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Abstract
A renormalization approach to the Liouville quantum gravity metric

Hugo Pierre Falconet

This thesis explores metric properties of Liouville quantum gravity (LQG), a random
geometry with conformal symmetries introduced in the context of string theory by Polyakov in the
80’s. Formally, it corresponds to the Riemannian metric tensor “e?*(dz? + dy?)” where h is a
planar Gaussian free field and v is a parameter in (0,2). Since h is a random Schwartz distribution
with negative regularity, the exponential e only makes sense formally and the associated volume
form and distance functions are not well-defined. The mathematical language to define the volume
form was introduced by Kahane, also in the 80’s. In this thesis, we explore a renormalization

approach to make sense of the distance function and we study its basic properties.
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Chapter 1: Introduction

A central theme in statistical mechanics and probability theory is to understand complex systems
of a large number of microscopic elements interacting which each others and subject to noise. As the
number of constituents of the system increases (or when one zooms out), a new structure emerges,
called scaling limit. Proving this convergence and understanding the properties of the limit is crucial
as it gives information on the large random discrete structures themselves. Interaction rules are
typically encoded by various parameters such as the temperature of the system. Macroscopic changes
may appear at a critical state as those parameters vary, leading to the notion of phase transition. In

two dimensions, scaling limits of many critical systems become statistically conformally invariant.

The renormalization group (RG), pioneered by K. G. Wilson, is a method in theoretical physics
to study renormalization, scaling limits and the phase transitions of statistical mechanics models.
The method roughly works as follows. The first step is to introduce a map from a model at one
scale to another model at a larger scale (the RG map) so that fixed points of the RG map are scale
invariant. Different models belong to the same universality class if under iteration of the RG map
they converge to the same fixed point. Models in the same universality class share many large scale
properties, revealed by the RG map in the neighborhood of their fixed point. This method, though

extremely fruitful in physics, is difficult to implement rigorously.

This thesis studies a renormalization approach to define the Liouville quantum gravity metric,
a distance function associated with canonical random surfaces with conformal symmetries. This
metric is expected to describe the scaling limit of distances in discrete random surfaces called

random planar maps.



1.1 Random planar maps and planar statistical mechanics models

Uniform planar maps. A planar map is a graph embedded on a surface viewed up to orientation-
preserving homeomorphisms and here we only consider the case where the surface is the 2-sphere.
Simple families of planar maps are triangulations and more generally p-angulations for which
each face has p-edges. Random planar maps (RPM) are planar maps sampled according to a
probability measure and when constraining the number of faces to be IV, the canonical probability
measure is the uniform one. These RPM carry a structure of metric spaces with the graph distance
and their universal scaling limit is described by the Brownian map, in the sense of the Gromov-
Hausdorff convergence of compact metric spaces (or rather isometry classes of compact metric

spaces) |51, 73H75, 78].

Such results are possible due to combinatorial observations: there exist bijections between some
families of random planar maps and some families of discrete trees whose vertices are assigned
integer labels. For these bijections, labels are related to graph distances from a distinguished vertex
in the associated planar map. The rescaled tree associated with a large random planar map is an
approximation of the Continuous Random Tree introduced by Aldous and the labels on this tree
behave as a conditionally independent Brownian motion indexed by the tree: this leads to a natural
description, directly in the continuum, of the Brownian map. This metric measure space is rough:
its Hausdorff dimension is 4 but it is homeomorphic to the 2-sphere. Also, geodesics that start from

the same typical point coincide on a non-trivial interval, contrary to those in Riemannian manifolds.

Planar statistical mechanics models at criticality and conformal invariance. We discuss
here some planar statistical mechanics models on deterministic lattices and recent results on their
conformal invariance at criticality. These models can be used to construct new laws on planar maps
and these are expected to be related with Liouville quantum gravity, which is described below.
Before their mathematical resolution, conjectures about these arose in physics and were studied
numerically or with the methods of conformal field theory (CFT). Two important models that have

been studied in great details are percolation and the Ising model.

We begin with percolation. Vertices, say of the triangular lattice T, are open or closed with



probability p € (0,1) independently of each others. For p small, there is almost surely no infinite
cluster formed by open vertices whereas for p large enough there is almost surely a unique one. A
phase transition separating this existence result occurs at p = p. = % At this critical probability,
several observables become scale invariant. This is the case of the probability of the existence of
an open crossing between two marked sides, say (AB) and (CD) of the boundary 92 of a simply
connected domain 2 in the discretization €T N 2: this probability converges when € — 0 to a value
in (0,1). This was proved by Smirnov in |[105] and this value is given by the Cardy formula. A
striking feature of the Cardy formula is not the fact that it is an exact formula but rather that the
formula is conformally invariant: considering the image of €2 by a conformal map f, as well as the
image of the marked arcs and the percolation model associated with this new domain, the limiting

crossing probability is the same.

The Ising model is a spin model for which the spins take values in {—1,+1}. Contrary to the
Bernoulli percolation model which possesses exact independence, spins are correlated and tend to be
aligned since the Hamiltonian defining the model is proportional to 3 mey(agj — 0y)?%, where 8 is
the inverse temperature of the system. This model exhibits a phase transition which can be phrased
as follows: above some temperature, there is a loss of spontaneous magnetization. Mathematically,
this translates as follows: when imposing +1 boundary condition on a discretization of a domain,
the macroscopic effect of this boundary condition disappears as the mesh size of the lattice vanishes.
Smirnov [107] and Chelkak and Smirnov [20] proved the conformal invariance of certain observables
called “fermionic observables” at criticality. This paved the way to establishing the scaling limit
of correlations associated with the spin field and their transformation rules under conformal maps
in [19]. Independently and at about the same time, a different approach was taken in [36] using a

relation with dimers (in particular, building on [37] and Kenyon’s works).

Schramm Loewner Evolutions and Conformal Loop Ensembles. Interfaces between open
and closed clusters in percolation or —1 and +1 spins in the Ising model turn to be conformally
invariant in the scaling limit, in the same sense that the trace of the two-dimensional Brownian
motion is conformally invariant. However, it is difficult to show this convergence and this was a

challenging problem for some time.



Aizenman and Burchard provided in [2] a sufficient condition to obtain the tightness of the
family of random rescaled curves. This condition is implied by the so-called Russo-Seymour-Welsh
(RSW) estimates which arise in percolation theory or in the study of the Ising model at criticality.
They express uniform bounds between the probability of the existence of a left-right crossing path
of [0,aN] x [0, N] for a < 1 and the probability of the existence of a left-right crossing path of
[0,6N] x [0, N] for b > 1 (a crossing path refers to a path of open sites in percolation and interface
between opposite spins for the Ising model, see [94,95,98,/110] for percolation and [18./42] for the

Ising model).

The limits are part of a larger one-dimensional family of curves (indexed by x > 0), called
Schramm-Loewner evolutions (SLE,) in the case of non-self-crossing curves joining two marked
points in a simply connected domain 2 and Conformal Loop Ensembles (CLE) in the case of
nested loops in 2. Both are characterized by their conformal invariance and domain Markov
property [961/101,/103]. The convergence of critical interfaces towards these curves became accessible

after the works of Smirnov on the conformal invariance of critical models (see, e.g., [106]).

Random planar maps weighted by statistical mechanics models. Uniform RPM converge
to the Brownian map. This universality class corresponds to “pure gravity” in the sense that it
is not decorated by any model of statistical mechanics (or, rather, simply by a non-interactive
model such as percolation). Natural other RPM models are obtained by using some interactive
models of statistical mechanics such as the Ising model. One gets a probability measure on (map,
configuration on this map) and, forgetting about the configuration, the marginal on maps M is
proportional to the partition function Z(M, ) of the model considered on M. When the inverse
temperature [ is set at criticality, it is believed that the scaling limit of this object is connected to
Liouville quantum gravity, a one parameter family of surfaces indexed by « € (0,2) where v = \/§
corresponds to “pure gravity”. Typical distances in such planar maps are therefore expected to be

described by d,, the dimension of v-LQG.

One can also generate maps by favoring some of their geometric properties. Indeed, instead of
considering only a random planar map M, one can consider (M, T) where T is a spanning tree of

M. Forgetting about the tree gives a probability on maps weighted by their number of spanning



trees. It is also natural to consider directly the probability measure on maps which is proportional
to the number of spanning trees of the map with some power: this gives a ways to favor maps with a
large or small number of spanning trees. By Kirchoff’s matrix-tree theorem, the number of spanning
tree can be expressed by using the determinant of a Laplacian. It is expected that the partition
functions of many statistical mechanics models at criticality behave asymptotically like powers of
the determinant of the discrete Laplacian (they appear in particular in the partition functions of

SLE,, themselves allowing couplings of several SLEs with the Gaussian free field [35]).

Scaling limits of conformally embedded random planar maps. One version of Liouville
quantum gravity would be to consider the scaling limits of these models: by embedding them in
some domain and showing that the associated measure and metric converge with respect to the
weak and uniform topologies. However, this direction of research remains wide open, up to one
exception: Holden and Sun [64] constructed an embedding (which they called the Cardy embedding
and which is related to the Cardy formula mentioned above) and proved such a convergence result

towards “pure gravity” in the case of uniform random planar maps.

1.2 Liouville quantum gravity

The version of Liouville quantum gravity we will consider is not the one given by random planar
maps weighted by det(—A)_C/ 2 but rather a continuum version phrased using only the Gaussian free
field as considered mathematically in the work [44] by Duplantier and Sheffield. In this version, one
considers the formal Riemannian metric tensor “e?(dz? + dy?)” where h is a planar Gaussian free
field and ~ is a parameter in (0,2) (these two different perspectives were considered in the physics
literature, see 6] for a recent discussion). The relation between the two approaches is expected to

be given by ¢ = 25 — 6(2/v + v/2)2.

Suppose given a metric tensor ds? on a two dimensional Riemannian manifold X. Then, under
mild assumption, locally, it can be represented using isothermal coordinates by ds? = p(du? + dv?)

for some smooth p > 0 and the associated conformal factor ¢ is given by p = e?. Using the complex



coordinate z = u + iv, the volume form and distance function are locally given by

e g2, and inf / e%ds.

TT—=Y

In what follows, we will be interested in the case where the conformal factor ¢ is a random Schwartz
distribution with negative regularity, given by vh. The volume form and distance function will be

given formally by
~h
M2 g2, and  inf / et ds, (2.1)

T:T—Y

where d, > 2 will be the almost sure Hausdorff and Minkowski dimension of the v-LQG.

Gaussian free fields. Gaussian free fields (GFF) are a generalization of Brownian motion to a
higher dimensional indexing space, appear as the universal scaling limit of various random discrete
surfaces [231/68|/79,88] and play a fundamental role in mathematical physics, in particular in Quantum

Field Theory [50,/104]. Formally, they are measures on fields h defined on a domain D such that

p(dh) o exp (—0—2 /D |Vh|2d)\> Dh (2.2)

where Dh is the (formal, infinite dimensional) Lebesgue measure on fields (which does not exist) and
o is a positive number. They can be realized as random Schwartz distribution and their covariance
kernel is given by (a multiple of ) the Green function associated with the Laplacian. In two dimension,
they belong to the class of log-correlated Gaussian fields for which the covariance kernel is given
on the diagonal by E(h(x)h(y)) = —log |z —y| + O(1) and are conformally invariant measures, as
inherited from the Dirichlet energy [;, |[Vh|*d\. Furthermore, the field has an important domain
Markov property. (See [35),100,/113] for more on the GFF.)

Gaussian multiplicative chaos and Liouville measures. Gaussian multiplicative chaos
(GMC) is the study of random measures of the form ¢¥?o(dz) where v € (0,v/2d) is a parameter, ¢
is a log-correlated Gaussian field on a domain D in R? and o(dz) is an independent measure on D
(in our case, o will be typically absolutely continuous w.r.t. the Lebesgue measure). Due to the

lack of regularity of ¢, this does not make readily sense. Typically, one consider the approximating



2
measures (g, (dz) = 19=(:)="5 Varé=(2) () where ¢-(x) denotes some regularization of ¢ at the

space scale €.

A simple application of Fubini theorem and a Gaussian computation show that the average total
mass of these measures is conserved. With slightly additional work, one finds that the family of
total masses is uniformly integrable. The renormalizing constants are here explicit functions of the
covariance kernel of the log-correlated field. When we will be studying the metric associated with
such fields rather than the measure, analog estimates can no longer be obtained in the same way.
GMC theory [13,44,/67,93,99] shows that 1145, converges in probability towards a Borel measure
g on D for the topology of weak convergence and the limit is independent of the approximation
scheme. Two properties are clear from the form of the above limit: pg4 is locally determined by ¢
and, for any random continuous function f, pe4 f(dx) = e/ (@) p(dx). This latter property is at the

heart of a useful characterization of GMC measures due to Shamov in [99].

When the dimension is two and the field is the GFF, these measures are called Liouville quantum
gravity measures and were studied by Duplantier and Sheffield in [44] who proved the convergence

pn(dz) = lim e 2e1he(2) gy
e—0

for the circle-average approximation of the field. Furthermore, they proved that pj satisfies a
conformal coordinate change formula: if f : D — D’ is a conformal map then, almost surely,
Jebh = Bhog-14Qlog|(f-1)| Where

Q="+

N2

(2.3)

2w

Two pairs (D, h) and (D', h') which are related by a conformal map as above are considered as
being two different parametrizations of the same LQG surface. Thus the coordinate change formula
for up, says that this measure depends only on the quantum surface, not on the particular choice
of parametrization. These measures are singular with respect to the Lebesgue measure and are

supported on a set of Hausdorff dimension 2 —v%/2. (See [8,/12}/90] for more on this.)

Liouville or GMC measures have been at the core of the definition of LQG surfaces (still without
distance function). In particular, it paved the way to Liouville Conformal Field Theory (LCFT),

beginning with the 2-sphere in [22] and extended to many other Riemann surfaces later on. The



reason is that LCFT consists in reweighting the distribution of the Gaussian free field on the
2-sphere (or other surfaces) by the missing terms of the Liouville action functional, which includes
the total mass of a GMC measure. This produces a family of (non Gaussian) probability measures
on fields. The focus of the theory is on correlation functions, i.e., product of vertex operators
Val(z) = e®"(@) and in particular on the way correlations behave under conformal changes of metrics,
differential equations they satisfy and exact formulas [52,/69./70]. Beyond the relation with Conformal
Field Theory, the importance of these works, in particular in the perspective of this thesis, is to
make precise conjectures describing the scaling limits of random planar maps. (See [91,/112] for

introductions to this topic.)

Quantum Loewner evolutions and the %—LQG metric. Another approach is Sheffield’s
theory of quantum surfaces decorated by Schramm-Loewner Evolutions, initiated in [102]. In
particular, [43] constructed Liouville quantum gravity on the 2-sphere (this construction and the
one in LCFT is equivalent, as proved in [9]) together with a space-filling curve and proved that this
corresponds to a mating of coupled Continuum Random Trees. This provided a precise geometric
understanding of Liouville quantum gravity and played an important role in the series [81-83,86]
which constructed a metric for LQG in the case v = \/% and proved its equivalence with the
Brownian map. A key part in this program was played by the definition of a growth process called
quantum Loewner evolution (QLE) in [83], whose construction is based on couplings between SLE
curves and the GFF and SLE explorations. In particular, they showed that, in a specific case, this
process represents growing metric balls of a metric and defined the distance between two points to

be the time taken by this process to travel from one point to the other.

1.3 Liouville first passage percolation and the LQG metric

Liouville first passage percolation (LFPP) metrics refer to the distance functions associated
with any approximation of the Gaussian free field. This direction of research was initiated by
Ding and his collaborators and focused essentially on a discretization of the problem using the
discrete Gaussian free field (DGFF). These early works, in the small v regime, focused on estimating

distances and studying qualitative property of the distances such as the fractal behavior of geodesics



arising in the scaling limit (see, e.g., |27,28.[31},33.[34] ).

Ding and Dunlap [25], still using the DGFF, showed that it is possible to renormalize the metrics
(when ~ is small enough) so as to obtain the existence of subsequential limits. Their approach uses
a multiscale analysis to bound inductively a specific measure of dispersion given by the coefficient
of variation. A key tool to achieve this is the Efron-Stein inequality, which bounds from above
the fluctuation of a random variable of the form F(X3, ..., X,) with independent entries by a sum
involving the influence of each variable in F. Along the way, they needed to prove Russo-Seymour-
Welsh estimates associated with the side-to-side crossing distances of rectangles with various aspect
ratio. Their method to prove these estimates is inspired by the work of Tassion [110]. However, the

assumption 7 small is already used for these estimates.

A ubiquitous theme in this thesis is the multiscale analysis with the Gaussian free field. The
domain Markov property of the field implies the following. Divide a square into four subsquares,
then, conditionally on some binding field which is harmonic in each subsquare, the restrictions of the
field in each of these are independent and distributed according to a O-boundary GFF. Repeating
this decomposition provides a branching random walk type approximation which, in many situations,
is nice enough to develop a multiscale analysis. However, this decomposition introduces a boundary
effect throughout the decomposition, the need to control the binding field and each building block

is (up to rescaling) associated to the specific choice of the unit square.

*-scale invariant fields. The lack of a priori symmetries of the discrete Gaussian free field
becomes a hurdle at the level of metrics. In Chapter 2, which is based on a joint work with Julien
Dubédat [38], we study Liouville metrics associated with a *-scale invariant Gaussian field with
finite range correlation. They provide a simpler framework without binding field but rather with
independence between scales and without boundary effects. They admit an ideal scale decomposition
which simplifies the multiscale analysis: ¢ = Zkzo ¢, where the ¢;’s are independent, smooth and
distributed as ¢o(2*-) and ¢g has a finite range of dependence, i.e., for some constant ¢, ¢o(z) and
¢o(2') are independent when |z — 2’| > ¢. These fields have a canonical regularization which is to

consider a cutoff at a small scale in their scale decomposition: in particular, set ¢p, , = Zno <ji<n Pk-



One can also represent the field with a space-time white noise

= [ ) = [ (55)

where W is a space-time white noise and k is a bump function. This representation opens the use
of Gaussian analysis at the level of the white noise and coupling arguments. Chapter 2 provides
in particular Russo-Seymour-Welsh estimates for Liouville metrics associated with this field which
hold for every parameter . It also investigates properties that should hold in the limit such as
tail estimates and the consistence with the Weyl scaling. It also revisits some steps to prove the

tightness of the metrics. We provide below some ideas of proof.

Multiplicativity of geodesics. When considering the length metric e7%0:2nds, one expects that
geodesics satisfy the following: their ~ 27" coarse grained version is a quasi-geodesic for ¢q
and on a block of size &~ 27" they essentially follow geodesics for e¥®»2n. This is motivated from
the decomposition e7?0.2n = YP0.ne¥Pn.2n ¢0,» having mild oscillation at the scale 27" and the
restrictions of the field ¢, 2, in two separated blocks at this scale are independent. From such a
multiplicativity, one would naturally expects the existence of a scaling limit. In fact, it is difficult
to show in great details that coarse grained geodesics are quasi-geodesic of a regularized version
of the field. However, the representation of the distance using minimizing paths and planarity
arguments are useful in the analysis. To obtain an upper bound on distances, because of the
definition of the metric as an infimum over admissible paths, one can pick any them, among which
one associated with the previous ansatz. When doing so, one ends up by concatenating together
geodesics associated with long rectangle crossing distances (left-right crossing distance of a rectangle
isometric to [0, a] x [0,b] with a > b). It is possible to obtain a similar but weaker lower bound,
which involve rather a minimum over short rectangle crossing distances. This distinction between

thin and long rectangle crossing distances is the reason of the need of some RSW type estimates.

Russo-Seymour-Welsh estimates. We first study the effect of a conformal map on the x-scale
invariant field and prove a coupling result between ¢, 3 o F' and ¢, 5, where the subscripts represent

scales between a and b. Intuitively, ¢, o F' should be approximately distributed like “¢q/p/| p/F/|”
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which itself can be decomposed as ¢q/|r/|,q + Pap — Ppp/rr|- When |[F'| > 1, we prove such a
decompoition where the high frequency field is independent of ¢, ;. This relies on the independence
of different scales of the field. With this result, we compare quantiles associated with long and
thin rectangle crossing distances, uniformly in the approximating scale. A crossing path of thin
rectangles implies a crossing path at lower scales of rectangles with the same aspect ratio (important
for the hypothesis |F’| > 1) and the rectangle crossing at a smaller scale implies a crossing of marked
sides of a thin ellipse at that scale. Then, one can map the crossing between marked sides of this
thin ellipse to a crossing of a longer one at the initial scale. To send arcs from the small ellipse
to those of the larger one, one can subdivide the marked sides. Finally, the coupling result when
applying the conformal map is the key to compare left and right tails of rectangle crossing distances

associated with different aspect ratio.

Percolation arguments and tail estimates. Recall the branching random walk approximation
of the GFF. When one forgets about the binding field, then it remains only independent copies of
0-boundary GFF in distinct blocks. One can consider independent events in each of these blocks.
When the probability of each event is 1 — p for p small, then with very high probability, it is possible
to find a path from the left to the right of the unit square for which the events occur on each block
traversed. To provide estimates for the original problem, one adds back the coarse field and typically
use some rough estimate for it. With the x-scale invariant field with finite range of dependence, the
coarse field is independent from the fine field and this later one has built in independence properties,

thereby offering a nice framework for this type of argument.

Thanks to the Russo-Seymour-Welsh estimates, it is enough to study a single macroscopic
length observable, the side-to-side distance of a square, denoted by L,,. Quoting from [109],“the
concentration of measure phenomenon roughly states that, if a set A in a product Qv of probability
spaces has measure at least one half, “most” of the points of QY are “close” to A”. Following this

principle we prove tail estimates for log(Ly,, /A, ), where )\, is the median of L,,, which are relative to

A,, = max Lk (p)

k<n Li(p)’

where £,,(p), ,(p) are the p-quantile and (1 — p)-quantile of L,, and p is a fixed constant. The
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maximum A, is itself a measure of dispersion that we want to bound inductively. The proof relies
on this percolation estimate / rough estimate for the coarse field argument by using the following
type of events: for right tails, one can glue together long rectangle crossings associated with the fine
field for which the distance is small and for the left tails, one can consider blocking paths from the

top to bottom on consisting of thin rectangle crossing distance for which the distance is large.

At the time Chapter 2 was about to be completed and following results on Liouville graph
distance in [32] (a natural regularized distance function associated with LQG using the LQG
measure), Ding and Gwynne [28] showed the existence of an increasing function d. called “the
fractal dimension of LQG” defined on (0,2). This non-explicit deterministic function arises from a

subadditivity argument. They proved in particular that the map v — v/d, is increasing and used

= (3.4)

A
d'Y

as the parameter associated with the LQG length functional in (2.1). What is crucial in [2§] is
not that there is an abstract exponent associated with distances but that this exponent has a
representation: it is showed that Euclidean macroscopic distances associated with ef"<ds are of

order £17¢@+e(1) where Q = 2/ + /2 and where h. denote the GFF circle-average approximation.

In Chapter 3, which is based on a joint work with Jian Ding, Julien Dubédat and Alexander
Dunlap, [24], we study the original problem involving the Gaussian free field and we regularize it
by using a mollification with the heat kernel. The main result of this chapter is the existence of

b

non-trivial subsequential limits corresponding to “e?*(dz? + dy?)”, in the range of v for which a

metric bi-Holder with respect to the Euclidean metric was conjectured to exist.

The proof uses a coupling between two fields: one denoted by 3 with local independence
properties (useful for percolation type arguments and in the geometric considerations arising from
the Efron-Stein inequality) and another one, denoted by ¢ with better scaling properties (for simple
scaling arguments but also when studying the effect of conformal transformations for the RSW

estimates). We consider the smoothed Gaussian fields defined for x € R? and 6 € (0,1) by
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where W is a space-time white noise, p; is the two-dimensional heat kernel, oy = r9v/t|logt|*® and
., () := ®(-/0y) for a bump function . The GFF on a compact domain and mollified by the heat

kernel at time ¢/2 is comparable with ¢ i 1n the bulk. @5 and 5 are also comparable.

Bounds on dispersion and tightness of metrics. To simplify the discussion, we consider only
one field ¢, as above. The Gaussian Poincaré inequality provides an a priori bound for Ax for any
base scale K and to study the effect of small scales, we use the Efron-Stein inequality, relying on
the product space distribution offered by a block decomposition of the white-noise. The analysis
turns to the following condition. Denote by m, a left-right geodesic of the unit square associated
with the field ¢g,, and by 7% its ~ 27K coarse graining. The condition asks for a uniform (in n)
exponential decay (in K) of ||eY?0.x HLz(WTIf)/HeWO»KHLl(Fff). In words, this is ensured if one can
prove that the weight of a geodesic is not essentially supported on a small number of coarse blocks.
This Efron-Stein bound at the level of variance transfers at the level of quantiles and provides an
inductive inequality for A,, which, together with the a priori bound, is enough to conclude. The
tightness of the renormalized logarithm of the side-to-side distances is the starting point to study

the tightness of metrics by using chaining arguments.

In Chapter 4, which is based on a joint work with Julien Dubédat, Ewain Gwynne, Joshua
Pfeffer and Xin Sun [39], we continue to study the properties that the conjectural unique limit
should have, as in Chapter 2 with the Weyl scaling and uniform tails. We work with the whole-plane
GFF, which offers nice invariance properties. The chapter contains two parts. The first one consists
in showing the existence of a distance function associated with the whole-plane GFF that satisfies
a specific set of properties. In the second part, we consider an abstract metric satisfying these

[43

properties as axioms, which we call a “weak LQG metric” and we derive basic properties of this
metric using only these axioms. The list of axioms is a natural one expected to characterize the
LQG metric, at the exception of a “tightness across scales” property instead of a scaling property.

In particular, we show that such metrics are bi-Hélder w.r.t. the Euclidean metric and derive tails

estimates for side-to-side distances, point-to-point distances and for the diameter of a set.

Weak LQG metrics. A random distribution h on C is a whole plane GFF plus a continuous

function if there exists a coupling of A with a random continuous function f : C — R such that
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the law of h — f is that of a whole-plane GFF. The whole-plane GFF is defined only modulo a
global additive constant, but this definition does not depend on the choice of additive constant.
For v € (0,2), a weak v-LQG metric is a measurable function h — Dy, from D’(C) to the space of
continuous metrics on C such that the following is true whenever h is a whole-plane GFF plus a

continuous function.

I. Length space. Almost surely, (C, Dy) is a length space, i.e., the Dj-distance between any

two points of C is the infimum of the Dp-lengths of continuous paths between the two points.
II. Locality. Fix an open set U. The Dp-internal metric Dy(-,-;U) is determined a.s. by hly.

III. Weyl scaling. For each continuous function f : C — R, define

P:z—w

len(P;Dy)
(e*) - Dp)(z,w) := inf / TP gt vz w e C,
0

where the infimum is over all continuous paths from z to w parametrized by Dj-length. Then

a.s. e&f . Dy = Dy, ¢ for every continuous function f: C — R.
IV. Translation invariance. For each deterministic point z € C, a.s. Dy(.y.) = Di(- + 2, + 2).

V. Tightness across scales. Suppose that h is a whole-plane GFF and let {h,(2)},>0.cc be
its circle average process. For each r > 0, there is a deterministic constant ¢, > 0 such that
the set of laws of the metrics ¢ 'e=¢" () Dy (-, 1) for r > 0 is tight (w.r.t. the local uniform
topology). Furthermore, the closure of this set of laws w.r.t. the Prokhorov topology on
continuous functions C x C — [0, 00) is contained in the set of laws on continuous metrics on
C (i.e., every subsequential limit of the laws of the metrics ¢, le=¢h(0) D, (r,r) is supported
on metrics which induce the Euclidean topology on C). Finally, there exists T > 1 such that

for each § € (0,1), 7 > 0, Y7167 < ¢5./c, < Y5 L.

The existence of weak LQG metrics strongly relies on the tightness of Liouville first passage
percolation metrics and the tightness across scale property is fundamental to provide a uniform

control on the distribution of observables at scale r in terms of simple functions of the field.

Based on these previous works, Gwynne and Miller completed the construction of the LQG

metric. [57] shows that subsequential limits are measurable w.r.t. the free field (and therefore
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that weak LQG metrics can be taken as measurable w.r.t. the free field). The article [58] studies
confluence properties of the geodesics associated with weak LQG metrics. This is an essential input
in [59] to prove that weak LQG metrics are unique in law. As a corollary of this uniqueness result,
they obtained exact scaling of the metric in [59] and conformal symmetries of the metric on bounded

domains in [56]. Altogether, this Liouville quantum gravity metric D, satisfies the following:

1. Dy, is almost surely bi-Holder with respect to the Euclidean metric.

2. Weyl scaling: if f is a continuous function, then Dy s = e . Dy,

3. Coordinate change: if f: D — D’ is a conformal map, then f,D) = Dior-14Q10g|(f-1Y)-
4. The Hausdorff dimension of this metric space is almost surely given by d.

5. Confluence: two geodesics that start from the same typical point share a non-trivial arc.

In Chapter 5, which is based on a joint work with Morris Ang and Xin Sun [5], we study the
LQG volume of LQG metric balls and prove that d, is the Minkowski dimension of LQG. To obtain
this result, we prove moment estimates for the volume of metric balls. Namely, if B is a metric
ball centered at a fixed point with a given radius, we prove that u,(B) admits finite p-moments
for every p € R. This is different from the volume of an Euclidean ball for which the finiteness of
moments only holds for p < 4/+2. We use this estimate to prove that, for any compact K C D, for

e € (0,1), almost surely,

D :D
sup sup BhPs\% Zh)) (Bs(2 Dn)) < oo and inf inf Eh\Bs\% h)) (Bs(2 Dn))

> 0.
5€(0,1) 2€K sh—e s€(0,1) 2€K gdyte

This result was known in the case of the Brownian map [74]. The study of moments of GMC
measures for Euclidean balls is a classical result and its proof was used in other problems in the
field. In our setup, the structure of the volume of metric balls is quite different and our techniques
can be used in other setups as well. In particular, this is the case for the first exit time of Liouville
Brownian motion (LBM) from metric balls. The Liouville Brownian motion is a diffusion process
which is defined as an appropriate time change of the planar Brownian motion. In chapter 5, we

prove estimates similar to the volume of metric balls ones for the first exit time of the LBM from a
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metric ball. Our result says that when starting a LBM at any point z, its exit time from a unitary

metric ball has finite p-moments for every p € R and its exit time from B (z; Dy,) is of order s%.

Positive moments. Denote by B1(0; Dp) the unit v-LQG metric ball and by A; the annulus

B1(0)\B1/2(0). We explain why E[u(B1(0; Dy) N A1)¥] < oo for every k > 1. The starting point is

to rewrite it via a Cameron-Martin shift, as

/(A " expw? Z Cov(h(z), h(zj)))}P’ D;H_sz Cov(h(zj)’h(.))(o, zi) < 1,Vi|dz ...dz.
1

1<j

Since h is log-correlated, this is bounded from above by the following proxy

P217~~-7Zk — )
/AI1€ Hi<]~ ‘Zi — Zj|'72 dz1...dzy, where Pz1,...,zk = P[Dh+'yzj Cov(h(zj),h(~))<zza 831/2(21)) < I,Vl].

The volume of Euclidean balls have infinite k&th moments when k is large due to the contribution

_ (M2 . L
242k (3)7" gince the sum over dyadic r is

of clusters at mutual distance r whose contribution is r
finite if and only if k < 4/9%. When k > 4/+2, this is counterbalanced by the P, ., term. By an
annulus crossing distance bound, on the associated event, for any z € K = {z1,..., 2;},
b (2),.—Ek
12 Dhiy s, tog—21-1(2,0B1/2(2)) 2 réQethn(2)y—Ekv,
Indeed, one can use an annulus centered at z, separating z from 0B, /Q(Z) and at distance r of z, whose
width is of the same order and the 7~¢*7 term comes from the circle average of the log-singularity.

SP[he(z) < —cplogr™] = rz(1=Q)* and the

k ~

This constraint on the coarse field implies P,, . .

scale 7 contribution is 729”2 which is summable for all k since Q > 2 for v € (0,2).

However, to turn this argument into a proof requires to consider all configurations of clusters
K = {z1,...,2}. Our proof works by induction on k: we use a specific splitting procedure of

K into two well separated clusters I and J since both []._. |z — zj|72 and P, . have a nice

1<J
hierarchical clusters structure (this is clear for the former, less for the later). In our implementation
of these ideas, because we have to carry the Euclidean domains associated with the clusters I,

J and K, we use %-scale invariant fields and a formalism of random labelled trees to encode the

hierarchical decomposition of clusters and the constraints in the scale decomposition of the field.
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The short-range correlation of the fine field gives independence between well-separated clusters, and

invariance properties of the x-scale invariant field simplifies our multiscale analysis.

Negative moments. To bound from below the volume of metric balls requires significantly less
efforts due to two results in the literature: first, it is known [44] and easy to prove that the LQG
volume of Eulidean ball has log-normal left tails and second, it is known [60], but requires more
work (and in particular a percolation type argument as presented above) to prove that one can find
some Euclidean ball within LQG balls, quantitatively. Altogether, the remaining work is to find
some Euclidean balls where the coarse field is not too small. Since the coarse field can be read from
annulus crossing distances, the bound from below is achieved by finding in the unit LQG ball an

Euclidean ball where some nearby annulus crossing distance in not too small.

17



Chapter 2: Liouville metric of star-scale invariant fields: tails and Weyl scaling

This chapter is adapted from joint work [38] with Julien Dubédat.

2.1 Introduction

In this chapter, the field ¢ is a log-correlated field with short-range correlations and is
approximated by a martingale ¢¢, where each ¢q, is a smooth field. More precisely, we consider
a *-scale invariant field whose covariance kernel is translation invariant and given by Cp () =
floo @du, where ¢ = k x k, for a nonnegative, compactly supported and radially symmetric bump
function k. We decompose the field ¢g o in a sum of self-similar fields, i.e., ¢g,00 = ano ¢n, where
the ¢,,’s are smooth independent Gaussian fields, such that ¢y has a finite range of dependence and
(&n () cpe has the law of (¢o(22")),cg2- We then denote by ¢g,, the truncated summation, i.e.,
Pon = Zogkgn ¢r. This gives rise to a well-defined random Riemannian metric eY?0nds?, restricted

for technical convenience to [0,1]2, which is the main object studied in this chapter. Here, the

length element is given by e3%0nds.

In the article [66], the authors proved that any log-correlated field ¢ whose covariance kernel is
given by C(z,y) = —log|z — y| + g(z,y), assuming some regularity on g, can be decomposed as
¢ = ¢« + 1 where ¢, is a x-scale invariant Gaussian field and 1 is a Gaussian field with Holder
regularity. A similar decomposition where the fields are independent can be obtained modulo a
weaker property on ¢,. Let us also mention that x-scale invariant log-correlated fields are natural
since they appear in the following characterization (see [3]): if M is a random measure on R¢ such
that E(M([0,1]9)'19) < oo for some § > 0 and satisfying the following cascading rule: for every
g€ (0,1),

M(A D ([ e @nr(a 1.1
(M(A) s 2 ([ =M (da) , (1.1)
A AeB(RY)

where (M:(eA)) acpra) @ el (M(A)) 4¢ B(r4) and where w. is a stationary Gaussian field, independent
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of M., with continuous sample paths, continuous and differentiable covariance kernel on R\ {0}, then,
up to some additional technical assumptions, M is the product of a nonnegative random variable
X € L' and an independent Gaussian multiplicative chaos e®dz, i.e., VA € BRY), M(A) =
X[, 9@ =3E(@(®?) gz Moreover, the covariance kernel of ¢ is given by Clx) = [° @du for some
continuous covariance function ¢ such that ¢(0) < 1%5 and notice that we have C'(z) it —c(0) log ||z||.
A natural question is to consider the metric instead of the measure to construct and characterize
metrics on R? satisfying a property analogous to involving the Weyl scaling (see Section .

In our approach, we introduce a parameter 7, > 0 associated to some observable of the metric
and we study the phase where v < 7.. More precisely, if Lgnl) denotes the left-right length of
the square [0,1]? for the random Riemannian metric e"0nds? and p, is its median, we then
define 7, := inf{y : (log Lgnl) — log iy ) is not tight}. We expect that the set of  such that
(log Lgnl) — log pin)n>0 is tight is (0,7.) . We prove that as soon as v < ., we have the following

concentration result: for s large, uniformly in n,

ce 0 <P (log Lgnl) —log pp, < —s) < Ce_CSQ,

2

ce—Cs <P <log Lgnl) — log pn > s> < C’e_cls?.

When v < min(7,,0.4), we obtain the tightness of the metric spaces ([0, 1]?, do.n)n>0, where dp, is
the geodesic distance associated to the Riemannian metric tensor €?%nds?, renormalized by ju,.
The main difference with the proof of Ding and Dunlap is that the RSW estimates do not rely on
the method developped by Tassion [110] but follow from an approximate conformal invariance of

®0,n, obtained through a white noise coupling.

We also investigate the Weyl scaling: if dy « is a metric obtained through a subsequential limit
associated to the field ¢g o and f is in the Schwartz class, then we prove that the metric associated
to the field ¢p o0 + f is eal . dp oo, that the couplings (¢o,00 + f,e%f - do,co) and (Po,00, do,0o) are
mutually absolutely continuous with respect to each other and that their Radon-Nikodym derivative
is given by the one of the first marginal. Notice that if the metric dy ~ is a measurable function of the
field ¢o o, this property is expected. Here, this property tells us that the metric is not independent

of the field ¢ and is in particular non-deterministic. In fact, this property is fundamental in the
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work of Shamov [99] on Gaussian multiplicative chaos, where the metric is replaced by the measure.
It is used to prove that subsequential limits are measurable with respect to the field, which then

implies its uniqueness and that the convergence in law holds in probability.

Shamov [99] takes the following definition of GMC. If ¢ is a Gaussian field on a domain D and
M is a random measure on D, measurable with respect to ¢ and hence denoted by M (¢, dx), which

satisfies, for f in the Cameron-Martin space of ¢, almost surely,

M(p+ f,dz) = @M (¢, dz), (1.2)

then M is called a Gaussian multiplicative chaos. Furthermore, M is said to to be subcritical if
[EM is a o-finite measure. Note that the left-hand side is well-defined since M is ¢ measurable. It
is easy to check that the condition implies uniqueness among ¢-measurable subcritical random
measures and we insist that the measurability of M with respect to ¢ is built in the definition. A
natural question is thus the following: replace the measure M by the metric dg , assume in a
similar way the measurability with respect to ¢ and suppose that in , the operation is the Weyl

scaling defined in Section [2.7] then is there uniqueness?

The chapter is organized as follows. In Section 2, we introduce the fields ¢¢, as well as the
definitions and notations that will be used throughout the subsequent sections. Section 3 contains
our main theorems. In Section 4, we derive the approximate conformal invariance of ¢, together
with the RSW estimates. Section 5 is concerned with lognormal tail estimates for crossing lengths,
upper and lower bounds. Under the assumption v < min(~y,, 0.4), we derive the tightness of the
metric in Section 6. The Weyl scaling is discussed in Section 7. Section 8 is concerned with ~. > 0.
Lastly, in Section 9 we prove some independence of v, with respect to the bump function k& used
to define ¢ ,. The appendix gathers estimates for the supremum of the field ¢g, as well as an

estimate for a summation which appears when deriving diameter estimates.
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2.2 Definitions

2.2.1 Log-correlated Gaussian fields with short-range correlations

A white noise on R? is a random Schwartz distribution such that for every test function f, (¢, f)
is a centered Gaussian variable with variance || f||%2(Rd). If (92, F,P) denotes a probability space on
which it is defined, we have a natural isometric embedding L?(R?) — L2(Q, F,P). By extension,

for f € L?(RY), the pairing (¢, f) is also a centered Gaussian variable with variance || inz(Rd).

Let k be a smooth, radially symmetric and nonnegative bump function supported in B(0, 7o) C R?
and normalized in L?(R?) ( [z k*dz = 1), where rq is a fixed small positive real number. If ¢ denotes
a standard white noise on R?, then the convolution & * ¢ is a smooth Gaussian field with covariance
kernel ¢ := k x k whose compact support is included in B(0,2rg). This can be taken as a starting
point to define more general Gaussian fields. Let &(dz,dt) be a white noise on R? x [0, 00). Then

one can define a distributional Gaussian field on R? by setting

P0,00 (2 /R/ < ) t73/2¢(dy, dt)

with covariance kernel given by

E (¢0,00 (%) 0,00 (% /11@2/ <$_ > (y_tx/>t—3dydt:/01k*k(x—tm’>c?f
:/0 C(x;x)cit.

Remark that for x # 2/, the integrand vanishes near 0 since ¢ has compact support, and that if

|z — @] > 219, E(¢o,00(2)$0,00(2")) = 0. Denote C(r fo c(r/t)%. Then
= [ cony=[" d(r/t)% - / e/ =4 g

where o = d(t™1)% = —c(0) and f is a smooth function. Consequently,

C(r) =alogr + F(r)
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where F' is smooth. By normalizing k in L*(R?), we have ¢(0) = k % k(0) = [o k?dz =1 and
C(r) = —logr+ F(r).

2.2.2  Decomposition of ¢g  in a sum of self-similar fields

One can decompose ¢~ as a sum of independent self-similar fields. Indeed, for 0 < m < n, set

omate)i= [ [ (55 ) ety (2.3

as well as ¢, := ¢y, , s0 that ¢g , = Zogkgn ¢ and ¢g oo = ano ¢n where the ¢,,’s are independent.

Notice also that for 1 < m <n, ¢on = ¢0,m—1 + ¢m,n. The covariance kernel of ¢,, is

B = [ e(P7E) L= enfle -2l

—n—1

so that Cy,(r) = Cp(r2"). We will also denote by Cy,, the covariance kernel of ¢q,,. The following

properties are clear from the construction.

Proposition 2.1. For every n > 0,

1. ¢n is smooth,

2. the law of ¢n is invariant under Fuclidean isometries,

3. ¢ has finite range dependence with range of dependence 27" - 2rg,
4. and (¢n(x)) cpe has the law of (¢o(22")),cre (scaling invariance).

5. The ¢y ’s are independent Gaussian fields.

Let us precise that one can see that ¢, is smooth from the representation (2.3)) since k has

compact support and £ is a distribution (in the sense of Schwartz). This is a deterministic statement.

We will use repeatedly these properties throughout the chapter in particular the independence

and scaling ones. Furthermore, one can decompose the field at scale n in spatial blocks. Specifically,
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we denote by P, the set of dyadic blocks at scale n, viz.
Poi={2""([5,i + 1] x [j,j+1]) : i,j € Z*}.

For P € P,, we set

2= _
b p(z) = /P/Z_n_l k (ytx> 13/2¢(dy, dt).

The following properties are immediate.

Proposition 2.2.

1. The ¢, p’s are independent Gaussian fields.
2. For everyn >0 and P € Py, ¢ p is smooth and compactly supported in P+ B(0,27" - 2rg).

3. IfPePp, Q€ Py andl: P— Q is an affine bijection, then ¢p, g ol has the same law as
(bn,P-

Finally, we have the decomposition

Pooo =D > bup

n>0 PePy,

in which all the summands are independent smooth Gaussian fields, all identically distributed up
to composition by an affine map and ¢, p is supported in a neighborhood of P. In the following
sections, we will work with the smooth fields ¢g ,,, approximations of the field ¢¢ ., and we denote

by Fo,n the o-algebra generated by the ¢;’s for 0 < k < n.

2.2.3 Rectangle lengths and definition of .

(m;n)

For a,b > 0 and 0 < m < n, we denote by L_ " the left-right length of the rectangle [0, a] x [0, b]
for the Riemannian metric e7?mnds?, where the metric tensor is restricted to [0,a] x [0,b]. When

L(Z"b) . To avoid confusion, let us point out that this is not the Riemannian

m = 0 we simply write L
metric on the full space restricted to the rectangle. In particular, all admissible paths are included

in [0,a] x [0,b]. It is clear that the spaces (]0,1]?,e7%nds?) and ([0, 1]?,ds?) are bi-Lipschitz.
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Consequently, ([0,1]2, e¥?0nds?) is a complete metric space and it has the same topology as the unit
square with the Euclidean metric. We will denote by 7, , a minimizing path associated to ng;’n)
and it will be clear depending on the context which a, b are involved. Notice that such a path exists
by the Hopf-Rinow theorem and a compactness argument. We will say that a rectangle R is visited

by a path 7 if 7 N R # () and crossed by 7 if a subpath of 7 connects two opposite sides of R by

staying in R.
We recall the positive association property and refer the reader to [89] for a proof.

Theorem 2.1. If f and g are increasing functions of a continuous Gaussian field ¢ with pointwise

nonnegative covariance, depending only on a finite-dimensional marginal of ¢, then E (f($)g(¢)) >

E(f(9))E(9(9))-

We will use this inequality several times in situations where the field considered is ¢, (since
k > 0) and the functions f and g are lengths associated to different rectangles, without being
restricted to a finite-dimensional marginal of ¢g,. If R is a rectangle, denote by L(”)(R, k) the
left-right distance of R for the field <Z>]0“7n, piecewise constant on each dyadic block of size 27% where
it is equal to the value of ¢y, at the center of this block. We also denote by L™ (R) the left-right

distance of R for the field ¢g,. We have the following comparison,

6*0(2_'“)Suppepk,PcRHV%,nHpL(n)(R) < L™ (R, k) < L™ (R)eO(T’“)Suppepk,pcRHV%,an

which gives a.s. limy_,o L (R, k) = LM(R).

If Rq,..., R, denote p > 2 fixed rectangles, by an application of Portmanteau theorem and since
(L™ (Ry), ..., L™ (R,)) has a positive density with respect to the Lebesgue measure on (0, 00)? (by
the argument used in the proof of Proposition , if [ > 0, we have, using Theorem

P <L(”)(R1) >1,...,L™(R,) > z) = lim P (L(”)(Rl,k) > 1. LRy, k) > z)

k—o0

> lim P (L(”) (R, k) > z) P (L(”)(Rp, k) > z)

k—o0

—p (L(")(Rl) > z) P (L(”) (R,) > z) .

Furthermore, if F, G : (0, oo)[O’l]2 — (0, 00) are increasing functions such that
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1. a.s. limg_ o F(¢>’g’n) = F(¢on) and limg_ oo G(¢’57n) = G(¢on)

2. E (F(sup[071]2 $o,n) G (inf[g 12 ¢07n)71> < oo, E (F(sup[071]2 qﬁ[),n)) < 00
and E (G(inf[m]z Pon) 1) < o0,

then, by dominated convergence theorem and the negative association we have

F(qbo,n) . . F((bg,n) . k 1 _ 17
G(%m)) = klggoE(G(ng’&n)) < klggoE(F(sbo,n))E(iGw,&n)) = E(F(qbo,n))E(G(%m))-

E(

We introduce the notations l((:b) (p) :=inf{l > 0| P(Lglg < 1) > p} for the p-th quantile associated
to Lgfb) and l—flng (p) := lc(&) (1 —p). Since we will use repetitively lgn?)) (e) and l—:())nl) (¢) for a small fixed e,
we introduce the notation I,, for the first one and I,, for the second one. Also, we will be interested
by the ratio between these quantiles hence we introduce the notation ¢, := maxo<r<n z,;lz’k for
n > 0. Finally, we introduce u, for the median of Lgnl) (note that Lgnl) has a positive density on

(0, 00) with respect to the Lebesgue measure by the argument used in the proof of Proposition .

We then define the critical parameter 7. as

Ye := inf {7 : (10g Lgnl) —log un) is not tight}

and we call subcriticality the regime v < v.. Note that anytime we use the assumption v < 7.,

we use only the tightness of log Lgnl) — log . However, we expect that the set of v such that

(log Lgnl) —log pin)n>0 is tight is the interval (0,~.).

2.2.4 Compact metric spaces: uniform and Gromov-Hausdorff topologies

We recall first the notion of uniform convergence. A sequence (d,)p>0 of real-valued functions

on [0,1]% x [0,1]? converges uniformly to a function d if

sup  |dp(z,2") — d(z,2")| — 0.
z,x’€[0,1]? n—o0

If d,, are moreover distances on [0, 1], then d is a priori only a pseudo-distance, i.e., d(x,y) = 0

with x # y may occur.
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Moreover, we recall the definition of the Hausdorff distance. If K7, K9 are two compact subsets

of a metric space (E,d), the Hausdorff distance diy between K and K» is defined by
dH(Kl,KQ) ;= inf {6 >0: K C UE(K2> and Ky C UE(Kl)}

where for i = 1,2, U.(K;) :={z € E: d(z, K;) < €} is the e-enlargement of K.

We recall now the definition of the Gromov-Hausdorff distance. Let (Eq,d;) and (Es,d2) be two

compact metric spaces. The Gromov-Hausdorff distance dgy between Fq and Es is defined as

dou(En, Ep) == inf {du(¢1(E1), p2(E2))}

where the infimum is over all isometric embeddings ¢1 : 1 — E and ¢o : F5 — E of E; and E»
into the same metric space (E,d). Here, dy is the Hausdorff distance associated to the space (F,d).
Denote by M the set of all isometry classes of compact metric spaces (see |51] Section 3.11). The
Gromov-Hausdorff distance dgp is a metric on M and (M, dgg) is a Polish space. We refer the

reader to the textbook [17], Section 7 for more details on these topologies.

In our framework, we introduce the sequence of compact metric spaces (M,,),>0 where M,, :=
([0,1]%,do ) and where dy,, is the geodesic distance induced by the Riemannian metric tensor
iy 2e7?0nds? restricted to [0,1]2 and we aim to study the convergence in law of M, to a random

metric space My, with respect to the Gromov-Hausdorff topology.

2.2.5 Notation

We will denote by ¢ and C constants whether they should be thought as small or large. They
may vary from line to line and depend on the parameters (e.g. the bump function k) or geometry
when these are fixed. At the only place of the chapter when we take v small, but fixed, ~ is taken
small compared to a constant which does not depend on v (as soon as we assume that - is less than

an absolute constant, upper bounds like eV may be replaced by eC\/E).

If F: E — Cis a complex-valued function, we denote by ||F||, := sup,cg|F(z)| and by

[Fllcomy = [1Flloc + SUPzryer E@-Wl For d > 1, S(R?) denotes the space of Schwartz functions

lz—y
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and &’(R?) denotes the space of tempered distributions. Our convention for the Fourier transform
of a function ¢ € S(RY) is p(£) := Jga o(x)e ™ ¢dx. If x is a real number we will denote by z the
maximum of z and 0. For two real numbers a and b we denote by a V b := max(a,b) as well as
a A'b:=min(a,b). Finally, if X is a random variable, £(X) denotes its law and for x € R we set

Fx(z) :=P(X < x).

2.3 Statement of main results

Our first main result concerns the relation between lengths of rectangles with different aspect

(™) for various choices of (a,b). Notice that if a’ < a, v/ <b,

ratio. We want to compare the tails of L,

a.s.
()

a,b’

In particular, this gives l((l?)b(p) < lgnb) (p) < l((lnb), (p) for every p in (0,1). The following Russo-
Seymour-Welsh estimates give upper bounds of left-right crossing lengths of long rectangles in terms

of left-right crossing lengths of short rectangles.

Theorem 2.2. If [A, B] C (0,00) there exists C' > 0 such that for every (a,b),(a',b') € [A, B] with

a/b<1<d/t and for everyn >0, e < 1/2 we have

iy (£/0) < 13 (£)CeCVIome/Cl, (3.4)
l‘((;i)bl(?)gl/C) < l(:b)(E)CGC lloge/C| (3.5)

In the article |25], Ding and Dunlap obtained a related result (see Theorem 5.1 in [25]), inspired
by [110]. Their result applies to a rather general setting whereas here we rely on some approximate
conformal invariance of the field considered. However the result in [25] holds for v small and
this is a comparison for low quantiles only. Here we obtain comparisons for low, as well as high,
quantiles, and there is no assumption on ~. Furthermore, the RSW estimates obtained here are also

quantitative: this is instrumental for instance in the proof of left tail estimates.

Theorem 2.3. If v < 7., the left-right length for various aspect ratio renormalized by py is tight

and its tails are quasi-lognormal, i.e., if [A, B] C (0,00) there exist constants ¢ > 0, C > 0 such that
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for every (a,b) € [A,B], n >0, s > 1:

P (Laf;} > unes\/@) < Ce, (3.6)
P (Laf;} < ,une_s) < Ce, (3.7)

These estimates are fundamental ingredients to get:

Theorem 2.4. Assume that v < min(y,, 0.4). Then:

1. The sequence of compact metric spaces (Mn)n20 where M, := ([0, I]Q,doﬁn) and where do ,, 15
the geodesic distance induced by the Riemannian metric i 2e7%0nds? is tight with respect to

the uniform and Gromov-Hausdorff topologies.

2. If (ny) is a subsequence along which (dp, k>0 converges in law to some do o, then for f € S(R?),
(dn, e3l . dn,. k>0 converges in law to (do,co, e3l . do.o) (see Sectionfor a definition of the

Weyl scaling).

3. Moreover, (¢o.00 + f,e%f - do,oo) 15 absolutely continuous with respect to (¢o,00,do.00) and

the associated Radon-Nikodym derivative is the one associated to the first marginal, i.e.,

d£(¢0,oo+f)
dL(0,00)

We will also check that 7. > 0 which is the content of:

Theorem 2.5. For every choice of bump function k, v.(k) > 0.

The general proof scheme of this result is similar to the one in [25]. The key tool is the Efron-Stein
inequality, which was introduced by Kesten in the context of Fuclidean first passage percolation. It
was first used by Ding and Dunlap in a multiscale analysis to study Liouville first passage percolation
metrics. Let us mention a few key differences in the implementation of that concentration argument.

In [25], the authors use the Efron-Stein inequality to give an upper bound of Var(LYfl) ), in order

(n)

to control inductively the coefficient of variation of L; |, defined as
OVAL{Y) = —— b2
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Here, since we expect that the logarithm of the normalized left-right distance is tight, we apply the
Efron-Stein inequality to log Lgnl) (the underlying product structure is provided naturally by the
white noise representation of the field). We recall the notation for quantiles l_(lkl) (p), lgkl) (p), defined

such that P(L{") > I{*)(p)) = p and P(L) < 1Y) (p)) = p, and set

which is the quantity we want to bound inductively; p is chosen small enough but fixed so that our
tail estimates hold. The starting point of the induction is the inequality

7(n)
l1771 (p) < eCp\/Var log Lgyfl) .

iy

Here the multiscale analysis, relying in particular on tail estimates (let us point out that instead of
quasi-Gaussian bounds, super-exponential bounds would suffice) shows that, for v small (but which

can be quantified) for some ¢, < 1, we have
Var log Lgnl) <2 (C’ + C6n_1(p)? Z cﬁ)
k=1

The absence of an explicit bound on 7, comes from the fact that we take v small enough in this

inequality to bound inductively d,(p).

Finally, we will work out some independence of the parameter ~. with respect to the choice of

the bump function which is the content of

Theorem 2.6. If ki and ks are two bump functions such that ki (&) = e~allEl®(to(1) gpq 12:2(5) =

e bIEN"(+e() 45 € goes to infinity, for some oo € (0,1) and a,b > 0, then (k1) = ve(ks2).

2.4 Russo-Seymour-Welsh estimates: proof of Theorem

In this section we prove that our approximation ¢, of ¢g is approximately conformally
invariant. We will then investigate its consequences on the length of left-right crossings: the RSW

estimates, Theorem which is a key result of our analysis. Let us already point out that these
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RSW estimates eventually lead, as a first corollary, to a lognormal decay of the left tail (inequality

(3.7), without assuming v < 7, but with a small quantile instead of the median).

2.4.1 Approximate conformal invariance of ¢q

Let F': U — V be a conformal map between two Jordan domains. We wish to compare the laws
of ¢g,n and ¢, o F'in U and look for a uniform estimate in n. For this we go back to the defining

white noises. We write, for £ and f two standard white noises

onate)= [ [ () e e, doat)= [ (L) e an,

and we want to couple ¢¢, and q;gm o F' , in particular for the high-frequency modes. We couple

the defining white noises &, € in the following way: if y/ € V, y € U, 3/ = F(y), t' = t|F'(y)|, then

|3/2

(dy',dt') = |F'(y)["'" &(dy, dt)

i.e., for a test function ¢ compactly supported in V' x (0, c0),

/mmw&WAw:/a VA W) |F () € (dy. dt)

and both sides have variance ngSH%z The rest of the white noises are chosen to be independent, i.e.,

§lUex (0,00)> §1Ux(0,00) and 5\\76x(0 o0) A€ jointly independent. Assuming |F’| > 1 on U, since

L/An1< _>_w%@ﬂt /ATHF (F%@£@>fmawﬁx
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we can decompose @ () — ¢on(F(z)) = d¢1(2) + d¢a(x) + dh3(x) where

e[ () [ [ (P
+f / . ( )t—3/25<dy,dt>
soe / [0 (e (55 (P e,

5¢s(x / /2 QHnI,IF,(y” <W> t732¢(dy, dt).

Remark also that d¢3 is independent of ¢q,, 0¢1, and d¢o. We will estimate these three terms

separately on a convex compact subset K of an open convex set U under the assumption that

[ F' |7 0o < 00 and [[F"||; ,, < 00 and [F'| > 1 on U.

Lemma 2.7. §¢; restricted to K is a smooth field; more precisely there exists C' > 0 such that for

every n > 0

E (H5¢1”01(K)> <C.

Proof. If x € K, since k has compact support included in B(0,79) we can write

/ / < > £73/2¢ (dy, dt) / / k<w> £3/2¢ (dy, dt).
e Jo-n-1 e JAAd(K,U®) Jro)va-—n—1 t

The idea is the same for the second term. For the third term, [F'(y)| < ||F’[|; ., hence

Jo o (2 stanan = [ [

which concludes the proof: the smoothness follows standard results of distribution in the sense of

Ly pr )k< ; > t=3/2¢(dy, dt)

HUoo

Schwartz. ]

Lemma 2.8. There exists C > 0 such that for every n > 0 and every x,z' € K,
E ((6¢2(z) — d¢2(2"))?) < C'|z — 2| .

We also have E (6¢2($)2) < C uniformly in x € K and n > 0.
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Proof. Since k is rotationally invariant and has compact support, we will see that

k <x - y) =k (W) +O(b). (4.8)

First, k having a compact support included in B(0,rg) gives

r—Yy r—Yy r—Yy
() = (7 e =4 (5

t1E (y)] t1E"(y)]

11r@)-F) —k<F(x)_F(y)>1 |F(2)—F(y)]
z)—F(y — z)—F(y
T ()] =0 t1F (y)| T )]

Since [F'| > 1 on U and [|F"[|;, < o0

[F(z) = Fy)|  |[F7H(F(2)) = FH(F@)| _ |z~
'l I oo 1™ e C

hence we can directly replace the term 1 _ r@)ru) by 1,J 12—y . By Taylor’s inequality, |F(x) —
= rolF(y)] = COrg

F(y) = F'(y)(x = y)l < 5lv =y 17|l thus

‘F(fﬂ) ~Fly) a—y F@) | _ o=y’ [Flye
tIE () t 'l — 2t [Pyl

Using the compact support together with the rotational invariance of k, we get

F(x) — F(y) r—Yy Iz //|Uoo’x_y’2 1 7 2
PR S A — < ||V 2 o < — ||V F
'k ( t‘F/(y)‘ k ¢ > || kHoo ‘F/(y)’ 2t 1’52‘ch| =9 H k”oo H HU,oo (CTO) t

which gives (4.8]). Finally, we obtain the following bound

(7)) (7))
(O R Lt (i)
—o (a2

t

where in the last equation we both used equation (4.8)) and the inequalities, for 2,2’ € K and y € U:

_ r_ R,
(7)) o 52
t t t
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and

‘ (R0 (R F<y>>‘ R Lo I T

|z — ']
tIE (y)] tIE(y)] tIE (y)] '

HK,oo t

It follows that

s 7 (65)-+(550)
—(’“<“y) (M)
[o(n2y
<C/0 (m’x_tx/’>cf

But this integral is bounded from above by C' [ AT Clz —'|? f\l/m t=3dt < Clx — '),

Lye B(wtCro)UB(w tCro)dyt ™~ dt

where the constant C in the right-hand side is uniform in n. The second assertion directly follows

from an analogous computation without keeping track of the z, z’.

Proposition 2.3. There exist C > 0, o > 0 such that for everyn >0, z > 0,

P (H(5¢1 +002) ke[| = 33) < Ce /7

Proof. We have obtained in Lemma a bound on the variance of d¢o(x) — d¢pa(z’) which is a
centered Gaussian variable, hence it follows that E ((M)g(x) — 5¢2(x’))2p) = O(|z — 2/|P). By the
Kolmogorov continuity criterion, for any o <1/2, E(|[0¢2| e (k) is bounded in n. Together with
Lemma this shows E(H((qul + 5¢2)\KHOO> is bounded. Consequently by Fernique (see [46]), we

have a uniform Gaussian tail estimate in n. O

We are left with the noise d¢3 which is independent of ¢g ,, d¢1 and d¢ps.

Lemma 2.9. There exists C' > 0 such that for every x € K, n >0, E ((59%)3(35)2) <C.
Proof. Since |F'(y)|~t > HF’Haloo = ¢ > 0 holds for every y € U and as seen in the proof of Lemma
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@ we can directly replace the term Lo 1F@)—r( O] by 15 1=l = y| This gives:

rolF'(y)]

2o0s0) = [ [ ()

2nl
< (K2 / / e Bleacryt S dydt
2n1

< Hk”io/ Ct*t3dt

c2—n—1

which concludes the proof. ]

In summary, we have seen that along this white noise coupling,

Gon — Gon © F = 61 + 6p + 0p3 (4.9)

where d¢1 and d¢o are low frequency noises with uniform Gaussian tails and §¢3 is a high frequency
noise with bounded pointwise variance and dependence scale O(27"), which is independent of ¢,

d¢1 and d¢o.

2.4.2 RSW estimates for crossing lengths

Now we investigate the consequences of the approximate conformal invariance on crossing lengths.
More precisely we want to show that the tails of the crossing lengths of rectangles of varying aspect

ratios are comparable, uniformly in the roughness of the conformal factor by using (4.9).

Let A, B be two boundary arcs of K and denote by L the distance from A to B in K for the
Riemannian metric ¢7?nds?; we denote A’ := F(A), B’ := F(B), K' := F(K), and L’ is the

distance from A’ to B’ in K’ for e¥%0nds2.

Proposition 2.4. (Left tail estimate). If for some l >0 and e < 1/2, P(L <1) > ¢ ,then
P(L<U)>e/4

with I = Clez7V108e/2C1 4nq O o depend only on the geometry.
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Proof. Assume that for some positive [, ¢, P(L <) > e. Setting x = o+/|log(¢/2C)|, we have,

using the Proposition [2.3
P (||(061 + d2)ixc], = =) <2/2

and

P (H(&pl +6¢2) k|| <@ L < z) > ¢/2.

Thus, with probability at least /2, the distance from A to B in K for the metric ¢1(Pon—0¢1-062) 442
is < le2®. On this event, we fix such a path of length < le2® and average over the independent
small scale noise §¢3; the expected length of the path is < le2%eC7*. With conditional probability
at least 1/2, this length is no more than twice the conditional expectation. Consequently, with
probability at least /4, the distance from A to B in K for e7%0.1°F 152 i less than 2le3%eC7”. Since
F" is bounded on K, we get that P (L' <1') > e/4 where ' = 2 || F"|| ;¢ le2%eC7” . Indeed, since F
is holomorphic, if 7 = (m)sc(0,1] is a C! path and if ¢ is a smooth field, we have:

1
L(Fome?ds?) = / e2 PO |F! (m(t)| |7 (1)| dt
0

1
L (77, eWOFdsQ) = / e29oF(m(1)) ‘71"(15)‘ dt.
0
Thus, on the event {L(A, B, eVéO’“OFdSZ) < 2[6%%0’*2} we have, taking such a path 7:

L (A’, B, e”‘z’oﬂnds2> <L (F o, ey‘g’ov”d32>
<[P £ (2% ds?)

<21 o 176

hence P (L' < I) > /4 with I! = Clez7V oge/2C1cC7* < ¢lezoV/lloge/2C] O

Proposition 2.5. (Right tail estimate). If for somel >0 ande < 1/2, P(L <1) >1—¢ then
P(L'<U)>1-3¢

with I = CleC 7V 108e/2C1 4nd C depends only on the geometry.
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To prove Proposition [2.5] we will need the following lemma which is a consequence of the moment

method and which will be used in the next sections.

Lemma 2.10. Let pu be a Borel measure on a metric space (X, d). If S is a Borel set such that u(S) €
(0,00) and 1) is a continuous centered Gaussian field on S, satisfying 0 = sup,cg Var(¢)(z)) < oo,

then for every s > o we have

P </ ew(x)ﬂ(dx) > /L(S)es> < e—52/20%
S

Proof. By using first Chebychev inequality, then Jensen inequality and finally explicit formula for

moment generating function of Gaussian variables, we have for k > 1/2:

(oo o’

< 6_%8/1(5)_1/315 (ezkw(x)) p(dz)

< 62k20272ks )

By setting k = we get the tail estimate for s > o2. O

_s_
2027
We are now ready to prove Proposition [2.5

Proof of Proposition[2.5 Assume that for some positive l,e, P(L <[) > 1 —e. Setting z =

o+v/|log(e/C)| and using the estimate from Proposition [2.3[ we have:
P (H(5¢1 +0¢2) k|| > 36) <e
and
P (||(061 + 60)ixcl| . 2L <) 21— 2.

