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1 Introduction

In the preceding lecture devoted to a description of a few aspects of the Slavnov symmetry,
we have insisted on its limits of applicability to the perturbative set up which we have in-
terpreted as a clash between locality and geometry. It is, to say the least, embarassing that
the Slavnov symmetry emerges algebraically from the Faddeev Popov gauge fixing procedure,
thus providing an algebraic substitute for the meaningless integration over the gauge group,
and, as stressed in the preceding lecture, a conceptual introduction of this symmetry is still
missing.

The coustruction by 1. Witten, in 1983, of topological field theories[6] has started a similar
-but different- debate.

These theories [1] are indeed the realm of equivariant cohomology [4] which we shall discuss
liere rather than "twisted N = 2 Supersymmetry” which led to their discovery. This cohomol-
ogy describes the topology of orbit spaces and, in spite of the formal similarities -which boil
down to the use of integral representaions of é functions, both bosonic and fermionic- should
not be confused with the cohomology associated with gauge fixing.

2 Equivariant Cohomology

This section is mostly based on Cartan 1950 and Kalkman 1993 [4].

The situation is as follows:
Let M be a smooth manifold, *( M) the differential forms on M, dps the differential. Let

(+ be a connected Lie group acting smoothly on M. Each element A € Lie G is represented by
a vector field A and, to it are associated two operations: on Q*(M) : ipr(A), the inner product
with A and the Lie derivative £5;(X) = [iar(A), dir)4+. One has

[Car(A)s iar(A)] = iar([A, X]) (2.1)
where [A. X] is the commutator in Lie 7

[ar(N).iar(A)] = 0
[ar(A) Gr(AD] = Ca (A X))
((ar(A).dy] = 0 | (2.2)
The question is to define a cohomology which coincides with the de Rham cohomology of

M /G when this is a smooth manifold. i.e. when M is a principal ¢ bundle over M/G. Modulo
global effects, forms on A /G can be identified with forms on M which are both horizontal

t.e. such that

I.;\/(/\)u.‘ =0 VA (23)

and invariant

Such forms are called hasic.
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The basic cohomology of M is the de Rliam colomology of M restricled to the complex
of basic forms. When the action of ( is good. (his is the colhomology of M/, Then, it
contains the charvacteristic classes obtained by substituting, into a symmetric G-invariant (for
the adjoint action) polynomial on Lie (4 the curvature Q of a G-connection w. Those classes
are independent of w. A related problem ix to extend the theory of characteristic classes to
associated bundles: if P(B.() is a principal G bundle, and M as above (with the action
considered as a left action, the associated bundle E(B, M) = P(B,G) % M (i.c; the quotient
of P x M by the simultaneous right action on P and left action on M) is a generalization of
P(B,G) = P(B,G) x (. Characteristic classes involve a connection w on P and its curvature
- . This motivates the following delinition:

The equivariant cohomology of (M. dy;. (M ar(N)) s the basic cohomology of (Q*(M)
WG, dag + dvwey ciar i (ar + i) where W(() is the Weil algebra of G, a graded com-
mutative differential algebra defined in terms of the generators w (deg. w=1), Q (deg Q = 2)
with values in Lie (¢ by: the structure equations

dyw = Q- ;[u}w]
([wQ = —-[u.‘, Q]
-iw()\)w = A fw(/\)Q =0
e(MNw = M) (N = =)\ (2.5)

This is the so-called Weil model for equivariant cohomology.

Equivalently (I{alkman 93) equivariant cobomology is defined as the basis cohomology of
(O (M) & W(G), dp + diy + Car(w) — (), G (A), G (A) + Cy(N)) which we shall call the
intermediate model. One goes from the Weil scheme lo the intermediate scheme by the algebra
automorphism
ey (2.6)
which transforms the differential and operation as indicated. The easiest way to do the
computation is to establish and solve differential equations for the interpolating family

. . — i
2y = g =€ )

vy g = el e 0 << (2.7)

The interesting feature of the infermediate scheme is to replace 1y(A) + tw(A) by i (A),
and accordingly produce the generalized covariant differential D = dag + dyy + Car(w) — 21 (82).

