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Abstract of the Dissertation

Alternative approaches to rapid acceleration
of ion beams − harmonic ratcheting for fast

RF acceleration and laser driven acceleration
of gas jet targets

by

Nathan Michael Cook

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Energetic ion beams have vast potential in medicine, energy, and
basic science, providing significant advantages in applications of
radiation therapy, nuclear energy, and high energy physics. Con-
ventional acceleration means are inefficient and costly, imposing
stringent requirements on space, power, and speed of the ma-
chines designed to address these applications. This thesis considers
two contrasting approaches to improving ion beam acceleration:
fast acceleration using radio-frequency (RF) technology and laser
driven acceleration of ion beams from over-dense plasma.

We first consider fast acceleration in a synchrotron using conven-
tional RF cavities. We introduce a ferrite based RF scheme for
a rapid cycling synchrotron known as “harmonic ratcheting.” By
systematically decreasing the harmonic number in steps during the
acceleration cycle, a reduction in the required frequency range is

iii



achieved. Two cavities alternately provide the accelerating voltage
to allow tuning. A ratcheting approach allows for a doubling of gap
voltage for fixed cavity length and input power. Simulations per-
formed using a 65 m synchrotron design demonstrate the feasibility
of the scheme for acceleration of C6+ ions to 400 MeV/nucleon at
a 15 Hz repetition rate.

Next, we investigate the acceleration of ions through the interac-
tion of an intense CO2 laser and over-dense plasma. Brookhaven
National Laboratory's Accelerator Test Facility possesses a TW-
class CO2 laser, with the unique capability to produce a single
intense 5 ps pulse at 10 µm. This allows for the use of high pu-
rity gas jet targets at densities which exceed the critical density
of the laser light. We demonstrate the repeatable acceleration of
ions using a two pulse technique. A pre-pulse containing a few
% of the main pulse energy arrives 25 ns prior to the main pulse,
driving a hydrodynamic blast wave into the gas target. The main
pulse then drives an electrostatic shock into the shaped plasma,
producing ion beams with higher peak energies than predicted by
other approaches. We observe accelerated beams only for a narrow
range of pre-pulse energies, indicating the importance of the target
density profile in enabling the acceleration.
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7.14 Snapshots of the plasma state at t = 12 ps revealing the propa-
gation of the shock and high reflection: (a) the ion density ni,
(b) the electric field Ex in units of E0 = meωlc/q and electron
density ne in units of nc, (c) the ion phase space x−px with mo-
mentum in units of mHec, and (d) the electrostatic potential Φ
in units of E0λl. The ion phase space is extracted from a region
spanning ±5 microns about the y = 0 axis in the simulation
grid. Electric field, electron density, and electrostatic potential
are averaged over a the same region in ŷ. . . . . . . . . . . . . 159
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Chapter 1

Introduction
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Charged particle beams are a fundamental tool in modern physics, en-
abling the investigation of high energy particle physics and nuclear physics.
To this end, particle accelerators are designed to provide beams tailored to
the needs of a given scientific campaign. Recent achievements in accelerator
science have, on one hand, emphasized ion beam interactions at increasing
peak energies, as in the case of the Large Hadron Collider, while others have
stressed improvements in electron beam quality and precision, as in the case
of next generation light sources. Nevertheless, there remain many applications
within science, medicine, and industry for which controlled, beams of protons
and ions are uniquely suited. These applications have given rise to a need for
new accelerator solutions to which the next generation of accelerators will be
suited.

The interest in improved production of controlled ion beams is motivated in
large part by their specific energy loss properties in matter. At MeV energies,
ionization losses dominate the interaction of energetic charged particles with
matter. The energy loss per unit distance, or stopping power, for an incident
particle with speed β, Lorentz factor γ, and charge z, is given by the Bethe
formula [16]

dE

dx
∼ Kz2Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax
I2

)
− β2 − δ(βγ)

2

]
(1.1)

where Tmax is the maximum energy transfer in a single collision, Z is the
charge, A is the atomic mass, I is the mean excitation energy, and δ is a
density correction for the target material, respectively. Equation 1.1 reveals
that ionization energy remains rather constant at high energies, but grows
dramatically for small velocities. For heavy charged particles, the resultant
energy deposition curve is distinguished by a Bragg peak at the end of the
particle’s range. Due to their small mass, me, electrons are relativistic even
at modest energies, and as such they do not exhibit a peak in their energy
loss. Instead they lose energy at a nearly constant rate as they traverse the
target [17]. Photons in the therapeutic range of a few hundred keV to several
MeV, on the other hand, lose energy primarily through Compton scattering,
and to a lesser effect pair production and photoelectric effects, resulting in an
exponential decline in the linear energy transfer (LET) dE/dx to the material
with distance.

Figure 1.1 shows the energy loss curves for various particles. It should be
noted that ions also demonstrate sustained deposition beyond the end of their
range, due to nuclear fragmentation, which can be a concern for some high
precision applications. Nonetheless, the property of localized energy transfer
inherent to heavy charged particles makes possible a number of valuable ap-
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Figure 1.1: The corresponding dose-depth curves for various charged parti-
cles. Ions exhibit a Bragg Peak in their energy deposition near the end of their
range [1].
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plications in both medicine and energy. These applications can be separated
on the basis of beam requirements into two categories: those requiring high
precision, and those requiring high beam power.

1.1 High precision applications for ion beams

in medicine

Ionizing radiation has been a major component of tumor treatment, as both
an alternative and companion to surgical techniques, for more than 50 years.
With worldwide cancer rates rising and projected to increase further, there
is a considerable need for better and more efficient treatments. Particle ac-
celerators offer the promise of targeted radiation therapy, making use of the
Bragg peak feature of ion beam energy loss to localize a specified quantity
of radiation (a “dose”) to a specified position. Advancements in accelerator
technology have made possible the controlled delivery of beams at time scales
that are reasonable for treatment. The first hospital based proton therapy
facility opened at Loma Linda University Medical Center (LLUMC) in 1990;
today there are more than a dozen in operation in the US, more than 50 in
the world, and many more in various stages of planning [18].

Protons have garnered considerable interest as they are lighter than other
ions, and possess the highest possible charge to mass ratio Z/A, which in-
creases their range in the patient for a given particle energy, thus reducing the
acceleration required for therapeutic application. Most machines are designed
to deliver beam up to ≈ 27 cm into a patient, corresponding to peak proton
energies of ∼ 206 MeV. This provides a significant cost advantage to proton
machines relative to heavier ions. Nonetheless, these benefits are leveraged
by a relative reduction in both efficacy and accuracy of treatment. The for-
mer is characterized by the “relative biological effecitiveness” (RBE), which
quantifies the ratio of the absorbed dose between a reference radiation source
(typically either 250 keV X-rays or Co60 gamma rays) and that of a specified
source which correspond to the same survival fraction in a given tissue set.
RBE is thus a disease-specific metric, and values for a given particle will vary
with the specific application [19]. Generally, protons exhibit high RBE values
for many types of treatment, while light ions such as helium, carbon, and neon
are particularly effective for radiation resistant tumors [20].

Treatment accuracy is also difficult to define, but physical processes such as
transverse scattering and longitudinal straggling provide insight into the lim-
itations of a given beam in isolating a specific volume within a body. Protons
undergo greater range straggling than heavier ions as a result of their lower
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Application Facility/proposal Species Beam energy [GeV/u] Beam power [kW]

Therapy iRCMS [23] p+ 0.07− 0.33 < 50
iRCMS [23] C6+ 0.08− 0.4 < 50

Spallation ESS [24] p+ 2.5 5× 103

ADSR Jacobs [25] p+ 1 3− 4× 103

Isotopes FRIB [26] p+ →238 U 0.2 < 400

Table 1.1: Approximate ion beam parameters for various applications based
on planned facilities.

mass, and similarly exhibit a higher degree of transverse multiple Coloumb
scattering. This scattering provides a fundamental limitation on the accuracy
of treatment at depth in tissue [21], and favors the use of heavier ions for
many tumor locations. However, the absence of a fragmentation tail in the
proton dose-depth curve enables precise, aggressive radiation doses for tumors
anterior to vital organs.

Aside from radiation therapy, the properties of the Bragg peak can also
be employed for imaging purposes. While x-ray attenuation lengths are on
the order of centimeters, ion beams may travel much further. For a thin
target, ion beams will exit the target with minimal energy loss, which can be
quantified via 1.1 for a given material if the particle energy and target density
and composition are known. Alternatively, information about the target can
be extracted by sending beams of known energy through an unknown target,
as with standard x-ray imaging. This is the premise of proton radiography,
which is very promising for medical imaging. Proton radiography has also
been extended for the purpose of measuring transient electromagnetic fields in
high density plasmas [22].

1.2 Applications with high current and high

energy

The applications discussed above rely on precise control of the beam energy,
size, and focus, but require only small total beam flux. There remain, however,
many additional applications of ion beams for which high current and high
beam energy is a prerequisite. At highest energies, these applications fall
mostly in the realm of high energy and nuclear physics, and the accelerators
designed for these purposes are primarily large colliders. However, GeV scale
ion beams are also extremely attractive for generating isotope beams [26], as
spallation neutron sources, and for nuclear energy applications.
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Spallation sources produce low energy neutrons, which are useful probes
of material under a wide range of conditions. In contrast to charged parti-
cles, neutrons do not generate strong ionization losses along their path, acting
instead to probe nuclear structure. As a result, they can be used to study
sensitive materials without depositing large quantities of heat, making them
especially well suited to reveal the structure of biological compounds and poly-
mers. Spallation sources are designed as user-facilities; as such they emphasize
high beam flux and stable operation, which in turn places requirements on the
proton beam driving spallation [24].

Proton accelerators may also be used as fast neutron source to power a sub-
critical nuclear reactor. At GeV energies, protons impinging targets within
the reactor core can produce fast neutrons with MeV kinetic energies. This
additional neutron production mediates the reactor energy output, further
safeguarding the core from meltdown. These accelerator driven subcritical
reactors (ADSR) require high beam power, to within 1% of the desired reactor
output power depending upon the operating criticality point. Moreover, beam
interruptions induce considerable stress on the mechanical components of the
reactor, as they trigger variations in heat output [27]. Thus, ADSRs offer
considerable promise, but also pose design challenges which remain open.

An additional application in nuclear energy is the concept of fusion by fast
ignition (FI) [28]. A compressed fuel pellet is subjected to a localized, intense
source of radiation, sufficient to trigger fusion. This approach is thought to
lessen the requirements on energy delivery in comparison to fusion by inertial
confinement. Proton beams may be an attractive means of delivering the
focused energy necessary to trigger fusion, and various schemes have been
proposed which could even utilize laser accelerated protons [29].

1.3 Motivating alternative acceleration meth-

ods

While there is tremendous potential in these ion beam applications, the beam
parameters as outlined in Table 1.1 impose steep requirements not simply on
energy but on beam current and efficiency. For the past 80 years, accelerators
have progressed exceptionally quickly, with peak particle energies increasing
by a factor of 10 every 6-8 years [30]. However, this period appears to be
coming to an end, due to the physical limitations of conventional radio fre-
quency (RF) technology to produce higher sustained voltages for increasingly
demanding applications. Moreover, the size and cost of state-of-the-art accel-
erators designed to explore these applications continue to increase. In response
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to these challenges, a broad array of alternative acceleration techniques are be-
ing investigated with the goal of providing more efficient and better scaling
acceleration for ion beams in the MeV range. These strategies may employ
conventional RF accelerator technology, or they may employ entirely different
physical interactions. This thesis considers two distinct, novel approaches to
acceleration of ion beams with the long term goal of providing feasible solutions
to these challenges.

In the first part of the thesis, we consider the problem of operating a small
scale synchrotron using radio frequency cavity technology to achieve fast and
efficient acceleration of ions across a range of energies required for medical
applications. Chapter 2 provides the basic framework for a synchrotron, in-
cluding a discussion of transverse dynamics, lattice design, and the longitudinal
dynamics which support the design and operation of such a machine.

In Chapter 3.6, we consider parametrization and efficacy of conventional
RF cavities in designing an RF ramp needed to achieve multi-Hz fast repeti-
tion rates in an ion synchrotron, and discuss the challenges associated with
large dynamic range in tuning these cavities. We introduce a novel approach,
harmonic ratcheting, to using ferrite-loaded RF cavities to achieve this rapid
cycling condition with greater efficiency than can be achieved using a standard
single bucket acceleration scheme [31].

For the second part of this thesis, we consider the frontier of particle ac-
celeration using intense lasers. An intense laser incident on a material can
ionize it, creating a plasma supporting large electric and magnetic fields. If
the plasma is transparent to radiation at the laser wavelength, transmission of
the incident fields produces a trailing wake in the plasma, capable of capturing
and accelerating small emittance beams of electrons to high energies over a
short distance. However, in the case of a laser incident on plasma which is
overdense or opaque to the laser, coupling of the laser energy to the target may
trigger a variety of response, capable of generating large electrostatic fields,
which may subsequently accelerate ions.

In Chapter 4, we review the basic physics of laser plasma interactions which
are pertinent to this regime. We will discuss the coupling of laser energy to
the plasma through a variety of heating mechanisms, while also surveying the
known mechanisms of laser driven ion acceleration and their specific strengths
and weaknesses.

In Chapter 5, we consider the experimental setup at Brookhaven National
Laboratory's Accelerator Test Facility (ATF) which has been designed to in-
vestigate ion generation in overdense plasmas using a unique, high intensity
mid-IR (λ ≈ 9−11µm) CO2 amplified laser pulse. Particular attention is given
to the in-situ optical plasma diagnostics, which take advantage of the relatively
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low density gas targets to provide spatially resolved density information about
the plasma at different times during the plasma evolution.

Chapter 6 discusses the nuances of particle detection using a scintillator
based imaging diagnostic, and presents the results of a study to better charac-
terize the performance of several candidate scintillators under beam conditions.

Finally, Chapter 7 presents some of the results from the ongoing experiment
at the ATF to accelerate ions in an overdense plasma through the combina-
tion of an intense laser and gas jet target. The hydrodynamic evolution of
the target gas under the incidence of an intense controllable pre-pulse is first
discussed. Then, observations of ion acceleration and plasma evolution under
different pre-pulse conditions are presented. These observations are supported
by particle-in-cell simulations, which confirm the generation of a collisionless
electrostatic shock capable of reflecting ions to MeV energies. Observed ion
energies and spectral properties are found to be in good agreement with these
simulations. Simulations also provide strong evidence of electron heating and
filamentation commensurate with experimental results. In all, these results
emphasize the importance of target shaping to achieve consistent ion accelera-
tion. We then preview some potential future optimizations of this work which
aim to improve target shaping methods and take advantage of upgrades to the
CO2 laser peak power.
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Chapter 2

Periodic Accelerators
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Modern accelerators conventionally fall into one of two categories: linear or
circular. In a linear accelerator (linac), a particle makes a single pass through
the beamline, whereas in a circular accelerator, a particle makes many passes,
each pass imparting an incremental amount of the particle’s final momen-
tum. The decision to construct a linear or circular machine depends on the
output beam requirements as well as the constraints of cost, space, and ap-
plication. Generally speaking, linacs are utilized for lower energy applications
which emphasize beam quality over peak energy. Additionally, for high energy
electron accelerators, linacs have a significant advantage in minimizing the ra-
diation electrons emit when accelerated radially (aptly named “synchrotron
radiation”). The radiation for a given particle scales as

Prad ∝
E4

ρ2
∝ 1

m4
(2.1)

where E is beam energy, ρ the bend radius, and m the mass of the radiating
particle [32]. Due to the dependence on mass, synchrotron radiation is partic-
ularly significant for electron beams. Reducing power loss from this radiation
requires increasing the machine radius, which can be costly and inefficient.
An example of a prominent linac includes the Stanford Linear Accelerator,
the longest linear accelerator in the world. The 3 km linac, originally designed
for high energy physics applications, now provides beam for a host of appli-
cations, including plasma wakefield applications as well as providing the drive
electron beam for the Linear Coherent Light Source (LCLS).

Conversely, circular accelerators are useful when high beam energy or to-
tal beam current is needed. Circular accelerators are effective at both low
energies, where hadron cyclotrons (circular accelerators with static magnetic
fields) can be particularly efficient, and at high energies, where particle veloc-
ities do not change considerably with additional energy increase. Thus they
are ubiquitous in high energy science, with prominent examples including the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).
Both require millions of turns to accelerate particles to their collision energy,
and need to maximize total beam current in the process, making synchrotrons
the only feasible alternative. The downside is that at in-between energies,
the revolution frequency of the particles changes very rapidly, requiring RF
sources to rapidly adjust their operational frequency to remain synchronous
with particles. Nonetheless, synchrotrons remain omnipresent at the cutting
edge of medicine and nuclear applications of the kind described in Chapter 1.

Regardless of type, all accelerators share the same basic principles. Par-
ticles are accelerated by phase synchronous application of electromagnetic
waves, overwhelmingly in the radio frequency region. As will be shown, phase
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stable acceleration groups particles into bunches, which are steered along the
lattice via (at minimum) a combination of dipole and quadrupole magnets.
The arrangement of these magnets, cavities, and instrumentation comprises
the accelerating lattice.

2.1 Transverse Dynamics

A synchrotron is a periodic accelerator with a fixed lattice through which
the particles must maintain a (nearly) constant trajectory per turn. This re-
quirement necessitates that the electric and magnetic fields used to accelerate,
focus, and guide the beam be adjusted synchronously with the beam's increas-
ing momentum. We first consider the transverse dynamics of a particle in a
synchrotron, as determined by linear dipole and quadrupole magnetic field
elements.

A particle of mass m0 and charge q in an electromagnetic field experiences
a force as described by the Lorentz equation,

dp

dt
= q [E(ri, t) + vi ×B(ri, t)] (2.2)

In absence of an electric field, and assuming a magnetic field is applied per-
pendicular to the particle motion, the ideal particle instead revolves in a plane
perpendicular to B with radius ρ. This centripetal motion can be equated to
the particle momentum via

qvB =
γm0v

2

ρ
(2.3)

resulting in a formula for the radius and revolution frequency for the particle

ρ =
p

qB
(2.4)

ω =
qB

γm0

(2.5)

Equation 2.4 is often given in terms of the product Bρ, also known as the
magnetic rigidity of the particle. Bρ provides a meaningful scaling for a given
synchrotron design. For a given particle type, particle momentum, and radius
of orbit, the required magnetic field is

B[T ] = 3.34
p[GeV/c]

Zρ[m]
(2.6)
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where Z is the charge state of the particle. Equation 2.6 describes the funda-
mental relationship between particle energy and magnetic field, which must be
maintained at all times in order to follow a fixed trajectory circular accelerator
such as a synchrotron.

2.1.1 Equations of Motion

design orbit

design orbit particle path

x

Figure 2.1: Coordinate system in the frame of reference of a particle travel-
ling an arbitrary trajectory relative to the design path.

Now consider the equations of motion describing the periodic motion of a
particle in a circular accelerator. First, specify a coordinate system based on
the design orbit of the accelerator, which maintains a fixed radius ρ about its
center. Then define the coordinate s by the longitudinal progression of the
particle along the design trajectory. The transverse motion is described by x
and y coordinates, in which x lies in the plane of the design path, such that
the actual distance from center is given by r = ρ+x. Figure 2.1 demonstrates
this coordinate system. It can furthermore be shown that s satisfies

ds = ρdθ (2.7)

vs = r
dr

dθ
(2.8)

ds

dt
= vs

ρ

r
(2.9)

where vs is the particle velocity along its individual (e.g. non-ideal) trajectory.
Again we assume zero electric field, and consider the magnetic field effects as
the particle is guided in a circle. Transformation of Equation 2.2 into this
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frame yields a pair of differential equations governing the transverse motion.

x′′ = −By

Bρ

(
1 +

x

ρ

)2

+
ρ+ x

ρ2
(2.10)

y′′ =
Bx

βρ

(
1 +

x

ρ

)2

(2.11)

Although the principal magnetic field at work is the (constant) dipole field
B0, satisfying Equation 2.6, we can expand the fields about s, assuming that
there is some first order variation in the fields, corresponding to a focusing
field. This is a realistic assumption, as all dipole magnets produce fringe fields
at their ends which contribute to higher order effects. Thus we expand

By(s) = B0 +
dB(s)

dx
x (2.12)

Bx(s) =
dB(s)

dy
y (2.13)

We can then reduce the above equations to

x′′ +

[
1

ρ2
+

1

βρ

dB(s)

dx

]
x = 0 (2.14)

y′′ − 1

βρ

dB(s)

dy
= 0 (2.15)

These represent the equations of motion for transverse oscillations in a
circular accelerator, assuming constant energy and linearized magnetic field
gradients. We can express these equations generally as a form of Hill’s equation

d2x

ds2
+K(s)x = 0 (2.16)

Hill’s equation is difficult to solve for arbitrary K(s). Generally speaking, this
equation describes periodic motion of a harmonic oscillator (explicitly so for
K(s) = C > 0), and so we should expect sinusoidal solutions. We can find
explicit solutions if we assume a piecewise-constant K(s) = K, corresponding
to constant fields for a given element. Assuming initial conditions x(0) = x0
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and x′(0) = x′0, we find

x(s) = x0 cos
(√

Ks
)

+
x′0√
K

sin
(√

Ks
)

(2.17)

x′(s) = −x0

√
K sin

(√
Ks
)

+ x′0 cos
(√

Ks
)

(2.18)

Equation 2.18 provides a useful solution for the motion of a particle through
a quadrupole (or weak focusing dipole). The coupled relationship between
x(s) and x′(s) forms the basis for transfer matrix solutions for a series of
such elements [33]. For now, we consider a periodic solution to a lattice with
s dependence, and so must impose an additional constraint, that K(s) =
K(s+C), where C is the circumference of the orbit. In this case, we look for
a solution of the form

x(s) = Aw(s) cos(ψ(s) + δ) (2.19)

where w(s) = w(s + C) retains the periodicity of the lattice, but ψ(s) need
not be. This form satisfies Hill’s equaion, with coefficients satisfying

ψ′ =
k

w(s)2
(2.20)

k2 = w(s)3 (w(s)′′ +Kw(s)) (2.21)

Here, k is a constant of integration. The solution to w(s) is expressed via the
Courant-Synder, or Twiss, parameters

β(s) =
w(s)2

k
(2.22)

α(s) = −1

2

dβ(s)

ds
(2.23)

γ(s) =
1 + α2

β
(2.24)

The Twiss-parameters are a product of lattice design, and can be used to
generally describe the periodic motion of a beam in that lattice [33]. Our
solution from Equation 2.19 takes the form:

x(s) =
√

2Jβ(s) sin(ψ(s) + φ0) (2.25)

where J is known as the Courant-Synder Invariant (or action); it and φ0 are
constants of motion dependent on the initial conditions. The function β(s)
is termed the betatron (“beta”) function, and provides information about the
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amplitude and phase of particle oscillations in given lattice. The phase advance
is given by ψ(s), which follows from Equations 2.21 and 2.24 to give

ψ(s) =

∫ s

0

ds

β(s)
(2.26)

We define the betatron tune νi=x,y as the number of betatron oscillations that
a particle makes during each orbit. For a circular machine, we have

νi =
1

2π

∫
ds

βi
' R

〈βi〉
(2.27)

2.1.2 Emittance

The action J has a particularly important interpretation. It can be shown
that for a given s, x(s) and x′(s) form an ellipse in phase space, given by

γx2 + 2αxx′ + βx′
2

= A (2.28)

corresponding to the same value of J but different phase.
Figure 2.2 illustrates the properties of the ellipse. The maximum ampli-

tudes in both x and x′ are functions of J and the Twiss parameters. Moreover,
the area of the ellipse is given by A = 2πJ , signifying that the area in phase
space is also a constant of motion. This result, which could have been surmised
on the basis of Liouville’s theorem, applies generally to the entire 6-D phase
space comprising the particle distribution function in both transverse planes,
as well as in energy and time [34]. Although these relations were derived for
a set of particles with equal action, they can be applied to a beam in which a
cutoff value in the distribution is chosen to contain a particular fraction of the
beam (e.g. 95% ). The phase space area filled by that portion of the beam is
termed the beam emittance, ε.

Equation 2.25 then describes the maximum beam envelope in a lattice de-
fined by the given Twiss parameters, and with initial emittance and phase
given by J and φ0. The emittance characterizes many important beam prop-
erties, including the beam size and divergence. For a Gaussian beam, we have

σi =
√
βi(s)εi (2.29)

θi =

√
εi

βi(s)
(2.30)

For an accelerating beam, the emittance is no longer invariant, and instead is
naturally reduced by the reduction in divergence corresponding with longitudi-
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x

x'

Figure 2.2: Particles with the same value of action J fall on an ellipse in phase
space. Particle properties such as maximum displacement xmax =

√
2Jβ and

maximum momentum x′max =
√

2Jγ are described using Twiss parameters.
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nal acceleration. The emittance of the beam decreases linearly with increasing
particle momentum, and as such a normalized emittance is defined according
to

εn = εβγ (2.31)

where β = v/c and γ are the relativistic Lorentz factors. We note that the
product βγ is proportional to particle momentum, and as such the normalized
emittance is preserved during acceleration.

2.1.3 Dispersion

We have so far considered all particles in our lattice to have equal energy. Of
course this is not a realistic assumption. Consider a particle with fractional
momentum variation

δ =
∆p

p0

(2.32)

from the design value. This momentum offset introduces an inhomogeneous
correction to Hill’s equation 2.16. The general solution follows from

x(s) = xβ(s) +Dx(s)δ (2.33)

where xβ, the homogeneous solution given by Equation 2.25, is offset by the
value Dx(s)δ. The function Dx(s) is known as the dispersion function. The
dispersion function satisfies the Hill equation

D′′ +K(s)D =
1

ρ(s)
(2.34)

for which the general solutions are quite complex, but can be estimated for
individual elements using transfer matrices. Dispersion has the immediate
consequence of increasing the beam size. Inclusion of a dispersion function
Dx(s) adjusts Equation 2.29 to be

σx(s) =

[
εxβx(s)

βγ
+ (Dx(s)δ)

2

]1/2

(2.35)

To minimize beam size, dispersion is often suppressed in relevant sections of
a lattice, such as experimental interaction points, as well as injection and ex-
traction points. This may be achieved by designing the bending sections of
the accelerator using achromats, for which D(s) and D′(s) are zero at the en-
trance and exit. The simplest such arrangement is the double bend achromat,
composed of a central quadrupole with symmetric dipoles on each side. The
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quadrupole is designed to produce a 180◦ phase advance in the beam between
the two dipoles, causing the contributions towards the dispersion from each
to be equal and opposite. Variations on this design with additional bends
and nonlinear elements are often used for practical reasons, but the basic idea
remains to adjust quadrupole strengths such that the sum contribution of the
dipoles to the dispersion is cancelled [32]. Single pass beam lines can be much
more complex and still maintain their achromaticity [35].

2.1.4 Lattice Design

Modern accelerators are built upon the notion of strong focusing through the
application of alternating quadrupole gradients in the transverse plane [36, 37].
This follows directly from the optical principle that a combination of thin
focusing and defocusing lenses achieves a net focusing effect in both transverse
planes. A simple form of this strong focusing principle is the FODO cell,
comprised of a two quadrupoles, one focusing (F) and one defocusing (D),
separated by drifts (O). The first quadrupole focuses in one plane while the
other defocuses in that plane. For simplicity, the FODO cell is often described
symmetrically by splitting the focusing magnet in half, producing a sequence of
the form (1/2F - O - D - O - 1/2F ). The symmetric FODO has the appealing
property of producing a symmetric periodic betatron function, and is well
described analytically using the thin lens approximation for magnet transfer
elements. Figure 2.3 shows the β functions for an example symmetric FODO.

The FODO structure is used commonly in lattice bends as well, either with
alternating quadrupoles spaced between dipole magnets, or by using combined
function magnets. Iron-dominated combined function magnets are designed
such that the two poles of a simple dipole are slanted, producing a field gra-
dient that acts to focus or defocus the beam. Although combined function
magnets cannot achieve fields quite as high as conventional normal conduct-
ing quadrupoles, they can reduce the total space required for a given bend.

Figure 2.4 shows a basic synchrotron lattice design for a ∼ 55 m syn-
chrotron, designed to accelerate both proton and fully stripped Carbon ions
to therapeutic energies (270 MeV protons and 400 MeV/u C6+ ions). The
accelerator uses a racetrack style design, with RF cavities along with injection
and extraction septums grouped along the straights. Each lattice component
is decomposed into a FODO cell structure. The straight sections are com-
posed of two consecutive FODO lattices. Each arc consists of three dipole
girders —each girder is separated into combined function magnets in a FODO
arrangement with constant dipole field. The bending radius ρ = 4.78 m is
minimized following Equation 2.6, subject to the achievable field strengths in
the dipoles of B0 = 1.33 T. The arcs are also designed to be achromatic, pro-
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Figure 2.3: An example symmetric FODO, featuring a circular beam and
zero dispersion.
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Figure 2.4: An entire lattice depicted graphically with parameters βx (blue),
βy (red), and Dx(green) superimposed.

ducing zero dispersion in the straight sections. This minimizes beam size for
injection, extraction and RF cavity passage. Nonetheless, the beam remains
oblate in the x-plane as a result of the additional focusing in needed to reduce
the dispersion.

