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KINK DYNAMICS IN THE ¢* MODEL: ASYMPTOTIC
STABILITY FOR ODD PERTURBATIONS
IN THE ENERGY SPACE

MICHAL KOWALCZYK, YVAN MARTEL, AND CLAUDIO MUNOZ

1. INTRODUCTION

1.1. Main result. In this paper we consider a classical nonlinear equation known
as the ¢* model, often used in quantum field theory and other areas of physics.
We refer the reader for instance to [33l41L52/[55.59]. In one space dimension, this
equation reads

(1.1) 26— 26 =6— ¢ (11) ERxR.
Recall that

(1.2) H(z) = tanh (%) ,

is a time-independent solution of (LTI, called the kink. Indeed, H is the unique
(up to multiplication by —1), bounded, odd solution of the equation

(1.3) ~H" =H - H.

Note also that (1)) is invariant under time and space translations and under the
Lorentz transformation. Written in terms of the pair (¢, 8;¢), another important
property of (L)) is the fact that the energy,

1 1 1
(1.4 B(6.00) = [ 3100 + 5100 + 1 (1~ 167)°.

is formally conserved along the flow. In particular the energy of the kink (H,0)
is finite and H! x L? perturbations of the kink are referred to as perturbations
in the energy space. By standard arguments, the Cauchy problem for (1)) is
locally well posed for initial data (¢(0), d:$(0)) of the form (H + @i, ") where
(i, ") € H x L2. Note also that for odd initial data, the corresponding solution

of (L) is odd.
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As for the long time behavior of solutions of (LIJ), we recall that Henry, Perez
and Werszinski [22] proved orbital stability of the kink with respect to small per-
turbations in the energy space (see Proposition B and its proof for the special case
of odd perturbations). For the rest of this paper, we work in this framework, and
we consider only odd perturbations.

Set

(1.5) b=H+p, 8d=gps ot)= <<P1(t)> .

Then, ¢ satisfies

Orp1 = 2
(1.6) _ 2 3
Oppa = —Lp1 — (3HpT + ¢7),

where L is the linearized operator around H:

1.7 L=—-0%—-1+3H?=—-0%+2 — 3sech? <i>
(1.7) 7
Our main result is the asymptotic stability of the kink of the ¢* model with
respect to odd perturbations in the energy space.

Theorem 1.1. There exists £g > 0 such that for any odd ™™ € H' x L? with

||<Pm||H1xL2 < €o,

the global solution ¢ of (ILG|) with initial data ¢(0) = ¢ satisfies
(1.8) A {le@) <2y =0,
for any bounded interval I C R.

To our knowledge, Theorem [[.1]is the first result on the asymptotic stability of
the kink for the standard one dimensional ¢* model, which we see as a classical
question in the field. Several previous related results, outlined in Section below,
suggest that there have been several attempts to solve this problem by various
techniques. Moreover, a corollary of Theorem [[1lis that no odd wobbling kinks
(periodic in time, topologically nontrivial solutions) close to the kink exist, which
partially settles another longstanding open question in the field (see Remark [L3]).
Finally, we believe that our approach, elementary and self-contained, is at the same
time general and flexible and opens a new way to prove similar results for related
models.

Remark 1.1. We comment here on the notion of asymptotic stability introduced in
Theorem [[Tl Observe that if a solution ¢ of (L)) satisfies lim;— o0 || (¢) || 1% 12 =
0 then by the orbital stability result [22], ¢(¢) = 0 for all ¢ € R. Thus, the notion of
“local” asymptotic stability in the energy space as in ([L8) is in some sense optimal.

The statement of Theorem [[.T]does not contain any information on the decay rate
of |lo(t)||ar(ryxr2(ry as t — Foo. To give a precise answer to this question from
our proof, we need to introduce a decomposition of ¢(t) along the discrete and
continuous parts of the spectrum of the operator £, which respectively correspond
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to internal oscillations and radiation. The operator L is classical and it is well
known (see e.g. [39]) that

3
spec L = {O, 5} U [2, +00).
The discrete spectrum consists of simple eigenvalues A\g = 0 and A\; = %, with L2
normalized eigenfunctions, respectively given by

(19) Yo(l‘) = 275/431/2 SeCh2 (i <}/O; YO> — 17

)
and

T

(1.10)  Yi(x):= 2734312 tanh (\/5) sech (%) . (VLY = 1.

(Here and below (F,G) := [ FG). Note that Yo(z) = 273/431/2H'(z) is related
to the invariance of equation (ILI]) by space translation. Since we restrict ourselves
to odd perturbations of the stationary kink, this direction will not be relevant
throughout this work. In contrast, the eigenfunction Y7, usually referred to as
the internal mode of oscillation of the kink is not related to any invariance. It
introduces serious additional difficulties and plays a key role in the analysis of the
long time dynamics of ¢. We decompose ¢(t) in the form

(pl(t,l‘) - Zl(t)}/l(x) + ul(ta J)), <u1(t)7Y1> =0,

1/2

(1.11)
wa(t,x) = A\ "2 () Y1 () + ua(t, z), (u2(t),Y1) =0.

Theorem [I.T] will be the consequence of the following global estimate.

Theorem 1.2. Under the assumptions of Theorem [L1],
(1.12)

/+Oo(|zl(t)|4+|32(t)|4) dt+/J:o/R((8$u1)2+uf+u§) (t, 2)e0 " ddt

— 00
S o™ 32
for some fized ¢y > 0.

The information given by (LI2) on the solution ¢(¢) may seem rather weak
compared to other existing results on asymptotic stability, but it is not clear to us
whether a stronger convergence result can be obtained for perturbations in the en-
ergy space. Estimate (II2) follows from the introduction of a new Virial functional
for (CG). This approach based on Virial functionals is similar and inspired by works
of Martel and Merle ([34H36]) on the asymptotic stability of solitons for the subcrit-
ical generalized Korteweg-de Vries equations and of Merle and Raphaél [38] in the
study of the blow-up dynamics for the mass critical nonlinear Schrodinger equa-
tion. This remarkable coincidence shows a deep connection between dispersive and
wave problems of seemingly different nature, and the generality of such arguments.
However, a new, key feature in our approach is to adapt the Virial functional to
take into account the internal oscillation mode (z1, 22) associated with the direction
of Y1. This mode is expected to have a slower decay rate as t — 400, as suggested
in (LI2) and we believe that in general f:r;:(|zl(t)|2 + |22 (1) |?)dt = +o0.
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Remark 1.2. In our opinion, the case of odd perturbations contains the most difficult
and at the same time the most original aspect of the problem which is the exchange
of energy between the internal oscillations and the radiation, and the discrepancy of
decay rates of the different components of the perturbation. To address this issue we
have developed new tools both for the linear and the nonlinear parts of the problem.
Asymptotic stability of solitons for nonlinear Schrédinger equations or of kinks in
the relativistic Ginzburg-Landau equation in the space of odd perturbations has
also been considered previously for instance in [9,25]. From this point of view the
oddness hypothesis in Theorem [Tl is neither new nor artificial. This being said,
we conjecture the asymptotic stability result to be true for general perturbations in
the energy space. This would require taking into account the translation invariance
of the ¢* model by modulation theory, which is standard in this type of problem
(see e.g. [I0B34)58]), and the emergence of an even resonance at A = 2, which is
a delicate issue. We expect that to treat the general case, a more refined analysis
of the Virial functional introduced in Section @l of this paper will be needed.

