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A dispersion formulation of field theories 1s presented and is
applied to the derivation of various Ward-Takahashi identities.

1. Introduction

This 1s a brief summary of a series of works on the derivation of
various W-T ldentities carried out in collaboration with R. Sasaki.
The conventional field theoretical calculations often lead to ambigui-
ties and also miss anomalies. The S matrlx theory, on the other hand,
1s free from these objections, but we do not have a complete set of
dispersion relations so that the theory represents an approximate
dynamical scheme.

Thus we choose an approach standing midway between them. This
approach 1s based on unitarity and dispersion relations, but the object
is not the S matrix but the whole collection of Green's functions for
which we have a complete set of dlspersion relations. It provides us
with a convenient basis for deriving various W-T identities unambigu-
ously.

2. Unitarity and Dispersion Relations

We shall first introduce unitarity and dilispersion relations for
Green's functions. We conslder the neutral scalar theory and define

the following renormalized functions:
_ !
T(Xy,000sx ) = (-1) le...Kxn<O|T[¢(xl)...¢(xn)]|0> (2.1)

The Fouriler transform of the T function represents the S matrix
element when all the four-momenta are on the mass shell.

The unitarity condition for the 1 functions follows from the
LSZ reduction formalism.
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*
T(Xl,...,xn) + T (xl,...,xn)

' *° L8
+ ) ) %Tj(du)(dv)T(xi,...,x&,ul,...,u

)
comb 220 %

+ + #
% A( )(ul—vl)...A( )(uk—vz)r (x&+l,...,x£,vl,...,vl)

=0, (2.2)

where iA(+) is the contraction function and the summation has to be

taken over all possible divisions of (xl,...,xn) into two groups, one
*
entering 1 and the other entering t excluding k=0 and n.
Next we consider a local operator A(x) and define
TA(x;x

.,xn)=(—i)n+lK

1000

% K, <O|T[A(x)¢(xl)...¢(xn)]|0> (2.3)

1 n

An arbitrary matrix element of A(x) is obtained from (2.3) by taking
its Fourier transform with the help of the L3Z reduction formula.
The unitarity condition for this set i1s given by

%
TA(x;xl,...,xn) + TA(x;xl,...,xn)
7 o1t : :
+co%b QZO TTJ(du)(dV)ETA(X;Xl""’xk’ul""’ui)

x A(+)(ul—vl)...A(+)(u£—v£)1*(xi+l,...,xh,vl,...,vz)
+ (TA+T, T*+T:)]
= 0 (2.4)

This unitarity condition is linear in Ta and TZ so that it will be
referred to as the linear unitarity conditilon.

Next we proceed to dispersion relations. First, we shall denote
the connected parts of tv and of Ty by p and Ppo respectively, and
shall introduce thelr Fourler transforms by

- -1 y .
p(Xqsevesx,) = ZE;;HTH:TTJ(dp)s (%pj)exp(lgpjxj)

* G yseom)s (2.5)
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. =i h o4 .
Pa(XsxXysue,xy) = m}(dp)cl aé (q+§pj}exp[1(qX+§p3x3)]

XJ&(q;pl,...,pn) (2.6)

These functions, %% and‘94-5 are functions of scalar products of
four-momenta and may eventually be denoted by ‘Q;(papg) and‘f&(paps),
respectively. They are known to satisfy the parametric dispersion
relations.

Re(“%(papg-g)) ) PJ wﬁﬂg(g')zm(% (papg-g'))

T) LET=E
A(paps'a) L/Q(loc,‘p‘s't‘;') > (2.7)

where & is a common scaling parameter tc be multiplied intoc all the
scalar products of the form DyPg+ Now we have a complete set of
dispersion relations in the sense that Eg.(2.7) is valid for any n
except we need subtractions in some cases.

3. Subtractions and Power Counting

Subtractions in dispersion relations are s0 introduced as to
reproduce the renormalized perturbation theory. This is our guiding
principle to settle the subtraction conditlons. As a simple example
we shall consider the theory corresponding to the followlng Lagrangian:

e -- 306,602 + 12621 - she” (3.1)

The subtraction conditions for the two-point function Qafz)(p)=
kQQ{Z}(p,—p) follow from &€¥2)(p)=-(p2+m2)2&§(p} and the Lehmann

representation.

