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Abstract We present dynamical description of gravitational collapse in view of
Misner and Sharp’s formalism. Matter under consideration is a complicated fluid
consistent with plane symmetry which we assume to undergo dissipation in the
form of heat flow, radiation, shear and bulk viscosity. Junction conditions are
studied for a general spacetime in the interior and Vaidya spacetime in the exte-
rior regions. Dynamical equations are obtained and coupled with causal transport
equations derived in context of Müller Israel Stewart theory. The role of dissipa-
tive quantities over collapse is investigated.

Keywords Gravitational collapse, Dissipation, Junction conditions,
Dynamical equations, Transport equations

1 Introduction

The ultimate fate of the star (when it undergoes catastrophic phase of collapse) is
one of the most important questions in gravitation theory today. When a star has
exhausted all of its nuclear fuel, it collapses under the influence of its own gravity
and releases large amount of energy. In fact, it is a highly dissipative process, i.e.,
energy is not conserved in it, rather due to various forces and with the passage of
time, it becomes lesser. Dissipative process plays dominant role in the formation
and evolution of stars.

The initial discussion over this problem was given by Oppenheimer and Sny-
der [1] who assumed a spherically symmetric distribution of matter. They took
the most simplest form of matter, i.e., dust and the flow is considered to be adia-
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batic. It is somewhat unrealistic to ignore the pressure as it cannot be overlooked
in the formation of singularity. Misner and Sharp [2] adopted a better approach
by considering an ideal fluid which gave a more realistic analysis of gravitational
collapse. Both of them assumed vacuum in the exterior region. Vaidya [3] intro-
duced a non-vacuum exterior by giving the idea of outgoing radiation in collapse.
It was physically a quite reasonable assumption as radiation is a confirmation that
dissipative processes are occurring, causing loss of thermal energy of the system
which is an effective way of decreasing internal pressure.

The Darmois junction conditions [4] gave a way to obtain exact models of an
interior spacetime with heat flux to match with exterior Vaidya spacetime. Sharif
and Ahmad [5] considered the perfect fluid with positive cosmological constant
to discuss the junction conditions with spherical symmetry. The same authors [6]
also worked on junction conditions for plane symmetric spacetimes.

Goswami [7] made an attempt in search of a more physical model of collapse.
He considered dust like matter with heat flux to conclude that dissipation causes a
bounce in collapse before the formation of singularity. Nath et el. [8] investigated
dissipation in the form of heat flow and formulated junction conditions between
charged Vaidya spacetime in exterior and quasi-spherical Szekeres spacetime in
interior regions. They also discussed apparent horizons and singularity formation.
Ghosh and Deshkar [9] studied gravitational collapse of radiating star with plane
symmetry and pointed out some useful results. A lot of work is being done over
gravitational collapse by considering shear free motion of the fluid. Although, it
leads to simplification in obtaining exact solutions of the field equations, yet it
is an unrealistic approach. Shear viscosity is a source of dissipating energy and
plays an important role in collapse. Chan [10] investigated gravitational collapse,
with radial heat flow, radiation and shear viscosity. He showed how the pressure
became anisotropic due to shear viscosity.

Herrera and Santos [11] discussed the dynamics of gravitational collapse which
undergoes dissipation in the form of heat flow and radiation. Di Prisco et al. [12]
extended this work by adding charge and dissipation in the form of shear viscosity.
Herrera [13] provided comprehensive details of inertia of heat and how it plays an
effective role in dynamics of dissipative collapse. Herrera and Martinez [14] pre-
sented relativistic model of heat conducting collapsing object and debated over
the effect of a parameter which occurs in dynamical equation on collapse. Herrera
and collaborators [15; 16] proposed a model of shear free conformally flat col-
lapse and focused on the role of relaxation process, local anisotropy and relation
between dissipation and density inhomogeneity.

