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Abstract

I present a study of the vacuum instability problem in the Standard Model, with particular
emphasis on the effect of gravitational corrections on this process. This covers four main effects:
(1) gravitational back-reaction of nucleating bubbles and their associated bounce solutions,
which alters the decay rate; (2) the nucleation of true vacuum bubbles in an inflationary
background; (3) the effect of non-flat backgrounds on the running of the Standard Model
couplings; and (4) the effect of non-minimal Higgs-curvature coupling on decay rates in the
Standard Model. The key result presented is the discovery of previously unseen bounce solutions
contributing to Standard Model vacuum decay during inflation.
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scalar (Higgs) field is in the false vacuum state, ie, H2 = V (φfv)

3M2
P

.

6. φfv - the false vacuum value of a scalar field.

7. φtv - the true vacuum value of a scalar field.

8. φbar - the position of the top of the barrier of a scalar field potential.

9. GN - Newton’s gravitational constant.

10. MP - the reduced Planck mass, MP = 1/
√

8πGN .

11. g1, g2, g3 - the U(1), SU(2), and SU(3) couplings of the Standard Model respectively,

using SU(5) normalisation for g1, so that g2 = g and g1 =
√

5
3
g′. This means that the

Higgs sector of the Standard Model is given by Lh = D†
µΦDµΦ +µ2Φ†Φ−λ(Φ†Φ)2 where

DµΦ = (∂µ −−ig2W a
µ t
a − i

√
3
5
g1YΦBµ)Φ.

12. V0 - potential of a scalar field in the false vacuum, V0 = V (φfv). Effectively the cosmo-
logical constant energy density.

13. ∆V (φ) - scalar potential relative to false vacuum value, i.e. ∆V (φ) = V (φ) − V (φfv).

14. dΩ2
n - n dimensional sphere metric. E.g. dΩ2

2 = dθ2 + sin2 θdϕ2.

15. a(χ) - metric component in 4D Euclidean metric ds2 = dχ2 + a2(χ)dΩ2
3.

16. Dφ denotes the path integral measure of φ.

17. Mt - top quark pole mass.

18. Mh - Higgs boson pole mass.

19. MW ,MZ - W and Z boson pole masses, respectively.

20. αS =
g23
4π

is the strong force coupling parameter, measured at energy scale MZ unless
otherwise specified.

Conventions used throughout:

• The metric signature is the − + ++ convention.

• Riemmann tensor is defined as Rρ
σµν = ∂µΓρνσ − ∂νΓ

ρ
µσ + ΓρµλΓλνσ − ΓρνλΓλµσ.

• The sign of ξ is such that ξ = 1/6 is the conformally symmetric value.

• The anomalous dimension, γϕ, for field ϕ is related to the field renormalisation, Zϕ, by

γϕ = 1

Z
1/2
ϕ

dZ
1/2
ϕ

dϕ
.

• Beta functions for coupling gi are defined by βgi = M dgi
dM
.

• Natural units are used throughout, where ~ = c = 1, but MP is retained.
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1.1 The Decay of Nothing - a Non-technical Introduc-

tion to Vacuum Instability

The Standard Model is one of the crowning achievements of twentieth century physics. This
theory describes all matter known to modern science, from the familiar electrons and photons
that we deal with in the everyday world, to more exotic, fleeting particles such as the top quark.
Tests of the Standard Model have shown time and time again that it accurately reproduces
the world as we see it, and not just approximately. An example of this stunning success is the
gyromagnetic ratio of the electron, which tells us the magnetic field produced by an electron
as a result of its spin (and rotating charged object generates a magnetic field - in fact, that
is what a magnetic field is: the effect of rotating charged objects). The theory of Quantum
Electrodynamics, a subset of the Standard Model, predicts that electron’s gyromagnetic ratio
should be [8]:

ge = 2.00231930436356 ± (1.28 × 10−14), (1.1)

while the measured value1 is [9]:

ge = 2.002319304361715 ± (1.52 × 10−14). (1.2)

This is agreement to within twelve significant figures. The accuracy of the Standard Model
demonstrates that is is a resounding success at describing the world we live in, at least at low
energies. This cannot be the end of the story, however. There are many things the Standard
Model does not explain: the unnatural smallness of the cosmological constant (‘dark energy’),
dark matter, and the question of why the early universe contained more matter than anti-
matter. Each of these is a subtle problem, that we will not discuss in detail here. The subject
of this thesis is not so much something that the Standard Model cannot explain, but something
that it predicts: vacuum decay.

1.1.1 Fields and Particles: What is the Vacuum?

The vacuum, or what a layperson might term ‘empty space’ has a long and peculiar history.
Right back to the discovery of electromagnetism physicists have wondered whether empty space
is truly empty: before the discovery of special relativity by Einstein, it was believed that the
universe must be filled with an invisible substance called ‘luminiferous aether’. The idea is
not as crazy as it sounds at first - light was shown to be a wave, and this poses the obvious
question of ‘what is waving’. Einstein showed that in fact the aether was unnecessary - it was
unobservable, and nothing would change in the observed behaviour of light and matter if it
simply weren’t there. Occam’s razor demanded, therefore, that its existence be abandoned.
The modern interpretation is that light is a wave in the electromagnetic field.

The basis of modern particle physics is the notion of the quantum field. Electric and mag-
netic fields are at least somewhat intuitive: at every point in space there is an arrow (a vector)
which tells us the direction an object at that point will be pushed by a force, and it’s length
(magnitude) tells us how much. Objects in these fields move if they have the appropriate charge,

1The astute reader will notice that since QED has a free parameter, it is more correct to say that the
‘measured’ and ‘predicted’ values of ge is really comparing two independent measurements of ge by different
methods, and checking that they agree to within a given precision - that is to say, the predictions of the theory
are consistent.
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and fundamentally all a field is is an time-varying object at each point in space. This object
could be a number (a ‘scalar field’), a vector (like electric fields - they tell us the magnitude and
direction of a force that will be exerted on an object at a given point), or something more exotic
(such as the ‘spinor’ fields that describe electrons). This is of course physically unsatisfying,
because it only tells us how a field is described mathematically, not what it is. In fact, we don’t
actually need to know what a field is to understand its behaviour. Consider a bar magnet, for
example. It is made up of huge numbers of atoms, each of which contains electrons with ‘spin
magnetic moments’ that contribute to the total magnetic field of the bar magnet. We could
attempt to describe a bar magnet using the aggregate of 1023 or more atoms, but this would be
a fools errand. A description that averages over the individual atoms is much more convenient
(and actually tractable).

In fact, the modern (‘Effective field theory’) view of fields is that they should always be
regarded as averages like this over unseen degrees of freedom. The crucial observation is that
we don’t even need to know what these degrees of freedom are. Bar magnets were fairly well
understood long before atoms were widely accepted as the building blocks of matter. We should
view other fields in physics - like magnetic fields and Higgs fields - the same way. They are to
be understood as aggregate descriptions of underlying degrees of freedom whose nature may
not may not be understood. We can be agnostic as to their precise nature, because on large
scales, it doesn’t affect what we observe.

1.1.2 Vacuum Instability - The Dam Analogy

So what then, should be understand by empty space, or the vacuum? The intuitive definition
is ‘that which remains when you remove all the matter’. But what is matter? According to the
Standard Model (which in the spirit of the previous discussion, we should regard as a large-
scale description of underlying degrees of freedom obeying laws we may know little-to-nothing
about), all matter in the universe consists of particles that are excitations of a set of funda-
mental fields. By ‘excitation’, we mean a small, localised clump of energy that has non-zero
energy, and can move about in space.

To explain what this means, let us introduce an analogy that will also illuminate what it
means for a vacuum to decay. Consider a lake - the field is like the surface of the lake, and
particles are like waves on the surface of the water. It is in this sense that a particle and a field
are inseparable concepts - without the lake, there can be no waves, and thus, without a field,
there can be no particles. Individual particles of the same type are really just different waves
on the lake’s surface. So what is the ‘vacuum state’ of a lake? If we believe a vacuum is what
remains when you remove all the particles, and particles are waves on the lake’s surface, the
answer is obvious - the vacuum state of a lake is when it is perfectly still, with no waves on it’s
surface.

But what about a more complicated set-up? Imagine a lake split in two by a dam, into an
upper and lower section. See figure 1.1. The water level in each half of the lake is different. One
half might even be empty. In a sense there are two different vacuum states the lake could be
in: everything in the upper lake, or everything in the lower lake (or both halves partially filled,
but for reasons we will discuss shortly, that situation isn’t stable for particles in our universe).
If we are in the lower half, everything is perfectly stable - opening the dam would do nothing,
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(excite over barrier)
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through barrier

Figure 1.1: Two lakes separated by a dam, an analogue for the vacuum of the Standard Model.

as water does not flow up hill. We might call this a ‘true vacuum’ state.

But if we are in the situation where the upper half is filled, things get more interesting.
Now, opening the dam will cause the entire lake to empty into the lower half. We call the
upper half of the lake a ‘false vacuum’ state because although it may appear stable, given the
right conditions it can collapse into the ‘true vacuum’ state. This state of affairs is in fact an
analogy for the situation we appear to find ourselves in in our universe, at least according to
the Standard Model. There are two different vacuum states that our universe can possess; a
true and a false. Observations indicate that we are in the false vacuum.

This of course begs the question, is it possible for circumstances to arise in which the ‘dam’
bursts? In short: classical physics states that objects cannot pass through a potential barrier
(such as the dam, in this analogy) unless it is given sufficient energy to pass over the top. In
quantum mechanics, however, this isn’t true: it is also possible for a particle to spontaneous
appear on the opposite side of a barrier without being given sufficient energy to pass over it.
This process is called ‘quantum tunnelling’, and is also responsible for radioactive decay (hence
the name ‘vacuum decay’). A radioactive atomic nucleus consists of a bunch of protons and
neutrons held together by the strong nuclear force, which overcomes the electro-static repulsion
between protons. If the universe were classical, this would be enough2, and the nucleus would
not decay. However, quantum mechanics gives a small probability for the nucleus to disinte-
grate, tunnelling through this classical barrier. This process is entirely random, and gets less
likely if the barrier is high and thick. There is a predictable probability per unit time that
this disintegration of the nucleus will occur, and this information is often characterised by the
‘half-life’ of the nucleus, ie, the time it takes, on average, before half of a large sample of the
nuclei will have decayed (one cannot say when a given nucleus will decay, only that after a
certain amount of time, on average half the nuclei will have decayed).
Vacuum decay is entirely analogous to this disintegration of a nucleus by quantum tunnelling.

2Though a ‘classical’ atom would behave very differently to a quantum atom - electrons would spiral into
the nucleus, which doesn’t happen in reality - this is why quantum mechanics was devised in the first place.
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Although the universe may appear to be in the false vacuum state, there is a tiny probability
that in any given second, some part of the universe will tunnel through the barrier and appear
in the true vacuum. This gives the vacuum a ‘half-life’, albeit a very, very long one.

It doesn’t require much imagination to conclude that such an event would be catastrophic.
If it were to occur, it would manifest itself as an expanding ‘bubble’ of true vacuum that moves
outwards at near the speed of light, annihilating everything in its path. The good news is we
would never see it coming, since it moves almost as fast as the light that heralds it, and de-
struction would be virtually instantaneous: we would never know what hit us. The even better
news is that this nightmare vacuum decay scenario is most probably not a true prediction, but
a spurious one, indicating not that we should be worried empty space is about to collapse on
us, but that the Standard Model has begun to go awry at distance scales much smaller than
those we are able to study in particle collider experiments. This is actually a good thing, as
it would mean the Standard Model contains the seeds of its own destruction (quite literally in
this case), and points the way to a better theory, and a better understanding of the universe.

1.1.3 Summary of Results

The subject of this thesis is the formation of true vacuum bubbles when gravitational effects are
included. The principal result is a new calculation that demonstrates the existence of additional
types of vacuum bubbles that can form during the early universe. The early universe is be-
lieved to have been very different to the present day: it is believed that the universe underwent
a process of extremely rapid (exponential) expansion called inflation. This involves a strong
gravitational field, which changes the way vacuum bubbles form. Without gravitational effects,
the bubbles form via a process called quantum tunnelling, which as discussed, is similar to the
process that causes radioactive atoms (like Uranium 235 nuclei) to decay. However, gravity
can also add a thermal component to the decay of the vacuum. This is a classical process -
disturbing the water (say by getting it to boil over, or dropping a large stone into it) in a lake
might give it sufficient energy to pass over the top of a barrier, and the same is true of the
vacuum. The combination of these thermal and quantum tunnelling effects means that there
are several ways for a decay to occur: entirely thermal effects, entirely quantum tunnelling, or
a combination of the two.

Ordinarily, the expansion of the universe gives the vacuum a temperature: this is because
the universe’s expansion exceeds the speed of light for space sufficiently far away from any
observer. The distance beyond which this happens is called the ‘de Sitter (dS) radius’. Since
no object can move through space faster than light, information cannot pass between regions
further away than the de Sitter radius. This means that the sphere with a de Sitter radius
behaves much like the event horizon of a black hole (in fact, this is much more like the more
familiar horizon in the sky, since it is centred on the observer). It is well known that black hole
event horizons radiate Hawking-radiation, and the same is true of the de Sitter horizon. This
radiation means that the vacuum becomes thermal, and has a temperature that depends on
how rapidly the universe expands.

Usually, when this expansion rate is increased, quantum tunnelling becomes increasingly
irrelevant, and thermal fluctuations over the barrier dominate. However, the conclusion of this
thesis is that this picture is overly simplistic for the Standard Model. While the general picture
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remains true, as the expansion rate is raised, new routes for quantum tunnelling appear, instead
of disappearing. This significantly complicates the process of vacuum decay.

1.2 Technical Introduction

1.2.1 Destabilisation of the Electroweak Vacuum - Loop Corrections
in the Standard Model

The reason that vacuum decay can potentially occur in the Standard Model is ultimately due
to the running of the Higgs self-coupling, λ, which receives positive corrections from the bosons,
and negative corrections from the fermions which couple to it. The effect of this is summarised
by the beta function for λ, which at one loop is [10]:

dλ

d logM
=

1

16π2

(
24λ2 − 3λ(g

′2 + 3g2) +
3

4

(
g

′2

2
+ g

′2g2 +
3g4

2

)
+ 4Y2λ− 2Y4

)
, (1.3)

where:

Y2 =3(y2u + y2c + y2t ) + 3(y2d + y2s + y2b ) + (y2e + y2µ + y2τ ), (1.4)

Y4 =3(y4u + y4c + y4t ) + 3(y4d + y4s + y4b ) + (y4e + y4µ + y4τ ). (1.5)

Notice that there is a negative term in the fourth powers of the Yukawa couplings - essentially
proportional to the fourth power of the fermion masses. This tends to drive λ towards negative
values, an effect which is dominated by the heaviest fermion - in this case the top quark. With
a heavy enough top quark, and insufficiently heavy Higgs mass, this can result in λ running to
negative values at large scales, M . We plot this in figure 1.2 for the most recent values of the
top quark and Higgs boson masses, Mt = 173.1 ± 0.9 GeV,Mh = 125.18 ± 0.16 GeV [4]. This
result shows clearly, that at at the 2σ level, vacuum metastability is expected for the Standard
Model, although an exceptionally light top quark could change this with future measurements.
The result of λ(µ) turning negative at large µ is that the (flat space) effective potential of the
Standard Model, which can be approximated as:

V (h) ≈ λ(h)

4
h4, (1.6)

turns negative at a scale of around µ ∼ 1010 GeV, developing a deep true minimum at trans-
planckian field values. If no new physics exists to change this between the electroweak and
Planck scales, then this implies that the Standard Model vacuum is not the most stable, and
can decay via quantum, tunnelling.

This particular problem has been known for a long time [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
especially in the context of attempts prior to the discovery of the Higgs boson to put constraints
on its possible mass [21, 22, 23, 24, 25, 26], and for constraining various alternatives to the Higgs
mechanism such as multiple Higgs doublets [27, 26]. Among the first to consider gravitational
corrections to this process was [28], and even before the Higgs boson’s discovery, the was
much interest in the possible cosmological implications [29]. Since the discovery of the Higgs
boson [30, 31], however, there has been an explosion of interest in the subject, which is no
longer a purely theoretical endeavour, as it appears to be the most likely scenario. Many au-
thors have since studied the vacuum stability problem and its implications for the Standard
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Figure 1.2: Three loop running of the Higgs self coupling with 1,2, and 3 σ errors bars on Mt

drawn from [4]. 3 sigma error bars for Mh and the strong coupling, αs(MZ) are also plotted
as dotted lines. Mh = 125.18± 0.16 GeV,Mt = 173.1± 0.9 GeV, αS(MZ) = 0.1181± 0.0011 are
used as inputs, as given in [4].

Model [32, 33, 34, 35, 36, 37, 38, 39, 40, 41], as well as for the constraints it places on beyond the
Standard Model physics [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. The fact that the
electroweak vacuum appears to be unstable can be regarded as one of the first evident ‘chinks in
the armour’ of the Standard Model, as it represents a possible inconsistency in the theory with
the observational fact that we are still here today, apparently in the ‘false’ vacuum. This has led
to numerous proposals as to how the Standard Model could be fixed to avoid vacuum instabil-
ity [56, 57, 58, 59]. Equally interesting as the implications for new physics, are the implications
that an unstable Higgs vacuum might have for cosmology, for example, constraining high-scale
inflation [60, 61, 62, 63, 64, 65, 66, 67, 68, 7, 69, 70, 71, 2, 3, 71, 72, 73, 74, 75]. Many authors
have also looked at the implications that Higgs-inflaton couplings might have on the vacuum
stability problem [76, 77], and the behaviour of the Higgs field towards the end of inflation, par-
ticularly during re-heating [77, 78, 79], and the effect that finite temperature might have [80].
Authors have also considered other effects of vacuum stability relating to gravity, including
vacuum decay triggered by black holes [81, 82, 83, 84], the possibility that non-minimal Higgs
curvature coupling could stabilise the effective potential [57, 85, 86, 1, 3, 87, 88, 89, 90, 91], and
the effect of Planck-suppressed operators [58]. Many issues arising in the study of Standard
Model vacuum instability have been explored in depth, including whether the fact that the
effective potential is gauge dependent affects the result [92, 93, 94, 95, 3], and the interpreta-
tion of vacuum decay in a theory which only becomes metastable due to quantum corrections,
despite being stable at the classical level [96].
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1.2.2 Instantons and Bubble Nucleation

The main mechanism for vacuum decay, both with and without gravity, is quantum tunnelling.
Classically, a false vacuum state such as that which seems to appear in the Standard Model is
perfectly stable, so long as the system, does not have sufficient energy to pass over the barrier.
Since the barrier in the Standard Model is at huge energy scales - 1010 GeV or more, no natural
process present in the universe is likely to be able to destabilise it. However, in quantum me-
chanics, the vacuum state does not describe the Higgs field lying purely in the false vacuum for
all time, i.e. φ = φfv. This is because the false vacuum state is not an energy eigenstate, but a
superposition of different energy eigenstates, which evolve in time independently. Indeed - it is
precisely because the false vacuum is not an energy eigenstate that decay can occur: there is a
small chance that the field will be observed to be in the true vacuum state at any place and time.

One can therefore calculate the exact rate of this decay in exactly the same way as the decay
rate of a decaying alpha-particle. The main complication is that a quantum field such as the
Higgs field has an essentially infinite number of degrees of freedom, and thus slightly different
techniques are generally needed to treat the system.

The main technique is the Instanton approach, described by Coleman [97, 98, 99]. The idea
here is to exploit the fact that the energy of a metastable state can be regarded as complex (we
will describe what this means in more detail in chapter 2). The rate at which the vacuum decays
can then be estimated from the imaginary part of this energy, since the amplitude squared of
the wave function for such a complex-valued energy state evolves as:

|ψ(x, t)|2 = |ψ(x, 0)|2e−2Im(−E)t. (1.7)

If the false vacuum state were describing the decay of an ensemble of radioactive particles, the
decay rate would be defined by |ψ(x, t)|2 = |ψ(0, t)|2e−Γt, thus, Γ = −2Im(E) is the decay rate
of a state with complex energy, where Im denotes the imaginary part. Now, the energy can be
extracted by Wick rotating time to imaginary values, since the imaginary time evolution of the
vacuum state becomes:

|ψfv(t)⟩ =
∑
n

⟨n|ψfv(0)⟩e−Ent|n⟩ →t→∞ ⟨0|ψfv(0)⟩e−tE0|0⟩. (1.8)

This tells us that by taking imaginary time, t, to infinity, we can extract the lowest-lying energy
state, E0, which for distributions starting around the false vacuum, is the false vacuum state3.
However, we can also evaluate the vacuum to vacuum transition amplitude using a Euclidean
path integral:

|ψfv(t)|2 = ⟨ψfv(0)|e−Ĥt|ψfv(0)⟩ =

∫ φfv

φfv

Dφe−SE[φ], (1.9)

where φfv in the integral limits denote that we integrate over all configurations for φ with
φ = φfv at the boundaries, ie, the configurations much touch the false vacuum somewhere4.

3This somewhat hand-waving argument is obviously suspect since, necessarily, for decay to the true vacuum
to occur, we would have to have mixtures of the true vacuum state in the initial superposition, which would be
expected to dominate at large t. This will be addressed with a more formal derivation in chapter 2

4This restriction is relaxed in de Sitter space due to its inherently thermal nature - see [100, 101] for a
discussion.
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SE[φ] is the Euclidean action, that is, the action for the scalar field with time Wick rotated
to imaginary values. One can therefore extract the energy of the false vacuum by evaluating
the Euclidean path integral semi-classically, that is, finding the stationary points of SE[φ], then
approximating: ∫ φfv

φfv

Dφe−SE[φ] ≈
∑
i

det[S ′′[φi]]
−1/2e−SE[φi], (1.10)

which is essentially summing up Gaussian fluctuations around each stationary point φi, de-
scribed by the functional determinants. This is essentially performing a 1-loop approximation
of the path integral. Coleman and Callan showed that this gives the decay rate per unit four
volume [99]:

Γ

V4
≈
(
B

2π

)2 ⏐⏐⏐⏐det′(S ′′
E[φB])

detS ′′
E[φfv]

⏐⏐⏐⏐−1/2

e−B, (1.11)

where B = (SE[φB] − SE[φfv]), and φB is the dominant (lowest action) stationary point, re-
ferred to as a bounce-solution of the Euclidean equations of motion. The primed determinant,
det′(S ′′

E[φB]) is a functional determinant around the bounce, with a number of zero modes ex-
tracted. These correspond to translations of the bounce solution around the 4D Euclidean
space, which are obviously symmetries of the action and thus lead to zero-eigenvalues in the
spectrum of fluctuations around φB which the functional determinant encapsulates. These
would at face value lead to a divergence, however, dividing by the four-volume removes this.
Note that there is also a negative mode, which is responsible for the energy of the vacuum
being imaginary.

Now, the instanton approach doesn’t only describe the rate at which spontaneous decay of
the false vacuum occurs. It also describes what this process looks like. One way to look at this
is to note that there are infinitely many ways to tunnel through a barrier when there are more
than one (or infinitely many) degrees of freedom. See for example fig. 1.3. The path integral
explores all the possible tunnelling routes, but the dominant solution is the most likely, ie, the
shortest route through the barrier. As we will discuss in chapter 2, the bounce solution can be
cut half-way through and used to give initial conditions for the evolution of the field after decay
occurs. This tells us that the ‘point’ on the other side of the barrier where the field emerges
is not a point, but an entire field configuration, φBubble(x). This configuration is called a true
vacuum bubble, and is distinct from, but related to, the bounce solution. It can be regarded as
the analytic continuation of the bounce solution back to Lorentzian space, and describes the
behaviour of the nucleated bubble after vacuum decay occurs. As we will see, the result is that
the bubble expands outwards at near the speed of light, converting space around it to the true
vacuum. This is a result manifestly incompatible with the observation of the Higgs vacuum
expectation value from collider experiments, and as we will discuss in chapter 3, would also
lead to gravitational collapse, effectively ending the universe.

Such an event has obviously never (yet) occurred. This brings us to the main interesting
fact about vacuum decay - it’s non-observation puts a constraint on high energy replacements
of the Standard Model, such as GUT theories or theories of the early universe, such as Inflation.
Of particular interest is that the apparent scale of vacuum decay - 1010 GeV where the effective
potential first goes negative - appears to be well below the proposed GUT scale of 1015 GeV.
Thus, if we believe that the vacuum is absolutely stable, then we must have new physics between
the electroweak scale and the Planck scale if the vacuum decay problem is to be fixed.
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Figure 1.3: Example potential in 2D. There are several stationary points, and a false vacuum
between the three peaks: infinitely many routes are possible for a particle to tunnel through
the barrier. 20
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Figure 1.4: Plot of the effective potential for the Standard Model with Mt = 173.1 GeV,Mh =
125.18 GeV, extrapolated up to trans-planckian values. Although this cannot be taken seriously
at such large φ, it illustrates the depth of the potential’s true minimum.

1.2.3 The Effective Potential and Gravitational Corrections

One of the key features of the effective potential that is noticeable in the central value of
the top and Higgs mass, is that the minimum is extremely deep. For example, with Mt =
173.1 GeV,Mh = 125.18 GeV, λ becomes positive again at µ = 4.2 × 1029 GeV, far beyond
the Planck scale (λ will always ultimately become positive in the Standard Model due to the
Landau-pole in the U(1) coupling). The resulting potential, extrapolated far beyond the regime
in which it can be expected to give realistic results, is plotted in fig. 1.4, which illustrates just
how deep the True vacuum is in this case.

This begs the question, at what point do gravitational effects start to become important?
One could argue that they will never matter, since Planck suppressed operators will change the
result completely - an effect which some authors have investigated [58]. Although this is almost
certainly the case, since we cannot know what those corrections will be (and they could even
make the situation worse), it is still worthwhile to ask what the effect of a deep potential well is
under the agnostic (but likely unrealistic) assumption that there is no new physics between here
and the Planck scale, and that cut-off suppressed operators are negligible (note that from an
effective field theory point of view, while cut-off suppressed operators are part of the Standard
Model, they encapsulate an approximation to the more complete description above the cut-off
that gets increasingly inaccurate as we approach it).

The reason that gravity may be important is that most calculations of the vacuum decay
rate assume a ‘fixed back-ground approximation’, namely, that the bounce solution has no
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back-reaction on the underlying geometry [100]. Note, however, that in the Standard Model,
the size of a typical nucleated bubble is controlled by the scale at which |λ(µ)| takes on it’s
largest value over the region for which is it negative - in otherwords, the minimum of λ(µ) [18].
For Mt = 173.1 GeV,Mh = 125.18GeV, this is at µmin = 3.12 × 1017 GeV, which is little more
than an order of magnitude below the Planck scale. This means that the nucleated bubbles
probe deep into the negative region of the potential, while tells us that whatever happens be-
tween the electroweak and the Planck scales, the vacuum decay rate is sensitive to gravitational
corrections, and would also be substantially changed by Planck suppressed operators if they are
present. Thus, it is worthwhile understanding what these gravitational corrections are, even if
we expect that ultimately new physics will change the situation.

There are two reasons this can matter. The first is non-minimal coupling between the Higgs
field and Ricci curvature. A term like ξφ2R/2 is required to be present in the scalar field theories
in curved space-time for renormalisability [102]. In the Standard Model, ξ can be shown to run
with energy, and at one loop its beta function is [3, 103, 104]:

dξ

d log µ
= βξ =

(
ξ − 1

6

)[
12λ+ 2Y2 −

3g
′2

2
− 9g2

2

]
. (1.12)

Here, Y2 is defined as in Eq. (1.4). The best available bounds on ξ in the Standard Model
from colliders are extremely weak [105], and so the parameter is essentially unset. We plot
the running of ξ in the Standard Model at 1-loop in all couplings in figure 1.5, assuming
ξEW = ξ(Mt) = 0. One way that a non-zero ξ can effect vacuum stability is related to the
observations previously noted that (1) the Higgs potential is very deep, and (2) the scale of
nucleated bubbles is controlled by large field values, around 1017 GeV. Taken together, these
imply that the Ricci curvature at the centre of a nucleated bubble is not negligible, and thus
any non-minimal coupling between the Higgs field and gravity can potentially affect both the
form and nucleation rate of Standard Model true vacuum bubbles. We investigate this effect
further, in the case of zero cosmological constant, in chapter 5. Note that this would not happen
if we assume a fixed background approximation, since then there would be no Ricci curvature
to couple to in the flat-false vacuum limit - the effect of non-minimal coupling in this case is
inherently a non-fixed background effect (although the same is not necessarily true in de Sitter
space).

The second way that gravity can matter for vacuum stability is in a de Sitter background.
This is particularly relevant for inflation, which is approximately de Sitter. Throughout this
thesis, we will not assume a particular model of inflation, but instead consider vacuum decay
with a non-zero cosmological constant as an approximation.

In most cases, the depth of the Standard Model vacuum, at least that reached by vacuum
bubbles in flat space, is far larger than the cosmological constant during inflation, even if
inflation were to take place at the GUT scale, H ∼ 1015 GeV. This means that back-reaction
is potentially relevant here too. The mechanism for vacuum decay in de Sitter space - the
Coleman de Luccia mechanism - will be discussed in more detail in chapter 6. However, let us
first note the big difference between bubble nucleation in de Sitter, and bubble nucleation in
flat space. This is that there two main routes for (spontaneous) vacuum decay to occur:

1. Quantum tunnelling through the barrier, as in flat space.

2. ‘Thermal’ excitation over the barrier, due to fluctuations in the Higgs field induced by
quantum effects.
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Figure 1.5: One loop running of ξ in the Standard Model at 1-loop in all couplings, with initial
value ξEW = ξ(Mt) = 0. This results in ξ being effectively negative at most energy scales, an
effect which can potentially destabilise the electroweak vacuum. 1,2, and 3 sigma uncertainty
bounds of Mt = 173.1 ± 0.9 GeV from [4] are plotted.

The first effect is broadly similar to its flat space equivalent. As we will see, however, it is not
quite the same, since it describes the field being partially excited up the barrier by fluctuations,
and then tunnelling the rest of the way through, rather than tunnelling directly from the false
vacuum. This is why bounce solutions in de Sitter have the slightly peculiar feature of not
touching the false vacuum [101].

The second process is described by the so called Hawking-Moss instanton [106], and can be
thought of as describing thermally assisted tunnelling over the barrier [101]. This process is
related to the stochastic fluctuations of light scalar fields during inflation [107], which is another
approach that can be taken to computing vacuum decay rates during inflation [65, 60]. We
will not focus on the stochastic approach and the Fokker-Planck equation describing it here -
instead we will focus on the properties of Coleman de Luccia (CdL) instantons. However, the
Hawking-Moss solution will be shown to play a key role.
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1.2.4 The Critical Threshold

One feature of vacuum decay in de Sitter space that will prove central to this thesis is the
critical Hubble rate, (or critical cosmological constant, related by H2

crit = V0crit
3M2

P
) defined by:

Hcrit =

√
−V

(2)(φbar)

4
− [V (φbar) − V (φfv)]

3M2
P

, (1.13)

where φbar is the top of the barrier in potential V , and φfv is the false vacuum. Note that Hubble
rates here are defined by V in the false vacuum, i.e. H2 = V (φfv)/3M2

P. This threshold has long
been known to hold importance in the subject of vacuum decay in de Sitter space, since it is the
point at which the number of negative eigenvalues in the spectrum of fluctuations about the
Hawking-Moss instanton changes from many to 1 as H crosses Hcrit from below [108, 109, 110].
The number of negative modes is important, since it can be shown that having more than one
negative mode means that the stationary point does not contribute to tunnelling, as there is
always a bounce with lower action [111, 101]. It was shown by Balek and Demetrian that in
any potential, a CdL solution always exists if H < Hcrit, and may not exist if H > Hcrit. Note
that the non-existence argument is not strong - what is shown, as we will discuss in chapter
6, is that a sufficient, but not necessary condition for the existence of CdL solutions ceases to
hold for H > Hcrit. In many potentials, as we will discuss in chapter 6, it appears that for
H > Hcrit no CdL solutions exist, and the action smoothly merges with the Hawking-Moss.
This is justified on the basis of a perturbative calculation of bounces for H ∼ Hcrit which shows
a solution that smoothly merges with the Hawking-Moss solution and has lower action than
it as H → H−

crit [112]. Based on this, it would seem that Hcrit divides Hubble rates into two
domains:

1. For H < Hcrit, CdL tunnelling dominates. The Hawking-Moss solution has too many
negative eigenvalues to contribute to vacuum decay.

2. For H > Hcrit, CdL solutions disappear and the Hawking-Moss solution loses enough
negative eigenvalues to contribute to vacuum decay. Hence, Hawking-Moss solutions
dominate.

However, this is not the end of the story. It has been known for some time that peculiar
potentials existed which did not satisfy this, and still have CdL solutions for H > Hcrit. It
was proposed that some sort of average over V ′′ might replace Hcrit [110]. Indeed, a criteria
for such potentials based on perturbative analysis of solutions for H ∼ Hcrit has long been
known [112, 113], though it has not always been appreciated that this always implies multiple
CdL solutions, and in particular, the solution that exists for H < Hcrit in this case is not
the same as the perturbative solution. This result is central to the main argument of chapter
6, where we present evidence that this behaviour does not just happen in peculiar, perhaps
‘unphysical’ potentials, but in potentials such as the Standard Model.

1.2.5 Overview

The first half of this thesis will cover in detail some necessary background, developing the
bounce and CdL formalism for computing vacuum decay rates. Results in flat space will be
reviewed in chapter 2, in which we also review the interpretation of complex vacuum energies
in terms of the WKB approximation and wave-function picture of tunnelling.
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Chapter 3 will discuss the CdL prescription for including gravity, mostly reviewing the de-
tails of the procedure, and also providing some more formal proofs of statements often taken for
granted while applying it. We will also prove some lemmas here that will go on to support the
main conclusions of the thesis, most importantly lemma 4 which reveals important information
about bounce solutions around the critical threshold at which thermally dominated (Hawking-
Moss) fluctuations start to become more important than tunnelling dominated (CdL) solutions.

Chapter 4 will discuss the effective potential of the Standard Model in detail, using Yukawa
theory as a toy model to understand how loop corrections can destabilise the vacuum, and then
go on to discuss the computation of the effective potential in curved space. This covers much of
the material presented in our recent paper [3], which also includes an analysis of vacuum stabil-
ity in the presence of non-minimal coupling during Inflation, using the Hawking-Moss solution
in the new effective potential derived in [3]. Chapter 5 will discuss non-minimal coupling as
it relates to back-reaction of bubbles nucleating in a flat false vacuum. This was the subject
of [1], for which the key results were the discovery that ξ tends to suppress vacuum bubbles
in the absence of a positive cosmological constant, and how the effect of ξ is closely linked to
the breaking of conformal symmetry by quantum corrections to the running of the Higgs self
coupling.

In chapter 6, we present one of the most important results: the discovery that the Standard
Model effective potential allows for multiple CdL solutions contributing to vacuum decay, in
addition to the CdL solution that resembles that present in flat space. This proves that the
Standard Model is an exception to the idea that there is a smooth transition between CdL
dominated tunnelling at low Hubble rates, and Hawking-Moss dominated tunnelling at high
Hubble rates. Instead of disappearing at H ≥ Hcrit, new CdL solutions appear, significantly
complicating the question of the vacuum decay rate during de Sitter space, since without a
complete understanding of how and why CdL solutions exist, it is never possible to be certain
that all solutions have been found, and thus that the computed decay rate is correct. To support
this claim, we present a proof that potentials satisfying:

∆ ≡ − 1

14

(
V (4)(φbar) −

(V (3)(φbar))
2

3V (2)(φbar)
− 8V (2)(φbar)

3M2
P

)
> 0, (1.14)

of which the Standard Model is one example, always have multiple solutions when H > Hcrit.
We present the derivation of a perturbative expression for one of the new solutions that arises
at Hcrit, showing that it always has higher action than the Hawking-Moss, and also proving
that potentials satisfying ∆ < 0 do have CdL solutions that merge continuously with the
Hawking-Moss solution. We consider examples of this in two different model potentials, and
then the Standard Model itself, showing that it is not only the perturbative solution that arises.

We discuss some of the consequences that this might have for vacuum decay during inflation,
and summarise our results in chapter 7.
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Chapter 2

Basics I - Vacuum Decay without
Gravity
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2.1 Vacuum Decay Rates and Bounce Solutions

The process of nucleating true vacuum bubbles in the Standard Model and other theories is
essentially a quantum tunnelling process. There is a certain probability per unit time that
a vacuum bubble will be nucleated at any point in space, and this bubble then proceeds to
expand, filling the universe if it is flat (the case of an expanding bubble in a non-flat universe is
more complicated, and will be addressed in chapters 3 and 6). Fundamental to addressing the
question of vacuum instability in the Standard Model is answering the question: “How likely
is it that the electroweak vacuum survived to the present day, given that it is metastable”.
Since in flat space an expanding bubble will eventually fill all of space, one way of addressing
this question is to ask for the probability per unit time that a bubble will nucleate in some
fixed three-volume, usually the volume of the visible universe (a more careful analysis would
consider the probability of nucleation per unit four-volume integrated over the past light cone).
This can then be used to compute the expected life-time of our vacuum (which is very much
analogous to the radioactive decay of a particle - another quantum tunnelling process). If the
life-time is less than the age of the observable universe, then we have a problem, as the fact that
we observe our universe to be in the electroweak universe is not compatible with the Standard
Model in its current form.

