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Landau-Ginzburg Models, D-Branes and Mirror

Symmetry

Dmitri Orlov∗

Abstract

This paper is an introduction to D-branes in Landau-Ginzburg
models and Homological Mirror Symmetry. The paper is based on
a series of lectures which were given on Second Latin Congress on
Symmetries in Geometry and Physics that took place at the Federal
University of Paraná, Brazil in December 2010.

1 Triangulated categories

1.1 Definition of triangulated categories and their local-

izations

Triangulated categories appeared in algebra and geometry as generaliza-

tion and formalization of notions of derived and homotopy categories.

If we are given an abelian category A, we can consider its homotopy

category H∗(A) and then pass to its derived category D∗(A), where

∗ is reserved for {b,+,−, ∅} depending which complexes we consider:

bounded, bounded above, bounded below, or unbounded. The objects

of H∗(A) are appropriate complexes of objects of A and morphisms are

morphisms of complexes up to homotopy. The objects of D∗(A) are the

same as those ofH∗(A), but we have to invert all quasi-isomorphisms, i.e.
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all morphisms of complexes that induce isomorphisms on cohomology. In

other words we can obtain the derived category as a localization of the

homotopy category with respect to the class of all quasi-isomorphisms:

D∗(A) := H∗(A)[Quasi−1]

It is evident that there is a canonical embedding A →֒ D∗(A), which

sends an object A ∈ A to the complex · · · → 0 → A → 0 → · · · with

one nontrivial term in degree 0. Both categories H∗(A) and D∗(A) have

natural triangulated structures.

Definition 1.1 ([44]). Let T be an additive category. The structure of a

triangulated category on T is defined by giving of the following data:

a) an additive autoequivalence [1] : T −→ T (it is called a shift

functor or a translation functor),

b) a class of exact (or distinguished) triangles:

X
u
−→ Y

v
−→ Z

w
−→ X[1],

which must satisfy the set of axioms Verdier T1–T4.

T1. a) For each object X the triangle X
id
−→ X −→ 0 −→ X[1] is

exact.

b) Each triangle isomorphic to an exact triangle is exact.

c) Any morphism X
u
−→ Y can be included in an exact triangle

X
u
−→ Y

v
−→ Z

w
−→ X[1].

T2. A triangle X
u
−→ Y

v
−→ Z

w
−→ X[1] is exact if and only if the

triangle

Y
v
−→ Z

w
−→ X[1]

−u[1]
−→ Y [1] is exact.

T3. For any two exact triangles and two morphisms f, g the diagram

below

X
u //

f
��

✷

Y
v //

g

��

Z
w //

h
��

X[1]

f [1]
��

X ′ u′ // Y ′
v′ // Z ′

w′ // X ′[1].

can be completed to a morphism of triangles by a morphism h :

Z → Z ′.
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T4. For each pair of morphisms X
u
−→ Y

v
−→ Z there is a commutative

diagram

X
u

−−−−→ Y
x

−−−−→ Z ′ −−−−→ X[1]
∥∥∥ v

y
yw

∥∥∥

X −−−−→ Z
y

−−−−→ Y ′
w′

−−−−→ X[1]
y

yt

yu[1]

X ′ X ′ r
−−−−→ Y [1]

yr

y

Y [1]
x[1]
−−−−→ Z ′[1]

where the first two rows and the two central columns are exact

triangles.

This definition is useful and has many applications to algebra, geom-

etry, topology, and even physics. In particular, any homotopy category

H∗(A) and any derived category D∗(A) have natural triangulated struc-

tures.

Now we recall the definition of a localization of categories. Let C be

a category and let Σ be a class of morphisms in C. It is well-known that

there is a large category C[Σ−1] and a functor Q : C → C[Σ−1] which is

universal among the functors making the elements of Σ invertible. The

category C[Σ−1] has a good description if Σ is a multiplicative system.

A family of morphisms Σ in a category C is called a multiplicative

system if it satisfies the following conditions:

M1. all identical morphisms idX belongs to Σ;

M2. the composition of two elements of Σ belong to Σ;

M3. any diagram X ′ s
←− X

u
−→ Y, with s ∈ Σ can be completed to a

commutative square

X
u //

s
��

Y

t
��

X ′ u′ // Y ′

with t ∈ Σ (the same when all arrows reversed);
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M4. for any two morphisms f, g the existence of s ∈ Σ with fs = gs is

equivalent to the existence of t ∈ Σ with tf = tg.

If Σ is a multiplicative system then C[Σ−1] has the following descrip-

tion. The objects of C[Σ−1] are the objects of C. The morphisms from X

to Y in C[Σ−1] are pairs (s, f) in C of the form

X
f
−→ Y ′

s
←− Y, s ∈ Σ

modulo the following equivalence relation: (f, s) ∼ (g, t) iff there is a

commutative diagram

Y ′

��
X

f
==

h //

g !!

Y ′′′ Y

s

aa

roo

t}}
Y ′′

OO

with r ∈ Σ.

The composition of the morphisms (f, s) and (g, t) is a morphism

(g′f, s′t) defined from the following diagram, which exists by M3:

Z ′′

Y ′

g′
==

Z ′

s′
``

X

f
>>

Y

s

aa
g

==

Z

t

``

.

It can be checked that C[Σ−1] is a category and there is a quotient

functor

Q : C −→ C[Σ−1], X 7→ X, f 7→ (f, 1)

which inverts all elements of Σ and it is universal in this sense.

Let D be a triangulated category and N ⊂ D be a full triangulated

subcategory. Denote by Σ(N) a class of morphisms s in D embedding

into an exact triangle

X
s
−→ Y −→ N −→ X[1]
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with N ∈ N. It can be checked that Σ(N) is a multiplicative system. We

define the quotient category

D/N := D[Σ(N)−1].

We endow the category D/N with a translation functor induced by the

translation functor in the category D.

Lemma 1.2. The category D/N becomes a triangulated category by tak-

ing for exact triangles such that are isomorphic to the images of exact

triangles in D. The quotient functor Q : D −→ D/N annihilates N.

Moreover, any exact functor F : D −→ D′ of triangulated categories for

which F (X) ≃ 0 when X ∈ N factors uniquely through Q.

1.2 Main geometric examples

Example 1.3 (Rings and Modules). Let A be a ring. We can consider

the abelian category Mod−A of all (right) A-modules and take the un-

bounded derived category D(Mod−A). This is a triangulated category

with arbitrary direct sums. We can also consider a full triangulated sub-

category of D(Mod−A) that is called a triangulated category of perfect

complexes and consists of all bounded complexes of projective A-modules

of finite type. We denote it as Perf(A). It is not a derived category of

any abelian category, but it is a derived category of the exact category

of projective modules of finite type (see [21] for definition).

If the ring A is noetherian, then we can also consider the bounded

derived category Db(mod−A) of (right) A-modules of finite type. It

contains the triangulated category of perfect complexesPerf(A) and they

are equivalent when A has a finite global dimension.

Example 1.4 (Schemes). The most important example of a derived or

triangulated category comes from a given scheme (X,OX). In this case

it is natural to consider an abelian category of sheaves of OX-modules

and an abelian category of quasi-coherent sheaves Qcoh(X). If X is

noetherian then we can also consider an abelian category of coherent

sheaves coh(X). We usually work with the unbounded derived category

D(QcohX) and the bounded derived categoryDb(cohX). It is important

and convenient that D(QcohX) has all direct sums. If X is noetherian
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then the natural functor from Db(cohX) to D(QcohX) is fully faith-

ful and realizes an equivalence of Db(cohX) with the full subcategory

D
∅, b
coh(QcohX) consisting of all cohomologically bounded complexes with

coherent cohomology ([6], Ex.II, 2.2.2).

The category of OX-modules and the category of abelian-group-valued

sheaves on X depend on the topology of X (e.g. Zariski, etale, flat and so

on), while the categories QcohX and cohX do not depend on topology.

Another very important triangulated category that appears in geom-

etry is so-called a triangulated category of perfect complexes PerfX. This

category consists of all complexes of OX-modules which are locally quasi-

isomorphic to a bounded complex of locally free OX-modules of finite

type. For noetherian scheme we have inclusions

PerfX ⊆ Db(cohX) ⊂ D(QcohX).

