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I. Imtroduction

Bosonization of two-dimensional Dirac fermions which was discovered some
time ago [la], was found to be a very useful tool in various domains of theoretical
physics [1b]. Within the last few years, the process has become an integral part
of string theories [2]; leading to the bosonization of ghosts and anti-ghosts [3], for
example. This process applied to matter fermions has also become important in
superstrings. The heterotic string {4] has two formulations in which the internal
coordinates are either chiral fermions or their bosonized form. For the bosonization
of chiral bosons, however, only the Hamiltonian formulation was known. The La-
grangian picture was lacking. An action proposed by Siegel [5] for a self-dual boson
(the so-called chiral boson) which propagates in one direction only, was a natural
candidate for the chiral bosonization [6a,7a]. The existence of a “reparametrization
anomaly” in this theory was pointed out in Refs. [7a,8]. Two mechanisms for can-
celing this anomaly were suggested. One involved the introduction of a Liouville
term [7a,8] and the second proposed a “critical dimension” approach [7b]. It was
shown, in Ref. [8], that two bosons are needed for a consistent quantization. The
coupling of this model to gauge fields [6b,7b], to gravity [7a,7b,8] and the non-
abelian version of it [6b,7b] were also introduced. Some supersymmetric extensions
have been studied. These include the N = 4 and N = 2 theories [9].

Chiral boson actions are constructed from a “truncated two-dimensional grav-
ity” theory coupled to scalars. The component of the graviton which remains after
the truncation, acts as a lagrange multiplier whose equation of motion imposes
the uni-directional condition. As a truncated gravity theory, some general coordi-
nate invariance remains. This is the symmetry that is potentially anomalous. As
a two-dimensional theory, the classical action is conformally invariant. Hence the
existence of a Weyl or dilatation symmetry. We will see that in terms of calcu-

lations, the theory of chiral bosons can be treated in an analogous manner with
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ordinary conformal theories. This means that the potential Siegel anomaly can be
shifted to a Weyl anomaly through the addition, to the one-loop effective action,
of local counterterms which are functions of the lagrange multiplier and the ana-
log pf the conformal compensator. The Weyl anomaly is removed in the critical
dimension. We will 'perform these calculations for thie (1,0) supersymmetric chiral
boson multiplets [10]. In so doing we will adopt the stringy prescription for curing
anomalies. We will also discuss the supersymmetric extension of the Liouville term
[7,8], especially with regards to the physical states of the theory.

In the next section, we will give the actions and axial and vector super-currents
for both leftons and rightons. The nomenclatures leftons and rightons are used to
label bosonic left movers (functions of (r+¢)) and right movers (functions of (r—0)),
respectively. That is, self-dual bosons are leftons when ¢p; = 1 and rightons when
€01 = —1. Although the calculations will be performed in (1,0) superspace [11,12],
we will give the component expressions wherever they are appropriate. The super-
currents will be coupled to gauge superfields, in section IIL. Section IV will contain
the Siegel transformation laws and discussions of the anomalies of the leftons and
rightons. It will be noted that the anomaly in the latter symmetries can be shifted
to that of super-dilatation invariance. BRST quantization [13,3] of the chiral bosons
will be stated in section V. Our results will reproduce, in part, the results of [8]. A
prescription for the super-bosonization of the Siegel symmetry (super) ghosts and
anti-ghosts will be given in section VI. Section VII will provide a discussion of the
more interesting case of leftons and rightons coupled to a curved background. This
should be of use in superstring theories, as we will include D scalar superfields for
the superstring coordinates. We will then reproduce the critical dimension formulas
for D < 10 dimensional superstrings [14]. Our conclusions may be found in section

VIII and our notation is explained in Ref. [11].



II. Actions And Currents

We will be considering superfields which propagate both to the right and to
the left, separately. This means that we should treat each of the two theories
independently. Axial and vector super-currents will be used in later sections where
they will provide clues to super-bosonization and checks on results. The leftons are

considered first.

I1.1. Leftons:

The action for the leftons [5] is well known. In (1,0) superspace [11,12] it is

ap > (2.1)

S, = —i;/ d%0d¢™[D,9%3__ % + A, ~8__®%3__oFf)y
where & = 1,..., Ny. This is a dressed down version of the lefton action given in
Ref. [10], in that we have taken A+__a[§ = A+“r,&l§. We adopt this simplification
throughout the course of this work. This is a natural consequence of the scenario of
“truncated world-sheet supergravity”, as will be explained in section VII. However,
it is remarked that much of the ensuing analysis holds true for the more general
A, P The superfield A~ is the lagrange multiplier (Siegel gauge superfield) which
imposes the left moving condition on ®%. Our flat space-time metric Nap May be
either Minkowskior Euclidean or if may be the metric for some product of Euclidean
and Minkowski manifolds; anyway we take r]‘iﬁ Nja = Np.

When we define the component fields by projection to be:

¢* = @, p.% = D%,
(2.2)
ATT = AT, i TT = DyATT|
and perform the [ d¢~ integral, the action reduces to
Sy = %/d20[3++¢'3——¢ + if4-9-_P4
(2.3)

+ ApyTTO__¢8__¢ + i2X.776-_f4 0__¢] .
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The first and third terms constitute the usual bosonic action for left-chiral bosons
and the other two terms are their (1,0) supersymmetric completion. The fields
(¢, B+) and (A44+~ ", A4+~ ") form supersymmetric multiplets, respectively.

It is trivial to see that the non-supersymmetric or (0,0} action is invariant
under the global axial transformation ¢% — ¢& + 1r° Such a symmetry is also
manifested by Eqn. (2.1) or Eqn. (2.3). Using the superfield notation we find that

&% — P& 4 [1% leads to the axial super-current:

[t

& —_——

Ja--% = 8__9% ,  Ja+* = Dy®* + 24,778__9

—
[
W

QN

There is also a vector super-current dual to the axial super-current whose elements
are

J(v)._._& = —3_.8%% | J(,,)+& = D,®% . (2.5)

These currents possess the following components

fa--% = J@--f = 0--¢* = —ju--* = —Ju--4,

Ja)-% = DiJg--%| = 0-_Bi% = —ju)-% = -DyJu)--% ,
Ha)y++% = —iDyJ@)+ | =0:49% + 20447T0-_¢% + 201778 pL 9,
Ha)+¥ = J@+®| = B+* 4+ 221770-_¢%

Jo)++% = —iDpJy4d| = 9p40% .
Jn+® = Jwt = Al

(2.6)
One can explicitly check that the currents defined above form (1,0) supersymmetric

multiplets under the global supersymmetry transformations [11,12]
bed® = —-E+ﬂ+& )
5.P+% = —ietdiqg* .

In general, the global (1,0) supersymmetry transformations will have this structure,

(2.7)

up to factors of “”.



