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Abstract

A renormalization approach to the Liouville quantum gravity metric

Hugo Pierre Falconet

This thesis explores metric properties of Liouville quantum gravity (LQG), a random

geometry with conformal symmetries introduced in the context of string theory by Polyakov in the

80’s. Formally, it corresponds to the Riemannian metric tensor “eγh(dx2 + dy2)” where h is a

planar Gaussian free field and γ is a parameter in (0, 2). Since h is a random Schwartz distribution

with negative regularity, the exponential eγh only makes sense formally and the associated volume

form and distance functions are not well-defined. The mathematical language to define the volume

form was introduced by Kahane, also in the 80’s. In this thesis, we explore a renormalization

approach to make sense of the distance function and we study its basic properties.
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Chapter 1: Introduction

A central theme in statistical mechanics and probability theory is to understand complex systems

of a large number of microscopic elements interacting which each others and subject to noise. As the

number of constituents of the system increases (or when one zooms out), a new structure emerges,

called scaling limit. Proving this convergence and understanding the properties of the limit is crucial

as it gives information on the large random discrete structures themselves. Interaction rules are

typically encoded by various parameters such as the temperature of the system. Macroscopic changes

may appear at a critical state as those parameters vary, leading to the notion of phase transition. In

two dimensions, scaling limits of many critical systems become statistically conformally invariant.

The renormalization group (RG), pioneered by K. G. Wilson, is a method in theoretical physics

to study renormalization, scaling limits and the phase transitions of statistical mechanics models.

The method roughly works as follows. The first step is to introduce a map from a model at one

scale to another model at a larger scale (the RG map) so that fixed points of the RG map are scale

invariant. Different models belong to the same universality class if under iteration of the RG map

they converge to the same fixed point. Models in the same universality class share many large scale

properties, revealed by the RG map in the neighborhood of their fixed point. This method, though

extremely fruitful in physics, is difficult to implement rigorously.

This thesis studies a renormalization approach to define the Liouville quantum gravity metric,

a distance function associated with canonical random surfaces with conformal symmetries. This

metric is expected to describe the scaling limit of distances in discrete random surfaces called

random planar maps.
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1.1 Random planar maps and planar statistical mechanics models

Uniform planar maps. A planar map is a graph embedded on a surface viewed up to orientation-

preserving homeomorphisms and here we only consider the case where the surface is the 2-sphere.

Simple families of planar maps are triangulations and more generally p-angulations for which

each face has p-edges. Random planar maps (RPM) are planar maps sampled according to a

probability measure and when constraining the number of faces to be N , the canonical probability

measure is the uniform one. These RPM carry a structure of metric spaces with the graph distance

and their universal scaling limit is described by the Brownian map, in the sense of the Gromov-

Hausdorff convergence of compact metric spaces (or rather isometry classes of compact metric

spaces) [51,73–75,78].

Such results are possible due to combinatorial observations: there exist bijections between some

families of random planar maps and some families of discrete trees whose vertices are assigned

integer labels. For these bijections, labels are related to graph distances from a distinguished vertex

in the associated planar map. The rescaled tree associated with a large random planar map is an

approximation of the Continuous Random Tree introduced by Aldous and the labels on this tree

behave as a conditionally independent Brownian motion indexed by the tree: this leads to a natural

description, directly in the continuum, of the Brownian map. This metric measure space is rough:

its Hausdorff dimension is 4 but it is homeomorphic to the 2-sphere. Also, geodesics that start from

the same typical point coincide on a non-trivial interval, contrary to those in Riemannian manifolds.

Planar statistical mechanics models at criticality and conformal invariance. We discuss

here some planar statistical mechanics models on deterministic lattices and recent results on their

conformal invariance at criticality. These models can be used to construct new laws on planar maps

and these are expected to be related with Liouville quantum gravity, which is described below.

Before their mathematical resolution, conjectures about these arose in physics and were studied

numerically or with the methods of conformal field theory (CFT). Two important models that have

been studied in great details are percolation and the Ising model.

We begin with percolation. Vertices, say of the triangular lattice T, are open or closed with
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probability p ∈ (0, 1) independently of each others. For p small, there is almost surely no infinite

cluster formed by open vertices whereas for p large enough there is almost surely a unique one. A

phase transition separating this existence result occurs at p = pc = 1
2 . At this critical probability,

several observables become scale invariant. This is the case of the probability of the existence of

an open crossing between two marked sides, say (AB) and (CD) of the boundary ∂Ω of a simply

connected domain Ω in the discretization εT ∩ Ω: this probability converges when ε→ 0 to a value

in (0, 1). This was proved by Smirnov in [105] and this value is given by the Cardy formula. A

striking feature of the Cardy formula is not the fact that it is an exact formula but rather that the

formula is conformally invariant: considering the image of Ω by a conformal map f , as well as the

image of the marked arcs and the percolation model associated with this new domain, the limiting

crossing probability is the same.

The Ising model is a spin model for which the spins take values in {−1,+1}. Contrary to the

Bernoulli percolation model which possesses exact independence, spins are correlated and tend to be

aligned since the Hamiltonian defining the model is proportional to β
∑

x∼y(σx − σy)2, where β is

the inverse temperature of the system. This model exhibits a phase transition which can be phrased

as follows: above some temperature, there is a loss of spontaneous magnetization. Mathematically,

this translates as follows: when imposing +1 boundary condition on a discretization of a domain,

the macroscopic effect of this boundary condition disappears as the mesh size of the lattice vanishes.

Smirnov [107] and Chelkak and Smirnov [20] proved the conformal invariance of certain observables

called “fermionic observables” at criticality. This paved the way to establishing the scaling limit

of correlations associated with the spin field and their transformation rules under conformal maps

in [19]. Independently and at about the same time, a different approach was taken in [36] using a

relation with dimers (in particular, building on [37] and Kenyon’s works).

Schramm Loewner Evolutions and Conformal Loop Ensembles. Interfaces between open

and closed clusters in percolation or −1 and +1 spins in the Ising model turn to be conformally

invariant in the scaling limit, in the same sense that the trace of the two-dimensional Brownian

motion is conformally invariant. However, it is difficult to show this convergence and this was a

challenging problem for some time.
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Aizenman and Burchard provided in [2] a sufficient condition to obtain the tightness of the

family of random rescaled curves. This condition is implied by the so-called Russo-Seymour-Welsh

(RSW) estimates which arise in percolation theory or in the study of the Ising model at criticality.

They express uniform bounds between the probability of the existence of a left-right crossing path

of [0, aN ] × [0, N ] for a < 1 and the probability of the existence of a left-right crossing path of

[0, bN ]× [0, N ] for b > 1 (a crossing path refers to a path of open sites in percolation and interface

between opposite spins for the Ising model, see [94,95,98,110] for percolation and [18,42] for the

Ising model).

The limits are part of a larger one-dimensional family of curves (indexed by κ > 0), called

Schramm-Loewner evolutions (SLEκ) in the case of non-self-crossing curves joining two marked

points in a simply connected domain Ω and Conformal Loop Ensembles (CLEκ) in the case of

nested loops in Ω. Both are characterized by their conformal invariance and domain Markov

property [96,101,103]. The convergence of critical interfaces towards these curves became accessible

after the works of Smirnov on the conformal invariance of critical models (see, e.g., [106]).

Random planar maps weighted by statistical mechanics models. Uniform RPM converge

to the Brownian map. This universality class corresponds to “pure gravity” in the sense that it

is not decorated by any model of statistical mechanics (or, rather, simply by a non-interactive

model such as percolation). Natural other RPM models are obtained by using some interactive

models of statistical mechanics such as the Ising model. One gets a probability measure on (map,

configuration on this map) and, forgetting about the configuration, the marginal on maps M is

proportional to the partition function Z(M, β) of the model considered on M. When the inverse

temperature β is set at criticality, it is believed that the scaling limit of this object is connected to

Liouville quantum gravity, a one parameter family of surfaces indexed by γ ∈ (0, 2) where γ =
√

8
3

corresponds to “pure gravity”. Typical distances in such planar maps are therefore expected to be

described by dγ , the dimension of γ-LQG.

One can also generate maps by favoring some of their geometric properties. Indeed, instead of

considering only a random planar map M, one can consider (M, T ) where T is a spanning tree of

M. Forgetting about the tree gives a probability on maps weighted by their number of spanning

4



trees. It is also natural to consider directly the probability measure on maps which is proportional

to the number of spanning trees of the map with some power: this gives a ways to favor maps with a

large or small number of spanning trees. By Kirchoff’s matrix-tree theorem, the number of spanning

tree can be expressed by using the determinant of a Laplacian. It is expected that the partition

functions of many statistical mechanics models at criticality behave asymptotically like powers of

the determinant of the discrete Laplacian (they appear in particular in the partition functions of

SLEκ, themselves allowing couplings of several SLEs with the Gaussian free field [35]).

Scaling limits of conformally embedded random planar maps. One version of Liouville

quantum gravity would be to consider the scaling limits of these models: by embedding them in

some domain and showing that the associated measure and metric converge with respect to the

weak and uniform topologies. However, this direction of research remains wide open, up to one

exception: Holden and Sun [64] constructed an embedding (which they called the Cardy embedding

and which is related to the Cardy formula mentioned above) and proved such a convergence result

towards “pure gravity” in the case of uniform random planar maps.

1.2 Liouville quantum gravity

The version of Liouville quantum gravity we will consider is not the one given by random planar

maps weighted by det(−∆)−c/2 but rather a continuum version phrased using only the Gaussian free

field as considered mathematically in the work [44] by Duplantier and Sheffield. In this version, one

considers the formal Riemannian metric tensor “eγh(dx2 + dy2)” where h is a planar Gaussian free

field and γ is a parameter in (0, 2) (these two different perspectives were considered in the physics

literature, see [6] for a recent discussion). The relation between the two approaches is expected to

be given by c = 25− 6(2/γ + γ/2)2.

Suppose given a metric tensor ds2 on a two dimensional Riemannian manifold X. Then, under

mild assumption, locally, it can be represented using isothermal coordinates by ds2 = ρ(du2 + dv2)

for some smooth ρ > 0 and the associated conformal factor φ is given by ρ = eφ. Using the complex

5



coordinate z = u+ iv, the volume form and distance function are locally given by

eφ(z)d2z and inf
π:x→y

∫
π
e
φ
2 ds.

In what follows, we will be interested in the case where the conformal factor φ is a random Schwartz

distribution with negative regularity, given by γh. The volume form and distance function will be

given formally by

eγh(z)d2z and inf
π:x→y

∫
π
e
γh
dγ ds, (2.1)

where dγ > 2 will be the almost sure Hausdorff and Minkowski dimension of the γ-LQG.

Gaussian free fields. Gaussian free fields (GFF) are a generalization of Brownian motion to a

higher dimensional indexing space, appear as the universal scaling limit of various random discrete

surfaces [23,68,79,88] and play a fundamental role in mathematical physics, in particular in Quantum

Field Theory [50,104]. Formally, they are measures on fields h defined on a domain D such that

ρ(dh) ∝ exp

(
−σ−2

∫
D
|∇h|2dλ

)
Dh (2.2)

where Dh is the (formal, infinite dimensional) Lebesgue measure on fields (which does not exist) and

σ is a positive number. They can be realized as random Schwartz distribution and their covariance

kernel is given by (a multiple of) the Green function associated with the Laplacian. In two dimension,

they belong to the class of log-correlated Gaussian fields for which the covariance kernel is given

on the diagonal by E(h(x)h(y)) = − log |x− y|+O(1) and are conformally invariant measures, as

inherited from the Dirichlet energy
∫
D |∇h|

2dλ. Furthermore, the field has an important domain

Markov property. (See [35,100,113] for more on the GFF.)

Gaussian multiplicative chaos and Liouville measures. Gaussian multiplicative chaos

(GMC) is the study of random measures of the form eγφσ(dx) where γ ∈ (0,
√

2d) is a parameter, φ

is a log-correlated Gaussian field on a domain D in Rd and σ(dx) is an independent measure on D

(in our case, σ will be typically absolutely continuous w.r.t. the Lebesgue measure). Due to the

lack of regularity of φ, this does not make readily sense. Typically, one consider the approximating
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measures µφε(dz) = eγφε(z)−
γ2

2
Varφε(z)σ(dz) where φε(x) denotes some regularization of φ at the

space scale ε.

A simple application of Fubini theorem and a Gaussian computation show that the average total

mass of these measures is conserved. With slightly additional work, one finds that the family of

total masses is uniformly integrable. The renormalizing constants are here explicit functions of the

covariance kernel of the log-correlated field. When we will be studying the metric associated with

such fields rather than the measure, analog estimates can no longer be obtained in the same way.

GMC theory [13, 44, 67, 93, 99] shows that µφε converges in probability towards a Borel measure

µφ on D for the topology of weak convergence and the limit is independent of the approximation

scheme. Two properties are clear from the form of the above limit: µφ is locally determined by φ

and, for any random continuous function f , µφ+f (dx) = eγf(x)µφ(dx). This latter property is at the

heart of a useful characterization of GMC measures due to Shamov in [99].

When the dimension is two and the field is the GFF, these measures are called Liouville quantum

gravity measures and were studied by Duplantier and Sheffield in [44] who proved the convergence

µh(dz) = lim
ε→0

εγ
2/2eγhε(z) dz

for the circle-average approximation of the field. Furthermore, they proved that µh satisfies a

conformal coordinate change formula: if f : D → D′ is a conformal map then, almost surely,

f∗µh = µh◦f−1+Q log |(f−1)′| where

Q =
2

γ
+
γ

2
(2.3)

Two pairs (D,h) and (D′, h′) which are related by a conformal map as above are considered as

being two different parametrizations of the same LQG surface. Thus the coordinate change formula

for µh says that this measure depends only on the quantum surface, not on the particular choice

of parametrization. These measures are singular with respect to the Lebesgue measure and are

supported on a set of Hausdorff dimension 2− γ2/2. (See [8, 12,90] for more on this.)

Liouville or GMC measures have been at the core of the definition of LQG surfaces (still without

distance function). In particular, it paved the way to Liouville Conformal Field Theory (LCFT),

beginning with the 2-sphere in [22] and extended to many other Riemann surfaces later on. The
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reason is that LCFT consists in reweighting the distribution of the Gaussian free field on the

2-sphere (or other surfaces) by the missing terms of the Liouville action functional, which includes

the total mass of a GMC measure. This produces a family of (non Gaussian) probability measures

on fields. The focus of the theory is on correlation functions, i.e., product of vertex operators

Vα(x) = eαh(x) and in particular on the way correlations behave under conformal changes of metrics,

differential equations they satisfy and exact formulas [52,69,70]. Beyond the relation with Conformal

Field Theory, the importance of these works, in particular in the perspective of this thesis, is to

make precise conjectures describing the scaling limits of random planar maps. (See [91, 112] for

introductions to this topic.)

Quantum Loewner evolutions and the
√

8
3-LQG metric. Another approach is Sheffield’s

theory of quantum surfaces decorated by Schramm-Loewner Evolutions, initiated in [102]. In

particular, [43] constructed Liouville quantum gravity on the 2-sphere (this construction and the

one in LCFT is equivalent, as proved in [9]) together with a space-filling curve and proved that this

corresponds to a mating of coupled Continuum Random Trees. This provided a precise geometric

understanding of Liouville quantum gravity and played an important role in the series [81–83,86]

which constructed a metric for LQG in the case γ =
√

8/3 and proved its equivalence with the

Brownian map. A key part in this program was played by the definition of a growth process called

quantum Loewner evolution (QLE) in [83], whose construction is based on couplings between SLE

curves and the GFF and SLE explorations. In particular, they showed that, in a specific case, this

process represents growing metric balls of a metric and defined the distance between two points to

be the time taken by this process to travel from one point to the other.

1.3 Liouville first passage percolation and the LQG metric

Liouville first passage percolation (LFPP) metrics refer to the distance functions associated

with any approximation of the Gaussian free field. This direction of research was initiated by

Ding and his collaborators and focused essentially on a discretization of the problem using the

discrete Gaussian free field (DGFF). These early works, in the small γ regime, focused on estimating

distances and studying qualitative property of the distances such as the fractal behavior of geodesics
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arising in the scaling limit (see, e.g., [27, 28,31,33,34]).

Ding and Dunlap [25], still using the DGFF, showed that it is possible to renormalize the metrics

(when γ is small enough) so as to obtain the existence of subsequential limits. Their approach uses

a multiscale analysis to bound inductively a specific measure of dispersion given by the coefficient

of variation. A key tool to achieve this is the Efron-Stein inequality, which bounds from above

the fluctuation of a random variable of the form F (X1, . . . , Xn) with independent entries by a sum

involving the influence of each variable in F . Along the way, they needed to prove Russo-Seymour-

Welsh estimates associated with the side-to-side crossing distances of rectangles with various aspect

ratio. Their method to prove these estimates is inspired by the work of Tassion [110]. However, the

assumption γ small is already used for these estimates.

A ubiquitous theme in this thesis is the multiscale analysis with the Gaussian free field. The

domain Markov property of the field implies the following. Divide a square into four subsquares,

then, conditionally on some binding field which is harmonic in each subsquare, the restrictions of the

field in each of these are independent and distributed according to a 0-boundary GFF. Repeating

this decomposition provides a branching random walk type approximation which, in many situations,

is nice enough to develop a multiscale analysis. However, this decomposition introduces a boundary

effect throughout the decomposition, the need to control the binding field and each building block

is (up to rescaling) associated to the specific choice of the unit square.

?-scale invariant fields. The lack of a priori symmetries of the discrete Gaussian free field

becomes a hurdle at the level of metrics. In Chapter 2, which is based on a joint work with Julien

Dubédat [38], we study Liouville metrics associated with a ?-scale invariant Gaussian field with

finite range correlation. They provide a simpler framework without binding field but rather with

independence between scales and without boundary effects. They admit an ideal scale decomposition

which simplifies the multiscale analysis: φ =
∑

k≥0 φk where the φk’s are independent, smooth and

distributed as φ0(2k·) and φ0 has a finite range of dependence, i.e., for some constant c, φ0(x) and

φ0(x′) are independent when |x− x′| ≥ c. These fields have a canonical regularization which is to

consider a cutoff at a small scale in their scale decomposition: in particular, set φn0,n =
∑

n0≤k≤n φk.
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One can also represent the field with a space-time white noise

φ0,∞(x) :=

∫
R2

∫ 1

0
k

(
y − x
t

)
t−3/2W (dy, dt), φ0,n =

∫
R2

∫ 1

2−n
k

(
y − x
t

)
t−3/2W (dy, dt),

where W is a space-time white noise and k is a bump function. This representation opens the use

of Gaussian analysis at the level of the white noise and coupling arguments. Chapter 2 provides

in particular Russo-Seymour-Welsh estimates for Liouville metrics associated with this field which

hold for every parameter γ. It also investigates properties that should hold in the limit such as

tail estimates and the consistence with the Weyl scaling. It also revisits some steps to prove the

tightness of the metrics. We provide below some ideas of proof.

Multiplicativity of geodesics. When considering the length metric eγφ0,2nds, one expects that

geodesics satisfy the following: their ≈ 2−n coarse grained version is a quasi-geodesic for φ0,n

and on a block of size ≈ 2−n they essentially follow geodesics for eγφn,2n . This is motivated from

the decomposition eγφ0,2n = eγφ0,neγφn,2n , φ0,n having mild oscillation at the scale 2−n and the

restrictions of the field φn,2n in two separated blocks at this scale are independent. From such a

multiplicativity, one would naturally expects the existence of a scaling limit. In fact, it is difficult

to show in great details that coarse grained geodesics are quasi-geodesic of a regularized version

of the field. However, the representation of the distance using minimizing paths and planarity

arguments are useful in the analysis. To obtain an upper bound on distances, because of the

definition of the metric as an infimum over admissible paths, one can pick any them, among which

one associated with the previous ansatz. When doing so, one ends up by concatenating together

geodesics associated with long rectangle crossing distances (left-right crossing distance of a rectangle

isometric to [0, a] × [0, b] with a > b). It is possible to obtain a similar but weaker lower bound,

which involve rather a minimum over short rectangle crossing distances. This distinction between

thin and long rectangle crossing distances is the reason of the need of some RSW type estimates.

Russo-Seymour-Welsh estimates. We first study the effect of a conformal map on the ?-scale

invariant field and prove a coupling result between φa,b ◦ F and φa,b, where the subscripts represent

scales between a and b. Intuitively, φa,b ◦ F should be approximately distributed like “φa/|F ′|,b/|F ′|”
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which itself can be decomposed as φa/|F ′|,a + φa,b − φb,b/|F ′|. When |F ′| ≥ 1, we prove such a

decompoition where the high frequency field is independent of φa,b. This relies on the independence

of different scales of the field. With this result, we compare quantiles associated with long and

thin rectangle crossing distances, uniformly in the approximating scale. A crossing path of thin

rectangles implies a crossing path at lower scales of rectangles with the same aspect ratio (important

for the hypothesis |F ′| ≥ 1) and the rectangle crossing at a smaller scale implies a crossing of marked

sides of a thin ellipse at that scale. Then, one can map the crossing between marked sides of this

thin ellipse to a crossing of a longer one at the initial scale. To send arcs from the small ellipse

to those of the larger one, one can subdivide the marked sides. Finally, the coupling result when

applying the conformal map is the key to compare left and right tails of rectangle crossing distances

associated with different aspect ratio.

Percolation arguments and tail estimates. Recall the branching random walk approximation

of the GFF. When one forgets about the binding field, then it remains only independent copies of

0-boundary GFF in distinct blocks. One can consider independent events in each of these blocks.

When the probability of each event is 1− p for p small, then with very high probability, it is possible

to find a path from the left to the right of the unit square for which the events occur on each block

traversed. To provide estimates for the original problem, one adds back the coarse field and typically

use some rough estimate for it. With the ?-scale invariant field with finite range of dependence, the

coarse field is independent from the fine field and this later one has built in independence properties,

thereby offering a nice framework for this type of argument.

Thanks to the Russo-Seymour-Welsh estimates, it is enough to study a single macroscopic

length observable, the side-to-side distance of a square, denoted by Ln. Quoting from [109],“the

concentration of measure phenomenon roughly states that, if a set A in a product ΩN of probability

spaces has measure at least one half, “most” of the points of ΩN are “close” to A”. Following this

principle we prove tail estimates for log(Ln/λn), where λn is the median of Ln, which are relative to

Λn = max
k≤n

¯̀
k(p)

`k(p)
,

where `n(p), ¯̀
n(p) are the p-quantile and (1 − p)-quantile of Ln and p is a fixed constant. The
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maximum Λn is itself a measure of dispersion that we want to bound inductively. The proof relies

on this percolation estimate / rough estimate for the coarse field argument by using the following

type of events: for right tails, one can glue together long rectangle crossings associated with the fine

field for which the distance is small and for the left tails, one can consider blocking paths from the

top to bottom on consisting of thin rectangle crossing distance for which the distance is large.

At the time Chapter 2 was about to be completed and following results on Liouville graph

distance in [32] (a natural regularized distance function associated with LQG using the LQG

measure), Ding and Gwynne [28] showed the existence of an increasing function dγ called “the

fractal dimension of LQG” defined on (0, 2). This non-explicit deterministic function arises from a

subadditivity argument. They proved in particular that the map γ 7→ γ/dγ is increasing and used

ξ =
γ

dγ
(3.4)

as the parameter associated with the LQG length functional in (2.1). What is crucial in [28] is

not that there is an abstract exponent associated with distances but that this exponent has a

representation: it is showed that Euclidean macroscopic distances associated with eξhεds are of

order ε1−ξQ+o(1) where Q = 2/γ + γ/2 and where hε denote the GFF circle-average approximation.

In Chapter 3, which is based on a joint work with Jian Ding, Julien Dubédat and Alexander

Dunlap, [24], we study the original problem involving the Gaussian free field and we regularize it

by using a mollification with the heat kernel. The main result of this chapter is the existence of

non-trivial subsequential limits corresponding to “eγh(dx2 + dy2)”, in the range of γ for which a

metric bi-Hölder with respect to the Euclidean metric was conjectured to exist.

The proof uses a coupling between two fields: one denoted by ψ with local independence

properties (useful for percolation type arguments and in the geometric considerations arising from

the Efron-Stein inequality) and another one, denoted by φ with better scaling properties (for simple

scaling arguments but also when studying the effect of conformal transformations for the RSW

estimates). We consider the smoothed Gaussian fields defined for x ∈ R2 and δ ∈ (0, 1) by

ϕδ(x) :=
√
π

∫ 1

δ2

∫
R2

p t
2
(x− y)W (dy, dt), ψδ(x) :=

√
π

∫ 1

δ2

∫
R2

Φσt(x− y)p t
2
(x− y)W (dy, dt)
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where W is a space-time white noise, pt is the two-dimensional heat kernel, σt = r0

√
t| log t|ε0 and

Φσt(·) := Φ(·/σt) for a bump function Φ. The GFF on a compact domain and mollified by the heat

kernel at time t/2 is comparable with ϕ√t in the bulk. ϕδ and ψδ are also comparable.

Bounds on dispersion and tightness of metrics. To simplify the discussion, we consider only

one field φ0,n as above. The Gaussian Poincaré inequality provides an a priori bound for ΛK for any

base scale K and to study the effect of small scales, we use the Efron-Stein inequality, relying on

the product space distribution offered by a block decomposition of the white-noise. The analysis

turns to the following condition. Denote by πn a left-right geodesic of the unit square associated

with the field φ0,n and by πKn its ≈ 2−K coarse graining. The condition asks for a uniform (in n)

exponential decay (in K) of ‖eγφ0,K‖L2(πKn )/‖eγφ0,K‖L1(πKn ). In words, this is ensured if one can

prove that the weight of a geodesic is not essentially supported on a small number of coarse blocks.

This Efron-Stein bound at the level of variance transfers at the level of quantiles and provides an

inductive inequality for Λn which, together with the a priori bound, is enough to conclude. The

tightness of the renormalized logarithm of the side-to-side distances is the starting point to study

the tightness of metrics by using chaining arguments.

In Chapter 4, which is based on a joint work with Julien Dubédat, Ewain Gwynne, Joshua

Pfeffer and Xin Sun [39], we continue to study the properties that the conjectural unique limit

should have, as in Chapter 2 with the Weyl scaling and uniform tails. We work with the whole-plane

GFF, which offers nice invariance properties. The chapter contains two parts. The first one consists

in showing the existence of a distance function associated with the whole-plane GFF that satisfies

a specific set of properties. In the second part, we consider an abstract metric satisfying these

properties as axioms, which we call a “weak LQG metric” and we derive basic properties of this

metric using only these axioms. The list of axioms is a natural one expected to characterize the

LQG metric, at the exception of a “tightness across scales” property instead of a scaling property.

In particular, we show that such metrics are bi-Hölder w.r.t. the Euclidean metric and derive tails

estimates for side-to-side distances, point-to-point distances and for the diameter of a set.

Weak LQG metrics. A random distribution h on C is a whole plane GFF plus a continuous

function if there exists a coupling of h with a random continuous function f : C → R such that
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the law of h − f is that of a whole-plane GFF. The whole-plane GFF is defined only modulo a

global additive constant, but this definition does not depend on the choice of additive constant.

For γ ∈ (0, 2), a weak γ-LQG metric is a measurable function h 7→ Dh from D′(C) to the space of

continuous metrics on C such that the following is true whenever h is a whole-plane GFF plus a

continuous function.

I. Length space. Almost surely, (C, Dh) is a length space, i.e., the Dh-distance between any

two points of C is the infimum of the Dh-lengths of continuous paths between the two points.

II. Locality. Fix an open set U . The Dh-internal metric Dh(·, ·;U) is determined a.s. by h|U .

III. Weyl scaling. For each continuous function f : C→ R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0
eξf(P (t)) dt, ∀z, w ∈ C,

where the infimum is over all continuous paths from z to w parametrized by Dh-length. Then

a.s. eξf ·Dh = Dh+f for every continuous function f : C→ R.

IV. Translation invariance. For each deterministic point z ∈ C, a.s. Dh(·+z) = Dh(·+ z, ·+ z).

V. Tightness across scales. Suppose that h is a whole-plane GFF and let {hr(z)}r>0,z∈C be

its circle average process. For each r > 0, there is a deterministic constant cr > 0 such that

the set of laws of the metrics c−1
r e−ξhr(0)Dh(r·, r·) for r > 0 is tight (w.r.t. the local uniform

topology). Furthermore, the closure of this set of laws w.r.t. the Prokhorov topology on

continuous functions C× C→ [0,∞) is contained in the set of laws on continuous metrics on

C (i.e., every subsequential limit of the laws of the metrics c−1
r e−ξhr(0)Dh(r·, r·) is supported

on metrics which induce the Euclidean topology on C). Finally, there exists Υ > 1 such that

for each δ ∈ (0, 1), r > 0, Υ−1δΥ ≤ cδr/cr ≤ Υδ−Υ.

The existence of weak LQG metrics strongly relies on the tightness of Liouville first passage

percolation metrics and the tightness across scale property is fundamental to provide a uniform

control on the distribution of observables at scale r in terms of simple functions of the field.

Based on these previous works, Gwynne and Miller completed the construction of the LQG

metric. [57] shows that subsequential limits are measurable w.r.t. the free field (and therefore
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that weak LQG metrics can be taken as measurable w.r.t. the free field). The article [58] studies

confluence properties of the geodesics associated with weak LQG metrics. This is an essential input

in [59] to prove that weak LQG metrics are unique in law. As a corollary of this uniqueness result,

they obtained exact scaling of the metric in [59] and conformal symmetries of the metric on bounded

domains in [56]. Altogether, this Liouville quantum gravity metric Dh satisfies the following:

1. Dh is almost surely bi-Hölder with respect to the Euclidean metric.

2. Weyl scaling: if f is a continuous function, then Dh+f = eξf ·Dh.

3. Coordinate change: if f : D → D′ is a conformal map, then f∗Dh = Dh◦f−1+Q log |(f−1)′|.

4. The Hausdorff dimension of this metric space is almost surely given by dγ .

5. Confluence: two geodesics that start from the same typical point share a non-trivial arc.

In Chapter 5, which is based on a joint work with Morris Ang and Xin Sun [5], we study the

LQG volume of LQG metric balls and prove that dγ is the Minkowski dimension of LQG. To obtain

this result, we prove moment estimates for the volume of metric balls. Namely, if B is a metric

ball centered at a fixed point with a given radius, we prove that µh(B) admits finite p-moments

for every p ∈ R. This is different from the volume of an Euclidean ball for which the finiteness of

moments only holds for p < 4/γ2. We use this estimate to prove that, for any compact K ⊂ D, for

ε ∈ (0, 1), almost surely,

sup
s∈(0,1)

sup
z∈K

µh (Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh (Bs(z;Dh))

sdγ+ε
> 0.

This result was known in the case of the Brownian map [74]. The study of moments of GMC

measures for Euclidean balls is a classical result and its proof was used in other problems in the

field. In our setup, the structure of the volume of metric balls is quite different and our techniques

can be used in other setups as well. In particular, this is the case for the first exit time of Liouville

Brownian motion (LBM) from metric balls. The Liouville Brownian motion is a diffusion process

which is defined as an appropriate time change of the planar Brownian motion. In chapter 5, we

prove estimates similar to the volume of metric balls ones for the first exit time of the LBM from a
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metric ball. Our result says that when starting a LBM at any point z, its exit time from a unitary

metric ball has finite p-moments for every p ∈ R and its exit time from Bs(z;Dh) is of order sdγ .

Positive moments. Denote by B1(0;Dh) the unit γ-LQG metric ball and by A1 the annulus

B1(0)\B1/2(0). We explain why E[µh(B1(0;Dh) ∩A1)k] <∞ for every k ≥ 1. The starting point is

to rewrite it via a Cameron-Martin shift, as

∫
(A1)k

exp(γ2
∑
i<j

Cov(h(zi), h(zj)))P
[
Dh+γ

∑
j Cov(h(zj),h(·))(0, zi) < 1,∀i

]
dz1 . . . dzk.

Since h is log-correlated, this is bounded from above by the following proxy

∫
Ak1

Pz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk, where Pz1,...,zk = P[Dh+γ
∑
j Cov(h(zj),h(·))(zi, ∂B1/2(zi)) < 1, ∀i].

The volume of Euclidean balls have infinite kth moments when k is large due to the contribution

of clusters at mutual distance r whose contribution is r−2+2k−(k2)γ
2

since the sum over dyadic r is

finite if and only if k < 4/γ2. When k ≥ 4/γ2, this is counterbalanced by the Pz1,...,zk term. By an

annulus crossing distance bound, on the associated event, for any z ∈ K = {z1, . . . , zk},

1 & Dh+γ
∑
i≤k log |·−zi|−1(z, ∂B1/2(z)) & rξQeξhr(z)r−ξkγ .

Indeed, one can use an annulus centered at z, separating z from ∂B1/2(z) and at distance r of z, whose

width is of the same order and the r−ξkγ term comes from the circle average of the log-singularity.

This constraint on the coarse field implies Pz1,...,zk . P
[
hr(z) ≤ −ck log r−1

]
≈ r

1
2

(kγ−Q)2
and the

scale r contribution is r
1
2
Q2−2 which is summable for all k since Q > 2 for γ ∈ (0, 2).

However, to turn this argument into a proof requires to consider all configurations of clusters

K = {z1, . . . , zk}. Our proof works by induction on k: we use a specific splitting procedure of

K into two well separated clusters I and J since both
∏
i<j |zi − zj |γ

2
and Pz1,...,zk have a nice

hierarchical clusters structure (this is clear for the former, less for the later). In our implementation

of these ideas, because we have to carry the Euclidean domains associated with the clusters I,

J and K, we use ?-scale invariant fields and a formalism of random labelled trees to encode the

hierarchical decomposition of clusters and the constraints in the scale decomposition of the field.
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The short-range correlation of the fine field gives independence between well-separated clusters, and

invariance properties of the ?-scale invariant field simplifies our multiscale analysis.

Negative moments. To bound from below the volume of metric balls requires significantly less

efforts due to two results in the literature: first, it is known [44] and easy to prove that the LQG

volume of Eulidean ball has log-normal left tails and second, it is known [60], but requires more

work (and in particular a percolation type argument as presented above) to prove that one can find

some Euclidean ball within LQG balls, quantitatively. Altogether, the remaining work is to find

some Euclidean balls where the coarse field is not too small. Since the coarse field can be read from

annulus crossing distances, the bound from below is achieved by finding in the unit LQG ball an

Euclidean ball where some nearby annulus crossing distance in not too small.
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Chapter 2: Liouville metric of star-scale invariant fields: tails and Weyl scaling

This chapter is adapted from joint work [38] with Julien Dubédat.

2.1 Introduction

In this chapter, the field φ0,∞ is a log-correlated field with short-range correlations and is

approximated by a martingale φ0,n where each φ0,n is a smooth field. More precisely, we consider

a ?-scale invariant field whose covariance kernel is translation invariant and given by C0,∞(x) =∫∞
1

c(ux)
u du, where c = k ∗ k, for a nonnegative, compactly supported and radially symmetric bump

function k. We decompose the field φ0,∞ in a sum of self-similar fields, i.e., φ0,∞ =
∑

n≥0 φn, where

the φn’s are smooth independent Gaussian fields, such that φ0 has a finite range of dependence and

(φn(x))x∈R2 has the law of (φ0(x2n))x∈R2 . We then denote by φ0,n the truncated summation, i.e.,

φ0,n =
∑

0≤k≤n φk. This gives rise to a well-defined random Riemannian metric eγφ0,nds2, restricted

for technical convenience to [0, 1]2, which is the main object studied in this chapter. Here, the

length element is given by e
γ
2
φ0,nds.

In the article [66], the authors proved that any log-correlated field φ whose covariance kernel is

given by C(x, y) = − log |x− y|+ g(x, y), assuming some regularity on g, can be decomposed as

φ = φ? + ψ where φ? is a ?-scale invariant Gaussian field and ψ is a Gaussian field with Hölder

regularity. A similar decomposition where the fields are independent can be obtained modulo a

weaker property on φ?. Let us also mention that ?-scale invariant log-correlated fields are natural

since they appear in the following characterization (see [3]): if M is a random measure on Rd such

that E(M([0, 1]d)1+δ) < ∞ for some δ > 0 and satisfying the following cascading rule: for every

ε ∈ (0, 1),

(M(A))A∈B(Rd)
(d)
=

(∫
A
eωε(x)Mε(dx)

)
A∈B(Rd)

, (1.1)

where (Mε(εA))A∈B(Rd)
(d)
= εd(M(A))A∈B(Rd) and where ωε is a stationary Gaussian field, independent
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of Mε, with continuous sample paths, continuous and differentiable covariance kernel on Rd\{0}, then,

up to some additional technical assumptions, M is the product of a nonnegative random variable

X ∈ L1+δ and an independent Gaussian multiplicative chaos eφdx, i.e., ∀A ∈ B(Rd), M(A) =

X
∫
A e

φ(x)− 1
2
E(φ(x)2)dx. Moreover, the covariance kernel of φ is given by C(x) =

∫∞
1

c(ux)
u du for some

continuous covariance function c such that c(0) ≤ 2d
1+δ and notice that we have C(x) ∼

x→0
−c(0) log ‖x‖.

A natural question is to consider the metric instead of the measure to construct and characterize

metrics on R2 satisfying a property analogous to (1.1) involving the Weyl scaling (see Section 2.7).

In our approach, we introduce a parameter γc > 0 associated to some observable of the metric

and we study the phase where γ < γc. More precisely, if L
(n)
1,1 denotes the left-right length of

the square [0, 1]2 for the random Riemannian metric eγφ0,nds2 and µn is its median, we then

define γc := inf{γ : (logL
(n)
1,1 − logµn) is not tight}. We expect that the set of γ such that

(logL
(n)
1,1 − logµn)n≥0 is tight is (0, γc) . We prove that as soon as γ < γc, we have the following

concentration result: for s large, uniformly in n,

ce−Cs
2 ≤ P

(
logL

(n)
1,1 − logµn ≤ −s

)
≤ Ce−cs2 ,

ce−Cs
2 ≤ P

(
logL

(n)
1,1 − logµn ≥ s

)
≤ Ce−c

s2

log s .

When γ < min(γc, 0.4), we obtain the tightness of the metric spaces ([0, 1]2, d0,n)n≥0, where d0,n is

the geodesic distance associated to the Riemannian metric tensor eγφ0,nds2, renormalized by µn.

The main difference with the proof of Ding and Dunlap is that the RSW estimates do not rely on

the method developped by Tassion [110] but follow from an approximate conformal invariance of

φ0,n, obtained through a white noise coupling.

We also investigate the Weyl scaling: if d0,∞ is a metric obtained through a subsequential limit

associated to the field φ0,∞ and f is in the Schwartz class, then we prove that the metric associated

to the field φ0,∞ + f is e
γ
2
f · d0,∞, that the couplings (φ0,∞ + f, e

γ
2
f · d0,∞) and (φ0,∞, d0,∞) are

mutually absolutely continuous with respect to each other and that their Radon-Nikodým derivative

is given by the one of the first marginal. Notice that if the metric d0,∞ is a measurable function of the

field φ0,∞, this property is expected. Here, this property tells us that the metric is not independent

of the field φ0,∞ and is in particular non-deterministic. In fact, this property is fundamental in the
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work of Shamov [99] on Gaussian multiplicative chaos, where the metric is replaced by the measure.

It is used to prove that subsequential limits are measurable with respect to the field, which then

implies its uniqueness and that the convergence in law holds in probability.

Shamov [99] takes the following definition of GMC. If φ is a Gaussian field on a domain D and

M is a random measure on D, measurable with respect to φ and hence denoted by M(φ, dx), which

satisfies, for f in the Cameron-Martin space of φ, almost surely,

M(φ+ f, dx) = ef(x)M(φ, dx), (1.2)

then M is called a Gaussian multiplicative chaos. Furthermore, M is said to to be subcritical if

EM is a σ-finite measure. Note that the left-hand side is well-defined since M is φ measurable. It

is easy to check that the condition (1.2) implies uniqueness among φ-measurable subcritical random

measures and we insist that the measurability of M with respect to φ is built in the definition. A

natural question is thus the following: replace the measure M by the metric d0,∞, assume in a

similar way the measurability with respect to φ and suppose that in (1.2), the operation is the Weyl

scaling defined in Section 2.7, then is there uniqueness?

The chapter is organized as follows. In Section 2, we introduce the fields φ0,n as well as the

definitions and notations that will be used throughout the subsequent sections. Section 3 contains

our main theorems. In Section 4, we derive the approximate conformal invariance of φ0,n together

with the RSW estimates. Section 5 is concerned with lognormal tail estimates for crossing lengths,

upper and lower bounds. Under the assumption γ < min(γc, 0.4), we derive the tightness of the

metric in Section 6. The Weyl scaling is discussed in Section 7. Section 8 is concerned with γc > 0.

Lastly, in Section 9 we prove some independence of γc with respect to the bump function k used

to define φ0,n. The appendix gathers estimates for the supremum of the field φ0,n as well as an

estimate for a summation which appears when deriving diameter estimates.
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2.2 Definitions

2.2.1 Log-correlated Gaussian fields with short-range correlations

A white noise on Rd is a random Schwartz distribution such that for every test function f , 〈ζ, f〉

is a centered Gaussian variable with variance ‖f‖2L2(Rd). If (Ω,F ,P) denotes a probability space on

which it is defined, we have a natural isometric embedding L2(Rd) ↪→ L2(Ω,F ,P). By extension,

for f ∈ L2(Rd), the pairing 〈ζ, f〉 is also a centered Gaussian variable with variance ‖f‖2L2(Rd).

Let k be a smooth, radially symmetric and nonnegative bump function supported in B(0, r0) ⊂ R2

and normalized in L2(R2) (
∫
R2 k

2dx = 1), where r0 is a fixed small positive real number. If ζ denotes

a standard white noise on R2, then the convolution k ∗ ζ is a smooth Gaussian field with covariance

kernel c := k ∗ k whose compact support is included in B(0, 2r0). This can be taken as a starting

point to define more general Gaussian fields. Let ξ(dx, dt) be a white noise on R2 × [0,∞). Then

one can define a distributional Gaussian field on R2 by setting

φ0,∞(x) :=

∫
R2

∫ 1

0
k

(
y − x
t

)
t−3/2ξ(dy, dt)

with covariance kernel given by

E
(
φ0,∞(x)φ0,∞(x′)

)
=

∫
R2

∫ 1

0
k

(
x− y
t

)
k

(
y − x′

t

)
t−3dydt =

∫ 1

0
k ∗ k

(
x− x′

t

)
dt

t

=

∫ 1

0
c

(
x− x′

t

)
dt

t
.

Remark that for x 6= x′, the integrand vanishes near 0 since c has compact support, and that if

|x− x′| > 2r0, E(φ0,∞(x)φ0,∞(x′)) = 0. Denote C(r) :=
∫ 1

0 c(r/t)
dt
t . Then

C ′(r) =

∫ 1

0
c′(r/t)

dt

t2
=

∫ ∞
0

c′(r/t)
dt

t2
−
∫ ∞

1
c′(r/t)

dt

t2
=
α

r
+ f(r)

where α =
∫∞

0 c′(t−1)dt
t2

= −c(0) and f is a smooth function. Consequently,

C(r) = α log r + F (r)
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where F is smooth. By normalizing k in L2(R2), we have c(0) = k ∗ k(0) =
∫
R2 k

2dx = 1 and

C(r) = − log r + F (r).

2.2.2 Decomposition of φ0,∞ in a sum of self-similar fields

One can decompose φ0,∞ as a sum of independent self-similar fields. Indeed, for 0 ≤ m ≤ n, set

φm,n(x) :=

∫
R2

∫ 2−m

2−n−1

k

(
y − x
t

)
t−3/2ξ(dy, dt) (2.3)

as well as φn := φn,n so that φ0,n =
∑

0≤k≤n φk and φ0,∞ =
∑

n≥0 φn where the φn’s are independent.

Notice also that for 1 ≤ m ≤ n, φ0,n = φ0,m−1 + φm,n. The covariance kernel of φn is

E
(
φn(x)φn(x′)

)
=

∫ 2−n

2−n−1

c

(
x− x′

t

)
dt

t
=: Cn(

∥∥x− x′∥∥)

so that Cn(r) = C0(r2n). We will also denote by C0,n the covariance kernel of φ0,n. The following

properties are clear from the construction.

Proposition 2.1. For every n ≥ 0,

1. φn is smooth,

2. the law of φn is invariant under Euclidean isometries,

3. φn has finite range dependence with range of dependence 2−n · 2r0,

4. and (φn(x))x∈R2 has the law of (φ0(x2n))x∈R2 (scaling invariance).

5. The φn’s are independent Gaussian fields.

Let us precise that one can see that φn is smooth from the representation (2.3) since k has

compact support and ξ is a distribution (in the sense of Schwartz). This is a deterministic statement.

We will use repeatedly these properties throughout the chapter in particular the independence

and scaling ones. Furthermore, one can decompose the field at scale n in spatial blocks. Specifically,
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we denote by Pn the set of dyadic blocks at scale n, viz.

Pn :=
{

2−n ([i, i+ 1]× [j, j + 1]) : i, j ∈ Z2
}
.

For P ∈ Pn we set

φn,P (x) :=

∫
P

∫ 2−n

2−n−1

k

(
y − x
t

)
t−3/2ξ(dy, dt).

The following properties are immediate.

Proposition 2.2.

1. The φn,P ’s are independent Gaussian fields.

2. For every n ≥ 0 and P ∈ Pn, φn,P is smooth and compactly supported in P +B(0, 2−n · 2r0).

3. If P ∈ Pn, Q ∈ Pm and l : P → Q is an affine bijection, then φm,Q ◦ l has the same law as

φn,P .

Finally, we have the decomposition

φ0,∞ =
∑
n≥0

∑
P∈Pn

φn,P

in which all the summands are independent smooth Gaussian fields, all identically distributed up

to composition by an affine map and φn,P is supported in a neighborhood of P . In the following

sections, we will work with the smooth fields φ0,n, approximations of the field φ0,∞, and we denote

by F0,n the σ-algebra generated by the φk’s for 0 ≤ k ≤ n.

2.2.3 Rectangle lengths and definition of γc

For a, b > 0 and 0 ≤ m ≤ n, we denote by L
(m,n)
a,b the left-right length of the rectangle [0, a]× [0, b]

for the Riemannian metric eγφm,nds2, where the metric tensor is restricted to [0, a]× [0, b]. When

m = 0 we simply write L
(n)
a,b . To avoid confusion, let us point out that this is not the Riemannian

metric on the full space restricted to the rectangle. In particular, all admissible paths are included

in [0, a] × [0, b]. It is clear that the spaces ([0, 1]2, eγφ0,nds2) and ([0, 1]2, ds2) are bi-Lipschitz.
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Consequently, ([0, 1]2, eγφ0,nds2) is a complete metric space and it has the same topology as the unit

square with the Euclidean metric. We will denote by πm,n a minimizing path associated to L
(m,n)
a,b

and it will be clear depending on the context which a, b are involved. Notice that such a path exists

by the Hopf-Rinow theorem and a compactness argument. We will say that a rectangle R is visited

by a path π if π ∩ R 6= ∅ and crossed by π if a subpath of π connects two opposite sides of R by

staying in R.

We recall the positive association property and refer the reader to [89] for a proof.

Theorem 2.1. If f and g are increasing functions of a continuous Gaussian field φ with pointwise

nonnegative covariance, depending only on a finite-dimensional marginal of φ, then E (f(φ)g(φ)) ≥

E (f(φ))E (g(φ)).

We will use this inequality several times in situations where the field considered is φ0,n (since

k ≥ 0) and the functions f and g are lengths associated to different rectangles, without being

restricted to a finite-dimensional marginal of φ0,n. If R is a rectangle, denote by L(n)(R, k) the

left-right distance of R for the field φk0,n, piecewise constant on each dyadic block of size 2−k where

it is equal to the value of φ0,n at the center of this block. We also denote by L(n)(R) the left-right

distance of R for the field φ0,n. We have the following comparison,

e−O(2−k) supP∈Pk,P⊂R
‖∇φ0,n‖PL(n)(R) ≤ L(n)(R, k) ≤ L(n)(R)eO(2−k) supP∈Pk,P⊂R

‖∇φ0,n‖P

which gives a.s. limk→∞ L
(n)(R, k) = L(n)(R).

If R1, . . . , Rp denote p ≥ 2 fixed rectangles, by an application of Portmanteau theorem and since

(L(n)(R1), . . . , L(n)(Rp)) has a positive density with respect to the Lebesgue measure on (0,∞)d (by

the argument used in the proof of Proposition 2.9), if l > 0, we have, using Theorem 2.1,

P
(
L(n)(R1) > l, . . . , L(n)(Rp) > l

)
= lim

k→∞
P
(
L(n)(R1, k) > l, . . . , L(n)(Rp, k) > l

)
≥ lim

k→∞
P
(
L(n)(R1, k) > l

)
. . .P

(
L(n)(Rp, k) > l

)
= P

(
L(n)(R1) > l

)
. . .P

(
L(n)(Rp) > l

)
.

Furthermore, if F,G : (0,∞)[0,1]2 → (0,∞) are increasing functions such that
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1. a.s. limk→∞ F (φk0,n) = F (φ0,n) and limk→∞G(φk0,n) = G(φ0,n)

2. E
(
F (sup[0,1]2 φ0,n)G(inf [0,1]2 φ0,n)−1

)
<∞, E

(
F (sup[0,1]2 φ0,n)

)
<∞

and E
(
G(inf [0,1]2 φ0,n)−1

)
<∞,

then, by dominated convergence theorem and the negative association we have

E(
F (φ0,n)

G(φ0,n)
) = lim

k→∞
E(
F (φk0,n)

G(φk0,n)
) ≤ lim

k→∞
E(F (φk0,n))E(

1

G(φk0,n)
) = E(F (φ0,n))E(

1

G(φ0,n)
).

We introduce the notations l
(n)
a,b (p) := inf{l ≥ 0 | P(L

(n)
a,b ≤ l) > p} for the p-th quantile associated

to L
(n)
a,b and l̄

(n)
a,b (p) := l

(n)
a,b (1− p). Since we will use repetitively l

(n)
1,3 (ε) and l̄

(n)
3,1 (ε) for a small fixed ε,

we introduce the notation ln for the first one and l̄n for the second one. Also, we will be interested

by the ratio between these quantiles hence we introduce the notation δn := max0≤k≤n l
−1
k l̄k for

n ≥ 0. Finally, we introduce µn for the median of L
(n)
1,1 (note that L

(n)
1,1 has a positive density on

(0,∞) with respect to the Lebesgue measure by the argument used in the proof of Proposition 2.9).

We then define the critical parameter γc as

γc := inf
{
γ :
(

logL
(n)
1,1 − logµn

)
is not tight

}

and we call subcriticality the regime γ < γc. Note that anytime we use the assumption γ < γc,

we use only the tightness of logL
(n)
1,1 − logµn. However, we expect that the set of γ such that

(logL
(n)
1,1 − logµn)n≥0 is tight is the interval (0, γc).

2.2.4 Compact metric spaces: uniform and Gromov-Hausdorff topologies

We recall first the notion of uniform convergence. A sequence (dn)n≥0 of real-valued functions

on [0, 1]2 × [0, 1]2 converges uniformly to a function d if

sup
x,x′∈[0,1]2

∣∣dn(x, x′)− d(x, x′)
∣∣ −→
n→∞

0.

If dn are moreover distances on [0, 1]2, then d is a priori only a pseudo-distance, i.e., d(x, y) = 0

with x 6= y may occur.
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Moreover, we recall the definition of the Hausdorff distance. If K1, K2 are two compact subsets

of a metric space (E, d), the Hausdorff distance dH between K1 and K2 is defined by

dH(K1,K2) := inf {ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}

where for i = 1, 2, Uε(Ki) := {x ∈ E : d(x,Ki) < ε} is the ε-enlargement of Ki.

We recall now the definition of the Gromov-Hausdorff distance. Let (E1, d1) and (E2, d2) be two

compact metric spaces. The Gromov-Hausdorff distance dGH between E1 and E2 is defined as

dGH(E1, E2) := inf {dH(φ1(E1), φ2(E2))}

where the infimum is over all isometric embeddings φ1 : E1 → E and φ2 : E2 → E of E1 and E2

into the same metric space (E, d). Here, dH is the Hausdorff distance associated to the space (E, d).

Denote by M the set of all isometry classes of compact metric spaces (see [51] Section 3.11). The

Gromov-Hausdorff distance dGH is a metric on M and (M, dGH) is a Polish space. We refer the

reader to the textbook [17], Section 7 for more details on these topologies.

In our framework, we introduce the sequence of compact metric spaces (Mn)n≥0 where Mn :=

([0, 1]2, d0,n) and where d0,n is the geodesic distance induced by the Riemannian metric tensor

µ−2
n eγφ0,nds2 restricted to [0, 1]2 and we aim to study the convergence in law of Mn to a random

metric space M∞ with respect to the Gromov-Hausdorff topology.

2.2.5 Notation

We will denote by c and C constants whether they should be thought as small or large. They

may vary from line to line and depend on the parameters (e.g. the bump function k) or geometry

when these are fixed. At the only place of the chapter when we take γ small, but fixed, γ is taken

small compared to a constant which does not depend on γ (as soon as we assume that γ is less than

an absolute constant, upper bounds like eγ
√
k may be replaced by eC

√
k).

If F : E → C is a complex-valued function, we denote by ‖F‖∞ := supx∈E |F (x)| and by

‖F‖Cα(E) := ‖F‖∞+ supx 6=y∈E
|F (x)−(y)|
|x−y|α . For d ≥ 1, S(Rd) denotes the space of Schwartz functions
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and S ′(Rd) denotes the space of tempered distributions. Our convention for the Fourier transform

of a function ϕ ∈ S(Rd) is ϕ̂(ξ) :=
∫
Rd ϕ(x)e−ix·ξdx. If x is a real number we will denote by x+ the

maximum of x and 0. For two real numbers a and b we denote by a ∨ b := max(a, b) as well as

a ∧ b := min(a, b). Finally, if X is a random variable, L(X) denotes its law and for x ∈ R we set

FX(x) := P(X ≤ x).

2.3 Statement of main results

Our first main result concerns the relation between lengths of rectangles with different aspect

ratio. We want to compare the tails of L
(n)
a,b for various choices of (a, b). Notice that if a′ ≤ a, b′ ≤ b,

a.s.

L
(n)
a′,b ≤ L

(n)
a,b ≤ L

(n)
a,b′ .

In particular, this gives l
(n)
a′,b(p) ≤ l

(n)
a,b (p) ≤ l

(n)
a,b′(p) for every p in (0, 1). The following Russo-

Seymour-Welsh estimates give upper bounds of left-right crossing lengths of long rectangles in terms

of left-right crossing lengths of short rectangles.

Theorem 2.2. If [A,B] ⊂ (0,∞) there exists C > 0 such that for every (a, b), (a′, b′) ∈ [A,B] with

a/b < 1 < a′/b′ and for every n ≥ 0, ε < 1/2 we have

l
(n)
a′,b′(ε/C) ≤ l(n)

a,b (ε)CeC
√
|log ε/C|, (3.4)

l̄
(n)
a′,b′(3ε

1/C) ≤ l̄(n)
a,b (ε)CeC

√
|log ε/C|. (3.5)

In the article [25], Ding and Dunlap obtained a related result (see Theorem 5.1 in [25]), inspired

by [110]. Their result applies to a rather general setting whereas here we rely on some approximate

conformal invariance of the field considered. However the result in [25] holds for γ small and

this is a comparison for low quantiles only. Here we obtain comparisons for low, as well as high,

quantiles, and there is no assumption on γ. Furthermore, the RSW estimates obtained here are also

quantitative: this is instrumental for instance in the proof of left tail estimates.

Theorem 2.3. If γ < γc, the left-right length for various aspect ratio renormalized by µn is tight

and its tails are quasi-lognormal, i.e., if [A,B] ⊂ (0,∞) there exist constants c > 0, C > 0 such that
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for every (a, b) ∈ [A,B], n ≥ 0, s > 1:

P
(
L

(n)
a,b ≥ µne

s
√

log s
)
≤ Ce−cs2 , (3.6)

P
(
L

(n)
a,b ≤ µne

−s
)
≤ Ce−cs2 . (3.7)

These estimates are fundamental ingredients to get:

Theorem 2.4. Assume that γ < min(γc, 0.4). Then:

1. The sequence of compact metric spaces (Mn)n≥0 where Mn :=
(
[0, 1]2, d0,n

)
and where d0,n is

the geodesic distance induced by the Riemannian metric µ−2
n eγφ0,nds2 is tight with respect to

the uniform and Gromov-Hausdorff topologies.

2. If (nk) is a subsequence along which (dnk)k≥0 converges in law to some d0,∞, then for f ∈ S(R2),

(dnk , e
γ
2
f · dnk)k≥0 converges in law to (d0,∞, e

γ
2
f · d0,∞) (see Section 2.7 for a definition of the

Weyl scaling).

3. Moreover, (φ0,∞ + f, e
γ
2
f · d0,∞) is absolutely continuous with respect to (φ0,∞, d0,∞) and

the associated Radon-Nikodým derivative is the one associated to the first marginal, i.e.,

dL(φ0,∞+f)
dL(φ0,∞) .

We will also check that γc > 0 which is the content of:

Theorem 2.5. For every choice of bump function k, γc(k) > 0.

The general proof scheme of this result is similar to the one in [25]. The key tool is the Efron-Stein

inequality, which was introduced by Kesten in the context of Euclidean first passage percolation. It

was first used by Ding and Dunlap in a multiscale analysis to study Liouville first passage percolation

metrics. Let us mention a few key differences in the implementation of that concentration argument.

In [25], the authors use the Efron-Stein inequality to give an upper bound of Var(L
(n)
1,1 ), in order

to control inductively the coefficient of variation of L
(n)
1,1 , defined as

CV 2(L
(n)
1,1 ) :=

Var(L
(n)
1,1 )

E(L
(n)
1,1 )2

.
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Here, since we expect that the logarithm of the normalized left-right distance is tight, we apply the

Efron-Stein inequality to logL
(n)
1,1 (the underlying product structure is provided naturally by the

white noise representation of the field). We recall the notation for quantiles l̄
(k)
1,1(p), l

(k)
1,1(p), defined

such that P(L
(k)
1,1 ≥ l̄

(k)
1,1(p)) = p and P(L

(k)
1,1 ≤ l

(k)
1,1(p)) = p, and set

δn(p) := max
k≤n

l̄
(k)
1,1

l
(k)
1,1

(p)

which is the quantity we want to bound inductively; p is chosen small enough but fixed so that our

tail estimates hold. The starting point of the induction is the inequality

l̄
(n)
1,1

l
(n)
1,1

(p) ≤ eCp
√

Var logL
(n)
1,1 .

Here the multiscale analysis, relying in particular on tail estimates (let us point out that instead of

quasi-Gaussian bounds, super-exponential bounds would suffice) shows that, for γ small (but which

can be quantified) for some cγ < 1, we have

Var logL
(n)
1,1 ≤ γ

2

(
C + Cδn−1(p)2

∞∑
k=1

ckγ

)

The absence of an explicit bound on γc comes from the fact that we take γ small enough in this

inequality to bound inductively δn(p).

Finally, we will work out some independence of the parameter γc with respect to the choice of

the bump function which is the content of

Theorem 2.6. If k1 and k2 are two bump functions such that k̂1(ξ) = e−a‖ξ‖
α(1+o(1)) and k̂2(ξ) =

e−b‖ξ‖
α(1+o(1)), as ξ goes to infinity, for some α ∈ (0, 1) and a, b > 0, then γc(k1) = γc(k2).

2.4 Russo-Seymour-Welsh estimates: proof of Theorem 2.2

In this section we prove that our approximation φ0,n of φ0,∞ is approximately conformally

invariant. We will then investigate its consequences on the length of left-right crossings: the RSW

estimates, Theorem 2.2, which is a key result of our analysis. Let us already point out that these
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RSW estimates eventually lead, as a first corollary, to a lognormal decay of the left tail (inequality

(3.7), without assuming γ < γc but with a small quantile instead of the median).

2.4.1 Approximate conformal invariance of φ0,n

Let F : U → V be a conformal map between two Jordan domains. We wish to compare the laws

of φ0,n and φ0,n ◦ F in U and look for a uniform estimate in n. For this we go back to the defining

white noises. We write, for ξ and ξ̃ two standard white noises

φ0,n(x) :=

∫
R2

∫ 1

2−n−1

k

(
x− y
t

)
t−3/2ξ(dy, dt), φ̃0,n(x) :=

∫
R2

∫ 1

2−n−1

k

(
x− y
t

)
t−3/2ξ̃(dy, dt),

and we want to couple φ0,n and φ̃0,n ◦ F , in particular for the high-frequency modes. We couple

the defining white noises ξ, ξ̃ in the following way: if y′ ∈ V , y ∈ U , y′ = F (y), t′ = t|F ′(y)|, then

ξ̃(dy′, dt′) =
∣∣F ′(y)

∣∣3/2 ξ(dy, dt)
i.e., for a test function φ compactly supported in V × (0,∞),

∫
φ(y′, t′)ξ̃(dy′, dt′) =

∫
φ(F (y), t|F ′(y)|)

∣∣F ′(y)
∣∣3/2 ξ(dy, dt)

and both sides have variance ‖φ‖2L2 . The rest of the white noises are chosen to be independent, i.e.,

ξ|Uc×(0,∞), ξ|U×(0,∞) and ξ|Ṽ c×(0,∞) are jointly independent. Assuming |F ′| ≥ 1 on U , since

∫
V

∫ 1

2−n−1

k

(
F (x)− y

t

)
t−3/2ξ̃(dy, dt) =

∫
U

∫ |F ′(y)|−1

2−n−1|F ′(y)|−1
k

(
F (x)− F (y)

t |F ′(y)|

)
t−3/2ξ(dy, dt),
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we can decompose φ0,n(x)− φ̃0,n(F (x)) = δφ1(x) + δφ2(x) + δφ3(x) where

δφ1(x) =

∫
Uc

∫ 1

2−n−1

k

(
x− y
t

)
t−3/2ξ(dy, dt)−

∫
V c

∫ 1

2−n−1

k

(
F (x)− y

t

)
t−3/2ξ̃(dy, dt)

+

∫
U

∫ 1

|F ′(y)|−1
k

(
x− y
t

)
t−3/2ξ(dy, dt),

δφ2(x) =

∫
U

∫ |F ′(y)|−1

2−n−1

(
k

(
x− y
t

)
− k

(
F (x)− F (y)

t |F ′(y)|

))
t−3/2ξ(dy, dt),

δφ3(x) =−
∫
U

∫ 2−n−1

2−n−1|F ′(y)|−1
k

(
F (x)− F (y)

t |F ′(y)|

)
t−3/2ξ(dy, dt).

Remark also that δφ3 is independent of φ0,n, δφ1, and δφ2. We will estimate these three terms

separately on a convex compact subset K of an open convex set U under the assumption that

‖F ′‖U,∞ <∞ and ‖F ′′‖U,∞ <∞ and |F ′| ≥ 1 on U .

Lemma 2.7. δφ1 restricted to K is a smooth field; more precisely there exists C > 0 such that for

every n ≥ 0

E
(
‖δφ1‖C1(K)

)
≤ C.

Proof. If x ∈ K, since k has compact support included in B(0, r0) we can write

∫
Uc

∫ 1

2−n−1

k

(
x− y
t

)
t−3/2ξ(dy, dt) =

∫
Uc

∫ 1

(1∧d(K,Uc)/r0)∨2−n−1

k

(
x− y
t

)
t−3/2ξ(dy, dt).

The idea is the same for the second term. For the third term, |F ′(y)| ≤ ‖F ′‖U,∞ hence

∫
U

∫ 1

|F ′(y)|−1
k

(
x− y
t

)
t−3/2ξ(dy, dt) =

∫
U

∫ 1

‖F ′‖−1
U,∞

11≤t|F ′(y)|k

(
x− y
t

)
t−3/2ξ(dy, dt)

which concludes the proof: the smoothness follows standard results of distribution in the sense of

Schwartz.

Lemma 2.8. There exists C > 0 such that for every n ≥ 0 and every x, x′ ∈ K,

E
(
(δφ2(x)− δφ2(x′))2

)
≤ C

∣∣x− x′∣∣ .
We also have E

(
δφ2(x)2

)
≤ C uniformly in x ∈ K and n ≥ 0.
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Proof. Since k is rotationally invariant and has compact support, we will see that

k

(
x− y
t

)
= k

(
F (x)− F (y)

t |F ′(y)|

)
+O(t). (4.8)

First, k having a compact support included in B(0, r0) gives

k

(
x− y
t

)
= k

(
x− y
t

)
1 |x−y|

t
≤r0

= k

(
x− y
t

)
1
t≥ |x−y|

r0

k

(
F (x)− F (y)

t |F ′(y)|

)
= k

(
F (x)− F (y)

t |F ′(y)|

)
1 |F (x)−F (y)|

t|F ′(y)| ≤r0
= k

(
F (x)− F (y)

t |F ′(y)|

)
1
t≥ |F (x)−F (y)|

r0|F ′(y)|

Since |F ′| ≥ 1 on U and ‖F ′‖U,∞ <∞

|F (x)− F (y)|
|F ′(y)|

≥ |F
−1(F (x))− F−1(F (y))|
‖F ′‖U,∞ ‖(F−1)′‖V,∞

=
|x− y|
C

hence we can directly replace the term 1
t≥ |F (x)−F (y)|

r0|F ′(y)|
by 1

t≥ |x−y|
Cr0

. By Taylor’s inequality, |F (x) −

F (y)− F ′(y)(x− y)| ≤ 1
2 |x− y|

2 ‖F ′′‖U,∞ thus

∣∣∣∣F (x)− F (y)

t |F ′(y)|
− x− y

t

F ′(y)

|F ′(y)|

∣∣∣∣ ≤ |x− y|22t

‖F ′′‖U,∞
|F ′(y)|

.

Using the compact support together with the rotational invariance of k, we get

∣∣∣∣k(F (x)− F (y)

t |F ′(y)|

)
− k

(
x− y
t

)∣∣∣∣ ≤ ‖∇k‖∞ ‖F ′′‖U,∞|F ′(y)|
|x− y|2

2t
1
t≥ |x−y|

Cr0

≤ 1

2
‖∇k‖∞

∥∥F ′′∥∥
U,∞ (Cr0)2t

which gives (4.8). Finally, we obtain the following bound

(
k

(
x− y
t

)
− k

(
F (x)− F (y)

t |F ′(y)|

))
−
(
k

(
x′ − y
t

)
− k

(
F (x′)− F (y)

t |F ′(y)|

))
=

(
k

(
x− y
t

)
− k

(
x′ − y
t

))
−
(
k

(
F (x)− F (y)

t |F ′(y)|

)
− k

(
F (x′)− F (y)

t |F ′(y)|

))
= O

(
t ∧ |x

′ − x|
t

)

where in the last equation we both used equation (4.8) and the inequalities, for x, x′ ∈ K and y ∈ U :

∣∣∣∣k(x− yt
)
− k

(
x′ − y
t

)∣∣∣∣ ≤ ‖∇k‖∞ |x− x′|t
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and

∣∣∣∣k(F (x)− F (y)

t |F ′(y)|

)
− k

(
F (x′)− F (y)

t |F ′(y)|

)∣∣∣∣ ≤ ‖∇k‖∞ |F (x)− F (x′)|
t |F ′(y)|

≤ ‖∇k‖∞
∥∥F ′∥∥

K,∞
|x− x′|

t
.

It follows that

E
(
(δφ2(x)− δφ2(x′))2

)
=

∫
U

∫ |F ′(y)|−1

2−n−1

((
k

(
x− y
t

)
− k

(
F (x)− F (y)

t |F ′(y)|

))
−
(
k

(
x′ − y
t

)
− k

(
F (x′)− F (y)

t |F ′(y)|

)))2

t−3dtdy

≤
∫ 1

0
O

(
t ∧ |x− x

′|
t

)2 ∫
R2

1y∈B(x,tCr0)∪B(x′,tCr0)dyt
−3dt

≤ C
∫ 1

0

(
t ∧ |x− x

′|
t

)2 dt

t

But this integral is bounded from above by C
∫√|x−x′|

0 tdt+ C|x− x′|2
∫ 1√
|x−x′| t

−3dt ≤ C |x− x′|,

where the constant C in the right-hand side is uniform in n. The second assertion directly follows

from an analogous computation without keeping track of the x, x′.

Proposition 2.3. There exist C > 0, σ2 > 0 such that for every n ≥ 0, x ≥ 0,

P
(∥∥(δφ1 + δφ2)|K

∥∥
∞ ≥ x

)
≤ Ce−x2/σ2

.

Proof. We have obtained in Lemma 2.8 a bound on the variance of δφ2(x) − δφ2(x′) which is a

centered Gaussian variable, hence it follows that E
(

(δφ2(x)− δφ2(x′))2p
)

= O(|x− x′|p). By the

Kolmogorov continuity criterion, for any α < 1/2, E(‖δφ2‖Cα(K)) is bounded in n. Together with

Lemma 2.7, this shows E(
∥∥(δφ1 + δφ2)|K

∥∥
∞) is bounded. Consequently by Fernique (see [46]), we

have a uniform Gaussian tail estimate in n.

We are left with the noise δφ3 which is independent of φ0,n, δφ1 and δφ2.

Lemma 2.9. There exists C > 0 such that for every x ∈ K, n ≥ 0, E
(
δφ3(x)2

)
≤ C.

Proof. Since |F ′(y)|−1 ≥ ‖F ′‖−1
U,∞ = c > 0 holds for every y ∈ U and as seen in the proof of Lemma
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2.8 we can directly replace the term 1
t≥ |F (x)−F (y)|

r0|F ′(y)|
by 1

t≥ |x−y|
Cr0

. This gives:

E
(
δφ3(x)2

)
=

∫
U

∫ 2−n−1

2−n−1|F ′(y)|−1
k

(
F (x)− F (y)

t |F ′(y)|

)2

t−3dtdy

≤ ‖k‖2∞
∫ 2−n−1

c2−n−1

∫
R2

1y∈B(x,tCr0)t
−3dydt

≤ ‖k‖2∞
∫ 2−n−1

c2−n−1

Ct2t−3dt

which concludes the proof.

In summary, we have seen that along this white noise coupling,

φ0,n − φ̃0,n ◦ F = δφ1 + δφ2 + δφ3 (4.9)

where δφ1 and δφ2 are low frequency noises with uniform Gaussian tails and δφ3 is a high frequency

noise with bounded pointwise variance and dependence scale O(2−n), which is independent of φ0,n,

δφ1 and δφ2.

2.4.2 RSW estimates for crossing lengths

Now we investigate the consequences of the approximate conformal invariance on crossing lengths.

More precisely we want to show that the tails of the crossing lengths of rectangles of varying aspect

ratios are comparable, uniformly in the roughness of the conformal factor by using (4.9).

Let A,B be two boundary arcs of K and denote by L the distance from A to B in K for the

Riemannian metric eγφ0,nds2; we denote A′ := F (A), B′ := F (B), K ′ := F (K), and L′ is the

distance from A′ to B′ in K ′ for eγφ̃0,nds2.

Proposition 2.4. (Left tail estimate). If for some l > 0 and ε < 1/2, P (L ≤ l) ≥ ε ,then

P
(
L′ ≤ l′

)
≥ ε/4

with l′ = Cle
γ
2
σ
√
|log ε/2C| and C, σ depend only on the geometry.
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Proof. Assume that for some positive l, ε, P (L ≤ l) ≥ ε. Setting x = σ
√
| log(ε/2C)|, we have,

using the Proposition 2.3:

P
(∥∥(δφ1 + δφ2)|K

∥∥
∞ ≥ x

)
≤ ε/2

and

P
(∥∥(δφ1 + δφ2)|K

∥∥
∞ ≤ x, L ≤ l

)
≥ ε/2.

Thus, with probability at least ε/2, the distance from A to B in K for the metric eγ(φ0,n−δφ1−δφ2)ds2

is ≤ le
γ
2
x. On this event, we fix such a path of length ≤ le

γ
2
x and average over the independent

small scale noise δφ3; the expected length of the path is ≤ le
γ
2
xeCγ

2
. With conditional probability

at least 1/2, this length is no more than twice the conditional expectation. Consequently, with

probability at least ε/4, the distance from A to B in K for eγφ̃0,n◦Fds2 is less than 2le
γ
2
xeCγ

2
. Since

F ′ is bounded on K, we get that P (L′ ≤ l′) ≥ ε/4 where l′ = 2 ‖F ′‖K,∞ le
γ
2
xeCγ

2
. Indeed, since F

is holomorphic, if π = (πt)t∈[0,1] is a C1 path and if φ is a smooth field, we have:

L
(
F ◦ π, eγφds2

)
=

∫ 1

0
e
γ
2
φ◦F (π(t))

∣∣F ′(π(t))
∣∣ ∣∣π′(t)∣∣ dt

L
(
π, eγφ◦Fds2

)
=

∫ 1

0
e
γ
2
φ◦F (π(t))

∣∣π′(t)∣∣ dt.
Thus, on the event {L(A,B, eγφ̃0,n◦Fds2) ≤ 2le

γ
2
xeCγ

2} we have, taking such a path π:

L
(
A′, B′, eγφ̃0,nds2

)
≤ L

(
F ◦ π, eγφ̃0,nds2

)
≤
∥∥F ′∥∥

K,∞ L
(
π, eγφ̃0,n◦Fds2

)
≤ 2

∥∥F ′∥∥
K,∞ le

γ
2
xeCγ

2

hence P (L′ ≤ l′) ≥ ε/4 with l′ = Cle
γ
2
σ
√
|log ε/2C|eCγ

2 ≤ Cle
γ
2
σ
√
|log ε/2C|.

Proposition 2.5. (Right tail estimate). If for some l > 0 and ε < 1/2, P (L ≤ l) ≥ 1− ε then

P
(
L′ ≤ l′

)
≥ 1− 3ε

with l′ = CleCγ
√
|log ε/2C| and C depends only on the geometry.
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To prove Proposition 2.5, we will need the following lemma which is a consequence of the moment

method and which will be used in the next sections.

Lemma 2.10. Let µ be a Borel measure on a metric space (X, d). If S is a Borel set such that µ(S) ∈

(0,∞) and ψ is a continuous centered Gaussian field on S, satisfying σ2 := supx∈S Var(ψ(x)) <∞,

then for every s > σ2 we have

P
(∫

S
eψ(x)µ(dx) ≥ µ(S)es

)
≤ e−s2/2σ2

.

Proof. By using first Chebychev inequality, then Jensen inequality and finally explicit formula for

moment generating function of Gaussian variables, we have for k > 1/2:

P
(∫

S
eψ(x)µ(dx) ≥ µ(S)es

)
≤ e−2ksE

((
1

µ(S)

∫
eψ(x)µ(dx)

)2k
)

≤ e−2ksµ(S)−1

∫
S
E
(
e2kψ(x)

)
µ(dx)

≤ e2k2σ2−2ks.

By setting k = s
2σ2 , we get the tail estimate for s > σ2.

We are now ready to prove Proposition 2.5.

Proof of Proposition 2.5. Assume that for some positive l, ε, P (L ≤ l) ≥ 1 − ε. Setting x =

σ
√
| log(ε/C)| and using the estimate from Proposition 2.3 we have:

P
(∥∥(δφ1 + δφ2)|K

∥∥
∞ ≥ x

)
≤ ε

and

P
(∥∥(δφ1 + δφ2)|K

∥∥
∞ ≤ x, L ≤ l

)
≥ 1− 2ε.

Consequently, with probability at least 1 − 2ε, the distance from A to B in K for the metric

eγ(φ0,n−δφ1−δφ2)ds2 is ≤ le
γ
2
x. On this event, we fix such a path of length ≤ le

γ
2
x and average over

the independent small scale noise δφ3. Let µ be the occupation measure of that path, so that

|µ| ≤ le
γ
2
x and ψ = γ

2 (δφ3) is independent of µ. Since σ2 := sup[0,1]2 Var ψ = O(γ2), by using
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Lemma 2.10, we note that adding the noise δφ3 increases the length by a factor ≥ eCγ
√
|log ε| with

probability ≤ ε. Consequently, with probability ≥ 1 − 3ε, the distance from A to B in K for

eγφ̃0,n◦Fds is less than le
γ
2
xeCγ
√
|log ε|. Using again L(A′, B′, eγφ̃ds2) ≤ ‖F ′‖K,∞ L(A,B, eγφ̃◦Fds2)

we have P(L′ ≤ l′) ≥ 1− 3ε where l′ = ‖F ′‖K,∞ le
γ
2
xeCγ
√
|log ε|.

To prove Theorem 2.2, we will need the following elementary lemma.

Lemma 2.11. If a and b are two positive real numbers with a < b, there exists j = j(b/a) and

j rectangles isometric to [0, a/2] × [0, b/2] such that if π is a left-right crossing of the rectangle

[0, a] × [0, b], at least one of the j rectangles is crossed in the thin direction by a subpath of that

crossing.

Proof. To see it, cover for instance [0, a/2]× [0, b] by thin rectangles [0, a/2]× [0, b/2] from bottom

to top and spaced by (b− a)/4, add also squares of length a/2 with the same spacing (see the first

two parts on Figure 2.1). Then, starting with a crossing of [0, a]× [0, b], consider the subpath from

the left side to the first hitting point of {a/2}× [0, b], and denote by h is height (max of y - min of y).

