
Chemical Reaction Simulator on Quantum Computers by First
Quantization (II)�Basic Treatment: Implementation
Hideo Takahashi,* Tatsuya Tomaru, Toshiyuki Hirano, Saisei Tahara, and Fumitoshi Sato*

Cite This: J. Chem. Theory Comput. 2024, 20, 9290−9320 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Chemical simulation is a key application area that can leverage the
power of quantum computers. A chemical simulator that implements a grid-
based first quantization method has promising characteristics, but an
implementation fully in quantum circuits seems to have not been published.
Here, we present “crsQ” (chemical reaction simulator Q), which is a quantum
circuit generator that generates such a chemical simulator. The generated
simulator is capable of antisymmetrization of the initial wave function and time-
evolution of the wave function based on the Suzuki−Trotter decomposition. The
potential energy term of the Hamiltonian is implemented using arithmetic gates,
such as adders, subtractors, multipliers, dividers, and square roots. Circuit
diagrams and output samples are shown. The number of qubits in the circuits
scales on the order of O(η log η), where η is the number of electrons. Each
component of the generated circuit was verified in unit tests. Along with this development, we designed frameworks to ease the
development of large-scale circuits, namely, a temporary qubit allocation framework and an abstract syntax tree framework for
arithmetic formulas. These frameworks are expected to be useful in large-scale quantum circuit generators.

1. INTRODUCTION
This study is the second part of a multipart report on the
development of a quantum-computer-based simulator for
chemical reactions. While the first part describes the simulator
circuit design theoretically,1 this second part describes the
implementation of circuits on a quantum computer software
development kit (SDK). The simulator implements a grid-based
first-quantization method.1−4 Such a simulator consists of a
circuit for preparing the initial state of the wave function, a
circuit for evolving the wave function in time, and a circuit for
measurement. The time evolution circuit performs the
Hamiltonian simulation by using arithmetic operations
implemented as quantum circuits that operate on the values in
a superposition stored in the qubits. Despite the numerous
theoretical studies in the literature, a software implementation
that includes all of these elements does not seem to have been
published yet. In particular, the preceding studies on chemical
simulators running on a quantum computer used simple circuits
that lacked the elements needed for handling chemical
reactions2,5 or used a quantum computer simulator equipped
with a “bespoke” (artificial) quantum gate that calculated a
significant portion of the simulation by using classical computer
code as if such a function were available as a built-in gate.6 Such a
simplification or optimization was chosen in order to make the
circuits runnable on quantum computer simulators. As a result,
the resulting chemical reaction simulator is not fully
implemented in terms of the (actual) quantum gates.

Researchers could benefit from a complete implementation of
quantum circuits in multiple ways: it could be used as packaged
application software, a learning resource, a basis for implement-
ing improvements, or as a basis for comparing improved versions
of the circuits. The goal of this study was thus to combine the
essential elements of the previous studies and describe and
implement the overall circuit of a minimum essential chemical
reaction simulator. The elements comprising the simulator are
described in a separate paper, which is the first part of this
report.1 In this second part, we describe the implementation
aspects of the circuits on Qiskit, a quantum computer SDK from
IBM.7 The goal is to implement the entire simulator on Qiskit
and to verify the logical correctness of its circuits by testing the
components individually in unit tests. In particular, this report
describes the implementation of the state preparation circuit and
the time evolution circuit.

Since the hardware requirements for the generated chemical
simulator circuit cannot be met with what is available today, the
simulator as a whole cannot be run on existing quantum
computers or quantum computer simulators. What we have

Received: June 2, 2024
Revised: August 28, 2024
Accepted: September 20, 2024
Published: October 25, 2024

Articlepubs.acs.org/JCTC

© 2024 The Authors. Published by
American Chemical Society

9290
https://doi.org/10.1021/acs.jctc.4c00708

J. Chem. Theory Comput. 2024, 20, 9290−9320

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d 

vi
a 

95
.9

0.
25

5.
24

5 
on

 D
ec

em
be

r 
12

, 2
02

4 
at

 1
6:

26
:5

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hideo+Takahashi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tatsuya+Tomaru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Toshiyuki+Hirano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saisei+Tahara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fumitoshi+Sato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.4c00708&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/20/21?ref=pdf
https://pubs.acs.org/toc/jctcce/20/21?ref=pdf
https://pubs.acs.org/toc/jctcce/20/21?ref=pdf
https://pubs.acs.org/toc/jctcce/20/21?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


implemented so far is a circuit generator program written in
python8 that constructs a quantum circuit of the said chemical
simulator. The program uses the SDK functions to construct the
circuit on a quantum computer or a quantum computer
simulator. The generated simulator comprises the initial state
preparation with antisymmetrization, Coulomb potential energy
calculation in 1D, 2D, or 3D coordinates using arithmetic gates,
and the time evolution of the wave function through the Suzuki-
Trotter decomposition. The measurement circuit is left for
future work. We verified the components of the circuits by
inspecting the simulated state vector after running the circuits
with a test input.

As a far goal, we are interested in the simulation of large
molecules such as proteins. However, at this point, we were able
to generate simulator circuits for a model size up to simple
amino acids. In this study, we show the generated circuits for
simple models in the range of one atom in one or two
dimensions (Section 3.1). For the amino acids, we present the
generated circuit size (Section 3.2). Based on the qubit count of
the generated circuits, we formulate the qubit count (Section
6.1) and estimate the resource requirements for some proteins
(Section 6.2).

Throughout this work, we encountered several programming-
level issues regarding the quantum circuit generator code and
devised techniques to address them. One issue was the need to
avoid interface mismatches when constructing a large circuit,
which involves the decomposition of it into smaller subcircuits
hierarchically. The other issue relates to the provision of a
higher-level programming interface for implementing basic
arithmetic formulas from low-level quantum computer
instructions. Both issues become more serious as the circuit
becomes larger and more complex. To deal with the first issue,
we devised a design pattern9 (a rule for structuring programs)
for subcircuit invocation that features automated allocation of
temporary qubits for local variables. To deal with the second
issue, we applied the idea of an abstract syntax tree (AST), which
is a widely known structure for compiler programs of classical
computers.10 Here, a source code expression, such as “r =
sqrt(dx × dx + dy × dy)”, would be converted into a tree
structure reflecting the order of the operations. Then, quantum
instructions are generated by using the tree. The AST utilizes the
said temporary qubit allocation framework whenever ancilla
qubits are required by the arithmetic gates. We also
implemented decimal point adjustment as a feature of the
AST. The AST was used to implement the Coulomb potential
energy term of the Hamiltonian, and we confirmed that it
simplified the coding task. The details of fixed-point decimal
point tracking are totally hidden from the Hamiltonian
calculation code by the AST, and thanks to that, its formulas
can be modified easily without the need for the programmer to
keep track of those details manually.

We have tested all of the described software components in
bottom-up unit tests. These tests were run on the Qiskit Aer
simulator,7 and the test programs were organized as an
automated test suite based on the Python pytest framework.11

The Qiskit Aer simulator allowed us to inspect the simulated
state vector, and the amplitudes of all state components of the
system can be obtained. Besides the test suite, we plotted the
circuit output for the selected input data to demonstrate the
calculations performed by the components. We used only a
single computer to run the simulator and have not pursued any
simulations on clusters. Doubling the memory size for a
quantum computer simulator adds only one simulated qubit.

Using a cluster for a quantum computer simulator would add
several simulated qubits compared with those of a single
computer, but currently, we do not have a strong need for those
few extra qubits considering the significant cost increase.

The remainder of this study is structured as follows: Section 2
outlines the formulation of the simulator. The representation of
wave functions and how they are processed are described.
Section 3 describes selected samples of the simulator circuits. It
starts by describing the overall circuit before detailing the
subcircuits. A large portion of the subcircuits consists of
arithmetic gates, such as adders and multipliers. Those gates are
described in Appendix A. Section 4 discusses implementation
issues. The overall simulator is composed of four components,
and each component is described. Section 5 explains how the
testing was performed, while Section 6 discusses the measure-
ment of the circuit size of the current implementation and
potential areas of improvement. Section 7 summarizes this work.

2. FORMULATION OF THE CHEMICAL REACTION
SIMULATOR

In this section, we briefly describe the model and algorithm that
we implemented. A detailed description can be found in the
preceding study.1

2.1. Representation of the Wave Function. The wave
function is stored in quantum registers that represent the
discretized coordinates of the particles. For each electron or
nucleus, n qubits are used to store the coordinates of all
dimensions. The coordinates of each dimension are stored in a
quantum register consisting of n1 qubits. We will describe this
formulation for a 3-D model, but we will also describe simplified
2-D or 1-D models; in all cases, n represents the total number of
qubits for all dimensions. Therefore, in the 2-D and 3-D models,
n is 2n1 and 3n1, respectively. The integer values in these
registers are transformed from discretized positional coordinates
into momentum coordinates (or vice versa) by using an inverse
Fourier (or Fourier) transform. In the positional representation,
or “q-space”, we define the simulated space to be a cube of size L
× L × L. This space is discretized into 2n1 segments for each
dimension with a unit of δq = L/2n1. The coordinates of an
electron identified by an index i are denoted as qi.

The discretized signed integer coordinates (xi, yi, zi) are
defined as

q
x y z

q
( , , )i i i

i=
(1)

For atom nuclei, we will use capital letters such as Xi and Qi.
Following the conventions in the chemical literature, the
variable Zi with a capital Z will be used to denote the electric
charge of nucleus i, which should be easily distinguishable from
the z coordinate of a nucleus by context.

The values of the positional coordinates correspond to the
values of the qubits. The wave function for a system with η
electrons and Ln nuclei is stored in the index register in the
tensor product form:

q q Q Qt t

x y z x y z X Y Z X Y

Z

( ) ( , . . . , ; , . . . , ; )

, , , . . . , , ; , , , . . . , ,

,

q q Q Q
L

L L

L

,... , , ,.. .,
1 1

1 1 1 1 1 1

Ln

n

n n

n

1 1

| =

|

(2)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9291

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For a wave function in the momentum representation, the
contents of the coordinate registers are transformed into the
momentum of the particles. The momentum of electron i,
denoted by pi, is mapped to the same coordinate qubits that were
used for the spatial coordinates such that

p
x y z

p
( , , ) i

i i i =
(3)

where δp = 2πℏ/δq2n1 is the unit value for the discretization of
momentum values.

2.2. Preparation of the Initial Wave Function. To
initialize a set of qubits of a coordinate register so that the
amplitude of the qubits will follow a desired distribution defined
by the wave function ϕi provided as data, onemust build a circuit
to embed amplitude values to match the data.

i q q( ) ( ) ( )
i

i
i q

i i iini 0
0

1

0

1

0

2 1

i

n1

| = | = |
= = = (4)

Here, |ϕini(σ0)⟩ is the tensor product of the orbital states |ϕi⟩ and
σ0 represents the sequence of electron indices 0,1, ..., η−1, which
means that orbital ϕi is implemented to electron i.

As the input for the preparation circuit, all coordinate registers
are first set to |0⟩, which means that the amplitude of |0···0⟩ is 1
and 0 for all other states. By applying the Ry(θ) gate, the
amplitude of |0⟩ can be distributed to |0⟩ and |1⟩ in a desired
ratio of cos(θ/2): sin (θ/2). To decide the value for θ, let s1 be
the sum of squares of the amplitudes for the first half of the qubit
states, i.e., |00···0⟩ to |01···1⟩, let s2 be the same for the second
half, i.e., |10···0⟩ to |11···1⟩. Then, s s2tan /1

2 1= . The
Ry(θ) gate is applied to the most significant bit (MSB). This
process distributes the amplitude into two states |00···0⟩ and |
10···0⟩. The next step is to further distribute the amplitude of
each state into still other states; the amplitude of |00···0⟩ is
distributed into |000···0⟩ and |010···0⟩, and the amplitude of |
10···0⟩ is distributed to |100···0⟩ and |110···0⟩. This can be done
with a controlled Ry gate applied to the second MSB. By
repeating this step for all qubits, we prepared the amplitude of
each state. For implementing the phases, a separate process of
phase embedding, which mirrors the structure of amplitude
embedding, follows the amplitude embedding process. This
second process applies Rz gates instead of Ry gates. The
corresponding circuit is shown in Figure 28 of ref 1.

2.3. Preparation of Antisymmetric States. After the
initial wave function data are stored in the coordinate registers,
the amplitudes in the registers are systematically shuffled to form
the Slater determinant. We used a set of ancilla qubit registers,
each labeled as ak, to assist this process. The index k is in the
range 1···η − 1. These ancillae are collectively called register set
a. Each value of the register set is related to a member of the
permutation set Sη, which is the set of all possible permutations
of the sequence of numbers in the range 0···η − 1. We show two
versions of the shuffling algorithm based on the coding scheme
for registers ak. For the unary coding scheme, N bits are used to
represent values from 0 toN−1. Here, the (k − 1)-th bit is set to
1 to represent the number k − 1. In the binary coding version, ⌈
log2N ⌉ bits are used, just as in ordinary binary numbers.

The shuffling consists of two steps: (1) preparation of the
ancillae to the k-sequence state, or the kΣ state, and (2) shuffling.

