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1 Solenoidal Magnetic Fields in Paraxial Approxima-

tion

Suppose that a charged particle is moving in the z direction and we wish to consider its
dynamics under magnetic fields in the z direction. Suppose we are given some B,(z). B
must satisfy Maxwell’s equations. In the absence of charge and time dependent electric
fields, this means that the divergence and curl of B must be 0. Let us consider fields with

axial symmetry about the z axis. Thus, we consider
B(z,r) = B,(2)z + B,(r, 2)T.

The divergence condition now says that the radial fields must satisfy
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This, along with the condition that B,(r = 0) = 0 fixes the radial fields:
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This says that B, must actually have radial dependence as long as its second derivative in
the z direction is non-zero. At r = 0, however, this equation says that B, has no radial
dependence. This means that if we approximate B, as having no radial dependence we are
ignoring terms of order 72. This is the paraxial approximation and it leads to linear transfer
maps. It is a good approximation for dynamics close to the symmetry axis, i.e. for small 7.
Later in this paper, we will study piecewise linear B,’s. Eq. (5) shows that in this case, B,
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is exactly independent of 7, except for on the transverse planes where % changes. If aa%

increases by A; at z;, then (3) and (5) show that the exact B is given by

B.(z,71) = Bu(z,r =0)+ > _TTQA]-(S(,Z — z) (6)
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where the first term in the expression for B, is 0 at z = z; for each z;. One could find
the map across these d fields at each z; by integrating in z the force due to them across z;.
The ¢'(z — z;) in the radial fields will integrate to 0. The ¢ functions in B, will result in a
non-linear map®. The changes in 2’ and ¢’ induced are proportional to 72. We will ignore
these non-linear maps in this paper. For a more general discussion of the non-linear case
using Lie algebra techniques, see [1].

Thus, in the paraxial approximation, we have

2 Delta Fringe Solenoid

Now, consider the following model for a solenoid. The solenoid consists of a region of length
L with constant B, of strength By and no field outside of that:

B.(2) = ByO(L/2 — |2)). 9)

Applying eq. (3) and using the fact that the derivative of a theta function is a delta function,
we get radial fringe fields

B.(r,z) = %r(é(L/Q—z)—é(—Lﬂ—z)) (10)

Now, consider a highly relativistic particle of charge e and momentum in the z direction
Py. We use transverse coordinates
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2One could imagine breaking up an arbitrary B, into a large number of linear sections and adding in

such a non-linear § map between each one. These maps, in conjunction with the linear maps derived later
in this paper could perhaps give insight into the general non-paraxial case.




The delta fringe map Fs(k) at z = —L/2, which takes the particle across the fringe from the
more negative z side to the less negative z side, is given by
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This map describes a kick of (2,%') in the —¢ direction: 2/ — 2’ + kx, v — ' — ky. The
fringe map at z = L/2 is the same except with k& — —k.
The body map B(L, k) which takes the particle from —L/2 to L/2 is given by

x-r/2 = (S 48 ) X (15)
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with
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This map describes helical motion of radius /z2 4+ y2/2k. Putting these together, we get
the full map for the delta fringe solenoid

Ss(L, k) = Fs(k)B(L, k)Fs(—k) = (foﬁf;fL)?@ EE;((IZ?ﬁ) )
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Note that O(k, L) is the transfer map for a harmonic oscillator with strength k& through a
distance L. We can also write the full map as follows

[ cos(kL)Iy  sin(kL)I, O(k, L) 0
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N / \\ J/

R(KL) Q(k.L)

This result shows that the map for a delta fringe solenoid has two components. The first,
R(kL) is a rotation of the vectors (z,y) and (2’,4') by an angle kL and the second, Q(k, L)
is harmonic oscillator evolution via Q(k, L) in both = and y. By noting that we could just as
easily have pulled R(kL) to the right of Q(k, L), we see that R and Q commute. This fact
will allow us to find a simple way of expressing the transfer map for an arbitrary solenoidal
magnetic field.



3 Arbitrary Solenoid from Delta Fringe Solenoid

We now would like to build up the map for arbitrary solenoidal fields from the map derived
in the previous section for a delta fringe solenoid. The delta fringe solenoid just considered
has two free parameters, the length L and the strength of the longitudinal magnetic field
By. By lining up many such solenoids back to back with varying lengths and field strengths,
we can model any solenoidal field we want. To get the transfer map for such a field, we
simply multiply (in order) the transfer maps for all the component delta fringe solenoids
with appropriate values of k£ and L for each. Suppose we have N such delta fringe solenoids
with lengths L/N and field strengths k;. The transfer map for the i*" delta fringe solenoid
will be R(k;L/N)Q(k;, L/N). Since R and Q commute for all values of their arguments, we
can pull all the rotation matrices off to the left and the focusing harmonic oscillator transfer
maps to the right. All the rotation matrices combine to a single rotation matrix of an angle
equal to the sum of the angles of the NV delta fringe solenoids. So we have

S=R (%ék) HQ <k]%) (20)

The product of the harmonic oscillator transfer maps just result in the net transfer map for
a particle in a harmonic oscillator potential with z dependent focusing strengths k;. Now,
let us approach the continuum limit, N — oco. Given B,(z) this determines k(z) by eq. (14).
Let O(zo, zy) be the transfer map corresponding to the differential equation
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Then the full transfer map in the paraxial approximation for a particle experiencing the
magnetic field B, (z) (and the corresponding B,.(r, z) via eq. (3)) from the position zy to the

position zy is
_ e [ O(20, 2f) 0
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4 Linear Fringe

The only barrier to obtaining explicit maps for various solenoidal fields is solving for the
harmonic oscillator transfer map. Here we do so for the case where B, falls off linearly in
the fringes (being constant otherwise).

Let the solenoid be of length L, with longitudinal field in the central region By, and
linearly decreasing fringe fields of length a. We seek the oscillator map across the fringe. In
this region, the field is
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We seek the solution z(z) which satisfies

d*x  k?
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subject to the initial conditions
z(0) = o (26)
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The general solution, before imposing the initial conditions is
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where J, is the Bessel function of order v. Taking a derivative, we get
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Now, the Bessel functions with v > 0 are 0 at z = 0 while for v < 0, J,(2) — 00 as z — 0.
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We can therefore write down the solutlon to the oscillator part of the fringe map. We have
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One can check the following properties of this transfer map:
detOp(k, z) =1 (33)
and
iig(l) Or(k,a) = L. (34)

The full fringe map for a linear field is then given by

[ cos(ka/2)Op(k,a) sin(ka/2)Op(k,a)
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and the full solenoid map is
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where
N = Or(k,a)O(kL)Og' (k, a) (38)



5 Conclusions and Further Work

The linear fringe field model of a solenoid given here should be an improvement over the delta
fringe model. By measuring B, at various places in the fringe field of an actual solenoid,
one could find the values of a and L which fit best. One could also model an asymmetric
solenoid by choosing different values for a at the two ends and making the obvious changes
in the maps above.

Given that real solenoidal fields are generally produced by a cylindrical current config-
uration, one would like to find the map across the resulting fringe fields. A possibility for
B,(z) in the fringe fields would be fields of the form tanh(z/A) (see [1]) where A is related
to the radius of the cylindrical current. If exact harmonic oscillator transfer maps are not
available for this B, then numerical maps could be calculated.
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