Consider first the case where h ≤ a/2 + (b− a)/4 (see the last part on Figure 2.1). Since the bottom

part of the path is at distance ≤ (b−a)/4 of a side of a rectangle of size [0, a/2]× [0, b/2] the crossing

is included in this rectangle of the cover. Now we treat the other case where h > a/2 + (b− a)/4

(see the third part on Figure 2.1). Since the bottom part is at distance ≤ (b − a)/4 of a square

which is above, this square of size a/2 is then crossed vertically.

b−a

4

h > a
2

+
b−a

4

≤
b−a

4

h ≤ a
2

+
b−a

4

≤
b−a

4

h +
b−a

4
≤ b

2

b
2

a
2

a
2

a
2

a
2

Figure 2.1 – Crossing at a smaller scale.

Now, we want to relate crossings of short rectangles with crossings of long rectangles. Our

previous results say that the crossing lengths in K between sides A and B are uniformly (in n)

comparable to crossing lengths in F (K) between sides F (A) and F (B). Thus, we would like to take
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the sides A and B to be those of a short rectangle and to map them to the sides of a long rectangle

with a conformal map F such that F ′ and F ′′ are bounded and satisfying |F ′| ≥ 1. This cannot be

done directly but this is the main idea: to produce a crossing from a short domain to a longer one.

In particular, it is enough to consider ellipses and to relate crossings in ellipses with crossings in

rectangles and by using the previous lemma one can begin with crossing of sides in a very small

domain and then map it to a much larger domain.

Proof of Theorem 2.2. The proof is divided in two steps. First we prove the inequality (3.4)

associated with the left tail and then the inequality (3.5) associated to the right one.

Step 1. We study first the left tail under the assumption P(L
(n)
a,b ≤ l) ≥ ε and we want to obtain

a similar estimate for L
(n)
a′,b′( in particular if a/b < 1 < a′/b′). We assume a < b, i.e., L

(n)
a,b is the

length of a crossing in the thin direction.

First, by using Lemma 2.11, we observe that there is an integer j = j(b/a) and j rectangles

isometric to [0, a/2] × [0, b/2] such that on the event L
(n)
a,b ≤ l, at least one of the j rectangles

is crossed in the thin direction by a subpath of that crossing. Thus, by union bound, we get

P(L
(n)
a/2,b/2 ≤ l) ≥ ε/j, and by iterating, P

(
L

(n)
a/2p,b/2p ≤ l

)
≥ ε/jp.

Consider now ellipses E, E′, each with two marked arcs, such that: any left-right crossing of

[0, a/2p]× [0, b/2p] is a crossing of E, and any crossing of E′ is a left-right crossing of [0, a′]× [0, b′].

Divide the marked arcs of E into m subarcs of, say, equal length. With probability at least

ε/(jpm2), one of the crossings between pairs of subarcs has length at most l.

E 0

[0; a0]× [0; b0]

E [0; a]× [0; b]

Figure 2.2 – Rectangles and ellipses

For m large enough (depending on E, E′), for any pair of such subsegments (one on each side),

there is a conformal equivalence F : E → E′ such that the pair of subarcs is mapped to subarcs of
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the marked arcs of E′. Remark that ellipses are analytic curves (they are images of circles under the

Joukowski map, see [47] Chapter 1 Exercise 15) and consequently (by Schwarz reflection) F extends

to a conformal equivalence U → V , where Ē (resp. Ē′) is a compact subset of U (resp. V ).

By choosing p large enough, |F ′| ≥ 1 on U . By the left tail estimate Proposition 2.4, we obtain

that there is C > 0 such for all ε, l > 0:

P
(
L

(n)
a,b ≤ l

)
≥ ε⇒ P

(
L

(n)
a′,b′ ≤ Cle

γ
2
σ
√
|log ε/(2Cjpm2)|

)
≥ ε/(4jpm2)

which we rewrite as:

P
(
L

(n)
a,b ≤ l

)
≥ ε⇒ P

(
L

(n)
a′,b′ ≤ Cle

Cγ
√
|log ε/C|

)
≥ ε/C. (4.10)

Step 2. For the right tail we reason similarly: let a < b and take l, ε so that P(L
(n)
a,b ≤ l) ≥ 1− ε.

On the event {L(n)
a,b ≤ l}, one of j variables distributed like L

(n)
a/2,b/2 is ≤ l; moreover these variables

have positive association. By the the positive association property (Theorem 2.1) and the square-

root trick (see [110] Proposition 4.1), we have P(L
(n)
a/2,b/2 ≤ l) ≥ 1 − ε1/j and then, by iterating,

P(L
(n)
a/2p,b/2p ≤ l) ≥ 1− εj−p .

On the event {L(n)
a/2p,b/2p ≤ l}, the ellipse E has a crossing of length ≤ l between two marked arcs.

Again by subdividing each of these arcs into m subarcs, and applying the square-root trick we see

that for at least one pair of subarcs, there is a crossing of length ≤ l with probability ≥ 1− εj−pm−2
.

Combining with the right-tail estimate Proposition 2.5, we get:

P
(
L

(n)
a,b ≤ l

)
≥ 1− ε⇒ P

(
L

(n)
a′,b′ ≤ Cle

γC
√
|log ε/C|

)
≥ 1− 3ε1/C (4.11)

which completes the proof of Theorem 2.2.
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2.5 Tail estimates for crossing lengths: proof of Theorem 2.3

2.5.1 Concentration: the left tail

Denote by L̃
(n)
1,3 (resp. L̃

(n)
3,1 ) the left-right crossing length of the rectangle [2, 3] × [0, 3] (resp.

[0, 3]× [2, 3]). In this subsection we investigate the consequences of the RSW estimates combined

with the following inequalities (see Figure 2):

L
(n)
1,3 + L̃

(n)
1,3 ≤ L

(n)
3,3 ≤ min

(
L

(n)
3,1 , L̃

(n)
3,1

)

which implies the following:

L
(n)
3,3 ≤ l⇒

(
L

(n)
1,3 ≤ l and L̃

(n)
1,3 ≤ l

)
L

(n)
3,3 ≥ l⇒

(
L

(n)
3,1 ≥ l and L̃

(n)
3,1 ≥ l

)
.

L
(n)
1;3

~L
(n)
1;3

L
(n)
3;3

L
(n)
3;1

~L
(n)
3;1

L
(n)
3;3

Figure 2.3 – Inequalities between lengths of geodesics associated to different rectangles

The following result is a consequence of the first inequality. It gives lognormal tail estimates on

the left tail of crossing lengths renormalized by a small quantile, without any assumption on γ.

Proposition 2.6. There exists a small p0 > 0 such that for p ≤ p0 there exists c > 0 so that for

every s > 0

P
(
L

(n)
3,3 ≤ l

(n)
3,3 (p) e−s

)
≤ Ce−cs2 ,

where c, C do not depend on n.
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Proof. Our left tail estimate (4.10) gives:

P
(
L

(n)
1,3 ≤ l

)
≥ ε⇒ P

(
L

(n)
3,3 ≤ l

′
)
≥ ε/C with l′ = CleCγ

√
|log ε/C|

which can be rewritten as:

P
(
L

(n)
3,3 ≤ l

)
≤ ε⇒ P

(
L

(n)
1,3 ≤ lC

−1e−Cγ
√
|logCε|

)
≤ Cε. (5.12)

Now, if L
(n)
3,3 is less than l, then both [0, 1]× [0, 3] and [2, 3]× [0, 3] have a left-right crossing of length

≤ l and the field in these two rectangles is independent (if r0 is small enough). Consequently,

P
(
L

(n)
3,3 ≤ l

)
≤ P

(
L

(n)
1,3 ≤ l

)2
. (5.13)

These two results allow us to get the uniform tail bound. Indeed, take ε0 small, such that C2ε0 < 1

and set r
(n)
0 := l

(n)
3,3 (ε0). We define by induction εi+1 := (Cεi)

2 (which gives εi = (ε0C
2)2iC−2 as

well as r
(n)
i+1 := r

(n)
i C−1 exp(−Cγ

√
| log(Cεi)|). It follows by induction that P(L

(n)
3,3 ≤ r

(n)
i ) ≤ εi for

every i ≥ 0. Indeed, the case i = 0 follows by definition and then notice that the RSW estimates

under the induction hypothesis implies that

P
(
L

(n)
3,3 ≤ r

(n)
i

)
≤ εi ⇒ P

(
L

(n)
1,3 ≤ r

(n)
i+1

)
≤ Cεi

which gives, using the inequality (4.44):

P
(
L

(n)
3,3 ≤ r

(n)
i+1

)
≤ P

(
L

(n)
1,3 ≤ r

(n)
i+1

)2
≤ (Cεi)

2 = εi+1.

Notice that we have the lower bound on r
(n)
i for i ≥ 1:

r
(n)
i ≥ l(n)

3,3 (ε0)C−ie−Cγ
∑i−1
k=0

√
| log(Cεk)| ≥ l(n)

3,3 (ε0)e−Cie−Cγ
√
| log ε0C2|2i/2 .

Our estimate then takes the form, for i ≥ 0:

P
(
L

(n)
3,3 ≤ l

(n)
3,3 (ε0)e−Cie−γC

√
| log ε0C2|2i/2

)
≤
(
ε0C

2
)2i

C−2.
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Which can be rewritten, taking i = b2 log2 sc, with absolute constants, for s ≥ 1:

P
(
L

(n)
3,3 ≤ l

(n)
3,3 (ε0)C−1e−C log se−γs

)
≤ e−cs2 .

Notice that dropping the dependence on γ as we impose it is bounded from above by a large number

we get Proposition 2.6.

Corollary 2.7. We have a uniform (in n) lognormal tail estimates for the lower bound of thin

rectangles, i.e., if ε0 is small enough for every n ≥ 0, s ≥ 0:

P
(
L

(n)
1,3 ≤ l

(n)
1,3 (ε0)e−s

)
≤ Ce−cs2 ,

where c, C are absolute constants.

Proof. The proof follows from the RSW estimate (5.12), the bound l
(n)
1,3 (ε0) ≤ l

(n)
3,3 (ε0) and the

previous proposition.

It is tempting to follow the lines of this proof using the second inequality (see also Figure 2.3) in

order to derive a right tail estimate. However, this approach cannot be readily extended because of

the power 1/C in the RSW estimate, inequality (3.5).

2.5.2 Concentration: the right tail

As mentioned in the previous section, we cannot generalize the method used for the left tails to

the right one and the following proposition remediates to this. Before stating it, we refer the reader

to the definitions of ln and δn in Subsection 2.2.3.

Proposition 2.8. If ε is small enough we have the following tail estimate:

For 0 ≤ k ≤ n, s > 1

P
(
L

(k)
3,1 ≥ δnlke

s
√

log s
)
≤ Ce−cs2 ,

where c and C are absolute constants.

Proof. We proceed according to the following steps:
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1. Use the RSW estimates to reduce the problem to the case of squares instead of long rectangles.

2. Use a comparison to 1-dependent oriented site percolation to prove that with probability going

to one exponentially in k, L
(n)
k,k is less than Ckl̄n.

3. By scaling and the moment method, obtain a first tail estimate of L
(n)
1,1 with respect to l̄n−m:

For a constant α ∈ (0, 1), P
(
L

(n)
1,1 ≥ Cl̄n−meγs

√
m
)
≤ Cα2m + e

− 2s2

log 2 .

4. Give an upper bound of l̄n−m in terms of ln.

5. Obtain a tail estimate when the tails are not too large.

6. For the large tails, use a moment method and a lower bound on the quantiles.

Step 1. First, notice by the RSW estimates (4.11) that it is enough to prove that for 0 ≤ k ≤ n,

s > 1

P
(
L

(k)
1,1 ≥ δnlke

s
√

log s
)
≤ Ce−cs2 .

Step 2. We will see here that taking ε small enough, there exist C > 0, α < 1 such that for

every k, n ≥ 0:

P
(
L

(n)
k,k ≤ 4kl̄n

)
≥ 1− Cαk. (5.14)

We consider a graph whose sites x are made by squares of size 3 × 3 and spaced so that two

adjacent squares intersect each other along a rectangle of size (3, 1) or (1, 3). Denote by L
(n)
3,1,right(x)

the rectangle crossing length, in the long direction, associated to the rectangle of size (3, 1) on the

bottom of x and included in x. Similarly, denote by L
(n)
3,1,up(x) the rectangle crossing length, in the

long direction, associated to the rectangle of size (1, 3) on the left of x and included in x. To each

site of our graph, we assign the value 0 if the site is closed and 1 if the site is open. A site x is open

if the event {L(n)
3,1,up(x) + L

(n)
3,1,right(x) ≤ 2l̄n} occurs (see Figure 2.4).

We have the following bound on the probability that a site x is open:

P (ωx = 1) ≥ P
(
L

(n)
3,1,up ≤ l̄n, L

(n)
3,1,right ≤ l̄n

)
≥ 2P

(
L

(n)
3,1 ≤ l̄n

)
− 1 ≥ 1− 2ε.

Therefore, taking ε small gives a highly supercritical 1-dependent percolation model (notice that a
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L
(n)
3;1;up

L
(n)
3;1;right

Figure 2.4 – Definition of the model. The green site x is open. Three of its neighbors are drawn,
with some colored dashed lines filling their cell and with white vertices at their center.

site x is independent of sites that are not directly weakly adjacent to it). Then, notice that L
(n)
k,k

is smaller than the weight associated to oriented paths from left to right at the percolation level

that can go only up or right. Such a path contains at most 2k sites. Thus, if there is an open

oriented percolation path from left to right, then L
(n)
k,k ≤ 4kl̄n. Hence it is enough to show that the

probability that there is such an open oriented path goes to 1 exponentially in k. This follows from

a contour argument for highly supercritical 1-dependent percolation model, see for instance [45]

Section 10.

Figure 2.5 – Comparison with 1-Dependent Oriented Site Percolation. The figure on the right is the
representation of the figure on the left.

Step 3. In order to obtain an upper bound for L
(n)
1,1 , by scaling and the percolation bound (5.14)

we see that there exists α ∈ (0, 1) such that for m ≤ n, we have,

P
(
L

(m,n)
1,1 ≤ Cl̄n−m

)
= P

(
L

(n−m)
2m,2m ≤ C2m l̄n−m

)
≥ 1− Cα2m
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which can be rewritten in term of L
(n)
1,1 as

P
(
L

(n)
1,1 ≤ Cl̄n−me

s
)
≥ P

(
L

(n)
1,1 ≤ Cl̄n−me

s, L
(m,n)
1,1 ≤ Cl̄n−m

)
= P

(
L

(m,n)
1,1 ≤ Cl̄n−m

)
− P

(
L

(n)
1,1 ≥ Cl̄n−me

s, L
(m,n)
1,1 ≤ Cl̄n−m

)
≥ 1− Cα2m − P

(
L

(n)
1,1 ≥ e

sL
(m,n)
1,1

)
.

Now, using that L
(n)
1,1 ≤

∫
πm,n

e
γ
2
φ0,m−1e

γ
2
φm,nds where πm,n is a geodesic for eγφm,nds2 and using the

bound coming from Lemma 2.10 we have

P
(
L

(n)
1,1 ≥ e

γ
√
msL

(m,n)
1,1

)
≤ E

(
P

(∫
πm,n

e
γ
2
φ0,m−1e

γ
2
φm,n ≥ eγ

√
msL

(m,n)
1,1 | Fm,n

))
≤ e−

2s2

log 2

hence for every 0 ≤ m ≤ n and s ≥ 0

P
(
L

(n)
1,1 ≤ Cl̄n−me

γs
√
m
)
≥ 1− Cα2m − e−

2s2

log 2 . (5.15)

Step 4. At this stage we want to replace l̄n−m by ln. We introduce a notation for a collection

of short rectangles that we will use by setting

Ik := {horizontal, vertical rectangles of size 2−k(1, 3) with corners in [0, 1]×[0, 3]∩2−kZ2}. (5.16)

It is clear from the definition that |Ik| ≤ C4k.Then, notice that a left-right crossing of [0, 1]× [0, 3]

has to cross at least 2k rectangles from Ik (by definition of Ik, these are short crossings). For P ∈ Ik,

we set

L(n)(P ) := length of the left-right crossing of the rectangle P for e
γ
2
φ0,nds (5.17)

and we use similarly the notation L(k,n)(P ) when the field considered is φk,n. We have, almost

surely,

L
(n)
1,3 ≥ 2k min

P∈Ik
L(n)(P ) ≥ 2ke

γ
2

inf
[0,1]2

φ0,k−1

min
P∈Ik

L(k,n)(P ). (5.18)
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Hence by union bound and scaling, we have, for s1 > 0 and s2 > 0 to be specified

P
(
L

(n)
1,3 ≤ e

− γ
2
s1 ln−ke

−s2
)
≤ P

(
e

γ
2

inf
[0,1]2

φ0,k−1

2k min
P∈Ik

L(k,n)(P ) ≤ e−
γ
2
s1 ln−ke

−s2
)

≤ P
(
e

γ
2

inf
[0,1]2

φ0,k−1

≤ e−
γ
2
s1

)
+ P

(
min
P∈Ik

L(k,n)(P ) ≤ 2−kln−ke
−s2
)

≤ P

(
sup
[0,1]2
|φ0,k−1| ≥ s1

)
+ C4kP

(
L

(n−k)
1,3 ≤ ln−ke−s2

)
.

Using the supremum tail estimate from the appendix (10.40) with s1 = k log 4 +C
√
k +Cs and the

lognormal tails from Corollary 2.7 with s2 = C
√
k log 4 + s we have

P
(
L

(n)
1,3 ≤ ln−k2

−γke−C
√
ke−Cse−C

√
s
)
≤ Ce−s,

which gives

ln ≥ 2−γke−C
√
ke−C ln−k, (5.19)

hence l̄n−m ≤ ln−mδn ≤ lnδn2γmeC
√
mC.

Step 5. Using this bound and coming back to our estimate (5.15), for every m ≤ n and s ≥ 0

P
(
L

(n)
1,1 ≤ lnδn2γmeC

√
mCeγs

√
m
)
≥ 1− Cα2m − e−

2s2

log 2 .

We deal with the range s ∈ [1, 2n/2], taking m such that s = 2m/2, i.e., m = b2 log2 sc we get:

P
(
L

(n)
1,1 ≤ lnδne

Cγ log seγs
√

log s
)
≥ 1− Ce−cs2 ,

which gives, dropping the dependence on γ for s > 1:

P
(
L

(n)
1,1 ≥ lnδne

s
√

log s
)
≤ Ce−cs2 .

Step 6. We then treat the case s ≥ 2n/2. To do it, we use a moment method (Lemma 2.10) to

get a right tail estimate on L
(n)
1,1 together with a lower bound on its quantiles. The moment method
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(taking a straight line) gives:

P
(
L

(n)
1,1 ≥ e

γs
)
≤ e−

2s2

(n+1) log 2 . (5.20)

For the lower bound on quantile, we get a bound by a direct comparison with the supremum of the

field P(L
(n)
1,3 ≤ e−

γ
2
x) ≤ P(sup[0,1]2 φ0,n ≥ x). Using the supremum tails from the appendix (10.40),

i.e., taking x = n log 4 + C
√
n+ Cs gives ln ≥ e−

γ
2

(n log 4+C
√
n+C) =: e−γxn . Since we consider the

case s ≥ 2n/2, s ≥ xn and n ≤ 2 log2 s and coming back to (5.20) leads to

P
(
L

(n)
1,1 ≥ lne

γs
)
≤ P

(
L

(n)
1,1 ≥ e

γ(s−xn)
)
≤ e−2

(s−xn)2

(n+1) log 2 ≤ eCse−
s2

log s .

Finally, combining the two inequalities ends the proof.

2.5.3 Quasi-lognormal tail estimates at subcriticality

In this subsection we prove Theorem 2.3. The main idea is the following: the tightness of

logL
(n)
1,1 − logµn shows that the ratio between low and high quantiles of L

(n)
1,1 is bounded. Using the

RSW estimates, it implies that δ∞ <∞ which gives, uniformly in n, µn ≤ Cln. The tails are then

obtained using Corollary 2.7 (with ln ≥ µnC−1) and Proposition 2.8 (with δnln ≤ δ∞µn).

Proof of Theorem 2.3. Assuming γ < γc gives the tightness of (logL
(n)
1,1 − logµn)n≥0. Thus, for

every ε > 0 there exists Cε > 0 such that for every n ≥ 0, P(L
(n)
1,1 ≤ µne

−Cε) ≤ ε/C and

P(L
(n)
1,1 ≥ µneCε) ≤ εC/3 which can be rewritten as

µne
−Cε ≤ l(n)

1,1 (ε/C) ≤ µn ≤ l̄(n)
1,1 (εC/3) ≤ µneCε .

Combining with the RSW estimates (2.2), we have

µne
−Cε ≤ l(n)

1,1 (ε/C)e−Cε ≤ l(n)
1,3 (ε) ≤ l(n)

1,1 (ε) ≤ µn ≤ l̄(n)
1,1 (ε) ≤ l̄(n)

3,1 (ε) ≤ l̄(n)
1,1 (εC/3)eCε ≤ µneCε .

In particular, δn ≤ eCε holds for every n ≥ 0 hence δ∞(ε) = supn≥0 δn(ε) <∞.

We prove now the lower tail estimates. We have ln ≥ µne
−Cε for every n ≥ 0 hence using

Corollary 2.7 we get Theorem 3.7 when (a, b) = (1, 3). For the upper tails since δ∞ <∞ and ln ≤ µn
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we can use Proposition 2.8 to get Theorem 3.6 for the case (a, b) = (3, 1). The general case follows

from the RSW estimates.

When γ < γc, we expect the existence of a ρ ∈ (0, 1) such that ln = ρn+o(n) and l̄n = ρn+o(n).

However, we don’t need this level of precision and the following a priori bounds are enough for our

analysis.

Lemma 2.12. If 0 < ε < 1/2 we have the following inequalities relating quantiles, for every

0 ≤ k ≤ n:

1. for the the lower quantiles ln−k ≤ 2γkeC
√
kln,

2. if γ < γc, l̄n ≤ eC
√
k l̄n−k,

3. and still under the assumption γ < γc, e
−Cµn ≤ ln ≤ µn ≤ l̄n ≤ eCµn.

Proof. The first point follows from the proof of Proposition 2.8, see (5.19). For the second point,

using Lemma 2.10 gives

P
(
L

(n)
1,1 ≥ e

γ
√
ksL

(n−k)
1,1

)
≤ E

(
P

(∫
πn−k

e
γ
2
φ0,n−ke

γ
2
φn−k,n ≥ eγ

√
ksL

(n−k)
1,1 | F0,n−k

))

≤ e−
2s2

log 2

hence P
(
L

(n)
1,1 ≥ l̄n−keγ

√
kses

)
≤ e−

2s2

log 2 +P
(
L

(n−k)
1,1 ≥ µn−kes

)
and the result follows from Theorem

2.3. The last point follows from the previous proof.

2.5.4 Lower bounds on the tails of crossing lengths

The following result, independent of the value of γ, shows that we cannot expect better than

uniform lognormal tails. Its proof is essentially an application of the Cameron-Martin theorem and

we see there that the lower bounds are already provided by the low frequencies of the field.

Proposition 2.9. There exist positive constants c, C such that for every n ≥ 0, x > 0:

P
(
L

(n)
1,1 ≤ µne−x

)
≥ ce−Cx2

and P
(
L

(n)
1,1 ≥ µnex

)
≥ ce−Cx2

.
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Proof. If x ∈ [0, 1]2, for every t ∈ (0, 1), the Euclidean ball centered at x with radius tr0 is included

in the r0 neighborhood of [0, 1]2, denoted by ([0, 1]2)r0 . Since k has compact support in B(0, r0),

∫ 1

1
2

∫
R2

k

(
x− y
t

)
t−3/21y∈([0,1]2)r0dydt =

∫ 1

1
2

∫
B(x,tr0)

k

(
x− y
t

)
t−3/2dydt

=

∫ 1

1
2

∫
B(0,tr0)

k
(y
t

)
t−3/2dydt

is independent of x and is equal to some positive real number h.

Let M ∈ R. By the Cameron-Martin theorem (see [21] Section 2), since M1[ 1
2
,1]×([0,1]2)r0 is square-

integrable, ξ +M1[ 1
2
,1]×([0,1]2)r0 is absolutely continuous with respect to ξ and its Radon-Nikodým

derivative is given by the Cameron-Martin formula:

dL
(
ξ +M1[ 1

2
,1]×([0,1]2)r0

)
dL (ξ)

= exp

(
M〈ξ, 1[ 1

2
,1]×([0,1]2)r0 〉 − g

M2

2

)

where g := 1
2Leb(([0, 1]2)r0). We introduce the field φM0,n associated to ξ +M1[ 1

2
,1]×([0,1]2)r0 , i.e., for

x ∈ R2,

φM0,n(x) :=

∫ 1

2−n−1

∫
R2

k

(
x− y
t

)
t−3/2

(
ξ(dy, dt) +M1[ 1

2
,1]×([0,1]2)r0 (t, y)dydt

)

and using the previous remark, we notice that φM0,n is equal to φ0,n +Mh on [0, 1]2. Thus, using the

Cameron-Martin theorem, if I is an interval, we have for n ≥ 0 and a > 0:

P
(
L

(n)
1,1 ∈ e

− γ
2
hMI

)
= P

(
L1,1

(
φM0,n

)
∈ I
)

= E
(

1
L

(n)
1,1∈I

exp

(
M〈ξ, 1[ 1

2
,1]×([0,1]2)r0 〉 − g

M2

2

))
≥
(
P
(
L

(n)
1,1 ∈ I

)
+ P

(
〈ξ, 1[ 1

2
,1]×([0,1]2)r0 〉 ∈ (−a, a)

)
− 1
)
e−a|M |e−

gM2

2 .

Taking I = (0, µn] and M = x > 0 gives, with a large enough but fixed,

P
(
L

(n)
1,1 ≤ µne

− γ
2
hx
)
≥ ce−axe−

gx2

2 .
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Similarly, taking I = [µn,∞) and M = −x < 0 gives, with a large enough but fixed,

P
(
L

(n)
1,1 ≥ µne

γ
2
hx
)
≥ ce−axe−

gx2

2

for every x > 0, n ≥ 0. This completes the proof.

2.6 Tightness of the metric at subcriticality: proof of Theorem 2.4

2.6.1 Diameter estimates

We focus on the diameter of [0, 1]2 for the metric eγφ0,nds2. Notice that there may be a gap

between it and the left-right length studied in the previous sections since left-right geodesics are

between points where the field φ0,n is small whereas geodesics associated to diameter have their

extremities at points where the field φ0,n may be high. Before going into exponential tail estimates,

we start with a first moment estimate.

Proposition 2.10. If γ < min(γc, 1/2) then
(
log Diam

(
[0, 1]2, µ−2

n eγφ0,nds2
))
n≥0

is tight.

Proof. The proof is divided in four steps: in the first step we use a chaining argument to give an

upper bound of the diameter in terms of crossing lengths of rectangles at lower scales and in term

of the supremum of φ0,n. In the second and third steps, we bound the expected value of the term

associated to the crossing lengths of rectangles and the one of term associated to the supremum. By

Chebychev inequality, this gives a control of the right tail of log Diam
(
[0, 1]2, µ−2

n eγφ0,nds2
)
. In the

last step, we compare the diameter to the left-right crossing length to obtain a left tail estimate.

Step 1. Let us denote by Hk (resp Vk) the set of horizontal (resp vertical) thin rectangles of

size 2−k−1(2, 1) spaced by 2−k−1 and tiling [0, 1]2. Each dyadic square of size 2−k in [0, 1]2 is split

in two thin horizontal rectangles in Hk and two thin vertical rectangles in Vk. For each of these four

rectangles, we pick a path minimizing the crossing length in the long direction. We call system the

union of these four geodesics (on Figure 2.6, the purple and the green sets are systems associated to

different squares). At a scale k, there are 4k systems, each giving rise to four geodesics.

If x and y are two points in [0, 1]2, the geodesic distance between x and y is less than the length

associated to any path between them. The majorizing path we use is defined as follows: if P ∈ Pn
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is the dyadic block at scale n containing x, we take an Euclidean straight line (red path on Figure

2.6) to join the system of four geodesics (purple set on the Figure 2.6) associated to Hn and Vn in

the block P . By following successively systems associated to larger dyadic blocks, we eventually

reach to the one associated to [0, 1]2. For instance, on Figure 2.6, the path goes from scale n to

scale n− 1 by using the purple and green systems. Proceeding similarly with y gives a path from x

to y, constituted by n systems and two Euclidean straight lines.Taking a uniform bound over these

gives an upper bound which is uniform for every x and y in [0, 1]2, hence a.s.

Diam
(

[0, 1]2, eγφ0,nds2
)
≤ 8

n∑
k=0

max
P∈Hk∪Vk

L(n)(P ) + 2× 2−ne

γ
2

sup
[0,1]2

φ0,n

. (6.21)

x

Figure 2.6 – Chaining argument

Step 2. Now, we bound the expected value of the first term in (6.21). We decouple the first

scales, a.s. maxP∈Hk∪Vk L
(n)(P ) ≤ e

γ
2

sup[0,1]2 φ0,k−1 maxP∈Hk∪Vk L
(k,n)(P ) and use independence,

E(maxP∈Hk∪Vk L
(n)(P )) ≤ E(e

γ
2

sup[0,1]2 φ0,k−1)E(maxP∈Hk∪Vk L
(k,n)(P )). Then, by using the bound

on the exponential moment of the supremum of φ0,n (Lemma 2.18), we get E(e
γ
2

sup[0,1]2 φ0,k−1) ≤

2γkeC
√
k. By scaling and union bound, the upper tails (3.6) (since γ < γc) give the tail esti-

mate P(maxP∈Hk∪Vk L
(k,n)(P ) ≥ 2−kµn−ke

s
√

log s) ≤ C4ke−s
2

hence E(maxP∈Hk∪Vk L
(k,n)(P )) ≤

2−kµn−ke
C
√
k log k by Lemma (2.19). Gathering all the pieces leads to

E

(
n∑
k=0

max
P∈Hk∪Vk

L(n)(P )

)
≤ C

n∑
k=0

2−k2γkµn−ke
C
√
k log k.
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By the bound relating quantiles of different scales (Lemma 2.12) we have

E

(
n∑
k=0

max
P∈Hk∪Vk

L(n)(P ))

)
≤ Cµn

n∑
k=0

2−k22γkeC
√
k log k.

The series converges for γ < 1/2.

Step 3. For the second term, using the exponential moment bound for the supremum (Lemma

2.18), the bound 2−γne−C
√
n ≤ ln for γ < 1/2 (by comparison with the supremum) we find

E

(
2−ne

γ
2

sup
[0,1]2

φ0,n

)
≤ 2−n2γneC

√
n = 2−n22γneC

√
n2−γne−C

√
n ≤ Cln ≤ Cµn.

Step 4. Since the diameter of the square [0, 1]2 is larger than the left-right distance, by using

Theorem 2.3 we get

P
(

Diam([0, 1]2, µ−2
n eγφ0,nds2) ≤ e−s

)
≤ P

(
L

(n)
1,1 ≤ µne

−s
)
≤ Ce−cs2

which completes the proof of Proposition 3.27.

We now look for exponential tails, when γ is small enough. The following proposition will be

used both for the tightness of d0,n and to prove that γc > 0. We refer the reader to the definitions

of δn and ln in Subsection 2.2.3.

Proposition 2.11. If ε is small enough, then for every c > γ2

8(1−2γ) there exists C > 0 such that

for every n ≥ 0, s > 0:

P
(

Diam
(

[0, 1]2, eγφ0,nds2
)
≥ δnlnecs

)
≤ Ce−s.

Proof. The proof is divided in three steps. In the two first steps, we give a tail estimate for the first

term in (6.21). More precisely, in the first step, we give a tail estimate for L(n)(P ) with P ∈ Hk ∪Vk.

By union bound, we get one for
∑n

k=0 maxP∈Hk∪Vk L
(n)(P ) in the second step. The third step deals

with the second term in (6.21).

Step 1. In order to reuse directly the Proposition 2.8, note first if P ∈ Hk ∪Vk is fixed, we have
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a stochastic domination L(n)(P ) ≤ L(n)

2−k(3,1)
(since any left-right crossing of 2−k(3, 1) is a crossing

of 2−k(2, 1)) thus we look for a tail estimate for this term. To this end, we decouple the scales by

taking a geodesic πk,n for the left-right crossing of the rectangle 2−k(1, 3) for the field φk,n and we

obtain

L
(n)

2−k(3,1)
≤
∫
πk,n

e
γ
2
φ0,k−1e

γ
2
φk,nds.

Therefore, we have the bound

P
(
L(n)(P ) ≥ 2−kδnln−ke

Cs
√

log se
γ
2
s
√
k log 4

)
≤ P

(∫
πk,n

e
γ
2
φ0,k−1e

γ
2
φk,nds ≥ 2−kδnln−ke

Cs
√

log se
γ
2
s
√
k log 4

)
.

By union bound, we have

P

(∫
πk,n

e
γ
2
φ0,k−1e

γ
2
φk,nds ≥ 2−kδnln−ke

Cs
√

log se
γ
2
s
√
k log 4

)

≤ P

(∫
πk,n

e
γ
2
φ0,k−1e

γ
2
φk,nds ≥ L(k,n)

2−k(3,1)
e
γ
2
s
√
k log 4

)
+ P

(
L

(k,n)

2−k(3,1)
≥ 2−kδnln−ke

Cs
√

log s
)
.

Using Lemma 2.10 for the first term, scaling and the upper tail estimate from Proposition 2.8 for

the second term, we get

P

(∫
πk,n

e
γ
2
φ0,k−1e

γ
2
φk,nds ≥ L(k,n)

2−k(3,1)
e
γ
2
s
√
k log 4

)
+ P

(
L

(k,n)

2−k(3,1)
≥ 2−kδnln−ke

Cs
√

log s
)
≤ Ce−s2 .

Hence, we get for P ∈ Hk ∪ Vk:

P(L(n)(P ) ≥ 2−kδnln−ke
Cs
√

log se
γ
2
s
√
k log 4) ≤ Ce−s2 . (6.22)

Step 2. In this step we give a tail estimate for
∑n

k=0M
(n)
k where M

(n)
k := maxP∈Hk∪Vk L

(n)(P ).

By union bound (|Hk ∪ Vk| ≤ C4k) and by replacing s in (6.22) by t(s) :=
√
k log(4 + ε) + s2 so

that the right-hand side in this inequality becomes (4 + ε)−ke−s
2
, we get

P
(
M

(n)
k ≥ δn2−kln−ke

Ct(s)
√

log t(s)e
γ
2
t(s)
√
k log 4

)
≤ C 4k

(4 + ε)k
e−s

2
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Since log s ≤ Cs2δ for some small fixed δ > 0, t(s)
√

log t(s) ≤ Ct(s)1+δ. Moreover, since we

have t(s) ≤
√
k log(4 + ε) + s, the convexity of the map s 7→ s1+δ gives the bound Ct(s)

√
log t(s) ≤

Ck1/2+δ/2 + Cs1+δ.

Using that
√
a+ b ≤

√
a+
√
b for a, b > 0, we have

t(s)
√
k log 4 =

√
k2 log(4 + ε) log 4 + s2k log 4 ≤ aεk log 4 + s

√
k log 4

by introducing aε :=
√

log(4 + ε)/ log 4. Therefore, we have e
γ
2
t(s)
√
k log 4 ≤ 2aεγke

γ
2
s
√
k log 4 and by

using the upper bound ln−k ≤ ln2γkeC
√
k (Lemma 2.12), we get the bound

2−kln−ke
Ct(s)
√

log t(s)e
γ
2
t(s)
√
k log 4 ≤ 2−k(ln2γkeC

√
k)(eCk

1/2+δ/2+Cs1+δ
)(2aεγke

γ
2
s
√
k log 4)

≤ ln2−k2(1+aε)γkeCk
1/2+δ/2

eCs
1+δ
e
γ
2
s
√
k log 4

which leads to the following tail estimate:

P
(
M

(n)
k ≥ δnln2−k2(1+aε)γkeCk

1/2+δ/2
eCs

1+δ
e
γ
2
s
√
k log 4

)
≤ C 4k

(4 + ε)k
e−s

2
.

We now introduce F (s) :=
∑∞

k=0 2−k2λkeCk
1/2+α

eβs
√
k, where λ := (1 + aε)γ, α := δ

2 and

β := γ
2

√
log 4. We obtain by union bound, P(

∑n
k=0M

(n)
k ≥ δnlneCs

1+δ
F (s)) ≤ Cε−1e−s

2
.

We thus want an upper bound on F (s). To this end, we introduce the function fs(t) :=

−t(1− λ) log 2 + Ct1/2+α + βs
√
t. We notice that f increases on [0, ts] and decreases on [ts,∞] for

some ts > 0. By series/integral comparison we have:

∞∑
k=0

ak =

[ts]−1∑
k=0

ak + a[ts] + a[ts]+1 +
∞∑

k=[ts]+2

ak ≤
∫ [ts]

0
atdt+ 2ats +

∫ ∞
[ts]+1

atdt ≤ 2ats +

∫ ∞
0

atdt,

where ak := exp(fs(k)).

By introducing cε := γ2

8(1−(1+aε)γ) , we obtain F (s) =
∑∞

k=0 ak ≤ Cecεs
2
eCs

1+δ
, see the appendix,

Subsection 2.10.2 for more details. Thus P(
∑n

k=0M
(n)
k ≥ δnlne

cεs2eCs
1+δ

) ≤ Ce−s
2
. Notice that

when ε→ 0, cε = γ2

8(1−(1+aε)γ) →
γ2

8(1−2γ) which is less than 1 if and only if γ < 6
√

2− 8 ≈ 0.485.
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Step 3. Now, we focus on the second term in the chaining inequality (6.21). Since ln ≥

2−γne−C
√
n (Lemma 2.12), we have for γ < 1/2 and using the tail estimates obtained in Lemma

10.39:

P
(

2−ne
γ
2

sup[0,1]2 |φ0,n| ≥ lne
γ
2
s
)
≤ P

(
e
γ
2

sup[0,1]2 |φ0,n| ≥ 2γneC
√
ne

γ
2
s
)
≤ Ce−s

which concludes the proof.

2.6.2 Tightness of the metric

We are ready to prove Theorem 2.4, i.e., the tightness of the metric when γ < γc ∧ 0.4.

Proof of Theorem 2.4. The proof is divided in two main steps. In the first one, we prove the

tightness of the metric in the space of continuous functions by giving a Hölder upper bound. In the

second one we prove that the pseudo-metric obtained is a metric. This is done by establishing a

Hölder lower bound.

Step 1. We suppose γ < γc. We start by proving that for every 0 < h < 1− 2γ − γ2

4(1−2γ) , if

ε > 0 there exists a large Cε > 0 so that for every n ≥ 0

P
(
∃x, x′ ∈ [0, 1]2 : d0,n(x, x′) ≥ Cε

∥∥x− x′∥∥h) ≤ ε. (6.23)

By union bound we will estimate P(∃x, x′ ‖x− x′‖ < 2−n, d0,n(x, x′) ≥ es ‖x− x′‖h) and

n∑
k=0

P
(
∃x, x′ : 2−k ≤

∥∥x− x′∥∥ ≤ 2−k+1, d0,n(x, x′) ≥ es
∥∥x− x′∥∥h) .

We start with the term P(∃x, x′ : 2−k ≤ ‖x− x′‖ ≤ 2−k+1, d0,n(x, x′) ≥ es ‖x− x′‖h). Note that

if 2−k−1 ≤ ‖x− x′‖ ≤ 2−k, there exists a square P of size 2−k+2 among fewer than C4k fixed such

squares such that x, x′ ∈ P . Also, for two such x and x′, by writing h = 1 − 2γ − c(γ) − δ with

c(γ) > γ2

4(1−2γ) , δ > 0 we have ‖x− x′‖h ≥ 2−k22γk2c(γ)k2δk. Hence, by union bound, this term is

bounded by

C4kP
(

Diam (P, d0,n) ≥ 2−k22γk2c(γ)k2δkes
)
.

We separate the first k scales of the fields φ0,n as follows. Recall that Diam(P, eγφ0,nds2) is larger
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than e
γ
2

√
ktDiam(P, eγφk,nds2) with probability less than e

− t2

log 4 (by Lemma 2.10). By taking

t =
√
k log 4+ δ

√
k+s/

√
k, this event has probability less than 4−ke−cke−2s. On the complementary

event, µ−1
n Diam(P, eγφ0,nds2) is less than µ−1

n Diam(P, eγφk,nds2)2γk2
γ
2
δke

γ
2
s. Under this event, by

scaling the former bound becomes

C4kP
(

Diam
(
[0, 1]2, dn−k

)
≥ µ−1

n−kµn2γk2c(γ)k2(1− γ
2

)δke(1− γ
2

)s
)
.

Using Lemma 2.12 we get that µn ≥ µn−k2−γke−C
√
k thus we are left with estimating

C4kP
(

Diam
(
[0, 1]2, dn−k

)
≥ 2c(γ)k2(1− γ

2
)δke−C

√
ke(1− γ

2
)s
)
.

We use the diameter estimates obtained in Proposition 2.11: since 2c(γ)k = e
1
2
c(γ)k log 4 and 1

2c(γ) >

γ2

8(1−2γ) , taking s̃(k, s) = k log 4 + δ′k−C
√
k+ c(1− γ/2)s, we have by gathering all the pieces for s

large enough, uniformly in n:

n∑
k=0

P
(
∃x, x′ : 2−k ≤

∥∥x− x′∥∥ ≤ 2−k+1, d0,n(x, x′) ≥ es
∥∥x− x′∥∥h) ≤ Ce−cs.

Taking s large enough, the right-hand side is less than ε.

We are left with the term P(∃x, x′ ‖x− x′‖ < 2−n, d0,n(x, x′) ≥ es ‖x− x′‖h), i.e., with the case

of small dyadic blocks where the field is approximately constant. By direct comparison with the

supremum of the field, i.e., d0,n(x, x′) ≤ µ−1
n e

γ
2

sup[0,1]2 φ0,n ‖x− x′‖ and since on the associated event

‖x− x′‖h−1 ≥ 2n(1−h), this probability is less than the probability P(e
γ
2

sup[0,1]2 |φ0,n| ≥ es2n(1−h)µn).

Recalling that one can write h = 1−2γ−c(γ) with c(γ) > γ2

4(1−2γ) and that we have the lower bound

on the median µn ≥ 2−γne−C
√
n (see the proof of Proposition 2.8, Step 6) the former probability is

less than

P

(
sup
[0,1]2

φ0,n ≥ n log 4 +
γ

4(1− 2γ)
n log 4− C

γ

√
n+ s

)

which goes uniformly (in n) to 0 as s goes to infinity according to Lemma 2.17. Altogether we get

the intermediate result (5.85). One can check that the interval (0, 1− 2γ − γ2

4(1−2γ)) is nonempty if

and only if 0 < γ < 2/5 = 0.4.

Hence we obtain the tightness of (d0,n)n≥0 as a random element of C([0, 1]2 × [0, 1]2,R+) and
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every subsequential limit is (by Skorohod’s representation theorem) a pseudo-metric.

Step 2. Now we deal with the separation of the pseudo-metric. We prove that if h > 1 + γ and

if ε > 0 there exists a small constant cε such that for every n ≥ 0

P
(
∃x, x′ ∈ [0, 1]2 : d0,n(x, x′) ≤ cε

∥∥x− x′∥∥h) ≤ ε. (6.24)

As in the proof of (5.85), by union bound it is enough to estimate P(∃x, x′ ‖x− x′‖ < 2−n, d0,n(x, x′) ≤

e−s ‖x− x′‖h) and the term

n∑
k=0

P
(
∃x, x′ : 2−k ≤

∥∥x− x′∥∥ ≤ 2−k+1, d0,n(x, x′) ≤ e−s
∥∥x− x′∥∥h) .

We start with P(∃x, x′ : 2−k ≤ ‖x− x′‖ ≤ 2−k+1, d0,n(x, x′) ≤ e−s ‖x− x′‖h). Assume there

exists x, x′ ∈ [0, 1]2 such that 2−k ≤ ‖x− x′‖ ≤ 2−k+1. Note that any path from x to x′ crosses

one of the fixed C4k rectangles of size 2−k−1(1, 3) that fill vertically and horizontally [0, 1]2. Hence

d0,n(x, x′) ≥ µ−1
n min

C4k
L

(n)

2−k−1(1,3)
. By writing h = 1 + γ + δ with δ > 0, we can bound the term in the

summation above by

P
(
e
γ
2

inf[0,1]2 φ0,k−1min
C4k

L
(k,n)

2−k−1(1,3)
≤ µn2−k2−γk2−δke−s

)
.

By separating the infimum with the term P
(

sup[0,1]2 φ0,n ≥ k log 4 + δ′k + s
)

, by scaling and using

the bound µn ≤ ln−keC
√
k from Lemma 2.12, what is left is

P
(

min
C4k

L
(n−k)
(1,3) ≤ ln−k2

−δ′′ke−(1− γ
2

)s

)
.

By union bound, the tail estimates from Corollary 2.7 and gathering all the pieces we get that the

summation is less than Ce−cs uniformly in n.

Finally, we control again the second term by comparison with the supremum of the field. On

the event {∃x, x′ ‖x− x′‖ < 2−n, d0,n(x, x′) ≤ e−
γ
2
s ‖x− x′‖h}, note that exp(γ2 inf [0,1]2 φ0,n) ≤

2−n(h−1)e−
γ
2
s ≤ 2−(γ+δ)ne−

γ
2
s. The probability of this event is less than P(sup[0,1]2 φ0,n ≥ n log 4 +

δ′n+ s) hence the result as before.
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Definition of a metric on R2. Let us mention here that one can define a random metric

associated to φ0,∞ on the full two-dimensional space. We saw that (d
[0,1]2

0,n )n≥0 is tight thus there

exists some subsequence that converges in law to d0,∞. The same result remains true for (d
[−p,p]2
0,n )n≥0

with p > 0. By a diagonal argument, there exists a subsequence (nk) such that for every p ∈ N,

(d
[−p,p]2
0,nk

)k≥0 converges in law to some d
[−p,p]2
0,∞ . Then, one can define dR

2

0,∞ as the limit of d
[−p,p]2
0,∞ when

p goes to ∞. Indeed, if we denote by d
[−p,p]2
0,∞ ([−1, 1]2) the restriction of d

[−p,p]2
0,∞ to [−1, 1]2, we have

lim
p0→∞

P
(
∀p ≥ p0, d

[−p,p]2
0,∞ ([−1, 1]2) = d

[−p0,p0]2

0,∞ ([−1, 1]2)
)

= 1.

Indeed, with high probability, there is a crossing of an annulus around [0, 1]2 whose length for d0,n

is larger than the diameter of [0, 1]2 for d0,n, uniformly in n. Also, if we fix x ∈ R2 and denote by

Tx the map φ 7→ φ(· − x), for a field φ and d 7→ d(· − x, · − x) for a metric d, if the measure on fields

is φ0,∞ and the measure on metrics is dR
2

0,∞, then the transformation Tx is mixing thus ergodic in

each case. This ergodic property for the Gaussian multiplicative chaos measure is a useful property

to characterize log-normal ?-scale invariant random measures. We refer the interested reader to

Theorem 4 and the remark following Proposition 5 in [3].

2.7 Weyl scaling

In this section we will see that any limiting metric space is non trivial. In particular, we will

show they are not deterministic and not independent of field φ0,∞.

The main idea of the proof is the following. Take d0,∞ a limiting metric whose existence

comes from the previous subsection. Define for some suitable function f the metric e
γ
2
f · d0,∞

associated to the field φ0,∞+f . Thanks to the approximation procedure together with the Cameron-

Martin theorem for Gaussian measures, we will prove that the couplings P∞ := L(φ0,∞, d0,∞)

and P f∞ := L(φ0,∞ + f, e
γ
2
f · d0,∞) are mutually absolutely continuous and that the associated

Radon-Nikodým derivative satisfies dP f∞
dP∞

=
dL(φ0,∞+f)
dLφ0,∞

, which implies the result we look for: if φ0,∞

and d0,∞ are independent, it implies e
γ
2
f · d0,∞

(d)
= d0,∞ which leads to a contradiction.

In what follows, we recall some background on metric geometry and we refer the reader to

Chapter 2 in [17] for more details. Let (X, d) be a metric space and π be a continuous map from an
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interval I to X. We define the length Ld(π) of π with respect to the metric d by setting

Ld(π) := sup
n∑
i=1

d(π(ti−1), π(ti))

where the supremum is taken over all n ≥ 1, t0 < t1 < · · · < tn in I. If Ld(π) < ∞, we say that

π is rectifiable. We also say that π has constant speed if there exists a constant λ ≥ 0 such that

Ld(π|[s,t]) = λ |t− s| holds for every s, t ∈ I.

Starting with such a length functional L = Ld we can define a metric space (X, dL) by setting,

for every x, y ∈ X,

dL(x, y) := inf{L(π) | π is rectifiable , π(0) = x and π(1) = y}.

We say that a metric d is intrinsic if d = dLd . In this case, (X, d) is called a length space. Notice

that a Riemannian manifold (M, g) is a length space. Moreover, we say that this metric is strictly

intrinsic if for any x, y ∈ X there exists a path π such that π(0) = x, π(1) = y and d(x, y) = Ld(π).

In this case the path π is called a shortest path between x and y.

Let (X, d) be a metric space. A path (π, I) is called a geodesic if π has constant speed and if

Ld(π|[s,t]) = d(π(s), π(t)) for every s, t ∈ I. A path (π, I) is called a local geodesic if for every t ∈ I,

there exists an ε > 0 such that π|[t−ε,t+ε] is a geodesic. (X, d) is a geodesic space if for every x, y ∈ X,

there exists a geodesic π : [0, 1]→ X with π(0) = x, π(1) = y. It is clear from the definition that

every geodesic space is a length space.

For a complete metric space, one can characterize the notion of intrinsic metric using midpoints

(see Lemma 2.4.8 and Theorem 2.4.16 in [17] for a reference). A point z ∈ (X, d) is called a midpoint

between points x and y if d(x, z) = d(z, y) = 1
2d(x, y). The following holds:

1. Assume that (X, d) is a metric space. If d is a strictly intrinsic metric, then for every points x

and y in X there exists a midpoint z between them.

2. If (X, d) is a complete metric space and if for every x, y ∈ X there exists a midpoint z between

x and y, then d is strictly intrinsic.
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Given a continuous function f and an intrinsic metric d, both defined on [0, 1]2, with d homeo-

morphic to the Euclidean metric on the unit square, we define the metric ef · d by first describing

its length. For a continuous path π : [a, b]→ [0, 1]2 we define

Lfd(π) := lim sup
n→∞

n∑
i=1

ef(π(tni−1))d(π(tni−1), π(tni )),

where a = tn0 < · · · < tnn = b and limn→∞max0≤i≤n−1(tni+1 − tni ) = 0. Notice that Ld(π) <∞ if and

only if Lfd(π) <∞. We then define ef · d := d
Lfd

. Notice that if f is constant since d is intrinsic we

have ef · d = efd. Notice also that if φ and ψ are smooth functions, then the Riemannian metric

associated to the metric tensor eφ+ψds2 is equal to e
1
2
φ · d where d is the metric associated to the

metric tensor eψds2.

The following lemma will be useful to identify the metric associated to φ0,∞ + f in terms of the

one associated to φ0,∞.

Lemma 2.13. Let f be a continuous function on [0, 1]2 and r,R : (0,∞)→ (0,∞) be continuous

increasing functions with r(0+) = R(0+) = 0. If a sequence of intrinsic metrics (dn)n≥0 on [0, 1]2

satisfying for every x, y ∈ [0, 1]2, n ≥ 0 the condition

r(‖x− y‖) ≤ dn(x, y) ≤ R(‖x− y‖),

converges uniformly to a metric d∞ on [0, 1]2, then the sequence of metrics (ef · dn)n≥0 converges

simply to the metric ef · d∞, i.e., for every fixed x, y ∈ [0, 1]2 we have limn→∞ e
f · dn(x, y) =

ef · d∞(x, y).

Proof. We fix x, y ∈ [0, 1]2 and we want to prove that ef · dn(x, y) converges to ef · d∞(x, y). We

separate the proof in three parts: first we control the oscillation of f over geodesics then the upper

bound and finally the lower bound.

By assumption, dn converges uniformly to d∞ hence d∞ is an intrinsic metric (see Exercise

2.4.19 in [17]). Again by assumption, there exists some positive c and C such that for every n

r(‖x− y‖) ≤ dn(x, y) ≤ R(‖x− y‖).

60



This condition is then satisfied by d∞ and since for n ∈ N ∪ {∞}, e−‖f‖∞dn ≤ ef · dn ≤ e‖f‖∞dn

this condition is also satisfied by ef · dn and ef · d∞ by replacing c by e−‖f‖∞c and C by e‖f‖∞C.

This tells us that the spaces ([0, 1]2, dn) and ([0, 1]2, ef · dn) are complete and locally compact for

n ∈ N ∪ {∞}. Hence, by Theorem 2.5.23 in [17], these spaces are strictly intrinsic.

Now we look at the oscillation of f over small parts of shortest path associated to the metrics

ef · dn and dn for all n’s. The first step is to understand that locally ef(x)dn(x, y) ≈ ef · dn(x, y).

To this end notice the inequality

e−osc(f,Kdn
x,y)ef(x)dn(x, y) ≤ ef · dn(x, y) ≤ eosc(f,Kdn

x,y)ef(x)dn(x, y)

where osc(f,K) := supx,y∈K |f(x)− f(y)| and where Kdn
x,y := Geodn(x, y) ∪ Geoef ·dn(x, y). Then

notice that if x is close to y then Kdn
x,y is small with respect to the Euclidean topology. More

precisely, notice that Geodn(x, y) ⊂ B(x, r−1(R(‖x− y‖))). Indeed, if z ∈ Geodn(x, y) then

r(‖x− z‖) ≤ dn(x, z) ≤ dn(x, y) ≤ R(‖x− y‖).

For every x and y such that dn(x, y) < δ, osc(f,Kdn
x,y) ≤ ω(f, r−1(δ)) where ω(f, δ) denotes the

modulus of continuity of the function f , i.e., ω(f, δ) := sup{|f(x)− f(y)| : x, y ∈ [0, 1]2 st |x− y| <

δ}. Note that the bound of the oscillation is independent of n.

We start with the upper bound. Since ef · d∞ is strictly intrinsic, take by a dichotomy procedure

x = x0, . . . , xN = y such that ef · d∞(x, y) =
∑n−1

i=0 e
f · d∞(xi, xi+1) and d∞(xi, xi+1) < δ. For n

large enough, for every i, dn(xi, xi+1) < δ. Hence, by triangle inequality, for n large enough

ef · dn(x, y) ≤
N−1∑
i=0

ef · dn(xi, xi+1)

≤
N−1∑
i=0

eosc(f,Kdn
xi,xi+1

)ef(xi)dn(xi, xi+1)

≤ eω(f,Cδ1/α)
N−1∑
i=0

ef(xi)dn(xi, xi+1).
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Hence by taking the lim sup and using the convergence of dn to d∞

lim sup
n→∞

ef · dn(x, y) ≤ eω(f,Cδ1/α)
N−1∑
i=0

ef(xi)d∞(xi, xi+1)

≤ eω(f,Cδ1/α)
N−1∑
i=0

eosc(f,Kd∞
xi,xi+1

)ef · d∞(xi, xi+1)

≤ e2ω(f,Cδ1/α)
N−1∑
i=0

ef · d∞(xi, xi+1)

= e2ω(f,Cδ1/α)ef · d∞(x, y).

By the uniform continuity of f , we obtain the upper bound by letting δ going to 0.

Now we deal with the lower bound. Up to extracting a subsequence we may assume that

ef ·dn(x, y) converges to its lim inf. Again, since ef ·dn is strictly intrinsic, take xn0 = x, . . . , xnNn = y,

such that

ef · dn(x, y) =

Nn−1∑
i=0

ef · dn(xni , x
n
i+1)

and dn(xni , x
n
i+1) < δ. Taking the minimal number Nn (still using the midpoints method) Nn is

bounded and up to taking a subsequence, we may assume that Nn converges. In particular, Nn is

eventually constant and equal to some N . We may then also assume that the xni ’s also converges to

some xi’s for 0 ≤ i ≤ N and these xi’s satisfy d∞(xi, xi+1) ≤ δ. Then for n large enough

ef · dn(x, y) ≥
N−1∑
i=0

e
−osc

(
f,Kdn

xn
i
,xn
i+1

)
ef(xni ) · dn(xni , x

n
i+1)

≥ e−ω(f,Cδ1/α)
N−1∑
i=0

ef(xni ) · dn(xni , x
n
i+1).

Taking the limit as n goes to ∞ we get by the uniform convergence of dn to d∞∣∣∣∣∣
N−1∑
i=0

ef(xni )dn(xni , x
n
i+1)−

N−1∑
i=0

ef(xni )d∞(xni , x
n
i+1)

∣∣∣∣∣ ≤ Ne‖f‖∞ ‖dn − d∞‖∞ → 0
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So

lim inf
n→∞

ef · dn(x, y) ≥ e−ω(f,Cδ1/α)
N−1∑
i=0

ef(xi)d∞(xi, xi+1)

≥ e−ω(f,Cδ1/α)
N−1∑
i=0

e−osc(f,Kd∞
xi,xi+1

)ef · d∞(xi, xi+1)

≥ e−2ω(f,Cδ1/α)
N−1∑
i=0

ef · d∞(xi, xi+1)

≥ e−2ω(f,Cδ1/α)ef · d∞(x, y)

by the triangle inequality. Letting δ going to 0 we get the result.

It is easy to see that the same result holds if instead of f , we assume that a sequence of continuous

functions (fn)n≥0 converges uniformly to f on [0, 1]2, then under the same assumptions (efn · dn)n≥0

converges simply to the metric ef · d0,∞. This lemma is a key ingredient to prove the following

corollary.

Corollary 2.12. Let (fn) be a sequence of continuous real-valued functions defined on [0, 1]2 and

converging uniformly to a function f . If γ < min(γc, 0.4) then the following statements hold:

1. (d0,n, e
γ
2
fn · d0,n)n≥0 is tight.

2. If (nk) is a subsequence along which (d0,nk , e
γ
2
fnk ·d0,nk)k≥0 converges in law to some (d0,∞, d

′
0,∞)

then d′0,∞ = e
γ
2
f · d0,∞.

3. In particular, (φ0,nk , d0,nk)k≥0 converges in law to a coupling P∞ := L(φ0,∞, d0,∞) and (φ0,nk +

fnk , e
γ
2
fnk ·d0,nk)k≥0 converges in law to a coupling P f∞ := L(φ0,∞+f, e

γ
2
f ·d0,∞), both couplings

are probability measures on the same space.

Proof. We start with the proof of (i). Since for n ≥ 0, a.s. e−
γ
2

supn≥0‖fn‖∞d0,n ≤ e
γ
2
fn · d0,n ≤

e
γ
2

supn≥0‖fn‖∞d0,n, the argument giving the tightness of (d0,n)n≥0 then extends to give the one of

(e
γ
2
fn · d0,n)n≥0, see the proof of Theorem 2.4.

We now prove (ii). We first fix α > 1 + γ and β ∈ (0, 1 − 2γ − γ2

4(1−2γ)) and we then define

Cnα := supx,x′∈[0,1]2
‖x−x′‖α
d0,n(x,x′) and Cnβ := supx,x′∈[0,1]2

d0,n(x,x′)

‖x−x′‖β
. Using (5.86) and (5.85), (Cnα)n≥0 and
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(Cnβ )n≥0 are tight. Since (φ0,n, φ0,n + fn, d0,n, e
γ
2
fn · d0,n, C

n
α , C

n
β )n≥0 is tight, up to extracting a

subsequence, we can assume it converges in law. By the Skorohod representation theorem, we obtain

an almost sure convergence on a same probability space and we denote by d0,∞ (resp d′0,∞) the

limit of d0,n (resp e
γ
2
fn · d0,n). We can thus introduce the random constants Cα := supn≥0C

n
α <∞

and Cβ := supn≥0C
n
β < ∞. On this probability space, the following condition of Lemma 2.13 is

satisfied: a.s. for every n ≥ 0, x, x′ ∈ [0, 1]2,

‖x− x′‖α

Cα
≤ ‖x− x

′‖α

Cnα
≤ d0,n(x, x′) ≤ Cnβ

∥∥x− x′∥∥β ≤ Cβ ∥∥x− x′∥∥β .
By using Lemma 2.13, we can identify the almost sure limit of e

γ
2
fn · d0,n: d′0,∞ = e

γ
2
f · d0,∞. Finally,

notice that (iii) follows from the previous proofs.

The main result of this subsection is the following proposition. In order to state it, let us recall

that the kernel of φ0,∞ is given by C0,∞(x, x′) =
∫ 1

0 c(
x−x′
t )dtt =

∫ 1
0 k ∗ k(x−x

′

t )dtt and let us make

the following remark: the map C0,∞ : S(R2)→ S(R2) defined for f ∈ S(R2) by C0,∞f := C0,∞ ∗ f

is a bijection. Indeed, notice that Ĉ0,∞(ξ) = ‖ξ‖−2 ∫ ‖ξ‖
0 uk̂(u)2du (see the remark before (9.34) for a

proof). In particular, we have Ĉ0,∞(0) = k̂(0)2

2 > 0 (since k̂(0) =
∫
B(0,r0) k(x)dx with k nonnegative

and non-identically zero), and Ĉ0,∞(ξ) ∼∞ 1
2π‖ξ‖2 . Thus, the equation C0,∞ ∗ f = g admits the

solution f given by f(x) = 1
(2π)2

∫
R2

ĝ(ξ)

Ĉ0,∞(ξ)
eix·ξ. In particular, if f ∈ S(R2), C−1

0,∞f ∈ S(R2) is

well-defined.

Proposition 2.13. For f ∈ S(R2), the coupling P f∞ = L(φ0,∞ + f, e
γ
2
f · d0,∞) is absolutely

continuous with respect to P∞ = L(φ0,∞, d0,∞) and its Radon-Nikodým derivative is given by

dP f∞
dP∞

=
dL
(
φ0,∞ + f, e

γ
2
f · d∞

)
dL (φ0,∞, d∞)

=
dL(φ0,∞ + f)

dL(φ0,∞)
= exp

(
〈φ0,∞, C

−1
0,∞f〉 −

1

2
〈f, C−1

0,∞f〉
)

In particular, d0,∞ and φ0,∞ are not independent.

To prove this proposition, we will use the following lemma, whose proof is postponed to the end

of the section.

Lemma 2.14. Fix g ∈ S(R2) and define for n ∈ N ∪ {∞}, fn := C0,n ∗ g. The following assertions

hold:
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1. For every n ∈ N ∪ {∞}, φ0,n + fn is absolutely continuous with respect to φ0,n and

dL(φ0,n+fn)
dL(φ0,n) = exp(〈φ0,n, g〉 − 1

2〈fn, g〉).

2. (fn)n≥0 converges uniformly on R2 and in L2(R2) to C0,∞ ∗ g.

3. (φ0,n)n≥0 converges in law to φ0,∞ with respect to the weak topology on S ′(R2).

Proof of Proposition 2.13. Take f ∈ S(R2), set g := C−1
0,∞f ∈ S(R2) and define fn := C0,n ∗ g. By

using Lemma 2.14 assertion (i) for n =∞ we have:

Df
∞ :=

dL(φ0,∞ + f)

dL(φ0,∞)
= exp

(
〈φ0,∞, g〉 −

1

2
〈f, g〉

)
.

Using again Lemma 2.14 assertion (i) but for finite n we have:

dL(φ0,n + fn)

dL(φ0,n)
= exp

(
〈φ0,n, g〉 −

1

2
〈fn, g〉

)
.

Now we prove that
(
φ0,∞ + f, e

γ
2
f · d0,∞

)
is absolutely continuous with respect to (φ0,∞, d0,∞)

and that the Radon-Nikodým derivative is given by Df
∞. By introducing the function G which

maps a smooth field φ to the Riemannian metric whose metric tensor is eγφds2, we have, for every

continuous and bounded functional F :

E
(
F
(
φ0,n + fn, e

γ
2
fn · d0,n

))
= E

(
F (φ0,n + fn, µ

−2
n G(φ0,n + fn))

)
= E

(
F
(
φ0,n, µ

−2
n G(φ0,n)

) dL(φ0,n + fn)

dL(φ0,n)

)
= E

(
F (φ0,n, d0,n) exp

(
〈φ0,n, g〉 −

1

2
〈fn, g〉

))
.

Now we claim that the left-hand side converges to E(F (φ0,∞+f, e
γ
2
f ·d0,∞)) and that the right-hand

side converges to E(F (φ0,∞, d0,∞)Df
∞).

The first claim follows from the convergence in law from Corollary 2.12 since (fn)n≥0 converges

uniformly on [0, 1]2 and in L2(R2) to f by Lemma 2.14 assertion (ii).

The second one comes from the convergence in law of (φ0,n, d0,n)n≥0 and from the convergence

of (fn)n≥0 to f in L2(R2) (Lemma 2.14 assertion (ii)). To be precise, for M > 0 the map
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(φ, d) 7→ F (φ, d) exp(〈φ, g〉) ∧M is continuous and bounded thus

lim
n→∞

E (F (φ0,n, d0,n) exp(〈φ0,n, g〉) ∧M) = E (F (φ0,∞, d0,∞) exp(〈φ0,∞, g〉) ∧M) .

By the triangle inequality and since F is bounded we have

|E (F (φ0,n, d0,n) exp(〈φ0,n, g〉))− E (F (φ0,∞, d0,∞) exp(〈φ0,∞, g〉))|

≤ |E (F (φ0,n, d0,n) exp(〈φ0,n, g〉) ∧M)− E (F (φ0,∞, d0,∞) exp(〈φ0,∞, g〉) ∧M)|

+ |E (F (φ0,∞, d0,∞) exp(〈φ0,∞, g〉) ∧M)− E (F (φ0,∞, d0,∞) exp(〈φ0,∞, g〉))|

+ CE
(
exp(〈φ0,n, g〉)1exp(〈φ0,n,g〉)≥M

)
.

Taking the lim sup when n goes to infinity (the first term vanishes) and then letting M goes to

infinity (the second term vanishes by uniform integrability), we obtain the result follows by taking

the limits lim supM→∞ lim supn→∞ E
(
exp(〈φ0,n, g〉)1exp(〈φ0,n,g〉)≥M

)
= 0 (easy to check).

Now, we come back to the proof of Lemma 2.14.

Proof of Lemma 2.14. We will prove successively the assertions (i), (ii) and (iii).

(i). The proof follows from evaluating characteristic functionals. Define for φ ∈ S(R2) the

functional Fϕ : S ′(R2) → R+ such that Fϕ(φ) = exp(〈φ, ϕ〉). Using the Gaussian characteristic

formula, we have E(Fϕ(φ0,n + fn)) = e〈fn,ϕ〉E(e〈φ0,n,ϕ〉) = e〈fn,ϕ〉e
1
2

Var(〈φ0,n,ϕ〉) = e〈fn,ϕ〉e
1
2
〈C0,n∗ϕ,ϕ〉

and similarly, since C0,n ∗ g = fn and 〈C0,n ∗ ϕ, g〉 = 〈ϕ,C0,n ∗ g〉 = 〈ϕ, fn〉 = 〈fn, ϕ〉:

E
(
Fϕ(φ0,n)e〈φ0,n,g〉− 1

2
〈fn,g〉

)
= e−

1
2
〈fn,g〉E

(
e〈φ0,n,ϕ+g〉

)
= e−

1
2
〈fn,g〉e

1
2
〈C0,n∗(ϕ+g),ϕ+g〉

= e−
1
2
〈fn,g〉e

1
2
〈C0,n∗ϕ,ϕ〉+〈C0,n∗ϕ,g〉+ 1

2
〈C0,n∗g,g〉

= E (Fϕ(φ0,n + fn)) .

(ii). First, we prove that C0,n ∗ f converges uniformly to C0,∞ ∗ f on R2. Notice that
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‖C0,n ∗ f − C0,∞ ∗ f‖∞ = ‖Cn,∞ ∗ f‖∞ ≤ ‖f‖∞ ‖Cn,∞‖L1(R2). Furthermore:

‖Cn,∞‖L1(R2) =

∫
R2

∫ 2−n

0
c
(y
t

) dt
t
dy ≤ ‖c‖∞

∫
R2

∫ 2−n

0
1y∈B(0,2r0t)

dt

t
dy ≤ C2−2n.

Now we prove that the convergence holds in L2(R2). By Parseval, we have

‖C0,n ∗ g − C0,∞ ∗ g‖2L2(R2) =
∥∥∥Ĉn,∞ĝ∥∥∥2

L2(R2)
.

Moreover, since Ĉn,∞(ξ) = ‖ξ‖−2 ∫ 2−n‖ξ‖
0 uk̂(u)2du (see the remark before (9.34) for a proof), we

have:

∥∥∥Ĉn,∞ĝ∥∥∥2

L2(R2)
=

∫
R2

(
‖ξ‖−2

∫ 2−n‖ξ‖

0
uk̂(u)2du

)2

|ĝ(ξ)|2 dξ ≤ C2−4n
∥∥∥k̂∥∥∥4

∞
‖g‖2L2(R2)

and this completes the proof of assertion (ii).

(iii). We want to prove here that (φ0,n)n≥0 converges in law to φ0,∞ in S ′(R2). To this end, take

a function f ∈ S(R2) and notice that:

E
(
〈φ0,n, f〉2

)
=

∫
R2×R2

f(x)C0,n(x, y)f(y)dxdy =
1

(2π)2

∫
R2

Ĉ0,n(ξ)
∣∣∣f̂(ξ)

∣∣∣2 dξ.
Since Ĉ0,n(ξ) = ‖ξ‖−2 ∫ ‖ξ‖

2−n‖ξ‖ uk̂(u)2du for n ∈ N ∪ {∞}, by monotone convergence, we get that

E(〈φ0,n, f〉2) converges to E(〈φ0,∞, f〉2). Thus, we have the convergence of the characteristic

functionals: E(ei〈φ0,n,f〉) = e−
1
2
E(〈φ0,n,f〉2) →

n→∞
e−

1
2
E(〈φ0,∞,f〉2), which is enough to obtain the

convergence in law, see for instance [15].

2.8 Small noise regime: proof of Theorem 2.5

We want to prove here that γc > 0. To do it, we will show by induction that the ratio between

large quantiles and small quantiles is uniformly bounded in n. Recall the notations ln, l̄n and δn

from Subsection 2.2.3. Then δn ↗ δ∞ when n goes to ∞. We start by showing that when ε and γ

are small enough, but fixed, then δ∞ <∞. By our tail estimates, Corollary 2.7 (with ln ≥ µnδ−1
∞ )
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and Proposition 2.8 (with δnln ≤ δ∞µn) this implies the tightness of logL
(n)
1,1 − logµn.

Proof of Theorem 2.5. We proceed according to the following steps:

1. Relate the ratio δn between small quantiles and high quantiles to Var logL
(n)
1,1 .

2. Give an upper bound on Var logL
(n)
1,1 using the Efron-Stein inequality. The bound obtained

involves a sum indexed by blocks P ∈ Pk for 0 ≤ k ≤ n.

3. Get rid of the independent copy term which appears when using the Efron-Stein inequality

and see how a small value of γ makes the variance smaller.

4. Give an upper bound on diameter and a lower bound on the left-right distance involving the

same quantities at a higher scale.

5. Use the tails estimates obtained for the higher scales and control the ratio of the upper bound

over the lower bound using δn−1.

6. Conclude the induction.

Step 1. To link the quantiles and the variance of a random variable X notice that for l′ ≥ l we

have 2Var(X) = E((X ′ −X)2) ≥ E(1X′≥l′1X≤l(X
′ −X)2) ≥ P(X ≥ l′)P(X ≤ l)(l′ − l)2 where X ′

is an independent copy of X. Together with the RSW estimates obtained in Theorem 2.2 (using

(3.5) with a′ = 3, b′ = 1, a = 1, b = 1 and (3.4) with a′ = 1, b′ = 1, a = 1, b = 1), we have, for some

constant Cε depending on ε but not on n:

l̄
(n)
3,1 (ε)

l
(n)
1,3 (ε)

≤ eCε
l̄
(n)
1,1 (εC/3)

l
(n)
1,1 (ε/C)

≤ eCε exp

(√
6C

εC+1
Var

(
logL

(n)
1,1

))
. (8.25)

Step 2. The idea is then to bound Var(logL
(n)
1,1 ) by a term involving δn−1 and γ. To do it, we

will use the Efron-Stein inequality, see for instance [10] Section 3 where it is used to give an upper

bound for the variance of the distance between two points in the model of first passage percolation,

which is a similar problem to ours. To this end, note that the variable L
(n)
1,1 can be written as a

function of independent fields attached to dyadic blocks: L
(n)
1,1 = F ((φk,P )0≤k≤n,P∈Pk) and only the

blocks that intersect [0, 1]2 contribute. For P ∈ Pk, we denote by L
(n),P
1,1 the length obtained by
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replacing the block field φk,P by an independent copy φ′k,P and keeping all other block fields fixed.

The Efron-Stein inequality gives:

Var logL
(n)
1,1 ≤

n∑
k=0

∑
P∈Pk

E
((

logL
(n),P
1,1 − logL

(n)
1,1

)2

+

)
. (8.26)

Step 3. We then focus on the term in the summation. For 0 ≤ k ≤ n, P ∈ Pk, L
(n),P
1,1 is

bounded from above by

∫
πn

(
e
γ
2 (φ0,n−φk,P+φ′k,P ) − e

γ
2
φ0,n

)
ds+ L

(n)
1,1 ≤

∫
πn

e
γ
2
φ0,n

(
e
γ
2 (−φk,P+φ′k,P ) − 1

)
+

1πn(s)∈P 2r0ds+ L
(n)
1,1

≤ γ
∫
πn

e
γ
2
φ0,ne

(1+ γ
2

)(−φk,P+φ′k,P )
+1πn(s)∈P 2r0ds+ L

(n)
1,1

where P 2r0 := P +B(0, 2−k · 2r0) and where we used in the last inequality the bound

(eγx − 1)+ ≤ eγx+ − 1 =
∑
k≥1

(γ x+)k

k!
≤ γ x+

∑
k≥1

(γ x+)k−1

(k − 1)!
≤ γex+eγx+ .

By setting Sk,P := supP 2r0 |φk,P |+ supP 2r0

∣∣∣φ′k,P ∣∣∣, this gives, using log(1 + x) ≤ x:

E((logL
(n),P
1,1 − logL

(n)
1,1 )2

+) ≤ γ2E((L
(n)
1,1 )−2(

∫
πn

e
γ
2
φ0,ne(1+ γ

2
)(−φk,P+φ′k,P )+1πn(s)∈P 2r0ds)

2)

≤ γ2E(eCSk,P (L
(n)
1,1 )−2(

∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds)

2)

which finally gives:

Var logL
(n)
1,1 ≤ γ

2
n∑
k=0

∑
P∈Pk

E

 eCSk,P(
L

(n)
1,1

)2

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)2

 . (8.27)

Notice that for k = 0 the term in the summation corresponds to E(e
CS0,[0,1]2 ).

Step 4. We focus now on the case where k ∈ {1, . . . , n}. Since E(eCSk,P )1/2 is independent of k
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and P by scaling and finite by Fernique, we have by Cauchy-Schwarz:

∑
P∈Pk

E

(
eCSk,P

(
L

(n)
1,1

)−2
(∫

πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)2
)

≤
∑
P∈Pk

E
(
eCSk,P

)1/2 E((L(n)
1,1

)−4
(∫

πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4
)1/2

≤ C
∑
P∈Pk

E

((
L

(n)
1,1

)−4
(∫

πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4
)1/2

.

Step 4. (a). Upper bound. For P ∈ Pk,
∫
πn
e
γ
2
φ0,n1πn(s)∈P 2r0ds ≤ 9 maxQ∼P Diam(Q, eγφ0,nds2).

Indeed, P 2r0 is included in the union of P and its eight neighboring squares (see Figure 2.7). Thus,

the length of the parts of πn included in P 2r0 is less than the diameter of this union, which itself is

less than the sum of the diameter of all these squares.

P

Q

P 2r0

P

Figure 2.7 – 2r0-enlargement of P with its neighbors

Let Nk denote the number of dyadic squares of size 2−k visited by πn. Since the number of

blocks P 2r0 (with P ∈ Pk) visited by πn is less than 9Nk, a.s.

∑
P∈Pk

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4

≤ CNk sup
P∈Pk

Diam
(
P, eγφ0,nds2

)4

and by decoupling the first k − 1 scales of the field φ0,n = φ0,k−1 + φk,n, a.s.

∑
P∈Pk

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4

≤ Ce2γ sup[0,1]2 φ0,k−1Nk sup
P∈Pk

Diam
(
P, eγφk,nds2

)4
. (8.28)

Step 4. (b). Lower bound. If Ñk denotes the maximal number of disjoint left-right rectangle

crossings of size 2−k(1, 3) for πn, among such rectangles filling vertically and horizontally [0, 1]2,

spaced by 2−k (this set is denoted by Ik and defined in (5.16)), we have Ñk ≥ cNk and Ñk ≥ c2k

for a small constant c > 0. Indeed, if a dyadic square is visited, one of the four rectangles around it
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is crossed (see Figure 2.8). Considering a fraction of them gives the first claim. It is easy to check

the second claim by noticing that πn crosses each rectangle of size 2−k × 1 filling [0, 1]2.