In the first step, the registers ak are initialized to a
superposition of values which we call the k-sequence state kΣ:

k
k

i
1

k
i

k

a( 1)
0

1

| |
= (5)

Once all registers ak have been prepared in this way, the tensor
product of all registers ak will represent the factorial state of η:

k
k

ka
2

a( 1)| ! = |
= (6)

The second step, shuffling, is the permutation of the
coordinate qubits based on the content of register set a. The
content of each register is an integer ranging from 0 to k − 1.
Because each |kΣ⟩a(k−1) in eq 6 is set individually, values for index
i in eq 5 for each |kΣ⟩a(k−1) can appear repeatedly, such as the 0 in
{ia3, ia2, and ia1} = {1,0,0}. We call the sequence in the register set
a σ′. For example, {1,0,0} is a σ′ for η = 4. This sequence can be
mapped to one of the sequences in Sη, where the elements of
each sequence in Sη are all different. To obtain the map, we
define permutation τ to be a function of σ′. This is done
recursively in eqs7 and8, where (i, j) is a permutation operator
that swaps the ith and jth element of σ′ and η ≥ 2.

k k( ) ( , 1)a1| = (7)

k k k k( ) ( , 1) ( )a( 1) a( 2).. .a1 a( 2)...a1| | = | (8)

Here, “1” in eq 7 comes from η − 1 in eq8 where η = 2 in this
case. τ operates on σ0 such that σ = τ(|ia(η−1)⟩|ia(η−2)⟩···|ia1⟩)σ0.
For example, when σ′ = {4,3,2,1}, i.e., registers a4 through a1
have the values 4,3,2 and 1, the resulting permutation would be
the identity: τ(|4⟩a4|3⟩a3|2⟩a2|1⟩a1) = (4,4)(3,3)(2,2)(1,1) = I,
and for that case σ = Iσ0. On the basis of this relation, we can
prepare the antisymmetrized wave function such as

2.4. Preparation of a Mixed State of Energy Config-
urations. To enable a simulation with a target temperature,
several antisymmetrized wave functions with different energy
levels can be combined to form a mixed state. An explanation of
the circuit can be found in the first part of the report.1

2.5. Time Evolution. The time evolution is calculated on the
basis of the Schrödinger equation by using the Suzuki−Trotter
decomposition. The time-independent Hamiltonian of the
system is a sum of Hamiltonians for electrons and nuclei;
these are further decomposed into kinetic energy terms and
potential energy terms:

H H H H H H( ) ( )ek ep en nk np= + + + + (10)

p

q q
H

m
H e

2
,

i

i

i j i j
ek

2

e
ep

2
= =

| |>

q Q
H

e Z

i j

j

i j
en

,

2

=
| |

P
Q Q

H
M

H
e Z Z

2
,

i

i

i i j

i j

i j
nk

2

np

2

= =
| |>

Here, Hek and Hep are the kinetic and Coulomb energy terms of
electrons, respectively, where Hen is the Coulomb energy

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9292

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=eq9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=eq9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between electrons and nuclei. Hnk and Hnp are the kinetic and
Coulomb energies of nuclei, respectively.meandMi are the mass
of the electron and nucleus i.e., is the elementary charge, andZi is
the atomic number of the nucleus i.

According to the Suzuki−Trotter formula, the time evolution
for a period of t can be approximated as

t e

e e e

( )

( e e )

iHt

iH t n iH t n iH t n iH t n iH t n n

/
0

/ / / / /
0

ek ep en nk np

| = |
|
(11)

Paying attention to the fact that nuclei are much heavier than
electrons, we can approximate eq11 as

t e
e e

( ) ( e e )iH t nm iH t nm iH t nm m

iH t n iH t n n

/ / /

/ /
0

ek ep en

nk np

| [
] | (12)

We will use the Fourier transform and its inverse to convert
the wave function from the positional representation to the
momentum representation and vice versa. Note that the time
evolution of the kinetic energy term becomes much simpler in
momentum space.

3. DESIGNED CIRCUITS
The main outcome of this study is a Python program that
generates a time evolution simulator as a quantum circuit. The

circuit takes the initial state of the wave function as precalculated
input data. Then, it repeatedly calculates the time-evolved wave
function. This will cause changes in the spin−orbitals. After the
time-evolution process has been repeated a specified number of
times, the resulting wave function is measured. So far, we have
completed our implementation up to the time-evolution loop
and left the measurement part for future work. Note that the
circuit parameters shown in Table 1 can be adjusted.

In this section, we show several examples of generated circuits
and their subcircuits (Section 3.1) and describe the number of
qubits required for the overall circuit for a selected range of
parameters (Section 3.2).

3.1. Examples of the Generated Simulator Circuit. The
circuits presented in this section are organized hierarchically.
There are four simulator configurations: (1) a basic one-
dimensional configuration with a 3-bit coordinate, one electron,
one nucleus, and one initial wave function (d = 1, n = 3, η = 1, Ln
= 1, NE = 1), (2) the first example with two dimensions instead
of one (d = 2, n = 4, η = 1, Ln = 1,NE = 1), (3) a one-dimensional
configuration with four electrons (d = 1, n = 2, η = 4, Ln = 1,NE =

1) and (4) a one-dimensional configuration with two electrons,
with four wave functions in the initial mixed state (d = 1, n = 2, η
= 2, Ln = 1, NE = 4).

The circuits and their subcircuits are listed in Table 2.
3.1.1. Basic One-Dimensional Configuration. The first

example implements a minimal one-dimensional model with
three coordinate bits and has one electron and one nucleus (d =
1, n = 3, η = 1, Ln = 1), namely, a one-dimensional model of a
hydrogen atom. Since the model is one-dimensional, the circuit
for the Hamiltonian (eq 10) uses a simple absolute value gate
instead of a sequence of gates to calculate the norm for the
distance between the electron and the nucleus. The overall
circuit is shown in Figure 1. The total number of qubits is 19.
Each line of the diagram represents a qubit. The order of the
qubits is the least significant bit (LSB) first or in little-endian.
This order is the default used by Qiskit and is different from the
one assumed in the first part of this report.1 The top six lines are
qubits for the coordinate bits. The labels e0x0, ..., e0x2 denote the
three bits for the x coordinate of electron 0. n0x0, ..., n0x2 are the
three bits for the x coordinate of nucleus 0. Thus, the bit count is
6, or (η + Ln)n. The lower 13 lines with labels tmpn are
temporary qubits. Those qubits are internally used at the gates,
such as the electron potential energy (P.E.) time evolution gate
Θep; they have no effect outside of the gates. The
subcomponents function as follows: The Slater determinant
(SD) state preparation gate, Ψsd, prepares the initial state of the
wave function on the coordinate qubits on the basis of orbital
data provided as input at the circuit generation time. The rest of
the circuit consists of nested time-evolution loops that are
executed repeatedly. The outer loop operates with nucleus scale
time steps and the inner loop operates with electron scale time
steps. The electron scale loop is the first element of the nucleus
scale loop. The first gate inside the inner loop is the Θep gate.
This gate calculates the electron−electron and electron−
nucleus potential energy terms of the Hamiltonian, and each
state in a superposition will have its phase altered according to
the coordinates of the particles. Following Θep comes the n-
element inverse quantum Fourier transform gate, nQFT†. This
transforms the position representation into a momentum
representation. Then follows the electron kinetic energy
(K.E.) time evolution gate, Θek, which alters the phases
according to the coordinates in p-space. After that comes the
n-element Quantum Fourier transform gate, nQFT, that
transforms the momentum representation back to the position
representation. Outside the electron scale loop, the correspond-
ing gates for nuclei will follow; the nucleus P.E. time evolution
gate, Θnp, the nQFT† gate, the nucleus K.E. time evolution gate,
Θnk, and the nQFT gate.

The SD state preparation gate, Ψsd, is shown in Figure 2A.
Since there is only one electron in this first example, the gates
that perform the permutations to build the Slater determinant
are not present. They will appear in the third example. The
three-bit state embedding gate, emb(3), is applied to each of the
two coordinate registers, e0x and n0x. Each emb(3) gate sets the
amplitudes of 3-qubit states on the basis of data provided as an
array. The internals of emb(3) are shown in Figure 2B. The
emb(3) gate has two internal gates, embθ(3) that embeds
amplitudes and embϕ(3) that embeds phases. The recursive
structures of those two gates are illustrated in Figure 2C through
H.

The content of the electron P.E. time evolution gate, Θep, is
shown in Figure 3. This gate has the greatest number of
parameter qubits in the first example, which is 19. It is

Table 1. Configuration Parameters of the Circuit Generator

parameter definition

d dimension of coordinates [1,3]
n1 number of bits per coordinate for a dimension
L length of simulation space along one axis
η number of electrons
Ln number of nuclei
NE number of configurations in the mixed state
ϕc, i, d, x array holding data for electron orbital ϕi indexed by [energy

configuration, orbital, dimension, position]
ψc, i, d, X array holding data for nucleus orbital ψi

δt step of time evolution for an electron
TN number of nucleus-level iteration steps
Te number of electron-level iteration steps within one nucleus-level

iteration step

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9293

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


constructed as follows: Θep uses the arithmetic gates ssub
(signed subtractor), abs (absolute value), and udiv (unsigned
divider). Since the coordinates are one-dimensional in this
example, the electron−nucleus distance is calculated using a
simple absolute value gate without square roots. Once the
calculated result is used to alter the phase through P gates, the
calculation is reversed using the inverse versions of the gates,
denoted by a dagger on their names. Within the right half, tmp0,
..., tmp2 are the three temporary qubits used for carry bits. These
are required for internal use at the arithmetic gates; they do not
affect Θep. The lines with labels onen, sign0, msb1, and zzn are
ancilla qubits that the Θep circuit uses for intermediate values.
These qubits are used internally at Θep; they have no effect
outside Θep. The temporary qubits are labeled tmpi in the
leftmost column in Figure 3. The number of temporary qubits is
a constant independent of the number of electrons. When the
number of particle pairs increases, this same circuit structure is
repeated for different pairs, while the same set of temporary
qubits is reused. In this 1-D model with three qubit coordinates

(d = 1, n = n1 = 3), the number of qubits for the coordinates of
electrons and nuclei is dn1(η + Ln) and the required number of
temporary qubits is 3n1 + 4 = 13. The sum is dn1(η + Ln) + 3n1 +
4. The breakdown is shown in Table 3. Note that this formula is
only for the single-electron case, since for multiple electrons
additional qubits must be introduced to implement antisymmet-
rization.

The content of the electron K.E. time evolution gate, Θek, is
shown in Figure 4A. The depicted circuit is implemented with
phase gates and controlled phase gates without using any
arithmetic gates.

Θnp and Θnk are, respectively, the P.E. and K.E. terms for
nuclei; their figures are omitted since they are analogous to the
electron counterparts. In this example, Θnp is empty since only
one nucleus is present and there are no nucleus−nucleus
interaction terms.

The content of the n-element inverse quantum Fourier
transform gate, nQFT†, is shown in Figure 4B. The inverse
quantum Fourier transform gate IQFT from the Qiskit library is

Table 2. List of Sample Circuits

label description

Figure 1 overall circuit for d = 1, n = 3, η = 1, Ln = 1, NE = 1
Figure 2A the Slater determinant preparation gate Ψsd for a single

electron model
Figure 2B the 3-bit state embedding gate emb(3)
Figure 2C the 3-bit amplitude embedding gate embθ(3)
Figure 2D the 2-bit amplitude embedding gate embθ(2)
Figure 2E the 1-bit amplitude embedding gate embθ(1)
Figure 2F the 3-bit phase embedding gate embϕ(3)
Figure 2G the 2-bit phase embedding gate embϕ(2)
Figure 2H the 1-bit phase embedding gate embϕ(1)
Figure 3 the electron P.E. time evolution gate Θep

Figure 4A the electron K.E. time evolution gate Θek

Figure 4B the n-element inverse quantum Fourier transform gate
nQFT† for d = 1, n = 3, η = 1

Figure 5 Θep for d = 2, n = 4, η = 1, Ln = 1
Figure 6 the overall circuit for d = 1, n = 2, η = 4, Ln = 1, NE = 1
Figure 7A the Slater determinant preparation gate Ψsd for a multiple

electron model
Figure 7B the unary-coded permutation gate Su

Figure 8A the unary-coded sequence preparation gate kuΣ(2)
Figure 8B the gate kuΣ(3)
Figure 8C the gate kuΣ(4)
Figure 9A the unary-coded conditional shuffling gate σu(2)
Figure 9B the gate σu(3)
Figure 9C the gate σu(4)
Figure 10 the binary coded permutation gate Sb

Figure 11A the binary-coded sequence preparation gate kbΣ(2)
Figure 11B the gate kbΣ(3)
Figure 11C the gate kbΣ(4)
Figure 11D the gate kbΣ(6)
Figure 12A the binary-coded conditional shuffling gate σb(2)
Figure 12B the gate σb(3)
Figure 12C the gate σb(4)
Figure 13A the general state preparation gate Ψg for d = 1, n = 2, η = 2,

Ln = 1, NE = 4
Figure 13B the 2-bit configuration preparation gate
Figure A-1A the unsigned adder uadd(3)
Figure A-1B the unsigned mismatched bit length adder uaddv(3,4)
Figure A-2A the signed adder sadd(3)
Figure A-2B the signed constant value adder scoadd(3,1)
Figure A-3A the unsigned subtractor usub(3)

label description

Figure A-3B the signed subtractor ssub(3)
Figure A-4 the unsigned multiplier umult(3)
Figure A-5A the signed multiplier smult(3)
Figure A-5B the signed square ssquare(3)
Figure A-6 the unsigned divider udiv(4,3)
Figure A-7A the absolute value abs(4)
Figure A-7B the square root sqrt(3)
Figure A-8A the carry gate
Figure A-8B the carry gate with one input given as constant 0 cocarry(0)
Figure A-8C the carry gate with one input given as constant 1 cocarry(1)
Figure A-8D the inverse carry gate icarry
Figure A-8E the inverse carry gate with one input given as constant 0

icocarry(0)
Figure A-8F the inverse carry gate with one input given as constant 1

icocarry(1)
Figure A-8G the half carry gate hcarry
Figure A-8H the half carry gate with one input given as constant 0

cohcarry(0)
Figure A-8I the half carry gate with one input given as constant 1

cohcarry(1)
Figure A-8J the inverse half carry gate ihcarry
Figure A-8K the inverse half carry gate with one input given as constant 0

icohcarry(0)
Figure A-8L the inverse half carry gate with one input given as constant 1

icohcarry(1)
Figure A-9A the sum gate qsum
Figure A-9B the sum gate with one input given as constant 0 cosum(0)
Figure A-9C the sum gate with one input given as constant 1 cosum(1)
Figure A-9D the inverse sum gate iqsum
Figure A-9E the inverse sum gate with one input given as constant 0

icosum(0)
Figure A-9F the inverse sum gate with one input given as constant 1

icosum(1)
Figure A-9G the half sum gate qhsum
Figure A-9H the half sum gate with one input given as constant 0 cohsum

(0)
Figure A-9I the half sum gate with one input given as constant 1 cohsum

(1)
Figure A-9J the inverse half sum gate iqhsum
Figure A-9K the inverse half sum gate with one input given as constant 0

icohsum(0)
Figure A-9L the inverse half sum gate with one input given as constant 1

icohsum(1)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9294

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


used here. IQFT is independently applied to each of the
coordinate bit sets.