2.2 Longitudinal Dynamics

In a simple linear lattice such as that described above, the transverse dynamics
generally do not pose a problem to machine design. This is especially true for
non-storage ring machines, which may retain the beam for many orders of
magnitude fewer terms. For example, a gold ion beam in RHIC can make
hundreds of millions of turns before being dumped, while a Carbon ion in a
fast cycling synchrotron of the type discussed later only needs 72,000 turns
to reach maximum energy. This significantly reduces the threat of resonances
induced by tune-shift in the beam. Unfortunately, the relative ease of the
lattice design is countered by the challenges posed by accelerating the beam
quickly and efficiently in a such a small machine. We now review the basic
longitudinal dynamics of particles in a circular accelerator to illustrate these
difficulties.
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2.2.1 Energy gain in a synchrotron

Consider a circular accelerator with circumference C. A particle of mass m
and charge q = Ze is injected with initial momentum p0 and is accelerated to
final momentum pf , corresponding to a range in speeds

βmin ≤ β(t) ≤ βmax (2.36)

The revolution frequency for an accelerating particle sweeps over the corre-
sponding range

βmin c

C
≤ frev(t) ≤

βmax c

C
(2.37)

where c0 is the speed of light and C is the synchrotron circumference. Accel-
eration is achieved through application of sinusoidally varying electric field

Vg(t) = V0sin(2πfRF t+ φs) (2.38)

where Vg specifies the voltage across an RF cavity, known as the “gap voltage”,
and φs is the synchronous phase, seen by the ideal particle which follows
the design path of the synchrotron. We will assume for simplicity that the
accelerating gap length is short compared to the distance travelled during
one RF period, g << C. For optimum acceleration, the RF frequency is
constrained to be an integer multiple of the revolution frequency,

fRF = h frev (2.39)

where h is the harmonic number. For simplicity, temporarily assume h = 1
for the following discussion. We can describe the one turn energy gain of the
synchronous particle through

δUs = qVg sin(φs) (2.40)

A test particle separated in time by δt = t− ts from the synchronous particle
sees a different phase φ 6= φs in the accelerating voltage. We introduce the
variable

ϕ = ωRF δt = φ− φs (2.41)

to describe the phase variation of this particle. The corresponding energy gain
for the general particle is thus

δU = qVg sin(φ) = qVg sin(ϕ+ φs) (2.42)
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The relative change in energy per turn between the synchronous and generic
particle is

∆(δU) = qVg [sin(ϕ+ φs)− sin(φs)] (2.43)

For small relative energy gains per turn, Equation 2.43 can be written as a
differential equation

d(δU)

dt
=
qVg
2π

ωRF (sin(φ)− sin(φs)] (2.44)

Before moving further, we make a change of variables from (t, U) to the system
(ϕ,W )

W =
−δU
ωRF

(2.45)

We can then rewrite Equation 2.44 in our new coordinates

dW

dt
=
qVg
2π

(sin(φs)− sin(ϕ+ φs)] (2.46)

2.2.2 Small amplitude longitudinal oscillations

Equation 2.46 describes the energy evolution in our new system. For a com-
plete description of particle motion, we must also determine the variation of
relative phase ϕ with time and W . Taking the particle revolution period to
be given by Equation 2.37, it follows that the

dT

T
= −dω

ω
=

(
αc −

1

γ2

)
dp

p
(2.47)

where αc is the momentum compaction factor, which relates the path length
difference between off momentum particles and the reference orbit. The quan-
tity

ηc = α− 1

γ2
(2.48)

is termed the “slip factor” because it relates the slip in time directly to the
momentum offset. The momentum compaction factor relates to an energy

γt =
1√
α

(2.49)

which is known as the transition energy. As an accelerating particle passes this
energy threshold, the slip factor changes sign from positive to negative; this can
be heuristically explained as the particle behavior becoming relativistic. At
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low energies, the time change is dominated by velocity perturbations, while
at higher energies it is path length deviations arising from dispersion that
dominate (Note: the slip factor may be presented with opposite sign [38],
so care must be taken to note the order of terms in the expression). The
momentum compaction factor is a function of lattice parameters, given by

α =
1

C

∫
D(s)

ρ(s)
ds (2.50)

The transition energy thus depends on the design parameters. In general, for
a synchrotron the momentum compaction factor is inversely related to the
horizontal tune α ≈ ν−2

x , and as such the transition energy goes as γt ≈ νx.
A larger ring thus possesses a higher transition energy. Nonetheless, for ions,
even small rings still require GeV-scale particle energies to approach transition.

Equation 2.47 can be re-written to describe the variation in phase coordi-
nate ϕ with time. We have

dϕ

dt
' −ω

2
RFηc
β2Us

W (2.51)

where substitution ofW for dp/p follows from the relativistic energy-momentum
relation. Equations 2.51 and 2.46 may be combined to form a single second
order differential equation in ϕ describing the motion of the particle in phase
space.

d2ϕ

dt2
+
hω2

sηcqVg
2πβ2Us

(sin(φs)− sin(ϕ+ φs)) = 0 (2.52)

For small amplitude oscillations (ϕ << φs ), this equation simplifies to

d2ϕ

dt2
+
hω2

sηcqVg cos(φs)

2πβ2Us
ϕ = 0 (2.53)

which describes a linear oscillator with oscillation frequency

Ω2
s =

hω2
sηcqVg cos(φs)

2πβ2Us
(2.54)

Ωs is the synchrotron oscillation frequency. As with transverse betatron os-
cillations, we define a corresponding synchrotron tune Qs = Ωs/ωs. The syn-
chrotron tune is usually relatively small, Qs < 1, as particle energies generally
well exceed the applied RF voltages, which are limited to the kV range. In
order for the motion to be phase-stable about the synchronous phase, we must
have Ωs

2 > 0, which is equivalent to requiring ηc cos(φs) > 0. Thus parti-
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cles below transition must lie on the up-slope of the Voltage curve defined by
(0, π/2), while those above transition lie on the down-slope (π/2, π). This co-
incides nicely with the description of momentum compaction described above.

2.2.3 Large Amplitude Oscillations and the Separatrix

In case of large amplitude oscillations, Equation 2.52 has no exact analytical
solution, and numerical methods must be employed for arbitrary initial con-
ditions. Thus we will first consider the simple case of the non-accelerating
particle, for which φs = 0. Equation 2.52 then has a solution of the form

1

Ωs

dφ

dt
= ±

√
2(cos(φ)− cos(φm) (2.55)

where φ = ±φm corresponds to dφ/dt = 0, the unstable fixed points where
the particle path in phase space crosses the φ axis. If we choose φm = π, then
we arrive at special case solution

dφ

dt
= 2Ωs cos

(
φ

2

)
(2.56)

Equation 2.56 describes the separatrix, which defines the boundary between
stable and unstable orbits in phase space for a given Ωs. Within the sepa-
ratrix, stable solutions exist which are characterized by oscillation about φs
as discussed in the previous section. The separatrix can be written in terms
of the canonical variable W via Equation 2.51, and the corresponding dimen-
sions can be calculated in meaningful units. The area within the separatrix is
referred to as the bucket area, and follows from

As = 2

∫ φm

−φm
Wdφ (2.57)

= 8
R

πhc

[
qVgUs

2πh|ηs|

]1/2

(2.58)

The maximum permissible W is given by the bucket half-height, ∆Ws, follows,
as does the bucket length ∆φ via

∆Ws =
As
8
sin

(
φm
2

)
=
As
8

(2.59)

∆φ = 2φm = 2π (2.60)
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Equations 2.60 and 2.59 effectively define the momentum acceptance and max-
imum bunch length which can be injected into the bucket, respectively. They
can also be applied to orbits of particles in the bucket with arbitrary maxi-
mum phase φm. Thus, the longitudinal emittance of a bunch can be deduced
from the initial phase-space coordinates of the bunch, as the particles will fol-
low phase space orbits with maxima described by Equations 2.59 and 2.60.
Figure 2.6 shows a stationary bucket with various stable phase orbits.

As a corollary, observe that if a bunch which is injected into this bucket
with an initial phase distribution that does not conform to a fixed emittance
stable orbit, the bunch will spread out as the individual particles follow their
own stable orbits. This results in filamentation of the bunch and an increase
in emittance. Consider a bunch with zero momentum spread

dp0

p
= δW0 = 0 (2.61)

occupying the φ axis in phase space with a maximum at φm. Over time,
the bunch will begin to filament, ultimately filling an area in phase space
described by Equation 2.55, with corresponding maximum energy spread given
by Equation 2.59. The end result is a distinct increase in total beam emittance.
Figure 2.7 illustrates an example of a thin mismatched bunch injected into a
stationary bucket.

For accelerating particles with arbitrary choice of φs, a numerical solution
must be used. Nonetheless, analysis of the phase equation reveals some general
properties of the separatrix. In particular, the unstable fixed points of the
moving bucket along the phase axis are (φ1, 0) and (φ2, 0) where φ1 and φ2

satisfy

φ1 = π − φs (2.62)

0 = cos(φ2) + cos(φs) + (φ2 + φs − π) sin(φs) (2.63)

Unlike the stationary case, the accelerating bucket is asymmetric about φs.
The bucket half-height ∆W and bucket area Abk are given by

∆W =
As

8
√

2
(π sin(φs)− 2φs sinφs − 2 cosφs)

1/2 (2.64)

Abk = α(φs)Abk (2.65)
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Figure 2.6: The stability of a bunch in an RF bucket is depicted in (φ, φ′)
phase space. The stationary RF bucket (solid black line) is accompanied by
stable orbits (dashed green lines).
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Figure 2.7: The injection of a bunch into a bucket is depicted through evolu-
tion in the particle phase space (φ, φ′), where φ is the relative phase coordinate.
A “mismatched” bunch characterized by a long bunch with minimal momen-
tum variation quickly filaments and eventually fills the phase region defined
by the orbit of the particle with maximum emittance, depicted by the red line.
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where α(φs) is given by [39]

α(φs) =

√
2

8

∫ φ1

φ2

[(π − φs − φ) sinφs − cosφ− cosφs]
1/2 dφ

≈ 1− sinφs
1 + sinφs

(2.66)

Again note the role of applied voltage Vg in increasing the available bucket area,
however when particles are accelerated, the bucket area is smaller by a factor
of αs. Thus, for a fixed cavity voltage, there is a clear trade off between bucket
size and accelerating voltage. Synchronous phases in the range of 30◦ − 35◦

are often chosen as they provide a practical compromise. Figure 2.8 shows a
moving bucket solution with φs = π/6.
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Figure 2.8: The accelerating bucket (solid black line) for synchronous phase
φs = π/6 along with stable orbits (green, dashed lines) is depicted in (φ, φ′)
phase space.
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Chapter 3

Harmonic Ratcheting for Rapid
Acceleration of Ions
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Despite considerable improvements to RF technology and engineering, con-
ventional acceleration of low β charged particles remains expensive and inef-
ficient. Nonetheless, the potential for faster acceleration of low energy ion
beams remains rich, with a host of applications proposed to take advantage of
rapid cycling synchrotrons (RCS) or fixed field alternating gradient machines
(FFAGs) [40–42]. The primary challenge of accelerating such particles is ac-
commodating the large change in frequency during accelerating, which requires
robust and flexible tuning regimens. Using speciality ferrites, a broad tuning
range can be obtained at the cost of efficiency [43]. In many cases, the ferrite
materials suffer dramatic loss effects when pushed to large biasing fields, rapid
biasing changes, and large amplitude AC fluxes [44, 45]. These difficulties limit
the advancement of fast and efficient accelerators for low energy ion beams.

This chapter will provide some insight into the performance metrics of
ferrite-tuned RF cavities with an emphasis on the basics of cavity design and
the limitations on performance at high repetition rates. A possible solution,
harmonic ratcheting, is proposed as a means to limit the relative frequency
range of cavity operation and to improve cavity efficiency for high voltage op-
eration. The harmonic ratcheting scheme represents one possible solution to
meeting the RF needs for a fast cycling machine for heavy ion therapy. To
illustrate effectiveness of ratcheting, a realistic synchrotron design for carbon
ions is considered, and an optimal ratcheting solution is presented. The discus-
sion of the ratcheting approach, and its application to a medical synchrotron,
is further discussed in Cook et al. [31].

3.1 Ferrite-loaded RF cavities

For conventional accelerators, RF cavities remain the only means of achieving
the high energies (hundreds of MeV) needed for proton and ion applications.
As noted previously, proton acceleration is challenging due to the rapid change
in speed accompanying particle acceleration at low energy. This necessitates
a frequency change which renders conventional cavities inefficient, a property
which I will elucidate with a basic description of a conventional cavity.

3.1.1 RF cavity basics

The core purpose of an RF cavity is to deliver energy to the particles passing
through it at a specified frequency. To deliver this energy, electromagnetic
waves are driven at the desired frequency and intensity, localized to a region
of particle passage. A cavity provides the boundary conditions along with
thermal and electrical properties needed to support these fields.
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Consider a cylindrically symmetric cavity of radius R and length L oriented
along the z-axis. In a vacuum (or more generally a region devoid of charges
and currents), Maxwell’s equations reduce to the general wave equation for E
and B, respectively,

∇2E − 1

c2
∂2
tE = 0. (3.1)

We will solve for the z-component of the electric field, as we wish to accelerate
our particles in that direction. In the case of our cylindrical cavity, the wave
equation reduces to

∂2Ez
∂z2

+
1

r

∂

∂r
(r
∂Ez
∂r

) +
1

r2

∂2Ez
∂φ2

− 1

c2
∂2

tE = 0. (3.2)

The time-dependent component of our solution is simply

Et(t) = eiωt (3.3)

We may then propose a time-independent solution of the form

Ez(r, φ, z) = R(r)Φ(φ)Z(z) (3.4)

The z-dependent component is satisfied by Z(z) = e−ikz while the φ equation
similarly reads Φ(φ) = e−inφ. We are left with a radial equation,

∂2Ez
∂z2

+
1

r

∂Ez
∂r

+ (
ω2

c2
− kz2 − m2

r2
)Ez = 0. (3.5)

Define the parameter kc by

k2
c =

ω2

c2
− k2

z (3.6)

The solutions to this equation are given by Bessel functions Jn,

Ez = E0Jn((kcr)e
i(ωt−nφ−kz). (3.7)

The cavity defines radial boundary conditions according to Jn(kcR) = 0, mean-
ing that the propagating modes are zeroes of the Bessel function solution. If
we assume that the cavity is closed on both ends, we limit wave propagation
to only standing wave modes, those with E(z = 0, L) = 0. Our solution is

modified by the boundary condition ikz =
πp

L
for p = 0, 1, . . .. We then have
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a lowest order fundamental accelerating mode,

Ez = E0J0

(
kc
r

R

)
cos (ω0t) (3.8)

ω0 = J01
c

R
(3.9)

where J01 ' 2.405 is the first zero of J0. We refer to this mode as the TM010

(“transverse magnetic”) mode. Figure 3.1 shows the radial version of this
lowest order solution for Ez and Bφ.

Figure 3.1: The fundamental accelerating mode TM01 is depicted according
to (a) the field component Ez as a function of r, and (b) the corresponding
magnetic field component Bφ. On axis, the electric field is at a maximum,
while the magnetic field is zero.

To gain further insight into cavity performance, introduce a simple model
of the cavity as an RLC circuit consisting of an inductor and capacitor in
parallel. Assume that the inductor has some loss represented by a resistor in
series. Figure 3.2(a) shows this “lumped circuit” model of a cavity.

The impedance of this circuit can be written as

Z(ω) =

(
1

ZC
+

1

ZR + ZL

)−1

(3.10)

The individual impedances can be written ZC = i/ωC, ZR = R, and ZL =
iωL. We then have

Z(ω) =
R + iωL

(1− ω2LC) + iωRC
. (3.11)

We may then define the resonant frequency ω0 = 1/
√
LC as it maximizes the
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Figure 3.2: Two equivalent lumped circuit models use a driven RLC circuit
to represent an RF cavity: (a) the series model and (b) parallel model. In each,
the resistance is assumed to stem from the inductor. Transformations between
each system can be performed assuming the impedance, and subsequently the
quality factor, are equal.

impedance of the circuit, minimizing current flow to these elements (reducing
them to zero in the R = 0 case). The real component, Re(Z(ω)), defines a
Lorentzian about ω0 with full width at half maximum ∆ω. In the case of large
impedance, ∆ω/ω � 1 and we find

∆ω

ω
=

R√
L/C

. (3.12)

We’ll introduce two figures of merit to better describe cavity performance.
The first is the quality factor of cavity, defined by

Q = 2π
Stored Energy

Energy lost per cycle
= ω

U

P
(3.13)

Again we can use our RLC circuit model to better define Q. Assume we are
driving our cavity at resonance with a current of the form I = I0 cos(ωt+ φ).
In our model, energy is lost only to the resistor, and we have a time-averaged
loss of 0.5I0

2R. The total energy in the circuit is equal to the peak energy
through the inductor, U = 0.5I0

2L. Thus we have

Q = ω0
L

R
=

ω0

∆ω
(3.14)

We see that the quality factor is inversely related to the bandwidth of
the cavity. For a particular resonance, greater efficiencies may be achieved
at the cost of bandwidth and vice-versa. Thus, we conclude that efficient
cavity performance is only achievable over a very narrow range of frequencies.
Figure 3.3 demonstrates the this relationship for a sample circuit.

An additional figure of merit is the shunt impedance, Rp, of the cavity.
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Figure 3.3: A plot of the real component of the impedance Z(ω) for sev-
eral different Q values demonstrates the inverse relationship between Q and
bandwidth.

This quantity relates the power dissipated per cycle for a given accelerating
voltage produced by the cavity. The power lost per cycle is

P =
|V 2

0 |
2Rp

(3.15)

We then have

Rp =
V0

2

2P
=
QV0

2

ωU
= Q

√
L

C
, (3.16)

where C and L are defined by our RLC circuit representation. The shunt
impedance is often characterized per unit-length of the cavity due to its de-
pendence on cavity geometry.

3.1.2 Ferrites

A ferromagnetic material is a material capable of exhibiting spontaneous or
permanent magnetization in absence of an external field. This is unlike para-
magnetic and diamagnetic materials, which only exhibit fields in response to
an external field. Moreover the field strengths reached by ferromagnets can be
many orders of magnitude stronger than those of a para/diamagnetic material.

Soft ferrites are a subset of ferromagnetic materials commonly used for
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high frequency applications, as they exhibit minimal hysteresis losses over a
wide range of frequencies. These materials commonly consist of NiZn or MnZn
based iron oxides of the form NixZnyFe2O4, where the subscripts x and y detail
the proportionality of Ni (or Mn) to Zn. NiZn ferrites exhibit high resistance
and are thus preferable for high power operation, but are limited to frequencies
below a few MHz. MnZn ferrites are more easily tuned to frequencies upwards
of 10 MHz [46].

Figure 3.4: A plot showing an applied field H and the resultant induced field
B within the ferrite. As the applied field to the ferrite is reduced, the ferrite’s
internal magnetization lags behind, leading to some remanent field B ≤ Br.
The continuous loop describing a full cycle of decreasing and increasing the
applied field is known as a hysteresis loop.

In the presence of an applied field, the ferrite exhibits an inductance ac-
cording to B = µH, where

µ = µ′ − iµ′′ (3.17)

is the complex permeability of the material. The quantity µ is often expressed
by a ratio µr = µ/µ0, where µ0 is the vacuum permeability of free space. Un-
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fortunately, the permeability is quite sensitive to the frequency of the applied
field as well as the initial state of the ferrite. The latter relationship is repre-
sented by a Hysteresis loop, as shown in Figure 3.4. Beginning in an initially
neutral state, an external field is applied and increased, resulting in a linear
increase in the induction according to B = µH. Eventually, the magnetic
domains within the material completely align and the inductance saturates.
At this point, reducing the applied field does not result in a linear reduction
in inductance along the same path; instead, the inductance lags behind. Even
after reducing the applied field to 0, a residual inductance Br remains. The
applied field must be reduced to some negative value −Hc known as the coer-
cive field in order to reduce the inductance to zero. “Soft” ferrites have small
values of Hc, making them easier to demagnetize in comparison with “hard”
ferrites [46, 47].

Consider the response of such a material when the inductance is not driven
to saturation, but rather stopped at a value B1, before being reduced by ∆B to
a value of B2. We may then define the differential permeability µ∆ = dB/dH
according to the change in applied field needed to bring about the correspond-
ing change in inductance. In the limit of small changes this quantity represents
the effective slope of the local hysteresis loop. Two important caveats regard-
ing the hysteresis loop: permeability is a complex quantity for which both the
real and complex components are frequency dependent. Thus, the response
curves will vary considerably across a range of frequencies. Secondly, the work
done (per unit volume) to the system follows from W = V

∫
HdB. Thus, the

work done traversing the hysteresis loop with an external field is equal to the
area within the hysteresis loop. As previously noted, softer ferrites with small
values of Hc often exhibit smaller losses under cyclical biasing.

3.1.3 Ferrite-Loaded RF cavities

The discussion from Section 3.1.1 makes clear the role of cavity geometry
in determining the resonant frequency and bandwidth of a classical cavity.
To construct a cavity which is tunable over a broad range of frequencies,
we will make use of the strong permeability and low losses of soft ferrites to
manipulate a cavity’s native resonant frequency. Figure 3.5 shows a wire-model
of a basic parallel-biased cavity. Ferrites are manufactured into toroidal discs
and stacked along the beam pipe, often balanced about a single capacitive
break such as a ceramic insert. This segment is known as the cavity gap and
is the point at which the generated voltage couples to the particles. A current
is used to create an alternating magnetic field through the ferrite material

according to B = µ
Itot
2πr

. The rate of change of flux across the cavity gap
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Figure 3.5: A standard parallel biasing configuration for a ferrite cavity is
shown [2]. Ferrite rings surround the beam pipe on each side of a gap with
effective capacitance C. A tuning circuit (not shown) is operated at high
frequency to adjust the resonant frequency of the cavity while a generator
circuit, providing current Igen, is operated at the RF frequency to drive a
corresponding voltage Vgap across the gap. The beam current may be treated
as part of a circuit which closes outside of the cavity, and counteracts the
generator current current, reducing Vgap.
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determines the gap voltage via Vgap = jωΦ. The flux through a single ferrite
core is

Φ1 =

∫
B · dS =

∫
r

Bldr =
lµItot

2π
ln
rb
ra

(3.18)

Recall that in the case of a real, lossy ferrite, the permeability µ is a complex
quantity given by Equation 3.17. Applying that form to our expression, we
find that the voltage across the cavity gap is

Vgap = iωΦtot = NItot
lω

2π
ln
rb
ra

(iµ′ + µ′′) (3.19)

The voltage can also be defined according to our series circuit model by

Vgap = Itot(iωL+R) (3.20)

thus we deduce

Ls =
Nl

2π
ln
rb
ra
µ′ (3.21)

Rs =
Nlω

2π
ln
rb
ra
µ′′. (3.22)

We can then use Equation 3.14 to find

Q =
µ′

µ′′
(3.23)

This cavity design is naturally represented by the “series” RLC circuit as
shown in Figure 3.2(a) with total impedance given by Equation 3.11. How-
ever, it is often convenient to model such a cavity with a parallel RLC circuit.
We can glean further insight into the properties of the cavity by using a par-
allel representation. We will then apply a parallel circuit model, shown in
Figure 3.2(b). We can equate the two models by assuming that the total
impedances of each circuit are equal. In order to distinguish between the two,
we will use the subscript s to indicate the series circuit quantity, and p to
indicate parallel. We have

Zs = Zp
1

Rs + iωLs
+ iωC =

1

Rp

+
1

iωLp
+ iωC

Rs − iωLs
Rs

2 + (ωLs)2
=

1

Rp

− i

ωLp
(3.24)
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Setting the real and imaginary parts equal yields expressions for Rp and Lp

Rp =
Rs

2 + (ωLs)
2

Rs

= Rs(1 +Q2) (3.25)

ωLp =
Rs

2 + (ωLs)
2

ωLs
= Ls(1 +

1

Q2
) (3.26)

Using these equations and Equation 3.14 we find

Q =
ωLs
Rs

=
Rp

ωLp
(3.27)

We can further establish the properties of the parallel circuit if we redefine the
complex permeability with parallel components according to µ = µp

′ − iµp′′.
We can then rewrite Equations 3.26 and 3.14 as

µ′p = µ′s(1 +
1

Q2
) (3.28)

µ′′s =
µ′s
Q

=
µ′pQ

1 +Q2
(3.29)

We may now fully simplify our expression for Rp given in Equation 3.25,

Rp = Rs(1 +Q2) = (1 +Q2)µ′′s
Nlω

2π
ln
rb
ra

Rp = µ′pQfNl ln
rb
ra

(3.30)

We see that the parallel shunt impedance Rp is proportional to the product
µ′pQf , which is often written simply as the µQf product. The loss properties
of the ferrite are thus determined by this µQf product, and as such it is often
a quoted figure of merit of the ferrite material.

3.1.4 Cavity parameters and performance

The cavity gap voltage can be related to the geometrical and magnetic param-
eters of the ferrite as well as the coil configuration and current generating the
magnetic field. In order to tune the frequency of the cavity voltage, we must
make use of the ferrite permeability. The value of µ effectively determines the
inductance of the cavity, which determines the resonant frequency according
to ω0 = 1/

√
LC. Applying a DC or slowly varying bias current induces a

quasi-static magnetic field in the ferrite which changes the differential perme-
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ability µ∆ of the material. By adjusting this bias current, one can change
the permeability and thus the effective resonant frequency of the cavity. Of
particular note, because the voltage is proportional to the rate of change of
flux, the voltage is naturally proportional to the operating frequency ω of the
cavity. Thus operating a cavity at a higher frequency increases both Vgap and
Q [2].

The method used to tune the cavity has important implications in the
cavity performance. Two established methods of delivering the bias current
are parallel and perpendicular biasing. In a parallel biasing setup, ferrites are
prepared in a toroidal shape and lined coaxially about the beam pipe within
the cavity, as in Figure 3.5. A small capacitative gap is made in the beam
pipe using a ceramic insert about which the ferrites are situated. A generator
circuit encompassing the ferrites provides the rapidly changing current for the
purposes of creating the high frequency accelerating voltage, while a secondary
circuit is wound about the ferrites to provide the biasing current. Perpendicu-
lar biasing is more difficult to achieve; the ferrite rings are stacked away from
the beamline and coupled to the cavity. The biasing requires greater spacing in
the ferrite stack for cooling and more complex current windings to achieve field
saturation. Different ferrites are better suited to different biasing schemes.

Figure 3.6: A diagram of a perpendicularly biased cavity as designed at Los
Alamos National Laboratory. The cavity is designed to operate in the 50-84
MHz range, over which the ferrite rings show much higher Q values using
perpendicular biasing [3] c©1985 IEEE.
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It is difficult and inefficient to rapidly tune RF cavities over a wide range of
frequencies. Operational frequencies are specific to individual ferrite materials.
At sustained high fields, ferrites demonstrate considerable losses; this is known
as the high-loss or Q-loss effect. Moreover, rapid tuning of ferrite biasing
current results in strong dynamic losses up to 50% of the static Q value.
For the purposes of accelerating protons and heavy ions to midrange energy
levels suitable for radiation therapy (5 to 430 MeV/u carbon, 7 to 330 MeV
protons), this problem is especially prominent, as a single machine might need
to undergo a 5-fold frequency swing [45].

Figure 3.7: At left, The value of Q clearly declines with increasing bias field
rate. This is known as f-dot loss, and can result in a 50% reduction in Q value
for high bias field rates. At right, the value of Q is shown to decline when
ramped over a long period of time. At lower operating temperatures, a 10ms
ramp can lead to a 15% decline in Q. c©1979 IEEE

3.2 Harmonic ratcheting

Several different approaches have been considered as means of improving broad-
band RF performance. In lieu of ferrite, magnetic alloy (MA) cavities have
been designed and used for high power rapid cycling synchrotrons [48]. An-
other solution is to chose the energy gain per turn such that cavities are spaced
by an integer multiple of the RF period, thus allowing accelerating bunches to
skip RF buckets. This is the premise of the “harmonic number jump” scheme,
providing a dynamical adjustment of h to extend the viable dynamical range
of a fixed-frequency cavity [49, 50]. Alternately, the required RF frequency
range can be significantly reduced below the revolution frequency range by
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decreasing h in steps as the ions accelerate and frev increases. This is the
motivation and the basic method of harmonic ratcheting.

