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Abstract
Typical security proofs of quantum key distribution (QKD) require that the emitted signals are
independent and identically distributed. In practice, however, this assumption is not met because
intrinsic device flaws inevitably introduce correlations between the emitted signals. Although
analyses addressing this issue have been recently proposed, they only consider a restrictive scenario
in which the correlations have a finite and known maximum length that is much smaller than the
total number of emitted signals. While it is expected that the magnitude of the correlations
decreases as the pulse separation increases, the assumption that this magnitude is exactly zero after
a certain point does not seem to have any physical justification. Concerningly, this means that the
available analyses cannot guarantee the security of current QKD implementations. Here, we solve
this pressing problem by developing a rigorous framework that, when combined with existing
results, can guarantee security against pulse correlations of unbounded length. Our framework is
rather general and could be applied to other situations for which the existing analyses consider a
scenario that differs slightly from the actual one.

1. Introduction

Quantum key distribution (QKD) promises secure communications between two distant parties based on
the laws of physics [1, 2]. However, conventional security proofs of QKD often rely on idealised assumptions,
neglecting inevitable device imperfections. This gap between theoretical models and real-world
implementations could be exploited by an eavesdropper, compromising the security claim of QKD [3].
Addressing this challenge has become a focal point in the field [4], with experimentalists striving to
accurately characterise the magnitude of different device imperfections and refine hardware design to better
match the theoretical models, and theorists developing new protocols and security proofs that accommodate
various device imperfections.

One of the most important imperfections in practice, especially among high-speed QKD systems [5], are
pulse correlations. These occur when the setting choices made in a given round are not only encoded into the
signal emitted in that round, but also inadvertently into the signals emitted in subsequent rounds. This
phenomenon, purely classical in nature, can arise, for instance, from memory effects in the modulation
devices (such as phase and amplitude modulators). It constitutes a security risk because it could allow an
eavesdropper to learn key information by investigating the leaked information in subsequent pulses, while
causing no disturbance on the current one.

Accommodating this imperfection in security proofs of QKD was believed to be difficult, as many of
them require that the emitted states are independent and identically distributed [1]. Recently, however,
analyses addressing bit and basis correlations [6–9], intensity correlations [10–12] and phase-randomisation
correlations [13] have been proposed. Using these analyses, one is able to effectively bound the amount of
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information leaked to a potential eavesdropper and apply sufficient privacy amplification to obtain a secure
key.

These proofs, however, rely on the assumption that the correlations have a finite and known maximum
length lc, beyond which the pulses are completely uncorrelated. In other words, one needs to guarantee that
the setting choice made in the kth round has absolutely no influence on the signal emitted in the (k+ l)th
round for l> lc. While it is reasonable to expect that the magnitude of the correlations decreases rapidly as
the pulse separation l increases, the assumption that this magnitude will drop to exactly zero for any finite
value of l does not seem to be justified. Indeed, these correlations could even span the entire communication
sequence, i.e. the setting choices made in the first round of the protocol could in principle influence the
signals emitted in the very last round.

That being said, intuitively, there should exist a pulse separation threshold after which this influence is so
small as to be almost negligible, in the sense that an eavesdropper could gain almost no information from it.
This suggests that the key generated in this scenario should be almost as secure as the key that would have
been generated in a scenario in which the magnitude of the correlations drops to exactly zero after the
threshold. In this work, we confirm this intuition by proving that, even if the correlations technically have an
unbounded length, one can apply the existing security analyses as if their length was bounded by the
threshold, and then rigorously account for the neglected long-range correlations by slightly adjusting the
security parameter of the final key. By doing so, we close a critical loophole in QKD’s security, making it
resilient against potential attacks exploiting this imperfection.

We remark that the simple formalism we introduce is rather general and versatile, as it can be applied to
other situations for which the existing security proofs consider a scenario that differs slightly from the actual
one. For this reason, the outline of this paper is as follows. First, in section 2, we describe a general QKD
protocol. Then, in section 3 we present our formalism for a general scenario. After that, in section 4, we apply
it to the case of unbounded bit and basis pulse correlations and explain how experimentalists can use this
result in practice. Finally, in section 5, we discuss and summarise our findings.

