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Résumé

Cette thèse s’inscrit dans la continuité des avancées récentes dans le domaine des simulations
quantiques pour la physique fondamentale, notamment pour l’étude de théories de champs
de jauge sur réseau. Le réseau envisagée ici est un réseau bidimensionnel en nid d’abeille
dans lequel sont piégées des particules quantiques. Les déformations de ce réseau entraînent
des pseudo-champs magnétiques effectifs qui ne rompent pas la symétrie de renversement
temporel, mais génèrent tout de même une physique de quasi-niveaux de Landau. Ceci est
exploité de deux manières. Premièrement, grâce à une adaptation de la formule de Widom-
Středa, nous montrons que l’effet Hall de vallée émergeant dans ce système peut être mesuré
à partir des réponses d’un gaz fermionique aux variations de d’étirement dans le réseau. Nous
démontrons que notre proposition est valable pour différentes configurations de déformation,
pour diverses terminaisons du réseau, et est indépendante de la présence d’états de bord héli-
coïdaux. De plus, elle est robuste contre le désordre. Deuxièmement, nous présentons une
nouvelle méthode pour créer un étirement artificiel, et le champ magnétique effectif associé,
dans des réseaux hexagonaux optiques rigides dans lesquels sont piégés des gaz de deux es-
pèces d’atomes ultrafroids. Ici, seule l’une des espèces, notée A, fait l’expérience de l’étirement
généré au travers de l’interaction avec l’autre espèce B. Cela est réalisé par un couplage atyp-
ique, appelé effet tunnel quantique assisté par densité, où la probabilité que l’espèce A subisse
un effet tunnel entre deux sites du réseau en nid d’abeille dépend de la différence de nombre
de particules B à ces deux sites. Nous démontrons la concordance de cette proposition avec
les modèles d’étirements habituels et comment ce couplage exotique peut être généré par un
forçage périodique (Floquet) de l’interaction entre les deux espèces.
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Abstract

This thesis builds on recent advancements in the field of quantum simulations for fundamen-
tal physics, particularly in the study of lattice gauge theories. The lattice considered here
is a two-dimensional honeycomb lattice in which quantum particles are trapped. Deforma-
tions of this lattice lead to effective pseudo-magnetic fields that do not break time-reversal
symmetry but still generate physics resembling quasi-Landau levels. This is exploited in two
ways. First, using an adaptation of the Widom-Středa formula, we show that the valley Hall
effect emerging in this system can be measured from the responses of a fermionic gas to vari-
ations in the stretching of the lattice. We demonstrate that our proposal holds for different
deformation configurations, various lattice terminations, and is independent of the presence
of helical edge states. Furthermore, it is robust against disorder. Secondly, we present a novel
method to create an artificial stretching, and the associated effective magnetic field, in rigid
optical hexagonal lattices in which gases of two species of ultracold atoms are trapped. Here,
only one of the species, denoted A, experiences the stretching generated through interaction
with the other species B. This is achieved via an atypical coupling known as density-assisted
quantum tunneling, where the probability of species A tunneling between two sites on the
honeycomb lattice depends on the difference in the number of B particles at those two sites.
We demonstrate the consistency of this proposal with conventional stretchingmodels and how
this exotic coupling can be generated by periodic driving (Floquet) of the interaction between
the two species.
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Chapter 1

General introduction

Simulating quantum many-body systems is extremely challenging as it requires immense
computational resources to store their quantum state and to accurately simulate their time-
evolution. The complexity arises from the exponential growth in the amount of information
needed as the number of particles in the system increases, a scale at which even the most
advanced supercomputers are quickly outpaced. To address this, scientists have proposed the
use of quantum simulators that fully harness the quantum properties of their components [1].
Quantum simulators are highly-controllable devices that can be used to emulate the physics
of less manageable or accessible quantum systems. Their applications extend to many-body
problems across a wide range of domains, such as condensed-matter physics, high-energy
physics, quantum chemistry, cosmology, etc. Among other things, these simulators aim to
deepen our understanding of quantum phase transitions, high-temperature superconductiv-
ity, quark confinement, and quantum gravity, while also contributing to the development of
fault-tolerant quantum computers [2, 3].

Quantum simulators have been implemented on a wide variety of atomic, molecular, opti-
cal and solid-state platforms [2, 4, 5]. Examples of solid state platforms are Dirac materials,
like graphene, a two-dimensional carbon allotrope. These systems have been proposed or
employed as experimental laboratories for testing quantum field theory (QFT): Klein tunnel-
ing [6, 7], Andreev reflection [8], Schwinger effect [9] and consequences of curved space in
QFT [10, 11]. This is due to their peculiar spectra characterized by conical structures around
special points of the Brillouin zone, called valleys, at which the conduction and valence bands
touch – which gives them the name of semi-metals. Close to these points, low-energy excita-
tions near half-filling are described by an effective (relativistic) QFT, where the speed of light
is replaced by the Fermi velocity of the material.

Furthermore, in mono- and multilayer graphene, relativistic Landau level physics [12–14] as
well as (anomalous) integer [15, 16] and fractional [17] quantum Hall phases have been ob-
served. Besides, when the valleys are well separated in momentum space as in graphene and
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transition-metal-dichalcogenides (TMDs), they can be manipulated as a new degree of free-
dom, known as valley pseudo-spin, for processing and storing information, akin to the role
of charge in electronics and spin in spintronics. The manipulation of the valley pseudo-spin
in graphene, TMDs and other 2D materials, opens up possibilities for exploiting the valley
Hall effect [18] and developing valleytronics [19, 20], thus opening new avenues beyond the
paradigmatic electronics on silicon. To these days, however, only indirect measurements of
the valley Hall conductivity have been performed [21–26], some of which are still highly de-
bated [27–30].

As mentioned earlier, engineered (or synthetic) platform have also been developed beyond
traditional solid state systems [2, 4, 5]. In particular, taking advantage of important develop-
ments in trapping and advanced cooling techniques (down to near the absolute zero), ultra-
cold atomic gases in optical lattices constitute one of these synthetic platforms for quantum
simulation that are extremely versatile [31–36]. Indeed, one can choose the disorder or the
dimension of the lattice (from 1D to 3D or more if synthetic dimensions are exploited [37]),
pick fermionic or bosonic atoms, tune the sign and intensity of their interactions, as well
as vary their mobility on the lattice. This platform is well suited for realizing Hubbard-type
models and therefore allows to study a wide variety of condensed-matter phenomena, such
as high-temperature superconductivity [38, 39], superfluid-to-Mott-insulator quantum phase
transition [40], BEC-BCS crossover [41] and topologically non-trivial insulators [42–44]. It
can emulate the physics of electrons in strong magnetic fields such as (fractional) quantum
Hall phases [45, 46], or simulate tunable long-range interacting systems [47–49], quantum
magnetism [50, 51], and (non-Abelian) gauge lattice gauge theories (LGT) [52–56].

Gauge fields are core ingredients of many of the aforementioned effects and phenomena.
Methods for incorporating these fields into quantum simulators depend on the platform to
implement them. On the one hand, for solid states materials, where the matter field is rep-
resented by the electrons, U(1) gauge fields are the typical electromagnetic fields, carried by
lasers, magnets, etc., or can be induced by voltage biases (gates, onsite electrical potentials).
Particularly appealing are the existing alternatives for generating effective magnetic fields
(that do not break time-reversal symmetry), e.g. by deforming (or straining) the lattice, which
is modeled by space-dependent hopping amplitudes of the electrons in the lattice. As a re-
sult, strain may generate intense pseudo-gauge fields (up to hundreds of Teslas), therefore
allowing to mimic pseudo-Landau levels [57–59] or flat bands physics [60–62]. On the other
hand, for neutral cold atoms in optical lattices, gauge fields have to be engineered. They are
typically incorporated into models through Peierls phases for the atoms, which describe the
Aharonov-Bohm effect experienced by the atoms circulating around a plaquette of the lat-
tice. Hence, one aims at engineering these phases, thanks to different mechanisms [63–66],
such as laser-assisted-tunneling of internal states [43, 67, 68], lattice acceleration [69], lattice
depth modulations [70], radio-frequency fields (combined with Raman coupling) [71], current-
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carrying wires on a chip [72] or immersion into a rotating BEC [73].

Instead of directly generating such phases, alternative methods allow to emulate strain and
pseudo-magnetic fields. As an example, starting from a standard configuration of three Gaus-
sian laser beams that form a honeycomb optical lattice by intersecting at 120°, the hexagonal
lattice is deformed by simply displacing the beams, which therefore emulates strain and a uni-
form, static pseudo-magnetic field [74].

This thesis builds upon these advances and aims at answering two questions. The first one
is: for cold atoms, can we find another way of creating pseudo-magnetic fields by artificially
straining an optical lattice and hence producing Landau levels? To address this, we propose to
employ a cold mixture of two atomic species that is trapped in a honeycomb lattice. Their
coupling occurs through density-assisted tunneling processes, where the hopping amplitudes
of one species depends on the density operators of the other species. Such density-dependent
hopping parameters are realized by periodically driving in time parameters of the model, and
tailored such that a desired space-dependence is introduced into the hopping amplitudes. As
a result, it mimics strain and reproduces the Landau level physics. By incorporating the strain
into the model in this way, the second species actually carries the pseudo-magnetic field’s de-
grees of freedom. While, in this thesis, we assumed that the second species are bosons that
form a static Bose-Einstein condensate (BEC), the analysis of this system can naturally be ex-
tended by including its low-energy quantum excitations, which take the form of phononic
modes, known as Bogoliubov quasi-particles. As they will interact with the atoms of the
other species, considered as the matter field, the pseudo-magnetic field experiences their back-
action, allowing to add the gauge field’s dynamics to the model, which is an essential block of
proper LGTs.

The second question is: can the quantum valley Hall conductivity of a fermionic gas be directly
and locally probed in synthetic platforms in order to detect Landau levels physics resulting from
artificial strain? To answer it, we propose a new probing method for in situ measurements of
the quantum valley Hall effect through local bulk responses of a fermionic gas to strain vari-
ations in a honeycomb lattice. It consists in comparing two density distributions at equilib-
rium for two (infinitesimally) different strain intensities. For that, we adapt theWidom-Středa
formula, originally derived for fermions in real magnetic fields, to strain-induced pseudo-
magnetic fields. Then, we analytically determine the (quantized) values taken by the valley
Hall conductivity in this context and numerically show to which extend our probing scheme
agrees with these predictions. Moreover, we prove the robustness of our findings to disorder
(impurities and lattice imperfections). We anticipate that our approach is well suited for syn-
thetic platforms such as cold atoms in optical lattices or molecular graphene, where direct and
local density measurements can be performed. Furthermore, these measurements should be
realized in the bulk. Hence, the quantization of the valley Hall response does not rely on the
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presence or absence of edge currents, which are not topologically protected and thus fragile
to disorder.

The next chapters are organized as follows:

Chapter 2 develops the theoretical concepts encountered in the rest of this thesis. We begin
with Hall effects, Landau levels and derive the Widom-Středa formula. We introduce the hon-
eycomb lattice found in Dirac materials like graphene, and deduce its low-energy spectrum.
We then deduce the relativistic Landau levels, found when the honeycomb lattice is pierced by
a real magnetic field. After that, we detail how straining this lattice is analogous to immerse
it into a pseudo-magnetic field. In particular, we discuss the relativistic Landau level physics
found in such systems. The valley Hall effect is then presented, along with some methods
employed to probe it. Afterwards, we continue with time-periodically driven systems and two
relevant examples on how it can serve for renormalizing tunneling amplitudes of particles in
double-wells. One of the examples illustrates the emergence of density-assisted tunneling.
We then discuss weakly-interacting bosonic gases and derive the Gross-Pitaevskii equation.
Eventually,we end the chapter with the physics of trapped bosonic atoms in optical lattices.

Chapter 3 presents the original results from our published article [75]. It starts with the
adaptation of the Widom-Středa formula to the valley Hall effect and the proves that weakly-
strained honeycomb lattices possess quantized valley Hall responses. This is numerically
shown for two types of strained lattices of different geometries and terminations. We also
prove that its robustness against disorder.

Chapter 4 presents the original results from our published article [76]. We show that density-
assisted tunneling processes can reproduce space-dependent hopping amplitudes and, in par-
ticular, how employing Bose-Einstein condensates in harmonic traps as a second species al-
lows for mimicking strain. Then, we analytically and numerically analyze the physics of this
artificially strained honeycomb optical lattice. We prove the excellent agreement between the
spectrum of this system to the Landau level spectrum obtained for typical strained systems, as
those encountered in the previous chapter. We then show how the density-assisted tunneling
amplitudes relevant for our model are derived from Floquet engineering. The chapter ends
with further remarks on neglected effects and insights for potential experiments.

Chapter 5 draws the conclusions and outlines the perspectives emanating from this thesis.
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Chapter 2

Theoretical background

This chapter provides the reader with the theoretical background invoked in the rest of the
thesis. In section 2.1, we first describe the physics of classical charges in a two-dimensional
plane pierced by a magnetic field. We then briefly discuss quantum Hall effects and derive
the Widom-Středa formula from Maxwell’s equations. We find the Landau level spectrum of
quantum particles in a uniform magnetic field. In section 2.2, we discuss the tight-binding
approximation of graphene and show how low-energy excitations near half-filling can be de-
scribed by an effective Dirac theory. Section 2.3 discusses three fundamental symmetries of
topological insulators and some of their consequences that are relevant for the remaining sec-
tions. Then, section 2.4 focuses on the honeycomb lattice in the presence of amagnetic field, on
its description by the Dirac theory and on the derivation of its (relativistic) Landau-level-like
spectrum near half-filling. The section 2.5 expands on the effects of strain in the honeycomb
lattice and unveils its (dis)similarities with the Landau level physics. Along the way, we show
that strain produces an effective magnetic field that do not break time reversal symmetry.
Section 2.6 discusses the existence of propagating edge states in strained honeycomb lattices
depending on the edge terminations and the sign of the strain intensity. Section 2.7 introduces
the valley Hall effect and summarizes some of existing probing methods to detect it.

While the preceding sections are common to the remaining chapters, the following introduc-
tory sections focus on notions that are central only to the chapter 4. Section 2.8 presents Flo-
quet engineering and how time-periodic driving can be employed to generate new exotic terms
(in the Hamiltonian) expressing effective hopping processes or interactions, namely leading
to pair-hopping or density-assisted tunnelings. In section 2.9, we focus on Bose-Einstein con-
densates and on the conditions for reducing the bosonic many-body wavefunction to an order-
parameter that solves the Gross-Pitaevskii equation. In section 2.10, we briefly explain how
lasers can be employed to trap atoms into optical lattices and deduce the Bose-Hubbard model.
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2.1 Particles in a magnetic field

2.1.1 Classical Hall effect: Drude model

The trajectory of a moving charge in a 2D material along a given direction is deflected in
the presence of a uniform, constant magnetic field due to the Lorentz force applied to it,

F = q (E+ v× B) , (2.1)

where q is the charge value, E is the electric field that sets the charge in motion (say along
x), v its velocity and B the magnetic field. The accumulation of opposite charges at opposite
edges of the material results in an electric field EH perpendicular to E and B. This generates a
Hall voltage VH and a Hall current IH. This is the classical Hall effect, first described by E. Hall
in 1879 [77]. This situation is depicted in Figure 2.1 for an electron (e−) in a two-dimensional
plane of widthL pierced by a magnetic field. Notice that without any electric field, the charges
would simply follow in-plane circular trajectories of radius `B ≡ v0/ωB , called the magnetic
length, where v0 is the velocity of the charge and ΩB is the cyclotron frequency ωB ≡ eB/m.

Figure 2.1: Sketch of the Hall effect. Electrons (e−) are accelerated by an electric
field Ex and their trajectory is deflected by the magnetic field B perpendicular to
the plane. An accumulation of opposite charges occurs at opposite edges, resulting
into a Hall voltage VH and its associated Hall electric field EH.

The Drude model captures the impedance of a material, due to impurities, lattice effect, or
interactions with other electrons, through a simple linear friction term,

mv̇ = q (E+ v× B)−mv
τ
, (2.2)

where τ is the scattering time – average time between consecutive collisions (of the charge q).
The resistivity tensor ¯̄ρ is deduced in the stationary regime (v̇ = 0) for J = nqv,

¯̄ρ · J = E, (2.3)
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where

ρxx = ρyy =
m

e2nτ
, ρyx = −ρxy =

B

ne
, (2.4)

with n = N/S being the density ofN particles of massm in a system of area S. Inverting the
resistivity tensor to the right hand side of (2.3), one obtains the Ohm’s law,

J = ¯̄σE, (2.5)

where ¯̄σ = ¯̄ρ−1 is the conductivity tensor, whose off-diagonal element σH
xy is responsible for

the Hall effect. Notice that the transversal resistivity ρxy does not depend on microscopic
properties of the material (embodied by τ ) but only on the charge and density of the particles.
The so-called Hall resistance is defined as

RH =
VH

Ix
=
LEy

LJx
= −ρxy, (2.6)

and, therefore, has the same units as the resistivity. Note that Hall resistance is a misnomer
as no dissipation of energy is associated to the Hall current. Indeed, the second term of the
Lorentz force qv × B, responsible for the deflection of the electrons’ trajectory, is always
perpendicular to the change in position, hence no work is produced.

2.1.2 Integer quantum Hall effect

In 1980, K. vonKlitzingmade a ground breaking discovery: in strongmagnetic fields (several
teslas) at temperatures around 1.5K, the Hall resistanceRH of a silicon MOSFET (metal-oxide-
semiconductor field effect transistor), prepared by G. Dorda and M. Pepper [78], sits on a
plateau for a range of B, before jumping to the next plateau – see Figure 2.2, accompanied
with sudden drops of the longitudinal resistivity ρxx. Hence, RH is quantized according to

RH =
B

ne
=

h

νe2
(ν ∈ N), (2.7)

at a strikingly high precision. The integer ν is called the filling factor1, defined as the ratio
between the number of particles N and the total number of magnetic flux quanta,

ν =
N

BS/φ0

(
φ0 ≡

h

e

)
then ν =

nh

eB
. (2.8)

This discovery became a cornerstone in the field of metrology as it provided an electrical resis-
tance standard based on fundamental physical constants (the elementary charge of an electron
e and the Planck constant h). Its incredible precision is explained by the robustness of the RH

plateaus to imperfections, such as impurities, dislocations and vacancies. This robustness relies
on the topological origin of the IQHE, symbolized by the so-called TKNN invariant, introduced

1In a Landau level system, ν corresponds to the number of filled Landau levels.
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Figure 2.2: Image taken from [79]. Hall (top) and longitudinal (bottom) resistivities
as a function of the magnetic field.

byThouless, Kohmoto, Nightingale and den Nijs [80]. This invariant unveiled a profound bond
between the energy bands of a system and the mathematical field of topology. Indeed, when
the Fermi level lies in an energy gap, the quantum Hall conductivity σH

xy of occupied bands
is proportional to the sum of the integral topological invariants, called Chern numbers and
denoted by Cn, associated to these filled bands [80, 81] as

σH
xy =

e2

h

∑
n filled

Cn. (2.9)

The analog of the IQHE in spintronics, called the quantum spin Hall effect (QSHE), results in
a spin accumulation along the boundaries of a topological insulator. It has been predicted to
occur in graphene by Kane et al. [82] but the spin-orbit coupling at the origin of the QSHE
in this material is too weak to open a sufficiently large energy gap. To remedy this problem,
Bernevig et al. [83] proposed to vary the width of HgTe quantum wells to induce a topological
phase transition from a trivial insulator to a quantum spin Hall phase. The QSHE was success-
fully measured by König et al. [84]. They observed that the transverse conductivity of spin
currents is quantized and related to a Z2 topological invariant.

At even lower temperatures and in stronger magnetic fields, the Hall conductivity takes frac-
tional values, as initially discovered by Stormer et al. [85] in 1982, who measured
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σH
xy =

1

3

e2

h
. (2.10)

Subsequent studies measured other rational values and therefore confirmed the discovery of
the fractional quantum Hall effect. It cannot be explained by single-body physics but by in-
cluding Coulomb interactions between electrons. As described by Laughlin [86] one year
later, the excitations of this new quantum liquid exhibit fractional statistics and possess frac-
tional charges. Hence, fractional quantum Hall systems were considered as good candidates
for experimental observation of anyons [87, 88]. These are neither bosons nor fermions as
the many-body wavefunction of two Abelian anyons takes a phase e2πq (q ∈ Q) when they
are braided [89, 90]. The non-Abelian counterpart of anyons brings a unitary matrix to the
many-body wavefunction after braiding. Due to their long-range correlations and topolog-
ical protection, they constitute a promising route towards fault-tolerant quantum gates for
quantum computers [91].

2.1.3 Widom-Středa formula

A few years after the discovery by von Klitzing et al. [78] of a robust quantization of the
Hall conductivity for a 2D gas of electrons in a uniformmagnetic field, Středa [92] found, from
linear response theory, that the quantumHall conductivity could be expressed as the derivative
of the fermionic density of an insulator with respect to the intensity of the magnetic field, and
that it gets quantized when the Fermi energy µF lies within a spectral gap2, that is

σH
xy = e

(
∂n

∂B

) ∣∣∣∣∣
µF

, (2.11)

where e is the charge of the electric carrier. A few months apart, Widom used very general
thermodynamics relations to obtain the same formula [93]. Recent theoretical and experimen-
tal works have extended its domain of application to any insulating phase of matter, including
strongly-correlated ones, enabling to measure integer and fractional quantum Hall responses
in Chern insulators [46, 94–96].

The Widom-Středa formula can be obtained by following the reasoning presented in Ref. [97].
We take electrons in a 2D plane and adiabatically vary an external uniform magnetic field,
perpendicular to the insulator. Note that this magnetic field could be added to another mag-
netic field already present in the system, or only be there as a probe. As the magnetic field
changes in time, it induces an electric field E. The electric and magnetic fields are related by
Faraday’s induction law,

2Since the fermionic gas rearranges itself under variations of the magnetic field, one has to ensure that the
Fermi level remains in a gap when the field strength is changed. This prescribes adiabatic variations of the
external magnetic field, assumed from the linear response theory.
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∇× E = −∂B
∂t
. (2.12)

Assuming that the system is in its insulating phase, which occurs when the Fermi level lies
in a spectral gap (e.g. in the Haldane model or Landau level systems), no longitudinal current
is produced, i.e. σxx = 0. Hence, from the Ohm’s law deduced in section 2.1.1, the current
resulting from the action of the electric fields inside the insulator is given by

J = σH
xyn̂× E, (2.13)

where n̂ indicates the direction of opposite to the magnetic field. The charge conservation is
expressed by the continuity equation,

−e∂n
∂t

= −∇ · J. (2.14)

All together,

∂n

∂t
=
σH
xy

e
∇ · (n̂× E) = −

σH
xy

e
n̂ · (∇× E) =

σH
xy

e

∂B · n̂
∂t

, (2.15)

Therefore,

σH
xy = e

∆n

∆B
. (2.16)

when the Fermi level lies in a gap. For infinitesimal variations of the magnetic field piercing
the insulator, we recover the relation (2.11).

2.1.4 Landau levels

The quantum mechanics of a free electron in a 2D plane pierced by a magnetic field is
described by the Hamiltonian

Ĥ =
1

2me

(p̂+ eA(x̂))2, (2.17)

where A is the vector potential related to the magnetic field B = ∇×A. The operators x̂ and
p̂ are canonical conjugates [98]:

[x̂i, p̂j] = ih̄δij. (2.18)

The energy spectrum of this system can easily be calculated by rewriting (2.17) in terms of
creation and annihilation operators. Indeed, by defining π ≡ p+ eA and then

â =
1√
2eh̄B

(πx − iπy), â† =
1√
2eh̄B

(πx + iπy), (2.19)

the Hamiltonian (2.17) becomes
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Ĥ =
1

2me

π · π = h̄ωB

(
â†â+

1

2

)
, (2.20)

which is the Hamiltonian of a harmonic oscillator, where ωB = eB/me is the cyclotron fre-
quency. Therefore, the eigenstates are those of the number operator N̂a = â†â, denotes by |n〉
(n ∈ N). Their associated energies read

εn = h̄ωB

(
n+

1

2

)
, n ∈ N. (2.21)

Hence, the spectrum of charged particles in a magnetic field consists of equally spaced energy
levels, called Landau levels. Importantly, those have a large degeneracy, expressed by a degree
of freedom that has been overlooked on the way from the 2D Hamiltonian to the 1D harmonic
oscillator. In order to take this degree of freedom into account, one introduces an operator
that commutes with the Hamiltonian. In the symmetric gauge A = (−By/2, Bx/2, 0), the
operator

π̃ = p− eA, (2.22)

commutes with π. Consequently, it allows to define other raising and lowering operators

b̂ =
1√
2eh̄B

(π̃x + iπ̃y), b̂† =
1√
2eh̄B

(π̃x − iπ̃y), (2.23)

whose commutation relation is [b̂, b̂†] = 1. The common eigenstates to N̂a and N̂b = b̂†b̂ are
written

|n,m〉 = (â†)n(b̂†)m√
n!m!

|0, 0〉 . (2.24)

The degeneracy of each Landau level, i.e. the number of values taken bym, is given by [99]

N =
eBS

2πh̄
, (2.25)

meaning that it increases with the size of the system and the intensity of the magnetic field.
Reintroducing the flux quantum φ0 = h/e, the degeneracy is also related to the number of
flux quanta in the system,

N =
BS

φ0

. (2.26)

Finally, it is rather simple to deduce the (gauge-dependent) analytical expression of the eigen-
states as they are those of the harmonic oscillator. In the Landau gaugeA = (0, Bx, 0) (instead
of the symmetric gauge), the wavefunction of |n〉 reads

ϕ
ky
n (r) = 〈r|n〉 = 1√

2nn!

(
1

π`2B

)1/4

eikyyHn(x)e
−(x−x0(ky))

2/2`2B , (2.27)
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which assumes a periodicity along the y-axis. The functionHn is the nth-Hermite polynomial
and x0(ky) is the center of ϕky

n (r) along the x-axis. Importantly, it depends on ky as

x0(ky) = xc − ky`2B, (2.28)

meaning that changing the quasimomentum shifts the wavefunction, where xc is the system’s
center. Figure 2.3 displays the wavefunctions of the three first Landau levels (for ky = 0).

Figure 2.3: Wavefunctions of the three first Landau levels (n = 0, 1 and 2).

Interestingly, the Widom-Středa formula can easily be deduced from the relation (2.26). In-
deed, if ν ∈ N levels are filled, meaning that there are N = νN fermions in the system, then
for a density of particles ρ = N/S,

ρS = N = νN = ν
eBS

2πh̄
, (2.29)

hence

e
∂ρ

∂B
= ν

e2

h
ν ∈ N. (2.30)

This is theWidom-Středa formula – see section 2.1.3 – when the Hall conductivity takes quan-
tized values, which shows that Landau level systems exhibit the integer quantum Hall effect.

2.2 Tight-binding approximation of graphene in a mag-
netic field

Graphene is a two-dimensional sheet of carbon atoms, whose sp2-hybridization imparts its
honeycomb geometry. Three of the electrons per carbon atom are involved in the strong cova-
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lent σ-bonds with its three nearest-neighbors. The fourth electron (π-electron) is responsible
for the electronic properties near the charge neutrality point [99]. A spectrum of graphene,
numerically obtained with density functional theory, is shown in Figure 2.4 [100]. The π-bands
are highlighted in color, where orange and blue stand for the conduction and valence bands,
respectively.

The physics of the π-bands is well predicted by a tight-binding model on a honeycomb lat-
tice, that will be derived in the following section after a brief presentation of the honeycomb
lattice and its Brillouin zone. Then, the low-energy spectrum of the tight-binding model on
the honeycomb lattice is linked to the physics of massless, relativistic particles in 2D space.
Finally, this effective description is exploited by including a (real) magnetic field through a
Peierls substitution into the Dirac Hamiltonian and its spectrum is derived.

Figure 2.4: Image taken from Boukhvalov et al. [100]. The orange and blue lines
stand for the conduction and valence bands of the π-orbital, respectively. The gray
lines represent the σ-bonds orbitals, neglected in this work.

