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1. Introduction

Aharony, Bergman, Jaffiers and Maldacena (ABJM) have recently proposed that a class

of d = 3 U(N) × U(N) N = 6 superconformal Chern Simons field theories admit a dual

description in terms of M theory compactified on AdS4 × S7

Zk
[1]. This correspondence has

been further studied in [2]. The theories studied by these authors are parameterized by

two integers N and k. In dual bulk terms k is the rank of the orbifold action on S7 while

N represents the number of units of 7 form flux that pierce S7/Zk. In field theory terms

N denotes the rank of each of the U(N) factors of the gauge group and ±k are the levels

of the Chern Simons terms associated with each of these gauge groups.

With an appropriate normalization for fields, the effective ’t Hooft coupling constant

of any large N gauge theory is given by N times the inverse of the coefficient of the action.

As the coefficient of the Chern Simons term is proportional to k, the effective ’t Hooft

coupling of the ABJM field theory is proportional to N/k. As N and k are both integers

this ’t Hooft coupling cannot be varied continuously; indeed a shift in k by unity shifts

λ by the discrete amount δλ = −λ2

N . Note however that δλ → 0 in the ’t Hooft limit (

N → ∞ with λ held fixed). Consequently λ is effectively a continuous parameter in the

’t Hooft limit. It follows that the superconformal Witten index, defined for arbitrary 3

dimensional superconformal field theories in [3], must be invariant under deformations of

λ in this ’t’ Hooft scaling regime.1

In this note we compute the superconformal index (as defined in [3]) of the ABJM

theory in two different regimes. We first use the techniques of [4 – 9] to find an expression

for this index at k = ∞ (and so λ = 0 but at arbitrary N) in terms of an integral over

two N ×N unitary matrices. Taking a further large N limit we are able to evaluate these

unitary integrals explicitly using saddle point techniques.

Next we evaluate the index of this theory at infinite N and large λ, using the ABJM

proposal for the dual description of this theory. Effectively, we compute the index over

1This is only true of contributions to the index from states whose energy stays finite as N is taken to

infinity.
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the Fock space of non interacting supersymmetric U(1) neutral (see below) gravitons in

AdS4 × S7

Zk
. We perform this calculation explicitly in the ’t Hooft limit, but also explain

the generalization of this calculation to finite values of k, and so to values of λ that scale

like N in the large N limit.

We find that our two independent computations of the superconformal Witten index

of [3] agree perfectly in the ’t Hooft limit. We view this agreement as a test of the ABJM

proposal. Indeed, since the index computed in this paper is the most general superconfor-

mal index [3] for a N = 6 superconformal field theory2 our calculation verifies the most

detailed matching of supersymmetric states predicted by ABJM conjecture taken together

with the requirement of superconformal invariance alone. Of course the agreement of the

two independent index computations reported in this paper is closely related to the agree-

ment of the spectrum of chiral operators of the field theory and the spectrum of gravitons

in AdS4× S7

Zk
reported in [1]. Note, however, that while the chiral ring described by ABJM

counts states described by at least four supercharges (two supersymmetries and their Her-

mitian conjugates) the index constructed in this paper receives contributions from all states

that are annihilated by a minimum of two supercharges. Note also that the invariance under

λ deformations of the index computed in this paper follows from superconformal invariance

alone, and uses no dynamical information about the field theory beyond its field content. In

particular our field theoretic computation of the index is blind to the nature of the ABJM

superpotential whose form played an important role in the construction of the ABJM chiral

ring [1].

The matching of the index computed perturbatively in the ABJM theory with the

index computed over the spectrum of bulk gravitons is reminiscent of a similar match in

the case of N = 4 Yang Mills theory [7]. As explained in that paper, AdS5 × S5 hosts

a family of 1/16 BPS black holes which the 4 dimensional superconformal index appears

to be blind to. In a similar fashion the 3 dimensional superconformal index computed

in this paper appears to be blind to the 1/12 BPS black holes presumably hosted by the

AdS4 × S7

Zk
dual background (see [10 – 12]).

This note is organized as follows. In § 2 below we review the symmetry algebra of

the ABJM theory, the definition of the Witten index of [3] for this theory and the field

content of the ABJM Chern Simons theory. We then perform a one loop field theory

computation to present a field theoretic formula for this index in terms of an integral over

two unitary matrices and evaluate these integrals in the large N limit. In § 3 we present

our computation of the same index over the spectrum of U(1) invariant multi gravitons

in AdS4 × S7

Zk
. In § 4 we end with a discussion of our results and the generalizations

they suggest.