The superspace equation of motion which follow from the variation of the action

in Eqn. (2.1) with respect to ®% is

o__L,o* = 0. (2.8a)

The second equation of motion associated with the variation of AL~ is
(0--®)2 = o . (2.8b)

This last equation leads to the projection of only left-moving scalars and, as will be
clarified below, is potentially anomalous. In order to solve these two equations, we
take

9__%% = 0. (2.8¢)

We have found it useful to define
L, = Dy + Ay~ 7O__ (2-9)

for later comparison with the supergravity theory. Axial current conservation de-
mands that

3__J(a)+d + D+J(a)_._6‘ = 0 . (2.10)

Using Eqns. (2.4) and only the first equation of motion, namely Eqn. (2.8a),
Eqn. (2.10) is quickly verified. As usual, the vector super-current conservation
law is purely topological: D, J(,,)__‘i + 3__J(,,)+‘i = 0. This is guaranteed since
[D+,8-_}=0.

Left and right super-currents, J( )= #[J(v) £J(a)|, may also be defined. Using

]
Eqns. (2.4) and (2.5) we find
J(l)___& = 0, J(,.).,_a = -—A+__a__¢& s

) ) ) ) (2.11)
Jp+* = 2;.,.‘1’“ , Jry--% = —0-_0* .



Their conservation law

(O

+ D+J(zr)__d = 0, (2.12)
follows from Eqn. (2.8a).

JIn -ordina,ry superymmetric extensions of free scz;Ia.r fields, there are separate
super Kac-Moody invariances in the right and left sectors. These symmetries are
reflected by the fact that there is only one super-current in each sector J;)+ (which
depends on o+t and ¢*) and J(,)_- (which depends only on ¢~ 7). In our case,
as expected, we see from Eqns. (2.11) and (2.12) that the affine symmetry survives

only in the left sector. The right current has a J(;); component and hence it

depends on both 0= —, ot and ¢*.

I1.2. Rightons:

Turning our attention to the right-chiral boson (righton) theory, we find the

action [10]
Sp = —i;-/dzadg—[D+<I>&3__<I>i’ + A__'*"'”D+<I>‘»‘8++<I>i’]17&i7 , (2.13)
where @ =1,..., Ngp. Reducing this to components we find the following
# = o, B:* = D&%,
ATt = A__tH| At = DAt
Sn = [ Poloris-0-_4 + ifs-o__p (2.14)

+ A _tt8, 490448 + A__TTEL 84484

+A-_tBy - 0444] -

The first and third terms give the usual bosonic action for rightons.
The axial super-current which again is related to ¢ — ¢& + %, is given by

J(a)-—-—& = 3--@6' + A..._++6++¢a'—’I:D.‘_(A__++D+®&) 3
(2.15)

J(a)+d = D+®a .



Following the definitions of the components given in Eqn. (2.6), we have
Hay-= = 8-—¢% + 22__THa, 4% + A__Tp.%
Ha-* = 0-—f+d + A__T8ye4® + 22 _TFa, B0
(2.16)
+ BiOppr T,
Ha)++% = B448% ,  Ga+® = B4t
The vector super-current is identical to the one given for the leftons, namely Eqn.

(2.5) with its components given by Eqn. (2.6). The vector super-current, as before,

is topologically conserved while the axial super-current conservation demands that
D+J(a)__& + 3__J(a)+&' = 0. (2.17)

This is true on-shell with the use of the following equation of motion

D,L__® = o,
(2.18a)
L. = 6. + A__*t3,, — i4D,A__**D,

The equation of motion associated with the variation of A__**, which may also
be endangered by an anomaly, is
To solve these equations, we take

D,®* = 0. (2.18c)

Note that Eqn. (2.18c) implies the weaker condition 84, ®% = 0. Furthermore,
we have D+(I>‘i| = B = 0. So the spinor super-partner of $¢ does not propagate.
This is simply an artifact of the absence of supersymmetry in this direction, as the

theory is embedded in a (1,0) superspace.
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Using the same definitions for the left and right currents we now get:

J([)_._a = A__++a++¢&' - 'l:%-.D+A__++D+®& )

Jn+t =0,
(2.19)
-Ju+* = D49
Jry--% = —L__o% .
Obviously, both the right and the left currents are conserved here in a fashion

similar to Eqn.(2.12). Notice that now only the right super-current (prior to using

the equations of motion) is in the form of an affine Kac-Moody current.

ITII. Couplings To Abelian Gauge Superfields

In complete analogy with the coupling of a single chiral boson to abelian gauge
fields [6.b], we now present the coupling of the vector and left currents in the lefton
case and the vector and right currents for the rightons. See Ref. [11] for a general

discussion of (1,0) vector super-multiplets.

II1.1. Leftons:

We start by introducing the gauge supermultiplets I'__ and I';.. These are
the fundamental gauge superﬁeldg. The remaining one, I'y | is given by 'y, =
~tD, Ty, for the abelian theory. We absorb the “electric charge” into the definitions
of the gauge superfields. This means that their dimensions are [[__] = 1 and
[T+]=%.

The action for the system with the vector current coupled to a U (1) gauge field
is given simply by adding a current gauge field interaction term to the free action
given by Eqn.(2.1) (for one lefton), namely
Scvyw) = St — i%/ d?od¢™{T1Jw)y—— + T__Ju)+}

(3.1)
= S, + i%/dzadg‘{r+a__‘1> - T__D,.®} .
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Where we have substituted the expression for the vector current given in Eqn. (2.5).
The invariance of this action under super-Siegel transformations (see section IV for
a complete discussion) is guaranteed if one adopts the following transformation laws

for _ the superfields

be® = T-"O__® |
5TF+ = (D+T__)F__ + T_"a__l‘+ ) (3.2)
6xT__ = (8__T ~)[—— + T —4__T__ .

Defining the components of the gauge superfields via

Vo = T__|, A = DyT__| — 8__T4|,
(3.3)
p+ = Ti| ,  Vip = DyT4|,
we obtain the following component expression for the action (3.1):
Stv(i)w) = S — %/d2a[v++a__¢ — V__044¢ + 12_B+] , (3.4)

where Sy, is now given by Eqn.(2.3). We see that A_ is auxiliary. The Siegel trans-

formations of the component gauge fields reads (v=— =T~ |, vy~ T =D, T " I)

boVig = v 70__Vip +(044v ")V,

5,,V++ = 1:I/+~—A_ s
bup+ = v"3--p+ )
6Vp+ = V+__V—— 3
(3.5)
Vo = v Ta__V__ + (--v T)V__ ,
V__ = 0,
oA = vTTO__A_ 4+ (8-_v )AL,
SA = 0 .

