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Landau-Ginzburg Models, D-Branes and Mirror
Symmetry

Dmitri Orlov*

Abstract

This paper is an introduction to D-branes in Landau-Ginzburg
models and Homological Mirror Symmetry. The paper is based on
a series of lectures which were given on Second Latin Congress on
Symmetries in Geometry and Physics that took place at the Federal
University of Parana, Brazil in December 2010.

1 Triangulated categories

1.1 Definition of triangulated categories and their local-
izations

Triangulated categories appeared in algebra and geometry as generaliza-
tion and formalization of notions of derived and homotopy categories.
If we are given an abelian category A, we can consider its homotopy
category H*(A) and then pass to its derived category D*(A), where
+ is reserved for {b,+,—,0} depending which complexes we consider:
bounded, bounded above, bounded below, or unbounded. The objects
of H*(A) are appropriate complexes of objects of A and morphisms are
morphisms of complexes up to homotopy. The objects of D*(A) are the
same as those of H*(A), but we have to invert all quasi-isomorphisms, i.e.

2000 AMS Subject Classification. 14F05, 18E30.
Key Words and Phrases. Triangulated Categories, Homological Mirror Symmetry,
*Partially supported by RFBR grants 10-01-93113, 11-01-00336, 11-01-00568, NSh
grant 4713.2010.1, by AG Laboratory HSE, RF government grant, ag. 11.G34.31.0023,
and by Simons Center for Geometry and Physics.



76 D. Orolov

all morphisms of complexes that induce isomorphisms on cohomology. In
other words we can obtain the derived category as a localization of the
homotopy category with respect to the class of all quasi-isomorphisms:

D*(A) := H*(A)[Quasi™ ]

It is evident that there is a canonical embedding A — D*(A), which
sends an object A € A to the complex --- -0 —+ A — 0 — --- with
one nontrivial term in degree 0. Both categories H*(A) and D*(A) have
natural triangulated structures.

Definition 1.1 ([44]). Let T be an additive category. The structure of a
triangulated category on T is defined by giving of the following data:

a) an additive autoequivalence [1] : T — T (it is called a shift
functor or a translation functor),

b) a class of exact (or distinguished) triangles:

X5y 5725 X[,

which must satisfy the set of axioms Verdier T1-T}.
T1. a) For each object X the triangle X L X —0— X[1] s
exact.

b) Each triangle isomorphic to an exact triangle is eract.

c) Any morphism X Y can be included in an exact triangle
X -5Y 575 X[1).

T2. A triangle X —Y - Z 5 X[1] is exact if and only if the

triangle

Y 5 7 5% X[1] ey Y[1] is exact.

T3. For any two exact triangles and two morphisms f,qg the diagram
below

Xty Yoz "o X[l

I T P
/ / v

X sy s 7 e X1

can be completed to a morphism of triangles by a morphism h :
7z — 7.
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T/. For each pair of morphisms X — Y —— Z there is a commutative
diagram

X~ v =25 72 — X[

[ o]

X — z /5 v 25 X[

Ll e

X — X —— Y[l
v U 2

where the first two rows and the two central columns are exact
triangles.

This definition is useful and has many applications to algebra, geom-
etry, topology, and even physics. In particular, any homotopy category
H*(A) and any derived category D*(A) have natural triangulated struc-
tures.

Now we recall the definition of a localization of categories. Let € be
a category and let X be a class of morphisms in €. It is well-known that
there is a large category C[X7!] and a functor Q : € — C[X~!] which is
universal among the functors making the elements of 3 invertible. The
category C[X71] has a good description if ¥ is a multiplicative system.

A family of morphisms ¥ in a category € is called a multiplicative
system if it satisfies the following conditions:

M1. all identical morphisms idy belongs to >:;
M2. the composition of two elements of ¥ belong to X;

M3. any diagram X’ «<— X — Y, with s € ¥ can be completed to a
commutative square

X—2sY
|

sl I ¢
, A
X/—U—>Y/

with ¢ € ¥ (the same when all arrows reversed);
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M4. for any two morphisms f, g the existence of s € ¥ with fs = gs is
equivalent to the existence of t € ¥ with tf = tg.

If 3 is a multiplicative system then C[X~!] has the following descrip-
tion. The objects of C[X7!] are the objects of €. The morphisms from X
to Y in C[X 1] are pairs (s, f) in € of the form

x Ly vy, sey

modulo the following equivalence relation: (f,s) ~ (g,t) iff there is a
commutative diagram

with r € 3.
The composition of the morphisms (f,s) and (g,t) is a morphism
(¢'f, s't) defined from the following diagram, which exists by M3:

7/ N
Y’ Z'
NN
X Y A

It can be checked that C[X7!] is a category and there is a quotient

functor
Q:C—CXE, X=X f—(f1)

which inverts all elements of > and it is universal in this sense.

Let D be a triangulated category and N C D be a full triangulated
subcategory. Denote by X(N) a class of morphisms s in D embedding
into an exact triangle

X5Y —N-— X[1]
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with N € N. It can be checked that (V) is a multiplicative system. We
define the quotient category

D/N :=D[S(N)1].

We endow the category D/N with a translation functor induced by the
translation functor in the category D.

Lemma 1.2. The category D/N becomes a triangulated category by tak-
ing for exact triangles such that are isomorphic to the images of exact
triangles in D. The quotient functor Q@ : D — D/N annihilates N.
Moreover, any exact functor F : D — D’ of triangulated categories for
which F(X) ~ 0 when X € N factors uniquely through Q.

1.2 Main geometric examples

Example 1.3 (Rings and Modules). Let A be a ring. We can consider
the abelian category Mod —A of all (right) Amodules and take the un-
bounded derived category D(Mod —A). This is a triangulated category
with arbitrary direct sums. We can also consider a full triangulated sub-
category of D(Mod —A) that is called a triangulated category of perfect
complexes and consists of all bounded complexes of projective Amodules
of finite type. We denote it as Perf(A). It is not a derived category of
any abelian category, but it is a derived category of the exact category
of projective modules of finite type (see [21] for definition).

If the ring A is noetherian, then we can also consider the bounded
derived category D’(mod —A) of (right) Amodules of finite type. It
contains the triangulated category of perfect complexes Berf(A) and they
are equivalent when A has a finite global dimension.

Example 1.4 (Schemes). The most important example of a derived or
triangulated category comes from a given scheme (X, Ox). In this case
it is natural to consider an abelian category of sheaves of Ox-modules
and an abelian category of quasi-coherent sheaves Qcoh(X). If X is
noetherian then we can also consider an abelian category of coherent
sheaves coh(X'). We usually work with the unbounded derived category
D(Qcoh X) and the bounded derived category D?(coh X). It is important
and convenient that D(Qcoh X) has all direct sums. If X is noetherian
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then the natural functor from D’(coh X) to D(Qcoh X) is fully faith-
ful and realizes an equivalence of D?(coh X) with the full subcategory
Dg(’)ﬁ(Qcoh X) consisting of all cohomologically bounded complexes with
coherent cohomology ([6], Ex.II, 2.2.2).

The category of O x-modules and the category of abelian-group-valued
sheaves on X depend on the topology of X (e.g. Zariski, etale, flat and so
on), while the categories Qcoh X and coh X do not depend on topology.

Another very important triangulated category that appears in geom-
etry is so-called a triangulated category of perfect complezes PBerfX. This
category consists of all complexes of O x-modules which are locally quasi-
isomorphic to a bounded complex of locally free Ox-modules of finite

type. For noetherian scheme we have inclusions
PerfX € D’(coh X) € D(Qcoh X).

The category of perfect complexes BerfX coincides with the subcategory
of compact objects in D(Qcoh X) [26], i.e. such objects C for which the
functor Hom(C, —) commutes with arbitrary direct sums. This means
that the category of perfect complexes can be defined in internal terms
of the triangulated category D(Qcoh X). On the other hand one can
also recover D(Qcoh X) starting from the category of perfect complexes
PerfX, so these two categories contain essentially the same information
and can be considered in general situation for any quasi-compact and
separated scheme. Note also that ‘BerfX is not a derived category, it is
merely triangulated.