Remark 1.3. The sine-Gordon equation,
(1.13) Ou +sinu = 0,

shares some qualitative properties with the ¢* model, as the existence of an explicit
kink solution

S(x)=4arctan(e”) = 4Arg (1 +ie®), z eR.
As a classical example of an integrable scalar field equation, it also possesses other

exceptional solutions, among them a one parameter family of periodic solutions
called wobbling kinks, given explicitly by (see Theorem 2.6 in [13])

(1.14) Wa(t,z) = 4Arg (Uq (t, ) + iVa(t, 2)),
where 148 28
_ TP 26 _ (1+8)x
Uas(t,z) =1+ 1_66 1_/86 cos(at),
1468 . i 28 s
Val(t,x) = T _/Be +e T —,6’6 cos(at),
for a € (0,1), B =+1—a? Taking t = g it is not hard to see that

0 (2 () 00 ()., =00

Since, at the same time W, is periodic in time, we see that the sine-Gordon kink
is not asymptotically stable in the energy space in the sense of Theorem [I[1] (take
0 < B <« 1). Interestingly, note that changing v = u — 7 in ([LI3]), which gives
Ov = sinw, helps comparing the situation with the ¢* model. Indeed, the kink
solution (now S — ) is an odd function and it is easy to check that W, — 7 is also
odd. Thus, asymptotic stability fails for this model under the oddness condition.
This is a remarkable difference between the two models at the nonlinear level.
We note further that

S(x) =27+ 0O(e™™), W (%,x) =21+ 0(e™), T — 00,

with similar formulas when x — —oo. From these facts and the explicit formula for
0:Wal(55,x) it is not difficult to see that S and W, (55 ) are also close in Sobolev

2a°
norms with some exponential weight. It follows that even in a stronger topology,
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asymptotic stability does not hold for the sine-Gordon equation, in contrast to
results proven for example in [40] for the generalized Korteweg-de Vries equation,
or in [I2] for the cubic one dimensional nonlinear Schrodinger equation.

The problem of constructing or proving nonexistence of wobbling kinks for the
¢* model attracted some attention in the past; for an early discussion, we refer
the reader to Segur’s work [44]. While there was formal and numerical evidence
against the existence of wobbling kinks [29], our result provides a rigorous proof
of nonexistence (at least in a neighborhood of the kink and under the oddness
condition) that, to our knowledge, had been missing.

1.2. Discussion of related results. As we have seen, the question of stability
of the kink, as a solution of ([I]), with respect to small and odd perturbations
reduces to the stability of the zero solution of the nonlinear Klein-Gordon (NLKG)
equation (LG). Similarly, the question of asymptotic stability for H, in a suitable
topological space, in principle reduces to the problem of “scattering” of small so-
lutions for (L6). In particular (L6 presents several well-known difficulties: it is
a wvariable-coefficients NLKG equation, with both nontrivial quadratic and cubic
nonlinearities, in one space dimension.

The description of the long time behavior for small solutions to NLKG equations
has attracted the interest of many researchers during the last 30 years. Klainer-
man [23,24] showed global existence of small solutions in R'*3 via the vector field
method, assuming that the nonlinearity is quadratic. Similarly, Shatah [45] consid-
ered the NLKG equation with quadratic nonlinear terms in d > 3 space dimensions.
By using Poincaré normal norms suitably adapted to the infinite dimensional Hamil-
tonian system, he showed global existence for small, sufficiently regular initial data
in Sobolev spaces. In both of these approaches the main point is to deal with
the quadratic nonlinearity, which complicates the analysis even in dimension 3 and
higher due to slow rate of decay for linear Klein-Gordon waves. The situation is
known to be even more delicate in low dimensions 1 and 2.

In one dimension, fundamental works due to Delort [I4.[15] (see also [I6] for
the two dimensional setting) shows global existence of small solutions not only for
semilinear but also for quasilinear Klein-Gordon equations. See also Lindblad and
Soffer [30H32] and Sterbenz [50]. The ¢* model serves as one of the motivations
of [32] and [50] since the understanding of the asymptotic stability for H is deeply
related to the study of the NLKG equations with variable coefficients and quadratic
and cubic nonlinearities. However, the ¢* model does not fit the assumptions made
in [32] and [50]. Finally, we mention the works by Hayashi and Naumkin [20}21]
on the modified scattering procedure for cubic and quadratic constant coefficients
NLKG equations in one dimension.

In addition to the aforementioned difficulties of the NLKG equations with qua-
dratic and cubic nonlinearities, what makes problem (L) challenging is the ex-
istence of an internal mode of oscillation. The fundamental work of Soffer and
Weinstein [49] seems to be the first in which the mechanism of exchange of energy
between the internal oscillations and radiation was fully explained for a class of non-
linear Klein-Gordon equations with potential (see also [48] by the same authors).
Although the models they considered do not include the ¢* model, they speculated
(see page 19 in [49]) that the phenomena of slow radiation for the ¢* model is due
to a similar mechanism. Since the two problems are related we will briefly discuss
their approach. They study the question of asymptotic stability of the vacuum
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state (the zero solution) for the following Klein-Gordon equation in R3 x R:
(1.15) Fu=(A=V()—m*)u+’® IXER, A#0.
Under some natural hypothesis on the decay of the potential V' and assuming that
(i) the operator Ly, = —A+V +m? has: continuous spectrum ceons = [m, 00);
a single, positive, discrete eigenvalue Q2 < m?2; and the bottom of the

continuous spectrum is not a resonance, and
(ii) the Fermi golden rule holds (see Remark below),

they show that w = 0 is asymptotically stable. Moreover, Soffer and Weinstein
proved that the internal oscillation mode decays as O(|t|~'/*), while the radiation
decays as Ops(|t|=3/4). From their result we see the anomalously slow time decay
rate of the solution is additionally complicated by the existence of different time
decay rates of each component of the solution. This discordance seems to hold in
general, and it is also a characteristic of our problem, as expressed for instance in
CI2).

The idea of the proof in [49] is first to project (IIH) onto the discrete and the
continuous parts of the spectrum of Ly, with the corresponding components 1 and z
satisfying, respectively, a nonlinear dispersive equation and a Hamiltonian system.
In the second step the equation for 7 is solved for a given z and the result then
substituted in the ODE for z. The last step is the identification of the equation of
the amplitude A(t) = |z(¢)| using the Poincaré normal forms. The second step relies
on dispersive theory and this is where the assumption (i) is used; the importance
of working on R? is evident at this point since dispersive estimates improve with
the dimension of space which is important to estimate the nonlinear terms.

For nonlinear Schrédinger equations, the study of the asympotic stability of soli-
tons was initiated by Buslaev and Perelman [5l[6], introducing a spectral decom-
position of the solution on eigenspaces associated with the discrete and continuous
spectrum of the linearized operator near the solitons. We also refer the reader to
[BL[7,12L28][43[53] and references therein for works related to [5[6] and [49] concern-
ing the asymptotic stability of the solitons for nonlinear Schrédinger equations.
See also [2] for Klein-Gordon equations. This list of references in the subject is not
exhaustive.

