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Abstract: A new non-minimal version of the Einstein–Dirac-axion theory is established.

This version of the non-minimal theory describing the interaction of gravitational, spinor,

and axion fields is of the second order in derivatives in the context of the Effective Field

Theory and is of the first order in the spinor particle number density. The model Lagrangian

contains four parameters of non-minimal coupling and includes, in addition to the Riemann

tensor, Ricci tensor, and Ricci scalar, as well as left-dual and right-dual curvature tensors.

The pseudoscalar field appears in the Lagrangian in terms of trigonometric functions

providing the discrete symmetry associated with axions, which is supported. The coupled

system of extended master equations for the gravitational, spinor, and axion fields is

derived; the structure of new non-minimal sources that appear in these master equations is

discussed. Application of the established theory to the isotropic homogeneous cosmological

model is considered; new exact solutions are presented for a few model sets of guiding

non-minimal parameters. A special solution is presented, which describes an exponential

growth of the spinor number density; this solution shows that spinor particles (massive

fermions and massless neutrinos) can be born in the early Universe due to the non-minimal

interaction with the spacetime curvature.

Keywords: alternative theories of gravity; Einstein–Dirac theory; axion; spinor

1. Introduction

For more than fifty years, the problem of non-minimal coupling of fields and matter

to the spacetime curvature has attracted the serious attention of scientists who study the

cosmic sector of fundamental interactions. These investigations are considered to be an

important part of the modern trend, which is indicated as Modified Theories of Gravity [1,2].

Based on the mathematical aspects, one can say that two paradigms exist in this trend.

The first paradigm is connected with the Effective Field Theory (EFT) (see, e.g., [3–5]), in

the framework of which the theories can be classified according to the maximal order of

derivatives, which participate in the construction of the Lagrangian. In fact, the first version

of the theory of non-minimal coupling of the scalar field φ to the spacetime curvature,

which can be indicated as the theory of the second order in derivatives, was presented

in [6]. Indeed, in this work, the term φR was introduced into the Lagrangian, where R

is the Ricci scalar. The models of non-minimal derivative coupling of the scalar field to

curvature [7–9], which contain the convolution of the Ricci tensor with two gradients of the

scalar field, are of the fourth order in the context of the EFT. All the works concerning the

non-minimal Einstein–Maxwell theory are of the fourth and higher orders in derivatives.

Indeed, the author of the work [10] has introduced the one-parameter term λRmnpqFmnFpq
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into the Lagrangian so that the Riemann tensor Rmnpq contains two derivatives of the

spacetime metric, and each of the two Maxwell tensors Fmn includes one derivative of the

electromagnetic potential four-vector Aj. The famous paper [11]), which presented the one-

loop Quantum Electrodynamic version of the theory of the photon coupling to curvature,

fixed the idea that the true non-minimal theory of photon–graviton coupling, linear in

curvature, has to be the three-parameter one. If the pseudoscalar field ϕ can be used as an

element of the Lagrangian, the new true scalar term ϕF∗
mnFmn appears [12], and this term

plays an important role in the mathematical formalism of the axion theory [13–16]. The

theory of non-minimal axion–photon coupling, linear in curvature, has been established

in [17]. Then, this idea has been extended as follows: the term ϕF∗
mnFmn in the Lagrangian

has been replaced by the term ϕR∗
mnpqRmnpq, which is quadratic in curvature and thus

is of the fourth order in derivatives. Subsequently, ϕ was replaced by the odd function

U(ϕ) (see, e.g., [18,19]). Clearly, if ϕ = ϕ0 is a constant parameter, i.e., this quantity looses

the status of pseudoscalar, the term ϕ0F∗
mnFmn in electrodynamics converts to complete

divergence. Similarly, when ϕ = ϕ0, the term ϕ0R∗
mnpqRmnpq, which can be indicated as

the Chern–Simons pseudoscalar or the Pontryagin density (see, e.g., [20]), also converts to

complete divergence and thus does not give contribution to the evolutionary equations for

the gravity field.

The second paradigm in the non-minimal approach is based on the non-linear rep-

resentation of the coupling terms; the most known models in this trend are indicated as

f (R), f (G), f (R, F2), f (R, TµνTµν), etc., theories (see, e.g., [1,2,21–23]). In these theories,

f is considered as an arbitrary function of the Ricci scalar R, of the Gauss–Bonnet scalar G,

of the square of the Maxwell tensor F2 = FmnFmn, of the square of the matter stress–energy

tensor Tµν, etc. This approach does not give us a possibility to initially fix the maximal

order of derivatives, which are used in the Lagrangian construction, but opens the window

for non-linear modeling in the Modified Theories of Gravity. Both approaches have their

own advantages and lead to many interesting results in application to the non-minimal

theories of the electromagnetic, scalar, pseudoscalar, and Yang–Mills fields coupling to

gravity (see, e.g., [24–37]).

Among the models of non-minimal coupling, the spinor field theory occupies a special

place. Such a specific role is due to two factors. First, it is well known that the Einstein–

Dirac theory operates with spinor tensors that do not contain derivatives: they have the

structure ψ̄γm · · · γjψ, where γm denotes the Dirac matrices, ψ is the spinor field, and ψ̄

is its Dirac conjugated quantity. In this sense, the simplest non-minimal scalar term Rψ̄ψ,

which has been used in the work [38], is linear in curvature, is linear in the spinor particle

number density N = ψ̄ψ, and is the term of the second order in derivatives in the context

of EFT. One can find an evident analogy between the terms φR and Rψ̄ψ introduced in [6]

and [38], respectively. Clearly, if we will follow the idea of non-linear extensions of the

Einstein–Dirac theory, we can consider the Lagrangian with the term f (R,N ) as an analog

of the f (R, F2) theory.

The second factor that distinguishes the non-minimal Einstein–Dirac theory from

theories of non-spinor fields is connected with the idea of the use of the left- and right-dual

Riemann (pseudo)tensors ∗Rmnpq and R∗
mnpq as independent quantities of the Lagrangian

decomposition along with the Riemann tensors, Ricci tensors, and Ricci scalar. Indeed,

when one deals with the Einstein–Maxwell theory, the dual Maxwell (pseudo)tensor F∗
mn

and dual Riemann tensors cannot be used separately for the construction of the pure scalar

Lagrangian. Convolutions of two mentioned pseudotensors, which are constructed on the

basis of the Levi–Civita pseudotensor, give the linear combination of the known terms and

thus cannot be used as independent elements. A new situation arises in the Einstein–Dirac

theory, since in this theory, there exist spinor pseudotensors of the form ψ̄γm · · · γjγ5ψ,
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convolutions of which with the left- and right-dual Riemann tensors give new independent

true scalars that are suitable for the extension of the Lagrangian. When we work with the

pseudoscalar field ϕ, new non-minimal scalar terms of the type sin ϕR∗
mnpqψ̄γmγnγpγqψ

appear as elements of the Lagrangian modeling, and they are also of the second order

in derivative and of the first order in the spinor particle number density N . From the

physical point of view, the non-minimal coupling of the spinor field to the spacetime

curvature can be interesting as an explanation of the abundance of fermions born in the

early Universe, when the spacetime curvature was much bigger than now. In other words,

the early Universe spinorization (the last term means the anomalous growth of the fermion

number density, see, e.g., [39–41]) can be connected with the curvature-induced effects in

the spinor systems. Another way of explaining the Universe spinorization can be connected

with non-linear interactions of the spinor field with gravitation. The corresponding models

are non-linear in the spinor particle number density N ; they were discussed, e.g., in the

works [42–44].