The category of perfect complexes PerfX coincides with the subcategory

of compact objects in D(QcohX) [26], i.e. such objects C for which the

functor Hom(C,−) commutes with arbitrary direct sums. This means

that the category of perfect complexes can be defined in internal terms

of the triangulated category D(QcohX). On the other hand one can

also recover D(QcohX) starting from the category of perfect complexes

PerfX, so these two categories contain essentially the same information

and can be considered in general situation for any quasi-compact and

separated scheme. Note also that PerfX is not a derived category, it is

merely triangulated.

The bounded derived category of coherent sheaves Db(cohX) can

not to be defined in general; we require that X be noetherian, or at least

coherent. However to any noetherian scheme X we can attach three

triangulated categories D(QcohX), PerfX, and Db(cohX). Note also

that if X is regular then Db(cohX) ∼= PerfX.

Claim: Studying X is actually studying these three triangulated cate-

gories PerfX, Db(cohX), and D(QcohX).

Example 1.5 (Voevodsky category of motives, [45]). Voevodsky’s con-
struction of the category of geometric motives provides another very
important example of a triangulated category. Let Sm/k denote the
category of smooth schemes of finite type over k. Let SmCor/k be a cat-
egory with the same objects, but whose morphisms are correspondences,
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i.e. Hom(X,Y ) is a free abelian group generated by integral closed sub-
schemes Z ⊆ X × Y such that Z → X is finite and surjective onto a
connected component. The category SmCor/k is additive and one has
[X] ⊕ [Y ] = [X

∐
Y ]. Its homotopy category Hb(SmCor/k) has a natu-

ral triangulated structure. Let us consider a minimal thick triangulated
subcategory T ⊂ Hb(SmCor/k) that contains all objects of the form

T =

{
a) [X × A

1]→ [X] (A1-homotopy)

b) [U ∩ V ]→ [U ]⊕ [V ]→ [X], when X = U
⋃
V (Mayer-Vietoris)

The triangulated category of effective geometric motives over k is defined as the
quotient

DMeff
gm(k) := Hb(SmCor/k)

/
T.

The category DMeff
gm(k) has a tensor structure, and [X]⊗ [Y ] = [X×

Y ]. In the category DMeff
gm(k) there is a distinguished element L called

the Lefschetz motive or Tate motive such that [P1] = [pt] ⊕ L (and

more generally, [Pn] = [pt] ⊕ L ⊕ L
⊗2 ⊕ · · · ⊕ L

⊗n). The triangulated

category DMgm(k) of geometric motives over k is obtained from the

effective category by by formally inverting the functor of tensor product

with the Tate motive−⊗ L.

Claim: Studying (co)homology theories of varieties (schemes) over k is

actually studying the triangulated category DMgm(k).

Example 1.6 (Symplectic geometry). A third example of triangulated

categories is coming from symplectic geometry. Let (X,ω,B) be a sym-

plectic manifold with B-field. We can consider a so-called ‘derived’

Fukaya category DFuk(X,ωC) which is the homotopy category of an A∞–

Fukaya category Fuk(X,ω) (and is not actually a derived category by

construction). The main objects of these categories are Lagrangian sub-

manifolds L ⊂ X together with local systems U on L, while morphisms

are the Floer cohomologies between them.

Claim: Studying a symplectic manifold with a B-field (X,ω,B) is actu-

ally studying the triangulated Fukaya category DFuk(X,ωC).

Derived and triangulated categories appear in many other places of

geometry, algebra, and topology. The most famous is the stable homo-

topy category that is the homotopy category of the category of symmetric

spectra.
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Many natural geometric relations can be described as equivalences

or fully faithful functors between corresponded triangulated categories.

For example, McKay correspondence, many of birational transformations

like blow ups, flips and flops have such properties [27, 7, 10, 11]. It seems

that geometric Langlands correspondence can also be formulated as an

equivalence between triangulated categories.

2 Homological mirror symmetry

Traditionally, the mirror symmetry phenomenon is studied in the most

relevant for the physics case of Calabi-Yau manifolds. It was observed

that some pairs of such manifolds (mirror partners), which naturally ap-

pear in mathematical models for physics string theory, exhibit properties

(have numerical invariants) that are symmetric to each other. There were

several attempts to mathematically formalize this mirror phenomenon,

one of which was the celebrated definition of Homological Mirror Sym-

metry (HMS) stated by Kontsevich in 1994 [22].

Kontsevich was also the first to suggest that Homological Mirror Sym-

metry can be extended to a much more general setting, by considering

Landau-Ginzburg models. At this moment we know examples of mirror

symmetry for different type of varieties and believe that mirror symmetry

in some sense exists for varieties of all types.

Claim: Mirrors should exist for all types of varieties.

2.1 Mirror symmetry for Calabi-Yau manifolds

In its original formulation, Kontsevich’s celebrated Homological Mirror

Symmetry conjecture [22] concerns mirror pairs of Calabi-Yau varieties,

for which it predicts an equivalence between the derived category of co-

herent sheaves of one variety and the derived Fukaya category of the

other.

From physics point of view in this case we consider superconformal

quantum field theory that is called a sigma-model.

Definition 2.1. A geometric input for a sigma-model is a data of the

following form (X, I, ω,B) that consists of a smooth manifold X with a

complex structure I, an (1,1)-Kähler form ω and a real closed 2-form B
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which is called a B-field. For shortness we will also use the following

combination B + iω and denote it by ωC.

If X is a (weak) Calabi-Yau manifold (i.e. Ωtop
X

∼= OX) then it is

believed that to any data (X, I, ωC) we can attach, in a natural way,

a so-called superconformal quantum field theory (SCQFT) with N=(2,2)

supersymmetry.

There is the following heuristic argument supporting this claim. First

of all, to any such data one can naturally attach a classical field theory

called the N = (2, 2) sigma-model. Its Lagrangian is given by an explicit,

although rather complicated, formula. Infinitesimal symmetries of this

classical field theory include two copies of N = 2 super-Virasoro algebra

(with zero central charge). Second, one can try to quantize this classical

field theory while preserving N = (2, 2) superconformal invariance (up to

an unavoidable central extension). The result of the quantization should

be an N = (2, 2) SCQFT.

Except for a few special cases, it is not known how to quantize the

sigma-model exactly. On the other hand, one has a perturbative quanti-

zation procedure which works when the volume of the Calabi-Yau is large.

That is, if one rescales the metric by a parameter t ≫ 1, gµν → t2gµν ,

and considers the limit t → ∞ (so called large volume limit), then one

can quantize the sigma-model order by order in 1/t expansion. It is

believed that the resulting power series in 1/t has a non-zero radius of

convergence, and defines an actual N = (2, 2) SCQFT.

Super-Virasoro algebra has an interesting involution called the mirror

automorphism. Suppose we have a pair of N = (2, 2) SCQFTs and an

isomorphism between them that acts as the identity on the “left-moving”

N = 2 super-Virasoro, and acts by the mirror automorphism on the

“right-moving” N = 2 super-Virasoro. In this situation we say that

these SCQFTs are mirror symmetric.

Mirror Symmetry can also be extended on the case when 2-dimensional

world-sheet has boundaries (see e.g. [46]). This generalization leads to

the notion of a D-brane, which plays a very important role in string the-

ory [35]. A D-brane is a nice boundary condition for the SCQFT. For

example, one can impose Dirichlet boundary conditions (i.e. vanishing)

on some scalar fields which appear in the Lagrangian.

If the field theory has some symmetries, it is reasonable to require

the boundary condition to preserve this symmetry. It is not possible to
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preserve both of them. In the N = (2, 2) case, we have two copies of

N = 2 super-Virasoro, and we may require the boundary condition to

preserve the diagonal N = 2 super-Virasoro. Such boundary conditions

are called D-branes of type B, or simply B-branes. One can also exploit

the existence of the mirror automorphism and consider boundary condi-

tions which preserve a different N = 2 super-Virasoro subalgebra. The

corresponding branes are called D-branes of type A, or simply A-branes.

One can show that the set of A-branes (or B-branes) has the structure

of a category.

To summarize, to any physicist’s Calabi-Yau we can attach two cate-

gories: the categories of A-branes and B-branes. One can argue that the

category of A-branes (resp. B-branes) does not depend on the extended

complex (resp. extended symplectic) moduli [46]. It is obvious that if

two Calabi-Yau manifolds are related by a mirror morphism, then the A-

brane category of the first manifold is equivalent to the B-brane category

of the second one, and vice versa. Obviously, if two N = (2, 2) SCQFTs

related two Calabi-Yau manifolds are isomorphic, then the corresponding

categories of A-branes (and B-branes) are simply equivalent.

