and so is the input feature dimension in case of angle encoding. The amplitude encoding on the other
hand, encodes 2" features into an #n-qubit system, which for a feature dimension of 64 needs at least six
qubits, which is a reasonable limit for NISQ devices. Therefore, in the case of amplitude encoding, the input
feature dimensionality is not reduced, and the input is directly encoded.

4.1.2. Binary classification

For binary classification, sklearn’s breast cancer dataset [79] is used to train the HQNNs. This dataset
contains two classes with a total of 569 samples, each data point with a dimensionality of 30. The malignant
(positive) class has a total of 212 samples, and the benign (negative) class has a total of 357 samples. For the
binary classification task, we only use amplitude encoding; we do not use PCA for input dimensionality
reduction for the same reasoning as in the multiclass classification task. The reason why we used amplitude
encoding only is discussed when we discuss the results of binary classification (see section 5.3).

4.2. Parameters specifications

The categorical cross entropy is used as a cost function in multiclass, whereas binary cross entropy is used as a
cost function for binary classification. It is important to note here that the global and local loss functions
shown in equations (3) and (4) are not combined with the above-mentioned loss functions for binary and
multi-class classification. In fact, the loss functions in equations (3) and (4) are provided as a reference for
global and local cost function setting, respectively, in QNNs. For the cost function optimization, we used
Adam optimizer for both target applications (binary and multi-class classifications), as shown in figure 3.
The initial learning rate for the optimization routine is set to 0.01. For better training, we use learning rate
scheduling, which monitors the validation loss, and if there is no improvement in validation loss for three
consecutive training iterations, it reduces the learning rate (new learning rate = previous learning

rate X 0.1). Furthermore, a regularization technique named early stopping is used to avoid overfitting and
stop the training if the validation loss is not reduced for four consecutive epochs. The batch size for the input
data is 16 for multiclass classification and 8 for binary classification for all the experiments. The bigger and
smaller batch sizes are in correspondence with the bigger and smaller size of datasets used. We used
Pennylane [34] for constructing and training the HQNN:Ss.

4.3. Experiments list

To make our analysis comprehensive, we perform an extensive list of experiments for both binary and
multi-class classification problems, as shown in figures 5(a) and (b) respectively. The factor n denotes the
width of quantum layers and is also the factor by which the feature dimension is reduced in the case of angle
encoding. The reason for selecting a slightly bigger » in multi-class classification is because of greater input
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Figure 5. The experiments performed in this paper.

dimensions. Similarly, the m, which denotes the depth of quantum layers, is smaller in binary classification
because the dataset used for binary classification is simpler than that used in multi-class classification.

5. Results and discussion

In this section, we analyze the performance of both (global and local) PQCs from the aspect of BP for binary
and multi-class classification. To analyze the BP in HQNNS for both global and local cost functions, we
experiment with different widths () and depths () of the underlying PQCs. We benchmark the mean
accuracy of HQNN for our analysis. We start by demonstrating the BP in a multiclass classification task for
both the global and local PQCs individually with both the encodings used in this paper. We then perform the
same analysis for binary classification tasks. We also analyze how the width and depth of quantum layers
relate to the occurrence of BP in both cost function settings. We observe the significant performance
difference with both the cost function settings, and we, therefore, compare HQNNs with both the cost
functions for both the encoding used in this paper to better understand the role of cost function globality
and locality in HQNNSs.

5.1. Multiclass classification
In this section, we analyze the existence of BP in a multiclass classification problem. We typically analyze the
BP’s existence in HQNNs with both global and local cost functions and with both the encodings used in this

paper.

5.1.1. Global PQC with amplitude encoding

We first analyze the existence and potential effect of BP on the performance of HQNNSs, when the cost
function is global and the data is encoded in qubit state vectors. As discussed in section 4, the input feature
size for the dataset used for multiclass classification is 64. To encode via amplitude encoding, a minimum of
six qubits are required due to the fact that the amplitude encoding can encode 2" features in # qubits, as
discussed in section 2.1. The number of qubits (6) in this case is reasonable, given the limitations of NISQ
devices. Therefore, we do not apply input dimensionality reduction (PCA) on the dataset used for multiclass
classification in the case of amplitude encoding. We experiment with quantum layers of different widths #,
and depths m, as shown in figure 5(a). The mean accuracy, both as a function of # and m, for global PQC and
amplitude encoding, is presented in figure 6.

