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I. Introduction 

Bosonization of two-dimensional Dirac fermions which was discovered some 

time ago [la], was found to be a very useful tool in various domains of theoretical 

physics [lb]. Within the last few years, the process has become an integral part 

of string theories [2]; leading to the bosonization of ghosts and anti-ghosts [3], for 

example. This process applied to matter fermions has also become important in 

superstrings. The heterotic string [4] h as two formulations in which the internal 

coordinates are either chiral fermions or their bosonized form. For the bosonization 

of chiral bosons, however, only the Hamiltonian formulation was known. The La- 

grangian picture was lacking. An action proposed by Siegel [5] for a self-dual boson 

(the so-called chiral boson) which propagates in one direction only, was a natural 

candidate for the chiral bosonization [6a,7a]. The existence of a “reparametrization 

anomaly” in this theory was pointed out in Refs. [7a,8]. Two mechanisms for can- 

celing this anomaly were suggested. One involved the introduction of a Liouville 

term [7a,8] and the second proposed a “critical dimension” approach [7b]. It was 

shown, in Ref. [8], that two bosons are needed for a consistent quantization. The 

coupling of this model to gauge fields [6b,7b], to gravity [7a,7b,8] and the non- 

abelian version of it [6b,7b] were also introduced. Some supersymmetric extensions 

have been studied. These include the N = 4 and N = 2 theories [9]. 

Chiral boson actions are constructed from a ‘truncated two-dimensional grav- 

ity” theory coupled to scalars. The component of the graviton which remains after 

the truncation, acts as a lagrange multiplier whose equation of motion imposes 

the uni-directional condition. As a truncated gravity theory, some general coordi- 

nate invariance remains. This is the symmetry that is potentially anomalous. As 

a two-dimensional theory, the classical action is conformally invariant. Hence the 

existence of a Weyl or dilatation symmetry. We will see that in terms of calcu- 

lations, the theory of chiral bosons can be treated in an analogous manner with 
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ordinary conformal theories. This means that the potential Siegel anomaly can be 

shifted to a Weyl anomaly through the addition, to the one-loop effective action, 

of local counterterms which are functions of the lagrange multiplier and the ana- 

log of the conformal compensator. The Weyl anomaly is removed in the critical 

dimension. We will ‘perform these calculations for the (1,0) supersymmetric chiral 

boson multiplets [lo]. I n so doing we will adopt the stringy prescription for curing 

anomalies. We will also discuss the supersymmetric extension of the Liouville term 

[7,8], especially with regards to the physical states of the theory. 

In the next section, we will give the actions and axial and vector super-currents 

for both leftons and rightons. The nomenclatures leftons and rightons are used to 

label bosonic left movers (functions of (r+o)) and right movers (functions of (r-a)), 

respectively. That is, self-dual bosons are leftons when ~01 = 1 and rightons when 

~01 E -1. Although the calculations will be performed in (1,0) superspace [l&12], 

we will give the component expressions wherever they are appropriate. The super- 

currents will be coupled to gauge superfields, in section III. Section IV will contain 

the Siegel transformation laws and discussions of the anomalies of the leftons and 

rightons. It will be noted that the anomaly in the latter symmetries can be shifted 

to that of super-dilatation invariance. BRST quantization [13,3] of the chiral bosons 

will be stated in section V. Our results will reproduce, in part, the results of [8]. A 

prescription for the super-bosonization of the Siegel symmetry (super) ghosts and 

anti-ghosts will be given in section VI. Section VII will provide a discussion of the 

more interesting case of leftons and rightons coupled to a curved background. This 

should be of use in superstring theories, as we will include D scalar superfields for 

the superstring coordinates. We will then reproduce the critical dimension formulas 

for D 5 10 dimensional superstrings [14]. 0 ur conclusions may be found in section 

VIII and our notation is explained in Ref. [ll]. 



II. Actions And Currents 

We will be considering superfields which propagate both to the right and to 

the left, separately. This means that we should treat each of the two theories 

independently. Axial and vector super-currents will he used in later sections where 

they will provide clues to super-bosonization and checks on results. The leftons are 

considered first. 

11.1. Leftons: 

The action for the leftons [5] is well known. In (1,0) superspace [11,12] it is 

where & = l,..., NL. This is a dressed down version of the lefton action given in 

Ref. [lo], in that we have taken A+--,b G  A+--q&b. We adopt this simplification 

throughout the course of this work. This is a natural consequence of the scenario of 

Yruncated world-sheet supergravity”, as will be explained in section VII. However, 

it is remarked that much of the ensuing analysis holds true for the more general 

A ,Q. The superfield A+-- is the lagrange multiplier (Siegel gauge superfield) which 

imposes the left moving condition on @. Our flat space-time metric q6p may be 

either Minkowskior Euclidean or it may be the metric for some product of Euclidean 

and Minkowski manifolds; anyway we take @agh = NL. 

When we define the component fields by projection to be: 

4” E @ “I , ,S+” SE D+9”[ , 

(2.2) 
A+-- E A+-- I ’ iii++-- = D+A+--1 , 

and perform the J d<- integral, the action reduces to 

SL = 3 
/ 

d2u[a++#.a--d + ip+ .a--p+ 
(2.3) 

+ x++-- a-+ba--~ + i2X+--d--p+ .a--41 . 
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The first and third terms constitute the usual bosonic action for left-chiral bosons 

and the other two terms are their (1,0) supersymmetric completion. The fields 

(A@+) and (A++--, A+--) form supersymmetric multiplets, respectively. 

It is trivial to see that the non-supersymmetric or (0,O) action is invariant 

under the global axial transformation 4” + #J” + x8. Such a symmetry is also 

manifested by Eqn. (2.1) or Eqn. (2.3). Using the superfield notation we find that 

G @  -+ @  + III” leads to the axial super-current: 

Jo,)./ = a-3 , J(a)+k = D+iP” + 2A+--a--Q” . (24 

There is also a vector super-current dual to the axial super-current whose elements 

are 

++A = -a--P , +,)+” = D+@” . (2.5) 

These currents possess the following components 

&a)--” = ++-GI = a--p = -jlv,Y f +,--“I , 

j(+” = D+J~,J--~I = d--p+k = -jcv,-” s -D+Jt,l--G/ , 

j(g++’ = -iD+Jc,)+” 1 = a++@ + 2X++--&-@ + iaA+--a--p+h, 

j(=)+’ = Jc,)+“I = p+” + 2x+--a--@ , 

j(v)++b = -iD+J~,)+“I = 2++4” , , 

j(“)+’ = J(,)+“( = P+” - 
(2.6) 

One can explicitly check that the currents defined above form (1,O) supersymmetric 

multiplets under the global supersymmetry transformations [11,12] 

In general, the global (1,0) supersymmetry transformations will have this structure, 

up to factors of ‘in. 
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The superspace equation of motion which follow from the variation of the action 

in Eqn. (2.1) with respect to ah is 

a--2+cpa = 0 . (2.8a) 

The second equation of motion associated with the variation of A+-- is 

(a--q 2 = 0. (2.8b) 

This last equation leads to the projection of only left-moving scalars and, as will be 

clarified below, is potentially anomalous. In order to solve these two equations, we 

take 

a--@ = 0 . (2.8~) 

We have found it useful to define 

,t+ E D+ + A+--a-- , (2.9) 

for later comparison with the supergravity theory. Axial current conservation de- 

mands that 

a--Jc,l+G + D+Jt+-’ = 0 . (2.10) 

Using Eqns. (2.4) and only the first equation of motion, namely Eqn. (2.8a), 

Eqn. (2.10) is quickly verified. As usual, the vector super-current conservation 

law is purely topological: D+J(,)--” + d--Jc,l+” = 0. This is guaranteed since 

[D+, a--) = 0. 