Recently, Herrera et al. [17] threw light on behavior of non-equilibrium mas-
sive object which lost energy due to heat flow, radiation, shear and bulk viscosity.
Matter under consideration was distributed with spherical symmetry. It has be-
come quite clear that when mass and energy densities involved in the physical
phenomenon are sufficiently high as in gravitational collapse, gravitational field
plays an important and dominant role. The gravitational dynamics then must be
taken into account for a meaningful description of such ultra high energy objects.
This fact motivated us to elaborate the above mentioned paper in the context of
plane symmetries. Matter under consideration is a complicated fluid which suffers
through dissipation. Misner and Sharp’s prescription is used to work out dynam-
ical equations. Transport equations are obtained in the context of Müller Israel
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Stewart theory [18; 19] which is a causal theory for dissipative fluids. Thermody-
namic viscous/heat coupling coefficients are taken to be non-vanishing which is
expected to be quite plausible in non-uniform stellar models of universe. One of
the dynamical equations is then coupled to transport equations in order to figure
out the influence of dissipation over collapse.

The paper is written in the following manner. The next section is about the
matter distribution in the interior region and some physical quantities relevant to
matter under consideration. The Einstein field equation are worked out in Sect. 3
and junction conditions are discussed in Sect. 4. Dynamical equations are formu-
lated in section 5 and are coupled to transport equations in Sect. 6. The last section
discusses and concludes the main results of the paper.

2 Interior matter distribution and some physical quantities

A 4-dimensional spacetime is split into two regions: interior V− and exterior V +

through a hypersurface Σ which is the boundary of both regions. We assume the
matter distribution in the interior region to be consistent with plane symmetry. The
interior region V− admits the following line element

ds2
− =− f (t,z)dt2 +g(t,z)(dx2 +dy2)+h(t,z)dz2, (1)

where {χ−µ} ≡ {t,x,y,z} (µ = 0,1,2,3). The fluid is presumed to dissipate en-
ergy in terms of heat flow, radiation, shearing and bulk viscosity.

The energy-momentum tensor for such a fluid is defined as

Tab = (µ + p+Π)VaVb +(p+Π)gab +qaVb +qbVa + εlalb +πab, (2)

where µ, p,Π ,qa, la and πab are the energy density, pressure, bulk viscosity, heat
flow, null four-vector in z-direction and shear viscosity tensor respectively. Heat
flow qa is taken to be orthogonal to velocity V a, i.e., qaV a = 0. Moreover, we have

V aVa =−1, laVa =−1, πabV b = 0, π[ab] = 0, π
a
a = 0, lala = 0. (3)

In the standard irreversible thermodynamics by Eckart, we have the following
relation [20]

πab =−2ησab, Π =−ζΘ , (4)

where η and ζ stand for coefficients of shear and bulk viscosity, σab is the shear
tensor and Θ is the expansion. The algebraic nature of Eckart constitutive equa-
tions causes several problems but we are concerned with the causal approach of
dissipative variables. Thus we would not assume (4) rather we shall resort to trans-
port equations of Müller–Israel–Stewart theory.

The shear tensor σab is defined as

σab = V(a;b) +a(aVb)−
1
3

Θhab, (5)

where the acceleration aa and the expansion Θ are given by

aa = Va;bV b, Θ = V a
;a (6)
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and hab = gab +VaVb is the projection tensor. The shear tensor σab satisfies

Vaσ
ab = 0, σ

ab = σ
ba, σ

a
a = 0. (7)

In co-moving coordinates, one can take

V a =
1√

f
δ

a
0 , qa =

q√
h

δ
a
3 , la =

1√
f

δ
a
0 +

1√
h

δ
a
3 , (8)

here q is a function of t and z.
Using Eq. (8), the non-vanishing components of the shear tensor σab turn out

to be

σ11 =−g

3
σ = σ22, σ33 =

2h
3

σ , (9)

where

σ =
1

2
√

f

(
ḣ
h
− ġ

g

)
. (10)

Thus we have

σabσ
ab =

2
3

σ
2. (11)

Also, in view of Eqs. (3) and (4), it yields

π0a = 0, π
3
3 =−2π

2
2 =−2π

1
1 . (12)