The bounded derived category of coherent sheaves D’(coh X) can
not to be defined in general; we require that X be noetherian, or at least
coherent. However to any noetherian scheme X we can attach three
triangulated categories D(Qcoh X), PerfX, and D’(coh X). Note also
that if X is regular then D®(coh X) = PerfX.

Claim: Studying X s actually studying these three triangulated cate-
gories PerfX, D(coh X), and D(Qcoh X).

Example 1.5 (Voevodsky category of motives, [45]). Voevodsky’s con-
struction of the category of geometric motives provides another very
important example of a triangulated category. Let &m/k denote the
category of smooth schemes of finite type over k. Let Gm€ot/k be a cat-
egory with the same objects, but whose morphisms are correspondences,
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i.,e. Hom(X,Y) is a free abelian group generated by integral closed sub-
schemes Z C X xX Y such that Z — X is finite and surjective onto a
connected component. The category Gm€ot/k is additive and one has
[X] @ [Y] = [X]]Y]. Its homotopy category H’(&m¢€ot/k) has a natu-
ral triangulated structure. Let us consider a minimal thick triangulated
subcategory 7' C H?(&GmdCor/k) that contains all objects of the form

_Ja) [X xAl] = [X] (ALhomotopy)
b)) [UnV]—=[Ul®[V]—=[X], when X =UUV (Mayer-Vietoris)

The triangulated category of effective geometric motives over k is defined as the
quotient
oM (k) := H'(GmCor/k) /T.

The category @Wgﬁfn(k) has a tensor structure, and [X]® [Y] = [X X
Y]. In the category @Qﬁgfn(k) there is a distinguished element L called
the Lefschetz motive or Tate motive such that [P'] = [pt] @ L (and
more generally, [P"] = [pt] @ L © L®? @ --- ® L®"). The triangulated
category DM, (k) of geometric motives over k is obtained from the
effective category by by formally inverting the functor of tensor product
with the Tate motive — ® L.

Claim: Studying (co)homology theories of varieties (schemes) over k is
actually studying the triangulated category DM 4 (k).

Example 1.6 (Symplectic geometry). A third example of triangulated
categories is coming from symplectic geometry. Let (X, w, B) be a sym-
plectic manifold with B-field. We can consider a so-called ‘derived’
Fukaya category D§ut( X, wc) which is the homotopy category of an A5
Fukaya category $ut(X,w) (and is not actually a derived category by
construction). The main objects of these categories are Lagrangian sub-
manifolds L C X together with local systems U on L, while morphisms
are the Floer cohomologies between them.

Claim: Studying a symplectic manifold with a B-field (X,w, B) is actu-
ally studying the triangulated Fukaya category DFut( X, we).

Derived and triangulated categories appear in many other places of
geometry, algebra, and topology. The most famous is the stable homo-
topy category that is the homotopy category of the category of symmetric
spectra.
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Many natural geometric relations can be described as equivalences
or fully faithful functors between corresponded triangulated categories.
For example, McKay correspondence, many of birational transformations
like blow ups, flips and flops have such properties [27, 7, 10, 11]. It seems
that geometric Langlands correspondence can also be formulated as an
equivalence between triangulated categories.

2 Homological mirror symmetry

Traditionally, the mirror symmetry phenomenon is studied in the most
relevant for the physics case of Calabi-Yau manifolds. It was observed
that some pairs of such manifolds (mirror partners), which naturally ap-
pear in mathematical models for physics string theory, exhibit properties
(have numerical invariants) that are symmetric to each other. There were
several attempts to mathematically formalize this mirror phenomenon,
one of which was the celebrated definition of Homological Mirror Sym-
metry (HMS) stated by Kontsevich in 1994 [22].

Kontsevich was also the first to suggest that Homological Mirror Sym-
metry can be extended to a much more general setting, by considering
Landau-Ginzburg models. At this moment we know examples of mirror
symmetry for different type of varieties and believe that mirror symmetry
in some sense exists for varieties of all types.

Claim: Mirrors should exist for all types of varieties.

2.1 Mirror symmetry for Calabi-Yau manifolds

In its original formulation, Kontsevich’s celebrated Homological Mirror
Symmetry conjecture [22] concerns mirror pairs of Calabi-Yau varieties,
for which it predicts an equivalence between the derived category of co-
herent sheaves of one variety and the derived Fukaya category of the
other.

From physics point of view in this case we consider superconformal
quantum field theory that is called a sigma-model.

Definition 2.1. A geometric input for a sigma-model is a data of the
following form (X, I,w,B) that consists of a smooth manifold X with a
complex structure I, an (1,1)-Kdhler form w and a real closed 2-form B
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which is called a B-field. For shortness we will also use the following
combination B + 1w and denote it by wc.

If X is a (weak) Calabi-Yau manifold (i.e. Q%P = Ox) then it is
believed that to any data (X, I,wc) we can attach, in a natural way,
a so-called superconformal quantum field theory (SCQFT) with N=(2,2)
supersymmetry.

There is the following heuristic argument supporting this claim. First
of all, to any such data one can naturally attach a classical field theory
called the N = (2, 2) sigma-model. Its Lagrangian is given by an explicit,
although rather complicated, formula. Infinitesimal symmetries of this
classical field theory include two copies of N = 2 super-Virasoro algebra
(with zero central charge). Second, one can try to quantize this classical
field theory while preserving N = (2, 2) superconformal invariance (up to
an unavoidable central extension). The result of the quantization should
be an N = (2,2) SCQFT.

Except for a few special cases, it is not known how to quantize the
sigma-model exactly. On the other hand, one has a perturbative quanti-
zation procedure which works when the volume of the Calabi-Yau is large.
That is, if one rescales the metric by a parameter ¢t > 1, g, — tzgw,,
and considers the limit ¢t — oo (so called large volume limit), then one
can quantize the sigma-model order by order in 1/t expansion. It is
believed that the resulting power series in 1/t has a non-zero radius of
convergence, and defines an actual N = (2,2) SCQFT.

Super-Virasoro algebra has an interesting involution called the mirror
automorphism. Suppose we have a pair of N = (2,2) SCQFTs and an
isomorphism between them that acts as the identity on the “left-moving”
N = 2 super-Virasoro, and acts by the mirror automorphism on the
“right-moving” N = 2 super-Virasoro. In this situation we say that
these SCQFTs are mirror symmetric.

Mirror Symmetry can also be extended on the case when 2-dimensional
world-sheet has boundaries (see e.g. [46]). This generalization leads to
the notion of a D-brane, which plays a very important role in string the-
ory [35]. A D-brane is a nice boundary condition for the SCQFT. For
example, one can impose Dirichlet boundary conditions (i.e. vanishing)
on some scalar fields which appear in the Lagrangian.

If the field theory has some symmetries, it is reasonable to require
the boundary condition to preserve this symmetry. It is not possible to
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preserve both of them. In the N = (2,2) case, we have two copies of
N = 2 super-Virasoro, and we may require the boundary condition to
preserve the diagonal N = 2 super-Virasoro. Such boundary conditions
are called D-branes of type B, or simply B-branes. One can also exploit
the existence of the mirror automorphism and consider boundary condi-
tions which preserve a different N = 2 super-Virasoro subalgebra. The
corresponding branes are called D-branes of type A, or simply A-branes.
One can show that the set of A-branes (or B-branes) has the structure
of a category.

