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Abstract

Superconductivity in strongly correlated electrons can emerge out from a normal state that is
beyond the Landau’s Fermi liquid paradigm, often dubbed as ‘non-Fermi liquid’. While the theory
for non-Fermi liquid is still not yet conclusive, a recent study on the exactly-solvable
Hatsugai—Kohomoto (HK) model has suggested a non-Fermi liquid ground state whose Green’s
function resembles the Yang—Rice—Zhang ansatz for cuprates (2020 Phillips et al Nat. Phys. 16
1175). Similar to the effect of on-site Coulomb repulsion in the Hubbard model, the repulsive
interaction in the HK model divides the momentum space into three parts: empty, single-occupied
and double-occupied regions, that are separated from each other by two distinct Fermi surfaces. In
the presence of an additional Bardeen—Cooper—Schrieffer-type pairing interaction of a moderate
strength, we show that the system exhibits a ‘two-stage superconductivity’ feature as temperature
decreases: a first-order superconducting transition occurs at a temperature T, that is followed by a
sudden increase of the superconducting order parameter at a lower temperature T, < T. At the
first stage, T, < T < T, the pairing function arises and the entropy is released only in the vicinity
of the two Fermi surfaces; while at the second stage, T < T/, the pairing function becomes
significant and the entropy is further released in deep (single-occupied) region in the Fermi sea.
The phase transitions are analyzed within the Ginzburg—Landau theory. Our work sheds new light
on unconventional superconductivity in strongly correlated electrons.

1. Introduction

The pairing mechanism of unconventional superconductivity remains one of the central issues in
condensed matter physics. Conventional superconductivity has been well captured by the classic
Bardeen—Cooper—Schrieffer (BCS) theory [1], in which a second-order superconducting phase transition
occurs as a result of the Cooper pairing instability of the Fermi liquid normal state [2]. However, such a
Fermi liquid normal state is absent in many, if not most, unconventional superconductors. Instead, the
corresponding normal state is often referred as a ‘non-Fermi liquid’ (NFL) or ‘unconventional metal’ state
[3-5]. In contrast to Fermi liquids that can be adiabatically connected to a gas of non-interacting fermions
and be well depicted by interactions between quasi-particles [6, 7], a generic paradigm for NFLs has not yet
been established so far [8, 9]. However, some experimental criteria for NFLs are commonly accepted. For
instance, electric resistivity deviates from the p(T) oc T temperature dependence, and specific heat Cy(T)
is no longer linearly temperature-dependent [4, 10—12]. Moreover, a variety of realistic materials exhibit
NFL behaviors, which include but are not limited to cuprates [11, 12], iron-pnictides and chalcogenides
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[13, 14], and heavy-fermion compounds [10, 15]. The superconducting phase emerges from a NFL normal
state in these materials [10, 13, 16]. It is illuminating to understand their pairing mechanisms from
studying the pairing from a unconventional metal which beyond Landau’s Fermi liquid theory.

On the theoretical side, despite the lack of a consensus on the paradigm for NFLs [8, 17-20], the
mechanisms and their superconducting instabilities have been extensively explored in quantum critical
models from several different approaches in recent years, such as: coupling of the Fermi sea and the bosonic
fluctuations [21-24], and the system of fermions with strong random interactions [25-31], and the
phenomenological fermion propagators with anomalous retardations [32—-36], etc. Among them, several
exactly-solvable models are of particular interest that include the Hatsugai—-Kohomoto (HK) model
[37, 38]. The interacting part in this model can be viewed as a momentum-space counterpart to the on-site
Hubbard interaction, while the non-interacting part is the same as the Hubbard model. The HK model can
host a NFL state with non-Landau’s quasi-particle excitations [39, 40], such that it violates the Luttinger’s
theorem and gives rise to a Green’s function that resembles the Yang—Rice—Zhang (YRZ) ansatz for
cuprates [41, 42]. Indeed, the zeros of the YRZ-like Green’s function G(k,w = 0) enclose a Luttinger surface
instead of a usual Fermi surface [43—46], indicating the Mottness in the strong-coupling limit and an
unconventional metal or NFL in the region of weak or intermediate-coupling [39, 47]. The possible Cooper
pairing instability and associated dynamic spectral weight transfer were also investigated [39, 48, 49]. More
interestingly, it was demonstrated that Fermi arcs and a pseudo gap will show up in such an unconventional
metal, when the ‘on-site’ interaction becomes k-dependent and changes sign in momentum-space [50].
Very recently, taking account of additional BCS pairing terms, Zhao et al studied the thermodynamics of the
HK-BCS model in the strong pairing limit, and revealed a first-order superconducting transition instead of
the continuous phase transition in the BCS theory [51].

