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Abstract

We employ the functional renormalization group to study the chiral phase transition in the phase
diagram of hot and dense QCD. In our phenomenological investigation of strongly interacting mat-
ter, we consider a low-energy effective model of two massless quark flavors that interact through
a Yukawa term. Specifically, we work with a simple quark-meson model that includes quarks, the
scalar sigma meson, and the pseudoscalar pions as its relevant field degrees of freedom. We com-
pute meson curvature masses, which we use to determine the phase boundary associated with
the chiral phase transition. Additionally, we calculate meson spectral functions, which provide
information about, e.g., particle resonances and decay processes, thereby establishing a direct link
between theory and experiment. Based on our calculations of chiral observables in different reg-
ularization schemes, we examine the scheme dependence of curvature masses and spectral func-
tions. In particular, we focus on investigating the effects of regulator-induced symmetry breaking.
To this end, we begin by employing canonical polynomial regulator functions, with and without
explicit Lorentz symmetry breaking. Both the spatial and the covariant regulators respect chiral
symmetry and the Silver-Blaze symmetry. We discuss the challenges associated with momentum-
dependent covariant regulators at finite external parameters and demonstrate a procedure for their
implementation. A comprehensive comparison of results obtained within the spatial and covariant
schemes then allows us to assess the relevance of artificial Lorentz symmetry breaking at finite
temperature and chemical potential. Furthermore, we make use of the Callan-Symanzik regula-
tor, which is momentum-independent and thus inherently covariant. This regulator also respects
the Silver-Blaze symmetry but breaks chiral symmetry. To allow for a meaningful implementation
of this covariant regulator, we construct a symmetrization procedure based on Ward-Takahashi
identities, which systematically eliminates the regulator-induced chiral symmetry breaking from
the theory. Subsequently, we demonstrate the applicability of our symmetry-constrained Callan-
Symanzik scheme through computations of curvature masses, spectral functions, and the phase
diagram. In particular, we highlight the impact of artificial chiral symmetry breaking on chiral
observables when our symmetrization procedure is not employed.

In addition to our investigation of regulator artifacts associated with explicit symmetry breaking,
we collect and analyze various mathematical subtleties that arise in calculations of loop diagrams
at finite temperature and/or chemical potential. In general, the calculation of correlation functions
involves integration, differentiation, and the computation of limit processes. A priori, these math-
ematical operations do not commute. We present several scenarios in which the order of applying
these operations is essential for obtaining consistent and unambiguous results. An understanding
of these subtleties is of principal importance for quantum field theories and, in particular, underlies
our calculations of chiral observables from the quark-meson model.






Zusammenfassung

Wir verwenden die Funktionale Renormierungsgruppe, um den chiralen Phaseniibergang im Pha-
sendiagramm von heil3er und dichter QCD zu untersuchen. In unserer phdnomenologischen Unter-
suchung stark wechselwirkender Materie betrachten wir ein effektives Niederenergie-Modell mit
zwei masselosen Quarkflavors, die iiber einen Yukawa-Term miteinander wechselwirken. Konkret
arbeiten wir mit einem einfachen Quark-Meson-Modell, das Quarks, das skalare Sigma-Meson und
die pseudoskalaren Pionen als relevante Feldfreiheitsgrade beriicksichtigt. Wir berechnen Kriim-
mungsmassen der Mesonen, die wir zur Bestimmung der Phasengrenze des chiralen Phasentiber-
gangs heranziehen. Dariiber hinaus berechnen wir mesonische Spektralfunktionen, die Informa-
tionen iiber beispielsweise Teilchenresonanzen und Zerfallsprozesse liefern und somit eine direkte
Verbindung zwischen Theorie und Experiment herstellen. Basierend auf unseren Berechnungen
chiraler Observablen in verschiedenen Regularisierungsschemen untersuchen wir die Schemenab-
héngigkeit von Kriimmungsmassen und Spektralfunktionen. Insbesondere konzentrieren wir uns
auf die Untersuchung der Auswirkungen von durch Regulatoren induzierten Symmetriebrechun-
gen. Zu diesem Zweck verwenden wir zunichst kanonische polynomiale Regulatorfunktionen,
sowohl mit als auch ohne explizite Brechung der Lorentz-Symmetrie. Sowohl der rdaumliche als
auch der kovariante Regulator respektieren die chirale Symmetrie und die Silver-Blaze-Symmetrie.
Wir diskutieren die Herausforderungen, die mit impulsabhédngigen kovarianten Regulatoren bei
endlichen externen Parametern verbunden sind, und zeigen ein Verfahren zu ihrer Implemen-
tierung. Ein umfassender Vergleich der Ergebnisse, die in dem rdumlichen und dem kovarianten
Schema erzielt wurden, ermdglicht es uns anschlieend, die Relevanz der kiinstlichen Lorentz-
Symmetrie-Brechung bei endlicher Temperatur und chemischem Potential zu bewerten. Dariiber
hinaus nutzen wir den Callan-Symanzik-Regulator, der impulsunabhidngig und daher inhérent
kovariant ist. Dieser Regulator respektiert ebenfalls die Silver-Blaze-Symmetrie, bricht jedoch
die chirale Symmetrie. Um eine sinnvolle Implementierung dieses kovarianten Regulators zu er-
moglichen, entwickeln wir ein Symmetrisierungsverfahren basierend auf Ward-Takahashi-Identita-
ten, das die durch den Regulator induzierte Brechung der chiralen Symmetrie systematisch aus
der Theorie entfernt. AnschlieBend demonstrieren wir die Anwendbarkeit unseres symmetrieer-
haltenden Callan-Symanzik-Schemas durch Berechnungen von Kriimmungsmassen, Spektralfunk-
tionen und des Phasendiagramms. Insbesondere zeigen wir die Auswirkungen der kiinstlichen chi-
ralen Symmetriebrechung auf chirale Observablen, wenn unser Symmetrisierungsverfahren nicht
angewendet wird.

Zusatzlich zu unserer Untersuchung von Regulatorartefakten, die mit expliziter Symmetriebrech-
ung verbunden sind, sammeln und analysieren wir verschiedene mathematische Feinheiten, die bei
Berechnungen von Loop-Diagrammen bei endlicher Temperatur und/oder chemischem Potential
auftreten. Im Allgemeinen umfasst die Berechnung von Korrelationsfunktionen Integration, Differ-
entiation und die Durchfiihrung von Grenzwert-Prozessen. A priori vertauschen diese mathematis-
chen Operationen nicht. Wir présentieren mehrere Szenarien, in denen die Reihenfolge dieser Op-
erationen entscheidend ist, um konsistente und eindeutige Ergebnisse zu erhalten. Das Verstdndnis
dieser Feinheiten ist von grundlegender Bedeutung fiir Quantenfeldtheorien und bildet insbeson-
dere die Grundlage fiir unsere Berechnungen chiraler Observablen im Quark-Meson-Modell.
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INTRODUCTION

Almost all matter around us is composed of several dozen chemical elements and their isotopes.
Each atom has a compact nucleus, made of interacting protons and neutrons, and a cloud of elec-
trons surrounding the nucleus. This is, however, an effective description of nature, suitable only
at certain length or energy scales. In particular, results from deep inelastic scattering experiments
as well as the discovery of excited states inside Baryons have pointed towards the fact that nucle-
ons are not fundamental point-like particles but have a deeper substructure [1, 2]. Therefore, the
theory of interacting nucleons fails to correctly describe our world at sufficiently high energies as
more fundamental degrees of freedom become relevant. Nowadays, the widely accepted theory
for describing the substructure of nucleons is quantum chromodynamics (QCD). It is known as the
theory of the strong interaction, one of the four fundamental forces in nature, and is an important
cornerstone of the Standard Model of particle physics. More specifically, QCD is the theory of
fermionic fields, so-called quarks, and non-Abelian gauge fields, so-called gluons, whose mutual
interactions are based on the SU(N,) symmetry group, where N, = 3 is the number of color charges.
QCD is a mathematically rich and conceptually intriguing theory, see, e.g., Refs. [3-5] for an in-
troduction. For example, it gives rise to the non-perturbative phenomenon of confinement at low
energies, whereby physical observables appear only as color-singlet states. Phenomenologically
speaking, as the strong interaction becomes stronger at larger distances, quarks and gluons are
never observed in isolation but are always confined into bound states such as the nucleons. Con-
versely, at high energies or short distances, the interaction weakens, allowing quarks to behave
almost like free particles. This phenomenon, known as asymptotic freedom, is a distinct property
of non-Abelian gauge theories [6].

The phase structure of strongly coupled systems is a subject of intense investigation across
various fields of physics, ranging from cosmology and high-energy physics to condensed-matter
physics. In the plane of temperature and chemical potential, QCD gives rise to a plethora of differ-
ent equilibrium phases whose detailed analysis is crucial for our understanding of the formation
of matter, see, e.g., Refs. [7-19]. In particular, at low temperatures and densities, QCD gives rise
to the hadronic phase, which is governed by confinement and the dynamical generation of quark
masses. The investigation of this phase is important for understanding the properties of strongly
interacting matter under normal conditions. It provides a microscopic understanding of the in-
teractions that govern the behavior of nucleons and nuclei. Under more extreme conditions, the
strong force can give rise to different phases in which hadronization processes do not dominate.
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For example, with increasing temperatures, the thermal excitation of hadronic matter becomes
strong enough to overcome the confinement force and triggers a transition into a plasma of quarks
and gluons. Studying QCD at high temperatures is essential for our understanding of the early uni-
verse, in particular, how it transitioned from a plasma state into the cooled state we observe today.
For further information, we refer to, e.g., Refs. [20-24]. At low temperatures and high densities,
quarks form Cooper pairs near the Fermi surface, leading to the phenomenon of color supercon-
ductivity, see, e.g., Refs. [25-30]. The investigation of quark matter in this regime of high densities
provides direct insights into the interior structure of neutron stars, where densities can exceed sev-
eral times nuclear saturation density. In particular, the equation of state of dense matter plays a
vital role in this context as it is a basic ingredient for modeling various astrophysical phenomena
related to neutron stars, such as core-collapse supernovae and binary neutron star mergers [31].
At the moment, it is not possible to access the high-density regime of strong-interaction matter by
experiment. However, recreating the conditions necessary for a systematic study of the QCD phase
diagram up to intermediate densities can be achieved by collisions of heavy ions at ultrarelativistic
energies [32-37]. In particular, one of the main goals of the heavy-ion collision program is to
shed light on the possible existence and location of the chiral critical endpoint [38-41]. This is a
hypothetical point in the QCD phase diagram, at which the nature of the chiral phase transition
is expected to change from a first-order transition to a smooth crossover as temperature increases.
The quest for the critical endpoint is also increasingly supported by efforts of theoretical physics,
see, e.g., Refs. [18, 42-47].

The region of low temperatures and low densities in the QCD phase diagram is well-understood
by means of chiral perturbation theory [48-50] and nuclear many-body theory [51-53]. Observ-
ables in this region can often be directly compared with experimental data from nuclear physics.
The dynamics of quarks and gluons under extreme conditions, particularly at high temperatures
and densities, can be explored using weak-coupling approaches. More specifically, by performing
systematic expansions in the coupling constant, perturbation theory can provide valuable insights
into the thermodynamic properties of hot and dense quark matter, such as pressure, energy density,
and transport coefficients [54-57]. Furthermore, perturbative results serve as benchmarks for non-
perturbative approaches, which helps to identify regions where these methods converge or deviate.
Investigating QCD at intermediate scales, however, poses severe challenges due to the emergence
of inherently non-perturbative phenomena such as critical behavior and phase transitions. As a
result, the exploration and understanding of the QCD phase diagram at intermediate temperatures
and densities remains an active field of research up to this day [58-60].

There are conceptually different approaches to meet the challenges of exploring the QCD phase
diagram. Computational approaches such as lattice calculations and statistical Monte-Carlo meth-
ods have become quite successful over the last years [61-65]. Nevertheless, lattice approaches
severely suffer from the sign problem [66-68], which limits their applicability to small chemical
potentials. Furthermore, the AdS/CFT correspondence [69-71] can be employed to perform cal-
culations for strongly interacting systems. This method is based on the holographic principle and
maps a strongly coupled field theory to a string theory in its weak-coupling limit. In addition,
functional approaches to QCD in terms of Dyson-Schwinger equations [72, 73] can be used. These
form a set of self-consistent equations for correlation functions, which encode the interactions be-
tween particles in a system.

These non-perturbative methods are invaluable tools for studying strongly interacting systems, es-
pecially in regimes where perturbative methods break down. Nevertheless, their applicability to
pure QCD often faces practical limitations due to the inherent complexity of the non-Abelian gauge
theory. Therefore, the exploration of the phase diagram at intermediate scales mainly relies on ef-
fective low-energy models. Effective models aim at a simplified description of the full theory by
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encoding only those low-energy degrees of freedom that are relevant for the phenomenon of inter-
est. In other words, effective models are strategically designed approximations that capture the es-
sential physics in a certain region of parameter space. The most prominently used models for QCD
are Nambu-Jona-Lasinio (NJL) models [74, 75] and their relatives, see, e.g., Refs. [28, 76, 77] for
reviews. NJL-type models essentially rephrase the quark-gluon dynamics at high energies as four-
quark interactions at lower energies, which provides more direct access to the mechanisms that
underlie the phase structure of QCD at intermediate scales. In particular, NJL-type models have
been found extremely useful in the description of the chiral phase transition and keep performing
successfully within their domain of reliability. It is worth mentioning that the determination of the
relevant low-energy degrees of freedom generally requires a great amount of physical as well as
mathematical insight. Therefore, the phenomenological analysis of results obtained from effective
models can suffer from generic features and underlying approximations.

In this thesis, we shall employ the functional renormalization group (fRG) for the analysis of
hot and dense QCD. The fRG is a powerful and versatile non-perturbative approach to studying
quantum field theories. It is based on the concept of progressively incorporating quantum or
thermal fluctuations from high to low energy scales. In particular, the systematic examination
of high-energy degrees of freedom allows for capturing the emergence and evolution of effective
degrees of freedom. Thereby, the fRG is capable of describing the physics of a given system over a
wide range of scales. This makes it particularly well-suited to study phase transitions and critical
phenomena. Specifically, for an overview of recent progress in studies of QCD at finite temperature
and density using the functional renormalization group approach, see, e.g., Refs. [42, 78-80]. The
fRG relies on the introduction of an auxiliary function, the regulator, enabling us to control the
amount of quantum or thermal fluctuations contributing to the theory. By varying this amount, we
can effectively interpolate between the microscopic and macroscopic descriptions of the system.
Once all fluctuations are taken into account, the formalism provides us with the action functional of
the full quantum theory. It is worth noting already at this point that the regulator serves primarily
as a tool in the renormalization group approach to quantum field theory. As such, it is in general
not a physically meaningful object and should not spoil the predictions for physical observables.
This means that the behavior of the regulator should in particular be constrained by the symmetry
properties of the underlying theory. Nevertheless, imposing too many restrictions on the regulator
function often renders concrete calculations extremely expensive and thus hinders its practical use.
As a consequence, it has become common practice for phenomenological studies to implement
regulator functions that induce an explicit symmetry breaking. This symmetry breaking is artificial
such that results for observables in principle suffer from regulator artifacts. Concretely, in the
presence of finite external parameters, fRG studies usually consider spatial regulators that explicitly
break Lorentz symmetry in the vacuum limit. In order to properly assess the impact of regulator
artifacts on predictions for physical observables, an extensive analysis of results is required.

1.1 Focus and outline of this thesis

The aim of this thesis is twofold. We conduct a comprehensive study of observables relevant to
the chiral phase transition in hot and dense QCD while also analyzing their scheme dependences
arising from regulator-induced symmetry breaking in the fRG framework. In particular, we focus
on covariant regularization schemes in our study of the chiral phase boundary and discuss their
individual challenges, correct implementation, and significance in this context.

Let us further elaborate on these points in the following. For our investigation of the QCD phase
diagram, we consider a low-energy effective model of two massless quark flavors that interact
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through a Yukawa term. To be specific, we work with a simple quark-meson model, a special form
of NJL-type model. This model considers quarks and (pseudo-)scalar mesons as its relevant field
degrees of freedom, which makes it well-suited to describe the physics of the chiral phase transi-
tion. In order to access chiral observables, we take a renormalization group approach to quantum
field theory. More specifically, we employ the fRG, taking into account only purely fermionic loops
for simplicity. In addition, we make use of the one-loop approximation since leading-order effects
are expected to dominate the behavior of the system near critical points. For our study of the
quark-meson model, we focus on the computation of meson curvature masses and meson spec-
tral functions. In particular, the behavior of curvature masses as functions of external parameters
such as temperature and chemical determines the phase boundary associated with the chiral phase
transition. Spectral functions, on the other hand, provide access to, e.g., particle resonances and
transport coefficients, thereby establishing a direct connection between theory and experiment,
such as heavy-ion collision experiments.

In our endeavor to analyze the scheme dependences of curvature masses and spectral functions,
we first consider polynomial regulator functions with and without Lorentz symmetry breaking.
Both the spatial and covariant polynomial regulators that we consider respect chiral symmetry
as well as the Silver-Blaze symmetry. We stress that momentum-dependent covariant regulators
render the computation of correlation functions at finite external parameters extremely difficult.
Therefore, we discuss and demonstrate a systematic procedure for their implementation. A com-
prehensive comparison of results as obtained within the spatial and covariant schemes then lets
us assess the relevance of the artificial Lorentz symmetry breaking at finite external parameters.
Furthermore, we consider a Callan-Symanzik (CS) regulator, which is momentum-independent
and thus inherently covariant. This regulator also respects the Silver-Blaze symmetry but breaks
chiral symmetry. Chiral symmetry is the key symmetry principle of massless QCD in the context
of the chiral phase transition. As a result, the CS regulator has not yet received much attention
in the study of chiral fermion-boson models. To allow for a meaningful implementation of this
covariant regulator, we construct a symmetrization procedure based on Ward-Takahashi identities,
which systematically eliminates the regulator-induced chiral symmetry breaking from the theory.
Afterwards, we demonstrate the applicability of our symmetry-constrained CS scheme. In partic-
ular, we address the impact of artificial chiral symmetry breaking on chiral observables when our
symmetrization procedure is not employed. In the end, we take effects of renormalization into
account and compute the phase diagram in our symmetrized CS framework.

In addition to our phenomenological study of QCD and the investigation of regulator artifacts
associated with explicit symmetry breaking, we present and analyze various subtleties that can
be encountered in calculations of correlation functions at finite temperature and/or chemical po-
tential. In general, the calculation of correlation functions involves integration, differentiation,
and the computation of limit processes. A priori, these mathematical operations do not commute.
Nevertheless, expansion schemes and the application of projection prescriptions often rely on the
assumption that the involved operations are commutative. We demonstrate explicitly that this
assumption can easily fail in studies of dense systems. More specifically, we present several sce-
narios in which the order of applying these operations is essential for obtaining consistent and
unambiguous results. An understanding of subtleties appearing in finite-density studies is of great
relevance with respect to both perturbative and non-perturbative computations of the equation of
state of quantum field theories as well as their phase structure. In particular, a careful treatment
of complications arising from the non-commutative nature of mathematical operations underlies
our calculations of chiral observables from the quark-meson model.
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The present work is organized as follows: Chapter 2 is devoted to all aspects of quantum field
theory which are crucial for our investigation of the QCD phase diagram and an analysis of scheme
dependences. In particular, after a recapitulation of fundamental aspects of quantum field theory
in Section 2.1, we introduce the functional renormalization group method in Section 2.2. Here, we
not only derive the characteristic RG flow equation for the fRG but also discuss general properties
of regulators and the importance of RG consistency. The general incorporation of temperature
and chemical potential into the framework of quantum field theory is addressed in Section 2.3.
In this section, we explain the imaginary-time formalism and discuss the Silver-Blaze property,
which is an important feature for theories of fermions that couple to a chemical potential. A
detailed discussion of mathematical subtleties that arise in the calculation of loop integrals at
finite external parameters can be found in the subsequent Section 2.4. Our comprehensive study
of chiral observables and their dependence on regulator artifacts is fully contained in Chapter 3.
Here, we start with an introduction of the quark-meson model in Section 3.1 and also address
details of our particular fRG framework. After the presentation of our methodology, we continue
with our first phenomenological study. Concretely, we discuss the implementation of polynomial
regulator functions in the context of the chiral phase transition in Section 3.2. Our fRG study of
the QCD phase diagram using the Callan-Symanzik regulator is detailed in Section 3.3. Finally, we
summarize our results in Chapter 4 and briefly discuss potential future research objectives.

1.2 List of publications

The compilation of this dissertation was done solely by the author. The results were obtained with
my collaborators and are largely published or available as a preprint, see the following listing:

[81] Title: “Renormalization Group Studies of Dense Relativistic Systems”
Authors: Jens Braun, Timon Dornfeld, Benedikt Schallmo, and Sebastian T6pfel
Published in: Phys. Rev. D 104, 096002 (2021)
E-print: arXiv:2008.05978 [hep-ph]

[82] Title: “Renormalised spectral flows”
Authors: Jens Braun et al.
Published in: SciPost Phys. Core 6, 061 (2023)
E-print: arXiv:2206.10232 [hep-th]

[83] Title: “Subtleties in the calculation of correlation functions for hot and dense systems”
Authors: Sebastian Topfel, Andreas Geil3el, and Jens Braun
Published in: Phys. Rev. D. 111, 016023 (2025)
E-print: arXiv:2410.06674 [nucl-th]

[84] Title: “Phase structure of quark matter and in-medium properties of mesons from Callan-
Symanzik flows”
Authors: Sebastian Topfel, Jan M. Pawlowski, and Jens Braun
E-print: arXiv:2412.16059 [hep-ph]

Texts and figures in this thesis that are taken from or based on these references are not marked
explicitly. However, the references are incorporated as follows: Section 2.4 and parts of Appendix C
are based on Ref. [83], whereas Section 3.3 and parts of Appendix D are based on Ref. [84].
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QUANTUM FIELD THEORY

In this chapter, we recapitulate the basic principles of the path integral approach to quantum field
theory and establish generating functionals as needed in order to systematically access correla-
tion functions. Based on the Wilsonian viewpoint [85, 86], we then introduce the renormaliza-
tion group method, which will serve as a key concept for our investigation of strong-interaction
matter in Chapter 3. In particular, we derive the Wetterich equation [87], which represents the
characteristic flow equation for the functional renormalization group, and present the concept of
renormalization group consistency [88]. Lastly, we demonstrate how the vacuum formalism can
be extended to finite external parameters, i.e., temperature and chemical potential. The physical
implications as well as the mathematical subtleties that come along with the introduction of finite
external parameters will be discussed in detail.

2.1 Fundamentals

Having evolved as a species that experiences the world at specific length and time scales, it is
only natural that everyone has ingrained quite an intuitive understanding of the character of the
physical laws relevant at such scales. These laws have been historically the first to be formally
derived and studied and they can be collected into what is commonly known as classical, non-
relativistic mechanics. The predictions from this branch of physics, however, get less and less
accurate the further away from macroscopic scales we operate. In other words, the classical, non-
relativistic picture of the world has only a certain range of reliability and has to be considered some
kind of limit of a more general description. From a phenomenological standpoint, this thesis does
not deal with questions of cosmology, which is the physics at very large length scales, but rather
with topics related to the behavior of elementary particles, i.e., the physics at sub-atomic length
scales. In order to reliably describe the physics at these scales, we need a quantum description
of the world. A quantum theory is constructed from a classical theory by a so-called quantization
procedure.

There are various ways of constructing a quantum theory from a classical one, e.g., canoni-
cal quantization, deformation quantization [89, 90], or geometric quantization [91, 92]. Our
approach to quantum field theory is based on the path integral formalism, whose origin can be
traced back to Dirac [93] but which was worked out by Feynman [94, 95]. The foundation for
the functional integral viewpoint is the quantum-mechanical completeness relation, which gives
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rise to a representation of the evolution kernel in terms of an integral formula. For a quantum-
mechanical system, whose Hamiltonian H as a function of the momentum is a non-degenerate
quadratic form with constant coefficients, the matrix elements of the time evolution operator in
the basis of localized states are given by

tp o X(tp)=Xy tp )
(Xp| exp (—J dt H(p, X, t)) |X,) =% J DX exp (—J de L(X, X, t)) , (2.1)
t X(tg)=X, tq

a

where DX is a symbolic notation for a translation-invariant measure on the infinite-dimensional
vector space of paths from ¥, to X;.! Also symbolically, ¢ denotes some constant that ensures the
correct physical dimensions for the path integral expression. The path integral formula (2.1) over-
all leads to the notion that quantum-mechanical evolution simultaneously considers all possible
paths. Intuitively, the need for integration might not be that unexpected. The position operator
does not commute with the Hamiltonian and, as a consequence, time evolution changes the posi-
tion eigenstate into one in which position is not determined. The quantum system has no definite
trajectory and it is necessary to take the sum over all possible ones, according to the superposition
principle. Notice that we follow Feynman’s construction of the path integral in which the dynamics
of the system is not dictated by a Hamiltonian but by a corresponding Lagrangian L, which, when
integrated over with respect to time, leads us to the classical action

S[*] :J b de L(®,%,t) . (2.2)

This formulation allows for a relatively simple understanding of the classical limit since we can
see classical mechanics emerge from the saddle point approximation to quantum mechanics. More
concretely, if the action functional gets sufficiently large, S[¥] > 1,% the path integral is domi-
nated by trajectories close to the classical one, X., which minimizes the action and hence satisfies
5S[*.] = 0.2 This demonstrates that, where the global minimum of the classical action is sufficient
to determine the evolution in (Euclidean) classical mechanics, quantum-mechanical evolution is
sensitive to the entire action.

2.1.1 Generating functionals

Aiming for a description of systems including elementary particles, we now promote the concept
of path integral quantization to quantum field theory. Functional integral methods greatly simplify
the construction of interacting quantum field theories compared to, e.g., canonical quantization
and allow for the investigation of non-perturbative phenomena. In addition, the path integral for-
mulation lets us easily incorporate effects of equilibrium thermodynamics into the vacuum quan-
tum theory, see Section 2.3. Practically speaking, the most important objects to compute in any
quantum field theory are expectation values called correlation functions. These n-point correlators
with n € N are associated with n-particle interactions and can be directly related to quantities
accessible through experiment, i.e., scattering cross sections and decay rates. The path integral

! In fact, there is no non-trivial Lebesgue measure on an infinite-dimensional vector space. The continuum functional integral

is not very well defined from a mathematical perspective, yet in physical applications, its definition as a limit of the discrete
functional integral is quite well-behaved. Therefore, the quantum-mechanical path integral can be made rigorous by
rewriting the rh.s. of Eq. (2.1) as an integral with respect to the so-called Wiener measure [96-99]. For simplicity, however,
we will stick with the physicist notation. For more technical details on the path integral, see, e.g., Refs. [100-105].

When working in SI units, the exponential in the path integral has the structure exp (—S[X]/h). Treating Planck’s constant
as a formal parameter and considering i < 1 then justifies the use of the saddle point approximation. In natural units,
however, there is no explicit dependence on # so the classical limit is realized by letting the action take large values.
While Hamilton’s principle is a stationary-action principle in real time, it is indeed a least-action principle in Euclidean time.
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formalism conveniently allows to obtain every correlation function from a single generating func-
tional such that the construction of suitable generating functionals will play an essential role in
the following.

We consider a general (vacuum) quantum field theory, which is governed by the action functional
S[®].* All field degrees of freedom of the theory are contained within the purely generic variable
®, sometimes also called superfield, which we define as

@(x) ¢(p)
() =| p(x) | = f e?™ | (p) :Jeif”x 3(p) . (2.3)
p p
P (x) V' (-p)

Here, ¢ represents a real-valued ordinary function and corresponds to a scalar field, whereas
2 and v represent Grassmann-valued Dirac spinors denoting fermion and antifermion fields,’
respectively. In terms of what types of fields are incorporated, this is the most basic setup but a
generalization is straightforward since tensor bosons behave like ¢ with additional indices and
complex scalar fields, such as diquarks or Faddeev-Popov ghosts [112], come in pairs and can
therefore enter the superfield just like the fermions. We remark that, from a phenomenological
standpoint, our superfield & may be considered bosonic as there is an even number of fermions
involved. This simplifies the following presentation of generating functionals in quantum field
theory.

An important functional which underpins all further discussions is defined by
Z[J]= ﬂf D e SIEIHTE (2.4)

where 4" denotes a normalization constant rendering Z dimensionless. This functional is reminis-
cent of the partition function of statistical mechanics and, for that reason, we will refer to Z as the
partition functional in the context of quantum field theory. In the calculation of the path integral
above, in principle boundary conditions have to be imposed,

0
.X'a—>OO

lim <I>(x2,5c’) =d,(X), gim ®(x,,X) = @,(X), (2.5)
xb—)OO

but in the limit as the time coordinate goes to positive or minus infinity, the normalized functional
integral does not actually depend on the choice of the spatial configurations ¢, and ¢, [113]. The

Guided by the Hilbert space description of quantum mechanics, one could argue that a Hamiltonian formulation of the path
integral would be more fundamental than a Lagrangian one. In fact, if we consider a general field theory, which is only
constrained by a set of symmetry transformations, and start with a Hamiltonian form of the path integral, then the existence
of a Lagrangian version of the functional integral is not guaranteed. However, we do not follow that line of argumentation
and simply define our quantum field theory by a Lagrangian. It is also worth noting that there are quantum field theories
that do not admit a Lagrangian description [106, 107], even though we will not consider such cases here.

In order to allow for a path integral description for fields obeying the Fermi-Dirac statistics, we need complex-valued
Grassmann variables. The Dirac spinors are then based on a Grassmann algebra that is constructed from two independent
sets of Grassmann variables. This means that, compared to Minkowski quantum field theory, our Dirac spinors 1_,[) and 1 are
independent and not related by any notion of complex conjugation [108]. For more details on the Grassmann calculus, see,
e.g., Refs. [109-111].
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partition functional Z is a functional of the supersource

Jj(x) i(p)
J(x)=1] T(x) =feipTx n'(—p) ZJei”T’“ J(p), (2.6)
p p
—n(x) —n(p)

which is the generic source field corresponding to the superfield (2.3). It consists of the real-
valued function j as well as the Grassmann-valued spinors 1 and 7. The source field can be
considered as an externally applied perturbation, whose insertion is common practice to learn
about the dynamical properties of a quantum system. Furthermore, we have declared the scalar
product®

Jﬂ¢=fUUAM¢%ﬂ=J(ﬂmw@ﬂﬂ@hﬂ@+%ﬂnwﬂ, (2.7)
where the summation index a runs over the field degrees of freedom.

With the partition functional at hand, we are now ready to engineer suitable generating func-
tionals. The overall idea behind the construction of generating functionals is to obtain correlation
functions by a projection procedure involving functional differentiation. In particular, the generat-

ing functional for n-point correlation functions, also called vacuum persistence amplitude, is given
by
. 3 Z[J]
A= (T 7"0) = ===, 2.8

)= (ot e Hi0) = 2 (2:8)
where |Q) represents the ket state of the interacting vacuum and T is the time-ordering operator
for the Heisenberg field operators. Notice that, by construction, the vacuum persistence amplitude
is normalized to unity, A[0] = 1. In general, the n-point function is then given by

—

o oy P20 0 (5 5 00
00 = — =7 a1 (29)

J=0

where J; denotes the appropriate source corresponding to the field-dependent quantity O; for
i € {1,...,n}. Note that the anticommutativity property of the Grassmann-valued field variables
directly translates to the corresponding differential operators. Consequently, it does make a differ-
ence whether functional derivatives act on a field-dependent object from the left or from the right
if that object contains even-numbered multiples of Grassmann variables.” We hence use an arrow

To be more precise, only the spacetime integral over the bosonic fields yields an ordinary scalar. Performing the spacetime
integral of a spinor bilinear results in an even supernumber since ordinary integration does not affect any properties inherited
from the Grassmann algebra. Those properties, however, do not survive the functional Grassmann integration such that
Z[0] is indeed an ordinary scalar. For more information about supernumbers, see, e.g., Refs. [102, 114, 115].

In the fermionic subspace, differentiation from the right-hand side is defined as differentiation from the left-hand side with
an additional factor compensating for the difference in the number of anticommutations. Specifically, for an n-dimensional
Grassmann algebra with generators 8; we have

a 2
0.0, — =(—1)""'—0,...06,...
61 91 en 89 ( ) 69 91 61 en )

i i

where the index i can take integer values from 1 to n € N.
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notation to indicate the direction of functional differentiation. More concretely, we consider the
example of the (matrix-valued) two-point function, which reads

— —

o o
5JT(X)T()/)A[J] . (2.10)

(@(x) 2T(y)) =
J=0

We emphasize that the classical action serves as a crucial ingredient for the definition of a Borel
probability measure for the bosonic path integral [101, 116], which automatically leads to the
understanding of correlation functions as expectation values. In the case of fermions, there is no
underlying measure space for the path integral but the functional integral formulation of fermions
follows closely that of bosons since this strategy has proven to be very successful for the construc-
tion of generating functionals and correlation functions with the correct fermionic properties. It is
also important to realize that, while the action S fully determines our theory at the classical level,
the generation of quantum effects and their incorporation into observables happens only through
the process of functional integration. According to the reconstruction theorem [101, 117], a quan-
tum field theory is uniquely determined by its correlation functions. Since any correlation function
can be obtained from the generating functional, .4 contains all information of the underlying phys-
ical system and the theory would be completely solved once the generating functional is exactly
known. Unfortunately, the functional integral can be carried out exactly only in rare cases.

An asymptotic expansion of correlation functions (2.9) in terms of couplings exhibits that the gen-
erating functional .4 encodes the information of the underlying physical system rather inefficiently.
As a matter of fact, we often observe multiplicative expressions appearing repetitively throughout
the expansion. In a more pictographic language, this means that the Feynman diagrams contribut-
ing to the n-point correlators contain disconnected pieces [118-120]. Contributions to correlation
functions of higher order get quite redundant since there is always the possibility of particles pass-
ing each other without interacting. Because Feynman diagrams of disconnected pieces do not
contribute to scattering amplitudes (T-matrix elements), it is more convenient to work with the
generating functional

wlJ1=In(2[J]) (2.11)

of connected n-point correlation functions, also called Schwinger functional. It is simply a more
efficient way to capture the information of the physical system as W only contains connected
diagrams. As before, correlation functions are constructed from the corresponding functional by
means of functional differentiation:

— —

5
K

(O0)...0,)©°™ = WI[J] . (2.12)

J=0

The general strategy for the generation of connected correlators is to take the full correlation
function and then subtract all disconnected contributions. Due to the presence of the logarithm in
Eq. (2.11), this method is implemented automatically when calculating correlation functions from
the Schwinger functional. This will be illustrated in the following by the example of the connected
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5 1 5
L (&n(x) (zm 5107 ]))
1 5 5
. o 1)( m))
By ( ZLP (an( ) 570y)

two-point function.

(@(x) T(y)) ™™ = ( 0 [1)

6JT(x) 5J(y)

1 5 5
- (Z[J] 5J7(x) 5J(y)Z[J])

J=0

J=0
5 & 5 5
~(owaer ) (), ().
= (2(x) @7(y)) — {2(x)) (@7(1)) - (219)

That any further moments of the Schwinger functional are connected correlation functions accord-
ing to the principle demonstrated above, can be shown inductively [120], see also Refs. [121, 122].
The connected and the full one-point function are identical but notice that this equality breaks
down as soon as we allow for finite sources.

For everything that follows it is beneficial to introduce the generalized n-point correlator

(0,...0,), =

Z[J] N f Dé O0...0, e ST (2.14)

which reduces to the ordinary full n-point function (2.9) in the case of J = 0. We are now prepared
to define the source-dependent connected two-point Green’s function®,

— —

5§ 6
6JT(x) 8J(y)

= (@(x) ®T()); — (2(x)); (2T()),
= ((e(x) — (2(x)), ) (@) — (2(3)).,)")y (2.15)

which is a functional of the supersource J as well as a function of the spacetime variables x and y.
Evaluating the source-dependent connected two-point correlator at J = 0 yields the result (2.13)
again. We note that this Green’s function is also the Hessian of the Schwinger functional. In
particular, for general fields = from the space of supersources, we find

GAI1(x, y) = (8(x) T(y))S*™ =

WI[J]

Tr{2 87 -GP[J]} = (-1)y ET-GP[]- E=(-1)y J J 27(x) GA[I](x, ) E(y)
xJy
=(E"-(@—(2),)*); 20, (2.16)

where the object (—1)y is used to indicate that there is an additional minus sign in the subspace that
involves fermions. The result (2.16) displays that the functional Hessian is positive semi-definite
and, consequently, that the Schwinger functional W is convex. As we will see in the following,
convexity is an important property as it allows us to perform the Legendre transformation [123]
of the Schwinger functional.

8 Correlation functions are referred to as Green’s functions in the literature most commonly. This roots back to the fact that, in
free scalar field theory, the two-point function is indeed a Green’s function to the Klein-Gordon operator in the mathematical
sense. Analogously, the two-point function for free fermions is a Green’s function to the Dirac operator.
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Although the connected correlation functions do not contain contributions that arise from the
multiplication of lower-order n-point functions, we can still further subdivide the connected dia-
grams into simpler units, which leads us to a minimal basis of Feynman diagrams for a given the-
ory. To be more precise, the class of connected diagrams is reducible to a set of Feynman diagrams
that remains connected when any internal line is cut. These diagrams, which cannot be decom-
posed into two disjoint graphs by cutting one internal line, are called one-particle-irreducible (1PI).
Topologically, this criterion indicates that the diagram is held together by loops. The irreducible
diagrams are of great importance in perturbation theory since every higher-order diagram can be
obtained in a unique way by taking 1PI diagrams and free propagators as building blocks. The
generating functional of 1PI correlation functions is found to be the Legendre transformation of
the Schwinger functional [124, 125]:

T[®q]=sup(JT-&q—W[J]). (2.17)
J

The functional T is called the quantum effective action and is convex by construction. Technically,
this means that for all a € [0, 1] it holds that

F[a%l+(1—a)X2]=sup(aJT-Xl+(1—a)JT-XZ—(a+1—a) W[J])
J
<asup(JT- X, —W[J])+(Q—a) sup(JT- X, —W[J])
J J

=aT[X,]+(1—a) ITX,]. (2.18)

Notice that the convexity of the Schwinger functional is necessary in order to ensure that the
quantum effective action is differentiable everywhere. The newly introduced field variable ¢ is
usually referred to as the classical field since it corresponds to the expectation value of the quantum
field ® in the presence of the external source. This is implied through the supremum condition:

—

VxeR: 57700 (JT-oq—W[J]) -~ =0 (2.19)
S0 = | oWl )| = (e, (2:20)

J=J, sup

Recall that the supersource is not part of the underlying physical system but serves as an auxiliary
field enabling us to obtain correlation functions by a simple projection procedure, see Eq. (2.9).
Thus, the field expectation value (2.20) in the presence of a finite source does not relate to any mea-
surable quantity. The source term (2.7) in particular spoils the invariance of the path integral (2.4)
with respect to unitary transformations of the fermion fields, which include Lorentz transforma-
tions, gauge transformations, negation, etc. As a consequence, the fermionic components of the
classical field do not vanish,” which is an unphysical result. Manually setting the supersource to
zero, however, lets us obtain the physical field expectation value:

P1,0(x) = @(x) = (2(x))o = (®(x) ™" = (&(x)) . (2.21)

sup—

° The explicit breaking of symmetry with respect to the negation of fermion fields, i.e., the simultaneous transformations
Y — — and 1_,0 — —E, is in fact the most general reason for the appearance of a finite fermion expectation value since it
also applies to theories of non-relativistic fermions or generic constructions without any direct connection to quantum field
theory. The reason for the appearance of negation symmetry in the unperturbed system is that fermionic theories are built
from spinor bilinears. Since fermion fields are complex-valued objects defined on a Grassmann algebra, the restriction to
bilinear structures ensures a consistent path integral quantization for fermions.
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Here, the fermionic contributions indeed vanish identically as would be expected from a physical
theory. For a given function ¢, the relation (2.20) implies that the specific source obeying the
supremum condition is actually a functional of the classical field, i.e., Jg,p = Jsup[Pc1]-

It is now possible to rewrite the quantum effective action,
1—‘I:cl)cl] = J;rup[q)cl] Py — W[Jsup] P (2-22)

and also calculate the first derivative,'°

— —

19) 19)
e ]——=JI [® —1 JI [®4]——— |- @
[ Cl]5<1>c1(x) sup[ cl](x) +(—1)yg Sup[ cl]5q>d(x) cl
5 5
WlJ, _— Joip| Pel | =———
[ Sup]&]sup[‘i’cl] sup[ Cl]5q’c1(x)

=J7 [24](x) . (2.23)

This equation is known as the quantum equation of motion by which the quantum effective action
governs the dynamics of the field expectation value, taking the effects of all quantum fluctuations
into account [126]. According to Eq. (2.21), evaluating the left-hand side of the quantum equation
of motion at fields @ , implies evaluating the right-hand side at vanishing source:

o

VxeR: F[q)d]m

=0. (2.24)

<I)c1:<1>c1,0

In other words, the physical field expectation value defines an extremal point of the quantum
effective action. Since I' is convex, . o must be its minimum. The physical field expectation value
therefore represents the ground state of the system as defined by the quantum effective action.
Thus, Eq. (2.24) is the quantum analog of the action principle of classical mechanics. In fact, it
rather generalizes the classical action principle since the quantum effective action is identical to
the classical action at leading order in the loop expansion. In order to see this, we will consider
the path integral representation of the quantum effective action. Putting everything together, we
obtain

e_F[‘bcl] — eW[Jsup]_JsTup[‘bcl]'q)cl — ‘/VJ Dd e_S[q’]+J;rup[q>cl]'(q)_<bcl)

:‘/prq, e—S[e+eql+Iip[®al®

—

6
=N | D& exp| —S[®+®y]+ | [[®q]l— |- @ |, (2.25)
6%y
where, from the first to the second line, we have performed a shift in the fields according to
® — & + &, under which the differential remains unchanged. We have now arrived at a nonlinear

first-order functional differential equation for the generating functional I'. An exact solution to
this differential equation has so far been found only for rare, special cases. Expanding the classical

19 Understanding the first derivative of the quantum effective action as a right-derivative is motivated by the definition (2.17)
or, equivalently, Eq. (2.22), in which the classical field is placed right to the source field. Our convention for the first
derivative is convenient as it reproduces the same sign structure for the sources as defined in Eq. (2.6).



2.1 FUNDAMENTALS 15

action around the field configuration at which the exponent on the right-hand side is stationary
results in the loop expansion of the quantum effective action [121, 127-129]. The expansion up
to one-loop order yields

(1,1)
[Tg]+W[0] = S[6g]+ (—1)s %Tr{Ln(z(Ll—EEboci])} +., (2.26)

where we have used the notation

5 5
SUD[84](x, y) = ———S[y]—— .
[®24](x,y) [ d]5¢c1(3’)

58700 (2.27)

Through the perturbative treatment, we thus see that the functional I' is composed of the classical
action and a series of quantum corrections up to arbitrarily high loop orders. The classical limit
would let the correction terms diminish until we are left with the classical action in the expansion
above. Further notice that the classical and quantum effective action coincide up to some constant
in case of a non-interacting theory.!!

Having a look at the definition of the full and connected correlation functions, we identify
Eq. (2.24) as the 1PI one-point correlation function, which always vanishes per construction. In the
same spirit, we can also calculate all higher-order correlation functions from the quantum effective
action. The 1PI Green’s functions, also called proper vertex functions, are given by

— — P P

0 o o 0

I[oy]
5‘1’:1()(,1) 5‘1’:1()(1) ¢ 5<I>cl(y1) 5<I)cl(ym) By=dg

Ty, ym) = (2.28)

2.1.2 Controlling the infinities

Let us take a few steps back and review the path integral formulation of quantum field theory more
closely. One of the fundamental differences between mechanics and field theory is the fact that the
former deals with systems with a finite number of degrees of freedom while the latter describes
systems with an infinite number of degrees of freedom, provided that space is assumed to be con-
tinuous. As a consequence, not all methods that have proven successful in mechanics can be easily
carried over to field theory. In particular, a direct translation of the path integral from quantum me-
chanics into quantum field theory does not exist.'? This also shows through UV divergences, that
correlation functions in quantum field theory are notoriously plagued by.!® These issues are partic-
ularly apparent in perturbation theory beyond tree level, even for processes including only small
external momenta, since momentum conservation at each vertex of a Feynman diagram allows for
arbitrarily high internal momenta to circulate around the loop. This leads to the realization that
the partition functional (2.4) as well as all related objects are actually ill-defined and have so far
only conceptual value. If a theory is supposed to yield physical predictions, the divergences need

'We could redefine the Schwinger functional to W[J] = In(A[J]) to make the constant vanish, W[0] = 0. However, with
foresight regarding the functional renormalization group, we decide to stick with the Schwinger functional as defined in
Eq. (2.11). Also notice that field-independent terms added to the action do not alter the physics since they have no effect on
the equations of motion or the correlation functions.

12 There exists a Gaussian measure on the space of fields on R? for all d > 1, but for d > 2 this measure is not supported on
the space of ordinary functions [103].

13 Notice that low-dimensional quantum field theories indeed can generate convergent correlation functions. There are also
some four-dimensional supersymmetric theories that are actually free of divergences [130]. Moreover, non-relativistic
Hamiltonian field theories with a so-called interior-boundary condition [131] also lead to well-defined results.
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to be brought under control in some systematic manner.'* More technically, this means that the
divergent integrals must be subjected to a deformation procedure, the so-called regularization.

For the sake of simplicity, we perform the regularization process in momentum space and define
the UV-regularized partition functional analogously to Eq. (2.4) but with a functional integral over
the space of fields with energy at most A € R*. More precisely, we modify all ordinary momentum-
space integrals by restricting the integration domain to momenta satisfying the condition |p| S A."®
As a consequence, the newly introduced momentum scale A is often referred to as the UV cutoff.
We write the A-dependent functional as

ZMJ] = JVJ Do ¢S [21HTe (2.29)

where the actual regularization process for the path integral is controlled by the A-dependence of
the Gaussian measure. The normalization constant .4 can also carry a dependence on the cutoff
but we will keep this dependence implicit for simplicity. Assuming A to be finite, we now have UV-
regularized the theory by declaring that only momentum modes up the cutoff are allowed. In fact,
there can be no UV divergence in any loop integral following from Eq. (2.29) since the UV region
is simply absent. Moreover, the regularization procedure comes along with the benefit of giving
the UV divergences a precise quantitative character, i.e., we are able to determine the degree of
divergence from the behavior of the loop integral with respect to the cutoff as the cutoff tends to
infinity.'® Analogous to Eq. (2.9), the n-point functions are to be projected out of the generating
functional and can be represented as a functional integral over fields, whose momentum modes
are now constrained by the presence of a finite UV cutoff. The regularized functional (2.29) then
serves as the formal basis for any investigation of quantum field theories. Phenomenologically
speaking, the introduction of the cutoff, however, seems somewhat artificial because it is a priori
unclear what a reasonable choice for the value of A would be. In order to make more sense of
Eq. (2.29), we will discuss the Wilsonian viewpoint on quantum field theory, which also provides
a comprehensive and illustrative approach to the renormalization group (RG) method.

The aforementioned infinities only occur if we consider phenomena at arbitrarily short distances
or, equivalently, arbitrarily high energies. Put differently, the framework of quantum field theory
as defined by Eq. (2.4) breaks down if we assume the theory to be valid at all momentum scales,
no matter how high. It would, however, be naive to believe that a given theory would hold to
arbitrarily high energies. We would instead expect that, with increasing energy, other particles
would become more relevant until that theory under consideration would become merely part of
a larger and richer theory. Our ability to experience the world of high-energy physics is limited,
either by the resolution of a detector or by the power of the particle accelerator, and in principle
we cannot know what new physics may lay just out of reach of our best measuring apparatus.
We should therefore follow the philosophy from the very beginning of this section and assume

14 On a non-compact spacetime manifold, quantum field theories with massless particles also suffer from IR divergences. This
is, however, a separate issue and unrelated to the origin of UV divergences.

15 Many textbooks use the historically motivated prescription |p| < A, which indicates the implementation of a so-called sharp
UV regularization, (27)™* flpl <A d*p f(p)= fp 0(A? —p?) f(p) with 0 being the Heaviside step function. However, a sharp
cutoff leads to non-local interactions and spoils the derivative expansion [132, 133]. Our notation therefore indicates that
the suppression of high-momentum modes can also be implemented more smoothly.

16 In very simple scenarios, the chosen regularization prescription may already be enough to eliminate the divergence and
can assign a definite value to the regularized integral even in the limit A — oo. For example, applying a symmetric UV
regularization to the one-dimensional integral over an odd function and then considering the limit A — oo corresponds
to taking the Cauchy principal value, which yields zero, regardless of the function’s behavior at large values of the cutoff.
The majority of divergences in quantum field theory, however, survive the regularization process and can be categorized as
logarithmic divergences, lim,_,, In(A), or divergences of order n € N, lim,_,, A".
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that every theory comes with an inherent restriction for its domain of reliability. In fact, models
for statistical systems usually come with a microscopic scale a > 0, which corresponds to, e.g., a
lattice spacing, an intermolecular distance, the Planck length, etc. That scale then represents a
lower bound of resolution in position space and may as well be translated into an upper bound
of energy in momentum space, A ~ a~! < oo. This line of argumentation has been formalized
by Wilson [85, 86, 132, 134, 135] such that the cutoff A does not primarily represent a technical
tool to allow for a well-defined framework but instead parameterizes the domain of validity for
our theory. Then the cutoff has physical significance and should be regarded as being part of
the definition of the theory at hand. Notice that, generally speaking, mathematical and physical
validity are completely separate issues. In fact, a theoretical description of a physical system can be
mathematically well-defined yet physically unreasonable and even be mathematically ill-defined
while allowing us to extract meaningful results [136, 137]. The interesting observation, however,
is that these two concepts can be conveniently connected in the Wilsonian approach to quantum
field theory.

In the context of condensed-matter theory, the short-distance physics, i.e., the interactions be-
tween electrons and ions at atomic length scales, is well understood. Once all parameters in the
classical action are set to their physical values, macroscopic observables can be computed by eval-
uating the path integral. In the spirit of Wilson, we understand a theory as defined by S* as an
effective field theory, which embodies the part of physics that is experimentally accessible at the
energy scale A. Phenomenologically speaking, the cutoff then represents a threshold beyond which
physics relevant for shorter distances is not included. This has laid the philosophical foundation
for modern quantum field theory in the sense that most theories are nowadays considered effec-
tive descriptions of the world. For all practical purposes, the effective theory should only include
degrees of freedom, which are relevant for the observable of interest, even if we know what the
more general theory would be. The idea behind constructing an effective theory is that it allows
us to do physics at energy scales lower than A while consistently ignoring phenomena occurring
at energy scales above A. That this is indeed possible should become clear from the fact that, for
example, we are able to reliably do chemistry without needing to know anything about quarks
and gluons. Likewise, we do not need quantum gravity in order to understand the hydrogen atom.
So there is a hierarchy of scales in nature that enables us to consistently leave out high-energy
degrees of freedom in the description of low-energy phenomena. Some theories defined at A may
have zero or even multiple UV extensions, which give rise to the same infrared physics. The exis-
tence of such an extension to higher energy scales is, however, of no relevance if we are interested
in observables as obtained from experiments run at energies much lower than A. Effective field
theories are therefore strategically crafted approximations by definition and form the counterpart
to the “theory of everything”, which is supposed to hold up to arbitrarily high energies. Overall,
effective field theories have proven to be extremely successful not only because they help establish
the correct effective degrees of freedom for a given low-energy phenomenon but also because they
can be used to narrow down the energy scale at which new physics is supposed to come in. For
more information on effective field theories and their applications see, e.g., Refs. [138-141].

By construction, the UV-regularized generating functional (2.29) ensures that we restrict our
investigation of phenomena to those occurring at energies less than A rather than infinitely high
energies. According to the statistical analogy, the cutoff value would ideally be chosen based on
physics to match the energy scale at which our effective field degrees of freedom are an appropriate
description of the world. However, in the realm of high-energy physics, the multitude of possible
effective interactions is more difficult to control experimentally we cannot directly infer the cut-
off value associated with some given action from experiment. Composite particles can be stable
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over ranges of energy, elementary particles may principally not be detectable in isolation, some
suggested particles might not even exist, and lastly, for reasons of time and budget, we certainly
cannot turn to the nearest particle accelerator every time someone comes up with new ideas on
how to construct the classical action. In addition, the world is continuous on measurable scales of
space and time, i.e., the behavior of particles in high-energy physics is best understood in terms of
continuum field theories which have no explicit dependence on a fundamental microscopic scale.
Therefore, the cutoff of a continuum quantum field theory does a priori not refer to a physical scale
of the system. But if the cutoff value is unknown and the calculations are sensitive to its choice,
then A acts as a free parameter, reducing the predictive power of our theory. Generally speaking,
the solution to this problem involves a tuning of the couplings of the effective field theory S* so
that the low-energy predictions are independent of the high-energy cutoff. In modern quantum
field theory, the couplings contained in the classical action are not measurable quantities but rather
mathematical parameters that must be defined such that reasonable results for observables can be
obtained. In principle, one can require the couplings of the theory to depend on the cutoff in a way
that ensures the low-energy physics to be A-independent although, in practice, this tuning is most
commonly based on the introduction of counterterms [118, 142]. Coupling parameters, which
have been tuned in this way, will be referred to as fixed couplings in the following and together
constitute a fixed theory. Once the parameters at the cutoff scale have been fixed, we have

d
(010, =0, (2:30)

where the momentum transfer associated with the observable is assumed to be small compared to
A. It is important to mention that Eq. (2.30) does not automatically imply that we can perform
a meaningful continuum limit, i.e., set A — oo, and thereby completely remove the cutoff from
the framework. Nevertheless, A should always be much greater than any dimensionful quantity
of interest to make sure their influence on the dynamics of the system does not get spoiled by
the presence of a momentum cutoff. Therefore, the phenomenological meaning of the cutoff in
quantum field theory is only loosely connected to the inherent validity bound of the theory in
the sense that the value of A is constrained from below by all internal scales of the system. For
a related discussion with emphasis on the effective average action and the influence of external
parameters such as temperature or chemical potential, see Section 2.2.4. Furthermore, we would
like to highlight that the independence of all physical observables from the scale A at which we
fix the theory is only ensured if we can perform the path integral exactly. In other words, the
implementation of approximations generally leads to a residual dependence on A. As a result, the
ability to make a choice for A, which renders our results reliable to the extent of the approximation
in use, requires a lot of physical as well as mathematical insight.

The path integral approach to quantum field theory is now well-defined through the imposition
of a high-momentum cutoff. Based on the work of Kadanoff [143], Wilson proceeded by laying out
the momenta contributing to the path integral in an orderly set of regions such that they could be
analyzed one by one. Fluctuations at high energies can be progressively integrated out to obtain
an effective description of the same theory at lower energies. Let us follow Wilson’s approach
and consider having a theory fixed at some UV scale A. For any lower energy scale bA < A with



2.1 FUNDAMENTALS 19

b € (0, 1), we can decouple the high-momentum modes of the fields according to

4
B(x) = f AP i gp)
|

Jien G
d4p ipT d4p T
= —— e ¥ ¢(p)+ —— P ¢(p)
lelsb/\ (2m)* pa<iplsa (270)*
=0_(x)+9,.(x) (2.31)

and study their effects on the system.!” Notice that the relation above captures the process of
decoupling purely qualitatively. The actual separation of momentum modes depends on how the
UV regularization is implemented, i.e., precisely how fluctuations with energy beyond a certain
scale are suppressed within the path integral. In fact, there are infinitely many ways of performing
the separation of high-momentum modes and choosing one way may be referred to as choosing
a regularization scheme. Once all fluctuations are integrated out exactly, physical quantities are
independent of our choice so it is not necessary to specify a particular scheme at this stage.'® For
the sake of clarity, we will portray the classical action in the following not only as a functional of
the quantum field but also as a function of couplings g;. In this context, we will count the mass
parameter as a coupling. In accordance with our definition of the superfield, we use the notation

-2 0 0 m> 0 0
-D*=| 0 0 igT|, M'=[o0 o0 -im] (2.32)
0 i o0 0 imy O
and write the action as
SM@1(gi0) = J L(®(x),0,2(x), g 0)
x 1 o
= L (Eqﬂ(x) [—D?] &(x)+T(x) 7" <1>(x)+...) , (2.33)

where £ denotes the corresponding Lagrangian density. However, for consistency with common
terminology in field theory, we will omit the word density in the following and just refer to £ as
the Lagrangian. The differential of the path integral factorizes according to Eq. (2.31) such that
we can integrate out the high-momentum degrees of freedom &* in the path integral. Performing
the functional integral at vanishing sources yields'’

Zh = ,/Vf D e =52 8i0) = ,/V’f Do_ 5" 12-Neip) (2.34)

17 Such a decoupling of high-momentum modes is not possible for quantum field theories on a non-commutative spacetime [ 144].
We will, however, only consider the more conventional case in which the decoupling is indeed allowed.

18 One may be worried about the impact of the regularization scheme on observables due to the clearly scheme-dependent
contribution from fluctuations at scales close to A. Notice, however, that this is accounted for by the fixed couplings whose
values also depend on the scheme. Two generating functionals defined with a different scheme but the same cutoff A
are supposed to give the same n-point functions, if A is much bigger than any physical scale of interest and specifically if
the parameters of the theory at the cutoff scale in each case are fixed based on the same IR physics. For a more in-depth
discussion of scheme (in)dependence, we refer to, e.g., Refs. [145-147].