Analyzing the mean accuracy as a function of the number of qubits (#), there is a clear performance
decline as n increases (figure 6(a)), exhibiting the presence of BP, which hinders the learning process of
HQNNSs and consequently degrades the accuracy. For almost all the depths (1), the accuracy deteriorates (or
a negligible improvement) as the width » of underlying quantum layers is increased. Analyzing the mean
accuracy as a function of m (figure 6(b)), we observe that for smaller widths (#n =8 and 10), the allowable
depth of quantum layers is greater. The term allowable depth essentially means the performance improves as
m increases. However, when 7 is increased (n =12 and 14), the underlying quantum layers’ depth tends to
reduce significantly, and smaller m achieves better accuracy than relatively larger m. Although in bigger
widths (n =12 and 14), very deep quantum layers (m = 15)significantly improves the accuracy due to
overparameterization (more training parameters than data points), it is still lower than smaller widths (n =8
and 10), as shown in figure 6(b). Hence, we can safely say that increasing the number of qubits in HQNNs
does not directly result in the occurrence of BP but is also dependent on the hidden quantum layer’s depth. A
trade-off between n and m is observed. This essentially means that to achieve comparable performance in
HQNNS, the wider quantum layers would require relatively less depth and vice versa. Based on the results in
figures 6(a) and (b), we conclude that deeper quantum layers with relatively shallow width result in slightly
better performance.
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Figure 6. Multiclass classification-mean accuracy of global PQC with amplitude encoding.
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Figure 7. Multiclass classification-mean accuracy of Global PQC with angle encoding.

5.1.2. Global PQC with angle encoding

We now analyze the existence of BP in HQNNs for the multiclass classification problem with a global cost
function setting (global PQC) and a different underlying encoding strategy, namely angle encoding. For
angle encoding, as discussed in 2.1, an n-qubit quantum system is required to encode n features. As discussed
in section 4, the feature size of the dataset used for the multiclass classification in this paper is 64. To
successfully encode the data, a total of 64 qubits are required. Such a big number of qubits is not suitable for
the NISQ era. Therefore, the input features dimension needs to be reduced. We apply PCA to reduce the
input feature size to 8,10, 12 and 14, which are then encoded and passed to the following PQC for training.
The number of training experiments for different n and m is then performed, as shown in figure 5(a). The
mean accuracy for all experiments, both as a function of n and m is shown in figure 7.

In traditional classical ML, increasing the input training data with a fairly complex underlying network
usually yields better performance. However, in HQNNs (with angle encoding), increasing the input data
increases the quantum layer’s width (number of qubits), which makes the underlying HQNN more prone to
get exposed to BP, resulting in a hindered learning and eventually leading to performance decline.

As shown in figure 6(a), instead of an (expected) increasing accuracy trend with every increase in # for a
fixed depth m, the accuracy starts declining after a certain n indicating the presence of BP. For relatively small
(moderate) depth quantum layers (m =4 and 6), there is a slight improvement in accuracy as n increases
because of the trade-off between n and m, i.e. the smaller depth allows to have a relatively bigger width and
vice versa. Similarly, when the depth m of underlying quantum layers increases, the performance starts
declining after a certain m, for any fixed n, as shown in figure 6(b). Analogous to the case of amplitude
encoding and global in figure 6, for a very deep quantum layer, the accuracy improves in general due to the
so-called overparameterization phenomenon. However, even with overparameterization in play (m = 15),
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Figure 8. Multiclass classification-mean accuracy of local PQC with amplitude encoding.

the smaller width (typically n = 8,10) quantum layers yields better accuracy than wider quantum layers
(typically n = 14). Based on the results in figure 7, we concur that similar to that of amplitude encoding, the
deeper quantum layers with relatively shallow width provide better overall performance when encoding the
input features in qubit rotation angles.