Since basic cochains are polynomials in w. Q. with coefficients in O*(M), the condition
i (A)X = 0 allows to consider only polvnomials in Q. In view of the invariance property, the
differential can then be reduced to de = dyy — 1a(€2). This is the Cartan differential. It is a
differential because on invariant cochains df. = (3 () = [ () 4+ (w () = 0.

We shall sce in the applications that it is useful to use hoth the Weil scheme and the

intermediate scheme.

The initial requirement that the cohomology thus defined coincides with the basic cohomol-
ogy of M when the action is good. i.e. M is a principal bundle is fulfilled thanks to Cartan’s
“theorem 37 according to which. equivariant cohomology maps isororphically onto the hasic
coliomology of M. throngh the veplacement w — o0 ~» Q where & is a counection on M
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and Q its curvature. (This is easily proved using the homotopy which insures the triviality of
the cohomology of W ().

Most applications to be found in the next section are concerned with the construction (7]
of equivariant cohomology classes associated with a closed invariant form on M, xa, which
is automatically horizontal in the intermediate scheme. There are in general obstructions to
«uch extensions [7]. One case of general interest has led V. Mathai and D. Quillen (1986) [4]
to interesting integral representations of the Thom Class [2] of a vector bundle E(B,V) with
base B, fiber V' a real vector space of even dimension |V|. By the introduction of a metric || ||
on the fiber, we can assume that the structure group is reduced to SO|V|. One writes

E(B.V) = P(B,SOlV]) x V

so(v)) (28)

where P is the orthonormal frame bundle associated with E. ‘
The Poincaré dual of the zero section of E, xo, is a cohomology class of degree |V| with

the property .
/ HEI-IVI=IB] = / w A Yo (2.9)
V=0 E

for all forms w of degree |B|, where, in the left hand side w stands for the restriction of w to
the submanifold V = 0. One candidate is

(VY AdV = Ny [ V% dbd (2.10)

I

with b e V*.@ € AV*, Ny a normalisation constant such that i, vs = 1. This can be written,
in the intermediate scheme

i = 0(V)AdV = Ny / ¢St @V) b dio (2.11)
with
StaplV = DV =dV +wV
StopdV = DdV = QV + wdV
'S’iop*;' = DQ[,(;' = ll) — W
Stopth = Dayib = Qo — wib
Le. Siop = Dvav + Das (2.12)

Fromn.the integral formula. we get
Dyvavns = Mo / D Vb de

. / — Dy etV d

_ \" ' - () . - ., () Smp(G)V) ] )
' e 17, o . d Uy
= -\ O — W 2 eSer@V)db di 2.1
' (b g T e +‘°"bab) Sor b do - (249)
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The terms [rom the first parventhesis vield zero by integration by parts, both in b in the
sense of distributions, and in w for algehraic reason. The second term s {p(w) which can he
replaced by (v (w). whicli is zero hecanse. by invariance of w¥ s does not depend on w and
the result is an invariant combination of 1.dV. Since iuvariance under iy (A) is obvious in the
intermediate scheme. \s delines an clement of equivariant cohomology.