2.2.1 Honeycomb lattice and its Brillouin zone

Thehoneycomb lattice is an hexagonal bipartite lattice formed by a triangular Bravais lattice,
spanned by two vectors a1 = (3a/2,

√
3a/2) and a2 = (3a/2,−

√
3a/2), of which each ver-

tex is connected to three sites of another triangular lattice by the basis vectors δ1 = (−a, 0),
δ2 = (a/2,

√
3a/2) and δ3 = (a/2,−

√
3a/2), where a is the lattice spacing. This is de-

picted in Figure 2.5a, where the lattice has Nx = 4 sites along x and Ny = 5 sites along
y. This bipartite lattice, i.e. consisting of two sublattices denoted A and B, has an hexagonal
Brillouin zone, shown in Figure 2.5b. In the first Brillouin zone, the summits are located at
(±2π/3a, 2π/3

√
3a), (0,−4π/3

√
3a), (±2π/3a,−2π/3

√
3a) and (0, 4π/3

√
3a).
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Figure 2.5: a Honeycomb lattice with Nx = 4 and Ny = 5 sites along the x
and y-directions, respectively. This hexagonal bipartite lattice is formed by a
triangular Bravais lattice, spanned from two vectors a1 = (3a/2,

√
3a/2) and

a2 = (3a/2,−
√
3a/2), whose each vertex is connected to three sites of another

triangular lattice by the nearest-neighboring vectors δj (j = 1, 2, 3) (all vectors are
defined in the main text.). The lattice parameter is given by a. Pristine honeycomb
lattice can have three different terminations called armchair, zigzag and bearded. b
First Brillouin zone of the honeycomb lattice. c Valence (blue) and conduction (or-
ange) bands of the tight-binding Hamiltonian (2.31) touching at the Dirac pointsK
and K′ that form the summits of the first Brillouin zone. The bands colors (orange
and blue) correspond to those in Figure 2.4.

2.2.2 Tight-binding model

The physics of the π-bands of graphene is well captured by the tight-binding model defined
on the honeycomb lattice [101]. The one-body Hamiltonian of this model reads

Ĥ = −
∑
r,j

tj â
†
r b̂r+δj

+ H.c., (2.31)

when quantum tunneling (hopping) to the nearest-neighbor is the strongly dominant process
in front of next-nearest-neighbor hopping, as in graphene. The operators â(†)r , b(†)r are the
annihilation (creation) operators at a A, B site at position r. The parameters tj are the hop-
ping amplitudes along the δj basis vector, and result from the overlap between 2pz-orbitals of
neighboring carbon atoms, ψA(r) and ψB(r+ δj) centered at a A and B sites, respectively:
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tj =

∫
drψ∗

A(r)VCC ψB(r+ δj), (2.32)

where VCC is the potential produced by the two carbon (C) atoms between which the tunneling
occurs. If the translational invariance is preserved, the quasi-momenta k = (kx, ky) are good
quantum numbers. One applies Fourier transforms along both x and y-directions on the local
creation and annihilation operators,

âr =
1√
LxLy

∑
k

âke
−ik·r, â†r =

1√
LxLy

∑
k

â†ke
ik·r,

b̂r =
1√
LxLy

∑
k

b̂ke
−ik·r, b̂†r =

1√
LxLy

∑
k

b̂†ke
ik·r,

(2.33)

where Lx and Ly are the projected length of the lattice in the x and y directions. In this new
basis, Ĥ reads

Ĥ =
⊕
k∈BZ

Ĥ(k) =
∑
k

(
â†k b̂†k

)( 0 −
∑3

j=1 tje
−ik·δj

−
∑3

j=1 tje
ik·δj 0

)(
âk
b̂k

)
. (2.34)

By diagonalizing this 2×2matrix, denotedH(k), the dispersion relations for both the valence
(−) and the conduction (+) bands of the model, read

ε(k) = ±t

√√√√3 + 4 cos
(
3kxa

2

)
cos

(√
3kya

2

)
+ 2 cos

(√
3kya

)
, (2.35)

when tj = t ∀j. The two bands touch at the summits of the Brillouin zone in Figure 2.5, at the
so-called Dirac points or Dirac valleys. The latter are split into two groups, denoted K or K′.
Note that Dirac points in the same group are physically equivalent; K = (0,−4π/3

√
3a) and

K′ = (0, 4π/3
√
3a) = −K are chosen as their representatives.

2.2.3 Dirac theory near half-filling

When the system (2.31) is close to half-filling, the low-energy excitations, whose energy
scale is much smaller than the bandwidth of order t, are analogous to massless, relativistic
quantum particles in 2D, described by Dirac theory (even though the Fermi velocity is only
around 106 ms−1 in graphene). To show this, one expands the elements of the matrix in (2.34)
around ζK at first order in qa ≡ (k− ζK)a� 1, where ζ = ±1 is the valley pseudospin. This
leads to the Dirac Hamiltonian

hζ(q) = −h̄vF
(
ζqyσx − qxσy

)
, (2.36)
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where vF ≡ 3at/2h̄ is the Fermi velocity and σx, σy are the Pauli matrices. The relativistic
behavior of the low-energy excitations is revealed by their linear dispersion relation

ε(q) = ±h̄vFq, q = ‖q‖. (2.37)

To describe the full theory of low-energy excitations jointly at both valleys, h+ and h− are
recombined into a 4× 4 matrix,

h(q) =

(
h+(q) 0

0 h−(q)

)
. (2.38)

Then, one applies the following unitary transformation,

U =


1 0 0 0

0 i 0 0

0 0 0 1

0 0 i 0

 , (2.39)

resulting into a 4×4Hamiltonian h(q) that consists in two copies of the 2DDirac Hamiltonian,

h̄(q) = U h(q)U † = −h̄vFτz ⊗ q · σ, (2.40)

where τz is the z-Pauli matrix embodying the valley (pseudo-spin) degree of freedom. Notice
that this compact notation in the form of a scalar product is only possible after the change of
basis (2.39), where the two last components of the 4-spinor are interchanged, hence the A and
B sublattices are switched: (A,B,A,B)→ (A,B,B,A).

This description in terms of a Dirac Hamiltonian has led scientists to envisage graphene as an
experimental platform to study quantum field theories (QFT) [102,103]. Indeed, Klein tunnel-
ing have been theoretically predicted [6] and experimentally observed in doped graphene [7]
and photonic graphene [104]. Other effects such as atomic collapse, Andreev reflection [8],
the Schwinger effect [9] and consequences of curved space in QFT [10, 11] have also been
proposed.

2.3 Symmetries and consequences

Following references [105,106], three global symmetries that lead to the Altland-Zirnbauer
classification of topological insulators and superconductors [107] are presented: time-reversal,
particle-hole and chiral symmetries. When one (or more) of them is preserved, interesting
features of lattice systems can be deduced, such as the uniformity of the density at half-filling
as well as the obligation for states exclusively populating one sublattice to be zero-energy
states. These will be useful to derive some of our results in the rest of this manuscript.
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2.3.1 Time-reversal symmetry

By definition, a second-quantized Hamiltonian Ĥ preserves a symmetry if it commutes with
the operator associated to this symmetry,

ÛĤÛ−1 = Ĥ, (2.41)

where Û = T̂ , Ĉ or Ŝ for the time-reversal, particle-hole or chiral symmetry, respectively.

The operator T̂ implementing time-reversal symmetry (TRS) on the Fermion Fock space of
second quantization is defined by

T̂ ĉi T̂ −1 =
∑
j

(U †
T )ij ĉj, T̂ ĉ†i T̂ −1 =

∑
j

ĉ†j (UT )ji, T̂ iT̂ −1 = −i, (2.42)

where UT is a unitary matrix. The third equality is derived from the sign change of the mo-
mentum p̂→ −p̂ under time-reversal,

T̂ ih̄δab T̂ −1 = T̂ [x̂a, p̂b] T̂ −1 = [x̂a,−p̂b] = −ih̄δab. (2.43)

Consequently, by substituting (2.42) into (2.41) for Û = T̂ and using the relation between the
first-quantized Hamiltonian H and its second-quantized counterpart, that is Ĥ = ĉ†iHij ĉj , H
transforms under TR as

U †
THUT = H∗. (2.44)

Going to momentum space using the Fourier transform in both x and y directions (2.33), one
deduces that, after block-diagonalizing with respect to k,

u†TH(k)uT = H∗(k), (2.45)

where uT is a unitary matrix resulting from the reshaping of UT due to the Fourier transform.
Besides, the sign change of momentum from TRS results in an explicit expression of the action
of TRS on H(k), that is

u†TH(k)uT = H(−k), (2.46)

meaning that, for each energy ε(k), there is an eigenvalue ε(−k) when TRS is preserved.
Therefore, the spectrum of (2.34) is an even function of k. TRS is preserved when the condition

H∗(k) = H(−k) (2.47)

is fulfilled. Thanks to the equation (2.47), one deduces the expression of an eigenvector of
H(−k) from an eigenvector of H(k) at the same energy εk. Indeed, since H(k)vk = εkvk
then H(k)∗v∗k = εkv

∗
k and H(−k)v−k = ε−kv−k = H(k)∗v−k = εkv−k, where
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vk =



∣∣ψk
A
〉∣∣ψk

B
〉

...
0

0
...


v∗k =



∣∣ψk
A
〉∗∣∣ψk

B
〉∗
...
0

0
...


v−k =



0

0
...∣∣ψk
A
〉∗∣∣ψk

B
〉∗
...


(2.48)

where the block-diagonal form of Ĥ – see (2.34) – has been reintroduced. Deductively, the
distributions of particles on each sublattice at k are the same as those at−k. In particular, this
holds for the distributions at K and K′ = −K.

2.3.2 Particle-hole symmetry

The particle-hole symmetry (PHS) transforms the fermionic creation and annihilation op-
erators into one another, as

Ĉ ĉi Ĉ−1 =
∑
j

(U∗
C)

†
ij ĉ

†
j, Ĉ ĉ†i Ĉ−1 =

∑
j

ĉj (U
∗
C)ji, ĈiĈ−1 = i, (2.49)

where UC is a unitary matrix. Consequently, by substituting (2.49) into (2.41) for Û = Ĉ
and using the relation between the first-quantized Hamiltonian H and its second-quantized
counterpart, that is Ĥ = ĉ†iHij ĉj , H transforms under

UCH
∗U †

C = −H, uCH(k)∗u†C = −H(k), (2.50)

where uC is a unitary matrix resulting from the reshaping of UC due to the Fourier transform.
Thismeans that each energy ε has a corresponding energy−εwhen the PHS is preserved [106].
Thus, there are asmany positive energies as negative ones, therefore ε = 0 is the energy at half-
filling of any Hamiltonian that preserves PHS. Taking again the example of the tight-binding
Hamiltonian (2.34), where H(k)∗ = H(−k), then UCH (k)U †

C = −H(−k). Therefore, the
energy corresponding to ε(k) through the PH operation is −ε(−k). Note that this does not
imply that the spectrum is symmetric with respect to the plane ε = 0 but instead to the central
point (ε = 0,k = 0).

2.3.3 Chiral symmetry

The chiral symmetry (CS) arises from the combination of time-reversal and particle-hole
operations Ŝ = T̂ · Ĉ. It acts as follows on the fermionic creation and annihilation operators:

Ŝ ĉi Ŝ−1 =
∑
j

(U∗
S )

†
ij ĉ

†
j, Ŝ ĉ†i Ŝ−1 =

∑
j

ĉj (U
∗
S )ji, ŜiŜ−1 = −i. (2.51)
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where US is a unitary matrix. Consequently, by substituting (2.51) into (2.41) for Û = Ĉ
and using the relation between the first-quantized Hamiltonian H and its second-quantized
counterpart, that is Ĥ = ĉ†iHij ĉj , H transforms under

USHU
†
S = −H, uSH(k)u†S = −H(k), (2.52)

where uS is a unitary matrix resulting from the reshaping of US due to the Fourier transform.
The chiral symmetry implies that the spectrum is symmetric with respect to ε = 0 as the chiral
symmetry operation sends ε(k) to−ε(k). Particularizing to the tight-binding Hamiltonian in
real space (2.31) and assuming that the chiral operator acts on the creation and annihilation
operators on A (â(†)) and B (b̂(†)) sublattices as

ŜâiŜ−1 = â†i , Ŝ b̂iŜ−1 = −b̂†i ,
Ŝâ†i Ŝ−1 = âi, Ŝ b̂†i Ŝ−1 = −b̂i,

(2.53)

then (US)ij = (−δij)i, where even (odd) values of i stand for A (B) sites [106]. From this, one
deduces that the wavefunctions associated to ±ε have related expressions. Any eigenstate
|ελ〉, associated to an energy ελ (λ indices the eigenvalue), is related to the eigenstate |ελ′〉,
corresponding to ελ′ = −ελ, by |−ελ〉 = US |ελ〉 such that their respective wavefunctions at
the position ri of the ith site, ψελ

(ri) = 〈ri|ελ〉 and ψ−ελ
(ri) = 〈ri|−ελ〉 satisfy

ψ−ελ
(ri) = (−1)iψελ

(ri) =⇒ |ψ−ελ
(ri)|2 = |ψελ

(ri)|2. (2.54)

Before discussing the consequences of the chiral symmetry, Figure 2.6 shows a sketch that
highlights the spectral symmetries resulting from the three global symmetries (TRS, PHS and
CS). This is useful for identifying whether one of the global symmetries is satisfied as the
spectrum has to possess the corresponding (geometric) symmetry.

Uniform density at half-filling

The interesting consequence of both the spectrum symmetry and the equation (2.54) is the
exact uniformity of the fermionic density at half-filling, i.e. when half of the energy states are
populated. Indeed, it first allows to deduce that the local density of states at energy ω at site3

r, denoted ρ(ω, r), is symmetric in ω, i.e. ρ(−ω, r) = ρ(ω, r). From its definition involving the

3Without loss of generality and for the sake of readability, the index i is removed for the derivation.
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Figure 2.6: Summary sketch of the apparent spectral symmetries resulting from
the time-reversal (TRS), particle-hole (PHS) and chiral (CS) symmetries. Note that
these three spectral symmetries are necessary conditions for preserving their cor-
responding global symmetries, not sufficient ones.

retarded Green’s function Ĝr(ω) = (ω − Ĥ + iη)−1,

ρ(ω, r) = − 1

π
Im 〈r| Ĝr(ω) |r〉

=
η

π

∑
λ

|ψελ
(r)|2

(ω − ελ)2 + η2

(
N∑

λ=−N

∣∣∣ψελ

〉〈
ψελ

∣∣∣ = 1, λ 6= 0, Ĥ |ελ〉 = ελ |ελ〉

)

=
η

π

∑
λ

|ψελ
(r)|2

(−ω + ελ)
2 + η2

=
η

π

∑
λ

|ψε−λ
(r)|2

(−ω + ε−λ)2 + η2

(
λ→ −λ,

∑
−λ

=
∑
λ

)

=
η

π

∑
λ

|ψελ
(r)|2

(ω + ελ)2 + η2

(
ε−λ = −ελ, |ψελ

(r)|2 = |ψε−λ
(r)|2

)
= ρ(−ω, r)

Then, since the local density of states on each site is normalized to 1, i.e.∫ ∞

−∞
ρ(ω, r)dω = 1 (2.55)
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and since the energy at half-filling is ε = 0,

1 =

∫ 0

−∞
ρ(ω, r)dω +

∫ ∞

0

ρ(ω, r)dω

=

∫ 0

−∞
ρ(ω, r)dω +

∫ ∞

0

ρ(−ω, r)dω

=

∫ 0

−∞
ρ(ω, r)dω +

∫ 0

−∞
ρ(ω, r)dω

= 2

∫ 0

−∞
ρ(ω, r)dω.

(2.56)

Secondly, the local density of particles at site r, denoted np(r), is related to the density of states
by

np(r) =
∫ +∞

−∞
f(ω, T )ρ(ω, r)dω, (2.57)

where f(ω, T ) is the Fermi-Dirac distribution at temperature T (in the grand canonical en-
semble), which gives the occupation number of the energy ω. Its expression is

f(ω, T ) =
1

e(ω−µF)/kBT + 1
, (2.58)

where µF is the Fermi energy and kB is the Boltzmann constant. At zero temperature, f(ω, 0)
is the Heaviside function, thus, at half-filling (µF = 0),

nhf
p (r) =

∫ 0

−∞
ρ(ω, r)dω =

1

2
. (2.59)

One concludes that the chiral symmetry imposes the density of particles at half-filling to be
uniform in the whole system.

Zero-energy state from exclusive sublattice occupation

When chiral symmetry is preserved, if an eigenstate of Ĥ only occupies one of the two sub-
lattices of a bipartite lattice (say A, without loss of generality), then its associate energy must
be zero. Indeed, as the Hamiltonian matrix H anticommutes with the representation matrix
of the chiral symmetry uS, HuS = −uSH , and due to the action of the chiral symmetry on
creation/annihilation operators (2.54), one finds

H

(
|φA〉
|φB〉

)
= ε

(
|φA〉
|φB〉

)
, uS

(
|φA〉
|φB〉

)
=

(
|φA〉
− |φB〉

)
,

=⇒ HuS

(
|φA〉
|φB〉

)
= −εuS

(
|φA〉
|φB〉

)
= −ε

(
|φA〉
− |φB〉

)
.

(2.60)
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When only the A sublattice is occupied, the first and second lines of (2.60) lead to

H

(
|φA〉
0

)
= ε

(
|φA〉
0

)
, uS

(
|φA〉
0

)
=

(
|φA〉
0

)
,

=⇒ HuS

(
|φA〉
0

)
= −εuS

(
|φA〉
0

)
= −ε

(
|φA〉
0

)

= ε

(
|φA〉
0

)
,

(2.61)

hence ε = 0, which proves that when an eigenstate of an Hamiltonian that preserves CS only
occupies one of the two sublattices of a bipartite lattice, then it is a zero-energy state.

2.4 Honeycomb lattice in amagnetic field: relativistic quan-
tum Hall effect

In both of our articles [75, 76] – to which chapters 3 and 4 are dedicated respectively – we
treat systems with pseudo-gauge fields generated by strain that are mathematically analog to
real magnetic fields but that do not break time-reversal symmetry. For this reason and gain-
ing intuition, we derive the spectrum and eigenstates of free particles in a honeycomb lattice
pierced by a real magnetic field. We show that the spectrum displays relativistic Landau levels
and provide their associated wavefunctions.

2.4.1 Relativistic Landau levels

When the honeycomb lattice is immersed into a magnetic field B, the Hamiltonian (2.31)
becomes

Ĥ = −t
∑
r

â†r

(
b̂r+δ1

+ b̂r+δ2
e−iϕx/φ0a + b̂r+δ3

eiϕx/φ0a
)
+ H.c., (2.62)

in the Landau gaugeA = (0,−Bx, 0), where ϕ = BAc is the magnetic flux per hexagonal pla-
quette of area Ac = 3

√
3a2/2 and φ0 = h/e. For weak magnetic fields, the space-dependence

in the phases can be neglected and the Fourier transform (2.33) can be performed. Exploit-
ing the fact that the low-energy spectrum of particles in the honeycomb lattice (around the
Dirac points) is well described by a Dirac Hamiltonian, the addition of a magnetic field B to
the honeycomb lattice is introduced by a minimal substitution h̄q→ h̄q+ eA in the effective
Dirac Hamiltonian [99]. Note that, for this to hold, the intensity of the magnetic field must be
such that the magnetic length `B is bigger than the lattice parameter a but smaller than the
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system’s size Lx, i.e. a� `B � Lx. For spinless electrons, the Hamiltonian (2.40) becomes

h̄(q) = −vFτz ⊗ (h̄q+ eA) · σ =

(
h̄+(q,A) 0

0 h̄−(q,A)

)
, (2.63)

where −e is the charge of the electron and A is the vector potential, such that B = ∇× A.

Importantly, the canonical momentum p = h̄q is no longer a physical observable as it is not
gauge invariant, nor conserved as the blocks of the matrix h̄(q) are not translation invari-
ant anymore. Therefore, to describe free electrons in a magnetic field, one needs to replace p
by the gauge-invariant kinetic momentum Π = (Πx,Πy) ≡ h̄q + eA. A quantum mechan-
ical treatment of (2.63) requires the canonical quantization of r and p, that have to satisfy
the canonical commutation relations (2.18). Hence, the kinetic momenta Π̂x and Π̂y do not
commute anymore,

[Π̂x, Π̂y] = −ieh̄B = −ih̄
2

`2B
, `B ≡

√
h̄

eB
, (2.64)

where `B is the magnetic length, a fundamental length scale for systems in the presence of a
magnetic field. Introducing ladder operators similarly as for the harmonic oscillator in 1D in
equation (2.19), the Hamiltonian h̄ζ(q,A) – see (2.63) – becomes

h̄ζ(q̂, Â) = −ζ
√
2
h̄vF
`B

(
0 â

â† 0

)
. (2.65)

One obtains the eigenvalues and eigenvectors of h(ζ) by solving the eigenvalue equation
h̄ζψn = εnψn, where ψn = (|un〉 , |vn〉) is a two-spinor, whose first and second components
occupy the A and B sublattice, respectively. Indeed, this equation forms the following system,

−ζh̄ωBâ |vn〉 = εn |un〉 ,
−ζh̄ωBâ

† |un〉 = εn |vn〉 ,
(2.66)

where ωB ≡
√
2vF/`B plays the role of the cyclotron frequency in this relativistic setting and

ζ indicates the valley. Substituting |un〉 in the first line in (2.66) yields

(h̄ωB)
2â†â |vn〉 = ε2n |vn〉 , (2.67)

meaning that |vn〉 = |n〉 is an eigenvector of the number operator â†â, whose eigenvalues are
positive integers, n ≥ 0. Therefore, one deduces the energies of the Landau levels,

εn = ±h̄ωB

√
n = ±vF

√
2nh̄eB, (2.68)
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where the± sign indicates the valence (-) and conduction (+) band. Note that the energy gaps
between the levels get smaller as n increases and exhibit the same ladder spectrum in both
bands. The other component, |un〉, is readily derived, as

−ζâ |n〉 = λ
√
n |un〉 (2.69)

where λ (λ2 = 1) symbolizes the valence (−) or the conduction (+) band. Thus, un =

−λζ |n− 1〉. An important distinction between n = 0 and n > 0 must be pointed out. From
(2.69), u0 = 0, meaning that the wavefunction of the zero-energy level only occupies one of
the two sublattices,

ψ0 =

(
0

|0〉

)
. (2.70)

For n > 0, the two-spinors, normalized to unity, read

ψζ
n,λ =

1√
2

(
−λζ |n− 1〉
|n〉

)
. (2.71)

The analytical expressions of these eigenvectors’ components in the Landau gauge are the
same as those already given by equation (2.27) for the non-relativistic Landau levels. The de-
generacy of the relativistic Landau levels is computed in the same way as their non-relativistic
counterparts [99].

Importantly, from (2.40), one recalls that the components of the pseudo-spinor at theK′-valley
are exchanged with respect to the components of the pseudo-spinor at K. Hence, the popu-
lations on the A and B sublattices of an eigenstate at K are the same populations as on the
B and A sublattices at K′. This is a sign of the TRS breaking. Indeed, a necessary condition
for preserving TRS is the equality in populations of the same sublattice at both valleys – see
section 2.3.1.

Relativistic quantum Hall effect

Subjecting graphene to strong magnetic fields (several teslas) have revealed an unusual quan-
tization of its transversal conductivity. Instead of taking all integer values – see section 2.1.2
– the Hall conductivity follows the law

σH = 2(2ν + 1)σ0, ν ∈ Z, (2.72)

where σ0 = e2/h is the conductivity quantum. This was first measured by Zhang et al. [15],
where a factor of 2 originating from the spin degree of freedom has to be taken into ac-
count. However, since our work does not deal with real magnetic fields but only with pseudo-
magnetic field that do not couple to spin, this degree of freedom will be neglected.
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2.5 Strain and pseudo-magnetic field in the honeycomb
lattice

Mechanical deformations in solid states materials can emulate effective gauge field theories.
As an example, strain is achieved by applying external forces or by engineering the growth
conditions of the crystal such that the distance between its atoms are modified. The present
section details how strain modifies the low-energy physics of the honeycomb lattice and con-
verts into a minimal coupling to a pseudo-vector potential in the Dirac Hamiltonian (2.36),
whose sign depends on the valley. In the following sections, similarly as the honeycomb lat-
tice in a magnetic field, strain in graphene results in (pseudo) Landau levels around the Dirac
points, as experimentally observed in real [57–59] and artificial [108–117] graphene. Their
energy is deduced for two types of strain: uniaxial and trigonal (or triaxial). This section ends
with a discussion on the conditions for the presence of non-propagating and helical edge states
in the honeycomb lattice.

2.5.1 Effect of strain on the Dirac Hamiltonian: minimal coupling to
a vector potential

For two atoms positioned at r and s, where δj = r − s (j = 1, 2, 3) is one of the nearest-
neighbor vectors (defined in section 2.2.1) of norm ‖δj‖ = a, the displacement of these
neighboring atoms to r′ and s′ can be assigned by new space-dependent nearest-neighbor
vectors δ′

j(r) = r′(r) − s′. When restoring forces are non-linear in the displacement field
u(r) = r′(r) − r, the phonon frequency depends on the deformations of the lattice bonds
[118, 119]. This modifies the electron-phonon coupling, resulting in a renormalization of the
nearest-neighbor hopping amplitude t,

t→ tj(r) = t exp
[
−β
(‖δ′

j(r)‖
a

− 1

)]
, (2.73)

where β ≡ −∂ ln(t)/∂ ln(a) is the Grüneisen parameter. Hence, this initially uniform t in the
Hamiltonian (2.31) might become space-dependent due to the strain, as prescribed by (2.73).
Within the continuum elastic theory, the vectors δ′

j(r) are expressed as a smooth function of
the spatial coordinates. Therefore, the argument of the exponential can be related to the strain
tensor ε by

‖δ′
j(r)‖
a

− 1 =
∑

k,l=x,y

δkj δ
l
j

a2
εkl(r) ≡ dj, (2.74)

where εkl(r) ≡ 1/2(∂kul + ∂luk), with the displacement field smoothly depending on r. For
an homogeneous strain, only function of the bond direction j, the hopping parameter along j
reads
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tj = t exp
[
−βdj

]
= t(1− βdj), (2.75)

for small displacements dj � 1. The Fourier transform of the tight-binding Hamiltonian (2.31)
in both directions x and y, expanded in linear order separately in qx and qy around K, yields

h+(q) =

(
0 (V +(q))∗

V +(q) 0

)
(2.76)

where

V +(q) =− 1

2
(2t1 − t2 − t3) + i

√
3

2
(t2 − t3)

− qx

[√
3a

4
(t2 − t3)− i

a

4
(4t1 + t2 + t3)

]

− qy

[
3a

4
(t2 + t3)− i

√
3a

4
(t2 − t3)

]

+ qxqya
2

[√
3

8
(t2 − t3) + i

3

8
(t2 + t3)

]
.

(2.77)

From the relations (2.75), one finds

V +(q) = ih̄vF

(
h̄qxfx(ε)−

β

a
εxy

)
− h̄vF

(
qyfy(ε) +

β

2a
(εyy − εxx)

)
+ h̄vFqxqy

[
−βa

4
εxy +

ia
2

(
1− β

4
(εxx + 3εyy)

)]
,

(2.78)

where were introduced

fx(ε) ≡ 1− β

4
(3εxx − εyy)− i

β

2
εxy,

fy(ε) ≡ 1− β

4
(εxx + 3εyy) + i

β

2
εxy,

(2.79)

for the sake of clarity. Eventuallywrapping these results back into thematrix form, one obtains

h+(q) =h̄vF

[
qxfx(ε)−

β

a
εxy + qxqy

a

2

(
1− β

4
(εxx + 3εyy)

)]
σy

− h̄vF
[
qyfy(ε) +

β

2a
(εyy − εxx) + qxqy

βa

4
εxy

]
σx.

(2.80)
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This rewriting (2.80) unveils the analogy between the strain and an effective pseudo-vector
potential. Indeed, as for a particle in a magnetic field, the space-derivatives undergo a minimal
substitution

h̄ql → h̄qlfl(ε)− eAl (l = x, y), (2.81)

where the functions fl indicate anisotropic derivatives along x and y due to the strain tensor
[120]. The vector potential at the valley K (+) is defined as

A+
x =

h̄β

ea
εxy,

A+
y =

h̄β

2ea
(εxx − εyy).

