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LAYTPC Neutrino Detectors and MicroBooNE
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e 1’1s a crucial background to oscillation experiments and BSM searches

e both e and #n° present as EM showers, making it a reconstruction
challenge to separate them

e currently using MicroBooNE Public Datasets for samples input



https://microboone.fnal.gov/%20documents-publications/public-datasets/

What 1s Optimal Transport?
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Distributions (Flamary 2019) Transport plan visualized

“the general problem of moving one distribution of
probability mass to another as efficiently as possible”
provides a transport plan and an optimal transport distance,
which 1s used to compare two probability distributions


https://remi.flamary.com/cours/otml/OTML_ISBI_2019_OTintro.pdf

Why Optimal Transport?

e advantages of optimal transport
o optimal transport performs well with sparse dataset
o more transparent in how it’s achieving the results
o can be used as pre-processing for further analysis
(ex.kNN)
e optimal transport has different variants and metrics which
each has their own benefits
o currently using 2-Wasserstein distance



Optimal Transport in HEP

e optimal transport has been used for
jet classification in LHC data by
several groups, including N. Craig
and J. Howard at UCSB who we're
working with

e optimal transport outperforms
traditional methods in jet
classification; it’s competitive with
standard machine learning
methods and it’s also easy to
Interpret
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https://arxiv.org/abs/2111.03670
https://arxiv.org/abs/2101.08944
https://arxiv.org/pdf/1902.02346.pdf

e/n’ Events in LArTPC
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3D Reconstructed e Event 3D Reconstructed z° Event

e e produces one EM shower starting at the vertex
e 1’ decays into two photons which produce two EM showers at a distance away

from the vertex
e we aim to use OT for classification without directly reconstructing the EM

showers separately



Identifying Principal Axis of a 3D Reconstructed Even
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3D Reconstructed e event with
1dentified largest cluster

3D Reconstructed n° event with
1dentified largest cluster
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e event with principal axis 7’ event with principal axis

b

e proximity
clustering finds
largest cluster

e Principal

Component
Analysis (PCA) on
largest cluster to
1dentify principal
axis of the event



Taking Planar Projections of 3D Reconstructed Sample
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Planar projection of e event
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Planar projection of n° event

e rotate all the
spacepoints so
that principal axis
aligns with Z-axis

e project all

spacepoints onto
XY-plane



Optimal Transport Computation

e and 7° samples are separated into 8 different energy bins

optimal transport distances are computed between events 1in

the same energy bin with equal numbers of e and z° events

o planar projections of 3D reconstructed samples are used
as Input

OT distances are used for classification

o different machine learning methods could be used for
classification with OT distances as input



Results - Performance of Optimal Transport

I PiO-Electron

e using a cut on OT distances - e
o accuracy: 0.764 300 oo

e using OT distances as input for
machine learning methods
o k-Nearest Neighbors (kNN)

m accuracy: 0.786

o Support Vector Machine -Mo Y ey e e
(SVM) Optimal Transport distance
Optimal Transport Distance for z° and e
B accuracy: O 809 Events Compared to Electron Events for
First Energy Bin
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x° Kinematic Variables
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Performance Compared with Kinematic Variables

Fraction of Misclassified Pi0 events

e accuracy increases with less shower asymmetry as expected
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Summary

e application of optimal transport for LArTPC neutrino

experiments

o have implemented optimal transport on MicroBooNE
public datasets
overall able to separate 7° from e using OT distances
finalizing first implementation of optimal transport for
neutrino event classification

o possible future implementation in SBN and DUNE
analyses
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Backup slide - p-Wasserstein distance

1/p
Wp(é‘,é‘): min (Zgulﬂfz %Hp)

gi; EL(E,E)
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