For generalized (KdV) equations, we refer the reader to works concerning asymp-
totic stability both for solitons [35,[40] and kinks [37] (using the Miura transform).

For Schrodinger equations with Ginzburg-Landau nonlinearity (such as in the
¢* model), the question of asymptotic stability of topologically nontrivial solitons
(i.e. solitons satisfying a nontrivial condition at infinity, such as dark and black
solitons) was successfully addressed by different techniques in works by Vartanian
[54], Bethuel, Gravejat and Smets [4[19] and Cuccagna and Jenkins [11]. Note that
[4,19] are surprising extensions of [341[35] to the one dimensional Gross-Pitaevskii
equation. We refer the reader to references in those works for orbital stability
results in this context.

As for problems more closely related to our result we mention the work of Kopy-
lova and Komech [25] (see also [26]) where the issue of asymptotic stability of the
kink in the following relativistic Ginzburg-Landau equation is addressed:

(1.16) 02w = 0%u+ F(u), inRxR.

The form of the nonlinearity FF = —W', where W is a smooth double well potential,
guarantees existence of a kink U. More specifically it is assumed that, with some
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m >0 and a > 0:

2
(1.17) W(u) = mT(u Fa)> + O(lu F a*), as u — *a.

This assumption, which excludes the ¢* model, is essential to the method of [25]
which is based on Poincaré normal forms and dispersive estimates and is inspired by
the work of Buslaev and Sulem [7] (see also [5[6,[43,53]). Under further hypothesis
of the same type as (i) and (ii) above, [25] shows asymptotic stability of the kink
U with respect to odd perturbations. The authors obtain explicit rates of decay:
O(|t|='/?) for the internal oscillations, and Op__ (|t|~1), where E_, = (14|z|)7 H'x
(14|x|)7 L2, o > 5/2, for the radiation. We note that in these works, because of the
slow decay of the solutions of the free equation in one dimension, the perturbation
of the quadratic potential has to be taken sufficiently flat near the limit points +a
in order to close the nonlinear estimates.

It is also important to mention that Cuccagna [8] proved asymptotic stability of
planar wave fronts in the ¢* model in R? (study of stability of the one dimensional
kink subject to three dimensional perturbations). The method used in this paper
combines dispersive estimates by Weder [56L[57] (see also [18]), together with Klain-
erman vectors fields and normal forms. The fact that the space dimension is 3 with
better decay estimates for free solutions is essential in order to close the nonlinear
estimates.

2. OUTLINE OF THE PROOF

The method of the present paper, based on the use of a Virial functional, is
inspired by the one introduced for the generalized KdV equation in [34,[35]. This
approach is both self-contained and elementary. Below we present the key ideas.

1. Spectral decomposition. It is essential to decompose the solution ¢ of (L6
to separate the mode of internal oscillations (associated with the eigenfunction Y7)
from the radiation (associated with the continuous part of the spectrum). Indeed,
these components have specific asymptotic behavior as t — +o0o0. With the notation

(F,G) := /FG,

we define

(2.1) z1(t) = (p1(1), Y1), 22(t) = %<902(t),Y1>7 pi= \/g

(2.2) ur(t) = 1(t) — z21()Y1,  ua(t) := p2(t) — pz2 (Y1,
so that
(2.3) YVt e R, (uy(t),Y1(t)) = (ua(t), Y1(t)) = 0.
Denote

. z1 (t) . ul(t)
(2.4) z(t) := (zz(t)> , o u(t) = <u2(t)> .
Set
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For the higher order nonlinear terms we will use the notation (we omit the depen-
dence on time)

Oy = O, 2] - [lull, [u]]?),

where O(-) refers to a function which is bounded by a linear combination of its
arguments. In this section, we present the argument formally; in particular, we do
not specify which norm of u is used. In Section [B we will give full details on the
control of the error terms.

Since LY, = p2Y7, we obtain

21 = p2o

2.6 , 3
26) 22:—p21—;<HY12,Y1>zf+FZ, F, = 0.

In particular,

d

(27) Z(2) = 0y,
and

d:2ﬂﬁ+Fa7 Fa2037
(2.8) .

f = —2pa+Fs, Fg=0s

Moreover, thanks to (22) and (L6), one checks that

U = Ug
2.9
(2:9) Uy = —Luy —222f + F,, F, = Os;

where f is an odd Schwartz function given by the expression

fo=2 (HY? - (HY2,Y1)Y1), so that (f,Y:) =0,

DO W

(2.10)

| ]

and Vz € R, |f(z)] + |f(x)| < e Ve,

There is a simple way to replace the term z?f in the equation of us by a term
involving only « without changing the structure of the problem. To this end we
introduce a change of unknown

vi(t,x) == ui(t,x) + |z|2(t)q(:1:), where Lq(z) = f(z);

(2.11) va(t, @) = ua(t, @),

and
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Note that the existence of a unique odd solution ¢ € H(R) of Lg = f follows from
standard ODE arguments. Moreover, ¢ satisfies

|z

(2.12) Vo eR, ()] + ¢ (@) S e V.
Then,

U =vp+ I, Fy=0s,
(2.13) .

Vg = —Lv; —af + Fy, Fy,=0;.
Note that

0= <fa Y1> = <‘CQ7YI> = <q,£Y1> = ,LL2<q,Y1>
and thus (v1,Y1) = (va, Y1) = 0.

2. Orbital stability. Using the stability result of Henry, Perez and Werszinski
[22] (see Proposition Bl for a short proof of this result for odd perturbations), we
infer that if ¢ is small enough then (t) is global in time and uniformly small
in H' x L2. Tt follows that (u1,us), z and thus (vy,ve) and a, 3 are also small,
uniformly in time:

VteR, fu)llmxrz + lv@)llmixee +2@)] Se. €= o™ mxre.

At this point, the system in (v1,vs, @, 3) can be studied by a Virial argument.
We present the formal argument, discarding for the moment higher order terms.

3. Virial type arguments. The objective of Virial arguments is to prove the
following estimate:

(2.14) | (0 + Oy rz ) de 5 22

Here, H. x L? means the H! x L? norm of v with a suitable exponential weight,
see (3] for a precise definition. The proof of ([2I4) requires the use of several
functionals which we introduce below.

First, let

(2.15) T:= /1/)(81111)112 + %/’(/)/’Ul’Ug,

(2.16) J = a/vzg— 2u5/vlg,

where 9 and g are functions to be chosen (¢ is bounded, increasing; ¢’ and g are
Schwartz functions). Using the equations for (vy,vs) and «, 3, we find

d -
~ T+ T) = Bn) + avn, ) +0(f,g) + O (I ol wrz ) -
where B is a quadratic form and & is a given Schwartz function.
Next, using the orthogonality (v1,Y7) = 0 and the oddness of vy, one proves that
the following coercivity property holds:

(2.17) B(vy) + afvi, h) +o®(f, 9) Z ol +a®.