To get a qualitative picture on how the superconductivity forms in the HK-BCS model at finite
temperatures, in this work, we study it in the regimes of weak and intermediate pairing strengths, which is
complementary to the strong pairing limit studied in reference [51]. We calculate the binding energy of a
Cooper pair, and study the phase diagram. We find that the system undergoes a ‘two-stage’ process as
temperature decreases. As illustrated in figure 1, in addition to a first-order superconducting transition at
T, the superconducting order parameter A(T') has a jump to a larger value at a lower temperature
T/(< T.), accompanying with a sudden drop in entropy. The underlying physics is interpreted in
accordance with the pairing function and the entropy release in momentum space, and the nature of
discontinuity in the SC order parameter and entropy as a function of temperature is analyzed in the
Ginzburg—Landau theory.

2. HK model revisit

The HK model [37] describes strongly correlated electrons with momentum-space on-site interaction. The
Hamiltonian takes a form of

Hix =Y (e — 1)el 0o + U e (1)
k,o k

where CL” (cko) creates (annihilates) a fermion at momentum k with spin o =7, |, and ny, = cLﬂck,g
relates to its density distribution. ex = —2#(cos k, 4 cosk,) is the single-particle energy dispersion and (i is
the chemical potential, in which # is the hopping integral. Without loss of generality, we set t = 1 as the
energy unit hereafter. U > 0 represents an on-site repulsion in the momentum space. A strictly local
interaction allows us to factorize the huge Hilbert space into the direct product of the k-subspace that is
spanned by the basis {]0), CLT|0>, CL 110), CLTCL 110)}, making this model exactly solvable.

Ground states of the HK model can be obtained from the fermion occupation in the momentum space,
as illustrated in figure 2(a). In the presence of a positive U, the momentum space will be divided into three
regions in a ground state: empty region (£), single-occupied region (£2;), and double-occupied region
(€2,). This gives rise to two distinct Fermi surfaces [52] and two corresponding Fermi levels at 4 and 4 — U
respectively. Here the chemical potential 1 is determined by the filling number # using the relation
n= Viozk)gnk,g = Viozk[G(—ek + 1) + O(—ex + o — U)], where O is the Heaviside function and Vj is
the volume of the Brillouin zone. The two Fermi levels can be viewed from the distribution function
n(w, T) = (nke(ex = w, T)) as well [53], where two sudden jumps occur at o and i — U, as shown in
figure 2(b). When U = 0, the region 2, vanishes and the two Fermi surfaces merged into a single one as in
the free-fermion model. Note that the single-occupied region €2; always exists as long as U > 0, while the
double-occupied region €2, may vanish if a filling number is chosen such that x — U exceeds the bottom of
the energy band.
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Figure 1. Schematic phase diagram for the HK-BCS model. The temperature dependence of the superconducting order
parameter A(T). (1) At T > T, A = 0, the normal state is an unconventional metal NFL, on which the momentum space is
divided into three regions: empty (£2), single-occupied (£2;) and double-occupied region (£2,). These regions are separated by
two Fermi surfaces (brown dash lines). (2) As temperature decreases, a first-order superconducting transition occurs at 7' = T..
For T! < T < T, the superconductivity comes from the electron pairing in the vicinity of the two Fermi surfaces and leads to the
superconducting phase in regime 1 (SC1). (3) At a lower temperature T/ (T, < T.), a second jump of A(T) takes place, resulting
in the superconducting phase in regime 2 (SC2), where Cooper pairs come into being inside the singly-occupied region (£2;) and
play a significant role.
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Figure 2. The HK model: (a) schematic band structure and fermion occupation in the HK model. Here €2y, §2; and §2, represent
empty, single-occupied and double-occupied regions, respectively, as sketched in figure 1. These regions are separated by two
Fermi levels at y2 and yo — U respectively. (b) The electron distribution as a function of energy at filling n = 0.4, where (i is the
chemical potential for U = 0. (c) The spectral function A(k,w) and (d) the two Fermi surfaces for U = 4 and n = 0.4.

The retarded Green’s function for this exactly solvable model reads,

1 — (nis) (Mez)
w— & it w—& —U+i0t’

Go(k,w) = (2)

where £, = ex — p and & is the opposite spin index to 0. Note that <ny 7 > = <y, > due to the
spin-rotation invariance, G, (k,w) does not depend on o, and can be abbreviated as G(k, w). The electron
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Figure 3. The bound-state energy E for a Cooper pair in the HK model. Here the electron filling number is fixed as n = 0.4.
Solid lines represent numerical solutions to equation (3). Black (dashed) lines show the asymptotic solution given in

equation (4), where pi(#n, U) is determined self-consistently. Dotted lines indicate the U = 0 BCS limit. (a) E as a function of the
pairing strength V, and U = 4 is fixed. Inset: —E¢ in a logarithmic plot. (b) E¢ as a function of U. Inset: —Ec vs Uina
logarithmic plot.

spectral function for total spin A(k,w) = —% Im G(k,w) has been found at zero temperature and plotted in
figure 2(c). It displays two ‘truncated’ bands separated by U, which originate from a double-occupied to
single-occupied excitation and a single-occupied to empty excitation, respectively.