(2) 0y = o 8 (2)(py = =1 for p® + m? = 0. (3.2)
\% {p) s ;;gﬁe.’ p or p m

The four-point function, in the lowest non-vanishing order, is given
by

k@(”) = A (3.3)

suggesting one subtraction for the four-point function. Thus we assume

re O (o p.re) = @ ()48 3z O (p poeE) (3.1)
o R TjET(E L) a8
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When higher order corrections are taken into account we may fix the
subtraction condition as

‘Qf“(o) = A (3.5)

corresponding to the subtraction point pl=p2=p3=p4=0.

In order to study the subtraction problem in perturbation theory
we shall consider the ultraviolet asymptotic behavior of VE%(pmp8°€)
for large values of §. We shall assume a power law:

kQ.i(n)(pmpg”ﬁ v gf2 por g s e (3.6)

except possibly for logarithmic factors. In perturbation theory
the powers c(n) are determined by combining unitarity with the
assumed dispersion relations. Namely, the power of the absorptilve
part of a %3 function can never exceed that of the full function
so that we obtain, by rewriting fthe absorptlve part by means of the
unitarity condition, the following set of inequalities:

a(n) 2 Max[d(k+8)+d(n-k+2)] (3.7)
Kk+4>2
nek+2>2

where d(n)=c(n)+n-4. From the subtraction conditions (3.2) and (3.5)
we find

c(2) 2 2, e(l) 2 0 (3.8)
The only solution of (3.7) and (3.8) is given by
d(n) = 0, or c(n) = 4 - n (3.9)

This result can be extended to more general cases.
When we have both spinless and spinor fields the 1 functions are
defined

T(Xl""’Xn;yl"‘"yz;zl""’zz)

< (_iy0p
= (1), ...E D ...Dy BZ ...B

1 nv1 h %1 %

L
x <OTLO(xy) -0 (X Du(Fy) - u(y B2y .. B(zy)]] 0%, (3.10)
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where D=ya+M, B=YT8—M, and M is the fermion mass. In this case we
introduce the power c(n,m) with m=2% and

d(n,m) = c(n,m) + n + %m -4 (3.11)
Then we find that renormalizable theories are characterized by
d{n,m) = 0 (3.12)

For the function CA'(n’m) we define the power a(n,m) just as we
introduced c{n,m) for ..%(n,m)’ and define

b(n,m) = al(n,m) + n + %m - 4 (3.13)
Then from the linear unitarity condition and (3.12) we Tind

b(n,m) = b constant. (3.14)

0’

This parameter bO is referred to as the index of the set {&4}, As
an example we shall consider

Alx) = 36°(x). (3.15)
In the free field approximation we have
(2)(q; ) = 1, -all others = 0
5 A CH IS 3 , ‘all others (3.16)

This suggests a(2)=0 so that bo=—2. When higher order corrections are
included we formulate the subtraction condition as

kA(Q)(O;p’_p) = 7 for p2 +m? = 0 (3.17)

The relation (3.15) is rather symbolic and our cj{ functions are
regularized through subtracted dispersion relatlons,

4, Linear Identities

In this section we study linear relationships among different sets
of u‘- functions. The W~T identities fall into this category. We
present a basic theorem on the linear relationshlp in the scalar theory.

Theorem: Let {UA«}: {B }, {@} and {P } be sets of functions
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of indices 0 or -2, transforming as scalar functicns and satisfying
the linear unitarity condition, then they are linearly dependent.

As a consequence of this theorem we find a linear relétionship
of the form:

2 A® s b R™ ¢ e @ 4 a@ ) - o (4.1)

When all the subtraction conditions for the sets are given, these sets
of functions are uniquely determined at least in the sense of
perturbation theory. Now take a linear combination

>8(H> = a‘A(n) + bQ?,(n) + cG(n) + a P (4.2)

The index of the set {58 } is assumed to be equal to 0 without loss of
generality. The set {98 } satisfies the linear unitarity condition
and is determined unigquely when the following three subtraction
constants are given:

(2) 3 (2) 2 2
(0;p,-p) and ——x (03p,-p) for p° + m” = 0,
98 8p2}8

58(4)(050:09()’0)

(4.3)

These three constants are linear in a,b,c and d, so that we can
always make them vanish by choosing the four coefficlents appropriately,
and then we have

ng) =0 for all n (4.4

In this way the relationship (4.1) 1s obtained.