2. Field theory computation of the index

The symmetry algebra of the ABJM theory is the d = 3 N = 6 superconformal algebra.

The structure of this algebra and its unitary representations has been reviewed in detail

in [3], and we will use the notation of that paper in what follows.

2By a superconformal index we mean a quantity whose invariance under marginal deformations is guar-

anteed by superconformal invariance alone.
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type of operators scaling SO(3) SO(6)

operators dimension (ǫ0) highest weight highest weight

φ12
1
2 0 (1

2 ,
1
2 ,−1

2)

dynamical ψ12 1 1
2 (1

2 ,
1
2 ,

1
2)

φ21
1
2 0 (1

2 ,
1
2 ,

1
2)

ψ21 1 1
2 (1

2 ,
1
2 ,−1

2)

supersymmetry

generators Q 1
2

1
2 (1, 0, 0)

derivatives ∂ 1 1 (0, 0, 0)

Table 1: A list of the field content of ABJM theory, the supercharges, the derivatives and

the representations.

The bosonic subgroup of the d = 3 N = 6 superconformal algebra is SO(3, 2)× SO(6).

All states and operators in this theory are labeled by their quantum numbers under the

maximal compact subalgebra of the superconformal algebra, SO(3) × SO(2) × SO(6). In

what follows we will denote the eigenvalue of the Cartan generator of SO(3) by j, the

eigenvalue under SO(2) (the scaling dimension or global AdS4 energy) by ǫ0 and the three

Cartan generators of SO(6)- defined as the eigenvalues under the generators of rotations

in the three orthogonal two planes - as h1, h2, h3.
3

The twelve supercharges of the ABJM theory each have ǫ0 = 1
2 , and transform in

the j = 1
2 representation of SO(3) algebra and the vector (h1, h2, h3) = (1, 0, 0) of SO(6)

algebra. The only propagating fields in the ABJM theory are a set of bi-fundamental

and anti bi-fundamental scalars and fermions. All scalars have dimension ǫ0 = 1
2 and are

scalars under SO(3), while all fermions have dimension ǫ0 = 1 and transform in the spin

half representation of SO(3). Bi-fundamental scalars/fermions transform in the (1
2 ,

1
2 ,±1

2 )

representation of SO(6), while anti bi-fundamental scalars and fermions transform in the

(1
2 ,

1
2 ,∓1

2) representation of SO(6). The symmetry transformation properties of the super-

symmetries, propagating fields and derivatives of the ABJM theory are listed in table 1

below. In table 1 and throughout this paper, the symbol φ12 and ψ12 respectively denote

scalar and fermionic fields that transform in the fundamental of the first U(N) gauge group

and antifundamental of the second U(N) gauge group, while φ21 and ψ21 respectively de-

note scalar and fermionic fields which transforms in the antifundamental of the first U(N)

gauge group and in the fundamental of the second.

In this note we will compute the Witten index

IW = Tr
(

(−1)Fxǫ0+jyh2

1 yh3

2

)

(2.1)

3SO(6) may be thought of as the group of rotations about the origin in R6 parameterized by xi, i = 1 . . . 6.

h1, h2 and h3 are simply the generators of rotations in the two planes (12), (34) and (56) respectively.

Throughout this paper we will label representations of SO(6) by their highest weights under (h1, h2, h3). In

our conventions an SO(6) weight is positive if h1 is positive, or if h1 = 0 and h2 is positive or if h1 = h2 = 0

and h3 is positive. We use a similar conventions for SO(8) representations below.

– 3 –
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for the ABJM theory quantized on S2 ×R. As explained in [3] this index receives contri-

butions only from states that are annihilated by a special supercharge Q together with its

Hermitian conjugate Q†. Q has quantum numbers ǫ0 = 1
2 , j = −1

2 , (h1, h2, h3) = (1, 0, 0).

It follows from the superconformal algebra that

{Q,Q†} = (ǫ0 − j − h1) ≡ ∆.

