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A dispersion formulation of field theories is presented and is 

applied to the derivation of various Ward-Takahashi identities. 

i. Introduction 

This is a brief summary of a series of works on the derivation of 

various W-T identities carried out in collaboration with R. Sasaki. 

The conventional field theoretical calculations often lead to ambigui- 

ties and also miss anomalies. The S matrix theory, on the other hand, 

is free from these objections, but we do not have a complete set of 

dispersion relations so that the theory represents an approximate 

dynamical scheme• 

Thus we choose an approach standing midway between them. This 

approach is based on unitarity and dispersion relations~ but the object 

is not the S matrix but the whole collection of Green's functions for 

which we have a complete set of dispersion relations. It provides us 

with a convenient basis for deriving various W-T identitles unambigu- 

ously. 

2. Unitarity and Dispersion Relations 

We shall first introduce unitarity and dispersion relations for 

Green's functions. We consider the neutral scalar theory and define 

the following renormalized functions: 

• <01T[¢(x l) ..¢(Xn)~10> (2.1) T(Xl,...,Xn) = (-i)nKxl ..Kxn 

The Fourier transform of the T function represents the S matrix 

element when all the four-momenta are on the mass shell. 

The unitarity condition for the T functions follows from the 

LSZ reduction formalism. 
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T(X I ..... X n) + T (X 1 .... ,X n) 

iAr 
+ ~' ~ ~](du)(dv)~(xi,.,x;,ul,',u~) 
comb A=O " 

× a(+)(Ul-Vl)...a(+)(uA-vz)~*(X~+l ..... x~,v I .... ,v~) 

= 0 , (2.2) 

where iA (+) is the contraction function and the summation has to be 

taken over all possible divisions of (Xl,...,x n) into two groups, one 
, 

entering T and the other entering T excluding k=0 and n. 

Next we consider a local operator A(x) and define 

< TA(X;Xl,...,Xn)=(-i)n+iKxl...Kxn 01T[A(x)¢(Xl)...¢(Xn)]10> (2.3) 

An arbitrary matrix element of A(x) is obtained from (2.3) by taking 

its Fourier transform with the help of the LSZ reduction formula. 

The unitarity condition for this set is given by 

TA(X;Xl,...,X n) + TA(X;Xl,...,X n) 

I + ~ ~ rr. (du)(dv)E~A(~;x{ . . . . .  x ; , u ~  . . . . .  u~) 
comb A=O 

~(+)(Ul_Vl) .~(+) * × .. (u~-v~)~ (x½+ 1 .... ,x~,v I .... ,v~) 

+ (TA÷T , T ÷TA)] 

= 0 (2.4) 

This unitarity condition is linear in T A and T A SO that it will be 

referred to as the linear unitarity condition. 

Next we proceed to dispersion relations. First, we shall denote 

the connected parts of ~ and of T A by p and PA' respectively, and 

shall introduce their Fourier transforms by 

p(x I ..... x n) = 

× ~(p!,...,pn ), 
(2.5) 
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x~(q;pl,...,p n) (2.6) 

These functions, ~ and~ , are functions of scalar products of 

four-momenta and may eventually be denoted by ~(p~pB) and~(p~pB), 

respectively. They are known to satisfy the parametric dispersion 

relations. 

Re = ~ ( ~  )Ira 

~-"~(PaP$'~) (P~PB' 6' ) (2.7) 

where [ is a common scaling parameter to be multiplied into all the 

scalar products of the form PePs" Now we have a complete set of 

dispersion relations in the sense that Eq.(2.7) is valid for any n 

except we need subtractions in some cases. 

3. Subtractions and Power Counting 

Subtractions in dispersion relations are so introduced as to 

reproduce the renormalized perturbation theory. This is our guiding 

principle to settle the subtraction conditions. As a simple example 

we shall consider the theory corresponding to the following Lagrangian: 

= _ ½[(~ ¢)2 + m2¢2] _ 2_~4 (3.1) 

The subtraction conditions for the two-point function ~(2)(p)= 

~(2)(p _p) follow from ~2)(p):-(p2+m2)2~(p) and the~Lehmann 

representation. 

= -1 for p2 + m2 2)(p) = 0, ~ : 0. (3.2) 

The four-point function, in the lowest non-vanishing order, is given 

by 

suggesting one subtraction for the four-point function. 