(2.82)

In the literature, the terms in (2.80) proportional to qxqy have usually been overlooked. These
are necessary to correctly reproduce the spectrum of a system whose translational symmetry
along one axis is broken and only one of the momenta remains a good quantum number [120].
The subsequent section conveys that the pseudo-vector potential, effectively created by the
strain, has opposite signs at opposite valleys due to the preservation of time-reversal symme-
try.

2.5.2 Vector potentialwith opposite sign at opposite valleys from time-
reversal symmetry

As a consequence of the TRS, the Hamiltonian h(q,K′) at the other valley K′ can be readily
derived from the one atK. Indeed, as in Section 2.2.3, the two Hamiltonians at opposite valleys
are related to each other by

(h−(−q,A−))∗ = h+(q,A+) (2.83)

after the minimal substitution, or equivalently, h−(q,A−) = h+(−q,A+)∗. This allows to
deduce the relation between the vector potential A+ at K and A− at K′. Indeed,

(h+(−q,A+))∗ = −vF
[
(−h̄qyf ∗

y − eA+
y )σx − (−h̄qxf ∗

x − eA+
x )σ

∗
y

]
+O(qxqya2)

= −vF
[
−(h̄qyf ∗

y + eA+
y )σx − (h̄qxf

∗
x + eA+

x )σy
]
+O(qxqya2)

= h−(q,−A+)

≡ h−(q,A−),

(2.84)

meaning that the pseudo vector potential must have opposite signs at opposite valleys. From
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now on,

Aζ
x = ζ

β

ea
εxy = −ζ

h̄√
3ta

(t2 − t3),

Aζ
y = ζ

β

2ea
(εxx − εyy) = −ζ

h̄

3ta
(2t1 − t2 − t3) .

(2.85)

where the tunneling amplitudes were reintroduced thanks to the relations (2.73) and (2.74). As
suggested by this rewriting in terms of a vector potential, each of the valley seems to host a
magnetic field Bζ

τ ≡∇×Aζ
τ , whose sign also depends on the valley ζ . Since it does not break

TRS, Bζ
τ is called a pseudo-magnetic field. Importantly, the resemblance of the Hamiltonians

h+(q,A+) and h−(q,A−) imply similar eigenspinors expressions, with identical particle dis-
tributions per sublattice, i.e. nK

A(B) = nK′

A(B). As previously announced in section 2.3, this is also
a consequence of the TRS.

The rewriting of the Dirac Hamiltonian prompts us to ask whether the low-energy physics
of a strained honeycomb lattice mimics the relativistic Landau levels physics encountered in
section 2.4 for a real uniform magnetic field. As shown in the two following sections, this is
the case when appropriate strain schemes leading to a uniform Bζ

τ are chosen, e.g. when tj(r)
depends linearly on x or y.

2.5.3 Uniaxial strain and pseudo-magnetic field

Before revealing the exact expression of the space dependence of the hopping amplitudes
tj(r) needed to deduce the spectrum of the strained honeycomb lattice, here come some words
of caution. According to the preceding section 2.5, when strain corresponds to real mechanical
deformations4 and ismodeled through renormalized hopping amplitudes, onemust ensure that
these tj can be derived from a displacement field leading to a desired strain tensor. Uniaxial,
linear strain along the x-direction can be modeled by displacement fields that are function
of x only, such that εxx is linear in x and εxy = εyy = 0. Then, for τ denoting the strain
intensity [120],

εxx = − τ

3βa
x, (2.86)

the tunneling amplitudes reads

tj(x) = t
(
1 + τ

x

3a3
|x̂ · δj|2

)
, x̂ = (1, 0). (2.87)

Importantly, in the rest of this work, the strain that is envisaged does not rely on having a
real, stretched material. Indeed, in the two papers [75, 76] on which is based the major part
of the present manuscript, the models that were analyzed are aiming at synthetic platforms

4Instead of an effective strain as later envisaged in this work – see section 4.1.

28



where strain is an effective consequence of other intrinsic mechanisms of the system and not
to actual mechanical deformations. Along this line, the artificial uniaxial strain, described in
chapter 4 based our first paper [76], results from a exotic tunneling process – see section 4.4.1
– which yields a hopping amplitude

tj(x) = t
(
1 + τ

x

3a2
|x̂ · δj|

)
, x̂ = (1, 0), (2.88)

which is still linear in space but with a different dependence on the δxj components. De-
ductively, the strain tensor element εxx (remember that εxy = εyy = 0) is unchanged.The
corresponding Hamiltonian reads

Ĥ = −
∑
r,j

t

(
1 + τ

x− xc

3a2
|x̂ · δj|

)
â†r b̂r+δj

+ H.c. (2.89)

With this in mind, the formalism introduced in section 2.5.1 can also be applied. The Fig-
ures 2.7a and b respectively depict an unstretched lattice and a stretched one, where the area
of a unit cell Ac remains identical or not, respectively. The former case is the situation of in-
terest for the rest of this work. Also in panel a, notice the discrete x-position of the center
of a link between two sites, denoted by xl (l ∈ [0, Nx − 1]). For the rest of this work, unless
specified, the x-variable is meant to take those discrete values and the index will be omitted.

Assuming small strain intensities, i.e. τ � 1 in (2.88), one can reintroduce the space-dependence
of the hopping amplitudes into the tj(r) in (2.77). Consequently, one obtains a uniform pseudo-
magnetic field Bζ

τ = ∇ × Aζ from the pseudo vector potential (2.85) promoted to a space-
dependent function:

vFeA
ζ =

(
0,−ζ τt

6a
(x− xc)

)
=⇒ Bζ

τ = −ζ h̄τ
9ea2

ẑ. (2.90)

The position of the system’s center is denoted by xc = Lx/2, where Lx is the projected length
of the ribbon. For a ribbonwith both zigzag terminations as shown Figure 2.8,Lx = 3Nx/2−1.
To prevent any hopping term (2.88) from vanishing (breaking in the lattice) or exceeding 2t

(leading to Lifshitz transition [121]) across the entire ribbon, the value of τ shall fulfill the
condition τLx/6a < 1.

Besides, while the translational invariance along x is broken by the uniaxial strain Eq (2.87),
it is preserved along y. Therefore, the ribbon possesses cylindrical boundary conditions along
y. The y-periodicity is emphasized in Figure 2.8 by matching the color of equivalent links
(dashed lines) at each site. The thickening of the link δ1 signals that the tunneling amplitude
is increasing with x. The cylindrical geometry allows to block-diagonalize the Hamiltonian,
where each block corresponds to one value of quasi-momentum ky, i.e.

29



Figure 2.7: Schematic representation of strained honeycomb lattices. a Strain is di-
rectly imprinted on the tunneling amplitudes tj(r) without modifying the under-
lying structure of the lattice nor changing the area of the unit cell Ac = 3

√
3a2/2.

The vectors δj remain uniform. b Strain is applied by mechanically stretching the
lattice, making the vectors connecting neighboring sites δj position-dependent.

Figure 2.8: Ribbon of honeycomb lattice with Nx = 5 sites along the x-axis and
Ny = 2 sites along y, with imposed cylindrical boundary conditions symbolized
by dashed lines with matching colors for identical links. Notice the thickening of
the link as the x-position increases.

Ĥ =
⊕

ky∈BZ

Ĥ(ky), (2.91)
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where

Ĥ(ky) =



...
b̂l−1,ky

âl,ky
b̂l,ky
âl+1,ky

...



†

h(ky)



...
b̂l−1,ky

âl,ky
b̂l,ky
âl+1,ky

...


,

h(ky) =



. . . . . . . . . . . .

. . .
∑

j=2,3 tj(xl−1)eikyδj,y . . . . . .

. . . 0 t1(xl) . . .

. . . t1(xl) 0 . . .

. . . . . .
∑

j=2,3 tj(xl+1)e−ikyδj,y . . .
. . . . . . . . . . . .


.

(2.92)

The matrix h(ky) is found by Fourier transforming the local creation and annihilation opera-
tors â(†)i , b̂(†)i in Eq. (2.89),

âr =
1√
Ly

∑
ky

âx,kye
ikyy, â†r =

1√
Ly

∑
ky

â†x,kye
−ikyy,

b̂r =
1√
Ly

∑
ky

b̂x,kye
ikyy, b̂†r =

1√
Ly

∑
ky

b̂†x,kye
−ikyy.

(2.93)

By diagonalizing each block h(ky) for every value of ky in the BZ, one obtains the energy
spectrum ε (in units of t) shown in Figure 2.9 for τ = 0 (gray lines) and τ 6= 0 (colored lines),
as a function of ky. In the unstrained case, two Dirac cones are clearly visible and touch at the
K and K′ points.

Relativistic pseudo-Landau levels and wavefunctions

Uniaxial strain generates dispersive levels near the Dirac points (qya� 1) in the valence and
conduction bands, as shown in Figure 2.9 that displays the spectrum of the Hamiltonian (2.89).
While an analytical expression of their dispersion relation can be obtained by following the
reasoning detailed in [120], we (only) numerically verify that, around the Dirac points, the
dispersion relation in the valence (-) and the conduction bands (+) reads

εζν(qy) = ±t
√
|τ | ν
2

√
1− ζ

3qya

2
, ν ∈ N. (2.94)

with opposite slope at opposite valley. The analytical expression is indicated by black dashed
lines in Figure 2.9 for the valley K′ (ζ = −1). In the same way as for a real magnetic field, the
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Figure 2.9: Spectrum of pristine (τ = 0, gray lines) and uniaxially strained (τ 6=
0, colored lines) honeycomb lattice (2.89) in units of hopping parameter t with
zigzag terminations at both edges and cylindrical boundary conditions along y.
For finite strain, the color scale indicates the mean position 〈x〉 of each state. The
dashed black lines represent the pseudo-Landau levels (pLLs) whose approximate
dispersion is given by (2.94).

centers of the pLLs (qy = 0 or ky = ξKy) occur at energies

ε̄ν = ±h̄vF
√

2νh̄e|Bτ | = ±t
√
|τ | ν
2
, ν ∈ N, (2.95)

following (2.90). For this reason, they are called relativistic pseudo-Landau levels (pLLs). Each
point (ε, ky) is colored respectively to the mean position of the corresponding eigenstates,

〈ψky
ε |x̂|ψ

ky
ε 〉 =

∑
x∈A,B

x |ψky
ε (x)|2. (2.96)

One identifies that the pLLs eigenstates are located in the bulk of the system (in yellow). While
deducing their exact analytical expressions is beyond the scope of this thesis, the wavefunc-
tions of these pseudo-LLs states appear to be in appreciable agreement with the wavefunctions
of the original LLs given by 〈x|ν〉 in the Landau gauge (2.27). This is shown in Figures 2.10a
and b for the two first levels ν = 1 and ν = 2, respectively, at ky = Ky (qy = Ky). The particle
distributions of the eigenstates of the strained honeycomb lattice on the A and B sublattices
are plotted in blue and orange circles, respectively. The analytical LLs distributions on the A
and B sublattice are represented by solid red and black lines, respectively.
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Figure 2.10: Particle distributions on the A and B sublattices (blue and orange cir-
cles, respectively) of the eigenstates of (2.89) at ky = Ky associated to the pLLs
ν = 1 in a and ν = 2 in b. In each case, they are compared to the analytical LLs
(2.27) for the corresponding ν on each sublattice.

2.5.4 Trigonal strain and pseudo-magnetic field

Another way of generating linearly space-dependent hopping amplitudes and consequently
a uniform pseudo-magnetic, consists in (artificially or mechanically) straining the honeycomb
lattice along its threemain axes, preserving its C3-symmetry. This type of strain, called trigonal
or triaxial, also leads to clear signatures of the expected effective Landau levels physics. It is
encoded into the hopping amplitudes as

tj(r) = t

(
1 + τ

(r− rc) · δj
3a2

)
, (2.97)

therefore breaking the translational invariance along both the x and y directions. The corre-
sponding Hamiltonian reads

Ĥ = −
∑
r,j

t

(
1 + τ

(r− rc) · δj

3a2

)
â†r b̂r+δj

+ H.c.. (2.98)

The pseudo-magnetic field is given by

Bζ
τ = ζ

2h̄

3ea2
τ ẑ. (2.99)

As shown in Figure 2.11, the spectrum of (2.98) also presents relativistic pseudo-Landau lev-
els, much less dispersive than those formed with the previous strain scheme, encountered in
section 2.5.3. The energies of the pLLs are given by

ε̄ν = ±t
√

3|τ |ν, τ ∈ N. (2.100)
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Figure 2.11: a Spectrum of a triaxially strained honeycomb flake of 2461 sites
shown in panel b. The dashed black lines in a represent the pseudo-Landau levels
(pLLs) whose approximate dispersion is given by (2.100). bThe zigzag and bearded
terminations are indicated by Z and B. The A and B sites are represented by red
and blue dots, respectively

2.6 Terminations and edge states

Depending on the terminations of the ribbon (see Figure 2.5), a monolayer (unstrained)
graphene might or might not possess non-propagating zero-energy edge states. More specif-
ically, for chiral-symmetric honeycomb lattices, no boundary state is expected at edges with
armchair terminations contrarily to edges with bearded and zigzag terminations. The presence
or absence of non-propagating edge state is actually related to a topological quantity, called
the Zak phase or winding number [122, 123], defined as the one-dimensional integral of the
Berry connection over the first Brillouin zone. It allows to define another type of bulk-edge
correspondence, different from the one encountered in quantum Hall systems or Z2 topo-
logical insulators associated to distinct topological invariants. Indeed, the latter reveals the
(non-)existence of edge states in 2D systems independently of the edge terminations.

On their side, strained honeycomb lattices display helical currents localized at its edges de-
pending on its terminations. Indeed, adding strain and changing its sign, switch on or off
helical currents at the edges of the honeycomb lattice. This is relevant for explaining our re-
sults in section 3.2.2. For τ > 0, when the honeycomb lattice is non-uniformly strained, for
qya > 0 (< 0) – i.e. away from theK-valley – the wavefunction ψqy

ε is shifted to the left (right),
as indicated by the red (blue) colorization in panels a and c of Figure 2.12. Stemming from the
TRS preservation, the opposite mechanism takes place at the K′-valley. For τ < 0, the inverse
is true. Consequently, the edge states, living at the left and right boundaries of the ribbon, are
helical instead of chiral: each edge hosts pairs of two counterpropagating modes, each of them
belonging to a different valley. The sign of their group velocity v(ky) = ∂ε(ky)/∂ky switches
sign by going to the other valley.
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As mentioned earlier, for an unstrained honeycomb lattice, a zero-energy non-propagating
edge state exists when the ribbon has bearded and/or zigzag-terminations, but does not ex-
ist when it has armchair terminations. However, in the presence of uniform strain (i.e. for
space-independent tj), a zero-energy non-propagating edge state may appear for any type of
termination [124,125]. When non-uniform strain is applied, these edge states may propagate,
but only when they populate both sublattices, as a consequence of the chiral symmetry – see
section 2.3.3. To become propagative, a zero-energy edge state needs to mix with a 0th-LL state
such that the resulting state populates both sublattices.

In Figure 2.12, the presence or absence of such edge states is shown for several combinations
of terminations and for different sign of the strain intensity. Panels a and b correspond to
zigzag-bearded terminations with τ > 0 and τ < 0, respectively. Panel c corresponds to
zigzag-zigzag terminations with τ > 0. In the first case (panel a), no propagating edge states
exists in the first gap which is agreement with the fact that only the A sublattice is populated.
This is shown in panel d where is plotted the distribution n0

α (α = A,B), defined as the sum of
all particle densities associated to the zero-energy level (indicated by the green box in panel
a), i.e.

n0
α(x) =

∑
ε=0,ky

|ψky
α (x)|2, α = A,B. (2.101)

Panel e shows the particle distributions of propagating modes at (ε/t, kya) = (1.09, 0.03) and
(2.53, 0.03), whose markers correspond to those indicated by the empty circle and triangle in
panel b. Notice that the color of the branch they are extracted from, reflects the region where
they are localized in the system – to the left (L) in red and to the right (R) in blue. Panel f shows
the particle density of the helical edge states localized to the right of the system, indicated in
panel c by the empty circle at (ε/t, kya) = (1.09, 0.03). The results are in perfect agreement5

with those of Ref. [124]. In panel e for τ < 0 with zigzag and bearded terminations on the left
and right boundaries, respectively, or in panel f for τ > 0 with both zigzag terminations, the
corresponding propagating edge states from the branches in panels b and c are located on the
A and B sublattices. Notice that for all higher pLLs, both valleys have propagating edge states
as the pLLs-states all have a non-zero component on both sublattices.

5Aword of caution is mandatory here: the nearest-neighbor vectors defined in Ref. [124] are opposite to those
that were chosen for the current work. This simply corresponds to opposite strain intensities or, equivalently, to
mirroring the lattice with respect to the axis x = xc in (2.88).
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Figure 2.12: Panels a and b correspond to zigzag-bearded terminations with τ > 0
and τ < 0, respectively. Panel c corresponds to zigzag-zigzag terminations with
τ > 0. In the first case, no propagating edge states exists in the first gap since
only the A sublattice is populated, as shown in panel d. The distribution n0α (α =
A,B) is defined as the sum of all particle densities associated to the zero-energy
level – see (2.101) – indicated by the green box in panel a. In panel e, we show
the particle distributions of propagating modes at (kya, ε/t) = (1.09, 0.03) and
(2.53, 0.03), whose markers correspond to those indicated by the empty circle and
triangle in panel b. Notice that the color of the branch they are extracted from,
reflects the region where they are localized in the system – to the left (L) in red
and to the right (R) in blue. Panel f shows the particle density of the helical edge
states localized to the right of the system, indicated in panel c by the empty circle
at (kya, ε/t) = (1.09, 0.03).
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2.7 Valley Hall effect and probing techniques

As introduced in section 2.2.1, the Brillouin zone of the honeycomb lattice presents two
symmetry-nonequivalent Dirac points K and K′, called valleys, which are the contact points
of the conduction and valence bands. In materials where they are largely separated in mo-
mentum space, such as graphene, the intervalley scattering is strongly suppressed. Hence, in
addition to their charge and spin, electrons in such systems possess a valley pseudospin, that
can be manipulated to process and store information – referred to as valleytronics – in a way
similar to the charge in electronics and the spin in spintronics [19, 20].

When the inversion symmetry is broken explicitly, as in graphene, or spontaneously as in
transition metal dichalcogenides (TMDs) [22, 126] (e.g. MoS2, MoSe2, WS2 and WSe2) and
ferroelectrics [127, 128] (e.g SnS, SnTe), the Berry curvature Ω(k) of the Bloch band can be
employed to distinguish populations of particles at nonequivalent valleys. Addressable with
a magnetic or an electric field, a non-zero Berry curvature of a band causes the deflection of
the trajectory of the electrons of that band. Indeed, in the semi-classical approximation, the
velocity of an electron in the presence of an in-plane electric field E is given by [129]

v = ∇kε(k)− ∂tk×Ω(k), (2.102)

where ∂tk = −eE/h̄, ε(k) is the energy dispersion, Ω(k) is obtained from the Fourier-
transformed Bloch functions u(k),

Ω(k) = i∇k × 〈u(k)|∇ku(k)〉 . (2.103)

While the inversion symmetry is broken in TMDs, graphene on substrates or voltage-biased
graphene, time-reversal symmetry is preserved. Since the Berry curvature acquires opposite
signs at opposite momenta when TRS is preserved, Ω(−k) = −Ω(k), it does at different val-
leys, Ω(K) = −Ω(K′). Looking at (2.102), electrons consequently undergo a deflection in one
or the opposite direction depending on the valley they occupy, which is called the valley Hall
effect [18,130]. This creates a valley polarization within the material transversal to the applied
electric field, instead of a charge separation taking place in a real magnetic field, which is the
Hall effect – see section 2.1.

Several probing techniques exist for measuring the valley Hall effect. One of these relies
on non-local resistance measurement in multiterminal Hall bar geometries [21], in a similar
scheme as the one used to detect spin Hall currents [131]. Although early advances were made
in understanding the non-local resistance as a hallmark of the valley Hall effect (VHE), simu-
lations [23, 26, 27] and experiments [25, 28] showed that, along the possible contribution from
the Berry curvature of the Fermi sea, several other effects (propagating edge-states, Joule’s
currents) were responsible for the strong non-local resistance signal observed by Gorbachev
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et al. [21]. It therefore impedes to identify the exact role played by the valley Hall effect and
extract its clear signature.

An alternative probing method, relying on valley-resolved measurements, exploits spatially-
resolved optical Kerr signals [24]. First, an electric field perpendicular to the sample breaks
the inversion symmetry and allows to tune the Berry curvature. Resulting from the interplay
between the Berry curvature and a longitudinal electric field, the valley Hall effect causes a
valley polarization near the device’s edges. Then, a linearly-polarized light beam is shed onto
the sample and transmitted as circularly-polarized light due to the optical Kerr effect. Its Kerr-
rotation angle is eventually measured and is shown to depend on the population imbalance at
the edges.

A third technique uses circular light to selectively excite valley-polarized carriers, again de-
flected due to the anomalous velocity, subsequently leading to a photo-induced anomalous
Hall voltage [132]. While this also employs a valley-resolved preparation, their observations
indicate that these signals arise from the bulk of the device. This is of great relevance as
the VHE is not topological protected and edge measurements are peculiarly sensitive to local
disorder, that leads to inter-valley scattering between counter-propagating edge states living
at the same boundary. In chapter 3 is proposed another alternative for directly probing the
valley Hall effect, that relies on locally measuring fermionic density responses upon external
variations of strain applied to a honeycomb lattice.

2.8 Floquet driving

Adding time-periodic driving, or Floquet driving, to static systems allows to engineer ef-
fective Hamiltonians and leads to novel quantum phases of matter [133,134]. From the grow-
ing interest on nonequilibrium states in condensed matter physics, Floquet driving has been
increasingly employed in various fields, namely in cold atoms setups [133, 135–137], photon-
ics [109, 138, 139], solid state materials [140], acoustic [141] and mechanical systems [142].

There are two typical types6 of quantum systems: i) open quantum systems, coupled to the
environment with dissipation, whose dynamics is governed by the von Neumann equation
d
dt
ρ̂ = −i[Ĥ, ρ̂], and ii) isolated quantum system driven, whose time evolution is entirely de-

termined by the unitary dynamics. In the former case, when the energy absorbed from an
external time-periodic fields is balanced with the dissipation into the environment, a time-
periodic steady state can be reached. In the latter case, which will be of interest here, adding a
periodic drive continuously supplies energy to the system. Consequently, it reaches infinite-

6Other types of non-trivial stationary states are expected to emerge in many-body localized systems, where
strong disorder prevents the system from heating even without dissipation energy into its environment, or in
time crystals [134].
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temperature state at long times as particles can absorb energy from the driving field, resulting
in excitations to higher Bloch bands, particle losses or dissipation of energy. As these effects
develops over time, Floquet heating thus generally limits the duration of experiments that can
be carried in driven systems and bounds (from below) the attainable temperatures in exper-
iments [143]. Nonetheless, the system may stay in the so-called Floquet prethermalization
phase for a certain time scale, that is exponentially long when the driving frequency is much
larger than any other energy scale of the system [134, 143].

Floquet engineering allowed to realize (topological) quantum phase transitions [137,144,145],
emulate artificial gauge fields, opening new routes for implementing lattice gauge theories
[146,147], chaos-assisted tunneling processes [148], superconductivity [149], and other exotic
quantum states of matter [150]. To understand how these effective theories are constructed,
the general idea of Floquet engineering is presented, with an emphasis on the separation of
time scales, namely by distinguishing the fast from the slow dynamics. In particular, the focus
will be set on deriving the stroboscopic Hamiltonian, that governs the slow dynamics of the
system, therefore letting aside the micromotion. Along this line, in the high-frequency limit,
a Magnus expansion allows to derive a new Hamiltonian, one or more parameters get renor-
malized by a function of the frequency. This can be exploited as a knob to tune the model.
Then, two examples where the tunneling amplitudes get renormalized will be presented, as
they are relevant for further derivations in chapter 4.

2.8.1 Floquet theory and quasi-energy spectrum

Floquet theory [151] was originally developed for solving ordinary differential equations of
the type ẋm(t) =

∑
nCmn(t)xn(t), where the coefficientsCmn are periodic functions. Adapted

to quantum mechanics, the time evolution of isolated quantum systems is governed by the
time-dependent Schrödinger equation,

ih̄
d

dτ
|ψ〉 = Ĥ(τ) |ψ〉 , (2.104)

where the Hamiltonian Ĥ(t) satisfies Ĥ(τ) = Ĥ(τ + T ), with T the drive period. The time
translation from |ψ(τ0)〉 to |ψ(τ)〉 is determined by the unitary operator Û(τ, τ0), i.e. |ψ(τ)〉 =
Û(τ, τ0) |ψ(τ0)〉, where

Û(τ, τ0) := T exp

(
− i
h̄

∫ τ

τ0

dτ ′Ĥ(τ ′)

)
, (2.105)

where T is the time-ordered product.

The essence of Floquet theory is to separate the overall dynamics into two evolutions cor-
responding to two time scales: one is stroboscopic and consists of a sequence of snapshots
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taken at each period T at times s→ s+ T → s+ 2T → ...The other one is governed by the
micromotion taking place within each period, i.e. at times s→ s+ t, with 0 ≤ t < T . Hence,
the first one captures the long-time and time-averaged dynamics, while the second contains
information on the short-time scale. Besides, the Floquet theorem states that for each unitary
operator Û(τ, τ0) associated to a periodic Hamiltonian Ĥ(τ) = Ĥ(τ + T ), there exist a time-
independent hermitian operator ĤF and a time-periodic unitary operator K̂(τ) = K̂(τ + T )

(called the kick operator) such that

Û(τ, τ0) = eiK̂(τ)e−i(τ−τ0)ĤFe−iK̂(τ0). (2.106)

Note that the couple {ĤF, K̂(τ)} is not unique, but can be connected by a gauge transformation
to any other couple that fulfills (2.106). The equation (2.106) simplifies by stroboscopically
observing the system, i.e. at times τ = τ0 + nT (n ∈ Z),

Û(τ0 + nT, τ0) = e−iK̂(τ0)e−iĤFnT/h̄eiK̂(τ0)

= exp
(
e−iK̂(τ0)(−iĤFnT/h̄)e

iK̂(τ0)
)

≡ e−iĤF[τ0]nT/h̄.

(2.107)

Note that the second line is obtained by using the fact that if A and B are operators and B is
unitary, then exp

(
B†AB

)
= B† exp(A)B. With this rewriting, the (new) Floquet Hamiltonian

depends on the initial time, but does not evolve within a period.