Claim: a) A category of D-branes of type A for a sigma model (X, I, ωC)

is the derived Fukaya category DFuk(X,ω).

b) A category of D-branes of type B for a sigma model (X, I, ωC) is

the derived category of coherent sheaves Db(coh(X, I)).

As we said above mirror symmetry is a some simple relation between

SCQFTs that should interchange D-branes of type A and type B. This

fact can be considered as a definition of Homological Mirror Symmetry.

Definition 2.2 (Homological Mirror Symmetry). We say that two sigma-

models (X, I, ωC) and (X∨, I∨, ω∨
C
) are homologically mirror symmetric if

we have equivalences of triangulated categories

a) Db
(
coh(X, I)

)
∼= DFuk

(
X∨, ω∨

C

)

b) DFuk
(
X,ωC

)
∼= Db

(
coh(X∨, I∨)

)
.

In some sense we say that two sigma-models are mirror symmetric

to each other if the algebraic variety (X, I) is “equal” to the symplectic

manifold (X∨, ω∨
C
) and the symplectic manifold (X,ωC) is “equal” to

the algebraic variety (X∨, I∨). Thus a passing to triangulated categories

allows us to compare an algebraic variety and a symplectic manifold.



Landau-Ginzburg Models and Mirror Symmetry 85

Claim: The notion of a triangulated category allows us to compare ob-

jects from different fields of mathematics and physics.

2.2 Bounded derived categories of coherent sheaves

Let X be a smooth (quasi)-projective variety. To any such variety we can

attach the bounded derived category of coherent sheaves Db(cohX). It is

natural to ask the following questions: How much information of X does

Db(cohX) contain? When do two different varieties have equivalent the

bounded derived categories of coherent sheaves?

There is a reconstruction theorem for varieites of general type and

Fano varieties.

Theorem 2.3 ([8]). Let X be a smooth projective variety such that either

canonical sheaf KX or anticanonical sheaf K−1
X is ample. If X ′ is another

algebraic variety such that Db(cohX) ≃ Db(cohX ′). Then X ′ ∼= X.

In this case we can reconstruct a variety from the derived category

Db(cohX) and, moreover, it can be done directly, i.e. there is a procedure

for the reconstruction.

However, it is much more interesting when we can not to reconstruct

a variety and have different varieties with equivalent bounded derived

categories of coherent sheaves. Such varieties are called Fourier-Mukai

partners. It happens very seldom and every time any such example has

lots of geometric senses and meanings. The first example is due to Mukai

and can be considered as a categorical Fourier transform.

Theorem 2.4 (Mukai). Let A be an abelian variety and Â be the dual

abelian variety then Db(cohA) ≃ Db(coh Â) and this equivalence is given

by Fourier transform, i.e. the functor is isomorphic to Rp2∗(p
∗
1(−)⊗P),

where P is a Poincare line bundle on the product A× Â.

In this case we have an isomorphism between N = (2, 2) SCQFTs as

well. More precisely, there is the following theorem.

Theorem 2.5 ([17]). Let A be an abelian variety and ωC = B + iω

be a flat 2-form. Suppose that A′ is another abelian variety such that

Db(cohA′) ∼= Db(cohA).

Then there exists a flat 2-form ω′C on A′ such that SCQFT(A′, ω′C) ∼=
SCQFT(A,ωC).
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This example shows that from string theory point of view two vari-

eties with equivalent derived categories of coherent sheaves should pro-

duce the same SCQFT’s for a suitable choice of 2-forms on them.

There are known other examples of equivalences between derived cat-

egories of coherent sheaves. The large class of such examples come from

birational geometry. Let X and X ′ be birational isomorphic varieties.

Suppose that for some (and consequently for any) resolution

X̃
π

��

π′

  
X

fl // X ′

of the birational isomorphism X
fl
99K X ′ we have π∗KX = π′∗KX′ . Such

a birational transformation is called a generalized flop.

Conjecture 2.6. If X and X ′ are related to each other by a generilized

flop, then Db(cohX ′) ∼= Db(cohX).

This conjecture proved for simple examples of flops in [7] and by T.

Bridgeland for any flop in dimension 3 in [10]. It is also proved for a

symplectic flop in [19, 25].

If two projective varieties X1 and X2 have equivalent the bounded

derived categories of coherent sheaves Db(cohX1) and Db(cohX2) then

we can ask: how to describe such an equivalence? It is proved in [28]

for smooth projective varieties and in [24] for any projective varieties X1

and X2 that any equivalence F : Db(cohX1)
∼
→ Db(cohX2) can be rep-

resented by an object on the product. This means that F is isomorphic

to the functor ΦE := Rp2∗(p
∗
1(−)

L

⊗ E), where E ∈ Db(coh(X1×X2)) and

p1, p2 are the projection of the product on X1 and X2 respectively. It is

important to mention that there is a theorem of Bertrand Toën which

says that any functor between the differential graded categories of per-

fect complexes Perfdg(X1) and Perfdg(X2) are represented by a perfect

complex on the product for any quasi-compact and separated schemes

X1, X2 (see [43]).

Finally, I would like to formulate another conjecture which states

that the bounded derived category of coherent sheaves keeps almost all

information about the variety.
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Conjecture 2.7. If X is a quasi-projective variety, then there are only

finitely many quasi-projective Fourier-Mukai partners, i.e. such X ′ that

Db(cohX ′) ∼= Db(cohX).

In all cases, like K3 surfaces, abelian varieties when we can describe

all Fourier-Mukai partners precisely this conjecture holds.

2.3 Mirror symmetry for Fano varieties and varieties of

general type

If X is not a Calabi-Yau variety then we can not expect that its mirror

is a sigma-model. In such cases mirror symmetric object is so called

Landau-Ginzburg model. The most important cases are a Fano variety

or a variety of general type (this means that the canonical sheaf KX is

ample or anti-ample). Let us introduce a notion of a Landau-Ginzburg

model that is a generalization of a sigma-model.

Definition 2.8. A Landau-Ginzburg model is a collection (Y, I, ω,B,W ),

where Y is a smooth variety, ω is an (1,1)-Kähler form, B is a closed

real 2-form (B-field), and W : Y → A
1 is a regular function that is called

a superpotential.

We also can consider an action of an algebraic group G on Y such

that the superpotential W is semi-invariant.

Note that a sigma-model is a Landau-Ginzburg model with a trivial

superpotential W = 0. If (X, I, ωC) is a sigma-model, we have already

defined

DB := Db(cohX) and DA := DFuk(X,ωC).

Now we can formulate Homological Mirror Symmetry relation for LG

models. We say that two LGmodels (Y, I, ω,B,W )G and (Y ∨, I∨, ω∨, B∨,W∨)G
∨

are mirror-symmetric if there are equivalences

a) DB(Y, I,W )G ∼= DA(Y ∨, ω∨
C
,W∨)G

∨

and

b) DA(Y, ωC,W )G ∼= DB(Y ∨, I∨,W∨)G
∨

between categories of G-equivariant of D-branes of type B and type A in

these models.

Thus to talk about HMS for LG models we have to define the cate-

gories of D-branes of type A and type B in these models. The category of
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D-branes of type B can be defined as categories of matrix factorizations.

They are also closely related to the triangulated categories of singulari-

ties. The categories of D-branes of type A are defined as the categories

of vanishing Lagrangian cycles. Constructions of these categories will be

discussed in the next sections.

Now I would like to consider examples of LG models that appear

as mirror symmetric models for toric varieties. In toric case we have a

precise procedure of constructing of a mirror symmetric LG model. This

procedure appeared in papers of Batyrev, Givental, and Hori–Vafa.

For any toric variety X of dimension n, there is a mirror symmetric

LG model Y that is a complex torus (C∗)n of the same dimension n with

a superpotential W which depends on the fan defining the toric variety

X and some parameters t1, . . . , tk, where k is the rank of Picard group

of X.

We explain the procedure of a construction of the superpotential W

considering a few examples.

Example 2.9 (Projective space). The simplest example of a toric variety

is the projective space. Let X = P
n be the projective space. In the toric

fan we have e0+e1+· · ·+en = 0, so we introduce variables Ti, i = 0, . . . , n

such that T0+T1+· · ·+Tn = t, where t be a some parameter that depends

on the class of the form ωC on the projective space P
n. Let Yi = e−Ti .

Thus we have Y0Y1 · · ·Yn = e−t. Now the superpotential is given by the

simple formula

W =

n∑

i=0

Yi = Y1 + Y2 + · · ·+ Yn +
e−t

Y1Y2 · · ·Yn
,

that is considered as a function on (C∗)n with coordinates Y1, . . . , Yn.