There are two ways we can calculate it. One way, which directly shows the link to other
tunnelling calculations, is to use a WKB approximation of the wave function. For tunnelling
in ordinary quantum mechanics, this predicts the transition rate through a barrier in potential
U(x) with turning points x1(E), x2(E) when the total energy is E to be:

T ∝ exp

(
−2

∫ x2

x1

dx
√

2(U(x) − E)

)
. (2.1)

Note that for this system, the equation of motion is:

d2x

dt2
+ U ′(x) = 0. (2.2)

Equation (2.2) can be re-written in terms of energy by multiplying by dx/dt and integrating:

1

2

(
dx

dt

)2

+ U(x) = E. (2.3)

Notice that in the barrier, U(x)−E > 0. which is why the region (x1, x2) is classically forbidden.
However, if we change variables from time to an imaginary time co-ordinate: τ = it. then it is
possible to re-write the exponent of Eq. (2.1) as:

2

∫ x2

x1

dx
√

2(U(x) − E) =2

∫ x2

x1

dx

√(
dx

dτ

)2

=2

∫ τ2

τ1

dτ

[
dx

dτ

]2
=2

∫ τ2

τ1

dτ

[
1

2

dx

dτ
+ U(x) − E

]
= [SE(xB) − SE(xfv)] ,

where SE is the action:

SE[x] =

∫
dτ

[
1

2

(
dx

dτ

)2

+ U(x)

]
. (2.4)
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Here, xB and xfv are solutions of the associated Euler-Lagrange equation:

d2x

dτ 2
− U ′(x) = 0, (2.5)

which is also obtained by setting τ = it in Eq. (2.2). The solution xB is periodic, starting at
x(τ1) = x1, and rolling down the inverted potential −U(x), eventually bouncing off the equal-
energy point x(τ2) = x2 and returning to x1. For this reason, it is called a bounce solution
and its period if 2(τ2 − τ1) (due to the bouncing back). The other solution, xfv, is called the
‘false-vacuum solution’: it is constant, and sits in the false vacuum for a period 2(τ2 − τ1) (for
energy E, the action is thus 2(τ2 − τ1)E). In the case of vacuum tunnelling, E = 0 and the
false vacuum solution is irrelevant. In general, however:

T = exp(− [SE(xB) − SE(xfv)]). (2.6)

This approach can be generalised to quantum mechanics with N degrees of freedom, qi. In this
case, however, there are generally many possible routes through the barrier, instead of a single
path (see for example figure 1.3. The WKB approximation for a particular route q(s) through
the barrier gives:

T = exp

⎛⎝−2

∫ q2

q1

√ N∑
i

(
dqi
ds

)2

ds
√

2 (U(q(s)) − E)

⎞⎠ . (2.7)

It can then be said that the dominant route for tunnelling is the route that produces the largest
T , that is, has the smallest Euclidean action, SE[q(τ)]. The action that determines tunnelling
in this case is:

SE =

∫
τ

dτ

[
N∑
i

1

2

(
dqi
dτ

)2

+ U(q(τ))

]
. (2.8)

This formulation makes it clear how to generalise the results to a field theory. The simplest
case is a relativistic scalar field, φ(x), which can be thought of as the large N limit of the field
theory. The usual action for a scalar field is:

S[φ] =

∫
d4x

[
−1

2
∂µφ∂

µφ− V (φ)

]
. (2.9)

To obtain the Euclidean action that will dominate tunnelling, we first set t = −iτ , and then
extract an overall +i factor from the action. We also perform an appropriate analytic continu-
ation of the metric from (−,+,+,+) to (+,+,+,+), which is to say, R4 (had we extracted −i
instead of +i, the metric signature would have been the peculiar (−,−,−,−)):

SE(φ) =

∫
d4xE

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (2.10)

where xE = (τ,x). Throughout the rest of this thesis, we will refer to this as x.
The action in Eq. (2.10) is not in the right form to directly compare it with Eq. (2.8), however.
We need to re-write it as:

SE[φ] =

∫
dτ

[{∫
d3x

1

2

(
dφ

dt

)2
}

+

{∫
d3x

(
1

2
(∇φ)2

)
+ V (φ)

}]
. (2.11)
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In particular, note that the potential we tunnel through in a field theory is not V (φ), but:

U [φ] =

∫
d3x

(
1

2
(∇φ)2 + V (φ)

)
, (2.12)

which includes the gradient terms as well as the potential energy density V (φ) (which is fre-
quently called ‘the potential’, but in fact it is Eq. (2.12) that we tunnel through). The fact
that is is U [φ] that controls tunnelling, not V (φ), can have seemingly peculiar consequences;
for example, it is possible to have tunnelling with no barriers at all in V (φ) [114]. In such
cases, the potential does not immediately roll down the hill because to do so as a local fluctu-
ation (the whole field can’t roll homogeneously as this would be acausal) requires overcoming
a gradient barrier, which is always positive. In fact, as we will see, it is the gradient barrier
that provides most of the stability of the electroweak vacuum in the absence of gravity: some-
what surprisingly, erasing the barrier altogether would have almost no effect on the stability
of the vacuum, at least as far as tunnelling in flat space is concerned (the observations of the
electroweak vacuum, namely that λ > 0 and the Higgs field has a mass, rule this scenario out,
however).

An less obvious conclusion of this analysis is that it tells us what happens when the false
vacuum decays: In ordinary quantum mechanics, a tunnelling particle will emerge on the other
side of the barrier at x2, and the process conserves energy. The same is true in a field theory,
however, the point x2 is not a point in space, but a field configuration over the spatial degrees
of freedom, φ(x), given by the value of the bounce solution at its half way point. This field
configuration is the nucleated bubble of true vacuum, and after forming it will begin to expand.

2.1.1 The Semi-classical Approximation

The discussion up to now leads us to believe that the decay rate per unit four-volume should
be of the form:

Γ = Ae−B, (2.13)

where B is given by the difference in action between a bounce solution and the false vacuum
solution of the Euclidean action:

B = S[φB] − S[φfv]. (2.14)

However, this analysis doesn’t tell us what the pre-factor A should be. Furthermore, it does
not include the effect of quantum corrections.This last point is potentially relevant, because as
discussed, for the Standard Model the second minimum only appears when radiative corrections
are taken into account. Callan, Curtis and Coleman put this discussion on firmer grounds by
deriving Eq. (2.13) using a path integral approach [98, 99]. The basic idea is that the evolution
of the false vacuum can be described using the Schroedinger equation. The amplitude for the
false vacuum state, |φfv⟩ to survive after some long-time T is given by a path integral:

⟨φfv| e−
i
~ ĤT |φfv⟩ =

∫
DφeiS[φ]. (2.15)

The decay rate of the vacuum is encapsulated in the energy of the false vacuum state, Efv.
This state is unstable because Efv can be regarded as complex. This is possible because the
false vacuum state is not an eigenstate of the Hamiltonian of the meta-stable theory, but
of an analytically related, stable theory, similar to how the excited states of an atom are
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exact eigenstates of Hamiltonian with an unquantised electromagnetic field, but when the
electromagnetic field is quantised, they cease to be eigenstates of the Hamiltonian and instead
become long-lived states which eventually decay to the ground state. We discuss and define
this state and its complex energy precisely in appendix A.1. With a complex energy then, the
probability of finding the particle in the vacuum at some large time t is:

⟨φfv(t)|φfv(t)⟩ = ⟨φfv(0)|φfv(0)⟩ exp(2Im(Efv)T ). (2.16)

If −2IM(Efv) > 0, this means that the particle decays and its decay rate can be extracted from
the imaginary part of the false vacuum energy. This of course raises an obvious question - how
is it that the energy of the false vacuum can be complex if the Hamiltonian is Hermitian? The
discussion of section A.1 answers this: low lying states around the false vacuum are a Breit-
Wigner distribution sum of the energy eigenstates in a band around certain resonance energies,
En, and the time evolution of this sum produces an exponential decay. The complex energy
is a shortcut to this result. It can be defined by starting from an absolutely stable potential,
and deforming it in such a way that it becomes metastable. We know from the discussion of
section A.1 that the bound states will deform into resonance states when we do this, and thus
to obtain the ‘energy’ of a resonance states, we should analytically continue the energy of the
corresponding bound state energies as a function of the deformation parameter, En(α). Pre-
cisely what α is depends on how the potential is deformed, but as long as the deformation does
not significantly distort the false vacuum part of the potential, then the analytically continued
(complex) energy will be unique.

As an example, we could consider the potential of Eq. (A.1). In that case, the potential
can be deformed by varying λ′ from positive to negative values. Expanding the initial state in
terms of energy eigenstates, we find that for a general potential:

|φfv⟩ =
∑
n

⟨n|φfv⟩ |n⟩ . (2.17)

We can now extract the overlap with the lowest lying energy state, E0, by performing a Wick
rotation, t = −iτ :

lim
T→∞

⟨φfv| e−ĤT |φfv⟩ ∼ | ⟨φfv|0⟩ |2e−E0T . (2.18)

We can evaluate the LHS of this equation using a Euclidean path integral:

lim
T→∞

⟨φfv| e−ĤT |φfv⟩ ∼ lim
T→∞

∫ φfv

φfv

Dφe−SE [φ], (2.19)

where the boundary conditions of this path integral require that we integrate over all configura-
tions that reach the false vacuum. This path integral can be estimated using the semi-classical
approximation, which assumes that the path integral is dominated by classical solutions called
instantons, or bounces, which are stationary points of the Euclidean action. Consider expanding
the action such a solution, φ = φB + η:∫

Dφe−S[φ] ≈
∫

Dη exp

(
−S[φB] − 1

2

∫
d4x

∫
d4yη(x)

δ2S[φB]

δφ(x)δφ(y)
η(y) + . . .

)
. (2.20)

Neglecting the higher order terms as giving small corrections (equivalent to a one-loop expansion
around the bounce solution) we find we can expand η(x) in terms of the eigenfunctions of

30



S ′′[φB] = δS[φB ]
δφ(x)δφ(y)

to give:∫
Dη exp

(
−1

2

∫
d4x

∫
d4yη(x)

δ2S[φB]

δφ(x)δφ(y)
η(y).

)
=

∫
Dη exp

(
−1

2

∫
d4x

∫
d4y

∑
n,m

cncmδφn(x)δ(4)(x− y)δφm(y)

)

= N
∏
n

(∫
dcne

−λnc2n
2

)
, (2.21)

where the factor N accounts for the difference in measure between Dη and
∏

n dcn, both of
which integrate over all possible fluctuations, η(x). We also used the eigenvalue equation:

δ2S[φB]

δφ(x)δφ(y)
δφm(y) = δ(4)(x− y)λnδφm(y), (2.22)

and the orthogonality of the eigenfunctions. This makes it clear that the result of the path
integral in the semi-classical approximation is a functional determinant, since:∫ ∞

−∞
dcne

− c2nλn
2 =

√
2π

λn
(2.23)

=⇒
∫

Dφe−S[φ] ≈Ne−S[φB ]
∏
n

(
2π

λn

) 1
2

= N det

(
S ′′[φB]

2π

)− 1
2

e−S[φB ]. (2.24)

Note that this expression is formally infinite, which is not surprising, since the path integral
diverges and only has meaning if we consider ratios of functional determinants. A careful
treatment by Callan, Coleman, and Curtis finds that the resulting decay rate per unit four-
volume, Γ, is to one-loop order [98, 99]:

Γ =
B2

4π2~2

⏐⏐⏐⏐det′(S ′′[φB])

S ′′[φfv]

⏐⏐⏐⏐− 1
2

[1 +O(~)] exp

(
−B

~

)
, (2.25)

where V is the volume of space under consideration and

B = S[φB] − S[φfv], (2.26)

is the difference in action between φB, the bounce solution, and φfv, the false vacuum solution
(which sits in the false vacuum for all time). S ′′ indicates the second functional derivative of the
Euclidean action, and det′ indicates a determinant subtracting off four of the zero eigenvalues,
which correspond to spatial translations of the bounce solution through Minkowski space. This
subtraction is equivalent to summing over the possible locations that the bounce can nucleate,
and is responsible for the otherwise infinite volume factor in Eq. (2.25): this is dealt with by
computing the decay rate per unit volume. Note that there may well be other zero eigenvalues
if the theory contains some symmetry. Indeed, neglecting quantum corrections, the Standard
Model has this property and requires careful treatment [28]. This happens because at tree level,

the Standard Model has an approximate conformal symmetry in the potential, V (φ) = λφ4

4
,

which is in fact broken by quantum corrections to the running of λ. It can be dealt with us-
ing the method of constrained instantons [115, 28], or by considering bounce solutions in the
effective potential, rather than the classical potential -see [116, 96] for a discussion. The issue
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is related to the fact that the false vacuum in the Standard Model only arises when radiative
corrections are taken into account.

It should be noted that in deriving Eq. (2.25), one encounters the problem that the bounce
always has a negative eigenvalue. In fact, this negative eigenvalues if responsible for making
the energy of the false vacuum appear to be complex, but at first glance, it appears to be prob-
lematic, because the semi-classical contribution to the path integral diverges (consider what
happens to the integral in Eq. (2.23)). This simply reflects the fact that the bounce solution
we have considered is not a minimum of the action, but a saddle point, and there will be larger
contributions (namely φfv) that dominate the integral. However, since only the imaginary part
of the energy contributes to the decay rate, the bounce can still be included.

One might object to this analysis, however, for two reasons: (1), we have neglected the
possible contribution of a true vacuum solution, φtv, that sits in the true vacuum for all time,
and (2), the full Euclidean path integral should give a real result. In fact these two problems
are related. It can be shown that the the true vacuum solution gives a contribution that cancels
out the imaginary contribution from the bounce [117], which means the actual result of the
calculation should be real. What then are we to make of this complex energy?

The answer is that if we deform the potential as per the discussion of section A.1, such
that the false vacuum becomes absolutely stable, the true vacuum disappears and we have
true bound states once more. In the deformed, absolutely stable potential, the eigenvalue is
positive and we have no problem defining the semi-classical approximation. As the potential
is deformed back to the metastable case, the result varies analytically with λ0 until it becomes
negative, since we know from the previous discussion that the bound states of the deformed
potential are analytically related to the resonance states of the metastable one. Consequently,

the path integral contribution,
∫

dc0e
− c20λ0

2 should also be an analytic continuation of the result
when λ0 goes negative. This corresponds to deforming the cn integration contour into the
complex plane, and integrating out to infinity along a Stokes wedge (see [118] for a discussion)
such that the integral converges, and will deform back to the real line when the potential is
deformed back to stability. Since the precise contour chosen doesn’t matter, by analyticity and
the residue theorem, we can choose the path of steepest descent that allows us to evaluate the
integral along the contour most accurately in the semi-classical approximation. This leads to a
unique complex energy, and corresponds to the result of Eq. (A.41).

2.2 O(4) Symmetric Bounces

To compute the decay rate, it is necessary to find stationary points of the Euclidean action. Let
us restrict ourselves to the case of a single scalar field in flat space-time, which has Euclidean
action:

SE[φ] =

∫
d4x

[
1

2
∂µφ∂

µφ+ V (φ)

]
. (2.27)

The equation of motion that minimise this is:

∇µ∇µφ− V ′(φ) = 0. (2.28)

In general, there can be many solutions of this equation, and we can evaluate the corresponding
contribution to the path integral by summing up the contributions from each bounce. However,
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in general only the solution with the smallest action will contribute significantly, with other
solutions giving exponentially small contributions relative to this.

It turns out that in flat space, Eq. (2.28) is minimised by solutions that have O(4) symmetry
(to be more precise, within any class of solutions, there is always an O(4) symmetric solution
that has the lowest action of that class). This was proven by Coleman, Glazer, and Martin [119].
This affords a great simplification to the equation of motion, since in an O(4) symmetric polar-
co-ordinate system, it becomes:

φ̈+
3

χ
φ̇− V ′(φ) = 0, (2.29)

where dots denote differentiation with respect to the radial parameter, χ. Note that this
equation appears to behave much like the motion of an object rolling down an inverted potential,
−V (φ) (since due to the Wick rotation, the potential appears in the equation with the opposite
sign to the Minkowski case). In this mechanical analogy, the second term behaves much like a
time dependent friction term. The action of these solutions is:

S = 2π2

∫ ∞

0

r3
[

1

2
φ̇2 + V (φ)

]
dr. (2.30)

In order to give a finite contribution to the action (and thus a non-zero contribution to the
decay rate), it is necessary to impose the boundary conditions:

φ̇(0) = 0, (2.31)

φ(r → ∞) → φfv. (2.32)

The first condition ensures that the bounce is smooth in the centre, while the second ensures
that it resembles the false vacuum at infinity, which is necessary so that the action integral Eq.
(2.30) converges (recall also that only contributions that touch the false vacuum are included in
the path integral expression for the energy, Eq. (2.19)). Although these boundary conditions
allow us to solve for φ(r), they do not give rise to a unique solution, in keeping with the general
notion that two-point boundary value problems do not generally have unique solutions. One
solution is φ = φfv, the false vacuum solution. Another sometimes relevant solution of these
equations, but not satisfying the boundary conditions Eq. (2.31) and (2.32) is φ = φtv, the
analogous solution sitting in the true vacuum.

There is also a non-trivial solution, which we will generally refer to as ‘the bounce’, since it
is easy to prove (in flat space) that it is the unique non-trivial solution. The proof of this was
originally given by Coleman [98], but we repeat it here because the fact that it fails to hold in
curved space is crucial to the findings of this thesis.

Consider some initial φ0 = φ(0), and attempt to solve Eq. (2.29) by the shooting method.
The 1

r
term behaves like a monotonically decreasing friction term, and the potential appearing

is inverted compared to the usual Lorentzian field equation (this is a consequence of the Wick
rotation). Let φfv, φbar and φtv denote the locations of the false vacuum, top of the barrier,
and true vacuum respectively. Any φ0 starting on the range (φfv, φtv) will start rolling towards
the top of the barrier, and eventually cross it. Evidently to match the boundary condition Eq.
(2.32), it will be necessary to start on the range (φbar, φtv), since solutions starting on the false
vacuum side of the barrier will eventually fall back, but due to the friction removing ‘energy’
from the system, they can never reach closer to φfv than their starting point, φ0. For solutions
on the true-vacuum side of the barrier, φ ∈ (φbar, φtv), there are two possibilities:
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Figure 2.1: Example overshoot and undershoot solutions. The undershoot solutions lacks the
energy to reach the false vacuum, and falls back to the barrier, oscillating. The overshoot
solution, conversely, overshoots the false vacuum and (in this case) eventually oscillates about
the other barrier. Note that in general the defining feature of an overshoot is that it overshoot
the false vacuum - the potential may or may not have another barrier to oscillate about, and
may either escape to infinity, or reflect backwards depending on the potential: all these scenarios
count as overshoots. Between the overshoot and undershoot solution there lies a bounce solution
- it is this that dominates vacuum decay.

• Solutions too close to φbar initially will lack the energy to climb to φfv: such solutions will
reach φ̇ = 0 at some finite r and then fall back, oscillating forever and giving and infinite
contribution to the action. Such solutions are called ‘undershoot’ solutions.

• Solutions starting too close to φtv will stay there for a long time (since V ′(φ0) can be
made arbitrarily small if φ0 is sufficiently close to φfv), until the friction term has fallen to
near zero: when they finally do fall down, since the true vacuum has higher −V (φ) than
the false vacuum, they will have too much energy and will overshoot the false vacuum:
these solutions are known as ‘overshoot’ solutions for this reason.

These two types of solutions are illustrated in figure 2.1.
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2.3 Uniqueness of Flat Space Bounces

By continuity, it can be argued that between any undershoot and overshoot, there must lie a
bounce solution. Furthermore, this solution is unique by a simple energy argument first given
by Coleman [98]: the friction term in Eq. 2.29 is always positive, and thus the ‘energy’ of the
system is monotonically decreasing. This can be seen explicitly by recasting Eq. 2.29 as:

d

dχ

(
φ̇2

2
− V (φ)

)
= −3φ̇2

χ
. (2.33)

Note that ‘energy’ here is defined with V having the opposite sign to the usual definition: this
is due to the Wick rotation, but in any case its physical interpretation does not affect the result,
which is that the ‘energy’ is monotonically decreasing. Consequently, if a particle doesn’t have
enough energy to reach the false vacuum for some initial φ1 (since φ̇(0) = 0, the initial energy
is −V (φ!)), then for any φ0 ∈ (φbar, φ1), the initial energy is also too small to reach the false
vacuum. This implies that if φ0 leads to an undershoot solution, then all φ between φ0 and
the barrier also lead to undershoots. Now assume that there are multiple bounce solutions,
starting at φ1 and φ2, with φ1 closest to the barrier. Since a solution lies between a range of
undershoots and a range of overshoots, then any φ0 between φ1 and φbar is also an undershoot.
This contradicts the assumption that there is a second solution, which requires overshoots on
one side of it, hence the bounce solution is unique.

This argument, as we will see, is modified in curved space, which will be crucial to the main
results of this thesis.

2.4 Application to the Standard Model

The Standard Model is a theory with a scalar doublet, the Higgs field, whose behaviour is
governed by the Higgs potential:

VHiggs(Φ) = λ(Φ†Φ − ν2)2. (2.34)

After spontaneous symmetry breaking, three of the components of this doublet correspond to
Goldstone bosons, and in unitary gauge these are absorbed into the W and Z bosons, giving a
single Higgs scalar, h, satisfying:

V (h) = −1

2
m2h2 +

λ

4
h4, (2.35)

where m2 = 2ν2λ, and the tree level Higgs mass is M2
h = 2m2. As discussed in the introduction

the Higgs self-coupling, λ, runs with the energy scale, µ, and the correct description requires
the use of the Higgs effective potential (action). Let S[h] = S0[h] +S1[h] where S0[h] is the tree
level action and S1[h] the 1 loop correction. Now let h = h(0) + h(1) be the bounce solution,
with h(0) the tree level bounce, and h(1) the 1-loop correction to it. Expanding about h(0) gives:

S[h] ≈S0[h
(0)] + S ′

0[h
(0)]h(1) + S1[h

(0)] + S ′
1[h0]h

(1) +O(h(1))2 (2.36)

= S0[h
(0)] + S1[h

(0)] +O(h(1))2. (2.37)

This follows since, by definition, S ′
0[h

(0)] = 0 and because S ′
1[h

0] = S ′
1[h

0] + S ′
0[h

(0)] = S ′[h0] =
S ′[h] +O(h(1)). Since S ′[h] = 0 by definition, then S ′

1[h
(0)]h(1) is a second order correction and
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can be ignored. This means that to 1-loop order, the bounce action is given by the 1-loop
action of the tree-level bounce solution: the corrections to this solution from loops contribute
only at second order.

Of course, in the Standard Model, we run into the obvious snag that there is no bounce
solution at tree level, nominally. However, we know the problem is caused by the running of λ,
and for constant negative values of λ, it is possible to find a tree level solution, the so called
Fubini or Lee-Weinberg bounce [120, 114]:

hLW (χ) =

√
2

|λ|
2R

R2 + χ2
, (2.38)

which is easily verified to solve Eq. (2.29) in the case of a negative λ potential: V (h) = − |λ|
4
h4.

This satisfies both of the boundary conditions Eqs. (2.31)-(2.32) for arbitrary R. The reason
that this happens is that the equation:

ḧ+
3

χ
ḣ+ |λ|h3 = 0, (2.39)

has conformal symmetry: it is invariant under the scale transformation χ → aχ̃, h → h̃
a
.

Consequently, if some scale R solves the equations, then all other scales must solve it too. The
tree level action of this solution is:

B0[hLW ] =
8π2

3|λ|
, (2.40)

which is independent of R, as we would expect for a conformally symmetric system. Note
that this is only in fact true for large h, and the Standard Model has −1

2
m2h2 terms that

break this conformal symmetry. However, it is precisely large h which control the behaviour of
tunnelling. In general, the loop corrections to this are complicated in the Standard Model - they
are considered by [18] for example. Two things are of note from this calculation: the running
of the couplings spoils the conformal symmetry of the tree level action, which means different
scales µ will describe bounces with different action. Specifically, inspection of Eq. (2.40) shows
that decay will be dominated by the scale µ at which |λ| is maximised (which is the minimum
value of λ < 0). Also, the loop corrections will in general come out with logarithmic terms such
as log(αµ2R2) where α is some O(1) constant. This implies that we should choose:

µ ≈ 1

R
, (2.41)

in order to minimise quantum corrections to the bounce - essential for the accuracy of the
calculation to avoid the problem of large logarithms. This essentially fixes the decay rate result
as:

h(0)(χ) =

√
2

|λ(µmin)|
2µmin

1 + µ2
minχ

2
, (2.42)

B0 =
8π2

3|λ(µmin)|
, (2.43)

where µmin is the renormalisation scale at which λ is minimised (conversely, |λ(µ)| is maximised
on the set {µ : λ(µ) < 0}). The three loop running of λ, using the top mass Mt = 173.34GeV
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and Higgs mass Mh = 125.15GeV gives this scale as µmin = 2.79 × 1017GeV, and λ(µmin) =
−0.01459. This corresponds to B0 ≈ 1804.

To get an idea of how this affects the life-time, we would need to compute the pre-factor,
A, of the Γ ∼ Ae−B formula, since this contains the dimension-full parameters that determine
Γ/V , the decay rate per unit volume. However, we know that the bounce is dominated by the
scale µmin, so the dimensions of A should be dominated by this. Thus, a good approximation
of the decay rate per unit four-volume is:

Γ

V
= µ4

mine
−B0 . (2.44)

We now ask the question: what is the probability that a bubble formed within our past light
cone? This corresponds to a Hubble volume of roughly V ≈ H−3

0 , where H0 is the present day
Hubble rate1. This means that the expected life-time of the vacuum (after which the probability
that a bubble was present in our past light cone exceeds 1/e) is:

τUniv =
1

Γ
=

1

H0

(
H0

µmin

)4

e+B0 =
1

H0

× 10
B0 log10(e)−4 log10

(
H0

µmin

)
≈ 10550

H0

. (2.45)

Consequently, the decay rate of the electroweak vacuum in the present day leads to a life-time
550 orders of magnitude longer than the age of the visible universe. It is safe to say that
this is compatible with observations: we know that the present day vacuum is not the true
vacuum, but decay events are so overwhelmingly unlikely that even if the electroweak vacuum
is metastable, it would be expected to remain in its present state today, as we observe. One
might naively think that this should be the end of the issue - whatever the instability implies
about high energy physics, it evidently puts us in no danger of spontaneous vacuum decay.
However, there are other effects that must be taken into account: one of these is gravity, and
that will form the discussion of the rest of this thesis.

1Actually, the volume is larger than this because the age of the universe is not precisely 1
H0

, and depends

on the precise cosmological model, and also because the visible universe has radius somewhat larger than 1
H0

,
due to the expansion of the universe stretching the distance that observed light can have travelled since the Big
Bang to (apparently) superluminal distances.
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Chapter 3

Basics II - Vacuum Decay with Gravity
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Gravitational corrections to the decay rate of a false vacuum state in field theories have
been considered since the idea’s inception. There are three main potential influences of gravity
that we wish to consider:

1. Gravitational back-reaction of the nucleated bubble on the metric, and how this affects
nucleation.

2. The effect of non-minimal couplings between the Higgs field and gravity.

3. The nucleation of vacuum bubbles during inflation.

Gravitational back-reaction at first glance may seem irrelevant, however, it should be noted
that the true vacuum of the Standard Model appears to be very deep - it is unclear exactly
how deep. Certainly this matters for the subsequent evolution of true vacuum bubbles, but as
we have seen in the flat space discussion, nucleated bubbles tunnel through the barrier to a
scale µmin ∼ 1017 GeV, which is not far off the Planck scale. It is not unreasonable therefore
to ask what effect back-reaction might have. This is ultimately tied up with the fact that the
Standard Model true vacuum is not shallow compared with the false vacuum, and thus the thin
wall approximation is not valid there.

Non-minimal coupling is related to gravitational back-reaction. It is well known that if a
term such as ξ

2
φ2R is included in the action, then ξ will run with the energy scale [57]. Current

bounds on ξ are extremely weak, showing only that |ξ| < 2.6 × 1015 [105]. At one loop level,
this running is given in the Standard Model by [57, 3]:

µ2 dξ

dµ2
=

1

16π2

(
ξ − 1

6

)[
6λ+ Y2(S) − 9

10
g21 −

9

2
g22

]
, (3.1)

Y2(S) ≡3(y2u + y2c + y2t + y2d + y2s + y2b ) + y2e + y2µ + y2τ ,

where yX are the fermion Yukawa couplings to the Higgs. ξ = 1
6

attracts special attention,
since if the potential of the theory is conformally invariant, then the the Lagrangian is also
conformally invariant. It is notable that this value is a fixed point of the renormalisation flow
at one loop - a manifestation of the conformal symmetry. However, what is important about
this equation is that ξ = 0 is not a fixed point. Thus, the Standard Model cannot have ξ = 0 at
all energy scales. Consequently, it is never correct to ignore it. This becomes doubly important
when one considers the depth of the Standard Model effective potential, since this means that
the heart of a nucleated bubble can potentially have a large (negative) Ricci scalar, to which
the Higgs field can couple. This can significantly distort the shape of nucleated true vacuum
bubbles, or even suppress them. Other order-6 operators such as φ6/M2

P and φ2∂µφ∂
µφ/M2

P

can also affect vacuum stability - see section 5.1 for further discussion.

Finally, inflation is one of the main reasons that the vacuum instability problem is a po-
tential problem. Light scalar fields such as the Higgs receive fluctuations of order H from
inflation [107], and this could potentially destabilise the electroweak vacuum by pushing the
field over the barrier and into the true vacuum [65, 66, 68, 60]. As we saw in chapter 2, the flat
space decay rate of the vacuum is sufficiently slow that it is overwhelmingly likely that a true
vacuum bubble would not have nucleated during the life-time of the visible universe. However,
if the decay rate is enhanced during Inflation, this scenario could change drastically.

One of the first works on this was produced by Coleman and de Luccia [97]. Coleman and
de Luccia considered thin wall bounce solutions, asking what happens when the energy density
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of the true vacuum is such that the critical nucleated bubble has a size comparable to its own
Schwarzschild radius.

They proceeded by analogy to the flat space case, which is to consider the Euclidean action
for the theory of a scalar field in a gravitational background:

S[φ, gµν ] =

∫
d4x
√

det g

[
1

2
∇µφ∇µφ+ V (φ) − M2

P

2
R

]
. (3.2)

It is of course worth noting that Wick rotating a metric is by no means a straightforward
matter, and it remains unclear if the procedure can even by done for arbitrary metrics [121].
One obvious problem is that the prescription t → iτ obviously cannot be interpreted literally.
Consider the de Sitter metric, for example:

ds2 = −dt2 + e2Htg̃ijdx
idxj → dτ 2 + e2iHτ g̃ijdx

idxj. (3.3)

Taken at face value, this procedure would make the metric complex. However, the procedure
is well defined in flat space, and this can be extended to de Sitter-like spaces of the form1:

ds2 = dχ2 + a2(ρ)[−dψ2 + cosh2 ψdΩ2
2]. (3.4)

Following [84], we can then transform via:

t =f(χ) sinh(ψ), (3.5)

r =f(χ) cosh(ψ), (3.6)

with f(χ) defined by f ′(χ) = f(χ)/a(χ)giving:

ds2 =
a2(χ)

f 2(χ)
(−dt2 + dr2 + r2dΩ2

2), (3.7)

which shows that this metric is conformally flat. The Wick rotation t = −iτ , which is equivalent
to ψ = −i(π

2
− ϕ) then gives an unambiguously real metric:

ds2Euc =
a2(χ)

f 2(χ)
(dτ 2 + dr2 + r2dΩ2) = dχ2 + a2(χ)dΩ2

3. (3.8)

This also makes clear in what sense de Sitter space can be regarded as an analytic continuation
of the 4-sphere metric to Lorentzian space. Inverting the procedure can also be used to obtain
the subsequent evolution of the bubble after nucleation.

3.1 Equations of Motion

Accepting for the moment that the action Eq. (3.2) is the correct generalisation to describe
tunnelling when gravity is present, we move to describe the equations of motion that the bounce
solutions must satisfy:

∇µ∇µφ− V ′(φ) = 0, (3.9)

Rµν −
1

2
Rgµν =

1

M2
P

(
−∇µφ∇νφ+

1

2
gµν

[
1

2
∇ρφ∇ρφ+ V (φ)

])
. (3.10)

1By de Sitter like, it is meant that this metric reduces to de Sitter space when a(ρ) = 1
H sin(ρ), in which

case, Eq. (3.4) is just the dS-slicing co-ordinates form of de Sitter spacing, where the dSn is divided into slices
of unit dSn−1 metrics each expressed in closed-slicing co-ordinates.
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Solving the coupled Einstein-scalar field equations in full generality, however, is no straightfor-
ward task. As discussed in chapter 2, the flat space results are dominated by O(4) symmetric
bounces. In curved space, no such theorem exists that would imply this [97], but it seems plau-
sible that the same would apply, with caveats. It seems unreasonable, for example, to expect
that the dominant solution for a decay triggered by a black hole [82, 122, 83, 84] or by a cosmic
string, would respect an O(4) symmetry if the background does not. A more reasonable con-
jecture might be that the dominant contribution to the decay rate is always the solution which
respects the symmetry of the initial metastable state. In the cases that we are interested in,
namely the electroweak vacuum in empty space, possibly undergoing (homogeneous) inflation,
it seems reasonable to assume O(4) symmetry.

Assuming that the bounce solutions are O(4) symmetric, the Euclidean metric can be placed
in the form:

ds2Eucl = dχ2 + a(χ)2dΩ2
3, (3.11)

where χ is a radial co-ordinate, and dΩ2
3 describes the unit 3-sphere metric. The equations of

motion reduce to:

φ̈+
3ȧ

a
φ̇− V ′(φ) = 0, (3.12)

ȧ2 = 1 − a2

3M2
P

(− φ̇
2

2
+ V (φ)), (3.13)

ä = − a

3M2
P

(
φ̇2 + V (φ)

)
. (3.14)

Dots here denote differentiation with respect to χ. Note that Eq. (3.13) resembles the Fried-
mann equation of cosmology, but it’s interpretation is different. To begin with, this equation
appears to always have positive ‘spatial curvature’ in the form of the first term, which is al-
ways 1. Physically, a(χ) describes the radius of curvature of a surface of constant χ. Since
O(4) symmetry implies that such surfaces are always 3-spheres, they necessarily have constant
(positive) curvature. However, this does not imply that the curvature of this four-dimensional
Euclidean space is always positive. In fact, the Ricci scalar is given by:

R =
6(1 − ȧ2)

a2
− 6ä

a
=

6(1 − ȧ2)

a2
− 6ä

a
. (3.15)

This can be negative, if the potential is negative, which can happen in the interior of a bounce
solution as it lies deep in the true vacuum. An analogue of what this geometry would look
like is plotted in figures 3.1 and 3.2. Note that these are not exact representations of the
geometry, since representing a surface with negative curvature isometrically is not possible in
three dimensions. This can easily be seen by considering the distance along an embedded
surface described by z = f(r) where r =

√
x2 + y2. The arc length out to r is:

l(r) =

∫ r

0

dr
√

1 + f ′(r)2 ≥ r. (3.16)

But in two dimensions, the Gaussian curvature is given by [123]

K = 3 lim
l→0

2πl − C(l)

πl3
, (3.17)

where C(l) is the circumference of a circle at constant l, in this case 2πr. But since l ≥ r, we
will always have positive Gaussian curvature for such an embedded surface. This is related to
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Hilbert’s Theorem [124], which states that a surface of constant negative curvature cannot be
isometrically embedded in R3. For this reason, figures 3.1 and 3.2 use model embeddings that
are positively curved (or discontinuous) at the origin, and negatively curved elsewhere, in order
to represent the geometry of the bounce solution2 Note additionally, that when the equations

Figure 3.1: 2D analogue of a bounce geometry for the four sphere (actual plot here is a cardioid
shape, because the bounce cannot be embedded in 3D, but the curvature of this surface matches
that which might be found in a bounce geometry, except for a singular point at the pole - the
bounce is smooth).

of motion hold, the action is:

S[φ, a] = −2π2

∫ χmax

0

dχa3(χ)V (φ(χ)). (3.18)

In particular, the kinetic terms of the action cancel after substituting the expression for R:

R =
φ̇2 + 4V (φ)

M2
P

. (3.19)

2Consequently, these representations are not valid at the origin.
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Figure 3.2: 2D analogue of a bounce geometry in an asymptotically flat space. Curvature is
negative in the interior of the bounce, and zero far outside it (note that the origin here is
singular).

3.2 Boundary Conditions

The boundary conditions in when including gravity depend on the sign of the potential in the
false vacuum, V (φfv).

1. If V (φfv) > 0, then the solution is compact and there necessarily exists χmax > 0 for which
a(χmax) = 0 (this is proven in section 3.4). In this case, φ̇(0) = φ̇(χmax) = 0 is necessary
to avoid divergence at the co-ordinate singularities.

2. If V (φfv) ≤ 0, then the solution is non-compact and we require φ̇(0) = 0 and φ(χ →
∞) → φfv.

These conditions and the reasons they are required are discussed further in section 3.4.

3.3 Types of Gravitational Bounces

The array of possible bounce solution is much richer with gravity than without. Here we will
consider only bounces with V (φfv) = 0, the ‘flat false vacuum’ bounces, and V (φfv) > 0, which
describes bounces in a de Sitter background.

3.3.1 Flat False Vacuum Bounces

If V (φfv) = 0, then the bounce solutions will be non-compact, and thus satisfy the second of the
two cases, namely φ̇(0) = 0 and φ(χ → ∞) → φfv. Finding these bounces proceeds much the
same way as in flat space, and they have similar properties. As we will show in section 3.4.2,
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there is never any χ for which ȧ(χ) = 0, and thus a(χ) grows without bound. Since the solution
approaches the (flat) false vacuum, as χ→ ∞, this means that it also approaches a(χ) ∼ χ at
large χ, that is, the exterior of the bounce resembles the flat space case. This means that the
effect of gravity is largely confined to the interior of the bounce, where the scalar potential is
deepest, as thus we expect more significant gravitational corrections.

Since φ(0) is always in the V (φ(0)) < 0 region (this is necessary to conserve energy, since the
gradient in the scalar field gives a positive energy contribution), then the interior resembles an
anti-de-Sitter space, and can potentially undergo gravitational collapse when a bubble nucleates.
It always has a strong negative Ricci curvature.

3.3.2 Coleman-De Luccia Bounces

When V (φfv) > 0, bounce solutions are necessarily complicated. The most general non-trivial
tunnelling solution is called the Coleman de Luccia (CdL) solution, first proposed in [97].
These solutions satisfy φ̇(0) = φ̇(χmax) = 0, and interpolate between two points on opposite
sides of the barriers, φ(0) = φ0, φ(χmax) = φ1. Generically, neither of φ1, φ0 is the false vacuum,
so the exterior of the bounce does not touch the false vacuum (this is because reaching the false
vacuum can only be done in infinite time, while the bounce must be compact).

This presents a difficulty in interpreting the bounce solution, which is supposed to describe
tunnelling from a false vacuum state. At first it appears contradictory - the energy of the false
vacuum state in flat space is determined from the vacuum survival amplitude:

⟨φfv| e−ĤT |φfv⟩ =

∫ φfv

φfv

Dφe−S[φ], (3.20)

which describes an integral over states which all touch the false vacuum as a boundary condi-
tion. How then, can a CdL solution possibly describe tunnelling from a metastable vacuum?
It would seem to be excluded.

The answer comes from considering the quantum properties of gravitational backgrounds
such as de Sitter space. De Sitter space has a horizon, which results from the exponential
expansion of space-time:. Much like a black hole horizon, it can be shown that this horizon has
an associated temperature, the Gibbons-Hawking temperature [125]:

TGH =
H

2π
, (3.21)

where H2 = V (φfv)

3M2
P

is the Hubble rate. The horizon itself can be visualised by considering the

structure of de Sitter space, which is defined by embedding a hyperboloid, −x20 +x21 +x22 + ...+
x2N = 1

H2 , in N + 1 dimensional Minkowski space. Figure 3.3a shows an example of this. As
can be seen from figure 3.3b, observers sitting at one point on the surface can never see some
null rays, even after an infinite amount of time.

The thermal fluctuations that result from this mean that vacuum decay in a de Sitter back-
ground cannot be considered a purely tunnelling process - there is also a process of thermal
excitation that can lift states in the false vacuum up the barrier.
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(a) De Sitter space, dS2, as a hyperboloid in
R1,2.

(b) Penrose diagram for de Sitter space.
Dashed lines indicate the horizon for points
at θ = 0, θ = π respectively, and I± represent
past and future infinity.

This idea was explored in [101], where they showed that by considering tunnelling at the
de Sitter temperature in a space with de Sitter curvature, one arrives at precisely the CdL
prescription for computing tunnelling rates. In this context then, the CdL solution should be
interpreted as states in the false vacuum being lifted from φfv to some higher value, φ1, by
thermal excitations, and then tunnelling through the barrier to emerge at φ0. This explains
why these solutions do not appear to touch the false vacuum.

Note that it is possible in many potentials to solve the bounce boundary conditions φ̇(0) =
φ̇(χmax) = 0 in multiple ways, and some solutions may satisfy φ̇ = 0 at points in the interval
(0, χmax), in addition to the boundaries. For reasons to be discussed in section 3.3.4, we will
reserve the term ‘CdL solution’ for those solutions that only satisfy φ̇ = 0 at the boundaries
and nowhere else. Solutions with one of more turning points in the interval (0, χmax) will be
denotes ‘oscillating solutions’ and discussed in section 3.3.4.