As a consequence, a state is annihilated by both Q and Q† if and only if ∆ = 0. Con-

sequently the index (2.1) receives contributions only from states with ∆ = 0. In table 2

below we list all ∆ = 0 propagating fields and derivatives of the ABJM theory. We also

list the partition function over all ∆ = 0 bosonic fields and their derivatives (fbosonic
12 and

fbosonic
21 ), the partition function over ∆ = 0 fermionic fields and their derivatives (f fermionic

12

and f fermionic
21 ), and the Witten index (f12 and f21 ) over these fields.

Following [4, 5] it was demonstrated in [8] (see equation(2.7)) that the free supercon-

formal index of a Yang-Mills theory with the field content listed above is given by,

IW =

∫

dU1dU2 exp

(

∞
∑

n=1

1

n
[f12(x

n, yn
1 , y

n
2 )TrUn

1 TrU−n
2 + f21(x

n, yn
1 , y

n
2 )TrU−n

1 TrUn
2 ]

)

(2.2)

The unitary integrals described in (2.2) may be evaluated in the large N limit. Let

ρn =
TrUn

1

N and χn =
TrUn

2

N . In the large N limit the various ρn may be treated as

independent variables (modulo a positivity constraint - see for instance [5] - that will turn

out to be irrelevant for our considerations below) and

DU1 =
∏

n

dρn exp

(

−N2
∑

n

ρnρ−n

n

)

, DU2 =
∏

n

dρn exp

(

−N2
∑

n

χnχ−n

n

)

so that

IW =

∫

∏

n 6=0

dρndχn exp

(

N2
∞
∑

n=1

1

n

(

− |ρn|2 − |χn|2 + f12(x
n, yn

1 , y
n
2 )ρnχ−n

+ f21(x
n, yn

1 , y
n
2 )ρ−nχn

)

)

.

(2.3)

The integral in (2.3) takes the form

IW =

∫

∏

n 6=0

dρndχn exp

(

−N2
∞
∑

n=1

1

n
((Cn)i(M

n)ij(C
n)j)

)

, (2.4)

where the column Cn and the matrix (Mn)ij are given by

Cn =











χn

ρn

χ−n

ρ−n











, Mn =
1

2











0 0 1 −f21

0 0 −f12 1

1 −f12 0 0

−f21 1 0 0











. (2.5)
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letter ǫ0 SO(3) SO(6) ǫ0+j partition index

(j) weights function

bi-fundamental

(φ12)1
1
2 0 (1

2 ,
1
2 ,−1

2) 1
2 fbosonic

12 =

x
1
2

1−x2

(

y1

y2
+ y1

y2

)

(φ12)2
1
2 0 (1

2 ,−1
2 ,

1
2) 1

2 f12 =

x
1
2

1−x2

(

y1

y2
+ y1

y2

)

− x
3
2

1−x2

(

y1y2 + 1
y1y2

)

(ψ12)1 1 1
2 (1

2 ,
1
2 ,

1
2) 3

2 f fermionic
12 =

x
3
2

1−x2

(

y1y2 + 1
y1y2

)

(ψ12)2 1 1
2 (1

2 ,−1
2 ,−1

2 ) 3
2

bi-fundamental

(φ21)1
1
2 0 (1

2 ,
1
2 ,

1
2) 1

2 fbosonic
21 =

x
1
2

1−x2

(

y1y2 + 1
y1y2

)

(φ21)2
1
2 0 (1

2 ,−1
2 ,−1

2 ) 1
2 f21 =

x
1
2

1−x2

(

y1y2 + 1
y1y2

)

− x
3
2

1−x2

(

y1

y2
+ y1

y2

)

(ψ21)1 1 1
2 (1

2 ,
1
2 ,−1

2) 3
2 f fermionic

21 =

x
3
2

1−x2

(

y1

y2
+ y1

y2

)

(ψ21)2 1 1
2 (1

2 ,−1
2 ,

1
2) 3

2

derivative

∂ 1 +1 (0, 0, 0) 2

Table 2: List of the supersymmetric (∆ = 0) fields or ‘letters’ of the theory over which we calculate

the index

It is possible to demonstrate that the real part of the quadratic form (Cn)i(M
n)ij(C

n)j

in (2.4) is positive whenever the chemical potentials obey the inequalities

x < min{y1y2,
y1

y2
,
y2

y1
,

1

y1y2
} (2.6)

a condition that it necessary for the index to be well defined in the first place.4 As a

consequence it appears that the integral (2.3) is always dominated by the saddle point at

ρn = χn = 0 for all n ≥ 0. It thus appears that, in perfect analogy with the situation

4In order that the index be well defined it is necessary that every ∆ = 0 letter contribute to the partition

function with a weight less than unity, leading to (2.6).

