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Abstract

Neutral atoms trapped in optical tweezer arrays have emerged as a promising platform

for quantum science. The dynamic reconfigurability of tweezer traps enables a high

degree of single atom control and the generation of large-scale defect-free atom arrays

in many geometries. Furthermore, the ability to introduce long-range interactions

via excitation to Rydberg states, enables the implementation of high-fidelity multi-

qubit gates and the study of many-body quantum physics. Prior to the work in this

thesis all existing neutral atom tweezer platforms have used alkali atoms, which have

a single valence electron.

Alkaline-earth atoms (AEA), such as Ytterbium (Yb), have a second valence electron

and additional electronic structure, leading to many potential advantages in terms of

coherence and control, including ultralong coherence for nuclear spin qubits encoded

in a J = 0 electronic ground state, metastable states for shelving quantum information

or metrological applications, and broad and narrow cycling transitions for rapid laser

cooling to low temperatures and low-loss fluorescence imaging. Furthermore, the

core electron in AEA Rydberg states enables the trapping of Rydberg states via the

polarizability of the ion core, allows for high-fidelity Rydberg state detection utilizing

the fast autoionization decay of ion core excited states, and leads to strong hyperfine

coupling in Rydberg states of fermionic isotopes.

In this thesis, we discuss the motivation (Chapter 1) and many technical details

(Chapter 2) for building the first Yb optical tweezer experiment. In Chapter 3, we

present a technique for high-fidelity imaging (0.9985) of 174Yb using the narrow 1S0→
3P1 transition for simultaneous cooling and imaging in 532 nm magic-wavelength

tweezers. In Chapter 4, we discuss novel spectroscopy of 174Yb Rydberg states, in-

cluding the 3S1 series. In Chapter 5, we show the first demonstration of trapped AEA

Rydberg states in red-detuned optical tweezers, utilizing the ion core polarizability.
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In Chapter 6, we propose and demonstrate a novel scheme for controllably turning

on and off Rydberg excitations and Rydberg-mediated entanglement, via light shifts

induced by a beam near-resonant with a Yb+ ion core transition. Finally, we briefly

discuss future steps towards implementing quantum gates in 171Yb (I = 1/2) nuclear

spin qubits (Chapter 7).
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Chapter 1

Introduction

1.1 Neutral atoms for quantum science

In the fields of quantum engineering and experimental quantum science a major goal

is to create controllable and complex quantum systems. These two capabilities are

highly desirable for a myriad of applications in quantum science, but most notably

for the purposes of quantum computing and simulating many-body quantum physics.

In the context of building a quantum computer it is desirable to be able to both

control the quantum state of single qubits and engineer the coherence time of these

states to be very long relative to the time it takes to manipulate the quantum state

of the qubit. It is also necessary to have strong interactions (again relative to qubit

coherence times) between qubits in order to implement multi-qubit gates. Similarly,

local control and strong interactions between particles afford the capability to simulate

complex Hamiltonians and study new regimes of many-body physics.

There is a massive and ever-growing landscape of research in the field of quantum

science seeking to engineer quantum systems, which simultaneously achieve high single

particle control and coherence and strong tunable and complex interactions between
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quantum particles. While a plethora of candidate physical systems exist, I wish

to divide the discussion of these myriad of methods into two possible approaches:

bottom-up assembly and a top-down assembly of quantum systems.

Bottom-up assembly refers to engineering single quantum particles and building a

quantum system by assembling many of these individual particles into a desired many-

body geometry. This is typically the technique used for systems focused on quantum

computing applications, as the requirements for the level of control over single qubits

is often higher than what is necessary for quantum simulation. For example, the two

leading platforms for quantum computation in terms of state of the art gate fidelities,

superconducting qubits and trapped-ion qubits, are prime examples of the bottom-up

approach.

The bottom-up approach towards building quantum systems is often accompanied by

challenges to scale to very large quantum systems. Alternatively, top-down assembly

takes the approach of starting with a very large number of quantum particles and

engineering some aspects of single particle control and detection into the system.

While this approach often allows for larger quantum systems compared to canonical

bottom-up systems, it can be difficult to achieve comparable levels of single particle

control in top-down systems.

The top-down approach is a popular method for studying many-body quantum physics

with neutral atoms. Neutral atoms have long been at the forefront as a platform for

studying many-body quantum systems due to the identical nature of each atom, the

ability to precisely control the quantum states of atoms with lasers and microwaves,

and the capability to laser cool and trap very large numbers of ultracold atoms. The

first demonstration of a Bose-Einstein condensate [2, 3] sparked a massive interest in

using ultracold atomic gases to achieve interesting and previously unobserved regimes

of physics. A further important development in control over neutral atoms is the in-
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troduction of optical lattices [4], which via periodic optical potentials, enable control

over the geometry of ultracold quantum gases. However, at this point, study of the

properties of these quantum systems was largely at the ensemble level, lacking single

particle resolution and control. The introduction of quantum gas microscopes [5] en-

abled true top-down quantum system engineering with ultracold atoms, where atoms

at individual optical lattice sites could be detected via a high-resolution microscope

objective. Quantum gas microscopes have been used to study a vast array of interest-

ing many-body physics such as single-site resolution of bosonic Mott insulators [6, 7],

properties of the superfluid to Mott insulator phase transition [8, 9] antiferromagnetic

spin-1/2 chains [10], and the Fermi-Hubbard model [11, 12, 13]

Another attractive property of neutral atoms is the ability to engineer long-range

interactions via Rydberg states [14, 15, 16]. While the neutral atoms interact very

weakly in the ground state, exciting an atom to a high principal quantum number

Rydberg state creates a large effective electric dipole moment. Exciting multiple

atoms to Rydberg states leads to strong long-range dipole-dipole interactions between

these atoms. Notably, the fact that neutral atoms only exhibit strong interactions

when they are excited to Rydberg states offers the highly desirable capability to turn

on and off interactions in the system.

The introduction of optical tweezers [17] offers an alternative bottom-up approach to

neutral atom quantum systems more akin to superconducting qubits and trapped-

ion systems. Trapping single atoms in the optical potential of tightly-focused laser

beams offers an extremely high degree of single-atom control via the ability to move

individual atoms [18], control their quantum states [19, 20], individually detect atoms

via fluorescence imaging [21], and cool atoms to their vibrational ground state [22, 23].

Furthermore, long-range and tunable interactions can be introduced to the system

via exciting atoms to Rydberg states [14, 16], collisions [24, 25, 26], or optical cavities
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[27, 28, 29].

Recent experimental progress has demonstrated the promise of neutral atom opti-

cal tweezer arrays as a platform for quantum computation and quantum many-body

physics. Through the use of multi-tone acousto-optic deflectors or spatial light modu-

lators, reconfigurable and defect-free arrays of atomic qubits trapped in optical tweez-

ers can be constructed in 1D [30], 2D [31], and 3D [32]. Furthermore, long-range Ryd-

berg interactions have been used to both implement two-qubit gates [15, 33, 34, 35, 36]

and explore interesting many-body physics, such as ordered Rybderg crystals [37] and

Ising spin-models [38].

Prior to the beginning of the work in this thesis all neutral atom tweezer arrays have

been built using alkali atoms, such as Rubidium (Rb), with a single valence electron.

However, alkaline-earth atoms, such as Ytterbium (Yb) and Strontium (Sr), due

to a second valence electron offer additional electronic structure, and consequently

many possible advantages. These advantages include ultra-long coherence nuclear

spin states, due to the J = 0 electronic ground state, strong and narrow optical

transitions for efficient laser cooling to much lower Doppler limits than are possible

in alkalis, the ability to trap certain Rydberg states in conventional optical tweezer

potentials via the polarizability of the ion core [39, 40], and strong hyperfine coupling

in Rydberg states [41, 42, 43].

In this thesis I will discuss work to build complex quantum systems out of arrays of Yb

atoms trapped in optical tweezers, with strong long-range interactions via excitation

to Rydberg states. This work, concurrent with work in the Endres Lab at Caltech

and Kaufman Lab at JILA in Sr tweezer arrays [44, 45, 46, 47, 48, 49, 50], represent

the first generation of experiments utilizing alkaline-earth atoms in tweezer arrays to

engineer quantum systems.

In the remaining parts of Chapter 1, I will elaborate on important details of optical
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tweezers, Rydberg states and interactions, the advantages of utilizing alkaline-earth

atoms in tweezer arrays, and some specific properties of Yb. In Chapter 2, I will

discuss a host of technical details involved in building the experimental system. In

Chapter 3, I will discuss our work trapping, cooling, and imaging single Yb atoms

in optical tweezers. In Chapter 4, I will discuss our work performing Rydberg

spectroscopy of some previously unobserved Rydberg series in Yb. In Chapter 5, I

will discuss our work demonstrating the ability to trap Rydberg states in conventional

optical tweezer potentials via the polarizability of the ion core. In Chapter 6, I

will discuss our work demonstrating selective control of Rydberg excitations utilizing

light-shifts on Rydberg states by driving the strong autoionizing ion core optical

transition. In Chapter 7, I will discuss future steps for implementing high-fidelity

quantum gates in 171Yb I = 1/2 nuclear spin qubits.

1.2 Optical Tweezers

Optical tweezers provide a trapping force to atoms via an optical dipole force, where

for a certain trap-wavelength the trapping potential for a given atomic state will come

from the AC stark shift, given by:

Udip =
∑
i

~Ω2
i

4∆i

(1.1)

Here the subscript i refers to any electronic state for which there is a non-negligible

dipole matrix element to the state for which one is calculating the trapping potential.

In the case where the trap wavelength is red-detuned from a given atomic transition

(∆i < 0) the contribution to the trapping potential from that transition will be

attractive (i.e. the atom will be attracted to regions of higher laser intensity). If the

trap wavelength of the optical tweezer is chosen such that the net trapping potential
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is attractive, then atoms will be trapped by the Gaussian intensity profile of a tightly-

focused laser beam. The trapping potential is often rewritten in terms of the state-

polarizability, α, and the beam intensity, I.

U(r, z) = −1

4
hαI(r, z) (1.2)

For a Gaussian beam the spatial intensity profile is given by:

I(r, z) =
2P0

πw(z)2
e
− 2r2

w(z)2 (1.3)

Here P0 is the laser power, and w(z) represents the beam-waist throughout the focus

and is related to the beam-waist at the focus (w0) by:

w(z) = w0

√
1 + (

λz

πw2
0

)2 (1.4)

We define the trap depth, U0, as the magnitude of trap potential at the center of its

focus:

U0 = U(r = 0, z = 0) =
hP0α

2πw2
0

(1.5)

A crucial condition for an atom being trapped in optical tweezers is that the temper-

ature of the atom is much below the trap depth (kbT � hU0).

We can also calculate the radial and axial trap frequencies of the harmonic trapping

potential:

ωr =

√
2hP0α

πmw4
0

(1.6)
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ωz =

√
hP0αλ2

π3mw6
0

(1.7)

One of the attractive capabilities of optical tweezers is the ability to arrange and re-

configure individual tweezers in different array geometries via the use of acousto-optic

deflectors (AOD) and spatial light modulators (SLM). In the case of AODs multi-tone

radio frequencies drive multiple diffracted beams, which each enter a high-NA micro-

scope objective at a different angle, leading to a different position for each diffracted

beam in the focal plane. Thus, through the use of an arbitrary waveform genera-

tor (AWG), one can design RF waveforms that allow for an arbitrary arrangement

of many optical tweezers in 1D. Furthermore, due to the ability to rapidly change

the AWG waveform driving the AOD, the geometry of 1D tweezer array can also be

reconfigured during a given experimental sequence [30].

Dynamic reconfigurability of tweezer geometries is a necessary condition for generat-

ing large-scale defect free arrays of trapped atoms. Loading of optical tweezers from

a cold atomic gas is a fundamentally stochastic process. Atoms are initially loaded in

a Poisonnian manner from the background atomic gas, however, a process known as

light-assisted collision will eject pairs of atoms by exciting them to a molecular bound

state, leading to a parity projection, which leaves either 0 or 1 atom in each tweezer

trap [17, 51]. A common technique to engineering defect-free 1D arrays is to take a

fluorescence image of a loaded tweezer array, then turn off RF tones associated with

empty sites, followed by ramping the RF tones of filled sites such that they occupy

the desired positions in the final array [30].

Using a pair of orthogonal AODs allows for the creation of rectangular 2D arrays,

however, the ability to reconfigure into defect-free arrays is complicated by the fact

that turning off a single RF tone will turn off an entire row or column of tweezers, not

just a single site. A solution to this problem is to combine the capabilities of a SLM
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and a pair of orthogonal AODs. By varying the phase pattern on a SLM, arbitrary

2D geometries of optical tweezer arrays can be generated [52]. Unfortunately, the

phase patterns of a SLM cannot be reconfigured at sufficient speeds to engineer a

defect-free array from the initial stochastic loading process. As a solution, one can

combine a fixed arbitrary SLM array with a set of moving optical tweezers, generated

by orthogonal AODs, which can pick and move atoms throughout the fixed array

generated by the SLM. Thus, after an initial image of the stochastically loaded fixed

array is taken, a series of moves can be programmed for the moving tweezers to move

atoms into the desired configuration for a defect-free array in the fixed SLM geometry

[31].

1.3 Rydberg states and interactions

Here I briefly discuss some important details and properties of Rydberg states and

their interactions. For an in depth review of Rydberg states and their application for

quantum information I recommend Ref. [16].

The energy of the Rydberg series in Hydrogen as a function of the principal orbital

quantum number (n) is given by:

EH(n) = −Ry

n2
(1.8)

where Ry = mee4

8ε20h
2 , is the Rydberg energy constant.

For non-Hydrogen atoms we can no longer define the energy of a single Rydberg

series as stated, however, in alkali atoms, the energy of a given Rydberg series can be

parameterized by a quantum defect, δnlj, which accounts for its deviation from the

Hydrogen model due to the effects of the valence electron’s interaction with the core

(generally for states with high orbital angular momentum (L > 3) the interaction of
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the valence electron’s orbit with the core becomes negligible and the quantum defect

is zero):

E(n) = − Ry

(n− δnlj)2
(1.9)

The quantum defect for a given Rydberg series is determined from a phenomenological

fit to Rydberg spectroscopic data, using the Rydberg-Ritz formula.

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ ... (1.10)

Notably, at sufficiently high principal orbital quantum number, n, the quantum defect

of a Rydberg series becomes to good approximation independent of n (δlj ≈ δ0). Thus

at sufficiently high n (n > ∼40) we can define the energy of a given Rydberg series

in the same way as in Hydrogen, but with an effective principal quantum number

n∗ ≈ n− δlj:

E(n∗) = −Ry

n∗2
(1.11)

In two-valence electron atoms, we now define the quantum defect of a Rydberg series

in terms of the quantum numbers, δnslj. Similar to alkalis, for many Rydberg series

it holds to good approximation that δnslj will be independent of n at sufficiently high

n. However, the core electron can lead to the existence of perturbing states, which

cause certain Rydberg series to have quantum defects with large n-dependence, even

at high n [53]. It is generally necessary to perform spectroscopy on an alkaline-earth

Rydberg series to determine if its quantum defect is moving in n or ”well-behaved”

(n-independent at sufficiently high n).

Due to the large orbital radius of Rydberg states they possess large dipole matrix
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elements to nearby Rydberg states with a dipole allowed transition (l′ = l±1), which

scale with the effective principal orbital quantum number as µ ∝ n∗2.

The large dipole moments cause Rydberg states to both have strong DC Stark shifts

(∝ n∗7) and interact strongly through dipole-dipole interactions. The resonant dipole-

dipole interaction between two Rydberg states with non-zero dipole matrix element

between them is typically written in the form:

Vdd =
C3

R3
(1.12)

The R3 distance dependence is characteristic of a dipole-dipole interaction, with in-

teraction coefficient C3 ∝ n∗4 (µ · µ ∝ n∗2n∗2).

If we consider two atoms in the same Rydberg state, |r〉, there will be no resonant

dipole-dipole interaction between these states. However, there will be a second-order

Van der Waals interaction mediated through pairs of nearby intermediate Rydberg

states, with non-zero dipole matrix elements to |r〉. We write the Van der Waals

interaction as:

Vvdw =
C6

R6
(1.13)

The form of Vvdw can be understood as coming from second-order pertubation theory

of the resonant dipole-dipole interaction, which yields an R6 distance scaling and

an interaction coefficient C6 ∝ n∗11 (VddVdd
∆
∝ n∗4n∗4

n∗−3 , where the frequency spacing

between adjacent Rydberg levels scales as n∗−3). Notably, the strength of Van der

Waals C6 coefficient is highly dependent on the detuning, ∆, of adjacent Rydberg pair

states |r′r′′〉 to the pair state |rr〉. Consequently, the strength of the C6 coefficient

for a specific series depends quite sensitively on the relative quantum defects between
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that series and series with |∆L| = 1. In the case where a pair of intermediate Rydberg

levels |r′r′′〉 are very close in energy to the pair state |rr〉 (Vdd � ∆), this will create

what is known as a Förster resonance [54], and lead to an interaction of the form of

the resonant dipole-dipole interaction.

We now consider the case where two atoms are simultaneously driven from a ground

state, |g〉 to a Rydberg state, |r〉. If one atom populates |r〉, the second atom will be

blocked from being driven to |r〉 in the case where the Van der Waals interaction is

much greater than the Rabi frequency of the drive (Vvdw � Ω). This regime is called

the Rydberg blockade [14, 15], where instead of driving single atom Rabi oscillations

between |g〉 and |r〉 at Rabi frequency, Ω, we will drive two atom oscillations between

|gg〉 and the Bell state 1√
2
(|gr〉 + |rg〉) at an effective rabi frequency

√
2Ω, since

double-excitations to |r〉 are blocked by a Van der Waals shift to the pair state |rr〉.

We define the blockade radius, Rb as the distance within multiple Rydberg excitations

cannot occur, given by:

Rb =

(
C6

Ω

) 1
6

(1.14)

In general, if we simultaneously drive N atoms within a blockade radius to the Rydberg

state |r〉, then we will drive collective Rabi oscillations between the state |gg...g〉 and

the many-body state |W 〉 = 1√
N

(|rg...g〉+ |gr...g〉+ ... + |gg...r〉 at an effective Rabi

frequency of
√
NΩ.

The Rydberg blockade has been utilized to implement two-qubit gates in neutral

atom qubits encoded in hyperfine ground states. In the canonical Rydberg blockade

gate, proposed in Ref. [15] and first demonstrated in Refs. [33, 55], a laser drives a

transition between one of the qubit ground states |1〉 and the Rydberg state |r〉. First

a π-pulse is driven on the control atom from |1〉 to |r〉. Next a 2π-pulse is driven on
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the target atom, and finally a second π-pulse is driven on the control atom. In the

case, where the control atom is in |0〉 it will be unaffected by either π-pulse and the

target atom will pick up a π phase shift from the 2π-pulse, when it is in |1〉. However,

if the control atom is in |1〉 it will be driven to the Rydberg state and the target

atom will not be excited to the Rydberg state, even if it is in |1〉 due to the Rydberg

blockade. Furthermore, the control atom will pick up a π phase shift from the two

π-pulses. Thus the total effect of the pulse sequence acts as follows in the two-qubit

basis: |0c0t〉 → |0c0t〉, |0c1t〉 → − |0c1t〉, |1c0t〉 → − |1c0t〉, |1c1t〉 → − |1c1t〉. This

controlled-phase gate can easily be converted to a CNOT gate with single-atom π/2

rotations between |0t〉 and |1t〉 [56]. While this example of the Rydberg blockade

gate requires local addressing of Rydberg excitation beams, high fidelity two-qubit

gates utilizing the Rybderg blockade have also been achieved with a global Rydberg

excitation beam via a more complex pulse sequence [36].

The fundamental limit on the fidelity of a two-qubit Rydberg blockade gate is pro-

portional to the gate time, τ = 2π
Ω

, divided by the finite lifetime of the Rydberg state,

τr [57]. The Rydberg state radiative lifetime scales as n∗3, however, in practice, in

non-cryogenic environments, decay from Rydberg states is dominated by blackbody

decay, which leads to a scaling of the Rydberg state lifetime of n∗2.

While the fundamental error rates can be quite small, in practice a number of other

technical factors can lead to imperfect Rydberg blockade gates [58]. First, it is gener-

ally a technical challenge to drive single-photon transitions to Rydberg states, due to

the extremely short wavelengths necessary to drive the transition. Thus, in practice

Rydberg transitions are typically driven via two-photon transitions, with an interme-

diate state detuning, ∆, and effective Rabi frequency Ωeff = Ω1Ω2
∆

. However, this leads

to a spontaneous emission rate out of the intermediate state proportional to Γ∗ ( Ω
∆

)2,

where Γ is the scattering rate out of the intermediate state. Therefore, to minimize
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the spontaneous emission rate it is often necessary to work at large intermediate state

detuning, ∆, which in turn limits the effective Rabi frequency to the Rydberg state.

A second technical limitation is dephasing between the ground and Rydberg state

during the gate. In general dephasing is affected by atomic motion as result of the

finite temperature of atoms, where the coherence depends on the atomic temperature

as, T2 ∝ 1√
T

(scaling with temperature is due to a phase error which is linear in the

Doppler shift, with v ∝ 1√
T

). A further source of decoherence is laser phase noise

for the Rydberg excitation lasers [59]. In the following section, I will discuss how

certain properties of alkaline-earth atoms can help overcome some of these technical

limitations.

1.4 Advantages of alkaline-earth atoms

Alkaline-earth atoms, with a second valence electron, introduce additional electronic

structure compared to alkali atoms, specifically, with the introduction of singlet and

triplet spin states. This richer electronic structure leads to many features that can

be leveraged for additional quantum control relative to alkali atoms.

First, due to the existence of total spin zero states the ground state of alkaline-earth

atoms (1S0 ) has zero total angular momentum (J = 0). The lack of any electronic

angular momentum enables ultralong coherence ground-state qubits stored in the

nuclear spin states of fermionic alkaline-earth isotopes, such as 171Yb (I = 1/2) or

87Sr (I = 9/2). The magnetic moment of a nuclear spin is ∼ 1000× smaller than

that of an elecronic spin, leading to exceedingly small effects from magnetic field

noise. Furthermore, there is an absence of differential light shifts from the optical

tweezers on the nuclear spin qubit states, whereas in alkalis differential light shifts on

the hyperfine qubit states can be the leading source of qubit decoherence [57]. The

I = 1/2 nuclear spin in 171Yb is a particularly attractive candidate for a long-lived
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nuclear spin qubit.