Note that the variations 6§,V and 6,V__ are just the transformation of a vector

field under the coordinate transformation o=~ — o — v~ ~. The variation of

9



the auxiliary spinor, A_, under infinitesimal Lorentz transformations is given by
OrorentzA— = —inA_. Thus the second term on the right-hand-side of the 6, A-
variation is understood as Ororentz A~ with the identification n = —2(8__v~ 7).
The term (v™~3__A_) is simply the effect of the coordinate transformations for a
spin-} field. | |

Since the vector current remains unchanged, it continues to be topologically
conserved. Using the equation of motion deduced from the action (3.1) we get (in
analogy with Eqn. (2.10)) the following expressions for the divergence of the axial

current
0-—Jway+ + DiJieg-- =0--Ty - DT = -W_ (3.6)

where W_ is the (1,0) super Yang-Mills field strength [11]. In terms of components

we obtain the following expression for the axial current and its superpartner:

a——j(a)++ + a++.7'(a)——- = a__V++ — 3++V_._ , ( )
3.7
O——Ja+ + Ja- =— A-

The first is the same as the anomalous divergence of the axial current constructed
for one left Weyl fermion. As in Ref. [6.b], this suggests the equivalence between
the bosonic component of our supersymmetric model and a free left Weyl fermion.
Furthermore, notice the occurrence of gauge covariant expressions. Supersymme-
try relates the usual U(1) field-strength, 9[-~V 4], to the spinorial field-strength,
D4 T'—_j| = A_. This motivated the choice of components in Eqn. (3.3).

Next we couple an abelian gauge superfield to the left supercurrent. In this

case the generalization of the non-supersymmetric results [6.b] leads to:

SLU(l)(l) = S -— i,}/dzadg‘{l‘__J(;)_‘_ + %—[A+__P__I‘__ +F__F+]}

— 5 - i%/dzadg"{l‘__ﬁ+<1> + 3[Ay=T__T__ +T__T4]} .
(3.8a)
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The corresponding component field action reads

Sty = Sp + %/dza{V-—[3++¢ + A4 709
+ ATV + Vi) 4 AT OBy
— A=+ d-_py)[By + Ay TTO--¢

+ 27TVl + )]}
(3.8b)

By taking the variation of the action with respect to I'__ and I, the super-currents

are found to be:
j(l)—— = %—I‘__ ’ j(1)+ = J(1)+ +%(I‘++2A+——F__) . (393)

Which in terms of the components, are

Ww-- = V-,
J- = - + 9-_py) ,
Jes = 0446 + AprTTO-_¢ + A TTO__f,
+ 3HVis A+ 2247TVOD 4+ a20 770+ 8-—py)]

i+ = B+ + ArTTI__¢ + iy + 22:77V_L) .
(3.9b)

The divergence of the left current has the form:
8-_Juy+ + DyJy—— =3406__Ty — DyT__] = —iW_ . (3.10)

Once again the bosonic component of Eqn. (3.10) leads to the anomalous divergence
of the (left) current. This can be deduced from the one loop calculation for one left

Weyl fermion coupled to a U(1) gauge field.
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II1.2. Rightons:

For the rightons we once again first couple the vector super-current to a vector
- ) U(1) superfield and then we couple the right chiral current to an abelian gauge

superfield. The action for the vector coupling is given by

: SRU(l)(v) = Sp - i,}/dzadg'{F+J(v)__+I‘__J(,,)+}

(3.11)
= Sgp + i,l-/ d?0d¢ {T4+3..®-T__D.®} .

This action is invariant under Siegel transformation if the variations of ® and the

gauge superfields are of the following forms:

by® = Ttt9,,® — «i:DTYYD,® |
§xTy = —id(D4YTH)D4Ty + Y4040y + 3044 TTH)T4
5'1‘1‘__ = T++3++I‘__ - i(a__T++)D+P+

: — i3[(8-—DyY*H)Ty + DLTHTDLT ] . o120
RS 3.12a

In terms of the components of the gauge superfields the transformations under Siegel

symmetry take the forms:

b Vit = Q440 )Woy + vPtoi Vi,
S Vit = 3044(v-p4) ,
Sopr = vttoiipe + 3BrsvTT)or
bupy = Fv-Viy ,
(3.12b)
Vo = vtto, Vo + (8-_vtT)Vig
Voo = —igfvdo 4+ d-_(v-ps)l
] Sode = vtTApiAs 4+ 3(@4avtt)Al
Sohd- = jv-(B44V— — 0-_Viy4) .

The vector current here is also topologically conserved in the presence of the

vector gauge superfields. The divergence of the axial current superfield, on the other
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hand is again given by Eqn. (3.6). For the coupling of the righton to an abelian
gauge superfield we add, in addition to the current-gauge superfield term, terms

bilinear in the gauge superfields. The action is
Sru()r) =Sr + i%/ d?0d¢™ {T4J(r)—- — $[~4A-_**T4 DTy + T__T4]}
=Sp -— i;-/ d?od¢ {T4[0-_ @+ A9, ,®— 41D A__TTD, @

+3[~iA__**T,D.Ty + T__T4]} .
(3.13a)

The corresponding component field action reads
Sru()(r) = Sk — ;/dza[i(a__ﬂ.,. + 3A__T8i49
+ At By + 380+ AT )ps
= (0= + A _FFOi4d 4+ ATV
= VeV + ATV
— idpp(A- + O——pp + ATV,

+ A _Ftoiiet)] -

(3.13b)

By taking the variation of the action with respect to I'__ and I we get the currents

j(,)__ and f(,)+, as follows:

S+ = — 10+,
Jyoe = Jy——= — 3T — 42A__*++¥D, Ty — D A__tHT) .

(3.14a)

Projecting this into components, we get

Jewt = — Vit

;(r)-{- = TP+ )
Jry-— = —0-—¢ — A_tta 4 - po_tp, (3.14b)

— (Voo + 2TV 4+ A_tpy)

Jr- = Ho-—py — A) .

13



The divergence of the right current has the form:
3__j(r)+ + D+j(,)__ = L8_-_T4y — DyT__] = —iW_ . (3.15)

. The bilinear terms in Eqns. (3.8) and (3.13) are the superspace mass terms for
the vector supermultiplet. Of course, this breaks the éauge invariance, but we need
this “tree level anomaly” in order to correctly bosonize chiral fermions.

Actions for self-dual bosons coupled to U(1) gauge superfields ((1,0)) were given
in Ref. [10b]. The latter work corresponds to studies of chiral bosons in absentia
of bosonization. Thus the U(1) anomaly was not of any concern there. Finally, we
note that in the superstring, the vector supermultiplet is replaced by the pullback:
P4 — DaX™Ap(X), where X™ is the space-time, coordinate superfield and Ay

is the space-time, gauge field.

IV. Siegel Invariance

As was mentioned in the introduction and further discussed in the previous
section, the lefton and righton actions possess a so called Siegel gauge invariance
[5]. The presence of such an invariance is seen by the fact the A drops out of
the equations of motion. Viewed as a chiral general coordinate transformation,
we would expect these actions to be potentially anomalous. We will see that, like
conformal two-dimensional field theories, this anomaly can be shifted by adding
local counterterms to the effective action. This new effective action is anomalous
under the analogous Weyl transformation. However, this anomaly can be removed
by considering a multiplet of chiral bosons, a stringy prescription or by adding a
Liouville term [7,8] to the classical action. In this section, we will calculate the
effective actions I'(A+~~) and I'(A__"*") in the absence of any super-gravitational

or U(1) background superfields.
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IV.1. Leftons:

Resuming with the leftons, the action given in Eqn. (2.1) is invariant [10] under

the (1,0) Siegel symmetry
br® = T~ -4__®% |

+—
5‘1‘A+_— = —D+T__ + T—_a .._..A+__

In components defined by: v=— = T‘”| and vy~ = D.T

bu¢® = vTTa__¢* ,

buf+® = vTTA__fi%

6UA++__ = —6++v__ =+ U__a __A++__
—
Sody™" = vTTA Ay,
6,B+% = viTTA-_¢%
AT = v,
—
6,,A++__ = —-1:1/;_3 __/\+__

The 6, in (4.2) arise from the coordinate transformation o=~

So we view Ay~ as a component of the graviton and A~

(4.1)

- |, this reads

— 07T —wv

as a pure gauge

field which is removed in the Wess-Zumino gauge. The action (2.1) is the action

for a truncated or “chiral supergravity” theory, written to non-linear order in the

supergravity multiplet.