Figure 2.8 – Square visited and associated rectangle crossings

By decoupling the first k − 1 scales, we get L
(n)
1,1 ≥ cNke

γ
2

inf[0,1]2 φ0,k−1 infP∈Ik L
(k,n)(P ) as well

as L
(n)
1,1 ≥ c2ke

γ
2

inf[0,1]2 φ0,k−1 infP∈Ik L
(k,n)(P ) hence:

(
L

(n)
1,1

)4
≥ c23kNke

2γ inf
[0,1]2

φ0,k−1
(

inf
P∈Ik

L(k,n)(P )

)4

. (8.29)

Step 5. Moment estimates and inductive inequality. By concavity of the map x 7→
√
x we have:

∑
P∈Pk

E

((
L

(n)
1,1

)−4
(∫

πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4
)1/2

≤ |Pk|1/2 E

(L(n)
1,1

)−4 ∑
P∈Pk

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4
1/2

.

Gathering, (8.28) and (8.29),

(
L

(n)
1,1

)−4 ∑
P∈Pk

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4

≤ C2−3ke
4γ sup[0,1]2 |φ0,k−1| sup

P∈Pk
Diam

(
P, eγφk,nds2

)4
(

inf
P∈Ik

L(k,n)(P )

)−4

.

Since |Pk| = 4k, by independence between scales,

∑
P∈Pk

E

((
L

(n)
1,1

)−4
(∫

πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)4
)1/2

≤ C2−
1
2
kE

(
e

4γ sup
[0,1]2
|φ0,k−1|

)1/2

E

(
sup
P∈Pk

Diam
(
P, eγφk,nds2

)4
(

inf
P∈Ik

L(k,n)(P )

)−4
)1/2

.

Using Lemma 2.18 to control the exponential moment, the first term is bounded by 24γkeC
√
k. For
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the second term, notice that the product inside the expectation is between an increasing and a

decreasing function of the field. Hence, by the positive association property (Theorem 2.1):

E

(
sup
P∈Pk

Diam
(
P, eγφk,nds2

)4
(

inf
P∈Ik

L(k,n)(P )

)−4
)1/2

≤ E

(
sup
P∈Pk

Diam
(
P, eγφk,nds2

)4
)1/2

E

((
inf
P∈Ik

L(k,n)(P )

)−4
)1/2

.

By scaling, the field involved is φ0,n−k. We use our estimates for the diameters, Proposition 2.11, for

the first term and Corollary 2.7 for the second one. More precisely, by standard inequality between

expected value of positive random variable and integration of tail estimates we have:

E

(
sup
P∈Pk

Diam
(
P, eγφk,nds2

)4
)1/2

≤ 2−2kδ2
n−kl

2
n−ke

cγk ≤ δ2
n−12−2kl2n−ke

cγk

and

E

((
inf
P∈Ik

L(k,n)(P )

)−4
)1/2

≤ 22kl−2
n−ke

C
√
k.

Altogether, we get for 1 ≤ k ≤ n:

∑
P∈Pk

E

(
eCSk,P

L
(n)2
1,1

(∫
πn

e
γ
2
φ0,n1πn(s)∈P 2r0ds

)2
)
≤ δ2

n−12−
1
2
kecγkeC

√
k (8.30)

for some constant c > 0.

Step 6. Combining (8.27) and (8.30) we get

Var logL
(n)
1,1 ≤ γ

2δ2
n−1

n∑
k=0

2−
1
2
kecγkeC

√
k ≤ γ2δ2

n−1

∞∑
k=0

2−
1
2
kecγkeC

√
k. (8.31)

Hence for γ small enough the series in the right-hand side of (8.31) converges and we have

the bound Var logL
(n)
1,1 ≤ γ2

(
C + Cδ2

n−1

)
. Coming back to (8.25), if δn−1 < M then δn <

eCε exp(Cγδn−1) < eCε exp(CγM). Hence, if M > eCε and γ is small enough so eCε exp(CγM) < M

shows that there exists γ0 (which depends on ε) such that if γ < γ0, δ∞ < ∞. Finally, we can

conclude that γc > 0 by use of Corollary 2.7 and Proposition 2.8.
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2.9 Independence of γc with respect to k: proof of Theorem 2.6

We want to prove that γc is independent of k, i.e., if we have two bump functions k1, k2 then

γc(k1) = γc(k2). We will prove that if logL1,1(φ1
0,n)− logµ1

n is tight then logL1,1(φ2
0,n)− logµ2

n is

also tight, where the superscripts corresponds to the bump function ki for i ∈ {1, 2}. The proof

presented here relies on the assumption that k̂1 and k̂2 have similar tails.

Main lines of the proof. The main idea of the proof is to couple φ1
0,n and φ2

0,n up to some

additive noises that don’t affect too much the lengths. To control the perturbation due to the noises,

note that if δφ is a low frequency noise, the length L1,1(φ) is comparable to the length L1,1(φ+ δφ)

by a uniform bound a.s.:

e
inf[0,1]2 δφL1,1(φ) ≤ L1,1(φ+ δφ) ≤ esup[0,1]2 δφL1,1(φ) (9.32)

and if δφ is a high frequency noise with bounded pointwise variance we have a one-sided bound on

high and low quantiles given by the following lemma.

Lemma 2.15. If Φ is a continuous field and δΦ is an independent continuous centered Gaussian

field with variance bounded by C then

1. lΦ+δΦ
1,1 (ε) ≤ ε−1e

1
2
C lΦ1,1(2ε),

2. l̄Φ+δΦ
1,1 (2ε) ≤ ε−1e

1
2
C l̄Φ1,1(ε).

Proof. To bound from above LΦ+δΦ
1,1 , we take a geodesic for Φ and use a moment estimate on δΦ.

We start with the lower tail. For s > 0 we have

P
(
LΦ

1,1 ≤ lΦ+δΦ
1,1 (ε)e−s

)
≤ P

(
LΦ+δΦ

1,1 ≤ esLΦ
1,1, L

Φ
1,1 ≤ lΦ+δΦ

1,1 (ε)e−s
)

+ P
(
LΦ+δΦ

1,1 > esLΦ
1,1

)
≤ P

(
LΦ+δΦ

1,1 ≤ lΦ+δΦ
1,1 (ε)

)
+ P

(∫
πΦ

eΦ+δΦds > esLΦ
1,1

)
≤ ε+ e

1
2

sup Var(δΦ)−s

where we used Chebychev inequality and the independence between the field Φ and δΦ in the last

inequality. Taking then s = 1
2 sup Var(δΦ) − log ε completes the proof of (i). For the upper tails
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taking the same s gives

P
(
LΦ+δΦ

1,1 ≥ l̄Φ1,1(ε)es
)
≤ P

(
LΦ+δΦ

1,1 ≥ l̄Φ1,1(ε)es, l̄Φ1,1(ε) ≥ LΦ
1,1

)
+ P

(
LΦ

1,1 ≥ l̄Φ1,1(ε)
)

≤ P
(
LΦ+δΦ

1,1 ≥ esLΦ
1,1

)
+ ε

≤ 2ε

which concludes the proof of the lemma.

Note that if δφ is a high frequency noise, with scale dependence 2−n, say an approximation

of 4n i.i.d. standard Gaussian variables, its supremum is of order
√
n and the inequality (9.32) is

inappropriate compared to Lemma 3.9 which gives a bound of order one, but one-sided. However, for

a low frequency noise δφ, independent of n, the bound (9.32) gives two-sided bounds on quantiles.

If (Xn) and (Yn) denote two sequences of positive random variables, with positive density

with respect to the Lebesgue measure on (0,∞), we write Xn . Yn if there exists a constant C

independent of n such that for every ε > 0 small, there exists Cε, independent of n, such that

F−1
Xn

(ε/C) ≤ CεF−1
Yn

(ε) and F−1
Xn

(1− Cε) ≤ CεF−1
Yn

(1− ε), where FX(x) := P(X ≤ x) for a random

variable X. A direct corollary of Lemma 3.9 is the following: if (φn)n≥0 and (δφn)n≥0 are two

sequences of independent centered continuous Gaussian fields, and that the pointwise variance

of δφn is bounded, then L1,1(φn + δφn) . L1,1(φn). Similarly, a direct consequence of (9.32) is

that, under the same assumptions for (φn)n≥0, if ψ is a continuous centered Gaussian field, then

L1,1(φn) . L1,1(φn + ψ) . L1,1(φn).

Now that the notations and the key tools are settled, let us explain the main idea of the proof.

Let us assume for now that we have the following couplings, for a fixed k:

1.
(
φ1

0,n(x) + δ1
n(x)

)
x∈R2

(d)
=
(
φ2

0,n(x) + δ2
n(x)

)
x∈R2

2.
(
φ1
n,n+k(x) + ψ(x)

)
x∈R2

(d)
=
(
δ1
n(x) + r1

n(x)
)
x∈R2

3.
(
φ2
n,n+k(x) + ψ(x)

)
x∈R2

(d)
=
(
δ2
n(x) + r2

n(x)
)
x∈R2

where fields in the same side of an equality are independent and all fields are centered, continuous

and Gaussian. Let us also assume that ψ is a fixed continuous Gaussian field, independent of n and
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thus a low frequency noise. Notice that if such couplings hold, it is clear that the δin’s and rin’s have

bounded pointwise variance since this is the case for the fields in the left-hand sides of (ii) and (iii).

We then have, since ψ is a low frequency noise, by using (ii) and Lemma 3.9:

L1,1

(
φ1

0,n+k

)
. L1,1

(
φ1

0,n + δ1
n + r1

n

)
. L1,1

(
φ1

0,n + δ1
n

)
. L1,1

(
φ1

0,n

)
which gives, using (i):

L1,1

(
φ1

0,n+k

)
. L1,1(φ2

0,n + δ2
n) . L1,1(φ1

0,n). (9.33)

If we suppose that logL1,1(φ1
0,n)− logµ1

n is tight, then ((µ1
n)−1µ1

n+k)n≥0 is bounded by Lemma 2.12.

But then, using (9.33), logL1,1(φ2
0,n + δ2

n)− logµ1
n is tight. Furthermore, this implies the tightness

of logL1,1(φ2
0,n)− logµ1

n since

L1,1

(
φ2

0,n+k + δ2
n+k

)
. L1,1

(
φ2

0,n+k

)
. L1,1

(
φ2

0,n + δ2
n

)
.

Finally, the tightness of logL1,1(φ2
0,n)− logµ2

n follows from the fact that if X is random variable

and µ(X) is its median, then for every a ∈ R, µ(X + a) = µ(X) + a. This concludes the proof up to

the results we claimed on the couplings.

All the fields in the couplings will be defined by using the following standard result:

Lemma 2.16. If f is a continuous, symmetric and nonnegative function on Rd such that ‖ξ‖ f(ξ) ∈

L1(Rd), then one can define a continuous stationary centered Gaussian field with covariance given

by:

C(x, y) :=
1

(2π)2

∫
Rd
f(ξ)ei(x−y)·ξdξ.

Proof. Since f ∈ L1(Rd), C is well-defined. Then, since f is symmetric, a change of variables

gives that C is real-valued and C(x, y) = C(y, x). Moreover, notice that (C(x, y))x,y∈R2 is positive

75



semidefinite: for every (ak)1≤k≤n and (xk)1≤k≤n in (Rd)n we have

n∑
k,l=1

akC(xk, xl)al =
1

(2π)2

∫
Rd
f(ξ)

(
n∑
k=1

ake
ixk·ξ

)(
n∑
l=1

ale
−ixl·ξ

)
dξ

=
1

(2π)2

∫
Rd
f(ξ)

∣∣∣∣∣
n∑
k=1

ake
ixk·ξ

∣∣∣∣∣
2

dξ ≥ 0.

By a standard result on Gaussian processes (see [1] Section 1), there exists a centered Gaussian

process (h(x))x∈Rd whose covariance is given by E(h(x)h(y)) = C(x, y). Finally, since we have

the Lipschitz bound E((h(x) − h(y))2) ≤ 2 ‖x− y‖
∫
Rd f(ξ) ‖ξ‖ dξ and ‖ξ‖ f(ξ) ∈ L1(Rd), by the

Kolmogorov continuity criterion there exists a modification of h which is continuous.

We also recall that C0,n(x) =
∫ 1

2−n c
(
x
t

)
dt
t =

∫ 1
2−n ct(x)dtt with ct(·) = c(·/t) thus its Fourier

transform satisfies Ĉ0,n(ξ) =
∫ 1

2−n ĉt(ξ)
dt
t =

∫ 1
2−n tĉ(tξ)dt and since c = k ∗ k, ĉ = k̂2 and then

Ĉ0,n(ξ) =
∫ 1

2−n tk̂(tξ)2dt = ‖ξ‖−2 ∫ ‖ξ‖
2−n‖ξ‖ uk̂(u)2du.

Coupling φ1
0,n and φ2

0,n. First we define δ1
n and δ2

n such that

(
φ1

0,n(x) + δ1
n(x)

)
x∈R2

(d)
=
(
φ2

0,n(x) + δ2
n(x)

)
x∈R2 (9.34)

where δ1
n (resp δ2

n) is a noise independent of φ1
0,n (resp φ2

0,n). The covariance kernel of φi0,n is given

by Ci0,n(x, y) =
∫ 1

2−n ci
(x−y

t

)
dt
t where ci = ki ∗ ki. We recall also that these kernels are isotropic,

i.e., Ci0,n(x, y) = Ci0,n(‖x− y‖). By Fourier inversion (of Schwartz function) we can write

Ci0,n(x) =
1

(2π)2

∫
R2

Ĉi0,n(ξ)eiξ·xdξ.

We define R1
n by replacing the term Ĉi0,n(ξ) in the integrand by f1

n(ξ) := Ĉ1
0,n(ξ)∨Ĉ2

0,n(ξ)−Ĉ1
0,n(ξ) ≥ 0

and similarly R2
n associated with f2

n(ξ) := Ĉ2
0,n(ξ)∨Ĉ1

0,n(ξ)−Ĉ2
0,n(ξ) ≥ 0 so that C1

0,n+R1
n = C2

0,n+R2
n.

By using Lemma 2.16, the covariance kernels R1
n and R2

n correspond to some continuous Gaussian

fields δ1
n and δ2

n so that (9.34) holds and for i ∈ {1, 2}, φi0,n is independent of δin.

Coupling the remaining noise with the lower scales. We now prove the second coupling:

(
φ1
n,n+k(x) + ψ(x)

)
x∈R2 =

(
δ1
n(x) + r1

n(x)
)
x∈R2 . (9.35)
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The goal is to show that the Fourier transform of the kernel of φ1
n,n+k + ψ (for ψ to be specified) is

larger than the one of δ1
n in order to define, in a similar way as before, the continuous Gaussian

field r1
n, independent of δ1

n.

To be precise, recall first that the spectrum of δ1
n and φ1

n,n+k are given respectively by

f1
n(ξ) = (Ĉ2

0,n(ξ)− Ĉ1
0,n(ξ))1Ĉ2

0,n(ξ)≥Ĉ1
0,n(ξ) with Ĉi0,n(ξ) = ‖ξ‖−2 ∫ ‖ξ‖

2−n‖ξ‖ uk̂i(u)2du and Ĉ1
n,n+k(ξ) =

‖ξ‖−2 ∫ 2−n‖ξ‖
2−n−k‖ξ‖ uk̂1(u)2du. If the spectrum of ψ is given by ‖ξ‖−2 g(ξ), we look for the inequality

f1
n(ξ) ≤ Ĉ1

n,n+k(ξ) + ‖ξ‖−2 g(ξ) which is equivalent to

(∫ ‖ξ‖
2−n‖ξ‖

uk̂2(u)2du−
∫ ‖ξ‖

2−n‖ξ‖
uk̂1(u)2du

)
+

≤
∫ 2−n‖ξ‖

2−(n+k)‖ξ‖
uk̂1(u)2du+ g(ξ). (9.36)

If the left-hand side is 0, the inequality trivially holds. Otherwise, we want to get:

∫ ‖ξ‖
2−n‖ξ‖

uk̂2(u)2du ≤
∫ ‖ξ‖

2−(n+k)‖ξ‖
uk̂1(u)2du+ g(ξ).

Our analysis of this inequality will be separated in three steps, corresponding respectively to the

low frequencies [0, c2n], the high ones [C2n,∞) and the remaining part of the spectrum [c2n, C2n],

for c and C to be specified. The field ψ in (9.35) is defined in the first step. An additional step is

devoted to the conclusion.

Step 1. We start with the low frequencies ‖ξ‖ ≤ c2n. Since k̂1 and k̂2 are radially symmetric

with the same L2 normalization,
∫

(0,∞) uk̂1(u)2du =
∫

(0,∞) uk̂2(u)2du and

(∫ ‖ξ‖
2−n‖ξ‖

uk̂2(u)2du−
∫ ‖ξ‖

2−n‖ξ‖
uk̂1(u)2du

)
+

≤

(∫ 2−n‖ξ‖

0
uk̂1(u)2du−

∫ 2−n‖ξ‖

0
uk̂2(u)2du

)
+

+

(∫ ∞
‖ξ‖

uk̂1(u)2du−
∫ ∞
‖ξ‖

uk̂2(u)2du

)
+

.

We define the continuous Gaussian field ψ (independent of n), whose covariance kernel has

Fourier transform defined by ‖ξ‖−2 g(ξ) := ‖ξ‖−2
∣∣∣∫∞‖ξ‖ uk̂1(u)2du−

∫∞
‖ξ‖ uk̂2(u)2du

∣∣∣.
Since we want to show that the Fourier transform of the kernel of φ1

n,n+k + ψ is larger than the
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one of δ1
n, we want to prove that for ‖ξ‖ ≤ c2n (c to be specified, small):

(∫ 2−n‖ξ‖

0
uk̂1(u)2du−

∫ 2−n‖ξ‖

0
uk̂2(u)2du

)
+

≤
∫ 2−n‖ξ‖

2−(n+k)‖ξ‖
uk̂1(u)2du.

By setting r = 2−n ‖ξ‖, we want to prove that for r small enough (r ≤ c), and k large enough but

fixed: (∫ r

0
uk̂1(u)2du−

∫ r

0
uk̂2(u)2du

)
+

≤
∫ r

2−kr
uk̂1(u)2du. (9.37)

Notice that when r goes to 0,
∫ r

0 u(k̂1(u)2du−
∫ r

0 uk̂2(u)2du ∼ 1
2r

2(k̂1(0)2− k̂2(0)2). If the left-hand

side is 0, there is nothing to prove. Thus we can restrict to the case where it is > 0 i.e when k̂1(0)2 >

k̂2(0)2 (notice that k̂(0) =
∫
B(0,r0) k(u)du > 0 since k is non-negative and

∫
B(0,r0) k(x)2dx = 1). The

asymptotic of the right-hand side is given by
∫ r

2−kr uk̂1(u)2du ∼ 1
2r

2k̂1(0)2(1− 2−2k). Thus as soon

as k̂1(0)2 − k̂2(0)2 < k̂1(0)2(1− 2−2k), there exists r(k) such that for r ≤ r(k), the inequality (9.37)

is satisfied.

Step 2. We now deal with the large frequencies, i.e., ‖ξ‖ ≥ C2n. Again, we look for the

inequality (9.36). Since we added the field ψ and the following inequality holds,

(∫ ‖ξ‖
2−n‖ξ‖

uk̂2(u)2du−
∫ ‖ξ‖

2−n‖ξ‖
uk̂1(u)2du

)
+

≤

(∫ ∞
2−n‖ξ‖

uk̂2(u)2du−
∫ ∞

2−n‖ξ‖
uk̂1(u)2du

)
+

+

(∫ ∞
‖ξ‖

uk̂1(u)2du−
∫ ∞
‖ξ‖

uk̂2(u)2du

)
+

we look for the inequality:

(∫ ∞
2−n‖ξ‖

uk̂2(u)2du−
∫ ∞

2−n‖ξ‖
uk̂1(u)2du

)
+

≤
∫ 2−n‖ξ‖

2−(n+k)‖ξ‖
uk̂1(u)2du.

By setting r = 2−n ‖ξ‖, we want to prove that for r large enough (r ≥ C), and k large enough but

fixed: ∫ ∞
r

uk̂2(u)2du ≤
∫ ∞

2−kr
uk̂1(u)2du. (9.38)

Since k̂1(u) = e−bu
α(1+o(1)) and k̂2(u) = e−au

α(1+o(1)), we may assume that 0 < a ≤ b (otherwise

k = 0 would be fine). Notice that there exists some R > 0 such that for every r ≥ R,
∫∞
r uk̂2(u)2du ≤
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e−br
α

and e−3arα ≤
∫∞
r uk̂2(u)2du. Then, by taking k large enough so that b > 3a2−kα, for r ≥ 2kR

the inequality (9.38) is satisfied.

Step 3. Take k0 such that k̂1(0)2 − k̂2(0)2 < k̂1(0)2(1 − 2−2k0) and b > 3a2−k0α are satisfied.

Set c := r(k0) and C := 2k0R, keeping the notations of Step 1 and Step 2. We proved there that

(9.36) holds for ‖ξ‖ ≤ c2n and ‖ξ‖ ≥ C2n and this inequality still holds by taking k larger, with

the same c and C. We are left with the frequencies c2n ≤ ‖ξ‖ ≤ C2n. First, fix k ≥ k0 such that∫∞
2−kC uk̂1(u)2du >

∫∞
c uk̂2(u)2du (since

∫∞
2−kC uk̂1(u)2du →

∫∞
0 uk̂2(u)2). Then, fix n0 such that∫ 2n0c

2−kC uk̂1(u)2du ≥
∫∞
c uk̂2(u)2du. Thus, for every n ≥ n0, ‖ξ‖ ∈ [c2n, C2n] we have:

∫ ‖ξ‖
2−(n+k)‖ξ‖

uk̂1(u)2du ≥
∫ 2nc

2−kC
uk̂1(u)2du ≥

∫ ∞
c

uk̂2(u)2du ≥
∫ ‖ξ‖

2−n‖ξ‖
uk̂2(u)2du.

Step 4. We have proved that if k is large enough, but fixed, for every n ≥ n0 the inequality

(9.36) holds for all ξ ∈ R2. Also, our arguments prove that the same result is true by exchanging

the subscripts 1 and 2 in (9.36). Therefore, we can define for i ∈ {1, 2}, rin whose covariance kernel

has Fourier transform given by the positive difference in the inequality (9.36), multiplied by ‖ξ‖−2.

In particular, we get the couplings (ii) and (iii) with the desired properties on the fields. This

completes the proof of the existence of the couplings, therefore the proof of Theorem 2.6.

2.10 Appendix

2.10.1 Tail estimates for the supremum of φ0,n

We derive in the following lemma some tail estimates for the field φ0,n. The tail estimates are

obtained by controlling a discretization of φ0,n (by union bound and Gaussian tail estimates) and

its gradient.

Lemma 2.17. The supremum of the field φ0,n satisfies the following tails estimates

P

(
sup
[0,1]2
|φ0,n| ≥ α(n+ C

√
n)

)
≤ C4ne

− α2

log 4
n

(10.39)
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as well as

P

(
sup
[0,1]2
|φ0,n| ≥ n log 4 + C

√
n+ Cs

)
≤ Ce−s. (10.40)

Proof. First we bound a discretization of the field φ0,n. Since the variance of φ0,n(x) is equal to (n+

1) log 2, by union bound and classical Gaussian tail estimates we have P(max[0,1]2∩2−nZ2 |φ0,n(x)| ≥

x) ≤ 4ne
− x2

(n+1) log 4 hence by introducing xn :=
√
n+ 1

√
n we get

P
(

max
x∈[0,1]2∩2−nZ2

|φ0,n(x)| ≥ αxn
)
≤ 4ne

− α2

log 4
n
. (10.41)

Now we want to bound sup[0,1]2 |φ0,n(x)| for which we want an equivalent of the bound (10.41). By

Fernique’s theorem, we have a tail estimate for the gradient of φ0, i.e., there exists some C > 0 so that

for every x > 0, P(sup[0,1]2 |∇φ0| ≥ x) ≤ Ce−x2/2C . Then, by scaling, for any dyadic cube P ∈ Pk,

P(supP |∇φk| ≥ 2kx) ≤ Ce−x2/2C thus, by union bound P(sup[0,1]2 |∇φk| ≥ 2kx) ≤ C4ke−x
2/2C . We

can now work out the gradient field ∇φ0,n: P(sup[0,1]2 |∇φ0,n| ≥ 2n+1x) ≤ P(
∑n

k=0 sup[0,1]2 |∇φk| ≥∑n
k=0 2kx) ≤ C4ne−x

2/2C hence P(2−n sup[0,1]2 |∇φ0,n| ≥ x) ≤ C4ne−x
2/2C . This inequality can be

rewritten by introducing yn := C
√
n as:

P

(
2−n sup

[0,1]2
|∇φ0,n| ≥ αyn

)
≤ C4ne

− α2

log 4
n
. (10.42)

Using the discrete bound (10.41) and the gradient one (10.42), since

sup
[0,1]2
|φ0,n| ≤ max

[0,1]2∩2−nZ2
|φ0,n|+ 2−n sup

[0,1]2
|∇φ0,n| ,

we get the result (10.39) by union bound. Indeed, with zn := xn + yn. P( sup
[0,1]2
|φ0,n| ≥ αzn) ≤

P(Xn ≥ αxn) + P(Yn ≥ αYn) ≤ C4ne
− α2

log 4
n
. Taking α = log 4

√
1 + s

n log 4 ≤ log 4 + s
n gives the

second part (10.40).

The following lemma is a corollary of the previous one: using the tail estimates we control

exponential moments.

Lemma 2.18. We have the following upper bounds for the exponential moments of the field φ0,n:

for γ < 2 and n ≥ 0, E
(
e
γ sup[0,1]2 |φ0,n|

)
≤ C4γn(1+o(1)), where o(1) is of the form O(n−1/2).
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Proof. Fix 0 < γ < 2. We use the bound (10.39) as follows. By introducing sn := n + C
√
n we

have, by using the elementary bound E(eγX) ≤ eγx +
∫∞
x γeγtP(X ≥ t)dt and for α to be specified:

E

(
e
γ sup

[0,1]2
|φ0,n|

)
≤ eγαsn + γ

∫ ∞
αsn

eγtP

(
sup
[0,1]2
|φ0,n| ≥ t

)
dt.

Setting t = snu,
∫∞
αsn

eγtP(sup[0,1]2 |φ0,n| ≥ t)dt = sn
∫∞
α eγsnuP(sup[0,1]2 |φ0,n| ≥ snu)du and by

using the bound (10.39)

∫ ∞
α

eγsnuP

(
sup
[0,1]2
|φ0,n| ≥ snu

)
du ≤ C4n

∫ ∞
α

eγsnue
− u2

log 4
n
du.

By introducing rn := n−1sn, by a change of variables we obtain:

∫ ∞
α

eγsnue
− u2

log 4
n
du ≤ 4

γ2r2n
4

n

∫ ∞
α−γrn log 4

2

e
− n

log 4
u2

du.

Taking α := rn log 4, the integral in the right-hand side becomes

∫ ∞
α−γrn log 4

2

e
− n

log 4
u2

du =

∫ ∞
(1−γ/2)rn log 4

e
− n

log 4
u2

du ≤ 4−n(1− γ
2 )

2
r2
n

(2− γ)nrn
,

by using the inequality
∫∞
a e−bx

2
dx ≤ (2ab)−1e−ba

2
valid for a > 0 and b > 0. Gathering the pieces

we get E(e
γ sup[0,1]2 |φ0,n|) ≤ (1 + C γ

2−γ )4γr
2
nn hence the result.

We add here a Lemma which is in the same vein as the previous one.

Lemma 2.19. Suppose that we have the following tail estimate on a sequence of positive random

variables (Xk)k≥0: for k ≥ 0 and s > 2,

P (Xk ≥ es) ≤ 4ke
−c s2

log s .

Then, we have the following moment estimate: there exists C > 0 depending only on c such that for

k large,

E (Xk) ≤ eC
√
k log k.
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Proof. Fix xk > 2 to be specified. We can rewrite E(Xk)− exk as

∫ ∞
exk

P (Xk ≥ x) dx =

∫ ∞
xk

P (Xk ≥ es) esds ≤ 4k
∫ ∞
xk

e
−c s2

log s esds ≤ 4kexk
∫ ∞
xk

e
−c s2

log xk ds.

By using
∫∞
a e−bx

2
dx ≤ (2ab)−1e−ba

2
, we get E(Xk) ≤ exk + 4kexk(2xk

c
log xk

)−1e
−c x2

k
log xk . Taking xk

such that k log 4 = c
x2
k

log xk
gives log k ∼ 2 log xk and xk ∼ C

√
k log k.

2.10.2 Upper bound for F (s)

In this subsection, we derive two lemmas that allow us to bound the term F (s) which appears

in the proof of Proposition 2.11. The first one corresponds to ats , the second one to
∫∞

0 atdt.

Lemma 2.20. If a, b, c > 0 and α ∈ (0, 1/2) then the function fs(t) := −at + bt1/2+α + cs
√
t in

increasing on [0, ts], decreasing on [ts,∞] for some ts > 0 which satisfy at
1/2
s = 1

2cs+O(s2α). In

particular, we have: exp(fs(ts)) ≤ e
c2s2

4a
+Cs1+2α

.

Proof. First, notice that f ′s(t) = −a + (1
2 + α)bt−1/2+α + 1

2cst
−1/2. Since f ′s(ts) = 0 we obtain

a = (1
2 + α)bt

−1/2+α
s + 1

2cst
−1/2
s which we write:

at1/2s =
cs

2
+ (

1

2
+ α)btαs . (10.43)

Thus at
1/2
s ≥ cs/2. In particular, lims→∞ ts = +∞. Using (10.43), we obtain at

1/2
s ∼s→∞ 1

2cs.

Using again (10.43), we have at
1/2
s = 1

2cs+ O(s2α). Using again (10.43) we conclude by noticing

that: fs(ts) = −ats + bt
1/2+α
s + cst

1/2
s = ats − 2bαt

1/2+α
s .

Lemma 2.21. Let α, a, b > 0 with α < 1/2. For every s > 0 the following inequality holds

∫ ∞
0

e−t+at
1/2+α+bs

√
tdt ≤ Cα,a(2 + bs)e

(bs)2

4 eCα(bs)1+2α
,

where Cα,a <∞ just depends on a and Cα just depends on α.
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Proof. By writing −t+ bs
√
t = (bs)2

4 − (
√
t− bs

2 )2 and the change of variable u =
√
t,

∫ ∞
0

e−t+at
1/2+α+bs

√
tdt = e

(bs)2

4

∫ ∞
0

e−(u− bs
2

)2+au1+2α
2udu.

Now, by the change of variables v = u− bs/2, we get

∫ ∞
0

e−(u− bs
2

)2+au1+2α
2udu =

∫ ∞
− bs

2

e−v
2+a(v+ bs

2
)1+2α

(2v + bs)dv.

Finally, by Jensen’s inequality, (v + bs
2 )1+2α ≤ Cα(|v|1+2α + (bs)1+2α) thus

∫ ∞
− bs

2

e−v
2+a(v+ bs

2
)1+2α

(2v + bs)dv ≤ eCαa(bs)1+2α

∫ ∞
− bs

2

e−v
2+Cαa|v|1+2α

(2v + bs)dv

≤ eCαa(bs)1+2α
(2 + bs)

∫ ∞
−∞

e−v
2+Cαa|v|1+2α

(1 + |v|) dv.

Now, we bound F (s). Recall first that F (s) ≤ 2ats +
∫∞

0 atdt where at = exp(fs(t)), fs(t) :=

−t(1 − λ) log 2 + Ct1/2+α + βs
√
t, λ := (1 + aε)γ, α := δ

2 and β := γ
2

√
log 4. By Lemma 2.20,

ats ≤ e
β2s2

4(1−λ) log 2
+Cs1+2α

= e
γ2 log 4s2

16(1−(1+aε)γ) log 2
+Cs1+δ

= e
γ2s2

8(1−(1+aε)γ)
+Cs1+δ

. By the change of variable

u = t(1 − λ) log 2 and Lemma 2.21, we obtain the integral bound
∫∞

0 atdt ≤ Ce
γ2s2

8(1−(1+aε)γ) eCs
1+δ

.

Altogether we get F (s) ≤ Ce
γ2s2

8(1−(1+aε)γ) eCs
1+δ

.
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Chapter 3: Tightness of Liouville first passage percolation for γ ∈ (0, 2)

This chapter is based on joint work with Julien Dubédat, Jian Ding and Alexander Dunlap [24] .

3.1 Introduction

The present study concerns the tightness of Liouville first-passage percolation (LFPP) metrics

associated with a regularization of the Gaussian free field. This proves the existence of subsequential

limiting metrics. Given this, it remains to show that such limiting metrics are unique in law for each

γ ∈ (0, 2) in order to complete the construction of the LQG metric in this regime. The latter task

was carried out in the series of works [39, 56–59], thus completing the construction. The present

study follows three main tightness results for discretized or smoothed LQG metrics. In [25], tightness

of LFPP metrics (on a discrete lattice) was proved in the small noise regime for which γ is very

small. In [38], tightness was shown for metrics arising in the same way from ?-scale invariant fields,

still in the small noise regime. In [26], tightness was shown for all γ < 2 for the Liouville graph

distance, which is a graph metric equal to the least number of Euclidean balls of a given LQG

measure necessary to cover a path between a pair of points.

We consider a smoothed Gaussian field

φδ(x) :=
√
π

∫ 1

δ2

∫
R2

p t
2
(x− y)W (dy, dt) (1.1)

for x ∈ R2 and δ ∈ (0, 1), where pt(x− y) := 1
2πte

− |x−y|
2

2t and W is a space-time white noise. This

approximation is natural since it can be uniformly compared on a compact domain with a Gaussian

free field h mollified by the heat kernel defined on a slightly larger domain, viz. φ√t and pt/2 ∗ h

(where ∗ denotes the convolution operator) are comparable. Furthermore, this approximation

provides some nice invariance and scaling properties on the full plane.
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For γ ∈ (0, 2), recall the notation ξ

ξ := γ/dγ (1.2)

where dγ is the “Liouville quantum gravity dimension” defined in [28]. It is known (see Theorem

1.2 and Proposition 1.7 in [28]) that the function γ 7→ γ/dγ is strictly increasing and continuous

on (0, 2). Therefore, in this chapter we will be interested in the range ξ ∈ (0, (2/d2)−), where

(2/d2)− = limγ↑2 γ/dγ .

We consider the length metric eξφδds (equivalently, the metric whose Riemannian metric tensor

is given by e2ξφδds2), restricted to the unit square [0, 1]2. We recall that a length metric is a metric

such that the distance between two points is given by the infimum over the arc lengths of paths

connecting the two points. We denote by λδ the median of the left-right distance of [0, 1]2 for the

metric eξφδds. Our main theorem is the following.

Theorem 3.1. 1. If γ ∈ (0, 2), then
(
λ−1
δ eξφδds

)
δ∈(0,1)

is tight with respect to the uniform

topology on the space of continuous functions [0, 1]2 × [0, 1]2 → R+. Furthermore, any

subsequential limit is almost surely bi-Hölder with respect to the Euclidean metric on [0, 1]2.

2. Let K = [0, 1]2. If h is a Gaussian free field with zero boundary conditions on a bounded

open domain D containing K (extended to zero outside of D), then the internal metrics

(λ−1√
δ
e
ξp δ

2
∗h
ds)δ∈(0,1) on K are tight with respect to the uniform topology of continuous functions

K ×K → R+.

Furthermore, the normalizing constants (λδ)δ∈(0,1) satisfy

λδ = δ1−ξQe
O
(√
| log δ|

)
(1.3)

where Q = 2
γ + γ

2 .

A year after the article [24] corresponding to this chapter was posted, the subsequent work [29]

proved a similar result to ours when ξ ≥ (2/d2)−. However, in that case the tightness does not hold

in the uniform topology and the Beer topology on lower semicontinuous functions was used.

In order to establish the tightness of renormalized metrics (dφδ)δ∈(0,1) := (λ−1
δ eξφδds)δ∈(0,1), we

prove a number of uniform estimates for that family (which also hold when the approximation is
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the GFF mollified by the heat kernel). Such estimates that are closed under weak convergence also

apply to subsequential limits. Let us summarize these properties. Let D denote the family of laws

of dφδ , δ ∈ (0, 1) (i.e. seen as random continuous functions on ([0, 1]2)2), and D denotes its closure

under weak convergence (i.e., D also includes the laws of all subsequential limits).

1. Under any P ∈ D, d is P-a.s. a length metric. This is clear for the renormalized metrics

dφδ by definition, and the property of being a length metric extends to limits. (See [17,

Exercise 2.4.19].)

2. If d is a metric on R2 and R is a rectangle, we denote by d(R) the left-right length of R for d.

We have the following tail estimates. There exists c, C > 0 such that for s > 2, uniformly in

P ∈ D we have

ce−Cs
2 ≤ P

(
d(R) ≤ e−s

)
≤ Ce−cs2 , (1.4)

ce−Cs
2 ≤ P (d(R) ≥ es) ≤ Ce−c

s2

log s . (1.5)

The upper bounds are proved in Section 3.4, while the lower bounds are consequences

of the Cameron–Martin theorem, considering shifts of the field at the coarsest scale as

in [38, Section 5.4].

3. If d is a metric on R2 and R is a rectangle, we denote by Diam(R, d) the diameter of R for d.

We have the following uniform first moment bound:

sup
P∈D

E (Diam(R, d)) <∞. (1.6)

This is shown in the course of the proof of Proposition 3.27 below.

4. Under any P ∈ D, d is P-a.s. bi-Hölder with respect to the Euclidean metric and we have

the following bounds for exponents: for α < ξ(Q− 2), β > ξ(Q+ 2), and R a rectangle, the

families (
sup
x,x′∈R

|x− x′|α

d(x, x′)

)
L(d)∈D

and

(
sup
x,x′∈R

d(x, x′)

|x− x′|β

)
L(d)∈D

(1.7)

are tight. Here L(d) means the law of d. These properties are shown in Proposition 3.28
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below.

Let us also mention that subsequential limits are consistent with the Weyl scaling: for a function

f in the Cameron-Martin space of the Gaussian free field h, for any coupling (h, d) associated

to a subsequential limit of the sequence of laws of ((h, λ−1√
δ
e
ξp δ

2
∗h
ds))δ>0, the couplings (h, d) and

(h + f, eξf · d) are mutually absolutely continuous with respect to each other and the associated

Radon-Nikodým derivative is the one of the first marginal. This can be proved using similar

arguments to those of [38, Section 7]. An analogue of this property for the Liouville measure

together with the conservation of the Liouville volume average is enough to characterize the Liouville

measure, as seen by Shamov in [99].

Furthermore, in our setting where the metrics are on a compact subset of C, we can directly use

the uniform topology instead of working with the Gromov-Hausdorff topology (note that the former

is stronger than the latter). In this chapter, we show tightness for the full subcritical range γ ∈ (0, 2)

of renormalized side-to-side crossing lengths, point-to-point distance and metrics. Limiting metrics

are bi-Hölder with respect to the Euclidean metric.

3.1.1 Strategy of the proof and comparison with previous works

In contrast with previous works on the LQG measure, the variational problem defining the LQG

metric means that most direct computations are impossible, and in particular most of techniques

used in the theory of Gaussian multiplicative chaos and LQG measure are unavailable. This

necessitates the more intricate multiscale geometric arguments that we employ.

Our tightness proof relies on two key ingredients, a Russo-Seymour-Welsh argument and

multiscale analysis. In both parts we extend and refine many arguments used in the previous

works [25,26,38] on the tightness of various types of LQG metrics.

Russo-Seymour-Welsh. The RSW argument relates, to within a constant factor, quantiles of

the left–right LFPP crossing distances of a “portrait” rectangle and of a “landscape” rectangle.

(By a crossing distance we simply mean the distance between two opposite sides of a rectangle.)

In [25,26], these crossings are referred to as “easy” and “hard” respectively. The utility of such a
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result is that crossings of larger rectangles necessarily induce easy crossings of subrectangles, while

hard crossings of smaller rectangles can be glued together to create crossings of larger rectangles.

Thus, multiscale analysis arguments can establish lower bounds in terms of easy crossings and upper

bounds in terms of hard crossings. RSW arguments then allow these bounds to be compared.

RSW arguments originated in the works [94, 95, 98] for Bernoulli percolation, and have since

been adapted to many percolation settings. The work [25] introduced an RSW result for LFPP in

the small noise regime based on an RSW result for Voronoi percolation devised by Tassion [110].

Tassion’s result is beautiful but intricate, and becomes quite complex when it is adapted to take

into account the weights of crossing in the first-passage percolation setting, as was done in [25].

The RSW approach of this chapter is based on the much simpler approach introduced in the

first chapter, (corresponding to [38]), which relies on an approximate conformal invariance of the

field. (We recall that the Gaussian free field is exactly conformally invariant in dimension 2, and

that the LQG measure enjoys an exact conformal covariance.) Roughly speaking, the conformal

invariance argument relies on writing down a conformal map between the portrait and landscape

rectangles, and analyzing the effect of such a map on crossings of the rectangle. We note that the

approximate conformal invariance used in this chapter relies in an important way on the exact

independence of different “scales” of the field, which is manifest in the independence of the white

noise at different times in the expression (1.1). Thus, the argument we use here is not immediately

applicable to mollifications of the Gaussian free field by general mollifiers (for example, the common

“circle-average approximation” of the GFF). The RSW argument of [38] was also adapted in [26] to

the Liouville graph distance case.

Tail estimates. Once the RSW result is established, we derive tail estimates with respect to

fixed quantiles. The lower tail estimate is unconditional, while the upper tail estimate depends

on a quantity Λn measuring the concentration at the current scale, which will later be uniformly

bounded by an inductive argument.

Multiscale analysis. With RSW and tail estimates in hand, we turn to the multiscale analysis

part of the chapter. This argument turns on the Condition (T) formulated in (3.5.1) below, which,
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informally, states that the arclength of the crossing is not concentrated on a small number of subarcs

of small Euclidean diameter. The argument of [26] requires similar input, which is a key role of

the subcriticality γ < 2. While [26] relies directly on certain scaling symmetries of the Liouville

graph distance to use subcriticality, the present work relies on the characterization of the Hausdorff

dimension dγ obtained in [28], along with some weak multiplicativity arguments and concentration

obtained from percolation arguments.

Condition (T). Our formulation of Condition (T), which has not appeared in previous works,

precisely captures the property of the metric needed to obtain the tightness of the left–right crossing

distances, the existence of the exponent, and the tail estimates (via a uniform bound on the Λn).

Condition (T) makes sense for LFPP with any underlying field and any parameter ξ. In

particular, this condition or a variant thereof could possibly hold for LFPP for some ξ > 2/d2.

Therefore, a byproduct of the present work is a simple criterion (that implies, as noted above,

tightness of the crossing distances, existence of exponents, and tail estimates) that may be applicable

more generally.

The utility of Condition (T) is that it allows us to use an Efron–Stein argument to obtain a

contraction in an inductive bound on the crossing distance logarithm variance. Informally, since

the crossing distance feels the effect of many different subboxes, the subbox crossing distances are

effectively being averaged to form the overall crossing distance. This yields a contraction in variance.

(Of course, the coarse scales also contribute to the variance, and hence the variance of the crossing

distance does not decrease as the discretization scale decreases but rather stays bounded.)

The way we verify Condition (T) is quite rough: we bound the field uniformly over a coarse

grained geodesic by the supremum of the field over the unit square. It turns out that this bound

together with the identification of the exponent 1− ξQ is enough to establish the condition.

Tightness of the metrics. Once the tightness of the left–right crossing distance is established,

we turn to the tightness of the diameter and of the metric itself. This is done by a chaining argument,

and requires again ξ < 2/d2. The diameter is not expected to be tight when ξ > 2/d2, since there

are points that become infinitely distant from the bulk of the space as the discretization scale goes
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to 0.

3.2 Description and comparison of approximations

We recall that a white noise W on Rd is a random Schwartz distribution such that for every

smooth and compactly supported test function f , 〈W, f〉 is a centered Gaussian variable with

variance ‖f‖L2(Rd) (see e.g. [21]). The main approximation of the Gaussian free field that we

consider in this chapter is defined for δ ∈ (0, 1) by

φδ(x) :=
√
π

∫ 1

δ2

∫
R2

p t
2
(x− y)W (dy, dt) (2.8)

where pt(x− y) := 1
2πte

− |x−y|
2

2t and W is a space-time white noise on [0, 1]×R2. This approximation

is different than the one considered in [38] which is

φ̃δ(x) :=

∫ 1

δ

∫
R2

k

(
x− y
t

)
t−3/2W (dy, dt)

for a smooth nonnegative bump function k, radially symmetric and with compact support. Up to a

change of variable in t, the difference is essentially replacing p1 by k. Both fields are normalized

in such a way that E(φ0(x)φ0(y)) = − log |x − y| + g(x, y) with g continuous (see e.g. Section 2

in [38]): this is the reason for the factor
√
π in (2.8).

Let us mention that ?-scale invariant Gaussian fields with compactly-supported bump function k

1. are invariant under Euclidean isometries,

2. have finite-range correlation at each scale,

3. and have convenient scaling properties.

The Gaussian field φδ introduced above satisfies 1 and 3 but not 2. Because of the lack of finite-range

correlation, we will also use a field ψδ (defined in the next section) which satisfies 1 and 2 such

that supn≥0 ‖φ0,n − ψ0,n‖L∞([0,1]2) has Gaussian tails, where we use the notation φ0,n for φδ with

δ = 2−n.
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3.2.1 Basic properties of φδ and ψδ

Scaling property of φδ. We use the scale decomposition

φ :=
∑
n≥0

φn where φn(x) =
√
π

∫ 2−2n

2−2(n+1)

∫
R2

p t
2
(x− y)W (dy, dt)

If we denote by Cn the covariance kernel of φn, so Cn(x, x′) = E(φn(x)φn(x′)), then we have

Cn(x, x′) =

∫ 2−2n

2−2(n+1)

1

2t
e−
|x−x′|2

2t dt = C0(2nx, 2nx′).

Therefore, the law of (φn(x))x∈[0,1]2 is the same as (φ0(2nx))x∈[0,1]2 . Because of the 1
2t above, we

choose δ2 and not δ in (2.8) so that the pointwise variance φδ is log δ−1. Similarly, for 0 < a < b

and x ∈ R2, set

φa,b(x) :=
√
π

∫ b2

a2

∫
R2

p t
2
(x− y)W (dy, dt) (2.9)

and note that we have the scaling identity φa,b(r·)
(d)
= φa/r,b/r(·). Indeed, E(φa,b(rx)φa,b(rx

′)) is

given by

π

∫ b2

a2

∫
R2

p t
2
(rx− y)p t

2
(y − rx′)dydt = π

∫ b2

a2

pt(r(x− x′))dt =

∫ b2

a2

1

2t
e−

r2|x−x′|2
2t dt,

and by the change of variable t = r2u, this gives

∫ b2

a2

1

2t
e−

r2|x−x′|2
2t dt =

∫ (b/r)2

(a/r)2

1

2t
e−
|x−x′|2

2t dt = E(φa/r,b/r(x)φa/r,b/r(x
′)).

We will use the notation φk,n when a = 2−n and b = 2−k for 0 ≤ k ≤ n.

Maximum and oscillation of φδ. We have the same estimates for the supremum of the field

φ0,n as those for the ?-scale invariant case considered in [38] (it is essentially a union bound combined

with a scaling argument). The following proposition corresponds to Lemma 10.1 and Lemma 10.2

in [38].

Proposition 3.2 (Maximum bounds). We have the following tail estimates for the supremum of
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φ0,n over the unit square: for a > 0, n ≥ 0,

P
(

max
[0,1]2
|φ0,n| ≥ a(n+ C

√
n)

)
≤ C4ne

− a2

log 4
n

(2.10)

as well as the following moment bound: if γ < 2, then

E(e
γmax[0,1]2 |φ0,n|) ≤ 4γn+O(

√
n) (2.11)

We will also need some control on the oscillation of the field φ0,n. We introduce the following

notation for the L∞-norm on a subset of Rd. If A is a subset of Rd and f : A→ Rm, we set

‖f‖A := sup
x∈A
|f(x)| (2.12)

We introduce the following notation to describe the oscillation of a smooth field φ: if A ⊂ R2 we set

oscA(φ) := diam(A) ‖∇φ‖A , (2.13)

so that if A is convex then supx,y∈A |φ(x)− φ(y)| ≤ oscA(φ) and

max
P∈Pn,P⊂[0,1]2

oscP (φ0,n) ≤ C2−n ‖∇φ0,n‖[0,1]2 ,

where Pn denotes the set of dyadic blocks at scale n, viz.

Pn := {2−n([i, i+ 1]× [j, j + 1]) : i, j ∈ Z}. (2.14)

In order to simplify the notation P ∈ Pn, P ⊂ [0, 1]2 later on, we also set

P1
n := {P ∈ Pn : P ⊂ [0, 1]2}. (2.15)

Proposition 3.3 (Oscillation bounds). We have the following tail estimates for the oscillation of
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φ0,n: there exists C > 0, σ2 > 0, so that, for all x, ε > 0, n ≥ 0,

P
(

2−n ‖∇φ0,n‖[0,1]2 ≥ x
)
≤ C4ne−

x2

2σ2 (2.16)

as well as the following moment bound: for a > 0, there exists ca > 0 so that for n ≥ 0,

E
(
e
anε2−n‖∇φ0,n‖[0,1]2

)
≤ ecan

1
2 +ε+O(n2ε) (2.17)

Proof. Inequality (2.16) was obtained between Equation (10.3) and Equation (10.4) in [38]. Now,

we prove (2.17). Set an := anε, On = 2−n ‖∇φ0,n‖[0,1]2 , and take xn = anσ
2 + ασ

√
n with α > 0 so

that α2

2 = log 4. We have, using (2.16),

∫ ∞
eanxn

P
(
eanOn ≥ x

)
dx =

∫ ∞
anxn

P
(
eanOn ≥ es

)
esds ≤ C4n

∫ ∞
anxn

e
− s2

2a2
nσ

2 esds

By a change of variable (s↔ anσs+ (anσ)2), we get

∫ ∞
anxn

e
− s2

2a2
nσ

2 esds = anσe
1
2
a2
nσ

2

∫ ∞
xn
σ
−anσ

e−
s2

2 ds = anσe
1
2
a2
nσ

2

∫ ∞
α
√
n
e−

s2

2 ds

since xn = anσ
2 +ασ

√
n. Using that

∫∞
a e−bx

2
dx ≤ (2ab)−1e−ba

2
, we get

∫∞
eanxn P

(
eanOn ≥ x

)
dx ≤

eO(n2ε). The result follows from writing E(eanOn) ≤ eanxn +
∫∞
eanxn P(eanOn ≥ x)dx.

Definition of ψδ. We fix a smooth, nonnegative, radially symmetric bump function Φ such that

0 ≤ Φ ≤ 1 and Φ is equal to one on B(0, 1) and to zero outside B(0, 2). We also fix small constants

r0 > 0 and ε0 > 0. We will specify these constants later on. In particular, ε0 appears in the main

proof in (5.60) and its final effect is in (5.65). All other constants C, c will implicitly depend on r0

and ε0. Then, we introduce for each δ ∈ [0, 1], the field

ψδ(x) :=

∫ 1

δ2

∫
R2

Φσt(x− y)p t
2
(x− y)W (dy, dt) =

∫ 1

δ2

∫
R2

pTr
t
2

(x− y)W (dy, dt)

where σt = r0

√
t| log t|ε0 , Φσt(·) := Φ(·/σt) and pTr

t
2

:= p t
2
Φσt . (2.18)

Thanks to the truncation, the fields (ψδ)δ∈[0,1] have finite correlation length 8r0 supt∈[0,1]

√
t| log t|ε0 .
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Decomposition in scales and blocks of ψδ. We have the scale decomposition

ψ(x) :=

∫ 1

0

∫
R2

pTr
t
2

(x− y)W (dy, dt) =
∞∑
k=1

∑
P∈Pk

∫ 2−2k+2

2−2k

∫
P
pTr
t
2

(x− y)W (dy, dt) =
∑
k≥1

∑
P∈Pk

ψk,P (x)

(2.19)

where ψk,P is defined for P ∈ Pk by ψk,P (x) :=
∫ 2−2k+2

2−2k

∫
P p

Tr
t
2

(x − y)W (dy, dt) and thus has

correlation length less than Ckε02−k. In particular, a fixed block field is only correlated with fewer

than Ck2ε0 other block fields at the same scale. In fact, when we apply the Efron-Stein inequality

(see (5.58)) we will use the following decomposition:

ψ0,n = ψ0,K +
∑
P∈PK

ψK,n,P (x) where ψK,n,P (x) :=

∫ 2−2K+2

2−2n

∫
P
pTr
t
2

(x− y)W (dy, dt). (2.20)

We note that there is a formal conflict in notation between (2.9) and (2.20), but it will always

be clear from context whether the second subscript is a number or an element of Pk (a set), so

confusion should not arise.

Variance bounds for φδ and ψδ. Later on we will need the following lemma.

Lemma 3.4. There exists C > 0 so that for δ ∈ [0, 1] and x, x′ ∈ R2, we have

Var
(
φδ(x)− φδ(x′)

)
+ Var

(
ψδ(x)− ψδ(x′)

)
≤ C |x− x

′|
δ

. (2.21)

Proof. We start by estimating the first term. Using the inequality 1− e−z ≤ z ≤
√
z for z ∈ [0, 1]

and 1− e−z ≤ 1 ≤
√
z for z ≥ 1 we get

Var
(
φδ(x)− φδ(x′)

)
= C

∫ 1

δ2

(
p t

2
∗ p t

2
(0)− p t

2
∗ p t

2
(x− x′)

)
dt

= C

∫ 1

δ2

(
pt(0)− pt(x− x′)

)
dt = C

∫ 1

δ2

1

t
(1− e−

|x−x′|2
2t )dt ≤ C|x− x′|

∫ 1

δ2

dt

t3/2
= C
|x− x′|

δ
.

Similarly, for the second term, we have

Var
(
ψδ(x)− ψδ(x′)

)
= C

∫ 1

δ2

(
pTr
t
2
∗ pTr

t
2

(0)− pTr
t
2
∗ pTr

t
2

(x− x′)
)
dt.
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Set pTr
t
2

∗ pTr
t
2

=: pt(x)qt(x). Using the identity pt/2(y)pt/2(x− y) = pt(x)pt/4(y − x/2) we get

qt(x) =

∫
R2

pt/2(y)pt/2(x− y)

pt(x)
Φσt(y)Φσt(x− y)dy =

∫
R2

pt/4(y − x/2)Φσt(y)Φσt(x− y)dy.

We rewrite the variance in terms of qt: replacing x− x′ by z we look at

Var
(
ψδ(x)− ψδ(x′)

)
= C

∫ 1

δ2

(pt(0)qt(0)− pt(z)qt(z))dt

= C

∫ 1

δ2

pt(0)(qt(0)− qt(z))dt+ C

∫ 1

δ2

qt(z)(pt(0)− pt(z))dt.

We deal with these two terms separately. For the second one, since 0 ≤ Φ ≤ 1, we have 0 ≤ qt ≤ 1.

Therefore, following what we did for φδ above we directly have 0 ≤
∫ 1
δ2 qt(z)(pt(0)− pt(z))dt ≤ C |z|δ .

For the first term, since pt(0) = Ct−1, it is enough to get the bound
√
t|qt(0) − qt(z)| ≤ C|z| to

complete the proof of the lemma. Changing variables, we have

qt(z) = C

∫
R2

e−2|y|2Φσt(
√
ty + z/2)Φσt(

√
ty − z/2)dy.

Therefore, using that 0 ≤ Φ ≤ 1,

|qt(z)− qt(0)| ≤ C
∫
R2

e−2|y|2 |Φσt(
√
ty + z/2)− Φσt(

√
ty)|dy

+ C

∫
R2

e−2|y|2 |Φσt(
√
ty − z/2)− Φσt(

√
ty)|dy

≤ C|z|
∫
R2

e−2|y|2 ‖∇Φσt‖R2 dy ≤ C
|z|
σt
‖∇Φ‖R2

∫
R2

e−2|y|2dy.

Since σt = r0

√
t| log t|ε0 , we see that supt∈[0,1]

√
t

σt
<∞, and the result follows.

3.2.2 Comparison between φδ and ψδ

The following proposition justifies the introduction of the field ψδ.

Proposition 3.5. There exist C > 0 and c > 0 such that for all x > 0, we have

P
(

sup
n≥0
‖φ0,n − ψ0,n‖[0,1]2 ≥ x

)
≤ Ce−cx2

. (2.22)
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Proof. For k ≥ 1, we introduce the quantity Dk(x) := φk−1,k(x) − ψk−1,k(x). The proof follows

from an adaptation of Lemma 2.7 in [32] as soon as we have the estimates

VarDk(x) ≤ Ce−ck2ε0
(2.23)

and

Var (φk(x)− φk(y)) + Var (ψk(x)− ψk(y)) ≤ 2k|x− y|. (2.24)

(The estimate (2.23) is weaker than that used in [32, Lemma 2.7] but still much stronger than

required for the proof given there.) Note that (2.24) follows from Lemma 3.4 and for (2.23) we

proceed as follows: first note that

E
(

(φk−1,k(x)− ψk−1,k(x))2
)

=

∫ 2−2k+2

2−2k

∫
R2

p t
2
(y)2(1− Φσt(y))2dydt.

For every y, we have pt/2(y)(1 − Φσt(y)) ≤ (2πt)−1e−σ
2
t /t since 0 ≤ Φσt ≤ 1 and Φσt(y) = 1 for

|y| ≤ σt. Therefore,

E
(

(φk−1,k(x)− ψk−1,k(x))2
)
≤
∫ 2−2k+2

2−2k

e−
σ2
t
t

2πt

∫
R2

p t
2
(y)dydt ≤ Ce−ck2ε0

.

Let us point out that in fact
∑

n≥0 E(‖φn,n+1 − ψn,n+1‖[0,1]2) < ∞ holds but we won’t use it.

Since we will be working with two different approximations of the Gaussian free field, we introduce

here some notation, referring to one field or the other. We will denote by Ra,b := [0, a]× [0, b] the

rectangle of size (a, b). We define

Xa,b := sup
n≥0
‖φ0,n − ψ0,n‖Ra,b (2.25)

and Xa := Xa,a for the supremum norm of the difference between the two fields on various rectangles.
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3.2.3 Length observables

The symbol L
(n)
a,b (φ) (and similarly L

(n)
a,b (ψ)) will refer to the left-right distance of the rectangle

Ra,b for the length functional eξφ0,nds:

L
(n)
a,b (φ) := inf

π

∫
π
eξφ0,nds, (2.26)

where ds refers to the Euclidean length measure and the infimum is taken over all smooth curves π

connecting the left and right sides of Ra,b. We will sometimes consider a geodesic associated to this

variational problem. Such a path exists by the Hopf-Rinow theorem and a compactness argument.

We introduce some notation for the quantiles associated to this observable: `
(n)
a,b (φ, p) (similarly

`
(n)
a,b (ψ, p)) is such that P

(
L

(n)
a,b (φ) ≤ `(n)

a,b (φ)
)

= p. For high quantiles, we introduce ¯̀(n)
a,b (φ, p) :=

`
(n)
a,b (φ, 1 − p). Note that `

(n)
a,b (φ, p) is increasing in p whereas ¯̀(n)

a,b (φ, p) is decreasing in p. Note

that both are well-defined, i.e., there are no Dirac deltas in the law of L
(n)
a,b . This follows from an

application of the Cameron–Martin formula. We will also need the notation

Λn(φ, p) := max
k≤n

¯̀
k(φ, p)

`k(φ, p)
where `k(φ, p) := `

(k)
1,1(φ, p) and ¯̀

k(φ, p) := ¯̀(k)
1,1(φ, p). (2.27)

The following inequalities are straightforward:

e−ξXa,bL
(n)
a,b (ψ) ≤ L(n)

a,b (φ) ≤ eξXa,bL(n)
a,b (ψ) (2.28)

Therefore, using Proposition 3.5 (and a union bound, if necessary), we obtain that for some C > 0

(depending only on a and b), for any ε > 0 we have

e−ξC
√
| log ε/C| ¯̀(n)

a,b (ψ, p+ ε) ≤ ¯̀(n)
a,b (φ, p) ≤ eξC

√
| log ε/C| ¯̀(n)

a,b (ψ, p− ε)

e−ξC
√
| log ε/C|`

(n)
a,b (ψ, p− ε) ≤ `(n)

a,b (φ, p) ≤ eξC
√
| log ε/C|`

(n)
a,b (ψ, p+ ε)
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In particular, there exists Cp > 0 such that, uniformly in n,

`n(ψ, p/2) ≥
√
Cp
−1
`n(φ, p), ¯̀

n(ψ, p/2) ≤
√
Cp ¯̀

n(φ, p) and Λn(ψ, p/2) ≤ CpΛn(φ, p).

(2.29)

Now, we discuss how the scaling property of the field φ translates at the level of lengths. We

will use the following equality in law: for a, b > 0 and 0 ≤ m ≤ n,

L
(m,n)
a,b (φ)

(d)
= 2−mL

(n−m)
a·2m,b·2m(φ). (2.30)

Finally, for a rectangle P with two marked opposite sides, we define L(n)(P, φ) to be the crossing

distance between the two marked sides under the field eξφ0,n . The marked sides will be clear from

context: if we call P a “long rectangle,” then we mean that the marked sides are the two shorter

sides, so that L(n)(P, φ) is the distance across P “the long way.”

3.2.4 Outline of the proof and roles of φδ and ψδ

The key idea of the proof is to obtain a self-bounding estimate associated to a measure of

concentration of some observables, say rectangle crossing lengths. This is naturally expected because

of the tree structure of our model. We introduce a general condition, which we call Condition

(T), (see (3.5.1)) which ensures a contraction in the self-bounding estimate (5.68), which relates

a measure of concentration at scale n, the variance, with the measure of concentration that we

inductively bound, Λn−K (see (2.27)), which is at a smaller scale.

We then prove that this condition, which depends only on ξ and on the field considered, is

satisfied when ξ ∈ (0, (2/d2)−). This proof uses a result taken from [28] about the existence of

an exponent for circle average Liouville first passage percolation and this is the reason we don’t

consider the simpler ?-scale invariant field with compactly-supported kernel but the field φδ, which

can be compared to the circle average process by a result obtained in [27].

The roles of φδ and ψδ in the proof are the following.

1. Prove Russo-Seymour-Welsh estimates for φ.
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2. Prove tail estimates w.r.t low and high quantiles for both φ and ψ:

(a) Lower tails: Use directly the RSW estimates together with a Fernique-type argument for

the field ψ with local independence properties.

(b) Upper tails: use a percolation/scaling argument, percolation using ψ and scaling using φ.

3. Concentration of the log of the left-right distance: use Efron-Stein for the field ψ (because of

the local independence properties at each scale). This gives the same result for φ.

4. To conclude for the concentration of diameter and metric, this is essentially a chaining/scaling

argument using only the field φ.

3.3 Russo-Seymour-Welsh estimates

3.3.1 Approximate conformal invariance

In order to establish our RSW result, we first show an approximate conformal invariance property

of the field. The arguments in this section are similar to those of [38, Section 3.1]. The difference is

that the Gaussian kernel has infinite support.

Recall that φδ(x) =
∫ 1
δ2

∫
R2 p t

2
(x − y)W (dy, dt) where pt(x − y) = 1

2πte
− |x−y|

2

2t . Consider a

conformal map F between two bounded, convex, simply-connected open sets U and V such that

|F ′| ≥ 1 on U , ‖F ′‖U <∞ and ‖F ′′‖U <∞. (We point out here that the assumption |F ′| ≥ 1 will

be obtained later on by starting from a very small domain; this is exactly the content of Lemma

3.11.) We consider another field φ̃δ(x) =
∫ 1
δ2

∫
R2 p t

2
(x− y)W̃ (dy, dt) where W̃ is a white noise that

we will couple with W in order to compare φδ and φ̃δ ◦ F . The coupling goes as follows: for y ∈ U ,

t ∈ (0,∞), let y′ = F (y) ∈ V and t′ = t|F ′(y)|2 and set W̃ (dy′, dt′) = |F ′(y)|2W (dy, dt). That is,

for every L2 function ω on V × (0,∞),

∫
ω(y′, t′)W̃ (dy′, dt′) =

∫
ω(F (y), t|F ′(y)|2)

∣∣F ′(y)
∣∣2W (dy, dt)

and both sides have variance ‖ω‖2L2 . The rest of the white noises are chosen to be independent, i.e.,

W|Uc×(0,∞), W|U×(0,∞) and W̃|V c×(0,∞) are jointly independent.
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Lemma 3.6. Under this coupling, we can compare the two fields φ̃δ(F (x)) and φδ(x) on a compact,

convex subset K of U as follows,

φ̃δ(F (x))− φδ(x) = φ
(δ)
L (x) + φ

(δ)
H (x), (3.31)

where φ
(δ)
L (L for low frequency noise) is a smooth Gaussian field whose L∞-norm on K has uniform

Gaussian tails, and φ
(δ)
H (H for high frequency noise) is a smooth Gaussian field with uniformly

bounded pointwise variance (in δ and x ∈ K). Furthermore, φ
(δ)
H is independent of (φδ, φ

(δ)
L ).

This aforementioned independence property will be crucial for our argument.

Proof. Step 1: Decomposition. For fixed F and small δ, we decompose φδ(x) − φ̃δ(F (x)) =

φ
(δ)
1 (x) + φ

(δ)
2 (x) + φ

(δ)
3 (x), where

φ
(δ)
1 (x) =

∫
U

∫ |F ′(y)|−2

δ2

(
p t

2
(x− y)− p t

2
|F ′(y)|2 (F (x)− F (y))

∣∣F ′(y)
∣∣2)W (dy, dt)

=

∫
U

∫ |F ′(y)|−2

δ2

(
p t

2
(x− y)− p t

2

(
F (x)− F (y)

F ′(y)

))
W (dy, dt)

φ
(δ)
2 (x) =

∫
Uc

∫ 1

δ2

p t
2
(x− y)W (dy, dt)−

∫
V c

∫ 1

δ2

p t
2

(F (x)− y) W̃ (dy, dt)

+

∫
U

∫ 1

|F ′(y)|−2
p t

2
(x− y)W (dy, dt)

φ
(δ)
3 (x) =−

∫
U

∫ δ2

δ2|F ′(y)|−2
p t

2

(
F (x)− F (y)

F ′(y)

)
W (dy, dt)

Remark also that φ
(δ)
3 is independent of φδ, φ

(δ)
1 , and φ

(δ)
2 .

Step 2: Conclusion, assuming uniform estimates. We will estimate φ
(δ)
i , i = 1, 2, 3, over K. In

what follows, we take x, x′ ∈ K. We assume first the following uniform estimates:

E((φ
(δ)
1 (x)− φ(δ)

1 (x′))2) ≤ C
∣∣x− x′∣∣ , E((φ

(δ)
2 (x)− φ(δ)

2 (x′))2) ≤ C
∣∣x− x′∣∣ , E

(
φ

(δ)
3 (x)

)
≤ C.

An application of Kolmogorov’s continuity criterion and Fernique’s theorem give uniform Gaussian

tails for φ
(δ)
1 and φ

(δ)
2 . We then set φ

(δ)
H := φ

(δ)
3 and φ

(δ)
L := φ

(δ)
1 + φ

(δ)
2 .

Step 3: Uniform estimates.
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First term. We prove that E((φ
(δ)
1 (x)− φ(δ)

1 (x′))2) ≤ C |x− x′| by controlling

∫ 1

0

∫
U

(
p t

2
(x− y)− p t

2

(
F (x)− F (u)

F ′(y)

)
− p t

2
(x′ − y) + p t

2

(
F (x′)− F (u)

F ′(y)

))2

dydt

By introducing p(x) = e−
|x|2

2 and by a change of variable t ↔ 2t2, it is equivalent (up to a

multiplicative constant) to bound from above the quantity

∫ 1

0

dt

t3

∫
U

(
p

(
x− y
t

)
− p

(
F (x)− F (y)

tF ′(y)

)
− p

(
x′ − y
t

)
+ p

(
F (x′)− F (y)

tF ′(y)

))2

dy. (3.32)

We will estimate this term by considering the case where t ≤
√
|x− x′| and the case where

t ≥
√
|x− x′|.

Step 3.(A): Case t ≥
√
|x− x′|. Using the identity |x− y|2 + |x′− y|2 = 1

2 |x−x
′|2 + 2|y− x+x′

2 |
2

and the inequality 1− e−z ≤ z, we get

∫
U

(
p

(
x− y
t

)
− p

(
x′ − y
t

))2

dy ≤ Ct2(1− e−
|x−x′|2

4t2 ) ≤ C
∣∣x− x′∣∣2 . (3.33)

Similarly,

∫
U

(
p

(
F (x)− F (y)

tF ′(y)

)
− p

(
F (x′)− F (y)

tF ′(y)

))2

dy ≤ C
∣∣F (x)− F (x′)

∣∣2 ≤ C ∣∣x− x′∣∣2 , (3.34)

where the constant C depends on ‖F ′‖U . Then the corresponding part in (3.32) is bounded from

above by |x− x′|2
∫ 1√
|x−x′|

dt
t3
≤ C|x− x′|.

Step 3.(B): For t ≤
√
|x− x′|, using the Taylor inequality |F (x) − F (y) − F ′(y)(x − y)| ≤

1
2 ‖F

′′‖U |x− y|2 and the mean value inequality (as we have assumed that K is convex),

∣∣∣∣p(x− yt
)
− p

(
F (x)− F (y)

tF ′(y)

)∣∣∣∣
≤ C |x− y|

2

t

(
|x− y|
t

+
|x− y|2

t

)
e
− 1

2t2
infα∈(0,1)

∣∣∣α(x−y)+(1−α)
F (x)−F (y)

F ′(y)

∣∣∣2
. (3.35)

Step 3.(B): case (a). If y ∈ B(x, ε) for ε small enough (depending only on ‖F ′′‖U ), we have,
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using again |F (x)− F (y)− F ′(y)(x− y)| ≤ 1
2 ‖F

′′‖U |x− y|2, uniformly in α ∈ (0, 1),

∣∣∣∣α(x− y) + (1− α)
F (x)− F (y)

F ′(y)

∣∣∣∣ ≥ |x− y| − 1

2

∥∥F ′′∥∥
U
|x− y|2 ≥ 1

2
|x− y|.

Therefore, for such y’s we have, coming back to (3.35),

∣∣∣∣p(x− yt
)
− p

(
F (x)− F (y)

tF ′(y)

)∣∣∣∣ ≤ C |x− y|3t2
e−
|x−y|2

4t2 .

For this case we get the bound

∫
B(x,ε)

(
p

(
x− y
t

)
− p

(
F (x)− F (y)

tF ′(y)

))2

dy ≤ C
∫
B(x,ε)

|x− y|6

t4
e−
|x−y|2

2t2 = Ct−2E(|Bt2 |6) ≤ Ct4.

where Bt denotes a two-dimensional Gaussian variable with covariance matrix t times the identity.

This term contributes to (3.32) as C
∫√|x−x′|

0
dt
t3
t4 ≤ C|x− x′|.

Step 3.(B): case (b). Now, for t ≤
√
|x− x′| and y ∈ U \B(x, ε) we write

∫ √|x−x′|
0

dt

t3

∫
U\B(x,ε)

p

(
x− y
t

)2

dy

≤ C
∫ √|x−x′|

0

dt

t
P(|Bt2 | > ε) ≤ C

∫ √|x−x′|
0

dt

t
e−

ε2

2t2 ≤ C
∣∣x− x′∣∣ ,

and similarly ∫ √|x−x′|
0

dt

t3

∫
U\B(x,ε)

p

(
F (x)− F (y)

tF ′(y)

)2

dy ≤ C
∣∣x− x′∣∣ ,

where the constant C depends on ‖F ′‖U and ‖(F−1)′‖U .

Applying Step 3.(A) and then Step 3.(B) twice (once for x and then again for x′) to (3.32), we

get E((φ
(δ)
1 (x)− φ(δ)

1 (x′))2) ≤ C |x− x′|.

Second term. We want to prove here that E((φ
(δ)
2 (x) − φ(δ)

2 (x′))2) ≤ C |x− x′|. Note that

three terms contribute to δφ2. The third one is a nice Gaussian field independent of δ. The first two

terms are similar, so we will just focus on the first one, namely φ
(δ)
2,1(x) :=

∫
Uc

∫ 1
δ2 p t

2
(x−y)W (dy, dt).
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We have, similarly to (3.32) and (3.33),

E
((

φ
(δ)
2,1(x)− φ(δ)

2,1(x′)
)2
)

=

∫ 1

δ2

∫
Uc

(
p t

2
(x− y)− p t

2
(x′ − y)

)2
dydt

≤ C
∫ 1

0

dt

t3

∫
Uc

(
p

(
x− y
t

)
− p

(
x′ − y
t

))2

dy

≤ C
∫ √|x−x′|

0

dt

t3

∫
Uc
p

(
x− y
t

)
+ p

(
x′ − y
t

)
dy + C|x− x′|.

The remaining term can be controlled as follows (noting the symmetry between x and x′):

∫ √|x−x′|
0

dt

t

∫
Uc

1

t2
e−
|x−y|2

2t2 dy ≤ C
∫ √|x−x′|

0

dt

t
P(|Bt2 | > d) ≤ C

∫ √|x−x′|
0

dt

t
e−

d2

2t2 ≤ C
∣∣x− x′∣∣ .

where d = d(K,U c). Thus E((φ
(δ)
2 (x)− φ(δ)

2 (x′))2) ≤ C |x− x′|.

Third term. We give here a bound on the pointwise variance of φ
(δ)
3 . By using

∣∣∣F (x)−F (y)
F ′(y)

∣∣∣ ≥
|x−y|
C we get E(φ

(δ)
3 (x)2) ≤

∫ δ2

cδ2
dt
t

∫
R2

e−
|x−y|2
Ct

t dy ≤ C.

3.3.2 Russo-Seymour-Welsh estimates

The main result of this section is the following RSW estimate. It shows that appropriately-chosen

quantiles of crossing distances of “long” and “short” rectangles at the same scale can be related by

a multiplicative factor that is uniform in the scale. This is the equivalent of Theorem 3.1 from [38]

but with the field mollified by the heat kernel instead of a compactly-supported kernel. It holds for

any fixed ξ > 0.

Proposition 3.7 (RSW estimates for φδ). If [A,B] ⊂ (0,∞), there exists C > 0 such that for

(a, b), (a′, b′) ∈ [A,B] with a
b < 1 < a′

b′ , for n ≥ 0 and ε < 1/2, we have,

`
(n)
a′,b′(φ, ε/C) ≤ C`(n)

a,b (φ, ε)eC
√

log |ε/C|; (3.36)

¯̀(n)
a′,b′(φ, 3ε

C) ≤ C ¯̀(n)
a,b (φ, ε)eC

√
log |ε/C|. (3.37)

The following corollary then follows from Propositions 3.5 and 3.7.

Corollary 3.8 (RSW estimates for ψδ). Under the same assumptions as used in Proposition 3.7,
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we have

`
(n)
a′,b′(ψ, ε/C) ≤ C`(n)

a,b (ψ, ε)eC
√

log |ε/C| (3.38)

and

¯̀(n)
a′,b′(ψ, 3ε

C) ≤ C ¯̀(n)
a,b (ψ, ε)eC

√
log |ε/C|. (3.39)

We point out that the constants C in (3.38) and (3.39) are not equal to those in (3.36) and (3.37).

The remaining parts of the section will only deal with approximations associated with φ so we will

omit this dependence in the various observables.

We describe below the main lines of the argument. Consider Ra,b and Ra′,b′ , two rectangles

with respective side lengths (a, b) and (a′, b′) satisfying a
b < 1 < a′

b′ . Suppose that we could take a

conformal map F : Ra,b → Ra′,b′ mapping the long left and right sides of Ra,b to the short left and

right sides of Ra′,b′ . (This is not in fact possible since there are only three degrees of freedom in the

choice of a conformal map, but for the sake of illustration we will consider this idealized setting

first.) Then the proof goes as follows.

Take a geodesic π̃ for φ̃0,n for the left-right crossing of Ra,b. Then, using the coupling (3.31), we

have

Lφ0,n(Ra′,b′) ≤ Lφ0,n(F (π̃)) =

∫ T

0
eξφ0,n(F (π̃(t)))|F ′(π̃(t))| · |π̃′(t)|dt

≤
∥∥F ′∥∥

Ra,b

∫
π̃
eξ(φ̃0,n+δφL+δφH)ds

≤
∥∥F ′∥∥

Ra,b
e
ξ‖δφL‖Ra,b

∫
π̃
eξφ̃0,neξδφHds.

It is essential that π̃ is φ̃0,n measurable and φ̃0,n is independent of δφH. Then, we can use the

following lemma.