Second, while alkali atoms have only broad allowed cycling transitions for laser cooling

(2S1/2 →2P1/2,3/2 , Γ ≈ 2π × 10 MHz), alkaline-earth atoms contain both a broad

cooling transition (1S0→ 1P1 , Γ ≈ 2π × 30 MHz) and a forbidden narrow cooling

transition (1S0→ 3P1 , Yb: Γ = 2π × 182 kHz, Sr: Γ = 2π × 7 kHz). While the

1S0→ 3P1 , is in principle dipole forbidden due to ∆S = 1, a small amount of singlet-

triplet mixing between 1P1 and 3P1 leads to a sufficiently fast cycling transition for

laser cooling applications. The existence of a narrow cooling transition allows alkaline-

earth atoms to reach far colder temperatures through Doppler cooling alone (TD ∝ Γ)

than alkalis. For comparison, the Doppler limit of Rb (TD = 146 µK) is ∼ 30× bigger

than Yb (TD ≈ 5 µK) and ∼ 800× bigger than Sr (TD ≈ 200 nK). We also note

that use of 3P1 as the intermediate state for two-photon transitions to the Rydberg

state reduces the problem of spontaneous emission compared to alkalis, since the rate

of scattering errors out of the intermediate state is also proportional to Γ.

Third, in addition to the narrow 3P1 transition, there exist two metastable states,

3P0 and 3P2 , with radiative lifetimes of 10s of seconds. The ultra-narrow (<10 mHz)

clock transition (1S0→ 3P0 ) in alkaline-earth atoms is widely utilized for metrology

and is responsible for the highest-performance atomic clocks to date [60]. The clock

state in Sr tweezer arrays has recently been utilized for metrology applications [47,

48, 49]. The long-lived clock state can also be utilized for quantum computation,

either with a ground-clock state qubit or as an effective ground state for a nuclear

spin qubit. The latter is especially attractive for a few reasons. First, the clock

state is also J = 0, so all the long coherence advantages of the atomic ground state

will exist in the clock state as well. Second, when quantum information is stored

in a clock state nuclear spin qubit it will be unaffected by laser light resonant with

electronic transitions out of the ground state. This could allow for schemes to cool,
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image, and load atoms in specific sites of a tweezer array, without disturbing the

quantum state of atoms at other sites. Third, using the clock state as an effective

ground state allows for somewhat more experimentally achievable optical wavelength

for single-photon transitions to Rydberg states (302 nm in Yb, 317 nm in Sr vs. 296

nm in Rb). Single-photon transitions are highly attractive as their use eliminates the

problem of spontaneous emission from the intermediate state, and in turn allows one

to achieve significantly faster Rabi frequencies to the Rydberg state. Single photon

transitions from the clock state to a Rydberg state have been utilized in a Sr tweezer

array to achieve state of the art Bell state fidelities via Rydberg blockade [50].

Fourth, a major limitation of alkali tweezer systems is that the Rydberg electron has

the polarizability of an essentially free electron, and consequently feels a repelling force

from an optical tweezer. Thus, in existing alkali tweezer experiments, the tweezers

are turned off during excitation to the Rydberg state. However, due to the non-

zero temperature of the atoms, the time during which the tweezers can be turned off

is limited so that the atoms can be recaptured before they leave the region of the

trap. This time is generally limited to 10-20 µs, which is notably at least an order

of magnitude smaller than typical lifetimes of relevant Rydberg states (100s of µs).

This severely limits the number of possible gate operations or the amount of time

one can probe Rydberg dynamics below the fundamental limit of the Rydberg state

lifetime.

However, in alkaline-earth atoms the remaining ion core also has a polarizability

that for Rydberg states of sufficiently high-n (further details are in Chapter 5) can

have a larger attractive force than the ponderomotive repulsive force on the Rydberg

electron, leading to a net trapping force on an atom in the Rydberg state [61]. The

capability to trap Rydberg states in optical tweezers can enable interrogation of the

Rydberg state for the full state lifetime. Furthermore, while the blackbody lifetimes of
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low orbital angular-momentum Rydberg states are on the scale of 100s of µs, circular

Rydberg states in cryogenic environments can have lifetimes exceeding 1 second.

Proposals to use circular Rydberg atoms as the basis for a quantum computer [62] can

leverage the trapping capabilities of alkaline-earth Rydberg states to take advantage

of the extremely long circular state lifetimes.

Fifth, unlike alkalis, where there is a single valence electron, there exist strong optical

transitions in the ion core of alkaline-earth Rydberg states. The ion core transition

can be used for very high-fidelity Rydberg state detection via rapid loss through

autoionization decay [63, 50]. Autoionization loss rates faster than 10 ns can easily

be achieved in Yb, enabling Rydberg detection fidelities > 0.9999 assuming a 100 µs

Rydberg state lifetime and perfect atom detection. Furthermore, the autoionizing ion

core transition can be used to implement local control over Rydberg state excitations

in a tweezer array via light-shifting the Rydberg state out of resonance with global

Rydberg excitation beams (further details are in Chapter 6).

Sixth, contrary to alkalis, where the hyperfine coupling in the Rydberg states scales

as n∗−3 (∼80 kHz at n = 80 in Rb [64]), there is strong, n-indepedent, hyperfine

coupling for fermionic alkaline-earth isotopes in the Rydberg state due to the constant

contact interaction of the core electron with the nucleus [41, 42, 43]. The presence of

strong hyperfine coupling creates interesting and complex structure in the Rydberg

states that could potentially be used for new multi-qubit gate schemes or accessing a

different set of interaction terms in spin Hamiltonians.

1.5 Properties of Yb

Figure 1.1 shows the electronic level structure of 174Yb for states relevant to our

experiment. While the electronic structure of the bosonic isotopes of Yb and Sr are

quite similar an important and relevant difference is the broader 1S0→ 3P1 linewidth
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Figure 1.1: Level diagram of relevant states and transitions in Yb.

in Yb (Γ = 2π × 182 kHz) compared to Sr (Γ = 2π × 7 kHz). Furthermore, the

fermionic isotope of Yb most suitable for quantum information protocols, 171Yb, has

a nuclear spin of I = 1/2, compared to 87Sr, which has a nuclear spin of I = 9/2.

Table 1.1 shows some important properties of the two main cycling transitions in Yb,

1S0→ 1P1 and 1S0→ 3P1 .
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1S0→1P1
1S0→3P1

λ 398.9 nm 555.8 nm
Γ/2π 29 MHz 182 kHz
Isat 60 mW/cm2 0.14 mW/cm2

TD 700 µK 4.4 µK

Table 1.1: Important properties of singlet and triplet cycling transitions in Yb.
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Chapter 2

Experimental System

In this chapter I will discuss many of the technical details that went into building

and operating the experiment, including vacuum chamber design, laser systems, and

the process of loading laser cooled atoms into optical tweezers.

2.1 Vacuum Chamber

In this section I consider the general design principles for our vacuum chamber, with

some specific details for building a high-flux and long-lasting oven for Yb.

2.1.1 Design Principles

Fig. 2.1 shows a CAD model of our vacuum chamber and an image of the chamber

as it exists in our experiment. The design for our vacuum chamber consists of three

crucial sections. First, we have an oven, which typically operates at 440 ◦C, yielding

a hot Yb gas with vapor pressure 3× 10−3 Torr. The hot Yb atoms traverse an array

of thin nozzles (described in detail in subsection 2.1.2), which collimate the atoms

along the plane of a 2D cross. Second, in an initial stage of laser cooling, light from

a 399 nm laser, resonant with the singlet transition, propagates along both arms of
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a) b)

Figure 2.1: a) CAD model of vacuum chamber. b) Picture of vacuum chamber.

the cross to capture atoms from the oven in a 2D MOT. We then use light at 556

nm, resonant with the intercombination line, to push atoms out of the 2D MOT

and through a differential pumping tube. UHV ion pumps (SAES NEXTorr D200,

D500) are placed on either side of the differential pumping tube, where we achieve

pressures of ∼ 10−9 Torr and ∼ 10−11 Torr, respectively. Finally, the pushed atoms

are captured and cooled in a final laser cooling stage in a narrow-line 3D MOT using

556 nm light, where we achieve a density of ∼ 1011 atoms/cm3 in 100 ms loading

time. Crucially, the capture velocity of the 3D MOT is low enough (7 m/s) such that

gravity will have a non-negligible effect on atoms traversing the differential pumping

section of the vaccum chamber at that velocity. In order to overcome this constraint

we designed the differential pumping tube to be at a ∼ 7◦ degree angle relative to the

science cell, such that the pushed atoms can be pushed slightly upward to account

for the downward force of gravity during the trajectory of the atoms (details for how

this angle was chosen are discussed in more detail in Section 2.6).

2.1.2 Oven

The Yb oven consists of ∼30 g of solid Yb deposited in a vacuum tube, which we heat

to 440 ◦C leading to a vapor pressure of 3 × 10−3 Torr. Between the oven and the
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Figure 2.2: A picture of the microtube array in its mount and with a zoomed in look
at the array itself.

2D MOT we have a triangular array of 400 stainless steel microtubes (30RW gauge

(d ≈ 0.15 mm), L ≈ 7.5 mm) (A picture of the array of tubes is shown in Fig. 2.2), an

approach developed in Ref. [65]. The high aspect ratio (L/d = 50) of the microtubes

makes it so that of the hot cloud of atoms that enter the tubes, the distribution

of velocities for atoms that end up transmitting through the tubes towards the 2D

MOT will have a large percentage of atoms within the capture angle of the MOT

beams (∼3◦), effectively sending a collimated beam of hot atoms towards the 2D

MOT to be cooled and captured. On the other hand, the large majority of atoms

whose velocities are not within the capture angle of the 2D MOT and would’ve been

wasted, are instead not transmitted through the array of microtubes and recycled

back into the oven. Another consideration is that atoms with large velocity angles

relative to the 2D MOT capture region can end up colliding with and coating the

vaccuum windows through which the 2D MOT beams enter. We always keep the

region of the oven with the microtube array 30 ◦C hotter than the rest of the oven to

ensure that atoms don’t stick to the walls of the microtubes and clog the pathway to

the 2D MOT.
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We run Monte Carlo simulations of the trajectory of atoms from a hot atomic vapor

entering a microtube with aspect ratio of 50. The initial velocity distribution is taken

from the 3D Boltzmann distribution for T = 440 ◦C, and when atoms collide with

the walls of the tube the reemission angle is sampled according to Knudsen’s cosine

law [66]. The simulations find that only ∼ 7% of atoms incident with the entrance to

a 50 aspect ratio microtube will be transmitted, however, ∼ 40% of those atoms will

have a velocity vector below the capture angle of the 2D MOT, compared to ∼ 3%

in the case where the atoms travel straight from the oven to the 2D MOT region.

Thus the total flux of atoms, which can be captured by the 2D MOT, is kept roughly

constant by including the microtube array but the lifetime of the oven is increased

more than ten-fold by recycling atoms that would not intersect with the 2D MOT

capture region. We estimate given the initial amount of Yb deposited in the oven

that our oven can operate for a few decades.

When we first assembled our vaccuum chamber the microtubes were mounted in a

triangular cut region machined at the center of a vacuum flange, which connected

our oven elbow to the 2D MOT cross in our vacuum chamber. However, to heat the

microtube we needed to directly heat the flange. In the process of temperature cycling

the oven a vacuum leak was introduced at the flange connection that contained the

microtubes. To avoid future temperature cycling on a vacuum flange connection, for

the second version of our oven we machined a similar triangular mounting piece for

the microtubes, however the piece was mounted inside the oven tube so the heating

of the microtubes occurred before the flange connection. After this design change we

have never encountered a vaccuum leak in any part of our chamber.
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2.2 Blue Laser System

The first requirement in our experimental system is the ability to laser cool hot Yb

atoms to temperatures on the scale of ∼1 mK. Due to the narrow linewidth of the

triplet transition, its cooling force is too weak to efficiently cool and capture a large

density of atoms from a hot gas. Thus, it is necessary to first perform an initial stage

of laser cooling using the broad singlet transition at 399 nm.

The two main requirements for our blue laser system are that it has a low-noise and

stable single-frequency output, and that the laser output is high power. Since, the

saturation intensity of the singlet transition is fairly high (60 mW/cm2), and our

MOT on the singlet transition consists of two ∼1 cm diameter beams, we ideally

would want >100 mW of blue laser power in our MOT. Taking into account approx-

imately 50% losses due to fiber coupling and other lower power uses for our blue

light this would require a laser diode which outputs 200-250 mW of 399 nm light

to achieve our goals. At 399 nm, there are not commercially available laser diodes,

which can achieve this high of a power output in a stable single-frequency mode. For

example, our commercial Moglabs external cavity diode laser (ECDL), which satisfies

the requirements of a single-frequency and low-noise blue light source, is only able to

output <100 mW at maximum current.

2.2.1 Injection Locking

To achieve higher laser powers we implement a technique called injection locking,

where using a small amount of light from our commerical Moglabs ECDL laser (master

laser) we are able to seed a high-noise high power laser diode (slave laser) and get

it to output light in the same frequency mode as our master laser. Given that the

bare diode frequency of the slave laser is sufficiently close to the master, injection

locking should allow the entirety of the slave laser’s high-power output to take on the
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Figure 2.3: a) A schematic of the optics for the 399 nm master laser. b) A schematic
of the optics for the 399 nm injection-locked slave laser.

single-frequency mode output of the master laser.

We follow [67] in setting up our injection locking for the blue laser. We started

by building a mount for the slave laser diode (Nichia NDVB416) that consists of

a mounting cube for a Thorlabs laser diode collimation package and a base plate,

between which a peltier cooler is placed to control the temperature of the diode.

The diode has a center wavelength between 400 and 401 nm at room temperature so
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in order to injection lock we lower the temperature to blue shift the diode’s center

wavelength and bring it closer to the wavelength of our Moglabs laser. We operate the

injection locking with the laser diode set at ∼ 18 ◦C, however to avoid condensation

on the mount, we are careful not to decrease the temperature below the dew point of

the lab.

The setup involves taking ∼ 2 mW of fiber coupled light from the Moglabs ECDL

and aligning it back through a commercial Faraday isolator (Thorlabs IO-5-405-LP),

whose output polarizer is replaced by a high power PBS (Thorlabs PBS12-405-HP)

to seed the slave diode. The seed light is optimally mode-matched with the slave

diode by coupling light from the slave diode along the reflected path of the PBS into

the fiber that launches the seed light along the same optical path.

We determine the extent to which the slave diode is lasing in the single-mode of

the Moglabs ECDL by looking at the transmission signal of the slave diode light

through a Fabry-Perot interferometer (Thorlabs SA200-3B). A large single peak, in

the cavity transmission, would suggest that the slave diode is lasing in a single-

frequency mode. One observes that full injection locking to a single-frequency mode

is only fully successful at very specific laser diode currents. The transmission signals

through the cavity at non-optimal diode currents are characterized by smaller side

peaks in other frequency modes, or by a broad emission spectrum, with no single-

frequency peaks. At points where smaller side peaks appear, the height of the main

injection-locking peak decreases.

A cavity transmission signal consistent with full injection locking, shown in Fig 2.4a, is

first observed at approximately 160 mA of slave diode current. The injection current

threshold for the slave diode is approximately 30 mA, so the slave diode must be

operated at a power far above threshold for full injection locking to occur. Above the

first identified diode current, at which full injection locking occurs, we observe full

25



injection locking at approximately evenly spaced intervals in the slave diode current

of 9-10 mA. At full injection locking points in the diode current, one can observe the

full injection locking signal in a region of ∼0.2 mA. One can observe partial injection

locking, as is shown in Fig. 2.4b/c, in the region of ∼0.2 to ∼2.5 mA above the

current point of full injection locking. No injection locking, which is characterized by

the broad emission spectrum in Fig. 2.4d, is observed immediately below the current

point of full injection locking. A broad emission spectrum continues to be observed,

as the diode current is decreased, until the next point of partial injection locking is

reached.

A surprising feature of injection locking is that the full injection-locking signal is

bistable and can only be achieved by decreasing the slave diode current to the optimal

current point. If one tries to approach the optimal current point from below, by

increasing the slave diode current, there will be no injection locking signal at all, until

a partial injection locking signal occurs in the range of 1-2 mA above the optimal diode

current. Then, to reach the full injection locking signal, one must decrease the slave

diode current back to the optimal current point from any current above the point

where the partial injection locking signal occurs on the increasing current curve.

The optimal slave diode current at which injection locking occurs is extremely sensi-

tive, as small changes in the temperature of the diode or mechanical vibrations can

cause the injection lock to be lost. We have at times observed the injection locking

signal to remain stable for up to an hour without any feedback, and at other times

observed the injection locking signal to only remain stable for seconds at a time. One

clear factor in the stability of the injection locking is the length of time since the slave

diode has been turned on. This has also been observed in Ref. [68], and is attributed

to large variations in the temperature profile of the slave diode in the time nearly

following it being turned on.
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Figure 2.4: a) A cavity transmission plot when the slave diode fully injection locked
in a single-frequency mode. This is characterized by one single sharp peak. The
free spectral range of the cavity is 1.5 GHz. b) A cavity transmission plot when
the slave diode is partially injection locked. There is still a relatively large peak
in the frequency mode of the master laser, but smaller side peaks corresponding to
other frequency modes also arise. c) Another cavity transmission plot when the slave
diode is partially injection locked. In this case the injection locking to the master laser
frequency mode is weaker and the slave laser is nearing a broad emission spectrum. d)
A cavity transmission plot when there is no injection locking. This is characterized by
a broad slave diode emission spectrum and no obvious peaks corresponding to single
frequency modes.

Stabilizing the injection locking is extremely cumbersome because each time the in-

jection lock is lost one must manually adjust the slave diode current to regain the

optimal injection point. If the injection is repeatedly lost on the scale of minutes then

this could become a major impediment to successfully running experiments with the

injection locked light. For this reason, we implement a protocol for active stabilization

of the injection lock.

The hysteresis in the injection locking signal presents an added difficulty to imple-
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menting a stabilization protocol. Since full injection locking can only be achieved by

approaching the optimal diode current point from above, standard PID algorithms,

which rely on a linear relationship between an error signal and control input, cannot

be used. If the PID overshoots the optimal current point, then it will be unable to

regain the injection lock, since the injection lock point cannot be approached from

below.

Thus, we implement a stabilization protocol, based on a scheme described in Ref. [68],

which is designed to overcome the inconveniences of the hysteresis loop. The protocol

uses the following sequence: (1) A Labview program continually scans the piezo

voltage of the Fabry-Perot cavity, through an FPGA output. (2) The transmission

through the cavity is monitored on a photodiode and fed as an FPGA input into the

program, and the peak height of the injection locking signal is continually recalculated

as the maximum photodiode signal from the scan. (3) We define a threshold peak

height, such that a peak height above the threshold is consistent with a full injection

locking signal, and a peak height below the threshold is consistent with either no or

partial injection locking. (4) If the peak height is above the threshold the protocol

does nothing; however, if the peak height falls below the threshold then the program

will implement a recovery protocol. In the recovery protocol, the slave diode current is

jumped up approximately 2 mA (so that the partial injection locking signal is reached

from the increasing current side), then decreased in intervals of approximately 0.1 mA

until the peak height is again above threshold.

Fig 2.5 shows the peak height as a function of the slave diode current in the region

near one of the optimal current points for injection locking. It is evident that there

is an approximately 0.2-0.3 mA wide plateau where full injection locking is satisfied.

Furthermore, we see on the higher current side of the plateau there is a gradual

decrease in the peak height, corresponding to the partial injection locking region;
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Figure 2.5: A plot of the cavity peak height as the slave diode is decreased. The
plateau region identifies the region of full injection locking. The hysteresis of the
injection locking is evident as the right side of the plateau is characterized by a
declining slope in the cavity peak height, corresponding to a region of partial injection
locking, while the left side of the plateau is characterized by a rapid drop to no
injection locking.

whereas, on the lower current side of the plateau there is a sharp drop to no peak

height, corresponding to a broad emission spectrum from the slave diode laser. The

threshold peak height is defined at approximately the height of the plateau.

2.2.2 Locking

For initial experimental implementation we locked the blue laser using a saturated

absorption spectroscopy technique, with a signal generated using Yb vapor from a

hollow cathode lamp. However, upon purchase of a Stable Laser Systems ULE Cavity

we locked using a transmission signal from the cavity.

Hollow Cathode Lamp

To generate a saturated absorption signal for the Yb singlet transition we take ap-

proximately 7 mW of light from the master laser for the spectroscopy setup. A

polarizing beamsplitter is used to give variable control over the relative powers in

the pump and probe beams. The probe beam is transmitted through the PBS and
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is then directed through a Yb hollow cathode lamp, which contains an atomic vapor

of Yb. We find that the saturated absorption signal is maximized when the power

in the pump (probe) beam is 6 mW (1 mW). Since the beam diameter is ∼3 mm,

the pump beam is close to the saturation intensity for the singlet transition (∼ 60

mW/cm2).The transmitted probe beam is then transmitted through another PBS

and the signal is read on a photodiode. The pump beam is reflected off the first PBS;

then, two mirrors and the reflected path of the second PBS are used to align the

pump beam in the counter-propagating direction of the probe beam.

An error signal from the transmission signal of the probe beam is generated by modu-

lating the laser frequency at a modulation frequency of 250 kHz, as the laser frequency

is scanned through the Yb singlet atomic resonance, to generate a derivative of the

SAS signal. The absolute laser frequency is then locked to the zero-crossing of the

error signal.

Stable Laser Cavity

We transition to locking the blue laser via a transmission signal from a ULE Stable

Laser Systems cavity. Similar to the saturated absorption signal scheme, the error

signal is generated by modulating the laser frequency at 250 kHz to generate a deriva-

tive of the transmission signal. After a few months of operating with the SLS cavity

we began to observe issues where the resonance of the cavity would experience jumps

on the scale of a 1 MHz (this was measured from measuring the resonance of the

3P1 state via fluorescence imaging). While the cavity resonance will slowly drift on

the scale of ∼10 kHz per day these sorts of instantaneous jumps in the resonance are

unexpected. Furthermore, we noticed in measuring the transmission of 556 nm light

in the cavity that the cavity finesse at that wavelength had degraded.