2. Description of a general QKD protocol

For clarity and simplicity, our discussion focuses on prepare-and-measure (P&M) protocols, although our
results are equally applicable to measurement-device-independent scenarios [14]. A general P&M protocol
can be described as follows: (1) Alice makes a probabilistic selection of setting choices (such as bit and basis
choices) and then sends, through a quantum channel, a sequence of quantum states on systems
S1, . . .,SN =: S; (2) Eve performs the most general attack allowed by quantummechanics, which, without loss
of generality, can be described as the application of a unitary operator USE on S and on her ancillary system
E, and resends the output systems B to Bob; (3) Bob performs measurements on the received systems; (4)
Alice and Bob apply post-processing (this is the classical phase of the protocol and it typically involves,
e.g. basis announcements, sifting, error correction, error verification and privacy amplification) to obtain an
ϵsec-secure key pair, where

1

2

∣∣∣∣ρfinalA ′B ′E ′ − ρidealA ′B ′E ′

∣∣∣∣
1
⩽ ϵsec. (1)

Here, ρfinal
A ′B ′E ′ is the final joint state of Alice, Bob and Eve at the end of the protocol, where A ′ and B ′ are

Alice’s and Bob’s classical systems holding their respective keys kA and kB, and E ′ is Eve’s ancilliary output
system after applying USE. The state ρidealA ′B ′E ′ is their joint state in an ideal protocol in which Alice and Bob
share an identical key that is completely random and uncorrelated with Eve’s system. Intuitively, equation (1)
means that if a protocol is ϵsec-secure then the probability that Eve has any information about the key and/or
that Alice’s and Bob’s keys are not identical is at most ϵsec.

The objective of a security analysis is proving equation (1). To achieve this, it is often useful to assume an
equivalent scenario (typically called a source-replacement scheme) in which Alice generates a global
entangled state |Ψ⟩AS and then performs measurements on the ancillary systems A := A1, . . .,AN to learn her
setting choices. Also, it is helpful to consider that Alice delays her measurements until after Eve’s attack. In
this case, we have the following modified steps: (1 ′) Alice prepares |Ψ⟩AS and sends systems S through the
quantum channel while keeping systems A in her lab; (3 ′) Alice and Bob perform measurements on their
local systems A and B, respectively. We can denote Alice’s and Bob’s actions in steps (3 ′) and (4) as a
trace-preserving completely positive (TPCP) map EAB such that EAB(P̂[USE |Ψ⟩AS |0⟩E]) = ρfinal

A ′B ′E ′ , where

P̂[·] = |·⟩⟨·|. And if we define a TPCP mapOϵsec that also includes Eve’s action in step (2), then we have that
ρfinal
A ′B ′E ′ =Oϵsec

(
|Ψ⟩⟨Ψ|AS). See figure 1 for a pictorial representation of this operation.
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Figure 1. Pictorial description of the quantum operationOϵsec , which contains Alice’s, Bob’s and Eve’s operations on a QKD
protocol with a source-replacement scheme. First, Alice prepares the entangled state |Ψ⟩AS and sends systems S= S1,S2, . . .,SN
through the quantum channel while keeping systems A= A1,A2, . . .,AN in her lab. Note that we only explicitly depict three
rounds of the protocol, namely the 1st, 2nd and Nth rounds, and the rest are represented by the vertical ellipses. After that, Eve
performs a coherent attack, which can be described by a unitary operator USE acting on S and Eve’s ancilla system E, and resends
the output systems B= B1,B2, . . .,BN to Bob. Then, Alice and Bob perform the operation EAB, that is, they measure their
respective systems and apply post-processing to obtain an ϵsec-secure key pair kA,kB. The final joint state at the end of the

protocol, or in other words, after applying the quantum operationOϵsec , is ρ
final,Ψ

A ′B ′E ′ .