19 A presentation of integrating out field degrees of freedom while taking into account finite sources is possible, see, e.g.,
Ref. [148]. For practical reasons, however, the source fields are defined on the support of the corresponding quantum fields
and construct the generating functional once an effective field theory at some cutoff scale has been chosen. Therefore, our
choice to set J = 0 does not interfere with Wilson’s line of argumentation.
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where we have used that
sPMe_](g{,)=—In (% J D, e—SA[‘I>—+“’+](gw)) : (2.35)

By integrating out the high-momentum degrees of freedom we have obtained a new low-energy
effective action at the scale bA, which has all the short-range physics encoded that is associated
with the dynamics of the underlying system within the spherical momentum shell of bA < |p| < A.
In other words, through the process of functional integration, we can in principle determine the
effects of a given field theory, which is defined at some energy scale A, on the physics at lower
scales bA < A. Moreover, it directly follows from Eq. (2.34) that any observable with momenta of
at most bA as obtained from a theory defined at A is in particular an observable of a theory defined
at bA if the corresponding action functionals are related via Eq. (2.35). Strictly speaking, we aim
at having a description of the system at mesoscopic length scales, i.e., lengths of order ~ 1m as
encountered in our everyday life. These length scales translate to energies of ~ 10713 MeV, see
Appendix A.2, which can in practice be safely set to zero for most numerical purposes. At the
path integral level, such a procedure corresponds to integrating out all momenta or, equivalently,
considering b — 0, which ensures scheme independence. Following the line argumentation from
above, lowering the parameter b down to zero would provide us with an action functional at
infinitely large length scales. In practice, however, we do not end up with an action suitable for
describing cosmic systems unless we incorporate the necessary degrees of freedom already at the
cutoff scale.

The structure of the new Lagrangian generally follows the structure of the original Lagrangian
L but shows additional correction terms, which compensate for the removal of high-momentum
degrees of freedom from the path integral [118]. The newly generated terms are to arbitrary
orders in the fields and are only constrained by the symmetries of the initial action. There is in
particular the possibility for the generation of new local operators. These corrections carry all the
information about the integration step and, after a reorganization of terms, change the original
values of the couplings to g{’b. This leads us to

SPA®_1(g],) = J

X

(ﬁ(q)—(x); auq)—(x)a gi,O)

2

+% &7 (x) X, [—D*] ®_(x) + &7 (x) A;w” <I>_(x)+...)

. 1 T 2 T Mfgz
= 3 &7 (x) Z,[-D?*] &_(x) + &7 (x) - d_()+...|, (2.36)

where the dimensionless factor Z, = X;, + 1 denotes the so-called wavefunction renormalization.
In an ordering of the new Lagrangian in powers of derivative operators, the term of order D? is
generally not only quadratic in the fields but rather incorporates a sum of all field combinations
allowed by the symmetries of the theory. This means that the organization of terms into the form
(2.36) leads to a general factor Z,, ;(®) that carries a dependence on field degrees of freedom.
For convenience, however, we will consider only its field-independent part here, i.e., we have
Zy = Zgen p(0). Furthermore, the wavefunction renormalization is generally different for bosons
and fermions:

Z 0 O

¢
Z=[0 Zy, O |- (2.37)

0 0 2z
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Notice that our choice for the shell parameter b was arbitrary. The implication is that, by integrat-
ing out momentum modes, the couplings and the wavefunction renormalization in the Lagrangian
vary to account for the change in the degrees of freedom over which we take the path integral.
This ensures that the value (2.34) is in fact independent of the scale at which we define our theory,
provided this scale is not higher than our initial cutoff A.

After having integrated out short-distance degrees of freedom, the two actions S* and S®* are
not directly comparable since their theory content explicitly refers to different energy scales. In
order to allow for a comparison, a rescaling of integration variables is necessary. We rescale the
spacetime variables such that the quantum fluctuations are again limited from above by the initial
cutoff and we further rescale the quantum fields in order to recover the canonically normalized
kinetic term. Concretely, the rescaling is performed according to

x' = bx, p' = % , =1 0 b 0 |VZ,%_, (2.38)

where ¢, and ¢, denote the energy dimensions of the boson and fermion fields, respectively, see
Appendix A.2 for details. The energy dimensions of the fermion and antifermion fields are the
same. Although it has not been made explicit, the rescaled superfield is to be understood as a
function of the rescaled representation-space variable. The relations above then lead us to

SPA[@_1(g ) = S*[@'1(g(h))
M?(b)

= J G &' T(x") [-D?]®'(x") +&'T(x") — <I>’(x’)+...) . (2.39)
x,

The rescaled superfield ¢’ again contains modes of momenta |p’| < A, which are, however, qual-
itatively different from the original ones since primed and unprimed variables refer to different
physical scales. Still, the rescaling procedure is eminently beneficial because it lets us rewrite
the operation of integrating out high-momentum degrees of freedom as a transformation of the
Lagrangian. In particular, a term-by-term comparison of the Lagrangians corresponding to the
classical actions (2.33) and (2.39) shows that a change in scale can be rephrased as a change in
couplings. This leads to the realization that the couplings of the quantum fields are not constant
but rather depend on the scale we choose to probe them.

A transformation describing the change of a quantity of interest under a change of scale through
the process of eliminating and rescaling degrees of freedom is called a renormalization group
transformation [149]. In general, RG transformations are complicated, non-linear transformations
and depend on the chosen regularization scheme. All these transformations together form a set
called the renormalization group, which is a group in the sense that it maps the set of all possi-
ble couplings onto itself. The RG, however, is only a semi-group in the mathematical sense since
RG transformations are in general not invertible. Once we have integrated out field degrees of
freedom in the path integral, we cannot integrate them back in. From a more phenomenological
standpoint, renormalization group transformations typically involve a loss of information about
the microscopic details of the system and, once information is lost, it cannot be recovered without
ambiguities. Continuing the overall procedure by integrating over another momentum shell com-
bined with another rescaling further transforms the Lagrangian. If we take the parameter b close
to 1, the momentum shells eventually become infinitesimally thin such that the RG transformation



22 CHAPTER 2 QUANTUM FIELD THEORY

of the Lagrangian becomes a continuous one. In particular, notice that the value (2.34) or, more
generally, the associated functional is an RG invariant,

iZA[J] =0 (2.40)

db ’
such that this can be used to infer differential equations describing the change of a quantity of
interest with respect to a change in b. Specifically, differential equations describing the change
of a quantity under a continuous RG transformation are called RG flow equations. The rough
idea here is that the solution to the RG flow equation describes a trajectory from high to low
momentum scales in some mathematical space. This trajectory, the RG flow, is parameterized by
the shell parameter b and the evolution of a quantity along this trajectory is driven by the process
of integrating out quantum fluctuations associated with the scale bA.?° Accordingly, successive
integration steps in the path integral are often associated with a flow of the effective Lagrangian
in so-called theory space, i.e., an abstract space in which each point corresponds to a specific
set of coupling values. Once the RG transformation for an incremental change in scale has been
established, finding the solution to the corresponding flow equation is equivalent to performing a
non-perturbative calculation of the path integral.

The RG concept is surely appealing from a phenomenological point of view since it allows us
to get a better understanding of the manifestations of a system at different scales. Moreover, the
RG method as presented so far is exact, meaning that the strategy of gradually integrating out
fluctuations must lead to the same result as the incorporation of all fluctuations at once. In partic-
ular, both options to compute a generating functional involve the need for functional integration.
It is therefore important to point out that, if we could perform the integration step in Eq. (2.34)
for some arbitrary value of b exactly, we might as well calculate the entire UV-regularized path
integral and needed not to worry about any RG steps. In practice, however, exactly performing
the path integral for some general interacting quantum field theory is not possible. One could in
principle attempt to apply perturbation theory in order to turn one difficult integral into a series
of simpler ones but this is not a universal solution. On the one hand, many interesting phenomena
are inherently non-perturbative and, on the other hand, cases in which perturbative treatments
are legitimate have often already been studied to a sufficient degree. Now, the usefulness of the
RG method stems from the fact that it is considerably easier and overall more consistent to approx-
imate the RG transformation than the generating functional itself. Provided that the momentum
shell is sufficiently thin, the integration over this shell should result in an analytic RG transforma-
tion [149]. This does not contradict any properties of the generating functional, since non-analytic
behavior can still arise in the end due to an infinite number of momentum shells that are to be
integrated over. Nevertheless, as a consequence of the RG transformation being analytic, it is rea-
sonable to introduce approximations into the calculation of the corresponding integral. In the RG
approach, all momentum shells are treated uniformly and so the implemented approximations are
uniformly good for all shells. If approximations are employed independently of a separation of
degrees of freedom for different momentum shells, it is likely that those approximations will favor
some momentum shells over others, which results in a qualitatively very different transition from
the microscopic theory to the macroscopic description. It should, however, also be mentioned that
truncations, which are employed during the RG process, generally lead to an artificial regulariza-
tion scheme dependence for observables. Such a scheme dependence is unphysical but can be

20 More generally, the RG flow is parameterized by the so-called RG scale, which is used to relate the lowered cutoff A’ = bA
to the original one. We could call this RG scale t and generally write A’ = A} = f(t) A, where the function f determines
the size of the momentum shell for some value of t. In the most simple case, the RG scale may be the shell parameter itself,
i.e., t = b. A popular choice, however, is f(t) = e™* such that RG scale t = —In(A’/A) is logarithmic.
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brought under control to some extent [150]. Nonetheless, genuine scheme independence can only
be achieved for untruncated calculations.

There are many formulations of the RG method, which ultimately rely on the scaling ideas of
Kadanoff and Wilson but nevertheless substantially differ in the way they are implemented,?’ see,
e.g., Wegner [157, 158], Polchinski [159], Wetterich [87, 160, 161], or Refs. [162-164] for RG
techniques specifically for quantum many-body systems. Therefore, the term RG is in practice more
generically used to refer to the overall framework of characterizing the change in the description
of a physical system when going from a microscopic to a macroscopic perspective. For introductory
literature on the Wilson RG and its applications, see, e.g., Refs. [149, 165-169]. For general review
articles on the RG, we refer to Refs. [170-174].

2.2 The functional renormalization group

We will now present a specific formulation of the renormalization group method, which is de-
signed to study a generalized version of the quantum effective action. The so-called functional
renormalization group (fRG) goes back to Wetterich [87] and combines the functional approach
to quantum field theory with the concept of the Wilsonian RG. The fRG represents a powerful tool
for investigating perturbative as well as non-perturbative effects in quantum field theory and statis-
tical physics, for reviews see, e.g., Refs. [126, 175-180]. Therefore, the functional renormalization
group constitutes the key method in our analysis of low-energy models of quantum chromodynam-
ics in the subsequent chapter. At the heart of this method lies a characteristic RG flow equation,
which we are going to carefully derive in the following. After that, we will discuss different aspects
of regularization in the context of the fRG, in particular RG consistency.

2.2.1 Derivation of the characteristic RG flow equation

The starting point for our derivation is a properly regularized partition functional. As before, we
assume the implementation of UV regularization as indicated by a superscript A. In addition, we
introduce an auxiliary term AS) , in order to regularize the infrared modes in the path integral.
The new scale k € [0, A] can be thought of as an IR cutoff such that modes with momenta |p| < k
are being suppressed. The goal of this approach is to build a one-parameter family of generating
functionals, indexed by the RG scale k, that is able to interpolate between the initial state at
k = A in which nothing is integrated out and the final state at k = 0 in which all momenta are
integrated out. In other words, quantum fluctuations contributing to the generating functional are
taken into account smoothly by continuously lowering the RG scale. Concretely, the UV- as well as

21 The name renormalization group has made its first appearance in a paper by Bogoljubov and Sirkov [151], who picked
up on the almost unnoticed work of Stiickelberg and Petermann [152, 153] as well as independently developed ideas by
Gell-Mann and Low [154]. The Stiickelberg-Petermann RG is the group of finite renormalizations of the S-matrix in the
framework of causal perturbation theory and predates the development of the RG in the context of condensed-matter field
theory as done by Kadanoff and Wilson. However, the Stiickelberg-Petermann RG did not find a way into mainstream
physics and it was not until Wilson that conceptual problems with renormalization techniques could be resolved. Therefore,
also forms of RG with a non-Wilsonian origin exist, which, of course, does not mean they cannot be linked [155, 156].
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IR-regularized generating functional for full n-point correlation functions reads

ZMJ]=exp (—ASk’A [%D ZM[J]

= ,/VJ D& exp(—S @] — ASA[@]+TT- @)
=exp(WALJ]) , (2.41)

where the new term AS; 5 is supposed to satisfy

lim AS; \[®]=0 lim (AS(l’l))_l [0]=0. (2.42)
k=0 T koM kA

The first condition guarantees that we recover the full partition functional in the infrared limit

k — 0, that is

lim Z3[J] = 2"J]. (2.43)

The second condition in (2.42) states that AS; , carries a divergence in the UV limit such that
the regularized propagator of the free theory suppresses any interactions at high scales. As a
consequence, the vacuum persistence amplitude reduces to a constant in that limit,

lim AM[J]=1. (2.44)

k—A
For a purely bosonic theory, the second condition can be expressed as lim;_, 5 ASy [¢] — oo which
then implies lim; _, 5 Z,ﬁ‘[ j]1=0 and formalizes the idea that no quantum fluctuations are integrated
out at k = A. In the case of having only fermions, the divergence in AS; A[Y, 1] now causes the
partition functional to diverge at the UV cutoff as well, lim;_, ZkA[ﬁ, 1n] — oo. This antagonistic
behavior will not prevent us from working with general scale-dependent generating functionals
but rather shows that the reasoning behind the bosonic construction can rarely be carried over to
the fermionic path integral and vice versa.

Through Eq. (2.41) we have already promoted the definition of the Schwinger functional to the
scale-dependent case. In particular, the operator exp(—ASy, ») should be positive on exp(W) [177],
leading to a strictly convex Schwinger functional. In the framework of the renormalization group
as introduced at the end of Section 2.1, Wilson introduced the shell parameter b < 1 in order to
characterize how momenta in the path integral description of generating functionals are getting
integrated out. Specifically, this parameter was used to indicate that quantum fluctuations with
momenta bA < |p| < A have been integrated out. The integration process could then be described
by successively lowering the effective UV cutoff by using smaller and smaller values of b. Notice
that our description of the integration process is qualitatively different as we keep the UV cutoff
fixed and instead lower the IR scale k. Moreover, the continuous scale k has been introduced
independently of the scale A at which the theory is defined.

In principle, the structure of AS; , could be chosen arbitrarily as long as it regularizes the IR
modes and fulfills the boundary conditions (2.42). In practice, however, the auxiliary term is
chosen to be at most quadratic in the fields to guarantee the k-flow of the generating functional
to have a one-loop structure [181]. It appears that the most suitable construction is an expression,
which is exactly quadratic in the fields and which inherits all scale dependences from the regulator
function Ry . Hence, the addition of AS; 5 to the classical action reflects the idea of introducing a
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scale-dependent mass term, which suppresses the propagation of slow modes in the path integral
[176, 179]. More specifically, the auxiliary term reads

ASk,/\[q’] = 1 oT. ‘Ryp-®=2 J f oT(x) RkA(x y) @(y)

J J @) R} ,(x,¥) tp(y)+J J 1/J(X)R A Y)P(y), (2.45)

where the regulator function, or just regulator for short, has the following structure in field space,
R?(x,y) 0 0

R(x,y) = 0 0 — (R (y,x) | =R"(3,x) (=1)g . (2.46)
0 RY(e) 0

Since fermionic and bosonic propagators are mathematically different, the regulator for fermions
is also distinct from that for bosons. In principle, we do not want our regulator insertion to lead
to artificial effects when calculating observables. This means that the regulator needs to respect
certain physically motivated conditions. For example, the regulator is generally supposed to re-
spect the symmetries of the unregularized theory. Likewise, UV regularization should not spoil any
symmetries either but we simply assume here that the UV cutoff is properly implemented in order
to focus on the behavior of the system with respect to k. The IR scale k does not necessarily refer
to a physical scale since its meaning and the corresponding RG flow highly depend on the regu-
larization scheme,?? i.e., how exactly the regulator couples to the momentum modes in the path
integral. As in the Wilsonian case, scheme dependences of observables are completely removed
once all momenta are integrated out exactly.

We are now able to define the scale-dependent generalization of the full quantum effective
action. The generating functional of one-particle irreducible correlation functions in the presence
of an infrared cutoff scale k is usually called effective average action [182-184], but can also be
referred to as the coarse-grained effective action because quantum fluctuations on length scales
smaller than 1/k have been integrated out [185].

TA®q] = sup (JT-@q —WALIT) — ASiA[@a] - (2.47)

Compared to Eq. (2.17), this definition makes use of a modified Legendre transformation. As a
consequence, the effective average action does not need to be convex for k > 0, whereas a pure
Legendre transformation is always convex by definition [123]. Nevertheless, the additional term
ASy , is necessary in order to ensure that the effective average action can be associated with the
classical action in the limit k — A. This UV boundary condition for the effective average action
is reasonable as it is consistent with the loop expansion (2.26) in the sense that only the leading-
order contribution survives when no quantum fluctuations are integrated out. As before, we use
the supremum condition to work out the relation between the classical field and the source field
in the definition of the effective average action.

—
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Py(x) = WAL] = (20 = (@), - (2.48)
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A
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22 In principle, the same argument applies to the Wilsonian shell parameter b, albeit in a much milder version. The concrete
meaning of an RG scale and the corresponding flow always depends on the chosen implementation of regularization. In the
Wilsonian case, however, the parameter b directly receives its meaning from the UV cutoff A. So if UV regularization is
assumed to be properly implemented and comes along with a physical scale A, then also b refers to some physical scale.
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Notice that the classical superfield &, enters Eq. (2.47) as a new independent variable, which
means that it is in principle independent of any scales that other expectation values of quantum
fields are subjected to.?® As a consequence, the supremum condition provides us with a source field
J 511\1 p,k[éd], which has inherited all scale dependences from the Schwinger functional such that the
expectation value (2.48) is overall scale-independent. This result allows us to resolve the explicit
supremum prescription in the definition of the effective average action and write Eq. (2.47) as

TA®a] =Ty ([Pal- @ = WA, k] — ASial®al - (2.49)

As in the scale-independent case, we can obtain a functional differential equation for the ef-
fective average action by means of a few simple manipulations. We begin by evaluating the first
derivative acting from the right by making use of the quantum equation of motion (2.23) from the
previous section:
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Analogously to Eq. (2.25), we can then set up a functional differential equation for the effective
average action. Specifically, we obtain
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C
where we have used that
ASA[® + @] = ASy A[@]+ ASy A[@] + @] Ri o - @ (2.52)

after shifting in the field according to ® — & + &,. As the auxiliary term diverges in the limit
k — A, the saddle point method applied to the path integral shows that the effective average action
reduces to the classical action up to a potentially infinite additive constant. In the infrared limit
k — 0, the effective average action agrees exactly with the generating functional of 1PI correlation
functions.

]113%) T ®q] =T"[®4], 111—13}\ IM®q] = const. + S @] . (2.53)

The constant contribution in the UV limit arises since the definition of the scale-dependent Schwin-
ger functional in Eq. (2.41) makes use of the partition functional rather than the vacuum persis-
tence amplitude, see also Eq. (2.26). That constant, however, does not carry any physical content

2 It is nevertheless possible to simply choose the classical field to be scale-dependent in order to eventually arrive at a more
general version of the fRG, which is sometimes called essential renormalization group [186] or fRG with flowing fields [187].
Notice that this idea is related to dynamical hadronization techniques that are designed to perform a rebosonization of
multi-fermion interactions in every RG step, see, e.g., Refs. [188-190].
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so we can ignore it in the following. Thus, the effective average action has the property that it
interpolates smoothly between the classical action and the full quantum effective action as the
scale k is lowered from the ultraviolet cutoff down to zero.

The non-linear functional differential equation (2.51) for the effective average action is a gener-
alized version of Eq. (2.25) and the possibility of finding an exact solution for non-trivial situations
is intensely hindered by its complexity. Since exact solutions are only realistic for some limiting
cases, it is crucial to find a formulation, which permits non-perturbative approximations. We there-
fore make explicit use of the k-dependence of the generalized generating functionals in order to
construct an RG flow equation of the effective average action. The response of the Schwinger
functional to an infinitesimal variation of k is readily given by
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— (— 1)\p Tr{3 Ry - G(Z)A[J]} <<q)T)) - ORen - ((q;))?’k . (2.54)

Above, we have used the scale-dependent connected two-point Green’s function G,((z)A analogously
to the definition (2.15). Also notice that we have used J, to refer to a total derivative with re-
spect to k in accordance with standard literature on RG. With this result for the behavior of the
Schwinger functional with respect to a change in k, we can now write the RG flow of the effective
average action (2.49) as

1
A
AT 1®a) = elgyp i [@ail- 2= BW gy i — 50 GRin - B
(-1)
=5 v Tr{akRk’NGl({Z)A[JS/ka]} , (2.55)

where we have used that
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Our next goal is to rewrite Eq. (2.55) in order to obtain a self-consistent equation for the effective

average action. To this end, we compute the field-dependent 1PI two-point Green’s function by

differentiating Eq. (2.50) from the left:
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If two functions are related by a Legendre transform, their curvatures are inverses of each other. In
the case of a modified Legendre transform (2.47), we observe that the source-dependent connected
two-point Green’s function can be represented as the inverse of the sum of the field-dependent 1PI
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two-point correlator and the regulator function, i.e., it holds that
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Notice that the definition of the two-point Green’s function involves two left-derivatives whereas
the 1PI two-point correlator (2.57) is defined through one left- and one right-derivative. This
means that directions of functional derivatives are apparently not “conserved” by the inversion
process. The positivity property of the regularized connected two-point Green’s function implies
that its inverse must be positive definite as well.>* This can also be seen from the pure Legendre
transform

M@yl = sup (JT-@q —WAIT) =TA@q]+ ASiA[®al s (2.59)

which is strictly convex per construction such that its second derivative
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is positive definite. In particular, this means the functional determinant of Eq. (2.60) is positive.
At the same time, we know that the effective average action is not necessarily convex for k > 0,
i.e., analogous positivity properties do not follow for the scale-dependent 1PI two-point correlator.
As a consequence, the regulator has to be at least positive definite in order to make sure that the
object (2.60) is positive definite. We further remark that, due to the relation (2.58), the scale-
dependent connected Green’s function is often referred to as the average propagator, which makes
the quantity (2.60) the inverse average propagator of the theory defined by the corresponding
effective average action at the scale k.

Let us use our result to write the flow equation for the effective average action as

(=g
2

AL Pl = Tr{akRk,A : (FIELUA[‘PCJ +Rk,A)_1} : (2.61)
This is a non-linear functional differential equation for the effective average action, which, com-
pared to Eq. (2.51), comes along with no need for functional integration. Together with the UV
boundary condition in Eq. (2.53), the flow equation completely determines the effective average
action and therefore in particular the IR physics of a given system as defined by the classical ac-
tion. The main advantages of such a formulation are its suitability for truncations of the full theory
as well as its numerical accessibility [177, 182]. The Eq. (2.61) constitutes the characteristic RG
flow equation of the functional renormalization group and is commonly known as the Wetterich

24 Notice that the scale-dependent connected two-point Green’s function at exactly k = 0 is positive semi-definite but not
positive definite, see Eq. (2.16). This means the connected two-point Green’s function is a priori not invertible such that we
would not be able to compute a meaningful 1PI two-point correlator in accordance with Eq. (2.58). This however does not
automatically forbid the existence of an inverse in the limit k — 0. In addition, we will often have to use approximations
enabling us to solve the flow equation for the effective average action and we are going to assume that these approximations
allow for a well-defined 1PI two-point correlator at all scales. For exact calculations, the relevance of zero modes of the
infrared Green’s function needs indeed to be addressed with care. In this context, see also Ref. [191].
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equation. It has a one-loop structure, see Eq. (2.26), but is nevertheless an exact equation since
the loop contains the exact average propagator. The Wetterich equation is an infrared evolution
equation for the k-dependence of the effective average action and, in contrast to the Wilsonian RG,
not an RG equation established by infinitesimally lowering a UV cutoff. With the initial condition
at k = A at hand, the ability to follow the evolution to k = 0 is equivalent to the ability to solve the
theory completely.

Given a theory with an effective cutoff A, the solution of the Wetterich equation describes a
trajectory towards the full quantum effective action in the space of all possible action functionals
[188]. This trajectory is parameterized by the RG scale k and has its endpoints at k = A and k =0,
as given by Eq. (2.53). The functional satisfying the Wetterich equation is, in essence, nothing but
the quantum effective action but with the distinction that only quantum fluctuations with momenta
k? < p? < A? are included in the corresponding path integral representation. In the UV at k = A,
no fluctuations have been integrated out and thus we recover our microscopic theory defined by
the classical action S*. In the case of 0 < k < A, we will have an effective field theory defined by
the effective average action at the scale k. At the level of the path integral, this case corresponds to
starting with the classical action and then successively integrating out quantum fluctuations from
high to low momentum scales. When we have reached the point k = 0, all fluctuations that were
suppressed by the regulator are now integrated out, i.e., all quantum contributions are included
into the generating functional, such that we recover the full quantum effective action.

The regulator is an essential part of the Wetterich equation and the space of possible regulator
functions is restricted by a set of conditions, which ensure that our renormalization group method
is well-defined and that the correct physical properties are incorporated. In particular, the condi-
tions (2.42) for the cutoff term can be translated into analogous requirements for the regulator,
which ensure that the boundary conditions (2.53) for the effective average action are met. In
addition, it is convenient to choose a regulator, whose derivative with respect to k provides a UV
regularization for the loop integral in the Wetterich equation (2.61). If 6iR; 5 sufficiently regular-
izes the high loop momenta, we can safely perform the continuum limit A — oo and allow the
quantum fields to fluctuate on arbitrary small length scales. A continuum formulation is often
preferred for several reasons. First, it typically provides mathematically simpler expressions and
allows for the inclusion of continuous spacetime symmetries. Additionally, continuum field theo-
ries can describe a wider range of physical systems, which is crucial for understanding universal
behavior.?® Taking the continuum limit eliminates the explicit UV cutoff from the fRG framework,

lim Ry, =Ry, lim I} =1y, (2.62)
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and hence leads us to the continuum Wetterich equation:

=Dy
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AL [®yq] = Tr {8kRk (T PLeal +Ry) } . (2.63)
We have now arrived at a formulation where the auxiliary function R; renders the loop integral
implied by the trace both infrared finite and ultraviolet finite. The momentum integration is made
IR finite due to the mass-like behavior of the regulator for small momenta, p? < k?, whereas UV
finiteness is achieved by the fast decay of 3R, for high momenta, p? 2 k2. Therefore, only a small
interval of loop momenta with p? ~ k? effectively contributes to the computation of the continuum

% In statistical physics, universality refers to the observation that apparently different physical systems can share precisely
the same sets of critical exponents, meaning there are universal properties of phase transitions and critical phenomena
independent of the microscopic details. Theories in a given universality class can look very different microscopically but
exhibit the same macroscopic behavior near critical points. For more information, we refer to Refs. [149, 192-196].



30 CHAPTER 2 QUANTUM FIELD THEORY

effective average action in every RG step. In other words, in contrast to the Wilsonian case, a
suitable choice of the regulator function in the fRG allows for the situation that the number of
momenta contributing to the scale-dependent functional does not increase when lowering the RG
scale but instead stays the same. The renormalization group flow may now be viewed as a flow
through momentum shells with momenta p? ~ k2, where each shell triggers an incremental change
in the effective average action.?® The boundary conditions (2.53) need to be adjusted according to
the continuum formulation,

IP—I}}) 1—‘k[q)cl] = 1—‘[q)cl] P klinc}o Fk[q)cl] = Soo[q)cl] > (264)

where the infinite-energy action S°° is formally related to S* by the renormalization group flow.
While the requirement for the infrared behavior of the continuum effective average action is
straightforward, the second boundary condition is problematic since it is a priori unclear whether
a theory, which has been fixed at some finite cutoff scale, has a finite and unique UV completion up
to arbitrarily high scales.?” Even if an initial condition at infinitely high scales could be provided,
it would be impractical as the RG flow could not reach low scales in any finite amount of time. We
therefore adopt the strategy to fix the initial condition for the flow of the effective average action at
a large yet finite scale A, and associate the corresponding functional with the microscopic action,

Ia, [®q]~S[®q] . (2.65)

Exactness is not essential here since, for scales much smaller than Ay, the precise form of T is
irrelevant up to the values of a few relevant couplings [176]. Therefore, although the relation
above is only approximate, it is accurate enough for all practical purposes, provided that the scale
A, is sufficiently large compared to all mass scales of interest [87]. Further notice that the UV
scale A, is not necessarily the largest scale possible in the theory at hand.?® It is only some scale
at which we assume to know the effective average action such that we can fix the couplings of the
theory.

Like 1PI (n+ m)-point functions can be obtained from the quantum effective action by functional
differentiation, see Eq. (2.28), their flow equation within the fRG is readily derived by applying
corresponding derivatives to the Wetterich equation. This differential equation for the effective
average action is a functional one because the trace on the right-hand side contains the second
functional derivative of that scale-dependent functional. As a direct consequence, there is a general
pattern that the RG flow of some (n + m)-point correlation function also depends on vertices of
order (n+m+ 1) and (n + m + 2). This means that we obtain an infinite tower of coupled flow
equations by taking functional derivatives of the Wetterich equation. In most cases, we are not able
to solve this system of differential equations so we need to make use of some truncation scheme.
Finding reliable truncations of the effective action is the most difficult step and requires a lot of
physical insight, though. Once we have chosen a truncation, its reliability has to be checked in
order to estimate the truncation errors.

The results for physical quantities as obtained from I};_, are independent of the choice of the
regulator function if the flow equation is solved exactly. We emphasize, however, that both T,
as well as the flow itself are scheme-dependent. In particular, different choices of R, correspond

26 Notice that this discussion is primarily about the effects of selecting a certain type of regulator and applies independently of
whether we choose to take the continuum limit.

27 This limit does in fact exist in asymptotic safe theories, see, e.g., Refs. [197-201] for more information.

28 We would like to highlight that infrared and ultraviolet are highly context-dependent notions. Although the RG scale is
introduced by the regulator insertion and carries the idea of an IR cutoff, A, is supposed to set the scale here for all those
momenta that are large relative to other mass scales of the system. Therefore, A, can be safely called a UV scale.
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to different trajectories in the space of possible action functional along which the unique infrared
limit at k = 0 is reached. Once approximations are implemented, not only the trajectory and the
initial condition but also the infrared results may depend on the precise definition of the regulator
function. This dependence can in principle be used to study the robustness of the approximation
and to estimate the approximation errors, see, e.g., Ref. [202]. Concretely, if physical observables
show a highly fluctuating behavior under a variation of the regulator function, an improvement
of the approximation in use should definitely be considered. On the other hand, if a certain
approximation is kept fixed, an investigation of the infrared behavior under a variation of R; can
also be used to find a class of regulators under which the chosen approximation performs best.

For the remainder of this work, we agree on the following conventions regarding the functional
renormalization group, which are most commonly used in the literature. Whenever we refer to
the Wetterich equation, we mean the continuum formulation as presented in Eq. (2.63). Further-
more, we will drop the subscript that labels the input superfields of the effective average action as
classical in the sense of Eq. (2.48). This means we are going to assume that the type of field used
as an input variable for a functional is already clear from the context. It is nevertheless important
not to confuse the quantum fields, which enter the classical action, with their source-dependent
expectation values, which are relevant for the effective average action.

2.2.2 The regulator

Any concrete calculation of RG flow equations requires the specification of the regulator function
Ry, which encodes the regularization scheme. Since the RG trajectory of some scale-dependent
quantity depends to a great amount on how specifically the regulator function is constructed, the
regulator should be considered a part of the definition of the system. The regulator is a crucial
ingredient of the Wetterich equation, which is why we need to elaborate more on its construction
and properties.

Because the regulator is introduced to the path integral in order to provide better control over the
momentum modes contributing to the functional of interest, it is more convenient for the following
presentation to switch to momentum space. The regulator (2.46) is expected to respect translation
invariance such that we can deduce the following behavior under Fourier transformation,

Ri(x,y) =Ri(x—y) = J

elPT(x=y) ﬁk(p) :f J eiPTx o —iqTy Ri(p,q), (2.66)
p pYyq

where the structure from Eq. (2.46) translates to

R(p,q) =R(p) 2n)*6“ (p—q)

R?(p) 0 0
= o 0 —(R) (-p)| )P (p—0q)
0 R¥(p) 0
=R"(—q,—p) (—1)g . (2.67)

Letting the position-space regulator transform with different signs in the exponential for the p-
and g-modes in Eq. (2.66) is an advantageous convention, which ensures a uniform factorization
of the momentum-space regulator for bosons and fermions, as can be seen in Eq. (2.67). Notice
that our requirement of translation symmetry in position space directly leads to the appearance of
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a Dirac delta distribution in Fourier space, which indicates momentum conservation. In addition,
the symmetry property (2.67) automatically restricts the space of possible regulator functions. The
regularization term can now be represented as

pYq
= %f (=) R{ (P) ¢(p) +J P(p) R () ¥ (p) . (2.68)
P p

We would like to point out that the reduced regulator function R, in its momentum-space repre-
sentation has always the same energy dimension as the mass parameter in the matching subspace
of the mass matrix M2, see Eq. (2.32). The regulator insertion therefore imitates a mass term
at the level of the classical action in the sense of Eq. (2.68), where that mass not only carries a
dependence on the RG scale but is in general also momentum-dependent. Through its momen-
tum dependence, the regulator directly participates in the process of integrating out momentum
modes and influences to what extent momenta in the neighborhood of k contribute to the path
integral. In general, the RG scale does not need to be the same for all field momenta, meaning
that the bosonic regulator may depend on k,,, while the fermionic regulator depends on ky, see,
e.g., Ref. [79]. For simplicity, however, we adopt the most common choice k, = k,, = k throughout
this work.

During the derivation of the Wetterich equation, we have come across different requirements for
the regulator in order to ensure that certain boundary conditions for the effective average actions
are met and that the loop integral is always finite. Since these requirements have not yet been
presented very concretely, let us state them here in a more detailed form. As it is more convenient,
we will often speak rather generally of the regulator and only be more precise about the wording
if necessary.

(i) In order to provide IR regularization, the regulator function needs to screen the propagator
from divergences in the limit as momenta become small compared to the RG scale. This
requires the regulator to be positive in the sense of

. - , z
Vk>0:  lim R (p)>0, Jim det (RV @) >0. (2.69)
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In the case of bosons, this condition is to be understood in an operator sense, meaning that
positivity is a statement about eigenvalues. The same line of argumentation does, however,
not carry over to fermions. Recall, for instance, that all non-vanishing eigenvalues of the
massless Dirac operator always come in pairs of opposite sign [203]. In the presence of
a finite fermion mass, the eigenvalues even become complex-valued. This leads us to an
understanding of positivity for fermions in the sense of a positive determinant, see also
Refs. [204, 205]. With this condition fulfilled the average propagator remains finite in the
low-energy limit p2 — 0 such that no infrared divergences are encountered in the presence
of massless modes. The fact that the regulator does not vanish when momenta become
arbitrarily small is exactly what is meant when talking about the regulator having a mass-
like behavior.??

2 Notice that a statement about the regulator staying finite in the limit as momenta go to zero would not be enough since
eigenvalues are allowed to grow infinitely big in absolute terms.
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(ii) For the effective average action to coincide with the full quantum effective action in the
infrared limit k — 0, the regulator must satisfy the requirement

Vp e R4| p>>0: %in})ﬁf/w(p) —0. (2.70)

In the limit as the RG scale goes to zero, the regulator also needs to vanish such that the
corresponding IR endpoint of the RG trajectory is indeed free of any explicit regulator depen-
dence.*°

(iii) Generally speaking, the regularization term needs to diverge at the UV cutoff of the theory
such that the effective average action at that UV scale coincides with the classical action.
Since we are interested in the continuum formulation, we will directly consider the fact that
the UV cutoff has been sent to infinity. The requirement for the regularization term then
translates to the regulator in the following way,

VpeRYpP<oo:  lim Rf(p)— oo, lim det (R (p)) - o0, (2.71)

where, in the case of bosons, this relation is again to be understood as a statement about
eigenvalues.

(iv) Lastly, in order to provide UV regularization for the flow of the effective average action, the
regulator needs to satisfy

Vk €[0,00) : lim 3R (p)—o0. (2.72)
p

k—2—>00

In words, this means that the k-derivative of the regulator has to vanish as momenta become
large compared to the RG scale. With this requirement fulfilled, the derivative term in the
numerator of the trace of the Wetterich equation decays fast enough to suppress those loop
momenta that cause UV divergences.

Notice that the limit of vanishing momenta and the limit in which the RG scale goes to zero do in
general not commute. We would also like to point out that the condition (i) may have to be further
generalized in the presence of a finite chemical potential, see Section 2.3.2 for details.

In principle, the choice or the construction of a regulator should always be constrained by the
symmetries of the unregularized theory in the sense that no symmetry should be spoiled in the
presence of a cutoff scale. To be more precise, every symmetry that could be realized in a given
theory should be respected by the regulator function. All symmetries of the classical action, which
are respected by the regulator, are automatically also symmetries of the effective average action.
However, a breakdown of symmetry induced by the regulator is a completely artificial effect, which
will alter the infrared physics of the theory at hand. A particularly good strategy for constructing
suitable regulator functions is to relate the structure of the regulator to the inverse propagator of
the free theory,

Sirecl®] = 5 f o(—p)[p? +m2 |0 (p) +J P [—p +imy ]y (). (2.73)
p p

30 Results as obtained from the quantum effective action at k = 0 can nevertheless suffer from indirect regulator dependences.
If the regulator insertion explicitly violates a symmetry of the theory, then this symmetry breaking affects every subsequent
RG step such that the infrared endpoint of the RG trajectory does not align with the “true” result, although the regulator is
explicitly removed through the condition (2.70).
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Thereby, the regulator will not only obey a majority of symmetries present in the classical theory
but will also have similar positivity properties. It is worth mentioning that there are also more
general approaches that relate the regulator to the inverse average propagator, see, e.g., Refs. [177,
206-208].

If we want to maintain Lorentz invariance, analyticity and, in the case of fermionic theories,
chiral symmetry [209], then the requirement for these properties already predicts a very general
and simple structure for the regulator. More specifically, regulator functions are commonly written
as

5 2 P2
RY(p) ~p*r¥ (—) ,

2
e RY(p)~—p ¥ (p—) , (2.74)

where the dimensionless function r is known as the regulator shape function and controls the
influence on loop momenta relative to the RG scale k. The shape function should be analytic
and has to be constructed in accordance with constraints corresponding to the general regulator
conditions (i)-(iv) above. More concretely, a translation of these conditions for the shape function
is presented in the following. Here, the symbol x is used to denote some generic dimensionless
variable and must not be confused with a spacetime variable.

1. Behavior in the low-energy limit:

1 1
Vs>1: r“’(x)zO(—) , rw(x)zO( ) asx — 0. (2.75)
Xx$ xS/Z
2. Behavior in the IR limit:
lim r¥/¥(x)—0. (2.76)
X— 00
3. Behavior in the UV limit:
lirgl r?/%(x) - oo . (2.77)
x—0*
4. Condition for rendering the flow UV finite:
1 ¥ 1
Vs>1: r’(x)=0—|, r¥(x)=0 as x — oo . (2.78)
X3 x5/2

Notice that condition 3 follows from 1 and that condition 2 follows from 4 such that the intro-
duction of a shape function as in Eq. (2.74) reduces the number of remaining conditions to two.
We emphasize that these requirements do not uniquely determine the regulator shape function
such that many functions are possible. Frequently given examples for possible candidates are the
exponential shape function

1 P 1
rep() =151, Tep(x)= V=1 (2.79)
and also the Litim [210] shape function
1 1
e (x) = (;—1) 6(1—-x), b (x)= (ﬁ—l)G(l—x) (2.80)

with 6 denoting the Heaviside step function. The Litim shape function is a non-analytic function,
which is optimized in the sense that it ensures the flow of the effective average action in the leading
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order derivative expansion to have optimal convergence and stability properties [210-213]. We
would like to point out that x-dependent terms of the shape functions above are constructed such
that condition 1 is satisfied with s = 1. This then implies a finite low-energy limit,

lim x r¥(x) =1 = lim ﬁf(p) ~k?, (2.81)
x—0t pZ
@0
lir(r)l Vxrt(x) =1 = lzim IN{Z(p) ~k, (2.82)
x—0+ 2_

k2

i.e., the mass-like behavior of the regulator becomes quantitatively accurate. In principle, construc-
tions that satisfy the low-energy condition with s > 1 are allowed but the resulting divergence of
the regulator as momenta become small is usually less convenient in practical situations. Notice,
however, that the typical mass-like behavior as shown above comes at the cost of analyticity for
the fermionic regulator. Concretely, the square root present in the fermionic shape function gives
rise to a jump discontinuity of the fermionic regulator at p = 0. As a consequence, cases in which
the analyticity of the theory constitutes a crucial feature for the phenomena of interest need to be
handled with a lot of care and insight.

Let us briefly come back to the continuum limit that has been formally performed in Eq. (2.62).
Using the representation of the regulator in terms of a shape function, we can now see more
concretely how a finite cutoff can be taken to infinity. For illustrative purposes, we consider an
exponential regulator. Having a finite UV cutoff A, the general regulator for bosons is given by

RY \(p)~p* 17, (p), (2.83)
where the corresponding exponential shape function is frequently written as
1
exp(%)—exp(5)

If we take the cutoff to infinity, we observe this shape function reduce to the standard shape
function as presented above,

(2.84)

rea(P)=

2
. X p

Jim r? (p) = 1{ (P) = rég (ﬁ) : (2.85)

The presentation of the continuum limit for fermionic regulators is completely analogous. We re-

mark, however, that the generalized regulator shape functions do not need to be unique, meaning

that there may be several possible extensions to the case of having a finite UV cutoff.

The mass-like behavior of the regulator term for small momenta makes our framework perfectly
suitable for dealing with theories that are plagued by infrared problems in perturbation theory.
On the contrary, the mass-like behavior seems to be a major issue for gauge theories. Whereas
the regulator insertion is generally not problematic in scalar field theories, gauge theories in the
presence of a regulator inevitably suffer from an explicit breakdown of gauge symmetry. Even
though the regularization term may not be gauge-invariant,®! our formalism can in fact be applied
to gauge theories. Independently of any RG approach, the computation of observables from gauge
theories requires us to fix a particular gauge and hence break gauge symmetry by hand. At the
same time, Ward-Takahashi identities get introduced, which need to be resolved in the end in
order to recover gauge-invariant results. The explicit breaking of gauge symmetry as induced by

31 For manifestly gauge-invariant formulations, see, e.g., Refs. [214-219].
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the fermionic regulator then leads to scale-dependent corrections to the usual Ward-Takahashi
identities and these corrections vanish in the limit k — 0 [220-226]. Alternatively, one may
use so-called background-field methods to study gauge theories within the RG as proposed in
Refs. [120, 126, 227].

As we have seen so far, the regulator needs to satisfy the conditions (i)-(iv) in order to to ensure
that the flow equation (2.63) for the effective average action is well-defined. In addition, the regu-
lator is supposed to respect all those properties of the theory as given by the classical action which
are associated with physical content. Among those properties, Lorentz invariance, chiral symmetry,
and analyticity are often the most prominently discussed examples since their breakdown can be
a severe issue for the reliability and predictive power of infrared results. However, also proper-
ties like charge conjugation [81] or causality [82, 228] need in principle to be maintained in the
presence of a regulator. Moreover, it is also beneficial to impose certain “convenience conditions”
on the regulator in order to allow for more accessible flows. A specific type of regulator may for
instance be chosen depending on its potential to simplify analytical calculations or based on the
stability properties of the flow of interest. Altogether, it is not unlikely to find that the regulator is
overconstrained in practice, i.e., that different conditions compete with each other. Consequently,
some constraints have to be prioritized while others need to be relaxed.

A prominently used class of regulators is given by those regulator functions that couple only to
the spatial momentum modes of the loop integral while leaving the time-like modes unaffected.
These so-called spatial regulators can be easily obtained from Eq. (2.74) by the replacement p — p
and thus follow the structure

_ 1-52 < R 1—52
REG)~ P2 r¢ (ﬁ) . R@~— (ﬁ) - (2.86)

Spatial regulators do not introduce additional poles to the complex plane associated with the
time-like momentum mode of the analytically continued propagator. As a consequence, spatial
regularization schemes immensely reduce the efforts in studying spectral properties of particles,
see, e.g., Refs. [82, 208, 229, 230]. More generally, spatial regulators are specifically attractive
since they often allow us to analytically evaluate loop integrals to a great extent. In particular, they
usually allow for an analytic evaluation of Matsubara sums which arise in quantum field theory
at finite temperature, see Section 2.3. This feature not only highly improves the accessibility of
correlation functions in general but makes it even possible to obtain analytical RG flow equations,
see, e.g., Refs. [231-234].

Notice that all the aforementioned benefits of spatial regularization schemes come at the cost of
violating Lorentz invariance. By treating time-like and spatial momentum modes differently, the
use of spatial regulators immediately leads to an explicit breakdown of Lorentz symmetry. If the
system is in a medium, the presence of a heat bath or a finite chemical potential breaks the Lorentz
symmetry down to rotations among spatial coordinates anyway. Therefore, additional Lorentz sym-
metry breaking as induced by the regulator might seem innocuous such that spatial regularization
schemes appear to be a suitable choice. Although this has been confirmed in specific examples
[229, 230], it is a priori unclear whether the influence of additional Lorentz symmetry breaking
ends up being mild on the observable of interest. Recall that any symmetry breaking induced by
the regulator is a completely artificial effect that potentially leads to a distortion of the RG flow. In
accordance with our discussion of the Wetterich equation, spatial regulators lead to an RG flow in
which only a small interval of loop momenta with k? ~ p? contributes in every RG step. Such an
RG flow is local in the spatial momenta but takes into account all time-like modes at every scale k.
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This loss of locality in the time-like direction of momentum space can then lead to complications in
the construction of a meaningful truncation scheme for the effective average action [235]. Further-
more, the different treatment of loop momenta causes an ambiguity in the calculation of vacuum
wavefunction renormalizations Z. While intact Lorentz invariance predicts a unique wavefunction
renormalization, spatial regulators enforce the wavefunction renormalization to split up into com-
ponents Z!l and Z! that are parallel and perpendicular to the time-like direction, respectively. In
principle, one may solve this problem by taking care of the symmetry-violating terms with the
aid of corresponding Ward identities such that the theory remains Lorentz-invariant in the vacuum
limit [236]. In practice, however, these efforts are rarely made since spatial regularization schemes
get primarily deployed in model studies which focus on a phenomenological understanding of the
physical mechanisms rather than high-precision calculations of observables.

Mostly based on symmetry considerations, we were able to present the general structure of reg-
ulator functions. Although demanding exactness for the relations (2.74) and (2.86) is completely
fine in principle, choosing a non-trivial proportionality factor is often more convenient in practice.
In the case of a Lorentz-invariant regularization scheme, we write

2 2

~ 9 p = p

R} (p)=2Z,y p* r? (ﬁ) , RZJ(P) =—ZyxJ rv (ﬁ) , (2.87)
where the appearance of bosonic and fermionic wavefunction renormalizations, Z, and Z, allow
for a factorization of Z-factors in the regularized kinetic operator of the effective average action,
see Eq. (2.36). Recall that the wavefunction renormalizations are dimensionless quantities. In
the case of spatial regulators, the incorporation of wavefunction renormalizations is entirely anal-
ogous.

At last, we would like to comment on the statement that the endpoint I of the RG trajectory for
the effective average action as described by the Wetterich equation is independent of the regulator.
When stated in this form, it is based on the implicit assumptions that the flow equation can be
solved exactly and especially that we only choose from a set of regulators that all satisfy the formal
as well as physical constraints. In practice, however, neither can the Wetterich equation be solved
exactly for interacting theories, nor is there a universally good regulator function. Computability
of RG flows frequently gets into conflict with at least one of the regulator conditions. As a result,
certain constraints eventually need to be lifted, leading to regulators that restrict the reliability of
infrared results to a certain degree. In order to minimize these artificial effects, regulator functions
have to be strategically chosen depending on the theory under consideration, the truncations in
use, and the physical quantity of interest. Generally speaking, regulators that explicitly break a
symmetry of the theory will lead the RG flow to a different infrared point than regulators that
respect this symmetry. A collection of regulator functions that all respect a certain set of symme-
tries or other properties is called a regulator class. Another important thing to mention is that the
quantitative meaning of the RG scale changes with the regulator. In a loop integral, the scale k
parameterizes the extent to which the suppression of momentum modes is enforced by the regu-
lator. Notice, however, that it highly depends on the regulator function how smooth or sharp this
suppression is actually realized within the loop. Therefore, the amount of momenta contributing
to a loop integral at a particular scale k generally changes with the regulator. Notably, the relation
of the RG scale to internal scales of the system or external control parameters changes if we swap
the regulator function. The same line of argumentation also applies to the initialization scale A,.
In order to ensure comparability of the initial condition to the RG flow at some finite UV scale
between different regularization schemes, we need to adjust the value of A, according to the new
regulator. Making adjustments to allow for comparability between schemes is essential in regulator
studies, specifically when truncations are involved.
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2.2.3 Expansion schemes

For interacting theories, the characteristic flow equation (2.63) for the effective average action can
in general not be solved in closed form. We therefore have no choice but to consider truncations
to the Wetterich equation in order to efficiently calculate RG flows and gain insight into the un-
derlying physical system. Although truncations will render our results for observables generally
model-dependent, we expect no qualitative deviations from exact solutions with a properly chosen
truncation. The main challenge for non-perturbative systems is to find truncations that incorpo-
rate the most relevant degrees of freedom and yet ensure a set of flow equations of manageable
complexity. In regard to fRG studies, all truncation methods rely on some systematic expansion
scheme for the effective average action. We will thus give a presentation of commonly used expan-
sion schemes in the following.

Vertex expansion

Most frequently, the effective average action is considered to be constructed from powers of field
degrees of freedom with its (n + m)-point functions serving as coefficients of the construction. This
so-called vertex expansion provides the formal basis for the projection of 1PI correlation functions
from the corresponding generating functional. The scheme reads

oo 1 n m
= S d*x; | d*y,
Fk[q)] n’mZ:O (n+m)! !:1[!:! JR4 Xi J‘R4 y]
(8(x) = @o(x))" T (x, ., ym) (207 —20(y))) (2.88)

where ®, denotes the ground state configuration (2.21) of the system. Implicitly, we have already
made use of this vertex expansion when defining proper vertex functions, see Eq. (2.28). The
structure of the Wetterich equation shows that the RG flow of some (n + m)-point function also
depends on the flow of the (n+m+ 1)- and (n + m + 2)-point function, leading to a set of infinitely
many coupled flow equations. Since we are in general not able to solve this system of differential
equations, we have to consider a truncation of the effective average action and restrict it to include
only correlation functions with N,,, external fields [185]. In other words, we restrict ourselves to
a finite number of coupled flow equations by assuming that all (n + m)-point functions beyond a
certain maximum value are simply zero. The quality of such a truncation in terms of, e.g., stability
of the flow or agreement of the solution with experimental results particularly depends on the
chosen value for N ..

Loop expansion

The Wetterich equation is an exact RG flow equation with a one-loop structure which should not
be confused with a flow equation at one-loop order in perturbation theory. We can nevertheless
rederive perturbation theory from the Wetterich equation in an iterative manner. Analogously to
Eq. (2.26), we consider a loop expansion of the effective average action,

T [®] = S[®]+ T P[] +..., (2.89)

where all loop contributions are expected to vanish at high RG scales such that the initial condi-
tion (2.65) is met. This shows that, at leading order in the loop expansion, we may associate the
effective average action with the scale-independent classical action. Since this equally translates
to functional derivatives, we can feed back this information into the Wetterich equation. In partic-
ular, replacing the field-dependent 1PI two-point correlator in Eq. (2.63) with the corresponding
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derivative of the classical action provides us with the flow of the 1-loop contribution,

(= )w
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2

3k1—',<1_100p[q>] — Tr{E}kR (5(1’1)[q>] +Rk)_1}

Tr {0 Ln(S"V[@]+Ry)} . (2.90)

This flow can be formally integrated to obtain the one-loop contribution to the effective average
action:

1-loop / 1 loop (=g S(l’l)[‘b] + Ry
T d|= dk’ 9T, b|l=——Tr{ln| ——7— . 291
r o L2] JA(, K [2] 2 1’{ H(S(l’l)[¢]+RAO (2.91)

Similarly, the result for the effective average action up to one-loop order can be reinserted into
the Wetterich equation to generate higher-order contributions in the loop expansion. For practical
purposes, however, we may truncate the effective average action and break off the loop expan-
sion at a certain point. More specifically, considering only contributions up to one-loop order in
the perturbative expansion is known as the one-loop approximation. In this approximation, the
characteristic RG flow equation reduces to Eq. (2.90), leading to the convenient situation that flow
equations for correlation functions are now decoupled.

Derivative expansion

Provided with a theory that is defined by some classical action at high scales, the RG flow towards
low scales as described by the Wetterich equation generates all kinds of quantum corrections that
are compatible with the symmetries of the initial action. We may therefore represent the most gen-
eral ansatz for the effective average action as a series of invariants. In this regard, a prominently
used ordering scheme for this series is given by the number of derivative operators. This so-called
derivative expansion [176, 237] of the effective average action reads

I [®] =J (Uk (@(x))+ %@T(x) Zi[-D?] &(x) + O(D‘*)) , (2.92)

where U, denotes the effective potential [125, 127] and Z, the wavefunction renormalization. We
would like to emphasize that the derivative expansion is not an expansion in the traditional sense
of a perturbative expansion in some small quantity but rather a scheme of laying out degrees of
freedom that are expected to be relevant for the phenomenon of interest. We emphasize that
the variety of contributions for each order in the derivative expansion is closely linked to the
number of fields and symmetries included in the theory. As the field content of our superfield
® is rather minimalistic by construction, see Eq. (2.3), a derivative expansion of the effective
average action shows a correspondingly simple structure. In the case of having a bosonic theory
that not only includes multiple field degrees of freedom ¢, but also is invariant under orthogonal
transformations, we observe two contributions to the derivative expansion at order 92 [176]:

L] = f (koG + 5000 2,4 [-02] 920
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ETEACRET [—02] ¢*(x)+0(2%) ] . (2.93)
Foremost, the RG flow of such a theory generates the contribution ~ ¢,32p® which corresponds
to the first-order term in Eq. (2.92). In addition, we get the contribution ~ ¢292¢p? which comes
with a separate wavefunction renormalization Y,, ;. This second contribution may be considered
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a kinetic term for the quantity 2 = % which denotes an invariant with respect to orthogonal
transformations in field space. For fermions, a contribution of order # which is also quartic in the
fields does arise in the case of explicit chiral symmetry breaking and, as a consequence, such a
term would depend explicitly on that symmetry-breaking scale. Since such a scale would spoil the
association with a canonical kinetic term of the effective average action, we have neglected this
scenario in the presentation of the derivative expansion above. For the sake of simplicity, we have
also ignored the possibility of mixed field contributions. Lastly, it should be mentioned that the
derivative expansion at each order includes contributions from all orders of the vertex expansion
and may therefore be thought of as a resummation of perturbative diagrams.

Based on the derivative expansion of the effective average action, there are several truncation
schemes that take only low-order contributions into account. In particular, proposing an ansatz for
the effective average action which considers the effective potential as well as the first-order terms
with Z; = 1and Y|, , = 0 on the r.h.s. of the flow equation is called the local potential approximation
(LPA). This approximation has proven to be quite successful for, e.g., studying the thermodynamics
of low-energy QCD [231, 236] or the computation of critical exponents [238, 239]. More generally,
it is worth noting that the accuracy of critical exponents can be used to measure the quality of a
given truncation or chosen ansatz, see, e.g., Refs. [182, 238, 240, 241]. Another opportunity
to check the reliability of a chosen truncation is to perform an extension by including additional
operators and then verify whether the results obtained from the new truncation are in agreement
with the earlier results. If this is not the case, the chosen truncation should be reconsidered.
Improvements to the LPA are straightforward and include higher-order contributions and/or non-
trivial wavefunction renormalizations [239, 242].