Of course \s has a distributional character. By the saime method, one can construct a
siooth representative . N

Ve = .V / db dz et lel= fee2) (2.14)
where < . > is an invariant melric on V7. \, is normalized in such a way that [, y. = L.
The only change in the previous proofs is that the result now depends on £, and, in the last
step of the prool (g (w) can he replaced by fy v (w) + (i (w). Similarly St is replaced by
Dyvav + Dan + Dw

0 1 ]
‘Slm/l‘-"‘ — SZ - ;[w‘.%}] — ])M’u}

Sropld = —[w, ] (2.15)

Going back to the Weil scheme merely replaces dV by dV + wV'.
Differentiating \. with respect to ¢ (or other parameters involved in the metric <, >

yields
g(_\‘ = —1\*"1)' .‘q""/’ [%i "N'""(M}_‘ﬁ%yh_))(lb dw
= —No (Stp v+ Stop 1) / < J; 2 e Siop(@V = =502) g
~ N / s,,’—f“)—b ¢ Seon(@V = S302) gy (2.16)

The last term vanishes by the same argument according to which y. is closed. Thus,
the cohomology class of \ is independent of the parameters involved in the metric. Similar
properties hold for different choices ol . Q on P(-B-G-). Similarly, the pull back of x. by a
section V' = V(p), V(py) = 77" V(p) deseribes the Poincaré dual of the manifold of zeroes of
that section, and the corresponding class is imdependent of the choice of section, provided it is
transverse to the zero section (so that the intersection of the two sections defines a manifold).

In the next section. and in FF. Thuillier’s talk. we shall meet another class of constructions
which yield equivariant cohomology classes.

In conclusion. the Mathai Quillen formulae are, in the equivariant set up the exact ana-
logues of the integral representations of & [nnetions or ganssians whicl are the core of the
Faddeev Popov gauge fixing procedure,

3 Application to topological field theories

One of the challenges of topological field theories is whether some strict field theory rules
are able to proditce “topology™. The main diflicnlty seems to be connected with gauge fixing
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or, pul differently, with finding a good procedure to integrate basic {orms over field space
e such a way that such general principles as locality can be used. In what follows we shall
mainly be concerned with topological Yang Mills theories. The case of 2d topological gravity
is both easier (2 << 1) and more diflicult (diffeomorphism groups are more subtle than gauge
groups). See Becchi’s talk [3] aud I, Thnillier’s talk [5].

Whereas Y M,” was found by twisted N = 2 supersymmetry arguments (Witten 88), it
soon became apparent it had {o do with equivariant cohomology in spite of confusions due
(o the similarities with the Slavnov symmetry covered up by the abuse of symbols such as
Qpnst.... Y M is supposed (o be the characterisitc cohomology theory -intersection theory
of A/G resp. its restriction to the manifold

Fesl=F" =0 (3.17)

The operation Sy, is defined as follows

Stap ¢ = i — Dyw
Stop ' = [w, ] — DN
_ 1
Smp w = Q s E[LA),W]
Step @ = —[w, Q] (3.18)
In the Weil scheme
W =da+ Dyw (3.19)
In the intermediate scheme
W= da: —Dw = f:A(w)a, (3.20)

w is an element of the Weil algebra (to be later replaced by a connection on A), {2, its curvature.

Since the idea is to transform integration over A/G into integration over 4, we have in
particular to transform cohomology classes of A4/G into equivariant cohomology classes which
become basic cohomology classes upon the replacement of w,Q by a connection & and its
curvature ).

Those cohomology classes which give rise to the Donaldson polynomials are constructed
according to a standard scheme (cf. F. Thuillier’s talk [5]), which, in the present case, reduces
down to the following: consider the ¢ bundle P(B, (/) x A over B x A, and, on it, the G
imvariant connection «. In the intermediate scheme its equivariant curvature is

. ‘ 1
Flt = “““A+UVHANM~OVHANWM+5WM
= [(u)+ da + ()
— /;‘(”) + ’:‘;l'lllt/‘. + {2 . : (3.21)
[u the Weil scheme. 31 1s B
Flyen = Fla)+ 0"+ (3.22)
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where