Now we fix the symmetry by imposing the quantum gauge condition A, ~~ = 0.

We do this in analogy with the super-conformal field theory. The Faddeev-Popov

procedure leads to the super-ghost action

Srem = /d20d§‘A——++[D+G‘“ + AyTTO_GTT — (9-_ALTT)GTT],

15
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where G~ is the Siegel ghost superfield and A__* is the anti-ghost superfield.

The latter are quantum, while A, =~ is a background superfield. Upon defining

g~ = ¢ |, ivw"T = DyGTT,
(4.4)
A_tt = At a__t = DLA__*H|
we find
Ster = —/dza{ﬂ—~++[i3++9__ + Ay 70977
= 20X TT)GTT = A TTO T
- i(0mAr )7
e tATTOL_GTT - (-_AyTT)GTT 4 il
(4.5)

as the component action.
With ®* as a quantum superfield, we perform the [[D®%|[DA__*++|[DG~ "]
- integrals, use the super-propagator (z = (o%*,¢t))
O

OITA--**(2)677()|0) = —Dsb-(z - #), (4.6)

b_(z — 2) = &% — dY(¢t - ¢*),
and follow the analysis of Ref. [16] (using the Adler-Rosenberg method insisting on

Lorentz invariance) to find

— 2 4
Tiavomp(A+™7) = %—Wm/dzadg‘{D_i.A_,_“(a_D—) AT,
Np — 26 a__)4
— __( 11967r )/dZU[A++—--—( D) A++__ (47)

T (N Ve i
as the potential anomalous contribution to the one-loop effective action. The

(anti)ghost component fields «__*+ and 4 ~~ are auxiliary and there is no “grav-
itino” here. Hence the -26 ghost contribution.
Since I'' g yom+,L was computed from an action in the background superfields,

we must check for its invariance under the linearized transformation: éxAL =~ =
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—D;T~~. As mentioned above, it is not so invariant. In order to restore invariance
to the theory, we must study the (1,0) supergravity theory [11] with H__*+ = 0;
this results in the truncated or chiral theory (see section VII). This last superfield is
oneof the fundamental superfields of the theory, along with H,~~ and the confor-
mal compensator, ¥. We remove the superfield H__** and restrict the theory to
be invariant under the local gauge generator K = K~~ 9. _+0M (M is the Lorentz
generator). Next we make the identifications Ay,~~ = H,~—, A__*+ = H__++
(= 0 for leftons) and p = W. The action for a scalar multiplet coupled to (1,0)
supergravity then reduces — to non-linear order — exactly to Eqn. (2.1). The
superfield p drops out of the action as it is the analog of the super-Weyl mode.
Furthermore, under the identifications, Y=~ = —K~~ and T = —{}, the truncated
" (1,0) supergravity transformations become identical to the Siegel transformations

of Eqn. (4.1) along with

bxp = T778__p + 37T,
(4.8)
bsp = 1S, bsAy™7 = 0.

The first transformation is the variation of p under the extended generator which
includes “local Lorentz” transformations with parameter T. Super-dilatation trans-
formations are given by 65 variations. The Lagrange multiplier, A4 ~—, transforms
as in Eqn. (4.1) under the extended generator, 1.e. its transformation is unchanged.

Now all of this means that we can follow Ref. [16] in adding local counterterms
to the effective Lagrangian in order to restore the invariance under Siegel transfor-
mations. We can do thisif T = __T~~. So we have one parameter only (the other
parameter, S, trivially gauges away p) and can gauge away only one superfield. The
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counterterms lead to the new effective action

N —26 _ D
Tanom,r = —(—-—%‘—G——)/dzads‘ [S+H+S+] ,

- ____.(Ngé;%)/dza[rér + i3 TT(0--) A T

S VP T L W) WU ¥ TP VAR 4 I (49)
St = 418..8._A,™" — i8__Dyp ,
ro= 2D.8%| = —0-_0-_Mi477 4+ Ao -

The superfield St is the analog of the linearized (1,0) super-curvature [11], T+,
with H__** = 0. The component field, r, is the linearized, “truncated bosonic
curvature”, po = p| is the Weyl mode and A4 F = —iD+p| is the “gravitino”
component. The fermionic piece vanishes in the Wess-Zumino gauge. Canvom,L
is anomalous under the §s variation. We must then have Ny = 26 as a condition
which removes the latter anomaly.

The counterterms, d__A;~~8__p and D4 pd__p, appear with coefficients
which are proportional to (N —26), so they do not contribute to the Lagrangian of
an anomaly free theory. The extended Siegel transformation for uo is equivalent to
that of p given in the first work of Ref. [8], for the “anomaly free theory”. Written
to quadratic order in the bosonic background fields, our counterterm lagrangian
agrees with theirs (see Eqn. (2.32) there). We are also in agreement with the fact
that this additional lagrangian removes the “Siegel anomaly”. Clearly, a Liouville
term (see section VI for its form) can be added to the classical action. Such a term
leads to the effective action in Eqn.- (4.7), but with the coefficient shifted. It is then
possible to have an anomaly free theory in less than 26 dimensions, a la Polyakov

[17).

18



IV.2. Rightons:

The situation for rightons is as follows. The Siegel transformations which leave
Eqn. (2.13) invariant are

6’1‘@6' = T++3++<I>& - i,‘-D.}__T++D+¢& 3

«—
SpA__tt = _a__Ytt 4 YHHe L A__*+ (4.10)
+ §3DyA__tHDLTHE
In terms of components defined by: v+ = T++| and v_ = D+'I‘++,, we

have the pair of symmetries

504’& = v++a++¢&,
8uBr® = vtto,iB:® + 3(844vth)BLY
L and

5u)\——++ = —g__vtt + v++3++/\__++,

«—r
5u/\——+ = v++8 ++A__+ + i—)\__+6++v++ y
5, = —ijv_Bi®
5B+t = 8149,
S Attt = Ly At
Sodo_t = 48__v_ — i dii Aot 4 i(8ppv )A__tt (4.11)

Here we have the interpretation of A__** as the other graviton component (as

opposed to Ay, ~ 7 in the lefton theory) and A__* as its gravitino. As we saw
before, the trace of the “graviton”, o, and the other “gravitino” component, A4, *,
reside in the “conformal compensator”, p.