Suppose that two sets of RF cavities take turns accelerating the beam —
one turns on when the other turns off, at different RF frequencies — so that
the RF frequency is always constrained to remain in the range

fmin ≤ fRF ≤ fmax (3.31)

where fmin and fmax are externally determined design parameters. It is possi-
ble to make the transition back or forth between harmonic numbers

h = n (3.32)

andh = n+ ∆

where n and ∆ are positive integers, if

fmax
n+ ∆

>
fmin
n

(3.33)

that is, if
∆ < nr (3.34)

where

r ≡ fmax
fmin

− 1 > 0 (3.35)

is the “ratcheting parameter”. Equation 3.34 shows that ∆ has a maximum
permissible value, which must be greater than 1 if a harmonic transition is to
be possible. This is guaranteed for all values of n in the case that r > 1, when
the RF frequency swings by more than a factor of two. If the swing ratio is
less than 2, then r < 1 and transition is only possible if

n >
1

r
and r < 1 (3.36)

Many harmonic transitions can take place during one acceleration ramp. Fig-
ure 3.8 shows an example with r = 0.50, where the revolution frequency in-
creases from 0.61 MHz to 3.35 MHz, while the RF frequency is constrained to
lie between 5.5 MHz and 8.3 MHz. Figure 3.9 shows the RF frequency and
total gap voltage as a function of time for the same ramp.
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Figure 3.8: An example of harmonic ratcheting with r = 0.50, in the case
where the revolution frequency increases from 0.61 MHz to 3.35 MHz, while
the RF frequency is constrained between 5.5 MHz and 8.25 MHz. Color coded
segments show one possible solution — with the harmonic number sequence
h = 9, 7, 5, 4, 3, 2 — that maximizes the RF frequency while minimizing the
number of ratchets.
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Figure 3.9: Active cavity parameters for a 65 m Carbon synchrotron oper-
ating at 15 Hz with ratcheting sequence of h=9,7,5,4,3,2. Top, active cavity
voltage is shown versus ramp time. Middle, the active cavity frequency is
shown. Bottom, the ratio of cavity voltage to frequency is plotted; this ratio
remains consistent throughout acceleration.
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3.2.1 Designing a ratcheting ramp

One constraint on the initial harmonic number, h0, in the ratcheting ramp
is imposed by the minimum required bucket length, tinj to accept particles
into a single bucket at injection. This length sets a maximum possible initial
harmonic. Moreover, the energy acceptance at injection also scales inversely
with hmax

2. These requirements can be summarized by

hmax ≤
1

tinjfrev(0)
(3.37)

and hmax
2 ≤ 2QVgβ

2Es

π|ηs|∆E0
2

Here, Q = Ze is particle charge, Es is synchronous energy, and ηs is the
phase slip factor. As the initial harmonic increases, a corresponding increase
in voltage is necessary to keep the longitudinal acceptance the same.

3.2.2 Emittance growth at ratcheting transition

During the harmonic transition, the voltage on the cavity operating near fmax
at harmonic h = n is reduced while the voltage on a second cavity operating
at harmonic h = n+ ∆ is raised to provide the desired gap voltage at the new
harmonic. Assume that this change happens quickly (non-adiabatically) and
that both the synchronous phase and total accelerating voltage are smoothly
varying and/or fixed when the ratcheting takes place. The accelerating bucket
area, A, scales with the harmonic number as

A ∝ 1

h
3
2

(3.38)

Assume the ramp undergoes a harmonic change according to Equation 3.32,
with the harmonic number being reduced from n + ∆ to n, and the total
voltage does not change appreciably. The bucket area grows from Ai to Af
according to

Af =

(
n+ ∆

n

) 3
2

Ai (3.39)

Because the synchronous phase remains the same, it is only the slope of
the voltage curve with respect to particle position that changes, and not the
total magnitude of accelerating voltage. Thus, the transition from a larger to
smaller harmonic does not result in a net shift in bunch position, but instead
relaxes the voltage curve defining the stable longitudinal phase space. In order
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to achieve the same restoring voltage slope, a particle with phase displacement
θi under the previous harmonic n+ ∆ extends to a new phase coordinate

θf =
n+ ∆

n
θi (3.40)

This results in a change in the RMS momentum spread, σ, from σi to σf where

σ2
f =

(
n+ ∆

n

)
σ2
i (3.41)

The 95% longitudinal emittance of the beam, assumed Gaussian, follows from

S = K

(
σp
ps

)2

(3.42)

with K =
3

hfrev

√
−2πhηEs

3β2

eVg cosφs
(3.43)

where ps is the synchronous particle momentum, Es is the synchronous particle
energy, and e is the elementary charge of an electron [33]. Using Equations
3.41 and 3.43 the new emittance becomes

Sf =

(
n+ ∆

n

) 3
2

Si (3.44)

Thus the emittance growth due to the harmonic number transition in Equation
3.44 matches the bucket area growth due to the same transition found in
Equation 3.39. We have

Si
Ai

=
Sf
Af

(3.45)

For slow changes in harmonic number, emittance growth is precisely checked
by an increase in bucket area, making the ratcheting process inherently stable.
This property can be seen in the Figure 3.13 for the example ramp in which
the transition takes place non-adiabatically.
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3.3 Cavity performance with harmonic ratch-

eting

The resonant frequency of a ferrite-loaded cavity follows from the discussion
in Section 3.1.1

f =
1

2π

1√
LC

(3.46)

where L, the inductance of the cavity, is adjustable between minimum and
maximum value Lmin and Lmax, corresponding to frequencies fmax and fmin,
respectively. The minimum inductance that is required is given by solving the
equation

fmax
fmin

= 1 + r =

√
Lmax + Lstray
Lmin + Lstray

(3.47)

Here, Lstray refers to the stray inductance of the cavity, which sets a minimum
on the unloaded cavity properties. When r is small, Lmin is large, and it is
possible to ignore the stray inductance, Lstray (which is usually on the order
of several µH); however in the case of a large frequency swing the entire range
of plausible inductances must be tuned. Figure 3.10 demonstrates the reliance
upon small stray inductance for large r values, using Phillips 4L2 ferrite for
tuning. It is clear that ratcheting permits larger stray inductances.

Consider a cavity with a total ferrite length of l, made of many rings with
inner and outer radii ra and rb. The inductance is given by

L =
l

2π
µ′ ln

rb
ra

(3.48)

where we take µ′ to be the real component of the incremental complex perme-
ability µ∆. The component µ′ and the inductance of the cavity are tuned by
biasing the ferrite with a pseudo-constant azimuthal magnetic field driven by
a tuning current. Ignoring the stray inductance, the required dynamic range
of L and µ′ is

Lmin
Lmax

=
µ′min
µ′max

=
1

(1 + r)2 (3.49)

The voltage across the gap of a cavity follows

Vgap = 2πf Bmax l ra ln
rb
ra
∼ f l (3.50)

where Bmax ≈ 0.01 T is the maximum incremental RF magnetic field that is
allowed at the inner radius of the ferrite rings, oscillating at the frequency f .

For a fixed ferrite ring geometry (ra and rb), and a fixed maximum field
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Figure 3.10: The achievable ratcheting parameter r is plotted (black) for the
ferrite Phillips 4L2 using fitting data collected at BNL [4]. The plot demon-
strates that, for a fixed capacitance, a low stray inductance is needed to achieve
the high frequency ratio required by a single harmonic ramp (red). For a
ratcheting solution (blue) with fmax/fmin < 2, inductances of several µH are
acceptable.
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Bmax, then the gap voltage scales with ferrite length and cavity frequency. The
ferrite length l can be reduced if the RF frequency in the cavity is increased.
By inflating cavity frequency, harmonic ratcheting allows a given acceleration
waveform to be achieved with shorter ferrite — and shorter cavities.

The total length of ferrite required with a ratcheting parameter r, relative
to a non-ratcheting scheme in which ions are accelerated over the full dynamic
range

D =
βmax
βmin

=
frev,max
frev,min

(3.51)

is given approximately by

lratchet
lnon−ratchet

=
fmin,non−ratchet
fmin,ratchet

≈ 2
1 + r

D
(3.52)

where the factor of 2 recognizes that only half the cavities are active at any one
time. For example, Figure 3.8 illustrates acceleration over a dynamic range
of D = 5.5, using a ratcheting parameter of r = 0.50. In this case ratcheting
(ideally) makes it possible to decrease the total length of ferrite by a factor of
0.55. Conversely, the gap voltage can be almost doubled for a fixed amount of
RF cavity real estate, in turn almost doubling the potential repetition rate of
a rapid cycling synchrotron.

3.4 Example: a rapid cycling medical

synchrotron

Consider a rapid cycling synchrotron for acceleration of C6+ ions for radiation
therapy applications, with a 15 Hz repetition rate and a circumference of
C ' 65 m. Ions are accelerated through a range 8 to 400 MeV/u, with a
nominal bunch current of 10 pA.

Once the initial harmonic number is determined, the initial RF frequency
is set at fRF (0) = h0 βc/C. The frequency ceiling can then be chosen. In this
example, we choose a ratcheting parameter of r = 0.5 via a final harmonic
transition of h = 3 to h = 2. The resultant frequency swing is shown in
Figure 3.9, with the harmonic sequence shown in Figure 3.11.

When the frequency ceiling is reached after acceleration at one particular
harmonic, RF power is transferred to the second cavity system at a lower har-
monic number. Each time the harmonic number is reduced, the RF frequency
is reduced by a factor hn+∆/hn where hn is the new harmonic, and hn+∆ is the
previous value. The maximum frequency swing during the ramp is determined
by the maximum value of this ratio, or equivalently the ratcheting parameter
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Figure 3.11: Active cavity harmonic for the 65 m carbon synchrotron har-
monic ratcheting ramp. The cavity begins at h=9 and ratchets in sequence
through h=7,5,4,3,2.
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r. For example, if the largest transition in a particular ratcheting scheme is
from h = 3 to h = 2, then the ratcheting parameter is r = 0.5, and that
particular ramp is limited to a 50% frequency swing.
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Figure 3.12: Output voltage for each cavity system is depicted for a test
ratcheting sequence. A ramping time of 100 µs is chosen for the transition
periods, and total voltages are calculated to meet the constraint φs ≤ 33◦. A
minimum voltage of 1 kV is assumed in order to allow RF tuning and phase
synchronization for the “offline” cavities.

Figure 3.12 shows the output voltage needed for each cavity system in the
example ratcheting ramp. The transfer of power in a harmonic transition to
the inactive cavity cannot be performed instantaneously. The voltage across
the cavity must be raised over many turns of the accelerator. This transition
may be on the order of 100 µs depending upon the voltage level and frequency
of the cavity. For a fixed total gap voltage, a change in h constitutes a change
in the synchronous phase φs of the system according to

φs,f = φs,i
n

n+ ∆
(3.53)

If the phase is changed too abruptly, the bunch center will oscillate about
the new value of φs, and the bunch will filament, causing strands of particles
to separate outward from the edge of the bunch and increasing emittance.
Assume the transfer of voltage takes place over some time period τr. A particle
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will make
nt = βcτr/C (3.54)

turns in that time. If τr = 100 µs, a β = 0.1 particle makes 46 turns of a
65 m synchrotron, thus smoothing the dynamics present during the transition
period.
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Figure 3.13: RMS bunch emittance, εrms, and bucket-area, Abk, are shown
for a simulated ramp with Carbon ions and a fixed voltage profile. The emit-
tance spikes correspond to the harmonic transitions inducing a quick change
in synchronous phase.

An alternative to the fixed voltage profile is to vary the voltage in order to
produce a fixed synchronous phase over the course of acceleration. Maintain-
ing a fixed phase reduces emittance growth and bunch filamentation, while
reducing power requirements on the RF system. Detailed feedforward and
diagnostic systems are required in order to maintain the proper voltage. The
emittance evolution for our example synchrotron can be seen in Figure 3.13.

Using the harmonic sequence discussed above, Table 3.1 reports an estimate
of the new acceleration parameters for the 15 Hz C6+ acceleration scheme,
using Phillips 4L2 and Ferroxcube 8C12 ferrites [4]. The results underscore
the significant reduction in magnetic field, power density, and the extreme
decline in bias field required to tune the ferrite across the smaller relative
frequency range.

53



Table 3.1: Summary of physical parameters and requirements for RF cavity
as well as power numbers, assuming Lstray = 0.5µH, for C6+ acceleration at
15 Hz. We assume the use of two RF cavities with the same geometry, µQf
values, and biasing scheme constructed from either Phillips 4L2 or Ferroxcube
8C12 ferrite. Both ratcheting and non-ratcheting ramps are considered for
each ferrite.

Cavity Parameter 4L2 4L2 ratcheting 8C12 8C12 ratcheting

Harmonic Sequence 1 9, 7, 5, 4, 3, 2 1 9, 7, 5, 4, 3, 2
RF Frequency [MHz] 0.65 to 3.57 5.5 to 8.25 0.65 to 3.57 5.5 to 8.25
Injection Bunch Length [ns] 500 60 500 60
Maximum B-field [mT] 1.33 0.96 1.33 0.96
Maximum Gap Voltage [kV] 27.5 30 27.5 30
Max Cavity Power Loss [kW] 8.4 6.7 8.4 6.7
Permeability Range, µr 4.93 to 200 86.9 to 200 24.8 to 200 86.9 to 200
Maximum Bias H [A/m] 4485 342 968 320

3.5 Ratcheting challenges

There remain many challenges to effectively implementing a harmonic ratch-
eting system. These lie primarily in meeting the costs and constraints of
building and tuning a flexible multi-cavity system which can stably operate at
the desired performance level for a given feed-forward RF program.

3.5.1 Anomalous effects

Use of a harmonic ratcheting scheme may also reduce losses in the ferrites due
to anomalous effects. At sustained high fields, ferrites demonstrate what is
known as the high-loss or Q-loss effect (QLE). This can result in reductions of
15-20% of maximum field. High bias fields can increase this effect by reducing
the threshold of Q-loss onset. However, it has been documented that at high
bias rates, the threshold for this effect is significantly raised [44]. Given these
considerations, a ratcheting scheme should mitigate the QLE by reducing bias
fields and maintaining a high rate of change of bias field. High bias field rates
may induce a dynamic loss effect in the ferrite. These losses may reduce a
cavity’s Q value by up to 40%. Unlike the QLE, this effect appears at varying
levels of RF excitation and is more dependent on the temperature and duration
of the biasing. By decreasing the time spent biasing before reaching resonance
at high fields, the effect can be reduced considerably. It must be stressed that
these effects are still poorly understood on a theoretical level, and their effects
can vary considerably for different materials.
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3.5.2 Magnetic alloy cavities

An alternative to ferrite-loaded cavities is made possible by the use of magnetic
alloys, which feature high permeability values, resilience under high magnetic
fields, and large inductances. These properties allow MA cavities to achieve
low Q values, meaning they can support fast, broadband acceleration using
feedforward systems to achieve the desired frequency band operation, as seen
in the J-PARC 3 GeV RCS [51]. This low Q value combined with the robust
nature of the material allows MA cavities to achieve high gradients, but at the
cost of high power requirements, especially at low frequencies wherein the µQf
product can be orders of magnitude lower than in ferrite cavities [48]. Despite
the resilience of MA cores to high fields and temperatures, thermal stress can
result in impedance drops and subsequent core damage. The so-called “core
buckling” phenomenon requires proactive maintenance schedules requiring the
replacement of 2 sets of cores each year at J-PARC [52]. Recently, such in-
cidents have been found to be reducible by changing the epoxy resin used in
core construction. In all, MA cavities provide a number of advantages for high
frequency, high gradient operation for RCSs at the expense of power loss and
maintenance costs. These tradeoffs are directly correlated to cavity perfor-
mance, and as such a ratcheting approach would only reduce costs through
a similar reduction in performance. Use of MA cavities, as with ratcheting,
is useful for particular classes of problems, but they do not complement one
another.

3.6 Summary

The harmonic ratcheting system is unique amongst RF schemes for proton and
ion synchrotrons due to the active adjustment of harmonics throughout the
ramp. Some other situations do exist in which multiple harmonics are used
simultaneously. These include barrier bucket systems, re-bucketing systems,
and bunch stretching RF systems. However, in each of these situations, the
higher harmonic is commonly applied at a fixed energy (φs = 0) system. The
additional harmonic is used to stretch, squeeze, or redistribute the bunch in
a way that is favorable for improving luminosity, reducing eddy currents, or
extracting beam to a different system [53–56]. Harmonic ratcheting utilizes
a multi-harmonic system to adjust the primary harmonic number during ac-
celeration. In this way harmonic ratcheting is a distinctive scheme for RF
acceleration of protons and ions.

Harmonic ratcheting presents an scheme for the RF acceleration of pro-
tons and ions. The scheme requires careful timing and extreme tuning of
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ferrite materials in order to determine the optimum frequency range and har-
monic transition times for acceleration. Considerable efforts will be needed to
test prospective ferrite materials. Because of individual variations in materials
as well as differing needs for cavities, successful implementation of harmonic
ratcheting will require further investigation into generalizing a ratcheting solu-
tion to suit the needs of specific projects. Application of the ratcheting scheme
to real cavity design, including ferrite selection, bias current circuitry, and RF
power amplifiers are necessary to gather the experience needed to create an
array of general solutions.
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Chapter 4

A Laser Plasma Primer
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In comparison to RF cavities, intense laser pulses have a number of appeal-
ing properties. First and foremost, electric fields generated by a laser pulse are
many orders of magnitude higher than those seen in RF cavities, with peak
fields in excess of 1012 V/m [57]. That these fields can be generated with a
relatively small footprint when compared with large circular accelerators is at-
tractive for many applications. Moreover, the wall plug power of ultra-intense
laser systems has improved to be upwards of 5–20 % depending upon the
gain medium, which though still lower than superconducting RF cavities, is
compensated by the increase in gradient. All of these factors, combined with
the inherent flexibility provided by a laser system in terms of output timing,
pulse power, and polarization suggests that lasers could be ideal means of
accelerating particles.

Unfortunately the transfer of energy to particles is not so easy. It turns out
that in its simplest form, the interaction between a laser field and an energetic
free particle is not conducive to acceleration, an observation first made by P.M.
Woodward and J.D. Lawson when studying laser fields in the vicinity of an
aperture [58]. Their conclusions are now referred to as the Lawson-Woodward
theorem, which states that a free particle in a laser field experiences no net
acceleration, subject to the following assumptions [59]:

1. The laser field is in vacuum with no boundaries

2. The particle is highly relativistic along the acceleration path

3. No static fields are present

4. The region of interaction is infinite

5. Ponderomotive effects are neglected

It is easy to see that when these conditions are satisfied, the particles will
not experience any net acceleration. Consider a highly relativistic electron in
a vacuum subject to an intense laser pulse. Assume the laser propagates in
the z-direction, with the laser field linearly polarized along the x-axis. The
electric field Ez is given by

Ez =
1

2π

∫
dkx

∫
dkyÊz(kx, ky) exp[i(kxx+ kyy + kzz − ωt)] (4.1)

Poisson’s equation gives us an expression for the field component, given our
assumptions,

Êz = − 1

kz
(kxÊx + kyÊy) = −kx

ky
Êx (4.2)
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We may then calculate the energy gain ∆U ,

∆U = q

∫
Ezdz =

q

2π

∫
dkx

∫
dky

kx
ky
Êx(kx, ky)

∫
dz exp[(ikzz − ωt)] (4.3)

Since the interaction must be infinite, we integrate over all z, obtaining

∆U =
q

2π

∫
dkx

∫
dky

kx
ky
Êx(kx, ky)δ(kz − k) (4.4)

Note that δ(kz−k) 6= 0 only when kz = k. But this implies that kx = 0. Thus
we have ∆U = 0. This result has an intuitive physical interpretation. The
equivalence kz = k implies that the particle is traveling at the speed of light,
and cannot be further accelerated. However, for all kz 6= k, the particle is
traveling at v < c and thus there will be a natural phase slippage between the
laser field and the particle, which over the infinite interaction region averages
to zero net acceleration.

Though the Lawson-Woodward theorem at first seems to be an obsta-
cle, the nature of the constraints serves to guide the design of an experiment
in which lasers can accelerate particles. A number of vacuum acceleration
schemes have been proposed [60, 61] which cleverly elude the requirements of
Lawson to obtain net acceleration. However, a natural solution to the theo-
rem is simply to violate the first condition, that of vacuum. By introducing a
medium, the laser has a means of finite energy transfer. Therein lies the role
of plasma.

4.1 A plasma primer

A plasma can be defined as a quasi-neutral system of charged particles in
great enough number to exhibit collective behavior. Because the constituents
of a plasma are charged, they interact through the Coloumb force as well as
through collisions. Plasmas found in nature are quasi-neutral, meaning the
total charge is zero, but locally secular fields may exist.

Plasma frequency

The plasma frequency is the fundamental oscillation frequency of electrons in
a plasma in response to an electromagnetic perturbation.

Consider a 1D plasma with uniform electron density ne, in which at some
time t, a slab of plasma is displaced from its quasi-neutral position by some
distance δx. Applying Poisson’s equation gives the electric field generated by
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the charge separation

E(x, t) = −nee
ε0
δx (4.5)

The resulting equation of motion is then

d2E(x, t)

dt2
= −ωp2 (4.6)

where the plasma frequency, ωp is

ωp
2 =

nee
2

meε0
(4.7)

The ion plasma frequency follows the same form, with the ion mass and density
substituted, and so is usually small enough to be ignored.

Debye length

The plasma frequency sets a lower limit on the time-scale of collective (i.e.
plasma-like) behavior according to the plasma period 2π/ωp. The distance
corresponding to this time-scale is known as the Debye length, and is given by
the distance travelled by an average particle during one period,

λD =
vt
ωp

(4.8)

where vt is the thermal velocity of the particle. For a plasma with average
electron temperature Te, and substituting Equation 4.7, the Debye length is

λD =

√
ε0kBTe
nee2

(4.9)

The Debye length can be approximated by [62]

λD[cm] ≈ 7.43× 102

√
Te[eV ]

ne[cm−3]
(4.10)

For example, if Te = 10 keV and ne ≈ 1019 cm−3, λD ' 0.23 µm. The
Debye length gives the average distance between free electrons in a plasma.
Moreover, it provides a maximum distance over which Coloumb interactions
affect particle dynamics. It can be thought of as a maximum impact parameter
in this regard.
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Plasma parameter

We may further describe a plasma with the use of the dimensionless plasma
parameter, defined by

Λ = 4πneλD
3 =

4πε0
3/2

e3

Te
3/2

ne1/2
(4.11)

where Te is given in eV. The plasma parameter not only describes the number
of particles in the Debye sphere (a sphere of radius λD), but also the ratio
of the maximum impact parameter, λD, to the minimum impact parameter
under Coloumb scattering, b0. That is,

Λ =
λD
b0

(4.12)

If Λ � 1, then the Debye sphere is heavily populated, and electrostatic
interactions between individual particles tend to be shielded. The result is a
weakly coupled plasma. Conversely, if Λ � 1, then long range electrostatic
forces dominate over kinetic interactions, leading the plasma to be strongly
coupled. Most laser generated plasmas (ICF plasmas, capillary plasmas, gas
target plasmas, and foams) are weakly coupled, and we will concern ourselves
with this regime for the remainder of the discussion.

4.1.1 Collisions

In a weakly coupled plasma, collisions are dominated by long range Coloumb
interactions. At large Λ, collective effects of shielding and scattering are min-
imal. However, because Coloumb collisions usually result in small angle scat-
tering, a ‘collision’ between plasma particles is defined to be a 90◦ scattering.
For weakly coupled plasmas, the plasma parameter offers a convenient means
of quantifying the “rate of scattering”. Recall that Λ describes the ratio of
average particle separation to minimum impact parameters. The larger this
ratio, the smaller the rate of collisions should be. The electron-ion collision
frequency follows from

νei ∼ 2.6× 10−6Zne ln Λ

Te
3/2

(4.13)
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where ne is given in centimeters. The electron-electron and ion-ion collision
frequencies follow from

νee =
1√
Z
νei (4.14)

νii = Z2

(
me

mi

)2

νei (4.15)

The mean free path, in this case the average distance between 90◦ scattering
events, follows from

λee =
vth,e
νee

(4.16)

Consider a plasma with temperatures Te = 10 keV and Ti = 10 eV. The
corresponding mean free paths are on the scale of hundreds of millimeters.
Thus we see that even at modest temperatures, mm-scale plasmas can be
considered collisionless.

4.1.2 Describing plasma dynamics

Consider a plasma of N charged particles. The most fundamental description
of a plasma can be obtained by solving for the individual dynamics of each of
the plasma's particle constituents. Doing so amounts to solving the equation
of motion of each particle under the influence of the electric fields E(ri, t) and
magnetic fields B(ri, t) generated by the remaining plasma particles. This
equation of motion is given by the Lorentz Force according to,

ai =
dvi
dt

=
q

mi

[E(ri, t) + vi ×B(ri, t)] (4.17)

where ri and vi are the respective position and velocity vectors for the plasma
particles. The fields E(ri, t) and B(ri, t) are described by Maxwell’s Equa-
tions:

∇ ·E =
ρ

ε0
(4.18)

∇ ·B = 0 (4.19)

∇×E = −∂B
∂t

(4.20)

∇×B = µ0

(
j + ε0

∂E

∂t

)
(4.21)
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Here, ρ is the charge density and j the charge current.

The kinetic approach

While the approach outlined above provides the most complete description of
the plasma, it is simply untenable for a large collection of particles. A typical
plasma must be treated macroscopically instead. One means of doing so is
through introducing a distribution function fs for the system, which describes
the six dimensional phase-space density of each particle species, according to

ns =

∫
fs(r,v, t)dv (4.22)

where ns is the particle density for particle species s, and the zeroth moment
of fs(r,v, t). The first moment of the distribution function describes the bulk
velocity, u of a given species,

us =
1

n

∫
vfs(r,v, t)dv (4.23)

Equivalently, the zeroth and first moment nicely relate the species charge den-
sity, ρs, and current density, j, respectively

ρs = q

∫
fs(r,v, t))dv (4.24)

js = q

∫
vfs(r,v, t)dv (4.25)

As fs describes a physical ensemble, continuity of the phase space must hold.
From this assumption follows the Boltzmann kinetic equation,

∂fs
∂t

+ v · ∇fs + as · ∇vfs =

(
∂fs
∂t

)
c

(4.26)

where as describes the force operator on the system, and the term (∂fs/∂t)c
describes the collisional forces between particles in the distribution. For a
plasma, as is simply the Lorentz Force operator as seen in Equation 4.17.
Furthermore, since we are interested in collisionless plasmas, we may set the
collisional term to 0,
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(
∂fs
∂t

)
c

= 0 (4.27)

∂fs
∂t

+ v · ∇fs + as · ∇vfs = 0 (4.28)

This is the Vlaslov equation, and when combined with Equations 4.18 –
4.21 produces the Vlaslov-Maxwell description of a kinetic plasma. Though
more tractable than a microscopic analysis, analytical solutions to the model
are extremely limited in their scope. In practice, numerical approaches are
used to solve this system of equations, subject to realistic boundary conditions.
The most well known application is the Particle-in-Cell approach, in which the
system of equations is solved for pseudo-particles interacting with electric and
magnetic fields defined on a fixed mesh [57].

The hydrodynamic approach

A complementary strategy is to describe the plasma as a fluid of charge, with
macroscopic properties. We may begin again with the same distribution func-
tion f along with the Boltzmann equation. However, instead of solving the
equations to produce individual particle solutions, we solve for the evolution
of the ensemble plasma properties.

Recall that the moments of f correspond to observable properties which
provide a description of the plasma “fluid.” The particle density, ns, is given
by the zeroth moment (Equation 4.22), the bulk velocity, us, is given by the
first moment (Equation 4.23), and the pressure tensor, ps, is given by the
second moment,

ps(r, t) = ms

∫
(v − us)(v − us)fs(r,v, t))dv (4.29)

Note that the pressure tensor is a measure of thermal motion, and if the
particles all move with a steady velocity, then ps = 0 There is also a third
order moment, known as the heat flux density, qs,

qs(r, t) =
1

2
ms

∫
‖v − us‖2(v − us)fs(r,v, t))dv (4.30)

The evolution of these quantities are described by the fluid equations, which
themselves arise from moments of the Boltzmann equation (Equation 4.26),
each of which relates a conserved quantity of the system. The zeroth order
moment produces the continuity equation
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dns
dt
−∇ · (nsus) = 0 (4.31)

which describes the conservation of mass. The first order moment produces
the momentum transport equation, expressing conservation of momentum,

msns

[
∂us
∂t

+ (u · ∇)u

]
= qsns(E + us ×B)−∇ · ps + Φs (4.32)

where Φs is the total collisional friction force exerted on a given species in the
system.

As a brief example, consider a system in thermodynamic equilibrium with
temperature T . The distribution function is given by the standard Maxwellian
distribution,

f(v) = n

(
ms

2πkBT

)3/2

exp

(
−msv

2

2kBT

)
(4.33)

We note that solving for the pressure tensor (Equation 4.29) gives the
expected relation Ps = nskBT for an ideal gas.