3. Main result

In QKD protocols, the security of the final key pair depends on the precise characteristics of the quantum
states prepared by Alice. While theoretical security proofs often assume idealized conditions, practical
implementations may deviate slightly from these assumptions. Consider a scenario where we have a security
proof for a QKD protocol under slightly idealized conditions for Alice’s state preparation, which, as
explained in the previous section, can be mathematically represented by the generation of a global entangled
state |Ψ⟩AS. In reality, Alice’s state preparation may differ from this idealized scenario, and we can represent
the actual scenario by considering a different global entangled state |Φ⟩AS that is close to, but not identical to,
|Ψ⟩AS. Our Theorem, presented below, quantifies the impact of this deviation on the security of the protocol
by using two main tools: the triangle inequality and the non-increasing property of the trace distance under
quantum operations. In particular, it shows that if we can bound the trace distance between |Ψ⟩AS and |Φ⟩AS
by some value d, we can extend the original security proof for the idealized scenario to the actual scenario by
simply increasing the security parameter of the final key by 2d. Crucially, it allows us to do so without
affecting the protocol’s performance or introducing any additional assumptions. The extended proof
maintains the same expected secret-key generation rate and inherits all the properties of the original proof,
including its assumptions, the type of source considered (e.g. single-photon or coherent-light), its ability to
handle side channels (if applicable), and its compatibility with techniques like the decoy-state method (if
applicable). Finally, we remark that to apply our proof and determine d it is necessary certain experimental
characterization (see section 4 for more details).

Theorem. If a QKD protocol whose prepared entangled state is |Ψ⟩AS has been proven to be ϵsec-secure, then the
same protocol but whose prepared entangled state is instead |Φ⟩AS is (ϵsec + 2d)-secure, where d denotes the trace
distance between |Ψ⟩AS and |Φ⟩AS.

Proof. The goal is to upper bound 1
2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1
, which is the trace distance between the final state

in the actual scenario and in a fictitious scenario in which the users share an ideal key (see discussion after
equation (1)). Here, the superscript Φ indicates the prepared entangled state,

ρfinal,Φ
A ′B ′E ′ =

∑
K⩾0

pΦ (K)
2K−1∑

kA,kB=0

pΦ (kA,kB|K) |kA,kB⟩⟨kA,kB|A ′B ′ ⊗ ρfinal,Φ
E ′|K (kA,kB)=:

∑
K⩾0

pΦ (K)ρfinal,Φ
A ′B ′E ′|K, (2)

and

ρideal,Φ
A ′B ′E ′ =

∑
K⩾0

pΦ (K)
1

2K

2K−1∑
k=0

|k,k⟩⟨k,k|A ′B ′ ⊗TrA ′B ′

[
ρfinal,Φ
A ′B ′E ′|K

]
. (3)

3
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Also, pΦ(K) is the probability distribution of obtaining a final key of length K and pΦ(kA,kB|K) is the
probability that Alice and Bob get the keys kA and kB given K. Note that in equations (2) and (3), the
information about the length of K is implicitly included in systems A ′B ′, and that we are assuming a variable
K with K = 0 corresponding to the case in which the protocol aborts.

To achieve our goal, we introduce the analogous states ρfinal,Ψ
A ′B ′E ′ and ρ

ideal,Ψ
A ′B ′E ′ , that are defined by simply

replacing Φ withΨ in equations (2) and (3), respectively. Note that ρideal,Φ
A ′B ′E ′ and ρ

ideal,Ψ
A ′B ′E ′ are not equal

because the reduced state on Eve’s system E ′ depends on whether Alice prepares |Φ⟩AS or |Ψ⟩AS. Then, by
using the triangle inequality consecutively we have that

1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1
⩽ 1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρfinal,Ψ

A ′B ′E ′

∣∣∣∣
1
+

1

2

∣∣∣∣ρfinal,Ψ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1

⩽ 1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρfinal,Ψ

A ′B ′E ′

∣∣∣∣
1
+

1

2

∣∣∣∣ρfinal,Ψ
A ′B ′E ′ − ρideal,Ψ

A ′B ′E ′

∣∣∣∣
1
+

1

2

∣∣∣∣ρideal,Ψ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1
.