Keeping in mind the mentioned details of the history of the non-minimal field theory,

we established here a new complete non-minimal version of the Einstein–Dirac-axion

theory, which is linear in curvature, is of the second order in derivatives, is linear in

the number density of spinor particles, and is non-linear in the axion field. The paper is

organized as follows. In Section 2, we construct the Lagrangian of the non-minimal Einstein–

Dirac-axion theory and derive the extended master equations for the spinor, pseudoscalar,

and gravitational fields. In Sections 3–5, we apply the established extended theory to

the homogeneous isotropic cosmological model, describe the evolution of the spinor field

invariants, and analyze the behavior of the Hubble function and of the scale factor. To be

more precise, in Section 3, we reduce the master equations of the spinor, axion, and gravity

fields, taking into account the symmetry of the Friedmann–Lemaître–Robertson–Walker

(FLRW) spacetime platform; in Section 4, we deal with the exactly integrable model, in

which the axion field is frozen in one of the minima of the axion field potential and thus is

in the equilibrium state; in Section 5, the axion field is fixed in the unstable state related to

one of the maxima of the axion potential. In Section 6, we discuss physical consequences of

the non-minimal graviton–spinor–axion interactions.

2. The Formalism

2.1. Action Functional of the Non-Minimal Einstein–Dirac-Axion Theory

The presented version of the non-minimal Einstein–Dirac-axion theory is based on

three assumptions.

First, we work in the context of the Effective Field Theory and use the model up to the

second order in derivatives.

Second, we consider models in which the master equations for the spinor field remain

of the first order in derivatives.

Third, we consider the scheme of model formulation linear in the spinor particle

number density.

The total action functional is considered to be of the form

S =
∫

d4x
√

−g

{

− 1

2κ
(R+2Λ)+L(NM)+

1

2
Ψ

2
0[g

mn∇mϕ∇nϕ − V(ϕ)]+

+

[

i

2

(

ψ̄γkDkψ−Dkψ̄γk
)

−mψ̄ψ

]}

. (1)

The elements of the canonic Lagrangian of the minimal Einstein-axion model are well

documented. The term g is the determinant of the spacetime metric gmn; R is the Ricci

scalar; Λ is the cosmological constant; κ = 8πG includes the Newtonian coupling constant
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G (c = 1). The pseudoscalar dimensionless function ϕ relates to the axion field, and the

parameter Ψ0 is equal to the inverse parameter of the axion–photon coupling. The axion

field with mass mA is assumed to be described by the periodic potential

V(ϕ) = 2m2
A(1 − cos ϕ) . (2)

The last term in the integral (1) describes the canonic Lagrangian of the spinor field ψ;

the term L(NM) accumulates the non-minimal interaction terms; these elements of the total

Lagrangian will be described in the next two subsections.

2.2. Auxiliary Mathematical Details Connected with the Spinor Field

2.2.1. Dirac Matrices and Tetrad Vectors

We use the standard duet: the spinor field ψ and its Dirac conjugated quantity ψ̄.

Tensors in the Dirac theory are constructed using the scheme ψ̄γj · · · γnψ, and the corre-

sponding pseudotensors have the form ψ̄γj · · · γmγnγ5ψ. The scalar S = ψ̄ψ is standardly

interpreted as a spinor particle number density N . The basic pseudoscalar P is defined as

P = iψ̄γ5ψ. The matrices γj in the Riemann spacetime with the metric gpq are connected

with the constant Dirac matrices γ(a), defined in the Minkowski spacetime with the metric

η(a)(b), via the tetrad vectors X
j

(a)
: γk = Xk

(a)
γ(a). The following relationships are used in

this context.

First, we deal with the normalization of the tetrad four-vectors:

gmnXm
(a)X

n
(b) = η(a)(b) , η(a)(b)Xm

(a)X
n
(b) = gmn . (3)

If we consider, formally, the tetrad four-vector as an element of the Jacobi matrix

X
j

(a)
= ∂xj

∂x(a) , which describes the local coordinate transformation from the Minkowski

spacetime to the Riemann one, we can see that |det(X
j

(a)
)| = 1√−g

. Below, we assume that

det(X
j

(a)
) is positive.

Second, the Dirac matrices satisfy the fundamental anti-commutation relations

γ(a)γ(b)+γ(b)γ(a) = 2Eη(a)(b) ⇐⇒ γmγn+γnγm = 2Egmn , (4)

where E is the four-dimensional unit matrix.

2.2.2. Definition and Properties of the Matrix γ5

Special attention should be attracted to the definition of matrix γ5. We follow the basic

definition of the Levi–Civita tensor ϵmnpq via the absolutely anti-symmetric symbol Emnpq:

ϵmnpq =
√

−gEmnpq , E0123 = −1 . (5)

Taking into account the standard definition of the determinant, we obtain

ϵmnpqXm
(a)X

n
(b)X

p

(c)
X

q

(d)
=

√

−g det(X
j

(a)
)ϵ(a)(b)(c)(d) = ϵ(a)(b)(c)(d) , (6)

keeping in mind that in the Minkowski spacetime, ϵ(a)(b)(c)(d) ≡ E(a)(b)(c)(d), with

E(0)(1)(2)(3) = −1. Using (6), we can introduce in the covariant way the link between

the Dirac matrices γ5 and γ(5) as follows:

γ5 ≡ − 1

4!
ϵmnpqγmγnγpγq = − 1

4!
ϵmnpqXm

(a)X
n
(b)X

p

(c)
X

q

(d)
γ(a)γ(b)γ(c)γ(d) = (7)

= − 1

4!
ϵ(a)(b)(c)(d)γ

(a)γ(b)γ(c)γ(d) = γ(0)γ(1)γ(2)γ(3) ≡ γ(5).
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In other words, the matrix γ5 does not depend on the metric and, in addition to the

unit matrix E, is a constant matrix. The multiplier i in the definition of the pseudoscalar P

allows the matrix iγ5 to be free of the imaginary unit.

2.2.3. The Fock–Ivanenko Connection Coefficients

The covariant derivatives of the spinor fields

Dkψ = ∂kψ −Qkψ , Dkψ̄ = ∂kψ̄ + ψ̄Qk (8)

are constructed using the Fock–Ivanenko connection matrices Qk [45]

Qk =
1

4
gmnX

(a)
s γsγn∇kXm

(a) . (9)

2.3. Non-Minimal Extension of the Action Functional

2.3.1. Geometric and Spinor Elements of the Lagrangian Decomposition

We classify the terms appearing in the extended non-minimal Lagrangian in the context

of the second-order model of the EFT. For the Riemann tensor R
j
kmn, its convolutions

Rkn = Rm
kmn and R = Rm

m, as well as the left- and right-dual tensors, are defined as

∗Rjkmn =
1

2
ϵjkpqR

pq
mn , R∗

jkmn =
1

2
R

pq
jk ϵpqmn , (10)

which are just of the second order in derivatives, so we cannot use derivatives of other

quantities in the corresponding decomposition. In order to introduce the odd and even

contributions of the axion field ϕ, we define two new matrices

A = E sin ϕ+iν∗γ5 cos ϕ , B = E cos ϕ−iν∗γ5 sin ϕ , (11)

which are characterized by one real parameter ν∗. They possess the evident properties

d

dϕ
A = B ,

d

dϕ
B = −A , A2 + B2 = (1 + ν2

∗)E . (12)

The following new scalars containing both spinor and axion fields are useful for further

calculations defined as

ψ̄iγ5Aψ = ν∗S cos ϕ + P sin ϕ , ψ̄Bψ = S cos ϕ − ν∗P sin ϕ . (13)

Both scalars are periodic, i.e., do not vary under the discrete transformation ϕ →
ϕ + 2πk.