Left and right super-currents, J I (.) 3 *[J(v) f J(a)L may also be defined. Using 

Eqns. (2.4) and (2.5) we find 

Jc+-” = 0 , J(r)+’ = -n+--a--@ > 
(2.11) 

Jcq+’ = i+@’ , Jc,.,--” = -a--@  . 
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Their conservation law 

a-- J(L)+& + D+Jtig/ = 0 , (2.12) 

follows from Eqn. (2.8a). 

--I - n ordinary superymmetric extensions of free scalar fields, there are separate 

super Kac-Moody invariances in the right and left sectors. These symmetries are 

reflected by the fact that there is only one super-current in each sector J(l)+ (which 

depends on u++ and s+) and J(,)-- (which depends only on U--). In our case, 

as expected, we see from Eqns. (2.11) and (2.12) that the affine symmetry survives 

only in the left sector. The right current has a J(,)+ component and hence it 

depends on both u-- , a++ and c+. 

11.2. Rightons: 

Turning our attention to the right-chiral boson (righton) theory, we find the 

action [lo] 

SR = -ii 
/ 

d2my [D+@ha--d + A--++D+ip~a++~$&&- ) (2.13) 

where 6 = 1 , . . . , NR. Reducing this to components we find the following 

pbq, ^ &” _= D+@“I 9 

A--++ E A--++] ) ix--+ f D+h--++I , 

SR = + J d2G++4 .a--4 + ip+ . a--p+ (2.14) 

+ x--++a++4.a++d + ix--++p+ .a++p+ 

+A--+~+.a++41 . 

The first and third terms give the usual bosonic action for rightons. 

The axial super-current which again is related to C#J” + 4” + @, is given by 

J(,)2 = a--P + A.--++a++@ -~D+(A--++~+a”) , 
(2.15) 
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Following the definitions of the components given in Eqn. (2.6), we have 

j(a)--” = a--p + 2x--++a++#” + x--+p+” , 

j(,)-’ = a--p,” + iA_-+a++#” ^ + 2x--++a++p+h 

+ p+“a++x--++ , 

jw++’ = a++v , j(,)+’ = P+” . 

(2.16) 

The vector super-current is identical to the one given for the leftons, namely Eqn. 

(2.5) with its components given by Eqn. (2.6). The vector super-current, as before, 

is topologically conserved while the axial super-current conservation demands that 

D+J(,)--” + a--Jc,,+” = 0 . (2.17) 

This is true on-shell with the use of the following equation of motion 

D+L-a+ = 0 , 

e-- s a-- + A-.-++a++ - i+D+A--++D+ ) 
(2.18a) 

The equation of motion associated with the variation of A--++, which may also 

be endangered by an anomaly, is 

D+G’.D+D+@ = 0 . (2.18b) 

To solve these equations, we take 

D+@” = 0 . (2.18~) 

Note that Eqn. (2.18~) implies the weaker condition a+++” = 0. Furthermore, 

we have D+Q”I = p” = 0. So the spinor super-partner of 4” does not propagate. 

This is simply an artifact of the absence of supersymmetry in this direction, as the 

theory is embedded in a (1,0) superspace. 
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Using the same definitions for the left and right currents we now get: 

J(,)--” = A--++a++@ - i+D+A--++D+@” , 

J(r)+” = 0 , 

- J(I)+” = ,D+@ , 
(2.19) 

Jc+-” = - xt--aa . 

Obviously, both the right and the left currents are conserved here in a fashion 

similar to Eqn.(2.12). Notice that now only the right super-current (prior to using 

the equations of motion) is in the form of an affine Kac-Moody current. 

_ III. Couplings To Abelian Gauge Superfields 

In complete analogy with the coupling of a single chiral boson to abelian gauge 

fields [6.b], we now present the coupling of the vector and left currents in the lefton 

case and the vector and right currents for the rightons. See Ref. [ll] for a general 

discussion of (1,0) vector super-multiplets. 

III.l. Leftons: 

We start by introducing the gauge supermultiplets I’-- and I’+. These are 

the fundamental gauge superfields. The remaining one, I++ is given by I’++ = 

-iD+r+, for the abelian theory. We absorb the “electric charge” into the definitions 

of the gauge superfields. This means that their dimensions are [I’--] = 1 and 

v+i = 3. 

The action for the system with the vector current coupled to a U(1) gauge field 

is given simply by adding a current gauge field interaction term to the free action 

given by Eqn.(2.1) (for one lefton), namely 

SLU(l)(v) = SL - i) 
J 

d20&-{r+ J(“)-- + I?-- J(v)+} 

J 

(3.1) 
= SL + ii d2adS-{r+a--@ - r--D+@} . 

- 
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Where we have substituted the expression for the vector current given in Eqn. (2.5). 

The invariance of this action under super-Siegel transformations (see section IV for 

a complete discussion) is guaranteed if one adopts the following transformation laws 

for the superfields 

S,(s = r-a-2 , 

hr+ = (D+r--)r-- + r--a--r+ , (3.2) 
6.g-- = (a--r--p.- + r--a--r-- . 

Defining the components of the gauge superfields via 

v-- E r--l , x- E o+r--1 - a--r+1 , 

P+ = r+l , iv++ = D+r+l 9 

we obtain the following component expression for the action (3.1): 

(3.3) 

SLU(l)(") = SL - 3 
I 

d2a[v++a--4 - v--a++4 + ix-p,] , (3.4) 

where SL is now given by Eqn.(2.3). W  e see that X- is auxiliary. The Siegel trans- 

formations of the component gauge fields reads (u-- E T-- 1, v+-- E D+'Y- I) 

6,v++ = u--a--v++ +(a++u--)v-- , 

l&/v++ = iv+--A- , 

6 vP+ = u --ammp+ , 

&p+ = v+--v-- , 

s,v-- = c--a--v-- + (a--u--)v-- , 

S”V__ = 0 ) 

6,x- = u--ar-A- + (a--u--)~- , 

6,X- = cl . 

(3.5) 

Note that the variations &V++ and S,V-- are just the transformation of a vector 

field under the coordinate transformation u-- -+ (T-- - u--. The variation of 
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the auxiliary spinor, X-, under infinitesimal Lorentz transformations is given by 

6 Lorewtr x - = -+qX-. Thus the second term on the right-hand-side of the &A- 

variation is understood as &LLorent+X- with the identification q = -2(a--u--). 

The term (u--a--X-) is simply the effect of the coordinate transformations for a 

spin- + field. 

Since the vector current remains unchanged, it continues to be topologically 

conserved. Using the equation of motion deduced from the action (3.1) we get (in 

analogy with Eqn. (2.10)) the following expressions for the divergence of the axial 

current 

a-- J(a)+ + D+J(,)-- = a--r+ - D+r-- = -w- , (3.6) 

where W- is the (1,0) super Yang-Mills field strength [ll]. In terms of components 

we obtain the following expression for the axial current and its superpartner: 

a--j(,)++ + a++j(,)-- = a--v++ - a++v-- , 
(3.7) 

a--j(,)+ + jta)- = - A- . 