Lemma 3.9. If Γ is a continuous field and Ψ is an independent continuous centered Gaussian field

with pointwise variance bounded above by σ2 > 0, then we have, as long as ε is sufficiently small

compared to σ2,

1. `1,1(Γ + Ψ, ε) ≤ e
√

2σ2 log ε−1
`1,1(Γ, 2ε);

2. ¯̀
1,1(Γ + Ψ, 2ε) ≤ e

√
2σ2 log ε−1 ¯̀

1,1(Γ, ε).
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Proof. Fix s :=
√

2σ2 log ε−1 throughout the proof. Let π(Γ) be a geodesic associated with the

left–right crossing length for the field Γ, and define the measure µ on π(Γ) by µ(ds) = L1,1(Γ)−1eΓds,

so
∫
π(Γ) e

Γds = 1. Conditionally on Γ, using Jensen’s inequality with α = s
2σ2 =

√
(log ε−1)/(2σ2),

which is greater than 1 for small enough ε, and Chebyshev’s inequality, we have

P

(∫
π(Γ)

eΓ+Ψds > esL1,1(Γ) | Γ

)
≤ P

(∫
π(Γ)

eαΨdµ ≥ eαs | Γ

)
≤ e

1
2
α2σ2

e−αs = e−
s2

2σ2 = ε.

(3.40)

To bound from above L1,1(Γ + Ψ), we take a geodesic for Γ and use the moment estimate (3.40).

We start with the left tail. Still with s :=
√

2σ2 log ε−1, we have

P
(
L1,1(Γ) ≤ `1,1(Γ + Ψ, ε)e−s

)
≤ P

(
L1,1(Γ + Ψ) ≤ esL1,1(Γ), L1,1(Γ) ≤ `1,1(Γ + Ψ, ε)e−s

)
+ P (L1,1(Γ + Ψ) > esL1,1(Γ))

≤ P (L1,1(Γ + Ψ) ≤ `1,1(Γ + Ψ, ε)) + P

(∫
π(Γ)

eΓ+Ψds > esL1,1(Γ)

)

which is bounded from above by 2ε. For the right tail, we have similarly that

P
(
L1,1(Γ + Ψ) ≥ ¯̀

1,1(Γ, ε)es
)

≤ P
(
L1,1(Γ + Ψ) ≥ ¯̀

1,1(Γ, ε)es, ¯̀
1,1(Γ, ε) ≥ L1,1(Γ)

)
+ P

(
L1,1(Γ) ≥ ¯̀

1,1(Γ, ε)
)

≤ P (L1,1(Γ + Ψ) ≥ esL1,1(Γ)) + ε ≤ 2ε,

which concludes the proof of the lemma.

The previous reasoning does not apply directly to rectangle crossing lengths but provides the

following proposition. Recall that K is a compact subset of U . Let A,B be two boundary arcs of

K and denote by L the distance from A to B in K for the metric eξφ0,nds; we denote A′ := F (A),

B′ := F (B), K ′ := F (K), and L′ is the distance from A′ to B′ in K ′ for eξφ̃0,nds. Recall that we

have |F ′| ≥ 1 on U . In the application we will achieve this by scaling U to be sufficiently small.

Proposition 3.10. We have the following comparisons between quantiles. There exists C > 0 such

that

1. if for some l > 0 and ε < 1/2, P (L ≤ l) ≥ ε, then P (L′ ≤ l′) ≥ ε/4 with l′ = ‖F ′‖K eC
√
|log ε/2C|.
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2. if for some l > 0 and ε < 1/2, P (L ≤ l) ≥ 1 − ε, then P (L′ ≤ l′) ≥ 1 − 3ε with l′ =

‖F ′‖K eC
√
|log ε/2C|.

Now, we want to prove a similar result for rectangle crossing lengths. We will need the three

following lemmas that were used in [38]. The first one is a geometrical construction, the second

one is a complex analysis result and the last one comes essentially from [89] together with an

approximation argument. In these lemmas, by “crossings” we mean continuous path from marked

sides to marked sides.

Lemma 3.11 (Lemma 4.8 of [38]). If a and b are two positive real numbers with a < b, there exists

j = j(b/a) and j rectangles isometric to [0, a/2]× [0, b/2] such that if π is a left-right crossing of the

rectangle [0, a]× [0, b], at least one of the j rectangles is crossed in the thin direction by a subpath of

that crossing.

Lemma 3.12 (Step 1 in the proof of Theorem 3.1 in [38]). If a/b < 1 and a′/b′ > 1, there exists

m, p ≥ 1 and two ellipses Ep, E
′ with marked arcs (AB), (CD) for Ep and (A′B′), (C ′D′) for E′

such that:

1. Any left-right crossing of [0, a/2p]× [0, b/2p] is a crossing of Ep.

2. Any crossing of E′ is a left-right crossing of [0, a′]× [0, b′].

3. When dividing the marked sides of Ep into m subarcs of equal length, for any pair of such

subarcs (one on each side), there exists a conformal map F : Ep → E′ and the pair of subarcs

is mapped to subarcs of the marked sides of E′.

4. For each pair, the associated map F extends to a conformal equivalence U → V where Ep ⊂ U ,

E′ ⊂ V and |F ′| ≥ 1 on U .

We refer the reader to Figure 3.1 for an illustration.

Lemma 3.13 (Positive association and square-root-trick). If k ≥ 2 and (R1, . . . , Rk) denote a

collection of k rectangles, then, for (x1, . . . , xk) ∈ (0,∞)k, we have

P
(
L(n)(R1) > x1, . . . , L

(n)(Rk) > xk

)
≥ P

(
L(n)(R1) > x1

)
· · ·P

(
L(n)(Rk) > xk

)
.
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E0
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D

A0

B0

C 0

D0

Figure 3.1 – Illustration of Lemma 3.12.

An easy consequence of this positive association is the so-called “square-root-trick”:

max
i≤k

P
(
L(n)(Ri) ≤ xi

)
≥ 1−

(
1− P

(
∃i ≤ k : L(n)(Ri) ≤ xi

))1/k
.

The main result of this section, Proposition 3.7, is a rephrasing of the following one.

Proposition 3.14. We have the following comparisons between quantiles. If a/b < 1 and a′/b′ > 1,

there exists C > 0 such that, for any ε ∈ (0, 1/2),

1. if P
(
L

(n)
a,b ≤ l

)
≥ ε, then P

(
L

(n)
a′,b′ ≤ Cle

C
√
|log ε/C|

)
≥ ε/C,

2. and if P
(
L

(n)
a,b ≤ l

)
≥ 1− ε, then P

(
L

(n)
a′,b′ ≤ Cle

C
√
|log ε/C|

)
≥ 1− 3ε1/C .

Proof. We provide first a comparison between low quantiles and then a comparison between high

quantiles.

Step 1: Comparison of small quantiles. Suppose P(L
(n)
a,b ≤ l) ≥ ε. By Lemma 3.11 and union

bound, P(L
(n)
a/2,b/2 ≤ l) ≥ ε/j. Furthermore, by iterating, we have P(L

(n)
a/2p,b/2p ≤ l) ≥ ε/j

p. Under

this event, by Lemma 3.12, there exists a crossing of Ep between two subarcs of Ep (one on each

side) hence with probability at least ε/(jpm2), one of these crossings has length at most l. By the

left tail estimate Proposition 3.10 and Lemma 3.12, we obtain a C > 0 (depending also on ‖F ′‖Ep)

such that for all ε, l > 0:

P
(
L

(n)
a,b ≤ l

)
≥ ε⇒ P

(
L

(n)
a′,b′ ≤ Cle

C
√
|log ε/(2Cjpm2)|

)
≥ ε/(4jpm2),
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hence the first assertion.

Step 2: Comparison of high quantiles. Now suppose P(L
(n)
a,b ≤ l) ≥ 1 − ε. By Lemma

3.11 (to start with a crossing at a lower scale) and Lemma 3.13 (square-root-trick), we have

P(L
(n)
a/2,b/2 ≤ l) ≥ 1 − ε1/j . Furthermore, by iterating, we have P(L

(n)
a/2p,b/2p ≤ l) ≥ 1 − ε1/jp . On

the event {L(n)
a/2p,b/2p ≤ l}, the ellipse Ep from Lemma 3.12 has a crossing of length ≤ l between

two marked arcs. Again by subdividing each its marked arcs into m subarcs and applying the

square-root trick, we see that for at least one pair of subarcs, there is a crossing of length ≤ l with

probability ≥ 1 − εj−pm−2
. Combining with the right-tail estimate Proposition 3.10 and Lemma

3.12, we get:

P
(
L

(n)
a,b ≤ l

)
≥ 1− ε⇒ P

(
L

(n)
a′,b′ ≤ Cle

C
√
|log ε/C|

)
≥ 1− 3ε1/C , (3.41)

which completes the proof.

Remark 3.15. The importance of the Russo-Seymour-Welsh estimates comes from the following:

percolation arguments/estimates work well when taking small quantiles associated with short crossings

and high quantiles associated with long crossings. Thanks to the RSW estimates, we can instead

keep track only of low and high quantiles associated to the unit square crossing, `n(p) and ¯̀
n(p).

3.4 Tail estimates with respect to fixed quantiles

Lower tails. This is where we take r0 small enough (recall the definition (2.18)) to obtain some

small range of dependence of the field ψ so that a Fernique-type argument works.

Proposition 3.16 (Lower tail estimates for ψ). We have the following lower tail estimate: for p

small enough, but fixed, there is a constant C so that for all s > 0,

P
(
L

(n)
1,3 (ψ) ≤ e−s`n(ψ, p)

)
≤ Ce−cs2 . (4.42)

Proof. The RSW estimate (3.38) gives

P
(
L

(n)
3,3 (ψ) ≤ l

)
≤ ε⇒ P

(
L

(n)
1,3 (ψ) ≤ lC−1e−Cξ

√
| logCε|

)
≤ Cε (4.43)

108



Now, if L
(n)
3,3 (ψ) is less than l, then both [0, 1]× [0, 3] and [2, 3]× [0, 3] have a left-right crossing of

length ≤ l and the restrictions of the field to these two rectangles are independent (if r0 defined in

(2.18) is small enough). Consequently,

P
(
L

(n)
3,3 (ψ) ≤ l

)
≤ P

(
L

(n)
1,3 (ψ) ≤ l

)2
(4.44)

Take p0 small, such that C2p0 < 1 where C is the constant in (4.43) and set r
(n)
0 := `

(n)
3,3 (ψ, p0).

(This is not related to r0, defined previously.) For i ≥ 0, set

pi+1 := (Cpi)
2 (4.45)

r
(n)
i+1 := r

(n)
i C−1 exp(−Cξ

√
| log(Cpi)|) (4.46)

By induction we get, for i ≥ 0,

P(L
(n)
3,3 (ψ) ≤ r(n)

i ) ≤ pi (4.47)

Indeed, the case i = 0 follows by definition and then notice that the RSW estimate (4.43) under the

induction hypothesis implies that P(L
(n)
3,3 (ψ) ≤ r

(n)
i ) ≤ pi ⇒ P(L

(n)
1,3 (ψ) ≤ r

(n)
i+1) ≤ Cpi which gives,

using (4.44), P(L
(n)
3,3 (ψ) ≤ r(n)

i+1) ≤ P(L
(n)
1,3 (ψ) ≤ r(n)

i+1)2 ≤ (Cpi)
2 = pi+1.

From (4.45) we get pi = (p0C
2)2iC−2 and from (4.46) we have the lower bound, for i ≥ 1,

r
(n)
i ≥ `(n)

3,3 (ψ, p0)C−ie−Cξ
∑i−1
k=0

√
| log(Cpk)| ≥ `(n)

3,3 (ψ, p0)e−Cie−Cξ
√
| log p0C2|2i/2 .

Our estimate (4.47) then takes the form, for i ≥ 0,

P
(
L

(n)
3,3 (ψ) ≤ `(n)

3,3 (ψ, p0)e−Cie−ξC
√
| log p0C2|2i/2

)
≤
(
p0C

2
)2i

C−2.

This can be rewritten, taking i = b2 log2 sc, as

P
(
L

(n)
3,3 (ψ) ≤ `(n)

3,3 (ψ, p0)C−1e−C log se−ξs
)
≤ e−cs2

for s > 2 with absolute constants. We obtain the statement of the proposition by using again the

RSW estimates.
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Using the comparison result between φ and ψ (Proposition 3.5), we get the following corollary.

Corollary 3.17 (Lower tail estimates for φ). For p small enough, but fixed, for all s > 0 we have a

constant C <∞ so that

P
(
L

(n)
1,3 (φ) ≤ e−s`n(φ, p)

)
≤ Ce−cs2 . (4.48)

Upper tails. The proof for the upper tails is similar to the one of Proposition 5.3 in [38]. The

main difference is that we have to switch between φ and ψ, so that we can use the independence

properties of ψ together with the scaling properties of φ. Before stating the proposition, we refer

the reader to (2.27) for the definition of Λn(φ, p). In constract with the lower tails estimates which

are relative to `n(φ, p), we do not know how to prove (at least a priori) the analogous result for the

upper tails with ¯̀
n(φ, p) only. However, we can prove it by replacing ¯̀

n(φ, p) by Λn(φ, p)`n(φ, p)

and this is the content of the following proposition.

Proposition 3.18 (Upper tail estimates for φ). For p small enough, but fixed, we have a constant

C <∞ so that for all n ≥ 0 and s > 2,

P
(
L

(n)
3,1 (φ) ≥ esΛn(φ, p)`n(φ, p)

)
≤ Cec

s2

log s . (4.49)

Proof. The proof uses percolation and scaling arguments. A percolation argument is used to build

a crossing of a larger rectangle from smaller annular circuits, and then a scaling argument is used to

relate quantiles of these annular crossings to crossing quantiles of the larger rectangle.

P
P

πn

P

πn

Figure 3.2 – Four blue rectangles are surrounding the square P . Left-right geodesics associated
to the long and short rectangles surrounding P are drawn in green and brown respectively. Any
geodesic πn, here in red, which intersects P has to cross the green circuit and to induce a short
crossing of one of the four rectangles.

Step 1: Percolation argument. To each unit square P of Z2, we associate the four crossings of long

rectangles of size (3, 1) surrounding P , each comprising three squares on one side of the eight-square
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annulus surrounding P , as illustrated in Figure 3.2. We define S(n)(P,ψ) to be the sum of the four

crossing lengths, and declare the site P to be open when the event {S(n)(ψ, P ) ≤ 4¯̀(n)
3,1 (ψ, p)} occurs.

This occurs with probability at least 1− ε(p), where ε(p) goes to zero as p goes to zero (recall that

P(L
(n)
3,1 (ψ) ≤ ¯̀(n)

3,1 (p)) = 1− p). Using a highly supercritical finite-range site percolation estimate to

obtain exponential decay of the probability of a left–right crossing (which is standard technique in

classical percolation theory [41]; see also for example the proof of Proposition 4.2 in [26]) together

with the Russo-Seymour-Welsh estimates (to come back to ¯̀
n(ψ, p)), we have

P
(
L

(n)
3k,k(ψ) ≥ Ck2 ¯̀

n(ψ, p)
)
≤ Ce−ck.

Therefore, using this bound together with Proposition 3.5 to bound X3k,k (recalling the definition

(2.25)),

P
(
L

(n)
3k,k(φ) ≥ eξC

√
kCpCk

2 ¯̀
n(φ, p/2)

)
≤ P

(
eξX3k,kL

(n)
3k,k(ψ) ≥ eξC

√
kCpCk

2 ¯̀
n(φ, p/2)

)
≤ P

(
X3k,k ≥ C

√
k
)

+ P
(
L

(n)
3k,k(ψ) ≥ CpCk2 ¯̀

n(φ, p/2)
)

≤ Ce−ck + P
(
L

(n)
3k,k(ψ) ≥ Ck2 ¯̀

n(ψ, p)
)
≤ Ce−ck.

Note that we used the bound ¯̀
n(ψ, p) ≤ Cp ¯̀

n(φ, p/2) from (2.29) in the third inequality; here Cp is

defined as in (2.29).

Step 2: Decoupling and scaling. In this step, we give a rough bound of the coarse field φ0,m,

to obtain spatial independence of the remaining field between blocks of size 2−m. When an event

occurs on one block with high enough probability, the percolation argument of Step 1 then provides,

with very high probability, a left-right path of such events occuring simultaneously. Since L
(n)
3,1 (φ) ≤

e
ξmaxR3,1

φ0,mL
(m,n)
3,1 (φ), the scaling property of the field φ, i.e. L

(m,n)
3,1 (φ)

(d)
= 2−mL

(n−m)
3·2m,2m(φ), gives

P
(
L

(n)
3,1 (φ) ≥ eξs

√
mec
√

2m ¯̀
n−m(φ, p)

)
≤ P

(
max
R3,1

φ0,m ≥ Cm+ s
√
m

)
+ P

(
2−mL

(n−m)
3·2m,2m(φ) ≥ ec

√
2m ¯̀

n−m(φ, p)
)
≤ Ce−cs2 + Ce−c2

m
,

where the first term of the second expression is bounded by taking a = C + sm−1/2 in Proposition

3.2 and the second bound follows from the result obtained in Step 1 with k = 2m, taking a slightly
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larger c in exp(c
√

2m) to absorb the factor eCm.

Step 3: We derive an a priori bound `n(φ, p) ≥ 2−2ξk`n−k(φ, p)e−C
√
k. (Note that the argument

below will be optimized in (5.80).) For each dyadic block of size 2−k visited by πn(φ), one of the

four rectangles of size 2−k(1, 3) around P has to be crossed by πn(φ). Therefore, since πn(φ) has to

visit at least 2k dyadic blocks of size 2−k, we have

L
(n)
1,1 (φ) ≥ 2ke

ξ inf[0,1]2 φ0,k min
P∈Pk,P∩πn(φ)6=∅

min
1≤i≤4

L(k,n)(RSi (P ), φ),

where (RSi (P ))1≤i≤4 denote the four long rectangles of size 2−k(1, 3) surrounding P . Using the supre-

mum tail estimate (2.10) and the left tail estimates (4.48), we get `n(φ, p) ≥ 2−2ξk`n−k(φ, p)e
−C
√
k.

Indeed,

P
(
e
ξ inf[0,1]2 φ0,k min

P∈Pk,P∩πn(φ)6=∅
min

1≤i≤4
2kL(k,n)(RSi (P ), φ) ≤ 2−2ξk`n−k(φ, p)e

−C
√
k

)
≤

P( inf
[0,1]2

φ0,k ≤ −k log 4− C
√
k) + P

(
min

P∈Pk,P∩πn(φ)6=∅
min

1≤i≤4
2kL(k,n)(RSi (P ), φ) ≤ `n−k(φ, p)e−C

√
k

)

and each term is less than p/2 if C is large enough, depending on p. Therefore, we have

¯̀
n−m(φ, p) ≤ Λn−m(φ, p)`n−m(φ, p) ≤ 22ξmeC

√
mΛn−m(φ, p)`n(φ, p).

Now, by coming back to the partial result obtained in Step 2 and by taking s2 = 2m for s ∈ [1, 2n/2],

we get

P
(
L

(n)
3,1 (φ) ≥ ecs

√
log secsΛn(φ, p)`n(φ, p)

)
≤ e−cs2 .

Step 4: Now we consider large tails, so we assume s ≥ 2
n
2 . By a direct comparison with

the supremum, we have `n(φ, p) ≥ 2−ξ(2n+C
√
n) (later on we will use a more precise estimate

from [28], see (5.54)). Moreover, bounding from above the left-right distance by taking a straight

path from left to right and then using a moment method analogous to the one in (3.40), we get

P
(
L

(n)
1,1 (φ) ≥ eξs

)
≤ e−

s2

2(n+1) log 2 . Altogether,

P
(
L

(n)
1,1 (φ) ≥ `n(φ, p)Λn(φ, p)eξs

)
≤ P

(
L

(n)
1,1 (φ) ≥ `n(φ, p)eξs

)
≤ e−

(s−n log 4−C
√
n)2

2(n+1) log 2 ≤ eCse−c
s2

log s ,
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where we used Λn(φ, p) ≥ 1 in the first inequality and the bound `n(φ, p) ≥ 2−ξ(2n+C
√
n) together

with the tail estimate P
(
L

(n)
1,1 (φ) ≥ eξs

)
≤ e−

s2

2(n+1) log 2 in the second one. The last inequality follow

since s ≥ 2
n
2 .

Combining the tail estimate of Step 3, valid for s ∈ [1, 2n/2], and the one of Step 4, valid for

s ≥ 2n/2, completes the proof.

Using again the comparison between φ and ψ given in Proposition 3.5, we get the following

corollary.

Corollary 3.19 (Upper tail estimates for ψ). For p small enough, but fixed, we have, for all n ≥ 0

and s > 2,

P
(
L

(n)
3,1 (ψ) ≥ esΛn(ψ, p)`n(ψ, p)

)
≤ Cec

s2

log s . (4.50)

3.5 Concentration

3.5.1 Concentration of the log of the left-right crossing length

Condition (T). Denote by πn(ψ) the left-right geodesic of the unit square associated to the field

ψ0,n. If there are multiple such geodesics, let πn(ψ) be chosen among them in some measurable way,

for example by taking the uppermost geodesic. By πKn (ψ) its K-coarse graining which we define as

πKn (ψ) := {P ∈ PK : P ∩ πn(ψ) 6= ∅}, (5.51)

recalling the definition (2.14) of PK . Let ψ0,n(P ) denote the value of the field ψ0,n taken at the

center of a block P . We introduce the following condition: there exist constants α > 1, c > 0 so

that for K large we have

sup
n≥K

E


 ∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2


α

1/α

≤ e−cK . (Condition (T))

The importance of Condition (T) comes from the following theorem.
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Theorem 3.20. If ξ is such that Condition (T) above is satisfied, then (logL
(n)
1,1 (φ)− log λn(φ))n≥0

is tight, where λn(φ) denotes the median of L
(n)
1,1 .

It is not expected that the weight is approximately constant over the crossing (since there may

be some large level lines of the field that the crossing must cross). Condition (T), however, roughly

requires that the length of the crossing is supported by a number of coarse blocks that grows at least

like some small but positive power of the total number of coarse blocks. Note that the fraction in

Condition (T) is the `2 norm of the vector of crossing weights on each block divided by the square

of the `1 norm of the same, and thus controlling it amounts to an anticoncentration condition for

this vector.

The core of this section is the proof of Theorem 3.20. Before proving it, let us already jump to

the important following proposition. Here we use the assumption that ξ ∈ (0, 2/d2), although the

formulation of Condition (T) is designed so that it could also hold for larger ξ.

Proposition 3.21. If γ ∈ (0, 2), then ξ := γ
dγ

satisfies Condition (T).

Proof. Step 1: Supremum bound. Taking the supremum over all blocks of size 2−K in [0, 1]2, we get

∑
P∈πKn (ψ) e

2ξψ0,K(P )(∑
P∈πKn (ψ) e

ξψ0,K(P )
)2 ≤

eξmaxP∈PK ψ0,K(P )∑
P∈πKn (ψ) e

ξψ0,K(P )
≤ eξmaxP∈PK φ0,K(P )∑

P∈πKn (ψ) e
ξψ0,K(P )

eξX1 ,

recalling the definition of X1 below (2.25).

Step 2: We give a lower bound of the denominator of the right-hand side. By taking the

concatenation of straight paths in each box of πKn (ψ), we get a left-right crossing of [0, 1]2. Denote

this crossing by Γn,K,ψ. We have,

∑
P∈πKn (ψ)

eξψ0,K(P ) ≥ e−ξX1
∑

P∈πKn (ψ)

eξφ0,K(P ) (5.52)

≥ e−ξX1 exp(−ξ max
P∈P1

K

oscP (φ0,K))2KL(K)(φ,Γn,K,ψ) ≥ e−ξX1 exp(−ξ max
P∈P1

K

oscP (φ0,K))2KL
(K)
1,1 (φ),

where oscP was defined in (2.13) and P1
K was defined in (2.15).
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Step 3: Combining the two previous steps, we have

∑
P∈πKn (ψ) e

2ξψ0,K(P )(∑
P∈πKn (ψ) e

ξψ0,K(P )
)2 ≤

e
ξmax

P∈P1
K
φ0,K(P )

2KL
(K)
1,1 (φ)

e2ξX1e
ξmax

P∈P1
K

oscP (φ0,K)
.

Now, we take α > 1 close to 1. Using Hölder’s inequality with 1
r + 1

s = 1 and r close to 1, together

with Cauchy-Schwarz, we get

E


 ∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2


α

1/α

≤ 2−KE

(
eαξmaxP∈PK φ0,K(P )

(L
(K)
1,1 (φ))α

e2αξX1e
αξmax

P∈P1
K

oscP (φ0,K)

)1/α

≤ 2−KE
(
e
αrξmax

P∈P1
K
φ0,K(P )

)1/αr

E
((

L
(K)
1,1 (φ)

)−2αs
)1/2αs

× E
(
e8αsξX1

)1/4αs
E
(
e

4αsξmax
P∈P1

K
oscP (φ0,K)

)1/4αs

.

Therefore, using (2.11) for the maximum, (4.48) for the left-right crossing, Proposition 3.5 to bound

X1 and (2.17) for the maximum of oscillations, we finally get, when αrξ < 2 (recall that αr can be

taken arbitrarily close to 1),

E


 ∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2


α

1/α

≤ 2−K22ξK`
(K)
1,1 (φ, p)−1eC

√
K . (5.53)

Step 4: Lower bound on quantiles. For γ ∈ (0, 2), Q := 2
γ + γ

2 > 2. Using Proposition 3.17

from [28] (circle average LFPP) and Proposition 3.3 from [27] (comparison between φδ and circle

average), we have, if p is fixed and ε ∈ (0, Q− 2), for K large enough,

`
(K)
1,1 (φ, p) ≥ 2−K(1−ξQ+ξε). (5.54)
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Step 5: Conclusion. Using the results from the two previous steps, we finally get

E


 ∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2


α

1/α

≤ 2−ξ(Q−2−ε)KeC
√
K ,

which completes the proof.

Now, we come back to the proof of Theorem 3.20. We first derive a priori estimates on the

quantile ratios.

Lemma 3.22. Let Z be a random variable with finite variance and p ∈ (0, 1/2). If a pair

(¯̀(Z, p), `(Z, p)) satisfies ¯̀(Z, p) ≥ `(Z, p), P(Z ≥ ¯̀(Z, p)) ≥ p and P(Z ≤ `(Z, p)) ≥ p, then,

we have:

(¯̀(Z, p)− `(Z, p))2 ≤ 2

p2
VarZ. (5.55)

Proof. If Z ′ is an independent copy of Z, notice that for l′ ≥ l we have 2Var(Z) = E((Z ′ − Z)2) ≥

E(1Z′≥l′1Z≤l(Z
′ − Z)2) ≥ P(Z ≥ l′)P(Z ≤ l)(l′ − l)2.

In the following lemma, we derive an a priori bound on the variance of logL
(n)
1,1 (φ).

Lemma 3.23. For all n ≥ 0 we have the bound

Var logL
(n)
1,1 (φ) ≤ ξ2(n+ 1) log 2

Proof. Denote by L
(n)
1,1 (Dk) the left-right distance of [0, 1]2 for the length metric eξφ

k
0,nds, where φk0,n

is piecewise constant on each dyadic block of size 2−k where it is equal to the value of φ0,n at the

center of this block. (We do not assign an independent meaning to the notation Dk.) Note that we

have

e
−C2−k‖∇φ0,n‖[0,1]2L

(n)
1,1 ≤ L

(n)
1,1 (Dk) ≤ L

(n)
1,1e

C2−k‖∇φ0,n‖[0,1]2 ,

which gives almost surely that L
(n)
1,1 (φ) = limk→∞ L

(n)
1,1 (Dk). By dominated convergence we have

Var logL
(n)
1,1 (φ) = lim

k→∞
Var logL

(n)
1,1 (Dk).
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Now, logL
(n)
1,1 (Dk) is a ξ-Lipschitz function of p = 4k Gaussian variables denoted by Y = (Y1, ..., Yp),

where on Rp we use the supremum metric. We can write Y = AN for some symmetric positive

semidefinite matrix A and standard Gaussian vector N on R4k . Then logL
(n)
1,1 (Dk) = f(Y ) = f(AN)

which is ξσ-Lipschitz as a function ofN where σ = max(|A1|, ..., |Ap|). By the Gaussian concentration

inequality of [32, Lemma 2.1], applied as in [26, Lemma 5.8], since the pointwise variance of the

field is (n+ 1) log 2 we have

Var logL
(n)
1,1 (Dk) ≤ max(Var(Y1), ...,Var(Yp)) = ξ2(n+ 1) log 2.

Before stating the following lemma, we refer the reader to the definition of quantile ratios in

(2.27).

Lemma 3.24 (A priori bound on the quantile ratios). Fix p ∈ (0, 1/2). There exists a constant Cp

depending only on p such that for all n ≥ 1,

Λn(ψ, p) ≤ eCp
√
n. (5.56)

Proof. By using Lemma 3.23 we get Var(logL
(k)
1,1(ψ)) ≤ Ck for all 1 ≤ k ≤ n and an absolute

constant C > 0. This implies the same bound for ψ by Proposition 3.5. Using then Lemma 3.22

with Zk = logL
(k)
1,1(ψ) for k ≤ n, we finally get the bound maxk≤n

¯̀
k(ψ,p)
`k(ψ,p) ≤ e

Cp
√
n.

Proof of Theorem 3.20. The proof is divided in five steps. K will denote a large positive number to

be fixed at the last step.

Step 1. Quantiles-variance relation / setup. We aim to get an inductive bound on Λn(ψ, p). We

will therefore bound
¯̀
n(ψ,p/2)
`n(ψ,p/2) in term of Λ’s at lower scales. p will be fixed from now on, small

enough so that we have the tail estimates from Section 3.4 for φ with p and for ψ with p/2. The

starting point is the bound
¯̀
n(ψ, p/2)

`n(ψ, p/2)
≤ eCp

√
Var logL

(n)
1,1 (ψ). (5.57)

Step 2. Efron-Stein. Using the Efron-Stein inequality with the block decomposition of ψ0,n

introduced in (2.20), defining the length with respect to the unresampled field Ln(ψ) = L
(n)
1,1 (ψ), we
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get

Var logL
(n)
1,1 (ψ) ≤ E

((
logLKn (ψ)− logLn(ψ)

)2
+

)
+
∑
P∈PK

E
((

logLPn (ψ)− logLn(ψ)
)2

+

)
, (5.58)

where in the first term (resp. second term) we resample the field ψ0,K (resp. ψK,n,P ) to get an

independent copy ψ̃0,K (resp. ψ̃K,n,P ) and we consider the left-right distance LKn (ψ) (resp. LPn (ψ))

of the unit square associated to the field ψ0,n − ψ0,K + ψ̃0,K (resp. ψ0,n − ψK,n,P + ψ̃K,n,P ).

Step 3. Analysis of the first term. For the first term, using Gaussian concentration as in the

proof of Lemma 3.23, we get

E((logLKn (ψ)− logLn(ψ))2) = 2E(Var(logLn(ψ)|ψ0,n − ψ0,K)) ≤ CK. (5.59)

Step 4. Analysis of the second term. For P ∈ PK , if LPn (ψ) > Ln(ψ), the block P is visited by

the geodesic πn(ψ) associated to Ln(ψ). Define

PK := {Q ∈ PK : d(P,Q) ≤ CKε02−K}. (5.60)

where we recall that ε0 is associated with the range of dependence of the resampled field ψ̃K,n,P

through (2.18) (see also the subsection following this definition). Here, d(P,Q) is the L∞-distance

between the sets P and Q.

We upper-bound LPn (ψ) by taking the concatenation of the part of πn(ψ) outside of PK together

with four geodesics associated to long crossings in rectangles comprising a circuit around PK (for

the field ψ0,n which coincides with the field ψP0,n outside of PK). We get, introducing the rectangles

(Qi(P ))1≤i≤4 of size 2−K(CKε0 , 3) surrounding PK (PK and its 3 · 2−K neighborhood form an

annulus, and gluing the four crossings gives a circuit in this annulus) and using the inequality

log x ≤ x− 1,

(
logLPn (ψ)− logLn(ψ)

)
+
≤ (LPn (ψ)− Ln(ψ))+

L
(n)
1,1 (ψ)

≤ 4
max1≤i≤4 L

(n)(Qi(P ), ψ)

L
(n)
1,1 (ψ)

. (5.61)

• We recall the notation φ0,K(P ) to denote the value of the field φ0,K at the center of P . We
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bound from above each term in the maximum of (5.61) as follows:

L(n)(Qi(P ), ψ) ≤ eξXL(n)(Qi(P ), φ)

≤ eξXeξφ0,K(P )eξ osc
PK

(φ0,K)L(K,n)(Qi(P ), φ)

≤ e2ξXeξψ0,K(P )eξ osc
PK

(φ0,K)L(K,n)(Qi(P ), φ),

where the oscillation osc is defined in (2.13) and PK is defined in (5.60).

For a rectangle Q of size 2−K , with corners in 2−KZ2, we denote by (RLi (Q))1≤i≤4 the four long

rectangles of size 2−K(3, 1) surrounding Q. We can upper-bound the rectangle crossing lengths

associated to the Qi(P )’s by gluing O(Kε0) rectangle crossings of size 2−K(3, 1), which include an

annulus around each block Q of size 2−K(1, 1) (with corners in 2−KZ2) in the shaded region AK of

Figure 3.3. We get

max
1≤i≤4

L(K,n)(Qi(P ), φ) ≤ CKε0 max
Q∈AK ,1≤i≤4

L(K,n)(RLi (Q), φ)

and we end up with the following upper bound:

(
logLPn (ψ)− logLn(ψ)

)
+
≤ e2ξX e

ξψ0,K(P )

L
(n)
1,1 (ψ)

eξ osc
PK

(φ0,K)CKε0 max
Q∈AK ,1≤i≤4

L(K,n)(RLi (Q), φ).

(5.62)

CK"02
−K

P

Q

RL

1
(Q)

2
−K

RL

3
(Q)

3 · 2
−K

Q1(P ) PK

AK

πn( )

K

Figure 3.3 – Illustration of the geodesics used in the upper bound of Step 4.
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• We lower-bound the denominator of (5.62) as follows. If P ∈ PK is visited by a πn(ψ)

geodesic, then there are at least two short disjoint rectangle crossings among the four surrounding P .

Therefore, if we denote by P̂ the box containing P at its center whose size is three times that of P ,

∫
πn(ψ)∩P̂

eξψ0,nds ≥ 2 min
1≤i≤4

L(n)(RSi (P ), ψ) ≥ e−ξX min
1≤i≤4

L(n)(RSi (P ), φ)

≥ e−ξXeξφ0,K(P )e−ξ oscP̂ (φ0,K) min
1≤i≤4

L(K,n)(RSi (P ), φ)

≥ e−2ξXeξψ0,K(P )e−ξ oscP̂ (φ0,K) min
1≤i≤4

L(K,n)(RSi (P ), φ),

where (RSi (P ))1≤i≤4 denote the four short rectangles of size 2−K(1, 3) surrounding P . Summing

over all P ’s and taking uniform bounds for the rectangle crossings at higher scales,

L
(n)
1,1 (ψ) =

∑
P∈PK

∫
P∩πn(ψ)

eξψ0,nds ≥ 1

9

∑
P∈PK

∫
P̂∩πn(ψ)

eξψ0,nds

≥ 1

9
e−2ξX

(
min
P∈P1

K

min
1≤i≤4

L(K,n)(RSi (P ), φ)

) ∑
P∈PK ,P∩πn(ψ)6=∅

eξψ0,K(P )e−ξ oscP̂ (φ0,K)

 .

Therefore, taking a uniform bound for the oscillation, we get

L
(n)
1,1 (ψ) ≥ 1

9
e−2ξX

 ∑
P∈πKn (ψ)

eξψ0,K(P )e−ξ oscP̂ (φ0,K)

 min
P∈P1

K ,1≤i≤4
L(K,n)(RSi (P ), φ) (5.63)

≥ 1

9
e−2ξXe

−ξmax
P∈P1

K
oscP̂ (φ0,K)

min
P∈P1

K ,1≤i≤4
L(K,n)(RSi (P ), φ)

∑
P∈πKn (ψ)

eξψ0,K(P ). (5.64)

• We recall that (RLi (P ))1≤i≤4 denote the four rectangles of size 2−K(3, 1) surrounding P . Gath-

ering inequalities (5.62) and (5.64), we see that
∑

P∈PK E
((

logLPn (ψ)− logLn(ψ)
)2

+

)
is bounded

from above by

K2ε0E
∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2

(
maxP∈P1

K ,1≤i≤4 L
(K,n)(RLi (P ), φ)

minP∈P1
K ,1≤i≤4 L

(K,n)(RSi (P ), φ)

)2

e
Cξmax

P∈P1
K

osc
PK

(φ0,K)
e8ξX
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• Condition (T) gives us a α > 1 and c > 0 so that for K large enough, for n ≥ K,

E


 ∑

P∈πKn (ψ) e
2ξψ0,K(P )(∑

P∈πKn (ψ) e
ξψ0,K(P )

)2


α

1/α

≤ e−cK .

Then, by using the gradient estimate (2.17) and recalling the definition of PK in (5.60), we have

E
(
e
C max

P∈P1
K

osc
PK

(φ0,K)
)
≤ E

(
e
CKε02−K‖∇φ0,K‖[0,1]2

)
≤ eCK

1
2 +ε0

. (5.65)

It is for the second inequality that in (2.18) we take ε0 to be small in the definition of ψ; ε0 < 1/2

is sufficient. Furthermore, using our tail estimates with regard to upper and lower quantiles for φ

(see (4.48) and (4.49), and the scaling property (2.30), for β > 1 so that 1
α + 1

β = 1, we get

E

(maxP∈P1
K ,1≤i≤4 L

(K,n)(RLi (P ), φ)

minP∈P1
K ,1≤i≤4 L

(K,n)(RSi (P ), φ)

)2β
 1

β

≤ Λ2
n−K(φ, p)eCK

1
2 +ε0

. (5.66)

Note that we could have a logK term instead of the Kε0 in (5.66). Altogether, by applying Hölder

inequality and Cauchy-Schwarz, we get

∑
P∈PK

E
((

logLPn (ψ)− logLn(ψ)
)2

+

)
≤ e−cKeCK

1
2 +ε0

Λ2
n−K(φ, p) ≤ e−cKeCK

1
2 +ε0

CpΛ
2
n−K(ψ, p/2),

(5.67)

where we used (2.29) in the last inequality to get Λ2
n−K(φ, p) ≤ CpΛ2

n−K(ψ, p/2).

Step 5. Conclusion. Gathering the bounds obtained in Step 3 (inequality (5.59)) and Step 4

(inequality (5.67)), we get, coming back to the inequality (5.58), for K large enough,

Var logL
(n)
1,1 (ψ) ≤ C1K + e−C2KΛ2

n−K(ψ, p/2). (5.68)

Now, we will show that this bound together with the a priori bound on the quantile ratios (Lemma

3.24) is enough to conclude first that Λ∞(ψ, p/2) <∞ and then that supn≥0 Var logL
(n)
1,1 (ψ) <∞,

using the tail estimates (4.48) and (4.50).

Coming back to Step 1 (equation (5.57)) and using (5.68), we get the inductive inequality (5.69)
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below for K large enough and n ≥ K, and (5.70) below by the a priori bound on the quantile ratios

Lemma 3.24:

¯̀
n(ψ, p/2)

`n(ψ, p/2)
≤ eCp

√
Var logL

(n)
1,1 (ψ) ≤ eCp

√
C1K+e−C2KΛ2

n−K(ψ,p/2)
; (5.69)

ΛK(ψ, p/2) ≤ eC̃p
√
K . (5.70)

From now on, we take K large enough but fixed so that

e−C2K(eC̃p
√
K + eCp

√
2C1K)2 ≤ C1K. (5.71)

Set

ΛRec := ΛK(ψ, p/2) ∨ eCp
√

2C1K . (5.72)

so that ΛK(ψ, p/2) ≤ ΛRec. This is the initialization of the induction. Now, assume that

Λn−1(ψ, p/2) ≤ ΛRec. In particular, Λn−K(ψ, p/2) ≤ ΛRec and using (5.69)

¯̀
n(ψ, p/2)

`n(ψ, p/2)
≤ eCp

√
C1K+e−C2KΛ2

Rec

The right-hand side is smaller than eCp
√

2C1K and therefore than ΛRec. Indeed, by (5.72), (5.70)

and (5.71),

e−C2KΛ2
Rec ≤ e−C2K(ΛK(ψ, p/2) + eCp

√
2C1K)2 ≤ e−C2K(eC̃p

√
K + eCp

√
2C1K)2 ≤ C1K.

Therefore,

Λn(ψ, p/2) = Λn−1(ψ, p/2) ∨
¯̀
n(ψ, p/2)

`n(ψ, p/2)
≤ ΛRec.

Therefore, Λ∞(ψ, p/2) < ∞ thus Λ∞(φ, p) < ∞ and by the tail estimates (4.48) and (4.49), the

sequence (logL
(n)
1,1 (φ)− log λn(φ))n≥0 is tight.
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3.5.2 Weak multiplicativity of the characteristic length and error bounds

Henceforth, we will only consider the case ξ = γ
dγ

for γ ∈ (0, 2) and the field φ0,n. All observables

will be assumed to be taken with respect to φ and we will drop the additional notation used to

differ between φ and ψ. In this case, we saw that there exists a fixed constant C > 0 so that for

all n ≥ 0, ¯̀(n)
3,1 (p) ≤ C ¯̀(n)

1,3 (p), C−1`
(n)
3,1 (p) ≤ `(n)

1,3 (p) and with the tail estimates, E(L
(n)
3,1 ) ≤ CE(L

(n)
1,3 ).

All these characteristic lengths are uniformly comparable. We will take λn to denote one of them,

say the median of L
(n)
1,1 .

In the next elementary lemma, we prove that a sequence satisfying a certain quantitative weak

multiplicative property has an exponent, and we quantify the error.

Lemma 3.25. Consider a sequence of positive real numbers (λn)n≥1. If there exists C > 0 such

that for all n ≥ 1, k ≥ 1 we have

e−C
√
kλnλk ≤ λn+k ≤ eC

√
kλnλk, (5.73)

then there exists ρ > 0 such that λn = ρn+O(
√
n).

Proof. We introduce the sequence (an)n≥0 such that λ2n+1 = (λ2n)2 ean . By iterating, we get

λ2n+1 = (λ2n)2 ean = (λ2n−1)4 e2an−1+an = · · · = λ2n+1

1 e2na0+2n−1a1+···+2an−1+an .

The condition (5.73) gives that the sequence
(
2−n/2an

)
n≥0

is bounded, therefore the series
∑

k≥0
ak
2k

converges and |
∑

k≥n
ak
2k
| ≤ 2 (supk≥0 2−k/2|ak|) 2−n/2. In particular there exists ρ > 0 such that

λ2n+1 = e
2n+1

(
log λ1+ 1

2

∑n
k=0

ak
2k

)
= e

2n+1
(

log λ1+ 1
2

∑∞
k=0

ak
2k

)
e
−2n

∑
k≥n+1

ak
2k = ρ2neO(2n/2).

Now that we have the existence of an exponent, we prove the upper bound of Lemma 3.25. There

exist C1, C2 > 0 such that we have the following upper bounds:

λ2k ≤ ρ2keC12k/2 , (5.74)

λn+k ≤ λnλkeC2

√
k. (5.75)
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Take C3 large enough so that (C1 + C2)2 + (C1 + C2)C3 ≤ C2
3 and λ1 ≤ ρeC3 . We want to prove

by induction that for all n ≥ 1, λn ≤ ρneC3
√
n. The assumption on C3 implies that this holds for

n = 1. By induction (in a dyadic fashion), take n ∈ [2k, 2k+1). We decompose n as n = 2k + nk

with nk ∈ [0, 2k). We have, by using (5.75), (5.74) and the induction hypothesis,

λn ≤ λ2kλnke
C22k/2 ≤ (ρ2keC12k/2)(ρnkeC3

√
nk)eC22k/2 = ρne(C1+C2)2k/2+C3

√
nk ≤ ρneC3

√
n,

since by the assumption on C3 we have

(
(C1 + C2)2k/2 + C3

√
nk

)2
= (C1 + C2)22k + (C1 + C2)C32k/2

√
nk + C2

3nk ≤ C2
3 (2k + nk) = C2

3n.

The proof of the lower bound is similar.

In the next proposition we prove that the characteristic length λn satisfies the weak multiplica-

tivity property (5.73) and we identify the exponent by using the results of [28].

Proposition 3.26. For ξ satisfying Condition (T), there exists C > 0 such that for all n ≥ 1,

k ≥ 1 we have

e−C
√
kλnλk ≤ λn+k ≤ eC

√
kλnλk. (5.76)

Furthermore, when γ ∈ (0, 2) and ξ = γ/dγ, we have

λn = 2−n(1−ξQ)+O(
√
n). (5.77)

Proof. Let us assume first that (5.76) holds. Then, by using Lemma 3.25, there exists ρ > 0 such

that we have λn = ρn+O(
√
n). Similarly to (5.54), for each fixed small δ > 0, for k large enough we

have,

λk ≤ 2−k(1−ξQ−δ). (5.78)

The proof of (5.78) follows the same lines as the one of (5.54). Combining (5.78) and (5.54) we get

ρ = 2−(1−ξQ). Now, we prove that the characteristic length satisfies (5.76).

Step 1: Weak submultiplicativity. Let πk be such that L(k)(πk) = L
(k)
1,1. If P ∈ Pk is visited

by πk, consider the concatenation S(k,n+k)(P ) of four geodesics for eξφk,n+kds associated to the
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rectangles of size 2−k(3, 1) surrounding P . Each geodesic is in the long direction of its rectangle

so that this concatenation is a circuit. By scaling, E(L(k,n+k)(S(k,n+k)(P ))) = 2−k+2E(L
(n)
3,1 ). Note

that the collection πkk(φ) = {P ∈ Pk : P ∩ πk 6= ∅} is measurable with respect to φ0,k, which

is independent of φk,n+k. Set Γk,n :=
⋃
P∈πkk(φ) S

(k,n+k)(P ). Note that Γk,n contains a left-right

crossing of [0, 1]2 whose length is bounded above by

L(n+k)(Γk,n) =
∑

P∈πkk(φ)

L(n+k)(S(k,n+k)(P )) ≤
∑

P∈πkk(φ)

L(k,n+k)(S(k,n+k)(P ))eξφ0,k(P )eξ oscP̂ (φ0,k),

where P̂ denotes the box containing P at its center whose side length is three times that of P . Since

L
(n+k)
1,1 ≤ L(n+k)(Γk,n), by independence we have

E(L
(n+k)
1,1 ) ≤ 4E(L

(n)
3,1 )E

 ∑
P∈πkk(φ)

2−keξφ0,k(P )eξ oscP̂ (φ0,k)

 .

If P is visited, then one of the four rectangles of size 2−k(1, 3) in P̂ surrounding P contains a short

crossing, denoted by π̃k(P ) and we have

∫
πk

eξφ0,k1πk∩P̂ds ≥ L
(k)(π̃k(P )) ≥ 2−keξ infP̂ φ0,k ≥ 2−keξφ0,k(P )e−ξ oscP̂ (φ0,k),

hence

∑
P∈πkk(φ)

2−keξφ0,k(P )eξ oscP̂ (φ0,k) ≤
∑

P∈πkk(φ)

e2ξ oscP̂ (φ0,k)

∫
πk

eξφ0,k1πk∩P̂ds.

Taking the supremum of the oscillation over all blocks,

∑
P∈πkk(φ)

e2ξ oscP̂ (φ0,k)

∫
πk

eξφ0,k1πk∩P̂ds ≤ 9e
2ξ2−k‖∇φ0,k‖[0,1]2L

(k)
1,1.

Altogether, by Cauchy-Schwarz,

E(L
(n+k)
1,1 ) ≤ 36E(L

(n)
3,1 )E((L

(k)
1,1)2)1/2E(e

4ξ2−k‖∇φ0,k‖[0,1]2 )1/2.
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When ξ satisfies Condition (T), by using the uniform bounds for quantile ratios together with the

upper tail estimates (4.49) and the gradient estimate (2.17) we get λn+k ≤ eC
√
kλnλk.

Step 2: Weak supermultiplicativity. We argue here that

λn+k ≥ e−C
√
kλnλk. (5.79)

Using a slightly easier argument than (5.64) (since we just have the field φ here), we have

L
(n+k)
1,1 ≥ e

−ξmax
P∈P1

k
oscP̂ (φ0,k)

(
min

P∈P1
k ,1≤i≤4

L(k,k+n)(RSi (P ))

) ∑
P∈πkn+k

eξφ0,k(P ),

where πkn+k denotes the k-coarse grained approximation of πn+k, the left-right geodesic of [0, 1]2 for

the field φ0,n+k, and where we recall that (RSi (P ))1≤i≤4 denote the four rectangles of size 2−k(1, 3)

surrounding P . Furthermore, by using a similar argument to (5.52), we have

∑
P∈πkn+k

eξφ0,k(P ) ≥ e−ξmaxP∈Pk oscP (φ0,k)2kL
(k)
1,1.

Altogether, we get the following weak supermultiplicativity,

L
(n+k)
1,1 ≥ L(k)

1,1

(
min

P∈P1
k ,1≤i≤4

2kL(k,k+n)(RSi (P ))

)
e−2ξmaxP∈Pk oscP (φ0,k) (5.80)

When ξ satisfies Condition (T), by scaling and the tail estimates (4.48), we obtain the inequality

P(minP∈P1
k ,1≤i≤4 2kL(k,k+n)(RSi (P )) ≥ λne

−C
√
k) ≥ 1 − e−ck. Furthermore, using the gradient

estimates (2.16), we get P(2−k ‖∇φ0,k‖[0,1]2 ≥ C
√
k) ≥ 1− e−ck for C large enough. Therefore, with

probability ≥ 1/2, L
(n)
1,1 ≤ e−C

√
kλnλk hence the bound λn+k ≥ e−C

√
kλkλn.

3.5.3 Tightness of the log of the diameter

Proposition 3.27. If γ ∈ (0, 2) and ξ = γ/dγ then
(
log Diam

(
[0, 1]2, λ−1

n eξφ0,nds
))
n≥0

is tight.

Proof. Step 1: Chaining. By a standard chaining argument, (see (6.1) in [38] for more details), we
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have

Diam
(

[0, 1]2, eξφ0,nds2
)
≤ C

n∑
k=0

max
P∈Ck

L(n)(P ) + C × 2−ne
ξ sup[0,1]2 φ0,n , (5.81)

where Ck is a collection of no more than C4k long rectangles of side length 2−k(3, 1).

Using the bound for the maximum (2.11), when ξ < 2, we have E(2−ne
ξ sup[0,1]2 φ0,n) ≤

2−n22ξneC
√
n.

Fix 0 ≤ k ≤ n and P ∈ Ck. We can bound L(n)(P ) by taking a left-right geodesic πk,n for φk,n.

Therefore,

L(n)(P ) ≤ L(n)(πk,n) ≤ eξmax[0,1]2 φ0,kL(k,n)(P ),

and consequently,

max
P∈Ck

L(n)(P ) ≤ eξmax[0,1]2 φ0,k max
P∈Ck

L(k,n)(P ). (5.82)

Using independence, the maximum bound (2.11), scaling of the field φ and the tail estimates

(4.49), we get

E
(
e
ξmax[0,1]2 φ0,k max

P∈Ck
L(k,n)(P )

)
≤ 2−k22ξkeC

√
kλn−ke

Ck
1
2 +ε

(5.83)

for some fixed small ε > 0 (again, the term kε could in fact be log k). Taking the expectation in

(5.81), using (5.82) and (5.83), we obtain the following bound for the expected value of the diameter,

E(Diam([0, 1]2, eξφ0,nds)) ≤ C
n∑
k=0

2−k22ξkλn−ke
Ck

1
2 +ε

. (5.84)

Step 2: Right tail. By Proposition 3.26, λn−k ≤ λn
eC
√
k

λk
≤ λn2k(1−ξQ)eC

√
k. Together with

(5.84), this implies that

E(Diam([0, 1]2, eξφ0,nds)) ≤ C
n∑
k=0

2−k22ξkλn−ke
Ck

1
2 +ε

≤ λnC
∞∑
k=0

2−kξ(Q−2)eCk
1
2 +ε

.

Since Q > 2, Markov’s inequality gives P
(
Diam([0, 1]2, λ−1

n eξφ0,nds) ≥ es
)
≤ Ce−s.

Step 3: Left tail. Finally, since the diameter of the square [0, 1]2 is larger than the left-right dis-

tance, by our tail estimates (4.48), we get P
(
Diam([0, 1]2, λ−1

n eξφ0,nds) ≤ e−s
)
≤ P

(
L

(n)
1,1 ≤ λne−s

)
≤

Ce−cs
2
.
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3.5.4 Tightness of the metrics

Proposition 3.28. If γ ∈ (0, 2) and ξ = γ/dγ then the sequence of metrics
(
λ−1
n eξφ0,nds

)
n≥0

is

tight. Moreover, if we define

Cnα := sup
x,x′∈[0,1]2

|x− x′|α

d0,n(x, x′)
and Cnβ := sup

x,x′∈[0,1]2

d0,n(x, x′)

|x− x′|β

then, for α > ξ(Q+ 2) and β < ξ(Q− 2), the sequence (Cnα , C
n
β )n≥0 is tight.

Henceforth, we use the notation d0,n for the renormalized metric λ−1
n eξφ0,nds restricted to [0, 1]2.

Proof. The proof has two parts. In the first part we show the tightness of the metrics in the space

of continuous function from [0, 1]2× [0, 1]2 → R+ and in the second part we show that subsequential

limits are metrics. A byproduct result of the argument is explicit bi-Hölder bounds.

Part 1. Upper bound on the modulus of continuity. We suppose γ ∈ (0, 2). We start by proving

that for every 0 < β < ξ(Q− 2), if ε > 0, there exists a large Cε > 0 so that for every n ≥ 0

P
(
∃x, x′ ∈ [0, 1]2 : d0,n(x, x′) ≥ Cε|x− x′|β

)
≤ ε, (5.85)

i.e.
(
‖d0,n‖Cβ([0,1]2×[0,1]2)

)
n≥0

is tight, where the Cβ-norm is defined for f : [0, 1]2 × [0, 1]2 → R as

‖f‖Cβ([0,1]2×[0,1]2) := ‖f‖[0,1]2×[0,1]2 + sup
(x,y) 6=(x′,y′)∈[0,1]2×[0,1]2

|f(x, y)− f(x′, y′)|
|(x, y)− (x′, y′)|β

.

By a union bound it suffices to estimate P(∃x, x′ : |x− x′| < 2−n, d0,n(x, x′) ≥ es|x− x′|β) and

n∑
k=0

P
(
∃x, x′ : 2−k ≤ |x− x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x− x′|β

)
.

Step 1: We start with the term P(∃x, x′ : 2−k ≤ |x− x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x− x′|β). We

use the chaining argument (5.81) at scale k which gives

sup
2−k≤|x−x′|≤2−k+1

d0,n(x, x′) ≤ Cλ−1
n

n∑
i=k

max
P∈Ci

L(n)(P ) + Cλ−1
n × 2−ne

ξ sup
[0,1]2

φ0,n

.
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Taking the expected value and using the same bounds as those obtained in the proof of Proposition

3.27, we get

E

(
sup

2−k≤|x−x′|≤2−k+1

d0,n(x, x′)

)
≤

n∑
i=k

2−iξ(Q−2)eCi
1
2 +ε

≤ C2−kξ(Q−2)eCk
1
2 +ε

.

Therefore, using Markov’s inequality we get the bound

n∑
k=0

P
(
∃x, x′ : 2−k ≤ |x− x′| ≤ 2−k+1, d0,n(x, x′) ≥ es|x− x′|β

)
≤

n∑
k=0

P

(
sup

2−k≤|x−x′|≤2−k+1

d0,n(x, x′) ≥ es2−kβ
)
≤ e−s

n∑
k=0

2kβ2−kξ(Q−2).

The series is convergent since ξ(Q− 2)− β > 0.

Step 2: We bound from above P(∃x, x′ |x− x′| < 2−n, d0,n(x, x′) ≥ es|x− x′|β) using a bound

on the supremum of the field. Indeed, for such x and x′, note that

es|x− x′|β ≤ d0,n(x, x′) ≤ λ−1
n e

ξ sup[0,1]2 φ0,n |x− x′|

Writing β = ξ(Q− 2)− εξ for some ε > 0, it follows that 1− β = (1− ξQ+ 2ξ) + εξ > 0 since the

LFPP exponent 1− ξQ ≥ −2ξ by a simple uniform bound. Therefore, |x− x′|β−1 ≥ 2n(1−β) and

λ−1
n 2n(1−β) = 2n(2ξ+εξ+o(1)). Altogether, this probability is bounded from above by P(sup[0,1]2 φ0,n ≥

n log 4 + εn log 2 + o(n) + ξ−1s) and using (2.10) gives a uniform tail estimate.

Therefore, we obtain the tightness of (d0,n)n≥0 as a random element of C([0, 1]2 × [0, 1]2,R+)

and every subsequential limit is (by Skorohod’s representation theorem) a pseudo-metric.

Part 2. Lower bound on the modulus of continuity. We prove that if α > ξ(Q+ 2) and ε > 0

then there exists a small constant cε > 0 such that for every n ≥ 0,

P
(
∃x, x′ ∈ [0, 1]2 : d0,n(x, x′) ≤ cε|x− x′|α

)
≤ ε. (5.86)

Similarly as before, by union bound it is enough to estimate the term

P(∃x, x′ ∈ [0, 1]2 : |x− x′| < 2−n, d0,n(x, x′) ≤ e−ξs|x− x′|α) (5.87)
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and the term

n∑
k=0

P

∃x, x′ : 2−k ≤ |x− x′| ≤ 2−k+1, d0,n(x, x′) ≤ e−ξs|x− x′|α︸ ︷︷ ︸
:=Ek,n,s

 . (5.88)

Step 1: We give an upper bound for (5.88). Fix x, x′ ∈ [0, 1]2 such that 2−k ≤ |x− x′| ≤ 2−k+1.

Note that any path from x to x′ crosses one of the rectangles in the collection {RSi (P ) : P ∈

P1
k+2, 1 ≤ i ≤ 4}. Hence, under the event Ek,n,s, there exists x, x′ such that

2−kα ≥ d0,n(x, x′) ≥ λ−1
n 2−ke

ξ inf[0,1]2 φ0,k

(
min

P∈P1
k+2,1≤i≤4

2kL(k,n)(RSi (P ))

)
. (5.89)

Since α = ξ(Q+ 2) + ξδ for a small δ > 0, by using Proposition 3.26 we get

2−kαλn2k ≤ 2−kαλkλn−ke
C
√
k ≤ 2−k(α−ξQ)λn−ke

C
√
k = 2−k(2+δ)ξ(λn−k2

−ξδkeC
√
k) (5.90)

Now, using (5.89), (5.90) and scaling, we get

P (Ek,n,s) ≤ P

(
e
ξ inf[0,1]2 φ0,k

(
min

P∈P1
k+2,1≤i≤4

2kL(k,n)(RSi (P ))

)
≤ 2−kαλn2ke−ξs

)

≤ P( sup
[0,1]2
|φ0,k| ≥ k log 4 + kδ log 2 + s/2)

+ P( min
P∈P1

k+2,1≤i≤4
L(n−k)(RSi (P )) ≤ λn−k2−kδξeC

√
ke−ξs/2)

≤ Ce−cke−cs,

where we used in the last inequality the supremum bounds (2.10) and the left tail estimate (4.48).

Step 2: Finally, we control (5.87). P(∃x, x′ : |x−x′| < 2−n, d0,n(x, x′) ≤ e−ξs|x−x′|α) is bounded

from above by

P
(

inf
|x−x′|≤2−n

d0,n(x, x′)

|x− x′|α
≤ e−ξs

)
≤ P

(
λ−1
n e

ξ inf[0,1]2 φ0,n inf
|x−x′|≤2−n

|x− x′|1−α ≤ e−ξs
)
.

We recall that α > ξQ+ 2ξ, and in particular α > 1: indeed, 1− ξQ ≤ 2ξ follows from a comparison

with the infimum of the field. In this case, inf |x−x′|≤2−n |x− x′|1−α = 2−n(1−α), and by Proposition
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3.26,

2−n(1−α)λ−1
n ≥ 2−n(1−α)2n(1−ξQ)e−C

√
n = 2n(α−ξQ)e−C

√
n

Therefore, since α− ξQ = 2ξ + δξ for some δ > 0, we have for n large that

P
(
λ−1
n e

ξ inf[0,1]2 φ0,n inf
|x−x′|≤2−n

|x− x′|1−α ≤ e−ξs
)
≤ P

(
sup
[0,1]2
|φ0,n| ≥ n log 4 + n

δ

2
log 2 + s

)

Using (2.10) completes the proof.

3.6 Appendix

3.6.1 Comparison with the GFF mollified by the heat kernel

Let h be a GFF with Dirichlet boundary condition on a domain D and U ⊂⊂ D be a subdomain

of D. We recall that we denote by pt the two-dimensional heat kernel at time t i.e. pt(x) = 1
2πte

− |x|
2

2t .

The goal of this section is to obtain a uniform estimate to conclude on the tightness of the

renormalized metric associated to p t
2
∗ h assuming the one associated to φ√t. In particular, the

second assertion of Theorem 3.1 is a corollary of the following proposition.

Proposition 3.29. There exist constants C, c > 0 such that for all t ∈ (0, 1/2), there is a coupling

of h and ϕt
(d)
= φ√t such that for all x ≥ 0, we have

P
(∥∥∥ϕt − p t

2
∗ h
∥∥∥
U
≥ x

)
≤ Ce−cx2

.

Mollification of the GFF by the heat kernel. The covariance of the Gaussian field p t
2
∗ h is

given for x, x′ ∈ U by

E
(
p t

2
∗ h(x) p t

2
∗ h(x′)

)
=

∫
D

∫
D
p t

2
(x− y)GD(y, y′)p t

2
(y′ − x′)dydy′,

where GD is the Green function associated to the Laplacian operator on D. For an open set A, we

denote by pAt (x, y) the transition probability density of a Brownian motion killed upon exiting A.
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White noise representation. Take a space-time white noise W and define the field ηt on U by

ηt(x) :=

∫ ∞
0

∫
D
p t

2
∗pDs

2
(x, y)W (dy, ds) where p t

2
∗pDs

2
(x, y) :=

∫
D
p t

2
(x−y′)pDs

2
(y′, y)dy′, (6.91)

so that (ηt(x))x∈U
(d)
= (p t

2
∗ h(x))x∈U . Indeed, by Fubini, we have

E(ηt(x)ηt(x
′)) =

∫ ∞
0

∫
D
p t

2
∗ pDs

2
(x, y) p t

2
∗ pDs

2
(x′, y)dyds

=

∫ ∞
0

∫
D

∫
D

∫
D
p t

2
(x− y′)pDs

2
(y′, y) p t

2
(x′ − y′′) pDs

2
(y′′, y)dydy′dy′′ds

=

∫
D

∫
D
p t

2
(x− y′)

(∫ ∞
0

∫
D
pDs

2
(y′, y)pDs

2
(y, y′′)dyds

)
p t

2
(x′ − y′′)dy′dy′′

=

∫
D

∫
D
p t

2
(x− y′)GD(y′, y′′)p t

2
(y′′ − x′)dy′dy′′.

Coupling. Note that for t ∈ (0, 1/2) φ√t(x) =
∫ 1
t

∫
R2 p s

2
(x− y)W (dy, ds)

(d)
= ϕt(x), where we set

ϕt(x) :=

∫ 1−t

0

∫
R2

p t+s
2

(x− y)W (dy, ds).

Furthermore, we can decompose ϕt(x) = ϕ1
t (x) + ϕ2

t (x), where

ϕ1
t (x) :=

∫ 1−t

0

∫
D
p t+s

2
(x− y)W (dy, ds); (6.92)

ϕ2
t (x) :=

∫ 1−t

0

∫
Dc
p t+s

2
(x− y)W (dy, ds). (6.93)

Recalling the definition of η in (6.91), we introduce η1
t and η2

t so that

ηt(x) =

∫ 1−t

0

∫
D
p t

2
∗ pDs

2
(x, y)W (dy, ds) +

∫ ∞
1−t

∫
D
p t

2
∗ pDs

2
(x, y)W (dy, ds) =: η1

t (x) + η2
t (x). (6.94)

Therefore, under this coupling (viz. using the same white noise W ), we have

ϕ1
t (x)− η1

t (x) =

∫ 1−t

0

∫
D

(
p t+s

2
(x− y)− p t

2
∗ pDs

2
(x, y)

)
W (dy, ds). (6.95)
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Comparison between kernels. We will consider x, y ∈ U , subdomain of D. Set d := d(U,Dc) >

0.

p t
2
∗ pDs

2
(x, y) :=

∫
D
p t

2
(x− y′)pDs

2
(y′, y)dy′ =

∫
D
p t

2
(x− y′)p s

2
(y′ − y)qDs

2
(y′, y)dy′,

where qDt (x, x′) is the probability that a Brownian bridge between x and x′ with lifetime t stays in

D. Therefore, using Chapman-Kolmogorov,

p t
2
∗pDs

2
(x, y)−p t+s

2
(x, y) = −

∫
Dc
p t

2
(x−y′)p s

2
(y′−y)dy′+

∫
D
p t

2
(x−y′)p s

2
(y′−y)(qDs

2
(y′, y)−1)dy′.

Note that the first term can be bounded by using that |y − y′| ≥ d for y ∈ U and y′ ∈ Dc. For the

second term, we can split the integral over D in two parts: one over the ε-neighborhood of ∂D

(within D), denoted by (∂D)ε, and one over its complement. To give an upper bound on the first,

we use that for y ∈ U and y′ ∈ (∂D)ε, |y − y′| ≥ d(U, (∂D)ε). Finally, we bound the second part by

using a uniform estimate on the probability that a Brownian bridge between a point in U and a

point D \ (∂D)ε exits D in time less than s/2. (Note that 1 − qDs
2

(y, y′) is the probability that a

Brownian bridge between y and y′ with time length s/2 exits D.) Therefore, we get that uniformly

in x, y ∈ U and t,

|p t
2
∗ pDs

2
(x, y)− p t+s

2
(x, y)| ≤ Ce−

c
s . (6.96)

Comparison between ϕt and p t
2
∗ h. By the triangle inequality,

∥∥∥ϕt − p t
2
∗ h
∥∥∥
U
≤
∥∥ϕ1

t − η1
t

∥∥
U

+
∥∥ϕ2

t

∥∥
U

+
∥∥η2

t

∥∥
U
. (6.97)

We look for a uniform right tail estimate (in t) of each term in the right-hand side of (6.97). In

order to do so, we will use the Kolmogorov continuity criterion. Therefore, we derive below some

pointwise and difference estimates.

First term. We derive first a pointwise estimate. For x ∈ U , using the kernel comparison

(6.96), there exists some C ′ > 0 such that, uniformly in t,

Var
((
η1
t (x)− ϕ2

t (x)
)2)

=

∫ 1−t

0

∫
D

(
p t

2
∗ pDs

2
(x, y)− p t+s

2
(x, y)

)2
dyds ≤ C

∫ 1−t

0
e−

c
sds ≤ C ′.
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We now give a difference estimate: introducing ∆t(x) := ϕ1
t (x)− η1

t (x), for x, x′ ∈ U ,

E
((

∆t(x)−∆t(x
′)
)2)

=

∫ 1−t

0

∫
D

((
p t+s

2
(x− y)− p t

2
∗ pDs

2
(x, y)

)
−
(
p t+s

2
(x′ − y)− p t

2
∗ pDs

2
(x′, y)

))2
dyds,

which is uniformly bounded in t ∈ (0, 1/2) by a quantity of size O(|x−x′|). (By splitting the integral

at
√
|x− x′|, one can use (6.96) for the small values of s and gradient estimates for both kernels for

larger values of s.)

Second term. We recall here that ϕ2
t (x) is defined for x ∈ U by

ϕ2
t (x) =

∫ 1−t

0

∫
Dc
p t+s

2
(x− y)W (dy, ds)

(d)
=

∫ 1

t

∫
Dc
p s

2
(x− y)W (dy, ds).

We have, for x, x′ ∈ U , with d := d(U,Dc),

E
((
ϕ2
t (x)− ϕ2

t (x
′)
)2) ≤ ∫ 1

t

∫
Dc

(
p s

2
(x− y)− p s

2
(x′ − y)

)2
dyds

≤
∫ 1

√
|x−x′|

∫
R2

(
p s

2
(x− y)− p s

2
(x′ − y)

)2
dyds+

∫ √|x−x′|
0

∫
Dc

(
p s

2
(x− y)− p s

2
(x′ − y)

)2
dyds

≤ 2

∫ 1

√
|x−x′|

(
ps(0)− ps(x− x′)

)
ds+ 4

∫ √|x−x′|
0

p s
2
(d)ds ≤ C|x− x′|,

where we use 1 − e−z ≤ z in the last inequality. Similarly, we can prove that there exists C > 0

independent of t such that E(φt(x)2) ≤ C.

Third term. We recall here that η2
t (x) is defined for x ∈ U by η2

t (x) =
∫∞

1−t
∫
D p t2

∗

pDs
2

(x, y)W (dy, ds). Similarly, there exists C > 0 such that for t ∈ (0, 1/2), x, x′ ∈ U , we have

E
((
η2
t (x)− η2

t (x
′)
)2) ≤ ∫ ∞

1/2

∫
D

(
p t

2
∗ pDs

2
(x, y)− p t

2
∗ pDs

2
(x′, y)

)2
dyds ≤ C|x− x′|.

Furthermore, the pointwise variance is uniformly bounded.

Result. Altogether, coming back to (6.97) and combining Kolmogorov continuity criterion with

Fernique’s theorem (see Section 1.3 in [46]), we get the following tail estimate on the above coupling:
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there exist C, c > 0 such that for all t ∈ (0, 1/2), x ≥ 0, we have

P
(∥∥∥ϕt − p t

2
∗ h
∥∥∥
U
≥ x

)
≤ Ce−cx2

.

3.6.2 Approximations for δ ∈ (0, 1)

We explain here how results obtained along the sequence {2−n : n ≥ 0} can be extended to

δ ∈ (0, 1). For each δ ∈ (0, 1), let n ≥ 0 and r ∈ [0, 1] such that δ = 2−(n+r). Then by decoupling

the field φ0,r, using a uniform estimate for r ∈ [0, 1] and a scaling argument, we generalize our

previous results obtained along the sequence 2−n to δ ∈ (0, 1).

Decoupling low frequency noise. Note that there exists C > 0 such that for n ≥ 0 and

r ∈ [0, 1] we have

e−Cλn ≤ λn+r ≤ λneC . (6.98)

Indeed, note that a.s. e
−ξ inf[0,1]2 φ0,rL

(r,n+r)
1,1 ≤ L

(n+r)
1,1 ≤ e

ξ sup[0,1]2 φ0,rL
(r,n+r)
1,1 . Furthermore, with

high probability sup[0,1]2 |φ0,r| ≤ Cr ≤ C. Then, note that L
(r,n+r)
1,1

(d)
= 2−rL

(n)
2r,2r and a.s. L

(n)
1,2 ≤

L
(n)
2r,2r ≤ L

(n)
2,1 . By the tightness result, there exists a constant C > 0 such that uniformly in n,

with high probability, L
(n)
1,2 ≥ e−Cλn and L

(n)
2,1 ≤ eCλn, therefore, with high probability, e−Cλn ≤

L
(r,n+r)
1,1 ≤ eCλn, hence (6.98).

Weak multiplicativity. In this paragraph, we will use the notation λδ from the introduction.

We recall that writing λn instead of λ2−n was an abuse of notation. Now we prove that there exists

C > 0 such that for δ, δ′ ∈ (0, 1) we have

C−1e−C
√
| log δ∨δ′|λδλδ′ ≤ λδδ′ ≤ CeC

√
| log δ∨δ′|λδλδ′ . (6.99)

Similarly as (6.98), there exists C > 0 such that for r, r′ ∈ [0, 1], n, n′ ≥ 0,

e−Cλ2−n−n′ ≤ λ2−n−r−n′−r′ ≤ λ2−n−n′e
C . (6.100)
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For δ, δ′ ∈ (0, 1), let n, n′ ≥ 0 and r, r′ ∈ [0, 1] such that δ = 2−(n+r), δ′ = 2−(n′+r′). Note that

n = [− log2 δ]. Using the weak multiplicativity for powers of 2, we have

e−C
√
n∧n′λ2−nλ2−n′ ≤ λ2−n−n′ ≤ λ2−nλ2−n′e

C
√
n∧n′ . (6.101)

Without loss of generality, we consider just the upper bound in (6.99). The lower bound follows

along the same lines. By using first (6.100) and then (6.101) we get

λδδ′ = λ2−n−r−n′−r′ ≤ λ2−n−n′e
C ≤ λ2−nλ2−n′e

C
√
n∧n′eC .

Now, the result follows by using (6.98):

λ2−nλ2−n′e
C
√
n∧n′ ≤ λ2−n−rλ2−n′−r′e

C
√
n+r∧n′+r′e2C = λδλδ′e

C
√

log |δ∨δ′|e2C .

Tail estimates and tightness of metrics. Using the same argument as in the two previous

paragraphs and the tail estimates obtained along the sequence {2−n : n ≥ 1}, we have the following

tail estimates for crossing lengths of the rectangles [0, a]× [0, b]: there exists c, C > 0 (depending

only on a, b and γ) such that for s > 2, uniformly in δ ∈ (0, 1), we have

P
(
λ−1
δ L

(δ)
a,b ≥ e

s
)
≤ Ce−c

s2

log s ; (6.102)

P
(
λ−1
δ L

(δ)
a,b ≤ e

−s
)
≤ Ce−cs2 . (6.103)

Furthermore, the sequence of metrics (λ−1
δ eξφδds)δ∈(0,1) on [0, 1]2 is tight.
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Chapter 4: Weak LQG metrics and Liouville first passage percolation

This chapter corresponds to the joint work [39] with Julien Dubédat, Ewain Gwynne, Joshua

Pfeffer and Xin Sun.

4.1 Introduction

For γ ∈ (0, 2), we define a weak γ-Liouville quantum gravity (LQG) metric to be a function

h 7→ Dh which takes in an instance of the planar Gaussian free field (GFF) and outputs a metric on

the plane satisfying a certain list of natural axioms. We show that these axioms are satisfied for any

subsequential limits of Liouville first passage percolation. Such subsequential limits were proven to

exist in the previous chapter, namely in [24]. It is also known that these axioms are satisfied for the√
8/3-LQG metric constructed by Miller and Sheffield in [81–83,86].

For any weak γ-LQG metric, we obtain moment bounds for diameters of sets as well as point-to-

point, set-to-set, and point-to-set distances. We also show that any such metric is locally bi-Hölder

continuous with respect to the Euclidean metric and compute the optimal Hölder exponents in both

directions. Finally, we show that LQG geodesics cannot spend a long time near a straight line or the

boundary of a metric ball. These results are used in subsequent work by Gwynne and Miller which

proves that the weak γ-LQG metric is unique for each γ ∈ (0, 2), which in turn gives the uniqueness

of the subsequential limit of Liouville first passage percolation. However, most of our results are

new even in the special case when γ =
√

8/3. We remark that versions of some of the estimates for

weak LQG metrics which are proven in this chapter (including tail estimates for the distance across

a rectangle, the first moment bound for diameters, and Hölder continuity) were previously proven

for subsequential limits of LFPP in [24], namely the second chapter of this thesis. However, it is

important to have these estimates for general weak γ-LQG metrics: indeed, such estimates will be

used in [59] to show the uniqueness of the weak γ-LQG metric (which is a stronger statement than

just the uniqueness of the subsequential limit for the variant of LFPP considered in [24]). Many
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of our estimates are also new for subsequential limits of LFPP, e.g., the optimality of the Hölder

exponents in Theorem 4.7, the moment bounds in Theorems 4.8, 4.10, and 4.11, and the estimates

for geodesics in Section 4.4.

Due to our axiomatic approach, our proofs do not require any outside input besides the existence

of LFPP subsequential limits from [24] and a general theorem about local metrics from [57] (both

of which can be taken as black boxes).

4.1.1 Weak LQG metrics and subsequential limits of LFPP

We will primarily focus on the whole-plane case. We say that a random distribution h on C is a

whole plane GFF plus a continuous function if there exists a coupling of h with a random continuous

function f : C → R such that the law of h − f is that of a whole-plane GFF. If such a coupling

exists for which f is bounded, then we say that h is a whole-plane GFF plus a bounded continuous

function.1 Note that the whole-plane GFF is defined only modulo a global additive constant, but

these definitions do not depend on the choice of additive constant.

If h is a whole-plane GFF, or more generally a whole-plane GFF plus a bounded continuous

function, we define a mollified version of the GFF by

h∗ε(z) := (h ∗ pε2/2)(z) =

∫
C
h(w)pε2/2(z, w) dw, (1.1)

where ps(z, w) = 1
2πs exp

(
− |z−w|

2

2s

)
is the heat kernel on C and where the integral is interpreted in

the sense of distributional pairing. For z, w ∈ C and ε > 0, we define the ε-LFPP metric by

Dε
h(z, w) := inf

P :z→w

∫ 1

0
eξh
∗
ε(P (t))|P ′(t)| dt (1.2)

where the infimum is over all piecewise continuously differentiable paths from z to w.