(4)

Next, we bound each term in the last inequality of equation (4) separately, where we will use the
non-increasing property of the trace distance under quantum operations:

1st term: as discussed in section 2, when Alice prepares the entangled state |Ψ⟩AS, the joint state of Alice, Bob
and Eve at the end of the protocol can be expressed as

ρfinal,Ψ
A ′B ′E ′ =Oϵsec

(
|Ψ⟩⟨Ψ|AS

)
. (5)

Note that this protocol is ϵsec-secure for any fixed unitary operator USE, since the existing security proof did
not impose any restrictions on Eve’s operation, and therefore, USE can be the operator that would have been
the most advantageous to Eve if Alice had prepared the state |Φ⟩AS instead. If we now substitute the prepared
entangled state |Ψ⟩AS by |Φ⟩AS, their final joint state is instead

ρfinal,Φ
A ′B ′E ′ =Oϵsec

(
|Φ⟩⟨Φ|AS

)
. (6)

Then, by substituting equations (5) and (6) in the first term of equation (4), we have that

1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρfinal,Ψ

A ′B ′E ′

∣∣∣∣
1
= T

(
Oϵsec

(
|Φ⟩⟨Φ|AS

)
,Oϵsec

(
|Ψ⟩⟨Ψ|AS

))
⩽ T

(
|Φ⟩⟨Φ|AS , |Ψ⟩⟨Ψ|AS

)
=: d, (7)

where we have used the fact that the trace distance T(|·⟩⟨·| , |·⟩⟨·|) is non-increasing by quantum operations.

2nd term: since the QKD protocol is assumed to be ϵsec-secure when Alice prepares the entangled state
|Ψ⟩AS, by definition, the second term in equation (4) is bounded by ϵsec (see equation (1)).

3rd term: the ideal states ρideal,Φ
A ′B ′E ′ and ρ

ideal,Ψ
A ′B ′E ′ can be directly obtained from their respective actual states

ρfinal,Φ
A ′B ′E ′ and ρ

final,Ψ
A ′B ′E ′ by simply replacing the actual keys kA and kB with the ideal key pair. By defining this

TPCP map as Γ (see appendix A for more details), we have that the third term in equation (4) becomes

1

2

∣∣∣∣ρideal,Ψ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1
=

1

2

∣∣∣∣Γ(ρfinal,Ψ
A ′B ′E ′

)
−Γ

(
ρfinal,Φ
A ′B ′E ′

)∣∣∣∣
1
⩽ 1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρfinal,Ψ

A ′B ′E ′

∣∣∣∣
1
⩽ d, (8)

where in the last inequality we have used equation (7).
Finally, by substituting equations (7) and (8) into equation (4) and using the fact that the protocol in

which Alice prepares |Ψ⟩AS is ϵsec-secure by definition, we obtain the following bound

1

2

∣∣∣∣ρfinal,Φ
A ′B ′E ′ − ρideal,Φ

A ′B ′E ′

∣∣∣∣
1
⩽ ϵsec + 2d, (9)

as required.

4. Application of the theorem to unbounded pulse correlations

In this section, we show how our Theorem can be applied to extend a security proof addressing finite-length
correlations to incorporate correlations of unbounded length. For concreteness, we focus on bit-and-basis
correlations, which have been addressed by the security proofs in [6–9] for the finite-length scenario. In
particular, let us consider a practical scenario in which Alice employs an imperfect source that introduces bit
and basis correlations between the emitted pulses. In this case, the state of the kth pulse depends not only on

4
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Alice’s kth setting choice jk, but also on her previous setting choices jk−1, jk−2, . . ., j1. We can quantify the
strength of the correlation between pulses separated by l rounds, denoted by ϵl, by considering the maximum
variation that the state on the kth round can undergo when the (k− l)th setting choice is altered, that is,∣∣⟨ψjk|jk−1,...,jk−l+1 ,̃jk−l,jk−l−1,...,j1

|ψjk|jk−1,...,jk−l+1,jk−l,jk−l−1,...,j1⟩
∣∣2 ⩾ 1− ϵl. (10)

The existing security proofs addressing this imperfection [6–9] require the assumption that a bound on ϵl is
known and that the correlations have a finite length, i.e. that there is a certain length lc such that ϵl = 0 for all
l> lc. The latter condition is needed because these proofs divide the protocol rounds in lc + 1 groups and
prove the security of each group separately, which can only be done if lc is bounded. Unfortunately, however,
while it seems natural that the strength of the correlations should decrease rapidly as the pulse separation l
increases, it is unreasonable to assume that it will decrease to exactly zero at any point.

That being said, there must exist a certain pulse separation l after which the strength of the correlations is
so small that it is essentially negligible. Let us denote this value of l as the effective maximum correlation
length le. Using the Theorem in the previous section, we can make this intuition explicit. First of all, we
define the following source replacement scheme for the protocol:

|Ψ∞⟩AS =
∑
j1

√
pj1e

iθj1 |j1⟩A1

∣∣ψj1

〉
S1

∑
j2

√
pj2e

iθj1,j2 |j2⟩A2
|ψj2|j1⟩S2 . . .

