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ABSTRACT: Aharony, Bergman, Jafferis and Maldacena have recently proposed a dual
gravitational description for a family of superconformal Chern Simons theories in three
spacetime dimensions. In this note we perform the one loop computation that determines
the field theory superconformal index of this theory and compare with the index computed
over the Fock space of dual supersymmetric gravitons. In the appropriate limit (large N
and large k) we find a perfect match.
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1. Introduction

Aharony, Bergman, Jaffiers and Maldacena (ABJM) have recently proposed that a class
of d =3 U(N) x UN) N = 6 superconformal Chern Simons field theories admit a dual
description in terms of M theory compactified on AdSy x g—z [M]. This correspondence has
been further studied in [fJ]. The theories studied by these authors are parameterized by
two integers N and k. In dual bulk terms k is the rank of the orbifold action on S7 while
N represents the number of units of 7 form flux that pierce S7/Z. In field theory terms
N denotes the rank of each of the U(V) factors of the gauge group and £k are the levels
of the Chern Simons terms associated with each of these gauge groups.

With an appropriate normalization for fields, the effective 't Hooft coupling constant
of any large N gauge theory is given by N times the inverse of the coefficient of the action.
As the coefficient of the Chern Simons term is proportional to k, the effective 't Hooft
coupling of the ABJM field theory is proportional to N/k. As N and k are both integers
this ’t Hooft coupling cannot be varied continuously; indeed a shift in k by unity shifts
A by the discrete amount 6\ = —)‘—;. Note however that A — 0 in the 't Hooft limit (
N — oo with A held fixed). Consequently A is effectively a continuous parameter in the
't Hooft limit. It follows that the superconformal Witten index, defined for arbitrary 3
dimensional superconformal field theories in [[J], must be invariant under deformations of
A in this t’ Hooft scaling regime.’

In this note we compute the superconformal index (as defined in [f]) of the ABJM
theory in two different regimes. We first use the techniques of [f—[] to find an expression
for this index at kK = oo (and so A = 0 but at arbitrary N) in terms of an integral over
two N x N unitary matrices. Taking a further large N limit we are able to evaluate these
unitary integrals explicitly using saddle point techniques.

Next we evaluate the index of this theory at infinite N and large A, using the ABJM
proposal for the dual description of this theory. Effectively, we compute the index over

!This is only true of contributions to the index from states whose energy stays finite as N is taken to
infinity.



the Fock space of non interacting supersymmetric U(1) neutral (see below) gravitons in
AdSy % g—z We perform this calculation explicitly in the 't Hooft limit, but also explain
the generalization of this calculation to finite values of k, and so to values of A that scale
like NV in the large N limit.

We find that our two independent computations of the superconformal Witten index
of [f] agree perfectly in the 't Hooft limit. We view this agreement as a test of the ABJM
proposal. Indeed, since the index computed in this paper is the most general superconfor-
mal index [B] for a N = 6 superconformal field theory? our calculation verifies the most
detailed matching of supersymmetric states predicted by ABJM conjecture taken together
with the requirement of superconformal invariance alone. Of course the agreement of the
two independent index computations reported in this paper is closely related to the agree-
ment of the spectrum of chiral operators of the field theory and the spectrum of gravitons
in AdSy x 2—; reported in [fl]. Note, however, that while the chiral ring described by ABJM
counts states described by at least four supercharges (two supersymmetries and their Her-
mitian conjugates) the index constructed in this paper receives contributions from all states
that are annihilated by a minimum of two supercharges. Note also that the invariance under
A deformations of the index computed in this paper follows from superconformal invariance
alone, and uses no dynamical information about the field theory beyond its field content. In
particular our field theoretic computation of the index is blind to the nature of the ABJM
superpotential whose form played an important role in the construction of the ABJM chiral
ving [[]

The matching of the index computed perturbatively in the ABJM theory with the
index computed over the spectrum of bulk gravitons is reminiscent of a similar match in
the case of N' = 4 Yang Mills theory [[i]. As explained in that paper, AdSs x S° hosts
a family of 1/16 BPS black holes which the 4 dimensional superconformal index appears
to be blind to. In a similar fashion the 3 dimensional superconformal index computed
in this paper appears to be blind to the 1/12 BPS black holes presumably hosted by the
AdSy x g—; dual background (see [[q-[J)).

This note is organized as follows. In § [l below we review the symmetry algebra of
the ABJM theory, the definition of the Witten index of [f] for this theory and the field
content of the ABJM Chern Simons theory. We then perform a one loop field theory
computation to present a field theoretic formula for this index in terms of an integral over
two unitary matrices and evaluate these integrals in the large N limit. In § [ we present
our computation of the same index over the spectrum of U(1) invariant multi gravitons
in AdSy X 2—; In § ] we end with a discussion of our results and the generalizations
they suggest.