Consequently, with probability at least 1 — 2¢, the distance from A to B in K for the metric
V(P00 —001-062) 152 jg < le3®. On this event, we fix such a path of length < le2® and average over
the independent small scale noise d¢3. Let p be the occupation measure of that path, so that

lu| < lez® and o = 1(0¢s3) is independent of p. Since o2 := supjo,i)2 Var ¢ = O(v?), by using
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Lemma we note that adding the noise d¢3 increases the length by a factor > eV logel with
probability < e. Consequently, with probability > 1 — 3¢, the distance from A to B in K for
1901°F ds is less than le3%eC7V 98¢l Using again L(A', B, e“/";ds2) < ||F'|| x o L(A, B, eWBOFdSQ)

we have P(L' < I') > 1 — 3¢ where ! = ||F'|| . . le3%eC7V/logel =

To prove Theorem [2.2] we will need the following elementary lemma.

Lemma 2.11. If a and b are two positive real numbers with a < b, there exists j = j(b/a) and
j rectangles isometric to [0,a/2] x [0,b/2] such that if 7 is a left-right crossing of the rectangle
[0,a] x [0,b], at least one of the j rectangles is crossed in the thin direction by a subpath of that

CToSSINg.

Proof. To see it, cover for instance [0,a/2] x [0,b] by thin rectangles [0,a/2] x [0,b/2] from bottom
to top and spaced by (b — a)/4, add also squares of length a/2 with the same spacing (see the first
two parts on Figure . Then, starting with a crossing of [0, a] x [0, b], consider the subpath from
the left side to the first hitting point of {a/2} x [0,b], and denote by h is height (max of y - min of y).
Consider first the case where h < a/2+ (b— a)/4 (see the last part on Figure 2.1). Since the bottom
part of the path is at distance < (b—a)/4 of a side of a rectangle of size [0, a/2] x [0, b/2] the crossing
is included in this rectangle of the cover. Now we treat the other case where h > a/2+ (b —a)/4
(see the third part on Figure 2.1)). Since the bottom part is at distance < (b — a)/4 of a square

which is above, this square of size a/2 is then crossed vertically. O

Figure 2.1 — Crossing at a smaller scale.

Now, we want to relate crossings of short rectangles with crossings of long rectangles. Our
previous results say that the crossing lengths in K between sides A and B are uniformly (in n)

comparable to crossing lengths in F'(K') between sides F'(A) and F(B). Thus, we would like to take
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the sides A and B to be those of a short rectangle and to map them to the sides of a long rectangle
with a conformal map F such that F’ and F” are bounded and satisfying |F’| > 1. This cannot be
done directly but this is the main idea: to produce a crossing from a short domain to a longer one.
In particular, it is enough to consider ellipses and to relate crossings in ellipses with crossings in
rectangles and by using the previous lemma one can begin with crossing of sides in a very small

domain and then map it to a much larger domain.

Proof of Theorem [2.3. The proof is divided in two steps. First we prove the inequality (3.4)
associated with the left tail and then the inequality (3.5)) associated to the right one.

Step 1. We study first the left tail under the assumption P(Lénb) < 1) > € and we want to obtain
a similar estimate for L((;,l)b,( in particular if a/b < 1 < d’/b). We assume a < b, i.e., L((Inb) is the
length of a crossing in the thin direction.

First, by using Lemma we observe that there is an integer j = j(b/a) and j rectangles
isometric to [0,a/2] x [0,b/2] such that on the event Lgnl)) < [, at least one of the j rectangles

is crossed in the thin direction by a subpath of that crossing. Thus, by union bound, we get

(n)
IED(La/2,b/2

<) > ¢e/j, and by iterating, P (LE:;)QP bj2r < l) > /4P,
Consider now ellipses E, E’, each with two marked arcs, such that: any left-right crossing of

,Q x |0, is a crossing of E, and any crossing o is a left-right crossing of |0, a’| x |0, ¥'].
0,a/2?P 0,b/2P] i i f £, and i f £ is a left-righ i f[0,d 0,0

Divide the marked arcs of E into m subarcs of, say, equal length. With probability at least

£/(jPm?), one of the crossings between pairs of subarcs has length at most [.

E o 10,a1 % 0,0]

[0,a] x [0,

— — "
3 B

Figure 2.2 — Rectangles and ellipses

For m large enough (depending on E, E’), for any pair of such subsegments (one on each side),

there is a conformal equivalence F' : E — E’ such that the pair of subarcs is mapped to subarcs of
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the marked arcs of E'. Remark that ellipses are analytic curves (they are images of circles under the
Joukowski map, see [47] Chapter 1 Exercise 15) and consequently (by Schwarz reflection) F' extends

to a conformal equivalence U — V, where E (resp. E') is a compact subset of U (resp. V).

By choosing p large enough, |F’| > 1 on U. By the left tail estimate Proposition we obtain

that there is C' > 0 such for all €,1 > 0:

P <L((1nb) < l) >e=P (L(") < Cle3oVlose/ <20j“”2>') > /(45" m?)

a//7b/ _—

which we rewrite as:

P(L() <1) e =P (L), < Cletiecl) > o/c. (4.10)

Step 2. For the right tail we reason similarly: let a < b and take [, e so that P(Lénb) <l)>1-e.
n)

On the event {L((lnb) < I}, one of j variables distributed like L 12.6/2 is < I; moreover these variables

a

have positive association. By the the positive association property (Theorem and the square-

root trick (see [110] Proposition 4.1), we have IP’(L(”) <1) > 1 —¢'7 and then, by iterating,

a/2,b/2
P(L((zn)w,b/w <hz1-&7
On the event {L(n) < [}, the ellipse F has a crossing of length < [ between two marked arcs.

a/2p,b/2pP

Again by subdividing each of these arcs into m subarcs, and applying the square-root trick we see

that for at least one pair of subarcs, there is a crossing of length < [ with probability > 1 — ¢/ “PmT?

Combining with the right-tail estimate Proposition we get:

P(L) <1) 21 -e=P (L), < Cler@Vime/Cl) =1 —5c/C (4.11)
which completes the proof of Theorem O
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2.5 Tail estimates for crossing lengths: proof of Theorem

2.5.1 Concentration: the left tail

Denote by igng (resp. f)gnl) ) the left-right crossing length of the rectangle [2,3] x [0, 3] (resp.

[0,3] x [2,3]). In this subsection we investigate the consequences of the RSW estimates combined
with the following inequalities (see Figure 2):

which implies the following:

L

Figure 2.3 — Inequalities between lengths of geodesics associated to different rectangles

The following result is a consequence of the first inequality. It gives lognormal tail estimates on

the left tail of crossing lengths renormalized by a small quantile, without any assumption on ~.

Proposition 2.6. There exists a small pg > 0 such that for p < pg there exists ¢ > 0 so that for
every s >0

) () < Ceet

where ¢, C do not depend on n.
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Proof. Our left tail estimate (4.10) gives:
P(LY <1) 2e=P(L{3 <) 2 ¢/C with I = CleOVIee/C
which can be rewritten as:

P(L{3 <1) <e=P (LY <107emOVIRCH) < e, (5.12)

Now, if Li(,)ng is less than [, then both [0,1] x [0, 3] and [2, 3] x [0, 3] have a left-right crossing of length

<[ and the field in these two rectangles is independent (if r¢ is small enough). Consequently,
(n) ) <7\
P(Lyg <l)<P(Lj3<I) . (5.13)

These two results allow us to get the uniform tail bound. Indeed, take eg small, such that C?eg < 1
and set r[()n) = l:(gn?? (20). We define by induction ;41 := (Ce;)? (which gives g; = (0C?)2' C~2 as
well as rz(i)l = rl(n)C_l exp(—Cv+/]log(Ce;)]). Tt follows by induction that P(Lgng < rl(n)) < g; for
every i > 0. Indeed, the case i = 0 follows by definition and then notice that the RSW estimates

under the induction hypothesis implies that

Notice that we have the lower bound on rgn) for 7 > 1:

7" > 1) (5@0‘%‘0722—:10 Vlog(Cex)| > lén:*? (eo)e_Cie_CWV [logeoC2[2/2

7 3,3

Our estimate then takes the form, for ¢ > 0:

P (L) < 1) (eo)e e VIRl < (qy00) 02,
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Which can be rewritten, taking ¢ = |2log, s|, with absolute constants, for s > 1:

2

P (L) < 1 (co) e Oomse ) < e,
Notice that dropping the dependence on ~ as we impose it is bounded from above by a large number
we get Proposition 2.6 O

Corollary 2.7. We have a uniform (in n) lognormal tail estimates for the lower bound of thin

rectangles, i.e., if €9 is small enough for everyn >0, s > 0:
P (L) < i) < 0o
where ¢, C' are absolute constants.

Proof. The proof follows from the RSW estimate (5.12]), the bound lgng) (e0) < l§n3) (e0) and the

previous proposition. [

It is tempting to follow the lines of this proof using the second inequality (see also Figure [2.3]) in
order to derive a right tail estimate. However, this approach cannot be readily extended because of

the power 1/C in the RSW estimate, inequality ([3.5)).

2.5.2 Concentration: the right tail

As mentioned in the previous section, we cannot generalize the method used for the left tails to
the right one and the following proposition remediates to this. Before stating it, we refer the reader

to the definitions of I, and d,, in Subsection [2.2.3]

Proposition 2.8. If € is small enough we have the following tail estimate:
For0<k<n,s>1

P (L:(akf > §plpe™y 10g5> < Ce™,

where ¢ and C are absolute constants.

Proof. We proceed according to the following steps:
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1. Use the RSW estimates to reduce the problem to the case of squares instead of long rectangles.

2. Use a comparison to 1-dependent oriented site percolation to prove that with probability going

to one exponentially in k, Li;";z is less than Ckl,.

3. By scaling and the moment method, obtain a first tail estimate of Lgnl) with respect to l,—m:
252

For a constant o € (0,1), P (Lgnl) > Cfn_m675ﬁ> < Co?" 4 e gz |

4. Give an upper bound of ,_,, in terms of [,.
5. Obtain a tail estimate when the tails are not too large.

6. For the large tails, use a moment method and a lower bound on the quantiles.

Step 1. First, notice by the RSW estimates (4.11]) that it is enough to prove that for 0 < k < n,
s>1
P (Lglfl) 2 (Snl].cesV logs) S 06_682.

Step 2. We will see here that taking € small enough, there exist C' > 0, a < 1 such that for
every k,n > 0:
P (L{') < 4kl,) > 1 Cat (5.14)

We consider a graph whose sites x are made by squares of size 3 x 3 and spaced so that two
adjacent squares intersect each other along a rectangle of size (3,1) or (1,3). Denote by Lénl) right (%)

the rectangle crossing length, in the long direction, associated to the rectangle of size (3,1) on the

(n)

3717up(a:) the rectangle crossing length, in the

bottom of x and included in x. Similarly, denote by L
long direction, associated to the rectangle of size (1,3) on the left of x and included in x. To each
site of our graph, we assign the value 0 if the site is closed and 1 if the site is open. A site z is open
if the event {L:(>,771),up(x) + Lé?l),right(x) < 2l,} occurs (see Figure [2.4).

We have the following bound on the probability that a site x is open:
P(wp =1) 2 P (L8 o < Do L e < I ) 2 2P (2§ <B) 1212z

Therefore, taking e small gives a highly supercritical 1-dependent percolation model (notice that a

43



%
N 7
N N NS 4 ’
N\ N 7 4
N 7 4
15 N N AN ,
3,1,up N NI s ,
\

. .
% % %
/ / /
| A~~~ / ,
(> /
A / / /

‘ )
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Figure 2.4 — Definition of the model. The green site x is open. Three of its neighbors are drawn,
with some colored dashed lines filling their cell and with white vertices at their center.

site z is independent of sites that are not directly weakly adjacent to it). Then, notice that L,E/Zg
is smaller than the weight associated to oriented paths from left to right at the percolation level
that can go only up or right. Such a path contains at most 2k sites. Thus, if there is an open
oriented percolation path from left to right, then L,(:,z < 4kl,,. Hence it is enough to show that the

probability that there is such an open oriented path goes to 1 exponentially in k. This follows from

a contour argument for highly supercritical 1-dependent percolation model, see for instance [45]

Section 10.
‘\ ® ®
\ > T
(1) ( e o o
,J/)»‘ I J — /\’7‘\\ b~
) ® &
iy

Figure 2.5 — Comparison with 1-Dependent Oriented Site Percolation. The figure on the right is the
representation of the figure on the left.

Step 3. In order to obtain an upper bound for Lgnl) , by scaling and the percolation bound ([5.14])

we see that there exists a € (0, 1) such that for m < n, we have,

P(LUT™ < Clu) =P (L5gh < €27 ) 21 - Ca®"
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which can be rewritten in term of Lgnl) as

P (ng? < cz‘n,meS) > P (Lg@ < Clye®, LM < oz‘n,m)
=P (L{}" < Clym) =P (L{7) 2 Cluome®, LIT™ < Clyn)
>1-Ca?" —P(L{} 2 e'L{T™).

Now, using that Lgnl) < fwm ; e2P0m-13%mn g where Tm,n is & geodesic for e¥9mnds? and using the

bound coming from Lemma [2.10| we have

P (Lg@ > eW%Lg’f}’”)) <E (]P ( /

hence for every 0 <m <n and s > 0

2
¥ v — 257
e2%0,m—1c3%mn > e”/vmngniL’n) | fm,n)) < e log2

m,n

P (L) < Clym@™™) 21— Ca®" — ez, (5.15)

Step 4. At this stage we want to replace l,,_,, by l,,. We introduce a notation for a collection

of short rectangles that we will use by setting
I, := {horizontal, vertical rectangles of size 27¥(1,3) with corners in [0, 1]x [0, 3]n27%Z2}. (5.16)

It is clear from the definition that |I;| < C4% . Then, notice that a left-right crossing of [0, 1] x [0, 3]
has to cross at least 2* rectangles from Iy, (by definition of Iy, these are short crossings). For P € I,

we set

L™ (P) := length of the left-right crossing of the rectangle P for e2?"ds (5.17)

and we use similarly the notation L(*")(P) when the field considered is k- We have, almost

surely,

T inf_¢or_1

(0,117 min L*M (P). (5.18)
’ Pely Pely
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Hence by union bound and scaling, we have, for s; > 0 and so > 0 to be specified

2 inf_¢g p_1
P (Lgn?)) < e_%slln_ke_”) <P <62[0’l]2 oF Irjni]n Lkm) (P) < e_;slln_ke_”)
) el

IN

2 inf o k-
P <62[0,1]2 0.k=1 < e—;’sl> +P <1I3n11n 1(kmn) (P) < Q_kln_k6_82>
Elk

<P (sup |boe—1] > sl> + C4kP (ng—w < ln_ke‘”) :
[0,1]2 ’

Using the supremum tail estimate from the appendix (10.40) with s; = klog4 + Cvk 4+ C's and the
lognormal tails from Corollary with so = Cv/klog4 + s we have

P <L§fg < ln_k2_7ke_c‘fe_cse_c‘/§> < Ce™?,
which gives
I > 2 ke CVhe=Cp (5.19)

hence Ly—m < ln—m0n < lpdn27meCVmC.

Step 5. Using this bound and coming back to our estimate (5.15)), for every m <n and s > 0

252

P (LYQ) < ln(SnQWmecmCe“’sﬁ) >1—Ca?" — e g2,

We deal with the range s € [1,2"/?], taking m such that s = 2"/2, i.e., m = |2log, s| we get:

1

9

P <L(1n) < ln(sneC'ylogse'ys\/logs) >1— 06_682
which gives, dropping the dependence on  for s > 1:

P (Lgfll) > lnénes‘/@> < Cecs’.

Step 6. We then treat the case s > 22, To do it, we use a moment method (Lemma [2.10) to

get a right tail estimate on Lg”l) together with a lower bound on its quantiles. The moment method
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(taking a straight line) gives:
2

P ( ORS ew) < o DR (5.20)
1,1 2 = : '

For the lower bound on quantile, we get a bound by a direct comparison with the supremum of the

field ]P’(Lg”g < e_%x) < P(supj,1)2 ¢o,n > 7). Using the supremum tails from the appendix ((10.40),
i.e., taking z = nlog4 + Cy/n + Cs gives [, > e~ 3(nlogd+CVntC) . c=7@n_ Gince we consider the

case s > 22, s > x,, and n < 2log, s and coming back to (5.20) leads to

) (3—907L)2 2

P (L) 2 lne™) < P(L{) 2 1070 < e Pumiiher < eCremes,
Finally, combining the two inequalities ends the proof. ]

2.5.3 Quasi-lognormal tail estimates at subcriticality

In this subsection we prove Theorem [2.3] The main idea is the following: the tightness of
log Lgnl) — log p4n, shows that the ratio between low and high quantiles of Lgnl) is bounded. Using the
RSW estimates, it implies that §o, < co which gives, uniformly in n, u, < Cl,. The tails are then

obtained using Corollary (with I, > p,C~1) and Proposition (with dpl, < dootin)-

Proof of Theorem [2.3. Assuming v < 7. gives the tightness of (log Lgnl) — log ptn)n>0. Thus, for
every € > 0 there exists C. > 0 such that for every n > 0, ]P’(Lgnl) < une_06) < ¢/C and

IF’(LYLI) > pne®s) < /3 which can be rewritten as
pne™C < IY(/C) < i < ) (/3) < pinc.

Combining with the RSW estimates (2.2]), we have

In particular, &, < e holds for every n > 0 hence 6 (g) = Sup,,>0 0n () < 0.

We prove now the lower tail estimates. We have I, > pne~ ¢ for every n > 0 hence using

Corollary 2.7 we get Theorem [3.7 when (a,b) = (1, 3). For the upper tails since do < 00 and Iy, < pip,
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we can use Proposition [2.8| to get Theorem [3.6| for the case (a,b) = (3,1). The general case follows

from the RSW estimates. O

When v < 7., we expect the existence of a p € (0,1) such that [,, = prto) and I, = prto),
However, we don’t need this level of precision and the following a priori bounds are enough for our

analysis.

Lemma 2.12. If 0 < € < 1/2 we have the following inequalities relating quantiles, for every

0<k<n:

1. for the the lower quantiles l,,_j < 27kec\/gln,
2. ifpy < Ye, l_n < ecﬁl_nflm

3. and still under the assumption v < 7, e_c,un <lIlp < pp < I, < ec,un.

Proof. The first point follows from the proof of Proposition see ((5.19). For the second point,

using Lemma [2.10| gives

P (L) 2 VRLITY) <E <P ( /

_ 252
< e log2

n—k

v 7 _
e2%0.n—kp3Pn—k.n > ev\/ESLY’LI k) | }-O,n—k))

32
hence P (Lgnl) > Zn_keV\/ESeS> < efli? +P (Lg?fk) > un_kes) and the result follows from Theorem

The last point follows from the previous proof. O

2.5.4 Lower bounds on the tails of crossing lengths

The following result, independent of the value of v, shows that we cannot expect better than
uniform lognormal tails. Its proof is essentially an application of the Cameron-Martin theorem and

we see there that the lower bounds are already provided by the low frequencies of the field.

Proposition 2.9. There exist positive constants ¢, C such that for everyn >0, x > 0:

P (L) < pne ) > ce O and P (L) > et ) > 0.
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Proof. 1f z € [0,1]?, for every t € (0, 1), the Euclidean ball centered at z with radius trq is included

in the ro neighborhood of [0,1]2, denoted by ([0,1]?)™. Since k has compact support in B(0,7g),

// ( )—3/2 (2o dydt = // < — )‘3/2d dt
R2 B(z,tro)
// t_3/2d dt
B(0,tro)

is independent of x and is equal to some positive real number h.

Let M € R. By the Cameron-Martin theorem (see [21] Section 2), since Ml[; 1]x([0,1]2)r0 18 Square-
2 b k)
integrable, & + M 1[ 1 1]%([0,1]2)70 is absolutely continuous with respect to ¢ and its Radon-Nikodym
2 k) ’

derivative is given by the Cameron-Martin formula:

A2 (&4 M1y o) :exp< €1, >—9MQ>
dL (€) [3,1]x([0,1]*)"0 2

where g := $Leb(([0,1]%)™). We introduce the field ¢(j)\,4n associated to & + Ml[%71}x([071}2)T0, ie., for

x € R?,

G (@ /2 i /Rz ( )t3/2 (f(dy,dt) + M1 45 o,112)70 (t73/)dydt>

and using the previous remark, we notice that d)é\f[n is equal to ¢g ., + Mh on [0,1]?. Thus, using the

Cameron-Martin theorem, if I is an interval, we have for n > 0 and a > 0:

P(L € e BT) =B (L (o) < 1)

M?
=E <1L5n1>€I exXp <M<£a 1[%71]><([071]2)r0> - g2>>

s (228 1)+ 2 () € o) 1) oM

_gM~ I\J

Taking I = (0, up,] and M = x > 0 gives, with a large enough but fixed,

P (Lgrfl) < une_%m) > ce e~ T
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Similarly, taking I = [y, 00) and M = —x < 0 gives, with a large enough but fixed,

for every = > 0, n > 0. This completes the proof. O

2.6 Tightness of the metric at subcriticality: proof of Theorem

2.6.1 Diameter estimates

We focus on the diameter of [0, 1]? for the metric e7%»ds2. Notice that there may be a gap
between it and the left-right length studied in the previous sections since left-right geodesics are
between points where the field ¢g , is small whereas geodesics associated to diameter have their
extremities at points where the field ¢, may be high. Before going into exponential tail estimates,

we start with a first moment estimate.

Proposition 2.10. If v < min(y.,1/2) then (log Diam (0, 1]2,u;267¢0’”d32))n>0 is tight.

Proof. The proof is divided in four steps: in the first step we use a chaining argument to give an
upper bound of the diameter in terms of crossing lengths of rectangles at lower scales and in term
of the supremum of ¢g,. In the second and third steps, we bound the expected value of the term
associated to the crossing lengths of rectangles and the one of term associated to the supremum. By
Chebychev inequality, this gives a control of the right tail of log Diam ([O7 12w, 2e'Yd)O»"GZSQ). In the

last step, we compare the diameter to the left-right crossing length to obtain a left tail estimate.

Step 1. Let us denote by Hy (resp Vi) the set of horizontal (resp vertical) thin rectangles of
size 27%71(2,1) spaced by 27%~! and tiling [0, 1]?. Each dyadic square of size 27% in [0, 1]? is split
in two thin horizontal rectangles in Hj and two thin vertical rectangles in Vj. For each of these four
rectangles, we pick a path minimizing the crossing length in the long direction. We call system the
union of these four geodesics (on Figure the purple and the green sets are systems associated to

different squares). At a scale k, there are 4% systems, each giving rise to four geodesics.

If x and y are two points in [0, 1]%, the geodesic distance between x and y is less than the length

associated to any path between them. The majorizing path we use is defined as follows: if P € P,

50



is the dyadic block at scale n containing x, we take an Euclidean straight line (red path on Figure
to join the system of four geodesics (purple set on the Figure associated to H, and V,, in
the block P. By following successively systems associated to larger dyadic blocks, we eventually
reach to the one associated to [0,1]?. For instance, on Figure the path goes from scale n to
scale n — 1 by using the purple and green systems. Proceeding similarly with y gives a path from z
to y, constituted by n systems and two Euclidean straight lines.Taking a uniform bound over these

gives an upper bound which is uniform for every = and ¥ in [0, 1]?, hence a.s.

3 Sup do.n

Diam ([0, 1%, ewov"dsz) < SZpeHéi‘}JvkL(n (P)+2x 27 0P (6.21)

T
BiES

Figure 2.6 — Chaining argument

Step 2. Now, we bound the expected value of the first term in . We decouple the first
scales, a.s. maxpep, v, L (P) < e SPp0,12 P0k-1 Max pe i, UV;, L(k’”)(P) and use independence,
E(maxpe, oy, L0 (P)) < E(e? P12 %1 E(max pe g, v, LUf»")(P)). Then, by using the bound
on the exponential moment of the supremum of ¢g,, (Lemma [2. , we get E(e? 3 SUP[o,1)2 0.k <
27k CVE, By scaling and union bound, the upper tails (since v < 7.) give the tail esti-
mate P(maxpem, v, L(k’")(P) > Z_kun_kes\/@) < C4%e=** hence E(maxpem,uv, L(k’")(P)) <

27k 1, _eCVRIogk by Temma ([2.19). Gathering all the pieces leads to

E ( max L™ (P)) < C’Z 9 korky, eCVEkloek,

PEH,LV,
—0 KTk k=0

51



By the bound relating quantiles of different scales (Lemma [2.12)) we have

n n
E LM (p <C 9—k92vk ,CVkIogk
(S 1m0 ) < S

The series converges for v < 1/2.

Step 3. For the second term, using the exponential moment bound for the supremum (Lemma

2.18)), the bound 277"~ CV™ < [, for v < 1/2 (by comparison with the supremum) we find

2 sup do.n
E (2—%2@’112 ' ) < 27 mCVR = 992 CVng= I =CVI < 1 < O,

Step 4. Since the diameter of the square [0, 1]? is larger than the left-right distance, by using

Theorem [2.3] we get
P (Diam([(), 112,y 2e7%0n ds?) < e_5> <P (Lgfll) < ,une_s) < Ce

which completes the proof of Proposition (3.2 O

We now look for exponential tails, when ~ is small enough. The following proposition will be
used both for the tightness of dy, and to prove that 7. > 0. We refer the reader to the definitions

of 4,, and [,, in Subsection [2.2.3

Proposition 2.11. If ¢ is small enough, then for every ¢ > 8(%227) there exists C > 0 such that

for everyn >0, s > 0:
P (Diam ([0, 112, e”d)oﬂndsQ) > 5nlnecs) < Ce .

Proof. The proof is divided in three steps. In the two first steps, we give a tail estimate for the first
term in (6.21]). More precisely, in the first step, we give a tail estimate for L™ (P) with P € Hj, UV},
By union bound, we get one for > ;' maxpem, v, L™ (P) in the second step. The third step deals

with the second term in ((6.21)).

Step 1. In order to reuse directly the Proposition [2.8] note first if P € Hy UV} is fixed, we have
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2k (3,1) (since any left-right crossing of 27%(3,1) is a crossing

a stochastic domination L™ (P) <
of 27%(2,1)) thus we look for a tail estimate for this term. To this end, we decouple the scales by
taking a geodesic my, ,, for the left-right crossing of the rectangle 27%(1, 3) for the field ¢k,n and we

obtain

L(Qn)k(3 ) < /7r e3P0.k-1p3Pkn g
k

n

Therefore, we have the bound

P <L(n) (P) > 2—k5nln_kec’s\/log segsx/klog 4)

§P</ 62¢>0k 162¢k"d8>2 k(; ln keCs\/logs Lsy/klog4 )
Tk,n

By union bound, we have
P (/ e3%0k-1¢3%kn g > 27k5nln eCsviogsgs SW)
Tk,n

<P (/ e%d’o,kfle%@c,nds > L;’?Zggjl)er\/klog ) +P (Lék ;L()3 ) > 27k5nlnikeCs\/logs> )
Tk,n

Using Lemma [2.10] for the first term, scaling and the upper tail estimate from Proposition [2.8] for

the second term, we get

P (/ e%¢0,k—le%¢k,nd8 > Lé’i?()g )655\/klog ) +P (L( () B > 92" k5 I, (Js\/logs) < 06_52.
Tk

g

Hence, we get for P € Hp U Vj:

P(LM(P) > 27561, _peCsVIoasezsvEloady < cs®, (6.22)

Step 2. In this step we give a tail estimate for > ;_, M (n) where M( . Max pe H, UV, LM (P).

By union bound (|Hy, U V4| < C4*%) and by replacing s in 2) by t(s) := \/klog(4 +¢) + 5% so
that the right-hand side in this inequality becomes (4 + 6)7]“6*3 , we get
k
]P)(M( )>62 Ct(s)4/logt( ) \/W><C’74 6732
” = Claver
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Since logs < Cs? for some small fixed § > 0, t(s)y/logt(s) < Ct(s)'+°. Moreover, since we
have t(s) < y/klog(4 + ¢) + s, the convexity of the map s +— s'19 gives the bound Ct(s)y/logt(s) <
Ck1/2+6/2 +081+6.

Using that va+ b < /a + Vb for a,b > 0, we have

s)\/klog4 = \/k2log(4 + ¢)log4 + s2klog4 < acklog4 + s\/klog4

by introducing a. := /log(4 + ¢)/log 4. Therefore, we have ezt(e)VElogd < gacvkgsvElogd g by

using the upper bound [,,_; < ln27keC\/E Lemma [2.12)), we get the bound
g pp ) g

kln, eC’ (s) logt(s)e%t(s)\/klogll < 27k(ln27k60\/ﬁ>(eCk1/2+6/2+Csl+6)(2a€'yk€%s\/klog4)

< ln2—k2(1+a5)7k60k1/2+5/2eCSH‘Se%s\/kz log 4

which leads to the following tail estimate:

P (Mlgn) > (5nln27k2(1+a5)7k60k1/2+5/2ecsl+5€%sm) <o 4k 6782‘

(4+¢e)t

We now introduce F(s) := Y 2, 2-kQAkOR/ZT% BsVE  where \ = 1+ a)y, a and

(\G][S%)

:= J+/log 4. We obtain by union bound, P(} 7} _, M, ) > Snlne®s T F(s)) < Cele=s".

We thus want an upper bound on F(s). To this end, we introduce the function f,(t) :=
—t(1 — \)log2 + Ct'/2+® 4 Bs\/t. We notice that f increases on [0,%,] and decreases on [ts, 00| for

some ts > 0. By series/integral comparison we have:

[ta]—1

Zak: Zak+a[t +ap 41+ Z ak</
k=0 k=0

k=[ts]+2

o

s

atdt + 2at5 + /
[ts]+1

apdt < 2ay, +/ adt,
0
where ay, := exp(fs(k)).

2
—(1+ae

Subsection 2| for more details. Thus P(}",_, M, ( ) > 6plneces eCSH&) < Ce*". Notice that

By introducing ¢, := ST 7y e obtain F(s) =Y 2 ar < C’eCESQecsHé, see the appendix,

2

when € — 0, ¢, = 8(1_(¥+a5)7) — 8(17_227) which is less than 1 if and only if v < 61/2 — 8 ~ 0.485.
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Step 3. Now, we focus on the second term in the chaining inequality (6.21). Since I, >
277~V (Lemma , we have for v < 1/2 and using the tail estimates obtained in Lemma
110.29

P <27negsup[o,1]2‘¢0,n| > ln6%5> < P (G%SUP[OJ]QWO,M > 27%60\/56%8) < Ce™3

which concludes the proof. O

2.6.2 Tightness of the metric

We are ready to prove Theorem i.e., the tightness of the metric when v < 7. A 0.4.

Proof of Theorem[2.4. The proof is divided in two main steps. In the first one, we prove the
tightness of the metric in the space of continuous functions by giving a Hélder upper bound. In the
second one we prove that the pseudo-metric obtained is a metric. This is done by establishing a

Holder lower bound.

2

Step 1. We suppose v < .. We start by proving that for every 0 < h < 1 — 2y — ﬁ, if

€ > 0 there exists a large C; > 0 so that for every n > 0
P (Ela:,:n' € 0,1 : don(z,2") > C. H:L’ - 1"Hh> <e. (6.23)

By union bound we will estimate P(3z, 2’ ||z — 2'|| < 27", don(x,2") > € |z — 2'||") and

n
S B(3ra’ 27 < o - of| <25 do(o) 2 o — ).
k=0

We start with the term P(3z, 2’ : 2% < || — /|| < 27, do (2, 2) > e ||z — 2/||"). Note that
if 27F=1 < ||z — 2/|| < 27%, there exists a square P of size 27%+2 among fewer than C4* fixed such
squares such that x,2’ € P. Also, for two such z and 2/, by writing h = 1 — 2y — ¢(y) — § with
c(y) > (1%227), § > 0 we have ||z — /|| > 2*227k2¢c(k25k  Hence, by union bound, this term is
bounded by

C4kp (Diam (P,do,n) > 2—’9227’“20(7)’“25%5) .

We separate the first k scales of the fields ¢, as follows. Recall that Diam(P, e7?0.nds?) is larger
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2

than e%‘/EtDiam(P, e7?knds?) with probability less than ¢ Togd (by Lemma [2.10). By taking

t = Vklogd+o6vVEk+ s/\/E this event has probability less than 4 ¥e~*¢=25. On the complementary
event, p; 'Diam(P, €790 ds?) is less than p *Diam(P, €% ds?)27%22%¢3° Under this event, by

scaling the former bound becomes
C4*P (Diam ([0,12,dy-x) = i ppin2 P2 R0 =20k 0=30%)
Using Lemma we get that p, > ,u,n,k2*7k‘efc‘/é thus we are left with estimating
C4*P (Diam ([0, 12, d, ) > 290h2(=0k=CVE-3)5)

We use the diameter estimates obtained in Proposition since 2¢€Vk = gz¢(Mklog4 o se(y) >
8(%227), taking 5(k, s) = klog4 + &'k — CvVk + ¢(1 — /2)s, we have by gathering all the pieces for s
large enough, uniformly in n:

n

Z}P’ (Elsc,x/ 27k < Hx - I/H < 27k+1,d07n(x,x/) > ef Hm — :U’Hh) < (Ce “.
k=0

Taking s large enough, the right-hand side is less than €.

We are left with the term P(3z, 2’ || — /|| < 27", don(z,2') > € ||z — 2/||"), i.e., with the case

of small dyadic blocks where the field is approximately constant. By direct comparison with the

% SUP[g,1]2 <Z50,n Hx _

supremum of the field, i.e., dy (v, 2') < p,le 2|| and since on the associated event

|z — 2/||" ! > 27(1=h) | this probability is less than the probability P(e%sup[o,1]2|¢o,n| > es2n(1=h) ),

Recalling that one can write h = 1 — 2y —¢(y) with ¢(v) > 4(%227) and that we have the lower bound
on the median p, > 277~ VR (see the proof of Proposition Step 6) the former probability is

less than

P (Sup ¢on > nlogd +

v C
—————nlogd— —/n+s
[0,1]2 4(1 - 2) g )

which goes uniformly (in n) to 0 as s goes to infinity according to Lemma Altogether we get
the intermediate result (5.85)). One can check that the interval (0,1 — 2y — 4(%227)) is nonempty if

and only if 0 < v < 2/5=0.4.

Hence we obtain the tightness of (o), -, as a random element of C([0,1]? x [0,1]*,RT) and
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every subsequential limit is (by Skorohod’s representation theorem) a pseudo-metric.

Step 2. Now we deal with the separation of the pseudo-metric. We prove that if h > 1+ v and

if € > 0 there exists a small constant c. such that for every n > 0
P (Eix,ac' € 0,1 : don(z,2') < c. |z — m’Hh> <e. (6.24)

As in the proof of ([5.85]), by union bound it is enough to estimate P(3x, 2’ |x — 2| < 27", dop n(z,2’) <

e~ ||z — #/||") and the term

n
SP (I 27 < o=l <2 (o)) < o =)
k=0

We start with P(3z,2’ : 27F < ||z —2'|| < 27K+ dg(z,2') < e ||z — #'||™). Assume there
exists x, 2’ € [0,1]? such that 27% < ||z — 2/|| < 27%*!. Note that any path from x to 2’ crosses
one of the fixed C4* rectangles of size 27%71(1,3) that fill vertically and horizontally [0, 1]2. Hence
don(z,2") > u;lrgglLé@k,l(Lg). By writing A = 1+ + ¢ with 6 > 0, we can bound the term in the

summation above by

X . _ _ _ _
P <62 lnf[o’l]g ¢0’k711éli}cngk::zl(Lg) S /J’n2 k2 ’yk2 6ke S> .

By separating the infimum with the term P (sup[o’l}z bon > klogd+ 'k + 8), by scaling and using

the bound pu, < ln,kec‘/E from Lemma what is left is

: (ré‘i?LE?,gf < ln_k2‘*”'“6(lg)s> |

By union bound, the tail estimates from Corollary and gathering all the pieces we get that the

C

summation is less than C'e™“ uniformly in n.

Finally, we control again the second term by comparison with the supremum of the field. On
the event {3z, 2’ ||z — 2’| < 27",dy,(z,2") < e~ 2% ||z — 2/||"}, note that exp(5 infig 12 ¢o.n) <

o-n(h=1¢e=3s < 2=(1+9)ne=35  The probability of this event is less than P(sup 112 ¢o,n > nlog4 +

d'n + s) hence the result as before. O
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Definition of a metric on R2. Let us mention here that one can define a random metric

2
associated to ¢, on the full two-dimensional space. We saw that (dg?;ll } )n>0 is tight thus there

12
exists some subsequence that converges in law to dp o.. The same result remains true for (d[[) f; Pl Jn>0

with p > 0. By a diagonal argument, there exists a subsequence (ny) such that for every p € N,

[—p,p)?
0,00

[—p.p]2
0,00

(d[_pzp]2

0,n when

k>0 converges in law to some d . Then, one can define d®*_ as the limit of d
2 0,00

. [—p.p 1 112 o [—p.p)? 1112
p goes to oo. Indeed, if we denote by dy o ([—1,1]%) the restriction of d . to [—1,1]%, we have

i P (Vp > po. d([{i;pp([—L 1]2) = d[[)jogovpop([_l, 1]2)> =1.

pPo—00

Indeed, with high probability, there is a crossing of an annulus around [0, 1]?> whose length for don
is larger than the diameter of [0, 1]? for dg,, uniformly in n. Also, if we fix z € R? and denote by
T, the map ¢ — ¢(- — z), for a field ¢ and d — d(- — x,- — ) for a metric d, if the measure on fields
is ¢0,00 and the measure on metrics is déRio, then the transformation 77, is mixing thus ergodic in
each case. This ergodic property for the Gaussian multiplicative chaos measure is a useful property
to characterize log-normal *-scale invariant random measures. We refer the interested reader to

Theorem 4 and the remark following Proposition 5 in [3].

2.7 Weyl scaling

In this section we will see that any limiting metric space is non trivial. In particular, we will

show they are not deterministic and not independent of field ¢g -

The main idea of the proof is the following. Take dy~ a limiting metric whose existence
comes from the previous subsection. Define for some suitable function f the metric ezl . do, 0
associated to the field ¢ + f. Thanks to the approximation procedure together with the Cameron-
Martin theorem for Gaussian measures, we will prove that the couplings Py = L(¢0,00, d0,00)
and PJO = L(P0,00 + f,e%f - dp ) are mutually absolutely continuous and that the associated

s
Radon-Nikodym derivative satisfies g%z = %, which implies the result we look for: if ¢ o0

(d)

and dp,~ are independent, it implies e3f . do,o0c = doo Which leads to a contradiction.

In what follows, we recall some background on metric geometry and we refer the reader to

Chapter 2 in [17] for more details. Let (X, d) be a metric space and 7 be a continuous map from an
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interval I to X. We define the length Lg(m) of m with respect to the metric d by setting
Lg(m) :=sup Y _d(n(ti-1), 7 (t;))
i=1

where the supremum is taken over all n > 1, tg <t < -+ < t, in I. If Ly(m) < 0o, we say that
m is rectifiable. We also say that m has constant speed if there exists a constant A > 0 such that

Ld(m[s t]) = At — s| holds for every s,t € I.

Starting with such a length functional L = Ly we can define a metric space (X, dr) by setting,

for every x,y € X,
dr(z,y) := inf{L(7) | 7 is rectifiable ,7(0) = z and 7(1) = y}.

We say that a metric d is intrinsic if d = dr,,. In this case, (X, d) is called a length space. Notice
that a Riemannian manifold (M, g) is a length space. Moreover, we say that this metric is strictly
intrinsic if for any x,y € X there exists a path 7 such that 7(0) = z, 7(1) = y and d(z,y) = La(n).

In this case the path 7 is called a shortest path between x and y.

Let (X,d) be a metric space. A path (7, ) is called a geodesic if m has constant speed and if
Ld(m[s t]) =d(w(s),n(t)) for every s,t € I. A path (m,I) is called a local geodesic if for every t € I,

there exists an € > 0 such that T, is a geodesic. (X, d) is a geodesic space if for every z,y € X,

e,t+e]
there exists a geodesic 7 : [0,1] — X with 7(0) = z, 7(1) = y. It is clear from the definition that

every geodesic space is a length space.

For a complete metric space, one can characterize the notion of intrinsic metric using midpoints
(see Lemma 2.4.8 and Theorem 2.4.16 in [17] for a reference). A point z € (X, d) is called a midpoint

between points z and y if d(z, 2) = d(z,y) = 3d(z,y). The following holds:

1. Assume that (X, d) is a metric space. If d is a strictly intrinsic metric, then for every points z

and y in X there exists a midpoint z between them.

2. If (X, d) is a complete metric space and if for every x,y € X there exists a midpoint z between

x and y, then d is strictly intrinsic.
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Given a continuous function f and an intrinsic metric d, both defined on [0,1]2, with d homeo-
morphic to the Euclidean metric on the unit square, we define the metric e/ - d by first describing

its length. For a continuous path 7 : [a,b] — [0, 1]? we define

n—oo

Li(m) = limsup > e/ TE-Dd(m(er ), m (i),
=1

where a =t < --- < t; = b and lim,,_, maxo<i<n—1(t; — ;') = 0. Notice that Ly(7) < oo if and
only if L§ (1) < 0o. We then define ef - d :=d Ll Notice that if f is constant since d is intrinsic we
have ef - d = efd. Notice also that if ¢ and ¢ are smooth functions, then the Riemannian metric
associated to the metric tensor e?T%ds? is equal to 3% . d where d is the metric associated to the

metric tensor e¥ds?.
The following lemma will be useful to identify the metric associated to ¢~ + f in terms of the

one associated to ¢g -

Lemma 2.13. Let f be a continuous function on [0,1]? and r, R : (0,00) — (0,00) be continuous
increasing functions with r(07) = R(0%) = 0. If a sequence of intrinsic metrics (dy,)n>0 on [0, 1]?

satisfying for every x,y € [0,1]2, n > 0 the condition

r(llz —yll) < dn(z,y) < R(llx = yl),

converges uniformly to a metric dsy on [0,1])%, then the sequence of metrics (ef - dp)n>0 converges
simply to the metric ef - duo, i.e., for every fived x,y € [0,1]> we have lim, oo ef - dy(z,y) =

ef : doo(x>y)

Proof. We fix x,y € [0,1]? and we want to prove that e/ - d,(x,y) converges to e/ - doo(x,y). We
separate the proof in three parts: first we control the oscillation of f over geodesics then the upper

bound and finally the lower bound.

By assumption, d,, converges uniformly to d, hence d, is an intrinsic metric (see Exercise

2.4.19 in [17]). Again by assumption, there exists some positive ¢ and C such that for every n

r(lle = yll) < dn(z,y) < R(lz —yl).
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This condition is then satisfied by ds and since for n € NU {oo}, e_”f”oodn <ef.d, < e“f”oodn
this condition is also satisfied by e/ - d,, and e/ - ds by replacing ¢ by e I/l<¢ and C by el/l<C.
This tells us that the spaces ([0,1]%,d,,) and (]0,1]%,ef - d,) are complete and locally compact for

n € NU {oco}. Hence, by Theorem 2.5.23 in [17], these spaces are strictly intrinsic.

Now we look at the oscillation of f over small parts of shortest path associated to the metrics
el - d, and d, for all n’s. The first step is to understand that locally e/®)d,,(z,y) ~ e/ - d,(z,7).

To this end notice the inequality
e FEE) @ g (1) < e - dy(,y) < PPEED @ G (2, )

where osc(f, K) 1= sup, ek |f(2) — f(y)| and where Kg@ := Geog, (x,y) U Geogs 4 (z,y). Then
notice that if = is close to y then Kgg/ is small with respect to the Euclidean topology. More

precisely, notice that Geog, (7,y) C B(x, 7 Y(R(|]|z — y||))). Indeed, if z € Geog, (x,y) then
r(llz = 2l)) < dn(z,2) < dn(2,y) < R(||z = yl]).

For every x and y such that d,(x,y) < d, osc(f, ng@) < w(f,771(0)) where w(f,d) denotes the
modulus of continuity of the function f, i.e., w(f,d) := sup{|f(z) — f(y)| : z,y € 0,12 st |z —y| <
d}. Note that the bound of the oscillation is independent of n.
We start with the upper bound. Since ef - dy is strictly intrinsic, take by a dichotomy procedure
n—1

T = xg,...,xn =y such that e/ - doo(z,y) = 317, ef - doo (s, w41) and doo (24, Ti41) < 0. For n

large enough, for every i, d,(x;, zi+1) < J. Hence, by triangle inequality, for n large enough

=z

el - dn(z,y) el - dp(xi,zig1)

IN
RNy

=

osc(f,Kgl?f

IN

. wi40) el @), (2, 2441

I
o

i

N-1
< e Z el d,y (24, wi41).
i=0
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Hence by taking the lim sup and using the convergence of d,, to d

N-1
limsupe/ - dy(z,y) < ) S S @ d (@7, 41)
N-1
< 00T S eoeld KeZoin) el - dog (5, 2111
i=0
N-1
1/
< 2W(F.C8%) el - doo (i, Tit1)
=0

2O of g ().

By the uniform continuity of f, we obtain the upper bound by letting § going to 0.

Now we deal with the lower bound. Up to extracting a subsequence we may assume that
el dn(x,y) converges to its lim inf. Again, since el -d, is strictly intrinsic, take Ty =Ty, TN =Y,

such that
Np—1

el dn(x,y) = Z ef~dn(:x?,x?+1)
i=0
and dy (2}, 2}, ) < é. Taking the minimal number N, (still using the midpoints method) N, is
bounded and up to taking a subsequence, we may assume that N, converges. In particular, N, is

eventually constant and equal to some N. We may then also assume that the z!'’s also converges to

some x;’s for 0 < i < N and these z;’s satisfy doo(z;, z;+1) < d. Then for n large enough

N-l —osc(de” )
el dy(z,y) > e el ) of (=) g (1, 2P 1)
=0
y N-1
51 a
Z w(to Zef z: ?—&-1)'
1=0

Taking the limit as n goes to oo we get by the uniform convergence of d,, to dso

N-1 N-1
Z ef(xi )dn H—l Z ef xz » Ly +1) < N6||f||oo ||dn - doo”oo —0
i= =0
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So

=

liminfef - dy(2,y) > e DN @G (27, 0041)

n—oo

(]

0

<.
|

=

>€7w(f,061/a) e—osc(foz viv1) el . doo (

™

i
o

Ti, Tit1)

=

-1

_ 1/a
B S oS (i)

%
I
o

> BN g (ay)

by the triangle inequality. Letting § going to 0 we get the result. O

It is easy to see that the same result holds if instead of f, we assume that a sequence of continuous
functions (f,,)n>0 converges uniformly to f on [0,1]?, then under the same assumptions (e - d,,),>0
converges simply to the metric e/ - do,~- This lemma is a key ingredient to prove the following

corollary.

Corollary 2.12. Let (f,) be a sequence of continuous real-valued functions defined on [0,1]? and

converging uniformly to a function f. If v < min(~., 0.4) then the following statements hold:

1. (do,n,egf" . dO,n)nEO 1s tight.

2. If (nk) is a subsequence along which (don,,, ezl dony, k>0 converges in law to some (do oo, dj o)

then dj o, = e3l . do,co-

3. In particular, (¢on,, don, k>0 converges in law to a coupling Pso := L(P0,00, do,00) and (¢o n, +
Frs €2 do  Veso converges in law to a coupling PL := L(¢o.0o+f, €21 -do o), both couplings

are probability measures on the same space.

Proof. We start with the proof of (i). Since for n > 0, a.s. e*%“p@o”f"HOOdo,n < ezfn. don <
e S“anOHf"Hoonm the argument giving the tightness of (do)n>0 then extends to give the one of

(e%f” - do,n)n>0, see the proof of Theorem
We now prove (ii). We first fix « > 1+ and 8 € (O 1—2y— 4(1"’7227)) and we then define

Cq = sup, zr¢o,1)2 % and C := sup, e(o,1)? don (@@ ,”5 Using (5.86) and (5.85)), (C%)n>0 and

ll—
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(Cg)nzo are tight. Since (¢on, Pon + fn,dom,e%f” - dop, CZ,CE)HEO is tight, up to extracting a
subsequence, we can assume it converges in law. By the Skorohod representation theorem, we obtain
an almost sure convergence on a same probability space and we denote by dp o (resp dj ) the
limit of do, (resp ezfn . do,n). We can thus introduce the random constants Cy, := sup,,>o Cp < 00
and Cpg := sup,,> C’g < 00. On this probability space, the following condition of Lemma is
satisfied: a.s. for every n >0, z,2’ € [0,1]2,

lz =" _ o =]

c. — cCn

<don(z,a') < C o —o||” < Cs |lo — o).

By using Lemma we can identify the almost sure limit of ezl “do dg’oo =e3l. dp 0. Finally,

notice that (iii) follows from the previous proofs. O

The main result of this subsection is the following proposition. In order to state it, let us recall

= fol k# k(257) % and let us make

that the kernel of ¢g ~ is given by Cp oo (2, 2) fo :

5
the following remark: the map Cp o : S(R?) — S(R?) defined for f € S(R?) by Cooof := Coco * f

is a bijection. Indeed, notice that Cp o (€) = ||£H_2 el u/%(u)2du (see the remark before ((9.34]) for a

proof). In particular, we have Cj o (0) = k(o) > 0 (since k(0) = [ B(O.ro x)dx with k nonnegative
and non-identically zero), and 00700(5) ~oo m Thus, the equation CO,oo * [ = g admits the
solution f given by f(z) = (2;)2 Jxe éjif)(g) e@¢. In particular, if f € S(R?), C[i;of € S(R?) is

well-defined.

Proposition 2.13. For f € S(R?), the coupling PL = L(¢0,00 + frezd . do,oo) 1s absolutely

continuous with respect to Py = L(P0, 00, d0.00) and its Radon-Nikodym derivative is given by

arL L (¢0,oo + frext doo>  dL(Pooo + 1)
APy AL (0,005 doc)  dL(¢o,00)

= exp <<¢o,oo7 Cooof) = <f’ f>>

In particular, do,e and ¢o o are not independent.

To prove this proposition, we will use the following lemma, whose proof is postponed to the end
of the section.
Lemma 2.14. Fiz g € S(R?) and define for n € NU {oo}, f, := Con xg. The following assertions

hold:

64



1. For everyn € NU {oo}, ¢on + fn is absolutely continuous with respect to ¢g,, and

dL(po,n+frn
et i) — exp((don, 9) — 3{Fnr9)).
2. (fn)n>0 converges uniformly on R? and in L?(R?) to Cpeo * g-

8. (Go,n),>q converges in law to ¢ with respect to the weak topology on S'(R?).

Proof of Proposition[2.13. Take f € S(R?), set g := C&;Of € S(R?) and define f,, := Co,, * g. By
using Lemma assertion (i) for n = co we have:

dl 0
Dl = Mt D) o ((00ee) = 50790

Using again Lemma assertion (i) but for finite n we have:

d5(¢0,n + fn)

1
dL(¢po.n) - XP <<¢07n79> - 2<fn,g>> .

Now we prove that (qﬁo,o@ + f, e3l . d07w> is absolutely continuous with respect to (¢0,00, do,00)
and that the Radon-Nikodym derivative is given by DZ;. By introducing the function G which
maps a smooth field ¢ to the Riemannian metric whose metric tensor is e??ds?, we have, for every

continuous and bounded functional F':

E (F(¢om + for tn*G(bom + fn)))

d,C n n
E <F (60,05 1 2G(Po,n)) m)

=5 (F (Gundon)exp ((0000) = 504.)) )

E (F (¢O,n + fo o2l do,n))

Now we claim that the left-hand side converges to E(F(¢0,00 + f, e3f. do,~0)) and that the right-hand

side converges to E(F'(¢0,c0, dom)D(’;).

The first claim follows from the convergence in law from Corollary since (fyn)n>0 converges
uniformly on [0, 1]? and in L?(R?) to f by Lemma assertion (ii).

The second one comes from the convergence in law of (¢, don)n>0 and from the convergence

of (fn)n>o to f in L*(R?) (Lemma assertion (ii)). To be precise, for M > 0 the map
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(¢,d) — F(¢,d)exp({¢,g)) N M is continuous and bounded thus

lim E (F(Qbo,n, dO,n) eXp(<¢)07n,g>) A M) =K (F(¢O,wa dO,oo) exp(<¢0,oo,g>) A M) .

n—oo

By the triangle inequality and since F' is bounded we have

’E (F(¢O,na dO,n) eXp<<¢0,n7 g>)) —-E (F(¢0,007 d(),oo) exp(<¢0,oov g>>)’
< [E (F(¢o,n, don) exp((Bon, 9)) A M) = E (F(¢o,00, do,00) exp({P0,00,9)) N M))|
+ |]E (F(¢O,wa dO,oo) 6Xp(<¢0’oo, g>) A M) —E (F(¢O,ma dO,oo) exp(<¢0,ooa g>))|

+ CE (exp({b0,n: 9)) Lexp((go .00 > M) -

Taking the limsup when n goes to infinity (the first term vanishes) and then letting M goes to
infinity (the second term vanishes by uniform integrability), we obtain the result follows by taking

the limits lim sup,;_, ., limsup,,_, o, E (exp((¢o,n, 9>)1exp((¢>0,n,g>)zM) = 0 (easy to check). O
Now, we come back to the proof of Lemma

Proof of Lemma[2.1]. We will prove successively the assertions (i), (ii) and (iii).

(i). The proof follows from evaluating characteristic functionals. Define for ¢ € S(R?) the
functional F, : &'(R?) — RT such that F,(¢) = exp({¢,¢)). Using the Gaussian characteristic

forrnula7 we have E(F@((bo?n —+ fn)) o e(fnv‘P>E(e<¢0,na§0>) — €<fn7<p>eévar((¢0,n790)) o e(fn790>e%<00,n*90750>

and similarly, since Cp,, * g = f, and (Copn * @, 9) = (@, Con * 9) = (@, fn) = (fn, ¢):

E (Fp(gon)el®na)=3nal) — =3l alg (c(ooneta))

~3{fn:9) 03 {Con*@,0)+(Co,n*p,9)+5(Con*g,9)

Il
)

E (Fo(don + fn)) -

ii). First, we prove that Cp,, * f converges uniformly to Cp * f on R2. Notice that
; g y ;
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||CO,n * [ — Co oo * f”oo = ”Cn,oo * f”oo < Hf”oo ”Cn,OOHLl(Wy Furthermore:

2—"n d .
1Cooe 1y = / / N Ly < el / / 1cn0mn Ty < C27"

Now we prove that the convergence holds in L?(R?). By Parseval, we have

~

|Con % g — Cooo * gHiz(Rz) =Cn.

L2(R?)

Moreover, since C, o0 (€) = /€[] f02‘”H£|| uk(u)2du (see the remark before (9.34) for a proof), we

have:

~ 14 9
B DglZeea

N e [ »
LQ(RQ)—/RQ (IIEII /0 uk(u)“du | |g(£)" d€ < €2

and this completes the proof of assertion (ii).

(iii). We want to prove here that (¢on)n>0 converges in law to ¢p ~ in S’'(R?). To this end, take

a function f € S(R?) and notice that:

2\ _ _ 1 A 2oy |2
B $D) = [ F@Cu(e) ety = 5 [ Cou© | de
Since Cp,(€) = ||€]| 2 IHE’UHEII u)?du for n € NU {oo}, by monotone convergence, we get that

E((¢o.n, f)?) converges to E((¢g 0, f)?). Thus, we have the convergence of the characteristic
functionals: E(e{®0nf)) = e 2E((0n.)?) eié]E(<¢°’°°’f>2>, which is enough to obtain the
n—oo

convergence in law, see for instance [15].

2.8 Small noise regime: proof of Theorem

We want to prove here that v, > 0. To do it, we will show by induction that the ratio between
large quantiles and small quantiles is uniformly bounded in n. Recall the notations I, l,, and 6,

from Subsection Then d,, " dso When n goes to co. We start by showing that when ¢ and ~

are small enough, but fixed, then d,, < co. By our tail estimates, Corollary (with I, > pndt)
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and Proposition (with 0,1, < doopin) this implies the tightness of log Lgnl) — log fin.

Proof of Theorem[2.5. We proceed according to the following steps:

n)

1. Relate the ratio §,, between small quantiles and high quantiles to Var log L§71.

2. Give an upper bound on Varlog Lgnl) using the Efron-Stein inequality. The bound obtained

involves a sum indexed by blocks P € Py for 0 < k < n.

3. Get rid of the independent copy term which appears when using the Efron-Stein inequality

and see how a small value of v makes the variance smaller.

4. Give an upper bound on diameter and a lower bound on the left-right distance involving the

same quantities at a higher scale.

5. Use the tails estimates obtained for the higher scales and control the ratio of the upper bound

over the lower bound using &, 1.

6. Conclude the induction.

Step 1. To link the quantiles and the variance of a random variable X notice that for I’ > [ we
have 2Var(X) = E((X’ — X)?) > E(lxsrlx<(X' — X)?) > P(X > I')P(X <1)(I' — 1)? where X’
is an independent copy of X. Together with the RSW estimates obtained in Theorem (using
(B.5) witha' =3,b'=1,a=1,b=1and (3.4) witha' =1, =1, a=1, b= 1), we have, for some

constant C. depending on € but not on n:

l—(n) c l‘(n) EC 3
;(),;11)( ) < eCSl(’nl)(/) < e% exp \/ (221 Var <log L§n1)> . (8.25)

Step 2. The idea is then to bound Var(log L§n1)) by a term involving 6,1 and . To do it, we
will use the Efron-Stein inequality, see for instance [10] Section 3 where it is used to give an upper
bound for the variance of the distance between two points in the model of first passage percolation,
which is a similar problem to ours. To this end, note that the variable Lgnl) can be written as a

function of independent fields attached to dyadic blocks: Lg"l) = F((¢k,P)o<k<n,pcp,) and only the

blocks that intersect [0,1]? contribute. For P € Py, we denote by Lgrf)’P the length obtained by
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replacing the block field ¢ p by an independent copy ¢;€7 p and keeping all other block fields fixed.

The Efron-Stein inequality gives:

2
Var log L Z < (log L(lnl) —log L(n)) ) . (8.26)

k=0 PEP;, *

Step 3. We then focus on the term in the summation. For 0 < k < n, P € Py, Lgrfl)’P is

bounded from above by

/ ( 3 (bo,n—0k,p+¢h p) _ e%%,n) ds _|_L§7711) < / ez (e%(ﬂbk,Per);c,p) _ 1) ra(s)e cp2rods + L(n)
Tn

Tn

ol _ /
< ’7/ e%¢0,ne(1+2)( ¢k,P+¢k,P)+1Wn(8)EP2mdS_{_Lg??l)
Tn

where P10 := P + B(0,27% . 2rg) and where we used in the last inequality the bound

(e =1y < —1= Z (v @ k:' <7yzs Z < yetteT .

k>1 k>1

By setting Sk p := suppery |@k,p| + sup per

o), P’, this gives, using log(1 + z) < x

)

E((log L)" —log )2 ) < v*E((L{Y)~( / eF00neMDOrtdhr)ey | o oy ds)?)

< ’}/ZE(QCSk’P(LgTLl))_Q(/ e%¢0,n1ﬂn(s)ep2mds)2)

Tn

which finally gives:

eCSk,p - 2
Var logL <2 Z Z </ €2¢0’n17rn(8)ep27‘0d5> . (8.27)

k=0 PEPy, (L§1)>

Notice that for £ = 0 the term in the summation corresponds to ]]*3(60504(%1]2 ).

Step 4. We focus now on the case where k € {1,...,n}. Since E(e“*P)!/2 is independent of k
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and P by scaling and finite by Fernique, we have by Cauchy-Schwarz:

_92 2
Z E <6CSk,P <L§T’Ll)> (/ eg¢0,n1ﬂn(s)epzmd5) )

PePy
» N 172
S Z ]E(eo»S'k,P)l/QE ((Lgtll)) </ €Z¢O’nlwn(s)ep2rﬂds) )
PePy, n
» N\ 172
<C Z E ((Lgf?) </ eg(ﬁo’nlwn(s)ePzTOd‘s) ) .
PePy n

Step 4. (a). Upper bound. For P € Py, fvrn ez%0n Lo (s)eprods < 9maxq~p Diam(Q, eYPonds?).
Indeed, P?™ is included in the union of P and its eight neighboring squares (see Figure . Thus,
the length of the parts of m, included in P?" is less than the diameter of this union, which itself is

less than the sum of the diameter of all these squares.

Figure 2.7 — 2rp-enlargement of P with its neighbors

Let Nj, denote the number of dyadic squares of size 27 visited by m,. Since the number of

blocks P?m0 (with P € P},) visited by 7, is less than 9Ny, a.s.

>/

1¢On ! ] 'Y¢On 2 4
ezl (seprrods | < CNj sup Diam (P,e "ds )
PePy "

PePy

and by decoupling the first £ — 1 scales of the field ¢o, = ¢o -1 + Pk.n, a.s.

4 4
Z </ 6%¢0’n17rn(s)ep27‘0 ds> < Ce¥S™P0a2 90.k-1 N gup Diam (P, ew’“v"dsz) . (8.28)
PeP;, Tn PePy

Step 4. (b). Lower bound. If N denotes the maximal number of disjoint left-right rectangle
crossings of size 27%(1,3) for 7,, among such rectangles filling vertically and horizontally [0, 1]?,
spaced by 27 (this set is denoted by I; and defined in (5.16))), we have Ni, > ¢Nj and Nj, > ¢2*

for a small constant ¢ > 0. Indeed, if a dyadic square is visited, one of the four rectangles around it
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is crossed (see Figure [2.8). Considering a fraction of them gives the first claim. It is easy to check

the second claim by noticing that 7, crosses each rectangle of size 27% x 1 filling [0, 1]2.

S| IO L | O

<

Figure 2.8 — Square visited and associated rectangle crossings

By decoupling the first k& — 1 scales, we get Ly | > cNie2 011 0,k—1 infpey, LEM)(P) as well

(n) L inf

as Lgnl) > 2k Moy2 Pok-1 infpes, L% (P) hence:

2v inf_¢o,k—1 <

, 1
(LY?) > 2% Nye 01 Inf L(k’n)(P)> : (8.29)

Pelk

Step 5. Moment estimates and inductive inequality. By concavity of the map z — /x we have:

B 4 1/2
Z o <<L§71)> 4 </ 6;¢O’n1ﬂn(s)€P2T0ds> >

PePy
1/2
4

_ 4
S ‘,Pk|l/2}E (Lg"fl)) Z </ egd)o’"lﬂ_n(s)ePQrOdS)

PePy

Gathering, (8.28) and ([8.29)),

— 4
<L§?1)> ) Z (/ 6;¢07"1ﬂn(3)ep2r0d8>

PePy

4 —4
< 23k A15uPp 112 (00,1 sup Diam (P, eW‘“v"dsZ) inf L&) (P) .
PePy Pely

Since |Py| = 4%, by independence between scales,

_ 4 1/2
Z E <<L§T’Ll)> 4 (/ e’QY‘bOY"an(S)ePQrOdS) >

PePy

N 4~ sup |¢0,k71| 1/2 4 —4
<2 2FE | e 0112 E | sup Diam (P, ew’“ﬂ"dSQ) < inf (k1) (P))
PePy Pely

1/2

Using Lemma [2.18] to control the exponential moment, the first term is bounded by 94k eCVE  For
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the second term, notice that the product inside the expectation is between an increasing and a

decreasing function of the field. Hence, by the positive association property (Theorem [2.1):

N\ 172
4 4
E ( sup Diam (P, eWk»"dsQ) ( inf L(hﬂ)(p)) )

PePy, Pelj

1/2 -
4
<E ( sup Diam (P, ew’“"dﬁ) > E (( inf L(k’")(P)) >
PePy, Pely

By scaling, the field involved is ¢ ,,—;. We use our estimates for the diameters, Proposition for

1/2

the first term and Corollary for the second one. More precisely, by standard inequality between

expected value of positive random variable and integration of tail estimates we have:

1/2

4

E (ﬁgg Diam <P, e”‘f’kv"dsQ) ) <272k52 12 eF <52 272 ek
k

and

_a\ 12
]E<<inf L<’W>(P)> ) < 2%k]-2 OV

PEIk

Altogether, we get for 1 < k < n:

6051@,13 - 2 L ok OVE
Z E (n)2 (/ e§¢0,n lﬂn(s)€P2T0 d8> < (5727,_12_§ e e (830)
L T

for some constant ¢ > 0.

Step 6. Combining ({8.27)) and (8.30) we get

Varlog Lgfll) <~%% i 9= skerk CVE < 7252, i 9= skerkCVE, (8.31)

k=0 k=0
Hence for v small enough the series in the right-hand side of converges and we have
the bound Varlog Lgnl) < y*(C+Cs2_,). Coming back to (8.25), if 6,—1 < M then &, <
e%s exp(Cy6,_1) < €% exp(CyM). Hence, if M > €= and v is small enough so = exp(CyM) < M
shows that there exists 7y (which depends on ¢) such that if v < 79, doo < co. Finally, we can

conclude that 7. > 0 by use of Corollary and Proposition [2.8 O
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2.9 Independence of 4. with respect to k: proof of Theorem

We want to prove that 7. is independent of k, i.e., if we have two bump functions k1, ko then
Ye(k1) = ve(ke). We will prove that if log L1,1(¢67n) — log u1} is tight then log L171(¢%7n) —log pi2 is
also tight, where the superscripts corresponds to the bump function k; for i € {1,2}. The proof

presented here relies on the assumption that k1 and ko have similar tails.