Estimate ([ZI7) is the key point of this paper. Note that, as in [34L[3538], we rely
on the numerical computations of some integrals to prove (2I7) (see Remark
for more details). We also point out that the choice of a suitable function g is
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related to the Fermi golden rule, see Section for details. From the previous
observations, we obtain

d

(2.18) 5T+ T) 2 + ol +€0 (IZI“, HUH?{;ng) :
Second, let v = af. Then,

(2.19) i = 2u(8% = ) +£ O (Jal ol s ) -

Finally, by direct computations, it can be proven that

d x
(2.20) 7 /sech <ﬁ> VU 2 HUQHQL?, +0 (|z\4, ||U1||§fi) .

Since |z|* = a? + 3%, we see that for small enough perturbations, integrating in

time a suitable linear combination of [2I8)), (Z19) and 220) gives 214).

4. Convergence to the zero state for a weighted norm. From (2.I4]), one deduces
(2.21) lor (D) ||z + lv2(E)llz2 +[2(8)] — 0 ast — oo,

which implies (L8).
Indeed, from (2T4]) it follows that there exists a sequence ¢, — 400 such that

m [[v(tn)l a2 <z + [2(ta)] = 0.

n—-+oo

For z(t), from 2.7]),

4 3 2 2
214 S 12 (12 + ol ) -

d
dt
Integrating on [t,t,], passing to the limit n — 400 and using ([2.I4]), we deduce

that lim;, 4o |2(¢)] = 0.
For v(t), we consider an energy type quantity (at the linear level)

H= [ (90012 + 20or? + Joa? h(i),
/(| vy |v1] |v2|)sec W

and we show that
#1 S (121 + el iz ) -

As before, integrating on [t, t,,], and using [2I4]), we deduce that lim;_, 1 oo H(t) = 0,
which proves ([221)).

From the above sketch it is evident that our approach is different from the ones
briefly described in Section in that it does not rely on dispersive estimates.
In this sense our method allows for minimal hypothesis, is robust and possibly
applicable to other type of problems. In particular, it could be applicable, at the
cost of a possibly more complicated algebra due to the spectrum of the linearized
operator, to generic, analytic, nonlinear perturbations of the sine-Gordon equation
of the form sinu + h(u), h(u) = > poy apu® T, h(u — m) = —h(—u), at least in
the absence of a resonance (see [I] for the resonance issue). Recall the related fact
that breathers in the sine Gordon equation do not persist under generic analytic
perturbations (see [I7] and the references therein, and our recent work [27]).
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3. PRELIMINARIES

1. Orbital stability of the kink. We recall briefly the proof of the stability
result of Henry, Perez and Werszinski [22] restricted to odd perturbations. First,
we have the following energy conservation for ¢: for all ¢ so that (t) exists in the
energy space it holds (¢(0) = ™)

31 E®)i= [0+ Caln®)+2 [ B0+ [ o) =)

Second, we have the following consequence of the stability of the zero solution for

([@4).

Proposition 3.1 ([22]). There exist C > 0 and €9 > 0 such that, for any odd
e e HY x L2, if ||¢™ || sixr2 < €0, then the solution ¢ of (ILB) with initial data
©(0) = ¢ is global in time in the energy space and satisfies

(3.2) VteR, lloMlmxre < Clle™|mxre-

Proof of Proposition [3.1l. We begin with the following simple result.

Claim 3.1. If 1 € H'(R) satisfies {¢1,Yo) =0, then

3
(L1, 1) > ;H@l”?{b

Proof of Claim BIl By the spectral properties of £ and the spectral theorem, we
have immediately

(L1, 1) > —||<P1||L2

Since sechz(%) <1,

(L1, 1) =/(3zs01)2+2/w?—3/sech2 (%) 0}
Jor - ot (5)

S 3

=7

3 3 4
> ;/(89:@1)2 - 7/@? + §<£¢17<ﬂ1>

This ends the proof of the Claim. O

||<P1HH1

Going back to the proof of [32)), on the one hand,
E@™) < 1903122 + 209" 17 + Clior" 13
and on the other hand,
3
Ep(t)) = = (lp2@®lz2 + ler@®lF) = Cller@® Nz + lor®l)-

Combining these estimates with the energy conservation (B1I), for g > 0 small
enough, we get the result. ([l
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3.2. ODE arguments and the Fermi golden rule This section concerns the
resolution of the equation (—£ +4u2)G = F, where u? 3 . This will be crucial in
choosing the function g in the definition of J in (ZI8]).

Lemma 3.1.

(i) Let F € LY(R)NCY(R) be a real-valued function. The function G € L>(R)N
C?(R) defined by

(3.3) G(z) = 11—21111 (k(x) /w kE + k(z) /:OO kF) ,

where
(3.4) k(z) = e™* (1 + lsech2 (i) + iv/2 tanh <i>) ,
2 V2 V2
satisfies
(3.5) (=L 4+ 44*)G = F.
(ii) Assume in addition that F € S(R). Then,
(3.6) GeSR) <<= (kF)=0.

Remark 3.1. Since k(—x) = k(z), if F is odd then G defined by (B.3) is also odd
and the orthogonality condition in (B) reduces to

(3.7) (Tm(k), F) = 0.

Remark 3.2. Note that (=L + 4p?)k = (=L + 6)k = 0 (see the proof of Lemma
BI). Since (—L£ + 3)Y; =0, we have (k,Y7) = 0. Thus, for f defined in 2I0),

(k. £) = Sk, HYZ) = Siftm(h), HY?).
The fact that
(3 k), HY?) # 0

can be easily checked by numerical integration (we find 3 (Im(k), HY?)~ —0.333).
This condition is a nonlinear version of the Fermi golden rule (from now on we
will refer to it as such) whose origin is in quantum mechanics [47], [42] p. 51]. In
a similar nonlinear context, it was identified by Sigal [46] for nonlinear wave and
Schrédinger equations and by Soffer and Weinstein [49] (see condition (1.8) in [49])
for a nonlinear Klein-Gordon equation in three dimensions. As was pointed out in
[49], this nonzero condition guarantees that the internal oscillations are coupled to
radiation and, as a consequence, the energy of the system eventually radiates away
from the vicinity of the kink, making it asymptotically stable. This behavior is
in deep contrast with the (integrable) sine-Gordon equation, for which the Fermi
golden rule is not satisfied (simply because 0 is the only discrete eigenvalue for the
associated linear operator), and even worse, explicit periodic solutions (wobblers,
see (ILI4))) do persist.

In the present paper, the Fermi golden rule ([B.8)) is the key fact which forbids
the existence of a solution g of (—£+4u2)g = f in the energy space. As we will see,
in our particular setting, and for purely algebraical reasons, we will use a modified
version of (B.8)), which reads

(3.9) g <Im(k), (HY? — Yi(HY?,Y1)) sech? (8%> > ~ —0.327.
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This condition is better adapted to the use of weighted Sobolev spaces which we
work with; see Section and [@33). Note finally that we can interpret (3.9
in terms of the distorted Fourier transform associated with £ at the point £ = 6,
which is precisely given by Im(k) for odd data.