The first is the same as the anomalous divergence of the axial current constructed 

for one left Weyl fermion. As in Ref. [6.b], this suggests the equivalence between 

the bosonic component of our supersymmetric model and a free left Weyl fermion. 

Furthermore, notice the occurrence of gauge covariant expressions. Supersymme- 

try relates the usual U(1) field-strength, a[--V++l, to the spinorial field-strength, 

Di+r--11 = A-. Th’ is motivated the choice of components in Eqn. (3.3). 

Next we couple an abelian gauge superfield to the left supercurrent. In this 

case the generalization of the non-supersymmetric results [6.b] leads to: 

SLU(l)(l) = SL - i+ 
I 

d2Vdc-{r--JtIJ+ + +[A+--r--r-- +r--r+]) 

= SL - ii I d20d~-{r--t+~ + +[A+--r--r-- + r--r+]) . 

(3.8a) 
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The corresponding component field action reads 

sww) = SL + 3 
I 

d20{v--[a++~ + A++--a--# 

+ +(A++ --v-- + v++) + ix+--a--p+] 

- i(x- + a--P&+ + X+--a--4 

+ )(2A+--IL + p+)]} . 
(3.8b) 

By taking the variation of the action with respect to I’-- and I’+, the super-currents 

are found to be: 

Jcl,-- = +r-- , J(r)+ = J(I)+ + +(r+ + 2A+--rT--) . (3.9a) 

Which in terms of the components, are 

&)-- = )V-- ) 

;(I)- = +(A- + a--p+) , 

&)++ = a++$ + A++-- a-4 + +--a--p, 

+ +[v++ + 2x++--v-- + i2x+--(x- + a--P+)] , 

&)+ = P+ + x+--a--4 + ,(p+ + 2X+--V--) . 
(3.9b) 

The divergence of the left current has the form: 

a--&,+ + D+&,-- = +[a--r+ - D+r--1 = -+w- . (3.10) 

Once again the bosonic component of Eqn. (3.10) leads to the anomalous divergence 

of the (left) current. This can be deduced from the one loop calculation for one left 

Weyl fermion coupled to a U(1) gauge field. 
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111.2. Rightons: 

For the rightons we once again first couple the vector super-current to a vector 

U(1) superfield and then we couple the right chiral current to an abelian gauge 

superfield. The action for the vector coupling is given by 

sRU(l)(v) = SR - ;; 
I 

d2udc-{r+ J(v)-- + I’-- J(u)+} 

I 
= SR + i) d2ud<-(r+a.o.3-r--D+O} . 

(3.11) 

This action is invariant under Siegel transformation if the variations of Q  and the 

gauge superfields are of the following forms: 

cSrfD = T++d++@ - i+D+T++D+Q , 

6g+ = -i;(D+T++)D+r+ + r++a++r+ + ga++r++)r+ , 

brr-- = r++a++r-- - i(a--r++)D+r+ 

- ;+[(a--D+r++)r+ + D+T++D+I’--] . 
(3.12a) 

In terms of the components of the gauge superfields the transformations under Siegel 

symmetry take the forms: 

w++ = (a++u++)v++ -t u++a++v++ , 

b”V,, = +a++h+) , 

b,P+ = u++a++p+ + +(a++u++b+ , 

&P+ = iv-v++ , 

s,v-- = u++a++v-- + (a--u++)v++ , 
(3.12b) 

s,v-- = -;;[d- + a--(u-P+)] , 

6,x- = u++a++x- + +(a++u++)x- , 
6,x- = +V-(a++v-- - a--v++) . 

The vector current here is also topologically conserved in the presence of the 

vector gauge superfields. The divergence of the axial current superfield, on the other 

12 



hand is again given by EIqn. (3.6). For th e coupling of the righton to an abelian 

gauge superfield we add, in addition to the current-gauge superfield term, terms 

bilinear in the gauge superfields. The action is 

. 

SRU(lb) =sR + i+ 
I 

d2ud(-{I’+ Jcr,-- - +[-iA--++I’+D+I’+ + IL-I’,]} 

= SR - i+ 
I 

d2udg-{I’+[&-@ + A--++a++@ - i;D+A--++D+@] 

+ +[-iA--++r+D+r+ + r--r+]) . 
(3.13a) 

The corresponding component field action reads 

SRU(l)(r) = SR - ) 
I 

d2u[i(a--p+ + i+-+a++4 

+ x--++a ++p+ + +P+a++A--++b+ 

- (a--4 + A-- ++a++4 + iA--+p+)v++ 

- qV++(V-- + A--++v++) 

- i+p+(x- + a--p+ + ix--+v++ 

+ x--++a++p+)] . 
(3.13b) 

By taking the variation of the action with respect to I’-- and I’+ we get the currents 

j(r)-- and jcr)+, as follows: 

&.)+ = - ir+ , 

j;,.,-- = J(+- - +[I’-- - i2A--++D+I’+ - iD+A--++I’+] . 
(3.14a) 

Projecting this into components, we get 

$r)++ = - iv++ 9 

?(r,+ = - )P+ , 

i@)-- = -a--d - x--++a++# - )A--+p+ 

- ,(V-- + 2L-++v++ + A--+p+) ) 

&,- = +(ammp+ - x-1 . 

(3.14b) 
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The divergence of the right current has the form: 

a--&,+ + D+&- = +[a-2, - D+r--1 = -pif- . (3.15) 

.. The bilinear terms in Eqns. (3.8) and (3.13) are the superspace mass terms for 

the vector supermultiplet. Of course, this breaks the gauge invariance, but we need 

this “tree level anomaly” in order to correctly bosonize chiral fermions. 

Actions for self-dual bosons coupled to U( 1) gauge superfields (( 1,0)) were given 

in Ref. [lob]. The latter work corresponds to studies of chiral bosons in absentia 

of bosonization. Thus the U(1) anomaly was not of any concern there. Finally, we 

_ note that in the superstring, the vector supermultiplet is replaced by the pullback: 

rA + DAXE&%(X) j  where X” is the space-time, coordinate superfield and AI, 

is the space-time, gauge field. 

- 

IV. Siegel Invariance 

As was mentioned in the introduction and further discussed in the previous 

section, the lefton and righton actions possess a so called Siegel gauge invariance 

(51. The presence of such an invariance is seen by the fact the A drops out of 

the equations of motion. Viewed as a chiral general coordinate transformation, 

we would expect these actions to be potentially anomalous. We will see that, like 

conformal two-dimensional field theories, this anomaly can be shifted by adding 

local counterterms to the effective action. This new effective action is anomalous 

under the analogous Weyl transformation. However, this anomaly can be removed 

by considering a multiplet of chiral bosons, a stringy prescription or by adding a 

Liouville term [7,8] to the classical action. In this section, we will calculate the 

effective actions r(A+-- ) and I’(A--++) in th e a b sence of any super-gravitational 

or V( 1) background superfields. 
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IV.l. Leftons: 

. 