In compact form, it can be written as

πab = Ω

(
χaχb−

1
3

hab

)
, (13)

where Ω = 3
2 π3

3 and χa is a unit four-vector in z-direction satisfying

χ
a
χa = 1, χ

aVa = 0, χ
a =

1√
h

δ
a
3 . (14)

In view of Eqs. (6) and (8), it follows that

a3 =
f ′

2 f
, Θ =

1√
f

(
ġ

g
+

ḣ
2h

)
, (15)

where dot and prime represent derivative with respect to time t and z respectively.
The Taub’s mass for plane symmetric spacetime is defined by [21]

m(t,z) =
(g)3/2

2
R12

12 =
1

8
√

g

(
ġ2

f
− g′2

h

)
. (16)
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3 The Einstein field equations

The Einstein field equations for the metric (1) yield the following set of equations

ġ

2g

(
ġ

2g
+

ḣ
h

)
+

f g′

2gh

(
h′

h
+

g′

2g

)
− f g′′

gh
= 8π(µ + ε) f , (17)

ġ

2 f

(
ḟ

2 f
+

ġ

2g
− ḣ

2h

)
+

g′

4h

(
f ′

f
− h′

h
− g′

g

)
− f ′g

4 f h

(
h′

h
+

f ′

f

)
+

ḣg

4 f h

(
ḣ
h

+
ḟ
f

)
− g̈

2 f
+

g′′

2h
+

g

2 f h
( f ′′− ḧ) = 8π

(
p+Π − 1

3
Ω

)
g,

(18)
g′

2g

(
g′

2g
+

f ′

f

)
+

ġh
2 f g

(
ġ

2g
+

ḟ
f

)
− g̈h

f g
= 8π

(
p+Π + ε +

2
3

Ω

)
h, (19)

ġ

2g

(
g′

g
+

f ′

f

)
+

g′ḣ
2gh

− ġ′

g
=−8π(q+ ε)

√
f h. (20)

After some manipulation, we can also write Eq. (20) in the following form

4π(q+ ε)
√

h =
1
3
(Θ −σ)′−σ

√
g ′
√

g
. (21)

4 Junction conditions

We discuss junction conditions for the interior region V− given by Eq. (1) and the
exterior region V + which is taken as plane symmetric Vaidya spacetime ansatz
given by the line element [22]

ds2
+ =

2m(ν)
Z

dν
2−2dνdZ +Z2 (

dX2 +dY 2) , (22)

where χ+µ ≡ {ν ,X ,Y,Z} (µ = 0,1,2,3),ν is the retarded time and m(ν) rep-
resents total mass inside Σ . The line element for the hypersurface Σ is defined
as

(ds2)Σ =−dτ
2 +A2(τ)(dx2 +dy2), (23)

where ξ i ≡ (τ,x,y) (i = 0,1,2) are the intrinsic coordinates of Σ .
The Darmois junction conditions [4] are

• The continuity of the line elements over the hypersurface Σ gives

(ds2)Σ =
(
ds2

−
)

Σ
=

(
ds2

+
)

Σ
. (24)

This is called continuity of the first fundamental form.
• The continuity of the extrinsic curvature Kab over the hypersurface Σ yields

[Ki j] = K+
i j −K−

i j = 0, (a,b = 0,1,2). (25)

This is known as continuity of the second fundamental form.
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Here K±
i j is the extrinsic curvature defined as

K±
i j =−n±σ

(
∂ 2χσ

±
∂ξ i∂ξ j +Γ

σ
µν

∂ χ
µ

±∂ χν
±

∂ξ i∂ξ j

)
, (σ ,µ,ν = 0,1,2,3). (26)

where n±σ are the components of outward unit normal to hypersurface Σ in the
coordinates χ±µ .