In a momentum-space representation of the effective average action, the derivative expansion
(2.92) corresponds to an expansion in terms of external momenta. We then write

L [®]= f (Uﬂ@](p)%ﬁ(—p) Z, p? @(p)+O(P4)), (2.94)
p

where we have made use of the notation

p2 0 0
P’=|o0 o 7| - (2.95)
0 —p O

Notice that any expansion scheme ultimately requires the specification of an expansion point. A
priori, this point is at our disposal but, for practical purposes, it should be chosen such that a
low-order expansion already allows us to capture the most relevant dynamics of the system under
consideration. While the expansion in Eq. (2.94) has been anchored at P? = 0, there is the possibil-
ity of bound states with a finite center-of-mass momentum. In that case, the correlation functions
have non-trivial minima in momentum space and a low-order derivative expansion should be per-
formed around the global minimum. Choosing an expansion point that does not match the lowest
minimum while truncating the derivative expansion inevitably leads to a poor description of the
underlying physics [243]. Furthermore, the expansion point should in principle also respect the
symmetries of the theory at hand. For a discussion of the relevance of a different expansion point
in the presence of a finite chemical potential, see Section 2.3.2.
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‘P F expansion

If the Wetterich equation can be solved for the effective average action, correlation functions are
readily obtained by applying a suitable projection based on the vertex expansion. Unless we reduce
the classical fields to homogeneous backgrounds [185], solving for the effective average action
is, however, a simply impossible task. A particularly convenient strategy for obtaining correlation
functions from the Wetterich equation relies on an expansion in powers of field degrees of freedom.
This expansion then allows us to isolate the terms relevant for the correlation function of interest.
Concretely, we reparameterize the field variable ¢ as a fluctuation around the ground state, i.e.,
we write

®(x) = Py(x) + Pg(x), (2.96)

where &, denotes the ground state configuration while &5 represents the fluctuation field. In
addition, we decompose the inverse average propagator in terms of a fluctuation-independent
contribution P,” ! and a fluctuation-dependent part Fy,

(G121 +Re) e, ) = P (20106, 1) + Fil2a1Cx, ) - (297)

Here, the reordering of terms has been performed such that the explicit regulator dependence is
completely encoded in the term P !, The Wetterich equation (2.63) may therefore be rewritten as

AL [®]= (_;)“P Tr {3 Ln (1" V(8] + Ry )}
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where we have used the notation 5k to refer to a derivative that only acts on the scale dependence
of the regulator function. The new structure comes with the benefit that the standard Taylor series
expansion of the logarithm can be associated with an expansion of the inverse average propagator
in terms of fluctuations around the ground state. Assuming that the Taylor series converges,>? it
follows that [188]
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32 Let A be some complex-valued square matrix, then the matrix logarithm is defined by its Taylor series expansion

Ln(A)= >’ (_1r3n (A-1)"
n=1

whenever this series converges. Convergence is ensured if |[A— 1| < 1, where | ... | represents a suitably chosen matrix
norm. A possible choice is given by the Hilbert-Schmidt norm defined by |X|*> = tr {X X } For more details, see, e.g.,
Refs. [244, 245]. Promoting this line of argumentation to matrix-valued and scale-dependent functionals B, with inherent
UV divergences, we deduce that logarithmic expressions of the form Ln(é + B,) have a meaningful series expansion if
Tr {(5,(Bk)’ . ékBk} < 1. With this condition fulfilled for B, (x, y) = (P [®0] - Fi[®a]) (x, y), the convergence of the series in
Eq. (2.99) is automatically guaranteed. Now, our assumption for this condition to be satisfied is based on the decomposition

(2.97). Per construction, the quantity F[®;] o< & is associated with fluctuations that are supposed to be sufficiently small
compared to the ground state configuration such that we obtain a correspondingly small value for the norm of B,.
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where we have used the symbol & to display the abstract identity element with respect to matrix
multiplication as well as functional multiplication. Its elements in, e.g., position space represen-
tation read 5., 6 (x — y) with a and b referring to indices of field space. The final form (2.99)
is generally known as the PF expansion. Here, the phenomenological meaning of the quanti-
ties P, and F; is readily derived from the inverse average propagator, see Eq. (2.97). While Py
corresponds to a propagator term, the quantity F; is proportional in its field argument and can
therefore be directly associated with the fluctuation itself. Thus, the PF expansion scheme has an
intuitive interpretation as an expansion of the system in terms of fluctuations around the ground
state. By comparison to the original form of the Wetterich equation as presented in Eq. (2.63), the
PF expansion also suggests that the average propagator can be understood perturbatively in the
sense of a geometric series. With this scheme at hand, RG flows for (n + m)-point functions can be
extracted from the Wetterich equation by taking the term of order (n+ m) from the expansion and
projecting onto its coefficient in field space.

There are several things about this expansion scheme that we would like to point out. At first,
notice that the PF expansion at zeroth order generates a fluctuation-independent tree-level con-
tribution which is an important constituent for the thermodynamic pressure of a given theory.
This contribution does, however, not matter for the computation of correlation functions and is
therefore often neglected in presentations of the PF expansion. Secondly, by laying out infinitely
many terms contributing to the average effective action, this expansion scheme simplifies the prob-
lem of inverting the full field-dependent 1PI two-point correlator to the problem of inverting only
P, 1[®,]. This inversion process can be performed rather easily by assuming the ground state to be
homogeneous, which is already a huge improvement on the approximation of reducing the entire
field variable to a homogeneous background. Last but not least, we remark that the presented
form of the expansion (2.99) relies on the assumption that the order of summation and integra-
tion as implied by the trace can be interchanged. For a system with a finite fermion density, this
assumption can in fact fail as discussed in Section 2.4.

2.2.4 Renormalization group consistency

In the following, we introduce the concept of RG consistency which is a key ingredient in assessing
the reliability of results as obtained by RG methods. To this end, we will discuss the role of external
parameters, e.g., temperature T or chemical potential u, and address the matter of performing a
UV extension of a fixed theory. A violation of renormalization group consistency is associated
with regularization-scheme dependences of observables and can therefore significantly spoil the
predictions from our RG framework. Our main line of presentation is based on Ref. [88], yet it has
been slightly adapted to include new insights as well as the nuances that come with momentum-
independent regulators.

In order to study a physical system by means of RG methods, we need suitable initial conditions
that allow us to obtain meaningful solutions to a given set of flow equations. With regard to the
functional renormalization group, such initial conditions are given by an action functional and
a corresponding reference scale A,. Let us consider the flow of the effective average action as
described by

oL [®] = fil®], (2.100)

where the generic function f; is determined by the Wetterich equation and some set of truncations
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appropriate for the phenomenon of interest. Formally integrating this flow equation yields®>

k
Vk €[0,Aq]: L [®] = FAO[¢]+J dk’ f.[®] . (2.101)

Ao

Generally speaking, the reference scale A, denotes just some RG scale at which we assume to
know the effective average action. Recall that the scale k as introduced by the regulator does not
necessarily refer to any physical scale of the system under consideration so, as a consequence, A,
is a purely scheme-dependent quantity and has a priori no universal phenomenological meaning.
Notice, however, that RG scales get related to physical scales by the regularization procedure.
Given a microscopic theory S, the scale A, is usually chosen to lie somewhere within the energy
range in which S is believed to be an appropriate description of the world. Then, the effective
average action at k = A, can be associated with the classical action at hand, see relation (2.65).
Concretely, the classical action is used to completely determine the UV structure of the effective
average action. In order to arrive at a meaningful initial condition T, , the couplings at k = A, can
now be fixed based on a set of low-energy observables. This means that the values of all couplings
contained in Iy A get defined such that physical values for given observables are recovered from the
fRG formalism in the IR limit k — O.

Notice that the scale k as appearing in the continuum fRG framework is considered to be an
IR scale due to the mass-like behavior of the regulator function for low energies. Nevertheless,
after integrating the flow equation from the initial scale k = A, the presence of the scale A,
effectively provides UV regularization for the resulting loop integral. For a better understanding,
take a look at, e.g., the one-loop contribution to the effective average action, see Eq. (2.91). Here it
is illustrated that, whereas the logarithm is a naturally diverging function for infinitely large input
values, the antiderivative of f; at k = A, provides counterterms to render the overall loop integral
as implied by the trace finite for A; < co. Therefore, the fixed reference scale A, in Eq. (2.101)
truly has the meaning of a UV scale. This UV scale however does not need to be a cutoff in the
strict sense that it directly couples to the loop momenta. The value for A, would ideally be chosen
such that the UV scale is asymptotically large compared to at least all those physical scales that
are present in the scale-fixing process. This guarantees that such scales, i.e., internal mass scales
and potentially finite external parameters, can have an effect on the dynamics of the system at
comparable momentum scales. On the other hand, the smaller the UV scale is relative to the
physical scales, the more their influence becomes distorted by the regularization scheme, and the
weaker the reliability of infrared results becomes.

The flow equation (2.100) together with some proper initial condition defines a unique trajectory;,
parameterized by the RG scale k, for the effective average action in a mathematical space of
functionals. Once this trajectory has been established by the solution to the Wetterich equation,
any point A on the RG trajectory can be chosen as a starting point for the RG flow at any values
of external parameters. For the sake of clarity, we will explicitly display dependences on external

33 The conventional notation in the fRG may lead to confusion in situations like these so it is worthwhile to clarify that the
RG scale k appearing as a subscript indicates the dependence on a variable, T}, = I'(k) and f;, = f (k), whereas every other
subscript refers to fixed parameters. In particular, I, denotes the initial condition for the effective average action at the
fixed scale A, such that T(Ay) =T, .
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parameters mq,; = {T, u} in the following. We have

k

L me) =T, o[e]+ J QK fl®)me)
Ao

k
=T, o[2](A Mmex) +J dk’ fir[®1(Mexe) , (2.102)
ext A

where mg?()t refers to the set of initial values for external parameters as used in the scale-fixing

procedure. To be more concrete, we have made use of the flow of the effective average action
between the scales A, and A to generate the new object

A

Ly m@[21(A Mey) =T, 0[2] +f dk’ fir[®](Mexe) (2.103)
Ao

which has incorporated all the information about the original initial condition at k = A, and serves
as a new initial condition for the flow starting at k = A. In the case of A < A, this approach
simply means that we solve the theory at high scales and follow the flow of the effective average
action from k = Ay down to some lower value k = A. For A > A,, we need to evolve the RG flow
into the opposite direction and calculate a UV-extended version of the original initial condition.
It should however be pointed out that an RG flow is in general not reversible. Remember that
every incremental change of k down to lower values is associated with the process of integrating
out field degrees of freedom in a corresponding functional integral. Once we have integrated out
microscopic degrees of freedom, we cannot retrieve them from the newly generated theory without
ambiguity. In the language of thermodynamics, the renormalization group flow has a dissipative
character and hence leads to entropy production as well as irreversibility. For more details on this
subject, see, e.g., Refs. [246-249]. Although exact RG flows are inherently irreversible, the usage
of truncations often allows the integration to higher RG scales. We are therefore going to assume
in the following that the equations above indeed are meaningful expressions for A > A, due to
the implementation of suitable truncations like, e.g., the one-loop approximation. It may however
happen that the flow cannot be integrated beyond a certain point Ayy > Ay, which characterizes
the scale of, e.g., a Landau pole appearing in the loop integral. That scale Ayy then represents a
strict upper bound for the RG scale in the UV extension of the theory under consideration. The
emergence of such a pole demonstrates that the theory is not self-consistent and it thus signals the
lack of relevant high-energy degrees of freedom. This situation applies to most effective theories
for the low-energy regime of QCD, see Ref. [88] and the references therein. It is worth mentioning
in this context that the value of Ayy is not unique but depends on the chosen regularization scheme.

Given some RG trajectory, the independence of infrared results with respect to the choice of the
UV scale for the RG flow can be stated in the more compressed form

VA>k: diAFk[CD](mext) =0, (2.104)
where the concrete meaning of the scale A for the effective average action is determined by
Egs. (2.102)-(2.103). We would like to emphasize that the relation above should not be con-
fused with a cutoff independence of the theory. Neither does the fRG framework in its continuum
formulation have any explicit ultraviolet cutoff nor does the regulator have to directly couple to
the momentum modes to implement a cutoff prescription. Only for momentum-dependent regu-
lator functions, one may say that Eq. (2.104) expresses the situation that the effective UV cutoff
for the loop integral can formally be varied such that observables remain unchanged. In that case,
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the formulated independence principle is basically a restatement of Eq. (2.40) for the functional
renormalization group. Nevertheless, the essence of Eq. (2.104) is that we are free to choose any
point on the RG trajectory as the starting point for the flow towards lower scales.

As mentioned before, the consideration of finite external parameters leads to specific regulariza-
tion scheme artifacts if those parameters become comparable in magnitude to the fixed UV scale
A, of the theory.** In other words, the condition of an asymptotically large reference scale limits
the range of values for external parameters for which we can reliably study the system.>® If we
want to consistently extend our study to a larger set of values for external parameters without am-
plifying regularization scheme dependences, we need to elevate the UV scale associated with the
microscopic theory to higher values while respecting the given initial condition. Specifically, we
perform a UV extension according to Eq. (2.103) using the initial values for external parameters.
The new effective average action at scales then generically reads

k
Vke[0,A]:  LF@1(me) =T, ,0[81(A,mG) + f di’ fiu[@](mex) , (2.105)
A
where the extension is performed up to some UV scale A > A, which is asymptotically large
compared to all physical scales of interest,

Vs € Mgy : % <1. (2.106)

This construction is perfectly consistent with the original RG flow (2.102) when the external pa-
rameters are set to their initial values,

Vke[0,A0]:  TRO81(ml) = T[@1(m ) (2.107)

ext/ — ext/ *

On the other hand, if we performed the UV extension for a set of external parameters such that
s ~ Ay, the RG flow towards lower scales would provide us with an infrared theory I}V that is
incompatible with the low-energy observables used in the scale-fixing process. Notice that the
concrete value for the new reference scale A is irrelevant as long as it is sufficiently large. Put
differently, the condition (2.106) implies UV convergence for the backward propagation of flows
at different values for external parameters. As a result, the introduction of the UV scale A does not
lead to new artificial scale dependences:

VA€ {A > k| Vs € Moy, : j—\ < 1} : %FIERGC)[qﬂ(mext) =0. (2.108)
Once we have chosen some suitable value for A, this UV scale now sets a higher upper boundary
for values of external parameters at which we can study the system without having regularization
scheme artifacts spoil the results. The systematic removal of regularization scheme dependences
by a UV extension which is consistent with given low-energy observables is referred to as RG con-
sistency. In this regard, the relation (2.108) can be seen as a necessary condition for RG consistency.
It is, however, important to realize that this procedure cannot suppress any scheme dependences

that are already present in the system for mey, = mg))()t. Therefore, having the initial values mg_?()t

34 A generalization of our discussion to internal scales is straightforward but we nevertheless focus on external parameters
here due to their high relevance for the studies covered in Chapter 3.

35 How large exactly the fixed UV scale has to be compared to other relevant scales of the system in order to minimize
regularization scheme artifacts, highly depends on the regularization scheme itself. Generally speaking, the smoother the
suppression of high-momentum modes is implemented, the smaller the gap between the UV scale and the maximum value
for external parameters can be. However, since we do not specify the regularization scheme here for the sake of generality,
an asymptotically large reference scale is a safe choice.
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sufficiently small compared to the initial scale A, in the first place is crucial for the reliability of
results overall. The RG consistency condition closely resembles the requirement of independence
with regard to the choice of the UV cutoff scale, see Eq. (2.30), but we again emphasize that these
conditions are only directly comparable for momentum-dependent regulators. More generally, the
RG consistency condition refers to the situation that the theory does not depend on the UV scale
at which we start the RG flow as long as a certain hierarchy of scales is maintained.

The UV extension may in principle be performed up to arbitrarily high scales A < Ayy in order to
allow for infrared results that are free of particular regularization scheme artifacts for a wide range
of values for external parameters. We would, however, like to stress that a UV extension does not
automatically imply that the effective theory under consideration has predictive power for values
of external parameters beyond the physical energy scale which is inherently linked to the given
classical action. An exact determination of this scale is quite involved as it requires an accurate
study of the fundamental dynamics at all momentum scales but we can take the UV scale A, as an
estimate. In general, the phenomenological meaning of the UV extension is highly dependent on
the regularization scheme, the truncations in use, as well as the theory itself. By construction, low-
energy models lack some of the microscopic degrees of freedom that are relevant at momentum
scales beyond A, and therefore they cannot correctly describe the physics at energies much higher
than Ay. To give an example, effective theories of QCD such as NJL-type models [74, 75] are
typically constructed without the appearance of gauge fields since they aim at an understanding
of bounded low-energy states, i.e., hadrons. Consequently, these models are not appropriate to
describe the strong interaction at energies at which the gluon dynamics can no longer be neglected.
Generally speaking, the UV extension should primarily be thought of as a formal extension of the
initial condition for the RG flow such that a certain hierarchy of scales can be maintained.

The RG consistency methodology as presented so far is not restricted to the effective average
action but equally applies to directly related objects such as correlation functions. The correspond-
ing relations are then readily obtained from Egs. (2.103) and (2.105) by functional differentiation.
Let us consider the example of the two-point function in momentum space,

— P

(1,1) _ o 6
Fk (P:Q; mext) - 5¢T(_P)Fk[q)](mext) 5¢(Q) .
=®o
= F"(Q Mex) 1)@ (P—Q) | (2.109)
where the reduced correlation function reads
k
FD(Q M) =TV (@ + | dl FP(Q Mexe) - (2.110)
AO’mext AO

We note that functional derivatives introduce an explicit dependence on new momentum scales
and the question arises of how these scales are to be dealt with in order to obtain an RG-consistent
framework. First of all, since the external momentum Q enters the loop, the requirement of phys-
ical scales being small compared to the fixed UV scale A, also applies here. Furthermore, it is
essential to understand that the functional derivatives also render the initial condition generally
Q-dependent.®® As a consequence, there is no reference flow at initial values for Q to perform a UV

36 There are exceptions in which the definition of the microscopic theory or the choice of the truncation leads to a UV value for
the wavefunction renormalization associated with Q being set to exactly zero. Then, the functional differentiation does not
render the initial condition for the reduced correlation function under consideration momentum-dependent. Consequently,
one may reinterpret this situation as having Q = 0 as the initial values in the scale-fixing process and RG consistency can be
performed straightforwardly to minimize regularization scheme artifacts scaling with Q. Notice, however, that a vanishing
wavefunction renormalization will render the corresponding renormalized masses divergent in the UV,
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extension consistent with. For that reason, A, remains a natural upper boundary for values of Q.
In other words, regularization scheme artifacts scaling with temperature or chemical potential can
be eliminated by the RG consistency procedure but not those scheme dependences that originate
from external momenta getting close to the fixed UV scale.

In synopsis, RG consistency refers to the situation in which the infrared physics is invariant with
respect to our choice for the high-energy scale at which we start the RG flow. Inherently connected
to this picture is the more formal statement that RG consistency implies the absence of regu-
larization scheme artifacts, i.e., artificial effects originating from external parameters becoming
comparable in magnitude to the fixed UV scale of the system. Once the UV parameters for a theory
at hand have been fixed with the aid of some low-energy observables, finite external parameters,
e.g., temperature or chemical potential, can, loosely speaking, shift the meaning of “high-energy”
towards larger values. As a consequence, RG consistency then requires an adjustment of initial
conditions such that a certain hierarchy of scales can be maintained. Generally speaking, RG
consistency should always be taken into consideration to ensure a consistent removal of scheme
dependences. Notice, however, that inherent regulator artifacts, e.g., effects arising from an ex-
plicit symmetry breaking as induced by the regulator function, cannot be repaired through RG
consistency.

2.3 Thermal field theory

In standard literature on quantum field theory, the theory under consideration is conventionally
formulated without any dependence on external parameters, e.g., temperature T or chemical po-
tential u. Temperature is a macroscopic property of a statistical system but can be related to
microscopic degrees of freedom of the latter by means of the equipartition theorem. More specif-
ically, temperature can then be used to quantify the degree of thermal agitation of the particles
in a system. In thermodynamics, a key property of temperature is that, if two physical systems
are in thermal equilibrium, then they have the same value of T. On the other hand, the chemi-
cal potential is directly related to the number density of particles in the system. Analogously to
the temperature case, two systems are in chemical equilibrium if they share the same value of
u. In contrast to temperature, however, densities are not directly controllable in the sense of an
experimental parameter. In the context of, for example, Fermi gases, the chemical potential can be
adjusted indirectly by means of an external field that controls the behavior of the gas within the
atom trap [250, 251]. In the absence of such external parameters, i.e., at T = u = 0, a quantum
field theory is meant to describe a quantum system in the vacuum. In fact, for ordinary hadronic
matter as found on earth at room temperature, corresponding values of T and u are sufficiently
small compared to the relevant mass scales in the system such that assuming vacuum conditions
for the quantum field theory at hand constitutes an excellent approximation. Therefore, vacuum
quantum field theories have been studied in great detail for several decades and theoretical predic-
tions in this framework are in remarkable agreement with experimental data obtained at particle
colliders.

Our physical universe is at finite temperature and incorporates matter of finite density. For that
reason, theoretical descriptions of nature should in general always try to include thermodynamical
effects. Despite the success of quantum field theory for vacuum systems, the thermal background
and the influence of a particle reservoir can no longer be neglected when external parameters
become fairly high. Ultrarelativistically hot and dense matter needs to be understood in many
problems ranging from early-universe cosmology [252, 253] over nuclear physics of compact stars
[254-256] to the theoretical description of heavy-ion collisions [257-259]. A suitable framework
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for studying the effects of finite temperature and density is thermal field theory, which can be
extended to Abelian as well as non-Abelian gauge theories. In particular, the understanding of
strong-interaction matter at high temperatures and densities is of great interest since QCD under
extreme conditions can give rise to a wealth of interesting phenomena and leads to the prediction
of various phases, see, e.g., Refs. [10, 260-262] for reviews. Most of the current theoretical efforts
aim at an improvement of our understanding of non-perturbative phenomena arising in hot and
dense quark matter as asymptotic regimes of the QCD phase diagram have already been exploited
perturbatively. To this end, we would like to highlight that renormalization group approaches
have played and still play a very important role in the investigation of the phase structure and
thermodynamics of QCD, see, e.g., Refs. [42, 78, 263-265].

Phenomenologically speaking, thermal field theory deals with the behavior of a large ensemble
of quantum particles in the presence of temperature and chemical potential. It should therefore
be thought of as the unified framework of statistical mechanics and quantum field theory. More
concretely, thermal field theory is actually a rather generic name for different approaches to quan-
tum field theory at finite temperature and finite density. These well-developed formalisms are
the imaginary-time formalism [266], the closed time path formalism of Keldysh and Schwinger
[267, 268], as well as thermo field dynamics [269, 270]. Within this work, we will put our em-
phasis on the first mentioned approach due to its close connection to the path integral formulation
of Euclidean quantum field theory. Moreover, the imaginary-time formalism is particularly suited
to describe the equilibrium thermodynamics of a given system and renders the calculation of bulk
properties like pressure, entropy and other thermodynamical potentials relatively simple. There-
fore, we begin by presenting the most important aspects of this formalism in the following. In
addition, we discuss the influence of external parameters such as temperature and chemical po-
tential on the calculation of correlation functions. For general and extensive literature on thermal
field theory, we refer the reader to Refs. [121, 271-276].

2.3.1 Imaginary-time formalism

For everything that follows, we will assume that the physical system under consideration can be
described by a Hamiltonian that has no explicit time dependence. The imaginary-time formalism
is based on the formal analogy between the time evolution operator of a given real-time quan-
tum theory and the corresponding statistical operator. With the introduction of complex times by
analytic continuation, we can switch from dynamics to statistics,

exp(—itH) il exp(—ﬂH) , (2.111)
where 8 = 1/T denotes the inverse equilibrium temperature. Both operators share the properties
of Markovian time evolution and locality of the evolution for short time intervals such that their
matrix elements can be represented by path integrals [105]. Based on the path integral, pow-
erful methods developed in quantum field theory and statistical physics have become closer and
closer over the last decades. In particular, the renormalization group not only represents a non-
perturbative approach to renormalization theory but also provides a natural framework in which
to understand universality. Moreover, the concept of “spontaneous symmetry breaking” with its ori-
gin in condensed-matter physics was successfully transferred to particle physics [74, 75, 277, 278]
in order to help understand phase transitions. The path integral description can even be used in
polymer physics where it has proven to be an ideal tool for studying statistical fluctuations of line-
like physical objects [104, 279, 280]. More generally, the relation above hints at a deep connection
between the frameworks of quantum and statistical physics. In fact, it is observed that every quan-
tum field theory in d spacetime dimensions corresponds to a statistical system in a space of d — 1
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dimensions [272]. In the same way, there is a correspondence between the correlation functions
of a quantum field theory and those of a related statistical system, with quantum fluctuations be-
ing replaced by thermal fluctuations. For more information on the connection between statistical
physics and quantum field theory, we refer to Refs. [281-287].

The relation (2.111) shows that, from the point of view of a real-time quantum theory, the pa-
rameter f3 in the statistical operator plays the role of a real-valued time in the imaginary direction
of the complex t-plane. Our approach to thermal field theory, which is built upon this very re-
lation, is therefore referred to as the imaginary-time formalism. Since we have traded the time
variable for temperature by analytic continuation, the imaginary-time formalism is well suited to
describe static physical systems in thermal equilibrium.3” On the other hand, if the primary focus
is on dynamical, non-equilibrium effects then methods which allow for additional evolution in real
time are necessary, see, e.g., Refs. [104, 129, 289-291] for further discussions. Moreover, notice
that the relation (2.111) has the implication that a quantum statistical system in thermodynam-
ical equilibrium is mathematically equivalent to an Euclidean quantum theory. For this reason,
Euclidean quantum field theory provides us with a natural framework to describe the equilibrium
thermodynamics of a given quantum system.

Let us consider a generic quantum system with a constant number of particles for each particle
species in the system. In the operator formalism, the corresponding Hamiltonian then has the
structure

A=Hy—> wh, (2.112)
i

where the summation index i runs over the number of particle species. The chemical potentials
u; € R enter the theory as Lagrange multipliers and determine the average number of particles
in the system for each species. Accordingly, every chemical potential gets paired with the corre-
sponding particle number operator N; in the description above. At vanishing chemical potential,
the Hamiltonian coincides with the Hamiltonian H, of the canonical ensemble. Furthermore, con-
sistency requires that the construction of the Hamiltonian with non-zero chemical potentials is
constrained by the relation [FI , Z\Ali] = 0, which implies particle number conservation. Assuming
fields to be the relevant degrees of freedom for the quantum system under consideration, the
grand canonical partition function can be expressed as

Z(T, {u}) =tr {e—ﬁ(ﬁo—zi UiNi)}

B
::/V§,Dq> exp (—f f dxo ([:0 ((I)(X),a CI)(X))—IZ,U/I N(cbi(X), aoqh(X)))) . (2113)
XJo i

At the classical level, Lagrange multipliers couple to conserved Noether charges such that, in the
case of the chemical potential, A/ denotes the charge density which corresponds to a U(1)y sym-
metry of the theory. From symmetry arguments, it then follows that a chemical potential can only
couple to complex-valued field degrees of freedom. Let us therefore consider the example of a
theory of Dirac fermions.>® Here, the invariance of the theory under the simultaneous transforma-
tions

VOER: Y —elly, P oape? (2.114)

%7 It is possible to study near-equilibrium physics by introducing a real-time dependence through analytic continuation after
the result has been obtained from the imaginary-time formalism [288].

38 Notice that a theory of massive Majorana fermions is not U(1),-symmetric. Majorana neutrinos allow for a neutrinoless
double beta decay which leads to a violation of lepton number conservation, see, e.g., Ref. [292].
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implies a conserved charge, namely the fermion number F, which is given by

F= f N(E(x),tp(x)) = J E(x) v9 4(x) = #fermions — #antifermions . (2.115)

In quantum electrodynamics, the fermion number conservation automatically implies the conser-
vation of the electric charge. In quantum chromodynamics, the conserved charge is commonly
associated with the total baryon number

1
B:Z(Nqu+NqBa)=Z(Nq—Nq) NN (2.116)
q q c c

where the summation index q runs over the values of some suitably chosen quantum number,
e.g., flavor or color. Whereas N, denotes the number of fermions with quantum number q, B,
stands for the corresponding fermion baryon number. As usual, the bar notation indicates the
appearance of antifermions and their quantum number. Moreover, the quantity N, refers to the
number of color degrees of freedom of which there are three in nature. Notice that the theory
of the strong interaction conserves the numbers of each flavor and color individually so there are
in general independent chemical potentials for each internal quark degree of freedom, see, e.g.,
Refs. [293-295]. It is important to mention that the introduction of a finite chemical potential
leads to an explicit breakdown of charge conjugation symmetry. Under charge conjugation, the
Noether charge undergoes a change in sign, encouraging the interpretation of “swapping” particles
and antiparticles:

N (@(x), 8p®;(x)) = N (85 (x), 8,8¢ (x)) = =N (®;(x), 5,®;(x)) - (2.117)

Although the chemical potential is not directly affected by charge conjugation, its presence ex-
plicitly breaks the invariance of the classical action under charge conjugation transformations. In
addition, it immediately follows from Eq. (2.117) that theories which are invariant under charge
conjugation at zero chemical potential have the property of producing physical observables invari-
ant under the transformation u; — —u;. It should further be noted that Euclidean time evolution
introduces an additional factor of the imaginary unit to the part of the exponential that includes the
chemical potentials, see Eq. (2.113). This can be thought of as the result of analytically continuat-
ing the Minkowskian number density to Euclidean spacetime, see Appendix A.4 for our conventions
regarding Euclidean quantum field theory.

There are several things about the partition function and its path integral representation that
we would like to point out. First of all, the interaction vertices of the theory at finite external
parameters are exactly the same as for the vacuum theory. In fact, the only difference from the
vacuum theory is the form of the propagator which carries all the dependence on temperature
and chemical potential. Also notice that the partition function can be promoted to a functional by
inserting a source term. Analogous to the vacuum case, see Egs. (2.4)-(2.8), we write

ZIJNT, {u;}) = tr{f‘ e_ﬁHeJT"i’}

B
:ﬂjEDq> exp (—S[<I>J|T’{“i}+J J dx® (JT),(x) @a(x)) . (2.118)
%Jo

The construction of regularized generating functionals for thermodynamic correlation functions
now exactly follows the methodology presented for the vacuum case. We will thus not elaborate
on such matters anymore and instead focus on the effects of finite external parameters within the
imaginary-time formalism. As before, ordinary thermodynamic correlation functions can then be
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obtained from the partition functional by functional differentiation and proper normalization. In
particular, the two-point function reads

Gy 06 3) = (200) T 140 T e P é(x) $7(y)} (2.119)

=1 _uf
which is the generalization of the two-point correlator as shown in Eq. (2.10) to finite temperature
and chemical potential. Making use of the time evolution of field operators in the Heisenberg
picture,

d(x%, %) = e PH $(0,%) ePH (2.120)
as well as the cyclic properties of the trace, we obtain

2 2 N
Gy (o) = (1) G5, (6, Y0+ B, 7). (2.121)

In words, the Green’s function exhibits the feature of being (anti)periodic in time with period f3.
This is known as the Kubo-Martin-Schwinger (KMS) relation [296-298] and is an example of the
detailed-balance principle of statistical physics, ensuring stability of thermal equilibrium under
fluctuations. Since the KMS relation is a statement about the two-point function, it can be used to
help define thermal propagators. Nevertheless, it is also possible to promote this relation to higher
n-point functions [299]. It is important to realize that the KMS relation directly implies periodic
and antiperiodic boundary conditions for thermal boson and fermion fields, respectively,

d(x%, %)= (—1)g ®(x° + B, %) . (2.122)

As the imaginary-time formalism shows, finite temperature leads to a compactification of the
time dimension and gives rise to periodicity constraints in the time-like direction imposed on the
field variables. Technically speaking, the Euclidean space for the thermal fields has the topology
of a cylinder with time as a periodic variable. These (anti)periodicity conditions ensure time-
translation invariance of the finite-temperature theory and therefore play a crucial role in the
definition of the closed path integral (2.113). More specifically, the functional integral represen-
tation of the partition function needs to take into account all field configurations that satisfy the
(anti)periodicity relation above. Notice that the translation invariance of the action allows us to
impose the boundary conditions (2.122) for the path integral at any point in time, e.g., x° =0 or

0= —g. Both choices are equivalent but the widespread convention of constraining the time-like

direction of spacetime to values [0, 3] rather than [—g, g] immediately leads to the necessity of

boundary conditions for fields evaluated at x° = 0. In the zero-temperature limit, 8 — oo, either
choice is still valid but only the second case leads to a path integral description which is explicitly
time-translation invariant [105, 121] and consistent with our vacuum formulation, see Eq. (2.5).
Due to the periodicity of the time variable in position space, the time-like direction of momentum
space is not continuous anymore but is reduced to an infinite set of equidistant points, so-called
Matsubara frequencies. In particular, the Fourier series expansion reads

X

1 . N
(x) = J DI R (2.123)
p ﬁ nez
where the Matsubara frequencies [266] are defined as
27 1+
NN (R P —— 2120
for bosons (a = —1) and fermions (a = 1), respectively. The infinite series over Matsubara fre-

quencies is generally referred to as a Matsubara sum. For a full presentation of the behavior under
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Fourier transformations, see Appendix A.5. Interestingly, the Matsubara zero mode is exactly zero
for bosons but finite for fermions. At n = 0, we get w, = 0, which is responsible for infrared
divergences in thermal field theories for massless bosons. On the other hand, finite temperature
naturally screens such a divergence in fermionic propagators since v, = 7 T.

Any continuum formulation of a relativistic quantum field theory should be Lorentz-invariant in
the vacuum limit, i.e., at T = u = 0. Nevertheless, the introduction of finite temperature or finite
chemical potential leads to an explicit breakdown of Lorentz symmetry.>® Both external parameters
treat the time-like direction of spacetime differently from the others such that Lorentz symmetry
breaks down to the invariance of spatial coordinates under SO(3) transformations. Whereas finite
temperature spoils the invariance of the integral measure under Lorentz transformations, a finite
chemical potential is accompanied by a charge density that constitutes a Lorentz vector directed
in the time-like direction of spacetime. From a phenomenological point of view, finite temperature
introduces a preferred Lorentz frame where the plasma of particles and antiparticles, which con-
stitutes the heat bath, is at rest. Analogously, the presence of a particle reservoir as indicated by a
finite chemical potential implies the existence of a preferred reference frame for the formulation of
physical laws. It should again be mentioned that this symmetry-breaking process in thermal field
theory is entirely physical and that it must not be confused with a regulator-induced loss of symme-
try which, on the other hand, is completely artificial. Despite the deforming behavior of external
parameters towards Lorentz symmetry we would like to highlight that a finite chemical potential
also gives rise to a new invariance principle of a zero-temperature field theory, the Silver-Blaze
symmetry. This symmetry leads to a peculiar behavior of observables with respect to the chemical
potential, which is known as the Silver-Blaze property.

2.3.2 The Silver-Blaze property

In order to study a physical system at finite density, the vacuum theory has to be modified by
the insertion of a chemical potential and an associated Noether charge such that the resulting
description is consistent with the statistics of a grand canonical ensemble of corresponding many-
particle systems. For simplicity, we will consider a theory of only a single particle species in the
following. A non-zero chemical potential u alters the spectrum of the kinetic operator relative
to the u = 0 case, leading to the expectation that the partition function and related quantities
change as well. This, however, turns out to be not the case at zero temperature. As an anecdote
to one of Arthur Conan Doyle’s stories, this phenomenon has been labeled as the Silver-Blaze
property [304]. Specifically, the Silver-Blaze property refers to the fact that the partition function
of a system at T = 0 does not exhibit any dependence on the chemical potential, i.e., it remains as
that of the vacuum, unless the chemical potential exceeds a critical value ugz. As a consequence,
the chemical potential needs to be increased beyond this threshold in order to excite any states at
zero temperature. The critical value is closely connected to the vacuum pole mass of the particles
coupling to the chemical potential. This means that the charge density associated with the U(1)y
symmetry of the theory stays zero as long as the chemical potential has not overcome the particle
mass. From the standpoint of statistical physics, this behavior may in fact not be too surprising.
For a better understanding, we consider the standard thermodynamic relation

_ ()
'u_V on

39 This breakdown of symmetry at finite temperature or chemical potential is in fact independent of how these parameters
themselves transform under a Lorentz boost. For a discussion on relativity and thermodynamics, see, e.g., Refs. [300-303].

, (2.125)
T,V
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where n denotes the number density of particles and V the spatial volume in which the physical
system under consideration is confined. In words, the chemical potential is nothing but the change
in Helmholtz free energy when particles are added to or removed from the system. In thermal field
theory, the Helmholtz free energy is generally given by

1 1
5 In(2) B
Phenomenologically speaking, the relation (2.125) implies that we cannot expect any feedback
from the system if the chemical potential is not large enough to induce the addition of a single
particle. Once the chemical potential overcomes the energy associated with the particle, the be-
havior of the system will deviate from the vacuum case. Overall, the Silver-Blaze property is a
quite generic feature of physical systems at zero temperature and has been studied in the context
of QCD [81, 304-307] as well as scalar field theories [308-311].

Fy= T[®,] . (2.126)

Let us have a look at a generic fermonic theory at zero temperature but finite density as given
by an action with the structure

S, 91|, = f Y [id —ir°u+imy J(x) + S, 9], (2.127)

where S;,; has no u-dependence but contains all multi-fermion interactions of the theory. Since the
theory is built from fermion bilinears, it follows that the action is invariant under the simultaneous
transformations

VaeR: Y(x) - ei"‘xoft,b(x) , P(x) = P(x) e iax’ , u—u+ia, (2.128)

where the continuous transformation parameter a has the physical dimensions of energy. The
invariance of the fermionic theory with respect to these transformations is referred to as the Silver-
Blaze symmetry.*° This may be considered some kind of local gauge symmetry with the chemical
potential acting as a constant gauge field. Unlike true gauge fields, however, the chemical potential
is an external control parameter and does not get integrated over in the path integral. Therefore,
the Silver-Blaze symmetry is not a symmetry in the sense of Noether in which only the field degrees
of freedom are subjected to a transformation. Correspondingly, there is no conserved charge asso-
ciated with this invariance principle. Although we started with a purely fermionic action, fermions
may not be the relevant degrees of freedom of the system at low energies. Instead, bosonic bound
states become more important and may condense, giving rise to, e.g., Cooper pairs in condensed-
matter physics or hadrons in QCD. It can therefore be beneficial to perform a bosonization proce-
dure and thereby introduce effective bosonic degrees of freedom,

p~pp,  A~YTY, AT~y (2.129)

In the context of strong-interaction matter, ¢ refers to a meson while A and A* denote diquark
states [25, 27, 28, 305, 312]. For more details on bosonization, see Appendix B. It is now im-
portant to realize that, due to their internal fermionic degrees of freedom, the effective boson

40 Strictly speaking, the Silver-Blaze symmetry relies on a set of more general transformations. Considering a time-dependent
transformation parameter a(x°), the generalized transformations read

P(x) = e CNY(x),  P) = Plx) e ps urigyalx?) .

The special case as presented in the main text can easily be recovered by considering a(x®) = a x° with a being some
real-valued constant. Notice, however, that the (anti)periodic boundary conditions imposed on the field degrees of freedom
at finite temperature enforce such a factorization anyway so, for reasons of consistency, we decide to stick with the more
simple presentation also at zero temperature.
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fields can also couple to the same chemical potential u and behave as follows under a Silver-Blaze
transformation,

P(x) = ¢(x), A(x) — A(x) ei2ax’ R A*(x) = A*(x) emizax’ (2.130)

In order to include the new boson fields into our formalism, we adapt the definition of the super-
field ®, see Eq. (2.3), by identifying*!

¢(x) ¢(p)
e(x)=| A®) =f e? | A(p) =J eP™X »(p). (2.131)
p p
A*(x) A*(p)

This allows for the general statement that a field contained in the general field variable ¢ trans-
forms in accordance with its fermion content,

®;(x) = ®(x) exp (iFjaxO) , (2.132)

where F; is the fermion number associated with the field ;. In momentum space, the Silver-Blaze
transformations for the fields are realized by a shift in the time-like momentum:

®;(p) = ®;(p° —F;a,p) . (2.133)

After having worked out the generalized symmetry property of a fermionic theory that comes
along with a finite chemical potential, let us investigate its implications on the partition function
and related objects. At zero temperature and finite chemical potential, the partition function of a
system of fermions and bosons may generally be written as

Z(u) = ,/VJ Do e S0l = N exp (—S[‘I>c:”“ — % Tr {Ln (S(l’l)[¢c]|u)} —.. ) , (2.134)

where the fixed field configuration . is determined by*?

—

13}
6d(x)

Vx e R*: 5[<1>]|M =0. (2.135)

=0,

As the path integral measure is invariant under Silver-Blaze transformations, we find that the
partition function is periodic in the chemical potential with period ia. Put differently, the partition
function is invariant under a shift of the chemical potential along the imaginary axis:

Z(u)=Z(u+ia) . (2.136)

Assuming that the partition function is analytic, it follows that the partition function does not
depend on the chemical potential at all. More specifically, we can perform an analytic continuation

#1To consistently introduce the two complex-valued diquark fields as independent bosonic degrees of freedom, it must hold
that

A*(x)=[AM)],  A'(p)=[A(-p] .
42 In the literature, ®, is often referred to as the classical field since it represents a solution to the classical equation of motion

as derived from the variational principle of classical physics. Notice, however, that &, must not be confused with the classical
field as defined in Eq. (2.20), where the latter is an expectation value taking into account all quantum fluctuations.
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of the transformation parameter a — iy and conclude that Z(u) = Z(0) as long as our assumption
holds true.** This means the partition function remains at the vacuum value until the chemical
potential u leaves the domain of analyticity for Z. To understand why the partition function is
not analytic for all values of u, notice that a finite chemical potential couples to the time-like
direction of the kinetic operator, see Eq. (2.127). In particular, it acts like an external momentum
of Minkowski spacetime. As a consequence, introducing a finite chemical potential leads to a pole
in the propagator or, equivalently, a root in the inverse propagator for u > ugg. This critical value
usg is determined by the vacuum pole mass of the lowest-lying state with non-vanishing fermion
number. The pole in the propagator of the theory is integrable but nevertheless restricts the domain
of analyticity to values of the chemical potential satisfying u < ugg.** Within this domain, the
partition function remains constant. Beyond this domain, the partition function becomes a non-
analytic function of the chemical potential and thus differs from the vacuum value.** This is known
as the Silver-Blaze property. This feature translates to all other quantities that are derived from
the classical action, meaning that zero-temperature observables are generally independent of the
chemical potential unless its value exceeds the threshold ugg.

Analogous to the Silver-Blaze property of the partition function, a more general invariance prin-
ciple can be formulated for generating functionals,

, (2.137)

u+ia

2w =2[e77 T |(u+ia),  Tl8]l, =T [e*7e]

where & denotes a matrix in field space carrying all the fermion numbers F; for the fields &;
on its diagonal. Evaluating the functionals at the ground state of the system, i.e., at vanishing
external sources, lets us recover Eq. (2.136). The implications of the Silver-Blaze property on
correlation functions are now readily obtained by functional differentiation. Due to its relevance
in the context of the functional renormalization group, we will focus on the quantum effective
action and its correlation functions in the following. In particular, the two-point vertex function at
zero temperature now satisfies

— — — pa—

5 5 5 . 5
2 1[8]|, ——— = | =[]
6®;(x;) Ho®;(xy) o 6®;(xq) ptia 0@;(xp) ||
—%0 —*0
5 5 00
— | ——r[?']|,,., =—— ela(Fxt+Fig) | (2.138)
/ “+1 /
5@1(-)(1) uria 5@1(-)(2) (p/:eiag.xoq)o

43 One might be wondering why we did not initially consider a complex-valued parameter o, which would directly result in
translation invariance of the partition function in the chemical potential along the real axis. In that case, the Silver-Blaze
transformations of the fields in position space, see Eq. (2.132), could not be associated with phase rotations but rather
with exponential scalings. Additionally, having a € C implies a shift of time-like momenta along the imaginary direction,
see Eq. (2.133), which only makes sense if the field degrees of freedom can be analytically continued. Overall, while it is
possible to start with a complex-valued parameter, it does not eliminate the need for analytic continuation and would lead
to an unconventional presentation of the Silver-Blaze property.

# The logarithmic expression Ln(S®>V[&.]) in Eq. (2.134) becomes ill-defined when the propagator develops a pole. However,
logarithmic functions diverge slowly enough such that the area under their curve remains finite near the singularity, meaning
that infinite logarithmic discontinuities are integrable. As a result, the loop integral Tr{Ln(S(l’l)[éc])} remains finite
and continuous at and beyond the critical value for the chemical potential. Nevertheless, the existence of such a critical
value renders the behavior of an integrand qualitatively different for u < ugs and u > ugg, resulting in an integral being
non-differentiable at u = ugg.

5 In the presence of a finite chemical potential, the associated pole for u > ugy renders the multi-integral Tr {Ln(S (1’1)[<I>C])}
generally u-dependent. Since the partition function is real-valued, the Silver-Blaze symmetry implies that the partition
function can only depend on the real part SRe {u}. The real part, however, is not a holomorphic function because it does not
satisfy the Cauchy-Riemann equations.
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Notice that a Silver-Blaze-symmetric system in particular has a ground state configuration &, that
respects this symmetry. This means that such a system requires fields with non-zero fermion
numbers to either vanish or keep a time dependence at the ground state. Therefore, assuming
a finite and homogeneous ground state for, e.g., diquarks automatically spoils the Silver-Blaze
property of the observable of interest. If the quantum effective action is analytic for u < ugg, we
can perform an analytic continuation of the transformation parameter a — ia as long as y—a < ugg.
Setting a = u leads us to

Fi(}’l)(xl,xz)h - Fi(}’l)(xb X3) e_M(le?+F2xS) . (2.139)

The general implication is that, in position space, the dependence of correlation functions on
the chemical potential is given by the vacuum correlation functions and the multiplication of an
appropriate exponential factor. In momentum space, this translates to

(11)(P1,P2)| f f eiPIx F( 1)(x1,x2)| elP2x2

1,1 . o . o
=1.77(pS —iFu, By, p +iFji, B2)
(1,1 . - .
=E0D(pS —iFu, By) (2m)* 6™ (p —q —iu(F; + F))) . (2.140)
We emphasize that the Dirac delta distribution cannot be analytically continued to complex-valued
arguments. In other words, energy conservation implies that the two-point function only exists

for F; = —F;. For the field degrees of freedom as covered in this thesis, the possible two-point
functions are given by

E )|, =0 +ip, B) (2.141)
e, =T 0% 5) (2.142)
tDm)|, = TP 0° +i2u,) . (2.143)

We observe that the zero-temperature vertex functions in momentum space can for u < ugg be
obtained from the corresponding vacuum correlation functions by shifting the time-like mode of
the external momentum into the imaginary direction. The absolute magnitude of the shift here
depends on the fermion content of the fields involved. The relations above further display that the
vertex functions for fields with non-zero fermion numbers are generally complex-valued for finite
external momenta. Nevertheless, the overall partition function as well as the quantum effective ac-
tion remain real-valued. It should also be mentioned that, although we have restricted the explicit
presentation to the two-point function for illustrative purposes, the discussion of consequences of
the Silver-Blaze property is in fact quite general and applies to correlation functions of arbitrary
order.

We would also like to stress that the Silver-Blaze property is only present at zero temperature.
Finite temperature leads to a compactification of the time direction, which imposes periodicity con-
straints on the field degrees of freedom entering the path integral, see Eq. (2.122). This periodicity
in position space translates to a discretization of time-like modes in momentum space, giving rise
to Matsubara frequencies. Accordingly, the periodicity constraints for thermal fields also enforce
a discretization of the transformation parameter a in Eq. (2.127). As a result, the Silver-Blaze
transformations at finite temperature and finite chemical potential read

®;(x) — ®;(x) eiFjanx’ , u—u+ia,, (2.144)
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where the transformation parameter is now given by
VT >0,VneZ: a,=2nnT. (2.145)

The Silver-Blaze symmetry at finite temperature is not continuous anymore and an analytic contin-
uation of the discrete parameter a, to complex values cannot be uniquely defined. Equivalently,
also the Matsubara frequencies do not have a unique analytic continuation. As a consequence, the
partition function generally loses its analytic properties at finite temperature and the Silver-Blaze
property disappears.*®

Let us turn to a discussion of the Silver-Blaze property in the context of the functional renormal-
ization group. Since the regulator insertion AS; is bilinear in complex-valued fields, the regulator
attaches to the kinetic operator of the theory and the requirement of respecting Silver-Blaze sym-
metry generally renders the regulator function u-dependent. A general regulator

Re(p,9)|, = Re(p)], @2m)*6W (p—q) (2.146)

respects the Silver-Blaze symmetry of the theory if it is analytic in u and satisfies the conditions

~, N 1 ~ N ~ - | ~ -

RY(P°, )|, =R{ (% +IF,la )| i R (0% B)|, =RY(0° + 0, B)| 1y (2.147)
It follows that the reduced regulator functions need to have the following structure,

R{(°,B)|, =R{ (0 +ilF,|u.B) , R (p°, )|, =R} (°+iu, B) (2.148)

The chemical potential naturally couples to the time-like direction of the kinetic operator for each
type of field. As a result, the implementation of spatial regulators automatically renders the regu-
larization scheme Silver-Blaze-symmetric. More specifically, spatial regulators leave the time-like
direction of representation space completely untouched such that the relations (2.148) are satisfied
in a trivial manner.*’

In the context of a theory involving massless particles, a finite chemical potential leads to the
screening of infrared divergences that would typically occur at the origin of momentum space.
Although the pole of the propagator at p? = 0 is no longer present for u > 0, the infrared divergence
has been shifted into the imaginary direction of the analytically continued p°-mode. In order
to ensure proper IR regularization in the presence of a finite chemical potential, we impose the
condition

lim RY (p° —ilF,|u,B)[, >0, izimodet (RY@° —iu,ﬁ)m >0, (2.149)

P50

K2 K2

which consistently reduces to the standard regulator condition (i) in the vacuum limit. In fact, these
conditions are identical for Silver-Blaze symmetric regulators. Nevertheless, the condition (2.149)

46 This is to be understood in the sense that an exact independence from the chemical potential can only be present for exactly
zero temperature. Any finite temperature immediately renders the system globally u-dependent. Howevery, if T is sufficiently
small compared to the Silver-Blaze threshold ugg, then finite temperatures merely introduce a slight dependence on the
chemical potential, which is in practice often indistinguishable from the zero-temperature case. Therefore, the Silver-Blaze
property is often mentioned even at finite but sufficiently low temperatures.

47 There are regulator functions that do not depend on the time-like coordinate yet have a u-dependence. These regulators
induce a decoupling of the chemical potential from the time-like modes and hence introduce explicit Silver-Blaze breaking.
We do not consider them to be spatial regulators in the strict sense because they destroy the structure of the kinetic operator
in the presence of a finite chemical potential. They have nevertheless proven quite successful in studies of systems with a
Cooper instability, see, e.g., Refs. [30, 81, 313].



58 CHAPTER 2 QUANTUM FIELD THEORY

implies that regularization in the presence of a finite chemical potential is provided for loop mo-
menta in the proximity of p* = (—i|F|u,0) instead of the origin of momentum space. The IR
condition for the regulator shape function stays the same. It is worth mentioning that the adjusted
condition for IR regularization does not screen the singularity of the zero-temperature system at
u = ugg- The regulator only renders the particle mass associated with the Silver-Blaze threshold
usp generally scale-dependent.

The Silver-Blaze symmetry of the theory as well as its implications for correlation functions
suggest that a derivative expansion of the effective average action at finite chemical potential
should be anchored around a u-dependent expansion point [81, 307]. The expansion reads

@], =J (V@0 ey +90) [ 2] ir°@— )+ 25 i8] ()
+AY(x) [-Zh, @—2u)? 21, 88| Ax)

+%¢(x)[ z” s aa]¢(x)+...)

=J(Uk[<1>](p)|%{m +9(p) [zl Y°° +iw) -z}, F] v(p)
P
+A*(—p) [z}, (0°+i2u)"+ 2%, B*] Ap)
+= ¢(—p) (2], (0°) +2}, B2 +...), (2.150)

where we introduced several wavefunction renormalization factors parallel and perpendicular to
the particle reservoir. In the case of explicitly broken Silver-Blaze symmetry, the u-dependent
contributions in the kinetic term flow differently than the time-like component such that the
incorporation of a separate wavefunction renormalization Z, is in general necessary, see, e.g.,
Refs. [88, 307]. It is important to realize that, although the mesons themselves do not couple
to a chemical potential, their kinetic operator also splits into parts parallel and perpendicular to
the time-like direction of representation space. Since the fermionic fields do in fact couple to
the chemical potential, fermion-boson interactions will generally render the bosonic wavefunction
renormalizations implicitly u-dependent and thereby induce a decomposition of the wavefunction
renormalization also for the mesons.*® This illustrates the explicit breaking of Lorentz invariance
for all field degrees of freedom in the presence of a finite chemical potential. As before, U, denotes
the effective potential which is invariant under Silver-Blaze transformations. The effective poten-
tial therefore contains fields only in U(1)y-symmetric combinations and can only depend on the
real part of the chemical potential. Overall, taking into account a generally u-dependent expan-
sion point as shown above ensures an intact Silver-Blaze symmetry at every order of the derivative
expansion.

Notice that the derivative expansion around a Silver-Blaze-adapted expansion point directly
implies that projections onto couplings require setting the external momenta to p = (—i|F|u,0)
after functional derivatives have been performed. Choosing a different evaluation point for the
projection leads to u-dependent contributions from higher orders of the expansion and destroys

8 The bosonization of, for example, four-fermion interactions produce Yukawa-type interactions between fermions and bosons,
i.e., vertices ~ 1_/1 ¢ and ~ IZAl_lJT. The absence of interactions would imply that fermion and boson degrees of freedom
have been decoupled by hand in order to study their dynamics separately. In that case and without any other source of
explicit Lorentz symmetry breaking, the parallel and perpendicular part of the meson wavefunction renormalization would
indeed be identical.
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the Silver-Blaze property of the quantity of interest. Even worse, RG flows can develop a non-
integrable pole when insisting on the standard derivative expansion (2.92) in the presence of
a finite chemical potential [81, 307]. As a result, Fermi-surface-adapted regulators have to be
implemented to prevent the RG flow from being ill-defined [30, 81, 313]. Furthermore, we would
like to point out the general fact that any expansion is only meaningful if the function under
consideration is analytic. Since the system at zero temperature is only analytic for u < ugg, the
derivative expansion generally breaks down once the chemical potential passes the Silver-Blaze
threshold. In particular, correlation functions become non-analytic in external momenta for u >
usg. An extraction of low-energy observables which is consistent with mean-field calculations then
requires the usage of iterated limits, see Section 2.4.4 for details. In addition, projections involving
derivatives with respect to external momenta can lead to infinite discontinuities which restrict the
predictive power of our framework. A feasible solution could be to make use of finite differences
instead of derivatives, see, e.g., Appendix C of Ref. [314] for a possible projection for wavefunction
renormalizations.

The Silver-Blaze property is not restricted to systems with a single chemical potential but is also
present if multiple particle species couple to different chemical potentials. Analogously, there then
is a region in a phase diagram spanned by all the chemical potentials in which the system stays in
its vacuum state. However, this Silver-Blaze region generally has a non-trivial topology because the
effect of the chemical potentials on the structure of the propagator highly depends on the particle
species and the interactions among them.

2.4 Subtleties at finite temperature and chemical potential

In order to correctly capture the physical principles underlying quantum as well as relativistic
systems, the framework of quantum field theory combines concepts from different branches of
mathematics, including functional analysis, differential geometry, and advanced calculus. Not
only the conceptual challenges of quantum field theory but in particular its mathematical complex-
ity makes it infamously difficult to obtain analytical and closed-form predictions for interacting
systems. With the ambition to make calculations more accessible, physicists have come up with
clever methods, which are based on interchanging the order of mathematical operations such as
integration, taking a derivative, and taking a limit. Despite the great success of this approach
and its indisputable benefit to modern research, it is in principle important to verify whether the
operations indeed commute in the situation of interest. In the following, we present several scenar-
ios as encountered in the context of quark-meson-type models at finite temperature and/or finite
chemical potential in which a change of order is not valid. We would like to highlight that the
technicalities occurring in the calculation of loop integrals and associated correlation functions are
independent of any matters of regularization. We will therefore aim at a rather general presenta-
tion of the relevant mathematics before giving concrete examples related to physics. For simplicity,
we consider the finite chemical potential always to be positive, u € R*.