Fixing the invariance of Eqn. (4.8) by imposing A__*%+ = 0, we find the
super-ghost action
Srer = —'1.'/ Bode=A,~"[0__G*t — 3D A__ttD, Gt
) + A__FTOLLGHT = (B4pA__tT)GFH] .
(4.12)
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Its component form is found by defining

g++ = G++| , 4t o= D+G++ ,
(4.13)
ayTT = AT, Av+™™ = DiATT|,
so that
Sreu = —i/f7lch{11++“[3——.9++ + A_tta, ghY
= Q442N G+ ATt
S TU (R L (CFUR) W L AN S Wy PO

+ A _FO4 G - (844 A )G}
(4.14)

As before, we take ®*, A, ~~ and G~ to be quantum superfields to be inte-

grated over. Using the super-propagator

(O|T4, = (2)a+ ()]0) = —-%6-(2 - ), (4.15)
we find
Tiavomrr(A—-7FT) = zM/dzadg [DyA- ++(BEL) Aot
_ _ 3N - 10)/dza[,\__++M,\__++
967 0

+ At (ag) At
(4.16)
where the A__71 term is the suﬁersymmetric completion. This is not invariant
under the linearized transformations obtained from Eqn. (4.10). When we add the
local counterterms: Dy A__1+3,,p and D, pd-..p, we can restore the invariance

obtaining the new effective action

Tavompr(A--**) = - T(NR 10)/d2 st +S+ , (4.17)

S+ = i§3++D+A__ - za__D+p .
This violates the §sp = 1S and §sA__*+ = 0 super-dilatation variations, unless

Ngr =10.
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IV.3. Siegel versus Conformal Anomaly:

We have thus produced the critical dimension results by following the standard
analysis of the superspace effective action [16,18]. In the process, the foundations
for the more important calculation — coupling to 4 curved background — have
been laid. However, this has led to interesting results for the N’s.

Although we call the (1,0) supersymmetry a right-handed supersymmetry, the
fermion, B, which is a member of the supersymmetric multiplet, is actually a
left-mover (8__p;+ = 0). The right moving fields do not form supersymmetric
multiplets. Now, consider that for a chiral boson, the component current j__4
can only be constructed out of a set of “minus-Weyl-spinors”, n_{, as (1--)i5 =
—in_fy_J. There is a superfield for n-{, it is [11] U_{=p_{4ictFl where FI
is an auxiliary boson which, for a free theory, satisfies F' I = 0. So we write J__& =
o__@a = —w_1I (M&);;%_ ;, where the matrices M@ form a vector representation
of O(2), for example. For this to be a non-trivial result, we must have __® # 0,
so ® must at least be a function of o~ ~. A righton is a candidate for such a
superfield. This is as it should be since, U_1isinfacta pure right mover. Thus the
righton should have the conformal anomaly (26) of half the anomaly of the right
moving fermions. This is not the result we have obtained, as we did not calculate
the conformal anomaly (see section VII).

Analogously for the leftons, we have that (jy4)a = —28+28;2 However,
here B is the upper component of a scalar superfield. So we have the superfield
current J4 = D, ®. The requirement that this does not vanish leads to ® being a
superfunction of c** and ¢*, at least. Taking the lefton superfield as a candidate,
we should ha.ve an anomaly of 10. Again, as we did not compute the conformal

anomaly, we did not obtain this number.
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So the “Siegel” anomaly and conformal anomalies are antipodal. This behavior
would be much harder to detect in non-supersymmetric or (p,q) supersymmetric

theories where p = gq.

V. BRST Quantization

Extensive work has been done on the BRST quantization of two-dimensional
conformal field theories, especially with applications to the bosonic string [13]. The
supersymmetric theories (both (1,0) [19] and (1,1) [3,19,20]) have also been studied.
For non-supersymmetric chiral bosons, the literature is sparse [7,8]. Needless to
say, the Siegel symmetries of (1,0) supersymmetric chiral bosons have not been
previously BRST quantized. We start this process here. As in Refs. [7a,8,19,20],

we follow the work of Kato and Ogawa [13] generalized to (1,0) superspace.

V.1. Leftons:

After making the replacement T~~ — 1£G~~ where ¢ is the anti-commuting

parameter, and defining 6+ = 1£6’, we find

§'0% = GTa._d% |

+“—
6’A+__ = D+G__ + G—_a __A+__ 3
(5.1)
§G—~ = G——o__G—— ,
S'A__tt = g__++ ,
where B__*7 is an auxiliary field with §'B__+* = 0. The action is now
S, = —i/dzadg‘{,},[D+(I>-a__<I> + AyTTO_®-9__9) 52
5.2

—i §'(A__THALTT))
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Then we shift 8__1* in such a way that all the terms with A, ~~ will be cancelled

out. The variation of A__T1 becomes

S'A__*t = —418__®-0..® + G TI__A__*t
(5.3)
— 2A__*tta__@ .
Reducing Eqns. (5.1) and (5.3) to components, we obtain
545 = GTo__g%
§'8+% = —iyyTTO-_¢% + GTTO__B.°Y
+—
FAs™T = i TT o+ T AT,
“— >
FAps™" = =044 8§77~ v T AT 4 §TTO T,
$97 = §o g,
+—
§'vy™7 = GTTO T, (5.4)
BA__tT = i18__¢-0__¢+ G B _A__++
_2_4___++a__g—— ,
flar_t = i0__$-0-_fs + G 0__a__*
+ 2a__+8__g“_ — ’i’7+_—a__.4~—++
- iZA__++3__'y+__
The left over action is
Spon = /dzadg—[—zgm@.a__@ + A__**D.G—] . (5.5)

The component field action may be deduced from Eqns. (2.3) and (4.5) after
imposing the gauge conditions Ay, ™~ = Ay =~ = 0. The BRST super-current
J(BrsT)-- is now deduced via a Noether procedure

0prsTSLeH = /d20d§”[D+€ J(BrsT)--] - (5.6)
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It is given by
JBrsT)—— = G7T[$0__9-8__® - A__tto__G ] . (5.7)
Upon applying the gquations of motion obtained from Eqn. (5.5):
8-_D;® = 0, D,G— = DiA__*t = o0, (5.8)

it is straightforward to verify that the BRST super-current is conserved and

jBrsT)- = —1DyJ(BrsT)——| =0,

JHBRST)-~ JBrsT)--| = G T[40-_¢-0-_¢ — dA__TTa__gG~],
S = /" do : JBRST)—- *

° (5.9)

The calculation of the BRST operator, §, is now the usual one for the bosonic

string [13]. In particular the BRST charge § can be written in the form above,

where : : is the normal ordered operator. This leads to the introduction of the

intercept, a. The necessary conditions of the nilpotency of the BRST charge are

the cancellation of the anomaly and that the intercept must obey the following
expression:

a= le(NL — 2) . (5.10)

These two conditions can be fulfilled in two different ways: (1) by adopting the

“critical dimension” Ny = 26 and a = 1 or (2) by using the Liouville term in the

form presented in Ref. [8]. The latter allows us to have Ny = 2 and a = 0. It

was shown in ref. [8] that in the non-supersymmetric case for a > 0 the physical

- spectrum includes states with right-handed momenta in addition to the left handed
| modes. Therefore for a quantum system describing only left modes one has to use
the second ;va,y of fulfilling the conditions for the nilpotency. The derivation of

above Eqn. (5.9) shows that for the lefton case the result of Ref. [8] also holds here.