2.3.2. Non-Minimal Contributions to the Total Lagrangian

We present the scalar linear in R and linear in the spinor particle density as the product

β1Rψ̄Bψ = β1R(S cos ϕ − ν∗P sin ϕ) . (14)

Since the Ricci tensor is symmetric, we see that Rmn(ψ̄γmγnψ) = Rmn(ψ̄gmnψ) = RS,

i.e., there are no independent terms with the Ricci tensor linear in the spinor particle number

density. We present the scalar containing the curvature tensor in the following form:

β2Rjkmn(ψ̄γjγkγmγnBψ) . (15)
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Similarly, we present the scalars linear in the left- and right-dual Riemann tensors

as follows:

iβ∗
(

∗Rjkmn + R∗
jkmn

)(

ψ̄γjγkγmγnAψ
)

. (16)

This term is chosen in the symmetric form, since we assume that the Lagrangian is

symmetric with respect to the left and right duality. Thus, the non-minimal terms in the

Lagrangian can be written as follows:

L(NM) = β1R(ψ̄Bψ) + β2Rjkmn

(

ψ̄γjγkγmγnBψ
)

+ iβ∗
(

∗Rjkmn + R∗
jkmn

)(

ψ̄γjγkγmγnAψ
)

. (17)

This element of the Lagrangian decomposition is the four-parameter one: the guiding

parameters are β1, β2, β∗, and ν∗.

2.4. Master Equations

The variation procedure with respect to the spinor field ψ, its Dirac conjugate quan-

tity ψ̄, axion field ϕ, and the metric gpq gives us the coupled system of the extended

master equations.

2.4.1. Master Equations for the Spinor Field

Variation in the action functional (1) with respect to ψ̄ and ψ gives the extended Dirac

equations, which have, formally speaking, the standard structure

iγnDnψ = Mψ , iDnψ̄γn = −ψ̄M . (18)

However, the matrix M is now of a much more complicated form

M = mE + M(NM) , (19)

−M(NM) = β1RB + β2RjkmnγjγkγmγnB + iβ∗
(

∗Rjkmn + R∗
jkmn

)

γjγkγmγnA . (20)

The matrix of the effective mass M, in addition to the seed mass term mE, contains the

term with non-minimally induced mass M(NM), which depends on the spacetime curvature

and on the axion field. In other words, the extension of the Dirac equations is connected

with the introduction of a new effective spinor field mass.

2.4.2. Master Equations for the Axion Field

Variation with respect to the pseudoscalar field ϕ gives the axion field equation

gmn∇m∇nϕ + m2
A sin ϕ =

1

Ψ2
0

J (21)

with the curvature-induced pseudoscalar source

J = −β1R(ψ̄Aψ)− β2Rjkmn

(

ψ̄γjγkγmγnAψ
)

+ iβ∗
(

∗Rjkmn + R∗
jkmn

)(

ψ̄γjγkγmγnBψ
)

, (22)

which depends on the spinor and axion fields.

2.4.3. Master Equations for the Gravity Field

Variation in the action functional (1) with respect to the metric gives the equation

which can be formally written in the Einstein-like form

Rpq−
1

2
gpqR − Λgpq = κT

(D)
pq +κT

(A)
pq +κT

(NM)
pq . (23)

The first term in the right-hand side of this equation
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T
(D)
pq = −gpq

[

i

2
[ψ̄γkDkψ−Dkψ̄γkψ]−mψ̄ψ

]

+
i

4

[

ψ̄γpDqψ+ψ̄γqDpψ−(Dpψ̄)γqψ−(Dpψ̄)γqψ
]

(24)

describes the canonic stress–energy tensor of the spinor field. The second term in the

right-hand side of (23)

T
(A)
pq = Ψ

2
0

{

∇pϕ∇qϕ − 1

2
gpq[g

mn∇mϕ∇nϕ − V(ϕ)]

}

(25)

relates to the canonic stress–energy tensor of the axion field.

We divide the non-minimal contributions to the total stress–energy tensor into three

parts, which have in front three non-minimal parameters β1, β2, and β∗, respectively:

T
(NM)
pq = β1T

(NM1)
pq + β2T

(NM2)
pq + iβ∗T

(NM∗)
pq , (26)

where the following definitions have been used:

T
(NM1)
pq = 2

[

Rpq−
1

2
Rgpq+gpq∇m∇m−∇(p∇q)

]

(ψ̄Bψ) , (27)

T
(NM2)
pq = 2ψ̄

[

γ(pRq)kmn−
1

2
gpqRjkmnγj

]

γkγmγnBψ+4ψ̄
[

2γ(pRq)mγm − Rpq

]

Bψ+

2∇p∇qψ̄Bψ−4gpq∇s∇nψ̄γsγnBψ−2(∇s∇q−∇q∇s)ψ̄γpγsBψ−2(∇s∇p−∇p∇s)ψ̄γqγsBψ , (28)

T
(NM∗)
pq = −2ψ̄γ∗

(pRq)kmnγkγmγnAψ − 4∇s∇mψ̄γlγkγsγ(pϵ·mlk
q) Aψ− (29)

−4ϵlkm·
(p∇q)∇mψ̄γlγkAψ − 2ψ̄γkγmγnR∗

kmn(pγq)Aψ−

−4ϵmlk·
(p∇q)∇mψ̄γlγkAψ − 4∇s∇mϵmlk·

(pψ̄γq)γ
sγlγkAψ .

The decomposition (26) of the non-minimal part of the total stress–energy tensor is

convenient, in particular, for the interpretation of the obtained results; for instance, below,

we will show that the parameter β∗ is responsible for the description of the growth of the

spinor particle number density, and thus, the term T
(NM∗)
pq provides the energy support of

the spinorization of the early Universe.

We used three groups of auxiliary relationships in the variation procedure. The first

group is connected with the variation in the following geometric objects:

δΓ
j
sn =

1

2

(

gspgnq∇j − δ
j
pgsq∇n − δ

j
pgnq∇s

)

δgpq , (30)

δR
j
smn =

1

2

[

gs(pgq)n∇m∇j − gs(pgq)m∇n∇j + δ
j

(p
gq)s(∇n∇m −∇m∇n)+ (31)

+δ
j

(p
gq)m∇n∇s − δ

j

(p
gq)n∇m∇s

]

δgpq ,

δRsn =
1

2

[

gs(pgq)n∇m∇m−gs(pgq)m∇n∇m+δm
(pgq)s(∇n∇m−∇m∇n)+

+gpq∇n∇s−δm
(pgq)n∇m∇s

]

δgpq, (32)

δR =
(

Rpq + gpq∇m∇m −∇(p∇q)

)

δgpq . (33)
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The second group of auxiliary relationships is connected with the variation in the tetrad

vectors, which depend on the metric due to the following normalization conditions (4):

δX
j

(a)
=

1

4

[

Xp(a)δ
j
q + Xq(a)δ

j
p

]

δgpq , δXj(a) = −1

4

[

Xp(a)gjq + Xq(a)gjp

]

δgpq . (34)

The third group gives us variations of the Dirac matrices

δγ(a) = 0 , δγ(5) = 0 = δγ5 , (35)

δγk = γ(a)δXk
(a) =

1

4
δgpq

(

γpδk
q + γqδk

p

)

, δγk = −1

4
δgpq

(

γpgkq + γqgkp

)

. (36)

Finally, we presented the complete set of coupled master equations for the spinor

field (see (18)–(20)), for the axion field (see (21) and (22), and for the gravitational field

(see (23)–(29)).