Thus the mirror symmetric LG model is isomorphic to (C∗)n with the

superpotentialW introduced above and with a standard exact symplectic

form on this complex torus.

Example 2.10 (Blow up of P
2 at 1 point). Consider the Hirzebruch

surface F1 that is a blow-up of P2 at one point. We have T0 + T1 + T2 =

t and T2 + T ′ = s, and hence Y0Y1Y2 = e−t, Y2Y
′ = e−s. Now the

mirror symmetric LG model is the two-dimensional complex torus with
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coordinates Y1, Y2 and with the following superpotential

W = Y0 + Y1 + Y2 + Y ′ = Y1 + Y2 +
e−t

Y1Y2
+

e−s

Y2
.

The symplectic form is again the standard exact form on this complex

torus.

Example 2.11 (Blow-ups of P2 at 3 points). Let S6 be the blow-up of

P
2 at three points. In this case a mirror symmetric LG model is again

isomorphic to (C∗)2 and the superpotential W has the following form

W = Y1 + Y2 + Y1Y2 +
e−r

Y1
+

e−s

Y2
+

e−t

Y1Y2
,

where Y1, Y2 are coordinates on the two-dimensional torus.

3 D-branes of type B in Landau-Ginzburg mod-

els

3.1 Matrix factorisations, affine case

A mathematical definition of the categories of D-branes of type B in

Landau-Ginzburg models is proposed by M.Kontsevich and it was con-

firmed by A. Kapustin and Yu.Li in the paper [16].

Suppose we have a Landau-Ginzburg model with a total space Y that

is a smooth variety and with a superpotential W : Y → A
1 that is not

constant. For a definition of B-branes we don’t need a symplectic form

on Y which have to be in a LG model too.

For any λ ∈ A
1, we define a category of matrix factorizations denoted

by MFλ(Y,W ). We give constructions of this categories under the con-

dition that Y = Spec(A) is affine. The general definition that is more

sophisticated see below. Since the category of coherent sheaves on an

affine scheme Y = Spec(A) is the same as the category of finitely gener-

ated A-modules we will frequently go from sheaves to modules and back.

Note that under this equivalence locally free sheaves are the same as

projective modules.

Objects of the category MFλ(Y,W ) are 2-periodic sequences

P• = · · · −→ P0
p0
−−→ P1

p1
−−→ P0 −→ · · · ,
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where P0 and P1 are projective modules over A and the compositions

p0p1 and p1p0 are the multiplications with the element (W − λ · id) ∈ A,

i.e.

p0p1 = (W − λ · id) · and p1p0 = (W − λ · id)·

The morphisms between two objects P•, Q• are 2-periodic morphisms up

to 2-periodic homotopy. Thus a morphism f : P• → Q• in the category

MFλ(Y,W ) is a pair of morphisms f1 : P1 → Q1 and f0 : P0 → Q0

such that f1p0 = q0f0 and q1f1 = f0p1 modulo 2-homotopy that is by

definition a pair of morphisms s : P0 → Q1 and t : P1 → Q0 such that

f1 = q0t+ sp1 and f0 = tp0 + q1s.

Proposition 3.1 ([29]). The category MFλ(Y,W ) has a natural struc-

ture of a triangulated category for which square of the shift functor is

isomorphic to the identity.

It can be shown that the category MFλ(Y,W ) is trivial if the fiber

over a point λ is smooth. All details can be found below when we will

discuss not only affine but a general case.

Definition 3.2. Let (Y,W ) be a Landau-Ginzburg model with Y =

SpecA, we define a category DB(Y,W ) of D-branes of type B (B-branes)

on Y with the superpotential W as the product

DB(Y,W ) :=
∏

λ∈A1

MFλ(Y,W ).

Since Y is regular, the set of singular fibers is finite. Hence, the

category DB(Y,W ) of D-branes of type B is a product of finitely many

numbers of triangulated categories.

3.2 The triangulated category of singularities

There is another approach to defining a category of D-branes of type B

in Landau-Ginzburg models. It uses a notion of so called triangulated

category of singularities. Let X be a quasi-projective scheme. Recall

that we had defined the triangulated subcategory of perfect complexes

Perf(X) ⊆ Db(cohX). In the case when X is smooth this inclusion is

an equivalence Perf(X) ∼= Db(cohX). However, in the case of a singular

scheme the difference between these two categories can be considered as
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a measure of singularities of X. It also allows us to define a category of

singularities of X.

Definition 3.3. The triangulated category of singularities of X is defined

as the quotient

Dsg(X) := Db(cohX)
/
Perf(X).

When we have an action of an algebraic group G on Y, we can also con-

sider an equivariant version of the triangulated category of singularities

DG
sg(X) := Db(cohGX)

/
PerfG(X).

Triangulated categories of singularities of fibers of the superpotential

W in a LG- model have a direct relation to the categories of matrix

factorizations defined above.

Theorem 3.4 ([29]). If (Y,W ) is a Landau-Ginzburg model and Y =

SpecA, then there is an equivalence MFλ(Y,W ) ∼= Dsg(W
−1(λ)).

This theorem allows us to recast a definition of the category of D-

branes of type B.

Definition 3.5. Let (Y,W ) be a Landau-Ginzburg model. We can define

a category DB(Y,W ) of D-branes of type B on Y with the superpotential

W as the product

DB(Y,W ) :=
∏

λ∈A1

Dsg(W
−1(λ)).

Note that this definition does not require that the total space is affine.

Let us consider the simplest example. It is a case of the ordinary

double point.

Example 3.6. Let Y = A
n and W =

∑n
i=1 x

2
i . The fiber over zero

has the simplest isolated singulary that is an ordinary double point. If

n is odd, then the triangulated category of singularities Dsg(W
−1(0))

is equivalent to the category of k-vector spaces with trivial shift func-

tor [1] = id . It is easy to see that in this case the Grothendieck group

K0(Dsg(W
−1(0))) is isomorphic to Z/2Z. If n is even, then the cate-

gory Dsg(W
−1(0)) is the category of k-supervector spaces and we have

K0(Dsg(W
−1(0))) = Z.

The triangulated categories of An-singularities are described in the

last section of [29].
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3.3 Matrix factorizations, general case

Let us consider a general LG model, the total space of which is not nec-

essary affine. By a Landau-Ginzburg model we mean again the following

data: a quasi-projective scheme Y over a field k and a regular function

W on Y such that the morphism W : Y → A
1
k
is flat. (It is equivalent

to say that the map of algebras k[x]→ Γ (OY ) is an injection.)

Usually in the definition of an LG model we ask that Y be regular.

However for all considerations regularity of Y is not necessary. Moreover,

it seems that it is very interesting to consider the case of a singular total

space Y as well.

With any k-point λ ∈ A
1 we can associate a differential Z/2Z-graded

category DGλ(Y,W ), an exact category Pairλ(Y,W ), and a triangulated

category H0DGλ(Y,W ) that is the homotopy category for DG category

DGλ(Y,W ).

Objects of all these categories are 2-periodic sequences of vector bun-

dles or, in other words, ordered pairs

E :=
(
E1

e1 //
E0

e0
oo

)
,

where E0,E1 are locally free sheaves of finite type on Y and the composi-

tions e0e1 and e1e0 are the multiplications with the element (W−λ·id) ∈
Γ (OY ).

Morphisms from E to F in the categoryDGλ(Y,W ) form Z/2Z-graded

complex

Hom(E, F) =
⊕

0≤i,j≤1

Hom(Ei,Fj)

with a natural grading (i − j) mod 2, and with a differential D acting

on a homogeneous element p of degree k as

Dp = f · p− (−1)kp · e.

The space of morphisms Hom(E, F) in the category Pairλ(Y,W ) is

the space of morphisms in DGλ(Y,W ) which are homogeneous of degree

0 and commute with the differential.

The space of morphisms in the category H0DGλ(Y,W ) is the space

of morphisms in Pairλ(Y,W ) modulo null-homotopic morphisms, i.e.

HomPairλ(Y,W )(E, F) = Z0(Hom(E, F)),
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HomH0DGλ(Y,W )(E, F) = H0(Hom(E, F)).

Thus, a morphism p : E → F in the category Pairλ(Y,W ) is a pair

of morphisms p1 : E1 → F1 and p0 : E0 → F0 such that p1e0 = f0p0
and f1p1 = p0e1. The morphism p is null-homotopic if there are two

morphisms s0 : E0 → F1 and s1 : E1 → F0 such that p1 = f0s1 + s0e1
and p0 = s1e0 + f1s0.