2.8.2 High-frequency Floquet driving and Magnus expansion of the
stroboscopic Floquet Hamiltonian

The Floquet Hamiltonian ĤF[τ0] can be computed in the high-frequency limit using the
Magnus expansion [143], which consists in rewriting ĤF[τ0] into a power series of 1/Ω,

ĤF[τ0] =
∞∑
k=0

1

Ωk
Ĥ

(k)
F [τ0]. (2.108)

By following the reasoning detailed in appendix A.1, one exactly computes the 0th and 1st-order
terms of the Magnus expansion, that read

Ĥ
(0)
F [τ0] = H0 =

1

T

∫ τ0+T

τ0

Ĥ(t)dτ,

Ĥ
(1)
F [τ0] =

∞∑
l=1

1

h̄l

(
[Hl, H−l] + [H0, Hl]e

ilΩτ0 − [H0, H−l]e
−ilΩτ0

)
,

(2.109)

where Hl is defined by the Fourier transform of Ĥ(t) as
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Ĥ(t) =
∑
l∈Z

Hle
ilΩτ . (2.110)

2.8.3 Resonant Floquet scheme

When a parameter of the Hamiltonian (e.g. the amplitude of the drive or an onsite poten-
tial) is proportional to the driving frequency, the Magnus expansion cannot be readily applied
as its terms would diverge in the high-frequency limit (Ω → ∞) – see the example below.
By performing a unitary transformation onto the Hamiltonian – commonly named rotation
– similarly as a Schrieffer-Wolff transformation, its high-energy terms get reabsorbed into a
renormalization of its other parameters. Henceforth, the high-frequency expansion is appli-
cable. To operate this rotation, we apply R̂(τ) ≡ exp

(
−iK̂(τ)

)
on a state to the comoving

(rotating) frame [143],

|ψ(τ)〉 → R̂(τ) |ψ(τ)〉 , Ĥ(τ)→ Ĥrot(τ). (2.111)

Inserting the rotated state R̂(τ) |ψ(τ)〉 into the Schrödinger equation (2.104), the resulting
rotated Hamiltonian Ĥrot(τ) reads

Ĥrot(τ) = R̂Ĥ(τ)R̂† − ih̄R̂∂τR̂† (2.112)

Example of resonant Floquet engineering in a double-well

The following example sets the ground for deriving the effective Hamiltonian analyzed in
chapter 4. It shows how the tunneling amplitude t of a particle in a double-well, with time-
periodically driven onsite potentials and an offset ∆, is renormalized by a Bessel function,
that depends on the difference of amplitudes of the drives K0−K1 and the frequency Ω. This
situation is inspired by [143,152] where, contrarily to here, only one well is driven. One starts
from the time-dependent Hamiltonian Ĥ(τ) = Ĥ0 + V̂(τ), where

Ĥ0 = −tĉ†0ĉ1 − tĉ
†
1ĉ0 +∆n̂1,

V̂(τ) = K0 cos(Ωτ)n̂0 +K1 cos(Ωτ)n̂1,
(2.113)

with ĉ†i (ĉi) the creation (annihilation) operator of the particle. In the case of a resonance∆ =

mh̄Ω, performing a high-frequency expansion would cause the 0th-order term H0 to diverge.
To circumvent the divergence, one applies a unitary transformation R̂ to the comoving frame
(2.111) where, in the present case,
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R̂(τ) = ei
[
K0
h̄Ω

sin(Ωτ)n̂0+
K1
h̄Ω

sin(Ωτ)n̂1+mΩτn̂1

]
. (2.114)

Therefore,

Ĥrot(τ) = −tei(K0−K1) sin(Ωτ)/h̄Ω−imΩτ ĉ†0ĉ1 + H.c. (2.115)

The derivation of (2.115) is presented in appendix A.1. The Magnus expansion (2.108) can now
be applied and converges toH0 in the high-frequency limit. The zeroth-order term is obtained
by taking the time-average of Ĥrot(τ) – see (2.109) – which reads

Ĥ
(0)
F = −tJm

(
K0 −K1

h̄Ω

)
ĉ†0ĉ1 + H.c., (2.116)

for τ0 = 0, where Jm is themth Bessel function of the first kind. From this, we conclude that
having control on the energy offset ∆ between the wells allows to select the renormalizing
Bessel function.

2.8.4 Floquet engineering of density-assisted tunneling processes

By modulating the onsite potential energy or the interaction parameters, the tunneling am-
plitudes are generally renormalized by a Peierls phase or a Bessel function, leading to non-
standard effective Hubbard Hamiltonians [153], where exotic interaction terms arise. Exam-
ples of such processes are pair-tunneling, where particles hop by pair in the lattice, or density-
assisted tunneling, where the hopping amplitude of a particle depends on the densities of these
particles (or of another species) at the sites between which it tunnels. As a result, the param-
eters of the effective Hamiltonian are functions of particle density operators. In some cases,
quantum gauge field theories on lattices [146,147,154] may emerge. This last scenario is real-
ized when Peierls phase, or equivalently the gauge field, becomes an operator, which allows
for its quantum fluctuations to be incorporated into the model.

Example of Floquet-engineered density-assisted tunneling:

We now derive a non-standard Hubbard model with density-assisted tunneling. The systems
explored here is a simpler version of the model proposed in Ref. [155] and serves as a toy
model for ours, later presented in chapter 4. Here, it consists of bosons in a double-well that
can hop between sites 0 and 1 with an amplitude J and interact with each other (by pair) when
they occupy the same site, with an energy U(τ) = U cos(Ωτ), that is periodically driven in
time (τ ), where T = 2π/Ω is the drive period. As in the previous example in section 2.8.3, the

42



double-well presents an energy imbalance ∆ that is also proportional to the frequency of the
drive. The Hamiltonian reads

Ĥ(τ) = −J(b̂†0b̂1 + b̂†1b̂0) +
U(τ)

2

1∑
i=0

n̂i(n̂i − 1) + ∆n̂1. (2.117)

where b̂(†)i and n̂i are the annihilation (creation) and density operators of a boson at site i. The
resonance between ∆ = mh̄Ω and the drive requires to apply a rotation represented by the
unitary operator

R̂(τ) = ei
[
Un̂0
h̄Ω

sin(Ωτ)n̂0+
Un̂1
h̄Ω

sin(Ωτ)n̂1+mΩτn̂1

]
. (2.118)

The rotated Hamiltonian derived from (2.112) is given by

Ĥrot(τ) = −te2iU(n̂0−n̂1) sin(Ωτ)/h̄Ω−imΩτ b̂†0b̂1 + H.c. (2.119)

As in the previous example, theMagnus expansion (2.108) can now be applied and converges to
H0 in the high-frequency limit. The zeroth-order term is obtained by taking the time-average
of Ĥrot(τ) – see (2.109) – which reads

Ĥ
(0)
F = −tJm

(
2U

h̄Ω
(n̂0 − n̂1)

)
b̂†0b̂1 + H.c., (2.120)

for τ0 = 0, where we have used the identities (A.16) and (A.17). Hence, periodic modulations
of the interaction result in nonlinear hopping terms, where the tunneling amplitudes from one
well to the other depends on the difference in particles densities.

2.9 Weakly-interacting Bose gas

One building block of the model presented in our article [76] is a Bose-Einstein condensate
(BEC). Moreover, one of the crucial steps of the model consists in calculating the density of
the interacting, harmonically trapped BEC, whose distribution is obtained by solving a non-
linear Schrödinger equation, the so-called Gross-Pitaevskii equation (GPE). We thus present
the principal notions regarding weakly-interacting gases of bosons, based (to a great extend)
on Refs. [34, 156, 157]. We start by describing how Bose-Einstein condensation takes place,
i.e. how an eigenstate may be macroscopically occupied while the other states are barely
populated. Then, by supposing that the dilute Bose gas has condensed into a BEC, the equation
of motion of its stationary many-body wavefunction – the time-independent GPE – is derived.
A discussion is given on how the BEC wavefunction can be interpreted as an order parameter
through the mean-field and the Bogoliubov approximations.
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2.9.1 Bose-Einstein condensation

One important feature of a Bose gas is the possibility that one of its energy state can be
macroscopically occupied, thanks to a mechanism called Bose-Einstein condensation7 [159]
that occurs when a Bose gas is cooled down to near the absolute zero temperature. This is
easily understood from the positivity of the number occupation n̄i ≥ 0 of the ith energy state,
given by the Bose-Einstein statistics

n̄i(T, µ) =
1

e(εi−µ)/kBT − 1
, (2.121)

in the grand-canonical ensemble formalism [157]. If ε0 is set to 0 by convention, then µ(T,N)

has to be negative. In order to avoid the number of particles in the ground state to become
infinite when T → ∞, one needs to have µ to also decrease in absolute value. If a critical
temperature Tc exists such that µ(T → Tc) → 0−, then n̄0 increases, possibly reaching the
same order of magnitude as N , while the other occupation numbers n̄i 6=0 are of the order
of 1. This is known as Bose-Einstein condensation, whose experimental observation by the
group of E. Cornell and C. Wieman [160] and independently by the group of W. Ketterle [161],
was awarded the Nobel Prize in 2001. Importantly, while the number of bosons in an ideal
condensate is n̄0 = N at T = 0, interactions cause quantum fluctuations, thus n̄0 < N even
at T = 0 [156, 157, 162].

2.9.2 Gross-Pitaevskii equation

In a dilute gas, three-body (or higher) scattering processes are rare and their contributions
are negligible in front of two-body processes. The Hamiltonian of a dilute gas of interacting
bosons of massm, trapped in an external potential8 Vext(r, t) reads

Ĥ =

∫
dr
(
− h̄

2

2m
Ψ̂†(r)∇2Ψ̂(r) + Vext(r, t)Ψ̂

†(r)Ψ̂(r)
)

+
1

2

∫
Ψ̂†(r′, t)Ψ̂†(r, t)V (r′ − r)Ψ̂(r′, t)Ψ̂(r, t)dr′dr,

(2.122)

where Ψ̂ and Ψ̂† are the bosonic annihilation and creation field operators, respectively. Pair-
scattering with small energy in the center-of-mass frame is dominated by s-wave contribution
to the wavefunction. It is reasonable to approximate V (r−r′) by a constant valueU , symboliz-
ing the effective scattering energy for all particles [156]. In this case, the physics is reasonably
well described by a single parameter, called the s-wave scattering length and denoted by as.
In the Born approximation, for uniform effective interacting potentials,

7Not only the ground state but higher states can be macroscopically occupied [158].
8As an example, this external trap may consist of multiple potentials, such as a smooth parabolic trap that

keeps the bosons localized in the region of interest, in addition to an optical lattice.
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V (r− r′) = Uδ(r− r′), U =
4πh̄2

m
as. (2.123)

Therefore, the Hamiltonian (2.122) becomes

Ĥ =

∫
dr
(
− h̄

2

2m
Ψ̂†(r, t)∇2Ψ̂(r, t) + Vext(r, t)Ψ̂

†(r, t)Ψ̂(r, t)
)

+
U

2

∫
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)dr.

(2.124)

One can rewrite the bosonic field operator as a combination of single-body annihilation oper-
ators âi that remove a particle in the state ϕi, i.e.

Ψ̂(r, t) = ϕ0(r, t)â0 +
∑
i>0

ϕi(r, t)âi. (2.125)

where we have separated the condensate term i = 0 from the other components and where
the wavefunctions ϕi are one-body wavefunctions related to the one-body density matrix
n(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 by

n(1)(r, r′) =
∑

niϕ
∗
i (r)ϕi(r

′), (2.126)

with ni being the occupation number relative to the single-particle state ϕi. Substituting this
expression into the Hamiltonian and neglecting â(†)i contributions yield9

Ĥ =

∫
dr
(
− h̄

2

2m
ϕ∗
0∇2ϕ0 + Vext(r, t)|ϕ0|2

)
â†0â0 +

U

2

∫
dr|ϕ0|4â

†
0â

†
0â0â0. (2.127)

Notice that any term in âi or â
†
i is discarded if the ground state is massively populated (N0 �

N −N0) thus only the quartic term in â0 is kept in (2.127). This assumption of large occupa-
tion allows to use the Hartree-Fock approximation, which prescribes to write the many-body
wavefunction (for N = N0) as a product of single-body ground state wavefunctions. Then,
the many-body ground state and its wavefunction read

|Φ0〉 = |ϕ0〉
⊗N , Φ0(r1, ..., rN) = ϕ0(r1)...ϕ0(rN). (2.128)

Its corresponding energy is given by10

〈Φ0| Ĥ |Φ0〉 =N
∫
dr
(
− h̄

2

2m
ϕ∗
0∇2ϕ0 + Vext(r, t)|ϕ0|2

)
+
U

2
N(N − 1)

∫
dr|ϕ0|4. (2.129)

9The space and time dependence of the fields ϕi (i ≥ 0) have been omitted for the sake of clarity.
10The annihilation operator of an excited state âi (for i > 0) applied onto the single-body ground state is zero,

i.e. âi |ϕ0〉 = 0.
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Notice the N − 1 factor coming from the commutation relation [â0, â
†
0] = 1. Since N � 1,

one obtains

E0(t) ≡ 〈Φ0| Ĥ |Φ0〉 =N
∫
dr
(
− h̄

2

2m
ϕ∗
0∇2ϕ0 + Vext(r

′, t′)|ϕ0|2
)
+
UN2

2

∫
dr|ϕ0|4.

(2.130)

By first absorbing
√
N into Ψ0 =

√
Nϕ0 then minimizing this energy functional11 with re-

spect to Ψ∗
0 with the constraint that all N bosons occupy the single-body ground state, i.e.∫

dr′|Ψ0|2 = N ,

0 =
δ
(
E0[Ψ0,Ψ

∗
0]− µ(

∫
dr′|Ψ0(r′, t)|2 −N)

)
δΨ∗

0(r, t)

= − h̄
2

2m
∇2Ψ0(r, t) + Vext(r, t)Ψ0(r, t) + U |Ψ(r, t)|2Ψ0 − µΨ0(r, t)

⇐⇒ µΨ0 = −
h̄2

2m
∇2Ψ0 + VextΨ0 + U |Ψ0|2Ψ0,

(2.131)

one obtains the time-independent Gross-Pitaevskii equation where we omitted the dependence
on space and time coordinates. Its solution is the ground state of (2.122) when all quantum
fluctuations are neglected. Its associated energy is the chemical potential µ.

2.9.3 Thomas-Fermi limit

For a slowly varying density over space, the gradient of the BEC wavefunction can be ne-
glected, i.e. the kinetic term in the energy functional (2.130) becomes small in front of the
other energetic contributions. The GPE then reads

Vext(r) + Un(r) = µ, (2.132)

which expresses the condition of local equilibrium. Equivalently, the density reads

n(r) =
1

U
(µ− Vext(r)). (2.133)

As an example, if the potential is a harmonic trap, Vext = V0r
2, the BEC distribution is a simple

inverted parabola.

Importantly, the Thomas-Fermi approximation fails at the boundary of the BEC cloud, where
Vext(r) = µ. Indeed, the Thomas-Fermi boundary sets a transition between two regions, one
occupied by bosons and another without bosons, which undeniably implies the presence of an

11Remember δΨ∗
0(r

′,t′)
δΨ∗

0(r,t)
= δ(r− r′, t′ − t).
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abrupt, nonphysical change in the density at the cloud edge that would lead to a divergence of
the kinetic energy at the boundary of the Thomas-Fermi distribution. This is solved by reha-
bilitating the kinetic term at the first place and by performing an asymptotical analysis at the
edge of the Thomas-Fermi cloud [156, 157], which is beyond the scope of this thesis. There-
fore, the density profile is no more parabolic at the cloud edge but rather smoothly decreases
to zero.

2.9.4 Mean-field and Bogoliubov approximations

The derivation of the GPE (2.131) suggests that the bosonic field operator could have been
replaced by the many-body wavefunction Ψ0 from the start in (2.124). This is the essence of
a mean-field approximation, where Ψ0 plays the role of an order parameter, that is a complex
number

Ψ0(r) = |Ψ0(r)|eiS(r). (2.134)

The modulus represents the contribution of the condensate to the density n(1)(r), while the
phase S(r) is responsible for coherence (order at longer range, for r 6= r′) and superfluidity
phenomena [157]. Note that the order parameter is only defined up to a uniform phase factor.
This reflects a global U(1) gauge symmetry of the system. Making an explicit choice of the
phase corresponds to the breaking of this gauge symmetry.

An improved mean-field approximation, proposed by Bogoliubov, suggests to replace the field
operator Ψ̂ in (2.124) by its average value in the ground state 〈Ψ0| Ψ̂ |Ψ0〉 and an additional
term that would take into account fluctuations around this average, that is

Ψ̂(r, t) = Ψ0(r, t) + δΨ̂(r, t). (2.135)

Regarding equation (2.125), this is equivalent to replacing â0 by
√
N0 and relating the fluctu-

ation term δΨ̂ to its non-condensed part, represented by the terms
∑

i 6=0 ϕiâi. Interestingly,
in the limit N0 ' N , neglecting the term δΨ̂ and directly replacing Ψ̂ by the order parameter
Ψ0 in (2.124) would also lead to the Gross-Pitaevskii equation (after minimization).

Ground state as a coherent state

Since the population of the ground state largely dominates N0 ' N � 1, one can make the
physical assumption that adding or removing one particle from the BEC negligibly impacts any
property of the system. This suggests that the ground state can be interpreted as a coherent
state12, i.e. an eigenstate of the annihilation field operator Ψ̂, whose associated eigenvalue is
the order parameter of the condensate,

12This assumption is equivalent to supposing that â0 can be replaced by
√
N0.
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Ψ̂ |Ψ0〉 = Ψ0 |Ψ0〉 . (2.136)

TheGross-Pitaevskii equation can also be derived from the Schrödinger equation of this coher-
ent ground state. Indeed, computing the average energy of |Ψ0〉 with the Hamiltonian (2.124)
would lead (after minimization) to the time-dependent Gross-Pitaevskii equation

ih̄
∂

∂t
Ψ0 = −

h̄2

2m
∇2Ψ0 + VextΨ0 + U |Ψ0|2Ψ0. (2.137)

Besides, since |Ψ0〉 is expected to be the ground state which is stationary, its time-evolution is
governed by a simple phase

|Ψ0〉 (t) = e−iαt |Ψ0〉 , (2.138)

where α needs to be determined. From the Schrödinger equation of |Ψ0〉 on which is applied
〈Ψ0|, we deduce

ih̄ 〈Ψ0|
∂

∂t
|Ψ0〉 = 〈Ψ0| Ĥ |Ψ0〉

⇐⇒ αN =

∫
dr
[
− h̄

2

2m
Ψ∗

0∇2Ψ0 + Vext|Ψ0|2 +
U

2
|Ψ0|4

]
= EMF,

(2.139)

where we use the normalization condition
∫
dr|Ψ0|2 = N and exploit the fact that the energy

functional in the mean-field approximation is given by EMF = 〈Ψ0| Ĥ |Ψ0〉. As a last step,we
derive both sides with respect to N , remembering the definition of the chemical potential in
the mean-field limit,

α =
∂EMF

∂N
= µ. (2.140)

Therefore, the time-dependence of the stationary state |Ψ0〉 is given by e−iµt/h̄. Plugging this
into the Schrödinger equation yields the GPE (2.131).

2.10 Bosonic atoms in lattices

In this section, we first briefly present the underlying mechanism of trapping atoms with
interfering lasers that form periodic potentials viewed as crystals of light, called optical lattices.
Then, by assuming that the optical lattice wells are sufficiently deep, taking the tight-binding
approximation of the Hamiltonian (2.122) will lead us to the Bose-Hubbard model.
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2.10.1 Ultracold atoms in optical lattices

Optical lattices are created by counter-propagating laser beams carrying electric fields of
the form [163]

E(r, t) = E0(r) e
−iωLt + c.c, (2.141)

where ωL is the laser frequency. This electric field acting on an atom induces a time-dependent
dipole moment d(r, t) for the atom that reads

d(r, t) = d0(r) e−iωLt + c.c, (2.142)

where

d0(r) = ¯̄α(ωL)E0(r), (2.143)

with ¯̄α(ωL) being the the polarizability tensor that characterizes the response of the atom to
the applied electric field. The Hamiltonian of a single atom of massm subjected to the electric
field E+(r, t) is given by

Ĥ =
p̂2

2m
+

NI∑
j=1

h̄ωj

∣∣ej〉 〈ej∣∣− d · E, (2.144)

where
∣∣ej〉 is the jth out of the NI internal atomic states and has a corresponding energy

h̄ωj . When the atom occupies a single internal state |e0〉 and the laser is far-detuned from any
atomic transition, the effect of the laser can be treated as a perturbation in second order of
the electric field. Supposing that ωL is much closer to the transition of energy h̄ω1 (between
the ground state |e0〉 and the excited state |e1〉), i.e. ∆ω = ωL − ω1 � ωL − ωj (j 6= 1), the
atom can be thought of as a two-level system since excitations to other states are much less
probable. The perturbative energy shift of the internal state |e0〉, known as the AC Stark shift,
is quadratic in the electric field amplitude [163]. Moreover, under these assumptions, ¯̄α only
depends on∆ω [34,156,163]. As a result, the energy shift caused by the atom-light interaction
therefore reads

Vopt(r) ∝ −
E2(r, t)
∆ω

. (2.145)

where the overline indicates a time average of the laser intensity I(r) = E2(r, t). The time
averaging is valid since the typical frequency of the atomic motion is much slower than the
frequency (ω) of the electric field of the laser [157]. As a result from the space dependence of
the radiating field, the energy landscape around the atom creates more or less energetically
favorable regions for the atom to localize. One can define a force as the gradient of the energy
shift and the sign of the detuning determines if the atom is localized in the maxima or minima
of the intensity. Employing a pair of counter-propagating lasers, with the same frequency,
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that interfere will create standing waves and spatially periodic potential for the atom of the
form

V (x) = V0 sin
2

(
2π

λ
x

)
, (2.146)

where λ is the wavelength of the lasers and V0 is the depth of the optical lattice, that is pro-
portional to the laser intensity. By using multiple pairs of lasers pointing at different angles,
one can build various lattice geometries in different dimensions [34]. A relevant example for
the present work is the 2D honeycomb lattice, which is created by interfering three pairs of
lasers at 120° [74].

2.10.2 Hubbard model for ultracold atoms

The Hubbard model describes the physics of interacting fermionic particles in lattices and
has been envisioned as a promising candidate to investigate the quantum phase diagram of
high-temperature superconductors [164]. Subsequent implementations have been achieved
with ultracold fermionic atoms in optical lattices [39,165–170]. On the other hand, its bosonic
counterpart instead led to the prediction [31, 171] and the observation of the superfluid to
Mott-insulator phase transition [40]. Recent theoretical and experimental advances for gen-
erating artificial gauge fields and synthetic spin-orbit coupling have further expanded the
scope of the Hubbard model. These advancements have opened new avenues for exploring
exotic quantum phases such as topological insulators [42–44, 46], (fractional) quantum Hall
phases [45, 46], quantum magnetism [50, 51], and (non-Abelian) gauge field theories on lat-
tices (LGT) [52–54, 56].

Here, the Bose-Hubbard model is derived from the Hamiltonian (2.124). The external poten-
tial consists of the optical lattice and a harmonic trap, Vext = Vopt + Vharm. For a sufficiently
deep optical lattice, i.e. V0 > 2ER where ER = h̄2k2/2m is the recoil energy13, and suppos-
ing that the system is confined to the lowest Bloch band, so-called s-band, the tight-binding
approximation can be invoked. Then, the bosonic field operator can be expressed in terms of
annihilation operators of bosons b̂i at the ith lattice site ri, weighted by Wannier14 functions
of the lowest band localized around this same site [34], i.e.

Ψ̂(r) =
∑
i

b̂iw(r− ri). (2.147)

By plugging this expression into (2.124) and defining the parameters

13The recoil energy is the kinetic energy imparted to an atom at rest when it absorbs a photon of momentum
h̄k [156].

14TheWannier functions form an orthonormal basis ofwavefunctionsw(r−ri) of a single atomic state localized
around the lattice site ri. Note that for the Wannier expansion to be relevant, the external parabolic trap has to
be smooth to preserve a quasi-periodicity and to enable the use of the same expression for the Wannier function
w(r− ri) at all sites.
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J̃ij = −
∫
drw∗(r− ri)

[
− h̄

2

2m
∇2 + Vopt(r) + Vharm(r)

]
w(r− rj), (2.148)

and

Ũijkl = U

∫
drw∗(r− ri)w

∗(r− rj)w(r− rk)w(r− rl), (2.149)

one obtains the Bose-Hubbard model,

ĤBH = −
∑
i,j

J̃ij

(
b̂†i b̂j + H.c.

)
+

1

2

∑
ijkl

Ũijklb̂
†
i b̂

†
j b̂kb̂l, (2.150)

The integrals involving Wannier functions localized at different sites are usually small [172].
Consequently, only the terms whose indices satisfy |i − j| < 2 are kept in the first sum and
the parameter Ũijkl is approximated by the onsite interaction Ũ . By splitting the terms i = j

from the rest (|i− j| ≥ 1), the Bose-Hubbard Hamiltonian becomes

ĤBH = −
∑
〈i,j〉

Jij

(
b̂†i b̂j + H.c.

)
+
∑
i

Vin̂i +
Ũ

2

∑
i

n̂i(n̂i − 1), (2.151)

where the parameter Jij is the tunneling amplitude between two sites i and j, Ũ > 0 is the on-
site interaction energy and Vi = V0i

2/2 is an onsite energy resulting from the parabolic trap.
The number operator on site i is denoted by n̂i = b̂†i b̂i. The notation 〈i, j〉 restricts the sum to
nearest-neighboring sites. A term −µ

∑
i n̂i is usually added to (2.151) in order to control the

average number of particles and thus determines the filling factor.

To compute the BEC distribution over the lattice, one needs to solve the discretized stationary
Gross-Pitaevskii equation, obtained by replacing the operators b̂i by the order parameter Ψi

[34] at every site in (2.151) and minimizing the resulting energy functional with respect toΨ∗
i .

This assumes that each site hosts a BEC whose wavefunction is localized on the ith site and
takes the form of a coherent state, i.e. b̂i |ϕi〉 = Ψi |ϕi〉. As explained in the previous section,
it requires that the number of weakly-interacting bosons at each site is large, i.e. Ni � 1.
Also, we impose that all global phases of Ψi are the same, enforcing a phase coherence over
the whole system. For example, the stationary GPE at T = 0 for a 1D lattice reads

−J(Ψi−1 +Ψi+1) + (Vi + Ũ |Ψi|2)Ψi = µΨi, (2.152)

where we assume that the tunneling amplitude is not site-dependent, which occurs when the
external trapping is weak. Equation (2.152) can be solved with the imaginary-time evolution
method [173], detailed in appendix B.3.
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Chapter 3

Quantized valley Hall response from
local bulk density variations

The following chapter is based on the original results presented in our published article [75].
We envisage an alternative method to those presented in section 2.7 for probing the quantum
valley Hall effect (QVHE). It relies on locally testing the equilibrium particle density variations
upon modifying the strength of strain. In section 3.1.1, we show this by adapting the Widom-
Středa formula, which originally relates the electrical Hall conductivity to the response of a
bulk density upon a change of an external magnetic field – see section 2.1.3. In the frame-
work of strained lattices, pseudo-magnetic field perturbations, related to modifications of the
strain intensity, result in density responses, directly reflecting the underlying valley Hall ef-
fect. Importantly, this approach suggests that the quantized valleyHall response can be cleanly
extracted from a direct measurement within the system’s bulk, in sharp contrast with more
standard indirect methods relying on non-local transport or edge measurements. The quan-
tization of the valley Hall response is analytically proved in section 3.1.2. In section 3.2, we
numerically test our predictions for two geometries and strain configurations: a more ideal-
ized system with cylindrical boundary conditions along the y-axis and uniaxial strain along x
in section 3.2.1, and a more realistic system with full open-boundary conditions and trigonal
strain in section 3.2.2. Remarkably, it predicts that a quantized valley Hall response is expected
regardless of the edge terminations of the sample and does not require any valley-resolution.
Furthermore, as shown in section 3.3, this probing method displays an appreciable robustness
against different types of disorder and lattice imperfections. Note that this approach relies
on the low-energy Dirac model introduced in section 2.5.1, hence, it is valid for small strain
intensities τ � 1. This chapter ends with the conclusions and outlooks with an emphasis on
synthetic platforms envisaged for testing our probing scheme.
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3.1 Valley Hall response as a density response function

In this section, the Widom-Středa formula is adapted for the valley Hall conductivity in
insulators. An extended proof of its quantization – when the chemical potential lies in a gap
– is provided.

3.1.1 Adapting the Widom-Středa formula to the valley Hall effect

As introduced in section 2.1.3, the Widom-Středa formula relates the Hall conductivity of
a two-dimensional fermionic gas to the response of its bulk-density to the variation of an
external magnetic field. While the Hall conductivity remains strictly zero when time-reversal
symmetry is preserved, this formula can be adapted to probe the valley Hall effect, occurring
for example in a strained honeycomb lattice, when the modification of strain – equivalently of
the pseudo-magnetic field – implies a response from the density in the insulating bulk. Indeed,
at half-filling, the valley Hall response is defined as the difference between the contributions
to the Hall conductivity at the valleys K and K′, σK

H and σK′
H respectively, i.e.

σV = σK
H − σK′

H . (3.1)

As long as the inter-valley scattering remains negligible1, the Hall conductivity at each valley
can be separately calculated as

σK
H ' e

(
∂nK

bulk

∂BK
τ

) ∣∣∣∣∣
µF

, σK′

H ' e

(
∂nK′

bulk

∂BK′
τ

) ∣∣∣∣∣
µF

, (3.2)

when the chemical potential µF lies in a spectral gap, where nζ stands for the contribution of
the K (ζ = +1) or the K ′ (ζ = −1) valley to the density. From time-reversal symmetry –
as explained in section 2.5.2 – we recall that BK′

τ = −BK
τ , such that the valley Hall response

can be directly obtained in terms of the variation of the total bulk density nbulk = nK
bulk + nK′

bulk

upon strain perturbations. Indeed,

σV ' e

(
∂nK

bulk

∂BK
τ

− ∂nK′

bulk

∂BK′
τ

) ∣∣∣∣∣
µF

= e
∂nbulk

∂BK
τ

∣∣∣∣∣
µF

,

(3.3)

eliminating the need for valley resolution.