3. Cosmological Application

3.1. Geometrical Aspects of the Model

As an application, we consider the spatially isotropic homogeneous spacetime plat-

form with the Friedmann–Lemaître–Robertson–Walker-type metric

ds2 = dt2 − a2(t)[dx12
+ dx22

+ dx32
] (37)

with the scale factor a(t). As usual, we introduce the Hubble function H(t) ≡ ȧ
a (here and

below, the dot symbolizes the derivative with respect to time). For the metric (37), the

tetrad vectors take the simple form

Xi
(0) = δi

0 , Xi
(1) = δi

1

1

a(t)
, Xi

(2) = δi
2

1

a(t)
, Xi

(3) = δi
3

1

a(t)
, (38)

and the spinor connection coefficients Qk are

Q0 = 0 , Q1 =
1

2
ȧγ(1)γ(0) , Q2 =

1

2
ȧγ(2)γ(0) , Q3 =

1

2
ȧγ(3)γ(0) . (39)

As a direct consequence of (39), we obtain the auxiliary formula

γkQk = −3

2
Hγ0 = −Qkγk . (40)

For convenience, we list the non-vanishing components of the Riemann tensor, Ricci

tensor, and Ricci scalar:

R01
01 = R02

02 = R03
03 = − ä

a
, R12

12 = R13
13 = R23

23 = −
(

ȧ

a

)2

,

R0
0 = −3

ä

a
, R1

1 = R2
2 = R3

3 = −
[

ä

a
+ 2

(

ȧ

a

)2
]

, R = −6

[

ä

a
+

(

ȧ

a

)2
]

= −6
(

Ḣ + 2H2
)

. (41)

The non-vanishing components of the left- and right-dual Riemann tensors are

∗R01
23 =∗ R02

31 =∗ R03
12 = − ȧ2

a
, R∗12

03 = R∗23
01 = R∗31

02 =
ä

a2
. (42)
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Using (41), (42), and the anti-commutation relations (4), one can calculate the terms

from the non-minimal part of the Lagrangian and represent them in the form

Rjkmn

(

ψ̄γjγkγmγnBψ
)

= 12(ψ̄Bψ)

[

ä

a
+

(

ȧ

a

)2
]

= −2R (ψ̄Bψ) , (43)

(

∗Rjkmn + R∗
jkmn

)(

ψ̄γjγkγmγnAψ
)

= 24
(

ψ̄γ5Aψ
)

[

(

ȧ

a

)2

+
ä

a

]

= −4R
(

ψ̄γ5Aψ
)

. (44)

The matrix M, which describes the non-minimal effective mass of the spinor particle,

can now be presented as follows:

M = mE − R
(

Eχ1 cos ϕ + iγ5χ2 sin ϕ
)

, (45)

where two auxiliary coefficients are introduced as follows:

χ1 = (β1 − 2β2 − 4ν∗β∗) , χ2 = [ν∗(2β2 − β1)− 4β∗] . (46)

The scalar of the effective mass has the form

M ≡ (ψ̄Mψ)

(ψ̄ψ)
= m − R

(

χ1 cos ϕ +
P

S
χ2 sin ϕ

)

. (47)

Calculation of the source term J (see (22)) in the extended equation for the axion field

(21) gives

J = −R(χ1S sin ϕ − χ2P cos ϕ) . (48)

3.2. Reduced Dirac Equations and Evolution of the Spinor Scalars

The high symmetry of the FLRW spacetime allows us to reduce the Dirac Equation (18)

to the following simple pair of the ordinary differential equations of the first order:

iγ0 d

dt

[

a
3
2 (t)ψ

]

= M
[

a
3
2 (t)ψ

]

, i
d

dt

[

a
3
2 (t)ψ̄

]

γ0 = −
[

a
3
2 (t)ψ̄

]

M . (49)

This symmetry opens a possibility to establish a closed system of evolutionary

equations for three quantities—one scalar function S(t) and two pseudoscalars P(t) and

Ω(t)—which are defined as follows:

S = ψ̄Eψ , P = ψ̄iγ5ψ , Ω = ψ̄γ5γ0ψ . (50)

Indeed, using the reduced Dirac Equation (49) and the presentation (45) of the effective

mass matrix, we obtain

Ṡ + 3HS = iψ̄(Mγ0 − γ0M)ψ = 2χ2R Ω sin ϕ , (51)

Ṗ + 3HP = ψ̄
(

γ5γ0M − Mγ0γ5
)

ψ = 2Ω(m − χ1R cos ϕ) , (52)

Ω̇ + 3HΩ = −iψ̄(Mγ5 + γ5M)ψ = 2P(χ1R cos ϕ − m) + 2χ2R S sin ϕ . (53)

The idea to use the evolutionary equation for S and P for the description of the spinor

system has already been proposed earlier by the authors of the works [42–44]. Here, we

have to emphasize that in the non-minimal model, similarly to the model studied in [46],

the evolutionary system for S, P, and Ω again happened to be the closed one. In other

words, for the non-minimal model based on the FLRW platform, there is no necessity to

extend the basis of S, P, and Ω of the spinor scalars/pseudoscalars.
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If we introduce the functions

X(t) = S(t)

(

a(t)

a(t0)

)3

, Y(t) = P(t)

(

a(t)

a(t0)

)3

, Z(t) = Ω(t)

(

a(t)

a(t0)

)3

, (54)

and rewrite the evolutionary Equations (51)–(53) in the form

Ẋ = 2χ2R Z sin ϕ , Ẏ = 2Z(m − χ1R cos ϕ) , Ż = 2Y(χ1R cos ϕ − m) + 2χ2R X sin ϕ , (55)

we obtain immediately that the following integral of this system of equations exists as

Y2 + Z2 − X2 = K , (56)

where K is constant. In other words, one can extract Z(t) from (56) and put it into the first

and second equations of the set (55), thus reducing the system to the pair of equations for

X and Y only. In this sense, just the quantities S and P predetermine the character of the

spinor system evolution.

3.3. Reduced Equation of the Axion Dynamics

The evolutionary equation of the pseudoscalar (axion) field (21) supplemented by (22)

now takes the form

ϕ̈+3Hϕ̇+

[

m2
A +

R

Ψ2
0

χ1S

]

sin ϕ =
R

Ψ2
0

χ2P cos ϕ . (57)

One can state that there exists an effective non-minimally induced axion mass MA

given by the formula

MA =

√

m2
A +

R

Ψ2
0

χ1S . (58)

It is important to note that the axion field can be frozen in one of the minima of the

periodic potential (2) (it is possible when ϕ = 2πk) if and only if χ2P = 0. In other words,

the equilibrium in the axionic system (see, e.g., [47]) is admissible, when χ2 = 0, or the

state is characterized by the requirement P(t) = 0.

3.4. Key Equation for the Gravitational Dynamics

It is well known that when one deals with the symmetric FLRW spacetime platform,

the set of the gravity field equations can be reduced to one equation. For our case, one

has to calculate the covariant derivatives in (23)–(29) and to choose the equation with the

indices p = 0 and q = 0. This equation takes the form

3H2 − Λ = κmS + κΨ
2
0

[

ϕ̇2 + 2m2
A(1 − cos ϕ)

]

+ 6β1

(

H2 + H
d

dt

)

(S cos ϕ − ν∗P sin ϕ)−

−12β2

(

Ḣ + 2H2
)

(S cos ϕ − ν∗P sin ϕ)− 6β2
d2

dt2
(S cos ϕ − ν∗P sin ϕ)−

−12β2H
d

dt
(S cos ϕ − ν∗P sin ϕ)− 12β∗

(

Ḣ + 2H2
)

(ν∗S cos ϕ + P sin ϕ)

+48β∗

(

H2 − H
d

dt

)

(ν∗S cos ϕ + P sin ϕ) . (59)

Short Resume

Thus, we obtained the key system, which contains four evolutionary equations for

four unknown functions. The first key equation is the gravity field Equation (59); it includes
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ϕ, S, P, and their derivatives up to the second order, as well as H and Ḣ. The second key

equation is the axion field Equation (57); one can extract ϕ̈ from this equation and put it into

(59). The third and fourth key equations are the equations for the spinor quantities S and

P (see (51), (52), and the integral (56), which excludes the function Ω from consideration).

One can extract Ṡ and Ṗ from these equations and put them into (59). Integration of the key

system of evolutionary equations in the general case is possible by the numerical methods

only; we hope to fulfill such analysis in future. But below, we consider two particular

submodels, which are exactly integrable.