24



Later, in the next section, we will encounter a Liouville term in the bosonization of
the Siegel ghosts systems.

It is interesting that the stringy prescription has allowed us to cancel the Siegel
anomaly but in so doing it has led to “undesired states”. When separately right
and left moving bosons are included in a single theory, we should presumably find
that there is no longer a problem. As we know [21], modular invariance imposes
a relationship on the energy spectra of the states of the left and right movers.
It would be interesting to look for a correspondence between these results and
string propagation on asymmetric orbifolds [22]. We may then find that Ny > 2 is

consistent with the spectrum of states.

V.2. Rightons:

By repeating the procedure for obtaining the gauge-fixed action, as was done

for the leftons, we find the following action for the rightons
Srcr = —’i/ d20'd5‘~ [;—D.f.q) -0__9 + A+__a_...G++] . (5.11)

This is associated with the following BRST transformations
§'®% = Gt19,.,9% + 3(D;GYH)DLD*
>

SA__TT = —g__agtt + @Ggtta ++A__++

+ 1i(DyA-_FTH)DLGH |
: (5.12a)
§'Gtt = Gtto .Gt + 3(DsGYH)DLGTT
§'ALTT = $A:TTO44GTT + (944 447T)GHT

+ 1(D4+A+7T)D1GYY + 1D D 3,4 9 .
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Projecting onto components we get Eqn. (2.14) plus Eqn. (4.14) with the gauge

conditions, A__*+ = A__* =0, imposed. The component form of Eqn. (5.12a) is

§'¢ = Gtt044¢ + i4vTB: ,

8By = —qt0444 + GHYOiiB + 304+ 61T)Br + 3710444,
FA__tt = —a__gtt 4 g++‘3_'++)‘__++ ~ pAl_tyt
BA__* = —d0__yt 4 i3 aihott 4+ GHTE LAt
— 13044 ATy — Aoy gt
§'G*t = Gtto gttt + ity
gyt = .9+-'r:9_’++'7+ + o4+ Gt
§'Avs™T = GVTO4i AT — 244477844 87T = 304778440t
= 3O0+404TTIT — 3104448444 — By 9+4B4)
§'ay™" = GFYOytierTT 4+ jayTTO44 Gt

+ AT+ 384 0444
(5.12b)

By taking the variation of the action (5.11) and in accord with a definition similar

to Eqn. (5.6), we get the following BRST super-current:
JBrsT)+ = —1GTT[4D, 98,19 + A4 T044GTH
(5.13)
+ AT (DG (D4 GHY)
Using the equations of motion from Eqn. (5.11), it is again easy to verify that

3__J(BRST)+ = 0 and that
J(BRST)—— = —i%G++D+Q'31_D+® + ’l:-;—A+__(D+G++)3__G~— s (514)
vanishes. The components of the super-currents are given by:

iBrRsT)++ = DiJBrsT)+| >
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= —GV[40446-94+1+6 + 1P+ B44P+
= tAptT 044 61T — dapT A4t
= (484 0444 + pa TG 4+ ipA T

jBrRsTy+ = JBRST)+|

= —13G7T By 04sd — daTT(GFFO4L 0T+ i1vTA(5)15)

Now the analysis is almost the usual one for the NSR superstring [2]. We have
two sectors: Ramond (R) sector and Neveu-Schwarz (NS) sector. In the R sector
the intercept is a = 0 with Ngr = 10. While the NS sector has ¢ = 1. So there
is no problem with having left moving states in the R sector of the righton theory.
However, the NS sector has the same problem as the purely bosonic theory. Recall
from our study of the leftons and Ref. 8], we must have a = 0 to remove “undesired
states”. In order to preserve this criterion in the righton theory, we must introduce
a Liouville term so that Np = 2 yields an anomaly free theory. (See sub-section
VI.2 for the form of this term.) We choose Ng = 2 since a = 4 (Ng —2) — 0.

As an aside, we note that the surface term involving the lagrange multiplier

leads to A__%(7,0) = A__*(r, ) when B4 (r,0) = B+(7, ) in the R sector. Along

with A__*+(r,0) = —A__*(r, ) when B is anti-periodic in the NS sector.

VI. Bosonization Of Siegel Super-ghosts

We now turn our attention to the bosonization of the Siegel super-ghosts. How-
ever, before we look for such a prescription, we first recall that the ghost system
(b,c) of the bosonic string has a ghost conjugation symmetry: & — ¢ and ¢ — b,
symbolically. The ghost number current J = tbc is odd under this symmetry. Look-
ing for such a symmetry in the (1,0) ghost actions above, we instead find: A — —G,

G — A, or wvice versa. This is a global O(2) symmetry. So as not to confuse the
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latter with the U(1) ghost-number symmetry, we will refer to the “ghost-number
symmetry” by the expression in quotes. As is well known for the bosonic string,
—io

the ghost number symmetry (b — be~*?, ¢ — ¢*%¢) is anomalous: 8J \/gr, where

r is the curvature.

VI.1. Leftons:

For the lefton, Siegel transformation, ghost system we have the ghost number

current
U__ = A__T+G™~ , (6.1a)
U__ = id__*tg— |
(6.1b)
B = da__FGTT 4+ ATy

where the (b) equations are the component expressions from the superfield current
in (a). The spinor component current y_ vanishes on-shell where o = 4 = 0. This

current has an anomaly of the form
D,U__ = —-9.8% | (6.2)

written to linear order in the gauge superfields (see Eqn. (4.9)). We would like to
bosonize the A-G system in such a manner that this anomaly is reproduced and
in the process find a value for ¥;. Additionally, we will maintain the global O(2)
symmetry of the super-ghost system. (As there is no supersymmetry in this sector,
we need not maintain this symmetry here.) In Ref. [3] it was shown, that for the
bosonic string, the former can be done if the boson is non-minimally coupled to

gravity. This leads to the Liouville term introduced in Ref. [7a]. So we write
U__ = (3— + Ao, — iDiA_**Dy)y ,  (63)

and ask for an action which leads to the equation of motion given by Eqn. (6.2),

written in terms of the bosonic superfield y and the correct Siegel anomaly. The
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bosonized form (in terms of a single scalar field w) of the ghost conjugation sym-
metry of the bosonic string reads w — —w, since the current is odd. To have an
O(2) symmetry we take two bosonic superfields x* (& = 1,2) which transform as
O(2) vectors. Let x in Eqn. (6.3) be x*.

Putting all of fhis together and using our expefience from section II and Ref.