Remark 4.1. The reason why we define LFPP using h∗ε instead of some other continuous approxi-

mation of the GFF is that this is the approximation for which tightness is proven in [24]. If we had

a tightness result similar to those in [24] for LFPP defined using a different approximation (such as

1The reason why we sometimes restrict to bounded continuous functions is that it ensures that the convolution
with the whole-plane heat kernel is finite (so Dε

h is defined) and it makes parts of the proof of Theorem 4.2 simpler.
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the circle average process of [44, Section 3.1] or the convolution of h with ε−1φ(|z − w|/
√
ε), where

φ is a continuous non-negative radially symmetric function with total integral one), then similar

arguments to those in Section 4.2 would show that the subsequential limits are also weak LQG

metrics. Together with the uniqueness of weak LQG metrics proven in [59], this means that in order

to show that such approximations converge to the γ-LQG metric one only needs to prove tightness.

For ε > 0, let aε be the median of the Dε
h-distance between the left and right boundaries of the

unit square along paths which stay in the unit square. It follows from results in [24] (see Lemma 4.17

below) that the laws of the metrics {a−1
ε Dε

h}ε>0 are tight with respect to the local uniform topology

on C×C and every subsequential limit induces the Euclidean topology on C.

Building on this, we will prove that in fact the metrics a−1
ε Dε

h admit subsequential limits in

probability and that every subsequential limit satisfies a certain natural list of axioms. To state

these axioms, we need some preliminary definitions. Let (X,D) be a metric space.

For a curve P : [a, b]→ X, the D-length of P is defined by

len (P ;D) := sup
T

#T∑
i=1

D(P (ti), P (ti−1))

where the supremum is over all partitions T : a = t0 < · · · < t#T = b of [a, b]. Note that the

D-length of a curve may be infinite.

For Y ⊂ X, the internal metric of D on Y is defined by

D(x, y;Y ) := inf
P⊂Y

len (P ;D) , ∀x, y ∈ Y (1.3)

where the infimum is over all paths P in Y from x to y. Then D(·, ·;Y ) is a metric on Y , except

that it is allowed to take infinite values.

We say that (X,D) is a length space if for each x, y ∈ X and each ε > 0, there exists a curve of

D-length at most D(x, y) + ε from x to y.

A continuous metric on a domain U ⊂ C is a metric D on U which induces the Euclidean topology

on U , i.e., the identity map (U, | · |)→ (U,D) is a homeomorphism. We equip the space of continuous

metrics on U with the local uniform topology for functions from U ×U to [0,∞) and the associated
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Borel σ-algebra. We allow a continuous metric to have D(u, v) = ∞ if u and v are in different

connected components of U . In this case, in order to have Dn → D w.r.t. the local uniform topology

we require that for large enough n, Dn(u, v) =∞ if and only if D(u, v) =∞.

Let D′(C) be the space of distributions (generalized functions) on C, equipped with the usual weak

topology. For γ ∈ (0, 2), a weak γ-LQG metric is a measurable function h 7→ Dh from D′(C) to the

space of continuous metrics on C such that the following is true whenever h is a whole-plane GFF

plus a continuous function.

I. Length space. Almost surely, (C, Dh) is a length space, i.e., the Dh-distance between any two

points of C is the infimum of the Dh-lengths of Dh-continuous paths (equivalently, Euclidean

continuous paths) between the two points.

II. Locality. Let U ⊂ C be a deterministic open set. The Dh-internal metric Dh(·, ·;U) is

determined a.s. by h|U .

III. Weyl scaling. Let ξ be as in (3.4) and for each continuous function f : C→ R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0
eξf(P (t)) dt, ∀z, w ∈ C, (1.4)

where the infimum is over all continuous paths from z to w parametrized by Dh-length. Then

a.s. eξf ·Dh = Dh+f for every continuous function f : C→ R.

IV. Translation invariance. For each deterministic point z ∈ C, a.s. Dh(·+z) = Dh(·+ z, ·+ z).

V. Tightness across scales. Suppose that h is a whole-plane GFF and let {hr(z)}r>0,z∈C be

its circle average process. For each r > 0, there is a deterministic constant cr > 0 such that

the set of laws of the metrics c−1
r e−ξhr(0)Dh(r·, r·) for r > 0 is tight (w.r.t. the local uniform

topology). Furthermore, the closure of this set of laws w.r.t. the Prokhorov topology on

continuous functions C×C→ [0,∞) is contained in the set of laws on continuous metrics on

C (i.e., every subsequential limit of the laws of the metrics c−1
r e−ξhr(0)Dh(r·, r·) is supported

on metrics which induce the Euclidean topology on C). Finally, there exists Λ > 1 such that

for each δ ∈ (0, 1),

Λ−1δΛ ≤ cδr
cr
≤ Λδ−Λ, ∀r > 0. (1.5)
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We emphasize that the definition of a weak γ-LQG metric depends on γ only via the parameter ξ in

Axiom III. We will therefore sometimes say that a metric satisfying the above axioms is a weak

LQG metric with parameter ξ.

It is easy to see, at least heuristically, why Axioms I through V should be satisfied for subsequential

limits of LFPP, although there is some subtlety involved in checking these axioms rigorously. The

first main result of this chapter is the following statement, whose proof builds on results from [24,57].

Theorem 4.2. Let γ ∈ (0, 2). For every sequence of ε’s tending to zero, there is a weak γ-LQG

metric D and a subsequence {εn}n∈N for which the following is true. Let h be a whole-plane GFF,

or more generally a whole-plane GFF plus a bounded continuous function. Then the re-scaled LFPP

metrics a−1
εn D

εn
h from (1.2) converge in probability to Dh.

We will explain why we get convergence in probability, instead of just in law, in Theorem 4.2

just below. Let us first discuss the axioms for a weak LQG metric. Axioms I through IV are natural

from the perspective that γ-LQG is a “random two-dimensional Riemannian manifold” obtained by

exponentiating h. Axiom V is a substitute for exact scale invariance of the metric. To explain this,

it is expected (and will be proven in [56,59]) that the γ-LQG metric, like the γ-LQG measure, is

invariant under coordinate changes of the form (2.3). In particular, it should be the case that for

any a ∈ C \ {0}, a.s.

Dh (a·, a·) = Dh(a·)+Q log |a|(·, ·), for Q =
2

γ
+
γ

2
. (1.6)

Under Axiom III, the formula (1.6) together with the scale invariance of the law of h, modulo an

additive constant, implies Axiom V with cr = rξQ. We define a strong LQG metric to be a mapping

h 7→ Dh which satisfies Axioms I through IV as well as (1.6).

A similar definition of a strong LQG metric has appeared in earlier literature. Indeed, the

paper [80] proved several properties of geodesics for any metric associated with γ-LQG which

satisfies a similar list of axioms to the ones in our definition of a strong LQG metric; however, at

that point such a metric had only been constructed for γ =
√

8/3.

It far from obvious that subsequential limits of LFPP satisfy (1.6). The reason for this is that

scaling space results in scaling the value of ε in (1.2), which in turn changes the subsequence which
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we are working with. It will eventually be proven in [59] that every weak LQG metric satisfies (1.6),

i.e., every weak LQG metric is a strong LQG metric, but the proof requires all of the results of the

present chapter as well as those of [57,58].

Nevertheless, Axiom V can be used in place of (1.6) in many situations. Basically, this axiom

allows us to compare distance quantities at the same Euclidean scale. For example, Axiom V implies

that if U ⊂ C is open and K ⊂ U is compact, then the laws of

(
c−1
r e−ξhr(0)Dh(rK, r∂U)

)−1
and c−1

r e−ξhr(0) sup
u,v∈rK

Dh(u, v; rU) (1.7)

as r varies are tight.

Part of the proof of Theorem 4.2 is to show that for any joint subsequential limit (h,Dh) of

the laws of the pairs (h, a−1
ε Dε

h), the limiting metric Dh is a measurable function of h. This is not

obvious since convergence in law does not in general preserve measurability. In our setting, we will

prove that Dh is determined by h by checking the conditions of [57, Corollary 1.8], which gives a

list of conditions under which a random metric coupled with the GFF is determined by the GFF.

The reason why we have convergence in probability, instead of convergence in law, in Theorem 4.2

is the following elementary probabilistic lemma (see e.g. [97, Lemma 4.5]).2

Lemma 4.3. Let (Ω1, d1) and (Ω2, d2) be complete separable metric spaces. Let X be a random

variable taking values in Ω1 and let {Y n}n∈N and Y be random variables taking values in Ω2, all

defined on the same probability space, such that (X,Y n)→ (X,Y ) in law. If Y is a.s. determined

by X, then Y n → Y in probability.

Theorem 4.2 will be proven in Section 4.2. Once this is done, throughout the rest of the chapter

we will only ever work with a weak γ-LQG metric — we will not need to make explicit reference

to LFPP. An important advantage of this approach is that the Miller-Sheffield
√

8/3-LQG metric

from [81,82,86] is known to satisfy the axioms for a weak
√

8/3-LQG metric. See [60, Section 2.4]

for a careful explanation of why this is the case. Note that [60, Section 2.4] checks the coordinate

change relation (1.6) for the Miller-Sheffield metric which (as discussed above) implies Axiom V.

2Since the space of continuous metrics is not complete w.r.t. any natural choice of metric which induces the local
uniform topology, we apply the lemma with (Ω2, d2) equal to the larger space of continuous functions C×C→ [0,∞)
equipped with the local uniform topology, which is completely metrizable.
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Hence all of our results for weak γ-LQG metrics apply to both this
√

8/3-LQG metric and to

subsequential limits of LFPP.

Remark 4.4 (Liouville graph distance). Besides LFPP, there is another natural scheme for

approximating LQG metrics called Liouville graph distance (LGD). The ε-LGD distance between

two points in C is defined to be the minimum number of Euclidean balls with LQG mass ε whose

union contains a path between the two points. It has been proven in [26] that for each γ ∈ (0, 2),

the ε-LGD metric, appropriately renormalized, admits subsequential limiting metrics as ε → 0

which induce the Euclidean topology. In the contrast to LFPP, for subsequential limits of LGD

the coordinate change relation (1.6) is easy to verify but Weyl scaling (Axiom III) appears to be

very difficult to verify, so these subsequential limits are not known to be weak LQG metrics in the

sense of this chapter. It is still an open problem to establish uniqueness of the scaling limit for

LGD. Similar considerations apply to variants of LGD defined using embedded planar maps (such

as maps constructed from LQG square subdivision [44,53] or mated-CRT maps [54,61]) instead of

Euclidean balls, although for these variants tightness has not been checked.

4.1.2 Quantitative properties of weak LQG metrics

In what follows, we assume that D is a weak γ-LQG metric and h is a whole-plane GFF. Perhaps

surprisingly, the axioms for a weak LQG metric imply much sharper bounds on the scaling constants

cr than (1.5).

Theorem 4.5. Let ξ be as in (3.4) and let Q = 2/γ + γ/2. Then for r > 0, the scaling constants

satisfy

cδr
cr

= δξQ+oδ(1) as δ → 0, (1.8)

at a rate which is uniform over all r > 0.

The definition of a weak LQG metric uses only the parameter ξ. Theorem 4.5 connects this

definition to the coordinate change parameter Q. This will be important for the proof in [59] that

any weak LQG metric satisfies the coordinate change formula (1.6). Theorem 4.5 will be proven in

Section 4.3.2 by comparing Dh-distances to LFPP distances and using the fact that the δ-LFPP

distance between two fixed points is typically of order δ1−ξQ+oδ(1) [28, Theorem 1.5] (for convenience,
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for this argument we will work with a variant of LFPP which is defined in a slightly different manner

than the version in (1.2)).

Remark 4.6. Theorem 4.5 gives a proof purely in the continuum that the exponent d√
8/3

of [28,32]

is equal to 4. Previously, this was proven in [28] (building on [55]) using the known ball volume

growth exponent for random triangulations [7]. To see why Theorem 4.5 implies that d√
8/3

= 4,

we observe that the
√

8/3-LQG metric of [81, 82,86] satisfies the axioms for a weak LQG metric

with parameter ξ = 1/
√

6. Moreover, by the LQG coordinate change formula for the
√

8/3-LQG

metric, Axiom V holds for this metric with with cr = r5/6. Theorem 4.5 therefore implies that if

γ ∈ (0, 2) is chosen so that γ/dγ = 1/
√

6, then the associated parameter Q = 2/γ + γ/2 satisfies

Q/
√

6 = 5/6, i.e., Q = 5/
√

6 which is equivalent to γ =
√

8/3. Hence γ/dγ = 1/
√

6 when γ =
√

8/3,

so d√
8/3

= 4.

Our next main result gives the optimal Hölder exponents for Dh with respect to the Euclidean

metric.

Theorem 4.7 (Optimal Hölder exponents). Let U ⊂ C be open and bounded. Almost surely, the

identity map from U , equipped with the Euclidean metric, to (U,Dh) is locally Hölder continuous

with any exponent smaller than ξ(Q− 2) and is not locally Hölder continuous with any exponent

larger than ξ(Q− 2). Furthermore, the inverse of this map is a.s. locally Hölder continuous with

any exponent smaller than ξ−1(Q+ 2)−1 and is not locally Hölder continuous with any exponent

larger than ξ−1(Q+ 2)−1.

For γ =
√

8/3, one has ξ = 1/
√

6 and Q = 5/
√

6, so the optimal Hölder exponents are given by

ξ(Q− 2) =
1

6
(5− 2

√
6) ≈ 0.0168 and ξ−1(Q+ 2)−1 = 30− 12

√
6 ≈ 0.6061. (1.9)

The intuitive reason why Theorem 4.7 is true is as follows. If z is an α-thick point for h, i.e., the

circle average satisfies hε(z) = (α+ oε(1)) log ε−1 as ε→ 0, then we can show that the Dh-distance

from z to ∂Bε(z) behaves like εξ(Q−α)+oε(1) as ε → 0. Indeed, this is an easy consequence of the

estimates in Section 4.3.4. Almost surely, α-thick points exist for α ∈ (−2, 2) but not for |α| > 2 [65].

We next state some basic moment estimates for distances which are metric analogues of the well-
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known fact that the γ-LQG measure has finite moments of all orders in (−∞, 4/γ2) [90, Theorems

2.11 and 2.12].

Theorem 4.8 (Moment bounds for diameters). Let U ⊂ C be open and let K ⊂ U be a compact

connected set with more than one point. Then the U -internal diameter of K satisfies

E

[(
sup
z,w∈K

Dh(z, w;U)

)p]
<∞, ∀p ∈

(
−∞, 4dγ

γ2

)
. (1.10)

For γ =
√

8/3, we get finite moments up to order 6. We also have the following bound for

distances between sets. In this case, we get finite moments of all orders.

Theorem 4.9 (Distance between sets). Let U ⊂ C be an open set (possibly all of C) and let

K1,K2 ⊂ U be connected, disjoint compact sets which are not singletons. Then

E [(Dh(K1,K2;U))p] <∞, ∀p ∈ R. (1.11)

The results of [24] show that if Dh is a subsequential scaling limit of the LFPP metrics (1.2),

then one has the following slightly stronger version of Theorem 4.9:

P
[
A−1 ≤ a−1

ε Dε
h(K1,K2;U) ≤ A

]
≥ 1− c0e

−c1(logA)2/ log logA, ∀A > 2ee (1.12)

for constants c0, c1 > 0 allowed to depend on K1,K2, U . A posteriori, one gets (1.12) for every

weak LQG metric since [59] proves that the weak LQG metric is unique for each γ ∈ (0, 2), so in

particular it is the limit of LFPP.

We now turn our attention to point-to-point distances. These estimates also work if we allow

the field to have a log singularity. To make sense of the metric in this case, we note that since log | · |

is continuous away from 0, we can define Dh−α log |·| as a continuous length metric on C \ {0} by

Dh−α log |·| = | · |−αξ ·Dh, in the notation (1.4). We can then extend Dh−α log |·| to a metric defined

on all of C which is allowed to take the value ∞ by taking the infima of the Dh−α log |·|-lengths of

paths. We can similarly define the metric associated with fields with two or more log singularities.

Theorem 4.10 (Distance from a point to a circle). Let α ∈ R and let hα := h − α log | · |. If
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α ∈ (−∞, Q), then

E [(Dhα (0, ∂D))p] <∞, ∀p ∈
(
−∞, 2dγ

γ
(Q− α)

)
. (1.13)

If α > Q, then a.s. Dhα(0, z) =∞ for every z ∈ C \ {0}.

For example, if γ =
√

8/3 and α = 0, we get finite moments up to order 10. If instead

γ =
√

8/3 and α = γ (which corresponds to the case when 0 is a “quantum typical” point, see,

e.g., [44, Proposition 3.4]) we only get finite moments up to order 2. In the critical case when α = Q,

our estimates at this point are not sufficiently sharp to determine whether DhQ (0, ∂D) is finite.

However, once we know that every weak LQG metric is a strong LQG metric (which is proven

in [59]) it is not hard to check that a.s. DhQ (0, z) =∞ for every z ∈ C \ {0}. Similar comments

apply in the case when α = Q or β = Q in Theorem 4.11 just below.

Theorem 4.11 (Distance between two points). Let α, β ∈ R, let z, w ∈ C be distinct, and let

hα,β := h− α log | · −z| − β log | · −w|. If α, β ∈ (−∞, Q), then

E
[(
Dhα

(
z, w;B4|z−w|(z)

))p]
<∞, ∀p ∈

(
−∞, 2dγ

γ
(Q−max{α, β})

)
. (1.14)

If either α > Q or β > Q, then a.s. Dhα,β (z, w) =∞.

As applications of our main results, in Section 4.4 we will also prove some estimates which

constrain the behavior of Dh-geodesics and which will be important in [59]. To be more precise, the

first main estimate of Section 4.4 is Proposition 4.57, which gives an upper bound for the amount

of time that a Dh-geodesic can spend in a small neighborhood of a line segment or a circular arc.

Intuitively, one expects that this amount of time is small since LQG geodesics should be fractal and

hence should look very different from smooth curves. The particular bound given in Proposition 4.57

is used in [59, Section 3] to prevent a geodesic from spending a long time in an annulus with a small

aspect ratio; and in [59, Section 5] in order to force a geodesic to enter a “good” region of the plane

in which certain distance bounds hold.

The other main estimate in Section 4.4 is Proposition 4.59, which is an upper bound for how

much time an LQG geodesic can spend near the boundary of an LQG metric ball centered at its
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starting point. Intuitively, this amount of time should be small since if P is a Dh-geodesic, then

Dh(P (0), P (t)) = t but Dh(P (0), ·) is constant on the boundary of a Dh-ball centered at P (0). The

bound given in Proposition 4.59 is used in [59, Lemma 4.7].

Remark 4.12 (The case when ξ > 2/d2). Throughout this chapter, we focus on the case of weak

γ-LQG metrics. Since γ 7→ γ/dγ is increasing [28, Proposition 1.7], weak γ-LQG metrics have

parameter ξ ∈ (0, 2/d2) (here, d2 := limγ→2− dγ). It is natural to wonder whether one can say

anything about weak LQG metrics which satisfy the same axioms but with a parameter ξ ≥ 2/d2.

In the critical case when ξ = 2/d2 (i.e., γ = 2), we expect that a weak LQG metric still exists and

is the scaling limit of LFPP with parameter 2/d2. This metric should be the γ-LQG metric with

γ = 2 (the γ = 2 metric should also be the limit as γ ↗ 2 of the γ-LQG metrics, appropriately

renormalized). We expect that all of the theorem statements in this section still hold for ξ = 2/d2,

except that the metric Dh is not Hölder continuous w.r.t. the Euclidean metric.

For ξ > 2/d2, we do not expect that any weak LQG metrics with parameter ξ exist. However,

there should be metrics which satisfy a similar list of properties except that such metrics no longer

induce the Euclidean topology. Instead, there should be an uncountable, dense set of points z ∈ C

such that Dh(z, w) = ∞ for every w ∈ C \ {z}. More precisely, let λ(ξ) be the exponent for

the typical LFPP distance between the left and right sides of [0, 1]2 and let Q(ξ) = (1− λ(ξ))/ξ.

By [28, Theorem 1.5], Q(γ/dγ) = 2/γ + γ/2 > 2. By [63, Lemma 4.1] and [30, Theorem 1.1],

Q(ξ) ∈ (0, 2) for ξ > 2/d2. For ξ > 2/d2, the points z ∈ C which lie at infinite Dh-distance from

every other point should correspond to so-called thick points of h (as defined in [65]) with thickness

α > Q.

It is shown in [29] that LFPP with parameter ξ > 2/d2 admits subsequential scaling limits in

law w.r.t. the topology on lower semicontinuous functions. We expect that the subsequential limit

is unique, satisfies the properties discussed in the preceding paragraph, and is related to LQG with

matter central charge c ∈ (1, 25) (LQG with γ ∈ (0, 2] corresponds to c ∈ (−∞, 1]). In particular,

with Q(ξ) as above, the central charge should be related to ξ by c = 25−6Q(ξ)2. See [6,29,30,53,63]

for further discussion of this extended phase of LQG and some justification for the above predictions.
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4.1.3 Outline

In Section 4.2, we prove Theorem 4.2, which says that subsequential limits of LFPP are weak

γ-LQG metrics, taking [24] as a starting point. Throughout the rest of the chapter, we work with an

arbitrary weak γ-LQG metric (not necessarily assumed to arise as a subsequential limit of LFPP).

Section 4.3 contains the proofs of the results stated in Section 4.1.2. In fact, for most of these

results, we will prove more quantitative versions which are required to be uniform over all Euclidean

scales. At this point, these statements are not implied by the statements in Section 4.1.2 since we

are working with a weak γ-LQG metric, which is only known to be “tight across scales” (Axiom V)

instead of exactly scale invariant.

The first result that we prove for a weak γ-LQG metric is the estimate for the distance between

two sets from Theorem 4.9; this is the content of Section 4.3.1. In Section 4.3.2, we use this estimate

to relate Dh-distances to LFPP distances and thereby prove Theorem 4.5. Once Theorem 4.5 is

established, we have some ability to compare Dh-distances at different Euclidean scales. This allows

us to prove the moment estimate (1.10) of Theorem 4.8 in Section 4.3.3 as well as the moment

estimates of Theorems 4.10 and 4.11 in Section 4.3.4. Using these moment estimates, we then prove

Theorem 4.7 in Section 4.3.5.

In Section 4.4, we apply the estimates of Section 4.1.2 to prove some bounds for Dh-geodesics.

4.1.4 Notation

We write N = {1, 2, 3, . . .} and N0 = N ∪ {0}.

For a < b, we define the discrete interval [a, b]Z := [a, b] ∩ Z.

If f : (0,∞)→ R and g : (0,∞)→ (0,∞), we say that f(ε) = Oε(g(ε)) (resp. f(ε) = oε(g(ε))) as

ε→ 0 if f(ε)/g(ε) remains bounded (resp. tends to zero) as ε→ 0. We similarly define O(·) and

o(·) errors as a parameter goes to infinity.

If f, g : (0,∞)→ [0,∞), we say that f(ε) � g(ε) if there is a constant C > 0 (independent from ε

and possibly from other parameters of interest) such that f(ε) ≤ Cg(ε). We write f(ε) � g(ε) if

f(ε) � g(ε) and g(ε) � f(ε).
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Let {Eε}ε>0 be a one-parameter family of events. We say that Eε occurs with

• polynomially high probability as ε→ 0 if there is a p > 0 (independent from ε and possibly

from other parameters of interest) such that P[Eε] ≥ 1−Oε(εp).

• superpolynomially high probability as ε→ 0 if P[Eε] ≥ 1−Oε(εp) for every p > 0.

We similarly define events which occur with polynomially or superpolynomially high probability as

a parameter tends to ∞.

We will often specify any requirements on the dependencies on rates of convergence in O(·) and o(·)

errors, implicit constants in �, etc., in the statements of lemmas/propositions/theorems, in which

case we implicitly require that errors, implicit constants, etc., appearing in the proof satisfy the

same dependencies.

For z ∈ C and r > 0, we write Br(z) for the Euclidean ball of radius r centered at z. We also define

the open annulus

Ar1,r2(z) := Br2(z) \Br1(z), ∀0 < rr < r2 <∞. (1.15)

We write S = (0, 1)2 for the open Euclidean unit square.

4.2 Subsequential limits of LFPP are weak LQG metrics

The goal of this section is to deduce Theorem 4.2 from the tightness result of [24]. We start

in Section 4.2.1 by introducing a “localized” variant of LFPP, defined using the convolution of h

with a truncated version of the heat kernel, which (unlike the ε-LFPP metric Dε
h defined in (1.2))

depends locally on h. We then show that this localized variant of LFPP is a good approximation

for Dε
h (Lemma 4.13). In Section 4.2.2, we explain why the results of [24] imply that the re-scaled

LFPP metrics a−1
ε Dε

h as well as the associated internal metrics on certain domains in C are tight

w.r.t. the local uniform topology and that every subsequential limit is a continuous length metric on

C. In Sections 4.2.3, 4.2.4, and 4.2.5, respectively, we will prove versions of Weyl scaling, tightness

across scales, and locality for the subsequential limits (i.e., Axioms III, V, and II). In Section 4.2.6,

we use a theorem from [57] to show that subsequential limits of LFPP can be realized as measurable

functions of h. We then conclude the proof of Theorem 4.2.
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Throughout this section, we will frequently need to switch between working with a whole-plane

GFF and working with a whole-plane GFF plus a continuous function. As such, we will always

write h for a whole-plane GFF (with some choice of additive constant, specified as needed) and h

for a whole-plane GFF plus a continuous function (usually, this will be a whole-plane GFF plus a

bounded continuous function). Note that this differs from the convention elsewhere in the chapter,

where h is sometimes used to denote a whole-plane GFF plus a continuous function.

4.2.1 A localized version of LFPP

Let h be a whole-plane GFF plus a bounded continuous function. The mollified field h∗ε(z)

of (1.1) does not depend on h in a local manner, and hence Dε
h-distances do not depend on h in

a local manner. However, as ε→ 0 the heat kernel pε2/2(z, w) concentrates around the diagonal,

so we expect that h∗ε(z) “almost” depends locally on h when ε is small. To quantify this, we will

introduce an approximation ĥ∗ε of h∗ε which depends locally on h and prove a lemma (Lemma 4.13)

to the effect that ĥ∗ε and h∗ε are close when ε are small. This will be useful at several places in this

section, especially for the proof of locality (essentially, Axiom II) in Section 4.2.5.

For ε > 0, let ψε : C → [0, 1] be a deterministic, smooth, radially symmetric bump function

which is identically equal to 1 on Bε1/2/2(0) and vanishes outside of Bε1/2(0) (in fact, the power 1/2

could be replaced by any p ∈ (0, 1)). We can choose ψε in such a way that ε 7→ ψε is a continuous

mapping from (0,∞) to the space of continuous functions on C, equipped with the uniform topology.

Recalling that ps(z, w) denotes the heat kernel, we define

ĥ∗ε(z) :=

∫
C

ψε(z − w)h(w)pε2/2(z, w) dw, (2.16)

with the integral interpreted in the sense of distributional pairing. Since ψε vanishes outside of

Bε1/2(0), we have that ĥ∗ε(z) is a.s. determined by h|B
ε1/2

(z). It is easy to see that ĥ∗ε a.s. admits a

continuous modification (see Lemma 4.13 below). We henceforth assume that ĥ∗ε is replaced by such

a modification.
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As in (1.2), we define the localized LFPP metric

D̂ε
h(z, w) := inf

P :z→w

∫ 1

0
eξĥ
∗
ε(P (t))|P ′(t)| dt, (2.17)

where the infimum is over all piecewise continuously differentiable paths from z to w. By the

definition of ĥ∗ε,

for any open U ⊂ C, the internal metric D̂ε
h(·, ·;U) is a.s. determined by h|B

ε1/2
(U). (2.18)

Lemma 4.13. Let h be a GFF plus a bounded continuous function. Then a.s. (z, ε) 7→ ĥ∗ε(z) is

continuous. Furthermore, for each bounded open set U ⊂ C, a.s.

lim
ε→0

sup
z∈U
|h∗ε(z)− ĥ∗ε(z)| = 0. (2.19)

In particular, a.s.

lim
ε→0

D̂ε
h(z, w;U)

Dh(z, w;U)
= 1, uniformly over all z, w ∈ U with z 6= w. (2.20)

To prove Lemma 4.13, we will need the following elementary estimate for the circle average

process, whose proof we postpone until after the proof of Lemma 4.13.

Lemma 4.14. Let h be a whole-plane GFF (with any choice of additive constant) and let {hr}r≥0

be its circle average process. For each R > 0 and ζ > 0, a.s.

sup
z∈BR(0)

sup
r>0

|hr(z)|
max{(2 + ζ) log(1/r), (log r)1/2+ζ , 1}

<∞. (2.21)

Proof of Lemma 4.13. We first consider the case when h = h is a whole-plane GFF normalized so

that h1(0) = 0. The functions w 7→ ψε(z − w) and w 7→ pε2/2(z, w) are each radially symmetric

about z, i.e., they depend only on |z−w|. Using the circle average process {hr}r>0, we may therefore

write in polar coordinates

h∗ε(z) =
2

ε2

∫ ∞
0

rhr(z)e
−r2/ε2 dr and ĥ∗ε(z) =

2

ε2

∫ ε1/2

0
rhr(z)ψε(r)e

−r2/ε2 dr. (2.22)
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From this representation and the continuity of the circle average process, we infer that (z, ε) 7→ ĥ∗ε(z)

a.s. admits a continuous modification.

Since ψε ≡ 1 on Bε1/2/2(z) and ψε takes values in [0, 1],

|h∗ε(z)− ĥ∗ε(z)| ≤
2

ε2

∫ ∞
ε1/2/2

r|hr(z)|e−r
2/ε2 dr. (2.23)

By Lemma 4.14 (applied with ζ = 1/2, say), there is a random constant C = C(U) > 0 such that

|hr(z)| ≤ C max{log(1/r), log r, 1} for each z ∈ U and r > 0. Plugging this into (2.23) shows that

a.s.

sup
z∈U
|h∗ε(z)− ĥ∗ε(z)| ≤

2C

ε2

∫ ∞
ε1/2

rmax{log(1/r), log r, 1}e−r2/ε2 dr, (2.24)

which tends to zero exponentially fast as ε→ 0. This gives (2.19) in the case of a whole-plane GFF

with h1(0) = 0.

If f : C→ R is a bounded continuous function, we similarly obtain a.s. limε→0 supz∈U |f∗ε (z)−

f̂∗ε (z)| = 0, using the notation (1.1) and (2.16) with f in place of h or h. This gives (2.19) in the

case of a whole-plane GFF plus a bounded continuous function. The relation (2.20) is immediate

from (2.17) and the definition of LFPP.

To conclude the proof of Lemma 4.13 we still need to prove Lemma 4.14. To deal with large

values of r, we will use the following lemma.

Lemma 4.15. Let h be a whole-plane GFF. For each R > 0 and ζ > 0, a.s.

lim
r→∞

sup
z∈BR(0)

|hr(z)|
(log r)1/2+ζ

= 0. (2.25)

Proof. The process {hr(z) − hr(0) : z ∈ BR(0), r ∈ [1/2, 1]} is centered Gaussian with variances

bounded above by a constant depending only on R. Furthermore, this process a.s. admits a

continuous modification [44, Proposition 3.1], so if we replace it by such a modification then a.s.

supz∈BR(0) supr∈[1/2,1] |hr(z) − hr(0)| < ∞. By the Borel-TIS inequality [16, 108] (see, e.g., [1,

Theorem 2.1.1]), we have E
[
supz∈BR(0) supr∈[1/2,1] |hr(z)− hr(0)|

]
< ∞ and there are constants
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c0, c1 > 0 depending only on R such that for each A > 0,

P

[
sup

z∈BR(0)
sup

r∈[1/2,1]
|hr(z)− hr(0)| > A

]
≤ c0e

−c1A2
. (2.26)

Note that we absorbed the R-dependent constant E
[
supz∈BR(0) supr∈[1/2,1] |hr(z)− hr(0)|

]
into c0.

By the scale invariance of the law of h, viewed modulo an additive constant, we infer from (2.26)

that for each k ∈ N0 and A > 0,

P

[
sup

z∈B
R2k

(0)
sup

r∈[2k−1,2k]

|hr(z)− hr(0)| > A

]
≤ c0e

−c1A2
. (2.27)

By applying this with A equal to a universal constant times k1/2+ζ/2, say, then using the Borel-

Cantelli lemma, we get that a.s.

lim
k→∞

sup
z∈B

R2k
(0)

sup
r∈[2k−1,2k]

|hr(z)− hr(0)|
(log r)1/2+ζ

= 0. (2.28)

Each z ∈ K is contained in BR2k(0) for each k ∈ N and each r ≥ 1/2 is contained in [2k−1, 2k] for

some k ∈ N. Hence, (2.28) implies that a.s.

lim
r→∞

sup
z∈BR(0)

|hr(z)− hr(0)|
(log r)1/2+ζ

= 0. (2.29)

Since t 7→ het(0) is a standard two-sided linear Brownian motion [44, Section 3], it follows that a.s.

|hr(0)|/(log r)1/2+ζ → 0 as r →∞. Combining this with (2.29) yields (2.25).

Proof of Lemma 4.14. Standard estimates for the maximum of the circle average process (see, e.g.,

the proof of [65, Lemma 3.1]) show that a.s.

sup
z∈BR(0)

sup
r∈(0,1/2]

|hr(z)|
(2 + ζ) log(1/r)

<∞. (2.30)

By the continuity of the circle average process, a.s. for any r0 > 1/2, supz∈BR(0) supr∈[1/2,r0] |hr(z)| <
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∞. By Lemma 4.15, it is a.s. the case that for each large enough r0 > 0,

sup
z∈BR(0)

sup
r≥r0

|hr(z)|
(log r)1/2+ζ

<∞. (2.31)

Combining these estimates gives (2.21).

4.2.2 Subsequential limits

In this subsection we explain why the results of [24] imply that the laws of the re-scaled LFPP

metrics a−1
ε Dε

h are tight (this is not entirely immediate since [24] considers a slightly different class of

fields and only looks at metrics on bounded domains). We will in fact obtain a stronger convergence

statement which also includes the convergence of internal metrics of a−1
ε Dε

h on a certain class of

sub-domains of C.

Definition 4.16 (Dyadic domain). A closed square S ⊂ C is dyadic if S has side length 2k and

corners in 2kZ2 for some k ∈ Z. We say that W ⊂ C is a dyadic domain if there exists a finite

collection of dyadic squares S such that W is the interior of
⋃
S∈S S. Note that a dyadic domain is

a bounded open set.

Lemma 4.17. Let h be a whole-plane GFF plus a bounded continuous function.

A. The laws of the metrics a−1
ε Dε

h are tight w.r.t. the local uniform topology on C ×C and any

subsequential limit of these laws is supported on continuous length metrics on C.

B. Let W be the (countable) set of all dyadic domains. For any sequence of positive ε’s tending

to zero, there is a subsequence E and a coupling of a continuous length metric Dh on C and a

length metric Dh,W on W for each W ∈ W which induces the Euclidean topology on W such

that the following is true. Along E, we have the convergence of joint laws

(
a−1
ε Dε

h,
{
a−1
ε Dε

h(·, ·;W )
}
W∈W

)
→
(
Dh, {Dh,W }W∈W

)
(2.32)

where the first coordinate is given the local uniform topology on C×C and each element of the

collection in the second coordinate is given the uniform topology on W ×W . Furthermore, for

each W ∈ W we have the a.s. equality of internal metrics Dh,W (·, ·;W ) = Dh(·, ·;W ).
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In the setting of Assertion A, we note that the space of continuous functions C × C → R,

equipped with the local uniform topology, is separable and completely metrizable, which means

that we can apply Prokhorov’s theorem in this space. Assertion B of Lemma 4.17 does not give

that Dε
h(·, ·;W ) → Dh(·, ·;W ) in law along E for each W ∈ W. The reason why we do not prove

this statement is to avoid worrying about possible pathologies near ∂W (see Lemma 4.23). We now

proceed with the proof of Lemma 4.17. At several places in this section, we will use the following

elementary scaling relation for LFPP.

Lemma 4.18. Let h be a whole-plane GFF normalized so that h1(0) = 0. Let r > 0 and let

hr := h(r·)− hr(0), so that hr
d
= h. The LFPP metrics defined as in (1.2) for h and hr are related

by

D
ε/r
hr

d
= D

ε/r
h and D

ε/r
hr (z, w) = r−1e−ξhr(0)Dε

h(rz, rw), ∀ε > 0, ∀z, w ∈ C. (2.33)

Proof. Using the notation (1.1), we get from a standard change of variables that the convolutions

of hr and h with the heat kernel satisfy hr,∗ε/r(z) = h∗ε(rz)− hr(0) for each ε > 0 and z ∈ C. Using

the definition (1.2) of LFPP, we now compute

e−ξhr(0)Dε
h(rz, rw) = inf

P :rz→rw

∫ 1

0
eξ(h

∗
ε(P (t))−hr(0))|P ′(t)| dt

= inf
P :rz→rw

∫ 1

0
e
ξhr,∗
ε/r

(P (t)/r)|P ′(t)| dt

= r inf
P̃ :z→w

∫ 1

0
e
ξhr,∗
ε/r

(P̃ (t))|P̃ ′(t)| dt (set P̃ = P/r)

= rD
ε/r
hr (z, w)

and this completes the proof.

To check that our limiting metrics are length metrics, we will need the following standard fact

from metric geometry.

Lemma 4.19. Let X be a compact topological space and let {Dn}n∈N be a sequence of length

metrics on X which converge uniformly to a metric D on X. Then D is a length metric on X.

Proof. This is [17, Exercise 2.4.19], which in turn is an easy consequence of [17, Corollary 2.4.17].
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Let us now record what we get from [24].

Lemma 4.20. Let S ⊂ C be a closed square and let h be a whole-plane GFF plus a bounded

continuous function. The laws of the internal metrics a−1
ε Dε

h(·, ·;S) for ε ∈ (0, 1) are tight w.r.t. the

uniform topology on S × S and any subsequential limit of these laws is supported on length metrics

which induce the Euclidean topology on S.

Proof. We first consider the case when S = [0, 1]2 is the Euclidean unit square and h = h is a

whole-plane GFF normalized so that h1(0) = 0. Let h̊ be a zero-boundary GFF on (−1, 2)2. By the

Markov property of the whole-plane GFF, we can couple h and h̊ in such a way that h− h̊ is a.s.

harmonic, hence continuous, on (−1, 2)2.

Recall the heat kernel ps(z, w) = 1
2πse

−|z−w|/(2s). For z ∈ [0, 1]2 and ε ∈ (0, 1), we define the

convolution h̊∗ε = h̊ ∗ pε2/2 as in (1.1). For z, w ∈ (−1, 2)2, define Dε
h̊
(z, w) as in (1.2) with h̊∗ε in

place of h∗ε. It is shown in [24, Theorem 1] (see also [24, Section 6.1]) that there are constants

{λε}ε>0 such that the internal metrics λ−1
ε Dε

h̊

(
·, ·; [0, 1]2

)
are tight w.r.t. the uniform topology on

[0, 1]2× [0, 1]2 and any subsequential limit of these laws is supported on length metrics which induce

the Euclidean topology on [0, 1]2.

We now want to compare Dε
h̊

and Dε
h using the fact that (h− h̊)|(−1,2)2 is a continuous function.

However, we cannot do this directly since we only have a uniform bound for h − h̊ on compact

subsets of (−1, 2)2 and the convolution (1.1) does not depend locally on the field. To this end, we

define the localized LFPP metrics D̂ε
h and D̂ε

h̊
as in (2.17) with h = h and with h̊ in place of h,

respectively. Then Lemma 4.13 remains true with Dε
h̊

and D̂ε
h̊

in place of Dε
h and D̂ε

h and with U

any open set satisfying U ⊂ (−1, 2)2, with the same proof (actually, the proof is simpler since one

does not need Lemma 4.15). Therefore, a.s. D̂ε
h̊
(z, w;U)/Dε

h̊
(z, w;U)→ 1 uniformly over all distinct

z, w ∈ U and the conclusion of the preceding paragraph is true with D̂ε
h̊

in place of Dε
h̊
.

Since h− h̊ is a.s. equal to a continuous function on a neighborhood of [0, 1]2, we infer from (2.18)

that a.s. the metrics D̂ε
h̊
(·, ·; [0, 1]2) and D̂ε

h(·, ·; [0, 1]2) are bi-Lipschitz equivalent with (random)

ε-independent Lipschitz constants. By combining this with the conclusion of the preceding paragraph

and Lemma 4.19, we get that the laws of the internal metrics λ−1
ε Dε

h(·, ·;S) for ε ∈ (0, 1) are tight

w.r.t. the uniform topology on [0, 1]2 × [0, 1]2 and any subsequential limit of these laws is supported
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on length metrics which induce the Euclidean topology on S. In particular, this implies that λε is

bounded above and below by ε-independent constants times the median D̂ε
h-distance between the

left and right sides of [0, 1]2. By Lemma 4.13 (for h), we now get that {aε/λε}ε∈(0,1) is bounded

above and below by positive, finite constants and the statement of the lemma holds in the special

case when h = h and S = [0, 1]2.

By Lemma 4.18 and the scale and translation invariance of the law of h, modulo additive

constant, this implies the statement of the lemma for a general choice of S, but still with h = h. If

h is a whole-plane GFF and f is a bounded continuous function, then the metrics Dε
h+f and Dε

h are

bi-Lipschitz equivalent, with Lipschitz constants e±ξ‖f‖∞ . Hence the case of a whole-plane GFF

implies the case of a whole-plane GFF plus a continuous function.

We now upgrade from internal metrics on closed squares to internal metrics on closures of dyadic

domains.

Lemma 4.21. Let W ⊂ C be a dyadic domain. The laws of the internal metrics a−1
ε Dε

h(·, ·;W ) for

ε ∈ (0, 1) are tight w.r.t. the uniform topology on W ×W and any subsequential limit of these laws

is supported on length metrics which induce the Euclidean topology on W .

Proof. If W is a dyadic domain, then W has finitely many connected components and these

connected components are the closures of dyadic domains which lie at positive Euclidean distance

from each other. By considering each connected component separately, we can assume without loss

of generality that W is connected.

For a connected set X ⊂ C, a collection D of random metrics on X is tight w.r.t. the local

uniform topology if and only if for each ζ > 0, there exists δ > 0 such that for each d ∈ D, it holds

with probability at least 1− ζ that

d(z, w) ≤ ζ, ∀z, w ∈ X such that |z − w| ≤ δ. (2.34)

Indeed, this is an easy consequence of the Arzéla-Ascoli theorem, the Prokhorov theorem, and the

triangle inequality.

For any closed square S ⊂W , the restriction of Dε
h(·, ·;W ) to S is bounded above by the internal
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metric of Dε
h(·, ·;W ) on S, which equals Dε

h(·, ·;S). By Lemma 4.20 and the above tightness criterion,

the laws of the restrictions of {a−1
ε Dε

h(·, ·;W )}ε∈(0,1) to S are tight. Since W is a dyadic domain,

we can choose a finite collection S of closed squares such that
⋃
S∈S S = W .

By the above tightness criterion applied to each square in S, for each ζ > 0, there exists δ > 0

such that for each ε ∈ (0, 1), it holds with probability at least 1− ζ that

a−1
ε Dε

h(z, w;W ) ≤ ζ, ∀z, w ∈W s.t. |z − w| ≤ δ and z, w ∈ S for some S ∈ S. (2.35)

Now assume that (2.35) holds and consider points z, w ∈W such that |z−w| ≤ δ/2 but z and w do

not lie in the same square of S. If δ is sufficiently small (depending only on the collection of squares

S), then we can find squares S, S′ ∈ S such that z ∈ S,w ∈ S′, and S ∩ S′ 6= ∅. Since S and S′ are

closed squares, geometric considerations show that there is a u ∈ S ∩ S′ such that |z − u| ≤ δ and

|w−u| ≤ δ. By (2.35) and the triangle inequality this implies that a−1
ε Dε

h(z, w;W ) ≤ 2ζ. Therefore,

∀ε ∈ (0, 1) it holds with probability at least 1− ζ that

a−1
ε Dε

h(z, w;W ) ≤ 2ζ, ∀z, w ∈W such that |z − w| ≤ δ/2.

Since ζ is arbitrary, the above tightness criterion applied on all of W now shows that the laws of

the metrics a−1
ε Dε

h(·, ·;W ) for ε ∈ (0, 1) are tight w.r.t. the uniform topology on W ×W .

Let D̃ be a subsequential limit of a−1
ε Dε

h(·, ·;W ) in law w.r.t. the local uniform topology. A

priori D̃ might be a pseudometric, not a metric. We need to show that D̃ is in fact a length metric

and that it induces the Euclidean topology on W . To this end, consider two squares (not necessarily

dyadic) S1 ⊂ S2 ⊂ W such that S1 lies at positive Euclidean distance from ∂S2 \ ∂W . For each

ε > 0, we have Dε
h(S1,W \S2;W ) = Dε

h(S1, ∂S2 \ ∂W ;S2) and Dε
h(S1,W \S2;W )→ D̃(S1,W \S2)

in law. From this and Lemma 4.20, we infer that a.s. D̃(S1,W \ S2) > 0. By considering an

appropriate countable collection of such square annuli whose inner squares S1 cover W , we infer

that a.s. D̃(u, v) > 0 whenever u, v ∈W with u 6= v. This implies that D̃ is a metric. Since W is

compact, it follows that D̃ induces the Euclidean topology on W . By Lemma 4.19, D̃ is a length

metric.
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The following lemma will allow us to extract tightness of a−1
ε Dε

h from tightness of a−1
ε Dε

h(·, ·;S)

for squares S ⊂ C.

Lemma 4.22. For r > 0, let Sr(0) be the closed square of side length r centered at zero. Let h be a

whole-plane GFF plus a bounded continuous function. For each p ∈ (0, 1) and each C > 0, there

exists R = R(p, C) > 1 (depending on p, C and the law of h) such that for each fixed r > 0,

lim inf
ε→0

P

[
sup

u,v∈Sr(0)
Dε

h(u, v) <
1

C
Dε

h (Sr(0), ∂SRr(0))

]
≥ p. (2.36)

Proof. We first consider the case when h = h is a whole-plane GFF normalized so that h1(0) = 0.

By Lemma 4.20 applied with W = S1(0), there exists R = R(p, C) > 1 such

lim inf
ε→0

P

[
sup

u,v∈S1/R(0)
Dε
h(u, v) <

1

C
Dε
h

(
S1/R(0), ∂S1(0)

)]
≥ p. (2.37)

The occurrence of the event in (2.37) is unaffected by re-scaling Dε
h by a constant factor. By

Lemma 4.18 applied with Rr in place of r, we see that (2.37) implies that for each fixed r > 0,

lim inf
ε→0

P

[
sup

u,v∈Sr(0)
Dε
h(u, v) <

1

C
Dε
h (Sr(0), ∂SRr(0))

]
≥ p. (2.38)

Now suppose that h = h + f is a whole-plane GFF plus a bounded continuous function. If

f is a (possibly random) bounded continuous function, then Dε
h+f and Dε

h are a.s. bi-Lipschitz

equivalent with Lipschitz constants e−ξ‖f‖∞ and eξ‖f‖∞ . Furthermore, since f is a.s. bounded

exists a deterministic A > 1 such that P
[
eξ‖f‖∞ ≤ A

]
≥ p. By (2.38) with A2C in place of C,

we get (2.36) but with 1− 2(1− p) in place of p. Since p can be made arbitrarily close to 1, this

yields (2.36).

The last lemma we need for the proof of Lemma 4.17 is the following deterministic compatibility

statement for limits of internal metrics, which is used to get the relationship between internal

metrics in assertion B of Lemma 4.17.

Lemma 4.23. Let V ⊂ U ⊂ C be open. Let {Dn}n∈N be a sequence of continuous length metrics

on U which converges to a continuous length metric D (w.r.t. the local uniform topology on U × U).
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Suppose also that Dn(·, ·;V ) converges to a continuous length metric D̃ w.r.t. the uniform topology

on V × V . Then D(·, ·;V ) = D̃(·, ·;V ).

In the setting of Lemma 4.23, we do not necessarily have D(·, ·;V ) = D̃. The reason is that it

could be, e.g., that paths of near-minimal D̃-length spend a positive fraction of their time in ∂V .

Proof of Lemma 4.23. Let u, v ∈ V such that D(u, v) < D(u, ∂V ). Since D is a length metric,

D(u, v) = D(u, v;V ) = D(u, v;V ). Furthermore, for large enough n ∈ N we have Dn(u, v) <

Dn(u, ∂V ) which implies that Dn(u, v) = Dn(u, v;V ) = Dn(u, v;V ). Therefore, Dn(u, v) converges

to both D(u, v) = D(u, v;V ) and D̃(u, v). Furthermore, we have D̃(u, v) < D̃(u, v; ∂V ) which

implies that D̃(u, v) = D̃(u, v;V ). Consequently, D(u, v;V ) = D̃(u, v;V ) for each u, v ∈ V with

D(u, v) < D(u, ∂V ). This implies that the D-length of any path in V which lies at positive Euclidean

distance from ∂V is the same as its D̃-length. Since D(·, ·;V ) and D̃(·, ·;V ) are length metrics, we

conclude that D(·, ·;V ) = D̃(·, ·;V ).

Proof of Lemma 4.17. For r > 0, let Sr(0) be the closed square of side length r centered at zero, as

in Lemma 4.22. Let p ∈ (0, 1) and let R = R(p) > 1 be as in Lemma 4.22 with C = 2 and with

(1 + p)/2, say, in place of p. Then for each fixed r > 0 and each small enough ε > 0, it holds with

probability at least p that

sup
u,v∈Sr(0)

Dε
h(u, v) ≤ 1

2
Dε

h(Sr(0), ∂SRr(0))

which implies Dε
h(u, v) = Dε

h(u, v;SRr(0)), ∀u, v ∈ Sr(0). (2.39)

We now apply Lemma 4.20 with S = SRr(0) and use that p can be made arbitrarily close to 1 to

get that the laws of a−1
ε Dε

h|Sr(0) are tight w.r.t. the local uniform topology on Sr(0). Furthermore,

any subsequential limit in law of these metrics a.s. induces the Euclidean topology on Sr(0). Since

r can be made arbitrarily large, we get that the metrics a−1
ε Dε

h are tight w.r.t. the local uniform

topology on C×C and any subsequential limit in law is a.s. a continuous metric on C.

To prove assertion A, it remains to check that if Dh is a subsequential limit in law of the metrics

a−1
ε Dε

h, then a.s. Dh is a length metric. To this end, let p ∈ (0, 1) and let R = R(p) > 1 be as above.

By Lemma 4.20, if we are given r > 0 then by possibly passing to a further subsequence we can
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arrange that along our subsequence, the joint law of (a−1
ε Dε

h, a
−1
ε Dε

h(·, ·;SRr(0))) converges to a

coupling (Dh, D̃) where D̃ is a length metric on SRr(0). By passing to the (subsequential) limit

in (2.39), we get that with probability at least p,

sup
u,v∈Sr(0)

Dh(u, v) ≤ 1

2
Dh(Sr(0), ∂SRr(0)) and Dh(u, v) = D̃(u, v), ∀u, v ∈ Sr(0). (2.40)

By Lemma 4.23, a.s. the internal metrics of Dh and D̃ on the interior of SRr(0) coincide. Hence (2.39)

implies that with probability at least p, Dh(u, v) is equal to the infimum of the Dh-lengths of all

continuous paths from u to v which are contained in the interior of SRr(0), which (by the first

condition in (2.39)) is equal to the infimum of the Dh-lengths of all continuous paths from u to v.

Since p can be made arbitrarily close to 1 and r can be made arbitrarily large, we get that a.s. Dh

is a length metric.

To get the joint convergence (2.32), we first apply Lemma 4.21 and the Prokhorov theorem to get

that the joint law of the metrics on the left side of (2.32) is tight. Moreover any subsequential limit

of these joint laws is a coupling of a continuous length metric Dh on C and a length metric Dh,W

on W for each W ∈ W which induces the Euclidean topology on W . We then apply Lemma 4.23 to

say that Dh,W (·, ·;W ) = Dh(·, ·;W ) for each W ∈ W.

4.2.3 Weyl scaling

The following lemma will be used to check Axiom III.

Lemma 4.24. Let h be a whole-plane GFF plus a bounded continuous function and consider a

sequence εn → 0 along which a−1
εn D

εn
h converges in law to some metric Dh w.r.t. the local uniform

topology. Suppose we have, using the Skorokhod theorem, coupled so this convergence occurs a.s.

Then, a.s., for every sequence of bounded continuous functions fn : C→ R such that fn converges

to a bounded continuous function f uniformly on compact subsets of C, we have the local uniform

convergence Dεn
h+fn → eξf ·Dh, where here Dε

h+fn is defined as in (1.2) with h + fn in place of h

and eξf ·Dh is defined as in (1.4).

As a consequence of Lemma 4.24, if h is a whole-plane GFF plus a bounded continuous function

and εn → 0 is a sequence along which a−1
εn D

εn
h → Dh in law, then whenever h′ is another whole-plane
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GFF plus a bounded continuous function, we have a−1
εn D

εn
h′ → Dh′ in law for some limiting metric

Dh′ . Furthermore, (h, h′, Dh, Dh′) can be coupled together in such a way that h′ − h is a bounded

continuous function and Dh′ = eξ(h
′−h) ·Dh. Consequently, any subsequence along which a−1

εn D
εn
h

converges in law gives us a way to define a metric associated with any whole-plane GFF plus a

bounded continuous function.

Proof of Lemma 4.24. Let f∗,nεn = fn ∗ pε2n/2 be defined as in (1.1) with with fn in place of h.

Then f∗,nεn → f uniformly on compact subsets of C. By the definition (1.2) of LFPP, we have

Dεn
h+fn = eξf

∗,n
εn ·Dεn

h .

We now want to apply an argument as in the proof of [38, Lemma 7.1] to say that Dεn
h+fn → eξf ·Dh

w.r.t. the local uniform topology. That lemma only applies for metrics defined on squares, so we

need to localize. We do this by means of Lemma 4.22. By taking a limit as ε→ 0 in the estimate

of Lemma 4.22, then sending p→ 1, we find that a.s. for each r > 0 and each C > 1, there exists

r′ = r′(r, C) > 0 (random) such that

sup
u,v∈Sr(0)

Dh(u, v) ≤ 1

2C
Dh(Sr(0), ∂Sr′(0)). (2.41)

Furthermore, the uniform convergence a−1
εn D

εn
h → Dh, we get that (2.41) is a.s. true with a−1

εn D
εn
h

in place of Dh for large enough n ∈ N, but with C instead of 2C. This implies that each path of

near-minimal Dh-length between two points of Sr(0) is contained in Sr′(0), and the same is true with

a−1
εn D

εn
h in place of Dh for large enough n ∈ N. If we choose C > supn∈N ‖fn‖∞, then from (2.41)

we deduce that each path of near-minimal eξf ·Dh-length between two points of Sr(0) is contained

in Sr′(0), and the same is true with a−1
εn D

εn
h+fn in place of Dh for large enough n ∈ N. With these

conditions in hand, the lemma now follows from the same proof as in [38, Lemma 7.1].

4.2.4 Tightness across scales

In this section we check that subsequential limits of LFPP satisfy Axiom V. For the statement,

we note that we can take a subsequential limit of the joint laws of (h, a−1
ε Dε

h) due to Lemma 4.17

and the Prokhorov theorem.
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Lemma 4.25. Let h be a whole-plane GFF normalized so that h1(0) = 0. Let (h,Dh) be any

subsequential limit of the laws of the field/metric pairs (h, a−1
ε Dε

h). There are deterministic constants

{cr}r≥0, depending on the law of Dh, such that the laws of the metrics {c−1
r e−ξhr(0)Dh(r·, r·)}r>0

are tight w.r.t. the local uniform topology. Furthermore, the closure of this set of laws w.r.t. the

Prokhorov topology for probability measures on continuous functions C×C→ [0,∞) is contained in

the set of laws on continuous metrics on C. Finally, there exists Λ > 1 such that for each δ ∈ (0, 1),

Λ−1δΛ ≤ cδr
cr
≤ Λδ−Λ, ∀r > 0. (2.42)

We first produce the scaling constants cr appearing in Axiom V.

Lemma 4.26. Consider a sequence E ⊂ (0, 1) converging to zero along which a−1
ε Dε

h converges in

law to a limiting metric Dh. For each r > 0, the limit

cr := lim
E3ε→0

raε/r

aε
(2.43)

exists and satisfies the relation (2.42) for some choice of Λ > 1 depending only on E and γ.

Proof. Let hr := h(r·)− hr(0) be as in Lemma 4.18, so that hr
d
= h. By our choice of subsequence

E and Lemma 4.18,

a−1
ε D

ε/r
hr = r−1e−ξhr(0)a−1

ε Dε
h(r·, r·) E3ε→0−−−−→ r−1e−ξhr(0)Dh(r·, r·) (2.44)

in law w.r.t. the local uniform topology on C×C. Let mr be the median distance between the left

and right boundaries of [0, 1]2 w.r.t. the metric on the right side of (2.44). Since hr
d
= h,

a−1
ε/rD

ε/r
h︸ ︷︷ ︸

tight

d
= a−1

ε/rD
ε/r
hr =

aε
aε/r

a−1
ε D

ε/r
hr︸ ︷︷ ︸

convergent
by (2.44)

. (2.45)

If we consider a subsequence E ′ of E along which the joint law of a−1
ε/rD

ε/r
h and a−1

ε D
ε/r
hr converges,

then (2.45) shows that along this subsequence, aε/r/aε converges to some number sr(E ′) > 0 (we

know the limit is strictly positive since the limits of a−1
ε/rD

ε/r
h and a−1

ε D
ε/r
hr are metrics). By the

163



definitions of aε and of mr and Portmanteau’s lemma, the median distance between the left and right

boundaries of [0, 1]2 w.r.t. the metric on the left (resp. right) side of (2.45) is 1 (resp. mr/sr(E ′)).

Hence sr(E ′) = mr, i.e., the limit does not depend on the choice of subsequence E ′ ⊂ E . This

shows the convergence of aε/r/aε along the subsequence E , which in turn implies the existence

of the limit (2.43). The bounds (2.42) (in fact, substantially stronger bounds) are immediate

from [24, Theorem 1, Equation (1.3)] and the fact the ratio of our aε and the scaling factor λε

from [24] is bounded above and below by deterministic, ε-independent constants (see the proof of

Lemma 4.20).

Proof of Lemma 4.25. Define cr for r > 0 as in Lemma 4.26. Let hr := h(r·) − hr(0), as in

Lemma 4.18, so that hr
d
= h and the metrics D

ε/r
hr and Dε

h are related as in (2.33). We know from

Lemma 4.17 that the laws of the metrics {a−1
ε Dε

h}0<ε<1 are tight, and every element of the closure

of this set of laws is supported on continuous metrics on C. It follows that the same is true for the

laws of the metrics {a−1
ε/rD

ε/r
hr }0<ε<r. By combining this with (2.33), we get that the laws of the

metrics

e−ξhr(0)

(
raε/r

aε

)−1

a−1
ε Dε

h(r·, r·) = a−1
ε/rD

ε/r
hr , ∀r > 0, ∀ε ∈ (0, r) (2.46)

are tight and every element of the closure of this set of laws w.r.t. the Prokhorov topology is

supported on continuous metrics on C.

Now consider a subsequence E ⊂ (0, 1) along which (h, a−1
ε Dε

h) → (h,Dh) in law. By the

definition (2.43) of cr,

e−ξhr(0)

(
raε/r

aε

)−1

a−1
ε Dε

h(r·, r·)→ e−ξhr(0)c−1
r Dh(r·, r·), in law along E .

Therefore, the metrics e−ξhr(0)c−1
r Dh(r·, r·) for r > 0 are all subsequential limits as ε → 0 of the

family of random metrics (2.46). It follows that the laws of the metrics e−ξhr(0)c−1
r Dh(r·, r·) are

tight and every element of the closure of this set of laws is supported on continuous metrics on

C.
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4.2.5 Locality

In this section, we will prove a variant of Axiom II for subsequential limits of LFPP, restricted

to the case of a whole-plane GFF (locality for a whole-plane GFF plus a continuous function will

be checked in Section 4.2.6). At this point, we have not yet established that such subsequential

limits can be realized as measurable functions of the field, so we will actually check a somewhat

different condition. In what follows, if K ⊂ C is closed we define the σ-algebra generated by h|K to

be
⋂
δ>0 h|Bδ(K). With this definition it makes sense to condition on h|K . The following definitions

first appeared in [57].

Definition 4.27 (Local metric). Let U ⊂ C be a connected open set and let (h,D) be a coupling

of a GFF on U and a random continuous length metric on U . We say that D is a local metric for h

if for any open set V ⊂ U , the internal metric D(·, ·;V ) is conditionally independent from the pair

(h,D(·, ·;U \ V )) given h|V .

Definition 4.27 is formulated in a slightly different way than [57, Definition 1.2]; the equivalence

of the definitions is proven in [57, Lemma 2.3]. The following is [57, Definition 1.5].

Definition 4.28 (Additive local metric). Let U ⊂ C be a connected open set and let (h,D) be

a coupling of a GFF on U and a random continuous length metric on U which is local for h. For

ξ ∈ R, we say that D is ξ-additive for h if for each z ∈ U and each r > 0 such that Br(z) ⊂ U , the

metric e−ξhr(z)D is local for h− hr(z).

Lemma 4.29. Let h be a whole-plane GFF. Let (h,Dh) be any subsequential limit of the laws of

the pairs (h, a−1
ε Dε

h). Then Dh is a ξ-additive local metric for h. That is, suppose z ∈ C and r > 0

and that h is normalized so that the circle average hr(z) is zero. Also let V ⊂ C be an open set.

Then the internal metric Dh(·, ·;V ) is conditionally independent from the pair
(
h,Dh(·, ·;C \ V )

)
given h|V .

There are two main difficulties in the proof of Lemma 4.29.

1. The mollified GFF h∗ε(z) of (1.1) does not exactly depend locally on h (since the heat

kernel pε2/2(z, ·) does not have compact support), so the Dε
h-lengths of paths are not locally

determined by h.
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2. Conditional independence does not in general behave nicely under taking limits in law.

Difficulty 1 will be resolved by means of the localization results for LFPP in Section 4.2.1. To

resolve Difficulty 2, we will use the Markov property of the GFF (see Lemma 4.30) and Weyl scaling

(Lemma 4.24) in order to reduce to working with metrics which are actually independent, not just

conditionally independent. The use of the Markov property is the reason why we restrict to a

whole-plane GFF, not a whole-plane GFF plus a bounded continuous function, in Lemma 4.29.

For the proof of Lemma 4.29 we will need the following version of the Markov property of the

whole-plane GFF, which is proven in [62, Lemma 2.2]. We note that the statement of this Markov

property is slightly more complicated than in the case of the zero-boundary GFF due to the need to

fix the additive constant for h.

Lemma 4.30 ([62]). Let z ∈ C and r > 0 and let h be a whole-plane GFF with the additive constant

chosen so that hr(z) = 0. For each open set V ⊂ C which is non-polar (i.e., Brownian motion

started in V a.s. hits ∂V in finite time), we have the decomposition

h = h + h̊ (2.47)

where h is a random distribution which is harmonic on V and is determined by h|C\V and h̊ is

independent from h and has the law of a zero-boundary GFF on V minus its average over ∂Br(z)∩V .

If V is disjoint from ∂Br(z), then h̊ is a zero-boundary GFF and is independent from h|C\V .

The following lemma will allow us to apply Lemma 4.30 to study h|
C\V .

Lemma 4.31. It suffices to prove Lemma 4.29 in the case when Br(z) ⊂ V .

Proof. Assume that we have proven Lemma 4.29 in the case when Br(z) ⊂ V . Fix z0 ∈ C and

r0 > 0 such that Br0(z0) ⊂ V and assume that h is normalized so that hr0(z0) = 0. By assumption,

Dh(·, ·;V ) is conditionally independent from the pair
(
h,Dh(·, ·;C \ V )

)
given h|V .

Now let z ∈ C and r > 0 and define h̃ := h−hr(z), so that h̃ is a whole-plane GFF normalized so

that h̃r(z) = 0. Lemma 4.24 implies that Dε
h̃
→ e−ξhr(z)Dh =: D

h̃
in law along the same subsequence

for which Dε
h → Dh in law, so D

h̃
is unambiguously defined. We need to show that the conclusion

of the first paragraph remains true with (h̃, D
h̃
) in place of (h,Dh).
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The key fact which allows us to show this is that h̃r0(z0) = −hr(z). Since Br0(z0) ⊂ V , this

means that hr(z) ∈ σ
(
h̃|V
)

. In particular, h|V = h̃|V + hr(z) is determined by h̃|V . Therefore, our

assumption implies that Dh(·, ·;V ) is conditionally independent from the pair
(
h,Dh(·, ·;C \ V )

)
given h̃|V (instead of just h|V ).

We have D
h̃
(·, ·;V ) = e−ξhr(z)Dh(·, ·;V ), so D

h̃
(·, ·;V ) is determined by h̃|V and Dh(·, ·;V ). Sim-

ilarly, D
h̃
(·, ·;C\V ) is determined by h̃|V and Dh(·, ·;C\V ). Obviously, h and h̃ determine the same

information. Therefore, D
h̃
(·, ·;V ) is conditionally independent from the pair

(
h̃, D

h̃
(·, ·;C \ V )

)
given h̃|V , as required.

Support of φ

V W W ′

∂V

Figure 4.1 – Illustration of the sets used in the proof of Lemma 4.29. The set φ−1(1) is not shown;
it contains the closure of the pink set W ′ and is contained in the grey set suppφ.

Proof of Lemma 4.29. Step 1: reductions. By Lemma 4.13, for any sequence of ε’s tending to zero

along which (h, a−1
ε Dε

h)→ (h,Dh) in law, we also have (h, a−1
ε D̂ε

h)→ (h,Dh) in law. This allows us

to work with D̂ε
h instead of Dε

h throughout the proof. The reason why we want to do this is the

locality property (2.18) of D̂ε
h.

The statement of the lemma is vacuous if V = C, so we can assume without loss of generality

that V 6= C, which implies that C \ V is non-polar. By Lemma 4.31, we can also assume without

loss of generality that Br(z) ⊂ V . These assumptions together with Lemma 4.30 applied with C \V

in place of V allows us to write

h|
C\V = h + h̊ (2.48)

where h is a random harmonic function on C \ V which is determined by h|
C\V and h̊ is a

zero-boundary GFF in C \ V which is independent from h|
C\V .
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Step 2: independence for LFPP. We want to apply the convergence of internal metrics given in

Lemma 4.17, so we fix dyadic domains (Definition 4.16) W,W ′ with W ⊂ V and W
′ ⊂ C \ V (we

will eventually let W and W ′ increase to all of V and C \ V , respectively). Let φ be a deterministic,

smooth, compactly supported bump function which is identically equal to 1 on a neighborhood of

W
′

and which vanishes outside of a compact subset of C \ V . See Figure 4.1 for an illustration of

these objects.

The restrictions of the fields h− φh and h̊ to the set φ−1(1) ⊃W ′ are identical. By the locality

property (2.18) of D̂ε
h, if ε > 0 is small enough that Bε(W

′) ⊂ φ−1(1), then the ε-LFPP metric for

h− φh satisfies

D̂ε
h−φh(·, ·;W

′
) ∈ σ

(̊
h
)
. (2.49)

Similarly, for small enough ε > 0 the metric D̂ε
h(·, ·;W ) is a.s. determined by h|V . Since h|V and h̊

are independent, we obtain

(
h|V , a−1

ε Dε
h(·, ·;W )

)
and

(̊
h, a−1

ε Dε
h−φh(·, ·;W

′
)
)

are independent. (2.50)

Step 3: passing to the limit. We now want to pass the independence (2.50) through to the

(subsequential) scaling limit. To this end, consider a sequence E of positive ε’s tending to zero along

which (h, a−1
ε D̂ε

h)→ (h,Dh) in law. By possibly passing to a further deterministic subsequence, we

can arrange that in fact (h, h, a−1
ε D̂ε

h)→ (h, h, Dh) in law along E , where here the second coordinate

is given the local uniform topology on C \ V . By the analog of Lemma 4.24 with D̂ε
· in place of

Dε
· (which is proven in an identical manner), if we set Dh−φh = e−ξφh ·Dh, then along this same

subsequence we have the convergence of joint laws

(
h, h, a−1

ε D̂ε
h, a
−1
ε D̂ε

h−φh

)
→ (h, h, Dh, Dh−φh) . (2.51)

By assertion B of Lemma 4.17, applied once to each of h and h− φh, by possibly replacing E

with a further deterministic subsequence we can find a coupling (h,Dh, Dh,W , Dh−φh,W ′) of (h,Dh)

with length metrics on W and W
′
, respectively, which induce the Euclidean topology and which
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satisfy

Dh,W (·, ·;W ) = Dh(·, ·;W ) and Dh−φh,W ′(·, ·;W ′) = Dh−φh(·, ·;W ′) (2.52)

such that the following is true. Along E , we have the convergence of joint laws

(
h, h, a−1

ε D̂ε
h, a
−1
ε D̂ε

h−φh, a
−1
ε D̂ε

h(·, ·;W ), a−1
ε D̂ε

h−φh(·, ·;W
′
)
)

→
(
h, , h, Dh, Dh−φh, Dh,W , Dh−φh,W ′

)
(2.53)

where the last two coordinates are given the uniform topology on W×W and on W
′×W ′, respectively.

Since independence is preserved under convergence in law, we obtain from (2.50) and (2.53) that

(h|V , Dh,W ) and (̊h,Dh−φh,W ′) are independent. By (2.52), this means that

(h|V , Dh(·, ·;W )) and (̊h,Dh−φh(·, ·;W ′)) are independent. (2.54)

Step 4: adding back in the harmonic part. By (2.54), Dh(·, ·;W ) is conditionally independent

from (̊h,Dh−φh(·, ·;W ′)) given h|V . We now argue that (h,Dh(·, ·;W ′)) is a measurable function of

(̊h,Dh−φh(·, ·;W ′)) and h|V , so that Dh(·, ·;W ) is conditionally independent from (h,Dh(·, ·;W ′))

given h|V . Indeed, by Lemma 4.24, a.s. Dh(·, ·;W ′) = (eξφh ·Dh−φh)(·, ·;W ′). Hence Dh(·, ·;W ′) is

a measurable function of h ∈ σ(h|V ) and Dh−φh(·, ·;W ′). Since h|
C\V = h̊+ h, we get that h is a

measurable function of h̊ and h|V . It therefore follows that Dh(·, ·;W ) is conditionally independent

from (h,Dh(·, ·;W ′)) given h|V . Letting W increase to V and W ′ increase to C \ V now concludes

the proof.

4.2.6 Measurability

We have not yet established that subsequential limits of LFPP can be realized as measurable

functions of the corresponding field. We will accomplish this in this subsection using a result

from [57].

Lemma 4.32. Let h be a whole-plane GFF normalized so that h1(0) = 0 and let (h,Dh) be any

subsequential limit of the laws of the pairs (h, a−1
ε Dε

h). Then Dh is a.s. determined by h. In

particular, a−1
ε Dε

h → Dh in probability along the given subsequence.
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The following theorem is a special case of [57, Corollary 1.8].

Theorem 4.33 ([57]). There is a universal constant p ∈ (0, 1) such that the following is true. Let

ξ ∈ R, let h be a whole-plane GFF normalized so that h1(0) = 0, and let (h,D) be a coupling of h

with a random continuous length metric satisfying the following properties.

1. D is a ξ-additive local metric for h (Definition 4.28).

2. Condition on h and let D and D̃ be conditionally i.i.d. samples from the conditional law of D

given h. There is a deterministic constant C > 0 such that

P

[
sup

u,v∈∂Br(z)
D̃
(
u, v;B2r(z) \Br/2(z)

)
≤ CD(∂Br/2(z), ∂Br(z))

]
≥ p, ∀z ∈ C, ∀r > 0.

(2.55)

Then D is a.s. determined by h.

Proof of Lemma 4.32. Let p ∈ (0, 1) be as in Theorem 4.33. Lemma 4.29 implies that Dh is a

ξ-additive local metric for h. Lemma 4.25 along with the translation invariance of the law of

h, modulo additive constant, implies that there exists C > 0 (depending only on the choice of

subsequence) such that for each z ∈ C and each r > 0,

P

[
D(∂Br/2(z), ∂Br(z)) ≥ C−1/2cre

ξhr(z)
]
≥ 1− p

2
and

P

[
sup

u,v∈∂Br(z)
Dh

(
u, v;B2r(z) \Br/2(z)

)
≤ C1/2cre

ξhr(z)

]
≥ 1− p

2
.

This implies that (2.55) holds for two conditionally independent samples from the conditional law

of Dh given h. Hence the criteria of Theorem 4.33 are satisfied, so Dh is a.s. determined by h. The

last statement follows from Lemma 4.3.

Proof of Theorem 4.2. Step 1: Defining a Dh for a whole-plane GFF plus a bounded continuous

function. Let h be a whole-plane GFF normalized so that h1(0) = 0. Lemma 4.17 implies that for

any sequence of ε’s tending to zero, there is a subsequence εn → 0 along which (h,Dεn
h )→ (h,Dh)

in law. By Lemma 4.32, Dh is a.s. determined by h and Dεn
h → Dh in probability. Hence every
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deterministic subsequence of the εn’s admits a further deterministic subsequence εnk along which

D
εnk
h → Dh a.s. By Lemma 4.24, it is a.s. the case that for every bounded continuous function

f : C→ R simultaneously, we have D
εnk
h+f → eξf ·Dh. We define Dh+f := eξf ·Dh. Then Dh+f is

a.s. determined by h+ f and Dεn
h+f converges in probability to Dh+f .

This gives us a measurable function h 7→ Dh from distributions to continuous metrics on C which

is a.s. defined whenever h is a whole-plane GFF plus a bounded continuous function: in particular,

Dh is the a.s. limit of D
εnk
h . With this definition of D, Axiom I holds with h constrained to be a

whole-plane GFF plus a bounded continuous function since we know that the limiting metric in the

setting of Lemma 4.17 is a length metric. By the preceding paragraph, Axiom III holds for this

definition of D and with f constrained to be bounded. It is immediate from the definition of LFPP

that also Axiom IV holds. By Lemma 4.25, also Axiom V holds.

Step 2: locality for a whole-plane GFF plus a bounded continuous function. Axiom II in the case of

a whole-plane GFF is immediate from Lemma 4.29 now that we know that Dh is a.s. determined by

h. We now prove Axiom II in the case when h is a whole-plane GFF plus a bounded continuous

function. Indeed, let V ⊂ C be open and let O ⊂ O′ ⊂ V be open and bounded with O ⊂ O′ and

O
′ ⊂ V . Let u, v ∈ O be deterministic. We will show that

Dh(u, v)1{Dh(u,v)<Dh(u,∂O′)} ∈ σ (h|V ) . (2.56)

Since (u, v) 7→ Dh(u, v) is a.s. continuous, (2.56) implies that in fact h|V a.s. determines the random

function O 3 (u, v) 7→ Dh(u, v)1{Dh(u,v)<Dh(u,∂O′)}. Since O is a compact subset of O′, O can be

covered by finitely many sets of the form {v ∈ O : Dh(u, v) < Dh(u, ∂O′)} for points u ∈ O. By the

definition of the internal metric Dh(·, ·;O), this shows that h|V a.s. determines Dh(·, ·;O). Letting

O increase to all of V then shows that h|V a.s. determines Dh(·, ·;V ).

To prove (2.56), note that if we define the localized LFPP metric D̂εn
h as in (2.17), then by

Lemma 4.13 we have a−1
εn D̂

εn
h (u, v) → Dh(u, v) and a−1

εn D̂
εn
h (u, ∂O′) → Dh(u, ∂O′) in probability.

Therefore,

a−1
εn D̂

εn
h (u, v)1{D̂εnh (u,v)<D̂εnh (u,∂O′)} → Dh(u, v)1{Dh(u,v)<Dh(u,∂O′)}, in probability. (2.57)
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By (2.18) and since O
′ ⊂ V , the random variable on the left side of (2.57) is a.s. determined by h|V

for large enough n ∈ N. Thus (2.56) holds.

Step 3: extending to unbounded continuous function. We will now extend the definition of D to

the case of a whole-plane GFF plus an unbounded continuous function and check that the axioms

remain true. To this end, let h be a whole-plane GFF and let f be a possibly random unbounded

continuous function. If V ⊂ C is open and bounded and φ is a smooth compactly supported bump

function which is identically equal to 1 on V , then φf is bounded so we can define the metric

DV
h+f := Dh+φf (·, ·;V ). By Axiom II in the case of a whole-plane GFF plus a bounded continuous

function, this metric is a.s. determined by (h + φf)|V = (h + f)|V , in a manner which does not

depend on φ. We now define the Dh+f -length of any continuous path P in C to be the DV
h+f -length

of P , where V ⊂ C is a bounded open set which contains P The definition does not depend on the

choice of V . We define Dh+f (z, w) for z, w ∈ C to be the infimum of the Dh+f -lengths of continuous

paths from z to w. Then Dh+f is a length metric on C which is a.s. determined by Dh+f and which

satisfies Dh+f (·, ·;V ) = DV
h+f for each bounded open set V ⊂ C.

With the above definition, it is immediate from the case of a whole-plane GFF plus a bounded

continuous function that the axioms in the definition of a weak γ-LQG metric are satisfied to

the mapping h 7→ Dh, which is a.s. defined whenever h is a whole-plane GFF plus a continuous

function.