Resuming with the leftons, the action given in Eqn. (2.1) is invariant [lo] under 

the (1,0) Siegel symmetry 

6-l@ = r--a tp -- , 

&A+-- = -D+T-- + T--T--A+-- . 
(44 

In components defined by: u-- E ‘I’-- I and v+-- E D+ T-- 1, this reads 

~,p,~ = u--a--p+k , 

6,x++-- = -a++u-- + u--TLx++-- , 

s,x+-- = u--Lx+-- ) (4.2) 

s,x+-- = -u+-- ) 

6,x++-- = -iv;-Y--x+-- . 

The 6, in (4.2) arise from the coordinate transformation u-- -+ u-- - u--. 

So we view A++-- as a component of the graviton and X+-- as a pure gauge 

field which is removed in the Wess-Zumino gauge. The action (2.1) is the action 

for a truncated or “chiral supergravity” theory, written to non-linear order in the 

supergravity multiplet. 

Now we fix the symmetry by imposing the quantum gauge condition A+-- = 0. 

We do this in analogy with the super-conformal field theory. The Faddeev-Popov 

procedure leads to the super-ghost -action 

SLGH = 
I 

d2udg-A--++[D+G-- + 8+--&-G-- - (a--A+--)G--1 , 

- 

(4.3) 
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where G-- is the Siegel ghost superfield and A--++ is the anti-ghost superfield. 

The latter are quantum, while A+-- is a background superfield. Upon defining 

$-- E G--l ir+ 
-- 

, E D+G--1 , 

A--++ E A--++[ , a--+ = D+A--++I , 
(4.4 

we find 

SLGH = - 
I 

d2~{A--++[ia++~-- + ix++--a--g-- 

- ;(a--x+,--p- - ix+--a--7+-- 

+ i(a--x+--)7+--] 

a-.-+[A+--a--g-- - (a--x+--)$-- + i7+--1 , 
(4.5) 

as the component action. 

With Cp” as a quantum superfield, we perform the J[D@][DA--++][DG--1 

integrals, use the super-propagator (z E (u**, s+)) 

(OITA--++(z)~--(~‘)l~) = kD+b-(z - 2’) , 
(4.6) 

S-(2 - 2’) = P(u - u’)s(g+ - (+‘) ) 

and follow the analysis of Ref. [16] ( using the Adler-Rosenberg method insisting on 

Lorentz invariance) to find 

(4.7) 

+ ix+-- (a--)“A+--] , 

as the potential anomalous contribution to the one-loop effective action. The 

(anti)ghost component fields a-.-+ and 7+ -- are auxiliary and there is no “grav- 

itino” here. Hence the -26 ghost contribution. 

Since I’iANOM,,L was computed from an action in the background superfields, 

we must check for its invariance under the linearized transformation: &A+-- = 
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-D+‘Y-. As mentioned above, it is not so invariant. In order to restore invariance 

to the theory, we must study the (1,0) supergravity theory [ll] with H--++ E 0; 

this results in the truncated or chiral theory (see section VII). This last superfield is 

one--of the fundamental superfields of the theory, along with H+-- and the confor- 

ma1 compensator, ?Er. We remove the superfield H--f+ and restrict the theory to 

be invariant under the local gauge generator K = K--d-- +QM (M is the Lorentz 

generator). Next we make the identifications A+-- = H+--, A--++ E H--f+ 

(= 0 for leftons) and p E \E. The action for a scalar multiplet coupled to (1,0) 

_ supergravity then reduces - to non-linear order - exactly to Eqn. (2.1). The 

superfield p drops out of the action as it is the analog of the super-Weyl mode. 

Furthermore, under the identifications, T-- = -K-- and T = -Q the truncated 

(1,0) supergravity transformations become identical to the Siegel transformations 

of Eqn. (4.1) along with 

- 

6rp = r--admp + ir , 

65-P = is > &A+-- = 0 . 
(4.8) 

The first transformation is the variation of p under the extended generator which 

includes “local Lorentz” transformations with parameter T. Super-dilatation trans- 

formations are given by ~5s variations. The Lagrange multiplier, A+--, transforms 

as in Eqn. (4.1) under the extended generator, i.e. its transformation is unchanged. 

Now all of this means that we can follow Ref. [16] in adding local counterterms 

to the effective Lagrangian in order to restore the invariance under Siegel transfor- 

mations. We can do this if T E d--T--. So we have one parameter only (the other 

parameter, S, trivially gauges away p) and can gauge away only one superfield. The 
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counterterms lead to the new effective action 

rANOM,L = - 
(NL -26) 

24s I 
d2ud(- [S+ ++S+] , 

= - (NL-26) 
96a I 

d2u(r% + i1x+--(a--J3x+-- 
cl 

+ 

- X+++(a--J2X+-- 4. iX+++a--A+++] , (4.9) 

S+ = i id--a--A+-- - ia--D+p , 

r = 2D+S+[ = -a--a--x++-- + 2~~ . 

The superfield S+ is the analog of the linearized (1,0) super-curvature [ll], C+, 

with H--++ = 0. The component field, r, is the linearized, “truncated bosonic 

curvature”, ~0 = pi is the Weyl mode and A+++ s -iD+pl is the “gravitino” 

component. The fermionic piece vanishes in the Wess-Zumino gauge. PANOM,L 

is anomalous under the 6s variation. We must then have NL = 26 as a condition 

which removes the latter anomaly. 

The counterterms, a-- A+-- a--p and D+pa--p, appear with coefficients 

which are proportional to (NL - 26), so they do not contribute to the Lagrangian of 

an anomaly free theory. The extended Siegel transformation for ~0 is equivalent to 

that of p given in the first work of Ref. 181, for the ‘anomaly free theory”. Written 

to quadratic order in the bosonic background fields, our counterterm lagrangian 

agrees with theirs (see Eqn. (2.32) there). We are also in agreement with the fact 

that this additional lagrangian removes the “Siegel anomaly”. Clearly, a Liouville 

term (see section VI for its form) can be added to the classical action. Such a term 

leads to the effective action in Eqn.- (4.7), but with the coefficient shifted. It is then 

possible to have an anomaly free theory in less than 26 dimensions, a la Polyakov 

W I* 
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IV.2. Rightons: 

. 

The situation for rightons is as follows. The Siegel transformations which leave 

Eqn. (2.13) invariant are 

ST 0” = T++a++@ - i+D+T++D+@” , 

6rA--++ = -a -- ‘Y’++ + T++F++A--++ (4.10) 

+ i+D+A--++D+T++ . 

In terms of components defined by: u++ = T++ I and v- = D+T++ I, we 

have the pair of symmetries 

6&P = u++a++p , 

&)p+” = u++a++p+” + +(a++u++)p+” , 

6,x--++ = -ammu++ + .++Z+++A--++ , 

s,A--+ = u++~++L-+ + +x--+a++u++ , 

6”cp = -i+u-p+” , 

~~p+~ = pu-a++p , 

&/A--++ = $LX~~’ , 

6,X--+ = is--u- - iqu-a++X--++ + i(a++u-)A--++ .(4.11) 

Here we have the interpretation of X--f+ as the other graviton component (as 

opposed to A++-- in the lefton theory) and X--+ as its gravitino. As we saw 

before, the trace of the “graviton”, ~0, and the other “gravitino” component, A+++, 

reside in the %onformal compensator”, p. 