4. First Exactly Integrable Submodel

According to Equation (57), the axion equilibrium state ϕ = 2πk with integer k is

admissible when χ2 = 0, i.e., when the constants of the non-minimal coupling are linked

by the relations

χ2 = ν∗(2β2 − β1)− 4β∗ = 0 ⇒ χ1 = −4β∗

(

1 + ν∗2

ν∗

)

. (60)

4.1. Evolution of the Spinor Scalar S and Pseudoscalars P, Ω

For the axion field in the state of equilibrium, Equation (55) can be transformed into

Ẋ = 0 , Ẏ = 2Z(m − Rχ1) , Ż = −2Y(m − Rχ1) . (61)

Clearly, X(t) = const = S(t0), and the number density of the spinor particles N =

S(t) = S(t0)
(

a(t0)
a(t)

)3
decreases when the Universe expands. Analyzing the equations for Y

and Z, we can formally introduce the new variable

τ(t) = 2
∫ t

t0

dξ[m − R(ξ)χ1] , τ(t0) = 0 , (62)

and find the exact solutions

Y(τ) = Y(0) cos τ + Y′(0) sin τ , Z(τ) = Y′(0) cos τ − Y(0) sin τ , (63)

Y2(τ) + Z2(τ) = Y2(0) + Y′2(0) ⇒ K = Y2(0) + Y′2(0)− X2(0) . (64)

This means that the functions Y(τ) and Z(τ) are bounded, and the pseudoscalars P(t)

and Ω(t) are also decreasing in the expanding Universe. Mention should be made that in

this submodel, the effective mass of the spinor field

M =
ψ̄Mψ

ψ̄ψ
= m − χ1R(t) (65)

is directly connected with the auxiliary time τ(t) = 2
∫ t

t0
dξM(ξ).

4.2. Evolution of the Hubble Function

In the framework of this submodel, the pseudoscalar P does not enter the key equation

of the gravitational field (59), and this key equation can be written as follows:

H2 − Λ

3
= S(t0)

a3(t0)

a3(t)

[

1

3
κm + 2H2

(

28β∗ν∗ − 11β2 + 8
β∗
ν∗

)

+ 2Ḣ(β2 − 2β∗ν∗)
]

. (66)
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For the analysis of this equation, we use the new variable x = a(t)
a(t0)

and the dimen-

sionless function
H(x)
H∞

, where H∞ =
√

Λ

3 , and the rule of differentiation is d
dt = xH(x) d

dx .

In these terms, the key Equation (66) takes the form

Γ1x
dU
dx

+ (Γ2 − x3)U + Γ3 = 0 , (67)

where the following definitions are used:

U =
H2

H2
∞

−1 , Γ1 = S(t0)(β2−2β∗ν∗) , Γ2 = 2S(t0)

(

28β∗ν∗−11β2+8
β∗
ν∗

)

, Γ3 =
κmS(t0)

3H2
∞

+Γ2 . (68)

Clearly, the solutions to the Equation (67) essentially depend on the value and sign of

the parameter Γ1, and below, we consider the cases Γ1 = 0, Γ1 > 0, and Γ1 < 0 separately.

4.2.1. The Case Γ1 > 0

When Γ1 ̸= 0, we deal with the linear differential equation of the first order, and the

corresponding solution is

U =

[

H2(1)

H2
∞

− 1

]

x
− Γ2

Γ1 e
(x3−1)

3Γ1 − Γ3

Γ1
x
− Γ2

Γ1 e
x3

3Γ1

∫ x

1
dξξ

Γ2
Γ1

−1
e
− ξ3

3Γ1 . (69)

When Γ1 > 0, the behavior of the Hubble function is predetermined by the properties

of the function e
(x3−1)

3Γ1 , which grows infinitely at x → ∞. A typical behavior of H(x) in

this case can be visualized by the solution with Γ3 = 0, i.e., with Γ2 = − κmS(t0)

3H2
∞

< 0. We

now obtain

H(x) = ±H∞

√

1 +

[

H2(1)

H2
∞

− 1

]

x
|Γ2 |
|Γ1 | e

(x3−1)
3|Γ1 | ,

2HH′(x)

H2
∞

=
1

|Γ1|

[

H2(1)

H2
∞

− 1

]

x
|Γ2 |
|Γ1 |

−1
e
(x3−1)

3|Γ1 |
(

x3 + |Γ2|
)

. (70)

Clearly, when |H(1)| > H∞, the function H(x) (see (70)) has no extrema and grows

monotonically from H(1) to infinity. The integral in the right-hand side of the equality

H∞(t − t0) =
∫

a(t)
a(t0)

1

dx

x

√

1 +
[

H2(1)

H2
∞

− 1
]

x
|Γ2 |
|Γ1 | e

(x3−1)
3|Γ1 |

(71)

converges when the upper limit tends to infinity. This means that the scale factor a(t)

reaches the infinite value during the finite time interval, and we deal with the Big Rip

according to the classification presented in [48].

When |H(1)| < H∞, the Hubble function monotonically decreases, takes a zero value,

and then becomes an imaginary quantity. This scenario is not physically motivated.

When |H(1)| = H∞, we deal with the de Sitter solution, since now H(t) = H∞ =
√

Λ

3 ,

and a(t) = a(t0)e
H∞(t−t0). In this case, the auxiliary function τ(t), which enters the solution

P(τ) as the argument, takes the form

τ(t) =
2(t − t0)

ν∗

[

mν∗ − 48(1 + ν2
∗)H2

∞

]

. (72)

REMARK: This concerns the behavior of the axion field perturbations.
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Let us imagine that, due to fluctuations, the equilibrium value of the axion field

acquires a small perturbation ϕ = 2πk+φ at the moment t = t1 (φ(t1) = 0, φ′(t1) ̸= 0).

In terms of x, Equation (57), being modified, can be written as

x2 φ′′ + 2xφ′
[

1 − R

12H2

]

+

[

m2
A

H2
+

χ1S(t0)R

Ψ2
0x3H2

]

φ = 0 , (73)

where the term
R(x)
H2 calculated on the base of the solution (70) is of the form

R(x)

H2
= −12

[

1 +
1

4
x
(H2)′

H2

]

= −12















1 +

1
4|Γ1|

[

H2(1)

H2
∞

− 1
]

x
|Γ2 |
|Γ1 | e

(x3−1)
3|Γ1 |

(

x3 + |Γ2|
)

1 +
[

H2(1)

H2
∞

− 1
]

x
|Γ2 |
|Γ1 | e

(x3−1)
3|Γ1 |















. (74)

When x → ∞, this term tends to
R(x)
H2 → − 3x3

|Γ1| , and the asymptotic version of the

Equation (73) transforms into

φ′′ +
x2

2|Γ1|
φ′ − 3χ1S(t0)

Ψ2
0|Γ1|x2

φ = 0 . (75)

In the asymptotic regime φ′(x) ∝ e
− x3

6|Γ1 | , the perturbations remain bounded. In other

words, even in the case of the Big Rip scenario, the equilibrium state of the axion field

remains stable.

4.2.2. The Case Γ1 < 0

In order to illustrate the behavior of the Hubble function in this case, we consider the

particular submodel with Γ2 = 3Γ1 and obtain that Γ3 = κmS(t0)

3H2
∞

− 3|Γ1|, and

H(x) = H∞

√

1 +

[

H2(1)

H2
∞

− 1 − Γ3

]

x−3 e
− (x3−1)

3|Γ1 | + Γ3x−3 . (76)

We add the information about the derivative

2HH′(x)

H2
∞

= −3x−4

{

Γ3 +

[

H2(1)

H2
∞

− 1 − Γ3

](

1 +
x3

3|Γ1|

)

e
− (x3−1)

3|Γ1 |

}

, (77)

and can state the following:

1. When
H2(1)

H2
∞

−1 > Γ3 > 0, and thus, H(1) > H∞, and H′(x) < 0, the Hubble

function (76) has no extrema; it decreases monotonically and tends to H∞ when x → ∞.