2. Field theory computation of the index

The symmetry algebra of the ABJM theory is the d = 3 N/ = 6 superconformal algebra.
The structure of this algebra and its unitary representations has been reviewed in detail
in [B], and we will use the notation of that paper in what follows.

2By a superconformal index we mean a quantity whose invariance under marginal deformations is guar-
anteed by superconformal invariance alone.



type of operators scaling SO(3) SO(6)

operators dimension (&) | highest weight | highest weight
d12 2 0 (3:2—3)

dynamical 12 1 % (%, %, %)
b21 3 0 (3:33)
Y1 1 3 (3,5 —3)

supersymmetry
generators Q % % (1,0,0)
derivatives 0 1 1 (0,0,0)

Table 1: A list of the field content of ABJM theory, the supercharges, the derivatives and
the representations.

The bosonic subgroup of the d = 3 A = 6 superconformal algebra is SO(3,2) x SO(6).
All states and operators in this theory are labeled by their quantum numbers under the
maximal compact subalgebra of the superconformal algebra, SO(3) x SO(2) x SO(6). In
what follows we will denote the eigenvalue of the Cartan generator of SO(3) by j, the
eigenvalue under SO(2) (the scaling dimension or global AdSy energy) by €y and the three
Cartan generators of SO(6)- defined as the eigenvalues under the generators of rotations
in the three orthogonal two planes - as hq, ho, hs.?

The twelve supercharges of the ABJM theory each have ¢; = %, and transform in
the j = % representation of SO(3) algebra and the vector (h1,ho,hs) = (1,0,0) of SO(6)
algebra. The only propagating fields in the ABJM theory are a set of bi-fundamental
and anti bi-fundamental scalars and fermions. All scalars have dimension ¢y = % and are
scalars under SO(3), while all fermions have dimension ¢y = 1 and transform in the spin
half representation of SO(3). Bi-fundamental scalars/fermions transform in the (%, %, i%)
representation of SO(6), while anti bi-fundamental scalars and fermions transform in the
(%, %, :F%) representation of SO(6). The symmetry transformation properties of the super-
symmetries, propagating fields and derivatives of the ABJM theory are listed in table 1
below. In table 1 and throughout this paper, the symbol ¢15 and 15 respectively denote
scalar and fermionic fields that transform in the fundamental of the first U(N) gauge group
and antifundamental of the second U(N) gauge group, while ¢91 and 191 respectively de-
note scalar and fermionic fields which transforms in the antifundamental of the first U(NV)
gauge group and in the fundamental of the second.

In this note we will compute the Witten index

IV =T (1) 2ot ypeyhe) (2.1)

350(6) may be thought of as the group of rotations about the origin in R® parameterized by z*,i =1...6.
hi, ho and hs are simply the generators of rotations in the two planes (12), (34) and (56) respectively.
Throughout this paper we will label representations of SO(6) by their highest weights under (hq, h2, h3). In
our conventions an SO(6) weight is positive if h; is positive, or if h; = 0 and h2 is positive or if h1 = ho =0
and hs is positive. We use a similar conventions for SO(8) representations below.



for the ABJM theory quantized on S? x R. As explained in [[J] this index receives contri-
butions only from states that are annihilated by a special supercharge () together with its
Hermitian conjugate Q. @ has quantum numbers ey = %, j= —%, (h1,ha, h3) = (1,0,0).
It follows from the superconformal algebra that

{Q.Q"} =(co—j—h)=A.

As a consequence, a state is annihilated by both @ and Q' if and only if A = 0. Con-
sequently the index (R.I)) receives contributions only from states with A = 0. In table 2
below we list all A = 0 propagating fields and derivatives of the ABJM theory. We also

f&osonic and

fformionic
12

list the partition function over all A = 0 bosonic fields and their derivatives (
fhosonicy “the partition function over A = 0 fermionic fields and their derivatives (
and f;‘irmionic), and the Witten index (fi2 and f2; ) over these fields.