To summarize, to any physicist’s Calabi-Yau we can attach two cate-
gories: the categories of A-branes and B-branes. One can argue that the
category of A-branes (resp. B-branes) does not depend on the extended
complex (resp. extended symplectic) moduli [46]. It is obvious that if
two Calabi-Yau manifolds are related by a mirror morphism, then the A-
brane category of the first manifold is equivalent to the B-brane category
of the second one, and vice versa. Obviously, if two N = (2,2) SCQFTs
related two Calabi-Yau manifolds are isomorphic, then the corresponding
categories of A-branes (and B-branes) are simply equivalent.

Claim: a) A category of D-branes of type A for a sigma model (X, I, wc)
is the derived Fukaya category DFut(X,w).

b) A category of D-branes of type B for a sigma model (X, 1I,wc) is
the derived category of coherent sheaves D?(coh(X, I)).

As we said above mirror symmetry is a some simple relation between
SCQFTs that should interchange D-branes of type A and type B. This
fact can be considered as a definition of Homological Mirror Symmetry.

Definition 2.2 (Homological Mirror Symmetry). We say that two sigma-
models (X, I,wc) and (XY, IV, wd) are homologically mirror symmetric if
we have equivalences of triangulated categories

a) DP(coh(X,I))
b) DFut(X,wc)

DFut(X",w)
D?(coh(XV,IY)).

[ramire

In some sense we say that two sigma-models are mirror symmetric
to each other if the algebraic variety (X, ) is “equal” to the symplectic
manifold (XV,w) and the symplectic manifold (X,wc) is “equal” to
the algebraic variety (X, IV). Thus a passing to triangulated categories
allows us to compare an algebraic variety and a symplectic manifold.
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Claim: The notion of a triangulated category allows us to compare ob-
jects from different fields of mathematics and physics.

2.2 Bounded derived categories of coherent sheaves

Let X be a smooth (quasi)-projective variety. To any such variety we can
attach the bounded derived category of coherent sheaves D?(coh X). It is
natural to ask the following questions: How much information of X does
D’(coh X) contain? When do two different varieties have equivalent the
bounded derived categories of coherent sheaves?

There is a reconstruction theorem for varieites of general type and
Fano varieties.

Theorem 2.3 ([8]). Let X be a smooth projective variety such that either
canonical sheaf Kx or anticanonical sheafK)_(l is ample. If X' is another
algebraic variety such that D°(coh X) ~ D?(coh X'). Then X' = X.

In this case we can reconstruct a variety from the derived category
D®(coh X) and, moreover, it can be done directly, i.e. there is a procedure
for the reconstruction.

However, it is much more interesting when we can not to reconstruct
a variety and have different varieties with equivalent bounded derived
categories of coherent sheaves. Such varieties are called Fourier-Mukai
partners. It happens very seldom and every time any such example has
lots of geometric senses and meanings. The first example is due to Mukai
and can be considered as a categorical Fourier transform.

Theorem 2.4 (Mukai). Let A be an abelian variety and A be the dual
abelian variety then D°(coh A) ~ D’(coh E) and this equivalence is given
by Fourier transform, i.e. the functor is isomorphic to Rpa.(pi(—) @ P),
where P is a Poincare line bundle on the product A x A.

In this case we have an isomorphism between N = (2,2) SCQFTs as
well. More precisely, there is the following theorem.

Theorem 2.5 ([17]). Let A be an abelian variety and we = B + iw
be a flat 2-form. Suppose that A’ is another abelian variety such that
D®(coh A’) =2 D®(coh A).

Then there exists a flat 2-form w'c on A’ such that SCQFT (A", w'¢) =
SCQFT(A, wc).
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This example shows that from string theory point of view two vari-
eties with equivalent derived categories of coherent sheaves should pro-
duce the same SCQFT’s for a suitable choice of 2-forms on them.

There are known other examples of equivalences between derived cat-
egories of coherent sheaves. The large class of such examples come from
birational geometry. Let X and X’ be birational isomorphic varieties.
Suppose that for some (and consequently for any) resolution

l
of the birational isomorphism X AN X' we have m*Kx = n"*K . Such
a birational transformation is called a generalized flop.

Conjecture 2.6. If X and X' are related to each other by a generilized
flop, then D?(coh X') =2 D®(coh X).

This conjecture proved for simple examples of flops in [7] and by T.
Bridgeland for any flop in dimension 3 in [10]. It is also proved for a
symplectic flop in [19, 25].

If two projective varieties X; and X, have equivalent the bounded
derived categories of coherent sheaves D?(coh X) and D?(coh X5) then
we can ask: how to describe such an equivalence? It is proved in [2§]
for smooth projective varieties and in [24] for any projective varieties X
and X, that any equivalence F : D?(coh X;) = D?(coh X3) can be rep-
resented by an object on the product. This means that F' is isomorphic

to the functor ®¢ := Rpa.(pi(—) é) €), where & € D?(coh(X; x X)) and
p1,p2 are the projection of the product on X; and X5 respectively. It is
important to mention that there is a theorem of Bertrand Toén which
says that any functor between the differential graded categories of per-
fect complexes Perf,, (X1) and Perfy, (X2) are represented by a perfect
complex on the product for any quasi-compact and separated schemes
X1, Xy (see [43]).

Finally, I would like to formulate another conjecture which states
that the bounded derived category of coherent sheaves keeps almost all
information about the variety.



Landau-Ginzburg Models and Mirror Symmetry 87

Conjecture 2.7. If X is a quasi-projective variety, then there are only

finitely many quasi-projective Fourier-Mukai partners, i.e. such X' that
D®(coh X') = D%(coh X).

In all cases, like K3 surfaces, abelian varieties when we can describe
all Fourier-Mukai partners precisely this conjecture holds.

2.3 Mirror symmetry for Fano varieties and varieties of
general type

If X is not a Calabi-Yau variety then we can not expect that its mirror
is a sigma-model. In such cases mirror symmetric object is so called
Landau-Ginzburg model. The most important cases are a Fano variety
or a variety of general type (this means that the canonical sheaf Kx is
ample or anti-ample). Let us introduce a notion of a Landau-Ginzburg
model that is a generalization of a sigma-model.

Definition 2.8. A Landau-Ginzburg model is a collection (Y, I,w, B, W),
where Y is a smooth variety, w is an (1,1)-Kdhler form, B is a closed
real 2-form (B-field), and W:Y — Al is a regqular function that is called
a superpotential.

We also can consider an action of an algebraic group G on Y such
that the superpotential W is semi-invariant.

Note that a sigma-model is a Landau-Ginzburg model with a trivial

superpotential W = 0. If (X, I,wc) is a sigma-model, we have already
defined
DB :=D’cohX) and DA :=DFut(X,we).

Now we can formulate Homological Mirror Symmetry relation for LG
models. We say that two LG models (Y, I,w, B, W)% and (YV, IV, wV, BY, WV)&"
are mirror-symmetric if there are equivalences

a) DB(Y,I,W)¢
b) DA(Y,wc, W)Y

DAY, wg, W¥)¢"  and
DB(YY, 1V, WV)&"

e 1R

between categories of G-equivariant of D-branes of type B and type A in
these models.

Thus to talk about HMS for LG models we have to define the cate-
gories of D-branes of type A and type B in these models. The category of
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D-branes of type B can be defined as categories of matrix factorizations.
They are also closely related to the triangulated categories of singulari-
ties. The categories of D-branes of type A are defined as the categories
of vanishing Lagrangian cycles. Constructions of these categories will be
discussed in the next sections.

Now I would like to consider examples of LG models that appear
as mirror symmetric models for toric varieties. In toric case we have a
precise procedure of constructing of a mirror symmetric LG model. This
procedure appeared in papers of Batyrev, Givental, and Hori—Vafa.

For any toric variety X of dimension n, there is a mirror symmetric
LG model Y that is a complex torus (C*)™ of the same dimension n with
a superpotential W which depends on the fan defining the toric variety
X and some parameters t1,...,t;, where k is the rank of Picard group
of X.

We explain the procedure of a construction of the superpotential W
considering a few examples.