3.3.3 Hawking-Moss Bounces

There is a simpler type of solution that can always exist, first discussed by [106] and called
the Hawking-Moss solution. This consists of the field sitting as a constant at the top of the
barrier, φ = φbar. The solution to Eq. (3.13) is thus:

a(χ) =
1

HHM

sin(HHMχ), (3.22)

where H2
HM = V (φbar)

3M2
P

(note that this is different to H2 =
V (φfv)

3M2
P

). This solution has trivial

action and thus decay exponent:

B = S[φHM ] − S[φfv] = 24π2M4
P

(
1

V (φfv)
− 1

V (φbar)

)
. (3.23)
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For special cases where ∆V (φbar) = V (φbar)−V (φfv) ≪ V (φfv), then this can be approximated
as:

B ≈ 8π2∆V (φbar)

3H4
=

4π

3

(
1

H

)3
∆V (φbar)

TGH

. (3.24)

This can be interpreted as the ratio of the energy required to excite a Hubble volume (radius
1/H) to the top of the barrier, to the temperature TGH. Since the decay rate goes as Γ ∝ e−B,
this implies a thermal interpretation of the Hawking-Moss solution. In the context of the ther-
mal description of CdL bounces discussed in section 3.3.2, the Hawking-Moss solution is simply
the case when the field is excited completely up to the top of the barrier, without tunnelling
through (while CdL solutions describe partial excitation followed by tunnelling through the
rest of the way). This gives these solutions an entirely thermal character.

3.3.4 Oscillating Bounces

As mentioned in section 3.3.2, it is possible to find solutions that satisfy φ̇(0) = φ̇(χmax) = 0
while having additional turning points in the interval (0, χmax). These solutions are called ‘os-
cillating bounces’ because they cross the barrier more than once.

Ostensibly, it seems as if such solutions, if they exist, should be included in any computation
of the decay rate. However, this is not the case - these solutions have more than one negative
eigenvalue in the space of fluctuations about them [126, 127, 110], and thus do not contribute
to vacuum decay [101, 111]. This will be discussed in more detail in section 3.5.2.

3.4 Boundary Conditions

The boundary conditions for tunnelling in the presence of gravity require special attention.
First we consider the gravitational field: since a(χ) describes the radius of curvature of a sur-
face of constant χ, then necessarily a(0) = 0, since a surface at χ = 0 is just a single point -
the origin (in effect, this choice of boundary condition is just defining χ = 0 to be the origin).

However, the a = 0 condition means that non-singular solutions must satisfy φ̇(0) = 0,
for much the same reason that this is required in flat space. One more boundary condition is
required for the scalar field in order to make the problem fully specified. There are, however,
two possible behaviours:

1. If there exists some point χmax such that a(χmax) = 0, then we will require φ̇(χmax) = 0.
This will result in a compact solution, like figure 3.1, where χmax represents the second
pole.

2. Otherwise, the solution is non-compact, and in order to ensure finite S[φ, a] − S[φfv, afv],
the solution must satisfy φ(χ→ ∞) → φfv so that the solution matches the false vacuum
at infinity.

Which boundary condition applies depends on false vacuum solution. This is a constant solu-
tion, φ = φfv, which can only take place consistently at V ′(φfv) = 0. We will consider the three
possible signs for the potential in the false vacuum in turn:
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3.4.1 V (φfv) > 0

In this case, the solution to the gravitational equation is especially simple if V (φfv) > 0:

ä = −V (φfv)

3M2
P

a =⇒ a(χ) =
1

H0

sin(H0χ), (3.25)

where H0 =
√
V (φfv)/3M2

P, and we solve the acceleration equation subject to a(0) = 0, and
ȧ(1) = 1. This second boundary condition is required for consistency with Eq. (3.13), which
is first order. Note that this solution is clearly compact, since a(π/H0) = 0. The action of the
false vacuum solution in this case is:

Sfv = −24π2M4
P

V (φfv)
. (3.26)

This means that any bounce solution that contributes to vacuum decay must be finite, otherwise
the decay exponent will be infinite. In fact, we can prove a stronger statement: the bounce
solution in this case must be compact.

Statement 1. No non-trivial finite-action non-compact solution to the bounce equations of
motion exists for simple tunnelling potentials if V (φfv) > 0.

By simple tunnelling potential, we mean that the potential only has at most three stationary
points, the false vacuum, φfv, the top of the barrier, φbar, and the true vacuum, φtv. Note that
φbar and φtv could be absent from the potential, and this lemma will still apply (though there
is no guarantee that any bounce solution necessarily exists if the potential has no barrier).

Proof. Assume that such a bounce solution does exists. In this case, the upper limit of the
action integral is infinite since the solution is assumed to be non-compact:

S = −2π2

∫ ∞

0

dχa(χ)3V (φ(χ)). (3.27)

Thus, for the action to be finite, we require that a3(χ)V (φ(χ)) vanishes faster than 1
χ

in the

χ → 0 limit. Note that a(χ) cannot vanish asymptotically, or over any extended range of χ,
since by Eq. (3.13), if a = 0 at some point, ȧ2 = 1 there, and the solution will rapidly move
away from a = 0. Also, non-compactness requires a > 0, since if there exists some finite point
at which a(χmax) = 0, then we have arrived precisely at a compact solution. Thus, we require
V (φ(χ)) → 0.

However, if φ asymptotically approaches some point φz such that V (φz) = 0, then this point
must also satisfy V ′(φz) = 0, otherwise the solution to Eq. (3.12) will not stay there for any
extended period of χ.

It is here that the assumption that the potential is a simple tunnelling potential becomes
important. For such potentials, there are at most three stationary points that φ could approach.
However, since V (φbar) > V (φfv) > 0, the only point that could possibly be suitable is φtv. If
V (φtv) ̸= 0, then the proof is immediate - no suitable stationary point exists, so no finite action
non-compact bounce solution exists.

There is, however, the possible loop-hole of V (φtv) = 0. This is not an unphysical loophole,
however, since it would describe tunnelling from a de-Sitter space to a flat space, which is

47



potentially of physical interest. Thus, we consider this special case. Assume that a bounce
solution exists that asymptotically approaches φtv. At this point, φ̇→ 0, V (φ) → 0, and so by
Eq. (3.13), ȧ → ±1. The ȧ = −1 case can be ruled out, since if ȧ → −1, ȧ is bounded above
and negative, and we will necessarily encounter a = 0 at finite χ, resulting in a compact solution.

For the ȧ = 1 case, because V (φtv) = 0, then V (φ) > 0 everywhere, since the true vacuum is
the lowest point of the potential. Thus, by Eq. (3.14), ä ≤ 0, with equality only at φ̇ = 0, φ =
φfv. Thus, with the exception of the true vacuum solution itself, which is a trivial solution,
the bounce solution will have ä < 0 somewhere, and thus ∃χ such that ȧ(χ) < 1. But since
ä ≤ 0, ȧ is monotonically decreasing, which contradicts the fact that ȧ → 1, which requires ȧ
to increase. This is a contradiction, so the bounce solution in question cannot exist.

Since we have just ruled out the non-compact case, we know that the bounce solution for
V (φfv) > 0 must be compact, that is, there exists finite χmax > 0 such that a(χmax) = 0.
Necessarily, therefore, we must impose the φ̇(χmax) = 0 boundary condition.

3.4.2 V (φfv) = 0

In this case, the false vacuum is flat and the false vacuum solution is φ(χ) = φfv, afv(χ) = χ,
but since V (φfv) = 0 everywhere, Sfv = 0. Lemma 1 does not apply in this case, and so
non-compact solutions terminating at φfv are allowed. Indeed they are expected, since they
would correspond to the flat space case with back-reaction corrections. It is also easy to argue
that there can only be one such non-compact solution. To see this, we first we establish that
non-compact solutions have ȧ > 0 throughout:

Statement 2. A non-compact bounce solution satisfies ȧ ≥ 1 everywhere, and ȧ approaches 1
from above.

Proof. First note that ȧ(0) = 1, so ȧ starts out positive. In order to cross to ȧ < 1, Eq. (3.13)
implies that we need V (φ) > 0, that is, we must be in the positive region of the potential. Since
the bounce solution is monotonic3, then after φ has entered the positive region of the potential,
it will stay there for all subsequent χ. However, if we are in the positive region, then Eq. (3.14)
implies:

ä = − a

3M2
P

(φ̇2 + V (φ)) < 0, (3.28)

which is to say, ȧ can only decrease. Now, if the solution approaches the false vacuum at
χ → ∞, both φ̇ → 0 and V (φ) → 0, and thus by Eq. (3.13), ȧ → ±1. But if ȧ < 1 in
the positive potential region, then it is bounded above by 1 and monotonically decreasing.
Consequently, it will never approach 1. It also cannot approach ȧ = −1 asymptotically, since
ȧ < 0 implies that a is decreasing, and we know the gradient is bounded above by a negative
value: this means it will cross zero, resulting in a singularity (or a compact solution) at finite
χ. Since this is incompatible with a non-compact solution, we know that it must never cross
zero, so we require ȧ→ +1+ as χ→ ∞. We thus conclude that ȧ is never less than 1 anywhere
and approaches 1 from above. .

It is also possible to argue that such a solution must exist, although this will require a
discussion of the non-instanton, divergent solutions which we leave to section 3.4.4. With this
in mind, it is reasonable to ask if any compact solutions exist for V (φfv) = 0. If they do, then

3Non-monotonic solutions cannot contribute to vacuum decay - see section 3.9
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they present a potential problem: the false vacuum action in the V (φfv) > 0 case diverges in
the V (φfv) → 0 limit (see Eq. (3.26)), which opens up the possibility that solutions which exist
for V (φfv) > 0 might be discontinuous across the V (φfv) → 0 transition. Two things might
happen to such solutions in this limit:

1. A solution which exists for V (φfv) > 0 might change so that φ→ φfv as V (φfv) → 0, that
is, it becomes non-compact. In this case, the action of the solution will diverge in such a
way that it cancels the divergence in Eq. (3.26), and the decay exponent will smoothly
transition to some flat-false-vacuum, finite value.

2. A solution might not approach φfv smoothly, in which case, the decay exponent diverges
when V (φfv) → 0+, but at V (φfv) = 0, it appears to exist, with (possibly) finite decay
exponent since Sfv = 0.

However, the second case presents a problem: if such a solution exists in the V (φfv) → 0 limit,
then we have a discontinuity across the V (φfv) = 0 point. One could eliminate this by arguing
that such solutions do not exist, but at present, there does not appear to be any way of ruling
them out.

We conclude, therefore, that the boundary condition of interest is:

1. φ(χ→ ∞) → φfv for the non-compact solution, analogous to the flat space case.

2. If compact solutions are expected, they will satisfy (̇φ)(0) = φ̇(χmax) = 0 for some finite
χmax, just as in the V (φfv) > 0 case.

3.4.3 V (φfv) < 0

This scenario is of less physical interest, because it would correspond to an anti-de-Sitter false
vacuum, which would be unstable to perturbations [97, 65], and would rapidly lead to gravita-
tional collapse to a singularity. Furthermore, the cosmological constant of the present vacuum
is observed to be positive. The false vacuum solution to Eq. (3.13) in this case is:

a(χ) =
1

H0

sinh(H0χ), (3.29)

where in this case, H2
0 = |V (φfv)|/3M2

P. The action integral Eq. (3.27) is then obviously
divergent. This immediately rules out any compact solutions, as they will have finite action,
and thus divergent decay exponent. Non-compact solutions are possible, however, because the
late time behaviour as φ→ φfv is a→ 1

H0
sinh(H0χ). This has the effect of possibly cancelling

out the divergent false vacuum action, giving a finite decay exponent, if such solution exist.
Eitherway, the relevant boundary condition is φ(χ→ ∞) → φfv.

3.4.4 The Overshoot/Undershoot Method in Curved Space

The boundary conditions considered here lead us to a two-point boundary value problem to
solve for the bounce configuration. To actually find bounce solutions, one can use the over-
shoot/undershoot method. In flat space, this is motivated by the observation, due to Cole-
man [98], that there are two types of non-instanton solutions that start at some φ(0) = φ0 with
φ̇(0) = 0: those that overshoot the false vacuum as χ→ ∞, and those that come to rest before
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reaching it, fall back and oscillate. These were illustrated in figure 2.1.

In curved space, this discussion has to be modified somewhat. The main complication is
that the ‘friction’ term, ȧ/a, can now be negative for compact solutions. Originally, it was
argued in flat space [97], that solutions starting close to the top of the barrier are necessarily
undershoots because they lack the energy to reach the false vacuum, and can only lose it since
the friction term is always positive. In curved space this no-longer holds, because ‘anti-friction
’ when ȧ < 0 can add energy to the system:

d

dχ

(
φ̇2

2
− V (φ)

)
= −3ȧ

a
φ̇2. (3.30)

To deal with this, Balek and Demetrian [109] discuss a modified notion of overshoot and un-
dershoot solutions, which we will use here. First, we categorise non-instanton solutions by the
number of nodes they possess in their derivative, φ̇. Then:

1. Undershoot solutions are those for which there is at least one node.

2. Overshoot solutions have zero nodes.

Balek and Demetrian argue that between an L-node solution and an (L + 1)-node solution,
continuity demands that a bounce solution which crosses the barrier L times. This is because
such solutions always diverge, but depend continuously on the initial value, φ(0) = φ0. φ di-
verges to positive or negative infinity according to the number of nodes (whether it diverges to
±∞ depends on which side of the barrier it starts, and how the potential is arranged). Thus,
in order for a change in φ0 to change the number of nodes in the derivative, the divergent part
of the solution must pass from +∞ → −∞ or vice-versa. As it does so, a node appears at the
singularity a(χmax) = 0 for some φ0, and this corresponds to a solution of the boundary value
problem which crosses the barrier L times.

It is believed, however, that solutions crossing the barrier more than once - so called ‘oscillat-
ing bounces’, do not contribute to vacuum decay. This is because the spectrum of fluctuations
about such solutions contains more than one negative eigenvalue [126, 127, 110]. Solutions
with more than one negative eigenvalue are known not to contribute to vacuum decay, because
despite being stationary points of the Euclidean action, they are not stationary points of the
barrier penetration integral [111]. Note that the argument of [111] does not directly apply in
the case of curved space, but it can be modified to do so [101]. Thus, if we are only interested
in monotonic bounce solutions that cross the barrier once, then undershoots are those with 1
node, and overshoots with 0 nodes (not counting χ = 0). The argument of [109] then implies
that between any undershoot and overshoot, there must lie a bounce solution. This will become
crucial when we discuss the extra bounce solutions that arise in the Standard Model.

In flat space, the existence of a bounce solution is established by arguing that solutions
sufficiently close to the barrier lead to undershoots (because they have insufficient energy to
reach the false vacuum), and that solutions starting sufficiently close to the true vacuum stay
there for long enough that the friction falls to zero and they eventually overshoot. In curved
space this argument must be modified.

The analogous argument in curved space is as follows, which we have also made in [2].
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Statement 3. Solutions starting infinitesimally close to the false vacuum are always overshoot
solutions.

Proof. Consider first a solution starting infinitesimally close to the false vacuum (or the true
vacuum - the argument is essentially identical). It satisfies the linearised equation:

∆φ̈+ 3H cot(Hχ)∆φ̇− V ′′(φfv)∆φ = 0, (3.31)

where H2 = V (φfv)

3M2
P

. The solution to this can be expressed in closed form with the Hypergeo-

metric function:

∆φ(χ) = ∆φ0 2F1

(
3

2
+ α,

3

2
− α, 2, sin2(

Hχ

2
)

)
, (3.32)

where:

α =

√
9

4
− V ′′(φfv)

H2
. (3.33)

The question becomes, what happens to this solution in the limit as χ approaches the a = 0
singularity, since this will determine whether the solution is an overshoot or an undershoot. In
this case, it can be deduced from the Hypergeometric function transformation formula [128]:

2F1(a, b, c, z) = (1 − z)c−a−b 2F1(c− a, c− b, c, z), (3.34)

that the asymptotic behaviour of ∆φ in the limit χ→ π
H

is:

∆φ(χ) ≈
∆φ0 2F1(

1
2
− α, 1

2
+ α, 2, sin(Hχ

2
))

cos2(Hχ
2

)
. (3.35)

Using the identity [128]:

2F1(a, b, c, 1) ≡ Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (3.36)

we find:

2F1

(
1

2
− α,

1

2
+ α, 2, 1

)
=

1

Γ
(
3
2

+ α
)

Γ
(
3
2
− α

)
=

1

(1
4
− α2)Γ

(
1
2
− α

)
Γ
(
1 −

[
1
2
− α

])
= − cos(πα)(

2 − V ′′(φfv)
H2

)
π
, (3.37)

where in the second line we have used the gamma function reflection identity, Γ(z)Γ(1 − z) =
π

sin(πz)
, and sin

(
π
2
− απ

)
= cos(απ). Consequently:

∆φ(χ) ∼
−4∆φ0 cos

(
π
√

9
4
− V ′′(φfv)

H2

)
(

2 − V ′′(φfv)
H2

)
π(Hχ− π)2

. (3.38)

Now, writing the Hypergeometric differential equation as:

z(1 − z)
d2y

dz2
+ (2 − 4z)

dy

dz
−
(

9

4
− α2

)
y = 0, (3.39)
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we can demonstrate that the solution diverges as z → 1 without encountering any turning
points. Consider what happens at a turning point of the solution dy

dz
= 0:

d2y

dz2
=

9
4
− α2

z(1 − z)
y. (3.40)

Since 9
4
− α2 = V ′′(φfv)

H2 > 0, then the character of the turning point is determined solely by the
sign of y: if y > 0, it is a minimum, and if y < 0 it is a maximum. For sufficiently small z, the
expansion of the hypergeometric function shows that:

lim
z→0+

d 2F1(3/2 + α, 3/2 − α, 2, z)

dz
=

(
9
4
− α2

)
2

, (3.41)

since α2 < 9
4

the derivative is initially positive. If we encounter a stationary point at some
0 < zs < 1, this means that for z < zs there exists points with negative derivative. By conti-
nuity, therefore, there must exist a maximum for some z < zs, which contradicts Eq. (3.40).
Thus, no stationary points can be encountered, the the solution must diverge to positive infinity
without encountering a stationary point. This means ∆φ(χ) is an overshoot.

For completeness, we can conclude that the solution definitely diverges because the coeffi-
cient of 1/(1 − z) in the z → 1− limit is:

y(z → 1−) ∼ cos(πα)(
1
4
− α2

)
π(1 − z)

. (3.42)

Since V ′′(φfv) > 0, then α2 < 9
4
. For 0 ≤ α2 < 9

4
, this coefficient is always positive (the

only possible exception is α2 = 1
4
, for which cos(πα) = 0, but since

(
1
4
− α2

)
appears in the

denominator, L’Hopital’s rule implies that the coefficient approaches 1 there). For α2 < 0,
cos(απ) = cosh(|α|π) > 0, and so the coefficient is also positive, and never zero.

The only possible exception to this is if α = 9
4
, or in other words, if the false vacuum is

massless, V ′′(φfv) = 0 (a quartic potential is an example of how this might occur in practice). In
this case, the linearisation breaks down since there is no quadratic term, but one can consider
linearising about some small φ1 close to φfv. If the potential has a barrier, then there must be
some point φ0 sufficiently close to φfv for which V ′(φ0) > 0, and consequently there exists some
point φ1 between (φfv, φ0) for which V ′′(φ1) > 0, by the mean value theorem. One can then

linearise about this point, with a shift ∆φ = φ − φ1 = − V ′(φ1)
V ′′(φ1)

+ y, for which y satisfies Eq.

(3.39) (replacing V ′′(φfv) with V ′′(φ1) in the definition of α). The results above then apply to
y, which therefore also diverges as an overshoot.

Statement 4. Solutions starting infinitesimally close to the barrier are undershoots if

V (φbar)

3M2
P

+
V ′′(φbar)

4
< 0, (3.43)

and overshoots otherwise.

Proof. This proceeds much as in lemma 3, but replacing V ′′(φfv) → V ′′(φbar), so that α is
defined by:

α =

√
9

4
− V ′′(φbar)

H2
bar

, (3.44)
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and the linearised equation of motion is:

∆φ̈+ 3Hbar cot(Hbarχ)∆φ̇− V ′′(φbar)∆φ = 0, (3.45)

where H2
bar = V (φbar)

3M2
P

. The asymptotic solution is:

∆φ(χ) = ∆φ0 2F1

(
3

2
+ α,

3

2
− α, 2, sin2

(
Hbarχ

2

))
. (3.46)

This time, since V ′′(φbar) < 0 for the top of the barrier generically, we must have α2 > 9
4
. The

asymptotic form of the hypergeometric solution is Eq. (3.42) as z → 1−. The denominator is
obviously negative.
On the range 9

4
< α2 < 25

4
, cos(φα) is positive, and this implies that y → −∞. By Eq.

(3.41), the initial derivative is positive, and since the initial value is y = 1, this must cross zero
somewhere by the intermediate value theorem. On the region where y > 0, there can be no
stationary points, since by Eq. (3.40), these must be maxima, which is impossible if y is initially
decreasing. But for the y < 0 region, only minima are allowed. If a stationary point existed
here, the solution would diverge to +∞ unless it re-crosses zero and encounters a maximum.
This cannot happen, however, as a direct corollary of the Sturm Comparison Theorem. To see
this, transform Eq. (3.45) with x = Hbarχ and ∆φ(χ) = u(x)v(x) with:

v(x) = exp

(
−3

2

∫ x

ϵ

cot(t)dt

)
. (3.47)

The ϵ lower limit here is to deal with the fact that this is a singular Sturm-Liouville equation -
it poses no problem as we can propagate forward the boundary conditions to some small value
ϵ. Under this transformation, the equation becomes:

u′′ +

[
α2 − 15

4
− 3

4
cot2(x)

]
u = 0. (3.48)

We can now apply the Sturm Comparison Theorem to the equation in this form. We know that
there is a solution with α2 = 25

4
which has a single zero. The Sturm Comparison theorem states

that if u′′1 + r1(x)u1 = 0 and u′′2 + r2(x)u2 = 0, and r1(x) ≥ r2(x) for all x in the interval (a, b)
on which both Sturm-Liouville problems are defined, then there must be at least one zero of u1
between every consecutive pair of zeros of u2. If we assume that there is more than one zero
for α2 < 25

4
, then we end up with a contradiction, because rα2(x) = α2 − 15

4
− 3

4
cot2(x) ≤ r 25

4
,

which implies the α2 = 25
4

solution has multiple zeros, contradicting the Sturm-Liouville theo-
rem. Consequently, such zeros cannot exist. More generally, this just means that if a Sturm-
Liouville equation has eigenvalues λn, then the singular solutions with λ < λn cannot have
more zeros than the non-singular eigen-solution with eigenvalue λn. Intuitively, this means
that zeros can only arise when λ passes through an eigenvalue, and the sign of the divergence
changes.

This proves that for 9
4
< α2 < 25

4
, the solution is monotonically decreasing and diverges to

−∞, as possessing stationary points would require in multiple zeros, contradicting the Sturm-
Comparison theorem. Consider now the case α2 > 25

4
. Re-applying the Sturm-Comparison

theorem, we conclude that this solution must have at least two zeros, and consequently has
a stationary point. Thus, it is an undershoot. We conclude therefore that α2 > 25

4
leads to
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undershoots, and α2 < 25
4

leads to overshoots. In terms of the potential, the condition for
undershoots can be expressed as:

V (φbar)

3M2
P

+
V ′′(φbar)

4
< 0, (3.49)

and the > 0 case implies overshoots.

The message of lemma 4 is that is the condition Eq. (3.49) is satisfied, then solutions
with φ(0) = φ0 sufficiently close to the barrier are undershoots, and solutions with φ0 suf-
ficiently close to the false vacuum are overshoots. Thus, by continuity, there must lie some
φ0 ∈ (φfv, φbar) such that the solution satisfies the bounce boundary conditions. This proves
that a CdL solution exists.

The interesting question is what happens when this criteria is not satisfied:

V (φbar)

3M2
P

+
V ′′(φbar)

4
> 0. (3.50)

In this case, both φ0 close to φbar and to φfv lead to overshoots, and thus we cannot conclude
that a CdL solution necessarily exists. Balek and Demetrian showed ( [109]) that a necessary
condition for the existence of such a solution is that there exists φ somewhere on the interval
(φfv), φtv) such that:

V (φ)

3M2
P

+
V ′′(φ)

4
< 0, (3.51)

however, this does not guarantee their existence: it can only rule them out if it fails to be
satisfied.

3.5 Eigen-spectrum of Gravitational Bounces

It was discussed in section 2 that a bounce solution can contribute to vacuum decay if and only
if it has a single negative eigenvalue in the spectrum of fluctuations about it. This is crucial: if
there are no negative eigenvalues, then the bounce provides no imaginary contribution to the
energy, and hence does not contribute to vacuum decay. If there is more than one negative
eigenvalue, then the bounce, while a stationary point of the Euclidean action, is not an station-
ary point of the barrier penetration integral [111]. Here we will consider the eigen-spectrum of
compact bounces, which are the bounces relevant in de Sitter tunnelling.

3.5.1 Negative Eigenvalues in Flat Space

This was first derived in [99]. Because the bounces are O(4) symmetric, it is possible to
decompose the fluctuation equation:

−∇2y + V ′′(φB(χ))y = λy, (3.52)

into 3-sphere spherical harmonics and associated radial functions: y = R(χ)Φ(θ, ϕ, ψ). Apply-
ing standard techniques, the spherical harmonics satisfy [129]:

−∇̃2Φ = −l(l + 2)Φ, (3.53)
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with degeneracy Dl(3, 0) = (l + 1)2, l = 0, 1, 2 . . .. If there is to be at most one negative
eigenvalue, therefore, it must be in the l = 0 sector, since eigenvalues with l ≥ 1 are degenerate.
The radial equation is:

d

dχ

(
χ3dRl

dχ

)
+ χ3

[
λ− V ′′(φB(χ)) − l(l + 2)

χ2

]
Rl = 0. (3.54)

This equation is of Sturm-Liouville form, so has distinct ordered eigenvalues λ1 < λ2 < . . .,
and λnl is associated to an eigenfunction with exactly n − 1 nodes on the interval (0,∞). To
proceed, we need to make use of the Sturm-Picone Comparison theorem [130]:

Theorem 1 (Sturm-Picone Comparison Theorem). For non-trivial solutions u1, u2 of the equa-
tions:

ü1 + p1(x)u1 = 0, (3.55)

ü2 + p2(x)u2 = 0, (3.56)

with p2(x) ≥ p1(x)∀x ∈ [a, b], then if p1 ̸= p2, ∀x1, x2 ∈ [a, b] such that p1(x1) = p1(x2) = 0,
∃x ∈ (x1, x2) such that p2(x) = 0. If p1 = p2 then u1 ∝ u2.

Essentially, this theorem states that if p2(x) ≥ p1(x) everywhere, then between every pair
of zeros of u1, there must lie a zero of u2. This theorem is essential in deriving key properties
of Sturm-Liouville equations. To apply it here, we need to simplify the radial equation, Eq.

(3.54), with the substitution Rl =
(
ε
χ

) 3
2
u(χ), which yields:

ü+

[
λ− V ′′(φB(χ)) −

{
l(l + 2) + 3

4

}
χ2

]
u = 0. (3.57)

Now consider solutions of the radial equation, with boundary conditions Rl(0) = Rl(∞) = 0. As
usual, only discrete λ will satisfy the Rl(∞) = 0 equation - these are the eigenvalues, λ1, λ2, . . .
and the rest diverge as χ → ∞. Although we might worry about the singular nature of p(x)
in Eq. (3.57), this is not a problem as the proof of the Sturm-Picone Comparison theorem
only requires that the Wronskian of the two solutions and it’s derivative is finite everywhere on
the interval under consideration. Because of the choice of boundary condition Rl(0) = 0, this
only fails to be true for non-eigen solutions at χ → ∞. We write uλ(χ) as the solution with
eigenvalue λ, and:

pλ(χ) = λ− V ′′(φB(χ)) −
{
l(l + 2) + 3

4

}
χ2

. (3.58)

Then if uλ1 has no zeros on the interval (0,∞), it follows that for all λ < λ1, u
λ(χ) is positive

for all χ > 0 (since if it had a zero at χ0, p
λ1 > pλ so the Sturm-Picone Comparison theorem

would imply that uλ1 has a zero on the interval (0, χ0), which is a contradiction), so diverges
to positive infinity if at all. While for λ > λ1, u

λ must have at least one zero, since pλ > pλ1 ,
but uλ1 has zeros at 0 and ∞, so uλ must have one in between these. Repeating this reasoning
as we increase λ ultimately leads to the familiar Sturm-Lioville result that the eigenvalues are
ordered. λ1 < λ2 < . . ., and that λn has n − 1 zeros, since all λ < λ1 have no zeros, all
λ1 < λ < λ2 have one zero, etc.. . . We can now prove the following:

Statement 5. There are no negative eigenvalues of l ≥ 1.
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Proof. We denote the n-th eigenvalue with angular momentum number l as λnl, and by the
Sturm-Liouville theorem, λ1l < λ2l < λ3l < . . ., but there is no necessary ordering between
eigenvalues with different l, since these correspond to different Sturm-Liouville equations. First
note that there is a zero eigenvalue with l = 1, namely R1 = φ̇B, which is easily verified to
satisfy:

1

χ4

d

dχ

(
χ3dφ̇B

dχ

)
− V ′′(φB)φ̇B − 3

χ2
φ̇B. (3.59)

This is the same as Eq. (3.54) with l = 1 and λ = 0, indicating that this fluctuation corresponds
to a zero eigenvalue with degeneracy 4. This is not surprising - it corresponds to translations of
the centre of the bounce about the space-time and is accounted for in the derivation by Callan
and Coleman [99]. Now, note that this fluctuation does not have any nodes, since φ̇B = 0 only
at χ = 0,∞. Hence, it is the lowest eigen-solution for l = 1, and all other eigenvalues λn1 are
higher, so there cannot be any negative eigenvalues for l = 1.

Now consider fixed λ, but change l. The form of the radial equation for the Sturm-Picone
comparison theorem is:

u′′l +

[
λ− V ′′(φB(χ)) −

{l(l + 2) + 3
4
}

χ2

]
ul = 0, (3.60)

u′′l′ +

[
λ− V ′′(φB(χ)) −

{l′(l′ + 2) + 3
4
}

χ2

]
ul′ = 0. (3.61)

Consequently, if l′ > l, then pl′ < pl, and thus between every pair of zeros of ul′ there must lie
a zero of ul. Now assume that for some l′ > 1, there is a negative eigenvalue. This means that
the λ = 0 solution (which generically diverges) must have a zero at some finite χ = χ0 (since
if λ0l′ corresponds to a node-less eigenfunction, all λ > λ0l′ lead to solutions with at least one
zero). However, since it also has a zero for χ = 0, then the Sturm-Picone comparison theorem
implies that u1 for λ = 0 must have a zero on the interval (0, χ0). This is not the case, and so
by contradiction we are forced to conclude that no such negative eigenvalue can exist.

As for whether there are negative eigenvalues in the l = 0 sector, this is less clear. At the
very least, lemma 5 implies that they can only exist here. In the case of thin wall bubbles,
it can be shown that there is only one negative eigenvalue [99, 131]. If bounces do exist with
more than one, however, then they can be shown not to contribute significantly to tunnelling,
because a linear combination of fluctuations with different negative eigenvalues can be chosen
that both lowers the action, and also corresponds to a possible tunnelling path through the
barrier. Note that the main reason that a single negative eigenvalue does not allow one to
lower the action is that fluctuations about the bounce do not necessarily map into fluctuations
that correspond to tunnelling paths through the barrier. This is because they generically move
the end-point of the barrier penetration path away from the other side of the barrier (specif-
ically the ‘escape surface’, that is, the points on the far side of the barrier at which the field
can emerge within the constraint of energy conservation); adding a second negative eigenvalue
fluctuation direction allows one to construct a linear sum of fluctuations which still decreases
the action, but with the correct end-point (sitting on the escape surface) to describe a possible
tunnelling path, meaning that such solutions with more than one negative eigenvalue always
correspond to saddle points of the action [111], while those with a single negative eigenvalue
do not.
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3.5.2 Negative Eigenvalues of Compact Bounces in Curved Space

The situation in curved space is considerably more complicated, due to the presence of metric
fluctuations in the spectrum of fluctuations about a given bounce. This is more difficult than
the scalar case, not only due to the increased number of degrees of freedom, but the gauge
symmetry inherent when dealing with a metric.

Several authors have considered the problem of fluctuations around an O(4) symmetric
bounce solution [131, 132, 126]. One way to approach this is to decompose the fluctuations
into 3-sphere spherical harmonics, Yl(θ, ϕ, ψ), related to the three angular variables, θ, ϕ, ψ
(note that we are suppressing the other angular momentum quantum numbers here, since the
radial parts of the fluctuations which were are most interested in do not depend on them;
formally we should write Ylm1m2(θ, ϕ, ψ) however). This exploits the residual O(3) symmetry
around a nucleated bounce, and gives [131]:

ds2 =[1 + 2Al(χ)Yl(θ, ϕ, ψ)]dχ2 +Bl(χ)∇aYl(θ, ϕ, ψ)dχdza

+ a2(χ)

[
g̃ab{1 + 2Ψl(χ)Yl(θ, ϕ, ψ)} +

2Cl(χ)

l(l + 2)

(
∇a∇b +

l(l + 2)

3
g̃abYl(θ, ϕ, ψ)

)]
dzadzb,

(3.62)

where Al, Bl, Cl,Ψl are the radial metric fluctuations, which depend on l, χ is as usual the radial
parameter, and za represent the angular co-ordinates. Note that there is a gauge symmetry
here [131]: χ→ χ+αl(χ)Yl(θ, ϕ, ψ), za → za+βl(χ)∂aYl(θ, ϕ, ψ), and this can be used to remove
two of the fluctuations (for example Al and Bl), leaving only two remaining, as expected for
a massless graviton. Together with the scalar field fluctuation, φ → φ + ΦlYl(θ, ϕ, ψ), and the
gauge invariant combination ζl = ȧΦl − aφ̇Ψl − aφ̇Cl

3
, this gives a quadratic Lagrangian for

fluctuations [131]:

L(2)(ζl, ζ̇l) =
a3(χ)

(
1 − l(l+2)

3

)
2
(
Q− ȧ2l(l+2)

3

) [
ζ̇2l (χ) + f(a, φ)ζ2l (χ)

]
, (3.63)

where:

Q =1 − a2(χ)V (φ)

3M2
P

, (3.64)

f(a, φ) =V ′′(φ) +
l(l + 2)

a2

+
1

3M2
P

(
Q− ȧ2l(l+2)

3

) [aφ̇V ′(φ) + a2ȧV ′(φ)2 − l(l + 2)
(

2aȧ2φ̇V ′(φ) − 3ȧφ̇2Q+ ȧφ̇2
)]

+
1

3M2
P

[
2φ̇2 − 3

aφ̇V ′(φ)

ȧ
− 4V (φ)

]
− ä

ȧ

(
Q̇− 2ȧäl(l+2)

3

Q− ȧ2l(l+2)
3

)
. (3.65)

From this expression, in principle, one can derive the eigenvalues for fluctuations about an
O(4) symmetric gravitational bounce. This was done, for example, by [131], who found the
interesting result that CdL bounces always have more than one negative eigenvalue in the
metric fluctuation sector. This can be seen by noting that CdL bounces always have a value
χpeak for which ȧ(χpeak) = 0. Using Eq. (3.13), one sees that Q can be re-written as:

Q = ȧ2 − a2φ̇2

6M2
P

, (3.66)
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which is negative when ȧ = 0. This means that the kinetic term for l = 0 fluctuations in Eq.
(3.63) is negative in this region. Thus, negative eigenvalue fluctuations (an infinite number, in
fact) can always be created by considering sufficiently high frequency fluctuations of the field
in the vicinity of ȧ = 0. Lee and Weinberg termed these negative modes ‘rapidly oscillating
modes’ to distinguish them from the ‘slowly varying modes’ characteristic of flat space bounces.
Their role in not well understood. On the face of it, it would appear to suggest that all CdL
bounces do not contribute to vacuum decay.

However, it should be noted that these high frequency modes come into play precisely when
quantum gravity corrections would be expected to be important. Since it will ultimately be
necessary to renormalise the theory to compute the prefactor of the bounce, it is far from clear
whether these rapidly oscillating modes actually rule CdL bounces out from contributing to
vacuum decay or not - a correct quantum description of gravity will likely affect them. We
will assume that the CdL bounces do contribute and the rapidly oscillating modes should be
ignored, but it is worth keeping their existence in mind.

As for the slowly varying negative modes, it seems reasonable to think that these should
satisfy the same rules as in flat space - namely that there should only be one.

3.6 Eigen-spectrum of the Hawking-Moss Solution

We introduced the Hawking-Moss solution in section 3.3.3. This solution is unique, however, in
that it is possible to compute the eigen-spectrum exactly, and thus easily find the total number
of eigenvalues.

Starting with the quadratic action of Eq. (3.63), we substitute in the expressions for the
Hawking-Moss solution to find:

L(2) =
sin3(HHMχ)

H3
HM cos2(HHMχ)

[
1

2

d

dχ
(cos(HHMχ)Φ)2

+

{
V ′′(φbar) +

H2
HM l(l + 2)

sin2(HHMχ)
− 4H2

HM − 2H2
HM tan2(Hχ)

}
1

2
(cos(HHMχ)Φ)2

]
. (3.67)

The metric fluctuations have clearly dropped out altogether for this gauge choice, so only Φ,
the scalar field fluctuation, determines the eigenvalue spectrum. The Euler-Lagrange equation
for Φ gives an eigenvalue equation:

1

sin3(HHMχ)

d

dχ

(
sin3(HHMχ)

dΦ

dχ

)
− V ′′(φbar)Φ − H2

HM l(l + 2)

sin2(HHMχ)
Φ = −λΦ. (3.68)

Note that in this case, the l = 1 modes do not vanish identically. The eigenvalue on the RHS
is defined with a minus sign because this ensures that negative λ corresponds to decreasing
action. The substitutions u = cos(HHMχ) and Φ = (1 − u2)rz gives:

(1 − u2)
d2z

du2
− 4u(r + 1)

dz

du
+

(
λ− V ′′(φbar) − 2r

H2
HM

)
+

1

1 − u2
[
4r(r + 1)u2 − l(l + 2)

]
z = 0.

(3.69)
Thus, by choosing 4r2+4r−l(l+2) = 0, we can eliminate the (1−u2)−1 term (this is completely
analogous to solving the associated Legendre equation in quantum mechanics). This has two
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possible solutions, r = l/2 and r = −1 − l/2, but the negative solution cannot be made to
satisfy the boundary conditions for eigen-solutions, and so we discard it. The result is:

(1 − u2)
d2z

du2
− 4u(r + 1)

dz

du
+

(
λ− l(l + 2) − V ′′(φbar)

H2
HM

− 2r

)
z = 0. (3.70)

This equation is of known form - the eigenvalues can be found in terms of the Gegenbauer
polynomials, which satisfy [128]:

(1 − x2)
d2C

(α)
n (x)

dx2
− (2α + 1)x

dC
(α)
n (x)

dx
+ n(n+ 2α)C(α)

n (x) = 0. (3.71)

Comparing these, we see that α = 2r + 3
2

= l + 3
2
. Hence the eigenvalues are:

λn,l = n(n+ 2l + 3) + l(l + 2) +
V ′′(φbar)

H2
HM

+ l = (n+ l)(n+ l + 3) +
V ′′(φbar)

H2
HM

. (3.72)

Setting N = n+ l, we can summarise the eigenvalues as:

λN = N(N + 3) +
V ′′(φbar)

H2
HM

, (3.73)

for N = 0, 1, 2, . . .. Since the degeneracy over l is (l + 1)2 (see [129]), the degeneracy of states
with eigenvalue λN is 12 + 22 + . . .+ (N + 1)2, which is simply:

DN(3, 0) =
1

6
(N + 1)(N + 2)(2N + 3). (3.74)

This is unsurprising; in fact, these states are simply the 4-sphere spherical harmonics [129],
as we would expect, since the geometry here is just that of a 4-sphere. Note that the N = 0
mode is always negative, with degeneracy 1 - it is this that is responsible for the Hawking-Moss
describing tunnelling. Furthermore. It follows then that the Hawking-Moss solution only has
a single negative eigenvalue when:

V ′′(φbar)

H2
HM

+ 4 ≥ 0. (3.75)

3.7 Potentials with no Barrier and De Sitter Space

Statement 6. There are no curved space bounce solutions in potentials lacking a barrier.