4.2 Laser-plasma interactions

The origin of the plasmas we are considering in this work is the interaction
of an intense laser pulse with neutral matter. It is valuable then to consider
some of the basic parameters of the laser-interaction that ionizes and heats the
target, as well as the properties of the pulse as it propagates into the plasma.

4.2.1 Ionization mechanisms

In most instances, the target of an intense laser pulse is not pre-ionized, mean-
ing that the laser is responsible for forming the plasma as well as driving the
interaction mechanism of interest. To that end, it is worthwhile to summa-
rize the basic ionization mechanisms which are triggered by an intense laser
interacting with a neutral system.

Multi-photon ionization

Hydrogen-like atoms in the ground state have ionization potentials of the form
U(Z) ≈ 13.6 × Z2[eV]. As most lasers operate in the optical range, photon
energies tend to be less than a few eV. Thus, it generally requires more energy
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than can be delivered by a single photon to ionize them. Fortunately, if a large
number of photons are absorbed in a short period of time, then ionization may
still occur. This is known as “multi-photon ionization” [63].

Collisional ionization

Free electrons in a plasma may collide with other electrons. In a partially
ionized plasma, it is possible that a sufficiently energetic electron may collide
with a bound electron, imparting enough energy to ionize the atom while
remaining free itself [63]. This process is known as collisional ionization. The
rate of ionizing collisions,νc follows from

νc ' neve4πab
2

(
UH

2

UkkBTe

)
ln

(
kBTe
Uk

)
(4.34)

where ab is the Bohr radius, UH is the ionization potential of the Hydrogen
atom in the ground state, and Uk is the ionization potential of the constituent
plasma species being ionized.

Barrier suppression and tunnel ionization

There are additional routes to ionization which aren’t reliant upon direct en-
ergy transfer to electrons. In particular, an external laser field can perturb
the Coloumb potential of an atom, providing a field-dependent modification
to the Coloumb potential

V (x) = −Ze/|x| − Exx (4.35)

If the field is strong enough, an electron may escape with less kinetic energy
than the ionization potential. This is known as barrier suppression ionization,
and it occurs if the laser field exceeds the threshold set by,

IBS =
Uk

4cπε0
3

2q2e6
≈ 4× 109

q2

U4
k

[eV ]
[Wcm−2] (4.36)

For a hydrogen atom in its ground state, IBS ≈ 1014 Wcm−2. However,
even if the laser field is below this thresold, suppression of the Coloumb barrier
increases the probability of ionization through tunneling of the elctron. The
rate of tunnel ionization is given by the Ammosov-Delone-Krainov (ADK)
formula [64],
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νADK ≈ 6.6×1016 q2

nef
4.5 exp

(
− 2q3

3nef
3

[
Ea
E(t)

]1/2
)(

10.87
q3

nef 4

[
Ea
E(t)

]1/2
)(2nef−1.5)

(4.37)

Keldysh parameter

Keldysh and Perelomov [65] introduced a parameter γ that separates the multi-
photon and tunneling ionization regimes. The parameter is given by

γ = ωL

√
2Uk
IL

(4.38)

where IL is the laser intensity. For γ > 1, multiphoton ionization dominates,
while for γ < 1, tunneling (and barrier suppression) ionization prevail.

4.2.2 Free electron motion

Due to the significant mass difference, electron motion is preferentially ex-
cited during laser-plasma interactions. Consider a free electron in plane wave
propagating in x̂ with frequency ωL. The electric field is given by E =
E0ε exp(kx− iωLt) where ε is the polarization vector. The equation of motion
of the electron is given by Equation 4.17. The solution, to lowest order in v is
simply

v =
e

meωL
E (4.39)

We define the dimensionless quantity a0 to be the normalized peak oscil-
lation amplitude a0 = v0/c ≡ eE0/meωpc of the electron in the field. For
non-relativistic motion, a0 � 1 by definition. A consideration of relativistic
motion leads to the more complete form

a0 =
γv0

c
=

p0

mec
≈ 0.85

(
I18λ

2[
W cm−2

]) (4.40)

where I18 = IL/1018 is the peak laser intensity in units of 1018 Wcm−2 and λ
the laser wavelength λ = 2πc/ωL in microns. Note that a0 represents the peak
relativistic momentum of the electron as it oscillates in the laser field.

Now we consider electron motion to second order to gain further insight
into an exact solution. Again we begin with the Lorentz equation of motion,
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Figure 4.1: Different ionization mechanisms are illustrated The red line in-
dicates the laser field while magenta lines show the binding field of the atom.
(a) Multi-photon ionization. (b) Collisional ionization. (c) Tunnel Ionization.
(d) Barrier suppression ionization. Courtesy Olivier Tresca.
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Equation 4.17 alongside the total electron energy

d

dt
(meγc

2) = −ev ·E (4.41)

Assume an elliptically polarized plane wave travelling in the x-direction,
given by vector potential,

A = A0

[
ŷδcos(kx− ωt) + ẑ(1− δ2)sin(k − ωt)

]
(4.42)

where δ ≤ 1 specifies the polarization of the wave. We note that A · x̂ = 0,
and immediately obtain from Equation 4.17 and equation for the transverse
momentum p⊥

py,z =
e

c
Ay,z − p0y,0z (4.43)

From the energy equation along with the x-component of the Lorentz equa-
tion of motion, we obtain a relationship for the

meγc− px = −α (4.44)

where α is a constant of motion, subject to initial conditions. If we assume the
electron was initially at rest, and the corresponding vector potential was zero,
we have p0y,0z = 0 and α = −mec. We can then solve for the the longitudinal
momentum in terms of the vector potential.

px = mec(γ − 1)
py

2 + pz
2

2mec
=

1

2mec

(
eA

c

)2

(4.45)

We then obtain momentum equations for the particle in the laboratory
frame

px =
a0

2

4

[
1 + (2δ2 − 1) cos(2φ)

]
(4.46)

py = δa0 cos(φ) (4.47)

pz = (1− δ2)1/2a0 sin(φ) (4.48)

Thus, for linear polarization (δ = 0,1) the electron oscillates along the
x-axis with frequency wω, whereas for circular polarization (δ = ± 1√

2
) the

motion at 2ω is suppressed. Regardless, the electron exhibits average motion in
the x direction according to px ∝ a0

2/4, which corresponds to the momentum
transfer px = mec(γ − 1).
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Ponderomotive force

Of course realistic laser pulses are not well approximated by monochromatic
plane waves. An envelope function with a finite width and duration better
describes a pulsed beam. In this case, we can still draw conclusions about the
motion of a particle subject to this pulse averaged over many cycles.

Assume that such a pulsed beam is described by the product of a slowly
varying spatial envelope function Ẽ(r, t) with an oscillating temporal profile,
as described by

E(r, t) = Ẽ(r, t) exp(−iωLt) (4.49)

Consider an electron sitting on the central axis of a laser at the position of
peak intensity. As we’ve shown above, the electron oscillates in the polarization
plane at the laser frequency. During the first half of the laser period, the
electron is pushed away from the central axis. During the second half of the
oscillation, the electron is pushed back to the center. However, in this time
the laser intensity has diminished slightly due to the presence of the finite
envelope. As the restoring force decreases with the envelope amplitude, the
electron continues to drift from the central axis. The force responsible for
this net drift is known as the ponderomotive force (or the nonlinear force). It
results from the cycle averaged gradient in the field seen by the electron, and
can be defined in the non-relativistic case by

Fp = − e2

4meωL2
∇
〈
E2
〉
≡ −∇Φp (4.50)

where Φp is termed the ponderomotive potential. For relativistic intensities,
the ponderomotive potential is given by Φp = mec

2(γ − 1). We note that
this potential is equivalent to that gained from the average motion in the
plane wave solution given in Equation 4.45, relating the time-averaged plane
wave solution and to “slow” component of the electron motion averaged over
a wave envelope. Thus, the ponderomotive potential is in fact the cycle-
averaged oscillation energy of the electron. A natural consequence of the
ponderomotive force is that charged particles will be expelled from regions of
high field, although the mass-dependence will preferentially select electrons.

The ponderomotive force is also referred to as the nonlinear force, as it
results from the second order motion of an electron. Taking the solution from
Equation 4.39 and introducing second order terms leads to the force on an
electron of

f2 ≡ fp(1 + (δ2 − 1) cos(2ωLt)) (4.51)
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Figure 4.2: A free electron is depicted in a pulsed laser field. The electron
experiences kicks (red) due to the laser oscillations in time, which over many
cycles lead to a net drift (green), which is described by the ponderomotive
force.
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where δ is a polarization magnitude, in which δ = 0,±1 corresponds to linear
polarization and δ = ±1/

√
2 corresponds to circular polarization. The motion

of the electrons at twice the laser frequency is known as quiver motion and
plays an important role in plasma heating. Notice that when averaged over a
laser cycle, Equation 4.51 reduces to the ponderomotive force.

4.2.3 Propagation of waves in plasma

Consider a plane wave of the form EL = E(x) exp(−iωLt) propagating along
x̂ in an un-magnetized collisionless plasma. We will assume that ωL is large
enough to consider the ions in the plasma as stationary on the timescale of
the laser period. Following Equation 4.32 to first order in u, the equation of
motion for the fluid is

∂u

∂t
' − e

me

EL (4.52)

Recall from Equations 4.23 and 4.25 that the current density is j =
−nee∂u/∂t. We have,

∂j

∂t
= −nee

2

me

EL = σE (4.53)

where σ =
iωp

2

4πωL
is the plasma conductivity. We can now describe the prop-

agation of the laser field in the plasma. Application of Ampere’s Law and
Faraday’s Law (Equations 4.21 and 4.20) along with some cross product iden-
tities produce the wave equation,

∇2E +
ωL
c2
εE = 0 (4.54)

where

ε = 1− ωp
2

ωL2
(4.55)

Assuming plane wave solutions of the form Ex = exp(ikx), Equation 4.54
gives

k2c2 = ωL
2 − ωp2 (4.56)

It is clear that for ωL < ωp, the wavenumber k is not real, implying that
a physical wave cannot propagate. Thus, ωp sets a minimum frequency for
propagation of light in plasma. Conversely, we may define a maximum plasma
density above which light may not penetrate. This is known as the critical
density nc, and is given by
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nc =
meωp

2

4πe2
≈ 1.1× 1021

λµm
2 [cm−3] (4.57)

where λµm is the vacuum wavelength of the laser in µm. In the case of an
infrared pulse with λ = 1 µm, the critical density is nc = 1021 cm−3. The
critical density effective separates a plasma into two regions: an underdense
(ne < nc) region in which the laser propagates through the plasma, and an
overdense (ne > nc) region which the laser cannot penetrate. The boundary
between these two regions has ne = nc and is known as the critical surface.
The critical surface marks the point in the plasma where the laser is effectively
reflected, and is characterized by a very sharp spike in density due to the
pile-up of energetic electrons under the influence of the laser field. This is
a good assumption for most intense laser plasma interactions (LPIs) because
the ponderomotive potential of the laser typically exceeds the thermal pressure
neTe exerted by the overdense plasma [66].

At relativistic intensities (a0 & 1), the increase in electron mass produces a
complementary increase in ne, allowing the laser to propagate further. This is
known as ”self-induced” transparency, leading to the relativistically adjusted
formula for critical density

nc = γ(a0)nc0 ≈ (1 +
a0

2

2
)1/2nc0 (4.58)

where γ(a0) corresponds to the relativistic quiver motion of the electrons in a
linearly polarized laser field [67, 68]. For circular polarization, a2

0/2→ a2
0.

Skin depth

Beyond the critical surface, the laser field may still penetrate through a skin
effect, resulting in evanescent waves of magnitude

E = E0 exp(−x/ls) (4.59)

where ls is the collisionless skin depth [63] defined by

ls =
c

ωp

(
1− ω2

ωp2
cos2(θ)

)1/2

(4.60)

Here, θ is the angle of incidence of the pulse with respect to the surface normal.
For highly overdense plasmas, ls ≈ c/ωp.
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Relativistic self-focussing

From Equation 4.55 we may define the index of refraction of the plasma

nr =
√
ε =

√
1− ωp2

ωL2
=

√
1− ne

nc
(4.61)

where we’ve substituted Equation 4.7 in to achieve the final form. We note
that there is an inverse relationship between nr and ne. Consider an intense
laser pulse propagating in the plasma. The ponderomotive force of the laser
will expel electrons from high field regions, creating a reduced density channel
along the laser axis. This channel acts as a focussing lens for the laser. As the
laser naturally defocuses and exits the reduced density region, light refracts
back towards the laser axis. If the intensity of the laser is strong enough to
create a steep transverse density gradient, then total internal reflection may
occur, and the laser may be further focussed. This effect is known as relativistic
self-focussing. For a Gaussian beam penetrating a uniform density plasma, the
threshold for self-focussing is given by

Pc = 17.5

(
ωL
ωp

)2

[GW ] (4.62)

Assuming a beam with power P , focal spot size σ0, ideal Rayleigh length
zR = πw0

2/λ, the beam radius follows from

〈r2〉 = σ0
2

[
1 +

z2

z2
R

(
1− P

Pc

)]
(4.63)

For P > Pc, the beam collapses to zero radius in a distance

zc =
zR(

P
Pc
− 1
)1/2

(4.64)

The proper derivation of this value makes use of the nonlinear Schrodinger
equation, from which conservation of the Hamilton of the system as well as to-
tal beam power places a constraint on the beam size above a certain threshold,
corresponding to self-focussing [63]. Such a derivation requires assumptions
of a Gaussian beam of only weak relativistic amplitude (a0 ' 1) incident on
a smoothly varying (nearly uniform) density profile [57]. For few-cycle pulses
and extreme intensities, Equation 4.62 does not hold.
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4.2.4 Energy absorption mechanisms

The discussion above makes clear that the propagation of the laser into a
plasma is a messy process, and that in overdense plasmas the laser should
be reflected after minimal penetration. Nonetheless, significant heating is ob-
served during laser plasma interactions. The laser interaction often produces
two distinct Maxwellian populations, one with low temperature (∼10s of eV),
and another with very high temperature (∼ 10s of keV to MeV). The processes
through which the electrons are heated remains a subject of much research,
with many creative and effective explanations developed over the past 20 years.
We briefly introduce several of the most important mechanisms for this energy
transfer.

Collisional absorption

The most basic means of energy transfer to the plasma are collisional ab-
sorption, via long range Coloumb interactions — also referred to as inverse-
Bremsstrahlung [69]. However, as we we have seen in Section 4.1.1, collision
rates follow a ν ∼ T−3/2 relationship. This means that as the plasma absorbs
energy through collisions, the cross section for further collisions is reduced.
We conclude that at high laser intensities, collisional absorption is suppressed.
The true source of hot electrons must be collisionless in nature.

Resonant absorption

One means of achieving collisionless heating is through the excitation of res-
onant plasma oscillations at ωp = ωL. This requires a laser with a field com-
ponent parallel to to the target surface. In particular, a p-polarized electro-
magnetic wave incident at an angle to the surface may excite oscillations along
the critical surface of the plasma. A caveat to this mechanism is that when at
angle θL with respect to the surface normal, the laser is only able to penetrate
to a density of nccos2 (θL) due to the diminished field. As a result, excit-
ing resonance at the “true” critical plane requires excitement by evanescent
waves beyond the laser penetration distance; maximizing resonant absorption
requires choosing the laser angle of incidence to maximize the perpendicular
electric field component of these evanescent waves at the target critical surface.

Vacuum heating

There is another form of “not so resonant” heating, proposed by Brunel [70].
In the presence of very short-scale length density gradients (such as a solid-
vacuum interface), electrons oscillating in the plasma may be pushed from the
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plasma within a single laser wavelength, returning with energy roughly equal
to the oscillation energy. Alternatively, electrons may be pushed beyond the
critical surface threshold through the same means, sending hot electrons each
laser cycle into the overdense region of the plasma. Because the electron is
driven across the barrier within a single oscillation period, the excitation is
non-resonant. Similarly to resonant absorption, this effect requires excitation
of plasma oscillations normal to the target surface, and as such necessitates
p-polarized laser light incident at an angle θL with respect to the surface
normal. For modest laser intensities absorption fractions of η ≈ 80% can be
achieved and vacuum heating is a primary mechanism of energy deposition.
But for high laser intensities and extremely thin targets, absorption tends to
saturate at 15%, suggesting that yet other mechanisms may be responsible for
the observed hot electron populations [63].

j ×B heating

The above absorption mechanisms cannot explain the production of hot elec-
trons from non p-polarized waves at normal incidence. However, the pondero-
motive force can also produce heating at a similar scale to the Brunel effect
[71, 72]. Recall from Equation 4.48 that electron quiver motion occurs at twice
the laser frequency. These electrons may escape the laser field into neighboring
overdense regions of the plasma, producing a hot electron population outside
of the laser region. This is known as j×B (or ponderomotive) heating because
the 2ωL term in 4.48 arises from the contribution of the j×B term in electron
equation of motion. For relativistic laser intensities, j ×B heating is respon-
sible for the hot electron population observed in many experiments with foil
targets [72]. We can estimate this hot electron temperature by assuming the
electrons acquire energy roughly equal to the ponderomotive potential from
which they escaped [73]. Thus,

Thot = (γ − 1)mec
2 ≈

[√
1 + 0.731I18λ2

µm − 1
]
mec

2 (4.65)

Thot ≈ 0.47a
2/3
0 (4.66)

where the numerical approximation comes from substituting 4.40 in to the
ponderomotive potential. We note that this mechanism is polarization de-
pendent. For circular polarization, the oscillating term vanishes, and heat-
ing is suppressed. Circularly polarized light is thus preferred when attempt-
ing to minimize electron temperature in the plasma. Unlike vacuum heating
and resonant absorption, ponderomotive heating may occur in absence of p-
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polarization and with normal laser incidence. In these instances, as well as for
relativistic laser intensities, ponderomotive heating tends to be the dominant
mechanism [63].

While ponderomotive scaling provides an intuitive explanation for hot elec-
tron production, experimental measurements show deviations from the pre-
dicted spectrum, with hot electron temperatures instead following [73, 74]

Thot = 215
(
I18λ

2
µm

)1/3
[keV] (4.67)

While Equations 4.66 and 4.67 agree to within 30% within a broad range
of laser intensities (a0 < 30), the Ponderomotive scaling consistently over-
estimates the hot electron temperature seen in experiments. Using a one
dimensional ”black-box” model, Haines et al. [73] were able to explain the
lower scaling based on relativistic momentum transfer between the laser and
target in a steady state ”long pulse” regime. Their model produces scalings in
agreement with Equation 4.67. The reduction in hot electron temperature can
be explained heuristically by the motion of a plasma electron in the overdense
target; at low intensities, the electron will travel a distance much greater than
the collisionless skin depth of the target in a single laser cycle, thus prevent-
ing it from acquiring the full ponderomotive potential. As the laser intensity
becomes highly relativistic (a0 & 180), the skin depth gradually increases and
ponderomotive scaling takes over. Their model predicts the possibility of laser
absorbtion fractions of up to 80–90%, which has been observed in recent high
intensity laser studies [75]. Electron heating remains a subject of great interest
for studies of fast ignition and hot, dense plasma behavior [76].

It should be noted that hot electrons cannot be limitlessly produced within
a plasma, regardless of intensity or mechanism. There is in fact an upper limit
for current propagation in a uniform quasi-neutral plasma is known as the
Alfvèn limit, above which self generated magnetic fields within the plasma
counteract the flow of charge [77, 78]. The absorption mechanisms of the kind
described above predict the generation of a hot electron current which can
exceed that limit. Thus, there must exist a counter-propagating current which
reduces the net flow of charge through the plasma. In a plasma target, cool
electrons in the upstream plasma are responsible for generating this return
current, allowing hot electrons to penetrate and heat the target upstream.
However, the presence of two opposing electron currents can give rise to a
variety of instabilities (Buneman, Rayleigh-Taylor, and Weibel instabilities)
which can have significant implications on acceleration dynamics [63, 76].
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4.3 Ion acceleration mechanisms

The mechanisms responsible for accelerating beams of particles from a plasma
are remarkably diverse, coinciding with the array of laser conditions, plasma
properties, and target choices available in experiment. Moreover, the differ-
ent mechanisms often occur in combination, making a pure study of a single
process quite difficult. Nonetheless, simple models have been developed to
describe several of the most important acceleration modes utilized in modern
laboratories, and a brief overview of the particulars of each will be presented.
Of particular note, it will be shown how the target structure and basic laser
properties are essential to preferentially triggering a given mechanism. The
discussion will be limited to the acceleration of ions from overdense or nearly
overdense plasmas, although it should be noted that acceleration of electrons
in underdense plasmas via wakefield acceleration remains the most common
laser acceleration application [79].

4.4 Target normal sheath acceleration

The most popular intense lasers utilize Ti:Sapphire as the gain medium, owing
to its exceptional bandwidth and durability [80]. The Ti:Sapphire gain band-
width is centered at ∼ 800 nm wavelengths, corresponding to a critical density
of nc ≈ 1.4× 1021 cm−3. As a result, in order to create an overdense plasma,
solid materials such as metal foils must be used to achieve necessary densities.
The acceleration mechanism which often dominates the interaction between a
laser and foil is known as target normal sheath acceleration (TNSA).

Figure 4.3 diagrams the basic TNSA process. During the initial laser inter-
action, laser energy is absorbed through resonant heating mechanisms, creating
a hot electron population. Characteristically, these electrons are hot enough to
be considered collisionless over the target length. They travel to the rear sur-
face of the target, eventually escaping into vacuum. There, the hot electrons
form a charged cloud, resulting in a strong charge separation field between the
electron cloud and the ions on the target surface. The electrons temperature
follows a Maxwellian distribution, and as such the resulting sheath field is
correlated to electron temperature, according to

Esheath '
kBTe
eλD

(4.68)

For typical laser intensities, hot electron temperatures can reach the MeV-
range, resulting in sheath fields on the order of TV/m. The resulting energy
spectrum is modulated by the Maxwellian electric field distribution, and fol-
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Figure 4.3: An illustration of the TNSA process. Hot electrons escaping
into the vacuum behind the target generate a quasi-electrostatic field, which
accelerates ions from the rear of the target.

lows from

Ni(ε) = Ni0e

−ε
kBTe (4.69)

Recall that the peak electron temperatures follow from pondermotive heat-
ing, which scales with laser intensity (or irradiance) as Te ∝

√
a0 ∼

√
Iλ2. As

such, peak ion energies also scale as ε ∝ √a0 ∼
√
Iλ2 [81, 82]. Moreover, the

transverse distributon of electrons along the surface of the foil is Gaussian. A
consequence of this is that field strengths are significantly higher on the laser
axis, resulting in beams that are spatially correlated in energy and divergence.
Ions accelerated from the central axis peak field region have highest energies
and lowest divergence, while the opposite is true of ions accelerated at a large
distance from the laser axis.

Regardless of target choice, protons beams dominate the output of TNSA
in most circumstances, due to the presence of hydrocarbon contamination on
the surface of foils under standard vacuum conditions. Proton contaminants
are preferentially accelerated owing to their high charge to mass ratio. Such
contaminants can be removed using careful heating and laser ablation tech-
niques [83]. Nonetheless, this feature remains a primary challenge to creating
pure ion beams using the TNSA mechanism. Figure 4.4 shows an example
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output spectrum of protons accelerated via TNSA from an experiment at the
ATF [5].

Figure 4.4: A characteristic proton acceleration spectrum from the interac-
tion between a laser and aluminum foil. Experiments were performed at the
Accelerator Test Facility using a 10.3 µm CO2 laser with 1 TW peak power
and a 50 µm foil target. The thermal distribution of proton energies is char-
acteristic of TNSA [5].

4.5 Radiation pressure acceleration

While TNSA is conveniently achieved using current technologies, the draw-
backs of beam quality, purity, and energy scaling have piqued interest in alter-
native mechanisms. One strategy is to utilize the momentum carried by the
laser fields to efficiently transfer energy to the plasma. This is the premise
behind radiation pressure acceleration (RPA).

For thick targets at ne ≥ nc, the radiation pressure acts to push electrons
into the target, creating a critical surface within the plasma. Over time, the
laser pressure will continue to push the critical surface into the plasma, causing
acceleration of ions due to charge separation at the laser front. This mechanism
is known as “hole-boring” [84]. To better understand the dynamics, we will

80



consider a simple steady-state model and determine the motion of the critical
surface under the influence of an intense laser.

The radiation pressure of a normally incident laser, in the plane wave
approximation, is given by

Prad = (1 +R− T )
IL
c

(4.70)

where R and T are the reflectance and transmittance of the target, respectively.
We will first consider the target to be a perfectly reflecting plasma mirror

in the non-relativistic regime, wherein vhb � c. The plasma will be assumed to
be collisionless, which is a reasonable assumption. In this case, the plasma is
seen to be reflecting from the laser interaction point at velocity vhb, imparting
momentum 2nimiv

2
hb, while the the laser radiation pressure is given by the

ideal form Prad = 2I/c. We have

2I

c
= 2nimiv

2
hb (4.71)

We define the dimensionless piston parameter Π

Π =
IL

minic3
∝ a0

2 (4.72)

and determine the hole-boring velocity as

vhb =

√
I

minic
= c
√

Π = a0c

√
Zmenc
Amini

(4.73)

In the lab frame, the reflected ions have accelerated to v = 2vhb, gaining energy

εmax =
2I

nic
= 2mic

2Π (4.74)

Thus the peak velocity achievable through hole-boring scales with I/n.
This equation is correct for non-relativistic motion. As vhb approaches c, some
slight modifications must be made [85]. The RHS of 4.71 must include a
factor of γhb to adjust for relativistic momentum. Also, the laser intensity in
the reference frame of the plasma mirror, Im, is no longer equal to that of the
rest frame, I, due to the relativistic doppler shift

Im
I

=
1− (vhb/c)

1 + vhb/c)
(4.75)

The doppler shift of the laser frequency during hole-boring at high intensi-
ties has been a subject of considerable study, as it can provide a useful indirect
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measurement of the hole-boring velocity with strong temporal resolution [86].
These relativistic adjustments lead to a refinement of the hole-boring velocity
and resulting reflected ion energy

vhb = c
Π1/2

1 + Π1/2
(4.76)

εmax = 2mpc
2 Π

1 + Π1/2
(4.77)

This expression is valid for relativistic intensities, the so-called “laser-
piston” regime. In comparison with TNSA, it is evident that peak energies
scale linearly with laser intensity rather than with the square root of intensity
(a0 v. a0

2), which is an immediate benefit to accessing the RPA regime.
While the above model provides a good estimation of peak accelerated ion

energies, it is worth briefly discussing the dynamics of the charge separation
layer. Again we consider a plane wave incident normal to the target surface.
The radiation pressure acts to push electrons further into the target, resulting
in a depletion layer extending from x = 0 to x = d consisting of the heavier
ions, and a corresponding compression region of width ls. This creates a charge
separation field which pulls the ions in the depletion layer. Simultaneously,
the increase in electron density in the compression region generates a coun-
terbalancing electric field which permeates the overdense plasma a distance
of ∼ ls. This situation is depicted in Figure 4.5 (I). As time continues, the
radiation pressure of the laser continues to squeeze the compression layer. It
can be shown that to a linear approximation, the density and electric field
within the compression region are described by a self-similar solution, which
predicts that the ions will continue to pile up until a singularity in ion density
is reached at position x = d + ls. When the singularity is approached, the
compression region collapses (“wave-breaking”) and the corresponding ions in
the compression layer will be accelerated downstream to a maximum energy
of 2vhb. The specific spectral properties of the beam depend on the specific
dynamics of the collapse, and are often inferred through simulation for varying
laser and target parameters [87]. If the laser pulse is long enough, an equilib-
rium will be re-established, and the entire process will repeat itself, leading to
pulsed acceleration of target ions.

The assumption of perfect reflectivity means that the electron density pro-
file will be coherently steepened, producing a uniform critical surface to which
laser energy is perfectly coupled. This is clearly unrealistic, as non-uniformities
in the laser and target profile can drive a variety of plasma instabilities, par-
ticularly in any underdense ramp preceding the critical surface. The laser
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Figure 4.5: Illustration of the hole-boring process. (I) The laser field pushes
electrons into the plasma, which build up at the critical surface. (II) As more
electrons are pushed into the plasma, ions are correspondingly dragged in to
balance the latent electric field. (III) Electrons and ions are eventually com-
pressed into a thin layer of extremely high density at the laser critical surface
with a correspondingly steep gradient in electric field, capable of accelerating
ions to high energies.

polarization is thus of critical importance to driving a long term hole-boring
process. For linear laser polarizations, electron heating triggers target expan-
sion, strong laser absorption into hot electrons, and uneven propagation of the
laser into the target. For all but ultra-relativistic laser intensities, the result-
ing ion acceleration will be dominated by the TNSA mechanism [88, 89]. It is
thus common to use circular polarization to achieve RPA acceleration, as this
suppresses j×B heating. Experiments performed at the ATF in 2009 demon-
strated RPA driven acceleration using a circularly polarized CO2 laser and
near-critical density gas jet target [6]. Figure 4.6 shows the resulting proton
spectra for several shots.