Example 2.9 (Projective space). The simplest example of a toric variety
is the projective space. Let X = P" be the projective space. In the toric
fan we have eg+e;+- - -+e€, = 0, so we introduce variables T;,7 = 0,...,n
such that To+T1+- - -+T,, = t, where t be a some parameter that depends
on the class of the form we on the projective space P*. Let Y; = e,
Thus we have YyY; ---Y,, = e~!. Now the superpotential is given by the

simple formula

—t

n
e
W=S Y=V +Yot -tV oo
; =Yt Yot Yot g
that is considered as a function on (C*)" with coordinates Y7,...,Y,.

Thus the mirror symmetric LG model is isomorphic to (C*)" with the
superpotential W introduced above and with a standard exact symplectic
form on this complex torus.

Example 2.10 (Blow up of P? at 1 point). Consider the Hirzebruch
surface IF; that is a blow-up of P? at one point. We have Ty + T} + T5 =
t and Th + T" = s, and hence YpY1Ys = et Y5V’ = e7*. Now the
mirror symmetric LG model is the two-dimensional complex torus with
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coordinates Y7, Yo and with the following superpotential

—t —S

e e
W=Y+Y;+Yo+Y' =Y, +Y. )
o+ Y1+ Yo+ 1+ 2+Y1Y2+Y2

The symplectic form is again the standard exact form on this complex
torus.

Example 2.11 (Blow-ups of P? at 3 points). Let Sg be the blow-up of
P2 at three points. In this case a mirror symmetric LG model is again
isomorphic to (C*)? and the superpotential W has the following form

—r e —t

e e
W=Y+Y +Y{Y-
1+ 2+12+Y1+Y2+Y1Y2,

where Y7, Y5 are coordinates on the two-dimensional torus.

3 D-branes of type B in Landau-Ginzburg mod-
els

3.1 Matrix factorisations, affine case

A mathematical definition of the categories of D-branes of type B in
Landau-Ginzburg models is proposed by M.Kontsevich and it was con-
firmed by A. Kapustin and Yu.Li in the paper [16].

Suppose we have a Landau-Ginzburg model with a total space Y that
is a smooth variety and with a superpotential W:Y — A! that is not
constant. For a definition of B-branes we don’t need a symplectic form
on Y which have to be in a LG model too.

For any A € A!, we define a category of matriz factorizations denoted
by MFA (Y, W). We give constructions of this categories under the con-
dition that Y = Spec(A) is affine. The general definition that is more
sophisticated see below. Since the category of coherent sheaves on an
affine scheme Y = Spec(A) is the same as the category of finitely gener-
ated Amodules we will frequently go from sheaves to modules and back.
Note that under this equivalence locally free sheaves are the same as
projective modules.

Objects of the category IMMF (Y, W) are 2periodic sequences

Po=-—P2sp 2spy—s..
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where Py and P; are projective modules over A and the compositions
pop1 and p1pg are the multiplications with the element (W — A -id) € A,
l.e.

The morphisms between two objects P,, (s are 2-periodic morphisms up
to 2periodic homotopy. Thus a morphism f : P, — Qe in the category
MSA(Y, W) is a pair of morphisms f; : P, — Q1 and fy : Py — Qo
such that fipo = qofo and ¢q1 fi = fop1 modulo 2homotopy that is by
definition a pair of morphisms s : Py — @1 and t : P, — Q) such that

f1 = qot + sp1 and fo = tpo + q15.

Proposition 3.1 ([29]). The category MF (Y, W) has a natural struc-
ture of a triangulated category for which square of the shift functor is
isomorphic to the identity.

It can be shown that the category IMMF,\(Y, W) is trivial if the fiber
over a point A is smooth. All details can be found below when we will
discuss not only affine but a general case.

Definition 3.2. Let (Y,W) be a Landau-Ginzburg model with Y =
Spec A, we define a category DB(Y, W) of D-branes of type B (B-branes)
on Y with the superpotential W as the product

DB(Y,W):= [ ME\ (Y, W).
A€Al

Since Y is regular, the set of singular fibers is finite. Hence, the
category DB(Y, W) of D-branes of type B is a product of finitely many
numbers of triangulated categories.

3.2 The triangulated category of singularities

There is another approach to defining a category of D-branes of type B
in Landau-Ginzburg models. It uses a notion of so called triangulated
category of singularities. Let X be a quasi-projective scheme. Recall
that we had defined the triangulated subcategory of perfect complexes
Perf(X) € DP(coh X). In the case when X is smooth this inclusion is
an equivalence Perf(X) = DP(coh X ). However, in the case of a singular
scheme the difference between these two categories can be considered as
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a measure of singularities of X. It also allows us to define a category of
singularities of X.

Definition 3.3. The triangulated category of singularities of X is defined
as the quotient
D,,(X) := D’(coh X) /Perf(X).

When we have an action of an algebraic group G on'Y, we can also con-
sider an equivariant version of the triangulated category of singularities

D{ (X) := D’(coh® X) /Perf (X

Triangulated categories of singularities of fibers of the superpotential
W in a LG- model have a direct relation to the categories of matrix
factorizations defined above.

Theorem 3.4 ([29]). If (Y, W) is a Landau-Ginzburg model and Y =
Spec A, then there is an equivalence M\ (Y, W) =2 Dy (W =1(N)).

This theorem allows us to recast a definition of the category of D-
branes of type B.

Definition 3.5. Let (Y, W) be a Landau-Ginzburg model. We can define
a category DB(Y, W) of D-branes of type B on Y with the superpotential

W as the product
=TI D).
A€AL

Note that this definition does not require that the total space is affine.
Let us consider the simplest example. It is a case of the ordinary
double point.

Example 3.6. Let Y = A" and W = > "  z7. The fiber over zero
has the simplest isolated singulary that is an ordmary double point. If
n is odd, then the triangulated category of singularities D, (W ~1(0))
is equivalent to the category of kvector spaces with trivial shift func-
tor [1] = id. It is easy to see that in this case the Grothendieck group
Ko(Dsg(W=1(0))) is isomorphic to Z/2Z. If n is even, then the cate-
gory Dy (W~1(0)) is the category of ksupervector spaces and we have
Ko(Dag(W1(0))) = Z.

The triangulated categories of A,-singularities are described in the
last section of [29].
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3.3 Matrix factorizations, general case

Let us consider a general LG model, the total space of which is not nec-
essary affine. By a Landau-Ginzburg model we mean again the following
data: a quasi-projective scheme Y over a field k and a regular function
W on Y such that the morphism W : Y — A%{ is flat. (It is equivalent
to say that the map of algebras k[z] — I'(Oy) is an injection.)

Usually in the definition of an LG model we ask that Y be regular.
However for all considerations regularity of Y is not necessary. Moreover,
it seems that it is very interesting to consider the case of a singular total
space Y as well.

With any kpoint A € A! we can associate a differential Z/2Zgraded
category D&, (Y, W), an exact category Pair, (Y, W), and a triangulated
category H'D®, (Y, W) that is the homotopy category for DG category
DBN\(Y, W).

Objects of all these categories are 2-periodic sequences of vector bun-
dles or, in other words, ordered pairs

E:= (B —=E ),
€o

where Eg, [E; are locally free sheaves of finite type on Y and the composi-
tions ege; and ejep are the multiplications with the element (W —\-id) €
I'(Oy).

Morphisms from E to F in the category 6, (Y, W) form Z /27 graded
complex

Hom(E, F) = €D Hom(E,,F;)
0<2,5<1

with a natural grading (i — j) mod 2, and with a differential D acting
on a homogeneous element p of degree k as

Dp=f-p—(-1)fp-e

The space of morphisms Hom(E, F) in the category Bait, (Y, W) is
the space of morphisms in (Y, W) which are homogeneous of degree
0 and commute with the differential.

The space of morphisms in the category H'D &, (Y, W) is the space
of morphisms in Pairy (Y, W) modulo null-homotopic morphisms, i.e.