Main lines of the proof. The main idea of the proof is to couple d)(lJ,n and d%,n up to some
additive noises that don’t affect too much the lengths. To control the perturbation due to the noises,
note that if ¢ is a low frequency noise, the length L; 1(¢) is comparable to the length Ly 1(¢ + d¢)

by a uniform bound a.s.:
inf 112 0¢p Supy 112 0¢
e 0Ly 1 (@) < Laa(¢+0¢) < e TLy 1 (9) (9-32)
and if d¢ is a high frequency noise with bounded pointwise variance we have a one-sided bound on

high and low quantiles given by the following lemma.

Lemma 2.15. If ® is a continuous field and dP is an independent continuous centered Gaussian

field with variance bounded by C' then

1. lff‘sq)(a) < E_leécl‘fl(%),
2. l_ff‘w(%) < Efleécl_fl(s).
Li-{—&@

Proof. To bound from above , we take a geodesic for ® and use a moment estimate on §P.

We start with the lower tail. For s > 0 we have

P (LY, < (@)e™) <P (LI < 'L, LTy <01 (0)e™) + P (1P > L) )
<P (L3 <117%()) + B ( /
U

<e+4 e%supVar((SCD)—s

%45 > S LY 1)
@ b

where we used Chebychev inequality and the independence between the field ® and d® in the last

inequality. Taking then s = %sup Var(6®) — loge completes the proof of (i). For the upper tails
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taking the same s gives

P(LYF® 2 0Fi(e)e’) <P (LY 2 I 1(0)en, (o) = L) + P (LF) > IT1(9))
<P (Lfﬁ‘b > eSLfl) te

< 2¢

which concludes the proof of the lemma. O

Note that if d¢ is a high frequency noise, with scale dependence 27", say an approximation
of 4™ i.i.d. standard Gaussian variables, its supremum is of order y/n and the inequality (9.32) is
inappropriate compared to Lemma [3.9 which gives a bound of order one, but one-sided. However, for

a low frequency noise d¢, independent of n, the bound (9.32) gives two-sided bounds on quantiles.

If (X,) and (Y,,) denote two sequences of positive random variables, with positive density
with respect to the Lebesgue measure on (0,00), we write X,, <Y, if there exists a constant C'
independent of n such that for every € > 0 small, there exists C;, independent of n, such that
F)}i(a/C’) < CaF;nl( ) and Fy (1 — Ce) < C.Fy (1 —¢), where Fx(x) := P(X < z) for a random
variable X. A direct corollary of Lemma is the following: if (¢n)n>0 and (0¢y)p>0 are two
sequences of independent centered continuous Gaussian fields, and that the pointwise variance
of 0¢y, is bounded, then Ly 1(¢pn + dépn) S L11(dpn). Similarly, a direct consequence of is

that, under the same assumptions for (¢, )n>0, if ¢ is a continuous centered Gaussian field, then
Lia(én) S Lia(én + ) S L1a(én)-

Now that the notations and the key tools are settled, let us explain the main idea of the proof.

Let us assume for now that we have the following couplings, for a fixed k:

L (@ (@) + 65(2)), o @ (63 0(@) + 62(2)), _p

2 (Shmar (@ + (@) D (04() + (@), cpe

3. <¢nn+k( ) +(x )) = (0n(2) +ra(z ))xeR2

where fields in the same side of an equality are independent and all fields are centered, continuous

and Gaussian. Let us also assume that ¢ is a fixed continuous Gaussian field, independent of n and

74



thus a low frequency noise. Notice that if such couplings hold, it is clear that the &%’s and 7¢’s have
bounded pointwise variance since this is the case for the fields in the left-hand sides of (ii) and (iii).

We then have, since 1) is a low frequency noise, by using (ii) and Lemma

Lig (Bonar) S L (don+ 0 +70) S Lia (60, +60) S Lig (dg,)

which gives, using (i):

L1 (00m1k) S Li(0h, + 02) S Lia(9p,)- (9.33)

If we suppose that log L171(¢é7n) —log puy, is tight, then ((u,,) ™", 41 )n>0 is bounded by Lemma m
But then, using (9.33)), log Ll’l(qﬁg’n +02) — log p} is tight. Furthermore, this implies the tightness

of log L1,1(¢3,n) — log p1} since

Lig (D8 men + 0mik) S Lia (8800n) S Lat (65, +62) -

Finally, the tightness of log L1,1(¢(2)7n) —log 42 follows from the fact that if X is random variable
and p(X) is its median, then for every a € R, p(X 4+ a) = p(X) 4 a. This concludes the proof up to

the results we claimed on the couplings.

All the fields in the couplings will be defined by using the following standard result:

Lemma 2.16. If f is a continuous, symmetric and nonnegative function on R? such that ||€|| f(§) €

LY (RY), then one can define a continuous stationary centered Gaussian field with covariance given

by:

Proof. Since f € L'(R?), C is well-defined. Then, since f is symmetric, a change of variables

C(l‘?y) =

gives that C' is real-valued and C(z,y) = C(y,x). Moreover, notice that (C(z,y)),  er2 is positive
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semidefinite: for every (ai)i<k<n and (z)1<k<p in (RH™ we have

n

a Ti.x1)a :L - a eixk{ - ae—ixl{
> arCla, m)ay (271')2/]Rdf(§) (; k )(; ! >d§

k=1
1 i .
=—= [ fO] ape™**
(2m)? /R ,; :

By a standard result on Gaussian processes (see [1] Section 1), there exists a centered Gaussian

2
¢ > 0.

process (h(z)),ecre Whose covariance is given by E(h(z)h(y)) = C(z,y). Finally, since we have
the Lipschitz bound E((h(z) — h(y))?) < 2|z —y|| fpa £(€) €]l dE and [|€]] f(€) € L*(R?), by the

Kolmogorov continuity criterion there exists a modification of A which is continuous. O

We also recall that Cy,(z f2 wc(%) dT f2 n ci(x) % with ¢(-) = ¢(-/t) thus its Fourier

transform satisfies Co . (& f2 G (€ % = f n té(tf)dt and since ¢ = k x k, ¢ = k% and then

éOn fg n té th Hf”i f”£7|1||£|| Qdu

Coupling gb(lm and gb%’n. First we define §} and 62 such that

(660 () + 65(@)) o = (BR0(@) + 02(2)), oo (9.34)

where 8, (resp d7) is a noise independent of ¢, (resp ¢ ,,). The covariance kernel of ¢f) ,, is given

by Cg}n(x, y) = f21_n 1 (%) % where ¢; = k; x k;. We recall also that these kernels are isotropic,

ie., Cé7n($, y) = Cé’n(H‘r —y||)- By Fourier inversion (of Schwartz function) we can write

. 1 .. ,
Chnla) = 33z |, Chal©)e7d

We define R! by replacing the term één(ﬁ) in the integrand by f1(¢&) := C‘&’n(ﬁ)\/égm(ﬁ)—é&n(f) >0
and similarly R? associated with f2() := C’&n(f)\/é’&n(g)—é(%m@) > 0 so that C’é’n+R,11 = C’gm%—Rﬁ.
By using Lemma the covariance kernels R} and R2 correspond to some continuous Gaussian

fields 4, and &3 so that (9.34) holds and for i € {1,2}, ¢, is independent of &},.

Coupling the remaining noise with the lower scales. We now prove the second coupling:

(Onmsk(@) + V(@) o = (9n(2) +17(2)) o - (9.35)
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The goal is to show that the Fourier transform of the kernel of ¢! 41 T ¥ (for ¥ to be specified) is
larger than the one of §. in order to define, in a similar way as before, the continuous Gaussian

field r}, independent of 4. .

To be precise, recall first that the spectrum of §! and qﬁ}z 4 are given respectively by

I3 = (C3,(8) = CBa@)lep (93110 With Con(&) = 672 550 ¢ whi(w)?du and €} (€)=

l1€]1~2 f2 " Hng” uky (u)2du. If the spectrum of ¥ is given by ||€]| 72 g(€), we look for the inequality

L) < C%,n+k(§) + [1€]I72 g(€) which is equivalent to

13/ A e 27 iel
(/ uks (u)?du — / uky (u)2du> < / uky (u)?du + g(€). (9.36)
27l 27l L 2R

If the left-hand side is 0, the inequality trivially holds. Otherwise, we want to get:

€]l . €]l .
/ wky(u)?du < / uky (u)?du + g(&).
2

"Il 2-(nFh)|lg|

Our analysis of this inequality will be separated in three steps, corresponding respectively to the
low frequencies [0, ¢2"], the high ones [C2",00) and the remaining part of the spectrum [¢2", C2"],
for ¢ and C' to be specified. The field ¥ in (9.35)) is defined in the first step. An additional step is

devoted to the conclusion.

Step 1. We start with the low frequencies ||£]| < ¢2". Since k1 and ko are radially symmetric

with the same L? normalization, f(o 00) wky (u)2du = f(o 00) uko(u)2du and

e B e el B el
</2”II£II uks(w) du /2n5|| uky (u) du>+ < </0 uky (w)“du /0 uky(u) du)
Ooul;: w)?du — ooul;: w)’du .
: </nf (0= [ ) >+

We define the continuous Gaussian field ¢ (independent of n), whose covariance kernel has

fIIOEOH wky (u)2du — fIIOSOH wko(uw)2dul.

+

Fourier transform defined by ||€]| 72 g(€&) := ||¢]|

Since we want to show that the Fourier transform of the kernel of <Z>71m 4 T ¢ is larger than the
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one of 5}, we want to prove that for ||¢]| < ¢2™ (c to be specified, small):

27ell 27El 27 el
/ uky (v)2du — / uky(u)du| < / uky (v)?du.
0 0 2= R |jg|

+

By setting r = 27" ||£||, we want to prove that for 7 small enough (r < ¢), and k large enough but

fixed:
(/ ul%l(u)zdu—/ u%(u)%u) §/ wky (u)?du. (9.37)
0 0 + 2—kp

Notice that when r goes to 0, [ u(k1(u)?du — ] uka(u)?du ~ Lr?(k1(0)? — k2(0)?). If the left-hand
side is 0, there is nothing to prove. Thus we can restrict to the case where it is > 0 i.e when k; (0)2 >
k2(0)? (notice that k(0) = fB(O,To) k(u)du > 0 since k is non-negative and [p, .\ k(z)?dx =1). The
asymptotic of the right-hand side is given by [, wky (u)2du ~ %r%l (0)2(1 — 272). Thus as soon
as k1(0)2 — k2(0)2 < k1(0)2(1 — 272k), there exists (k) such that for r < r(k), the inequality

is satisfied.

Step 2. We now deal with the large frequencies, i.e., ||| > C2". Again, we look for the
inequality (9.36)). Since we added the field ¥ and the following inequality holds,

€1l el 00 o0
wks (u)?du — wky (u)?du < wks(u)?du — wky (u)?du
</2"||£ 2() /2"§|| 1) )+ B </2”II§II a() /2"||€|| 1) >
- wky(u)2du — - whs(u)2du
i </|I£ 1) /IIEII () )

+

_l’_

we look for the inequality:

o0 . 00 . 27 el
(/ wky(u)2du — / uky (u)%lu) < / uky (v)?du.
27l 278l 2= (R ig|

_l’_

By setting r = 27" ||£||, we want to prove that for r large enough (r > C), and k large enough but
fixed:

/ 'UJ%Q('LL)QdU/S/ uky (u)?du. (9.38)
r 2

Since ki (u) = e 0 (1+o) and ky(u) = =@ (1421 we may assume that 0 < a < b (otherwise

k = 0 would be fine). Notice that there exists some R > 0 such that for every r > R, [° ks (u)2du <
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e " and e 39" < froo ukg(u)Qdu. Then, by taking k large enough so that b > 3a27%, for r > 2R
the inequality (9.38) is satisfied.

Step 3. Take ko such that k1(0)2 — k2(0)2 < k1(0)2(1 — 272k0) and b > 3027502 are satisfied.
Set ¢ := r(ko) and C := 2% R, keeping the notations of Step 1 and Step 2. We proved there that
holds for ||£]] < 2" and ||£]| > C2" and this inequality still holds by taking k larger, with
the same ¢ and C. We are left with the frequencies ¢2" < ||£]] < C2". First, fix k > ko such that
[k ks (u)?du > [ uko(u)?du (since [5% uki(u)?du — [ uks(u)?). Then, fix ng such that

2"0¢

gk uky (w)2du > [ uksy(u)2du. Thus, for every n > ng, ||| € [¢2",C2"] we have:

i . 2% 0 €l .
/ uky (u)?du > / uky (u)?du > / wky(u)?du > / uky(u)?du.
2= (R ]| 2-kC c 27l

Step 4. We have proved that if k£ is large enough, but fixed, for every n > ngy the inequality
holds for all ¢ € R2. Also, our arguments prove that the same result is true by exchanging
the subscripts 1 and 2 in . Therefore, we can define for i € {1, 2}, ri whose covariance kernel
has Fourier transform given by the positive difference in the inequality (9.36]), multiplied by || ||_2.
In particular, we get the couplings (ii) and (iii) with the desired properties on the fields. This

completes the proof of the existence of the couplings, therefore the proof of Theorem [2.6]

2.10 Appendix

2.10.1 Tail estimates for the supremum of ¢g

We derive in the following lemma some tail estimates for the field ¢q,. The tail estimates are
obtained by controlling a discretization of ¢, (by union bound and Gaussian tail estimates) and

its gradient.

Lemma 2.17. The supremum of the field ¢, satisfies the following tails estimates

(12
P (sup |po.n| > a(n + C\/ﬁ)) < C4me Togt™ (10.39)
[0,1]2
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as well as

P <sup |¢o.n| > nlogd + Cy/n+ C’s) < Ce°. (10.40)
[0,1]2

Proof. First we bound a discretization of the field ¢q . Since the variance of ¢, () is equal to (n +

1)log 2, by union bound and classical Gaussian tail estimates we have P(max( 1j2ng-nz2 |pon(z)] >
x2

x) < 4"e (nFDlesd hence by introducing z,, := v/n + 1y/n we get

a2
P ma z)| > ax < AT Toga™, o
<xe[o,1]2m§nzzr¢o,n< )| = ) < ..

Now we want to bound supjq ;)2 [¢o,(2)| for which we want an equivalent of the bound (10.41). By
Fernique’s theorem, we have a tail estimate for the gradient of ¢y, i.e., there exists some C' > 0 so that
for every > 0, P(supjg 12 [Vgo| > z) < Ce=%"/2C_ Then, by scaling, for any dyadic cube P € Py,
P(supp |[Vy| > 252) < Ce*/2C thus, by union bound P(supyo 112 [Vor| > 2k z) < Cake7"/2C We
can now work out the gradient field Vo ,: P(supjg 1p2 [Von| > 2 tly) <P(Y 1, supyo1j2 |Vr| >
S ho2Fz) < C4me=*"/20 hence P(27™ supjo,1)2 | Vool > ) < C4me~*/2C | This inequality can be

rewritten by introducing y,, := Cy/n as:

042
’ (Tn s [Voual 2 a%) < Cdte et (10.42)

Using the discrete bound ((10.41]) and the gradient one ((10.42)), since

sup [¢on| < max |don| + 27" sup [Veonl,
[0,1]2 [0,1]2n2—nZ2 [0,1]2

we get the result (10.39) by union bound. Indeed, with z, := x, + yn. P(sup |on| > az,) <
[0,1]2

a2
P(X, > ax,) +P(Y, > aY,) < C4" 1", Taking o = log4,/1 + ﬁgél < log4 +  gives the
second part (10.40)). O

The following lemma is a corollary of the previous one: using the tail estimates we control

exponential moments.

Lemma 2.18. We have the following upper bounds for the exponential moments of the field ¢oy,:
fory <2 andn>0, E (675@[0’”2‘%’"') < 04+ where o(1) is of the form O(n™1/2).
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Proof. Fix 0 < v < 2. We use the bound ((10.39) as follows. By introducing s, := n + Cy/n we

have, by using the elementary bound E(e?X) < ¥ 4 fmoo ve"'P(X > t)dt and for a to be specified:

7y sup |¢o,n| 0
Efe b ) < ey / P ( sup ol > ¢ ] d.
Qasn [0,1]2

Setting t = s,u, f;;)n eV P(supyg 112 |Go,n| > t)dt = sp [° €7 P(suppg 132 [Po.n| > spu)du and by

using the bound ((10.39)

o0 oo u2
/ eV P | sup |¢on| > spu | du < 04"/ eVt Togd "y,
o [0,1]2 o

By introducing r, := n"'s,, by a change of variables we obtain:

log 4
—Tn g

oo 2 2.2 o0
_u AR __n .2
/ eVonte Togd "y < 471 "/ ¢ et du.
« (0%

Taking « := r, log4, the integral in the right-hand side becomes

2

732
0 __n u2 o0 __n u2 4_n(l_§) Tn
e logd” y = e logd” dy < ———,
af'yrnlo%‘l (1—v/2)rn log4 (2 - 7) nry

by using the inequality faoo e~ 4y < (2ab)*1e*b“2 valid for @ > 0 and b > 0. Gathering the pieces

we get E(evsup[oyl]zltﬁo,nl) <(1+ Cﬁ)éﬂ’%” hence the result. O

We add here a Lemma which is in the same vein as the previous one.

Lemma 2.19. Suppose that we have the following tail estimate on a sequence of positive random

variables (Xg)g>0: for k>0 and s > 2,
2
P (X} > ) < 4% “Toss
Then, we have the following moment estimate: there exists C' > 0 depending only on ¢ such that for

k large,
]E(Xk) < eC\/kzlogk'
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Proof. Fix 3, > 2 to be specified. We can rewrite E(X}) — e®* as

o8] e8] o0 $2 oo $2
/ P(Xy > x)de = / P (X > €°) eds < 4’“/ e “Tosedds < 4’%%/ e ‘g s,
(& Tk

Tk Tp T

2

ek
By using [ e dx < (2ab) e we get E(X}) < e 4 4Fer (2, logcxk)*le “logazr | Taking zy,

such that klogd = ¢ it gives log k ~ 2log z, and zp ~ C/klog k. 0

log xj,

2.10.2 Upper bound for F(s)

In this subsection, we derive two lemmas that allow us to bound the term F(s) which appears

in the proof of Proposition The first one corresponds to ay,, the second one to fooo aydt.

Lemma 2.20. If a,b,c > 0 and a € (0,1/2) then the function f(t) := —at + bt*/>** + cs\/t in

increasing on [0,ts], decreasing on [ts, 0] for some ts > 0 which satisfy a,t;/2 — %cs +0(s2). In
6252 o
particular, we have: exp(fs(ts)) < e e +Cstt2e

Proof. First, notice that fi(t) = —a + (3 + a)bt~1/2+ 4 Lest=1/2. Since f(t;) = 0 we obtain

1/24«

a=(3+a)bts + %csts_l/2 which we write:

1
bz +abte, (10.43)

at;/2 = 5 5

Thus at;/2 > ¢s/2. In particular, lims_,o ts = +00. Using ((10.43), we obtain at§/2 ~s 00 %cs.

Using again ((10.43]), we have at;/ 2 = %cs + O(5?*). Using again ((10.43]) we conclude by noticing

that: fy(ts) = —ats +bts* ™ + ests’® = ats — 2baty >+, O

Lemma 2.21. Let a,a,b > 0 with o < 1/2. For every s > 0 the following inequality holds

> —t+atl/2to s/t ®s)? Cq (bs)1 12
e dt < Cqa(2+0bs)e 1 e~ ,
0

where Cq q < 00 just depends on a and Cq just depends on .
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Proof. By writing —t + bs\/t = (bi)Q — (Vt - I’Q—S)2 and the change of variable u = v/,

0 —t+atl/2 o pe /t (bs)? > _(u_bj)2+au1+2a
e dt =e 1 e 2 2udu.
0 0

Now, by the change of variables v = u — bs/2, we get

o0 —( _@)2+ 1+2a > —v24 ( _,’_Q)I-Q—Qa
/ e U—"75 au 2udu = / e vrTalvTg (2’[} + bS)dU.
0 bs

T2

Finally, by Jensen’s inequality, (v + %)1%2¢ < Oy ([v]'* + (bs)'+2®) thus

o

S

/OO eVHHaAE BT 0 Loy < (Caalbe) e /Oo e~V HCaalvl T (90, 4 bg)do
_bs

|

2

< eCaa(bs)”Qa (2 + bs) /OO 67v2+Caa|v|1+2a (1 + |v]) dv.
—o0

Now, we bound F(s). Recall first that F(s) < 2ay, + [;° ardt where a; = exp(fs(t)), fs(t) :=
—t(1 — A\ log2 + Ct/%F® 4 Bs\/t, A == (1 + a.)y, a == $ and B := J/log4. By Lemma

82> | cglt2a 12 log 452 EWGRER)

5 — OB Ol .
ap, < etI-A)les2 = e16(1-(I+ac)v)log2 = e8(1-(TFae)7) . By the change of variable

252
u =t(1 - A)log2 and Lemma [2.21], we obtain the integral bound fooo azdt < CeFi=(Trazm ¢Cs'
2.2

s
Altogether we get F(s) < Ce80-(Fac)) s
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Chapter 3: Tightness of Liouville first passage percolation for v € (0,2)

This chapter is based on joint work with Julien Dubédat, Jian Ding and Alexander Dunlap [24] .

3.1 Introduction

The present study concerns the tightness of Liouville first-passage percolation (LFPP) metrics
associated with a regularization of the Gaussian free field. This proves the existence of subsequential
limiting metrics. Given this, it remains to show that such limiting metrics are unique in law for each
v € (0,2) in order to complete the construction of the LQG metric in this regime. The latter task
was carried out in the series of works [39,56-59], thus completing the construction. The present
study follows three main tightness results for discretized or smoothed LQG metrics. In [25], tightness
of LFPP metrics (on a discrete lattice) was proved in the small noise regime for which ~ is very
small. In [38], tightness was shown for metrics arising in the same way from x-scale invariant fields,
still in the small noise regime. In [26], tightness was shown for all v < 2 for the Liouville graph
distance, which is a graph metric equal to the least number of Euclidean balls of a given LQG

measure necessary to cover a path between a pair of points.

We consider a smoothed Gaussian field

1
os(@)i= V7 [ [ pya = Wian.de) (11)

2 —y|? . . . . .
for z € R? and 6 € (0,1), where py(z — y) := 5re” 2~ and W is a space-time white noise. This

approximation is natural since it can be uniformly compared on a compact domain with a Gaussian
free field h mollified by the heat kernel defined on a slightly larger domain, viz. ¢ ; and py/; * h
(where * denotes the convolution operator) are comparable. Furthermore, this approximation

provides some nice invariance and scaling properties on the full plane.
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For v € (0,2), recall the notation §
€ = /d, (12)

where d, is the “Liouville quantum gravity dimension” defined in [28]. It is known (see Theorem
1.2 and Proposition 1.7 in [28]) that the function v — v/d, is strictly increasing and continuous
on (0,2). Therefore, in this chapter we will be interested in the range £ € (0,(2/d2)™), where
(2/dy)™ = lim g2 v/d.

We consider the length metric e$%3ds (equivalently, the metric whose Riemannian metric tensor
is given by e%%ds?), restricted to the unit square [0,1]2. We recall that a length metric is a metric
such that the distance between two points is given by the infimum over the arc lengths of paths
connecting the two points. We denote by \s the median of the left-right distance of [0, 1]? for the

metric e¢%5ds. Our main theorem is the following.

Theorem 3.1. 1. If v € (0,2), then (A(S_lef%ds)ée is tight with respect to the uniform

(0,1)
topology on the space of continuous functions [0,1]? x [0,1]2 — R*. Furthermore, any

subsequential limit is almost surely bi-Hélder with respect to the Euclidean metric on [0, 1]?.

2. Let K = [0,1)2. If h is a Gaussian free field with zero boundary conditions on a bounded
open domain D containing K (extended to zero outside of D), then the internal metrics

_1 &pgs*h

()\\/Se z ds)(ge(m) on K are tight with respect to the uniform topology of continuous functions

Kx K —RT.

Furthermore, the normalizing constants (\s)se(0,1) satisfy

As = o1-6Q 0 (VTTezdl) (1.3)

where () = = +

2o
N2

A year after the article [24] corresponding to this chapter was posted, the subsequent work [29]
proved a similar result to ours when £ > (2/d2)~. However, in that case the tightness does not hold

in the uniform topology and the Beer topology on lower semicontinuous functions was used.

In order to establish the tightness of renormalized metrics (dg,)se(0,1) = (A5 'es?s ds)se(0,1), We

prove a number of uniform estimates for that family (which also hold when the approximation is
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the GFF mollified by the heat kernel). Such estimates that are closed under weak convergence also
apply to subsequential limits. Let us summarize these properties. Let D denote the family of laws
of dys, 6 € (0,1) (i.e. seen as random continuous functions on ([0, 1]%)?), and D denotes its closure

under weak convergence (i.e., D also includes the laws of all subsequential limits).

1. Under any P € D, d is P-a.s. a length metric. This is clear for the renormalized metrics
dgs by definition, and the property of being a length metric extends to limits. (See [17,

Exercise 2.4.19].)

2. If d is a metric on R? and R is a rectangle, we denote by d(R) the left-right length of R for d.
We have the following tail estimates. There exists ¢, C' > 0 such that for s > 2, uniformly in

P € D we have

e <P (d(R) < e™*) < Ce ™", (1.4)

2
ce 0% < P(d(R) > e®) < Ce “Toss, (1.5)

The upper bounds are proved in Section [3.4] while the lower bounds are consequences
of the Cameron—Martin theorem, considering shifts of the field at the coarsest scale as

in |38, Section 5.4].

3. If d is a metric on R? and R is a rectangle, we denote by Diam(R, d) the diameter of R for d.

We have the following uniform first moment bound:

sup E (Diam(R, d)) < co. (1.6)
PeD

This is shown in the course of the proof of Proposition below.

4. Under any P € D, d is P-a.s. bi-Holder with respect to the Euclidean metric and we have
the following bounds for exponents: for a < £(Q — 2), 5 > £(Q + 2), and R a rectangle, the

families
_ | d /
( sup |2:U/|> and ( sup (1‘,33/)6) (1.7)
z,x'ER (:‘Ua x ) E(d)ef z,x'€ER |ZE - ‘ L(d)ef
are tight. Here £(d) means the law of d. These properties are shown in Proposition

86



below.

Let us also mention that subsequential limits are consistent with the Weyl scaling: for a function
f in the Cameron-Martin space of the Gaussian free field h, for any coupling (h,d) associated
to a subsequential limit of the sequence of laws of ((h, )\;%egpg *hds))5>0, the couplings (h,d) and
(h + f,e8f - d) are mutually absolutely continuous with respect to each other and the associated
Radon-Nikodym derivative is the one of the first marginal. This can be proved using similar
arguments to those of [38, Section 7]. An analogue of this property for the Liouville measure

together with the conservation of the Liouville volume average is enough to characterize the Liouville

measure, as seen by Shamov in [99].

Furthermore, in our setting where the metrics are on a compact subset of C, we can directly use
the uniform topology instead of working with the Gromov-Hausdorff topology (note that the former
is stronger than the latter). In this chapter, we show tightness for the full subcritical range v € (0, 2)
of renormalized side-to-side crossing lengths, point-to-point distance and metrics. Limiting metrics

are bi-Holder with respect to the Euclidean metric.

3.1.1 Strategy of the proof and comparison with previous works

In contrast with previous works on the LQG measure, the variational problem defining the LQG
metric means that most direct computations are impossible, and in particular most of techniques
used in the theory of Gaussian multiplicative chaos and LQG measure are unavailable. This

necessitates the more intricate multiscale geometric arguments that we employ.

Our tightness proof relies on two key ingredients, a Russo-Seymour-Welsh argument and
multiscale analysis. In both parts we extend and refine many arguments used in the previous

works [25,26,138] on the tightness of various types of LQG metrics.

Russo-Seymour-Welsh. The RSW argument relates, to within a constant factor, quantiles of
the left—right LFPP crossing distances of a “portrait” rectangle and of a “landscape” rectangle.
(By a crossing distance we simply mean the distance between two opposite sides of a rectangle.)

In [25,26], these crossings are referred to as “easy” and “hard” respectively. The utility of such a
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result is that crossings of larger rectangles necessarily induce easy crossings of subrectangles, while
hard crossings of smaller rectangles can be glued together to create crossings of larger rectangles.
Thus, multiscale analysis arguments can establish lower bounds in terms of easy crossings and upper

bounds in terms of hard crossings. RSW arguments then allow these bounds to be compared.

RSW arguments originated in the works [94,95|98| for Bernoulli percolation, and have since
been adapted to many percolation settings. The work [25] introduced an RSW result for LFPP in
the small noise regime based on an RSW result for Voronoi percolation devised by Tassion [110].
Tassion’s result is beautiful but intricate, and becomes quite complex when it is adapted to take

into account the weights of crossing in the first-passage percolation setting, as was done in [25].

The RSW approach of this chapter is based on the much simpler approach introduced in the
first chapter, (corresponding to [38]), which relies on an approximate conformal invariance of the
field. (We recall that the Gaussian free field is exactly conformally invariant in dimension 2, and
that the LQG measure enjoys an exact conformal covariance.) Roughly speaking, the conformal
invariance argument relies on writing down a conformal map between the portrait and landscape
rectangles, and analyzing the effect of such a map on crossings of the rectangle. We note that the
approximate conformal invariance used in this chapter relies in an important way on the exact
independence of different “scales” of the field, which is manifest in the independence of the white
noise at different times in the expression . Thus, the argument we use here is not immediately
applicable to mollifications of the Gaussian free field by general mollifiers (for example, the common
“circle-average approximation” of the GFF). The RSW argument of [38] was also adapted in [26] to

the Liouville graph distance case.

Tail estimates. Once the RSW result is established, we derive tail estimates with respect to
fixed quantiles. The lower tail estimate is unconditional, while the upper tail estimate depends
on a quantity A, measuring the concentration at the current scale, which will later be uniformly

bounded by an inductive argument.

Multiscale analysis. With RSW and tail estimates in hand, we turn to the multiscale analysis

part of the chapter. This argument turns on the Condition (T) formulated in (3.5.1)) below, which,
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informally, states that the arclength of the crossing is not concentrated on a small number of subarcs
of small Euclidean diameter. The argument of [26] requires similar input, which is a key role of
the subcriticality v < 2. While [26] relies directly on certain scaling symmetries of the Liouville
graph distance to use subcriticality, the present work relies on the characterization of the Hausdorff
dimension d,, obtained in 28], along with some weak multiplicativity arguments and concentration

obtained from percolation arguments.

Condition (T). Our formulation of Condition (T), which has not appeared in previous works,
precisely captures the property of the metric needed to obtain the tightness of the left—right crossing

distances, the existence of the exponent, and the tail estimates (via a uniform bound on the A;,).

Condition (T) makes sense for LFPP with any underlying field and any parameter . In
particular, this condition or a variant thereof could possibly hold for LEPP for some & > 2/ds.
Therefore, a byproduct of the present work is a simple criterion (that implies, as noted above,
tightness of the crossing distances, existence of exponents, and tail estimates) that may be applicable

more generally.

The utility of Condition (T) is that it allows us to use an Efron—Stein argument to obtain a
contraction in an inductive bound on the crossing distance logarithm variance. Informally, since
the crossing distance feels the effect of many different subboxes, the subbox crossing distances are
effectively being averaged to form the overall crossing distance. This yields a contraction in variance.
(Of course, the coarse scales also contribute to the variance, and hence the variance of the crossing

distance does not decrease as the discretization scale decreases but rather stays bounded.)

The way we verify Condition (T) is quite rough: we bound the field uniformly over a coarse
grained geodesic by the supremum of the field over the unit square. It turns out that this bound

together with the identification of the exponent 1 — £@) is enough to establish the condition.

Tightness of the metrics. Once the tightness of the left—right crossing distance is established,
we turn to the tightness of the diameter and of the metric itself. This is done by a chaining argument,
and requires again £ < 2/dz. The diameter is not expected to be tight when & > 2/dy, since there

are points that become infinitely distant from the bulk of the space as the discretization scale goes
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to 0.

3.2 Description and comparison of approximations

We recall that a white noise W on R? is a random Schwartz distribution such that for every
smooth and compactly supported test function f, (W, f) is a centered Gaussian variable with
variance [|f||p2a) (see e.g. [21]). The main approximation of the Gaussian free field that we

consider in this chapter is defined for 6 € (0,1) by

f/y /Rgpt ©— y)W (dy, dt) (2.8)

1 \x—y|2

where py(z —y) := 5ze” 2 and W is a space-time white noise on [0, 1] x R%. This approximation

is different than the one considered in [38] which is

//]R2 < >t3/2W(dy,dt)

for a smooth nonnegative bump function &, radially symmetric and with compact support. Up to a
change of variable in ¢, the difference is essentially replacing p; by k. Both fields are normalized
in such a way that E(¢o(z)¢po(y)) = —log|z — y| + g(z,y) with g continuous (see e.g. Section 2
in [38]): this is the reason for the factor /7 in (2.8).

Let us mention that x-scale invariant Gaussian fields with compactly-supported bump function &
1. are invariant under Euclidean isometries,
2. have finite-range correlation at each scale,

3. and have convenient scaling properties.

The Gaussian field ¢ introduced above satisfies [I|and [3] but not [2} Because of the lack of finite-range
correlation, we will also use a field 15 (defined in the next section) which satisfies |1| and [2| such

that sup,,> ||pon — Q/JO,nHLOO([O’l]Q) has Gaussian tails, where we use the notation ¢q,, for ¢5 with

o=2""
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3.2.1 Basic properties of ¢5 and s

Scaling property of ¢s. We use the scale decomposition

2277,

. where ¢, (z) = Lz — )W (dy, dt
6i= 3 b where on(@) =7 [ [ pla—pWda

n>0

If we denote by C), the covariance kernel of ¢y, so Cy(z,2’) = E(¢p(x)dn(2)), then we have

—2n

/ 2 1 ‘T_I 2 n n,.t
Ch(z,2") = —e dt = Cp(2"x,2"2").
2

—2(n+1) 2t

Therefore, the law of (¢n(7))zepo,1)2 is the same as (¢(2"7)),ep0,1)2- Because of the 3 above, we
choose 62 and not ¢ in (2.8)) so that the pointwise variance ¢; is logd~!. Similarly, for 0 < a < b

and z € R?, set

bap(x) == /7 /b2 / ps (z — y)W (dy, (2.9)

and note that we have the scaling identity ¢qp(7) @ Gajrp/r(-). Indeed, E(¢qp(re)dap(ra’)) is

given by

b2 b2 b2 1 It
7[‘/ / p%(’l‘l‘ - y)p% (y — ra)dydt = 7r/ p(r(z —2'))dt = / —e 2t dt,
a? JR2

a2 a2 2t

and by the change of variable ¢ = r?u, this gives

b2 1 2|I 1‘2 (b/T)2 1 je—a)? ,
/a ﬂe dt _\/( 76 2t dt:E(¢a/r,b/r(m)¢a/r,b/r<x ))

2 a/r)2
We will use the notation ¢y, when a = 27" and b = 27k for 0 < k < n.
Maximum and oscillation of ¢5. We have the same estimates for the supremum of the field
¢0,n as those for the -scale invariant case considered in [38] (it is essentially a union bound combined

with a scaling argument). The following proposition corresponds to Lemma 10.1 and Lemma 10.2

in [38].

Proposition 3.2 (Maximum bounds). We have the following tail estimates for the supremum of
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¢o,n over the unit square: for a >0, n >0,

a2
P <fna]>2< |po,n| > a(n + C\/ﬁ)) < 04" o™ (2.10)
0,1

as well as the following moment bound: if v < 2, then

E<eymax[0’1]2 |¢0,n|) < 4’yn+0(\/ﬁ) (2.11)

We will also need some control on the oscillation of the field ¢g,. We introduce the following

notation for the L>-norm on a subset of R%. If A is a subset of R% and f : A — R™, we set
1f1l.4 := sup | f ()] (2.12)
z€A
We introduce the following notation to describe the oscillation of a smooth field ¢: if A C R? we set
osea() i= diam(A) [ Vgl (2.13)
so that if A is convex then sup, ,c 4 [¢(7) — ¢(y)| < osca(¢) and
-n
Pepﬁgg[o,ﬂ"’%cp(%’n) < G2 Voonllo:
where P, denotes the set of dyadic blocks at scale n, viz.
Poi= {27 ([iyi+ 1] x [j.j +1)) i, € Z}. (2.14)
In order to simplify the notation P € P,, P C [0,1]? later on, we also set

Pl:={PeP,: PcCl01?. (2.15)

Proposition 3.3 (Oscillation bounds). We have the following tail estimates for the oscillation of
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¢o.n: there exists C > 0, o2 >0, so that, for all z,e >0, n >0,

22

P (2—” IV domllgy2 > x) < O4re 207 (2.16)
as well as the following moment bound: for a > 0, there exists ¢, > 0 so that for n > 0,
E <ean€2*’ﬂ||v¢0,n”[071]2> < ecan%+5+0(n25) (217)

Proof. Inequality (2.16)) was obtained between Equation (10.3) and Equation (10.4) in [38]. Now,
we prove (2.17). Set an := an®, On = 27" Vol 12, and take z, = ano? + ao\/n with a > 0 so

that 0‘72 = log4. We have, using (2.16)),

o0 o0 oo 32
/ P (e“”O" > :1;) dr = / P (ea”O” > es) e’ds < C4"/ e 20%02e3(g

anTn AnTn AnTn

By a change of variable (s <+ a,05 + (a,0)?), we get

0 s? 1, o0 s2 12 2 [ s2
2 = [ = —_ 2
/ e 20307 ¢5ds = apoe2®h / e~ 2ds = apoe2®n? / e”2ds
anTn %—ana ay/n

since x, = a,0% + acy/n. Using that foo e~ gy < (2ab)*le*ba2, we get f;onzn P (e“"O" > w) dr <

¢9(*) The result follows from writing E(e0r) < ¢nn 4 Jomnan P(e¥On > z)d. O

Definition of 5. We fix a smooth, nonnegative, radially symmetric bump function ® such that
0<® <1 and ® is equal to one on B(0,1) and to zero outside B(0,2). We also fix small constants
ro > 0 and g9 > 0. We will specify these constants later on. In particular, €y appears in the main

proof in (5.60|) and its final effect is in (5.65)). All other constants C, ¢ will implicitly depend on rg

and €. Then, we introduce for each § € [0, 1], the field

/52/&{2 o —y)ps (x — y)W(dy, dt) = /52/]1%2 i W (dy, dt)

where oy = roVt|logt|®, ®,,(:) := ®(-/o;) and pi° =i Doy (2.18)
2

Thanks to the truncation, the fields (¢5)sc[0,1) have finite correlation length 8ro sup;cp ] Vt|log t|%°.
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Decomposition in scales and blocks of ¢5. We have the scale decomposition

//R?pé xr—y)W(dy,dt) = ZZ/ / W (dy, dt) = ZZ#%P

k=1 PPy k>1 PePy,
(2.19)

2— 2k+2

—2k+2

where vy, p is defined for P € Py by ¢y p(z) == [5la fpp?(x — y)W(dy,dt) and thus has
correlation length less than Ck®°27%. In particular, a fixed block field is only correlated with fewer
than Ck?%0 other block fields at the same scale. In fact, when we apply the Efron-Stein inequality
(see (5.58)) we will use the following decomposition:

—2K+2

Yom =V + Y VYknp(x) where g p( /2% / W(dy,dt). (2.20)

PePk

We note that there is a formal conflict in notation between (2.9) and (2.20)), but it will always
be clear from context whether the second subscript is a number or an element of Py (a set), so

confusion should not arise.

Variance bounds for ¢; and 5. Later on we will need the following lemma.

Lemma 3.4. There exists C' > 0 so that for 6 € [0,1] and x, 2’ € R?, we have

|z — 2|

Var (¢s(z) — ¢s(a’)) + Var (vs(z) — s(2)) < C—— 5

(2.21)

Proof. We start by estimating the first term. Using the inequality 1 — e * < 2z < /2 for z € [0, 1]

and 1 — e * <1< /2 for 2 > 1 we get

Var (¢s(z) — C/ Pt *pt —pt *pt(&’—@“)) dt
! 1 x—x’]
=C 52(pt(0) pi(z—2'))dt =C 52t(1_6 )dt<C\a:—:c|/ t3/2: 5

Similarly, for the second term, we have

Var (15(x) — 1s(a’)) = C (Prgfr *pi
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Set p1" * pi" =: py(x)q(x). Using the identity py/o(y)pja(z — y) = pe(2)peja(y — x/2) we get

2 2

ale) = [ PEOPEE D g )0 o )iy = [ bty 2/ )~ )

We rewrite the variance in terms of ¢;: replacing x — 2’ by z we look at

1
Var (us(a) = ¥s(@)) = € [ (n0)a0) = p(z)an(z))t
1 1
= [ 0@ - )it +C [ al:)m0) =)
We deal with these two terms separately. For the second one, since 0 < & < 1, we have 0 < ¢, < 1.
Therefore, following what we did for ¢5 above we directly have 0 < [ 512 qt(2)(pe(0) — pe(2))dt < C %.

For the first term, since p;(0) = Ct~!, it is enough to get the bound v/#|¢;(0) — ¢:(2)| < C|z| to

complete the proof of the lemma. Changing variables, we have

a(z)=C 5 e 2P D, (Viy + 2/2)®,,(Viy — 2/2)dy.

Therefore, using that 0 < & <1,

02) = @O <€ [ 00, (Viy +2/2) = B, (V) dy

+C [ P, (Viy — 2/2) — By, (V)|dy
R2

< Clz| / e [ Vg, g dy < O [V / e~ 2P gy,
R2 Ot R2

Since oy = rov/t|logt|?°, we see that SuPyeo,1] %t < 00, and the result follows. O

3.2.2 Comparison between ¢5 and s

The following proposition justifies the introduction of the field 1)y.

Proposition 3.5. There exist C > 0 and ¢ > 0 such that for all x > 0, we have

2

P (Sglg b0 — Yol = a:) < Ce ™. (2.22)
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Proof. For k > 1, we introduce the quantity Dy(z) := ¢r—1%(x) — ¥r—1(x). The proof follows

from an adaptation of Lemma 2.7 in [32] as soon as we have the estimates
Var Dy (z) < Ce k™0 (2.23)

and

Var (g1, () — ¢k (y)) + Var ($r(x) — ¢r(y)) < 2z —y). (2.24)

(The estimate (2.23)) is weaker than that used in [32, Lemma 2.7] but still much stronger than
required for the proof given there.) Note that (2.24]) follows from Lemma and for (2.23) we

proceed as follows: first note that

—2k+2

2
B ((0r10(e) = iors@)?) = [ [ py P = o)y

For every y, we have py/a(y)(1 — @5, (y)) < (2mt) e~/ since 0 < @g, < 1 and B, (y) = 1 for
ly| < or. Therefore,

2
9—2k+2  _ %t
e

E ((¢k—1,k(ﬂf) - ¢k—1,k($))2) < /2 €t /Rzpt(y)dydt < Cem ™ [

2k 2t 2

Let us point out that in fact »_ - E([|¢nn+1 — ¢n,n+1||[0 1]2) < oo holds but we won’t use it.
Since we will be working with two different approximations of the Gaussian free field, we introduce
here some notation, referring to one field or the other. We will denote by R, := [0, a] x [0,b] the

rectangle of size (a,b). We define

Xa,b ‘= sup H¢O,n - w(),nHRa b (2'25)
n>0 ?

and X, := X, , for the supremum norm of the difference between the two fields on various rectangles.
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3.2.3 Length observables

The symbol L((lng (¢) (and similarly L((lng (1)) will refer to the left-right distance of the rectangle

R, for the length functional efPonds:

Lailb)(qS) = ir;f/eg‘i’o’"ds, (2.26)

where ds refers to the Euclidean length measure and the infimum is taken over all smooth curves 7
connecting the left and right sides of R, ;. We will sometimes consider a geodesic associated to this

variational problem. Such a path exists by the Hopf-Rinow theorem and a compactness argument.

We introduce some notation for the quantiles associated to this observable: El(lnb) (¢,p) (similarly

)

ggng (¢, p)) is such that P <Lang (9) < ééng (gb)) = p. For high quantiles, we introduce Z (qb p) =

é(n (6,1 — p). Note that E (d), p) is increasing in p whereas ﬂ ; (¢, p) is decreasing in p. Note
(n)

that both are well-defined, i.e., there are no Dirac deltas in the law of L_ ;. This follows from an

application of the Cameron—Martin formula. We will also need the notation

An(¢; ) — max Zk((b?p)

= (k) / )
X (6. p) where (i(¢,p) = 5171(¢,p) and (o, p) == 5171(@]))' (2.27)

The following inequalities are straightforward:
e Xer L) () < LU (6) < 50 LT (1) (2:28)

Therefore, using Proposition (and a union bound, if necessary), we obtain that for some C' > 0

(depending only on a and b), for any € > 0 we have

e EVIBe/AFM () p 1 e) < B7)(6,p) < SOVIRBTAT () — o)

n)
a,b
n)
b

—50\/W|g(”)(¢ p—e) < gé (p,p) < efCW'é’,‘g (Y,p+e)
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In particular, there exists Cp, > 0 such that, uniformly in n,

Ga(,9/2) > /Ty n(6,p), En(1,p/2) < \/Cplu(dyp)  and  An(eh,p/2) < Cphn(e, p).
(2.29)

Now, we discuss how the scaling property of the field ¢ translates at the level of lengths. We

will use the following equality in law: for a,b > 0 and 0 < m < n,

m,n () mr(n—m
LY(g) € 27m Ll (#). (2.30)

Finally, for a rectangle P with two marked opposite sides, we define L™ (P, ¢) to be the crossing
distance between the two marked sides under the field e¢?0». The marked sides will be clear from
context: if we call P a “long rectangle,” then we mean that the marked sides are the two shorter

sides, so that L(" (P, ¢) is the distance across P “the long way.”

3.2.4 Outline of the proof and roles of ¢s and 5

The key idea of the proof is to obtain a self-bounding estimate associated to a measure of
concentration of some observables, say rectangle crossing lengths. This is naturally expected because
of the tree structure of our model. We introduce a general condition, which we call Condition
(T), (see (3-5.1)) which ensures a contraction in the self-bounding estimate (5.68)), which relates
a measure of concentration at scale n, the variance, with the measure of concentration that we

inductively bound, A, (see (2.27))), which is at a smaller scale.

We then prove that this condition, which depends only on ¢ and on the field considered, is
satisfied when £ € (0,(2/d2)™). This proof uses a result taken from [28] about the existence of
an exponent for circle average Liouville first passage percolation and this is the reason we don’t
consider the simpler x-scale invariant field with compactly-supported kernel but the field ¢5, which

can be compared to the circle average process by a result obtained in [27].

The roles of ¢s and 5 in the proof are the following.

1. Prove Russo-Seymour-Welsh estimates for ¢.
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2. Prove tail estimates w.r.t low and high quantiles for both ¢ and v:

(a) Lower tails: Use directly the RSW estimates together with a Fernique-type argument for

the field ¥ with local independence properties.

(b) Upper tails: use a percolation/scaling argument, percolation using ¢ and scaling using ¢.

3. Concentration of the log of the left-right distance: use Efron-Stein for the field ¢ (because of

the local independence properties at each scale). This gives the same result for ¢.

4. To conclude for the concentration of diameter and metric, this is essentially a chaining/scaling

argument using only the field ¢.

3.3 Russo-Seymour-Welsh estimates

3.3.1 Approximate conformal invariance

In order to establish our RSW result, we first show an approximate conformal invariance property
of the field. The arguments in this section are similar to those of [38, Section 3.1]. The difference is

that the Gaussian kernel has infinite support.

o2
Recall that ¢s(z) = f612 Jre pe(x —y)W(dy,dt) where p;(z —y) = %Wte*‘ 2. Consider a

conformal map F' between two bounded, convex, simply-connected open sets U and V such that
|F'| >1on U, |[F'||; < oo and |[F”||; < co. (We point out here that the assumption |F'| > 1 will

be obtained later on by starting from a very small domain; this is exactly the content of Lemma

3.11l) We consider another field ¢s(x) = f512 Jxe p%(:n — y)W (dy, dt) where W is a white noise that

we will couple with W in order to compare ¢s and &5 o F'. The coupling goes as follows: for y € U,
t € (0,00), let i = F(y) € V and t' = t|F'(y)|> and set W (dy/,dt') = |F'(y)|?W (dy, dt). That is,

for every L? function w on V x (0, 00),

/w(y’,t’)W(dyCdt’) = /w(F(y),tlF’(y)lz) |F'(y)|” W (dy, dt)

and both sides have variance HwH%z The rest of the white noises are chosen to be independent, i.e.,

Wivex(0,00)s Wirrx(0,00) @nd VT/|VC><(0,00) are jointly independent.

99



Lemma 3.6. Under this coupling, we can compare the two fields g?),;(F(at)) and ¢s(x) on a compact,

convex subset K of U as follows,

G5(F(x)) — ¢5(z) = 6\ (x) + ¢ (), (3.31)

where ¢£5) (L for low frequency noise) is a smooth Gaussian field whose L*°-norm on K has uniform
Gaussian tails, and gbg) (H for high frequency noise) is a smooth Gaussian field with uniformly

bounded pointwise variance (in 6 and x € K). Furthermore, ¢g) is independent of (¢s, qbf)).

This aforementioned independence property will be crucial for our argument.

Proof. Step 1: Decomposition. For fixed F' and small §, we decompose ¢s(z) — ¢s(F(x)) =
01" (@) + 65" (2) + 6§ (), where

IF'(y
0=/ /5 p% v~ )~ Dy (F@) = F) |F')[*) W(dy, db)

//;F/ ( t(x—y)—p; (W)) W (dy, dt)
/c/ézpt xz —y)W(dy,dt) — /c/(;zpt — o) W (dy, dt)
+/ / - Pz —y)W(dy,dt)

/ /62|F’ b3 (W) W (dy,dt)

Remark also that gzﬁgs) is independent of ¢g, g‘s), and qbgé).

Step 2: Conclusion, assuming uniform estimates. We will estimate d)l(.é), i=1,2,3, over K. In

what follows, we take x, 2’ € K. We assume first the following uniform estimates:
1 é é ) 1
(0" (@) - 6@ < Cla—o|, B0 @)= o @)D < Clo—a'|, E(¢f) (@) <C.

An application of Kolmogorov’s continuity criterion and Fernique’s theorem give uniform Gaussian

tails for qbg(s) and ¢§6). We then set ¢g )= qﬁgs) and qﬁl(f) = 55) + qbgs).

Step 3: Uniform estimates.

100



First term. We prove that E(( 56) () — ¢§5) (2"))?) < C'|x — 2| by controlling

/ol/U (p;(w—w — Py <W> —py(e'—y) +py (W»Qdydt

. . _l= . . .
By introducing p(z) = e~ 2 and by a change of variable t <> 2t2 it is equivalent (up to a

multiplicative constant) to bound from above the quantity

1 / ’ 2
dt T—y F(x) - F(y) z' —y F(a') - Fy)
— —p| ——=—7""] — —_— dy. 3.32
[l OG- () () = (P o B3
We will estimate this term by considering the case where t < y/|z —2/| and the case where
t>\/|z— .

Step 3.(A): Case t > /|z — 2/|. Using the identity |z —y|? + |2/ —y|> = |z —2/|> + 2|y — %x/ 2

and the inequality 1 — e™% < z, we get

_ ! 2 ool |2
/ <p <x ; y) —p(x " y)) dy < CtQ(l—e_il fria ) < C|x—x’\2. (3.33)
U

Similarly,

/U<p <W> _p(W»Z@ <C|F@)-F@)| < Clo—2/[",  (3.34)

where the constant C' depends on || F’||y. Then the corresponding part in (3.32)) is bounded from
above by |z — /|2 f\l/m 4% < Cla—2|.

Step 3.(B): For t < \/|x — 2/|, using the Taylor inequality |F(z) — F(y) — F'(y)(z — y)| <

3 1F"|ly |z — y|? and the mean value inequality (as we have assumed that K is convex),

() - (M)

< C|x - y‘Q <|$ B y| + |‘,Z7 B y|2> e_ﬁinfae(o,l)‘O‘(I_y)'i'(l_a) F<;;:)/7(;)‘(y) 2' (335)

t t t

Step 3.(B): case (a). If y € B(x,¢) for € small enough (depending only on ||[F”|;;), we have,
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using again |F(z) — F(y) — F'(y)(z — y)| < 3 |F”||;; |2 — y|?, uniformly in « € (0,1),

F(x) - F(y)

a(xiy)+(1ia) F’(y)

1 1
>z =yl = S [[F"[|y |z = yl* > S|z —yl.
2 2
Therefore, for such y’s we have, coming back to (3.35|),

p(27Y) - (RO 20| <l i

For this case we get the bound

r—y F(:E)—F(y)))2 |:c—y\6 eyl i . )
P\ —m ) ) w<sC 22 = Ot 2E(|B,2|%) < Ot
/B(:p,s) (p( t ) P ( tF'(y) y= Bae) (|Be2]”) <

where B; denotes a two-dimensional Gaussian variable with covariance matrix ¢ times the identity.

This term contributes to as C [ o= dtt4 < Clz —2/|.

Step 3.(B): case (b). Now, for t < \/|z —a'| and y € U \ B(z,e) we write

le=a'l g z—y\>
LR L ()
0 2 JU\B(z.e) t
/\/ac z/ dt

0

Vie=zl gr 2

<C P(|Bs2| > ¢) <C'/ —67272<C}:c—x

)

and similarly

where the constant C' depends on ||F’||y and ||(F~1)||v.

Applying Step 3.(A) and then Step 3.(B) twice (once for x and then again for 2’) to (3.32)), we
1 [
get E((¢1”(2) — 6" (2))?) < C e — o).
Second term. We want to prove here that E(( gs) (x) — ¢;5) (2"))?) < C|z — 2'|. Note that

three terms contribute to d¢o. The third one is a nice Gaussian field independent of §. The first two

terms are similar, so we will just focus on the first one, namely (;52 (@) = [ie f 52 DL (x —y)W (dy, dt).
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We have, similarly to (3.32)) and (3.33),

E (¢>§2($)* . pt(:v*y)>2dydt
’ / 2
<0/ W < ) () o
<C /Omfi/ p<x;y>+p<$lt_y>dy+0|x—x’|.

The remaining term can be controlled as follows (noting the symmetry between x and z/):

v |z—a| dt 1 _le—yl? V|z—2'| dt v |z—az' dt &2
/ - t—Ze 22 dy < C —P(!Bt2|>d <C/ s 2t2<0}x—33‘.
0 Ue 0

where d = d(K, U°). Thus E((¢3(z) — ¢ (2'))2) < C|z — 2.

Third term. We give here a bound on the pointwise variance of cb:(f). By using ‘F( }z_j(y) ’

*y|2

. 2
|—Cy‘ we get IE(QZ)?)( < 252 ‘f fR2 dy < C. O

3.3.2 Russo-Seymour-Welsh estimates

The main result of this section is the following RSW estimate. It shows that appropriately-chosen
quantiles of crossing distances of “long” and “short” rectangles at the same scale can be related by
a multiplicative factor that is uniform in the scale. This is the equivalent of Theorem 3.1 from [3§]
but with the field mollified by the heat kernel instead of a compactly-supported kernel. It holds for

any fixed & > 0.

Proposition 3.7 (RSW estimates for ¢5). If [A, B] C (0,00), there exists C > 0 such that for
(a,b), (d',V) € [A,B] with § <1< ‘g—,l, forn >0 and e < 1/2, we have,

f%x(sb, e/C) < cegfg(¢75)ecm; (3.36)
Z(T,Lb,(qf),?)ff ) < C[(n (¢ 5) \/W. (3.37)

The following corollary then follows from Propositions [3.5 and [3.7]

Corollary 3.8 (RSW estimates for 15). Under the same assumptions as used in Proposition
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we have

(706, 2/C) < O (b, )V 1B/ (3.38)
and

We point out that the constants C' in (3.38)) and (3.39)) are not equal to those in (3.36]) and (3.37)).

The remaining parts of the section will only deal with approximations associated with ¢ so we will

omit this dependence in the various observables.

We describe below the main lines of the argument. Consider R,; and R, p, two rectangles
with respective side lengths (a,b) and (a’,b’) satisfying § <1 < ‘Z—,/. Suppose that we could take a
conformal map F': Ry — Ry mapping the long left and right sides of R, to the short left and
right sides of R, j. (This is not in fact possible since there are only three degrees of freedom in the
choice of a conformal map, but for the sake of illustration we will consider this idealized setting

first.) Then the proof goes as follows.

Take a geodesic 7 for qggm for the left-right crossing of R, ;. Then, using the coupling (3.31)), we

have

T
L7 (Ry ) < L (F (7)) = / S0 EEOD F (7 (1)) - [7(¢)|dt
0
<71, /ef(éo,n+6¢L+a¢H)dS
- a,b #

<|I7, es6¢L||Ra,b/65$o,nega¢}1d5‘
< -, i

It is essential that 7 is gz~507n measurable and gz~507n is independent of d¢y. Then, we can use the

following lemma.

Lemma 3.9. IfI' is a continuous field and ¥ is an independent continuous centered Gaussian field
with pointwise variance bounded above by o > 0, then we have, as long as € is sufficiently small

compared to o2,
1. 611(0 + W,e) < eV2oloes™y, (T, 2¢);
2. 01 1(T +,2) < eV20?loge™g, (T ¢).
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Proof. Fix s := /202loge~! throughout the proof. Let m(I") be a geodesic associated with the

left-right crossing length for the field I', and define the measure p on 7(T') by p(ds) = Ly 1(I') " tel'ds,

SO fw(r) el'ds = 1. Conditionally on I, using Jensen’s inequality with o = 5oz = V/(loge=1)/(202),

which is greater than 1 for small enough ¢, and Chebyshev’s inequality, we have

P </ s > e’Ly1(T) | F) <P (/ ea@du > e F> < e300t gmas _ omom o
(L) m(T')
(3.40)

To bound from above L 1 (I' + ¥), we take a geodesic for I' and use the moment estimate (3.40)).

We start with the left tail. Still with s := y/202loge—1, we have

P (LM(F) < £1,1(I‘ + \I/, 6)6_8) <P (LI,I(F =+ \I/) < esLLl(F), Ll,l(l—‘) < 51’1(F + \I/, 6)6_8)

+P (L (D4 ®) > e’ Ly 1(T))

SP(L1p(T+¥) <l (T+ V) +P (/
()

e Vds > esLLl(F))
which is bounded from above by 2¢. For the right tail, we have similarly that

P(Lia(T+ W) > 014(T,¢)e’)
<P (Lig(T+ W) > 014(T,e)e’, £11(T,e) > L11(T)) + P (L11(T) > £1,1(T,¢))

< ]P’(LLl(F + \Il) > esLl,l(I‘)) + e < 2¢,

which concludes the proof of the lemma. O

The previous reasoning does not apply directly to rectangle crossing lengths but provides the
following proposition. Recall that K is a compact subset of U. Let A, B be two boundary arcs of
K and denote by L the distance from A to B in K for the metric ef?0ds; we denote A’ := F(A),
B':= F(B), K' := F(K), and L' is the distance from A’ to B in K’ for €90 ds. Recall that we

have |F’| > 1 on U. In the application we will achieve this by scaling U to be sufficiently small.

Proposition 3.10. We have the following comparisons between quantiles. There exists C > 0 such

that
1. if for somel >0 ande < 1/2, P(L <1) > ¢, thenP (L' <1') > ¢/4 with ' = | F'||, e¢V 1085/2C1,
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2. if for some l > 0 and ¢ < 1/2, P(L<I1) > 1 —¢, then P(L' <l') > 1 — 3¢ with I’ =
HF’HKGC’/“OgE/QCI.

Now, we want to prove a similar result for rectangle crossing lengths. We will need the three
following lemmas that were used in [38]. The first one is a geometrical construction, the second
one is a complex analysis result and the last one comes essentially from [89] together with an
approximation argument. In these lemmas, by “crossings” we mean continuous path from marked

sides to marked sides.

Lemma 3.11 (Lemma 4.8 of [38]). If a and b are two positive real numbers with a < b, there exists
j =j(b/a) and j rectangles isometric to [0,a/2] x [0,b/2] such that if 7 is a left-right crossing of the
rectangle [0, a] x [0,b], at least one of the j rectangles is crossed in the thin direction by a subpath of

that crossing.

Lemma 3.12 (Step 1 in the proof of Theorem 3.1 in [38]). If a/b <1 and o’ /b’ > 1, there exists
m,p > 1 and two ellipses E,, E' with marked arcs (AB), (CD) for E, and (A’'B’), (C'D'") for E'

such that:

1. Any left-right crossing of [0,a/2P] x [0,b/2P] is a crossing of E,.
2. Any crossing of E' is a left-right crossing of [0,a’] x [0,V].

3. When dividing the marked sides of E, into m subarcs of equal length, for any pair of such
subarcs (one on each side), there exists a conformal map F : E, — E' and the pair of subarcs

is mapped to subarcs of the marked sides of E'.

4. For each pair, the associated map F extends to a conformal equivalence U — V where E, C U,

E'CVand|F'|>1onU.

We refer the reader to Figure [3.1] for an illustration.

Lemma 3.13 (Positive association and square-root-trick). If k > 2 and (Ri,...,Ry) denote a

collection of k rectangles, then, for (z1,...,x1) € (0,00)*, we have

P (L(")(Rl) > a1,..., L (Ry) > xk> > P (L(")(Rl) > x1> P (L(”)(Rk) > xk> .
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Figure 3.1 — Mlustration of Lemma

An easy consequence of this positive association is the so-called “square-root-trick”:

maxP (LO(R) < 2,) > 1 (1-B(3i < k: L00(R) < 2,)) "

i<k

The main result of this section, Proposition is a rephrasing of the following one.

Proposition 3.14. We have the following comparisons between quantiles. If a/b < 1 and ' /b’ > 1,

there exists C > 0 such that, for any e € (0,1/2),

1P (LY <) &, then P (L), < CleCVIoss/l) > ¢/,

2. and if P (L("g < z) >1—¢, then P (L(7)b, < CleC llogf/c\) >1— 31/,

a, a,

Proof. We provide first a comparison between low quantiles and then a comparison between high

quantiles.

n
)

Step 1: Comparison of small quantiles. Suppose P(Léb) <) > e. By Lemma [3.11| and union

<) > ¢/j. Furthermore, by iterating, we have IP’(L(n)

bound, P(L) a/2 bj2r

a/2,b/2 = <1) > ¢/jP. Under

this event, by Lemma there exists a crossing of E, between two subarcs of E, (one on each

side) hence with probability at least /(j?m?), one of these crossings has length at most [. By the
left tail estimate Proposition and Lemma we obtain a €' > 0 (depending also on [|F”[|)

such that for all ,1 > 0:

P (L) <1) 2 e =P (L), < CletVIme/Cmmal) > ¢ (4jrm?),
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hence the first assertion.

Step 2: Comparison of high quantiles. Now suppose P(Lg"b) <1l) > 1—e¢e By Lemma

(to start with a crossing at a lower scale) and Lemma (square-root-trick), we have

IP’(LELn)Q,b/2 <1) > 1 — . Furthermore, by iterating, we have }P’(LEZ;)QPMW <Il)>1—¢'" On
the event {Lg;)m’ bj2p <1}, the ellipse E, from Lemma [3.12| has a crossing of length < [ between

two marked arcs. Again by subdividing each its marked arcs into m subarcs and applying the
square-root trick, we see that for at least one pair of subarcs, there is a crossing of length <[ with

probability > 1 — &/ "™~ Combining with the right-tail estimate Proposition and Lemma

B-12] we get:
n) _ (n) C+/|loge/C| __q.1/C
P(L0) <t)>1-e=P (L), <Cle )= 1-3C, (3.41)

which completes the proof. ]

Remark 3.15. The importance of the Russo-Seymour-Welsh estimates comes from the following:
percolation arguments/estimates work well when taking small quantiles associated with short crossings
and high quantiles associated with long crossings. Thanks to the RSW estimates, we can instead

keep track only of low and high quantiles associated to the unit square crossing, £, (p) and £,(p).

3.4 Tail estimates with respect to fixed quantiles

Lower tails. This is where we take 7o small enough (recall the definition (2.18))) to obtain some

small range of dependence of the field 1 so that a Fernique-type argument works.

Proposition 3.16 (Lower tail estimates for ©). We have the following lower tail estimate: for p

small enough, but fized, there is a constant C so that for all s > 0,
P(L{Y(6) < e ta(,p)) < Ce ", (4.42)
Proof. The RSW estimate (3.38) gives

P(L{)(W) <1) <e =P (L{w) <icle CVIET) < ce (4.43)
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Now, if Lz(,,ng (1) is less than [, then both [0, 1] x [0, 3] and [2, 3] x [0, 3] have a left-right crossing of
length <[ and the restrictions of the field to these two rectangles are independent (if ry defined in

(2.18) is small enough). Consequently,
n n 2
P <L§,§(¢) < l) <P (L§§ (¥) < l) (4.44)

Take pg small, such that C%py < 1 where C is the constant in (4.43]) and set rén) = Egng (¥, p0)-

(This is not related to r, defined previously.) For i > 0, set

pit1 == (Cpi)? (4.45)

P = ML exp(—CEr/Tog(Cpi)]) (4.46)

By induction we get, for ¢ > 0,

PLYY () < r™) < p; (4.47)

)

Indeed, the case ¢ = 0 follows by definition and then notice that the RSW estimate (4.43)) under the
induction hypothesis implies that P(L ng) (¥) < r(”)) <pi= P(Lgng) () < rl(z)l) < Cp; which gives,
using (39), P(LY3(¥) < rfh) < BL{YW) < i) < (Cpi)? = pisa.