There has been discussion in the literature that suggests vacuum-induced degradation

of dielectric mirror coatings can cause the degradation of cavity finesse [69]. We also
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theorize that high powers of near-UV 399 nm light could cause damage to the mirror

coatings [70]. Ref. [69] shows that damage to the mirror coatings can be reversed

by flooding the vacuum chamber with oxygen and illuminating the mirrors with light

at 422 nm. We follow this technique (illuminating with 399 nm light instead) and

observe a ∼6x improvement in cavity finesse at 556 nm. To prevent damage to the

mirror coatings from 399 nm in future use we generate our transmission signal using

very low 399 nm powers (∼100 nW), measuring transmission with a Si APD (Thorlabs

APD430A) to achieve good signal to noise. After this change we have not observed

large resonance jumps in the cavity for almost 2 years of operation.

2.3 Green Laser System

Engineering a highly stable and low-linewidth laser system at 556 nm is necessary

for exciting the narrow (Γ = 2π× 182 kHz) intercombination line of Yb. This laser

system is crucial for a four main applications in our experiment: 1) The scattering

force from the transition is used to push atoms across the chamber from the 2D

MOT to the science cell. 2) It is responsible for the second stage of laser cooling

in a narrow-line 3D MOT in the science cell. 3) Cycling on the intercombination

line allows for simultaneous Doppler cooling and photon scattering for single atoms

in optical tweezers, enabling high-fidelity imaging of single atoms. 4) Excitation to

Rydberg states is done through a two-photon process using 3P1 as the intermediate

state. Fig 2.6a shows the optics setup for delivering 556 nm light for each application.

2.3.1 Sum Frequency Generation

We generate 556 nm light using a sum frequency generation technique, where we

combine pump light at 1563 nm fiber laser and probe light at 862 nm. The pump

light comes from a high-power (10 W) EDFA fiber laser (Koheras Boostik). The
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Figure 2.6: a) A schematic of the optics for the 556 nm laser system. b) A schematic
of the optics for the sum frequency generation process to produce 556 nm light. c)
Dependence of the sum frequency conversion efficiency on the frequency of the pump
laser at a fixed temperature. d) Dependence of the sum frequency conversion efficiency
on the temperature of the PPLN crystal at fixed frequency.

probe light is generated by sending light from an ECDL (Moglabs cateye ECDL)

through a tapered amplifier (Dilas), which generates ∼2 W of light at 862 nm. The

sum frequency generation process occurs through a non-linear process in a PPLN

(Periodically Poled Lithium Niobate) crystal (Covesion).

The crystal (40 mm length) is housed in an oven which allows temperature tuning
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and stabilization in order to maximize the efficiency of the sum frequency generation

process through mode-matching. Fig 2.6c,d show the frequency and temperature

dependence of the sum frequency generation output efficiency. To achieve optimal

sum frequency efficiency it is recommended in Ref. [71] that each beam is focused

into the PPLN crystal using focusing parameter, l/b = 2.84, where l = 40 mm,

is the length of the PPLN crystal, and b = 2π
w2

0
is the confocal parameter. This

condition requires 45 µm and 60 µm beam waists, for the 862 nm and 1562 nm light

respectively. In choosing lenses to achieve these beam waists inside the PPLN crystal

it is necessary to take into account the refractive index of the crystal. The focused

beams are spatially overlapped using a dichroic beamsplitter at the input of the PPLN

crystal. Furthermore, half-waveplates are used for both beams to get the appropriate

polarization for the sum frequency generation process. Another dichroic beamsplitter

is placed at the output of the PPLN crystal to separate out any leakage of 862 nm

and 1563 nm light from the generated 556 nm light. Fig. 2.6b shows a diagram of

the optical setup for sum frequency generation process.

The efficiency of the sum frequency generation process is generally quoted in units

of %/(W · cm), where Efficiency = P556

P862·P1563·LPPLN
. We achieve a sum frequency

generation efficiency of 3% (W · cm)−1, which is consistent with previously achieved

efficiencies [72], and allows us to generate ∼250 mW of 556 nm light.

2.3.2 Locking

We lock the green laser frequency with a Pound Drever Hall (PDH) error signal

generated via a reflection signal from 556 nm light input to the SLS cavity [73]. We

use a homebuilt EOM driven at 18.3 MHz to apply the two frequency sidebands. In

order to lock the frequency of 556 nm light to the desired frequency the PDH error

signal is used for active frequency stabilization of the 862 nm ECDL used for sum

frequency generation of the green light. We note that for driving high coherence
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Figure 2.7: A diagram of the process for generating and locking 308 nm UV light for
Rydberg excitation. First 616 nm orange light is generated via a SFG process in a
PPLN crystal. The orange light is then frequency doubled in a bow-tie configuration
doubling cavity with a BBO crystal. A second path of the orange light is sent through
a Fiber EOM, to which we apply tunable sidebands that allow us to frequency stabilize
the UV light over a very large tunable frequency range by using a PDH error signal
generated from a reflection signal of the optical sideband from the SLS cavity.

Rydberg Rabi oscillations the frequency noise of the ECDL laser lock is too high

(linewidth of a few 100 kHz) so we replace the ECDL with a Titanium-Sapphire

(Ti:Sa) laser (M-Squared), which we operate at 862 nm. In this scheme we also use

the PDH error signal to stabilize the frequency of the Ti:Sa laser. While the SLS

ULE cavity resonances are highly stable they can undergo slow drifts on the order of

roughly 10 kHz a day. At the week-long time scale these drifts can be on order as

large the 3P1 linewidth. Thus, it is often necessary to slightly tune the RF frequency

of the AOM, which sends locking light to the cavity, in order for the experimental

light to remain at the right frequency relative to the atomic transition.

2.4 UV Laser System

We generate 308 nm light for Rydberg excitation in a two-step process. First we use

the same SFG process that we use to generate 556 nm light to generate orange light

at 616 nm. Second we use a doubling cavity to convert the orange light to the desired

UV frequency.
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2.4.1 Sum Frequency Generation

The method for sum frequency generation is identical to the one described for the

green laser system. Here we used an identical 10 W pump source (fiber laser model)

and for the probe source we use light from a Ti:Sa (M-Squared) at ∼ 1018 nm. The

Ti:Sa generates ∼1.3 W at this wavelength allowing us to achieve 616 nm powers

of >500 mW (∼3% (W · cm)−1). Notably, the wavelength of the Ti:Sa is highly

tunable allowing us to access any Rydberg state with principal quantum number

greater than ∼30. This tunability both allows us to perform spectroscopy over a

wide range of Rydberg levels and access any desired Rydberg states for quantum

science applications.

2.4.2 Second Harmonic Generation

For our initial generation of UV light, we generate 308 nm light via a second harmonic

generation (SHG) process in a Brewster cut nonlinear BBO crystal [74] within a

homebuilt bow-tie configuration doubling cavity [75]. The cavity resonance is actively

stabilized via feedback on an error signal generated by the Hansch-Couillaud method

[76].

After operation of the cavity for a couple months we began to experience an issue

where after optimizing the SHG conversion efficiency through internal alignment of

the cavity and BBO crystal, the output power of the doubling cavity continuously

drops over the scale of a few hours (shown in Fig. 2.8a). Interestingly, the drop

in the SHG efficiency of the cavity has a strong wavelength dependence. Fig. 2.8b

shows the output power of the doubling cavity as a function of the wavelength of

the TiSa used as the probe beam in the orange SFG process. We observe a feature

∼ .04 nm in width centered at the wavelength, where the power output degradation

initially occurred. Furthermore, when we change the wavelength away from where
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Figure 2.8: a) Output power of the UV doubling cavity over time. We observe a
continuous and steady drop over the time-scale of a few hours. b) Dependence of UV
output power on TiSa wavelength showing strong frequency dependence of output
efficiency degradation, centered at the wavelength where the degradation occurred.

the degradation occurred it initiates a similar output power degradation process at

the new wavelength and over a similar time-scale the output power at the original

degraded wavelength will return to prior non-degraded efficiencies. Another way to

reverse the degradation is to translate the BBO crystal so that the 616 nm light

propagates through the BBO crystal at a different location on the crystal.

We theorize that what we are observing is a consequence of a photorefractive effect

induced in the BBO crystal [77], where a standing wave of a given wavelength of

light induces a periodic refractive index in the crystal. This periodic refractive index

leads to an effective diffraction grating seen by the light as it propagates through the

BBO crystal, which consequently can cause back-reflection and a reduction in cavity

finesse, leading to the drop in output efficiency. Under this hypothesis, changing the

wavelength of the input light leads to the effective diffraction grating being out of

phase with the light removing the drop in output efficiency. The spectral width of the

drop in efficiency is roughly consistent with what one would expect from the length

of the BBO crystal. As further evidence of this hypothesis, changing the temperature

of the crystal, which in turn changes the index of refraction in the crystal making the
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effective grating similarly ineffective, reverses the degradation of the cavity efficiency.

Eventually, we upgraded our doubling cavity to a commerical doubler from LEOS

and no longer observe this issue. With the LEOS cavity we can generate > 100 mW

of UV light with approximately 500 mW of input orange light. Notably, the doubling

efficiency of the cavity is quadratic in the input power so any gains in orange power

output should lead to large gains in UV power output.

2.4.3 Locking

We lock the UV laser frequency with a Pound Drever Hall (PDH) error signal gen-

erated via a reflection signal from orange 616 nm light input to the SLS cavity [73].

The orange light is first sent through a fiber EOM where we apply tunable sidebands

at a frequency of a few GHz. Importantly, the tuning range of the sideband frequency

is greater than the free spectral range of the SLS cavity (1.5 GHz), which allows us

to lock the UV light at arbitrary frequencies. This capability is important for being

able to explore and utilize the full range of Rydberg states. A PDH error signal,

from the optical sidebands, is generated using a different homebuilt EOM than in the

green locking setup (driven at a different modulation frequency so both signals can

be read from the same photodiode in reflection), and used for active feedback on the

frequency of the Ti:Sa laser, operating at 1018 nm, used in sum frequency generation

of the 616 nm orange light.

2.5 2D MOT

A common technique for atomic physics apparatus which require powerful laser cool-

ing forces for a hot atomic vapor and the ability to generate a high flux of laser-cooled

atoms is a Zeeman slower [78]. While Zeeman slowers often achieve state of the art

laser-cooled atomic fluxes, they come with drawback of requiring a large amount of
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space and substantial engineering of magnetic field coils. An alternative and more

compact approach is an initial stage of laser cooling from a hot atomic vapor with a

2D MOT coupled with a push beam to transfer a flux of cold atoms to the science

chamber [79].

For the design of our 2D MOT we closely follow the design from [80]. The 2D MOT

beams consist of two perpendicular input beams each oriented at 45 degrees relative

to the transverse push beam axis. The beams are input at the bottom windows

of a cross in the vaccuum chamber and are each individually retroreflected at the

corresponding upper windows of the cross. Due to the high saturation intensity of

the 1S0→ 1P1 transition (60 mW/cm2), we require high optical powers in each beam

to maximize the cooling force of the beams. Using light from the injection locked

slave laser described in Section 2.2, we can achieve ∼ 40 mW per beam.

In choosing the beam waist, w0, of the 2D MOT beams we aim to maximize the

capture velocity, vc, in order to maximize the fraction of atoms we can capture from

the hot atomic beam coming from the oven. There are two competing scalings to

consider: (1) Larger beam waists allow the beams to exert a cooling force over a

larger distance and longer time thus leading to a higher capture velocity (vc ∝ w0).

(2) A smaller beam waist leads to a higher saturation parameter (s ∝ 1/w2
0), which

in turn leads to a higher capture velocity (vc ∝ s
s+1

). Notably, in the regime where

the saturation parameter is much greater than 1 (i.e. the intensity is far above the

saturation intensity) then one gains from making the beam waist as large as possible.

However, as mentioned above, the high saturation intensity of this transition means

we operate well below this regime. Thus, we operate at a compromise between these

two considerations and use a beam waist of w0 ≈ 0.7 cm.

In order to engineer a truly two-dimensional trapping force we need to engineer a

magnetic field environment such that there is a gradient in the plane of the MOT
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Figure 2.9: Configuration of magnets to achieve desired magnetic field gradients for
2D MOT. The tubes with blue arrows at the edges represent the axis of the MOT
beams.The push beam is along the Z axis, and the small tube is the oven. The arrows
on each magnet (red rectangular blocks) indicate its polarity.

beams, but no gradient in the transverse dimension. We achieve this with the config-

uration of magnets shown in Fig. 2.9. Each magnet in the figure represents 3 1/8”

permanent magnets stacked together. Two stacks of magnets are mounted on either

end of four 3D printed plastic mounts (for a total of 8 magnet stacks), which are in

turn each fastened to a tube on the vacuum chamber to position the magnets in the

proper positions relative to the intersection of the 2D MOT beams. We calculate

magnetic field gradients of ∼ 80 G/cm in the plane of the MOT beams (x and y axes

in Fig. 2.9) and a transverse gradient (z axis in Fig. 2.9) of less than 1 G/cm.

A flux of hot Yb atoms are directed through the nozzle array at the end of our Yb

oven (described in Section 2.1) in the plane of the 2D MOT beams to be trapped at

the intersection of the MOT beams. Fig. 2.10a shows an image of the fluorescence

from the 2D MOT. One can see a cross of blue fluorescence from atoms fluorescing

39



Figure 2.10: a) An iPhone camera image of the fluorescence from the 2D MOT beams.
b) Fluorescence image taken through imaging telescope lens onto Thorcam camera
used to monitor 2D MOT and estimate fraction of fluorescence in trapped region.
Circular outline behind MOT is the differential pumping tube.

in the MOT beams, which are not trapped in the 2D MOT, and a brighter spot of

fluorescence at the center of the beams which comes from the trapped atoms. We

estimate the steady state number of atoms trapped in the 2D MOT by measuring the

power of fluorescence collected by a lens from the window where the push beam enters

the chamber. The expected power per atom is P = Γ s
s+1

solid angle of lens
4π

hc
λ

. We then

analyze an image of the fluorescence (shown in Fig. 2.10b) to determine what fraction

of the fluorescence comes from the trapped atoms compared to the untrapped atoms

fluorescing in the MOT beams. This allows us to estimate, at an oven temperature

of 400 ◦C, that we have a steady state of ∼500,000 atoms in our 2D MOT.

2.6 Push Beam

We use a push beam, which applies a scattering force via the 1S0→ 3P1 transition,

to transfer atoms from the 2D MOT across the differential pumping stage of the

vacuum chamber to the science cell, where they can be trapped in a narrow-line

3D MOT. An important consideration in designing both the vacuum chamber and

the logistical function of the push beam is that due to the narrow linewidth of the

40



intercombination line (Γ = 2π× 182 kHz), the cooling force of the narrow-line MOT

is relatively weak and thus the MOT will have a low capture velocity. For example,

assuming a maximum scattering force on 1S0→ 3P1 transition (a = 2.4 ×103 m/s2)

and a MOT beam diameter of 1 cm would suggest a capture velocity of vc ≈ 7 m/s

for the narrow-line MOT.

It is necessary to to push the atoms across the vacuum chamber at a velocity below the

3D MOT’s capture velocity. Due to the slow capture velocity of the narrow MOT,

and the distance that the atoms must be pushed from the 2D MOT to the center

of the science cell (∼0.4 m), gravitational forces will have a non trivial effect on the

trajectory of the atoms while they traverse the vacuum chamber. In the time it would

take to travel 0.4 m at 7 m/s an atom with zero initial velocity in the direction of

gravity would drop 1.6 cm over the course of its trajectory. This distance is greater

than the radius of a window in the science cell and thus it is infeasible to design the

vacuum chamber such that the center of the science cell (i.e. the position of the 3D

MOT) is collinear with the 2D MOT position.

In order to account for gravitational sag during the travel time of the atoms across

the vacuum chamber we design the 2D MOT section of the vacuum chamber and the

differential pumping tube to be at ∼ 7◦ angle relative to the science cell, which is

parallel to the optical table. The push beam pushes the atoms along the axis of the

differential pumping tube supplying them with both the horizontal velocity to push

them across the vacuum chamber and a slight upwards vertical velocity to counteract

gravitational sag. The angle is chosen such that the trajectory of atoms pushed at a

velocity of 5.5 m/s (chosen to be safely below the capture velocity of the 3D MOT)

will intersect with the center of the science cell. A schematic of the atom trajectory

is shown in Fig. 2.11.

Due to the finite Doppler temperature of atoms in the 2D MOT (TD ≈ 700µK), there
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Figure 2.11: A schematic of the trajectory of pushed atoms across the chamber with
mean pushing velocity of 5.5 m/s and T = 700µK. The atoms begin in the 2D MOT
and the scattering force of the push beam (green trace) pushes the atoms through the
differential pumping tube (DPT) at an angle of ∼ 7◦ relative to the science cell. The
red trace shows the mean atom trajectory, while the light blue region shows the atom
trajectories for atoms with an initial vertical velocity within 1σ for the Boltzmann
distribution with T = 700µK. The push beam is picked off by a pickoff mirror in
the differential pumping stage of the vacuum chamber (circular region), however, we
display the path of the push beam if it were not picked off. The green circle shows
the region of the 3D MOT beams to demonstrate the overlap of the pushed atomic
cloud with the desired trapping region.

will be a Boltzmann distribution of initial velocities in the plane transverse to the

pushing direction, causing the atomic cloud of pushed atoms to expand during the

trajectory across the chamber. The red trace in Fig. 2.11 shows the mean trajectory

of atoms pushed at 5.5 m/s, while the light blue region contains the trajectories of

atoms with initial vertical velocities within 1σ for a Boltzmann distribution with

T = 700µK. Given the atomic cloud expansion we predict ∼ 7% of pushed atoms will

intersect with MOT beams of 1 cm and be captured by the 3D MOT.

Furthermore, we install a pickoff mirror before the entrance to the science cell to

reflect the push beam out of a side window of the differential pumping section of

the vacuum chamber. Given the divergence between the push beam path and mean

atom trajectory due to gravitational sag of the atoms, the pickoff mirror does not

block atoms whose paths will intersect with the 3D MOT beams. The ability to

pickoff the push beam is attractive so that the light, which is resonant with the 1S0→
3P1 transition, will not disturb atoms in the science cell.
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Figure 2.12: An image of fluorescence (dark streak) of pushed atoms from a probe
beam on the 1S0→ 1P1 propagating transversely to the pushing direction in the metal
chamber directly after the differential pumping tube.

In order to characterize the performance of the push beam we image fluorescence from

pushed atoms (shown in Fig. 2.12) excited by a probe beam resonant with the broad

1S0→ 1P1 propagating transversely to the trajectory of the atoms. The probe beam

enters the vaccuum chamber through a small window on the top of the region directly

after the differential pumping tube. To estimate the velocity of the atoms we pulse on
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Figure 2.13: a) A measurement of the integrated fluorescence signal from the 0.5 ms
probe beam pulse as a function of the wait time after the 20 ms push beam pulse is
turned off (negative wait times refer to the probe beam being turned on while the
push beam is still on). We can infer the velocity distribution of the pushed atoms from
the rising edge of the signal and the known distance between the 2D MOT and the
probe beam. b) The average pushed velocity as a function of the push beam power.
The red curve shows the theoretical expectation of the average pushed velocity based
on a simulation of the scattering force from the power broadened transition.

the push beam for 20 ms and then pulse on the probe beam for 0.5 ms at varying delay

times and measure the integrated fluorescence signal collected from atoms scattering

via the probe beam. Given a known distance between the 2D MOT and the probe

beam we can infer the velocity distribution by the measured fluorescence as a function

of the wait time after the atoms are pushed. A representative measurement is shown

in Fig. 2.13a. The wait time is from the end of the 20 ms push beam pulse so negative

wait times suggest that the probe beam is pulsed on while the push beam is still on.

We first start to see a fluorescence signal at 2-3 ms after the end of the push beam

pulse (22-23 ms after the start of the pulse) and then see the fluorescence signal rise

to a maximum at 30 ms after the push beam is turned on. Finally the signal begins

to drop which corresponds to the entire pushed cloud of atoms passing by the region

of the probe beam before the probe beam has been turned on.

Given the design of the vacuum chamber at a specific angle it is crucial that we have

fine control over the velocity we push the atoms at. Due to the narrow linewidth of

the 1S0→ 3P1 transition, there is also a narrow velocity range (v = Γ
k
≈ 0.1 m/s)
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over which atoms will not be Doppler shifted out of resonance with the push beam.

That is, if we illuminate the push beam on resonance with the atoms after the atoms

are accelerated to a velocity such that kv > Γ they will be Doppler shifted out of

resonance with the push beam and the scattering force of the push beam on the

atoms will become exceedingly small. However, if we power broaden the transition

(Isat ≈ 0.14 mW/cm2) then the maximum velocity at which the scattering force of a

resonant beam will be felt by the atoms will grow. If the push beam is operated at

a saturation parameter, s, then the maximum velocity the atoms will be accelerated

to will be vmax ∝
√
sΓ
k

. Thus we can have fine control over the average velocity of

the pushed atoms by simply changing the operating power of the push beam. Fig.

2.13b shows the average measured velocity as a function of push beam power and the

simulated pushing velocity from the scattering force.

Finally, we can use the image of the fluorescence to estimate the number of photons

collected and infer from the scattering rate of the probe beam (Γ = 2π×29 MHz) and

the velocity of the atoms, the flux of pushed atoms, which we estimate to be 6 ×107

atoms/s, at an oven temperature of 410 ◦C, measured directly after the differential

pumping tube.

2.7 3D MOT

The final stage of laser cooling in our experiment is a 3D narrow-line MOT on the

1S0→ 3P1 transition (Γ = 2π×183 kHz, TD = 4.4µK) in the vacuum chamber science

cell, which captures and cools atoms pushed across the chamber by the push beam.

There are two retro-reflected beams in the parallel plane of the science cell, each at 45

degrees relative to the propagation direction of the pushed atoms. The vertical MOT

beams consist of two separate beams, an upward propagating beam, and a downward

propagating beam, which is sent through the microscope objective (NA = 0.6) used
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to project the optical tweezers into the science cell. The high NA of the microscope

objective makes it difficult to engineer a large collimated beam out of the objective, so

the downward propagating beam has a smaller beam waist (∼2 mm) than either the

horizontal beams or the upwards vertical beam (1 cm). Since the vertical beams are

not in a retro-reflected configuration, and have different beam waists it is necessary

to operate them at different powers in order to have balanced cooling forces in the

vertical direction of the MOT.

A magnetic field gradient is achieved via identical coils positioned on the top and bot-

tom of the science cell with counter-propagating currents. These coils are calculated

to achieve magnetic field gradients of 0.96 (G/cm)/A in the axial direction and 0.48

(G/cm)/A in the radial direction. We operate the MOT with a current of ∼4 A in the

gradient coils. Due to the small magnetic field gradients necessary for operating the

narrow-line MOT (a few G/cm) it is necessary to have a high degree of control over

the stray magnetic field environment since stray fields of a few Gauss could move the

null field point of the field gradient outside of the region of the MOT beams, causing

the trapping of the MOT to cease to work. In order to achieve this control we add

three pairs of bias coils oriented in three perpendicular axes to allow us to control the

field environment at the center of the MOT beams. Notably, we spent many weeks

trying to observe a 3D MOT before the installation of bias coils and were unable to

until the bias coils were installed.