[11], we write
SLgu = /d20d§_[“i%(D+X'a——X + A__F*Dyx-844x) + 9.5t X, (6.4)

which yields Eqn. (6.2) as its x* equation of motion. So this is a candidate action for
the super-bosonized form of the ghost term in Eqn. (5.5). The S* factor (see Eqn.
(4.17)) is the Liouville term written in superspace, it breaks the O(2) symmetry. In
order to get an anomaly contribution of —26 from Eqn. (6.4), we need ¥ = /2.

For a “superfield” which satisfies D, x! = 0, we may use the results of Ref. [3]
for the bosonic string to write G~ (0~ ~) = exp [x*(c™7)] and A__*T*+(c77) =
exp [~x*(c~7)]- We do this since the component ghosts and anti-ghosts, a__* and

74+~ ", are auxiliary. Then the various commutation/operator product expansions

are as given in the latter work.

VI1.2. Rightons:

The ghost-number super-current for the rightons is treated similarly. The su-

perfield current and its components are
Uyt = Ay Gt
Ups' = Ape ™76 4+ a7yt (6.5)
pit = a-;__.9++
In analogy with the analysis of the lefton theory, the U(1) anomaly is of the form
8-_Uyl = —o9pSt (6.6)
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where ¥ is to be determined. Super-bosonization of this system is given in terms
of the pair of bosonic superfields, %%, by
Ut = (D+ + Ay770-)%%
Srer-= [ PodsT[=i3(D4k-0--% + A0 95 (6.7)
+ 9rStxY] .
The righton, Siegel, super-ghost system has an anomalous contribution of —10. This
means we must have 95 = \/%—g.

A remark about the O(2) symmetry is in order. This symmetry is purely a by-
product of supersymmetry. For example, look at the component ghost action in Eqn.
(4.14). This action has the usual ghost conjugation symmetry: A4~ ~ — G+t
g7t — A4y~ ~. Howeverit has: o, =~ — —yt, 4t — o, ~~ as a symmetry. This
is the source of the O(2) symmetry and leads to the analogous transformations on
the superfields. It was then seen that this meant that we needed two bosonic
superfields to super-bosonize the super-ghost system. These superfields contain a
total of two component bosons and two component fermions. It has been known [3]
for some time that these four fields are needed for the bosonization of the super-
conformal ghost system. What is interesting is the fact that we have found this
result in a manner which is explicitly supersymmetric.

Just as we have the operator expressions for the bosonization of the lefton
ghosts, we expect that we should be able to find similar expressions in the righton
theory. There are two subtleties here. The first is that in the righton theory, all of
the component ghost and anti-ghost fields propagate. Thus the need for the four
fields as described in the previous paragraph. The second point is that the dimension
of the anti-ghost superfield, AL~ 7, is d = 3. The component operator expressions
are known (3]. They are § = exp [w1 (o7 1)] and v = exp [wz(oF*)]n for the ghost

super-multiplet along with 4 = exp|—wi(0**)] and a = exp|-wa(ct*)]0++¢
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for the anti-ghost super-multiplet. We delay giving the corresponding superfield
expressions until a later work [23]. At this point it is sufficient to note that the
wy are bosons which are the lower components of x% and the fermions, n and &,

compose the upper components. The operator product expansions are as given in

Ref. [3].

VII. Leftons And Rightons Coupled To Supergravity

A part of the definition of superstring theories is the stringent requirement
that they must be superconformally invariant. So we now couple the actions of
section II to (1,0) supergravity. In particular, we now investigate the superconformal
anomalies for leftons and rightons plus a set of D (1,0) superstring coordinates.
The resulting theory will lead to the compactification of the heterotic superstring
to D < 10 dimensions with gauge group G X Gg [14]. An example of such a group
is SO(2NL) x SO(2Nr). A sketch of the anomaly results was given in Ref. [10].

To covariantly couple, in a minimal manner, the actions for the various “mat-

ter” superfields to supergravity, we take the action

ScLr = —i%/clzo'dg‘E_l[V_,_Xi‘—V-_thﬁ + V+¢L&V__¢Lér]&é
+ ViOr*V__®plny; + AyTTV__@LV__& Py,

+ A.._++V+<DR&V++@R57)&B} .
(7.1)

This action was constructed [10] based on the requirements that it should be super-
dilatation, general super-coordinate, locally Lorentz and Siegel invariant. It is the
sum of the locally covariant forms of Eqns. (2.1) and (2.13) along with the action

for the space-time coordinates, X<.
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Computation of the anomaly requires that we write Eqn. (7.1) to linear order
in the background superfields. We consider fluctuations about the background

superfields, HZ, where

H,™~ = HP~- 4 H$-—, H__++ = HB ++ 4 HO ++
AyTT o= —HPTT 4 AQTT At = —HP T 4 g2
(7.2)

is the split. This is done keeping in mind the fact that the background H’s and
A’s are not required to satisfy any equations of motion. We treat this as a toy
model, useful only as a guide to the construction of another action (see below)
which couples leftons and rightons to supergravity. When linearized, the action

Scrr becomes
ScLr = —i,l./dzadg‘[D+X-3__X + D;y®p-6__&r + D, ®r -3__®g
+ Hf__(a_._X-a__X + 0__®r-3__0g)

+ HE *H(DiX-0,4X + Di®p-0:49.)]
(7.3)

where we have chosen the quantum gauges A? = H? = 0, symbolically. As a result
of the choice of the background to expand about, the coupling of the ®’s to the H’s
has been reduced. Furthermore, under the quantum gauge choice chosen, we find

the ghost actions

Sscen = /dzadg‘E”l[—iB+‘“V__C++ + B__ttv,c7],

Sten = /dzadg‘E"lA__++{V+G“ - HBE--V__G-
+ (V--H}"7)G™],
Sren = —i/dzadg‘E‘1A+“‘[V__G++ + 1V HB ttv. g+t
- HE_*tV, . G* 4+ (Vi HE_tH)Gtt] |, (7.4)

where the V4 and E~! are background quantities. The first is the superconformal

gauge, supergravity ghost action as given in Ref. [24]. The other two are the
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covariantized forms of Eqns. (4.3) and (4.12), as the new Siegel transformations are
the covariantized versions of those of section IV. When linearized and with the use

of Eqn. (7.2), these become

- SseeH = /d2ads‘*[—iB+_‘6__C’++ "+ B__*tD,C™"
+ 3D,HB_++B,~-p,C*+
— $HB_++B.-"a,,Ctt
+ 04 HB_++B ~~Ct+
~ HB--B__*+3,,C"
+ 8__HB--B__++tc—|

SLer = /d20d§"[A—~++D+G“] ,

I

SrcH /dzadg_ [A+__a__G++] . (7.5)

The utility of the choice of the A-background is now clear. The (4, G) ghosts
are non-interacting (to linear order)! This means that ghost contributions to the
anomaly will come only from Sgggr. Also, the absence of A means that the
effective action will be a functional only of the H’s [25]. Thus the absence of a

Siegel anomaly. In fact, the non-local part of the one-loop effective action is

(5_)"
O
3
_ ’L%(D'i‘NL _ 10)D+H§_++%LHE_++] .
(7.6)

Fiavomr = L dzadg_[(D+NR—26)D+Hf“

HB--
967 +

As in Ref. [16], the addition of the local counterterms restores the gauge invariance
under the action of the supergravity gauge generator but breaks super-dilatation
invariance. The removal of the latter anomaly requires that the pair of equations

D + Nrp = 26 ,
(7.7)

I

D + N 10 ,
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be satisfied.