Proof of Lemma Bl

(i) The explicit expression of k in (B4 was found by Segur [44]. We easily
check by direct computation that

(—L+4p®)k = (L +6)k = 0.

Indeed, let m(z) := 1+ 5 L sech? %) +iy/2tanh (%) Then,
2

(
m'(z) = —?t anh (\/_> sech’ (%) + isech’ <%>

i () 5) - (5) o (75)

and thus

(=L +6)k = [(0? + 4)e™*®|m + 4ie’>*m/ + "**m" + 3sech? (%) e?Tm

= e ( 4im’ + m” + 3sech? <i> m) =0.

( 7
Since k(z) ~ (1 +1iv/2)e?* as 2 ~ 400, the functions k and & form a set of
independent solutions of (—£ + 6)G = 0 (up to multiplicative constants, &
and k are the so-called Jost functions). Therefore, for F' € L*(R) N C'(R),
the following real-valued function G

G(z) = —Re {m (k;(x) /OO RE + k(x) /;OO kF)] ,

where W (k, k) = kk' — k'k is the Wronskian of k and k, solves (—L£+6)G =
F. Since W (k, k) = —12i, we obtain (B.3]).
(ii) By the definition of G in ([B3]), we have the following asymptotics at +oo:
1 . 1 -

G(z) ~ ﬁlm (k(z)(k,F)) as & — +oo, G(z)~ Elm (k(z)(k, F)) as z — —o0.
Thus, lim, s+ G = 0 if and only if (k, F) = 0. Moreover, if (k, F) = 0

and F € S(R), it follows directly from B3) that G € S(R).
]

4. VIRIAL TYPE ARGUMENTS

Recall the set of coupled equations (Z8) and (ZI3]), which can be rewritten as
a mixed system in (vy,va, @, 5):

01 = v + F1,
Uy = —Lv; — af + Iy,
(4.1) G = 28 + Fa,

B = —2pa + Fy,
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where £ = —92 +2—3(1 — H?), u = 1/3/2, and where f was introduced in (ZI0).
In this section, we concentrate on the main terms of this system and thus we do
not compute explicitly the nonlinear error terms F, Iy, F,, and Fj, which will be
considered in detail in Section

4.1. Virial type identities. For a smooth and bounded function ¥ to be chosen
later, let

(4.2) T := /1/;(69,:1)1)1)2 + %/WUWQ = / (wamvl 4 %1//“1) Vg

First, using (41]) and integrating by parts,
& [@e = [v@in+ [v@mi
= /Q/J(amﬂg)ﬂz + /w(amvl)(aivl —2v1 +3(1 — Hz)vl)
(4.3) —a/¢(8wv1)f—|—/w((8mF1)v2—1—(81111)F2)
_ _%/¢/ (02 + (O1)? — 202) — g/(wu — )
o [y + [6 (@ + @00 F).

Second,

%/1/)/111@2 :/T//@lvz-l-/?//’l)l%
- /z//v% + /w'vl (Bivl —2u1 +3(1 — H2)v1) - a/w’vlf
(44) + /w/ (Flvz + Ung)

:/w/ (V3 — (Bp01)? — 20%) + /1//” T+ / "(1— H?)?

—01/1/)/1}1](‘4—/#)/ (FlUQ""UlFQ).

Gr=—B+a [o (v +500)+ [ (vor+gun)

1
- /v1 <¢31F2 + §¢'F2) ;
where

(4.6) B(vy) / AGRINE / "2 — 3 / WHH"?.

For a smooth function g to be chosen later, let

(4.7) j::a/vgg—2u6/v1g,

Therefore,

(4.5)
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Then, using (£.1)

d ) . : .
EJZa/vzg+a/vzg—2u6/v19—2uﬁ/v19

(4.8) = a/ (—Lg+4p”g) v1 — aQ/fg

+Fa/v29—QMFB/U19+04/F29—2M/3/F19~

Adding @3) and ([£8), we obtain
d

(49) E (I+ j) = —D(Ul, Oé) + RD,

where

1
(4.10) D(vy,a) = B(vy) — a/v1 (wf' + 51//f —Lg+ 4/129) + a2/fg,
and the error term is

1
Rop = /Q(QF2 —2uBFy) + /'UQ (1/15mF1 + 57//F1 +9Fa)
(4.11) 1
4.2. Coercivity of the bilinear form B. Now we choose a specific function
and we consider the question of the coercivity of the bilinear form B given in (4.6]).

Let A > 1 be chosen (we anticipate that in the sequel we set A = 8) and in the
definition of Z, let

(4.12)
x x x
= 2H (- ) = 2tanh | —= ) ; = "(x) =sech | —= | .
b(z) = A2 (A) AV2tan <W§> . ((z) = /P (2) = sec (Aﬁ)
Note that ¢ > 0 everywhere. Let w be the following auxiliary function:
(4.13) w = (.

First, note that by integration by parts,
[z = [com+cup= [w@m?+z [cu@o+ [

= W@y - [ = [w@my- %"w?

Thus,

(4.14) /qp’(azvl)? = /wﬁ +/%/w2.

Second,
2\ " 1\2
[t [ [ (€ €F) o
Therefore,
1
B(vy) = [ /' (0zv1)> — = [ "] =3 [ yHH'v}
(4.15) / 4/ /

e ()
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Set
Lr¢m () Y
# - 2 2 > _ hd !
B (w) : /(wx Vw?), where V: 2<< o —|—3w/HH7
so that
(4.16) B (w) = B(vy).
Note that by [@I2) and direct computations,
CH 1 (C/)Q 1
?Zﬁ(l—QCQ), o Zﬁ(l—@)v
C_” _ (¢)? _ﬁ v 2 £
e T T T G
Moreover,

(4.17)

Recall Y7 from (I0). Let

o
W2

Note that Z; is odd. In the following we claim the coercivity of the quadratic form
B¥ on a space of odd functions which are orthogonal to Z;. From now on, x will
stand for a generic positive constant whose value may change from line to line.

(4.18) Zy ==Y cosh ( ) so that (v1,Y7) =0 <= (w,Z;) =0.

Lemma 4.1. Let A = 8. There exists kK > 0 such that, for any odd function
we HY,

(4.19) (w,Z,) =0 = B¥(w)> n/wi
Proof. First, note that

t L t
(4.20) BH(w) = {BE(w) + Bi(w),
where

Vs = 3Atanh (/\iﬁ) cosh? (%) tanh <%> sech? <%> .
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The idea is to show that Bg(w) and Bg (w) are both nonnegative.
Step 1. We claim
Claim 4.1. For all Ay > 0, for any odd function w € H*,

1 x
4.21 w? — — sech? < ) w? > 0.

Proof of Claim 1l By a change of variables, we can restrict ourselves to the case
AoV2 = 1. Note that the classical operator —9? — 2sech?(z) has a continuous
spectrum [0, +00) and only one negative eigenvalue —1, associated with the even
eigenfunction sech(x) (see Titchmarsh [51, Section 4.18]). Thus, by the spectral
theorem, for any odd function w € H',

/wi — 2sech?(z)w? > 0. O

The rest of the proof is devoted to showing that the second term is nonnegative as
well.