∑
jN

√
pjNe

iθj1,...,jN |jN⟩AN
|ψjN|jN−1,...,j1⟩SN ,

(11)

where {|jk⟩Ak
}jk is an orthonormal basis for the system Ak and the terms eiθj1,...,jk are complex phases that

have no effect on Alice’s measurements on systems A. The motivation to include these phases will be
understood soon. Also, we introduce the following state

|Ψle⟩AS =
∑
j1

√
pj1 |j1⟩A1

∣∣ψj1

〉
S1

∑
j2

√
pj2 |j2⟩A2

|ψj2|j1⟩S2 . . .
∑
jN

√
pjN |jN⟩AN

|ψjN|jN−1,...,jN−le
⟩SN , (12)

where we have defined

|ψjk|jk−1,...,jk−le
⟩Sk := |ψjk|jk−1,...,jk−le ,j,j,j,...,j

⟩Sk , (13)

with j, j, j, . . ., j being any fixed sequence of setting choices for all rounds before the round k− le.
Equation (12) represents a source replacement scheme for a fictitious scenario in which the correlations of
Alice’s source have a maximum bounded length of le. By applying the analyses in [6–9], one can obtain a
security proof for this fictitious scenario that results in an ϵsec-secure key. Then, provided that one can obtain
the bound

T
(
|Ψ∞⟩⟨Ψ∞|AS , |Ψle⟩⟨Ψle |AS

)
⩽ d, (14)

our Theorem ensures that, if we apply this security proof to the actual protocol, the final key is guaranteed to
be (ϵsec + 2d)-secure. In what follows, we first show how to bound this trace distance and then explain how
to use this result in practice.

4.1. Bounding the trace distance
Proposition. The trace distance between |Ψ∞⟩AS and |Ψle⟩AS is bounded by

T
(
|Ψ∞⟩⟨Ψ∞|AS , |Ψle⟩⟨Ψle |AS

)
⩽
√

Nδle =: d, (15)

where N is the number of emitted signals and
√
δle =

∑N
l=le+1

√
ϵl.

Proof. For pure states, the trace distance can be expressed exactly in terms of their inner product as

T
(
|Ψ∞⟩⟨Ψ∞|AS , |Ψle⟩⟨Ψle |AS

)
=
√
1− |⟨Ψle |Ψ∞⟩AS |2. (16)

Therefore, a bound on the trace distance between |Ψ∞⟩AS and |Ψle⟩AS can be derived by bounding
| ⟨Ψle |Ψ∞⟩AS |. Using equations (12) and (11), we have that

5
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| ⟨Ψle |Ψ∞⟩AS |=
∣∣∣∣∑

j1

pj1e
iθj1 ⟨ψj1 |ψj1⟩S1 . . .

∑
jN

pjNe
iθj1,...,jN ⟨ψjN|jN−1,...,jN−le

|ψjN|jN−1,...,j1⟩SN

∣∣∣∣
=

∣∣∣∣∑
j1

pj1
∣∣⟨ψj1 |ψj1⟩S1

∣∣. . .∑
jN

pjN
∣∣⟨ψjN|jN−1,...,jN−le

|ψjN|jN−1,...,j1⟩SN
∣∣∣∣∣∣

=
∑

j1,...,jN

pj1 . . .pjN
∣∣⟨ψj1 |ψj1⟩S1

∣∣. . .∣∣⟨ψjN|jN−1,...,jN−le
|ψjN|jN−1,...,j1⟩SN

∣∣
=

∑
j1,...,jN

pj1 . . .pjN

N∏
k=le+2

∣∣⟨ψjk|jk−1,...,jk−le
|ψjk|jk−1,...,j1⟩Sk

∣∣, (17)

where, without loss of generality, we have exploited the freedom to introduce and choose the
phases in equation (11) such that all inner products are real and positive, i.e. θj1,...,jk =−arg
(⟨ψjk|jk−1,...,jk−le

|ψjk|jk−1,...,j1⟩Sk). Also, in the first equality of equation (17) we have used ⟨jk|j
′
k⟩Ak

= δjk,j ′k and in
the last equality we have used the fact that the first le + 1 inner products equal one.