4.3 Proofs of quantitative properties of weak LQG metrics

In this section we will prove the estimates stated in Section 4.1.2. Actually, in many cases we will

prove a priori stronger estimates which are required to be uniform across different Euclidean scales.

With what we know now, these estimates are not implied by the estimates stated in Section 4.1.2

since we are working with a weak γ-LQG metric so we have tightness across scales instead of exact

scale invariance. However, a posteriori, once it is proven that a weak γ-LQG metric satisfies the

coordinate change formula (1.6) (which will be done in [59], building on the results in the present

chapter), the estimates in this section are equivalent to the estimates in Section 4.1.2. Throughout

this section, D denotes a weak LQG metric and h denotes a whole-plane GFF normalized so that
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h1(0) = 0.

4.3.1 Estimate for the distance between sets

The goal of this subsection is to prove the following more precise version of Theorem 4.9 which

is required to be uniform across scales. For the statement, we recall the scaling constants cr for

r > 0 from Axiom V.

Proposition 4.34. Let U ⊂ C be an open set (possibly all of C) and let K1,K2 ⊂ U be connected,

disjoint compact sets which are not singletons. For each r > 0, it holds with superpolynomially high

probability as A→∞, at a rate which is uniform in the choice of r, that

A−1cre
ξhr(0) ≤ Dh(rK1, rK2; rU) ≤ Acreξhr(0). (3.58)

rU

rK1 rK2

Ar,2r(w)

rU

rK1 rK2

Figure 4.2 – Left: To prove the lower bound in Proposition 4.34, we cover rU by balls Br/2(w)
such that the Dh-distance across the annulus Ar,2r(w) is bounded below. Each path from rK1 to
r(K2 ∪ ∂U) must cross at least one of these annuli (one such path is shown in purple). Right: To
prove the upper bound in Proposition 4.34, we cover rU by balls Br/2(w) for which the Dh-diameter
of the circle ∂Br(w) is bounded above, then string together a path of such circles from K1 to K2.

We now explain the idea of the proof of Proposition 4.34; see Figure 4.2 for an illustration. Using

Axiom V and a general “local independence” lemma for the GFF (see Lemma 4.36 below), we can,

with extremely high probability, cover rU by small Euclidean balls Br/2(w) such that r ∈ [ε2r, εr]

and the Dh-distance across the annulus Ar,2r(w) is bounded below by a constant times cre
ξhr(w).

Any path from rK1 to rK2 must cross at least one of these annuli. This leads to a lower bound for
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Dh(rK1, rK2; rU) in terms of

inf
r∈[ε2r,εr]

cr and inf
r∈[ε2r,εr]

inf
w∈rU

eξhr(w). (3.59)

The first infimum in (3.59) can be bounded below by a positive power of ε times cr by (1.5). By

being a little more careful about how we choose the balls Br/2(w), the second term in (3.59) can be

reduced to an infimum over finitely many values of r and w, which can then be bounded below by a

positive power of ε times eξhr(0) using the Gaussian tail bound and a union bound (see Lemma 4.37).

Choosing ε to be an appropriate power of A then concludes the proof.

The upper bound in (3.58) is proven similarly, but in this case we instead cover U by balls

Br/2(w) for which the Dh-diameter of the circle ∂Br(w) is bounded above by a constant times

cre
ξhr(w), then “string together” a collection of such circles to get a path from rK1 to rK2 whose

Dh-length is bounded above. The hypothesis that K1 and K2 are connected and are not singletons

allows us to force some of the circles in this path to intersect K1 and K2.

We now explain how to cover U by Euclidean balls with the desired properties. For C > 1,

z ∈ C, and r > 0, let Er(z;C) be the event that

sup
u,v∈∂Br(z)

Dh

(
u, v;Ar/2,2r(z)

)
≤ Ccreξhr(0) and Dh (∂Br(z), ∂B2r(z)) ≥ C−1cre

ξhr(0). (3.60)

Lemma 4.35. For each ν > 0 and each M > 0, there exists C = C(ν,M) > 1 such that for each

r > 0, it holds with probability at least 1 − Oε(εM ) as ε → 0, at a rate which is uniform in r,

that the following is true. For each z ∈ Brε−M (0), there exists w ∈ Brε−M (0) ∩
(
ε1+νr

4 Z2
)

and

r ∈ [ε1+νr, εr] ∩ {2−kr}k∈N such that Er(w;C) occurs and z ∈ Brε1+ν/2(w).

We will prove Lemma 4.35 using the following result from [57], which in turn follows from the

near-independence of the GFF across disjoint concentric annuli. See in particular [57, Lemma 3.1].

Lemma 4.36. Fix 0 < s1 < s2 < 1. Let {rk}k∈N be decreasing with the ri’s positive and s.t.

rk+1/rk ≤ s1 for each k ∈ N and let {Erk}k∈N be events s.t. Erk ∈ σ
(

(h− hrk(0))|As1rk,s2rk (0)

)
for each k ∈ N. For K ∈ N, let N(K) be the number of k ∈ [1,K]Z for which Erk occurs.

For each a > 0 and each b ∈ (0, 1), there exists p = p(a, b, s1, s2) ∈ (0, 1) and c = c(a, b, s1, s2) > 0
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such that if

P [Erk ] ≥ p, ∀k ∈ N, (3.61)

then

P [N(K) < bK] ≤ ce−aK , ∀K ∈ N. (3.62)

Proof of Lemma 4.35. By Axioms IV and V (also see (1.7)), for each p ∈ (0, 1) there exists C > 1

such that for every z ∈ C and r > 0, P [Er(z;C)] ≥ p. By the locality of Dh and Axiom III, the

event Er(z;C) is determined by (h − h3r(z))|Ar/2,2r(z). We can therefore apply Lemma 4.36 to a

logarithmic (in ε) number of values of r ∈ [ε1+νr, εr] ∩ {2−kr}k∈N to find that for any choice of

ν > 1 and M̃ > 0, there is a large enough C = C(ν, M̃) > 1 such that the following is true. For each

z ∈ C it holds with probability at least 1−Oε(εM̃ ) that Er(z;C) occurs for at least one value of

r ∈ [ε1+νr, εr]∩ {2−kr}k∈N. We now conclude the proof by choosing M̃ to be sufficiently large, in a

manner depending only on ν,M , and taking a union bound over all z ∈ Brε−M (0) ∩
(
ε1+νr

4 Z2
)

.

The occurrence of the event Er(z;C) allows us to bound distances in terms of circle averages

and the scaling coefficients cr. The cr’s can be bounded using (1.5). To bound the circle averages,

we will need the following lemma.

Lemma 4.37. For each ν > 0, each q > 2+2ν, each R > 0, and each r > 0, it holds with probability

1−Oε
(
ε

q2

2(1+
√
ν)2
−2−2ν

)
, at a rate depending only on q and R (not on r) that

sup

{
|hr(w)− hr(0)| : w ∈ BRr(0) ∩

(
ε1+νr

4
Z

2

)
, r ∈ [ε1+ν

r, εr]

}
≤ q log ε−1. (3.63)

Proof. Fix s ∈ (0, q) to be chosen momentarily. For each w ∈ BRr(0), the random variable

t 7→ he−tεr(w) − hεr(w) is a standard linear Brownian motion [44, Section 3]. We can therefore

apply the Gaussian tail bound to find that

P

[
sup

r∈[ε1+νr,εr]

|hr(w)− hεr(w)| ≤ s log ε−1

]
≥ 1−Oε

(
εs

2/(2ν)
)
. (3.64)

The random variables hεr(w)− hr(0) for w ∈ BRr(0) are centered Gaussian with variance log ε−1 +
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Oε(1). Applying the Gaussian tail bound again therefore gives

P
[
|hεr(w)− hr(0)| ≤ (q − s) log ε−1

]
≥ 1−Oε

(
ε(q−s)2/2

)
. (3.65)

Combining (3.64) and (3.65) applied with s = q
√
ν/(1 +

√
ν) shows that for w ∈ BRr(0),

P

[
sup

r∈[ε1+νr,εr]

|hr(w)− hr(0)| ≤ q log ε−1

]
≥ 1−Oε

(
ε

q2

2(1+
√
ν)2

)
. (3.66)

We now conclude by means of a union bound over Oε(ε
−2−2ν) values of w ∈ BRr(0)∩

(
ε1+νr

4 Z2
)

.

Proof of Proposition 4.34. Throughout the proof, all O(·) and o(·) errors are required to be uniform

in the choice of r. We also impose the requirement that U is bounded — we will explain at the very

end of the proof how to get rid of this requirement.

Set ν = 1, say, and fix a large M > 1, which we will eventually send to ∞. Let C = C(1,M) > 1

be chosen as in Lemma 4.35 and for ε ∈ (0, 1) and r > 0, let F εr be the event of Lemma 4.35 for this

choice of ν,M,C, so that P[F εr ] = 1 − Oε(εM ). We will eventually take ε = A−b/
√
M for a small

constant b > 0, so εM will be a large negative power of A (i.e., the power goes to ∞ as M →∞)

but ε
√
M will be a fixed negative power of A (which does not go to ∞ when M →∞).

By Lemma 4.37 (applied with ν = 1 and q = 2
√

2
√

4 +M), it holds with probability 1−Oε(εM )

that

sup

{
|hr(w)− hr(0)| : w ∈ Br(rU) ∩

(
ε2r

4
Z

2

)
, r ∈ [ε2

r, εr]

}
≤ 2
√

2
√

4 +M log ε−1. (3.67)

Henceforth assume that F εr occurs and (3.67) holds, which happens with probability 1−Oε(εM ).

We will now prove lower and upper bounds for Dh (rK1, rK2; rU) in terms of ε.

Step 1: lower bound. By the definition of F εr , if ε is sufficiently small, depending on K1,K2, U ,

then each path from rK1 to r(K2 ∪ ∂U) must cross from ∂Br(w) to ∂B2r(w) for some w ∈
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Bεr(rU) ∩
(
ε2r
4 Z

2
)

and r ∈ [ε2r, εr] ∩ {2−kr}k∈N for which Er(w;C) occurs. Therefore,

Dh (rK1, rK2) ≥ inf

{
C−1cre

ξhr(w) : w ∈ Bεr(rU) ∩
(
ε2r

4
Z

2

)
, r ∈ [ε2

r, εr]

}
(by (3.60))

≥ C−1εξ2
√

2
√

4+Meξhr(0) inf
{
cr : r ∈ [ε2

r, εr]
}

(by (3.67))

≥ Λ−1εξ2
√

2
√

4+M+2Λ+oε(1)cre
ξhr(0) (by (1.5)). (3.68)

Step 2: upper bound. It is easily seen from the definition of F εr (see Lemma 4.38 below) that if ε

is sufficiently small (depending only on K1,K2, and U) then the union of the circles ∂Br(w) for

w ∈ Bεr(rU) ∩
(
ε2r
4 Z

2
)

and r ∈ [ε2r, εr] ∩ {2−kr}k∈N such that Er(w;C) occurs contains a path

from rK1 to rK2 which is contained in rU . The total number of such circles is at most ε−4−oε(1),

so by the triangle inequality and by (3.60),

Dh (rK1, rK2; rU) ≤ ε−4−oε(1) sup

{
Ccre

ξhr(w) : w ∈ Bεr(rU) ∩
(
ε2r

4
Z

2

)
, r ∈ [ε2

r, εr]

}
≤ ε−4−ξ2

√
2
√

4+M−oε(1)eξhr(0) sup
{
cr : r ∈ [ε2

r, εr]
}

(by (3.67))

≤ Λε−4−ξ2
√

2
√

4+M−2Λ−oε(1)cre
ξhr(0) (by (1.5)). (3.69)

Step 3: choosing ε. The bounds (3.68) and (3.69) hold with probability 1−Oε(εM ). Given A > 0,

we now choose ε = A−b/
√
M , where b > 0 is a small constant (depending only on ξ,Λ) chosen so

that the right side of (3.68) is at least A−1cre
ξhr(0) and the right side of (3.69) is at most Acre

ξhr(0).

Then (3.68) and (3.69) imply that

P

[
Dh(rK1, rK2) ≥ A−1cre

ξhr(0), Dh(rK1, rK2; rU) ≤ cre
ξhr(0)

]
≥ 1−OA(A−b

√
M ). (3.70)

If U ′ is a possibly unbounded open subset with U ⊂ U ′, then Dh(rK1, rK2) ≤ Dh(rK1, rK2; rU ′) ≤

Dh(K1,K2; rU). Since M can be made arbitrarily large, we now obtain (3.58) (with U possibly

unbounded) from (3.70).

The following lemma was used in the proof of the upper bound of Proposition 4.34.

Lemma 4.38. Assume that we are in the setting of Proposition 4.34, with U bounded. Define the
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event F εr as in the proof of Proposition 4.34. For small enough ε > 0 (depending on K1,K2, U), on

F εr , the union of the circles ∂Br(w) for w ∈ Bεr(rU) ∩
(
ε2r
4 Z

2
)

and r ∈ [ε2r, εr] ∩ {2−kr}k∈N such

that Er(w;C) occurs contains a path from rK1 to rK2 which is contained in rU .

Proof. Throughout the proof we assume that F εr occurs. By the definition of F εr and since U is

connected, if ε is chosen so be sufficiently small then the union of the balls Br(w) for w, r as in the

lemma statement contains a path from rK1 to K2 which is contained in U . Let B be a sub-collection

of these balls which is minimal in the sense that
⋃
B∈B B contains a path from rK1 to rK2 in rU

and no proper sub-collection of the balls in B has this property. Choose a path P from rK1 to rK2

in (rU) ∩
⋃
B∈B B.

We first observe that
⋃
B∈B B is connected. Indeed, if this set had two proper disjoint open subsets,

then each would have to intersect P (by minimality) which would contradict the connectedness of

P . Furthermore, by minimality, no ball in B is properly contained in another ball in B.

We claim that
⋃
B∈B ∂B is connected. Indeed, if this were not the case then we could partition

B = B1 tB2 such that B1 and B2 are non-empty and
⋃
B∈B1

∂B and
⋃
B∈B2

∂B are disjoint. By the

minimality of B, it cannot be the case that any ball in B2 is contained in
⋃
B∈B1

B. Furthermore,

since
⋃
B∈B1

∂B and
⋃
B∈B2

∂B are disjoint, it cannot be the case that any ball in B2 intersects both⋃
B∈B1

B and C\
⋃
B∈B1

B (otherwise, such a ball would have to intersect the boundary of some ball

in B1). Therefore,
⋃
B∈B1

B and
⋃
B∈B2

∂B are disjoint. Since no element of B1 can be contained in⋃
B∈B2

B, we get that
⋃
B∈B1

B and
⋃
B∈B2

B are disjoint. This contradicts the connectedness of⋃
B∈B B, and therefore gives our claim.

Since P is a path from rK1 to rK2 and each of rK1 and rK2 is connected and not a single point,

if ε < 1
2(diam(K1) ∧ diam(K2)), then the boundaries of the balls in B which contain the starting

and endpoint points of P must intersect K1 and K2, respectively. Hence for such an ε,
⋃
B∈B ∂B

contains a path from rK1 to rK2, as required.

4.3.2 Asymptotics of the scaling constants

The goal of this section is to prove Theorem 4.5. We will accomplish this by comparing

Dh-distances to a variant of the Liouville first passage percolation (LFPP) which we now define.
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For ε ∈ (0, 1) and U ⊂ C, we view U ∩ (εZ2) as a graph with adjacency defined by

z, w ∈ U ∩ (εZ2) are connected by an edge if and only if |z − w| ∈ {ε,
√

2ε}. (3.71)

Note that this differs from the standard nearest-neighbor graph structure in that we also include

the diagonal edges. We define the discretized ε-LFPP metric with parameter ξ on U by

D̃ε
h(z, w;U) := min

π:z→w

|π|∑
j=0

eξhε(π(j)), ∀z, w ∈ U ∩ (εZ2), (3.72)

where the minimum is over all paths π : [0, |π|]Z → U ∩ (εZ2) from z to w in U ∩ (εZ2) (the tilde is

to distinguish this from the variant of LFPP defined in (1.2)).

Recall that S = (0, 1)2 denotes the open Euclidean unit square. Below, we will show, using

Proposition 4.34 and a union bound over a polynomial number of δr× δr squares contained in rS,

that with high probability,

cr = δoδ(1)cδr ×
(
D̃δr
h distance between two sides of rS

)
. (3.73)

The reason why discretized LFPP comes up in this estimate is the circle average term eξhr(0) in

Proposition 4.34. We know that the D̃δr
h distance across the square rS is of order δ−ξQ+oδ(1),

uniformly in r, by the results of [28] (see Lemma 4.39 just below). Hence (3.73) leads to cδr =

δξQ+oδ(1)cr, as required.

For a square S ⊂ C, we write ∂εLS and ∂εRS for the set of leftmost (resp. rightmost) vertices of

S ∩ (εZ2).

Lemma 4.39. Fix ζ ∈ (0, 1). For r > 0, it holds with probability tending to 1 as δ → 0, uniformly

in the choice of r, that

D̃δr
h

(
∂δrL (rS), ∂δrR (rS); rS

)
∈
[
δ−ξQ+ζeξhr(0), δ−ξQ−ζeξhr(0)

]
. (3.74)

Proof. We first reduce to the case when r = 1. Indeed, by the scale and translation invariance of the

law of h, modulo additive constant, we have h(r·)− hr(0)
d
= h. Moreover, from the definition (3.72)

179



it is easily seen that

D̃δ
h(r·)−hr(0) (·, ·;S) = e−ξhr(0)D̃δr

h (·, ·; rS) . (3.75)

Hence e−ξhr(0)D̃δr
h (·, ·; rS)

d
= D̃δ

h(·, ·;S), so we only need to prove the lemma when r = 1, i.e., we

need to show that with probability tending to 1 as δ → 0, we have

D̃δ
h

(
∂δLS, ∂

δ
RS;S

)
= δ−ξQ+oδ(1). (3.76)

This follows from the LFPP distance exponent computation in [28]. To be more precise, [28,

Theorem 1.5] shows that for continuum LFPP defined using the circle average process of the

GFF, as in (1.2), the δ-LFPP distance between the left and right boundaries of S is of order

δ1−ξQ+oδ(1) with probability tending to 1 as δ → 0. Combining this with [28, Lemma 3.7] shows

that the same is true for continuum LFPP defined using the white-noise approximation {ĥδ}δ>0, as

defined in [28, Equation (3.1)], in place of the circle average process. The same argument as in the

proof of [28, Proposition 3.16] then shows that (3.76) holds if we replace the circle average by the

white-noise approximation in the definition of D̃δ
h (here we note that the definition of discretized

LFPP in [28, Equation (3.32)] has an extra factor of δ as compared to (3.72), which is why we get

δ−ξQ+oδ(1) instead of δ1−ξQ+oδ(1)). The desired formula (3.76) now follows by combining this with

the uniform comparison of hδ and ĥδ from [28, Lemma 3.7].

For the proof of Theorem 4.5 (and at several later places in this section) we will use the following

terminology.

Definition 4.40 (Distance around an annulus). For a set A ⊂ C with the topology of a an annulus,

we define the Dh-distance around A to be the infimum of the Dh-lengths of the paths in A which

disconnect the inner and outer boundaries of A.

Proof of Theorem 4.5. Step 1: estimates for Dh. For z ∈ εZ2, we write Sεz for the square of side

length ε centered at z and Bε(S
ε
z) for the ε-neighborhood of this square. Fix ζ ∈ (0, 1). By

Proposition 4.34 and a union bound over all z ∈ (rS) ∩ (δrZ2), it holds with superpolynomially
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high probability as δ → 0 that (in the terminology of Definition 4.40)

(
Dh-distance around Bδr(S

δr
z ) \ Sδrz

)
≤ δ−ζcδreξhδr(z), ∀z ∈ (rS) ∩ (δrZ2). (3.77)

Similarly, it holds with superpolynomially high probability as δ → 0 that

Dh

(
Sδrz , ∂Bδr(S

δr
z )
)
≥ δζcδreξhδr(z), ∀z ∈ (rS) ∩ (δrZ2). (3.78)

Henceforth assume that (3.77) and (3.78) both hold.

Step 2: lower bound for cδr/cr. Let π : [0, |π|]Z → (rS) ∩ (δrZ2) be a path in (rS) ∩ (δrZ2) (with

the graph structure defined by (3.71)) from ∂δrL (rS) to ∂δrR (rS) for which the sum in (3.72) equals

D̃δr
h

(
∂δrL (rS), ∂δrR (rS); rS

)
. For each j ∈ [0, |π|]Z, let Pj be a path in Bδr(S

δr
π(j)) \ S

δr
π(j) which

disconnects the inner and outer boundaries of Bδr(S
δr
π(j)) \ S

δr
π(j) and whose Dh-length is at most

2δ−ζcδre
ξhδr(z). Such a path exists by (3.77).

We have Pj ∩ Pj−1 6= ∅ for each j ∈ [0, |π|]Z, so the union of the Pj ’s is connected and contains

a path between the left and right boundaries of rS. Therefore, the triangle inequality implies that

Dh (r∂LS, r∂RS) ≤
|π|∑
j=0

(Dh-length of Pj) ≤ 2δ−ζcδr

|π|∑
j=0

eξhδr(0)

= 2δ−ζcδrD̃
δr
h

(
∂δrL (rS), ∂δrR (rS); rS

)
. (3.79)

By Axiom V, the left side of (3.79) is at least δζcre
ξhr(0) with probability tending to 1 as δ → 0,

uniformly in r. By Lemma 4.39, the right side of (3.79) is at most δ−ξQ−2ζcδre
ξhr(0) with probability

tending to 1 as δ → 0, uniformly in r. Combining these relations and sending ζ → 0 shows that

cr ≤ δ−ξQ−oδ(1)cδr, as desired.

Step 3: upper bound for cδr/cr. Let P : [0, |P |]→ S be a path between the left and right boundaries of

rS with Dh-length at most 2Dh (r∂LS, r∂RS; rS). We will use P to construct a path in (rS)∩(δrZ2)

from ∂δrL (rS) to ∂δrR (rS) for which the sum in (3.72) can be bounded above.

To this end, let τ0 = 0 and let z0 ∈ (rS) ∩ (δrZ2) be chosen so that P (0) ∈ Sδrz0 . Inductively,

suppose j ∈ N, a time τj−1 ∈ [0, |P |], and a point zj−1 ∈ (rS) ∩ (δrZ2) have been defined in such a
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way that P (τj−1) ∈ Sδrzj−1
. Let τj be the first time after τj−1 at which P exits Bδr(S

δr
zj−1

), if such a

time exists, and otherwise set τj = |P |. Let zj ∈ (rS) ∩ (δrZ2) be chosen so that P (τj) ∈ Sδrzj . Let

J be the smallest j ∈ N for which τj = |P |, and note that P (|P |) ∈ Sδrzj .

Successive squares Sδrzj−1
and Sδrzj necessarily share a vertex. Hence zj−1 and zj lie at (rS)∩(δrZ2)-

graph distance 1 from one another, so π(j) := zj for j ∈ [0, J ]Z is a path from ∂δrL (rS) to ∂δrR (rS)

in (rS) ∩ (δrZ2).

We will now bound
∑J

j=0 e
ξhδr(π(j)). For each j ∈ [1, J ]Z, the path P crosses between the inner

and outer boundaries of Bδr(S
δr
zj−1

) \ Sδrzj−1
between time τj−1 and time τj . By (3.78), for each

j ∈ [1, J ]Z,

Dh (P (τj−1), P (τj)) ≥ δζcδreξhδr(π(j)). (3.80)

Using (3.80) and the definition of P , we therefore have

J∑
j=0

eξhδr(π(j)) ≤ δ−ζc−1
δr

J∑
j=0

Dh (P (τj−1), P (τj))

≤ δ−ζc−1
δr Dh (r∂LS, r∂RS) . (3.81)

By Axiom V, the right side of (3.81) is at most δ−2ζc−1
δr cre

ξhr(0) with probability tending to 1

as δ → 0, uniformly in r. By Lemma 4.39, the left side of (3.79) is at least δ−ξQ−ζeξhr(0) with

probability tending to 1 as δ → 0, uniformly in r. Combining these relations and sending ζ → 0

shows that c−1
δr cr ≥ δ

−ξQ−oδ(1).

Theorem 4.5 has the following useful corollary.

Lemma 4.41. Let h be a whole-plane GFF normalized so that h1(0) = 0. Almost surely, for every

compact set K ⊂ C we have limr→∞Dh(K, ∂Br(0)) =∞. In particular, every closed, Dh-bounded

subset of C is compact.

Proof. By tightness across scales (Axiom V), there exists a > 0 such that for each r > 0,

P
[
Dh(Br(0), B2r(0)) ≥ acreξhr(0)

]
≥ 1/2. By the locality of Dh (Axiom II) and since the sigma-

algebra σ
(⋂

r>0 h|C\Br(0)

)
is trivial, a.s. there are infinitely many k ∈ N for which we have
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Dh(B2k(0), B2k+1(0)) ≥ ac2ke
ξh

2k
(0). By Theorem 4.5, cr = rξQ+or(1). Since t 7→ het(0) is a stan-

dard linear Brownian motion [44, Section 3.1], we get that a.s. limr→∞ cre
ξhr(0) = ∞. Hence a.s.

lim supk→∞Dh(B2k(0), B2k+1(0)) = ∞. Since Dh is a length metric, for any r ≥ 2k+1 and any

compact set K ⊂ B2k(0), we have Dh(K, ∂Br(0)) ≥ Dh(B2k(0), B2k+1(0)). We thus obtain the first

assertion of the lemma. The first assertion (applied with K equal to a single point, say) implies

that any Dh-bounded subset of C must be contained in a Euclidean-bounded subset of C, which

must be compact since Dh induces the Euclidean topology on C.

4.3.3 Moment bound for diameters

In this section we will prove the following more quantitative version of the moment bound from

Theorem 4.8, which is required to be uniform across scales.

Proposition 4.42. Let U ⊂ C be open and let K ⊂ U be a compact connected set with more than

one point. For each p ∈ (−∞, 4dγ/γ2), there exists Cp > 0 which depends on U and K but not on r

such that for each r > 0,

E

[(
c−1
r e−ξhr(0) sup

z,w∈rK
Dh(z, w; rU)

)p]
≤ Cp. (3.82)

We will deduce Proposition 4.42 from the following variant, which allows us to bound internal

Dh-distances all the way up to the boundary of a square. Recall that S := (0, 1)2.

Proposition 4.43. For each p ∈ (−∞, 4dγ/γ2), there is a constant Cp > 0 such that for each

r > 0,

E

[(
c−1
r e−ξhr(0) sup

z,w∈rS
Dh (z, w; rS)

)p]
≤ Cp. (3.83)

Proof of Proposition 4.42, assuming Proposition 4.43. For p < 0, the bound (3.82) follows from the

lower bound of Proposition 4.34. Now assume p ∈ (0, 4dγ/γ
2). We can cover K by finitely many

Euclidean squares S1, . . . , Sn which are contained in U , chosen in a manner depending only on

K and U . For k = 1, . . . , n, let uk be the bottom left corner of Sk and let ρk be its side length.

Proposition 4.43 together with Axiom IV shows that there is a constant C̃p > 0 depending only on
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p such that for each k = 1, . . . , n,

E

[(
c−1
rρk
e−ξhrρk (ruk) sup

z,w∈rSk
Dh (z, w; rSk)

)p]
≤ C̃p. (3.84)

We apply the Gaussian tail bound to bound each of the Gaussian random variables hrρk(ruk)−hr(0)

(which have constant order variance) and Theorem 4.5 to compare crρk to cr up to a constant-order

multiplicative error. This allows us to deduce (3.82) from (3.84).

To prove Proposition 4.43, we first use the upper bound in Proposition 4.34 and a union bound

to build paths between the two shorter sides of each 2−nr× 2−n−1r or 2−n−1r× 2−nr rectangle with

corners in 2−n−1rZ2 which is contained in S. We then string together such paths at all scales (in the

manner illustrated in Figure 4.3) to get a bound for the internal Dh-diameter of rS. The following

lemma is needed to control the circle average terms which appear when we apply Proposition 4.34.

Lemma 4.44. Fix R > 0 and q > 2. For C > 1 and r > 0, it holds with probability 1 −

C−q−
√
q2−4+oC(1) as C →∞, at a rate which is uniform in r, that

sup
{
|h2−nr(w)− hr(0)| : w ∈ BRr(0) ∩

(
2−n−1

rZ
2
)}
≤ log(C2qn), ∀n ∈ N0. (3.85)

When we apply Lemma 4.44, we will take q to be a little bit less than Q = 2/γ + γ/2. The fact

that Q+
√
Q2 − 4 = 4/γ is the reason why γ (instead of just ξ) appears in our moment bounds.

Proof of Lemma 4.44. To lighten notation, define the event

Enr :=
{

sup
{
|h2−nr(w)− hr(0)| : w ∈ BRr(0) ∩

(
2−n−1

rZ
2
)}
≤ log(C2qn)

}
. (3.86)

We want a lower bound for the probability that Enr occurs for every n ∈ N0 simultaneously.

Fix ζ > 0 (which we will eventually send to 0) and a partition ζ = α0 < · · · < αN = 1/ζ

of [ζ, 1/ζ] with maxk=1,...,N (αk − αk−1) ≤ ζ. We will separately bound the probability of Enr for

2n ∈ [Cαk−1 , Cαk ] for k = 1, . . . , N , for 2n ≥ C1/ζ , and for 2n ≤ Cζ .

By Lemma 4.37 applied with ε = 2−n, ν = 0, and q + 1/αk in place of q, we find that for each
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k = 1, . . . , N and each n ∈ N0 with 2n ∈ [Cαk−1 , Cαk ],

P [(Enr )c] ≤ P
[
sup

{
|h2−nr(w)− hr(0)| : w ∈ BRr(0) ∩

(
2−n−1

rZ
2
)}

>

(
q +

1

αk

)
log(2n)

]
≤ 2

−n
(

(q+1/αk)2

2 −2

)
≤ C

−αk−1

(
(q+1/αk)2

2 −2

)
≤ C2αk−

(qαk+1)2

2αk
+oζ(1)

(3.87)

with the rate of the oζ(1) depending only on q. Note that in the last inequality, we have done some

trivial algebraic manipulations then used that αk − αk−1 ≤ ζ (which is what produces the oζ(1)).

By a union bound over logarithmically many (in C) values of n ∈ N0 with 2n ∈ [Cαk−1 , Cαk ], we get

P [Enr , ∀n ∈ N0 with Cαk−1 ≤ 2n ≤ Cαk ] ≥ 1− C2αk−
(qαk+1)2

2αk
+oζ(1)+oC(1)

. (3.88)

For n ∈ N0 with 2n ≥ C1/ζ , Lemma 4.37 applied with ε = 2−n, ν = 0, and q + ζ in place of q

gives

P [(Enr )c] ≤ 2−n((q+ζ)2/2−2).

Summing this estimate over all such n shows that

P

[
Enr , ∀n ∈ N with 2n ≥ C1/ζ

]
≥ 1− C−

(q+ζ)2−4
2ζ

+oC(1)
. (3.89)

Finally, if n ∈ N0 and 2n ≤ Cζ , then the Gaussian tail bound and a union bound, applied as in

the proof of Lemma 4.37, shows that P[(Enr )c] ≤ C2ζ−(qζ+1)2/(2ζ)+oC(1) (in fact, if 2n is of constant

order, this probability will decay superpolynomially in C due to the Gaussian tail bound). By a

union bound over a logarithmic number (in C) of such values of n we get

P

[
Enr , ∀n ∈ N with 2n ≤ Cζ

]
≥ 1− C2ζ− (qζ+1)2

2ζ +oC(1)
. (3.90)

The quantity 2α− (qα+ 1)2/(2α) is maximized over all α > 0 when α = (q2 − 4)−1/2, in which

case it equals −(q +
√
q2 − 4). Consequently, by combining the estimates (3.88), (3.89), and (3.90),

we get that if ζ is chosen sufficiently small relative to q, then

P [Enr , ∀n ∈ N0] ≥ 1− C−q−
√
q2−4+oζ(1)+oC(1). (3.91)
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Sending ζ → 0 now concludes the proof.

XSn+2(z)

XSn+1(z)

XSn(z)

Figure 4.3 – Three of the sets XSn(z) for dyadic squares containing z used in the proof of
Proposition 4.43. As n → ∞, the Dh-diameter of Sn(z) shrinks to zero (by the continuity of
(z, w) 7→ Dh(z, w)), so the distance from z to XSN (z) is bounded above by the sum over all n ≥ N
of the Dh-lengths of the four paths which comprise XSn(z).

Proof of Proposition 4.43. For p < 0, the bound (3.83) follows from the lower bound of Proposi-

tion 4.34. We will bound the positive moments up to order 4dγ/γ
2.

Step 1: constructing short paths across rectangles. Fix q ∈ (2, Q) which we will eventually send to

Q. By Lemma 4.44 it holds with probability 1− C−q−
√
q2−4+oC(1) that

sup
{
|h2−nr(w)− hr(0)| : w ∈ rS ∩

(
2−n−1

rZ
2
)}
≤ log(C2qn), ∀n ∈ N0. (3.92)

Now fix ζ ∈ (0, Q− q), which we will eventually send to zero. For n ∈ N0, let Rnr be the set of

open 2−nr× 2−n−1r or 2−n−1r× 2−nr rectangles R ⊂ rS with corners in 2−n−1rZ2. For R ∈ Rnr

let wR be the bottom-left corner of R.

Let

NC := blog2C
ζc. (3.93)

By the upper bound of Proposition 4.34 (applied with 2−nr in place of r and with A = 2ζξn),

Axiom IV, and a union bound over all R ∈ Rnr and all n ≥ NC , we get that except on an event of

probability decaying faster than any negative power of C (the rate of decay depends on ζ), the

following is true. For each n ≥ NC and each R ∈ Rnr , the distance between the two shorter sides of

R w.r.t. the internal metric Dh(·, ·;R) is at most 2ζξnc2−nre
ξh2−nr(wR).
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Combining this with (3.67) shows that with probability 1− C−q−
√
q2−4+oC(1), it holds for each

n ≥ NC and each R ∈ Rnr that there is a path PR in R between the two shorter sides of R with

Dh-length at most Cξ2(q+ζ)ξnc2−nre
ξhr(0). By applying Theorem 4.5 to bound c2−nr, we get that in

fact

(Dh-length of PR) ≤ Cξ2−(Q−q−ζ)ξn+on(n)cre
ξhr(0). (3.94)

Henceforth assume that such paths PR exist. We will establish an upper bound for the Dh-diameter

of rS.

Step 2: stringing together paths in rectangles. For each square S ⊂ rS with side length 2−nr and

corners in 2−nrS, there are exactly four rectangles in Rnr which are contained in S. If n ≥ NC , let

XS be the #-shaped region which is the union of the paths PR for these four rectangles, as illustrated

in Figure 4.3. If S′ is one of the four dyadic children of S, then XS ∩XS′ 6= ∅. Since the four paths

which comprise XS have Dh-length at most Cξ2−(Q−q−ζ)ξn+on(n)eξhr(0)cre
ξhr(0), this means that each

point of XS can be joined to XS′ by a path in S of Dh-length at most Cξ2−(Q−q−ζ)ξn+on(n)cre
ξhr(0).

Since the metric Dh is a continuous function on C×C, if z ∈ rS and we let Sn(z) for n ∈ N0

be the square of side length 2−nr with corners in 2−nrZ2 which contains z, so that S0(z) = S, then

the Dh-diameter of Sn(z) tends to zero as n→∞. Consequently,

sup
w∈SNC (z)

Dh (z, w; rS) ≤ Cξcreξhr(0)
∞∑

n=NC

2−(Q−q−ζ)ξn+on(n) ≤ OC(Cξ)cre
ξhr(0).

Since this holds for every z ∈ rS, we get that with probability at least 1−C−q−
√
q2−4oC(1), for each

n ≥ NC , each 2−nr× 2−nr square S ⊂ rS with corners in 2−nrZ2 has Dh(·, ·; rS)-diameter at most

OC(Cξ)cre
ξhr(0).

Step 3: conclusion. Since 2NC ≤ Cζ , we can use the triangle inequality to get that if the event at the

end of the preceding step occurs, then the Dh(·, ·; rS)-diameter of rS is at most OC(Cξ+ζ)cre
ξhr(0).

Setting C̃ := Cξ+ζ , then sending ζ → 0, shows that

P

[
c−1
r e−ξhr(0) sup

z,w∈rS
Dh(z, w; rS) > C̃

]
≤ C̃−ξ−1(q+

√
q2−4)+o

C̃
(1).

187



By sending q → Q and noting that Q+
√
Q2 − 4 = 4/γ, we get

P

[
c−1
r e−ξhr(0) sup

z,w∈rS
Dh(z, w; rS) > C̃

]
≤ C̃−

4
γξ

+o
C̃

(1)
= C̃

− 4dγ

γ2 +o
C̃

(1)
.

For p ∈ (0, 4dγ/γ
2), we can multiply this last estimate by C̃p−1 and integrate to get the desired pth

moment bound (3.83).

4.3.4 Pointwise distance bounds

In this subsection we will prove the following more quantitative versions of Theorems 4.10

and 4.11, which are required to be uniform across scales. Recall that h is a whole-plane GFF

normalized so that h1(0) = 0.

Proposition 4.45 (Distance from a point to a circle). Let α ∈ R and let hα := h− α log | · |. If

α ∈ (−∞, Q), then for each p ∈ (−∞, 2dγ
γ (Q− α)), there exists Cp > 0 such that for each r > 0,

E

[(
c−1
r r

αξe−ξhr(0)Dhα (0, ∂Br(0))
)p]
≤ Cp. (3.95)

If α > Q, then a.s. Dhα(0, z) =∞ for every z ∈ C \ {0}.

Proposition 4.46 (Distance between two points). Let α, β ∈ R, let z, w ∈ C be distinct, and

let hα,β := h − α log | · −z| − β log | · −w|. Set r := |z − w|/2. If α, β ∈ (−∞, Q), then for each

p ∈
(
−∞, 2dγ

γ (Q−max{α, β})
)

, there exists Cp > 0 such that for each choice of z, w as above,

E

[(
c−1
r r

αξe−ξhr(z)Dhα (z, w;B8r(z))
)p]
≤ Cp. (3.96)

If either α > Q or β > Q, then a.s. Dhα,β (z, w) =∞.

Propositions 4.45 and 4.46 are immediate consequences of the following sharper distance estimates

and a calculation for the standard linear Brownian motion t 7→ hre−t(0)− hr(0).

Proposition 4.47. Assume that we are in the setting of Proposition 4.45. If α ∈ (−∞, Q), then

there is a deterministic function ψ : [0,∞)→ [0,∞) which is bounded in every neighborhood of 0
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and satisfies limt→∞ ψ(t)/t = 0, depending only on α and the choice of metric D,3 such that the

following is true. For each r > 0, it holds with superpolynomially high probability as C →∞, at a

rate which is uniform in the choice of r, that

C−1 cr
rαξ

∫ ∞
0

eξhre−t (0)−ξ(Q−α)t−ψ(t) dt ≤ Dhα (0, ∂Br(0)) ≤ C cr
rαξ

∫ ∞
0

eξhre−t (0)−ξ(Q−α)t+ψ(t) dt

(3.97)

and the Dhα-distance around the annulus Br(0) \Br/e(0) (Definition 4.40) is at most the right side

of (3.97). If α > Q, then a.s. Dhα(0, z) =∞ for every z ∈ C \ {0}.

Proposition 4.48. Assume that we are in the setting of Proposition 4.46. If α, β ∈ (−∞, Q), then

there is a deterministic function ψ : [0,∞)→ [0,∞) which is bounded in every neighborhood of 0

and satisfies limt→∞ ψ(t)/t = 0, depending only on α and the choice of metric D, such that the

following is true. With superpolynomially high probability as C →∞, at a rate which is uniform in

the choice of z and w,

Dhα,β (z, w) ≥ C−1 cr
rαξ

∫ ∞
0

(
eξhre−t (z)−ξ(Q−α)t−ψ(t) + eξhre−t (w)−ξ(Q−β)t−ψ(t)

)
dt (3.98)

and

Dhα,β (z, w;B8r(z)) ≤ C
cr
rαξ

∫ ∞
0

(
eξhre−t (z)−ξ(Q−α)t+ψ(t) + eξhre−t (w)−ξ(Q−β)t+ψ(t)

)
dt. (3.99)

If either α > Q or β > Q, then a.s. Dhα,β (z, w) =∞.

Remark 4.49. It will be shown in [59] that every weak LQG metric is a strong LQG metric, so

in particular it satisfies Axiom V with cr = rξQ. Once this is established, our proof shows that

Propositions 4.47 and 4.48 hold with ψ(t) = 0.

Proof of Proposition 4.45, assuming Proposition 4.47. For t ≥ 0, let Bt := hre−t(0)− hr(0). Then

B is a standard linear Brownian motion [44, Section 3.1]. By Proposition 4.47, for each ζ ∈ (0, 1), it

3At this point we do not know that the weak LQG metric D : h 7→ Dh is unique. When we say that something is
allowed to depend on the choice of D, we mean that it is allowed to depend on which particular weak LQG metric we
are looking at.
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holds with superpolynomially high probability as C →∞, uniformly over the choice of r, that

C−ζ
∫ ∞

0
eξBt−(Q−α)ξt−ζt dt ≤ c−1

r r
αξe−ξhr(0)Dhα (0, ∂Br(0)) ≤ Cζ

∫ ∞
0

eξBt−(Q−α)ξt+ζt dt. (3.100)

To prove the proposition, we will use an exact formula for the laws of the integrals appearing

in (3.100). To write down such a formula, let B̃s := ξBs/ξ2 . Then B̃ is a standard linear Brownian

motion and Bt = ξ−1B̃ξ2t. Making the change of variables t = s/ξ2 gives

∫ ∞
0

eξBt−(Q−α)ξt+ζt dt =
1

ξ2

∫ ∞
0

eB̃s−(Q−α)s/ξ+ζs/ξ2
ds. (3.101)

It is shown in [40] (see also [111, Example 3.3] with c = (Q− α)/ξ − ζ/ξ2) that

P

[∫ ∞
0

eB̃s−(Q−α)s/ξ+ζs/ξ2
ds ∈ dx

]
= bx−2(Q−α)/ξ+2ζ/ξ2−1e−2/x, ∀x ≥ 0, (3.102)

where b is a normalizing constant depending only on Q,α, ξ. Combining the upper bound in (3.100)

with (3.101) and the upper tail asymptotics of the density (3.102), then sending ζ → 0, shows that

P

[
c−1
r r

αξe−ξhr(0)Dhα (0, ∂Br(0)) > C
]
≤ C−2(Q−α)/ξ−oC(1), (3.103)

uniformly in r. Recall that ξ = γ/dγ . Multiplying both sides of (3.103) by pCp−1 and integrating

gives the desired bound for positive moments from (3.95). We similarly obtain the desired bound

for negative moments using the lower bound in (3.100) and the exponential lower tail of the

density (3.102).

Proof of Proposition 4.46, assuming Proposition 4.48. The bound for positive moments in (3.96) is

obtained in essentially the same way as the analogous bound in Proposition 4.45. We apply the

upper bound in Proposition 4.48 and use the exact formula (3.102) to bound the integral of each of

the two summands appearing on the right side of (3.99), then multiply the resulting tail estimate

by pCp−1 and integrate. We use that hr(z)− hr(w) is Gaussian with constant-order variance to get

an estimate which depends only on hr(z), not hr(w). The bound for negative moments in (3.96)

can similarly be extracted from the lower bound in Proposition 4.48, or can be deduced from
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Proposition 4.45 and the fact that a path from z to w must cross ∂Br(z).

It remains only to prove Propositions 4.47 and 4.48. We will prove Proposition 4.47 by applying

Proposition 4.34 to bound the distances across and around concentric annuli surrounding 0 with

dyadic radii, then summing over all of these annuli (see Figure 4.4 for an illustration). We will

then deduce Proposition 4.48 from Proposition 4.47 by considering two overlapping Euclidean disks

centered at z and w, respectively. For this purpose the statement concerning the Dh-distance around

Br(0) \Br/e(0) is essential to link up paths in these two disks.

∂Br(0)

∂B
r/e(0)

Figure 4.4 – To prove Proposition 4.47, we use Proposition 4.34 to show that with high probability,
the following bounds hold simultaneously for each k ∈ N0: a lower bound for the Dh-distance across
the annulus Bre−k(0) \Bre−k−1(0); an upper bound for the Dh-distance around this annulus; and
a lower bound for the Dh-distance across the larger annulus Bre−k(0) \Bre−k−2(0). Summing the
lower bounds for the distances across these annuli leads to the lower bound in (3.97). The paths
involved in the upper bounds are shown in red in the figure. Concatenating all of these paths gives
a path from 0 to ∂Br(0), which leads to the upper bound in (3.97).

Proof of Proposition 4.47. See Figure 4.2 for an illustration. The proof is divided into four steps.

1. We apply Proposition 4.34 in the annuli Are−k−1,re−k for k ∈ N0 to prove upper and lower

bounds for Dh(0, ∂Br(0)) in terms of sums over such annuli.

2. Using Brownian motion estimates, we convert from sums over annuli to integrals of quantities

of the form eξhre−t (z)−ξ(Q−α)t+ot(t).
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3. We show that the contribution of the small error terms in our estimates coming from

sums/integrals at superpolynomially small scales is negligible.

4. We put the above pieces together to conclude the proof.

Step 1: applying Proposition 4.34 at exponential scales. We will apply Proposition 4.34 and take a

union bound over exponential scales. In this step we allow any value of α ∈ R.

Fix a small parameter ζ ∈ (0, 1), which we will eventually send to zero. By Proposition 4.34

and Axiom III (to deal with the addition of −α log | · |) and a union bound over all k ∈ [0, C1/ζ ]Z,

we find that with superpolynomially high probability as C → ∞, the following is true for each

k ∈ [0, C1/ζ ]Z.

1. TheDhα-distance from ∂Bre−k−1(0) to ∂Bre−k(0) is at least C−1cre−kr
−ξα exp (ξhre−k(0) + ξαk).

2. There is a path from ∂Bre−k−2(0) to ∂Bre−k(0) which has Dhα-length at most

Ccre−kr
−ξα exp (ξhre−k(0) + ξαk). Moreover, there is also a path in Bre−k(0) \ Bre−k−1(0)

which disconnects ∂Bre−k−1(0) from ∂Bre−k(0) and which has Dhα-length at most

Ccre−kr
−ξα exp (ξhre−k(0) + ξαk).

To deal with the scales for which k ≥ C1/ζ , we apply Proposition 4.34 with kζ in place of C and take

a union bound over all such values of k to find that superpolynomially high probability as C →∞,

the above two conditions hold for each k ∈ [0, C1/ζ ]Z, and furthermore the following condition holds

for each integer k ≥ C1/ζ .

2′. There is a path from ∂Bre−k−2(0) to ∂Bre−k(0) which has Dhα-length at most

kζcre−kr
−ξα exp (ξhre−k(0) + ξαk). Moreover, there is also a path in Bre−k(0)\Bre−k−1(0) which

disconnects ∂Bre−k−1(0) from ∂Bre−k(0) and which has Dhα-length at most

kζcre−kr
−ξα exp (ξhre−k(0) + ξαk).

Henceforth assume that conditions 1 and 2 hold for each k ∈ [0, C1/ζ ]Z and condition 2′ holds

for each integer k ≥ C1/ζ , which happens with superpolynomially high probability as C →∞.
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Any path from 0 to ∂Br(0) must cross each of the annuli Bre−k(0)\Bre−k−1(0) for k ∈ [0, C1/ζ ]Z.

Furthermore, the union of {0} and the paths from conditions 2 and 2′ for all k ∈ N0 contains a

path from 0 to ∂Br(0). By Theorem 4.5, there is a deterministic function φ : [0,∞)→ [0,∞) with

φ(k) = ok(k), depending only on the choice of metric D, such that

e−ξQk−φ(k)cr ≤ cre−k ≤ e−ξQk+φ(k)cr, ∀r > 0. (3.104)

Summing the bounds from conditions 1 and 2 over all k ∈ [0, C1/ζ ]Z and the bounds from condition 2′

over all integers k ≥ C1/ζ and plugging in (3.104) shows that with superpolynomially high probability

as C →∞,

C−1 cr
rαξ

bC1/ζc∑
k=0

eξhre−k (0)−ξ(Q−α)k−φ(k) ≤ Dhα (0, ∂Br(0))

≤ C cr
rαξ

bC1/ζc∑
k=0

eξhre−k (0)−ξ(Q−α)k+φ(k) +
cr
rαξ

∞∑
k=bC1/ζc+1

kζeξhre−k (0)−ξ(Q−α)k+φ(k). (3.105)

Furthermore, by condition 2 for k = 0 the Dhα-distance around Br(0) \Br/e(0) is at most the right

side of (3.105).

Step 2: from summation to integration. We now want to convert from sums to integrals in (3.105).

Since t 7→ hre−t(0)− hr(0) is a standard linear Brownian motion [44, Section 3.1], the Gaussian tail

bound and the union bound show that with superpolynomially high probability as C →∞,

sup
t∈[k,k+1]

|hre−t(0)− hre−k(0)| ≤ 1

ξ
logC, ∀k ∈

[
0, C1/ζ

]
Z

. (3.106)

Let ψ(t) := φ(btc), where φ is as in (3.104). Then ψ(t) = ot(t) and if (3.106) holds, then for each

k ∈ [0, C1/ζ ]Z,

eξhre−k (0)−ξ(Q−α)k−φ(k) ≥ C−1

∫ k+1

k
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt and

eξhre−k (0)−ξ(Q−α)k+φ(k) ≤ C
∫ k+1

k
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt. (3.107)
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By summing (3.107) over all k ∈ [0, C1/ζ ]Z, we obtain

bC1/ζc∑
k=0

eξhre−k (0)−ξ(Q−α)k−φ(k) ≥ C−1

∫ bC1/ζc+1

0
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt and

bC1/ζc∑
k=0

eξhre−k (0)−ξ(Q−α)k+φ(k) ≤ C
∫ bC1/ζc+1

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt. (3.108)

Step 3: bounding the sum of the small scales. To deduce our desired bounds from (3.105) and (3.108),

we now need an upper bound for
∫∞
bC1/ζc e

ξh
re−t (0)−ξ(Q−α)t+ψ(t) dt and an upper bound for the second

sum on the right side of (3.105). This is the only step where we need to assume that α < Q.

Since t 7→ hre−t(0)− hr(0) is a standard linear Brownian motion and for q ∈ (0, 1], x 7→ xq is

concave, hence subadditive, if q ∈ (0, 1] is chosen small enough that ξq(Q− α)− ξ2q2/2 > 0, then

E

[(∫ ∞
bC1/ζc

eξhre−t (0)−ξ(Q−α)t+ψ(t) dt

)q]
� eqhr(0)

∫ ∞
bC1/ζc

exp

(
−
(
ξq(Q− α)− ξ2q2

2

)
t+ ot(t)

)
dt

� eqhr(0) exp

(
−1

2

(
ξq(Q− α)− ξ2q2

2

)
C1/ζ

)
,

where here the ot(t) and the implicit constants in � do not depend on C or r. Therefore, the

Chebyshev inequality shows that

P

[∫ ∞
bC1/ζc

eξhre−t (0)−ξ(Q−α)t+ψ(t) dt > eξhr(0)−C1/(2ζ)

]
(3.109)

decays faster than any negative power of C. On the other hand, it is easily seen from the Gaussian

tail bound that

P

[∫ bC1/ζc

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt < eξhr(0)−C1/(2ζ)

]
(3.110)

decays faster than any negative power of C. Hence with superpolynomially high probability as

C →∞, ∫ ∞
0

eξhre−t (0)−ξ(Q−α)t+ψ(t) dt ≤ 2

∫ bC1/ζc

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt. (3.111)

194



Similarly, we get that with superpolynomially high probability as C →∞,

∞∑
k=bC1/ζc+1

kζeξhre−k (0)−ξ(Q−α)k−φ(k) ≤
∫ ∞

0
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt. (3.112)

Step 4: conclusion. By applying (3.108), (3.111), and (3.112) to bound the left and right sides

of (3.105), we get that if α < Q, then with superpolynomially high probability, the bounds (3.97)

as well as the bound stated just below (3.97) (here we use the sentence just below (3.105)) all hold

with 2C2, say, in place of C. Since we are claiming that these bounds hold with superpolynomially

high probability as C →∞, this is sufficient.

Finally, we consider the case when α > Q. Since hre−t(0)− hr(0) evolves as a standard linear

Brownian motion, for each β ∈ (0, α−Q) it is a.s. the case that the summand eξhre−k (0)−ξ(Q−α)k−φ(k)

in the lower bound in (3.105) is bounded below by eβk for large enough k. (How large is random).

Since (3.105) holds with superpolynomially high probability as C →∞, the Borel-Cantelli lemma

combined with the preceding sentence shows that a.s. for large enough (random) C > 1, we have

Dhα (0, ∂Br(0)) ≥ C−1eβbC
1/ζc, which tends to∞ as C →∞. This shows that a.s. Dhα(0, ∂Br(0)) =

∞. Since this holds a.s. for each rational r > 0, it follows that a.s. Dhα(0, z) = ∞ for every

z ∈ C \ {0}.

Proof of Proposition 4.48. We first observe that by Axiom IV, Proposition 4.47 still holds with 0

replaced by any z ∈ C, with the rate of convergence as C →∞ uniform in z and r. Applying the

lower bound of Proposition 4.47 with each of z and w in place of 0 immediately gives (3.98) since

any path from z to w must contain disjoint sub-paths from z to ∂Br/2(z) and from w to Br/2(w).

Moreover, by comparing the local behavior of Dhα,β near z and near w to Dhα and Dhβ , respectively,

we get that a.s. Dhα,β (z, w) =∞ if either α > Q or β > Q.

It remains to prove (3.99). Assume α < Q. We first apply Proposition 4.47 with 8r in place of

r to find that with superpolynomially high probability as C →∞, there is a path Pz,1 from z to

∂B8r(z) and a path Pz,2 in Br(z) \B8r/e(z) which disconnects ∂B8r/e(z) from ∂B8r(z) which each

have Dh-length at most ∫ ∞
− log 8

eξhre−t (z)−ξ(Q−α)t+ψ(t) dt;
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and the same is true with w in place of z. Since w ∈ B8r/e(z), the union of the paths Pz,1, Pz,2, and

Pw,1 contains a path from z to w in B8r(z). This gives (3.99) but with − log 8 instead of 0 in the

lower bound of integration for the integral on the right.

To get the estimate with the desired lower bound of integration, we use that t 7→ hre−t(z)−hr(z)

is a standard two-sided linear Brownian motion. In particular, two applications of the Gaussian tail

bound show that with superpolynomially high probability as C →∞,

sup
t∈[− log 8,0]

hre−t(z) ≤ inf
t∈[0,log 2]

hre−t(z) + logC.

Therefore, with superpolynomially high probability as C →∞,

∫ ∞
− log 8

eξhre−t (z)−ξ(Q−α)t+ψ(t) dt ≤
∫ ∞

0
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt

+ Cξ
∫ log 2

0
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt.

Combining this with the analogous estimate with w in place of z and the aforementioned analog

of (3.99) with − log 8 instead of 0 in the lower bound of integration gives (3.99).

Although it is not needed for the proofs of Propositions 4.47 and 4.48, we record the following

generalization of Proposition 4.42 which tells us in particular that Dhα induces the Euclidean

topology on C when Q > 2 and α < Q (which is a stronger statement than just that Dhα(0, z) <∞

for every z ∈ C).

Proposition 4.50. Let h, α, hα, and Dhα be as in Proposition 4.47. If Q = 2/γ + γ/2 > 2 and

α ∈ (−∞, Q), then for each −∞ < p < min{4dγ
γ2 ,

2dγ
γ (Q− α)}, there exists Cα,p > 0 such that for

each r > 0,

E

[(
e−ξhr(0)c−1

r r
αξ sup

z,w∈Br(0)
Dhα(z, w)

)p]
≤ Cα,p. (3.113)

In particular, a.s. Dhα induces the Euclidean topology on C.

We note that the range of moments −∞ < p < min{4dγ
γ2 ,

2dγ
γ (Q− α)} for the Dhα-diameter of

D appearing in Proposition 4.50 is the same as the range of moments for the µhα-mass of D, but

scaled by dγ ; see, e.g., [54, Lemma A.3]. This is natural from the perspective that dγ is the scaling

196



exponent relating γ-LQG distances and areas.

Proof of Proposition 4.50. On Br(0) \Br/2(0), we have that −α log | · | is bounded above and below

by −α log r times constants depending only on α. Therefore, the existence of negative moments is

immediate from Axiom III and Proposition 4.42 applied with U = D \B1/2(0).

To get the desired positive moments, for k ∈ N0 let Ak be the annulus Bre−k(0) \ Bre−k−1(0).

The random variable hre−k(0)− hr(0) is Gaussian with variance k, so for p > 0,

E

[
epξ(hre−k (0)−hr(0))

]
= ep

2ξ2k/2, ∀p > 0. (3.114)

By Proposition 4.42 (applied with K = A0, U = C, and re−k in place of r),

E

[(
c−1
re−k

e−ξhre−k (0)e−αξkrαk sup
z,w∈Ak

Dhα(z, w)

)p]
� 1, ∀p < 4dγ

γ2
. (3.115)

By (3.114) and (3.115) and since (h− hre−k(0))|Ak is independent from hre−k(0)− hr(0), we find

that for p ∈ (0, 4dγ/γ
2),

E

[(
e−ξhr(0)c−1

r r
αξ sup

z,w∈Ak
Dhα(z, w)

)p]

=

(
cre−k

cr

)p
epαξkE

[
epξ(hre−k (0)−hr(0))

]
E

[(
c−1
re−k

e−ξhre−k (0)e−αξkrαk sup
z,w∈Ak

Dhα(z, w)

)p]

≤ exp

(
−
(
ξp(Q− α)− p2ξ2

2

)
k + ok(k)

)
, (3.116)

at a rate depending only on α, p. Note that in the last line we used Theorem 4.5 to bound cre−k/cr.

The quantity inside the exponential on the right side of (3.116) is negative provided p <

min{4dγ
γ2 ,

2dγ
γ (Q− α)} (recall that ξ = γ/dγ). For 0 < p < min{1, 2dγ

γ (Q− α)}, the function x 7→ xp
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is concave, hence subadditive, so summing (3.116) over all k ∈ N0 gives

E

[(
e−ξhr(0)c−1

r r
αξ sup

z,w∈Br(0)
Dhα(z, w)

)p]
≤
∞∑
k=0

E

[(
e−ξhr(0)c−1

r r
αξ sup

z,w∈Ak
Dhα(z, w)

)p]

�
∞∑
k=0

exp

(
−
(
ξp(Q− α)− p2ξ2

2

)
k + ok(k)

)
� 1. (3.117)

This gives (3.113) in the case when 0 < p < min{1, 2dγ
γ (Q − α)}. In the case when 1 ≤ p <

min{4dγ
γ2 ,

2dγ
γ (Q− α)}, (3.113) follows from a similar calculation with the triangle inequality for the

Lp norm used in place of sub-additivity.

Finally, we know that the restriction of Dhα to C \ {0} induces the Euclidean topology (see the

discussion just above Theorem 4.10), so to check that that Dhα induces the Euclidean topology, we

need to show that a.s. supz,w∈B
e−k (0)Dhα(z, w)→ 0 as k →∞. This follows from the bound (3.117)

applied with r = 1 and the Borel-Cantelli lemma.

4.3.5 Hölder continuity

We will prove the following more quantitative version of Theorem 4.7 which is required to be

uniform across scales.

Proposition 4.51. Fix a compact set K ⊂ C and exponents χ ∈ (0, ξ(Q− 2)) and χ′ > ξ(Q+ 2).

For each r > 0, it holds with polynomially high probability as ε→ 0, at a rate which is uniform in r,

that

∣∣∣∣u− vr
∣∣∣∣χ′ ≤ c−1

r e−ξhr(0)Dh (u, v) ≤
∣∣∣∣u− vr

∣∣∣∣χ , ∀u, v ∈ rK with |u− v| ≤ εr. (3.118)

We will actually prove a slightly stronger version of the upper bound for Dh in Proposition 4.51,

which bounds internal distances relative to a small neighborhood of u instead of just distances along

paths in all of C; see Lemma 4.53 just below. This stronger version is used in [59].

For the proof of Proposition 4.51, we assume that Q > 2 and we fix a compact set K ⊂ C. The

basic idea of the proof of the upper bound in (3.118) is to apply Proposition 4.42 to Euclidean
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balls of radius ε and take a union bound over many such Euclidean balls which cover K. The basic

idea for the proof of the lower bound in (3.118) is to apply the lower bound in Proposition 4.34

to lower bound the Dh-distance across Euclidean annuli of the form B2ε(z) \ Bε(z), then take a

union bound over many such annuli whose inner balls cover K. We first prove an upper bound for

Dh-distances in terms of Euclidean distances. For this purpose we will use the following consequence

of Propositions 4.42 and 4.43.

Lemma 4.52. For each s ∈ (0, ξQ), each r > 0, and each z ∈ rK,

P

[
sup

u,v∈Bεr(z)
Dh (u, v;B2εr(z)) ≤ εscreξhr(0)

]
≥ 1− ε

(ξQ−s)2

2ξ2 +oε(1)
, as ε→ 0, (3.119)

uniformly over the choices of r and z ∈ rK. Furthermore, if we let Sεr(z) be the square of side

length εr centered at z, then for r > 0 and z ∈ rK, the Dh-internal diameter of Sεr(z) satisfies

P

[
sup

u,v∈Sεr(z)
Dh (u, v;Sεr(z)) ≤ εscreξhr(0)

]
≥ 1− ε

(ξQ−s)2

2ξ2 +oε(1)
, as ε→ 0, (3.120)

uniformly over the choices of r and z ∈ rK.

Proof. We know that h2εr(z)−hr(z) is centered Gaussian of variance log ε−1−log 2 and is independent

from (h−h2εr(z))|B2εr(z). By Axioms II and III, h2εr(z)−hr(z) is also independent from the internal

metric

Dh−h2εr(z) (u, v;B2εr(z)) = e−ξh2εr(z)Dh (u, v;B2εr(z)) .

Consequently, we can apply Theorem 4.5 and Proposition 4.42 (with εr in place of r) together with

the formula E[eX ] = eVar(X)/2 for a Gaussian random variable X to get that for p ∈ (0, 4/(γξ)),

E

[(
c−1
r e−ξhr(0) sup

u,v∈Bεr(z)
Dh (u, v;B2εr(z))

)p]

=

(
cεr
cr

)p
E

[
eξp(hεr(z)−hr(z)

]
E

[(
c−1
εr e
−ξhεr(z) sup

u,v∈Bεr(z)
Dh (u, v;B2εr(z))

)p]

≤ εξQp−ξ2p2/2+oε(1), (3.121)

with the oε(1) uniform over all r > 0 and z ∈ C.
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By (3.121) and the Chebyshev inequality,

P

[
sup

u,v∈Bεr(z)
Dh (u, v;B2εr(z)) > εscre

ξhr(z)

]
≤ εpξQ−

p2ξ2

2
−ps+oε(1). (3.122)

The exponent on the right side is maximized for p = (ξQ− s)/ξ2, which is always at most 4/(ξγ) for

s > 0 (since γ < 2) and is positive provided s < ξQ. Making this choice of p gives (3.119) but with

hr(z) in place of hr(0). The random variables hr(z)− hr(0) for z ∈ rK are Gaussian with variance

bounded above by a constant depending only on K. Consequently, we can apply the Gaussian tail

bound to get (3.119) in general.

The bound (3.120) is proven similarly but with Proposition 4.43 used in place of Proposition 4.42.

We can now prove a slightly sharper version of the upper bound of Proposition 4.51.

Lemma 4.53. For each χ ∈ (0, ξ(Q−2)) and each r > 0, it holds with polynomially high probability

as ε→ 0, at a rate which is uniform in r, that

c−1
r e−ξhr(0)Dh

(
u, v;B2|u−v|(u)

)
≤
∣∣∣∣u− vr

∣∣∣∣χ , ∀u, v ∈ rK with |u− v| ≤ εr. (3.123)

Furthermore, it also holds with polynomially high probability as ε→ 0, at a rate which is uniform in

r, that for each k ∈ N0 and each 2−kεr× 2−kεr square S with corners in 2−kεrZ2 which intersects

rK, we have

c−1
r e−ξhr(0) sup

u,v∈S
Dh (u, v;S) ≤ (2−kε)χ. (3.124)

Proof. The bound (3.123) follows from (3.119), applied with s = χ and with 2−kε for k ∈ N0 in

place of ε, together with a union bound over all z ∈ Bεr(K)∩ (2−k−2εrZ2) and then over all k ∈ N0.

The bound (3.124) similarly follows from (3.120).

To prove the Hölder continuity of the Euclidean metric w.r.t. Dh, we first need the following

estimate which plays a role analogous to Lemma 4.52.
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Lemma 4.54. For each s > ξQ, each r > 0, and each z ∈ rK,

P

[
Dh (Bεr(z), ∂B2εr(z)) ≥ εscreξhr(0)

]
≥ 1− ε

(s−ξQ)2

2ξ2 +oε(1)
, as ε→ 0, (3.125)

uniformly over the choices of r and z ∈ rK.

Proof. The proof is similar to that of Lemma 4.52 but we use Proposition 4.34 instead of Propo-

sition 4.42. Proposition 4.34 implies that c−1
εr e
−ξhεr(z)Dh (Bεr(z), ∂B2εr(z)) has finite moments of

all negative orders which are bounded above uniformly over all z ∈ C and r > 0. By the same

calculation as in (3.121), for each p > 0 we have

E

[(
c−1
r e−ξhr(z)Dh (Bεr(z), ∂B2εr(z))

)−p]
= ε−ξQp−ξ

2p2/2+oε(1), (3.126)

uniformly over all z ∈ C and r > 0. Applying the Chebyshev inequality and setting p = (s− ξQ)/ξ2

gives (3.125) with hr(z) in place of hr(0). For z ∈ rK, we can replace hr(z) with hr(0) via exactly

the same argument as in the proof of Lemma 4.52.

Lemma 4.55. For each χ′ > ξ(Q+ 2) and each r > 0, it holds with polynomially high probability

as ε→ 0, at a rate which is uniform in r, that

c−1
r e−ξhr(0)Dh (u, v) ≥

∣∣∣∣u− vr
∣∣∣∣χ′ , ∀u, v ∈ K with |u− v| ≤ ε. (3.127)

Proof. This follows from (3.119), applied with s = χ′ and with 2−kε for k ∈ N0 in place of ε,

together with a union bound over all z ∈ Bεr(K) ∩ (2−k−2εrZ2) and then over all k ∈ N0.

Proof of Proposition 4.51. Combine Lemmas 4.53 and 4.55.

To conclude the proof of Theorem 4.7, we need to check that the Hölder exponents ξ(Q − 2)

and (ξ(Q+ 2))−1 are optimal.

Lemma 4.56. Let V ⊂ C be an open set. Almost surely, the identity map from V , equipped with

the Euclidean metric, to (V,Dh|V ) is not Hölder continuous with any exponent greater than ξ(Q−2).
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Furthermore, the inverse of this map is not Hölder continuous with any exponent greater than

ξ−1(Q+ 2)−1.

Proof. The idea of the proof is to use Proposition 4.47 to study Dh-distances as we approach an

α-thick point of h for α close to 2 or to −2. To produce such a thick point, we will sample a point

from the α-LQG measure induced by the zero-boundary part of h|V . By Axiom III, we can assume

without loss of generality that h is normalized so that h1(0) = 0. We can also assume without loss

of generality that V is bounded with smooth boundary. Let hV be the zero-boundary part of h|V ,

so that h− hV is harmonic on V .

Let α ∈ (−2, 2) which we will eventually send to either −2 or 2, and let µα
hV

be the α-LQG

measure induced by hV . Also let z be sampled uniformly from µαh , normalized to be a probability

measure. Let P̃ be the law of (h, z) weighted by the total mass µα
hV

(V ), so that under P̃, h is

sampled from its marginal law weighted by µα
hV

(V ) and conditional on h, z is sampled from µα
hV

,

normalized to be a probability measure. By a well-known property of the α-LQG measure (see,

e.g., [43, Lemma A.10]), a sample (h, z) from the law P̃ can be equivalently be produced by first

sampling h̃ from the unweighted marginal law of h, then independently sampling z uniformly from

Lebesgue measure on S′ and setting h = h̃− α log | · −z|+ gz, where gz : V → R is a deterministic

continuous function.

By Proposition 4.47 (applied with the field h̃−α log | · −z| in place of hα), the fact that gz is a.s.

bounded in a neighborhood of z (by continuity), and the Borel-Cantelli lemma, we find that a.s.

Dh (z, ∂Br(z)) = ror(1) cr
rαξ

∫ ∞
0

eξh̃re−t (z)−ξ(Q−α)tot(t) dt, (3.128)

where here the ot(t) is deterministic and tends to 0 as t → ∞ (it comes from the error ψ(t) in

Proposition 4.47) and the or(1) denotes a random variable which tends to 0 a.s. as r → 0. The

description in the preceding paragraph shows that conditional on z, the process t 7→ h̃re−t(z)− h̃r(z)

evolves as a standard linear Brownian motion. Consequently, the Gaussian tail bound shows that

with probability tending to 1 as r → 0,

∫ ∞
0

eξh̃re−t (z)−ξ(Q−α)t+ot(t) dt = ror(1)eξh̃r(z) = ror(1). (3.129)
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By plugging (3.129) into (3.128) and using the fact that cr = rξQ+or(1) (Theorem 4.5), it therefore

follows that with probability tending to 1 as r → 0,

Dh (z, ∂Br(z)) = rξ(Q−α)+or(1).

Since α can be made arbitrarily close to 2, this shows the desired lack of Hölder continuity for

identity map (V, | · |)→ (V,Dh). Since α can be made arbitrarily close to −2, we also get the desired

lack of Hölder continuity for the inverse map (V,Dh)→ (V, | · |).

4.4 Constraints on the behavior of Dh-geodesics

Let D be a weak γ-LQG metric. By Lemma 4.41, for a whole-plane GFF h, the metric space

(C, Dh) is a boundedly compact length space (i.e., closed bounded subsets are compact) so there is

a Dh-geodesic — i.e., a path of minimal Dh-length — between any two points of C [17, Corollary

2.5.20]. In this section we will apply the main results of this chapter to prove two estimates which

constrain the behavior of Dh-geodesics. The first of these estimates, Proposition 4.57, tells us that

paths which stay in a small Euclidean neighborhood of a straight line or an arc of the boundary of a

circle have large Dh-lengths. In particular, Dh-geodesics are unlikely to stay in such a neighborhood.

The second estimate, Proposition 4.59, says that a Dh-geodesic cannot spend a long time near the

boundary of a Dh-metric ball.

4.4.1 Lower bound for Dh-distances in a narrow tube

Proposition 4.57. Let L ⊂ C be a compact set which is either a line segment, an arc of a circle,

or a whole circle and fix b > 0. For each r > 0 and each p > 0, it holds with probability at least

1− εp2/(2ξ2)+oε(1) that

inf {Dh (u, v;Bεr(rL)) : u, v ∈ Bεr(rL), |u− v| ≥ br} ≥ εp+ξQ−1−ξ2/2cre
ξhr(0), (4.130)

where the rate of the oε(1) depends on L, b, p but not on r.

By [4, Theorem 1.9], for each γ ∈ (0, 2) we have ξQ ≤ 1 and hence ξQ− 1− ξ2/2 < 0. Therefore,
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the power of ε on the right side of (4.130) is negative for small enough p. Hence, Proposition 4.57

implies that when ε is small and u, v ∈ Bεr(rL) with |u− v| ≥ br, it holds with high probability that

Dh (u, v;Bεr(rL)) is much larger than Dh(u, v). In particular, a Dh-geodesic from u to v cannot

stay in Bεr(L).

Proof of Proposition 4.57. Step 1: bounding distances in terms of circle averages. View L as a path

[0, |L|]→ C parametrized by Euclidean unit speed. For k ∈ [0, |L|/(6ε)]Z, let zεk := rL(6kε). Then

the balls B3εr(z
ε
k) are disjoint and the balls B7εr(z

ε
k) cover Bεr(rL).

Fix ζ ∈ (0, 1), which we will eventually send to zero. By Proposition 4.34 and a union bound, it

holds with superpolynomially high probability as ε→ 0 that

Dh (B2εr(z
ε
k), B3εr(z

ε
k)) ≥ εζcεreξhεr(z

ε
k), ∀k ∈ [0, |L|/(6ε)]Z. (4.131)

Henceforth assume that (4.131) holds. The idea of the proof is that a path in Bεr(rL) has to

cross between the inner and outer boundaries of a large number of the annuli B3εr(z
ε
k) \B2εr(z

ε
k).

Thus (4.131) reduces our problem to proving a lower bound for the sum of the quantities εζcεre
ξhεr(zεk)

for these annuli, which in turn can be proven using Theorem 4.5 and basic estimates for the circle

average process.

Step 2: lower-bounding lengths of paths in Bεr(rL) in terms of circle averages. There is a constant

c > 0 depending only on b and L such that for small enough ε > 0 (depending only on b and L), the

following is true. If u, v ∈ Bεr(rL) satisfy |u − v| ≥ br, there are integers 0 ≤ k′1 < k′2 ≤ |L|/(6ε)

such that k′2 − k′1 ≥ cε−1, u ∈ B7εr(z
ε
k′1

), and v ∈ B7εr(z
ε
k′2

). Each path from u to v in Bεr(rL) must

enter B2εr(z
ε
k) for each k ∈ [k′1 + 2, k′2 − 2]Z, and hence must cross the annulus A2εr,3εr(z

ε
k) for each

such k. Combining this with (4.131) shows that

Dh (u, v;Bεr(rL)) ≥ εζcεr
k′2−2∑

k=k′1+2

eξhεr(zεk). (4.132)

Step 3: proof conditional on a circle average estimate. We claim that for any fixed k1, k2 ∈
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[0, |L|/(6ε)]Z with k2 − k1 ≥ (c/2)ε−1 and any p > 0,

P

 k2∑
k=k1

eξhεr(z
ε
k) ≥ εp−1−ξ2/2eξhεr(0)

 ≥ 1− ε
p2

2ξ2
+oε(1)

(4.133)

where the rate of the oε(1) depends on L, b, p but not on r or the particular choice of k1, k2. We

will prove (4.133) just below using standard Gaussian estimates.

Let us first conclude the proof assuming (4.133). We can find a constant-order number of pairs

k1, k2 ∈ [0, |L|/(6ε)]Z with k2 − k1 ≥ (c/2)ε−1 such that for small enough ε (depending only on

L and b), each interval [k′1 + 2, k′2 − 2] ⊂ [0, |L|/(6ε)]Z with |k′2 − k′1| ≥ cε−1 contains one of the

intervals [k1, k2].

By applying (4.133) (with p − 2ζ in place of p) to each such pair k1, k2, then taking a union

bound, we get that with probability at least 1− ε
(p−2ζ)2

2ξ2
+oε(1)

, the sum on the right side of (4.132) is

bounded below by εp−1−ξ2/2−2ζeξhεr(0) simultaneously for every possible choice of k′1, k
′
2. By (4.132),

with probability at least 1− ε
(p−2ζ)2

2ξ2
+oε(1)

it holds simultaneously for each u, v ∈ Bεr(rL) satisfying

|u− v| ≥ br that

Dh (u, v;Bεr(rL)) ≥ εp−1−ξ2/2−ζcεre
ξhr(0) ≥ εp+ξQ−1−ξ2/2−ζ+oε(1)cre

ξhr(0) (4.134)

where in the second inequality we use Theorem 4.5. Sending ζ → 0 now gives (4.130).

Step 4: proof of the circle average estimate. The rest of the proof is devoted to proving the

inequality (4.133). To lighten notation, write Xk := hεr(z
ε
k) − hr(0). By the calculations in [44,

Section 3.1] (and the scale invariance of the law of h, modulo additive constant), the Xk’s are jointly

centered Gaussian with variances satisfying

Var(Xk) = log ε−1 +O(1), (4.135)

where here O(1) denotes a quantity which is bounded above and below by constants depending only

on L, b (not on ε, r, j, k). Since zεk = rL(6kε) and L is parametrized by Euclidean unit speed, we
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also have the following covariance formula for j 6= k:

Cov (Xj , Xk) = log

(
r

|zεj − zεk|

)
+O(1) = log

(
1

ε|k − j|

)
+O(1). (4.136)

Recall the formula E[eX ] = eVar(X)/2 for a centered Gaussian random variable X. Applying this

to the Xk’s and recalling (4.135) and the fact that k2 − k1 � ε−1 gives

E

 k2∑
k=k1

eξXk

 � ε−1−ξ2/2, (4.137)

with the implicit constant depending only on L, b. From (4.135) and (4.136) we obtain Var(Xj +

Xk) = log
(
ε−4|k − j|−2

)
+O(1) for j 6= k. Hence

E

 k2∑
k=k1

eξXk

2 =

k2∑
k=k1

E

[
e2ξXk

]
+ 2

k2∑
k=k1

k2∑
j=k+1

E

[
eξ(Xj+Xk)

]

� ε−1−2ξ2
+ 2ε−2ξ2

k2∑
k=k1

k2∑
j=k+1

|j − k|−ξ2

� ε−1−2ξ2
+ ε−2−ξ2 � ε−2−ξ2

(4.138)

with the implicit constants depending only on L, b, where in the last inequality we use that

ξ < 2/d2 < 1, so 1 + 2ξ2 < 2 + ξ2.