5.1.3. Local PQC with amplitude encoding

In this section, we analyze the HQNNSs from the aspect of BP in a local cost function setting (local PQC),
with the input data being encoded in qubit amplitudes. As per the claim in [55], the expectation is to have an
increased accuracy trend as we increase the depth m quantum layers for a certain width n. Moreover, for
bigger n quantum layers, the expectation is to have a greater allowable depth () of hidden quantum layers,
eventually resulting in more trainable parameters and, consequently better learning. We experiment with the
same n and m as in the case of global PQC and for both amplitude and angle encoding. Similar to the case of
BP analysis of HQNNs with amplitude encoding for global cost function (section 5.1.1), the input is directly
encoded with any dimensionality reduction. All the experiments from figure 5(a) are performed and the
mean accuracy, both as a function of n and m, is presented in figure 8.

Upon observing the mean accuracy as a function of n for fixed depth quantum layers (figure 8(a)), we
observe that, in general (for almost all the depths), the accuracy starts to decline as # increases. This
performance decline typically indicates the presence of BP in training landscapes. Based on the results in
figure 8(a), we conclude that the BP exists in the local cost function setting also. However, based on the
claims in [55], whether the local cost function would lead to an extended depth of quantum layers or not
requires analyzing the accuracy trend as a function of depth m (figure 8(b)). Upon observing the mean
accuracy as a function of the quantum layer’s depth m for a fixed width #, as shown in figure 8(b), we observe
that there is no clear improvement in accuracy with an increase in depth m of the underlying quantum layers
for a fixed width n. For smaller widths (typically n = 8), the allowed depth is slightly greater than for bigger
widths (n = 14). Moreover, making the cost function local with amplitude encoding resulted in a rather
inconsistent performance as compared to the global cost function with amplitude encoding (figure 6).

5.1.4. Local PQC with angle encoding

We now analyze the existence of BP for local PQC with angle encoding for multiclass classification. In this
case, PCA is applied to reduce the input feature size for all corresponding widths of underlying quantum
layers. The mean accuracy for all the experiments performed from figure 5(a) is shown in figure 9.
Analyzing the results in figure 9(a), it can be observed that the smallest width quantum layers n =8, for
almost all depths, perform slightly better, and in general, a decreasing trend in accuracy with an increase in n
is observed indicating towards the presence of BP, similar to that of local PQC with amplitude encoding.
Furthermore, for a constant 7, the performance deteriorates in general as m increases, as shown in

figure 9(b). Again, the accuracy trends do not conform with the solution proposed in [55], which claims to
have a delayed occurrence of BP and eventually better learning owing to the greater number of trainable
parameters.
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Figure 9. Multiclass classification—mean accuracy of local PQC with angle encoding.
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Figure 10. Performance comparison of global and local ansatz structures with amplitude encoding.

Based on the results in previous sections, we observe that the global cost function achieves significantly
better accuracy than the local cost function. We, therefore, perform a performance comparison of both
global and local cost functions for both amplitude and angle encoding.

5.2. Multiclass classification: global vs. local PQC

In the previous sections, we discussed the presence of BP for both global and local cost function settings for a
multiclass classification task. We also demonstrate that cost functionality does not really help in delaying the
BP, which eventually could lead to better performance. The HQNNS, in the case of the local cost function,
exhibit a very inconsistent performance irrespective of the encoding routine used. This may be due to the
unreliability of cost function locality for multi-class classification problems. However, a brief performance
comparison of both global and local ansatz would help better understand the effect of cost function
globality/locality. Here, we compare both global and local PQCs to analyze if the local cost function performs
any better than the global cost function. We perform the global vs. local PQC’s comparison individually for
both encodings.

5.2.1. Amplitude encoding

We compare the results of both global and local PQCs when the data is encoded in qubit amplitudes. The
performance comparison is conducted in terms of mean accuracy for all the widths and depths of the
quantum layers in HQNNs used in this paper and is shown in figure 10.