Proof. First consider that a solution must have some point where ȧ = 0 if it exists and V0 > 0.
To see this, compare the curved space and flat space equations for the friction:

d

dχ

(
ȧ

a

)
= − 1

a2
− φ̇2

6M2
P

, (3.76)

d

dχ

(
1

χ

)
= − 1

χ2
. (3.77)

This tells us that the curved space friction term decreases faster, and so when plotted on the
same graph, the curves will never cross (if they did, the curved-space friction curve would have
a steeper gradient, which would indicate it crossing 1/χ from above, which cannot happen if
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it is initially smaller). Consequently, if there is no place where ȧ = 0 then ȧ/a is bounded by
0 < ȧ/a < 1/χ, proving that ȧ/a → 0 as χ → ∞. This means that the energy, E = φ̇2/2 − V ,
approaches a constant. In order for there to be a solution, this constant must be −V0, since
that is the energy at the false vacuum, which the solution must approach. However, this cannot
be the case because:

E =
φ̇2

2
− ∆V (φ) − V0 > −V0, (3.78)

since ∆V (φ) > 0. Hence, the solution will always overshoot, due to having too much energy,
implying that no solution exists if ȧ is never zero somewhere.
However, assuming that there is some region where ȧ = 0 is also problematic. After this point,
ȧ < 0 and thus the friction term becomes negative. This means that the field accelerates, and
in the absence of a barrier, the gradient of the potential is also causing the field to accelerate.
Thus, nothing can slow the field down, and it will also overshoot the false vacuum. Hence, no
solution exists.

One way of interpreting this result was pointed out by Lee [133], who pointed out that
solutions exist in flat space only because fluctuations away from the nominally unstable false
vacuum the false vacuum are suppressed by the gradient terms in the potential of the field:

U [φ(x)] =

∫
d3x

√
deth

[
1

2
(∇φ)2 + V (φ)

]
. (3.79)

It is worth stressing that it is U [φ], which includes gradient terms, and not V (φ) that the field
tunnels through: thus even if V (φ) may appear to have no barrier, from a tunnelling point of
view there is still a barrier against the nucleation of localised bubbles, since these necessarily
have gradients. In de Sitter space, however, the Hamiltonian is not well defined beyond the
horizon, and causal interactions (such as gradient terms) cannot influence the behaviour of the
field. This means that long-wavelength, super-horizon modes are unimpeded by the gradient
terms and there is nothing to stop them rolling down the barrier, which is the reason their
amplitude tends to grow with time [134]. This gives the scalar field an unstable direction to
roll down, making the false vacuum unstable, rather than meta-stable. In some cases, it is
possible to constrain the system to try and remove these rolling modes [133, 135, 136, 108],
however, this situation can also be dealt with using the stochastic approach, which directly
takes into account the behaviour of long wavelength modes [107].

3.8 Vacuum Instability and Bubble Nucleation During

Inflation

One of the simplest examples of a situation in which gravity comes into play for vacuum stability
calculations is during inflation. An inflationary background can be modelled with V (φfv) > 0,
and this background respects O(4) symmetry. Note that in flat space, O(4) symmetric solutions
can be proven to be the dominant solutions [119]. The situation is less clear in curved space,
where this proof does not directly apply.

However, it seems reasonable to conclude that this does hold true, at least in backgrounds
that respect O(4) symmetry, as flat space does (it would be surprising if the dominant so-
lution for vacuum decay was the nucleation of an asymmetric bubble, particularly as this is
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not true in the flat limit). There is some evidence that this is the case [137, 138]. Possible
exceptions to this would be space-times that do not respect O(4) symmetry, such as around a
black hole [82, 83, 84] or cosmic string.

If we accept, however, that O(4) symmetric solutions are dominant, then this implies that
vacuum decay should be controlled either by Hawking-Moss solutions, CdL solutions, or some
combination thereof - whichever solution has the lowest action will dominate the decay rate.

This is, however, not in itself sufficient to answer the question of what happens when a
bubble nucleates during inflation. In flat space, one computes the decay rate per unit volume,
Γ/V3, and then uses this to find the expected life-time. We then compare to the age of the
universe to decide if decay is expected. The dynamics are more complicated in an inflationary
background, however, as not only must true vacuum bubbles nucleate, but they must do so
frequently enough that the exponential expansion does not push them all beyond the horizon
of the visible universe.

One can phrase this question as requiring that there must not be any bubble within out
past light-cone. In section 3.9, we concluded that bubbles nucleated during inflation expand
to fill a full Hubble volume, but no further. After inflation these regions can expand, and any
bubbles in them will presumably grow to envelop the entire universe. This means that we can
address this question by counting the number of Hubble volumes at the end of inflation that
we are today in causal contact with (since nucleated bubbles expand at near the speed of light).

In to obtain a decay rate from a bubble, it is necessary to compute the exponential pre-
factor, A, in the decay rate: Γ = Ae−B. This factor contains the dimensional dependence
which gives the decay rate per unit volume. However, this pre-factor is generically difficult to
compute, since it depends on fluctuations about the bounce solution:

A =
B2

4π2

⏐⏐⏐⏐det′(S ′′[φHM])

det(S ′′[φfv])

⏐⏐⏐⏐− 1
2

. (3.80)

Recall that the prime denotes the determinant with the four zero eigenvalues removed, which
is what makes this a density. In principle, this can be calculated, using the Gel’fand-Yaglom
theorem [139, 140, 141]:

det(− d2

dr2
+M (1)(r) − λ)

det(− d2

dr2
+M (2)(r) − λ)

=
ψ

(1)
λ (b1)

ψ
(2)
λ (b2)

, (3.81)

where the boundary conditions for the eigenfunctions are ψ
(i)
λ (ai) = ψ

(i)
λ (bi) = 0, and we

normalise the solutions with the condition φ
(i)′

λ (ai) = 1. This result follows from the fact that,
regarded as a function of λ, both sides of Eq. (3.81) have the same poles and zeros, and thus
by the Liouville theorem, are the same function up to a constant, which in this case is 1.
This result can be generalised to d-dimensional partial differential operators of the form −∇2 +
M(r) as well, by decomposing the eigen-solutions into (d-1)-sphere spherical harmonics [140]:

log

(
det(−∇2 +M (1)(r))

det(−∇2 +M (2)(r))

)
=

∞∑
l=0

Dl(d− 1, 0) log

(
− 1
a3(r)

d
dr

(
a3(r) d

dr

)
+ l(l+d−1)

a2(r)
+M (1)

− 1
a3(r)

d
dr

(
a3(r) d

dr

)
+ l(l+d−1)

a2(r)
+M (2)

)
,

(3.82)
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where we have assumed a radially symmetric metric of the form ds2 = dr2 + a2(r)dΩ2
d−1 and

the degeneracy is given by [129]:

Dl(d− 1, 0) =
(l + d− 3)!(2l + d− 2)

l!(d− 2)!
. (3.83)

Additionally, if the result involves a vector, it may be necessary to generalise Eq. (3.81) using
determinants of the Wronskian of a set of independent solutions, since these will have the cor-
rect poles and zeros. See [18] for an example of this done with the Standard Model in flat space.

However, although these functional determinants can in principle be evaluated, this alone is
not sufficient - Eq. (3.82) consists of a divergent sum, to begin with. This is because these func-
tional determinants need to be renormalised before they give finite, sensible results [99, 140].
This is doubly problematic in the case of gravitational bounces because, as we have seen, these
include gravitational fluctuations. Lacking a proper theory of quantum gravity, the calculation
cannot easily be performed.

However, one can get around this by assuming that, regardless of what the final theory of
quantum gravity is, it should presumably give a finite result, and that the pre-factor A will be
fixed, on dimensional grounds to be the same order of magnitude of some characteristic scale
for the bounce. During Inflation, for example, this might be the Hubble rate, H. In the flat
space Standard Model, it is the scale µmin at which λ(µ) is minimised [18].

From a phenomenological point of view, the relevant question we ask about vacuum decay
is: what is the probability that a bubble nucleated within out past light-cone? If we know
(possibly space-time dependent) decay rate per unit space-time volume, Γ, then the expected
number of bubbles nucleating in the past light-cone of the present day is:

⟨n⟩ =

∫
Past lightcone

d4x
√

− det gΓ(x). (3.84)

In an Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time, the comoving radius R(t) of
the past light cone follows a radial null trajectory:

ds2 = −dt2 +
a2(t)dR2

1 − kR2
= 0, (3.85)

and thus:

R(t) =
1√
k

sin−1

(√
k

∫ t0

t

dt′

a(t′)

)
. (3.86)

Assuming that the decay rate depends only on time, and is homogeneous, then:

⟨n⟩ =4π

∫ t0

tstart

dta3(t)Γ(t)

∫ R(t)

0

R2

√
1 − kR2

=4π

∫ t0

tstart

dta3(t)Γ(t)
1

2k

(
sin−1(

√
kR(t))√
k

−R(t)
√

1 − kR2(t)

)
. (3.87)

The k = 0 case is especially simple:

⟨n⟩ = 4π

∫ t0

tstart

dta3(t)Γ(t)
R3(t)

3
. (3.88)
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If k = 0 and inflation ends at some time trad (the beginning of the radiation era) and has
approximately constant Hubble rate, H, then:

R(t) =

∫ t0

trad

dt′

a(t′)
+

∫ a(trad)

a(t)

da

Ha2
=

∫ t0

trad

dt′

a(t′)
+

1

H

[
1

a(t)
− 1

a(trad)

]
. (3.89)

If we let R0 = R(trad) be the contribution from the hot-big-bang evolution post-inflation, then
(for t < trad):

⟨n⟩ =
4π

H

∫ a(trad)

a(tstart)

daa2(t)
Γ(t)

3

(
R3

0 +
3R2

0

H

[
1

a(t)
− 1

atrad

]
+

3R0

H2

[
1

a2(t)
− 2

a(t)a(trad)
+

1

a2(trad)

]
+

1

H3

[
1

a3(t)
− 3

a2(t)a(trad)
+

3

a(t)a2(trad)
− 1

a3(trad)

])
+

4π

3

∫ t0

trad

dta3(t)Γ(t)R3(t).

(3.90)

If we are only interested in the bubbles that nucleate during inflation, then we neglect the last
term, but it is generally used to compute the expected number of flat space bubbles during the
cosmological history of the universe. The contribution of inflationary bubbles is:

⟨n⟩ =
4π

3H

∫ arad

astart

daΓ(a)

([
R3

0 −
3R2

0

Harad
+

3R0

H2a2rad
− 1

H3a3rad

]
a2 +

[
3R2

0

H
− 6R0

H2arad
+

3

H3a2rad

]
a

+

[
3R0

H2
− 3

H3arad

]
+

1

H3a

)
. (3.91)

For a constant decay rate, Γ(a) = Γ, this gives:

⟨n⟩ =
4πΓ

3H4

[(
(HR0rad)3

3
− (HR0rad)2 +HR0rad −

1

3

)
(1 − e−3N)

+

(
3

2
(HR0rad)2 − 3HR0rad +

3

2

)
(1 − e−2N)

+ (3HR0rad − 3) (1 − e−N) +N
]
, (3.92)

where R0rad = R0arad is the physical radius of the past-light-cone at the end of inflation, and
N = log(arad/astart) is the number of e-folds since the start of inflation. At large N , this takes
the form:

⟨n⟩ ≈ 4πΓ

3H4

(
(HR0rad)3

3
+

(HR0rad)2

2
+HR0rad −

11

6
+N

)
. (3.93)

Notice that this is divergent in the N → ∞ limit, which corresponds to t → −∞, astart → 0.
This indicates that if inflation lasts infinitely far into the past, then the expected number of
bubbles in the past light cone is logarithmically divergent! Most models of inflation, however,
would assume some boundary condition for the field that makes this untrue, but the details
will depend on the model of inflation, and likely quantum gravity effects which set the initial
conditions for inflation. Regardless, it is interesting that the nucleation rate of bubbles is sensi-
tive to how long inflation went on for. This further highlights the potential benefits of vacuum
decay as an indirect probe of high energy phenomena.
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3.9 Expansion of Vacuum Bubbles after Nucleation

A key assumption in the discussion so far is that any vacuum bubble that nucleates is necessarily
threatening. In flat space, this is justified because bubbles expand at near the speed of light after
nucleation [98, 99]. The reason for this is their O(4) symmetry, which corresponds to O(3, 1)
symmetry when analytically continuing back to real space. We can show this by transforming
(r, t) to the O(3, 1) symmetric co-ordinates (ρ, ψ), valid for r > t:

r =ρ cosh(ψ), (3.94)

t =ρ sinh(ψ), (3.95)

in which the (flat) metric takes the form:

ds2 = dρ2 − ρ2dψ2 + ρ2 cosh2 ψdΩ2
2. (3.96)

In these co-ordinates, the (Lorentzian) scalar field equation is:

∂2φ

∂ρ2
+

3

ρ

∂φ

∂ρ
− 1

ρ2 cosh2 ψ

∂

∂ψ

(
cosh2 ψ

∂φ

∂ψ

)
+

L̂2
ϕθ

ρ2 cosh2 ψ
− V ′(φ) = 0, (3.97)

where L̂2
ϕθ is the usual angular momentum operator for the angular terms ϕ, θ. The initial

conditions are φ(0, t, θ, ϕ) = φB(r), ∂φ
∂t

= 0 in the (r, t) co-ordinates, at t = 0, which translates
to ψ = 0 in the new-co-ordinates, with the initial conditions translating to φ(ρ, 0, θ, ϕ) = φB(ρ),
∂φ
∂ψ

= 0. From the equation for the bounce solution, we know that:

d2φB
dρ2

+
3

ρ

dφB
dρ

− V ′(φ) = 0. (3.98)

Hence, the unique solution of Eq. (3.97) satisfying these boundary conditions if φ(ρ, ψ, θ, ϕ) =
φB(ρ), ie, independent of ψ, θ, ϕ. This translates back to the (r, t) co-ordinates as:

φ(t, r, θ, ϕ) = φB(
√
r2 − t2). (3.99)

Thus, for r > t, we can read off the evolution of the bubble immediately. The r < t portion
is not covered by this solution, and must be dealt with separately. However, we will show
later that it describes gravitational collapse of the bubble, and so defer discussion for now.
Eq. (3.99) allows us to extract information about the expansion of the bubble, since a point
of constant φ = φ0 will correspond to r2 − t2 = R2

0 where R0 = φ−1
B (φ0) (φB is one-to-one and

thus invertible for φ on the range [φfv, φB(0)]). This describes the bubble expanding:

r(t) =
√
R2

0 + t2. (3.100)

The velocity of this point is:

ṙ(t) =
t√

R2
0 + t2

, (3.101)

which approaches the speed of light in the t → ∞ limit. For any φ significantly different to
vacuum, R0 is around the characteristic scale of the bubble (such as it’s width, R, the point
where φ(R) = φ(0)/2). This is typically very small - in the Standard Model R ∼ 1/(1017 GeV).
Consequently, ṙ ∼ c within a few R/c periods, and thus the bubble wall expands at essentially
the speed of light, eventually filling the entire universe and converting it to a true vacuum. As
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this disagrees with observations, this cannot have happened.

In curved spaces, such as de Sitter, the situation is somewhat more complicated. First of
all, we have to be careful to define how to analytically continue the bounce solution back to
Lorentzian space. A particularly useful way to do this was discussed by [84]. The idea is to
transform the O(4) symmetric co-ordinates where the metric looks like:

ds2 = dχ2 + a2(χ)
[
dψ2 + sin2 ψdΩ2

2

]
, (3.102)

to a conformally flat metric, which can then by analytically continued in the same way as flat
space:

ds2 =
a2(χ)

f 2(χ)

(
dτ̃ 2 + dr̃2 + r̃2dΩ2

2

)
, (3.103)

where:

τ̃ =f(χ) cosψ, (3.104)

r̃ =f(χ) sinψ. (3.105)

The function f must be chosen such that f ′(χ) = f/a, f(0) = 0, f ′(χ) > 0 to implement this
transformation. There is then a natural way to analytically continue back to Lorentzian space,
via the transformation t̃ = −iτ̃ , or equivalently:

r̃ =f(χ) cosh(ψ+), (3.106)

t̃ =f(χ) sinh(ψ+), (3.107)

where ψ+ = i(ψ − π/2). Note that while (t, r) covers a patch twice as large as the (χ, ψ+)
system, since in the latter one clearly has r̃2− t̃2 = f 2(χ) > 0, that is, it covers only the outside
of the light-cone, r̃ > t̃. On this region, for exactly the same reason as in flat space, the bounce
solution is φ(r̃, t̃) = φB(χ(r̃, t̃)), only this time χ is related to r̃ and t̃ by:

χ = f−1(
√
r̃2 − t̃2), (3.108)

a function which exists because f ′ > 0 and thus f is monotonic. Hence the solution evolves
much like in flat space, with the effect of the metric being accounted for by the f(χ) function:

φ(r̃, t̃) = φB(f−1(
√
r̃2 − t̃2)). (3.109)

Burda et al. also show how to deal with the interior of the light-cone, r < t, by use of the
co-ordinates [84]:

r̃ =f(χ̃) sinh(ψ−), (3.110)

t̃ =f(χ̃) cosh(ψ−), (3.111)

in which the metric takes the form:

ds2 = −dχ̃2 + a2(χ̃)
[
dψ2

− + sinh2(ψ−)dΩ2
2

]
. (3.112)

Note that although their role is similar, χ̃ and χ are different co-ordinates defined on different
patches of space-time. Thus, we cannot simply carry over the Euclidean solution to the r̃ < t̃
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region covered by this patch. We have to solve the scalar field and metric equations of motion
directly:

−∂
2φ

∂χ̃2
− 3ȧ

a

∂φ

∂χ̃
+

1

a2 sinh2 ψ−

∂

∂ψ−

(
sinh2 ψ−

∂φ

∂ψ−

)
+

L̂2
θϕ

a2 sinh2 ψ−
− V ′(φ) = 0. (3.113)

The initial conditions are defined on the χ̃ = 0 hypersurface, corresponding to the light-cone,
r̃ = t̃, namely, φ(0, ψ−, θ, ϕ) = φB(0), ∂φ

∂χ̃
= 0. These initial conditions are independent of the

angular variables, and thus if a solution satisfying the boundary conditions that is independent
of ψ−, θ, ϕ exists, then by uniqueness of Cauchy problems, it must be the solution of this ode
and the relevant analytic continuation of the bounce to the r̃ < t̃ region. Such a solution
corresponds to the ode system:

d2φ

dχ̃2
+

3ȧ

a

dφ

dχ̃
+ V ′(φ) = 0, (3.114)

ȧ2 = 1 − a2

3M2
P

(
φ̇2

2
+ V (φ)

)
, (3.115)

subject to initial conditions φ̇(0) = 0, φ(0) = φB(0), a(0) = 0, where dots denote differentiation
with respect to χ̃. Since this solution exists, then the solution of the system on the r̃ < t̃ patch
is well defined and respects O(3, 1) symmetry. To understand the behaviour of this solution, it
is instructive to analyse the second derivative of the ‘Friedmann’ equation:

ä = − a

3M2
P

(
φ̇2 − V (φ)

)
. (3.116)

When the solution starts at φB(0), the sign of Eq. (3.114) is now Lorentzian, so it rolls down
the potential towards the true vacuum. Inevitably, if V (φtv) < 0, then it rolls into a negative
curvature, Anti de Sitter (AdS), region with the RHS of Eq. (3.116) negative. As [84] pointed
out, this means that a(χ̃) inevitable hits a ‘big-crunch’ singularity at finite χ̃, supporting the
conclusions of [97] which was based on a thin-wall analysis.

How are we to interpret this? If the true vacuum is anti-de-Sitter, then it appears that the
vacuum bubble will undergo gravitational collapse, which to observers inside the bubble, r̃ < t̃,
looks like a Big Crunch singularity. Note, however, that this doesn’t happen until r̃ < t̃: for
r̃ > t̃, the solution of Eq. (3.109) applies, which describes the expansion of the bubble. This is
crucial to understanding the behaviour of such bubbles. To summarise:

1. The r̃ > t̃ patch describes the bubble wall expanding outwards.

2. The r̃ < t̃ patch describes the bubble undergoing gravitational collapse.

Note that, on its own, the gravitational collapse for r̃ < t̃ has no way of preventing the expan-
sion in the r̃ > t̃ region, so the fact that a singularity forms does not imply that the bubble
always collapses into a black hole rather than expand. The r̃ > t̃ region however, shows that
the bubble will continue to follow a null trajectory. Depending on the back-reaction of the
bubble, encapsulated by f(χ) and a(χ), this could conceivable describe a bubble collapsing to
a black hole if the null trajectories were to become trapped behind a horizon somehow.

66



Of particular importance is de Sitter space. To get an idea about the behaviour of the
bubble in a de Sitter background, consider the fixed background approximation, for which we
find, in Euclidean space, the metric to be:

a(χ) =
1

H
sin(Hχ). (3.117)

Integrating f ′ = f/a with this metric, we find:

f(χ) = C tan

(
Hχ

2

)
. (3.118)

Taking C = 1 without loss of generality, the analytic continuation then gives a Lorentzian
metric of:

ds2 =
4

H2(1 + r̃2 − t̃2)2

[
−dt̃2 + dr̃2 + r̃2dΩ2

2

]
. (3.119)

Although this co-ordinate system is unfamiliar, this is actually pure de Sitter space, as we might
expect from analytically continuing a 4-sphere back to Lorentzian space. The transformation:

t =
1

2H
log

⏐⏐⏐⏐1 − r̃2 + 2t̃+ t̃2

1 − r̃2 − 2t̃+ t̃2

⏐⏐⏐⏐ , (3.120)

r =
2r̃

H(1 + r̃2 − t̃2)
, (3.121)

can be shown to put this in the more familiar static patch, used to define tunnelling in de Sitter
space [101]:

ds2 = −dt2(1 −H2r2) + dr2(1 −H2r2)−1 + r2dΩ2
2. (3.122)

Tracking the evolution of a point with constant φ0, as we did for flat space, is then as simple
as writing:

r̃(t̃) =

√
t̃2 + f 2(χ0(φ0)), (3.123)

where χ0 is the value of χ corresponding to a given φ0, found by inverting the bounce (χ0 =
φ−1
B (φ0)). Plugging in the appropriate f(χ) and the transformations Eq. (3.120) and (3.121)

gives the evolution in the static co-ordinates, (r, t):

r(t) =
2

H2(1 + r̃20)

√
r̃20 +

1

4
(1 − r̃20)2 tanh2(Ht), (3.124)

where r̃0 = f(χ0(φ0)). As t → ∞, notice that r → 1/H, that is, it approaches the Horizon.
In the static patch, r is a physical radius, so this tells us that while the bubble continues to
expand at close to the speed of light, the space around it is exponentially expanding and thus it
is unable to reach regions beyond the horizon. The bubble never stops expanding, it simply fills
an entire Hubble volume, after which, that Hubble volume continues to expand exponentially
like all others. Crucially, because the bubble wall never quite reaches r = 1/H, the Hubble
volume itself does not collapse and disappear. Another way of looking at this is that Eq. (3.124)
increases with r̃0 at constant t, for r̃0 < 1/H, since:

∂r(t)

∂r̃0
=

2r̃0(1 − r̃20)(1 − tanh2(Ht))

H(1 + r̃20)2
√
r̃20 + (1 − 1

4
r̃20)2 tanh2Ht

. (3.125)
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Consequently, the leading edge of the bubble is always a region with positive Ricci curvature,
due to the bubble walls. The AdS region in the centre never quite ‘catches up’.

Previously, it has been claimed in the literature that vacuum bubbles forming during infla-
tion will necessarily collapse and vanish, because their centre is anti de Sitter, which describes
a collapsing space-time, while the exterior is exponentially expanding de Sitter [142, 67, 66].
More recent analyses have concluded, however, that this is not correct [68, 65]. [65] for exam-
ple show explicitly, for a thin wall bubble, that although it does not occupy the entire global
de Sitter space-time, it does not collapse. The analytic continuation approach of [84] as we
have discussed here, however, appears to back this up, and also gives a hint as to why: the
gravitationally collapsing region is constrained to lie at r̃ < t̃, which always lies within the
interior of the Hubble-volume, never reaching its edge, since the point r̃0 = 0 takes infinite time
to reach the Horizon. This demonstrates that the ultimate fate of a region of space in which a
bubble nucleates: it will be hit by a bubble wall, likely destroying any matter present, and then
collapse to an AdS big-crunch like singularity. Similar conclusions were reached by [65, 68, 84]
regarding the ultimate fate of vacuum bubbles during inflation.
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Chapter 4

Effective Potential in De Sitter Space
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4.1 The Effective Action, Energy Functional, and False

Vacuum Decay

To make precise predictions about the Standard Model, it is necessary to accurately describe
the effective potential of the Higgs field. As we will discuss, there is a difference between the
effective potential in curved and flat space. First, let us describe what the effective potential
means. When describing the evolution of a quantum field, one cannot ask about the evolution
of the field itself, φ, which is an operator, but only the evolution of observable quantities, such
as the expectation value, ⟨φ⟩. This is done using the effective action. Following [143], one can
define the energy functional E[J ] in terms of the vacuum-to-vacuum transition amplitude:

Z[J ] ≡ e−iE[J ] ≡ lim
T→∞

⟨0| e−iĤT |0⟩ =

∫ φ(T,x)=φfv

φ(0,x)=φfv

Dφ exp

(
iS[φ] + i

∫
d4xJφ

)
, (4.1)

where |0⟩ represents the vacuum state, where φ = φfv everywhere and J is an external current.
Note that one purpose of the exponential here is to simplify the expansion of the path integral
expression into Feynman diagrams, since if Dn is the nth possible connected Feynman diagram,
then:

Z[J ] =
∑
m

1

m!

(∑
n

Dn

)m

, (4.2)

since Z includes the sum over all possible products of connected Feynman diagrams of any
number, and the factorial here accounts for the symmetry factor of having multiple copies
of the same diagram in a given product. With some thought, it is also possible to see that
this factorial combined with the binomial coefficients from raising the sum to the power m
reproduces the symmetry factors of all possible products. This form makes it clear that the
energy functional is just the sum over all connected diagrams:

E[J ] = i
∑
n

Dn. (4.3)

In this case, because we included the external field, J , this reproduces the sum of all diagrams
with any number of external legs, where each external leg is attached to a “vertex”, J(x), and
we integrate over all possible positions of these vertices. In particular, for J = 0, we will find
that only diagrams with no external legs are included, that is, the so called ‘bubble diagrams’
(not to be confused with vacuum bubbles that describe false vacuum decay). See fig. 4.1 for
example. Notice, however, that if |0⟩ is an eigenstate of the Hamiltonian, then E[0] also has a

Figure 4.1: Examples of diagrams with no external legs contributing to E[J ], in QED.

natural interpretation in terms of the energy of the vacuum. This tells us that loop diagrams
contribute to the vacuum energy. In the case of a false vacuum, the same is true, but the
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energy is now complex and we have to be somewhat more careful to define what we mean by
(1) a complex energy, and (2) the energy of a state which is not an exact eigenstate of the
Hamiltonian. This was discussed in more detail in section A.1.

As is standard in quantum and classical field theory, it is useful not only to define the
Hamiltonian (energy), but the action of a theory. If we can interpret E[J ] as being related to
the energy of the theory, after including all quantum loop corrections, then it makes sense to
ask how we might interpret the Legendre transform (see appendix A.2.1) of E[J ], which should
be an action of some sorts. This is the effective action,

Γ[φcl] = supJ

(
−E[J] −

∫
d4xJφcl

)
, (4.4)

where supJ denotes taking the supremum (maximum) over the set J of the quantity on the
right hand side. Consider the first functional derivative:

δΓ

δφcl

= −
∫

d4x
δE

δJ(x)

δJ(x)

δφcl

− J −
∫

d4xφcl
δJ(x)

δφcl

. (4.5)

Note that:
δE

δJ
=

i

Z

δZ

δJ
= −⟨φ⟩J , (4.6)

and that maximising over J at constant φcl requires:

−δE
δJ

− φcl = 0. (4.7)

This means that φcl = ⟨φ⟩J , and thus:

δΓ[φcl]

δφcl

+ J = 0. (4.8)

This tells us that φcl the conjugate variable to J , can be interpreted as the expectation value
of φ at external field J . Furthermore, Γ[φcl] is a functional that describes the full evolution
of the expectation value of the field, including all quantum effects. In particular, it is Γ, the
effective action, not S, the classical action, that tells us where the vacuum of the theory lies,
and whether it is stable or not.

One way to express Γ is the so called ‘gradient expansion’ or local potential approximation:

Γ[φ] =

∫
d4x
√
| det g|

[
−Veff(φ) + Z(φ)

1

2
(∂µφ∂

µφ) + Z1(φ)(∂µφ∂
µφ)2 + . . .

]
. (4.9)

Here, we have essentially written down all terms that are compatible with Lorentz symmetry
(which is preserved by quantum corrections). However, for low energies, the higher order
gradient terms are suppressed (this can be seen from renormalisation, since these terms will
have negative mass term couplings and are thus suppressed by powers of the cut-off scale).
Furthermore, we can always re-define φ so that Z(φ) = 1 (unless there is more than one field,
in which case we end up with a field space metric which can have observable consequences).
Assuming this is valid, then we can write:

Γ[φ] ≈
∫

d4x
√
| det g|

[
1

2
∂µφ∂

µφ− Veff(φ)

]
. (4.10)
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This then defines Veff , the ‘effective potential’. It is this potential which appears in tunnelling
calculations, and is the one we now seek to compute. The simplest way to do this, following
standard texts such as [143], is to compute the effective action, and evaluate it at a constant
field configuration. This will suppress all the gradient terms, leaving us with an (infinite) factor
of the space-time volume and a minus sign. The one loop calculation is well known to yield a
Gaussian integral. We can show this by noting that J is chosen so that Eq. (4.7) holds, which
means that φcl is a stationary point of S[φ] + Jφ. Hence, we can perform a steepest descent
approximation of the path integral around φcl:

E[J(φcl)] = i log

[∫
DφeiS[φ]+i

∫
d4xJφ

]
= i log

[∫
Dη exp

(
iS[φcl] + i

∫
d4x {Jφcl + Jη} + i

∫
d4xη

δS[φcl]

δφ

+
i

2

∫
d4xd4yη(x)

δ2S[φcl]

δφ(x)δφ(y)
η(y) +O(η3)

)]
= i log

[
eiS[φcl]+i

∫
d4xJφcl

∫
Dη exp

(
i

2

∫
d4xd4yη(x)

δ2S[φcl]

δφ(x)δφ(y)
η(y) +O(η3)

)]
.

(4.11)

In the last line, we used the highly non-trivial trick of introducing a counter-term for J , namely
J = J0 + ∆J , and arguing that this counter term is chosen on renormalisation to preserve the
relationship φcl = ⟨φ⟩J to all loop orders. This is equivalent to stating that all tadpole diagrams
vanish because their role is to renormalise the expectation value of the field. This gets rid of
the linear terms in η, leaving us with a Gaussian integral (to one loop order, ignoring the O(η3)
terms):

E[J(φcl)] ≈ −S[φcl] −
∫

d4xJφcl + i log

(
det

[
−i
2π

δ2S[φcl]

δφ(x)δφ(y)

]−1/2
)
. (4.12)

Ultimately, this expression will have to be renormalised since the functional determinant as
written is divergent. On doing this, the −i/2π factor will become irrelevant as it is merely
absorbed into the renormalisation scale. The standard way to approach this is to go to momen-
tum space, and regularised the integrals via MS-bar. Generically we have the effective action:

Γ[φcl] = S[φcl] +
i

2
Tr log

[
−i
2π

δ2S[φcl]

δφ(x)δφ(y)

]
. (4.13)

This must be modified in the case of fermions, because the Gaussian integrals are of a different
nature and involve anti-commuting Grassmann variables. Specifically:∫

DηDη̄e−η̄Mη = detM. (4.14)

This differs from the scalar, bosonic integral by a factor of 2 and a sign (the factor fo 2 is because
we are integrating over extra degrees of freedom, and the sign because fermions anti-commute
past each other). So for example, in a theory with classical action:

L =
1

2
∂µφ∂

µφ+ Ψ̄(iγµ∂µ −mΨ)Ψ − igφΨ̄γ5Ψ − 1

2
m2
φφ

2 +
λ

4
φ4, (4.15)
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we find the effective potential to be, at one loop:

V1loop(φ) =
1

2
m2
φφ

2 +
λ

4
φ4 +

M4
φ

64π2

(
log

(
M2

φ

µ2

)
− 3

2

)
− 4M4

Ψ

64π2

(
log

(
M2

Ψ

µ2

)
− 3

2

)
, (4.16)

where M2
φ = m2

φ + 3λφ2, MΨ = mΨ + gφ. As expected, the fermions loops give a negative
sign compared to their bosonic equivalent, and also come with an extra factor of 4, in this
case because the Dirac fermion has four degrees of freedom. Eq. (4.16) gives a hint of how
metastable vacua can arise due to quantum corrections, and was first considered by [144]. If
the fermion mass, MΨ, becomes much larger than the scalar mass, Mφ, then we will eventually
find that the effective potential goes negative. To see this, we can re-arrange Eq. (4.16) as:

V1loop(φ) =
m4
φ

64π2

[
log

M2
φ

µ2
− 3

2

]
− m4

Ψ

16π2

[
log

M2
Ψ

µ2
− 3

2

]
− gm3

Ψ

π2

[
log

M2
Ψ

µ2
− 3

2

]
φ

− g3mΨ

π2

[
log

M2
Ψ

µ2
− 3

2

]
φ3 +

1

2
φ2

{
m2
φ +

3λm2
φ

16π2

[
log

M2
φ

µ2
− 3

2

]
− 3g2m2

Ψ

4π2

[
log

M2
Ψ

µ2
− 3

2

]}
+

1

4
φ4

{
λ+

9λ2

16π2

[
log

M2
φ

µ2
− 3

2

]
− g4

4π2

[
log

M2
Ψ

µ2
− 3

2

]}
. (4.17)

This means we can interpret the effective potential as saying that the effective quartic coupling
goes negative at some φ.

However, there is a problem with this interpretation. There is an explicit dependence
on the renormalisation scale, µ here, which seems odd, as this should not affect the physics.
Furthermore, it seems that the potential will experience problems if M2

φ ever goes negative, as
might happen in the Standard Model, since negative λ is precisely what precipitates vacuum
decay. The potential would appear to be complex there, however, which seems nonsensical.
Furthermore, we will also run into the ‘large logarithms’ problem, namely that if µ is greatly
different to Mφ or MΨ, the logarithmic terms become large, and perturbation theory breaks
down. An explicit way to see this is just by asking at what point the effective quartic coupling,
λeff , goes negative. By definition this happens when:

− 9λ2

16π2

[
log

M2
φ

µ2
− 3

2

]
+

g4

4π2

[
log

M2
Ψ

µ2
− 3

2

]
= λ. (4.18)

However, this means that the first order loop correction to the effective potential is the same
size as the zeroth-order term, which signals the breakdown of perturbation theory. Thus, it
seems we cannot reliably use the Coleman-Weinberg potential in precisely the region it is most
interesting.

The resolution to these problems is the well known renormalisation group improvement
of the effective potential [145, 146, 144, 147]. The idea here is that the true effective poten-
tial should be renormalisation group invariant, and thus we can apply the Callan-Symanzik
equation [143, 148]: (

∂

∂µ
+
∑
i

βi
∂

∂gi
+ γφφ

∂

∂φ

)
Veff(φ, g, µ) = 0. (4.19)

To solve this we require an initial condition, which the loop expansion can give as at some φ0

by choosing µ0 such that the logarithms are as small as possible (for this particular φ0 only -
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it is not possible to choose one µ that does this for all φ). This gives the boundary condition
Veff(φ0) = V1loop(φ0, gi0, µ0), which is accurate up to a two-loop error. The solution of the
Callan-Symanzik equation with this boundary condition is then:

Veff(φ, µ) = V1loop(φ(µ), gi(µ), µ), (4.20)

where:

dgi(µ)

d log µ
=βi(gi(µ)), (4.21)

dφ(µ)

d log µ
=γφφ(µ), (4.22)

subject to boundary conditions gi(µ0) = g0, φ(µ0) = φ0. The accuracy here is as good as the
accuracy in the beta functions and initial conditions, ie, up to one loop in this case (although
the procedure can be repeated at higher loops if required).

4.2 Example - Yukawa Theory

An example model that resembles the behaviour of the Standard Model is Yukawa theory.
There are two main variants of this theory, according to whether φ is interpreted as a scalar or
pseudo-scalar field:

LYukpseudoscalar =
1

2
∂µφ∂

µφ+ Ψ̄(iγµ∂µ −mΨ)Ψ − 1

2
m2
φφ

2 − λ

4
φ4 − igΨ̄γ5Ψφ, (4.23)

LYuk scalar =
1

2
∂µφ∂

µφ+ Ψ̄(iγµ∂µ −mΨ)Ψ − 1

2
m2
φφ

2 − λ

4
φ4 − gΨ̄Ψφ. (4.24)

We will first consider the pseudo-scalar theory, since this lacks linear and cubic terms by
parity symmetry. The Feynman rules for this theory are shown in figure 4.2. The purpose of
the iγ5 term here is to preserve parity symmetry for the pseudo-scalar field φ. Another way to
see this is that the three-point φ3 interaction does not receive any loop correction (see fig. 4.3)
because is vanishes identically. The loop correction in that case is:

Γφ3 = −g3
∫

d4p

(2π)4
Tr(i[(/p+mΨ)γ5i((/p+ /k2) +mΨ)γ5i((/p− /k1) +mΨ)γ5])

(p2 −m2
Ψ)((p+ k2)2 −m2

Ψ)((p− k1)2 −m2
Ψ)

= 0, (4.25)

which vanishes identically because the trace of γ5 multiplied by any number of gamma matrices
fewer than four is zero: Tr(γ5) = Tr(γ5γµ) = Tr(γ5γµγν) = Tr(γ5γµγνγρ) = 0. The way that
fermions affect the self-coupling λ can be understood by computing the beta functions of the
theory, which we do now. First, we split the theory into renormalised and counter terms:

LYuk =
1

2
∂µφR∂

µφR + Ψ̄R(iγµ∂µ −mΨR)ΨR − 1

2
m2
φRφ

2
R − λ

4
φ4
R − igRΨ̄Rγ

5ΨR

+
1

2
δZφ∂µφR∂

µφR + δZΨΨ̄Riγ
µ∂µΨR − δmΨΨ̄RΨR − 1

2
δm2

φφ
2
R − δλ

4
φ4
R − iδgΨ̄Rγ

5ΨR,

(4.26)
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Figure 4.2: Feynman rules for the Yukawa theory of Eq. (4.23), including counter terms (hollow
circular vertices).
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Figure 4.3: Loop correction to the point correlation function in a Yukawa theory with a
−igΨ̄Γ5Ψ type interaction. This vanishes identically due to parity symmetry, protecting the φ3

and φ terms from receiving quantum corrections. However, this is not the case with a −gΨ̄Ψ
type interaction, which does not respect parity invariance.

where the counter terms and renormalised couplings are defined by:

Zφm
2
φB = m2

φR + δm2
φ, (4.27)

Z2
φλB = λR + δλ, (4.28)

ZΨZ
1/2
φ gB = gR + δg, (4.29)

ZΨmΨB = mΨR + δmΨ, (4.30)

Zφ = 1 + δZφ, φB = Z
1/2
φ φR, (4.31)

ZΨ = 1 + δZΨ,ΨB = Z
1/2
Ψ ΨR. (4.32)

A generic expression for the beta function of coupling gi associated to operator φn1
1 φ

n2
2 . . . φnm

m

where φi are independent fields and the counter terms are defined by giBZ
n1/2
1 Z

n2/2
2 . . . Z

nm/2
m =

giR + δGi is:

βgi =
∂giR

∂ logM
=

m∑
a=1

[
giBZ

n1/2
1 Z

n2/2
2 . . . Znm/2

m na
1

2Za

∂Za
∂ logM

]
− ∂δgi
∂ logM

. (4.33)

Thus, to compute the beta functions, we need to evaluate the relevant counter term and
the field renormalisation factors, Z. To do this, we compute the 1PI correlation functions
Γφ2 ,ΓΨ̄Ψ,Γφ4 ,ΓφΨ̄Ψ respectively and regularise them using M̄S.
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Figure 4.4: 1-loop diagrams contributing to the scalar propagator, Γφφ(k2).