Following [f], ] it was demonstrated in [§] (see equation(2.7)) that the free supercon-
formal index of a Yang-Mills theory with the field content listed above is given by,

s 1 —n n n n —MNn n
IW:/dUldUzeXp (Z (@™ yt y2 ) IO TeU ™ + fon (2™, 91, 92) T Uy TrUz])

n=1

(2.2)
The unitary integrals described in (R.J) may be evaluated in the large N limit. Let
Pn = T’;\(,Jl and y, = % In the large N limit the various p, may be treated as

independent variables (modulo a positivity constraint - see for instance [[] - that will turn
out to be irrelevant for our considerations below) and

DU, = Hdpn exp <—N2Z Pnﬁ%) , DUy = Hdpn exp (—NQZ an_")

so that

o0
1
"= / 11 dondxnexp <N2 > E( —[pnl® = Ixal? + fr2(=", u1', ¥5) PnX—n
n=1

n#0 (2.3)

+ far (2", y7, yg)ﬁ—an>> .

The integral in (R.3) takes the form

n=1

n#0

where the column C™ and the matrix (M");; are given by

Xn 0 0 1 —fa1
On 1fo 0 —finl
o . M == . 2.5
. 21 —fn0 0 (25)
-n —fo1 1 0 0



letter € [SO@3)| SO(6) |eot] partition index
§)) weights function
bi-fundamental

(¢12)1 oo |G -hH ] {f{azosonic _

= (5 + 1)
(¢12)2 oo | G-Lh )] | Fio =

——; (y1y2 + y1y2)

(Y12)1 1| 1 (3,14 2 flrmionic _

2! (y1y2 + ym)
(V12)2 (1 I O S

bi-fundamental
(¢21)1 2o 3,44 |1 fhosonic _
2t (ylyz + M)
e |4 0 |6obop)] -
ﬁiz 3(ylyz + @)
== (5 3)
(Y211 1L gL -h 2 fermionic _
3

=GR

(21)2 1| 3 1,-11 | 3
derivative
0 11 +1 (0,0,0) 2

Table 2: List of the supersymmetric (A = 0) fields or ‘letters’ of the theory over which we calculate
the index

It is possible to demonstrate that the real part of the quadratic form (C™);(M™);;(C™)j
in (R-4) is positive whenever the chemical potentials obey the inequalities

1
x < min{y;y2, 2, %2 —} (2.6)

Y2 y1’ Y1Yy2

a condition that it necessary for the index to be well defined in the first place.? As a
consequence it appears that the integral (P-J) is always dominated by the saddle point at
pn = xn = 0 for all n > 0. It thus appears that, in perfect analogy with the situation

“In order that the index be well defined it is necessary that every A = 0 letter contribute to the partition
function with a weight less than unity, leading to (@)



for N = 4 Yang Mills, the Witten index (P.J) never undergoes the phase transition into a
black hole like phase.

As the saddle point contribution to the integral (R.3) vanishes, the first nonzero con-
tribution to this integral is given by the inverse square root of the determinant

w __
! H \/16 det M™ 2.7)

where the normalization in (R.7) is fixed by the requirement that I"V tends to unity when
x = 0 (at which point only the vacuum contributes to the Witten index).

The determinant is given by,

n 1 n n n n n
det(M™) = 16(1—f12( "yt ys) far(x 7?ley2))2
z" 2 n,n n,n 2.8
:L(l‘ﬂ (1-2) (- amup)® (1 - amyp)? (2:8)
16 (1_x2n)4
so that,
(1—x2")2

(2.9)

n

w— .
' H( —2) (1- %) 0 —amyp) (1 - amyp)

As the large N unitary integrals in (R-J) never undergo a large N Gross-Witten-
Wadia transition [I5, [[§], it follows that the Witten index I W' receives contributions only
from states of finite energy (and charge) at finite values of the chemical potential. In
particular, (@) is blind to states whose energy is of order N® where «a is any positive power.

In order to get a feel for (R.9) it is useful to set y1 = yo = 1. If we define the
Indicial entropy Sinda(E) by the formula IV (z) = [dFe Sind(B)g:E then it is easy to show
that Sing(E) ~ v27VE at high energies. ThlS is the growth of states of a two dimensional
massless gas; a similar growth in density of states was captured by the four dimensional
index (see [[f]). This growth is slower than the E3 growth demonstrated by the index of
the M2 brane and M5 brane world volume thoeries [f].

3. Gravity computation of the index

Gravitons® in AdS; x S7 may be organized into representations of the d = 3 N =

superconformal algebra. Working in conventions in which the M2 brane world volume
lll_l) (llll)
22,2072/ 122,202
and (1,0,0,0) representations of SO(8), the highest weight states of the representations

scalar, fermion and supersymmetries respectively transform in the (

that occur in this decomposition each have j = 0, ¢g = § and SO(8) highest weight charges
(n/2,n/2,n/2,—n/2). See [{], Table 1 for more detalls.

5In this section we use the word ‘graviton’ for any field on AdS,s obtained upon compactification from a
field in the 11 dimensional gravity multiplet.