1The inter-valley scattering might strongly alter the Landau level picture and prevent the separation in mo-
mentum of the two nonequivalent valleys.
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3.1.2 Quantized valley Hall response in strained honeycomb lattice

This section proves that the valley Hall response is quantized when the chemical potential
lies in a spectral gap and the Dirac model

hζ(q,Aζ
τ ) = vF

[
h̄qxσy − ζ(h̄qy + eAζ

y)σx
]
, (3.4)

describes the low-energy physics of a uniaxially strained honeycomb lattice near half-filling.
This occurs for small strain intensities τ � 1, for which the continuum limit and the small
inter-valley scattering limit are both reached. Indeed, high strain intensities would deform and
create scattering channels between pseudo-Landau levels from different valleys, invalidating
the description (3.4).

Focusing separately on the valley ζ = ±1, the Brillouin zone is split into two parts: around
K′, ky ∈ [−π/

√
3a, 0], and around K, ky ∈ [0, π/

√
3a]. The contribution of each valley to the

bulk particle density is given by

nζ(x) =

ζM/2∑
p=0

∑
ε

θ(µF − ε) |Ψ
ky
ε (x)|2, (3.5)

where θ is the Heaviside function,M is the number of values of ky in the first Brillouin zone,
ky = 2πp/Ly, p ∈ {0, ..., ζM/2} and Ly =

√
3Ma is the length of the lattice in the y-

direction. Here Ψ
ky
ε (x) is a two-component spinor describing an eigenstate of energy ε and

quasimomentum ky. Each of its components accounts for the weight of the corresponding
state on the A and B sublattices, respectively. In the thermodynamic limit,

2π

Ly

ζM/2∑
p=0

M→∞−−−−→ ζ

∫ ζπ/
√
3a

0

dky, (3.6)

and hence

nζ(x) =
ζLy

2π

∫ ζπ/
√
3a

0

dky
∑
ε

θ(µF − ε) |Ψ
ky
ε (x)|2. (3.7)

For µF > 0, nζ(x) = nζ
−(x) + nζ

+(x) + nζ
0(x), where nζ

+(x) (n
ζ
−(x)) is the density of particles

in the states with ε > 0 (ε < 0) and nζ
0(x) is the density of particles in the state with zero

energy. Note that this can be rewritten as nζ(x) = nζ
hf(x) + nζ

+(x) + nζ
0(x)/2, where nζ

hf(x) is
the density of a half-filled system. As explained in section 2.3.3, the chiral symmetry imposes
that if the system is exactly half-filled, the particle density at each cell nhf(r) = 1, meaning
that the density variations with respect to strain are exactly zero, thus the Hall conductivity
is strictly zero,
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∂nζ
hf

∂Bζ
τ

= 0. (3.8)

The Hall conductivity at each valley can then be obtained as

σζ
H = e

∂nζ

∂Bζ
τ

∣∣∣∣∣
µF>0

= e
∂

∂Bζ
τ

(
nζ
+(x) +

nζ
0(x)

2

)∣∣∣∣∣
µF>0

. (3.9)

Close to each Dirac point ζK (i.e. |qy|a � 1) and in the continuum limit `B � a (i.e.
τ � 1), the spinors in Eq. (3.7) can be approximated with the eigenstates of the Dirac Hamil-
tonian (2.65), which, in the case of τ > 0, are given by

Ψ
qy
ν (x) =

1√
Ly`B

eiqyy√
2− δν0

(
φ|ν|(X)

sign(ν)φ|ν|−1(X)

)
,

(3.10)

where φν(X) = 1/(
√
π2νν!)−1/2e−X2/2Hν(X) is the normalized harmonic oscillator wave-

function, `2B = h̄/e|Bζ
τ | and X ≡ (x− xc)/`B − ζqy`B . The index ν labels the discrete set of

energies of the relativistic pseudo-Landau levels. In order to perform the derivative in Eq. (3.9),
one can explicitly compute

nζ
+(x) +

nζ
0(x)

2
=

ζ

4π`B

νmax∑
ν=1

∫ ζ∞

−ζ∞
dqy

[
|φν(X)|2 + |φν−1(X)|2

]
+

ζ

4π`B

∫ ζ∞

−ζ∞
dqy|φ0(X)|2,

(3.11)

where µF lies between the levels νmax and νmax + 1. The index2 νmax therefore indicates the
last filled pseudo-Landau level. Note that the limits of the bounded integral in Eq. (3.7) are
extended to±ζ∞ in the above equation. Since the eigenstates in Eq. (3.10) decay exponentially
with qy, this remains a fairly good approximation. By simply using the normalization of the
wavefunctions, the integral in Eq. (3.11) can be readily performed to find that

nζ
+(x) +

nζ
0(x)

2
' 1

4π`2B
(2νmax + 1) =

e|Bζ
τ |

2πh̄

(
νmax +

1

2

)
. (3.12)

Notice that

2In the case of strained finite lattices, the largest value that νmax can take is set by the validity of the approxi-
mation of the eigenstates (close to the Dirac point) of the strained system by those of the Hamiltonian (3.4). The
eigenstates of higher pseudo-Landau levels are more delocalized and undergo boundary effects, hence preventing
νmax to be arbitrarily large.
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Bζ
τ = sign

(
Bζ

τ

)
|Bζ

τ | = sign
(
Bζ

τ

ζ

)
ζ|Bζ

τ |, (3.13)

where we do not simplify ζ on purpose because the one at the numerator provides the ‘-’ (at
K′) while the one at the denominator cancels the ζ inside of Bζ

τ . For example, in the uniaxial
and trigonal strain cases, sign(Bζ

τ/ζ) = sign(−τ) and sign(τ), respectively – see (2.90) and
(2.99). Eventually, the Hall conductivity at each valley reads

σζ
H = e

∂nζ

∂Bζ
τ

∣∣∣∣∣
µF

' sign
(
Bζ

τ

ζ

)
ζ

(
νmax +

1

2

)
σ0, (3.14)

where σ0 = e2/h. The derivation of σζ
H is similar for µF < 0, where the values of νmax will be

taken negative. Therefore, the valley Hall response is quantized, as

σV ' e
∂nbulk

∂Bζ
τ

∣∣∣∣∣
µF

' sign
(
Bζ

τ

ζ

)
(2ν + 1)σ0. (3.15)

Remarkably, from Eq. (3.11), it is clear that each sublattice contributes with a quantized result.
Indeed, the summation runs over A and B sites and can be separated into two sums. The sum
over A sites contains the terms |φν(X)|2 and |φ0(X)|2, while the sum over the B sites only con-
tains the terms |φν−1(X)|2. Performing the integrals separately and using the wavefunction
normalization, one gets

nζ
A(x) =

e|Bζ
τ |

2πh̄

(
νmax

2
+

1

2

)
,

nζ
B(x) =

e|Bζ
τ |

2πh̄

νmax

2
.

(3.16)

So,

e
∂nζ

A

∂Bζ
τ

∣∣∣∣∣
µF

= sign
(
Bζ

τ

ζ

)
ζ

(
νmax

2
+

1

2

)
σ0,

e
∂nζ

B

∂Bζ
τ

∣∣∣∣∣
µF

= sign
(
Bζ

τ

ζ

)
ζ
νmax

2
σ0,

(3.17)

which means that

σV = e
∂nbulk

∂BK
τ

∣∣∣∣∣
µF

= σA
V + σB

V , (3.18)
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where σA
V = sign(Bζ

τ/ζ)(νmax + 1)σ0 and σB
V = sign(Bζ

τ/ζ)νmaxσ0.

3.2 Local probe for the valley Hall response

In the following, two types of boundary conditions are studied to test our analytical predic-
tions (3.15): i) open along x and periodic along y and ii) fully open. The former is employed
as a more ideal case, where the finite size and boundary effects are negligible (to some extent),
contrarily to the latter case, which is more realistic. Intriguingly, as further explained, the lo-
cal density responseS(r) is quantized regardless of whether the first pLLs gap support helical
edge states or not.

3.2.1 Uniaxial strain in a cylindrical honeycomb lattice

The first scenario envisaged to test the predictions of (3.15) takes place in a ribbon of a
honeycomb lattice with cylindrical boundary conditions: periodic along the y direction and
open along x. The Hamiltonian reads

Ĥ = −
∑
r,j

t

(
1 + τ

x− xc

3a2
|x̂ · δj|

)
â†r b̂r+δj

+ H.c., (3.19)

and can be block-diagonalized thanks to a Fourier transform along y since ky is a good quantum
number, as explained in section 2.5.3. The ribbon used in this part has zigzag terminations at
both edges, with Nx = 301 and Ny = 2. Its spectrum appears in Figure 3.1. As a reminder,
the corresponding pseudo-magnetic field reads

Bζ
τ = −ζ h̄τ

9ea2
ẑ. (3.20)

Computing the particle density per unit cell

The first required ingredient to obtain the valley Hall marker is the local particle density ñ(x).
After choosing the strain intensity τ = 70.84 · 10−4 and fixing two chemical potentials µ1 =

0.02t and µ2 = 0.068t in the first and second spectrum gaps, respectively – represented by
dotted blue and green line in Figure 3.1 – ñ(x) is numerically calculated from the sum of all the
occupied states in the Fermi sea (ε ≤ µF), for all values of ky and for both sublattices (α =A,
B),

ñ(x) = Ac

∑
ky

∑
ε(ky)≤µF

∑
α=A,B

|ψα
ε(ky)

(x)|2, (3.21)

where the area of a unit cell of the honeycomb lattice, denoted Ac, is used to obtain a dimen-
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Figure 3.1: Energies ε of the Hamiltonian (3.19) in units of hopping parameter t for
τ = 7.84 × 10−4, Nx = 301 cells along the x-direction and zigzag terminations.
The color scale indicates themean position 〈x〉 of each state. The Fermi levels in the
first and second gaps are indicated by the dotted blue and green line at µ1 = 0.02t
and µ2 = 0.068t, respectively.

sionless density per cell. The density distributions3 are shown in Figure 3.2, colored according
to their chemical potentials in Figure 3.1. These densities are compared with the ones of a
honeycomb lattice in the presence of a homogeneous magnetic field of strength B = Bτ ,
represented by dashed blue and green lines for the same chemical potentials µ1 and µ2. Inter-
estingly, the difference between both models tends to zero at the center of the ribbon (x = xc),
hinting that the uniform magnetic field picture is accurate at the center of the sample. One
also notices Friedel oscillations near the boundaries, that act as a scattering source, until the
density peaks due to the edge states contribution.

While the density is uniform over a region of over 200 sites for the case of a homogeneous
magnetic field, the presence of strain makes the particle density dependent on space, even
deep in the bulk. Indeed, the space dependence of the hopping amplitudes actually reflects an
increase of kinetic energy from the left to the right, where particles tend to localize or delocal-
ize, respectively. Moreover, the imbalance in the particles distribution is a clear signature of
the inversion symmetry breaking by strain. Besides, near xc, the densities display deviations
that are linear in space. Since these deviations are symmetric with respect to xc, it is relevant
to define a region around xc over which the density is averaged, such that this average would
be equal to ñbulk ≡ ñ(xc):

3As explained in section 2.3.3, the chiral symmetry imposes that ñ(x) equals 1 at half-filling (1/2 on each
single site) everywhere in the ribbon, hence ñ(x) is plotted with respect to this reference value.
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Figure 3.2: Particle density per cell for the same parameters as in Figure 3.1 for a
strained sample (solid line) and for a lattice with a homogeneous external magnetic
field B = BK

τ (dashed line). Green and blue colors correspond to Fermi levels
µ1 = 0.02t (first gap) and µ2 = 0.068t (second gap), respectively. Note that only
the deviations of the dimensionless density of particles ñ from unity are plotted,
which are of the order of 10−3.

ñbulk =
1

Nbulk

∑
x∈bulk

ñ(x), (3.22)

where the bulk region, of width Lbulk, corresponds to x ∈ [xc− rbulk, xc+ rbulk], rbulk = Lbulk/2

andNbulk is the number of cells considered in the sum. As long as the bulk radius rbulk is small
compared to the system’s size Lx, the linearity in space is ensured, thus ñbulk should remain
fairly close to the particle density in the presence of the real magnetic field, implying that the
Středa formulation of the valley Hall conductivity (3.3) holds.

Computing the density of states in the bulk

As already mentioned in sections 2.1.3 and 3.1.1 when introducing and adapting the Widom-
Středa formula, the valley Hall quantization is the property of an insulating bulk. As such,
one needs to identify whether the Fermi energy lies in a spectrum gap or not. However, as
the system has a finite size with propagating edge states, there are no true spectral gaps –
except in some occasions4. Nevertheless, for sufficiently large systems (Lx � Lbulk), the bulk
density should not be strongly affected by the edge modes, and therefore the Středa formula-
tion should remain reasonably accurate. In order to determine the energy regions where the
Widom-Středa formula can be applied for the strained honeycomb lattice, one can study the
spectral properties of the system.

A first step in this direction consists in analyzing the density of states (DoS) of the sample,

4As explained in section 2.6, for a positive strain τ > 0 with bearded (left) and zigzag (right) terminations,
the first Landau gap has no propagating edge states but higher pLLs do.
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calculated from the retarded Green’s function Ĝr(ε) = limη→0(ε+ iη − Ĥ)−1 as

ρ(ε) = − 1

π
Im
(
Tr
[
Ĝr(ε)

])
= − 1

π
lim
η→0

Im
∑
εn

〈εn|(ε+ iη − Ĥ)−1|εn〉

= lim
η→0

η

π

∑
εn

1

η2 + (εn − ε)2
.

(3.23)

The DoS is plotted in Figure 3.3a as a function of energy and ατ where

ατ =
BτAc

φ0

, (3.24)

is the magnetic flux per unit cell. For reference purposes, Figure 3.3b shows the DoS for
ατ = 3.255 × 10−4 (τ = 70.84 × 10−4) – indicated by the vertical black dashed line in a –
used to produce the Figure 3.1. In panel a, around the analytical energy of pLLs ν = 0, 1, 2

(indicated by black solid lines) at the Dirac points (qy = 0), one clearly identifies a continuum
of states representing the pLLs for |ν| ≥ 1, caused by their finite drift velocity. Moreover, one
discerns a set of discrete modes, stemming from the edge states of the system. As ατ increases,
their energies decreases until they merge with the lower continuum bulk states. Their spectral
flow reflects the remoteness of their wavefunctions from the hard wall potential, due to both
the translation of the wavefunctions towards the center and their localization in a tighter area.
This can be easily understood from their (approximate) analytical expression,

ψν ∝ e−(x−xc+ζqy`
2
B)2/2`2B , (3.25)

where the magnetic length `B =
√
h̄/eBτ =

√
Ac/2πατ , inversely proportional to the strain,

dictates their width as well as their position center. Hence, thanks to the DoS, one clearly
identifies the spectrum gaps (light color in Figure 3.3a), in which are also represented the
aforementioned chemical potentials µ1 and µ2 by the green and blue dashed lines, respectively.

However, this is not the end of the story. Remember that the Středa theory is applicable for an
insulating bulk, where, by definition, the density of states has to vanish. To evaluate how the
density of states changes through the sample, one computes the local density of states (LDoS)
per unit cell, defined as
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Figure 3.3: a. Total density of states ρ(ε) in logarithmic scale as a function of
energy ε and pseudomagnetic flux ατ . The size of the sample is the same as in
Figure 3.1, namely Lx = 450.5 a. The dashed green and blue lines represent the
chemical potentials µ1 = 0.02t and µ2 = 0.068t, respectively. c. Bulk density
of states ρbulk(ε) in logarithmic scale for Lbulk = 36 a. In both panels, black solid
lines identify the energy of the analytical pseudo-Landau levels at the Dirac points.
The corresponding density of states (DoS) are shown in panel b or local density of
states (LDoS) in panel d for ατ = 3.255 × 10−4 indicated by the vertical dashed
lines in the panels a and c, respectively.

ρ(ε, x) =
1

π

∑
α=A,B

Im〈xα|Gr(ε)|xα〉

=
1

π

∑
α=A,B

∑
m,n

Im〈xα |ψm〉 〈ψm|Gr(ε) |ψn〉 〈ψn|xα〉

= lim
η→0

η

π

∑
εn,α

|ψα
n(x)|2

η2 + (εn − ε)2
.

(3.26)
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By integrating it in energy up to the Fermi level, one obtains the particle density per unit cell,

ñ(x) =

∫ µF

−∞
ρ(ε, x)dε. (3.27)

From the definition of the bulk density (3.22), by using the previous relation and exchanging
the summation and the integral, one can naturally define the local density of states projected
in the bulk, denoted by ρbulk,

ñbulk =
1

Nbulk

∑
x∈bulk

n(x)

=
1

Nbulk

∑
x∈bulk

∫ µF

−∞
ρ(ε, x)dε

=

∫ µF

−∞

1

Nbulk

∑
x∈bulk

ρ(ε, x)dε

≡
∫ µF

−∞
ρbulk(ε)dε.

(3.28)

The bulk LDoS is plotted in Figure 3.3c as a function of the energy and ατ , for a bulk region
of width Lbulk = 36a centered around xc, which is of the order of the magnetic length `B
for ατ = 3.255 × 10−4. The reason for this choice of `B is explained later. For clarity, a cut
for this value of ατ (black dashed line in panel c) is shown in panel d. For this value of bulk
width, the contribution from the edge modes is negligible (light color) for the first two gaps
between pLLs but more pronounced in the third one (note the logarithmic scale). This reflects
the deeper penetration into the bulk of the edge states arising from the ν = 2 pLL, which are
more delocalized than those from lower pLLs. To avoid these finite-size effects, the focus will
be set on the results for the first two gaps in the rest of this section, unless otherwise specified.

Local Valley Hall response

As in the presence of strain, the particle density ñ(x) is not uniform in the bulk as it would be
with a real magnetic field, the (average) bulk density was introduced. To be able to compute
the valley Hall response in the bulk, one can define a local valley Hall marker for each unit
cell,

S(x) = σ0
∂ñ(x)

∂ατ

∣∣∣∣∣
µF

. (3.29)

One can ask whether it is relevant to also average it over the previously defined bulk region.
Figure 3.4 presents the local valley Hall marker as function of the position for the uniaxially
strained system (solid lines) and compares it to the Hall conductivity for a ribbon in the pres-
ence of a real magnetic field B = Bτ (dashed lines) for µF = µ1 (µ2) in green (blue). In the
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latter case,S is uniform around the center and equals to the expected quantized integer values
from the theory (-1 and -3 for the first and second gaps, respectively). In the strained case, it
presents a linear drift around xc. Their dependence on space is inherited from their respec-
tive densities – see Figure 3.2. Again, the linearity allows to filter away the discrepancies by
averaging over an adequate rbulk as prescribed by (3.22), yielding

σV =
1

Nbulk

∑
x∈bulk

S(x). (3.30)

Note that the deviations ofS from the linearity arise as soon as edge effects become significant,
which is more pronounced in the second than in the first gap as the edge states from the former
are more delocalized.

Figure 3.4: Spatial dependence of the marker S(x) for the same parameters as in
Figure 3.1 (ατ = 3.255× 10−4) for a strained sample (solid lines) and for a lattice
with a homogeneous external magnetic field B = BK

τ (dashed lines). Green and
blue colors correspond to chemical potentials µ1 = 0.02 t (first gap) and µ2 =
0.068 t (second gap), respectively.

Following a similar reasoning as in (3.28),

σV =
1

Nbulk

∑
x∈bulk

S(x)

=
σ0
Nbulk

∑
x∈bulk

∂ñ(x)

∂ατ

∣∣∣∣∣
µF

=
σ0
Nbulk

∂

∂ατ

∑
x∈bulk

∫ µF

−∞
ρ(ε, x)dε

= σ0

∫ µF

−∞

∂ρbulk(ε)

∂ατ

dε.

(3.31)
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one finds that the valley Hall response in the bulk is equal to the integral over all the occupied
states of the derivative of the bulk density of states with respect to the pseudo-magnetic flux.
Notice that, since the Fermi energy is kept constant, the derivation passes through the integral.

As a last step, one has to determine what is a reasonable bulk size to perform the average.
The equation (3.30) is used to obtain the Figure 3.5, which presents σV (with respect to the ex-
pected quantized value) as a function of ατ and Lbulk at µF = µ1 (panel a) and µF = µ2 (panel
b). Clear plateaus5 at σV ' −1 and σV ' −3 are visible for Lbulk . 100a (white color). At
larger Lbulk, deviations for peculiar values of ατ appear as horizontal stripes, stemming from
µF crossing the edge states energy in Figure 3.3a. As the chosen bulk region broadens, the
edge states contribution become more noticeable, altering the linear space dependence of S.
This is evidenced by plotting ρbulk as a function of ατ andLbulk in Figure 3.5c, d for µF = µ1 and
µ2, respectively. Indeed, the bulk density of states also presents horizontal stripes at the same
values of ατ , reflecting the incremental contribution from the edge states as the bulk region
widens. All together, the Figure 3.5 conveys that a quantized value of the valley Hall coefficient
can be measured via the bulk density response as long as ρbulk ' 0. When boundary effects
become appreciable, ρbulk increases and the valley Hall response deviates from the quantized
odd values predicted by the theory – see (3.15). Moreover, it shows that `B =

√
Ac/2πατ is a

suitable bulk size (black solid line in all panels) as it is well within the plateaus formed by σV

for the chosen range of parameters ατ , Lbulk and Lx = 450.5a.

As a summary, a full scan of the valley Hall fan diagram is presented in Figure 3.6a. The valley
Hall response, obtained from (3.30) for Lbulk = 36a, is plotted as a function of both the chem-
ical potential µF and ατ . It forms clear plateaus in regions where µF is far from the analytical
ν-pLL energies t

√
τν/2, identified by dashed black lines. Hence, σV levels at the expected

quantized odd values when the filling fraction of the pLLs is constant. On the contrary, when
the bulk is metallic, i.e. when µF ' t

√
τν/2, its quantization breaks down. This phenomenon

is best illustrated in Figure 3.6b, which shows a cut of panel a for ατ = 3.255 × 10−4 (indi-
cated by a horizontal solid black line). The gray shaded area represents the bulk density of
states ρbulk as a function of the Fermi energy. As previously observed several times, whenever
ρbulk ' 0, the valley Hall response (blue dots) displays robust plateaus at −1, −3 and (close
to) −5. On the other hand, σV becomes erratic as soon as ρbulk becomes finite.

We remark that if the number of particles was kept constant instead of the Fermi level, µF

would be a function of ατ , therefore by the Leibniz integral rule,

5See section 3.1.2 explaining the sign of the quantized values.
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Figure 3.5: a-b. Valley Hall response obtained from Eq. (3.30) as a function of
the flux per plaquette ατ and the size of the bulk Lbulk in a system of size Lx =
450.5a. The chemical potential has been fixed to µ1 = 0.02 t in the first and
µ2 = 0.068 t in the second gap, respectively. The colorbar shows the deviation
of the valley Hall response with respect to its analytically expected value. The
solid black lines represent the magnitude of the magnetic length `B for each strain
intensity. c-d. Projected density of states ρbulk(µF ) as a function of ατ and Lbulk
at the corresponding chemical potentials µF = µ1 and µF = µ2.

σV = σ0
∂

∂ατ

∫ µF(ατ )

−∞
ρbulk(ε)dε

= σ0

[∫ µF

−∞

∂ρbulk(ε)

∂ατ

dε+ ρbulk(µF(ατ ))
∂µF

∂ατ

]
.

(3.32)

In this case too, it would be necessary to have ρbulk(µF) ' 0 for the quantization to hold.
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Figure 3.6: a. Valley Hall response obtained from Eq. (3.30) as a function of the flux
per primitive cell ατ and the Fermi energy µF in units of the hopping parameter
t. Dashed black lines represent µF /t =

√
τν/2 ν = 1 and ν = 2, where τ is the

strain intensity. The size of the bulk region where we averaged the local marker
is Lbulk = 36 a. b. (Blue dots) Valley Hall response σV for ατ = 3.255 × 10−4

(indicated by a solid black line in panel a). Results are restricted to the present
window for clarity. (Grey area) Local density of states ρbulk from Fig. 3.3b.

3.2.2 Trigonal strain in a finite hexagonal flake

The cylindrical geometry of the lattice envisaged in the last section allowed to study large
system sizes. It is worth asking whether the quantization of the valley Hall response obtained
in this context would still hold for smaller samples with different geometries, strain configu-
rations and edge terminations. To this end, a more realistic geometry is explored, with open
boundary conditions at every edge. This is well suited for the implementation of trigonal
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strain, that can be modeled by the space dependent tunneling amplitudes (2.97), yielding the
Hamiltonian

Ĥ = −
∑
r,j

t

(
1 + τ

(r− rc) · δj

3a2

)
â†r b̂r+δj

+ H.c.. (3.33)

As a reminder from section 3.2.2, the corresponding pseudo-magnetic field reads

Bζ
τ = ζ

2h̄τ

3ea2
ẑ. (3.34)

Notice that the pseudo-magnetic field generated by this trigonal strain has a different mag-
nitude and an opposite sign with respect to its counterpart in the uniaxial strain. In this re-
gard, as one could anticipate from (3.15), the bulk density response to strain variations should
now be positive (negative) for τ > 0 (τ < 0) when the chemical potential µF lies within
gaps of the conduction band (µF ≥ 0). We now numerically analyze the valley Hall response
for a triaxially-stretched flake of a honeycomb lattice, shaped into the form of an hexagon –
in order to preserve the trigonal symmetry. The terminations alternate between zigzag and
bearded-like edges, such that the sites at the perimeter of the flake belong to the same sublat-
tice (without loss of generality, say A sites).

The Figure 3.7 presents the spectrum of (3.33) for τ = 0.07 in panel a and τ = −0.07 in b.
In both cases, the triaxial deformations produce dispersionless pLLs, as opposed to the pLLs
obtained with the uniaxial strain. Consequently, the bulk spectral gaps are larger, helping for
the detection of more precise quantized response for higher pLLs6. The colorscale indicates
the mean distance of an eigenstate wavefunction with respect to the center rc = (xc, yc) ≡
(Lx/2, Ly/2). The procedure to obtain this valley Hall marker in this context is identical as in
the preceding section.

Computing the particle density in each sublattice and the total density of states

The flatness of pLLs observed in Figure 3.7 implies that there is no energy cost in occupying
one specific region rather than another in the bulk, hence the particle density per unit cell is
expected to be uniform in a region of about 6-7 sites around (xc, yc) = (30a, 35a) – instead of
being linearly tilted around the center as in the uniaxial case. This is shown in Figure 3.8 for
τ = 0.07 (panel a) and τ = −0.07 (panel b) at the Fermi level µF/t = 0.1 indicated by a dashed
magenta lines in Figure 3.7 in the first pLL gap. Here, the two sublattices A and B are separated
since the number of A-sites is greater than the number of B-sites, making the calculation of
the particle density per unit cell irrelevant. To this end, the mirror symmetry of the flake with
respect to the y = yc axis is used to plot separately half of the A-sublattice (upper part) and

6The gap between the ν1 and ν2-pLLs is proportional to √ν2 −
√
ν1 in any strain configuration envisaged

here, so higher gaps become narrower. On top of that, the pLLs dispersion in the uniaxial strain case shrinks
even more the gaps.
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Figure 3.7: Spectrum of theHamiltonian (3.33) of the honeycomb flake for τ = 0.07
and τ = −0.07 in panels a and b, respectively. The color scale indicates the mean
position 〈x〉 of each state. The minimal average distance is around 7a (not 0) due
to finite size effects from the discretization of the lattice (`B ≈ 5a) for such strain.

half of the B-sublattice (lower part). The missing pieces can be simply obtained by reflecting
the corresponding portions with respect to the y = yc axis.