By (4.137), (4.138), and the Payley-Zygmund inequality, we find that there is a constant

a = a(L) > 0 such that

P

 k2∑
k=k1

eξXk ≥ aε−1−ξ2/2

 ≥ a. (4.139)

To improve the lower bound for this probability, we will apply the following elementary Gaussian

concentration bound (see, e.g., [32, Lemma 2.1]):

Lemma 4.58. For any a > 0, there exists C = C(a) > 0 such that the following is true. Let

X = (X1, . . . , Xn) be a centered Gaussian vector taking values in Rn and let σ2 := max1≤j≤n Var(Xj).
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If B ⊂ Rn such that P[X ∈ B] ≥ a, then for any λ ≥ Cσ,

P

[
inf
x∈B
|X− x|∞ > λ

]
≤ e−

(λ−Cσ)2

2σ2 , (4.140)

where | · |∞ is the L∞ norm on Rn.

We now apply Lemma 4.58 with a as in (4.139), with σ2 = log ε−1 +O(1) (recall (4.135)), with

B =

(xk1 , . . . , xk2) ∈ Rk1+k2+1 :

k2∑
k=k1

eξxk ≥ aε−1−ξ2/2

 , (4.141)

and with λ = p
ξ log ε−1. This shows that with probability 1−εp2/(2ξ2)+oε(1), there exists (xk1 , . . . , xk2) ∈

B such that maxk∈[k1,k2]Z |Xk − xk| ≤ p
ξ log ε−1. If this is the case, then

k2∑
k=k1

eξXk ≥ εp
k2∑

k=k1

eξxk ≥ aεp−1−ξ2/2. (4.142)

Since Xk = hεr(z
ε
k)− hr(0), this implies (4.133).

4.4.2 Dh-geodesics cannot trace the boundaries of Dh-metric balls

For s > 0 and z ∈ C, we write Bs(z;Dh) for the Dh-metric ball of radius s centered at z. The

following proposition prevents a Dh-geodesic from spending a long time near the boundary of a

Dh-metric ball.

Proposition 4.59. For each M > 0 and each r > 0, it holds with superpolynomially high probability

as ε→ 0, at a rate which is uniform in the choice of r, that the following is true. For each s > 0

for which Bs(0;Dh) ⊂ Bε−Mr(0) and each Dh-geodesic P from 0 to a point outside of Bs(0;Dh),

area (Bεr(P ) ∩Bεr (∂Bs(0;Dh))) ≤ ε2−1/M
r

2, (4.143)

where area denotes 2-dimensional Lebesgue measure.
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Figure 4.5 – Illustration of the proof of Proposition 4.59. By considering successive times at which P
enters Bεr(Bs(0;Dh)), we can find K ∈ N and a collection of K C-good Euclidean balls B0, . . . , BK
with radii in [2εr, ε1−ζr] with the following properties: (a) each Bk intersects ∂Bs(0;Dh); (b) the
Dh-geodesic P crosses the annuli (2Bk) \ Bk for k ∈ [0,K − 1]Z in numerical order; and (c) the
balls of radii 4ε1−ζr with the same centers as the Bk’s cover P ∩Bεr(Bs(0;Dh)). This last property
implies that area (Bεr(P ) ∩Bεr(∂Bs(0;Dh)) ≤ const×ε2−2ζr2K, so we are left to bound K. To this
end, we show using the definition (4.144) of a C-good ball and the fact that P is a Dh-geodesic that
Dh(∂Bk, ∂(2Bk)) increases exponentially in k. Due to Lemma 4.61, this implies that K ≤ ε−1/(2M).

For C > 1, z ∈ C, and r > 0, we say that the Euclidean ball Br(z) is C-good if

sup
u,v∈∂Br(z)

Dh

(
u, v;Ar/2,2r(z)

)
≤ CDh (∂Br(z), ∂B2r(z)) . (4.144)

To prove Proposition 4.59, we will consider C-good balls which intersect ∂Bs(0;Dh) and which are

hit by a given Dh-geodesic started from 0. See Figure 4.5 for an illustration and outline of the proof.

Lemma 4.60. For each ζ ∈ (0, 1) and each M > 0, there exists C = C(ζ,M) > 1 such that for

each r > 0, it holds with probability at least 1−Oε(εM ), at a rate which is uniform in r, that the

Euclidean ball Bε−Mr(0) can be covered by C-good balls with radii in [2εr, ε1−ζr].

Proof. This is an immediate consequence of Lemma 4.35 applied with ε1−ζ in place of ε and any

choice of ν ∈ (0, 1
1−ζ − 1).
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We will also need the following easy consequence of the distance bounds from Section 4.3.

Lemma 4.61. For each M > 0, there exists A = A(M) > 0 such that for each r > 0, the following

holds with probability 1−Oε(εM ) as ε→ 0, at a rate which is uniform in r. For each z, w ∈ Bε−Mr(0)

with |z − w| ≥ εr,

Dh(z, w) ≥ εA sup
u,v∈B

ε−M r
(0)
Dh(u, v). (4.145)

Proof. We will prove a lower bound for the left side of (4.145) (see (4.149)) and an upper bound

for the right side of (4.145) (see (4.151)), then compare them.

By Proposition 4.34 and a union bound, it holds with superpolynomially high probability as

ε→ 0 that

Dh(∂Bεr/4(x), ∂Bεr/2(x)) ≥ εcεreξhεr(x), ∀x ∈ Bε−Mr(0) ∩
(εr

8
Z

2
)
. (4.146)

The circle averages hεr(x)−hr(0) for x ∈ Bε−Mr(0) are Gaussian with variance at most (M+1) log ε−1.

By the Gaussian tail bound and a union bound, if we choose A0 = A0(M) to be sufficiently large,

then it holds with probability 1−Oε(εM ) that

|hεr(x)− hr(0)| ≤ A0 log ε−1 ∀x ∈ Bε−Mr(0) ∩
(εr

8
Z

2
)
. (4.147)

By Theorem 4.5,

cεr = εξQ+oε(1)cr. (4.148)

If z, w ∈ Bε−Mr(0) with |z − w| ≥ εr, then any path from z to w must cross between the inner and

outer boundaries of an annulus of the form Bεr/2(x) \ Bεr/4(x) for some x ∈ Bε−Mr(0) ∩
(
εr
8 Z

2
)
.

Combining this last observation with (4.146) shows that with superpolynomially high probability

as ε → 0, Dh(z, w) is at least the right side of (4.146) for each such z, w. We then apply (4.147)

and (4.148) to lower-bound the right side of (4.146). This shows that with probability 1−Oε(εM ),

Dh(z, w) ≥ εξA0+ξQ+1+oε(1)cre
ξhr(0), ∀z, w ∈ Bε−Mr(0) with |z − w| ≥ εr. (4.149)
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By Proposition 4.42,

E

[
c−1
ε−Mr

e−ξhε−M r
(0) sup

u,v∈B
ε−M r

(0)
Dh(u, v)

]
� 1, (4.150)

with the implicit constant uniform over all r > 0 and ε ∈ (0, 1). By Theorem 4.5, cε−Mr =

ε−ξQM+oε(1)cr. By the Gaussian tail bound, we can find A1 = A1(M) > 0 such that with probability

1−Oε(εM ), we have |hε−Mr(0)− hr(0)| ≤ A0 log ε−1. Combining these estimates with (4.150) and

Markov’s inequality shows that with probability 1−Oε(εM ),

sup
u,v∈B

ε−M r
(0)
Dh(u, v) ≤ ε−ξA1−ξQM−M+oε(1)cre

ξhr(0). (4.151)

Combining (4.149) and (4.151) gives (4.145) for any choice of A > ξA1+ξQM+M+ξA0+ξQ+1.

Proof of Proposition 4.59. Step 1: defining a regularity event. For M̃ > 0, ζ ∈ (0, 1), C > 1, and

A > 1, let Gεr = Gεr(M̃, ζ, C,A) be the event that the following is true.

1. The ball B
ε−M̃r

(0) can be covered by C-good Euclidean balls with radii in [2εr, ε1−ζr].

2. For each z, w ∈ B
ε−M̃r

(0) with |z − w| ≥ εr,

Dh(z, w) ≥ εA sup
u,v∈B

ε−M̃ r
(0)
Dh(u, v). (4.152)

By Lemmas 4.60 and 4.61, for any M̃ > 0 and ζ ∈ (0, 1) we can find C,A > 1 for which

P[Gεr] ≥ 1−Oε(εM̃ ), uniformly over all r > 0. (4.153)

Henceforth assume that Gεr occurs for such a choice of C,A and that M̃ > M .

Step 2: reducing to a bound for the number of excursions of a geodesic. Let s > 0 such that

Bs(0;Dh) ⊂ Bε−Mr(0) and let P be a Dh-geodesic from 0 to a point outside of Bs(0;Dh). Let τ0 = s

and inductively for k ∈ N let τk be the first time t after the exit time of P from B4ε1−ζr(P (τk−1))

for which P (t) ∈ Bεr(∂Bs), or τk =∞ if no such time exists. Let K be the smallest k ∈ N for which

τk =∞.
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We claim that there exists a constant c > 0 depending on C,A such that K ≤ c log ε−1 on Gεr.

If this is the case, then P ∩Bεr(∂Bs) can be covered by at most c log ε−1 Euclidean balls of radius

4ε1−ζr. This means that area (Bεr(P ) ∩Bεr(∂Bs(0;Dh)) ≤ 4πε2−2ζ+oε(1)r2. Choosing ζ < 1/(2M)

and sending M̃ →∞ then concludes the proof. Hence we only need to prove a logarithmic upper

bound for K assuming that Gεr occurs.

Step 3: bounding excursions using C-good balls. For k ∈ [0,K− 1]Z, we can find a C-good Euclidean

ball Bk with radius in [εr, ε1−ζr] which contains P (τk). Write 2Bk for the Euclidean ball with the

same center as Bk and twice the radius of Bk. Let σk be the first time after τk at which P exits 2Bk.

The time σk is smaller than the exit time of P from B4ε1−ζr(P (τk)). Consequently, the definition of

the τk’s shows that σk ∈ [τk, τk+1] for each k ∈ [0,K]Z.

Since P is a Dh-geodesic and P crosses the annulus (2Bk) \Bk between times τk and σk,

σk − τk ≥ Dh(∂Bk, ∂(2Bk)). (4.154)

We now argue that

τk ≤ s+ CDh(∂Bk, ∂(2Bk)). (4.155)

Indeed, since Bk intersects Bεr(∂Bs(0;Dh)) and has radius at least 2εr, it follows that Bk intersects

∂Bs(0;Dh). Let z ∈ ∂Bs(0;Dh) and let t ∈ [τk, σk] such that P (t) ∈ ∂Bk (such a t exists by

the definition of σk). By the definition of a C-good ball, the Dh-diameter of ∂Bk is at most

CDh(∂Bk, ∂(2Bk)). Hence

τk ≤ t ≤ Dh(0, z) +Dh(z, P (t)) ≤ s+ CDh(∂Bk, ∂(2Bk)),

which is (4.155).

By (4.154) and (4.155) and the fact that the intervals [τk, σk] ⊂ [s,∞) are disjoint, we get

k−1∑
j=0

(σj − τj) ≤ τk − s ≤ C(σk − τk).
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This holds for each k ∈ [0,K − 1]Z, from which we infer that

σK−1 − τK−1 ≥ C−1(1 + C−1)K(σ0 − τ0). (4.156)

By the definition of σ0, we have |P (σ0)−P (τ0)| = εr. Moreover, since P (τK−1) ∈ Bεr(Bs(0;Dh)),

Bs(0;Dh) ⊂ Bε−Mr(0), and M̃ > M , we have P (σK−1), P (τK−1) ∈ B
ε−M̃r

(0). By (4.152) in the

definition of Gεr, it follows that

σ0 − τ0 ≥ εA(σK−1 − τK−1). (4.157)

Combining this with (4.156) shows that C−1(1 + C−1)K ≤ ε−A, so K ≤ A
log(1+C−1)

log ε−1 +Oε(1),

as required.
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Chapter 5: Volume of metric balls in Liouville quantum gravity

This chapter is a joint work [5] with Morris Ang and Xin Sun.

5.1 Introduction

In this chapter, we study the volume of metric balls in Liouville quantum gravity (LQG). For

γ ∈ (0, 2), it has been known since the early work of Kahane [67] and Molchan [87] that the LQG

volume of Euclidean balls has finite moments exactly for p ∈ (−∞, 4/γ2). Here, we prove that the

LQG volume of LQG metric balls admits all finite moments. This answers a question of Gwynne and

Miller and generalizes a result obtained by Le Gall for the Brownian map, namely, the γ =
√

8/3

case. We use this moment bound to show that on a compact set the volume of metric balls of size r

is given by rdγ+or(1), where dγ is the dimension of the LQG metric space. Using similar techniques,

we prove analogous results for the first exit time of Liouville Brownian motion from a metric ball.

Gwynne, Miller and Sheffield [60] proved that the metric measure space structure of γ-LQG a.s.

determines its conformal structure when γ =
√

8/3; their argument and our estimate yield the

result for all γ ∈ (0, 2).

Let us now give a precise formulation of our results. The main result of this chapter is the

following theorem concerning the volume of metric balls.

Theorem 5.1. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average zero on

the unit circle. Let Bs(z;Dh) be the Dh-ball of radius s centered at z. Then

E [µh(B1(0;Dh))p] <∞ for all p ∈ R. (1.1)

Moreover, for any compact set K ⊂ C and ε > 0, we have almost surely that

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0. (1.2)
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Consequently, the Minkowski dimension of γ-LQG is dγ almost surely.

This result is in stark contrast to the LQG volume of a deterministic bounded open set, which

only has finite moments for p ∈ (−∞, 4/γ2). Roughly speaking, µh(B1(0;Dh)) has finite positive

moments because the metric ball B1(0;Dh) in some sense avoids regions where h (and thus µh)

is large. Our arguments also show (1.1) when we replace h by h+ α log | · |−1 for α < γ
2 + 2

γ (see

Propositions 5.8 and 5.26).

Similar arguments allow us to prove an analogous result for the first exit time of the Liouville

Brownian motion (LBM) from metric balls. Classically, Brownian motion is well defined on

smooth manifolds and on some random fractals. Formally, LBM is Brownian motion associated

to the metric tensor “eγh(dx2 + dy2)”, and can be rigorously constructed via regularization and

renormalization [11, 49]. It is a time-change of an ordinary Brownian motion independent of h. For

a set X ⊂ C and z ∈ C, denote by τh(z;X) the first exit time of the Liouville Brownian motion

started at z from the set X. When X is a deterministic bounded open set, τh(z;X) has finite

moments for p ∈ (−∞, 4/γ2). Here, we study the case where X is given by a metric ball.

Theorem 5.2. Fix γ ∈ (0, 2) and let h be a whole-plane GFF normalized to have average zero on

the unit circle. Then

E [τh(0;B1(0;Dh))p] <∞ for all p ∈ R.

Moreover, for any compact set K ⊂ C and ε > 0, we have at a rate uniform in z ∈ K that

lim
s→0

P[τh(z;Bs(z;Dh)) ∈ (sdγ+ε, sdγ−ε)] = 1.

As an application of Theorem 5.1, we can extend results of [60] to the case of general γ ∈ (0, 2).

The following theorem resolves another question of [59].

Theorem 5.3. Let γ ∈ (0, 2) and h be a whole-plane GFF h normalized to have average zero

on the unit circle. Then the field h up to rotation and scaling of the complex plane is almost

surely determined by (i.e. measurable with respect to) the random pointed metric measure space

(C, 0, Dh, µh).

We emphasize that the input is (C, 0, Dh, µh) as a pointed metric measure space, so in particular
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we forget the exact parametrization in the complex plane of Dh and µh. More precisely we view

it as an element in the space of pointed metric measure spaces endowed with the local Gromov-

Hausdorff-Prokhorov topology (local here refers to metric balls about the point). For the special

case γ =
√

8/3, [60] proves an analogous theorem for the quantum disk (see also [82]). Their results

depend on the correspondence between the Brownian map and
√

8/3-LQG [81–83,86], and rely on

the estimates obtained by Le Gall [74] for the Brownian map. Theorem 5.1 provides the estimates

needed to generalize the results of [60] to all γ ∈ (0, 2), yielding Theorem 5.3 and a statement of

the convergence of the simple random walk on a Poisson-Voronoi tessellation of γ-LQG to Brownian

motion (viewed as curves modulo time-parametrization) in the quenched sense; see Section 5.5.3.

Chapter outline. In Section 5.2, we discuss preliminary material about LQG. We prove the

finiteness of moments statement of Theorem 5.1 in Sections 5.3 and 5.4, which bound the positive

and negative moments of the unit LQG ball volume respectively. In Section 5.5.1, we complete

the proof of Theorem 5.1. Section 5.5.2 addresses Theorem 5.2. Finally Section 5.5.3 discusses

Theorem 5.3. In the appendix, we recollect some ingredients of the proof by Le Gall for the Brownian

map case as a comparison.

5.2 Background and preliminaries

5.2.1 Notation

We write N = {1, 2, 3 . . .} and N0 = N∪{0}. For x ∈ R, bxc and dxe denote the floor and ceiling

functions evaluated at x. We write |E| for the cardinality of a finite set E. If f is a function from a

set X to Rn for some n ≥ 1, we denote the supremum norm of f by ‖f‖X := supx∈X |f(x)|.

In our arguments, it is natural to consider both Euclidean balls and metric balls. We use the

notation Br(z) to denote the Euclidean ball of radius r centered at z, and Br(z;Dh) to denote the

metric ball of radius r centered at z (i.e. the ball with respect to the metric Dh). We also distinguish

the unit disk D := B1(0). We denote by X the closure of a set X. For any r > 0 and z ∈ C, let Ar(z)

stand for the annulus Br(z) \Br/2(z). Furthermore, for 0 < s < r, we set As,r(z) := Br(z) \Bs(z).

The LQG metric Dh is almost surely a length metric, i.e. Dh(z, w) is the infimum of the

215



Dh-lengths of continuous paths between z, w. For an open set U ⊂ C, the internal metric DU
h on U

is given by the infimum of the Dh-lengths of continuous paths in U .

We write −
∫
C f for the average of f over the circle C. For a GFF h, we write hr(z) for the average

of h on the circle ∂Br(z).

We write X ∼ N (m,σ2) to express that the random variable X is distributed according to a

Gaussian probability measure with mean m and variance σ2.

We say that an event Eε, depending on ε, occurs with superpolynomially high probability if for

every fixed p > 0, for all ε small enough, P[Eε] ≥ 1− εp. We similarly define events which occur

with superpolynomially high probability as a parameter tends to ∞.

5.2.2 The whole-plane Gaussian free field

We give here a brief introduction to the whole-plane GFF. For more details see [84].

Let H be the Hilbert space closure of smooth compactly supported functions f on C, equipped

with the Dirichlet inner product

(f, g)∇ = (2π)−1

∫
C
∇f(z) · ∇g(z) dz.

Let {fn} be any orthonormal basis of H, and consider the equivalence relation on the space of

distributions given by T1 ∼ T2 when T1 − T2 is a constant. The whole-plane GFF modulo additive

constant h is a random equivalence class of distributions, a representative of which is given by∑
αnfn where {αn} is a sequence of i.i.d. N (0, 1) random variables. The law of h does not depend

on the choice of {fn}.

For any complex affine transformation of the complex plane A, it is easy to verify that (f ◦A, g ◦

A)∇ = (f, g)∇. Consequently, h has a law that is invariant under affine transformations: for each

r, z ∈ C we have h
d
= h(r ·+z).

Write H̃ ⊂ H for the subspace of functions f with
∫
C f = 0. Although we cannot define 〈h, f〉

for general f ∈ H, the distributional pairing makes sense for f ∈ H̃ (the choice of additive constant
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does not matter). Explicitly, for f ∈ H̃ the pairing 〈h, f〉 is a centered Gaussian with variance

Var(〈h, f〉) =

∫∫
C2

f(w)f(z) log |w − z|−1 dwdz. (2.3)

It is easy to check that (2.3) in fact defines the whole-plane GFF modulo additive constant.

We will often fix the additive constant of h, i.e. choose an equivalence class representative. This

can be done by specifying the value of 〈h, f〉 for some f ∈ H with
∫
C f 6= 0, or the average of h

on a circle (see [44, Section 3] for details on the circle averages of h). Recalling that hr(z) means

the circle average of h on ∂Br(z), we will typically work with a whole-plane GFF h normalized so

h1(0) = 0 (this is a distribution not modulo additive constant).

Let H1 ⊂ H (resp. H2 ⊂ H) be the Hilbert space completion of compactly supported functions

which are constant (resp. have mean zero) on ∂Br(0) for all r > 0. It is easy to verify the orthogonal

decomposition H = H1 ⊕H2. This allows us to write the whole-plane GFF h with h1(0) = 0 as

the sum of independent fields h1 and h2; these are respectively the projections of h to H1 and H2.

Moreover, we can explicitly describe the law of h1: Writing Xt = he−t(0), the processes (Xt)t≥0 and

(X−t)t≥0 are independent Brownian motions started at zero. The strong Markov property tells us

that for any stopping time T of (Xt)t≥0, the random process (Xs+T −XT )s≥0 is independent from

XT . Also, by the scale invariance of the whole-plane GFF, the law of h2 is scale invariant. These

observations (with the independence of h1, h2) give us the following.

Lemma 5.4. Let h be a whole-plane GFF with h1(0) = 0, and let T ≥ 0 be a stopping time of the

circle average process (he−t(0))t≥0. Then we have, as fields on D,

h(e−T ·)|D − he−T (0)
d
= h|D.

Moreover, h(e−T ·)|D − he−T (0) is independent of he−T (0).

We note that there exist variants of the GFF on bounded domains D ⊂ C, such as the zero

boundary GFF and the Neumann GFF; we do not go into further detail, but remark that their

LQG measures (Section 1.2) are well defined.

Finally, we present a version of the Markov property for the whole-plane GFF, taken from [62,
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Lemma 2.2]. It essentially follows from the orthogonal decomposition H = HD ⊕Hharm where HD

(resp. Hharm) is the Hilbert space completion of functions which are compactly supported (resp.

harmonic) in D.

Lemma 5.5 (Markov property of GFF). Let h be a whole-plane GFF normalized so h1(0) = 0.

For each open set U ⊂ C with harmonically non-trivial boundary and U ∩ ∂D = ∅, we have the

decomposition

h = h + h̊

where h is a random distribution which is harmonic on U , and h̊ is independent from h and has the

law of a zero-boundary GFF on U (in particular, h̊|Uc ≡ 0).

5.2.3 LQG volume of Euclidean balls

Tails estimates for the LQG volume of Euclidean balls are quite well understood. It has

been known since the work of Kahane [67] and Molchan [87] that it admits finite moments for

p ∈ (−∞, 4/γ2). This result contrasts a very different behavior between the right tails and the left

tails.

Negative moments The finiteness of all negative moments goes back to Molchan [87]; moreover

it is more generally true that for any base measure of the GMC, the total GMC mass has negative

moments of all order [48]. Duplantier and Sheffield obtained the following more explicit tail

behavior [44, Lemma 4.5]: writing µh for the LQG measure corresponding to a zero boundary GFF

h on D, they showed that if U ⊂⊂ D is an open set, then there exists C, c > 0 such that for all

s > 0,

P
[
µh(U) ≤ e−s

]
≤ Ce−cs2 . (2.4)

We note that this result is sharp in the sense that

P
[
µh(U) ≤ e−s

]
≥ ce−Cs2 .
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by a simple application of the Cameron-Martin formula. When h is replaced by h − −
∫
U hdz, a

sharper tail estimate is obtained in [71].

Positive moments Recently, Rhodes and Vargas [92] obtained a precise asymptotic result about

the upper tails of GMC when γ ∈ (0, 2). They obtained a power law and identified the constant.

This result has been generalized to a more general family of Gaussian fields in [115], and extended

to the critical case γ = 2 in [114].

As already mentioned, the LQG volume of Euclidean balls has finite p moments for p < 4/γ2.

This can be easily seen for integer moments k < 4/γ2, which we review below. (This will also serve

as a preparation to some of our arguments.) Indeed, due to the logarithmic correlations of the field,

the problem is essentially equivalent to the finiteness of

uk :=

∫
Dk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 .

By introducing

uk(r) :=

∫
rDk

dz1, . . . dzk∏
i<j |zi − zj |γ

2 and vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk, (2.5)

we note that when uk <∞ then uk(r) = r2k−γ2 k(k−1)
2 uk. Furthermore, the vk’s provide the following

inductive inequality, obtained by splitting the points {z1, . . . , zk} into two well-separated clusters

(see Lemma 5.47 in the Appendix for details):

vk(r) ≤ Ckr−2
k−1∑
i=1

r−γ
2i(k−i)ui(4r)uk−i(4r) ≤ CkrkγQ−

1
2
γ2k2−2

k−1∑
i=1

uiuk−i.

Finally, we note that

kγQ− 1

2
γ2k2 − 2 = k(2 +

γ2

2
)− 1

2
γ2k2 − 2 = 2(k − 1)− γ2

2
k(k − 1) > 0 if 1 < k < 4/γ2,

and the conclusion follows from uk =
∑

p≥−1 vk(2
−p) and an induction on k.

Our later arguments in Section 5.3.1 follow a similar structure to the above, but also have to
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account for the random geometry of the metric ball B1(0;Dh).

5.2.4 LQG metric

Recall that for γ ∈ (0, 2), the γ-LQG metric is the unique metric Dh determined by a field h (a

whole-plane GFF plus a possibly random bounded continuous function) which induces the Euclidean

topology and satisfies the following.

I. Length space. (C, Dh) is almost surely a length space. That is, the Dh-distance between any

two points in C is the infimum of the Dh-lengths of continuous paths between the two points.

II. Locality. Let U ⊂ C be a deterministic open set. Then the internal metric DU
h is almost

surely determined by h|U .

III. Weyl scaling. Recall ξ in (3.4). For each continuous function f : C→ R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0
eξf(P (t))dt, for all z, w ∈ C, (2.6)

where we take the infimum over all continuous paths from z to w parametrized by Dh-length.

Then almost surely eξf ·Dh = Dh+f for every continuous f : C→ R.

IV. Coordinate change for translation and scaling. Recall Q in (2.3). For fixed deterministic

z ∈ C and r > 0 we have almost surely

Dh(ru+ z, rv + z) = Dh(r·+z)+Q log r(u, v) for all u, v ∈ C.

To be precise, Dh is unique up to a global multiplicative constant, which can be fixed in some way,

e.g. requiring the median of Dh(0, 1) to be 1 for h a whole-plane GFF normalized so h1(0) = 0. We

emphasize that the metric Dh depends on the parameter γ ∈ (0, 2); to follow previous works and

avoid clutter we will omit γ in the notation.

Basic estimates for distances The main quantitative input we need when working with the

LQG metric is the following estimate relating the Dh-distance between compact sets to circle
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averages of h.

Proposition 5.6 (Concentration of side-to-side crossing distance [39, Proposition 3.1]). Let U ⊂ C

be an open set (possibly U = C) and let K1,K2 ⊂ U be disjoint connected compact sets which are

not singletons. Then for r > 0, it holds with superpolynomially high probability as A→∞ (at a rate

uniform in r) that

A−1rξQeξhr(0) ≤ DrU
h (rK1, rK2) ≤ ArξQeξhr(0).

This formulation is slightly different from that of [39, Proposition 3.1], but by [39, Remark

3.16] they are equivalent. Note that by taking r = 1, this includes the superpolynomial tails of

side-to-side crossing distances.

Euclidean balls within LQG balls The next lemma is an important input in the proof of the

finiteness of the negative moments.

Proposition 5.7 (LQG balls contain Euclidean balls of comparable diameter [60, Proposition 4.5]).

Fix ζ ∈ (0, 1) and compact K ⊂ C. Let h be a whole-plane GFF normalized so h1(0) = 0. With

superpolynomially high probability as δ → 0, each Dh-metric ball B ⊂ K with diam(B) ≤ δ contains

a Euclidean ball of radius at least diam(B)1+ζ .

Proof. [60, Proposition 4.5] gives this result with K replaced by D and with the specific choice

γ =
√

8/3. To get the result for K, we simply note that the law of the whole-plane GFF (viewed

modulo additive constant) is scale-invariant, and that the set of all Dh-metric balls (viewed as

subsets of C) does not depend on the choice of additive constant. To generalize to γ ∈ (0, 2), we

remark that the proof of [60, Proposition 4.5] uses only the following few inputs for the
√

8/3 LQG

metric, which we ascertain hold for general γ:

• The scaling relation [60, Lemma 2.3]. In our setting, this is Axiom III (Weyl scaling), plus

the following easy consequence of Weyl scaling: for h a whole-plane GFF plus a bounded

continuous function and f : C→ R a (possibly random) bounded continuous function, almost

surely

exp

(
ξ inf

C
f

)
Dh(z, w) ≤ Dh+f (z, w) ≤ exp

(
ξ sup

C
f

)
Dh(z, w) for all z, w ∈ C.
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• With probability tending to 1 as C →∞, the Dh-distance from S = [0, 1]2 to ∂B1/2(S) is at

least 1/C (here, B1/2(S) is the Euclidean 1/2-neighborhood of S). This follows immediately

from Proposition 5.6.

• Fix n ≥ 1. With probability tending to 1 as C →∞, each Euclidean ball of radius e−Cn
2/3

which intersects [0, 1]2 has Dh-diameter at most e−n
2/3

. This follows from the fact that Dh is

a.s. bi-Hölder with respect to the Euclidean metric [39, Theorem 1.7], and that e−Cn
2/3 → 0

as C →∞.

We point out that this is possible to obtain a more quantative version of this Proposition, with

essentially the same arguments as in [60], which can then be used to obtain more precise lower tail

estimates for the volume of LQG metric balls.

5.3 Positive moments

The main result of this section is the following.

Proposition 5.8. Let h be a whole-plane GFF such that h1(0) = 0. Then, µh(B1(0;Dh)) has finite

kth moments for all k ≥ 1. Furthermore, this result still holds if we add to the field h an α-log

singularity at the origin for α < Q, i.e. replace h with h+ α log | · |−1.

In the following paragraphs, we present heuristic arguments and an outline of the proof. Recall

the definition of the annulus A1 = B1(0)\B1/2(0). The key difficulty to prove this result is in arguing

that E[µh(B1(0;Dh) ∩A1)k] <∞. So we want to prove

E

[∫
(A1)k

k∏
i=1

1Dh(0,zi)<1µh(dz1) . . . µh(dzk)

]
<∞, (3.7)

and the starting point is to rewrite it via a Cameron-Martin shift, as

∫
(A1)k

exp(γ2
∑
i<j

Cov(h(zi), h(zj)))P
[
Dh+γ

∑
j Cov(h(zj),h(·))(0, zi) < 1, ∀i

]
dz1 . . . dzk <∞. (3.8)
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A first heuristic We present a heuristic explaining why E
[
µh(B1(0;Dh) ∩A1)k

]
< ∞. As

remarked above and since h is log-correlated, the left-hand side of (3.7) is bounded from above by

∫
Ak1

Pz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk (3.9)

where

Pz1,...,zk = P[Dh+γ
∑
j Cov(h(zj),h(·))(zi, ∂B1/2(zi)) < 1 for all i].

The volume of Euclidean balls have infinite kth moments when k is large due to the contribution

of clusters at mutual distance r (collection of points in the domain whose pairwise distance

are between cr and Cr). Indeed, for such clusters {z1, . . . , zk}, the singularities contributes as∏
i<j |zi − zj |−γ

2 ≈ r−(k2)γ
2
, on a macroscopic domain, we have r−2 possibilities for placing this

cluster and the volume associated is r2k. The total contribution is then r−2+2k−(k2)γ
2

and the sum

over dyadic r is finite if and only if k < 4/γ2. Now, we explain how this is counterbalanced by the

Pz1,...,zk term when k ≥ 4/γ2. By the annulus crossing distance bound from Proposition 5.6, for any

z ∈ K = {z1, . . . , zk}, the following lower bound holds

Dh+γ
∑
i≤k log |·−zi|−1(z, ∂B1/2(z)) & rξQeξhr(z)r−ξkγ .

Indeed, one can use an annulus centered at z, separating z from ∂B1/2(z) and at distance r of z,

whose width is of the same order. Then, we see that the circle average of the log-singularity gives

the r−ξkγ term. So, by the condition defining Pz1,...,zk , on the associated event, for z ∈ {z1, . . . , zk},

1 & rξQeξhr(z)r−ξkγ .

By a Gaussian tail estimate, introducing the term ck = kγ−Q ≥ 4
γ2γ−Q = 2/γ− γ/2 > 0, we have

Pz1,...,zk . P
[
hr(z) ≤ −ck log r−1

]
≈ r

1
2
c2k .

An elementary computation, namely −2 + 2k −
(
k
2

)
γ2 + 1

2c
2
k = 1

2Q
2 − 2, gives then that for such a

cluster, the scale r contribution to (3.9) is r
1
2
Q2−2, which is summable for all k since Q = γ

2 + 2
γ > 2

for γ ∈ (0, 2) and this is essentially the reason of the finiteness of all moment.
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Outline of the proof To turn this argument into a proof requires us to take care of all config-

urations of clusters K = {z1, . . . , zk}. Similarly to the one presented in Section 5.2.3, our proof

works by induction on k. We will partition K = {z1, . . . , zk} into two clusters I and J such that

the pairwise distance of points between I and J is ≥ r, since both
∏
i<j |zi − zj |γ

2
and Pz1,...,zk

have a nice hierarchical clusters structure (see (3.15) for the exact splitting procedure partitioning

K = I ∪ J and the definition of r). Indeed, for such a cluster, we can bound from above

∏
i<j

|zi − zj |−γ
2
. r−|I||J |γ

2
∏
I

|za − zb|−γ
2
∏
J

|za − zb|−γ
2
. (3.10)

Now, we discuss Pz1,...,zk . The aforementioned annuli crossing distance bounds from Proposition 5.6

imply that for all z ∈ K, ε ∈ (0, 1/2),

hε(z) + γ
∑
za∈K

−
∫
∂Bε(z)

log | · −za|−1 + x ≤ Q log ε−1, (3.11)

for x = 0. From now, denote by P̂ xz1,...,zk the circle average variant of Pz1,...,zk associated with (3.11):

this is the probability that (3.11) holds for every z ∈ K = {z1, . . . , zk} and ε ∈ (0, 1/2), with this

extra parameter x ∈ R, which is necessary to consider when deriving an inductive inequality. Note

that when I and J are at distance of order r and the diameters of both I and J are smaller than

O(r), for ε ∈ (0, r), then ∀z, za ∈ K and ∀zi ∈ I, zj ∈ J ,

−
∫
∂Br(z)

log | · −za|−1 ≈ log r−1 and −
∫
∂Bε(zi)

log | · −zj |−1 ≈ log r−1.

Therefore, we can rewrite the condition (3.11) for z ∈ I as follows

(hε(z)− hr(z)) +

γ∑
zi∈I
−
∫
∂Bε(z)

log | · −zi|−1 + |J |γ log r−1

− kγ log r−1

+
(
x+ hr(z) + kγ log r−1 −Q log r−1

)
≤ Q log(ε/r)−1.

Hence, after simplification, for z ∈ I, we have

(hε(z)− hr(z)) + γ
∑
zi∈I
−
∫
∂Bε(z)

log | · /r − zi/r|−1 +
(
x+ hr(z) + ck log r−1

)
≤ Q log(ε/r)−1
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which is a variant of (3.11), and a similar condition holds for z ∈ J . Furthermore, note that the

processes ((hε(z)− hr(z))ε∈(0,r))z∈I and ((hε(z)− hr(z))ε∈(0,r))z∈J are approximately independent

and hr(z) ≈ hr(w) for all z, w ∈ K, which we then denote by Xr (this can thought as their common

approximate value; to be rigorous, by monotonicity, one can take their maximum). From this, and

the fact that circle average processes evolve as correlated Brownian motions, it is natural to expect

P̂ 0
K . E

[
1Xr+ck log r−1≤0P̂

x+Xr+ck log r−1

I/r P̂ x+Xr+ck log r−1

J/r

]
, (3.12)

which is the hierarchical structure we were looking for. Altogether, (3.10) and (3.12) allow to

inductively bound from above the term

∫
Ak1

P xz1,...,zk∏
i<j |zi − zj |γ

2 dz1 . . . dzk,

by a quantitative estimate in term of x. This provides not only E[µh(B1(0;Dh) ∩ A1)k] <∞ but

also a quantitative estimate which allows to get E[µh(B1(0;Dh)∩Aks ] < sαk for some αk > 0 and all

s ∈ (0, 1), via a standard scaling/decoupling argument. An application of Hölder’s inequality shows

E[µh(B1(0;Dh) ∩ D)k] <∞ and similar techniques concludes that E[µh(B1(0;Dh) ∩ C \ D)k] <∞,

yielding the proof of Proposition 5.8.

In our implementation of these ideas, because we have to carry the Euclidean domains associated

with the clusters I, J and K, we use ?-scale invariant fields. The short-range correlation of the fine

field gives independence between well-separated clusters, and invariance properties of the ?-scale

invariant field simplifies our multiscale analysis.

In Section 5.3.1, we prove a quantitative variant of (3.8) where the field h is replaced by a

?-scale invariant field plus some constant, and the probability in the integrand is replaced by the

probability of coarse-field distance approximations being less than 1. In Section 5.3.2, we use these

estimates to first bound E[µh(B1(0;Dh)∩A1)k], by using a truncated moment estimate, then extend

our arguments to all annuli to deduce the finiteness of the kth moment Mk := E[µh(B1(0;Dh)k] for

all k ≥ 1. By keeping track of the k dependence, it turns out that it is possible to bound Mk by

Ckck
2

for some constants C, c depending only on γ. To simplify the presentation of our arguments,

we omit these precise estimates.
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5.3.1 Inductive estimate for the ?-scale invariant field

We derive a key estimate for the positive moments (Proposition 5.15), which is like a quantitative

version of (3.8) where we add a constant to the field. We will use ?-scale invariant fields, which

satisfy properties convenient for multiscale analysis. Relevant references are [3, 38,66].

Proposition 5.9 (?-scale decomposition of h). The whole plane GFF h normalized so h1(0) = 0

can be written as

h = g + φ = g + φ1 + φ2 + . . .

where the fields g, φ1, φ2, . . . satisfy the following properties:

1. g and the φn’s are continuous centered Gaussian fields.

2. The law of φn is invariant under Euclidean isometries.

3. φn has finite range dependence with range of dependence e−n, i.e. the restrictions of φn to

regions with pairwise distance at least e−n are mutually independent.

4. (φn(z))z∈R2 has the law of
(
φ1(zen−1)

)
z∈R2.

5. The φn’s are mutually independent fields.

6. The covariance kernel of φ is C0,∞(z, z′) = − log |z − z′|+ q(z − z′) for some smooth function

q.

7. We have E[φn(z)2] = 1 for all n, z.

The convergence of this infinite sum is with respect to the weak topology on S ′(R2).

Proof. Lemma 5.49 gives the coupling h = g + φ with g continuous. The fields φn are defined in

Appendix 5.6.2, and are shown to satisfy these properties there.

Define also the field φa,b from scales a to b via

φa,b :=

 φa+1 + · · ·+ φb if a < b

0 if a ≥ b
(3.13)
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so that φ = φ0,∞ and set, for z, z′ ∈ C,

Ca,b(z, z
′) := E

(
φa,b(z)φa,b(z

′)
)
. (3.14)

We will construct a hierarchical representation of a set of points K = {z1, . . . , zk} ⊂ C. Roughly

speaking, starting with K, we will iteratively split each cluster into smaller clusters that are well

separated. We formalize the splitting procedure below.

Splitting procedure Define for any finite set S of points in the plane (with |S| ≥ 2) the separation

distance s(S) to be the largest t ≥ 0 for which we can partition S = I ∪ J such that d(I, J) ≥ t, i.e.

s(S) := max
S=I∪J,|I|,|J |≥1

d(I, J). (3.15)

Define IS , JS ⊂ S to be any partition of S with d(I, J) = s(S). Note that if diamS denote the

diameter of the set S, we have the following inequality

diamS

|S|
≤ s(S) ≤ diamS. (3.16)

For the edge case where |S| = 1 define s(S) = 0.

Lemma 5.10. For |S| ≥ 2, we have s(IS), s(JS) ≤ s(S).

Proof. It suffices to prove the lemma for S such that all pairwise distances in S are distinct, then

continuity yields the result for general S. Suppose for the sake of contradiction that s(J) > s(S),

then there is a partition J = J1 ∪ J2 satisfying d(J1, J2) > s(S). Since distances are pairwise

distinct, we must have d(I, Ji) = s(S) and d(I, J3−i) > s(S) for some i. Then d(I ∪ Ji, J3−i) =

min(d(I, J3−i), d(Ji, J3−i)) > s(S). This contradicts the definition of s(S).

Hierarchical structure of K = {z1, . . . , zk} and definition of T aK({φ}) By iterating the

splitting procedure above, we can decompose a set K = {z1, . . . , zk} ⊂ C into a binary tree

of clusters. This decomposition into hierarchical clusters is unique for Lebesgue typical points

{z1, . . . , zk}. Two vertices in this tree are separated by at least the separation distance of their first
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common ancestor. See Figure 5.1 for an illustration.

A labeled (binary) tree is a rooted binary tree with k leaves. For each K = {z1, . . . , zk} ⊂ C,

collection of fields {φ} = (φn)n≥0, and nonnegative integer a ≤ dlog s(K)−1e we will define a labeled

binary tree denoted by T aK({φ}). Each internal vertex of this tree is labeled with a quadruple

(S,m,ψ, η) with S ⊂ K and |S| ≥ 2, an integer m, and ψ, η ∈ R, whereas each leaf is labeled with just

a singleton {z} ⊂ K. The truncated labels (S,m) depend only on the recursive splitting procedure

described above: S is one of the clusters associated with this hierarchical cluster decomposition,

and m = dlog s(S)−1e. The variable a represents an initial scale.

For such a labeled tree T we write T + (ψ0, η0) to be the tree obtained by replacing each internal

vertex label (S,m,ψ, η) with (S,m,ψ + ψ0, η + η0). We also write Left(S) to denote the leftmost

point of S, viz. arg minz∈S <(z), where <(z) denotes the real part of the complex number z.

We explain how the remaining parts (ψ, η) of the labels are obtained. For (K, {φ}, a) as above,

we proceed as follows to complete the definition of the labeled tree T aK({φ}). For k := |K| = 1, we

simply set T aK({φ}) to be the tree with one vertex, labeled with the singleton K. For k > 1, setting

m := dlog s(K)−1e ≥ a, the root vertex of T aK({φ}) is labeled (K,m, φa,m(Left(K)), (m − a)kγ),

and its two child subtrees are given by TmIK ({φ}) + (φa,m(Left(K)), (m − a)kγ) and TmJK ({φ}) +

(φa,m(Left(K)), (m−a)kγ). Essentially, after making the split K = I∪J , we add up the contribution

of the coarse field φa,m and the contribution of the γ-log singularities to get the scale m field

approximation for the clusters I and J .

We note that the tree structure of T aK({φ}) is deterministic, and for each internal vertex with label

(S,m,ψ, η), only ψ = ψ({φ}) is random; the other components are deterministic. Roughly speaking,

S is a cluster in our hierarchical decomposition, m is the scale of the cluster (i.e. s(S) ≈ e−m), ψ

(resp. η) approximates a radius e−m circle average of the field φa,m (resp. γ
∑

z∈K log |z−·|−1−γka)

at the cluster.

Remark 5.11. For the labeled tree T aK({φ}), at each internal vertex the field approximation ψ can

be explicitly described in terms of the fields {φ} as follows. Let (Si,mi, ψi, ηi) for i = 1, . . . , n be a
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Figure 5.1 – Left: The set of points K is iteratively divided into smaller and smaller clusters.
Right: From this clustering algorithm we obtain a hierarchical binary tree T aK({φ}) (labels not
shown), where internal vertices correspond to clusters S ⊂ K and leaves correspond to points z ∈ K.

path from the root (S1,m1, ψ1, η1). Then, writing m0 = a, we have

ψn =
n∑
i=1

φmi−1,mi(Left(Si)). (3.17)

The γ-singularity approximation η can likewise be stated non-recursively, as

ηn = γ
n∑
i=1

(mi −mi−1)|Si|. (3.18)

Remark 5.12. The choice Left(Si) is arbitrary; any other deterministic choice of point in Si works.

Replacing φmi−1,mi(Left(Si)) with the average |Si|−1
∑

z∈Si φmi−1,mi(z) would also work without

affecting our proofs much.

Definitions of key observables In this paragraph, we provide analogous definitions of the

quantities appearing in (3.8). The first one corresponds to a variant of P[Dh+γ
∑
j Cov(h(zj),h(·))

(0, zi) < 1 for all i], with an extra parameter x. For x ∈ R, let P a,xK be the probability that the tree

with random labels T aK({φ}) satisfies

ψ + η + x ≤ Q(m− a) for each internal vertex labeled (S,m,ψ, η). (3.19)

Note that this probability is taken over the randomness of the fields {φ}, and that this definition

yields for |K| = 1 that P a,xK = 1. Let us comment a bit on this definition and its relation with

the conditions Dh+γ
∑
j Cov(h(zj),h(·))(0, zi) < 1. These distances being less than one implies upper

bounds for annuli crossing distances for annuli separating the origin from the singularities. The ψ
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term corresponds to field average over these annuli, η is an approximation for the γ-singularities

and the Q term stands for the scaling of the metric. Altogether, roughly speaking, P 0,x
K is the

probability that for the field φ0,∞+
∑

z∈K γ log |z− ·|−1 +x, for all clusters S of K the field-average

approximation of annulus-crossing distances near S is less than 1.

The following observable stands for a variant of the integral in (3.8). Writing K = {z1, . . . , zk}

and dzK = dz1 . . . dzk, we define

unk(x) :=

∫
Bn(0)k

P 0,x
K∏

i<j |zi − zj |γ
2 1s(K)≤edzK . (3.20)

In Proposition 5.15, we show that unk(x) <∞, and bound it in terms of x. Note that the statement

unk(x) <∞ is comparable to (3.8) by the fact that exp(γ Cov(h(zi), h(zj))) � |zi − zj |−γ
2
.

The next lemma establishes basic properties of P a,xK . To state it, we first define

ck := kγ −Q. (3.21)

Lemma 5.13. The P a,xK ’s satisfy the following properties:

1. Monotonicity: P 0,x
K is decreasing in x.

2. Markov decomposition: for the partition IK ∪ JK = K with separation distance satisfying

e−m ≤ s(K) < e−m+1 we have

P 0,x
K = E

[
1Xr+x+ck log r−1≤0P

log r−1,Xr+x+ck log r−1

IK
P log r−1,Xr+x+ck log r−1

JK

]
,

where r = e−m and Xr = φ0,m (Left(K)) is a centered Gaussian with variance log r−1.

3. Scaling: P log r−1,x
rz1,...rzk = P 0,x

z1,...zk for any r = e−m with m ∈ Z.

4. Invariance by translation: P 0,x
z1+w,...,zk+w = P 0,x

z1,...,zk .

The first condition corresponds to a shift of the field. The second condition is an identity with

three terms in the right-hand side: the term Xr represents the coarse field, the indicator says that

the “coarse field approximation of quantum distances” at Euclidean scale r are less than 1, and the
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product of the two other terms represent a Markovian decomposition conditional on the coarse field.

Properties 3 and 4 are clear from the translation invariance and scaling properties of φn.

Proof. The monotonicity Property 1 is clear from the definition.

Property 2 follows from the inductive definition of P 0,x
K , by looking at the first split K =

I ∪ J . Indeed, recall Xr = φ0,m (Left(K)). The event {Xr + x + ck log r−1 ≤ 0} corresponds to

inequality (3.19) for the root vertex (K,m, φ0,m(Left(K)),mkγ).

Then, if the set K is decomposed as K = I ∪ J , note that the trees TmI ({φ}) and TmJ ({φ}) are

independent. Indeed, d(I, J) ≥ e−m, so the restrictions of the field φm (and each finer field) to I and J

are independent. Therefore, since (φ0,m(Left(K)), TmI ({φ}), TmJ ({φ})) are independent, conditionally

on φ0,m(Left(K)), the trees TmI ({φ}) + (φ0,m(Left(K)),mkγ) and TmJ ({φ}) + (φ0,m(Left(K)),mkγ)

are independent. Thus, all conditions in the definition of P 0,x
K associated to the child subtrees

are conditionally independent. To conclude, we just have to explain that this is indeed the term

Pm,Xr+x+ckm
I which appears. For a non-root vertex (S, b, ψ, η) of T 0,x

K belonging to the genealogy

of I, the condition (3.19) can be rewritten,

ψ + η + x = (Xr + ψ′) + (mkγ + η′) + x ≤ Qb = Q(b−m) +Qm,

hence ψ′ + η′ + (Xr + x+ ckm) ≤ Q(a−m), which is exactly the condition we were looking for at

the vertex (S, b, ψ′, η′) in the tree TmI ({φ}).

The scaling Property 3 follows from the scaling property of the φm and the observation that

s(rK) = rs(K) (and hence dlog s(rK)−1e = log r−1 + dlog s(K)−1e).

The invariance by translation Property 4 follows from the translation invariance of the fields

φm.

Using these properties, we derive the following inductive inequality.

Lemma 5.14. For each n, k > 0, there exists a constant Cn,k such that the following inductive
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inequality holds, for all x ∈ R, where Xr ∼ N (0, log r−1).

unk(x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2×

E
[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6k

k−i(Xr + x+ ck log r−1)
]
.

We now turn to the proof of the inductive relation. The argument is close to that of Lemma 5.47,

the difference being that we have to take care of the decoupling of P 0,x
K .

Proof. We first introduce some notation. In what follows we will be integrating over k-tuples of points

z1, . . . , zk; write K for this collection of points and dzK = dz1 . . . dzk. Write f(K) :=
∏
|z− z′|−γ2/2

where the product is taken over all pairs z, z′ ∈ K with z 6= z′.

We first split the integral in the definition (3.20) of unk(x) as

unk(x) =
∑

r=e−m,m≥0

vnk (x, r)

where for r ∈ (0, 1], vnk (x, r) is defined by

vnk (x, r) :=

∫
Bn(0)k

P 0,x
K f(K)1r≤s(K)≤erdzK . (3.22)

Notice that s(K) ≤ er implies diamK ≤ ekr, so any K contributing to the integral in (3.22) is

contained in a ball of radius 6kr centered in rZ2 ∩B(0, n). Taking a sum over the O(n2r−2) such

balls and by translation invariance, we get the bound

vnk (x, r) ≤ O(n2r−2)

∫
B6kr(0)k

P 0,x
K f(K)1r≤s(K)≤erdzK .

Write K = IK ∪ JK for the partition described before Lemma 5.10. For z ∈ IK and z′ ∈ JK we have

|z − z′|−γ2 ≤ s(K)−γ
2 ≤ r−γ2

, and s(IK), s(JK) ≤ s(K) ≤ er by Lemma 5.10, so

vnk (x, r) ≤ O(n2r−2)

∫
B6kr(0)6k

r−γ
2|IK ||JK |P 0,x

K f(IK)1s(IK)≤erf(JK)1s(JK)≤er dzK .

232



The Markov property decomposition 2 Lemma 5.13 allows us to split P 0,x
K into an expectation over

a product of terms, yielding an upper bound of vnk (x, r) as an integral of terms which ‘split’ into zIK

and zJK parts. This expression is in terms of the partition IK ∪ JK = K; we can upper bound it by

summing over all I, J ⊂ K. To be precise, for each i = 1, . . . , k − 1 we sum over all pairs I, J ⊂ K

with |I| = i and |J | = k − i. Absorbing combinatorial terms like
(
k
i

)
and the prefactor n2 into the

constant Cn,k, we get

vnk (x, r) ≤ Cn,kr−2
k−1∑
i=1

r−γ
2i(k−i)EXr

[∫
B6kr(0)i

P log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdz1 . . . dzi(∫
B6kr(0)k−i

P log r−1,Xr+x+ck log r−1

w1,...,wk−i∏
a<b |wa − wb|γ

2 1s(w1,...,wk−i)≤erdw1 . . . dwk−i

)
1Xr+x+ck log r−1≤0

]
.

We analyze the first integral (we can deal with the second one along the same lines). Changing the

domain of integration from B6kr(0)i to B6k(0)i, we get

∫
B6kr(0)i

P log r−1,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤erdz1 . . . dzi

= r2i−γ2(i2)
∫
B6k(0)i

P log r−1,Xr+x+ck log r−1

rz1,...,rzi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi,

and then applying the scaling property 3 of P , the integral on the right hand side is equal to

∫
B6k(0)i

P 0,Xr+x+ck log r−1

z1,...,zi∏
a<b |za − zb|γ

2 1s(z1,...,zi)≤edz1 . . . dzi = u6k
i (Xr + x+ ck log r−1).

By gathering the previous bounds and identities, and noting that the power of r is

r−2−γ2i(k−i)+2k−γ2(i2)−γ
2(k−i2 ) = rγkQ−

1
2
γ2k2−2,

and this completes the proof of the inductive inequality.

Using the inductive relation and the base case, we derive the following proposition, which

provides a bound on the quantity (3.20) introduced at the beginning of the section.
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Proposition 5.15. Recall that ck = kγ −Q. For x ∈ R we have

unk(x) ≤ Cn,ke−ckx when k ≥ 4/γ2,

and

unk(x) ≤ Cn,k when k < 4/γ2,

where Cn,k is a constant depending only on n, k.

Proof. We first address the case where k < 4/γ2. In this setting, by the trivial bound P 0,x
K ≤ 1 we

have

unk(x) ≤
∫
Bn(0)k

∏
i<j

|zi − zj |−γ
2
dz1 . . . dzk,

and the right-hand side is finite by the discussion in Section 5.2.3.

Now consider k ≥ 4/γ2. We proceed inductively, assuming that the statement of the proposition

has been shown for all k′ < k. Lemma 5.14 gives us the bound

unk(x) ≤ Cn,k
k−1∑
i=1

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2×

E
[
1Xr+x+ck log r−1≤0u

6k
i (Xr + x+ ck log r−1)u6k

k−i(Xr + x+ ck log r−1)
]
, (3.23)

where Xr ∼ N (0, log r−1). We bound each term u6k
i u

6k
k−i using the inductive hypothesis. We need

to split into cases based on which bound of the statement of the proposition is applicable (i.e. based

on the sizes of i, k − i), but the different cases are almost identical, so we present the first case in

detail and simply record the computation for the remaining cases.

Case 1: i, k − i ≥ 4/γ2. By the inductive hypothesis we can bound the ith term of (3.23) by a

constant times

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
e−(ci+ck−i)(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+ck(ck−Q)e(Q−ck)xE

[
e−(ck−Q)Xr1Xr+x+ck log r−1≤0

]
, (3.24)
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where we have used the identity ci + ck−i = ck −Q. For each r we can write the expectation in the

equation (3.24) by a Cameron-Martin shift as

E[e−(ck−Q)Xr ]P[Xr + x+ ck log r−1 − (ck −Q) Var(Xr) ≤ 0]

= r−
1
2

(ck−Q)2
P[Xr ≤ −(Q log r−1 + x)]. (3.25)

We claim that

P[Xr ≤ −(Q log r−1 + x)] ≤ r
1
2
Q2
e−Qx. (3.26)

Indeed, in the case where Q log r−1 + x ≥ 0, we have by a standard Gaussian tail bound that

P[Xr ≤ −(Q log r−1 + x)] ≤ e−
(Q log r−1+x)2

2 log r−1 = r
1
2
Q2
e−Qxe

− x2

2 log r−1 ≤ r
1
2
Q2
e−Qx,

and in the cases where Q log r−1 + x < 0 we have

P[Xr ≤ −(Q log r−1 + x)] ≤ 1 ≤ e−Q(Q log r−1+x) = rQ
2
e−Qx ≤ r

1
2
Q2
e−Qx.

Finally, we combine (3.24), (3.25) and (3.26) to upper bound the ith term of (3.23). This upper

bound is a sum over r of terms of the form rpowere−ckx where the power is

kγQ− 1

2
γ2k2 − 2 + ck(ck −Q)− 1

2
(ck −Q)2 +

1

2
Q2 =

1

2
Q2 − 2 > 0.

So we can bound the ith term of (3.23) by a constant times

∑
r=e−m,m≥0

r
Q2

2
−2e−ckx = O(e−ckx).

Case 2: i ≥ 4/γ2 and k − i < 4/γ2. By the inductive hypothesis we can bound the ith term
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of (3.23) by a constant times

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2E

[
e−ci(Xr+x+ck log r−1)1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cicke−cixE

[
e−ciXr1Xr+x+ck log r−1≤0

]
=

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cick− 1

2
c2i e−cixP

[
Xr ≤ −((ck − ci) log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+cick− 1

2
c2i+

1
2

(ck−ci)2
e−ckx

=
∑

r=e−m,m≥0

r
1
2
Q2−2e−ckx = O(e−ckx).

Note that by symmetry Case 2 also settles the case where i < 4/γ2 and k − i ≥ 4/γ2.

Case 3: i, k − i < 4/γ2. By the inductive hypothesis we can bound the ith term of (3.23) by a

constant times

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2P

[
Xr ≤ −(ck log r−1 + x)

]
≤

∑
r=e−m,m≥0

rkγQ−
1
2
γ2k2−2+ 1

2
c2ke−ckx

=
∑

r=e−m,m≥0

r
1
2
Q2−2e−ckx = O(e−ckx).

This completes the proof.

The proof of Proposition 5.15 depends on the exponent 1
2Q

2 − 2 = 1
2( 2
γ −

γ
2 )2 being positive. If

we make a slight perturbation to our definitions, so long as the resulting exponent is still positive,

we get a variant of Proposition 5.15. In particular, for δ > 0, we define P a,x,δK similarly to P a,xK by

replacing the inequality (3.19) with ψ + η + x ≤ (Q + δ)(m − a), and define un,δk analogously to

(3.20) with P 0,x,δ
K . We record the following result as a corollary since the proof follows the same

steps as in the proof of Proposition 5.15.

Corollary 5.16. For k ≥ 1 and n ≥ 1, for δ small enough, there exist constants Cn,k,δ and ck,δ

such that,

un,δk (x) ≤ Cn,k,δe−ck,δx for all x ∈ R when k ≥ 4/γ2,
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and

un,δk (x) ≤ Cn,k,δ for all x ∈ R when k < 4/γ2.

Furthermore, limδ→0 ck,δ = kγ −Q for fixed k.

Remark 5.17. Alternatively, one could modify the definition of unk(x) in (3.20) to have a different

denominator |zi − zj |γ
2+δ. Namely, by setting

ûn,δk (x) :=

∫
Bn(0)k

P 0,x
K∏

i<j |zi − zj |γ
2+δ

1s(K)≤edzK ,

the statement of Corollary 5.16 applies to ûn,δk (x) instead of un,δk (x).

5.3.2 Moment bounds for the whole-plane GFF

In this section, we use our previous estimate (Proposition 5.15 or its variant Corollary 5.16)

to obtain the moment bounds for a whole-plane GFF h such normalized such that h1(0) = 0 and

therefore prove Proposition 5.8. Additionally, in this section we write C or Ck,δ to represent large

constants depending only on k and δ, and may not necessarily represent the same constant in

different contexts or equations.

Proxy estimate for whole-plane GFF

Recall the notation As,r := Br(0) \Bs(0) for 0 < s < r. We introduce the following proxy

P r,dh := {z ∈ C : Dh(z, ∂Br/4(z)) ≤ d}. (3.27)

The set P r,dh contains points whose “local distances” are small. We work with P r,dh because the event

z ∈ P r,dh depends only on the field h|Br/4(z), and is thus more tractable than the event z ∈ B1(0;Dh)

(which depends on the field in a more “global” way). Moreover we have B1(0;Dh) ∩Ar ⊂ P r,1h ∩Ar,

so to bound from above µh(B1(0;Dh)) it suffices to bound from above the volume of the proxy

set. We emphasize that P r,dh is different from the quantity P a,xK introduced in (3.19): the former

is associated with a field h and is considered on the full plane without restriction; the latter is

associated with ?-scale invariant fields, and the capital letter K refers to a finite number of points
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where the condition is localized.

Proposition 5.18. Let h be a whole-plane GFF such that h1(0) = 0. For k ≥ 4/γ2, δ ∈ (0, 1/2),

there exists a constant Ck,δ such that for all x ∈ R,

E
[
µh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δe−ck,δx,

where we recall that ck = kγ −Q and ck,δ → ck as δ → 0.

In fact, for x > 0 it is possible, by using tail estimates for side-to-side distances, to show that

the decay is Gaussian in x. We do not need this result so we omit it.

Proof. In order to keep the key ideas of the proof transparent, we postpone the proofs of some

intermediate elementary lemmas to the end of this section. Consider the collection of balls

B =
{
Be−`(z) : ` ∈ N0, z ∈ e−`−2Z2, Be−`(z) ∩B10(0) 6= ∅

}
. (3.28)

We will work with three events in the proof: Eδ,M is a global regularity event, FK,δ,M is an

approximation of the event {K ⊂ P 1,e−ξx

h } which replaces the conditions on the metric by conditions

on the field, and F ′K,δ,M is a variant of FK,δ,M where γ-log singularities are added to the field at

the points z ∈ K (this is related to P 0,x
K ). Here, M is a parameter that is sent to +∞ and δ is a

small positive parameter. The integer k is fixed throughout the proof, so the events are allowed to

depend on k and we omit it in the notation.

Step 1: truncating over a global regularity event E. The event Eδ,M is given by the following

criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is at least M−ξe−ξ`
1
2 +δ

e−ξQ`eξ−
∫
∂B h

for all B ∈ B with radius e−`.

2. For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have e−` sup6kB |∇φ`′,`| ≤

`
1
2

+δ + logM .

3. For all ` ≥ 0 and all B ∈ B of radius e−`−2, −
∫
∂B φ`,∞ ≤ `

1
2

+δ + logM .
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4. ‖φ− h‖D = ‖g‖D ≤ logM .

As we see later in Lemma 5.22, for fixed δ the event Eδ,M occurs with superpolynomially high

probability in M as M →∞. Therefore, when looking at moments of µh(B1(0;Dh) ∩ D), one can

restrict to moments truncated on Eδ,M .

By using Property 4 of Eδ,M and the definition of µφ as a Gaussian multiplicative chaos (see

Section 1.2), we get

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγkE

[
1Eδ,Mµφ

(
B10(0) ∩ P 1,e−ξx

h

)k]

and

E
[
1Eδ,Mµφ

(
B10(0) ∩ P 1,e−ξx

h

)k]
= E

[∫
B10(0)k

1Eδ,M1{zi ∈ P
1,e−ξx

h for all i}µφ(dz1) . . . µφ(dzk)

]

≤ E

[∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk)

]
,

where the event FK,δ,M is defined in the following lemma. In the first inequality above, the constant

Ck appears from the difference of definition between Gaussian multiplicative chaos measures and

the Liouville quantum gravity measure; the former one is defined by renormalizing by a pointwise

expectation whereas the latter one by ε
γ2

2 .

Lemma 5.19. For k ≥ 2, there exists a constant C so that for any k-tuple of points K =

{z1, . . . , zk} ⊂ D we have the inclusion of events

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k} ⊂ FK,δ,M

where FK,δ,M is the event that for all vertices (S,m,ψ, η) of T 0
K({φ}) we have

ψ + x < Qm+ Cm
1
2

+δ + C logM. (3.29)

Essentially, Lemma 5.19 holds because K ⊂ P 1,e−ξx

h implies that distances near each cluster are
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small. Then for each cluster, Property 1 of Eδ,M lets us convert bounds on distances to bounds on

circle averages of h, Property 2 lets us replace the coarse field circle average with the coarse field

evaluated at any nearby point, and Properties 3 and 4 allow us to neglect the fine field and the

random continuous function h− φ; this gives (3.29).

Step 2: shifting LQG mass as γ-singularties. We then use the following lemma to replace the

terms µφ(dzi)’s by dzi and γ-singularities.

Lemma 5.20. If f is a bounded nonnegative measurable function, and Ca,b are the covariances of

φa,b (defined as in (3.14)), we have

E

[∫
B10(0)k

f(φ, z1, . . . , zk, φ1, . . . , φ`, . . . )µφ(dz1) . . . µφ(dzk)

]

≤
∫
B10(0)k

E[f(φ+ γ
∑
i≤k

C0,∞(·, zi), z1, . . . , zk, φ1 + γ
∑
i≤k

C0,1(·, zi), . . . , φ` + γ
∑
i≤k

C`−1,`(·, zi), . . . )]

× exp

γ2

2

∑
i 6=j

C0,∞(zi, zj)

 dz1, . . . dzk.

We apply Lemma 5.20 with f = 1FK,δ,M and we get

E
∫
B10(0)k

1FK,δ,Mµφ(dz1) . . . µφ(dzk) ≤
∫
B10(0)k

P[F ′K,δ,M ] exp(
γ2

2

∑
i 6=j

C0,∞(zi, zj))dz1 . . . dzk,

where F ′K,δ,M is the event that in the labeled tree T 0
K({φ}), for any path from the root (S1,m1, ψ1, η1)

to (Sn,mn, ψn, ηn), we have

ψn + γ

n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si)) + x ≤ Qmn + Cm
1
2

+δ
n + C logM. (3.30)

Note that by Lemma 5.21 below, (3.30) implies that for each vertex (Sn,mn, ψn, ηn) we have

ψn + ηn + x ≤ (Q+ δ)mn + C logM + 2C. (3.31)

(The term 2C comes from Lemma 5.21 and the bound Cm
1
2

+δ
n ≤ δmn + C, using that δ ∈ (0, 1/2).)

Now, the probability that (3.31) occurs for each vertex is precisely P 0,x−C logM−2C,δ
K , defined in just
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before the Corollary 5.16, so we conclude that P[F ′K,δ,M ] ≤ P 0,x−C logM−2C,δ
K .

Lemma 5.21. For k ≥ 2, there exists Ck such that for K ∈ B10(0)k, for any path from the root

(S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn) in the labeled tree T 0
K({φ}) we have, writing m0 = 0,

∣∣∣∣∣ηn − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣
=

∣∣∣∣∣γ
n∑
i=1

(mi −mi−1)|Si| − γ
n∑
i=1

∑
z∈K

Cmi−1,mi(z,Left(Si))

∣∣∣∣∣ < C.

By Proposition 5.9, for K ⊂ B10(0) we have exp(γ
2

2

∑
i 6=j C0,∞(zi, zj)) ≤ C

∏
i<j |zi − zj |−γ

2
.

Combining all of the above bounds yields

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ CkMγk

∫
B10(0)k

P 0,x−C logM−2C,δ
z1,...,zk∏
|zi − zj |γ2 dz1 . . . dzk.

Finally, by Corollary 5.16 we conclude that for all x ∈ R we have

E
[
1Eδ,Mµh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx. (3.32)

Step 3: concluding the proof. By Markov’s inequality, we get,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ P[Ecδ,M ] + P[Eδ,M , µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t]

≤ P[Ecδ,M ] + t−kE[1Eδ,Mµh(B10(0) ∩ P 1,e−ξx

h )k]. (3.33)

The second term is bounded by (3.32). To control the first term, we use the following lemma.

Lemma 5.22. For fixed δ ∈ (0, 1/2), the regularity event Eδ,M occurs with superpolynomially high

probability as M →∞.

Combining these bounds, namely starting from (3.33), using (3.32) and the previous lemma, we

get, for all δ, k, p, a constant Cδ,k,p such that for all x ∈ R and for all M, t > 0,

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ Ck,δ,p
(
M−p + t−kMCe−ck,δx

)
.
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By taking M = tk/(p+C)eck,δx/(p+C), we get

P[µh(B10(0) ∩ P 1,e−ξx

h ) ≥ t] ≤ Ck,δ,pt−
p

p+C
k
e
− p
p+C

ck,δx

so by choosing p large and integrating the tail estimate to obtain moment bounds, we obtain

E[µh(B10(0) ∩ P 1,e−ξx

h )k−δ] ≤ Ce−(ck,δ−δ)x.

Then, by (3.32) and the Cauchy-Schwartz inequality, we get

E
[
µh

(
B10(0) ∩ P 1,e−ξx

h

)k]
≤ Ck,δMCe−ck,δx + P[Ecδ,M ]1/2E

[
µh

(
B10(0) ∩ P 1,e−ξx

h

)2k
]1/2

and we conclude the proof of Proposition 5.18 by taking M = eε|x| for some small ε > 0 (indeed, for

this choice of M we have P[Ecδ,M ] . e−a|x| for any a > 0, and our earlier bound says that the 2kth

moment is at most exponential in x).

Annuli contributions and α-singularities.

Here, we use the proxy estimate to study moments of metric balls when the field has singularities.

The link is made with the following deterministic remark. Recall that Ar/2 := Br/2(0)\Br/4(0).

If z ∈ B1(0;Dh) ∩ Ar/2 then Dh(0, ∂Br/4(0)) ≤ 1 and z ∈ P r,1−Dh(0,∂Br/4(0))

h (recall (3.27) for the

definition of P r,dh ).

In the following lemma, we will study the LQG volume of the intersection of the unit metric

ball with the unit Euclidean disk. To do so, we study first the contribution of small annuli to the

volume and then use a Hölder inequality to conclude.

Lemma 5.23. Let h be a whole-plane GFF such that h1(0) = 0. Then for α < Q,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D)k)

]
<∞.

Proof. Note that B1(0;Dh) ∩Ar/2 ⊂ P
r,1
h ∩Ar/2 and that the latter one is measurable with respect
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to the field h|Br(0). We use a decoupling/scaling argument as follows. We write,

µh(B1(0;Dh) ∩Ar/2) ≤ 1Dh(0,∂Br/4(0))≤1µh(P r,1h ∩Ar/2)

= 1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e
γhr(0)µh−hr(0)

(
Ar/2 ∩ P

r,e−ξhr(0)

h−hr(0)

)
,

and set h̃ := h(r·)− hr(0). By Lemma 5.4 we have the equality in law h̃|D
(d)
= h|D, and also h̃|D is

independent of hr(0). Using the scaling of the metric and of the measure, we get

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ E

[
1eξhr(0)Dh−hr(0)(0,∂Br/4(0))≤1e

γkhr(0)µh−hr(0)

(
Ar/2 ∩ P

r,e−ξhr(0)

h−hr(0)

)k]
≤ rkγQE

[
1eξhr(0)rξQDh̃(0,∂B1/4(0))≤1e

γkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)k]
. (3.34)

We split the expectation with 1Dh̃(0,∂B1/4)≤rδ and 1Dh̃(0,∂B1/4)≥rδ . Note first that for p > 1,

by Proposition 5.18 and a moment computation for the exponential of a Gaussian variable with

variance constant times log r−1,

E
[
eγpkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)kp]
≤ Crpower,

for some power whose value does not matter. Indeed, because of the superpolynomial decay of the

event {Dh̃(0, ∂B1/4) ≤ rδ} coming from Proposition 5.6, the quantity

E
[
1Dh̃(0,∂B1/4)≤rδe

γkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)k]
≤ P[Dh̃(0, ∂B1/4) ≤ rδ]1/qE

[
eγpkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)kp]1/p

decays superpolynomially fast in r, by using Hölder’s inequality with 1
p + 1

q = 1.

From now on, we truncate on the event {Dh̃(0, ∂B1/4) ≥ rδ} and we want to bound from above

rkγQE
[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)k]
.

By Proposition 5.18, since A1/2 ⊂ B10(0) and hr(0) is independent of h̃|D, by writing ck,δ =
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kγ −Q+ αδ for some small αδ, we get

rkγQE
[
1eξhr(0)rξQ+δ≤1e

γkhr(0)µh̃

(
A1/2 ∩ P

1,r−ξQe−ξhr(0)

h̃

)k]
≤ CkrkγQr−ck,δQE

[
1eξhr(0)rξQ+δ≤1e

γkhr(0)e−ck,δhr(0)
]

= Ckr
Q2−QαδE

[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
.

Furthermore, since

E
[
1eξhr(0)rξQ+δ≤1e

(Q−αδ)hr(0)
]
≤ E

[
e(Q−αδ)hr(0)

]
,

by a Gaussian computation we get

E
[
µh(B1(0;Dh) ∩Ar/2)k

]
≤ Ckr

1
2
Q2+βδ ,

for some arbitrarily small βδ.

Furthermore, note that when one replaces h by h+ α log | · |−1 for α < Q, we get

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩Ar/2)k

]
≤ Ckr

1
2

(Q−α)2+βδ . (3.35)

Indeed, on Ar/2, α log | · |−1 is of order − log r +O(1) so the volume term contributes an additional

r−kγα. Furthermore, by monotonicity, we can replace the intersection of the unit Dh+α log |·|−1-

metric ball with Ar/2 by an order rξα Dh-metric ball intersected with Ar/2. Then, instead of using

B1(0;Dh)∩Ar/2 ⊂ P
r,1
h ∩Ar/2 at the beginning of the proof, we use Brαξ(0;Dh)∩Ar/2 ⊂ P

r,rαξ

h ∩Ar/2.

Then we note that the term rξQ in (3.34) is replaced by rξ(Q−α). Therefore, (3.35) follows by replacing

Q with Q− α.

We can conclude as follows. Set V γ,α
r := µh+α log |·|−1(B1(0;Dh+α log |·|−1 ∩ Ar)). By monotone

convergence,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D)k

]
= lim

n→∞
E

( n∑
i=0

V γ,α
2−i

)k .
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We introduce some deterministic Λ > 1 to be chosen. By Hölder’s inequality we get

(
n∑
i=0

V γ,α
2−i

)k
=

(
n∑
i=0

ΛiV γ,α
2−i

Λ−i

)k
≤

(
n∑
i=0

Λki(V γ,α
2−i

)k

)(
n∑
i=0

Λ−i
k
k−1

)k−1

.

Taking expectations, and using the bound (3.35), we get, uniformly in n,

E

( n∑
i=0

V γ,α
2−i

)k ≤ ( 1

1− Λ−
k
k−1

)k−1 ∞∑
i=0

Λki2−i(
1
2

(Q−α)2+βδ).

Taking Λ close enough to one such that Λk2−
1
2

(Q−α)2+βδ < 1, this series is absolutely convergent, as

desired.

Lemma 5.24 (Large annuli). Let h be a whole-plane GFF such that h1(0) = 0. Then, for α < Q,

E
[
µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \ D)k

]
<∞.

Proof. The proof uses the proxy estimate and a decomposition over annuli with a scaling argument.

This is similar to Lemma 5.23. We point out here only the main differences with the proof of this

lemma.

Write Dh(0, ∂BR/4(0)) =: RξQeξhR/4(0)XR. Since B1(0;Dh) ∩AR ⊂ PR,1h ∩AR

E[µh(B1(0;Dh) ∩AR)k] ≤ E[1Dh(0,∂BR/4(0))≤1µh(PR,1h ∩AR)k]

= E[1
RξQe

ξhR/4(0)
XR≤1

ekγhR/4(0)µh−hR/4(0)(P
R,e
−ξhR/4(0)

h−hR/4(0) ∩AR)k]

We truncate again with 1XR≤R−δ and 1XR≥R−δ . Because of the superpolynomial decay of P(XR ≤

R−δ), the term associated with the former truncation is negligible compared to the other one.

Furthermore, since we will have some room at the level of exponent, we will simply assume that

δ = 0 for the remaining steps. By using that h− hR/4(0))|AR/4,2R(0) is independent of hR/4(0) and

that the proxy PR,xh ∩Ar is measurable with respect to h|AR/4,2R , we get by scaling,

E(1
RQe

hR/4(0)≤1
µh−hR/4(0)(P

R,e
−ξhR/4(0)

h−hR/4(0) ∩AR)k)

= RkγQE(1
RQe

hR/4(0)≤1
ekγhR/4(0)µh̃(P 1,e

−ξhR/4(0)
R−ξQ

h̃
∩A1)k)
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At this stage we use the estimate from Proposition 5.18. Therefore, we compute

RkγQE(1hR/4(0)≤−Q logRe
kγhR/4(0)e−ck(hR/4(0)+Q logR))

= RkγQe−ckQ logRE
(

1hR/4(0)≤−Q logRe
QhR/4(0)

)

and by using the Cameron-Martin formula we get

RkγQe−ckQ logRE
(

1hR/4(0)≤−Q logRe
QhR/4(0)

)
≈ RQ2

R
Q2

2 E
(

1hR/4(0)≤−Q logRe
QhR/4(0)− 1

2
Q2 logR/4

)
≈ R

3
2
Q2

P
(
hR/4(0) ≤ −2Q logR

)
≈ R−

Q2

2 .

where AR ≈ BR if AR/BR = Ro(1). So this gives

E[µh(B1(0;Dh) ∩AR)k] ≤ R−
Q2

2
+o(1)

The rest of the proof, namely taking into account all the annuli contributions and using Hölder

inequality, is the same as the one of Lemma 5.23.

Proof of Proposition 5.8. Let h be a whole-plane GFF such that h1(0) = 0 and fix α < Q. The

proof follows easily by writing

µh+α log |·|−1(B1(0;Dh+α log |·|−1))

= µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ D) + µh+α log |·|−1(B1(0;Dh+α log |·|−1) ∩ C \ D)

and using the inequality (x+ y)k ≤ 2k−1(xk + yk) together with Lemma 5.23 and Lemma 5.24.