– 5 –
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for N = 4 Yang Mills, the Witten index (2.3) never undergoes the phase transition into a

black hole like phase.

As the saddle point contribution to the integral (2.3) vanishes, the first nonzero con-

tribution to this integral is given by the inverse square root of the determinant

IW =

∞
∏

n=1

1√
16 detMn

(2.7)

where the normalization in (2.7) is fixed by the requirement that IW tends to unity when

x = 0 (at which point only the vacuum contributes to the Witten index).

The determinant is given by,

det(Mn) =
1

16
(1 − f12(x

n, yn
1 , y

n
2 )f21(x

n, yn
1 , y

n
2 ))2

=
1

16

(

1 − xn

yn
1

)2 (

1 − xn

yn
2

)2
(1 − xnyn

1 )2 (1 − xnyn
2 )2

(1 − x2n)4

(2.8)

so that,

IW =
∏

n

(

1 − x2n
)2

(

1 − xn

yn
1

)(

1 − xn

yn
2

)

(1 − xnyn
1 ) (1 − xnyn

2 )
. (2.9)

As the large N unitary integrals in (2.3) never undergo a large N Gross-Witten-

Wadia transition [15, 16], it follows that the Witten index IW receives contributions only

from states of finite energy (and charge) at finite values of the chemical potential. In

particular, (2.9) is blind to states whose energy is of order Na where a is any positive power.

In order to get a feel for (2.9) it is useful to set y1 = y2 = 1. If we define the

Indicial entropy Sind(E) by the formula Iw(x) =
∫

dEeSind(E)xE then it is easy to show

that Sind(E) ≈
√

2π
√
E at high energies. This is the growth of states of a two dimensional

massless gas; a similar growth in density of states was captured by the four dimensional

index (see [7]). This growth is slower than the E
2

3 growth demonstrated by the index of

the M2 brane and M5 brane world volume thoeries [3].

3. Gravity computation of the index

Gravitons5 in AdS4 × S7 may be organized into representations of the d = 3 N = 8

superconformal algebra. Working in conventions in which the M2 brane world volume

scalar, fermion and supersymmetries respectively transform in the (1
2 ,

1
2 ,

1
2 ,−1

2), (1
2 ,

1
2 ,

1
2 ,

1
2)

and (1, 0, 0, 0) representations of SO(8), the highest weight states of the representations

that occur in this decomposition each have j = 0, ǫ0 = n
2 and SO(8) highest weight charges

(n/2, n/2, n/2,−n/2). See [3], Table 1 for more details.

5In this section we use the word ‘graviton’ for any field on AdS4 obtained upon compactification from a

field in the 11 dimensional gravity multiplet.

– 6 –
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Gravitons on AdS4 × S7

Zk
are those graviton states on AdS4 × S7 whose charge under

the generator 2h4 is 0 mod k.6 In the large k ’t Hooft limit under study in this note, all

projected in gravitons are simply neutral under the U(1) charge h4. Consequently, the

superconformal index over single gravitons in AdS4 × S7

Zk
is simply the projection of the

same quantity in AdS4 × S7 to the sector of zero h4 charge.

The index

IW = Tr[(−1)Fxǫ0+jyh2

1 yh3

2 yh4

3 ] (3.1)

over single gravitions in AdS4 × S7 was evaluated in [3] (see equation 2.17 in that paper).

For the convenience of the reader we reproduce the formula here,

IW
AdS4×S7(x, y1, y2, y3) =

Numerator

Denominator
, (3.2)

where,

Numerator = −√
y1
√
y2
√
y3(y2y3y1 + y1 + y2 + y3)x

7/2

+
(

y2y3y
2
1 +

(

y3y
2
2 + y2

3y2 + y2 + y3

)

y1 + y2y3

)

x3

−
(

y2y3y
2
1 +

(

y3y
2
2 + y2

3y2 + y2 + y3

)

y1 + y2y3

)

x

+
√
y1
√
y2
√
y3(y2y3 + y1(y2 + y3) + 1)

√
x

Denominator =
(

1 − x2
) (√

x
√
y1
√
y2 −

√
y3

) (√
x
√
y1
√
y3 −

√
y2

)