The equations of hypersurface Σ in terms of coordinates χ∓µ are given as

k−(t,z) = z− zΣ = 0, (27)
k+(ν ,Z) = Z−ZΣ (ν) = 0, (28)

where zΣ is taken to be an arbitrary constant. Using Eqs. (27) and (28), the interior
and exterior metrics take the following form over hypersurface Σ

(ds2
−)Σ = − f (t,zΣ )dt2 +g(t,zΣ )(dx2 +dy2), (29)(

ds2
+
)

Σ
= 2

(
m(ν)
ZΣ

− dZΣ dν

)
dν

2 +Z2
Σ (dX2 +dY 2). (30)

In view of junction condition (24), we get

Z2
Σ = g(t,zΣ ), (31)

dt
dτ

=
1√

f
, (32)

dν

dτ
=

(
2

dZΣ

dν
− 2m(ν)

ZΣ

)−1/2

. (33)

Using Eqs. (27) and (28), the unit normals in V− and V + respectively, turn out
to be

n−µ =
√

h(0,0,0,1), (34)

n+
µ =

[
2
(

dZ
dν

− m(ν)
Z

)]−1/2 (
−dZ

dν
,0,0,1

)
. (35)

The non-zero components of the extrinsic curvature K±
i j are

K−
00 = −

(
f ′

2 f
√

h

)
Σ

, (36)

K+
00 =

[
d2ν

dτ2

(
dν

dτ

)−1

− m
Z2

dν

dτ

]
Σ

, (37)

K−
11 = K−

22 =
(

g′

2
√

h

)
Σ

, (38)

K+
11 = K+

22 =
[

Z
dZ
dτ

−2m
dν

dτ

]
Σ

. (39)
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Now, by the junction condition (25), i.e., continuity of extrinsic curvatures, it
follows that [

d2ν

dτ2

(
dν

dτ

)−1

− m
Z2

dν

dτ

]
Σ

=−
(

f ′

2 f
√

h

)
Σ

, (40)

2m
dν

dτ
=

ġ

2
√

f
− g′

2
√

h
. (41)

Using Eqs. (33) and (41), we obtain(
dν

dτ

)−1

=
1
√

g

[
ġ

2
√

f
+

g′

2
√

h

]
. (42)

Inserting Eq. (42) in (41), it follows that

m(ν) =
1

8
√

g

(
ġ2

f
− g′2

h

)
(43)

and hence

m(t,z) Σ= m(ν). (44)

Differentiating Eq. (42) with respect to τ , and making use of Eqs. (43) and
(42), we can write Eq. (40) as

1
2
√

f hg

[
−ġ′
√

g
+

g′ḣ
2h
√

g
+

f ′ġ
2 f
√

g
+
√

h√
f

{
−g̈
√

g
+

ġ ḟ
2 f
√

g
+
√

g

(
ġ

2g

)2

+
f

4g3/2

(
g′√

h

)2

+
f ′g′

2h
√

g
+
√

f√
h

(
g′ġ

2g3/2

)}]
Σ= 0. (45)

Comparing Eq. (45) with Eqs. (19) and (20), it yields

p+Π +
2
3

Ω = q. (46)

5 Dynamical equations

The energy–momentum conservation, T ab
;b = 0, gives

T ab
;b Va =

(µ̇ + ε̇)√
f

+
(q′+ ε ′)√

h
+

ġ

g
√

f

(
µ + p+Π + ε − 1

3
Ω

)
+

ḣ
2h
√

f

(
p+Π + µ +2ε +

2
3

Ω

)
+

( f g)′

f g
(q+ ε)√

h
= 0 (47)
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and

T ab
;b χa =

1√
f
(q̇+ ε̇)+

1√
f
(q+ ε)

(hg)̇
hg

+
1√
h

(
p′+Π

′+ ε
′+

2
3

Ω
′
)

+
f ′

2 f
√

h

(
p+Π + µ +2ε +

2
3

Ω

)
+

g′

g
√

h
(ε +Ω) = 0. (48)

Now we investigate the dynamical properties of the system using the Misner
and Sharp’s [2] perspective. For this purpose, we take the proper time derivative
as

DT =
1√

f
∂

∂ t
, (49)

and the proper derivative in z-direction as

DZ̃ =
1
Z̃′

∂

∂ z
, (50)

where

Z̃ =
√

g. (51)

The velocity U of the collapsing fluid can be defined as the variation of Z̃ with
respect to the proper time

U = DT (Z̃) =
1

2
√

g
DT g. (52)