3.1.2. Two-Dimensional Configuration. The second exam-
ple (Figure 5) is an extension of the first one to two dimensions
(d = 2, n1 = 2, n = dn1 = 4, η = 1, Ln = 1). This is also a model of a
single hydrogen atom but in two dimensions. Compared to the
first example, a more complex norm circuit is used to calculate
the Hamiltonian. Only the Θep gate, which determines the
overall circuit bit count, is shown; the other gates are omitted.
The overall bit count is 36, and the number of coordinate qubits
is 8, i.e., (η + Ln)n. As a result of having multiple dimensions, the
electron−nucleus distance calculation requires a norm calcu-
lation, which involves two square gates and one square root gate.
In the circuit, the difference of coordinates is calculated with
ssub (signed subtraction) gates, and the result is fed to an
ssquare (signed square) gate for the x and y coordinates. Those
squares are then summed by a uaddv (unsigned adder) gate, and
the sum is given to an sqrt (square root) gate. A udiv (unsigned
divide) gate takes the inverse of the result of the sqrt gate. The
number of temporary qubits for Θep in this example is 28, i.e., (2d
+ 6)n1 + 8. Their breakdown is shown in Table 4. The number of
temporary qubits remains the same, even when the number of
electrons is increased. The overall bit count for Θep is (η + Ln)n +
(2d + 6)n1 + 8 = 36. This same formula can also be used for d = 3,
i.e., 3-dimensional models.

3.1.3. Multiple Electron Configuration. The third example
implements a model with multiple electrons and introduces
antisymmetrization. The overall circuit is shown in Figure 6.
This example implements a one-dimensional model with four
electrons and one nucleus, using two-bit coordinates (d = 1, n =
2, η = 4, Ln = 1). This corresponds to a beryllium atom. The

purpose of this example is to show the circuits related to
antisymmetrization. As such, the one-dimensional model is used
to simplify the circuit. The total number of qubits is 28. We will
omit the formula for this number since the content of Θep for this
sample takes much space to show.

When there are two or more electrons, the wave function of
Fermions must be antisymmetrized. This is done using the SD
state-preparation gate, Ψsd.

The SD gate, Ψsd, is shown in Figure 7A. This gate starts by
embedding the individual orbital states and shuffles them to
make 1 equiv of a Slater determinant. The shuffling is done
inside a unary-coded permutation gate Su. The subscript “u”
signifies that the gate uses unary coding internally instead of
binary coding. Later, we will show binary-coded versions of
these gates.

After the coordinate qubits are set to a predetermined
distribution by the state embedding gates, emb(n), the Su gate is
applied. The content of the Su gate is shown in Figure 7B. Each
ancilla register auk is initialized to a k-sequence state |kΣ⟩ by the
sequence preparation gate, kuΣ(k). |kΣ⟩ is used by the unary-
coding-based shuffling gates, σu(k). A gate sequence of XZX is
inserted before the shuffling gates when η is even. This is to
cancel an artificial global phase π added in the circuit in Figure 9.
The input to XZX is |0⟩, so the XZX sequence adds a global
phase of π. The purpose of this article is as follows. There are
three, or η − 1, shuffle gates σu(k) shown in Figure 7B. As will be

Figure 1.Circuit diagram of generated results for d = 1, n = 3, η = 1, Ln =
1, andNE = 1. The overall circuit consists of state-preparation and time-
evolution gates. The initial state is prepared by the SD state preparation
gate, Ψsd, and then, nested time evolution loops are applied to the state.
The inner electron time-scale loop consists of an electron P.E. time
evolution gate, Θep, an n-element inverse quantum Fourier transform
gate, nQFT†, an electron K.E. time evolution gate, Θek, and an n-
element quantum Fourier transform gate, nQFT. The outer nucleus
time-scale loop consists of the inner loop, the nucleus P.E. time
evolution gate, Θnp, the nQFT† gate, the nucleus K.E. time evolution
gate, Θnk, and the nQFT gate.

Figure 2. SD preparation gate, Ψsd, and its internals. (A) Ψsd shown as a
unit on the left and its internals on the right. In this example, with only
one electron, the gates for permutations that are characteristic of the
Slater determinant are not present. The two state embedding gate,
emb(3), embeds the orbital data in the two coordinate registers
independently. (B) 3-bit state embedding gate, emb(3). This gate
consists of a 3-bit amplitude embedding gate, embθ(3), and a phase
embedding gate, embϕ(3). (C) 3-bit amplitude embedding gate,
embθ(3). This gate is defined recursively with the two-bit embθ(2)
gate. The phase value shown on the Ry gate is an example; it varies
depending on the amplitude data. (D) Gate embθ (2), same for 2 bits,
(E) gate embθ(1), same for 1 bit. (F) 3-Bit phase embedding gate,
embϕ(3). This gate is also defined recursively. The difference from
embθ(3) is in the use of the Rz gate instead of the Ry gate. (G) Same for
2 bits. (H) Same for 1 bit.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9295

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


explained in Figure 9, each shuffle gate adds a global phase of π.
When η is odd, an even number of π phases are added so they
cancel out. In contrast, when η is even, an odd number of π
phases are added so the phase remains. The global phase does
not affect the result of the circuit, but when the circuit is run on a
quantum computer simulator for debugging and the state vector
is inspected directly, this global phase appears and may be
confusing when judging if the result is correct. Hence, the global
phase is compensated here to ease debugging.

Shuffling gate σu(2) permutes |ϕ0⟩ and |ϕ1⟩ by using
2 ( 1 0 )1

2
| = | + | ; shuffling gate σu(3) permutes |ϕ0⟩, |

ϕ1⟩ and |ϕ2⟩ by using 3 ( 100 010 001 )1
3

| = | + | + | ; the

case for k = 4 follows this pattern. Note that |2Σ⟩ does not follow
the rule of unary coding. That is, |2Σ⟩ should be ( 10 01 )1

2
| + |

Figure 3. Electron P.E. time evolution gate, Θep, shown as a single gate on the left and its internals on the right. e0x0 through n0x2 are the coordinate
qubits, and tmp0 through tmp12 are temporary qubits on the outside of the gate. Those temporary qubits are assigned more specific names inside the
gate. The firstX gate sets theMSB of the 4-bit fixed-point value (one3, one2, one1, one0) to 1.000 in binary. This value is later used as the numerator of 1/|
e0x − n0x|. The ssub(3,3) gate is a signed subtraction that computes e0x − n0x and sets the result to e0x. The bit assignments of the arithmetic gates are
explained in Appendix A. The abs(3) gate converts the subtraction result to its absolute value and stores the sign bit on the sign0 bit for later use.msb1,
which is initialized to 0 is added to the denominator to make the bit-count of the numerator and denominator match, whereby our implementation of
the divisor gate produces 1.1111 (all bits set to 1) as quotient for the division-by-zero case, which is mathematically wrong but most reasonable; in
other cases, 1.1111 is not obtained. Then udiv(4,4) computes the quotient 1.000/|e0x − n0x|. The following phase gates are applied to the results of the
division. The phase shift is executed according to the bit-wise results. After that, the arithmetic operations are executed in reverse order, restoring the
qubit values to their original values except for the phase, which is not restored. The second X gate on the one3 bit should be rendered as the final gate in
the sequence but appears in front of the ssubv(3,3) gate. This is due to the circuit drawing algorithm of Qiskit, which rearranges the display order of
gates within a range that does not affect the result. In this case, the ssubv(3,3) gate does not affect the qubit labeled one3 bit, so changing the location of
the X gate to a point before or after the ssubv(3,3) gate does not change the result.

Table 3. Bit-count Breakdown of Registers Shown in Figure 3

label count description

e0x0, ...,
e0x2

ηdn1 coordinates of electrons

n0x0, ...,
n0x2

Lndn1 coordinates of nuclei

one0, ...,
one3

n1 + 1 numerator 1.0

sign0 1 ancilla for abs gate
msb1 1 bit added to the MSB side of the divisor to make the bit-

count coincide with that of the dividend
zz2, ...,
zz5

n1 + 1 quotient

tmp0, ...,
tmp2

n1

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9296

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


according to the rule, but the downstream circuits need only one
of the two bits. Thus, the LSB of register au1 is omitted as a
qubit-saving optimization.

The sequence preparation gate kuΣ for k = 2, 3, and 4 is shown
in Figure 8. A CNOT gate follows each Ry gate. Thanks to the
pair, only one of the output qubits is |1⟩; the other qubits are |0⟩.

The unary-coded conditional shuffling gate, σu(k), for k =
2,3,4 is shown in Figure 9. This gate shuffles the coordinate
registers based on the value of au(k − 1). Since au(k − 1) is
unary-coded, its value is represented by the single bit within the
bits of register au(k − 1) that is set to |1⟩. Note that for the case
of k = 2, we omit the LSB of register au1, so the remaining bit is
the second bit of the original au1. Now, let l be the index of the |
1⟩ bit within the bits of register au(k−1), i.e., the bit au(k−1)l is |
1⟩. The basic intent of the shuffle gate is to do nothing when l
takes the greatest value, k − 1; when l < k − 1, to swap the
contents of the coordinate registers of index l and k − 1 and at
the same time negate the sign by adding π to the phase. When
implementing this function in gates, it is easier to add the π phase
for the inverse condition, i.e., when l = k− 1 instead of when l < k
− 1. This can be achieved using a single Z gate on the bit au(k −
1)l. Different from the basic intent of the gate, this would add a
global phase of π, but the added phase does not affect
subsequent operations. This is why the global phase of π is
added by each σu(k) gate, as is mentioned in Figure 7.

Binary-coded versions of the sequence preparation gates and
conditional shuffling gates can also be constructed. Here, the
trade-off between the unary and binary versions is that the unary
versions consume more qubits, but require fewer gates.1 Figure
10 shows the binary-coding-based permutation gate Sb. The bit
size of register ab(k − 1) is the number of bits required to
express k− 1 in binary. Sb consists of sequence preparation gates,
kbΣ(s, k), and conditional shuffling gates, σb(k). Its structure is
similar to that of Su. Here, s is the number of qubits for
constructing the register abk. For the same reason as the unary-
coded version, a sequence of XZX is added when η is an even
number to ease testing and debugging of the circuit based on the

inspection of the state vector. The XZX gates are not needed
otherwise.

Figure 11 shows the binary-coded sequence preparation gate
kbΣ(s, k) for k = 2,3,4, and 6; s is 1,2,2 and 3, respectively. The
structure of this gate is dependent on k. When k is a power of 2,
the gate is constructed solely fromH gates (the cases of k = 2 and
k = 4 are illustrated). For the other cases, it is recursively
constructed, as shown for k = 6.

Figure 12 shows binary-coded conditional shuffling gates
σb(k) for k = 2,3, and 4. The coordinate registers are swapped,
depending on the value of the abk register. This value is the
binary-coded integer held in the bits of ab(k − 1). Let l be that
value. The intent of this gate is the same as that of the unary-
coded version shown in Figure 9; i.e., when l = k− 1, do nothing;
when l < k − 1, swap the (k − 1)-th coordinate register for the l-
th coordinate register and add a phase of π. However, it is easier
to construct a circuit that adds the phase on the inverse
condition, i.e., when l = k − 1. This can be achieved by using a Z
gate in A, the controlled-(−Z) gate in B, and the controlled-Z
gate in C. These circuits each add a global phase of π, which
causes the artificial global phase mentioned in the description of
Figure 10.