From ([£.45) we get p; = (poC?)* C~2 and from ([£.46) we have the lower bound, for i > 1,

rim g(")(d}’ 0)Cte=CE Xito |10g(CPk)|2gg??))(,(b?po)e_Cie—cf\/\10gp002‘2i/2.

Our estimate (4.47)) then takes the form, for ¢ > 0,

P (L(n) (W) < g(n)(w,po)e—Cie—gC\/mgi/z) < (poCQ)Qi o2

This can be rewritten, taking i = [2log, s], as

2

P <L§:L32(1/1) < één::? (1/’apo)c_16_01°g56_55> <e

for s > 2 with absolute constants. We obtain the statement of the proposition by using again the

RSW estimates. O

109



Using the comparison result between ¢ and ¢ (Proposition , we get the following corollary.

Corollary 3.17 (Lower tail estimates for ¢). For p small enough, but fized, for all s > 0 we have a

constant C < 0o so that

P (L?}? (¢) < e’sﬁn(cb,p)) < Ceme (4.48)

Upper tails. The proof for the upper tails is similar to the one of Proposition 5.3 in [38]. The
main difference is that we have to switch between ¢ and 1, so that we can use the independence
properties of ¢ together with the scaling properties of ¢. Before stating the proposition, we refer
the reader to for the definition of A, (¢4, p). In constract with the lower tails estimates which
are relative to £, (¢, p), we do not know how to prove (at least a priori) the analogous result for the
upper tails with £,,(¢,p) only. However, we can prove it by replacing £,(¢,p) by An (¢, p)ln(0,p)

and this is the content of the following proposition.

Proposition 3.18 (Upper tail estimates for ¢). For p small enough, but fized, we have a constant

C < 00 so that for alln >0 and s > 2,

2

P (L{0(0) > € An(0,)ln(9,p)) < CeTor. (4.49)

Proof. The proof uses percolation and scaling arguments. A percolation argument is used to build
a crossing of a larger rectangle from smaller annular circuits, and then a scaling argument is used to

relate quantiles of these annular crossings to crossing quantiles of the larger rectangle.

- =
e A g
o RO

R

/_?_A\/V\ r;
Figure 3.2 — Four blue rectangles are surrounding the square P. Left-right geodesics associated
to the long and short rectangles surrounding P are drawn in green and brown respectively. Any

geodesic m,, here in red, which intersects P has to cross the green circuit and to induce a short
crossing of one of the four rectangles.

T
5

Step 1: Percolation argument. To each unit square P of Z2, we associate the four crossings of long

rectangles of size (3, 1) surrounding P, each comprising three squares on one side of the eight-square
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annulus surrounding P, as illustrated in Figure We define S (P, 1)) to be the sum of the four
crossing lengths, and declare the site P to be open when the event {S™ (¢, P) < 4l7(n (1, p)} occurs.
This occurs with probability at least 1 — e(p), where £(p) goes to zero as p goes to zero (recall that
P(Lé"l) () < tz(gnl) (p)) =1 —p). Using a highly supercritical finite-range site percolation estimate to
obtain exponential decay of the probability of a left-right crossing (which is standard technique in

classical percolation theory [41]; see also for example the proof of Proposition 4.2 in [26]) together

with the Russo-Seymour-Welsh estimates (to come back to £,(1, p)), we have

P (LG () > Ok a(4:,p) ) < Ce*

Therefore, using this bound together with Proposition to bound X3y 1, (recalling the definition
£29)),

P (L§4(6) > VRO, OR E(0,p/2)) < P (P9 L (0) > £VEC,OR 0 (0,p/2))
<P (Xgp > i ) +P (L5 () = GOk n(6,0/2))

< Ce R P (LG (8) = CR(v,p) ) < Ce™*

Note that we used the bound £,,(1, p) < Cply (¢, p/2) from (2.29) in the third inequality; here C, is
defined as in (2.29).

Step 2: Decoupling and scaling. In this step, we give a rough bound of the coarse field ¢q ,,
to obtain spatial independence of the remaining field between blocks of size 27"". When an event
occurs on one block with high enough probability, the percolation argument of Step 1 then provides,
with very high probability, a left-right path of such events occuring simultaneously. Since L:(,)nl) (9) <

e MaXRg qso’ngfrll’n)(QS), the scaling property of the field ¢, i.e. L:(,fﬁ’”)(gb) @ 2~ mL( 9m 2)m(¢), gives

P Li(snl) > efsﬁecmgn_m(qﬁ’p))

<P (max Gom > Cm + sy/m ) +P (2L (9) = eV Pl (00p)) < Cem 4 Ce?,

where the first term of the second expression is bounded by taking a = C' + sm~'/2 in Proposition

and the second bound follows from the result obtained in Step 1 with & = 2™, taking a slightly
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larger ¢ in exp(cy/2™) to absorb the factor e“™.

Step 3: We derive an a priori bound £, (¢, p) > 2_25k€n_k(¢,p)e_c‘/£. (Note that the argument
below will be optimized in (5.80]).) For each dyadic block of size 27% visited by 7, (¢), one of the
four rectangles of size 27%(1,3) around P has to be crossed by ,(¢). Therefore, since 7, (¢) has to

visit at least 2% dyadic blocks of size 2%, we have

L(n) > 2/6 Einf[oylp 0,k : : L(k‘,n) S P
11(9) = 2% pep, B D, (R7(P), ),

where (R?(P))1<;<4 denote the four long rectangles of size 27%(1, 3) surrounding P. Using the supre-
mum tail estimate (2.10) and the left tail estimates (4.48)), we get £, (¢, p) > 2_25k€n_k(¢,p)e_0\/§.
Indeed,

P ( ™oz o i in 281 (RE(P), ¢) < 27 %ky, ~oVE <
<€ PePk,zg%wl}rln(¢)¢@1r£i1£4 (R (P),¢) < bni(¢,p)e <

P([ég]g ¢ok < —klogd — CVE) + P (Pem%?nw)#w min ZLE(RT(P), @) < lo—r(@,p)e

and each term is less than p/2 if C is large enough, depending on p. Therefore, we have

Unm(6,D) < A (6, D) (6, D) < 2%™eV™ N, (6, D) (6, D).

Now, by coming back to the partial result obtained in Step 2 and by taking s = 2™ for s € [1, on/ 2,
we get

2

P (L51(0) > eV A, (6, p)n(,p) ) < €

Step 4: Now we consider large tails, so we assume s > 23. By a direct comparison with
the supremum, we have £, (¢,p) > 2—¢(2n+Cv/n) (later on we will use a more precise estimate
from [28|, see ) Moreover, bounding from above the left-right distance by taking a straight
path from left to right and then using a moment method analogous to the one in , we get
P (Lgnl)(ﬁﬁ) > 658) < e_m. Altogether,

(s—nlog 4—Cy/m)? o . $2
_ s —
) S e 2(n+1)log?2 S e e logs,

P (L{)(9) = a0 p)An(0:p)e™) <P (L{)(9) = fu(6,p)e"

)
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1 in the first inequality and the bound €, (¢, p) > 2~¢Zn+CVn) together

2

where we used A, (¢, p) >
with the tail estimate P (Lg"l) (¢) > 655) <e 20T 1) Tog 2 in the second one. The last inequality follow

. n
since s > 22.

Combining the tail estimate of Step 3, valid for s € [1,2"/?], and the one of Step 4, valid for

s > 22 completes the proof. O

Using again the comparison between ¢ and ¢ given in Proposition [3.5] we get the following

corollary.

Corollary 3.19 (Upper tail estimates for ¢). For p small enough, but fized, we have, for alln >0

and s > 2,

P(L5(W) 2 e Aa(,p)la(w9)) < CeTrr, (450)

3.5 Concentration

3.5.1 Concentration of the log of the left-right crossing length

Condition (T). Denote by m,(¢)) the left-right geodesic of the unit square associated to the field
1o,n. If there are multiple such geodesics, let 7, (1)) be chosen among them in some measurable way,

for example by taking the uppermost geodesic. By 7 (1) its K-coarse graining which we define as
tR() == {P € Pk : PNm(v) # 2}, (5.51)

recalling the definition (2.14) of Pg. Let vy ,(P) denote the value of the field vy, taken at the
center of a block P. We introduce the following condition: there exist constants a > 1, ¢ > 0 so

that for K large we have

a\ 1l/a

ngwO,K(P)
sup E Zpent(v) < e K, (Condition (T))

2
n>K (ZPEﬂff ) eﬁ’t/)o,K(P))

The importance of Condition (T) comes from the following theorem.
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Theorem 3.20. If ¢ is such that Condition (T) above is satisfied, then (log Lgnl)(gb) —log An(¢))n>0

is tight, where \,(¢) denotes the median of L(lnl)

It is not expected that the weight is approximately constant over the crossing (since there may
be some large level lines of the field that the crossing must cross). Condition (T), however, roughly
requires that the length of the crossing is supported by a number of coarse blocks that grows at least
like some small but positive power of the total number of coarse blocks. Note that the fraction in
Condition (T) is the ¢2 norm of the vector of crossing weights on each block divided by the square
of the ¢! norm of the same, and thus controlling it amounts to an anticoncentration condition for

this vector.

The core of this section is the proof of Theorem [3.20] Before proving it, let us already jump to
the important following proposition. Here we use the assumption that & € (0,2/ds), although the

formulation of Condition (T) is designed so that it could also hold for larger .

Proposition 3.21. If vy € (0,2), then £ := % satisfies Condition (T).

Proof. Step 1: Supremum bound. Taking the supremum over all blocks of size 2% in [0, 1]2, we get

ZPew{lf @) e26%0,x (P) eSmaxpepy Yo,k (P) oE maxpepy do,x (P)
eSo,x (P

£Xa
65'{/)0,K(P) ’

5 < 7 <
(ZPGWKW) ef%yK(P)) 2 penk () 2 penk ()

recalling the definition of X; below (2.25)).

Step 2: We give a lower bound of the denominator of the right-hand side. By taking the
concatenation of straight paths in each box of X (1)), we get a left-right crossing of [0, 1]2. Denote

this crossing by I'y, k. We have,

Z eSYor(P) > o=EX1 Z o&¢0.x (P) (5.52)
Perk () Perf ()

> 1 exp(—€ max osep(do.x))25 L) (6, Tos) > e 51 exp(—€ max osep(dox))25 LY (9),

where oscp was defined in (2.13)) and P} was defined in (2.15)).
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Step 3: Combining the two previous steps, we have

EPEWE(#}) e?vo.xc(F) eg M pep) $0.K(F)

<
(EPEﬂ{f(w) e&/Jo,K(P))

L2 X1 eE maXpepl oscp(¢o,x) '

2
2K L") (¢)

Now, we take a > 1 close to 1. Using Holder’s inequality with % + % =1 and r close to 1, together

with Cauchy-Schwarz, we get

a\ 1l/a
E ZPGTK‘%(@D) ngwO,K(P)
2
(ZPeﬂff(w) e@/)o,K(P))
1/a
_ 2—KE (eaf maxpep - oo,k (P) 620‘6)(1 eag maxpep}( oscp (b0, k)
>~ )
(L ()"

<27 FE <ewE maXpepl ¢0,K(P)) 1/ar E ((Lﬁ) (¢)) —2a5) 1/2as

< E <€8as§X1>1/4asE <e4as§maxpep}( oscP(¢07K)>1/4as

Therefore, using (2.11)) for the maximum, (4.48)) for the left-right crossing, Proposition to bound
X1 and ([2.17)) for the maximum of oscillations, we finally get, when aré < 2 (recall that ar can be

taken arbitrarily close to 1),

a\ 1/«
bty €0 : 1 OVR
E Emy (¥) <9 K22§K£§1§)(¢7p) 1,CVEK. (5.53)

(Srersio )’

Step 4: Lower bound on quantiles. For v € (0,2), Q := % + % > 2. Using Proposition 3.17
from [28] (circle average LEPP) and Proposition 3.3 from [27] (comparison between ¢s and circle

average), we have, if p is fixed and € € (0,Q — 2), for K large enough,

(5 (g,p) > 27 K1-@+ee), (5.54)
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Step 5: Conclusion. Using the results from the two previous steps, we finally get

a\ 1/a

ZPETFK(’l/)) e28%0,k (P)

. < 2—§(Q—2—5)K60\/E’
(ZPEW,If(’l/I) efwo,K(P))

E

which completes the proof. O

Now, we come back to the proof of Theorem We first derive a priori estimates on the

quantile ratios.

Lemma 3.22. Let Z be a random variable with finite variance and p € (0,1/2). If a pair

(U(Z,p),U(Z,p)) satisfies L(Z,p) > U(Z,p), P(Z > U(Z,p)) > p and P(Z < U(Z,p)) > p, then,

we have:

(U Z,p)—£(Z,p)* < p22Var Z. (5.55)

Proof. If Z' is an independent copy of Z, notice that for I’ > [ we have 2Var(Z) = E((Z' — Z)?) >

E(lzsilza(Z - 2)?) = B(Z > U)P(Z < (I - 2. 0

In the following lemma, we derive an a priori bound on the variance of log Lg"l) (9).

Lemma 3.23. For all n > 0 we have the bound
Var log Lgnl)(qﬁ) <& (n+1)log2

Proof. Denote by Lgnl) (D) the left-right distance of [0, 1] for the length metric eg‘ﬁg,"ds, where d)]gm
is piecewise constant on each dyadic block of size 2% where it is equal to the value of ®o,n at the
center of this block. (We do not assign an independent meaning to the notation Dy.) Note that we
have

—C27%|| Vo n C27%|| Vo n
e I %o, ”[0’1]2L§71) S Lgill)(Dk) S Lg771)e I %o, ||[071]2,

which gives almost surely that Lgnl) (¢) = limg 00 Lgnl) (D). By dominated convergence we have

Var log Lgnl) (¢) = kli)ngo Var log Lgnl) (Dg).
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Now, log Lg"l) (Dy) is a &-Lipschitz function of p = 4¥ Gaussian variables denoted by Y = (Y1, ..., Y}),
where on RP we use the supremum metric. We can write Y = AN for some symmetric positive
semidefinite matrix A and standard Gaussian vector N on R*". Then log Lgnl) (Dg) = f(Y) = f(AN)
which is {o-Lipschitz as a function of N where o = max(|A;|, ..., |4,|). By the Gaussian concentration
inequality of [32, Lemma 2.1], applied as in |26 Lemma 5.8], since the pointwise variance of the

field is (n + 1) log2 we have

Varlog L\ (D) < max(Var(Y1), ..., Var(¥;)) = €2(n + 1) log 2. 0

Before stating the following lemma, we refer the reader to the definition of quantile ratios in

2-27).

Lemma 3.24 (A priori bound on the quantile ratios). Fiz p € (0,1/2). There exists a constant C,,

depending only on p such that for alln > 1,

An(th,p) < €OV, (5.56)

Proof. By using Lemma [3.23 we get Var(log Lgkl) (¢)) < Ck for all 1 < k < n and an absolute

constant C' > 0. This implies the same bound for 1) by Proposition Using then Lemma [3.22

with Zj = log Lgkl) (¢) for k < n, we finally get the bound maxz<y, % < eOrVn, O

Proof of Theorem [3.20, The proof is divided in five steps. K will denote a large positive number to

be fixed at the last step.

Step 1. Quantiles-variance relation / setup. We aim to get an inductive bound on A, (v, p). We

Zn(va/Q)
Lo (Y,p/2)

enough so that we have the tail estimates from Section for ¢ with p and for ¢ with p/2. The

will therefore bound in term of A’s at lower scales. p will be fixed from now on, small

starting point is the bound

Zn(¢,p/2) C \/\m
A\ P2 - O 1,1%) 5.57
bn(,p/2) ~ %50

Step 2. Efron-Stein. Using the Efron-Stein inequality with the block decomposition of vy,
introduced in (2.20]), defining the length with respect to the unresampled field L, (¢) = Lgnl) (), we
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get

Varlog L{" (¢) < E ((log L () ~ log Ln(¥))} ) + Y E((log L{/(¥) ~ log Lu(¥))7) , (5.58)
PP

where in the first term (resp. second term) we resample the field ¢ x (resp. ¥, p) to get an
independent copy o rc (resp. ¥k, p) and we consider the left-right distance L (¢)) (resp. LE (1))

of the unit square associated to the field g, — 10 k + 1;07;( (resp. Yon — VK mp + Q,Z)K’n,p).

Step 8. Analysis of the first term. For the first term, using Gaussian concentration as in the

proof of Lemma we get
E((log Ly (¥) — log Ln(1))?) = 2E(Var(log L (¥) b0, — t0,)) < CK. (5.59)

Step 4. Analysis of the second term. For P € Py, if LL(v)) > L, (1), the block P is visited by

the geodesic m, (1)) associated to Ly (1). Define
PE .= {Q e Pk : d(P,Q) < CK®27 K}, (5.60)

where we recall that ¢ is associated with the range of dependence of the resampled field 1[1[(,”7 P

through (2.18)) (see also the subsection following this definition). Here, d(P, @) is the L*>-distance

between the sets P and Q.

We upper-bound LY (1) by taking the concatenation of the part of m, (1) outside of PX together
with four geodesics associated to long crossings in rectangles comprising a circuit around P¥ (for
the field 1), which coincides with the field d)éf ,, outside of PK). We get, introducing the rectangles
(Qi(P))1<i<a of size 27K (CK*=0,3) surrounding P¥X (PX and its 3 - 275 neighborhood form an
annulus, and gluing the four crossings gives a circuit in this annulus) and using the inequality

logz <x—1,

max; <i<a L™ (Qi(P), 1) '

— - (5.61)
L) () L ()

(log Ly, () —log Ln(¥)) , <

e We recall the notation ¢ g (P) to denote the value of the field ¢  at the center of P. We
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bound from above each term in the maximum of (5.61)) as follows:

L™(Qi(P),v) < XL (Qi(P), ¢)
< e8X €90, (P) g oscpr (¢0,K)L(K7n)(Q (P), )

7

< 62§X65¢0,K(P)€§ OSCpK (¢07K)L(K’n) (QZ(P), ¢)?

where the oscillation osc is defined in (2.13) and P is defined in (5.60).

For a rectangle @ of size 275 with corners in 27572 we denote by (RF(Q))1<i<4 the four long
rectangles of size 27 (3,1) surrounding Q. We can upper-bound the rectangle crossing lengths
associated to the Q;(P)’s by gluing O(K®°) rectangle crossings of size 27%(3, 1), which include an
annulus around each block @ of size 275 (1,1) (with corners in 27%72?) in the shaded region AX of

Figure [3.3] We get

(K,n) (). < €0 (K,n)(pL
max L'™"(Qi(P),¢) < OK oc Arﬁi’;gL (R (Q), 8)

and we end up with the following upper bound:

&o,k (P)
(log Lﬁ(i/}) —log Ln(qj}))Jr < 62£X6TQ§OSCPK(¢0,K)CKEO max L(K’n)(RZ-L(Q), o).
L1,1 (¥) QeAK 1<i<4
(5.62)
A% RY(Q)
S = REQ)

{o] /

)

Q1(P) pK

S

Figure 3.3 — Illustration of the geodesics used in the upper bound of Step 4.
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e We lower-bound the denominator of (5.62)) as follows. If P € Pk is visited by a m,()
geodesic, then there are at least two short disjoint rectangle crossings among the four surrounding P.
Therefore, if we denote by P the box containing P at its center whose size is three times that of P,

§on Jg > i (n)( RS > X i (n)( RS
/ g tmds 22 e 1O (RE(P), ) 2 e i 1OO(RY(P), )

> e—EX o800,k (P) =€ 0scp(d0.5) 1nip L(K’")(Ris(P),qﬁ)
1<i<4

> ¢ %X &0,k (P) g=€0sep(@0.x) in LUSR)(RS(P), ¢)

- 1<i<4 e
where (R?(P))1<i<4 denote the four short rectangles of size 275 (1, 3) surrounding P. Summing
over all P’s and taking uniform bounds for the rectangle crossings at higher scales,

W=y /P 5¢°”ds>f D / 5¢0,nd.s

pepy Y Phmn (¥ PGP Py (¢

L _oex (Km) (RS (p €00,k (P)  —€ 0sc p (60,K)

= (52%3 fin, LER(P).0) 2, e
PePx ,PNrn () #0

Therefore, taking a uniform bound for the oscillation, we get
1
L§”E(¢) Zem %X Z e£%0,x (P) g =€ 0scp (o, k) min  LEY(RI(P), ¢) (5.63)
, 9 PePl 1<i<4
Pem(y) K

> }efzgxe—fmaxpepk oscp (o, i) min L(K’n)(Rf(P),QZD) Z egw()’K(P). (5.64)
9 PEPL,1<i<4 PerE ()

v

e We recall that (R (P))1<;<4 denote the four rectangles of size 27%(3,1) surrounding P. Gath-

ering inequalities (5.62) and (5.64), we see that > p.p E ((log LP(y) —log Ln(w))i> is bounded

from above by

K*E

2
ZPGWK b0 (P MaXpepl 1<i<4 L) (RZL(P)7 ) eCE MaXpepl OSCpK (¢0,K)68§X
(Zpeﬂk efvor(” )> * \ minpepy 1<icq LW (RE(P), 6)
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e Condition (T) gives us a @ > 1 and ¢ > 0 so that for K large enough, for n > K,

a\ 1l/a
ZPeﬂff(w) e2£/¢)0,K(P)

5 < e K,
(ZPGN,’f(w) e&/}o,K(P))

E

Then, by using the gradient estimate (2.17)) and recalling the definition of P¥ in (5.60]), we have

E (ecmaxpepk OSCPK(¢O,K)> <E <eCK602KHV¢O’K”[O’1]2> < eCK%Jrso. (5.65)

It is for the second inequality that in (2.18)) we take gy to be small in the definition of 1; g9 < 1/2

is sufficient. Furthermore, using our tail estimates with regard to upper and lower quantiles for ¢

(see (4.48) and (4.49), and the scaling property (2.30)), for 5 > 1 so that é + % =1, we get

max ieg LI (RE(P), 27\ 7 1.
o R )( ;( -0 < A2 (p,p)eCFT (5.66)
Minpept j<icy LN (R7(P),9)

Note that we could have a log K term instead of the K0 in (5.66)). Altogether, by applying Holder

inequality and Cauchy-Schwarz, we get

2 e 3+e e L+e
>~ E((log Ly (®) ~ log Lu(1))} ) < e e A (0.p) < e TIONY ie(at,p/2),
PePk
(5.67)

where we used (2.29) in the last inequality to get A2 (¢, p) < CpA2_ (¥, p/2).

Step 5. Conclusion. Gathering the bounds obtained in Step 3 (inequality (5.59)) and Step 4

(inequality ([5.67])), we get, coming back to the inequality (5.58)), for K large enough,
Varlog L") (1) < C1K + e @K A2_ (1, p/2). (5.68)

Now, we will show that this bound together with the a priori bound on the quantile ratios (Lemma

3.24)) is enough to conclude first that A (¢, p/2) < oo and then that sup,,, Varlog Lgnl)(z/z) < 00,

using the tail estimates (4.48]) and (4.50]).

Coming back to Step 1 (equation (5.57))) and using (5.68)), we get the inductive inequality ([5.69))
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below for K large enough and n > K, and ([5.70) below by the a priori bound on the quantile ratios
Lemma [3.24

@n(ib,p/?) < eC’p\/Varlong?l)(zp) < eCp\/CHKJre*CQKA?L_K(zp,p/Q)

; 5.69
(n/2) = : 509
Ax(,p/2) < “VE, (5.70)
From now on, we take K large enough but fixed so that
e_CQK(eéi"‘/?—f—f:CT”QClK)2 < (K. (5.71)
Set
ARee := A (¥, p/2) V eEP VALK (5.72)

so that Ag(1,p/2) < Apec. This is the initialization of the induction. Now, assume that

An—l(wap/2) < ARec- In particular, Aan(lb’p/z) < ARec and using "

b($0/2) _ o, /ERTeFRE,,
(1, p/2) ~

The right-hand side is smaller than e“»V2¢15 and therefore than Age.. Indeed, by (5.72)), (5.70)
and (5.71)),

efczKAl%LeC < fchK(AK(l/J,p/?) Jrec,,\/201K)2 < efch(eép\/FJrecp\/zclK)z < O)K.

Therefore,
(¥, 1/2)
Ap(0,p/2) = N1 (Y, 0/2) V = < ARec-
Therefore, Axo (1, p/2) < oo thus Ax(¢,p) < oo and by the tail estimates (4.48) and (4.49), the
sequence (log Lgnl)(d)) —log A\n(@))n>0 is tight. O
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3.5.2  Weak multiplicativity of the characteristic length and error bounds

Henceforth, we will only consider the case £ = % for v € (0,2) and the field ¢ ,,. All observables
will be assumed to be taken with respect to ¢ and we will drop the additional notation used to

differ between ¢ and . In this case, we saw that there exists a fixed constant C' > 0 so that for

all n >0, 6371) (p) < Cﬂf}?(p), C*1€§71) (p) < Kgng(p) and with the tail estimates, E(Lénl)) < C’E(Lgng)

All these characteristic lengths are uniformly comparable. We will take A, to denote one of them,

say the median of Lgnl)

In the next elementary lemma, we prove that a sequence satisfying a certain quantitative weak

multiplicative property has an exponent, and we quantify the error.

Lemma 3.25. Consider a sequence of positive real numbers (Ay)n>1. If there exists C > 0 such

that for allm > 1, k > 1 we have
e OVEX N < Mk < €VEN A, (5.73)

then there exists p > 0 such that A, = p"+tOWm),
Proof. We introduce the sequence (a,)n>0 such that Agni1 = ()\gn)2 e% . By iterating, we get

n+1 n n—1
Agnt1 = ()\2n)2 edn — ()\2n,1)4 e2an—1tan — . — )\% e2"aot+2" art+2an 1 tan

The condition (5.73]) gives that the sequence (2*”/ 2an) is bounded, therefore the series >, g—ﬁ

n>0

converges and | >, 5F| < 2 (supg>g 275/2|qy|) 27/2. In particular there exists p > 0 such that

1 a 1 a
_ 62n+1 (log M+35 2h—o 2—@) _ 62n+1 <log A+35 2o 2—,’3) efzn kst % 2n€o(2n/2).

>\2n+1 — p

Now that we have the existence of an exponent, we prove the upper bound of Lemma [3.25] There

exist C1,Cy > 0 such that we have the following upper bounds:

Agr < p2k6012k/2, (5.74)

Ak < AadpeC2VE, (5.75)
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Take C3 large enough so that (Cy + Ca)% + (C1 + C2)C3 < C2 and A\ < pe®. We want to prove
by induction that for all n > 1, A, < p"e®*V™. The assumption on C3 implies that this holds for
n = 1. By induction (in a dyadic fashion), take n € [2¥ 2F*1). We decompose n as n = 2% + n;,

with ny, € [0,2F). We have, by using (5.75)), (5.74) and the induction hypothesis,

A, < )\2k>\nkecz2k/2 < (p2kecl2k/2)(pnkecg\/ﬁ)eczﬁ/? _ pne(cl+02)2’“/2+c3\/ﬁ < preCavi,
since by the assumption on C3 we have
2
((01 + CQ)Qk/Q + ng/nk) = (Cl + 02)22k + (Cl + 02)032k/2\/nk + ank < C§(2k + nk) = an.

The proof of the lower bound is similar. ]

In the next proposition we prove that the characteristic length A, satisfies the weak multiplica-

tivity property (5.73)) and we identify the exponent by using the results of [28].

Proposition 3.26. For & satisfying Condition (T), there exists C' > 0 such that for all n > 1,
k > 1 we have

VRN N < Ak < eCVENAL. (5.76)

Furthermore, when v € (0,2) and § = v/d-, we have

\, = 27 (1-€@)+0(V/n) (5.77)

Proof. Let us assume first that (5.76)) holds. Then, by using Lemma there exists p > 0 such
that we have \, = p"TOW")_ Similarly to (5.54)), for each fixed small § > 0, for k large enough we
have,

Ay < 27R(1=6Q—0) (5.78)
The proof of (5.78]) follows the same lines as the one of ([5.54). Combining (5.78)) and ([5.54) we get
p= 2-(1-€Q) Now, we prove that the characteristic length satisfies ((5.76]).

Step 1: Weak submultiplicativity. Let m be such that L®)(m) = L. If P € Py is visited

by 7, consider the concatenation S(’“”Jrk)(P) of four geodesics for e$®kn+kds associated to the
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rectangles of size 27%(3,1) surrounding P. Each geodesic is in the long direction of its rectangle

so that this concatenation is a circuit. By scaling, E(L®*Fn+k)(§kn+k)(pY)) = 2_k+2E(Lé”1)). Note

)

that the collection 7F(¢) = {P € Py : PN m; # @} is measurable with respect to ¢k, which
is independent of ¢y p4%. Set I'yp := UPew’,g(qs) S(k’”Jrk)(P). Note that I'y,, contains a left-right

crossing of [0, 1]2 whose length is bounded above by

L(n+k)(rk,n): Z LR (glkntk) (pyy < Z Lkntk) (glRntk)(py)ebon(P) gEoscp(ok)
Perk(¢) penf(¢)

where P denotes the box containing P at its center whose side length is three times that of P. Since

Lg’fik) < L+k)(Ty, ), by independence we have

E(Lgtll‘i'k)) < 4E(L:(:1))E Z 9~k €00,k (P) € 0scp(¢o.k)
Perr]lj(qb)

If P is visited, then one of the four rectangles of size 27%(1,3) in P surrounding P contains a short

crossing, denoted by 7;(P) and we have
/ e$%0.k 1 pds > LB (7, (P)) > 27 Fetinfp b0k > 9=k E0k(P) g =Eosep(@or)
Tk

hence

Z 2_k6§¢0,k(P)€£OSCp(¢O,k)S Z 62§OSCp(¢o,k)/ e£¢o’k1ﬂkmﬁd5'
Pert(¢) Perk(¢) i

Taking the supremum of the oscillation over all blocks,

Z e2EOsCP(¢O,k)/ e$%0.k 1 pds < 96252—’€HV¢0,,€||[071]2 Lg 1)
k )
Perk(¢) Tk

Altogether, by Cauchy-Schwarz,

E(L{) < 36E(LIDE((LE)2) 2R 1704 o2 y172,

125



When ¢ satisfies Condition (T), by using the uniform bounds for quantile ratios together with the
upper tail estimates (4.49)) and the gradient estimate (2.17)) we get A1k < ec‘/E)\n)\k.

Step 2: Weak supermultiplicativity. We argue here that
Anak > e VEN AL (5.79)

Using a slightly easier argument than (5.64]) (since we just have the field ¢ here), we have

L) > S eery e p 00 [y pken(RS(p)) | ST (P,
’ PePl1<i<4

k
P€7Tn+k

where 7T7]§ 4 denotes the k-coarse grained approximation of 7,1, the left-right geodesic of [0, 1) for
the field @o -+, and where we recall that (R?(P))1<i<4 denote the four rectangles of size 27%(1, 3)

surrounding P. Furthermore, by using a similar argument to (5.52)), we have

S o) 5 e, oentoni g )

k
P€7rn+k

Altogether, we get the following weak supermultiplicativity,

(n+k) (k) : k1 (kJk4+n) pS —2¢ max oscp(do,x)
L > 1 (Peprglgmz LOsk+0) (R <P>>>e pem oscr (ons (5.80)

When ¢ satisfies Condition (T), by scaling and the tail estimates (4.48)), we obtain the inequality
P(minPeP;,1§i§4 ok L(kk+n)(RI(P)) > Ane=CVF) > 1 — ¢ Furthermore, using the gradient
estimates (2.16]), we get P(27F HV¢0,kH[o 2 = CvVk) > 1— e~ for C large enough. Therefore, with
probability > 1/2, L") < e=@Vkx, )y, hence the bound Ay, > e CVEN A, 0

3.5.3 Tightness of the log of the diameter
Proposition 3.27. If v € (0,2) and { = v/d, then (log Diam ([0, 1]2,)\5165‘1’0%(15))”>0 is tight.

Proof. Step 1: Chaining. By a standard chaining argument, (see (6.1) in [38] for more details), we
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have

n
Diam ([0, 1%, ef%*"dsQ) <O max LO(P) +C x 27" Mo o, (5.81)
eCk
k=0

where Cy, is a collection of no more than C4F long rectangles of side length 27%(3,1).

Using the bound for the maximum (2.11), when & < 2, we have E(27"ef5 P02 %0n) <

2 %Nl
Fix 0 < k <n and P € C;. We can bound L™ (P) by taking a left-right geodesic Thn fOr ¢p .
Therefore,

L(n) (P) < L(n) (ﬂ-k,n) < 66 maxq ;)2 ®0,k L(k,n)(f))7

and consequently,

max L (P) < 8™ 0,12 %0k max 157 (P, (5.82)
PeCy, PeCy,

Using independence, the maximum bound ([2.11)), scaling of the field ¢ and the tail estimates

(4.49), we get

lye
E <6£ max(, ;)2 ®0,k gleaéx L(k,n) (P)) < 27k22§k60\/E)\n_keCk2+ (583)
k

for some fixed small € > 0 (again, the term k° could in fact be log k). Taking the expectation in

(5.81)), using (5.82)) and ([5.83]), we obtain the following bound for the expected value of the diameter,

n 1,
E(Diam([0, 1]?, %0 ds)) < C'Y " 27k22k ), eOF ™ (5.84)
k=0

eCVE
Ak

< )\an(l_gQ)eC\/E. Together with

Step 2: Right tail. By Proposition [3.26] A\,_r < A,
(5.84)), this implies that

n 1., 00 1.
E(Diam([0, 1]2, e%0mds)) < C Y 27022k, e < 3,037 2 k@D R
k=0 k=0

Since @ > 2, Markov’s inequality gives P (Diam([O, 12, A Lef%onds) > 65) < Ce .

Step 3: Left tail. Finally, since the diameter of the square [0, 1]? is larger than the left-right dis-
tance, by our tail estimates (4.48)), we get P (Diam([O, 12, A LefP0nds) < e*S) <P <L§”1) < )\ne*‘*’) <

2

Ce™". O
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3.5.4 Tightness of the metrics

Proposition 3.28. If v € (0,2) and { = v/d, then the sequence of metrics ()\leegd’oy"ds)n>O is

tight. Moreover, if we define

_ ol d /
Ch = sup |z =a* ‘/ and Cf:= sup 70771(%;%5)
z,x'€[0,1]2 don(,2") z,x'€[0,1]2 |z — 2|

then, for > &£(Q +2) and B < £(Q — 2), the sequence (CY, Cg)nZO is tight.
Henceforth, we use the notation dy,, for the renormalized metric \;,*e%0.nds restricted to [0, 1]2.

Proof. The proof has two parts. In the first part we show the tightness of the metrics in the space
of continuous function from [0, 1]? x [0, 1]> — RT and in the second part we show that subsequential

limits are metrics. A byproduct result of the argument is explicit bi-Holder bounds.

Part 1. Upper bound on the modulus of continuity. We suppose v € (0,2). We start by proving

that for every 0 < 8 < &(Q — 2), if £ > 0, there exists a large Cz > 0 so that for every n > 0
P (Elx,a?’ € 0,1 : don(x,2') > Celx — w’|ﬁ) <eg, (5.85)

is tight, where the C-norm is defined for f : [0,1]? x [0,1]> = R as

e (ldomllenqonzxioam),

|f(z,y) — f(@',9)]
f = f + sup .
£ lles o2 xp0,112) = [1F o, 120,172 ()@ e 2xo,2 [(2,y) — (@, 9P

By a union bound it suffices to estimate P(3z,2' : |z — 2’| < 27", do (7, 2") > €®|x — 2'|%) and
n
Z]P’ (H:E,ml 227 <o —al| <278 g (,2)) > el — x'|ﬁ) .
k=0
Step 1: We start with the term P(Jx, 2’ : 27F < |z — 2'| < 27 dy (2, 2") > €|z — 2'|%). We

use the chaining argument ([5.81]) at scale k& which gives

n € sup ¢o,n
sup don(z,2') <O\ ZI}ygg{ LU(P) + CA; 1 x 277 012
i=k

2-k<[z—a!|<2-FH1
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Taking the expected value and using the same bounds as those obtained in the proof of Proposition

[3:27], we get

n
E ( sup do,n(:v,x’)> < Zg—if(c)—2)ecz%+5 < C19—hE(Q-2) LCOkETE

2—k§|$_x/|§27k+1 i—k
Therefore, using Markov’s inequality we get the bound

n
ZP (Elsc,x/ 227 <o —af| <27 dp (@, 2)) > el — x’]ﬁ>
k=0
n

n
< Z]P < sup don(z,2') > e52_k5) <e® Z okBo—ke(Q-2)
k=0

2k <LJz—a/|<2-k+1 k=0

The series is convergent since £(Q — 2) — 5 > 0.

Step 2: We bound from above P(3x, 2’ |z — 2’| < 27", don(x,2') > €®|x — 2'|) using a bound

on the supremum of the field. Indeed, for such z and 2/, note that
el —2'|P < don(z,2) < )\;1e§sup[071]2 Qon |y — |

Writing = £(Q — 2) — & for some ¢ > 0, it follows that 1 — 5 = (1 — £Q + 2£) + £ > 0 since the

LFPP exponent 1 — £Q > —2¢ by a simple uniform bound. Therefore, |z — z/|#~1 > 27(1-F) and

)\g12”(1_5) = on(2+es+o(1)) - Altogether, this probability is bounded from above by IP’(sup[OJP bon >

nlog4 + enlog?2 + o(n) + ¢~ 1s) and using (2.10)) gives a uniform tail estimate.

Therefore, we obtain the tightness of (do ), -, as a random element of C([0,1]? x [0, 1]?,R™)

and every subsequential limit is (by Skorohod’s representation theorem) a pseudo-metric.

Part 2. Lower bound on the modulus of continuity. We prove that if & > £(Q +2) and £ > 0

then there exists a small constant ¢, > 0 such that for every n > 0,
P (3z,2" € [0,1)* : don(x,2') < celz —2'|*) <e. (5.86)
Similarly as before, by union bound it is enough to estimate the term

P(3z,2" € [0,1]%: |z — 2’| < 27", don(z,2') < e 5|z — 2/|%) (5.87)
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and the term

n
ZIP a2’ 27 <o — 2| < 27" do o (x,2)) < eS| — 2|0 | . (5.88)
k=0

::Ek,n,s

Step 1: We give an upper bound for (5.88). Fix z, 2’ € [0,1]? such that 27% < |z — 2/| < 27F+1,
Note that any path from z to 2’ crosses one of the rectangles in the collection {RY(P) : P €

P}i+27 1 <1 < 4}. Hence, under the event Ej , 5, there exists z, 2’ such that

275 > oz, ') > A 127kt o2 Qo min  2°LE(RY(P)) | . (5.89)
PePy ,,1<i<4

Since a = £(Q + 2) 4 &6 for a small 6 > 0, by using Proposition we get

2—ka)\n2k < 2—koa)\k)\nik60\/g < 2—k(a—£Q))\n7keC\/E _ 2—k(2+6)§()\n7k2—§6k60\/g) (5.90)

Now, using (5.89)), (5.90) and scaling, we get

P(Ejpns) <P <e5 infpo, 12 Po.k ( min 2P (R (P))) < Q—kaAn2ke—58>

PeP; 5, 1<i<4

< P(sup |poi| > klog4+ kdlog2+ s/2)
[0,1)2

+P( min  LOTR(RI(P)) < A2 RCVReE52)

PeP; 5, 1<i<4

< Ce—ck:e—cs’

where we used in the last inequality the supremum bounds (2.10) and the left tail estimate (4.48]).

Step 2: Finally, we control (5.87). P(Jz, 2" : |x—2'| < 27", do (7, 2') < e 5|z —2'|%) is bounded
from above by

/ .
P < pf Don(:2) e—€S> <P <A,;16§mf[o,uz fon i |z —a/|'* < e—€S> .

lz—z'|<2-n |z — 2| T lz—z'|<2-"

We recall that o > £€Q + 2£, and in particular o > 1: indeed, 1 — £@Q) < 2¢ follows from a comparison

/’1704 — 9—n(l—a)

with the infimum of the field. In this case, inf|,_,/<o-n |lr —x , and by Proposition
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8.26}

2-”(1—06))\;1 > 9~ n(1-a)gn(1-£Q) ,=CVn _ gn(a—£Q) ,—Cvn

Therefore, since o — £Q = 2€ + §£ for some § > 0, we have for n large that

in . _ _ 1)
P /\;1@5 foa2dom  4pf |l — 2|77 <e &) <P sup |pon| > nlogd+n—log2+s
|z—a/|<2— 7 [0,1]2 ’ 2

Using (2.10|) completes the proof. O

3.6 Appendix

3.6.1 Comparison with the GFF mollified by the heat kernel

Let h be a GFF with Dirichlet boundary condition on a domain D and U CC D be a subdomain

||
of D. We recall that we denote by p; the two-dimensional heat kernel at time ¢ i.e. pi(z) = ﬁe‘ﬁ.
The goal of this section is to obtain a uniform estimate to conclude on the tightness of the
renormalized metric associated to p L * h assuming the one associated to ¢ 4. In particular, the

second assertion of Theorem is a corollary of the following proposition.

Proposition 3.29. There exist constants C,c > 0 such that for all t € (0,1/2), there is a coupling

of h and ¢ @ ¢.7 such that for all x > 0, we have

#(Jrg e, 22) <

Mollification of the GFF by the heat kernel. The covariance of the Gaussian field p L h is

given for z,2' € U by

E (ps +h(x) ps + h(2')) = /D /ng(x —Y)Gp(y,y s (v — 2")dydy’,

t
2

where G p is the Green function associated to the Laplacian operator on D. For an open set A, we

denote by pf(:c, y) the transition probability density of a Brownian motion killed upon exiting A.
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White noise representation. Take a space-time white noise W and define the field 1; on U by

vl iy

[ee}
me(z) == / / pi*pP (2, y)W(dy,ds) where poxpP(z,y):= / pe (@ -y P y)dy, (6.91)
0 D 2 2 2 2 D 2

so that (m(z))zev @ (p% * h(x))zev. Indeed, by Fubini, we have

E(n:(z)n:(z / /pt * P P (x, y) L * D3 P (2!, y)dyds

/ ///pt P, y) p (x’—y)p’g( y)dydy' dy" ds
- /D /D pi(z—y) ( /0 /D pe (y/7y)p§(y,y")dyds> ps (@ —y")dy/dy"

_ / / pe (@ — )Gy e (" — ')y dy".
D D 2 2

Pt
2

M\rn

Coupling. Note that for ¢ € (0,1/2) ¢ s;(z) ft Jre2 s (z = y)W (dy, ds) @ ©i(x), where we set

1—t
/ /pt+s —y)W(dy, ds).
R2

Furthermore, we can decompose ¢;(z) = @} (x) + ©?(x), where

/ o / pees (z — y)W (dy, ds); (6.92)

/ o / pisa v — )W (dy, ds). (6.93)

Recalling the definition of 5 in (6.91)), we introduce 7} and n? so that

1—t (e’
_ / / pe PP (@, y)W (dy, ds) + / / pi PP (@, y)W(dy, ds) =: n () + 72 (). (6.94)
0 D 2 2 1—tJD 2 2

Therefore, under this coupling (viz. using the same white noise W), we have

A =)= [ [ (selo =) oy #2000 Wl ). (6.95
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Comparison between kernels. We will consider z,y € U, subdomain of D. Set d := d(U, D°) >

0.

Py *ps(,y) = / pile =y I y)dy' = / pele =y ps (v — w)a (v, y)dy',
D D

where th (x,2') is the probability that a Brownian bridge between x and 2’ with lifetime ¢ stays in

D. Therefore, using Chapman-Kolmogorov,

pepf (2,y) —pra(z,y) = —/ p;(fc—y’)p;(y’—y)dy’+/l)p;(:v—y’)p;(y’—y)(qg(y’,y)—1)dy’-

2

Note that the first term can be bounded by using that |y — 3’| > d for y € U and y’ € D¢. For the
second term, we can split the integral over D in two parts: one over the e-neighborhood of 9D
(within D), denoted by (0D)%, and one over its complement. To give an upper bound on the first,
we use that for y € U and ' € (D)%, |y —¢/| > d(U, (0D)¢). Finally, we bound the second part by
using a uniform estimate on the probability that a Brownian bridge between a point in U and a
point D \ (0D)* exits D in time less than s/2. (Note that 1 — qg(y, y') is the probability that a
Brownian bridge between y and y’ with time length s/2 exits D.) Therefore, we get that uniformly
inz,y €U and t,

[z % pE (2,y) = puss (x,y)] < Ce 5. (6.96)

Comparison between ¢; and p Lk h. By the triangle inequality,

et =y x| < llet =ty + 1ol + 197 (6.97)

We look for a uniform right tail estimate (in ¢) of each term in the right-hand side of (6.97). In
order to do so, we will use the Kolmogorov continuity criterion. Therefore, we derive below some

pointwise and difference estimates.

First term. We derive first a pointwise estimate. For x € U, using the kernel comparison

, there exists some C’ > 0 such that, uniformly in ¢,

1 201\ 2 = D 2 1= . ,
Var((m(x) — ¢ (x)) ) :/ / (p% s (2, y) —pis(w,y» dyds < C/ e sds <.
0 D 2 0
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We now give a difference estimate: introducing A.(z) := ¢} (z) — n}(z), for z,2' € U
E (&) - Adla))?)

- /01 t/D ((pt%s(x_y) ks *pl%)(m’y)> - (P%s(wl —y) —ps *pg (@’ y))>2dyds

which is uniformly bounded in ¢ € (0,1/2) by a quantity of size O(Jx —2'|). (By splitting the integral
at

\/|x — x'|, one can use for the small values of s and gradient estimates for both kernels for
larger values of s.)

Second term. We recall here that ¢?(z) is defined for z € U by

1—t
/ /pz+sa: W(dy,ds) = // (r—vy

We have, for z,2’ € U, with d := d(U, D°)

E((@?(fﬂ) / / ps(z —pg(w’—y)>2dyds
S/\;ﬁ/ﬂ% (pg(l’—y)—pg(%'—y)) dyds+/om/c (p3(e =) —p3 (o' )" dys

/ Vie=a'|
< 2/ — (ps(0) — ps(z — ")) d8+4/

0

W (dy, ds).

ps(d)ds < Clx — 2|,

M\m

where we use 1 — e™? < z in the last inequality. Similarly, we can prove that there exists C' > 0
independent of ¢ such that E(¢(z)?) < C.

Third term. We recall here that n7(z) is defined for z € U by ni(z) = [° thpt *
p? (z,y)W (dy, ds). Similarly, there exists C' > 0 such that for ¢ € (0,1/2), 2,2’ € U, we have
2

2
E((n?(fv)—n?(x')) S/ /(pt xpP(z,y) — p: *p?(m',y)> dyds < Clz — 2|
1/2 D 2 2 2 2

Furthermore, the pointwise variance is uniformly bounded

Result. Altogether, coming back to and combining Kolmogorov continuity criterion with

Fernique’s theorem (see Section 1.3 in [46]), we get the following tail estimate on the above coupling
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there exist C, ¢ > 0 such that for all ¢t € (0,1/2), x > 0, we have

2

P (focry ot 2 ) s

3.6.2 Approximations for ¢ € (0,1)

We explain here how results obtained along the sequence {27 : n > 0} can be extended to
§ € (0,1). For each § € (0,1), let n > 0 and r € [0,1] such that § = 2~ (®*7), Then by decoupling
the field ¢, using a uniform estimate for r € [0,1] and a scaling argument, we generalize our

previous results obtained along the sequence 27" to § € (0, 1).

Decoupling low frequency noise. Note that there exists C > 0 such that for n > 0 and
r € [0, 1] we have

e A < Mgy < M. (6.98)

Indeed, note that a.s. e~ inf0,1)2 ¢°’TL§7:’171+T) < LgTLT) < €5 5UP(0,1)2 ¢°’TL§7:’1n+T). Furthermore, with
d

high probability sup yj2 [¢o,r| < Cr < C. Then, note that Lgﬁnw) @ Q*TL;)QT and a.s. Lgnz) <

Lgf?zr < Lgnl) . By the tightness result, there exists a constant C' > 0 such that uniformly in n,

with high probability, L%) > e O\, and Lg,? < €%\, therefore, with high probability, e ¢\, <

L) < €€, hence (6.98).

Weak multiplicativity. In this paragraph, we will use the notation As from the introduction.
We recall that writing A, instead of A\y—» was an abuse of notation. Now we prove that there exists

C > 0 such that for 6,4’ € (0,1) we have

C e Cv |10g6\/6/‘)\5)\5/ < Assr < Cefv “Og(svm)\g)\g/. (6.99)
Similarly as (6.98]), there exists C' > 0 such that for r,7' € [0,1], n,n’ >0,

€N < Agonrntt < Ay (6.100)
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For 6,8 € (0,1), let n,n’ > 0 and r,7’ € [0,1] such that § = 2=(*7) § = 2-("+") " Note that

n = [—logy 0]. Using the weak multiplicativity for powers of 2, we have
eV N g n Ay < Agenent < Agen A eCVIA (6.101)

Without loss of generality, we consider just the upper bound in . The lower bound follows
along the same lines. By using first (6.100) and then (6.101]) we get

)\65/ = )\Q—n—r—n’—r/ S )\Q—n—n’ ec S )\2_”>\2—nlec n/\nlec-
Now, the result follows by using (6.98]):

7 A+ 7
A27HA27n, eC\/n/\n < )\27n7T AanliT, eC n+rAn’+r 620 _ )\5A5/GC log [6V& |€20.

Tail estimates and tightness of metrics. Using the same argument as in the two previous
paragraphs and the tail estimates obtained along the sequence {27 : n > 1}, we have the following
tail estimates for crossing lengths of the rectangles [0, a] x [0, b]: there exists ¢,C' > 0 (depending

only on a, b and ) such that for s > 2, uniformly in 6 € (0,1), we have

32
P (3L > ) < Ceos; (6.102)
P(O0ILY) <) < cene, (6.103)

Furthermore, the sequence of metrics ()\5165%615)56(071) on [0,1]? is tight.
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Chapter 4: Weak LQG metrics and Liouville first passage percolation

This chapter corresponds to the joint work [39] with Julien Dubédat, Ewain Gwynne, Joshua
Pfeffer and Xin Sun.

4.1 Introduction

For ~ € (0,2), we define a weak y-Liouville quantum gravity (LQG) metric to be a function
h +— Dy, which takes in an instance of the planar Gaussian free field (GFF) and outputs a metric on
the plane satisfying a certain list of natural axioms. We show that these axioms are satisfied for any
subsequential limits of Liouville first passage percolation. Such subsequential limits were proven to
exist in the previous chapter, namely in [24]. It is also known that these axioms are satisfied for the

\/8/3-LQG metric constructed by Miller and Sheffield in [81-83,86].

For any weak ~v-LQG metric, we obtain moment bounds for diameters of sets as well as point-to-
point, set-to-set, and point-to-set distances. We also show that any such metric is locally bi-Holder
continuous with respect to the Euclidean metric and compute the optimal Hélder exponents in both
directions. Finally, we show that LQG geodesics cannot spend a long time near a straight line or the
boundary of a metric ball. These results are used in subsequent work by Gwynne and Miller which
proves that the weak v-LQG metric is unique for each v € (0,2), which in turn gives the uniqueness
of the subsequential limit of Liouville first passage percolation. However, most of our results are
new even in the special case when v = \/% We remark that versions of some of the estimates for
weak LQG metrics which are proven in this chapter (including tail estimates for the distance across
a rectangle, the first moment bound for diameters, and Holder continuity) were previously proven
for subsequential limits of LEFPP in [24], namely the second chapter of this thesis. However, it is
important to have these estimates for general weak v-LQG metrics: indeed, such estimates will be
used in [59] to show the uniqueness of the weak v-LQG metric (which is a stronger statement than

just the uniqueness of the subsequential limit for the variant of LEFPP considered in [24]). Many

137



of our estimates are also new for subsequential limits of LFPP, e.g., the optimality of the Holder
exponents in Theorem [4.7] the moment bounds in Theorems and and the estimates

for geodesics in Section 4.4

Due to our axiomatic approach, our proofs do not require any outside input besides the existence
of LEPP subsequential limits from [24] and a general theorem about local metrics from [57] (both

of which can be taken as black boxes).

4.1.1 Weak LQG metrics and subsequential limits of LFPP

We will primarily focus on the whole-plane case. We say that a random distribution h on C is a
whole plane GFF plus a continuous function if there exists a coupling of A with a random continuous
function f : C — R such that the law of h — f is that of a whole-plane GFF. If such a coupling
exists for which f is bounded, then we say that h is a whole-plane GFF plus a bounded continuous
functz’onﬂ Note that the whole-plane GFF is defined only modulo a global additive constant, but

these definitions do not depend on the choice of additive constant.

If A is a whole-plane GFF, or more generally a whole-plane GFF plus a bounded continuous

function, we define a mollified version of the GFF by

() = (hpia)2) = [ hw)paapp () du, (1.1)

where py(z,w) = 51 exp (

 2ws

. |sz|2

or ) is the heat kernel on C and where the integral is interpreted in

the sense of distributional pairing. For z,w € € and € > 0, we define the e-LFPP metric by

1
D5 (z,w) := inf / eShe(PO) | P (1)| dt (1.2)

P:z—w J
where the infimum is over all piecewise continuously differentiable paths from z to w.

Remark 4.1. The reason why we define LFPP using h} instead of some other continuous approxi-
mation of the GFF is that this is the approximation for which tightness is proven in [24]. If we had

a tightness result similar to those in [24] for LFPP defined using a different approximation (such as

!The reason why we sometimes restrict to bounded continuous functions is that it ensures that the convolution
with the whole-plane heat kernel is finite (so Dj is defined) and it makes parts of the proof of Theorem simpler.
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the circle average process of [44, Section 3.1] or the convolution of h with e 1¢(|z — w|//€), where
¢ is a continuous non-negative radially symmetric function with total integral one), then similar
arguments to those in Section |4.2| would show that the subsequential limits are also weak LQG
metrics. Together with the uniqueness of weak LQG metrics proven in [59], this means that in order

to show that such approximations converge to the v-LQG metric one only needs to prove tightness.

For € > 0, let a. be the median of the Dj-distance between the left and right boundaries of the
unit square along paths which stay in the unit square. It follows from results in [24] (see Lemmam
below) that the laws of the metrics {aZ*D5 }.~¢ are tight with respect to the local uniform topology

on C x € and every subsequential limit induces the Euclidean topology on C.

Building on this, we will prove that in fact the metrics a_ 1D,EL admit subsequential limits in
probability and that every subsequential limit satisfies a certain natural list of axioms. To state

these axioms, we need some preliminary definitions. Let (X, D) be a metric space.

For a curve P : [a,b] — X, the D-length of P is defined by

#T
len (P; D) := supZD(P(ti), P(ti—1))
T =1
where the supremum is over all partitions T' : a = ¢y < --- < tur = b of [a,b]. Note that the

D-length of a curve may be infinite.

For Y C X, the internal metric of D on Y is defined by
D N Y :— i f 1 P. D Y 1.3
(x, Y, ) n en( ; ) , Vx,y € ( )

where the infimum is over all paths P in Y from z to y. Then D(-,-;Y) is a metric on Y, except

that it is allowed to take infinite values.

We say that (X, D) is a length space if for each z,y € X and each € > 0, there exists a curve of

D-length at most D(x,y) + € from x to y.

A continuous metric on a domain U C C is a metric D on U which induces the Euclidean topology
on U, i.e., the identity map (U, |-|) = (U, D) is a homeomorphism. We equip the space of continuous

metrics on U with the local uniform topology for functions from U x U to [0, 00) and the associated
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Borel o-algebra. We allow a continuous metric to have D(u,v) = oo if u and v are in different

connected components of U. In this case, in order to have D™ — D w.r.t. the local uniform topology

we require that for large enough n, D"(u,v) = oo if and only if D(u,v) = oo.

Let D'(C) be the space of distributions (generalized functions) on C, equipped with the usual weak

topology. For v € (0,2), a weak v-LQG metric is a measurable function h — Dj, from D'(C) to the

space of continuous metrics on C such that the following is true whenever h is a whole-plane GFF

plus a continuous function.

L

II.

I1I.

Iv.

Length space. Almost surely, (C, Dy,) is a length space, i.e., the Djp,-distance between any two
points of C is the infimum of the Dj-lengths of Dp-continuous paths (equivalently, Euclidean

continuous paths) between the two points.

Locality. Let U C C be a deterministic open set. The Dj-internal metric Dy(-,;U) is

determined a.s. by hly.

Weyl scaling. Let £ be as in (3.4]) and for each continuous function f: C — R, define

P:z—w

len(P;Dy)
(e - Dp)(z,w) := inf / ST gt Yz w e €, (1.4)
0

where the infimum is over all continuous paths from z to w parametrized by Djp-length. Then

a.s. el . Dy, = Dy, ¢ for every continuous function f: C — R.
Translation invariance. For each deterministic point z € C, a.s. Dy(.4.) = Dp(-+z,-+ 2).

Tightness across scales. Suppose that h is a whole-plane GFF and let {h,(2)}r>0.cc be
its circle average process. For each r > 0, there is a deterministic constant ¢, > 0 such that
the set of laws of the metrics ¢, te¢#(0) Dy (-, 1) for r > 0 is tight (w.r.t. the local uniform
topology). Furthermore, the closure of this set of laws w.r.t. the Prokhorov topology on
continuous functions C x € — [0, 00) is contained in the set of laws on continuous metrics on
C (i.e., every subsequential limit of the laws of the metrics ¢, 'e=¢"+(0) Dy (7, 7+) is supported
on metrics which induce the Euclidean topology on C). Finally, there exists A > 1 such that
for each ¢ € (0,1),

A~LoA < cci < A5, wr > 0. (1.5)
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We emphasize that the definition of a weak y-LQG metric depends on v only via the parameter ¢ in
Axiom [[T], We will therefore sometimes say that a metric satisfying the above axioms is a weak

LQG metric with parameter .

It is easy to see, at least heuristically, why Axioms[[] through[V]should be satisfied for subsequential
limits of LFPP, although there is some subtlety involved in checking these axioms rigorously. The

first main result of this chapter is the following statement, whose proof builds on results from [24,57].

Theorem 4.2. Let v € (0,2). For every sequence of €’s tending to zero, there is a weak v-LQG
metric D and a subsequence {e, }nen for which the following is true. Let h be a whole-plane GFF,
or more generally a whole-plane GFF plus a bounded continuous function. Then the re-scaled LFPP

metrics a;nlDZ” from (1.2) converge in probability to Dy,.

We will explain why we get convergence in probability, instead of just in law, in Theorem
just below. Let us first discuss the axioms for a weak LQG metric. Axioms [l through [[V]are natural
from the perspective that v-LQG is a “random two-dimensional Riemannian manifold” obtained by
exponentiating h. Axiom [V]is a substitute for exact scale invariance of the metric. To explain this,
it is expected (and will be proven in [56,/59]) that the v-LQG metric, like the v-LQG measure, is
invariant under coordinate changes of the form . In particular, it should be the case that for

any a € C\ {0}, a.s.

+ (1.6)

2w
o2

Dy, (a-,a-) = Dh(a-)+Qlog|a\('7 ')7 for Q=

Under Axiom the formula (|1.6)) together with the scale invariance of the law of h, modulo an
additive constant, implies Axiom [V| with ¢, = 7¢¢. We define a strong LQG metric to be a mapping
h +— Dy, which satisfies Axioms [I| through [[V| as well as (|1.6]).

A similar definition of a strong LQG metric has appeared in earlier literature. Indeed, the
paper [80] proved several properties of geodesics for any metric associated with v-LQG which
satisfies a similar list of axioms to the ones in our definition of a strong LQG metric; however, at

that point such a metric had only been constructed for v = /8/3.

It far from obvious that subsequential limits of LEPP satisfy (1.6). The reason for this is that

scaling space results in scaling the value of ¢ in ([1.2)), which in turn changes the subsequence which
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we are working with. It will eventually be proven in [59] that every weak LQG metric satisfies ((1.6)),
i.e., every weak LQG metric is a strong LQG metric, but the proof requires all of the results of the

present chapter as well as those of [57}58].

Nevertheless, Axiom [V| can be used in place of (1.6) in many situations. Basically, this axiom
allows us to compare distance quantities at the same Euclidean scale. For example, Axiom [V]implies

that if U C C is open and K C U is compact, then the laws of

-1
(cr_le_ghr(o)Dh(rK,r(?U)) and ¢ e O sup Dy (u,v;r0) (1.7)
u,veErK

as r varies are tight.

Part of the proof of Theorem is to show that for any joint subsequential limit (h, Dy) of
the laws of the pairs (h, a;lDi), the limiting metric Dy, is a measurable function of h. This is not
obvious since convergence in law does not in general preserve measurability. In our setting, we will
prove that Dy, is determined by h by checking the conditions of [57, Corollary 1.8], which gives a
list of conditions under which a random metric coupled with the GFF is determined by the GFF.
The reason why we have convergence in probability, instead of convergence in law, in Theorem

is the following elementary probabilistic lemma (see e.g. [97, Lemma 4.5])E|

Lemma 4.3. Let (Q1,d;) and (Q2,d2) be complete separable metric spaces. Let X be a random
variable taking values in Q1 and let {Y"},en and Y be random variables taking values in Qa, all
defined on the same probability space, such that (X,Y"™) — (X,Y) in law. If Y is a.s. determined

by X, then Y™ — Y in probability.

Theorem will be proven in Section Once this is done, throughout the rest of the chapter
we will only ever work with a weak v-LQG metric — we will not need to make explicit reference
to LFPP. An important advantage of this approach is that the Miller-Sheffield \/%—LQG metric
from [811/82,86] is known to satisfy the axioms for a weak \/%-LQG metric. See [60, Section 2.4]
for a careful explanation of why this is the case. Note that [60, Section 2.4] checks the coordinate

change relation (1.6|) for the Miller-Sheffield metric which (as discussed above) implies Axiom

2Since the space of continuous metrics is not complete w.r.t. any natural choice of metric which induces the local
uniform topology, we apply the lemma with (2, d2) equal to the larger space of continuous functions C x C — [0, c0)
equipped with the local uniform topology, which is completely metrizable.
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Hence all of our results for weak v-LQG metrics apply to both this 1/8/3-LQG metric and to

subsequential limits of LEPP.

Remark 4.4 (Liouville graph distance). Besides LFPP, there is another natural scheme for
approximating LQG metrics called Liouville graph distance (LGD). The e-LGD distance between
two points in C is defined to be the minimum number of Euclidean balls with LQG mass € whose
union contains a path between the two points. It has been proven in [26] that for each v € (0, 2),
the e-LGD metric, appropriately renormalized, admits subsequential limiting metrics as ¢ — 0
which induce the Euclidean topology. In the contrast to LFPP, for subsequential limits of LGD
the coordinate change relation is easy to verify but Weyl scaling (Axiom appears to be
very difficult to verify, so these subsequential limits are not known to be weak LQG metrics in the
sense of this chapter. It is still an open problem to establish uniqueness of the scaling limit for
LGD. Similar considerations apply to variants of LGD defined using embedded planar maps (such
as maps constructed from LQG square subdivision [44,53] or mated-CRT maps [54,61]) instead of

Euclidean balls, although for these variants tightness has not been checked.

4.1.2 Quantitative properties of weak LQG metrics

In what follows, we assume that D is a weak v-LQG metric and h is a whole-plane GFF. Perhaps

surprisingly, the axioms for a weak LQG metric imply much sharper bounds on the scaling constants
¢r than ((1.5]).

Theorem 4.5. Let & be as in (3.4) and let Q =2/ + /2. Then for r > 0, the scaling constants
satisfy

cj—r = §8@tos () 455 0, (1.8)

at a rate which is uniform over all r > 0.

The definition of a weak LQG metric uses only the parameter £&. Theorem connects this
definition to the coordinate change parameter ). This will be important for the proof in [59] that
any weak LQG metric satisfies the coordinate change formula . Theorem will be proven in
Section [4:3.2] by comparing Dj-distances to LFPP distances and using the fact that the 6-LFPP

distance between two fixed points is typically of order §'~¢@+2s(1) [28] Theorem 1.5] (for convenience,
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for this argument we will work with a variant of LEFPP which is defined in a slightly different manner

than the version in (|1.2)).

Remark 4.6. Theorem [4.5|gives a proof purely in the continuum that the exponent d NG of [281/32]
is equal to 4. Previously, this was proven in [28] (building on [55]) using the known ball volume
growth exponent for random triangulations [7]. To see why Theorem implies that d VEB = 4,
we observe that the /8/3-LQG metric of [81}/82,86] satisfies the axioms for a weak LQG metric
with parameter & = 1/4/6. Moreover, by the LQG coordinate change formula for the /8/3-LQG
metric, Axiom [V]holds for this metric with with ¢, = 75/6. Theorem therefore implies that if
v € (0,2) is chosen so that v/d, = 1/1/6, then the associated parameter ) = 2/ + /2 satisfies
Q/V6 =5/6, i.e., Q = 5/1/6 which is equivalent to v = 1/8/3. Hence vy/d, = 1/v/6 when v = /8/3,

sod\/%:él.

Our next main result gives the optimal Holder exponents for Dy, with respect to the Fuclidean

metric.