In the case of collapse, the velocity of the collapsing fluid must be negative. In
view of Eqs. (52), (16) can take the following form

E =
√

g ′
√

h
=

[
U2− 2

√
g

m(t,z)
]1/2

. (53)

Making use of Eq. (50) in Eq. (21), it follows that

4π(q+ ε) = E
[

1
3

DZ̃(Θ −σ)− σ

Z̃

]
. (54)

In case of no dissipation, using Eqs. (10), (15) and (52), the above equation
becomes

DZ̃

(
U
Z̃

)
= 0. (55)

This implies that U ∼ Z̃ depicting that now collapse will be homologous. The
rate of change of Taub’s mass, using Eqs. (16), (19), (20) and (49), turn out to be

DT m =−4πZ̃2
[(

p+Π + ε +
2
3

Ω

)
U +(q+ ε)E

]
. (56)
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Thus the rate of change of Taub’s mass represents variation of total energy
inside the collapsing plane surface. Since this variation is negative, it shows that
total energy is being dissipated during collapse. The first round brackets on the
right hand side stand for energy due to work being done by the effective isotropic
pressure (p+Π + 2

3 Ω) and the radiation pressure ε . The second brackets describe
energy leaving the system due to heat flux and radiation. Similarly, using Eqs. (16),
(17), (20) and (50), we get

DZ̃m = 4πZ̃2
[

µ + ε +(q+ ε)
U
E

]
. (57)

This equation describes about the variation of energy between adjoining plane
surfaces inside the fluid distribution. On the right hand side, (µ +ε) stands for en-
ergy density of the fluid element plus the energy of null fluid showing dissipation
due to radiation. Moreover, (q+ ε)U

E is negative (as U < 0), telling that energy is
leaving due to outflow of heat and radiation.

Making use of Eqs. (16), (19), (51) and (53), the acceleration DTU of the
collapsing matter inside the hypersurface Σ is given as

DTU =−4π

(
p+Π + ε +

2
3

Ω

)
Z̃− m

Z̃2 +
E f ′

2 f
√

h
. (58)

Substituting the value of f ′
2 f from the above equation into Eq. (48), it follows

that(
p+Π + µ +2ε +

2
3

Ω

)
DTU = −

(
p+Π + µ +2ε +

2
3

Ω

)
×

[
4πZ̃

(
p+Π + ε +

2
3

Ω

)
+

m
Z̃2

]
−E2

[
DZ̃

(
p+Π + ε +

2
3

Ω

)
+

2
Z̃

(ε +Ω)
]

−E
[

DT q+DT ε+4(q+ε)
U
Z̃

+2(q+ ε)σ
]
.

(59)

This equation has the form of Newton’s second law, i.e.,

Force = Mass density×Acceleration.

The term within the brackets on the left hand side stands for “effective” inertial
mass and the remaining term is acceleration. The first term on the right hand side
represents gravitational force. Since by the equivalence principle, inertial mass is
equivalent to passive gravitational mass and passive gravitational mass is equiv-
alent to active gravitational mass. Thus the factor within round brackets stands
for active gravitational mass and the factor within the square brackets shows how
dissipation effects active gravitational mass. The second square brackets firstly
include gradient of effective pressure which involves radiation pressure and the
collective effect of shear and bulk viscosity. The second contribution is of local
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anisotropy of pressure which is the result of radiation and shear viscosity. The last
square brackets entirely depend upon dissipation. The hydrostatic equilibrium can
be obtained from the above equation by substituting U = 0, q = 0, ε = 0, Π = 0
and Ω = 0.

DZ̃ p =−(µ + p)
h

Z̃′2

[ m
Z̃2 +4πZ̃ p

]
.