M= Sa + Dy (3.23)
Fe, becomes a mixed form ol degree 2 upon substituting w, () by &, a G-connection on A and

its curvature . Any G invariant polynomial of Fe, ((i-chavacteristic class) can be split into
A sum of terms of fixed bidegree in Q*(B). because of G basicity, and Q. (A). Integration
over a homology class in B yields an clemeut of 11,:.(A), independently of the choice of @, Q.
Clonsider now some such element ol degree dim. M, where M = { solutions of FF=«F, up to
gauge transformations }. Restricting to M the corresponding class in H*(A/G) is represented
by exterior multiplication by a representative of the Poincaré dual of F' — *F = 0, considered
as the zero set of a section of an appropriate G bundle:

\ potFan = / DaDh ¢ 8TET T IT)) - (3.24)
Q=0
where
F~=F—x%F (3.25)
Spap 0= = 1b7 — [w,07)
Stop 107 = Qo] - [w,2b7) (3.26)

The choice of @. ) can be expressed, using the Faddeev Popov identity in the Weil algebra

/ DDA §(w — &) §(Q =) =1 | (3.27)

where the 4 functions are either fermionic or bosonic. Given a G covariant Lie G valued
fermionic gauge function '

H(a.y= H(a) (3.28)
whose vanishing defines a connection
L -
w = —————H{(a)da 3.
H(a)D, (a) - da (3.29)
one has: ,
/ § (M. )35 H(a.9))) DwDR = L (3.30)

Indeed

S(H(a.))y = det H{a)D, M — w)

SH
,_\Il“hl’l(”- L‘) o ‘S—f—l.’(,’l' _i_ l](”}D,,Q
oa
= H(a)D.(Q = Q) (3.31)

with Q. the curvature of & as one may check, using the lirst 5 function: by differentiating

H{a)o =0 ' (3.32)
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and using the gauge covariance ol Jl{«a)u. one does get

O = _.__1__ LH,,I.T. 3.33
T THOD, S (3:83)

The Faddeev Popov Weil identity can be rewritten as
[ pwp DyDQ 5TEHEW = (3.34)

with

S0 =+ w9
Stop@ _ [(),Q] + [w’d,] (335)

The usual choice is

H(a)=D; (3.36)

It excludes reducible connections.
Given the grading and power counting arguments which follow from this construction, it
is licit to add to the argument of the exponential in Eq.(3.34) a term of the form

1[0, Qg (3.37)

(This is also necessary if one foresees a perturbative treatment).

The above arguments which are rather general (compare with-Atiyah Jeffrey, 1990), allow
to recover both the observables and the action first introduced by Witten. There remains
to look at the integration variables, which, so far, are 0,07, 1, Q,w, . Recall however the

meaning of ¥: :
¢ = da+ Dyw (3.38)

One may consider ¢» as a f{ree variable by inserting an extra § function:

/Du'f)”(u — (ba+ Daw)) = 1 (3.39)

-

A(1— (84 Daw))
One thus gets the following basic form:
/' D~ Db~ D DY DY Di Dy A (¢ — (8a+ Dyw))
bc.S‘""’(;—F‘+;;--1r+:’§'11)*.,v+n[ﬁ..17])
= / D™ Db~ D DO DO Dy DiA(¢ — (da + Daw))

O(__ﬂrf'* (P2 (Dar) "+ 2T [QET) e DA

g ISR DL [t Q[ ]+ Q.02 [02.62) (3_40)

where @ is one of the above mentioned observables, an equivariant form of degree dim M.
At this point. one is facing again the problem of integrating a basic top form over field space.
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Formally, up to zero modes. the integrand is a top lorm in v so that ¢ can be (almost)
forgotten in A(¢ — (da + Dyw)). One may then multiply throngh

.SQf.M“M:I 3.41
/a’“ () \dg| (3.41)

where [ denotes fiber infegration. Using the standard notation, this may be replaced by
(Ativah Jeflrey 90)
%memmwpzl (3.42)
B
and & can be in turn replaced by w under the integral in Fe.(3.40). This operation is licit
locally over A/G, when m(«) is invertible L.e., within the Gribov horizon. One thus gets a top
form in w so that D,w can be deleted from the integration form in Eq.(3.40). So, provided
one exercises all the necessary care in nsing the Faddeev Popov gauge fixing procedure one

gets
<O> = Y| Do~ Db~ Dw DQ DADYDY(Da)o[yloDi Db
3 S

()((' )(9 p i’r—F——(lt—)2+J}"(D(, l/')_—{-al_[fz,al—]-}-’l[lD;’I/I

(DD QAL 0L R D)[R.8]

