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1 Solenoidal Magnetic Fields in Paraxial Approxima-

tion

Suppose that a charged particle is moving in the z direction and we wish to consider its
dynamics under magnetic fields in the z direction. Suppose we are given some Bz(z). B
must satisfy Maxwell’s equations. In the absence of charge and time dependent electric
fields, this means that the divergence and curl of B must be 0. Let us consider fields with
axial symmetry about the z axis. Thus, we consider

B(z, r) = Bz(z)ẑ + Br(r, z)r̂. (1)

The divergence condition now says that the radial fields must satisfy

∂Br

∂r
+

Br

r
= −∂Bz

∂z
(2)

This, along with the condition that Br(r = 0) = 0 fixes the radial fields:

Br(r, z) = −r

2

∂Bz

∂z
(3)

Now, ∇×B = 0 gives
∂Br

∂z
=

∂Bz

∂r
(4)

or, with (3),
∂Bz

∂r
= −r

2

∂2Bz

∂z2
. (5)

This says that Bz must actually have radial dependence as long as its second derivative in
the z direction is non-zero. At r = 0, however, this equation says that Bz has no radial
dependence. This means that if we approximate Bz as having no radial dependence we are
ignoring terms of order r2. This is the paraxial approximation and it leads to linear transfer
maps. It is a good approximation for dynamics close to the symmetry axis, i.e. for small r.
Later in this paper, we will study piecewise linear Bz’s. Eq. (5) shows that in this case, Bz
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is exactly independent of r, except for on the transverse planes where ∂Bz

∂z
changes. If ∂Bz

∂z

increases by ∆j at zj , then (3) and (5) show that the exact B is given by

Bz(z, r) = Bz(z, r = 0) +
∑

j

−r2

4
∆jδ(z − zj) (6)

and

Br(z, r) = −r

2

∂Bz

∂z
(z 6= zj) +

∑
j

∆jr
3

8
δ′(z − zj) (7)

where the first term in the expression for Br is 0 at z = zj for each zj . One could find
the map across these δ fields at each zj by integrating in z the force due to them across zj .
The δ′(z − zj) in the radial fields will integrate to 0. The δ functions in Bz will result in a
non-linear map2. The changes in x′ and y′ induced are proportional to r2. We will ignore
these non-linear maps in this paper. For a more general discussion of the non-linear case
using Lie algebra techniques, see [1].

Thus, in the paraxial approximation, we have

B(z, r) = Bz(z)ẑ− r

2

∂Bz

∂z
r̂ (8)

2 Delta Fringe Solenoid

Now, consider the following model for a solenoid. The solenoid consists of a region of length
L with constant Bz of strength B0 and no field outside of that:

Bz(z) = B0Θ(L/2− |z|). (9)

Applying eq. (3) and using the fact that the derivative of a theta function is a delta function,
we get radial fringe fields

Br(r, z) =
B0

2
r (δ(L/2− z)− δ(−L/2− z)) (10)

Now, consider a highly relativistic particle of charge e and momentum in the z direction
P0. We use transverse coordinates

X(z) =




x(z)
x′(z)
y(z)
y′(z)


 (11)

2One could imagine breaking up an arbitrary Bz into a large number of linear sections and adding in
such a non-linear δ map between each one. These maps, in conjunction with the linear maps derived later
in this paper could perhaps give insight into the general non-paraxial case.
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The delta fringe map Fδ(k) at z = −L/2, which takes the particle across the fringe from the
more negative z side to the less negative z side, is given by

X(−L/2)− =

(
I2 K

−K I2

)
︸ ︷︷ ︸

Fδ(k)

X(−L/2)+ (12)

where I2 is the 2× 2 unit matrix,

K =

(
0 0
k 0

)
(13)

and

k =
eB0

2P0

. (14)

This map describes a kick of (x′, y′) in the −φ̂ direction: x′ → x′ + kx, y′ → y′ − ky. The
fringe map at z = L/2 is the same except with k → −k.

The body map B(L, k) which takes the particle from −L/2 to L/2 is given by

X(−L/2)+ =

(
M1 M2

−M2 M1

)
︸ ︷︷ ︸

B(L,k)

X(L/2)− (15)

with

M1 =

(
1 1

2k
sin(2kL)

0 cos(2kL)

)
M2 =

(
0 1

2k
(cos(2kL)− 1)

0 − sin(2kL)

)
(16)

This map describes helical motion of radius
√

x′2 + y′2/2k. Putting these together, we get
the full map for the delta fringe solenoid

Sδ(L, k) = Fδ(k)B(L, k)Fδ(−k) =

(
cos(kL)O sin(kL)O
− sin(kL)O cos(kL)O

)
(17)

where

O(k, L) =

(
cos(kL) 1

k
sin(kL)

−k sin(kL) cos(kL)

)
(18)

Note that O(k, L) is the transfer map for a harmonic oscillator with strength k through a
distance L. We can also write the full map as follows

Sδ(L, k) =

(
cos(kL)I2 sin(kL)I2

− sin(kL)I2 cos(kL)I2

)
︸ ︷︷ ︸

R(kL)

(
O(k, L) 0

0 O(k, L)

)
︸ ︷︷ ︸

Q(k,L)

(19)

This result shows that the map for a delta fringe solenoid has two components. The first,
R(kL) is a rotation of the vectors (x, y) and (x′, y′) by an angle kL and the second, Q(k, L)
is harmonic oscillator evolution via O(k, L) in both x and y. By noting that we could just as
easily have pulled R(kL) to the right of Q(k, L), we see that R and Q commute. This fact
will allow us to find a simple way of expressing the transfer map for an arbitrary solenoidal
magnetic field.
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3 Arbitrary Solenoid from Delta Fringe Solenoid