Now, the terms | ⟨ψjk|jk−1,...,jk−le
|ψjk|jk−1,...,j1⟩Sk | in equation (17) can be bounded using equation (10) and

the relationship between trace distance and fidelity. In appendix B, we show that∣∣〈ψjk|jk−1,...,jk−le

∣∣ψjk|jk−1,...,j1

〉
Sk

∣∣⩾√
1− δle , (18)

where
√
δle =

∑N
l=le+1

√
ϵl. Then, substituting equation (18) in equation (17), we obtain

| ⟨Ψle |Ψ∞⟩AS |⩾
∑

j1,...,jN

pj1 . . .pjN

N∏
k=le+2

√
1− δle =

N∏
k=le+2

√
1− δle = (1− δle)

N−le−2
2 , (19)

since the probabilities sum to one. Finally, by substituting equation (19) in equation (16) and using
Bernoulli’s inequality, we find that

T
(
|Ψ∞⟩⟨Ψ∞|AS , |Ψle⟩⟨Ψle |AS

)
⩽
√

(N− le − 2)δle ⩽
√

Nδle =: d, (20)

as required.

4.2. Specific pulse correlations model
As a particular example to illustrate the application of our formalism, we consider a model in which the
correlation strength ϵl decreases exponentially5 with the correlation length l. Specifically, we assume that

ϵl = ϵ1e
−C(l−1), (21)

where ϵ1 represents the magnitude of nearest-neighbor pulse correlations, and C is a constant determining
the rate at which the correlation strength decays as the separation between pulses increases. We remark,
however, that our formalism can be applied to any decay model, and that our derivations below could be
adapted accordingly.

The first step to apply the Theorem is determining δle . Using equation (21), we have that
√
δle can be

expressed as

√
δle =

N∑
l=le+1

√
ϵl ⩽

∞∑
l=le+1

√
ϵl =

∞∑
l=le+1

√
ϵ1e−C(l−1) =

√
ϵ1e−Cle

1−
√
e−C

, (22)

where we have substituted equation (21) in equation (B5). Note that, in equation (22), we have upper
bounded

∑N
l=le+1

√
ϵl by an infinite sum, since for an exponential decay model this sum converges and

results in a simpler expression. For decay models in which this infinite sum does not converge, one could

5 In an independent research project [15] aimed at investigating pulse correlations in QKD modulation devices, some of our co-authors
have obtained preliminary evidence suggesting that the limited bandwidth of modulation devices is a primary cause of pulse correla-
tions, and that the magnitude of these correlations can indeed be bounded by a function that decays exponentially as the pulse separ-
ation increases, which aligns with our model in equation (21). Interestingly, recent work has shown that these bandwidth limitations
also introduce an encoding side channel [16], underscoring the importance of addressing the security vulnerabilities introduced by this
imperfection.
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Figure 2. Value of the effective maximum correlation length le that one should set to achieve d= 10−10 [17] as a function of the
number of emitted signals N. For the simulations, we have assumed that ϵ1 = 10−3 [5].

simply evaluate the finite sum to obtain
√
δle . Then, by substituting equation (22) in equation (20), d can be

re-defined as

d=

√
Nϵ1e−Cle

1−
√
e−C

. (23)

To have a good security guarantee, we want that d is of the same order of magnitude as ϵsec. To achieve this
for a particular value of N, we need to appropriately choose the effective maximum correlation length le,
which our security proof is based on. For this, it is useful to express le as a function of d and N as

le =
1

C
ln

 Nϵ1

d2
(
1−

√
e−C

)2

 . (24)

Therefore, in practice, to prove the security of a QKD protocol with a fixed N whose pulses are all
correlated one should do the following: (1) infer from a source-characterisation experiment the value of the
parameters ϵl (if they follow the expression given by equation (21), this reduces to determining the
parameters C and ϵ1); (2) decide the desired value of d and calculate the effective maximum correlation
length le (in the case of an exponential decrease, this can be done using equation (24)); (3) apply one of the
security analyses in [6–9] assuming that the true maximum correlation length lc equals le; and (4) increase
the security parameter ϵsec claimed by the applied analysis by 2d.