A major part of the following presentation relies on a powerful residue technique from the field
of complex analysis, the Cauchy residue theorem. Let D C C be open, G C D be a simply connected
region, which is enclosed by a piecewise continuously differentiable curve y. Further, let A be a
finite subset of D with ANy = @,* and let the function f be holomorphic on D \ A. The residue

49 The residue theorem in its most straightforward form assumes that the function under consideration has a finite number of
isolated singularities in order to guarantee convergence for the sum of residues. In general, however, the set A does not
need to be finite. In fact, the Matsubara formalism relies on an extension of Cauchy’s residue theorem to a countably infinite
number of poles, see, e.g., Section 2.4.3.
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theorem then states that the contour integral of f along y equals a weighted sum of residues for
isolated singularities a € A, which lie in the region enclosed by the curve:

jgdzf(z)zzm > ind,(a) Res(f,a) . (2.151)
Y

aceANG

Here, int,(a) not only counts in absolute values how many times y winds around z = a but also
takes the orientation of the curve into account. The usefulness of the theorem now stems from
the fact that it is often possible to determine the residues without an explicit evaluation of contour
integrals. In particular, for a pole of order n € N, the corresponding residue is given by the formula

n—1

(n—1) ;l—r}}l dzn-t

Res(f,a) = [(z—a)" f(2)] . (2.152)

In order to apply the Cauchy residue theorem for the evaluation of integrals, a closed integration
contour in the complex plane has to be chosen. Since we are primarily interested in integral
expressions appearing in the context of physics, it is most advantageous to consider an interval
on the real axis and then close the contour with a semi-circle in the upper (or lower) half of the
complex plane. In the following, we agree on the convention that C denotes such a contour, where
the radius R of the corresponding semi-circle is taken to infinity. Provided that the integral along
C exists, we write

j( dz f(z) = Rlim (J dz f(z)+J dz f(z)) s (2.153)
c ~\JIRR] CiR)
where

C:{(r)={z€ C|Im{z} >0A|z—d|=r} (2.154)

describes a semi-circle in the upper half of the complex plane around the point d € R with radius
r > 0. In our convention, C is positively oriented and winds around an isolated singularity of f
only once at most. Furthermore, if f is uniformly convergent to zero on C; (R) as R tends to infinity,
ie., if

Yo e(0,m): Rl_i)rgoR f(Re¥)=0, (2.155)

then the integral along the semi-circle vanishes. As a consequence, the contour integral simplifies
to

§ dzf(z)=f dz f(z)=2mi Y Res(f,a) O(Im{a}). (2.156)
C R acA

Notice that, compared to Eq. (2.151), we sum over all singularities here. Due to the presence
of the Heaviside step function, however, we consistently take into account only residues at those
singular points that lie in the closed contour. Loosely speaking, the Heaviside step function acts an
as on/off switch, letting a residue only contribute if the corresponding singularity lies in the upper
half of the complex plane. In general, expressing integrals along the real axis in terms of contour
integrals allows us to apply techniques of complex analysis. This approach has proven to be highly
successful in simplifying the evaluation of integrals occurring in the natural sciences.
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2.4.1 Order of integration

At zero temperature, the introduction of a finite chemical potential comes along with a pole in the
propagator for u > ugg. This pole can destroy the Lebesgue-integrability of functions f in a loop
integral:

V> pgp : f d*p If(p)l —> oo . (2.157)

Provided that the multiple integral converges, the failure of absolute convergence generally indi-
cates that the integrand is singular somewhere on the integration domain and that the integration
procedure leads to a process in which diverging contributions counter each other. However, the
absolute value prescription interferes with this mechanism and hence causes a divergence. The ab-
sence of Lebesgue-integrability suggests that the value of the multiple integral may not be uniquely
defined and instead depends on the method of integration. In many applications, a multiple in-
tegral is evaluated by computing an iterated integral. It is then essential to realize that the can-
cellation of infinities during the integration process is sensitive to the order in which the iterated
integral is performed. In other words, the presence of a pole as induced by the chemical potential
can spoil the applicability of Fubini’s theorem such that the order of integrating out momentum
modes becomes important. For illustrative purposes, we consider the simple function

2

1

f®%q) =( , ) , (2.158)
(p° +ip)* +q* +m?

whose basic structure is reminiscent of a propagator for massive fermions in one spatial dimension.

We now have the opportunity to perform the integration of momentum modes in the corresponding

loop integral in two different orders:

_ 2
qufdp £° q)——(1—9(u m)”‘M ’"), (2.159)

Jdp qu f@° q)——(1—9(u m)m). (2.160)

With the Silver-Blaze threshold being given by the mass parameter, ugg = m, we observe that the
integrals above do in fact coincide in the vacuum, i.e., for u < ugg, but differ beyond the critical
value, u > ugp. Although both integrals approach the same limit as u becomes asymptotically large,
it is important to realize that their behavior is significantly different for values of the chemical
potential close to the Silver-Blaze threshold. More specifically, the result (2.160) diverges for
u—m — 0% while the first integral remains finite and continuous.

As demonstrated, switching the order of integration does not need to leave the result invariant if
Lebesgue-integrability has broken down. In the context of zero-temperature quantum field theory,
this means that the order of integration in a loop integral generally becomes important once the
value of the chemical potential exceeds the Silver-Blaze threshold. However, despite this observa-
tion, there is a priori no way to decide which order of integration is correct from a physical point
of view. Let us therefore take a step back and consider the evolution operators in relation (2.111).
These operators show an explicit dependence on inherently time-like variables which implies that
the time-like direction of spacetime has already been integrated out. In fact, this is a quite general
feature of equilibrium systems and holds for finite as well as zero temperature. For that reason,
we take this as a basis for our understanding of integration in which the time-like coordinate is to
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be integrated out first. To be explicit, we use

J::ffdxo, J::fjdﬁ), (2.161)
x X JR p p RZTE

which translates to analogous prescriptions for finite temperature.

2.4.2 Differentiation under the integral sign

Let Y C R be an openset,h: CxY — C as well as g : Y — C differentiable functions. Furthermore,
let h be analytic on C. For n € N we consider the combined function

h(z,y)
(z—glN"’
which is singular in all points (z,y) € C x Y that satisfy the equation z = g(y). Now, lety : I —» C

be a simple closed curve in the complex plane. Then, the function F as given by the parameter
integral

flzy)= (2.162)

F(y) =§ dz f(z,¥) (2.163)
Y

is differentiable on Y \ U, where U is defined by
U={yeY|3dsel: y(s)=g(y)}. (2.164)

Notice that elements of U are parametric representations of the singularity condition z = g(y) for
z lying on the integration contour. The Cauchy-type integral (2.163) is not defined at points at
which the pole of the integrand lies on the integration contour and hence F is not differentiable on
U. In the following, we shall assume that U = 2U,”° meaning that U only contains isolated points
such that F is differentiable almost everywhere on Y. Making use of the Leibniz notation

Vi,jeNy: hi)(z,y)= a—i.a—j,h(z ¥) (2.165)
J J azl ay] ) J

we define

Vy*eU: cyi=|n"10(g(y*), ¥, (2.166)

which is related to the boundary value of the function F as y — y*. In particular, if g passes
through the contour at y = y*, it follows from the Sokhotski-Plemelj theorem that

lim |F(y* +¢&)—F(y*—¢)| = 2 Gy 2.167
Jim |F +e)~F(y 8|_(n—1)!' (2.167)
If and only if c,. =0 Vy* € U, we find that
d
dy| —F(y)—¢ dz d,f(z,y) | =0. (2.168)
Y dy Y

50 For n = 1, our discussion can be consistently extended to cases in which this assumption fails, i.e., when U contains
intervals. More specifically, we can impose the Cauchy principal value on the contour integral such that Eq. (2.163) becomes
well-defined on U. The parameter integral F is then differentiable on Y \ S with S = J,,dBNY = 35.
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In words, whenever the parameter integral is continuous, a derivative with respect to y does in fact
commute with the contour integration. However, if c. is finite, we expect the generalized deriva-
tive to generate finite contributions at the non-differentiable point y*, spoiling the commutativity
of differentiation and contour integration.

For a better understanding of the ideas described above, let us take a look at the exemplary
function f, : R¥*! — C with

1 n
VneN: f,(p) ((p0+i,u)2+x?(ﬁ)) , (2.169)
where x, : R? — R with d € N denotes some continuous function of spatial momenta. The function
f¢ is supposed to mimic the characteristics of an integrand relevant for correlation functions as
obtained from the multiplication of n fermion propagators. The real-valued parameter t is rather
generic and can refer to, e.g., the RG scale k, a mass parameter m or an external momentum Q. If
u exceeds the Silver-Blaze threshold

usp(t) = rr}}nlxt(ﬁ)l , (2.170)

then the function f, has a pole of order n € N in p = p*(t) = (0, p*(t)), where p*(t) € Q are the
real-valued roots of 1/f, at p® = 0:

Q={peRx*P)—u*=0}. (2.171)

In the following, we compute the integral of the function f, with respect to the time-like momen-
tum along the real number line R. The integrand can be analytically continued in p° and for a
better comparison with Eq. (2.162) we rewrite the function into the form

h(p)

P)=——"== (2.172)
I = G e
with the functions h, and g, given by
1 n
ho) = () o G®) =il @l-w. 2173
The contour integral of f, along C, see Eq. (2.153), yields
- dp® dp®
F(p) =§ o filp) = f S fi)
¢ <m R <7
i _ o o ~ -
= —— h"9(g,(5), ) 6 (Im{g. ()}
(n—1)
2n—2)( 1 )2”—1 .
= — 0(lx,(B) — ) , 2.174
C ) Geg)  etx@i-w (2174)
which is discontinuous on
U={peR!om{g(p)}=0}=0. (2.175)

The appearance of the Heaviside step function 6 in Eq. (2.174) reflects the fact that F, is not
differentiable at those spatial momenta for which the pole g, hits the real axis. Moreover, since

1 2n—1
VP eU: cuoc(ﬂ) >0 (2.176)
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for all finite u, we observe that the generalized derivative with respect to ¢ does not commute
with the process of integrating out the p®-modes. In the following, we denote the derivative with
respect to t by &,.

. _- 2n—2 .j; 2n—1 R L
L@mm—L@mm—(mﬁ)@Q) L@M@Nﬂ%@ﬂ!ﬂ- (2177)

~ 0(u— uss(t))

Beyond the Silver-Blaze threshold, there exist vectors p for which g, lies in the upper half of
the complex p°-plane such that the pole contributes to the contour integral. This contribution
is associated with a finite discontinuity at the Fermi surface to which generalized derivatives are
sensitive. As a result, the order of carrying out derivatives and integration becomes important
for u > ugp(t). Notice that this has far-reaching consequences for the calculation of correlation
functions by a projection procedure. More specifically, projection operators that involve derivatives
J, can in general not be pulled inside the integral when the zero-temperature system is at finite
density.

2.4.3 Zero-temperature ambiguity

We consider an analytic function f : R — C, which has an asymptotic expansion at infinity such
that

f(x):O(l) as x—oo with s>1. (2.178)

xS

In a context related to relativistic physics, this function may represent the integrand of a zero-
temperature correlation function with x having the meaning of a time-like momentum p°. We
therefore intend to compute its integral over the real numbers. In order to apply the Cauchy
residue theorem, we perform an analytic continuation, meaning we consistently extend the origi-
nal domain of the function to an open subset of C. We are going to assume that this function is
meromorphic and let P denote the set of all poles of f. The property (2.178) together with ana-
lyticity implies that the contour integral along a semi-circle in the upper half of the complex plane
vanishes, see Eq. (2.155). As a result, the integral of f is readily written as a sum of residues:

f dx f(x)=2mi ZRes(f,a) 6(Om{a}) . (2.179)
R

aeP

Considering a discretization of the x-axis with nodes x = m € Z, the integral turns into an
infinite series. The existence of this series is guaranteed by the asymptotic behavior (2.178) of
f for large input values [315]. Since f is analytic, we can apply the Matsubara formalism [266,
273, 286, 316] to determine the value of the series. We remark that, although the original work
of Matsubara [266] is an operator description of the imaginary-time formalism, we always refer
to the Matsubara-frequency summation technique as it is commonly used in modern thermal field
theory. This technique allows us to evaluate infinite sums in a systematic fashion by applying
Cauchy’s residue theorem in reverse. The problem of calculating the value of the series is then
transformed into the problem of constructing an integrand whose cumulative residues equal the
original sum. With the aid of an exponential weighting function, a suitable construction is readily
found:

Zf(m)ZZTCi ZRes(f ﬁ,a) . (2.180)

mezZ aepP
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It is worth mentioning that this formula even holds if f has poles on the real axis, as long as
ZNP=@.

Let us now turn to a more specific scenario and consider a function explicitly depending on
v (B) = 2/5—"(m + %) with B > 0. Such a situation is often encountered in thermal field theory,
where the introduced parameter has the meaning of the inverse temperature, i.e., # = 1/T. In this
context, v, is called the fermionic Matsubara frequency, see Eq. (2.124). We then obtain

> S On(BN==ip > Res(f —ppa) (2181)

_1[:} . > a

meZ aeP € +1

Notice that the auxiliary exponential function involved in the summation of residues can be related
to the Fermi-Dirac distribution,

1
ex4+1°

np(x) = (2.182)

This distribution function shows a non-uniform convergence in the zero-temperature limit,

M={zeC|z¢iR\{0}}, (2.183)
VzeM: ﬁlim ng(fz) =1—0(Re{z}), (2.184)

and even loses its complex differentiability in this limit as fRe {z} is not holomorphic. Nevertheless,
we observe that we can interchange derivatives and the zero-temperature limit in the sense that

n

ns(p) = | 1o lim ()|

ﬂlggo dzn dxm p—oo

n

VzeM, VxR, YneN;: (2.185)

x=NRe{z}

The limit as 8 tends to infinity is associated with »,,(8) becoming continuous such that the infinite
series turns into an integral again. For that reason, we will now investigate the consistency between
the results (2.179) and (2.181) for some meromorphic function f with P ¢ iM. In the context
of thermal field theory, this means that our further analysis is concerned with the consistency
between correlation functions as obtained at zero as well as finite temperature. In order to allow
for a comparison, we need to rescale the infinite series before performing the zero-temperature
limit. We find the limit

Jim, %;Zf(vm(/s))zzm ;Res(f 6(m{}),a) (2.186)
where we have used that
lim f dx f(x)=0 = Res(f,00)=0 = > Res(f,a)=0. (2.187)
—Jerw aep

Recall that the calculation of residues for a pole of order n involves a (n — 1)-th derivative, see
Eq. (2.152). As a consequence, the limit (2.186) of the Matsubara sum only agrees with the
integral (2.179) if all poles in the upper half of the complex plane are of order n = 1.°! For poles
of higher order, the residues involve complex derivatives which are to be understood as

dk
0<k<n-—1: |:—9(x)] (2.188)

dxk

x=Jm{z}

51 In more general scenarios, in which the poles a can depend on further parameters, see, e.g., the function g, in Eq. (2.173),
the results (2.179) and (2.186) also agree if no pole crosses the real axis for all parameters of interest.
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when acting on the Heaviside function. These generalized derivatives then generate terms involv-
ing Dirac delta distributions which are absent in Eq. (2.179). The implication for quantum field
theory is that the zero-temperature limit of a finite-temperature calculation may lead to local con-
tributions that are missing if we work at zero temperature right from the beginning. As correlation
functions for processes occurring in relativistic theories are given by a multiple integral, terms
involving Dirac delta distributions can eventually generate finite contributions to physical observ-
ables. Therefore, it does in general make a difference whether the zero-temperature results have
been obtained by a zero-temperature limit or not.

We would like to render the relationship between the zero- and finite-temperature results more
concrete. To this end, we again consider the exemplary function as given by Eq. (2.169), which
can be written as the function

1

P+ i+ <25) (2.189)

ft(p) =

raised to the power n € N such that f,(p) = D! f.(p) with the differential operator D} defined by

—1)" 1 !
ety Dp= 0 (atx%(ﬁ) 3t) | (2190

Because the function f, has a finite set of poles in p°, taking temperature-independent deriva-
tives and Matsubara summation commutes for all T > 0, see Appendix C for details. The zero-
temperature limit of the Matsubara sum then yields

tim =S (5 2 lim DI = S fi(vn(6).5)

ﬁ_)ooﬁmez oo ﬁmGZ
(21_85) n—1 1: l ~ =Y n—1 de F

=0 Jim g 0 fiCmB).D) =D, JR 32 fp). (2191)

Consistency between Matsubara summation and contour integration would require that the order
of carrying out the derivatives and evaluating the integral can be interchanged. However, it follows
from Section 2.4.2 that

0
V=2 Ap=>ugp(t): f D;“J % felp) # J D f(p) - (2.192)
P R p

This illustrates once more that the zero-temperature limit of a calculation at finite temperature has
always at least as many terms incorporated as the corresponding computation at zero temperature.

From a mathematical point of view, our findings are simply a matter of fact and ambiguities do
not arise once the order of performing mathematical operations is well-defined. For the calcula-
tion of physical observables at zero temperature, however, there is a priori no way to decide which
approach will yield the physically correct results. Since thermal fluctuations prevent us from reach-
ing exactly T = 0 in every experimental situation, it is reasonable to calculate zero-temperature
observables by starting from a finite-temperature framework. Aside from this phenomenological
argumentation, we will see in the example section 2.4.5 that the strategy of preferring finite-
temperature computations in the fRG can be based on more formal grounds.
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2.4.4 Static and plasmon limit
Let f : R2 — C be a function and (x,, yo) € R? an accumulation point, then the expressions

lim lim f(x,y) and lim lim f(x,y) (2.193)

X—=Xo Y—Yo YYoX7Xo

are called iterated limits, which in general do not need to exist. We emphasize that these repeated
one-variable limits are distinct from the double limit

lim  f(x,y), (2.194)
(3¢,y)—(x0,¥0)

which is the important limit concept in the definition of, e.g., continuity and differentiability for
bivariate functions. Most statements relating both types of limits to each other are formulated
under quite strong conditions and are therefore of only small practical value, see, e.g., Refs. [317-
319]. We add, however, that the double limit does not exist, if both iterated limits exist but do not
agree.

The use of iterated limits is nothing new in the context of finite-temperature field theory. For
example, it has been addressed that the momentum-dependent self-energy I1(Q) of a bosonic or
fermionic system at finite temperature is discontinuous at the origin such that approaching the
point Q = (Q°% Q) = (0,0) from different directions of momentum space may result in different
outcomes, see, e.g., Refs. [230, 273, 320]. Phenomenologically speaking, finite temperature in-
troduces a preferred Lorentz frame, where the plasma of particles and antiparticles, which consti-
tutes the heat bath, is at rest. As a consequence, Lorentz invariance is broken explicitly and the
self-energy is not a function of the squared four-momentum but instead a function of |Q°| and |Q],
separately, which then allows for the existence of different limits. In general, the limit prescription
taking the time-like momentum Q° to zero first is known as the static limit, whereas letting the
spatial momenta vanish first is called the plasmon limit:

(st)

static limit: lim I1(Q) := lim lim TII(Q), (2.195)
Q-0 Q—)ﬁ QY—0
(pD)

plasmon limit: lim I1(Q) := lim lim II(Q) . (2.196)
Q—0 Q0—0 Q—)ﬁ

When applied to the momentum-dependent self-energy, the static limit provides us with the dynam-
ical curvature masses for the quantum fields in the system while the other limit leads to so-called
plasmon masses associated with the damping of oscillations in a plasma. The curvature and plas-
mon masses may agree, but in general they do not. Notice that finite temperature leads to a
discretization of the time-like direction in momentum space such that Q° is not a continuous vari-
able. The limit as Q° goes to zero is then to be understood in the sense of an analytic continuation.
For the static limit, this is equivalent to setting the external Matsubara index associated with Q° to
zZero.

To our knowledge, a discussion of iterated limits for external momenta in the context of quantum
field theory has only been made for the case of finite temperature and zero chemical potential. In
the following, we demonstrate that a disagreement between the static and plasmon limits even
occurs at zero temperature and finite chemical potential. To start with a rather generic example,
let us consider the function £ : R¢*! x R4*! — C, which imitates the structure of the two-point
function of a fermionic system. Based on Eq. (2.189) , we write

1 1
(p° +iw)* +x2(B) (P°+iu+Q°)? +x%(p+Q)

Ep,Q=Ffp) flp+Q) = (2.197)
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The integral of £ with respect to p° is obtained through analytic continuation and is denoted by

0
=(6,Q) = f T .0 = 3§
R 27

d 0
2L £(p,Q)
c 27

1( 1 6(1%| — ) 1 00x@)I-w )
== = - ——— + —— — - — |, (2.198)
2 ( %ol (1%] —iQ%)* = %*(Q)  1%(Q)l (1% +iQ°)*—%5
where have assumed Q # 0 and made use of the short-hand notation
#(Q:=x(F+Q), X =x0)=x{@). (2.199)

Now, the terms contributing to the function = individually show a divergent behavior in the limit
of vanishing external momenta. To be more precise, the residues of £ in p® = a; each become
singular at those external momenta Q for which the corresponding poles of &,

a; =i(l%l—p),  a=i(%@)]-w—Q°, (2.200)

coincide. If the two simple poles suddenly merge to a single pole of second order, the behavior
of the contour integral at finite chemical potential is not continuous anymore. It is essential to
recognize that the presence of a chemical potential has a significant impact on the weighting of
the residues such that the isolated singularity of = at Q = 0 is not removable for u > 0. As a
consequence, the integral (2.198) is discontinuous at the origin of the vector space spanned by Q.
Nevertheless, it is possible to approach this point of discontinuity by a limit procedure and yet
obtain a finite result because the divergences in = contribute with different signs. Concretely, the
iterated limits yield

(50 1 (0(%]— )

lim 2(5,Q) = —; [ =22 —5(1%| ) | , 2.201
im=6,0)= 1 (T 30l -w) (2:201)
i =5 L o(s 2.202
Q{I})H(P,Q) RPTERE (1%ol =) - (2.202)

Interestingly, the static limit generates a local contribution in the form of a Dirac delta distribution
which is absent in the plasmon limit. We would like to point out that the same principles also apply
if £ had a more complicated pole structure. For our purposes, however, the schematic function
(2.197) is already sufficient to demonstrate the emergence of different iterated limits.

From the point of view of relativistic physics, the function £ can be connected to a two-point
correlator at zero temperature. More specifically, this correlation function would be obtained by
further integrating = with respect to internal spatial momenta,

Q) ~ﬁ 2(3,Q) . (2.203)

p

Lorentz invariance at y = O implies that this correlation function at u > 0 is an even function
in both Q° and @, but not a function of the squared four-momentum. The explicit breakdown of
Lorentz symmetry as induced by the chemical potential thus allows for the appearance of different
iterated limits as external momenta tend to zero. Notice the similarity to the argumentation in the
case of finite temperature and zero chemical potential. Therefore, different iterated limits are in
general to be expected whenever Lorentz invariance is explicitly broken by either temperature or
chemical potential. This observation is not limited to two-point functions, meaning that different
iterated limits can equally well appear for higher-order correlation functions.
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We would like to emphasize that our results for the static and plasmon limits at zero temperature
are consistent with finite-temperature calculations since every pole of & is of order n = 1, provided
that Q # 0. Specifically, we have

(st/pD) 0 (st/pl) (st/p)
gﬁéj P tp,0)= lim " lim —Za(vm(/a) Q)= lim, lim —Za(vm(/s) Q. (2204)
R mEZ mEZ

Nevertheless, it follows from Section 2.4.3 that the first equality is in general going to break down
once we let £ acquire poles of higher order.

Recall that the iterated limits (2.201) and (2.202) do not coincide at the Fermi surface, where
u = |%y|. Consequently, the double limit as Q — 0 applied to E cannot exist for u > ugg. Notice,
however, that & itself is continuous in Q = 0 for all p # (0, p*), where the values p* are defined as
the solutions to u = |X,|, see Eq. (2.171). This means that the operations of integrating out the
p®-modes and taking the limit of vanishing external momenta do not commute simply because that
limit cannot be uniquely defined outside of the integral. It is nevertheless possible to realize this
limit after performing the integral by choosing the correct iterated limit. In particular, we observe
that the plasmon limit leads to the same result as integrating & at zero external momenta:

(ph dp® dp® .

im | 2= = | E imEp,Q). (2.205)
Q-0 Jp 27 R 2T Q-0

Setting the external momenta to zero in & leads to poles of higher order in the analytically contin-
ued variable p° such that the equation above does not translate to finite temperature. We instead
observe that the finite-temperature computation at Q = 0 reproduces the static limit in the sense
that

hm —Zg(vm(/s) Q== Z lim £(vn(B), Q) - (2.206)

meZ meZ

In fact, provided that it is possible in the first place to realize the limit of zero external momenta
after the Matsubara summation, the static limit is the only unique limit option left ensuring consis-
tency with Egs. (2.204) and (2.205). It is worth noting that our two findings above also hold true
in more general scenarios, e.g., if we allow & to have poles of higher order,

Vn,na€N:  &(p,Q)=f"(p) f2(p+Q). (2.207)

This is because the validity of Egs. (2.205) and (2.206) originates from both how the poles of &
contribute to the integral/series and how the components of Q affect the positions of poles relevant
for the integration/summation process. While the former is determined by the analytic properties
of &, the latter is fixed by Lorentz symmetry in the vacuum limit.

2.4.5 Relevance for the quark-meson model

In the following, we demonstrate the relevance of the subtleties discussed above in the context of
the quark-meson model. Concretely, we consider a theory of massless quarks with Ny = 2 flavors
and N, color degrees of freedom that can interact with boson fields through a Yukawa-type term
with interaction strength h. These bosons under consideration are the scalar meson o as well
as pseudoscalar pions 7, which can be collected into a common field variable ¢. The ground
state of the chiral system is realized along the o-direction of field space and is linked to the
constituent quark mass by the relation h|oy| = m,. For more details about this quark-meson model,
we refer to Section 3.1.1. We only mention here that this model has been studied extensively
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in the past and is well-understood at leading order in a loop expansion of the effective action.
Therefore, it can provide additional, physical reasoning for our endeavor to resolve ambiguities in
the computation of correlation functions. We will make use of the Wetterich equation (2.63) and
compute the effective action of our model as well as mesonic two-point correlators in a one-loop
approximation, taking into account only purely fermionic loops. We again emphasize that the
subtleties as encountered in the calculation of loop integrals are of a rather general nature and not
specific to a certain regularization scheme. In fact, it has already been observed in the context of
dimensional regularization that an evaluation of loop integrals for different orders of integration
can lead to different results [321]. In our RG approach to quantum field theory, we choose a
regulator function that allows for a clean and easily accessible presentation of loop integrals. To
this end, we will make use of a spatial regularization scheme,

22
g - = p
RVB)=—p r(ﬁ) . (2.208)
The regulator shape function will mostly remain unspecified for the sake of generality. We will
further agree on the convention to suppress the momentum dependence of the shape function and
let the RG-scale dependence appear in the form of an index. This leads to the convenient notation
r.. for the shape function as presented above.

Homogeneous backgrounds

By evaluating the scalar fields on a homogeneous background, we arrive at the following RG-scale
dependent effective action

/—

Vlrk(¢)|“ = VLFAO(qS) —4ch ln((pO + i‘u)Z +I_52(1 + rk,)Z + h2¢2)
4 4

k'=A
p 0

k'=k

1

= EFAO((P)_“-NCJ;;

(VB + e +h2g2—u) o (VR + P +h2g2 -

, (2.209)
k'=A,
where A, refers to some UV scale at which we assume to know the effective action. It is not
necessarily the largest scale possible in the theory at hand but only some scale at which we fix the
couplings of the theory. Furthermore, V, denotes the spacetime volume. We note that the usage
of homogeneous backgrounds lets all terms in a derivative expansion of the effective action vanish
with the exception of the effective potential, see Eq. (2.150). Therefore, the scale-dependent
effective action weighted by the spacetime volume as shown above is nothing but the meson
effective potential. We would like to highlight that logarithmic functions, even in the presence of
infinite discontinuities, have the remarkable property that their integral is continuous and absolute
convergent. It therefore holds that

k
f dk’f O In((p° +ipm)? + p2(1 + re)* + h2?)
Ao p

/

:f In((p° +ip)® + P21 + re)? + h2¢?) (2.210)
p

K'=Ay

The meson curvature masses are now readily obtained by a suitable projection applied to the effec-
tive potential. In particular, this projection includes a second-order derivative and the evaluation
at the ground state of the system. In geometric terms, these masses represent the curvature of the
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effective potential at its global minimum along different directions of field space.

| @ 0 ) (4 aT@
0 mi(w) 1, dpTde V4 b=do
22 2
1 @ mq) 5 2E;(p) jl4x4_mq (L4 + M) R
=—1®¥(2)_2N,.h 0 (Ex(B)—
o (5 A2 | 76 (Ee(B)— )
m2 (L +m) =
+ —— e 8 (E(B) — ) : (2.211)
—40

The ground state of the system is given by ¢>g = (UO,GT). To improve readability, we have intro-
duced the short-hand notation

EZ(P) = P*(1 + i )* + m? (2.212)

with E; standing for the regularized energy of the quark degrees of freedom. In general, the quark
mass depends on external parameters such as temperature and chemical potential as well, i.e.,
mg = my(T, u). For simplicity, however, we drop any dependences here as they are irrelevant for
our discussion of non-commuting operations. Additionally, n refers to the Lorentz matrix which
immediately emerges in field space once we consider a finite fermion mass.”? In our quark-meson
model, the quark mass is dynamically generated by the Yukawa interaction and is directly linked
to a finite meson condensate. In the absence of explicit symmetry breaking, this condensate is
chosen such that the scalar mesons acquire a finite mass whereas the pions remain massless.”
In this way, an action functional constructed from fluctuations around the finite ground state in
field space has intact isospin symmetry but broken chiral symmetry. This choice is in particular
consistent with the chiral limit of a theory with explicitly broken symmetry, in which the ground
state gets naturally aligned to the o-direction of field space. Therefore, a non-zero quark mass
always leads to a distinction of the o-direction of field space. In any case, we emphasize that the
Lorentz matrix in this context does not arise as the metric of spacetime, it only precisely captures
the sign structure of the mesonic two-point correlator.

The contribution from the term including the Dirac delta distribution to the curvature mass
of the o meson in Eq. (2.211) is essential since it ensures the incorporation of effects resulting
from the quark chemical potential u passing the Silver-Blaze threshold. Notice, however, that this
contribution vanishes for the pseudoscalar field degrees of freedom. In general, the term including
the Dirac delta distribution cannot arise if the projection is directly applied onto the logarithmic
integrand in Eq. (2.209). Since the effective action at zero temperature is non-analytic for u > ugpg,
integration and differentiation must not be interchanged. It is therefore important not to change
the order of integrating out the time-like modes and applying the projection if one is interested
in the behavior of the system for large densities. There is also another way to think about this
situation. If the effective action is a non-analytic function in field space, then it is not possible by
definition to capture the entire information about the system by an expansion in field degrees of
freedom. Nevertheless, we are still allowed to consider an expansion of the integrand in terms of
homogeneous deviations from the ground state. In the multi-index notation, the Taylor expansion

52We follow the mostly-minus convention, see also Appendix A.1.
53 Strictly speaking, it is the other way around, meaning that the scalar and pseudoscalar mesons get defined as the massive
meson and the Goldstone bosons, respectively, once a finite ground state in field space has been chosen.
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reads

fln(f(p)+h2 f D calp) 8 (2.213)
P p

|a|=0

, (2.214)

a(p)——[a In(f () + (oo +onl +R2FR) ]|

where ¢4 denotes a fluctuation. Now, summation and integration in Eq. (2.213) do not commute
if the integral is non-analytic. Interchanging the order of summation and integration anyway is
equivalent to applying the projection for the curvature mass directly onto the integrand and yields
an incorrect result.

In order to give a general estimate of the relevance of the term including the Dirac delta distri-
bution for the curvature mass of the o meson, we analytically evaluate this contribution through
the implementation of a sharp cutoff [177, 314]. This regularization prescription can be realized
by the shape function

1
Vx>0: r(x)= lim \|1+——1. (2.215)
b—oo xb

Concretely, the contribution of the term which has the Dirac delta distribution included reads

(J dmZJ f )ln (P° +ip)* + P21 + r)* + m?)

k'=k

k'=k

k'=Aq

41
"~ @2np

where we have assumed in the last step that A, is the largest scale in the system. We observe that
the Dirac delta term generates a finite contribution to the curvature mass of the o meson for values
of the chemical potential beyond the scale-dependent Silver-Blaze threshold ugp(k) = vm? + k2.
This contribution grows with increasing u and can therefore not be neglected in regions of high
density.

O(u?—m?—k>)m> —— | (2.216)

The mean-field result for the curvature masses at zero temperature, see Eq. (2.211), is perfectly
consistent with the zero-temperature limit of a corresponding finite-temperature calculation as
it should be. More specifically, there is no discrepancy between these results because, on the one
hand, the zero-temperature masses have been obtained by applying the projection after performing
the integral with respect to the time-like momentum modes, and on the other hand, the integrand

has only simple poles at most.
2 )= lim d d @),
Mt dpTdp  V,

Notice that, at finite temperature, the projection for the curvature masses does in fact commute
with the Matsubara summation. Although the zero-temperature and finite-temperature results
agree when employing homogeneous background fields, this consistency can no longer be main-
tained if we take finite external momenta into account. Then, the propagator of the theory can

(2.217)

P=do
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in general not be evaluated in a closed form such that flow equations for correlation functions of
interest would be canonically obtained by some expansion in field degrees of freedom. As a con-
sequence, finite-temperature results in the zero-temperature limit will not coincide with results
obtained at exactly zero temperature. This will be shown explicitly in the following.

Full momentum dependence

We introduce a generalized four-momentum ¢, which has already regularization for the spatial
modes incorporated:

pO

Ci(p) = . (2.218)
P(1+r)

Recall that the regulator shape function r; also carries a momentum dependence which we have
suppressed for convenience. A generalization to covariant regularization is straightforward but
we will stick with spatial regulators here for reasons of simplicity. We again take the Wetterich
equation as our starting point for the calculation of flow equations for correlation functions and
perform an expansion in fluctuation fields according to Eq. (2.99). We are further going to assume
that the ground state is homogeneous, i.e., free of spacetime dependences, as this allows us to
perform calculations analytically to a great extent. For a discussion of inhomogeneous ground
states, the interested reader is referred to Refs. [322-325]. The flow for the momentum-dependent
two-point function is then obtained through functional differentiation according to

=0

5 5
akrlgl,l)(P,Q){T’M = (m akl“k[¢]|w m)

P

_1 o
C 45¢1(—P)

on|
Tr {8k(77k(¢0) ) }-[d)ﬂ])zHT,M 5(]5?((2)

= akf,fl’l)(Q)h,u B&pogo (21)°6(P-Q) . (2.219)

At zero temperature, the flow of the reduced two-point function is given by

i % +ip,B) G (P +ip+Q% B +Q) 1,,,—m2 7
af (@), = —8N:h? f e T (2.220)

b (G300 +ip, )+ m2) (£3(p0 +ip+Q0,p+ Q) +m2)

where we have made use of a common shorthand notation for the inner product, ¢ i = Z Ck. In
the case of vanishing external momentum Q = Q% Q), the flow equation above provides us with
the RG flow for the different zero-temperature meson masses. However, the two-point function
is generally non-analytic at Q = 0 in the presence of a finite chemical potential. As a result, the
case of having zero external momentum has to be realized by an iterated limit. The static limit,
where the time-like momentum Q° tends to zero first, is supposed to provide us with the curvature
mass, while the plasmon limit, in which the spatial components Q vanish first, is associated with
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the plasmon mass. At zero temperature, the static and plasmon limits yield the following results:

|: 2E1§(l_5) ﬂ4><4_rn§ (ﬂ4><4 + 77)
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lim 3, 1""(Q)], =—2N.h? | & ! O(EL(B)— ) - (2.222)
a0 Z ; E(p)

We observe that the static limit produces a result with structural similarity to the curvature mass
as obtained from the mean-field calculation, see Eq. (2.211). Notice, however, that the mass-like
quantity, which we would get from integrating the flow (2.221) with respect to the RG scale, does
in general not coincide with the curvature mass. Instead, the result produced by the static limit
above lacks local contributions that are present in our mean-field computation. The reason for
this discrepancy is that non-commuting mathematical operations have been interchanged in the
derivation of Eq. (2.221). To be more specific, the flow equation (2.220) has been obtained from
the PF expansion at zero temperature although non-analytic properties of the zero-temperature
theory render this expansion invalid for values of the chemical potential beyond the Silver-Blaze
threshold. A plasmon mass does not arise in mean-field theory so we cannot directly compare
Eq. (2.222) to corresponding calculations done before. Nevertheless, we deduce that there is a
systematic error underlying the construction of the momentum-dependent two-point correlator at
zero temperature, which spoils the consistency between the mean-field results and the static limit.

At finite temperature, the flow of the reduced two-point correlator as obtained from the P.F ex-
pansion reads

. 1 (B +ip, B) Le(va(B) +ip+Q% B +Q) 1,,,—m2 1
3kF£1’1)(Q)|T’“ = —8N_h? ﬁ B Z e .
B

i (GO +inp)+m2) (C(ra(B) +iu+ Q0P+ @) +m2)
(2.223)

Notice that the derivative with respect to the RG scale increases the order of poles in the time-like
momentum variable beyond one. We therefore emphasize already at this point that the flow of
the finite-temperature two-point correlator does not reduce to the zero-temperature flow (2.220)
in the zero-temperature limit. Since the two-point correlators we have found at zero and finite
temperature are genuinely different, any quantities we can extract from these correlation functions
will in general not be consistent at zero temperature either. This shall now be explicitly shown
through the calculation of meson curvature masses. In the static and plasmon limits, we obtain

a |:2E]§(ﬁ) ﬂ4><4_rn§ (ﬂ4><4 + n)
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—— o 0(E(P)—w) |, (2.224)
E;(P)
(D 2EX(P) 1y —m2 (14, + 1)
. I ~(1,1) _ 5 k 4xa q Waxs .
lim (lzlg%) AN (Q)|T,M =—2N.h L I [ ) O(E.(P)—um)| . (2.225)

Provided that we allow the chemical potential to acquire values with u > ugg(k), these results differ
from Egs. (2.221) and (2.222) that have been calculated directly at zero temperature. In addition,
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the static limit of the reduced finite-temperature two-point correlator successfully reproduces the
mean-field result (2.211) in the zero-temperature limit:

2 RO
Bem () = lim lim 8.5, 2(Q) ., (2.226)

To summarize, the momentum-dependent two-point correlator at zero temperature is not con-
sistent with its finite-temperature pendant and does not reproduce the mean-field result for the
meson curvature masses in the static limit. Instead, only the finite-temperature correlator leads to
a curvature mass that is physical within the scope of our truncations. In the same spirit, we deduce
that Eq. (2.225) provides us with the correct zero-temperature plasmon mass while Eq. (2.222)
lacks relevant local contributions.

We would like to point out that the functional renormalization group is in principle free of math-
ematical ambiguities since the order of all operations is determined by the Wetterich equation.>*
Inconsistencies between results within the fRG only arise if the calculation of observables in a cer-
tain situation is based on methods that assume a commutation of mathematical operations even
if it is not allowed. To give an example, we have demonstrated that summation and integration
do not commute anymore if the integral under consideration is not analytic, see Eq. (2.213) and
the corresponding discussion. As mentioned earlier, a finite chemical potential induces a pole in
the propagator of the theory at zero temperature, rendering the effective action non-analytic once
the quark chemical potential exceeds the Silver-Blaze threshold. In particular, this implies that the
‘PF expansion at zero temperature is not legitimate for u > ugg. Beyond this threshold, the expan-
sion in fluctuation fields cannot capture the entire information of the underlying physical system.
If we nevertheless insist on an expansion in field degrees of freedom, we inevitably miss out on
relevant contributions. At finite temperature, however, the pole in the fermion propagator gets
screened by thermal fluctuations, see Eq. (2.124), such that perturbative treatments of generating
functionals are well-defined in our truncation scheme and lead to the desired consistency with
mean-field calculations. Therefore, our analysis makes clear that the computation of correlation
functions in the presence of a finite chemical potential at zero temperature requires great care to
ensure consistency with corresponding finite-temperature calculations.

In order to arrive at the correct zero-temperature results from the fRG formalism at T = 0, we can
still employ the PF expansion if we also compensate for the error introduced by the expansion for
u = ugg. More specifically, for the momentum-dependent two-point correlator (2.220), it suffices
to change the order in which we apply the RG derivative and perform the integration of time-like
modes. As detailed above, this step systematically leads to consistency with the zero-temperature
limits, see Egs. (2.224) and (2.225), but is, strictly speaking, not allowed. This strategy can be
further generalized to higher-order correlation functions. In particular, the integrand f of a zero-
temperature correlator is to be written in terms of a function f, which is allowed to have only
simple poles, and a suitable derivative operator, see the example at the end of Section 2.4.3. Now,
performing the integral of f with respect to the time-like modes before applying the derivative
operator leads to a result that is consistent with the zero-temperature limit of a result obtained at
T >0.

54 The order of integration in an iterated integral is not determined by the Wetterich equation. In order to give a reasonable
definition of integral expressions as appearing throughout relativistic physics, criteria from outside the fRG have to be
employed, see Section 2.4.1.






SCHEME DEPENDENCE OF
CHIRAL OBSERVABLES

Based on the building blocks of quantum field theory and the functional renormalization group
as discussed in the previous chapter, we will now turn to more concrete applications. To this
end, we would like to highlight once again that every study of a quantum field theory requires
the introduction of a suitable regularization procedure. Modern RG approaches render the theory
under consideration infrared finite through the use of a regulator function that enters the inverse
propagator. In practice, every single regulator comes along with individual advantages and disad-
vantages. In other words, regulator functions are not universally applicable but instead need to be
chosen carefully and optimized for the current research objective. Intuitively, one may expect that
theoretical studies of relativistic systems make extensive use of covariant regulators since Lorentz
symmetry is one of the most important symmetry principles of quantum field theory in the vacuum
limit. On the contrary, however, covariant regulators are employed only rarely in the presence of
finite external parameters.! We emphasize that, whereas covariant regularization schemes treat
all momentum modes on equal footing, temperature or chemical potential enforces a natural dis-
tinction of the time-like modes. As a result, this opposing behavior leads to the tendency to further
complicate the evaluation of loop integrals. It is often argued that the breakdown of Lorentz in-
variance caused by finite external parameters is strong enough to dominate any regulator-induced
Lorentz symmetry breaking, rendering spatial regularization schemes unlikely to qualitatively af-
fect the infrared physics. Put differently, Lorentz symmetry in the vacuum limit gets declared as
being relatively unimportant for the observables of interest, justifying the implementation of reg-
ulators that allow for less intricate computations while breaking Lorentz symmetry. Although this
argumentation may indeed be correct in special cases and although spatial regulators have proven
to be undeniably successful in improving our understanding of phenomena that do not primarily
rely on intact Lorentz symmetry, it remains in general unclear whether an explicit breaking of
Lorentz symmetry by the regulator can lead to significant artificial effects.

The main goals of the following work are to present possible implementations of covariant reg-
ularization for the fRG and discuss their characteristics as well as the challenges that come with
the chosen regulators. In particular, we will consider a standard regulator with polynomial shape

! For a study which employs a covariant regulator at finite temperature, see Ref. [326].
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functions as well as a momentum-independent regulator named after Callan [327] and Symanzik
[328]. Both types of regulators can be used to establish a covariant regularization scheme in which
we follow the RG flow of the effective average action towards the infrared. Based on mesonic
two-point correlators, we will then assess the applicability and relevance of these regularization
schemes. To be more concrete, we will perform a detailed analysis of meson curvature masses and
spectral functions, which encode essential information about the phase structure of low-energy
QCD. The computation of these quantities is also appealing as it allows to access transport coeffi-
cients, thereby establishing a direct link between theory and experiment. For simplicity, we are not
going to work directly with the theory of the strong interaction but rather consider a quark-meson
model in which the dynamics of non-Abelian gauge fields as well as ghosts is not resolved. The
quark-meson model serves as a low-energy effective theory for QCD which renders the low-energy
physics of the latter more accessible and significantly simplifies the investigation of the phase dia-
gram of strong-interaction matter. Generally speaking, low-energy effective theories are simplified
models that describe the physics of a system at energies much lower than the characteristic scale
of the underlying fundamental theory. These effective theories capture the relevant degrees of
freedom and interactions in a given low-energy regime while ignoring high-energy details that are
considered irrelevant for the quantities of interest. Even though they are approximate, effective
theories can offer precise predictions within their domain of validity.

3.1 Methodology

Before we begin with our regulator studies, we would like to give an introduction to the concrete
model we will be working with for the rest of the chapter. We then proceed by giving a brief
presentation of the specific RG framework as well as the truncations we consider in order to
calculate infrared observables later on. For simplicity, we will restrict our discussion to the zero-
temperature case.

3.1.1 The quark-meson model

In order to study the physics of the strong interaction in the low-energy regime, we are going to
employ an NJL-type model, see, e.g., Refs. [28, 76, 77] for reviews. Inspired by the BCS theory
of superconductivity [329, 330], the NJL model [74, 75] was originally developed as a theory of
interacting nucleons with the goal to describe the mechanism of dynamical mass generation for
hadrons. As the fermionic degrees of freedom are nowadays reinterpreted as quarks, four-fermion
models such as the NJL model are predominantly used as models for QCD at low energies. Com-
pared to the theory of the strong interaction, corresponding low-energy effective theories typically
lack gauge degrees of freedom. In particular, effective theories of QCD are usually considered the
result of integrating out high-energy degrees of freedom from the path integral description of the
system. In QCD, multi-fermion interactions are dynamically generated by quark-gluon interactions
and the process of integrating out gluon fields transforms the remaining couplings to absorb the
information associated with the gluon sector. Therefore, the four-fermion couplings in NJL-type
models are assumed to be effective couplings, generated by the more fundamental interactions
between quarks and gluons. At sufficiently low energies, QCD under vacuum-like conditions is
dominated by non-perturbative effects such as quark confinement and the formation of bound
states.? Therefore, four-fermion models serve as an effective but still microscopic description at
intermediate energy scales between the weakly coupled high-energy regime of QCD, where quarks

2 It is worth mentioning that the QCD vacuum is believed to be also characterized by gluon condensates [331-334] as well as
instantons [335-337]. These phenomena will, however, be of no relevance for our studies.
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and gluons are the relevant degrees of freedom, and the strongly coupled low-energy regime of
QCD, in which hadrons dominate the dynamics. In general, it is of primary importance that ef-
fective theories share all those properties with the more fundamental theory that are believed to
be relevant for the phenomenon of interest. For our purposes, the chiral symmetry of massless
QCD is one of the most important features since it is essential for the understanding of the lightest
hadrons. The NJL-type models have proven to be particularly useful in this context since they
allow us to systematically study the behavior of the system, in particular the formation of quark
condensates, as driven by various interaction channels that respect chiral symmetry. Recall that,
by construction, every effective theory has built in a certain set of strategic approximations which
lead to benefits in some areas of research, but also to shortcomings in other areas. In the case of
the NJL model, the fact that the interactions between quarks are point-like in character causes the
field theory to be non-renormalizable. This means that the model does not have a UV completion
up to arbitrarily high energy scales due to the emergence of a Landau pole. This does, however,
not pose a problem for our RG approach to quantum field theory if RG consistency can be ensured
within the range of external parameters that we consider relevant. Furthermore, the local interac-
tions in the NJL model do not give rise to quark confinement. In many situations, however, the
mechanism that confines quarks into bound states may not be important. For example, the inter-
action of hadrons below the threshold for producing free quarks may not depend on the details of
how the confinement is produced.

In the following, we consider a quark-meson model which is a special, partially bosonized NJL-
type model. At zero temperature, our model is given by the action

ste]|, = J (90 [i? —ir°u] () +ih P(x) (o (x) +ir37im(x)) P(x)
+2$T00[-07 4 m? ] $ (1)~ Ho(x))
= L L (V@) [—p—ir°u]2m)*6@ (p— ) (q) +ih ¥(p) (o (p — ) +ir* ' m(p — 0)) ¥(q)
48T [P+ ] 25 (- ) (@)

—H 21)*6@ (p) (2m)*6@ (p —q) o)) , (3.1)

where fermionic as well as bosonic field degrees of freedom have been collected into the superfield
® on the left-hand side. We take only the lightest quarks into account, i.e., we set Ny = 2, but
consider the physical number of color degrees of freedom, N, = 3. Furthermore, the fermions
couple to the quark chemical potential,

1
u=pg = 5(uu+ud) . (3.2)

We assume SU(2) isospin symmetry such that the masses as well as chemical potentials of the
lightest quarks are taken to be degenerate. The bosonic fields, o and 7, do not carry an internal
charge, e.g., flavor or color. Phenomenologically speaking, these scalar and pseudoscalar fields
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carry the quantum numbers of the sigma® meson and the pions*, respectively.

(02 — —
¢ = , o~y T~y iyt . (3.3)

7t

In the interaction channel, h denotes the Yukawa coupling between the quarks and the mesons.
The 7! with i € {1,2,3} are the Pauli matrices which couple the quark spinors in flavor space.
Furthermore, the scalar parameter H > 0 controls the amount of rotation symmetry breaking in the
boson sector. With no explicit symmetry breaking, the pions will turn out to be Goldstone bosons
[277, 278] in the hadronic phase, meaning they acquire no mass. However, if this parameter H
is chosen to be finite, the auxiliary term ~ Ho will render the pions massive in the regime of low
temperatures and low densities. Since this mass will be small relative to other mesons in nature,
massive pions are typically referred to as pseudo-Goldstone bosons.

First, let us comment on the decision to take only two quark flavors into account. Our ex-
pectations for the QCD phase diagram as a function of temperature and chemical potential are
predominantly shaped by the symmetries of the underlying theory of the strong interaction. At
low energies, a strongly interacting system in the hadronic phase is characterized by quark con-
densates which indicate that chiral symmetry is not present at the ground state. Massless QCD
predicts that finite external parameters can trigger a transition to a different phase in which the
symmetry becomes apparent again. In nature, however, the presence of massive quarks spoils
chiral symmetry and hence obscures the mechanisms behind the chiral phase transition. Current
quark masses quantify the extent of explicit chiral symmetry breaking and the effects of otherwise
intact chiral symmetry on a specific quark flavor become more and more suppressed the larger the
corresponding quark mass is. The strange quark mass is already of the same order of magnitude as
the chiral phase transition temperature [340] and heavier quarks are barely influenced by other-
wise intact chiral symmetry. As a result, the chiral phase transition of QCD is most relevant for the
lightest quark flavors, i.e., the up and down quarks. Therefore, considering the case of Ny = 2 is
indeed a rather crude approximation to the real world but it is truly useful for the investigation of
chiral symmetry patterns that underlie the phase diagram of QCD. For reviews on the chiral phase
transition, we refer to, e.g., Refs. [326, 341, 342].

In the context of the phase diagram of QCD, we would like to add a word of caution regarding
phenomenological descriptions that often accompany the introduction of the chiral phase transi-
tion. Let us consider again the regime of low temperatures and low density, in which the quark-
gluon interactions generate bound color-singlet states, the hadrons. As temperature rises, thermal
fluctuations induce a transition of the low-density system into the quark-gluon plasma in which
color is screened rather than confined. At low temperatures, high densities are expected to force
quark matter into a color superconducting state, a Higgs phase characterized by massive gluons
and the formation of diquark condensates. These last statements about transitions to a separate
phase of matter are perfectly fine by themselves but are, strictly speaking, distinct from the chiral
phase transition. Our simple quark-meson model is not capable of describing quark confinement
and lacks diquark degrees of freedom which are important to accurately describe the color su-
perconducting phases of quark matter. Although the phenomenological descriptions are hugely
valuable for physical context, the deconfinement transition at high temperatures and the color

% The scalar meson o is also known as the f,(500) resonance [338, 339].

4 The standard model of particle physics identifies three types of pions, which are °, n*, and ™ [339]. However, since our
quark-meson model assumes isospin symmetry of flavor space and does not account for electroweak interactions, we are not
able to tell the different pions apart.
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superconductor transition at high densities cannot be predicted by the quark-meson model. In
principle, these transitions do not need to exactly align with the chiral phase transition such that
separated or mixed phases are possible. For more information, see, e.g., Refs. [343-345].

In addition, we would like to point out the fact that dynamical bosons do not appear in the
NJL model. More specifically, the process of partial bosonization introduces the bosons as auxil-
iary fields without a corresponding kinetic operator, see Appendix B. This is consistent with the
idea that hadrons in QCD are emergent bound states rather than elementary fields with their own
independent dynamics. Generally speaking, the dynamical behavior of hadrons in nature arises
from the underlying dynamics of quarks and gluons. That the NJL model comes without contri-
butions, which can be phrased as an effective kinetic term for the bosons, is simply part of the
truncation inherent to the model. In contrast to this, the quark-meson model has a kinetic term
for the boson fields included, meaning it formally treats the mesons as fundamental fields that
have their own dynamics. Although the quark-meson model may be considered less close to QCD
from a phenomenological point of view, the presence of the kinetic term for mesons allows for a
more accurate description of low-energy hadronic physics. To give an example, the kinetic term
improves the description of meson propagation which is essential for the investigation of spectral
properties such as pole masses. For the sake of completeness, it should also be mentioned that
bosonized NJL models include meson fields up to only second order, see again Appendix B, while
quark-meson models allow for boson self-interactions of higher orders. Overall, the quark-meson
model has proven to be a very valuable tool for the investigation of the chiral phase transition and
the low-energy properties of light mesons in a regime not too far away from the hadronic phase.
For related studies of the quark-meson model, see, e.g., Refs. [79, 178, 209, 232, 293, 346-351].
We would like to highlight, though, that our quark-meson model still is an overly simple approxi-
mation to the theory of the strong interaction. For more comprehensive studies of the low-energy
physics of QCD, several extensions to the simple quark-meson model are possible. One may, for
instance, include a Polyakov loop potential [306, 352-357], consider more meson degrees of free-
dom [358-362], incorporate additional diquark fields [88, 305, 312, 363] or introduce a rotating
frame [364]. Since we are ultimately more interested in the role of covariant regularization than
high-precision calculations, we will work with the model defined by Eq. (3.1) for simplicity.

Generally speaking, the low-energy physics predicted by the quark-meson model heavily relies
on chiral symmetry and in particular how it is realized in the system. To this end, we will now
review the most important aspects of chiral symmetry [365-367]. Fermion fields allow for the
linear decomposition

P(x) =P (x) +Yr(x), (3.4)
where the two components are defined in terms of a suitable projection,
1—y° 1+7y°
Y@ = Sy, R =y (3.5)

By construction, these projection operators are orthogonal, idempotent, and satisfy the complete-
ness relation. Notice that the two components are eigenstates to the chirality operator y°> with
eigenvalues *1,

L) =—Yi), YR =Yr(x). (3.6)

As a result, 1y, is called the left-handed and vy the right-handed component of the fermion field
1. For the Dirac adjoint v, the procedure is completely analogous. Now, a fermionic theory is
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said to exhibit chiral symmetry if the left- and right-handed components of the fermion fields can
be rotated independently in flavor space without changing the physics. To be more precise, chiral
symmetry is present if the action of a fermionic system is invariant under chiral transformations,
i.e., elements of the product group SU(Np);, x SU(Nf)r. More explicitly, the chiral transformations
read

SUNDL: el e (—57ien ) YL el - Y0,

)= o) ep( 370 ) a0 - ), (37)
SUNDR: ) =), Y - exp (3 7i0n, ) (),
F100) = G0, Tal) = ) e (3700 ) . (39)

where the matrices t! with i € {1,...,Nf2 — 1} are associated with the generators of the flavor
group SU(N). In the case of N = 2, the 7' correspond to the standard Pauli matrices. The
transformation parameters ©; and ©p are assumed to be continuous and real-valued. Intact chiral
symmetry gives rise to conserved currents, the vector current as well as the axial-vector current.
In accordance with these conserved charges, chiral transformations can be expressed in terms of
vector transformations and axial-vector transformations. Those apply to the entire field variables

instead of the chiral components.
SUNy: - e (—3r0y ) ¥, T~ T ep(jren ), (9
Xai ) ep(—3rr0n ) Y, P T ep(—3rTey ) . (310)

These two types of transformations can be understood as linear combinations of the left- and right-
handed transformations. In particular, the transformation parameters are connected through the
relations

s N

2

©L—6r

5 (3.11)

From this second but equivalent perspective, chiral symmetry is present if the action of a fermionic
system is invariant under vector and axial-vector transformations. Since our studies do not take
any physics of the weak interaction into account, there is no benefit in decomposing our fermion
fields into their chiral components. Therefore, it will be more convenient to work with the vector
and axial-vector transformations in the following. In any case, as our model includes no explicit
mass term for the fermion fields, the fermion sector has chiral symmetry.

The set of ordinary vector transformations in flavor space, SU(N¢)y, is a subgroup of the chiral
product group. We emphasize, however, that the axial-vector transformations do not form a group.
More specifically, the set of axial-vector transformations as denoted by X, is not a group because
the condition of closure under a binary group operation is not satisfied. To illustrate this, we will
make use of the Baker-Campbell-Hausdorff (BCH) formula [368-371], see also Refs. [245, 372,
373] for an in-depth and more modern treatment of the formula. With the matrices

A=y*ere?, B=y’ere® (3.12)

at hand, we consider the following product of matrix exponentials,

e 34 e73B = ¢73C (3.13)
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This mimics the situation in which two subsequently applied axial-vector transformations are com-
bined to a new transformation. The resulting exponential is again an axial-vector transformation
only if C can be brought into the form

cyetif,(6®, e®) (3.14)

with f denoting some suitable function. According to the BCH formula, the matrix C has the series
representation

C=A+B— }} [A,B]+0(€3%)
=y et (e®+e”)- %1,3 o[, 7/]eel” +0(e?) . (3.15)

Since the commutator of SU(N;) generators does in general not vanish and because all orders in
transformation parameters are linearly independent, the even orders in this series expansion are
diagonal in Dirac space. As a consequence, it is impossible for C to take the form as proposed in
Eq. (3.14). This means that two subsequent axial-vector transformations do together not describe
a pure axial-vector transformation anymore but instead lead to a new transformation that is not
part of X,. Thus, the set of axial-vector transformations is not a group.

Theories of fermions that respect chiral symmetry should remain symmetric also after bosoniza-
tion. The realization of chiral symmetry in the space of boson fields, however, differs from that of
the fermions. Since the bosons in our quark-meson model are to be understood as effective degrees
of freedom resulting from a reparameterization of multi-fermion interactions, we can investigate
the impact of chiral symmetry on these mesons by applying the chiral transformations on their
associated fermion content. Taking the transformation parameters to be infinitesimally small, we
find that the vector transformations lead to isospin rotations in the pion subspace,

o(x)—o(x), f(x) = (x) + d6y x #(x), (3.16)
and that the different mesons are rotated into each other under the axial-vector transformations,
o(x) - o(x)—dé] #(x), fi(x) = #(x) +dO, o(x) . (3.17)

This means that intact chiral symmetry manifests itself as an O(4) symmetry in the meson sector.
The requirement of chiral symmetry therefore constraints possible extensions of the bosonized NJL
model to those whose meson sector is invariant under orthogonal transformations,

YQe0(4): P(x)—Q ¢(x). (3.18)

In particular, chiral symmetry restricts the effective potential of the meson sector to be a function
of the O(4)-invariant quantity ¢2. This further implies that a finite ground state is degenerate in
field space and that we are free to choose a specific configuration. Notice that this freedom of
choice leaves physical observables unaffected as long as chiral symmetry is intact.