Theorem 4.7 (Optimal Holder exponents). Let U C C be open and bounded. Almost surely, the
identity map from U, equipped with the Euclidean metric, to (U, Dy,) is locally Hélder continuous
with any exponent smaller than £(Q — 2) and is not locally Hélder continuous with any exponent
larger than §(Q — 2). Furthermore, the inverse of this map is a.s. locally Hélder continuous with
any exponent smaller than €~H(Q + 2)~1 and is not locally Hélder continuous with any exponent

larger than £€~1(Q +2)71.

For v = /8/3, one has ¢ = 1/4/6 and Q = 5/v/6, so the optimal Hélder exponents are given by

§Q—2) = %(5 —2v6) ~ 0.0168 and £71(Q+2)"! =30 —12V6 ~ 0.6061. (1.9)

The intuitive reason why Theorem [£.7]is true is as follows. If z is an a-thick point for h, i.e., the

1

circle average satisfies ho(z) = (o 4+ 0-(1))loge™" as € — 0, then we can show that the Dj-distance

from z to OB.(z) behaves like e§@-®+0<(1) a5 ¢ — 0. Indeed, this is an easy consequence of the

estimates in Section Almost surely, a-thick points exist for a € (—2,2) but not for |a| > 2 [65].

We next state some basic moment estimates for distances which are metric analogues of the well-
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known fact that the y-LQG measure has finite moments of all orders in (—oco,4/9?) [90, Theorems

2.11 and 2.12].

Theorem 4.8 (Moment bounds for diameters). Let U C C be open and let K C U be a compact

connected set with more than one point. Then the U-internal diameter of K satisfies

Ad,

p
(o rc00)
z,weK

For v = /8/3, we get finite moments up to order 6. We also have the following bound for

distances between sets. In this case, we get finite moments of all orders.

Theorem 4.9 (Distance between sets). Let U C C be an open set (possibly all of C) and let

Ky, Ko C U be connected, disjoint compact sets which are not singletons. Then

E[(Dp(K:, K2;U))”] < 00, Vp € R. (1.11)

The results of [24] show that if Dj, is a subsequential scaling limit of the LFPP metrics (1.2)),

then one has the following slightly stronger version of Theorem
P [A7! < aZ' D5 (K1, Ko; U) < A] > 1 — coe 1108 4)/loglog Ay 4 5 9ce (1.12)

for constants cg,c; > 0 allowed to depend on Ky, Ko, U. A posteriori, one gets (1.12) for every
weak LQG metric since [59] proves that the weak LQG metric is unique for each v € (0,2), so in

particular it is the limit of LFPP.

We now turn our attention to point-to-point distances. These estimates also work if we allow
the field to have a log singularity. To make sense of the metric in this case, we note that since log]| - |
is continuous away from 0, we can define Dj,_,1g|.| @s a continuous length metric on € \ {0} by
Dp_atog|| = |- |~@¢ . Dy, in the notation . We can then extend Dj,_, 104 to a metric defined
on all of © which is allowed to take the value oo by taking the infima of the Dj,_,1og |.|-lengths of

paths. We can similarly define the metric associated with fields with two or more log singularities.

Theorem 4.10 (Distance from a point to a circle). Let a« € R and let h* :== h — alog| - |. If
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a € (—00,Q), then
E [(Dpe (0,0D))] < o0, Vp € <oo, 2?(@ - a)) . (1.13)

If a > Q, then a.s. Dya(0,z) = oo for every z € C\ {0}.

For example, if v = \/% and o = 0, we get finite moments up to order 10. If instead
v = \/8/73 and o = v (which corresponds to the case when 0 is a “quantum typical” point, see,
e.g., [44, Proposition 3.4]) we only get finite moments up to order 2. In the critical case when o = @,
our estimates at this point are not sufficiently sharp to determine whether D¢ (0,0D) is finite.
However, once we know that every weak LQG metric is a strong LQG metric (which is proven
in [59]) it is not hard to check that a.s. Djyq (0, 2) = oo for every z € €\ {0}. Similar comments

apply in the case when o = Q or 8 = @ in Theorem just below.

Theorem 4.11 (Distance between two points). Let o, 8 € R, let z,w € C be distinct, and let
P .= h — alog|- —z| — Blog|- —w|. If a, B € (=0, Q), then

E [(Dhe (2,w; Byja—w)(2)))"] <00, Wpe (—oo, 2?(@ - max{a,ﬁ})) : (1.14)
If either a > Q or 8> Q, then a.s. Dyo.s(z,w) = 0.

As applications of our main results, in Section [£.4] we will also prove some estimates which
constrain the behavior of Dj-geodesics and which will be important in [59]. To be more precise, the
first main estimate of Section [4.4] is Proposition [4.57 which gives an upper bound for the amount
of time that a Dp-geodesic can spend in a small neighborhood of a line segment or a circular arc.
Intuitively, one expects that this amount of time is small since LQG geodesics should be fractal and
hence should look very different from smooth curves. The particular bound given in Proposition [4.57]
is used in [59} Section 3] to prevent a geodesic from spending a long time in an annulus with a small
aspect ratio; and in |59, Section 5] in order to force a geodesic to enter a “good” region of the plane

in which certain distance bounds hold.

The other main estimate in Section [4.4] is Proposition [£.59, which is an upper bound for how

much time an LQG geodesic can spend near the boundary of an LQG metric ball centered at its
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starting point. Intuitively, this amount of time should be small since if P is a Dp-geodesic, then
Dy (P(0), P(t)) =t but Dy(P(0),-) is constant on the boundary of a Dj-ball centered at P(0). The
bound given in Proposition is used in [59, Lemma 4.7].

Remark 4.12 (The case when & > 2/ds). Throughout this chapter, we focus on the case of weak
7-LQG metrics. Since v — 7/d, is increasing [28, Proposition 1.7], weak 7-LQG metrics have
parameter £ € (0,2/dz) (here, dy := lim,_,5- d,). It is natural to wonder whether one can say
anything about weak LQG metrics which satisfy the same axioms but with a parameter £ > 2/ds.
In the critical case when £ = 2/dy (i.e., 7 = 2), we expect that a weak LQG metric still exists and
is the scaling limit of LFPP with parameter 2/ds. This metric should be the v-LQG metric with
v = 2 (the v = 2 metric should also be the limit as v 2 of the v-LQG metrics, appropriately
renormalized). We expect that all of the theorem statements in this section still hold for & = 2/da,

except that the metric Dy, is not Holder continuous w.r.t. the Euclidean metric.

For £ > 2/dy, we do not expect that any weak LQG metrics with parameter £ exist. However,
there should be metrics which satisfy a similar list of properties except that such metrics no longer
induce the Euclidean topology. Instead, there should be an uncountable, dense set of points z € C
such that Dp(z,w) = oo for every w € C \ {z}. More precisely, let A\(§) be the exponent for
the typical LFPP distance between the left and right sides of [0, 1]? and let Q(&) = (1 — A(€))/€.
By [28, Theorem 1.5], Q(v/d,) = 2/v+ /2 > 2. By [63, Lemma 4.1] and [30, Theorem 1.1],
Q&) € (0,2) for &€ > 2/dy. For & > 2/ds, the points z € C which lie at infinite Dj-distance from
every other point should correspond to so-called thick points of h (as defined in [65]) with thickness
a> Q.

It is shown in [29] that LFPP with parameter £ > 2/ds admits subsequential scaling limits in
law w.r.t. the topology on lower semicontinuous functions. We expect that the subsequential limit
is unique, satisfies the properties discussed in the preceding paragraph, and is related to LQG with
matter central charge c € (1,25) (LQG with v € (0, 2] corresponds to ¢ € (—oo, 1]). In particular,
with Q(€) as above, the central charge should be related to £ by ¢ = 25 —6Q(£)2. See [6,29,30153,/63]

for further discussion of this extended phase of LQG and some justification for the above predictions.
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4.1.3 Outline

In Section we prove Theorem which says that subsequential limits of LFPP are weak
~v-LQG metrics, taking [24] as a starting point. Throughout the rest of the chapter, we work with an
arbitrary weak v-LQG metric (not necessarily assumed to arise as a subsequential limit of LEPP).
Section [4.3| contains the proofs of the results stated in Section In fact, for most of these
results, we will prove more quantitative versions which are required to be uniform over all Euclidean
scales. At this point, these statements are not implied by the statements in Section since we
are working with a weak v-LQG metric, which is only known to be “tight across scales” (Axiom

instead of exactly scale invariant.

The first result that we prove for a weak v-LQG metric is the estimate for the distance between
two sets from Theorem this is the content of Section In Section we use this estimate
to relate Dp-distances to LEPP distances and thereby prove Theorem Once Theorem is
established, we have some ability to compare Dj,-distances at different Euclidean scales. This allows
us to prove the moment estimate of Theorem in Section as well as the moment
estimates of Theorems and in Section Using these moment estimates, we then prove
Theorem in Section [£.3.5

In Section [£.4] we apply the estimates of Section to prove some bounds for Dj-geodesics.

4.1.4 Notation

We write N = {1,2,3,...} and Ny = N U {0}.
For a < b, we define the discrete interval [a, b]z := [a, b] N Z.
If f:(0,00) > R and g: (0,00) — (0,00), we say that f(e) = O(g(¢)) (resp. f(e) = 0:(g(¢))) as

e — 0 if f(e)/g(e) remains bounded (resp. tends to zero) as € — 0. We similarly define O(-) and

o(+) errors as a parameter goes to infinity.

If f,g:(0,00) = [0,00), we say that f(e) < g(e) if there is a constant C' > 0 (independent from &
and possibly from other parameters of interest) such that f(e) < Cg(e). We write f(e) < g(¢) if
f(e) 2 g(e) and g(e) < f(e).
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Let {Ef}.50 be a one-parameter family of events. We say that E¢ occurs with

e polynomially high probability as € — 0 if there is a p > 0 (independent from ¢ and possibly

from other parameters of interest) such that P[E¢] > 1 — O.(eP).
e superpolynomially high probability as ¢ — 0 if P[Ef] > 1 — O.(eP) for every p > 0.

We similarly define events which occur with polynomially or superpolynomially high probability as

a parameter tends to oo.

We will often specify any requirements on the dependencies on rates of convergence in O(-) and o(-)
errors, implicit constants in =<, etc., in the statements of lemmas/propositions/theorems, in which
case we implicitly require that errors, implicit constants, etc., appearing in the proof satisfy the

same dependencies.

For z € C and r > 0, we write B,(z) for the Euclidean ball of radius r centered at z. We also define

the open annulus

Ay ry(2) = Bry(2) \ By, (2), Y0 <71, <ry<oo. (1.15)

We write $ = (0,1)? for the open Euclidean unit square.

4.2 Subsequential limits of LFPP are weak LQG metrics

The goal of this section is to deduce Theorem from the tightness result of [24]. We start
in Section by introducing a “localized” variant of LFPP, defined using the convolution of h
with a truncated version of the heat kernel, which (unlike the e-LFPP metric Dj defined in (1.2))
depends locally on h. We then show that this localized variant of LFPP is a good approximation
for D} (Lemma [4.13)). In Section we explain why the results of [24] imply that the re-scaled
LFPP metrics aZ'D§ as well as the associated internal metrics on certain domains in C are tight
w.r.t. the local uniform topology and that every subsequential limit is a continuous length metric on

C. In Sections [{.2.3] [.2.4] and [£.2.5] respectively, we will prove versions of Weyl scaling, tightness

across scales, and locality for the subsequential limits (i.e., Axioms and . In Section m
we use a theorem from [57] to show that subsequential limits of LEPP can be realized as measurable

functions of h. We then conclude the proof of Theorem
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Throughout this section, we will frequently need to switch between working with a whole-plane
GFF and working with a whole-plane GFF plus a continuous function. As such, we will always
write h for a whole-plane GFF (with some choice of additive constant, specified as needed) and h
for a whole-plane GFF plus a continuous function (usually, this will be a whole-plane GFF plus a
bounded continuous function). Note that this differs from the convention elsewhere in the chapter,

where h is sometimes used to denote a whole-plane GFF plus a continuous function.

4.2.1 A localized version of LFPP

Let h be a whole-plane GFF plus a bounded continuous function. The mollified field h%(z)
of does not depend on h in a local manner, and hence Dj-distances do not depend on h in
a local manner. However, as ¢ — 0 the heat kernel p.2 5(2,w) concentrates around the diagonal,
so we expect that hf(z) “almost” depends locally on h when ¢ is small. To quantify this, we will
introduce an approximation H; of h¥ which depends locally on h and prove a lemma (Lemma
to the effect that /H;‘ and h} are close when ¢ are small. This will be useful at several places in this

section, especially for the proof of locality (essentially, Axiom in Section m

For ¢ > 0, let 9. : C — [0, 1] be a deterministic, smooth, radially symmetric bump function
which is identically equal to 1 on B.i1/25(0) and vanishes outside of B.1/2(0) (in fact, the power 1/2
could be replaced by any p € (0,1)). We can choose 1. in such a way that e — 1), is a continuous
mapping from (0, c0) to the space of continuous functions on C, equipped with the uniform topology.

Recalling that ps(z, w) denotes the heat kernel, we define

(2 = /@ belz — wh(w)pea (2 w) duo, (2.16)

with the integral interpreted in the sense of distributional pairing. Since 1. vanishes outside of

B_1/2(0), we have that H“;(z) is a.s. determined by h|p It is easy to see that H: a.s. admits a

51/2(2)'
continuous modification (see Lemma below). We henceforth assume that ﬂ: is replaced by such

a modification.
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As in ([1.2)), we define the localized LEPP metric

1

Di(z,w) := inf / (PO P'(1)] dt, (2.17)
P:z—w Jg

where the infimum is over all piecewise continuously differentiable paths from z to w. By the

definition of H;,

for any open U C C, the internal metric D (-, U) is a.s. determined by h|p 12 (U)- (2.18)

~

Lemma 4.13. Let h be a GFF plus a bounded continuous function. Then a.s. (z,€) — h%(z) is

continuous. Furthermore, for each bounded open set U C C, a.s.

lim sup |h*(z) — h*(2)| = 0. (2.19)
e—=0_ 77
zeU
In particular, a.s.
DE(z,w; U
lim Lw’) =1, wuniformly over all z,w € U with z # w. (2.20)

To prove Lemma we will need the following elementary estimate for the circle average

process, whose proof we postpone until after the proof of Lemma

Lemma 4.14. Let h be a whole-plane GFF' (with any choice of additive constant) and let {hy}r>0

be its circle average process. For each R >0 and ( > 0, a.s.

1B (2)]
su Ssu <
ceno) v max{(2 + C) log(1/r), (log 1) /2+<, 1}

. (2.21)

Proof of Lemma[{.13 We first consider the case when h = h is a whole-plane GFF normalized so
that h1(0) = 0. The functions w + (2 — w) and w ~ p.2/5(z,w) are each radially symmetric
about z, i.e., they depend only on |z —w|. Using the circle average process {h, },~0, we may therefore

write in polar coordinates

2 o0 ~ £
hi(z) = 52/0 7"]7,7«(,2)6_7’2/‘52 dr and hl(z)= /0 rhT(z)¢€(r)e_T2/52 dr. (2.22)
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From this representation and the continuity of the circle average process, we infer that (z,¢) — ﬁ:(z)

a.s. admits a continuous modification.

Since ¥ =1 on BLi/25(2) and ¢ takes values in [0, 1],

~ 2 o0
hi(2) = Bi()] < 5 / rlhe()]e™"/ dr. (2:23)
€7 Jel/2)2

By Lemma (applied with ¢ = 1/2, say), there is a random constant C' = C(U) > 0 such that
|hr(2)| < Cmax{log(1/r),logr,1} for each z € U and r > 0. Plugging this into (2.23)) shows that

a.s.

~ 2 00
sup |hi(z) — hi(z)| < g/ r max{log(1/r),logr, 1}671”2/62 dr, (2.24)
zeU €7 Jel/2

which tends to zero exponentially fast as ¢ — 0. This gives (2.19)) in the case of a whole-plane GFF

If f:C — R is a bounded continuous function, we similarly obtain a.s. lim._,o sup,¢yr | f2(2) —
f*(z)| = 0, using the notation and with f in place of h or h. This gives in the
case of a whole-plane GFF plus a bounded continuous function. The relation is immediate
from (2.17) and the definition of LEFPP. O

To conclude the proof of Lemma [4.13] we still need to prove Lemma To deal with large

values of r, we will use the following lemma.

Lemma 4.15. Let h be a whole-plane GFF. For each R >0 and { > 0, a.s.

. [Py (2)]
1 — = (). 2.25
i, Sup g ) 1/2He (2.25)

Proof. The process {h,(z) — h.(0) : z € Bg(0),r € [1/2,1]} is centered Gaussian with variances
bounded above by a constant depending only on R. Furthermore, this process a.s. admits a
continuous modification [44}, Proposition 3.1], so if we replace it by such a modification then a.s.
SUDc By (0) SUPref1/2,1] [ (2) — hr(0)] < oo. By the Borel-TIS inequality [16}/108] (see, e.g., [1}

Theorem 2.1.1]), we have E [SuszBR(O) sup,eq1/2,1 [hr(2) — hr(0)]| < oo and there are constants
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o, c1 > 0 depending only on R such that for each A > 0,

P| sup sup |h(2) —h(0)] > A| < coe= A, (2.26)

z€BR(0) re(1/2,1]

Note that we absorbed the R-dependent constant IE |:Supz€BR(0) SUpcp1 /2,1 | (2) — hr(0)|} into cg.

By the scale invariance of the law of h, viewed modulo an additive constant, we infer from (2.26)

that for each k£ € Ny and A > 0,

P| sup sup  |hp(2) — he(0)] > A| < coe= 4. (2.27)

2€B 1 (0) re[26-1,25]

By applying this with A equal to a universal constant times k'/2t¢/2, say, then using the Borel-

Cantelli lemma, we get that a.s.

hr(2) = hy

— 0. (2.28)
k—o0 2€B ok (0) re[2k—1,2F] (log T)1/2+<

Each z € K is contained in Bpyx(0) for each k& € N and each r > 1/2 is contained in [251, 2¥] for

some k € N. Hence, (2.28) implies that a.s.

hr(z) — h,
b sy V2= B (O)

=0. 2.29
700 2eBgr(0) (log 7“)1/2+C ( )

Since t — h.t(0) is a standard two-sided linear Brownian motion [44] Section 3], it follows that a.s.

|h(0)]/(log r)*/>¢ — 0 as r — co. Combining this with ([2.29) yields (2.25). O

Proof of Lemma[{.1]]. Standard estimates for the maximum of the circle average process (see, e.g.,
the proof of [65, Lemma 3.1]) show that a.s.

hy
sup  sup 17 (2) < 0. (2.30)

2B (0) re(0,1/2] (2 + ) log(1/7)

By the continuity of the circle average process, a.s. for any ro > 1/2, sup.¢ g, 0y SUPre1 /2,r] |1 (2)] <
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00. By Lemma it is a.s. the case that for each large enough rg > 0,

b (2)]
0t (log )1/ = 2.31
2€BR(0) r>10 (log r)1/2+C ( )

Combining these estimates gives (2.21]). O

4.2.2 Subsequential limits

In this subsection we explain why the results of [24] imply that the laws of the re-scaled LEPP
metrics a; D are tight (this is not entirely immediate since [24] considers a slightly different class of
fields and only looks at metrics on bounded domains). We will in fact obtain a stronger convergence
statement which also includes the convergence of internal metrics of a1 Df on a certain class of

sub-domains of C.

Definition 4.16 (Dyadic domain). A closed square S C C is dyadic if S has side length 2* and
corners in 2¥7Z? for some k € Z. We say that W C C is a dyadic domain if there exists a finite
collection of dyadic squares S such that W is the interior of | Jg g S. Note that a dyadic domain is

a bounded open set.
Lemma 4.17. Let h be a whole-plane GFF plus a bounded continuous function.

A. The laws of the metrics a;lDﬁ are tight w.r.t. the local uniform topology on C x C and any

subsequential limit of these laws is supported on continuous length metrics on C.

B. Let W be the (countable) set of all dyadic domains. For any sequence of positive €’s tending
to zero, there is a subsequence £ and a coupling of a continuous length metric Dy, on C and a
length metric Dpyw on W for each W € W which induces the Euclidean topology on W such

that the following is true. Along £, we have the convergence of joint laws

(angﬁ, {aZ'Di(-, ';W>}Wew) — (Dny Do hre) (2.32)

where the first coordinate is given the local uniform topology on C x € and each element of the
collection in the second coordinate is given the uniform topology on W x W. Furthermore, for

each W € W we have the a.s. equality of internal metrics Dy w (-, s W) = Dy(-, s W).
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In the setting of Assertion [A] we note that the space of continuous functions C x C — R,
equipped with the local uniform topology, is separable and completely metrizable, which means
that we can apply Prokhorov’s theorem in this space. Assertion [B] of Lemma does not give
that Dg(-,s W) — Dy(-,-; W) in law along & for each W € W. The reason why we do not prove
this statement is to avoid worrying about possible pathologies near W (see Lemma . We now
proceed with the proof of Lemma At several places in this section, we will use the following

elementary scaling relation for LEPP.

Lemma 4.18. Let h be a whole-plane GFF normalized so that h1(0) = 0. Let r > 0 and let
h" := h(r-) — h.(0), so that h" 2 h. The LFPP metrics defined as in (1.2) for h and h" are related

by
DZ{T 4 DZ/T and Diér(z,w) = rilefth(O)D,i(rz,rw), Ve >0, Vz,weC. (2.33)

Proof. Using the notation (|1.1)), we get from a standard change of variables that the convolutions
of " and h with the heat kernel satisfy hz/*r(z) = h%(rz) — hy(0) for each e > 0 and z € C. Using
the definition (1.2)) of LFPP, we now compute

1
e‘gh’“(o)Di(m,rw)Z inf /eg(h:(P(t))_hr(o))|P,(75)’dt

Pirz—rw Jq

1 %
= inf / e PO Pl ()] dt

Pirz—rw Jq

1 Tk D ~ ~
=17 inf / eghe/T(P(t))|P/(t)| dt  (set P = P/r)

P:z—w JO

= 7"D24T(z7 w)
and this completes the proof. O

To check that our limiting metrics are length metrics, we will need the following standard fact
from metric geometry.
Lemma 4.19. Let X be a compact topological space and let {D"},en be a sequence of length

metrics on X which converge uniformly to a metric D on X. Then D is a length metric on X.

Proof. This is [17, Exercise 2.4.19], which in turn is an easy consequence of [17, Corollary 2.4.17]. O
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Let us now record what we get from [24].

Lemma 4.20. Let S C © be a closed square and let h be a whole-plane GFF plus a bounded
continuous function. The laws of the internal metrics aZ D5 (-, S) for e € (0,1) are tight w.r.t. the
uniform topology on S x S and any subsequential limit of these laws is supported on length metrics

which induce the Euclidean topology on S.

Proof. We first consider the case when S = [0,1]? is the Euclidean unit square and h = h is a
whole-plane GFF normalized so that hi(0) = 0. Let & be a zero-boundary GFF on (—1,2)2. By the
Markov property of the whole-plane GFF, we can couple h and h in such a way that h — his a.s.

harmonic, hence continuous, on (—1,2)2.

Recall the heat kernel py(z,w) = ﬁe"z_wm?s). For z € [0,1] and € € (0,1), we define the
convolution h: =h * pe2yg as in (L1). For z,w € (—1,2)2, define D;?L(z,w) as in ([1.2) with h: in
place of h}. It is shown in [24] Theorem 1] (see also |24, Section 6.1]) that there are constants
{Ae}e>0 such that the internal metrics )\ng}‘?l (~, -+ [0, 1]2) are tight w.r.t. the uniform topology on
[0,1]? x [0,1]? and any subsequential limit of these laws is supported on length metrics which induce

the Euclidean topology on [0, 1]2.

We now want to compare D and Dj using the fact that (h— ioz)|(,172)2 is a continuous function.
However, we cannot do this directly since we only have a uniform bound for h — h on compact
subsets of (—1,2)? and the convolution does not depend locally on the field. To this end, we
define the localized LFPP metrics ﬁi and ﬁ; as in with h = h and with A in place of h,

respectively. Then Lemma [4.13| remains true with Dz and 132 in place of D} and lA?fL and with U

any open set satisfying U C (—1,2)2, with the same proof (actually, the proof is simpler since one

does not need Lemma [4.15|). Therefore, a.s. ﬁ%(z, w; U)/ D}‘?l(z, w; U) — 1 uniformly over all distinct

z,w € U and the conclusion of the preceding paragraph is true with 132 in place of D}%'

Since h—h is a.s. equal to a continuous function on a neighborhood of [0, 1]?, we infer from
that a.s. the metrics lA)Z(, +[0,1)?) and ﬁi(, +[0,1]?) are bi-Lipschitz equivalent with (random)
e-independent Lipschitz constants. By combining this with the conclusion of the preceding paragraph
and Lemma we get that the laws of the internal metrics A-1D5 (-, -; S) for € € (0, 1) are tight

w.r.t. the uniform topology on [0, 1]? x [0, 1]? and any subsequential limit of these laws is supported
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on length metrics which induce the Euclidean topology on S. In particular, this implies that A is
bounded above and below by e-independent constants times the median B,i—distance between the
left and right sides of [0,1]?. By Lemma (for h), we now get that {a./A:}.c(,1) is bounded
above and below by positive, finite constants and the statement of the lemma holds in the special

case when h = h and S = [0,1]2.

By Lemma and the scale and translation invariance of the law of h, modulo additive
constant, this implies the statement of the lemma for a general choice of S, but still with h = h. If
h is a whole-plane GFF and f is a bounded continuous function, then the metrics Dj P and Dj are
bi-Lipschitz equivalent, with Lipschitz constants e*élfle. Hence the case of a whole-plane GFF

implies the case of a whole-plane GFF plus a continuous function. O

We now upgrade from internal metrics on closed squares to internal metrics on closures of dyadic

domains.

Lemma 4.21. Let W C C be a dyadic domain. The laws of the internal metrics ang‘ﬁ(-, W) for
e € (0,1) are tight w.r.t. the uniform topology on W x W and any subsequential limit of these laws

is supported on length metrics which induce the Euclidean topology on W.

Proof. If W is a dyadic domain, then W has finitely many connected components and these
connected components are the closures of dyadic domains which lie at positive Euclidean distance
from each other. By considering each connected component separately, we can assume without loss

of generality that W is connected.

For a connected set X C C, a collection D of random metrics on X is tight w.r.t. the local
uniform topology if and only if for each ¢ > 0, there exists 6 > 0 such that for each d € D, it holds

with probability at least 1 — ( that
d(z,w) <(, Vz,we€ X suchthat |z—w| <. (2.34)

Indeed, this is an easy consequence of the Arzéla-Ascoli theorem, the Prokhorov theorem, and the

triangle inequality.

For any closed square S C W, the restriction of D (-, ;W) to S is bounded above by the internal
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metric of D (-, ;W) on S, which equals D;(-,;S). By Lemma and the above tightness criterion,
the laws of the restrictions of {aZ1Dg (-, -;W)}se((),l) to S are tight. Since W is a dyadic domain,

we can choose a finite collection S of closed squares such that (JgegS = W.

By the above tightness criterion applied to each square in S, for each ¢ > 0, there exists 6 > 0

such that for each € € (0, 1), it holds with probability at least 1 — ¢ that
a'Di(z,w; W) <, VYz,weW st |z—w| <6 and z,w€ S forsome S€S. (2.35)

Now assume that holds and consider points z,w € W such that |z —w| < §/2 but 2z and w do
not lie in the same square of S. If § is sufficiently small (depending only on the collection of squares
S), then we can find squares S, S’ € S such that z € S,w € S, and SN S’ # (). Since S and S’ are
closed squares, geometric considerations show that there is a uw € SN S’ such that |z — u| < and
|lw—u| < 4. By and the triangle inequality this implies that a_ 1Dﬁ(z, w; W) < 2(. Therefore,

Ve € (0,1) it holds with probability at least 1 — ¢ that
a'Di(z,w; W) <2¢, Vz,w €W suchthat |z—w|<4/2.

Since ( is arbitrary, the above tightness criterion applied on all of W now shows that the laws of

the metrics az! D (-, ;W) for € € (0,1) are tight w.r.t. the uniform topology on W x W.

Let D be a subsequential limit of a-'Di(-,-; W) in law w.r.t. the local uniform topology. A
priori D might be a pseudometric, not a metric. We need to show that D is in fact a length metric
and that it induces the Euclidean topology on W. To this end, consider two squares (not necessarily
dyadic) S; C Sy C W such that S lies at positive Euclidean distance from 0S5 \ OW. For each
e > 0, we have DE(Sy, W\ So; W) = DE(S1, 852\ OW; Sa) and DE(S1, W \ Sa; W) — D(S1, W\ Sa)
in law. From this and Lemma we infer that a.s. D(Sy, W \ S3) > 0. By considering an
appropriate countable collection of such square annuli whose inner squares S; cover W, we infer
that a.s. ﬁ(u, v) > 0 whenever u,v € W with u # v. This implies that D is a metric. Since W is
compact, it follows that D induces the Euclidean topology on W. By Lemma m, Disa length

metric. OJ
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The following lemma will allow us to extract tightness of aZ! Df from tightness of aZ! D (-, 5 9)

for squares S C C.

Lemma 4.22. For r > 0, let S-(0) be the closed square of side length r centered at zero. Let h be a
whole-plane GFF plus a bounded continuous function. For each p € (0,1) and each C > 0, there

exists R = R(p,C) > 1 (depending on p,C and the law of h) such that for each fized r > 0,

lim inf IP
E—>

1
sup Dy (u,v) < =Dy, (5-(0),0Sr-(0))| > p. (2.36)
u,wES, (0) ¢

Proof. We first consider the case when h = h is a whole-plane GFF normalized so that h1(0) = 0.

By Lemma applied with W = S1(0), there exists R = R(p,C) > 1 such

1
sup  Dj(u,v) < aDi (S1/r(0),851(0)) | > p. (2.37)

lim inf P
E— u,vESl/R(O)

The occurrence of the event in (2.37) is unaffected by re-scaling Dj by a constant factor. By
Lemma applied with Rr in place of r, we see that (2.37)) implies that for each fixed r > 0,

liminf P

e—0 u,0ES,(0) C

sup  DE(u,0) < ~DE (ST(O),ﬁSRT(O))] > p. (2.38)

Now suppose that h = h + f is a whole-plane GFF plus a bounded continuous function. If
f is a (possibly random) bounded continuous function, then Dj s and Dj are a.s. bi-Lipschitz
equivalent with Lipschitz constants e ¢lfl and eflfl~. Furthermore, since f is a.s. bounded
exists a deterministic A > 1 such that P [eg“f”m < A] > p. By (2.38) with A2C in place of O,

we get (2.36]) but with 1 — 2(1 — p) in place of p. Since p can be made arbitrarily close to 1, this
yields (2.36)). O

The last lemma we need for the proof of Lemma |4.17]is the following deterministic compatibility
statement for limits of internal metrics, which is used to get the relationship between internal

metrics in assertion [Bl of Lemma [L.171

Lemma 4.23. Let V C U C C be open. Let {D"},en be a sequence of continuous length metrics

on U which converges to a continuous length metric D (w.r.t. the local uniform topology on U x U ).
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Suppose also that D™(-,+; V) converges to a continuous length metric D w.r.t. the uniform topology

onV x V. Then D(-,+;V) = D(-,+ V).

In the setting of Lemma we do not necessarily have D(-,; V) = D. The reason is that it

could be, e.g., that paths of near-minimal 5—1ength spend a positive fraction of their time in OV

Proof of Lemma[{.23 Let u,v € V such that D(u,v) < D(u,dV). Since D is a length metric,
D(u,v) = D(u,v;V) = D(u,v; V). Furthermore, for large enough n € N we have D"(u,v) <
D™(u,dV') which implies that D"(u,v) = D"(u,v; V) = D"(u,v; V). Therefore, D"(u,v) converges
to both D(u,v) = D(u,v;V) and D(u,v). Furthermore, we have D(u,v) < D(u,v;dV) which
implies that ﬁ(u,v) = ﬁ(u,v; V). Consequently, D(u,v; V) = lND(u,v; V) for each u,v € V with
D(u,v) < D(u,0V’). This implies that the D-length of any path in V' which lies at positive Euclidean
distance from 9V is the same as its D-length. Since D(-,; V) and INJ(, -; V') are length metrics, we
conclude that D(-,-; V) = D(-,-; V). O

Proof of Lemma[{.17 For r > 0, let S,(0) be the closed square of side length r centered at zero, as
in Lemma Let p € (0,1) and let R = R(p) > 1 be as in Lemma with C' = 2 and with
(1+p)/2, say, in place of p. Then for each fixed r > 0 and each small enough & > 0, it holds with

probability at least p that

D; (S-(0), Sk (0))

N |

sup  Dy(u,v) <
u,v€S(0)

which implies Dy (u,v) = Dy (u,v; Spr(0)), VYu,v € S,(0). (2.39)

We now apply Lemma with S = Sg,(0) and use that p can be made arbitrarily close to 1 to
get that the laws of a;lDﬂST(O) are tight w.r.t. the local uniform topology on S, (0). Furthermore,
any subsequential limit in law of these metrics a.s. induces the Euclidean topology on S,-(0). Since
r can be made arbitrarily large, we get that the metrics a_ 1Dﬁ are tight w.r.t. the local uniform

topology on C x € and any subsequential limit in law is a.s. a continuous metric on C.

To prove assertion [A] it remains to check that if Dy, is a subsequential limit in law of the metrics
aZ' D, then a.s. Dy, is a length metric. To this end, let p € (0,1) and let R = R(p) > 1 be as above.

By Lemma if we are given r > 0 then by possibly passing to a further subsequence we can
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arrange that along our subsequence, the joint law of (az'Dg, a-'Dg(-,; Srr(0))) converges to a
coupling (Dh,ﬁ) where D is a length metric on S rr(0). By passing to the (subsequential) limit
in (2.39), we get that with probability at least p,

sup  Dp(u,v) < }Dh(ST(O),ﬁSRT(O)) and Dy (u,v) = D(u,v), Vu,v € S.(0).  (2.40)
uveS(0) 2

By Lemma a.s. the internal metrics of Dy, and D on the interior of Sg,(0) coincide. Hence

implies that with probability at least p, Dy(u,v) is equal to the infimum of the Dy-lengths of all

continuous paths from u to v which are contained in the interior of Sg,(0), which (by the first

condition in ) is equal to the infimum of the Dy-lengths of all continuous paths from u to v.

Since p can be made arbitrarily close to 1 and r can be made arbitrarily large, we get that a.s. Dy,

is a length metric.

To get the joint convergence , we first apply Lemma and the Prokhorov theorem to get
that the joint law of the metrics on the left side of is tight. Moreover any subsequential limit
of these joint laws is a coupling of a continuous length metric Dy on € and a length metric Dy, w
on W for each W € W which induces the Euclidean topology on W. We then apply Lemma to
say that Dy w (-, ;W) = Dp(-,-; W) for each W € W. O

4.2.3 Weyl scaling

The following lemma will be used to check Axiom [[II]

Lemma 4.24. Let h be a whole-plane GFF plus a bounded continuous function and consider a
sequence €, — 0 along which a;nlDﬁ" converges in law to some metric Dy w.r.t. the local uniform
topology. Suppose we have, using the Skorokhod theorem, coupled so this convergence occurs a.s.
Then, a.s., for every sequence of bounded continuous functions f™ : C — R such that f™ converges
to a bounded continuous function f uniformly on compact subsets of C, we have the local uniform
convergence Dﬁj_fn — €4/ . Dy, where here Dy pn is defined as in with h + f™ in place of h
and €8 - Dy, is defined as in .

As a consequence of Lemma [£.24] if h is a whole-plane GFF plus a bounded continuous function

and e, — 0 is a sequence along which agnlDE" — Dy, in law, then whenever h’ is another whole-plane
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GFF plus a bounded continuous function, we have a;}DE? — Dy in law for some limiting metric
Dyy. Furthermore, (h,h’, Dy, Dy/) can be coupled together in such a way that h" — h is a bounded

(W=h). Dy Consequently, any subsequence along which a;nlDﬁ"

continuous function and Dy = ef
converges in law gives us a way to define a metric associated with any whole-plane GFF plus a

bounded continuous function.

Proof of Lemma[[.2]. Let f&" = fm « P2 /2 be defined as in (L.1)) with with f" in place of h.
Then foo" — f uniformly on compact subsets of C. By the definition (1.2)) of LFPP, we have

£
Dhlfn

— Ef5 . Den.

We now want to apply an argument as in the proof of [38, Lemma 7.1] to say that Dii = esf.Dy,
w.r.t. the local uniform topology. That lemma only applies for metrics defined on squares, so we
need to localize. We do this by means of Lemma By taking a limit as ¢ — 0 in the estimate
of Lemma then sending p — 1, we find that a.s. for each r > 0 and each C' > 1, there exists

" =7r'(r,C) > 0 (random) such that

1
sup  Dp(u,v) < — Dp(S-(0),05,7(0)). (2.41)
u,v€Sy(0) 2C

Furthermore, the uniform convergence a;nlDE" — Dy, we get that is a.s. true with a;nlDﬁ”
in place of Dy, for large enough n € N, but with C instead of 2C. This implies that each path of
near-minimal Dy-length between two points of S,.(0) is contained in S,/(0), and the same is true with
az' Dy in place of Dy for large enough n € N. If we choose C' > sup,,cy || /" ||o0, then from
we deduce that each path of near-minimal e¢/ - Dy-length between two points of S,.(0) is contained
in S,(0), and the same is true with a;nle o in place of Dy for large enough n € N. With these

conditions in hand, the lemma now follows from the same proof as in [38, Lemma 7.1]. O

4.2.4 Tightness across scales

In this section we check that subsequential limits of LEPP satisfy Axiom [V] For the statement,
we note that we can take a subsequential limit of the joint laws of (h,a-tDf) due to Lemma m

and the Prokhorov theorem.
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Lemma 4.25. Let h be a whole-plane GFF normalized so that hi(0) = 0. Let (h,Dy) be any
subsequential limit of the laws of the field/metric pairs (h, a;lDﬁ). There are deterministic constants
{¢;}r>0, depending on the law of Dy, such that the laws of the metrics {c; e~ " O Dy, (r- 1) }r0
are tight w.r.t. the local uniform topology. Furthermore, the closure of this set of laws w.r.t. the
Prokhorov topology for probability measures on continuous functions C x C — [0, 00) is contained in

the set of laws on continuous metrics on C. Finally, there exists A > 1 such that for each ¢ € (0,1),

A7l6A < cci <ASA, Vr>0. (2.42)

We first produce the scaling constants ¢, appearing in Axiom

Lemma 4.26. Consider a sequence £ C (0,1) converging to zero along which angi converges in

law to a limiting metric Dy,. For each r > 0, the limit

. ruE T
¢ := lim el

2.43
E3e—=0 dg ( )

exists and satisfies the relation (2.42) for some choice of A > 1 depending only on € and ~.

Proof. Let h" := h(r-) — h,(0) be as in Lemma so that A" < . By our choice of subsequence
€ and Lemma

a;lDZ{oT A A £2e20, rte O py (re ) (2.44)

in law w.r.t. the local uniform topology on C x €. Let m, be the median distance between the left

and right boundaries of [0,1]? w.r.t. the metric on the right side of (2.44]). Since h" 4 h,

_ d _ a _
a LDi/m Ll pifr = B o ipElr (2.45)
e/r—h e/r—h a € h
e/r N—~—
ioh convergent
tight by

If we consider a subsequence £’ of £ along which the joint law of aE_/TD,EL/ " and ae_lDZCT converges,

then (2.45) shows that along this subsequence, a././a. converges to some number s,(£) > 0 (we

know the limit is strictly positive since the limits of a;/rDZ/ "and a_ 1D;4T are metrics). By the
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definitions of a. and of m, and Portmanteau’s lemma, the median distance between the left and right
boundaries of [0,1]? w.r.t. the metric on the left (resp. right) side of is 1 (resp. m,/s.(E)).
Hence s,.(£’) = my, i.e., the limit does not depend on the choice of subsequence & C £. This
shows the convergence of a./,/a. along the subsequence £, which in turn implies the existence
of the limit . The bounds (in fact, substantially stronger bounds) are immediate
from |24, Theorem 1, Equation (1.3)] and the fact the ratio of our a. and the scaling factor A,

from [24] is bounded above and below by deterministic, e-independent constants (see the proof of

Lemma (4.20)). O

Proof of Lemma[{.25. Define ¢, for r > 0 as in Lemma Let h" := h(r-) — hy(0), as in

Lemma [4.18] so that A7 < h and the metrics DZCT and Dj are related as in (2.33)). We know from

Lemma that the laws of the metrics {a; 'D5 }o<.<1 are tight, and every element of the closure
of this set of laws is supported on continuous metrics on C. It follows that the same is true for the
laws of the metrics {a;ﬁD;{«T}OQQ. By combining this with (2.33)), we get that the laws of the

metrics
—&h,(0) T0g/r ! —1 —1 e/r
e~¢hr o a_ Dj(r-,r) = o, Dy Vr>0, Vee (0,7) (2.46)
(5}
are tight and every element of the closure of this set of laws w.r.t. the Prokhorov topology is
supported on continuous metrics on C.

Now consider a subsequence & C (0,1) along which (h,a;'D5) — (h,Dy) in law. By the

definition ([2.43)) of ¢,

-1
Qs /p - — - 3
e~ & (0) <a/> a'D5(rr) — e @) =Dy (re, 1),  in law along E.

Therefore, the metrics e~ ¢ (0 ¢-1 Dy, (7, 7-) for 7 > 0 are all subsequential limits as ¢ — 0 of the
family of random metrics (2.46)). It follows that the laws of the metrics e ¢/ ¢ 1Dy (7, 7-) are
tight and every element of the closure of this set of laws is supported on continuous metrics on

C. O

164



4.2.5 Locality

In this section, we will prove a variant of Axiom [[I] for subsequential limits of LEPP, restricted
to the case of a whole-plane GFF (locality for a whole-plane GFF plus a continuous function will
be checked in Section . At this point, we have not yet established that such subsequential
limits can be realized as measurable functions of the field, so we will actually check a somewhat
different condition. In what follows, if K C C is closed we define the o-algebra generated by h|x to
be (V5-0 PlBs(x)- With this definition it makes sense to condition on h|x. The following definitions

first appeared in [57].

Definition 4.27 (Local metric). Let U C C be a connected open set and let (h, D) be a coupling
of a GFF on U and a random continuous length metric on U. We say that D is a local metric for h
if for any open set V' C U, the internal metric D(-,-; V') is conditionally independent from the pair

(h, D(-,; U\ 'V)) given hly.

Definition is formulated in a slightly different way than |57, Definition 1.2]; the equivalence

of the definitions is proven in [57, Lemma 2.3]. The following is |57, Definition 1.5].

Definition 4.28 (Additive local metric). Let U C C be a connected open set and let (h, D) be
a coupling of a GFF on U and a random continuous length metric on U which is local for h. For
¢ € R, we say that D is {-additive for h if for each z € U and each r > 0 such that B,(z) C U, the

metric e (3) D is local for h — h,(z).

Lemma 4.29. Let h be a whole-plane GFF. Let (h, Dy) be any subsequential limit of the laws of
the pairs (h, a;lD,i). Then Dy, is a &-additive local metric for h. That is, suppose z € C and r > 0
and that h is normalized so that the circle average hy.(z) is zero. Also let V. C C be an open set.
Then the internal metric Dy(-,; V) is conditionally independent from the pair (h, Dy(-, - C \V))

given hly.
There are two main difficulties in the proof of Lemma [4.29

1. The mollified GFF h%(z) of (1.1) does not exactly depend locally on h (since the heat
kernel p,25(2,-) does not have compact support), so the Dj-lengths of paths are not locally

determined by h.
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2. Conditional independence does not in general behave nicely under taking limits in law.

Difficulty [I] will be resolved by means of the localization results for LFPP in Section To
resolve Difficulty [2| we will use the Markov property of the GFF (see Lemma and Weyl scaling
(Lemma in order to reduce to working with metrics which are actually independent, not just
conditionally independent. The use of the Markov property is the reason why we restrict to a

whole-plane GFF, not a whole-plane GFF plus a bounded continuous function, in Lemma [4.29

For the proof of Lemma [4.29] we will need the following version of the Markov property of the
whole-plane GFF, which is proven in |62, Lemma 2.2]. We note that the statement of this Markov
property is slightly more complicated than in the case of the zero-boundary GFF due to the need to

fix the additive constant for h.

Lemma 4.30 ([62]). Let z € C and r > 0 and let h be a whole-plane GFF with the additive constant
chosen so that h,(z) = 0. For each open set V. C C which is non-polar (i.e., Brownian motion

started in 'V a.s. hits OV in finite time), we have the decomposition
h=b+h (2.47)

where b 1s a random distribution which is harmonic on V and is determined by h|@\v and h is
independent from b and has the law of a zero-boundary GFF on V' minus its average over 0B, (z)NV.

If V is disjoint from 0B, (z), then his a zero-boundary GFF and is independent from h|g\v -

The following lemma will allow us to apply Lemma to study h| NE

Lemma 4.31. It suffices to prove Lemmal[{.29 in the case when B,(z) C V.

Proof. Assume that we have proven Lemma in the case when B,(z) C V. Fix zp € C and
ro > 0 such that By (z9) C V and assume that h is normalized so that h,,(z9) = 0. By assumption,

Dy(+,+; V) is conditionally independent from the pair (k, Dy(-,; C \V)) given hly-.

Now let z € € and 7 > 0 and define h := h— hr(z), so that hisa whole-plane GFF normalized so

that h, (z) = 0. Lemma [4.24|implies that D — e () py, = D;, in law along the same subsequence

for which Dj — Dy, in law, so D; is unambiguously defined. We need to show that the conclusion

of the first paragraph remains true with (A, Ds) in place of (h, Dy).
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The key fact which allows us to show this is that hy,(20) = —hy(z). Since By, (z0) C V/, this
means that h,(z) € o (%|V) In particular, hly; = %|V + hy(z) is determined by E|V Therefore, our
assumption implies that Dy (-,-; V') is conditionally independent from the pair (h, Dy(-, 5 C \V))
given E|V (instead of just hly).

We have D5 (-, V) = e Dy (-, 5 V), s0 D5 (-, V) is determined by 7L|V and Dp(-,+; V). Sim-
ilarly, D; (-, C \ V) is determined by 7L|V and Dy, (-, -; ©C\ V). Obviously, h and h determine the same
information. Therefore, D;(-,;V) is conditionally independent from the pair (E, Dy (5 C \V))

given E|V, as required. O

Support of ¢

r_3 1

Figure 4.1 — Illustration of the sets used in the proof of Lemma The set ¢~!(1) is not shown;
it contains the closure of the pink set W’ and is contained in the grey set supp ¢.

Proof of Lemmal[{.29. Step 1: reductions. By Lemma for any sequence of €’s tending to zero
along which (h,az'D5) — (h, D) in law, we also have (h, a;lﬁ,i) — (h, Dy) in law. This allows us
to work with 1/5,61 instead of Dj throughout the proof. The reason why we want to do this is the
locality property of lA?fL

The statement of the lemma is vacuous if V = C, so we can assume without loss of generality
that V # C, which implies that C\ V is non-polar. By Lemma we can also assume without
loss of generality that B,(z) C V. These assumptions together with Lemma applied with C\ V

in place of V allows us to write

hleyy = b+ h (2.48)

where b is a random harmonic function on € \ V which is determined by hle\v and his a

zero-boundary GFF in €\ V which is independent from h‘@\V'
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Step 2: independence for LFPP. We want to apply the convergence of internal metrics given in
Lemma so we fix dyadic domains (Definition W, W’ with W C V and W c © \V (we
will eventually let W and W’ increase to all of V and C\ V, respectively). Let ¢ be a deterministic,
smooth, compactly supported bump function which is identically equal to 1 on a neighborhood of
W' and which vanishes outside of a compact subset of C\ V. See Figure for an illustration of

these objects.

The restrictions of the fields h — ¢h and h to the set ¢~ (1) D W' are identical. By the locality
property of ﬁi, if € > 0 is small enough that B.(W’) C ¢~1(1), then the e-LFPP metric for
h — ¢b satisfies

D gy (W) €0 (h) . (2.49)

Similarly, for small enough ¢ > 0 the metric ﬁ,sl(, W) is a.s. determined by h|y. Since hly and h

are independent, we obtain

(hlv,a-'D5 (-, W)) and (ﬁ,a;lDi,¢b(~,-;W,)) are independent. (2.50)

Step 3: passing to the limit. We now want to pass the independence through to the
(subsequential) scaling limit. To this end, consider a sequence & of positive €’s tending to zero along
which (h,aZ 113,61) — (h, Dy) in law. By possibly passing to a further deterministic subsequence, we
can arrange that in fact (h, b, a;lﬁfL) — (h, b, Dy) in law along &, where here the second coordinate
is given the local uniform topology on C \ V. By the analog of Lemma with D¢ in place of
D# (which is proven in an identical manner), if we set Dj_qp = e ¢ . Dy, then along this same

subsequence we have the convergence of joint laws

(h,b,aglﬁg,aglﬁ,i,¢b) — (h,b, Dy, Dp_g) (2.51)
By assertion [B] of Lemma [£.17], applied once to each of h and h — @b, by possibly replacing £

with a further deterministic subsequence we can find a coupling (h, Dy, Dy w, Dp—gy w) of (h, Dy)

with length metrics on W and W/, respectively, which induce the Euclidean topology and which
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satisfy
Dh,W('a';W) = Dh(,,W) and Dh*d)h,W’('?';W,) :Dh—¢f)(7aW/) (252)

such that the following is true. Along £, we have the convergence of joint laws

(ha h: aa_ll/jlaw ae_lﬁif(bh: aa_ll/ji('a ';W)a ag_ll/j}ifd)(', ';W,))

— (h,, b, Dp, Dh—gty, Dn,w, Dh—gp,w) (2.53)

where the last two coordinates are given the uniform topology on W x W and on W' x W’, respectively.
Since independence is preserved under convergence in law, we obtain from (2.50) and (2.53)) that
(hlv, Dp,w) and (;L,Dh,¢h7wl) are independent. By (2.52)), this means that

(hlv, Dp(-,;W)) and (foL,Dh,qgh(-,';W')) are independent. (2.54)

Step 4: adding back in the harmonic part. By , Dy (-, ;W) is conditionally independent
from (h, Dp_gy(-, - W')) given h|y. We now argue that (h, Dy(-,; W’)) is a measurable function of
(h, Dp_gp(-,-;W')) and hly, so that Dy(-,-; W) is conditionally independent from (h, Dy (-, -; W'))
given h|y. Indeed, by Lemma a.s. Dp(, s W') = (€599 - Dy_gp) (-, s W'). Hence Dy (-, W') is
a measurable function of h € o(h|y) and Dj_gy(-,-; W'). Since h|C\V — h+ B, we get that h is a
measurable function of h and hl|y. It therefore follows that Dy (-, ;W) is conditionally independent
from (h, Dy (-, W')) given hljy. Letting W increase to V and W' increase to €\ V now concludes

the proof. O

4.2.6 Measurability

We have not yet established that subsequential limits of LFPP can be realized as measurable
functions of the corresponding field. We will accomplish this in this subsection using a result

from [57].

Lemma 4.32. Let h be a whole-plane GFF normalized so that h1(0) = 0 and let (h, Dy,) be any
subsequential limit of the laws of the pairs (h, ae_lDi). Then Dy, is a.s. determined by h. In

particular, a;lD,‘i — Dy, in probability along the given subsequence.
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The following theorem is a special case of |57, Corollary 1.8].

Theorem 4.33 ([57]). There is a universal constant p € (0,1) such that the following is true. Let
€ € R, let h be a whole-plane GFF normalized so that hi(0) =0, and let (h, D) be a coupling of h

with a random continuous length metric satisfying the following properties.

1. D is a &-additive local metric for h (Definition .

2. Condition on h and let D and D be conditionally i.i.d. samples from the conditional law of D

given h. There is a deterministic constant C > 0 such that

sup D <U, v; BQT(Z) \ BT/2(2)> < CD(aBT/Z(Z)v aBT‘(z)) > b, Vz € (D7 Vr > 0.
u,v€EIBy(2)

P

(2.55)
Then D is a.s. determined by h.

Proof of Lemma[{.32 Let p € (0,1) be as in Theorem Lemma implies that Dy, is a

¢-additive local metric for h. Lemma [£.25] along with the translation invariance of the law of
h, modulo additive constant, implies that there exists C' > 0 (depending only on the choice of

subsequence) such that for each z € C and each r > 0,

P [D(@BT/Q(Z),(?BT(Z)) > 0—1/2cre€hr<2>} >

P

1—
sup Dy (u,v; By (2) \ BT/2(2)> < V2 efhr(2) | > 2P
u,vEDBy(z) 2

This implies that (2.55)) holds for two conditionally independent samples from the conditional law
of Dy, given h. Hence the criteria of Theorem [4.33| are satisfied, so Dy, is a.s. determined by h. The

last statement follows from Lemma O

Proof of Theorem[[.3. Step 1: Defining a Dy, for a whole-plane GFF plus a bounded continuous
function. Let h be a whole-plane GFF normalized so that h;(0) = 0. Lemma implies that for
any sequence of ¢’s tending to zero, there is a subsequence &,, — 0 along which (h, D;") — (h, Dy)

in law. By Lemma Dy, is a.s. determined by h and D;" — Dj, in probability. Hence every
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deterministic subsequence of the €,’s admits a further deterministic subsequence ¢,, along which
DZ"’C — Dy, a.s. By Lemma it is a.s. the case that for every bounded continuous function
f: € = R simultaneously, we have D;’fff — 8/ . Dy,. We define Dyyy = ¢t/ . Dy,. Then Dyyy is

a.s. determined by h + f and DZ*_LF § converges in probability to Dp .

This gives us a measurable function h — Dy, from distributions to continuous metrics on C which
is a.s. defined whenever h is a whole-plane GFF plus a bounded continuous function: in particular,
Dy, is the a.s. limit of DE”". With this definition of D, Axiom [I| holds with h constrained to be a
whole-plane GFF plus a bounded continuous function since we know that the limiting metric in the
setting of Lemma is a length metric. By the preceding paragraph, Axiom [[II] holds for this
definition of D and with f constrained to be bounded. It is immediate from the definition of LEPP

that also Axiom [[V] holds. By Lemma also Axiom [V] holds.

Step 2: locality for a whole-plane GFF plus a bounded continuous function. Axiom [[I]in the case of
a whole-plane GFF is immediate from Lemma [4.29| now that we know that Dy, is a.s. determined by
h. We now prove Axiom [[1)in the case when h is a whole-plane GFF plus a bounded continuous
function. Indeed, let V C C be open and let O C O’ C V be open and bounded with O C O and

O cV. Let u,v € O be deterministic. We will show that

D (u, U)R{Dh(u,v)<Dh(u,BO’)} €o(hly). (2.56)

Since (u,v) — Dp(u,v) is a.s. continuous, implies that in fact h|y a.s. determines the random
function O > (u,v) = Dy(u, )1 p, (uw)<Dy(u,o07)}- Since O is a compact subset of O’, O can be
covered by finitely many sets of the form {v € O : Dy(u,v) < Dy(u,00")} for points u € O. By the
definition of the internal metric Dy(-,-; O), this shows that h|y a.s. determines Dy(+,-; O). Letting

O increase to all of V' then shows that h|y a.s. determines Dy(-,-; V).

To prove (2.56)), note that if we define the localized LFPP metric lA)ﬁ" as in , then by
Lemma we have a;}ﬁﬁ" (u,v) = Dp(u,v) and ae_nlf?ﬁ" (u,00") — Dp(u,00") in probability.

Therefore,

aa—nlpﬁn (u, Uﬂ{ﬁﬁ"(u,ka)ﬁ”(u,ao/)} — D (u, v)1{p, (uw)<Dy(u,90)}, in probability. (2.57)
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By ([2.18) and since 0’ C V, the random variable on the left side of (2.57) is a.s. determined by h|y
for large enough n € N. Thus (2.56) holds.

Step 3: extending to unbounded continuous function. We will now extend the definition of D to
the case of a whole-plane GFF plus an unbounded continuous function and check that the axioms
remain true. To this end, let h be a whole-plane GFF and let f be a possibly random unbounded
continuous function. If V' C C is open and bounded and ¢ is a smooth compactly supported bump
function which is identically equal to 1 on V, then ¢f is bounded so we can define the metric
DX+ Fi= Dpis(-,+; V). By Axiom |[I}in the case of a whole-plane GFF plus a bounded continuous
function, this metric is a.s. determined by (h + ¢f)|yv = (b + f)|y, in a manner which does not
depend on ¢. We now define the Dy, s-length of any continuous path P in C to be the D,‘L/+f—length
of P, where V C C is a bounded open set which contains P The definition does not depend on the
choice of V. We define D, ¢(z, w) for z,w € C to be the infimum of the Dy ¢-lengths of continuous
paths from z to w. Then Dy, is a length metric on € which is a.s. determined by Dj, 4y and which

satisfies Dy ¢(-, V) = D,‘{ﬂc for each bounded open set V' C C.

With the above definition, it is immediate from the case of a whole-plane GFF plus a bounded
continuous function that the axioms in the definition of a weak v-LQG metric are satisfied to
the mapping h +— Dy, which is a.s. defined whenever h is a whole-plane GFF plus a continuous

function. ]

4.3 Proofs of quantitative properties of weak LQG metrics

In this section we will prove the estimates stated in Section Actually, in many cases we will
prove a priori stronger estimates which are required to be uniform across different Euclidean scales.
With what we know now, these estimates are not implied by the estimates stated in Section [4.1.2
since we are working with a weak v-LQG metric so we have tightness across scales instead of exact
scale invariance. However, a posteriori, once it is proven that a weak v-LQG metric satisfies the
coordinate change formula (1.6 (which will be done in [59], building on the results in the present
chapter), the estimates in this section are equivalent to the estimates in Section Throughout

this section, D denotes a weak LQG metric and h denotes a whole-plane GFF normalized so that
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h1(0) = 0.

4.3.1 Estimate for the distance between sets

The goal of this subsection is to prove the following more precise version of Theorem which
is required to be uniform across scales. For the statement, we recall the scaling constants ¢, for

r > 0 from Axiom [V]

Proposition 4.34. Let U C C be an open set (possibly all of C) and let K1, Ko C U be connected,
disjoint compact sets which are not singletons. For each v > 0, it holds with superpolynomially high

probability as A — oo, at a rate which is uniform in the choice of r, that

A7l et 0 < Dy (e Ky 1 Ko; rU) < Aceeth=(0), (3.58)

Figure 4.2 — Left: To prove the lower bound in Proposition we cover rU by balls B, 2 (w)
such that the Dj-distance across the annulus A, »,(w) is bounded below. Each path from rK; to
r(Ko UOU) must cross at least one of these annuli (one such path is shown in purple). Right: To
prove the upper bound in Proposition we cover rU by balls B, jo(w) for which the Dj-diameter
of the circle 9B, (w) is bounded above, then string together a path of such circles from K; to K.

We now explain the idea of the proof of Proposition see Figure for an illustration. Using
Axiom [V|]and a general “local independence” lemma for the GFF (see Lemma below), we can,
with extremely high probability, cover rU by small Euclidean balls B, jo(w) such that r € [€2r, er]
and the Dj-distance across the annulus A, 5, (w) is bounded below by a constant times crefhr(w).

Any path from rK; to rKs must cross at least one of these annuli. This leads to a lower bound for
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Dy(rK;,rKo;rU) in terms of

inf ¢ and  inf inf P (3.59)

rele?r,er] rele?r,er] werlU

The first infimum in can be bounded below by a positive power of € times ¢; by . By
being a little more careful about how we choose the balls B, /5(w), the second term in can be
reduced to an infimum over finitely many values of » and w, which can then be bounded below by a
positive power of & times e8=(0) using the Gaussian tail bound and a union bound (see Lemma.

Choosing ¢ to be an appropriate power of A then concludes the proof.

The upper bound in is proven similarly, but in this case we instead cover U by balls
B, j2(w) for which the Dj-diameter of the circle 9B, (w) is bounded above by a constant times
¢, €8 (W) then “string together” a collection of such circles to get a path from rK; to rKs whose
Dy, -length is bounded above. The hypothesis that K7 and Ky are connected and are not singletons

allows us to force some of the circles in this path to intersect K1 and K.

We now explain how to cover U by Euclidean balls with the desired properties. For C' > 1,
z € C,and r > 0, let E,(z;C) be the event that

sup Dy (, 058, )99,(2)) < O™ and Dy, (0B,(2),9Ba,(2)) = C e, (3.60)
u,v€EIBy(z)

Lemma 4.35. For each v > 0 and each M > 0, there ezists C' = C(v, M) > 1 such that for each
r > 0, it holds with probability at least 1 — O.(eM) as e — 0, at a rate which is uniform in r,
that the following is true. For each z € B,.-m(0), there exists w € B,.-m(0) N (#Z% and

r € [e"r er] N {2 % rlren such that E,.(w; C) occurs and z € Broit jp(w).

We will prove Lemma using the following result from [57], which in turn follows from the

near-independence of the GFF across disjoint concentric annuli. See in particular [57, Lemma 3.1].

Lemma 4.36. Fix 0 < s1 < so < 1. Let {ry}ren be decreasing with the r;’s positive and s.t.
Tkt1/Tk < 81 for each k € N and let {E,, }ren be events s.t. E,, € o ((h - hrk(O))\AS“k’SQ%(OO

for each k € N. For K € N, let N(K) be the number of k € [1, K|z for which E,, occurs.
For each a > 0 and each b € (0,1), there exists p = p(a,b, s1,s2) € (0,1) and ¢ = c¢(a,b, s1,s2) >0
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such that if

P(E,)>p VEEN, (3.61)

then

P[N(K) < bK] < ce ¥, VK € N. (3.62)

Proof of Lemmal[{.35 By Axioms [[V]and [V] (also see (L.7)), for each p € (0,1) there exists C' > 1
such that for every z € C and r > 0, P [E,(z;C)] > p. By the locality of Dj, and Axiom [[II} the
event Ey(z;C) is determined by (h — hsr(2))|a, ,,,(x)- We can therefore apply Lemma W to a
logarithmic (in ) number of values of r € [e!*r,er] N {27 *r}1en to find that for any choice of
v>1and M > 0, there is a large enough C = C(v, M ) > 1 such that the following is true. For each
z € C it holds with probability at least 1 — 06(51\7 ) that E,(z;C) occurs for at least one value of
r € [e"r,er] N {27%r}ren. We now conclude the proof by choosing M to be sufficiently large, in a

manner depending only on v, M, and taking a union bound over all z € B,.-n(0) N (E%EZ?). O

The occurrence of the event E,(z;C) allows us to bound distances in terms of circle averages
and the scaling coefficients ¢,. The ¢,’s can be bounded using (|1.5)). To bound the circle averages,

we will need the following lemma.

Lemma 4.37. For each v > 0, each ¢ > 24+ 2v, each R > 0, and each r > 0, it holds with probability

‘12 —9_
1-0:. (52(1+ﬁ)2 2 2”) , at a rate depending only on q and R (not on v) that

14+v

9 i

sup {\hr(w) — h2(0)] : w € Bre(0) N < Z2> T E [£1+”Ir,6rr]} < qloge™L. (3.63)

Proof. Fix s € (0,q) to be chosen momentarily. For each w € Bpg;(0), the random variable
t = he—ter (W) — her(w) is a standard linear Brownian motion [44, Section 3]. We can therefore

apply the Gaussian tail bound to find that

P

sup  |hr(w) — her(w)] < slog El] >1-0:. <552/(2")> . (3.64)

releltvrer]

The random variables hey(w) — hy(0) for w € Bg.(0) are centered Gaussian with variance loge=! +
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Oc(1). Applying the Gaussian tail bound again therefore gives

P [Jher(w) = he(0)| < (g — s)loge™"] = 1 = O, (l4="/2). (3.65)

Combining (3.64) and (3.65)) applied with s = ¢\/v/(1 + 1/v) shows that for w € Bg;(0),

2
P sup  |hr(w) — he(0)] < glog 8_1] >1-0. (g%lfﬁP) : (3.66)

refeltvrer]
We now conclude by means of a union bound over O, (e7272") values of w € Bg,(0)N (*Zz). O

Proof of Proposition [{.34 Throughout the proof, all O(-) and o(-) errors are required to be uniform
in the choice of r. We also impose the requirement that U is bounded — we will explain at the very

end of the proof how to get rid of this requirement.

Set v = 1, say, and fix a large M > 1, which we will eventually send to co. Let C = C(1, M) > 1
be chosen as in Lemma and for € € (0,1) and r > 0, let F5 be the event of Lemma for this
choice of v, M, C, so that P[FE] = 1 — O-(e™). We will eventually take ¢ = A-YYM for o small
constant b > 0, so e™ will be a large negative power of A (i.e., the power goes to oo as M — co)

but e¥YM will be a fixed negative power of A (which does not go to oo when M — o0).

By Lemmam (applied with v = 1 and ¢ = 2v/2v/4 + M), it holds with probability 1 — O.(¢™)

that
2
sup {\hr(w) —he(0)] :w € Be(rU) N (Ef22> , T E [521r,51r]} < 2V2V4+ Mloge™.  (3.67)

Henceforth assume that F£ occurs and ([3.67)) holds, which happens with probability 1 — O (™).

We will now prove lower and upper bounds for Dy, (r K, rKy;rU) in terms of e.