3. Residual entropy

It is worth noting that the positive U imposes the single occupancy constraint at each k-point in the
single-occupied region (£2;) that gives rise to a huge ground state degeneracy and a finite entropy density at
zero temperature, which is proportional to the volume of €2,. This violates the third law of
thermodynamics, and resembles the residual entropy in classical spin liquids on geometrically frustrated
lattices [54]. As will be discussed later, an extra pairing interaction will lift the huge ground state degeneracy
and release the entropy, resulting in a two-stage superconductivity.

4. Cooper pair problem

As investigated in reference [39], an infinitesimal pairing interaction will cause superconducting pairing
instability in the HK model. The bound-state energy Ec for the formation of a Cooper pair on top of the
Fermi sea has been estimated, where the spin polarization in the single-occupied region was assumed [39].
However, there is a huge spin degeneracy in the 2, region, and spin polarization configuration is not
favorable for the Cooper pairing. Here we revisit the Cooper pair problem without assuming the spin
polarization in the €2, region [53]. Consider a generic situation when both Fermi levels locate within the
bandwidth W = 8¢, thereby —W/2 < u < W/2 and U < W, we find that the bound-state energy Ec can be
determined as follows [53,55],

Vo W =2 = Eo)’(U — Eo)

1

1= .
4w E}

(3)

In the limit of U — 0, it yields Ec =~ —(W — 2,u)e’¥ , which restores the BCS solution[1,55]. In the
presence of a weak or intermediate pairing interaction V and a relative large U, namely, when V < W and
|Ec| < U < W, we find an asymptotic solution to equation (3),

4w
3V
b

Ec~—(W —=2u)**U" e (4)
which deviates from the BCS solution apparently. For a fixed electron filling number 71, numerical solutions
to equation (3) can be found self-consistently. As plotted in figure 3, the binding energy |Ec| = —Ec
increases as U and/or V increases, suggesting the enhancement of Cooper instability by the repulsive U. We
should note that, our results are different from reference [39], in which the single-occupied region plays no
role to the bind-energy, and the pairing instability is underestimated since the instability of the Fermi
surface on 1 — U is neglected.
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Figure4. (a) Superconducting gap as a function of temperature, where we have set n(T = 0) = 0.4 and V = 1. Dotted lines
indicate first-order transitions. For U = 4, the free energy as a function of A is plotted around (b) T= T. and (¢) T = T/,
respectively. Ay = A(T = 0) and Fy is the normal state free energy that is obtained by imposing A = 0.

5. HK-BCS model

For further studying the superconductivity in the HK model, we introduce a BCS pairing interaction in the
mean-field level that gives rise to the HK-BCS model as follows,

2
H=Hu+ Y (Aducy +he) + %, (5)
k

where A is the superconducting pairing gap and V > 0 refers to an attractive pairing strength. This
mean-field Hamiltonian can be exactly diagonalized at each k point, and similar to reference [51], the
superconducting order parameter A = =V, (c_k ck) can be found through searching the global
minimum of the free energy,

F[Al=-TlnZ=-T Z In Zy, (6)

kelBZ

with the help of % = 0. Where Zy, = >, e "Enk, in which {|n,k)} and {E,x} are the eigenstates and
eigenspectra obtained from diagonalizing H within the tensor-product space Vx ® V_y, where Vj is the
subspace spanned by the basis {|0), CLT|O>, CL 110), CLTCL 110)}. In this treatment, the HK interaction
remains intact and plays a crucial role in the unconventional superconductivity.

6. Two-stage transitions

With fixed electron filling n at T = 0 in the normal limit, and we neglect the temperature evolution of 1 for
simplicity, the superconducting gap A(T') can be found out through the minimization of the free energy for
given U and V. As observed in reference [51], there occurs a first-order superconducting phase transition as
long as U > 0, in contrast to a continuous phase transition in the U = 0 BCS limit. Namely, as temperature
is lowering, A(T) jumps from zero to a finite value at T, abruptly.