Step 2. Let A = 8. We observe the following elementary inequality:
(4.22)

Vz €R, Va(z)=3\tanh (%/5) cosh? (W_> tanh <\F> sech? <\if>

21 9 (T
< l—Osech (2)

(This is easily checked by numerics.) In particular, combining ([2I) with \g = 8
and (£22) in @20)), we have, for any odd function w,

(4.23) Bg(w) > / (%wi - %sech2 (g) w2> .

Step 3. Finally, we claim the following coercivity property: there exists £ > 0 such
that

2wz — [ (fure Tsead (§)ut) 2 fut

Note that in view of ([£23]), this statement completes the proof of the lemma.

Proof of (&24). Let
oy JBsib(5) oo
(4.25) Yi(z) = \/;COShB (%)7 (Y1,Y1) = 1.

We claim that for any odd function w,
2 2 (TY 2 Y 2
. > N
(4.26) /(wm 3sech (2)10 ) + (Y1, w) 0

Indeed, the operator —92 — 3 sech? (%) is a classical operator which has exactly
three negative eigenvalues (see Titchmarsh [51l Section 4.18]) —%, —1, and —%,
and continuous spectrum [0, +00). The eigenvalues —% and —% are associated with
the even eigenfunctions

sech? (g) and  sech® (g) - %sech (g) ,
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respectively; on the other hand, —1 is associated with the odd eigenfunction Y,

defined in ([{25)). O

For w odd, we use the following (orthogonal) decomposition: w = w; —|—<Y1, VY7,
where (wy, Y1> = 0. Then, since Y; is an eigenfunction of —9?2 — 3sech? (—) with
eigenvalue —1, we obtain

/wi — 3sech? (g) w? = /(wl)i — 3sech? (g) w? — (Y1, w)?.

Additionally, since w; is odd and orthogonal to Yi, by the spectral theorem, we

obtain
/(wl) — 3sech? (g) w? >0,
and ([L20) follows.

Let us come back to the proof of [@24]). We note that, using (£20)),
3 2 21 2 (T 2 1 7 2 2 (T 2
/<4w 1o S€¢ 5 )W 20 2+ 0 wy, — 3sec 5 )W
1 2 o 2
— — 14(Y; .
50 (/ww (Y1, w) )

Now, we estimate (Y7, w)? using the orthogonality condition (w, Z;) = 0. Let v € R
and

Y

fl, = 5}1 - l/Zl.

Since Y; and Z; are odd, there exists an even function v, € S(R) such that v/, = &,.
In particular,

<?1aw> = <£Vaw> = _<Uv;wz>,

and using Cauchy-Schwarz’s inequality,

oo (/) e )

Note that ¥; in {@25) and Z; in {@IR) are explicit functions, so that &, and v, are
easily computable. A numerical computation gives that

1

: 2

~0.04 < — =~ 0.071.
HllIl/’UV 11

veER
Thus, [@24) and [@I9) are proved. O

Remark 4.1. In this proof, we have used numerical computations of elementary
integrals. We present briefly an alternative proof of the fact that (£26]) implies
[@24) relying more strongly on numerics. Let
(4.27) L= 9% -

be the linear operator representing B*. From the arguments of the proof in [38|
Lemma 11], there exists a function Z! € L such that [((Z}),)? < oo and LIZ} =
Z. Using numerical computations, we observe

(4.28) (LEZE, 78y = (2, Z%) ~ —2.53 < 0.

We find the function Z! by a shooting method (in particular, we obtain Z}(0) ~
—0.386), and then (Z;, Z) by numerical integration. See Remark for more
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details on the method. Using the arguments of the proof of Lemma 13 in [3§],
(@28) and (F20) imply (@.24).

Corollary 4.1. Let A = 8. There exists k > 0 such that for any odd function
w € L™ with w, € L?,

(4.29) (w,Z,) =0 = BY(w)> m/wi

Proof. First note that a standard consequence of ([I9)) is the following estimate:
there exists a constant C' > 0, depending on ||Z]|g: and the constant in estimate
(#19) of Lemma [41] and a constant x > 0 (recall that  is generic), such that for
any odd function w € H',

(4.30) B (w) + C|(w, Z,)|* > H/wg.

Let x be a smooth even function such that x(z) = 1 for |z| < 1, x(z) = 0 for
|z] >2and 0 < x < 1. For A > 1, let xa(z) = x(x/A). Let w € L*™, odd and such
that w, € L?, (w, Z1) = 0. Set wa = wxa. Then, we claim
(4.31)

Jewal2s — [Bswal2 = 04(L), / Vi? - / Vi = oa(l), (wa.Zy) = oa(L),

Where 04(1) denotes a function such that lim4_, ;o 04(1) = 0 (possibly depending
on w). Indeed, from direct computations

1
[z~ [y \_ Juaa-x +Vw2x13x,4 S [ wze gl
|z|>A A
}/VwQ—/Vw% < Hw||2Loo/ V;
|z|>A
wa, Z2)] < \/wz +| [ 210w -wa)| < ]/21<w—w,4> <loll [ 121
|z|>A

Applying [@30) to wa € H' (which is odd), we obtain
B (uwa) + Cllwa, 2P = x [(wa)?

Thus, by (31,
B (w) > n/wi +04(1).
and we obtain the result passing to the limit A — +oo. O

4.3. Coercivity of the bilinear form D. Let us come back to the modified
quadratic form D introduced in (I0). Written in terms of w (see (£I3) and

[#18)), we have
(4.32)

D(v1, ) = D¥(w, a) := B*(w) — a/w% <1/)f/—|- %w'f —£g+4,u2g> +a2/fg.

Now we use a modified version of the Fermi golden rule to choose a particular g.
Let k be the function defined in ([B4]). Let
(4.33)

" Ly f Im(k , ,
wf(;_’;,qfrr{(k))( )>, so that <1/)f + (a—i— %) ' f, Im(k')> =0.
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Numerically, a ~ 0.687. From condition (8.9) in Remark B.2] which ensures that
(W' f,Im(k)) # 0, and Lemma BTl there exists a unique real Schwartz solution g of

(4.34) Lg—4p*g=f + (a + %) W' f.

Moreover, in view of the decay of Y7 (LI0), the decay of f (2.10), and the explicit
formula in (B3], the function g satisfies

|z]

(4.35) Vr eR, [g(z)]+|g'(z)] Se V2.
Consequently, ([{34) leads to the simplified expression

D (w, a) :Bﬁ(w)—l—aa/wg“f—kozz/fg.

Recall that from ([EI9) we already know that, under (w, Z;) = 0, B*(w) is bounded
below by [w?2. Numerical computations (see Remark E2), using ([B.3) show that
(4.36) (f,g) ~ 0.0163 > 0.

Now we prove

Lemma 4.2. Let A\ = 8. There exists k > 0 such that for any odd H' function w
satisfying (w, Z1) = 0,

(4.37) Di(w,a) > K <a2 + /wg) .
Proof. Denote h := a{f + bZ;, where b is chosen so that (see (L28)))
(h, Z}) = 0.