3.1.4. Mixed State Preparation Configuration. The fourth
and final example highlights how a mixed state can be prepared,
which is a model of excitation, thereby making chemical
reactions possible. We will consider a model with one
dimension, 2-bit coordinates, two electrons, one nucleus, and
four sets of initial wave functions. The difference between this
circuit and the previous examples is the state preparation gate. In
place of the SD preparation gate that we have shown, we
introduce the general state preparation gate, Ψg, (Figure 13 A;
see also ref 1, Section 4.2). Four Ψsd gates prepare four sets of
wave functions. They are given different orbital data to initialize
the coordinate qubits. The configuration preparation gate, ρ
(Figure 13B) is responsible for setting the control bits for the
wave function preparation gates according to the intended
probability distribution.

Figure 4. (A) Electron K.E. time evolution gate, Θek(p) (B) n-element inverse quantum Fourier transform gate, nQFT†, for d = 1, n = 3,and η = 1.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9297

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.2. Evaluation of the Qubit Count for Different Model
Sizes. The qubit counts of the generated circuit for several atom
combinations are shown in Figure 14. The qubit counts scale as

O(ηlogη) with respect to the number of particles as given by eqs
C-7 and C-8. The circuit generator can be configured to apply
the Born−Oppenheimer approximation (BOA).When the BOA
is applied, the coordinates of the nucleus are treated as constants
and the qubits used to store the nuclei coordinates are omitted,
thus requiring fewer qubits. Estimates by Kassal4 are shown for
comparison. The differences from Kassal’s estimate are
discussed in Section 6.1. The breakdown of the qubit count is
described in Appendix C.

4. DESIGN OF THE IMPLEMENTATION
4.1. Program Structure. The simulator program consists of

four components (Figure 15). The first component is the
arithmetic component, which provides functions to build
circuits for operations such as addition and subtraction. The
second component is the qubit heap component, which
maintains a heap or pool of qubits that can be assigned as

Figure 5. Θep for 2-D coordinates (d = 2, n = 4, η = 1, and Ln = 1). The overall circuit is omitted since it is analogous to the first example. Only the
electron P.E. time evolution gate, Θep, is shown. It is followed by the inverses of all of the arithmetic gates in reverse order (not shown in the diagram) to
restore the calculation result to the original state.

Table 4. Bit-count Breakdown of Registers Shown on Figure
5

label bit count description

one0, one1, one2 n1 + 1 the numerator 1.0
square0, ...,
square7

d × 2n1 d sets of square results

msb8 1 carry for the uaddv gate
msb9 1 MSB added to make the bit-count of the square

root input even
sqrt10, ..., sqrt12 n1 + 1 result of square root
w13, ..., w16 n1 + 2 ancilla bits required by square root
zz17, ..., zz19 n1 + 1 quotient
tmp0, ..., tmp4 2n1 + 1 carry bits for the sqrt gate

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9298

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


temporary qubits required by arithmetic circuits. The third is the
abstract syntax tree component, which provides node classes for
a tree structure that represents a calculation of a formula. It uses
the arithmetic and qubit heap components as subcomponents
and provides a high-level interface on top of the arithmetic
component. The fourth is the simulator gates component, which
contains all of the gates that are specific to Hamiltonian
simulation. It uses the abstract syntax tree component.

These components are described in the following subsections.
4.2. Arithmetic Component. The arithmetic component

provides generator functions for the arithmetic circuits. The

time-evolution algorithm requires certain arithmetic operations
to be executed on values represented as qubit states. These
operations thus work on superposition states, wherein one
execution of the circuit entails operations on multiple values.
The circuits can be generated by calling one of the generator
functions in this component. The functions come in two forms,
instruction emitting functions and gate-creating functions,
described as follows:

• Instruction emitting functions: These functions imple-
ment a specific arithmetic operation by emitting

Figure 6. Circuit diagram of the overall circuit for the third example with four electrons (d = 1, m = 2, η = 4, and Ln = 1). The difference from the
preceding examples is that the SD gate, Ψsd, appears as the first gate. It takes additional ancilla registers au1, au2, and au3which comprise the register set
“a” in the formulation for state preparation. The registers are used to create a representation of |η !⟩ and that value is used for shuffling the coordinate
qubits.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9299

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


elementary gates such as C-NOT gates. All such gates are
visible in the resulting circuit diagram. This is useful when
verifying the internal gates of an arithmetic operation.

• Gate-creating functions: These functions create a custom
gate that implements an arithmetic operation. In Qiskit, a
user-defined quantum circuit can be converted into a
custom gate and can be used in the same way as standard
gates provided by the quantum computer. In the resulting
circuit diagram, the custom gate is represented by a single
box, and the internal elementary gates are hidden. This is
useful when verifying connections in a sequence of
arithmetic gates because the internals of each gate are
ignored.

In the context of the time-evolution calculation based on the
Schrödinger equation, arithmetic operations are required for
computing the potential energy terms of theHamiltonian, which
computes the inverse of the distance between two coordinates.
This requires subtraction, multiplication, addition, square root,
and division operations. For a one-dimensional model, the
distance calculation can be simplified to an absolute value
function. The choice of operations to be implemented is based

on these needs. The design of the adder circuit is from Vedral et
al.,12 while the constant value adders and subtractors, and the
absolute value were designed as part of this work. The rest are
from Tomaru.1 (See the references of Tomaru1 for other circuit
design proposals in the literature.)

• Adders: Several variations of adders are implemented.
The unsigned adder takes two unsigned integer values of
equal bit length and produces a value with one bit more to
store the carry bit. The signed adder takes two signed
integer values and produces a value with the same length
as the inputs. A constant value adder takes the first input
value in the form of qubits and the second input value in
the form of a constant that is known at circuit generation
time. Variations that take uneven length input values are
also implemented.

• Subtractors: Variations analogous to the adders are
implemented for subtractors. Unsigned, signed, and
constant value subtractors, as well as their uneven length
versions, are implemented.

• Multipliers: An unsigned multiplier, a signed multiplier
are implemented.

Figure 7. SD preparation gate, Ψsd, is based on unary encoding. (A) the Ψsd gate on the left and its internals on the right. The Ψsd gate consists of a
number of state embedding gates, emb(2), and a unary-coded permutation gate, Su. (B) Unary-coded permutation gate, Su. This gate consists of unary-
coded sequence preparation gates, kuΣ(k), that each produce a superposition state of i k/i

k
0
1 |= Index i is provided to the unary-coded conditional

shuffling gates, σu(k). These gates conditionally swap the amplitudes of the coordinate qubits for electrons designated by the values of i and k− 1 of the
auk registers. A sequence of XZX is inserted in front of the kuΣ(2) gate to cancel the global phase π that will be added by the three shuffle gates
σu(2)···σu(4). The bit to apply this gate sequence is not restricted to the single qubit of register au2 and can be added to any qubit of B that has an initial
value of |0⟩. Any qubit of any register ak meets this condition.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9300

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


• Dividers: An unsigned divider is implemented.
• Single operand functions: A signed square, a square root,

and an absolute value are implemented.

4.3. Qubit Heap Component. The qubit heap component
provides functions and classes to deal with temporary or ancilla
qubit allocation and to create target qubit lists for custom gate
parameters.

In Qiskit, a sequence of instructions on qubits can be grouped
into an atomic unit. There are two types of atomic units: a
custom instruction and a custom gate. The two are similar in
functionality, but custom gates are unitary and have the
additional capability of having control bits added afterward or
being converted to a gate that has the inverse effect. All circuits
can be converted to instructions, but only circuits that consist
solely of gates without any instructions can be converted into
gates. Here, we will refer to “gates”, but the same discussion
applies for instructions.

Custom gates are an effective means of organizing complex
quantum circuits hierarchically and are used extensively in our
development. They work well for circuits with a small number of
input registers, such as arithmetic operations. However, when
we tried to apply them to larger circuits, such as a gate to execute
the Hamiltonian simulation, we found it challenging to avoid
mistakes when passing argument qubits to the gate.

Custom gates take an array of qubit specifiers for the target of
its operation. A qubit specifier is either an integer or a Qubit

object. A Qubit object is not a physical qubit device but a class in
the Qiskit SDK that holds information to identify a physical
qubit by name. We mostly used Qubit objects as specifiers. The
handling of the list of target qubit specifiers becomes error-prone
as the number of parameters increases. Unlike in programming
languages of classical computers, there is no compiler support to
check whether the caller side arguments match the callee gate
parameters. It is helpful to have some means to ensure that the
two matches.

Besides the input and output qubits of the intended operation,
the temporary qubits required by the gate must also be included
in the list of parameters. Since the programmer is interested in
the input and output of the gate, but not in the temporary qubits,
the responsibility to supply the exact number of temporary
qubits is a burden. Making matters worse is that the number of
required temporary qubits is sometimes hard to determine. This
is because custom gates can be nested, and the number of
temporary qubits depends recursively on the nested inner gates.
Any inner gate might be modified, and the number of temporary
qubits they require might be changed as a result. Therefore, an
automated mechanism for determining the number of
temporary qubits is desired.

The situation is depicted in Figure 16. In the figure, circuit c
invokes gate f, and gate f, in turn, invokes two gates g and h in
sequence. Arrows represent the passing of target qubits from the
caller to the callee. We classify target qubits into parameter

Figure 8. Unary-coded sequence preparation gates: (A) kuΣ(2), (B) kuΣ(3), (C) kuΣ(4).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9301

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig8&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


target qubits and opaque target qubits. Parameter target qubits,
denoted by white arrows, are target qubits whose meaning is
known to the caller. Opaque target qubits, denoted by shaded
arrows, are those whose meaning or usage is unknown to the
caller. It only matters that the correct number of opaque qubits
are passed and that their initial state is set to |0⟩. When circuit c
calls gate f, two parameters and four opaque target qubits are
passed. Gate f uses the opaque qubits as two local qubits and two
temporary qubits. Gate f passes two parameters and two opaque
target qubits to gate g. Gate g uses the opaque qubits for two
local qubits. Finally, gate f passes one parameter and one opaque
target qubit to gate h. Gate h uses the opaque qubit for a local
qubit.

Within a gate, the opaque qubits that have been provided by
the caller of the gate are used for two purposes: (1) for use by the
gate itself and (2) as a heap of temporary qubits from which
opaque target qubits can be allocated when calling other
subgates.

Deciding the heap size for each gate is nontrivial. For gate f, 2
is the maximum number of opaque qubits that is required at any
single moment during the execution of this gate. Gate g requires
2 opaque qubits, and gate h requires 1, so the maximum of the
two numbers is 2; therefore, the heap size for gate f is 2.

The orders of the parameter qubits of the caller and callee
must match. The name given to the qubits for identification may
be different between the caller side and callee side, such as x1, y1
at circuit c versus x, y at gate f. Some sort of mapping must take
place.

In typical programming languages of classical computers, the
temporary memory allocation and mapping of parameters are

taken care of by function call mechanisms.13 The callee defines a
function. The caller passes parameters that match the function
definition. The callee accepts those parameters. When
temporary memory is required, the callee allocates space from
the stack area, and no intervention from the caller is necessary.
For the quantum computer case, the caller is responsible for the
allocation of temporary qubits. After some exploration, we
settled on a programming pattern involving two function calls to
do one subcircuit call, as shown in Figure 17. The first call is on
the callee side of a function named “bind”. The caller provides
qubit specifiers for the arguments. The bind function puts those
qubit specifiers in a list that the callee circuit expects. That list is
sent back to the caller in the form of a class named “Binding”.
The value is stored in a variable named “binding”. This value is
given as a parameter to the “invoke” function on the caller
object. This is defined in the common superclass from which the
caller class must inherit from. The invoke function incorporates
the instructions in the callee’s circuit into the caller circuit by
using the target qubit list stored in the binding object. This
pattern was inspired by the function objects found in the
standard library for the programming language C++.14

The overall class structure to handle the aforementioned
interaction is shown in the UML class diagram15 in Figure 18.
This is a set of classes that correspond to the scenario in Figure
16. The shaded classes, such as Frame and TemporaryQubi-
tAllocator, are utility classes that can be reused for various
circuits, and the white classes, such as FFrame and GFrame are
classes that are specific to the circuit under concern. The white
classes, CFrame, FFrame, GFrame, and HFrame correspond to
circuit c and gates f, g, and h in Figure 16, and their main

Figure 9. Unary-coded conditional shuffling gates: (A) σu(2), (B) σu(3), (C) σu(4).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9302

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig9&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


responsibility is to hold QuantumRegister objects that identify
the qubits that belong to each of the gates. Fframe, for example,
has member variables x, y, b, and c that correspond to the qubits
belonging to gate f. These four classes all extend a common
superclass Frame, which provides functionalities for temporary
qubit management and target qubit list preparation. The
constructor method of each class has the responsibility of
generating the instructions on their circuits. It recursively calls
the constructors of the subcircuits, so the overall circuit is
generated by calling the constructor of the CFrame class.

The class diagram of the utility class TemporaryQubitAllo-
cator is shown in Figure 19. This class maintains a list of pooled
qubits that can be borrowed from (allocated) for temporary use
and returned after use. The number of qubits pooled in the list
may grow to the maximum number of qubits that are
simultaneously allocated during the circuit generation. It
provides two methods, “allocate” and “free”. The allocator has
an associated QuantumCircuit object, and when qubits are
added to the pool, they are also added to the circuit.

Appendix B describes the circuit generation sequence in detail
using UML sequence diagrams.

4.4. AST Component. The abstract syntax tree (AST)
component provides a set of classes that lie on top of the
arithmetic component to provide a higher level of abstraction in
programming style for arithmetic formulas.10 The AST hides the
details of arithmetic gate usage, such as keeping track of the
input and output registers and allocating the temporary qubits.
Once an AST is constructed, it can generate sequences of
arithmetic gates to compute the formula on a quantum device.