The category H0DGλ(Y,W ) can be endowed with a natural structure

of a triangulated category. To specify it we have to define a translation

functor [1] and a class of exact triangles. The translation functor can be

defined as a functor that takes an object E to the object

E[1] =
(
E0

−e0 //
E1

−e1
oo

)
,

i.e. it changes the order of the modules and the signs of the maps, and

takes a morphism p = (p0, p1) to the morphism p[1] = (p1, p0). We see

that the functor [2] is the identity functor.

For any morphism p : E → F from the category Pairλ(Y,W ) we

define a mapping cone Cone(p) as an object

Cone(p) =
(
F1 ⊕ E0

c1 //
F0 ⊕ E1

c0
oo

)

such that

c0 =

(
f0 p1
0 −e1

)
, c1 =

(
f1 p0
0 −e0

)
.

There are maps q : F→ Cone(p), g = (id, 0) and r : Cone(p)→ E[1], r =

(0,− id).

The standard triangles in H0DGλ(Y,W ) are defined to be the trian-

gles of the form

E
p
−→ F

q
−→ Cone(p)

r
−→ E[1]

for some p ∈ Pairλ(Y,W ).

Definition 3.7. A triangle E→F→G→E[1] in H0DGλ(Y,W ) is called

an exact triangle if it is isomorphic to a standard triangle.

Proposition 3.8. The category H0DGλ(Y,W ) endowed with the trans-

lation functor [1] and the above class of exact triangles becomes a trian-

gulated category.
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We define a triangulated category MFλ(Y,W ) of matrix factoriza-

tions on (Y,W ) as a Verdier quotient of H0DG(Y,W ) by a triangulated

subcategory of “acyclic” objects. This quotient will also be called a tri-

angulated category of D-branes of type B in the LG model (Y,W ) over λ.

More precisely, for any complex of objects of the category Pairλ(Y,W )

E
i di
−→ E

i+1 di+1

−→ · · ·
dj−1

−→ E
j

we can consider a totalization T of this complex. It is a pair with

T1 =
⊕

k+m≡1mod 2

E
m
k , T0 =

⊕

k+m≡0mod 2

E
m
k , k = 0, 1, (3.1)

and with tl = dmk + (−1)mek on the component E
m
k , where l = (k +m)

mod 2.

Denote by Acλ(Y,W ) the minimal full triangulated subcategory that

contains totalizations of all acyclic complexes in the exact categoryPairλ(Y,W ).

It is easy to see that Acλ(Y,W ) coincides with the minimal full triangu-

lated subcategory containing totalizations of all short exact sequences in

Pairλ(Y,W ).

Definition 3.9 ([34]). We define the triangulated category of matrix fac-

torizations MFλ(Y,W ) on Y with a superpotential W as the Verdier quo-

tient H0DGλ(Y,W )/Acλ(Y,W ).

In particular, the above definition implies that any short exact se-

quence in Pairλ(Y,W ) becomes an exact triangle in MFλ(Y,W ).

With any pair E on (Y,W ) we can associate a short exact sequence

0 −→ E1
e1−→ E0 −→ Coker e1 −→ 0 (3.2)

of coherent sheaves on Y.

We can attach to an object E the sheaf Coker e1. This is a sheaf on

Y. But the multiplication with W annihilates it. Hence, we can consider

Coker e1 as a sheaf on the fiberW−1(λ), i.e. there is a sheaf E onW−1(λ)

such that Coker e1 ∼= i∗E. Any morphism p : E → F in Pairλ(Y,W )

gives a morphism between cokernels. In this way we get a functor Cok :

Pairλ(Y,W )→ coh(W−1(λ)).

It can be shown that the functor Cok : Pairλ(Y,W )→ coh(W−1(λ))

induces exact functors Π : H0DGλ(Y,W ) → Dsg(W
−1(λ)) and Σ :

MFλ(Y,W )→ Dsg(W
−1(λ)) between triangulated categories.
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Theorem 3.10 ([34]). Let Y be a quasi-projective scheme. Then the nat-

ural functor Σ : MFλ(Y,W )→ Dsg(W
−1(λ)) is fully faithful. Moreover,

if Y is regular then the functor Σ is an equivalence.

4 Properties of triangulated categories of singu-

larities

4.1 Localization and completion

Let f : X → X ′ be a morphism of finite Tor-dimension (for example, a

flat morphism or a regular closed embedding). In this case we have an

inverse image functor Lf∗ : Db(cohX ′)→ Db(cohX). It is clear that the

functor Lf∗ sends perfect complexes on X ′ to perfect complexes on X.

Therefore, the functor Lf∗ induces an exact functor Lf̄∗ : Dsg(X
′) →

Dsg(X).

A fundamental property of triangulated categories of singularities is

a property of locality in Zarisky topology. It says that for any open em-

bedding j : U →֒ X, for which Sing(X) ⊂ U, the functor j̄∗ : Dsg(X)→
Dsg(U) is an equivalence of triangulated categories [29].

On the other hand, two analytically isomorphic singularities can

have non-equivalent triangulated categories of singularities. It is easy

to see that even double points given by equations f = y2 − x2 and

g = y2 − x2 − x3 have non-equivalent categories of singularities. The

main reason here is that a triangulated category of singularities is not

necessary idempotent complete. This means that not for each projector

p : C → C, p2 = p there is a decomposition of the form C = Ker p⊕Im p.

For any triangulated category T we can consider its so called idem-

potent completion (or Karoubian envelope) T. This is a category that

consists of all kernels of all projectors. It has a natural structure of a

triangulated category and the canonical functor T → T is an exact full

embedding. Moreover, the category T is idempotent complete, i.e. each

idempotent p : C → C in T arises from a splitting Ker p⊕ Im p. We de-

note by DsgX the idempotent completion of the triangulated categories

of singularities.

For any closed subscheme Z ⊂ X we can consider the formal comple-

tion of X along Z as a ringed space (Z, lim←−OX/Jn), where J is the ideal

sheaf corresponding to Z. The formal completion actually depends only
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on the closed subset SuppZ and does not depend on a scheme structure

on Z. We denote by X the formal completion of X along its singularities

Sing(X).

Theorem 4.1 ([33]). Let X and X ′ be two quasi-projective schemes.

Assume that the formal completions X and X′ along singularities are iso-

morphic. Then the idempotent completions of the triangulated categories

of singularities Dsg(X) and Dsg(X ′) are equivalent.

Actually, one can show a little bit more. It is proved that any object

of Dsg(X) is a direct summand of an object in its full subcategory

Db
Sing(X)(cohX)/PerfSing(X)(X),

whereDb
Sing(X)(cohX) andPerfSing(X)(X) are subcategories ofDb(cohX)

and Perf(X) respectively, consisting of complexes with cohomology sup-

ported on SingX.

4.2 Reduction of dimension

There is another type of relations between schemes which give equiva-

lences for triangulated categories of singularities but under which the

quotient categories Db
Sing(X)(cohX)/PerfSing(X)(X) are not necessary

equivalent. It is described in [30].

Let S be a noetherian regular scheme. Let E be a vector bundle on

S of rank r and let s ∈ H0(S,E) be a section. Denote by X ⊂ S the zero

subscheme of s. Assume that the section s is regular, i.e. the codimension

of the subscheme X in S coincides with the rank r.

Consider the projective bundles S′ = P(E∨) and T = P(E∨|X), where

E∨ is the dual bundle. The section s induces a section s′ ∈ H0(S′,OE(1))

of the Grothendieck line bundle OE(1) on S′. Denote by Y the divisor

on S′ defined by the section s′. The natural closed embedding of T into

S′ goes through Y. All schemes defined above can be included in the

following commutative diagram.

T

p

��

i // Y
π

  

u // S′

q

��
X

j // S
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Consider the composition functor Ri∗p
∗ : Db(cohX) → Db(cohY ) and

denote it by ΦT .

Theorem 4.2 ([30]). Let schemes X,Y, and T be as above. Then the

functor

ΦT : Db(cohX) −→ Db(cohY )

defined by the formula ΦT (·) = Ri∗p
∗(·) induces a functor

φT : Dsg(X) −→ Dsg(Y ),

which is an equivalence of triangulated categories.