We observe that the global PQC outperforms local PQC in terms of accuracy in all the experiments,
irrespective of the depth and width of underlying quantum layers. Hence the HQNNs with global cost
functions are more appropriate than local cost functions. This result contradicts the results of [55], even if
the local cost function setting would allow an extended depth of quantum layers due to a significantly lower
accuracy achieved (possibly because of BP) as compared to the global cost function setting. Based on the
comparison results, we concur that, unlike the claims in [55], which say the global cost function will have BP

even for a single layer depth, the global cost function achieves higher accuracy than the local cost function for
all the depths and widths.
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5.2.2. Angle encoding

We now compare the performance of both the ansatz structure while encoding the data in qubit rotation
angles, typically in RY rotations. Analogous to the case of performance comparison for amplitude encoding,
the performance is compared in terms of mean accuracy for angle encoding also. The comparison of both
global and local PQC for angle encoding is presented in figure 11.

The results in figure 11 clearly show the deteriorated performance in the case of quantum layers with a
local cost function, i.e. local PQC. Hence, irrespective of the encoding strategy, the global PQC is better than
the local PQC for a multiclass classification problem.

We analyze that in the case of local ansatz, the number of trainable parameters is significantly reduced as
compared to all-qubit measurement ansatz because of the lower multiplication factor (11,,) from
equation (7). Therefore, to increase the number of parameters, we extended the depth of quantum layers to
m = 15 (the rightmost bar in figures 10 and 11) for both the encodings, but there is no noticeable
improvement in the performance of local PQC even with deeper quantum layers, and in fact, the global PQC,
even with minimum depth (m = 2) still performs better than the maximum depth of (m = 15) in local PQC.

Considering that the BP problem directly results in performance degradation, the comparison results
allow us to conclude that a single observable measurement in an n-qubit system is not effective in HQNNs
for a multiclass classification application. Furthermore, we speculate that the single-qubit observable
measurement approach might be effective in binary classification because of the inherent requirement of a
single final observable in binary classification tasks. Therefore, in the following sections, we analyze the
impact of cost function globality and locality in binary classification.

5.3. Binary classification

In this section, we analyze the existence of BP in a binary classification problem. We typically analyze the BP’s
existence in HQNNs with both global and local cost functions. For the analysis of binary classification, we
only consider amplitude encoding for classical to quantum feature mapping because of two reasons; (a) it
provides the leverage to have a fixed input size and change the number of qubits, unlike angle encoding,
where the input feature size is changed for every change in underlying quantum layers. (b) Given the nature
of our analysis which deals with the quantum layer’s depth and width, a constant input feature size is more
suitable to better analyze the effect of the width and depth of quantum layers.

5.3.1. Global PQC

We first analyze the existence of BP in HQNNs when the data is encoded in qubit amplitudes and the cost
function is global (global PQC). As discussed in section 4, the input feature dimensionality in the case of
binary classification is 30. The minimum number of qubits required to encode these features via amplitude
encoding is 5, which is a reasonable number considering NISQ-era limitations. Therefore in binary
classification also, we do not apply PCA when encoding the data in qubit amplitudes and the input is directly
encoded. A similar list of experiments (as in the case of multiclass classification) is then performed
considering different widths (#) and depths (m) of quantum layers, as shown in figure 5(b). The mean
accuracy, both as a function of n and m, is shown in figure 12.

By analyzing the mean accuracy as a function of the number of qubits (n), as shown in figure 12(a), we
observe that the accuracy declines as » increases. For any fixed depth m in figure 12(a), the performance
deteriorates (or has no noticeable improvement) in general as we increase #, which shows the model’s
exposition to BP. In general, the smaller widths (typically n=7) for almost all depths achieve better accuracy
than bigger widths (typically n = 10). By analyzing the mean accuracy as a function of the quantum layer’s
depth (m), as shown in figure 12(b), we observe that for almost all the widths (n), the accuracy starts
declining after a certain depth m and in general, smaller n (typically n = 7,8) with moderate depths
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(typically m = 3,4) yields better performance. However, unlike the case of multiclass classification (figure 6),
no trade-off between n and m is observed since increasing m for a fixed n, in general, improves the accuracy.

5.3.2. Local PQC
We now analyze the BP's existence in a local cost function setting (local PQC) while encoding the data in

qubit amplitudes. The input is directly encoded without PCA. The complete list of experiments, as shown in
figure 5(b), is then performed with different n and m. The mean accuracy for all experiments is shown in

figure 13.