(√
y1 −

√
x
√
y2
√
y3

) (√
y1
√
y2
√
y3 −

√
x
)

(3.3)

The index over single gravitons of zero h4 charge is given by
∫

dθ

2πi
IW
AdS4×S7(x, y1, y2, e

iθ) =

∫

C

dy3

2πy3i
IW
AdS4×S7(x, y1, y2, y3)

where the contour C surrounds the poles at y3 = 0, y3 = xy1y2 and x
y1y2

.7

Performing this sum of residues we find that the index over U(1) neutral gravitons on

AdS4 × S7

Zk
is given by,

IW
Single Particle =

x

y1 − x
+

1

1 − xy1
+

x

y2 − x
+

1

1 − xy2
− 2

1 − x2
. (3.4)

a result that is significantly simpler than (3.3).

6As for SO(6) we think of SO(8) as the group of rotations in R8 parameterized by xi, i = 1 . . . 8.

h1, h2, h3, h4 are the eigenvalues of the generators of rotations in the (12), (34), (56) and (78) planes

respectively. We label representations of SO(8) by their highest weights under (h1, h2, h3, h4); our positivity

convention for weights is the obvious generalization of that for SO(6). Note that the Zk orbifolding described

in [1] is, in our conventions, simply a rotation by the angle 4π/k in the (78) 2 plane. The subgroup of

SO(8) that commutes with this rotation is SO(6) × SO(2). The SO(2) factor is simply rotations in the

(78) 2 plane itself while the SO(6) factor describes rotations among the remaining orthogonal 2 planes and

is the R symmetry of the surviving N = 6 supersymmetry algebra. Note that the supersymmetry of the

parent theory decomposes into 60 + 12 + 1
−2 under this decomposition, while the scalar decomposes into

the 41 + 4̄
−1.

7The index (3.3) is well defined only when x < ya
1yb

2y
c
3 where (a, b, c) run over the values of (2h1, 2h2, 2h3)

for the antichiral spinor of SO(6). It follows that the contour of our integral must exclude the poles at

y3 = y1

xy2
and y3 = y2

xy1
.

– 7 –
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Range of n Scaling SO(3) SO(6) highest weight ǫ0 + j statistics

dimension ǫ0 weight (j) (orthogonal basis)

n ≥ 1 n 0 (n, n, 0) n bosonic

n ≥ 1 n+ 1
2

1
2 (n, n, 1) n+ 1 fermionic

n ≥ 1 n+ 1
2

1
2 (n, n,−1) n+ 1 fermionic

n ≥ 1 n+ 1
2

1
2 (n, n− 1, 0) n+ 1 fermionic

n ≥ 1 n+ 1 1 (n, n, 0) n+ 2 bosonic

n ≥ 2 n+ 1 1 (n, n− 1, 1) n+ 2 bosonic

n ≥ 2 n+ 1 1 (n, n− 1,−1) n+ 2 bosonic

n ≥ 2 n+ 3
2

3
2 (n, n− 1, 0) n+ 3 fermionic

Table 3: The supersymmetric (∆ = 0) graviton spectrum in AdS4 × S
7

Zk

. Here n is an integer

greater than or equal to 1.

We have also verified (3.4) more directly. As explained in [13, 1] the U(1) neutral gravi-

tons in AdS4 × S7

Zk
appear in a direct sum representations of the N = 6 superconformal

algebra labeled by the highest weight states with ǫ0 = n, j = 0 and (h1, h2, h3) = (n, n, 0)

for n = 1 . . .∞. It is not difficult to decompose every such representation of the supercon-

formal algebra into irreducible representations of the d = 3 conformal algebra (using, for

instance, the techniques described in [3]). This decomposition could also be read off from

the table 1 in [13]. In table 3 we list those conformal representations that have states with

∆ = 0. Only states with maximum values of h1 and j in the representations listed in table

3 have ∆ = 0 and contribute to the index. Consequently, the contribution of any of the

representations listed below, to the index is simply given by

IW
ǫ0,j,h2,h3

= (−1)j
xǫ0+j

1 − x2
χ

(h2,h3)
SO(4) (y1, y2)

where ǫ0 and j are respectively the dimension and SO(3) charge of the highest weight

state in the representation, the factor of 1
1−x2 is the contribution from the supersymmetric

derivatives and χ
(h2,h3)
SO(4) (y1, y2) is the SO(4) character with highest weights h2, h3. Summing

this quantity over all the representations listed in table 3 for all n ≥ 1 we recover (3.4).