2. When
H2(1)

H2
∞

< 1 + Γ3 < 1, and thus, H∞ > H(1), and H′(x) > 0, the Hubble

function (76) has no extrema; it grows monotonically and tends to H∞ when x → ∞.

3. For other requirements for
H2(1)

H2
∞

, Γ3, and |Γ1|, the extrema on the lines H(x) are

admissible, but in any cases, H(x) tends to H∞ asymptotically.

The last statement can be advocated as follows. Let us require that H′(xE) = 0 and

rewrite this condition as

Γ3ez =

(

1 + Γ3 −
H2(1)

H2
∞

)(

z + 1 +
1

3|Γ1|

)

, z =
x3

E − 1

3|Γ1|
. (78)

Depending on the values of the mentioned parameters, the graph of the exponential

function may intersect the graph of the linear function once or not at all. For instance,

the point of extremum xE = (1 + 3|Γ1|)
1
3 corresponds to the case Γ3 = (1+6|Γ1|)(H2(1)−H2

∞)

[1+3|Γ1|(2−e)]H2
∞

,
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while for Γ3 = 0 at H2(1) ̸= H2
∞, we obtain the value xE = −(3|Γ1|)

1
3 < 0, which does

not belong to the admissible interval (1, ∞). In other words, there are four variants of

the Hubble function behavior: when H(1) > H∞, the monotonic decreasing or passing

through the minimum is possible; when H(1) < H∞, the monotonic growing or passing

through the maximum is possible.

The scale factor a(t) can now be obtained from the integral

H∞(t − t0) =
∫

a(t)
a(t0)

1

dx

x

√

1 +
[

H2(1)

H2
∞

− 1 − Γ3

]

x−3 e
− (x3−1)

3|Γ1 | + Γ3x−3

. (79)

Since e
− (x3−1)

3|Γ1 | is the rapidly decaying function, the typical behavior of a(t) can be

illustrated by the submodel with
H2(1)

H2
∞

= 1+Γ3, Γ3 > −1, for which the scale factor is

equal to

a(t)

a(t0)
=

{

cosh

[

3

2
H∞(t − t0)

]

+
√

1 + Γ3 sinh

[

3

2
H∞(t − t0)

]} 2
3

. (80)

When t → ∞, the scale factor behaves as a(t) → a(t0)
[

1
2 (1+

√
1+Γ3)

] 2
3
eH∞(t−t0). The

Hubble function is presented by the formula

H(t) = H∞

{

tanh
[

3
2 H∞(t − t0)

]

+
√

1 + Γ3

1 +
√

1 + Γ3 tanh
[

3
2 H∞(t − t0)

]

}

. (81)

The acceleration parameter

−q(t) =
ä

aH2
=

3

2

{√
1 + Γ3 tanh

[

3
2 H∞(t − t0)

]

+ 1√
1 + Γ3 + tanh

[

3
2 H∞(t − t0)

]

}2

− 1

2
(82)

takes the initial value −q(t0) =
2−Γ3

2(1+Γ3)
and tends to one asymptotically, where −q(∞) = 1.

Since the function (82) is monotonic, this means that if Γ3 > 2, the initial and final values of

the acceleration parameter have opposite signs, and thus, there exists the time moment tT

when −q takes zero value as follows:

tT = t0 +
2

3H∞

Artanh

[ √
1 + Γ3 −

√
3√

3
√

1 + Γ3 − 1

]

. (83)

This is the point of transition from the decelerated expansion of the Universe to the

accelerated one.

4.2.3. The Case Γ1 = 0

In this submodel, the key Equation (67) converts into the algebraic equation

H2(x)

H2
∞

− 1 =
Γ3

x3 − Γ2
. (84)
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In order to eliminate the Big Rip scenario, we assume that the parameter Γ2 has to

satisfy the requirement Γ2 < 1, providing that at x ≥ 1, the denominator does not take zero

value. The Hubble function

H(x) = ±H∞

√

x3 − Γ2 + Γ3

x3 − Γ2
(85)

does not take the zero value on the admissible interval x > 1 if Γ3−Γ2 = κmS(t0)

3H2
∞

< 1. In this

case, it monotonically decreases and tends asymptotically to H∞. The acceleration parameter

−q(x) = 1 + x
H′(x)

H
= 1 − 3Γ3x3

2(x3 − Γ2)(x3 − Γ2 + Γ3)
(86)

tends to one asymptotically, where −q(∞) = 1. The initial value −q(1) is negative when

2 − ρ2

5 + 2ρ2
< Γ2 < 1 , ρ =

√

κmS(t0)

3H2
∞

, (87)

and thus, the function −q(x) takes zero value at x = xT > 1, where

xT =

[

5Γ2 + ρ2

4
+

1

4

√

(ρ2 + 13Γ2)
2 − 144Γ2

2

]

1
3

. (88)

If, in addition, Γ2 is negative, the function −q(x) reaches the maximum at x = xE =
(

ρ2|Γ2|
)

1
6 ; when 0 < Γ2 < 1, the function −q(x) tends to one monotonically.

The scale factor a(t) can now be obtained from the equation

3H∞(t − t0) =
∫

(

a(t)
a(t0)

)3

1

dz

z

√

z − Γ2

z + ρ2
. (89)

Integration of this equation reveals two different cases: Γ2 < 0 and 0 < Γ2 < 1.

When Γ2 < 0, i.e., β2 >
4β∗
11ν∗ (2+ 7ν2∗), using (for the sake of convenience) the parameter

α = 1
ρ

√

|Γ2|, we obtain the implicit dependence x(t) as follows:

e3H∞(t−t0) =

















∣

∣

∣

∣

√

x3+|Γ2|
α2x3+|Γ2| − 1

∣

∣

∣

∣

√

x3+|Γ2|
α2x3+|Γ2| + 1

















√

1+|Γ2|
α2+|Γ2| + 1

∣

∣

∣

∣

√

1+|Γ2|
α2+|Γ2| − 1

∣

∣

∣

∣

















α

×

×









α

√

x3+|Γ2|
α2x3+|Γ2| + 1

∣

∣

∣

∣

α

√

x3+|Γ2|
α2x3+|Γ2| − 1

∣

∣

∣

∣

















∣

∣

∣

∣

α

√

1+|Γ2|
α2+|Γ2| − 1

∣

∣

∣

∣

α

√

1+|Γ2|
α2+|Γ2| + 1









. (90)

Clearly, when x → ∞, we obtain

e3H∞(t−t0) ≈ 4α2x3

|Γ2|(α + 1)2









√

1+|Γ2|
α2+|Γ2| + 1

∣

∣

∣

∣

√

1+|Γ2|
α2+|Γ2| − 1

∣

∣

∣

∣









α







∣

∣

∣

∣

α

√

1+|Γ2|
α2+|Γ2| − 1

∣

∣

∣

∣

α

√

1+|Γ2|
α2+|Γ2| + 1









. (91)

In other words, we obtain the de Sitter asymptotic regime a(t) ∝ eH∞t.
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When 0 < Γ2 < 1, integration in (89) yields

exp







3H∞(t−t0)+2α



arctan

√

x3−Γ2

α2x3+Γ2
− arctan

√

1−Γ2

α2+Γ2











=

=





α
√

x3−Γ2
α2x3+Γ2

+1

1−α
√

x3−Γ2
α2x3+Γ2









1−α
√

1−Γ2
α2+Γ2

α
√

1−Γ2
α2+Γ2

+1



 . (92)

In the asymptotic limit, we obtain

exp

{

3H∞(t−t0)+2α

[

arctan

∣

∣

∣

∣

1

α

∣

∣

∣

∣

− arctan

√

1−Γ2

α2+Γ2

]}

≈
(

4α2x3

Γ2

)





1−α
√

1−Γ2
α2+Γ2

α
√

1−Γ2
α2+Γ2

+1



 , (93)

i.e., we obtain again the de Sitter regime of the Universe expansion a(t) ∝ eH∞t.