Fixing the invariance of Eqn. (4.8) by imposing A--++ = 0, we find the 

super-ghost action 

SRGH = -i 
I 

d2udg-A+--[a--Gf+ - i+D+A--++D+G++ 

+ A--++a++G++ - @ ‘++A--++)G++] . 
(4.12) 
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Its component form is found by defining 

g++ = G++ - I ’ 7+ E D+G++I , 

O!+-- = A+--/ , A++-- z D+A+--I > 

so that 

SRGH = -i 
I 

d20{A++--[a--g++ + k++a++g++ 

- (a++x--++)g++ + +A--+~+] 

(4.13) 

+ “+ --[a--7+ - +(a++x--++j7+ + x--++a++7+ 

+ i+X--+a++$++ - i(a++L-+)$++I} . 
(4.14) 

As before, we take ip”, A+-- and G-- to be quantum superfields to be inte- 

grated over. Using the super-propagator 

(o~TA+--(z)~++(zt)l~) = --f&Lqz - q , (4.15) 

we find 

r+ANoMt,R(d-++) = - 

+ ix--+ (a++ 13 TX--+] , 
(4.16) 

where the X--+ term is the supersymmetric completion. This is not invariant 

under the linearized transformations obtained from Eqn. (4.10). When we add the 

local counterterms: D+A--++a ++p and D+pa--p, we can restore the invariance 

obtaining the new effective action 

rANOM,R(d--++) = - d2udc- S+ sS+ , 
(4.17) 

S+ = i$++D+A--++ - ia--D+p . 

This violates the 6sp = )S and &sA-- ++ = 0 super-dilatation variations, unless 

NR = 10. 
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IV.3. Siegel versus Conformal Anomaly: 

We have thus produced the critical dimension results by following the standard 

analysis of the superspace effective action [16,18]. In the process, the foundations 

for -the more important calculation - coupling to a curved background - have 

been laid. However, this has led to interesting results for the N’s. 

Although we call the (1,O) supersymmetry a right-handed supersymmetry, the 

fermion, /?+ , which is a member of the supersymmetric multiplet, is actually a 

left-mover (a--a+ = 0). The right moving fields do not form supersymmetric 

multiplets. Now, consider that for a chiral boson, the component current j--” 

can only be constructed out of a set of “minus-Weyl-spinors”, V-I, as (j-.-)ij = 

-iq-‘q- j. There is a superfield for rlmi, it is [ll] Q-j = v-f + i<+.Fi, where Fi 

is an auxiliary boson which, for a free theory, satisfies F’ = 0. So we write J--” G 

a--@  E -i!vE_f(M”)fjQEr_ j, where the matrices M ” form a vector representation 

of O(2), for example. For this to be a non-trivial result, we must have a--@ # 0, 

so @  must at least be a function of o--. A righton is a candidate for such a 

superfield. This is as it should be since, Q-f is in fact a pure right mover. Thus the 

righton should have the conformal anomaly (26) of half the anomaly of the right 

moving fermions. This is not the result we have obtained, as we did not calculate 

the conformal anomaly (see section VII). 

Analogously for the leftons, we have that (j++)e = - ip+E@+% However, 

here /3+ is the upper component of a scalar superfield. So we have the superfield 

current J+ = D+O. The requirement that this does not vanish leads to Q  being a 

superfunction of a++ and <+, at least. Taking the lefton superfield as a candidate, 

we should have an anomaly of 10. Again, as we did not compute the conformal 

anomaly, we did not obtain this number. 
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So the ‘Siegel” anomaly and conformal anomalies are antipodal. This behavior 

would be much harder to detect in non-supersymmetric or (p, q) supersymmetric 

theories where p = q. 

V. BRST Quantization 

Extensive work has been done on the BRST quantization of two-dimensional 

conformal field theories, especially with applications to the bosonic string [13]. The 

supersymmetric theories (both (1,0) [19] and (1,l) [3,19,20]) have also been studied. 

For non-supersymmetric chiral bosons, the literature is sparse [7,8]. Needless to 

say, the Siegel symmetries of (1,0) supersymmetric chiral bosons have not been 

previously BRST quantized. We start this process here. As in Refs. [7a,8,19,20], 

- we follow the work of Kato and Ogawa [13] generalized to (1,0) superspace. 

V.I. Leftons: 

After making the replacement ‘I’-- -+ itG-- where E is the anti-commuting 

parameter, and defining 6~ = its’, we find 

S’@  = G--a--Q” > 

6/A+-- = D+G-- + G--;--b+-- , 

6’G-- = G--B--G-- , 

&‘A--++ = B ++ -- 9 

where B--++ is an auxiliary field with 6’B--++ = 0. The action is now 

SL = -i 
J 

d20dc-{+[~+~. a-3 + n+--a--a. a-31 

-i &‘(A--++A+--)} . 
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Then we shift B--w+ in such a way that all the terms with A+-- will be cancelled 

out. The variation of A--++ becomes 

6’A--++ = -;;a--@.a--@ + G--a--A--++ 

- 2A--++a--G-- .; 
. 

Reducing Eqns. (5.1) and (5.3) to components, we obtain 

b’p+” = -i7+--d--4k + g--a--p+” , 

PA+-- = i-y+-- + $--Y--X+-- , 

-- PA++ = -a++$-- - 7+-- 7--x+-- + g--Lx++-- , 

slg-- = $--a--g-- , 

6’7+ 
-- = $--Ly+-- , 

PA--++ = -+a--+. a--4 + $--a--A--++ 

(5.3) 

(5.4 

- 2A--++a--$-- , 

6’~r--+ = iX-4 .a--p+ + g--a--a--+ 

+ 2a--+a--g-- - i7+--d--A--++ 

- i2L-++a--7+-- . 

The left over action is 

SLGH = 
J 

d2adc-[-i+D+0. a--@  + A--++D+G--1 . (5.5) 

The component field action may be deduced from Eqns. (2.3) and (4.5) after 

imposing the gauge conditions A+-+-- = A+-- = 0. The BRST super-current 

J(BRsT)-- is now deduced via a Noether procedure 

6BRST SLGH = 
J 

d24-[D+6 J(BRST)--1 . (5.6) 
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It is given by 

J(BRST)-- = G--[)a--@  .a--@  - iA--++a--G--l . (5.7) 

Upon applying the equations of motion obtained from Eqn. (5.5): 

d--D+@ = 0 , D+G-- = D+A -- ++ = 0 , (5.8) 

it is straightforward to verify that the BRST super-current is conserved and 

~(BRST)- E  - iD+J(imT)--1 = 0 , 

~(BRST)-- E  J~BRsT)--[ = $--[)a--4.aT-4 - iA--++a--$--] , 

SE n 
J 

da : ~(BRsT)--- : . 
0 

(5.9) 

The calculation of the BRST operator, S, is now the usual one for the bosonic 

string [13]. In particular the BRST charge S can be written in the form above, 

where : : is the normal ordered operator. This leads to the introduction of the 

intercept, a. The necessary conditions of the nilpotency of the BRST charge are 

the cancellation of the anomaly and that the intercept must obey the following 

expression: 

C&=&&-2) . (5.10) 

These two conditions can be fulfilled in two different ways: (1) by adopting the 

‘critical dimension” ~VL = 26 and a = 1 or (2) by using the Liouville term in the 

form presented in Ref. [8]. The latter allows us to have ~VL = 2 and a = 0. It 

was shown in ref. [S] that in the non-supersymmetric case for a > 0 the physical 

spectrum includes states with right-handed momenta in addition to the left handed 

modes. Therefore for a quantum system describing only left modes one has to use 

the second way of fulfilling the conditions for the nilpotency. The derivation of 

above Eqn. (5.9) h s ows that for the lefton case the result of Ref. [8] also holds here. 
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Later, in the next section, we will encounter a Liouville term in the bosonization of 

the Siegel ghosts systems. 