Now, the term ~ Ho in the action of our quark-meson model (3.1) is not invariant under rota-
tions in mesonic field space. More specifically, this additional term represents a linear implementa-
tion of explicit O(4) symmetry breaking in the meson sector.” From the perspective of an effective
field variable, the term ~ Ho does not remain invariant under axial-vector transformations of
the associated quark content and can therefore also be associated with explicit chiral symmetry

5 For a discussion of quadratic symmetry breaking, see, e.g., Ref. [121].
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breaking. To make this connection more explicit, we remark that the auxiliary term is related to a
current quark mass term by means of a Hubbard-Stratonovich transformation,

—Ho(x) = J(X) iMeyre P(X) . (3.19)

In words, the linear boson term in our quark-meson model is a reformulation of explicit chiral sym-
metry breaking in the quark sector. This formulation allows us to study the effects of a finite quark
mass directly at the boson level. The symmetry-breaking term leads to an immediate distinction of
the o-direction of field space and thereby leads to a uniquely defined ground state. The superfield
for our quark-meson model reads

¢ (x)
o(x)
)=\ y() |, d(x)= (3.20)
— 7t(x)
P (x)

such that the ground state of the system with explicitly broken chiral symmetry has the structure

b0
Oo
P=]0 |, bo=1| _ |- (3.21)
0
0

For everything that follows, we will assume the ground state to be homogeneous. A discussion of
inhomogeneous phases in the phase diagram of NJL-type models can be found in, e.g., Refs. [322—
325]. For H > 0, it follows from the minimization of the effective potential that o, > 0. We
emphasize that the symmetry-breaking term leaves the isospin symmetry of the system intact,
meaning that all directions of the pion subspace are still being treated equally. Moreover, since our
quark-meson model renders the fermions massless at high energies, the ground state of the system
is directly related to the constituent quark mass by

=hoy(u) . (3.22)

m()=—ifisr?1 5 r[<1>]| 5
V0 59@ M ee@)

For consistency with the chiral limit, H — 0, the ground state of a system with no explicit chiral
symmetry breaking is canonically chosen to agree with Eq. (3.21). However, there is still a residual
freedom of choice at H = 0 left because chiral symmetry gives rise to a Z, symmetry along the
o-direction of field space. Therefore, the relation between the ground state and the quark mass
slightly changes for a chiral system to m, = h|o|.

q):(bo

3.1.2 Our fRG framework

For the investigation of low-energy QCD and in particular its non-perturbative features that under-
lie the phase diagram of strongly interacting matter, we take a renormalization group approach
to quantum field theory and make extensive use of functional RG methods. More specifically, we
will employ the Wetterich equation, a characteristic RG flow equation for the effective average
action, and apply a suitable truncation scheme to gain access to the IR physics of the two-flavor
quark-meson model. A presentation of all considered truncations as well as their implications is
given in the following.
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We shall consider the Wetterich equation in a one-loop approximation which allows for a conve-
nient computation of the scale-dependent effective action. We remark that this approximation is
specifically valuable as it allows us to integrate flow equations to higher RG scales without ambi-
guity. As a consequence, we will be able to perform an RG-consistent UV completion of the initial
condition T, and thereby remove regularization scheme artifacts that are associated with finite
external parameters becoming comparable to the value of the reference scale Ay. Furthermore,
we will restrict our analysis to Feynman diagrams with purely fermionic loops for simplicity. The
absence of bosonic loop contributions implies that we neglect the running of the wavefunction
renormalization for the quarks, i.e., Z, ; = 1, as well as the running of the Yukawa coupling, i.e.,
we assume that h;, = h. With these truncations implemented, the Wetterich equation takes the
simplified form

- -1
AT, Pp]|, =—Tr {akR}f (s&Prg1+RY) HM , (3.23)

where the second derivative of the classical action reads

— —

(1,1) _ o 6
M1, = sl
=[—p—iru]@m)*6W(p—q)+ih (c(p—q) +ir’ t'm(p—q)) . (3.24)

We would like to highlight that, since the term associated with explicit symmetry breaking is
linear in the fields, the inverse propagator above is independent of the corresponding symmetry-
breaking parameter. More generally, it follows from a loop expansion of the effective average
action that its second functional derivative is always independent of the symmetry-breaking term.
As a consequence, the Wetterich equation does not generate corrections to the initial value of the
symmetry-breaking parameter, which means that H, = H. In other words, the information about
explicit symmetry breaking does not enter the Wetterich equation but only becomes relevant at the
ultraviolet scale where the boundary condition for the effective average action is fixed. This further
implies that, as long as the regulator respects chiral symmetry, the loop contributions generated
by the Wetterich equation will also have chiral symmetry.® In addition, we note that the second
derivative of the classical action does not have a dependence on the RG scale. Therefore, we can
formally integrate the RG flow equation (3.23) to obtain the effective average action up to the
one-loop order. The integration process yields

k
0+1)-1 Ll
o], = ryfol+ | akart ™o,
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) (3.25)
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where we set T, = S. The reference scale A, denotes the RG scale at which we fix the coupling
parameters of our theory. Notice that the UV boundary condition to the Wetterich equation is
employed at zero external parameters, meaning that all coupling parameters at high scales are
fixed under vacuum conditions. For convenience, we will now drop the superscript of the truncated
effective average action for everything that follows.

6 In general, the chiral symmetry of the classical action may not transfer to the average effective action despite an optimal
regulator choice. For theories, which include a coupling between fermions and gauge bosons, the path integral measure
spoils the chiral symmetry and leads to the so-called axial anomaly. This quantum anomaly is, however, not present in our
studies since the quark-meson model does not take gauge fields into account. For more information about the anomaly, see,
e.g., Refs. [374-377].
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For the investigation of the chiral phase transition, we will often be interested in low-energy
observables such as curvature masses. A particularly convenient method for calculating low-energy
observables is to evaluate the field degrees of freedom on a homogeneous background,

d(x)=d, d(p)=o2n)*sW(p). (3.26)

As a result, the functional of 1PI correlation functions turns into an ordinary function and becomes
directly relatable to the effective potential:

L(®)], = Vs Ux(®)], , (3.27)

where V, denotes the four-dimensional spacetime volume. This hugely simplifies the calculation
of loop integrals and makes the IR physics more accessible but comes at the cost of neglecting
any momentum transfer. Considering homogeneous backgrounds, the UV effective action for our
quark-meson model reads

1 — : 1
VFAO(cb):ihz,b(cr+i}f5’rlni)1,b+§m/2\0¢2—HG . (3.28)
4

Moreover, we introduce an auxiliary function to parameterize the loop integral of the Wetterich

equation,
k'=k }
k'=A,
0l lu

where the additional factor in the denominator compensates for the tracing over Dirac, flavor, and
color space, i.e., NpN;N. = 8N.. We highlight that our model does not incorporate interactions
that couple the quarks in color space. Therefore, all loop integrals associated with this model will
give rise to a global factor of N.. Moreover, recall that, in our truncation scheme, the symmetry-
breaking parameter H does not enter the Wetterich equation. As a result, the loop function L;
is a function of the O(4)-invariant ¢? if the regulator respects chiral symmetry. Altogether, by
evaluating the classical fields on a homogeneous background, we can phrase the scale-dependent
effective action (3.25) as

1
8NV,

Tr { Ln (sgj)w) +RY) , (3.29)

Lk(AOJ ¢){M =
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Once the regularization scheme is specified, the loop function can be presented more concretely.
With the average effective action at hand, the quantum effective action is readily obtained in the
infrared limit, I' = [;,. Meson curvature masses are then given by

nw O\ (4 ate, 31
5 2 d¢Tdo V, ' '
m; (u) 1,4 d=3,

As mentioned earlier, these masses represent the curvature of the effective potential at its global
minimum along different directions of field space. We stress that projections onto physical ob-
servables always include an evaluation at the ground state ®,. Since the effective potential for a
physical system is bounded from below,” the ground state satisfies the minimum condition

(o)

7 Recall the quantum effective action as defined in Eq. (2.17) is convex, implying boundedness. Truncations such as the
one-loop approximation, however, lead to a functional which does not need to be convex. In fact, canonical explanations
of dynamical mass generation involve the effective potential taking the form of a “Mexican hat”, which is non-convex.
Nevertheless, a physical theory predicts the effective potential to be bounded from below and the loop expansion of the
effective action does not destroy this property.

=0. (3.32)
=3,
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As the effective potential in general depends on external parameters such as temperature and
chemical potential, the ground state will also inherit a dependence on those parameters. Since
a physical ground state is zero along the fermionic directions of field space, see Eq. (3.21), and
because our studies mostly focus on the computation of bosonic observables, the fermionic contri-
butions at the reference scale A, will be of no relevance for what follows. We will therefore drop
the terms involving fermion fields in the boundary condition of the average effective action and
write

I, (6] = j (307 @[-20,0 43, Jo()-Ho() | (3.33)

EFAO((P) = Eond) —Ho . (334)

The minimum condition along different directions of meson field space then takes the form of

d
(mioa—SNcaLo(Ao,cp)w )(P H, (3.35)
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(onn—chﬁLo(Ao,cp)w )¢:¢O =0. (3.36)
As long as the symmetry-breaking parameter H is finite, the ground state o, will also remain finite
for all values of external parameters. In particular, a non-zero value for H makes it possible to pass
smoothly from a situation in which the origin mass is positive to a situation in which it is negative.
In our terminology, the origin mass denotes the curvature of the effective potential at the origin of
field space,

m2=(d—2U(¢>)) =( & U(qb)) (3.37)
07 \ do? o0 \dI72 4=0 '

However, if instead the symmetry-breaking parameter vanishes, the ground state also vanishes for
m(z) > 0 but assumes a non-trivial value when the origin mass is negative. For H = 0, observables
exhibit a non-analytic behavior when mg =0, indicating a phase transition. This point of vanishing
origin mass can then be translated to a divergence of the four-fermion coupling of a corresponding
fermionic theory [185].

More generally, our analysis of the quark-meson model will focus on the calculation of bosonic
two-point correlation functions. When considering their full momentum dependence, we will
employ the PF expansion, see Eq. (2.99), to obtain these correlators from the Wetterich equation.
To this end, we decompose the bosonic field variable into the ground state configuration and a
corresponding fluctuation. It is worth mentioning again that we assume the ground state of the
system to be homogeneous, i.e., it is uniform across all of spacetime. Accordingly, we write

o(x) oo(u) oq(u, x)
= + . (3.38)

7(x) 0 7tg(x)

Notice that, since the ground state depends on external parameters, so do the fluctuation fields.
However, the dependences of fluctuation fields on temperature and chemical potential are of no
relevance within the fRG approach such that we choose to drop them in the following. The PF ex-
pansion relies on rewriting the inverse average propagator as a sum of two functionals, which are
given by

P bo)p )], = [ — i+ ihoo]@m)*s @ (p— ) + R ()], . (339)
Floallp,Q) =ih (oalp— Q) +ir’t'mg(p—q)) - (3.40)
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We emphasize that, in our truncation scheme, o, always refers to the global minimum of the ef-
fective potential along the o-direction of field space at k = 0. In general, the effective potential
will have a non-trivial RG flow, meaning that the minimum of the scale-dependent effective poten-
tial also carries a scale dependence. However, as we are more interested in infrared observables
rather than their RG flow, we take o, to be scale-independent for convenience. Altogether, the full
two-point correlator is given by

r®eQ), (2)(Q)| (Zn)“é(‘”(P Q)

i
Grcmaa@™ )|,

o o
= (5¢g(—p) o 0t "51‘1]'“) o

e 16 5 k=0
=T} (PQ)+25¢H( 7 50a0) {(Pk [6o]l, f[qbﬂ]). } (3.41)

where it follows from Eq. (3.33) that
r2(RQ) =T2(Q) (2n)'s™ (P—Q)
= (2,,@+m2 )1,., @)D (P-Q) . (3.42)

Recall that the direction of functional differentiation does not matter when differentiating with
respect to boson fields. We have therefore switched to a simpler notation for the mesonic two-
point correlator,

r® =10 = p0.2) — (2,0) | (3.43)

We would also like to remark that the two-point correlator as presented above does not arise from
the standard P.F expansion of the Wetterich equation, see Eq. (2.99), since, at zero temperature
and finite chemical potential, we find that

0
f dk Tr{ak(Pk[¢01|u-f[¢ﬂ])2}#Tr{(m%]\  Fl$a)) \ko}. (3.44)
Ao Ao

Instead, our prescription for the correlation function in Eq. (3.41) includes corrections that com-
pensate for error that is made when employing the PF expansion although the effective average
action is non-analytical. Therefore, our formula also ensures consistency between the momentum-
dependent two-point correlator at zero temperature and its finite-temperature pendant in the zero-
temperature limit. For a more detailed discussion, we refer to Section 2.4. With the momentum-
dependent two-point correlation function at hand, curvature masses can be recovered in the static
limit,

m? (1) 0T
’ =lim lim I{(Q)|, . (3.45)
= — 0—
0 mi(ui,,) @00

This directly opens up the opportunity to cross-check the results for the curvature masses as com-
puted from the effective potential and the two-point correlator.
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The propagator of the theory is readily obtained from the momentum-dependent two-point
function by inversion. The propagator admits a Kéllén-Lehmann (KL) spectral representation
[378, 37918

1 dA A >
f'(z)(Q){ = JR % (Q0)2 + A2 P(A, Q){H 5 (346)
U

where p denotes the matrix-valued spectral (density) function. For more information about the
derivation of the spectral representation, we refer the reader to Refs. [274, 380, 381]. Notice
that the KL representation directly implies the spectral function to be an odd function in its first
argument,

Given Eq. (3.46), the spectral function can now be obtained using the discontinuity of the analyti-
cally continued propagator at the imaginary frequency axis,’

R 1
’ — 2 1im Jmd _ . 3.48
p(w,Q)|, =2 lim Im F@(i(w +ie), Q)] , -

Here, w is defined along the imaginary axis of the complex Q°-plane and can be associated with
an energy variable of Minkowskian momentum space. A spectral function p represents the dis-
tribution of states in a quantum system as a function of energy « and spatial momentum Q. It
encodes a variety of information on, for example, particle masses and decay processes, see, e.g.,
Refs. [229, 382, 383]. At some fixed momentum, the spectral functions will be presented as func-
tions of the energy variable in the following sections. Resonance peaks in those functions indicate
particle states whose masses are directly related to the corresponding value of w,. The resonance
width is given by the full width at half maximum (FWHM) of the peak and provides us with the
decay rate for the particle under consideration. It should also be mentioned that the decay rate
and the mean lifetime of a particle state are inversely related to each other. A narrow peak in
the form of a Dirac delta indicates that the propagator has a pole such that the associated mass
is referred to as the pole mass. A peak of this kind has no resonance width, meaning that the
corresponding particle state has an infinite lifetime and is thus stable. In cases where the pole of
the propagator is screened by interactions, the peak becomes broadened and assumes a Lorentzian
or Breit-Wigner shape in the spectral function. The associated mass of the particle is then typically
referred to as the resonance mass. A finite FWHM signals that the particle under consideration
can in fact decay, meaning the particle state is unstable. We further remark that the analytically
continued propagator corresponds to the retarded propagator of Minkowski spacetime since we
have

F@(i(w +i¢),0) = TP (w +ie,0) . (3.49)

For all numerical calculations, the real-valued parameter ¢ is kept small but finite in order to
allow for a non-trivial representation of delta distributions and overall numerically stable spectral
functions. To be concrete, we set the parameter to ¢ = 3 MeV.

8 The existence of a spectral representation for the scale-dependent propagator is in general not guaranteed. However, for
spatial regularization schemes as well as Callan-Symanzik regulators, the regularized propagator indeed admits a spectral
representation at every RG scale [82].

9 Although the scale-dependent propagator need in general not admit a spectral representation, the formula (3.48) can in fact
be used at all RG scales to serve as a definition of the scale-dependent spectral function py.
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For illustrative purposes, let us consider the theory of a free scalar boson. The inverse Klein-
Gordon propagator reads

f@Q)=qQ*+m?, (3.50)

which then leads to the following spectral function:

p(w,Q)= ﬁ(5(w— \/Qz+m2)+5(w+ \/m))
- (3o VE D)o V). e
m

According to the discussion above, the boson under consideration has a well-defined pole mass
and is therefore considered stable. At vanishing spatial momenta, the pole mass can be read off
from the argument of the Dirac delta. Equivalently, the pole mass is defined as the zero of the
analytically continued inverse propagator, i.e.,

f@(im,0)=0. (3.52)

Notice that a non-zero spatial momentum leads to an additional shift in the pole position. When
working with spectral functions, however, we will always set the spatial external momenta to
zero such that the energy w,., of a resonance peak can be identified exactly as the mass of the
corresponding meson. We would like to remark already here that this choice is not only based on
computational convenience. As we will see in Section 3.3.3, a non-zero spatial momentum can
cause the two-point correlator at zero temperature but finite chemical potential to be non-analytic
in Q° such that the definition of a pole mass as well as the construction of a corresponding spectral
function would not be possible.

We emphasize that pole masses and curvature masses do in general not need to agree. While the
definition of the pole mass includes the full momentum dependence of the two-point correlation
function, the curvature mass is given by the momentum-independent part of that correlator in the
static limit. Put differently, compared to the curvature mass, the pole mass has information about
interactions included which are sensitive to a finite momentum transfer. That being said, both
types of masses must indeed agree when there are no interactions at all. In fact, as we can see
from the example of the free theory above, the quantity m in Eq. (3.50) plays the role of the pole
mass as well as the curvature mass of the boson under consideration. To make the distinction clear

also from a formal standpoint, we always use that'®
f‘(2)(i7npole> 6) =0, (3.53)
éin% F@0,0)=m2 . (3.54)

For convenience, we will usually drop the subscript for the curvature mass. We emphasize that
a translation of the definition of the curvature mass to the case of finite temperature or chemical
potential is straightforward while a pole mass does not need to exist at finite external parameters.
In particular, thermal fluctuations can induce a screening for the pole of the zero-temperature
propagator such that the notion of a pole mass no longer applies. In the context of finite external
parameters, it should further be mentioned that the definition of the pole mass of a particle that

10 Strictly speaking, the definition of physical masses is linked to the renormalized two-point correlator, see, e.g., Ref. [235].
In this work, however, we will also use the terms of pole and curvature masses for corresponding quantities that have been
obtained from the unrenormalized two-point function.



3.2 POLYNOMIAL REGULATORS 91

couples to a finite chemical potential is anchored at the Silver-Blaze symmetric point in momen-
tum space. As mesons have a fermion number of exactly zero, this constraint is already trivially
fulfilled in Eq. (3.53). Regarding our study of the quark-meson model, recall that we will restrict
our analysis to Feynman diagrams with purely fermionic loops. As a result, there will be no loop
correction to the fermion propagator such that the quark pole mass is identical to the quark cur-
vature mass in our truncation scheme. We will therefore always refer to the quark mass m,, in this
work.

q

3.2 Polynomial regulators

The investigation of physical systems within a functional renormalization group framework ne-
cessitates the specification of a regulator function. We begin our analysis of the quark-meson
model by employing momentum-dependent regulators of the polynomial type, see, e.g., Ref. [81].
Common strategies to reduce computational efforts in model studies involve implementing spatial
regularization schemes, where the time-like direction of spacetime is artificially distinguished such
that Lorentz symmetry is explicitly broken. To assess the consequences of this regulator-induced
symmetry breaking, we also consider a covariant scheme that preserves Lorentz symmetry in the
vacuum limit. With these schemes at hand, we present results for meson curvature masses and
spectral functions, which generally provide insights into the phase structure of QCD at low ener-
gies. Computations of an observable with different regulators eventually allow us to compare the
regularization schemes to each other. In particular, by comparing the predictions of our model for
mesonic observables and the chiral phase transition in these different schemes, we examine the
significance of covariant regularization.

3.2.1 Generalities

For our study of the quark-meson model, we consider regulators of the form

=2 2
Y@=y _ = [P pY(4d) y _ ® p

Rk (P) - _p rpoly (ﬁ) B Rk (p) - _? rpoly (ﬁ) (355)
for spatial and covariant regularizations, respectively. A comparison of these regulators based
on low-energy observables will demonstrate the impact of covariant regularization relative to the
corresponding spatial regularization scheme. The regulators in Eq. (3.55) are often referred to as
polynomial regulators since they contain the polynomial shape function

1 al -
r‘p0 (x)= ——1= ( cnx”) (3.56)
poly 1— (Zﬁf:o Cnxn) 1 ;

with ¢y =1, ¢, € R} and N > 1. If not stated otherwise, we choose

1
VneNy: ¢, = . (3.57)
n!
This choice is based on our observation that the coefficients c,, as shown above provide an advan-
tage regarding the numerical stability of RG flows for all N > 1. We further remark that this choice
lets the polynomial regulator turn into the exponential one in the limit as N tends to infinity:
1 1

lim r? (x)= lim —1=
NS00 Poly N—oo N xn\"L 1—e—x
1= (X0 3)

—1= r,fxp(x) . (3.58)

n=0 n!
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For our purposes, however, we aim to choose the value of N as small as possible in order to
allow for analytical simplifications of loop integrals in the presence of a covariant regulator. To be
specific, we mostly choose

N=2. (3.59)

Notice that we use the polynomial shape function as defined in Eq. (3.56) for loop integrals with
only fermionic internal lines although the superscript ¢ indicates that such a shape function is
canonically used in bosonic loops. In contrast to this, officially fermionic shape functions always
have a square root included, see, e.g., Egs. (2.79) and (2.80). In particular, the fermionic analog
of Eq. (3.56) reads

¥ (x)= ! —1. (3.60)

poly \/1 B (ZIHVZO Cnx”)_l

However, it is important to realize that the presence of a square root destroys the analytic prop-
erties of the theory. As a result, a derivative expansion of the effective average action would not
be well-defined and momentum-dependent correlation functions could not be analytically contin-
ued to correlators of a Minkowski quantum field theory. In the case of zero external momenta or,
equivalently, in the case of using homogeneous background fields, see Eq. (3.26), observables such
as curvature masses turn out to be unaffected since the regulator enters the effective potential in
terms of the quantity (1 + r¥)? in which the square root is effectively removed. Nevertheless, we
emphasize that quantities that have been obtained by enforcing a derivative expansion do not nec-
essarily recover their analytic properties in the limit of vanishing external momenta. Wavefunction
renormalizations, for example, will not exhibit the Silver-Blaze property if their projection includes
derivatives along those directions of momentum space which are influenced by the fermionic regu-
lator. To briefly summarize, we intentionally choose a canonically bosonic regulator shape function
for the purely fermionic loops to allow for analytic correlation functions in the presence of finite
external momenta.

After having presented the concrete regularization schemes for this section, let us now discuss
some of their properties. The following discussion of polynomial regulators is, however, by no
means restricted to our choice of the coefficients c, or the degree N. A direct consequence of using
the bosonic shape function for a purely fermionic loop is that the regulator function diverges in
the low-energy limit:

Y K 'S +
Ri(@Q)=—¢ O(q_z) as 2 —0". (3.61)
The momentum variable q here is purely generic and can be identified with a three- or four-
dimensional momentum, depending on the regularization scheme. From the standpoint of the
functional renormalization group, the divergence is not problematic at all since this behavior does
not conflict with any requirements on the regulator function. In fact, the divergence rather en-
hances the property of being mass-like as the regulator now behaves like an infinitely big mass
term at small momenta. Furthermore, it follows that

2

) q
k>0: 1+r7 | = >0, 3.62
Y aﬁ%é’%m(""( (k))) (.62)

which is relevant for the propagator and correlation functions in general. Specifically for three-
dimensional schemes, this property indicates that a finite quark chemical potential does not simply
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play the role of an IR cutoff for the spatial momenta but rather divides their domain of integration
into disjoint pieces. We would like to highlight that this behavior is significantly different from
standard fermionic regulator shape functions, which behave according to

2
Vk>0: ar|§|r>1})in(|q| (1 + r;l’oly (%))) =0. (3.63)

Finally, we stress that the polynomial regulators respect chiral symmetry. As a result, all loop
contributions generated by the Wetterich equation will be invariant with respect to rotations in
meson field space.

Our first study aims at a comparison of the spatial and covariant regulators as given by Eq. (3.55)
based on observables such as meson curvature masses as well as spectral functions. For the inves-
tigation of low-energy phenomena in the context of the QCD phase diagram we employ the trun-
cated Wetterich equation (3.23) and compute the quantum effective action of our quark-meson
model in a one-loop approximation. Expanding the (pseudo-)scalar fields around a homogeneous
background, we arrive at the following result for the scale-dependent effective action:

— k(¢)|Tu FA0(¢) 8N Li(Ag, h*¢* )|T“

=—FA0(¢) 4NJ =S (82 (va(B) + i, B) + h2 2)’ (3.64)
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The time-like quantity v,, denotes the fermionic Matsubara frequency and depends on temperature.
We remark that, at T > 0, also the four-dimensional spacetime volume carries an implicit temper-
ature dependence, V, = BV. Based on Eq. (2.218), we have further introduced a generalized
four-momentum ¢, which has the following meaning in the different schemes:

(E0p) = ¥ gy [P P
r ()= 20 &% @)= l+rp =] (3.65)
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As mentioned earlier, the auxiliary function

/_

Li(Ao, Xy, = J Zln(ck,(vn(/a)ﬂu,p)w)\ . (3.66)
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parameterizes the loop integral as implied by the trace in the Wetterich equation. All information
about the tendency of the system to establish a vanishing or finite ground state in the infrared is
encoded in this loop function.!! Since we consider only fermionic loops in our calculations, the
effective potential tends towards a non-trivial minimum at small RG scales. Whether or not the
ground state of the system actually becomes finite at some critical scale within the RG flow, purely
depends on the initial condition for the flow of the effective average action. At the UV scale A,
we represent the effective average action as a quadratic form, see Eq. (3.34). In order to perform
actual calculations, we need to fix the coupling parameters of the theory, i.e., the Yukawa coupling
and the meson mass parameter. To be more specific, we fix the coupling parameters such that, for

' We remark that the polynomial shape function with N = 2, independent of whether it is used in its fermionic or bosonic
version, does not provide sufficient UV regularization for the loop function L, in Eq. (3.64). This does, however, not pose a
problem for us since we are not interested in the entire effective potential but in correlation functions which are indeed
well-defined for our regulator choice. Alternatively, one may choose N > 3 to render the effective potential UV finite.
Another solution would be to adjust the initial condition I, to include a counterterm for the loop, provided that the UV
divergence can be isolated analytically.
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T = u=H =0 and at the ground state of the system, we reproduce some predetermined values for
the constituent quark mass m, and the pion decay constant f,,. In the context of our quark-meson
model, these quantities are assumed to satisfy the following general relations:

Mg
mg = hlog|, frn=—. (3.67)

For this representation of the pion decay constant, we have applied the Goldberger-Treiman rela-
tion [384] to quarks instead of nucleons. For more information on the Goldberger-Treiman relation
see, e.g., Refs. [118, 121, 365, 385]. In the absence of explicit symmetry breaking, the vacuum
values for the quark mass as well as the pion decay constant are specified based on low-energy
experiments. In the following, we will use a hat notation to refer to these special values. The
aforementioned conditions then consistently determine the Yukawa constant,

=

h=-1, (3.68)
fr
as well as the meson mass in the UV,
d | n
(35T@so)| . 20 A do0 (3.69)

= mio = 16N, h? (iLO(AO,X)) (3.70)
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We remark here that the value for the ground state is implicitly set by the specified quark mass and
the Yukawa constant. For the three-dimensional and covariant regularization scheme, we can also
give a more concrete representation of the mass parameter:

N < 1 1
d
20 n_;hz J dy 7 — - - , (3.71)
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We would like to emphasize that we did not need to use any information about the scale depen-
dence of the quark mass but only its infrared value. In addition, since our calculation is based on
the full effective average action, the necessity to specify a certain ansatz for the effective potential
does not emerge. Once the coupling parameters are fixed, the information about all phenomena of
the quark-meson model is encoded in the initial condition I, and the loop function L. How well
this information is encoded, depends on the approximation scheme that has been used.

Guided by the Refs. [88, 231, 386], we fix our couplings according to
Ag=1GeV, 1, =300MeV,  f, =88MeV. (3.73)

As a result, the coupling parameters assume the following values:

h~341,  mCY~4992,  mi%Y~4.01A2. (3.74)
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Notice that, for both regularization schemes, the meson mass parameter is larger than the UV
cutoff scale A,. We would like to stress that this situation does not conflict with RG consistency
and is therefore not problematic for the functional renormalization group. The coupling constants
of the ultraviolet action are nothing but mathematical parameters that are fixed to ensure that
our theory produces physically meaningful results in the infrared. In particular, the UV values
of the running couplings vary with the regularization scheme as demonstrated above. From a
practical standpoint, a large UV mass for the mesons can actually be advantageous since it favors
the approximation of neglecting terms ~ g, ¢ in the action T, . It generally holds that the larger
the mass of a particle, the more suppressed the dynamics of that particle becomes. Therefore,
the larger the UV values for the meson mass parameter, the better the initial condition (3.34) as
employed in the context of homogeneous background fields.

We would like to highlight once more that the quark-meson model as defined by Eq. (3.1) renders
the fermions massless in the UV. Nevertheless, the scale fixing above has been performed such
that there exists a critical RG scale k. < Ay below which the quarks obtain a finite constituent
mass. This mass is dynamically generated along the RG flow from high to low scales by the
Yukawa interaction between the quarks and the mesons. The constituent mass enters the quark
propagator and breaks chiral symmetry at the ground state of the physical system. It should
be emphasized, however, that the system as a whole and for H = 0 still has chiral symmetry,
i.e., the dynamically generated mass contribution in the RG flow is not associated with explicit
chiral symmetry breaking. In contrast to this, a finite value for H leads to a non-trivial ground
state in field space at all RG scales and therefore implements explicit symmetry breaking. To be
more specific, the parameter induces a breakdown of O(4) symmetry among the meson degrees
of freedom. Moreover, the parameter H does not directly affect any loop calculations since the
symmetry-breaking term is only linear in the scalar field by construction. So far, the constant H
has been treated as an external parameter, which we have set to zero in order to fix the Yukawa
coupling as well as the meson mass parameter. With these fixed couplings at hand, let us now
turn to fixing the symmetry-breaking parameter. This parameter gets fixed such that we obtain
a specific pole mass for the pions under vacuum conditions. At T = u = 0, the pole mass can
either be read off from the Dirac-delta peak of the spectral function or directly from the zero of the
analytically continued inverse propagator,

T (iripppe,z,0) =0 (3.75)
For pion pole mass, we choose the value [88]
Mpole, = 138 MeV (3.76)
and thus obtain'?
H®D =5699313MeVv?,  HUD =5004 334MeV° . (3.77)

We would like to point out the fact that a finite value for H results in a vacuum quark mass that
is greater compared to the constituent mass we have fixed at H = 0. Recall that the symmetry-
breaking term in the meson sector is related to a mass term in the quark sector, see Eq. (3.19).
Therefore, choosing H > 0 leads to a finite current mass for the quarks which increases the cor-
responding constituent mass. From a geometric point of view, the symmetry-breaking parameter
induces a tilt of the effective potential along the o of field space such that the ground state gets

12 1n accordance with the action of the quark-meson model, the values for the symmetry-breaking parameter have been worked
out with the initial value Z, = 1 for the mesonic wavefunction renormalization in the ansatz (3.33). In the case of Z, — 0,
which reproduces an NJL model, we find H®® = 3 882 400 MeV® and H*Y = 3 206 960 MeV°.
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shifted to higher values. As a result, the quark mass increases accordingly, see Eq. (3.22). To be
more concrete, we obtain the following constituent quark masses:

T=up=0: mi ~322.05MeV,  m{* ~320.70MeV . (3.78)

These values are undeniably close to each other and not too far off from the physical value which
is of the order of 350 MeV for the up and down quarks [1, 339]. With a larger quark mass, the pion
decay constant increases as well:

T=up=0: fBY ~94.47MeV £~ 94.07MeV . (3.79)

For comparison, the experimental value reads f, ~ 93MeV [118, 385], meaning that our results
for the pion decay constant are realistic.

3.2.2 Curvature masses

Curvature masses are crucial for an understanding of the thermodynamic and dynamical properties
of low-energy QCD. As an example, they allow us to access the (pseudo-)critical external param-
eters for the chiral phase transition and therefore provide direct insights into the structure of the
QCD phase diagram. In the following, we investigate the curvature masses of the sigma meson
as well as the pions at finite temperature and finite chemical potential. In particular, we aim at
a comparison of the spatial and covariant regularization schemes based on the meson curvature
masses. To this end, we will illustrate the results obtained in these different schemes and compare
their predictions.

As already discussed earlier, the meson curvature masses can be obtained from the quantum
effective action by a projection which includes a second-order derivative and an evaluation at the
ground state of the system. Using our result for the effective potential, see Eq. (3.64), we obtain

m2 (T, u) o7 _ d ir(¢)|m
0 m2(T, 1) 1, dpTde Vi

1
= m/2\0ﬂ4x4_8Nch2f EZ
b nez

P=do
k=0
Ci(vn(B) + i, B) 1y —m2(T, u) 7

(C2(vaB) + i, B) + m2(T, )
ko ’ q’ k=Ay

, (3.80)

where 1) denotes the Lorentz matrix in meson field space. Again, this matrix structure is not used
to describe the spacetime metric here but naturally arises in field space once we consider a finite
quark mass, see our discussion in Sec. 2.4.5. We emphasize that the correct zero-temperature
curvature masses cannot be obtained from this expression by simply replacing the Matsubara sum
with a corresponding integral, see Section 2.4 for details. Instead, we need to take the zero-
temperature limit after performing the Matsubara summation to reproduce the zero-temperature
scenario. For a collection of potentially helpful relations regarding the zero-temperature limit, we
refer to Appendix C.4.

For optimal numerical performance regarding the computation of loop integrals, it is crucial
to evaluate the expression for the loop diagram analytically as far as possible. More specifically,
we shall always perform the summation of Matsubara frequencies analytically. Nevertheless, we
would like to stress that covariant momentum-dependent regulator functions make it notoriously
difficult to evaluate loop integrals at finite external parameters. We therefore bring our analytical
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expressions for the Matsubara sum into a simplified form which then allows for further numerical
evaluation without problems. This will be demonstrated explicitly in the following.

We consider a function f which is analytic on C\ P, where P denotes the set of poles of f. We
further assume that this function has an asymptotic behavior in accordance with Eq. (2.178). By
making use of the Matsubara formalism, the summation over Matsubara frequencies can then be
cast into the general form of

D F () +ip) =—i > Res(ng (B(—i- — ) f,a) . (3.81)

1
ﬁ nez aepP

In order to apply this strategy to the computation of loop diagrams, we identify f as the integrand
of the corresponding loop integral where any further dependences on, e.g., spatial momenta or
the RG scale k have been suppressed for simplicity. In particular, we are now going to use this
formula for the calculation of one-loop contributions to the meson curvature masses as appearing
in Eq. (3.80). Since we employed a polynomial regulator function, the denominator of f(x) is a
polynomial in x with real-valued coefficients. Furthermore, Lorentz symmetry in the vacuum limit
implies that f is a function of x2. As a consequence, the denominator of f has an even number of
different polynomial roots a. Specifically, if a is a root of that polynomial, then —a is also a root.
For convenience, we choose to order the set of roots according to

Vie {1, .o ,l} . do; = —dgi_q ,» (382)

where [ € N is used to parameterize the total number of different roots. The number [ depends on
the regularization scheme and, in the case of covariant regularization, also depends on the degree
N used for the polynomial shape function, see Eq. (3.56). With all these preliminary considerations,
the integrand of the loop integral in Eq. (3.80) can be written as

2 2
Flx) = _ h(x*) _ h(x*) . (3.83)

l

l_[ (x—q;) l_[ (x*~ a%i—l)z
i=1

i=1

The analytic function h here simply denotes the numerator of f and does not need to be specified
any further for our purposes. To evaluate the Matsubara sum above, we need to calculate the
residues of f weighted with a Fermi-Dirac distribution. Such a residue at any second-order pole is
given by

Res (ng (B(—i- — ) f.a;) = —ifng (B(~ia;—w) h(a?) A;

A
+ ng (ﬁ(—iaj —w) [Za? h’(a]z) — h(a}z) Bj]

el (3.84)
aj

where we have used the abbreviations

1 -1
AJZ(““? [1 (a?—aii_1)2> : (3.85)

i=1,i#g(j)
l 1
_ 2
Bj—1+4a]. Z W’ (3.86)
i=1i#g(j) ~J 2i—-1
n+1
g(n)= [ 2 J . (3.87)
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Notice that A;, B; and h(a]?) remain invariant under a
principle, the Matsubara sum takes the form

j — —a;. Making use of this symmetry

20
5 2L FO(B) +i) = i 3 Res (e (BC—i- — 1) f.)

nez j=1

L >, sech? B—iay, | +p)
:/32 (2 7 o )h(aéj_l)AZj—l
=1

L tanh(g(—iazj'—l i.u)) s s ) Azj
+iy. 5 [2a2,_, 1W(a2,_))—h(a2,_,) By | . (3.88)

=1 i

This exact expression for the Matsubara sum enormously simplifies any further evaluation of the
loop integral for the meson curvature masses. We emphasize that our formula is quite general
and in particular applies to the cases of spatial as well as covariant regularization. In any spatial
regularization scheme, we find

1
1B =1, a; =ila;|, a=—a;=aj, Bi=1, A =— (3.89)

which then allows for even further simplifications.

For convenience, we define the quantity

1 d d
R e D )

:f lz Ci(vn(ﬁ)+i“’ﬁ)ﬂ4x4_m n
3B (BO(B)+iu,p) +m2)’

=0
k=0

o=

=3

N

, (3.90)
k=A,

which simply describes the one-loop contribution in Eq. (3.80). An analysis of this integral even-
tually allows us to give a more concrete presentation of results for the curvature masses. Since
expressions for the analytically performed Matsubara sum in the covariant scheme are too lengthy
to provide additional insight into the structure of the integral I, we restrict our presentation of an-
alytical results to the case of spatial regularization. Nevertheless, we emphasize that the minuend
of the loop integral, i.e., the term evaluated at k = 0, is identical in all regularization schemes that
satisfy the infrared condition (2.70). Using spatial regulators, we Matsubara sum evaluates to

1 oo 2E2(p)1,,., —m>%(1,,, + E.(p)+
I(()?’d)(m)| _ dp p? (P 1 (144 n)Ztanh( «(p) M)
Le16m2 |, E}(p) — 2T

mz(ﬂ4x4+n) 1 2 Ek(p)i,u
+—E£(p) ﬁzi:sech (—ZT ):|

(3.91)

with

2 2
E{(p) =p2(1 +10y (%D +m? (3.92)

denoting the regularized energy of the quarks. We remark here, that this expression for the loop
integral I, is nothing but the finite-temperature version of the loop contribution to the curvature
masses in Eq. (2.211) for the case of using a polynomial shape function.
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We now turn to the discussion of particle masses at finite temperature and zero chemical poten-
tial. As illustrated in Fig. 3.1, the temperature dependence of the meson curvature masses and
the quark mass has been investigated for both H = 0 and the case of explicit symmetry breaking.
To begin, we focus on the results obtained from the quark-meson model in the absence of explicit
symmetry breaking. Recall that we have tuned our model parameters in this scenario such that the
dynamics of the system is governed by a finite ground state at low temperatures. Consequently, the
pions are massless in this regime, whereas the sigma meson and the quarks acquire finite masses.
As temperature increases, thermal fluctuations then drive the ground state continuously towards
smaller and smaller values until it vanishes at the critical temperature T.. From a phenomenolog-
ical point of view, this temperature then marks the chiral phase transition along the temperature
axis of the phase diagram. The continuous behavior of the ground state allows us to identify this
transition as a second-order phase transition. Naturally, the quark mass can then serve as an order
parameter to distinguish between the two separate phases of matter. Furthermore, we observe
that all three particle masses vanish identically at T = T.. Beyond the critical temperature, the
ground state remains zero, which leads to massless quarks in this phase. In contrast to this, the
meson curvature masses are finite and degenerate. Since the mesons are considered composites of
fermions, the former must in fact become degenerate once the quark mass has vanished. With no
matter particles left that could render the mesons massive for T > T,, their finite curvature masses
in this regime are purely temperature-induced.

In a system with explicitly broken symmetry, i.e., for H > 0, the pions acquire a finite mass even
at low temperatures. This behavior can be understood by examining the effective potential. Geo-
metrically, the linear symmetry-breaking term leads to a deformation of the otherwise symmetric
effective potential, often referred to as a tilt along the o-direction. This tilt not only leads to a
unique ground state but also renders the curvatures at this point positive in all directions of field
space. Accordingly, the curvature masses of both mesons are finite for H > 0. As before, increasing
temperatures drive the ground state continuously towards lower and lower values. In contrast to
the chiral limit, however, the explicit symmetry breaking prevents the ground state from actually
reaching zero. This is evident from the temperature dependence of the quark mass in Fig. 3.1 (right
panels), which exhibits a sigmoid shape. Since the quark mass is analytic in T and remains finite,
a canonical phase transition does not occur. Instead, the system undergoes a smooth transition,
a so-called crossover, between the low-temperature phase, which is governed by a finite ground
state, and the high-temperature phase, in which the ground state has become sufficiently small
such that the system gets dominated by thermal fluctuations. The pseudo-critical temperature Ty,
which quantifies this crossover, is not uniquely defined but we shall come back to this further below.
At high temperatures, as the ground state diminishes, the curvature masses of the mesons become
quasi-degenerate and approach the same asymptotic limit. In the intermediate regime, where the
effects of the finite ground state and thermal fluctuations compete, we observe that the curvature
of the sigma meson develops a finite minimum whereas the pion masses continuously grow.

Overall, we observe that our predictions for the vacuum value of the sigma curvature mass lie
between 875MeV and 974 MeV, see Table 3.1 for a more detailed overview. Values of this order
of magnitude are nothing new for NJL-type models, see, e.g., Ref. [387], although these values
are relatively far away from the resonance at 500 MeV associated with the scalar meson [339].
In order to ensure an outcome that is more compatible with experiment, one could extend the
ansatz (3.34) to include a term ~ A(¢T¢)? that is quartic in the fields. This would provide us
with an additional parameter A, allowing us to tune the value of the sigma mass in the vacuum
limit, see, e.g., Ref. [382]. Alternatively, using regulator functions that implement less smooth
UV regularization is also expected to lower the vacuum values of the meson curvature masses.



100 CHAPTER 3 SCHEME DEPENDENCE OF CHIRAL OBSERVABLES

fl—me —m, —m,g =My —My; —My
1000 1000
800 800
% 600 % 600
=) =)
400 400
200 200
0 . . . . . . . 0 l l l
0 100 200 300 400 0 100 200 300 400
T [MeV] T [MeV]
(a) Particle masses as obtained from the quark-meson model using the spatial regularization scheme.
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(b) Particle masses as obtained from the quark-meson model using the covariant regularization scheme.

Figure 3.1: We illustrate the temperature dependence of meson curvature masses and the quark mass at zero
quark chemical potential. Using different regularization schemes, the particle masses are shown for
the symmetric case, H = 0, (left panels) and for explicit symmetry breaking, H > 0, (right panels).
The phase transition indicated by the minimum of m,, is a second-order phase transition in the chiral
limit and a crossover in the physical case.

For example, one may consider degrees N > 2 for the polynomial shape function in Eq. (3.56) to
achieve this. A thorough investigation of this kind is, however, beyond the scope of this work. In
any case, we would like to highlight that the curvature mass is in fact generally different from
the pole mass. Recall that we have fixed the pion pole mass in the vacuum limit to 138 MeV for
each scheme. Nevertheless, the corresponding values of the pion curvature mass are off by at least
93 MeV, see again Table 3.1.

A comparison of the predictions from the quark-meson model based on Fig. 3.1 shows that
the spatial and covariant regularization schemes lead to qualitatively very similar behaviors of the
individual particle masses with respect to temperature. We therefore now focus on the quantitative
differences as observed at finite temperature and zero chemical potential. In particular, we address
the critical temperature T, associated with the chiral phase transition in the absence of explicit
symmetry breaking. If the quark mass is chosen to be the order parameter of the phase transition,
the critical temperature denotes the smallest temperature at which quark mass vanishes identically.
Equivalently, we could determine this temperature based on one of the meson curvature masses.
At the level of the effective action, the critical temperature for a second-order phase transition
corresponds to the point where the one-loop effective potential becomes convex, see Fig. 3.2 (left
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Scheme | m, [MeV] | m, [MeV] | T.[MeV] | u. [MeV]
spatial 902 0 221 398
covariant | 875 0 209 390

(a) Condering the symmetric case, i.e., H = 0.

Scheme | m, [MeV] | m, [MeV] | T,. [MeV] | w, [MeV]
spatial 974 246 246 434
covariant | 940 231 229 422

101

(b) Considering the case of explicit symmetry breaking, H > 0.

Table 3.1: Rounded values of the meson curvature masses at T = u = 0 and the (pseudo-)critical external
parameters as obtained from the quark-meson model when using the spatial and covariant regularization
schemes.

panel). Put differently, the critical temperature T. is characterized by a vanishing origin mass:

(35725™ @), )

d¢Tde
= mjz\o—16Nch2 (%LO(AO’X)‘T:T)

=0 (3.93)

$=0

=0. (3.94)
X=0

Using the spatial and covariant regularization schemes, we obtain a critical temperature of approx-
imately 221 MeV and 209 MeV, respectively. Compared to the result of T. ~ 132MeV from lattice
QCD [340], our results for the critical temperature are generally too high. Several ways to ap-
proach this issue are possible. For example, one could lift the restriction of only considering loops
with internal fermionic lines and incorporate bosonic fluctuations. Bosonic loops naturally tend to
make the effective potential convex and thus lower the value of the critical temperature. A more
pragmatic solution would be to introduce an additional parameter to the theory by extending our
ansatz for the effective action at the UV scale A, and simply use it to tune the critical temperature
towards a realistic value. In this work, however, we are rather interested in the influence of the
regularization prescription on observables. We therefore keep our truncation scheme as well as
the initial condition for the Wetterich equation unchanged and instead investigate the dependence
of the critical temperature on the regularization scheme. More specifically, we calculate the criti-
cal temperature using the polynomial regulator shape function (3.56) for different choices of the
coefficients c,, different degrees N, and different values of the initial scale A,. We have assembled
our results into the Table 3.2.

Our data shows that the covariant scheme systematically leads to lower values for the critical
temperature than the spatial scheme. Additionally, we observe a general decrease in the critical
temperature as the degree N increases. This makes it apparent that observables are indeed sensi-
tive to how smoothly momenta get cut off from the loop by the regulator. Specifically, the sharper
the cutoff becomes, the lower the value for the critical temperature turns out to be. The data
further indicates that the drop in temperature tends to become less for larger degrees N. This be-
havior appears because the regulator gradually converges towards a limiting form as N increases,
leading to less pronounced changes in the regularization scheme. In particular, the polynomial
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Figure 3.2: Temperature-dependent behavior of the effective potential as a function of the field variable ¢ in the
case of H = 0 (left panel) as well as for explicit symmetry breaking, i.e., H > 0, (right panel). For the
symmetric system, the critical temperature T, refers to the temperature of the second-order phase
transition. In the case of explicit symmetry breaking, one can define a pseudo-critical temperature Ty,
indicating a crossover.

regulator approaches the exponential regulator for ¢, = 1/n! and converges towards a sharp reg-
ulator for ¢, = 1. Furthermore, our results demonstrate that decreasing the initial UV scale A,
also lowers the critical temperature. However, lowering A, amplifies regularization artifacts in the
presence of external parameters and hence renders the results less reliable if the calculation is not
RG-consistent. Our analysis makes clear that the critical temperature can in principle be tuned by
suitably adjusting the polynomial regularization scheme. Nevertheless, we adhere to our original
choices of ¢, = 1/n!, N =2, and Ayj = 1GeV to ensure that loop integrals can be carried out in a
covariant regularization without complications.

In contrast to the critical temperature T, the pseudo-critical temperature T, associated with
the crossover transition is not uniquely defined. Various definitions exist, as illustrated in, e.g.,
Ref. [388]. Nevertheless, all consistent definitions of the pseudo-critical temperature should re-
duce to Eq. (3.93) in the chiral limit. Following Refs. [389, 390], we use the curvature mass of
the sigma meson as an indicator to distinguish between the different phases of the quark-meson
model. Specifically, we define

Ty = argmax (¥ ,(T)) = argmin (mg(T)) , (3.95)
T>0 T>0
where X, = (m2)™! denotes the static susceptibility for the radial mode in field space. Our results,
summarized in Table 3.1, again show that the covariant regularization scheme yields a smaller
pseudo-critical temperature than the corresponding spatial scheme. Finally, we would like to re-
mark that our reasoning regarding critical points is not limited to temperature-induced transitions.
In fact, the Egs. (3.93) and (3.95) can be adapted straightforwardly to define the (pseudo-)critical
chemical potential at zero temperature. For an analysis of the behavior of the particle masses with
respect to the chemical potential, we refer to Fig. 3.4 and the corresponding discussion further
below.

In accordance with our discussion of RG consistency, regularization artifacts at zero chemical
potential are suppressed as long as the temperatures under consideration remain sufficiently small
compared to the reference scale. To make this comparison more concrete, it is useful to examine
the momentum scale associated with temperature. Since the dominant contribution to the finite-
temperature propagator stems from the smallest Matsubara frequency; it is reasonable to compare
Ao to vo(B) = nT. Consequently, the value of A, chosen in Eq. (3.73) implies that calculations of
correlation functions are generally RG-consistent for temperatures T < 300 MeV. In addition, for a
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Ay [MeV] | Scheme N=2 N=3 N=4
spatial 221 215 213
10°
covariant 209 202 200
spatial 194 188 186
600
covariant 173 163 160

(a) Use of the polynomial regulator function with coefficients ¢, = 1/n!.

Ao [MeV] | Scheme N=2 N=3 N=4
spatial 214 204 200
10°
covariant 199 186 179
spatial 188 179 175
600
covariant 163 146 137

(b) Use of the polynomial regulator function with coefficients ¢, = 1.

Table 3.2: Rounded values of the critical temperature T, [MeV] for the chiral phase transition of the quark-meson
model at H = 0 and p = 0 as obtained when using a spatial or covariant regularization scheme. In our
numerical calculations, we have implemented the polynomial regulator shape function for different
coefficients c, and degrees N.

polynomial regulator with degree N = 2, the suppression of high-momentum modes is particularly
smooth, which suggests that regularization artifacts should remain small even at somewhat higher
temperatures. To quantitatively evaluate potential regularization artifacts, we have analyzed the
impact of an RG-consistent calculation on the temperature-dependent behavior of particle masses,
as shown in Fig. 3.3. The results for the meson curvature masses as calculated in the spatial reg-
ularization scheme in fact confirm our reasoning. Here, differences between the “naive” and the
RG-consistent calculations are not visible for T < 250 MeV and remain negligible for T < 300 MeV.
In particular, RG consistency has no noticeable effect on the (pseudo-)critical temperature here.
However, regularization artifacts become more severe at higher temperatures. For example, we
observe a difference between the calculations of Am®9 ~ 120MeV at T = 400MeV. In the co-
variant scheme, regularization artifacts become already visible at T 2 180MeV. Notably, con-
sidering RG consistency has the effect of raising the (pseudo-)critical temperature as computed
within this scheme. More specifically, in the absence of regularization scheme artifacts, we obtain
T§4d) ~ 215MeV and Tégd) ~ 237 MeV. This difference in sensitivity to RG consistency stems from
the different treatment of temperature by the schemes. Concretely, A, directly sets a scale for tem-
perature in the covariant scheme. Spatial schemes, however, leave the time-like modes of the loop
integral unaffected such that there is no direct coupling between temperature and the reference
scale of the RG flow. As a result, the influence of regularization on the temperature-dependent
behavior is weaker in the spatial schemes. Despite these differences, our results demonstrate the
importance of accounting for RG consistency in studies of curvature masses at high temperatures,
regardless of the chosen regularization scheme.
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(a) Particle masses as obtained from the quark-meson model within the spatial regularization scheme.
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(b) Particle masses as obtained from the quark-meson model within the covariant regularization scheme.

Figure 3.3: We illustrate the impact of RG consistency on the temperature dependence of meson curvature masses
at zero chemical potential as obtained from the quark-meson model. The particle masses are shown in
the case of intact rotation symmetry, H = 0, (left panels) and for explicit symmetry breaking, H > 0,
(right panels). We observe that regularization scheme artifacts of the non-RG-consistent calculations
become apparent for T Z 180 MeV in the covariant scheme but remain absent until T ~ 250 MeV in
the spatial scheme.

Let us extend our discussion of RG consistency to the case of zero temperature and finite chemi-
cal potential. Under these circumstances, the infrared theory is in fact automatically RG-consistent
for u < Agy. This shall be explained in the following. At zero temperature and finite chemical po-
tential, the pole structure of the integrand allows the corresponding loop integral L; to split into a
vacuum contribution, which has no explicit u-dependence,'® and a matter part M,, which carries
all the information about the effects of a finite chemical potential. In addition, the system exhibits
the Silver-Blaze property at zero temperature, meaning it does not show any dependence on the
chemical potential unless u exceeds the Silver-Blaze threshold. This behavior is expressed as

My (u, X) o< 0(u— psp(k, X)) - (3.96)

Furthermore, it follows from dimensional analysis that u cannot have any effect on the loop inte-
gral unless it is at least of the order of k. As a consequence, the loop integral at zero temperature

13 The vacuum contribution to the loop function can, however, gain an implicit dependence on the chemical potential by
evaluating the function at the u-dependent ground state.



3.2 POLYNOMIAL REGULATORS 105

takes the general form

/

L (Ao, h2¢2)| = Li(Ag, B> $*) — My (u, h*¢?)

HAo

k'=Aq
Li(Ag, W2 $?) — My (u, h*¢?) . (3.97)

An RG-consistent UV completion for our ansatz for the effective average action to the scale A > A,
then gives rise to the new functional

Vi (99 (g) ——FA0(¢ A) =8N, L(A, h*¢)],

1
= 7T () = SN[ LA 97|, = L, (A H*6™)]

= Vierw)—ch [Lk(Ao,hquz)—Mk/(u, n ,fk] : (3.98)
4 =A

As we can see, this expression is equivalent to the original theory, provided that the chemical
potential does not exceed the reference scale.

1

U<A
Wk < Ao : v“r,ﬁf“*c)(qb)m ="

1
V@), (3.99)

In other words, the infrared results for the system at zero temperature are already RG-consistent as
long as we restrict our analysis to values of the chemical potential u which are below the reference
scale A,y. We stress that this property is by no means restricted to polynomial regulators.

From a physical standpoint, scalar and pseudoscalar mesons are the most relevant low-energy
degrees of freedom for QCD at low densities. However, they become less important with increasing
chemical potential. In particular, interaction channels associated with the formation of diquark
condensates dominate the regime of low temperature but high density [88, 264, 386, 391]. Since
our model does not include diquark degrees of freedom, its predictions at low temperatures can
be physically reliable only up to intermediate densities.'* To ensure reliability, we restrict our
study of the quark-meson model to u < 400 MeV. This restriction then naturally renders our zero-
temperature calculations RG-consistent.

This directly leads us to the investigation of particle masses at zero temperature and finite chem-
ical potential. As mentioned earlier, consistent results for the meson curvature masses at zero
temperature can be obtained from Eq. (3.80) by first performing the Matsubara sum and then
taking the zero-temperature limit. For simplicity, we will again focus on the case of spatial regular-
ization in our presentation of analytical results. Specifically, in the limit as the temperature tends
to zero, the integral presented in Eq. (3.91) takes the form

IoP(m)|, = lim I8V (m)]
_ 1 (% Z[ZE,%(p)m—mZ(mwm
8> EX(p)

E}(p)

6 (Ex(p)—u)

k=0

0

5(Ek(p)—.u)] (3.100)

k=Ao

14 Although the ground state is expected to be governed by diquark condensation in the regime of high densities, calculations
that do not include condensation effects are reliable, provided that the chemical potential is much larger than the scale set
by the diquark gap.
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The Heaviside step function with the property of 6(x) = 1 — 6(—x), see Appendix A.1 for details,
allows us to decompose the integral into a vacuum part, which is independent of u, and a matter
part, which captures the entire information about the finite chemical potential. Additionally, we
have

2
Vk>0,p>0: p(l+r§oly(i—2))>k, (3.101)

which implies that the matter part does not depend on the reference scale A, as long as u < Ay. In
fact, we arrive at the same conclusion when implementing a covariant regulator. This means that
the matter part of the loop integral is scheme-independent for all chemical potentials of interest.
As a result, the integral can be written as

d d
1£9m)|, = 159 (m) — MgP (u,m) (3.102)

where the chemical potential dependent part of the loop integral is given by

(2) 1 d d 2 2)
M == [ ——M,(uh
O m) = 5 (5 ag Mol*?) .