Surrounding these uniform bulk distributions, the boundaries can be populated or not by heli-
cal edge states depending on the sign of τ . Indeed, regarding the discussion about the existence
or non-existence of propagating edge states outlined in section 2.6, this flake will support, or
not support, helical edge states in the first gap (between the 0th and the 1st pLLs) depending on
whether both sublattices are populated or not, which is related to the sign of τ . For τ > 0, both
sublattices are populated – see panel a – because the 0th pLL’s wavefunction is localized on the
B-sublattice and mixes with the non-propagating edge state occupying the A-sublattice, thus
creating a dispersive helical edge states. When τ < 0, no particle (above half-filling) occupy
the B-sublattice – see lower part of panel b – hence no dispersive mode can emerge from the
0th LL as it is forbidden by the chiral symmetry – see (2.61).

The presence or absence of helical edge modes is also shown by panels a (τ > 0) and b (τ < 0)
of Figure 3.9, where is presented the total density of states ρ(ε) as a function of the energy
and the strain intensity τ . As a guide to the eye, the pLL energies at the Dirac point, εν =

±t
√

3|τ |ν (ν ∈ N), are identified by gray dashed lines, which precisely overline the pLLs
structure in both cases. One sees that for negative τ (panel b), the DoS remains exactly zero
(light color) within the first gap, contrarily to the first gap in panel awhere propagating helical
edge modes emerge. Note that boundary modes appear in all gaps between higher pLLs (ν >
0). For clarity, a cut out of panels a and b at |τ | = 0.07 (vertical dashed blue line) are presented
in Figure 3.9c and d, respectively.
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Figure 3.8: Particle density nα (α = A,B) above half-filling on each sublattice for
a strain intensity τ > 0 and τ < 0 in panels a and b, respectively. In the latter
case, the B-sublattice (lower part) is deprived of any particle on top of half-filling.
The two sublattices A and B have been separated since the number of A-sites is
greater than the number of B-sites, making the calculation of the particle density
per unit cell irrelevant. To this end, the mirror symmetry of the flake with respect
to the y = yc axis is used to plot separately half of the A-sublattice (upper part) and
half of the B-sublattice (lower part). The missing pieces can be simply obtained by
reflecting the corresponding portions with respect to the y = yc axis.

Computing the local density of states

As emphasizedmultiple times, the quantization of the valleyHall response requires the density
of states in the bulk to vanish at the chemical potentials. In the present case, this is checked by
calculating the LDoS ρα(ε, r) at every site rα in the flake, where α indicates whether the site
belong to the A or B-sublattice. Similarly as (3.23), it is computed from the retarded Green’s
function as

ρα(ε, r) = −
1

π
Im〈rα|Ĝr(ε)|rα〉. (3.35)

Figure 3.10 shows ρα(µF, r) at the Fermi level µF = 0.1t for τ = 0.07 (panel a) and τ = −0.07
(panel b). Note that, as for the particle densities, the two sublattices are split. For τ > 0, edge
modes on the A-sublattice surround the entire perimeter, while delocalized states only occupy
the B-sublattice closer to the center of the flake. A corresponding cut along r = xαc x̂ + yŷ
is shown to the left of the panel, where the entire spatial distribution is restored and where
xαc is the closest x-position of the α-sublattice to xc. For τ < 0, the LDoS remains strictly
zero everywhere in the flake, consistently with the absence of the edge states. Hence, for the
chosen values of parameters and independently of the sign of τ , the system’s bulk density of
states vanishes – irrespectively of the presence of helical edge states – which is conducive to
the quantization of the valley Hall response.
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Figure 3.9: Total density of states ρ(ε) (DoS) in the hexagonal flake for strain inten-
sities (a) τ > 0 and (b) τ < 0. Dashed grey lines indicate the energy of the analyti-

cal pseudo-Landau levels Eν = ±vF
√
2h̄e|Bξ

τ |ν = ±t
√
3|τ |ν for ν = 0, 1, 2, 3, 4,

where vF is the Fermi velocity, Bξ
τ the pseudo-magnetic field at valley ξK and ξ is

the valley index (±1). c,d. Specific cuts of panels a and b (marked with a vertical
dashed blue line) for |τ | = 0.07, respectively. Solid grey lines denote the analytical
pseudo-Landau levels and dashed magenta lines indicate the Fermi level µF = 0.1t
corresponding to the densities in Figure 3.8.

Local Valley Hall response

The local valley Hall response on the α-sublattice (α = A, B) is calculated7 as the derivative of
the dimensionless particle density at site rα with respect to the pseudo-magnetic flux ατ ,

Sα(r) = σ0
∂ñα(r)
∂ατ

∣∣∣∣∣
µF

= σ0

∫ µF

−∞

∂ρα(ε, r)
∂ατ

dε, (3.36)

where the development (3.31) allowed to rewrite Sα(r) in terms of the local density of states
ρα(ε, r). Since the system presents an insulating bulk, characterized by a pseudo-Landau level
spectrum, Sα(r) is expected by the theory (3.15) to be quantized when the Fermi level µF lies

7See section 3.1.2 explaining the sign of the quantized values.
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Figure 3.10: Panels a and b show the local density of states discriminated by sub-
lattice ρα(ε, r) – see Eq. (3.35) – for τ > 0 and τ < 0, respectively. The energy
has been taken to be ε = µF = 0.1 t and |τ | = 0.07. The terminations have been
chosen so as to alternate between bearded and zigzag-like edges. The mirror sym-
metry of the flake with respect to the y = yc axis is exploited to plot separately half
of the A-sublattice (the upper part) and half of the B-sublattice (the lower part). A
corresponding cut of the panels along r = xcx̂ + yŷ is shown to their left, where
the entire spatial distribution is restored. Panels c and d show the corresponding
local marker Sα(r) differentiated by sublattice – see Eq. (3.36).

within an spectral gap. Moreover, from (3.17) the response should be quantized separately on
each sublattice due to the imbalance in sublattice population of the bulk pLLs. This is exactly
confirmed in Figures 3.10c, d for τ > 0 and τ < 0, respectively, for µF/t = 0.1. Around
rc, SA(r) ' 0 and SB(r) ' 1 in panel c, and in SB(r) ' 0 and SA(r) ' −1 in panel d.
Note that, in the latter case, from the absence of helical edge states in the first gap and the
localization of the 0-pLL exclusively on the A sites, the B-sublattice remains half-filled for any
chemical potential within the first gap, i.e. ñB(r) = 1/2 for every r, hence the local density on
the B sites is insensitive to strain variation and ∂ñB(r)/∂ατ |µF

= 0. Note that the plateau-like
behavior of the marker in the bulk is inherited from the uniform particle density distribution,
observed in Figure 3.8. This is emphasized by the cut along r = xαc x̂+ yŷ shown to the left of
each panel, where the entire spatial distribution is restored.

As before, the valley Hall coefficient σV is obtained by averaging the local marker per cell
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S(r) = SA(r) +SB(r) over a reasonable bulk radius rbulk = Lbulk/2, as prescribed by (3.31).
The chosen bulk size is Lbulk = 5a, which corresponds to the region where the valley Hall
marker is homogeneous and is on the same order as the magnetic length `B = 4.6a (for
|τ | = 0.07). Figure 3.11a shows the averaged response (blue dots) as a function of the Fermi
level for τ = 0.07. The bulk density of states is included with a gray shaded area and presents
Lorentzian peaks at the pLLs energies, which are well defined contrarily to the uniaxially
strained case. For µF in the first gap, σV is reasonably well quantized around 1. In the second
and third gaps, finite-size effects take place because of the stronger delocalization of the edge
modes associated to these energies. This is clearly revealed by the local density of states eval-
uated at chemical potentials µF = 0.52t (panel b) and µF = 0.7t (panel c), lying in these gaps
and identified by vertical dashed black lines in panel a. Moreover, the number nodes of ρbulk
differentiated by sublattices recalls that of the pLLs wavefunctions. This leads to a breakdown
of the insulating character of the bulk ρbulk > 0 and a deviation from the quantized integer
values expected from (3.15). On top of that, for such high strain intensities, the magnetic
length is of the order of th lattice spacing a and discretization effects emerge. Consequently
the pseudo-Landau levels picture fails at correctly describing higher bulk pLLs – namely the
exact positions of the nodes of the wavefunctions – causing additional discrepancies with the
analytical predictions.

Importantly, the valley Hall response is quantized regardless of the edge terminations (that is
effectively modified by changing the sing of τ . In other words, the quantization is independent
of whether the system supports or lacks helical edge states and therefore it is not related to
any counting of propagating edge modes.

3.3 Effect of disorder, defects and impurities

While the fragility of edge transport measurements to defects was a motivation to propose
a probing method involving bulk density responses, the robustness to disorder of the latter has
not been discussed yet. To do so, three types of defects are considered: local (or Anderson),
Gaussian and off-diagonal disorders. They are introduced into the system through a general
perturbation of the form

Ĥdis =
∑
r∈A

Vimp(r)â†râr +
∑
r∈B

Vimp(r)b̂†r b̂r (3.37)

−
∑
r∈A,j

δtj(r)
(
â†r b̂r+δj

+ h.c.
)
,

where Vimp(r) is an on-site potential resulting from the presence of defects or impurities in the
lattice and can take different values on A and B sites. To include this diagonal disorder, two
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Figure 3.11: a. Valley Hall response σV (blue points) obtained from averaging the
local marker per cell S(r) = SA(r) +SB(r) in a bulk region of size Lbulk = 5 a
(a is the lattice parameter) as a function of the chemical potential µF . The grey
shaded area shows the density of states projected onto the bulk region at the Fermi
level ρbulk(µF ). Panels b and c show the local density of states ρ(µF , r) along
r = xcx̂ + yŷ for µF = 0.52 t and µF = 0.7 t, respectively, indicated by black
dashed lines in a.

types of potentials are considered. The first one represents a short-range scattering potential
that varies stochastically on the lattice spacing scale and is expressed as a sum of on-site energy
offsets of intensity Un uniformly distributed within the interval [−W,W ], with W being the
disorder intensity. The scatterers are placed atNimp out of theNtot sites of the entire lattice, at
positions rn, i.e.

Vimp(r) = V δ
imp(r) ≡

Nimp∑
n=1

Unδ(r− rn). (3.38)

The second type of diagonal disorder has a longer range and varies smoothly on the lattice
spacing scale. In this case, the potential profile around each impurity is modeled by a Gaussian
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function, such that

Vimp(r) = V λ
imp(r) ≡

Nimp∑
n=1

Unexp
(
−|r− rn|2

2λ2

)
, (3.39)

with λ characterizing the range of the potential. The last type of disorder is introduced by
the term δtj(r), stemming from bond (off-diagonal) disorder. It is modeled along the entire
flake by δtj(r)/t = γj(r)τ , with γj(r) being uniformly distributed in the interval [−Γ,Γ] for
every position r. This effectively imprints a lack of precision in the space dependence of the
tunneling amplitudes (2.97). For concreteness, Figure 3.12 schematically shows the deviation
of the flake’s onsite energies (panels a and b) or tunneling amplitudes c with respect to the
pristine case. The number of impurities in the Anderson disordered case is chosen to be equal
to the number of sites. For the Gaussian defects, Nimp = 0.01Ntot and the associated range is
λ = 3a.

Figure 3.12: Deviations of the flake’s onsite energies (panel a for short-range and
panel b for Gaussian impurities) and tunneling amplitudes (panel c) with respect
to the pristine case.

Thenumerical analysis of the impact of these three types of disorder is presented in Figure 3.13.
Attention is focused on the density response function within the first spectral gap by setting
the Fermi energy to be µF = 0.25t and τ = 0.07. The left (panels a, b and c) and central
columns (panels d, e and f) respectively show the effect of the onsite random potential profile
(3.38) and of the Gaussian-like profile (3.39), neglecting the off-diagonal disorder, whose inde-
pendent analysis appears in the right column (panels g, h and i). The first line (panels a, d and
g) shows the local valley Hall marker Sα(r) discriminated by sublattice (α =A, B) along the
direction r = xcx̂+ yŷ for one particular disorder configuration for each type of defect8. For
these three plots, the disorder strengths W and Γ are chosen sufficiently weak compared to
the first pLLs gap in order to preserve the insulating properties of the bulk, namelyW = 0.2t

and tΓτ = 0.042t (Γ = 0.6). In each of the three scenarios, for these moderate values of
disorder, Sα slightly deviates from the results obtained in the perfectly ordered lattice. The

8The rest of the results will be presented as averages over 50 disorder configurations.
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fluctuations occur at the lattice spacing scale in panels a, c and locally around a Gaussian im-
purity in panel b. Remarkably, Sα oscillates around the plateau-like values obtained for the
ordered lattice (see Figure 3.10c), which is reminiscent of previous results [174]. Interestingly,
when only off-diagonal disorder is added to the system, the bulk response remains polarized
on the B-sublattice and SA(r) ' 0 around yc. This stems from the preservation of the chiral
symmetry by bond disorder, making the 0th pLL to remain polarized in the B-sublattice.

The local valley Hall marker S(r) = SA(r) + SB(r) is first averaged over a bulk region of
size Lbulk = 4.6a, resulting in the valley Hall coefficient σi

V – the superscript designates the
ith out of the Nconf different random disorder configurations. To account for the stochastic
fluctuations arising from these randomized energy bias, it is crucial to perform calculations
across multiple disorder realizations. Hence, σi

V is averaged over Nconf = 50 configurations,
from which one obtains

σ̄V =
1

50

50∑
i=1

σ
(i)
V . (3.40)

Eventually, σ̄V is evaluated over a range of disorder strengths W ∈ [0, 1] or Γτ ∈ [0, 0.2],
while the disorder configurations are kept the same – the magnitude of Un(r) and γj(r) are
related by a factor between 0 and 1 toW and Γ, respectively. Figures 3.13b, e and h, σ̄V show
the deviations of σ̄V from the valley Hall coefficient in the pristine case, now denoted by σ0

V.
The standard error on this average, defined as

δσ̄ =
1√

Nconf − 1

√√√√Nconf∑
i=1

(
σ
(i)
V − σ̄V

)2
, (3.41)

is represented by the blue shaded area. Note that, for each configuration, the positions of
Gaussian impurities are aleatory changed. Commonly observed in all three panels, the dis-
crepancies from the pristine case increase along with the disorder intensity. Overall, there
exists a range ofW and Γ over which σ̄V is close to quantization.

As encountered many times through this chapter, the bulk density of states is a relevant in-
dicator of the quantization, or non-quantization, of the valley Hall coefficient. Figures 3.13c,
f and i show the bulk density of states averaged over the 50 disorder configurations, denoted
by ρ̄bulk, as a function of energy and the disorder intensityW or Γτ . From being concentrated
around the pLLs (indicated by dashed gray lines), it spreads asW or Γ increases. Indeed, lattice
imperfections generically lift the pLLs degeneracy, which transform them into energy bands
bearing modes localized around the impurities or defects. An exception takes place for the 0th

in the presence of bond disorder – see panel i. Due to the preservation of the chiral symme-
try, this pLL remains unaltered, while the gap gets filled by modes branching from the 1-pLL,
whose corresponding eigenstates populate both sublattices. In general, for sufficiently high
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Figure 3.13: Effect of lattice imperfections on the valley Hall coefficient of the tri-
axially strained flake with strain intensity τ = 0.07 > 0 (`B = 4.6a) and chemical
potential µF = 0.25 t in units of the hopping parameter t. a,b,c. Short-range on-
site potential V δ

imp(r) with Nimp = Ntot, where Nimp is the number of impurities
and Ntot is the number of sites in the flake. d,e,f. Gaussian impurities potential
described by V λ

imp(r) with an impurity concentration of Nimp/Ntot = 0.01 and
λ = 3 a, where λ is the width of each Gaussian and a is the lattice spacing. g,h,i.
Off-diagonal bond disorder. Panels a, d and g show a corresponding cut of the
local valley Hall marker Sα(r), discriminated by sublattice (α =A,B), along the
direction r = xcx̂ + yŷ for each particular disorder realization. In panels a and
d, W = 0.2 t and in panel g Γ = 0.606. The insets schematically show the devi-
ations of the flake’s on-site energies or the tunneling amplitudes with respect to
the pristine case. Panels b, e and h show deviations of the corresponding valley
Hall response from the pristine case. The response (solid blue line) is obtained by
averaging along a bulk region of size Lbulk = 4.6 a and over 50 different disorder
configurations. The standard deviation is indicated in light blue shaded area. Pan-
els c, f and i show the corresponding bulk density of states ρ̄bulk, also averaged
over the different disorder realizations, as a function of energy and the disorder
intensity W or Γ. Dashed gray lines indicate the energy of the pseudo Landau
levels in the pristine case. The dashed blue-line shows the chemical potential µF
chosen for the panels of the two top rows.

disorder intensities, the mobility gaps get entirely filled with impurity states. Consequently,
ρ̄bulk may be finite at µF/t = 0.25 and the valley Hall coefficient in panels b and e lurches
wildly.
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3.4 Summary and outlook

This chapter introduced an alternative for measuring the valley Hall effect in strained hon-
eycomb lattices, which relies on probing an equilibrium property of such systems locally in
the bulk. Specifically, this showed that a quantized valley Hall response can be obtained by
measuring a response from a fermionic density to strain variations deep within the bulk. This
bulk approach is based on the Widom-Středa formula, accompanied by the introduction of
a local marker S(r), which is particularly relevant for realistic systems with open boundary
conditions. The valley Hall response is the average of S on a central insulating region. It re-
mains quantized and robust as a function of the chemical potential and the pseudo-magnetic
field strength, i.e. strain intensity. Indeed, it displays a plateau-like behavior when the probed
region is incompressible, which requires large pseudo-Landau level gaps. Our numerical find-
ings are validated by results expected from the low-energy analytical model that incorporates
the effect of strain at the lowest order. In general, this holds as long as the characteristic length
scale of the pLLs physics, the magnetic length, is larger than the lattice spacing and smaller
than the system size. In other words, the plateaus are clearly visible when discretization and
boundary effects are negligible and when the bulk density of states vanishes, which occurs
when the Fermi level lies in a spectrum gap. Furthermore, the quantization is independent
of the edge terminations and the existence of helical edge states living at the boundaries of
a finite-size sample. This independence is rooted in the nature of the probing scheme, which
extracts the valley Hall coefficient from the Fermi sea, in sharp contract with usual transport
measurement, which only have access to the Fermi surface properties [27]. Eventually, these
results were analyzed in regard of different lattice imperfections such as local impurities and
bond-disorder in the finite honeycomb flake. Moderate disorder strengths only slightly affect
the bulk density profiles, making the valley Hall marker to remain fairly robust as compared
to more fragile transport observables that strongly rely on preserving the helicity of edge
modes [175].

Several experimental platforms stands out as appealing testbenchs for our proposal. The first
are synthetic molecular lattices [108, 176–179], where a electron gas is confined to move in
a properly designed 2D-array of carbon monoxide (CO) molecules. This technique has been
used to realize honeycomb [176], kagome [180] and Kekule [181] lattices. Interestingly, the
CO’s positions can be manipulated with atomic precision. Hence, the tunneling amplitude of
electrons can be locally reduced or enhanced by separating or approaching the COmolecules,
without modifying the lattice parameter [108,178,179]. In particular, the CO’s can be properly
adjusted to produce an effective strain. By employing STM probes to resolve the local density
of states, the latter would be integrated in energy up to the desired Fermi level in order to
reconstruct the particle density at each lattice position. Note that the strain can not be varied
as a knob. Therefore, as one configuration of CO’s would correspond to one value of strain
imprinted onto the lattice, two lattices would have to be fabricated with two different levels
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of strain. Thus, their respective particle densities deep within the bulk would have to be com-
pared in order to extract the valley Hall response. As a by-product, STM techniques might
also resolve the sublattice polarization of the valley Hall response.

An alternative is offered by ultracold Fermi gases in optical lattices, where strain could be
adjusted through well-designed atom-light [74, 182] or atom-atom [76] couplings, and where
the local particle density can be directly measured in-situ [46, 183–188]. Last but not least,
recent advances in fabricating arbitrary two-dimensional optical tweezer arrays [189–193]
open yet another route for the study of quantum gases in strained lattices, within a highly
controllable and scalable environment.
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Chapter 4

Strain and pseudo-magnetic fields in
optical lattices from density-assisted
tunneling

The proposal presented in this chapter is based on our published paper [76]. It introduces
a strategy for simulating strain for cold atoms in optical honeycomb lattices. As we have
seen in the previous chapters, strain can be encoded into the hopping parameters by making
them dependent on space. We propose to incorporate a space-dependence via density-assisted
tunneling [135,155,194–200], where the hopping amplitudes of one species of atoms (↓) depend
on the densities of another species (↑) at the sites betweenwhich the ↓-atoms hop. These exotic
processes can be induced by a renormalization of the hopping amplitudes of the ↓-species,
generated by time-periodic modulations of the interspecies interaction – see the example in
section 2.8.4. Consequently, the effective strain emerges from the interspecies interactions
and results into a pseudo-magnetic field, embodied by the ↑-particles.

The following section presents the model that allows for generating effective uniaxial strain
through density-assisted tunneling (DAT) and more specifically shows how a linear space-
dependence of the tunneling amplitudes can be recovered. In particular, the model is inves-
tigated for ↑-particles forming a Bose-Einstein condensate (BEC) treated in the mean-field
(MF) approximation. Within this framework, the BEC distribution is obtained by solving the
Gross-Pitaevskii equation (GPE). Two specific regimes are explored, the non-interacting and
the Thomas-Fermi (TF) regimes, for which the GPE can be solved exactly. In both cases, the
analytical expression of the pseudo-magnetic field is derived. Eventually, the model is vali-
dated though a numerical analysis of the fidelity with respect to an ideal strained honeycomb
lattice, introduced in section 3.2.1. Afterwards, we detail how these peculiar density-assisted
tunneling (DAT) amplitudes can result from a time-periodic (Floquet) drive of the interspecies
interaction. The last section further envisages various scenarios for implementing our pro-
posal. We close the chapter by presenting the conclusions and outlooks.
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4.1 Effective strain andpseudo-magnetic field fromdensity-
assisted tunneling

In order to generate uniaxial linear strain with cold atoms in optical lattices, we consider a
mixture of two atomic species, denoted by ↑ and ↓ where all atoms are trapped on the same
optical honeycomb lattice – see section 2.10.1. The ↓-species, whose statistics does not need
to be specified, hops according to the Hamiltonian

Ĥ↓ = −t
∑
r∈A,j

â†↓,rb̂↓,r+δj
+ H.c., (4.1)

where t is the hopping amplitude and â(†)↓,r (b̂(†)↓,r) are creation/annihilation operators of a ↓
particle on r ∈ A (r ∈ B). The ↑-atoms are weakly interacting bosons, harmonically trapped,
whose Bose-Hubbard Hamiltonian reads

Ĥ↑ =− J
∑
r∈A,j

(
â†↑,rb̂↑,r+δj

+ H.c.
)
+
Vx
2

∑
x∈A,B

(x− xc)
2n̂↑,r

+
Vy
2

∑
y∈A,B

(y − yc)2n̂↑,r +
U

2

∑
r∈A,B

n̂↑,r(n̂↑,r − 1)− µ↑

∑
i

n̂i,

(4.2)

where n̂↑,r ≡ â†↑,râ↑,r (b̂
†
↑,rb̂↑,r) if r ∈ A (∈ B) and rc = (xc, yc) is the position of the system’s

center. The parameters J , U , µ↑ and Vx,y are respectively the nearest-neighbor hopping am-
plitude, the onsite interaction energy between bosons, the chemical potential and the strength
of the harmonic confinements along x and y.

The two species are coupled through the interacting term

Ĥ↑↓ = −α↑↓t
∑
r∈A,j

â†↓,rFj(n̂↑,r, n̂↑,r+δj)b̂↓,r+δj
+ h.c., (4.3)

where α↑↓ is a dimensionless parameter related to the interspecies interaction strength and
the function Fj is defined as

Fj(n̂↑,r, n̂↑,r+δj) =
1

3
γj(n̂↑,r+δj − n̂↑,r), j ∈ {1, 2, 3}, (4.4)

where γ1 = 1 and γ2 = γ3 = −1. The hopping process of the ↓ species between two sites
depends on the density difference of the ↑ particles at these sites. The coupling term Ĥ↑↓ de-
scribes the density-assisted tunneling (DAT) processes (also called correlated hopping). Overall,
the tunneling processes are governed by the effective hopping operators
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teffj = t

(
1− α↑↓γj

n̂↑,r+δj − n̂↑,r

3

)
. (4.5)

As shown below, an inhomogeneous density distribution of ↑ atoms will introduce a space-
dependence into the tunneling processes of the ↓ particles that will therefore be able to mimic
strain. Hence, the full model reads

Ĥ = Ĥ↓ + Ĥ↑ + Ĥ↑↓. (4.6)

In the rest of this chapter, themodel (4.6) is solved in themean-field (MF) approximation for the
↑ particles, i.e. the annihilation (creation) operator a(†)↓,r is replaced by its average value at each
site r, evaluated on the ground state. As explained in 2.9.4, this average number is the order
parameter of the BEC, as prescribed by the MF approximation. This yields χ(∗)

r = 〈â(†)↑,r〉 for r ∈
A or χr = 〈b̂↑,r〉 for r ∈ B. This regime is reached when: i) a shallow harmonic potential that
will allow for a large number of bosons at each site of the honeycomb ribbon, that is n̄↑,r � 1;
ii) weakly-interacting bosons (N↑), such that Un̄↑,r � 1 for every site (see section 2.9.4). In
this MF picture, the particle distribution n̄r = |χr|2 is obtained by solving the GPE, fromwhich
the ground state and its energy are found. This will be the focus of the next section. The mean
value n̄r replaces its operator counterpart n̂↑,r in (4.5). The Hamiltonian of the ↑ species is
replaced by the bosonic mean-field energy by neglecting Bogoliubov corrections and that of
the ↓ species becomes Ĥeff

↓ = Ĥ↓ + ĤMF
↑↓ that reads

Ĥeff
↓ = −

∑
r∈A,j

teffj â
†
r b̂r+δj

+ H.c.. (4.7)

In this 2D system, we will assume that the trap is strongly anisotropic, in the sense that the
trap is stronger along x than along y, i.e. Vy � Vx, such that the BEC can be seen as uniform
along y and harmonically trapped along x. Therefore, we can interpret that the honeycomb
lattice has cylindrical boundary conditions along the y-direction – see Figure 2.8. Hence, the
BEC density and, consequently, the effective tunneling amplitudes are only function of x, such
that

teff1 (x) = t
[
1−

α↑↓

3
(n̄↑(x)− n̄↑(x− a))

]
,

teff2,3(x) = t
[
1−

α↑↓

3
(n̄↑ (x+ a/2)− n̄↑(x))

]
.

(4.8)

Remarkably, when n̄↑(x) has a parabolic profile1

n̄↑(x) = −η1
(x− xc)2

a2
, (4.9)

1Adding a constant η0 into the expression of the parabolic profile is irrelevant as it is automatically canceled
by the density difference.
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where the constants η1 is later specified, the hopping amplitudes teffj are linear in space,

teff1 = t

[
1 +

2

3

η1α↑↓

a
(x− xc)−

α↑↓η1

3

]
,

teff2,3 = t

[
1 +

1

3

η1α↑↓

a
(x− xc) +

α↑↓η1

12

]
,

(4.10)

If ones defines τ ≡ 2α↑↓η1, these DAT amplitudes reproduce those for the uniaxial strain
(2.88), where the strain τ is emulated through the interspecies interaction α↑↓. As discussed
in section 2.5.2, a pseudo vector potential Aζ emerges from this effective strain,

Aζ =

(
0,−

2ζα↑↓η1
9a2

(x− xc) +
5ζα↑↓η1
36a

)
, (4.11)

where the charge has been absorbed into the expression of the vector potential and where the
last term shifts the position of the Dirac points. The effect of this shift will not be observable
in the following numerical results because α↑↓η1 � 1 and can therefore be neglected. The
pseudo-magnetic field Bζ

τ = ∇× Aτ , given by

e∗Bζ
τ (x) = −

ζ

2vF
∂x(2t

eff
1 − teff2 − teff3 ), (4.12)

which only depends on the derivatives ∂xteffj (x), is therefore uniform and reads

Bζ
τ = −

2ζh̄α↑↓η1
9a2

ẑ = −ζh̄τ
9a2

ẑ, (4.13)

and is not affected by the shift in (4.11), neither the pLLs gaps. Note that the expression (4.13)
is valid when the density profile is a parabola. Nonetheless, one can still expect to find a slowly
varying pseudo-magnetic field Bζ

τ (x) when the density profile is sufficiently smooth.