HommaitA(Y’W) (Ea E) = ZO(Hom(E, E))a
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Hompope, (v (E, F) = H(Hom(E, F)).

Thus, a morphism p : E — F in the category Pair, (Y, W) is a pair
of morphisms p; : E; — F; and pg : Eg — [Fp such that pieg = fopo
and fip1 = poei. The morphism p is null-homotopic if there are two
morphisms sy : Eg — Fy and s : E; — Fy such that p; = fos1 + sper
and pp = s1eg + f150.

The category HD &, (Y, W) can be endowed with a natural structure
of a triangulated category. To specify it we have to define a translation
functor [1] and a class of exact triangles. The translation functor can be
defined as a functor that takes an object E to the object

E[l] = (Bo—=E ),
el
i.e. it changes the order of the modules and the signs of the maps, and
takes a morphism p = (pg,p1) to the morphism p[l] = (p1,po). We see
that the functor [2] is the identity functor.
For any morphism p : E — F from the category Pair, (Y, W) we
define a mapping cone Cone(p) as an object

C1
(Cone(p) = (Fl b ]EO - FO b El )

€0

_ (o m _ (/1 po
€= (0 —€1 ’ ‘= 0 —€0 '
There are maps ¢ : F — Cone(p), g = (id,0) and r : Cone(p) — E[1], r =
(0, —1id).
The standard triangles in HYD® (Y, W) are defined to be the trian-
gles of the form

such that

E — F — Cone(p) — E[1]
for some p € Pair, (Y, W).
Definition 3.7. A triangle E-F—G—E[1] in H'D&,(Y,W) is called

an exact triangle if it is isomorphic to a standard triangle.

Proposition 3.8. The category HD® (Y, W) endowed with the trans-
lation functor [1] and the above class of exact triangles becomes a trian-
gulated category.
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We define a triangulated category IM$,\(Y, W) of matrix factoriza-
tions on (Y, W) as a Verdier quotient of H*D® (Y, W) by a triangulated
subcategory of “acyclic” objects. This quotient will also be called a tri-
angulated category of D-branes of type B in the LG model (Y, W) over \.
More precisely, for any complex of objects of the category Pairy (Y, W)

. di . di+1 dj—l .
El HEH—I ¢ ... —>Ej

we can consider a totalization T of this complex. It is a pair with

T.= P T To= P mok=0,1, (3.1

k+m=1mod 2 k+m=0mod 2

and with ¢; = d]' + (—1)"ej, on the component E}’, where [ = (k + m)
mod 2.

Denote by ¢y (Y, W) the minimal full triangulated subcategory that
contains totalizations of all acyclic complexes in the exact category Bait, (Y, W).
It is easy to see that ¢y (Y, W) coincides with the minimal full triangu-
lated subcategory containing totalizations of all short exact sequences in

Paicy (Y, W).

Definition 3.9 ([34]). We define the triangulated category of matrix fac-
torizations MF (Y, W) on Y with a superpotential W as the Verdier quo-
tient HOD G, (Y, W) /Acx (Y, W).

In particular, the above definition implies that any short exact se-
quence in Pairy (Y, W) becomes an exact triangle in MF (Y, W).
With any pair E on (Y, W) we can associate a short exact sequence

0 — By =% By — Coker ¢; — 0 (3.2)

of coherent sheaves on Y.

We can attach to an object E the sheaf Coker e;. This is a sheaf on
Y. But the multiplication with W annihilates it. Hence, we can consider
Coker e as a sheaf on the fiber W~1()\), i.e. there is a sheaf & on W~1()\)
such that Coker e; = i,&. Any morphism p : E — F in Pairy (Y, W)
gives a morphism between cokernels. In this way we get a functor Cok :
Paity (Y, W) — coh(W ().

It can be shown that the functor Cok : Bait, (Y, W) — coh(W~1()\))
induces exact functors I : HYD&,(Y,W) — Dg(W~1(\)) and ¥ :
MFA(Y, W) — Dgy(W1(N)) between triangulated categories.
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Theorem 3.10 ([34]). Let Y be a quasi-projective scheme. Then the nat-
ural functor ¥ : MF\(Y, W) — Dsg(WH(N)) is fully faithful. Moreover,

if Y is reqular then the functor X is an equivalence.

4 Properties of triangulated categories of singu-
larities

4.1 Localization and completion

Let f: X — X’ be a morphism of finite Tor-dimension (for example, a
flat morphism or a regular closed embedding). In this case we have an
inverse image functor L f* : D?(coh X’) — D?(coh X). It is clear that the
functor Lf* sends perfect complexes on X’ to perfect complexes on X.
Therefore, the functor Lf* induces an exact functor Lf* : Dy, (X') —
D, (X).

A fundamental property of triangulated categories of singularities is
a property of locality in Zarisky topology. It says that for any open em-
bedding j : U < X, for which Sing(X) C U, the functor j* : D4, (X) —
D,,(U) is an equivalence of triangulated categories [29].

On the other hand, two analytically isomorphic singularities can
have non-equivalent triangulated categories of singularities. It is easy
to see that even double points given by equations f = y?
g = y?> — 2? — 23 have non-equivalent categories of singularities. The
main reason here is that a triangulated category of singularities is not

— 22 and

necessary idempotent complete. This means that not for each projector
p:C — C, p* = p there is a decomposition of the form C' = Ker p@Im p.

For any triangulated category T we can consider its so called idem-
potent completion (or Karoubian envelope) T. This is a category that
consists of all kernels of all projectors. It has a natural structure of a
triangulated category and the canonical functor 7 — T is an exact full
embedding. Moreover, the category T is idempotent complete, i.e. each
idempotent p : C — C in T arises from a splitting Ker p & Im p. We de-
note by Dy, X the idempotent completion of the triangulated categories
of singularities.

For any closed subscheme Z C X we can consider the formal comple-
tion of X along Z as a ringed space (Z, Jim Ox/d"), where { is the ideal
sheaf corresponding to Z. The formal completion actually depends only
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on the closed subset Supp Z and does not depend on a scheme structure
on Z. We denote by X the formal completion of X along its singularities

Sing(X).

Theorem 4.1 ([33]). Let X and X' be two quasi-projective schemes.
Assume that the formal completions X and X' along singularities are iso-
morphic. Then the idempotent completions of the triangulated categories
of singularities Dgy(X) and Dgy(X') are equivalent.

Actually, one can show a little bit more. It is proved that any object
of Dy, (X) is a direct summand of an object in its full subcategory

Dging(X) (COh X)/q:;ething(X) (X)7

where Dging( x) (coh X)) and Perfginex)(X) are subcategories of D?(coh X)
and Perf(X) respectively, consisting of complexes with cohomology sup-
ported on Sing X.

4.2 Reduction of dimension

There is another type of relations between schemes which give equiva-
lences for triangulated categories of singularities but under which the
quotient categories D& g(X)(cth )/Berfging(x)(X) are not necessary
equivalent. It is described in [30].

Let S be a noetherian regular scheme. Let € be a vector bundle on
S of rank r and let s € H%(S, €) be a section. Denote by X C S the zero
subscheme of s. Assume that the section s is regular, i.e. the codimension
of the subscheme X in S coincides with the rank r.

Consider the projective bundles S’ =P(€Y) and T' = P(€"|x ), where
€V is the dual bundle. The section s induces a section s’ € H(S’, O¢(1))
of the Grothendieck line bundle O¢(1) on S’. Denote by Y the divisor
on S’ defined by the section s’. The natural closed embedding of T" into
S’ goes through Y. All schemes defined above can be included in the
following commutative diagram.
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Consider the composition functor Ri,p* : D®(coh X) — D?(cohY) and
denote it by ®p.