6 Transport equations

The general expression for entropy 4-current is given as [20]

Sµ =SnV µ +
qµ

T
−

(
β0Π

2+β1qν qν +β2πνκ π
νκ

) V µ

2T
+

α0Πqµ

T
+

α1πµν qν

T
, (60)

where n is particle number density, T is temperature, βA(ρ,n)≥ 0 are thermody-
namic coefficients for scalar, vector and tensor dissipative contributions to the en-
tropy density and αA(ρ,n) are thermodynamic viscous/heat coupling coefficients.
The divergence of extended current (follows from Gibbs equation and Bianchi
identities) is given by

T Sα
;α = −Π

[
V α

;α −α0qα
;α +β0Π;αV α +

T
2

(
β0

T
V α

)
;α

Π

]

−qα

[
hµ

α(lnT ),µ(1+α0Π)+Vα;µV µ −α0Π;α −α1π
µ

α;µ

+ α1π
µ

α hβ

µ(lnT ),β +β1qα;µV µ +
T
2

(
β1

T
V µ

)
;µ

qα

]

−π
αµ

[
σαµ −α1qµ;α +β2παµ;νV ν +

T
2

(
β2

T
V ν

)
;ν

παµ

]
. (61)

The second law of thermodynamics requires that Sα
;α ≥ 0. This leads to the

following transport equations for our dissipative variables

τ0Π,αV α +Π =−ζΘ+α0ζ qα
;α−

1
2

ζ T
(

τ0

ζ T
V α

)
;α

Π , (62)

τ1hβ

α qβ ;µV µ +qα =−k
[
hβ

α T,β (1+α0Π)+α1π
µ

α hβ

µ T,β

+T
(
aα −α0Π;α −α1π

µ

α;µ
)]
− 1

2
kT 2

(
τ1

kT 2 V β

)
;β

qα (63)

and

τ2hµ

α hν

β
πµν ;ρV ρ +παβ =−2ησαβ +2ηα1q〈β ;α〉−ηT

(
τ2

2ηT
V ν

)
;ν

παβ , (64)
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where

q〈β ;α〉 = hµ

β
hν

α

(
1
2
(qµ;ν +qν ;µ)− 1

3
qσ ;κ hσκ hµν

)
, (65)

with k as the thermal conductivity. The relaxation times are given by

τ0 = ζ β0, τ1 = kT β1, τ2 = 2ηβ2. (66)

Notice that if the thermodynamic coupling coefficients are assumed to be zero,
Eqs. (62)–(64) turn to be Eqs. (2.21)–(2.23) as given in [20]. The independent
components of Eqs. (62)–(64) are calculated as follows.

τ0Π̇ = −
(

ζ +
τ0Π

2

)
Θ

√
f +α0ζ

√
f√
h

[
q′+q

(
f ′

2 f
+

g′

g

)]
−

[
ζ T
2

(
τ0

ζ T

).

+
√

f
]

Π , (67)

τ1q̇ = −k
√

f√
h

[
T ′

(
1+α0Π +

2
3

α1Ω

)
+T

{
f ′

2 f
−α0Π

′′−α1

(
2
3

Ω
′+

f ′

3 f
Ω +

g′

g
Ω

)}]
−q

[
kT 2

2

(
τ1

kT 2

).
+

τ1

2
Θ

√
f +

√
f
]
, (68)

τ2Ω̇ = −2
√

f ησ +ηα1

√
f√
h

(
2q′− g′

g
q
)

−
[

ηT
(

τ2

2ηT

).

Ω +
τ2

2
Θ

√
f Ω +Ω

√
f
]
. (69)

Now we discuss the action of dissipation over dynamics of collapsing object.
We couple these transport equations to dynamical equation (59). Using Eq. (68) in
Eq. (59), it follows that(

µ + p+Π +2ε +
2
3

Ω

)
(1−Λ)DTU = (1−Λ)Fgrav +Fhyd

+
kE2

τ1

[
DZ̃T

(
1+α0Π +

2
3

α1Ω

)
−T

{
α0DZ̃Π +

2
3

α1

(
DZ̃Ω +

3
Z̃

Ω

)}]
+E

[
kT 2q
2τ1

DT

(
τ1

kT 2

)
−DT ε

]
−E

[(
3q
2

+2ε

)
Θ − q

τ1
−2(q+ ε)