The 2-point 1PI function for scalar fields is given by (see fig. 4.4):

Γφφ(k2) =i(k2δZφ − δm2
φ) +

3λRim
2
φR

16π2

(
2

ϵ
+ log

4πµ2

m2
φR

+ 1 − γE

)
+

− 4g2Rim
2
ΨR

16π2

(
2

ϵ
+ log

4πµ2

m2
ΨR

+ 1 − γE

)
+

2g2Rik
2

16π2

(
2

ϵ
+ log

4πµ2

m2
ΨR

+ 1 − γE

)
+ fφφ(k,mΨR,m

2
φR, gR, λR), (4.34)

where γE ≈ 0.5772 . . . is the Euler-Mascheroni constant and fφφ is a complicated, finite contri-
bution depending on the precise kinematics. Such terms do not interest us here, as we are only
interested in the divergent pieces which determine the beta functions. From this we determine
the δZφ and δm2

φ counter terms:

δZφ = − 2g2R
16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
, (4.35)

δm2
φ =

3λRm
2
φR − 4g2Rm

2
ΨR

16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
. (4.36)

Note that this is different to the pure scalar theory, in which δZφ = 0 at the one loop level.
Next we compute the 2-point function for fermions, ΓΨ̄Ψ (fig. 4.5):

Figure 4.5: Diagrams contributing at one loop to the 1PI two-point function for the fermion in
Yukawa theory, including counter terms.

ΓΨ̄Ψ = i(/kαβδZΨ − δmΨ) − ig2R
16π2

(
−
/kαβ
2

+mΨR

)(
2

ϵ
+ log

4πµ2

m2
ΨR

− γE

)
+ fΨΨ(k,mΨR,m

2
φR, gR, λR),

(4.37)

where fΨΨ is another finite kinematic function. From this we deduce:

δZΨ = − g2R
32π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
, (4.38)

δmΨ = − g2RmΨR

16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
. (4.39)
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Figure 4.6: Diagrams contributing at one loop to the 1PI three-point (φΨ̄γ5Ψ) in Yukawa
theory, including counter terms.

The three-point Yukawa interaction function is given by (fig. 4.6):

ΓφΨ̄Ψ = gRγ
5
αβ + δgγ5αβ −

g3Rγ
5
αβ

16π2

(
2

ϵ
+ log

4πµ2

m2
ΨR

− γE

)
+ fφΨ̄Ψ(k1, k2, k3,mΨR,m

2
φr, gR, λR),

(4.40)
giving a counter term:

δg =
g3R

16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
. (4.41)

Finally the four-point function for the scalar field, Γφ4 (fig. 4.7) is given by:

Figure 4.7: Diagrams contributing at one loop to the 1PI four-point function for φ in Yukawa
theory, including counter terms. Note that the scalar loop diagram has 3 possible configura-
tions tying up the external momenta, while the fermion box diagram has 6. Each of these
configurations have different kinematic factors, but the same divergence, which multiplies the
overall divergence.

Γφ4 = −6iλR−6iδλ+
54λ2Ri− 24g4Ri

i16π2

(
2

ϵ
+ log

4πµ2

m2
φR

− γE

)
+fφ4(k1, k2, k3, k4,mΨR,m

2
φR, gR, λR).

(4.42)
Hence the final counter term is:

δλ =
9λ2R − 4g4R

16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
. (4.43)
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Using Eq. (4.33), this means that the beta functions are:

βλ =
dλR

d logM
=

1

16π2
(18λ2R + 8λRg

2
R − 8g4R), (4.44)

βg =
dgR

d logM
=

5g3R
16π2

, (4.45)

βm2
φ

=
dm2

φR

d logM
=
m2
φR

16π2
(6λR + 4g2R(m2

φR − 2m2
ΨR)), (4.46)

βmΨ
=

dmΨR

d logM
= −mΨRg

2
R

16π2
, (4.47)

while the anomalous dimensions are:

γφ =
1

Z
1/2
φ

dZ
1/2
φ

d logM
=

2g2R
16π2

, (4.48)

γΨ =
1

Z
1/2
Ψ

dZ
1/2
Ψ

d logM
=

g2R
32π2

. (4.49)

We can do essentially the same thing with the −gφΨ̄Ψ theory if we wish. In that case, however,
there will be diagrams like fig. (4.3) that do not vanish identically. To remove divergences like
this, we require a λ3φ

3/3 term in the Lagrangian. In the Standard Model, this is forbidden by
the requirement of SU(2) symmetry for the Higgs doublet, but in this model it is in principle
allowed. If we include it, we obtain additional diagrams (see figs. 4.8 and 4.9). We will also
need to write the Lagrangian as:

LYuk =
1

2
∂µφ∂

µφ+ Ψ̄(iγµΨ −mΨ)Ψ − 1

2
m2
φφ

2 − λ1φ− λ3
3
φ3 − λ

4
φ4 − gφΨ̄Ψ. (4.50)

Note that tadpole diagrams renormalising λ1 do not contribute to higher n 1PI diagrams, as
when included they can always be split into two diagrams. Including the diagrams of fig. 4.10,
we find for Γφ:

Γφ = −iλ1R−iδλ1+
λ3Rim

2
φR

16π2

(
2

ϵ
+ 1 − γE + log

4πµ2

m2
φ

)
−4gRim

3
ΨR

16π2

(
2

ϵ
+ 1 − γE + log

4πµ2

m2
ΨR

)
.

(4.51)

Consequently the counter term δλ1 defined by λ1BZ
1/2
φ = λ1R + δλ1 is:

δλ1 =
λ3Rm

2
φR − 4gRm

3
ΨR

16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
. (4.52)

Likewise we compute δλ3 defined by λ3BZ
3/2
φ = λ3R + δλ3. In this case, the final triangle

diagram with three 3-point scalar vertices gives only a finite contribution, so doesn’t affect the
counter term. We find:

Γφ3 = −2iλ3R−2iδλ3+
6λRλ3Ri

16π2

(
2

ϵ
− γE + log

4πµ2

mφ2

)
−3g3RmΨRi

16π2

(
2

ϵ
− γE + log

4πµ2

m2
ΨR

)
+(finite terms).

(4.53)
Thus:

δλ3 =
(3λRλ3R − 3

2
g3RmΨR)

16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
. (4.54)
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We now seek to compute Γφ4 . Note that the only additional diagram here is the scalar box
diagram in figure 4.8, however this gives only a finite contribution. The fermion diagram
changes, however, due to the absence of the iγ5 terms. We have to recompute the trace of the
divergent part:

Tr([i(/p+mΨR)]4) =Tr(/p
4 + 4mΨR/p

3 + 6m2
ΨR/p

2 + 4m3
ΨR/p+m4

ΨR) = 4(p2 −m2
ΨR)2 + 32p2m2

ΨR,

(4.55)

Tr([i(/p+mΨR)iγ5]4) =Tr([(/p+mΨR)(−/p+mΨR)]2) = 4(p2 −mΨR2)2. (4.56)

These differ by a term 32p2m2
ΨR, however, as the denominator is (p2 − m2

ΨR)4, this does not
matter - it contributes only to the finite terms so doesn’t affect the counter term. Thus, the
difference between using iγ5 in the Yukawa coupling or not yields only a finite piece in the
fermion box diagram, and has no affect on the divergence. Consequently, we can use the same
result as in the −igφΨ̄γ5Ψ theory:

δλ =
9λ2R − 4g4R

16π2

(
2

ϵ
+ log

4πµ2

M2
− γE

)
. (4.57)

Similarly, fig. 4.9 shows that we have an additional diagram contributing to δg, but this is also
finite, so doesn’t change the counter term. Hence:

δg =
g3R

16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
. (4.58)

The most significant changes occur in Γφ2 and ΓΨ̄Ψ. From figure 4.8 we see that Γφ2 has an
extra scalar loop. The fermion loop is also different due to the lack of iγ5 terms. Putting these
together we find:

Γφ2 = i(k2δZφ−δm2
φ)+

3λRm
2
φRi

16π2

(
2

ϵ
+ log

4πµ2

m2
φR

+ 1 − γE

)
−12g2R

16π2
(mΨR−

k2

6
)

(
2

ϵ
− γE + log

4πµ2

m2
ΨR

)
.

(4.59)
The important change for the fermion contribution here is a change in sign for the k2 dependent
piece, due to the lack of iγ5 pieces. From this we extract:

δm2
φ =

3λRm
2
φR + 2λ23 − 12g2Rm

2
ΨR

16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
, (4.60)

δZφ = − 2g2R
16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
. (4.61)

Note that the anomalous dimension is unchanged for φ. Finally we compute ΓΨ̄Ψ. No additional
diagrams appear at one-loop level, but the different coupling produces a different result:

ΓΨ̄Ψ = i(/k∆ZΨ − δmΨ) +
ig2R

16π2

(
/k

2
+mΨR

)(
2

ϵ
− γE + log

4πµ2

m2
ΨR

)
+ (finite terms). (4.62)

Hence, δZΨ is unchanged, but, δmΨ is:

δZΨ = − g2R
32π2

(
2

ϵ
− γE + log

4πµ2

M2

)
, (4.63)

δmΨ =
g2R

16π2

(
2

ϵ
− γE + log

4πµ2

M2

)
. (4.64)
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Putting these all together, the beta functions are:

βλ =
1

16π2

(
18λ2R + 8λRg

2
R − 8g4R

)
, (4.65)

βλ1 =
1

16π2

(
2λ1Rg

2
R + 2λ3Rm

2
φR − 8gRm

3
ΨR

)
, (4.66)

βλ3 =
1

16π2

(
6λ3Rg

2
R + 6λRλ3R − 3g2RmΨR

)
, (4.67)

βg =
5g3R
16π2

, (4.68)

βm2
φ

=
1

16π2

(
4g2R(m2

φR − 3m2
ΨR) + 6λRm

2
φR + 4λ23

)
, (4.69)

βmΨ
=

5mΨRg
2
R

16π2
. (4.70)

Note that setting mΨR = λ3R = λ1R = 0 is consistent, as this describes a fixed point of the
beta functions. This gives the especially simple effective potential:

Veff(φcl) =
1

2
m2
φR(µ)Zφ(µ)φ2

cl +
λR(µ)

4
Z2
φ(µ)φ4

cl

+
(m2

φR(µ) + λR(µ)Zφ(µ)φ2
cl)

2

64π2

[
log

(m2
φR(µ) + 3λR(µ)Zφ(µ)φ2

cl)

µ2
− 3

2

]
−

4g4R(µ)Z2
φ(µ)φ4

cl

64π2

[
log

g2R(µ)Zφ(µ)φ2
cl

µ2
− 3

2

]
, (4.71)

where we can solve the beta functions for gR(µ), λR(µ) and m2
φR(µ) analytically. For example:

g(µ) =
g0√

1 − 10g20
16π2 log µ

µ0

, (4.72)

where g(µ0) = g0. The result for λR(µ) and mφR(µ) is complicated - and unenlightening. An
example with λ(µ0) = 0.05, g(µ0) = 0.45 is plotted in fig. 4.11. The effective potential Eq.
(4.71) is plotted in figure 4.12. The essential point is that we have a one-loop expression for the
effective potential, evaluated at scale µ. What value of µ should we choose? The conventional
choice is to pick µ = φ, which ensures that µ is at least the same order of magnitude as Mφ

and MΨ. In general, however, there is no perfect way to do this when multiple mass scales
are involved. Several methods have been proposed to deal with this, including using different
renormalisation scales for different couplings [149, 150, 151], and decoupling methods [145, 152].
Other methods that have been proposed include [153], and a more recent method of selecting
the renormalisation scale in a field dependent manner, µ(φ), such that the loop corrections
vanish [154, 3]. We considered this method in our recent paper, [3], which we will summarise
later in this chapter. There is still much to be understood about how this should properly be
done, however [155, 154, 3], and it is unclear whether it is possible to choose the scale in a
systematic way that works for all cases.
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Figure 4.8: Diagrams contributing to the renormalisation of the scalar n-point functions in
igφΨ̄Ψ theory.
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Figure 4.9: Diagrams contributing to the renormalisation of the fermion n-point functions in
igφΨ̄Ψ theory. The only change is the last triangle diagram in ΓφΨ̄Ψ, which gives only a finite
contribution.

Figure 4.10: Tadpole diagrams contributing to the renormalisation of λ1.
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(a) Running of the Yukawa coupling, g, in the
scalar model for g0 = 0.45, λ0 = 0.05.

(b) Running of the self-coupling, λ, in the
scalar model for g0 = 0.45, λ0 = 0.05.

(c) Running of the scalar mass squared, m2
φ,

in the scalar model for g0 = 0.45, λ0 = 0.05.

Figure 4.11

Figure 4.12: Renormalisation group improved effective potential for the scalar Yukawa theory
with g0 = 0.45, λ0 = 0.05. The y axis is scaled with sign(y) log(1 + |y|) to display all features
logarithmically, including negative V regions.
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4.3 Standard Model Effective Potential

For realistic calculations, we need to know the effective potential of the Standard Model. In
particular, we need to perform its renormalisation group improvement. This requires the beta
functions. To one loop, these are [156, 35, 10, 157, 158, 159]:

βyt =
yt

16π2

[
3

2
(y2t − y2b ) + Y2 −

(
17

12
(g′)2 +

9

4
g2 + 8g23

)]
, (4.73)

βyb =
yb

16π2

[
3

2
(y2b − y2t ) + Y2 −

(
5

12
(g′)2 +

9

4
g2 + 8g23

)]
, (4.74)

βyl =
yl

16π2

[
3

2
y2l + Y2 −

(
45

12
(g′)2 +

9

4
g2
)]

, (4.75)

βλ =
1

16π2

(
24λ2 − 3λ

(
(g′)2 + 3g2

)
+

3

4

(
1

2
(g′)4 + (g′)2g2 +

3

2
g4
)

+ 4Y2λ− 2Y4

)
, (4.76)

βm2 =
m2

16π2

[
12λ− 3

2
(g′)2 − 9

2
g2 + 2Y2

]
, (4.77)

βg′ =
41

6

(g′)3

16π2
, (4.78)

βg = −19

6

g3

16π2
, (4.79)

βg3 = −7
g43

16π2
, (4.80)

Y2 ≡3(y2u + y2c + y2t ) + 3(y2d + y2s + y2b ) + (y2e + y2µ + y2τ ),

Y4 ≡3(y4u + y4c + y4t ) + 3(y4d + y4s + y4b ) + (y4e + y4µ + y4τ ), (4.81)

where βyl is the lepton beta function for l = e, µ, τ . For reference, g′ is the U(1) coupling,

which can be related to the frequently used SU(5) normalisation by g′ =
√

3
5
g1. g is the SU(2)

coupling, and g3 the SU(3) coupling. Beta functions for the other generations of fermions can
be obtained from eqs. (4.73) and (4.74) by substituting yt → yu, yc and yb → yd, ys, leaving the
gauge couplings and Y2 the same.

For the calculation in [1, 2], and chapters 5 and 6 we in fact used the three loop running,
available in the literature [35, 160, 161]. In that case, we approximated the Standard Model
effective potential as:

Veff(h) ≈ λ(h)

4
h4, (4.82)

which is equivalent to the scale choice µ = φ4 and ignoring field renormalisation. This is a
good approximation at large field values, since the quartic term is dominant and the scale
choice µ = φ is intended to suppress the size of the loop corrections to the Coleman Weinberg
potential. This potential is plotted in figure 4.13.

For numerical calculations, it is computationally expensive to integrate the beta functions
every time we wish to evaluate the effective potential. To avoid this, we solve the 3-loop beta
functions (available, for example, at [161]), and take the discrete data of the couplings (tn, gin)
where t = log(µ) as the input for a piecewise polynomial potential, that is, we fit a polynomial
to running λ(µ) between each set of adjacent points (tn, tn+1) (we do this in log space since the
potential varies slowly with respect to µ so is not well represented by a polynomial). There are
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Figure 4.13: Plot of the effective potential as evaluated by integrating the beta functions (dotted
line) against a piecewise polynomial interpolation.

several ways of performing this fit. The generic cubic fit with N data pairs (xn, yn) is given by
a set of N − 1 polynomials:

pn(x) =(1 − un(x))yn + un(x)yn+1 + un(x)(1 − un(x))[an(1 − un(x)) + bnun(x)], (4.83)

un(x) ≡ x− xn+1

xn+1 − xn
, (4.84)

an ≡kn(xn+1 − xn) − (yn+1 − yn), (4.85)

bn ≡− kn+1(xn+1 − xn) + (yn+1 − yn). (4.86)

It is easy to verify that this choice is continuous and has continuous first derivatives at xn and
xn+1. There are N free parameters, kn, which are the derivatives of the interpolating piece-
wise polynomial at each xn, and different choices of kn define different interpolation schemes.
A popular choice is the cubic spline, which is defined by requiring continuity of the second
derivatives: p′′n−1(xn) = p′′n(xn). This leads to the tridiagonal set of simultaneous equations:

kn−1

(xn − xn−1)2
+

[
2

(xn − xn−1)2
+

2

(xn+1 − xn)2

]
kn+

kn+1

(xn+1 − xn)2
=

3(yn+1 − yn)

(xn+1 − xn)2
+

3(yn − yn−1)

(xn − xn−1)2
.

(4.87)
The boundaries are usually specified with p′′0(x0) = p′′N−1(xN) = 0, but other choices are
possible. The advantage of the spline is the high degree of continuity, however, it is not the
only possible choice, and in fact tends to result in a mismatch between the derivatives of the
running coupling, λ(µ), and the derivatives obtained by solving Eq. (4.87). This results in
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spurious oscillations in the potential which are undesirable. A better choice is to use the beta
functions to constrain the t-derivatives of λ:

kn = βλ(λn, gin), (4.88)

where gin are the other couplings evaluated at tn. This yields a piecewise polynomial pn(x) which
matches the derivatives of λ(t) obtained from the running, as well as matching λ(tn), but has
discontinuous second derivatives. It is, however, generally a more faithful representation than
the cubic spline. Figure 4.13 illustrates how this piecewise function interpolates the Standard
Model effective potential. This is the potential used for numerics, and as figure 4.14 shows, the
results of the calculation of decay exponents rapidly converge as N is increased.
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Figure 4.14: Plot of the action convergence as a function of the number of sample points used
to approximate the potential (the apparent deviation at large N is due to floating round-off
error in |S − Sinf |). Originally published in [1]
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4.4 Renormalisation Group Running in De Sitter Space

Up to now, we have considered only the potential in flat space. In curved space, however, the
result can be quite different. The loop integrals that contribute to the effective potential can be
quite convoluted. One way to approach this, which we used in a recent paper [3], is through the
method of heat kernels. A good review of this topic can be found at [162]. Another approach
to the effect of non-minimal coupling in the effective potential is discussed in [163].

The fundamental idea of the heat kernel method it to make use of solutions to the heat-
transfer equation: (

∂

∂t
+D

)
K(t, x, y,D) = 0, (4.89)

subject to the boundary conditions K(0, x, y,D) = δ(x − y). The advantage of this is that it
allows us to express the Green’s function for the operator D as:

D−1(x, y) =

∫ ∞

0

dtK(t, x, y,D), (4.90)

since:

D(x, y)

∫ ∞

0

dtK(t, x, y,D) = −
∫ ∞

0

dt
∂

∂t
K(t, x, y,D) = −[K(t, x, y,D)]∞0

=K(0, x, y,D) −K(∞, x, y,D) = δ(x, y), (4.91)

provided we satisfy K(t → ∞, x, y,D) → 0, which holds in most cases. For example, the
operator:

D0 = −∇µ∇µ +m2, (4.92)

with flat metric on Rn can be solved with [162]:

K(t, x, y,D0) =
1

(4πt)n/2
exp

(
−(x− y)2

4t
− tm2

)
. (4.93)

The real power of this method, however, comes from the fact that we can express generic
operators, D, in terms of expansions around simpler operators, D0. In the curved space case,
for example, it is possible to find an expression for the heat kernel of the operator D0 = +X
in the form [164, 165]:

K(τ, x, x,D0) =
i

(4πiτ)n/2
exp

(
−iτ

(
X − R

6

))
Ω(τ). (4.94)

In general, X can be a matrix, which makes this an exceptionally powerful technique. Generic
operators can then be included as a heat kernel expansion with Ω(τ) of the form:

Ω(τ) =
∞∑
k=0

ak(iτ)k. (4.95)

The real usefulness of this approach, however, comes from the fact that it can be used to express
the 1-loop corrections to the action of an arbitrary theory:

Γ(1)[φ] =
i

2
Tr(log(D)). (4.96)
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Note that up to a divergent constant (which we will regularise away):

log λ =

∫ ∞

0

dτ
1

τ
e−λτ . (4.97)

Hence we can express the one loop calculation as [162]:

i

2
Tr(log(D)) = − i

2
Tr

(∫ ∞

0

τ
1

τ
e−iτD

)
. (4.98)

Note that exp(−iτD) is the solution of:(
i
∂

∂τ
−D

)
K(τ, x, y,D) = 0, (4.99)

which will yield the heat kernel. Hence:

i

2
Tr(log(D)) = − i

2

∫
d4x
√

− det(g)

∫ ∞

0

dτ
1

τ
K(τ, x, x,D0)

∞∑
k=0

ak(iτ)k. (4.100)

The coefficients ak can be determined for generic space-times [164, 165], and used to derive the
curved-space effective potential for any theory, including the Standard Model. Some care has
to be taken to apply this to fermionic and vector contributions, but in the end we obtain an
approximate one loop expression for the renormalisation group improved effective potential in
a fixed de Sitter background [3]:

V 1loop
RGI (φcl) =

1

2

[
−m2(µ(φcl)) + ξ(µ(φcl))R

]
φ(µ(φcl))

2 +
λ(µ)

4
φ(µ(φcl))

4 + VΛ(µ(φcl)) − 12κ(µ(φcl))

+ α(µ(φcl))H
4 +

1

64π2

∑
i

[
niM

4
i (φcl)

(
log

|M2
i (φcl)|

µ(φcl)2
− di

)
+ n′

iH
4 log

|M2
i (φcl)|

µ(φcl)2

]
.

(4.101)

The coefficients ni, n
′
i, di are given in [3], and M2

i are Higgs field dependent masses defined in
Eq. (4.108). Here we include some gravitational terms, which correspond to the running of
various gravitation-related couplings, whose 1-loop beta functions are [3]:

βξ =
(ξ − 1/6)

16π2

[
12λ+ 2Y2 −

3g′2

2
− 9g2

2

]
, (4.102)

βVΛ =
2m4

16π2
, (4.103)

βκ =
4m2

16π2

(
ξ − 1

6

)
, (4.104)

βα1 =
1

16π2

(
2ξ2 − 2

3
ξ − 277

144

)
, (4.105)

βα2 =
1

16π2

571

90
, (4.106)

βα3 = − 1

16π2

293

720
, (4.107)

where Y2 is as defined in Eq. (4.81) and the three couplings α1, α2, α3 are for the next order
Riemann-squared couplings of gravity: α1R

2 + α2RµνR
µν + α3RµνρσR

µνρσ. In de Sitter space,
and in fact any maximally symmetric space-time, these combine into a single αH4. Defining
the effective potential then only requires a definition of µ(φcl), the scale as a function of the
classical field.
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4.5 The Renormalisation Group Improved Higgs Poten-

tial in De Sitter Space

One complication in de Sitter space is the form of the mass-terms that appear in Eq. (4.101).
Generally speaking, they are of the form:

M2
i (µ, φcl) = κi(µ)Z(µ)φ2

cl − κ′i(µ) + θi(µ)R, (4.108)

where κi, κ
′
i, θi are coefficients that depend on the couplings of the theory [57, 86, 3]. Recall that

in flat space, the scale choice µ(φcl) = φcl is chosen because, generally speaking, it matches the
masses which are proportional to φ, at large φ. Due to the Higgs mechanism, for example, the
mass of a fermion with Yukawa coupling yf is mf = yfφcl, thus choosing µ = φcl will generically
ensure that the log terms remain relatively small over the whole range of φ.

However, in curved space, there is an additional θiR = 12θiH
2 term present in the ‘mass’.

This complicates matters. Markkanen et al. [57, 86] argue that to ensure the accuracy of the
renormalisation group improvement at all scales, it is necessary to choose µ to be of the form:

µ2(φcl) = αφ2
cl + βR. (4.109)

This has dramatic and important consequences for the behaviour of the vacuum during infla-
tion. Most notably, at small φ, the form of the potential is completely different to the flat space
case: instead of µ = φ being the optimal choice, µ ∼ H. If H is large, this can mean that
λ < 0 holds even at small φ, making the potential not only metastable, but completely unstable.

This phenomenon does make some sense - at large H, light scalar fields such as the Higgs
receive large fluctuations, of order ⟨φ2⟩ ∼ H2 [107]. If H ≫ ∆V (φ)1/4, then the Higgs will
generally fluctuate over the barrier freely due to the large Gibbons-Hawking temperature. It
makes some sense, therefore, that the potential would be completely unstable in this regime,
and the decay rate consequently less well defined. In fact, we proved that potentials with no
barrier do not have de Sitter solution in lemma 6.

Another way of choosing the renormalisation scale is to simply choose µ so that the sum of
the quantum corrections is set to zero, as was recently suggested by [154] and considered in
[3]. That is, we choose µ(φcl) to satisfy:

∑
i

[
niM

4
i (φcl)

(
log

|M2
i (φcl)|

µ(φcl)2
− di

)
+ n′

iH
4 log

|M2
i (φcl)|

µ(φcl)2

]
= 0. (4.110)

Generically, Eq.(4.110) must be solved for numerically: although the log µ terms can be iso-
lated, the couplings depend implicitly on µ.

As it turns out, however, doing so is no straightforward matter. Consider figure 4.15, for
example. This demonstrates there are multiple ways of solving Eq. (4.110). This is important,
because both solutions will lead to different potentials - see fig. 4.16 These results are very
strange, at first glance. Taken literally, it would imply there are two different effective potentials,
which both give qualitatively different conclusions about the stability of the vacuum - one
potential appears to be metastable (solution 2), while the other is completely unstable (solution
1). This is physically unacceptable - the effective potential is supposed to be independent of the
renormalisation scale, so one or both of these solutions must be spurious. In fact, an analysis
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Figure 4.15: Plot of two different solutions of Eq. (4.110). Solution one appears to resemble
the µ2 = αφ2 + βR rule at small φ, but solution 2, which does not exist at small φ, resembles
the large φ behaviour. Here, H = 106 GeV and ξEW = ξ(µ = 0) = −1.

of the size of the log terms in figure 4.17 reveals what is going on. There are indeed some
cases where it is better to use the model of Eq. (4.109), as in the right hand plot of figure
4.17. In that case, we see that the logs remain small for solution 1 at small φ and for solution
2 at large φ. Some sort of model interpolating between the two is thus a good approximation
that will keep the logs small throughout. Cases like the left hand panel of fig. 4.17 are more
troubling, however: there is appears that there is no good approximation for small φ. This
case is particularly exceptional, however. It corresponds to the conformal value of ξEW. This
is important because the Higgs boson ‘mass’-term appearing in Eq. (4.101) is [3]:

M2 = m2
h + 12(ξ − 1/6)H2. (4.111)

Thus, for ξ ̸= 1/6, one finds that the mass term is of the form Eq. (4.108). However, this
ceases to be the case for ξ = 1/6, and a µ ∝ φ model proves a better approximation.

This begs the question: why are there multiple solutions to Eq. (4.110)? An closer exam-
ination of the equation reveals why: the ni coefficients can be of varying sign, for the most
part determined by whether i corresponds to a fermion or boson loop. However, this means
that it is possible to solve Eq. (4.110), setting the sum of the loops to zero, even while the
individual logs remain large, because log terms appear with opposing signs and can thus cancel
each other. This tells us that choosing Eq. (4.110) to vanish is not a universally good way to
choose µ(φ). More careful procedures are necessary, and care should be taken to ensure that
all the log terms are small. For example, one can use Eq. (4.109) with α and β chosen in such
a way as to minimise:

S =

∑
iM

4
i log(M2

i /µ
2)2∑

iM
4
i

. (4.112)

This is a weighted sum over the squares of the log terms. Note that we weight this by the mass
because the heavier masses will give the greatest contribution to the potential, and we do not
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Figure 4.16: Effective potentials resulting from choosing the two different solutions in Eq.
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want to result to be adversely affected by masses which vanish for some φcl. In principle, such
vanishing masses should be dealt with by some sort of decoupling scheme [145, 152].
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the dominant fields, W , Z, φ, t, all satisfy log |M2/µ2| < 5, and small dots where this is not
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Chapter 5

Back-reaction and Non-minimal
Coupling: V0 = 0 Case
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As discussed previously, the V0 = 0 case necessarily results in non-compact bounce solutions,
that consequently resemble their flat space counterparts, at least on the exterior of the bounce.
Here we consider the effect of including gravity on these flat false vacuum bounces, and their
relationship to bounce in the V0 = 0 limit. We also consider how a non-minimal coupling to
gravity affects bounce solutions and their nucleation rate in the Standard Model, uncovering
interesting affects, especially in the case of conformal coupling.

5.1 Bounces and Non-minimal Higgs-Curvature Coupling

When considering bounces in de Sitter backgrounds, the most complete scalar action is not Eq.
(3.2), but:

S[φ, gµν ] =

∫
d4x
√

| det(g)|
[

1

2
∇µφ∇µφ+ V (φ) − M2

P

2

(
1 − ξ

φ2

M2
P

)
R

]
. (5.1)

The term 1
2
ξφ2R is required to be present in order for the scalar field to be re normalisable

in a curved background. In principle, for consistency, we should also include terms which are
expected (in the effective field theory approach) to be of the same order in M2

P. For exam-
ple, gφ2/M2

P terms and βφ2∂µφ∂
µφ/M2

P. The effect of the φ6 term, for example, can stabilise
the potential altogether if sufficiently large. It is possible to eliminate the φ2∂µφ∂

µφ term
and ξφ2R term by field redefinitions. We will do this for the φ2∂µφ∂

µφ term here for sim-
plicity, and also neglect the φ6 term so as to focus on the effect of non-minimal coupling,
ξ. In general, there is no reason to assume that ξ is necessarily zero in a flat (V0 = 0)
background. Figure 1.5 shows the solution of beta function Eq. (3.1), for the initial values
Mt = 174.34 GeV,Mh = 125.15 GeV, ξ = 0. This demonstrates that even if ξ = 0 holds in the
Electroweak vacuum, it will not generally be true for all energy scales, as ξ runs with energy.
Furthermore, there is no particular reason to suppose that ξ = 0 is the value in the electroweak
vacuum: the best available bounds [105] suggest in fact that |ξ| < 2.6 × 1015, which leaves
considerable parameter space unexplored.

There are two ways of approaching this sort of problem. One way is to perform a field
transformation to the Einstein frame:

g̃µν =

(
1 − ξφ2

M2
P

)
gµν , (5.2)

φ̃ =

∫ φ

0

dφ

√
1 − ξ(1−6ξ)φ2

M2
P(

1 − ξφ2

M2
P

) , (5.3)

which decouples the scalar field from the metric:

S[φ̃, g̃µν ] =

∫
d4x
√

det(g̃)

⎡⎢⎣1

2
∇̃µφ̃∇̃µφ̃+

V (φ(φ̃))(
1 − ξφ(φ̃)2

M2
P

)2 − M2
P

2
R̃

⎤⎥⎦ . (5.4)

Instead of coupled scalar-field-gravity equations, this means that the effect of non-minimal
coupling is transferred to the potential, which takes the Einstein-frame form:

ṼEinstein(φ̃) =
VJordan(φ(φ̃))(
1 − ξφ2(φ̃)

M2
P

)2 . (5.5)
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Note that the potential is complicated by the fact that we need to know φ(φ̃). Integrating Eq.
(5.3) gives the inverse of this:

φ̃(φ) =
√

6MP tanh−1

⎛⎝ √
6Mpφ√

1 − ξ(1−6ξ)φ2

M2
P

⎞⎠+

√
1 − 6ξ

6ξ
MP sin−1

(√
ξ(1 − 6ξ)φ

MP

)
. (5.6)

In principle, we can invert this numerically. Another way is to leave Eq. (5.1) as it is, and
derive the Jordan frame equations of motion:

φ̈+
3ȧ

a
φ̇− V ′(φ) − ξφR = 0, (5.7)

ȧ2 = 1 − a2

3M2
P

(
1 − ξφ2

M2
P

) (− φ̇2

2
+ V (φ) − 6ξȧ

a
φφ̇

)
, (5.8)

ä = − a

3M2
P

(
1 − ξφ2

M2
P

) (φ̇2 + V (φ) − 3ξ(φ̇2 + φφ̈+
ȧ

a
φφ̇)

)
, (5.9)

R =
φ̇2(1 − 6ξ) + 4V (φ) − 6ξφV ′(φ)

M2
P

(
1 − ξ(1−6ξ)φ2

M2
P

) . (5.10)

Note that for our numerical results, we use Eqs. (5.7) and (5.9) (which avoids problems when
ȧ = 0, which occurs for de Sitter bounces), and use Eq. (5.8) to impose the second boundary
condition, ȧ(0) = 1, at χ = 0 needed to solve Eq. (5.9).

Using these Jordan frame equations, the potential is much simpler to evaluate since it does
not need inversion of Eq. (5.6) at every step. In order to draw conclusions about the bounces,
we can always move to the Einstein-frame, which can tell us, among other things, that the
bounce solutions are well defined, and must be non-compact (since the equivalent Einstein
frame bounce is non-compact). Note that the action in both the Jordan and Einstein frames is
identical, since by definition one transforms from one frame to the other by keeping the action
the same, but transforming the fields: consequently the action in the Einstein frame is just
a re-writing of the Jordan frame action in different variables, and cannot actually differ for
the same solution. Since the decay rate depends only on the action of the solution, it doesn’t
matter which frame we choose to evaluate it in, and so we are free to use whichever frame is
most convenient - in this case the Jordan frame.

5.2 Results

We refer now to results that we published previously in [1], in which we performed detailed nu-
merical calculations of bounces, including gravitational effects and non-minimal Higgs-curvature
coupling. The method of solution is essentially the same as in flat space, since the bounces are
non-compact: pick a value of φ(0) and compute the resulting solution: classify it either as an
undershoot or an overshoot, then bisect until a solution sufficiently close to the bounce is found.

Example solutions are plotted in fig. 5.1.
The first thing we note is that simply including gravitational corrections, without non-

minimal coupling (ξ = 0), produces a shift in the shape of the bounce at around its peak.
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Figure 5.1: Various bounce solutions with Mt = 173.34 GeV,Mh = 125.16 GeV when gravita-
tional backreaction and non-minimal coupling are included. Note that the ξ = 1/6 bounce is
similar to the flat space bounce, but the bounce with only gravitational corrections and ξ = 0
is different. Originally published in [1]

The reason for this can be understood by using a perturbative approach [28], consisting of
perturbing around the flat space solution for the λφ4 potential with constant negative λ. This
predicts that the action is:

S =
8π2

3|λ|
+

32π2

45R2M2
P|λ|2

. (5.11)

In flat space, the value of λ that dominates in the Standard Model was found to be that which
minimises the action [18]. Neglecting gravitational effects, this means the value at which |λ| is
maximised, or in other words, λ is minimised (since this must occur for negative λ). Including
the gravity corrections in Eq. (5.11), this instead means (remembering that R = 1/µ):

dS

dµ
−
(

8π2

3|λ|2
+

64π2µ2

45M2
P|λ|3

)
d|λ|
dµ

+
64π2µ

45M2
P|λ|2

= 0. (5.12)

This produces a shift from the minimum of λ, and the resulting change in the scale µ is what
accounts for the shift in the peak of bounce evident for ξ = 0 in fig. 5.1.

Another feature of fig. 5.1 is the fact that the bounce for ξ = 1/6 closely resembles that for
flat space (for which, note, ξ is irrelevant since R = 0 everywhere). There is a slight difference in
the two solutions, however. The fact that this occurs near ξ = 1/6 suggests that it is something
to do with conformal symmetry. In fact, this is relatively easy to show using the expression for

R, Eq. (5.10), since in the conformal case for a potential of the form λ(h)h4

4
we obtain:

R =
−λ′(h)h5

4M2
P

. (5.13)
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For constant λ then, this implies that R would be exactly zero, and Eqs. (5.7) and (5.9) would
reduce to the flat space equations. In the cases where λ varies only slowly - which is the case
in the Standard Model since λ runs logarithmically with energy - then R is small everywhere
near ξ = 1/6, and thus the bounce can be expected to resemble its flat space equivalent.

This can be understood as a sort of residual effect of conformal symmetry - the flat space
Higgs potential is conformally symmetric at large φ, but this effect is mildly broken by quantum
corrections that cause the Higgs self coupling to run with energy. Consequently, the ξ = 1/6
bounces are close to, but not exactly the same as, the flat space bounces.

Related to this, one finds that the action of bounce solutions in the vicinity of ξ = 1/6 is
close to the flat space action. This can be seen in figs. 5.2 and 5.3, which also shows that
the minimum of the curve is deflected slightly from ξ = 1/6. This again is due to the slight
breaking of conformal symmetry.
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Figure 5.2: Plot of the decay exponent as a function of ξ for Mh = 125.15 GeV,Mt =
173.34 GeV. Note the displacement from ξ = 0 - the conformal coupling at ξ = 1/6 is in
fact the approximate centre here. Originally published in [1].

It is possible to understand this deflection by deriving an expression for the location of the
minimum of the curve B(ξ) that describes the decay exponent as a function of ξ. Starting
from:

dB

dξ
=
∂Sξ[φξ, gξ,µν ]

∂ξ

⏐⏐⏐⏐
φ,gµν

+
δSξ[φξ, gξ,µν ]

δφ

⏐⏐⏐⏐
ξ,gµν

∂φξ
∂ξ

+
δSξ[φξ, gξ,µν ]

δgµνξ

⏐⏐⏐⏐⏐
ξ,φ

∂gµνξ
∂ξ

. (5.14)
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Figure 5.3: Zoom on the bottom of Fig. 5.2, showing that the centre is actually displaced from
ξ = 1/6, and takes on a ‘near conformal’ value. The decay exponent is slightly above the flat
space value. Originally published in [1].

For reference we define:

Sξ[φ, gµν ] =

∫
d4x
√

| det g|
[

1

2
∇µφ∇µφ+ V (φ) +

1

2
ξφ2R− M2

P

2
R

]
, (5.15)

∆S[φ, gµν ] =

∫
d4x

1

2
φ2R. (5.16)

Note that evaluated at the bounce solution, the functional derivatives vanish, and thus we are
only interested in the partial derivative with respect to ξ at constant φ, gµν . Hence:

dB

dξ
= ∆S[φξ, gξ,µν ] = π2

∫ ∞

0

dξa3ξ(χ)φ2
ξ(χ)Rξ(χ). (5.17)

Hence, if we had an exact conformal symmetry, then Rξ = 0 everywhere, and thus B′(1/6) =
0. So for exact conformal symmetry, ξ = 1/6 is the minimum of the B(ξ) curve. Because
R 1

6
≈ 0, then we find that even in the Standard Model, ξ = 1/6 (and not ξ = 0) is close

to (but not exactly at) the minimum of the curve. For example, with Mt = 173.34 GeV and
Mh = 125.15 GeV, the minimum is found numerically to lie at ξmin − 1

6
= 9.3354 × 10−5.