Lemma 5.25 (Upper bound for small metric balls). For ε ∈ (0, 1), k ≥ 1, there exists a constant

Ck,ε such that for all s ∈ (0, 1),

E[µh(Bs(0;Dh))k] ≤ Ck,εskdγ−ε

Proof. The proof is very similar to the one of Lemma 5.23, therefore we omit the details and
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just provide the differences. By replacing 1 by s in the proof, we get E[µh(Bs(0;Dh) ∩ Ar)k] ≤

Cks
kdγ−cγr

Q2

2 where cγ =
dγ
γ Q. By using Hölder’s inequality, we get E[µh(Bs(0;Dh) ∩ Ar)k] ≤

C
1/p
kp s

kdγ−
cγ
p r

Q2

2p . We then take p such that cγ/p < ε and the rest of the proof follows the same line

as those of Lemma 5.23.

Proofs of the intermediate lemmas for Proposition 5.18

We recall here the definition of the event Eδ,M (recall the definition of B in (3.28)). It is given

by the following criteria:

1. For all ` ≥ 0, the annulus crossing distance of B\0.99B is at least M−ξe−ξ`
1
2 +δ

e−ξQ`eξ−
∫
∂B h

for all B ∈ B with radius e−`,

2. for all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, we have e−` sup6kB |∇φ`′,`| ≤

`
1
2

+δ + logM ,

3. for all ` ≥ 0 and for all B ∈ B of radius e−`−2, −
∫
∂B φ`,∞ ≤ `

1
2

+δ + logM ,

4. and ‖φ− h‖D = ‖g‖D ≤ logM .

Proof of Lemma 5.19. We prove here that for any k-tuple of points K = {z1, . . . , zk} ⊂ D we have

Eδ,M ∩ {zi ∈ P 1,e−ξx

h for all i = 1, . . . , k}

⊂ {ψ + x ≤ Qm+ 8k2(m
1
2

+δ + logM) for each vertex (S,m,ψ, η) of T 0
K({φ})}.

Fix K and consider any vertex (S,m,ψ, η) of T 0
K({φ}). Recall first that by (3.17),

ψ = ψn =
n∑
i=1

φmi−1,mi(Left(Si)), (3.36)

where we write (Si,mi, ψi, ηi) for the path from the root (S1,m1, ψ1, η1) to (Sn,mn, ψn, ηn) =

(S,m,ψ, η). The proof is to compare a circle average around z ∈ S (which can be bounded since

z ∈ P 1,e−ξx

h ) with the right-hand side above. Pick any point z ∈ S. Since z ∈ P 1,e−ξx

h ,

Dh(z, ∂Be−m−1(z)) ≤ Dh(z, ∂B1/4(z)) ≤ e−ξx,
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and we can find a ball B ∈ B, centered at a point in e−m−4Z2 with radius e−m−2 whose boundary

separates z from ∂Be−m−1(z). Hence the annulus crossing distance of B\0.99B is at most e−ξx. By

Property 1, we have,

M−ξe−ξ(m+2)
1
2 +δ

e−ξQ(m+2)eξ−
∫
∂B h ≤ e−ξx,

or equivalently

−
∫
∂B
h+ x ≤ Q(m+ 2) + (m+ 2)

1
2

+δ + logM. (3.37)

Now we lower bound −
∫
∂B h in term of (3.36) by using properties 2, 3 and 4 of Eδ,M .

• By Property 4 we have

−
∫
∂B
h ≥

n∑
i=1

−
∫
∂B
φmi−1,mi +−

∫
∂B
φm,∞ − logM.

• For each i, notice that z ∈ Si, and so d(z,Left(Si)) ≤ eke−mi by (3.16). Consequently, by

Property 2 we have for each i = 1, . . . , n

−
∫
∂B
φmi−1,mi ≥ φmi−1,mi(Left(Si))− 4km

1
2

+δ

i − 4k logM.

• By Property 3 we have

−
∫
∂B
φm,∞ ≥ −m

1
2

+δ − logM.

Combining these yields (see Remark 5.11)

−
∫
∂B
h ≥

n∑
i=1

φmi−1,mi(Left(Si))− 6k2m
1
2

+δ − 6k2 logM = ψ − 6k2m
1
2

+δ − 6k2 logM.

Together with (3.37), this gives ψ + x ≤ Qm+ 8k2(m
1
2

+δ + logM) and concludes the proof.

Proof of Lemma 5.20. This is an application of the Cameron-Martin theorem. We outline here the

main idea, assuming for notational simplicity that the function f depends only on φ, z1, . . . , zk. The

argument works the same way for f depending also on (φn)n≥0.

Assume first that f is continuous. Fix k ≥ 2, δ > 0 and set Cδ := {(z1, . . . , zk) ∈ B10(0)k :
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mini<j |zi − zj | ≥ δ}. Then, by using Fatou’s lemma and the Cameron-Martin formula, we have

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤ lim inf
ε→0

E

[∫
B10(0)k∩Cδ

f(φ, z1, . . . , zk)
eγφε(z1)

E[eγφε(z1)]
. . .

eγφε(zk)

E[eγφε(zk)]
dz1 . . . dzk

]

= lim inf
ε→0

∫
B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i 6=j Cov(φε(zi),φε(zj))

E
[
eγ
∑
i≤k φε(zi)−

γ2

2
Var(

∑
i≤k φε(zi))f(φ, z1, . . . , zk)

]

= lim inf
ε→0

∫
B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i 6=j Cov(φε(zi),φε(zj))

E

f(φ+ γ
∑
i≤k

Cov(φ(·), φε(zi)), z1, . . . , zk)


=

∫
B10(0)k∩Cδ

dz1 . . . dzk

e−
γ2

2

∑
i6=j Cov(φ(zi),φ(zj))

E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 .
using dominated convergence theorem in the last equality (the term

∑
i 6=j Cov(φ(zi), φ(zj)) is

uniformly bounded for (z1, . . . , zn) ∈ Cδ). The Cameron-Martin formula is used by writing

γ
∑
i≤k

φε(zi) = 〈φ, γ
∑
i≤k

ρε,zi〉

where ρε,zi denote the uniform probability measure on the circle ∂Bε(zi). Note that the above

inequality was only shown for continuous f , but we can approximate general bounded nonnegative

measurable f by a sequence of continuous fn which converge pointwise to f , and apply the dominated

convergence theorem. Thus the above inequality holds for general f .

Finally, letting δ going to zero and using the monotone convergence theorem, we get

E

[∫
B10(0)k

f(φ, z1, . . . , zk)µφ(dz1) . . . µφ(dzk)

]

≤
∫
B10(0)k

e
γ2

2

∑
i 6=j Cov(φ(zi),φ(zj))E

f(φ+ γ
∑
i≤k

Cov(φ(·), φ(zi)), z1, . . . , zk)

 dz1 . . . dzk.

This concludes the proof.

Proof of Lemma 5.21. It suffices to show that for some constant C, for each z ∈ K and each
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i = 1, . . . , n, writing w = Left(Si) we have

∣∣Cmi−1,mi(z, w)− (mi −mi−1)1z∈Si
∣∣ < C.

If z 6∈ Si, then by definition d(z, w) ≥ d(z, Si) ≥ e−mi−1 . This is larger than the range of dependence

of φmi−1,mi , so Cmi−1,mi(z, w) = 0 as desired.

Now suppose z ∈ Si. By (3.16), we know that Si is contained in a ball of radius 6ke−mi ; by

translation invariance we may assume this ball is centered at the origin. On B6k(0)×B6k(0), the

correlation of φ0,∞ is C0,∞(·, ·) = log | · − · |−1 + q(· − ·) for some bounded continuous q. Thus, by

scale invariance, we can write

Cmi−1,mi(z, w) = C0,mi−mi−1(emi−1z, emi−1w)

= log |emi−1(z − w)|−1 − Cmi−mi−1,∞(emi−1z, emi−1w) +O(1).

But again by scale invariance we have

Cmi−mi−1,∞(emi−1z, emi−1w) = C0,∞(emiz, emiw) = log |emi(z − w)|−1 +O(1).

Comparing these two equations we conclude that Cmi−1,mi(z, w) = mi−mi−1 +O(1), as needed.

Finally we check the bound on the regularity event E.

Proof of Lemma 5.22. We prove here the estimate of the occurence of the event Eδ,M .

For all integers ` > `′ ≥ 0, for all B ∈ B of radius e−`−2, the probability that e−` sup6kB |∇φ`′,`| >

`
1
2

+δ + logM is ≤ Ce−c(logM)2
e−c`

1+2δ
by Lemma 5.48. Therefore, the probability that Condition 2

does not hold is ≤ Ce−c(logM)2 ∑
`≥0 `e

2`e−c`
1+2δ

.

For Condition 3, for a B ∈ B of size e−`−2, by scaling −
∫
∂B φ`,∞ is distributed as −

∫
∂B0

φ0,∞ where

B0 is of size e−2 and this is a centered Gaussian variable with bounded variance. Therefore, the

probability it is at least `
1
2

+δ + logM is less than Ce−c(`
1
2 +δ+logM)2 ≤ Ce−c`1+2δ

e−c(logM)2
. For each

`, there are O(e2`) balls of size e−`−2 in B, hence the probability that Condition 3 does not hold is

less than Ce−c(logM)2 ∑
`≥0 e

2`e−c`
1+2δ

.
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For Condition 4, since φ− h is continuous by Proposition 5.9, and applying Fernique’s theorem,

the probability that ‖φ− h‖D ≤ logM occurs is ≥ 1 − Ce−c(logM)2
. For Condition 1, we use

Proposition 5.6 and again a union bound.

5.4 Negative moments

In this section, we prove the following lower bound on the LQG volume of the unit metric ball.

Proposition 5.26 (Negative moments of LQG ball volume). Let h be a whole-plane GFF normalized

so h1(0) = 0. Then

E
[
µh(B1(0;Dh))−p

]
<∞ for all p ≥ 0.

This result also holds if we instead consider the LQG measure and metric associated with the field

h̃ = h− α log | · | for α < Q.

In Section 5.4.1, we prove the finiteness of negative moments of µh(B1(0;DD
h )), the unit ball with

respect to the D-internal metric DD
h . This immediately implies Proposition 5.26 since B1(0;DD

h ) ⊂

B1(0;Dh). In Section 5.4.2 we bootstrap our results to obtain lower bounds on µh(Bs(0;Dh)) for

s ∈ (0, 1); these lower bounds will be useful in our applications in Section 5.5.

5.4.1 Lower tail of the unit metric ball volume

The goal of this section is the following result.

Proposition 5.27 (Superpolynomial decay of internal metric ball volume lower tail). Let h be a

whole-plane GFF normalized so h1(0) = 0. Let DD
h : D×D→ R be the internal metric in D induced

by Dh, and B1(0;DD
h ) ⊂ D the DD

h -metric ball. Then for any p > 0, for all sufficiently large C > 0

we have

P
[
µh(B1(0;DD

h )) ≥ C−1
]
≥ 1− C−p.

This result also holds if we instead consider the LQG measure and metric associated with the field

h̃ = h− α log | · | for α < Q.

Let N > 1 be a parameter which we keep fixed as C → ∞ (taking N large yields p large in
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Proposition 5.27) and define

k0 =

⌊
1

N
logC

⌋
, k1 = bN logCc.

Let P be a D
h̃
-geodesic from 0 to ∂Be−k0 (0). See Figure 5.2 (left) for the setup.

Proof sketch of Proposition 5.27. The proof follows several steps. Each step below holds with

high probability.

• We find an annulus Be−k+1(0)\Be−k(0) with k > k0 not too large, such that the annulus-

crossing length of P is not too small. This is possible because the Dh̃-length of P between

∂Be−k1 (0) and ∂Be−k0 (0) is at least C−β for some fixed β > 0. We conclude that the circle

average h̃e−k(0) is not small (h̃e−k & − logC).

• We find a Dh-metric ball which is “tangent” to ∂Be−k(0) and ∂Be−k−1(0). Then, by Proposi-

tion 5.7, this metric ball (and hence B1(0;DD
h̃

)) contains a Euclidean ball B with Euclidean

radius not too small (say e−(1+ζ)k for small ζ > 0). Since h̃e−k(0) is not small, neither is the

average of h̃ on ∂B (i.e. −
∫
∂B h̃ & − logC).

• Finally, we have a good lower bound on µ
h̃
(B) in terms of the average of h̃ on ∂B, so we find

that B has not-too-small LQG volume. Since B lies in B1(0;DD
h̃

), we obtain a lower bound

µ
h̃
(B1(0;DD

h̃
)) & C−power. This last exponent does not depend on N , so we may take N →∞

to conclude the proof of Proposition 5.27.

We now turn to the details of the proof. Let Lk be the D
h̃
-length of the subpath of P from

0 until the first time one hits ∂Be−k(0). We emphasize that Lk is not the D
h̃

distance from 0 to

∂Be−k(0).

Lemma 5.28 (Length bounds along P ). There exist positive constants c = c(γ, α) and β = β(γ, α)

independent of N such that for sufficiently large C, with probability 1−O(C−cN ) the following all

hold:

Lk0 > C−β, (4.38)

Lk1 < C−β−1, (4.39)

252



Lk−1 − Lk < C exp (−kξ(Q− α) + ξhe−k(0)) for all k ∈ [k0 + 1, k1]. (4.40)

Proof. We focus first on (4.38). Using Proposition 5.6 to bound the annulus crossing distance of

Be−k0 (0)\Be−k0−1(0), we see that with superpolynomially high probability as C →∞ we have

Lk0 ≥ C−1
(
e−k0

)ξ(Q−α)
exp(ξhe−k0 (0)). (4.41)

Note that since Var(he−k0 (0)) = k0 ≤ N−1 logC, we have

P [ξhe−k0 (0) < − logC] ≤ exp

(
− (logC)2

2ξ2N−1 logC

)
= C−cN

for c = 1/(2ξ2). Notice that when we have both (4.41) and {ξhe−k0 ≥ − logC}, then

Lk0 ≥ C−1 · C−ξ(Q−α)/N · C−1 ≥ C−β

for the choice β = 2 + ξ(Q− α). Thus (4.38) holds with probability 1−O(C−cN ).

To prove the upper bound (4.40), we glue paths to bound Lk−1 − Lk. By Proposition 5.6 and a

union bound, with superpolynomially high probability as C →∞ the following event EC holds:

• For each k ∈ [k0 +1, k1], there exists a path from ∂Be−k+1(0) to ∂Be−k−1(0) and paths in the an-

nuli Be−k(0)\Be−k−1(0) and Be−k+2(0)\Be−k+1(0) which separate the circular boundaries of the

annuli, and such that each of these path hasD
h̃
-length at most 1

3C exp (−kξ(Q− α) + ξhe−k(0)).

Since the segment on P measured by Lk−1 − Lk is the restriction of a geodesic which crosses a

larger annulus, by triangular equality, (4.40) holds on EC .

Finally, we check that for our choice of β, the inequality (4.39) holds with probability 1−C−cN

(possibly by choosing a smaller value of c > 0). By the triangle inequality, Lk1 is bounded from

above by the sum of the D
h̃
-distance from the origin to ∂Be−k1+1(0) plus the D

h̃
-length of any

circuit in the annulus Be−k1+1(0)\Be−k1 (0). Hence, using the circuit bound on EC , we have

Lk1 ≤ Dh̃
(0, ∂Be−k1+1(0)) + Ce−k1ξ(Q−α)eξhe−k1

(0).
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By scaling of the metric, D
h̃
(0, ∂Be−k1+1(0)) is bounded from above by eξhe−k1+1 (0)e(−k1+1)ξ(Q−α)Y

where Y is distributed as D
h̃
(0, ∂B1(0)). Now, since k1 = bN logCc and he−k1 (0) has variance

N logC, by a Gaussian tail estimate we get

P
[
he−k1 (0) >

1

4
k1(Q− α)

]
≤ C−cN .

Furthermore, since Y has some finite small moments for α < Q (by [39, Theorem 1.10]), the Markov’s

inequality provides

P
[
Y e−

1
4
k1ξ(Q−α) > 1

]
≤ C−cN .

Altogether, we obtain (4.39) with probability 1−O(C−cN ).

As an immediate consequence of the above lemma, we can find a scale k ∈ (k0, k1] such that

B1(0;DD
h̃

) intersects ∂Be−k(0), and the field average at scale k is large. We introduce here a small

parameter ζ > 0 which does not depend on C, whose value we fix at the end.

Lemma 5.29 (Existence of large field average near B1(0;DD
h̃

)). Consider c and β as in Lemma 5.28.

With probability 1−O(C−cN ), there exists k ∈ [k0, k1] such that D
h̃
(0, ∂Be−k(0)) < 1 and

− k(Q− α) + he−k(0) ≥ −ξ−1(β + 2) logC; (4.42)

moreover, there exists a Euclidean ball Br(z) with r = e−k(1+ζ) and z ∈ rZ2 such that Br(z) ⊂

Be−k(0)\Be−k−1(0) and Br(z) ⊂ B1(0;DD
h̃

).

Proof. To prove (4.42), we first claim that when the event of Lemma 5.28 holds, there exists

k ∈ [k0 + 1, k1] such that Lk < 1 and Lk−1 − Lk ≥ C−β−1. Let k? be the smallest k ∈ (k0, k1] such

that Lk? < C−β, then

k1∑
k=k?

Lk−1 − Lk = Lk?−1 − Lk1 ≥ C−β − C−β−1.

Since the LHS is a sum over at most N logC terms, we indeed find some index k ∈ [k?, k1] such that

Lk−1 − Lk ≥
C−β − C−β−1

N logC
> C−β−1.
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For this choice of k, we have D
h̃
(0, ∂Be−k(0)) ≤ Lk ≤ Lk? < C−β < 1, and by (4.40) we have (4.42)

also.

∂Be−k(0)

Be−k−1(0)

B1(0;D
D
h̃
)

p
U

P ′

Br(z)

∂Be−k1(0)

∂Be−k(0)

∂Be−k0(0)

P

Figure 5.2 – Left: Setup of Lemma 5.28. Given C that we eventually sent to∞, we take the circles
with radii e−k0 ≈ C−1/N and e−k1 = C−N , and draw all circles with radii e−k with k0 ≤ k ≤ k1. In
Lemma 5.29 we follow the geodesic P from the outer circle to the inner until we find an annulus on
which the geodesic segment is long. Right: Illustration of the second assertion of Lemma 5.29. We
find a Dh-metric ball U ⊂ B1(0;DD

h̃
) such that U is “tangent” to ∂Be−k and ∂Be−k−1 , then apply

Proposition 5.7 to find a Euclidean ball Br(z) ⊂ U .

Now we turn to the second assertion of the lemma; see Figure 5.2 (right). Let P ′ be a D
h̃
-

geodesic from 0 to ∂Be−k(0). By the continuity of D
h̃
, we can find a point p ∈ P ′ in the annulus

Be−k(0)\Be−k−1(0) such that Dh+(k+1)α(p, ∂Be−k(0)) = Dh+(k+1)α(p, ∂Be−k−1(0)); let U be the

Dh+(k+1)α-ball with this radius centered at p.

We claim that U ⊂ B1(0;DD
h̃

). We assume that α ≥ 0 (the other case is similar). Since

(k + 1)α ≥ α log | · |−1 ≥ kα on Be−k(0)\Be−k−1(0), we have for all w ∈ U that

DD
h̃

(p, w) ≤ eξαDD
h+αk(p, w) ≤ eξαDD

h+αk(p, ∂Be−k(0)) ≤ eξαDD
h̃

(p, ∂Be−k(0)),

and consequently

DD
h̃

(0, w) ≤ DD
h̃

(0, p) +DD
h̃

(p, w) ≤ DD
h̃

(0, p) + eξαDD
h̃

(p, ∂Be−k(0)) ≤ eξαDD
h̃

(0, ∂Be−k(0));

this last inequality follows from the fact that p lies on P ′ so DD
h̃

(0, p) + DD
h̃

(p, ∂Be−k(0)) =

DD
h̃

(0, ∂Be−k(0)). Since DD
h̃

(0, ∂Be−k(0)) ≤ Lk? < C−β, we conclude that DD
h̃

(0, w) < eξαC−β ≤ 1,

and hence U ⊂ B1(0;DD
h̃

).
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Since U is a Dh+(k+1)α metric ball, it is also a Dh metric ball. Furthermore, since diam(U) ∈

(1
2e
−k, 2e−k), Proposition 5.7 gives us a Euclidean ball of radius e−k(1+ζ/2) in U , and hence a

Euclidean ball Br(z) ⊂ U with z ∈ rZ2. Since U lies in Be−k(0)\Be−k−1(0) and in B1(0;DD
h̃

), so

does Br(z), so we have shown Lemma 5.29.

Finally, we need a regularity event to say that the µ
h̃
-volumes of Euclidean balls are close to

their field average approximations, and that the field does not fluctuate too much on each scale.

The bounds in the following lemma are standard in the literature. We introduce a large parameter

q > 0 that does not depend on C, and fix its value at the end.

Lemma 5.30 (Regularity of field averages and ball volumes). Fix ζ ∈ (0, 1) and q > 0. Then for

all sufficiently large C > C0(q, ζ,N), with probability 1− C−ζ(
q2

2N
−2N−1) the following is true. For

each k ∈ [k0, k1], writing r = e−k(1+ζ), for all z ∈ rZ2 such that Br(z) ⊂ Be−k(0)\Be−k−1(0) we have

|hr(z)− he−k(0)| < kqζ (4.43)

and

µ
h̃
(Br(z)) ≥ C−1rγQ exp(γh̃r(z)). (4.44)

Proof. By standard GFF estimates, we have Cov (hr(z), he−k(0)) = k +O(1), Varhr(z) = − log r +

O(1) = k(1 + ζ) +O(1) and Varhe−k(0) = k +O(1). Consequently,

Var (hr(z)− he−k(0)) = ζk +O(1),

and hence by the Gaussian tail bound,

P [|hr(z)− he−k(0)| < kqζ] ≥ 1−O(e−
q2ζk

2 ).

Taking a union bound over all O(e2kζ) points in rZ2 ∩Be−k(0), then summing over all k ∈ [k0, k1],

we see that the probability (4.43) holds for all k and all suitable z is at least

1−O

 k1∑
k=k0

e2kζe−q
2ζk/2

 ≥ 1−O
(
N logC · e2k1ζe−q

2ζk0/2
)
≥ 1− C−ζ(

q2

2N
−2N−1).
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Now, we establish that for each fixed choice of k, z, the inequality (4.44) holds with superpoly-

nomially high probability as C → ∞ (then we are done by a union bound over a collection of

polynomially many k, z); since −α log | · | − αk is bounded on the annulus, it suffices to show (4.44)

with h̃ replaced by h+ αk (or equivalently by h, since both sides of the equation (4.44) scale the

same way under adding a constant to the field). By the Markov property of the GFF (Lemma 5.5)

we can decompose h = h + ĥ, where h is a distribution which is harmonic in B2r(z), and ĥ is a zero

boundary GFF in the domain B2r(z); moreover h and ĥ are independent. We can then write

µh(Br(z)) ≥ eγ infBr(z) hµ
ĥ
(Br(z))

= (2r)γQeγhr(z)e−γĥr(z)eγ infBr(z) h−γh(z)µg(B 1
2
(0)),

where g := ĥ(2r · +z) has the law of a zero boundary GFF on D. (This follows from an affine

change of coordinates mapping B2r(z) 7→ D; then by the coordinate change formula µ
ĥ
(Br(z)) =

(2r)γQµg(B 1
2
(0)).)

Since ĥr(z) is a mean zero Gaussian with fixed variance, and by the quantum volume lower

bound (2.4), we have e−γĥr(z) ≥ C−1/3 and µg(B 1
2
(0)) ≥ C−1/3 with superpolynomially high

probability in C. Combining these bounds with the above estimate, with superpolynomially high

probability in C we have

µh(Br(z)) ≥ (2r)γQC−2/3eγ infBr(z) h−γh(z).

Hence we are done once we check that with superpolynomially high probability in C,

eγ infBr(z) h−γh(z) ≥ C−1/3. (4.45)

Since h = h + ĥ and h, ĥ are independent, for x, x′ ∈ Br(z) we have

Var
(
h(x)− h(x′)

)
≤ Var

(
hr(x)− hr(x′)

)
= O(1).

Moreover, by the scale and translation invariance of the GFF modulo additive constant and the fact

that h is continuous in B 3
2
r(z), we know that h(z)− infBr(z) h > −∞ and has a law independent of

257



r, z, so by the Borell-TIS inequality we see that for some absolute constants m, c, we have

P
[
h(z)− inf

Br(z)
h > u+m

]
≤ e−cu2

for all u > 0.

This immediately implies (4.45). Thus, for each fixed choice of k, z, the inequality (4.44) holds with

superpolynomially high probability as C →∞. Taking a union bound, we obtain (4.44).

Proof of Proposition 5.27. Let c, β be as in Lemma 5.28. We will work with parameters N, ζ, q, and

choose their values at the end. Assume that the events of Lemmas 5.29 and 5.30 hold; this occurs

with probability at least 1− C−cN − C−ζ(
q2

2N
−2N−1). Let k, r, and Br(z) be as in Lemma 5.29.

We now lower bound the quantum volume of Br(z). By (4.42) and (4.43), we see that

rγQ exp
(
γh̃r(z)

)
≥ exp (−γkQ(1 + ζ) + γhr(z) + γαk)

≥ exp(−γζk(Q+ q)− γk(Q− α) + γhe−k(0))

≥ exp(−γζk(Q+ q))C
− γ
ξ

(β+2)

≥ C−γζN(Q+q)C
− γ
ξ

(β+2)
.

The last inequality follows from k ≤ k1 = bN logCc. Choose q = N3 and ζ = N−4. Then by the

above inequality, (4.44), and Br(z) ⊂ B1(0;DD
h̃

), we see that for a constant β′ = β′(γ) > 0 we have

µ
h̃
(B1(0;DD

h̃
)) ≥ µ

h̃
(Br(z)) ≥ C−β

′
.

Since this occurs with probability 1− C−cN − C−ζ(
q2

2N
−2N−1) = 1−O(C−cN ), and N can be made

arbitrarily large, we have proved Proposition 5.27.

5.4.2 Lower tail of small metric balls

Using Proposition 5.27 and the scaling properties of the LQG metric and measure, we can easily

prove a similar result for metric balls centered at the origin of all radii s ∈ (0, 1). We emphasize that

in the following proposition, we are considering the Dh-metric balls, rather than DD
h -metric balls.

Lemma 5.31. Let h be a whole-plane GFF normalized so h1(0) = 0. For any p > 0, there exists
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Cp such that for all C > Cp and s ∈ (0, 1), we have

P
[
µh(Bs(0;Dh)) ≥ C−1sdγ

]
≥ 1− C−p.

Proof. The process t 7→ he−t(0) for t ≥ 0 evolves as standard Brownian motion started at 0. Fix

s ∈ (0, 1) and let T > 0 be the first time t > 0 that −Qt+ he−t(0) = ξ−1 log s. Notice that

h(e−T ·) +Q log e−T =
(
h(e−T ·)− he−T (0)

)
−QT + he−T (0)

=
(
h(e−T ·)− he−T (0)

)
+ ξ−1 log s.

By Lemma 5.4, conditioned on T , we have (h(e−T ·) +Q log e−T )
∣∣
D

d
= (ĥ+ ξ−1 log s)

∣∣
D where ĥ is a

whole-plane GFF normalized to have mean zero on ∂D. Couple these fields to agree. By the Weyl

scaling relations and the change of coordinates formula for quantum volume and distances, and the

locality property of the internal metric (Axiom II), we have the internal metric relation

De−TD
h (e−T z, e−Tw) = DD

ĥ+ξ−1 log s
(z, w) = sDD

ĥ
(z, w)

and the volume measure relation

µh(e−T ·) = µ
ĥ+ξ−1 log s

(·) = sdγµ
ĥ
(·).

Thus we can relate the quantum volume of the internal metric balls Bs(0;De−TD
h ) ⊂ e−TD and

B1(0;DD
ĥ

):

µh

(
Bs(0;De−TD

h )
)

= sdγµ
ĥ
(B1(0;DD

ĥ+ξ−1 log s
)),

and consequently we have

{
µh(Bs(0;De−TD

h )) ≥ C−1sdγ
}

=
{
µ
ĥ
(B1(0;DD

ĥ
)) ≥ C−1

}
.

Since µh(Bs(0;Dh)) ≥ µh(Bs(0;De−TD
h )), our claim follows from Proposition 5.27.
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5.5 Applications and other results

5.5.1 Uniform volume estimates and Minkowski dimension

In this section, we prove the remaining assertions of Theorem 5.1. Namely, the Minkowski

dimension of a bounded open set S is almost surely equal to dγ and for any compact set K ⊂ C

and ε > 0, we have, almost surely

sup
s∈(0,1)

sup
z∈K

µh(Bs(z;Dh))

sdγ−ε
<∞ and inf

s∈(0,1)
inf
z∈K

µh(Bs(z;Dh))

sdγ+ε
> 0.

Since the whole-plane GFF modulo additive constants has a translation invariant law, we can

deduce a version of Lemma 5.31 for metric balls centered at z 6= 0.

Proposition 5.32 (Uniform lower tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF normalized

so h1(0) = 0, and K ⊂ C be any compact set. For any p > 0, there exists Cp,K > 0 such that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≥ C−1sdγ

]
≥ 1− C−p for each C > Cp,K .

Proof. Fix z ∈ K. We can write h = ĥ+X where ĥ is a whole-plane GFF normalized so ĥ1(z) = 0,

and X = h1(z) is a random real number. On the event {|X| ≤ γ−1 logC} we have C−1 ≤ eγX ≤ C,

so

{µh(Bs(z;Dh)) < C−3sdγ} = {eγXµ
ĥ
(Be−ξXs(z;Dĥ

)) < C−3sdγ}

⊂ {C−1µ
ĥ
(BC−1/dγ s(z;Dĥ

)) < C−3sdγ} ∪ {|X| > γ−1 logC}

= {µ
ĥ
(BC−1/dγ s(z;Dĥ

)) < C−1(C−1/dγs)dγ} ∪ {|X| > γ−1 logC}.

In the last line, the first event is superpolynomially rare in C by Lemma 5.31, and the second

because X is a centered Gaussian. Note that VarX = Varh1(z) is uniformly bounded for all z ∈ K,

so the decay of the second event is uniform for z ∈ K. This completes the proof.

Similarly, we can bootstrap Lemma 5.25 to a statement uniform for Dh-balls centered in a

compact set.
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Proposition 5.33 (Uniform upper tail for µh(Bs(z;Dh))). Let h be a whole-plane GFF normalized

so h1(0) = 0. For any compact set K ⊂ C, p > 0, ε ∈ (0, 1), there exists a constant Cp,ε,K > 0 such

that

sup
s∈(0,1),z∈K

P
[
µh(Bs(z;Dh)) ≤ Csdγ−ε

]
≥ 1− C−p for each C > Cp,ε,K .

Proof. We note that Lemma 5.25 implies an upper bound version of Lemma 5.31 (with an exponent of

dγ−ε instead of dγ), and we deduce Proposition 5.33 in the same way that we obtain Proposition 5.32

from Lemma 5.31.

Before moving to the proof of the almost sure uniform estimate, we first prove volume bounds

on a countable collection of metric balls.

Lemma 5.34. For any ε > 0 and bounded open set 2D, the following is true almost surely. For all

sufficiently large m, for all z ∈ 2−mZ2 ∩ 2D, and for all dyadic s = 2−k ∈ (0, 1] we have

sdγ−ε2εm > µh(Bs(z;Dh)) > sdγ+ε2−εm.

Proof. The proof is a straightforward application of Propositions 5.33 and 5.32 and the Borel-Cantelli

lemma. We prove the lower bound; the upper bound follows the same argument.

Pick any large p > 0, and let Cp,2D be the constant from Proposition 5.32. Consider any m such

that 2εm > Cp,2D, then for any z ∈ 2D we have

P
[
µh(Bs(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1]

]
> 1− 2−εpm

∑
dyadic s

sεp.

Taking a union bound over all the O(22m) points in 2−mZ2 ∩ 2D yields

P
[
µh(Br(z;Dh)) > sdγ+ε2−εm for all dyadic s ∈ (0, 1] and z ∈ 2−mZ2 ∩ 2D

]
> 1−O(2−(εp−2)m)

∑
dyadic s

sεp.

For p large enough we have εp− 2 > 0, so by the Borel-Cantelli lemma, a.s. at most finitely many

of the above events fail, i.e. the lower bound of Lemma 5.34 holds. The upper bound follows the
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same argument.

With this lemma and the bi-Hölder continuity of Dh with respect to Euclidean distance, we can

prove the second part of Theorem 5.1.

Proof of Theorem 5.1 part 2. We first prove that a.s. for some random r ∈ (0, 1), we have

inf
s∈(0,r]

inf
z∈D

µh(Bs(z;Dh))

sdγ+ζ
> 0. (5.46)

We use the bi-Hölder continuity of Dh with respect to Euclidean distance (see e.g. [39, Theorem

1.7]) and the Borel-Cantelli lemma to obtain the following. There exist deterministic constants

χ, χ′ > 0 and random constant c, C such that, almost surely,

c|u− v|χ′ ≤ Dh(u, v) ≤ C|u− v|χ for all u, v ∈ 2D.

Moreover, Proposition 5.7 and Borell-Cantelli yield that a.s. every metric ball B contained in

2D and having sufficiently small Euclidean diameter contains a Euclidean ball of radius at least

diam(B)2.

Consequently, for all sufficiently small s and any z ∈ D, we have

s

2
≤ C diam(Bs/2(z;Dh))χ,

and since any two points in Bs/2(w;Dh) have Dh-distance at most s, the bi-Hölder lower bound

gives

cdiam(Bs/2(z;Dh))χ
′ ≤ s.

Since the ball Bs/2(z;Dh) has a small diameter, it a.s. contains a Euclidean ball of radius at least

diam(Bs/2(z;Dh))2 ≥ (s/2C)2/χ hence contains a point w ∈ 2−mZ2 with m = d− 2
χ log2(s/2C)e <

− 3
χ log2(s/2C).

Thus, for a random constant c′, for sufficiently small s, applying Lemma 5.34 to m as above and
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dyadic s1 ∈ ( s4 ,
s
2 ], we have

µh(Bs/2(w;Dh)) ≥ µh(Bs1(w;Dh)) ≥ sdγ+ε
1 · 2−εm ≥

(s
4

)dγ+ε ( s

2C

) 3ε
χ

= c′s
dγ+ε+ 3ε

χ .

Since w ∈ Bs/2(z;Dh), by the triangle inequality we have Bs/2(w;Dh) ⊂ Bs(z;Dh), so

µh(Bs(z;Dh)) > c′s
dγ+3ε+ 3ε

χ .

Almost surely, this holds for all sufficiently small s > 0 and all z ∈ D. Choosing ε > 0 so that

ε+ 3ε
χ < ζ, we obtain (5.46).

The supremum analog of (5.46) follows almost exactly the same proof, except that instead of

finding a “dyadic” metric ball inside each radius s metric ball, we find a dyadic metric ball B̃ (with

dyadic radius s1 ∈ [2s, 4s)) around each metric ball B, then apply Lemma 5.34 to upper bound

µh(B̃) (and hence µh(B)).

Now, we extend (5.46) to a supremum/infimum over all s ∈ (0, 1]. For any s ∈ (r, 1] and z ∈ D,

we have

µh(Bs(z;Dh))

sdγ+ζ
≥ µh(Bs(z;Dh)) ≥ rdγ+ζ µh(Br(z;Dh))

rdγ+ζ
,

and noting that a.s. for sufficiently large R we have Dh(D, ∂BR(0)) > 1,

µh(Bs(z;Dh))

sdγ−ζ
≤ r−dγ+ζµh(BR(0)) <∞.

This concludes the proof of the uniform volume estimates.

Finally, we prove the statement from Theorem 5.1 about the Minkowski dimension of a set.

Proof of Theorem 5.1, part 3. Consider any bounded measurable set S containing an open set and

fix δ ∈ (0, 1). Let NS
ε be the minimal number of LQG metric balls with radius ε needed to cover

the set S and denote by Cε the set of centers associated to such a covering. Then, since

µh(S) ≤
∑
z∈Cε

µh(Bε(z;Dh)) ≤ NS
ε max
z∈Cε

µh(Bε(z;Dh)),
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the uniform volume estimate and the fact that µh(S) > 0 a.s. imply that for every δ > 0, we

have the a.s. lower bound lim infε→0
logNS

ε
log ε−1 ≥ dγ − δ. Now, denote by MS

ε the maximal number of

pairwise disjoint LQG metric balls with radius ε whose union is included in S. Denote by Dε the

set of centers associated to such a collection of metric balls. Note that MS
ε ≥ NS

2ε. Therefore,

µh(S) ≥
∑
z∈Dε

µh(Bε(z;Dh)) ≥MS
ε min
z∈Dε

µh(Bε(z;Dh)) ≥ NS
2ε min
z∈Dε

µh(Bε(z;Dh))

from which we get the a.s. upper bound lim supε→0
logNS

ε
log ε−1 ≤ dγ + δ by the uniform volume estimate

and the fact that µh(S) <∞ almost surely. Letting δ → 0 completes the proof.

5.5.2 Estimates for Liouville Brownian motion metric ball exit times

Liouville Brownian motion is, roughly speaking, Brownian motion associated to the LQG metric

tensor “eγh(dx2 + dy2)”, and was rigorously constructed independently in the works [49] and [11].

These papers consider fields different from our field h (a whole-plane GFF normalized so h1(0) = 0),

but their results are applicable in our setting. This can be verified either directly or by local absolute

continuity arguments.

Liouville Brownian motion was defined in [11,49] by applying an h-dependent time-change to

standard planar Brownian motion. Letting Bt be standard planar Brownian motion from the origin

sampled independently from h, we can define Liouville Brownian motion as Xt = BF−1(t) for t ≥ 0,

where F is a random time-change defined h-almost surely. The function F (t) should be understood

as the quantum time elapsed at Euclidean time t, and has the following explicit description. Defining

the approximation

F ε(t) =

∫ t

0
εγ

2/2eγhε(Bs)ds, (5.47)

and writing TR for the Euclidean time that Bt exits the ball BR(0), the sequence F ε|[0,TR] converges

almost surely as ε→ 0 to F |[0,TR] in the uniform metric [11, Theorem 1.2].

For a set X ⊂ C and z ∈ C, denote by τh(z;X) the first exit time of the Liouville Brownian

motion started at z from the set X. We discuss now the results of [49] on the moments of τh(z;B1(z))

and of F (t), i.e. the moments of the elapsed quantum time at some Euclidean time. These results
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are analogous to the moments of the LQG volume of a Euclidean ball (Section 5.2.3).

Proposition 5.35 (Moments of quantum time [49, Theorem 2.10, Corollary 2.12, Corollary 2.13]).

For all q ∈ (−∞, 4/γ2), t > 0, the following holds,

E[τh(0;B1(0))q] + E[F (t)q] <∞.

Heuristically, the nonexistence of large moments is due to the Brownian motion hitting regions

of small Euclidean size but large quantum size. On the other hand, the random set B1(0;Dh) in

some sense avoids such regions.

In this section we prove the finiteness of all moments of the LBM first exit time of B1(0;Dh),

which we abbreviate as τ , and discuss the moments of τh(0;Bs(0;Dh)) for small s ∈ (0, 1).

Upper bound for LBM exit time of metric balls

Theorem 5.36 (Positive moments for quantum exit time of metric ball). Let h be a whole-plane

GFF normalized so h1(0) = 0, and consider Liouville Brownian motion associated to h. Let τ be the

first exit time of the Liouville Brownian motion started at the origin from the ball B1(0;Dh), i.e.

τ = inf{t ≥ 0 : Xt 6∈ B1(0;Dh)}.

Then

E[τk] <∞ for all k ≥ 0.

Proof sketch: In computing E[τk], by first averaging out the randomness of (Bt)t≥0, we obtain an

expectation in h of an integral over k-tuples of points in B1(0;Dh); this is similar to the integral in

Step 1 of the proof of Proposition 5.18, but with additional log-singularities between these points.

Because the arguments of Proposition 5.18 had some room in the exponents, the log-singularities

pose no issue for us, and we can carry out the same arguments from Section 5.3. We will be succinct

when adapting these arguments.

Let τn be the quantum time LBM spends in the annulus A2n := B2n(0)\B2n−1(0) before exiting

B1(0;Dh). As in [49, (B.2)], we have the following representation of E[τkn ] for k a positive integer,
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which follows from taking an expectation over the standard Brownian motion (Bt)t≥0 used to define

(Xt)t≥0 (see (5.47)),

E[τkn ] = E

[∫
(A2n )k

f(z1, . . . , zk, h)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
, (5.48)

and where, writing t0 = 0 and z0 = 0 for notational convenience, f is given by

f(z1, . . . , zk, h) :=

∫
0≤t1≤···≤tk<∞

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
(5.49)

× P
[
B|[0,tk] stays in B1(0;Dh) | h,Bti = zi for i = 1, . . . , k

]
dt1 . . . dtk.

The function f(z1, . . . , zk) is an integral of the Brownian motion transition density at times t1, . . . , tk

times the conditional probability that the Brownian motion does not escape B1(0;Dh). We will

need the following bound on f , whose proof is postponed to the end of the section.

Lemma 5.37. There exists a constant C > 0 such that for all sufficiently large R > 0, on the event

{B1(0;Dh) ⊂ BR(0)} we have

f(z1, . . . , zk, h) ≤ C (logR)k g(z1, . . . , zk) for all z1, . . . , zk ∈ RD,

where, recalling z0 = 0,

g(z1, . . . , zk) =

k∏
i=1

max (− log |zi − zi−1|, 1) .

Proof of Theorem 5.36. Our strategy is to fix some large R > 0 then truncate on the event E′R :=

{B1(0;Dh) ⊂ BR(0)}. Subsequently, we show an analog of Proposition 5.18, and use it to bound

E[τkn1E′R ] for all n. Combining these, we obtain a bound on E[τk1E′R ]. Finally, we verify that P[E′R]

decays sufficiently quickly in R, and we are done.

Step 1: Proving an analog of Proposition 5.18. Recall the definition P r,dh = {z ∈ C : Dh(z, ∂Br/4(z)) ≤

d} in (3.27). The argument of Proposition 5.18 bounded

E

[∫
(A1)k

1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]
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by using a Cameron-Martin shift (placing γ-log singularities at each zi and replacing
∏
µh(dzi)

by
∏
i<j |zi − zj |−γ

2 ∏
dzi), then using Proposition 5.15 to bound the integral. Recalling Remark

5.17, Proposition 5.18 can be proved even if the exponent γ2 is made slightly larger. Any such

exponent increase will upper bound the log-singularities of g, hence we have the following analog of

Proposition 5.18:

E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ A1 ∩ P 1,e−ξx

h }µh(dz1) . . . µh(dzk)

]
. e−ck,δx.

Step 2: Bounding E[τkn1E′R ] for each n. We start with n = 0. Using Lemma 5.37 and (5.48) (and

noting that B1(0;Dh) ∩A1 ⊂ A1 ∩ P 1,1
h ), we obtain that E[τk0 1E′R ] is bounded from above by

(logR)k E

[∫
(A1)k

g(z1, . . . , zk)1{z1, . . . , zk ∈ B1(0;Dh)}µh(dz1) . . . µh(dzk)

]
. (logR)k ,

where the last inequality follows from Step 1. Likewise, building off of Step 1, similar arguments as

in Lemmas 5.23 and 5.24 yield

E
[
τkn1E′R

]
.

 (logR)k 2−
Q2

2
|n|2αδ|n| if n < 0,

(logR)k 2−
Q2

2
n if n > 0.

for some arbitrarily small αδ > 0.

Step 3: Bounding the upper tail of τ . By Hölder’s inequality (see end of proof of Lemma 5.23), the

above bounds on E
[
τkn1E′R

]
yield

E
[
τk1E′R

]
. (logR)k .

By Lemma 5.38 (see end of section) we also have for some fixed a > 0 that

P[(E′R)c] ≤ R−a
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Combining these assertions, we have

P [τ > t] . P
[
(E′R)c

]
+ E

[
τk1E′R

]
t−k . R−a + (logR)k t−k.

Taking R equal to some large power of t, we conclude that for all p < k we have E[τp] <∞. Taking

k →∞, we obtain Theorem 5.36.

Proof of Lemma 5.37. We instead prove the stronger statement

f(z1, . . . , zk, h) ≤ C
k∏
i=1

(logR− log |zi − zi−1|) for all z1, . . . , zk ∈ A1.

We split the integral (5.49) into two parts (integrating over tk < R2 and tk ≥ R2 respectively), and

bound each part separately.

There exists p > 0 such that the following is true: Let t ≥ 1/k and consider a Brownian

bridge of duration t with endpoints B0, Bt specified in D. Then this Brownian bridge stays in

D with probability at most e−pt. If tk ≥ R2, then there exists some i ∈ {1, . . . , k} such that

ti− ti−1 ≥ tk/k ≥ R2/k, and so B|[ti−1,ti] conditioned on Bti−1 = zi−1 and Bti = zi stays in RD with

probability at most e−ptk/kR
2
. This allows us to upper bound the integral (5.49) on the restricted

domain with tk ≥ R2:

∫
0≤t1≤···≤tk<∞

k! dt1 . . . dtk

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)
− p

kR2
(ti − ti−1)

)

=
k!

(2π)k/2

k∏
i=1

∫ ∞
0

1

t
exp

(
−|zi − zi−1|2

2t
− p

kR2
t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

by using the bound
∫∞

0 e−t/xe−1/t dt
t ≤

∫ 1
0 e
−1/t dt

t +
∫∞
x e−t/x dtt +

∫ x
1
dt
t ≤ C + log x for x ≥ 1 and a

change of variable.
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Now we upper bound the integral (5.49) on the restricted domain 0 ≤ t1 ≤ · · · ≤ tk < R2:

∫
0≤t1≤···≤tk<R2

k!

(2π)k/2
∏k
i=1(ti − ti−1)

exp

(
−

k∑
i=1

|zi − zi−1|2

2(ti − ti−1)

)
dt1 . . . dtk

≤ k!

(2π)k/2

k∏
i=1

∫ R2

0

1

t
exp

(
−|zi − zi−1|2

2t

)
dt = O

(
k∏
i=1

(logR− log |zi − zi−1|)

)
,

where the final inequality follows from
∫ R2

0 e−a/2t dtt =
∫ 1

0 e
−1/2u du

u +
∫ R2a−2

1 e−1/2u du
u ≤ C+logR2a−2.

Combining these two upper bounds, we are done.

Lemma 5.38 (Polynomial tail for Euclidean diameter of B1(0;Dh)). Let h be a whole-plane GFF

with h1(0) = 0. Then for all a ∈ (0, Q2/2), for all sufficiently large R we have

P [B1(0;Dh) ⊂ BR(0)] ≥ 1−R−a.

Proof. Fix ε > 0 small. By Proposition 5.6 we have with superpolynomially high probability as

R→∞ that

Dh(0, ∂BR(0)) ≥ Dh(∂BR/2(0), ∂BR(0)) ≥ Rξ(Q−ε)eξhR(0).

By a standard Gaussian tail bound we also have

P[hR(0) > −(Q− ε) logR] ≤ exp

(
−(Q− ε)2 logR

2

)
= R−(Q−ε)2/2.

Altogether, we see that with probability 1−O(R−(Q−ε)2/2) we have Dh(0, ∂BR(0)) > 1, as desired.

Lower bound for LBM exit time of metric balls

Theorem 5.39. Recall that τ is the first exit time of the Liouville Brownian motion (Xt)t≥0 from

the LQG metric ball B1(0;Dh). For all k ≥ 1, we have

E[τ−k] <∞.

We now sketch the proof. We restrict to a regularity event on which annulus-crossing distances
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and the quantum time taken to cross an annulus are well approximated by field averages. We can

find a collection of annuli separating 0 from Xτ . Gluing circuit and crossing paths associated to

the annuli, we obtain a path from 0 to Xτ . Since the Dh-length of these is bounded from above

by a circle average approximation, the condition Dh(0, Xτ ) = 1 gives a lower bound for a certain

sum of (exponentials of) circle averages terms. Raising the exponent by a factor of dγ by Jensen’s

inequality, we get a lower bound for a circle average approximation of the quantum time spent

across these annuli. Thus τ is unlikely to be very small.

Consider standard Brownian motion (Bt)t≥0 started at the origin, and recall that Liouville

Brownian motion is given by a random time-change: Xt = BF−t(t), where the quantum clock F is

formally given by F (t) =
∫ t

0 e
γh(Bs)ds (see (5.47)). Consider an annulus Ar/e,r(z) with 0 6∈ Ar/e,r(z).

Define τr(z) to be the quantum passage time of the annulus. That is, for the case where the annulus

encircles the origin, writing t1 for the first time Bt hits ∂Br(z), and t0 for the last time before t1

that Bt hits ∂Br/e(z), we set τr(z) = F (t1)− F (t0), and define it analogously in the case that the

annulus does not encircle the origin.

We need the following input, which can be seen as a variant of [49, Proposition 2.12] combined

with the scaling relation [49, Equation (2.25)] and which can be obtained by using the same

techniques.

Proposition 5.40. For any compact set K ⊂ C, there exists a random variable X ≥ 0 having

all negative moments such that the following is true. For fixed r ∈ (0, 1) and z ∈ K such that

0 6∈ Ar/e,r(z), the quantum passage time τr(z) is stochastically dominated by rγQeγhr(z)X.

As an immediate consequence of the r = 1 case of this proposition, we have the following.

Corollary 5.41. The event {Xτ 6∈ D and τ < C−1} is superpolynomially unlikely as C →∞.

Similarly to Section 5.4.1, we set

k1 = bN logCc.

Lemma 5.42. There exist γ-dependent constants χ, c > 0 so that the following holds. Consider the

event EC that each ball Be−k1 (z) included in 2D has quantum diameter at most 2e−χk1. Then, EC

occurs with probability at least 1− e−cN .
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Proof. This is an application of the Hölder estimate [39, Proposition 3.18] which implies that there

exist positive constants χ, α such that, as ε→ 0, with probability at least 1− εα,

Dh(u, v) ≤ |u− v|χ, ∀u, v ∈ 2D with |u− v| ≤ ε.

Therefore, taking ε = e−k1 , for z such that Be−k1 (z) ⊂ 2D, for all w ∈ Be−k1 (z), Dh(z, w) ≤ e−χk1

and the quantum diameter of that ball is bounded from above by twice this upper bound.

We consider the grid ZC := 1
100e

−k1Z2.

Lemma 5.43. Consider the event FC that for every point z ∈ ZC ∩ 2D, for all k ∈ [0, k1],

the following conditions hold. There is a circuit of Dh-length at most e−kξQeξhe−k (z)C in the

annulus Ae−k−1,e−k(z), the crossing length Dh(∂Be−k−1(z), ∂Be−k+1(z)) is at most e−kξQeξhe−k (z)C,

τe−k(z) ≥ e−kγQeγhe−k (z)C−1 and, finally, |he−k(z)− he−k+1(z)| ≤ ξ−1 logC. Then, FC occurs with

superpolynomially high probability as C →∞.

Proof. This follows from Proposition 5.40 and Proposition 5.6 together with a union bound.

Proof of Theorem 5.39. We will show that P [τ > C−1] occurs with superpolynomially high probabil-

ity. By Corollary 5.41 and Lemmas 5.42 and 5.43, we see that the probability of {τ < C−1 and Xτ 6∈

D} ∪ EcC ∪ F cC is at most C−cN for some fixed c.

Now restrict to the event {Xτ ∈ D} ∩ EC ∩ FC ; we show that for some constant α not

depending on C,N we have τ > C−α for sufficiently large C, then we are done since N is arbitrary.

On this event the distances Dh(0, ∂Be−k1 (0)) and Dh(Xτ , ∂Be−k1 (Xτ )) are small, so we have

Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≥ 1
2 . Let w ∈ ZC be the closest point to Xτ , and grow the annuli

centered at 0 and w until they first hit; let k∗ ∈ [0, k1] satisfy 2e−k∗ ≤ |w| < 2e−k∗+1. By Lemma

5.43 we get

τ ≥
∑

k∈[k∗,k1]

τe−k(0) + τe−k(w) ≥ C−1
∑

k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w)

and, by taking an additional annulus crossing and circuit, using the circle average regularity between
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two annuli,

1

2
≤ Dh(∂Be−k1 (0), ∂Be−k1 (Xτ )) ≤ 10C2

∑
k∈[k∗,k1]

e−kξQeξhe−k (0) + e−kξQeξhe−k (w).

Therefore, by raising the inequality above to the power dγ and using Jensen’s inequality for the

right-hand side, as well as the lower bound for τ , we get

1

2dγ
≤ (10C2)dγk

dγ−1
1

∑
k∈[k∗,k1]

e−kγQeγhe−k (0) + e−kγQeγhe−k (w) ≤ (10C2)dγk
dγ−1
1 Cτ.

hence τ ≥ C−α for some fixed power α and C large enough. Since N is arbitrary (α does not depend

on N), we conclude the proof of Theorem 5.39.

Scaling relations for small balls Finally we explain the behavior of small ball exit times. Recall

that τh(z;Bs(z;Dh)) is the first time that Liouville Brownian motion started at z exits the ball

Bs(z;Dh).

Theorem 5.44. Let h be a whole-plane GFF normalized so h1(0) = 0, and let K ⊂ C be any

compact set. For any ε ∈ (0, 1), there exists a constant Cp,ε,K so that for C > Cp,ε,K , for all

s ∈ (0, 1) and z ∈ K we have

P[τh(z;Bs(z;Dh)) ≤ Csdγ−ε] ≥ 1− Cp, (5.50)

and

P[τh(z;Bs(z;Dh)) ≥ C−1sdγ ] ≥ 1− Cp. (5.51)

Proof. We first discuss the proofs of (5.50) and (5.51) for the specific case z = 0. For the z = 0

upper bound, recall that we proved E[τh(0;B1(0;Dh))k] < ∞ for all k > 0 in Theorem 5.36 by

adapting the proof of Proposition 5.8 . An extension of these arguments like in Lemma 5.25 yields

E[τh(0;Bs(0;Dh))k] . skdγ−ε with implicit constant depending only on k, ε, and hence by Markov’s

inequality, for all s ∈ (0, 1) and sufficiently large C that

P[τh(0;Bs(0;Dh)) ≤ Csdγ−ε] ≥ 1− Cp. (5.52)
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For the z = 0 lower bound, Theorem 5.39 gives E[τh(0;B1(0;Dh))−k] <∞ for all k > 0, and applying

the rescaling argument of Lemma 5.31 then yields for all s ∈ (0, 1) and sufficiently large C that

P[τh(0;Bs(0;Dh)) ≥ C−1sdγ ] ≥ 1− Cp. (5.53)

Finally, the arguments of Proposition 5.32 allow us to extend (5.52) and (5.53) to (5.50)

and (5.51).

5.5.3 Recovering the conformal structure from the metric measure space structure of γ-LQG

The Brownian map is constructed as a random metric measure space (see [75, 76]) and has been

proved to be the Gromov-Hausdorff limit of uniform triangulations and 2p-angulations in [73–75,78].

The Brownian map was later endowed with a canonical conformal structure (i.e. an embedding

into a flat domain, defined up to conformal automorphism of the domain) via identification with√
8/3-LQG [81–83,86] but this construction was non-explicit. The work of [60] gives an explicit way

to recover the conformal structure of a Brownian map from its metric measure space structure, and

their proof mostly carries over directly to the general setting γ ∈ (0, 2), except for certain Brownian

map metric ball volume estimates of Le Gall [74]. The missing ingredient for general γ was exactly

the uniform volume estimates (1.2)(cf. [60, Lemma 4.9]).

As an immediate consequence of (1.2) and the arguments of [60] (see discussion before [60, Remark

1.3]), we obtain the following generalization of [60, Theorem 1.1] to all γ ∈ (0, 2). Let h be a

whole-plane GFF normalized so h1(0) = 0, and write B•R(0;Dh) for the filled Dh-ball centered at 0

with radius R (i.e. the union of BR(0;Dh) and all µh-finite complementary regions). Let Pλ be a

sample from the intensity λ Poisson point process associated to µh. We can obtain a Dh-Voronoi

tessellation of C into cells {Hλ
z }z∈Pλ by defining Hλ

z = {w ∈ C : Dh(w, z) ≤ Dh(w, z′) ∀ z′ ∈ P λ}.

We define a graph structure on Pλ by saying that z, z′ ∈ P λ are adjacent if their Voronoi cells

Hλ
z , H

λ
z′ intersect along their boundaries, and define ∂P λ to be the vertices corresponding to Voronoi

cells intersecting the boundary. Let Y λ be a simple random walk on Pλ started from the point whose

Voronoi cell contains 0, extend Y λ from the integers to [0,∞) by interpolating along Dh-geodesics,

and finally stop Y λ when it hits ∂P λ.
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Theorem 5.45 (Generalization of [60, Theorem 1.1]). As λ→∞, the conditional law of Y λ given

(C, 0, Dh, µh) converges in probability as λ→ 0 to standard Brownian motion in C started at 0 and

stopped when it hits ∂B•R(0;Dh) (viewed as curves modulo time parametrization).

Here, the metric on curves modulo time parametrization is given as follows. For curves ηj :

[0, Tj ]→ C (j = 1, 2), we set

d(η1, η2) = inf
φ

sup
t∈[0,T1]

|η1(t)− η2(φ(t))|

where the infimum is over increasing homeomorphisms φ : [0, T1] → [0, T2]. We remark that the

convergence in Theorem 5.45 holds uniformly for the random walk and Brownian motion started

in a compact set, and moreover holds for a range of quantum surfaces such as quantum spheres,

quantum cones, quantum wedges, and quantum disks; see [60, Theorem 3.3]. Consequently, the

Tutte embedding of the Poisson-Voronoi tessellation of the quantum disk converges to the quantum

disk as λ→∞ (see the proof of [60, Theorem 1.2]).

Proof. Since we have the estimates (1.2), the general γ ∈ (0, 2) version of [60, Theorem 3.3] holds.

In particular, Theorem 5.45 holds if we replace the field h with that of a 0-quantum cone. By

comparing h to the field of a 0-quantum cone and using local absolute continuity arguments, we

obtain Theorem 5.45.

Notice that the construction of Y λ involves only the pointed metric measure space structure

of (C, 0, Dh, µh), so Theorem 5.45 roughly tells us that we can recover the conformal structure of

(C, 0, Dh, µh) from its metric measure space structure. The following variant of [60, Theorem 1.2]

makes this observation explicit, resolving a question of [59].

Theorem 5.46 (Pointed metric measure space (C, 0, Dh, µh) determines conformal structure). Let

h be a whole-plane GFF normalized so h1(0) = 0. Almost surely, given the pointed metric measure

space (C, 0, Dh, µh), we can recover its conformal embedding into C and hence recover h (both modulo

rotation and scaling).

Proof. To simplify the notation, suppose the two-pointed metric measure space (C, 0, 1, Dh, µh) is

given, then we show we can recover exactly the embedding of µh in C (otherwise, one can arbitrarily
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pick any other point from the pointed metric measure space and use that in place of 1, and only

recover the embedded measure modulo rotation and scaling). Since µh (with its embedding in C)

determines h [14] and hence Dh, it suffices to recover µh.

Consider R large so 1 ∈ B•R(0;Dh). In the same way that [60, Theorem 1.1] is used to

prove [60, Theorem 1.2], we can use Theorem 5.45 to obtain an embedding of the two-pointed metric

measure space (B•R(0;Dh), 0, 1, Dh, µh) into the unit disk D with the correct conformal structure

and sending 0 to 0 and 1 to a point in (0, 1).

This is done by taking a λ-intensity Poisson-Voronoi tessellation of (B•R(0;Dh), 0, 1, Dh, µh), and

embedding its adjacency graph P λ in D via the Tutte embedding Φλ: let x0, . . . , xn be the vertices

in ∂P λ in counterclockwise order with x0 arbitrarily chosen, and let z0 (resp. z1) be the vertex

corresponding to the Poisson-Voronoi cell containing 0 (resp. 1). Define the map Φ̃λ : P λ → D

via Φ̃λ(z0) = 0, Φ̃(x0) = 1 and Φ̃λ(xj) = e2πipj where pj is the probability that Y λ hits ∂P λ at one

of the points x0, . . . , xj , and extend Φ̃ to the rest of P λ so it is discrete harmonic. Finally, define

Φλ(z) = eiθΦ̃λ(z) where θ ∈ [0, 2π) is chosen so Φ(z1) ∈ R. Taking λ→∞, the Φλ-pushforward of

the counting measure on the vertices of the embedded graph normalized by λ−1 converges weakly in

probability to the desired conformally embedded measure. See [60, Section 3.3] for details.

Rescale this embedding (and forget the metric) to obtain an equivalent two-pointed measure space

(cRD, 0, 1, µR) with the LQG measure and conformal structure. That is, there exists a conformal

map ϕR : B•R(0;Dh)→ cRD such that ϕR(0) = 0, ϕR(1) = 1, and the pushforward (ϕR)∗µh equals

µR. We emphasize that since we are only given (C, 0, 1, Dh, µh) as a two-pointed metric measure

space, we know neither the embedding B•R(0;Dh) ⊂ C nor the conformal map ϕR, but we do know

cR and µR.

Now, by a simple estimate on the distortion of conformal maps [85, Lemma 2.4] (stated for the

cylinder R× [0, 2π] but applicable to our setting via the map z 7→ e−z), we see that for any compact

K ⊂ C we have limR→∞ supz∈K |ϕR(z)− z| = 0 and limR→∞ supz∈K |(ϕR)−1(z)− z| = 0. Thus, for

any fixed rectangle A, the measure of the symmetric difference µh
(
A4(ϕR)−1(A)

)
converges to zero

as R → ∞; this implies limR→∞ |µR(A) − µh(A)| = 0. Since µR is a function of the two-pointed

metric measure space (C, 0, 1, Dh, µh), we conclude that µh(A) is also. Therefore the two-pointed

metric measure space (C, 0, 1, Dh, µh) determines µh and hence h.
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5.6 Appendix

5.6.1 Proof of the inductive relation for small moments

Lemma 5.47. Recall vk(r) and uk(r) from (2.5). The following relation holds.

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r). (6.54)

Proof. Set fk(z1, . . . zk) :=
∏
i<j |zi − zj |−γ

2
. Note that when maxi<j |zi − zj | ≤ r, the k points are

included in B(z1, r) which itself is included in a ball of radius 4r centered at at point of rZ2 ∩ D.

Since fk is a function of the pairwise distance, which is translation invariant, we get

vk(r) =

∫
Dk

1r/2≤maxi<j |zi−zj |≤r∏
i<j |zi − zj |γ

2 dz1 . . . dzk

≤ Cr−2

∫
4rDk

1r/2≤maxi<j |zi−zj |fk(z1, . . . , zk)dz1 . . . dzk

Then, take two points at distance r/2 in 4rD, say z and w among {z1, . . . , zk}. We cut k+1 orthogonal

sections of same width to the segment [z, w]. At least one should be empty and this separates two

clusters of points, I = {zp1 , . . . , zpi} and J = {zq1 , . . . , zqk−i} for some 1 ≤ i ≤ k − 1. All points

between the two clusters I and J are separated by |z−w|/(k+1) ≥ r/4k. We decouple fk(z1, . . . , zk)

for two clusters I and J of size i and k − i by fk(z1, . . . , zk) ≤ (4k)γ
2i(k−i)r−γ

2i(k−i)fi(I)fk−i(J). In

particular, splitting over the possibles cases we get

vk(r) ≤ Cr−2
k−1∑
i=1

∑
I

(4k)γ
2i(k−i)r−γ

2i(k−i)
∫

4rDk
fi(I)fk−i(J)dz1 . . . dzk,

where for each i, I ranges over all subsets of {z1 . . . , zk} with i elements. This gives

vk(r) ≤ Cr−2
k−1∑
i=1

(
k

i

)
(4k)γ

2i(k−i)r−γ
2i(k−i)ui(4r)uk−i(4r).

and completes the proof.
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5.6.2 Whole-plane GFF and ?-scale invariant field

In this section we recall some properties of ?-scale invariant fields and explain that the whole-plane

GFF modulo constants can be seen as a ?-scale invariant field.

We will denote by S(C) the space of space of Schwartz functions and by L2(C) the space of

square integrable functions, on C. For f, g ∈ L2(C), let 〈f, g〉 stands for the L2(C) inner product.

Furthermore, ∗ denotes the convolution operator.

?-scale invariant field φ We introduce here the field φ =
∑

k≥1 φk we work with in Section 5.3.1.

The notation and definition are close to the one in [38, Section 2.1] and we refer the reader to this

Section for more details.

Consider k, a smooth, radially symmetric and nonnegative bump function supported in B1/(2e)(0),

such that k is normalized in L2(C). We set c = k ∗ k which has therefore compact support included

in B1/e(0) and satisfies c(0) = 1. We consider a space-time white noise ξ(dx, dt) on C× [0,∞) and

define the random Schwartz distribution

φ(x) :=

∫ 1

0

∫
C
k

(
x− y
t

)
t−3/2ξ(dy, dt).

The covariance kernel of φ is given by E(φ(x)φ(x′)) =
∫ 1

0 c(
x−x′
t )dtt . We decompose φ =

∑
k≥1 φk

where φk(x) :=
∫ e−(k−1)

e−k

∫
C k
(x−y

t

)
t−3/2ξ(dy, dt) and whose covariance kernel is given by Ck(x, x′) :=∫ e−(k−1)

e−k c(x−x
′

t )dtt . Note that Ck(x, x′) = C1(e(k−1)x, e(k−1)x′) and that if |x−x′| ≥ e−1, C1(x, x′) =

0 hence φk has finite range dependence with range of dependence e−k. Note also that the pointwise

variance of φ0,n :=
∑

1≤k≤n φk is equal to n.

Lemma 5.48. There exists C, c > 0 such that for all k ≥ 0, x > 0, P(e−k ‖∇φ0,k‖e−kS ≥ x) ≤

Ce−cx
2
, where S denotes the unit square [0, 1]× [0, 1].

Proof. This is essentially the argument as in the proof of Lemma 10.1 in [38] which we recall. By

Fernique’s theorem, P(‖∇φ1‖S ≥ x) ≤ Ce−cx
2
. Therefore, by scaling, P(e−` ‖∇φ`‖e−`S ≥ x) ≤

Ce−cx
2

for ` ≥ 1. By setting X` := e−` ‖∇φ`‖e−`S , by the triangle inequality and since e−kS ⊂ e−`S

for ` ≤ k, e−k ‖∇φ0,k‖e−kS ≤
∑

0≤`≤k e
−(k−`)X`. By inspecting the Laplace functional, and using
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that the X`’s are independent and identically distributed, we conclude the proof of the Lemma.

Whole-plane GFF We explain here why
∫∞

0 k(x−yt )t−3/2ξ(dy, dt) is a whole-plane GFF modulo

constants. Set φε(x) =
∫ ε−1

ε

∫
C k
(x−y

t

)
t−3/2ξ(dy, dt) and take f ∈ S(C) such that

∫
C fdx = 0.

Writing Cε(x) :=
∫ ε−1

ε c
(
x
t

)
dt
t =

∫ ε−1

ε ct(x)dtt with ct(·) = c(·/t), we have

E
(
〈φε, f〉2

)
=

∫
C×C

f(x)Cε(x− y)f(y)dxdy =
1

(2π)2

∫
R2

Ĉε(ξ)|f̂(ξ)|2dξ

where our convention for the Fourier transform is ĝ(ξ) :=
∫
C g(x)e−iξ·x.

We compute the Fourier transform Ĉε(ξ) =
∫ ε−1

ε ĉt(ξ)
dt
t =

∫ ε−1

ε tĉ(tξ)dt and since c = k ∗ k,

ĉ = k̂2, then Ĉε(ξ) =
∫ ε−1

ε tk̂(tξ)2dt = ‖ξ‖−2 ∫ ε−1‖ξ‖
ε‖ξ‖ uk̂(u)2du. By monotone convergence, we get

E
(
〈φε, f〉2

)
=

1

(2π)2

∫
R2

‖ξ‖−2
∫ ε−1‖ξ‖

ε‖ξ‖
uk̂(u)2du|f̂(ξ)|2dξ

→
ε→0

(∫ ∞
0

uk̂(u)2du

)
× 1

(2π)2

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Since k̂ is radially symmetric and k is normalized in L2, by Plancherel’s theorem
∫∞

0 uk̂(u)2du = 2π.

Furthermore, by setting g(x) =
∫
C log |x − y|f(y)dy we get ∆g = 2πf and in Fourier modes,

−‖ξ‖2 ĝ(ξ) = 2πf̂(ξ) hence, by Plancherel’s theorem,

∫
C2

f(x)(− log |x− y|)f(y)dxdy = −
∫
C
f(x)g(x)dx =

−1

(2π)2

∫
R2

f̂(ξ)ĝ(ξ)dξ

=
1

2π

∫
R2

‖ξ‖−2 |f̂(ξ)|2dξ.

Note that this term is finite because under the assumption
∫
C fdx = 0, we have f̂(0) = 0 so the

above singularity at the origin is compensated by the first term in the development of f̂ . Altogether,

we get

E
(
〈φε, f〉2

)
→
ε→0

∫
C2

f(x)(− log |x− y|)f(y)dxdy

Hence the convergence of the characteristic functionals: E(ei〈φε,f〉) = e−
1
2
E(〈φε,f〉2) →

ε→0
e−

1
2
E(〈h,f〉2).

The following lemma will be useful when working with the whole plane GFF not modulo additive

constant.
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Lemma 5.49. There exists a coupling of the whole-plane GFF h normalized such that h1(0) = 0

and the ?-scale invariant field φ such that the difference h− φ is a continuous field.

Proof. Recall the notation φk,` =
∫ e−k
e−` k(x−yt )t−3/2ξ(dy, dt). We know φ−∞,∞ is a whole-plane GFF

modulo constant. The fine field φ = φ0,∞ is a well-defined Schwartz distribution. Also, the gradient

field ∇φ−∞,0 is a well-defined continuous Gaussian vector (this can be checked by inspecting the

covariance kernel and applying the Kolmogorov continuity theorem). Thus, φ−∞,0 is well defined

modulo additive constant, so φL := “φ−∞,0 − −
∫
∂B1(0) φ−∞,0” is a well-defined continuous Gaussian

field, independent of φ. By setting g := φL − −
∫
∂B1(0) φ, we get that h := φ+ g is a whole-plane GFF

normalized such that h1(0) = 0.

5.6.3 Volume of small balls in the Brownian map

We do not use any material in this section in our proofs, but include it to facilitate an easier

comparison between our argument in Section 5.3 and the analogous result for the Brownian map

case. Le Gall obtained the following uniform estimate on the volume of small balls in the Brownian

map. For β ∈ (0, 1), there exists a random Kβ > 0 such that for every r > 0, the volume of any ball

of radius r in the Brownian map is bounded from above by Kβr
4−β. Our proof of the finiteness

of LQG ball volume positive moments (Section 5.3) shares some similarities with his only at a

very high level; no explicit formulas are available in our framework, and the techniques are very

different. We discuss some of the arguments used in the Brownian map setting and we refer the

reader to [72–74, 77] for details. This estimate was used in the proofs of the uniqueness of the

Brownian map [75,78].

Tree of Brownian paths A binary marked tree is a pair θ = (τ, (hv)v∈τ ) where τ is a binary

plane tree and where for v ∈ τ , hv is the length of the branch associated to v. We denote by

Λk(dθ) the uniform measure on the set of binary marked trees with k leaves (uniform measure

over binary plane trees and Lebesgue measures for the length of the branches). I(θ) and L(θ) will

denote respectively the internal nodes and leaves of θ. One can define a Brownian motion on such a

tree: the process is a standard Brownian motion over a branch, and after an intersection, the two

processes evolve independently conditioning on the value at the node. We will denote by P θx this
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process, started from the root of the tree with initial value x. Similarly, instead of using a Brownian

motion, one can consider a 9-dimensional Bessel process and we will denote it by Qθx.

Similarly, for trees given by a contour function (h(s))s≤σ with lifetime σ, one can associate

the so-called Brownian snake given by the process (Ws)s≤σ of Brownian type path (for each s,

Ws is a Brownian type path with lifetime h(s), its last value is denoted by Ŵs and corresponds

to the Brownian label above the point of the tree corresponding to s). We can add another level

of randomness by taking h given by a Brownian type excursion: N0 is the measure associated to

the unconditioned lifetime Itô excursion, N0 is also associated to the unconditioned lifetime Ito

excursion but the Brownian labels are conditioned to stay positive.

Explicit formulas The following explicit formula (see [72], Proposition IV.2), relates the objects

of the previous paragraph. For p ≥ 1, x ∈ R and F a symmetric nonnegative measurable function

on W p, where W denotes the space of finite continuous paths,

Nx

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]
= 2p−1p!

∫
Λp(dθ)P

θ
x

[
F ((w(a))a∈L(θ))

]
. (6.55)

Here, w is the tree-indexed Brownian motion with law P θx and w(a) the restriction of w to the

path joining a to the root, and Nx is the measure N0 where each Brownian snake has its labels

incremented by x. This formula involves combining the branching structure of certain discrete

trees with spatial displacements. It relies on nice Markovian properties, in particular on specific

properties of the Itô measure. The proof of the uniform volume bound for metric ball is based on an

explicit formula obtained in [77] for the finite-dimensional marginal distributions of the Brownian

tree under N0,

N0

[∫
(0,σ)p

F (Ws1 , . . . ,Wsp)ds1 . . . dsp

]

= 2p−1p!

∫
Λp(dθ)Q

θ
0

F ((w(a))a∈L(θ)

∏
b∈I(θ)

V
4
b

∏
c∈L(θ)

V
−4
c

 . (6.56)

Here, we write w and w(a) for the nine-dimensional Bessel process counterparts of w and w(a), and

V v for the value of the Bessel process at the vertex v. Because of the conditioning of N0, the spatial
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displacements are given by nine-dimensional Bessel processes rather than linear Brownian motions.

To derive such a formula, in [77] the authors generalize (6.55) to functionals including the range of

labels and lifetime σ and then use results on absolute continuity relations between Bessel processes,

which are consequences of the Girsanov theorem (note that integrals over time of Brownian motions

are integral over branches of trees of Brownian motion).

Positive moment estimates In the proof of the upper bound on small ball volumes of the

Brownian map in [74], a key estimate is to show that, for k ≥ 1, ck <∞ where

ck := N0

[(∫ σ

0
1{Ŵs≤1}ds

)k]

= 2k−1k!

∫
Qθ0

(
∏

a∈I(θ)

V
4
a)(

∏
b∈L(θ)

V
−4
b 1V b≤1)

Λk(dθ) =: 2k−1k!d̃k. (6.57)

Note that the second inequality follows by (6.56) with F (Ws1 , . . . ,Wsk) = 1
Ŵs1≤1

, . . . , 1
Ŵsk
≤1

. The

proof works by induction, introducing an additional parameter to take care of the value of the label

at the splitting node in the branching structure, by setting

d̃k(r) :=

∫
Qθr

 ∏
a∈I(θ)

V
4
a

 ∏
b∈L(θ)

V
−4
b 1V b≤1

Λk(dθ).

In this framework, the base case and inductive relation are quite straightforward because of the

exact underlying branching structure. Let R denote a 9-dimensional Bessel process that starts from

r. The base case corresponds to

d̃1(r) = E
[∫ ∞

0
R−4
t 1{Rt≤1}dt

]
= c

∫
R9

|r − z|−7|z|−41{|z|≤1}dz (6.58)

and the inductive relation states

d̃`(r) = E

∫ ∞
0

R4
t

`−1∑
j=1

d̃j(Rt)d̃`−j(Rt)

 . (6.59)
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Now, one can easily derive the bounds d̃1(r) ≤Mr−2 ∧ r−7 and for j ≥ 2 d̃j(r) ≤Mj1 ∧ r−7. We

underline that the exact branching structure of the framework is expressed through the equality

(6.59).

Comparison Let us compare our proof of the finiteness of positive moments with the one in

the Brownian map setting. In our setup, no nice branching structure for distances is known.

Furthermore, by working with a given embedding or a restriction to a specific domain, we have

to carry in the analysis information about the Euclidean domain, including an additional layer of

difficulty.

In the case of the Brownian map, when one considers the “volume” associated with (6.57)

thanks to the explicit formulas (6.55) and (6.56), one ends up with branching Bessel processes on

uniform trees. In our framework, analogous observables of “distances” are not well understood so

far. Instead, circle averages processes are tractable. They evolve as correlated Brownian motions.

These are a good proxy for the metric because of the superconcentration of side-to-side crossing

distances. Furthermore, when one weights the distribution with singularities (after a Cameron-

Martin argument), these Brownian motions are shifted by drifts. (Note that the passage from (6.55)

to (6.56) uses Girsanov.)

Similarities can be seen as the level of induction where the value of the Bessel process at the

first node is comparable with the value of the circle average of the field at the first branching in our

hierarchical decomposition. So Lemma 5.14 is similar to (6.59) and Proposition 5.15 to (6.57).

282



Bibliography

[1] R. J. Adler and J. E. Taylor. Random fields and geometry. Springer Monographs in Mathe-
matics. Springer, New York, 2007.
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[35] J. Dubédat. SLE and the free field: partition functions and couplings. J. Amer. Math. Soc.,
22(4):995–1054, 2009.
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