For realistic intensities and foil target structures, sub-micron scale thick-
nesses are optimal for efficient acceleration of ions by radiation pressure. For
ultra relativistic intensities (a0 � 1) the onset of transparency limits the
target thickness to dmin ' λa0(nc/ne) [90]. Thus, for modest density foils,
optimum target thickness at an intensity of a0 = 10 is somewhere around
d ≈ λ/4 = 250µm for a 1µm laser.

In the limit of these thin targets and extremely high laser intensities, the
laser pressure can push forward the entire target structure coherently, in what
is known as the light sail regime. Target electrons act as a relativistic mirror,
reflecting the laser pulse energy with minimal parasitic absorption of laser
energy, while dragging along ions via a strong charge separation field. This is
possible only at highly relativistic laser intensities, in which the target can be
accelerated to near the speed of light within a single laser period. As the laser
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Figure 4.6: Results from experiments performed at the Accelerator Test
Facility using a 10.3 µm CO2 laser and near critical density hydrogen gas jet
demonstrate signatures of radiation pressure acceleration using the hole-boring
mechanism [6]. Raw and processed proton spectra are shown for varying peak
density n and laser intensity I. Peak proton energies scale linearly with I/n,
as predicted by hole-boring models.
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interacts with the target, the group velocity of the light is slowed, providing a
“phase stable acceleration over” a period longer than the laser pulse duration.
This regime represents the single most efficient means of laser energy transfer,
capable of accelerating particles to many GeV over a short distance. It is
particularly efficient for accelerating heavy ions, as multi-species targets can
be accelerated to the same energies [89]. However, this regime remains out of
reach for modern laser and target technologies.

4.6 Collisionless shock acceleration

Electromagnetic shocks have been of great interest to astronomers for some
time. The observation of disturbances surrounding the Earth’s magnetosphere
led to the description of the planetary bow shock [91], while the measurement
of high energy cosmic rays was hypothesized to be the result of reflection
from shocks generated by supernovae [92]. Though most atmospheric shocks
dissipate energy through collisions across the highly viscous shock front, inter-
stellar shocks have been observed to form across small length scales compared
to the highly collisionless plasmas they traverse [93]. As a corollary, these cold,
highly collisionless plasmas tend to be highly magnetized, and are termed high
β plasmas, as their magnetic energy density is much larger than their ther-
mal energy density. This is a notable distinction from the hot laser generated
plasmas, which for most target structures we consider, tend to be dominated
by thermal pressure and electric field effects.

As a result, the shocks of interest for laser particle acceleration are colli-
sionless electrostatic shocks (CES). These shocks are characterized by a discon-
tinuity (shock front) across which there is a positive jump in the electrostatic
potential Φ in the plasma. The shock travels at the shock speed vsh, effectively
forming a moving potential barrier. Ions ahead of the shock may be reflected
from the shock, gaining a velocity of 2vsh in the direction of the shock.

We will review some basic theory regarding the generation of a collisionless
shock to provide proper context for the remaining discussion. We’ll restrict
our discussion to purely electrostatic shocks in 1D, though there are many
similarities in the treatment of each [94]. In our collisionless, unmagnetized
plasma, we’ll assume the initial electron population is isothermal at temper-
ature Te, and that its density can be described by a Boltzmann equilibrium
ne = n0 exp (eΦ/Te), and furthermore that the electric field satisfies Poisson’s
equation (4.18) d2

xΦ = 4πe(ne − Zni). The evolution of the plasma can be
described by the continuity (Equation 4.31) and fluid (4.32) equations.

We look for solutions which characterize a shock moving at velocity vsh,
and as such move to the reference frame of the shock. In this frame, ions move
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towards the shock at velocity vsh, but the shock wave itself is stationary. As
such, our fluid equations reduce to

niui = −
(n0

Z

)
vsh (4.78)

miu
2
i

2
+ ZeΦ =

miv
2
sh

2
(4.79)

where Φ is the potential across the shock, assuming Φ = 0 in the unshocked
region. We can eliminate ui to obtain

ni =
n0

Z

vsh(
v2
sh − 2ZeΦ

m

)1/2
(4.80)

We see that the solution is only real-valued if 0.5miv
2
sh > ZeΦ. That is, ions

pass through the shock assuming their kinetic energy exceeds the electrostatic
potential of the shock. This gives us a reflection condition for the shock,

ZeΦ > 1/2mivi
2 (4.81)

Introducing the dimensionless variables ξ = x/λd, φ = exp
Φ

Te
, M = vsh/c,

substitution of Equation 4.80 into Poisson’s equation yields a differential equa-
tion which may be integrated to give

(dξφ)2

2
+ U1(φ) = 0 (4.82)

U1(φ) = −
[
eφ +M

(
M2 − 2φ

)1/2
]

+ 1 +M2 (4.83)

with boundary condition U1(0) = 0. The above equation effectively describes
the motion of a particle in a potential U1(φ), for which the motion can be
described classically. This analogy was used by Sagdeev in solving for an ar-
ray of acoustic wave solutions, and the construction and analysis of a funciton
U1(φ) is known as the pseudopotential method [95]. This method predicts
distinct classes of wave solutions; each arises from a particular class of pseu-
dopotential. If we first assume real-valued solutions to Equation 4.80, then we
find a solution in which the pseudoparticle has zero energy, and is constrained
to a potential in which it performs a single orbit with infinite period. The
corresponding solution φ(x) is known as a soliton, a dispersionless wave prop-
agation through the medium. The ideal soliton is symmetric, and the fluid
state of the plasma is returned to its pre-soliton state after passage [57].

The complex nature of the Sagdeev potential makes the determination of
a complete parameter range of shock solutions extremely difficult. Instead,
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one-dimensional solutions are sought for various plasma states by assuming
specific electron and ion distribution functions [96]. For an isothermal plasma,
supersonic soliton solutions may arise for 1 < M < Mc, where Mc is the critical
Mach number corresponding to the onset of particle reflection. For the system
described above, Equation 4.83 gives a critical Mach number corresponding to
eM

2/2−M2−1 = 0, which yields Mc = 1.585. The shock wave solution to this
problem is naturally dissipative, corresponding to an asymmetrical potential
in which downstream particles are reflected from the shock front. A shock may
only arise for M > Mc, and the corresponding transition layer is on the order
of c/ωp � λmfp in the collisionless plasma. Figure 4.7 illustrates the potential
characteristics of these two solutions.

Figure 4.7: Diagram showcasing two characteristic features of electrostatic
shocks - periodic potential wells behind the shock, leading to trapping, and
ion reflection off the leading edge of the shock [7].

Generation of a CES in the plasma can occur through a variety of means.
The potential for an intense short pulse laser to drive a shock has been consid-
ered for some time, but it is only with recent technology that the opportunity
to generate such shocks in a laboratory has become possible [71, 97, 98]. Recall
that the radiation pressure of the laser can act as a piston to drive forward a
high density critical surface into the plasma with velocity uhb. If uhb >> cs, a
shock may be generated which travels at this recessional velocity. Note though
the requirement that M > Mc, and as such for hot plasmas with large cs, a
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high hole-boring velocity is needed to exceed the critical Mach number and
launch a shock [99].

Alternatively, the laser may be used to generate a hot electron population
at the focal position. Heating of a local electron population can create large
gradients in temperature and density. Instead of the laser radiation pressure,
the electron thermal pressure expanding into the surrounding plasma acts to
generate a fast moving shock. For an expansion shock with Mach number M ,
the shock speed will strongly depend on the temperature, Te, of the plasma,
via the sound speed cs, leading to a similar dependence of the reflected ion
energy on temperature via KEi = 0.5miv

2
sh ∼ 2ZM2Te.

For large ratios in density, the shock may achieve mach numbers M '√
2Te/T0, where Te is the electron temperature of the hot, expanding plasma,

and T0 is the temperature in the downstream plasma [7]. For reasonable laser
parameters, this means that a CES may be generated with speeds even greater
than the hole-boring velocity. Figure 4.8 illustrates the potential dynamics for
a shock that outpaces the critical surface. Regardless of the shock impetus,
the theoretically achievable shock velocity scales favorably with laser intensity
a0, via vhb ∝ a0 or Th ∝ a0 for high intensities.

One of the signatures of shock acceleration is the persistence of reflection
beyond the timescale of the laser interaction. This is an important distinction
between the shock interaction and a hole-boring process, as the CES will be
able to traverse a significantly larger portion of a target structure. Shock prop-
agation is primarily affected through energy dissipation, for which reflection
is a primary culprit. This has the particular consequence that for high reflec-
tion, the shock may accelerate a large flux of particles, but lose energy quickly,
leading to a broad spread in energy. Conversely, in a hot uniform plasma, the
shock may reflect only the least energetic downstream ions while travelling
with a nearly constant velocity. Assuming a large enough thermal pressure
driving the shock, this can produce a quasi-monoenergetic spectrum, but with
relatively low total charge [100]. The characteristics of the plasma downstream
of the shock is thus crucial to the long term shock dynamics. Figure 4.9 com-
pares shock behavior for weakly reflective shocks in a hot isothermal plasma
to that of highly reflective shocks in cold dense plasmas.

While the generation of a hot electron population is integral to achiev-
ing high plasma temperatures, it may subsequently lead to the formation of
sheath fields at the rear of the target. In thin targets, and targets with short
scale-length density ramps,the sheath fields strongly modulate the reflected
ion population, leading to a broad TNSA spectrum [7, 101].
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Figure 4.8: Illustration of the possible variation between critical surface and
shock evolution for a laser driven shock. The laser is present from t = 0
to t = tl, during which it bores a hole in the target, corresponding to the
red dashed line. As the laser intensity wanes, vhb is reduced, and as the laser
terminates the critical surface eventually comes to rest. At t = ts, a CES forms,
propagating ahead of the shock into the downstream plasma. Depending upon
the reservoir of pressure behind the shock, as well as the degree of reflection,
the shock may continue with minimal dissipation (black line), or in the case of
high dissipation, beam loading may reduce the shock velocity with time (blue
line).
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Figure 4.9: Phase space (x-px) diagrams from PIC simulations performed by
the author illustrate two different outcomes of collisionless shock generation.
In (a), the shock is generated by expansion into a uniformly hot plasma, and
reflects a small fraction of ions, generating a quasi-monoenergetic spectrum
(inset). In (b), a laser driven shock traverses a cold dense plasma, inducing very
high reflection. This dissipation reduces the speed of the shock, broadening
the output spectrum of the ions (inset).
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Chapter 5

Experimental Configuration at
BNL Accelerator Test Facility
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Brookhaven National Laboratory’s Accelerator Test Facility (ATF) pro-
vides a testing ground for a variety of advanced accelerator schemes. The fa-
cility features an electron beam linear accelerator in conjunction with Nd:YAG
and CO2 lasers for use in tandem or alone. The ion generation experiment
makes use of the CO2 laser as a drive beam, and the YAG for pulse slicing and
diagnostics. The discussion of the experimental setup begins with the ATF
CO2 laser.

5.1 ATF Terrawatt CO2 Laser

The ATF features a world class Terrawatt (TW) CO2 laser system uniquely
capable of producing a single 5 ps intense pulse at mid-IR wavelengths, be-
tween 9 and 11 µm. This system is the focal point of laser ion acceleration
research at BNL, as well as a host of other experiments which make use of the
advantages conferred by longer wavelength pulses, such as nonlinear Thomson
scattering [102], inverse Compton scattering [103], inverse free electron lasers
[104], and staged electron laser acceleration [105]. Producing ultrashort pulses
is particularly challenging at 10µm, and the unique approach necessary to
achieve it merits a brief introduction.

Isotopic amplification

The production of a short laser pulse is predicated on the gain medium pos-
sessing a smooth spectral bandwidth. The FWHM bandwidth δν required to
amplify a pulse of FWHM τ is given by

τp = β/δν (5.1)

where for a Gaussian pulse β = 2 ln 2/π ≈ 0.441 [80]. The most popular gain
mediums in high intensity lasers (e.g. Ti:Sapphire) feature large bandwidths
and a high intensity damage threshold.

Although the CO2 molecule has a long history of use in generating high
power CW lasers for industrial applications [106, 107], the use of a gas medium
gives rise to a number of unique design challenges. For short pulse lasers, a
primary challenge is the spectral modulation of the CO2 gain profile due to
rotational excitations. At 10 µm, this rotational structure splits the gain profile
into 1.3 to 1.8 cm−1 segments. This modulation prohibits the amplification of
a single short pulse, producing instead a train of pulses.

A common means of improving the bandwidth of a gas laser is through col-
lisional broadening. By increasing the pressure in the gas, the effective lifetime
of the pumped state is reduced, as collisions stimulate radiative transitions on
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timescales shorter than the natural lifetime. This results in a broadening of
the spectral profile. For a CO2 laser containing a mixture of CO2, N2, and He
gases, the broadening is given by [108]

δνp = 0.1149PCO2 + 0.0794PN2 + 0.0598PHe (5.2)

Unfortunately, at typically achievable pressures (≤ 10 bar), pressure broad-
ening remains smaller than the rotational line spacing. To combat this feature,
the ATF laser system uses an isotopic mixture of CO2 molecules. Substitution
of an 16O atom with an 18O breaks the symmetry of the molecule, doubling
the density of rotational lines and thus increasing the gain bandwidth. At
equilibrium, the ATF regenerative amplifier contains a mixture of the iso-
topologues 16O:12C:16O, 16O:12C:18O, and 18O:12C:18O in a [1:2:1] ratio. In
conjunction with pressure broadening, the gain profile broadens enough to
support the amplification of a single pulse of 5 ps FWHM. Figure 5.1 illus-
trates the achievable pulse configurations under varying amplifier pressure and
isotopic combinations.

Figure 5.1: A comparison of achievable bandwidth and corresponding sim-
ulated pulse profiles for different CO2 amplification schemes. Only using a
combination of isotopic and pressure broadening can a single ps-scale pulse be
achieved at experimental laser intensities [8] c©2011 Elsevier.
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Pulse slicing

Figures 5.2 and 5.3 present a diagram of the ATF CO2 laser system and the
nominal pulse length and energy after each major component, respectively
[109]. A hybrid transversely excited atmospheric (TEA) seed laser produces
an initial 200 ns 20 mJ pulse at 10.3 µm. A Pockels cell is used to reduce
the duration of this pulse to 10 ns before injection into a 3-bar UV pre-ionized
preamplifier, which outputs 5 mJ of energy in a 10 ns pulse. In order to achieve
amplification of a 5 ps pulse, this long input pulse must first be shortened; this
is done through a two step pulse slicing technique.

Figure 5.2: Schematic of the ATF TW-class CO2 laser system. [9]

Figure 5.3: Chart of pulse properties during amplification in ATF CO2 laser
chain. [9]

The pulse is first shortened through the use of an optically triggered ger-
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manium semiconductor switch. A 1µm Nd:YAG pulse with 14-ps duration
incident on the plate modulates the reflection and transmission properties of
the germanium. The 1µm light has photon energy greater than the bandgap
of the semiconductor, and thus excites electrons into the conducting band.
The result is a large increase in the free electron density, creating a effective
electron-hole plasma on the surface of the plate. The surface plasma density
depends on the fluence of the trigger beam; for high fluences, the density may
exceed the critical density for 10 µm light, causing reflection of the subsequent
CO2 pulse, which would otherwise propagate through the semiconductor [110].
For n ∼ nc, reflectivity is around ∼ 36%, but at increased carrier densities,
reflectivity of greater than 95% can be achieved [111]. The Germanium switch
is placed at Brewster’s angle so as to minimize background reflectivity from
the p-polarized CO2 pulse.

The plasma mirror effect persists beyond the control pulse over the period
of the electron carrier diffusion time, which is of the order of 200 ps [109]. The
result is that the use of a single switch produces a pulse with a very sharp
rise time but very long tail. A second stage is required to further reduce pulse
length. This may be accomplished using a second Ge switch with variable
trigger pulse timings [112, 113]. However, this imposes steep requirements on
the duration, timing, and photon fluence of the secondary pulse to achieve
consistent pulse shapes and minimize losses.

An alternative approach is to gate the pulse using the optical Kerr effect
[114]. Many materials exhibit an intensity dependent index of refraction, given
by

n = n0 + n2I (5.3)

where I is the cycle-averaged pulse intensity given by [115]

I =
n0c

2π
|E(ω)|2 (5.4)

The interaction of a short, intense short pulse with a medium featuring a high
n2 value induces a temporary birefringence. A synchronized, co-propagating
witness pulse of wavelength λ will experience a phase shift roughly equal to
the B integral, given by

∆φ =
2π

λ

∫
L

n2Idz (5.5)

By adjusting the length of the Kerr cell and/or the intensity of the probe
pulse, the phase change of the witness beam can be controlled. Finally, a
polarizer can be used to pick out only the portion of the pulse which overlapped
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with the passage of the pump beam. This results in a sliced pulse of duration
equal to that of the pump beam, limited to the response time of the nonlinear
medium. The ATF uses a Kerr cell filled with liquid CS2, which has an n2 value
of 3× 10−14 cm2/W and a relaxation time of 2 ps [116]. A 5 ps Nd:YAG pulse
which is π/4 out of phase with the witness CO2 beam pumps the Kerr cell,
while the ∼ 200 ps p-polarized CO2 output of the germanium switch described
above acts as the witness beam [109]. The final output is a 5 ps pulse with
approximately 100 nJ of energy. Figure 5.4 illustrates the slicing process.

CS23Kerr3Cell

53ps3SHG3YAG143ps3YAG

Polarizing
splitter

Ge3switch

1.3103ns3CO2

2.32003ps3CO23 3.353ps3CO2

Figure 5.4: The ATF uses a two stage pulse slicing technique to generate a
5 ps FWHM CO2 pulse. First, a germanium switch is activated by a 14 ps
YAG, causing reflection of a ∼ 200 ps p-polarized CO2 pulse. Next, the pulse
passes through a CS2 filled Kerr cell pumped by a synchronized 5 ps frequency
doubled YAG pulse. A polarization filter picks out the 5 ps, polarization
rotated CO2 pulse.

Final amplification

The 5 ps pulse is coupled into the 10-bar isotopic regenerative amplifier, with
a volume of 80 cm3, containing a mixture of CO2, N2, and He gases in a
0.5 : 0.5 : 9 ratio. The amplifier is UV-preionized and transverse electric
discharge pumped. The pulse makes 8-12 passes en route to amplification by
a factor of 105 up to 10 mJ of energy. Extraction of the pulse is triggered
via an additional Nd:YAG pulse and germanium plate at Brewster’s angle.
Amplification to the TW scale is achieved in a large aperture multi-pass 8 bar
CO2 amplifier. The 8 m3 volume is filled with non-isotopic CO2, along with N2

and He in a 2 : 1 : 28 ratio, and is x-ray pre-ionized and transversely discharge
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Table 5.1: Summary of nominal output parameters for the ATF CO2 laser
system as used during the 2013 ion generation experimental campaign.

Laser Parameter Units Value

Laser Wavelength, λ [µm] 10.3
Pulse Energy [J] 5
Pulse Length, FWHM, τ [ps] 5
Peak Power [W] 9.3× 1011

Nominal Peak Intensity [W/cm2] 1.42× 1016

Peak Normalized Intensity, a0 1.075
Beam radius (1/e2), w0 [µm] 65
Beam FWHM [µm] 76.5
Measured Rayleigh Length, zR [mm] 0.400
Effective Beam Quality Parameter, M2 1.6

pumped. Field broadening of the CO2 gain structure minimizes pulse splitting,
despite the lack of isotopically enriched gas.

The output pulse contains up to ∼ 11 J of energy in 5 ps FWHM for a peak
power of 2.2 TW. Pulse duration and sequence has been diagnosed through
the use of a streak camera to a resolution of 1 − 2 ps [9]. The pulse travels
to the experimental chamber, where it is focused by an f/3 off-axis parabola
down to a spot size of w0 = 65µm (FWHM = 76.5µm). This corresponds to a
maximum achievable intensity of 2×1016 W/cm2, or equivalently a normalized
intensity of a0 = 1.6. The beam quality parameter, M2 relates the divergence
θ of the real beam to the ideal divergence θ0 of a perfect Gaussian, according
to [117]

θ = M2θ0. (5.6)

The real beam will diverge more quickly than an ideal beam, thus leading to
values of M2 > 1. Measurement of the Rayleigh length and focal spot of the
CO2 beam produce a value of M2 = 1.6. Table 5.1 displays the nominal laser
output parameters as described above.

5.1.1 Controlled pre-pulse generation

The use of a Ge plate as an active output coupler for the regenerative am-
plifier has the consequence of enabling the production of pre-pulses prior to
the output of the main pulse. While low intensity pulses pass through the
semiconductor, high intensity pulses may trigger surface plasma formation
and subsequently result in partial reflection of the pulse. This self-induced
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reflectance couples a small amount of light out of the regenerative amplifier
during each pass above a minimum intensity, resulting in a train of low inten-
sity 5 ps pulses spaced at the round trip time of the amplifier cavity (25 ns).
As the reflection is intensity dependent, each subsequent pulse is exponentially
larger in amplitude, so long as the amplifier remains in a linear amplification
regime. However, if the amplifier nears saturation, adjacent pulses may have
similar amplitudes, resulting in much lower contrast between the full pulse
energy and the passively reflected pulse. At peak amplitudes from the regen-
erative amplifier, self-induced reflectance may transmit pulses with upwards
of 10% of the laser energy. By varying the high voltage discharge within the
amplifier, the level of saturation can be adjusted and the resultant pre-pulse
energy can be controlled independently of the main pulse energy. This allows
for the creation of a 2 pulse sequence with variable pre-pulse energy between
a value much less than 1% and 10% of the main pulse energy. Figure 5.5
illustrates this process.

5.2 Experimental chamber and laser plasma

interaction diagnostics

The target chamber contains the final focusing of the CO2 beam, in addition
to the gas jet, target mount, and Thomson parabola spectrometer for ion di-
agnostics. The chamber is pumped to a vacuum of better than 10−4 Torr to
minimize laser filamentation and nonlinear focussing effects. A basic illustra-
tion of the chamber is shown in Figure 5.6.

Gas jet target

High pressure gas jets offer a flexible option for an array of laser plasma ex-
periments. They are popular in an array of underdense, electron acceleration
experiments, in which channelled jets can provide densities on the order of 1017

cm−3 over a cm-scale channel [118, 119]. Alternatively, with extremely high
backing pressures they can achieve near critical densities of 1021 cm−3 even for
1 µm light [120]. Jets can be operated at Hz repetition rates, limited mostly
by the vacuum requirements of the chamber. They also provide a high purity
target for a variety of elements, free from the adsorption and contamination
seen in foil targets.

The ATF uses a cylindrical gas jet with a 1 mm nozzle [121]. The jet
produces a plume of gas that is cylindrically symmetric about the nozzle axis,
and produces a longitudinal density profile with triangular shape at a range of
backing pressures. Although the backing pressure was varied, all of the data
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Figure 5.5: (a) Generation of an energetic pre-pulse 25 ns prior to the main
pulse is achieved through self-induced reflectance from the germanium switch
used to extract the main-pulse. (b) The resulting “train” of 5-ps pulses is
illustrated.
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Figure 5.6: Overhead illustration of the ATF ion generation experimental
chamber.
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Figure 5.7: (a) A 2D profile of the cylindrically symmetric helium neutral
density from a 1 mm nozzle with 12 bar backing pressure. (b) A lineout along
the laser axis reveals a near linear ramp of approximately 800 µm in length to
a peak neutral density of 0.8× 1018 cm−3, equivalent to a fully ionized plasma
density of about 1.6nc.

presented in this thesis was taken with 12 bar backing pressure. Figure 5.7
shows a typical 2D slice longitudinal helium neutral density profile along the
laser axis, approximately 1 mm above the jet. The profile is triangular, ramp-
ing up over approximately 800 µm to a peak neutral density of 0.8×1018 cm−3,
corresponding to a fully ionized plasma density of ∼ 1.6nc. The gas profile
has been characterized at three different heights above the jet, with varying
backing pressure, as shown in Figure 5.8.

The gas jet sits on a 3-axis mechanical stage to allow for variation of laser
focal position within the gas target. A Newport ESP301 motion controller is
used to adjust and maintain the jet position to within 10 µm.

Optical probing and plasma characterization

Imaging of the gas or plasma density requires optical probing with a synchro-
nized laser pulse. A short pulse Nd:YAG laser system is used for this purpose
at the ATF. As the YAG pulse is used for slicing the CO2, the relative timing
of the two pulses is known, and can be used as a basis for achieving synchro-
nization. For diagnostic ease, the original 14 ps 1068 nm pulse is frequency
doubled to 532 nm in a KDP crystal via second harmonic generation. The
resulting 10 ps pulse is split into channels of ŝ and p̂ polarizations. One chan-
nel enters an adjustable delay stage allowing up to 2 ns delays with < 1 ps
minimum increments. The probe beams are then sent into the chamber, where
they intersect the target perpendicular to the laser axis. A basic diagram is
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Figure 5.8: A comparative plot from scans of the helium neutral density for
varying backing pressure demonstrates a fairly linear increase in density with
backing pressure for the same distance from the nozzle. Errors are estimated
from resolution of the camera along with shot to shot variation in gas pressure.
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shown in Figure 5.9.
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Figure 5.9: Schematic of the 532 nm Nd:YAG optical probing line at the
BNL ATF.

Recall from Chapter 4 that the critical density of a plasma scales as 1/λ2.
Because the gas jet is operated near the critical density of 10µm light, it
remains transparent to light in the visible spectrum. Light passing through the
plasma experiences a phase advance due to the index of refraction nr = c/vph.
Careful measurement of this phase advance allows for a reconstruction of the
plasma profile and serves as the basis for in situ imaging of the plasma before
and after the laser plasma interaction [122].

Consider a ray of light with wavelength λ travelling in the x-direction. If
that light passes through a material with index of refraction nr(z), along the
path s, it accumulates a phase shift ∆φ of

∆φ =
2π

λ

∫
s

nr(x)dx (5.7)

The index of refraction of the plasma is given by Equation 4.61. This can
be expressed in terms of the plasma density ne and probe beam critical density,
np via Equation 4.7. For ne << np, we have
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nr =

(
1− ne

np

)1/2

≈ 1− 1

2

ne
np

(5.8)

The 532 nm YAG probe has

nc ∼ 2× 1021 cm−3 � nc(10µm) (5.9)

so the expression holds. We then can write the phase shift as a function of
density, via

∆φ =
2π

λ

∫
s

1− 1

2

ne
np

dx (5.10)

Unfortunately, this equation provides no information regarding the specific
shape of the density profile, as the total phase shift only gives information
about the cumulative amount of material that the light has passed through.
However, if we make assumptions about the shape of the density, then it can
be calculated numerically. In particular, we assume that the density profile in
question is cylindrical about the drive laser axis (ẑ), such that ne = ne(r, z).
Then we can express the above equation through the polar transformation to
the radial coordinate r, which gives [123]

∆φ =
2π

λ

∫
y

1− 1

2

ne(r, z)

np

r√
r2 − y2

dr (5.11)

using the polar coordinate system shown in Figure 5.10.
Equation 5.11 provides a direct relationship between the path-dependent

phase accrual of the laser and the density of the material generating the phase
advance. Thus, by measuring the phase advance of a laser passing through
the plasma, relative to a reference ray, the radial density profile of the plasma
can be calculated.

To achieve this, a Mach-Zender interferometer was constructed in which a
reference beam passes through one leg, and the probe beam down the other.
A diagram of the interferometer is shown in Figure 5.9. The two beams are
crossed at an angle to introduce a baseline fringe pattern in the image. The
phase shift of the probe beam corresponds to additional fringe shifts from the
neutral pattern. The phase change just due to the plasma follows from the
difference in phase shift of each path, resulting in

∆φ =
2π

λ

∫
y

1

2

ne(r, z)

np

r√
r2 − y2

dr (5.12)
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Figure 5.10: Polar coordinate system for radially symmetric density being
probed transversely by shorter wavelength probe pulse.
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since the index of refraction of air is nr = 1. Equation 5.12 is in the form of
an Abel transform of a cylindrically symmetric function,

F (y) = 2

∫ ∞
y

f(r)r√
r2 − y2

dr (5.13)

Performing the inverse of the Abel transform gives

f(r) = − 1

π

∫ ∞
r

dF (y)

dy

dx√
r2 − y2

(5.14)

Thus, to recover the radial density function ne(r, z), an Abel inversion can be
performed to give

ne(r, z) =
λnp
π2

∫ ∞
r

dφ(y, z)

dy

dx√
r2 − y2

(5.15)

Given an appropriate two-dimensional phase map, the value of dφ(y,z)
dy

can
be computed, and the resulting radial density map can be calculated. For
neutral density gases, the density is related to the index of refraction via
the Clausius-Mossotti relation [124], nr(gas) ∼ 1 + Kn/n0, where n0 is the
gas density at standard temperature and pressure (STP). Substitution of this
relation into the model described above allows for similar calculation of the
neutral gas density for a cylindrically symmetric gas jet via Abel inversion.