Analyzing the mean accuracy as a function of the number of qubits (1), we observe that the accuracy for
any fixed depth (m) increases (or does not noticeably deteriorate) in general as » increases, which indicates
that the model is not (yet) fully exposed to the BP and hence the allowed depth of underlying quantum layers
is greater. By analyzing the mean accuracy as a function of the quantum layer’s depth (1), we observe that for
almost all the widths, the accuracy improves as m increases, unlike the case with the global cost function
(figure 12). Hence, the allowed depth is indeed greater in the local cost function setting in conformity with
the solution proposed in [55]. As we observed in multiclass classification, the performance in the case of the
local cost function is significantly degraded as compared to the global cost function (figures 10 and 11), we

now compare both global and local PQC for the binary classification task.

5.4. Binary classification: global vs. local PQC
We now compare the results obtained for both global and local cost function settings. The comparison

results are shown in figure 14. Based on the comparison results, we observe that in binary classification tasks,
the local cost function setting achieves comparable performance to that of the global cost function setting,
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unlike multiclass classification, where it is significantly lower. As shown in figure 14, in almost all cases, the
accuracy achieved in local PQC is closer to that of global PQC. However, global PQC is still slightly better
than local PQC in terms of accuracy.

Based on the results in figures 12 and 13, we concur that for binary classification tasks, cost function
locality does help in achieving an extended depth of quantum layers, as shown in [55]. However, the second
claim of [55], which says that the global cost function setting will experience BP even for depth of O(1),
eventually resulting in poor performance than the local cost function setting, contradicts our results where
the global cost function still achieves better or equivalent accuracy for all the experiments as shown in
figure 14.

hecuracy

(a)n="7 (byn=28 (c)n=29 (d) n =10

Figure 14. Binary Classification—performance comparison of global and local PQC with amplitude encoding.

6. Conclusion

The phenomenon of BP jeopardizes the practical usability of QNN . BP is observed when the gradients of
parameters vanish exponentially as the system size increases, which adversely impacts the learning process.
Recently a solution is proposed in [55] to delay the occurrence of BP up to a certain depth of quantum layers
by making it dependent on the cost function. To this end, two cost functions are analyzed. The authors
claimed that the global cost function (measuring all qubits in an n-qubit quantum layer) would always result
in BP irrespective of the underlying quantum layer’s depth. On the other hand, the local cost function
(measuring a single qubit in an n-qubit system) can help delay the occurrence of BP up to the depth of
O(log(n)). Since the allowable depth increases in the local cost function setting, as highlighted in [55], it
results in a greater number of trainable parameters and is therefore expected to yield better performance.

In this paper, we study the effect of cost function globality and locality in HQNNs for real-world
applications, namely, binary and multi-class classification. We consider a single PQC structure both with
single (local PQC) and all-qubit (global PQC) measurements. Classical data is encoded in qubit amplitudes
and rotation angles. An extensive list of training experiments is then carried out with different widths and
depths of hidden quantum layers. We then benchmark accuracy as an evaluation metric for all the
experiments. Contrary to [55], our results show that for a multi-class classification problem in a hybrid
quantum-—classical setting, making the cost function local does not increase the allowable depth of quantum
layers. Furthermore, not only the local cost function setting contradicts the solution in [55], but it also
results in significantly lower accuracy when compared with the global cost function setting. The lower
accuracy in local PQC indicates the possible presence of BP in training landscapes. On the other hand, for
the binary classification problem, the local cost function allows having an extended depth of quantum layers
when compared to the global cost function, which is in conformity with the results of [55]. However, our
results show that the global cost function, in binary classification also, performs slightly better (or
equivalent) to that of the local cost function setting for all the depths.

Based on our results, we conclude that using a global cost function setting while dealing with multi-class
classification applications yields significantly better results than the local cost function setting. On the other
hand, for binary classification problems, both global and local cost functions are equally good. We emphasize
that our results are applicable to NISQ devices. A possible future research in this direction could be to
analyze the effect of the cost function’s globality and locality in HQNNs for other classes of ML problems,
such as regression.
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