Theorem 4.2 ([30]). Let schemes X,Y, and T be as above. Then the
functor
&7 : D(coh X) — D(cohY)

defined by the formula ®7(-) = Riwp*(-) induces a functor
d1 : Dgg(X) — Dgy(Y),
which is an equivalence of triangulated categories.

The functor &7 = Ri.p* has a right adjoint functor which we denote
by ®7,. It can be represented as a composition Rp.i’, where i is right
adjoint to Rui,. It is easy to see that all singularities of Y are concentrated
over the singularities of X, hence the functor &1, = Rp*ib sends the sub-
category Dging(y> (coh Y') to the subcategory Dging( x) (coh X). Therefore,
we obtain the following corollary.

Corollary 4.3. The functor ¢r., which realizes an equivalence between
the triangulated categories of singularities of Y and X, gives also a func-
tor

¢/T* . Dging(Y) (COh Y)/mething(Y) (Y) — Dging(X) (COh X)/;Bething(X) (X)a
and this functor is fully faithful.

Note that the functor ¢/, is not an equivalence in general.

Theorem 4.2 implies the following application for LG models. Let
S be a smooth quasiprojective variety and let f,g € H°(S,0g) be two
regular functions. Suppose that the zero divisor D C S defined by the
function g is smooth and the restriction of f on D is not constant. We
can consider D as a Landau-Ginzburg model with superpotential fp :
D — A'. Another Landau-Ginzburg model is given by the smooth
variety T = S x A! and the superpotential W : T" — Al defined by
the formula W = f + xg, where z is a coordinate on A'. Denote by T)
the fiber of W over the point A. For any A € A! there is an equivalence
Dy, (fl;l()\)) >~ Dy, (W(N)). Thus, the categories of D-branes of type
B for LG models (D, fp) and (T, W) are equivalent.

In particular, we obtain so called Knorrer periodicity that asserts an
equivalence of the categories of D-branes of type B in LG models (Y, f)
and (Y X A%x’y},W = f+a°+ y2).
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4.3 Sigma-models versus Landau-Ginzburg models

We take Landau-Ginzburg models as a generalization of sigma-models.
Thus, a sigma model is a particular case of a Landau-Ginzburg model
with the trivial superpotential W = 0. It is known that the category of D-
branes of type B for the sigma-model (X, W = 0) is the bounded derived
category of coherent sheaves D?(coh X) when X is smooth. On the other
hand, we have a definition of D-branes of type B in LG models that uses
the notion of the triangulated category of singularities. How to see that
these two different definitions give the same answer? Let us study this
question. To do it we have to consider the LG model (X, W = 0) with
the trivial G,-action.

Let X be any a noetherian scheme and let Perf(X) be the trian-
gulated category of perfect complexes on X. Consider the trivial action
of G,, on X. Denote by Perf® (X) the triangulated category of equiv-
ariant perfect complexes. In other words, this category is the category
of Zgraded perfect complexes. Any graded perfect complex P’ is a di-
rect sum of the form @;_. P;. Hence, the category Perf® (X) has a
completely orthogonal decomposition of the form

Perf* (X) = @ Perf(X )i,

keZ

where Perf(X)g is the subcategory with the trivial action of G,,, while
PVerf(X )y is the category Perf(X ) twisted by the respective character
of G,.

Consider the constant zero-map to the affine line A! endowed with
natural G,raction. The fiber of this map over 0 is X itself. However,
since this map is not flat we should take the fiber in derived sense, i.e.
as a derived scheme. Thus, we denote by X = (X, P), where P is a sheaf
of DG algebras, the derived cartesian product O £< X. It is easy to see

Al
that P has only two nontrivial terms

PV =0y € Perf(X)o and P 1= O0x 1 € Perf(X) 1

with the zero differential. Denote by Perj® (P) and Dggf( X)(?) trian-

gulated categories of G,requivariant perfect complexes over P and G,
equivariant complexes of Pmodules which are perfect as Ox-modules,
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respectively. We have two homomorphisms of sheaves of DG-algebras
e:0x — Pand a: P — Oy that induce functors e* : Perf*m(X) —
Perf®m (P) and ay : PerfCm (X) — Df% i X)(fP). Let us consider restric-
tions of these functors on the subcategories Perf(X ) and denote them
by e; and a,j respectively.

Proposition 4.4. The functors e* : Perf(X), — Perfon (P) are fully
faithful for any k € Z and, moreover, there is a following semi-orthogonal
decomposition

Peefr (P) = (- e 1 Perf(X)_1, exPerf(X)o, e}Verf(X)1,--+)

Note that this decomposition is not completely orthogonal but it is
only semi-orthogonal.

Using the functor a.q : Perfy, — Perfm (P) we can also obtain a
semi-orthogonal decomposition for the category Dmetf( )(‘P)

Proposition 4.5. The functors a. : Perf(X)r — D‘Betf(X)( ) are fully
faithful for any k € Z and, moreover, there is a following semi-orthogonal
decomposition

Gm
Do (P) =

= (- e Perf(X) 1, egPerf(X)o, aroBerf(X)o, e Perf(X)1, eaPBerf(X)2 -+ )
These two propositions immediately imply the following theorem.

Theorem 4.6. The quotient category D‘»Betf X)( ) /PerjCm (P) is equiva-
lent to Perf(X).

In the case when X is smooth the quotient category D‘Betf x) (P) /Perfom (P)
can be considered as the category of singularities of the DG scheme
X = (X, P) with the trivial action of the group G,,. As we saw above the
triangulated category of singularities for DG scheme X = (X, P) is equiv-
alent to the bounded derived category of coherent sheaves D?(coh X)) &
Perf(X).

If we consider an LG model (X, W = 0) without action of the group
Gy, then it can be shown that the triangulated category of singularities
of the DG scheme X is equivalent to the derived category of 2-periodic
complexes D%/?Z(coh X).
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5 A-side of Landau-Ginzburg models

5.1 Category of vanishing cycles

Let (Y, I,wc, W) be a Landau-Ginzburg model over C. We define a cat-
egory of D-branes DA(Y, I,wc, W) of type A. It does not depend on the
complex structure /.

As proposed by Kontsevich [23] and Hori-Igbal-Vafa [14], the cate-
gory of A-branes associated with a Landau-Ginzburg model W : (Y, w¢) —
C is a Fukaya-type category which contains not only compact Lagrangian
submanifolds of Y but also certain non-compact Lagrangians whose ends
fiber in a specific way above half-lines in C. In the case where the crit-
ical points of W are isolated and non-degenerate, this category admits
an exceptional collection whose objects are Lagrangian thimbles associ-
ated to the critical points. Following the formalism introduced by Seidel
(39, 41], we view it as the derived category of a finite directed Ayscategory
Lag,.(Y,wc, W, {v:}) associated to an ordered collection of arcs {~;}. The
reader is referred to [39, 41] and to [4, 5] for details.

Consider a symplectic fibration W : (Y,wc) — C with isolated non-
degenerate critical points, and assume for simplicity that the critical
values g, ..., A\ of W are distinct. Pick a regular value A\, of W, and
choose a collection of arcs 7, ..., C C joining A, to the various critical
values of W, intersecting each other only at \., and ordered in the clock-
wise direction around A.. Consider the horizontal distribution defined by
the symplectic form: by parallel transport along the arc ~;, we obtain
a Lagrangian thimble D; and a vanishing cycle L; = 0D; C ¥, (where
Y. = WTL(\,)). After a small perturbation we can always assume that
the vanishing cycles L; intersect each other transversely inside >,.

Definition 5.1 (Seidel). The directed category of vanishing cycles Lag,.(W, {~:})
15 an Ass-category over a coefficient ring R with objects Lg, . .., L, corre-
sponding to the vanishing cycles; the morphisms between the objects are

given by the following rule

CF*(L;, Lj; R) = RIFNEslif 4 <
Hom(Li,Lj) =< R-id if ¢ :j
0 if i > j;
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and the differential myi, composition mo, and higher order products my
my : HOIH(LZ'O, L’h) I Hom(Lik_l, sz) — HOID(LZ'O, sz)[Q — k‘]
are defined in terms of Lagrangian Floer homology inside X,.