Step 1: lower bound. By the definition of F¢, if ¢ is sufficiently small, depending on K, K, U,

then each path from rK; to r(K3 U OU) must cross from 0B,(w) to 0Ba.(w) for some w €
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B (rU)N (E?TTZ2> and 7 € [e?r,er] N {2 %r}ren for which E,.(w; C) occurs. Therefore,

2
Dy, (rKi,rK3) > inf {Clcrefhr(w) tw € Bep(rU) N <E4EZ2> , T E [EQII',EII‘]} (by (3.60))
> O 1e€2V2VATM (£he (0) jpf {e i1 e [5211',611']} (by (3.67))

> A—1€§2\/§\/4+M—|—2A+05(1)crefhr(O) (by (T3)). (3.68)

Step 2: upper bound. It is easily seen from the definition of F¢ (see Lemma below) that if e
is sufficiently small (depending only on K, Ko, and U) then the union of the circles 9B, (w) for
w € B (xU) N (E%EZ2> and 7 € [e?r,er] N {2 Fr}ren such that E,.(w;C) occurs contains a path

from rK; to rKs which is contained in rU. The total number of such circles is at most 5_4_05(1),

so by the triangle inequality and by (3.60)),

2
Dy, (K1, rKy;rU) < e 47%=W gup {Ccreém(w) tw € Ber(rU) N (TZZ> , T E [5211",511"]}

< e EVRVAF M —0c (1) £hs (0) gy {c, 17 € [*r,er]} (by (3:67))

< A€—4—§2\/§\/4+M—2A—oe(1)crefhr(o) (by (T3)). (3.69)

Step 8: choosing €. The bounds (3.68) and (3.69)) hold with probability 1 — O.(¢M). Given A > 0,

we now choose ¢ = A~/ m, where b > 0 is a small constant (depending only on &, A) chosen so

that the right side of (3.68) is at least A~ c.e"=(0) and the right side of (3.69) is at most Ac,ef (),
Then (3.68) and (3.69) imply that

P [Dh(]rKl,]rKQ) > Al Dy (1K, 1Ko vU) < crefhr@)} >1-0a(AYMY, (3.70)

If U’ is a possibly unbounded open subset with U C U’; then Dy, (rK;,vK2) < Dp(r K, vKo;rU’) <

Dy (K, Ko;rU). Since M can be made arbitrarily large, we now obtain (3.58) (with U possibly
unbounded) from (3.70)). O

The following lemma was used in the proof of the upper bound of Proposition [£.34]

Lemma 4.38. Assume that we are in the setting of Proposition[{.3]), with U bounded. Define the
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event FZ as in the proof of Proposition|4.34 For small enough € > 0 (depending on K1, Ko,U), on
F%, the union of the circles OB, (w) for w € Bep(rU) N (%Zﬁ and r € [€%r,er] N {27 Fr}pen such

that E.(w; C) occurs contains a path from vrK; to vKs which is contained in rU.

Proof. Throughout the proof we assume that F: occurs. By the definition of FY and since U is
connected, if € is chosen so be sufficiently small then the union of the balls B,(w) for w,r as in the
lemma statement contains a path from rK7 to Ko which is contained in U. Let B be a sub-collection
of these balls which is minimal in the sense that |J Bep B contains a path from rKj to rKs in rU
and no proper sub-collection of the balls in B has this property. Choose a path P from rK; to rKs
in (vU)NUpgep B-

We first observe that | )z B is connected. Indeed, if this set had two proper disjoint open subsets,
then each would have to intersect P (by minimality) which would contradict the connectedness of

P. Furthermore, by minimality, no ball in B is properly contained in another ball in B.

We claim that |Jzcz 0B is connected. Indeed, if this were not the case then we could partition
B = By U By such that By and By are non-empty and (Jpcz, 0B and (g, OB are disjoint. By the
minimality of B, it cannot be the case that any ball in By is contained in (Jgcp, B. Furthermore,
since (Jpep, OB and Jpcp, OB are disjoint, it cannot be the case that any ball in By intersects both
Upes, B and C\Upcp, B (otherwise, such a ball would have to intersect the boundary of some ball
in By). Therefore, (Jpeps, B and Upcp, OB are disjoint. Since no element of B can be contained in
Uges, B, we get that Upcp, B and Jpcp, B are disjoint. This contradicts the connectedness of

Upep B, and therefore gives our claim.

Since P is a path from r&; to rKo and each of rK; and rK5 is connected and not a single point,
if ¢ < (diam(K7) A diam(K>)), then the boundaries of the balls in B which contain the starting
and endpoint points of P must intersect K; and Kj, respectively. Hence for such an ¢, g5 0B

contains a path from rK; to rK», as required. O

4.3.2 Asymptotics of the scaling constants

The goal of this section is to prove Theorem We will accomplish this by comparing

Dj-distances to a variant of the Liouville first passage percolation (LFPP) which we now define.
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For e € (0,1) and U C C, we view U N (¢Z?) as a graph with adjacency defined by
z,w € U N (eZ2) are connected by an edge if and only if |z — w| € {e, V2¢}. (3.71)

Note that this differs from the standard nearest-neighbor graph structure in that we also include

the diagonal edges. We define the discretized e-LEPP metric with parameter £ on U by

||

e O = &he (m(5)) 2
D5 (z,w;U) : ngglwzge , Vz,weUn(eZ?), (3.72)
]:

where the minimum is over all paths 7 : [0, |7]]z — U N (¢Z2) from z to w in U N (¢Z?) (the tilde is

to distinguish this from the variant of LEFPP defined in (1.2)).

Recall that $ = (0,1)? denotes the open Euclidean unit square. Below, we will show, using
Proposition and a union bound over a polynomial number of dr X dr squares contained in 3,

that with high probability,
¢r = 6%W s x (ﬁir distance between two sides of IrS) . (3.73)

The reason why discretized LEPP comes up in this estimate is the circle average term €$"+(0) in
Proposition We know that the ﬁff distance across the square r$ is of order §—¢@+os(1)
uniformly in r, by the results of [28] (see Lemma just below). Hence (3.73) leads to ¢5; =

68Q+os(M ¢ as required.

For a square S C C, we write 0f S and Og S for the set of leftmost (resp. rightmost) vertices of

SN (eZ?).

Lemma 4.39. Fiz ( € (0,1). Forr > 0, it holds with probability tending to 1 as 6 — 0, uniformly

in the choice of , that
DT (agff(nﬁ), a;;r(n«S);n«S) e [5*5‘%4 efh=(0), 5*5Q*<eéhr<0>] . (3.74)

Proof. We first reduce to the case when r = 1. Indeed, by the scale and translation invariance of the

law of h, modulo additive constant, we have h(r-) — hy(0) < . Moreover, from the definition (3.72])
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it is easily seen that

D)oy ooy (5 8) = e ODE (5 0$) (3.75)

Hence e—ghr(o)ﬁgr (-, 19) 4 IND;SL(-, ;$), so we only need to prove the lemma when r = 1, i.e., we

need to show that with probability tending to 1 as § — 0, we have

Dl (aﬁg, T S) = §=EQ+os(D), (3.76)

This follows from the LFPP distance exponent computation in [28]. To be more precise, [28,
Theorem 1.5] shows that for continuum LFPP defined using the circle average process of the
GFF, as in , the -LFPP distance between the left and right boundaries of ¥ is of order
§17€@+0s(1) with probability tending to 1 as § — 0. Combining this with |28, Lemma 3.7] shows
that the same is true for continuum LFPP defined using the white-noise approximation {E5}5>0, as
defined in [28, Equation (3.1)], in place of the circle average process. The same argument as in the
proof of [28, Proposition 3.16] then shows that holds if we replace the circle average by the
white-noise approximation in the definition of lN);SL (here we note that the definition of discretized
LFPP in 28, Equation (3.32)] has an extra factor of ¢ as compared to , which is why we get
6—6Q+os(1) ingtead of §1~€@+es(1)). The desired formula now follows by combining this with

the uniform comparison of hs and hg from [28, Lemma 3.7]. O

For the proof of Theorem (and at several later places in this section) we will use the following

terminology.

Definition 4.40 (Distance around an annulus). For a set A C C with the topology of a an annulus,
we define the Dy,-distance around A to be the infimum of the Dj-lengths of the paths in A which

disconnect the inner and outer boundaries of A.

Proof of Theorem[].3. Step 1: estimates for Dy,. For z € eZ?, we write SS for the square of side
length € centered at z and B.(S%) for the e-neighborhood of this square. Fix ( € (0,1). By

Proposition and a union bound over all z € (r$) N (6rZ?), it holds with superpolynomially
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high probability as 6 — 0 that (in the terminology of Definition
<Dh—distance around Bg.(5%%) \ S;*f) < 0 sl () vz e (28) N (6rZ?). (3.77)
Similarly, it holds with superpolynomially high probability as § — 0 that
Dy, (sgff, aBgr(sjr)) > §Cespeshee(?) vy e (18) N (5072). (3.78)

Henceforth assume that (3.77)) and (3.78]) both hold.

Step 2: lower bound for ¢5r/cr. Let m: [0, |m]]z — (r$) N (6rZ?) be a path in (r$) N (6rZ?) (with
the graph structure defined by (3.71))) from 9% (r$) to 9% (r'$) for which the sum in (3.72) equals
ﬁir (9T (r$), 9% (r$);r$). For each j € [0,|r[]z, let P; be a path in Bgr(SfrI(fj)) \ Sfrr(fj) which

disconnects the inner and outer boundaries of Bgm(SfrI(fj)) \ SfrI(fj) and whose Dj-length is at most

20~ Cespefhor(?) . Such a path exists by (3.77).

We have P; N Pj_1 # () for each j € [0,|7|]z, so the union of the P;’s is connected and contains

a path between the left and right boundaries of r&. Therefore, the triangle inequality implies that

||

||
Dy, (x0L8,10rS) < > (Dp-length of Pj) <20 Ccs »  ethar(0)
j=0 j=0

= 265 DT (aﬁm(mg), 9% (19); KS) . (3.79)

By Axiom [V] the left side of (3.79) is at least 6¢c,e¢"*(9) with probability tending to 1 as § — 0,
uniformly in r. By Lemmam the right side of (3.79) is at most 6692 ¢5,.e8h=(0) with probability
tending to 1 as § — 0, uniformly in r. Combining these relations and sending ( — 0 shows that

o < (5*@*05(1)%(, as desired.

Step 3: upper bound for csy/cy. Let P : [0,|P|] — 8§ be a path between the left and right boundaries of
r$ with Dj-length at most 2Dj, (103, rOrS; TS$). We will use P to construct a path in (r$) N (6rZ?)
from 9% (r$) to 9% (r8) for which the sum in (3.72)) can be bounded above.

To this end, let 79 = 0 and let zg € (r$) N (6rZ?) be chosen so that P(0) € Sﬁg. Inductively,

suppose j € N, a time 7;_;1 € [0,|P]], and a point z;_1 € (r8) N (6rZ?) have been defined in such a
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way that P(7j_1) € ng{l. Let 7; be the first time after 7;_1 at which P exits B,;Ir(Sgﬁl), if such a
time exists, and otherwise set 7; = |P|. Let z; € (r'8) N (6rZ?) be chosen so that P(r;) € ng. Let

J be the smallest j € N for which 7; = |P|, and note that P(|P]|) € ng_f.

Successive squares S‘;{ , and ng necessarily share a vertex. Hence z;_; and z; lie at (r$)N(6rZ?)-
graph distance 1 from one another, so 7(j) := z; for j € [0, .J]z is a path from 0 (r3) to O (r'3)
in (r8) N (orZ?).

We will now bound Z}']:o ethax(m(7)) | For each j € [1,.J]z, the path P crosses between the inner
and outer boundaries of Bgr(Sgﬁ DA Sg;i , between time 7;_; and time 7;. By (3.78), for each

JE€ [1a J]Zv
Dy, (P(ijl)ap(’rj)) > 5Cc6r€£h6r(w(j))- (380)

Using (3.80) and the definition of P, we therefore have

J J
3 efha™0) < 5 1N Dy (P(7j-1), P(7))
j=0 7=

< 6 e Dy, (vOLS, TORS) - (3.81)

By Axiom the right side of (3.81) is at most 5*2%&1%6@“(0) with probability tending to 1
as 6 — 0, uniformly in r. By Lemma m, the left side of (B.79) is at least 669 et (0) with
probability tending to 1 as § — 0, uniformly in r. Combining these relations and sending ¢ — 0

shows that c; ¢, > §—6@=os(1), .

Theorem [4.5] has the following useful corollary.

Lemma 4.41. Let h be a whole-plane GFF normalized so that hi(0) = 0. Almost surely, for every
compact set K C C we have lim,_, o Dyp(K,0B,(0)) = co. In particular, every closed, Dp-bounded

subset of C is compact.

Proof. By tightness across scales (Axiom , there exists a > 0 such that for each r > 0,
P [Dn(B,(0), B2r(0)) > acreghr(o)] > 1/2. By the locality of Dj, (Axiom [II) and since the sigma-

algebra o (N, h|@\BT(0)) is trivial, a.s. there are infinitely many k& € N for which we have
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Dp,(Bagi (0), Byit1(0)) > acqres2: ) By Theorem ¢, = ré@tor(D  Since t — het(0) is a stan-
dard linear Brownian motion [44) Section 3.1], we get that a.s. lim, ¢, e8M(0) = . Hence a.s.
lim supy,_, oo Di(Bgr(0), Bort1(0)) = oo. Since Dy, is a length metric, for any r > 28! and any
compact set K C Byx(0), we have Dy, (K, 0B (0)) > Dp(Byx(0), Bor+1(0)). We thus obtain the first
assertion of the lemma. The first assertion (applied with K equal to a single point, say) implies
that any Dp-bounded subset of € must be contained in a Euclidean-bounded subset of C, which

must be compact since Dy, induces the Euclidean topology on C. 0

4.3.3 Moment bound for diameters

In this section we will prove the following more quantitative version of the moment bound from

Theorem which is required to be uniform across scales.

Proposition 4.42. Let U C C be open and let K C U be a compact connected set with more than
one point. For each p € (—oo,4d7/72), there exists Cp, > 0 which depends on U and K but not on r

such that for each v > 0,

E < C,. (3.82)

p
(c;le_ghr(o) sup Dh(z,w;lrU)>

z,werk

We will deduce Proposition from the following variant, which allows us to bound internal

Dj,-distances all the way up to the boundary of a square. Recall that & := (0, 1)2.

Proposition 4.43. For each p € (foo,4d7/72), there is a constant C, > 0 such that for each
r >0,

E

p
(crleghr(o) sup Dy, (z,w;rS)) ] < Cy. (3.83)

zZ,WErd

Proof of Proposition[{.43, assuming Proposition [{.43. For p < 0, the bound follows from the
lower bound of Proposition Now assume p € (0,4d,/v%). We can cover K by finitely many
Euclidean squares S7i,...,5, which are contained in U, chosen in a manner depending only on
K and U. For k = 1,...,n, let u; be the bottom left corner of S; and let p; be its side length.

Proposition m together with Axiom [[V|shows that there is a constant CN’p > (0 depending only on
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p such that for each kK =1,...,n,

E < C,. (3.84)

p

z,werSy

We apply the Gaussian tail bound to bound each of the Gaussian random variables Ay, (rug) — he(0)
(which have constant order variance) and Theorem to compare ¢;,, to ¢ up to a constant-order

multiplicative error. This allows us to deduce (3.82)) from (3.84)). O

To prove Proposition we first use the upper bound in Proposition and a union bound
to build paths between the two shorter sides of each 27"r x 27"~ or 27" !r x 27" rectangle with
corners in 27"~ 'rZ? which is contained in $. We then string together such paths at all scales (in the
manner illustrated in Figure to get a bound for the internal Dj-diameter of rS. The following

lemma is needed to control the circle average terms which appear when we apply Proposition |4.34

Lemma 4.44. Fizx R > 0 and ¢ > 2. For C > 1 and v > 0, it holds with probability 1 —

C-1V@~4toc) g5 0 — 0o, at a rate which is uniform in r, that

sup {|hg-ny(w) — hy(0)| : w € Bre(0) N (27" '2Z%) } < log(C27"), Vn € Ny. (3.85)

When we apply Lemma we will take ¢ to be a little bit less than @ = 2/ + /2. The fact

that Q + \/Q? — 4 = 4/~ is the reason why ~ (instead of just ) appears in our moment bounds.

Proof of Lemma |4.44). To lighten notation, define the event
E? = {sup {|hg-n (w) — he(0)| : w € Bg:(0) N (27" '2Z*)} < log(C29™)}. (3.86)

We want a lower bound for the probability that E occurs for every n € Ny simultaneously.

Fix ¢ > 0 (which we will eventually send to 0) and a partition { = ap < -+ < ay = 1/(
of [¢(,1/¢] with maxg—; . n(ax —ag—1) < (. We will separately bound the probability of E} for

2" ¢ [C¥-1,C%] for k=1,...,N, for 2" > CY/<, and for 2" < C<.

By Lemma applied with e =27 v =0, and ¢ + 1/a4 in place of ¢, we find that for each
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k=1,...,N and each n € Ng with 2" € [C%-1 O],

P(ED)] <P [sup {Ihyns(w) — he(0)] : w € Bro(0) 0 (27712 Z2)} > (q T alk) 1og<2“>}

+1/a 2 +1/a 2 a 2
< 27n((q a 72) < Cfa’“’lcq a 72) < Czo"“*(q ol

20,

(3.87)

with the rate of the o¢(1) depending only on ¢. Note that in the last inequality, we have done some
trivial algebraic manipulations then used that aj — a1 < ¢ (which is what produces the o¢(1)).

By a union bound over logarithmically many (in C) values of n € Ny with 2™ € [C¥-1, C%], we get

(qox+1)°
P [EZ, Vn € Ny with 001 <2 < 0] > 1 ¢**7 2ar FoWroclll (385

For n € Ny with 2" > CY/¢, Lemma applied with ¢ = 27", v = 0, and ¢ + ¢ in place of ¢
gives

P [(E")] < 27"((@+0)?/2-2),

Summing this estimate over all such n shows that

(a+¢)2—4
P [E;L, Vn € N with 2" > CV/¢| > 1 ¢~ s toel), (3.89)

Finally, if n € Ny and 2" < C¢, then the Gaussian tail bound and a union bound, applied as in
the proof of Lemma shows that P[(E™)¢] < C2¢-(a¢+1)?/(20)+ec() (in fact, if 2" is of constant
order, this probability will decay superpolynomially in C due to the Gaussian tail bound). By a

union bound over a logarithmic number (in C) of such values of n we get

2(_(qC+1)2 too()
P [E;;, Vn € N with 2" < CC] >1-¢* g teel) (3.90)

The quantity 2o — (go + 1)2/(2c) is maximized over all & > 0 when a = (¢> — 4)~/2, in which

case it equals —(q + y/q%> — 4). Consequently, by combining the estimates (3.88)), , and (3.90)),

we get that if  is chosen sufficiently small relative to ¢, then

P [E", Vn € Ng] > 1 — ¢4~ V@ —4tec)toc(l), (3.91)
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Sending ¢ — 0 now concludes the proof. O

Figure 4.3 — Three of the sets Xg, () for dyadic squares containing z used in the proof of
Proposition As n — oo, the Dp-diameter of S, (z) shrinks to zero (by the continuity of
(z,w) = Dp(z,w)), so the distance from z to Xg, (. is bounded above by the sum over all n > N
of the Djy-lengths of the four paths which comprise Xg, (.).

Proof of Proposition[4.43. For p < 0, the bound (3.83)) follows from the lower bound of Proposi-
tion We will bound the positive moments up to order 4d./ 72,

Step 1: constructing short paths across rectangles. Fix q € (2,Q) which we will eventually send to

Q. By Lemma [4.44] it holds with probability 1 — C~9-V@=4+oc(1) that

sup {|hg-—n,(w) — he(0)] : w € TS N (27" '1Z?) } < log(C29"), Vn € No. (3.92)

Now fix ¢ € (0,Q — ¢), which we will eventually send to zero. For n € Ny, let R?” be the set of
open 27"r x 27" Ir or 27" !r x 27"r rectangles R C r$ with corners in 27" 'rZ2. For R € R

let wgr be the bottom-left corner of R.

Let
N¢ = |logy C°]. (3.93)

By the upper bound of Proposition (applied with 27"r in place of r and with A = 24’5"),
Axiom m and a union bound over all R € R?” and all n > N¢, we get that except on an event of
probability decaying faster than any negative power of C' (the rate of decay depends on (), the

n

following is true. For each n > N¢ and each R € RY, the distance between the two shorter sides of

R w.r.t. the internal metric Dy (-, -; R) is at most 268" ¢y e&h2—n=(WR),
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Combining this with shows that with probability 1 — C—a—Va*—4toc (1) it holds for each
n > N¢ and each R € R} that there is a path Pr in R between the two shorter sides of R with
Dp,-length at most 052(“05%2—%65“(0). By applying Theorem to bound ¢y9-n,, we get that in
fact

(Dp-length of Pr) < C$27(@—a=0)n+on(n)¢ o&h=(0), (3.94)

Henceforth assume that such paths Ppr exist. We will establish an upper bound for the Dp-diameter

of r%y.

Step 2: stringing together paths in rectangles. For each square S C r% with side length 27"r and
corners in 27”13, there are exactly four rectangles in R} which are contained in S. If n > N¢, let
X be the #-shaped region which is the union of the paths Pg for these four rectangles, as illustrated
in Figure If S’ is one of the four dyadic children of S, then Xg N Xg # (). Since the four paths
which comprise Xg have Dj-length at most €2~ (Q—a=C)gn+on(n) o&h=(0) ¢ oh=(0)  this means that each

point of Xg can be joined to Xg by a path in S of Dp-length at most C¢2~(@—4=C&nton(n)¢ &hx(0)

Since the metric Dy, is a continuous function on € x C, if z € r'$ and we let S, (z) for n € Ny
be the square of side length 2~ "r with corners in 2-"rZ? which contains z, so that Sp(z) = $, then

the Dp-diameter of S, (z) tends to zero as n — oco. Consequently,

oo

sup Dy (z,w;r8$) < Clepeth=(0) Z 27 (Q=a=0nton(n) < O (CF) el

wESN (2) n=Ng

Since this holds for every z € rS, we get that with probability at least 1 — C' 797V ¢*~4oc(1) for each
n > Ng, each 27"r x 27"r square S C r$ with corners in 27"rZ? has Dy, (-, -; r$)-diameter at most
Oc(C8)cpesh=(0),

Step 3: conclusion. Since 2V¢ < C€, we can use the triangle inequality to get that if the event at the
end of the preceding step occurs, then the Dy (-, -;r$)-diameter of r$ is at most O (CEH<) e et =(0),

Setting C = C&*¢, then sending ¢ — 0, shows that

P (e le O sup Dy(z,win®) > O < O¢ @HVa-atoah),

Z,WErSD

187



By sending ¢ — @ and noting that Q + /Q? — 4 = 4/~, we get

~ = Ay,
P | le ¥ sup Dp(z,wir$) > C SC—%wé(l):C 2 +oc(l).

Z,Wery

For p € (0,4d./~?%), we can multiply this last estimate by CP~1 and integrate to get the desired pth

moment bound (3.83)). O

4.3.4 Pointwise distance bounds

In this subsection we will prove the following more quantitative versions of Theorems [4.10
and [£.11], which are required to be uniform across scales. Recall that h is a whole-plane GFF

normalized so that hy(0) = 0.

Proposition 4.45 (Distance from a point to a circle). Let « € R and let h® := h — alog| - |. If

a € (—00,Q), then for each p € (—o0, %(Q — a)), there exists Cp, > 0 such that for each r > 0,

E [(a;lraﬁe—fhrm)pm (0, aBr(o)))p] <C,. (3.95)

If a > Q, then a.s. Dya(0,z) = oo for every z € C\ {0}.

Proposition 4.46 (Distance between two points). Let o, 8 € R, let z,w € C be distinct, and

let %% := h — alog| - —z| — Blog|- —w|. Setr := |z —w|/2. If a,B € (—00,Q), then for each

D€ (foo, %(Q — max{a, B})), there exists Cp, > 0 such that for each choice of z,w as above,

E [(c;lrage_fh“(z)Dha (z,w;Bgr(z)))p] <C,. (3.96)

If either o > Q or > Q, then a.s. Dyap(z,w) = 0.

Propositions and [£.46) are immediate consequences of the following sharper distance estimates

and a calculation for the standard linear Brownian motion ¢ — h..—:(0) — h(0).

Proposition 4.47. Assume that we are in the setting of Proposition . If a € (—00,Q), then

there is a deterministic function 1 : [0,00) — [0, 00) which is bounded in every neighborhood of 0
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and satisfies lim;_,oc ¥ (t)/t = 0, depending only on o and the choice of metric DE| such that the
following is true. For each r > 0, it holds with superpolynomially high probability as C — oo, at a
rate which is uniform in the choice of r, that
Cili Oo eghre—t(o)ig(Qia)tiw(t) dt < Dh«'x (O aB (O)) < Cci]r = eghre_t(o)ig(Qia)t+w(t) dt
¢ Jo - T Tred
(3.97)
and the Dya-distance around the annulus By(0) \ By/e(0) (Definition is at most the right side

of B.97). If « > Q, then a.s. Dpa(0,2) = oo for every z € C\ {0}.

Proposition 4.48. Assume that we are in the setting of Proposition . If a, B € (—00,Q), then
there is a deterministic function 1 : [0,00) — [0,00) which is bounded in every neighborhood of 0
and satisfies limy_,oo ¥ (t)/t = 0, depending only on « and the choice of metric D, such that the
following is true. With superpolynomially high probability as C' — oo, at a rate which is uniform in
the choice of z and w,

Dyos (z,w) > CL5 / ~ (eshwt(z)—acz—a)t—w(t) + eshmft(w)—a@—mt—zﬁ(t)) dt (3.98)

].'['O[é 0

and

D (.03 By (2)) < C / T (St Q@) . et (0)SQ-AO) . (3.99)
r 0

If either o > Q or 8 > @, then a.s. Dyo.s(2z,w) = c0.

Remark 4.49. It will be shown in [59] that every weak LQG metric is a strong LQG metric, so

in particular it satisfies Axiom [V| with ¢, = r¢?. Once this is established, our proof shows that

Propositions and hold with (¢) = 0.

Proof of Proposition[{.45, assuming Proposition [{.47. For t > 0, let By := hy,—:(0) — hy(0). Then
B is a standard linear Brownian motion [44} Section 3.1]. By Proposition for each ¢ € (0,1), it

3At this point we do not know that the weak LQG metric D : h — D}, is unique. When we say that something is
allowed to depend on the choice of D, we mean that it is allowed to depend on which particular weak LQG metric we
are looking at.
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holds with superpolynomially high probability as C' — oo, uniformly over the choice of r, that

c—¢ / " etB—(@-e)et=t gy < ;e O pya (0,0B,(0)) < C° / " Bttt gy (3.100)
0 0

To prove the proposition, we will use an exact formula for the laws of the integrals appearing
in (3.100). To write down such a formula, let B, = §B,)¢2. Then B is a standard linear Brownian

motion and By = §_1§§2t. Making the change of variables t = s/¢2 gives
/ * eBi—(Q-aetect gy _ L / % Bam(Q-a)s/e¢s/E? gy (3.101)
0 & Jo
It is shown in [40] (see also [111, Example 3.3] with ¢ = (Q — )/¢ — ¢/£?) that
P [/OO eBam(Q0)s/E4Cs/€ g ¢ d:):] = by 2AQ-/EH2/E =2y >, (3.102)
0

where b is a normalizing constant depending only on @, «, £. Combining the upper bound in (3.100)
with (3.101) and the upper tail asymptotics of the density (3.102), then sending ¢ — 0, shows that

P |12 O Dy (0,0B,(0)) > €| < ¢7H@—emoe (D), (3.103)

uniformly in r. Recall that £ = v/d,. Multiplying both sides of (3.103) by pCP~! and integrating
gives the desired bound for positive moments from (3.95)). We similarly obtain the desired bound

for negative moments using the lower bound in (3.100) and the exponential lower tail of the

density (3.102]). ]

Proof of Proposition assuming Proposition [{.48 The bound for positive moments in is
obtained in essentially the same way as the analogous bound in Proposition We apply the
upper bound in Proposition and use the exact formula to bound the integral of each of
the two summands appearing on the right side of , then multiply the resulting tail estimate
by pCP~! and integrate. We use that h,(z) — hy(w) is Gaussian with constant-order variance to get
an estimate which depends only on hy(z), not hy(w). The bound for negative moments in

can similarly be extracted from the lower bound in Proposition [£.48 or can be deduced from
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Proposition and the fact that a path from z to w must cross 0By (z). O

It remains only to prove Propositions .47 and We will prove Proposition [£.47] by applying
Proposition to bound the distances across and around concentric annuli surrounding 0 with
dyadic radii, then summing over all of these annuli (see Figure for an illustration). We will
then deduce Proposition from Proposition [£.47] by considering two overlapping Euclidean disks
centered at z and w, respectively. For this purpose the statement concerning the Dj-distance around

B:(0) \ B;/e(0) is essential to link up paths in these two disks.

Figure 4.4 — To prove Proposition we use Proposition to show that with high probability,
the following bounds hold simultaneously for each & € INg: a lower bound for the Dj-distance across
the annulus By, (0) \ By.—x-1(0); an upper bound for the Dj-distance around this annulus; and
a lower bound for the Dj-distance across the larger annulus B, —x(0) \ Bye—#-2(0). Summing the
lower bounds for the distances across these annuli leads to the lower bound in . The paths
involved in the upper bounds are shown in red in the figure. Concatenating all of these paths gives
a path from 0 to dB;(0), which leads to the upper bound in (3.97]).

Proof of Proposition[{.{7 See Figure for an illustration. The proof is divided into four steps.

1. We apply Proposition in the annuli A,,-x-1 .-+ for k£ € Ng to prove upper and lower

bounds for Dy (0,0B:(0)) in terms of sums over such annuli.

2. Using Brownian motion estimates, we convert from sums over annuli to integrals of quantities

of the form e8Mre—t(2)—8(Q—a)t+oi(t)
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3. We show that the contribution of the small error terms in our estimates coming from

sums/integrals at superpolynomially small scales is negligible.

4. We put the above pieces together to conclude the proof.

Step 1: applying Proposition at exponential scales. We will apply Proposition and take a

union bound over exponential scales. In this step we allow any value of a € R.

Fix a small parameter ¢ € (0,1), which we will eventually send to zero. By Proposition m
and Axiom [ITI] (to deal with the addition of —alog|-|) and a union bound over all k € [0, C/¢],
we find that with superpolynomially high probability as C — oo, the following is true for each
k€ [0,CY<.

1. The Dja-distance from 0B,,—k-1(0) to OB,k (0) is at least C~ ¢, o115 exp (Ehye—i (0) + Eak).

2. There is a path from 0B, x2(0) to 0B,.-x(0) which has Dja-length at most
Ceye—iT 5% exp (Ehpe—i (0) + Eak). Moreover, there is also a path in By« (0) \ Bp—s-1(0)
which disconnects 0B,.—x-1(0) from 0B,,-»(0) and which has Dpa-length at most
CtrortE xp (Ehyys(0) + Eack).

To deal with the scales for which k > C/¢, we apply Proposition with k¢ in place of C and take
a union bound over all such values of k to find that superpolynomially high probability as C' — oo,
the above two conditions hold for each k € [0, C"/¢]z, and furthermore the following condition holds

for each integer k > C'1/<.

2. There is a path from 0B,, x-2(0) to 0B,.—(0) which has Dja-length at most
ESc o8 exp (Ehy—x (0) + Eak). Moreover, there is also a path in B,,—x(0)\ By.—x-1(0) which
disconnects 0B,.—x-1(0) from 0B,,-»(0) and which has Dp«-length at most

R ey 106 oxp (€A (0) + Eak).

Henceforth assume that conditions (1] and [2| hold for each k € [0, C/¢]; and condition [2/| holds

for each integer k > C/¢, which happens with superpolynomially high probability as C' — .
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Any path from 0 to dB.(0) must cross each of the annuli B, —«(0)\ B,.-x-1(0) for k € [0, C1/¢]y.
Furthermore, the union of {0} and the paths from conditions [2| and [2/| for all k£ € Ny contains a
path from 0 to B;(0). By Theorem there is a deterministic function ¢ : [0, 00) — [0, 00) with

o(k) = o(k), depending only on the choice of metric D, such that
e EQk=0R) <oy < e C@RHOR) . vr > 0. (3.104)

Summing the bounds from conditions andover all k € [0, C'/¢]z and the bounds from condition
over all integers k > C'/¢ and plugging in (3.104) shows that with superpolynomially high probability

as C' — o0,
lcve)
Cil% Z &=k (0)=E(Q=a)k=0(k) < D), . (0,0B;(0))
o
\_C’l/gj oo
Cr — —« Cr _ - —a
SC@ Z oEhee—1(0)=€(Q )k+¢>(k)_+_1r75 Z k€ efhee—r (0)=8@=c)kte(k) (3 105)
k=0 k=|CV/¢]+1

Furthermore, by condition [2[ for k = 0 the Dpa-distance around By(0) \ B;/.(0) is at most the right
side of ([3.105]).

Step 2: from summation to integration. We now want to convert from sums to integrals in (3.105|).
Since t — hp—t(0) — hy(0) is a standard linear Brownian motion [44, Section 3.1}, the Gaussian tail

bound and the union bound show that with superpolynomially high probability as C' — oo,

1
SUp  |yet(0) — hyp x(0)] < ZlogC, Yk € [0,01/4} . (3.106)

telkk+1] § z
Let 9(t) := ¢(|t]), where ¢ is as in (3.104). Then ¥ (t) = o.(t) and if (3.106]) holds, then for each
k € [0,CV¢],

k+1
ek (0)-6Q-)b—0(k) 5 (-1 / (Eheet O —EQ—0)t—(0) g and
k

k+1
ol k (0—E@Q-a)k+o(k) < / oEhpet (0)—E(Q-a)t4(E) gy (3.107)
k
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By summing (3.107) over all k € [0,C"/¢]z, we obtain

CI/CJ I_Cl/CJ+1
Z ek (0)-EQ-)b—0(k) > (- / Eheet O —EQ—0)—(1) gy and

LCI/CJ |CV/¢ ] +1
T EhetO-E@-akHob) < ¢ / oEhy ot (0)-E(Q-a)t+b(t) gy (3.108)
k=0

Step 3: bounding the sum of the small scales. To deduce our desired bounds from (3.105)) and (3.108]),
we now need an upper bound for fLogl/CJ &he—1(0)=E(Q@=a)t+9() 7t and an upper bound for the second

sum on the right side of (3.105)). This is the only step where we need to assume that o < Q.

Since t > hye-+(0) — hy(0) is a standard linear Brownian motion and for ¢ € (0, 1], x — 29 is

concave, hence subadditive, if ¢ € (0, 1] is chosen small enough that £g(Q — «) — £2¢%/2 > 0, then

00 . [ee] 2.2
( / oot (0)—E(Q=a)t+5(0) dt) ] < e 0) / exp <_ <§Q(Q _a) - 84 )HOt( )> it
|c1/¢| Lo1/¢ ] 2

< e exp (-1 (sa(@— ) - £ ) ).

E

where here the o.(t) and the implicit constants in < do not depend on C or r. Therefore, the

Chebyshev inequality shows that

P

/ T e (0 -EQ-a) () gy e&hr<0>—0”<2<>] (3.109)
Lcr/e]

decays faster than any negative power of C. On the other hand, it is easily seen from the Gaussian
tail bound that

P

LCl/CJ 1/(2¢)
/ (Eheet () —EQ-0)t(t) gy < (Ehe(0)~C (3.110)
0

decays faster than any negative power of C'. Hence with superpolynomially high probability as

C — oo,
oo [cv/¢]
/ &Pt (0)=E(Q—a)t+4(t) 13 < 2/ eShee—t(0)=E(Q—a)t+4(t) gy (3.111)
0 0
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Similarly, we get that with superpolynomially high probability as C' — oo,

T ek O-E@-ak=o) < / % ot (0)—€(Q=a)t—1(t) gy (3.112)
k=[CV/¢ |41 0

Step 4: conclusion. By applying (3.108)), (3.111), and (3.112)) to bound the left and right sides
of (3.105), we get that if & < @, then with superpolynomially high probability, the bounds (3.97)

as well as the bound stated just below (3.97)) (here we use the sentence just below ([3.105))) all hold
with 2C2, say, in place of C. Since we are claiming that these bounds hold with superpolynomially

high probability as C' — oo, this is sufficient.

Finally, we consider the case when a > Q. Since h..-+(0) — hy(0) evolves as a standard linear
Brownian motion, for each § € (0, — Q) it is a.s. the case that the summand &=k (0)=E(Q—a)k—0 (k)
in the lower bound in is bounded below by e?* for large enough k. (How large is random).
Since holds with superpolynomially high probability as C' — oo, the Borel-Cantelli lemma
combined with the preceding sentence shows that a.s. for large enough (random) C' > 1, we have
Dpe (0,0B:(0)) > C~1eBlCY¢) which tends to 0o as C — co. This shows that a.s. Dya (0,0B¢(0)) =
0o. Since this holds a.s. for each rational r > 0, it follows that a.s. Dya(0,2) = oo for every

z € C\ {0}. O

Proof of Proposition[{.48 We first observe that by Axiom [[V] Proposition [£.47] still holds with 0
replaced by any z € C, with the rate of convergence as C' — oo uniform in z and r. Applying the
lower bound of Proposition with each of z and w in place of 0 immediately gives since
any path from 2 to w must contain disjoint sub-paths from 2z to 0B, /3(2) and from w to By /s(w).
Moreover, by comparing the local behavior of Dj,,s near z and near w to Dy and D), respectively,

we get that a.s. Dyas(z, w) = oo if either a > Q or § > Q.

It remains to prove (3.99). Assume o < Q. We first apply Proposition with 8r in place of
r to find that with superpolynomially high probability as C' — oo, there is a path P, ; from z to
OBsr(z) and a path P, o in By(z) \ Bgy/e(2) which disconnects 0Bg;/.(2) from 0Bs;(z) which each

have Dj-length at most
/ T e (2)-€@-a)t0) gy,
—log8
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and the same is true with w in place of 2. Since w € Bg;/.(2), the union of the paths P, 1, P, 2, and
P, 1 contains a path from z to w in Bgy(z). This gives (3.99)) but with —log 8 instead of 0 in the

lower bound of integration for the integral on the right.

To get the estimate with the desired lower bound of integration, we use that ¢t — hy.—t(2) — hy(2)
is a standard two-sided linear Brownian motion. In particular, two applications of the Gaussian tail

bound show that with superpolynomially high probability as C' — oo,

sup Ppe—t (Z) < inf Ape-t (Z) +log C.
te[—log 8,0] te[0,log 2]

Therefore, with superpolynomially high probability as C' — oo,

/ T et (D)€@ U0 gy < / % eh et (2)—E(Q=a)t+v(0) gy
—log8 0

log 2
4t / oEhet (2)—E(Q-a) (D) gy
0

Combining this with the analogous estimate with w in place of z and the aforementioned analog

of (3.99)) with — log 8 instead of 0 in the lower bound of integration gives (3.99). O

Although it is not needed for the proofs of Propositions and we record the following
generalization of Proposition [£.42] which tells us in particular that Dpe induces the Euclidean
topology on C when @ > 2 and o < @ (which is a stronger statement than just that Dpa (0, 2) < 0o

for every z € C).

Proposition 4.50. Let h, a, h®, and Dpa be as in Proposition . IfQ=2/vy+~v/2>2 and

a € (—00,Q), then for each —oco < p < min{%, %(Q — )}, there exists Cop > 0 such that for

each r > 0,

E < Cop. (3.113)

p
e 0108 qup  Dpa(z, w)
z,wE By (0)

In particular, a.s. Dpa induces the FEuclidean topology on C.

We note that the range of moments —oo < p < min{%", %(Q — )} for the Dpo-diameter of
D appearing in Proposition [£.50] is the same as the range of moments for the ppo-mass of D, but

scaled by d; see, e.g., [64, Lemma A.3]. This is natural from the perspective that d, is the scaling

196



exponent relating v-LQG distances and areas.

Proof of Proposition[{.50. On Br(0) \ By /2(0), we have that —alog| - | is bounded above and below
by —alogr times constants depending only on «. Therefore, the existence of negative moments is

immediate from Axiom [[I1| and Proposition applied with U = D \ By /5(0).

To get the desired positive moments, for k& € Ng let Ag be the annulus B, (0) \ B,.—x-1(0).

The random variable h,,x(0) — hy(0) is Gaussian with variance k, so for p > 0,
D [epf(hrefk@—hr(“)) = PER2 yp s, (3.114)
By Proposition (applied with K = Ag, U = C, and re™* in place of r),

I 2
Z,WEA Y

p
4d
(crelke—ﬁhmk(o)e_o‘gkzrak sup Dha(%w)) ] <1, Vp< . (3.115)

By (3.114) and (3.115)) and since (h — hy—x(0))| 4, is independent from h .-« (0) — hr(0), we find
that for p € (0,4d, /%),

E

ZWEAL

p
<e‘§hr(0)c;1m°‘g sup Dha(Z,U])) ]

— (%—k)pepang [eps(hm-km)—hr(on} E

Cr ZWEAL

p
(c;;_kegh”k(o)eagkrak sup Dha(zaw)> ]

< exp <— (@(@ —a)- ’?) ket ok<k>> , (3.116)

at a rate depending only on «, p. Note that in the last line we used Theorem to bound ¢,k /cy.

The quantity inside the exponential on the right side of (3.116] is negative provided p <

min{%, %(Q —a)} (recall that £ = v/d,). For 0 < p < min{1, %(Q — «v)}, the function x — aP
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is concave, hence subadditive, so summing (3.116)) over all k£ € INg gives

< —&hx (0 lraé ] Sw‘éﬂk Dpa(z, w)) P]
< ,;oexp (- (sp@ —0) = L5 ) b+ oulh)

< 1. (3.117)

E

P
(qf,’_ghr(o)c];l]ro‘£ sup  Dpe(z,w ) ] < ZE

z,w€Br(0)

This gives (3.113]) in the case when 0 < p < min{l,%(@ — a)}. In the case when 1 < p <

min {—2, %( — )}, (3.113) follows from a similar calculation with the triangle inequality for the

LP norm used in place of sub-additivity.

Finally, we know that the restriction of Dja to €\ {0} induces the Euclidean topology (see the
discussion just above Theorem |4.10)), so to check that that Dp« induces the Euclidean topology, we
need to show that a.s. sup, ep , (0) Do (2, w) — 0 as k — oo. This follows from the bound (3.117)

applied with r = 1 and the Borel-Cantelli lemma. O

4.3.5 Holder continuity

We will prove the following more quantitative version of Theorem [£.7] which is required to be

uniform across scales.

Proposition 4.51. Fiz a compact set K C C and exponents x € (0,£(Q — 2)) and X' > £(Q + 2).
For each v > 0, it holds with polynomially high probability as € — 0, at a rate which is uniform in r,
that

X

u—vl|X
, Yu,v € rK with|u —v| < er. (3.118)

u—v

< lem 0Dy (u,v) <

r Ir

We will actually prove a slightly stronger version of the upper bound for Dj in Proposition
which bounds internal distances relative to a small neighborhood of w instead of just distances along

paths in all of C; see Lemmam just below. This stronger version is used in [59].

For the proof of Proposition .51} we assume that @ > 2 and we fix a compact set K C C. The
basic idea of the proof of the upper bound in (3.118) is to apply Proposition to Euclidean
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balls of radius € and take a union bound over many such Euclidean balls which cover K. The basic
idea for the proof of the lower bound in is to apply the lower bound in Proposition m
to lower bound the Dj-distance across Euclidean annuli of the form Ba.(z) \ B:(z), then take a
union bound over many such annuli whose inner balls cover K. We first prove an upper bound for

Dj,-distances in terms of Euclidean distances. For this purpose we will use the following consequence

of Propositions and
Lemma 4.52. For each s € (0,£Q), each v > 0, and each z € rK,

(ngs)Q +o (1)
sup  Dj, (u,v; Boez(2)) < %O | > 1 — ¢ 282 Y ase— 0, (3.119)
U,'UEBan"(Z)

P

uniformly over the choices of v and z € vK. Furthermore, if we let S*¥(z) be the square of side

length er centered at z, then forr >0 and z € vK, the Dp-internal diameter of S€¥(2) satisfies

P

(EQ_S)Q 4o (1)
sup Dy, (u,v; 55 (2)) < %O > 1 ¢ 22 L ase— 0, (3.120)
u,vESET(z)

uniformly over the choices of v and z € v K.

Proof. We know that hocy(2)—hy(2) is centered Gaussian of variance log e ~! —log 2 and is independent
from (h— hoer(2))|B,.. (z). By Axioms|lljand hoer(2) — hy(2z) is also independent from the internal
metric

Dh—hgsr(z) (u, (%) B2511"(Z)) = e_gh%r(z)Dh (ua U3 Ber(z)) .

Consequently, we can apply Theorem and Proposition m (with er in place of r) together with

the formula E[eX] = ¢V2r(X)/2 for a Gaussian random variable X to get that for p € (0,4/(y€)),

E
u,'UEBar(Z)

p
(cr_le_ghr(o) sup Dh(’LL,U;BZer(Z))>]

» P
= (&) Bl @] B (Gl @@ sup Dy (u0: Baa()

Cr U,VE Ber(2)
< 8Qp—E2p? /240 (1) (3.121)

with the o-(1) uniform over all r > 0 and z € C.
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By (3.121]) and the Chebyshev inequality,

242
P sup Dy (u,v; Bacr(2)) > eSepebh=(2) | < £PEQ— 5= —ps+oc (1) (3.122)
u,VE Ber (2)

The exponent on the right side is maximized for p = (£Q — s)/£2, which is always at most 4/(¢v) for
s> 0 (since v < 2) and is positive provided s < £Q). Making this choice of p gives (3.119)) but with
hy(2) in place of hy(0). The random variables hy(z) — hy(0) for z € rK are Gaussian with variance

bounded above by a constant depending only on K. Consequently, we can apply the Gaussian tail

bound to get (3.119)) in general.

The bound (3.120)) is proven similarly but with Proposition used in place of Proposition m
O

We can now prove a slightly sharper version of the upper bound of Proposition

Lemma 4.53. For each x € (0,£(Q —2)) and each v > 0, it holds with polynomially high probability

as € — 0, at a rate which is uniform in v, that

X

= ,  Yu,v € rK with|u —v| < er. (3.123)

¢, e MO Dy, (u,v; Bypy_y (u)) <

T

Furthermore, it also holds with polynomially high probability as € — 0, at a rate which is uniform in
r, that for each k € Ng and each 2 %er x 27 Fer square S with corners in 2~ *erZ? which intersects
rK, we have

¢ Le ) sup Dy, (u,v; 8) < (27Fe)X. (3.124)
u,VES

Proof. The bound (3.123) follows from (3.119)), applied with s = x and with 27%¢ for k € Ny in

place of ¢, together with a union bound over all z € B..(K) N (27%2er7Z2) and then over all k& € Ny.

The bound (3.124) similarly follows from ([3.120). O

To prove the Holder continuity of the Euclidean metric w.r.t. Dy, we first need the following

estimate which plays a role analogous to Lemma [4.52
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Lemma 4.54. For each s > £Q), each v > 0, and each z € rK,

P [D OB > oSe oShe(0)]| > 1— (s 252) +0€(1) 12
b (Ber(2), 0Baer(2)) > €°cre >1-¢ as e — 0, (3.125)

uniformly over the choices of v and z € rK.

Proof. The proof is similar to that of Lemma but we use Proposition [4.34] instead of Propo-
sition 4.42| Proposition implies that ¢,'e ¢"(*) D (B.;(2), dBacr(2)) has finite moments of
all negative orders which are bounded above uniformly over all z € C and r > 0. By the same

calculation as in (3.121f), for each p > 0 we have
. [(C;le—ﬁ’“( Dy (Bur(2), 0B (2 >>)p} = &8 ER /2o, (3.126)

uniformly over all z € C and r > 0. Applying the Chebyshev inequality and setting p = (s — £Q) /&2
gives (3.125)) with hy(2) in place of hy(0). For z € rK, we can replace hy(z) with hy(0) via exactly

the same argument as in the proof of Lemma O

Lemma 4.55. For each X' > £(Q + 2) and each v > 0, it holds with polynomially high probability

as € — 0, at a rate which is uniform in r, that

’

X

L=t , Vu,v e K with|u—v| <e. (3.127)

e O D, (u,v) >

T

Proof. This follows from (3.119)), applied with s = y’ and with 27%¢ for k& € Ny in place of ¢,

together with a union bound over all z € Bey(K) N (27%72erZ?) and then over all k € Np. O
Proof of Proposition[{.51 Combine Lemmas and O

To conclude the proof of Theorem we need to check that the Holder exponents £(Q — 2)

and (£(Q +2))~! are optimal.

Lemma 4.56. Let V C C be an open set. Almost surely, the identity map from V, equipped with

the Euclidean metric, to (V, Dy|v) is not Hélder continuous with any exponent greater than &£(Q —2).
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Furthermore, the inverse of this map is not Hélder continuous with any exponent greater than

EHQ+2)7h

Proof. The idea of the proof is to use Proposition to study Dp-distances as we approach an
a-thick point of h for a close to 2 or to —2. To produce such a thick point, we will sample a point
from the a-LQG measure induced by the zero-boundary part of h|y. By Axiom we can assume
without loss of generality that h is normalized so that h;(0) = 0. We can also assume without loss
of generality that V is bounded with smooth boundary. Let A" be the zero-boundary part of hly,

so that h — hY is harmonic on V.

Let a € (—2,2) which we will eventually send to either —2 or 2, and let uf be the a-LQG
measure induced by kY. Also let z be sampled uniformly from iy, normalized to be a probability
measure. Let P be the law of (h,z) weighted by the total mass ufy (V), so that under P, h is
sampled from its marginal law weighted by u (V') and conditional on h, z is sampled from Hyv s
normalized to be a probability measure. By a well-known property of the a-LQG measure (see,
e.g., [43, Lemma A.10]), a sample (h,z) from the law P can be equivalently be produced by first
sampling h from the unweighted marginal law of h, then independently sampling z uniformly from
Lebesgue measure on $’ and setting h = h— alog |- —z| 4 gz, where g, : V — R is a deterministic

continuous function.

By Proposition (applied with the field h—a log |- —=| in place of h?), the fact that g, is a.s.
bounded in a neighborhood of z (by continuity), and the Borel-Cantelli lemma, we find that a.s.

D (2, 0B,(z)) = ror® / ¢&hy et D —E@-tor (V) gy (3.128)
0

rog

where here the o.(t) is deterministic and tends to 0 as t — oo (it comes from the error 1 (t) in
Proposition and the o,(1) denotes a random variable which tends to 0 a.s. as r — 0. The
description in the preceding paragraph shows that conditional on z, the process t — E,,eft (z) —ET(Z)
evolves as a standard linear Brownian motion. Consequently, the Gaussian tail bound shows that

with probability tending to 1 as r — 0,

/ > oSyt (@) —=EQ—a)t+or(t) gy — yor(1) Ehr(m) _ Lor(1) (3.129)
0
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By plugging (3.129) into (3.128) and using the fact that ¢, = r¢@+or(1) (Theorem , it therefore

follows that with probability tending to 1 as » — 0,
Di (2, 0B, () = ré(@e)ror(1),

Since « can be made arbitrarily close to 2, this shows the desired lack of Holder continuity for
identity map (V,|-|) — (V, Dy,). Since o can be made arbitrarily close to —2, we also get the desired

lack of Holder continuity for the inverse map (V, Dy) — (V,| ). O

4.4 Constraints on the behavior of Dj-geodesics

Let D be a weak v-LQG metric. By Lemma for a whole-plane GFF h, the metric space
(C, Dy,) is a boundedly compact length space (i.e., closed bounded subsets are compact) so there is
a Dp-geodesic — i.e., a path of minimal Dj-length — between any two points of C [17, Corollary
2.5.20]. In this section we will apply the main results of this chapter to prove two estimates which
constrain the behavior of Dy-geodesics. The first of these estimates, Proposition tells us that
paths which stay in a small Euclidean neighborhood of a straight line or an arc of the boundary of a
circle have large Dj-lengths. In particular, Dj-geodesics are unlikely to stay in such a neighborhood.
The second estimate, Proposition says that a Dj-geodesic cannot spend a long time near the

boundary of a Dp-metric ball.

4.4.1 Lower bound for Dj-distances in a narrow tube

Proposition 4.57. Let L C C be a compact set which is either a line segment, an arc of a circle,

or a whole circle and fix b > 0. For each v > 0 and each p > 0, it holds with probability at least
1 — P?/(26%)+0:(1) 4pat

inf {Dy, (u,v; Ber(rL)) : u,v € Ber(xrL), |u —v| > br} > P Q182 o the(0) (4.130)

where the rate of the oc(1) depends on L,b,p but not on r.

By [4, Theorem 1.9], for each v € (0,2) we have £Q < 1 and hence £€Q — 1 — ¢2/2 < 0. Therefore,
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the power of € on the right side of (4.130) is negative for small enough p. Hence, Proposition m
implies that when ¢ is small and u, v € By (rL) with |u —v| > br, it holds with high probability that
Dy, (u,v; Bep(rL)) is much larger than Dy (u,v). In particular, a Dp-geodesic from u to v cannot

stay in Bep(L).

Proof of Proposition[{.57. Step 1: bounding distances in terms of circle averages. View L as a path
[0,|L|] = C parametrized by Euclidean unit speed. For k € [0, |L|/(6¢)]z, let 2f := rL(6ke). Then

the balls Ba.r(z;) are disjoint and the balls Br.(zf) cover Ber(rL).

Fix ¢ € (0, 1), which we will eventually send to zero. By Proposition and a union bound, it

holds with superpolynomially high probability as ¢ — 0 that
Dy, (Boer(25), Baer(25)) > eScereth==GH) | Wk € [0, |L|/(6¢)]z. (4.131)

Henceforth assume that (4.131) holds. The idea of the proof is that a path in B.;(rL) has to
cross between the inner and outer boundaries of a large number of the annuli Bs.r(z}) \ Bacr(2f).
Thus ([4.131)) reduces our problem to proving a lower bound for the sum of the quantities £ copeher(#)
for these annuli, which in turn can be proven using Theorem and basic estimates for the circle

average process.

Step 2: lower-bounding lengths of paths in Ber(rL) in terms of circle averages. There is a constant
¢ > 0 depending only on b and L such that for small enough € > 0 (depending only on b and L), the
following is true. If u,v € By (rL) satisfy |u — v| > br, there are integers 0 < k} < kb < |L|/(6¢)
such that k, — Kk} > ce71, u € B75E(zi,1), and v € B7gr(zzé). Each path from u to v in Bey(rL) must
enter By, (2f) for each k € [k] + 2, k5 — 2|z, and hence must cross the annulus Agey 3.0 (2}) for each

such k. Combining this with (4.131)) shows that

ey —2
Dy (u,v; Ber(rL)) > eS¢ Y eSherlFi), (4.132)
=k} +2

Step 3: proof conditional on a circle average estimate. We claim that for any fixed ki, ks €
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[0,|L|/(6€)]z with kg — k1 > (¢/2)e~! and any p > 0,

kg 2
P |y fhesh) > p1o€/268he0(0) | > q gz toe(V) (4.133)
k=k1
where the rate of the o.(1) depends on L, b, p but not on r or the particular choice of ki, ky. We

will prove (4.133]) just below using standard Gaussian estimates.

Let us first conclude the proof assuming (4.133)). We can find a constant-order number of pairs
k1,ko € [0,|L]/(6¢)]z with ko — k1 > (c/2)e~! such that for small enough ¢ (depending only on
L and b), each interval [k} + 2, kb — 2] C [0,|L|/(6¢)]z with |k, — k}| > ce~! contains one of the

intervals [k1, ko).

By applying (4.133)) (with p — 2¢ in place of p) to each such pair ki, ko, then taking a union
(p—2¢)*

bound, we get that with probability at least 1 —e 2¢* +O€(1), the sum on the right side of (4.132]) is

bounded below by eP~176%/2-2¢hex(0) gimultaneously for every possible choice of ki, k,. By (4.132),

(p—20)2 +0:(1)

with probability at least 1 —e 2¢° it holds simultaneously for each u,v € By (rL) satisfying

|lu —v| > br that
Dy, (u,v; Ber(rL)) > 5P—1—§2/2—Ccsre§hr(0) > €P+§Q—1—52/2—C+Os(1)creﬁhr(o) (4.134)

where in the second inequality we use Theorem Sending ¢ — 0 now gives (4.130)).

Step 4: proof of the circle average estimate. The rest of the proof is devoted to proving the
inequality (4.133). To lighten notation, write X}, := hep(25) — he(0). By the calculations in [44,
Section 3.1] (and the scale invariance of the law of h, modulo additive constant), the X}’s are jointly

centered Gaussian with variances satisfying
Var(X}) =loge ! 4+ O(1), (4.135)

where here O(1) denotes a quantity which is bounded above and below by constants depending only

on L,b (not on €, r, j, k). Since zf, = rL(6ke) and L is parametrized by Euclidean unit speed, we
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also have the following covariance formula for j # k:

Cov (X, X) = log (M) +0O(1) =log < > +0(1). (4.136)

elk —Jl

Recall the formula E[eX] = ¢V2*(X)/2 for a centered Gaussian random variable X. Applying this

to the X}’s and recalling (4.135) and the fact that ko — ky < e~ ! gives
ko
2
E [ Y 50| <782 (4.137)
k=k1

with the implicit constant depending only on L,b. From (4.135) and (4.136]) we obtain Var(X; +
X;) =log (e7*k — j|72) + O(1) for j # k. Hence

2

k k k k
E ZQ eSXk _ ZQ E [€2§Xk] +9 ZQ 22 E |:e§(Xj+Xk):|
k=Fk: k=k, =k j=k+1
ko ko
e b2 N N ok
=k j=k+1
<1 2 g 2 (4.138)

with the implicit constants depending only on L,b, where in the last inequality we use that

£<2/dy<1,501+26%<24€2

By (4.137)), (4.138)), and the Payley-Zygmund inequality, we find that there is a constant

a = a(L) > 0 such that
ko
Py et > ae 1712 > 4. (4.139)
k=k1

To improve the lower bound for this probability, we will apply the following elementary Gaussian

concentration bound (see, e.g., [32, Lemma 2.1]):

Lemma 4.58. For any a > 0, there exists C = C(a) > 0 such that the following is true. Let

X = (X1,...,Xn) be a centered Gaussian vector taking values in R™ and let 0? := max;<j<p, Var(X;).
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If B C R™ such that P[X € B] > a, then for any A > Co,

(A—Co)?
P |inf [X —X|oo > A| e 27 (4.140)
xEB

where | - |00 is the L™ norm on R™.

We now apply Lemma with @ as in ({.139)), with 02 = loge™" + O(1) (recall (4.135)), with

ko
B =1 (2h,,...,0,) € RFTRFL S ebon > qem1=8/2 5 (4.141)
k=k1
and with A\ = % log e~!. This shows that with probability 1—eP?/(26%)+0:(1) there exists (Xheys ooy Tpy) €

B such that maxye(i, k), | Xk — x| < glog e~1. If this is the case, then

kz kf2
Z Xk > P Z €&k > P~ 1762, (4.142)
k=Fk1 k=k1
Since Xj = her(25) — he(0), this implies (4.133). O

4.4.2 Dp-geodesics cannot trace the boundaries of Dp-metric balls

For s > 0 and z € C, we write Bs(z; Dy) for the Dp-metric ball of radius s centered at z. The
following proposition prevents a Dj-geodesic from spending a long time near the boundary of a

Dy,-metric ball.

Proposition 4.59. For each M > 0 and each v > 0, it holds with superpolynomially high probability
as € = 0, at a rate which is uniform in the choice of v, that the following is true. For each s > 0

for which Bs(0; Dy,) C B.-wm,(0) and each Dp-geodesic P from 0 to a point outside of Bs(0; Dp,),
area (Bey(P) N Ber (0B,(0; Dy))) < e271/My2, (4.143)

where area denotes 2-dimensional Lebesque measure.
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B (9B4(0; D))\ BS(0; Dy)

Figure 4.5 — Illustration of the proof of Proposition By considering successive times at which P
enters B (Bs(0; Dy)), we can find K € N and a collection of K C-good Euclidean balls By, ..., Bg
with radii in [2er,e!~¢r] with the following properties: (a) each By intersects 0Bs(0; Dy,); (b) the
Dy-geodesic P crosses the annuli (2By) \ By, for k € [0, K — 1]z in numerical order; and (c) the
balls of radii 4¢'~¢r with the same centers as the By’s cover P N By (Bs(0; Dy,)). This last property
implies that area (B.;(P) N By (0Bs(0; Dy,)) < const xe2 %12 K, so we are left to bound K. To this
end, we show using the definition of a C-good ball and the fact that P is a Dy-geodesic that
Dy, (0By, 0(2By,)) increases exponentially in k. Due to Lemma this implies that K < ¢~ 1/(2M),

For C > 1, z € C, and r > 0, we say that the Euclidean ball B,(z) is C-good if

sup Dy (u, 05 A j2.9,(2)) < CDy, (0B, (2), B2 (2)) . (4.144)
u,v€I By (2)

To prove Proposition we will consider C-good balls which intersect 0Bs(0; Dy,) and which are

hit by a given Dp-geodesic started from 0. See Figure for an illustration and outline of the proof.

Lemma 4.60. For each ¢ € (0,1) and each M > 0, there exists C = C(({,M) > 1 such that for
each v > 0, it holds with probability at least 1 — O.(eM), at a rate which is uniform in r, that the

Euclidean ball B.-m,(0) can be covered by C-good balls with radii in [2er, e'~Sr].

Proof. This is an immediate consequence of Lemma applied with !'~¢ in place of € and any

choice of v € (0, ﬁ —1). O

208



We will also need the following easy consequence of the distance bounds from Section [£.3]

Lemma 4.61. For each M > 0, there exists A = A(M) > 0 such that for each v > 0, the following
holds with probability 1—O.(eM) as e — 0, at a rate which is uniform in r. For each z,w € B.-,(0)
with |z — w| > er,

Dp(z,w) > e sup Dy (u,v). (4.145)
u,wEB__pr,.(0)

Proof. We will prove a lower bound for the left side of (4.145) (see (4.149))) and an upper bound
for the right side of (4.145) (see (4.151))), then compare them.

By Proposition [£.34] and a union bound, it holds with superpolynomially high probability as

e — 0 that

Dp(0Begja(2), 0Boyjo(x)) > eccnets= @ Vo € B._u,(0) N (%Ez?) : (4.146)

The circle averages hey(z)—hy(0) for # € B, -, (0) are Gaussian with variance at most (M+1)loge ™.

By the Gaussian tail bound and a union bound, if we choose Ay = Ay(M) to be sufficiently large,
then it holds with probability 1 — O.(¢™) that

|hee(z) — he(0)] < Agloge™  Va € B. ar,(0) N (%22) . (4.147)

By Theorem
Cop = 8@ (4.148)

If z,w € B.-m,(0) with |z — w| > er, then any path from z to w must cross between the inner and
outer boundaries of an annulus of the form B, /s(x) \ B.y/4(x) for some x € B.-n,(0) N (F7?).
Combining this last observation with shows that with superpolynomially high probability
as € = 0, Dp(z,w) is at least the right side of for each such z,w. We then apply
and to lower-bound the right side of (£.146)). This shows that with probability 1 — O.(eM),

D (z,w) > g8Aote@+1Fo: (D¢ o&he(0) vz 4y € B 1, (0) with |z — w| > er. (4.149)

209



By Proposition [4.42]

E cg}Mre_fthr(O) sup Dp(u,v)| =21, (4.150)

u,w€B__pr,.(0)
with the implicit constant uniform over all r > 0 and ¢ € (0,1). By Theorem Co—My =
g=¢@M+oc()¢ By the Gaussian tail bound, we can find A; = A1 (M) > 0 such that with probability
1 — O.(eM), we have |h—r,(0) — hy(0)] < Agloge~!. Combining these estimates with (4.150) and

Markov’s inequality shows that with probability 1 — O.(eM),

sup Dy (u,v) < g8 —EQM=Mroc(1) (&h=(0), (4.151)
u,’UGBE,JWT(O)

Combining (4.149)) and (4.151)) gives (4.145|) for any choice of A > £A;+EQM+M+EAg+£Q+1. O

Proof of Proposition[{.59. Step 1: defining a regularity event. For M>0,(¢ (0,1), C > 1, and
A> 1, let G5 = G(M,¢,C, A) be the event that the following is true.

1. The ball B__5_(0) can be covered by C-good Euclidean balls with radii in [2er, el =]

2. For each z,w € B_ 57 (0) with |z — w[ > er,

Dy(z,w) > et sup Dy (u,v). (4.152)

U’UGBE—MT (0)

By Lemmas and for any M > 0 and ¢ € (0,1) we can find C, A > 1 for which

P[GE] > 1 — O.(¢™), uniformly over all = > 0. (4.153)

Henceforth assume that G¢ occurs for such a choice of C, A and that M > M.