5. Second Exactly Integrable Model

5.1. Evolution of the Spinor Particle Number Density

Let us suppose that the axion field was found to be in an unstable state provided by

one of the maxima of the axion field potential (2). The value ϕ = π
2 +2πk can be an exact

solution to Equation (57) when the axion effective mass is equal to zero as MA = 0 (see

(58))—in particular, when mA = 0 and χ1 = 0. The last condition gives

β1 = 2β2 + 4ν∗β∗ , χ2 = −4β∗(ν2
∗ + 1) . (94)

If, in addition, we assume that m = 0, the Equation (55) converts into the system

Ẋ = 2χ2R Z , Ẏ = 0 , Ż = 2 χ2R X . (95)

We now see that Y(t) = Y(t0) = const, and thus, P(t) = P(t0)
(

a(t0)
a(t)

)3
. Again, we

introduce the new time function

τ̃(t) = 2χ2

∫ t

t0

dξR(ξ) , τ̃(t0) = 0 , (96)

and immediately solve the remaining equations

dX

dτ̃
= Z ,

dZ

dτ̃
= X , (97)

obtaining the solutions in terms of hyperbolic functions as

X(τ̃) = X(0) cosh τ̃ + X′(0) sinh τ̃ , Z(τ̃) = X(0) sinh τ̃ + X′(0) cosh τ̃ . (98)

Clearly, we have two consequences of (98):

X2(τ̃)− Z2(τ̃) = X2(0)− Z2(0) , K = Y2(t0)− X2(0) + Z2(0) . (99)

Since we are interested in studying the evolution of the spinor particle number density

N , we can say that

N (t) = S(t) =

(

a(t0)

a(t)

)3
{

S(t0) cosh τ̃(t) +

[

Ṡ(t0) + 3H(t0)S(t0)
]

χ2R(t0)
sinh τ̃(t)

}

. (100)



Symmetry 2025, 17, 663 17 of 22

The presence of the hyperbolic functions in (100) is the symptom of exponential growth

of the fermion number density, but now we have to precisely determine the behavior of the

argument τ̃, which is given by the integral of the Ricci scalar (96); thus, we have to solve

the gravity field Equation (59) and calculate the Ricci scalar R(t) based on this solution.

5.2. Gravity Field Evolution

The Hubble function can be found from the reduced Equation (59), which takes now

the form

xΓ̃1
d

dx
Ũ + Ũ

(

Γ̃2 − x3
)

+ Γ̃2 = 0 , (101)

where the following definitions are introduced:

Ũ =
H2

H2
∞

− 1 , Γ̃1 = −P(t0)(β2ν∗ + 2β∗) , Γ̃2 = P(t0)(22ν∗β2 + 16ν2
∗β∗ + 56β∗) . (102)

Equation (101) has a structure similar to (67); however, we have to emphasize two

differences. First, now m = 0, and thus, Γ̃3 (the analog of Γ3 in the previous submodel)

coincides with Γ̃2, and ρ = 0. Second, in the previous submodel, the value S(t0) = N (t0)

was assumed to be positive; now, there are no physical arguments to fix the sign of the

quantity P(t0). Again, we consider three cases: Γ̃1 > 0, Γ̃1 < 0, and Γ̃1 = 0.

5.2.1. The Case Γ̃1 > 0

The parameter Γ̃1 is positive when P(t0)(β2ν∗+2β∗) < 0. The solution to the

Equation (101) is of the form

U =

[

H2(1)

H2
∞

− 1

]

x
− Γ̃2

Γ̃1 e
(x3−1)

3Γ̃1 − Γ̃2

Γ̃1
x
− Γ̃2

Γ̃1 e
x3

3Γ̃1

∫ x

1
dξξ

Γ̃2
Γ̃1

−1
e
− ξ3

3Γ̃1 . (103)

As in the previous case, the rapidly increasing exponent e
(x3−1)

3|Γ̃1 | predetermines the

behavior of the Hubble function, and again, we can illustrate three possible cases of

Universe expansion if we assume that Γ̃2 = 0. Then, we see from the formula

H(x) = ±H∞

√

1+

[

H2(1)

H2
∞

− 1

]

e
(x3−1)

3Γ̃1 (104)

that, when H(1) > H∞, we deal with the Big Rip; when H(1) < H∞, the model describes

the Big Crunch. When H(1) = H∞, the Hubble function is constant, and the Universe

expands according to the de Sitter law.

REMARK: This concerns solutions with the constant Hubble function.

As we have fixed above, the models with the constant Hubble function H(t) = H∞

appear for some special sets of the guiding parameters (see, e.g., (104) for H(1) = H∞).

Such a case is convenient for the interpretation of the obtained solutions, since the Ricci

scalar is now also constant R(t) = −12H2
∞, and the dimensionless argument of the hyper-

bolic functions in (100) is

τ̃(t) = 96β∗(1 + ν2
∗)H2

∞(t − t0) . (105)

Clearly, we deal with an exponential growth of the spinor particle number according

to the law

N ∝ e3H∞(t−t0)[32β∗(1+ν2∗)H∞−1] , (106)
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if 32β∗(1+ν2∗) >
√

3
Λ

. Since the rate of growth depends on the parameter β∗, we can state

that such behavior is caused by the non-minimal coupling of the spinor field to the dual

curvature tensors.

5.2.2. The Case Γ̃1 < 0

Formally speaking, solutions to the Equation (101) have to be similar to the ones

associated with Equation (67). However, the coefficients, which enter the first mentioned

equation, essentially differ from the ones in the second equation so that the analysis

presented above should be modified. We do not intend to repeat the corresponding

analysis, and we consider the new exactly integrable model with parameters

Γ̃2 = 6Γ̃1 ,
H2(1)

H2
∞

= 1 + 18|Γ̃1|
(

|Γ̃1| −
1

3

)

. (107)

The Hubble function, given by the formula

H(x) = H∞

√

(

1 − 3 ˜|Γ1|x−3
)2

+ 9 ˜|Γ1|2x−6 , (108)

tends to H∞ at x → ∞. In the behavior of the one-parameter function h(x, |Γ̃1|) = H
H∞

,

there are three interesting details.

When 0 < |Γ̃1| < 1
6 , the function h starts with the value h(1) < 1 and tends to one

monotonically.

When 1
6 < |Γ̃1| < 1

3 , the function h starts with the value h(1) < 1, passes the minimum

hmin = 1√
2

at xmin =
(

6|Γ̃1|
)

1
3 , and then tends to one monotonically.

When |Γ̃1| > 1
3 , the function h starts with the value h(1) > 1, passes the minimum

hmin = 1√
2

at xmin =
(

6|Γ̃1|
)

1
3 , and tends to one monotonically.

In addition, one can see that, when |Γ̃1| = 1
6 , the minimum appears at the starting

point x = 1; when |Γ̃1| = 1
3 , the starting value of the Hubble function coincides with the

final one, H(1) = H∞.

The acceleration parameters is now described by the formula

−q(x) =
x6 + 3|Γ̃1|x3 − 36|Γ̃1|2
x6 − 6|Γ̃1|x3 + 18|Γ̃1|2

. (109)

The function −q(x) can change the sign at x = xT =
(

3
2 |Γ̃1|(

√
17 − 1)

) 1
3
> 1, if

|Γ̃1| >
√

17+1
24 . These are the conditions for Universe transition from the decelerated to

accelerated expansion regime.