It is interesting that the stringy prescription has allowed us to cancel the Siegel 

anoinaly but in so doing it has led to ‘undesired states”. When separately right 

and left moving bosons are included in a single theory, we should presumably find 

that there is no longer a problem. As we know [21], modular invariance imposes 

a relationship on the energy spectra of the states of the left and right movers. 

It would be interesting to look for a correspondence between these results and 

_ string propagation on asymmetric orbifolds [22]. We may then find that NL > 2 is 

consistent with the spectrum of states. 

V.2. Rightons: 

By repeating the procedure for obtaining the gauge-fixed action, as was done 

for the leftons, we find the following action for the rightons 

SRGH = -i 
I 

d2ad(- [+D+Q . d--Q + A+--a--G++] . (5.11) 

This is associated with the following BRST transformations 

6’0” = G++a++@ + i+(D+G++)D+O” , 

&‘A--++ = -a -- G++ + G++; ++A-- ++ 

+ i;(D+A--++)D+G++ , 

6’&++ = G++a++G++ + i)(D+G++)D+G++ , 

PA+-- = ;A+--a++G++ + (a++A+--)G++ 

+ i+(D+A+--)D+G++ + +D+o . a++@ . 
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Projecting onto components we get Eqn. (2.14) plus Eqn. (4.14) with the gauge 

conditions, A--++ = X --+ = 0, imposed. The component form of Eqn. (5.12a) is 

6’4 = $++a++4 + igy+j3+ , 

S’-P+ = -7Q++4 + g++a++p+ + ;(a++g++)p+ + j7+a++4 , 

PA--++ = -a -- g++ + g++T++x--++ _ +x--+~+ , 

6’L-+ = -3--r+ + i7+7++X_-++ + g++T++x--+ 

- i+(a++X--++)7+ - ix--+a++g++ , 

lsg++ = $++a++$++ + i f7+7+ , 

6’ + 7 = 9++S+++7+ + +7+a++g++ , 

6/A++ -- = g++a++A++-- - 2A++--a++$++ - +a+--a++7+ 

- ;(a++Q+--)7+ - W++4 .a++4 - P+ .a++p+) , 

#iY+-- = $++a++&+-- + ++--a++$++ 

+ i+A++--7+ + ;p+ .a++4 . 
(5.12b) 

By taking the variation of the action (5.11) and in accord with a definition similar 

to Eqn. (5.6), we get the following BRST super-current: 

J(BRST)+ = - iG++[fD+QP.a++Q + A+--a++G++] 

+ )A+-- (D+G++)(D+G++) . 
(5.13) 

Using the equations of motion from Eqn. (5.11), it is again easy to verify that 

a--J(BRST)+ = 0 and that 

J(BRST)-- = - i+G++D++a,-D+Q + isA+--(D+G++)a--G-- , (5.14) 

vanishes. The components of the super-currents are given by: 

~(BRs)++ = D+J(BRsT)+( , 
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= - 5++w++4. a++4 + i;P+ . a++p+ 
- iA++--a++$++ - ia+--a++7+] 

- ir+[+B+ .a++4 + +a+--a++$++ + ifA++--7+] , 

~(BRST)+ E J(BRsT)+~ 

= - i+$++B+ . a++4 - ia+--($++a++$++ + if7+7(5)15) 

Now the analysis is almost the usual one for the NSR superstring [2]. We have 

two sectors: Ramond (R) sector and Neveu-Schwarz (NS) sector. In the R sector 

the intercept is a = 0 with NR = 10. While the NS sector has a = ). So there 

is no problem with having left moving states in the R sector of the righton theory. 

However, the NS sector has the same problem as the purely bosonic theory. Recall 

from our study of the leftons and Ref. [8], we must have a = 0 to remove %ndesired 

states”. In order to preserve this criterion in the righton theory, we must introduce 

a Liouville term so that NR = 2 yields an anomaly free theory. (See sub-section 

VI.2 for the form of this term.) We choose NR = 2 since a = &(NR - 2) --+ 0. 

As an aside, we note that the surface term involving the lagrange multiplier 

leads to X--+(r,O) = X--+(7, z) when S+(r, 0) = p+(r, z) in the R sector. Along 

with X--+(7,0) = -A--+( r, 1~ w en ) h p + is anti-periodic in the NS sector. 

VI. Bosonization Of Siegel Super-ghosts 

We now turn our attention to the bosonization of the Siegel super-ghosts. How- 

ever, before we look for such a prescription, we first recall that the ghost system 

(b,c) of the bosonic string has a ghost conjugation symmetry: b -+ c and c + b, 

symbolically. The ghost number current J = ibc is odd under this symmetry. Look- 

ing for such a symmetry in the (1,0) ghost actions above, we instead find: A --+ -G, 

G -+ A, or vice versa. This is a global O(2) y s mmetry. So as not to confuse the 
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latter with the U(1) ghost-number symmetry, we will refer to the Ughost-number 

symmetry” by the expression in quotes. As is well known for the bosonic string, 

the ghost number symmetry (b + bemie, c -+ eiec) is anomalous: dJ cx fir, where 

r is the curvature. 

VI.l. Leftons: 

For the lefton, Siegel transformation, ghost system we have the ghost number 

current 

U-- = iA_-++G-- 9 (6.la) 

U-- = iA--++$-- , 
(6.lb) 

CL- = ia--+,$-- + A--++7+-- , 

where the (b) equations are the component expressions from the superfield current 

in (a). The spinor component current p- vanishes on-shell where cx = 7 = 0. This 

current has an anomaly of the form 

D+U-- = -r9# , (6.2) 

written to linear order in the gauge superfields (see Eqn. (4.9)). We would like to 

bosonize the A-G system in such a manner that this anomaly is reproduced and 

in the process find a value for r9i. Additionally, we will maintain the global O(2) 

symmetry of the super-ghost system. (As there is no supersymmetry in this sector, 

we need not maintain this symmetry here.) In Ref. [3] it was shown, that for the 

bosonic string, the former can be done if the boson is non-minimally coupled to 

gravity. This leads to the Liouville term introduced in Ref. [7a]. So we write 

U-- E (a-- + A--++a++ - i ;D+L-++D+)x , (6.3) 

and ask for an action which leads to the equation of motion given by Eqn. (6.2), 

written in terms of the bosonic superfield x and the correct Siegel anomaly. The 
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bosonized form (in terms of a single scalar field w) of the ghost conjugation sym- 

metry of the bosonic string reads w * -w, since the current is odd. To have an 

O(2) symmetry we take two bosonic superfields x’ (& = 1,2) which transform as 

O(2) vectors. Let x in Eqn. (6.3) be x1. 

Putting all of this together and using our experience from section II and Ref. 

[ 111, we write 

SLGH = 
I 

d2ad~-[-i+(D+XG3--x f A--++D+x.a++x) + ir9LS+x1] , (6.4) 

which yields Eqn. (6.2) as its x1 equation of motion. So this is a candidate action for 

the super-bosonized form of the ghost term in Eqn. (5.5). The S+ factor (see Eqn. 