The interferogram analysis is limited by the critical assumption inherent
to the Abel transform, that the density be cylindrically symmetric about a
particular axis. As a result, extracted density profiles effectively average over
asymmetric variations in phase along the probe beam axis. Moreover, sys-
tematic density gradients across the central axis may be ignored if symmetry
is assumed and a single hemisphere is chosen to produce the radial phase
function φ(y, z). This problem can be alleviated by splitting the phase map
into separate hemispheres about the probe axis, and performing two individ-
ual transforms. The resulting density profiles must necessarily be continuous
along the laser axis, and thus interpolations can be performed at small r val-
ues to achieve a smooth result. This technique has been used in particular to
combat the monotonic decrease in neutral gas density with increasing distance
from the nozzle, producing a naturally asymmetric plasma density above and
below the laser axis.

Another shortcoming of the Abel inversion is its mathematical impotency
for small radii. Equation 5.15 diverges for small r, producing a non-numerical
result for density along the laser axis. While described technique of interpola-
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Figure 5.11: An illustration of the interferometry analysis process. The gas
plume enters from below and the CO2 laser enters from the left. Beginning
with (a), the original interferogram (plus an additional reference image), a
2D frequency map of the image (b) is made via discrete Fourier transform.
A subset of the frequency components is chosen, and a phase extraction is
run to unwrap the phase (c) of the interferogram. Lastly, an inverse Abel
transformation is performed on the phase map, resulting in the final extracted
density profile (d).

107



tion at small r values does provide a continuous density map, it may obscure
sharp on-axis density features, which are of particular importance to plasma
acceleration mechanisms. As a check on the verisimilitude of the extracted
density profiles, a series of simulated interferograms were constructed to prop-
erly match the observed phase shift.

To simulate an interferogram, a 3D plasma density is designed to best
approximate the extracted profile. This can be done through mathematical
approximation of 3D paraboloid shapes to fit the blast wave structure of the
laser produced plasma. Alternatively, the profile extracted from data can
be interpolated, and modified as desired to obtain the best fit phase profile.
This approach has been taken for analysis of relevant density profiles, and the
generated profiles are shown alongside results in the next chapter.

Shadowgraphy

In addition to interferometry, a fraction of the probe beam energy is reserved
for shadowgraphy. The light which has passed through the dense plasma is
directly imaged, and corresponding patterns of low and high intensity are
formed as a result of the angular deviation of the light from its normal path
due to the index of refraction of the plasma. The resulting intensity profile
is a function of the second derivative of the index of refraction of the plasma,
and as a result the shadowgraph provides a simple visual confirmation of very
sharp changes in the density profile of the plasma [125]. Figure 5.12 shows an
example shadowgraph image along with the corresponding interferogram.

a) b)

Figure 5.12: (a) An example shadowgraph is shown, taken 300 ps after
the interaction of the CO2 beam with a helium gas jet, alongside (b) the
corresponding interferogram.
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5.3 Ion beam diagnostics

Ion beams accelerated from gas jet targets may have very small divergences,
and as such uncovering the spectral information of the ion beam requires the
use of additional filters. One such method is to use a stacked array of ion
sensitive detectors. As the incoming ions will lose the most energy per unit
length within the Bragg Peak at the end of their range, each detector in the
array preferentially detects ions within a range of energy corresponding to its
depth [126].

An alternative approach is to disperse the accelerated ions according to
their momentum and charge-to-mass ratio. This is the principle of the Thom-
son parabola spectrometer, first used in 1913 to identify isotopes of neon. The
spectrometer uses a combination of electric and magnetic fields to bend par-
ticles along specified axes. The resulting deflection can easily be calculated
using the equation of motion of a particle in an electromagnetic field. Assume
an ion beam propagates along the z direction. An electric field, E = Ex̂, is
generated over a distance LE, while a magnetic field, B = Bx̂, is generated
over a distance LB. If a detection screen is placed a distance dE from the end-
point of the electric field segment, and dB from the endpoint of the magnetic
field segment, the resulting drifts are given by,

∆E =
qELE
mv2

(1/2LE + dE) x̂

∆B =
qBLB
mv

(1/2LB + dB) ŷ (5.16)

The trace along the detector forms the shape of a parabola, given by

∆y =
EmCE
q(BCB)2

∆x2 (5.17)

CE = LE(LE/2 + dE) (5.18)

CB = LB(LB/2 + dB (5.19)

The shape of the parabola depends on the charge-to-mass ratio q/m of the
ion species, as well as the specific parameters of the spectrometer components.
Permanent dipole magnets with fixed size and channel width were used in the
experiment. Measurements were taken with a Hall probe to map the three field
components. Particle paths can then be simulated for varying drift distances
and alignments. Figure 5.13 shows paths calculated for protons of varying
kinetic energy.
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Figure 5.13: A plot of the effective magnetic field (dashed red line) from one
of the dipole magnets used for the experiment, extrapolated from Hall probe
measurements. Proton paths are shown for varying energies, assuming the
particles enter along the central axis of the magnet.
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Light output from the scintillator is imaged with a 16-bit Princeton ProEM+
CCD camera. The camera features a 1024x1024 CCD with 13 um pixel size,
and optional electron-multiplication up to 1000x. Figure 5.14 shows an ex-
ample trace of helium ions accelerated in experiment. The red line trace
corresponds to singly ionized helium, while the green trace corresponds to
the predicted path for doubly ionized helium, and the black line to the pro-
jected path for protons. A strong neutral signal is also observed (top left), the
product of transmitted laser photons, photon emission from the plasma, and
neutral particles resulting from recombination at the rear of the target. X-ray
emission contributes to signal noise, resulting in large bright spots across the
scintillator. For large signals, the corresponding signal spills into neighboring
pixels as the CCD register transfers charge horizontally. This produces the
horizontal smearing seen in Figure 5.14. X-ray production and CCD noise was
observed consistently during the helium run, and is the primary contributor
to background signal.
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Figure 5.14: Example Helium ion spectra as viewed through the Thomson
parabola, with projected particle traces plotted.

The scintillator diagnostic combined with a Thomson parabola spectrom-
eter provides a nearly real-time single shot measurement of ion number and
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energy spectrum. However, the choice of which scintillating material to use,
and the precise calibration of scintillator yield and subsequent ion number
calculations required considerable study. Ultimately, the plastic scintillator
BC-408 was employed for use in ion acceleration experiments. The testing
and analysis required to make that decision are the subject of the next chap-
ter.
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Chapter 6

Diagnostic Tools for Imaging
Laser Accelerated Ions
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Laser driven acceleration using a gas jet source offers the possibility of high
repetition rate ion bunch acceleration. Nonetheless, the current understanding
and execution of this technique is imprecise and unreliable. Improvements in
technology, specifically with regards to target manipulation, pulse length, and
laser intensity may provide orders of magnitude advances in power and effi-
ciency, while continued experimental testing should result in a better control
over individual interactions. The evolving nature of this field necessitates flex-
ible diagnostic techniques suited to measure a myriad of experimental outputs.

To this end, we have adopted the strategy of imaging accelerated ion
bunches using scintillating materials rather than using resins, films, or im-
age plates to track impinging ions. Beam size and particle number can both
be obtained through the image alone. With the use of filters or an electro-
magnetic spectrometer, measurements of emittance, mean energy, and energy
spread can also be made. High resolution imaging can be performed at a high
repetition rate, upwards of 100 Hz depending upon the camera and image
properties. In order for imaging to be effective, substantial calibrations must
be performed with the scintillating material chosen. Most publications using
these methods of imaging make use of particle species, energy, or fluences that
are insufficient for our needs [10, 127–129]. Figure 6.1 shows the results of com-
parison tests done by Forck et al. [10], illustrating the significant differences
in scintillation yield for the same incident beam. With this in mind, a series of
tests were performed on a variety of candidate materials to obtain meaningful
calibrations and draw conclusions for use in acceleration experiments.

The goal of these tests was to find a material that produces an adequate and
consistent amount of light under expected laser ion bunch conditions (104−106

protons with energies 1−20 MeV). The material should have sufficient resolu-
tion to determine beam properties such as bunch size and correspondingly the
emittance. Lastly, the material should be relatively inexpensive and/or robust
for extended use when exposed to high radiation flux at a repetition rate near
1 Hz.

This chapter provides a discussion of the classes of single shot imaging
diagnostics. The candidate scintillators for experiment at the ATF are then
introduced. The results of a series of yield calibration tests are presented,
along with a detailed analysis of secondary effects such as afterglow, scattering
effects, and radiation damage. The discussion follows many of the key details
as presented in Cook et al. [130].
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Figure 6.1: Results of a study by Forck et al. [10] demonstrate the orders of
magnitude variation in scintillation response for the same beam conditions.

6.1 Film and polymer detectors

Allyl diglycol carbonate, known as CR-39, is a thermoset plastic polymer that
is used for the detection of ionizing radiation. When CR-39 is damaged, it
becomes more susceptible to chemical dissolving or “etching” in the presence
of bases. The polymer is exposed to a solution of NaOH and water. The
NaOH slowly erodes the bulk surface at the “bulk etching rate” vb, but more
quickly dissolves the damaged plastics at the “track etching rate” vt. If the
ratio of the two rates (vt/vb) is high enough, then the polymer may be etched
in such a way that the resulting CR-39 displays conical pits corresponding to
the impact of ionizing radiation [131]. The track response has been found to
be a function of restricted energy loss (REL). REL is the fraction of energy
loss that produces electrons with E < Emax. Emax is target specific; for CR-39
Emax ∼ 200 KeV. As particle velocity decreases, REL increases to unity as the
limit for energy transfer in any given collision becomes less than Emax [132].
Thus, as particles slow down they become more effective at forming etch-able
tracks in CR-39. As a result, high Z ions are more easily etched, as are low
energy beams.

Once the CR-39 has been etched, the pits can be viewed using a microscope
and analyzed using software. Position sensitive comparisons between different
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layers are made in order to find coincidences that represent true particle in-
teractions, and to sort of out background radiation. In this way, the number
of incoming particles may be determined. By stacking thin layers of CR-39,
energy resolution comparable to the energy loss per unit length for a given
thickness can also be obtained. Thus, for a given particle bunch, the total
number of particles and the respective energy spread may be determined to
better than 1% accuracy [131]. Figure 6.2 shows an array of CR-39 images
after proton beam incidence and etching.

Figure 6.2: Two different examples of CR-39 images are shown. Top, an ion
track (left) with pits visible under magnification (right). Pit diameters reach 5
µm after 20 minutes of etching with 6 molar NaOH at 80◦C. Bottom, a track
made by ions propagating through a magnetic spectrometer prior to incidence
with the CR-39.

The primary disadvantage of such a technique is the time needed for etching
and visualization. Microscopes with calibrated counting software must be used
to identify, measure, and count the pits for each layer of CR-39. For higher
energy particles, many layers comprise a single stack as is needed to slow or
stop incoming radiation. Etching rates, and thus processing time, depends on
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NaOH concentration as well as temperature, but times of a few hours or more
are common [131]. In addition to CR-39, radiochromic film remains a popular
one-time-use diagnostic which allows for individual particle identification as
well as energy analysis, but requires considerable time to develop the film and
compile measurements [133].

Fujifilm image plates, composed of layers of photo-stimulable phosphors,
are also popular radiation detection diagnostics. Incident radiation excites
and traps electrons in the band gap of the phosphor layer. Trapped elec-
trons can be “imaged” by further stimulating them to the conduction band
of the layer; the corresponding decay emits light which can be readout by
calibrated scanners. This process can be repeated assuming trapped charges
do not escape, a major advantage for image plates. However, there is a small
probability for spontaneous recombination, yielding a characteristic decline
in signal over time. Thus image plates produce time-sensitive photographs.
Moreover, highly specific scanner systems are required to read an image plate
and reproduce a useful image. Depending on the specific plate and scanner
system parameters (resolution, scale, dimensions), read-out can take anywhere
from a few minutes to more than an hour per square foot of image plate [133].

6.2 Micro-channel plate detectors

A micro-channel plate detector (MCP) acts as an analog signal enhancement
device and is sensitive to a wide range of radiation. An MCP consists of
millimeter thick glass plate with an array of channels running through the
glass perpendicular to the face of the plate. The channels are small in diameter
compared to the length of the plate (about 2–25 µm), and they are coated with
a high resistance material, the standard for which is nickel-chrome alloy [134].
The mechanism of signal enhancement is secondary electron emission, akin to
that in photomultipliers. When radiation strikes the face of the plate, some
of it enters the micro-channels and interacts with the thin metallic coating.
If the radiation has enough energy, the metal will emit secondary electrons
normal to the channel surface.

A voltage is applied across the length of the plate, ensuring that these
electrons strike the channel wall opposite of their release point with enough
energy to trigger an avalanche effect in the channel. The buildup of secondary
electrons is limited by the geometry of the plates as well as the applied voltage.
When enough electrons have been freed, they produce a space-charge driven
field strong enough to combat the applied voltage. New secondaries do not
gain enough energy to further produce and saturation is reached [134].

MCPs may be constructed in a variety of shapes and configurations, but
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for a standard single plate detector, signal gains of 104 electrons per input
particle or photon can be achieved at a standard operating voltage of 1000 V
to 1400 V, depending upon the geometry of the plate. Gain is a function
of operating voltage, the plate length-channel diameter ratio α, channel bias
angle φ, as well as the open-air ratio of the MCP, as determined by the channel-
to-channel spacing and channel diameter. Assuming a standard secondary
electron yield of δ per incident electron, the gain through an entire channel is
G = δn , where n is the number of times a secondary electron collide with the
walls with enough energy to free δ additional secondaries. The expression for
secondary yield from a thinly layered material with a constant stopping power
is given by

δ ∼ P

E

λ

cos θ

dE

dx
(6.1)

where P is the probability of electron escape from the surface, E is the energy
needed to produce such an electron, λ is the characteristic length of electron
diffusion in the metal, and θ is the angle of incidence of the electron with
respect to the normal of the channel surface [135]. Thus we see that the
channel coating largely determines the secondary yield, though the angle of
incidence of the beam has some effect. The quantity n is usually written
as n = gα, where g is a parameter reflecting the kinematics of produced
secondaries (energy and direction with respect to the channel wall) as well as
the applied voltage V across the MCP [135].

Figure 6.3: A cutaway of the basic single stage MCP with the channel struc-
ture diagram.

MCPs must be operated with very specific conditions or else damage to
the channel coatings may occur. During operation, vacuums of 10−6 Torr are
commonly required, and voltages must be carefully increased to the operating
level in 100 V increments or else voltage breakdown, channel deterioration, or
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arcing are possible. Storage of an MCP requires an oil-free vacuum of 10−4

Torr or better [136]. Improper storage may similarly damage individual chan-
nels or reduce performance and lifetime. The lifetime of an MCP is primarily
a function of the charge extracted through use. Most MCPs will maintain
more than 50% of nominal gain for up to 50C of extracted charge. This limit
varies considerably depending upon the channel size, spacing, and length. De-
tection of beams with high instantaneous current may also pose a problem for
a high gain MCP. If enough incoming particles interact with a given channel,
saturation is reached, resulting in a nonlinear response with particle flux.

6.3 Scintillator candidates

We investigated a variety of scintillating materials with the right combination
of properties as an alternative to films. Three scintillators were chosen for
testing with proton beams as they have a combination of properties which
make them preferred for detecting low energy protons. All scintillators operate
from the same basic principle: incoming light is absorbed by the material,
prompting a transition to some excited molecular or atomic energy level. The
state quickly relaxes back to ground state through a combination of photon
emission (fluorescence, phosphorescence) and non-radiative processes. It is this
fast photon emission that is the defining property of scintillation. However,
differences in materials can result in significant variations in the absorption
and emission process. In this respect, scintillators are generally placed into
one of two broad categories: organic and inorganic scintillators.

6.3.1 Organic scintillators

Organic scintillators, composed of molecules that contain carbon, sometimes
specified to require a C-H bond as well, exhibit strong scintillation properties.
Organic scintillators are valued for their simplicity, strong yield, and fast tran-
sition times. The reason for this is their simple construction and the direct
absorption-emission responsible for the scintillation. Due to their molecular
structure, they feature tightly spaced electronic and vibrational energy levels
that allow for a range of absorption wavelengths to different vibrational lev-
els associated with the first electronic excited state. Once excited to one of
these vibrational states, the molecule quickly relaxes to its lowest vibrational
state. This process of excitation and vibrational relaxation can take place in a
fraction of a nanosecond. The remaining excited electronic state will eventu-
ally decay back to the ground electronic state, usually in a few nanoseconds,
resulting in photon emission. Figure 6.6 sketches the common processes [12].
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The simplicity and speed of the organic scintillator relies on the Stokes
shift, which describes the effective redshift in the fluorescence spectrum of a
molecule compared with its absorption spectrum. The vibrational relaxations
at sub-fluorescence timescales are partially responsible for this shift, as they
reduce excitation energy non-radiatively. As a result, most photons emitted
tend to be of longer wavelength than those absorbed. The Frank Condon
principle further contributes to this wavelength shift. The principle states
that during electronic transitions, a vibrational state change is more likely to
occur if the wave functions overlap. In effect, changes between vibrational
modes that have similar nuclear coordinates are favoured during fluorescence.
For example, during a transition S1 → S0, vibrational states (denoted by v)
may change from v = 0 to v′ = 2, further reducing emission wavelength [137].
In addition to the Stokes shift, several other processes may inhibit or distort
the scintillation; the most important will be discussed later.
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Figure 6.4: Visualization of the stokes shift, wherein the wavelength of flu-
orescence is much longer than that of absorption. Some fluorescent pigments
exhibit extremely high shifts, up to 180 nm difference in spectral peaks [11].

6.3.2 Polyvinyl toluene

Polyvinyl toluene (PVT) consists of long chains covalently bonded vinyl toluene
molecules. It is commonly used as the primary solvent for a family of plas-
tic scintillators. While PVT itself scintillates, in most cases a mixture of solute
molecules, usually fluorophores, such as p-terphenyl(TP) and 2,5-diphenyloxazole
(PPO) are added to the PVT base to form a solution with more desired yield
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characteristics. The choice of solute molecule and concentration can reduce
emission wavelengths, improve response time, and increase yield [138]. Some
variants also features a longer mean emission wavelength, which is favorable
for CCD cameras [139].

PVT scintillators are commonly used as large volume detectors for time-of-
flight (TOF) particle identification owing to their sensitivity to a wide range of
radiation [129, 140]. They are flexible in composition and may be constructed
in large arrays for bulk detection. This flexibility comes at the expense of
robustness. PVT is a low Z organic compound comprised of covalently bonded
vinyl toluene chains, and as such it is easily damaged by high LET radiation.

BC-408 and BC422-Q, PVT-based scintillators from St. Gobain, were cho-
sen for the calibration tests. Both scintillators emit light through several
channels, due to the presence of multiple solvents. BC-408 has a maximum
emission at 424 nm with a stated decay time is 2.1 ns, while BC-422Q emission
peaks at about 375 nm with a stated decay time of 1.6 ns [139, 141]. Both
scintillators were 5 cm × 5 cm squares, coated with 50 µm of aluminum on
one side. The BC-408 square was 0.5 mm thick and new, while the BC-422Q
sheet was 1 mm thick and had been used previously in ion experiments. The
effect of the difference in age on scintillator output is discussed in the analysis.

6.3.3 Inorganic scintillators

There are many models describing the interaction of radiation with an in-
organic crystalline material and the subsequent light emissions, but most
rely upon the same idea: ionizing radiation striking a crystal produces elec-
trons. These electrons may travel a short distance before losing their energy to
bremsstrahlung and producing additional electron-hole (e-h) pairs. These e-h
pairs are coupled by virtue of their production within the valence and conduct-
ing band of the crystal, respectively. The pairs may travel much longer than
free thermal electrons, and ultimately may reach an activator site. Once at the
activator site, the e-h pair may recombine, driving a sub-band gap transition
in the activator and subsequently the emission of light (e.g Tl+ 3P0,1 →1S0).

The light is emitted at the wavelength associated with the transition to
ground state and on a timescale associated with the relaxation of the energetic
state [142]. Figure 6.5 illustrates this basic model. Emission is reduced by
several non-radiative capture and quenching processes. In transit, the e-h pairs
may become uncoupled and recaptured, or may become trapped in crystal
defects. Once at the activator site, it is also possible that the dopant ion,
rather than emitting a photon, quenches instead, emitting phonons into the
lattice.
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Figure 6.5: An illustration of the relative excitation energies of “activators”
compared to the band gap of the crystal.

6.3.4 Additional properties

Several factors may impair the efficiency of a scintillator, reducing the light
yield relative to the incident flux. Incoming particles may damage bonds or
ionize atoms, creating defects in the material that absorb photons released
by the scintillator, trapping or releasing them non-radiatively. Radiation also
commonly creates depletion regions that trap electrons and may dissociate e-h
pairs before they reach an activator site. Adjusting the dopant concentration
may improve a material’s resistance to these defects by reducing the relative
abundance of these color centers [143]. Damage thresholds tend to be lower
for organic scintillators, since their structure relies on weak interactions and
covalent bonds to create the necessary vibrational energy transition structure.
Fortunately, evidence suggests that emission characteristics such as wavelength
and temporal response are not affected by damage [140].

Even undamaged scintillators have features that diminish the scintillation
yield. Depending upon the construction of the scintillator, emitted light may
be reflected by boundaries between different segments of material, or it may
become trapped in lattice defects created during the material’s construction.
Similarly, these defects may capture or dissipate e-h pairs. In the event that
e-h pairs make it to a ground-state activator site, it is still not guaranteed
that scintillation occurs. Although it is most likely that absorption results in
scintillation at the characteristic transition, it is possible for the excited elec-
tron to undergo a spin-orbit coupling, resulting in a spin flip that transfers the
excitation to a triplet state of similar energy. This is known as intersystem
crossing. Once in the triplet state, the system may still decay back to the sin-
glet and release radiation. However, the time scale of this relaxation is many
orders of magnitude greater than that of the usual scintillation transition,
resulting in extremely delayed light response. This is responsible for the phe-
nomena of phosphorescence. It is also possible that the triplet state electron
relaxes non-radiatively, producing vibrational energy in the form of phonons
through a process known as quenching. Intersystem crossing is more common
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in high-Z molecules and in molecules with close vibrational level spacing. In
all, the presence of these mechanisms further reduces scintillation yield and in
the case of lattice defects and phosphorescence, producing a long-lived yield
component or afterglow.

Figure 6.6: A Jablonski energy diagram denotes sample electronic and vi-
brational transitions that may occur after photon absorption and the relative
intensity with which they occur. [12]

The appearance of afterglow among the scintillators we tested warrants
additional discussion. Like phosphorescence, afterglow is the persistence of
emission beyond the standard scintillation relaxation time. Unlike phospho-
rescence, the same fluorescent transition responsible for scintillation produces
the light, as a result afterglow maintains a similar emission spectrum rather
than being redshifted. A common mechanism responsible for afterglow is the
trapping of electrons or holes in defects in a scintillator. The electron or hole
is released when they acquire enough thermal energy to escape. This process
delays the e-h pairs from reaching activators, and lengthens the time it takes
for all e-h pairs to be dissipated within the lattice. Because afterglow emis-
sion is driven by thermal excitation of the pairs, the timescale and magnitude
of the afterglow is highly dependent on the temperature of the material. At
low temperature, trapped carriers are less likely to escape and contribute to
the afterglow. Similarly, continued exposure to saturating beam fluxes further

123



increases the likelihood of trapped pairs. Crystal defects can be caused by
impurities in the lattice or radiation damage [144].

6.3.5 Al2O3 :Cr2O3 — chromox

Consisting of 99.4% Alumina (Al2O3) doped with 0.5% Chromium Oxide
(Cr2O3), chromox was developed by materials scientists at CERN looking for
a robust and efficient scintillator to use as beam targets. The end result is
a sturdy compound that can withstand high radiation doses (1020p+/cm2 at
flux levels of 1015 p+/cm2 per 0.5 µs pulse) yet still produce light yields com-
parable with standard scintillators even for energetic protons and heavy ions.
Unlike CsI:Tl, Chromox is not hygroscopic, meaning that residual water vapor
in storage or in the detection environment should not result in any defects or
loss of performance. The ceramic has also been reported to operate stably
between room temperature and 450C [145]. Although its ceramic construction
improves toughness,the grain structure introduces many lattice impurities and
boundaries that further increase afterglow and reduce spatial resolution.

Figure 6.7: At left, an image of a 1 inch diameter chromox disc. To the right,
the emission spectrum of scintillation light is shown, with a peak at 693 nm.

Chromox operates through a similar scintillation process to CsI:Tl, with
the activator sites occupied by Cr3+ ions in about 0.5% abundance. Ionizing
radiation ultimately produces e-h pairs which diffuse to the activator sites. If
they make it, they excite the chromium ions that eventually decay from their
lowest excited state 2E to the 4A2 state and emit photons at the R lines. At
room temperature, these occur at 692.2 nm and 694.3 nm with a decay time
of 3.4 ms. Scintillation efficiency again depends on stopping power, but with
its higher threshold for damage chromox remains a suitable choice for proton
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detection. We obtained a 2.5 cm diameter, 0.82 mm thick chromox disc from
Morgan Advanced Ceramics. We evaporated an approximately 225 nm thick
aluminum coating on the disc; such coatings are commonly used to diminish
noise from laser light and plasma emission.

6.4 Experimental methods

6.4.1 Stony Brook tandem van de graaff

Tandem Van de Graaff generators have been used as accelerating structures
for more than half a century. They can provide stable, low energy accelerators
for an array of ion species. A Van de Graaff operates by transporting charge
on an insulating belt or chain along a loop through a conductive terminal.
The charges are removed from the belt via a metal brush (in case of a belt) or
pulley (in case of a chain) and collect at the surface of the conductive terminal,
creating a very high voltage between the terminal and ground. Negative ions
enter the Tandem at the positive terminal, and are accelerated towards ground.

Stony Brook uses a ”King Tandem” built by the High Voltage Engineering
Corporation [14, 146]. The Tandem, as evidenced by its name, utilizes two
consecutive Van de Graaff accelerators. To accomplish this, the second Van de
Graaff is positioned following the first, but charges the terminal negatively. A
foil stripper is placed along the beamline in between the two accelerators. Neg-
atively charged ions are accelerated away from the positive terminal through
the foil strippers, which remove electrons from the ions, creating fully stripped
positive ions. These ions are then further accelerated from ground (at the
stripper) to the negatively charged terminal at the end of the second Van de
Graaff. The Stony Brook Tandem operates using a Laddertron chain that
improves peak voltage and stability [147]. Figure 6.8 shows the charging and
acceleration schematic for an FN-type tandem Van de Graaff.

Completed in 1968, the Tandem offers considerable beam flexibility and
stability. By using varying source materials, ions of many different species
may be created, although protons comprise the majority of standard use. Ions
may be accelerated to total energies of 2 MeV to 15 MeV with 0.01% accu-
racy. Beam currents are flexible from 200 pA to 8.0 nA. The tandem feeds
into a target area composed of several beam lines with quadrupole focusing
upstream of target chambers. Using the quadrupoles, focused beams of area
1.5 mm2 can be created on target. Lastly, the tandem can be modified to cre-
ate pulsed beams of varying length and current density, as will be described
in the following paragraph. Table 6.1 summarizes the basic tandem operating
parameters.
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Figure 6.8: Charging schematic for an FN type tandem Van de Graaff [13].
The tandem at Stony Brook is an FN-type ”King” machine, and uses a Lad-
dertron rather than a pelletron chain, but the basic operational principles
remain the same [14].

Beam Parameters Minimum Maximum Relative Uncertainty

Proton Beam Energy (MeV) 2.00 15.00 < 0.01%
Beam Current (nA) 0.2 8.0 < 10%
Pulse Length (ms) 25 CW < 5%

1σ beam size (mm2) 1.5 100 < 10%

Table 6.1: Summary of Stony Brook Tandem Van de Graaff beam parameters
delivered to target.
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The tandem is by design a device for producing continuous beams of ions.
However, we can benefit from using ion bunches with appropriate total charge
and length. To accomplish this, a gating device is placed at the origin of
the beam so as to effectively prevent passage of particles except at desired
intervals. An electromagnet is placed before the aperture of the ion source.
Increasing the voltage further deflects ions to the outside of the aperture,
effectively blocking their entry to the tandem.A pulsed beam is created from by
periodically blocking the continuous source beam. Using this method, pulses
as short as 300 µs with a triangle wave intensity profile over time can be
produced. Pulses shorter than 1 µs can be created using a fast switching
circuit.