An abstract syntax tree or an abstract parse tree is a term used
in compiler design. A compiler reads the source code character-
by-character to recognize the syntactic tokens and their

grammatical structure; after that, it constructs a tree structure,
called an abstract syntax tree, as an internal representation of the
recognized code. A schematic example of an AST for the
expression “sqrt(dx × dx + dy × dy + dz × dz)” is shown in
Figure 20.

ASTs are especially useful for representing arithmetic
expressions because arithmetic expressions have a recursive
tree structure. Once an AST is constructed, the target code
becomes straightforward to generate. To construct the AST, we
used Python’s customized arithmetic operators, whereby we can
attach code that will be executed when operators such as “+” and
“−” are used.

4.4.1. Node Objects. We designed the AST as a set of node
objects that are tied together in the form of a tree. If there are two
nodes a and b, then, in the program code “c = a + b”, the “+” is a
customized operator that produces a node for an add operation
which points to “a” and “b” as its child nodes. The structure
shown in Figure 21 is constructed in memory.

Later, when the circuit is generated, the tree will be traversed
recursively and the gates for each node will be generated in
postorder; i.e., each node is processed after all its child nodes

Figure 10. Binary-coded permutation gate Sb. After a sequence of XZX
gates, or a “−Z” gate, three kbΣ(s, k) gates are applied to register set a.
The results of the kbΣ(s, k) gates are input to the binary-coded
conditional shuffling gates, σb(k). The XZX gates are for canceling an
artificial global phase of π that is added when η is even. Each conditional
shuffling gate σb(k) adds a global phase of π, as explained in Figure 12.
The number of conditional shift gates is η − 1, so when η is odd, the sum
of the phases cancels out, but when η is even, it equals π. That remaining
phase is compensated by the XZX sequence to ease debugging by
inspecting the statevector.

Figure 11. Binary-coded sequence preparation gates, kbΣ (s, k). Each
gate prepares an s-qubit state that has a superposition of 0. . k−1 in the
binary representation. (A) kbΣ(1,2), (B) kbΣ(2,3), (C) kbΣ(2,4), (D)
kbΣ(3,6).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9303

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig11&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


have been processed recursively. For the case shown in Figure
21, the gates for a and b will be emitted, and after that, the gates
for c will be emitted. The programmer does not need to worry
about assigning the correct qubit registers for passing the results
between the gates or allocating temporary work registers that the
gates require.

4.4.2. Scope Class. A scope class is introduced in order to
create the node objects and keep track of them. This class holds
information related to AST nodes that belong to the same
programming language scope. The scope object is obtained from
the function crsq.ast.new_scope().

The scope object provides methods to create leaf nodes. In
typical usage of AST, the first step is to create leaf node objects
from QuantumRegister objects that are the input for the
formula. In such cases, the register method is used to create an
AST node that wraps the QuantumRegister, as shown in Figure
22.

After the nodes are created, the circuit to compute the formula
can be generated by using the build_circuit method. The inverse
of the gates can also be generated by using the build_inverse_-
circuit method. This is often required in quantum algorithms
when qubits must be returned to their initial state.

4.4.3. Supported Operators. The following operators are
supported on node objects: + =, − =, *, /.

The scope object provides the following functions that take
one operand: abs(x), square(x), and square_root(x).

4.4.4. Fixed-Point Arithmetic Support. All internal arith-
metic functions are implemented as integer operations. Integer
operations can be used as fixed-point fractional number
operations by statically keeping track of the decimal point’s
location. The range of the value must fit in the register at all of
the steps of the sequence of operations. A function to ensure this
is implemented in the AST nodes. The numbers of fractional bits
and the total bits (fractional bits and whole number bits
together), a flag denoting whether the value is signed or
unsigned, and the upper and lower bounds of the stored value
are recorded on variables of the nodes. These variables are used
for computing the total and fractional bit counts of the result of
an operation or for checking the compatibility of operands
before an operation. Table 5 shows the constraint on the bit
count of both operands and the resulting bit count. The number
of total bits is further adjusted based on the possibility of
overflows, which can be determined from the value range
information.

4.4.5. Bit Count Adjustment. In a fixed-point calculation,
there may be a need to add or remove bits to or from the result of
a calculation step before feeding that value to the next step. For
this purpose, an “adjust_precision” method is created on AST
nodes. This method allows bits to be added to or removed from
either the LSB end or the MSB end of the value represented by
the node. As an example, when calculating the square root of
small integer values, it may be useful to add 2 or 4 bits below the

Figure 12. Binary-coded conditional shuffling gates σb(k): (A) σb(2), (B) σb(3), (C) σb(4).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9304

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig12&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


decimal point to make it a fractional number before applying the
square root gate. In this way, the result of the square root will
have 1 or 2 digits below the decimal point.

4.5. Simulator Gate Component. The simulator gate
component is the top-level component of the structure of the
simulator program shown in Figure 15. The hierarchy of the
Python classes that produce the gates is shown as a tree-structure
call graph in Figure 23. It contains gates that are specific to the
Hamiltonian simulation. All of the other low-level components
are general-purpose and can be used in other programs besides
Hamiltonian simulations. The classes in the simulator gates
component generate custom gates that are shown in different
configurations in Figures 1 and 13. The generated gates are
described in the following subsections.

4.5.1. Wave Function Preparation Gates. Wave function
preparation gates implement the initial wave function on the
coordinate qubits. The following gates are included: the state
embedding gate, emb(n), which embeds a single orbital to a
coordinate register; the SD preparation gate, ΨSD, and its
subcomponents (the unary-coded gates Su, kuΣ(k), σu(k) or the
binary-coded gates Sb, kbΣ(k), σb(k)), which work together to
permute the amplitudes of the coordinate register to implement
an SD; the general state preparation gate, Ψg, which creates a
superposition of multiple SDs based on different sets of orbital
data.

4.5.2. Time Evolution Gates. The time evolution gates
implement time evolution based on the Suzuki−Trotter
formula. The time evolution gates consist of the electron P.E.
time evolution gate, Θep, electron K.E. time evolution gate, Θek,
nucleus P.E. time evolution gate, Θnp, nucleus K.E. time
evolution gate, Θnk, n-element quantum Fourier transform gate,
nQFT, and its inverse, nQFT†.

Regarding the P.E. time evolution gates, the AST module is
used to generate circuits for performing the binary arithmetic
used in the Hamiltonian calculation. For all pairs of particles,
electrons, or nuclei, arithmetic gates are used to compute the
Coulomb energy due to the pair, and the phase is shifted using
the resulting value in a binary representation with a series of
phase gates bit-by-bit. Then, the reverse operation for the
calculation is executed, and all of the qubits are returned to their
original states except for the phase. The whole P.E. term is
calculated by processing all particle pairs in this way.

When calculating the Coulomb energies, the distance
between the two particles appears in the divisor of the formula.
This raises the possibility of division by zero. There are several
ways to deal with this problem. The first is to replace zero with a
constant value Δq that is smaller than the discretization step
δq.16 The second is to replace the division result with zero, which
is a valid solution if all electrons have the same spin.1 The third is
to compute the Coulomb energy term in p-space, which will
eliminate the problem.17 We implemented the first and second
methods and have left the third for future work.

Figure 13.General state preparation gate, Ψg, and its internals. (A) The
Ψg gate is shown on the left as a unit, and its internals are on the right.
The 2-bit version of the configuration preparation gate, ρ, prepares p0
and p1 that together store the probability amplitude of four different
states. p0 and p1 control the 4 SD preparation gates, Ψsd, and each is
given a different set of initial orbital data. (B) The configuration
preparation gate, ρ, and its internals. The state embedding gate,
emb(2), sets the probability amplitudes.

Figure 14. Qubit counts with respect to different numbers of particles.
Number of particles refers to the sum of the numbers of electrons and
nuclei. The plots correspond to H, He, Li, H + H2, and O, glycine
(C2NOH3), and alanine(C3NOH5). The plus(+) plots are results for
when the circuit generator was configured to apply the BOA, i.e., to
treat the coordinates of nuclei as fixed ones and omit qubits for those
coordinates. The x plots are based on the formula by Kassal.4

Figure 15. Program structure.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9305

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig15&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Regarding the K.E. time evolution gates, since the calculation
of pi2 is simple in momentum space, we do not use the arithmetic
gates to compute the square. Instead, we implement the square
operation directly with bit-wise phase gates and controlled phase
gates.

The n-element quantum Fourier transform gate and its
inverse apply the QFT and inverse QFT gates to the coordinate

qubits to convert the wave function from the positional
representation to the momentum representation and back
again. The QFT gates provided by Qiskit were used.

5. VERIFICATION
Verifications of the circuits were done by running the gates on
the quantum computer simulator provided with the Qiskit SDK.
The Aer simulator implements several simulation methods; the
basic “statevector” method was used.7 This method allows
inspection of the state vector data, which is impossible with an
actual quantum computer. Execution of the code and inspection
of the result was done automatically in the form of a test suite run
by the pytest tool.11 In this section, we describe what kind of
tests were performed on each component. We also show some
illustrative graphs of the results for a subset of tested cases.

5.1. Verification of Arithmetic Gates. We wrote
arithmetic gate generator functions that could generate
arithmetic gates with arbitrary bit counts. We could not test
the generated gates for all infinitely possible bit counts. For
testing purposes, we chose a range of bit counts so that all of the
conditional statements within the generator code could run at
least once. For those selected bit counts, the arithmetic gate was
generated, and all possible input values were verified on it. The
input data used in the code in the test suite is a single state, not a
superposition because when an unexpected output is produced
due to a bug, it would be much easier to diagnose the problem
for a nonsuperposition value. For example, to test an adder gate
that takes two input values on qubit registers X and Y, and
produces an output value on register Z, the test program would
choose a pair of values x and y, and prepare the input state as |
x⟩X|y⟩Y|0⟩Z. After the adder is applied, the resulting state vector is
obtained from the simulator and compared with the expected
outcome |x⟩X|y⟩Y|x + y⟩Z. If the result matches the expected
value, then the test is a success. This was repeated for all
combinations of x and y.

Figure 16. Problem of target qubit allocation. Example of nested circuit gates.

Figure 17. Code fragments for custom gate invocation in conventional
and proposed forms.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9306

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig17&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figures 24 and 25 show selected graphs of the input and
output of the arithmetic gates. The graphs were created by
programs written for each arithmetic operation. Each program
generated a circuit where input qubits were prepared, and the
arithmetic operation was executed on those qubits. Since the
arithmetic gates used for obtaining Figures 24 and 25 have been
debugged as described, we prepared the input qubits in a
superposition of all possible input values. The program then ran
the circuit on a simulator and extracted the state vector from the
simulator. We checked each term of the state vector whether it
has a nonzero amplitude (amplitude with a norm greater than a
threshold). For example, to produce a graph for Z = X + Y, the
i n p u t s t a t e v e c t o r w a s p r e p a r e d a s

N

N

( 0 1 1 )

( 0 1 1 ) 0

N X N

Y Z

1 1| + | + ··· + |

| + | + ··· + | |

, which is a super-

position of all possible values for registers X and Y, and Z set
to 0. When the adder gate was applied to this state, the resulting
state can be expressed as ∑ci|xi⟩X|yi⟩Y|zi⟩Z. From the super-
position state, we extracted only the values xi, yi, and zi that
satisfy |ci| > ϵ, where ϵ is chosen to be large enough to filter out

Figure 18. Class diagram for the Frame class and related classes.

Figure 19. Class diagram of the TemporaryQubitAllocator class.

Figure 20. Schematic example of an AST for the expression “sqrt(dx ×
dx + dy × dy + dz × dz)”.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9307

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig20&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


noise entries. The extracted value zi is the result of xi + yi. Figures
24 and 25 plot the extracted xi, yi, and zi for various operations.

5.2. Verification of Abstract Syntax Trees. Abstract
syntax tree classes were tested by creating aminimal tree for each
operation type and having the tree generate the quantum circuit,
which was then run, and the resulting state vector was inspected.
The goal of this test was to run all of the code in the AST
component, not necessarily all of the code in the arithmetic
component. Thus, the test input was selected for verifying
different combinations of operations but not all combinations of
numerical values for the same operation.

5.3. Verification of Time-Evolution Calculation. The
four types of time evolution gates, Θep, Θek, Θnp, and Θnk, were
tested by running them on tailored wave functions, as described
below.

For the P.E. time evolution gates, a nucleus was placed at X0 =
8, and an electron at a superposition of several positions x0 = 0,1,
...,2n1 − 1. For this discussion, we will assume a 1-Dmodel, where
n1 represents the bit count of the spatial coordinates. This
c o r r e s p o n d s t o t h e w a v e f u n c t i o n

X x 8 ( 0 1 2 1 )n
0 0

1
2n1

1| = | | = | | + | + ··· + | .