Gravitons on AdSy x g—; are those graviton states on AdSy x S7 whose charge under
the generator 2hy4 is 0 mod k.6 In the large k 't Hooft limit under study in this note, all
projected in gravitons are simply neutral under the U(1) charge hy. Consequently, the
superconformal index over single gravitons in AdSy x g—z is simply the projection of the
same quantity in AdSy x S7 to the sector of zero hy charge.

The index

I = Te[(—1)Facotiyl2ysyie] (3.1)

over single gravitions in AdS; x ST was evaluated in [[j] (see equation 2.17 in that paper).
For the convenience of the reader we reproduce the formula here,

Numerator
v — b 3.2
Adsyxs7 (T2 U1 Y2, Us) Denominator’ (3:2)
where,
Numerator = — /y1v/Y2/Y3(y2y3y1 + y1 + y2 + y3)337/2
+ (y2y3y% + (y3y§ + y%@/z + Y2 + y3) Y1+ y2y3) z?
— (v2usyi + (Y393 + Y32 + y2 + y3) v1 + y2ys) = (3.3)

+ VYIVY2VY3(Y2ys + v (y2 + y3) + 1)V
Denominator = (1 — x2) (\/E\/y_l\/y_ — \/%) (ﬁ@\/y_ — \/E)
(Vy1 = Vavyevis) (VIivieyis — V)

The index over single gravitons of zero hy4 charge is given by

49w 0 dys
/%[AdS4XS7(x7yl7y27ez ):/C—27Ty3i[AdS4XS7(x7yl’y27y3)

=z 7
Y1y’
Performing this sum of residues we find that the index over U(1) neutral gravitons on

where the contour C' surrounds the poles at y3 = 0, y3 = zy1y2 and

AdSy % g—; is given by,

T + 1 + T + 1 2
p—z l—zyr -z l—xzyy 1—2x2

w _
ISingle Particle — (34)

a result that is significantly simpler than (B.3).

6As for SO(6) we think of SO(8) as the group of rotations in R® parameterized by z', i = 1...8.
hi,h2, h3, hs are the eigenvalues of the generators of rotations in the (12), (34), (56) and (78) planes
respectively. We label representations of SO(8) by their highest weights under (h1, h2, hs, hq); our positivity
convention for weights is the obvious generalization of that for SO(6). Note that the Z orbifolding described
in [[i] is, in our conventions, simply a rotation by the angle 47 /k in the (78) 2 plane. The subgroup of
SO(8) that commutes with this rotation is SO(6) x SO(2). The SO(2) factor is simply rotations in the
(78) 2 plane itself while the SO(6) factor describes rotations among the remaining orthogonal 2 planes and
is the R symmetry of the surviving N/ = 6 supersymmetry algebra. Note that the supersymmetry of the
parent theory decomposes into 69 4+ 12 + 1_2 under this decomposition, while the scalar decomposes into
the 41 + 471.

"The index (@) is well defined only when z < y¢y5yS where (a, b, ¢) run over the values of (2h1, 2hz, 2h3)
for the antichiral spinor of SO(6). It follows that the contour of our integral must exclude the poles at

v1

= YL and y3 = £,
Y3 = 2y, Y3 = 2y



Range of n Scaling SO(3) SO(6) highest weight | € + j | statistics
dimension ¢y | weight (j) | (orthogonal basis)
n>1 n 0 (n,n,0) n bosonic
n>1 n+i 3 (n,n,1) n+ 1 | fermionic
n>1 n+i 1 (n,m,—1) n+ 1 | fermionic
n>1 n+i 1 (n,n—1,0) n+ 1 | fermionic
n>1 n+1 1 (n,n,0) n+2 | bosonic
n>2 n+1 1 (n,n—1,1) n+2 | bosonic
n>2 n+1 1 (n,n—1,-1) n+2 | bosonic
n>2 n+3 3 (n,n—1,0) n+ 3 | fermionic

Table 3: The supersymmetric (A = 0) graviton spectrum in AdS; X g—z Here n is an integer
greater than or equal to 1.