1 < (2p%2 +m?)1,,,—m?n —
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_mz(ﬂ4x4+n) 5(m_u)]

p2+m2

_0(u—m)

o (3.103)

=)

(jl4x4 uy/ w2 —m2 —(2?14x4 + n) m? arsinh(
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Let us now turn to the discussion of particle masses at zero temperature and finite chemical
potential. Specifically, we have investigated the dependence of the meson curvature masses and
the quark mass on the chemical potential for both the symmetric case and the case of explicit
symmetry breaking, as shown in Fig. 3.4. Since the polynomial regulator respects the analytic
properties and preserves the Silver-Blaze symmetry of the system, the behavior of particle masses
at zero temperature is governed by the Silver-Blaze property at low densities. In other words,
all masses remain at their vacuum values as long as the chemical potential is not larger than the
Silver-Blaze threshold, u < ugg. In our truncation scheme, the value of ugg is always determined
by the vacuum quark mass. For an analysis of the behavior of the system beyond this threshold,
we start by concentrating on the results obtained from the quark-meson model for H = 0. As in
the case of finite temperature and zero chemical potential, see Fig. 3.1 (left panels), we observe a
continuous decrease of the sigma and the quark masses with increasing chemical potential until all
particle masses vanish identically at the critical value u.. Phenomenologically speaking, this critical
value marks the chiral phase transition along the chemical potential axis of the phase diagram.
Furthermore, the continuous behavior of the ground state allows us to identify this transition as
a second-order phase transition, consistent with our observations at finite temperature and zero
chemical potential. Interestingly, this result is in contradiction with the generally accepted notion
that the phase transition at low temperatures and intermediate densities is of first order, see, e.g.,
Refs. [392-395]. Nevertheless, other fRG approaches to the phase diagram of QCD have in fact
been successful in reproducing a first-order transition, see, e.g., Refs. [88, 178, 232, 349, 382,
396]. Our findings therefore suggest that the nature of the phase transition at low temperatures is
sensitive to the regularization of the vacuum loop and that our regularization prescription is simply
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(a) Particle masses as obtained from the quark-meson model using the spatial regularization scheme.
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(b) Particle masses as obtained from the quark-meson model using the covariant regularization scheme.

Figure 3.4: We illustrate the chemical potential dependence of the meson curvature masses and the quark mass
at zero temperature. Using different regularization schemes, the particle masses are shown for the
symmetric case, H = 0, (left panels) and for explicit symmetry breaking, H > 0, (right panels). The
phase transition indicated by the minimum of m,, is a second-order phase transition in the symmetric
case and a crossover in the physical case.

not suited to capture the correct low-energy behavior of QCD at those scales. Beyond the critical
value u., where the quark mass remains zero, the meson curvature masses become degenerate and
scale with the chemical potential. When explicit symmetry breaking is included, i.e., for H > 0,
the situation we encounter at zero temperature closely resembles the results shown in Fig. 3.1
(right panels). Once the chemical potential exceeds the Silver-Blaze threshold, the quark mass
continuously decreases although never becoming zero. Between the low-density regime governed
by the Silver-Blaze property and the high-density regime characterized by an almost vanishing
ground state, the curvature mass of the sigma meson develops a global minimum. The value of the
chemical potential associated with this minimum then defines the pseudo-critical value . in our
setting and marks a crossover at this scale. Together with the calculations at finite temperature
and zero chemical potential, our results falsely indicate that the transition line corresponding to
the chiral phase transition is entirely a second-order phase transition line for H = 0 and a crossover
line for H > 0. As a consequence, we will observe no critical endpoint in the phase diagram of our
quark-meson model. Finally, we note that there are no qualitative differences between the results
obtained from using the spatial and covariant regularization schemes. In particular, the nature
of the phase transition is the same for both schemes. For a short overview of the quantitative
differences, we again refer to Table 3.1. The data shows that the covariant scheme systematically
predicts slightly lower values for the (pseudo-)critical chemical potential.
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So far, we have compared quantities derived from the quark-meson model using a spatial and
a covariant regularization scheme. However, these considerations do not allow us to directly
compare the schemes themselves. Recall that the RG scale k corresponds to a spatial momentum |p|
in spatial regularization schemes whereas it sets the scale for the full four-momentum in covariant
schemes. Consequently, for any given finite value k, the amount of momenta contributing to a
loop integral differs between the two schemes. The same reasoning applies to the initialization
scale, meaning that the value of Ay as chosen in Eq. (3.73) has different implications for the
momentum space in each scheme. Moreover, since spatial regulators distinguish the time-like
direction of momentum space, modes influenced by external parameters such as temperature and
chemical potential are treated differently in spatial and covariant schemes. In order to allow for
a meaningful comparison, we need to establish a point in parameter space at which both schemes
agree identically. To this end, we adjust the initial condition of the effective average action in the
covariant scheme such that both schemes yield the identical infrared physics at T = u = 0:

T Ie0) = 1009) — BN [LE (ha, H29%) ~ 1§00, 247)] (3.104)
This construction enables us to isolate the effects of covariant regularization in the presence of
finite temperature or finite chemical potential. As mentioned before, the Silver-Blaze property gov-
erns the behavior of the zero-temperature theory at low densities. For our choice of the regulator
shape function, it then follows that the predictions of this theory are identical in both regular-
ization schemes for all chemical potentials of interest. Our comparison therefore focuses on the
case of finite temperature and zero chemical potential in the following. One may be inclined to
additionally consider RG consistency for our direct comparison of schemes. Recall, however, that
RG consistency has the effect of eliminating scheme dependences from that part of the loop inte-
gral that depends on finite external parameters. Together with the initial condition (3.104), this
means that an RG-consistent calculation would completely align the covariant scheme to the spa-
tial scheme. As a result, this would leave us no basis for a meaningful comparison of schemes.

The temperature-dependent behavior of the meson curvature masses as obtained for spatial and
covariant regularizations is shown in Fig. 3.5. While no differences are evident for T < 150 MeV,
the impact of covariant regularization on the one-loop contributions to the curvature masses be-
comes apparent near the (pseudo-)critical temperature. Consistent with previous results, the co-
variant scheme systematically predicts lower transition temperatures. Beyond these critical points,
the quantitative differences between the two schemes increase with temperature. Contrary to the
common belief that the explicit breaking of Lorentz symmetry induced by spatial regulators is
negligible at high values of external parameters, our findings suggest the opposite. For low tem-
peratures, the space of momenta contributing to the loop integrals seems to be rather insensitive
to the artificial breaking of Lorentz symmetry, hence leading to no visible differences in the particle
masses obtained from the different schemes. However, at higher temperatures, the effect of ther-
mal fluctuations being regularized in the covariant scheme whereas fully contributing at every RG
scale in the spatial scheme becomes more and more prominent. Specifically, while the covariant
scheme implies corrections to the (pseudo-)critical temperature of the order of 10 MeV, the meson
curvature masses in the covariant scheme are Am ~ 125MeV larger at T = 400 MeV than those
obtained in the spatial scheme. Based on these results, we conclude that the importance of covari-
ant regularization increases with temperature, especially at temperatures above the chiral phase
transition.
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Figure 3.5: We directly compare the spatial and covariant regularization schemes based on the temperature
dependence of meson curvature masses. These particle masses are shown for intact rotation symmetry,
H = 0, (left panel) and for the case of explicit symmetry breaking, H > 0, (right panel). We
observe that the covariant scheme leads to slightly lower transition temperatures as well as an altered
high-temperature behavior. Concretely, we obtain AT, ~ 8 MeV and AT, ~ 12MeV.

3.2.3 Spectral functions

Spectral functions are valuable tools in quantum field theory as they offer insights into dynamical
as well as structural properties of quantum systems. Specifically, they provide access to physical
observables such as pole masses, decay rates, lifetimes, and transport coefficients, thereby estab-
lishing a direct link between theory and experiment. In the context of low-energy QCD, spectral
functions play an essential role in understanding the behavior of mesons and baryons, particularly
under varying external conditions. In the following, we investigate the spectral functions of the
sigma meson and the pions at finite external parameters. In particular, we take a first step to-
wards a comparison of the spatial and covariant regularization schemes based on meson spectral
functions.

For the computation of spectral functions, we first extract the momentum-dependent two-point
correlator from the full quantum effective action. This can be done most conveniently by perform-
ing a PF expansion of the effective action to second order in the field degrees of freedom, see
Eq. (3.41) for details. Using the ansatz given in Eq. (3.42) and choosing Z, = 1, the two-point
correlation function can be expressed as

f‘(Z)((z)’T’M = (QZ + mio) j]'4><4 - 8NC hz IO (Q: mq(Ta M)) |T;M > (3'105)

where the corresponding momentum-dependent loop integral reads

k=0

s T va(B) +iu, B) Ck(va(B) +ip+ Q% B+ Q) 1,,—m?n

1
7 s = — = . (3.106
0@ mlr, L/& 21 P+ 15) 1) (GOnP -t @+ D)

Implementing a covariant regularization scheme makes it notoriously challenging to perform loop
integrals analytically. Nevertheless, evaluating the Matsubara sum in closed form is crucial for
ensuring numerical stability when analyzing correlation functions and spectral functions. To this
end, we put forward a general formula that enables us to perform the Matsubara sum analytically
and more easily.
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For our approach to further evaluate the loop integral above, we can in fact follow our strategy
from Section 3.2.2 regarding the general computation of screening masses. We observe that the
integrand of the loop function (3.106) can be cast into the form

f(x,5,Q%Q) = h(x P.Q) , (3.107)
]_[(x a(p))l_[(X+Q°—a(p+Q))
i=1 i=1

where we have dropped any k-dependences for simplicity. Lorentz symmetry in the vacuum limit
again implies that the complex poles a; with respect to the time-like momentum variable x can
be laid out with alternating signs, see Eq. (3.82). In addition, we note that the bosonic time-like
momentum is not continuous at finite temperature but instead assumes only discrete values,

VWNez: Q°=qQ%= FN (3.108)

For convenience, however, we keep the external Matsubara index N suppressed in the following.
This property implies that

ng (B(z +iQ%)) =np (Bz) , (3.109)

meaning that temperature T and the time-like momentum Q° naturally decouple. Making use of
Eq. (3.81) for the case of a multi-variate function and exploiting the symmetry properties of f, we
arrive at the following expression for the Matsubara sum:

J =D F (B +ip,5,Q% Q) = - J Zl] (Foj1(B,Q) + Foj 1 (-$ —Q,Q)) (3.110)
B iz B j=1
with
Fi(5,Q) = [ Res(f(-,,Q% @), a;(B)) + Res (£ (+,5,—Q"% @), a;()) ]
x %ztanh(g(—iaj(p’)i‘u)) . (3.111)
This formulation enormously simplifies the evaluation of the loop integral for the momentum-

dependent two-point correlator within the covariant regularization scheme. Now, the process of
performing the Matsubara sum essentially reduces to constructing the residue

R h@GL5,
Res(f(-,5,Q% @), a;(B)) = (4;(3). 5, Q)

Z (3.112)

21
203) [] (2®)-a2®) [ [(,3)+Q° - a3 +D)
i=1,i#g(j) i=1

with the function g being given by Eq. (3.87). We highlight that this formula applies to the case
of spatial regularization as well as covariant regularization. In particular, using a spatial regulator
and setting the spatial external momenta to zero leads us to

k=0

- *° 2E2(p) jl4><4_Tn2(ﬂ'4><4-i_,r’) E ( ):l:nu’
70000 Bl = L f dp 2 o [ Ee® ’
0 m |T,,u 42 |, pp Ek(p)( Ez(p)+(QO) ) Z ( )

k=Aq
(3.113)
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Figure 3.6: Meson spectral functions as obtained using the spatial regularization scheme. We illustrate the spectral
functions in the vacuum limit (left panel) as well as for finite temperature (right panel). While the
vacuum pion pole mass has been fixed to 138 MeV, the predicted vacuum pole mass of the sigma
meson is Myl » ~ 568 MeV.

where the regularized energy E, is again given by Eq. (3.92). Notice that setting the time-like
modes to zero here as well would provide us with the plasmon limit of the loop integral (3.106)
and does not reproduce Eq. (3.91). Instead, the latter has to be obtained by considering the static
limit of the momentum-dependent loop integral.

With the meson two-point correlators at hand, the corresponding spectral function can be ob-
tained via analytic continuation, see Eq. (3.48). We present our results for the spectral functions
of the scalar and pseudoscalar mesons as functions of the energy variable w and in the presence of
explicit symmetry breaking, H > 0. In all of our numerical studies, we will set the spatial external
momenta to zero, i.e., Q = 0, such that the energy w.s associated with a resonance peak in the
spectral function can be identified with a mass of the corresponding meson. In addition, we note
that the integrand of the loop integral (3.113) develops a pole when the denominator becomes
zero. After analytic continuation, Q° — iw, and for w < A, we find an integrable pole at

2
P =\ %_mz, (3.114)

As a consequence, the corresponding loop integral becomes non-analytic at those energies where
the pole enters or exits the domain of integration. For zero chemical potential, this occurs at the
critical value w. = 2m such that p* = 0. In the context of spectral functions, the non-analytic
behavior at this energy is commonly associated with a decay process into two particles of mass m
each. We shall come back to this further below. Moreover, recall that the term evaluated at k =0
in Eq. (3.113) is identical in both regularization schemes. Therefore, the dependence of the critical
energy on the mass remains unchanged when employing a covariant regulator.

We now turn to the discussion of meson spectral functions obtained within the spatial regular-
ization scheme. For this case, the spectral functions in the vacuum limit are shown in Fig. 3.6 (left
panel). Whereas the vacuum pole mass of the pions has a value of mge » = Wres » ~ 138 MeV by
construction, the pole mass for the sigma meson is a prediction. We observe that this predicted
value, mpyole ¢ = Wres o & 568 MeV, is significantly closer to the expected resonance of 500 MeV than
the corresponding value of the curvature mass, see Table 3.1b. Furthermore, the spectral functions
exhibit more structural features than the typical peaks associated with the pole masses. For exam-
ple, at w ~ 644MeV a kink in the spectral function of the sigma meson and a turning point in that
of the pions can be observed. These structures are typically interpreted as indicating a decay of
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Figure 3.7: [llustration of meson spectral functions at different temperatures. More specifically, we show the
sigma spectral function (left panel) as well as the pion spectral function (right panel) at T = 100 MeV
(turquoise curve), T = 200MeV (orange curve), and T = 300MeV (red curve).

an excited state of the meson into an energetically more favorable state. Within our model, these
decays can be identified as the processes o’ — 1) and 7’ — 1, where the primes denote the
excited states. Specifically, when we reach the energy wgecay = 2m, associated with a pair of two
constituent quarks with zero center-of-mass energy, it becomes favorable for the mesons to decay
into these quark states. The decay scale wgecqy corresponds precisely to the critical value of the
energy variable that we identified earlier based on the expression (3.113) for the loop integral.
We would like to remark, however, that the non-analytic behavior of the spectral functions at this
energy value appears to be rather smoothed out in Fig. 3.6. This is a result of the finite ¢ parameter
which we have used in our numerical computations of spectral functions.

By increasing the temperature at zero chemical potential, we can deform the spectral functions.
For an illustration of the meson spectral functions at various temperatures, we refer to Fig. 3.7.
More specifically, as the quark mass decreases with rising temperature, the structures associated
with the decay of the mesons into two quarks follow the relation wgecay(T) = 2my(T) and thus
shift continuously to lower temperatures. Furthermore, the energy w,.s , that corresponds to the
pion resonance mass increases steadily with temperature. In contrast to this, the sigma resonance
mass as indicated by the energy w,.s, decreases with increasing temperature until it reaches its
minimum value at T ~ 256 MeV. Beyond this temperature, the sigma resonance mass begins to
increase again and approaches the same high-temperature limit as the pion mass. The temperature-
dependent behavior of the resonance masses is reminiscent of that of the curvature masses, see
Fig. 3.1a (right panel).'®> For a more concrete presentation of the temperature dependence of me-
son resonance masses, see, for example, Refs. [235, 360, 397, 398]. At sufficiently high tempera-
tures, where the quark mass approaches zero, the spectral functions of the scalar and pseudoscalar
mesons become nearly degenerate.

Let us comment more on the shape of the spectral functions. In particular, we observe that
the structural features associated with decay processes tend to become increasingly suppressed
with rising temperatures. Moreover, although the peak positions w,. shift with temperature, the
shapes of the peaks remain unchanged at low temperatures. More specifically, the Dirac-delta
peaks present in the vacuum spectral functions, which correspond to poles of the inverse two-point

15 In principle, we could define the temperature associated with the crossover transition by the minimum of the sigma resonance
mass. Nevertheless, our calculations of curvature masses as derived from effective potential in Section 3.2.2 reproduce
standard mean-field results and therefore establish a direct link to Landau theory, which is an important cornerstone for the
concept of phase transitions. Thus, while defining a pseudo-critical temperature using the resonance mass is feasible, this
definition would be less tied to the thermodynamic properties governing the transition.
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Figure 3.8: Meson spectral functions as obtained using the covariant regularization scheme. We illustrate the
spectral functions in the vacuum limit (left panel) as well as for finite temperature (right panel).
While the vacuum pion pole mass has been fixed to 138 MeV, the predicted vacuum pole mass of the
sigma meson is M. ; A 584 MeV.

function, remain Dirac-delta peaks at finite temperature provided that wyes < Wgecay- Phenomeno-
logically, this implies that mesons remain stable as long as their resonance mass is smaller than the
energy required to trigger a decay into their constituents. At temperatures where this relation is
reversed, wpes > Wecay, the resonance peaks not only decrease in height but also undergo a signifi-
cant broadening. These effects become more pronounced with increasing temperatures and can be
attributed to thermal fluctuations, which induce a screening for the pole present in the propagator
of the vacuum theory. As a consequence, at such temperatures, the resonance mass associated with
the peak no longer corresponds to a pole mass. Furthermore, the particle becomes unstable as the
finite FWHM of its resonance peak indicates a finite average lifetime. One may define a character-
istic temperature by the solution to wyes(T) = Wgecay(T), beyond which the destabilization process
begins. We emphasize that this temperature is specific for each particle. This means that, given a
certain temperature, one particle can still be stable whereas another has already become unstable.
Such a scenario is illustrated in Fig. 3.6 (right panel). In particular, at the pseudo-critical tempera-
ture as derived from the effective potential, we find wyes o (Tpe) ~ 282MeV, wres 7(Tpe) & 206 MeV,
and wgecay(Tpc) & 227 MeV. Accordingly, the pion spectral function at T = T, still exhibits a Dirac-
delta peak, indicating the existence of a pole mass. In contrast to this, the resonance peak in the
sigma spectral function is broadened, which signals that thermal fluctuations have rendered the
particle unstable.

When employing a covariant regularization scheme for the computation of spectral functions,
the results remain qualitatively the same at low temperatures as those obtained using the spatial
scheme. The meson spectral functions in the vacuum limit as derived in the covariant scheme are
shown in Fig. 3.8 (left panel). As before, the model parameters have been tuned to set the vacuum
pole mass of the pions to mygje » = Wyes » & 138 MeV. Interestingly, the predicted vacuum pole mass
for the sigma meson, mpgje ¢ = Wres » & 584MeV, is further away from the expected resonance at
500MeV than the prediction of the quark-meson model in the spatial scheme. At the same time,
pole masses and curvature mass lie closer together in the covariant scheme. The temperature-
dependent behavior of peaks and decay structures in the spectral functions is the same for both
regularization schemes. Nevertheless, we observe a new feature arising in the pion spectral func-
tion for T 2 240MeV. Concretely, a “bump” emerges at low energies. For illustrational purposes,
we present the meson spectral functions at T = 250MeV in Fig. 3.8 (right panel). To the best
of our knowledge, this bump does not have any phenomenological interpretation. Nevertheless,
our analysis indicates that this bump does not originate from numerical inaccuracies and is not an
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Figure 3.9: For T = 250 MeV and u = 0, we show the behavior of the meson spectral functions at low energies
(left panel) as well as the two-point correlators as functions of the external time-like momentum Q°
(right panel). Both cases here refer to calculations in which we have used the covariant regularization
scheme and have chosen @ = 0. For illustrative purposes, the correlators have been normalized such
that they agree at the origin of momentum space.
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Figure 3.10: For T = 220MeV (left panel) and T = 225MeV (right panel), we show the behavior of the meson
two-point correlation functions with respect to the external time-like momentum Q°. Both cases
here refer to calculations in which we have used the covariant regularization scheme and have
chosen @ = 0. Each time the correlators have been normalized such that they agree at the origin of
momentum space.

artifact of the finite e parameter. In fact, it is worth mentioning that this feature is absent in the
chiral limit, i.e., when considering H = 0. This observation indicates that the bump results from
the intricate interplay of several competing scales in the covariant scheme.

Furthermore, we observe that the presence of the bump structure is accompanied by the pion
spectral function becoming negative at even lower energies. This behavior is illustrated more
clearly in Fig. 3.9 (left panel). While the spectral functions of not (directly) observable particles
can indeed assume negative values, see, e.g., Refs. [383, 399-401], the negative values of the
pion spectral function render our results unphysical. Additionally, we observe the development
of a finite minimum in the corresponding two-point correlator in momentum space, see Fig. 3.9
(right panel). In general, such a property may hint towards a non-trivial dispersion relation or
some exotic excitation. However, neither is expected for the pions. We note that the anoma-
lous behavior of the pion correlation function at finite temperature becomes apparent already at
T Z 210MeV. Specifically, the pion correlator reveals that its minimum undergoes a temperature-
induced (reversed) first-order phase transition, see Fig. 3.10. Overall, our findings suggest that the
polynomial regulator in the covariant scheme significantly alters the momentum structure of the
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propagator. As discussed in Refs. [82, 228], covariant regulators can lead to unphysical poles in
the complex p®-plane and can therefore spoil causality. More generally, this may lead to artificial
features in certain regions of parameter space as we see in our results.

In the context of spectral functions, we would like to briefly comment on the possibility of cal-
culating the shear viscosity. The shear viscosity is one of several so-called transport coefficients
and emerges from the energy-momentum tensor of a relativistic fluid in a derivative expansion
up to first order, see, e.g., Ref. [402]. Through the works of Green [403, 404], Mori [405], and
Kubo [296] it became clear that transport coefficients can also be obtained from correlation func-
tions. For more general discussions of transport coefficients in field theory, see Refs. [406-408].
By definition, transport coefficients describe how a hydrodynamical system responds to small per-
turbations. The feedback from the medium under consideration then provides information about,
for example, mechanical resistances and conductivity properties. In particular, the shear viscosity
is a measure of the resistance of a material to deformation due to shear stress. The viscosity of a
system depends in detail on how the constituents of that system interact. For instance, in gases
momentum is transported by molecules moving freely between collisions. In liquids, however, the
momentum transport is governed by the electrodynamic forces that bind molecules together. As
a result, the dynamic viscosities of liquids are typically much larger than those of gases, see, e.g.,
Ref. [409]. Experimental data from heavy-ion collisions suggests that the physics of the hot quark-
gluon plasma can be described by a fluid model with small viscosity. Accordingly, a determination
of transport coefficients of strongly interacting matter has been and still is of great interest, see,
e.g., Refs. [410-416]. In QCD, the shear viscosity helps to resolve the fluid-dynamical properties
of quark matter, in particular the nature of interactions. For studies of the shear viscosity in this
regard, we refer to Refs. [417-421]. As shown in Ref. [422], the shear viscosity of the scalar and
pseudoscalar mesons can be directly linked to their respective spectral functions. However, a com-
putation of transport coefficients in a covariant regularization scheme is beyond the scope of this
work. In any case, we expect the unphysical behavior of the pion spectral function to distort the
temperature dependence of the corresponding shear viscosity.

We continue our investigation of the quark-meson model with a presentation of meson spectral
function at zero temperature and finite chemical potential. As before, we begin by examining
the analytical structure of the correlator. Specifically, in the zero-temperature limit, the integral
presented in Eq. (3.113) becomes

(3d)rH0 3§ — 1 (3d)r~0 &
IO (Q ’O’m)lu - %II)I%)IO (Q ’O’m)|T,M
k=0

6 (Ex(p) —u) . (3115

k=M,

_ 1 oodp p2 ZEI%(p) ﬂ4x4_m2(ﬂ4x4+n)
272 Jo E(p) (4E2(p) + (Q°))

After analytic continuation of the time-like momentum, Q° — iw, the integrable pole at p = p*,
see Eq. (3.114), is still present. Consequently, the loop integral becomes non-analytic at energies
w which causes the pole to enter or exit the domain of integration. At zero temperature, this is
the case at the critical value w. = 2m, provided that u < ugg. As discussed before, this energy de-
termines the position of the corresponding non-analytic structures in the spectral functions, which
are associated with decay processes. Beyond the Silver-Blaze threshold, the Heaviside function in
Eq. (3.115) restricts the loop momenta for the minuend to be at least as large as the Fermi momen-
tum pr = v/ u2—m2. As a result, the dependence of the critical energy on the chemical potential
changes to w. = 2u such that p* = pp. Accordingly, we expect that the position of correspond-
ing structures in the spectral functions gets shifted to higher values as we increase the chemical
potential. Altogether, the zero-temperature theory implies that w. = 2 max(m, u).
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Figure 3.11: Meson spectral function obtained in the covariant regularization scheme for T = 0 and different
values of the chemical potential. In particular, we show the case of u = 350 MeV (left panel) and
u =500MeV (right panel).

Meson spectral functions at zero temperature are illustrated in Fig. 3.11 for different values of
the quark chemical potential. Because the behavior of the system at zero temperature is governed
by the Silver-Blaze property, we consider only the case of u > ugg for our following presentation
of spectral functions. Below the Silver-Blaze threshold, the zero-temperature spectral functions as
functions of the energy «w do not change with the chemical potential. These are shown in Fig. 3.6
(left panel) for the spatial regularization scheme and in Fig. 3.8 (left panel) for the covariant
scheme. Additionally, the matter part

MP(QP, 5, u,m)

v/ u2—m? 2 2 2
O(u— 2p* + 1,..—m
(gnzm)J dp P2 (2p” 4 M)y L (3.116)
0

VpZ+m2(4p? +4m? +(Q°)°)

of the loop integral corresponding to the two-point correlator at zero temperature is scheme-
independent for all chemical potentials of interest. As a consequence, the results for the meson
spectral functions are very similar among the different schemes. In order to avoid redundancy, we
will only present our results obtained within the covariant regularization scheme.

Above the Silver-Blaze threshold, we observe that the energy wgecay associated with the decay
of an excited meson into two quarks does not follow the chemical potential dependence of the
quark mass. Instead, it increases monotonically with the chemical potential. In agreement with
our discussion of the critical energy above, the position of the decay structures seen in the spectral
functions behaves as wgecay(4) = 2u. A phenomenological explanation for this phenomenon is
readily given. According to the Fermi statistics, in a fermionic system at zero temperature, quantum
states with energy w < u are fully occupied. As a consequence, the mesons can only decay into
their quark content if their excitation is high enough to produce a pair of fermions with at least the
Fermi energy wp = u each. Therefore, the decay structures observed in the spectral functions are
shifted to energies wgecay = 2wy in the regime characterized by u > ugg. It is worth mentioning
that, according to the relativistic energy-momentum relation, quarks with the Fermi energy wgp =
\/ p% + mfl = u carry the Fermi momentum pg = ,/u?— mg. Moreover, we observe that the kink
seen in the vacuum spectral function of the sigma meson at w e,y quickly transforms into a turning
point above the Silver-Blaze threshold.

Analogous to the behavior observed at finite temperature and zero chemical potential, the reso-
nance peaks in the zero-temperature spectral functions approach each other with increasing values
of the chemical potential and then follow the same isotonic u-dependence once the corresponding
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energies w,.; have become quasi-degenerate. However, unlike the finite-temperature case, the res-
onances at zero temperature remain sharply peaked and do not undergo a broadening process as
the chemical potential increases. In other words, the poles of the propagator at zero-temperature
remain poles at finite chemical potential such that the notion of a pole mass mgje = wyes TeMains
valid. The origin of this property lies in the chemical potential dependence of the energy at which
the mesons decay. More specifically, since the position of the decay structures increases with chem-
ical potential, the relation wes < Wgecay is always satisfied for both mesons. As a consequence, a
broadening of the resonance peak cannot be triggered by non-analyticities intersecting the pole
position. Accordingly, our model indicates that the sigma meson and the pions are stable particles
at zero temperature.

We would like to highlight that, at zero temperature and finite chemical potential, the meson
spectral functions and the corresponding correlation functions in the covariant scheme do not ex-
hibit unexpected structures or anomalous behaviors. As demonstrated before, the behavior of the
system under vacuum conditions is free of anomalies. Also recall that, at zero temperature, the de-
pendence of the system on the chemical potential is given by a scheme-independent contribution
to the vacuum loop integral for all chemical potentials of interest. In other words, information
about the regularization scheme does not enter the matter part (3.116) unless the chemical po-
tential is at least of the order of magnitude as the initial scale A,. The absence of anomalies in
Fig. 3.11 therefore again suggests that the artificial effects observed at finite temperature have
been induced by the covariant regulator. Since the momentum structure of the zero-temperature
propagator remains unaltered for all relevant chemical potentials, no unphysical behavior can be
observed. Nevertheless, we expect artificial effects to emerge once the chemical potential is suf-
ficiently large for the regularization scheme to affect the matter part. At zero temperature, this
scheme dependence can be fully eliminated again by taking RG consistency into account.

To briefly summarize, we have been successful in computing meson spectral functions in a
momentum-dependent covariant regularization scheme at finite external parameters. While we
observe no qualitative discrepancies from a spatial scheme at low temperatures, unexpected be-
havior appears at high temperatures. For example, the spectral function for the pseudoscalar
mesons can assume negative values at low energies, which is an unphysical outcome. Our analysis
suggests that the anomalous behavior as observed from calculations with covariant regularization
arises from an unphysical momentum structure of the propagator induced by the regulator. We
therefore conclude that the covariant polynomial regulator is simply not suited to reliably study
quantities such as spectral functions, which depend on finite external momenta. For an investi-
gation of low-energy QCD based on spectral functions, we strongly recommend a regularization
scheme that preserves the pole structure of the propagator with respect to the internal time-like
momenta.

3.3 The Callan-Symanzik regulator

This section addresses the implementation of the Callan-Symanzik (CS) regulator function within
the functional renormalization group framework to investigate low-energy QCD, focusing on cur-
vature masses and spectral properties. Our approach builds upon a novel fRG setup introduced in
Ref. [82], which derives finite functional flows for regulators that do not provide sufficient ultravi-
olet regularization for all loop diagrams. The CS regulator offers significant advantages, including
the preservation of Lorentz symmetry and Silver-Blaze symmetry, while also avoiding the emer-
gence of a series of poles in the propagator. Notably, this regulator often allows us to compute
loop integrals analytically to a great extent. However, these benefits come with the drawback of
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an unphysical breakdown of chiral symmetry in theories with fermions. Using the quark-meson
model as an example of such a theory, the following work not only provides a detailed discussion
of the regulator-induced symmetry breaking but also demonstrates how to handle this issue in a
systematic fashion. Considering the CS regulator, we formulate an fRG framework that preserves
all symmetries of the quark-meson model. Using this framework, we present results for meson
curvature masses, meson spectral functions, and the phase diagram of low-energy QCD. This study
represents a first step toward a comprehensive understanding of the mechanisms shaping the phase
structure of QCD at low energies.

3.3.1 Generalities

In the present section, we employ a standard CS regulator which can be parameterized as
RIp)=2Zyrik, RID)=Z,x k2, (3.117)

for the fermions and bosons, respectively. This class of regulators provides IR regularization by
acting as a mass term where the RG scale k corresponds to a mass scale. More concretely, through
the regulator insertion, the propagator gains an explicit mass term Am,, = Zy k, Ami = Z%kk2
for the fermions and bosons, respectively. We highlight that, compared to other canonically used
regulator functions, the CS regulators exhibit the characteristic feature of coming without the
dependence on loop momenta. As a consequence, our regularization scheme does not implement
a Wilsonian-type momentum-shell integration for which the flow of the effective average action
would be dominated by fluctuations with momenta p? ~ k2. Instead, the RG flow as generated by
CS regulators rather describes a flow through infrared theories associated with different masses
for the fields. When considering a CS flow, all momentum shells are already integrated out at
every scale k. Because of this property, the initial condition for the Wetterich equation at a given
mass scale k = A, refers to an infrared theory and should not be confused with a UV action in the
Wilsonian sense. It should be rather considered as an ansatz for the quantum effective action of a
theory with particle masses that are at least of the order of A,. This initial condition is chosen such
that an action functional with specific properties at some lower scale k < A, is recovered when we
solve the Wetterich equation. In our analysis, we take k = 0 as the point at which the effective
action provides us with physical observables.

As detailed in Ref. [82], the standard CS regulator is advantageous for several reasons. It pre-
serves the analytic properties of the theory and yields a propagator with a simple pole structure in
momentum space since it does not generate additional poles in the complex plane associated with
the time-like component of the four-momentum. This property ensures a spectral representation of
the regularized propagator, which is of great relevance for the computation of real-time correlation
functions. Furthermore, the CS regulator does not interfere with a multitude of symmetries of the
theory. Specifically, the regulator not only respects Lorentz symmetry in the vacuum limit but also
the Silver-Blaze symmetry in the presence of a finite chemical potential. These advantages come at
a twofold cost: First of all, the CS regulator only lowers the degree of the UV divergences by two,
which is not always sufficient to render all loop integrals in the RG flow finite. Hence, in general,
an additional UV regularization is required. Secondly, the CS regulator for the fermions introduces
an artificial source of explicit chiral symmetry breaking as the mass term ~ ki) does not re-
main invariant under chiral transformations. This is a major problem for studies of systems whose
dynamics is governed by chiral symmetry. Consequently, the flow with respect to the fermionic
mass must be examined accurately and physical contributions must be extracted with the aid of
symmetry constraints. It is worth mentioning in this context that the bosonic CS regulator does
in fact not spoil the O(N) symmetry in the boson subspace. This is because the corresponding
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mass term ~ pTk?y is indeed invariant under orthogonal transformations of the fields. Suitable
strategies that allow us to obtain finite and physically meaningful results in the presence of the
CS regulator will be addressed in more detail further below. Lastly, we recall that our study of
low-energy QCD by means of the functional renormalization group takes into account only purely
fermionic loops. Nevertheless, we have also presented the bosonic version of the CS regulator in
Eq. (3.117) for reasons of completeness. For works that make use of the bosonic CS regulator, we
refer to Refs. [423, 424].

First, let us comment on the issue of symmetry breaking as induced by the fermionic CS regulator
more concretely in the context of the quark-meson model. Our truncation scheme for the compu-
tation of the quantum effective action involves the one-loop approximation and setting Zy, ; = 1.
Within this scheme, the Wetterich equation describing the CS flow then takes the simple form

J)

making clear that the regulator R}f directly affects the o-direction of meson field space but leaves
the pion fields untouched.'® This additional shift in the sigma field of the order of k makes the
breakdown of rotation symmetry among the mesons in the loop contribution to the effective action
apparent. We stress that a regulator-induced breaking of symmetry affects every RG step such
that the infrared endpoint of the RG trajectory does not align with the true result, although the
regulator is explicitly removed for k — 0. Furthermore, since the ground state of the system is
always aligned with the o-direction by convention, Eq. (3.118) implies that the quark mass scales
with k. A variation of the RG scale k can therefore be directly translated into a variation of the
mass associated with the fermion fields. This again shows that the standard RG phenomenology
of Wilsonian momentum shell integration does not apply anymore when considering CS regulator
functions. In any case, without a procedure that removes the regulator-induced symmetry breaking
at every scale, results for physical observables will be significantly spoiled by artificial effects. Such
a symmetrization procedure will be the subject of the subsequent section.

k
ar o, /|, =—Tr {ak Ln (sﬁ” [a o ﬁ] , (3.118)

T

The Callan-Symanzik regulator satisfies the regulator conditions (i)-(iii) but fails condition (iv).
Specifically, for the fermionic regulator with Z,, , = 1, we find

Jim R (p)=1+#0, (3.119)

Zoo°

which implies that the corresponding effective average action is still plagued by UV divergences. In
order to render the RG flows in the presence of a CS regulator finite, additional UV regularization
must be implemented. This may be achieved by considering the CS regulator together with an aux-
iliary cutoff function for the modes of high momentum, see, e.g., Refs. [82, 425]. We emphasize
that such a strategy introduces an additional momentum scale into the theory which must be han-
dled appropriately to allow for meaningful predictions. Our realization of UV finiteness relies on
the introduction of counterterms that cancel the UV divergences of the quantum loop. Concretely,
we employ a sharp cutoff to suppress momenta with p? > A2 and let the counterterms subtract
all pathological contributions before removing the momentum scale by taking the limit A — oo.
Concretely, we write

CSHA _ (CS
9%, —8N.V, CT}) = 19|, —8N.V, CT . (3.120)

I = lim (
kiT,u A— 00 NT:H

16 One can consider an alternative version of the CS regulator, namely R;f = Zw(i)/5 k, for which the RG scale k does not couple
to the sigma mode but instead to the pion fields. This regulator, however, not only breaks chiral symmetry but also parity.
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Once again, we remark that, at T > 0, the four-dimensional spacetime volume carries an implicit
temperature dependence, V, = BV. Our procedure ensures that the space of momenta contributing
to the loop integral does not get deformed by the overall regularization prescription. Just as in the
case of ordinary regulator functions, the construction of counterterms is in principle constrained by
the symmetries of the underlying quantum field theory. The counterterms for the effective action
of our quark-meson model read

2 2 (27)* A—c0

_ (k=A)k+A+2ho) | f d*p ((k+ho)2 +(A+ho)*+ 20272 l)
2 A=00 ) 2 za (20) 2p34/4s2 + p? p?)’
(3.121)
where we have used that
xll)rrolo (ln(x) —arsinh (%)) =0 (3.122)

for a most convenient representation of counterterms at the integral level. The counterterms for
1PI n-point functions with n > 1 are then readily obtained by differentiating the result above n
times with respect to the fields. We highlight that our analysis of UV divergences takes Lorentz
symmetry into account, leading to a description of counterterms where the cutoff parameter A
represents a momentum scale for all components of the internal four-momentum. Notably, we
add that the counterterms inherit the symmetry and additivity properties of the associated loop
integrals,

CT,(k,h) = —CT(A, hp) (3.123)

Notice that the counterterms above do not exhibit any dependence on temperature or chemical
potential, because non-vacuum parts of the loop are naturally free of UV divergences. In other
words, the counterterms provide UV regularization for the vacuum theory but leave the behav-
ior of the IR-regularized system with respect to temperature and chemical potential unaffected.
Therefore our usage of counterterms to employ additional UV regularization does not destroy the
Silver-Blaze symmetry. It should further be mentioned that our counterterms introduce an arti-
ficial scale dependence to the effective action. In order to perform actual calculations, we have
to explicitly choose a scale s and this choice then belongs to the definition of the vacuum theory.
For all practical applications, we choose the scale to be the initialization scale of the RG flow, i.e.,
s = Ay. We also add that the form of the counterterms is unique only up to finite terms in the limit
A — oco. Our counterterms have been chosen this way such that we obtain a non-trivial vacuum
ground state in the limit k — 0 when choosing the initial condition (3.34). For an ansatz of the
effective action at the scale Ay which contains terms of higher orders in the fields, it is possible
to adjust the counterterms such that there is no need for the introduction of an additional scale s.
Nevertheless, explicit calculations within such a setting are beyond the scope of this work.

We stress that the different realization of the IR and UV regularization does not lead to an overall
inconsistent regularization scheme in our case. As the counterterms respect the symmetries of the
underlying quantum field theory and do not alter how momenta enter the loop integrals, they are
perfectly compatible with the CS regulator. In other words, the momentum modes of the vacuum
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and non-vacuum contributions to the loops are treated consistently in our regularization scheme.
At last, we would like to highlight that these counterterms are scale-dependent and hence are not
to be considered part of the initial condition for the Wetterich equation. Instead, the counterterms
constitute a necessary second ingredient to the regularization prescription that is needed to have
an IR- as well as UV-regularized theory.

Ultimately, we aim at a computation of physical observables via the functional renormalization
group using the Callan-Symanzik regulator. As a preliminary step in this regard, we have presented
counterterms that ensure a well-defined framework. Next, we need to restore the chiral symmetry
in the regularized quantum loop in order to allow for physically meaningful results.

3.3.2 Restoration of rotation symmetry
The effective potential

By expanding the meson fields about a homogeneous background, we arrive at the following result
for the scale-dependent effective action:

1 1
Erk(¢)|m - ﬁrA0(¢)—8Nch(Ao,h¢)|m
1

= =Ty, (#) — 8N, [0, k)], + CTel Ao, hp) ] (3.125)
4

which is equivalent to the effective action. Here, A, denotes the reference scale at which the RG
flow of the effective action is initialized. The initial condition T} is usually used to tune the results
for a given set of low-energy observables such that they assume their physical values in the vacuum
limit. We shall discuss the determination of parameters present in the initial condition in more
detail in Sections 3.3.4 and 3.3.5 when we consider concrete applications of our CS framework.
The auxiliary function parameterizing the IR-regularized loop is given by

11 . o NLES
L,ECS)(AO,hgb)|T’M =3 J E Z In ((vn +iu)? +p2+ (ho +k')* + hznz) K=A,
bl nez

oo
J dp p? {\/p2 + (ho +k’)2 + h27t2
0

- (2n)2
k'=k

, (3.126)
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which is a more explicit representation of Eq. (3.118). As discussed earlier, a suitable IR regular-
ization is implemented through the CS regulator by construction. This can be readily recognized
from the appearance of the scale k’ which acts like a fermion mass in the loop integral. In this
regard, we emphasize that the scale A, should not be confused with a UV momentum cutoff of
the loop integral. It also represents a mass-like scale associated with the CS regulator and enters
the loop integral because the RG flow is initialized at k" = Ay. Therefore, this scale in general
also appears in the counterterms. The result (3.126) shows, that chiral symmetry is broken by the
presence of the fermionic CS regulator since the loop function is not O(4)-symmetric. Specifically,
note that the regulator does not simply generate a linear symmetry-breaking pattern but instead
leads to symmetry-breaking terms of arbitrary order in the fields. The effective potential therefore
not only gets tilted along the o-direction but rather undergoes an overall distortion. Nevertheless,
we still observe an intact O(3) symmetry among the pions because the regulator leaves the SU(2)y
symmetry of the theory unaffected.
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Let us now discuss how the regulator-induced breaking of the chiral symmetry can be removed
in a controlled and systematic fashion. To this end, we would like to point out that the Lie group
O(N) and its subgroup SO(N) have the same generators. Thus, a scalar quantity invariant under
O(N) transformations is also SO(N)-symmetric and vice versa. Let us therefore now take a look at
infinitesimal SO(4) transformations in the mesonic field space. Intact chiral symmetry implies that
all mesonic quantities should be invariant with respect to such rotations, i.e.,

Q(sym)[¢] — Q(Sym)[(l + anj)¢] , (3.127)

where o/ € R is the j-th rotation angle parameter for all j € {1,...,6} and X ; the corresponding
generator of the group SO(4). This implies that

5[] 3 5O 4] -

oo T om;

Vie{1,2,3}: =0. (3.128)
This relation can be considered a Ward-Takahashi identity (WTI) for rotational symmetry between
the o-direction and the pionic directions of field space. Let us now consider a quantity Q, which
is not invariant with respect to O(4) transformations of the meson fields. For example, such a
quantity may have been obtained from the effective potential (3.125) as generated by a CS flow.
In order to build a correspondingly symmetric quantity from Q, we make the ansatz

QWM = Q[¢p]+c[¢] (3.129)

and construct the additional term ¢ such that the WTI is fulfilled. It is important to realize that
our symmetrization procedure must not alter the dependence of Q on the pion fields since this
subspace is not affected by the CS regulator. Concretely, this means that Eq. (3.128) has to be
solved for ¢ with the initial condition

c[oc=0,7]=0. (3.130)

Notice that our ansatz implies that ¢ can be considered a counterterm for the contributions in Q
that explicitly break the rotation symmetry. In order to ensure that the regulator-induced symme-
try breaking is removed even in the presence of external parameters, e.g., temperature or chemical
potential, the counterterm must in general also carry a corresponding dependence on such param-
eters. For convenience, let us further introduce the symmetrization operator S by

QM =8Q:=Q+c. (3.131)

We shall employ this operator for our studies below. Throughout this work, it is sufficient to
consider the symmetrization of functions rather than functionals such that a generic solution for ¢
can be readily given. For details, we refer the reader to Appendix D.

Having established a procedure for restoring rotation symmetry, we now apply our considera-
tions to the effective action that has been generated by a CS flow. Specifically, we subject the loop
function in Eq. (3.125) to the symmetrization procedure in order to remove the regulator-induced
breaking of the chiral symmetry. This leads us to an average effective action, which is physically
meaningful in the sense that it respects all symmetries of the classical action of our model, even
for H = 0. Concretely, we obtain

1 h 1
TPy, = 5 Tag (9) = BN L™ (A0, W92
4 4

1
= Tp,(¢) 8N (8L, , + SCTY) (Ao, h?9?) , (3.132)
4
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Figure 3.12: The effective potential of the quark-meson model computed at T = u = 0 from the unconstrained
Callan-Symanzik scheme (blue curve) as well as the symmetrized one (orange curve). We present
results for the effective potential in the absence of physical symmetry breaking, i.e., at H = 0, (left
panel) as well as for H > 0 (right panel).
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A comparison with the asymmetric expression (3.125) shows that the symmetrization procedure
has successfully removed the symmetry-breaking terms ~ ok from the integrand of the loop inte-
gral. We add that the term T,  can still contain a term that is linear in the sigma field, controlling
the amount of physical explicit symmetry breaking. Otherwise, the initial condition to the Wet-
terich equation is invariant with respect to orthogonal transformations of the meson fields, see
Eq. (3.34).

For another illustration of the impact of our symmetrization procedure, we also visually compare
the effective potentials in Fig. 3.12. Concretely, we show the vacuum effective potential at k = 0
for the unphysical case, in which no symmetry constraints have been taken into account, as well
as the O(4)-symmetrized scenario. The initial condition has been chosen such that it is quadratic
in the fields at the most and reproduces a standard value for the quark mass. We observe that
the effective potential as generated by the unconstrained CS flow is significantly affected by arti-
ficial symmetry breaking. More specifically, the regulator-induced symmetry breaking renders the
effective potential unbounded from below and completely dominates the behavior of the system
at the local minimum, even for H > 0. After the symmetrization, the effective potential takes
the form as expected for a physical system. Moreover, the minima are less pronounced as for the
unconstrained case.

We emphasize that it is not sufficient to restore only Z, symmetry in the o-direction since re-
flection symmetry for each field degree of freedom does not ensure rotation symmetry among the
fields. For simplicity of notation, we drop dependences on external parameters for the following
discussion. Concretely, it holds that

. 1
LV (Ao, h?0? WP 7%) = o (Lk(AO,h¢) i Lk(Ao,hqb)‘U_)_U) AL (A, h2$?) . (3.134)
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Notice that this inequality remains true even in the absence of pion fields. Assuming the loop
function to be analytic, it holds for all natural numbers n that

1 n n n —_ - 2n n K n—kK
5((ha + k)2 + (—ho +k)?") = ((ho 2 +k2) = Z(:) [(2;<) - (K)] (ho)2< | 2n=) (3.135)
such that
VneNs, : %((ha FI% 4 (—ho + k™) # ((ho)? +K2)" . (3.136)

This means that the reflection-symmetric version of the CS loop function still has artificial scale
dependences that can spoil results for physical observables. To give a concrete example, the crit-
ical temperature for the chiral phase transition as computed from the quark-meson model with a
reflection-symmetric CS scheme would be different for the o- and 7-directions of field space.

Two-point functions

Correlation functions can be conveniently obtained from an expansion of the effective action in
terms of fluctuation fields ®q(x) = ®(x)—®, around ®4(x) = 0, where &, denotes the homogeneous
ground state. This is often referred to as a vertex expansion, see Section 2.2.3 for details. In our
truncation scheme, the vertex expansion of the vacuum effective action in momentum space reads

rk[¢]=const.+J $7(=P) r,E”(P)+%J f $i-PITP(RQ) ¢(@+0[e7] . (3137)
P pJQ

If chiral symmetry is intact, it follows that all odd-numbered correlation functions vanish for ¢, = 0.
However, when the invariance of the theory under axial-vector transformations is explicitly broken
by the presence of a fermionic mass term, the effective action receives finite contributions from
terms of all orders in the fluctuation fields. We highlight that a fermion mass leaves the SU(N¢)y
symmetry of the theory intact. Consequently, the vector-valued one-point function is always zero
along the pionic directions of meson field space but may exhibit a non-zero contribution along the
o-direction. Symmetry considerations further imply that the physical meson two-point function
is diagonal in field space and that its diagonal elements are identical within the subspace of the
pions. In the limit of a vanishing fermion mass, this two-point function becomes degenerate among
the mesons such that its matrix structure reduces to the unit matrix. Given the importance of the
two-point function for the computation of curvature masses and spectral functions, we will now
focus on it in more detail.

From the expansion above, it follows that the two-point correlator is in general given by

19) 1)
5HI—P) 59n(Q Fk["’”w)

. (3.138)
$a=0
For simplicity, we have suppressed external Matsubara indices M,N € Z for the bosonic time-like
momenta, i.e., P0 = P]\(}[ and Q° = Q%, such that 6pog0 = 6)y. For our quark-meson model, the
reduced two-point correlation function as generated by the Callan-Symanzik flow reads

[APBQ)| ., =), Bopg 2m)*6P(P—-Q) = (
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(3.139)
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where
3 TB, 1) (pa(B, ) + Q) 1., — (m+Kk)*n
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I @ m, ,3/5,;Z (28,1 + (m + 1)) ((pa(B, ) + Q) + (m +K)?)
(3.140)
and
p;l;(/j’ M) = (vn(/j) +i.u'5ﬁT) ) /5 = % ) n= diag(+:_’_’_) , (3141)

It is worth mentioning that our counterterms do not receive corrections in the presence of finite
external momenta. Consequently, we can use Eq. (3.121) to render also the momentum-dependent
correlation functions UV finite. The ground state ¢, as determined by the effective potential
defines the dynamical quark mass m,. In systems with a physical source of explicit symmetry
breaking, the ground state is always finite, i.e., oy > 0, resulting in a positive quark mass. However,
particular care is needed when determining the quark mass in the presence of the CS regulator.
This is because the global minimum of the effective potential may lie at negative values in field
space, see Fig. 3.12. In such cases, one may anchor the definition of the quark mass at a local
minimum that is positive. Nevertheless, this local minimum does not represent the true ground
state of the system such that inconsistencies may arise in the computation of observables. In any
case, from the action of our quark-meson model, we would expect that the loop contribution is
invariant under m, q and that the meson two-point functions agree identically in the limit
¢ — 0. However, due to the presence of the CS regulator, this is clearly not the case here.
Importantly, the CS regulator affects the results not only in the massless limit but also for m, # 0.
In fact, the CS regulator always gives rise to an unphysical breaking of chiral symmetry.

— —m

m

As in the case of the effective potential, we can systematically remove the regulator-induced
breaking of the chiral symmetry to obtain meson two-point functions that respect the global 0(4)
symmetry. We begin with a general analysis of the structure of the effective action. Intact chiral
symmetry for the quantum loop implies that there exists a " such that

lim rP ¢ ] =1 [$2]. (3.142)

In contrast to the effective potential, our truncation scheme does not allow us to calculate the full
effective average action for momentum-dependent fields. As a result, it is not feasible to apply
our symmetrization procedure to the action functional to obtain physical momentum-dependent
correlation functions through an appropriate projection. Instead, we adopt the equivalent strategy
of removing the artificial symmetry breaking after the correlation function has been obtained. To
this end, we consider a generalized homogeneous background

(1_0T = (a-) F[l)ﬁZ) 7TC3) (3143)

for the meson fields. Recall that the parameter H controlling the physical amount of explicit
symmetry breaking does not explicitly enter the two-point function since a term linear the fields
does not survive the second derivative. The generalized two-point function as obtained from the
physical effective action can then be cast into the form

h _ 6 o h _ e
[EOG) = (5T 8])|  =AT™E) 1+ BT 57 (3.144)
»8! 5¢)T 5¢ =3
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where we have dropped any arguments indicating dependences on external momenta for conve-
nience. The scalar functions are given by

2

(sym)  — 6% .
. B —4| —T1 [0
o ©m)(5) 4(5@2 Al ])

We observe that an intact chiral symmetry translates into an O(4) symmetry among the field di-
rections of the generalized background within the contributions Afym) and B](jym). Imposing chiral
symmetry is then equivalent to requiring that the two-point function assumes the form (3.144). In
order to obtain the physical two-point function, i.e., the two-point function with removed regulator-
induced symmetry breaking, we compute the corresponding coefficients for our CS scheme,

A7) =2 (2 file))

3.145
56 (3.145)

0=p2

_ h (2)
Bi(p) = e+ 107 Lion (®) s (3.146)
w@) =12, - LT g )
=12 (@) -7 B(®), (3.147)

and symmetrize their dependence on the background according to Eq. (3.131),
A =sa,  BY™ =58, (3.148)

From this, we can then reconstruct the generalized and symmetrized two-point function in ac-
cordance with Eq. (3.144). Finally, setting the generalized background equal to the ground state
yields the symmetrized version of Eq. (3.139),

hys)(2 hys)(2) r—
1—.(p ys$)(2) _ Flgpge}rlls)( (G =¢o) . (3.149)

Specifically, applying our line of argumentation above, we obtain the physical two-point function

k

#(phys)(2) _ w2 1 o #(phys)(2) 2

EPOQ),, =P+ fA dk’ g TP (Qm2(T,w)) |,
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k
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d d 5
— 8N, (dT)Ta(SCTk)(AO,h ¢ ))L_% ) (3.150)

where

(pT(B, W) (Pa(B, ) + Q) + k?)1,,,—m?n

B2 (0206, + K+ 12) ((paBo) + QP 4 )
(3.151)

AEPID @ m2)|  — _g,p? J

Compared to Eq. (3.140), the sign structure in the numerator of the two-point function has changed
for the o meson but not in the pion subspace. This demonstrates that our symmetrization proce-
dure respects the condition (3.130), meaning it takes the fact into account that the CS regulator
leaves the SU(2)y symmetry of the theory intact. In addition, because of the restoration of global
O(4) symmetry, the two-point functions now agree for m; — 0 and exhibit the invariance under

mq - —mq.
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As in the case of the effective potential, we always evaluate the Matsubara sum for the two-
point functions analytically. This step is essential for, e.g., the investigation of spectral functions
and transport coefficients. Specifically, for @ = 0 it follows from Eq. (3.150) that

. #(phys)(2)(CS) 2
lim &, T (Q,m*)

2N h? ” ZEz(p) ﬂ4x4—m2(ﬂ4x4+ﬂ) Ex(p) £ u
= — c d 2 a k h k— |
2 fo re "[ Er(p) (4E2(0) + (@) Ztan( DR eas)

where we have used that

Ex(p)=+vp2+tk2+m?. (3.153)

We would like to highlight that the structure of this contribution to the meson two-point function
matches that of Eq. (3.113), where a spatial polynomial regulator was used. This consistency
arises because, like the CS regulator, spatial regulator functions do not generate additional poles
in the complex p°-plane of the propagator. The only difference between these results lies in the
scheme dependence of the regularized fermion energy E;. In the case of the CS regulator, the
k-dependence fails to render the two-point correlation functions UV finite such that additional
counterterms are necessary. Analogous to our analysis in Section 3.2.3, we observe that the loop
integral above, after the analytic continuation Q° — iw, develops an integrable pole at

pi=\ T—kz—m2 ) (3.154)

As a result, the meson two-point functions become non-analytic at those critical values w,. for
which the pole enters or exits the domain of integration. These values of the Minkowskian energy
variable are then associated with decay processes of the mesons into energetically more favorable
states. As before, for k = u = 0, we find w. = 2m such that p* = 0. At finite chemical potential
and k = T = 0, the critical value reads w. = 2max(m, u), resulting in a pole at p* = 6(u —m) pg.
For values of the chemical potential beyond the Silver-Blaze threshold ugg = m, this pole position
corresponds exactly to the Fermi momentum pp = +/u2 —m?2.

3.3.3 Analytical zero-temperature results

At finite temperature, it is not possible to calculate the entire two-point function in closed form.
This means that, once the Matsubara sum has been performed analytically, the remaining integral
with respect to the spatial momenta has to be evaluated numerically. In the case of zero tem-
perature, however, the situation is different. In the following, we present analytic results from
calculations performed in the symmetrized CS scheme at zero temperature and finite chemical
potential, u > 0. For the fully momentum-dependent two-point functions of the mesons, we obtain

x=, /k2+mg(p,)

, (3.155)
PE /Ag+m§(u)

where we have parameterized the momentum-dependent vacuum loop contribution as

EP(Q) , = EP(Q) —8Nch? [ Z.(Q mg(1)) — MP(Q, p my (1) ]
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In our calculation, the vacuum loop Z, contains the scale A, irrespective of the value of x. Accord-
ingly, this scale dependence does not result from initializing the CS flow at k = A, but stems from
our choice of the counterterms with s = A, see Eq. (3.121). The matter part corresponding to the
meson two-point functions reads

0(u—x)

@) -
M(Q, u,m) Py

MZ_XZ)] + Q2 jl4><4-"_Zrnz(jl4><4—i_/r’) %

1,, 2 — x2—x?artanh
44|:.u w ( u 2

) 4u2Q% + (@2 — 24|/ —x2) |QO|( (Q4+4x2(§2+4u2(Q3—62)) n)
——In = 5 | — =, | arctan = - =
QI \ 4203 + (@2 +21AV—x?)" ) Al 81QolIQI /2 —x? %

2
mln 4x*Q% + Q% (Qu+ Vi —x2v/Q + 4x2) —21n(“+ \/MZ—xZ)
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(3.157)

Since we restrict the values of the chemical potential to u < A, in our study of the quark-meson
model, the A,-dependent contribution from the matter part always evaluates to zero. For the
sake of completeness, it is also worth mentioning that the results for the u-dependent part of the
zero-temperature polarization tensor of QCD as found by Toimela [426] exhibit a structure that is
similar to the matter part shown above.