More precisely, the composition my is trivial when the inequality
190 < 11 < --- < i fails to hold. When 79 < --- < i, the operations
my, is defined by fixing a generic w-compatible almost complex structure
on X, and counting pseudo-holomorphic maps from a disk with &£ + 1
cyclically ordered marked points on its boundary to X,, mapping the
marked points to the given intersection points between vanishing cycles,

and the portions of boundary between them to L;,, ..., L;_ respectively.

25

There is a well-defined Z-grading by Maslov index on the Floer com-
plexes CF*(L;, Lj; R) once we choose graded Lagrangian lifts of the van-
ishing cycles. Considering a nowhere vanishing 1-form Q € Q'(%,,C)
and choosing a real lift of the phase function ¢; = arg(2,) : Ly — S 1
for each vanishing cycle, one defines a degree of a given intersection point

p € L; N L; as the difference between the phases of L; and L; at p.

The pseudo-holomorphic disks appearing in Definition 5.1 are counted
with appropriate weights, and with signs determined by choices of orien-
tations of the relevant moduli spaces. The orientation is determined by
the choice of a spin structure for each vanishing cycle L; ([41], see also
4)).

The weight attributed to each pseudo-holomorphic map u keeps track
of its relative homology class, which makes it possible to avoid conver-
gence problems. The usual approach favored by mathematicians is to
work over a Novikov ring, which keeps track of the relative homology
class by introducing suitable formal variables. To remain closer to the
physics, we can use C as our coefficient ring, and assign weights according
to the symplectic areas.

The weight formula is simplest when there is no B-field; in that case,
we consider untwisted Floer theory, since any flat unitary bundle over
the thimble D, is trivial and hence restricts to L; as the trivial bundle.
We then count each map u : (D? 0D?) — (2., UL;) with a coefficient
(—1)¥®™ exp(—27 [ w*w). Hence, given two intersection points p € L; N
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Li,qge LijNLy (i <j<k), we have by definition

ma(p,q) = Y ({ > (= e><p(—27T/D2 U*w)> r

reL;NLy u]eM(p,q,r)
deg r=deg p+degq

where M(p, ¢, ) is the moduli space of pseudo-holomorphic maps u from
the unit disk to X, (equipped with a generic w-compatible almost-complex
structure) such that u(1) = p, u(j) = ¢, u(j?) = r (where j = exp(2¥)),
and mapping the portions of unit circle [1,j], [j,j%], [j%, 1] to L;, L; and
Ly, respectively. The other products are defined similarly.

In presence of a B-field, the weights are modified by the fact that we
now consider twisted Floer homology. Namely, the weight attributed to a
given pseudo-holomorphic map u : (D?,0D?) — (24, UL;) is modified by
a factor corresponding to the holonomy along its boundary, and becomes

(—=1)Y™ hol(u(0D?)) exp(2mi / uw*(B + iw)).
D2
All details can be found in [41, 4, 5].
Although the category Lag,.(Y,wc, W, {v;}) depends on the chosen
ordered collection of arcs {7;}, Seidel has obtained the following result

39].

Theorem 5.2 (Seidel). If the ordered collection {~;} is replaced by an-
other one {~;}, then the categories Lag,.(Y,wc, W,{7:}) and Lag,,.(Y,wc, W, {7}})
differ by a sequence of mutations.

Hence, the category naturally associated to the fibration W is not the
finite A.scategory defined above, but rather an A.scategory of twisted
complexes over Lag,.(Y,wc, W, {7;}) that coincides with the A,scategory
of finite dimensional Assmodules over Lag, (Y, wc, W, {v:}).

Definition 5.3 (Fukaya, Seidel). The Fukaya-Seidel category §&(Y, wc, W)
is the Axrcategory of twisted complexes over Lag,.(X,wc, W,{~vi}) or in
this case it is the Ass-category of finite dimensional As-modules over

Lang(X, we, VV; {fyl})

Now the theorem above gives us the following corollary.
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Corollary 5.4 (Seidel). The Aoc-category §S(X,w, W) does not depend
on {7i}-

Now we are ready to define the category of D-branes of type A.

Definition 5.5. Let (Y, we, W) be a Landau-Ginzburg model. We define
a category DA(Y,wc, W) of D-branes of type A (A-branes) on Y with the
superpotential W as follows

DA(Y,wc, W) :=HFS(Y,we, W) ZDFS(Y,we, W) =
= Db(mOdfd - Lagvc(X7 we, W, {’Vl}))

For the first equivalence, recall that the derived category and the
homotopy category for A.s-categories are the same.

5.2 Classical generators and mirror symmetry

When we would like to prove a homological mirror symmetry for some a
given pair of models, we have to show that two categories are equivalent.
How do we check whether two triangulated categories are equivalent, in
general? Roughly speaking, all ways can be divided into two groups.

Direct way For F': N — M we prove that F' is fully faithful, i.e. show
that for any A, B € N there is an isomorphism Hom(A4, B) —
Hom(F' A, F'B). After that we check that the functor F' is essentially

surjective on objects.

Indirect way Use a notion of classical generator for a triangulated cat-
egory and we show that two categories have classical genrators with
the same DG (or Ay) algebra of endomorphisms.

Definition 5.6. Let T be a triangulated category. An object E € T is
called a classical generator of T if the smallest full triangulated subcategory

U C T that contains E and is closed under taking direct summands (i.e.
AeU and A= B ® C implies B,C € U) coincides with 7.

Example 5.7. Let A be a (right) noetherian algebra. Consider the
triangulated category of perfect complexes Perf(A), objects of which,
by definition, are bounded complexes of (right) projective modules of
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finite type. Then A is a classical generator for Perf(A). Note that the
category Perf(A) is the full subcategory of the bounded derived category
DP(mod —A) of (right) modules of finite type. They are not necessary
equivalent and, hence, A is not a classical generator for D’(mod —A).

Example 5.8. If (EF1,..., F,) is a full exceptional collection for a trian-

gulated category T, then the direct sum @', E; is a classical generator
for 7.

If we have an algebra A and a quasi-compact and separated scheme
X then the categories Perf(A) and Perf(X) can be also described in
the internal terms of the unbounded derived categories D(Mod —A) and
D(Qcoh X) of all right modules and all quasi-coherent sheaves. They
coincides with full subcategories of compact objects [20, 26]. Recall that
an object F is called compact if the functor Hom(FE, —) commutes with
arbitrary direct sums. It is proved by Neeman for quasi-compact and
separated schemes and by Bondal and Van den Bergh for quasi-compact
and quasi-separated schemes that the triangulated categories of perfect
complexes Perf(X) have a classical generator.

Theorem 5.9 ([26, 9]). For any quasi-compact, quasi-separated scheme
X the triangulated category of perfect complexes *PBerfX has a classical
generator.

It is not completely clear how to construct such a generator for a
general quasi-compact and quasi-separated scheme. However for a quasi-
projective scheme it can be done.

Proposition 5.10 ([31]). If X is a quasi-projective scheme of dimension
n and L is a very ample line bundle on X, then the direct sum @D, L
15 a classical generator for PerfX.

The bounded derived category of coherent sheaves D’(coh X) for a
scheme X of finite type also has a classical generator.

Theorem 5.11 ([38]). For a scheme X of finite type, D’(coh X) has a
classical generator that is actually is a strong generator, i.e. it generates
the whole category for the finite number of steps.