The functor ΦT = Ri∗p
∗ has a right adjoint functor which we denote

by ΦT∗. It can be represented as a composition Rp∗i
♭, where i♭ is right

adjoint toRi∗. It is easy to see that all singularities of Y are concentrated

over the singularities of X, hence the functor ΦT∗ = Rp∗i
♭ sends the sub-

category Db
Sing(Y )(cohY ) to the subcategory Db

Sing(X)(cohX). Therefore,

we obtain the following corollary.

Corollary 4.3. The functor φT∗, which realizes an equivalence between

the triangulated categories of singularities of Y and X, gives also a func-

tor

φ′T∗ : D
b
Sing(Y )(cohY )/PerfSing(Y )(Y ) −→ Db

Sing(X)(cohX)/PerfSing(X)(X),

and this functor is fully faithful.

Note that the functor φ′T∗ is not an equivalence in general.

Theorem 4.2 implies the following application for LG models. Let

S be a smooth quasiprojective variety and let f, g ∈ H0(S,OS) be two

regular functions. Suppose that the zero divisor D ⊂ S defined by the

function g is smooth and the restriction of f on D is not constant. We

can consider D as a Landau-Ginzburg model with superpotential fD :

D −→ A
1. Another Landau-Ginzburg model is given by the smooth

variety T = S × A
1 and the superpotential W : T → A

1 defined by

the formula W = f + xg, where x is a coordinate on A
1. Denote by Tλ

the fiber of W over the point λ. For any λ ∈ A
1 there is an equivalence

Dsg

(
f−1D (λ)

)
∼= Dsg

(
W−1(λ)

)
. Thus, the categories of D-branes of type

B for LG models (D, fD) and (T,W ) are equivalent.

In particular, we obtain so called Knörrer periodicity that asserts an

equivalence of the categories of D-branes of type B in LG models (Y, f)

and
(
Y × A

2
{x,y},W = f + x2 + y2

)
.
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4.3 Sigma-models versus Landau-Ginzburg models

We take Landau-Ginzburg models as a generalization of sigma-models.

Thus, a sigma model is a particular case of a Landau-Ginzburg model

with the trivial superpotentialW = 0. It is known that the category of D-

branes of type B for the sigma-model (X,W = 0) is the bounded derived

category of coherent sheaves Db(cohX) when X is smooth. On the other

hand, we have a definition of D-branes of type B in LG models that uses

the notion of the triangulated category of singularities. How to see that

these two different definitions give the same answer? Let us study this

question. To do it we have to consider the LG model (X,W = 0) with

the trivial Gm-action.

Let X be any a noetherian scheme and let Perf(X) be the trian-

gulated category of perfect complexes on X. Consider the trivial action

of Gm on X. Denote by PerfGm(X) the triangulated category of equiv-

ariant perfect complexes. In other words, this category is the category

of Z-graded perfect complexes. Any graded perfect complex P · is a di-

rect sum of the form
⊕j

k=i P
·
k. Hence, the category PerfGm(X) has a

completely orthogonal decomposition of the form

PerfGm(X) =
⊕

k∈Z

Perf(X)k,

where Perf(X)0 is the subcategory with the trivial action of Gm, while

Perf(X)k is the category Perf(X)0 twisted by the respective character

of Gm.

Consider the constant zero-map to the affine line A
1 endowed with

natural Gm-action. The fiber of this map over 0 is X itself. However,

since this map is not flat we should take the fiber in derived sense, i.e.

as a derived scheme. Thus, we denote by X = (X,P), where P is a sheaf

of DG algebras, the derived cartesian product 0
L

×
A1

X. It is easy to see

that P has only two nontrivial terms

P0 ∼= OX ∈ Perf(X)0 and P−1 ∼= OX,−1 ∈ Perf(X)−1

with the zero differential. Denote by PerfGm(P) and DGm

Perf(X)(P) trian-

gulated categories of Gm-equivariant perfect complexes over P and Gm-

equivariant complexes of P-modules which are perfect as OX-modules,
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respectively. We have two homomorphisms of sheaves of DG-algebras

e : OX → P and a : P → OX that induce functors e∗ : PerfGm(X) →
PerfGm(P) and a∗ : PerfGm(X) → DGm

Perf(X)(P). Let us consider restric-

tions of these functors on the subcategories Perf(X)k and denote them

by e∗k and a∗k respectively.

Proposition 4.4. The functors e∗ : Perf(X)k → PerfGm(P) are fully

faithful for any k ∈ Z and, moreover, there is a following semi-orthogonal

decomposition

PerfGm(P) = 〈· · · e∗−1Perf(X)−1, e
∗
0Perf(X)0, e

∗
1Perf(X)1, · · · 〉

Note that this decomposition is not completely orthogonal but it is

only semi-orthogonal.

Using the functor a∗0 : Perf0 → PerfGm(P) we can also obtain a

semi-orthogonal decomposition for the category DGm

Perf(X)(P).

Proposition 4.5. The functors a∗k : Perf(X)k → DGm

Perf(X)(P) are fully

faithful for any k ∈ Z and, moreover, there is a following semi-orthogonal

decomposition

DGm

Perf(X)(P) =

= 〈· · · e∗−1Perf(X)−1, e
∗
0Perf(X)0, a∗0Perf(X)0, e

∗
1Perf(X)1, e

∗
2Perf(X)2 · · · 〉

These two propositions immediately imply the following theorem.

Theorem 4.6. The quotient category DGm

Perf(X)(P)/PerfGm(P) is equiva-

lent to Perf(X).

In the case whenX is smooth the quotient categoryDGm

Perf(X)(P)/PerfGm(P)

can be considered as the category of singularities of the DG scheme

X = (X,P) with the trivial action of the group Gm. As we saw above the

triangulated category of singularities for DG scheme X = (X,P) is equiv-

alent to the bounded derived category of coherent sheaves Db(cohX) ∼=
Perf(X).

If we consider an LG model (X,W = 0) without action of the group

Gm then it can be shown that the triangulated category of singularities

of the DG scheme X is equivalent to the derived category of 2-periodic

complexes DZ/2Z(cohX).
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5 A-side of Landau-Ginzburg models

5.1 Category of vanishing cycles

Let (Y, I, ωC,W ) be a Landau-Ginzburg model over C. We define a cat-

egory of D-branes DA(Y, I, ωC,W ) of type A. It does not depend on the

complex structure I.

As proposed by Kontsevich [23] and Hori–Iqbal–Vafa [14], the cate-

gory of A-branes associated with a Landau-Ginzburg modelW : (Y, ωC)→
C is a Fukaya-type category which contains not only compact Lagrangian

submanifolds of Y but also certain non-compact Lagrangians whose ends

fiber in a specific way above half-lines in C. In the case where the crit-

ical points of W are isolated and non-degenerate, this category admits

an exceptional collection whose objects are Lagrangian thimbles associ-

ated to the critical points. Following the formalism introduced by Seidel

[39, 41], we view it as the derived category of a finite directedA∞-category

Lagvc(Y, ωC,W, {γi}) associated to an ordered collection of arcs {γi}. The
reader is referred to [39, 41] and to [4, 5] for details.

Consider a symplectic fibration W : (Y, ωC) → C with isolated non-

degenerate critical points, and assume for simplicity that the critical

values λ0, . . . , λr of W are distinct. Pick a regular value λ∗ of W, and

choose a collection of arcs γ0, . . . , γr ⊂ C joining λ∗ to the various critical

values of W, intersecting each other only at λ∗, and ordered in the clock-

wise direction around λ∗. Consider the horizontal distribution defined by

the symplectic form: by parallel transport along the arc γi, we obtain

a Lagrangian thimble Di and a vanishing cycle Li = ∂Di ⊂ Σ∗ (where

Σ∗ = W−1(λ∗)). After a small perturbation we can always assume that

the vanishing cycles Li intersect each other transversely inside Σ∗.

Definition 5.1 (Seidel). The directed category of vanishing cycles Lagvc(W, {γi})
is an A∞-category over a coefficient ring R with objects L0, . . . , Lr corre-

sponding to the vanishing cycles; the morphisms between the objects are

given by the following rule

Hom(Li, Lj) =





CF ∗(Li, Lj ;R) = R|Li∩Lj | if i < j

R · id if i = j

0 if i > j;
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and the differential m1, composition m2, and higher order products mk

mk : Hom(Li0 , Li1)⊗ · · · ⊗Hom(Lik−1
, Lik)→ Hom(Li0 , Lik)[2− k]

are defined in terms of Lagrangian Floer homology inside Σ∗.