ﬁihg“(n)-#a)nl,.w (343)
where {#(17,)} is a gauge invariant partition of unity such that m is invertible inside U, and
the subscripts 0 refer to the zero modes. At this point, one has recovered a local field theory

-up to zero mode problems-. whose ultraviolet stability is however not very well expressed:
recall that before gauge fixing the action is of the form S*Py, with \ basic:

SAN =i =0 A\ € LieG (3.44)

In order to express this property in terms of a Ward identity, we introduce (Horne 89,
Ouvry Stora Van Baal 89):

W =0\ +ip) AeAlieg. peSLieg (3.45)

where M.y are the ghosts corresponding to the graded Lie algebra generated by 5(A), 2(p)
(respectively odd and even).
Extending the operaiion S by

,'5'1”/'/\ — “ (346)
and W by
1
A = —=[A. A
oie)
”/I = [/\/l] (347)
we have
=0 [S"" 0] =0 (3.43)
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[t is desivable to write the gange fixing action as S™\,;, with Wy,; = 0 upon a suitable
extension of S™ and Woon the corresponding Lagrange multipliers. This can be done as

- g ( ﬁ
H’”"lf!'</z B )+L> - < (o) m( + 7 )

[ollows:

oa

e Yo o1
= i(g(a) + — 4 <(_‘:(”) v (o) ) + A ()X + gma)p + fi- 5 (1/’ + Dw))  (3.49)

Wit 7 ) .
WA= Wp=m Si=Xx S"m=1l

We=0 Win=0 Stop/\ —0 Siop(‘ =0 (350)

(6,0 A, odd 5 m, pgi even). Here  and 1 replace b, @ in terms of which the naive gauge fixing
is expressed. € has ghost number 0, w, A have ghost number 1, x has ghost number 2, m, A have
ghost number -1, @ has ghost munber -2. This should of course go with the integration over
the corresponding variables. More generally, one could add to the bosonic gauge fixing term
jig(a) in Bq.(3.49), a fermionic gauge fixing term of the form AH (a, ). One missing link here
is a derivation of this gauge fixing procedure via an 1dentity involving graded fiber integration
over the vertical tangent bundle of 4. Also. one should verify that the introduction of W
solves the ultraviolet stability problem. This also deserves further investigation.

4 Conclusion and Outlook

In this lecture we have attempted to justify the point of view that equivariant cohomology is
the appropriate framework to discuss the local aspects of topological theories. It seems indeed
to provide a construction of hoth the corresponding tautological actions and of a remarkable
class of observables. It is definitely different from the cohomology associated with the gauge
fixing of conventional gauge theories. In the latter case, the observables are functions on
orbit space. These are not cohomology classes. One conld alternatively interpret them as the
collomology of orbit space with maximum dimeusion (oo !) and prescribed decrease properties,
whicli does not help very much.

The choice of this topic, however underdeveloped has been sporadically justified during this
conlerence: the ohservables of 2-d topological gravity (cf. ('. Becchi’s talk) can be constructed
by the general technique alluded to in section 3; the similarity transformations described in
M. Kato's talk. which pair apparently different topological conformal models are nothing Plbe
than the INalkman antomorphism (I5q. 2.8) smtably interpreted.

One final conclusion which applies to this lectire, the first one, and a few others in this
conference concerns the necessity to reconcile -il possible- geometry and locality by resolving
the Gribov horizon problem. either by patching as done in (' Becchi’s talk or by direct use

ol a conmection with non vanishing curvatire.
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