An existing of a classical generator can help us to prove an equivalence
between triangulated categories. Let T be a triangulated category that
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has an enhancement, i.e. there is some pre-triangulated A,s or DG-
category U such that T is an equivalent to the homotopy category H(U).
Suppose it has a classical generator E € T = H°(U). Consider E as an
object of the DG-category U and take a DG-algebra (or Assalgebra)

A := RHomy(FE, E).
Now results of Bernhard Keller give us the following equivalence

Theorem 5.12 ([20]). Suppose that T = H°(U) is idempotent complete.
Then there is an equivalence T = Perf(A), where the category of perfect
complexes Perf(A) is, by definition, the smallest triangulated subcategory
in the derived category of A-modules D(Mod —A) that contains A and is
closed under taking direct summands.

Assume now that we have two triangulated categories J7 and To
which are obtained as homotopy categories of two pre-triangulated DG-
categories U; and Us respectively. Suppose we have two generators
FEi € TJ1 and Fy € Ty for which we can check that the DG-algebras
of endomorphisms A; = RHomy, (E;, E;), ¢ = 1,2 are quasi-isomorphic.
Then by theorem 5.12 these triangulated categories are equivalent. More-
over, DG-categories U; and U, are quasi-equivalent.

Application of this results is a standard way to establish a Homo-
logical Mirror Symmetry between categories of D-branes of type A and
D-branes of type B in mirror symmetric models: we choose such genera-
tors in both categories and prove that the DG-algebras of endomorphisms
are quasi-isomorphic.

Example 5.13. Let us consider the following simple but not trivial
example. Let X = P! be the projective line. Consider the sigma-model
with X = P! as the target space. The category of D-branes of type
B is the bounded derived category of coherent sheaves D?(cohP!). Let
us take a mirror symmetric LG model that has a total space ¥ = C*
with a superpotential W (z) = z + % We can take a standard symplectic
form on C* but the category of D-branes of type A in this case does not
depend on it. The superpotential W has two critical points. Hence we
have two vanishing Lagrangians L, Ls. The smooth fiber consists of two
points and intersection of L; and Ls is exactly these two points. Thus the
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category Lag,.(W, {v}) has two objects L1, Lo and two-dimensional Hom

space from the first to the second, i.e. it is equivalent to A := {i:;%}

On the other hand, the bounded derived category of coherent sheaves
D%(cohP') has a full exceptional collection (O,0(1)) and hence it is
equivalent to the bounded derived category D?(mod —End(O @ O(1))).
Now observe that A = End(O @ O(1)). Thus we obtain

DFS(C*, W) = Db(mod —A) = D?(coh P!).

This gives an equivalence between the category of D-branes of type B for
P! and the category of D-branes of type A in the mirror symmetric LG
model (C*,W =z + 1)

5.3 Mirrors for weighted projective planes, del Pezzo su-
faces and their noncommutative deformations

Let Pz(ao, a1, az) be the weighted projective plane (here ag, aj, as are co-
prime positive integers). It is natural to consider the weighted projective
plane as smooth orbifold. In this case the bounded derived category of
coherent sheaves on P?(ag, a1, az) has a full exceptional collection of line
bundles (O, ...,0(ag + a1 + ag — 1)). The mirror LG model is the affine
hypersurface Y = {y°y{'y5? = 1} C (C*)? equipped with an exact sym-
plectic form w, trivial B-field, and the superpotential W = yg + y1 + vo.

It is proved in [4] that the bounded derived category of coherent
sheaves (B-branes) on the weighted projective plane P?(ag, a1, as) is equiv-
alent to the derived category of vanishing Lagrangian cycles (A-branes)
on the affine hypersurface ¥ C (C*)? with an exact symplectic form
and the trivial B-field. Observe that weighted projective planes are rigid
in terms of commutative deformations, but have a one-dimesional toric
noncommutative deformations P3(ag, a1, az).

It was showed in the paper [4] that this mirror correspondence be-
tween derived categories can be extended to the toric noncommutative
deformations P4(ag, a1, az). These noncommutative deformations are re-
lated to non-exact variations of the symplectic structure and the B-field
on the mirror LG model Y. Variations of the symplectic structure wc
induces a deformation of the derived category of vanishing Lagrangian
cycles. Thus the main theorem says us the following.
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Theorem 5.14. [/] Homological Mirror Symmetry holds for P?(ag, a1, as)
and its noncommutative deformations, i.e. D®(cohP(ag, a1, as)) = DFS(Y,wc, W

Given a del Pezzo surface Sk obtained by blowing up P? at k points,
the mirror Landau-Ginzburg model is an elliptic fibration Wy : M — C
with k£ + 3 nodal singular fibers, which has the following properties:

(i) the fibration W}, compactifies to an elliptic fibration W, over P! in
which the fiber above infinity consists of 9 — k rational components;

(ii) the compactified fibration W} can be obtained as a deformation of
the elliptic fibration Wy : M — P! which compactifies the mirror
to P2.

Moreover, the manifold M is equipped with a symplectic form w
and a B-field B, whose cohomology classes are determined by the set of
points K in an explicit manner.

Theorem 5.15. [5/ Given a del Pezzo surface Sk obtained by blowing
up P? at k points, there exists a complezified symplectic form we on M,
for which D®(coh(Sk)) = DFS(My, Wi, we).

The mirror map, i.e. the relation between the cohomology class
lwe] = [B + iw] € H?(My,C) and the positions of the blown up points
in P2, can be described explicitly (Prop. 5.1 [5]).

On the other hand, not every choice of [wc] € H?(My, C) yields a
category equivalent to the derived category of coherent sheaves on a del
Pezzo surface. There are two reasons for this. First, certain specific
choices of [wc] correspond to deformations of the complex structure of
X for which the surface contains a —2-curve, which causes the anti-
canonical class to no longer be ample.

More importantly, deformations of the symplectic structure on M
need not always correspond to deformations of the complex structure on
Sk (observe that H?(Mjy, C) is larger than H'(Sk,Ts,.)). The additional
deformation parameters on the mirror side can however be interpreted in
terms of noncommutative deformations of the del Pezzo surface Sk (i.e.,
deformations of the derived category D?(coh(X))). In this context we
have the following theorem.
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Theorem 5.16. [5/ Given any noncommutative deformation of the del
Pezzo surface Sk ., there exists a complexified symplectic form wc on My,

for which the derived category Db(coh(Sk ,.)) is equivalent to DFS( My, Wy, we).
Conversely, for a generic choice of [wc] € H*(My, C), the derived cat-

egory of Lagrangian vanishing cycles DFS (M, Wi, we) is equivalent to

the derived category of coherent sheaves of a noncommutative deforma-

tion of a del Pezzo surface.

The mirror map is again explicit, i.e. the parameters which deter-
mine the noncommutative del Pezzo surface can be read off in a simple
manner from the cohomology class [B + iw]. The key point in the deter-
mination of the mirror map is that the parameters which determine the
composition tensors in DFS (W) can be expressed explicitly in terms of
the cohomology class [B + iw]. A remarkable feature of these formulas
is that they can be interpreted in terms of theta functions on a certain
elliptic curve.

5.4 Homological Mirror Symmetry — Summary

Let us summarize in which cases Homological Mirror Symmetry is proved.
It is know for the projective line. It is proved by A. Polishchuk and E. Za-
slow for elliptic curves in [36]. For K3 quartic surfaces it is proved by
Paul Seidel in [40]. The cases of del Pezzo surfaces, weighted projec-
tive planes and their noncommutative deformations are considered and
proved by D. Auroux, L. Katzarkov, and D. Orlov in [4, 5]. Mirror
Symmetry for toric varieties was discussed and proved by M. Abouzaid
in paper [1]. Varieties of general type was discussed in paper [15] and
Homological Mirror Symmetry for curves of genus 2 was proved by P. Sei-
del in [42] and for curves of genus greater than 2 by A. Efimov in [12].
M. Abouzaid and I. Smith considered two dimensional complex tori and
proved mirror symmetry in case of standard symplectic form in the paper
[3]. The mirror symmetry for abelian varieties is also discussed in the
paper [13]. In the paper [2] authors considered punctures spheres and
proved HMS.
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