More precisely, the composition mk is trivial when the inequality

i0 < i1 < · · · < ik fails to hold. When i0 < · · · < ik, the operations

mk is defined by fixing a generic ω-compatible almost complex structure

on Σ∗ and counting pseudo-holomorphic maps from a disk with k + 1

cyclically ordered marked points on its boundary to Σ∗, mapping the

marked points to the given intersection points between vanishing cycles,

and the portions of boundary between them to Li0 , . . . , Lik respectively.

There is a well-defined Z-grading by Maslov index on the Floer com-

plexes CF ∗(Li, Lj ;R) once we choose graded Lagrangian lifts of the van-

ishing cycles. Considering a nowhere vanishing 1-form Ω ∈ Ω1(Σ∗,C)

and choosing a real lift of the phase function φi = arg(Ω|Li
) : Li → S1

for each vanishing cycle, one defines a degree of a given intersection point

p ∈ Li ∩ Lj as the difference between the phases of Li and Lj at p.

The pseudo-holomorphic disks appearing in Definition 5.1 are counted

with appropriate weights, and with signs determined by choices of orien-

tations of the relevant moduli spaces. The orientation is determined by

the choice of a spin structure for each vanishing cycle Li ([41], see also

[4]).

The weight attributed to each pseudo-holomorphic map u keeps track

of its relative homology class, which makes it possible to avoid conver-

gence problems. The usual approach favored by mathematicians is to

work over a Novikov ring, which keeps track of the relative homology

class by introducing suitable formal variables. To remain closer to the

physics, we can use C as our coefficient ring, and assign weights according

to the symplectic areas.

The weight formula is simplest when there is no B-field; in that case,

we consider untwisted Floer theory, since any flat unitary bundle over

the thimble Di is trivial and hence restricts to Li as the trivial bundle.

We then count each map u : (D2, ∂D2) → (Σ∗,∪Li) with a coefficient

(−1)ν(u) exp(−2π
∫
D2 u

∗ω). Hence, given two intersection points p ∈ Li∩
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Lj , q ∈ Lj ∩ Lk (i < j < k), we have by definition

m2(p, q) =
∑

r∈Li∩Lk
deg r=deg p+deg q

(
∑

[u]∈M(p,q,r)

(−1)ν(u) exp(−2π

∫

D2

u∗ω)

)
r

where M(p, q, r) is the moduli space of pseudo-holomorphic maps u from

the unit disk to Σ∗ (equipped with a generic ω-compatible almost-complex

structure) such that u(1) = p, u(j) = q, u(j2) = r (where j = exp(2iπ3 )),

and mapping the portions of unit circle [1, j], [j, j2], [j2, 1] to Li, Lj and

Lk respectively. The other products are defined similarly.

In presence of a B-field, the weights are modified by the fact that we

now consider twisted Floer homology. Namely, the weight attributed to a

given pseudo-holomorphic map u : (D2, ∂D2)→ (Σ∗,∪Li) is modified by

a factor corresponding to the holonomy along its boundary, and becomes

(−1)ν(u) hol(u(∂D2)) exp(2πi

∫

D2

u∗(B + iω)).

All details can be found in [41, 4, 5].

Although the category Lagvc(Y, ωC,W, {γi}) depends on the chosen

ordered collection of arcs {γi}, Seidel has obtained the following result

[39].

Theorem 5.2 (Seidel). If the ordered collection {γi} is replaced by an-

other one {γ′i}, then the categories Lagvc(Y, ωC,W, {γi}) and Lagvc(Y, ωC,W, {γ′i})
differ by a sequence of mutations.

Hence, the category naturally associated to the fibration W is not the

finite A∞-category defined above, but rather an A∞-category of twisted

complexes over Lagvc(Y, ωC,W, {γi}) that coincides with the A∞-category

of finite dimensional A∞-modules over Lagvc(Y, ωC,W, {γi}).

Definition 5.3 (Fukaya, Seidel). The Fukaya-Seidel category FS(Y, ωC,W )

is the A∞-category of twisted complexes over Lagvc(X,ωC,W, {γi}) or in

this case it is the A∞-category of finite dimensional A∞-modules over

Lagvc(X,ωC,W, {γi}).

Now the theorem above gives us the following corollary.
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Corollary 5.4 (Seidel). The A∞-category FS(X,ω,W ) does not depend

on {γi}.

Now we are ready to define the category of D-branes of type A.

Definition 5.5. Let (Y, ωC,W ) be a Landau-Ginzburg model. We define

a category DA(Y, ωC,W ) of D-branes of type A (A-branes) on Y with the

superpotential W as follows

DA(Y, ωC,W ) := HFS(Y, ωC,W ) ∼= DFS(Y, ωC,W ) ∼=

∼= Db(modfd−Lagvc(X,ωC,W, {γi})).

For the first equivalence, recall that the derived category and the

homotopy category for A∞-categories are the same.

5.2 Classical generators and mirror symmetry

When we would like to prove a homological mirror symmetry for some a

given pair of models, we have to show that two categories are equivalent.

How do we check whether two triangulated categories are equivalent, in

general? Roughly speaking, all ways can be divided into two groups.

Direct way For F : N →M we prove that F is fully faithful, i.e. show

that for any A,B ∈ N there is an isomorphism Hom(A,B)
∼
−→

Hom(FA,FB). After that we check that the functor F is essentially

surjective on objects.

Indirect way Use a notion of classical generator for a triangulated cat-

egory and we show that two categories have classical genrators with

the same DG (or A∞) algebra of endomorphisms.

Definition 5.6. Let T be a triangulated category. An object E ∈ T is

called a classical generator of T if the smallest full triangulated subcategory

U ⊆ T that contains E and is closed under taking direct summands (i.e.

A ∈ U and A = B ⊕ C implies B,C ∈ U) coincides with T.

Example 5.7. Let A be a (right) noetherian algebra. Consider the

triangulated category of perfect complexes Perf(A), objects of which,

by definition, are bounded complexes of (right) projective modules of
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finite type. Then A is a classical generator for Perf(A). Note that the

category Perf(A) is the full subcategory of the bounded derived category

Db(mod−A) of (right) modules of finite type. They are not necessary

equivalent and, hence, A is not a classical generator for Db(mod−A).

Example 5.8. If (E1, . . . , En) is a full exceptional collection for a trian-

gulated category T, then the direct sum
⊕n

i=1Ei is a classical generator

for T.

If we have an algebra A and a quasi-compact and separated scheme

X then the categories Perf(A) and Perf(X) can be also described in

the internal terms of the unbounded derived categories D(Mod−A) and

D(QcohX) of all right modules and all quasi-coherent sheaves. They

coincides with full subcategories of compact objects [20, 26]. Recall that

an object E is called compact if the functor Hom(E,−) commutes with

arbitrary direct sums. It is proved by Neeman for quasi-compact and

separated schemes and by Bondal and Van den Bergh for quasi-compact

and quasi-separated schemes that the triangulated categories of perfect

complexes Perf(X) have a classical generator.

Theorem 5.9 ([26, 9]). For any quasi-compact, quasi-separated scheme

X the triangulated category of perfect complexes PerfX has a classical

generator.

It is not completely clear how to construct such a generator for a

general quasi-compact and quasi-separated scheme. However for a quasi-

projective scheme it can be done.

Proposition 5.10 ([31]). If X is a quasi-projective scheme of dimension

n and L is a very ample line bundle on X, then the direct sum
⊕n

i=0L
i

is a classical generator for PerfX.

The bounded derived category of coherent sheaves Db(cohX) for a

scheme X of finite type also has a classical generator.

Theorem 5.11 ([38]). For a scheme X of finite type, Db(cohX) has a

classical generator that is actually is a strong generator, i.e. it generates

the whole category for the finite number of steps.

An existing of a classical generator can help us to prove an equivalence

between triangulated categories. Let T be a triangulated category that
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has an enhancement, i.e. there is some pre-triangulated A∞- or DG-

category U such that T is an equivalent to the homotopy category H0(U).

Suppose it has a classical generator E ∈ T = H0(U). Consider E as an

object of the DG-category U and take a DG-algebra (or A∞-algebra)

A := RHomU(E,E).

Now results of Bernhard Keller give us the following equivalence

Theorem 5.12 ([20]). Suppose that T = H0(U) is idempotent complete.

Then there is an equivalence T ∼= Perf(A), where the category of perfect

complexes Perf(A) is, by definition, the smallest triangulated subcategory

in the derived category of A-modules D(Mod−A) that contains A and is

closed under taking direct summands.