The coils are fabricated out of 16 AWG magnet wire, wrapping around 1/2” Thorlabs

posts screwed into a breadboard. The breadboard was a custom-machined aluminum

plate with hole patterns for the exact desired coil sizes. We applied Epotek T7110

epoxy after every layer, and cured the entire plate assembly on a hotplate for 1.5-2

hours or overnight. The hotplate was set to 250C, but the plate temperature appeared

to be around 100 C as measured with IR thermometer. For the last few coils, we
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discovered that using a sheet of vacuum bag material to line the breadboard is the

easiest way to remove the coils. Also, to maintain the desired outer dimensions, we

hammered on the sides of the coil with a wooden block and mallet to flatten them out.

Doing this during the coil winding is dangerous as it can impact the layer stacking,

but doing it afterwards is just as effective. There are eight coils: two each for X,Y,Z

bias fields and two for the quadrupole field gradient. However, to save space and

curing time, the quadrupole and z coils are wound together: the first three layers of

this coil are the Z coil, and the next 6 layers are the quadrupole. A summary of the

calculated magnetic fields at the position of the MOT for the geometry of each coil

pair is shown in Table 2.1.

Coil Pair Field/Current
X 7.5 G/A
Y 2.4 G/A
Z 4.3 G/A

Quadrupole 0.96 (G/cm)/A

Table 2.1: Theoretical calculation of magnetic fields given coil geometry.

In a given experimental sequence atoms are loaded into the 3D MOT and then trans-

ferred into an array of optical tweezers by projecting a tweezer array onto the cooled

cloud of atoms. The loading process of the MOT is divided into two stages: a loading

stage and a compression stage.

In the loading stage the MOT captures and cools atoms pushed across the chamber by

the push beam. As discussed in the push beam section, due to the narrow linewidth of

the intercombination line, the scattering force from this transition is only felt by atoms

in a very narrow velocity class (∼0.1 m/s) because of Doppler shifts. To maximize

the cooling force and capture velocity of the MOT it is necessary to ensure that all

atoms with velocity smaller than the incoming pushed velocity (v ≤ 5.5 m/s) observe

a scattering force from the transition. In the case of the push beam we overcame this

problem by power broadening the transition, however, for the MOT beams we operate
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with a larger beam waist so the power requirements of this method are much greater.

As an alternative approach we engineer a multi-frequency MOT by sending all MOT

light through a strongly-driven EOM (Qubig), which drives many sidebands spaced

by 139 kHz, so that any atom with velocity below the capture velocity will feel a

cooling force from one of the sidebands. We operate the center of the frequency comb

at a detuning of ∆ ≈ −4 MHz. It is important that all sidebands are red-detuned

from resonance or else atoms will be heated and lost by the blue-detuned sidebands.

The MOT beams are operated far above the saturation intensity at ∼20 mW per 1 cm

horizontal beam in order to ensure that the power per sideband is above saturation.

Since we effectively broaden the cooling transition during the MOT loading phase the

trapped atoms will not come close to reaching the low Doppler temperature (TD =

4.4µK) of the transition. Thus, after a sufficient number of atoms have been captured

in the loading phase, the MOT undergoes a compression phase, where the EOM

sidebands are turned off, and the single-frequency of the MOT is ramped towards

resonance until it reaches an optimal cooling detuning of ∆ ≈ −Γ
2
. Simultaneously,

the power in the MOT beams is ramped down so that single-frequency MOT operates

below the saturation intensity for optimal cooling. The ramping of the frequency and

beam powers during the compression process occurs in 10 ms. The compression

process has two main effects: first, the atoms are cooled considerably compared to

their temperature during the loading phase, allowing them to reach near the Doppler

temperature. Second, due to the atoms being considerably colder the relevant spatial

extent of the MOT trapping forces also become considerably smaller. As a result the

spatial extent of the MOT cloud, which is a few mm in diameter during the loading

phase, is significantly reduced to ∼ 100 µm in diameter.

We characterize the temperature and density of the compressed MOT (cMOT) via

absorption imaging on the broad 1S0→ 1P1 transition. A probe beam with diameter
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Figure 2.14: a) A characteristic absorption measurement of the cMOT. The orange
corresponds to full transmission of the blue probe, while the small blue region cor-
responds to lower transmission due to absorption from atoms in the cMOT. b) A
measurement of the atom cloud radius, via absorption imaging, as a function of the
cloud expansion time. From the measured cloud radii we extract a cMOT temperature
of 8 (9) µK in the horizontal (vertical) direction.

∼7 mm and power ∼1 mW (∼0.01 Isat), is imaged on a camera and we measure

the spatially-dependent dip in transmission to both infer the spatial distribution and

density of the cMOT. To measure the temperature of the cMOT we perform time

of flight measurements, where we turn off the MOT beams and then measure the

width of the atomic cloud via absorption imaging at varying expansion times after

the beams have been turned off. The rate of expansion is related to the average

velocity of atoms in the cMOT, which in turn allows us to infer the temperature of

atoms in the cMOT. Fig. 2.14a shows a characteristic absorption image and Fig.

2.14b shows a temperature measurement. We infer a temperature of roughly twice

the Doppler temperature in both the horizontal and vertical direction of the cMOT.

The absorption signal also allows us to infer a MOT loading rate of ∼ 106 atoms/s.

In the cMOT, for 1 s loading time, this corresponds to an atom density of ∼ 1012

atoms/cm3.

Once the MOT has been loaded and compressed it is necessary to overlap it with the

focus of the optical tweezers to load atoms from the cMOT cloud into the tweezers.
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a) b)

Figure 2.15: A measurement of the dependence of the cMOT position on the bias
magnetic field in the a) X and b) Z directions. The roughly double slope in the X
direction is consistent with the magnetic field gradient being twice as large in the Z
direction. The zero point for the X and Z positions is arbitrary.

In order to accomplish this we can fine tune the position of the cMOT into the focus

of the optical tweezers by tuning the field of the bias magnetic field coils. By tuning

the bias field we change the null point of the field gradient and thus move the position

of the cMOT. Fig. 2.15 shows the dependence of the position of the cMOT in the X

and Z directions as a function of the bias field. The slope of the position dependence

on bias field is approximately double in the X direction vs the Z direction, which

is consistent with the magnetic field gradient being twice as large in the axial (Z)

direction.

2.8 Optical Tweezers

Our trapping light for generating optical tweezers comes from a 12 W Verdi Laser

at 532 nm. The light is sent through an AOM for the ability to rapdidly switch

the tweezers on and off, and then coupled into a fiber which decouples the Verdi

output from the alignment of the tweezer optical system. To generate 2D rectangular

arrays of optical tweezers light is send through a vertical AOD followed by a 1:1

telescope, and then sent through a horizontal AOD followed by a 4x telescope to

increase the beam size prior to entering a 0.6 NA Special Optics microscope objective
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which focuses the array of optical tweezers into the science cell with a beam waist

of w0 ≈ 650 nm. Prior to entering the objective the light passes through a dichroic

beamsplitter, which transmits light at 532 nm, but reflects light at 556 nm and 399

nm. Fluorescence from atoms trapped in the tweezers is collected back through the

same high-NA objective and reflected off the dichroic beamsplitter prior to entering

a tube lens (200 mm) used to image the tweezer array on a low noise sCMOS camera

(Photometrics Prime BSI). Fig 2.16 depicts a schematic of the tweezer optical system.

In order to load atoms from the 3D MOT into the optical tweezer array we must

overlap the cMOT with the focus of the tweezers. As is described in Section 2.7 we

can controllably move the position of the cMOT by changing the bias magnetic field

in the science cell. To maximize tweezer loading we scan the loading probability of

the array as a function of the bias field in all three axes. After atoms are loaded

into the optical tweezers a 20 ms pulse red-detuned from the 1S0→ 3P1 transition

drives a light-assisted collision process, which ejects pairs of atoms and leaves each

tweezer with either 0 or 1 atom [17, 51]. Finally we image single atoms by collecting

fluorescence from driving the narrow 1S0→ 3P1 transition (Further details on high-

fidelity imaging of single Yb atoms in optical tweezers are described in Chapter 3).

At optimal loading conditions the experimental cycle time is ∼200 ms, enabling rapid

data collection.
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Figure 2.16: A schematic of the optical system for the tweezers and fluorescence
imaging
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Chapter 3

Trapping and Imaging 174Yb in

Optical Tweezers

Much of the work described in this chapter is also presented in Ref. [81]

In this chapter, we demonstrate an approach to produce large-scale arrays of indi-

vidual alkaline-earth-like Yb atoms trapped in optical tweezers. Both cooling and

imaging are performed on the narrow 1S0 -3P1 intercombination line (λ = 556 nm,

linewidth Γ556 = 2π×182 kHz), enabled by the convenient “magic” trapping condition

for these states with 532 nm trapping light [1]. The use of a narrow transition allows

rapid cooling to temperatures of 6.4(5) µK, near the theoretical Doppler tempera-

ture of 4.4 µK for this transition. In contrast to most previous single-atom detection

schemes relying on polarization gradient [17], Raman sideband [82, 83, 84] or EIT

[85, 86] cooling during imaging, the narrow linewidth enables high fidelity imaging in

shallow traps using Doppler cooling alone. Individual Yb atoms have previously been

imaged in quantum gas microscope experiments using the strong 1S0 transition at 399

nm (Γ399 = 2π × 29 MHz), overcoming the high Doppler temperature (700 µK) by

simultaneously cooling on the 3P1 transition [1] or by using very deep (> 30 mK) op-
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Figure 3.1: (a) Relevant energy levels for 174Yb, with transition wavelengths (λ) and
linewidths (Γ) indicated. (b) Diagram of experimental setup indicating the geometry
of the cooling, imaging and trapping beams. Two of the 3D MOT beams are in the
xy-plane, while the third propagates through the objective lens along the z-axis. The
angled imaging beam is in the xz-plane. For other details, see text. (c) Average
and (d) single-shot images of atoms in a 4x4 tweezer array, with 6 µm spacing (35
ms exposure time). The color bar indicates the number of detected photons on each
pixel.

tical potentials without cooling [87]. The present technique is the first to demonstrate

very high-fidelity, low-loss imaging in shallow traps, as required for rearrangement-

based generation of uniformly filled tweezer arrays. As an outlook, we demonstrate

a 144-site (12x12) tweezer array, stochastically loaded with atoms.

3.1 Light Shifts and Magic Conditions

To characterize the cooling and imaging properties of the 556 nm transition, we first

measure the differential light shift of the 1S0 and 3P1 states in the optical tweezers

(Fig. 3.2a). In the absence of a magnetic field and with linearly polarized trapping
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Figure 3.2: (a) Differential light shift of the 1S0 - 3P1 transition as a function of the
ground state optical tweezer depth. The tensor light shift lifts the degeneracy of the
3P1mJ levels, resulting in different potentials for the mJ = 0 (black) and mJ = ±1
(red) excited states. The light shift for the 1S0 - 3P1mJ = 0 transition is 1.6% of
the ground state trap depth, corresponding to a shift of only Γ556/2 under typical
trapping conditions. The horizontal axis is calibrated using the previously measured
value of the 3P1mJ = ±1 polarizability at 532 nm [1]. (b) Lifetime and scattering rate
of trapped atoms under various imaging intensities at a typical imaging detuning of
∆ ≈ −1.5Γ556. The black curve is a fit to a saturation model. The lifetime decreases
exponentially with increasing imaging power above I/Isat ≈ 4 (red line guides the
eye). We find I/Isat ≈ 3 to be the optimal balance of photon scattering rate and
lifetime for this detuning.

light, the tensor light shift lifts the degeneracy of the 3P1mJ states, resulting in

different potentials for the 3P1mJ = 0 and mJ = ±1 states (here, mJ refers to the

projection of the electronic angular momentum J onto the x axis, which is parallel

to the optical tweezer polarization). We measure the transition frequency between

1S0 and the 3P1mJ = 0 and mJ = ±1 states by blowing atoms out of the trap with

resonant light before imaging. The differential shift of the 1S0 and 3P1mJ = 0 states

is approximately 1.6% of the ground state trap depth, in agreement with previous

measurements [1]. Under typical trapping conditions, the transition frequency is blue-
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shifted 2π × 90 kHz ≈ Γ556/2 in the trap. The positive sign and small magnitude of

this shift facilitates efficient loading of atoms from the 3P1 MOT into the tweezers.

3.2 High Fidelity Imaging

After loading the tweezers and applying a brief pulse to remove multiple atoms (20 ms,

∆ ≈ −2Γ556, I/Isat ≈ 5), we measure an atomic temperature of 6.4(5)µK (using the

release-and-recapture technique [88]). In order to determine the optimal fluorescence

imaging parameters, we study the lifetime of the trapped atoms in a 0.29 mK deep

potential under continuous illumination from the imaging beam as a function of in-

tensity at a detuning ∆ = −1.5Γ556 (Fig. 3.2b). The lifetime decreases exponentially

with intensity (above I/Isat ≈ 4), consistent with a linear increase in temperature [89]

and exponentially-activated tunneling over a barrier; however, at moderate intensities

(I/Isat ≈ 3) we achieve lifetimes near 10 seconds with a photon scattering rate that

we estimate to be 0.29× Γ556/2 based on the observed saturation of the fluorescence

with increasing intensity. The measured temperature during imaging is 13(2) µK,

consistent with Doppler theory. In deeper traps, we observe longer lifetimes at high

imaging intensities, consistent with the model of heating-induced loss.

An important metric for initializing large-scale low-entropy arrays and performing

high-fidelity qubit readout is the fidelity with which a single atom can be imaged.

To quantify this, we take repeated images of a 9-site (3x3) array for 5 seconds under

continuous illumination, with varying exposure time and negligible delay between

images. A histogram of the number of detected photons on a single site during a 30

ms exposure is shown in Fig. 3.3a. In each image, we classify each site to be either

bright or dark, indicating the presence or absence of an atom; ideally, this would

remain unchanged across multiple images. We quantify the imaging performance by

the probability of either of two events to occur: Pb→d = P (ni+1 = d|ni = b), indicating
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Figure 3.3: (a) Histogram of detected photons at a single site for an exposure time
of 30 ms (∼ 136,000 images), revealing clear separation between fluorescence counts
for 0 and 1 atom occupancy. Inset: Typical image of single atom, with integration
region indicated. (b) Imaging fidelity, quantified by the probability of disagreement
between two subsequent images of the same array. Two event types are classified:
blue points show the probability of bright sites appearing dark in the next image
[Pb→d = P (ni+1 = d|ni = b), where ni = {d, b} denotes the state in image i] and
black points show the probability of a dark site appearing bright in the next image
[Pd→b = P (ni+1 = b|ni = d)]. The light blue symbols show the classification using
a simple count threshold, while the other points (blue, black, red) use a pixel-wise
Bayesian classifier that has approximately half the error rate. For exposure times
greater than 20 ms, Pb→d is dominated by atom loss, consistent with the independently
measured lifetime (7.2 s) for these imaging conditions (blue curve). Pd→b reaches a
floor below 1 × 10−4 that originates from quantum jumps out of a metastable state.
A representative jump event is shown in panel (c): a tweezer initially loaded with
an atom goes dark, but spontaneously becomes bright one second later, though the
MOT is off the entire time. The duration of these events [panel (d)] is consistent
with a metastable state lifetime of τm = 0.54(7) s (exponential fit is shown in black).
The black dashed curve in (b) is a fit to Pm(1 − e−t/τm), which describes the rate
of these events for an average metastable state population Pm, which we infer to be
Pm = 4×10−3. The red points in (b) show Pd→b with conclusively identified quantum
jump events removed.

that a bright site transitions to dark in the next image, and Pd→b = P (ni+1 = b|ni =

d), indicating that a dark site appears bright in the next image.

At short exposure times, both events occur often because of noise. At exposure times

greater than 20 ms, Pb→d is limited by loss from the traps, in a manner consistent

with the independently measured lifetime of 7.2 s for these imaging conditions. The

minimum value (Pb→d = 4.5(3) × 10−3, averaged across all sites in the 3x3 array)
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occurs at 20 ms imaging time.

For longer exposure times, Pd→b continues to improve, reaching a minimum of 7(3)×

10−5 at 30 ms exposure time, suggesting a false-positive rate for atom detection below

10−4. Interestingly, the d → b events contributing to this rate are not primarily

classification errors, but are characterized by the sudden appearance of an atom

as shown at t = 1.5 s in the sequence of images in Fig. 3.3c. We believe these

events correspond to quantum jumps of atoms from trapped, metastable states back

into the ground state. An alternative interpretation, loading of new atoms from the

background vapor, is ruled out by the fact that these events are nearly always preceded

by a b → d transition. A histogram of the dark state duration of many such events

(Fig. 3.3d) reveals the metastable state lifetime to be τm = 0.54(7) s. This value

is consistent with the measured 3P0 state lifetime in the tweezer [90] (shorter than

the free-space value because of Raman scattering of the dipole trap light), suggesting

that the metastable state may be 3P0 , although we cannot rule out 3P2 or another

long-lived state involving excitation of 4f electrons [91]. Removing d → b events

identified as quantum jumps from the dataset (red points in Fig. 3.3b) leads to an

improved statistical false-positive atom detection rate of 3(3)× 10−5.

The quantity Pb→d is important because it sets an upper bound on the size of the atom

array that can be filled without defects (Nmax ≈ 1/Pb→d), since atoms must survive

the initial image (additional contributions arise from the rearrangement process itself

[30, 31]). Our value, Pb→d = 4.5(3)× 10−3 (Nmax ≈ 220) is comparable to the lowest

directly measured quantity reported in the literature, despite our use of a narrow

transition for imaging (previously, values around 0.006-0.01 have been reported [30,

92]). The imaging fidelity, defined as the probability to correctly determine what the

occupancy of a tweezer was at the beginning of the imaging period, is not a directly

measurable quantity. We conservatively estimate it to be 0.9985 (at 25 ms exposure)
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Figure 3.4: (a) Average and (b) single-shot images of a 12x12 tweezer array, with 6
µm spacing, using simultaneous 1P1 imaging and 3P1 cooling. The detected photon
rate is much lower for this imaging method, so the exposure time is 500 ms. The color
bar indicates the number of detected photons on each pixel. Over repeated single-shot
images, the average (worst) site has loading probability p = 0.49 (p = 0.35).

by modeling the probability for an atom to be lost before scattering enough photons

to rise above a count threshold, assuming a constant loss rate during the imaging

period. The imaging error rate is a factor of 80 lower than previous results for Yb

imaging in shallow traps [1]. These results show that narrow lines with Γ ≈ 2π× 200

kHz are a “sweet spot” for single-atom fluorescence imaging in optical traps, offering

a balance between photon detection rate and low temperatures during imaging. This

may be applied to optical tweezer arrays and quantum gas microscopes based on other

atomic species with similar transitions, including Er [93] and Dy [94].

As an outlook, we demonstrate stochastic loading of a 144-site (12x12) array of optical

tweezers (Fig. 3.4). Auto-fluorescence in the objective housing from the trapping

light results in spatially uniform background noise on the camera proportional to the

total number of tweezers, preventing us from imaging this array at 556 nm using the

techniques described above. However, there is very little trap-induced fluorescence

at 399 nm (higher in energy than 532 nm), which enables us to image scattered light

from the 1P1 transition while simultaneously cooling on the 3P1 transition, following

Ref. [1]. After this work we had Special Optics color the inside of the objective

housing black which greatly reduced the background from auto-fluorescence.
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Figure 3.5: (a) A representative measurement of the 3P0 state lifetime, taken at 4.5
MHz trap depth. The 1539 nm optical pumping light is on for 200 ms (indicated by
shaded gray region), while the atoms are continuously imaged. The rise in the ground
state population after the pulse is caused by atoms leaving 3P0 and returning to the
ground state, while the longer time scale decay is due to the finite lifetime (∼7 s) of
atoms in the tweezers. The red line is a fit to a two-state rate equation model. (b)
The 3P0 lifetime varies inversely with trap depth. The black line is a fit to τm ∝ 1/U ,
where τm is the 3P0 lifetime and U is the trap depth.

Note While completing this work, we became aware of related publications on Stron-

tium optical tweezer arrays [44, 45].

3.2.1 Measurement of Metastable State Lifetime

We measured the lifetime of the metastable 3P0 state in the tweezers by pumping

atoms into this state using the 3P1 - 3D1 transition at 1539 nm. 3D1 decays into all

of the 3PJ states, but the ratio of the 3P0 and 3P2 branching ratios is ∼ 65 [95],

so nearly all atoms are pumped into 3P0 . Continuously imaging the ground state

population reveals the timescale for depopulation of 3P0 (Fig. 3.5a). The inverse

dependence of the lifetime on the tweezer depth suggests that Raman scattering of

dipole trap photons is responsible for depleting 3P0 (Fig. 3.5b). Approximately half

of the atoms do not return to the ground state, presumably because they decay into

other, untrapped metastable states (i.e., certain sublevels of 3P2 , or states with 4f

electron excitations).
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Figure 3.6: We demonstrate the rearrangement protocol by taking 25 randomly loaded
1D arrays and deterministically rearranging each array into a pattern that can be
stacked to replicate the Princeton University shield logo.

The similarity of the measured 3P0 lifetime at 6 MHz trap depth (0.51(2) s) and the

lifetime of the metastable state described in Fig. 2.3 (0.54(7) s) suggests that the

observed state is 3P0 . Definitive proof could be obtained by repumping the 3P0 level,

but we do not currently have a suitable laser available.

3.3 Tweezer Rearrangement

Work to implement rearrangement in our experimental system was led by Shuo Ma.

Our high-fidelity imaging enables us to create large 1D defect-free arrays with high-

fidelity. After the tweezers are loaded a fluorescence image is taken to determine which

sites of the array have an atom. Following the initial image the RF tones associated

with empty sites are turned off and a waveform is calculated to move the the RF tones

of the filled sites to the desired position in the final array. The trajectory of each

atom is designed to follow a minimum-jerk trajectory, which ensures the position and
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Figure 3.7: We compare the occupation probability of each site in a 40 site array before
and after rearrangement. The average initial occupation of the 40 sites (red points)
is about 55%. After rearrangement the left most sites are filled with almost unity
probability and the occupation probability of the nth is consistent with the binomial
distribution suggested by the initial loading probability, indicating an extremely low-
loss rearrangement process

velocity of the atom is changed as smoothly as possible to minimize loss during the

rearrangement process. The rearrangement waveform must be calculated as quickly

as possible to minimize the probability of atom loss during the waveform calculation.