In order to compute the index over multi gravitons we use the single partice index (3.4)

and the formulas of Bose statistics to obtain8

IW =
∏

n

(

1 − x2n
)2

(

1 − xn

yn
1

)(

1 − xn

yn
2

)

(1 − xnyn
1 ) (1 − xnyn

2 )
. (3.5)

in perfect agreement with (2.9).

8According to the rules of Bose Statistics a single particle index of the form
P

n
cnxn translates into a

multi particle index
Q

n
(1 − xn)−cn where cn are integers that could be either negative or positive, and x

schematically represents all chemical potentials.
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4. Discussion

In this note we have computed the supersymmetric index of [3] for the ABJM theory in

two different ways. We first performed a one loop field theory computation to evaluate this

index in the free theory field at large N ; this calculation was performed at λ = N
k = 0. We

then evaluated the same index over the Fock space of U(1) neutral gravitons in AdS4 × S7

Zk
.

This calculation was valid in the large N limit with λ fixed at a large value. The results

of our two calculations match perfectly, providing a check of the ABJM conjecture.

It would be easy to generalize the gravitational calculation presented in this note to

apply the large N limit with k held fixed. All one needs to do is to project (3.3) onto

the sector with 2h4 = 0 mod k (rather than simply to zero), before applying the formulas

of Bose statistics. For instance when k = 1 this simply amounts to setting y3 to unity

in (3.3). It may be possible to reproduce the full finite k gravitational index from an

(almost) free field theory calculation after summing over flux sectors on S2, as suggested

by the discussion in [1]. It would be very interesting to try to carry this through.

Another direction that would be interesting to explore would be the determination of

the full supersymmetric partition function (rather than the supersymmetric index) of the

ABJM theory, with varying amounts of supersymmetry. For instance a formula for finite

N partition function over the chiral ring (states that preserve 4 supercharges) has been

proposed in [14] at k = 1. It would be interesting to verify this formula and to generalize

it to other values of k. More ambitiously one could attempt to determine the full partition

function (in contrast to the index computed in this paper) over all supersymmetric of in

the ABJM theory; note however that this programme has not yet been completed even for

N = 4 Yang Mills (see [18] for a recent status report).

In this connection note that like AdS5 × S5, the ABJM gravitational background

presumably hosts supersymmetric black holes that preserve 2 supersymmetries (see [10 –

12] for relevant work). This is exactly the minimum amount of supersymmetry that a

state needs to preserve to contribute to the index described in this paper. However the

index computed in this paper sees no sign of these states. Indeed a naive estimate suggests

that the entropy of these supersymmetric black holes scale like N2/
√
λ times functions of

chemical potentials. As a result, the entropy of these black holes appears to be a function of

λ at large λ, and so cannot be captured by any quantity like an index that is independent

of λ. The smooth dependence of the entropy of a supersymmetric configuration on a

continuous coupling constant appears non intuitive at first sight, and it would be interesting

to understand how this comes about. Perhaps the states that make up the entropy of the

black hole receive important contributions from the nontrivial flux sectors (these sectors,

whose energy scales like N , could in principle contribute to the entropy of a black hole -

whose energy scales like N2, even in the ’t Hooft limit).9

Turning to the spectrum of nonsupersymmetric states in this theory, it seems possible

that the integrability of the spin chain spectrum of chiral operators could carry over to

the ABJM theory. It would be interesting to study this possibility in more detail. Indeed,

one of the exciting aspects of the ABJM proposal (in our opinion) are the prediction that

9We thank R. Gopakumar for this suggestion.
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the effective string that describes spin chain dynamics metamorphoses into a membrane at

λ = O(N). It would be very interesting to attempt to get a concrete handle on this.

Finally, of course the ABJM duality permits the computation of all correlators (not

just the spectrum) of all the chiral operators in the theory at strong coupling. A simple

scaling estimate reveals that k point functions of these operators scale like (λ
1

4 /N)k−2 at

strong coupling. In particular, three point functions are functions of λ and cannot enjoy

the nonrenormalization properties of 3 point functions of chiral operators in N = 4 Yang

Mills theory in d = 4 [17].
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