Here Z solves £!Z! = Z; and is such that Z! € L>, (Z}), € L? (see Remark ).
Note that h is odd. Let h* € L> be the odd function such that

(4.38) L' =h and /(hw < 0.

Since (w, Z1) = 0, we have a [ w(f = (w, k), and thus
D (w, a) = B (w) + a(w, h) + a2 (f, g).

Furthermore we observe

(W, Z0) = (WF, L2Z3) = (h, Zf) =0,
hence because h¥ is odd, by Corollary Bl

0 < B*(h*) = (L*hF, h¥) = (h¥ h).
Given w odd, we decompose it as follows:
(4.39)
w=wb+ch® where (wh h)=(wh LA =0 and (w',Z))=(w,Z;)=0.
Thus, by orthogonality

B*(w) = B (wh) + B (h?),
and
D (w, o) = B (wh) + (¢ + ca) (h*, h) + a*(f, g).

Numerical computations (see Remark £.2]) show that

(4.40) (h*, h) ~ 0.0161.
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Now we perform a standard argument to complete the square above. Since
0 < (h*,h) < 4(f.g)
(see ([30)), we obtain for all a € R, ¢ € R,
(¢ + ca) (h*, h) + & (f,g) 2 o + 2.
Combined with Corollary 1] and ([39)), this gives

Di(w,a) > o + 2 + /(wj)2 > a4+ /wfc,
as required. O

Remark 4.2. The approximate value of a defined in (£33)) and the numerical check
of (B3) follows by numerical integration of explicit functions (as f and k) that
decays exponentially at co. The values can be checked using any standard software
with numerical integration (we have used independently Maple, Mathematica and
Scilab). In contrast, the values in ([f36) and ([@40) involve the functions g and hf
that are not explicit but defined as solutions of simple linear second order ordinary
differential equations (see (34) and [@38))) with a decay condition at co. To com-
pute the integrals in (€30 and (£40), we first determine numerically the functions
g and h* by a shooting argument, i.e. adjusting the initial data ¢’(0) ~ —0.333
and (h*)’(0) =~ 0.0297 (as odd functions, we set g(0) = h*(0) = 0). Observe that
the functions considered here or their derivatives are exponentially decaying, which
guarantees the high accuracy of the computations. We use three codes with three
different softwares (Maple, Mathematica and Scilab) and obtain the same values
with high accuracy. Note that similar numerical computations were used in [34]
and [38] to check spectral conditions.

5. END OF THE PROOF OF THEOREM [I.]]

As in the statement of Theorem [[LT] we consider an odd function ¢ € H' x L?
satisfying ||| g1x 2 < € for some small € > 0 to be chosen. By Proposition B.11
the corresponding solution ¢(t) of (L8] is global in H! x L? and satisfies, for all
t € R,

(5.1) le@lmrxe2 S €.

Now we use the decomposition and computations of Section [2 introducing in par-

ticular the functions u(t), z(t), a(t), B(¢t) and v(t) as in 2.1)), 22), (24), (Z3) and
(2I1). Note that from (E1), it holds

(5.2) VteR, fu()lmrxr2 + [v@)llm1xrz + lua ()l + [lor(®)l| L + [2(8)] S e

In order to simplify some estimates, we define

L T
(5.3) ||U1||§-IU1J = / (105v1]* + v) sech (ﬁ) ; ||U2||%5 = /v% sech (ﬁ) ,

and

(5:4) [Vl Fn w2 = loallary + llv2llZs -
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5.1. Control of the error terms and conclusion of the Virial argument.
The key ingredient of the proof of asymptotic stability in the energy space is the
following result.

Proposition 5.1. For e > 0 small enough,

—+o00
(5.5) [ (0 4 1oz ) e 5 22
Proof. Let
(5.6) A) = ahB),

and recall the virial-type quantities Z(t), J (t), already defined in (£2)), (@) for v
as in [@I2) for A = 8 and g introduced in ([@34).

The proof of (B.5) is based on a suitable combination of the following three
estimates, which hold for some fixed constants kg, C' > 0:

(5.7) =7 2 2u(8% = ) = Ce (=) + oy )
d

(5.8) ——dt(z+ J) > ko (a2 + \|v1||§,i) —Ce (|z(t)|4 + \|v2||§5) ,
d T 2 4 2
. — > 2 1 .
(.9) 25 [ s (—2 ﬁ) o2 > 3y =€ (201 + o)

Step 4. Proof of (5.1) assuming (0.7)), (58) and (59). For o > 0 small to be chosen,
let
Ko

K= @7 - Z+J9)+ 20/sech <23:W> V103.
From (57), (58) and (5.9), we obtain

d Ko
K = S0 48%) 4o [or 3y +ollvaFy =C (0 + 2) (=) + [y ) ~Celloa 3.

Note that from (ZF) we have o + 82 = |z|*. Thus, choosing o > 0 sufficiently
small, and then € > 0 small enough, we obtain

d
(5.10) KR 1O + 05z -

By the expressions of Z, J, v and (5.2]), we easily see that
(5.11) VieR, K|S o@)|Fwpe + () S

Therefore, integrating (510) on [—to, to] and passing to the limit as tg — +o0o0, we

find (55).
To finish the proof, we only have to prove (5.7), (5.8) and (5.9).

Step 5. Preliminary computations and estimates. First, from the computations of
Section 2, we give the expressions of F,, Fg, Fy and F» in ({I)). Note that from
@20), (L) and the fact that £Y; = p?Y7,
(5.12)

21 = (1, Y1) = (92, Y1) = p2a,

1. 1 1
iy = ;<w2,Y1> = —;Wm + (BH@; + ¢3), Y1) = —pz — ;<3H<p? + ¢}, Y1),
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(Recall that ¢; = z1Y7 +uy and (ug,Y7) =0, see [23).) In particular, (23] leads
to

. . . 2
G =221%1 — 22020 = 2uf + ;zz<3H<pf + soi’,Yﬁ,

. S 2
B =22129 + 22129 = —2pa — ;zl (3Hp? + 3, Y7).
Thus, we obtain in (I]),
2 2
F, = ;z2<3H<p§—|—ga‘rf,Y1>, Fg ::—;zﬂ?;Hgo%—i—go‘i’,Yl}.