4.2 Solving the Gross-Pitaevskii equation

In this mean-field picture, one obtains the BEC density distribution by finding the function
χ that minimizes the energy functional constrained by the normalization condition N↑ =∑

r |χr|2, where the chemical potential µ↑ is fixed (and plays the role of a Lagrange multiplier).
This reads

E[χ]− µ↑

(∑
r

|χr|2 −N↑

)
= Etrap[χ] + Ekin[χ] + Eint[χ]− µ↑

(∑
r

|χr|2 −N↑

)
, (4.14)

where
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Etrap[χ] =
Vx
2

∑
r∈A,B

(x− xc)2 |χr|2,

Ekin[χ] =− J
∑
r∈A,j

(
χ∗
rχr+δj

+ H.c.
)
,

Eint[χ] =
U

2

∑
r∈A,B

|χr|2(|χr|2 − 1),

µ↑ =E[χ,N
↑ + 1]− E[χ,N↑].

(4.15)

The minimization consists in taking the functional derivative of (4.14), which results into the
GPE derived in appendix B.2 and given by equation (B.2). It was solved with the imaginary-
time evolution method [173] – see appendix B.3. Its solution is the BEC wavefunction in a
honeycomb ribbon ofNx×2 sites with cylindrical boundary conditions along the y coordinate.
The BEC wavefunction is then plugged into the three energetic contributions in (4.15), which
are calculated for various values of U and compared in Figure 4.1. For U → 0, the kinetic
energy2 Ekin equals the trap potential energy Etrap and decreases for increasing values of U .
Indeed, as the bosons repel each other more strongly, they counterbalance the harmonic trap
and spread over the system, thus reducing the density variation and the kinetic energy. By
increasing U , the original Gaussian profile widens and eventually becomes almost parabolic.
At larger U , the cloud will acquire the theoretical Thomas-Fermi profile when Ekin can be
completely neglected. However, U cannot be increased indefinitely as quantum fluctuations
will be more and more relevant, invalidating the MF approximation.

10−7 10−6 10−5 10−4

U/J
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E
n

er
gy
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/N
↑ ]

Ekin/N
↑ + 3J

Etrap/N
↑

Eint/N
↑

Figure 4.1: The energetic contributions are expressed in units of Etrap/N
↑ as a

function of the onsite interaction energy U , for Nx = 601, a strength of the har-
monic confinement Vx = 10−6J/a2 and N↑ = 1.2× 105 bosons. The 3J-shift of
the kinetic energy is due to the discretization of the Laplacian.

2Notice the +3J in the legend of Figure 4.1 that originates from the discretization of the Laplacian.
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4.2.1 Analytical limits

In this section, we explore two regimes for which the analytical expressions of the BEC
density profile can be derived: the non-interacting and the Thomas-Fermi regimes. The first
case occurs when U = 0 and the second is a regime reached when the BEC kinetic energy
is negligible in comparison to the two other energetic contributions to the energy functional
(4.14) [157]. In both cases, it is then possible to deduce the value of strain analytically.

Thomas-Fermi regime

The gas of ↑ atoms enters the Thomas-Fermi (TF) regime when the repulsive interacting and
the trapping potential energies dominate the kinetic energy, Ekin � Eint, Etrap. The bosonic
density is shown (blue circles) in Figure 4.2 for Vx = 10−6J/a2, U = 10−4J (using the parity
symmetrywith respect to x = xc, only the part for x ≥ xc is plotted). In general, it is accurately
reproduced by the exactThomas-Fermi distribution n̄TF (solid orange line) obtained whenEkin

is discarded, which reads

n̄TF(x) =
1

U

[
µ↑ −

Vx
2
(x− xc)

2

]
. (4.16)

By substituting (4.16) into (4.8), the strain intensity τ eff is expressed in terms of the harmonic
trap parameter Vx and the interaction strength U as

τeff =
α↑↓Vxa

2

U
. (4.17)

Discrepancies between n̄↑ and n̄TF take place at the boundary of the cloud, located at x =

RTF =
√

2µ↑/Vx, where the derivative of the distribution cannot be neglected anymore. The
cloud’s boundary therefore marks a separation between a region with strain (|x− xc| < RTF)
and without strain (|x − xc| > RTF). Equivalently, it implies that a pseudo-magnetic field,
identified by a dashed purple line in Figure 4.2 and given by (4.12), is present inside the cloud
but vanishes at the edge. Deep in the bulk, it takes the value

B0 = −
ζh̄α↑↓Vx

9U
, (4.18)

and changes abruptly near the edge before vanishing out of the cloud – see Figure 4.2.
Figure 4.3 shows the spectrum of Ĥeff

↓ for U = 10−4J , which corresponds to an effective strain
intensity τ eff = 0.003. The first five pLLs are clearly identifiable at energies predicted by (4.40)
for τ = τ eff, indicated by dashed red lines. Other conical structures are also visible in the
spectrum, resembling those in Figure 2.9, for the unstrained honeycomb lattice, described by
the Hamiltonian (4.1). They correspond to ↓ states localized outside the BEC cloud where,
as expected from the ↑ distribution in Figure 4.2, there is no bosons and therefore no strain.
The intermediate region around the boundary of the cloud at x = RTF is not a hard wall po-
tential, allowing a penetration of the wavefunctions from both sides of this interface. This
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Figure 4.2: Density profile of the ↑-atoms in theThomas-Fermi regime (blue circles)
for a strength of harmonic trap Vx = 10−6J/a2, N↑ = 1.2 × 105 bosons and
an onsite interaction U = 104J . The orange solid line represents the analytical
Thomas-Fermi distribution (4.16). The resulting magnetic field (dotted magenta
line) is shown in units of B0, the value of the magnetic field at the center of the
trap, xc.

phenomenon is emphasized by further distinguishing the contributions from the strained and
unstrained parts of the ribbon. The spectrum (empty circles) of a strained lattice honeycomb,
only extended over the size of the BEC (Lx = 2RTF) with the same strain intensity, is super-
imposed over the spectrum of Ĥeff

↓ . The pLLs plateaus are clearly identified, as well as the
edge states branches on the left of the Dirac point (ky < Ky = 2π/3

√
3a = 1.21/a). For

kya > 1.25, deviations between the two spectra appear, in addition to a distinct branch, in-
dicated by the black arrow. These discrepancies are explained by the hybridization between
pLLs and planewave states living on the inside and outside of the cloud interface, respectively.
The hybridization manifests itself through the gap-crossing branch and avoided crossings be-
tween pLLs and the conical structure. By plotting the wavefunctions of four states associated
to the branch, one understands that it originates from modes localized at the left edge of the
cloud – see Figure 4.4. The marker used to plot the wavefunctions correspond to the markers
of the four dots in Figure 4.3.

Non-interacting regime

The second regime for which an analytical expression can be obtained in the non-interacting
limit, i.e. U = 0. If the bosons are trapped by a weak harmonic potential such that the cloud’s
width is much larger than the lattice spacing and smaller than the system’s size, the density
profile is well approximated by a Gaussian whose expression reads

n̄↑ =
3N↑

4
√
2πξ

e−(x−xc)
2/2ξ2 , ξ ≡

(
3Ja2

8Vx

)1/4

, (4.19)
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Figure 4.3: Spectrum of Ĥeff
↓ when the Bose-Einstein condensate of ↑-atoms is

in the Thomas-Fermi regime, including a comparison with the spectrum of the
strained honeycomb Hamiltonian Ĥ0 (empty circles) – see (3.19) – and the pseudo-
Landau levels predicted by (2.94) (dashed lines). The number of sites along x is
Nx = 601, the onsite interaction is U = 10−4J , the strength of the harmonic trap
is Vx = 10−6J/a2, the number of condensed bosons is N↑ = 1.2 × 105, and the
interspecies interaction strength is α↑↓ = 0.3. The strain intensity is τeff = 0.003.
The four dots with different markers correspond to representative eigenstates of
the energy branch indicated by the arrow that will be shown in a separate figure.

where ξ is the cloud’s width centered at xc and the factor 3/4 is a consequence of the honey-
comb geometry – see Appendix B.1. The agreement between the Gaussian (solid orange line)
and the (numerically obtained) BEC distribution is shown Figure 4.5.

Obviously, substituting n̄↑ will not induce the hopping amplitudes (4.8) to be linear in x. Nev-
ertheless, near xc, i.e. |x− xc| � ξ, the density can be approximated by the parabola

n̄↑ =
3N↑

4
√
2πξ

[
1− (x− xc)

2

2ξ2

]
. (4.20)

The corresponding effective strain intensity reads

τeff =
3N↑α↑↓a

3

4
√
2πξ3

. (4.21)

As shown in Figure 4.6, differently from the TF regime, the analytical prediction (2.94) for the
pLLs is in good agreement with the numerical spectrum only very close to the K point. Away
from the latter, noticeable differences between the spectra of these two regimes appear. They
can directly be inferred from the inspection of their respective density profiles in Figures 4.2
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Figure 4.4: Density of the ↓ atoms corresponding to the four markers indicated
in Figure 4.3. The A and B components of the eigenvectors of Ĥeff

↓ are denoted
by ψl

↓,qy for l = A,B respectively. Their respective points in the spectrum
have the following coordinates (qya,E): a (0.038, 0.0009), b (0.050, 0.0039), c
(0.091, 0.0390), d (0.111, 0.0617).

and 4.5. First, the deviations from an ideal parabola in the non-interacting case implies non-
linear space-dependence in the hopping amplitudes, resulting into a non-uniform magnetic
field. Hence, further away from the center (|x − xc| & ξ), the pLLs picture presented earlier
simply fails because it required a uniform magnetic field. Secondly, the transition between the
region with bosons and the one without bosons, that is between the effectively strained region
and the unstrained one, is smoother. Therefore, this sort of overlapping conical structure on
top of pLLs, previously observed in Figure 4.3 for the TF regime, is barely visible in the non-
interacting regime. Jointly with the avoided crossings due hybridizations between planewave
states and pLLs, it prevents any clear identification of the latter.

In view of elucidating the consequences of the magnetic field’s inhomogeneity, one might
assume that it smoothly varies in space. This allows to apply a local-density approximation,
which requires `B, |x−xc| � ξ. In this picture, one can associate to each position x = x0 and
its neighboring region, a magnetic field B(x0) given by (4.12). Remember that eigenvectors’
wavefunctions centered at x0 correspond to a specific momentum due to x0 = xc− ζ`2B(x0)qy
– see (2.27). Their pLLs energies are proportional to

√
B(x0) and thus deviates from (2.94)

away from the K point. Actually, the inhomogeneity of the pseudo-magnetic field translates
into a bending down of the pLLs. This behavior is well captured by further expanding the
Gaussian (4.19) to the fourth order in (x− xc)/ξ, yielding
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Figure 4.5: Density profile of the ↑-atoms in the non-interacting regime (blue cir-
cles) for Vx = 5.8 × 10−11J/a2, N↑ = 4.8 × 105, Nx = 1401. The dashed green
line is the approximate parabolic profile valid for |x−xc| � ξ, where ξ is the Gaus-
sian width (see Eq. (4.16)). The orange solid line represents the analytical Gaussian
distribution (4.19) The resulting magnetic field (dotted magenta line) is shown in
units of B0, the value of the magnetic field at the center of the trap, xc.

Figure 4.6: Spectrum of Ĥeff
↓ when the Bose-Einstein condensate of the ↑-atoms

is in the non-interacting regime. The number of sites along x is Nx = 1401, the
strength of the harmonic confinement is Vx = 5.8 × 10−11J/a2, the number of
bosons is N↑ = 4.8× 105 and the interspecies interaction strength is α↑↓ = 0.49.
The strain intensity is τeff = 3.1× 10−3. Dashed red lines represent the predicted
Landau energies for a homogeneous synthetic magnetic field, whereas the dashed-
dotted green lines are obtained by including the leading effects of inhomogeneity.
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n̄↑ =
3N↑

4
√
2πξ

[
1− (x− xc)

2

2ξ2
+

(x− xc)
4

4ξ4

]
. (4.22)

Indeed, this implies the strain parameter to be a function of space as

τ
(4)
eff (x) = τeff

[
1− 7a2 − 30a(x− xc) + 12(x− xc)

2

4ξ2

]
, (4.23)

where τeff is defined in (4.21). This results in modified pLLs,

ε(4)ν =± t

√
ν

2
τeff

(
1− ζ 3

2
qya

)√
1− 7a2

4ξ2
− 15ζ`2B

2ξ2
qya−

3`4B
a2ξ2

(qya)2 . (4.24)

As presented in Figure 4.6, the revised dispersion relation (4.24) (dashed green lines) captures
reasonably well the bending of the lowest pLLs.

4.3 Fidelity analysis

Beyond the spectral comparison between the spectrum of the effectively strained honey-
comb lattice model Ĥeff

↓ , and the spectrum of Ĥ0 describing the uniaxially strained honeycomb
lattice – see Eq. (3.19) – one can ask how the eigenstates of both Hamiltonians compare. To
establish this comparison, we employ the fidelity

F(ν, qy) = |〈φν,qy
|ψ↓,qy〉|

2, (4.25)

where ψ↓,qy denotes the eigenstates of Ĥeff
↓ and φν,qy

those of Ĥ0 corresponding to the νth pLL.
As encountered in Figures 4.3 and 4.6, the spectrum of Ĥeff

↓ differs from the one of Ĥ0 due
to the exterior region without strain. To minimize the effects of these discrepancies, one can
focus on a window qy ∈ [qmin

y , qmax
y ] centered around the K-point that includes most of the

pLLs. This interval in qy corresponds to states localized deep in the cloud, near xc. We color
each point of the spectrum with F(ν, qy) within this window in Figures 4.3 and 4.6. The re-
sults are shown in Figures 4.7a,b for ν = 1, 2, 3 in the TF and the non-interacting regimes,
respectively. The parameters values are chosen as in the previous section.

For both regimes, the eigenstates of Ĥeff
↓ accurately reproduce those of Ĥ0 as the fidelity is

larger than 0.9 in the chosen interval. Nevertheless, away from the Dirac point, it drops and
even more in the non-interacting case. This is a direct consequence of the inhomogeneous
magnetic field, that alters the pLL wavefunction. In particular, B(x) decreases with the dis-
tance from xc, which enlarges the tail of the wavefunctions and therefore lowers the fidelity.

One can inspect how precise the LL picture remains as the (dimensionless) interspecies inter-
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Figure 4.7: Spectra of Ĥeff
↓ around the K point obtained a in the Thomas-Fermi

regime and b in the non-interacting regime, where we superimpose the fidelity
F(ν, qy) with the Landau level eigenstates computed in a range of momenta de-
limited by the vertical dashed lines. Each panel addresses the fidelity of the νth
Landau level. The parameters for the two regimes are chosen as in the previous
plots. For a, the number of sites along x is Nx = 601, the onsite interaction is
U = 10−4J , the strength of the harmonic trap is Vx = 10−6J/a2, the number
of condensed bosons is N↑ = 1.2× 105, and the interspecies interaction strength
is α = 0.3. For b, Nx = 1401, Vx = 5.8 × 10−11J/a2, N↑ = 4.8 × 105 and
α↑↓ = 0.49. As the fidelity is calculated for bulk state, the range of momenta has
been chosen to avoid interface or edge-states effects.

action parameter α↑↓ varies, which can be reinterpreted as tuning the effective strain intensity
– see (4.17) and (4.21). To do so, one inspects how the fidelity changes with α↑↓. Concretely,
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for each value of α↑↓ while keeping the other parameters fixed, we extract the maximal value
of the fidelity on each of the first three pLLs within the qy-window introduced above, i.e.

FM(ν) = max
qy
F(ν, qy). (4.26)

The results are presented in Figure 4.8a and b for the TF and non-interacting regimes, respec-
tively. These plots can be understood through a lengthscale analysis. The smallest scale is the
lattice spacing a and the largest (apart from the system size Lx) is the cloud’s width RTF or ξ.
These have to be compared to the magnetic length `B , which is the relevant scale of the LL
physics. In both regimes, at high α↑↓ the fidelity FM tends to 1. When α↑↓ decreases, FM is
reduced and even more for ν ≥ 2. Indeed, as shown in Figure 4.9, while the 1st-LL wavefunc-
tions of Ĥeff

↓ are well localized around xc (see the solid red lines in panels a and b for the TF
and non-interacting regimes, respectively), higher-LL wavefunctions are broader, thus cross
the interface and hybridize with planewave solutions of the unstrained region – see panels c
and d for the TF and non-interacting regimes, respectively. As expected from the discussion
about Figure 4.7, it is clear that reaching the interface changes the tails of the wavefunctions
due to the inhomogeneity of the pseudo-magnetic field, which itself stems from deviations of
the ↑-particle distribution from the ideal parabolic profile (depicted by the double-dotted blue
line). For concreteness, the counterpart wavefunction in the ideal strain case (dotted-dashed
black lines) and the BEC density (dotted-dashed green line) have been added. In the TF regime
(panel c), while an hybridization occurs at both cloud edges, the abrupt increase of |Bτ (x)|
around x = RTF is expected to shrink the tail of the ↓-particle distribution. This is visible to
the right end of the cloud but not to its left as competing hybridization mechanisms deform
the left tail. In the non-interacting case (panel d), the overall decrease of |Bτ (x)| widens the
tails of the ↓-particle distribution.

Besides, if α↑↓ is too large, the LL picture breaks down because `B ∝ 1/
√
α↑↓ becomes compa-

rable to the lattice spacing a and discretization effects take place. This is shown in Figure 4.10a
and b for the TF and non-interacting regimes, respectively, where we show the maximum fi-
delity (for the νth LL)

F ′
M(ν) = max

qy
|〈ψν,qy

|ϕν,qy
〉|2 (4.27)

between eigenstates of Ĥeff
↓ and the analytical relativistic LLs (2.71), now denoted by ϕν,qy

.
Indeed, F ′

M(ν) decreases when α↑↓ increases. Furthermore, the discretization effects get even
more detrimental for higher ν since more nodes, that are resolved at a precision of the order of
a, constraint the width (`B ∼ a) and the shape of the wavefunctions’ lobes. Another reason for
the drop in fidelity, already discussed in [142], arises from the asymmetry of the wavefunctions
with respect to xc, as presented in Figure 4.9, whereas the analytical LL states are symmetric.
This difference, negligible for low values of τ , would fade away by including neglected terms
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in the effective Dirac model, such as the space-dependence of the Fermi velocity vF. Hence, α↑↓

must be kept sufficiently low such that `B � a is ensured. In conclusion, the ideal scenario
to recover the LL physics is a� `B � RTF, ξ.

Figure 4.8: Fidelity FM as a function of α↑↓(`B) for a the Thomas-Fermi regime
with an onsite interaction U = 10−4J , a strength of harmonic confinement Vx =
10−6J/a2 and a number of bosons N↑ = 1.2× 105 and for b the non-interacting
regime with U = 0, Vx = 5.8× 10−11J/a2, N↑ = 4.8× 105. The wavefunctions
of the dots indicated by roman numbers are taken as representative examples that
are shown in Figure 4.9.

4.4 Density-assisted tunneling from Floquet engineering

We now explain how to generate the density-assisted tunneling amplitudes of the ↓ species
– see Eq. (4.5). In the following, the strategy to create these DAT terms is first presented for a
double-well system and is then generalized to the full honeycomb lattice.

4.4.1 Density-assisted tunneling from resonant Floquet engineering
in a double-well

In order to obtain these DAT amplitudes, one needs to adapt the resonant Floquet scheme
introduced with a simple example in section 2.8.4, to the case of a periodically-driven inter-
species interaction. In the double-well system sketched in Figure 4.11, two species of atoms,
↑ and ↓, are trapped in the same double-well. Their respective Hamiltonians read

Ĥ↑ = −Jĉ
†
↑,0ĉ↑,1 − Jĉ

†
↑,1ĉ↑,0 +

U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1),

Ĥ↓ = −tĉ
†
↓,0ĉ↓,1 − tĉ

†
↓,1ĉ↓,0 +∆n̂↓,1,

(4.28)
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Figure 4.9: Density from the eigenvectors of (dashed red lines) Ĥeff
↓ and (solid black

lines) Ĥ0 corresponding to the circles indicated in Figures 4.8a,b for qya = 0 in
a,b and qya = −0.00067 in c,d. In all panels are plotted only the A components.
The single-dashed and double-dashed lines represent the numerical solution of the
Gross-Pitaevskii equation n̄↑ and the parabolic profile n̄par that approximates the
Gaussian at its maximum, respectively.

Figure 4.10: Fidelity F ′
M as a function of α↑↓(`B) for a the Thomas-Fermi regime

and for b the non-interacting regime with for the same values of parameters as in
Figure 4.8a,b, respectively.

where ĉ†σ,i (ĉσ,i) is the creation (annihilation) operator of the σ =↑, ↓ particle at site i = 0, 1

and n̂σ,i their number operator. The parameters t and J are the tunneling amplitudes of the
↓ and ↑-atoms, respectively, whereas U is the interaction strength between ↑-atoms. The
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Figure 4.11: Sketch of the system described by the Hamiltonian (4.29). The param-
eters ∆ and U↑↓ are the energy imbalance between the wells and the interspecies
interaction strength, respectively. The parameters t and J are the tunneling am-
plitudes of the ↓ and ↑-atoms, respectively, whereas U is the interaction strength
between bosons

parameter∆ is an energy imbalance between the two sites, only experienced by the ↓-species
that suppresses its hopping process. The two species are coupled by

V̂(τ) = U↑↓ cos(Ωτ)
(
n̂↑,0n̂↓,0 + n̂↑,1n̂↓,1

)
(4.29)

that corresponds to periodically-driven onsite interspecies interactions, at frequency Ω. The
parameter U↑↓ is the interspecies interaction strength. We add another time-dependent onsite
energy term ∆0 cos(Ωτ)n̂↓,0, whose role will soon become clear. The hopping process of the
↓-particle from one well to the other can be restored by a resonant drive h̄Ω ' ∆. Following
the same reasoning as in section 2.8.3 where K0(1) = U↑↓n̂↑,0(1), the transformation3 to the
rotating frame

R̂ = exp
{
i
[
U↑↓n̂↑,0

h̄Ω
sin(Ωτ)n̂↓,0 +

U↑↓n̂↑,1

h̄Ω
sin(Ωτ)n̂↓,1 + Ωτ n̂↓,1 +∆0n̂↓,0 sin(Ωτ)

]}
,

(4.30)
yields

Ĥ
(0)
F =− tJ1

(
U↑↓(n̂↑,0 − n̂↑,1) + ∆0

h̄Ω

)
ĉ†↓,0ĉ↓,1

− JJ0

(
U↑↓(n̂↓,0 − n̂↓,1)

h̄Ω

)
ĉ†↑,0ĉ↑,1 + H.c.

+
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1),

(4.31)

which is the 0th-order term of the high-frequency expansion. The Bessel functions J0(x) ≈ 1

3See appendix B.4 for the full derivation.
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and J1(x) ≈ x/2 when x� 1, which is satisfied when ∆0 � h̄Ω and

U↑↓

h̄Ω
|
〈
{n′

↓,i}
∣∣ (n̂↓,0 − n̂↓,1) |{n↓,i}〉 | � 1,

U↑↓

h̄Ω
|
〈
{n′

↑,i}
∣∣ n̂↑,0 − n̂↑,1 |{n↑,i}〉 | � 1,

(4.32)

where {nσ,i} labels the Fock states for the σ =↑, ↓ species. These two conditions impose that
there is no large population imbalance between the wells. Increasing the driving frequency
and reducing the interaction also help to satisfy this condition. Once J0 and J1 are expanded
to first order, the Hamiltonian (4.31) reads

Ĥ
(0)
F =− t

(
∆0

2h̄Ω
+
U↑↓

2h̄Ω
(n̂↑,0 − n̂↑,1)

)
ĉ†↓,0ĉ↓,1

− Jĉ†↑,0ĉ↑,1 +
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1) + H.c.,
(4.33)

where the parameters∆0 allows to restore the dominant part of the hopping amplitudes (2.87).
By redefining the energy scale t→ 2th̄Ω/∆0, one gets

Ĥ
(0)
F =− t

(
1 +

U↑↓

∆0

(n̂↑,0 − n̂↑,1)

)
ĉ†↓,0ĉ↓,1 − Jĉ

†
↑,0ĉ↑,1 + H.c.

+
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1).

(4.34)

Introducing a new parameter α↑↓ ≡ 3U↑↓/∆0, one finally ends up with

Ĥ
(0)
F =− t

(
1 +

α↑↓

3
(n̂↑,0 − n̂↑,1)

)
(ĉ†↓,0ĉ↓,1 + ĉ†↓,1ĉ↓,0)

− J(ĉ†↑,0ĉ↑,1 + ĉ†↑,1ĉ↑,0) +
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1).
(4.35)

Applying the mean-field approximation for bosons, the second line of (4.35) becomes a simple
energy shift and one gets the desired hopping amplitudes of Eq. (4.8) for the ↓-atoms (only for
a double-well system at this point),

Ĥ
(0)
F = EMF − t

(
1 +

α↑↓

3
(n̄↑,0 − n̄↑,1)

)
ĉ†↓,0ĉ↓,1 + H.c. (4.36)
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Figure 4.12: Two possible Floquet engineering schemes of strain as described in the
main text. a Energy offset ∆ linearly growing in the x direction. b Homogeneous
energy offsets ∆ only on the A sites.

4.4.2 Density-assisted tunneling from Floquet engineering in a hon-
eycomb lattice

In order to reproduce the uniaxial strain scheme, the results obtained for the double-well
system in the preceding sectionmust be extended to a honeycomb lattice. To do so, one applies
on each site an energy offset that grows along the x-axis, as sketched in Figure 4.12a. Then,
one identifies the site 1 of the double-well as the one with the highest energy offset and the site
0 as the one with the lowest offset. Importantly, the tunneling processes to next-neighboring
sites can be neglected in the high-frequency limit as they would appear at the second order in
the Magnus expansion, allowing to simply view the honeycomb lattice as a set of connected
double-wells. The generalization of the hopping term in Eq. (4.35) to each position r in the
honeycomb lattice is therefore

teffj = t
(
1 +

α↑↓

3
γj(n̂↑,r+δj − n̂↑,r)

)
, r ∈ A, (4.37)

which exactly reproduces the desired hopping amplitudes (4.5) for γ1 = 1 and γ2 = γ3 = −1.
Notice that the sign γj stems from the sign of the energy offset between nearest-neighboring
sites. For example, along the δ1-link, the energy imbalance between the right and left sites is
∆, whereas along the δ2 and δ3-links, it is −∆.

Interestingly, by applying another type of energy offset, slightly different DAT amplitudes can
be generated. Indeed, if one only offsets the A-sublattice, as depicted by Figure 4.12b, and
naturally associates the A-sites to the site 1 of the double-well and the B-sites to the site 0,
then the effective hopping amplitude in this case reads

teffj = t
(
1 +

α↑↓

3
(n̂↑,r − n̂↑,r+δj)

)
, r ∈ A, (4.38)

where all γj = 1. Therefore, by following the same reasoning as the one leading to Eq. (4.11),
the effective vector potential A reads
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A =

(
0,−ζh̄τeff

3a2
(x− xc) +

ζh̄τeff
12a

)
, (4.39)

hence the effective magnetic field from the strain scheme in panel b ends up being three times
larger than the one from scheme in panel a, whose expression is given by Eq. (4.13). The pLLs
energies are

εLLν (qy) = ±t
√
ν
3τeff
2

√
1− ζ 3

2
qya, ν ∈ N, (4.40)

For ν = 1, the energy gap is thus larger by a factor
√
3 for staggered onsite potentials shown in

b, in comparison to the energy gaps obtained with the increasing onsite potentials presented
in panel a. As this scheme provides larger gaps, it is expected to ease the experimental detec-
tion of LL physics.

4.5 Further effects and probing methods

In the analysis, the renormalization of the hopping parameter J of the ↑-species due to
the Floquet driving of the interspecies interaction has not been considered. Similarly as in
ref. [195] and assumed in the model (4.28)-(4.29), the absence of energy offset for the ↑-atoms
between the wells leads to the zeroth Bessel function when h̄Ω � U↑↓, J . Hence, when the
density of ↓-atoms is small or uniform, the hopping amplitude of the ↑-species is unaffected
by the back-action from the ↓-species. Besides, the possible depletion of the BEC due to in-
teractions between ↑-particles has also been overlooked. Together with the back-action of the
↓-atoms, they could lead to quantum fluctuations of the BEC. Including them will provide a
distinct opportunity to enrich the strain picture with dynamical effects.