We begin the analysis of our results by noting that the vacuum contribution Z,. to the two-point
functions of the mesons can only be expanded in powers of Q around Q = 0 for x > 0, i.e., we must
have either k > 0 or m, > 0. Notice that this property has direct implications for quantities that are
commonly obtained from the effective action by means of a derivative expansion. Specifically, as
the vacuum loop becomes non-analytic in Q for k = m, = 0, wavefunction renormalization factors
cannot be defined in this case by an expansion of the two-point functions in Q around Q =0 up to
second order. We will come back to this issue further below when presenting explicit expressions
for the wavefunction renormalizations at zero temperature. Nevertheless, the unexpanded expres-
sions for the vacuum two-point functions are well-defined in the limits k — 0 and m; — 0, where
the latter two limits also commute.

The matter part Mgcz) of the meson two-point functions is divergent for k = m, = 0, provided
that external momenta are finite. In addition, the matter part exhibits non-analyticities in the
momenta which cannot be avoided by a finite quark mass or a finite value of the RG scale. To
be specific, we observe that the matter part for values of the external three-momentum Q with
0 < |Q| < 24/u2 —x2 is non-analytic in Q° = 0. This property restricts the values of Q for which an
analytic continuation of the zero-temperature theory back to Minkowski spacetime can be reliably
performed. Notice that this aspect is of particular importance for the computation of spectral
functions. In our case, taking the value Q = 0 is the most convenient choice for the presentation of
spectral functions in the upcoming Sections 3.3.4 and 3.3.5.

Moreover, the explicitly u-dependent function ./\/lgi) at Q° = 0 is non-analytic in |Q| = 24/ u2 — x2,
which renders an expansion in spatial momenta Q generally ill-defined. At k = 0, this value of
|Q| corresponds precisely to twice the Fermi momentum for massive quarks. We would like to
point out that this property is directly connected to the phenomenon of Friedel oscillations [427-
429] in the context of condensed-matter physics. Friedel oscillations describe the response of
the particle density to a localized perturbation in systems of degenerate fermions and occur with
a characteristic frequency of 2pp. As our two-point functions are generated by fermionic loops,
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information about Friedel oscillations is naturally contained within our results. For more details
on this subject, we refer to, e.g., Refs. [80, 430-434].

In contrast to the non-analytic, yet finite behavior of the meson correlation functions that we
observe at zero temperature, a divergence has been found at Q, = m; = 0 and IQ] = 2u in low-
dimensional Gross-Neveu-type models [435-437]. The emergence of such a different behavior in
low-dimensional models may not be too surprising since the number of spatial dimensions crucially
controls the behavior of the loop integrals at those values of the external parameters where the
corresponding integrand has a pole along the contour of integration. In other words, the origin of
the observed non-trivial behavior of the correlation functions is the same but the pole structure of
the underlying integrand manifests itself differently at the level of the integral, depending on the
dimensionality of the theory.

Lastly, it is important to remark that the matter part MS(Z) is discontinuous in (Q°,Q) = (0, 0) such
that the limit Q — 0 does no longer exist. This discontinuity directly translates to the full meson
two-point functions for values of the chemical potential beyond the (scale-dependent) Silver-Blaze
threshold, i.e., for u > vk2 + m2. As a consequence, the case of vanishing external momenta has
then to be realized by an iterated limit, see Section 2.4 for details.

Curvature masses can be obtained from the momentum-dependent two-point correlator by con-
sidering the limit of vanishing momenta. However, the presence of a finite quark chemical potential
explicitly breaks Lorentz invariance, leading to a two-point function that is sensitive to the specific
order of the limits Q° — 0 and @ — 0. In order to obtain results for the curvature masses that are
consistent with those derived from the effective potential, we have to take the static limit, where
Q, is set to zero first. Accordingly, the explicit zero-temperature curvature masses read

m? (1) 0T
ok ~ I FPYP(Q)| = lim hm F(Phys)(z)(Q){ , (3.158)
2 2 Q—0 k 12 é A w
O mﬂ:’k(u) ﬂ'3><3
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We would like to remark that the vacuum loop Z, is, in fact, insensitive to the order in which the
external momenta are taken to zero. Since Lorentz symmetry remains intact in the vacuum theory;,
the static and the plasmon limit yield the same results in this case.

The wavefunction renormalization factors associated with the meson fields can be obtained from
the corresponding two-point functions by a suitable projection. This procedure usually includes
taking derivatives with respect to momenta and also taking limits. We emphasize that, at zero
temperature and for u > vk2 + m2, it is not allowed to interchange this projection onto the wave-
function renormalizations and the integration over the time-like loop momenta. In any case, we
only consider wavefunction renormalizations associated with modes perpendicular to the particle
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reservoir:'’
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The computation of the right-hand side of this equation requires to compute derivatives of the
vacuum contribution and the chemical potential dependent contribution to the two-point functions
of the mesons:
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(3.163)

As in our computation of the curvature masses, we again need to take an iterated limit here since
the behavior of the two-point functions at the origin of momentum space becomes discontinuous
once we consider finite external parameters

For our analysis of results for the wavefunction renormalization factors, let us begin by consider-
ing the vacuum case. In particular, vanishing external parameters, T = u = 0, lead to a restoration
of Lorentz symmetry such that perpendicular and parallel wavefunction renormalizations agree.
At k =0, we have

I |
Zio/my = Z(o/m) = Z(a/m) (3.164)
with
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We would like to highlight that the vacuum wavefunction renormalizations carry a logarithmic
divergence in the limit m; — 0. This divergence originates from the fact that our projection
prescription for the wavefunction renormalization is anchored at a point in momentum space at
which the meson two-point functions are non-analytic. Specifically, as the vacuum loop Z, for
k = my = 0 has no well-defined expansion in momenta around Q = 0, applying derivatives leads to
divergences at this point. In addition, we observe that

N.h? AZ N, h?
1m =
612 my—0 m2 + AZ  6m2

lim (Z,—2,) = £0. (3.166)
my—0

In words, the vacuum wavefunction renormalizations at k = 0 do not agree in the chiral limit.
This surprising phenomenon can be traced back to the fact that the general expression for the
corresponding vacuum contribution is discontinuous in the space of fermion masses. Specifically,

17 We may in principle also consider the wavefunction renormalization factors which are aligned parallel to the direction
of momentum space that is characterized by a finite chemical potential. These quantities can be defined via the second
derivative with respect to the time-like momentum Q°. Nevertheless, a concrete examination of these wavefunction
renormalizations is beyond the scope of this work. For further discussions, see, e.g., Ref. [236].
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at some finite RG scale k, the second term in Eq. (3.162) is sensitive to the order in which the mass
scales are taken to zero:

[\S)

m2

q
lim lim lim lim ———.
k—0 mg—0 k2 +m2 7& m,—0 k—0 k2 +m§

(3.167)
When taking the limit m; — 0 before setting the RG scale to zero, the difference in the vacuum
wavefunction renormalizations indeed vanishes. In fact, the difference vanishes in the chiral limit
for all k > 0. Therefore, we classify the breakdown of chiral symmetry at k = 0 indicated by
Eq. (3.166) as a new artifact that is specific to Callan-Symanzik-type regulator functions. We
emphasize that this CS artifact does not indicate a failure of our symmetrization procedure. In
fact, the unexpanded vacuum expressions for the meson two-point functions, see Eq. (3.156), are
well-defined and identical in the limit as the mass scales tend to zero. Despite the appearance of
this new artifact, its impact on our studies is expected to be small for two reasons. Firstly, the
scenario my = u = T = 0 is not realized within our quark-meson model. Secondly, any finite
contributions from the CS artifact are entirely overshadowed by the logarithmic divergence in
Eq. (3.165) as my — 0. After all, if both mass scales go to zero, an expansion of the two-point
functions around Q = 0 breaks down and thus cannot provide us with a meaningful description of
wavefunction renormalizations.

In the presence of a finite chemical potential, the matter part as given in Eq. (3.163) must be
taken into account. The first term of this contribution to the u-dependent wavefunction renormal-
ization is negative since the logarithm associated with this term is positive for all u > x. This leads
to a continuous decrease of the wavefunction renormalizations as we increase the chemical poten-
tial beyond the Silver-Blaze threshold. Depending on the initial value Z, and the Yukawa coupling
h, the wavefunction renormalizations can therefore become negative. Provided that the theory is
stable, negative wavefunction renormalization factors generally indicate a non-trivial minimum of
the meson two-point correlators in momentum space, see, e.g., Ref. [243]. An accurate description
of the physics at the ground state of the system then in principle requires a generalization of the
projection according to

L s
Za’li(u) 0 = lim lim 18_22 ]EthS)(z)(Q){ (3.168)
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However, an analysis of results obtained by this projection is beyond the scope of this work. In
addition, it follows from the second term in Eq. (3.163) that the wavefunction renormalization
associated with the sigma meson exhibits a singular behavior at the Fermi surface. Specifically, the
relation

2

N.h
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6r* \fuZ—mZ(w)

shows that Z j diverges at u = ugg = my(u = 0). This divergence originates from the non-analytic
behavior of the matter part M@, see Eq. (3.157), in |Q| = 24/u2 — x2 when Q° = 0. Once again, the
derivative operators used in our projection procedure for the wavefunction renormalization factors
generate divergences at points in parameter space where the underlying two-point correlator is not
differentiable. To further address this issue, one might consider using finite differences instead of
derivatives, see, e.g., Ref. [314]. Interestingly, the wavefunction renormalization associated with
the pions remains well-behaved at the Fermi surface.

0 (,u—mq(,u)) (3.169)



132 CHAPTER 3 SCHEME DEPENDENCE OF CHIRAL OBSERVABLES

3.3.4 Curvature masses and spectral functions

So far, we have developed an fRG framework for the quark-meson model in which Callan-Symanzik
flows are UV finite and even respect chiral symmetry. As a next step, we aim to apply this CS frame-
work to the calculation of concrete physical observables. With a focus on the phenomenological
study of the QCD phase diagram, we present results for the curvature masses and spectral func-
tions of the sigma meson and the pions. Moreover, we emphasize the importance of a meaningful
implementation of the CS regulator in theories with fermions. Therefore, we shall illustrate in de-
tail the necessity of symmetry constraints and also demonstrate the relevance of an RG-consistent
construction of the effective action for studies at finite temperature and chemical potential.

Scale fixing

In our numerical study of low-energy QCD by means of the CS framework, we need to specify
not only the initialization scale A, of the RG flow but also assign concrete values to the free
parameters of our theory. For the initial condition Ty | of the Wetterich equation, we use the ansatz
(3.33) in case of our symmetry-constrained CS scheme and choose Z, = 1. Furthermore, the
mass parameter mio, the Yukawa coupling h as well as the symmetry-breaking parameter H are
tuned such that a given set of low-energy observables is recovered. In the case of the Callan-
Symanzik regulator, the RG scale directly corresponds to a mass scale. Therefore, when solving
the Wetterich equation, we could in principle stop the fermionic CS flow at some finite value
knin > 0 which may be associated with the physical current mass of the light quarks, k., = Meyrr-
In our approach, however, we always assume that the entire amount of physical explicit symmetry
breaking is carried by the parameter H. Thus, we take k = 0 as the point at which each observable
is assigned its corresponding physical value.

Our scale-fixing procedure here closely follows that of Section 3.2. Nevertheless, let us repeat
the most important aspects for clarity. In the chiral limit, H = 0, we fix the couplings in the
initial action such that we obtain specific values for the constituent quark mass and the pion decay
constant at k = T = u = 0. In the context of our quark-meson model, these quantities are assumed
to satisfy the following general relations:

mg=hlogl,  fr=-—. (3.170)

Again, o, denotes the ground state of the system and is assumed to be homogeneous. Once specific
values for the quark mass and the pion decay constant have been chosen, they consistently fix the
Yukawa coupling and the meson mass parameter. As before, we will use a hat notation to refer to
these special values. It then directly follows from Eq. (3.170) that the Yukawa constant is simply
given by h = 1h,/ f.. The minimum condition applied to the physical effective potential at H = 0
then determines the mass parameter as

d ; ym)
mj = 16N h’ (aLOSVm (AO,X))

=2
X g
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NCh2 A2 mq A2 2 mq
=35 [mq In e —(h2+A2) In ik (3.171)

The specific values are chosen to be

A

Ao =500MeV, 1, =265MeV,  f,=90MeV. (3.172)
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Our choice for the quark mass here may be considered less common in the context of QCD phe-
nomenology compared to the value presented in Section 3.2. Instead, the set of values above is
fine-tuned for a study of the Callan-Symanzik regulator in which effects of renormalization on
physical observables are taken into account, see Section 3.3.5. Nevertheless, for the sake of consis-
tency, we will make use of these values already here. In any case, while this parameter set may not
be ideal for achieving high physical accuracy in studies of low-energy QCD, it allows us to properly
assess the performance of our CS framework for the quark-meson model. With these concrete
values at hand, we obtain the following coupling parameters:

h~294, mio ~—0.89 A2 . (3.173)

Notice that our scale-fixing procedure results in a negative meson mass parameter, mio < 0. Con-

sequently, as our ansatz (3.33) for the functional form of the initial condition T,  is only bilinear
in the fields, the theory at k = A is not bounded from below. Nevertheless, solving the Wetterich
equation with this initial condition, we find that the O(4)-symmetrized effective action is bounded
from below for all scales k < Ay. Thus, in particular, in the limit k — 0, which is associated with
physical values for observables in our setting, the effective action is bounded from below. In prin-
ciple, we could also add a term ~ A A0(¢T¢)2 with 4, > 0 to our ansatz, rendering the effective
action bounded from below also at the initial RG scale A,. In the following, however, we shall
restrict ourselves to an initial action bilinear in the fields as given by Eq. (3.33). We would like
to add that the negative meson mass parameter is not the result of poorly chosen values for low-
energy observables in the scale-fixing procedure. Instead, it is a characteristic feature of fermionic
systems when employing the CS regulator. From Wilsonian-type RG flows, it is well known that
the fermion dynamics increasingly shape the effective potential into a “Mexican-hat” form and
thereby generate a finite ground state as more and more momenta are integrated out from the
path integral. In the case of CS flows, however, all of those momenta are already integrated out
for all k such that our effective potential has a negative curvature at all RG scales. Using an ansatz
at k = Ay which is bilinear in the fields thus necessarily renders the theory unstable at that scale.
An RG step towards any lower scale k < A, generates terms of higher order in the fields. These
quantum fluctuations then render the theory stable for k < A,. We further highlight that, in our
CS framework, the effective action at the initial scale A, should not be confused with a UV action
describing the theory at some high momentum scale, as would be the case for Wilsonian-type RG
flows. Instead, the scale-dependent effective action always describes an IR action in which the
masses of the particles are increased when we increase the scale k.

The parameter H in our ansatz (3.33) for the effective action controls the physical amount of
explicit symmetry breaking and is chosen such that we obtain a pion pole mass of ri1,oje , = 138 MeV
in the vacuum limit. Recall that the pole mass is determined from the momentum-dependent two-
point correlator by analytic continuation, see Eq. (3.75). Specifically, we choose

H =3 668 866 MeV° . (3.174)

Compared to the value of the quark mass that we have fixed at H = 0, the finite amount of explicit
symmetry breaking naturally leads to an increase in the constituent quark mass. Thereby, also the
pion decay constant changes. Concretely, we obtain:

T=p=0: m,~299.19MeV,  f,~101.61MeV. (3.175)

In order to properly assess the effects of symmetrization and also RG consistency on the uncon-
strained CS scheme, we need to make sure that the various schemes are indeed comparable. To
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this end, we adapt the initial condition of the CS scheme with no constraints (“nc”) such that the
physics in the vacuum limit is the same as in the case of the symmetrized scheme:

1 1
7T (9) = 1 a ()= 8N [ 167 (Mo, h6%) — Lo(o,h) | (3.176)
Analogously, for the Euclidean two-point function in the unconstrained scheme, the initial condi-
tion reads

0
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Ao

Note that the vacuum physics in RG-consistent and symmetrized CS calculations is already iden-
tical to the one in the symmetrized-only scheme. By construction, differences in the schemes
can then become apparent in the presence of finite external parameters by propelling the system
away from the vacuum. Specifically, in the case of the unconstrained CS scheme, finite external
parameters hence control the amount of regulator-induced symmetry breaking.

Curvature masses

Let us begin our phenomenological study of the QCD phase diagram by computing the curvature
masses of the sigma mode and the pions. These masses can then be used to pinpoint the transition
from the phase governed by a finite ground state to the phase where it vanishes. The curvature
masses can be extracted from the effective action as follows

=4 h
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We shall compute the curvature masses for different schemes and compare the results. In par-
ticular, we will consider the standard CS scheme without symmetry constraints, the CS scheme
with restored O(4) symmetry, and the symmetrized as well as RG-consistent CS scheme. The ini-
tial condition for the RG flow in each case is determined by Eq. (3.176). We highlight that the
ground state ¢ has to be obtained from a minimization of the effective action in each case. Since
observables are always computed at the ground state of the system, differences in the results for
observables as obtained from our different CS schemes are strongly correlated with the differences
in the behavior of the ground state as a function of the external parameters.

Let us start with the discussion of curvature masses at finite temperature and zero chemical
potential in the chiral limit, H — 0. Since we have tuned our model parameters such that the
dynamics of the vacuum system is governed by a finite ground state, we expect the pions to be
massless at T = u = 0 whereas the sigma modes and the quarks acquire a finite mass. In the
absence of explicit chiral symmetry breaking, thermal fluctuations then drive the ground state
continuously towards smaller and smaller values until it exactly vanishes at the critical tempera-
ture T.. For temperatures above this critical value, the ground state remains zero, which leads
to massless quarks in this phase whereas the masses of the mesons are finite and degenerate.
Phenomenologically speaking, the temperature T. then marks the chiral phase transition. The ex-
pected temperature dependence of the various masses implies that the masses of both the mesons
and the quarks should vanish identically at the transition, provided that the transition is of second
order. For example, the quark mass can then serve as an order parameter to distinguish between
the two separate phases of matter. For finite explicit chiral symmetry breaking, however, the quark
mass is differentiable and remains finite for all temperatures. Accordingly, this behavior signals
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Figure 3.13: Meson curvature masses and the quark mass as functions of the temperature T at H = y = 0. In
the vacuum limit, the sigma mass assumes the value of m, ~ 530 MeV, whereas the curvature mass
of the pion vanishes exactly. The unconstrained CS scheme (left panel) predicts a chiral crossover
at Ty, ~ 149 MeV while the O(4)-constrained and RG-consistent scheme (right panel) indicates a
second-order phase transition at T, ~ 160 MeV.
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Figure 3.14: The curvature mass of the sigma meson (left panel) and the pions (right panel) as a function of
the temperature T at H = yu = 0. The CS scheme without constraints (blue curves) is plagued by
strong regularization artifacts and gives rise to massive pions for all finite temperatures. With the
restoration of O(4) symmetry for CS flows (orange curves), the crossover turns into a second-order
phase transition at T, ~ 175MeV. Taking additional RG consistency into account (green curves), the
nature of the phase transition does not change but the critical temperature receives corrections.

that the phase transition has turned into a crossover. In this case, we use the minimum of the
curvature mass of the sigma mode to define a crossover temperature. We remark that the inverse
of this mass can be related to the correlation length in the system. Therefore, it represents a mean-
ingful definition for the crossover as it is associated with a maximum in the correlation length. In
the chiral limit, this minimum coincides with the definition of the critical temperature in terms of
the quark mass.

In Fig. 3.13, we show our results for the curvature masses as functions of the temperature
for H = y = 0 as obtained from CS calculations without symmetry constraints (left panel) and
from a symmetrized as well as RG-consistent CS calculation (right panel). By comparing the two
panels, it becomes apparent that the regulator-induced breaking of the chiral symmetry severely
spoils the results for the curvature masses, even though the unconstrained CS scheme is free of
artificial symmetry breaking at T = u = 0 by construction. Recall that our ansatz (3.176) for the
effective action at the initial mass scale A, has been chosen such that all schemes agree identically
with the symmetrized CS scheme in the vacuum limit.
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Regarding Fig. 3.13 (left panel), we observe that the quark mass at finite temperature as ob-
tained from the unconstrained CS calculation is always finite and even increases at high temper-
atures, indicating that there is no phase transition at all. Contrary to that, the mass of the sigma
mode as a function of the temperature exhibits a minimum which would indicate a crossover at
Tpe & 149MeV. Moreover, not only are the meson masses not degenerate at high temperatures,
the difference between them actually increases as the temperature rises. An increase in the tem-
perature is expected to suppress the effect of a physical explicit symmetry breaking such that the
meson curvature masses should approach the same high-temperature limit instead of being driven
further apart. Our results for the particle masses in the unconstrained CS scheme therefore demon-
strate the unphysical nature of the regulator-induced breaking of the chiral symmetry. Once this
regulator-induced symmetry breaking is removed and the global O(4) symmetry of the effective
action is restored, we observe the expected behavior of the curvature masses, see in particular
Fig. 3.14 (right panel). For example, in this case, we find that the quark mass tends to zero at
T. ~ 160MeV and remains zero above this temperature, indicating a second-order chiral phase
transition. Moreover, the meson masses also tend to zero at this temperature and then become de-
generate for T > T.. Note that the results from the symmetrized and RG-consistent CS calculation
differ only quantitatively but not qualitatively from those obtained from the symmetrized-only CS
calculation. For example, we find T, ~ 175MeV for the phase transition temperature, if we do not
take RG consistency into account. This is illustrated in Fig. 3.14 for the meson masses. From this
figure, it also becomes clear that unconstrained CS calculations are pathological and do not have
any predictive power.

We now turn to the case of a finite physical explicit symmetry-breaking term in the action, i.e.,
we consider H > 0. In this case, the ground state of the system is always finite. As a consequence,
we expect to find a crossover rather than a phase transition. For sufficiently high temperatures,
however, we still expect that the quark mass approaches zero. In the same way, we expect to find
that the difference between the sigma and pion masses tends to zero. As can be deduced from
Figs. 3.15 and 3.16, the results from the unconstrained CS calculations are again severely spoiled
by the explicit regulator-induced symmetry breaking. For example, the quark mass does not tend
to zero at high temperatures but rather increases, in contrast to the symmetrized CS calculation.
In addition, also the predictions for the meson masses suffer strongly from the regulator-induced
explicit symmetry breaking, in particular at high temperatures. Looking at the results from the
symmetrized as well as RG-consistent calculations in the right panel of Fig. 3.15, we observe that
the system undergoes a crossover which is associated with a pseudo-critical temperature Tp,. ~
183MeV as defined by the minimum of the sigma mass. At high temperatures, we then find
that the quark mass tends to zero continuously and the difference between the meson masses
decreases, as expected. Lastly, we find that the vacuum pole mass of the pions, which we have
fixed at mpge ., = 138 MeV by tuning the symmetry-breaking parameter H, translates into a pion
curvature mass of m, ~ 190 MeV.
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Figure 3.15: Meson curvature masses and the quark mass as functions of the temperature T at u =0 and H > 0.
In the vacuum limit, the meson masses read m, ~ 592MeV and m, ~ 190 MeV. The unconstrained
CS scheme (left panel) indicates a chiral crossover at T, ~ 159 MeV while the O(4)-constrained and
RG-consistent scheme (right panel) predicts a pseudo-critical temperature of T, ~ 183 MeV.
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Figure 3.16: The curvature mass of the sigma meson (left panel) and the pions (right panel) as a function of the
temperature T at u = 0 and H > 0. In the presence of physical explicit symmetry breaking, all CS
schemes give rise to a crossover. Nevertheless, the unconstrained calculations (blue curves) suffer
from strong regularization artifacts. The O(4)-constrained CS scheme (orange curves) predicts a
pseudo-critical temperature of T, ~ 209 MeV, additional RG consistency (green curves) then lowers

this value.

In the zero-temperature limit at finite chemical potential, the dynamics of the system is gov-
erned by the Silver-Blaze property. This refers to the fact that the partition function of a physical
system at T = 0 does not exhibit any dependence on the chemical potential u, provided that the
chemical potential remains smaller than a critical value ugg, see Section 2.3.2 for details. As the
CS regulator respects the Silver-Blaze symmetry of the system, our choice for the initial conditions,
see Eq. (3.176), implies that our three CS schemes at zero temperature yield the same effective
action, provided that the chemical potential is smaller than its critical value. Furthermore, we
restrict ourselves to the case of u < A, as our model is not expected to have predictive power for
chemical potentials beyond that scale where, e.g., diquark condensation may become relevant, see,
e.g., Refs. [264, 391]. As a result, we find that all schemes are in fact identical at k = 0. We shall
illustrate this in the following.

At zero temperature, the loop corrections exhibit the feature that they can be separated into a
vacuum part and a matter part, where only the latter has an explicit dependence on the chemical
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potential. It then follows that
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By restricting ourselves to chemical potentials u < A, the matter part becomes independent of the
scale Ag. As a result, the unconstrained CS scheme is identical to the symmetrized one at k = T = 0.
This property of the matter part holds quite generally in Silver-Blaze-symmetric theories and is not
affected by RG consistency. In other words, also the symmetrized and RG-consistent CS scheme
yields the same quantum effective action for u < Ay. For more information in this regard, we refer
to our general discussion around Eq. (3.99).

Since all three CS schemes are identical at zero temperature and for all chemical potentials
of interest, we simply refer to the physical effective action in the following. Furthermore, the
equivalence of all schemes implies the absence of regularization artifacts for 0 < yu < Ay. Let
us now consider the explicit form of the effective action at zero temperature and finite chemical
potential. Evaluating the effective action on a homogeneous background, we obtain

7r<PhYS>(¢)\ mA $2—Ho — 8N, LS™ (Ao, 9%,
= 1m2 $2—Ho —8N.[ LE™ (Ao, h29?) — MI™ (1, h2¢?) | (3.180)
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0 .
:(2711)2 (“2 ‘/_)[ V2 —x (5% —2u®)— 3X2arsmh( ——1)]. (3.182)

In Fig. 3.17, we illustrate the curvature masses as obtained from the physical effective action in
Eq. (3.180). In accordance with our discussion of the Silver-Blaze property above, we find that all
masses agree identically with their respective values in the vacuum limit for u < ugg. Here, the
Silver-Blaze threshold is set by the constituent quark mass at T = u = 0. Recall that the value of the
quark mass in the vacuum limit depends on whether or not we consider explicit symmetry breaking.
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Figure 3.17: Meson curvature masses and the quark mass as functions of the quark chemical potential u at zero
temperature, T = 0. The particle masses as obtained from the effective action in Eq. (3.180) are
presented in the absence of explicit symmetry breaking, i.e., H = 0, (left panel) and for the case of
H > 0 (right panel). In the chiral limit, our CS calculations predict a first-order phase transition at
U. &~ 293 MeV. For H > 0, the transition turns into a crossover occurring at the pseudo-critical value
Upe A 336 MeV.
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Figure 3.18: Exemplary u-dependent behavior of an effective potential as a function of the field variable o in the
case of H = 0 (left panel) as well as for explicit symmetry breaking, i.e., H > 0, (right panel). The
critical value u, signals a first-order phase transition and corresponds to the point where the ground
state as a function of the chemical potential is discontinuous. We note that a first-order transition
is not restricted to symmetric systems but is also possible in the presence of symmetry breaking.
Nevertheless, our CS scheme at zero temperature produces a first-order transition only for H = 0.

Specifically, at H = 0, we have ugg = ri1,. In the chiral limit, the quark mass as a function of the
chemical potential exhibits a jump discontinuity at the critical value u. ~ 293MeV and becomes
zero for all u > u.. This discontinuous behavior at u. signals a first-order phase transition of
the system. At the level of the effective potential, such a transition arises from the development
of multiple minima which, loosely speaking, compete with each other as the chemical potential
increases, see Fig. 3.18. Whereas the absolute value of the ground state is uniquely defined for
small values of the chemical potential, the minima become degenerate at u = u., leading to an
abrupt change in the global minimum for u > u.. Further notice that, in contrast to the situation at
the second-order phase transition, the meson curvature masses do not tend to zero. Instead, they
also behave discontinuously at the critical chemical potential and assume the finite value

. , . Neh®
m1n(m0)= mA0+7,u . (3.183)
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Choosing now H such that the pion pole mass assumes its physical value in the vacuum limit,
we observe that the first-order transition turns into a crossover at u,. ~ 336 MeV as indicated
by the continuous behavior of the masses as functions of the chemical potential, see Fig. 3.17.
Here, the pseudo-critical value u,, is defined by the minimum of the curvature mass of the sigma
mode. These observations imply that, at least in our current approximation, there is no critical
point in the phase diagram of the quark-meson model for physical pion masses. Consequently, our
results are in disagreement with the expectation that the physical phase structure of QCD includes
a critical endpoint and a first-order transition at low temperatures and intermediate densities, see,
e.g., Refs. [392-395, 438]. Nevertheless, we note that a first-order transition in the presence of
explicit symmetry breaking could still be realized in our model by adjusting the initial condition,
as suggested by, e.g., Ref. [438]. In addition, it has been found that the appearance of the critical
endpoint correlates with the value k.,;, chosen for the endpoint of the RG flow [425]. As we
always choose k.,;, = 0 in our studies, this may contribute to the outcome that a critical endpoint
and the first-order phase transition cannot be observed in our results.

Spectral functions

Let us now construct meson spectral functions from the Euclidean two-point function. The CS
regulator ensures the existence of the Kéllén-Lehman spectral representation for the regularized
propagator at every scale k. For each of our CS schemes, the scale-dependent spectral function
rhoy is then generally obtained by

- 1
Pr(w,Q)|,. =2 lim Jm{ - - . (3.184)
|T,M e—0+ 1—.’Escheme)(Z)(i(w + ig), Q)|T’u

Nevertheless, we will focus exclusively on the case k = 0 in the following. We present our results
for the spectral functions of the scalar and pseudoscalar mesons as functions of the energy w in
the presence of a physical explicit symmetry breaking, H > 0. As above, we start by comparing the
results from different treatments of the CS flow at finite temperature and zero chemical potential.
In all our numerical studies, we set the spatial external momenta of the two-point function to zero,
i.e., Q =0, such that the energy w,s associated with a resonance peak in the spectral function can
be identified exactly with the mass of the corresponding meson.

In Fig. 3.19 (left panel), we show the spectral functions of the sigma mode and the pions in
the vacuum limit. The pole masses of these two mesons can be extracted from a localization of
the peaks in these functions. We find mpgie ¢ = wres ~ 457 MeV for the sigma mode. For the
pion spectral function, the position of the pole at myge » = Wres» & 138 MeV is not a prediction
in our present study as we have used the parameters of our model to tune the pion pole mass
in the vacuum limit. In any case, the spectral functions exhibit more structure than the typical
peaks associated with the pole masses. For example, at w ~ 600MeV, the spectral function of
the sigma meson and that of the pions displays a kink and a turning point, respectively. These
structures are commonly interpreted as the decay of an excited state of the respective meson into
an energetically more favorable state. Within our model study, we can identify these decays as
the processes o’ — iy and ' — 1, where the primes indicate the excited state. Concretely,
when we reach the energy wgecay = 2m, associated with a pair of two constituent quarks with zero
center-of-mass energy, it is favorable for the mesons to decay into these quark states.!®

18 Recall that A, is not a UV momentum cutoff but represents a mass scale in the CS scheme. Therefore, the CS regularization
does not restrict the range of external four-momenta in correlation functions. Still, this does not imply that our results
necessarily have predictive power at arbitrarily high external momenta as the quark-meson model does not contain the
correct degrees of freedom in these regimes.
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Figure 3.19: Left panel: Meson spectral functions at zero temperature and for chemical potentials below the
Silver-Blaze threshold. We observe resonances associated with pole masses at w,, ~ 457 MeV and
Wyes & 138 MeV. Right panel: The quark mass at u = 0 as a function of the temperature T as
obtained within different CS schemes.

100+ 100+ /\
2 N S B/ A
b S \f—‘ T

Q Q L

0.01 0.01}
T = 200MeV, = 0 | T =200MeV, = 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
w [GeV] w [GeV]

Figure 3.20: Spectral function of the sigma meson (left panel) and the pions (right panel) at T = 200 MeV and
u = 0 as obtained from the CS scheme with no constraints (blue curves), an O(4)-constrained CS
calculation (orange curves), and an O(4)-constrained RG-consistent computation (green curves).

For an analysis of spectral functions and an associated comparison of different treatments of the
CS regulator, let us start with the case of finite temperature and zero chemical potential. Since
the shapes and structures of the meson spectral functions among the different CS schemes are
strongly correlated with the behavior of the ground state with respect to external parameters,
we also provide a direct comparison of quark masses as functions of temperature in Fig. 3.19
(right panel). Specifically, as the quark mass changes with temperature, the structures associ-
ated with the decay of the mesons in two quark states follow the temperature-dependence of the
ground state, wgecay(T) = 2my(T). For temperatures associated with wgecay < Wres, the width
of the resonance peaks increases with increasing temperature and their height decreases. This
broadening effect is the result of thermal fluctuations screening the pole that is present in the
propagator of the vacuum theory. Accordingly, the mass associated with this peak is no longer
a pole mass at these temperatures but should rather be considered a resonance mass. From a
more phenomenological standpoint, the broadening of the peak in a spectral function signals that
the particle under consideration has become unstable. The temperature-induced instability thus
crucially depends on the temperature-dependence of the quark mass, as illustrated in Fig. 3.20.
Specifically, whereas the symmetrized and RG-consistent CS scheme (green curves) predicts unsta-
ble mesons at T = 200 M€V, the destabilization has not yet started in the other schemes. Moreover,
the spectral functions of the mesons as extracted from the O(4)-symmetrized CS calculations (or-
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Figure 3.21: Meson spectral functions at zero temperature as obtained from our O(4)-constrained CS framework
for different values of the chemical potential beyond the regime governed by the Silver-Blaze property.
Specifically, we present results for u = 325MeV (left panel) and u = 400 MeV (right panel).

ange and green curves) become more and more degenerate with increasing temperature. As this
phenomenon can be traced back to an almost vanishing quark mass at high temperatures, this
behavior of the spectral functions cannot be observed in our unconstrained CS calculations (blue
lines). Apart from these more phenomenological aspects, we would like to emphasize that the dif-
ferences in the results as obtained from our different CS schemes are not only qualitative but also
quantitative. As can be deduced from Fig. 3.20, we observe that the results from the unconstrained
CS calculation (blue curves) receive significant corrections from the symmetrization (orange lines)
at T = 200MeV and yu = OMeV. By ensuring RG consistency in addition to the symmetrization
(green curves), the spectral functions receive additional corrections.

At zero temperature, the dynamics of the system is governed by the Silver-Blaze property, mean-
ing that the meson spectral functions remain unchanged compared to their form in the vacuum
limit up to ugg ~ 300 MeV. Analogously to our discussion of curvature masses at T = 0, the zero-
temperature two-point correlators and hence also spectral functions are identical across all CS
schemes for all chemical potentials of interest. As a consequence, our results for meson spectral
functions at zero temperature as obtained from the O(4)-constrained CS framework, see Fig. 3.21,
are in particular RG-consistent. Exceeding the chemical potential beyond the Silver-Blaze thresh-
old, u > ugg, the kink-like structures of the meson spectral functions observed at wgecay = 2my
in the vacuum limit are now found at wgecay(4) = 2u. Notice that, compared to the case of finite
temperature and zero chemical potential, the structures of the zero-temperature spectral functions,
which are associated with meson decays, do not follow the u-dependence of the ground state. Thus,
the position of these structures is continuously shifted to larger values by increasing the chemical
potential. In this regime, these kink-like structures can then be associated with a decay into two
quarks where each quark carries the Fermi energy u. In other words, the mesons can only decay
into their quark content if there is enough energy to create a pair of quarks “sitting” at the Fermi
surface or above. This makes sense because, in a fermionic system at zero temperature, quantum
states with energy less than u cannot be occupied due to the Pauli exclusion principle. Moreover,
the kink of the sigma spectral function quickly transforms into a turning point for u > ugg, whereas
the analogous structure in the pion spectral function does not change qualitatively. Additionally,
when we increase the chemical potential beyond the point associated with the crossover, the sigma
and pion spectral functions become degenerate, similar to the case of finite temperature and zero
chemical potential. However, a key difference is that the zero-temperature spectral functions fea-
ture sharp peaks rather than broad resonances. This is due to the fact the decay energy at zero
temperature increases with the chemical potential, thereby ensuring the relation wgecay > @res for
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both mesons. As long as this relation is satisfied, the poles in the propagator of the vacuum theory
remain poles even at finite external parameters.

3.3.5 Renormalization effects on physical observables

As previously shown, the Callan-Symanzik regulator can be effectively employed to obtain mean-
ingful results for observables within the quark-meson model. Building on this, we now take a
step further in the direction of investigating the phase structure of low-energy QCD by means of
our CS framework and take effects of renormalization into account. More specifically, the focus
of the following study lies on the computation of renormalized curvature masses and renormal-
ized spectral functions, which requires the calculation of wavefunction renormalization factors.
As discussed earlier, the regulator-induced breaking of chiral symmetry and regularization arti-
facts in the presence of finite external parameters can significantly influence physical observables,
both qualitatively and quantitatively. Therefore, we will exclusively use the O(4)-constrained and
RG-consistent CS scheme from here on. In addition, we will restrict our analysis to the phenomeno-
logically most relevant case, which involves finite physical explicit symmetry breaking.

Scale fixing

Let us again begin by fixing the coupling parameters of our model in the absence of explicit sym-
metry breaking such that we obtain specific values for the constituent quark mass m, and the pion
decay constant f, in the vacuum limit. In general, these quantities are defined as [76]
. my
mg = hgs|0g| , frn=—, (3.185)
hr
where the bar notation indicates that renormalization factors have been taken into account. Specif-
ically, the definitions of the renormalized Yukawa couplings and the renormalized ground state
read

- h
(0/m) = —==>
VZio/m)

Notice that the quark mass is invariant under renormalization in our setting,'” i.e., we have
mg, = EUIEOI = h|oy|. The bosonic wavefunction renormalizations can be obtained from the RG-
consistent two-point correlator of the physical quantum effective action by a suitable projection.
In particular, we make use of the standard projection prescription that involves two derivatives
with respect to (spatial) momenta and the static limit. For our exact results for the wavefunction
renormalization factors at zero temperature, we refer to Section 3.3.3.

Once we have chosen specific values i, and fﬁ for the quark mass and the pion decay constant at

T = u = H =0, the relations (3.185) together with our result for the vacuum wavefunction renor-

malizations as presented in Eq. (3.165) consistently determine the values of the model parameters.
Concretely, we find

h2 = - _ NZAO — m/2\0 = 16N, h2 (%Lésym)(/\o’x)) A

(A—ﬂ) -5 ln(1+ﬁ1—%) X=rg

Mg

(3.187)

1 In a more general setting, the renormalized quark mass would also include the fermionic wavefunction renormalization
factor. However, in our calculations, we always choose Z,, = 1 and thus effectively consider the large-N, limit. For more
information about this limit, see, e.g., Refs. [439-442].
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for the bare Yukawa coupling and meson mass parameter, respectively. Notice that the logarithmic
term in the denominator of the expression for the Yukawa constant is strictly positive since Ay > f,.
As a consequence, the condition 0 < h? < oo restricts our choices for A, g and f,.. Because the
values for the latter quantities as proposed in Section 3.3.4 are compatible with this restriction, we
choose the same values here. This also simplifies direct comparisons of results obtained with and
without the inclusion of the wavefunction renormalization factors of the mesons. To be specific,
we set Ay = 500 MeV, i, = 265MeV and f, = 90 MeV. Furthermore, we would like to remark that
the general form of the meson mass parameter is still given by Eq. (3.171). We also add that our
results for the bare parameters and the wavefunction renormalizations imply that renormalized
couplings do not depend on Z, .

We would like to mention that the renormalized vacuum Yukawa coupling associated with quark-
pion interactions in the absence of explicit symmetry breaking is directly determined by the rela-
tion (3.185),

_
T=u=H=0: h,=-—n294. (3.188)

T

The definition of the renormalized couplings in Eq. (3.186) and the result for the wavefunction
renormalizations, see Eq. (3.165), can then be used to determine the corresponding value for
quark-sigma interactions,

- - |z
T=pu=H=0: hy,=h,\ === ~ 3.63 . (3.189)
Zo AV N A

As a result, we obtain h, /h,, ~ 1.23 within our present approximation. The renormalized symmetry-
breaking parameter is generally defined by

H
VZs

and is fixed such that we obtain a pion pole mass of 1., = 138MeV in the vacuum limit.
Concretely, we set

H=

(3.190)

T=u=0: H =2 248 666 MeV® . (3.191)
In the presence of a finite symmetry breaking, we then find
T=u=0: m, ~282.22MeV,  f,~92.74MeV,  h,~3.04, h,~3.79 (3.192)

for the constituent quark mass, the pion decay constant, and the renormalized Yukawa couplings,
respectively. Additionally, we now obtain h, /h, ~ 1.25, whereas QCD studies have found a ratio
of h,/h, ~ 1.5, see Ref. [42]. In any case, we deduce from these considerations that the minimum
o, of the effective potential should in general not be identified with the pion decay constant.

Curvature masses and the phase diagram

Having fixed the parameters of our model in the vacuum and chiral limit, we can now study the
dynamics of the system at finite temperature and chemical potential. In particular, let us begin
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Figure 3.22: Left panel: Reduced two-point correlator of the sigma meson as a function of the spatial momentum
for Q° = 0. We present the correlator for several temperatures and chemical potentials, where the
results have been normalized such that all curves agree at |Q| = 0. Our computations demonstrate
that the momentum-dependent two-point correlator develops a non-trivial minimum in certain
regions of the phase diagram. Right panel: Wavefunction renormalization of the sigma meson as
a function of the quark chemical potential for several temperatures. By lowering the temperature,
we observe that a pole at T = 0 and u = ugg ~ 282MeV builds up. For u > ugg, the wavefunction
renormalization continuously decreases, leading to negative values.

with a discussion of renormalized curvature masses. These are readily obtained from the bare
curvature masses by

2
m(a/ﬂ:) ( T: M)

I — (3.193)
1
Z(O./ﬂ)(T; .U')

—2 _
m(o-/n)(Tﬁ “) -

which requires a computation of wavefunction renormalization factors at finite external param-
eters. Interestingly, we observe negative values of the wavefunction renormalizations in certain
regions of the phase diagram. The zero-crossings of the wavefunction renormalizations inevitably
lead to diverging renormalized quantities and thus limit the range of external parameters for which
our results have predictive power.

A zero-crossing of a wavefunction renormalization in general indicates that the expansion of the
effective action in external momenta has not been performed about the correct expansion point.
In fact, as illustrated in Fig. 3.22 (left panel), the two-point correlator associated with the sigma
meson indeed acquires a non-trivial minimum in momentum space in certain regions of the phase
diagram. The two-point function for the pions behaves similarly but we refrain from showing
this case explicitly in order to avoid redundancy. According to our definition, the wavefunction
renormalization associated with a given field is nothing but the curvature of the corresponding
momentum-dependent two-point function at vanishing momentum. Therefore, as the non-trivial
minimum in momentum space evolves, our expressions for the wavefunction renormalizations
become negative, see Fig. 3.22 (right panel). To capture the correct ground state physics of the
quark-meson model, we could in principle consider a generalized definition of wavefunction renor-
malizations, which is always anchored at the global minimum in momentum space, see Eq. (3.168).
Nevertheless, even if this definition was employed, the wavefunction renormalizations would still
become zero at some points in the space of external parameters. As a consequence, although the
generalized definition avoids negative values for the wavefunction renormalizations, the renormal-
ized curvature masses would still exhibit a divergence. In addition, we would like to remark that,
in the zero-temperature limit, the wavefunction renormalization associated with the sigma meson
diverges at the Fermi surface, i.e., at u = ugg = my(T = u = 0). Strictly speaking, our wavefunction
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Figure 3.23: Renormalized curvature masses for the mesons and the quark mass. We present the particle masses
as functions of the temperature at u = 0 (left panel) and also as functions of the chemical potential
at T = 0 (right panel). In the vacuum limit, the renormalized meson curvature masses read
m, ~ 724MeV and m, ~ 140MeV. Our results indicate a chiral crossover in both scenarios.
Specifically, the pseudo-critical values are T, &~ 172MeV at u = 0 and u,. ~ 313MeV at T = 0.

renormalization is ill-defined at this point since the momentum-dependent two-point correlator is
non-analytic, see Eq. (3.169). As illustrated in Fig. 3.22 (right panel), this divergence at T =0
already starts building up at low temperatures and hence cannot be cured by finite temperature.
Notably, our zero-temperature wavefunction renormalization for the pions is well-defined at the
Fermi surface.

From a more phenomenological point of view, a negative curvature of bosonic two-point func-
tions may be considered an indication of an instability associated with the formation of an inhomo-
geneous ground state at low temperatures [243, 443, 444], see also Refs. [323, 349, 445] in this
context. In addition, such a feature also underlies the discussion of the existence of moat regimes
in the QCD phase diagram which are defined by Z(t m) <0, see Refs. [80, 446-450]. We will come
back to this when we discuss the position of the boundaries of regimes associated with negative
wavefunction renormalizations relative to the position of the chiral phase boundary in our model.

In Fig. 3.23 we show our results for the renormalized meson masses together with the quark
mass. Since the wavefunction renormalization factors exhibit a zero-crossing at sufficiently high
temperatures and/or large chemical potentials, our presentation of particle masses is restricted
to regions of external parameters where the wavefunction renormalizations remain positive. As
before, we can use the minimum of the sigma mass as a function of the temperature to quantify
the chiral crossover. To be specific, for u = 0, we find that the temperature-induced crossover
occurs at Ty, ~ 172MeV. Above the pseudo-critical temperature, the differences in the curvature
masses of the mesons become rapidly suppressed by thermal fluctuations. For higher temperatures,
the renormalized meson curvature masses are eventually dominated by the zero-crossing of the
wavefunction renormalizations at T ~ 284MeV. At zero temperature, we identify a crossover at
Upe ~ 313MeV as indicated by the finite minimum of the sigma mass as a function of the chemical
potential. As before, our results imply that there is no critical endpoint in the phase diagram
of the quark-meson model. Beyond this crossover, the behavior of the renormalized curvature
masses at zero temperature is completely dominated by the zero-crossings of the wavefunction
renormalizations. Additionally, it is important to note that the renormalized curvature mass of
the sigma meson jumps to zero at u = ugg. This jump discontinuity is unphysical since it stems
from the divergence of the corresponding wavefunction renormalization at this point, see Fig. 3.22
(right panel). Therefore, although the renormalized curvature mass of the sigma meson at zero
temperature acquires its minimal value at u = ugg, this minimum is not linked to the chiral phase
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Figure 3.24: Phase diagram of the quark-meson model in the plane spanned by the temperature T and the
chemical potential u. In the blue-colored region, both wavefunction renormalizations are positive,
whereas the red-colored area indicates that both wavefunction renormalizations are negative. In the
small green-colored region at high densities, we find Z Cf >0and Z # < 0. Accordingly, the green
and red regions are identified as moat regimes. A zoom into the green-colored region is shown in
the right panel. The dashed line represents the crossover line which is fully contained in the region
of positive wavefunction renormalization factors.

transition. Finally, we remark that, in the vacuum limit, the renormalized curvature mass of the
pion is m, ~ 140 MeV, which is in close agreement with the fixed pole mass of 138 MeV.

With the sigma mass as a function of external parameters at hand, we can determine the en-
tire phase boundary associated with the chiral crossover. We consider the simple case in which
this phase boundary is described by a curve in the plane spanned by temperature T and chem-
ical potential u. Phenomenologically, this curve indicates at which points (T, u) the correlation
length for fluctuations in the chiral condensate reaches a maximum. From our analysis of results
illustrated in Fig. 3.23, it already follows that the endpoints of the crossover line are located at
(Tpe,0) and (0, upc). For values of the chemical potential with 0 < u < u,., we determine the
corresponding crossover temperature from the minimum of the temperature-dependent renormal-
ized curvature mass associated with the sigma meson. Our results for the phase diagram of the
quark-meson model are shown in Fig. 3.24. In addition to the presentation of the crossover line,
we highlighted the normal region, in which the wavefunction renormalization factors are positive,
as well as the moat regimes, where at least one wavefunction renormalization is negative. In
particular, at zero chemical potential, we find that both wavefunction renormalizations exhibit a
zero-crossing at T ~ 284MeV. Accordingly, this temperature then marks the transition into the
moat regime at u = 0. At zero temperature, the moat transition as indicated by the zero-crossing
of Z # occurs as u ~ 314MeV. Notice, however, that the wavefunction renormalization associated
with the sigma meson is still positive at this point of the phase diagram. Eventually, the zero-
crossing of Z é at u ~ 317MeV marks the second moat transition along the u-axis beyond which
both wavefunction renormalizations assume negative values. Altogether, our results demonstrate
that the chiral crossover line is fully contained within the normal region of the phase diagram.
Furthermore, the phase structure presented in Fig. 3.24 is corroborated by a computation in full
functional QCD [80].
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Spectral functions

In accordance with our previous renormalization prescription for the fields, we define the renor-
malized spectral functions as follows:

Plo/m( @Dy, = 25 1T posm(@, Dy, - (3.194)

We would like to remark that the multiplication with a wavefunction renormalization does not
change the behavior of the spectral function with respect to the energy w or the spatial momentum
Q. This means that all energies that are associated with a certain structure found in p remain
unchanged. In particular, pole masses are invariant under this renormalization of the spectral
function.

As before, we focus on meson spectral functions at vanishing spatial momentum, i.e., we set
Q = 0. Our results for the renormalized spectral functions in the vacuum limit are illustrated in
Fig. 3.25 (left panel). In particular, we observe that the resonance peak associated with the mass
of the sigma meson is located at w,., ~ 572MeV. By construction, the renormalized spectral
function for the pions shows that their pole mass lies at mpgje z = Wyes r & 138 MeV. Moreover, the
pion spectral function exhibits the familiar structure for the decay into two quarks, 7/ — ). This
structure can be observed at wgecay = 2m, & 564 MeV, which is the energy necessary to trigger
the decay process. We emphasize that the vacuum limit provides us with the situation in which
Wdecay < Wres - Consequently, the resonance peak in the spectral function of the sigma mode does
not correspond to a Dirac-delta peak and hence cannot be associated with a pole mass. However,
we add that this result should be considered with caution as it may be an artifact of our choice
for the initial condition. In other words, the mass resonance of the sigma meson may be lifted to
higher energies by introducing additional couplings to the initial action T, . Furthermore, due to
Wdecay < Wres o> the structure associated with the decay of the sigma meson, o’ — ynp, is highly
suppressed and therefore not visible on the scale of the figure. At zero temperature and above
the Silver-Blaze threshold, i.e., for u > ugg, this situation changes rapidly. The kink-like structures
associated with the meson decay now scale as wgecay(4) = 2, resulting in Wgecay > Wres for both
mesons, see Fig. 3.25 (right panel). Accordingly, the decay structures become clearly visible in both
spectral functions. In addition, the sigma spectral function now gives rise to a Dirac-delta peak
such that the notion of a pole mass applies. As mentioned in our previous studies, the behavior of
the decay energy as a function of the chemical potential is readily explained by the fact that the
mesons at zero temperature can only decay into their quark content if the excitation energy is high
enough to create a pair of quarks carrying the Fermi energy wyp = u each.

Our results for the renormalized meson spectral functions at finite temperature and zero chemi-
cal potential are shown in Fig. 3.26. In this case, the temperature dependence of the decay struc-
tures follows that of the quark mass, wgecay(T) = 2my(T). Moreover, we find that the resonance
peak in the sigma spectral function broadens rapidly with increasing temperature and that its
height is continuously lowered. For temperatures T 2 180MeV, the renormalized meson spectral
functions eventually become more and more degenerate, see Fig. 3.26 (right panel).



3.3 THE CALLAN-SYMANZIK REGULATOR 149

—0
100 100+
—T
N O N O I
<ﬁ 1 <1A 1L
£ £
& & r
[sY [sY
0.01f 0.01
T=0,u< usp T =0,u =300 MeV
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
w [GeV] w [GeV]

Figure 3.25: Renormalized meson spectral functions at zero temperature. For u < ugg ~ 282MeV (left panel),
where the behavior of the system is governed by the Silver-Blaze property, we find resonances at
Wreso ~ 572MeV and w,; , &~ 138 MeV. In this case, the resonance peak in the sigma spectral
function cannot be associated with a pole mass since wgecay < Wres - Above the Silver-Blaze threshold,
this situation quickly changes as the energy associated with the decay of a meson into two quarks
scales with the chemical potential. Specifically, for u = 300 MeV (right panel), the resonances in
both spectral functions correspond to a pole mass.
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Figure 3.26: Renormalized meson spectral functions at finite temperature and zero chemical potential. At
T = Ty ~ 172MeV (left panel), the sigma meson is already destabilized by thermal fluctuations
while the spectral function of the pions still exhibits a Dirac-delta peak. At T = 200MeV (right
panel), the mesons are quasi-degenerate as indicated by the almost identical spectral functions.






SUMMARY AND OUTLOOK

In this thesis, we have studied technical as well as phenomenological aspects of QCD at low ener-
gies and finite external parameters such as temperature T and chemical potential u. To be more
specific, we have made use of an effective theory, which considers two massless quark flavors in-
teracting through a Yukawa term, in order to study the phase structure of quark matter and, in
particular, examine the effects of artificial symmetry breaking on observables relevant for the chiral
phase transition. The functional renormalization group has served as our key method, represent-
ing an ideal non-perturbative tool for the investigation of strong-interaction matter. In addition,
we have collected and analyzed subtleties that appear in the calculation of correlation functions
and that are specifically important in quantum field theories with fermions coupled to a chemical
potential.

In our analysis of loop integrals for fermionic systems in the presence of finite external parame-
ters, we have identified and discussed in detail scenarios in which an interchange of mathematical
operations such as differentiation, integration, and limit processes leads to different results. These
operations are often involved in the computation of physical observables and do, a priori, not com-
mute. As a consequence, the non-commutative nature of different mathematical operations needs
to be considered with great care to avoid ambiguities and inconsistencies in results for correlation
functions. As for any well-defined framework, the fRG approach is in principle free of mathematical
ambiguities since the order of all operations is determined by the Wetterich equation. Observables
can then be obtained by applying suitable projection rules to the exact solution of the Wetterich
equation. However, exact solutions of this equation exist only for rare, special cases. As a result,
strategies for the calculation of correlation functions have been developed, which commonly rely
on the assumption that at least some of the involved mathematical operations are commutative.
Although many of these approaches have been applied very successfully to quantum field theories
in the vacuum limit, finite external parameters such as temperature and/or chemical potential
introduce several subtleties. These must be taken into account in order to obtain correct results
for correlation functions. We have demonstrated in detail that calculations directly at zero tem-
perature and at finite chemical potential are particularly delicate in this respect. Although our
presentation has focused on diagrams with a one-loop structure, as only such diagrams appear
within the fRG framework, our general considerations can be carried over to computations of loop
diagrams of higher order as encountered in other approaches.

In addition to our general discussion of subtleties that arise in finite-temperature and finite-
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density studies, we demonstrated where such subtleties are encountered in concrete calculations
by employing the quark-meson model. To be specific, we calculated the curvature and plasmon
masses of the sigma meson and the pions. To this end, we employed a standard expansion of the
Wetterich equation in terms of field degrees of freedom and analyzed the resulting meson two-point
functions. In accordance with our general considerations, we found that the zero-temperature and
finite-temperature results are inconsistent in the sense that the two-point functions calculated di-
rectly at zero temperature do not agree with the corresponding finite-temperature results in the
zero-temperature limit. This is the case for correlation functions evaluated at vanishing external
momenta and finite external momenta. We showed that the inconsistency between results for
correlation functions obtained at T = 0 and in the limit T — 0 eventually originates from inter-
changing derivatives with respect to fields with the loop integration on the right-hand side of the
Wetterich equation. In conjunction with the presence of a derivative with respect to the RG scale
under the loop integral, this is not allowed in calculations directly at zero temperature for values of
the chemical potential that exceed the Silver-Blaze threshold because of the non-analytic behavior
of the loop diagrams in this regime. From our analysis, however, we deduced a systematic prescrip-
tion that allows us to compute correlation functions directly at zero temperature such that they
are consistent with those obtained from taking the zero-temperature limit of a finite-temperature
calculation. We also showed that finite-temperature calculations of correlation functions via the
aforementioned interchange of derivatives with respect to fields and loop integration are unam-
biguous, even at finite chemical potential.

The fRG approach to quantum field theory relies on the introduction of an auxiliary function,
the regulator, which systematically modulates the amount of quantum fluctuations contributing
to the theory. The regulator is in general no physically meaningful object but rather serves as an
instrument to evaluate loop diagrams in a controlled fashion. In particular, the regulator should
not spoil the predictions for physical observables and is therefore constrained by the symmetry
properties of the theory. However, since exact calculations in quantum field theory are notoriously
difficult, it is common not only to implement truncations but also to relax the symmetry constraints
on the regulator function. Specifically, regulators that induce an explicit breakdown of Lorentz
symmetry are predominantly favored in the presence of finite external parameters. In order to
assess the impact of this artificial symmetry breaking at finite temperature and chemical potential,
we have computed chiral observables from the quark-meson model in different regularization
schemes. In particular, we have considered regulators that not only respect Lorentz symmetry
in the vacuum limit but preserve also chiral symmetry as well as the Silver-Blaze symmetry in the
presence of a quark chemical potential.