To achieve fast computation times we utilize a parallel GPU computing architecture

Nvidia CUDA (Compute Unified Device Architecture) to leverage the 1500 GPU cores

in the Nvidia 1650Ti card used in our experiment. The ability to use parallel GPU

computation leads to a computation time linear in the number of trajectories we need

to calculate, with a roughly 50 µs calculation time per trajectory.

Fig. 3.6 shows an example of the rearrangement protocol where we separately re-

arrange 25 randomly loaded 1D arrays to deterministically generate the Princeton
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University shield when the rearranged 1D arrays are stacked into a single image. We

also measure the efficacy of the rearrangement by stochastically loading a 40 site ar-

ray and moving all filled sites to one side of the array (Fig. 3.7). The average initial

occupation of each site is ∼ 55% prior to rearrangement. After rearrangement the

occupation of the nth site follows the binomial distribution with an initial loading

probability of 55%, indicating a low-loss rearrangement process.
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Chapter 4

Rydberg Spectroscopy

After high-fidelity single site imaging and control of 174Yb, the next crucial ingredient

for engineering complex quantum systems in an Yb tweezer array is introducing long-

range interactions through Rydberg states. However, complete spectroscopy of low

angular momentum Rydberg states in 174Yb is incomplete in the literature. Notably,

the 3S1 series, which is a natural candidate for two-photon Rydberg excitation using

3P1 as an intermediate state, was previously unobserved. This motivated our study

of the spectroscopy of 174Yb Rydberg states.

We measure the energies of 174Yb Rydberg states using MOT depletion spectroscopy

[96, 97]. First, we load a MOT on the 1S0 to 3P1 transition in Yb. After compressing

the MOT to ∼ 200 µm by ramping the power and detuning, we image the MOT

on a camera while exposing it to a UV laser (about 5 mW in a ∼ 1 mm beam).

Exciting atoms from 3P1 to a Rydberg state reduces the MOT fluorescence amplitude

in the image. As detailed in section 2.4, we generate UV light at 308 nm by summing

the output of a Ti:Sapphire laser with a 1565 nm fiber laser and doubling the 616

nm output light in a resonant cavity. To perform high resolution spectroscopy, we

change the frequency of the TiS and measure the frequency of the 616 nm output
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Figure 4.1: An image of the intra-vacuum electrodes used to control the electric field
environment of the atoms.

on a wavemeter with 2 MHz (3σ) accuracy (Toptica WS8-2). The wavemeter is

calibrated with the 174Yb 1S0 to 3P1 transition frequency (539386602.225 MHz). A

typical spectrum is shown in Fig. 4.3a for n = 49 3S1 .

4.1 Electric Field Dependence and Control

Due to their large dipole moments Rydberg states are extremely sensitive to DC

electric fields. As mentioned in the Section 1.3, the magnitude of DC stark shifts

scale as n∗7, so any non-zero static electric fields will quickly disturb spectroscopic

measurements of high-n Rydberg states.

In order to control the electric field observed by the atoms, we have 16 intra-vacuum

electrodes that allow us to zero the electric field in the region of the atoms (shown in

Fig. 4.1).

To null the fields we tune the voltages of the electrodes in the X (Vx), Y (Vy), and Z

(Vz) axes of our experiment. We set the voltages of the 16 electrodes as is shown in

Table 4.1.
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Electrode Voltage
1 1

2
(−Vx + Vy + Vz)

2 1
2
(−Vx + Vy + Vz)

3 1
2
(Vx + Vy + Vz)

4 1
2
(Vx + Vy + Vz)

5 1
2
(−Vx − Vy + Vz)

6 1
2
(−Vx − Vy + Vz)

7 1
2
(Vx − Vy + Vz)

8 1
2
(Vx − Vy + Vz)

9 1
2
(−Vx + Vy − Vz)

10 1
2
(−Vx + Vy − Vz)

11 1
2
(Vx + Vy − Vz)

12 1
2
(Vx + Vy − Vz)

13 1
2
(−Vx − Vy − Vz)

14 1
2
(−Vx − Vy − Vz)

15 1
2
(Vx − Vy − Vz)

16 1
2
(Vx − Vy − Vz)

Table 4.1: Voltage on each electrode as a function of the desired voltage in all three
orthogonal axes.

Then for each axis of the experiment we vary Vx(y,z) and measure the resonance of

a 3S1 Rydberg state. We fit a quadratic function to the measured resonances as a

function of Vx(y,z) and take the minimum of the quadratic fit to be the electrode

voltage at which the electric field is zeroed in that axis. An example for the n = 85

3S1 state is shown in Fig. 4.2a.

However, a complication in the process of zeroing the electric fields is that changing

the potential on the electrodes results in an extremely long (10-30 minutes) settling

time for the electric field seen by the Rydberg atoms, which we believe arises from

significant field penetration into the glass and slow redistribution of charges there. In

practice, this makes finding and maintaining a precise null difficult. For example, we

may measure a set of voltage-dependent resonances to find the quadratic minimum

of the stark shift in electrode voltage and then when we try to return the electrode

voltage to the point of minimum stark shift, the change in voltage may activate a

charge redistribution process which makes the previously measured null field point
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Figure 4.2: a) A measurement of the n = 85 3S1 resonance as a function of the
electrode voltage along the x-axis (Absolute measurement of resonance has arbitrary
offset). We fit the resonance to a quadratic function of the electrode voltage to find
the null-field point. b) An example of repeated measurement of n = 85 3S1 resonance
as electrode voltage is toggled repeatedly between V1 = −0.95 and V2 = +0.05 V. The
first resonance scan is at the bottom of the figure, where the blue regions indicate a
resonance feature. At first there is a significant difference between the resonances at
the two fields (∼40 MHz), however, as we repeatedly scan the resonance (∼30 s per
scan) the two resonances begin to move towards each other until they eventually settle
to be equal after 20-30 minutes. Returning to Vnull = V1+V2

2
achieves the null-field

point without re-initiating a charge distribution process.

no longer the null field point.

We study the long time-scale settling of the fields by repeatedly toggling between

two electrode voltages (V1 and V2) in a single axis and measuring the resonance of

the Rydberg state. The idea behind this method is to keep the average electric field

experienced by the slow moving charges in the glass cell constant, while allowing

us to change the field at the atoms on a shorter time scale. The initial toggling

will initiate a change in the average electric field and thus activate a long time-scale

redistribution of charges. However, if we could toggle the voltages such that after

the initial redistribution of charges V1+V2
2

= Vnull, then after the measurement we

could return the voltage to the zero-field point (Vnull) without activating a charge

redistribution process in the glass cell, since the average field experienced by the
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cell will not have changed over relvant time scales. The signature of the condition

V1+V2
2

= Vnull would be if the resonance condition E(V1) = E(V2) is met after the

initial charge redistribution.

This process is demonstrated in Fig. 4.2b, where the resonance is continuously mea-

sured while toggling Vx between -0.95 and +0.05 V. These resonances initially drift

due to charge redistribution in the glass cell and then settle after 20-30 min such

that E(V=-0.95) = E(V=+0.05). This allows us to estimate the null voltage to be

Vnull = −0.45 V.

As a solution to the problem of long time-scale electric field drifts, we found that the

field settling time can be shortened dramatically by illuminating the glass cell with

a ∼1 W UV LED at 365 nm (Ref. 27 of [59]). After changing the electrode voltages

while the UV LED is illuminating the glass cell, we observe no change in Rydberg state

resonances from repeated measurements (10s of seconds per measurement), suggesting

an upper bound on the field settling time of a few seconds. We believe the UV

light ionizes charge traps in the glass cell, resulting in much faster equilibration of

the charge distribution when the electrode potentials are changed. This allows field

cancellation at the mV level. The resulting offset potentials are stable for weeks,

which will allow for more precise study of the high-n spectroscopy in the future.

4.2 Spectroscopy of 3S1
174Yb Rydberg Series

We perform spectroscopy on the previously unmeasured 3S1
174Yb Rydberg series. Ta-

ble 4.3 presents the measured energies for the 3S1 series. The high resolution waveme-

ter gives an accuracy of 4 MHz in UV laser frequency. To determine the absolute

energy of the levels, we add the 174Yb 1S0 to 3P1 transition frequency, determined

from 171Yb 1S0 F = 1/2 to 3P1 F = 3/2 frequency (539390406.833 MHz) measured in

[98], along with the isotope and hyperfine shifts from [99]. By fitting the measured
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(a)

(b)

Figure 4.3: (a) Example spectrum for the 3S1 Rydberg line at n = 49. (b) Measured
quantum defects of the 3S1 Rydberg series vs. principal quantum number. Error
bars show uncertainties in the defects from the 4 MHz uncertainty in the measured
UV frequencies. The purple line is a fit to an extended Rydberg-Ritz model for
35 < n < 80.

energies to EI − Ry
(n−δ)2 in the region 60 ≤ n ≤ 80, we determine the 174Yb ionization

energy to be EI = 50443.07074(4) cm−1, within 10 MHz from the value reported in

Ref. [100] (Ry is the Rydberg constant).

The measured quantum defects for n = 28 to n = 100 are shown in Fig. 4.3b.

To obtain a practical model for the defect at lower n, we fit them to the extended

Rydberg Ritz formula:

δ(n) = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ ... (4.1)

The fit parameters for the region 35 < n < 80 are summarized in Table. 4.2, and the
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fitted energies are within our experimental uncertainty in this range.

Fit Parameter Value

δ0 4.4382(2)
δ2 6(1)
δ4 -1.8(4)×104

δ6 1.8(5)×107

δ8 -7(2)×109

Table 4.2: Parameters for the fit to the extended Rydberg-Ritz model in Eq. (4.1),
for 35 < n < 80.

The measured defects are flat around δ = 4.439 from n = 40 to n = 80. At high n

(n > 85), we observe a systematic deviation of the energies to higher values. One

possible explanation for this would be DC Stark shifts from stray electric fields, which

scale as n∗7. The dependence of the high-n deviations, however, is closer to n∗12 than

the expected n∗7 scaling from DC Stark shifts. The deviations could instead be

explained by a drifting electric field in time, or could point to something else.
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n Energy
(cm−1)

n Energy
(cm−1)

28 50245.5285 64 50412.1374
29 50261.2497 65 50413.1505
30 50275.1772 66 50414.1147
31 50287.5688 67 50415.0329
32 50298.6401 68 50415.9083
33 50308.5712 69 50416.7432
34 50317.5130 70 50417.5402
35 50325.5925 71 50418.3016
36 50332.9169 72 50419.0294
37 50339.5773 73 50419.7256
38 50345.6515 74 50420.3921
39 50351.2064 75 50421.0303
40 50356.2995 76 50421.6420
41 50360.9806 77 50422.2285
42 50365.2929 78 50422.7914
43 50369.2741 79 50423.3316
44 50372.9574 80 50423.8507
45 50376.3717 81 50424.3495
46 50379.5425 82 50424.8291
47 50382.4925 83 50425.2906
48 50385.2417 84 50425.7348
49 50387.8079 85 50426.1625
50 50390.2071 86 50426.5745
51 50392.4533 87 50426.9718
52 50394.5593 88 50427.3548
53 50396.5366 89 50427.7242
54 50398.3955 90 50428.0809
55 50400.1451 91 50428.4254
56 50401.7940 92 50428.7578
57 50403.3496 93 50429.0794
58 50404.8190 94 50429.3902
59 50406.2082 95 50429.6906
60 50407.5232 96 50429.9813
61 50408.7690 97 50430.2627
62 50409.9505 98 50430.5352
63 50411.0720 99 50430.7988
64 50412.1374 100 50431.0545

Table 4.3: Measured energies of the 174Yb 6sns 3S1 Rydberg series from n = 28 to
n = 100.

71



Series δ0 δ2 δ4
3D1 2.75241(2) 3(3) ×10−1 -1(1) ×102

3D2 2.74832(4) -5(1) ×10−1 3.0(4) ×102

1D2 2.7114(2) -3.6(4) 3.4(2) ×103

Table 4.4: Fitted quantum defects for D Rydberg series.

4.3 Spectroscopy of D 174Yb Rydberg Series

We also perform spectroscopy on a set of L = 2 Rydberg series, 3D1 , 3D2 , and 1D2 .

1D2 is only accessible out of 3P1 due to singlet-triplet mixing with 3D2 . The measured

quantum defect as a function of the principal orbital quantum number, n, for each

series is shown in Fig. 4.4. In the range 40 ≤ n ≤ 60 the quantum defect of each series

is flat, showing that each of these series is not affected by a perturbing state in this

region. The measured quantum defects for 3D2 and 1D2 , shown in Table 4.4 are in

good agreement with previously measured quantities by Ref. [100], which performed

spectroscopy with a two photon excitation process through the 1P1 state. We also

show the first measurement of the 3D1 Yb Rydberg series, which is inaccessible out

of 1P1 .

However, at large principal quantum numbers the measured lines begin to look far

more complex. First, at n ≈ 64 the 3D2 series begins to split into two lines, which we

attribute to stray electric fields causing variable Stark shifts on different mj levels.

Similarly, we see the 1D2 series begin to split into two lines at n ≈ 90. Furthermore,

we observe the appearance of additional lines (black and red points in Fig. 4.4). These

lines appear to form an avoided crossing like feature near n = 80. We hypothesize

that this line is a signature of the highly-perturbed 3P1 Rydberg series, which has

previously been measured to have a moving quantum defect, which crosses through

the resonance of the 3D1 and 3D2 series near n = 80 [101]. In principle we should not

be able to excite to the 6sns 3P1 series out of 6s6p 3P1 , however, with even small stray

electric fields the 3P1 series can strongly mix with 3D1 leading to the avoided crossing
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Figure 4.4: Quantum defect, δ of the 3D1 (blue points), 3D2 (green points), and
1D2 (orange points) versus principal quantum number n. For n < 60 the quantum
defects are flat, indicating a non-perturbed Rydberg series. At higher n we theorize
that stray electric fields lead to mj dependent Stark shifts causing splitting of lines.
Furthermore, we begin to observe an additional line which has a highly-n dependent
quantum defect, which we hypothesize is related to the strongly perturbed 3P1 series.

type feature, which we observe.
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Chapter 5

Trapped alkaline earth Rydberg

atoms in optical tweezers

The work described in this chapter is also presented in Ref. [40]

A central challenge to experiments with Rydberg atoms in standard, red-detuned

optical tweezers is that they are repelled from the intensity maximum. This repul-

sion arises from the ponderomotive potential of the essentially free Rydberg electron,

described by the polarizability αp = −e2/meω
2 (ω denotes the frequency of the trap

light, and e, me are the electron charge and mass), which is always negative [102].

To mitigate this effect, the vast majority of experiments operate with the tweezers

turned off during the Rydberg excitation, which limits the interaction time to 10-20

µs because of the expansion of the atoms at typical temperatures of 10-20 µK. This

is significantly below the typical room temperature Rydberg state lifetime of 100-300

µs for n = 60 − 100 S states [103, 16], and far below the tens of seconds achievable

with circular states in cryogenic cavities [104]. Furthermore, heating associated with

modulating the trap may impact the gate fidelity in sequential operations.

In recent work, it has been demonstrated that the ponderomotive potential can
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be used to trap Rydberg atoms in a 3D intensity minimum. Rubidium Rydberg

states have been trapped for up to 200 µs in “bottle beams” generated by focusing a

Laguerre-Gauss beam with orbital angular momentum [105], while simultaneous trap-

ping of Rydberg states has been achieved in a lattice of blue-detuned light sheets,

with 50 µs dwell time for atoms in Rydberg states [106]. The stability of these traps

requires that the spatial extent of the intensity minimum be large compared to the

Rydberg electron orbit (Re = 3n2a0/2 ≈ 0.8µm for n = 100). This necessitates

a large-waist optical trap, a corresponding increase in total optical power per trap,

and imposes a maximum principal quantum number that can be trapped for a given

power, of order n = 90 in Refs. [105, 106]. Ensembles of Rydberg atoms have been

trapped using several approaches [107, 108, 109, 110, 111].

In this chapter, we demonstrate an alternate approach: leveraging the polarizability

of the Yb+ ion core to directly trap Yb Rydberg atoms in conventional, red-detuned

optical tweezers at 532 nm. Unlike alkali atoms, the ion core of alkaline earth atom

Rydberg states has significant polarizability at typical laser trapping wavelengths.

The ponderomotive potential of the Rydberg electron contributes an anti-trapping

effect, but it is small for short wavelengths and high-n Rydberg states where the

beam waist is comparable to or smaller than Re. We demonstrate trap lifetimes

exceeding 100 µs for n = 75 with less than 10 mW of optical power per trap. Trap-

induced losses from photo-ionization are negligible for S states, but slightly shorten

the lifetime of P and D states. We study the interplay of the ponderomotive and

Yb+ core potentials in detail, including the dependence on the Rydberg level, and

observe that “magic” trapping is possible for certain pairs of Rydberg states. A

theoretical model is presented to efficiently calculate the trapping potentials based on

a decomposition of the optical tweezer into irreducible tensor operators. We study the

coherence properties of a superposition of trapped Rydberg levels, achieving T2 = 59

µs, limited by finite temperature and the differential light shift of the two states in
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the trap but exceeding the lifetime of the Rydberg atom in the absence of the trap.

This work also presents the first measurement of the lifetime of high-n Yb Rydberg

states.

5.1 Calculation of Rydberg Trapping Potentials

To calculate the potential seen by a Rydberg atom in an optical tweezer, we compute

the energy as a function of the position of the atomic nucleus R. To make the

calculation tractable, we restrict our calculation to states with electron configuration

6snl, and make the approximation that the inner 6s and outer nl electrons can be

treated separately [61].

The inner electron polarizability is dominated by the Yb+ ion 6s−6p transitions. For

linearly polarized trapping light, there is only a scalar polarizability, which has been

computed at 532 nm to be αc = 96 atomic units (a.u.) for the 2S1/2 ground state

[112], giving rise to a potential Uc = − 1
2ε0c

αcI. αc is around 35% of the ground state

(6s2) polarizability (275 a.u. [113] or 226 a.u. [114]), indicating that suitably deep

traps can be reached with the same powers used to trap ground states. Intriguingly, it

is also very close to the calculated polarizability of the metastable Yb0 6s6p 3P0 level

(95 a.u. [113] or 91 a.u. [114]), which may enable magic-wavelength trapping [39] of

high-n Rydberg states and the upper clock state.

The ponderomotive potential of the outer, Rydberg electron is given by Eq. 5.11,

reproduced here:

Ur = − 1

2ε0c
αp

∫
d3r|ψ(r)|2I(r +R). (5.1)

where αp = −e2/meω
2 is the ponderomotive polarizability, r is the coordinate of the

electron with respect to the nucleus at R, and ψ(r) is the electronic wavefunction.
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The evaluation of the integral is simplified if I(r) can be expanded in irreducible

tensor operators; then, the Wigner-Eckart theorem allows Ur to be expressed for any

state in terms of angular factors and fewer than L+ 1 radial integrals. For a lattice,

this expansion can be done analytically [61, 115]; however, for a tweezer or other,

arbitrary potential it must be done numerically. Specifically, we seek an expansion in

spherical harmonics centered on the nuclear coordinate R:

I(r +R) =
∑
kq

I(k)
q =

∑
kq

fkq(r;R)C(k)
q (r̂). (5.2)

Here, C
(k)
q (r̂) =

√
2k+1

4π
Y

(k)
q (r̂) is the normalized spherical harmonic and r = |r| and

r̂ = r/r, and fkq(r) are the coefficients to be found representing I. These functions,

which have R as a parameter, can be computed by exploiting the orthonormality of

the spherical harmonics as:

fkq(r;R) =

√
2k + 1

4π

∫∫
dΩI(R+ r)Y (k)

q (θ, φ). (5.3)

Here, the angular integration is performed with respect to r.

With the potential decomposed in this way, we can evaluate the matrix element

between arbitrary states with quantum numbers n′l′m′ and nlm using the Wigner-

Eckart theorem:

〈n′l′m′|I|nlm〉 =
∑
kq

〈n′l′m′|I(k)
q |nlm〉 =

∑
kq

(−1)l
′−m′

 l′ k l

−m′ q m

 〈n′l′||I(k)
q ||nl〉. (5.4)
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The reduced matrix element (with prefactor fkq) is given by

〈n′l′||I(k)
q ||nl〉 =

(−1)l
′√

(2l′ + 1)(2l + 1)

l′ k l

0 0 0


×
∫
drr2Rn′l′(r)Rnl(r)fkq(r;R), (5.5)

and the potential for a given state is

Ur = − 1

2ε0c
αp〈nlm|I|nlm〉. (5.6)

This calculation describes the action of Ur in the nlm basis, but the Rydberg states

of real alkali and alkaline atoms have significantly resolved fine structure splittings.

Therefore, these expressions must be re-derived in the appropriate basis. Before pro-

ceeding further, we note several properties of the potential that are already apparent.

First, the contribution of odd-k terms vanishes between states of the same l. Second,

fkq = 0 when q 6= 0 for R on the z-axis, since the potential is cylindrically symmetric.

Lastly, only terms with k ≤ l have non-vanishing contributions, in order to satisfy

the conservation of angular momentum (here, l is the total angular momentum, but

in the fine structure basis, this will be replaced by j = l + s).

Taken together, these allow the potential Ur for low-l states at R = 0 to be evaluated

from a small number of fkq, with k even and q = 0. At high-l (i.e., circular states)

it appears that a large number of fkq contribute to the potential. However, the

radial matrix elements and angular coefficients of high-l states decay rapidly with

k, fundamentally as a consequence of the fact that a Gaussian beam does not have

significant angular momentum, and we find that truncating the calculation to the

lowest few values of k is an excellent approximation.
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Additionally, we note that some of the off-diagonal matrix elements 〈n′l′m′|I|nlm〉

are of similar magnitude to the diagonal elements, and in this sense Eq. 5.6 is only

the first order term in a perturbative calculation of the energy shift. For the trap

depths considered here, the total ponderomotive potential is smaller than the spacing

between all of the unperturbed energy levels (including m levels, as we apply a 4.5 G

magnetic field), such that the next order terms do not change the potential signifi-

cantly. However, in the absence of external fields, the off-diagonal terms in m can be

significant. More generally, the terms between different l,m may be exploited to drive

transitions between Rydberg states in an intensity-modulated beam, where the mod-

ulation is resonant with the energy difference between the initial and final states. This

could be particularly useful in connection with high-order Laguerre-Gauss beams to

create large k terms to efficiently excite circular states (following Ref. [116]). Unlike

two-photon electric dipole transitions, which are limited to k ≤ 2, the ponderomotive

potential can drive many angular momentum quanta in a single step.