When the P.E. time evolution gate is applied to this state, each
element of the tensor product has its phase shifted by Θep(X0,
x0): Θep(|X0⟩ ⊗ |x0⟩) = exp (−iHep(X0, x0)δt/ℏ)|X0⟩|x0⟩. We
verified the correctness of the circuit by inspecting the phase
shift of each element of the resulting state vector. The result of
such a test with |x0⟩ set as ( 0 1 15 )1

16
| + | + ··· + | is shown

in Figure 26A. The model parameters in this case are as follows:
4-bit coordinates (n1 = 4), L = 2, q L/2n 1

8
1= = 1 electron with

charge qe = −e at positions x0 = 0,1, ...,2n1 − 1, and 1 nucleus with
charge QA = e positioned at X0 = 8 (i.e., Q0 = 8δq). This
configuration is similar to the first circuit example, where the Θep
gate was shown in Figure 3, with the bit-count n1 changed from 3
to 4. The division operation in the Coulomb potential energy
was done using (n1 + 1)-bit fixed decimal point numbers. The
dividend was 1.0, which was represented as 1.0000 with four bits
used for the fractional part. The divisor was the distance between
the two particles with no fractional part. One bit was added as

the MSB to make the divisor and dividend bit counts match (see
the caption of Figure 3 for an explanation of this bit).

Figure 21. Class diagram of an AST for a + b.

Figure 22. Usage of AST module.

Table 5. Constraints and Resulting Bit Counts for Fixed-
Point Arithmetica

operation constraint result: total bits result: fractional bits

add, subtract n1 ≥ n2, f1 = f 2 n1 + 1 f1
multiply n1 + n2 f1 + f 2
divide n1 ≥ n2 n1 f1−f 2
square 2n1 2f1
square root n1, f1 are even n1/2 f1/2
absolute n1 f1

an1 and f1 are the total bit count and fractional bit count of the left
operand, while n2 and f 2 are those of the right operand.

Figure 23. Call graph of python classes that belong to the simulator
gates component. Arrows denote usage or a “call” of the arrow target by
the arrow origin. Shaded boxes are general purpose classes. The names
on the boxes are python class names. The corresponding gate names are
shown in brackets. An arrow pointing to itself denotes a recursion.
Depending on the configuration, some elements may be omitted or
replaced by alternative classes. The maximum depth of the nested
structure, excluding calls due to recursion, is four, as in the calls to
BinaryCodedSequenceBlock and BinaryCodedShuffleBlock.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9308

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig22&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig23&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The formula to obtain the phase shift value, Θep(X0, x0),
includes a parameter δt, which can be chosen arbitrarily. For
testing purposes, we chose δt such that the resulting phase shift
value will be an easily recognizable value, for example, π; we
chose δt such that when the electron and nucleus position is δq
apart, i.e., x0 = 7 or 9, the phase shift will be π. This will result in

t q
e2= . Figure 26 A shows the phase shift value for this

choice of δt. The phase shift of the wave function for x0 = 9 is

Figure 24.Graphs of the input and output of an arithmetic gate. (A) Results of a signed adder gate, Z = X + Y, (B) Results of a signed subtractor gate, Z
= X − Y. In both graphs, input registers X and Y were initialized to a superposition of all values expressible by a 3-bit signed integer, i.e.,
1/ 8 4 3 3{ + > + ··· + }; then the signed adder or signed subtractor gate was executed on those inputs. The combination of X, Y, and Z
was gathered in the resulting state vector for components with amplitude norms greater than a threshold. Finally, the gathered combinations are
plotted.

Figure 25. Graphical results of the arithmetic gates. (A) Results of the
absolute value gate, Y = |X|. Note that |−8| = 8. This means that the
input is a 4-bit signed value, but the output has to be treated as 4-bit
unsigned value. (B) Results of square gate, Y = X2, and (C) Results of
square root gate, Y X= , (D) Results of unsigned divider gate: Y =
⌊16/X⌋. For the case of division by zero, the resulting value is the
maximum value expressible by the output register, which is 25 − 1 = 31
in this case. In all graphs, the input register X was initialized to a
superposition of all possible input values for the arithmetic gate; then,
the arithmetic operation was executed on that input. The combination
of X and Y were gathered in the resulting state vector for components
with amplitude norms greater than a threshold; and those combinations
were plotted.

Figure 26.Test results of the time evolution calculation. (A) Phase shift
of the potential-energy term of an electron−nucleus pair, (B) phase
shift of the kinetic-energy term of an electron. The plots labeled “5 bit
fixed point classical” are values computed by the Python code using
integer arithmetic to emulate a fixed point calculation. The values
should have the same rounding errors as the integer operations by the
generated quantum circuit. The plots labeled “5 bit fixed point
quantum” are values computed by the generated quantum circuit being
run on a (noise-free) quantum computer simulator. The plots labeled
“floating point classical” are values computed by Python code using the
floating point arithmetic. This has a much smaller rounding error
compared to the results of fixed-point arithmetic.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9309

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig25&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig26&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig26&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig26&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig26&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


H t(8, 9) /
q Q

q
q

eep 8 9
e A

2= = =| | . This is con-

firmed in the upper part of Figure 26A, where x0 = 9 and δθ/π
= 1.0. Thus, the expected phase shift value was obtained. This
means that the arithmetic gates and phase gates shown in Figure
3 are correctly generated.

Since the arithmetic is performed using fixed-point numbers
with only 5 bits on the simulated quantum computer, there is a

discrepancy between the result computed by the quantum gates
and the result computed on a classical computer using 64-bit
floating point numbers. This can be seen, for example, on q =
2,5,11,13 where the “+” plots and the dot plots slightly disagree.
This discrepancy is due to rounding errors and is not due to any
characteristic of quantum computers or the quantum computer
simulator. The division-by-zero case q = 8 produces the expected
value of 1.1111 in binary (1.9375 in decimal).

The above discussion is for a one-dimensional model, which
does not require square and square root gates to calculate the
distance between the two particles. We do not have test results
for two- or three-dimensional models, which use square and
square root gates, because a minimal circuit for a two-
dimensional model requires more than 40 qubits and could
not be tested with the hardware resources available. Square gates
and square root gates were tested in isolation but not as a
combined circuit to calculate the 2-norm.

The K.E. time evolution gates can be verified with a similar
approach. Here, a 1-D model with 4-bit coordinates (n = 4) with
one electron and no nuclei was used. This corresponds to the
circuit of Θek that was shown in Figure 4, with n1 changed from 3
to 4. In the momentum representation, the electron is given a
momentum value of a superposition of several index values x =
0,1,2, ...,2n−1, where the magnitude of the momentum p = xδp.
Here, the phase shift resulting from the K.E. time evolution gate

is p
m

t x p
m

t
2

( )
2

2

e

2

e
= = . As with the P.E. case, we can

choose δt arbitrarily. For testing purposes, we choose δt so that
the phase shift value is −π for the largest value of |x|, which is 8.
This will result in t qm2 2e= . Figure 26B shows the phase shift
for the K.E. term with this choice for δt. The phase shift for x =
−8 is δθ = −π. This can be confirmed in the lower part of Figure
26B where x = −8 and δθ/π = −1. The expected phase shift
value was obtained, and thus, the circuit in Figure 4 was verified
to be correct.

Since the K.E. term does not involve any arithmetic gates,
there is no discrepancy due to rounding errors.

5.4. Verification of Initial State Preparation. The top-
level gate of the initial state preparation is the general-state
preparation gate, Ψg. This gate has two subcomponents: the SD
preparation gate, Ψsd, and the configuration preparation gate, ρ.
The Ψsd gate is further decomposed into the state embedding
gate, emb(n), and the permutation gate, in either its unary-
coded version, Su, or its binary-coded version, Sb. These gates
were tested.

The state embedding gate was tested by applying the gate on a
set of qubits for test distribution data and then inspecting the
state vector. The following is an example of the resulting state
vector for a test input of amplitude data set to an unnormalized
distribution kk 1 = for k = 1···8. The expected resulting

state vector is normalized to k k/36 1k 1
8| = |= . The

output shown in Figure 27 corresponds to these values.
The SD state preparation gates were tested by running the

circuit on test wave function data for an orbital and inspecting
the state vector by extracting the wave function entangled with
each value of register set a. Example plots are shown in Figures
28 and 29. Figure 28 shows the input, which consists of data on
three wave functions, and Figure 29 shows the results of the
permutation performed by Su on the data. The first row is
identical to the input, and it corresponds to the identity
permutation. The second row is the result of the permutation τ =

Figure 27. Test result of the 3-bit state embedding gate, emb(3), which
sets the normalized data to the qubits. Distribution data of kk 1 = ,
which is not normalized, were given as input.

Figure 28. Input wave function data for the test of the Slater
determinant preparation gate, Ψsd.

Figure 29. Test results for the Slater determinant gate.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9310

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig27&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig27&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig27&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig27&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig28&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig29&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig29&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(0 1); since sgn(σ) = −1 for this case, the amplitude values are
inverted. The third row is for τ = (1 2), the fourth is for τ = (0 2
1), and so forth. The binary-coded version Sb produced
equivalent results.

6. DISCUSSION
6.1. Resource Requirements. First, let us refer back to

Figure 14 in Section 3.2, which compares the number of qubits
for the simulator circuit including state preparation and time-
evolution circuits, with the estimates given by Kassal et al.’s
method.4 As shown, our results appear offset from Kassal’s

results. This is because our data include additional qubits for
arithmetic calculations and antisymmetrization (see Appendix
C). Kassal chose several methods to minimize the number of
temporary qubits including Draper’s quantum addition
algorithm,18 whereas we chose simple algorithms that require
extra temporary qubits, compared to Kassal’s. This results in a
constant offset.

Regarding antisymmetrization, a register set described in
Section 3.1.3 is needed, and the number of those required qubits
scales as O(η log η) (see eq C-4). Kassal suggests applying a
method for preparing antisymmetric wave functions19 for

Table A-1. Bit Assignments for Arithmetic Gates

name 1st operand 2nd operand output temporary qubits ancilla qubits number of qubits

uadd(n) an−1...a0 bn...b0 bn...b0 crn−2...cr0 3n
uaddv(m,n) (m ≤ n) am−1...a0 bn...b0 bn...b0 crn−2...cr0 m + 2n
sadd(n) an−1...a0 bn−1...b0 bn−1...b0 crn−2...cr0 3n − 1
scoadd(n,y) bn−1...b0 bn−1...b0 crn−2...cr0 2n − 1
usub(n) bn...b0 an−1...a0 bn...b0 crn−2...cr0 3n
ssub(n) bn−1...b0 an−1...a0 bn−1...b0 crn−2...cr0 3n − 1
umult(n) an−1...a0 bn−1...b0 d2n−1...d0 cr2n−1...cr0 6n − 1
smult(n) an−1...a0 bn−1...b0 d2n−1...d0 cr2n−1...cr0 6n − 1
ssquare(n) an−1...a0 d2n−1...d0 cr2n−1...cr0 5n − 1
udiv(m,n) (m ≥ n) zm−1...z0 dn−1...d0 zzn−1...zz0 | zm−1...z0 = qm−1...q0 | rn−1...r0 crn−2...cr0 zzn−1...zz0 m + 3n − 1
abs(n) an−1...a0 an−1...a0 crn−2...cr0 sgn 2n
sqrt(n) z2n−1...z0 rn−1...r0 cr2n‑2...cr0 wn...w0 6n

Figure A-1. Unsigned adder gates. The gate is shown on the left, and its internals are shown on the right. (A) 3-bit unsigned adder gate, uadd(3),
implementing a, b a, a + b, (B) 3-bit to 4-bit unsignedmismatched bit length adder, uaddv(3,4), for a, b a, a + b. The no-input bit is treated as zero.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9311

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig30&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig30&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure A-2. (A) 3-bit signed adder gate sadd(3) for a, b a, a + b, (B) 3-bit signed constant value adder scoadd(3,1), for b y + b, where y is a
constant.

Figure A-3. Unsigned and signed subtractor gates. (A) 3-Bit unsigned subtractor gate, usub(3), for a, b a, b−a, (B) 3-bit signed subtractor gate,
ssub(3), for a, b a, b−a.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9312

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig31&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig32&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig32&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig32&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig32&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


multielectron wave functions, but their estimation formula does
not include the number of extra qubits that would be required by
such a method. This forms another offset, depending on η.
Besides these differences, our data agree with Kassal’s.

Note that grid-based first-quantization methods have been
considered to require many ancilla, or temporary qubits for
arithmetic operations, increasing the total number of qubits
significantly, but as shown in Section 3.1.1, the number of
temporary qubits is constant with the number of electrons, so
this issue does not seem to be a critical one. Here, a trade-off
exists between the qubit count and circuit execution time. The
above results were achieved when all temporary qubits were
reused. Reusing temporary qubits introduces the serialization of
gate operations before and after reuse. If we give up on reuse and
allocate different qubits for independent temporary qubits, gate
operations on those independent qubits could be executed in
parallel at the cost of extra qubits; i.e., the number of required
temporary qubits will increase. Therefore, optimizations to
reduce the number of temporary qubits have become more
desirable.

Another type of cost for reusing temporary qubits occurs
when a released qubit is reused at a distant physical location on
the quantum computer device. In such a case, the qubit content
must be relocated to the location of its usage by using swap
operations between adjacent physical qubits along the path from
the released location to the reused location. This may add
significant overhead to the execution time. If a temporary qubit
allocation can be performed in conjunction with a transpiler, an
unused physical qubit (close to where it is needed) can be
allocated as a temporary qubit. It can then be returned to an
unused state after it is released so that it can be reallocated to
another temporary qubit if need be. Such a feature would be
helpful for quantum circuits such as this chemical simulator that
require a lot of temporary qubits.