As a particular example, in figure 2, we plot the required value of le as a function of N using
equation (24). Since to the best of our knowledge there are no experimental works quantifying C, in our
simulations we consider a range of values for this parameter. Moreover, we assume that ϵ1 = 10−3 [5], and
given that 10−10 is a typical value for ϵsec [17], we assume that d= 10−10.

The results in figure 2 show that as N increases, le also increases. This is expected because a larger N
means that potentially more pulses could be correlated with one another, and therefore one would need to
set a higher le to achieve the same level of security. While increasing N is known to reduce finite key effects,
our work shows that it also leads to a higher le, thereby presenting a compromise due to the additional time
required for post-processing. Moreover, in figure 2, one can see that the parameter C, which quantifies how
fast the magnitude of the correlations drops with distance, has a high impact on the required le. Again, this is
expected because if C drops very fast then the correlations between far-away pulses will be very faint,
allowing us to achieve the desired level of security with a smaller value of le.

5. Discussion and conclusion

QKD implementations often suffer from correlations among the emitted signals. Recent works have
addressed this imperfection [6–13], but only under the assumption that the correlations have a bounded

7
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length. Since this is not expected to be met in practice, these analyses cannot guarantee the security of
practical QKD systems. In this work, we have solved this critical vulnerability by providing a general
framework to prove the security of QKD in real-life scenarios in which the length of the correlations may be
unbounded.

Our approach involves the consideration of an effective maximum correlation length le, which should be
chosen such that the magnitude of the residual correlations between pulses separated by more than le rounds
is so small as to be almost negligible. Here, by ‘almost negligible’, we mean that the global entangled state
prepared in the actual protocol cannot be distinguished from the global entangled state that would have been
prepared in a protocol for which the magnitude of these residual correlations is exactly zero, except with a
tiny failure probability d. More specifically, we have shown that, under this condition, one can simply apply
the existing security proofs [6–11, 13] as if the true maximum correlation length was indeed le, and then
account for the residual correlations beyond this limit by simply increasing the security parameter of the
final key by 2d. Importantly, our formalism can extend these security proofs to incorporate unbounded
correlations while requiring no additional assumptions beyond those made in the original security proofs,
and without affecting the expected secret-key generation rate.

To show how one can apply our formalism, we have focused on the scenario in which the emitted signals
suffer from bit and basis correlations, which was considered in [6–9]. For this, we have assumed that the
magnitude of the correlations decreases exponentially with their length, and used it to determine the
appropriate value of le as a function of the total number of transmitted rounds N, the desired failure
probability d, and the exponential decay constants. We remark, however, that our framework can also be
applied to extend existing security proofs addressing intensity correlations [10, 11] and phase-randomisation
correlations [13] to the case in which these correlations have an unbounded length. Moreover, it could
readily incorporate other small imperfections into existing security proofs, such as quantum correlations6

and discrete phase randomisation [18, 19]. Therefore, our work not only solves a crucial problem but also
constitutes an important step towards securing QKD implementations in practical scenarios.
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Appendix A. ConstructingΓ

The construction of Γ is as follows. First note that the final state can be expressed as

ρfinalA ′B ′E ′ =
∑
K⩾0

p(K)
2K−1∑

kA,kB=0

p(kA,kB|K) |kA,kB⟩⟨kA,kB|A ′B ′ ρfinalE ′|K (kA,kB)

= TrK
∑
K⩾0

p(K) |K⟩⟨K|K
2K−1∑

kA,kB=0

p(kA,kB|K) |kA,kB⟩⟨kA,kB|A ′B ′ ρfinalE ′|K (kA,kB) . (A1)

Then, by taking the trace over A ′B ′ we obtain

TrK
∑
K⩾0

p(K) |K⟩⟨K|K
2K−1∑

kA,kB=0

p(kA,kB|K)ρfinalE ′|K (kA,kB) , (A2)

and after adding the state |0⟩A ′B ′ we arrive to

TrK
∑
K⩾0

p(K) |K⟩⟨K|K |0⟩⟨0|A ′B ′

2K−1∑
kA,kB=0

p(kA,kB|K)ρfinalE ′|K (kA,kB) . (A3)