U
Z̃

]
,

(70)

where Fgrav and Fhyd are given by

Fgrav = −
(

p+Π + µ +2ε +
2
3

Ω

)
×

[
m+4π

(
p+Π + ε +

2
3

Ω

)
Z̃3

]
1

Z̃2 , (71)

Fhyd = −E2
[

DZ̃

(
p+Π + ε +

2
3

Ω

)
+2(ε +Ω)

1
Z̃

]
(72)
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and

Λ =
kT
τ1

(
p+Π + µ +2ε +

2
3

Ω

)−1 (
1− 2

3
α1Ω

)
. (73)

Inserting Eq. (67) in Eq. (70), we obtain(
p+Π + µ +2ε +

2
3

Ω

)
(1−Λ +∆)DTU = (1−Λ +∆)Fgrav +Fhyd

+
kE2

τ1

[
DZ̃T

(
1+α0Π +

2
3

α1Ω

)
−T

{
α0DZ̃Π +

2
3

α1

(
DZ̃Ω +

3
Z̃

Ω

)}]
−E2

(
p+Π + µ +2ε +

2
3

Ω

)
∆

(
DZ̃q

q
+

2
Z̃

)
+E

[
kT 2q
2τ1

DT

(
τ1

kT 2

)
−DT ε

]
+E

[
q
τ1

+2(q+ ε)
U
Z̃

]
+E

∆

α0ζ q

(
p+Π + µ +2ε +

2
3

Ω

)[{
1+

ζ T
2

DT

(
τ0

ζ T

)}
Π + τ0DT Π

]
,

(74)

where ∆ is given by

α0ζ q
(

p+Π + µ +2ε +
2
3

Ω

)−1 (
3q+4ε

2ζ + τ0Π

)
. (75)

Here we see that (1−Λ + ∆) is the major factor that appears in the dynamical
equation after coupling it with the transport equations. We would like to mention
here that Eq. (74) is the plane symmetric version of Eq. (55) in [17].

7 Summary and conclusion

Gravitational collapse in a star is an irreversible phenomenon. Dynamics (such as
transport processes) of such non-equilibrium objects and connection between their
dynamics and thermodynamics are of extensive significance in order to have a bet-
ter visualization of this problem. Thus we have studied the dynamics of dissipative
collapse, i.e., what role does dissipation play with passing time as star collapses
under the influence of its own gravity. The most realistic model of matter, i.e, com-
plicated fluid is assumed in the interior region and is taken to be consistent with
plane symmetry.

To see how system evolves with time, dynamical equations for the plane sym-
metric spacetime are obtained using Misner and Sharp formalism. In the dynam-
ical equation (59), we see that the gravitational force represented by the first
term on the right hand side is expected to be much effective as compared to
non-dissipative fluid and so gravitational collapse is expected to be faster in this
case. Moreover, since the pressure gradient is negative in the second term on right
hand side of this equation, which combined with the minus sign preceding that
term makes a positive contribution, thereby reducing the rate of collapse. The last
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square brackets entirely depend on dissipation and one cannot expect any such
contribution in a dynamical equation for non-dissipative collapse. The third term
in this bracket is positive due to negative sign of velocity of collapsing fluid U. It
shows that outflow of heat flux q > 0 and radiation ε > 0 reduces the total energy
of the system and hence reduces the rate of collapse.

Transport equations in the context of Müller, Israel and Stewart theory of dissi-
pative fluids are obtained and coupled to dynamical equation in order to see the in-
fluence of dissipation over dynamics of a collapsing plane. After this union of dy-
namical and transport equations, we get equation (74) where the factor (1−Λ +∆)
appears in the dynamical equation. We see the effect of this factor for different
possible values.

• If 0 < (Λ −∆) < 1, inertial and gravitational mass densities will be reduced.
• If (Λ −∆) tends to 1, inertial mass density tends to zero.
• If (Λ −∆) > 1, gravitational force will become positive and it will lead to

the reversal of collapse. Another possibility for reversal of collapse is to take
(Λ −∆) < 1 such that (1−Λ +∆) is sufficiently small. Consequently, it will
significantly decrease the gravitational force.
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