6.2. Prospects of Protein Computations. We would like
to model the chemical reactions of protein molecules, which is a
central concern of industrial applications such as drug and

catalyst development. The plots in Figure 14 (Section 3.2) for 37
and 48 particles represent the qubits required for computations
of the amino acids glycine and alanine in the form of amino acid
residues as part of a protein molecule. A protein is a polymer of
amino acids and the number of particles, i.e., electrons and
nuclei, is proportional to the number of amino acid residues. As
discussed in Appendix C, the required number of qubits, n, is at
most O(log η). This indicates that the crsQ simulator of this
work is capable of computing large molecules such as proteins
with resource requirements on the order of O(η log η). (See eq
C-7)

Using the formula to compute qubit counts shown in
Appendix C, we can predict the required number of qubits to
simulate protein molecules. Let us take insulin and cytochrome c
as examples. Insulin (C257H383N65O77S6) has Ln = 788 nuclei and
η = 3092 electrons. We choose the coordinate bit-count n1 such
that the number of 3-D grids per nucleus is constant with the
numbers in Appendix C (230/nuclei), which gives us

n log (2 788) 10 log 788 141
1
3 2

30 1
3 2= × = + =

Ä
Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑ

Ä
Å
ÅÅÅÅÅ

É
Ñ
ÑÑÑÑÑ and n =

3n1 = 42. Using eq C-5, the total number of required qubits Ntot
< 3092(42 + ⌈log23092⌉) + 42 × (788 + 4) + 9 = 200,241. The
second example of cytochrome c (C555H864N146O151S5Fe) has Ln
= 1690 nuclei and η = 6498 electrons. Using the same coordinate
bit-count as insulin, the number of required qubits Ntot <
6498(42 + ⌈log26498⌉) + 42 × (1690 + 4) + 9 = 428,547. When
these numbers of qubits become available as fault-tolerant
qubits, simulations of such proteins shall become feasible.

When we look at the overall procedure of a protein simulation,
an initial wave function such as the Hartree−Fock (HF) wave
function is a common requisite both in quantum- and classical
computer calculations. Currently, this is performed by classical
computers. This is the case for both first-quantization methods,
such as the one in this work, as well as configuration interaction
(CI)-based second-quantization quantum computing. However,
performing an accurate wave function calculation for large
molecules such as proteins is a major challenge. On classical

Figure A-4. 3-bit ×3-bit unsigned multiplier gate, umult(3), for a, b, d; d = 0 a, b, a × b.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9313

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig33&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig33&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig33&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig33&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


computers, it can only be acquired through a successful self-
consistent field (SCF) calculation. To safely guide the SCF
calculation to convergence while selecting the correct orbitals to
be occupied by electrons, techniques that are different from
large-scale fast computation methods used on supercomputers
become necessary.20,21 Since this task is not handled efficiently
by classical computers, tackling this problem on quantum
computers, which is beyond the scope of this study, is an
important area of research.

6.3. Effectiveness of Implementation. The automatic
temporary qubit allocation by the heap component that we
designed (Section 4.3) was confirmed to be effective. The
simulator circuit has the structure shown in Figure 23, which
illustrates more than 15 examples of gate usage. Each gate
invocation is accompanied by target qubit passing, where the
temporary qubit count must be determined. The ability to
calculate the number of temporary qubits automatically was
found valuable in general but especially so in the case of invoking

the P.E. time evolution gates for electrons and nuclei. If there
were no automatic mechanism, then the programmer would
have to analyze the circuit and determine a formula that gives the
number of qubits. In the case of P.E. time evolution gates, there
are many temporary qubits for various purposes, and
constructing a formula for the count is time-consuming (See
Figure 5 for an example of the gate, and eq C-2 in Appendix C,
for an example of a formula giving the total number of qubits).
The formula would change when the algorithm ismodified. Such
modifications did occur frequently during this work, and if it
were not for the automatic handling of the temporary qubits, we
would have needed to revise the formula at each change.

The binding and invocation mechanism ensured that the
caller provided the correct number of parameter qubits. There
were several occasions when we decided to modify the
parameters of a certain gate but failed to update some of the
caller-side code accordingly. The resulting parameter mismatch
was displayed on the editor screen and detected upon circuit

Figure A-5. Variations of the multiplier gate. (A) 3-bit ×3-bit signed multiplier gate, smult(3), for a, b, d; d = 0 a, b, a × b, (B) 3-bit signed square
gate, ssquare(3) for a a × a.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9314

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig34&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig34&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig34&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig34&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


generation. This allowed for quick diagnosis and correction of
the mismatch.

6.4. Resource Usage during Circuit Construction. We
noticed that custom gates with many internal instructions
substantially increase the circuit construction and transpilation
time. We have not yet investigated the cause of this time
increase.

When we evaluated larger configurations of the simulator,
memory limits were reached not only during circuit execution
time on the quantum computer simulator, which was expected,
but also during circuit construction time or transpilation time
before the circuit was run. We have not yet determined whether
the memory usage is within the expected level or not.

Our programs have not been optimized yet. Once we gain
more insight into the above memory issues, we may be able to
optimize our programs to reduce memory usage.

7. CONCLUSIONS
We have implemented and verified a quantum circuit generator
program that can construct grid-based first quantization
chemical simulator circuits. The generated circuits can serve as
a basis for various evaluations, and the generator program can be
used as a basis for experimenting with algorithm improvements.
The modular design of the circuit generator program allows for
the easy replacement of circuit blocks while minimizing the
impact of changes to the circuit block interfaces.

The current implementation has the following limitations: (1)
Some generated circuit elements could not be verified as a run
on a quantum computer simulator, because the required qubit
count exceeded the treatable one. For example, the P.E. time
evolution gate Θep for two- or three-dimensional models could
not be run. (2) We implemented the most basic circuit, although
various improvements have been proposed. (3) Evaluation of
resource requirements is limited to qubit count, and we have not
yet evaluated gate count or circuit depth in our software. These
are potential areas for future investigation. For (2), we can
implement and evaluate improved versions of the circuit
elements of the simulator. Not all improvements lead to fewer
qubits, but some of them do. Especially, arithmetic gates that
require fewer qubits will reduce the overall qubit count, which

would improve the situation of (1). For (3) we need to add a
feature to our software that counts the number of elementary
gates.

■ APPENDIX A. CIRCUITS FOR ARITHMETIC
OPERATIONS

This appendix shows the arithmetic gates that appeared in the
potential energy terms of the samples. The circuits in this study
are based on Tomaru.1 For other circuit design proposals, see
the references of Tomaru.1

The assignment of qubits for each of the gates is summarized
in Table A-1.

The first gate shown is the unsigned adder for an n-bit input,
uadd(n), for n = 3 in Figure A-1 A. This gate takes two 3-bit
unsigned integers, i.e., a2, a1, a0 and b2, b1, b0 and one carry bit b3
as input and produces the sum as a 4-bit unsigned integer on bits
b3, ..., b0, including the carry bit. The circuit consists of the
bitwise arithmetic gates carry, hcarry, qsum, icarry, and ihcarry,
which are illustrated in Figures A-8 and A-9. The bits cr1, cr0 are
used to store internal carry bits. The bit-count for an n-bit
version is n + (n + 1) + (n − 1) = 3n. The internal carry bits are
temporary qubits. They must be initialized to |0⟩ as input, and at
the end of the circuit will be returned to |0⟩. These temporary
qubits can be used for other purposes immediately after the
circuit is executed.

Figure A-1B shows a variation of the unsigned adder named
uaddv(m, n) that can take input with unequal bit lengthsm and n
+ 1. The gate for m = 3 and n = 4 is shown. This circuit is
equivalent to the one constructed by substituting no-input bits
with |0⟩ in the bitwise gates. This circuit requires m + 2n qubits,
including n − 1 internal carry qubits.

An adder for signed integers with equal bit lengths, sadd(n), is
shown in Figure A-2 A. For signed arithmetic, the carry from the
MSB is always ignored so there is one less output bit (the
missing b3 bit) compared with the unsigned version uadd(n).
The number of qubits is 2n + (n − 1) = 3n − 1.

A signed adder that can be used for adding a constant value to
a set of qubits, scoadd(n, y), is shown in Figure A-2 B. This is an
n-bit adder that takes the value y which is specified at circuit
generation time, as the second configuration parameter. This

Figure A-6. 4-bit by 3-bit unsigned divider gate, udiv(4,3), for z, zz = 0, d; z|zz z mod d |⌊z/d⌋, d, where | denotes bit list concatenation in little endian
bit order.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9315

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig35&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig35&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig35&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig35&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


circuit takes just one set of qubits for input and output.
Compared to sadd(3), the qubits for the a bits are removed, and
the number of qubits is 2n − 1.

The next gate is a subtractor gate. The n-bit unsigned
subtractor gate, usub(n), for n = 3 is shown in Figure A-3 A. This
is made by inverting the order of the gates of the unsigned adder
gate uadd(n).

The signed subtractor gate, ssub(n), for n = 3, shown in Figure
A-3 B, is constructed from the signed adder, sadd(n), in the same
way as the unsigned subtractor.

The unsigned multiplier gate, umult(n), for n = 3 is shown in
Figure A-4. This gate uses Toffoli gates to compute the product
of two bits; then it sums the intermediate results using unsigned
adder gates. Unlike the adders and subtractors, the result of the
multiplication is stored in a set of 2n qubits, d0 through d5,
separate from the input values. 2n − 1 temporary bits are

required for both the intermediate product bits and the carry bits
for the internal uadd(n) gates. All this adds up to n + n + 2n + 2n
− 1 = 6n − 1 qubits.

The signed version of the multiplier, smult(n), for n = 3 is
shown in Figure A-5 A. Based on the unsigned multiplier, it bit-
flips several qubits to implement the semantics for signed
integers (ref 1, Subsection 6.2.2). The number of required qubits
is the same as umult(n) and is 6n − 1 qubits.

An extension of the signed multiplier is the signed square gate,
ssquare(n), for n = 3, as shown in Figure A-5 B (ref 1, Subsection
6.2.3). This gate requires n + 2n + (2n − 1) = 5n − 1 qubits.

The unsigned divider gate, udiv(m, n), for m = 4 and n = 3 is
shown in Figure A-6. The parameters m and n are the bit count
of the dividend and divisor, respectively. As output, the quotient
in m bits, and the remainder in n bits are produced. The divider
circuit is not a simple inversion of the multiplier circuit since the

Figure A-7.Absolute value and square root gates. (A) 4-bit absolute value gate, abs(4), for a |a|, (B) 3-bit output square root gate, sqrt(4), for z,r;r =
0 z r r r z, ;2 = .

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9316

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig36&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig36&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


input and output of the two gates are not the same. The division
is processed by subtracting a multiple of the divisor from the

dividend, and revoking the subtraction if an underflow is caused.
The MSB of the result at this stage is in the inverse of the

Figure A-8.Carry gate and its variations. (A) Full carry gate, carry, (B) Constant input full carry gate, cocarry(a), with a = 0, (C) The same gate with a
= 1, (D) inverse full carry gate, icarry, (E) constant input inverse full carry gate, icocarry(a), with a = 0, (F) the same gate with a = 1, (G) half carry gate,
hcarry, (H) constant input half carry gate, cohcarry(a), with a = 0, (I) same gate with a = 1, (J) inverse half carry gate, ihcarry, (K) constant input
inverse half carry gate, icohcarry(a), gate with a = 0, and (L) same gate with a = 1.

Figure A-9. Sum gate and its variations. (A) Full sum gate, qsum, (B) Constant input full sum gate, cosum(a), with a = 0, (C) same gate with a = 1, (D)
Inverse full sum gate, iqsum, (E) Constant input inverse full sum gate, icosum(a), with a = 0, (F) The same gate with a = 1, (G) Half sum gate, qhsum,
(H) Constant input half sum gate, cohsum(a), with a = 0, (I) The same gate with a = 1, (J) Inverse half sum gate, iqhsum, (K) Constant input inverse
half sum gate, icohsum(a), with a = 0, (L) The same gate with a = 1.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9317

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig37&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig37&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig37&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig37&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig38&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig38&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig38&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig38&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


quotient value, so an X gate is applied to flip the bit. The input
and output of this gate are somewhat complex. For input, the
dividend is stored in z3, ..., z0 and the divisor in d2, ..., d0. An
additional group of ancilla bits zz2...zz0 must also be provided
with values set to 0. The resulting quotient is stored in the 4 bits
zz2...zz0 and z3, whichmeans that the higher bits are stored in the
ancilla bits zz, and the lower bits are stored in the high bits of z.
The remainder is stored in the low bits of z, which is z2...z0.
Together, the concatenated bitstring zz2...zz0 | z3...z0 stores the

quotient q3...q0 and remainder r2...r0, concatenated as q3...q0 |
r2...r0. The symbol | is used to represent bitstring concatenation.
Since the ancilla bits store the calculation result, they cannot be
reused for other purposes until they are reset to 0 by performing
the reverse of the udiv(m, n) gate. In addition to this, the internal
usub and sadd gates require n − 1 carry bits. The same n − 1 bits
can be reused in different usub and sadd gates. As a result, the
udiv(m, n) gate requiresm + n + n + (n − 1) =m + 3n− 1 qubits.

Figure A-7 A shows the absolute value gate, abs(n), for n = 4.
This gate conditionally negates the input qubits based on the
MSB of that input. A constant-value signed adder gate, scoadd, is
used internally, and 3 carry bits are required by the scoadd gate.
An ancilla bit sgn is required to store the sign bit of the input.
The abs(n) gate requires a total of n + (n − 1) + 1 = 2n qubits.