Step 2: reducing to a bound for the number of ercursions of a geodesic. Let s > 0 such that
Bs(0; Dy) C B.-m,(0) and let P be a Dj-geodesic from 0 to a point outside of B,(0; Dy). Let 79 = s
and inductively for k € N let 7, be the first time ¢ after the exit time of P from By, (P(T%-1))
for which P(t) € B.y(0Bs), or 7, = oo if no such time exists. Let K be the smallest k € N for which

T = OQ.
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We claim that there exists a constant ¢ > 0 depending on C, A such that K < cloge™! on GE.
If this is the case, then P N B (0Bs) can be covered by at most cloge™! Euclidean balls of radius
4e'~Cr. This means that area (B.y(P) N By (0Bs(0; Dy,)) < 4me?~%(+o(Wr2 Choosing ¢ < 1/(2M)
and sending M — 0o then concludes the proof. Hence we only need to prove a logarithmic upper

bound for K assuming that G% occurs.

Step 3: bounding excursions using C-good balls. For k € [0, K — 1]z, we can find a C-good Euclidean
ball By, with radius in [er, e'~¢r] which contains P(7}). Write 2B}, for the Euclidean ball with the
same center as By, and twice the radius of By. Let o be the first time after 7, at which P exits 2By.
The time oy, is smaller than the exit time of P from By.1-¢,(P(7x)). Consequently, the definition of

the 7’s shows that oy € 1y, Tx41] for each k € [0, K]z.

Since P is a Dp-geodesic and P crosses the annulus (2By) \ By, between times 7, and oy,
o — T > Dp(0Bg, 0(2B)). (4.154)

We now argue that

Indeed, since By, intersects By (0Bs(0; Dy)) and has radius at least 2er, it follows that By intersects
0Bs(0; Dp,). Let z € 0Bs(0; Dy,) and let t € |1y, 04| such that P(t) € 0By (such a t exists by
the definition of o). By the definition of a C-good ball, the Dj-diameter of 0By is at most
CDy(0By,0(2By)). Hence

T <t < Dh(O, Z) + Dh(z, P(t)) <s+ CDh(aBk, 8(23k)),

which is (4.155]).

By (4.154) and (4.155) and the fact that the intervals [, o] C [s, 00) are disjoint, we get

el
|
—

(0j — 1) <1 — 5 < Clog — 7).

W,
o
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This holds for each k € [0, K — 1]z, from which we infer that

o1 —Tk-1>C 14+ CHE(0g — 7). (4.156)

By the definition of og, we have |P(cg) — P(19)| = er. Moreover, since P(7x_1) € Ber(Bs(0; Dp,)),
By(0;Dy) € B.-,(0), and M > M, we have P(cx_1), P(t—1) € B__5,(0). By ([@152) in the

definition of G%, it follows that
oo — 10 > (oK1 — TR-1)- (4.157)

Combining this with (4.156)) shows that C~1(1 + C~HE <74, 50 K < W loge™! + 0.(1),

as required. O
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Chapter 5: Volume of metric balls in Liouville quantum gravity

This chapter is a joint work [5] with Morris Ang and Xin Sun.

5.1 Introduction

In this chapter, we study the volume of metric balls in Liouville quantum gravity (LQG). For
v € (0,2), it has been known since the early work of Kahane |67] and Molchan [87] that the LQG
volume of Euclidean balls has finite moments exactly for p € (—oo,4/+2). Here, we prove that the
LQG volume of LQG metric balls admits all finite moments. This answers a question of Gwynne and
Miller and generalizes a result obtained by Le Gall for the Brownian map, namely, the v = 1/8/3
case. We use this moment bound to show that on a compact set the volume of metric balls of size r
is given by rdrtor() where d is the dimension of the LQG metric space. Using similar techniques,
we prove analogous results for the first exit time of Liouville Brownian motion from a metric ball.
Gwynne, Miller and Sheffield [60] proved that the metric measure space structure of 7-LQG a.s.
determines its conformal structure when v = \/%; their argument and our estimate yield the

result for all v € (0, 2).

Let us now give a precise formulation of our results. The main result of this chapter is the

following theorem concerning the volume of metric balls.

Theorem 5.1. Fiz v € (0,2) and let h be a whole-plane GFF normalized to have average zero on

the unit circle. Let Bs(z; Dy) be the Dp-ball of radius s centered at z. Then
E [pn(B1(0; Dp))P] < oo for all p € R. (1.1)

Moreover, for any compact set K C C and ¢ > 0, we have almost surely that

sup sup #n(Bs(2 Dh)) <oo and inf inf #n(Bs(2; Di)) > 0. (1.2)

s€(0,1) zeK sh—¢ 5€(0,1) z€K sdyte
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Consequently, the Minkowski dimension of v-LQG is d, almost surely.

This result is in stark contrast to the LQG volume of a deterministic bounded open set, which
only has finite moments for p € (—oo,4/7?). Roughly speaking, j;(B1(0; D)) has finite positive
moments because the metric ball B1(0; D) in some sense avoids regions where h (and thus pup)

is large. Our arguments also show ([1.1)) when we replace h by h + alog|-|~! for a < 3+ % (see
Propositions and [5.26)).

Similar arguments allow us to prove an analogous result for the first exit time of the Liouville
Brownian motion (LBM) from metric balls. Classically, Brownian motion is well defined on
smooth manifolds and on some random fractals. Formally, LBM is Brownian motion associated
to the metric tensor “e"(da? + dy?)”, and can be rigorously constructed via regularization and
renormalization [11,49]. It is a time-change of an ordinary Brownian motion independent of h. For
aset X C C and z € C, denote by 7,(z; X) the first exit time of the Liouville Brownian motion
started at z from the set X. When X is a deterministic bounded open set, 7,(z; X) has finite

moments for p € (—oc,4/v?). Here, we study the case where X is given by a metric ball.

Theorem 5.2. Fiz v € (0,2) and let h be a whole-plane GFF normalized to have average zero on
the unit circle. Then

E [7,(0; B1(0; Dy))P] < oo for all p € R.

Moreover, for any compact set K C C and € > 0, we have at a rate uniform in z € K that

lim P[r,(z; Bs(z; D)) € (sd”“, sd”_e)] =1.
s—0

As an application of Theorem we can extend results of [60] to the case of general v € (0, 2).

The following theorem resolves another question of [59].

Theorem 5.3. Let v € (0,2) and h be a whole-plane GFF h normalized to have average zero
on the unit circle. Then the field h up to rotation and scaling of the complex plane is almost

surely determined by (i.e. measurable with respect to) the random pointed metric measure space

(Ca 0, Dh7 :U’h)
We emphasize that the input is (C, 0, Dy, up,) as a pointed metric measure space, so in particular
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we forget the exact parametrization in the complex plane of Dy and up. More precisely we view
it as an element in the space of pointed metric measure spaces endowed with the local Gromov-
Hausdorff-Prokhorov topology (local here refers to metric balls about the point). For the special
case 7 = 1/8/3, [60] proves an analogous theorem for the quantum disk (see also [82]). Their results
depend on the correspondence between the Brownian map and \/%-LQG [81-83L86], and rely on
the estimates obtained by Le Gall [74] for the Brownian map. Theorem provides the estimates
needed to generalize the results of [60] to all v € (0,2), yielding Theorem and a statement of
the convergence of the simple random walk on a Poisson-Voronoi tessellation of v-LQG to Brownian

motion (viewed as curves modulo time-parametrization) in the quenched sense; see Section m

Chapter outline. In Section [5.2] we discuss preliminary material about LQG. We prove the
finiteness of moments statement of Theorem [5.1]in Sections [5.3] and which bound the positive
and negative moments of the unit LQG ball volume respectively. In Section [5.5.1] we complete
the proof of Theorem Section addresses Theorem Finally Section discusses
Theorem [5.3] In the appendix, we recollect some ingredients of the proof by Le Gall for the Brownian

map case as a comparison.

5.2 Background and preliminaries

5.2.1 Notation

We write N = {1,2,3...} and Ny = NU{0}. For z € R, [z] and [z] denote the floor and ceiling
functions evaluated at x. We write |E| for the cardinality of a finite set E. If f is a function from a

set X to R" for some n > 1, we denote the supremum norm of f by || f|l y = sup,ex |f(x)].

In our arguments, it is natural to consider both Euclidean balls and metric balls. We use the
notation B, (z) to denote the Euclidean ball of radius r centered at z, and B,(z; Dp,) to denote the
metric ball of radius r centered at z (i.e. the ball with respect to the metric Dj). We also distinguish

the unit disk D := B;(0). We denote by X the closure of a set X. For any r > 0 and 2 € C, let A,(2)

stand for the annulus B,(2) \ B,/2(2). Furthermore, for 0 < s < r, we set A;,(2) := B.(2) \ Bs(2).

The LQG metric Dy, is almost surely a length metric, i.e. Dp(z,w) is the infimum of the
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Dy, -lengths of continuous paths between z,w. For an open set U C C, the internal metric D,l{ on U

is given by the infimum of the Dj-lengths of continuous paths in U.

We write fc f for the average of f over the circle C. For a GFF h, we write h,.(z) for the average
of h on the circle 0B, (z).

We write X ~ N(m,o?) to express that the random variable X is distributed according to a

Gaussian probability measure with mean m and variance o2.

We say that an event E., depending on €, occurs with superpolynomially high probability if for
every fixed p > 0, for all € small enough, P[E.] > 1 — eP. We similarly define events which occur

with superpolynomially high probability as a parameter tends to oo.

5.2.2 The whole-plane Gaussian free field

We give here a brief introduction to the whole-plane GFF. For more details see [84].

Let H be the Hilbert space closure of smooth compactly supported functions f on C, equipped

with the Dirichlet inner product

(f,9)v = (27T)1/CVf(z) -Vg(z) dz.

Let {f,} be any orthonormal basis of H, and consider the equivalence relation on the space of
distributions given by T} ~ 175 when T} — T5 is a constant. The whole-plane GFF modulo additive
constant h is a random equivalence class of distributions, a representative of which is given by
>~ an fn, where {a,} is a sequence of i.i.d. N(0,1) random variables. The law of h does not depend

on the choice of {f,}.

For any complex affine transformation of the complex plane A, it is easy to verify that (fo A, go
A)y = (f,9)v. Consequently, h has a law that is invariant under affine transformations: for each

r,z € C we have h< h(r - +2).

Write H C H for the subspace of functions f with fC f = 0. Although we cannot define (h, f)

for general f € H, the distributional pairing makes sense for f € H (the choice of additive constant
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does not matter). Explicitly, for f € H the pairing (h, f) is a centered Gaussian with variance

Var((h, f)) = //(:2 f(w)f(2)log|w — 2|7 dwdz. (2.3)

It is easy to check that (2.3) in fact defines the whole-plane GFF modulo additive constant.

We will often fix the additive constant of h, i.e. choose an equivalence class representative. This
can be done by specifying the value of (h, f) for some f € H with f(c f # 0, or the average of h
on a circle (see [44, Section 3] for details on the circle averages of h). Recalling that h,(z) means
the circle average of h on 0B, (z), we will typically work with a whole-plane GFF h normalized so

h1(0) = 0 (this is a distribution not modulo additive constant).

Let H1 C H (resp. Ha C H) be the Hilbert space completion of compactly supported functions
which are constant (resp. have mean zero) on 0B,.(0) for all » > 0. It is easy to verify the orthogonal
decomposition H = H; @ Ho. This allows us to write the whole-plane GFF h with h1(0) = 0 as
the sum of independent fields h' and h?; these are respectively the projections of h to H; and Hs.
Moreover, we can explicitly describe the law of hl: Writing X; = h,.—+(0), the processes (X¢);>0 and
(X_¢)t>0 are independent Brownian motions started at zero. The strong Markov property tells us
that for any stopping time 7" of (X¢)¢>0, the random process (X117 — X7)s>0 is independent from
X7r. Also, by the scale invariance of the whole-plane GFF, the law of h? is scale invariant. These

observations (with the independence of h', h?) give us the following.

Lemma 5.4. Let h be a whole-plane GFF with h1(0) =0, and let T > 0 be a stopping time of the

circle average process (ho—t(0))i>0. Then we have, as fields on D,

Moreover, h(e=T)|p — h,-7(0) is independent of h.-r(0).

We note that there exist variants of the GFF on bounded domains D C C, such as the zero
boundary GFF and the Neumann GFF; we do not go into further detail, but remark that their

LQG measures (Section are well defined.

Finally, we present a version of the Markov property for the whole-plane GFF, taken from [62,
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Lemma 2.2]. It essentially follows from the orthogonal decomposition H = Hp @ Hparm where Hp
(resp. Hnarm) is the Hilbert space completion of functions which are compactly supported (resp.

harmonic) in D.

Lemma 5.5 (Markov property of GFF). Let h be a whole-plane GFF normalized so h1(0) = 0.
For each open set U C C with harmonically non-trivial boundary and U N 0D = (), we have the
decomposition

h=b+h

where § is a random distribution which is harmonic on U, and h is independent from b and has the

law of a zero-boundary GFF on U (in particular, h|ye = 0).

5.2.3 LQG volume of Euclidean balls

Tails estimates for the LQG volume of Euclidean balls are quite well understood. It has
been known since the work of Kahane [67] and Molchan [87] that it admits finite moments for
p € (—o0,4/~%). This result contrasts a very different behavior between the right tails and the left

tails.

Negative moments The finiteness of all negative moments goes back to Molchan [87]; moreover
it is more generally true that for any base measure of the GMC, the total GMC mass has negative
moments of all order [48]. Duplantier and Sheffield obtained the following more explicit tail
behavior [44, Lemma 4.5]: writing uj for the LQG measure corresponding to a zero boundary GFF
h on D, they showed that if U CC D is an open set, then there exists C,c > 0 such that for all
s> 0,

P [un(U) <e™®] < Cee. (2.4)

We note that this result is sharp in the sense that

218



by a simple application of the Cameron-Martin formula. When h is replaced by h — fU hdz, a

sharper tail estimate is obtained in [71].

Positive moments Recently, Rhodes and Vargas [92] obtained a precise asymptotic result about
the upper tails of GMC when v € (0,2). They obtained a power law and identified the constant.
This result has been generalized to a more general family of Gaussian fields in [115], and extended

to the critical case v = 2 in [114].

As already mentioned, the LQG volume of Euclidean balls has finite p moments for p < 4/~2.
This can be easily seen for integer moments k < 4/v2, which we review below. (This will also serve
as a preparation to some of our arguments.) Indeed, due to the logarithmic correlations of the field,

the problem is essentially equivalent to the finiteness of

dzl, ce dzk
up = .
Dk Hi<j |Zi — 2:]'|’Y2
By introducing
dzy,...d 1 oz
ug(r) == e “k 5 and  vg(r) = r/2Smaxic; |z Zjlfr dzy ...dz, (2.5)
rDk Hi<j |2 — 2] Dk Hi<j |2i — 2|7

k(k—1) . .
we note that when uy < oo then uy(r) = k=775 ug. Furthermore, the vi’s provide the following

inductive inequality, obtained by splitting the points {z1, ..., z;} into two well-separated clusters

(see Lemma in the Appendix for details):

k—1 k—1
o(r) < Cpr? Z r R g (A (A7) < CprtQ=27h -2 Z Ui
i=1 i=1
Finally, we note that
L 2.2 7 L 9,2 7 : 2

and the conclusion follows from ug =~ ~_; v4(277) and an induction on k.

Our later arguments in Section follow a similar structure to the above, but also have to
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account for the random geometry of the metric ball B;(0; D).

5.2.4 LQG metric

Recall that for v € (0,2), the v-LQG metric is the unique metric Dy, determined by a field h (a
whole-plane GFF plus a possibly random bounded continuous function) which induces the Euclidean

topology and satisfies the following.

I. Length space. (C, Dy,) is almost surely a length space. That is, the Dj,-distance between any

two points in C is the infimum of the Dp-lengths of continuous paths between the two points.

II. Locality. Let U C C be a deterministic open set. Then the internal metric D}[L] is almost

surely determined by h|y.

ITI. Weyl scaling. Recall £ in (3.4). For each continuous function f : C — R, define

len(P;Dy)
(e - Dy)(z,w) := inf / S PM)ge for all z,w € C, (2.6)
0

P:z—w

where we take the infimum over all continuous paths from z to w parametrized by Dj-length.

Then almost surely ¢/ - Dj, = Dy, ¢ for every continuous f: C — R.
IV. Coordinate change for translation and scaling. Recall @ in (2.3]). For fixed deterministic

z € C and r > 0 we have almost surely

Dy(ru+ 2,70+ 2) = Dp(ryz)+Qlogr(w,v)  for all u,v € C.

To be precise, Dy, is unique up to a global multiplicative constant, which can be fixed in some way,
e.g. requiring the median of Dp(0,1) to be 1 for h a whole-plane GFF normalized so h1(0) = 0. We
emphasize that the metric D}, depends on the parameter v € (0,2); to follow previous works and

avoid clutter we will omit ~ in the notation.

Basic estimates for distances The main quantitative input we need when working with the

LQG metric is the following estimate relating the Dj-distance between compact sets to circle
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averages of h.

Proposition 5.6 (Concentration of side-to-side crossing distance [39, Proposition 3.1]). Let U C C
be an open set (possibly U = C) and let Ky, Ky C U be disjoint connected compact sets which are
not singletons. Then for r > 0, it holds with superpolynomially high probability as A — oo (at a rate

uniform in r) that

ARt (0) < DrU(r Ky rKy) < Aré@efhn(0),

This formulation is slightly different from that of [39, Proposition 3.1], but by [39, Remark
3.16] they are equivalent. Note that by taking r = 1, this includes the superpolynomial tails of

side-to-side crossing distances.

Euclidean balls within LQG balls The next lemma is an important input in the proof of the

finiteness of the negative moments.

Proposition 5.7 (LQG balls contain Euclidean balls of comparable diameter [60, Proposition 4.5]).
Fiz ¢ € (0,1) and compact K C C. Let h be a whole-plane GFF normalized so hi(0) = 0. With
superpolynomially high probability as 6 — 0, each Dy-metric ball B C K with diam(B) < § contains

a Euclidean ball of radius at least diam(B)1+¢.

Proof. |60, Proposition 4.5] gives this result with K replaced by D and with the specific choice
v = \/% To get the result for K, we simply note that the law of the whole-plane GFF (viewed
modulo additive constant) is scale-invariant, and that the set of all Dj-metric balls (viewed as
subsets of C) does not depend on the choice of additive constant. To generalize to v € (0,2), we
remark that the proof of |60, Proposition 4.5] uses only the following few inputs for the \/8/73 LQG

metric, which we ascertain hold for general ~:

e The scaling relation |60, Lemma 2.3]. In our setting, this is Axiom (Weyl scaling), plus
the following easy consequence of Weyl scaling: for A a whole-plane GFF plus a bounded
continuous function and f : C — R a (possibly random) bounded continuous function, almost

surely

exp (5 i%f f> Dy (z,w) < Dpyp(z,w) < exp <§ sup f) Dp(z,w) for all z,w € C.
C
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e With probability tending to 1 as C' — oo, the Dj,-distance from S = [0, 1]? to 0By /2(95) is at
least 1/C' (here, By /5(S) is the Euclidean 1/2-neighborhood of ). This follows immediately

from Proposition [5.6

e Fix n > 1. With probability tending to 1 as C' — oo, each Euclidean ball of radius e=Cn?/?
which intersects [0, 1] has Dj,-diameter at most e="*"* . This follows from the fact that Dj, is
a.s. bi-Holder with respect to the Euclidean metric [39, Theorem 1.7], and that e~ 5 0

as C' — oo.
O

We point out that this is possible to obtain a more quantative version of this Proposition, with
essentially the same arguments as in [60], which can then be used to obtain more precise lower tail

estimates for the volume of LQG metric balls.

5.3 Positive moments

The main result of this section is the following.

Proposition 5.8. Let h be a whole-plane GFF such that h1(0) = 0. Then, un(B1(0; Dy)) has finite
kth moments for all k > 1. Furthermore, this result still holds if we add to the field h an «a-log

singularity at the origin for a < Q, i.e. replace h with h + alog|- |~

In the following paragraphs, we present heuristic arguments and an outline of the proof. Recall

the definition of the annulus A; = By(0)\By/2(0). The key difficulty to prove this result is in arguing

that E[u(B1(0; Dy) N A1)¥] < co. So we want to prove

E

k
/(A . 112101 0.0<1mm(dz) 'uh(de)] < o0, (3.7)
1

i=1

and the starting point is to rewrite it via a Cameron-Martin shift, as

/(A " GXP(')/2 Z Cov(h(z), h(z])))]P’ |:Dh+7 >, Cov(h(zj),h(~))(07 Zz) < I,Vi] dzy...dzp < oo. (3.8)
1 1<J
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A first heuristic We present a heuristic explaining why E [uh(Bl(O; Dp)nN Al)k] < 00. As
remarked above and since h is log-correlated, the left-hand side of (3.7)) is bounded from above by

le Rk
2 dz1 PN de (3.9
/A’f [Ticjl2i = 217 )

J
where

Pz1,...,zk = P[Dh—o—yzj Cov(h(zj),h()) (ZZ', 831/2(2:1)) < 1 for all Z]

The volume of Euclidean balls have infinite k&th moments when k is large due to the contribution
of clusters at mutual distance r (collection of points in the domain whose pairwise distance
are between cr and Cr). Indeed, for such clusters {z1,..., 2}, the singularities contributes as
IL- y |z; — zj\_VZ ~ r_(§)72, on a macroscopic domain, we have r—2 possibilities for placing this

—242k—(3)7 and the sum

cluster and the volume associated is 72¥. The total contribution is then r
over dyadic r is finite if and only if k < 4/72. Now, we explain how this is counterbalanced by the
P, .. .. term when k£ > 4 /'yQ. By the annulus crossing distance bound from Proposition for any

z € K ={z,..., 2}, the following lower bound holds
Dhyys,_tog|—2)-1(2,0B12(2)) 2 1€Q ehr(2) =€k

Indeed, one can use an annulus centered at z, separating z from 0B, 5(z) and at distance r of z,
whose width is of the same order. Then, we see that the circle average of the log-singularity gives

the r~¢¥7 term. So, by the condition defining P,, . ... on the associated event, for z € {z1,..., 21},

1> p£Q8hr(2) . —8ky

By a Gaussian tail estimate, introducing the term ¢ = kv —Q > %7 —Q =2/v—~/2> 0, we have

le,...,z <SP [hr(Z) < —c¢g log 1"_1] P~ r%ci‘

k ~

An elementary computation, namely —2 4 2k — (g)'yQ + %cz = %Qz — 2, gives then that for such a
cluster, the scale  contribution to (3.9) is T%QQQ, which is summable for all k since Q = % + % > 2

for v € (0,2) and this is essentially the reason of the finiteness of all moment.
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Outline of the proof To turn this argument into a proof requires us to take care of all config-
urations of clusters K = {z1,...,2;}. Similarly to the one presented in Section our proof
works by induction on k. We will partition K = {z1,..., 2z} into two clusters I and J such that
the pairwise distance of points between I and J is > r, since both HKj |z — zj|72 and P, . .,
have a nice hierarchical clusters structure (see for the exact splitting procedure partitioning

K =T UJ and the definition of r). Indeed, for such a cluster, we can bound from above

[Tz = 21" < p I H|z — ™ H\z — (3.10)

1<J

Now, we discuss P, . The aforementioned annuli crossing distance bounds from Proposition

imply that for all z € K, ¢ € (0,1/2),

z) 4+ Z][ log |- —z4| '+ 2 < Qloge™!, (3.11)

za €K 9Be(»

for £ = 0. From now, denote by ]3;12,9 the circle average variant of P, . ., associated with :
this is the probability that holds for every z € K = {z1,...,2;} and € € (0,1/2), with this
extra parameter x € R, which is necessary to consider when deriving an inductive inequality. Note
that when I and J are at distance of order r and the diameters of both I and J are smaller than

O(r), for e € (0,7), then Vz,z, € K and Vz; € I,z € J,

][ log| - —za| ™t ~logr™! and ][ log |- —z| 7' ~logr™t.
0By (2) OBe(2;)

Therefore, we can rewrite the condition (3.11]) for z € I as follows

(he(z) — )+ ’yz][ log| - —z| ' + |J|ylogr™t | — kylogr™!
z; €1

+ (ac + hy(2) + kylogr—t — Qlogril) < Qlog(zs/r)*1
Hence, after simplification, for z € I, we have

(he(z) — )+ Z][ log |- /r— zi/r|_1 + (£E+ hr(2) + cx logr_l) < Qlog(s/r)_1

zi€l
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which is a variant of , and a similar condition holds for z € J. Furthermore, note that the
processes ((he(2) — hr(2))zc(0,r))2er and ((he(2) — hr(2))ec(0,r)) e are approximately independent
and h,(z) = h,(w) for all z,w € K, which we then denote by X, (this can thought as their common
approximate value; to be rigorous, by monotonicity, one can take their maximum). From this, and
the fact that circle average processes evolve as correlated Brownian motions, it is natural to expect

30 Hr+Xr+cp logr—! Hr+X,+cp logr—1!
PL<E [1XT+% tog <o Dy Kok lo8 T prkXecter , (3.12)

which is the hierarchical structure we were looking for. Altogether, and (| allow to

inductively bound from above the term

P
e dz 1de
/ Hz<] ‘Zz ZJ|7 ’

by a quantitative estimate in term of . This provides not only E[u,(B1(0; Dy) N A1)*] < oo but
also a quantitative estimate which allows to get E[uy,(B1(0; D) N A¥] < 5@ for some oy, > 0 and all

€ (0,1), via a standard scaling/decoupling argument. An application of Hélder’s inequality shows
E[un(B1(0; D) ND)*] < oo and similar techniques concludes that E[u(B1(0; D) N C \ D)*] < oo,

yielding the proof of Proposition

In our implementation of these ideas, because we have to carry the Euclidean domains associated
with the clusters I, J and K, we use *-scale invariant fields. The short-range correlation of the fine
field gives independence between well-separated clusters, and invariance properties of the x-scale

invariant field simplifies our multiscale analysis.

In Section we prove a quantitative variant of where the field A is replaced by a
*-scale invariant field plus some constant, and the probability in the integrand is replaced by the
probability of coarse-field distance approxzimations being less than 1. In Section [5.3.2] we use these
estimates to first bound E[uy,(B1(0; Dy) N A;)¥], by using a truncated moment estimate, then extend
our arguments to all annuli to deduce the finiteness of the kth moment Mj, := E[uy,(B1(0; Dy,)*] for
all k > 1. By keeping track of the k& dependence, it turns out that it is possible to bound M}y by
Ck** for some constants C, ¢ depending only on 7. To simplify the presentation of our arguments,

we omit these precise estimates.
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5.3.1 Inductive estimate for the x-scale invariant field

We derive a key estimate for the positive moments (Proposition [5.15)), which is like a quantitative
version of (3.8) where we add a constant to the field. We will use x-scale invariant fields, which

satisfy properties convenient for multiscale analysis. Relevant references are [3,38,66].

Proposition 5.9 (x-scale decomposition of h).  The whole plane GFF h normalized so h1(0) =0

can be written as

h=g+d=g+d1+Pa+...

where the fields g, ¢1, P2, ... satisfy the following properties:

1. g and the ¢, s are continuous centered Gaussian fields.
2. The law of ¢y is invariant under Fuclidean isometries.

3. ¢ has finite range dependence with range of dependence e™", i.e. the restrictions of ¢, to

regions with pairwise distance at least e™™ are mutually independent.

4. (#n(2)),cre has the law of (qzﬁl(ze"*l))zeRg.

5. The ¢y ’s are mutually independent fields.

6. The covariance kernel of ¢ is Cp oo(2,2') = —log|z — 2| + q(z — 2') for some smooth function

q.

7. We have E[¢,(2)%] =1 for all n, z.
The convergence of this infinite sum is with respect to the weak topology on S'(R?).

Proof. Lemma [5.49] gives the coupling h = g + ¢ with g continuous. The fields ¢,, are defined in
Appendix and are shown to satisfy these properties there. O

Define also the field ¢, from scales a to b via

Gar1+ -+ ¢p fa<d
Pap 1= (3.13)
0 ifa>b
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so that ¢ = ¢ 0 and set, for z, 2’ € C,
Ca,b(zv Zl) =K (¢a,b(z)¢a,b(zl)) . (314)

We will construct a hierarchical representation of a set of points K = {z1,..., 2} C C. Roughly
speaking, starting with K, we will iteratively split each cluster into smaller clusters that are well

separated. We formalize the splitting procedure below.

Splitting procedure Define for any finite set .S of points in the plane (with |S| > 2) the separation

distance s(S) to be the largest ¢ > 0 for which we can partition S = I U J such that d(I,J) > t, i.e.

s(S) = m a(1,J). (3.15)

= ax
S=1UJ[1],|J|>1

Define Ig, Jg C S to be any partition of S with d(I,J) = s(S). Note that if diam S denote the

diameter of the set .S, we have the following inequality

diam S
<
S|

s(S) < diam S. (3.16)

For the edge case where |S| =1 define s(S5) = 0.

Lemma 5.10. For |S| > 2, we have s(Ig), s(Js) < s(5).

Proof. 1t suffices to prove the lemma for S such that all pairwise distances in S are distinct, then
continuity yields the result for general S. Suppose for the sake of contradiction that s(.J) > s(.5),
then there is a partition J = J; U Jy satisfying d(Ji,J2) > s(S). Since distances are pairwise
distinct, we must have d(I, J;) = s(S) and d(I, J3—;) > s(S) for some i. Then d(I U J;, J3_;) =
min(d(1, J3—;),d(J;, J3—;)) > s(S). This contradicts the definition of s(5). O

Hierarchical structure of K = {z1,...,2,} and definition of T} ({¢}) By iterating the
splitting procedure above, we can decompose a set K = {z1,...,2x} C C into a binary tree
of clusters. This decomposition into hierarchical clusters is unique for Lebesgue typical points

{#z1,...,2r}. Two vertices in this tree are separated by at least the separation distance of their first
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common ancestor. See Figure [5.]] for an illustration.

A labeled (binary) tree is a rooted binary tree with k leaves. For each K = {z1,...,2;} C C,
collection of fields {¢} = (¢n)n>0, and nonnegative integer a < [log s(K)~1] we will define a labeled
binary tree denoted by T ({¢}). Each internal vertex of this tree is labeled with a quadruple
(S,m,1,n) with S C K and |S| > 2, an integer m, and ¥, € R, whereas each leaf is labeled with just
a singleton {z} C K. The truncated labels (S, m) depend only on the recursive splitting procedure
described above: S is one of the clusters associated with this hierarchical cluster decomposition,

and m = [log 5(S)~1]. The variable a represents an initial scale.

For such a labeled tree T we write T+ (g, 70) to be the tree obtained by replacing each internal
vertex label (S, m,,n) with (S, m,¥ + o, n + no). We also write Left(S) to denote the leftmost

point of S, viz. arg min,cg R(2), where R(z) denotes the real part of the complex number z.

We explain how the remaining parts (i, n) of the labels are obtained. For (K, {¢},a) as above,
we proceed as follows to complete the definition of the labeled tree T ({¢}). For k := |K| =1, we
simply set 77 ({¢}) to be the tree with one vertex, labeled with the singleton K. For k > 1, setting
m := [logs(K)~!] > a, the root vertex of T%({¢}) is labeled (K, m, ¢qm(Left(K)), (m — a)ky),
and its two child subtrees are given by T7" ({¢}) + (¢a,m(Left(K)), (m — a)ky) and T7' ({¢}) +
(Pa,m(Left(K)), (m—a)ky). Essentially, after making the split K = IUJ, we add up the contribution
of the coarse field ¢4, and the contribution of the v-log singularities to get the scale m field

approximation for the clusters I and .J.

We note that the tree structure of T% ({¢}) is deterministic, and for each internal vertex with label
(S,m,,n), only b = ¥({¢}) is random; the other components are deterministic. Roughly speaking,
S is a cluster in our hierarchical decomposition, m is the scale of the cluster (i.e. s(S)~e ™), ¢
(resp. n) approximates a radius e~ circle average of the field @q,m (resp. v, log |z — |7t —~ka)

at the cluster.

Remark 5.11. For the labeled tree Tj:({¢}), at each internal vertex the field approxzimation ¢ can

be explicitly described in terms of the fields {¢} as follows. Let (S;,m;, i, m;) fori=1,...,n be a
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Figure 5.1 — Left: The set of points K is iteratively divided into smaller and smaller clusters.
Right: From this clustering algorithm we obtain a hierarchical binary tree T3 ({¢}) (labels not
shown), where internal vertices correspond to clusters S C K and leaves correspond to points z € K.

path from the root (S1,m1,v1,m). Then, writing mg = a, we have
Un =3 Gm,_s.m, (Left(S;)). (3.17)
i=1

The ~y-singularity approrimation n can likewise be stated non-recursively, as

=1

Remark 5.12. The choice Left(S;) is arbitrary; any other deterministic choice of point in S; works.
Replacing ¢m,_, m;(Left(S;)) with the average |Si|™' Y cg dm;_ym,;(2) would also work without

affecting our proofs much.

Definitions of key observables In this paragraph, we provide analogous definitions of the
quantities appearing in (3.8). The first one corresponds to a variant of P[Dj., 52, Cov(h(z)h(-))
(0, z;) < 1 for all 4], with an extra parameter xz. For z € R, let P;{’m be the probability that the tree

with random labels T ({¢}) satisfies
v+n+xz<Q(m—a) for each internal vertex labeled (S, m,,n). (3.19)

Note that this probability is taken over the randomness of the fields {¢}, and that this definition
yields for |K| = 1 that Pg* = 1. Let us comment a bit on this definition and its relation with
the conditions Dy, s~ ; Cov(h(Zj),h(-))(O, z;) < 1. These distances being less than one implies upper

bounds for annuli crossing distances for annuli separating the origin from the singularities. The v
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term corresponds to field average over these annuli, 7 is an approximation for the v-singularities
and the @) term stands for the scaling of the metric. Altogether, roughly speaking, P%x is the
probability that for the field ¢o.cc + Y., v10g |2 — |71 + @, for all clusters S of K the field-average

approximation of annulus-crossing distances near S is less than 1.

The following observable stands for a variant of the integral in (3.8)). Writing K = {z1,..., 2}

and dzg = dzy . ..dz,, we define

0,z
PK

/Bn(O)’“ [Licjlzi — 217

5 Ls(r)<edzK - (3.20)

In Proposition we show that u}!(x) < 0o, and bound it in terms of z. Note that the statement

up(x) < oo is comparable to (3.8) by the fact that exp(y Cov(h(z;), h(z;))) < |z — zj|_72.

The next lemma establishes basic properties of Pg*. To state it, we first define

ok =ky—Q. (3.21)
Lemma 5.13. The Py ’s satisfy the following properties:

1. Monotonicity: P%z 1s decreasing in x.

2. Markov decomposition: for the partition I U Jgx = K with separation distance satisfying

e™™ < s(K) < e ™ we have

0,x logr—! X, 4x+cg logr~! plogr™!, X, +x+cp logr—!
PK =K 1Xr+w+ck logrflg(]P]K " PJK " ’

where r = e~™ and X, = ¢o.m (Left(K)) is a centered Gaussian with variance logr~!.

. 1 -1 _ .
3. Scaling: Pﬁ;i’,ﬁ,,m’f = PB;?,,,Zk for any r = e ™ with m € Z.

. . pl _ plx
4. Invariance by translation: P, . 1, = Pzl 2.

The first condition corresponds to a shift of the field. The second condition is an identity with
three terms in the right-hand side: the term X, represents the coarse field, the indicator says that

the “coarse field approximation of quantum distances” at Euclidean scale r are less than 1, and the
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product of the two other terms represent a Markovian decomposition conditional on the coarse field.

Properties [3] and [4] are clear from the translation invariance and scaling properties of ¢y,.

Proof. The monotonicity Property [1] is clear from the definition.

Property [2| follows from the inductive definition of Po’z, by looking at the first split K =
T'UJ. Indeed, recall X, = ¢g, (Left(K)). The event {X, + x + cxlogr~! < 0} corresponds to
inequality (3.19) for the root vertex (K, m, ¢po m(Left(K)), mky).

Then, if the set K is decomposed as K = I U J, note that the trees 77" ({¢}) and T7*({¢}) are
independent. Indeed, d(I, J) > e™™, so the restrictions of the field ¢,, (and each finer field) to I and J
are independent. Therefore, since (¢o,m (Left(K)), T ({¢}), T7'({¢})) are independent, conditionally
on o m(Left(K), the trees T ({0}) + (Go.m(Lefe(K)), mky) and TP ({6}) + (G,m (Les(K), mk)
are independent. Thus, all conditions in the definition of P[O{,x associated to the child subtrees
are conditionally independent. To conclude, we just have to explain that this is indeed the term
P}n,X7-+a:+ckm

which appears. For a non-root vertex (S, b,,n) of T%x belonging to the genealogy
of I, the condition (3.19)) can be rewritten,

Y+n+r=(Xr+9¢) + (mky+n') +2 < Qb= Q(b—m)+Qm,

hence ' + 7' + (X, + & + ¢xm) < Q(a —m), which is exactly the condition we were looking for at
the vertex (S,b,v¢’, 1) in the tree T7"({¢}).

The scaling Property [3] follows from the scaling property of the ¢, and the observation that
s(rK) = rs(K) (and hence [logs(rK)~'] =logr~! + [logs(K)™']).

The invariance by translation Property [4 follows from the translation invariance of the fields

Pm.- O

Using these properties, we derive the following inductive inequality.

Lemma 5.14. For each n,k > 0, there exists a constant Cy i such that the following inductive
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inequality holds, for all x € R, where X, ~ N(0,logr—1).

k—1
up(r) < Cp Z Z PRYQ—57 k=2

1=1 r=e=™,m>0

E [1x, 4ot g1 <00 (X + 7+ cilogr™ Yt (X, + 2+ cxlogr™)]

We now turn to the proof of the inductive relation. The argument is close to that of Lemma[5.47

the difference being that we have to take care of the decoupling of P}o{,x.

Proof. We first introduce some notation. In what follows we will be integrating over k-tuples of points
21,...,2k; write K for this collection of points and dzx = dz; ... dz,. Write f(K) :=[]|z — z’\_72/2

where the product is taken over all pairs z, 2’ € K with z # 2/.

We first split the integral in the definition (3.20)) of u}(x) as
up(@) = Y vila,r)
where for r € (0, 1], v} (x,r) is defined by

vp(z,7) ::/B o P%mf(K)lTSS(K)SerzK. (3.22)

Notice that s(K) < er implies diam K < ekr, so any K contributing to the integral in (3.22) is
contained in a ball of radius 6kr centered in rZ2 N B(0,n). Taking a sum over the O(n?r~2) such

balls and by translation invariance, we get the bound

o (1) < O(n?r~?) / PO F (), <y ) endeic.
Bﬁkr(o)k

Write K = I U Jg for the partition described before Lemma For z € Ix and 2’ € Jig we have
|z — z'\*VQ < s(K)™"* <r™*, and s(Ik),s(Jx) < s(K) < er by Lemma SO

UIZ([E’T) < O<n2T2)/ 7”772|IK‘|JK|P%xf([K)ls(IK)<erf(JK)1S(JK)<67“ dzk.
B6k7'(0)6k B -
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The Markov property decomposition [2| Lemma allows us to split P%I into an expectation over
a product of terms, yielding an upper bound of v} (x,) as an integral of terms which ‘split’ into 27,
and zj, parts. This expression is in terms of the partition Ix U Jg = K; we can upper bound it by
summing over all I,J C K. To be precise, for each i =1,...,k — 1 we sum over all pairs I,J C K
with |I| =4 and |J| = k —i. Absorbing combinatorial terms like (lf) and the prefactor n? into the
constant C, ., we get

k—1 1

) Plog r~ 1, X, 4x+cp logr—

-2 — i(k—1 21,574

UZ(I’, r) < Cn,kr § il Z)EXT / ‘ - 32 18(z1,...,zi)§erdzl co.dz;
i=1 B (0)? Ha<b |20 — 2b]

Plogr*I,XT—i-a:-‘rck logr—1
W1y W —q 1 d d . 1
) 72 s(w1,eeywp_ i) <er@W1 . . . AWE—g Xyr+z+c,logr—1<0| -

Berr (01 [Tacp lwa — wy

We analyze the first integral (we can deal with the second one along the same lines). Changing the

domain of integration from Bgg,(0)* to Bgr(0)?, we get

P;Og r;l Xr+ztcy logr—1!

1ye-5%4

/ _ - 18(21,...,Z¢)S67‘d’21 e dz
BGkr(O)l

2
]._[a<b ‘Za - Zb”y
Plog r~ Y Xy +az4cg logr—1

2i—~2(1 T2y, T2
= et (2) / ' i v 1s(z1,...,zi)§ed21 R dzi,
B Ilacsl2a = 2]

and then applying the scaling property [3] of P, the integral on the right hand side is equal to

1

PO,XT—&—x—l-ck logr—

Z1y--5%4 6k _1

/ _ o Loy, z)<ed21 - dzp = up (X + 2+ cplogr™ 7).
B (0)* Ha<b |20 — 2]

By gathering the previous bounds and identities, and noting that the power of r is

P2 ilk= )26 =2 () =2 (%)) — k@37 R =2,

and this completes the proof of the inductive inequality. ]

Using the inductive relation and the base case, we derive the following proposition, which

provides a bound on the quantity (3.20) introduced at the beginning of the section.
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Proposition 5.15. Recall that ¢, = kv — Q. For x € R we have
up(z) < Cpre” "  when k > 4/+7,

and

up(z) < Cpp  when k < 4/+7,

where Cy, i, is a constant depending only on n, k.

Proof. We first address the case where k < 4/42. In this setting, by the trivial bound P%x <1 we

have

up(x) g/ [Tz — 217" de . d,
(0"

1<j
and the right-hand side is finite by the discussion in Section [5.2.3

Now consider k > 4/42. We proceed inductively, assuming that the statement of the proposition

has been shown for all ¥’ < k. Lemma gives us the bound

k—1
UZ(LL“) < ka Z Z Tk7Q7%72k272><

1=1 r=e=™m,m>0

E [1X,~+m+ck logr—lgou?k(Xr + 2 + ¢ logr Hub® (X, + z + ¢ log r_l)} , (3.23)

where X, ~ N(0,logr~!). We bound each term u?kugﬁ , using the inductive hypothesis. We need
to split into cases based on which bound of the statement of the proposition is applicable (i.e. based
on the sizes of i, k — i), but the different cases are almost identical, so we present the first case in

detail and simply record the computation for the remaining cases.

Case 1: i,k —1i > 4/4?. By the inductive hypothesis we can bound the ith term of (3.23)) by a

constant times

Z TIWQ—%’Y%Q—QE [e—(ci'i-ck—i)(Xr-l-w-i-Ck logr—1) Iy,

r=e~m,m2>0

- ¥ PFIQ= 372k =24k (k= Q) L (Q@—cr)e [e—@k—@xrlxr

+x+c logr—1 §0:|

+x+cy, log r*1§0} ) (324)

r=e~™,m>0
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where we have used the identity ¢; + cp_; = ¢ — Q. For each r we can write the expectation in the

equation (3.24]) by a Cameron-Martin shift as

E[e~ (= @XPIX, 4+ 2 + ¢ logr™ — (¢, — Q) Var(X,) < 0]

- T*%(Ck*Q)z]}D[XT < —(Qlog rt 4 x)]. (3.25)

We claim that

PIX, < —(Qlogr™ + z)] < r2@" e, (3.26)
Indeed, in the case where Qlogr—! + 2 > 0, we have by a standard Gaussian tail bound that
_ (Q log 'r_1+z)2 _ 22
PIX, < —(Qlogr ' +a)] <e  2oer 1 =p2@ @ 2lonr T < p3Q%e Q7
and in the cases where Qlogr™! 4+ z < 0 we have

PIX, < —(Qlogr ' + )] <1< e @@logr+a) — ;@7 ~Qr < r3@®e—Qe,

Finally, we combine (3.24)), (3.25) and (3.26)) to upper bound the ith term of (3.23). This upper

bound is a sum over r of terms of the form rP°"e~%? where the power is

1 1 1 1
kyQ — 57%2 =2+ ax(ok = Q) = S(on - Q)%+ 5Q? = 5Q? -2>0.

So we can bound the ith term of (3.23]) by a constant times

Q2
Z P T2eTT — O(e™ ).

r=e~™m,m>0

Case 2: i > 4/4% and k — i < 4/42. By the inductive hypothesis we can bound the ith term
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of (3.23) by a constant times

Z Tka—%72k2—2E [6—ci(Xr+z+ck logr—1)
r=e~™mm>0

_ EyQ—1~2k2—24cic,  —cix —c; X
= E r e hem ™ E[e ' TlX,«-i—;c—&—cklogr*lSO]

r=e~"m m>0
_ kyQ—3v2k2—2+cicp— 32 —ciz ) -1
= r 2 2%e 9P [ X, < —((ck — ¢;)logr™" + )]
r=e~™m m>0
Z rk'yQ—%'y2k2—2+cick—%c?—i—%(ck—ci)Qe—ckr
r=e~™m m>0

= Z r3Q° 2w — O(e™ ).

r=e~™mm>0

1Xr+m+ck log r—1§0]

IN

Note that by symmetry Case 2 also settles the case where i < 4/v% and k — i > 4/~2.

Case 3: i,k —1i < 4/7°. By the inductive hypothesis we can bound the ith term of (3.23)) by a

constant times

Z Tk"/Q*%’ﬁszQP [Xr < _(Ck log r1 + .%')] < Z Tk'yQ*%’le#—ZJr%ciefckx

r=e~™m,m>0 r=e~™,m>0

= Z r3@°—2¢=cr O(e™ ).

r=e-™m,m>0

This completes the proof. ]

The proof of Proposition depends on the exponent %QQ - 2= %(% - %)2 being positive. If
we make a slight perturbation to our definitions, so long as the resulting exponent is still positive,
we get a variant of Proposition In particular, for § > 0, we define Pf(’x’é similarly to Pg" by
replacing the inequality with ¥ + n+ 2 < (Q + 0)(m — a), and define uZ’J analogously to
with P%m"s. We record the following result as a corollary since the proof follows the same

steps as in the proof of Proposition [5.15

Corollary 5.16. For k > 1 and n > 1, for 6 small enough, there exist constants Cy, 1, 5 and cy.s
such that,

UZ’(S(:L‘) < Cppse”®  for allz € R when k > 4/+2,
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and

UZ’é(x) < Chnks for all z € R when k < 4/72.

Furthermore, lims_,o ¢ 5 = kv — Q for fized k.
Remark 5.17. Alternatively, one could modify the definition of ujl(x) in (3.20) to have a different

denominator |z; — zj|72+5. Namely, by setting

é PO,JI
anv (x) = / K 1 e dZK
* B (0)* Hi<]’ ’Z@' — zj|’72+5 s(K)<e )

the statement of Corollary applies to ﬁZ’é(:U) instead of uZ’é(aj).

5.3.2 Moment bounds for the whole-plane GFF

In this section, we use our previous estimate (Proposition or its variant Corollary
to obtain the moment bounds for a whole-plane GFF h such normalized such that h;(0) = 0 and
therefore prove Proposition Additionally, in this section we write C' or C}, 5 to represent large
constants depending only on k£ and J, and may not necessarily represent the same constant in

different contexts or equations.

Proxy estimate for whole-plane GFF

Recall the notation As, := B,(0) \ Bs(0) for 0 < s < r. We introduce the following proxy
Py = {2z € C: Dy(2,0B,,4(2)) < d}. (3.27)

The set P;;’d contains points whose “local distances” are small. We work with P,:’d because the event

z € P;;’d depends only on the field h|p_ and is thus more tractable than the event z € B1(0; Dy,)

/4(2)’
(which depends on the field in a more “global” way). Moreover we have B1(0; Dp,) N A, C P,:’l NA,,
so to bound from above uy(B1(0; Dy)) it suffices to bound from above the volume of the proxy
set. We emphasize that P;*% is different from the quantity P&” introduced in (3:19): the former

is associated with a field h and is considered on the full plane without restriction; the latter is

associated with x-scale invariant fields, and the capital letter K refers to a finite number of points
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where the condition is localized.

Proposition 5.18. Let h be a whole-plane GFF such that h1(0) = 0. For k > 4/4%, 6 € (0,1/2),

there exists a constant Cy s such that for all x € R,

Cean K
E [Hh (Blo(O) npLbes ) ] < Cpge 07,
where we recall that ¢, = ky — Q and ¢ 5 — ¢, as d — 0.

In fact, for x > 0 it is possible, by using tail estimates for side-to-side distances, to show that

the decay is Gaussian in z. We do not need this result so we omit it.

Proof. In order to keep the key ideas of the proof transparent, we postpone the proofs of some

intermediate elementary lemmas to the end of this section. Consider the collection of balls

B = {Be,e(z) . e Ng,z € e 222, B, (2) N Bio(0) # @} . (3.28)

We will work with three events in the proof: Ejjs is a global regularity event, Fi 53/ is an
approximation of the event {K C P,} ’67&} which replaces the conditions on the metric by conditions
on the field, and F}{ 5. 18 @ variant of Fi s m where v-log singularities are added to the field at
the points z € K (this is related to P%z). Here, M is a parameter that is sent to 400 and J is a
small positive parameter. The integer k is fixed throughout the proof, so the events are allowed to

depend on k and we omit it in the notation.

Step 1: truncating over a global regularity event E. The event Es ) is given by the following

criteria:

1
1. For all £ > 0, the annulus crossing distance of B\0.99B is at least M€ =€Ql o h

for all B € 98 with radius e *.

2. For all integers ¢ > ¢/ > 0, for all B € B of radius e “~2, we have e *supg,p |[Vor | <

g3 +9 + log M.

3. For all £> 0 and all B € B of radius e ™72, f, - ¢y.o0 < £270 4 log M.

238



4. [l¢ = hllp = llgllp < log M.

As we see later in Lemma for fixed 0 the event Es); occurs with superpolynomially high
probability in M as M — oo. Therefore, when looking at moments of pp(B1(0; D) N D), one can

restrict to moments truncated on Ejs ;.

By using Property 4| of Esjr and the definition of ;14 as a Gaussian multiplicative chaos (see
Section , we get

Cean K Cean K
E |:]1E6,Muh (310(0) N P}i’e ) :| < CkM’ykE []IE&M/% <B10(0) N P;’e ) :|

and

_ean K
E [ﬂEs,Mqu (Blo(o)ﬂpﬁ’e ) ]

=E

/B o L, {2 € P}}e*&z for all i}ug(dz1) .. -N¢(d2k)]
10

<E

/B ()* ﬂFK,&,]Ml’L¢(dzl) .- ':U’¢(dzk)] )
10

where the event F 5 s is defined in the following lemma. In the first inequality above, the constant
C} appears from the difference of definition between Gaussian multiplicative chaos measures and

the Liouville quantum gravity measure; the former one is defined by renormalizing by a pointwise
2
expectation whereas the latter one by £%.

Lemma 5.19. For k > 2, there exists a constant C so that for any k-tuple of points K =

{z1,..., 2k} C DD we have the inclusion of events
EsarN{z € P foralli=1,....k} C Fiom
where Fi s 11 is the event that for all vertices (S, m,1,n) of Tx-({¢}) we have

Y4z < Qm—l—Cm%Jr‘s—{—ClogM. (3.29)

. =€z, . .
Essentially, Lemma |5.19| holds because K C Pﬁ “ 7 implies that distances near each cluster are
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small. Then for each cluster, Property [I{ of Es s lets us convert bounds on distances to bounds on
circle averages of h, Property [2] lets us replace the coarse field circle average with the coarse field
evaluated at any nearby point, and Properties [3| and [4] allow us to neglect the fine field and the

random continuous function h — ¢; this gives ([3.29)).

Step 2: shifting LQG mass as y-singularties. We then use the following lemma to replace the

terms pu(dz;)’s by dz; and ~y-singularities.

Lemma 5.20. If f is a bounded nonnegative measurable function, and Cy 3 are the covariances of

bap (defined as in (3.14) ), we have

E [/ f(¢,21, .. '7Zk7¢17 cee 7¢€> .. )M¢(d21) .- /.L¢(d2k)
Bio(0)*

< /B o E[f(¢+7200,oo(~72i)7217 ey Zhy D1 +’YZC(),1(~,21~), Y +VZCFLZ('7%‘)7 )

i<k i<k i<k

2
X €Xp % 200700(»2@', z) | dz1, ... dzy.
i#]

We apply Lemma with f = 1p, ;,, and we get

2
P[Fg 5.01] eXp(% Z Co,00(2i5 25))dz1 - . . dzy,

E/ ]lFK,(S,M:u(ﬁ(le) s :U¢(dzk) < /
Bio(0)* Bio(0)* i#j

where F7. 5, is the event that in the labeled tree T ({¢}), for any path from the root (S1,m1,v1,m1)

to (Sp, M, ¥n, Nn), we have

n 1
Y + Z Z Crniym; (2, Left(S;)) + & < Qmy, + C’m%JF(S + Clog M. (3.30)
=1 zeK

Note that by Lemma below, (3.30) implies that for each vertex (S, My, ¥n, n,) we have

Un + 1 + 2 < (Q + 8)my, + Clog M + 2C. (3.31)

1
(The term 2C comes from Lemma |5.21f and the bound C’m{‘fr(S < 0my, + C, using that § € (0,1/2).)

Now, the probability that (3.31])) occurs for each vertex is precisely P%x_mog M_2C’5, defined in just
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before the Corollary , so we conclude that P[F} 5 ,,] < Por-CloaM=2C0

Lemma 5.21. For k > 2, there exists Cy such that for K € B1y(0)*, for any path from the root

(S1,ma,91,m) to (Sp, My, ¥n,my) in the labeled tree TY-({¢}) we have, writing mo = 0,

M — 7 Z Z Cmi—l7mi(z7 Left(si))|
i=1zeK

’VZ(mz - mi71)|8i’ - ’YZ Z sz'flymi(vaeft(Si)) <C.

=1 =1 zeK

By Proposition for K C Bjp(0) we have exp(l; > iz Cooo(zir2j)) < Cllicjlzi — zj|_72-

Combining all of the above bounds yields

PO,:(:—C log M—2C,0

ek
E []lEgMMh (Bo()n Ay ) ] < CkM"Y’“/ i S
’ B Iz — 2"

Finally, by Corollary we conclude that for all x € R we have

Cean K
E |::H'E6,M:u’h (Blo(o) np,* ‘ ) } < CpsMCe o, (3.32)

Step 3: concluding the proof. By Markov’s inequality, we get,

—&x —&x
Plun(B1o(0) N Py ™) > 1] < P[ES \] + P[Esar, i (Bio(0) N Py¢ ) > ]

_ —&z
< BB ] + P E[Lg, i (Bro(O) N PR ). (3.33)

The second term is bounded by (3.32). To control the first term, we use the following lemma.

Lemma 5.22. For fized 6 € (0,1/2), the reqularity event Ej5n occurs with superpolynomially high

probability as M — oo.

Combining these bounds, namely starting from (3.33)), using (3.32]) and the previous lemma, we

get, for all 6, k, p, a constant Cjs ., such that for all z € R and for all M,t > 0,

Bl (B1o(0) N P ) > 1] < Ciogy (M7 4 478 M Cemmar).
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By taking M = th/(P+C)ecrs2/(0+C) we get
1,e=¢ ——P_k ——P_cp s

Plun(B1o(0) N Py 7 ) 2 8] < Cygpt #07e ™

so by choosing p large and integrating the tail estimate to obtain moment bounds, we obtain
Eljun(Bro(0) N Py )F=0] < Cem(era=0r,

Then, by (3.32) and the Cauchy-Schwartz inequality, we get

Le 0\ F c 1/2 Lemtn\ 26] 1/

E [Mh (310(0) np, ) } < CroMCems" + P[ES \]'/*E [Mh (Blo(o) np, ) }

and we conclude the proof of Proposition by taking M = el*l for some small € > 0 (indeed, for
this choice of M we have ]P’[E;M] < el for any a > 0, and our earlier bound says that the 2kth

moment is at most exponential in x). O

Annuli contributions and a-singularities.

Here, we use the proxy estimate to study moments of metric balls when the field has singularities.
The link is made with the following deterministic remark. Recall that A, 5 := B, /2(0)\B,4(0).
If z € B1(0; Dp) N A,/ then Dp(0,0B,/4(0)) <1 and z € P,:’l_Dh(O’aBr/‘l(O)) (recall (3.27) for the

definition of Pp%).

In the following lemma, we will study the LQG volume of the intersection of the unit metric
ball with the unit Euclidean disk. To do so, we study first the contribution of small annuli to the

volume and then use a Holder inequality to conclude.

Lemma 5.23. Let h be a whole-plane GFF such that h1(0) = 0. Then for a < Q,

E | thtatog -1 (B1(0; Dy yalog||-1) ﬂD)k)] < o0.

Proof. Note that B1(0; Dy) N A, /5 C P;;’l N A, /2 and that the latter one is measurable with respect
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to the field h|g (). We use a decoupling/scaling argument as follows. We write,

pn(B1(0; Du) N Ay o) < 1p, 0,08, 40)<1in(Ph 0 Ayp)
re—hr(©)
= 1e§hT(0>Dh7hr(O)(OvaBr/4(0))§167hr(0)/~j/h*hr(0) (AT/2 N Ph—hr(ﬂ) ) 9

and set h := h(r-) — hy(0). By Lemma we have the equality in law hlp @ h|p, and also h|p is

independent of h,(0). Using the scaling of the metric and of the measure, we get

E [,uh(Bl (O; Dh) N Ar/g)k}
re—Ehr(0\ K
<E [1e£hr(0)Dhhr(o)(O,&BT/4(0))§1€’YkhT(O)Nhhr(O) <Ar/2 NE 0 ) }

1,r—6Qe—¢hr(0)\ k
< rFQE [1e£hr(0)rEQD,-L(0,631/4(0))§1€7khr(0)uﬁ (A1/2 n PB o ) ] ’ (3.34)

We split the expectation with Lp. (0,08, ,4)<r® and Lp; (0,08, )21 Note first that for p > 1,

by Proposition [5.18] and a moment computation for the exponential of a Gaussian variable with

variance constant times logr !,

r—EQe—¢hr(0)

k
E [e”/pkhr(O)luE (A1/2 N P}% ) P] < Crpover

for some power whose value does not matter. Indeed, because of the superpolynomial decay of the

event {Dj (0,08 /4) < %} coming from Proposition the quantity

kh(0 1,r=6Qe—¢hr(0) k
E|1p; 008,,,)<r€’ O, <A1/2 np-" e ) ]

1/p

_ —thy k
< P[DB(OvaBl/4) < T‘é]l/qE |:67thr(0)uﬁ (A1/2 N P}%’r £Q—¢h (0)) p:|

decays superpolynomially fast in r, by using Hélder’s inequality with % + % =1.

From now on, we truncate on the event {Dj;(0,0B),4) > 7%} and we want to bound from above
h

k kh (0 1,r78Q —hr(0)\ K
T ’YQE |:le§h7.(0)7‘§Q+6S16’y ( )/'L;L <A1/2 NP " € ) .

By Proposition since Aj/5 C Bio(0) and h,(0) is independent of h|p, by writing Chs =
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kv — Q + ag for some small ag, we get

& kb (0 1,r—€Qe—¢hr(0)\
rMYE [1eéhr<0>,&Q+6<1€7 ( )M;} <A1/2 N Pﬁ
< Cpr*1Qp—crsQR [16 S QM<1ewkhr(0>efck,5hr(0>}

= CkTngQa‘;]E [leghr(o)rsmaSle(Qia‘S)hT(O)} .

Furthermore, since

E [165’”(0)7“5@“<1€(Q_a6)hT(0)} <E [e(Q—aa)hr(O)} ;

by a Gaussian computation we get
E [Mh(31(0; Dp) N Ar/z)k} < Gy @5,

for some arbitrarily small (s.

Furthermore, note that when one replaces h by h + alog|-|~! for a < Q, we get
1 )2
E [:thralogH*l(Bl(O; Dh+alog|-\*1) r_1"47’/2)]C < CkTQ(Q @)+ (335)

Indeed, on A, /9, alog |- |~ is of order —logr + O(1) so the volume term contributes an additional
r~k7®_ Furthermore, by monotonicity, we can replace the intersection of the unit D, +alog||-1"
metric ball with A, /; by an order 8% Dp-metric ball intersected with A, /2. Then, instead of using
B1(0; Dp)NA, 5 C P,:’l NA, 2 at the beginning of the proof, we use B,.a¢(0; D) N A, /9 C Pg”ﬂa& NA, /.
Then we note that the term 7¢€ in is replaced by 7¢(@=®)  Therefore, follows by replacing
Q@ with @ — a.

We can conclude as follows. Set V" := p, ., log |-~ (B1(0; Dyt q10g |-+ N Ar)). By monotone

convergence,

n k
E [Nh-l—alog]-kl(Bl(O;Dh+alog|-|*1) mD)k:| = lim E (Z V;?)
1=0

n—o0
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We introduce some deterministic A > 1 to be chosen. By Hoélder’s inequality we get

k k—1

n k n
(ZVQ> (ZWJJ?A_Z) S (ZA’“‘(@?)’C) (ZA>
o =0 =0 =0

Taking expectations, and using the bound (3.35)), we get, uniformly in n,

n k
E (Z V)

=0

IN

k=1 o
()7 S e
k i=0

Taking A close enough to one such that Ako=3(Q-)*+85 1, this series is absolutely convergent, as

desired. O

Lemma 5.24 (Large annuli). Let h be a whole-plane GFF such that hy1(0) = 0. Then, for a < Q,

E [Mh+alog|~\*1(81(0§ Dh+alog|~\*1) ale \ ]D))k] < 00.

Proof. The proof uses the proxy estimate and a decomposition over annuli with a scaling argument.

This is similar to Lemma We point out here only the main differences with the proof of this

lemma.

Write Dy, (0, 0Bg4(0)) =: RQethn/40) X g, Since By(0; Dp) N Ag C Py>' N Ag

Elpn(B1(0; Dn) N AR)*] < E[lp, 0,085, 0)<1#n(Pr " N AR)*]

R7€7§hR/4(O)

kvhg4(0 ’
ehrhryal ):U’h*hR/AL(O)(Ph—hR/‘l(O) N 4r)]

= E[lRéQe‘EhR/‘l(O)XRgl
We truncate again with 1y, - p-s and 1x, - p-s. Because of the superpolynomial decay of P(Xg <
R7%), the term associated with the former truncation is negligible compared to the other one.
Furthermore, since we will have some room at the level of exponent, we will simply assume that

0 = 0 for the remaining steps. By using that h — hR/4(0))|AR/4 ,x(0) 18 independent of hg/4(0) and

that the proxy Pf "N A, is measurable with respect to hla,, /a2 We get by scaling,

R,e MR/ k
E(lRthR/4(O)§1Mh—hR/4(0)(Ph—hR/4(O) NAR)")

—&h (0) 5
k kvhp,4(0 le “'R/4TR=EQ k
= RMCE( g g a0 €750 g (P N ADF)
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At this stage we use the estimate from Proposition [5.18 Therefore, we compute

Rk’YQE(lh ()< QlogRek’YhR/4(0)e—ck(hR/4(0)+Q10gR))
Rr/4(0)<—

— RFQo—ckQlog R (1hR/4(0)§—Q log RE

QhR/4(0>>

and by using the Cameron-Martin formula we get

Rk'erfcleogRE ( QhR/4(O))

Lhg 4(0)<—Qlog RE

2
~ RQQR%E (1hR/4(0)S*QlOg RthR/‘*(O)i%QQ log R/4)

2
~ R29P (hp4(0) < —2Qlog R) ~ R~

where Ar ~ Bp if Ap/Br = R°"). So this gives

The rest of the proof, namely taking into account all the annuli contributions and using Hélder

inequality, is the same as the one of Lemma ]

Proof of Proposition[5.8 Let h be a whole-plane GFF such that h1(0) = 0 and fix a < Q. The

proof follows easily by writing

Nh+alog\-|_1(81(0; DthalogH_l))

= Nh+ozlog|‘\—1(Bl (O§ Dh+o¢log|~\—1) N D) + Hh+o¢10g|~|—1(Bl (0; Dh+a10g|~|—1) ncC \ ]D))

and using the inequality (z + y)* < 2871 (z*F 4 4/*) together with Lemma and Lemma O

Lemma 5.25 (Upper bound for small metric balls). Fore € (0,1), k > 1, there exists a constant

C e such that for all s € (0,1),
Elpin(Bs(0; Dp))"] < Cpes™*

Proof. The proof is very similar to the one of Lemma therefore we omit the details and
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just provide the differences. By replacing 1 by s in the proof, we get E[uy,(Bs(0; D) N A,)F] <

2
C’kskdv_cwr% where ¢, = %Q. By using Holder’s inequality, we get E[uy(Bs(0; Dy) N A,)F] <

c

_y @2
C,zp s"D =% 1% . We then take p such that ¢y /p < € and the rest of the proof follows the same line
as those of Lemma [5.23] ]

Proofs of the intermediate lemmas for Proposition [5.18

We recall here the definition of the event Esjs (recall the definition of 9B in (3.28). It is given

by the following criteria:

1
1. For all £ > 0, the annulus crossing distance of B\0.99B is at least M—€e—€7" o=6QL et o

for all B € B with radius e ¢,

2. for all integers £ > ¢' > 0, for all B € B of radius e =2, we have e *supg,p |Vr | <

03+% 1 log M,
3. for all £> 0 and for all B € B of radius e~2, §, . ¢ < €210 4 log M,

4. and [l — hll = llglly < log M.