6.4.2 CCD camera

We used a Basler scA1400-17gm monochrome CCD camera, featuring a 58%
quantum efficiency at 545 nm, a 14 pixel detection threshold, and a resolution
of 1392 × 1040 pixels at 6.45µm x 6.45µm pixel size. The camera supports
a 12-bit image depth. Maximum capture rate is 17 fps for full size images
but can be increased by reducing image size through area of interest (A.O.I.)
specification.

The camera is mounted with a 75 mm manual C-Mount TV lens from
Computar. The lens has a maximum aperture of f/1.4 and paired with the
CCD has a minimum focal distance of approximately 55 cm, corresponding
to a magnification of M = 0.16 and an effective f-number of f] = 1.62. All
images were taken with maximum aperture as follows from NA = 1/2f]. This
equates to a solid angle at maximum aperture of [148]

Ω = 2π(1− cos (arcsinNA)) = 0.31 sr (6.2)

A monochromator was used to test the lens transparency over the wave-
length range of 190 nm to 800 nm, which should cover the effective range of
any potential scintillator. Baseline tests were performed to verify the accuracy
of the machine, and two scans taken with the lens position adjusted to maxi-
mize the light entering the collecting sphere in the monochromator. Figure 6.9
shows the results of the scan.

6.4.3 The European Machine Vision Association model

Captured images are analyzed following the European Machine Vision As-
sociation (EMVA) Model 1288. The model provides a rigorous structure for
identifying camera and lens properties and using them to establish proper rela-
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Figure 6.9: Below, lens transparency scan results at varying distance from
collection sphere. Above, baseline tests for each scan. Tests were performed
using a monochromator courtesy of Sean Stoll and BNL Physics Department.
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tionships between digital image properties and source properties. To summa-
rize, we are interested in calculating the yield of the scintillator, Y , in photons
per proton. This yield represents the number of photons which are emitted
from the surface of the scintillator, and thus takes the form of Equation 6.3,

Y =
µγ
fγNp

(6.3)

where fγ is the fraction of photons emitted which reach the CCD, and Np is
the number of protons incident on the scintillator, and µγ is the number of
photons collected by the CCD, according to

µγ =
npixels(µy − µy.dark)

ηK
(6.4)

where npixels are the number of pixels in the A.O.I., µy is the average pixel grey
value, µy.dark is the average background grey value, η is the quantum efficiency
of the CCD at the wavelength of light captured, and K is the camera digital
conversion gain. Lastly, we define f as

fγ =
Ω

4π
twtl cos θ (6.5)

where Ω is solid angle seen by the lens, θ is the angle between the emitting
surface and the CCD, tw and tl are the window and lens transparencies, re-
spectively. Figure 6.10 provides an overview of the process [15].

Figure 6.10: CCD image capture and processing protocol, specified by the
European Machine Vision Association [15].
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6.5 Results and analysis

The goal of these tests is to quantify the most important properties of the
material while making note of qualities that may promote or inhibit the use
of a particular scintillator. In particular, the yield, spatial resolution, and
temporal response of each scintillator are the focal points of the investigation.

6.5.1 Yield analysis

While the models for light emission do have individual differences, the primary
factors determining scintillation yield include incident beam energy, beam en-
ergy loss properties within the material (this takes into account both particle
and material properties), and light transmission properties within the material.
In performing our analysis, we take into consideration each factor and make
the necessary adjustments to provide a compatible metric for each material.

Tests were performed in transmission, with the scintillator’s rear face im-
aged. For each scintillator, proton energy was adjusted through a range of
relevant energies, limited by the Tandem’s abilities and by the thickness of
the scintillator. Current was adjusted as needed to produce sufficient signal
strength prior to capturing images, and was not intentionally varied during
capture. Images were taken at each energy and current setting in groups of
300 images. Camera settings such as exposure time and gain were adjusted
to provide excellent signal-noise; as such the gain was kept to a minimum.
Additionally, a 200× 200 pixel A.O.I. was defined according to the position of
the beam prior to capturing images. This both streamlines and normalizes the
capture and analysis process, as images are compared across the same number
of pixels. Moreover, a smaller A.O.I. allows for a higher camera frame rate.
Each image is tagged with its time of capture as well to properly catalogue
the images. Control of these various parameters is maintained using a C++
program that uses the Basler Pylon application programming interface (API)
for communicating with the camera.

Once the images are taken, analysis is done using Mathematica code, that
reads in the image and processes grey values for each, performing the necessary
sampling and calculations as outlined by the EMVA model to arrive at an
average yield figure for any given set of images.

Measured yields

Figure 6.11 compares the yield for all three candidate scintillators, along with
fits. Tests for the PVT-based discs were limited to 8 MeV due to proton
penetration depth being larger than the detector thickness. Uncertainties are
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dominated by current regulation instability on the order of ± 10%. Yields
increase monotonically with energy as expected, although the nonlinear re-
sponse at high energies requires further consideration. At 12 MeV, sparking
within the tandem resulted in additional current instabilities, relegating the
12 MeV data point for Chromox as an outlier.
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Figure 6.11: Comparison of raw yields Y (E) for each scintillator in trans-
mission, chromox (blue), BC-422Q (red), and BC-408(black). Fits are made
of the form Y (E) = aEb, and exponents are shown.

Chromox exhibits a high flux threshold for damage, and as such does not
exhibit a characteristic decline in performance at increasing energies or dose
rates. However, plastic scintillators exhibit a much lower threshold for damage,
and this damage has been shown to result in a significant reduction in yield
due to the onset of nonradiative quenching as well as irreversible damage to
the molecular composition of the scintillator [129]. Quenching is found to be
correlated to molecular damage to the scintillator as well as the presence of
absorptive impurities.

In the absence of strong quenching or damage, scintillation light yield scales
linearly with proton flux and particle energy [129]. To further investigate, we
placed the PVT under a continuous 8 MeV beam at 1 nA and examined the
yield over time; we recorded a 30% decline in mean intensity during 2 minutes
of exposure, as seen in Figure 6.12. Afterwards, the beam was blocked for
5 minutes, at which point the average yield was found to be consistent with
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the two minute value. As no significant afterglow was present, we conclude
that there is a long term reduction in yield corresponding to damage to the
scintillator. This type of long term response is indicative of the permanent
damage associated with quenching at high radiation dose [129].
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Figure 6.12: PVT yield decay under CW proton irradiation. The output
decays monotonically over the course of the exposure, corresponding to a 32%
drop in mean intensity.

Birks model and damage in scintillators

A model developed by Birks has been successful in describing the response
of scintillators to particles of varying energy [149]. The model formulates the
luminescent yield per unit track length, dLB/dx as a function of the specific
energy loss of the ionizing particle, dE/dx, according to

dLB
dx

=
S dE
dx

1 + kB dE
dx

(6.6)

where S is the scintillation efficiency, while kB describes the quenching effect
within the scintillator. In particular, the B parameter refers to the density of
damaged molecules exposed to the ionizing radiation with specific energy loss
dE/dx, while the k parameter gives the fraction of these molecules which then
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exhibit quenching. The result is a kB parameter describing how much energy
is lost due to quenching for a given dE/dx along the path of the particle. An
empirical extension to this model was used by Craun and Smith [150] to fit
data obtained by Smith et al [151]. They include include a parameter, c, which
is second order in dE/dx,

dLB
dx

=
S dE
dx

1 + kB dE
dx

+ c(dE
dx

)2
(6.7)

In the limit of small dE/dx, yield tends towards a linear relationship, with the
scintillation efficiency approaching unity. This is the case for electrons up to
a few hundred keV and other low LET particles [152].

Best fit parameters using Equation 6.7 for the raw yields of each scintillator
are shown in Table 6.2. In finding parameters that best fit the data, the
Stopping Range of Ions in Matter database was used to produce stopping
power curves over the range of energies for each material [153]. Note that a
negative c parameter is observed for materials that exhibit a stronger response
at low energies [154].

Table 6.2: Comparison between Birk’s model (Equation 6.7) fits and trans-
parency adjusted model fits (Equation 6.9). The right column gives the good-
ness of fit according to the residual sum of squares (RSS).

Material Metric kB (g/MeV cm2) c ((g/MeV cm2)2) λ (cm) RSS

Birks 5.375× 10−3 −1.5× 10−6 - 0.0381
Chromox

Transparency 2.33× 10−2 0 0.058 0.0168

Birks 2.25× 10−2 1.15× 10−5 - 0.0766
BC-422Q

Transparency 1.25× 10−2 1.05× 10−6 1.5 0.0638

Birks 2× 10−2 2× 10−7 - 0.00586
BC-408

Transparency 2× 10−2 2× 10−7 210 0.00586

Transparency considerations

The transparency of each scintillator is also considered as a means to explain
nonlinearities in the yields, as well as possible deviations from expected perfor-
mance. Scattering and absorption at grain boundaries in chromox necessarily
plays a role in the attenuation of emitted scintillation light, introducing ad-
ditional nonlinearities to the yield. Moreover, damaged plastic scintillators
demonstrate reduced transparency [140]. We introduce a transmission coeffi-
cient T (x), which defines the fraction of scintillation light emitted at a given
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position within the material that escapes the rear side. Assuming homogeneity
holds over the attenuation length of the material, λt, we define

T (x) = e
−(w−x)
λt (6.8)

where w is the width of the scintillator. This transmission fraction is then
applied to Birk’s formula for dL/dx along the path length of the ionizing
particle. We have

dLt
dx

= T (x)
dLB
dx

(6.9)

Figure 6.13 shows a fit of this model to the chromox data. The transparency
adjustment improves the original fit without the use of the empirical c parame-
ter, suggesting that at the energies probed, there is no second order quenching
effect. This is in agreement with the high radiation resistance of chromox, and
the lack of observable damage.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0 2 4 6 8 10 12
0

500

1000

1500

2000

Proton Energy HMeVL

Y
ie

ld
Hý

�p
ro

to
nL

Transparency Fit
Craun-Birks Fit

Basic Birks Fit
æ Data

Figure 6.13: Chromox yield shown fit to a transparency adjusted Birk’s
model, along with measured data and the best fit. With a calculated attenua-
tion length of λt = 1.1 mm, the model produces a fit with kB = 0.018 g/MeV
cm2 and c = 0.

This model may be extended to BC-422Q, wherein molecular damage leads
to an increase in scattering and diminished transparency [140]. Table 6.2 shows

134



fitting parameters both with and without transparency adjustments. Fitting
the transparency metric suggests an attenuation length of 1.5 mm in the dam-
aged scintillator, compared to lengths of greater than 1 meter for undamaged
PVT-based compounds. No additional scattering effects are observed in the
output of BC-408, and as such we would not expect to see an improvement in
fit by introducing a transparency correction. This is confirmed by the best fit
parameters.

6.5.2 Scattering effects

The previous discussion of transparency presupposes the existence of signif-
icant scattering effects in both chromox and damaged plastic scintillators,
specifically BC-422Q. To further evaluate the role of scattering, we introduce
a simple model to qualify scattering in chromox. We then extend this model
to plastic scintillators and demonstrate that scattering effects resulting from
damage to the scintillator can introduce significant changes to the beam pro-
file. As before, we consider the chromox material composed of grains with
wg = 12µm. We assume a beam of photons with Gaussian spatial and an-
gular distributions σx and σθ, respectively. Such an assumption provides a
reasonable approximation to experimental data, as accelerated ions will pass
through a circular pinhole, producing a Gaussian profile. We observe this
profile in images taken with a fresh sheet of BC-408 as shown in Figure 6.14.

We assume that at each grain boundary, a given photon will scatter accord-
ing to a scattering distribution Θ, and define a scattering parameter α = w/wg
representing the effective number of scattering occurrences. The cumulative
scattering produces tails in the outgoing photon spatial distribution. The
tails fit a Lorentzian distribution, as seen in Figure 6.15. The results of this
simple chromox model are confirmed experimentally by images taken of laser-
accelerated protons. Figure 6.15 confirms that the resultant spectrum fits a
Lorentzian profile.

This model may be extended to a plastic scintillator, wherein structural
damage to the solvent plays the role of grain boundaries, causing scintillation
light to scatter as it traverses the plastic. The older PVT based BC-422Q
showed significant signs of damage-induced reductions in transparency. This
damage also resulted in scattering, producing a Lorentzian distribution of light
from an incoming Gaussian profile, as shown in Figure 6.14. Conversely, an
undamaged sheet of BC-408 plastic scintillator does not exhibit significant
scattering, thus reproducing the expected Gaussian profile of the accelerated
ion beam. These results are especially significant because an accurate mea-
surement of the beam’s Gaussian width is used to determine the energy spread
of the accelerated ion beam.
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Figure 6.14: An undamaged sheet of BC-408 exposed to a Gaussian proton
beam reproduces a Gaussian profile, while a damaged BC-422Q sheet produces
a Lorentzian profile with signficant scattering.

6.5.3 Afterglow

Though boasting impressive scintillation response to ions and high LET parti-
cles, chromox suffers from a considerable afterglow effect. This is in part due to
quenching and defects as in CsI:Tl. However, chromox is fundamentally differ-
ent in its physical constitution than CsI:Tl and other crystalline scintillators.
Chromox is constructed from 10-15 µm diameter grains. Thus, incoming light
may be refracted or reflected as it crosses the boundary between grains. The
light may also be trapped in lattice defects that are more abundant at these
boundaries. As a result of this, the afterglow effect is enhanced, as more light
is trapped for a longer period of time as quenching and reflection happen more
frequently. This effect has been measured in our chromox sample both under
continuous and pulsed beam conditions.

We generated a beam of 6.0 MeV protons at a current of 500 pA, and
imaged the disc in reflection, so that light emitted from the front surface
(the surface of beam incidence) was collected. The beam was shutoff after an
incidence period of several minutes, and the camera was set to take pictures
continuously at a 1 ms exposure time at approximately a 1 Hz repetition rate.
We found that there is noticeable afterglow for more than a minute after beam
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Figure 6.15: (a) The simple scattering model applied to a 1 mm chromox
disc for varying scattering parameter α. (b) A photon spectrum taken from a
laser-accelerated proton beam imaged with chromox.

137



is shut off. The sample exhibited a strong immediate afterglow, 28% of the
value under beam incidence 1 second after beam shutoff. After 10 seconds, the
afterglow intensity was less than 10% of the intensity under incidence. Even
after 90 seconds, an afterglow of approximately 1.5% of the intensity under
incidence was observed.

Using these measurements, we were able to compare several fits to learn the
behavior of the afterglow at long time scales. Previous studies [127] suggest
that a stretched exponential of the form

Y (t) = e−( t
τ

)β (6.10)

is a natural fit for afterglow, where the natural decay of the signal due to
release of quenched photons is further modulated by the dispersive factor β.
However, our data suggests that a normalized sum of standard and stretched
exponentials,

Y (t) =
1

2
(e−

τ
δ + e−( t

τ
)β) (6.11)

hereafter referred to as the combination fit, fits better in both the short and
long time scales of the afterglow. Our best fit suggests δ = 4.3 s, τ = 23.3
s, and β = 0.672; Figure 6.16(a) shows a comparison between best fits of
the standard exponential, stretched exponential, and combination fit. The
combination fit follows the long term behavior while also improving the short
term fit.

As our laser acceleration scheme produces sub-ns pulses at about a 1 Hz
repetition rate, the response to a pulsed beam is more applicable to a laser
acceleration experiment. By modulating a beam aperture, we generated 25
ms pulses at 3 Hz repetition rate. Peak chromox response was measured,
and the afterglow image intensity is plotted versus time in Figure 6.16 (b).
It can be seen that in the case of pulsed beam, the light output falls much
more quickly, reaching less than 3% of its nominal value after 0.1 seconds.
Again, a combination fit seems to provide the best candidate, with values of
δ = 5 ms, τ = 0.7 ms, and β = 0.21, although a stretched exponential is
also effective. This fit is characteristic of phosphorescence and suggests that
chromox is suitable for pulsed use at Hz-range repetition rates.

6.6 Conclusion

We have measured the response of several candidate scintillators for use in a
high repetition rate laser driven ion acceleration experiment. Yield and scat-
tering models were applied to obtain a general characterization of the scintil-
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Figure 6.16: (a) A comparison of fits to the long term afterglow behavior of
chromox under CW proton beam exposure. (b) A 5 nA proton beam is pulsed
for 25 ms on, 325 ms off.
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lator response. Our findings suggest that chromox has the strongest response
to protons in the 2-10 MeV range. Moreover, the afterglow in response to a
pulsed beam is not significant on a 1 second time scale, similar to the current
maximum laser repetition rate at the ATF. Natural opacity significantly re-
duces yield, depending on the thickness of the scintillator. Likewise, quenching
remains a concern at high energies, but chromox demonstrated the best radia-
tion hardness among candidates. However, at low energies, photon scattering
at grain boundaries reduces both yield and resolution for chromox. Assum-
ing comparable disc thickness, a PVT-based scintillator provides a superior
response at energies less than 4 MeV. However, damage due to cumulative
exposure significantly reduces both yield and resolution in plastic scintillators.
This is a critical issue for diagnostics relying on output distributions to quan-
tify beam properties such as energy and charge state, and in this case plastic
scintillators should be avoided for high energy and intensity ion beam diag-
nostics. For future high energy and high repetition rate imaging, chromox will
provide a valuable diagnostic tool. Nonetheless, the resolution of BC− 408 at
low energies makes it the clear choice for ∼ 1 MeV ion detection at low fluxes,
and is the scintillator of choice for current ion acceleration experiments.
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Chapter 7

Laser driven shock wave
acceleration of ions at BNL
Accelerator Test Facility
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This chapter emphasizes the key findings regarding the observation and
analysis of helium ion beam generation using the experimental arrangement
described in chapter 5. First, a discussion of basic hydrodynamics prefaces the
interaction of a low intensity pre-pulse with the neutral gas jet target. Next,
experimental results with helium targets are presented, with an emphasis on
the effect of the pre-pulse on the longitudinal density profile of the target. A
series of particle-in-cell simulations have been performed to analyze the action
of the primary intense pulse on the shaped plasma profile. The simulations
are discussed and evidence of collisionless shock acceleration is presented and
evaluated. An overview of some of the key results, as well as a discussion
of experiments with hydrogen gas jets, may be found in several conference
proceedings [155] and a submitted manuscript [156].

The unique generation of a 5 ps pre-pulse at a fixed time prior to the main
intense pulse is a defining feature of the approach to this experiment. As will
be shown, the impact of the pre-pulse is critical to determining the nature
of the main pulse interaction. Due to the nature of a two pulse chain with
relatively long time scales, as well as the natural variation in neutral density
profile achievable by the gas jet, the specific target dynamics are extremely
complex. A discussion of the basic hydrodynamic evolution of the jet under the
influence of the pre-pulse provides an excellent starting point for understanding
the subsequent laser plasma interaction.

7.1 Hydrodynamic target shaping

A laser pulse interacting with the gas target with intensities below the ap-
pearance threshold for He+ can significantly heat the target through collisional
processes. Energy is absorbed along the laser axis, with a considerable fraction
deposited near the focal position of the laser. This energy drives a shock which
expands radially into the target. Assume that the unshocked gas has flow ve-
locity u1, density ρ1, pressure P1, and internal energy ε1, while the shocked
gas is characterized by u2, ρ2, P2, and ε2. The relation between gas proper-
ties ahead of and behind the shock are defined by the shock jump conditions,
which follow from the fluid equations describing continuity, conservation of
momentum and energy. Assuming a steady state, planar shock, and ignoring
viscosity effects outside of the transition layer (the shock itself), one obtains
the Rankine-Hugoniot jump conditions [137],
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ρ1u1 = ρ2u2 (7.1)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (7.2)

1

2
u2

1 + ε1 +
P1

ρ1

=
1

2
u2

2 + ε2 +
P2

ρ2

(7.3)

The shock is characterized by its Mach number, M = u1/cs, where cs is
the sound speed in the upstream gas, given for an ideal gas by

cs =

√
γP

ρ
=

√
γRT

m
(7.4)

where R is the gas constant, m is the molecular mass, T is temperature, and
γ is the adiabatic constant of the gas, the ratio of specific heats γ = Cp/Cv.
This constant depends on the degrees of freedom in molecular motion; as the
number increases, γ → 1. For a monoatomic gas such as helium, γ = 5/3, but
for diatomic molecules such as Hydrogen gas (H2), γ ≈ 1.4.

The jump conditions can be re-written in terms of the Mach number,

ρ2

ρ1

=
(γ + 1)M2

(γ − 1)M2 + 2
(7.5)

P2

P1

=
2γM2 − (γ − 1)

γ + 1
(7.6)

T2

T1

=
((γ − 1)M2 + 2)(2γM2 − (γ − 1))

(γ − 1)M2
(7.7)

For a strong shock (M � 1), these conditions reduce to

ρ2

ρ1

≈ γ + 1

γ − 1
(7.8)

P2

P1

≈ 2γ

γ + 1
M2 (7.9)

T2

T1

≈ 2γ(γ − 1)

(γ + 1)2
M2 (7.10)

For a strong shock, the density ratio at the transition layer peaks at ρ2/ρ1

4 for γ = 5/3. The pressure within the shocked region is much larger than the
ambient pressure of the gas; this describes the blast wave regime of a shock.
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The dynamics of the blast wave are described by Sedov' self-similar solution.
The self-similarity variable ξ is defined by

ξ = r

(Et2/ρ1)1/5
(7.11)

where E is the deposited energy driving the shock. The radius rsh and rate of
expansion Dsh of the blast wave are given by

rsh(t) = ξ0

(
Et2

ρ1

)2

(7.12)

Dsh(t) =
2

5
ξ0

(
E

ρ1t3

)2

=
2

5
ξ0

(
E

ρ1t3

)1/2

R
−3/2
sh (7.13)

where ξ0 is a dimensionless parameter which normalizes the self-similarity
variable [137]. Its value can be calculated numerically by requiring that energy
conservation hold for the solution (ξ0 = 1.17 for γ = 5/3). Equation 7.13 is
invalid at t = 0, but otherwise provides a good approximation of the shock
speed. It should also be noted that this solution is predicated on the deposition
of energy into a point-like source over a short timescale. As the ATF CO2 pulse
is very short (5 ps) relative to the expansion time (25 ns), this assumption is
reasonable for most of the pre-pulse energies considered.

While Sedov produced exact analytical solutions to the density, pressure,
and velocity within the shocked region, the expressions are complicated para-
metric functions of an internal parameter α [157]. Taylor produced an ap-
proximation [158, 159] which provides reasonable agreement within 5% [160],
according to

n(γ) =
7γ − 1

γ2 − 1
(7.14)

p(γ) =
2(γ + 5)

7− γ
(7.15)

ρT (r, t, γ) =

(
r

rsh

) 3
γ−1

γ + 1

γ
−

(
r
rsh

)n(γ)−1

γ


−p(γ)

(7.16)

Figure 7.1 shows the predicted axial density profile behind a spherical shock
according to the solution given by Equation 7.16.
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Figure 7.1: Sedov-Taylor approximation of longitudinal density profile of a
blast wave propagating into a uniform gas of density ρ0. The blue line is the
density within the shocked region, while the red line depicts the upstream,
unshocked gas. The transition region is denoted by the narrow region between
the two, the thickness of which is realistically several mean free paths.

7.1.1 flash simulations

Two dimensional, cylindrically-symmetric, hydrodynamic simulations were per-
formed using the flash hydrodynamics code to simulate the deposition of
pre-pulse energy into the gas target (assumed to approximate an ideal gas).
The longitudinal density profile of the neutral gas was used, but variations in
density along the vertical axis were ignored. Energy was deposited instanta-
neously into a cylinder of length 600 µm and radius 80µm centered at the laser
focus, and the target was allowed to evolve for 25 ns. While flash efficiently
tracks particle density and temperature, the simulations performed did not
consider ionization. However, assuming the gas is in local thermal equilibrium
(LTE), we may apply the Saha equation to determine the ionization state of
the gas as a function of temperature [137].

For a free gas in LTE, the ratio of particles in ionization state q + 1 to
those in ionization state q is given by

nq+1ne
nq

=
(2πmkBT )3/2

h3

2gq+1

gq
e
− χ
kBT (7.17)

where h is Planck’s constant, gq and gq+1 are the statistical weights (degen-
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eracy) of the ground states of the different ionization levels, and χ is the
ionization potential for state qi+1. For helium, g1/g0 = 2 and g2/g1 = 0.5.
For multiple ionizations, the quantities nq+1, nq, and ne satisfy conservation
conditions

∑
i

ni = nHe (7.18)∑
i

qini = ne (7.19)

As the ionization level is extremely sensitive to temperature, we expect to see
stronger ionization farther behind the shock, where the density is lower and
the temperature is higher. Figure 7.2 shows a sample ionization profile behind
a strong shock.

Figure 7.2: Predicted ionization states behind a spherical shock in the Sedov-
Taylor approximation assuming about 150 mJ of deposited laser energy.

Figure 7.3 shows the resulting simulated electron density profile in compari-
son with an experimentally extracted density profile from interferometry taken
just prior to the arrival of the main pulse. As the pre-pulse only minimally
ionizes the gas, phase extraction produces a noisy image, requiring additional
smoothing to produce a physical profile; the resulting density profile is inac-
curate at short length scales. However, the size of the region of ionization and
the approximate level of ionization agree between simulation and experiment.

Examination of the total particle density reveals more information about
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Figure 7.3: (a)Experimentally extracted electron density profile from inter-
ferometry just prior to main pulse arrival. (b) Electron density calculated from
2D flash code simulating hydrodynamic expansion of gas and estimating the
resultant ionization using the Saha equation ( Equation 7.17). The initial gas
profile is centered at z = 1.5 mm. Density profiles are given in units of the
critical plasma density nc for 10.3 µm light.

the hydrodynamic evolution of the neutral gas profile under the influence of
the pre-pulse. Figure 7.4 (a) shows the total particle density after 25 ns of
expansion. Here, the characteristic blast wave profile expanding radially into
the plasma generates a cavity wall with peak densities commensurate with that
of the strong shock condition in Equation 7.10. Unfortunately, this wall cannot
be seen prior to the interaction of the main pulse due to limited ionization of
the high density region. Instead, interferometry taken approximately 300 ps
after the main pulse arrival is used as an indicator of the blast wave conditions.
Since the rate of expansion of the cavity is on the order of the signal speed in
helium (104 ms−1), the 300 ps time difference can be ignored. Figure 7.4 (b)
shows the extracted density profile from one interferometry image; striking
similarities in the size, shape, and peak densities can be seen between this
profile and the hydrodynamic simulation. The egg shape of the blast wave is
typical of the envelope solutions to inhomogeneous propagation of a shock, as
described by Kompaneets and others [161, 162].

This provides strong evidence that the influence of the pre-pulse is predom-
inantly hydrodynamic. Moreover, it is clear that the interferometry provides
an indication of pre-pulse strength via the size and scale length of the high
density cavity. Figure 7.5 shows the density profile within the shocked re-
gion according to FLASH simulations, alongside a comparison with the Taylor
approximation described by Equation 7.16 for the equivalent axial expansion
length rsh.
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Figure 7.4: (a) Total helium particle density calculated from 2D flash
code simulating hydrodynamic expansion of gas for 25 ns. (b) Experimentally
extracted plasma density profile from interferometry 300 ps after the main
pulse arrives reveals the shape of the entire blast wave profile. The initial gas
profile is centered at z = 1.5 mm. Density profiles are given in units of the
critical plasma density nc for 10.3 µm light.
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Figure 7.5: A comparison of the axial profile of the shocked region between
FLASH simulations and the Taylor approximation, assuming consistent shock
positions.
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7.2 Helium ion acceleration

We now present some of the results taken with a helium gas jet target. For the
majority of experimental trials, the laser was focused at the center of the 1 mm
jet, approximately 800 µm above the nozzle. Variation from this focal position
produced considerably fewer instances of successful ion detection. Figure 7.6
(a) shows the range of pre-pulse energy and main pulse intensities in which
accelerated helium ions are observed. It is immediately apparent that an ac-
celerated ion beam is observed only for a narrow range of pre-pulse energies,
from approximately 110 mJ to 200 mJ, and for main pulse normalized inten-
sities of greater than a0 = 1.2. Each shot was taken with the same relative
laser focal position within the gas jet, at the center of nozzle. The dashed line
shows the testable limits of the pre-pulse, main pulse energy parameter space
given by empirically observed laser performance. Scanning the entire space is
unrealistic, because the pre-pulse and main pulse energies are weakly coupled
by virtue of the self-induced reflectance method of pre-pulse generation.

Figure 7.6: Left, average flux of experimentally observed helium ions as
a function of incident pre-pulse energy and main pulse normalized intensity.
The dashed black line separates the experimentally tested parameter space.
Right, characteristic helium spectra for a0 = 1.5 and Epp ≈ 150 mJ are shown
in black. The spectra demonstrates a detection edge at approximately 1.5
MeV, above which the signal remains consistent with the 3σ level of detector
background, shown by the dashed red line.