The final gate of this series is the square root gate, sqrt(n), for
n = 3 shown in Figure A-7 B. This gate takes 2n bits as input and
produces a square root in n bits and the remainder in n bits. For
this circuit, the input value is stored in z5, ..., z0, and ancilla bits
w3, ..., w0 are used to store work register values. Moreover,
temporary carry bits cr4, ..., cr0 are required by the internal
arithmetic gates, the square root value is produced in r2, ..., r0,
and the remainder in z2,..., z0. This sums up to 2n + (n + 1) + (2n
− 1) + n = 6n qubits in total.

The arithmetic gates include bitwise gates, such as carry gates
and sum gates. We also introduce half versions of these gates
which treat the input carry bit of a constant |0⟩. These half
versions can be used for the LSB on adder and subtractor

Figure B-1. Sequence diagram of the constructor of GFrame.

Figure B-2. Sequence diagram of the constructor of CFrame.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9318

https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig39&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig39&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig39&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig39&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig40&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig40&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig40&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?fig=fig40&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


circuits. The carry gate and its variants are shown in Figure A-8.
Variants are defined for the combination of full- or half-carry,
forward or inverse, whether input a is a qubit, a constant 0, or a
constant 1. The sum gate, qsum, and its variants are shown in
Figure A-9. Variants of the sum gate are defined in the same
manner as the carry gates.

■ APPENDIX B. SEQUENCE DIAGRAM OF THE FRAME
CLASSES

In this section, we show sequence diagrams that explains how
the heap framework classes are used to create Qiskit custom gate
objects.

The first diagram shown in Figure B-1 is the constructor
method of GFrame. This method creates a QuantumCircuit
object labeled gf.circuit that holds the internal instructions
(including gates) that comprise the gate G, as shown in Figure
16. After an empty QuantumCircuit is created, QuantumRegis-
ters must be added to the circuit before instructions are added to
the circuit. The diagram shows that the GFrame constructor
creates QuantumRegister objects and registers them in its
superclass Frame through the methods add_param and
add_local specifying whether the QuantumRegister is used as
a parameter or a local register. The superclass maintains a
separate list for each of the two categories of registers, and at the
same time adds those registers to the QuantumCircuit object,
gf.circuit. Internal instructions are added to the circuit at the
final step in the diagram.

The second sequence diagram, Figure B-2, shows the
constructor method of CFrame. Similar to the previous case
with GFrame, the constructor of CFrame creates a Quantum-
Circuit that holds the internal instructions of gate C. The
CFrame constructor is more complicated than that of FFrame
because it calls an inner custom gate, F. Gate F is created by
constructing an FFrame and then converting it to a Qiskit
custom gate. In Figure B-2, each method invocation arrow has
been numbered hierarchically for reference. Step 1 is the
constructor call. When this call is complete, the circuit for C will
be constructed on the QuantumCircuit object labeled cf.circuit.
Steps 1.1 and 1.2 comprise the creation of QuantumRegisters
and the purpose is the same as the case of GFrame. After the
QuantumRegisters are prepared, the instruction generation
begins. Step 1.3 adds instructions to the cf.circuit, up to the point
where gate F needs to be called. Gate F will be created from the
FFrame object later on at step 1.6.6.1. Step 1.4 calls the FFrame
constructor. This call completes all the circuit generations in
FFrame on the QuantumCircuit labeled ff.circuit, so the number
of temporary qubits that FFrame requires is determined at this
point. In step 1.5, the caller CFrame calls bind on the callee
FFrame passing arguments x1 and y1. The arguments are passed
using Python’s keyword argument syntax to avoid the risk of
argument order mismatch. In step 1.5.1, FFrame makes a list of
received QuantumRegisters in the order that the quantum

circuit of FFrame expects. This list does not include temporary
qubits yet. The list is stored in a binding object and sent back to
the caller. Step 1.6 is the invoke part. “invoke” is a method
implemented by the superclass of CFrame. In step 1.6.1, invoke
extracts the frame and the list of registers that were created at the
bind call. In step 1.6.2, invoke queries FFrame for the number of
temporary qubit registers. In step 1.6.3, invoke requests for the
number of temporary qubits from the TemporaryQubitAlloca-
tor object that is associated with CFrame. The allocator tries to
satisfy the request by using pooled temporary qubits, but when
no stock is left, it will add new registers with names such as
“tmp1” to cf.circuit, as shown in step 1.6.3.1. In step 1.6.4, the
temporary qubit list is ready and is appended to the list of
parameters. All the QuantumRegisters in the list are converted
to a list of Qubits that comprise those QuantumRegisters. This
forms the complete target qubit list that is required to invoke
gate F. In step 1.6.6, the ff.circuit is converted to a custom gate F,
labeled fg. Step 1.6.7 gives fg, along with the target qubit list, to
the append method of cf.circuit. The FFrame has been invoked.
Step 1.7 adds the remainder of instructions after invoking the
cf.circuit.

■ APPENDIX C. DETAILS OF QUBIT COUNT
EVALUATION

Table C-1 shows the decomposition of qubit counts for the plot
shown in Figure 14. The circuits were generated with parameters
set as d = 3, n1 = 10, and n = dn1 = 30, where the binary-coded
version of the antisymmetrization gates was used.

The meaning of the columns are as follows; η: number of
electrons, Ln number of nuclei, Ntot = NΨ + Nσ + NH: number of
total qubits counted on the generated circuit without the BOA,
Ntot′ = NΨ′ + Nσ + NH: the same but with the BOA, NKassal:
estimations according to Kassal,4 NΨ = dn1(η + Ln): number of
qubits for the wave function without BOA, NΨ′ = dn1η: number
of qubits for the wave function with the BOA, Nσ: number of
ancillary qubits required for antisymmetrization of the wave
function using binary-coded gates,NH = (2d + 6)n1 + 8: number
of temporary qubits required for the Hamiltonian simulation
(Section 3.1.2).
Nσ is the number of ancillary qubits required by the binary-

coded permutation gate and is defined as

N
k

( )

1, 2

1 log , 3
k 2

2

= {

=

+
= (C-1)

Here, the “1” before the sum means the single ancilla bit used in
swapping. In the following, we will consider the case for η ≥ 3. By
applying (eq C-1) to Ntot and N′tot, we obtain the following:

Table C-1. Decomposition of Qubit Counts

model η Ln Ntot Ntot′ NKassal NΨ NΨ′ Nσ NH

H 1 1 188 158 40 60 30 0 128
He 2 1 220 190 70 90 60 2 128
Li 3 1 252 222 100 120 90 4 128
H + H2 3 3 312 222 160 180 90 4 128
O 8 1 416 386 250 270 240 18 128
Gly 30 7 1358 1148 1090 1110 900 120 128
Ala 38 10 1734 1434 1420 1440 1140 166 128

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9319

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


N N N N

n L k n( ) log 12 9n
k

tot H

2
2 1

= + +

= + + + +
= (C-2)

N N N N n k nlog 12 9
k

tot H
2

2 1= + + = + + +
=

(C-3)

As an approximation for the sum, we can use the following:

klog

log

( 1) log
log

k

k

2
2

2
2

2

2

<

=
<

=

=

(C-4)

Applying eqs C-4 to C-2 and C-3 gives

N n L n
n n L

( ) log 12 9
( log ) ( 4) 9

n

n

tot 2 1

2

< + + + +
= + + + + (C-5)

N n n
n n

log 12 9
( log ) 4 9

tot 2 1

2

< + + +
= + + + (C-6)

When the spatial size of the molecule is taken into
consideration, the grids should be increased in accordance
with the molecule volume. Here, the appropriate n will likely
depend on the 3-D structure of the molecule as well as the intent
of the simulation; therefore, n is not a simple function of Ln.
Although generally describing n(Ln) is not easy, grid size 2n that
is appropriate for describing an η electron system is estimated to
be at mostO(η), i.e., n =O(log η). Then, because Ln ≤ η, eqs C-5
and C-6 are simplified to

N O( log )tot = (C-7)

N O( log )tot = (C-8)

■ ASSOCIATED CONTENT
Data Availability Statement
The Python software csrQ discussed here is distributed as free
software at https://github.com/crsq-dev/. The scripts used to
generate the results and figures are hosted at https://github.
com/crsq-dev/crsq-papers.

■ AUTHOR INFORMATION
Corresponding Authors

Hideo Takahashi − Department of Mechanical Engineering,
School of Engineering, The University of Tokyo, Bunkyo-ku,
Tokyo 113-8656, Japan; orcid.org/0009-0004-8948-
9451; Email: takahashi-hideo543@g.ecc.u-tokyo.ac.jp

Fumitoshi Sato − Institute of Industrial Science, The University
of Tokyo, Meguro-ku, Tokyo 153-8505, Japan;
Email: satofumi@iis.u-tokyo.ac.jp

Authors
Tatsuya Tomaru − Center for Exploratory Research, Research
and Development Group, Hitachi Ltd., Kokubunji, Tokyo 185-
8601, Japan; orcid.org/0000-0002-7645-8240

Toshiyuki Hirano − Institute of Industrial Science, The
University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan

Saisei Tahara − Institute of Industrial Science, The University of
Tokyo, Meguro-ku, Tokyo 153-8505, Japan

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.4c00708

Author Contributions
H.T. done the programming and preparation of the manuscript.
T.T. designed the quantum circuits. All authors were engaged in
discussions.
Funding
This research is partially supported by UTokyo Quantum
Initiative.
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Tomaru, T. To be submitted.
(2) Benenti, G.; Strini, G. Am. J. Phys. 2008, 7, 657−662.
(3) Zalka, C. Proc. R. Soc. A: Math. Phys. Eng. 1998, 1969, 313−322.
(4) Kassal, I.; Jordan, S. P.; Love, P. J.; Mohseni, M.; Aspuru-Guzik, A.
Proc. Natl. Acad. Sci. U. S. A. 2008, 48, 18681−18686.
(5) Chaganti, S. K.; Kesari, A. S.; Chowdhury, C. Chem. Phys. 2024,
580, No. 112195.
(6) Chan, H. H. S.; Meister, R.; Jones, T.; Tew, D. P.; Benjamin, S. C.
Sci. Adv. 2023, 9, No. eabo7484.
(7) Javadi-Abhari, A.; Treinish, M.; Krsulich, K.; Wood, C. J.;

Lishman, J.; Gacon, J.; Martiel, S.; Nation, P.; Bishop, L. S.; Cross, A.
W.; Johnson, B. R.; Gambetta, J. M. arxiv.org/abs/2405.08810 2024.
(8) Van Rossum, G.; Drake, Jr, F. L. Python reference manual;Centrum

voor Wiskunde en Informatica: Amsterdam, 1995.
(9) Gamma, J.; Helm, E.; Johnson, R.; Vlissides, R. Design Patterns:
Elements of Reusable Object-Oriented Software; Addison-Wesley
Professional: Boston, 1994.
(10) Appel, A. W. Modern Compiler Implementation in Java;

Cambridge University Press: New York, 1998.
(11) Krekel, H.; Oliveira, B.; Pfannschmidt, R.; Bruynooghe, F.;

Laugher, B.; Bruhin, F. pytest. https://github.com/pytest-dev/pytest
(accessed Aug. 24, 2024).
(12) Vedral, V.; Barenco, A.; Ekert, A. Phys. Rev. A 1996, 54 (1), 147−

153.
(13) Bryant, R. E.; O’Hallaron, D. R. Computer Systems: A
Programmer’s Perspective; Pearson: Boston, 2015; 274−290.
(14) Josuttis, N. The C++ Standard Library: A Tutorial and Reference,

2nd Ed.; Addison-Wesley Professional: Boston, 2012; 486−497.
(15) Fowler, M. UML Distilled: A Brief Guide to the Standard Object
Modeling Language; Addison-Wesley Professional, 2003.
(16) Kivlichan, I. D.;Wiebe, N.; Babbush, R.; Aspuru-Guzik, A. J. Phys.
A: Math. Theor. 2017, 50 (30), 305301.
(17) Babbush, R.; Berry, D. W.; McClean, J. R.; Neven, H. npj
Quantum Inf. 2019, 5 (1), 92.
(18) Draper, T. G. arXiv preprint quant-ph/0008033 2000.
(19) Abrams, D. S.; Lloyd, S. Phys. Rev. Lett. 1997, 79 (13), 2586.
(20) Kashiwagi, H.; Iwai, H.; Tokeida, K.; Era, M.; Sumita, T.;

Yoshihiro, T.; Sato, F. Mol. Phys. 2003, 101 (1−2), 81−86.
(21) Nishino-Uemura, N.; Hirano, T.; Sato, F. J. Chem. Phys. 2007,
127 (18), 184106.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00708
J. Chem. Theory Comput. 2024, 20, 9290−9320

9320

https://github.com/crsq-dev/
https://github.com/crsq-dev/crsq-papers
https://github.com/crsq-dev/crsq-papers
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hideo+Takahashi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0004-8948-9451
https://orcid.org/0009-0004-8948-9451
mailto:takahashi-hideo543@g.ecc.u-tokyo.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fumitoshi+Sato"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:satofumi@iis.u-tokyo.ac.jp
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tatsuya+Tomaru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7645-8240
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Toshiyuki+Hirano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Saisei+Tahara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c00708?ref=pdf
https://github.com/pytest-dev/pytest
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