Our first study of QCD phenomenology by means of the functional renormalization group has
been performed with canonical momentum-dependent regulator functions. In particular, we have
considered polynomial regulators with and without explicit Lorentz symmetry breaking, allowing
us to examine the scheme dependence of physical observables in the context of the chiral phase
transition. To this end, we calculated meson curvature masses and meson spectral functions in the
presence of finite temperature and chemical potential. We remark that, for momentum-dependent
regulators, a calculation of correlation functions at finite external parameters is significantly more
difficult in covariant regularization schemes than in spatial ones. Nevertheless, based on symmetry
properties and an analysis of the pole structure of the regularized propagator, we were able to
evaluate loop integrals analytically to a great extent in both schemes.

Our analysis of results for curvature masses as obtained within the spatial and covariant schemes
suggests that the impact of Lorentz symmetry breaking is, in fact, mild in the regime governed by
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a finite quark mass. Along the T-axis and the u-axis of the phase diagram, both schemes give
rise to a second-order phase transition in the absence of explicit chiral symmetry breaking, which
turns into a crossover in the physical case. Interestingly, the momentum-dependent covariant
regulator systematically leads to slightly lower values of curvature masses in the vacuum limit as
well as (pseudo-)critical external parameters. Differences in the results obtained within the two
schemes then grow bigger with increasing temperatures, specifically for temperatures beyond the
phase transition or crossover. Our results further demonstrate that regularization scheme artifacts,
which are associated with external parameters becoming comparable in size to the initial RG scale
Ay, are also sensitive to the treatment of Lorentz symmetry.

As a second step in our investigation of scheme dependences, we have computed spectral func-
tions for the sigma meson and the pions in the presence of explicit chiral symmetry breaking. Our
results for the meson spectral functions again show that, for values of external parameters be-
low the chiral crossover, the choice of a momentum-dependent covariant regulator over a spatial
one only results in quantitative and no qualitative differences. However, this situation changes
for temperatures beyond the pseudo-critical temperature. While the meson spectral functions as
obtained within the spatial scheme still behave as expected from QCD phenomenology, unphysi-
cal structures arise in the pion spectral function as calculated within the covariant scheme. More
specifically, the finite-temperature spectral function becomes negative at low energies and gives
rise to an additional small peak that has no physically meaningful interpretation. Our analysis in-
dicates that the polynomial regulator in the covariant scheme significantly alters the pole structure
of the propagator in momentum space, which can lead to an unphysical behavior in regions of the
phase diagram where multiple physical scales compete with each other. Despite this observation,
we highlight that the spectral function of the sigma meson as computed in the covariant scheme is
free of anomalies.

Possible future efforts in the context of covariant polynomial regulators could involve a fine-
tuning of coefficients ¢, for some given polynomial degree N such that unphysical effects in the
calculation of, e.g., spectral functions are minimized. However, we generally advise against this
step as the complexity as well as the numerical stability of corresponding loop integrals is highly
sensitive to those parameters. Overall, we come to the conclusion that spatial regulators, which
explicitly break Lorentz symmetry, are in fact well suited to study the mechanisms of low-energy
QCD that underlie the chiral phase transition. However, for values of external parameters beyond
the chiral phase boundary, the different treatment of momentum modes by the spatial regulator
becomes more apparent such that we expect effects associated with artificial Lorentz symmetry
breaking to increase. For a comprehensive and accurate study of the phase diagram, we therefore
recommend a symmetry-constrained regularization scheme which also preserves the pole structure
of the propagator.

In the final part of this thesis, we discussed Callan-Symanzik flows of chiral fermion-boson mod-
els within the functional RG framework. Unlike canonically used regulator functions, the CS regu-
lator is independent of loop momenta. As a consequence, CS flows do not describe the evolution
of a given theory from some high-momentum regime down to a low-momentum regime, as in RG
flows of the Wilsonian type. Instead, they specify the dependence of a given effective action on a
mass scale, e.g., the fermion mass. The CS regulator has several advantages: it allows for Lorentz-
invariant renormalization group flows in the vacuum limit, preserves the Silver-Blaze symmetry of
quantum field theories in the presence of a finite chemical potential, and leaves the momentum
structure of the propagator unchanged. Nevertheless, besides the fact that CS flows require an
additional UV regularization, the fermionic CS regulator introduces an explicit fermion mass in
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the form of the RG scale to the theory such that chiral symmetry becomes explicitly broken. We
emphasize that this symmetry breaking is unphysical and significantly spoils any results for chiral
observables. To address this issue, we derived Ward-Takahashi identities for a global chiral sym-
metry of the theory. In our case, these identities are partial differential equations that we solved to
obtain a symmetry-constrained effective action in which all unphysical symmetry-breaking terms
are removed. In essence, the Ward-Takahashi identities give rise to a symmetrization procedure,
which we implemented to render the computation of physical quantities from the corresponding ef-
fective action meaningful. In our framework, physical explicit chiral symmetry breaking is realized
by a linear source term for the field associated with the sigma meson.

We demonstrated the application of our symmetrized CS framework by computing several quan-
tities such as meson curvature masses, the phase diagram, momentum-dependent two-point func-
tions of the mesons, and corresponding spectral functions within the quark-meson model. In
particular, by comparing results from our CS framework with those obtained from unconstrained
CS flows, we demonstrated the strong impact of the regulator-induced explicit breaking of the chi-
ral symmetry on physical observables. With our symmetrized CS framework at hand, we analyzed
the phase diagram of our quark-meson model in the plane spanned by the temperature and the
quark chemical potential together with the meson two-point functions. In general, we find that our
results are in accordance with results from previous studies of related models. Furthermore, we
highlight that the CS regulator generally allows us to perform calculations analytically to a great
extent and thus renders the mechanisms underlying the phase diagram of low-energy QCD more
accessible. Specifically, our exact one-loop results provide the opportunity for an analytic under-
standing of intriguing phenomena potentially existing in different regimes of the phase diagram,
such as the emergence of moat regimes and Friedel oscillations at finite chemical potential. From
a field-theoretical standpoint, our exact results for the meson two-point functions at zero tempera-
ture allow us to analyze the limits of the application of derivative expansions of the effective action,
both at vanishing and finite chemical potential.

The Callan-Symanzik framework developed in this present work is an enormously promising
approach toward the low-energy physics of QCD as it respects all symmetries of the underlying
theory and does not alter the pole structure of the propagator. Therefore, our CS framework sets
the methodological stage for future non-perturbative studies of thermodynamic as well as spec-
tral properties of chiral fermion-boson models. Since we restricted our computations to purely
fermionic loops for simplicity, a natural next step would be to employ our CS framework for
computations which also take bosonic fluctuations into account. Whereas effects from bosonic
fluctuations may be suppressed at very low temperatures along the chemical potential axis, they
are known to be highly relevant for an analysis of the phase diagram at finite temperature and
chemical potential. In particular, it will be very interesting to make use of our CS framework to
improve our understanding of the critical endpoint in the QCD phase diagram and also to study
the potential emergence of inhomogeneous phases.
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CONVENTIONS

A.1 Basic conventions

All calculations are performed in four spacetime dimensions, i.e., d = 4. The standard Dirac

. . . d .
matrices then are complex n x n matrices with n = 2121 = 4. Furthermore, we always consider the
physical number of color degrees of freedom, i.e., we set

N.=3. (A1)
Our Lorentz matrix follows the mostly-minus convention, i.e., we have
n =diag(+,—,—,—) . (A.2)

The Lorentz matrix is used to describe the metric of Minkowski spacetime in Sec. A.4. In the main
part of this work, however, we use the Lorentz matrix to capture the sign structure of the mesonic
two-point correlator.

An indispensable aid in the representation of discontinuities is the Heaviside step function. It
can be generally defined as

1, x>0
VxeR: O.(x)=14¢, x=0 (A.3)
0, x<O0

where the constant ¢ can be chosen at will. For our purposes, setting ¢ = % is the most reasonable
choice. Thus, we define

0(x):= 9% (x). (A.4)
This directly implies that the Heaviside function 0 satisfies the following relation:
O(—x)=1-06(x). (A.5)

In words, the values of the Heaviside function at some point x and its negative counterpart —x
always sum to exactly one. For any other choice of ¢, this property would not hold at x = 0.
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A.2 Units

For simplicity of notation, we shall choose a unit system in which selected physical constants are
set to unity. For example, the speed of light ¢ may be set to unity such that the conversion of the
(invariant) mass of a particle and the associated energy becomes trivial. Specifically, we choose

c=h=kg=1, (A.6)

meaning that we employ the so-called natural units. In this unit system, the physical dimensions
of all quantities can be expressed in terms of dimensions of energy:

[length]™! = [time]™! = [temperature] = [momentum] = [mass] = [energy] . (A.7)
To be more concrete, Eq. (A.6) implies the following conversions:

1m~ 5,07 x 102 MeV ! | 1s~1,52x 10> MeV !,
1kg~ 5,61 x 102 MeV 1K~ 8,62 x 1071 MeV . (A.8)

In natural units, the physical dimensions of a quantity take the form [energy]®, where ¢ denotes
the so-called energy dimension of that quantity. The energy dimension depends in general on the
number d of spacetime dimensions. To give an example, we consider a bosonic n-point correlation
function.

Bosonic correlator ‘ 8(d) 8(4)

i:‘(n)(Q]_j DR Qn—l)

n¥+d ‘ 4—n

It follows that the bosonic two-point correlation function (n = 2) in four spacetime dimensions
(d =4) has an energy dimension of ¢ = 2. A more comprehensive overview of quantities and their
energy dimension can be found in Table A.1.

When it is necessary to compare results from theory and experiment, factors of c, i, and kg can
easily be reintroduced in order to convert the units of the prediction into the units of the data.
More concretely, if our result has the energy dimension ¢ and the physical units for the result
should be [mass]* [length]? [time]” [temperature]®, then consistency requires that

e=a—pB—v+0o (A.9)
and the conversion is accomplished by

(answer in [mass]* [length]? [time]" [temperature]‘s)

= (answer in [energy]®) ¢®~¢ %7 gAtOTF |0 (A.10)
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Quantity e(d) | e(4)
¢ (x) 42 1
¢(p) &£2 -3
5 d+2
6p(x)° H % 3
5 2—d
500 r
= -1 3
P(x), P(x) 5 3
¥(p), ¥(p) -5 -3
5  _6 d+1 5
OP(x)’ §i(x) 2 2
6 5 1-d _3
5Y(p)’ 54 (p) 2 2
I'[e] 0 0
U®)=r(®)/Vv;, d 4
My, My, WU 1 1
d
h 2—3 0
p(®,Q) -2 | -2

Table A.1: Overview of quantities and their energy dimension ¢, which is a function of the number d of spacetime

dimensions. In addition to the general case, we also considered the special case d = 4. The energy
dimensions of v and its adjoint 1 are always the same.

A.3 Shorthand notations

Throughout this work, we adopt the following notations.

* Shorthand notation for integrals:

f _J d*x EJ d?’dexo, J EJ d3x, (A.11)
X R4 R3 R X R3

f= J L/ p dp” f = d’p (A.12)
, Jee @M Jp 2r)3 g 2m 5 Je (2P '

We make use of the Einstein summation convention in which a summation is implied when-
ever a pair of matching upper and lower indices appears:

a' b= a;b;. (A.13)

1

4

It is often possible to express a function of more than one variable in terms of a reduced
function, which depends on fewer arguments. In order to formally distinguish between these
functions, we denote the reduced function with a tilde. For example, the regulator function
can be written as

Ri(p,q) =Ri(p) 2m)*6™ (p—q) . (A.14)

For logarithmic expressions, we use the notation In(a) when the input a € C is a scalar, and
Ln(A) if A€ M,(C) has matrix structure.
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* The trace tr of a linear operator A is defined as
i i

and denotes the sum over diagonal elements. Notice that the elements A;; = (i|A|j) depend
on the choice for the vector space basis {|i)}, whereas the trace itself is basis-independent.
In analogy to the case of countably many basis vectors, we define the trace Tr of an operator-
valued bi-variate function A as

Tr{A} = f f tr{A} (x,y) 5(4)(x—y)=ftr{A}(x,x). (A.16)
xJy X

Here, the trace Tr is also independent of the basis such that a representation in momentum
space is straightforward.

Tr{A}=thr{A}(p,q) (271)45(4)(p—q)=J tr{A} (p,p) . (A.17)
pJq p

Furthermore, it is worth mentioning that integration and the process of evaluating the trace
tr are commutative operations.

A.4 Minkowski and Euclidean quantum field theory

If we aim to describe processes occurring in nature, we need a mathematical structure, that allows
us to specify the location of an object in space and time, as well as to establish the notion of
a scalar based on transformations between different frames of reference. Introductory literature
on relativistic physics naturally provides the concept of Minkowski spacetime, i.e., a manifold R*
equipped with the Lorentzian metric, which serves as a topological basis for a Poincaré-invariant
formulation of the theory content. In this work, we deal with systems of quantum particles in the
absence of strong gravitational fields so that, from the standpoint of general relativity, the usage
of Minkowski spacetime is physically reasonable even over arbitrarily large spacetime distances.

Throughout this thesis, we use the framework of quantum field theory as defined on Euclidean
spacetime', which is related to its Minkowski counterpart by analytic continuation. Euclidean
field theory was first brought forward by Schwinger [451-453] and also Nakano [454], and has
since then gained more and more interest, particularly through the work of Symanzik [455-457]
and Nelson [458, 459]. Over time, it has developed into a powerful and immensely valuable tool
for modern research. The advantage of working in the Euclidean formulation is reflected by the
fact that its (vacuum) correlators are real-analytic functions, while their Minkowski counterparts
are distributions.? Moreover, Euclidean path integrals benefit from exponential suppression of
large field values, whereas the corresponding Minkowski integrals are oscillatory in nature and
hence more difficult to work with.® This has important consequences for practical calculations as

! Notice that purists often refer to it as Euclidean space since former temporal and spatial coordinates are treated equally

by the Euclidean metric. However, we will use the term spacetime as the incorporation of finite temperature or a finite
chemical potential by means of the imaginary-time formalism inherently leads to the distinction of one Euclidean direction,
see Section 2.3.

Correlation functions of a Minkowski quantum field theory are often declared to be tempered distributions but several
extensions have been proposed in order to include a wider class of test functions, allowing for modified locality proper-
ties and non-renormalizable interactions. Noteworthy works suggest the use of ultradistributions [460, 461], (Fourier)
hyperfunctions [462-469], and further generalizations, see, e.g., Refs. [470-472].

Although significant progress has been made in controlling the real-time functional integrals arising in quantum mechanics,
the situation for real-time functional integrals relevant to quantum field theory is much less developed. For an accounting of
both, see, e.g., Ref. [473].
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the convergence properties of the Euclidean path integrals allow for first-principle computations
of correlation functions on a spacetime lattice by numerical Monte-Carlo methods. Furthermore,
the path integral formalism reveals a formal connection between Euclidean quantum physics and
classical statistical physics such that Euclidean field theory also provides a suitable framework for
studying the equilibrium thermodynamics of relativistic quantum systems.

For practical purposes, it can be convenient to construct an interacting quantum field the-
ory within the Euclidean framework, i.e., without prior knowledge that the generated Euclidean
Green’s functions arose from a Minkowski quantum field theory. In order to claim any physi-
cal relevance for the results obtained from the Euclidean field theory, the Euclidean construction
must be built upon a system of conditions, which not only justifies an analytic continuation to
Minkowski spacetime but also ensures that the analytic continuation yields a sensible quantum
field theory that suffices fundamental physical principles. Such a system indeed exists in various
forms and stages of refinement, see, e.g., Refs. [101, 474-482], and it is based on the Osterwalder-
Schrader axioms [474, 475].% The several formulations of the Osterwalder-Schrader axioms differ
on a technical level but their relationship is, at least conceptually, well understood. Despite these
differences, they are all built upon the same central idea of enabling an Euclidean equivalent
of relativistic quantum field theory.”> Following the core reasoning of the Osterwalder-Schrader
construction, we notice that in the Euclidean framework, the Lorentz group SO*(1,3) translates
into the rotation group SO(4), unitarity becomes reflection positivity, and cluster decomposition
remains cluster decomposition. Analytic correlation functions of an Euclidean quantum field the-
ory with those properties are then related to real-time correlators of a corresponding Minkowski
quantum field theory by analytic continuation. This sets the stage for our “heuristic” study of
quantum field theory and we do not aim to give a more detailed or more rigorous presentation
of its mathematical foundations. Mathematical quantum field theory is a wide and ongoing area
of research, which plays an important role since its developments benefit mathematics as well as
physics. Nevertheless, it is severely handicapped by the fact that it is hardly possible to obtain
results in quantum field theory, which are both interesting and rigorous. For an overview of the
current efforts in mathematical quantum field theory, see, e.g., Refs. [482, 492-497].

In the following, we present more concretely how Euclidean and Minkowski quantum field the-
ory are related. We start with the latter and perform an analytic continuation of the time vari-
able such that the new time axis is rotated by an angle 6 € (—m,0) into the complex plane, i.e.,
x% — el?x%. This procedure, commonly known as Wick rotation [498], is based on the assump-
tion that there are no singularities in the covered region of the complex time plane. We choose
0 = —n/2 and hence let x° € R parameterize time along the purely imaginary direction. The

spatial components of the coordinate four-vector remain unchanged.

x0 - —ix? . (A.18)

Notice that, prior to Osterwalder and Schrader, Nelson [483] offered a probabilistic solution for the reconstruction of
Minkowski quantum field theory and presented an axiomatic system based on the construction of a Markov field. This
has led to studies of the interplay between constructive quantum field theory and classical statistical mechanics, see,
e.g., Refs. [282, 283]. Moreover, it soon became clear that Nelson’s axiomatic system is stronger than the one given by
Osterwalder and Schrader [484]. Nelson’s method relies on scalar fields to have a Markovian structure, which turned out to
be exceedingly difficult to verify for interacting fields, and cannot include fermion fields due to their Grassmann nature such
that the Osterwalder-Schrader scheme is generally considered to be more worthwhile [282, 485].

Constructing an axiomatic system for Euclidean quantum field theory that enables a well-defined transition to Minkowski
spacetime implies having an analogous system of axioms for Minkowski quantum field theory in the first place. Indeed, a
great amount of pioneering work in the endeavor to establish a consistent mathematical basis for Minkowski quantum field
theory has been provided by Wightman [117, 486], Lehmann, Symanzik, and Zimmermann [487, 488], Ruelle [489] as
well as Haag and Kastler [490, 491].
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As a consequence, the metric of Minkowski spacetime, gy = 7, effectively gets converted into the
metric of Euclidean spacetime, gz = 1,,,, up to a global minus sign. To see this, we examine how
a Lorentz scalar in position space transforms under the analytic continuation (A.18):

xT gy x= (x0)2 %% - —(xo)2 —X2=—xTgpx. (A.19)

As for any Euclidean vector space, it is common practice to omit g in the matrix product such
that xT gg x = xT x. In order to obtain a consistent analytic continuation of the Fourier transform,
the Wick rotation of the Minkowskian energy variable p° has to be performed in the opposite
direction compared to its position space analog. A clockwise Wick rotation of the Minkowskian
time variable, see Eq. (A.18), then implies a counterclockwise Wick rotation of the Minkowskian
energy variable. In contrast to this, a clockwise Wick rotation of the Minkowskian energy variable
would be problematic anyway since the Feynman propagator with the ie-prescription has poles in
the fourth and second quadrant of the complex energy plane. As before, the spatial components
of the four-momentum remain the same.

p® —ip°. (A.20)

This gives rise to the (negative) Euclidean metric in momentum space, analogous to relation (A.19).
Let us consider a general object #, which can stand for a four-vector or a four-gradient in Euclidean
spacetime. It becomes clear there is no distinction between contravariant and covariant compo-
nents of 4, i.e.,

=gy 9,=6""9,=09,. (A.21)

The same principle also applies to tensors of higher order. Notice that, nowadays, the term Wick
rotation is used rather generically for the transition between Minkowski and Euclidean quantum
field theory without necessarily referring to the traditional approach of keeping the metric fixed
and changing the timelike component. A more general formulation is based on the vielbein formal-
ism and extends the notion of Wick rotation as presented above to curved Minkowski spacetimes,
see, e.g., Refs. [108, 499, 500].

In the second step, we show how field degrees of freedom in Euclidean and Minkowski quantum
field theory are related. For the sake of clarity, quantities in Minkowski spacetime are labeled with

a subscript M and quantities in Euclidean spacetime with a subscript E. In the case of a scalar field
theory, the bosonic fields obey the relations

pp(x®, %) = pu(=ix®, %), ¢p(P°,B) =i¢m(=ip’,B) (A.22)

such that the analytic continuation translates the action functional into the Euclidean action and a
global factor i:

Suldml = J (¢M(x) %[—aﬁ—m;] ¢M(x)—V(¢M)(x))

— iJ (4513(35) %[—3]52 + mi] Pr(x)+V (¢E)(X)) =1Sg[¢g] . (A.23)

The appearance of the imaginary unit is essential as it turns the oscillatory factor of the path
integral into a damping factor:

M JD¢M eiSulém]l _ M fDd)E e Sel¢e] (A.24)
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For fermionic field theories, the Wick rotation is a little more subtle since properties of spinor
representations of the Lorentz group are sensitive to the metric signature of spacetime. There have
been several approaches to Euclidean fermions, see, e.g., Refs. [108, 500-504], but we follow the
line of argumentation by Wetterich [108] and relate our Grassmann fields by

Pe(x®, X) = Pu(=ix®, %), Ye(p®,B) = ivm(—ip®, B) ,
Pp(x®, %) = —ihy(—ix", %), Pp(p®B) =Pu(-ip"B) - (A.25)
Furthermore, we impose the following relations for the Dirac matrices,
}f% = YI(\)/I , yiE = —iyfv[ Vie{1,2,3}, yg = yi,[ , (A.26)
which leads to the Euclidean Dirac algebra
{rt.y2}=26""  VYu,ve{0,1,2,3}. (A.27)
Notice that the relations (A.26) also imply self-adjoint Euclidean Dirac matrices, i.e.,
(9 =92 Vae{0,1,2,3,5) . (A.28)

We now have all the necessary components to derive the Euclidean action for the fermionic quan-
tum field theory:

Sut[¥w> ¥u | =f (i) [t —my] Pral) = Var (¥ vora) ()

ﬁiJ (¥e(x) [ide+imy] Yp(e)+ Ve (e, vp) () =18 [Pe.ve] . (A29)
Thus, the path integral then transforms according to
S J DipyDipyy el Pwin] avEf DipyDipg e il Pee]. (A.30)

Together, all of the relations above ensure that statements about the Minkowski quantum field
theory translate consistently to analogous statements about the Euclidean quantum field theory
and vice versa. However, we will not be overly strict in our use of language and will often refer
to SO(4) symmetry as Lorentz symmetry to emphasize the actual physical meaning of the rotation
group within the framework of Euclidean quantum field theory. Since we exclusively employ Eu-
clidean spacetime throughout this thesis, labels specifying quantities as Euclidean will be dropped
outside this section.

A.5 Fourier transforms

Whenever we want to express a quantity in terms of its conjugate variable, the change of represen-
tation has to be done by a Fourier transform. To switch from position space to momentum space
and vice versa, we impose the following conventions. For zero temperature we have

. ro

¢ (x) =J e”* ¢(p), #(p) =J e P p(x), (A.31)
p X

. r

P(x) =J e” *(p), Y(p) =J e P Y(x), (A.32)
p X

_ R _ S

P(x) =f e P (p), Y(p) =J e P(x). (A.33)
p

X
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In order to include temperature dependence, we make use of the imaginary-time formalism of
thermal field theory. The Fourier transforms of the boson and fermion fields are then given by

r T p s

p(x)= LS eioneip's ¢n(B), ¢n(P) =f f dx® e e PN g(x),  (A34)
Jp Bzt x Jo
[ 1 0 iare R . p 0 —ivx® —i3TF

Yx)=| =) e e Y, (p), wn(p)=f f dx” e e P(x),  (A.35)
Jp B izt z Jo

— [ 1 0 st — - . p 0 ivx® i3T% =

Yx)=| =) e e Y, (p), wn(p)=f f dx” e e a(x), (A.36)
Js Bzt z Jo

where f = 1/T denotes the inverse equilibrium temperature. Due to the periodicity properties
of the field variables at finite temperature, their mode expansion in the Euclidean time direc-
tion comes along with discrete frequencies, the so-called Matsubara frequencies. For bosons and

fermions, the

respectively.

Matsubara frequencies read

. v, =2n+1) % , (A.37)

VneZ: w, =2n

=3



BOSONIZATION

The path integral formulation of quantum field theory provides a convenient framework for the
application of analytical tools such as bosonization. This term refers to a set of techniques that
aim at reformulating a field theory defined in terms of microscopic fermion and gauge degrees of
freedom as an effective theory of collective boson fields. Considering the partition function Z for
a given theory S, bosonization can be understood as the following transformation:

Z o J D Dip DAF e SHw.AT Jqu DVH ... e SleVh ] (B.1)

The new theory of bosons is physically equivalent to the original theory, only the description of the
system in terms of field degrees of freedom and corresponding symmetry patterns has changed.
In fact, all parameters of the bosonized theory S, are related to parameters of the original theory
by the bosonization procedure. It is worth mentioning that bosonization is not an RG transfor-
mation and, therefore, is not associated with a change in scale. Bosonization techniques have
proven to be extremely valuable in quantum field theory and many-body physics as they allow for
a representation of the system in terms of relevant low-energy degrees of freedom from the very
beginning. This leads to a simplification of Feynman diagrams, thereby enhancing our understand-
ing of physics at larger length scales. For more general information on the subject of bosonization,
see, e.g., Refs. [505-511].

In the following, we consider an NJL-type model and demonstrate the process of partial bosoniza-
tion. This is a type of bosonization in which the fermion degrees of freedom do not get completely
eliminated. Instead, partial bosonization allows us to phrase multi-fermion interactions in terms
of fermion-boson interactions. This does not only simplify analytical treatments in general but is
particularly beneficial when studying the properties of bosons for which fermion dynamics play an
essential role. The extended two-flavor (vacuum) NJL model under consideration reads

£(,9) = [id +imeue] 9 + Line (¥,0) (B.2)
Loe(F0) = 2 [(39) - (@r7w) |- 2 (G w)’
+Gp (1_/’ YSTZTA EL’C) (JC Y5T2TA 1.[’) > (B.3)

where we have suppressed the dependence of the fields on spacetime coordinates for simplicity.
Working in the isospin-symmetric case, the fermion mass m.,,, = m, = my refers to the current
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mass of the up and down quarks. The interaction Lagrangian L;,, of the NJL model contains
four-fermion interactions which may be classified according to the bosonic condensates they can
give rise to. More specifically, our model takes into account the scalar as well as pseudoscalar
channel, a vector channel and a diquark channel. At low temperatures and large densities, the
latter is dynamically rendered the most dominant channel and constitutes a crucial ingredient in
the emergence of color superconducting phases of quark matter [30, 264]. The implied sum over
the color index A in the diquark channel runs only over the antisymmetric color generators T4
in the fundamental representation. In accordance, this channel suggests the formation of a scalar
condensate, which behaves as an antitriplet under SU(3) transformations in color space. Moreover,
we have made use of the charge-conjugated fields

Ye=cy', YC=yTC (B.4)

with C = iy2y° denoting the charge conjugation matrix. The coupling parameters Gg, Gy and Gy,
for the corresponding four-fermion interactions are all assumed to be real-valued and positive.

At the heart of every path integral bosonization lies the Hubbard-Stratonovich transformation
[512, 513], a systematic procedure of rewriting an interacting theory in terms of auxiliary field
variables. In the case of the NJL. model, the Hubbard-Stratonovich transformation is used to replace
a four-quark interaction with a Yukawa-type coupling between the quarks and a collective boson
field. In general, we start by making use of the Gaussian-type path integral

1 1
N N N J D¢ DV DAG DAB exp (—f (Emigbz + Em‘z,V2 + mZAA:AA)) =1, (B.5)
X

where different fields have been introduced for the bosonization of each interaction channel. For
completeness, it should be mentioned that the field variable ¢ has four components, which are
denoted by o and 7 in the following. Although all of these field variables are in principle purely
generic at this point, they will acquire physical meaning when linking them to our model by means
of the Hubbard-Stratonovich transformation. This transformation relies on a strategic shift of field
variables. In particular, we consider shifting the fields according to

0—>0+a0@1/)+cg, 7‘f—>ﬁ:+an@y5%1/), V“—)V“+avl_/)y“1/),
Ap— Dyt ap Yyt Ty, AL — AL —ay Y YT, Ty C . (B.6)

The transformations now indicate the fermion content and quantum numbers of the auxiliary field
variables. As a result, the fields ¢, V#, and A, can be associated with collective bosons as appearing
in the context of low-energy QCD. To be more concrete, ¢ contains the scalar meson o and the
pseudoscalar pions 7. The omega meson associated with the isoscalar-vector channel is denoted
by V¥, whereas A, refers to the complex-valued diquark field with an open color index. The mass
parameters for the boson fields are real-valued such that Eq. (B.5) is well-defined. Apart from
this constraint, the masses are arbitrary here but have to be eventually fixed in order to calculate
low-energy observables.! We further demand that

1 Gv
2

Gg
2= = aZ = > malaal*=Gp,  (B.7)

G I
—_— 5 —-m

1
2 2
my ag = 2 Em(i)a

as well as

mi AyCo = —iMeyrr - (B.8)

2

1 We could in principle introduce different mass parameters for the scalar mesons, m;,

of the scalar interaction channel requires that me = mf[ =m

and mi . Nevertheless, chiral symmetry

2
.
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The conditions (B.7) ensure the partial bosonization of the interaction channels, while the require-
ment (B.8) leads to the bosonization of the fermionic mass term. Under the transformations of
field degrees of freedom, the Gaussian integral behaves as follows:

1 1
(—méqﬁz + —m%V2 + mZAAZAA))

Ay Ny Na J D¢ DV* DAY, DAP exp (— f 5 5

x
= Ny My A J D¢ DV* DAL DAP exp (—Jx (%miqbz + %m‘z,V2 + mzAAzAA))
X exp (—f (mi 1,_0 [aaa + anysfini] Y + micaa + %micg + m%, ay J’Y“V;ﬂ/’))
x
X exp (—f (m2A aAI,_bC }/STZTAAZI,U — m2A oz*A @ YSTZTAAA wc))
x
<exp - | (Fimamv—Lun(T20)) ) ®9)
x

Terms that are constant with respect to any field variable do not affect the dynamics of the phys-
ical system. Consequently, the corresponding exponential factor can simply be absorbed into the
normalization,

1
A{é =Ny exp(—f Emécg) . (B.10)
X

Notice that the conditions (B.7) do not uniquely determine the transformation parameters. The
specific choice of sign is then a matter of convention, which leaves the physics unchanged. We
follow the conventions of Refs. [305, 514] and choose

G G G
N T L SN N N R Y
m¢ m¢ mV mA

which also leads to

(B.12)
For convenience, we further introduce the parameters

G G
h¢ = mi _S B hv = m‘z/ & ) hA = mZA _D ) (B']'B)
md’ mv mV

which will serve as couplings in the partially bosonized formulation of our extended NJL model.
In addition, we define

Hi=mMyy \| — = ———= . (B.14)

Since this parameter is linear in the current quark mass, it can likewise serve as a measure of
explicit chiral symmetry breaking.
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In short, we have made use of the fact that the unit element has a path integral representation
with different types of fields as integration variables. A transformation of these fields with suitably
chosen transformation parameters then allows us to connect the fields in the integral relation to the
fermionic system under consideration. Applying this procedure to the path integral representation
of the partition function gives rise to a new Lagrangian:

zZ= Jvf Dy Dy e~ = L)
— JVJ%J%/JVAJ'DI_/J ,Dw 'Dd) DVH DAE DAB e—fx(ﬁ@,sz%mi¢2+%m‘2/v2+m2AAj‘AA)
— Mp f Dip Dip D DVH DAY, DAP e [ Lonth.6 V8580 (B.15)

The new normalization constant reads
Nop = N NNy N (B.16)
and the partially bosonized version of our NJL model is given by the Lagrangian

Lob (P, .V, A4 8) = [i8 +ihy (0 +ir°tim) +hy Y] 4
+hp Y© stzTAA:‘P —hp P YT, TAALYC
1 1
+§m%¢¢2—H0+5m5v2+m2AAngA. (B.17)

It now becomes clear that h denotes the coupling for a Yukawa-type interaction between the quark
and boson degrees of freedom. The parameter H can be associated with a fixed source field for the
scalar meson. In the context of spin models, for example, this would correspond to a fixed external
magnetic field. Also notice that, whereas a finite quark mass spoils the invariance of the fermionic
theory under axial-vector transformations, the parameter H introduces a linear breaking of 0(4)
symmetry in the meson sector.

We would like to highlight that the Hubbard-Stratonovich transformation is an exact transforma-
tion and does not involve any approximations for the original functional integral. Since normaliza-
tion factors of the path integral do not contribute to correlation functions, observables calculated
from the Lagrangian (B.2) and from its partially bosonized form (B.17) are identical. In this sense,
both formulations are equivalent descriptions of the underlying physical system.

Lastly, it is worth mentioning that there is a second way of carrying out the Hubbard-Stratonovich
transformation. After having arrived at the transformed Gaussian integral (B.9), one can rearrange
the purely fermionic terms to arrive at a path integral identity for the theory under consideration,

1= ‘/%’/VV’/VA J D¢) Dy H 'DA; DAB exp (_f . ) e_fx(_aimcurrw_»cint(a’w))

X

o L enlin) = i, [ g v D D87 -

X

) . (B.18)

In words, the exponential factor containing the fermionic mass term and interaction channels
can be rewritten in terms of collective boson fields. Applying this identity to the path integral
representation of the partition function and using the transformation parameters as previously
defined, the resulting Lagrangian exactly coincides with Eq. (B.17).



RELATIONS RELEVANT AT
FINITE TEMPERATURE

C.1 Hyperbolic functions

Hyperbolic functions and their inverses naturally arise in quantum field theory. To give an example,
hyperbolic functions directly emerge as the result of Matsubara summation in finite-temperature
field theory. In order to achieve optimal numerical performance in the computation of observables,
the ability to formally manipulate hyperbolic functions is essential. We therefore collect some of
their most important properties in the following.

C.1.1 Definitions

The hyperbolic sine and cosine functions are given by

X _ a—X ©O 2n+1
VxeR: sinh(x) :=isin(—ix) = ¢ 2e = HZ:(; (2):1 O (C.1)
) eX+e ™ o x¥
VxeR: cosh(x) := cos(ix) = — = HZ:(:) @) (C.2)

Every other hyperbolic function can now be defined in terms of sinh and cosh:

sinh(x) eX*—e™ e>*—1 2
eER: tanh = = = =1—-—- C.3
vx anh(x) cosh(x) eXx+e X e2x+1 e2x+1° (€3)
cosh(x) e*+e ™ 241 2
R\ {0}: th = = = =14+ ———, C.
VxeR\{0} coth(x) sinh(x) eX—e™x e2x—1] e2x —1 C4)
VxeR: sech(x) = 1 _ 2 (C.5)
' " cosh(x) eX4ex’ '
1 2
Vx eR\{0}: csch(x) == (C.6)

sinh(x) e e
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Due to the analytic properties of the exponential function, the hyperbolic functions can be analyt-
ically continued to the complex plane. However, for simplicity, we assume real-valued arguments
unless stated otherwise.

C.1.2 Basic properties

Asymptotic behavior:

lim sinh(x)= =00, lim cosh(x)=+o0 , (C.7)
x—+oo xX—*oo
xlg:noo tanh(x) = £1, Xlirinoo coth(x) = +£1, (C.8)
lim sech(x)=0, lim cosh(x)=0. (C.9
x—+too Xx—+00
Derivatives:
d . d .
— sinh(x) = cosh(x) , — cosh(x) = sinh(x) , (C.10)
dx dx
d 2 d 2
— tanh(x) = sech®(x) , — coth(x) = —csch®(x) , (C.11)
dx dx
d d
™ sech(x) = —sech(x)tanh(x) , ™ csch(x) = —csch(x) coth(x) . (C.12)
x x
Identities:
cosh(x) £ sinh(x) = e** | (C.13)
cosh?(x)—sinh?(x) =1, (C.14)
sinh(x £ y) = sinh(x) cosh(y) =+ sinh(y) cosh(x) , (C.15)
cosh(x %= y) = cosh(x) cosh(y) £ sinh(x) sinh(y) . (C.16)

Expressing one by another:

1
tanh(x) = B sinh(2x) sech?(x)

=sgn(x) y1— sech?(x) , (C.17)

tanh(x) = 2 coth(2x) — coth(x) , (C.18)

1
coth(x) = 5 sinh(2x) esch?(x)

=sgn(x) 4/1+csch?(x) . (C.19)



C.1 HYPERBOLIC FUNCTIONS

Half-argument formulas:

sinh(x)

v/ 2cosh(x)+2 ’

)

) _ 1 cosh(;c)+ 1 ’

) sinh(x) = e*—e™  e*—1
)

cosh(x)+1 eX4+ex+2 ex+1°

sinh(x) = e*—e™  e'+1
cosh(x)—1 eX+ex—2 ex—1°

C.1.3 Inverse hyperbolic functions

The inverse hyperbolic functions, often called area functions, are given by

VxeR: arsinh(x) = sinh }(x) =In (x +Vx2+ 1) ,

Vx €Rsq: arcosh(x) = cosh™!(x) =In (x +Vx2— 1) ,

Vxe(-1,1): artanh(x) = tanh™}(x) = %ln(i ha X) ,
—Xx

ERELY: ot =m0 = 221
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(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

The hyperbolic secant and cosecant also have inverses but those do not appear as often in physics
as the other area functions. We will therefore omit them here. In addition, the following special

forms are worth mentioning:
1
Vx€(0,1): 2artanh(1—2x):1n(——1) s
X

VxeR\[-1,0]: 2arcoth(1+2x)=ln(%+1) .

(C.28)

(C.29)

Like the hyperbolic functions, the area functions can be expressed in terms of other inverse

functions.

1
arsinh(x) = sgn (x) arcosh(\/ x2 4+ 1) = artanh ( 1/;_1) =sgn(x) arcoth( \| 1+ —2> , (C.30)
x2 4+ x

1 X
arcosh(x) = arsinh(\/ x2— 1) = artanh( \| 1— —) = arcoth( ) ,
x?2 vx2—1

1 X 1

artanh(x) = arcoth (—) = arsinh( ) =sgn(x) arcosh( ),
X V1—x2 8 V1 —x2

arcoth(x) = artanh (1) =sgn(x) arsinh( ! ) =sgn(x) arcosh 1] )
X 8 vx2—1 8 Vx2—=1/ "~

(C.31)

(C.32)

(C.33)
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C.2 Matsubara sums

In the imaginary-time formalism of quantum field theory, the introduction of a finite equilibrium
temperature leads to a discretization of momentum space along the time-like direction. As a result,
integrals over the continuous momentum variable p° at zero temperature turn into an infinite sum
over Matsubara frequencies at finite temperature. Such a series can often be performed analytically
by means of the Matsubara formalism, see Refs. [266, 273, 286, 316] and also Section 2.4.3 for
details. In the following, we would like to provide additional relations in the context of Matsubara
summation.

C.2.1 Particle distributions

For a system of identical particles, we define the generalized distribution function

1

Yae{-1,1}: ng(x) = , (C.39)
eX+a
which has the following properties:
ng(—x)=a—ny(x), (C.35)
VmeZ: n_,(x)=-—n,(x+in(1+2m)), (C.36)
ina(x) =—a ny(x) ny(—x) . (C.37)
dx

Inserting the previously defined values of a, the distribution function corresponds to either the
Fermi-Dirac distribution for fermions or the Bose-Einstein distribution for bosons.

Fermi-Dirac distribution:

np(x) = ng_y (x) = % (1 —tanh(f)) _1 —2§: X (C.38)

2 2 (2n+1)2m2+x2°

n=0

np(—x) —np(x) =1 —2np(x) = tanh (g) . (C.39)

Bose-Einstein distribution:
1 X 11 < x
=Ng—_ =— th(—)—1)=——— 2 —_—, C.40

() = Na=1 () 2 (co 2 x 2 * ; (2mn)? + x2 (C.40)

ng(x)—ng(—x) =1+2ng(x) = coth(%) . (C.41)
C.2.2 Exemplary sums
With the generalized Matsubara frequency

VmeZ,ae{-1,1}: wg‘;) :22/5—n(m+1:a) , (C.42)

a simple example of a Matsubara sum is given by

1 1 a _ —

BZ T = gy LeBUX+ ) = na(BUX |~ )] (C.43)

meZ (wg,ff) + iﬁ) + 22
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This identity holds for all ¥ € R\ {0} and u € R with the additional constraint of |X| # u in the case
of a = —1. The value of the series at ¥ = 0 can nevertheless be obtained from the right-hand side
by taking the limit as X approaches zero. Here, u = |F|u denotes a chemical potential together
with the fermion number F, whereas X refers to a mass term. Considering more specific cases, we
can express the particle distributions in terms of hyperbolic functions for each value of a.

np(=B X[+ u)) —np(B(X[— 1))

_1 Boxi+a B sinh(1%)
=3 {tanh(z(lll +u)) +tanh(2(|){| u))} cosh(BZ) + cosh(BT) ° (C.44)

np(B(X[—u)) —np(=A(X]+u))

_1 B = By =\ sinh(B %)
=32 {COth(z(lxl+“))+C°th(2(|xl “))} = cosh(BZ) —cosh(By ~ &)

With this result at hand, we can generate Matsubara sums for functions of higher powers by
differentiation. We demonstrate this idea in the following.

141 1
’”Ze;((w(a)+1,u) +)(2)2_ 2%8){/52(@()_““) +x2

[na(=BUXI+E) —na(BUX|—@)]+

Sl

4|X|3 n(—=BUX|+m) +n (BUX[—@)].  (C.46)

As before, we may write the differentiated particle distributions in terms of hyperbolic functions
for each value of a.

(P + )+ (p|— ) == {sect? (L4 +sect? (B -m)} . can)
(=B + )+ (B~ ) =5 fese? (Do) v (Boe-m)} . cam)

C.3 Commutation relations

In order to evaluate Matsubara sums in closed form, it is often convenient to follow the strategy of
interchanging derivatives with the summation process. That such an interchange is indeed allowed,
will be shown in the following. As a preliminary step, we first demonstrate that differentiation can
be interchanged with the calculation of a residue.

C.3.1 Relation 1

We consider a generally complex-valued function f(z, y), which is holomorphic in z € C\ P. Here,
P denotes a finite set of isolated points, which are poles of the function. In the neighborhood of a
pole z* = g(y) € P, the function can be represented as

h(z,y)
(z—gy)n

where h and g are assumed to be differentiable. We are going to show that the processes of taking
the derivative with respect to y € R and calculating the residue of f(-,y) at 2 = z* do, in fact,

VneN: f(z,y)= , (C.49)
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commute. Specifically, we will show that

Res(3,f (-, ¥),8(y)) = % Res(f(+,¥),g(¥)) . (C.50)

In a context relevant for physics, the real-valued variable y may refer to, e.g., the RG scale, a mass,
or an external momentum. We will prove the statement above by starting from the left-hand side.

Using the Leibniz notation (2.165) for partial derivatives, we have

Res (3, £(-,¥),8(¥))
Cpes[ PG rd Y RGy) )
_Res(( —o) ( by ))(-—g(y))n+l’g(y)

=2 tim 2[00 h<°’1>(z,y)+n(%g(y))h(z,y)]

n! z—g(y) dzn

n

= 1 lim Z (n) (aa—;(z — g(_y))) h(n—j,l)(z,y) +n (%g(y)) h(”’O)(z,y)

n!z—g() [\

=L lim [(z—g(y)) h(”’”(z,y)+nh("‘l’”(z,y)+n(dig(y))h(”’o)(z,y)]
y

nlz-g(y)
e LRGN E o ) LI EORo)
(n_ll). dd R 9(g(y), )
n—1
dcl’ ﬁzig(y) ;Z” a1 V)
d 1 ] on— 1

=3 oD S [E ) ()]

= d—Res(f(~,y),g(}’)) .
Y

It is worth mentioning that the validity of the commutation relation (C.50) does not rely on the
pole being a function of the variable y. In other words, differentiation with respect to y and
calculating the residue at z = g(y) can in particular be interchanged for %g( y)=0

C.3.2 Relation 2

We consider a generally complex-valued function f(z,y), which is holomorphic in z € C\ P and
differentiable in y € R. Again, P denotes a finite set of isolated points, which are poles of the
function. Suppose that the corresponding Matsubara sum exists for all y, then

Z (@ ny) == Z F (@ ¥) (C.51)

meZ meZ
for all B > 0. In words, the processes of evaluating the Matsubara sum and taking the derivative
with respect to a temperature-independent variable can be interchanged. This statement is gener-
ally non-trivial since infinite sums do not need to preserve the linearity of the operator applied to
them. At the heart of Eq. (C.51) lies the fact that the infinite sum of contributions for different Mat-
subara frequencies can be turned into a finite sum of residues by means of the Matsubara formal-
ism. Also notice that the statement above holds independently of whether we consider fermionic
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or bosonic frequencies. Nevertheless, the intermediate steps linking both sides of Eq. (C.51) are
sensitive to the type of frequency. The explicit analytical manipulation proving the commutation
relation is presented in the following.

Z 8, f(@,y)=—ia > Res(8,f(-,y) n(—ip-),z*)

meZ z*eP

=—ia Y Res(3,[F(-,¥) ng(=if)].=")

z*eP

€O g S % Res (F (+,) ng(=if ),2)
z*eP

Z Res(f(+,¥) ng(—if-),z")

zEP

(a)
“av Zf(w

meZ

|P|<<>o

C.4 Zero-temperature limits

Within this section, we extend our discussion of hyperbolic functions to complex arguments. More
specifically, we consider complex numbers from the set M = {z € C |z ¢ iR\ {0} }. As a result, we
are prepared to give a presentation of commonly encountered zero-temperature limits.

VzeM: lim tanh(T) — 20(Re {2}) — 1 = sgn (Re {z}) (C.52)
vzeM\{0}:  lim coth(;) — 20(Re{z))— 1 = sgn (Re {z}) , (C.53)
VzeM: hn%nF(T)_ 1— 0(Re (z)) = O(=Re {2)), (C.54)
Vz e M\ {0} : %iir%)nB(?) = 0(Re{z))—1=—0(—Re {2}), (C.55)
VzeM: lim SeCh;(%) = lim ! _tar;hz ®) _ osmetay). (C.56)
vzeM\{0}:  lim CSCh;(%) = lim coth” (T%)_l ~0. (C.57)

It is also worth mentioning that related zero-temperature limits can be obtained by applying deriva-
tives. To give an example, we make use of Eq. (2.185) for n = 1 and obtain

i 2 (5)- ()= [ 12 )]
fim (7 ) = Hm e (7 )= | ax dm e 7

- [y a-600)

x=Re{z}

=—06(Re{z}) . (C.58)
x=Re{z}







SYMMETRIZATION OF CS FLOWS

D.1 Preliminaries

The orthogonal group O(N) is a compact Lie group, which is associated with rotations and reflec-
tions in N € N dimensions. More formally, this group consists of N x N real-valued orthogonal
matrices:

ON)={M eGL(N,R) |[MTM =MMT =1}, (D.1)

where GL(N,R) denotes the general linear group. With the aid of the determinant condition, we
can divide the orthogonal group into two connected subsets. In particular, one subset is the special
orthogonal group

SO(N)={M € GL(N,R) |[MTM =M MT =1, det(M) =1}, (D.2)

which is the group of orthogonal matrices with the additional requirement that the determinant
evaluates to 1. All elements of SO(N) can be continuously connected to the identity matrix and
the group is associated with rotations without reflections. The other subset is the set of orthogonal
matrices with det(M) = —1 for M € O(N). This set is disjoint from SO(N) and does not form a
group since it lacks the identity element and also fails to satisfy the group closure property.

A general N x N matrix has N2 independent entries,
dim (GL(N,R)) =N?2. (D.3)

The orthogonality condition now imposes constraints that reduce the number of independent en-
tries. The determinant condition, however, does not further restrict the number of independent
parameters needed to describe any element of the group since the determinant is a discrete oper-
ation and cannot trigger continuous deformations. Therefore, the dimensions of the orthogonal
group and its special subgroup are identical:

N(N—1)

dim (O(N)) =dim(SO(N)) = 5

(D.4)

This also means that the two groups share the same generators.
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D.2 Derivation of the WTI

We consider a theory S of N € N scalar bosons, assembled into the field variable ¢. These bosons
span an N-dimensional space of field degrees of freedom, containing

(D.5)

N
N(N+1 N(N-1
. 2 2
i=1
planes of rotation. General rotations in this boson field space are elements of the group SO(N). It is
worth mentioning that elements of a Lie group can be represented with the aid of the exponential
function. This exponential map then links the Lie algebra to the corresponding Lie group. To be

more concrete, a rotation among the boson fields is given by
R(a)=-exp (anj) =1+ anj +0(a?), (D.6)

where a/ € R is the continuous parameter of the rotation, indexed by j € {1,..., % (1\;_1) }. The object

X; denotes a generator of the rotation within the j-plane of boson field space and is an element
of the Lie algebra so(N). We would like to highlight that any finite transformation, which is an
element of a differentiable group, can be constructed from repeated applications of an infinitesimal
transformation. Therefore, it suffices to consider rotations of field degrees of freedom around an
infinitesimal angle in the following,

¢— ¢’ =(1+a'X;)¢ . (D.7)

It automatically follows that the symmetry properties of a theory are fully encoded in the linear
response of the action functional to the symmetry transformation. In particular, if the classical
action is invariant under SO(N) transformation of its boson content, it holds that

S[p1—-S[e'1=S[(1+a/X;)p|=S[¢p1+a'5;S[¢]=S[]. (D.8)

This implies that the first variation vanishes:

5.S[¢p]= (%S [(1+a’X;) qb])

_ [ osle] _
—L5¢(q)Xl¢(q) 0. (D.9)

Here, q is a generic variable of representation space and may correspond to position or momentum.
The generator X; is a linear operator on the fields and acts independently at each point in represen-
tation space. In addition, we emphasize that our considerations here are by no means restricted to
the classical action but extend to any other rotation-symmetric functional. We therefore conclude
that the condition above should in particular hold pointwise:

65[¢]
5¢(q)

This functional differential equation can be considered a Ward-Takahashi identity (WTT) for rota-
tion symmetry in boson field space. Finally, we would like to remind ourselves that the Lie groups
SO(N) and O(N) have the same generators. Thus, the equation above can equally be regarded as
an identity for invariance under orthogonal transformations. Every scalar quantity that is SO(N)-
symmetric is also O(N)-symmetric and vice versa. As a result, in a theory with fermions, rotation
symmetry in the space of effective bosons can be related to chiral symmetry in the fermionic sector.

a=0

Xi¢(q)=0. (D.10)

Let us now delve into a more concrete example. The quark-meson model as defined in Eq. (3.1)
includes four bosons: the sigma meson and three pions. Accordingly, these mesons form a four-
dimensional space of field degrees of freedom, within which six planes of rotation can be identified:

l.omy, 2.0m,, 3.o0mg, 4. Ty, 5. 113, 6. TyT3 . (D.11)
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When the model is subjected to sources of explicit symmetry breaking, the action functional is
affected non-uniformly throughout field space by the presence of the symmetry-breaking scale. In
our case, the symmetry-breaking mechanisms appear along the o-direction of field space but leave
the pion directions unaffected. Consequently, the action functional violates the WTI for rotations
that involve the o-direction but remains invariant under rotations in the planes i € {4,5,6}. Nev-
ertheless, in the absence of physical sources of symmetry breaking, the WTI is expected to hold
across the entire field space. In the following, we present the WTI for those rotations in which the
o-direction of field space becomes relevant. For rotations in those planes, the generators are given
by

0 -1 0O 0 0 -1 0 0 0 0 -1
1 0 0O 00 0 O 0 00 O
Xl =X07I1 = > X2 =Xar:2 = > X3 =Xa7t3 =
0 0 O 1 0 0 O 0 0 0 O
0 0 0O 00 O O 1 00 O
(D.12)

It then follows from Eq. (D.10) that the WTI for a rotation-symmetric quantity as derived from the
quark-meson model can be written as

5Q(sym)[¢] B 5Q(S}m)[¢]
60(q) - 6milq)

As an example, this quantity may be given by the effective average action in the absence of physical
symmetry breaking,

Vie{1,2,3}: m:(q) o(q) . (D.13)

Q™[] = lim P[] ., - (D-14)

Here, we have labeled the effective average action as “physical” to highlight that unphysical sources
of symmetry breaking are also possible, which then lead to a violation of the WTTI even in the chiral
limit. Recall that, in order to calculate the quantum effective action from the Wetterich equation, a
regulator function has to be introduced to the classical action. In the case of the Callan-Symanzik
regulator, the RG scale represents a mass scale that introduces additional and unphysical symmetry
breaking to the fermionic loops. In this scenario, the WTI can be used as a condition for the
elimination of artificial symmetry breaking. More concretely, let us consider

Ql¢]=lim [$][,, . (D.15)

where the effective average action is generated by the CS flow. Due to the explicit symmetry break-
ing induced by the regulator, Q does not satisfy the WTIL. In order to obtain the corresponding
physical version of the effective average action, it is necessary to establish a symmetrization pro-
cedure such that Eq. (D.13) is fulfilled. To construct a symmetric quantity from Q, we make the
ansatz

QW™[¢]=Qlp]+c[4]. (D.16)

In words, we assume that any quantity that remains invariant under rotations of the fields can
be suitably decomposed into two asymmetric parts. Notice that our ansatz implies that ¢ can be
considered a counterterm for those contributions in Q that explicitly break the rotation symmetry.
The remaining task is then to construct this additional term in accordance with the WTI. We
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emphasize that the symmetrization procedure should not alter the dependence of Q on the pion
fields since this subspace is not affected by the CS regulator. It then follows that Eq. (D.13) has to
be solved for ¢ with the initial condition

c[c=0,7]=0. (D.17)

Once a solution has been found, the physical effective average action for our model can be written
as

B
L1y, =T L8y, —H J J dx" o). (019

It is worth mentioning that the additional term ¢ in Eq. (D.16) generally inherits dependences
on the RG scale as well as external parameters from the asymmetric effective average action.
Therefore, the addition of ¢ leads to a symmetrization of the entire loop contribution as generated
by the Wetterich equation.

D.3 Solution of the WTI

Throughout this work, it is sufficient to consider the symmetrization of functions rather than func-
tionals. In particular, evaluating the field degrees of freedom on a homogeneous background turns
the WTI for rotation symmetry into a partial differential equation. This allows us to present a
generic solution for ¢ in the following. To this end, we begin by noting that the Callan-Symanzik
regulator leaves the O(3) symmetry among the pion fields of our quark-meson model intact. The
restoration of the O(4) symmetry in meson field space can therefore be mapped onto the two-
dimensional problem of restoring circular symmetry in the plane spanned by x = o and y = V2.
The WTI (D.13) then turns into

e, d

(122 )amiepy=o. 019
dx y

Our prescription for the restoration of symmetry with respect to orthogonal transformations relies
on the addition of an auxiliary function ¢, which serves as a counterterm for symmetry-breaking

terms. For some differentiable function O of two variables, we hence write
QWM(x, y) = Q(x,y) +c(x,y) (D.20)

in accordance with Eq. (D.16). Since the CS regulator does not affect the pion subspace of our
model, the symmetrization procedure should leave this subspace unchanged as well. This con-
straint fixes the initial condition necessary to uniquely solve the WTI for c. To be more precise, the
WTI provides us with the differential equation

2 b,
(52 —x5 Jeten =G, (0.21)
where
floy) = (x% —yj—x) ox, y) (D.22)
and

VyeR: c(0,y)=0. (D.23)
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Making use of, for example, the method of characteristics, a general solution for c is readily found.
Taking the fact into account that Q is a function of y2 due to intact O(3) symmetry of our theory,
we find

C(X,y) = F\/W (arcsin (\/%yz)) — FW(O) 5 (D24)

where the function F is given by the following indefinite integral:

F,(s)= J ds f(asin(s), acos(s)) . (D.25)

In order to gain a better understanding of what exactly our symmetrization procedure does, let
us consider the example of

Qlx,y)=g ((x + l~<)2 + yz) (D.26)

with k € R. Our goal now is to symmetrize Q in x and y by the addition of a suitable function c.
Following the steps above, we obtain

c(x,y) :g(l~<2+x2+yz)—g((x+l~<)2+y2) (D.27)
such that the symmetrization eventually leads us to
Q™(x, y) = Q(x,y) +c(x,y) = g (K> + x>+ y*) . (D.28)

We observe that our procedure eliminates the term 2xk from the argument of g and hence success-
fully establishes the circular symmetry for Q. In the limit k — 0, for which Q is already symmetric,
the additional term ¢ vanishes as it should be. We remark that our example can be directly linked
to the effective potential as generated from the CS flow of the quark-meson model. Specifically,
we may write the loop function as

kK'=k

Li(Ao,h) = g ((ho + k)" +h272) , (D.29)

k'=A,

where we have suppressed a dependence on temperature and chemical potential for simplicity.
The corresponding symmetrized version of the loop function then reads

k'=k

L™ (o, W9 = g (K2 +12¢7)[ .2, - (B-30)
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