Figure 7.6 (b) shows a typical helium spectrum taken with a0 = 1.4 and
Epp ≈ 150 mJ. The spectrum is consistent with all shots taken, exhibiting large
energy spreads (100%) and peak observed energies between 1 and 2 MeV. The
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total flux of helium ions remains consistent from shot to shot, ranging from
0.8 − 1.4 × 1010 ions/sr, corresponding to a total particle yield of 1–2 ×105

ions per shot. The scintillator yield for helium is extrapolated from the proton
calibrations by using the mean scaling factor 0.3 ± 0.1 (helium yield: proton
yield), which has been experimentally observed in comparative studies with
differing ion types [163]. The incoming flux of ions corresponds to a very
narrow localized emittance of ε < 0.5 mm-mrad (normalized emittance of
εn ≈ 5 nm-rad), a factor of 10 better than most RF sources. A more proper
treatment of the emittance would require multiple shots with better energy
resolution.

Unfortunately, the total number of ions in the high end of the energy spec-
trum lies just at the detection limit for our diagnostic, and the high energy tail
of the spectrum is poorly resolved. The detection limit for the ion signal was
determined by the three sigma threshold above the mean background signal at
each discrete energy step. The dispersive properties of the Thomson parabola
spectrometer limit the dynamic range of our system due to background signal
at high energies. This is mostly the result of noise driven by background light,
camera readout noise, and scattering within the scintillator. For future exper-
iments, adjustments to the spectrometer positioning will be made for greater
separation at high energies.

7.2.1 Pre-pulse regimes

The remarkable feature of these results is the sensitivity of the acceleration
process to the pre-pulse energy. The reproducibility of accelerated ion beams
for a select range of pre-pulse energies greatly exceeded results from a 2011
experiment using a pulse train output from a non-isotopic CO2 amplifier [6,
164]. We have defined three regimes of pre-pulse energies — low, mid, and
high — each of which can be associated with characteristic density profiles
and laser interaction properties.

High pre-pulse regime

The high pre-pulse regime is identified by Epp > 200 mJ, for which no ion
acceleration was observed. Figure 7.7 shows the plasma density before the
main pulse arrival, and 300 ps afterwards for a shot with Epp ≈ 1 J.

In this instance, the energetic pre-pulse causes rapid expansion of a blast
wave into the gas jet. By the time the main pulse arrives, the blast wave has
driven most of the residual gas away from the laser axis. The remaining gas has
very low density, and the laser channels through the entire target, unable to
generate the critical surface necessary for ion reflection. This further supports
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Figure 7.7: Density extracted from interferograms taken (a) immediately
before the main pulse and (b) 300 ps after the main pulse, for a shot with
Epp ≈ 1 J and main pulse normalized intensity a0 = 1.4.

the conclusion that the pre-pulse evacuates gas from the laser axis, as no
coinciding increase in plasma density was seen along the low density channel.
Even at pre-pulse energies closer to 200 mJ, optical probing shows considerable
expansion of the blast wave beyond the focal point of the laser, and no ion
acceleration is observed. This suggests that the main pulse will not efficiently
couple energy to the overdense region of the plasma at focus.

Low pre-pulse regime

The low pre-pulse regime is defined by Epp < 100 mJ, for which no ion accel-
eration was observed. Figure 7.8 shows the plasma density at 300 ps after the
main pulse arrival for a shot with Epp ≈ 0 mJ. As the pre-pulse energy is quite
low, very little plasma is generated prior to the arrival of the main pulse. As
a result, no phase map could be extracted from the first interferogram taken,
so the pre-pulse effects must be inferred from a single image.

The main pulse energy is well above the self-focussing threshold Pc =
17.5 ne/nc GW. There is some evidence of self-focussing in the early portion
of the jet. The corresponding approximate focal length for a laser intensity of
a0 = 1.2 is zc ≈ 230 µm, in good agreement with the length of the channel
observed in the interferometry. The action of the main pulse is to first ionize
the gas and deplete electrons from the high intensity region of the laser. This
results in the formation of a narrow channel with sharp edges parallel to the
laser axis. However, the radius of the generated cavity is only about ∼ 50 µm,
making it clear that in absence of a pre-pulse, the laser deposits much of
its energy in a short region of underdense gas at the foot of the jet. This
interaction is commensurate with published results from past experiments, in
which the formation of density perturbations transverse to the laser axis led to
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Figure 7.8: Density calculated from interferograms taken 300 ps after the
main pulse for a shot with Epp ≈ 0 mJ and main pulse normalized intensity
a0 = 1.2. The ionized density prior to the main pulse is noise-dominated,
preventing phase-extraction and density calculation.
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the observation of expansion shocks perpendicular to laser propagation [165].

Figure 7.9: (a) Density profile extracted from 2D PIC simulations without
pre-pulse shaping, taken at 12 ps. The laser penetrates only 400 µm into
the jet, dispersing in the underdense region through a combination of self-
focussing, ponderomotive channeling, and electron heating. No considerable
forward ion acceleration is seen.

This behavior is confirmed by 2D particle-in-cell simulations. Simulations
performed using the native density profile of the gas jet, with no pre-pulse
shaping, demonstrate the deposition of laser pulse energy over a 200–300 µm
region of underdense plasma. Channel formation on the order of the laser
FWHM is seen in Figure 7.9, with sharp density perturbations of nHe = 2−3nc
forming at the edge of the channel, transverse to the laser axis. Ion phase space
distributions reveal trace ion acceleration to energies below 0.1 MeV, which
would be unlikely to be observed.

Mid pre-pulse regime

The mid pre-pulse regime is defined by 110 mJ < Epp < 200 mJ, for which ion
acceleration was consistently observed. Figure 7.10 shows the plasma density
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before the main pulse arrival, and 300 ps afterwards for a shot with Epp ≈
150 mJ.

Figure 7.10: Density extracted from interferograms taken (a) immediately
before the main pulse and (b) 300 ps after the main pulse, for a shot with
Epp ≈ 150 mJ and main pulse normalized intensity a0 = 1.4.

The sharp high-density feature seen along the laser axis after the main
pulse interaction indicates that a high density gradient necessary to drive an
electrostatic shock was present at the time of the main pulse arrival, given
the slower time scale of hydrodynamic expansion. As the Abel inversion is
extremely sensitive at small distances from its axis of symmetry, a simulated
interferogram was constructed to confirm the experimental profile. A three
dimensional density profile was created to best match the phase advance re-
quired to generate the observed interferogram. Figure 7.11 shows the results
of the exercise. The interferogram closely matches the observed image, and
the corresponding density profile has a clear on-axis peak at approximately
n = 6.5 nc. Again, this density corresponds to a fully ionized helium profile
with a peak neutral density of 4ni0 ≈ 3.2nc. Within the cavity, the profile
steepens over a 100 µm length, while the plasma profile ahead of the shock
declines over a longer scale length due to electron heating during the laser
plasma interaction. Transverse variations in density are seen near the laser
axis as well, providing evidence of electron beam filamentation, which is dis-
cussed below.

7.3 Particle-in-cell simulations

While optical probing provides considerable insight into the plasma behavior,
temporal resolution is limited by the duration of the probe pulse. The YAG
probe arrives at the target with a 10 ps duration after being up-converted to
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Figure 7.11: A manually constructed interferogram for a shot with Epp ≈
150 mJ taken 300 ps after the main pulse interaction.Above, (a) and (b) show
the experimental interferograms and extracted density profiles, respectively,
while (c) and (d) show the corresponding simulated profiles.
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532 nm wavelengths. As a result, probing within the timescale of the 5ps LPI
is impossible. Thus simulations must be used to gain further insight.

A series of PIC simulations were performed using the open source code
epoch to investigate the LPI on the timescale of the laser pulse. epoch is a
multi-dimensional, fully electromagnetic, relativistic code which was developed
by EPSRC-funded Collaborative Computation Plasma Physics consortium of
30 UK researchers. The EPOCH code was developed under UK Engineering
and Physics Sciences Research Council grants EP/G054940/1, EP/G055165/1
and EP/G056803/1 [166]. The simulations were performed in 2D with 30
particles per cell and square cells of λ/50 length. The plasma consisted of fully
ionized He2+ and e− populations, and was initialized cold with Te = Ti = 0 eV.
The laser is modelled as a Gaussian with 5 ps FWHM; the pulse reaches its
maximum intensity at 7 ps and has a 14 ps duration, equivalent to a reduction
in intensity of more than 3 σ from the maximum before termination.

Figure 7.12: 2D PIC sims are initialized with electron and ion densities
corresponding to experimentally extracted lineous taken across the blast wave
profile slightly off axis from the drive laser.

The density profile and laser energy were modelled to fit the profile seen
from a shot taken with 150 mJ pre-pulse and main pulse intensity a0 = 1.4.
The density profile was obtained from a lineout taken from the Abel inversion
shown in Figure 7.10. The use of an “on-axis” profile is discouraged both by
the presence of electron filamentation and motion of the plasma due to the
main laser pulse. Instead, the density profile is taken slightly off-axis, still
normal to the blast wave, and fit with a sum of Gaussians. The resulting
profile and its implementation in the simulations are shown in Figure 7.12.
Variations in y-axis are ignored for the following series of simulations.

Specifically consider the case of a laser incident with normalized intensity
of a0 = 1.4 on the profile described, falling squarely within the mid pre-
pulse regime for which ion acceleration was most frequently observed. Other
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extracted profiles have been simulated, as well as minor variations to this
profile, all with similar results. A sequence of timesteps are presented to
illustrate the shock dynamics during its three phases - formation, propagation,
and breakdown.

Shock formation

Figure 7.13 shows the state of the plasma at the peak of laser intensity, cor-
responding to t = 7 ps in our simulation. The two dimensional ion density
reveals the extent of laser propagation into the plasma, with a high density
wall having formed at the head of the pulse. Examination of the electron den-
sity and corresponding electric field along the laser axis reveals the formation
of a critical surface corresponding to the transition from underdense to opaque
plasma. The field has created a sharp ramp in electric potential, capable of
reflecting the cold downstream ions. The ion phase space reveals the onset of
reflection from the leading edge of the shock, corresponding to acceleration of
downstream ions to energies in excess of 2 MeV. The formation of the shock
at 7 ps is in good agreement with published simulations predicting formation
of a collisionless shock on the timescale of a few multiples of 2π/ωpi, where ωpi
is the ion plasma frequency [97]. If we assume ni ≈ 4nc, then 2π/ωpi ≈ 1.5 ps,
and the observed formation of a shock at 7 ps is consistent.

Behind the shock, the drop in potential along with modulation from the
still incident laser field has produced acceleration of a separate group of ions.
The presence of this ion population is characteristic of long pulse interactions,
for which τl > 1/ωpi. If the shock formation is weak enough, a portion of
this ion population will not be trapped, instead following an unstable orbit
in phase space, eventually passing the shock and entering the downstream
plasma. The specific dynamics of this process are not yet well understood; for
the experimental parameters considered here, this secondary bunch is clearly
an impediment to generating a cleanly reflected bunch. However the total flux
of this bunch is small relative to the shock accelerated population.

Shock propagation

Once the shock has formed, reflection continues uninterrupted, with the shock
propagating in absence of a strong ponderomotive push from the laser. Fig-
ure 7.14 reveals the dynamics at t = 12 ps for the simulation. The shock has
advanced ahead of the critical surface, travelling further into the density ramp
of the target. The shock exhibits a clear variation in potential behind the
front, which is in line with the significant trapping seen behind the shock.

It is clear from the ion phase space that the momentum to which ions are
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Figure 7.13: Snapshots of the plasma state at t = 7 ps during a simulation
with experimental laser and target parameters: (a) the ion density ni, (b) the
electric field Ex in units of E0 = meωlc/q and electron density ne in units of
nc, (c) the ion phase space x− px with momentum in units of mHec, and (d)
the electrostatic potential Φ in units of E0λl. The ion phase space is extracted
from a region spanning ±5 microns about the y = 0 axis in the simulation
grid. Electric field, electron density, and electrostatic potential are averaged
over a the same region in ŷ.
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Figure 7.14: Snapshots of the plasma state at t = 12 ps revealing the propa-
gation of the shock and high reflection: (a) the ion density ni, (b) the electric
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electrostatic potential Φ in units of E0λl. The ion phase space is extracted
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over a the same region in ŷ.
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reflected later in the shock evolution are considerably lower, and the resulting
spectra has already spread, with ions reflected at the 12 ps time step only
reflected to approximately 0.5 MeV. As we expect ions in our relatively cold
plasma to be reflected to a velocity of 2vsh, it follows that the shock must have
slowed. To test this hypothesis, the recessional velocity of the critical surface
was tracked, along with the motion of the shock into the plasma.

The position of the critical surface and shock front are plotted in Fig-
ure 7.15. The shock quickly separates from the critical surface, travelling with
initial speed vsh = 5.07 µm/ps. In time, the shock velocity slows; the reduction
in shock velocity is in good agreement with the ion phase space at a given time.
For example, at the time of formation, ion reflection to 2vsh predicts momenta
of 0.034c (2.2 MeV), coinciding with what is seen in Figure 7.13. Likewise,
the shock velocity at 12 ps is calculated to be vsh = 2.5 µm/ps, corresponding
to reflected momenta of 0.017mHec, again in good agreement with the phase
space presented in Figure 7.14.

Conversely, the trailing critical surface is seen to move with near constant
speed vcs = 3.43µm/ps through the central portion of the pulse envelope,
between 4 and 10 ps. This speed agrees with the hole-boring model described
by Equation 4.73; for a laser of amplitude a0 = 1.4 incident on ne = nc,
vhb = 3.5µm/ps [88]. Moreover, the critical surface is seen to effectively stop
beyond approximately 12 ps, as the incident laser intensity has been reduced
to less than 1% of its peak value, and terminates completely by t = 15 ps.

7.3.1 Shock breakdown

The duration of shock reflection depends heavily on the target plasma con-
ditions, as the degree of reflection and dissipation in the shock are strongly
influenced by plasma temperature and electron motion. For the simulation
parameters under inspection, the shock shows clear signs of deterioration at
t = 18 ps. Figure 7.16 shows some corresponding plasma parameters. The
density profile shows a strong damping of the shock density perturbation as
it enters the peak of the shaped target density. Heating and expansion of the
target density profile can be clearly seen across the 50 µm segment of elec-
tron density lineout in Figure 7.16 (b). The corresponding shock potential has
weakened significantly.

Figure 7.17 shows the progression of shock potential and shock velocity.
A clear decline in shock potential along with a corresponding increase in ion
temperature ahead of the shock agree with the observed behavior. At early
times, the shock clearly satisfies the reflection conditions ZeΦ > 1/2mvi

2.
Beyond 14 ps, the shock has lost considerable energy, and downstream ion
kinetic energy begins to exceeds the shock potential. Moreover, the heated
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Figure 7.15: Evolution of critical surface and shock positions are plotted
versus time from 2D PIC simulations. The shock forms approximately at the
critical surface, and quickly separates from it, travelling at vsh ≈ 5 µm/ps,
while the critical surface recedes at vcs ≈ 3.43 µm/ps.

electron population in the neighborhood of the shock can also overcome the
potential. Thus, thermal motion of the plasma begins to dominate over that
of the shock. Inspection of the electron density profile (Figure 7.16 (b)) shows
a clear washing out of the previously trapped electron population behind the
shock.

To summarize the shock evolution as described above, Figure 7.18 presents
a series of three illustrations of the ion phase space, each corresponding to a
separate phase of the shock. Each diagram emphasizes the defining charac-
teristics of ion behavior associated with the shock properties. The onset of
the shock, shown in part (a), is characterized by a localized reflection to twice
the shock velocity, in agreement with Figure7.13 (c). As the shock is only just
forming, the associated particle trapping has not fully developed. As the shock
propagates, its phase space may be characterized by part (b) of the figure. A
well defined shock front reflects ions to twice the instantaneous shock velocity,
while well defined trapping is seen behind the shock. In part (c), the shock
potential has fallen, and the trapping behind the shock dissipates, freeing the
trapped ions to drift in phase space. This drift results in a shearing of the
phase space profile, and can be seen across the entire ion population.
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Figure 7.16: Snapshots of the plasma state at t = 18 ps during which signif-
icant deterioration of the plasma is observed: (a) the ion density ni, (b) the
electric field Ex in units of E0 = meωlc/q and electron density ne in units of
nc, (c) the ion phase space x− px with momentum in units of mHec, and (d)
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162



æ

æ

æ

æ

æ

æ æ æ

ò

ò

ò

ò

ò ò

ò

ò

8 10 12 14 16 18
0

500

1000

1500

2000

time HpsL

E
ne

rg
y

Hk
eV

L

ò 1�2mHevsh
2

æ F shock

Figure 7.17: Evolution of shock potential and corresponding upstream ion
kinetic energy (in the frame of the shock). The potential initially clearly
satisfies the reflection condition ZeΦ > 1

2
mvi

2, but after several ps falls sharply.

xdownstreamMionsupstreamMions

a.MshockMonset

InitiallyMreflectedM
ionsMtoM2Mvsh

x

x'

ReflectedMionsM
movingMatM2Mvsh

TrappedMions

downstreamMionsupstreamMions

b.MsteadyMreflection

x

x'

ReflectedMionsM
driftMupstream

FreedMions

downstreamMionsupstreamMions

MinimalMreflectionM
atMreducedMpotenttial

x'
c.MshockMbreakdown

ContinuedMaccelerationM
toMreducedMvsh

Figure 7.18: An illustration of the ion phase space throughout the three
phases of shock evolution characterizes the main features of the shock. In
(a), the shock has just formed, reflecting ions to twice the shock velocity.
After some time (b), ions continue to be reflected, while particles behind the
shock potential are trapped in the trailing potential. Finally, as the shock
potential drops below the incoming ion kinetic energy, reflection is suppressed
(c), and the phase space exhibits shearing associated with the drift of the
plasma particles.

163



Axial variations in density modelling

The parameter space defined by the possible target and laser configurations
is extremely large, and a thorough investigation through simulations would
require many more processor hours than are available. Thus, variations in
the density along the jet axis are ignored for the majority of simulations and
analysis. The deposition of laser energy is also certainly asymmetric, and the
resulting perturbations in gas dynamics reduce the reproducibility of experi-
mental results. The use of a cylinder-like deposition of energy in flash allows
for some investigation of radial variations when modelling the target density
profile. A set of 2D-PIC simulations have been performed with radial varia-
tions included, and produce effectively identical shock behavior. Under these
conditions, the simulated interaction exhibits stronger radial confinement, and
the resulting shock does produce density perturbations on the micron scale
about the laser axis which are well supported by shadowgraphy. Figure 7.19
shows a comparison between the FLASH produced simulation output and a
shadowgraphy frame taken 300 ps after the LPI. The on-axis bowing of the
density profile is distinct, as is the presence of two distinct density pertur-
bations slightly off axis. The forward most perturbation could represent the
residual shock structure following the long term expansion.

Figure 7.19: Helium ion density from a 2D PIC simulation using a radially
adjusted density profile obtained from flash simulations shows strong radial
confinement of the shock along the laser axis. The corresponding bowing of
the density profile is observed in shadowgraphy images taken 300 ps after an
LPI.
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Electron heating and filamentation

The laser interaction is expected to produce hot electrons with ponderomotive
scaling, according to Equation 4.66. Thus, for a0 = 1.4, one might expect to see
hot electron generation to energies on the order of ε = mec

2, in the hundreds
of keV range. We can estimate the effective fast electron beam current with
a simple absorbtion metric. Assume η is the fraction of laser energy absorbed
by a population of fast electrons travelling with speed vh, and with energy ε,
the density of fast electrons follows from

ηIl = nbvhε (7.20)

nb =
ηIL
vhε

(7.21)

If we assume hot electron populations of 300 keV and η = 0.4 ([70]), then
the resulting electron density is nb ∼ 4 × 1018 cm−3. If this beam current
lies within an area of πw2

0, where w0 is the beam waist, then we obtain cur-
rents in excess of 1 MA! This current is greatly exceeds the Alfvèn limit which
follows from IA ≈ 17βγ kA = 20 kA for 300 keV electrons [78]. This necessi-
tates the formation of counterpropagating return current, and forms the basis
for a number of possible plasma instabilities. In the particular instance of
large velocity distributions, magnetic field perturbations may give rise to the
formation of electron beam filaments. The growth of these filaments can be
attributed to the Weibel instability, particularly in high density plasmas for
which laser filamentation is not present [167].

The growth rate of this instability can be approximated by [76]

γw = ωp

(
nb
γpne

)1/2

(7.22)

where nb is the hot electron beam density. For our model calculations above,
we can assume ne ∼ 4nc, in line with early simulation results (see Figure 7.13
(b)), and we have nb ∼ 0.05. We would then expect growth periods of 1

γW
<

10 fs. Thus, after some picoseconds of heating by the laser, filamentation
is expected. In fact, shadowgraphy clearly identifies filamentation across an
array of different shots; Figure 7.20 (a) shows one such instance. Simulations
confirm the formation of filaments on ps timescales, as seen in Figure 7.14. The
magnetic field extracted from simulations shows a growing quasi-static mode
ahead of the shock in agreement with the formation of filaments. Moreover,
the filamentation is not seen for low pre-pulse shots in which the laser does not
see a strong overdense plasma - Figure 7.20 (b) shows the lack of filamentation
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for a shot with no pre-pulse.

Figure 7.20: Left shadowgraphy reveals filamentation structures 300 ps after
the LPI in the instance of a shaped high density plasma. Right, few filaments
are seen in conjunction with low intensity pre-pulses which do not generate
strong axial target shaping.

The fast electron temperature is estimated from momentum distributions
extracted from simulations. The resulting distribution is non-Maxwellian, with
peak forward electron energies reaching a few MeV. A rough estimate of this
hot electron tail in the distribution places the electron temperature at ap-
proximately 300 keV around the peak of laser intensity. This temperature is
indicative of the scaling suggested by Beg et al. [74], for which hot electron
temperatures were empirically fitted to follow Equation 4.67 rather than a
ponderomotive scaling, and has been observed in other experiments for sim-
ilar laser irradiance (1018 W/λ2cm2) [168]. A more complete approximation
of the temperature would require greater resolution in the output momentum
space, and correspondingly smaller output timesteps to allow averaging over a
few plasma periods. Regardless, it is clear that the bulk electron temperature
remains nonrelativistic, indicating that one may not expect many of the theo-
ries concerning shocks in “hot relativistic plasmas” to apply directly [7, 169].
Study of the role of electron filamentation on the shock propagation remains
ongoing. While other investigations have shown that density variations can
affect the spatial extent of the filaments [170], it remains unclear how strongly
they influence ion reflection and shock propagation at early timescales. Fil-
amentation may be responsible for mediating shock formation [171], but the
laser energy threshold for this mechanism remains greater than the peak en-
ergies achievable at ATF .

166



Scaling with laser intensity

A series of simulations has also been performed to investigate the scaling of
ion energies and spectra with laser intensity. The same interferogram-derived
density profile as in Figure 7.12 is used, with the density scaled according
to Equation 4.58 to adjust for relativistic transparency effects. Figure 7.21
demonstrates the scaling of output spectra with laser intensity, as well as a
comparison to modelled hole-boring velocity. Shock formation and reflection is
seen in each case; the shock propagates ahead of the critical surface, reflecting
ions to energies greater than predicted by a simple hole-boring model. As the
shock continues to propagate, the shock slows and eventually breaks down.
Peak energies clearly scale linearly with a0, while the resulting ion spectra
exhibit the same large spread in energies observed during experiment. It is
clear that although this scaling is favorable in comparison to ε ∼ √a0 scaling
seen in TNSA approaches [82, 172], further adjustments to the target structure
are needed to achieve a small energy variation in the output beam.
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Figure 7.21: Left, 2D PIC simulations show consistent output spectra with
increasing laser intensity (a0), incident on targets with the same density profile.
At right, peak energies scale linearly with laser intensity, and clearly exceed
the hole-boring model predictions, assuming 50% laser absorption.

7.4 Next steps

Experiment and simulation analysis make clear the difficulty in generating
ideal output beams with the tested target structures. Even with increases in
laser a0, the generated ion spectra exhibit similarly large spreads in energy.
Simulations, as shown above, clearly predict the formation of a shock on scale
lengths shorter than the steepest density profiles we have extracted during
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experiment. It is the goal of future experiments to emphasize target dynamics
to achieve beam optimization. Amongst the various target parameters, density
scale length is of the utmost importance.

Recent theoretical and computational investigations of laser driven CES
theory [7] suggest that for an isothermal plasma at relativistic temperatures,
the ideal target length scales as

L ∝ λ

2

(
mi

me

)1/2

(7.23)

For helium gas, Equation 7.23 suggests that targets on the order of 0.4 mm
would be ideal for generating a hot isothermal electron population. This is
more than a factor of two smaller than the hydrodynamically shaped profiles
that have been discussed above. One possible solution to achieving a target
of this length is through the use of a knife edge to shear the gas flow.

knife edge

Nozzle

perturbed gas

Figure 7.22: Left, the basic set up for using a thin blade to create a shock
in gas density profile along the laser axis. Right, interferometry of the config-
uration illustrating the longitudinal arrangement of the blade and nozzle.

A fixed impediment has the advantage of reliability and serves to further
decouple the pre-pulse energies from that of the main pulse. The knife edge
can be aligned with the nozzle of the jet so as to create an oblique shock
stemming from the edge, steepening the neutral density profile along the laser
axis. Figure 7.22 illustrates a top down view of the arrangement - the knife
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edge can be placed facing either direction along the laser axis, allowing for
tailoring of either, or both, ramps of the neutral gas density.

Figure 7.23: Top, interferometry (a) and phase extraction (b) of helium gas
perturbed by a knife edge. The knife placement is bottom left. Bottom, the
simulated interferogram (c) and resultant phase profile (d) are shown.

This approach has been preliminarily investigated to consider the types
of profiles which are achievable. By varying knife position and jet backing
pressure, the available parameter space was explored in search of an ideal
arrangement. Figure 7.23 shows the interferogram and extracted phase map
for one such configuration, with 23 bar backing pressure.

Abel inversion no longer provides a suitable estimate of the density profile
as the gas profile is asymmetric after interacting with the knife. Instead, a
simulated interferogram was constructed to produce an approximate density
profile. The resulting profile shows the expected steepening along the knife
side, and a reduction in the scale length of the target. Further steepening
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could be achieved by sending a pre-pulse incident on this pre-steepened profile.
Alternatively, the knife edge could be placed opposite of the laser, to allow for
further shortening of the profile. Figure 7.24 shows calculated profiles based
on these potential nozzle and knife edge arrangements. Variation in pre-pulse
energy and delay timing may allow for even further compression, making it
possible to reduce target size below 500 µm.
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Figure 7.24: A comparison of the longitudinal neutral density profiles achiev-
able using varying combinations of knife edge and pre-pulse shaping. The ini-
tial jet (black) may be perturbed at the front or the rear (blue) of the jet. If
the knife edge perturbs the front of the target, additional steepening can be
achieved (green). If the rear of the jet is perturbed, the subsequent pre-pulse
incidence produces an overall shortening of the target (red).

7.5 Conclusions

We have observed the acceleration of He+ ion beams to MeV energies via the
interaction of an intense, two-pulse sequence of 10 µm light with a near critical
density gas jet target. The generation of a variable pre-pulse allows for the
manipulation of the neutral density profile through heating and hydrodynamic
expansion of the gas over the 25 ns inter-pulse period. Within a range of
pre-pulse energies, we consistently observe the generation of ion beams with
energies greater than 1 MeV. We conclude that the appearance of accelerated
ion beams is extremely sensitive to the longitudinal target density.

With an appropriately steepened profile, 2D PIC simulations predict the
formation of an electrostatic collisionless shock capable of reflecting ions, in
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agreement with the experimental observations. In the absence of steepening,
the laser bores a channel in the underdense plasma, self focussing and eventu-
ally filamenting before building a strong enough energy density gradient in the
plasma to produce a shock. Simulations further reveal the continued progres-
sion of the shock into dense plasma results in significant heating and reflection
of downstream ions. Dissipation in the plasma reduces the shock velocity and
potential, resulting in a broad range of reflected ion energies. Rather than
a quasi-monoenergetic peak, the resulting spectrum exhibits a large energy
spread.

The problem of generating monoenergetic beams from shock reflection is
challenging, and achieving the proper combination of laser pulse characteristics
and target design continue to be elusive with modern technology. Nonetheless,
the unique opportunities conferred by a flexible long wavelength laser along
with dynamic gas targets are an exciting source of new and interesting physics,
with the promise of eventually achieving a high repetition rate, low emittance,
variable ion source. In conjunction with advances in conventional accelerator
technology, a hybrid approach featuring laser generated ion beams injected into
a high repetition rate accelerator could one day provide a feasible alternative to
current synchrotron designs for applications in science, medicine, and industry.
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