We now consider the evaluation of the reduced matrix elements separately for alkali

atoms and alkaline earth atoms.

5.1.1 Alkali atoms

To compute the potential for alkali atoms, the matrix elements are needed in the

spin-orbit (fine structure) basis: 〈nsljm|I|nsljm〉. As before, we start with the

Wigner-Eckart theorem:

〈nsljm|I(k)
q |nsljm〉 =

(−1)j−m

 j k j

−m q m

 〈nslj||I(k)
q ||nslj〉. (5.7)

79



Then, we reduce the matrix element again to one only acting on l [117]:

〈nslj||I(k)
q ||nslj〉 =

(−1)s+l+j+k(2j + 1)

l j s

j l k

 〈nl||I(k)
q ||nl〉. (5.8)

The reduced matrix element here is the same as Eq. (5.5), and the coefficients are

tabulated in Table 5.1.

5.1.2 Alkaline earth atoms

In the case of divalent Yb, we are interested in calculating the trapping potential

for Rydberg states with term symbols 2S+1LJ and 6snl electronic configurations.

The LS-coupled basis is a close approximation to the true eigenbasis: in Yb the

measured single-triplet mixing arising from spin-orbit coupling in high-n 3P1 states is

approximately 6% [118], and this effect is presumably smaller in lighter alkaline earth

atoms such as Sr. The ponderomotive potential only acts on the outer electron, so

we need to reduce the matrix elements to account for this.

Using the Wigner-Eckart theorem, we calculate the diagonal matrix elements between

LS-coupled states with S, L, J denoting the total electronic spin, orbital angular mo-

mentum and overall angular momentum, and M the z-projection of J :

〈nSLJM |I(k)
q |nSLJM〉 =

(−1)J−M

 J K J

−M q M

 〈nSLJ ||I(k)
q ||nSLJ〉. (5.9)
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Then we reduce the matrix element further to one acting on total L:

〈nSLJ ||I(k)
q ||nSLJ〉 =

(−1)L+S+J+k(2J + 1)

L J S

J L k

 〈nL||I(k)
q ||nL〉. (5.10)

Now, we would like to reduce 〈nL||I(k)||nL〉 to a matrix element on the outer electron.

However, since we are only interested in states where the inner electron is in 6s

(li = 0), we have the situation that L = l0 and we can just replace L with lr in

the above expression. Therefore, the final result for the ponderomotive potential for

alkaline Rydberg states of the form msnl is the same as for alkali atoms, using the

total angular momentum quantum numbers SLJM instead of those for the Rydberg

electron alone, sljm.

5.1.3 Numerical evaluation of radial integrals

To evaluate the potential numerically, the radial integrals must be performed. fkq(r)

is computed using the Gaussian solution to the paraxial wave equation [119]. In

the literature, several different approximations have been employed to find Rydberg

wavefunctions for the computation of matrix elements using experimentally deter-

mined quantum defects, including Coulomb functions and numerical integration of

the Schrödinger equation. In this work, we observe that the reduced matrix elements

〈nl||I(k)
q ||nl〉 depend only on the square modulus of the wavefunction and vary ex-

tremely slowly with n and l. Therefore, we compute the reduced matrix elements for

integer n using hydrogen radial wavefunctions Rnl, and interpolate between them to

compute the effective matrix element for n∗ = n−δnSLJ , where δnSLJ is the measured
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quantum defect.

5.1.4 Angular dependence

Since the n and l dependence of the radial integrals is small, the variation of the

trapping potential between nearby Rydberg states arises primarily from the angular

factors in the Wigner-Eckart theorem and the reduction of the dipole operator (Eq.

5.9 and 5.10). These are tabulated for alkali and alkaline earth atoms in Table 5.1.

In the alkali case, states of the same j have the same angular factors and therefore

approximately the same trapping potential [105]. In the alkaline case this is no longer

true; however, the states 1S0, 3S1 and 3P0 have the same (purely scalar) potential.

Term k = 0 k = 2 k = 4
2S1/2 1 0 0
2P1/2 1 0 0
2P3/2 1 1/5 0
2D3/2 1 1/5 0
2D5/2 1 8/35 2/21
1S0 1 0 0
3S1 1 0 0
1P1 1 2/5 0
3P0 1 0 0
3P1 1 -1/5 0
3P2 1 1/5 0
1D2 1 2/7 2/7
3D1 1 1/5 0
3D2 1 1/7 -4/21
3D3 1 8/35 2/21

Table 5.1: Angular factors in Ur, expressed as the coefficient of the radial integral
involving fk0 for the m = 0 state.

5.2 Lifetime of Trapped 174Yb Rydberg States

The trapping potential for Ytterbium Rydberg states with the configuration 6snl

arises from separate contributions from the 6s core and nl Rydberg electrons [61].
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Figure 5.1: (a) Cartoon of the experiment, showing a six-tweezer array, the Rydberg
electron wavefunction, and the Yb+ ion core. (b) Radial probability distributions of
Rydberg wavefunctions relative to the optical tweezers (green). (c) Calculated trap
depth, normalized to the 1S0 ground state for the same power and beam waist (here,
0.65µm).

In SI units, the core potential Uc(R) = − 1
2ε0c

αc(ω)I(R) is derived from the dynamic

electric dipole polarizability αc(ω) of the Yb+ ion 6s 2S1/2 state (here, I(R) is the

light intensity at the nuclear coordinate R, ε0 is the permittivity of free space, and c

is the speed of light). For 532 nm light, this is of the same order of magnitude as the

Yb0 ground state potential, as the principal Yb+ transitions (369, 329 nm) are not

too far from the principal Yb0 transition (399 nm). The nearly free Rydberg elec-

tron experiences a ponderomotive potential that depends on the spatially-averaged

intensity seen by the Rydberg electron as [102]:

Ur(R) = − e2

2ε0cmeω2

∫
|ψnl(r)|2 I(r +R)d3r. (5.11)
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Here, ψnl(r) is the wavefunction of the nl electron (r is the electron coordinate

relative to the nucleus) (Fig. 5.1b). In Fig. 5.1c, the sum of these contributions for

the 3S1 Rydberg states in an optical tweezer (λ = 532 nm, 1/e2 radius w0 = 650 nm) is

shown as a function of the principal quantum number n. For low n where the Rydberg

wavefunction is significantly smaller than the beam waist, the total polarizability is

just αc(ω) − e2/mω2, while at high n it asymptotes to αc(ω), as the overlap of the

Rydberg electron with the tweezer decreases.

We characterize the trapping potential for Yb Rydberg states using an array of six

optical tweezers loaded with single 174Yb atoms as described previously in Ref. [81].

A large array spacing (d = 24µm) minimizes the influence of interactions on the

spectroscopy. We excite atoms to Rydberg states using sequential single-photon π

pulses on the 1S0→ 3P1 (mJ = −1) and 3P1 (mJ = −1) → 6sns 3S1 (mJ = −1)

transitions; this configuration is somewhat inefficient because of the finite lifetime of

the intermediate state (860 ns), but avoids noise on our 556 nm laser system that was

not designed for coherent two-photon excitation. The 308 nm light for the Rydberg

transition is generated by summing the output of a Ti:Sapphire (TiS) laser with a 1565

nm fiber laser and doubling in a resonant cavity. We have generated more than 100

mW in this configuration, but experiments described here used approximately 5 mW

focused to 10 µm. We primarily study the Yb 3S1 state, which has not been previously

observed to the best of our knowledge. The series is relatively unperturbed at high-

n, with a quantum defect of approximately 4.439 (additional details are provided in

section 4.2). For this state, we achieve a Rabi frequency of Ω = 2π × 2.5 MHz.

We measure the trapped lifetime of a Rydberg atom by imaging the array of ground

state atoms, exciting to a particular Rydberg state, waiting a variable time τ , and

de-exciting using a second UV laser pulse before acquiring a second image. If the

Rydberg atom leaves the trap or changes states between the UV pulses (i.e. from
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Figure 5.2: (a) Survival probability of the n = 75 3S1 state with (black, τ = 108 µs)
and without (red, τ = 28 µs) the traps. Inset: Trapped Rydberg lifetime τ of the
3S1 Rydberg state vs. trap power at n = 75. (b) Trapped Rydberg lifetime of the
3S1 state vs. principal quantum number n, with (black) and without (red) the trap.
The dashed red line shows the untrapped lifetime of a ground state atom under
the same conditions. (c) Trap depth of the 3S1 Rydberg state vs principal quantum
number. The green line is the theoretical trap depth using the calculation from Fig.
5.1c. (d) Relevant Yb energy levels for Rydberg excitation.

spontaneous decay or interaction with blackbody radiation), it will not be de-excited

by the second pulse and will be recorded as an atom loss between the two images. A

typical trace for the n = 75 3S1 state is shown in Fig. 5.2a using 9 mW per trap (12

MHz ground state trap depth). If the trap is turned off between the UV pulses, the

Rydberg atom survives for 28 µs, consistent with the measured ground state lifetime

85



in the absence of a trap. When the trap is on between the UV pulses, the lifetime

is extended to 108 µs. To investigate the role of trap-induced loss processes such as

photo- or auto-ionization, we measure the lifetime as a function of the trap depth,

shown in the Fig. 5.2a inset. We observe no influence of the trap depth on the lifetime

over a wide range of powers.

We repeat these measurements at several values of principal quantum number n.

At low n (e.g. n = 55), the lifetime with the trap is shorter than without the

trap, suggesting that these atoms are repelled. Above n ≈ 60, the trapped lifetimes

are longer, consistent with trapping. Curiously, they reach a maximum at n = 75

and then decrease, although the intrinsic Rydberg lifetimes are expected to increase

monotonically as n2. We do not observe any trap power dependence of the lifetime

between n = 70 and n = 95, ruling out trap-induced losses. We conjecture that noise

or cavity effects from our in-vacuum electrodes may play a role in the reduction of

the lifetime.

To study the interplay of the ponderomotive and core ion polarizabilities, we mea-

sure the trap depth as a function of n using the AC stark shift of the UV 3P1 to

3S1 transition. We measure a crossover from anti-trapped to trapped around n = 60,

consistent with the lifetime increase. To obtain the absolute shift of the Rydberg

state in the trap, we subtract the 3P1 trap depth, which we infer from the measured

3P1 -1S0 light shift in the trap (7.54 MHz) and the ratio of the polarizabilities of these

states R = α 3P1
/α 1S0

≈ 0.39 [1]. Because of uncertainty in R, there is a systematic

uncertainty of ∼ 0.2 MHz in the Rydberg trap depth, which allows the crossover n

between trapping and anti-trapping to vary between 56 and 63. Fixing it at n = 62

gives good agreement with a model with w0 = 650 nm and αc(532 nm) = 107 a.u.,

within 12% of the value calculated in Ref. [112].

Next we study the state-dependent nature of the trapping potential by driving mi-

86



crowave transitions between Rydberg states following optical excitation to a 3S1 state

(Fig. 5.3). The shift of the microwave transition when the dipole trap is applied

probes the differential polarizability of these states. The 3S1 and 3P0 states have

nearly vanishing differential polarizability: on top of an estimated trap depth of 1.4

MHz, the transition frequency shifts less than 10 kHz. This is in agreement with a

theoretical prediction that the 1S0 , 3P1 , and 3P0 states should experience the same,

purely scalar, ponderomotive potential, and the fact that the ion core polarizability

is independent of the state of the Rydberg electron. In contrast, the 3P2 state has a

strong mJ -dependent shift arising from the rank-2 (tensor) component of the pondero-

motive potential (Fig. 5.3b). Intuitively, this is caused by the different orientations

of the mJ angular wavefunctions with respect to the tweezer potential, which is not

spherically symmetric. The observed tensor shift of 300 kHz is close to the computed

value of 400 kHz using the model parameters discussed above.

We have also measured the lifetimes of several P and D states, presented in Table

5.2. Near n = 75, the 3P2 and 1D2 lifetimes are similar to 3S1, while the 3P0 lifetime

is nearly 10 times shorter, presumably because this series is very strongly perturbed

[101]. However, both P and D states experience a moderate reduction in lifetime with

increasing trap power, attributable to photo-ionization in agreement with previous

calculations for Rb [57].

To demonstrate the utility of trapping Rydberg states for quantum simulation and

quantum computing, we probe the coherence properties of a superposition of Rydberg

levels. In Fig. 5.4a, we show Rabi oscillations between the n = 74 and n = 75

3S1 states, driven by a two-photon microwave transition detuned by 40 MHz from the

3P0 intermediate state. The oscillations persist for more than 60 µs, more than twice

the lifetime of an untrapped Rydberg atom. The coherence time is quantified using a

Ramsey sequence (Fig. 5.4b) and found to be T ∗2 = 22µs, which is in agreement with
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(a)

(b)

π556 π308 π308MW

Figure 5.3: (a) Microwave spectrum of the n = 75 3S1 to n = 74 3P0 transition with
(black) and without (red) the traps, demonstrating the magic trapping condition. The
black data are shifted for clarity and the solid lines are Lorentzian fits. (b) Microwave
spectra of the n=75 3S1mj = −1 to n = 74 3P2mj = −2,−1, 0 transitions, showing
the tensor light shift of different mj levels from the ponderomotive potential. For
each transition, zero detuning indicates the measured transition frequency without
the trap, indicated in the figure. The solid vertical lines show the predicted m2

j

dependence of the tensor light shift.
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(a) (b) (c)π556 π308 π308MW π/2 π/2 π/2 π/2π

τ τ

Figure 5.4: (a) Two-photon Rabi oscillations between n = 75 3S1 and n = 74 3S1 . The
solid line is a cosine fit with exponential decay time τ = 42µs. Control data without
microwave pulses (black data) shows T1 for comparison. (b) Ramsey measurement
of T ∗2 . The orange line is a simulation that takes into account dephasing from the
differential light shift between the two levels (90 kHz) and a finite atomic temperature
(13 µK), yielding a 1/e decay time of 22µs. (c) Hahn echo measurement. The black
line is a exponential fit that yields T2 = 59µs.

dephasing from thermal motion [120] for an atom with a temperature of T = 13 µK

and the (measured) difference in the potential depth for the two states of 90 kHz.

A Hahn echo sequence yields T2 = 59µs, which is shorter than the limit T2 = T1

because the axial trap period is longer than T1, so the revival in coherence is not

reached (here, T1 = 108µs is the lifetime of the upper and lower states).

These results demonstrate that trapping Rydberg states of alkaline earth atoms using

the core polarizability can extend the coherence of quantum operations beyond what

is possible with un-trapped atoms. This may lead to improved fidelities for quantum

simulators and Rydberg gates, especially between distant atoms when the interaction

is small. The expected improvement from trapping Rydberg states is most significant

when the Rydberg lifetimes are very long, as expected for low-l states at cryogenic

temperatures, and especially circular Rydberg states.

We conclude with a discussion of several aspects of these results. First, the coherence

times in Fig. 5.4 are limited by a slight n-dependence of the trapping potential. While

the ponderomotive potential itself is only weakly n-dependent, it contributes a large
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fractional n-dependence when it is almost completely cancelled by the n-independent

core potential near the crossover at n ≈ 60. In future experiments where a higher

degree of state-insensitive trapping is required, this can be improved by using higher

n states or by pushing the crossover to lower n using shorter wavelength trapping

light (to increase the core polarizability and decrease the ponderomotive potential)

or smaller beam waist. Tuning the beam waist allows the precise potential for a

particular Rydberg state to be manipulated, which may be advantageous for fine-

tuning triply-magic trapping of ground, clock and Rydberg states, for example [121].

Second, we consider the prospect of trapping circular Rydberg states of Yb. The

photoionization rate of the P and D states shortens their lifetime from their intrinsic

values by 15-30% at a trap power of 9 mW per tweezer. However, for high-L states,

including circular states, the photoionization cross-section is significantly smaller,

ultimately decreasing exponentially with L [104]. The auto-ionization rate, while im-

measurably small in our current experiments, should decrease as L−5 as the contact of

the Rydberg electron with the core is suppressed [122]. Therefore, it seems likely that

circular states may be trapped for extremely long times without adverse affects. Fur-

thermore, transfer of orbital angular momentum from focused Laguerre-Gauss modes

through the ponderomotive potential offers an intriguing new route to efficiently and

rapidly exciting circular Rydberg states [116] or driving transitions between them.

5.3 Trap-induced loss mechanisms

5.3.1 Auto-ionization

The polarizability of the Yb+ ion core primarily arises from the 6s to 6p1/2 and 6p3/2

transitions at 369 and 329 nm, respectively. For an optically trapped Yb+ ion, the

finite lifetime of these states (1/Γ = 8 ns for 6p1/2, [123]) would give rise to photon

scattering at a rate ΓΩ2/∆2 = ΓU0/∆, where Ω and ∆ are the Rabi frequency and
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detuning of the trapping laser, and U0 is the trap depth. In the case of a trapped

Yb0 Rydberg state, the trap laser can excite these ion core transitions from 6snl

to 6pjnl (where n, l are the quantum numbers of the outer Rydberg electron). Since

these states are generally above the ionization limit of the 6snl series, they can rapidly

auto-ionize. In an auto-ionization event, the core electron is de-excited by ejecting the

Rydberg electron. The rate of this process decreases as 1/n∗3, since the interaction

between the Rydberg and core electron decreases as the former moves farther out.

The rate of these events is the same as photon scattering for a Yb+ ion, with the

linewidth Γ replaced by the auto-ionizing linewidth γ′n∗−3, according to the isolated

core electron approximation [124].

The auto-ionization rates have been measured for certain 5pjns states in Sr [125] and

6pjns states in Ba (cited in Ref. 21 of [125]) and Yb [126]. All are within the range

of γ′ = 2π × 1014 - 2π × 1015 s−1. The rate for the Yb 6p3/2ns series has not been

measured, but for concreteness we take the measured value for the 6p1/2ns series of

γ′ = 1.2×1015 s−1 [126], and assume the 6p3/2ns rate is 2 times higher, approximately

the case for Sr and Ba. From this, we can estimate an auto-ionization rate of about

n∗−3 58× 106 s−1 at typical trap powers (9 mW). This corresponds to a 7 ms lifetime

at n = 75, which is insignificant on the timescale of our experiments. The rate should

be even smaller for higher l states, since the overlap with the core decreases for high

l. This is supported by measurements [124, 127] for l < 7 and theory predicting an

l−5 scaling of the autoionization rate for high l [122].

5.3.2 Photo-ionization

Another loss mechanism is direct excitation of the Rydberg electron into continuum

states, termed photoionization [128, 57]. Calculating this process requires computing

matrix elements between bound and free Rydberg states, which requires either model

potentials or extrapolation of measured bound state quantum defects into the contin-
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state Lifetime
(µs)

n = 74 3P2 83(5)
n = 74 3P0 14(4)∗

n = 73 1D2 75(18)
n = 83 1D2 59(3)
n = 90 1D2 60(3)
n = 70 3S1 85(4)
n = 75 3S1 105(3)
n = 92 3S1 42(2)

Table 5.2: Summary table of power dependent lifetime studies for various 3P2 , 3P0 ,
1D2, and 3S1 states, showing the extrapolated lifetimes with no trap-induced losses.
∗We do not have power dependence data to quote the extrapolated lifetime for 3P0 ,
but give the value for 9 mW trap power.

uum [129]. The extrapolation quantum defects based on the Rydberg-Ritz model has

been studied for alkali atoms [129]; however, given the very strong n-dependence near

the ionization threshold observed for the Yb 3P0 and 3P1 states [101], a multi-channel

quantum defect model would be necessary for a precise calculation of photo-ionization

rates for Yb. Furthermore, it is possible to have perturbers above the ionization

threshold that would not be evident from the bound state quantum defect series.

We instead determine the photoionization rates for a few S, P , and D states by

measuring the Rydberg state lifetime as a function of trap power. Fig. 5.5a shows

an example measurement for the n = 74 3P2 state with the corresponding decay rates

and a fit to Γ = Γ0 + γPIP , where P is the trap power. Extrapolating the decay

rates to zero trap power gives an estimate for the natural Rydberg state lifetimes

1/Γ0, which are summarized in Table 5.2. Fig. 5.5b shows the photoionization cross

sections for the measured states, related to the decay rates by γPIP = σPII/~ω. The

measured photoionization cross sections are consistent with zero for the 3S1 series, but

the rates are non-negligible for the 3P2 and 1D2 states, resulting in a 15-30% reduction

of the trapped lifetimes at typical trap powers. The observed magnitude and low-L

dependence of the cross section is similar to previous calculations for Rb [57]. As with
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(a)

(b)

Figure 5.5: (a) Rydberg lifetimes vs. trap power for the n = 743P2 state. The lower
plot shows the corresponding decay rates and a linear fit, the slope of which determines
the photoionization cross section σPI . (b) Measured photoionization cross sections
for 3S1, 3P2, and 1D2 states at different n. We see no evidence of photoionization for
S states.

auto-ionization, the photoionization rate should decrease for high-L Rydberg states,

in this case exponentially with L [104].

5.4 3S1 Lifetime at high n

Given that we observe no trap-induced losses for the 3S1 series, the measured decrease

in the 3S1 lifetimes at high n is surprising. For alkali atoms, the finite Rydberg state

lifetime is a combination of spontaneous emission to much lower-n Rydberg states, and
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blackbody-induced transitions between nearby Rydberg levels [16]. These rates scale

as n∗−3 and n∗−2 respectively. Lifetimes of greater than 250 µs have been measured

for Rb Rydberg states at n = 85 at room temperature [103]. In alkaline earth

atoms, an additional loss mechanism is present: configuration interactions can mix

Rydberg series attached to different ionization thresholds associated with different

core ion states, which results in admixtures of fast-decaying low-n states into the

high-n states. Rydberg state energies and lifetimes can be highly irregular near a

perturbing resonance. Far from a resonance, however (e.g., at high n), the impact of

the perturber is a constant factor reduction of the Rydberg series radiative lifetime

[53]. Perturbers are almost certainly responsible for the measured, short lifetime of

the 3P0 series (Table 5.2), as this series is known to be extremely strongly perturbed

[101].