Next, since

d 2
(5.13) gilfl* = 22081 + 20 = —omBHE! + 61 V) = —Fu,

we deduce, from Z11)), (Z2)), (T6) and (EI2), that
01 =11 + %|Z|2(1 =¢1— 421Yh — qF,
= 2 — p2eY1 — qFq = ug — qFy
= vy — qFy,
and that in (2I3) and @I,
(5.14) Fy := —qF,.
We have by direct computations
Uy = o — piaY1 = —Lo1 — (BHPY + ¢Y) + i’z Y1 + (3H@T + 97, Y1) Y1
= —Lu; — (3H(u1 + 21Y1)? + 03) + BH(uy + 21 Y1)? + 03, V1)1
= —Luy — 327 (HY? — (HY?, Y1)V1) — (3H (uf + 2z21u Y1) + 7)
+ (3H(u? + 2z1u1 Y1) + 05, Y1)V

= —Luy — 221 f + F,

so that in (29),
F, = [3H(u§ +2u1 21 Y1) + ©F — (3H (ul + 2u121Y7) + np%,YﬁYl] .
We also observe that
Uy =g = —Lv] — af + F,
and thus
Fy=F, = — [BH(u} + 2u1z1Y1) + ¢} — (3H(uf + 2u121Y1) + 3, Y1) Y1] .
Second, we prove
(5.15) [v1lly S 0wl 12,
where we recall from Section M the notation w(t,z) = vi(t,2)¢(z) = vi(t, x)
sech (ﬁ) (see ([@I3)).
Indeed, we observe that from (21 (with the choice Ay = 100),

x x x
0pw]|32 2 /sech2 (m> w? = /sech2 (m) sech? (ﬁ> v?

x
z h( —= )i
N/sec (2\/5) h

(5.16)
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Next, we have

x
|0yw|? = /sechQ(loo)\Ca v+ v ?

i)
> /sech2 <100> sech? <m> |0,v1 % + 2/sech2 (130) ¢¢'(Opv1)v1

2 /sech (%) 10,01 |2
+ /v% (- (sech2 (100) CC) + sech? (%) (C/)Q) .

Thus, using (5.16),

x x x
h (== ) |0:01]* S [|02w]7 / h? (=) sech? [ —= ) v} < [|0.w]7
/SeC (2\/5) | 'U1| ~ || wHL2 + sec (100) sec 8\/§ vl ~ H w||L2’

which completes the proof of ([B.I5]).
Step 6. Proof of (7). From (@Il we find
(5.17) y=aB+af =2u (52 — a2) + Ry, where R, =pF,+ aFs.

Replacing ¢1 = ug +21Y1 = v1 — [2]?¢ + 21Y1 in the expression of F,, and Fj, then
using the explicit decay of Y7 (see (ILI0)) and (5.2), we have

(5.18) [Fal + 1Fal S 121 (1217 + llnl3z ) -
From the definition of «, 8 and (5:2) we obtain finally
Ryl S 12l (1212 + o1l ) S & (121 + loaliZs )

Step 7. Proof of (58). From (£9), @37) and (&5, it is sufficient to prove the
following estimate:

(5.19) Rl & (IO + Nowwll3a + 023 )

where Rp is defined in (ZIT]).
Using (&I8), [@35) and Cauchy-Schwarz inequality, we have

Fu [ vag| + |Bs [ o1g] S 121 (12 + fouls ) (ol + oalzz)

From (@35), (.14), (5I8) and (ZI2), we get
(5.21)

1
5 [omi|+| [ (v0nri 0/ )| S 11 (1 4 ol ) (1 + o)
By ([35) and (5.2]), we obtain
(5.22)

(5.20)

gy

S L4l (12 + 2lllotllzz + ol ) -

Now, we address the only remaining term in @II]), which is [ vy (Y9, F> + 1¢'F).
We decompose N
Fy = F, — 3Hv? — v},
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|z]

Observe that F, contains only terms with an explicit decay e v2 (coming from
Yi(x), q(z) and their derivatives). Thus, by similar arguments as before,

~ 1 o~
(5.23) ’/Ul (1/15sz + 57//F2>
We are now reduced to controlling the term
1 1
- /v1 (z/@m (3Hvi 4+ 0}) + 5@/}' (3Hvi + v?)) = /(g{}@xvl + Eqp’vl) (3Hvi +v}).

Integrating by parts,

3 (waxvl n %w) mi = [ <%¢H - wH') o,

S loillsz (12 + lalloilzz + lloulz ) -

hence
1
’3/ (wﬁwvl + 51#'1@) Hvi| < /(w' + H vy 2.
We claim
(5.24) /(W + H')o1? S Jlor ] o< 10wl|72 S ell@pwl|72

Indeed, by parity, the definition of ¢ ({I12]) and w {I3), and the decay property
of H', we have (with X\ = 8)

/ / 3 < T as 3 < o . 3
(' + H')oy|* S e AWrlui]® S ez |wl”.
0 0

Then, integrating by parts, using w(0) = 0 (the function w is odd)

+oo +oo ; too x
/ exva|w|? = _M/i/ ez, (|wl?) = —3A\/§/ ez (Opw)w|wl
0 0 0

1 +o0o > 3 +o0
<Ourlis [ SRl <188 ul- [ 0.l
0 0

L1 exva |wf?
4 O ’
Thus,

too
| el <l ol
0

and (524) is proved.
Finally, we have by integration by parts

/ (Z/Jaxvl + %1/)/1/1) v} = i/ﬂ/vf > 0.

This term happens to have the right sign for estimate (B.8]) (this is related to the
fact that equation (1)) is defocusing), but we can also bound this term in absolute

value since by (5.24)),
(5.25) [t se [winl 5ol

In conclusion, (5I9) is a consequence of (B.I3), (520), (21), (B22), (E23),
(G:24) and (525).



794 M. KOWALCZYK, Y. MARTEL, AND C. MUNOZ

Step 8. Proof of (B9). We use @A) with ¢'(z) = sech (2\/_) Note that
/sech (i> (|0zv1 > + v7) +/ sech” <L> v? < v |3
2v2 2v2 “

S1ePllvillm,

a/sech (2%) oL f

i
sech [ ——= ) (|Fiva| + |1 Fa)| < 23w + v |3
/ (m)“”' 12|>\ 2P loallzs + o

Using these estimates, we obtain from (.4))

d x
h| ——= > 2, —C 2 —C)z)? Clz)*
G [ (555 ) vrve = lually = ol = Clealzg +

and

and (B9) follows. O
5.2. Conclusion. Proof of ([I.8]). Let

(5.26) H = / ((0zv1)? + 207 + v3) sech (7_>

Then, using ([@T)), we have

(5.27)

H = 2/sech (%) (1) (Dyv1) + 20101 + Do)
- 2/sech( f) (Da2)(By01) + 20901 — (L1 )v — aufva)

+ 2 sech ( ) (0 F1)(0zv1) + 2F1v1 + Favg)
x

\/_ /sech' (W) (0zv1) + 2/sech (;W) (3(1 — H2)v1vg — afvg)
—|—2/sech< \/5 ( 8 F1 5‘ 1)1) +2F1’l)1 +F2’l}2).
Note that

(5.28) Vsech' <%§> 2(0pv1)| < /((a v1)? + v3) sech <2%>

From (5.5]) there exists a sequence ¢, — +oo such that H(t,) + z(t,) — 0. From
EZ0), (B28) and the estimates on Fy and Fy, we have

]S =0 + O e -
Let t € R. Integrating on [t,¢,] and passing to the limit as n — 400 we obtain
+oo
MO [ (1O + POz ) d
t

From (5.3 it follows that lim; 4o H(¢t) = 0. The same holds for ¢ — —oco. Thus,
limy 4 o0 ||v]| 1 x 22 = 0. Moreover, from ([B.13) and (5.I8)), we have

(5.29)

i =2laF, + BFpl S 2 (152 + el ) S 121 + loa s
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Using (B.5]) and similar arguments as before, we obtain lim;_,4 o |2(¢)| = 0. There-

fore, (L) follows from ZII)).
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