Proof of Lemma[5.19. We prove here that for any k-tuple of points K = {z1,..., 2z} C D we have

EsarN{z e P foralli=1,... k}

C{Yy+z<Qm+ 8k2(m%+6 4 log M) for each vertex (S, m,,n) of Th-({$})}.
Fix K and consider any vertex (S,m,,n) of T»({¢}). Recall first that by (3.17),

=0 = bm,_y.m,(Left(S;)), (3.36)
=1

where we write (S;, m;,1;,n;) for the path from the root (Si,mi,%1,m) to (Sp,Mp, Yn, ) =
(S,m,1,n). The proof is to compare a circle average around z € S (which can be bounded since

—&z . . . . . . —&z
z € P,i’e ) with the right-hand side above. Pick any point z € S. Since z € Pé’e

Y

Dy (2,0Bc-m-1(2)) < Dy(2,0B14(2)) < e s,
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m

and we can find a ball B € B, centered at a point in e™™ *Z? with radius e~ 2 whose boundary

separates z from 0B,-m-1(z). Hence the annulus crossing distance of B\0.99B is at most e~¢. By

Property [I we have,

M€ 6D —€Qm+2) efonh < —&x

or equivalently

h+a < Q(m+2)+ (m+2)2" 4 log M. (3.37)
OB

Now we lower bound fa g hin term of by using properties and |4 of Es pr.

e By Property [ we have

h Z ][ d)mi, ,Mmy; +][ ¢m,oo - log M.
]éB ; oB ! 0B

e For each i, notice that z € S;, and so d(z, Left(S;)) < eke™™i by (]3.16). Consequently, by

Property [2| we have for each i =1,...,n
145
][ G vms = Doy 1 ms (Lef6(S:)) — dkm?2 " — 4k log M.
oB

e By Property [3] we have

Combining these yields (see Remark [5.11])

][ h>" Gy m, (Left(S:)) — 6k>m2*0 — 6k log M = ¢ — 6k>m2*° — 6k2log M.
OB i=1

1
Together with (3.37)), this gives ¢ + 2 < Qm + 8]{:2(m§+‘S + log M) and concludes the proof. O

Proof of Lemma[5.20. This is an application of the Cameron-Martin theorem. We outline here the
main idea, assuming for notational simplicity that the function f depends only on ¢, 21, ..., zx. The

argument works the same way for f depending also on (¢p)n>0.

Assume first that f is continuous. Fix k > 2, § > 0 and set Cs := {(z1,...,2;) € Blo(O)k :
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min;<; |2 — z;| > 0}. Then, by using Fatou’s lemma and the Cameron-Martin formula, we have

E / f((z)u Zla‘--7zk‘)u¢(d21)...,u¢(d2’k)]
B10(0)kﬁ05
¢ e'Yd)s(Zl) e'Y(ZSE(Zk)
<l i e . .
< 111;1_)161 E /Bw(o)’mos [, 21, ’zk)E[eV%(zl)] Rerbe(on)] dzy 2L

= [11min
e—0 Bi10(0)*NCj 6_§ Z#j Cov (e (2i),be

E [ewzm%(m—f Var(Lick 9:CG) (g 2, )
(25))

—liminf/ le...de
0 JB1o(0)*nCs g% Lin Covide(z1).e(25))

E | f(¢+7> Cov(d(), be(2)), 21, -, )

i<k

:/ dzy...dz E f(¢—|—fyZCOV(fﬁ(')y(Zs(Zi))aZl’“"Zk)
Bi10(0)*NCs ¢~

g iy Cov(e(2:),0(25)) i<k

using dominated convergence theorem in the last equality (the term }-,,; Cov((2i), ¢(2;)) is

uniformly bounded for (z1,...,2,) € Cs). The Cameron-Martin formula is used by writing

v Z Pe(zi) = (¢, ’YZ Pe,z;)

i<k i<k

where p. ,, denote the uniform probability measure on the circle 0B.(%;). Note that the above
inequality was only shown for continuous f, but we can approximate general bounded nonnegative
measurable f by a sequence of continuous f;,, which converge pointwise to f, and apply the dominated

convergence theorem. Thus the above inequality holds for general f.

Finally, letting 0 going to zero and using the monotone convergence theorem, we get

E / £ 21see s 2 o(den) - pp(dzn)
B1Q(O)k

72
g/ e’ iz CVOENENE | f(¢+ 4> Cov(d(), d(2)), 21, -, 4) | dan ... dz.
Blo(O)k

i<k

This concludes the proof.

Proof of Lemma[5.21]. Tt suffices to show that for some constant C', for each z € K and each
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i=1,...,n, writing w = Left(.S;) we have

<C.

|Cmi71,mi(z7 w) - (ml - mifl)lzeSi

If z ¢ S;, then by definition d(z,w) > d(z, S;) > e~ ™i-1. This is larger than the range of dependence

of G, 1 mi» 50 Crmy_ m, (2, w) = 0 as desired.

Now suppose z € S;. By (3.16]), we know that S; is contained in a ball of radius 6ke™""; by
translation invariance we may assume this ball is centered at the origin. On Bg(0) X Bgi(0), the
correlation of @p o is Cpeo(+, ) = log| - — - |71 + ¢(- — -) for some bounded continuous ¢q. Thus, by

scale invariance, we can write

sz;hmi(zv w) = Covmi*mi—l (emi_lzv emi_lw)

= log [e™i"1(z — w)| ! — Cri—my 1,007z, ™= 1w) + O(1).
But again by scale invariance we have
Cmi*mi—hOO(emi_lzv emi_lw) = CO,OO(emiza emiw) = log |emi (Z - w)|_1 + 0(1)

Comparing these two equations we conclude that Cy,; | m,(z,w) = m; —m;—; +O(1), as needed. [
Finally we check the bound on the regularity event E.

Proof of Lemma[5.24 We prove here the estimate of the occurence of the event Ej p;.

For all integers £ > ¢ > 0, for all B € 9B of radius e~*~2, the probability that e~ supg 5 |V ¢| >
g3 +9 +log M is < Ce—cllog M)? g—ct!+20 by Lemma Therefore, the probability that Condition

does not hold is < Ce—¢(log M)? S s0 Pe2le—ct' T

For Condition [3 for a B € B of size e=¢~2, by scaling fa 5 Pt,00 is distributed as fa Bo $0,00 Where
By is of size e and this is a centered Gaussian variable with bounded variance. Therefore, the
probability it is at least JEALIE log M is less than C’e‘c“%MHOg M) < Cect'™ g=cllog M) For each
¢, there are O(e?*) balls of size e=*~2 in B, hence the probability that Condition [3{ does not hold is

_ 2 _ap1426
less than Ce—cllogM)” S~ e2le—cl™™,
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For Condition 4, since ¢ — h is continuous by Proposition [5.9} and applying Fernique’s theorem,
the probability that ||¢ — hllp < log M occurs is > 1 — CecloeM)* " For Condition [1} we use

Proposition [5.6| and again a union bound. O

5.4 Negative moments

In this section, we prove the following lower bound on the LQG volume of the unit metric ball.

Proposition 5.26 (Negative moments of LQG ball volume). Let h be a whole-plane GFF normalized
so h1(0) =0. Then
E [pn(B1(0; Dp)) 7] < oo for all p > 0.

This result also holds if we instead consider the LQG measure and metric associated with the field

ﬁ:h—alog|-\foroz<Q.

In Section we prove the finiteness of negative moments of 1, (B1(0; DP)), the unit ball with
respect to the D-internal metric DY. This immediately implies Proposition since B1(0; DY) C
B1(0; Dy). In Section we bootstrap our results to obtain lower bounds on p,(Bs(0; Dy,)) for

s € (0,1); these lower bounds will be useful in our applications in Section

5.4.1 Lower tail of the unit metric ball volume

The goal of this section is the following result.

Proposition 5.27 (Superpolynomial decay of internal metric ball volume lower tail). Let h be a
whole-plane GFF normalized so hi(0) = 0. Let DE D x D — R be the internal metric in D induced
by Dy, and B1(0; DY) C D the DP-metric ball. Then for any p > 0, for all sufficiently large C > 0
we have

P [uh(Bl(O; DYy >t >1-c*

This result also holds if we instead consider the LQG measure and metric associated with the field

ﬁ:h—alog|-\fora<Q.

Let N > 1 be a parameter which we keep fixed as C' — oo (taking N large yields p large in
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Proposition [5.27)) and define
1
ko = {NlogCJ ) k1 =|NlogC|.

Let P be a D;-geodesic from 0 to 9Bk, (0). See Figure (left) for the setup.

Proof sketch of Proposition[5.27. The proof follows several steps. Each step below holds with

high probability.

e We find an annulus B,-x+1(0)\B,.-x(0) with & > kg not too large, such that the annulus-
crossing length of P is not too small. This is possible because the Dj-length of P between
OB,-x,(0) and OB,k (0) is at least C~# for some fixed 8 > 0. We conclude that the circle

average %e—k(O) is not small (%e—k > —logC).

e We find a Dp-metric ball which is “tangent” to 0B,-x(0) and 0B,-x-1(0). Then, by Proposi-
tion , this metric ball (and hence B;(0; D% )) contains a Euclidean ball B with Euclidean
radius not too small (say e~(+OF for small ¢ > 0). Since h,—«(0) is not small, neither is the

average of h on 9B (i.c. JCBBE 2 —logC).

e Finally, we have a good lower bound on y7(B) in terms of the average of h on OB , so we find
that B has not-too-small LQG volume. Since B lies in B;(0; D%) ), we obtain a lower bound
w5, (B1(0; ng)) > C~Power This last exponent does not depend on N, so we may take N — oo

to conclude the proof of Proposition [5.27

We now turn to the details of the proof. Let Ly be the Dr-length of the subpath of P from
0 until the first time one hits 0B.-«(0). We emphasize that Ly is not the D; distance from 0 to
0B,-«(0).

Lemma 5.28 (Length bounds along P). There exist positive constants ¢ = c(v,«) and B = B(vy, )
independent of N such that for sufficiently large C, with probability 1 — O(C~N) the following all
hold:

Ly, > CP, (4.38)
Ly, < C P71 (4.39)
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L1 — L < Cexp (—k&(Q — ) + Ehe-x(0))  for all k € [ko + 1, k1] (4.40)

Proof. We focus first on (4.38]). Using Proposition to bound the annulus crossing distance of

B, -1, (0)\B,-k-1(0), we see that with superpolynomially high probability as C' — co we have

(Q@-a)

3
Ly, > C! (e*ko) exp(Eh, o (0)). (4.41)
Note that since Var(h, -, (0)) = ko < N~ 'log C, we have

(logC)2 —cN
p _ < ex
[Eh,—x,(0) < —logC] < e p< 22N T 1og C C

for ¢ = 1/(2¢?). Notice that when we have both (4.41]) and {¢h,-x, > —log C}, then
Ly, > c-1. 0 ¢@Q-a)/N -1 > B

for the choice B = 2 + £(Q — «). Thus ([4.38)) holds with probability 1 — O(C~V).

To prove the upper bound (4.40)), we glue paths to bound Lj_1 — L. By Proposition and a

union bound, with superpolynomially high probability as C' — oo the following event F¢ holds:

e For each k € [ko+1, k1], there exists a path from 0B,-x+1(0) to 0B,-x-1(0) and paths in the an-
nuli B, »(0)\B,—x-1(0) and B,—x+2(0)\B,—x+1(0) which separate the circular boundaries of the

annuli, and such that each of these path has D;-length at most %C’ exp (—k&(Q — @) + Eh—x(0)).

Since the segment on P measured by Lj_1 — Lj is the restriction of a geodesic which crosses a

larger annulus, by triangular equality, (4.40) holds on F¢.

Finally, we check that for our choice of 3, the inequality (4.39) holds with probability 1 — C~¢N
(possibly by choosing a smaller value of ¢ > 0). By the triangle inequality, L, is bounded from
above by the sum of the D;-distance from the origin to dB,-,+1(0) plus the D;-length of any

circuit in the annulus B,—&,+1(0)\B,-#, (0). Hence, using the circuit bound on E¢, we have

Liy < D3(0,0B, 5,41(0)) + CeM8@0) &l ),
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By scaling of the metric, D;(0,0B,-k,+1(0)) is bounded from above by etk +10) (=i +1)EQ-a)y
where Y is distributed as D;(0,0B1(0)). Now, since k; = [NlogC| and h -, (0) has variance

Nlog C, by a Gaussian tail estimate we get
1 —cN
P |h -k (0) > Zkl(Q —a)| <C .

Furthermore, since Y has some finite small moments for v < @ (by [39, Theorem 1.10]), the Markov’s
inequality provides

P [ve ihe@-e) 5] < oo,
Altogether, we obtain ([#.39)) with probability 1 — O(C V). O

As an immediate consequence of the above lemma, we can find a scale k € (ko, k1] such that
B1(0; D%) ) intersects 0B, (0), and the field average at scale k is large. We introduce here a small

parameter ¢ > 0 which does not depend on C, whose value we fix at the end.

] . D ; ;. Q
Lemma 5.29 (Existence of large field average near 5;(0; D> )). Consider ¢ and 8 as in Lemma .
With probability 1 — O(C~N), there exists k € [ko, k1] such that D;(0,0B,-x(0)) < 1 and

—k(Q = @) + e (0) 2 —€7H(B+2)log C; (4.42)

moreover, there exists a Buclidean ball B,(z) with r = e %9 and 2 € rZ? such that B,(z) C

B, x(0)\B.-x-1(0) and B,(z) C B1(0; Dﬂg).

Proof. To prove (4.42)), we first claim that when the event of Lemma holds, there exists
k € [ko +1,k] such that Ly, < 1 and Ly_; — L, > C7571. Let k, be the smallest k € (ko, k1] such

that Ly, < C~”, then

k1
Z Ly-1—Ly=1Ly,_1— Ly, >CF —CcF L.
k=k,

Since the LHS is a sum over at most N log C' terms, we indeed find some index k € [ky, k1] such that

-8 _g-8-1
Ly1—Lp>——o— —— >C P L,
bl b= NlogC ~
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For this choice of k, we have D;(0,0B,-x(0)) < Ly < Ly, < C~P <1, and by (4.40) we have (4.42)

also.

Figure 5.2 — Left: Setup of Lemma[5.28 Given C' that we eventually sent to oo, we take the circles
with radii e %0 ~ C~1/N and e %1 = C—N, and draw all circles with radii e % with kg < k < ky. In
Lemma we follow the geodesic P from the outer circle to the inner until we find an annulus on
which the geodesic segment is long. Right: Ilustration of the second assertion of Lemma We
find a Dp-metric ball U C B;(0; D%) such that U is “tangent” to 0B, and 0B, x-1, then apply

Proposition [5.7] to find a Euclidean ball B,.(z) C U.

Now we turn to the second assertion of the lemma; see Figure (right). Let P' be a Dj-
geodesic from 0 to dB,(0). By the continuity of D;, we can find a point p € P’ in the annulus
B (0)\B.—x-1(0) such that Dy (41)a (P, 0Bc-k(0)) = Dpi(kt1)a(p, 0Be-+-1(0)); let U be the

Dy, 1 (k41)a-ball with this radius centered at p.

We claim that U C By (0; D%). We assume that a > 0 (the other case is similar). Since

(k4 1)a > alog|-|™' > ka on B,—«(0)\B,-r-1(0), we have for all w € U that
D]]g(p,w) < egaD?Jrak(P,w) < egaD?-mk(p, 0B.-x(0)) < eéaD%(pv 0B.-x(0)),
and consequently
D2(0,w) < DF(0,p) + D7 (p,w) < D2(0,p) + D7 (p, 0B,-1(0)) < €*D2(0,0B,-«(0));

this last inequality follows from the fact that p lies on P’ so D%’ (0,p) + D% (p,0B.-x(0)) =
D%’(O, 0B,-«(0)). Since D%(O,@Befk (0)) < Ly, < C~#, we conclude that D%’(O, w) < ef*CP < 1,
and hence U C B;(0; D%).
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Since U is a Dy, (p41)o metric ball, it is also a Dy metric ball. Furthermore, since diam(U) €
(%e‘k,Ze_k), Proposition gives us a Euclidean ball of radius e #*(1+¢/2) in U, and hence a
Euclidean ball B, (z) C U with z € rZ*. Since U lies in B, (0)\B,-+-1(0) and in By (0; D?), so
does B,(z), so we have shown Lemma[5.29] O

Finally, we need a regularity event to say that the u;-volumes of Euclidean balls are close to
their field average approximations, and that the field does not fluctuate too much on each scale.
The bounds in the following lemma are standard in the literature. We introduce a large parameter

q > 0 that does not depend on C, and fix its value at the end.

Lemma 5.30 (Regularity of field averages and ball volumes). Fiz ¢ € (0,1) and ¢ > 0. Then for
2
all sufficiently large C' > Cy(q, ¢, N), with probability 1 — C—CGr=2N-1) ¢pe following is true. For

each k € [k, k1], writing r = e *+9 | for all 2z € rZ? such that B,(z) C B,—«(0)\B,—«-1(0) we have
[hr (2) = he-1(0)] < kqC (4.43)

and

p5 (Br(z)) > C~ 19 exp(vhy (2)). (4.44)

Proof. By standard GFF estimates, we have Cov (h,(z), h.-x(0)) = k+ O(1), Var h,(z) = —logr +
O(1)=k(1+¢)+O(1) and Varh,x(0) = k+ O(1). Consequently,

Var (1, (2) — he#(0)) = Ck + O(1),

and hence by the Gaussian tail bound,

a*ck

P [lhy(2) = hes(0)] < k] = 1 — O(e=*5").

Taking a union bound over all O(e?*¢) points in rZ% N B,—«(0), then summing over all k € [ko, k1],

we see that the probability (4.43) holds for all £ and all suitable z is at least

k1
1-0 Z o2kC o a*Ck/2 >1-0 (N log C - erlCe_qZCkO/Q) >1-— C_C(%_QN_I).
k=ko
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Now, we establish that for each fixed choice of k, z, the inequality holds with superpoly-
nomially high probability as C' — oo (then we are done by a union bound over a collection of
polynomially many k, z); since —alog| - | — ak is bounded on the annulus, it suffices to show
with h replaced by h + ak (or equivalently by h, since both sides of the equation scale the
same way under adding a constant to the field). By the Markov property of the GFF (Lemma [5.5)
we can decompose h = h + ﬁ, where b is a distribution which is harmonic in Ba,(z), and 1 is a zero

boundary GFF in the domain Bs,(2); moreover b and h are independent. We can then write

1 (By(2)) > &1 ™50 01 (B, (2)

_ (2T)7Qe'yhr(2)e—’vﬁr(z)e’7 infp, () h—’vh(z)ug(B

(0)),

where g := /B(QT‘ - +2z) has the law of a zero boundary GFF on D. (This follows from an affine

change of coordinates mapping Bz,(2) + D; then by the coordinate change formula ji; (B, (2)) =

(2r)79pg(B1(0)).)

1

Since ﬁr(z) is a mean zero Gaussian with fixed variance, and by the quantum volume lower
bound (2.4), we have e 1hr(2) > C~1/3 and ug(B% (0)) > C~'/3 with superpolynomially high
probability in C'. Combining these bounds with the above estimate, with superpolynomially high

probability in C' we have
(B (2)) = (2r)10C 237105, (2) h=70(2)
Hence we are done once we check that with superpolynomially high probability in C,
eV infp,(:) h=70(2) > o—1/3, (4.45)
Since h =h + h and b,ﬁ are independent, for x, 2’ € B,(z) we have
Var (h(z) — h(z')) < Var (hy(z) — hy(2')) = O(1).

Moreover, by the scale and translation invariance of the GFF modulo additive constant and the fact

that b is continuous in B%r(z), we know that h(z) —infp ;)b > —oo and has a law independent of
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r, 2, so by the Borell-TIS inequality we see that for some absolute constants m, ¢, we have
P h(z) — in(f)b >u+m| <e ™ forall u>0.
Br(z

This immediately implies (4.45)). Thus, for each fixed choice of k, z, the inequality (4.44]) holds with

superpolynomially high probability as C' — oco. Taking a union bound, we obtain (4.44)). O

Proof of Proposition[5.27. Let ¢, 8 be as in Lemma [5.28] We will work with parameters N, ¢, ¢, and
choose their values at the end. Assume that the events of Lemmas and hold; this occurs

2
with probability at least 1 — C—¢N — C—CGN=2N-1) Let k, r, and B, (z) be as in Lemma [5.29

We now lower bound the quantum volume of B,(z). By (4.42)) and (4.43]), we see that

9 exp (’yﬁ,{z)) > exp (—7kQ(1 + ¢) + vhy(z) + yak)
> exp(—Ck(Q + q) — vk(Q — ) + vh—x(0))

> exp(—7Ck(Q + q))C D)

> 0N @+ ¢ (5+2)

The last inequality follows from k& < k; = |NlogC|. Choose ¢ = N3 and ¢ = N~—*. Then by the

above inequality, (4.44)), and B,(z) C B1(0; D%), we see that for a constant 5’ = 3'(y) > 0 we have
15, (B1(0; D2)) > pij(By(2)) = C~7.

2
Since this occurs with probability 1 — C—<N — C—¢Ex—2N-1 =1 — O(C~*N), and N can be made

arbitrarily large, we have proved Proposition O

5.4.2 Lower tail of small metric balls

Using Proposition and the scaling properties of the LQG metric and measure, we can easily
prove a similar result for metric balls centered at the origin of all radii s € (0,1). We emphasize that

in the following proposition, we are considering the Dp-metric balls, rather than Dg—metric balls.
Lemma 5.31. Let h be a whole-plane GFF normalized so hi1(0) = 0. For any p > 0, there exists
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Cy, such that for all C > C), and s € (0,1), we have
P | pn(Bs(0;Dy)) > CLsh | >1—C7P.

Proof. The process t — h,-:(0) for ¢ > 0 evolves as standard Brownian motion started at 0. Fix

s € (0,1) and let T > 0 be the first time ¢ > 0 that —Qt + h,—(0) = £ "1logs. Notice that

h(e*T') +Qloge T = (h(efT') - he_T(O)) — QT + h-1(0)

= (h(e™T") = he-7(0)) + & log s.

By Lemma conditioned on T', we have (h(e=1-) + Qlog e_T)’D 4 (h+¢ 1 log s)‘D where 7 is a
whole-plane GFF normalized to have mean zero on 0ID. Couple these fields to agree. By the Weyl
scaling relations and the change of coordinates formula for quantum volume and distances, and the

locality property of the internal metric (Axiom , we have the internal metric relation

Th, — - D D
D Pz e Tw) = Dﬁ—&—f*llogs(z’w) = sD; (2, w)

and the volume measure relation

,T_)

Mh(e = Mﬁ—i—f—llogs(.) = sdﬂ/:uﬁ(')'

Thus we can relate the quantum volume of the internal metric balls Bs(0; DZ_TD) C e D and
By (0; D%’):

e T
Hh (BS(O; Dh D)) = Sdﬂ/'u’ﬁ(Bl(O; D%+§—1log8))’

and consequently we have
{in(B,(0: D5 ")) = €71t b = {115(81(0: D2)) = €71}

Since pup(Bs(0; Dp)) > pun(Bs(0; D{TD)), our claim follows from Proposition m O
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5.5 Applications and other results

5.5.1 Uniform volume estimates and Minkowski dimension

In this section, we prove the remaining assertions of Theorem Namely, the Minkowski
dimension of a bounded open set S is almost surely equal to d, and for any compact set K C C

and € > 0, we have, almost surely

s(z; D .
sup sup W < oo and inf

s€(0,1) z€K s s€(0,1) zeK

o Pr(Bs(z:Dn))

> 0.
gdyte

Since the whole-plane GFF modulo additive constants has a translation invariant law, we can

deduce a version of Lemma for metric balls centered at z # 0.

Proposition 5.32 (Uniform lower tail for uy(Bs(z; Dp))). Let h be a whole-plane GFF normalized

50 h1(0) =0, and K C C be any compact set. For any p > 0, there exists Cp gk > 0 such that

sup P [,uh(Bs(z;Dh)) > C’_lsd”} >1-C"? foreach C > Cp .
s€(0,1),2€ K

Proof. Fix z € K. We can write h = h+ X where h is a whole-plane GFF normalized so ha (z) =0,
and X = hy(2) is a random real number. On the event {|X| < v~ 1log C} we have O~ <X < C,

SO

{n(Bu(z: Da)) < O3} = (71 (B, ex (2 Dp) < € Psh)
C {C_IME(BC—l/dVS(Z; Dy)) < C3sh YU {|X]| >~ log C}

= {5 (Bo-1/4y4(2; D3)) < CHC V)b U {|X]| > 4 log CF.

In the last line, the first event is superpolynomially rare in C' by Lemma and the second
because X is a centered Gaussian. Note that Var X = Var h;(z) is uniformly bounded for all z € K,

so the decay of the second event is uniform for z € K. This completes the proof. O

Similarly, we can bootstrap Lemma to a statement uniform for Djy-balls centered in a

compact set.
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Proposition 5.33 (Uniform upper tail for pup,(Bs(z; Dp))). Let h be a whole-plane GFF normalized
5o h1(0) = 0. For any compact set K C C, p> 0, € € (0,1), there exists a constant Cp g > 0 such
that

sup P {uh(BS(z;Dh)) < C’sdwfs} >1-C"" foreach C > Cp. k.
s€(0,1),2€K

Proof. We note that Lemma implies an upper bound version of Lemma (with an exponent of
d~ —e¢ instead of d, ), and we deduce Proposition in the same way that we obtain Proposition m
from Lemma [5.31] O

Before moving to the proof of the almost sure uniform estimate, we first prove volume bounds

on a countable collection of metric balls.

Lemma 5.34. For any e > 0 and bounded open set 2ID, the following is true almost surely. For all

sufficiently large m, for all z € 27™Z% N 2D, and for all dyadic s = 27 € (0,1] we have
sTEEM 5 1y (Bs(2;Dy)) > shteg—em,

Proof. The proof is a straightforward application of Propositions[5.33|and and the Borel-Cantelli

lemma. We prove the lower bound; the upper bound follows the same argument.

Pick any large p > 0, and let Cp op be the constant from Proposition Consider any m such

that 2°™ > C), ap, then for any z € 2D we have

P [,uh(l’)’s(z; Dy)) > st 2275 for all dyadic s € (0, 1]} >1—27m Z s,
dyadic s

Taking a union bound over all the O(2?™) points in 2772 N 2D yields

P [uh(Br(z; Dy)) > s9 27 for all dyadic s € (0,1] and z € 27™Z2 N QD}

> 1- 0@ Ay 3 g,
d

yadic s

For p large enough we have ep — 2 > 0, so by the Borel-Cantelli lemma, a.s. at most finitely many

of the above events fail, i.e. the lower bound of Lemma holds. The upper bound follows the
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same argument. O

With this lemma and the bi-Holder continuity of D), with respect to Euclidean distance, we can

prove the second part of Theorem [5.1

Proof of Theorem part 2. We first prove that a.s. for some random r € (0,1), we have

inf

0. 5.46
s€(0,r] 2€D stht¢ - ( )

We use the bi-Hélder continuity of Dj, with respect to Euclidean distance (see e.g. |39, Theorem
1.7]) and the Borel-Cantelli lemma to obtain the following. There exist deterministic constants

X, X' > 0 and random constant ¢, C' such that, almost surely,

clu —v]X < Dp(u,v) < Clu—v]X  for all u,v € 2D.

Moreover, Proposition and Borell-Cantelli yield that a.s. every metric ball B contained in
2D and having sufficiently small Euclidean diameter contains a Euclidean ball of radius at least

diam(B)2.

Consequently, for all sufficiently small s and any z € D, we have

< Cdiam(By)2(2; Dy))Y,

N »

and since any two points in By /o(w; Dy) have Dp-distance at most s, the bi-Holder lower bound
gives

cdiam(B,/5(2; D)X <s.

Since the ball By/5(2; Dp,) has a small diameter, it a.s. contains a Euclidean ball of radius at least
diam(B;(2; Dp))* > (5/2C)%/X hence contains a point w € 2~™Z? with m = [—% logy(s/2C)] <

—%10g2(5/20).

Thus, for a random constant ¢, for sufficiently small s, applying Lemma to m as above and
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dyadic s1 € (7, 5], we have
d _ s\dvte 1 5\ 2 3e
(Bujalow: D) 2 (B w3 D)) > 574 27em > ()70 ()% 2 et ¥,
Since w € By 5(z; Dp), by the triangle inequality we have B, y(w; Dy) C Bs(z; D), so

3e
pn(Bs(2; D)) > /s

Almost surely, this holds for all sufficiently small s > 0 and all z € D. Choosing € > 0 so that

€+ % < ¢, we obtain ([5.46)).

The supremum analog of follows almost exactly the same proof, except that instead of
finding a “dyadic” metric ball inside each radius s metric ball, we find a dyadic metric ball B (with
dyadic radius s; € [2s,4s)) around each metric ball B, then apply Lemma to upper bound
1 (B) (and hence pu,(B)).

Now, we extend ([5.46)) to a supremum/infimum over all s € (0, 1]. For any s € (r,1] and z € D,

we have

pn(Bs(z; D))
PR

pn(Br(2; Dy
> pn(Bs(z; Dp)) > Td”“w’

and noting that a.s. for sufficiently large R we have Dy, (D, 0Bgr(0)) > 1,

Nh(Bs(ZQ Dh))
gdr—¢

< =B (Br(0)) < oo.
This concludes the proof of the uniform volume estimates. O

Finally, we prove the statement from Theorem [5.1] about the Minkowski dimension of a set.

Proof of Theorem part 3. Consider any bounded measurable set S containing an open set and
fix § € (0,1). Let N2 be the minimal number of LQG metric balls with radius € needed to cover

the set S and denote by C. the set of centers associated to such a covering. Then, since

pn(S) < 37 mn(Bo(z: Dy)) < N mae (B (2 Dy),
lec. 2€Ce
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the uniform volume estimate and the fact that up,(S) > 0 a.s. imply that for every 6 > 0, we
have the a.s. lower bound liminf,_,q 11 r > dy — 6. Now, denote by M; S the maximal number of
pairwise disjoint LQG metric balls with radius € whose union is included in S. Denote by D, the

set of centers associated to such a collection of metric balls. Note that M > N5.. Therefore,

> > in(Be(2 Dy)) = ME min (B (2; D)) > N3 min o (Be(2; D))

2€D. #€De
from which we get the a.s. upper bound limsup,_,, llf)’g% < d + 4 by the uniform volume estimate
and the fact that py(S) < oo almost surely. Letting 6 — 0 completes the proof. O

5.5.2 Estimates for Liouville Brownian motion metric ball exit times

Liouville Brownian motion is, roughly speaking, Brownian motion associated to the LQG metric
tensor “e?(dx? + dy?)”, and was rigorously constructed independently in the works [49] and [11].
These papers consider fields different from our field ~ (a whole-plane GFF normalized so hq(0) = 0),
but their results are applicable in our setting. This can be verified either directly or by local absolute

continuity arguments.

Liouville Brownian motion was defined in [11,/49] by applying an h-dependent time-change to
standard planar Brownian motion. Letting B; be standard planar Brownian motion from the origin
sampled independently from h, we can define Liouville Brownian motion as X; = Bp-1(;) for ¢ > 0,
where F' is a random time-change defined h-almost surely. The function F'(t) should be understood
as the quantum time elapsed at Euclidean time ¢, and has the following explicit description. Defining

the approximation

t
Fe(t) = / 7’ /27he(Bs) g (5.47)
0
and writing Tg for the Euclidean time that B; exits the ball Br(0), the sequence F||g 1, converges
almost surely as € — 0 to F|jg 1, in the uniform metric [11, Theorem 1.2].

For a set X C C and z € C, denote by 7,(z; X) the first exit time of the Liouville Brownian
motion started at z from the set X. We discuss now the results of [49] on the moments of 7,(z; B1(2))

and of F'(t), i.e. the moments of the elapsed quantum time at some Euclidean time. These results
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are analogous to the moments of the LQG volume of a Euclidean ball (Section [5.2.3]).

Proposition 5.35 (Moments of quantum time [49, Theorem 2.10, Corollary 2.12, Corollary 2.13]).

For all ¢ € (—o0,4/7%), t > 0, the following holds,

E[7,(0; B1(0))?] + E[F(t)?] < oo.

Heuristically, the nonexistence of large moments is due to the Brownian motion hitting regions
of small Euclidean size but large quantum size. On the other hand, the random set B;(0; Dy,) in

some sense avoids such regions.

In this section we prove the finiteness of all moments of the LBM first exit time of B1(0; D),

which we abbreviate as 7, and discuss the moments of 73,(0; Bs(0; Dy)) for small s € (0,1).

Upper bound for LBM exit time of metric balls

Theorem 5.36 (Positive moments for quantum exit time of metric ball). Let h be a whole-plane
GFF normalized so h1(0) = 0, and consider Liouville Brownian motion associated to h. Let T be the

first exit time of the Liouville Brownian motion started at the origin from the ball B1(0; Dy,), i.e.

T=inf{t >0 : X; & B1(0; Dp)}.

Then

E[*] < oo  for all k > 0.

Proof sketch: In computing E[7*], by first averaging out the randomness of (B;)¢>0, we obtain an
expectation in h of an integral over k-tuples of points in B1(0; Dy,); this is similar to the integral in
Step 1 of the proof of Proposition but with additional log-singularities between these points.
Because the arguments of Proposition had some room in the exponents, the log-singularities
pose no issue for us, and we can carry out the same arguments from Section We will be succinct

when adapting these arguments.

Let 7, be the quantum time LBM spends in the annulus Agn := Ban(0)\ Ban-1(0) before exiting

B1(0; Dp,). As in [49, (B.2)], we have the following representation of E[7¥] for k a positive integer,
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which follows from taking an expectation over the standard Brownian motion (B;):>0 used to define

(Xt)i>0 (see (5.47)),

E[r}] =E [/(A . [z, o 20, R) {21, . 2 € B1(0; Dyy) bun(dz1) - --Mh(de)] , (5.48)

and where, writing to = 0 and zg = 0 for notational convenience, f is given by

1z . / k! exp Zk: |zi — zi—1|? (5.19)
1y« 9 <ky = X — LA S .
0<ti<<tp<oo (22T (t; — ti1) 2t —ti1)

X P [Blo,] stays in Bi(0; Dy) | h, By, = z; for i = 1,... k| dty ... dty.

The function f(z1,..., 2x) is an integral of the Brownian motion transition density at times ¢1, ..., t
times the conditional probability that the Brownian motion does not escape B1(0; Dp,). We will

need the following bound on f, whose proof is postponed to the end of the section.

Lemma 5.37. There exists a constant C' > 0 such that for all sufficiently large R > 0, on the event

{B1(0; Dp,) C Br(0)} we have
flz1, o0 2k, h) < C(logR)kg(zl,...,zk) for all z1,...,z, € RD,

where, recalling zy = 0,

k
g(z1,...,2K) = Hmax (—log|zi — zi-1],1).
i=1

Proof of Theorem[5.36. Our strategy is to fix some large R > 0 then truncate on the event EY, :=
{B1(0; Dy,) C Br(0)}. Subsequently, we show an analog of Proposition and use it to bound
E[rF1 ;] for all n. Combining these, we obtain a bound on E[7*1 gy Finally, we verify that P[ET]
decays sufficiently quickly in R, and we are done.

Step 1: Proving an analog ofProposition. Recall the definition P,:’d ={2€C: Dy(2,0B,4(2)) <
d} in . The argument of Proposition bounded

e—¢w
E [/(A ’ {21,z € ALV P Yup(der) - (dag)
1
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by using a Cameron-Martin shift (placing v-log singularities at each z; and replacing [ ] un(dz;)
by ], y |z — zj|_“y2 [[dzi), then using Proposition to bound the integral. Recalling Remark
5.17, Proposition can be proved even if the exponent 42 is made slightly larger. Any such
exponent increase will upper bound the log-singularities of g, hence we have the following analog of

Proposition [5.18

E

—é —Cp.sT
/(A )kg(Zh...,Zk;)]l{zl,...,Zk EAlmP}i’e }:U'h(dzl):uh<dzk)] 56 bl
1

Step 2: Bounding E[TﬁﬂE%] for each n. We start with n = 0. Using Lemma and (5.48]) (and

noting that B1(0; D) N A1 C A1 N Pé’l), we obtain that E[T(])CJ]_E%] is bounded from above by

(log R)*E

/(A " g(Zl, ceey Zk)]]-{251, cey 2k € Bl(oa Dh)}ﬂh(dzl) e Nh(dzk)] SJ (IOg R)k )

where the last inequality follows from Step 1. Likewise, building off of Step 1, similar arguments as

in Lemmas and yield

2
(log R)* 2~ FInlgaslnl £ < 0,

E [Tr’f]lE%} S Q2
(log R)* 2~z if n > 0.

for some arbitrarily small s > 0.

Step 3: Bounding the upper tail of 7. By Holder’s inequality (see end of proof of Lemma [5.23)), the

above bounds on E [T!f]l E;J yield
E [TkﬂEgJ < (log R)*.
By Lemma (see end of section) we also have for some fixed a > 0 that

P[(ER) < R
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Combining these assertions, we have
Plr >t SP[(ER)] +E [Tkn%} 7% < R 4 (log R)F t*

Taking R equal to some large power of ¢, we conclude that for all p < k we have E[TP] < co. Taking

k — oo, we obtain Theorem [5.36 ]

Proof of Lemma[5.37 We instead prove the stronger statement
k
fz1,.0 2k, h) < CH (log R —log|z; — zi—1])  for all zy,..., 2, € Aj.
i=1

We split the integral (5.49) into two parts (integrating over t; < R? and t; > R? respectively), and

bound each part separately.

There exists p > 0 such that the following is true: Let t > 1/k and consider a Brownian
bridge of duration ¢ with endpoints By, B; specified in . Then this Brownian bridge stays in
D with probability at most e Pt. If ¢, > R?, then there exists some i € {1,...,k} such that
ti—ti_1 > tp/k > R%/k, and so Bly,_, ;) conditioned on By, , = 2,1 and By, = 2; stays in RD with
probability at most e Pt/ kR? This allows us to upper bound the integral on the restricted

domain with t;, > R?%:

/’ k' dty ... dty Ezm—a1| p( )
0<t; <<t <oo (27)k/2 Hf:l(ti —ti 1) 2(ti —ti-1)  kR? z

k k
k! 1 i — 2z p
= % 2H/ — exXp <— — st dt =0 H(logR—log\zi—zi_l\) ,
(27r)/i:10 t 2t kR 41
by using the bound [;* e e~l/tdt < fl e~l/tdt + [ e “tedt 4 [dt < O 4 logx for x> 1 and a

change of variable.
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Now we upper bound the integral (5.49) on the restricted domain 0 < t; < --- < t), < R%:

k
k! |2 — zia|?
exp | = ST TEAT ) gy at,
/0<t1<---<tk<R2 (2m)*/2 [T (t; — tic1) < Z 2(t; — ti-1)

=1
k 2 k
k! R 1 ‘ZZ'*ZZ',1|2
< — _— =
—<27r>k/2£[1/0 texp( : >dt 0

where the final inequality follows from fOR2 e_a/gt% = fol 6_1/21“%—}—[1}%2&72 6_1/2“%“ < C+log R?a™2.

(log R —log |z; — zi_1])> ,
i=1

Combining these two upper bounds, we are done. ]

Lemma 5.38 (Polynomial tail for Euclidean diameter of B1(0; Dy)). Let h be a whole-plane GFF

with hy(0) = 0. Then for all a € (0,Q?/2), for all sufficiently large R we have
P[B1(0; D) C Bgr(0)] >1—-R™“.

Proof. Fix € > 0 small. By Proposition we have with superpolynomially high probability as
R — oo that

Dy (0,0Br(0)) > Dy(dBgy2(0), 0Bg(0)) > REQ)ehnO),

By a standard Gaussian tail bound we also have
—e)21
Plhr(0) > —(Q — &) log R] < exp <_(Q€;OgR> — p—(@-9?/2.

Altogether, we see that with probability 1 — O(R™(@~9)*/2) we have Dy (0,Bg(0)) > 1, as desired.
O

Lower bound for LBM exit time of metric balls

Theorem 5.39. Recall that T is the first exit time of the Liouville Brownian motion (X¢)i>o from

the LQG metric ball B1(0; Dy,). For all k > 1, we have

E[r*] < oc.

We now sketch the proof. We restrict to a regularity event on which annulus-crossing distances
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and the quantum time taken to cross an annulus are well approximated by field averages. We can
find a collection of annuli separating 0 from X.. Gluing circuit and crossing paths associated to
the annuli, we obtain a path from 0 to X,. Since the Dp-length of these is bounded from above
by a circle average approximation, the condition Dy (0, X;) = 1 gives a lower bound for a certain
sum of (exponentials of) circle averages terms. Raising the exponent by a factor of d, by Jensen’s
inequality, we get a lower bound for a circle average approximation of the quantum time spent

across these annuli. Thus 7 is unlikely to be very small.

Consider standard Brownian motion (By):>o started at the origin, and recall that Liouville
Brownian motion is given by a random time-change: X; = Bp—«(;), where the quantum clock F'is
formally given by F(t) = fot e"(Bs)ds (see (5.47)). Consider an annulus Apjer(z) with 0 & A, ,(2).
Define 7,.(z) to be the quantum passage time of the annulus. That is, for the case where the annulus
encircles the origin, writing ¢; for the first time By hits 0B, (z), and ty for the last time before t;
that By hits 0B, .(2), we set 7,(z) = F(t1) — F'(fo), and define it analogously in the case that the

annulus does not encircle the origin.

We need the following input, which can be seen as a variant of |49, Proposition 2.12] combined
with the scaling relation [49, Equation (2.25)] and which can be obtained by using the same

techniques.

Proposition 5.40. For any compact set K C C, there exists a random wvariable X > 0 having
all negative moments such that the following is true. For fized r € (0,1) and z € K such that

0¢& A, /er(2), the quantum passage time 7,.(2) is stochastically dominated by Qe () X .

As an immediate consequence of the r = 1 case of this proposition, we have the following.

Corollary 5.41. The event {X,; €D and 7 < C~1} is superpolynomially unlikely as C' — oo.

Similarly to Section [5.4.1] we set
k‘l = LN log CJ

Lemma 5.42. There exist y-dependent constants x,c > 0 so that the following holds. Consider the
event E¢ that each ball B -k, (2) included in 2D has quantum diameter at most 2e~X¥1. Then, E¢

occurs with probability at least 1 — e~ V.
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Proof. This is an application of the Holder estimate [39, Proposition 3.18] which implies that there

exist positive constants y, « such that, as € — 0, with probability at least 1 — &%,
Dp(u,v) < |u—vX, Vu,v € 2D with |u—v| <e.

Therefore, taking ¢ = e ¥, for 2 such that B, , () C 2D, for all w € B, &, (2), Dp(z,w) < e Xk

and the quantum diameter of that ball is bounded from above by twice this upper bound. O

We consider the grid Z¢ = ﬁe*klZQ.

Lemma 5.43. Consider the event Fo that for every point z € Zco N 2D, for all k € [0, k4],
the following conditions hold. There is a circuit of Dp-length at most e *Qefre—+()C in the
annulus A,-r-1 .- (2), the crossing length Dp(0B,-k-1(2), 0B.-k+1(2)) is at most e MQeth k()
T (2) = e KR ()01 and, finally, |hy-r(2) — hy-r+1(2)| < E1log C. Then, Fo occurs with

superpolynomially high probability as C — oo.
Proof. This follows from Proposition and Proposition together with a union bound. [

Proof of Theorem[5.39. We will show that P[r > C~!] occurs with superpolynomially high probabil-

ity. By Corollary and Lemmas and we see that the probability of {7 < C~! and X, ¢
D} U E¢ U F§ is at most C~N for some fixed c.

Now restrict to the event {X, € D} N Ec N Fo; we show that for some constant a not
depending on C, N we have 7 > C'~¢ for sufficiently large C, then we are done since N is arbitrary.
On this event the distances Dy(0,0B,-x (0)) and Dy (X,,0B,-k (X;)) are small, so we have
Dy(0B,-+,(0),0B, -1 (X;)) > % Let w € Z¢ be the closest point to X, and grow the annuli

centered at 0 and w until they first hit; let k. € [0, k1] satisfy 2e % < |w| < 2e7**!. By Lemma

[6.43] we get

T > Z 71 (0) + 7o (w) > C71 Z e Qe ek (0) 4 =k1Q ek (W)
kElks 1] K€k k1]

and, by taking an additional annulus crossing and circuit, using the circle average regularity between
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two annuli,

< Dp(0Bo-ky (0),0B,-1y (X7)) <1002 >~ e MQethei(0) 4 o=heQeCh i (),
€[k k1]

| =

Therefore, by raising the inequality above to the power d, and using Jensen’s inequality for the

right-hand side, as well as the lower bound for 7, we get

1 < (1002)%/{;?*1 Z k1R -1 (0) 4 o=k1Q 7R k(W) < (1002)%]{?7*107_

20y
ke[k*»kl]

hence 7 > C'~? for some fixed power a and C' large enough. Since N is arbitrary (« does not depend

on N), we conclude the proof of Theorem m ]

Scaling relations for small balls Finally we explain the behavior of small ball exit times. Recall
that 7,(z; Bs(z; Dp,)) is the first time that Liouville Brownian motion started at z exits the ball

Bs(z; Dh)

Theorem 5.44. Let h be a whole-plane GFF normalized so hi(0) = 0, and let K C C be any
compact set. For any € € (0,1), there exists a constant Cp. i so that for C > Cp,. i, for all

s € (0,1) and z € K we have
Plr(2; Bs(z; D)) < Csh 8] > 1 — CP, (5.50)

and

Pl (2; Bs(2; D)) > CLsh] > 1 — CP. (5.51)

Proof. We first discuss the proofs of (5.50) and (5.51)) for the specific case z = 0. For the z =0

upper bound, recall that we proved E[7,(0; B1(0; D;))*] < oo for all k& > 0 in Theorem by
adapting the proof of Proposition . An extension of these arguments like in Lemma yields
E[75,(0; Bs(0; Dy))*] < sF%—¢ with implicit constant depending only on k, e, and hence by Markov’s

inequality, for all s € (0,1) and sufficiently large C' that

P[5, (0; Bs(0; Dy,)) < Csh %] > 1 — CP. (5.52)
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For the z = 0 lower bound, Theorem@gives E[71,(0; B1(0; Dy))¥] < oo for all k > 0, and applying

the rescaling argument of Lemma then yields for all s € (0,1) and sufficiently large C' that

P[75,(0; Bs(0; D)) > C~1sh] > 1 — CP. (5.53)

Finally, the arguments of Proposition allow us to extend (5.52) and (5.53)) to (5.50))
and (5.51)). O

5.5.3 Recovering the conformal structure from the metric measure space structure of y-LQG

The Brownian map is constructed as a random metric measure space (see [75,/76]) and has been
proved to be the Gromov-Hausdorff limit of uniform triangulations and 2p-angulations in [73-75,/78].
The Brownian map was later endowed with a canonical conformal structure (i.e. an embedding
into a flat domain, defined up to conformal automorphism of the domain) via identification with
\/%—LQG [81-83,86] but this construction was non-explicit. The work of [60] gives an explicit way
to recover the conformal structure of a Brownian map from its metric measure space structure, and
their proof mostly carries over directly to the general setting v € (0,2), except for certain Brownian
map metric ball volume estimates of Le Gall |[74]. The missing ingredient for general v was exactly

the uniform volume estimates (|1.2])(cf. [60, Lemma 4.9]).

As an immediate consequence of and the arguments of [60] (see discussion before |60, Remark
1.3]), we obtain the following generalization of |60, Theorem 1.1] to all v € (0,2). Let h be a
whole-plane GFF normalized so hi(0) = 0, and write B%(0; Dy,) for the filled Dp-ball centered at 0
with radius R (i.e. the union of Bg(0; D) and all py-finite complementary regions). Let P be a
sample from the intensity A\ Poisson point process associated to up. We can obtain a Dp-Voronoi
tessellation of C into cells {H2},cpa by defining H} = {w € C : Dy(w,2) < Dy(w,z') V2 € P*}.
We define a graph structure on P* by saying that z,z’ € P* are adjacent if their Voronoi cells
H) H ;\, intersect along their boundaries, and define 9P* to be the vertices corresponding to Voronoi
cells intersecting the boundary. Let Y be a simple random walk on P started from the point whose
Voronoi cell contains 0, extend Y from the integers to [0, 00) by interpolating along Dj-geodesics,

and finally stop Y when it hits 9P>.
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Theorem 5.45 (Generalization of |60, Theorem 1.1]). As A\ — oo, the conditional law of Y given
(C,0, Dp, up,) converges in probability as A — 0 to standard Brownian motion in C started at 0 and

stopped when it hits OB%(0; Dy) (viewed as curves modulo time parametrization).

Here, the metric on curves modulo time parametrization is given as follows. For curves 7; :

[0,T3] = C (j =1,2), we set

d(m,n2) =1inf sup [n1(t) —n2(o(t))]
tel0,T1]

where the infimum is over increasing homeomorphisms ¢ : [0,71] — [0,75]. We remark that the
convergence in Theorem holds uniformly for the random walk and Brownian motion started
in a compact set, and moreover holds for a range of quantum surfaces such as quantum spheres,
quantum cones, quantum wedges, and quantum disks; see [60, Theorem 3.3]. Consequently, the
Tutte embedding of the Poisson-Voronoi tessellation of the quantum disk converges to the quantum

disk as A — oo (see the proof of [60, Theorem 1.2]).

Proof. Since we have the estimates ([1.2)), the general v € (0,2) version of [60, Theorem 3.3] holds.
In particular, Theorem holds if we replace the field h with that of a 0-quantum cone. By

comparing h to the field of a 0-quantum cone and using local absolute continuity arguments, we

obtain Theorem [5.45] 0

Notice that the construction of Y involves only the pointed metric measure space structure
of (C,0, Dy, up), so Theorem roughly tells us that we can recover the conformal structure of
(C,0, Dy, pup,) from its metric measure space structure. The following variant of |60, Theorem 1.2]

makes this observation explicit, resolving a question of [59].

Theorem 5.46 (Pointed metric measure space (C, 0, Dy, up) determines conformal structure). Let
h be a whole-plane GFF normalized so h1(0) = 0. Almost surely, given the pointed metric measure
space (C,0, Dy, pp), we can recover its conformal embedding into C and hence recover h (both modulo

rotation and scaling).

Proof. To simplify the notation, suppose the two-pointed metric measure space (C,0, 1, Dy, pp) is

given, then we show we can recover exactly the embedding of uj, in C (otherwise, one can arbitrarily
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pick any other point from the pointed metric measure space and use that in place of 1, and only
recover the embedded measure modulo rotation and scaling). Since pj (with its embedding in C)

determines h [14] and hence Dy, it suffices to recover py,.

Consider R large so 1 € By(0;Dp). In the same way that [60, Theorem 1.1] is used to
prove |60, Theorem 1.2], we can use Theorem to obtain an embedding of the two-pointed metric
measure space (B%(0; Dy),0,1, Dy, pp,) into the unit disk D with the correct conformal structure

and sending 0 to 0 and 1 to a point in (0, 1).

This is done by taking a A-intensity Poisson-Voronoi tessellation of (B%(0; Dy), 0,1, Dy, p1s), and
embedding its adjacency graph P in D via the Tutte embedding ®: let xy, ..., x, be the vertices
in P in counterclockwise order with x( arbitrarily chosen, and let zy (resp. z1) be the vertex
corresponding to the Poisson-Voronoi cell containing 0 (resp. 1). Define the map . P 5D
via ®*(z) = 0, ®(xo) = 1 and %’\(wj) = ¥™Pi where p; is the probability that Y hits 0P* at one
of the points xg, ..., z;, and extend ® to the rest of P> so it is discrete harmonic. Finally, define
P (2) = €®*(2) where 0 € [0,27) is chosen so ®(z) € R. Taking A\ — oo, the ®*-pushforward of
the counting measure on the vertices of the embedded graph normalized by A~! converges weakly in

probability to the desired conformally embedded measure. See [60, Section 3.3] for details.

Rescale this embedding (and forget the metric) to obtain an equivalent two-pointed measure space
(crD, 0,1, uf) with the LQG measure and conformal structure. That is, there exists a conformal
map ¢ : BY(0; Dy) — cgD such that ¢f(0) = 0, p®(1) = 1, and the pushforward (¢t)*uy, equals
u®. We emphasize that since we are only given (C,0,1, Dy, up) as a two-pointed metric measure
space, we know neither the embedding B%(0; Dj,) C C nor the conformal map ¢%, but we do know

cg and p®.

Now, by a simple estimate on the distortion of conformal maps |85, Lemma 2.4] (stated for the
cylinder R x [0, 27] but applicable to our setting via the map z — e~ *), we see that for any compact
K C C we have limp_, o0 sUp,c |07 (2) — 2| = 0 and limpg_,o0 sup,c i |(97)71(2) — 2| = 0. Thus, for
any fixed rectangle A, the measure of the symmetric difference 1, (AL ()71 (A)) converges to zero
as R — oo; this implies limg o0 | (A) — pn(A)| = 0. Since pft is a function of the two-pointed
metric measure space (C,0, 1, Dy, up), we conclude that pp(A) is also. Therefore the two-pointed

metric measure space (C, 0,1, Dy, ) determines p and hence h. ]
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5.6 Appendix

5.6.1 Proof of the inductive relation for small moments

Lemma 5.47. Recall v(r) and ug(r) from (2.5). The following relation holds.
P2 Z < > (4k) 7 Z)T_VQi(k_i)ui(4r)uk,i(4r). (6.54)

Proof. Set fi(z1,...2) == [L;; |z — zj]_Vz. Note that when max;; |z; — ;| < r, the k points are
included in B(z1,r) which itself is included in a ball of radius 47 centered at at point of rZ% N D.

Since fi is a function of the pairwise distance, which is translation invariant, we get

1r/2§maxi<j |z —2z5|<r

o licylzi — 27"

-2
<Cr / . L ja<maxic; |zi—z| (215 s 2i)d21 oo deg
4rD

le .. .dzk

vg(r) =

Then, take two points at distance r/2 in 4rD, say z and w among {z1, ..., 2z }. We cut k+1 orthogonal
sections of same width to the segment [z, w]. At least one should be empty and this separates two
clusters of points, I = {2p,,...,2p, } and J = {z4,,...,24,_,} for some 1 < i < k — 1. All points
between the two clusters I and J are separated by |z —w|/(k+1) > r/4k. We decouple fi(z1,. .., 2k)
for two clusters I and J of size ¢ and k — i by fi(z1,...,2k) < (4k)”2i(k*")r*72i(k*")fi(I)fk,i(J). In

particular, splitting over the possibles cases we get

_2224’?” P [ p () (D) de - de,

4rDF

where for each i, I ranges over all subsets of {z; ..., zx} with ¢ elements. This gives

r2 Z ( ) (4k) i 1)r772i(k7i)ui(4r)uk_i(4r).

and completes the proof. O
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5.6.2 Whole-plane GFF and %-scale invariant field

In this section we recall some properties of x-scale invariant fields and explain that the whole-plane

GFF modulo constants can be seen as a x-scale invariant field.

We will denote by S(C) the space of space of Schwartz functions and by L?(C) the space of
square integrable functions, on C. For f,g € L?(C), let (f, g) stands for the L?(C) inner product.

Furthermore, * denotes the convolution operator.

*-scale invariant field ¢ We introduce here the field ¢ = k>1 @k we work with in Section
The notation and definition are close to the one in 38, Section 2.1] and we refer the reader to this

Section for more details.

Consider k, a smooth, radially symmetric and nonnegative bump function supported in By /(26)(0),
such that k is normalized in L?(C). We set ¢ = k % k which has therefore compact support included
in By/.(0) and satisfies ¢(0) = 1. We consider a space-time white noise {(dz,dt) on C x [0, o0) and

define the random Schwartz distribution

L)

The covariance kernel of ¢ is given by E(¢(z fo %)% We decompose ¢ = Zk>1 Ok

e(k 1)

where ¢y () Jok (552) t_3/2§(dy, dt) and whose covariance kernel is given by Cy(z, z") :=

—(k=1)
o c(%)% Note that Cy(z,2") = C1 (e Dz, et~ z’) and that if |z — 2’| > e~ 1, Cy(z,2') =
0 hence ¢, has finite range dependence with range of dependence e~*. Note also that the pointwise

variance of ¢g, = 1<, @k is equal to n.

Lemma 5.48. There exists C,c > 0 such that for all k > 0, z > 0, P(e % |[Vo i, rg = z) <

Ce=, where S denotes the unit square [0,1] x [0,1].

Proof. This is essentially the argument as in the proof of Lemma 10.1 in [38] which we recall. By
Fernique’s theorem, P(||V¢i|g > z) < Ce=®”. Therefore, by scaling, P(e~* Vel ,—cg > x) <
Ce= for ¢ > 1. By setting X := e~ ¢ [V ell,-cg, by the triangle inequality and since e %S C e ts

for £ <k, e " |[Vooill,—rg < Do<ock e~*=0 X,. By inspecting the Laplace functional, and using
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that the X,’s are independent and identically distributed, we conclude the proof of the Lemma. [

Whole-plane GFF We explain here why [;° k(%)t*’/ 2¢(dy, dt) is a whole-plane GFF modulo
constants. Set ¢.(z) = [ jc (%7%) t73/2¢(dy, dt) and take f € S(C) such that [ fdz = 0.

-1

Writing C.(z) := fg c(%) dT =/ B ct(x)dt with ¢;(+) = ¢(-/t), we have

£

B((00)) = [ _1@)Ceo—niwedy = o [ Coli(€)Pe

CxC

where our convention for the Fourier transform is §(£) := [ g(z)e 7.

We compute the Fourier transform C.(£) = fa_l &(6)L = fa_l té(t€)dt and since ¢ = k x k,

€ t €

¢ = k2, then C.(§) = f;il th(t&)2dt = ||€|| 2 sz_f|1|”£” uk(u)%du. By monotone convergence, we get

(u)*dul f (€)|?dg

E (¢, f)7) = (13
R2

= (/0 uk(a >dﬂ)

Since k is radially symmetric and & is normalized in L?, by Plancherel’s theorem fooo ul%(u)2du = 2.

elel
|F(©)Pde.

Furthermore, by setting g(x f(C log |z — y|f(y)dy we get Ag = 27f and in Fourier modes,
—I€1I* §(&) = 27 f(€) hence, by Plancherel’s theorem,

_1 .
[, S@) (= or o =y s ddy = - / e — [, F©aee

/ €172 17 (€)2de.

Note that this term is finite because under the assumption [ fdz = 0, we have f(O) = 0 so the
above singularity at the origin is compensated by the first term in the development of f . Altogether,
we get

(0 1) =, [, S@)(=Tozle =) w)dody

Hence the convergence of the characteristic functionals: E(e*(%=/)) = e~ 3E((9.)?) —>0 e 2E((hD)?),
e—

The following lemma will be useful when working with the whole plane GFF not modulo additive

constant.
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Lemma 5.49. There exists a coupling of the whole-plane GFF h normalized such that hi(0) =0

and the x-scale invariant field ¢ such that the difference h — ¢ is a continuous field.

Proof. Recall the notation ¢y, ¢ = f::,_;k k(a;y)t*z)’/%(dy, dt). We know ¢_o o is a whole-plane GFF
modulo constant. The fine field ¢ = ¢g  is a well-defined Schwartz distribution. Also, the gradient
field V_oo 0 is a well-defined continuous Gaussian vector (this can be checked by inspecting the
covariance kernel and applying the Kolmogorov continuity theorem). Thus, ¢_ o is well defined
modulo additive constant, so ¢, := “¢p_o00 — fa B1(0) $—0,0" is a well-defined continuous Gaussian
field, independent of ¢. By setting g := ¢, — 3[831(0) ¢, we get that h := ¢ + ¢ is a whole-plane GFF
normalized such that h;(0) = 0. O

5.6.3 Volume of small balls in the Brownian map

We do not use any material in this section in our proofs, but include it to facilitate an easier
comparison between our argument in Section [5.3] and the analogous result for the Brownian map
case. Le Gall obtained the following uniform estimate on the volume of small balls in the Brownian
map. For € (0,1), there exists a random K > 0 such that for every = > 0, the volume of any ball
of radius r in the Brownian map is bounded from above by K 57“4_5. Our proof of the finiteness
of LQG ball volume positive moments (Section shares some similarities with his only at a
very high level; no explicit formulas are available in our framework, and the techniques are very
different. We discuss some of the arguments used in the Brownian map setting and we refer the
reader to [72H74,|77] for details. This estimate was used in the proofs of the uniqueness of the

Brownian map [75,78].

Tree of Brownian paths A binary marked tree is a pair § = (7, (hy)yer) Where 7 is a binary
plane tree and where for v € 7, h, is the length of the branch associated to v. We denote by
Ak (df) the uniform measure on the set of binary marked trees with k leaves (uniform measure
over binary plane trees and Lebesgue measures for the length of the branches). 1(6) and L(0) will
denote respectively the internal nodes and leaves of §. One can define a Brownian motion on such a
tree: the process is a standard Brownian motion over a branch, and after an intersection, the two

processes evolve independently conditioning on the value at the node. We will denote by P? this
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process, started from the root of the tree with initial value x. Similarly, instead of using a Brownian

motion, one can consider a 9-dimensional Bessel process and we will denote it by Q%.

Similarly, for trees given by a contour function (h(s))s<, with lifetime o, one can associate
the so-called Brownian snake given by the process (W;)s<, of Brownian type path (for each s,
Wy is a Brownian type path with lifetime A(s), its last value is denoted by WS and corresponds
to the Brownian label above the point of the tree corresponding to s). We can add another level
of randomness by taking h given by a Brownian type excursion: Ny is the measure associated to
the unconditioned lifetime It6 excursion, Ny is also associated to the unconditioned lifetime Ito

excursion but the Brownian labels are conditioned to stay positive.

Explicit formulas The following explicit formula (see [72], Proposition IV.2), relates the objects
of the previous paragraph. For p > 1, x € R and F' a symmetric nonnegative measurable function

on WP, where W denotes the space of finite continuous paths,

Ny

/ F(W31,---,W5p)d81~-d5p] = 2”‘1p!/Ap(d9)Pf [F((w(“))aeum)} : (6.55)
(0.0)7

Here, w is the tree-indexed Brownian motion with law P? and w(®) the restriction of w to the
path joining a to the root, and N, is the measure Ny where each Brownian snake has its labels
incremented by x. This formula involves combining the branching structure of certain discrete
trees with spatial displacements. It relies on nice Markovian properties, in particular on specific
properties of the Itd6 measure. The proof of the uniform volume bound for metric ball is based on an
explicit formula obtained in |77] for the finite-dimensional marginal distributions of the Brownian

tree under Ny,

No

/ F(Wsl,...,Wsp)dsl...dsp]
(0,0)7

_ or1y / AR | F(@ sy T Vi T[ Vo] (656)

Here, we write w and w® for the nine-dimensional Bessel process counterparts of w and w(®, and

V, for the value of the Bessel process at the vertex v. Because of the conditioning of Ny, the spatial
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displacements are given by nine-dimensional Bessel processes rather than linear Brownian motions.
To derive such a formula, in [77] the authors generalize to functionals including the range of
labels and lifetime ¢ and then use results on absolute continuity relations between Bessel processes,
which are consequences of the Girsanov theorem (note that integrals over time of Brownian motions

are integral over branches of trees of Brownian motion).

Positive moment estimates In the proof of the upper bound on small ball volumes of the

Brownian map in [74], a key estimate is to show that, for £ > 1, ¢;, < oo where

o k
</0 1{@31}“) ]

:2k—1k!/Qg (TT Vo TT Vs 'tppc) | An(dd) = 25 'kidy.  (6.57)
acl() beL(9)

ek = Ny

Note that the second inequality follows by (6.56) with F(W,,,..., W, ) = 1W51§1’ e 1W5k§1' The
proof works by induction, introducing an additional parameter to take care of the value of the label

at the splitting node in the branching structure, by setting

dk(r) 52/@79" H Vi H V;41Vb§1 Ak(de)'

acl(0) beL(0)

In this framework, the base case and inductive relation are quite straightforward because of the
exact underlying branching structure. Let R denote a 9-dimensional Bessel process that starts from

r. The base case corresponds to

d~1(7‘) =E |:/0 R;41{Rt§1}dt:| = C/Rg |7“ — Z|77|Z’741{\z|§1}d2 (658)

and the inductive relation states

T
L

A =B | [ R A mdesr) ) | (6.59)

.
Il
R
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Now, one can easily derive the bounds dy () < Mr—2 Ar~7 and for j > 2 d;(r) < M1 Ar—7. We
underline that the exact branching structure of the framework is expressed through the equality

(6.59).

Comparison Let us compare our proof of the finiteness of positive moments with the one in
the Brownian map setting. In our setup, no nice branching structure for distances is known.
Furthermore, by working with a given embedding or a restriction to a specific domain, we have
to carry in the analysis information about the Euclidean domain, including an additional layer of

difficulty.

In the case of the Brownian map, when one considers the “volume” associated with (6.57)

thanks to the explicit formulas (6.55)) and (6.56), one ends up with branching Bessel processes on

uniform trees. In our framework, analogous observables of “distances” are not well understood so
far. Instead, circle averages processes are tractable. They evolve as correlated Brownian motions.
These are a good proxy for the metric because of the superconcentration of side-to-side crossing
distances. Furthermore, when one weights the distribution with singularities (after a Cameron-

Martin argument), these Brownian motions are shifted by drifts. (Note that the passage from (6.55]
to (6.56) uses Girsanov.)

Similarities can be seen as the level of induction where the value of the Bessel process at the

first node is comparable with the value of the circle average of the field at the first branching in our

hierarchical decomposition. So Lemma is similar to (6.59)) and Proposition to (6.57)).
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