Finally, we swap the state of A ′B ′ with the ideal key state τK := 1/2K
∑2K−1

k=0 |k,k⟩⟨k,k|A ′B ′ by controlling
system K, leading to

TrK
∑
K⩾0

p(K) |K⟩⟨K|K τK
2K−1∑

kA,kB=0

p(kA,kB|K)ρfinalE ′|K (kA,kB)

=
∑
K⩾0

p(K)
1

2K

2K−1∑
k=0

|k,k⟩⟨k,k|A ′B ′

2K−1∑
kA,kB=0

p(kA,kB|K)ρfinalE ′|K (kA,kB) = ρidealA ′B ′E ′ . (A4)

The transformation from equations (A1) to (A4), which we call Γ, is a TPCP map that takes the actual state
ρfinal
A ′B ′E ′ into its respective ideal state ρidealA ′B ′E ′ .

Appendix B. Bounding | ⟨ψjk|jk−1,...,jk−le
|ψjk|jk−1,...,j1⟩Sk |

In this appendix, we derive a bound on the inner product | ⟨ψjk|jk−1,...,jk−le
|ψjk|jk−1,...,j1⟩Sk | in equation (17).

Note that, using the definition of |ψjk|jk−1,...,jk−le
⟩Sk in equation (13), we have that∣∣〈ψjk|jk−1,...,jk−le

∣∣ψjk|jk−1,...,j1

〉
Sk

∣∣= ∣∣〈ψjk|jk−1,...,jk−le ,j,j,j,...,j

∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

∣∣, (B1)

which corresponds to the fidelity between two hypothetical states emitted in the kth round that differ in all
setting choices from the first to the (k− le − 1)th one. Now, to bound equation (B1), we use our knowledge
of the fidelity between the states when changing only one setting choice at a time, i.e. equation (10). To relate
these two quantities, we will first convert this fidelity to trace distance, then use the trace distance triangle
inequality consecutively, and finally convert back to fidelity.

First, using the relationship between trace distance and fidelity, we have that∣∣〈ψjk|jk−1,...,jk−le ,j,j,j,...,j

∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

∣∣
=

√
1−T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))2
. (B2)
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Then, we bound the trace distance term in equation (B2) as

T
(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))
⩽ T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

))
+T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))
⩽ T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

))
+T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,j,...,j

〉
Sk

))
+T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))
⩽ T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

))
+T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,j,...,j

〉
Sk

))
+T

(
P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,j,...,j

〉
Sk

)
, P̂
(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j

〉
Sk

))
+ . . .

+T
(
P̂
(∣∣ψjk|jk−1,...,j

〉
Sk

)
, P̂
(∣∣ψjk|jk−1,...,j1

〉
Sk

))
, (B3)

where we have applied the triangle inequality consecutively. Note that, in the RHS of equation (B3), we have
a sum of k− le − 1 trace distance terms, each involving two states that differ in exactly one setting choice. The
first term differs in the (k− le − 1)th setting choice, the second term differs in the (k− le − 2)th setting
choice, and so on. Applying again the relationship between the trace distance and fidelity for each of these
terms, we obtain

T
(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))
⩽
√
1−

∣∣〈ψjk|jk−1,...,jk−le ,j,j,j,...,j

∣∣ψjk|jk−1,...,jk−le ,jk−le−1,j,j,...,j

〉
Sk

∣∣2 + . . .+
√
1−

∣∣〈ψjk|jk−1,...,j

∣∣ψjk|jk−1,...,j1

〉
Sk

∣∣2.
(B4)

Note that using equation (10) we can upper bound each of the terms on the RHS of equation (B4) such that

T
(
P̂
(∣∣ψjk|jk−1,...,jk−le ,j,j,j,...,j

〉
Sk

)
, P̂

(∣∣ψjk|jk−1,...,jk−le ,jk−le−1,jk−le−2,jk−le−3,...,j1

〉
Sk

))
⩽√

ϵle+1 + . . .+
√
ϵle+k−1 =

k−1∑
n=1

√
ϵle+n ⩽

N−le∑
n=1

√
ϵle+n =

N∑
l=le+1

√
ϵl =:

√
δle . (B5)

Substituting equation (B5) into equation (B2), we finally arrive at∣∣〈ψjk|jk−1,...,jk−le

∣∣ψjk|jk−1,...,j1

〉
Sk

∣∣⩾√
1− δle . (B6)
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