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The spectral power of primordial gravitational waves is calculated in the quantum version of conformal gen-
eral relativity. The fundamental variables of quantum gravity in the used approach are special variables, which
constitute the dynamic part of the spin connection, rather than components of the metric tensor. It has been
shown that the proposed model in the Born approximation reproduces the standard spectral power of primor-
dial gravitational waves generated in the canonical inflation process. This has made it possible to test the
quantum version of the conformal theory of gravity in a specific phenomenological problem.
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1. INTRODUCTION

At present, the main model used to solve the prob-
lem of the cosmological horizon is the inflationary
model based on the so-called semiclassical gravity
theory, where gravity is still considered as a classical
field and material fields as quantum. One of the main
predictions of the inflationary model is the existence
of primordial gravitational waves, which are expected
to be detected in the foreseeable future. Their detec-
tion should allow the discrimination of different cos-
mological and gravitational models [1]. Thus, differ-
ences in the predictions of any modified theory of
gravity for primordial gravitational waves from classi-
cal general relativity provide a remarkable opportunity
to test both inflationary models and the theory of
gravity in observational astrophysical experiments [2].

In this work, we study the generation of primordial
gravitational waves in the model of quantum gravity
obtained by quantizing the conformal version of gen-
eral relativity in special variables and compare the
power of their spectrum with the result obtained
within classical general relativity. This work is also
the first test of the phenomenological consequences
of the quantum theory of gravity considered in our
works [3, 4].

First, we specify the conformal transform of the
metric  in the form

(1)

where  is the conformal metric and D is the dilaton.

The essence of the conformal modification of gen-
eral relativity is as follows. The conformally noninvari-
ant Einstein–Hilbert action

(2)

is first modified by Weyl transforms to a form in which
all conformal weights are explicitly separated [5, 6]

(3)

Here,  is the cosmological constant,  is
the conformal cosmological constant, MP is the

Planck mass, and  is the conformal
Planck mass. The requirement of the conformal
invariance is then imposed on Eq. (3). As a result, the
action of the original general relativity is replaced by
another conformally invariant action. It is assumed
that the observed conformal symmetry breaking
occurs spontaneously, which can be described in the
nonlinear symmetry implementation approach [7].
Thus, conformal general relativity is incompletely
equivalent to classical general relativity; it is a modi-
fied theory of gravity. Therefore, the action given by
Eq. (3) will be called the action of conformal general
relativity.

The key difference of conformal general relativity
from classical general relativity is the assumption that
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we phenomenologically observe conformal values of
all physical quantities rather than standard ones, as is
assumed by default in classical general relativity. In
particular, in conformal general relativity, it is
assumed that if the observed quantities in a certain
measurement are equal to the standard ones, this sim-
ply means that the conformal factor is equal to one.

In this case, the most pronounced differences
between predictions of the conformal and classical
general relativity should be expected in the case of
their quantization.

We note in advance that four types of indices are
used in this article. Four- and three-dimensional
coordinate indices without parentheses are denoted by
Greek and middle Latin letters i, j, … letters and run
through the values 0–3 and 1–3, respectively. Four-
and three-dimensional spatiotemporal reference indi-
ces in parentheses are denoted by first Latin letters a,
b, … and middle Latin letters i, j, … letters and take
the values 0–3 and 1–3, respectively. The polarization
indices of classical and conformal gravitons are
denoted by (p) and (q).

The article is structured as follows. First, the foun-
dation of the formalism used in this work is given.
Next, a well-known method for obtaining the spectral
power of primordial gravitational waves in the stan-
dard inflationary model based on general relativity is
briefly described. Finally, following the analogy with
the standard approach, the spectral power for the case
of conformal general relativity is calculated and dis-
cussed.

2. PRELIMINARY REMARKS 
ON THE USED FORMALISM

In this paper, we use the formalism developed in
our and other works on conformal general relativity. In
this section, we will briefly present only those aspects
of it that will be used to analyze primordial gravita-
tional waves in conformal general relativity. A more
detailed description can be found in the Appendix and
in [3, 4, 8].

Tetrad fields and the spin connections are central
notions in the formalism under consideration. The

variables  are components of the spin connec-
tion. In conformal general relativity, the spin connec-
tion is metric, implying that torsion and nonmetricity
are absent [9]. In [4], we showed that the components
of the spin connection in the tetrad representation are
expressed by the formula

αω ( )
( ),

b
a
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(4)

This formula is different in sign from those given in [8,
3] but this does not affect the results presented below.