,(~,_~)~(~')Im (p~P~'~') (3.4) 

(3.3) 

Thus we assume 



208 

When higher order corrections are taken into account we may fix the 

subtraction condition as 

~ (4)(o) = ~ (3.5) 

corresponding to the subtraction point pl=P2=P3=P4=0. 

in order to study the subtraction problem in perturbation theory 

we shall consider the ultraviolet asymptotic behavior of ~(p~pB.~) 

for large values of 6. We shall assume a power law: 

~ (n)(p~pB.~) ~ ~c(n)/2 for $ ÷ (3.6) 

except possibly for logarithmic factors. In perturbation theory 

the powers c(n) are determined by combining unitarity with the 

assumed dispersion relations. Namely, the power of the absorptive 

part of a ~ function can never exce'ed that of the full ~ function 

so that we obtain, by rewriting the absorptive part by means of the 

unitarity condition, the following set of inequalities: 

d(n) ~ MaxEd(k+Z)+d(n-k+£)] 

k+Z>2 

n-k+Z>2 

(3.7) 

where d(n)=c(n)+n-4. From the subtraction conditions (3.2) and (3.5) 

we find 

c(2) $ 2, c(4) $ 0 (3.8) 

The only solution of (3.7) and (3.8) is given by 

d(n) = 0, or c(n) = 4 - n (3.9) 

This result can be extended to more general cases. 

When we have both spinless and spinor fields the T functions are 

defined 

~(Xl,..-,Xn;Yl,...,Y£;Zl,...,zg) 

. . . . . . . .  ~zz = (-i)nKxl .~xnDyl D ~Zl 

× <oI~[¢(Xl)...¢(Xn)~(yl)...¢(y~)¢(Zl)...¢(z~)][o>, (3.10) 
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where D=T~+M, ~=yTB-M, and M is the fermion mass. In this case we 

introduce the power c(n,m) with m=2£ and 

d(n,m) = c(n,m) + n + 23-m - 4 (3.11) 

Then we find that renorma~zable theories are characterized by 

d(n,m) = 0 (3.12) 

For the function ~(n,m) we define the power a(n,m) just as we 

introduced c(n,m) for ~(n,m) and define 

b(n,m) = a(n,m) + n + 23--m - 4 (3.13) 

Thenfrom the linear unitarity condition and (3.~2) we find 

b(n,m) = b 0, constant. (3.14) 

This parameter b 0 is referred to as the index of the set {~}. As 

an example we shall consider 

A(x) = ~2(x). (3.15) 

In the free field approximation we have 

~ 2)(q;pl,P2) = i, "all others = 0 (3.16) 

This suggests a(2)=0 so that b0=-2. When higher order corrections are 

included we formulate the subtraction condition as 

(2)(0;p,-p) = 1 for p2 + m 2 = 0 (3.17) 

The relation (3.15) is rather symbolic and our ~ functions are 

regularized through subtracted dispersion relations. 

4. Linear Identities 

In this section we study linear relationships among different sets 

of ~ functions. The W-T identities fall into this category, We 

present a basic theorem on the linear relationship in the scalar theory. 

Theorem: Let {~}, {~ }, {@ } and {~ } be sets of functions 
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of indices 0 or -2, transforming as scalar functions and satisfying 

the linear unitarity condition, then they are linearly dependent. 

As a consequence of this theorem we find a linear relationship 

of the form: 

a , .A (n) + b ( B  (n) + c e (n) + d q ~  (n) : 0 (4.1) 

When all the subtraction conditions for the sets are given, these sets 

of functions are uniquely determined at least in the sense of 

perturbation theory. Now take a linear combination 

~(n) : a~(n) + b~(n) + c ~(n) + d~(n) (4.2) 

The index of the set {~ } is assumed to be equal to 0 without loss of 

generality. The set {~ } satisfies the linear unitarity condition 

and is determined uniquely when the following three subtraction 

constants are given: 

~ ( 2 ) ( O ; p , - p )  and ~ - ~ - - ~ ( 2 ) ( O ; p , - p )  fo r  p2 + m 2 = 0 
~p2 

(4.3) 

~(4)(0;0,0,0,0) 
These three constants are linear in a,b,c and d, so that we can 

always make them vanish by choosing the four coefficients appropriately, 

and then we have 

~ (n) = 0 for all n (4.4) 

In this way the relationship (4.1) is obtained. 