Whether series perturbations are responsible for the drop in 3S1 lifetime at high-n

is unclear. While the low-n 3S1 spectrum (Fig. 4.3) appears relatively unperturbed

(compared to 3P0 , for example, where the quantum defect varies by nearly 0.5 be-

tween n = 30 and n = 80), the deviation from constant δ at high-n could reflect an

above-threshold perturber (or a technical artifact in the measurement, see Chapter

4). Another possibility is high-frequency electric field noise conducted to the atoms

by a set of intra-vacuum electrodes around the atoms (described in Chapter 4). We

have simulated the local density of states in the center of the electrodes at microwave

frequencies and find low-Q resonances giving rise to Purcell enhancement factors of

2-3 at 7 and 15 GHz, where the strongest transitions lie for n = 65−100, which could

enhance the blackbody transition rate by a similar factor or enhance the coupling of

noise at these frequencies. This could also reduce high-n lifetimes for other series as

well, but we do not have sufficient data on the n-dependence of the P and D series

to confirm this. At present, we are unable to experimentally distinguish whether the

high-n lifetimes are intrinsic or limited by technical effects.
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Lastly, we note that the lifetime can in principle be extracted from MQDT analysis

of the Rydberg spectrum. This has been attempted in some detail for Strontium [53].

In the case of Yb, this is hampered by the absence of complete spectroscopic data,

the larger number of perturbers that result from low-lying f -shell excitations in the

core (e.g., states of the form 4f 135d6s), and the fact that the lifetimes of the open

f -shell states are not known in many cases. The lifetimes presented in this paper are,

to the best of our knowledge, the first reported (or predicted) lifetimes for high-n Yb

Rydberg states, which will aid future analyses.
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Chapter 6

Controlling Rydberg Excitations

In order to implement high-fidelity quantum operations utilizing Rydberg interactions

it is necessary to be able to drive high contrast Rabi oscillations between a ground

qubit state and the relevent Rydberg state. In the work presented in Chapter 5,

excitations to the Rydberg states were driven via a two-step process with initial

single photon excitation from 1S0 to 3P1 , followed by single photon excitation from

3P1 to a 3S1 Rydberg state. However, this process is highly susceptible to spontaneous

emission out of 3P1 leading to both inefficient transfer to the Rydberg state and rapid

decoherence of oscillation contrast. The use of this technique was motivated by a

high-noise 556 nm laser system.

In this chapter, using a lower noise 556 nm laser system (fixed by changing the

probe laser source in the SFG process described in section 2.3.1), we demonstrate

high contrast Rabi oscillations between 1S0 and a 3S1 Rydberg state via a two-photon

excitation process using 3P1 as an intermediate state, where spontaneous emission

events are suppressed due to an intermediate state detuning. We also demonstrate the

ability to controllably turn on and off excitations to the Rydberg state and Rydberg-

mediated entanglement, via a new scheme that applies light shifts to the Rydberg
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Figure 6.1: a) A schematic of the Rydberg excitation beam geometry in the science
cell. b) A schematic of the UV beam optics. c) Diagram of pulse sequence for Rydberg
excitation. The trap is turned off during excitation. The UV pulse is turned on before
the start of the green pulse and turned off after the green pulse to correct for AOM
frequency chirp.

state from a beam nearly resonant with the Yb+ ion core transition (further details

on this scheme and its potential advantages over other light-shifting control schemes

are discussed in Section 6.2). This capability is promising for scalable implementation

of local Rydberg gates in an Yb tweezer array.

6.1 Two-photon Rydberg excitation

We drive Rydberg excitations via a two-photon process using 3P1 (mj = 1) as an

intermediate state. We turn on a ∼3 G B-field orthogonal to the 1D tweezer axis,

leading to ∼10 MHz splitting between mj levels in 3P1 . A 556 nm σ+ beam is blue-

detuned from 3P1 (mj = 1) and directed along the axis of the 1D array, focused to

a beam waist of w0 ≈ 60 µm. A counter-propagating 308 nm π beam, focused to

a beam waist of w0 ≈ 15 µm is tuned to a two-photon resonance with a desired

n3S1 (mj = 1) Rydberg state. Fig 6.1a depicts the beam configuration.
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The UV beam is aligned out of the doubling cavity in free space into the science

cell. After going through an AOM for the purpose of pulsing the beam, it enters a

5x telescope to enlarge the beam size in order to achieve tighter focusing by a final

100mm lens into the science cell. The lens is on a motor-stage to adjust the focus in

the science cell. In order to align the UV beam to the atoms we have two fine-control

picomotor mirrors (Newport), one placed before the enlarging telescope to control

the position of the beam in the science-cell and a second placed at the focus of the

enlarging telescope to control the angle of the beam relative to the atom array. Two

monitor cameras are used to monitor the position and angle of the beam, respectively.

Fig 6.1b shows the UV beam optics.

To drive a two-photon Rydberg excitation we first pulse off the traps so as not to

deal with variable light shifts from the tweezers on the ground and Rydberg state.

The UV beam is then pulsed on for a time, τpulse + 2τbuffer, and the green is turned

on for time, τpulse, following a delay time of τbuffer after the UV pulse is turned on.

The buffer time is set to 200 ns and exists to correct for a frequency chirp effect from

the UV AOM (described below). Then a 369 nm beam (overlapped with the UV

beam), near-resonant with the ion core autoionizing transition is pulsed on to rapidly

autoionize Rydberg atoms for readout. After the completion of the pulse sequence

the traps are turned back on and a fluorescence image is taken, where Rydberg atoms

are detected by the loss of an atom. The pulse sequence is shown in Fig 6.1c.

We drive two-photon Rabi oscillations between 1S0 and the 753S1 Rydberg state.

While the majority of atoms that are excited to the Rydberg state are typically lost

from decay into anti-trapped states prior to imaging, there is a considerable probabil-

ity (∼15-20%) that Rydberg atoms decay back to the ground state and are detected

via fluorescence imaging. In order to eliminate this detection error we illuminate the

atoms with a beam that rapidly autoionizes Rydberg atoms causing Rydberg atoms
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Figure 6.2: a) Rabi oscillations with and without the ionization pulse, demonstrating
the imperfect Rydberg state detection without the ionization pulse. b) High contrast
two-photon rabi oscillations between the ground and Rydberg state shown to longer
times than in (a). We measure the ground state population versus two-photon pulse
time. The green curve is a fit to an oscillating sine function with a exponentially
decaying envelope. b) Two-photon spectrum of Rydberg state. We measure the
ground state population versus UV frequency at pulse time t < tπ. The green curve
is a fit to an analytical model of a detuned-Rabi oscillation.

to be lost with near unity probability [50, 63]. Fig. 6.2a shows the ground state

population as a function of two-photon excitation pulse length with and without the

ionization pulse, demonstrating the imperfect Rydberg state detection without the

ionization pulse. Fig. 6.2b shows the high contrast oscillations out to longer pulse

times. Further details of the autoionizing transition are discussed in the latter part

of Chapter 6.

We measure the resonance of the two-photon transition by setting the two-photon

excitation pulse to a time, τ < τπ, and measuring the ground state population as

a function of the UV laser frequency. A characteristic spectrum is shown in 6.2b.

Surprisingly, across an array of 20 atoms we see significant inhomogeneity (∼2 MHz

across the array) in the single site two-photon resonances (shown in Fig 6.3a). We

first consider the possibility that this inhomogeneity is due to an electric-field gradient

across the array. However, we find that the frequency gradient is independent of

electrode voltage, while we would expect a frequency gradient caused by an electric

field gradient to be linear in the average electric field (due to the quadratic dependence

of the DC Stark shift). We also consider the possibility that the inhomogeneity is
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Figure 6.3: a) UV two-photon resonance as vs array site demonstrating inhomogeneity
of roughly 2 MHz across the array. The absolute measurement of the resonance is
arbitrary. b) Dependence of inhomogeneity across the array measured in slope of
the resonance vs site (MHz/site) on the UV pulse buffer time (This data was taken
when the angular misalignment of the UV beam was less severe leading to smaller
inhomogeneties at zero buffer time compared to the data in (a)). At buffer times of
200 ns or greater the inhomogeneity in the UV resonance across the array is no longer
present.

due to variable light shifts from the Rydberg excitation beams if the observed beam

intensity varies across the array. However, the magnitude of the inhomogeneity is

much greater than one would expect from independent measurements of the light

shift from each beam and measurements of the intensity variation across the array

from site-dependent measurements of the Rabi frequency (less than a few %)

We instead theorize that the inhomogeneity is caused by a frequency chirp effect from

the UV AOM. Due to finite rise-time effects from the UV AOM one side of the UV

beam will be turned on prior to the other side. If the axis of beam propagation is

aligned with the atom array then the optical path length from either side of the beam

will be equivalent. However, if the axis of beam propagation is slightly misaligned

from the atom array axis then the optical path length from either side of the beam

will be different. Thus, as the AOM turns on, the phase of the light seen by the

atoms will change as the full aperture of the lens is illuminated. Since the difference

in optical path lengths across the UV beam will vary across the array this can be the
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cause of the two-photon resonance inhomogeneity. An ideal solution to the problem is

to ensure that the UV beam is perfectly aligned relative to the atom array, however,

this process is time-consuming and slow alignment drifts of the beam could cause the

problem to persistently return. Instead we solve the inhomogenity with a UV pulse

buffer, so that the UV beam is turned on and off with a 200 ns buffer time relative

to the green pulse. This solves the issue because the finite rise-time effects of the UV

AOM have already occurred before the two-photon excitation begins, at no cost in

terms of photon scattering since there is no population in either 3P1 or the Rydberg

state. The inhomogeneity across the array as a function of the UV pulse buffer time

is shown in Fig. 6.3b. For buffer times 200 ns or longer the inhomogeneity in the UV

resonance across the array disappears.

6.2 Rydberg control with light shifts from ion core

transition

The remaining work discussed in this chapter will also be presented in a manuscript

currently in preparation: A.P. Burgers, S. Ma, S. Saskin, J. Wilson, M. Alarcon, C.

Greene, J.D. Thompson, ”Controlling Rydberg excitations using ion core transitions

in alkaline earth tweezer arrays”

An outstanding challenge in the field of quantum computing and programmable sim-

ulation with Rydberg atom arrays is scalable, local addressing of gate operations,

especially for two-qubit gates. Generating rapidly switchable, reconfigurable and fo-

cused Rydberg excitation beams across an array is demanding for optical modulators,

as the intensity, pointing and frequency of these beams must be tightly regulated.

This challenge is exacerbated for the wavelengths needed for single-photon Rydberg

excitation (near or below 300 nm [130, 131, 50]), for which very few optical materials

are transparent.
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An alternative approach is to apply local light shifts with non-resonant control beams,

to tune the ground to Rydberg (|g〉 → |r〉) transition on individual sites out of

resonance with a global Rydberg excitation beam (Fig. 6.4a). Local control with

light shifts has been demonstrated with Rydberg arrays [132, 59, 133], and with

microwave transitions in optical lattices [134, 135]. In the case that the qubits are

encoded in hyperfine ground states, this local control over excitation to the Rydberg

state determines which atoms participate in the gate. To avoid spurious interactions

with spectator atoms, the magnitude of the light shift must be much larger than the

global Rydberg Rabi frequency, Ωr. At the same time, photon scattering from the

hyperfine levels must be suppressed to avoid gate error. Balancing these conditions

requires a large detuning of the control beam to achieve high fidelity operations.

However, we point out that the scattering error can be significantly reduced if the

control beam only couples to the Rydberg state, |r〉 (Fig. 6.4b). In this case, the scat-

tering errors occur primarily from |r〉, but the population of this state is suppressed

for atoms illuminated by the control beam, which remain in the ground state. As a

consequence, the control beam can be operated at much smaller detunings and lower

powers.

Unfortunately, in alkali atoms such as Rb and Cs, there are no strong optical tran-

sitions connected to |r〉. In alkaline earth atoms (AEAs) with two valence electrons,

the situation is different: the Rydberg electron orbits an optically active ion core,

which has strong, allowed transitions. The far off-resonance polarizability of these

transitions has been used for trapping Yb [136] and Sr [111] Rydberg atoms, while

the short lifetime (via autoionization decay) of core excited states has been used for

efficient state detection in Sr atomic gases [63] and tweezer arrays [50].

In this work, we theoretically quantify the control field intensity Ic needed to realize

locally addressed operations with an error rate ε by shifting the ground states or the
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Figure 6.4: (a) In the conventional approach to local control with light shifts, the
|g〉 → |r〉 transition is detuned by a light shift generated by the |g〉 → |e〉 transition.
(b) In another approach, studied here, the light shift is generated on a transition from
|r〉 to |r′〉. (c) Schematic of the experiment, indicating the propagation direction and
polarization of the two-photon Rydberg excitation (556 nm + 308 nm) and the control
beam (369 nm). The Rydberg and control beams are focused to approximately 15
µm 1/e2 radius. (d) Applying increasing control beam intensities (black to blue: Ic =
0, 15, 90, 601 W/cm2) suppresses Rabi oscillations between |g〉 and |r〉. Here, the
control beam is detuned by ∆ = −5 GHz from the |r〉 → |r′〉 transition. The solid
lines show the result of a numerical simulation.

Rydberg states, and find that scaling is improved from Ic ∝ 1/ε3 to Ic ∝ 1/ε2 in the

latter case. We then experimentally demonstrate control of Rydberg excitations in

an optical tweezer array of 174Yb atoms [81, 136] using a light shift induced on the

Rydberg state by a control beam tuned near the 369 nm 6s → 6p1/2 transition in

the Yb+ ion core. We investigate the influence of the control beam on the 6sns 3S1

Rydberg states in detail, and find that, near resonance, the light shift and autoion-

ization loss rate can be explained with a two-level system model consistent with the

isolated core electron (ICE) approximation for doubly excited Rydberg states [137].

We then use the control beam to switch on and off the excitation of single atoms

and high-fidelity (F > 0.948) Bell states in a dimerized array, using a control beam

intensity equivalent to only 1.3 µW in a diffraction-limited spot. Lastly, we observe

that for larger control beam detunings (comparable to the spacing between Rydberg

levels), satellite features called “shake-up” lines [138] appear, giving rise to an ad-

ditional enhancement or suppression of the loss rate without altering the light shift.

We demonstrate an additional reduction in scattering errors from the control beam
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at these special detunings.

These results suggest a new direction for implementing scalable, locally addressed

multi-qubit gate operations in AEA tweezer arrays. While 174Yb does not support

a qubit in the 1S0 ground state, this technique could be applied to control quantum

gates on qubits encoded on the clock transition (1S0 →3 P0) or in the hyperfine

state of an odd isotope (i.e. 171Yb or 87Sr). The latter has the particular advantage

that both the photon scattering rate and differential light shift on the qubit levels are

extremely small. Therefore, a simple, binary amplitude modulator should be sufficient

to control which sites are resonant with a global (or weakly focused) Rydberg beam,

enabling efficient local control of entangling operations.

We first establish the theoretical scaling of the addressing fidelity with the intensity

of the control light. We consider the following scenario: given a regular array of

atoms with qubits encoded in hyperfine ground states (Fig. 6.4a), we wish to apply

an entangling Rydberg blockade gate using a global Rydberg beam Ωr [139, 140]

to a sparse subset of nearest-neighbor qubit pairs, while realizing no operation (up

to single-qubit phases) on the remaining, spectator qubits. Given a control beam

that shifts the ground states of the spectator atoms relative to |r〉 by an amount

∆LS = Ω2
c/(4∆), and induces a scattering rate ΓLS = ΓΩ2

c/(4∆2) 1 (see Fig. 6.4a for

variable definitions), there are two dominant errors. The first is the probability for

a spectator atom to be excited off-resonantly to |r〉, Pr ∝ (Ωr/∆LS)2, and thereby

blockade the intended gate, which results in an error probability εrot ∝ Pr. The second

is a photon scattering error in the spectator atom, with a probability εsc = ΓLStg

(tg ≈ 2π/Ωr is the gate duration). We note that the former error is improved with

larger control field intensity, while the latter gets worse, resulting in a minimum total

1This is the total scattering rate including both Raman and Rayleigh scattering, but we treat it
as Raman scattering when ∆ < ∆f , the fine structure splitting [141]. Given the required value of
∆ derived below, this is self-consistent for gate errors ε & 10−4 in Rb and Cs, given ∆r/Γ ≈ 106 in
these atoms.
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error that can only be reduced by increasing ∆.

There is also an intrinsic gate error on the un-shifted qubits resulting from the finite

lifetime of the Rydberg state, ε ≈ tgΓr = 2πΓr/Ωr, where Γr is the decay rate of

|r〉. A natural condition is that the addressing errors should be comparable to the

intrinsic error, εrot + εsc = ε, and the minimum ∆ and Ic needed to realize this are

∆̃ ∝ Γ/ε3/2, and Ĩc ∝ |Ω̃c|2 ∝ ΓΓr/ε
3.

If the light shift is applied on the state |r〉 by coupling to another state |r′〉 (Fig. 6.4b),

the spectator qubit error probability εrot is the same but the scattering error is strongly

suppressed since only the |r〉 state experiences loss. In this case, εsc = ΓLStgPr, with

Pr ∝ εrot as before. Since εrot ∝ Ω−4
c and ΓLS ∝ Ω2

c , both errors now decrease

monotonically with increasing control power. The condition εrot + εsc = ε can be

satisfied with ∆̃ ∝ Γ/
√
ε, and Ĩc ∝ |Ω̃c|2 ∝ ΓΓr/ε

2. An additional benefit of shifting

|r〉 is that no single-qubit phases accrue on the spectator atoms, which makes the

gate operation insensitive to variations in Ic.

We now turn to an experimental demonstration of controlling Rydberg excitations by

shifting |r〉 on an ion core transition. Our experiment begins by creating a 1D, defect-

free array [142, 143] of 10 174Yb atoms in the 1S0 ground state |g〉. This state is coupled

to the 6s75s 3S1 (mJ = −1) Rydberg state |r〉 in a two-photon process via the 3P1

state, with an intermediate state detuning of 25 MHz and two-photon Rabi frequency

Ωr = 2π×0.7 MHz. The 369 nm control beam with intensity Ic is co-propagating with

the Rydberg lasers, and is stabilized near the |r〉 → |r′〉 transition using a wavemeter

with 60 MHz accuracy. At the end of the experiment any population in |r〉 blown

away by a a second pulse of the 369 nm beam, at full power, before detecting the

remaining atoms in |g〉 [50] (without this pulse, approximately 20% of atoms in |r〉

return to |g〉 before detection).

The essential result is illustrated in Fig. 6.4d. With the control beam turned off,
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Figure 6.5: (a) ∆LS and ΓLS for the 6s75s 3S1 state, as a function of the control
beam detuning from the Yb+ 6s → 6p1/2 transition frequency, f+. The fits show
a comparison to a two-level model, with ∆ = f − (f+ + ∆+). (b) The extracted
linewidth, Γ and (c) center frequency offset ∆+ as a function of n∗, with a fit to
(n∗)−3 overlaid.

we observe Rabi oscillations between |g〉 and |r〉 with a high visibility. Applying the

control beam with successively higher intensities, these oscillations become damped

and eventually cease, leaving the atoms in 1S0. The control light is detuned by ∆ = −5

GHz from the |r〉 → |r′〉 transition. The absence of loss from autoionization of |r′〉

directly illustrates the suppression of loss resulting from light shifting |r〉 instead of

|g〉. We note that the highest Ic, 600 W/cm2, is equivalent to only 1.3 µW in a

diffraction-limited spot with w0 = λ.

To better understand and quantitatively model the properties of the |r〉 → |r′〉 tran-

sition, we measure the light shift and loss rate of |r〉 as a function of the detuning, ∆,

of the 369 nm beam from the Yb+ resonance at f+ = 811.29150(40) THz (Fig. 6.5a)
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[144]. The light shift, ∆LS, is extracted from the resonance shift of the |g〉 → |r〉

transition when the 369 nm light is applied at an intensity of Ic = 50 W/cm2. The

loss rate, ΓLS, is measured through the population decay from |r〉 after a variable

duration 369 nm pulse with intensity Ic = 0.67 W/cm2. We have experimentally ver-

ified that both the light shift and loss rate are linear in intensity over a wide range.

We also note that the peak loss rate of 6.65 µs−1/(W/cm2) is more than 100 times

faster than what was reported in Ref. [50] for the Sr 5s61s→ 5p3/2ns transition.

The data is well-described by a two-level system model, ∆LS = Ω2
c∆/(4∆2 + Γ2) and

ΓLS = ΓΩ2
c/(4∆2 + Γ2). From a fit, we extract the parameters ∆ = f − (f+ + ∆+)

and Γ = 2π× 0.92(3) GHz. The transition is centered at a frequency ∆+ = −0.73(7)

GHz, slightly below the Yb+ transition frequency (the uncertainty arises from the

accuracy of the wavemeter and the literature value of f+). This is consistent with a

quantum defect of the 6p1/2ns
3PJ ′ Rydberg series that is larger than that of 6sns 3S1

(δ = 4.438 [136]) by 0.035 (modulo 1). Note that based on the σ+/− polarization of

the 369 nm light, both the J ′ = 1 and J ′ = 0 autoionizing states are excited, and

cannot be distinguished within our measurement.

Based on the known intensity, a dipole moment d can be extracted from the fit to

∆LS or ΓLS. The value from ΓLS is d = 1.46(2) ea0, which is consistent with the

literature value for the Yb+ transition using Γ = 1/8.12 ns−1 and taking into account

the Clebsch-Gordan coefficient for the control beam polarization [145]. Curiously, the

value of d extracted from ∆LS, d∆LS
= 1.08(3) ea0, is approximately 25% lower than

that for ΓLS, which we do not understand at the present time.

We have repeated these measurements at n = 50 and 65 to understand the scaling

properties of these parameters. Both |∆+| and Γ scale as 1/n∗3 as expected (Fig.

6.5b and c) [138]. The coefficient for Γ, 2π × 2.9 × 1014 s−1, is approximately 50%

larger than a previous measurement for the Yb 6p1/2ns
1P1 series [146] but within
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Figure 6.6: (a) Probability to find an atom in |g〉 after a π pulse to |r〉, for varying
control intensities Ic with ∆ = 5 GHz. At high intensities, the population transfer
is strongly suppressed and 99% of the atoms remain in |g〉. (b) Final state fidelity
with |φ+〉 (red: lower bound, green: simulated exact fidelity) and |gg〉 (blue) after a π
pulse in a dimerized array with a strong intra-dimer Rydberg blockade. The control
beam switches the final state from having > 94.8% fidelity with |φ+〉, to 98% fidelity
with |gg〉. In both plots, the curves show simulations using parameters from Fig. 6.5a
and a phenomenological dephasing to match the observed oscillation visibility.

the range of values for similar series in Sr [137] and Ba [147].