We have a reversal of the N’s in the above equation as compared to the “Siegel
anomaly” critical dimensions in section IV. This last equation is the expected result;
compare this with the heterotic superstring (N = 0), for example. It was arrived
at from a more qualitative argument in Ref. [10]. As} discussed in section IV, these
are the superconformal anomalies, not the “Siegel” anomalies. Notice the flipping
of the coupling to the background superfields between Eqn. (7.3} and the analogous
actions in section II. We have a ®p where a lefton is expected, and vice versa. If
we had not chosen the backgrounds in Eqn. (7.2), we would not have computed
the anomaly which must be removed for consistent superstring propagation. In a
general background, we would have pure Siegel, pure superconformal and mixed
anomalies. The anomaly removal equations analogous to Eqn. (7.7) turn out to be
a set of inconsistent equations. With Eqns. (7.2) and (7.7), the theory is free of
both the “Siegel” and superconformal anomalies.

Looking at Eqn. (7.3) we see that it should be possible to obtain the same action
by defining the supergravity generator (general super-coordinate, K™ Djs, plus
local Lorentz , M) to act schizophrenically on the matter superfields. Keeping in

mind the left < right reversal, we take the truncated supergravity transformations:
bk ®L% = —|KT+944 —i3(DLK )DL ]®LE
(7.8)
bk®r® = —K~70__®zp% ,

where we have gone to the Wess-Zumino gauge. With these transformations, we

can obtain the latter action by using

E X% = (Dy + Hy 79_-_)Xe,
E__X2 = (8- + H__*%r3,;,)Xe |
BE,®,% = Do,

- (7.9)
E__®L% = (0. + H__*19,,)0.% ,
E+®R& = (D+ + H+_‘8__)<I>R& s
E__®rt* = 6__0z%
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where E, and E__ are the (1,0) semi-zweibeins [11] fully defined by their action
on the space-time coordinates, X¢. Our task now is to construct the zweibiens
based on the representation in Eqn. (7.8) and the (1,0) supergravity constraints
[11]. Before we state the results, we define the supergravity covariant derivatives
Va=EsMDy + waM,where E4 = EgsM Dy and the wy are the Lorentz spin
super-connections. It is also necessary to introduce the conformal compensator, ¥,
The utility of the latter superfield was discussed in section IV. We will now use
these to construct a theory invariant under Eqn. (7.8).

As usual, we commence with the leftons. Carrying out the calculations as

outlined in Ref. [11], we find
E+ = C‘I’ D+ f

Eiry = Y044 — 2(D:¥)Dy]

E._ = &YE__ — iy(DyH-_**)D,] ,
(7.10)
wy = 28¥YD,T
wip = 268273, ¥
wee = e2¥[oL H _tt — 2BV .
For the rightons we have
E, = 'k, ,
Byy = &Y[Eyy + 3(0--Hy T)EL - 2(B,W)EL]
E_._ = &%__ |
wy = ¥[2E, ¥ — o--Hy™ 7], (7.11)

35



These expressions, along with

2t = }{Brw_- — E__wy - jwiw__],
R = —[E++(1)__ + 'I:E+E__(U+ - Wi4pwW + i§w+w__] s (712)
E = sdet(EsxM) = 3%

and the supergravity, graded commutation relations

V4, Va} = 2V, [V, Vi) = 0,
[V4,V__} = —2%tM (7.13)
V++,V-_} = —-(ZFVy + RM),

define the (anti)holomorphic realization of the (1,0) supergravity algebra on the
leftons and rightons.

The compactified heterotic string action then reads (in compact notation)
ScLr = —’I.-}/ dzgdg‘E_l[V+@Av__(DB]nAB s (7.14)

where &4 € {X2,8.% ®r%} and 145 = Nap @ M55 © Na5- Reduced to compoents,

this becomes

ScLr = %/ Ao~ DyrahD__aP + i AD__p.B
. (7.15)
- 2,3+A¢——+D++.3+B]’7,m )

where D, 4 is the gravity covariant derivative and ¢__t is a gravitino component.

In this last expression, one must use the component analogs of Eqn. (7.9) or (7.10)
or {7.11).

As a result of super-conformal invariance and the realizations in Eqns. (7.10)

and (7.11), Eqn. (7.14) (with X = 0) is identical to Eqn. (7.3) (with X = 0). This

is not a linearized result, it is the non-linear theory. Of course, including X in the

action does not change the <I>(z) contribution to the action, but it gives the action
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for superstring, space-time coordinates and leftons and rightons coupled to world-
sheet supergravity. The H’s then act as lagrange multipliers for the <I>(i) imposing
their uni-directional motion. The Siegel constraint algebra has been “transferred”
to the Yirasoro algebra. Furthermore, the ®p anomaly is one-half that of the minus-
spinor fermion it bc;sonized. As mentioned before, there is no plus-spinor, matter
superfield in (1,0) superspace. So such a statement cannot be made for the leftons.
The righton propagator, when exponentiated, is equivalent to that of a minus spinor.
Thus Eqn. (7.14) is proposed as the bosonized action for the compactified heterotic
string. Before this statement can be fully asserted, the spectrum of states in the

theory must be checked. We will do so in a later work [23].

VIII. Conclusions

We have studied two-dimensional, (1,0) supersymmetric, self-dual bosons. This
was done with an eye on two facets of the theory: (1) bosonization in a two-
dimensional superfield theory and (2) applications to superstrings. As shown in
earlier works [7,8] on the purely bosonic theory, a Liouville term is needed in the
first picture in order to obtain the correct spectrum of states. It may not be needed
in the second picture. It is needed in the Neveu-Schwarz sector but not the Ra-
mond sector of the superstring. The vector and chiral super-currents were coupled
to abelian gauge superfields. This led to the (1,0) supersymmetric completion of
the purely bosonic results of Ref. [6b]. Following this, the conditions for Siegel
anomaly removal were obtained through a calculation of the effective action by
the supergraph method of Ref. [16]. The Siegel super-ghosts, in the analog of
the super-conformal gauge, were bosonized. A Liouville term was needed there.
Finally, an éction which couples chiral bosons to world-sheet supergravity, was pro-

posed. This action was obtained by demanding that the supergravity generator
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acted schizophrenically on the bosonic superfields. The Siegel constraint algebra
was co-opted into the Virasoro algebra. Although our primary calculations were
done in superspace, we have given the component expressions for most of our re-
sults.

In future works; we plan to study (1) the non-abeiian chiral super-bosonization,
(2) the spectrum of states in the theory outlined in this work and (3) the bosoniza-
tion of the supersymmetric charge. We hope to then obtain a more complete com-
prehension of the bosonization of supersymmetric theories, both global and local.

This should be of some importance to superstring theories.
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