5. Ward-Takahashi Identities 

The theorem given in the preceding section can trivially be 

generalized and we shall give some examples. 

First, we shall derive anomalous trace identities and the Callan- 

Symanzik equations. For this purpose we introduce the energy-momentum 

tensor T and the corresponding set of functions. ~v 

{ ( ~ T ' p v ( q ; p l , . . . , p n ) }  (5.1) 
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This set satisfies the following W-T identities in the scalar case: 

q~O~)(q;Pl,''',Pn ) = [ P~+22 2 (P~+q)v~ (PI'''''PJ +q'''''pn ) 
j(pj+q) +m -i~ ~ -- 

(5.2) 

The set {~r~ v} as the solution of the above equations is uniquely 

determined for q=0. Then we introduce a new set corresponding to 
T=m2~2: 

{O]'<q;pl,...,pn)} (5.3) 

We further introduce two other sets: 

2 2 

{[ p~+m ~(pl,... ,pj+q,... ,pn)} ' (5.4) 
J (Pj+q) 2+m2-i~ 

{~-~(pl,...,pn)} (5.5) 

The indices of these sets are equal to 0 except that the index of (O~} 

is equal to -2. Application of the theorem leads to the relation 

O~Z(0;Pl~...,p n) - ~(0;p I ..... Pn ) - nd,(l) ~ (pl ..... Pn ) 

: (Pl''"'Pn) (5.6) 

These are precisely the anomalous trace identities. 

Now let us denote the Green's functions defined by dropping the 

Klein-Gordon operators in Eqs.(2.1) and (2.3) by printed letters 

instead of script letters, then (5.6) clearly holds also for the printed 

letters. Furthermore, we have for the latter 

T(0;p I .... ,pn ) = (n - m~m~)G(Pl .... ,pn ) (5.7) 

Substituting (5.7) into the printed version of (5.6) we arrive at the 

Callan-Symanzik equations: 

(~)~ + , ...,pn), (5.8) [m~-~ + B nY¢(l)]G(P I ...,Pn ) = -T(0;P I, 

where 7@=d@-i is the anomalous dimension of the field @ and is defined 

as the following expansion coefficient: 
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~(0;p,-p) = -2m 2 + 2y@(p 2 + m 2) + O((p 2 + m2) 2) (5.9) 

Next, we shall apply a similar argument to the derivation of the 

Adler anomaly for the axial vector current in QED. 

A~ = I~V~V5¢ , P = I~5~ , C = EH = ~B~F~BFy~ (5.10) 

Application of the theorem then leads to the following W-T identities: 

iqA~ = 2m@ + ~ 2~ - -y~ (5.11) 

The last term is the so-called Adler anomaly, and the set of functions 

{~} is defined by 

~(q;k I ..... kn~Pl,...,p~ 1 .... ,~) 

= l[(ipjy -l(iY5) j j~ + m)(-i(pj + q)y + m) 

× ~(k I ..... kn,Pl,...,pj+q,...P~,Pl,...,P ~) 

+ ~(kl'''''kn'Pl .... 'P~'Pl .... 'PJ+q'''''P~) 

× (iYs)j(i(pj+q)y+m)-l(-ipjy+m)]. (5.12) 

It is characteristic of this set {~} that all members vanish 

identically when all the momenta pl,...,pz,pl,...,p Z are on the mass 

shell. 

There are further applications of the theorem and we shall 

mention only the results. 

(i) The W-T identities in quantum electrodynamics have no anomalous 

terms and the derivation is straightforward. 

(2) It is possible to prove that the Sehwinger term in spinor 

electrodynamies is a c number. 

(3) R. Sasaki has succeeded in formulating the o model entirely in 

terms of renormalized expressions alone. 
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Discussion 

Slavnov (question): Can you make some comments concerning the 

applicability of your procedure to the gauge theories. It seems that 

your original arguments are not strictly applicable to these theories. 

I mean the positivity of the scalar product. 

NishiJima (answer): It is formally possible to incorporate the in- 

definite metric into our scheme as we are doing in the case of quantum 

electrodynamics, but we need an extra proof that the S matrix is 

unitary. 