We now study the effectiveness of the control beam at modulating Rydberg excitation

induced by Ωr, in the case of isolated, non-interacting atoms (Fig. 6.6a). To do this,

we apply Ωr for a time tg = π/Ωr ≈ 700 ns (π-pulse), while varying the control beam

intensity Ic. The control beam detuning is fixed at ∆ = −5 GHz. In this experiment,

the atoms are spaced by d = 21µm, such that the van der Waals interaction is

negligible compared to Ωr. In the absence of the control beam, around 97% of the

ground state population is transferred to |r〉, limited by residual technical noise,

Doppler shifts and photon scattering. However, at the maximum intensity of 699
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W/cm2, the Rydberg excitation is suppressed and the atoms remain in |g〉 with 99%

probability. The data is in excellent agreement with a numerical simulation based on

parameters extracted from Fig. 6.5a.

Next, we demonstrate control over coherent excitations in the Rydberg blockade

regime using a dimerized array (Fig. 6.6b). The intra-dimer spacing is 3.15 µm,

for which we estimate a blockade strength V = 1.2 GHz. We apply a Ωr for a

time tg = π/(
√

2Ωr) = 495 ns, which drives a π pulse on the blockaded transition

|gg〉 → |φ+〉 = (|gr〉+ |rg〉)/
√

2. When Ic = 0, we extract a lower bound of the state

fidelity (with respect to the Bell state) of Fφ > 0.948, using the state purity after

a 2tg pulse (following Ref. [50]). However, at the maximum Ic, the oscillations are

highly suppressed and the fidelity with the starting state is Fgg = 0.98.

Lastly, we study the the loss rate and light shift over a broader range of control

beam detunings. Near the transition to other Rydberg states, such as 6s75s →

6p1/274s (approximately ∆ = −19 GHz below the transition to 6p1/275s), the loss

rate shows sharp, Fano-like features (Fig. 6.7a) known as “shake-up” resonances

[138]. These features can be qualitatively reproduced with a model based on the

overlap integral of the Rydberg electron wavefunction in the initial and final states,

with the minimum occurring at the energy where the final state Rydberg electron

wavefunction is orthogonal to the initial state [148]. A somewhat improved fit can

be obtained with a multichannel MQDT model. Experimentally, we observe a dip in

the loss rate that is a factor of ∼ 34 below the value predicted by the two-level model

shown in Fig. 6.5.

Importantly, the light shift does not show any irregular behavior near the shake-up

resonance. Therefore, operating the control laser at detuning corresponding to the

scattering minimum (∆min) is beneficial, reducing εsc or allowing the same total ad-

dressing error εrot+εsc to be realized with less power. We experimentally demonstrate
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Figure 6.7: (a) ∆LS (red) and ΓLS (blue) for the 6s75s 3S1 state, as in Fig. 6.5 but
over a broader range of detunings. The positions of the 6p1/2ns states (black lines)
and the detuning that minimizes the loss rate ∆min = −18.7 GHz (green star) are
indicated. (b) Rabi oscillations to |r〉 (black, Ic = 0) are strongly suppressed by
applying the control field at detunings near ∆min [colors correspond to starred points
in panel (a)]. Population loss from autoionization is suppressed to less than 0.06%
per π-pulse when ∆ = ∆min.

the reduction in εsc by simultaneously applying Ωr and the control light for a long

duration (t ≈ 7π/Ωr), at three detunings near ∆min (Fig. 6.7b). The light shift

(∆LS ≈ 5.8 − 4.6 MHz) suppresses coherent oscillations to around 1% for each de-

tuning. However, there is a gradual population loss from εsc that is linear in ΓLS,

and we find that this loss vanishes, within our experimental resolution, at ∆min. The

behavior is in agreement with a master equation simulation, where the shake-up reso-

nance is incorporated as a reduction in Γ to match the experimentally measured ΓLS
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at each detuning in Fig. 6.7a.

We have demonstrated that a light shift of the excited Rydberg states using a core

electron transition can be used to control Rydberg excitations in an optical tweezer

array. In contrast to applying a light shift on the ground state, shifting the Rydberg

state has reduced laser power requirements to achieve a given error rate from photon

scattering or off-target excitation. This demonstration was carried out with a global

control laser, however, the main application of this result will be with locally addressed

control fields, and using the 171Yb isotope with qubits encoded in the nuclear spin

sublevels of the J = 0 states 1S0 or 3P0. This approach has the additional benefit

that the qubit states experience negligible differential light shift from the control field,

significantly relaxing the technical demands for local control.

6.3 Measuring Autoionization Rabi Frequency

6.3.1 Determining Ωc

For the data in Fig 6.6 we determine the control beam Rabi frequency by measuring

the loss rate at the desired detuning (∆ = −5 GHz) for different powers of the control

beam. Using ΓLS = ΓΩ2
c/(4∆2 + Γ2), we extract Ωc directly from the loss rate for

high powers. From this trend of Ωc vs power we interpolate the Rabi frequency at

low powers where the autoionization loss rates are too slow to measure directly using

our method described in the text.

6.3.2 Notes on estimating Ω from dipole matrix element

We start with H = −d ·E, where d = −er and the electric field E with polarization

ε̂ is
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E = ε̂E0 cosωt

= ε̂
E0

2
(e−iωt + eiωt).

After assuming a two level system with levels |g〉 and |e〉 and making the rotating

wave approximation, this Hamiltonian can be written as (Ref [149] 5.18)

H = −〈g| ε̂ · d |e〉 E0

2
(σeiωt + σ†e−iωt)

=
~Ω

2
(σeiωt + σ†e−iωt).

The Rabi frequency is then given by

Ω =
−〈g| ε̂ · d |e〉E0

~
.

There are two factors of 2, one from the Ω/2 matrix element in the Hamiltonian (so

that the populations in |g〉 and |e〉 oscillate at frequency Ω), and another from the

fact that the positive and negative electric field components have amplitude E0/2.

These cancel out in the expression for Ω.

The relationship between the dipole matrix element (Ref. [149] 5.242) and decay rate

is

d2
0 = | 〈g|d |e〉 |2 =

3πεΓ~c3

ω3
.

In our case, we have a linearly polarized 369 beam effectively driving the σ+ and

σ− transitions from 2S1/2 to 2P1/2 in the Yb+ ion. The CG coefficients for the 2P1/2

mj = 1/2 state are
√

2/3 for |ml = 1,ms = −1/2〉 and
√

1/3 for |ml = 0,ms = 1/2〉
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so there is an extra factor of
√

2/3 for the sigma transitions, d =
√

2
3
d0. Estimate

the electric field amplitude E0 from E2
0 = 4P0

πεcw2 .

Numbers: We have P0 = 2 mW in the 369 nm beam focused to a waist w = 15 µm.

We lose a factor of two here since the power is evenly split between σ+ and σ−

polarizations. With Γ = 1/(8.12 ns), this gives Ω ≈ 2π× 840 MHz.

6.4 Simulations

6.4.1 Single Atom

We solve the master equation for the following Hamiltonian:

H1 =
Ωr

2
(σ+

r,g + σ−r,g) +
Ωc

2
(σ+

r,r′ + σ−r,r′)−∆cPr′ (6.1)

We also include an additional state, |Ψd〉, in the Hilbert space to simulate the case

in which an atom scatters out of the autoionizing state. Thus we include the col-

lapse operator c1 =
√

Γaiσ
−
r′,d. We also include an additional collapse operator,

c2 =
√

Γdephaseσ
z
g,r to account for dephasing during Rabi oscillations between the

ground and Rydberg state. The dephasing rate, Γdephase, is chosen such that the

ground state population after a π-pulse in simulation, Pg(t = π/Ωr) agrees with our

measured, Pg, during a π-pulse.

We simulate Pg(t = π/Ωr) as a function of the auto-ionizing Rabi frequency, Ωc. In

order to account for imperfect ground state detection we compare Pg(t = π/Ωr) ∗ Fg

with our measured Pg, where Fg, is the ground state detection fidelity.

6.4.2 Two atom blockade

We solve the master equation for the two-atom Hamiltonian:
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H2 = H1 ⊗ 1 + 1⊗H1 + UintPr ⊗ Pr (6.2)

We now have four collapse operators: c1 =
√

Γaiσ
−
r′,d ⊗ 1, c2 =

√
Γai1 ⊗ σ−r′,d, c3 =√

Γdephaseσ
z
g,r ⊗ 1, c4 =

√
Γdephase1⊗ σzg,r.

We simulate Pgg(t = π/(
√

2Ωr)) and extract a simulated bell-state Fidelity lower

bound (method from Ref. [50]) from the simulated populations Pgr((t = π/(
√

2Ωr)),

Prg((t = π/(
√

2Ωr)), Pgg((t = 2π/(
√

2Ωr)), Pgr((t = 2π/(
√

2Ωr)), Prg((t = 2π/(
√

2Ωr)),

Prr((t = 2π/(
√

2Ωr)) as a function of the auto-ionizing Rabi frequency, Ωc. In order to

account for imperfect ground state detection we transform the simulated populations

by the following transformation matrix:

T(sim→meas) =



F 2
g 0 0 0

Fg(1− Fg) Fg 0 0

Fg(1− Fg) 0 Fg 0

(1− Fg)2 1− Fg 1− Fg 1


(6.3)

A complication in these simulations is that they assume the Rydberg to auto-ionizing

transition can be treated as a two-level system. However, as discussed in section 6.2,

there is an inconsistency between the measured light shift, ∆LS, and the value of the

light shift one would predict from a two-level modeling of the measured loss rates,

ΓLS. Specifically, while ∆LS exhibits the line-shape of a two-level system its measured

values over a range of autoionization detunings is ∼0.6 of the values predicted by the

ΓLS two-level model.

To account for this inconsistency in simulations we set the autoionization Rabi fre-

quency, Ωc, in order to simulate the measured light shifts, ∆LS, and then adjust the

auto-ionizing states measured linewidth, Γai, by a factor of 1/0.6 to recreate the mea-
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sured ratio of ΓLS/∆LS. Given, that we calibrate Ωc by modeling the measured loss

rates as a two-level system, for comparing our simulation results to data, we must

also multiply our calibrated Ωc values by a factor of
√

0.6 in order for the simulation

to model a light shift, ∆LS, consistent with the measured values.

6.5 Error Expressions

We consider two regimes of errors for a scheme where we light shift the Rydberg state

with an autoionizing transition to control excitations to the Rydberg state. The first

regime is the blocked regime, where we intend to block the excitation of a target

atom to the Rydberg state. The second regime is the cross-talk regime where we

intend to leave a non-target atom unaffacted (i.e. excite it to the Rydberg state),

however, cross-talk from a light-shifting beam on a target atom inadvertently has

some effect on a non-target atom. For both regimes we will derive the theoretical

error expressions for two sources of error: rotation errors and scattering errors. For

all errors we will discuss the error for a π-pulse (t = π
Ωr

) on the non-target atom.

While I present the error expressions for a π-pulse on a single atom with a single

ground state, the scalings of these errors will generalize to the fidelity of both single-

qubit and two-qubit operations on qubits encoded in two ground states, with a single

qubit state linked to the Rydberg state (however, some multiplicative factors for the

errors may change).

6.5.1 Blocking Errors

For blocking errors we consider the regime where the light shift on the Rydberg state

(∆LS) is much greater than the Rydberg Rabi frequency (Ωr).
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Rotation Error

The Rydberg state population for a blocked atom with light shift, ∆LS, and Rydberg

Rabi frequency Ωr at t = 2π
Ωr

, will be:

Pr =
Ω2
r

Ω2
r + ∆2

LS

Sin[
π
√

Ω2
r + ∆2

LS

2Ωr

]2 (6.4)

For a blocked excitation the desired Rydberg state population is zero, so to get the

rotation error scaling we expand the first term to lowest order in Ωr

∆LS
and take the

average of the rapidly oscillating sine term to be 1
2
. This gives us an average rotation

error of:

εrot =
1

2

(
Ωr

∆LS

)2

(6.5)

Scattering Error

Scattering errors will occur when atoms scatter out of the autoionizing state due to

the light-shifting beam. Crucially, scattering errors are suppressed because atoms can

only be excited to the autoionizing state from the Rydberg state, to which excitation

is already blocked. The scattering error during a π-pulse will be given by:

εsc = ΓPaitπ (6.6)

Here, Γ is the linewidth of the autoionizing transition, Pai is the population in the

autoionizing state, and tπ = 2π
Ωr

. In order to extract Pai as a function of the autoion-

izing Rabi frequency, Ωc, and the autoionizing detuning, ∆x, we diagonalize the full

3-level Hamiltonian (ground state, Rydberg state, autoionizing state) and take the

population in the autoionizing state for the eigenstate, which is adiabatically linked
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to the ground state. This approximation is valid because we work in the regime where

Ωr is much smaller than Ωx and ∆x. The 3-level Hamiltonian is given by:

H =


0 Ωr

2
0

Ωr

2
0 Ωc

2

0 Ωc

2
∆c

 (6.7)

Diagonalizing H we find the eigenstate adiabatically linked to the ground state (
∣∣ψ′g〉),

which gives the autoionizing population, Pai, to lowest order in Ωr:

Pai =
∣∣∣〈ψai∣∣∣ψ′g〉∣∣∣2 =

1

1 +
4∆2

ai

Ω2
ai

+ (Ωai

Ωr
+

4∆2
aiΩr

Ω3
ai

)2
(6.8)

Thus the total scattering error over a π-pulse is:

εsc =
Γ

1 +
4∆2

ai

Ω2
ai

+ (Ωai

Ωr
+

4∆2
aiΩr

Ω3
ai

)2

π

Ωr

(6.9)

As a quick aside, a naive consideration of the scattering error could give the expres-

sion εsc = ΓLS〈Pr〉tπ, where ΓLS is the effective scattering rate on the autoionizing

transition from a two level model of the Rydberg state and autoionizing state and

〈Pr〉 is the average Rydberg state population. However, this approximation breaks

down in the regime of high Ωc, as it assumes that the ground state and Rydberg state,

and, Rydberg state and autoionizing state, can be treated as independent two-level

systems instead of the fully correct three level system. Nevertheless, in the regime of

low Ωc, which we will consider for cross-talk errors, this approximation will be a valid

method to estimate the scattering error.
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6.5.2 Cross-talk Errors

For cross-talk errors we consider the regime where the light shift on the Rydberg state

(∆LS) is much less than the Rydberg Rabi frequency (Ωr).

Rotation Error

In the case of atoms for which we don’t intend to block Rydberg excitation the desired

Rydberg state population after a pi-pulse is Pr = 1. Thus to find the rotation error

in the cross-talk regime we expand 1 - Pr to lowest order in ∆LS

Ωr
, where Pr is given

by equation (6.4). This gives a rotation error of:

εrot =

(
∆LS

Ωr

)2

(6.10)

Scattering Error

As discussed in the scattering error section for the blocking regime, in the cross-talk

regime we can describe the scattering error by the effective scattering rate of the

Rydberg state to autoionizing state transition (ΓLS) and the average Rydberg state

population (〈Pr〉) over a π-pulse (tπ = π
Ωr

). In the regime where ∆LS � Ωr the

average Rydberg state population over a pi-pulse will simply be 〈Pr〉 ≈ 1
2
. Thus the

scattering error in the cross-talk regime is:

εsc =
ΓLS

2

π

Ωr

(6.11)

6.5.3 Comparison with Simulation

Fig. 6.8 shows a comparison of these analytical error expressions with the results of

the master equation simulations for t = π
Ωr

at different autoionization detunings, ∆.
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Figure 6.8: A comparison of theoretical error expressions in the blocked and cross-talk
regime to simulated populations as a function of autoionization Rabi frequency, Ωai

at different autoionization detunings, ∆. The simulated 1 − Pr corresponds to the
error in the cross-talk regime and is represented by diamond points in the plot. The
simulated 1−Pg corresponds to the error in the blocked regime and is represented by
circle points in the plot. The theoretical error expression for the sum of the rotation
and scattering errors in the cross-talk regime is shown as a dotted line, while the in
the blocked regime the sum of the errors is shown as a solid line.

The theoretical expressions are compared to simulated 1−Pr in the cross-talk regime

(diamond points for simulation, dotted line for theoretical curve) and to simulated

1 − Pg in the blocked regime (circle points for simulation, solid line for theoretical

curve). In all cases the theoretical expressions agree well with the simulated results.

Deviations from the curve for blocked errors in the 100 GHz detuning case can be

attributed to oscillations in the simulated rotation error, due to a rapidly oscillating

term at frequency ∆LS, whereas we compare to only the average rotation error in

the theoretical expressions. It is evident that as we move to higher autoionization

detunings the power required to achieve certain error rates increases slower than the
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suppression of cross-talk errors. Thus, in practice one would choose a desired error

threshold and work at the highest detuning where they could achieve that error in

the blocked regime at maximum achievable optical power.
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Chapter 7

Next steps: Gates in 171Yb

All of the experimental work discussed in this thesis was done using the bosonic

174Yb isotope. However, as discussed in section 1.4, one of the strong motivations for

building this platform is to use the I = 1/2 nuclear spin of 171Yb as a nuclear spin

qubit. In particular, we plan to use globally addressed Rydberg excitation beams,

with locally addressed light-shifting autoionization beams for local control, to drive

both single and two-qubit gates.

In 171Yb the qubit will be stored in the mF = ±1/2 states of either 1S0 (F = 1/2)

or 3P0 (F = 1/2). We implement a two-qubit gate using globally-addressed Rydberg

beams following the scheme described in Ref. [36], where we selectively drive an

excitation of the |g(mF = +1/2)〉 ground state to a |r(S, F = 3/2,mF = +3/2)〉 Ry-

dberg state. Due to strong hyperfine coupling in alkaline-earth Rydberg states, we

can sufficiently split the mF levels of the F=3/2 Rydberg state with modest magnetic

fields, such that the |g(mF = −1/2)〉 → |r(mF = +1/2)〉 transition is far-detuned

from the lasers driving the |g(mF = +1/2)〉 → |r(mF = +3/2)〉 transition. The two-

qubit gates can be addressed to specific pairs of qubits using local autoionization

light shift beams to light shift the Rydberg state of atoms we don’t wish to address.
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Similarly, single-qubit X rotations can be driven by driving global Raman transitions

through the Rydberg state, and locally light-shifting the Rydberg state of non-target

atoms.

A current challenge in using 171Yb in our experiment is that our tweezer wavelength,

532 nm, is a magic wavelength for 1S0 and 3P1 (mj = 0) but not 3P1 (mj = |1|), as

is shown in Fig. 3.2a. However, if we consider the the mF sublevels of 3P1 (F =

3/2) in 171Yb, their mJ components, which can be determined from Clebsch-Gordan

coefficients, are:

|mF = 3/2〉 = |mJ = 1,mI = +1/2〉 (7.1)

|mF = 1/2〉 =

√
2

3
|mJ = 0,mI = +1/2〉+

√
1

3
|mJ = 1,mI = −1/2〉 (7.2)

That is, neither mF =
∣∣3

2

∣∣ nor mF =
∣∣1

2

∣∣ sublevels of 3P1 (F=3/2), have a pure

component of the magic mJ = 0, and consequently neither will be magic with the

1S0 (F=1/2) ground state. The lack of a magic trapping wavelength makes imaging in

171Yb quite difficult as cycling on the imaging transition will heat atoms out of the trap

due to rapid and repeated fluctuations in the atom’s trapping potential [150]. In our

initial attempts to image single 171Yb atoms in 532 nm optical tweezers we measured

far shorter atom lifetimes (<1 s) and also collected fewer photons in comparable

exposures to our 174Yb imaging, leading to imaging fidelities <95%. Unfortunately,

Yb does not benefit to the same degree from non-magic Sisyphus cooling from the

trap potentials that has been demonstrated in Sr tweezer arrays [44, 45, 46] because

the larger linewidth of the intercombination line does not satisfy the condition Γ �

ωtrap. Furthermore, we attempted to implement Raman sideband cooling, which

under certain conditions did significantly extend trapped atom lifetimes (>10 s), but
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also led to much slower photon scattering rates, and consequently required much

longer exposure times for imaging (>200 ms).

As a solution we plan to work at a new trap wavelength, which is magic for 1S0 (F=1/2)

and 3P1 (F=3/2, mF =
∣∣1

2

∣∣). Calculations of trap polarizability for 1S0 and 3P1 suggest

such a wavelength can be found in the range of 470-490 nm and we are currently in

the process of performing trap spectroscopy to determine the magic wavelength for

future operation.
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M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, “High-Fidelity Control

and Entanglement of Rydberg-Atom Qubits,” Physical Review Letters, vol. 121,

9 2018.

[60] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic

clocks,” Rev Mod Phys, vol. 87, p. 637, 2015.

[61] T. Topcu and A. Derevianko, “Intensity landscape and the possibility of magic

trapping of alkali-metal Rydberg atoms in infrared optical lattices,” Physical

Review A, vol. 88, p. 043407, 10 2013.

131



[62] S. R. Cohen and J. D. Thompson, “Quantum Computing with Circular Ryd-

berg Atoms,” arXiv:2103.12744 [physics, physics:quant-ph], Mar. 2021. arXiv:

2103.12744.

[63] G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A. Jones, “Number-

resolved imaging of excited-state atoms using a scanning autoionization micro-

scope,” Phys. Rev. A, vol. 87, p. 053409, May 2013.

[64] A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C.

Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-

temperature vapor cell,” Phys. Rev. A, vol. 87, p. 042522, Apr 2013.

[65] R. Senaratne, S. V. Rajagopal, Z. A. Geiger, K. M. Fujiwara, V. Lebedev, and

D. M. Weld, “Effusive atomic oven nozzle design using an aligned microcapillary

array,” Rev. Sci. Instrum., vol. 86, p. 023105, Feb. 2015.

[66] M. Knudsen, The kinetic theory of gases; some modern aspects. Methuen, 1950.

[67] T. Hosoya, M. Miranda, R. Inoue, and M. Kozuma, “Injection locking of a high

power ultraviolet laser diode for laser cooling of ytterbium atoms,” Review of

Scientific Instruments, vol. 86, no. 7, p. 073110, 2015.

[68] B. Saxberg, B. Plotkin-Swing, and S. Gupta, “Active stabilization of a diode

laser injection lock,” Review of Scientific Instruments, vol. 87, no. 6, p. 063109,

2016.

[69] D. Gangloff, M. Shi, T. Wu, A. Bylinskii, B. Braverman, M. Gutierrez,

R. Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenković, I. Chuang,
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