Assume now that we have two triangulated categories T1 and T2

which are obtained as homotopy categories of two pre-triangulated DG-

categories U1 and U2 respectively. Suppose we have two generators

E1 ∈ T1 and E2 ∈ T2 for which we can check that the DG-algebras

of endomorphisms Ai = RHomUi
(Ei, Ei), i = 1, 2 are quasi-isomorphic.

Then by theorem 5.12 these triangulated categories are equivalent. More-

over, DG-categories U1 and U2 are quasi-equivalent.

Application of this results is a standard way to establish a Homo-

logical Mirror Symmetry between categories of D-branes of type A and

D-branes of type B in mirror symmetric models: we choose such genera-

tors in both categories and prove that the DG-algebras of endomorphisms

are quasi-isomorphic.

Example 5.13. Let us consider the following simple but not trivial

example. Let X = P
1 be the projective line. Consider the sigma-model

with X = P
1 as the target space. The category of D-branes of type

B is the bounded derived category of coherent sheaves Db(cohP1). Let

us take a mirror symmetric LG model that has a total space Y = C
∗

with a superpotential W (z) = z+ 1
z . We can take a standard symplectic

form on C
∗ but the category of D-branes of type A in this case does not

depend on it. The superpotential W has two critical points. Hence we

have two vanishing Lagrangians L1, L2. The smooth fiber consists of two

points and intersection of L1 and L2 is exactly these two points. Thus the
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category Lagvc(W, {γ}) has two objects L1, L2 and two-dimensional Hom

space from the first to the second, i.e. it is equivalent to A :=
{1
•⇒

2
•
}

On the other hand, the bounded derived category of coherent sheaves

Db(cohP1) has a full exceptional collection
(
O,O(1)

)
and hence it is

equivalent to the bounded derived category Db(mod−End(O⊕ O(1))).

Now observe that A ∼= End
(
O⊕ O(1)

)
. Thus we obtain

DFS(C∗,W ) ∼= Db(mod−A) ∼= Db(cohP1).

This gives an equivalence between the category of D-branes of type B for

P
1 and the category of D-branes of type A in the mirror symmetric LG

model (C∗,W = z + 1
z )

5.3 Mirrors for weighted projective planes, del Pezzo su-

faces and their noncommutative deformations

Let P2(a0, a1, a2) be the weighted projective plane (here a0, a1, a2 are co-

prime positive integers). It is natural to consider the weighted projective

plane as smooth orbifold. In this case the bounded derived category of

coherent sheaves on P
2(a0, a1, a2) has a full exceptional collection of line

bundles 〈O, . . . ,O(a0 + a1 + a2 − 1)〉. The mirror LG model is the affine

hypersurface Y = {ya00 ya11 ya22 = 1} ⊂ (C∗)3 equipped with an exact sym-

plectic form ω, trivial B-field, and the superpotential W = y0 + y1 + y2.

It is proved in [4] that the bounded derived category of coherent

sheaves (B-branes) on the weighted projective plane P2(a0, a1, a2) is equiv-

alent to the derived category of vanishing Lagrangian cycles (A-branes)

on the affine hypersurface Y ⊂ (C∗)3 with an exact symplectic form

and the trivial B-field. Observe that weighted projective planes are rigid

in terms of commutative deformations, but have a one-dimesional toric

noncommutative deformations P2
θ(a0, a1, a2).

It was showed in the paper [4] that this mirror correspondence be-

tween derived categories can be extended to the toric noncommutative

deformations P2
θ(a0, a1, a2). These noncommutative deformations are re-

lated to non-exact variations of the symplectic structure and the B-field

on the mirror LG model Y. Variations of the symplectic structure ωC

induces a deformation of the derived category of vanishing Lagrangian

cycles. Thus the main theorem says us the following.
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Theorem 5.14. [4] Homological Mirror Symmetry holds for P2(a0, a1, a2)

and its noncommutative deformations, i.e. Db(cohP2
θ(a0, a1, a2))

∼= DFS(Y, ωC,W

Given a del Pezzo surface SK obtained by blowing up P
2 at k points,

the mirror Landau-Ginzburg model is an elliptic fibration Wk : Mk → C

with k + 3 nodal singular fibers, which has the following properties:

(i) the fibration Wk compactifies to an elliptic fibration W k over P1 in

which the fiber above infinity consists of 9−k rational components;

(ii) the compactified fibration W k can be obtained as a deformation of

the elliptic fibration W 0 : M → P
1 which compactifies the mirror

to P
2.

Moreover, the manifold Mk is equipped with a symplectic form ω

and a B-field B, whose cohomology classes are determined by the set of

points K in an explicit manner.

Theorem 5.15. [5] Given a del Pezzo surface SK obtained by blowing

up P
2 at k points, there exists a complexified symplectic form ωC on Mk

for which Db(coh(SK)) ∼= DFS(Mk,Wk, ωC).

The mirror map, i.e. the relation between the cohomology class

[ωC] = [B + iω] ∈ H2(Mk,C) and the positions of the blown up points

in P
2, can be described explicitly (Prop. 5.1 [5]).

On the other hand, not every choice of [ωC] ∈ H2(Mk,C) yields a

category equivalent to the derived category of coherent sheaves on a del

Pezzo surface. There are two reasons for this. First, certain specific

choices of [ωC] correspond to deformations of the complex structure of

XK for which the surface contains a −2-curve, which causes the anti-

canonical class to no longer be ample.

More importantly, deformations of the symplectic structure on Mk

need not always correspond to deformations of the complex structure on

SK (observe thatH2(Mk,C) is larger thanH1(SK , TSK
)). The additional

deformation parameters on the mirror side can however be interpreted in

terms of noncommutative deformations of the del Pezzo surface SK (i.e.,

deformations of the derived category Db(coh(XK))). In this context we

have the following theorem.
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Theorem 5.16. [5] Given any noncommutative deformation of the del

Pezzo surface SK,µ, there exists a complexified symplectic form ωC on Mk

for which the derived category Db(coh(SK,µ)) is equivalent to DFS(Mk,Wk, ωC).

Conversely, for a generic choice of [ωC] ∈ H2(Mk,C), the derived cat-

egory of Lagrangian vanishing cycles DFS(Mk,Wk, ωC) is equivalent to

the derived category of coherent sheaves of a noncommutative deforma-

tion of a del Pezzo surface.

The mirror map is again explicit, i.e. the parameters which deter-

mine the noncommutative del Pezzo surface can be read off in a simple

manner from the cohomology class [B + iω]. The key point in the deter-

mination of the mirror map is that the parameters which determine the

composition tensors in DFS(Wk) can be expressed explicitly in terms of

the cohomology class [B + iω]. A remarkable feature of these formulas

is that they can be interpreted in terms of theta functions on a certain

elliptic curve.

5.4 Homological Mirror Symmetry – Summary

Let us summarize in which cases Homological Mirror Symmetry is proved.

It is know for the projective line. It is proved by A. Polishchuk and E. Za-

slow for elliptic curves in [36]. For K3 quartic surfaces it is proved by

Paul Seidel in [40]. The cases of del Pezzo surfaces, weighted projec-

tive planes and their noncommutative deformations are considered and

proved by D. Auroux, L. Katzarkov, and D. Orlov in [4, 5]. Mirror

Symmetry for toric varieties was discussed and proved by M. Abouzaid

in paper [1]. Varieties of general type was discussed in paper [15] and

Homological Mirror Symmetry for curves of genus 2 was proved by P. Sei-

del in [42] and for curves of genus greater than 2 by A. Efimov in [12].

M. Abouzaid and I. Smith considered two dimensional complex tori and

proved mirror symmetry in case of standard symplectic form in the paper

[3]. The mirror symmetry for abelian varieties is also discussed in the

paper [13]. In the paper [2] authors considered punctures spheres and

proved HMS.
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[43] Toën B., The homotopy theory of dg-categories and derived Morita
theory, – Invent. Math., 167 (2007), 3, 615–667.

[44] Verdier J. L., Categories derivées, – in SGA 4 1/2, Lecture Notes in
Math. 569 (1977).

[45] Voevodsky V., Triangulated categories of motives over a field, – in
Cycles, transfers, and motivic homology theories, Ann. of Math.
Stud. 143 (2000), 188–238.

[46] Witten E., Chern-Simons gauge theory as a string theory, – in “The
Floer memorial volume”, 637–678, Progr. Math., 133, Birkhaüser,
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