5.3 Ricci Curvature in the Interior of the Bounce

On striking conclusion of this analysis is that fig. 5.4 appears to show that for some ξ > 1
6
, e.g.

ξ = 1/3, the Ricci curvature in the centre of the bounce is positive. This would be a surprising
conclusion if true, because at first glance it would appear to imply that when a vacuum bubble
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nucleates, it creates an expanding region of positive Ricci curvature, that then presumably
inflates, potentially creating a new universe.

However, this scenario is in fact unlikely. To see why, we need to transform back to the
Einstein frame. For an arbitrary conformal transformation, g̃µν = Ω2(x)gµν , the Ricci scalars
are related by:

R̃ =
1

Ω2

[
R− 2(d− 1)∇ρ∇ρ log Ω − (d− 1)(d− 2)∇λ log Ω∇λ log Ω

]
. (5.18)

Substituting in Ω2 = 1 − ξφ2

M2
P

, as we need here, one obtains:

R̃ =
1

M2
P

⎡⎢⎣4
V (φ)(

1 − ξφ2

M2
P

)2 +
1 − ξ(1−6ξ)φ2

M2
P(

1 − ξφ2

M2
P

)3 φ̇2

⎤⎥⎦ . (5.19)

Taking account of the field transformation Eq. (5.6), and that the radial co-ordinate in the
Einstein frame, χ̃ is related to that in the Jordan frame, χ, by:

dχ̃2 =

(
1 − ξφ2

M2
P

)
dχ2, (5.20)

then we see that this is just the Einstein-frame form of Eq. (3.15), using the Einstein-frame
potential Eq. (5.5). Consequently, it is fairly straightforward to see from Eq. (5.19) that
the bounce will never describe a situation in which interior of the bounce is positive energy,
(and thus expanding), since this would violate energy conservation in the Einstein frame. The
fact that R appears to be negative in fig. (5.4) is just an artefact of the unusual form of the
equations of motion in the Jordan frame.

It makes sense, at this point, to try and interpret this result physically. We have established
that the Ricci curvature at the centre of a bounce solution is always negative. Ricci curvature
can be interpreted as being related to the ratio of the volume and/or area of a ball radius ε
at some point in a curved space to a ball of the same radius in flat space, in the ε → 0 limit
[166, 167]:

R = lim
ε→0

6(d+ 2)

ε

[
1 − Vcurved(ε)

Vflat(ε2)

]
, (5.21)

= lim
ε→0

6d

ε

[
1 − Acurved(ε)

Aflat(ε2)

]
, (5.22)

where V (ε) denotes the volume, and A(ε) the surface area of the balls, respectively. This means,
for example, if R < 0, then the volume of a ball in this space is larger than the equivalent ball
in flat space, and the same holds for the surface areas. However, note that the volume ratio is
closer to 1 than the area ratio - this is important, as it means that the surface area to volume
ratio is different with a different Ricci curvature:(

Acurved

Vcurved

)
(
Aflat

Vflat

) =

(
Vflat
Vcurved

)
(

Aflat

Acurved

) =
1 + ε2R

6(d+2)

1 + ε2R
6d

≈ 1 − ε2R

6

(
1

d
− 1

d+ 2

)
. (5.23)
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That is, the surface-area to volume ratio of such a ball decreases. This gives a physical in-
terpretation of why the action of bounces seems to decrease: the surface-area to volume ratio
decreases, and so so surface terms (which tend to suppress decay due to the positive energy
of the gradient) have less impact than volume terms (which tend to enhance decay due to the
negative energy present in the interior). Thus, the general tendency of the Ricci terms is to
increase the decay rate, essentially by increasing the ‘amount’ of negative energy that can fit
inside a nucleated bubble.
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Figure 5.4: Plot of the Ricci scalar as a function of radial parameter, χ, for the bounces
resulting from different values of ξ with Mt = 173.34 GeV,Mh = 125.16 GeV. The ξ = 1/6 case
has (nearly) cancelling back-reaction corrections. Originally published in [1].

5.4 Effect on Stability for V0 = 0

For V0 = 0, the background space-time has no intrinsic Ricci curvature that the Higgs field can
couple to, which is one reason ξ is difficult to constrain in collider experiments. As we have
discussed, the back-reaction of bounces and the resulting nucleated bubbles creates a region of
negative Ricci curvature, which can interact strongly with the bounce. This effect is especially
significant when the Standard Model potential is deep and bounce solutions penetrate far into
the negative curvature region. Fig. 5.2 showed that the effect of ξ is, quite generically, to
suppress tunnelling by increasing the action. This can have a significant effect on the life-time
of the vacuum, which we plot in figure 5.5. The net effect of this is to push back the boundary
between the meta-stability and instability (defined as having a life-time shorter than the age of
the visible universe) regions of (Mh,Mt) parameter space. This is plotted in fig. 5.6, where the
beige region shows the shift in the instability-metastability boundary for a few different values
of ξ. Note that because the true minimum is necessarily very shallow around the stability-
meta-stability boundary, there isn’t expected to be a significant effect on this. This means that
physically speaking, non-minimal coupling when V (φfv) = 0 doesn’t change much, other than
to significantly extend the life-time of the metastable vacuum: one might argue, however, that
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Figure 5.5: Life-time of the vacuum for Mt = 173.34 GeV,Mh = 125.15 GeV, αS = 0.1184, for
different values of ξ compared to the flat space (no back-reaction) lifetime.

there isn’t much of a practical difference between a life-time of 10580 years and 10780 years: both
describe exceedingly rare events.
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Figure 5.6: Effect on stability of gravitational corrections to the bounce for different top and
Higgs masses. Increasing |ξ| tends to stabilise the vacuum. Bounds on the top and Higgs masses
are displayed as ellipses, representing 1,2, and 3σ bounds; Mh = 125.18 ± 0.16 GeV,Mt =
173.1 ± 0.9 GeV from [4]. Figure based on [1].

5.5 Effect of Non-minimal Coupling in De Sitter Space

With the de-Sitter space effective potential of the Standard Model in place, it is also possible
to ask questions not only about how gravity affects tunnelling rates, but about how the non-
minimal coupling affects them. This results in an improvement over the previous analysis of
this chapter which assumed a constant ξ and uses the flat space potential.

Although we do not consider bounces here, which will be left for a later work, it is possible to
get an idea of how non-minimal Higgs-curvature coupling affects the Standard Model potential
through the use of the Hawking-Moss instanton. This is most easily done by switching to the
Einstein-frame, where the Higgs field and gravity are decoupled, and the potential takes the
form:

Ṽ (φ̃) =
V (φ(φ̃))(

1 − ξφ2(φ̃)

M2
P

)2 , (5.24)

where φ̃ is related to the Jordan-frame field by:

dφ̃

dφ
=

√
1 − ξ(1−6ξ)φ2

M2
P(

1 − ξφ2

M2
P

) . (5.25)
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The decay exponent of the Hawking-Moss solution is thus:

B = 24π2M4
P

⎛⎝ 1

V (φ(φ̃fv))

(
1 − ξφ(φ̃fv)2

M2
P

)2

− 1

V (φ(φ̃max))

(
1 − ξφ(φ̃max)

2

M2
P

)2
⎞⎠ . (5.26)

Note that φ(φ̃max) does not necessarily coincide with φmax, as the different potential in the
Einstein and Jordan frames will change the location of the stationary points. However, the
solution exists and is will defined. In the fixed-background limit, the action of a generic solution
in the Jordan frame can be written as:

S =
2π2

H3

∫ π/H

0

dχ sin3(Hχ)

[
φ̇2

2
+ V (φ) − M2

P

2

(
1 − ξφ2

M2
P

)
R

]
. (5.27)

Thus, if R is fixed, we can write B as:

B =
8π2

3H4

[
V (φmax) +

1

2
ξφ2

maxR− V (φfv) − 1

2
ξφ2

fvR

]
=

8π2∆Vξ(φmax)

3H4
, (5.28)

where ∆Vξ(φ) = V (φ) + 1
2
ξφ2R−V (φfv)− 1

2
ξφ2

fvR. That is, we can obtain the action simply by
computing the difference between the top of the barrier and the false vacuum, as if the 1

2
ξφ2R

term were part of the effective potential. This is consistent with what we have written for the
effective potential in Eq. (4.101), and thus computing the decay exponent is as simple as com-
puting the potential with the extra ξφ2R/2 piece and computing the height difference between
the false vacuum and barrier. This trick avoids a complicated conversion of the Einstein-frame
solution back to the Jordan frame.

Rather than the more complicated discussion of section 3.8, we used a slightly simpler
analysis to obtain the probability of nucleating a bubble in our past light cone. Let us assume
that we have some number N e-folds of inflation visible, which splits the visible universe into
approximately e3N Hubble volumes that could have decayed during inflation. Furthermore,
assume some scale A = µ4, then the probability per unit time of a decay occurring within one
Hubble volume is:

γ =
4πµ4

3H3
e−B. (5.29)

Hence the probability of a decay occurring between t1 and t2 is:

p(N, 1) =
4πµ4

3

∫ t2

t1

dt
µ4

H3
e−B(H). (5.30)

In principle, H can be time dependent, but it is convenient to express this in terms of the
number of e-folds, dN/N = Hdt

p(N, 1) =
4πµ4

3

∫ N

1

dN

Ṅ4
N3e−B(N). (5.31)

For constant H, this can be evaluated as:

p(N, 1) =
4π

3

( µ
H

)4
e−B log(N). (5.32)

This gives the total probability that a bubble was nucleated within a given Hubble volume,
during inflation. Within the observable universe, if we can see N e-folds of inflation, then we
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Figure 5.7: Stability of the electroweak vacuum for different values of ξEW and H. Negative ξ
tends to destabilise the potential, while positive ξ can rescue it, even for large H. Originally
published in [5]. Compare with results in [6, 7].

expect of order e3N such Hubble volumes [65], and thus the expected number of Hubble volumes
which decay during inflation is e3Np(N, 1). If even one such Hubble volume were to survive
inflation, then it would expand to fill the whole universe. Consequently, for stability, we require
e3Np(N, 1) < 1, or:

B > 3N + log

(
4π

3

( µ
H

)4)
+ log(log(N)). (5.33)

In the case of the Hawking-Moss solution, for example, this would impose the condition:

H < A∆V (φbar)
1
4
ξ , (5.34)

where:

A =

⎡⎣ 8π2

3(3N + log
(

4π
3

(
µ
H

)4)
+ log(log(N)))

⎤⎦ 1
4

. (5.35)

The scale µ is somewhat arbitrary and is meant to absorb various factors (such as cosmological
history since the end of inflation, and the precise pre-factor for Hawking-Moss bubbles computed
including graviton fluctuations). However, A is only weakly dependent on this, so we assume

for simplicity that 10−2 < 4πµ4

3H4 < 102 to give the ad hoc A = 0.617 ± 0.004. This corresponds
to out intuition that H must be comparable in height to the barrier for significant decays to
occur, but here we take into account how non-minimal coupling affects the calculation, since
we compare H to ∆Vξ(φbar)

1/4 rather than ∆V (φbar)
1/4. This produces as threshold value of ξ

for a given H that will lead to stability or instability. We plot this in figure 5.7. Similar results
were also given by [6].

105



Chapter 6

Vacuum Decay in a De Sitter
Background
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Thus far, our results for the Standard Model have considered gravitational effects of vacuum
decay in the flat false vacuum (V0 = 0) limit. Now we consider non-zero, positive V0.

6.1 Shooting Method for De Sitter Bounces

As discussed in section 3.4, for V0 > 0, the bounce solutions are always compact. This is a
substantial change from the V0 = 0 case, which makes for a qualitative difference in how it is
treated. Instead of one unknown initial value, φ0 = φ(0), it is also necessary to know the value
on the other side of the barrier, φ1 = φ(χmax). Consequently, finding a solution in de Sitter
space is, at minimum, twice as difficult, since one needs to apply the shooting method to both
values.

There is an additional complication, however, in that instead of one singularity at χ = 0
which must be avoided, there are two singularities, with a second appearing at χ = χmax. Worse,
this singularity is movable, since it’s position depends on the solution itself, being defined by
the first χmax > 0 at which a(χmax) = 0. It is not, therefore, an option to simply integrate from
χ = 0 up to χ = χmax, since integrating into a co-ordinate singularity is generally unstable.
This is easy to see from the field equation:

φ̈+
3ȧ

a
φ̇− V ′(φ) = 0. (6.1)

If ȧ < 0, then the second term of Eq. (6.1) becomes an anti-friction term, which in the me-
chanical analogy causes the φ to accelerate. As we approach a = 0, this anti-friction diverges
and thus so does the solution, unless we approach φ̇ = 0.

To deal with this, it is necessary to shoot from both sides. The procedure is as follows:

1. Pick values of φ0, φ1, on opposite sides of the barrier, i.e. φ0 ∈ (φfv, φbar) and φ1 ∈
(φbar, φtv).

2. Compute two solutions φfalse(χ) and φtrue(χ) with the initial conditions: φfalse(0) =
φ0, φ̇false(0) = 0, φtrue(0) = φ1, φ̇true(0) = 0.

3. Classify these solutions as either undershoots or overshoots, according to the following
definition:

(a) Undershoots have some point χ > 0, χ < χmax satisfying φ̇(χ) = 0.

(b) Overshoots diverge without ever encountering φ̇ = 0. This can be identified by φfalse

passing through the true vacuum, and φtrue passing through the false vacuum with
φ̇ ̸= 0.

4. By the arguments of [109], there must lie a bounce solution between any undershoot and
overshoot. Find an undershoot and overshoot on each side of the barrier, and then bisect
on this range until the relevant bounce is found.

5. Once a bounce starting on each side is found, match the two solutions. Truncate each
solution at χmid defined by ȧ(χmid) = 0 (if no such point exists, then the solution is not
sufficiently close to a bounce, so return to the bisection step - a bounce solution will
always have such a point - see section 3.4).
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6. Compute χmax = χmid,false + χmid,true. Now flip φfalse to define:

φbounce(χ) =

{(
φtrue(χ) χ < χmid,true

φfalse(χmax − χ) χ > χmin,true

)
, (6.2)

and similarly patch together a(χ) from the two halves of the solution. This gives the
complete solution, from which we can compute the action.

The reason for the patching together of the two solutions at their midpoints, where ȧ = 0, is
that it avoids the anti-friction region, where we might expect the solution to be less reliable.
Note also that it is necessary to find both an undershoot and an overshoot to get the bisection
started. Under certain conditions, we can exploit the fact that solutions sufficiently close to the
critical points of the potential satisfy this. Recall that with Lemma 3 we proved that solutions
starting sufficiently close to the false vacuum are always overshoots. This allows us to guarantee
that an overshoot can always be found (note that this lemma applies equally well to the true
vacuum, so we can always find an overshoot on the true vacuum side if there is a true vacuum
in the potential). Lemma 4 on the other hand says that we can always find an undershoot by
going sufficiently close to the top of the barrier (if it exists), provided:

V ′′(φbar)

4
+
V (φbar)

3M2
P

< 0. (6.3)

This is related to the existence proof for CdL solutions given by [109] - that argument essen-
tially amounts to saying that since an overshoot and an undershoot are proven to exist, then a
CdL bounce necessarily exists if Eq. (6.3) is satisfied.

The more interesting case is if Eq. (6.3) is not satisfied. In that case, solutions start-
ing close to any critical point of the potential are overshoots, and thus a CdL solution may
not exist. However,this does not amount to a proof of it’s non existence - in fact, as we will
see, CdL solutions can exist in this situation, and this is crucial to the main results of this thesis.

Another point is that the method described here may fail if the solutions simply do not
match at their respective ȧ = 0 points. There is no guarantee that a, φ will match, and if they
do not, then this implies that the two halves found are actually different solutions. This will
show up as a discontinuity in the computed solution, and reveals the presence of multiple CdL
solutions.

6.2 The Critical Threshold and the CdL-HM Transition

As mentioned in section 3.3.3, there is always a second type of bounce, the Hawking-Moss
solution, which sits at φ = φbar and is a constant solution. In section 3.6 we computed the
eigenvalue spectrum of the Hawking-Moss solution and found that it will have more than one
negative eigenvalue if:

V ′′(φbar)

4
+
V (φbar)

3M2
P

< 0. (6.4)

It is immediately striking that Eq. (6.4) is precisely the same condition as Eq. (6.3). This
the first hint that there is link between the two. Re-arranging Eq. (6.4) and defining the
background Hubble rate as:

H2 =
V (φfv)

3M2
P

, (6.5)
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then there exists a critical background Hubble rate:

H2
crit = −V

′′(φbar)

4
− [V (φbar) − V (φfv)]

3M2
P

, (6.6)

below which, CdL solution necessarily exist, and Hawking-Moss solutions do not contribute to
vacuum decay, owing to their additional negative eigenvalues. Above this, the Hawking-Moss
solution does contribute to vacuum decay. The question is, does the CdL solution also con-
tribute?

At this point, the naive answer seems to be that it shouldn’t - the existence proof ceases to
apply, and this might be a signal that the CdL solution no longer exists above this threshold.
Is this the case?

One thing that appears to support this, at first glance, is that we can prove the number of
solutions definitely changes in number:

Statement 7. As H changes from H < Hcrit to H > Hcrit, the number of CdL solutions
changes by an odd number.

Proof. By the results of [109],there must exist a bounce solution between every overshoot and
undershoot. This means that we can split the space of initial conditions, (φfv, φbar) (considering
only the false vacuum side is sufficient) into ‘overshoot’ and ‘undershoot’ regions. Wherever
there is a transition between two regions of opposite character, a bounce solution exists. Now,
by lemmas 3 and 4, when H < Hcrit, solutions close to φfv are overshoots, and those close to
φbar are undershoots. This means that there is an odd number of transitions, and thus an odd
number of CdL solutions (not necessarily 1 solution). Vice versa, when H > Hcrit, solutions
near φbar are now overshoots, and so there must be an even number of (or zero) solutions.
Either way, the number of CdL solutions changes by an odd number.

Lemma 7 thus appears to suggest that the CdL solution disappearing at Hcrit is plausible.
Solutions are definitely either created or destroyed across this threshold, and if there were
only a single CdL solution for H < Hcrit, it would be consistent for this to disappear at Hcrit.
Indeed, this seems to be what happens in many potentials. Consider for example the polynomial
potential:

V (φ) =
1

2
m2φ2 +

λ4
4
φ4 +

λ6
6M2

P

φ6. (6.7)

For the parameters λ4 = −1, λ6 = +1,m2 = 0.1M2
P, we plot this potential in fig. 6.1.

For this potential, we plot solutions (fig. 6.2) and the decay rate (fig. 6.3). The critical
Hubble rate in this case occurs at V0crit = 0.014822M4

P. As can be seen from the solutions in
fig. 6.2, as H → Hcrit from below, the CdL solutions increasingly decrease in amplitude until
they resemble the Hawking-Moss solution, merging smoothly with it at H = Hcrit. The decay
exponent merges similarly smoothly in fig. 6.3, which also illustrates how this decay exponent
approaches the flat false vacuum result as H → 0, while the action of the Hawking-Moss di-
verges (and in any case, doesn’t contribute to the decay rate).

This is in some sense the ‘typical’ behaviour that we would expect - CdL solutions dominate
the decay rate below the critical threshold, and as we raise the Hubble rate, the solutions
increasingly resemble the Hawking-Moss solution until they cease to exist at Hcrit, and the
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Figure 6.1: Plot of the polynomial potential on Eq. (6.7), with λ4 = −1, λ6 = +1,m2 = 0.1M2
P.

The barrier is chosen to be much shallower than the true vacuum similar to the Standard Model
case. Originally published in [2].
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Figure 6.2: Plot of bounce solutions in the polynomial potential of fig. 6.1. Originally published
in [2].

decay is entirely Hawking-Moss dominated. We can call this phenomenon the ‘CdL-Hawking-
Moss transition. As we will see, however, it is not a universal phenomenon.
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6.3 CdL Solutions Around the Barrier

We can get a better understanding of the CdL-Hawking-Moss transition by considering the
behaviour of bounce solutions around the critical threshold. For these bounces, it is possi-
ble to derive perturbative expressions for the solution - this was considered, for example, by
[113, 112], and studied in the context of the Standard Model by [7].

Following [113], we expand the potential around the top of the barrier as:

V (φ) = V (φbar)+
V ′′(φbar)

2
(φ−φbar)

2+
V (3)(φbar)

6
(φ−φbar)

3+
V (4)(φbar)

24
(φ−φbar)

4+ . . . (6.8)

We wish to find solutions when H is close to the critical threshold, Hcrit. We will use a slight
modification of the approach used by [113], and use the dimensionless perturbation parameter:

ϵ2 = −Λ
3M2

P

V (φbar)

(
H2 −H2

crit

)
= −Λ

(
3M2

PV
′′(φbar)

V (φbar)
+ 1

)
. (6.9)

This is equivalent to the parameter χ2 used by [113] when Λ = 1, but introducing the arbitrary
factor Λ will allow us to consider cases where H > Hcrit, as well as H < Hcrit (as considered
by [113]). As we will see, this will not make a different to the result. Additionally, instead of
φ we will consider:

u =
∆φ

∆φ0

, (6.10)

where ∆φ = φ− φbar and ∆φ0 = ∆φ(0) is the initial condition. Note that ∆φ0 is ϵ dependent,
since the solution will change with H. Note also when comparing with [113, 112, 7] that

we define the Hubble rate as H2 = V (φfv)

3M2
P

, rather than at the top of the barrier, although

the difference is Planck-suppressed. We now transform variables from χ to x = πχ
χmax

where
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a(χmax) = 0 for the bounce solution. In fact, χmax depends on ϵ, but this variable transformation
ensures that the boundaries are always at x = 0, π. In these new variables, the bounce equations
become:

u′′ +
3a′

a
u′ − χ2

max

π2
V ′′(φbar)u−

χ2
max

π2
∆φ0

V (3)(φbar)

2
u2 − χ2

max

π2

V (4)(φbar)

6
∆φ2

0u
3 = 0, (6.11)

a′′ +
a∆φ2

0

3M2
P

(
u′2 +

χ2
max

π2

V ′′(φbar)

2
u2 +

χ2
max

π2
∆φ0

V (3)(φbar)

6
u3 +

χ2
max

π2
∆φ2

0

V (4)(φbar)

24
u4
)

− a
χ2
max

π2

V ′′(φbar)

4
(
1 + ϵ2

Λ

) . (6.12)

We now write perturbative expressions for the solutions and their parameters ∆φ0 and χmax:

u(x) = u0(x) + ϵu1(x) + ϵ2u2(x) + . . . , (6.13)

a(x) = a0(x) + ϵa1(x) + ϵ2a2(x) + . . . , (6.14)

∆φ0 = ∆φ
(0)
0 + ϵ∆φ

(1)
0 + ϵ2∆φ

(2)
0 + . . . , (6.15)

χmax = χ(0)
max + ϵχ(1)

max + ϵ2χ(2)
max + . . . . (6.16)

For this to work, we need something to perturb around. In the ϵ = 0 case, we have exactly
H = Hcrit = 0. This means that the linearised bounce equations:

∆φ̈+
3ȧ

a
∆φ̇− V ′′(φbar)∆φ = 0, (6.17)

ä+
aV (φbar)

3M2
P

, (6.18)

have a solution that can be made to satisfy the bounce boundary conditions, namely:

∆φ(χ) =
∆φ0

3
C

(3/2)
1 (cos(HHMχ)), (6.19)

a(χ) =
1

HHM

sin(HHMχ), (6.20)

where H2
HM = V (φbar)

3M2
P

and C
(3/2)
n (u) is the nth Gegenbauer polynomial [128]. Note that Eq.

(6.18) only has polynomial solutions when −V ′′(φbar)
H2

HM
= n(n+ 3) where n = 0, 1, 2, . . .. These in

fact correspond to the eigen-modes of the Hawking-Moss solution. In particular, n = 1 is the
mode which changes the sign of it’s eigenvalues at Hcrit, and in that case C

(3/2)
1 (u) = 3u and

the solution is just:
∆φ(x) = ∆φ0 cos(HHMχ). (6.21)

Note, however, that the linearised solution is only a solution of the bounce equations in the
∆φ0 → 0 limit - it is for this reason that it is known as a ‘limit solution’ [109]. Consequently,
if we wish to consider solutions that continuously deform into the n = 1 eigen-mode of the
Hawking-Moss as H → Hcrit, then we should take the zeroth-order solution to be:

u0(x) = cos(x), (6.22)

a0(x) =
χmax

π
sin(x). (6.23)

The astute reader will notice that u0, a0 thus defined are not the ϵ = 0 solutions except when
ϵ = 0, because χmax ̸= χ

(0)
max. If we were to use the ϵ = 0 solutions instead, we would encounter
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secular terms in the perturbative expansion that complicate the calculations [168]. These secu-
lar terms are eliminated precisely by choosing χmax to vary as in Eq. (6.16), which is analogous
to the way the frequency of a Duffing oscillator changes with the perturbation parameter [168].

This also has the effect of simplifying the boundary conditions for the perturbative expan-
sion: we require a(0) = a(φ) = 0 and a′(0) = χmax

π
(i.e. ȧ(0) = 1). The apparent third boundary

condition here is really what defines χmax, so this system is not over-constrained. Similarly,
u′(0) = u′(π) = 0 (the normal CdL bounce boundary conditions) and u(0) = 1 (which ensures
∆φ0 = ∆φ(0) to all orders of perturbation theory). Since Eqs. (6.22) and (6.23) already satisfy
these conditions to all orders in ϵ, then the boundary conditions on the perturbative solutions
are just:

u′n(0) = u′n(π) = un(0) = 0, (6.24)

an(0) = an(π) = a′n(0) = 0, (6.25)

for all n. Again, the extra boundary condition here is simply to impose the definitions of ∆φ0

and χmax at each order in perturbation theory: when we perform the expansion we will see
that unknown terms like χ

(n)
max, φ

(n)
0 will appear in each equation, and are fixed by the extra

boundary conditions, so the system is not over-constrained.

The perturbative equations of motion are given in appendix A.2. At first glance, these
equations appear hopelessly complicated, but in fact, they are solvable analytically. Start
by solving Eq. (A.42), which is the inhomogeneous simple harmonic oscillator. Substituting
the solution into Eq. (A.43) then gives the inhomogeneous Gegenbauer equation for n = 1,
which has a solution in terms of cos(x). We can then substitute these solutions into the
higher order equations, each time creating an inhomogeneous harmonic oscillator (for an) or
Gegenbauer equation (for un), where the right hand side is always a polynomial in some number
of trigonometric functions. This is because the general solution of the homogeneous Gegenbauer
equation with n = 1 is:

y(x) = C1 cos(x) + C2
1

4(cos2(x) − 1)

[
4 − 6 cos2(x) + 3 cos(x) log(1 − cos(x))

−3 cos3(x) log(1 − cos(x)) − 3 cos(x) log(1 + cos(x)) + 3 cos3(x) log(1 + cos(x))
]
, (6.26)

where the second solution here is the Gegenbauer equation of the second kind. This is diver-
gent at the boundaries 0 and π, so the inhomogeneous terms in the solution must combine with
C2 and C1 to cancel this divergence. This always results in a solution that is polynomial in
cos(x) and sin(x), and the cos2(x)− 1 in the denominator cancels. Consequently, each order of
perturbation theory, once the lower order solutions are substituted in, gives an inhomogeneous
equation with a complicated polynomial of trigonometric functions, and thus is always solvable
by the method of variation of parameters, with either sufficient patience, or computer assisted
algebra.

Applying this technique, the solutions that match the boundary conditions, up to second
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order in ϵ are:

a1(x) =0, (6.27)

u1(x) = − V (3)(φbar)∆φ
(1)
0

6V (2)(φbar)
(1 + cos(x) − 2 cos2(x)), (6.28)

a2(x) =
χ
(0)
max(∆φ

(1)
0 )2

8πM2
P

sin3(x), (6.29)

u2(x) =
(1 − cos(x))

12V (2)(φbar)Λ(4(V (2)(φbar))2 +
(

(V (3)(φbar))2

2
− 9V (2)(φbar)V (4)(φbar)

)
M2

P)
×

(
(V (2)(φbar))

2

[
−27

2
V (2)(φbar) cos(x)(1 + cos(x))

−8V (3)(φbar)Λ(1 + 2 cos(x))∆φ
(2)
0

]
−4M2

P

[
−V (2)(φbar)

{
(V (3)(φbar))

2

2
− 9V (2)(φbar)V

(4)(φbar)

+2

(
(V (3)(φbar))

2

2
− 9V (2)(φbar)V

(4)(φbar)

)
cos(x)

+(−3(V (3)(φbar))
2 − 9V (2)(φbar)V

(4)(φbar)) cos(2x)
}

+V (3)(φbar)Λ

(
(V (3)(φbar))

2

2
− 9V (2)(φbar)V

(4)(φbar)

)
(1 + 2 cos(x))∆φ

(2)
0

])
. (6.30)

While ∆φ0 and χmax are found to be:

χmax =
2π√

−V ′′(φbar)
+ ϵ2

π(12M2
P − Λ(∆φ

(1)
0 )2)

12
√
−V ′′(φbar)ΛM2

P

+O(ϵ4), (6.31)

∆φ0 =ϵ∆φ
(1)
0 + ϵ2

V (3)(φbar)(∆φ
(1)
0 )2

6V (2)(φbar)
, (6.32)

(∆φ
(1)
0 )2 =

21

Λ
(

4
M2

P
+ (V (3)(φbar))2

2(V (2)(φbar))2
− 3V (4)(φbar)

2V (2)(φbar)

) . (6.33)

Eq. (6.33) is especially significant, as it gives the condition under which solutions exist. The
LHS is manifestly positive, but the RHS can potentially be negative. Note that we can tech-
nically choose the sign of Λ to counteract this sign, but this has consequences for whether the
expansion is well defined for H > Hcrit or H < Hcrit. Since Λ = sign(H2

crit − H2), then we
require:

sign(H2
crit − H2)

(
4

M2
P

+
(V(3)(φbar))

2

2(V(2)(φbar))2
− 3V(4)(φbar)

2V(2)(φbar)

)
> 0. (6.34)

This condition was previously derived in [113, 112]. More recently is was discussed by [7]. To
relate the condition of [7] to Eq. (6.34), we use the fact that:

ϵ2 = −Λ

4

(
V (2)(φbar)

H2
HM

+ 4

)
=⇒ −V (2)(φbar) = 4H2

HM

(
1 +

ϵ2

Λ

)
, (6.35)

in order to write:

∆φ2
0 = −1

4

(
V (2)(φbar)

H2
HM

+ 4

)
21(

4
M2

P
+ (V (3)(φbar))2

32H4
HM

+ 3V (4)(φbar)

8H2
HM

) +O(ϵ4). (6.36)
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Thus:(
V (2)(φbar)

H2
HM

+ 4

)
= −(φ(0) − φbar)

2

14H2
HM

(
V (4)(φbar) +

(V (3)(φbar))
2

12H2
HM

+
32H2

HM

3M2
P

)
. (6.37)

Up to the Planck-suppressed
32H2

HM

3M2
P

term, this is the same condition found by [7]. Note that

H2
HM = V (φbar)

3M2
P

. We can also compute the action of this perturbative solution - full calculation

is given in appendix A.2:

S =SHM +
2π2(φ(0) − φbar)

4

15H4
HM

(
− 1

14

[
V (4)(φbar) −

(V (3)(φbar))
2

3V (2)(φbar)
− 8V (2)(φbar)

3M2
P

])
, (6.38)

where we used Eq. (6.33) to eliminate Λ. With the substitution V (2)(φbar) = −4H2
HMcrit =

−4H2
HM + O(ϵ2), this agrees with the form of the action derived elsewhere [113, 112, 7]. Note

that φ(0) − φbar = O(ϵ). There is an important conclusion we can draw from Eq. (6.38): the
sign of Λ, and thus the sign of H2 − H2

crit is what determines whether these solutions have
lower or higher action than the appropriate Hawking-Moss solution. In particular, if H < Hcrit,
and solutions exist, this tells us that Λ > 0, so these solutions always have lower action than
the Hawking-Moss. This agrees with what we have seen - for such potentials, the CdL bounce
approaches the Hawking-Moss as H → Hcrit, with the action approaching from below.

Somewhat more interesting, however, is the opposite case, when H > Hcrit. If solutions
exist here (that is, Eq. (6.34) is satisfied), then Λ < 0 and they will have higher action than
the Hawking-Moss. It should be noted. In this case, a new solution appears at H = Hcrit, but
it is always suppressed relative to the Hawking-Moss solution.

However, there is a far more interesting conclusion that can be drawn from this. Recall in
section 6.2 where we proved (lemma 7) that at Hcrit the number of CdL solutions must change
by an odd number. We also know that there is always a solution for H < Hcrit. But if a solution
exists for H > Hcrit, and the number of solutions always changes by an odd number, we are
left with an inescapable conclusion: there must be more than one solution.

6.4 Potentials with Multiple CdL Solutions

The discussion of section 6.3 revealed a surprising conclusion - it is possible to have multiple
CdL solutions in certain potentials. Whether the solution that merges with the Hawking-Moss
exists or not is determined by the quantity:

∆ ≡ − 1

14

(
V (4)(φbar) −

(
V (3)(φbar)

)2
3V (2)(φbar)

− 8V (2)(φbar)

3M2
P

)
. (6.39)

Specifically, existence requires sign(∆) = sign(H2
crit −H2) (see Eq. (6.34)). The sign and factor

1/14 are retained here so that we can write Eq. (6.38) in the form:

S = SHM +
2π2(φ0 − φbar)

4∆

15H4
HM

. (6.40)

It is worth emphasising here that this leads to two different classes of potentials:
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1. ∆ < 0, for which solutions only exist if H < Hcrit. These solutions have lower action than
the Hawking-Moss, and probably correspond to the CdL solution found numerically in
figure 6.1.

2. ∆ > 0, for which solutions only exist if H > Hcrit. Furthermore, there are at least two
CdL solutions, one of which is not found perturbatively.

The ∆ < 0 case is the more ‘typical’ case - any potential with V (4)(φbar) > 0 will immediately
fall into this category. But it is not necessarily more physical. Let us consider examples.

6.4.1 Polynomial Model
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Figure 6.4: Plot of the decay exponent, B, as a function of V0 = V (0) for the potential in
Eq. (6.41) using g = − 1

5M2
P
,m = 0.1MP, λ = −1. A second solution appears at V0crit, which

eventually merges with the usual CdL solution at higher V0. The flat space decay exponent,
B0, is shown for reference.

Consider the potential:

V (φ) = V0 +
1

2
m2φ2 +

λ

4
φ4 +

g

6
φ6, (6.41)

with m2, g > 0 and λ < 0. This is one of the simplest examples of a potential that exhibits
tunnelling, and has the advantage that the barrier and true vacuum can be found in closed
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form:

φfv = 0, (6.42)

φbar =

√
|λ| −Q

2g
, (6.43)

φtv =

√
|λ| +Q

2g
, (6.44)

Q ≡
√

|λ|2 − 4m2g < |λ|. (6.45)

The derivatives at the barrier are given by:

V (2)(φbar) =
Q(Q− |λ|)

g
, (6.46)

V (3)(φbar) =
√

2(2|λ| − 5Q)

√
|λ| −Q

g
, (6.47)

V (4)(φbar) = 6(4|λ| − 5Q). (6.48)

H should be evaluated at the critical threshold and including the full height of the barrier, so
H = HHM =

√
−V (2)(φbar)/4. This gives:

∆ ∝ −6(4|λ| − 5Q) +
2(2|λ| − 5Q)2(|λ| −Q)

3Q(Q− |λ|)
+

8Q(Q− |λ|)
3gM2

P

. (6.49)

The last two terms are always negative. It can be shown that there is an upper limit to g
for which tunnelling occurs, namely when the true and false vacua are of equal height and the
potential never dips below V0. This occurs at g = 3|λ|2/16m2, or Q = |λ|/2. In this limit,
∆ < 0, so for ∆ > 0 to occur, a necessary condition is that there exist a solution to ∆ = 0, or:

40Q3 +

(
8|λ| − 32m2

M2
P

)
Q2 − 40|λ|2Q− 8|λ|3 = 0. (6.50)

for some 0 < Q < |λ|. This can be factorised in the m2 ≪M2
P limit:

(Q+ |λ|)(40Q2 − 32|λ|Q− 8|λ|2) = 0, (6.51)

which has zeros at Q = −|λ|, Q = +|λ| and Q = − |λ|
5

. The net effect of the −32m2Q2/M2
P

term is to reduce the (negative) value of the polynomial on the Q > 0 region, which means
that the Q = +|λ| root is pushed to higher Q, and no more positive Q roots are introduced.
Hence, the positive root always satisfies Q ≥ |λ|, while the other roots are always negative.
This means that ∆ < 0 on the range 0 < Q < |λ|, which is that covered by solutions possessing
a barrier, and thus this simple polynomial model with a well defined true vacuum (i.e. g > 0)
can never produce the unusual ∆ > 0 behaviour. A perturbative estimate for the positive root
with ϵ = m2/M2

P is:

Qpos = |λ| +
ϵ

3
+

2ϵ2

27|λ|
+O(ϵ3). (6.52)

There is a possible exception to this with g < 0, which can have a barrier, but no true vacuum
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(this is similar to the situation in the Standard Model, for sub-Planckian field values). In that
case, Q > |λ|, and V (4)(φbar) < 0 is always true. Perturbatively, we find that if:

g < − |λ|
6M2

P

− 7ϵ

108M2
P

+O(ϵ2), (6.53)

then ∆ > 0 is achieved. The exact expression can in principle be obtained by using the cubic
formula on Eq. (6.50), but for most cases this is not necessary.
An example of the decay rates with g = − 1

5M2
P
,m = 0.1MP, λ = −1 is computed numerically

and plotted in figure 6.4. The results when zoomed out are qualitatively similar to figure 6.3,
but closer inspection of the area around the critical threshold reveals the presence of a second
CdL solution. In this case, the solution soon merges into the usual CdL solution at sufficiently
large V0, which happens after the Hawking-Moss solution comes to dominate the decay. Unlike
the g > 0 case of fig. 6.3, however, there is no smooth merging of the CdL into the Hawking-
Moss.
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Figure 6.5: CdL solutions with the same parameters as fig. 6.4 for V0 = 1.015006M4
P (blue and

red) and V0 = 0.015476M4
P (yellow and purple). The critical value is at V0 = 0.015005M4

P. As
V0 increases, the solutions become closer together.

Fig. 6.5 shows a plot of the solutions for a couple of different values of V0. Notice that CdL
1 (the solution which exists in the V0 → 0 limit), continues to have a mostly large amplitude,
while CdL 2 starts out with a small amplitude around the top of the barrier, and grows to meet
CdL 1 until they merge. Unlike the g > 0 case, neither solution shrinks until it sits at the top of
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the barrier - instead they disappear at some V0 > Vcrit. Note that it is not impossible that these
solutions actually exist for all V0 and simply move arbitrarily close together as V0 increases -
beyond the point where they appear to merge, the solutions become indistinguishable and the
undershoot region between them becomes difficult to find numerically. Thus, it may appear
that there are no CdL solutions, even though they in fact exist.

The example given here, with g < 0, is analogous to the Standard Model Higgs potential in
that no true vacuum necessarily exists at large φ: the potential decreases without bound1.