We have also verified (B.4) more directly. As explained in [[[3, f[] the U(1) neutral gravi-
tons in AdSy X ”Zq—z appear in a direct sum representations of the N’ = 6 superconformal
algebra labeled by the highest weight states with ¢ = n, j = 0 and (hq, he, hg) = (n,n,0)
forn =1...00. It is not difficult to decompose every such representation of the supercon-
formal algebra into irreducible representations of the d = 3 conformal algebra (using, for
instance, the techniques described in [§]). This decomposition could also be read off from
the table 1 in [13]. In table 3 we list those conformal representations that have states with
A = 0. Only states with maximum values of hy and j in the representations listed in table
3 have A = 0 and contribute to the index. Consequently, the contribution of any of the
representations listed below, to the index is simply given by

w TNy
1 o = (1P X S6 ) (v v2)

where €y and j are respectively the dimension and SO(3) charge of the highest weight

state in the representation, the factor of ﬁ is the contribution from the supersymmetric

derivatives and ng(’Zf ) (y1,y2) is the SO(4) character with highest weights hs, h3. Summing

this quantity over all the representations listed in table 3 for all n > 1 we recover (B.4).
In order to compute the index over multi gravitons we use the single partice index (.4)
and the formulas of Bose statistics to obtain®

(3.5)

Iwzl;(l_mn (1—22")

£) (1-5) 1 —amp) (L—amy)

in perfect agreement with (R.9).

8 According to the rules of Bose Statistics a single particle index of the form >, cnx™ translates into a
multi particle index [] (1 — z")™“" where ¢, are integers that could be either negative or positive, and
schematically represents all chemical potentials.



4. Discussion

In this note we have computed the supersymmetric index of [ for the ABJM theory in
two different ways. We first performed a one loop field theory computation to evaluate this
index in the free theory field at large IV; this calculation was performed at A = % =0. We
then evaluated the same index over the Fock space of U(1) neutral gravitons in AdSy x g—z
This calculation was valid in the large N limit with A fixed at a large value. The results
of our two calculations match perfectly, providing a check of the ABJM conjecture.

It would be easy to generalize the gravitational calculation presented in this note to
apply the large N limit with &k held fixed. All one needs to do is to project (B.3) onto
the sector with 2hy = 0 mod k (rather than simply to zero), before applying the formulas
of Bose statistics. For instance when k = 1 this simply amounts to setting ys to unity
in (B.J). It may be possible to reproduce the full finite k gravitational index from an
(almost) free field theory calculation after summing over flux sectors on S2, as suggested
by the discussion in [I]. It would be very interesting to try to carry this through.

Another direction that would be interesting to explore would be the determination of
the full supersymmetric partition function (rather than the supersymmetric index) of the
ABJM theory, with varying amounts of supersymmetry. For instance a formula for finite
N partition function over the chiral ring (states that preserve 4 supercharges) has been
proposed in [[[4] at k = 1. It would be interesting to verify this formula and to generalize
it to other values of k. More ambitiously one could attempt to determine the full partition
function (in contrast to the index computed in this paper) over all supersymmetric of in
the ABJM theory; note however that this programme has not yet been completed even for
N =4 Yang Mills (see [1§] for a recent status report).

In this connection note that like AdSs x S°, the ABJM gravitational background
presumably hosts supersymmetric black holes that preserve 2 supersymmetries (see [[[J—
[[J] for relevant work). This is exactly the minimum amount of supersymmetry that a
state needs to preserve to contribute to the index described in this paper. However the
index computed in this paper sees no sign of these states. Indeed a naive estimate suggests
that the entropy of these supersymmetric black holes scale like N2/ VA times functions of
chemical potentials. As a result, the entropy of these black holes appears to be a function of
A at large A, and so cannot be captured by any quantity like an index that is independent
of A\. The smooth dependence of the entropy of a supersymmetric configuration on a
continuous coupling constant appears non intuitive at first sight, and it would be interesting
to understand how this comes about. Perhaps the states that make up the entropy of the
black hole receive important contributions from the nontrivial flux sectors (these sectors,
whose energy scales like IV, could in principle contribute to the entropy of a black hole -
whose energy scales like N2, even in the 't Hooft limit).?

Turning to the spectrum of nonsupersymmetric states in this theory, it seems possible
that the integrability of the spin chain spectrum of chiral operators could carry over to
the ABJM theory. It would be interesting to study this possibility in more detail. Indeed,
one of the exciting aspects of the ABJM proposal (in our opinion) are the prediction that

9We thank R. Gopakumar for this suggestion.



the effective string that describes spin chain dynamics metamorphoses into a membrane at
A= O(N). It would be very interesting to attempt to get a concrete handle on this.

Finally, of course the ABJM duality permits the computation of all correlators (not
just the spectrum) of all the chiral operators in the theory at strong coupling. A simple
scaling estimate reveals that k point functions of these operators scale like ()\% JN)F=2 at
strong coupling. In particular, three point functions are functions of A and cannot enjoy
the nonrenormalization properties of 3 point functions of chiral operators in A" = 4 Yang
Mills theory in d = 4 [[L7].
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