The scale factor a(t) satisfies the equation

H∞(t − t0) =
∫

a(t)
a(t0)

1

dx

x
√

1 − 6|Γ̃1|x−3 + 18|Γ̃1|2x−6
(110)

and the integration yields

a(t)

a(t0)
=

{

3|Γ̃1|+(1−3|Γ̃1|) cosh [3H∞(t−t0)]+
√

(1−3|Γ̃1|)2+9|Γ̃1|2 sinh [3H∞(t−t0)]

} 1
3

, (111)

H(t)

H∞

=
(1 − 3|Γ̃1|) sinh [3H∞(t − t0)] +

√

(1 − 3|Γ̃1|)2 + 9|Γ̃1|2 cosh [3H∞(t − t0)]

3|Γ̃1|+ (1 − 3|Γ̃1|) cosh [3H∞(t − t0)] +
√

(1 − 3|Γ̃1|)2 + 9|Γ̃1|2 sinh [3H∞(t − t0)]
. (112)
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5.2.3. The Case Γ̃1 = 0

We can obtain the main results for this case from the formulas of the previous model

with Γ1 = 0 if we put Γ3 = Γ2, m = 0, or ρ = 0 and replace Γ2 with Γ̃2 < 1. In particular,

we obtain H(x) = H∞(1 − Γ̃2x−3)−
1
2 . Only Formulas (90) and (92) require reformulation,

since we have to assume that α → ∞. Now, we obtain from (89)

exp

{

3H∞(t − t0) + 2

(
√

1 − Γ̃2x−3 −
√

1 − Γ̃2

)}

=

(

√

1 − Γ̃2x−3 + 1
)∣

∣

∣

√

1 − Γ̃2 − 1
∣

∣

∣

∣

∣

∣

√

1 − Γ̃2x−3 − 1
∣

∣

∣

(

√

1 − Γ̃2 + 1
) . (113)

When x → ∞, we can replace
∣

∣

∣

√

1−Γ̃2x−3−1
∣

∣

∣ by 1
2 |Γ̃2|x−3, thus recovering the asymp-

totic de Sitter law a(t) ∝ eH∞t.

6. Discussion

We discuss the new version of the non-minimal Einstein–Dirac-axion theory of the

second order in derivatives and of the first order in the spinor particle number density

N = ψ̄ψ. What are the interesting details of this theory?

The non-minimal terms in the Lagrangian of this theory are formulated as tensorial

products of the Riemann tensor Rmnpq, of its left-dual, ∗Rmnpq, and right-dual, R∗
mnpq,

tensors, as well as of the Ricci tensor Rmn and Ricci scalar R on the one hand and of the

spinor–axionic tensors and pseudotensors on the other hand. All the derivatives in the

non-minimal terms originated from the curvature tensor and its convolutions; the spinor–

axion tensors and pseudotensors do not contain derivatives. In this sense, the set of the

non-minimal terms listed in (17) is complete: there are no new independent geometrical

objects up to the second order in derivatives in the context of the Effective Field Theory.

In order to construct the complete Lagrangian of the presented theory, we used the

so-called spinor–axion tensors and pseudotensors. One can explain this idea as follows.

The standard spinor tensors ψ̄γm · · · γjψ, being multiplied by cos ϕ, the even function

of the pseudoscalar field, remain true tensors. If we use the odd function sin ϕ as the

multiplier, we obtain the spinor–axion pseudotensor. Similarly, when we work with

the spinor pseudotensor ψ̄γm · · · γjγ5ψ, we can obtain a spinor–axion pseudotensor by

multiplying it by cos ϕ or a spinor–axion tensor if we replace cos ϕ with sin ϕ. That is why

we introduced two families of the one-parameter matrices A and B, given by (11), and

used them in the procedure of the Lagrangian construction.

Why do we restrict ourselves to the frameworks of the linear theory with respect to

the spinor particle number density N = ψ̄ψ? If we consider, e.g., the theory of the

second order, we should include into the Lagrangian a lot of terms, which have the

forms Rmnpq(ψ̄γmγnψ)(ψ̄γpγqψ), Rmnpq(ψ̄γmψ)(ψ̄γnγpγqψ), Rmn(ψ̄γmψ)(ψ̄γnψ), . . ., etc.

Clearly, such a model would become non-effective because of the large number of phe-

nomenological parameters. Let us recall that the constructed theory contains only four

non-minimal parameters: β1, β2, β∗, and ν∗.

We would like to attract attention to the fact that the extended equations of the

spinor field (18) have the structure of the canonic Dirac’s equation, but instead of the seed

mass m multiplied by the unit matrix E, we obtain an effective mass matrix M (see (19)

and (20)), which depends on the curvature tensor and on the axion field. Similarly, the

extended equation for the axion field (57) contains the effective axion mass MA (see (58)),

which depends on the scalars R and N instead of the seed mass mA. These effective

masses, associated with the spacetime curvature, predetermine the behavior of the spinor

particles (massive fermions and massless neutrinos) and the dynamics of the axions in the

early Universe.
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Application of the formulated non-minimal theory to the isotropic homogeneous

cosmological model revealed an interesting detail. If we introduce one spinor scalar

S = ψ̄ψ and two spinor pseudoscalars P = iψ̄γ5ψ and Ω = ψ̄γ0γ5ψ, the evolutionary

equations for these quantities form the closed system of differential equations of the first

order (51)–(53). Moreover, this system admits the explicit first integral (56), and thus, only

two quantities, S(t) and P(t), characterize the evolution of the gravitational field (see,

e.g., (59)) and enter the source term J (see (48)), which predetermines the evolution of the

axion field.

We analyzed in detail two exactly integrable submodels of evolution of the non-

minimally coupled spinor–axion system in the gravity field of the FLRW type. In the

first submodel, the pseudoscalar field was assumed to be frozen in one of the minima

of the potential of the axion field, ϕ = 2πk, i.e., the axions are considered to be in the

equilibrium state [47]. Analysis of the exact solutions describing the Hubble function

H(t), scale factor a(t), and acceleration parameter −q(t) shows that, depending on the

values of the non-minimal guiding parameters β1, β2, β∗, and ν∗, the Universe can be

characterized by the Big Rip, Big Crunch, and Pseudo Rip scenarios. It is important to

note that the equilibrium state of the axion system remains stable, even if the catastrophic

Big Rip scenario is realized. The spinor particle number density decreases in this case

monotonically as N (t) = N (t0)
(

a(t0)
a(t)

)3
.

If the pseudoscalar field is fixed in one of the maxima of the axion field potential,

i.e., ϕ = π
2 +2πk, the law of evolution of the gravity field is similar to the previous one;

however, the exact solution for the spinor scalar S (see (100)) is expressed in the hyperbolic

functions. This means that the spinor particle number density N grows exponentially,

i.e., the so-called spinorization of the early Universe takes place. One can see from the

formula (106) that it is possible when 32β∗(1 + ν2∗) >
√

3
Λ

. It is important to mention the

following detail of analysis: since the rate of growth is predetermined by the value of the

parameter β∗, one can state that such behavior is caused by the non-minimal coupling of

the spinor field to the left/right-dual curvature tensors.

Finally, when χ1 = χ2 = 0 and H = 0, the master equation for the axion field (57)

can be reduced to the sine-Gordon equation
d2ϕ

dζ2 + sin ϕ = 0 with ζ = mAt, which admits

the kink-type solution of the form ϕ(ζ) = 4 arctan eρζ with some parameter ρ. Kink and

anti-kink solutions to the classical sine-Gordon equation link basic states of the axion field

associated with extrema of the periodic axion field potential (2). It is not clear whether the

kink-type solutions to the extended Equation (57) exist in the general case, but this problem

is very interesting for further investigations.
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