6.4.2 Linear Model

An example of a potential that has multiple solutions was considered by [110]. They considered
the potential:

V (φ) =

⎧⎨⎩
C(φ+ a) + V0 φ < −a

V0 −a < φ < a
−C(φ− a) + V0 φ > a

. (6.54)

In the fixed background approximation, with H2 = V0/3M
2
P and x = Hχ, one finds the equation

of motion to be:
1

sin3(x)

d

dx

(
sin3(x)

dφ

dx

)
− α

H2
= 0, (6.55)

where α = C, 0,−C in the φ < −a,−a < φ < a, φ > a regions respectively. The general
solution to this can be found analytically:

φ(x) =
α

H2

[
1

3 sin2(x)
− 1

3
log | sin(x)|

]
−D

[
1

2
log

⏐⏐⏐⏐cos(x) + 1

sin(x)

⏐⏐⏐⏐+
cos(x)

2 sin2(x)

]
+D. (6.56)

Using this form, we fix D,E in each of the three regions, by matching the φ̇(0) = φ̇(π/H) = 0
boundary conditions and requiring that the solution be continuous in the first and second
derivatives at the two potential gradient discontinuities at φ = ±a. Note that we do not know
at what χ these occur, but we can remedy this by defining these matching points to occur at
arbitrary points φ(x±) = ±a, and then requiring that this be true for both parts of the solution
at the matching point. This gives eight unknowns (DL, EL, DC , EC , DR, ER, x−, x+) and eight
equations to be satisfied:

φ̇L(0) = 0, φ̇R(π/H) = 0, (6.57)

φL(x−) = −a, φC(x−) = −a, (6.58)

φR(x+) = +a, φC(x+) = +a, (6.59)

φ̇L(x−) = φ̇C(x−1), φ̇R(x+) = φ̇C(x+), (6.60)

where φL, φC , φR are the solutions in the φ < −a,−a < φ < a, φ > a regions respectively, and
DL, EL the respective arbitrary constants to be fixed. Starting with the φ̇L(0) = 0 condition,
we find:

φ̇L(x) =
C

H2

(
−2

3

cos(x)

sin3(x)
− cos(x)

3 sin(x)

)
+

DL

sin3(x)
. (6.61)

1In fact, under a literal reading, the Standard Model potential does have a true vacuum since λ is eventually
driven to positive values by the Landau pole of the U(1) coupling, but this happens far beyond the Planck scale,
and has no effect on tunnelling rates since bounce solutions do not penetrate that far into the true vacuum.
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Taylor expanding for small x we find:

φ̇L(x) =
C

H2

(
− 2

3x3
+

1

3x

)
+DL

(
1

x3
− 1

2x

)
+O(x). (6.62)

Hence to match φ̇L(0) = 0 we require:

DL =
2C

3H2
. (6.63)

The φ̇R(π) = 0 solution is similar to this, and instead we find:

DR = − 2C

3H2
. (6.64)

The remaining six equations then become:

− a = EL +
C

H2

[
1

3 sin2(x−)
− 1

3
log | sin(x−)| − 1

3
log

⏐⏐⏐⏐cos(x−) + 1

sin(x−)

⏐⏐⏐⏐− cos(x−)

3 sin2(x−)

]
, (6.65)

− a = EC +DC

[
−1

2
log

⏐⏐⏐⏐1 + cos(x−)

sin(x−)

⏐⏐⏐⏐− cos(x−)

2 sin2(x−)

]
, (6.66)

C

H2

[
−2

3

cos(x−)

sin3(x−)
− 1

3

cos(x−)

sin(x−)
+

2

3 sin3(x−)

]
=

DC

sin3(x−)
, (6.67)

+ a = ER − C

H2

[
1

3 sin2(x+)
− 1

3
log | sin(x+)| +

1

3
log

⏐⏐⏐⏐cos(x+) + 1

sin(x+)

⏐⏐⏐⏐+
cos(x+)

3 sin2(x+)

]
, (6.68)

+ a = EC +DC

[
−1

2
log

⏐⏐⏐⏐1 + cos(x+)

sin(x+)

⏐⏐⏐⏐− cos(x+)

2 sin2(x+)

]
, (6.69)

− C

H2

[
−2

3

cos(x+)

sin3(x+)
− 1

3

cos(x+)

sin(x+)
− 2

3 sin3(x+)

]
=

DC

sin3(x+)
. (6.70)

The first step is to solve Eqs. (6.66) and (6.69) for EC , DC respectively:

EC =
a(f(x−) + f(x+))

f(x−) − f(x+)
, (6.71)

DC =
2a

f(x+) − f(x−)
, (6.72)

where:

f(x) = −1

2
log

⏐⏐⏐⏐cos(x) + 1

sin(x)

⏐⏐⏐⏐− cos(x)

2 sin2(x)
. (6.73)

Next, equating DC from Eqs. (6.67) and (6.70), we obtain:

g(x+) = −g(x−), (6.74)

where:

g(x) = −2

3
cos(x) − 1

3
cos(x) sin2(x). (6.75)

It is trivial to show that g(x) is an odd function about x = π
2
, and that g′(x) = sin3(x), which

makes it monotonic. Consequently, the only solution to Eq. (6.74) is when:

x+ + x− = π, (6.76)
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Figure 6.6: Plot of f(x+)(2/3 − g(x+)) against x+. Maximum height is at x+ ≈ 2.01 with
height 0.130.

that is, they are equidistant from π
2
. This corresponds to what we would expect on symmetry

grounds, since the potential is symmetric about the top of the barrier. Furthermore, one can
show that the same is true of f(x):

f(x+) = −f(x−), (6.77)

since cos(π − x) = − cos(x), sin(π − x) = sin(x) and:

log

⏐⏐⏐⏐1 + cos(x)

sin(x)

⏐⏐⏐⏐+ log

⏐⏐⏐⏐1 − cos(x)

sin(x)

⏐⏐⏐⏐ ≡ 0. (6.78)

This immediately yields EC = 0 and DC = a/f(x+), allowing us to define an equation for x+:

f(x+)(−g(x+) + 2/3) =
aH2

C
. (6.79)

Figure 6.6 shows the LHS of Eq. (6.79), revealing the two solutions for x+ exist for H2 <
0.130C/a, and none otherwise. These two values of x+ thus correspond to two different solutions
of the bounce equations of motion, as Eqs. (6.65) and (6.66) then yield EL, ER. It is worth
noting that this piecewise potential does not actually satisfy ∆ > 0, despite having multiple
solutions - in fact ∆ < 0, which would appear to imply it should not have multiple solutions
by our previous argument. However, this is a consequence of the fact that the potential is
completely flat around the top of the barrier (a constant): the perturbative solutions don’t
really apply here any more. One might argue that this potential is somewhat artificial - and it
is - but multiple solutions, as we have shown, can also exist in non-physical potentials, such as
the Standard Model, as we will now see.
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6.5 Multiple CdL Solutions in the Standard Model

Now that we have deduced that multiple CdL solutions are possible, we move to consider the
Standard Model. First, we consider the dimensionless quantity ∆ defined by Eq. (6.39), which
for mt = 173.34 GeV,mh = 125.15 GeV gives ∆ = +3.6992 × 10−4. This is small, but positive
nonetheless, indicating that extra solutions may well be possible. We considered this scenario
in depth in [2], and here we will present the main results of that paper. We also note the
critical Hubble rate in this case, which is:

Hcrit =

√
−V

′′(hbar)

4
− ∆V (hbar)

3M2
P

= 1.1931 × 108 GeV. (6.80)

where hbar = 5.11 × 109 GeV is the location of the barrier in the Standard Model for these
top-quark and Higgs-boson mass parameters.

6.5.1 Scan-plots

As previously, we apply the undershoot/overshoot method, and try to find bounces that lie
between an overshoot and an undershoot. To visualise the structure of overshoots/undershoots,
and aid in searching for solutions, we plot the following function:

φend(φ0) =

⎧⎨⎩
φ(χturn) φ0 undershoot
φfv φ0 overshoot, φ0 ∈ (φbar, φtv)
φtv φ0 overshoot, φ0 ∈ (φfv, φbar)

, (6.81)

where χturn is the first non-zero χ where the solution φ(χ, φ0) with initial conditions φ(0, φ0) =
φ0, φ̇(0, φ0) = 0 satisfies φ(χturn, φ0) = 0. Note that for bounce solutions, χturn = χmax (the
point at which a(χmax) = 0) by definition, so when φ0 is close to a bounce, the function φend

approaches the other end of the bounce solution from the undershoot side. In the Standard
Model, with φ = h, we note also that htv is generically far beyond the Planck scale, thus to
avoid numerical problems, we replace this threshold with appropriate cut-off, htv = MP in most
cases, beyond which we assume there are no bounce solutions and thus all values of φ0 > φtv

are expected to be overshoots2.

Equation (6.81) defines what we call an ‘Overshoot-Undershoot scan-plot’, which shows at a
glance the structure of overshoots and undershoots, coloured for ease of visualisation. The first
thing we notice about fig. 6.7 is that unlike the ∆ < 0 polynomial models, something completely
different happens: the undershoot solutions do not disappear. However, the expected behaviour
near the top of the barrier - always overshoots - does occur. This is verified by a closer zoom
(see fig. 6.9). However, this is not the only feature present: zooming in further in figs. 6.8a
and 6.8b, we see that there are additional overshoot regions, narrow in width, that are not
immediately apparent from fig. 6.7.

2Given the nature of our results, it is always possible that this assumption is false, but if so, it doesn’t affect
the solutions found which do not involve trans-planckian field values. At the very least, we can say that no such
solutions exist in flat space for the range of parameters considered.
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Figure 6.9: Overshoot/Undershoot structure around the top of the barrier for H > Hcrit. This
verifies the linear analysis that argued these solutions should be overshoots sufficiently close to
the barrier. The potential is overlayed on top of this. Originally published in [2].
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6.5.2 Solution Structure

The existence of these additional overshoot/undershoot regions makes the Standard Model
potential even more mysterious, since by counting overshoot/undershoot transitions, we can
argue that there are not one, but four CdL-type solutions. The structure of these solutions is
difficult to see from fig. 6.7, so we sketch them (not to scale) superimposed on the potential in
fig. 6.10. Specific data on these solutions is given in table 6.1, and we plot the four solutions
in fig. 6.11. Some points about these solutions:

1. CdL 1 is much the same as the flat space solution, having similar decay exponent. It is
also the largest amplitude solution.

2. CdL 2 is smallest in amplitude, and closely resembles the perturbative solution we have
considered before.

3. CdL 3 and 4 are the unusual solutions, which appear to be related to the additional
narrow overshoot regions. Notice (see fig. 6.10) that CdL 2 has larger amplitude on the
false vacuum side than either CdL 3 or 4.

The immediate suspicion here is that CdL 2, with its small amplitude, is related to the pertur-
bative solution found earlier. Indeed, comparison of the action obtained at different H in both
cases demonstrates that this is likely true (see figs. 6.12a and 6.12b). Since we know that this
solution disappears at H = Hcrit, then the structure present in fig. 6.10 suggests that solutions
CdL3 and CdL4 will also disappear at H = Hcrit, since their false vacuum side starting points
lie between that of CdL 2 and the barrier, an interval that shrinks to zero as H → Hcrit. It
is conceivable that they instead emerge at some H > Hcrit, but there is no numerical evidence
to support this as all the cases considered have presented the same structure. As it is, both
these solutions have fairly high action compared to the Hawking-Moss solution, so are likely
irrelevant to tunnelling.

6.5.3 Robustness of results

Since we use a piecewise polynomial to describe the standard model effective potential, a
reasonable question is whether the apparent new solutions are some sort of numerical artefact.
There are several reasons to think this is not the case. First, it is possible to construct potentials
of the form:

V (φ) =
1

4

(
a+ b log

(
φ2

M2

)
+ c log

(
φ2

M2

)2
)
φ4, (6.82)

which were used, for example, by [83, 82, 84] to approximate the Standard Model potential by
fitting the coefficients a, b, c to approximate the running of λ(φ) in the Standard Model. This
potential, although a simplified model compared to the full Standard Model effective poten-
tial, does not suffer from the same defects as a piecewise polynomial (namely discontinuities
in the second and higher derivatives). Yet for appropriate parameters, this potential can also
be chosen to satisfy the ∆ > 0 condition and exhibit multiple solutions. Furthermore, we
have shown that the polynomial potential of Eq. (6.7) exhibits this behaviour for sufficiently
negative φ6 coupling. On this basis, it seems reasonable to accept that the numerics are giv-
ing the correct result. Indeed, the code has been tested using arbitrary precision arithmetic
with 100 decimal place precision and extremely restrictive relative and absolute tolerances:
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Figure 6.10: Sketch of four solutions in the Standard Model effective potential (neither
potential nor solutions are to scale), illustrating their convoluted relationship to the over-
shoot/undershoot structure. Each transition on one side of the barrier corresponds to a tran-
sition on the other side.

Bounces with
back-reaction

h(0)/GeV h(χmax)/GeV
Decay
exponent, B

H0χmax/π − 1

CdL solution 1 4.0589763 × 1017 2.5097992 × 106 1808.261 −3.99325 × 10−12

CdL solution 2 5.5306295 × 109 4.7385411 × 109 12388.87 −1.89647 × 10−19

CdL solution 3 4.0588911 × 1017 4.7385591 × 109 14197.13 −3.99303 × 10−12

CdL solution 4 4.0588976 × 1017 5.1096372 × 109 14197.08 −3.99303 × 10−12

Hawking-Moss solution 5.1096727 × 109 5.1096727 × 109 12388.82 −3.77098 × 10−19

Table 6.1: Table of initial and final values of the bounce solutions for V0 = 7.210 ×
10−21M4

P, (H0 = 1.1937 × 108GeV), together with the associated decay exponents. The ending
values of χmax are all nearly the same as in the fixed background approximation, but this does
not mean the effects of gravitational back-reaction are negligible. Note that CdL solution 2
and the Hawking-Moss solution have χmax significantly closer to the flat false vacuum result, as
they probe only the barrier, which is closer to the false vacuum, while the other solutions probe
the depth of the Standard Model potential and thus receive larger back-reaction corrections.
From [2]
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Figure 6.11: Plot of the four CdL bounce solutions in the Standard Model. One solution (CdL
1) has large amplitude on both sides of the barrier, and resembles the V0 = 0 bounce. CdL 2
is small amplitude on both sides, while CdL 3 and 4 resemble CdL 1 at large h, while having
small amplitude around the barrier on the false vacuum side. Originally published in [2].

ϵrel = 10−30, ϵabs = 10−80, where the error in component y of a Runge-Kutta solution is esti-
mated to satisfy |∆y| < |ϵrely+ ϵabs|. The effect persists, giving confidence that these solutions
are real, and not numerical artefacts. Finally, the observation of fig. 6.12 that the action of
CdL 2 lies very close to that predicted by the perturbative analysis, even when the difference
between SHM and the solution’s action is in the seventh significant figure, demonstrates that
CdL 2 is certainly no artefact, giving even more confidence that the solutions like CdL 3 and
4, which are known only numerically, are similarly robust.

As a further check, it is possible to consider what happens in the fixed back-ground approx-
imation, when we ignore back-reaction. In this case, we also obtain the same four solutions
(with slightly different actions). This demonstrates that the result is not due to the problems
incorporating backreaction effects into the calculation (see table 6.2).
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Bounces with
fixed dS background

h(0)/GeV h(χmax)/GeV Decay exponent, B

CdL solution 1 6.5057883 × 1017 2.1207789 × 106 1805.797
CdL solution 2 5.5306295 × 109 4.7385412 × 109 12388.88
CdL solution 3 6.5056176 × 1017 4.7385523 × 109 14194.68
CdL solution 4 6.5056306 × 1017 5.1096372 × 109 14194.62
Hawking-Moss solution 5.1096727 × 109 5.1096506 × 109 12388.82

Table 6.2: Table of initial and final values of the bounce solutions using a fixed de Sitter
background, for V0 = 7.210 × 10−21M4

P, (H0 = 1.1936 × 108GeV), together with the associated
decay exponents. As the metric is fixed at the de Sitter space of the false vacuum, χmax = π

H0

for all solutions. From [2].

6.6 Computing the action

The decay exponent of an O(4) symmetric bounce, including gravitational backreaction, is
given by (inserting the equations of motion to simplify):

B =
24π2M4

P

V0
− 2π2

∫ χmax

0

dχa3(χ)V (φ(χ)). (6.83)

Note that the gradient terms here actually cancel out due to the equivalent contribution of
the gradients to M2

PR/2, leaving only (direct) dependence on the potential. Again, note that
this only applies to solutions that satisfy the equations of motion. The first observation here
is that we will encounter problems in the V0 → 0 limit, since the decay exponent must then
be computed from a cancellation of two large numbers. This problem is best illustrated by the
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analytic Hawking-Moss solution, whose decay exponent is:

BHM = 24π2M4
P

[
1

V0
− 1

V0 + ∆V (φbar)

]
. (6.84)

In the regime ∆V (φ) ≪ V0 ≪M4
P (which is a considerable portion of the interesting parameter

space), Eq. (6.84) is difficult to evaluate numerically, as round-off error will result in an answer
of zero. Taylor-expansion in ∆V (φbar)/V0 predicts:

BHM ≈ 24π2M4
P∆V (φbar)

V 2
0

=
8π2∆V (φbar)

3H4
. (6.85)

However, especially for solutions like CdL 2 that are close to the Hawking-Moss, the same issue
occurs for CdL solutions. However for these, it is problematic to perform such a cancellation
analytically because the solution is only known numerically, and any errors in evaluating the
action integral will be magnified, ruining the precision of the result. This is one reason that
such calculations are often performed in the fixed background approximation, which assumes
that the height of the barrier and gradient terms give no significant contribution to metric,
and that only the background V0 matters. That is, one assumes the scale factor takes on the
approximate solution:

a(χ) =
1

H
sin(Hχ). (6.86)

This approximation is certainly reasonable, as the small differences in tables 6.1 and 6.2 provide
a (post-hoc) justification for. However, it is not immediately obvious that this should apply in
the Standard Model, because of the depth of the potential true minimum. Is it necessarily the
case that we can ignore the contribution from this region? To answer this, we constructed a
new way of splitting up the exponent Eq. (6.83). The basic idea is to attempt to extract the
part of the metric solution, a, that comes from the fixed background V0, splitting it into two
parts:

a(χ) =
1

H
sin(H[χmax − χ]) + δa(χ), (6.87)

where H2 = V0/3M
2
P, and δa carries the deviation from the fixed background metric. The

reason we have shifted the fixed-back background solution from sin(Hχ) to sin(H(χmax − χ))
is for convenience that will become clear later - it amounts to a choice of which pole of the
(distorted) 4-sphere geometry to expand around. We now proceed to split the decay exponent
into three pieces:

B = B1 +B2 +B3, (6.88)

where:

B1 = −2π2

∫ χmax

0

dχa3(χ)∆V (φ), (6.89)

B2 = −6π2M2
P

∫ χmax

0

dχ
[
3 sin2(H(χmax − χ))δa(χ) + 3H sin(H(χmax − χ))δa2(χ) +H2δa3(χ)

]
,

(6.90)

B3 =
24π2M4

P

V0
−
∫ χmax

0

dχ
1

H3
sin3(H(χmax − χ))V0 (6.91)

= −2π2M2
P

H2
(1 + cos(Hχmax))

2(cos(Hχmax) − 2). (6.92)
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Here, B1 essentially carries the action with most of the large V0 dependent terms cancelled off.
B2 and B3 are residue terms of the cancellation, B2 corresponding to the fact that a differs
from the fixed background scale factor, and B3 to the fact that χmax differs from the fixed
background value of π/H. The majority of the cancellation takes place in the analytic B3

term.

6.7 Flat False Vacuum Limit

6.7.1 Smoothness of the H → 0 Limit

An interesting application of the splitting in Eq. (6.88) is that we can deduce an expression
for how χmax(H0) behaves for small H. It is clear that the H → 0 limit of Eq. (6.92) will
be divergent, unless Hχmax → − > π, which allows us to write the following power series
expansion:

χmax(H) =
π

H
+ α0 + α1H +O(H2), (6.93)

where α0, α1, . . . are appropriate constants. Substituting this into Eq. (6.87) and taking the
H → 0 limit, we find:

a0(χ) = χ− α0 + δa0(χ). (6.94)

Here, a0 is the scale factor at H = 0 (note that this is emphatically not the same thing as
the fixed-background scale factor - it is the scale factor in the flat false vacuum limit, V0 = 0,
but includes back-reaction of the bounce). Also, δa0(χ→ ∞) → 0, by definition, since for any
bounce, a(χmax) = 0 and thus δa(χmax) = 0 if defined as in Eq. (6.87) (which is why we chose
to define it that way rather than expanding around sin(Hχ)). Since χmax → ∞ in the H → 0
limit, δa0(χ→ ∞) → 0 and we can thus compute α0 simply by solving for a0(χ) at V0 = 0.
In fact, solving for V0 = 0 is considerably easier than solving for V0 > 0 close to but not exactly
zero. This is because the decay exponent Eq. (6.83) takes a different form:

BH=0 = −2π2

∫ ∞

0

dχa3(χ)∆V (φ). (6.95)

The essential reason for this is that there is a discontinuity in the false vacuum action (obtainable
from Eq. (6.95) by substituting a = sin(Hχ)/H, V (φ) → V0,∞ → π/H):

Sfv =

{
−24π2M4

P

V0
V0 > 0

0 V0 = 0
. (6.96)

Consequently, it is numerically fairly easy to compute the limit:

α0 = limχ→∞(χ− a0(χ)), (6.97)

since we know that the V0 = 0 solution approaches the false vacuum as χ→ ∞, and thus a0(χ)
approaches the flat space form χ + C, where C is some constant (namely, C = −α0). This
allows us to numerically compute α0, which for the values mt = 173.34 GeV,mh = 125.15 GeV
we consider here, gives α0 = −0.2559M−1

P . Even at first order, this proves an excellent approx-
imation to the actual value of χmax for different H (see figure 6.13). Additionally, we would
like to be sure that the action approaches the V0 = 0 action smoothly. For this to be true, we
require that B2 does not diverge. This can be shown by considering the H → 0 limit:

B2(H = 0) = −6π2M2
P lim
H→0

H2

∫ π
H
+α0+...

0

dχ̃
[
3(χ− α0)

2δa0(χ) + 3(χ− α0)δa
2
0(χ) + δa30(χ) +O(H2)

]
.

(6.98)
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Although proportional to H, we must actually be slightly careful here because the integral may
diverge in the H → 0 limit. Thus, it is not immediately obvious that B2 does not diverge. To
assess whether it does or not, we consider the χ → ∞ limit of the V0 = 0 solution, for which
the scalar field ∆φ = φ− φfv asymptotically satisfies:

∆φ̈+
3

χ
∆φ̇−m2∆φ = 0, (6.99)

where m2 = V ′′(φfv) (the situation is somewhat more complicated in the massless limit). The
solution to this equation is known in terms of Bessel functions, specifically, ∆φ(χ) ∝ K1(mχ)/χ,
which takes the asymptotic form:

∆φ =
C

χ3/2
e−mχ. (6.100)

The asymptotic form is sufficient for our purposes, since the only thing that can cause a
divergence (and thus avoid B2 = 0), is the tail end χ → ∞ limit of the integral. The scale
factor deviation satisfies:

δä0 = −(χ− α0 + δa0)

3M2
P

(
φ̇2 + V (φ)

)
. (6.101)

We are concerned here with the large χ limit, and since we know δa0 → 0, in this limit we find
χ≫ δa0 − α0 for which this equation becomes approximately:

δä0 ∼ − χ

3M2
P

[
3m2C2

2χ3
e−2mχ +O

(
1

χ4
e−2mχ

)]
. (6.102)
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Integrating this, we obtain:

δa0(χ) = −m
2C2

2M2
P

[
−e−2mχ − (1 + 2mχ)Ei(−2mχ)

]
+D + Eχ, (6.103)

where Ei is the exponential integral function:

Ei(x) = −
∫ ∞

−x

e−t

t
dt. (6.104)

This can be related to the En function for x > 0 by Ei(−x) = −E1(x) where [169]:

En(x) =

∫ ∞

1

dt
e−xt

tn
dt. (6.105)

The En function has a known asymptotic expansion for large x, namely [169]:

En(z) ∼ e−z

z

[
1 − n

z
+
n(n+ 1)

z2
− n(n+ 1)(n+ 2)

z3
+O

(
1

z4

)]
. (6.106)

Hence, to match δa0(χ→ ∞) → 0 we need D = E = 0, and δa0(χ) is asymptotically:

δa0(χ) ∼ m2C2

2M2
P

[
1

4m2χ2
e−2mχ +O

(
1

8m3χ3
e−2mχ

)]
. (6.107)

With these asymptotics, it is clear that the integral in Eq. (6.98) remains finite, and thus B2

vanishes in the H → 0 limit. Since B1 (Eq. (6.89)) trivially approaches the V0 = 0 decay ex-
ponent as H → 0, this proves that the action limit is smooth, provided there exists a sequence
of bounce solutions for all H that satisfies Eq. (6.93) (solutions can potentially exist that fail
to satisfy this - they will have divergent action in the H → 0 limit however). We have already
shown that a solution always exists for H < Hcrit, so the only question is whether it approaches
the false vacuum in the H → 0 limit (if it doesn’t, then this argument doesn’t apply).

The massless case is similar, but in this case the asymptotic form of ∆φ ∼ 1/χ2. Hence, at
large χ, δä0 ∼ 1/χ5 and so δa0 ∼ 1/χ3. This means that the integral appearing in Eq. (6.98)
is logarithmically divergent, but due to the prefactor of H2, and the upper limit ∼ π/H, it is
clear that B2 in fact vanishes as H2 logH in the H → 0 limit. Hence, the action smoothly
approaches the V0 = 0 case here too.

6.7.2 Existence of Solutions Approaching the V0 = 0 Solution

The only remaining loose end is whether or not a family of solutions actually exists that ap-
proach the H = 0 solution satisfying φ(χ → ∞) → φfv in the H → 0 limit, together with
the related question of whether that solution itself exists at H = 0. This is crucial: notice
that the arguments given above for the vanishing of B2 and B3 depend on the assumption
that δaH(χ) smoothly approaches the H = 0 case, δa0(χ). If this isn’t the case, then B2 will
not smoothly approach zero. Likewise, if Hχmax(χ) − π doesn’t smoothly approach 0, then
B3 diverges. Thus, to ensure continuity we need to ensure that there exists some sequence of
solutions, (φH(χ), δaH(χ)) whose limit is (φ0(χ), δa0(χ)), the H = 0 solution. There is already
numerical evidence that this is the case in the Standard Model (see fig. 6.13). Is it true in
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general?

In section 3.4.4 we argued that for H > 0, solutions starting sufficiently close to the false
vacuum are always overshoots. This was done using approximately linear solutions, which is
valid when φ is close to φfv. Outside this region, the linear solutions do not apply, and this is
precisely regime where the overshoot divergence will take the solution. This isn’t a problem in
the H > 0 case, because we can argue on energy grounds that the solution will diverge even in
the non-linear regime. Consider re-writing the equation of motion for the scalar field as:

d

dχ

(
φ̇2

2
− V (φ)

)
= −3ȧ

a
φ̇2, (6.108)

where E = φ̇2/2 − V (φ) is the “energy”. We note that Coleman originally phrased the over-
shoot/undershoot argument in terms of this mechanical analogue [98, 99]. In flat space, we
always have ȧ > 0, so energy can only decrease. This means that solutions that start close
to the true vacuum always overshoot because they stay there sufficiently long that the friction
term drops to zero, and then have too much energy to undershoot. Likewise, solutions close to
the false vacuum always undershoot because they also stay close to the false vacuum sufficiently
long that the friction drops to zero, and then lack the energy to climb back up to the true vac-
uum. This is a different result to H > 0, where solutions starting close to φfv always overshoot.
The reason for the difference is that for H > 0, friction eventually goes negative in the ȧ < 0
region, adding energy to the system. This is why solutions starting close to φfv overshoot: if we
attempt to delay their departure from the vicinity of φfv by making ∆φ0 = φ0 −φfv sufficiently
small, then they will eventually hit a singularity at some finite χ ≈ π/H, and diverge with
infinite energy as overshoots.

The question then, is whether the H = 0 case (which, it should be remembered, is not the
same as flat space as we are including back-reaction) behaves in the same way as the flat space
case, or whether gravitational effects will render it like the H > 0 case. The linear equation for
fluctuations near the false vacuum is:

∆φ̈+
3

χ
∆φ̇− V ′′(φfv)∆φ = 0, (6.109)

which has solution:

∆φ(χ) =
2∆φ0√
V ′′(φfv)

I1(
√
V ′′(φfv)χ)

χ
, (6.110)

where I1 is the Modified Bessel function of the first kind. This solution is divergent, but not
at finite χ which means we have to take into account the behaviour of the solution in the
non-linear regime. The first thing we should note about the non-linear solution is that it
will necessarily undershoot if it reaches the point φinst on the other side of the barrier, where
V (φinst) = V (φfv) = 0, without sufficient energy to reach the true vacuum. This is analogous
to the reason that a solution in flat space starting on the range (φfv, φbar) always undershoots:
in that case, the friction is always positive, and so since it lacks the energy to reach φtv with-
out friction, it will certainly lack the energy including it. The only thing that can potentially
change this when including gravity is if the friction term, ȧ/a becomes negative. If we can
show that this never happens for solutions starting sufficiently close to φfv, then we will have
established that solutions starting sufficiently close to φfv are undershoots for V (φfv) = 0, even
taking gravity into account.
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At large χ, the solution is asymptotically:

∆φ(χ) ∼ 2∆φ0e
√
V ′′(φfv)χ

√
2π (V ′′(φfv)χ)3/2

. (6.111)

By choosing ∆φ0 sufficiently (exponentially in this case) small, we can always ensure that
this asymptotic form is accurate up to some χnl where non-linearity approximately starts by
ensuring ∆φ remains small (how small depends on the shape of the potential). Staying in the
linear regime thus requires ∆φ0 to be exponentially small compared to χnl. At large χ, however,
since we stay close to φfv and V (φfv) = 0, a(χ) ∼ χ+C where C is some constant, so ȧ/a falls
to zero for this solution, and the friction is essentially negligible. Thus the non-linear solution
will (approximately) conserve energy provided ȧ/a remains small. This will remain true up
until ȧ crosses zero, when the form of the friction term will begin to change drastically. ȧ is
controlled by:

ȧ2 = 1 +
a2E

3M2
P

, (6.112)

and so we require a2E/(3M2
P) ≪ 1 to ensure that the friction remains small. The energy in the

linear regime (before the field starts to roll down the barrier significantly) is asymptotically:

E ∼ ∆φ2
0e

2
√
V ′′(φfv)χ

4π
√
V ′′(φfv)χ4

[
− 12√

V ′′(φfv)
+O

(
1√

V ′′(φfv)χ

)]
. (6.113)

Thus for example choosing ∆φ0 suppressed by a factor e−k
√
V ′′(φfv)χnl where k ≥ 1 ensures that

the energy is exponentially suppressed, and we would need a to grow to a > a(χnl)e
(k−1)

√
V ′′(φfv)χnl/2

to overcome this and produce a significant deviation from ȧ ≈ 1. Since a ∼ χ, this means we
can push the point where ȧ → 0 to arbitrarily large χ simply by choosing ∆φ0 sufficiently
small, and consequently, we can keep ȧ ≈ 1 and ȧ/a≪ 1 for arbitrarily large χ this way. This
is crucial, because it means that such solutions will behave like their flat space analogues, and
undershoot, bouncing backwards when they reach φ ≈ φinst.

Notice that this argument depends crucially on V (φfv) = 0 being exactly true. If V (φfv) > 0,
even with a very small value, then it is not possible to delay the potential rolling down the
barrier for arbitrarily long just by choosing ∆φ0 small enough. This is because however small
∆φ0, when V (φfv) > 0, there is an upper limit at which the linearised solution encounters a
singularity in a and diverges with infinite energy as an overshoot (see Eq. (3.38)).

Why does this matter? The conclusion is that for V (φfv) > 0, solutions sufficiently close
to φfv are always overshoots. Yet we have just argued that for V (φfv) = 0, such solutions are
undershoots. Since we know that a bounce exists between every overshoot and undershoot, we
can conclude only one thing: there exists some family of bounce solutions with different H
that approach a solution satisfying φ(χ→ ∞) → φfv in the H → 0 limit. This is the final link
in the chain: having proven that such a solution exists, we have established previously that it
must smoothly approach the V0 = 0 action, proving that the decay rate is continuous across
the H = 0 transition.

6.8 Decay Rate as a Function of H

The existence of multiple CdL solutions in the Standard Model complicates the question of
what the actual decay rate is. We can track the decay rate of the four CdL solutions and the
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Hawking-Moss - this is plotted in fig. 6.14. It appears then, that the extra solutions always
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Figure 6.14: Decay exponents of the four CdL solutions found in the Standard Model. Below
the critical threshold, only the large amplitude CdL 1 and the Hawking-Moss exist. Above
Hcrit, extra solutions appear. CdL 2 splits off from the Hawking-Moss, closely following the
perturbative prediction of Eq. (6.38) (see fig. 6.12b). CdL 3 and 4 have a higher action.

have higher action than the Hawking-moss solution, although whether this is always the case is
unclear. The perturbative result of Eq. (6.38) proves that this is true for CdL 2, but it remains
conjecture for CdL 3 and 4, or any other solutions that may exist.

Assuming that CdL 1 is always the dominant CdL solution, it is possible to deduce the
decay rate as a function of H, which we plot in fig. 6.15. A notable feature of this plot is that
the transition between Hawking-Moss and CdL is sharp, unlike the smooth transition observed
in fig. 6.3. This means that a reasonable approximation of the decay rate in the Standard
Model from instantons is given by:

BSM(H) =

{
B0 H < Hcross

8π2∆V (hbar)
3H4 H > Hcross

, (6.114)

where B0 is the flat false vacuum (H = 0) decay exponent, and;

Hcross ≈

√∆V (hbar)

6M2
P

(
−1 +

√
1 +

96π2M4
P

∆V (hbar)B0

)
. (6.115)
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This expression for Hcross is obtained by equating SHM with B0 and solving for H. Note that
it applies without using the fixed background approximation: if ∆V (hbar) ≪ V0, then we can
further approximate Hcross as:

Hcross ≈
(

24π2∆V (hbar)

9B0

)1/4

. (6.116)

The reason that this works well is that the Standard Model potential has a wide range
of scales present: For Mt = 173.34 GeV,Mh = 125.15 GeV, αS = 0.1184, the scale µmin =
2.79 × 1017 GeV at which λ(µ) takes its minimum value controls the nucleation of vacuum
bubbles, which is orders of magnitude different to barrier scale of 7.70 × 109 GeV. This means
that for small (H ≪ µmin) Hubble rates, B(H) varies only slowly with H and is nearly constant.
The Hawking-Moss solution then comes to dominate at a scale determined by the height of the
barrier, Hcross. It should be noted, however, that this discussion is modified if the effective
potential in de Sitter space is properly properly computed as in chapter 4, to account for the
running of the couplings at non-zero H.
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Figure 6.15: Right: Smallest decay exponent, Bmin, in the Standard Model, with Mt =
173.34 GeV,Mh = 125.15 GeV, αS = 0.1184, assuming that CdL 1 (the largest amplitude
bounce) is always the smallest action CdL solution. At H < Hcross (rather than Hcrit), the
CdL solution dominates with nearly the same action as the H = 0 case. Above this, the
Hawking-Moss solution dominates, and rapidly becomes so small in action that the semi-
classical approximation no longer applies. Left: zoom in on cross-over region, showing slow
variation of BCdL1(H) compared to B0, the H = 0 value. Dashed red line is extrapolated from
numerical data indicated by crosses.
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Chapter 7

Conclusions
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7.1 Backreaction and Non-minimal Coupling in Stan-

dard Model Bubble Nucleation

As we have seen, the depth of the Standard Model effective potential is such that back-reaction
of the bounce is not negligible. The shape of the bounce solution changes significantly, and the
curvature in the centre of the bounce is non negligible. From the point of view of the future
state of the universe this is especially important - the large negative Ricci curvature leads to
a collapsing AdS region with a big-crunch like singularity, an effect not seen with a fixed, flat
background.

With regards the actual effect of the decay rates, however, backreaction has a small effect
on the life-time of the vacuum. In part this is due to the fact that the interior of the bounce,
where the Higgs field, φ, is deep in the potential, is where the strongest effects are concentrated.
However, this is not where the action of the solution is determined, by and large. Even with
back-reaction, the bounce solution is well approximated by it’s constant λ form:

h(χ) =

√
2

|λ(µ)|
2R(µ)

R(µ)2 + χ2
, (7.1)

S ≈ 8π2

3|λ(µ)|
, (7.2)

where µ is the characteristic scale of the bounce. The main effect of back-reaction is to shift this
scale, while producing a Planck-suppressed correction to the action. This means that despite
a significant change in the shape of the solution, corresponding to a change in µ, the actual
action varies only weakly with µ, since λ varies only logarithmically with µ. Thus, while there
is a small suppression of the decay rate relative to the fixed background approximation, this is
not sufficient to change the stability of the vacuum considerably.

However, direct gravitational suppression of vacuum decay is not the only result of back-
reaction. As we have seen from the discussion in chapter 5, the large negative Ricci curvature
in the centre of the bounce solution is can couple to the Higgs field in a significant way, and this
does substantially shift the boundary between stability and metastability. Including this in our
numerical calculations, we produced a complete analysis of the top quark/Higgs boson phase
plane, including the effect of different values of ξ, summarised in fig. 5.6. This shows that both
positive and negative ξ can have significant effects on the boundary between metastability and
instability.

However, this is not all. We also showed that the effect of ξ is sensitive to the near conformal
symmetry in the Standard Model effective potential at large h. This is largely due to the way
the Ricci scalar depends on the Higgs field in the Jordan frame:

R =
(1 − 6ξ)ḣ2 + 4V (h) − 6ξφV ′(h)

M2
P

(
1 − ξ(1−6ξ)h2

M2
P

) . (7.3)

The case ξ = 1/6 is a special value in 4D, since it corresponds to exact conformal symmetry with
a conformally symmetry potential like λφ4 with constant λ. For such a potential, it is clear that
the conformal symmetry ensures the vanishing of R everywhere. Since conformally symmetry
is only lightly broken by quantum corrections at large φ, this means that ξ = 1/6 should be
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roughly equivalent to having an exactly fixed flat background, with no back-reaction at all.
This also means that ξ = 1/6 is the point at which the decay exponent, B(ξ), is minimised if
the back-reaction exactly cancels:

dB

dξ
= π2

∫ ∞

0

dχa3ξ(χ)φ2
ξ(χ)Rξ(χ) = 0. (7.4)

However, the running of λ(µ) breaks this conformal symmetry, and spontaneously generates a
new scale, µmin, at which λ is minimised. This breaking also means that ξ = 1/6 is not the
minimum of B(ξ), which shifts slightly, as is clearly seen in fig. 5.3. However, it maintains the
approximate conformal symmetry. These numerical results also show that the large ξ behaviour
is far from quadratic at large ξ.

7.2 New CdL Solutions in the Standard Model

Perhaps the most important of the results we now summarise is the surprising observation that
the Standard Model potential does not have typical behaviour in de Sitter space. As he have
discussed, there is a critical threshold for the Hubble rate:

Hcrit =

√
−V

′′(φbar)

4
− [V (φbar) − V (φfv)]

3M2
P

, (7.5)

below which CdL solutions exist in all potentials. In many potentials, CdL solutions do not
exist for H > Hcrit and there is a smooth transition at H = Hcrit to dominance by Hawking-
Moss type solutions. However in others, such as the Standard Model and gφ6 potentials with
sufficiently negative g, this doesn’t happen: instead a new solution emerges at Hcrit. The reason
for this peculiar behaviour can be understood by using a perturbative analysis of solutions in
the vicinity of H ∼ Hcrit. This analysis shows that there is a critical quantity, ∆:

∆ = − 1

14

(
V (4)(φbar) −

(V (3)(φbar))
2

3V (2)(φbar)
− 8V (2)(φbar)

3M2
P

)
, (7.6)

which allows us to classify potentials:

1. ∆ < 0 : the ‘typical’ potentials. The perturbative solution only exists for H < Hcrit, and
describes the smooth merging of the CdL solution with the Hawking-Moss at Hcrit. It has
lower action than the Hawking-Moss, showing that we can easily split the Hubble rates
into a CdL-dominated region for H < Hcrit and a Hawking-Moss dominated region for
H > Hcrit.