The components  and  in the tetrad
representation are given by the expressions

(5)

(6)

The substantiation and motivation for the introduc-
tion of  and  can be found in our previ-
ous works [8, 10, 3] and their relation to the Goldstone
fields is given in [10, 11]. Below, the indices will be
omitted for the sake of brevity, where this does not lead
to the loss of meaning, and these components will be
designated simply as ωR and ωL.

In [3, 4], it was shown that the differential of the
metric tensor does not depend on the variables ωL, and
the following formula was obtained:

(7)

In our approach, in contrast to teleparallelism and other
tetrad approaches, it is postulated that the tetrad matri-
ces  are not objects of gravitational field dynamics,
and the fundamental dynamics is entirely involved in
the spin connection. In this case, the absence of ωL in
Eq. (7) for the differential means that the dynamics of
the metric tensor can be contained in ωR.

In this work, we consider only globally hyperbolic
spacetimes. Then, it follows from Geroch’s splitting
theorem [12–14] that the spacetime under consider-
ation  is represented as a direct product

, where  is the spacelike Cauchy 3-surface
(hypersurface). Consequently, the Arnowitt–Deser–
Misner formalism is valid for this spacetime. This for-
malism was described in detail in [15], but we need
here only the lapse function . Without
loss of generality, it can be represented in the form [16]

(8)

Here, N0 and  are the global and local parts of the
lapse function, respectively. Then, taking into account
Eq. (8), the volume form can be represented as
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where  is the determinant of the spatial metric. This
allows the separation of integration over the spatial
coordinates in the action of conformal general relativ-
ity (3), which now takes the form

(10)

Thus, the temporal and spatial parts are separated in
Eq. (10). We have also omitted the term Λ since its
presence is not essential for the subsequent analysis.

3. PRIMARY GRAVITATIONAL WAVES
IN THE CANONICAL INFLATIONARY MODEL

In this section, we will briefly outline the formal-
ism necessary for the study of primordial gravitational
waves. The study of primordial gravitational waves by
means of transformations is usually reduced to a well-
defined situation of scalar field waves. For this reason,
we begin with a brief discussion of f luctuations of the
scalar field .

The most important characteristic of radiation is its
spectral power  defined by the formula

(11)

Below, the symbol  is used to designate the three-
dimensional part of the 4-momentum when working
with massless scalar fields, and its length is denoted in
most cases as k. Note that the term spectral power is
also used for another physical quantity  that is

related to  as . Correspond-

ingly, Eq. (11) can be represented in the form

(12)

The spectral power  is related to the f luctuation
of the scalar field by the formula

(13)

Here, the so-called semiclassical averaging is present
on the left-hand side, but quantum averaging over vac-
uum is defined in a similar way.

We calculate the spectral power for a massless
Klein–Gordon field in Minkowski space. A free scalar
field has the form

(14)
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Performing quantum averaging over the vacuum state
and using the commutation relation  –

 = δ(k – k'), we obtain the formula

(15)

Thus, in the case of Minkowski space, the spectral
power for the scalar field is given by the formula

. A detailed discussion of these defi-
nitions, including their properties and motivations,
can be found in [17–19]. Similar formulas can be
obtained for tensor fields. The case of tensor fields can
be reduced to the case of scalar fields by decomposi-
tion into the sum of polarizations using polarization
operators [17, 18]. Now, we briefly discuss the specific
of obtaining the spectral power of primordial gravita-
tional waves in the canonical inflationary model based
on general relativity.

The metric of a primordial gravitational wave in the
canonical inflationary model in the simplest case is
written as [20, 17]

(16)

By expanding the Einstein–Hilbert action into a series
by metric perturbations and retaining only the terms
quadratic in them, we obtain the action in the form

(17)

The Fourier series of the perturbation of the metric
with respect to the momentum has the form

(18)

Polarization operators have the following important
properties, which are used below for calculations:
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Using the Fourier series given by Eq. (18), Eqs. (19)
and (20), and the properties of the Dirac delta func-
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Performing similar transformations for the second
term, we arrive at the relation

(21)

Combining the results, we obtain the expression

(22)

Thus, the problem of calculating the spectral power of
primordial gravitational waves can be reduced to cal-
culating the spectral power of primordial perturba-
tions of the scalar field .

4. PRIMARY GRAVITATIONAL WAVES
IN CONFORMAL GENERAL RELATIVITY
In [4], we analyzed the quantum aspects of confor-

mal general relativity on the example of a nonlinear
gravitational wave described by the metric

(23)

This analysis showed that the general expression
describing the propagation of a free plane gravitational
wave in conformal general relativity has the form

(24)

Here,  are considered as the fundamental vari-

ables of quantum gravity, i.e., as operators; 

and  are the standard polarization tensors;

and  and  are treated as the creation and annihila-
tion operators of conformal gravitons, respectively,
which are not direct analogues of standard gravitons
and are not related to the last conformal transfor-
mations.