5. Ward~Takahashi Identities

The theorem given in the preceding section can trivially be

generalized and we shall glve some examples.

First, we shall derive anomalous trace ildentitles and the Callan-
Symanzik equations. For this purpose we intrcduce the energy-momentum
tensor Tuv and the corresponding set of functions.

(A IV CHITERRES o3, (5.1)
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This set satlsfies the following W-T identities in the scalar case:

oo’
q,OT |y (aspyseeespy) = %(p,+q) Z, 7. ia\pj+q>v4%(pl,-’-,pj+q,---,pn)
J

(5.2)

The set {Crr%v} as the solutlon of the above equations is uniquely

determined for g=0. Then we introduce a new set corresponding to
2,2

T=m ¢

{OT (a3py5--5p)} (5.3)
We further introduce two other sets:
2 2
__~_4L_.____
9} %3<pl,--.,pj+q,---,pn>}, (5.1)

J(p +q) +m -ie

Gr G ppsnveoppy)d (5.5)

The indices of these sets are equal to 0 except that the index of {CTT}
is equal to ~2. Application of the theorem leads to the relation

OT,(0501,++ 55 =~ OT(05py,--p) = 8,00 G op,.iup))
80057 G (prs- v py) (5.6)

These are precisely the anomalous trace ldentities.

Now let us denote the Green's functions defined by dropping the
Klein-Gordon operators in Eqs.(2.1) and (2.3) by printed letters
instead of script letters, then (5.6) clearly holds also for the printed
letters. Furthermore, we have for the latter

T u(O;pl,...,pn) = (n - m“")G(pl’-":pn> (5.7)

Substituting (5.7) into the printed version of (5.6) we arrive at the
Callan~-Symanzlk equations:

[m—-— + S“)BA + an;()‘”G(pl"“’pn) = =T(0;py5.-+5P,)» (5.8)

where Y¢ d¢ -1 1is the anomalous dimension of the field ¢ and is defined

as the following expansion coefficient:
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OT(O;p,—p) = —on® + 2Y¢(p2 + m2) + O((p2 + m2)2) (5.9

Next, we shall apply a similar argument to the derivation of the
Adler anomaly for the axial vector current in QED.

- - _ o1
Ax = tiAYBw’ P = 1¢Y5¢, C = EH = EeasyéFaBFys (5.10)
Application of the theorem then leads $0 the following W-T identities:
iqu,A =P + W - “ (5.11)

The last term is the so-called Adler anomaly, and the set of functions
{Mey is defined by

rw(Q.;kl: . "kl’l';pl’ .. .’pQI;I-)l’ e 35£)

9
jgl[(ipjv + 1m>(-i(pJ +gly + m)'l(iYS)j

X

Q <k1" hd ‘Jknﬁpl" * '}pj+q, bl ‘pg‘ﬁal." - '}5%)

+

g(kl" "DknJPlB' "!pQ’Jﬁl" . 'J§j+q5' "!52)

X

(175) 5 (1(By+a)y+m) T (=15, y4m) 1. (5.12)

It is characteristic of this set {{@} that all members vanish

identically when all the momenta pl"“’pz’ﬁl""’ig are on the mass
shell.

There are further applications of the theorem and we shall
mention only the results.
(1) The W-T identitles in quantum electrodynamics have no anomalous
terms and the derivation is straightforward.
(2) It is possible to prove that the Schwinger term in spinor
electrodynamics 1s a ¢ number.
{3) R. Sasaki has succeeded in formulating the o model entirely in
terms of renormalized expressions alone.
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Discussion

Slavnov (question): Can you make some comments concerning the
applicability of your procedure to the gauge theories. It seems that
your original arguments are not strictly applicable to these theories.
I mean the positivity of the scalar product.

Nishijima (answer): It is formally possible to incorporate the in-
definite metric into our scheme as we are doing in the case of quantum
electrodynamics, but we need an extra proéf that the S matrix is

unitary.