2. ∆ > 0 : In this case, perturbative solutions only exist for H > Hcrit, thus they cannot
describe the smooth merging of the CdL solution that exists for H < Hcrit with the
Hawking-Moss. This also implies the presence of multiple CdL solutions.

As we have seen, the Standard Model is in the latter category, and this has potential conse-
quences. The most serious consequence is the disturbing questions it raises about the uniqueness
of CdL bounces. As we have proven, CdL bounces are not unique, and multiple, non-oscillating
solutions exist. At least one of these can be understood perturbatively, and appears to have
higher action than the Hawking-Moss solution. If this were the only solution, then this would
be a theoretically interesting, yet physically irrelevant fact: only the lowest action solution
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contributes significantly due to the exponential dependence on the action.

However, as our analysis of the Standard Model in chapter 6 has shown, this is not the case.
At least four solutions exist in the Standard Model potential for H > Hcrit, and there is no
way of ruling out additional solutions. Although all the solutions found to date are of higher
action, there is no particular reason to think that this should be the case in general. Thus, it
is possible to imagine, given the extremely difficult-to-spot signatures that these solutions have
(see figures 6.8a and 6.8b for example), that additional solutions could lie undetected for other
Hubble rates, and that these solutions could dominate vacuum decay.

If these solutions were low action, then they could lead to extremely rapid decay, which
erodes confidence that we might have in calculations of the vacuum decay rate during infla-
tion. Even the predictions of the stochastic approach and the Fokker-Planck equations might
be suspect, since this depends on the coarse-graining of sub-horizon effects, which is precisely
the regime CdL solutions describe. Although we deem this situation unlikely, it cannot be
altogether ruled out.

7.3 Possible Future Directions

There remain a great many questions to be answered about the issues raised in this work. Most
of these concern the extra CdL solutions found in the Standard Model. For example:

1. How many CdL solutions exist for a given Hubble rate?

2. Is the action of the extra solutions always higher than the Hawking-Moss solution?

3. What happens to the extra solutions as H is further increased?

Numerically, all the solutions found to date appear to support the assumption that the higher
action solutions are generally of higher action, however, we wish to stress that there is no proof
of this, and indeed no particular reason why it should be the case. Arguing from intuition, we
might argue that raising H is much akin to raising the temperature, and thus we would expect
that thermal fluctuation over the barrier (as described by the Hawking-Moss solution) should
eventually come to dominate at sufficiently large H, where excitation up the barrier becomes
more and more important. Certainly at H ≫ ∆V (φbar)

1/4 we would expect thermal fluctua-
tions to be extremely rapid. Since SHM eventually becomes O(1), signalling the break-down of
the dilute gas approximation used in deriving the decay rate [99], unless the same happens to
the CdL solutions, they will eventually become irrelevant. This seems an unlikely behaviour,
so it is not unreasonable to believe that Hawking-Moss solutions dominate for sufficiently high
H.

Furthermore, some hints of what may happen in the Standard Model are found by looking
to toy models. In chapter 6 we considered a gφ6 model with g sufficiently negative that it
satisfied ∆ > 0. In this model, we found that the perturbative solution appeared as expected,
but numerics then suggested that it rapidly merged with the CdL solution that existed for
H < Hcrit (see fig. 6.4). If the same is repeated in the Standard Model, then it may well be
the case that the extra solutions all merge as H is increased in the Standard Model too. More
evidence would be required to conclude this, however.
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Another direction of future investigation that may bear fruit is the effect of non-minimal
coupling during de Sitter space. The methods we used to extract the back-reaction in chapter
6 would not work for the Jordan frame with non-zero ξ, however, the calculation may well
be possible in the Einstein frame, if a way can be found to consistently compute the Einstein
frame effective potential that takes into account the running of ξ. This would be necessary
to go beyond the simplified analysis of chapter 4 of the effect of ξ on vacuum stability during
inflation, which assumed only Hawking-Moss solutions were relevant. Furthermore, the effect
of varying ξ upon the extra solutions found in chapter 6 has yet to be investigated, and we
expect that the effects could well be significant. Since we have already established that the the
effect of back-reaction alone does not produce particularly large shifts in the action compared
to the fixed background approximation, even in de Sitter, significant information could even be
gleaned from the fixed background approximation alone, even with non-zero ξ.

7.4 Final Words

Gravity is not an entirely irrelevant factor in vacuum decay. As we have seen, the Standard
Model true minimum can be very deep, and this depth affects the shape of bounce solutions.
Taken together with the inevitable non-minimal coupling that is produced in the Standard
Model, this can result in a significant effect on the vacuum decay rate, which is sensitive to
Planck scale effects because of the scale µmin ∼ 1017 GeV which controls the size of nucleated
bubbles.

Perhaps the most interesting effect of gravity, however, is how curvature affects the decay
rate itself, acting to excite the field partially up the barrier and providing thermal assistance to
tunnelling. In part this is due to the vacuum state during de Sitter being different - a thermal
Bunch-Davies state. However, curvature has other effects, such as altering the effective poten-
tial itself and changing how the running of the couplings affects it.

Most surprising, however, is that de Sitter backgrounds lead to the possibility of extra
Coleman de Luccia solutions which can contribute to vacuum decay. This effect was unexpected,
but seems to be related to the critical threshold, Hcrit which is controlled by the shape (not
the height) of the barrier. Although we ultimately believe that the effect will not change any
results significantly, it does raise the prospect that any calculation of vacuum decay rates could
be incorrect if a lower action solution exists, and more work is needed to understand vacuum
decay in the vicinity of the critical threshold.
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A.1 The False Vacuum State

Implicitly throughout this thesis, we have considered an object, the false vacuum state |φfv⟩,
without defining it. Here we will discuss what this state is, because it will be crucial to under-
standing why the vacuum decays. We will discuss this in ordinary quantum mechanics, rather
than quantum field theory, to avoid unnecessary complication brought about by the infinite
number of degrees of freedom. Certainly it is not an eigenstate of the Hamiltonian: if it were,
then it would be time independent and hence could not decay. Consequently, assigning it a
meaningful energy is at first glance nonsense. However, it is meaningful to ask what happens to
a wave-function initially confined to be around the false vacuum. Such a wave-function cannot
be stationary, but that is what we want to describe - a decaying state. However, if the barrier
is wide and tall, we might reasonably expect there to be a set of ‘nearly bound’ states that
closely resemble bound-states, and decay only slowly.

To make this discussion more precise, consider ordinary quantum mechanics with the po-
tential:

V (x) =
1

2
mω2x2 +

m2ω3λ′

4!~
x4. (A.1)

The quantum theory of such a potential can be described by the path integral expression for
the generating functional:

Z[x] =

∫
Dx exp

(
−
∫

dt

[
1

2
ẋ2 − V (x)

])
. (A.2)

When the dimensionless interaction parameter λ′ = 0, we don’t have a problem defining the
ground state of the theory. It is just the usual simple harmonic oscillator:

ψ0(x) =
(mω
π~

) 1
4

exp

(
−mωx

2

2~

)
. (A.3)

Even with a small quartic term, λ′ ≪ 0, it is still possible to solve for the ground state
perturbatively:

ψ̃0(x) =
(mω
π~

) 1
4

[
1 − λ′

1536
H4

(√
mω

~
x

)
− λ′

24
H2

(√
mω

~
x

)]
exp

(
−mωx

2

2~

)
, (A.4)

where Hn(u) is a Hermite polynomial. This equation is valid only for:

x≪

√
12~

mω|λ′|
, (A.5)

since for x greater than this, the perturbation part of the potential is the same size or larger
than the harmonic part. There is nothing peculiar about the λ′ → 0+ limit. In fact, one might
almost expect that the equation should remain valid for λ′ < 0. There are two problems with
this: (1) for λ′ < 0 the potential in Eq. (A.1) is unbounded below, making the path integral in
Eq. (A.2) undefined, and (2) the region in which we would like to fix the boundary conditions,
x → ∞, is beyond the range where perturbation theory applies. In fact, perturbation theory
cannot tell us about tunnelling: more powerful non-perturbative techniques are needed.
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The technique in question is the WKB approximation. This is a method of finding approx-
imate (asymptotic) solutions to ordinary differential equations of the form:

ε2
d2y

dx2
= Q(x)y. (A.6)

An approximate solution is of the form [168]:

y(x) = exp

[
1

ε

] ∞∑
n=0

εnSn(x), (A.7)

We apply this to the Schroedinger equation for energy E, ψ(x, t) = y(x)e−
i
~Et where y(x)

satisfies the Time-independent Schroedinger equation:

− ~2

2m

d2y

dx2
= (E − V (x))y. (A.8)

Including only the first two terms of Eq. (A.7), this gives:

y(x) =
1[

1
~

√
2m(V (x) − E)

] 1
4

[
C+ exp

(
1

~

∫ x

x0

√
2m(V (x) − E)dt

)

+C− exp−
(

1

~

∫ x

x0

√
2m(V (x) − E)dt

)]
, (A.9)

which reproduces the familiar result that in regions where E > V , the solutions are oscillat-
ing plane waves, and in regions where E < V , the solutions are decaying exponentials. Note
that Eq. (A.9) is not valid near the turning points of the potential at energy E. This can be
dealt with using a different type of expansion in that region and patching together the solu-
tions [168], but since we are mainly interested in the boundary conditions, this form will suffice.

If λ′ > 0, then the result at large x is essentially what we expect - the solution decays
exponentially. This is true even non-perturbatively, as Eq. (A.9) confirms (it is necessary to
choose the decaying solution and apply the method of asymptotic matching to fix C− - see
[168]).

For λ′ < 0, however, the opposite is true: both solutions become oscillating, and it is im-
possible to satisfy the y(x) → 0 boundary condition. This is unsurprising: it is a reflection of
the same problem recognised previously, that the path integral of Eq. (A.2) is ill-defined due to
the potential being unbounded below. In any physical potential, however, we can always add
higher order terms like αx6 to the potential. So long as α is sufficiently small, these should not
change the observable behaviour of states around the minimum at x = 0, however.

Physically, we can interpret the oscillating behaviour of the WKB solution at large x as
plane waves exiting the false vacuum state after tunnelling through the barrier. Instead of the
typical ψ(x, t) → 0 boundary condition that is imposed in the λ′ > 0 case, we can instead
impose a plane-wave boundary condition at infinity. These are the so called Gamow boundary
conditions [170, 171], and give rise to a complex energy, and hence tunnelling, since for large t:

|ψ0(x, t)|2 = |ψ0(x, 0)|2e−2Im(E0)t, (A.10)
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where E0 is the (complex) energy of the false vacuum state (ie, that with the smallest real part).
However, this argument does not really illuminate what the false vacuum state ψ0 actually is,
if it is not an eigenstate of the Hamiltonian. Its status is in fact much like an excited state of
an atom: it is an eigenstate of an unperturbed Hamiltonian, Ĥ0, but when extra terms (such
as the coupling between electrons and the electromagnetic field), are added, it is no longer an
eigenstate. However, because the extra terms, Ĥpert are perturbatively small, much like the
λ′x4 term, the state is long lived and decays.

This can be made more precise in our potential by considering a WKB approximation for
the wave function at energy E. Consider figure A.1. WKB approximations can be made in
each of the three regions of the potential. The exception is near to the turning points, where
the WKB approximation of Eq. (A.9) breaks down, since E = V (a) = V (b). However, the
transitions between these regions can be handled by using Airy functions as the solution to the
Schroedinger equation in the vicinity of the turning points [168]:

yAirya(x) ≈αaAi

((
2mV ′(a)

~2

) 1
3

(x− a)

)
+ βaBi

((
2mV ′(a)

~2

) 1
3

(x− a)

)
.

yAiryb(x) ≈αbAi

((
2m|V ′(b)|

~2

) 1
3

(b− x)

)
+ βbBi

((
2m|V ′(x0)|

~2

) 1
3

(b− x)

)
. (A.11)

Following the example of calculating the decay rate of an alpha particle [171], the WKB ap-
proximations for the three regions are:

yI(x) ≈ 1[
2m
~2 (E − V (x))

] 1
4

[
CI+ exp

(
+i

∫ x

0

dx′
√

2m

~2
(E − V (x))

)

+CI− exp

(
−i
∫ x

0

dx′
√

2m

~2
(E − V (x))

)]
, (A.12)

yII(x) ≈ 1[
2m
~2 (V (x) − E)

] 1
4

[
A exp

(
+

∫ x

a

dx′
√

2m

~2
(V (x) − E)

)

+B exp

(
−
∫ x

a

dx′
√

2m

~2
(V (x) − E)

)]
, (A.13)

yIII(x) ≈ 1[
2m
~2 (E − V (x))

] 1
4

[
CIII+ exp

(
+i

∫ x

b

dx′
√

2m

~2
(E − V (x))

)

+CIII− exp

(
−i
∫ x

b

dx′
√

2m

~2
(E − V (x))

)]
. (A.14)

To keep things simple, we will assume that y(0) = 0, which requires CI+ = −CI− (that is, the
potential is one sided). If we ultimately assume that the potential is not unbounded below due
to the addition of higher order terms that don’t affect this region of the potential, then the
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Figure A.1: Quartic potential of Eq. (A.1) with m = ω = ~ = 1 and λ′ = −0.1. This can
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wave function will be purely real and we can consider ‘scattering states’ of energy E:

yI(x) ≈ N[
2m
~2 (E − V (x))

] 1
4

sin

(∫ x

0

dx′
√

2m

~2
(E − V (x))

)
(A.15)

yII(x) ≈ N[
2m
~2 (V (x) − E)

] 1
4

(
A exp

(
+

∫ x

0

dx′
√

2m

~2
(V (x) − E)

)

+B exp

(
−
∫ x

0

dx′
√

2m

~2
(V (x) − E)

))
, (A.16)

yIII(x) ≈ NC[
2m
~2 (E − V (x))

] 1
4

cos

(∫ x

b

dx′
√

2m

~2
(E − V (x)) + φ+

π

4

)
, (A.17)

where N is a normalisation constant. Relationships between the constants are bound by using
the Airy-function approximation of Eq. (A.11). At the boundary between regions II and III,
yI(x→ a) asymptotically matches Eq. (A.11) in the x− a→ −∞ limit:

yAirya(x→ −∞) ∼ 1
√
π(a− x)

1
4

(
2mV ′(a)

~2

)− 1
12

[
αa sin

(
2

3

√
2mV ′(a)

~2
(a− x)3/2 +

π

4

)

+βa cos

(
2

3

√
2mV ′(a)

~2
(a− x)3/2 +

π

4

)]
(A.18)

While yII matches the x→ +∞ limit:

yAirya(x→ +∞) ∼ 1
√
π(x− a)

1
4

(
2mV ′(a)

~2

)− 1
12

[
αa
2

exp

(
−2

3

√
2mV ′(a)

~2
(x− a)3/2

)

+βa exp

(
+

2

3

√
2mV ′(a)

~2
(x− a)3/2

)]
, (A.19)

and the results are analogous for x = b, taking into account that V ′(b) has the opposite sign:

yAiryb(x→ −∞) ∼ 1
√
π(b− x)

1
4

(
2m|V ′(b)|

~2

)− 1
12
[
αb
2

exp

[
−2

3

(
2m|V ′(b)|

~2

)
(b− x)

3
2

]
+βb exp

[
2

3

(
2m|V ′(b)|

~2

)
(b− x)

3
2

]]
(A.20)

yAiryb(x→ +∞) ∼ 1
√
π(b− x)

1
4

(
2m|V ′(b)|

~2

)− 1
12
[
αb sin

(
2

3

(
2m|V ′(b)|

~2

)
(b− x)

3
2 +

π

4

)
+βb cos

(
2

3

(
2m|V ′(b)|

~2

)
(b− x)

3
2 +

π

4

)]
(A.21)
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Near the relevant turning points, the WKB solutions take the form:

yI(x→ a) ≈ N

(a− x)
1
4

(
2mV ′(a)

~2

)− 1
4

[
sin
(
K +

π

4

)
cos

(
2

3

(
2mV ′(a)

~2

) 1
2

(a− x)
3
2 +

π

4

)

− cos
(
K +

π

4

)
sin

(
2

3

(
2mV ′(a)

~2

) 1
2

(a− x)
3
2 +

π

4

)]
(A.22)

yII(x→ a) ≈ N

(x− a)
1
4

(
2mV ′(a)

~2

)− 1
4

[
A exp

(
+

2

3

(
2mV ′(a)

~2

) 1
2

(x− a)
3
2

)

+B exp

(
−2

3

(
2mV ′(a)

~2

) 1
2

(x− a)
3
2

)]
(A.23)

yII(x→ b) ≈ N

(b− x)
1
4

(
2m|V ′(b)|

~2

)− 1
4

[
A exp

(
σ − 2

3

(
2m|V ′(b)|

~2

) 1
2

(b− x)
3
2

)

+B exp

(
−σ +

2

3

(
2m|V ′(a)|

~2

) 1
2

(b− x)
3
2

)]
, (A.24)

yIII(x→ b) ≈ NC

2(x− b)
1
4

(
2m|V ′(b)|

~2

)− 1
4
[
exp

(
i
(
φ− π

4

))
exp

(
i
2

3

(
2m|V ′(b)|

~2

)
(x− b)

3
2

)
+ exp

(
−i
(
φ− π

4

))
exp

(
−i2

3

(
2m|V ′(b)|

~2

)
(x− b)

3
2

)]
(A.25)

where:

K =

∫ a

0

dx

√
2m

~2
(E − V (x)) (A.26)

σ =

∫ b

a

dx

√
2m

~2
(V (x) − E) (A.27)

Matching the coefficients in these asymptotic expressions, we find:

A = = sin
(
K − π

4

)
(A.28)

B = − 1

2
cos
(
Ka− π

4

)
(A.29)

C =
√

4A2e2σ +B2e−2σ (A.30)

tanφ = − Be−2σ

A
. (A.31)

Equation (A.30) is crucial here. If σ is large, which is generally true for high, thick barriers,
then it tells us that the wave function has exponentially suppressed support on the false vacuum
side, x ∈ (0, a), except for certain resonant energies, En, for which A = 0, in which case the
true vacuum side has exponentially suppressed support. Another way of putting this is that
the coefficient A describes solutions which grow exponentially in the barrier, which is not want
we want for solutions starting in the false vacuum. WE now have a precise definition of what
the low lying states in the false vacuum are - they are resonant states that have substantial
support in the false vacuum, and are peaked around E = E0 such that A ≈ 0. In fact, it is
easy to see that as σ → ∞, these resonant states will become the bound states of the stabilised
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vacuum. As an example, assume that the potential takes the form 1
2
mω2x2 in the vicinity of

the false vacuum. K is then easily computed to be:

K =
πE

2~ω
. (A.32)

The energies satisfying A = 0 can be found by solving Eq. (A.28) and are:

En = ~ω
(

[2n+ 1] +
1

2

)
. (A.33)

These are simply the Harmonic oscillator bound state energies, as we would expect. Note
that only the odd states exist because we imposed the boundary condition ψ(0, t) = 0, which
excludes the symmetric harmonic oscillator bound states. The only remaining question then, is
why these states lead to exponential decay of the false vacuum. Again, following the example
of [171] for alpha decay, we note that the normalisation constant N is essentially dominated by
the true vacuum states, N ≈ 1

C
. States near to a resonance have:

C ≈

√
4

(
dA

dE

⏐⏐⏐⏐
Eres

)2

(E − Eres)2e2σ +B(Eres)e−2σ. (A.34)

If yE is such a state before normalisation, then the overlap of a state ψ(x, 0) initially confined
to the region x ∈ (0, a) with this state is:

cE =

∫ a

0

ψ(x, 0)
y∗E(x)

C
, (A.35)

So the time evolution is given by:

ψ(x, t) ≈
∫ ∞

−∞
dEe−i

E
~

1

C2
yE(x)

(∫ a

0

ψ(y, 0)yE(y)dy

)
, (A.36)

where we have ignored the states not close to a resonance, since these have exponentially
suppressed overlap with ψ(x, 0). Although yE and it’s overlap with ψ(x, 0) also depend on E,
we see that the 1

C2 factor gives a Breit-Wigner energy distribution. Expanding the solution
yE(x) = yEres(x) + f(E − Eres, x) where f(E − Eres, x) is some function vanishing at f(0, x)
(linear in E − Eres, in fact), we find:

ψ(x, t) =

∫ ∞

−∞
dEe−i

Et
~
yEres(x)

∫ a
0
y∗Eres

(y)ψ(y, 0)dy + F (E − Eres, x)

4
(

dA
dE

⏐⏐
Eres

)2
(E − Eres)2e2σ +B(Eres)e−2σ

, (A.37)

where F is some analytic function that depends on the potential and the shape of the nearly-
bound states near to Eres. This integral can be done by standard contour integration methods,
to give:

ψ(x, t) = e−i
Erest

~ e−ΓtG(x) (A.38)

where:

Γ =
B(Eres)

2~A′(Eres)
e−2σ (A.39)

G(x) =
2π~2A′(Eres)e

2σyEres(x)
∫ a
0

dyψ(y, 0)y∗Eres
(y)
[
1 + F (−2π~A′(Eres)e2σ

B(Eres)
)
]

B(Eres)
(A.40)
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Notice that an exponential decay has emerged from the Fourier transform of the Breit-Wigner
distribution, despite the fact that there is no complex energy involved. It takes the WKB form:

Γ ∝ exp

(
−2

∫ b

a

√
2m

~2
(V (x) − Eres)

)
(A.41)

A.2 Perturbative Solution Near Hcrit

Order by order then, the perturbative equations are:

a′′1 + a1 +

√
−V ′′(φbar)χ

(0)
maxχ

(1)
max

π2
sin(x) = 0 (A.42)

u′′1 + 3 cot(x)u′1 + 4u1 − 3
1

χ
(0)
max sin(x)

[−πa1(x) cos(x) + π sin(x)a′1(x)]

+
4
√
−V ′′(φbar)χ

(1)
max

π
cos(x) +

4V (3)(φbar)∆φ
(1)
0

V ′′(φbar)
cos(x)2 = 0 (A.43)

The second order equations are:

a′′2 + a2 +
sin(x)(−2 cos(x)2 + sin(x)2)(∆φ

(0)
0 )2χ

(0)
max

3πM2
P

− χ
(2)
max

π
sin(x)

+

√
−V ′′(φbar)χ

(1)
max

π

(
a1(x) +

χ
(1)
max

π
sin(x)

)

− V ′′(φbar)χ
(0)
max

1

4π3

(
4π2

ΛV ′′(φbar)
+ (χ(0)

max)
2 +

4πχ
(2)
max√

−V ′′(φmax)

)
sin(x) +

χ
(2)
max

π
sin(x) = 0

(A.44)

u′′2 + 3 cot(x)u′2 + 4u2 +
2V (4)(φbar)(∆φ

(0)
0 )2

V ′′(φbar)
cos3(x) − V ′′(φbar)(χ

(1)
max)2

π2
cos(x)

+
4
√
−V ′′(φbar)χ

(2)
max

π
+

4
√

−V ′′(φbar)χ
(1)
max

π
u1(x)+

2V (3)(φbar)
(
π∆φ

(2)
0 cos2(x) +

√
−V ′′(φbar)∆φ

(1)
0 χ

(1)
max cos2(x) + 2π∆φ

(1)
0 cos(x)u1(x)

)
V ′′(φbar)π

+
3

(χ
(0)
max) sin(x)

(
−π2 cot(x)a1(x)2 + πχ(0)

max cos(x)a2(x) − πχ(1)
maxa1(x) cos(x)+

π2a1(x)a′1(x) + πχ(1)
max sin(x)a′1(x) − πχ(0)

max sin(x)a′2(x) − πχ(0)
max cot(x)a1(x)u′1(x)

+πχ(0)
maxa

′
1(x)u′1(x)

)
= 0. (A.45)

162



We will also require third order perturbation equations:

a′′3 + a3 −
χ
(3)
max

π
sin(x)

− V (2)(φbar)

4π2

([
a1(x) +

χ
(1)
max

π
sin(x)

][
+

4π2

V (2)(φbar)Λ
+ (χ(1)

max)
2 +

4πχ
(2)
max√

−V ′′(φbar)

]

+
4πχ

(1)
max√

−V ′′(φbar)

[
a2(x) +

χ
(2)
max

π
sin(x)

]

+
χ
(0)
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π

[
− 4πχ

(1)
max√

−V ′′(φbar)Λ
+ 2χ(1)

maxχ
(2)
max +

4πχ
(3)
max√

−V ′′(φbar)

]
sin(x) − 4πχ

(3)
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V (2)(φbar)
sin(x)

)

+
1

3M2
P

(
[−2 cos2(x) + sin2(x)]

[
2

π
∆φ

(1)
0 ∆φ

(2)
0 χ(0)

max + (∆φ
(1)
0 )2

{
a1(x) +

χ
(1)
max

π
sin(x)

}]

+ sin(x)
(∆φ

(1)
0 )2χ

(0)
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π

[
−2V (3)(φbar)∆φ

(1)
0

3V (2)(φbar)
cos3(x) −

2
√
−V ′′(φbar)χ

(1)
max

π
cos2(x)

− 4 cos(x)u1(x) − 2 sin(x)u′1(x)

])
= 0 (A.46)

And the third order u3 satisfies:
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u′′3 + 3 cot(x)u′3 + 4u3
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)
+

3
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(0)
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(
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maxa2(x)a′1(x) sin(x) − 2π2χ(1)
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′
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= 0 (A.47)

To compute the action, first note that the expression for χmax in Eq. (6.31) can be re-written
as

χmax =
π

HHMcrit

(
1 +

ϵ2

2Λ

)
− πϵ2(∆φ

(1)
0 )2

12M2
P

√
−V (2)(φbar)

+O(ϵ2)

=
π

HHM

− πϵ2(∆φ
(1)
0 )2

24M2
PHHM

+O(ϵ2). (A.48)

We define HHMcrit to be the height of the potential (including V0) when H = Hcrit:

HHMcrit ≡
√

−V
(2)(φbar)

4
=

√
Vcrit(φbar)

3M2
P

= HHM

√
1 +

ϵ2

Λ
, (A.49)
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where Vcrit is the height of the barrier when V0 takes on the critical value. Since V (2)(φbar) is
independent of V0, and at the critical threshold −V (2)(φbar)/4 − V (φbar)/3M

2
P ≡ 0, it is most

convenient to defineHHMcrit in terms of V (2)(φbar) (the first equality), but note it’s interpretation
in terms of the height of the barrier when at the critical threshold. The last equality uses the
definition of ϵ in Eq. 6.9. The decay exponent can be placed in the form:

B = 2π2χmax

π

∫ π

0

dx

[
a3(x)

(
φ̇2

2
+ V (φ(x))

)
− 3M2

Pa(1 + ȧ2)

]
− Sfv, (A.50)

In the u variable, and making the change x = πχ
χmax

this splits up as:

B =2π2
(χmax

π

)∫ π
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((
π
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2
+
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2
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6
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24
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− 3M2
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(
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(
π
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)2

a′(x)2 −H2
HMa

2

)]
− Sfv, (A.51)

where ∆φ̃ = φ−φmax

ϵ
= ∆φ

(1)
0 + O(ϵ) and we have moved the Vmax dependent term into the

gravitational sector, since it doesn’t couple directly to the field.

We must consider each piece in turn; the scalar sector of the action, and the gravitational
sector, and devise a perturbative expression. As we will see, this results in an action that differs
from the Hawking-Moss solution only at fourth order in ϵ, so we must nominally expand to
fourth order in all solutions. However, it will soon become clear that only the second order
contributions matter - those depending on u3, a3, u4, a4 etc. . . in fact vanish identically, so we
will never need to know these solutions.

Starting with the gravitational action:

Sgrav = −6π2M2
P

(χmax

π

)∫ π

0

dxa

[
1 +

(
π

χmax

)2

a′2 −H2
HMa

2

]
. (A.52)

We will perturb to fourth order at constant χmax and ∆φ̃ (which also depend on ϵ), in order to
reduce clutter - expansions for χmax and ∆φ̃ will be introduced as needed. We find:

Sgrav = − 6π2M2
P

∫ π

0

(χmax

π

)(
a0

[
1 +

(χmax

π

)−2

a′20 −H2
HMa

2
0

]
+ϵ2

[
a2 +

(χmax

π

)−2 {
2a′0a

′
2a0 + a2a

′2
0

}
−H2

HM

{
3a20a2

}]
+ϵ3

[
a3 +

(χmax

π

)−2 {
2a0a

′
0a

′
3 + a′20 a3

}
−H2

HM

{
3a20a3

}]
+ϵ4

[
a4 +

(χmax

π

)−2 {
2a0a

′
0a

′
4 + a0a

′2
2 + 2a2a

′
2a

′
0 + a4a

′2
0

}
−H2

HM

{
3a20a4 + 3a0a

2
2

}]
+O(ϵ5)

)
.

(A.53)

Now, substitute in a0 =
(
χmax

π

)
sin(x) and define:

δ ≡

(
1 −

(
χmaxHHM

π

)2
)

=
ϵ2(∆φ

(1)
0 )2

12M2
P

+O(ϵ4). (A.54)
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Proceed order by order. The zeroth order contribution is:

S(0)
grav = − 6π2M2

P

(χmax

π

)2 ∫ π

0

dx sin(x)
[
1 + cos2(x) − sin2(x) + δ sin2(x)

]
− 6π2M2

P

H2
HM

(1 − δ)

[∫ π

0

dx2 sin(x) cos2(x) + δ

∫ π

0

dx sin3(x)

]
− 8π2M2

P

H2
HM

(1 − δ2) = SHM +
8π2M2

P

H2
HM

δ2 (A.55)

Thus, the zeroth order term reproduces the Hawking-Moss action, plus a fourth-order residual
arising from the change in χmax. At second order we obtain:

S(2)
grav = −6π2M2

P

(χmax

π

)
ϵ2
∫ π

0

a2

[
1 − d

dx
(2 sin(x) cos(x)) + cos2(x) − (1 − δ)3 sin2(x)

]
.

(A.56)

It is straightforward to verify that:

1 − d

dx
(2 sin(x) cos(x)) + cos2(x) − 3 sin2(x) ≡ 0, (A.57)

and in fact, this is a actually the equation of motion for a0: the fact that this contribution
vanishes is not accidental - it is a consequence of the fact that the lowest order fluctuations
about the action of a stationary point give zero, since by definition the first functional derivative
vanishes when the equations of motion are satisfied (note that since a1 = 0, a2 is the lowest
order fluctuation here). This leaves only a residual term:

S(2)
grav = − 6π2M2

P

(χmax

π

)
ϵ2δ

∫ π

0

3 sin2(x)a2(x)dx

= − 18π2M2
P

(χmax

π

)2
ϵ2δ

(∆φ
(1)
0 )2

8M2
P

∫ π

0

sin5(x)dx

= − 36π2(∆φ
(1)
0 )2

15H2
HM

ϵ2δ +O(ϵ5)

= − 3π2(∆φ
(1)
0 )4

15H2
HMM

2
P

ϵ4 +O(ϵ5). (A.58)

In fact, exactly the same argument applies at third order in ϵ, since it has the same form as the
second order contribution. However, the residual in that case is pushed to fifth order, which
we neglect. Thus, only the fourth order term remains. Note that we can here apply the same
trick to eliminate the a4 dependent terms, leaving a sixth order residual, thus we obtain:

S(4)
grav = −6π2M2

Pϵ
4

∫ π

0

dx

[{
sin(x)a′2(x)2 + 2a2a

′
2 cos(x)

}
−
(χmax

π

)2
H2

HM3 sin(x)a2(x)2
]

= −ϵ46π2M2
P

H2
HM

(∆φ
(1)
0 )4

64M4
P

∫ π

0

dx
[{

9 sin5(x) cos2(x) + 6 sin5(x) cos2(x)
}
− 3(1 − δ) sin7(x)

]
= −ϵ46π2M2

P

H2
HM

(∆φ
(1)
0 )4

64M4
P

[
15

∫ π

0

sin5(x)dx− 18

∫ π

0

sin7(x)dx

]
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=
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(1)
0 )4
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HMM

2
P

ϵ4 +O(ϵ6). (A.59)
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Summing this with the residuals, we obtain:

Sgrav =
3π2(∆φ

(1)
0 )4

70H2
HMM

2
P

ϵ4 − 3π2(∆φ
(1)
0 )4

15H2
HMM

2
P
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P
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2π2(∆φ

(1)
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15H4
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(
−16H2
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21M2
P

)
. (A.60)

Next we compute the scalar part of the action:

Sscal = 2π2
(χmax

π

)∫ π

0

[
a3ϵ2∆φ̃2

((
π

χmax

)2
u′(x)2

2
+
V (2)(φbar)

2
u(x)2 + ϵ∆φ̃

V (3)(φbar)

6
u(x)3

+ϵ2∆φ̃2V
(4)(φbar)

24
u(x)4

)]
(A.61)

Using:

a3 =a30 + 3ϵ2a20a2 +O(ϵ3), (A.62)

u2 =u20 + 2u0u1ϵ+ (2u0u2 + u21)ϵ
2 +O(|epsilon3), (A.63)

u3 =u30 + 3u20u1ϵ+ (3u20u2 + 3u0u
2
1)ϵ

2 +O(ϵ3), (A.64)

u4 =u40 + 4u30u1ϵ+ (4u30u2 + 6u20u
2
1)ϵ

2 +O(ϵ3), (A.65)

we find:

Sscal =2π2
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π

)
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π

)−2 u′20
2
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]
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′
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6
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2
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(A.66)

To process this, define the operator:

Dψ ≡ 1

sin3(x)

d

dx

(
sin3(x)

dψ

dx

)
+ 4ψ. (A.67)

The second order term gives:

S
(2)
scal =

2π2
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HM
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. (A.68)

167



Now use integration by parts, and that fact that:

V (2)(φbar)

H2
HMcrit

+ 4 ≡ 0, (A.69)

to obtain:

S
(2)
scal = − 2π2
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. (A.70)

However, Du0 = 0 by the definition of u0, so we are left with a residual term:

S
(2)
scal = −2π2(∆φ̃)2ϵ4

H4
HM

16H3
HMcritχ

(2)
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π
. (A.71)

At third order:

S
(3)
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= 0. (A.72)

The last line follows from applying integration by parts and vanishes because Du0 = 0 as before,
and sin3(x) cos3(x) is an odd function over the interval [0, π]. The only remaining terms (from
changing χmax) are fifth order, so we neglect them. The fourth order contribution is:

S
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)
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∫ π

0
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(A.73)

The u2 terms can be eliminated using the same trick used to eliminate the u1 terms at third
order, since this part is essentially the same, but produced u2Du0 instead after integration by
parts. A similar procedure can be applied to the u21, u

′2
1 terms, however in that case, Du1 ̸= 0,

so this term does not vanish. We obtain:
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(A.74)
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Note that we cannot get rid of the a2 term in the same way, because this trick only works when
the u20, u

′2
0 terms are preceded by a30, not 3a20a2. To proceed, we will need to compute each term.

One trick that we can use is to decompose u1 and u0 into Gegenbauer Polynomials. The first
few of these we will need are [128]:

C
(3/2)
0 (u) = 1, (A.75)

C
(3/2)
1 (u) = 3u, (A.76)

C
(3/2)
2 (u) = −3

2
+

15

2
u2, (A.77)

which gives:

u0 =
1

3
C

(3/2)
1 (cos(x)) (A.78)
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15
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15
C

(3/2)
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1

3
C

(3/2)
1 (cos(x))

)
. (A.79)

Gegenbauer polynomials satisfy the orthogonality relationship [128]:∫ 1

−1

(1−u2)C(3/2)
n (u)C(3/2)

m (u)du =

∫ π

0
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n (cos(x))C(3/2)

m (cos(x))dx = δnm
(n+ 2)(n+ 1)(
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(A.80)
and:

1
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Hence:
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n (cos(x)) = [4 − n(n+ 3)]C(3/2)
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Thus, we can show, using the orthogonality relationship:∫ π

0

sin3(x)u1Du1 =

(
V (3)(φbar)∆φ

(1)
0

6V (2)(φbar)

)2 ∫ π

0

dx

[
4

(
9

15
C

(3/2)
0 (cos(x))2 − 6

(
4

15

)2

C
(3/2)
2 (cos(x))2

)]

=
48

15 × 7

(
V (3)(φbar)∆φ

(1)
0

6V (2)(φbar)

)2

. (A.83)

Similarly:
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, (A.84)

so: ∫ π
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while: ∫ π

0

dx sin3(x)u40 =
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0

sin3(x) cos4(x)dx =
4
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. (A.86)
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Finally, we have the last term at fourth order, which we can evaluate by brute force rather than
decomposition to Gegenbauer polynomials:

2π2
(χmax
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)
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One thus obtains:
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(A.88)

Now, using Eq. (6.33), we re-write this as:
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We must add to this the residual term from Eq. (A.71) to obtain:
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Here we used the fact that H2
HM and H2

HMcrit differ by terms of order ϵ2. Finally, we combine
this with the gravitational part, Eq. (A.60), using this same trick to give:
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A.2.1 Legendre Transforms

First a quick aside on Legendre transformations, as this has some relevance to the question
of interpreting the effective action. The Legendre transformation, f ∗(p) of a function f(x) is
defined by:

f ∗(p) = supx(px − f(x)). (A.92)

Since it is a maximum over the set of all x, then the derivative with respect to x vanishes and
so we evaluate the RHS at the point x∗(p) such that f ′(x∗) = p. Visually, this is finding a point
on the curve f(x) whose gradient is p. It is easy to show that the Legendre transform preserves
convexity of functions, since:

df ∗

dp
= x∗(p) + p

dx∗

dp
− f ′(x∗)

dx∗

dp
= x∗(p) (A.93)

d2f ∗

dp2
=

dx∗

dp
=

1

f ′′(x∗(p))
. (A.94)

Since f ′′(x∗) > 0 (i.e. because this is a maximum), then the Legendre transformation always
produces a convex function. Also, the Legendre transform of a convex function is its own inverse
since:

f ∗∗(x) = supp(xp − f∗(p)) (A.95)

= xp∗ − [p∗x∗(p∗) − f(x∗(p∗))] (A.96)

= f(x). (A.97)

The last line follows because by definition, x = f ∗′(p∗(x)) = x∗(p∗(x)). However, note that the
argument only works if the function is convex: if it is not, then the function p∗(x), which is
the inverse of x∗(p), is not defined for x in some region of non-convexity, x ∈ (a, b), since for
any given p, no x in that range will maximise px − f(x). Instead, x∗(p) jumps from a to b
at some point pcusp. This causes f ∗(p) to acquire a cusp at pcusp since f ∗′(p) = x∗(p). Note
that since f ∗ is convex, then all f ∗′(p) < a for p < pcusp and f ∗′(p) > b for p > pcusp, and
there will be no points with derivatives on the range (a, b). This means that for a < x < b,
xp − f ∗(p) is increasing for p < pcusp and decreasing for p > pcusp. Hence, pcusp will always
maximise xp− f ∗(p) for x ∈ (a, b), and the Legendre transformation of f ∗ should be evaluated
there, that is:

f ∗∗(x) = xpcusp − f ∗(pcusp), (A.98)

which describes a straight line. By definition, f ∗(pcusp) = pcuspa − f(a) = pcuspb − f(b), so we
can re-arrange this to obtain:

pcusp =
f(b) − f(a)

b− a
, (A.99)

f ∗(pcusp) =
f(b)a− f(a)b

b− a
. (A.100)

This shows that the straight line is that passing through the points (a, f(a)) and (b, f(b)). It
describes a ‘convex hull’ around the non-convex shape (see fig. A.2)
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Figure A.2: Example of the double Legendre transformation of a non-convex function and the
associated convex hull.
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