In this paper, we study primordial gravitational
waves within the quantum version of conformal gen-
eral relativity, starting with the results obtained in [3,
4]. An arbitrary gravitational wave, as well as the pri-
mordial gravitational wave metric in the canonical
inflationary model, has two degrees of freedom.

To determine whether the spectral power of pri-
mordial gravitational waves generated in the inflation
process, obtained within the conformal version of gen-
eral relativity, coincides with that obtained in canoni-
cal general relativity, we assume that the standard met-
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ric is given by the same expression as in classical gen-
eral relativity:

(25)

where x0 is the conformal time.
First of all, we note that the action of conformal

general relativity in this situation coincides with the
action of classical general relativity. In fact, as noted in
previous works, the average value of the dilaton should
be related to the scale factor by the formula

. Then, the square of the conformal
Planck mass entering Eq. (3) is specified by the
expression

(26)

As discussed in the preceding section, the gravitational
part of the action in conformal general relativity is
given by Eq. (10). The conformal scalar curvature is
specified by the standard formula
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for the second-order terms of the gravitational action:
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above, the basic variables  in the quantization
of gravity in our approach are considered to be the
basic variables and, correspondingly, they are opera-
tors. The conformal metric  is constructed as a
small perturbation of the Minkowski metric. In this
case, Eqs. (29) take the form

(30)

We will consider weak gravitational waves. Since the
metric ansatz given by Eq. (25) does not contain off-
diagonal components, the components of the basis
tetrads can be considered in the first approximation as
identity matrices and Eqs. (30) can be easily inte-
grated. In fact, the tetrad basis in this approximation
coincides with the coordinate one. Then, integrating
Eqs. (30), we get

(31)

Taking into account the presence of two polariza-
tions, f luctuations of the tensor field can be reduced to
fluctuations of the scalar field by substituting

. In this case, Eq. (31) takes the
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of its spatial part  will be des-
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where we used the commutation relation 
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operators and the relation . Thus, we
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uum fluctuations in Minkowski space. Thus, the spec-
tral power of gravitational waves propagating against
the background of Minkowski space is
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changed to take into account this factor. As a result, we
obtain

(36)

Thus, the conformal spectral power differs from the
standard one by the corresponding conformal weight

, as one would expect. So, starting from the
quantization of conformal general relativity in the
variables ωR, we can formally reproduce the spectral
power of gravitational waves that arise in the canonical
inflationary model, which is obtained from semiclas-
sical reasons.

5. CONCLUSIONS

To summarize, an expression for the spectral power
of primordial gravitational waves, which coincides
with that obtained within the framework of classical
general relativity, has been obtained by quantizing the
conformal version of general relativity in the special
variables ωR. In our calculations, Eq. (24), which
describes conformal gravitons, has been fundamen-
tally used. Although the variables ωR in our approach
are assumed to be the fundamental variables of quan-
tum gravity, the metric tensor still plays the main role
in physical terms. This tensor in our approach is an
operator, since it is related to ωR through first-order
differential equations (29), and ωR itself is a quantum
operator in construction.

The coincidence of an expression for the spectral
power derived from Eq. (24) with the expression
obtained from semiclassical reasons on the basis of
classical general relativity means that our approach at
least does not contradict the canonical model. In this
context, it is noteworthy that our calculations have
been performed in the leading (Born) approximation,
which is in particular used to integrate Eqs. (31).
Therefore, it would be very interesting to determine
the spectral power of the gravitational radiation in this
model including higher-order corrections. This
requires a separate study, which will be reported else-
where.

APPENDIX

TETRADS AND SPIN CONNECTION

Here, we present some formulas used in the tetrad
formalism and the spin connection. The representa-
tion of a tetrad in a coordinate basis has the form

(A.1)

�
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−  
 π π 

 2 0
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= 2
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2 0
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8 8= ( ) = .
2 2

ik hh h
p P
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Hka x
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A cotetrad is represented in the basis of 1-forms (cov-
ectors) from the cotangent space as

(A.2)
The following conditions are imposed on the cotet-
rads:

(A.3)

The quantities  are defined according to the for-
mula

(A.4)

where  is the Minkowski metric. Since  are
constants and do not depend on the point of the man-
ifold,  can be freely introduced in any derivative
and separated from it [9]:

(A.5)
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