(4.17)) is the L iouville term written in superspace, it breaks the O(2) symmetry. In 

order to get an anomaly contribution of -26 from Eqn. (6.4), we need 8~ = d- F. 

For a ‘superfield” which satisfies D+xl = 0, we may use the results of Ref. [3] 

for the bosonic string to write G--(CT-- ) = exp [~‘(a--)] and A--++(u--) = 

exp [--xl (u--)1. We do this since the component ghosts and anti-ghosts, LU--+ and 

7+--9 are auxiliary. Then the various commutation/operator product expansions 

are as given in the latter work. 

VI.2. Rightons: 

The ghost-number super-current for the rightons is treated similarly. The su- 

perfield current and its components are 

u+l = A+--G++ , 

u++ l = A++--g++ + a+--7+ , (6.5) 

P+l -- ++ =a+ 5 . 

In analogy with the analysis of the lefton theory, the U(1) anomaly is of the form 

a--u+1 = -flRs+ , 
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where 8~ is to be determined. Super-bosonization of this system is given in terms 

of the pair of bosonic superfields, f&, by 

u+ 
a = (D+ + A+--6L)f , 

SRGH = 
I 

d2udg-[-i+(D+f.a--i + A+--L-f. a--z) (6.7) 

The righton, Siegel, super-ghost system has an anomalous contribution of -10. This 

means we must have 8~ = 
d- 

F. 

A remark about the O(2) symmetry is in order. This symmetry is purely a by- 

product of supersymmetry. For example, look at the component ghost action in EQn. 

(4.14). This action has the usual ghost conjugation symmetry: A++-- + g++, 

5 
-- ++ +A++ . However it has: CY+-- + -7+, 7+ --+ ‘Y+-- as a symmetry. This 

is the source of the O(2) y s mmetry and leads to the analogous transformations on 

the superfields. It was then seen that this meant that we needed two bosonic 

superfields to super-bosonixe the super-ghost system. These superfields contain a 

total of two component bosons and two component fermions. It has been known [3] 

for some time that these four fields are needed for the bosonization of the super- 

conformal ghost system. What is interesting is the fact that we have found this 

result in a manner which is explicitly supersymmetric. 

Just as we have the operator expressions for the bosonization of the lefton 

ghosts, we expect that we should be able to find similar expressions in the righton 

theory. There are two subtleties here. The first is that in the righton theory, all of 

the component ghost and anti-ghost fields propagate. Thus the need for the four 

fields as described in the previous paragraph. The second point is that the dimension 

of the anti-ghost superfield, A+--, is d = ;. The component operator expressions 

are known [3]. They are $ = exp [wr(u++)] and 7 = exp (wz(u++)]q for the ghost 

super-multiplet along with A = exp [-WI (u++)] and cx = exp [-wZ(u++)]a++< 
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for the anti-ghost super-multiplet. We delay giving the corresponding superfield 

expressions until a later work [23]. At this point it is sufficient to note that the 

wa are bosons which are the lower components of x6 and the fermions, q and E, 

compoze the upper components. The operator product expansions are as given in 

Ref. [3]. 

VII. Leftons And Rightons Coupled To Supergravity 

A part of the definition of superstring theories is the stringent requirement 

that they must be superconformally invariant. So we now couple the actions of 

section II to (1,0) supergravity. In particular, we now investigate the superconformal 

anomalies for leftons and rightons plus a set of D  (1,0) superstring coordinates. 

The resulting theory will lead to the compactification of the heterotic superstring 

to D 5 10 dimensions with gauge group GL x GR 1141. An example of such a group 

is SO(~NL) x so(2N~). A sketch of the anomaly results was given in Ref. [lo]. 

To covariantly couple, in a minimal manner, the actions for the various =mat- 

ter” superfields to supergravity, we take the action 

SCLR = -i) I d2ud$- E-l[V+XW--X%jG + v+&,“v--a~,&,,~ 

+ V+CPR”V--QR~~,~ + A+--V--QL~V--QL~~~~ 

+ A--++V+QR”V++QR’~~~] . 

(7.1) 

This action was constructed [lo] based on the requirements that it should be super- 

dilatation, general super-coordinate, locally Lorentz and Siegel invariant. It is the 

sum of the locally covariant forms of Eqns. (2.1) and (2.13) along with the action 

for the space-time coordinates, X% 
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Computation of the anomaly requires that we write Eqn. (7.1) to linear order 

in the background superfields. We consider fluctuations about the background 

superfields, HB, where 

H+-- = Hf-- + H+Q-- , H-m++ = Hf-++ + H?-++ , 

A,-- = -H,B-- + A:-- , A--++ = -H!-++ + A?-++ 
(712) 

is the split. This is done keeping in mind the fact that the background H’s and 

A’s are not required to satisfy any equations of motion. We treat this as a toy 

model, useful only as a guide to the construction of another action (see below) 

which couples leftons and rightons to supergravity. When linearized, the action 

SCLR becomes 

SCLR = -i) I d24-[D+X.d--.X + D+aL .a--QL + D+QR .a--aR 

+ Hf--(a--x’a--x + a--aR ’ ammaR) 

+ H%++(D+X.a++x + D+cP,. a++aL)] 
(7.3) 

where we have chosen the quantum gauges AQ = HQ = 0, symbolically. As a result 

of the choice of the background to expand about, the coupling of the O’s to the H’s 

has been reduced. Furthermore, under the quantum gauge choice chosen, we find 

the ghost actions 

SSGGH = 
I 

d2ud<-E-I[-iB+--V--C ++ + B--++V+C--1 , 

SLGH = 
I 

d2adg-E-1A--++[V+G-- - H,B--V--G-- 

+ (V--H,B--)G--1 , 

SRGH = -i 
I 

d2udc-E-1A+--[V--Gff + i+V+Hf-++V+G++ 

- H”-++V++G++ + (V++H"-++)G++] , (7.4 

where the VA and E-l are background quantities. The first is the superconformal 

gauge, supergravity ghost action as given in Ref. [24]. The other two are the 
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covariantizedforms of Eqns. (4.3) and (4.12), as the new Siegel transformations are 

the covariantized versions of those of section IV. When linearized and with the use 

of Eqn. (7.2), these become 

- SSGGH = d2ud$- [ - iB+--a--C++ . . + B--++D+C-- 

- 

+ 

+ 
f 

$D+H”-++B+--D+C++ 

iHB ++B+--a++@+ -- 

ia++ __ HB ++B+--C++ 

H,B--B -- ++a++c-- 

a--H,B--B--++C--1 , 

SLGH = 
1 

d2udg-[A--++D+G--1 , 

SRGH = 
I 

d2ud{-[A+--a--G++] . (7.5) 

The utility of the choice of the A-background is now clear. The (A, G) ghosts 

are non-interacting (to linear order)! This means that ghost contributions to the 

anomaly will come only from S~GGH. Also, the absence of A means that the 

effective action will be a functional only of the H’s [25]. Thus the absence of a 

Siegel anomaly. In fact, the non-local part of the one-loop effective action is 

l?l~NoMl = sir I d2udc-[(D + NR - 26)D+H+B-- 
(a--)4 

- THT-- 

- i)(D + NL - 10)D+Hf-++p (a++)” ] 
cl 

HB ++ -- 

(7.6) 

As in Ref. [16], the addition of the local counterterms restores the gauge invariance 

under the action of the supergravity gauge generator but breaks super-dilatation 

invariance. The removal of the latter anomaly requires that the pair of equations 

D + NR = 26 , 

P-7) 
D + NL = 10 , 
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be satisfied. 