We now would like to build up the map for arbitrary solenoidal fields from the map derived
in the previous section for a delta fringe solenoid. The delta fringe solenoid just considered
has two free parameters, the length L and the strength of the longitudinal magnetic field
B0. By lining up many such solenoids back to back with varying lengths and field strengths,
we can model any solenoidal field we want. To get the transfer map for such a field, we
simply multiply (in order) the transfer maps for all the component delta fringe solenoids
with appropriate values of k and L for each. Suppose we have N such delta fringe solenoids
with lengths L/N and field strengths ki. The transfer map for the ith delta fringe solenoid
will be R(kiL/N)Q(ki, L/N). Since R and Q commute for all values of their arguments, we
can pull all the rotation matrices off to the left and the focusing harmonic oscillator transfer
maps to the right. All the rotation matrices combine to a single rotation matrix of an angle
equal to the sum of the angles of the N delta fringe solenoids. So we have

S = R

(
L

N

N∑
i=1

ki

)∏
j

Q

(
kj,

L

N

)
(20)

The product of the harmonic oscillator transfer maps just result in the net transfer map for
a particle in a harmonic oscillator potential with z dependent focusing strengths ki. Now,
let us approach the continuum limit, N →∞. Given Bz(z) this determines k(z) by eq. (14).
Let O(z0, zf) be the transfer map corresponding to the differential equation

d2x

dz2
+ k2(z)x = 0. (21)

Then the full transfer map in the paraxial approximation for a particle experiencing the
magnetic field Bz(z) (and the corresponding Br(r, z) via eq. (3)) from the position z0 to the
position zf is

S(z0, zf ) = R

(
e

2P0

∫ zf

z0

Bz(z)dz

)(
O(z0, zf ) 0

0 O(z0, zf)

)
(22)

4 Linear Fringe

The only barrier to obtaining explicit maps for various solenoidal fields is solving for the
harmonic oscillator transfer map. Here we do so for the case where Bz falls off linearly in
the fringes (being constant otherwise).

Let the solenoid be of length L, with longitudinal field in the central region B0, and
linearly decreasing fringe fields of length a. We seek the oscillator map across the fringe. In
this region, the field is

Bz =
z

a
B0 (23)

so that

k(z) =
eB0

2P0a
z ≡ k

z

a
(24)
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We seek the solution x(z) which satisfies

d2x

dz2
+

k2

a2
z2x = 0 (25)

subject to the initial conditions

x(0) = x0 (26)

x′(0) = x′0 (27)

The general solution, before imposing the initial conditions is

x(z) =
√

z

(
c1J− 1

4

(
kz2

2a

)
+ c2J 1

4

(
kz2

2a

))
(28)

where Jν is the Bessel function of order ν. Taking a derivative, we get

x′(z) =
k

a
z

3
2

(
−c1J 3

4

(
kz2

2a

)
+ c2J− 3

4

(
kz2

2a

))
(29)

Now, the Bessel functions with ν > 0 are 0 at z = 0 while for ν < 0, Jν(z) →∞ as z → 0.
However,

lim
z→0

{√
zJ− 1

4

(
kz2

2a

)}
=
−4
√

2

Γ(−1
4
)

(
k

a

)− 1
4

=
x0

c1
(30)

and

lim
z→0

{
(z)

3
2 J− 3

4

(
kz2

2a

)}
=

2
√

2

Γ(1
4
)

(
k

a

) 1
4

=
x′0
c2

(31)

We can therefore write down the solution to the oscillator part of the fringe map. We have

OF(k, z) =


 −Γ(−1

4
)

4
√

2

(
k
a

) 1
4
√

zJ− 1
4

(
kz2

2a

)
Γ( 1

4
)

2
√

2

(
k
a

)− 1
4
√

zJ 1
4

(
kz2

2a

)
Γ(− 1

4
)

4
√

2

(
k
a

) 5
4 z

3
2 J 3

4

(
kz2

2a

)
Γ( 1

4
)

2
√

2

(
k
a

) 3
4 z

3
2 J− 3

4

(
kz2

2a

)

 (32)

One can check the following properties of this transfer map:

detOF(k, z) = 1 (33)

and
lim
a→0

OF(k, a) = I2. (34)

The full fringe map for a linear field is then given by

Fl(k, a) =

(
cos(ka/2)OF(k, a) sin(ka/2)OF(k, a)
− sin(ka/2)OF(k, a) cos(ka/2)OF(k, a)

)
(35)

and the full solenoid map is

Sl(L, a, B0) = Fl(k, a)Sδ(L, k)F−1
l (k, a) (36)

or,

Sl(L, a, B0) =

(
cos(k(L + a))N sin(k(L + a))N
− sin(k(L + a))N cos(k(L + a))N

)
(37)

where
N = OF(k, a)O(kL)O−1

F (k, a) (38)
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5 Conclusions and Further Work

The linear fringe field model of a solenoid given here should be an improvement over the delta
fringe model. By measuring Bz at various places in the fringe field of an actual solenoid,
one could find the values of a and L which fit best. One could also model an asymmetric
solenoid by choosing different values for a at the two ends and making the obvious changes
in the maps above.

Given that real solenoidal fields are generally produced by a cylindrical current config-
uration, one would like to find the map across the resulting fringe fields. A possibility for
Bz(z) in the fringe fields would be fields of the form tanh(z/λ) (see [1]) where λ is related
to the radius of the cylindrical current. If exact harmonic oscillator transfer maps are not
available for this Bz then numerical maps could be calculated.

The author wishes to thank Alex Chao for guidance and many helpful discussions. He
would also like to thank S. Heifets, G. Stupakov, and M. Venturini for helpful comments.
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