A few aspects of the model’s implementation have yet to be discussed as they will affect the
back-action or the choice for probing methods. The first is the statistics of the ↓- particles.
For fermionic ↓-atoms, the small density imbalance n̂↓,0− n̂↓,1 is readily satisfied thanks to the
Pauli exclusion principle that forbidsmore than one fermion to be localized on a single site. For
bosonic ↓-particles, one has to enforce a low or homogeneous distribution. A second aspect
concerns the trapping potential of the ↑-atoms. The strain model previously analyzed requires
a strongly anisotropic harmonic trap experienced by the BEC, namely ωx � ωy, where ωx,y are
the harmonic trapping frequencies in the two spatial directions. Note that the model assumes
ωy → 0 to simplify the theoretical analysis. Besides, no trap acts on the ↓-atoms, assum-
ing that the confinements of the two atomic species can be separately controlled. However,
adding a strong trapping potential for fermionic ↓-atoms would give the opportunity to re-
veal the presence of LL physics through the jumps in the density profile occurring when the
Fermi level lies within spectral gaps, conferring to it the typical wedding-cake structure [74].
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Moreover, valley-dependent edge modes should exist around these jumps. Nonetheless, one
would have to limit the local density variations to mitigate back-action effects onto the BEC.
Fortunately, the slope of the pLLs would partly smear out the ↓-density steps, i.e. the density
gradient.

Several techniques can be employed to directly probe the LLs properties and the nature of
the pseudo-magnetic field. A first possibility would be to monitor the real space dynamics
of a wave packet of ↓-atoms, initially prepared in the vicinity of a Dirac point, that would
exhibit a cyclotron motion [74, 201]. Since the chirality of the cyclotron orbit is different at
opposite valley, this represents a direct sign of the valley-dependence of the pseudo-magnetic
field (and of the time-reversal invariance of the system). Similarly, acting on the wave packet
with a constant force will generate a Hall drift [137] whose direction is also valley-dependent.
Particularizing the ↓-atoms to fermions, the probing method based on the adapted Středa for-
mula presented in chapter 3 offers a local and direct measurement of the quantum valley Hall
effect expected in pLLs systems, where variations of artificial strain intensity would effec-
tively be performed through changes of the amplitude of the interspecies interaction U↑↓, via
Feshbach resonances. Another approach employing fermions consists in preparing a uniform
fermionic gas of ↓-atoms at half-filling and employing circular shaking to spectroscopically
resolve the pLLs by measuring the absorbed energy. Moreover, valley-dependent absorption
processes are identifiable thanks to band mapping techniques, enabling to extract the valley
Hall conductivity through the corresponding valley circular dichroism [202].

4.6 Summary and outlook

This chapter presented a novel strategy to emulate strain field in optical lattices by cou-
pling an atomic species to a trapped BEC via well-tailored density-assisted tunneling terms
generated by an external Floquet drive. By changing the shape of the BEC distribution and
the Floquet scheme, different strain profiles can be implemented. The focus was set on pro-
ducing uniaxial strain in the honeycomb lattice along one of the three crystalline axes of the
lattice, obtained by considering a strongly anisotropic harmonic trapping potential. Two lim-
its of interest were discussed, namely the non-interacting and the Thomas-Fermi limits. After
investigating the spectral features of the ↓-atoms, the Thomas-Fermi appears as the most suit-
able regime to reproduce the ideal linear strain configuration. Indeed, this regime minimizes
the effects of regions with inhomogeneous pseudo-magnetic field and requires smaller atomic
clouds.

Furthermore, the Thomas-Fermi regime may set the ground for studying quantum fluctua-
tions effects originating from the phonon modes (Bogoliubov quasi-particles) of the BEC or
from exciting the BEC collective modes, allowing to include time-dependence to the synthetic
gauge-field. This correspondence with lattice vibrations in solid-state systems motivates an
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approach from polaron theory, where the ↓-species and the Bogoliubov excitations of the ↑-
atomic gas respectively play the role of the electrons and the phonons that dress them [203],
reducing the many-body problem to a single-particle problem. Concretely, we suggest to start
by studying a single fermion coupled to weakly-interacting bosons via DAT in a double-well,
a scenario for which analytical and numerical calculations can be performed exactly. These
results need to be compared to those obtained with polaron theory [203] that predicts that the
fermionic impurity is slowed down because of the dressing by phonons. Such insights should
ease the generalization of our results to a 1D-lattice and then to a honeycomb lattice, where a
dynamical pseudo-magnetic field will finally reemerge along with its quantum excitations in
the form of BEC phononic modes.

Another interesting regime specific to cold atoms could be reached for strongly-interacting
bosons (↑) near the Mott insulator phase. In this case, low-filling and quantum fluctuations
would be the breeding ground for a physics different from solid-states systems. This suggests
a distinct direction to investigate the interplay of dynamical gauge field theories on lattices
(LGTs) from the previous one realized through synthetic strain fields and ultracold matter.
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Chapter 5

Conclusions and perspectives

Relativistic Landau levels physics emerging in strained honeycomb lattices was central in
this thesis. On the one hand, we focused on a probing method exploiting the valley Hall re-
sponse enabling the detection of the Landau level physics. On the other hand, we proposed a
model that reproduces this physics with an ultracold atomic mixture in a optical honeycomb
lattice.

Chapter 2 introduced key notions at the core of this work. After introducing the Hall ef-
fect,the Landau levels, as well as the Widom-Středa formula, we have described the tight-
binding model in a honeycomb lattice and how the latter (near-half filling) is intimately linked
to effective Dirac models. We also showed how to exploit this effective description in order
to derive the relativistic Landau level spectrum of the low-energy excitations of a half-filled
honeycomb lattice pierced by a magnetic field. We then showed that strain can be employed
to generate a pseudo-magnetic field and its associated (dispersive) relativistic Landau levels.
We also introduced the valley Hall effect and existing methods for its measurements. After-
wards, we briefly presented the Floquet theory and showed two basic examples illustrating the
renormalization of tunneling amplitudes, one of which leading to density-assisted tunneling.
We continue on weakly-interacting Bose gas and detail the necessary conditions to invoke the
mean-field approximation leading to the Gross-Pitaevskii equation. This introductory chapter
ended on a derivation of the Hubbard model and the discrete Gross-Pitaevskii equation for
ultracold bosons in optical lattices.

In chapter 3, we presented our proposal regarding a new probing technique based on a variant
of the Widom-Středa formula that relates the valley Hall response of a bulk density to strain
variations in a honeycomb lattice. We demonstrated that it is quantized in the regime of small
strain intensities (and that separately on each sublattice), and numerically proved it for dif-
ferent geometries and strain configurations. We also demonstrated that the quantization is
robust against disorder and independent of the presence of helical edge modes.
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Chapter 4 has been dedicated to our model meant to generate a pseudo-magnetic field induced
by artificial strain in rigid optical lattices. The strain is created through the coupling of two
atomic species, of which one is bosonic, living on a honeycomb lattice. The interspecies inter-
action is expressed by density-assisted tunneling processes that are responsible for inducing
the space-dependence into the hopping amplitudes of the other species, i.e. the strain. Assum-
ing that the bosons form a static BEC, a uniform and constant pseudo-magnetic field emerges
and the spectrum of the other species reproduces relativistic Landau levels. This is confirmed
by a numerical analysis where we compared this atomic mixture system to the usual strained
honeycomb lattice discussed in the two previous chapters. Then, we detailing the protocol to
Floquet-engineer the density-assisted tunneling amplitudes.

Perspectives

This thesis opens new research routes in different domains of condensedmatter physics. The
probing method employing the adaptedWidom-Středa formula described in chapter 3 calls for
experimental realizations in synthetic platforms such as molecular graphene [108, 179], opti-
cal tweezers arrays [189–193] or cold atoms in optical lattices [46, 74, 182–188]. Moreover, to
our knowledge, direct measurements of the valley Hall effect are still missing and the topo-
logical nature of the valley Hall effect still sparks intense discussions in the scientific com-
munity [30, 204]. Being able to measure this fundamental observable is primordial to deepen
our understanding of electrical and optical properties of valley-materials [205, 206] such as
mono- and multi-layer graphene, TMDs or ferro-electrics, notably employed for devices based
on valley-dependent (valleytronics [19, 20]) and strain-engineered (straintronics [207–209])
quantum Hall logical gates. Neglected so far, the effects of strained-induced electric fields or
non-linear strain could be analyzed [120,210–213]. Another possible path would be to include
particles interactions and investigate their consequences on the quantization of the valley Hall
response. Furthermore, it would be interesting to adapt our method in the context of fractional
Chern insulators produced in strained lattices [60–62].

While this thesis has focused on the two-dimensional honeycomb lattice which can effectively
be described by a spin-1/2 relativistic theory, interesting effects originating from pseudo-gauge
fields in higher-dimensional systems (e.g. Weyl semimetals [214] or high-order topological
insulators [215]) or taking place in higher-spin effective theories [216], may emerge. Therefore,
it offers the opportunity to explore consequences of strain and pseudo-gauge fields beyond
the paradigmatic honeycomb lattice (graphene-type) case. It could also be adapted to other
proposals for strain in square lattices [217]. Eventually, by further developing techniques to
realize tunable tunneling amplitudes in optical lattices in arbitrary geometries [218, 219], it
would allow to imprint any space-dependence into the tunneling amplitudes, leading not only
to new strain schemes and gauge field theories but also to effective models in curved spacetime
and quantum gravity [220, 221].
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Appendix A

Appendices of chapter 2

A.1 Derivation of Ĥ(k)
F [t0]

By expanding both sides of equation (2.107), the left hand side yields, up to the second order
of the exponent,

Û(t0 + T, t0) = T

{
e−

i
h̄

∫ t0+T

t0

Ĥ(t)dt

}

' T

{
1− i

h̄

∫ t0+T

t0

Ĥ(t1)dt1

+
1

2

(
−i
h̄

)2 ∫ t0+T

t0

dt1

∫ t0+T

t0

dt2Ĥ(t1)Ĥ(t2)

}

= 1− i
h̄

∫ t0+T

t0

Ĥ(t)dt

+
1

2

(
−i
h̄

)2 ∫ t0+T

t0

dt1

∫ t0+T

t0

dt2T
{
Ĥ(t1)Ĥ(t2)

}

(A.1)

Focusing only on the second order term, the time-ordering splits the integral as

∫ t0+T

t0

dt1

∫ t0+T

t0

dt2T
{
Ĥ(t1)Ĥ(t2)

}
=

∫ t0+T

t2

dt1

∫ t0+T

t0

dt2Ĥ(t1)Ĥ(t2)

+

∫ t2

t0

dt1

∫ t0+T

t0

dt2Ĥ(t2)Ĥ(t1).

(A.2)

From Ĥ(t2)Ĥ(t1) = [Ĥ(t2), Ĥ(t1)] + Ĥ(t1)Ĥ(t2), the full interval of integration in the first
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integral is recovered, as∫ t0+T

t0

dt1

∫ t0+T

t0

dt2T
{
Ĥ(t1)Ĥ(t2)

}
=

∫ t0+T

t0

dt1

∫ t0+T

t0

dt2Ĥ(t1)Ĥ(t2)

+

∫ t2

t0

dt1

∫ t0+T

t0

dt2[Ĥ(t2), Ĥ(t1)]

=

(∫ t0+T

t0

dtĤ(t)

)2

+

∫ t2

t0

dt1

∫ t0+T

t0

dt2[Ĥ(t2), Ĥ(t1)].

(A.3)

Taking the Fourier transform of Ĥ(t), that is

Ĥ(t) =
∑
l∈Z

Hle
ilΩt, (A.4)

terms in orders of Ω appear.

− i
h̄

∫ t0+T

t0

Ĥ(t)dt =− i
h̄

∑
l∈Z

Hl

∫ t0+T

t0

eilΩtdt = − iT
h̄
H0,

1

2

∫ t2

t0

dt1

∫ t0+T

t0

dt2[Ĥ(t2), Ĥ(t1)] =
1

2

∑
l,m∈Z

[Hm, Hl]

∫ t0+T

t0

dt2

∫ t2

t0

dt1e
iΩ(lt1+mt2)

=
−T
iΩ

∞∑
l=1

1

l

(
[Hl, H−l]

−[H0, Hl]e
ilΩt0 + [H0, H−l]e

−ilΩt0
)
.

(A.5)

Therefore,

Û(t0 + T, t0) =1− iT
h̄
H0 +

1

2

(
−iT
h̄

H0

)2

−

T

iΩ

(
−i
h̄

)2 ∞∑
l=1

1

l

(
[Hl, H−l] + [H0, Hl]e

ilΩt0 − [H0, H−l]e
−ilΩt0

) (A.6)

The right hand side of (2.107) yields

e−iĤF[t0]T/h̄ =e−i(Ĥ(0)
F [t0]+Ĥ

(1)
F [t0]/Ω+...)T/h̄

=1− i T
h̄
Ĥ

(0)
F [t0]−

iT
h̄Ω

Ĥ
(1)
F [t0]

+
1

2

(
−iT
h̄

Ĥ
(0)
F [t0]

)2

+
1

2

(
−iT
h̄Ω

)2 (
Ĥ

(1)
F [t0]

)2
+

1

2Ω

(
−iT
h̄

)2 (
Ĥ

(1)
F [t0]Ĥ

(0)
F [t0] + Ĥ

(0)
F [t0]Ĥ

(1)
F [t0]

)
+ ...

(A.7)
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By identifying terms in both expansions (A.6) and (A.7) in the following way,

Ĥ
(0)
F [t0] = H0 =

1

T

∫ t0+T

t0

Ĥ(t),

Ĥ
(1)
F [t0] =

∞∑
l=1

1

h̄l

(
[Hl, H−l] + [H0, Hl]e

ilΩt0 − [H0, H−l]e
−ilΩt0

)
,

(A.8)

one obtains the first order correction Ĥ(1)
F [t0] of the stroboscopic Floquet Hamiltonian. No-

tice that the remaining terms in (A.7) correspond to terms from a further expansion in (A.6).
The same reasoning can be applied to the (t0) gauge-independent Hamiltonian Ĥeff, follow-
ing [143]. Then, Ĥ(0)

eff = H0 and the first-order correction terms reads

Ĥ
(1)
eff =

∞∑
l=1

1

h̄l
[Hl, H−l]. (A.9)

A.2 Derivation of the renormalization of t

Here is presented the derivation of Hamiltonian Ĥrot (2.115) after the rotation

R̂(τ) = ei
[K0
h̄Ω

sin(Ωτ)n̂0+
K1
h̄Ω

sin(Ωτ)n̂1+mΩτn̂1

]
(A.10)

applied on Ĥ(τ) = Ĥ0 + V̂(τ), where

Ĥ0 = −tĉ
†
0ĉ1 − tĉ

†
1ĉ0 +∆n̂1,

V̂(τ) = K0 cos(Ωτ)n̂0 +K1 cos(Ωτ)n̂1.
(A.11)

From the Baker-Campbell-Hausdorff lemma and since [n̂i, nj] = 0, ∀i, j = 0, 1,

R̂†ĤR̂ = −tR̂†(ĉ†0ĉ1 + ĉ†1ĉ0)R̂+ V̂(τ) + ∆n̂1. (A.12)

The matrix representations of R̂ and of the hopping terms of Ĥ0 are respectively given by

R̂(τ) = exp

(ĉ0
ĉ1

)†(iK0

h̄Ω
sin(Ωτ) 0

0 i
(

K1

h̄Ω
sin(Ωτ) +mΩτ

))(ĉ0
ĉ1

)
=

(
eiK0 sin(Ωτ)/h̄Ω 0

0 eiK1 sin(Ωτ)/h̄Ω+imΩτ

)
,

Ĥ0 =

(
0 −t
−t ∆

)
.

(A.13)
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Therefore,

Ĥrot = −tR̂†(ĉ†0ĉ1 + ĉ†1ĉ0 +∆ĉ†1ĉ1)R̂ − ih̄R∂tR†

=

(
0 −te−i(K0−K1) sin(Ωτ)/h̄Ω−imΩτ

−tei(K0−K1) sin(Ωτ)/h̄Ω+imΩτ 0

)
(A.14)

By averaging in time over one period T , we find

Ĥ
(0)
eff = −tJm

(
K0 −K1

h̄Ω

)
(ĉ†0ĉ1 + ĉ†1ĉ0). (A.15)

A.3 Identities used to derive Eq. (2.119)

In order to deduce the rotating Hamiltonian (2.119), we have employed the following iden-
tities:

eiβn̂j b̂j e
−iβn̂j = e−iβ b̂j, eiβn̂j b̂†j e

−iβn̂j = eiβ b̂† (j = 0, 1). (A.16)

where b̂(†)j is a bosonic annihilation (creation) operator at site j and

eiβn̂j n̂j b̂σ e−iβn̂j n̂j = e−iβ(2n̂j+1)b̂j, eiβn̂j n̂j b̂†j e
−iβn̂j n̂j = eiβ(2n̂j+1)b̂†j. (A.17)
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Appendix B

Appendices of chapter 4

B.1 Honeycomb geometry and normalization

In continuum space, the normalization, say toN , of a Gaussian ψ is defined as the integral
of the latter over space, as

N =

∫
dx|ψ(x)|2. (B.1)

In a honeycomb lattice, this integral transforms into a sum, which can be split based on the
sublattices, that is

N =
∑
xA

|ψA(xA)|2∆xA +
∑
xB

|ψB(xA)|2∆xB, (B.2)

where ∆xA = ∆xB = 3a/2. Then, remembering that

∑
xA

|ψA(xA)|2 =
∑
xB

|ψB(xB)|2 =
N↑

2
, (B.3)

because half of the particles live on each sublattice, one finds N = 3N↑/4. Therefore, the
honeycomb geometry can be taken into account by simply absorbing this 3/4 into the Gaussian
distribution, as done in Eq. (4.22).

B.2 Gross-Pitaevskii equation in the honeycomb lattice

Here is deduced the Gross-Pitaevskii equation in a ribbon Nx × 2 sites of the honeycomb
lattice with cylindrical boundary conditions along the y-direction – see Figure 2.8. The bosons
are described by the Bose-Hubbard Hamiltonian
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Ĥ↑ =− J
∑
r∈A,j

(
â†↑,rb̂↑,r+δj

+ H.c.
)
+
Vx
2

∑
r∈A,B

(x− xc)2n̂↑,r

+
U

2

∑
r∈A,B

n̂↑,r(n̂↑,r − 1)− µ↑

∑
r

n̂r,

(B.4)

where r = (x, y), δ1 = (−a, 0), δ2 =
(

a
2
,
√
3a
2

)
and δ3 =

(
a
2
,−

√
3a
2

)
, U is the intensity of the

repulsive interaction (U ≥ 0) between two bosons, Vx is a parameter related to the frequency
of the harmonic trap imposed along x and µ↑ is the chemical potential. Enforcing periodic
boundary conditions along y, we can apply the Fourier transform (2.93). Substituting into
(B.4) we obtain

Ĥ = −J
∑

x∈A,ky

[
â†x,ky

(∑
j

eikyδj,y b̂zj ,ky

)
+ H.c.

]
+
Vx
2

∑
x∈A,ky

(x− xc)
2 â†x,ky âx,ky

+
Vx
2

∑
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2 b̂†x,ky b̂x,ky +

U

2Ny
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x∈A

k1y ,k
2
y ,k

3
y ,k

4
y
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3
y+k4y
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†
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+
U
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x∈B
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y ,k

3
y ,k
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− µ↑

∑
x∈A,ky

â†x,ky âx,ky − µ↑

∑
x∈B,ky

b̂†x,ky b̂x,ky

(B.5)

where we defined zj ≡ x + δj,x ∈ B when x ∈ A and xc as the position of the system center.
We apply the mean-field approximation âx,ky → χA(x, ky) and b̂x,ky → χB(x, ky), yielding

E[χ] =− J
∑

x∈A,ky

[
χ∗

A(x, ky)

(∑
j

eikyδj,yχB(zj, ky)
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+ H.c.
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(B.6)
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Assuming that the condensed bosons all occupy the zero-momentum state (ky = 0), the energy
per unit length along the y-direction reads

E[χA, χB]

Ly

=− J
∑
x∈A

[
χ∗

A(x)

(∑
j

χB(zj)

)
+ H.c.

]
+
Vx
2

∑
x∈A

(x− xc)
2 |χA(x)|2

+
Vx
2

∑
x∈B

(x− xc)
2 |χB(x)|2 +

U

2

∑
x∈A

|χA(x)|4 +
U

2

∑
x∈B

|χB(x)|4.
(B.7)

where the factor 1/Ly has been easily eliminated by defining χ(x) →
√
Lyχ(x). The re-

maining Ly in the denominator to the left hand side reabsorbed into the energy functional by
defining E[χ] → LyE[χ]. Minimizing each energy contribution with respect to χ∗

A and χ∗
B

leads to

δEkin
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δχ∗
A(z)

∣∣∣∣
z=x

= U |χA(x)|2χA(x)

δEkin

δχ∗
B(z)

∣∣∣∣
z=x+δi,x

= −J
∑
j

χA(x+ δx,i − δx,j)

δEpot

δχ∗
B(z)

∣∣∣∣
z=x+δi,x

=
Vx
2
(x+ δx,i − xc)

2χB(x+ δx,i)

δEint

δχ∗
B(z)

∣∣∣∣
z=x+δi,x

= U |χB(x+ δx,i)|2χB(x+ δx,i).

(B.8)

Therefore the equation of motion is
− J

∑
j

χB(zj) +
Vx
2
(x− xc)

2χA(x) + U |χA(x)|2χA(x) = µ↑χA(x)

− J
∑
j

χA(zi − δj,x) +
Vx
2
(zi − xc)

2χB(zi) + U |χB(zi)|2χB(x) = µ↑χB(zi)

(B.9)

for every position x in the A-sublattice and zj ≡ x+ δj,x zk ≡ x+ δk,x in the B-sublattice.
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B.3 Numerically solving the Gross-Pitaevskii equation:
imaginary-time evolution method

To solve the time-independent GPE (B.9) on the honeycomb lattice and find the BEC distri-
bution, we have employed the imaginary-time evolution method [173]. Here, we explain the
general idea of this method: how it converges to the ground state and extracts its energy. For
that, take a state φ(x, t) (t is the time here) and express it in terms of the eigenvectors ϕi of
the HamiltonianHGP, defined by rewriting the GPE into a matrix formHGPϕ0 = µϕ0. Hence,
at t = 0,

φ(x, 0) =
∑
i

ciϕi(x) with ci ∈ C, HGPϕi = εiϕi. (B.10)

Besides, the wavefunction evolves in time as

φ(x, t) = e−iHGPtφ(x, 0) =
∑
j

e−itεjcjϕj(x)

= e−itε0

[
c0ϕ0(x) +

∑
j>0

e−it(εj−ε0)cjϕj(x)

]
.

(B.11)

By operating a Wick rotation τ = it, we see that at long times, τ → ∞, the second term
within the brackets will be exponentially small compared to the first term c0ϕ0 since εj > ε0,
thus

φ(x,−iτ) = e−τε0c0ϕ0(x) +O(e−2τ ). (B.12)

However, note that in complex time, the evolution is not unitary anymore since e−τHGP is
not a unitary operator. We therefore need to enforce the normalization of the wavefunction
during the whole evolution. This method proposes to use the non-linear Schrödinger equation
(after a Wick rotation)

∂τφ(x,−iτ) = −HGP[φ]φ(x,−iτ), (B.13)

to find the BEC wavefunction. We implemented an algorithm, whose pseudocode is shown in
Algorithm 1, to solve equation (B.13) starting from an initial state to the lowest energy-state of
HGP[φ], where φ0 is, for example, a Gaussian. Using a 4th-order Runge-Kutta (RK4) algorithm,
we calculate the time evolution of the wavefunction φ from τ to τ + dτ . Remembering that
HGP depends on φ at time τ , we plug φτ at each time step in order to compute φτ+dτ . For the
sake of concreteness, at first order in dτ , this reads
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φτ+dτ = e−HGP[φτ ]dτφτ

= φτ −HGP[φτ ]φτdτ +O((dτ)2).
(B.14)

The time-evolution stops when the maximum values of the particle densities are closer than
an arbitrary threshold ε.

Algorithm 1 Imaginary-time algorithm
1: Pick initial, normalized state φold, convergence limit ε and time-step dτ
2: while true:
3: φnew ← RK4(τ, φold, dτ)

4: φnew ←
φnew∑
‖φnew‖2

5: δr ← |max(‖φnew‖2)−max(‖φold‖2)|/max(‖φnew‖2)
6: if δr < ε :
7: break
8: endif
9: φold ← φnew

10: end while
11: φnew ← e−H[φnew]dτφnew = e−ε0dτφnew
12: ε0 = −

ln ‖φnew‖
dτ

13: returns ε0, φnew

Note that convergence conditions of the method have to be satisfied, which in our case sum-
marize to εmaxdτ � 1 [173], where εmax is the largest eigenvalue ofHGP. In conclusion, starting
from an arbitrary φ0, the state occupied by the system tends to the eigenvector ofHGP associ-
ated to the lowest eigenvalue when τ →∞, i.e. φ∞ → ϕ0. Therefore we find

φτ+dτ = e−Hdτφτ = e−ε0dτφτ . (B.15)

By taking the norm at both hand sides, since
∑

i |φ
(i)
old|2 = 1 (φnew is not renormalized yet), we

find

‖φnew‖2 = e−2ε0dτ , (B.16)

thus

ε0 = −
ln ‖φnew‖

dτ
. (B.17)
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B.4 Density-assisted tunneling in the case of a mixture in
a double-well

The Hamiltonian of the mixture in the double-well investigated in section 4.4.1 reads

Ĥ↑ = −Jĉ
†
↑,0ĉ↑,1 − Jĉ

†
↑,1ĉ↑,0 +

U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1),

Ĥ↓ = −tĉ
†
↓,0ĉ↓,1 − tĉ

†
↓,1ĉ↓,0 +∆n̂↓,1 +∆0 cos(Ωτ)n̂↓,0,

V̂(τ) = U↑↓ cos(Ωτ)
(
n̂↑,0n̂↓,0 + n̂↑,1n̂↓,1

)
,

(B.18)

with ĉ†σ,i (ĉσ,i) the creation (annihilation) operator of the σ =↓, ↑ particle. The parameters ∆
and U↑↓ are the energy imbalance between the wells and the interspecies interaction strength,
respectively. Following a similar reasoning as in section 2.8.3, the transformation to the rotat-
ing frame reads

R̂ = exp
{
i
[
U↑↓n̂↑,0

h̄Ω
sin(Ωτ)n̂↓,0 +

U↑↓n̂↑,1

h̄Ω
sin(Ωτ)n̂↓,1 + Ωτ n̂↓,1 +

∆0

h̄Ω
n̂↓,0 sin(Ωτ)

]}
.

(B.19)
Applied on the Hamiltonian (B.18) as prescribed by (2.115), it results into

Ĥrot(τ) =R̂Ĥ(τ)R̂† − ih̄R̂∂τR̂†

=− t eiU↑↓ sin(Ωτ)(n̂↑,0−n̂↑,1)/h̄Ω−iΩτ+i∆0 sin(Ωτ)/h̄Ω ĉ†↓,0ĉ↓,1

− J eiU↑↓ sin(Ωτ)(n̂↓,0−n̂↓,1)/h̄Ω ĉ†↑,0ĉ↑,1 + H.c.

+
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1),

(B.20)

after using the identities (A.16), which are identical for fermionic operators. After averaging
over a driving period T = 2π/Ω, one eventually finds

Ĥ
(0)
F =− tJ1

(
U↑↓(n̂↑,0 − n̂↑,1) + ∆0

h̄Ω

)
ĉ†↓,0ĉ↓,1

− JJ0

(
U↑↓(n̂↓,0 − n̂↓,1)

h̄Ω

)
ĉ†↑,0ĉ↑,1 + H.c.

+
U

2

1∑
i=0

n̂↑,i(n̂↑,i − 1).

(B.21)
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