We have a reversal of the N’s in the above equation as compared to the “Siegel 

anomaly” critical dimensions in section IV. This last equation is the expected result; 

compare this with the heterotic superstring (NL = 0), for example. It was arrived 

at from a more qualitative argument in Ref. [lo]. As discussed in section IV, these 

are the superconformal anomalies, not the ‘Siegel” anomalies. Notice the flipping 

of the coupling to the background superfields between Eqn. (7.3) and the analogous 

actions in section II. We have a @ R  where a lefton is expected, and vice versa. If 

we had not chosen the backgrounds in Eqn. (7.2), we would not have computed 

the anomaly which must be removed for consistent superstring propagation. In a 

general background, we would have pure Siegel, pure superconformal and mixed 

anomalies. The anomaly removal equations analogous to Eqn. (7.7) turn out to be 

a set of inconsistent equations. With Eqns. (7.2) and (7.7), the theory is free of 

both the ‘Siegel” and superconformal anomalies. 

Looking at Eqn. (7.3) we see that it should be possible to obtain the same action 

by defining the supergravity generator (general super-coordinate, KM DM, plus 

local Lorentz , flM) to act schizophrenically on the matter superfields. Keeping in 

mind the left * right reversal, we take the truncated supergravity transformations: 

~K@L* = -[K++a++ - i+(D+K++)D+]cPLh , 

(7.8) 
6K@R” = -K:-a--aR” , 

where we have gone to the Wess-Zumino gauge. With these transformations, we 

can obtain the latter action by using 

B+Xg = (D+ + H+--6L)X~ , 

E--xg = (a-- + H--++a++)xc , 

it--~‘L~ = (a-- + H--++a++pLs , 

i?+@R' = (D+ + H+--a-)aRb , 

12--fDRh = a--QR" , 
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where fi+ and 8-- are the (1,0) semi-zweibeins [ll] fully defined by their action 

on the space-time coordinates, X% Our task now is to construct the zweibiens 

based on the representation in Eqn. (7.8) and the (1,0) supergravity constraints 

[ll]. Before we state the results, we define the supergravity covariant derivatives 

VA E EA~DM + ~~M,wher e EA = EA MD~ and the WA are the Lorentz spin 

super-connections. It is also necessary to introduce the conformal compensator, \E. 

The utility of the latter superfield was discussed in section IV. We will now use 

these to construct a theory invariant under Eqn. (7.8). 

As usual, we commence with the leftons. Carrying out the calculations as 

outlined in Ref. [ll], we find 

E+ s e*D+ , 

E++ = e2q a++ [ - i2(D+V+l , 
Em- = e2’[,!?-- - i+(D+H--++)D+] , 

= 2e*D+\E , W-b 
(7.10) 

W-l-+ = 2e2*a++\E I 

w-- = e2*[d++H--++ - 2,?k-\E] . 

For the rightons we have 

E+ E e*lZ$ , 

E++ = e 2w E++ + ;+(a--H+--)I?+ - iZ(fi+Q)&+] , 

Em- = e2*d-- , 

W-f- = eq[[2~+~ - a--H+--] , 

w++ = ie2*‘[a--D+H+-- + H+--a--a--H+-- 

- a--H+--&+!@ - i2&++1E] , 

w-- = - 2e2*a--\E . 

(7.11) 
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These expressions, along with 

C+ = i)[E+w-- - E--w+ - ;w+w--1 , 

R = -[E++w-- + iE+E--w+ - w++w-.e + i)w+w--1 , (7.12) 

E z sdet(EAy) = e-3z’ , 

and the supergravity, graded commutation relations 

P+,V+l = i2V++ , P+J++l = 0 , 

[V+,V--} = - i2C+M , 

[V ++,v--} = -p+v+ + RM) ) 

(7.13) 

define the (anti)holomorphic realization of the (1,0) supergravity algebra on the 

leftons and rightons. 

The compactif ied heterotic string action then reads (in compact notation) 

where a” E {XS aLh 9 @ R ’) and ‘1,i~ = ‘ld @  qhb $ ‘lab. Reduced to compoents, 

this becomes 

SCLR = ) 
/ 

d2aem1[D++zAD--zB + i@+AD--/3+B 
(7.15) 

- W%--+D+,B,Bl~~~ , 

where D** is the gravity covariant derivative and $--+ is a gravitino component. 

In this last expression, one must use the component analogs of Eqn. (7.9) or (7.10) 

or (7.11). 

As a result of super-conformal-invariance and the realizations in Eqns. (7.10) 

and (7.11), Eqn. (7.14) (with X = 0) is identical to Eqn. (7.3) (with X E 0). This 

is not a linearized result, it is the non-linear theory. Of course, including X in the 

action does not change the Cp I contribution to the action, but it gives the action 
L) 
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for superstring, space-time coordinates and leftons and rightons coupled to world- 

sheet supergravity. The H’s then act as lagrange multipliers for the Cp 
(3 

imposing 

their uni-directional motion. The Siegel constraint algebra has been ‘transferred” 

to the Virasoro algebra. Furthermore, the @ R  anomaly is one-half that of the minus- 

spinor fermion it bosonized. As mentioned before, there is no plus-spinor, matter 

superfield in (1,O) superspace. So such a statement cannot be made for the leftons. 

The righton propagator, when exponentiated, is equivalent to that of a minus spinor. 

Thus Eqn. (7.14) ’ p p is ro osed as the bosonized action for the compactif ied heterotic 

string. Before this statement can be fully asserted, the spectrum of states in the 

theory must be checked. We will do so in a later work [23]. 

VIII. Conclusions 

We have studied two-dimensional, (1,0) supersymmetric, self-dual bosons. This 

was done with an eye on two facets of the theory: (1) bosonization in a two- 

dimensional superfield theory and (2) applications to superstrings. As shown in 

earlier works [7,8] on the purely bosonic theory, a Liouville term is needed in the 

first picture in order to obtain the correct spectrum of states. It may not be needed 

in the second picture. It is needed in the Neveu-Schwarz sector but not the Ra- 

mond sector of the superstring. The vector and chiral super-currents were coupled 

to abelian gauge superfields. This led to the (1,0) supersymmetric completion of 

the purely bosonic results of Ref. [6b]. Following this, the conditions for Siegel 

anomaly removal were obtained through a calculation of the effective action by 

the supergraph method of Ref. 1161. The Siegel super-ghosts, in the analog of 

the super-conformal gauge, were bosonized. A Liouville term was needed there. 

Finally, an action which couples chiral bosons to world-sheet supergravity, was pro- 

posed. This action was obtained by demanding that the supergravity generator 
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acted schizophrenically on the bosonic superfields. The Siegel constraint algebra 

was co-opted into the Virasoro algebra. Although our primary calculations were 

done in superspace, we have given the component expressions for most of our re- 

sults. 

In future works, we plan to study (1) th * e non-abehan chiral super-bosonization, 

(2) the spectrum of states in the theory outlined in this work and (3) the bosoniza- 

tion of the supersymmetric charge. We hope to then obtain a more complete com- 

prehension of the bosonization of supersymmetric theories, both global and local. 

This should be of some importance to superstring theories. 
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