Surprisingly, in addition to the first-order transition at T¢, we find that there exists an extra A(T) jump
at a lower temperature T'(< T.) when U is sufficiently large in comparison with V. As demonstrated in
figure 4(a), for n(T = 0) = 0.4 and V =1, when 0 < U < U, ~ 2.7, there is only one first-order transition
at Tc; while when U > U,, there emerges a sudden jump at T.(< T¢).
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7. Free energy

These first-order phase transitions can be understood from tracking the temperature evolution of the
minimum of the free energy as a function of A. We compute the free energy difference between the
superconducting state and the normal state, Fs — Fy, and plot it in figure 4(b) as a function of A/A,,
where Ay = A(T = 0). Here Fy is the normal state free energy calculated at A = 0.

As shown in figures 4(b) and (c): (1) when T > T, the minimum of the free energy locates at A = 0;
(2) when T goes across T¢, the free energy minimum switches from A = 0 to a finite value A = A,
suggesting a first-order superconducting phase transition at T, (see figure 4(a)); (3) as temperature is
lowering, in the region of T, < T < T, there develops an extra local minimum at a larger value,
A = Al (> Apin), while the global minimum (i.e., the one associated with the lowest free energy) evolves
from the one (A = A,;,) arising at T continuously; (4) when T decreases further and goes across
T. < T, the global free energy minimum switches from the smaller one A = A, to the larger one
A = Al (see figure 4(c)), and then the global minimum A/ ; approaches to A = Agas T — 0.

8. Phase transitions

Near T, Zhao et al [51] has explained the first-order nature of the SC transition via the analysis of the
Ginzburg—Landau (GL) approach up to sixth-order terms of the free energy. While, in here, it is remarkable
that such the two-minimum feature in free energy around T requires eighth-order terms in the GL free
energy functional, which takes the form of

SFIA] = aA? + §A4 + %M + AT+ o(AY), (7)
where a, 3, 7 and 7 are the expansion coefficients and depend on temperature T, and > 0, or = 0 and
~ > 0, ensures the stability of the system. To study phase transitions for the HK-BCS model, we consider

critical regions: T~ T. and T ~ T'.

(a) T = T.: it turns out that the occurrence of a first-order transition at T = T, impose constraints for
expansion coefficients at this critical point as follows [53],

a >0, (8a)
n=0, (8b)
-2 4(p* -2
9an =28y _4(F —2a7) _ (80
4y*—=968n  9am — 2By
And the superconducting gap at T reads
-2 12(B% — 2
AT=T,) = 3(9an —267) _ (B2 — 2a7) 9)
49> —9pn 9an — 2Py

In the limit of = 0, it becomes

_ _ 12
A(T:TC):\/ ;Yﬂ _ \/6(20?37 ) (10)

which restores the result in reference [51].

(b) T = T!:in the presence of the first-order-like jump at T = T/, the sign of expansion coefficients can be
determined in the critical region as follows [53],

a <0, g >0, ~v<0 and 7 >0. (11)

The critical condition at T = T, is given by

(B
= (5-35) "

and the temperature regions T > (<)TY are separated from each other in accordance with the
inequality as follows,

2
a < (>)w/<é — 7—2>, for T > (<)T.. (13)
n  3n
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Figure 5. The evolution of the relative superconducting gap A(T)/A,, the relative entropy S(T)/S(T.), free energy difference

Fs — Fy, the first-order derivative —dFs/dT and the second-order derivative —d?*Fs/dT” as a function of T/T, at two fillings (a)
n(T = 0) = 0.4 and (b) n(T = 0) = 0.2. Here we have set U = 4. Insets in (a) and (b) show corresponding Fermi surfaces. For
the n(T = 0) = 0.2 case, the lower Fermi level ;1 — U exceeds the bottom of the band, such that the double-occupied region €2,
vanishes and there is only one Fermi surface.

The superconducting order parameters at T read

Apin =A(T=T7") = \

AL=EANT=T)=

(14a)

(14b)

To study the temperature dependence A(T) around T, we introduce the dimensionless parameter
t = (T — Té)/Té, and find for small ¢/,

where by > 0 are two positive parameters that can be determined from experimental data or

microscopic theory [53].

We would like to remark that the first-order-like jump at T = T will be rounded and become a

AT) = AT (1—bet') at T 2T,

crossover when A, = Al . which leads to an extra condition for the crossover,

in addition to equation

9. Entropy release

(12).

73 = 6anp,

(15)

(16)

As mentioned earlier in this paper, the HK model has a huge residual entropy at zero temperature, which is
proportional to the volume of £2;. This residual entropy will be released by the superconducting pairing. We
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Figure 6. The momentum distribution of (a) the Cooper pairing function by, = (c_y|ckt) and (b) the entropy
Sk = — % > uPni I pyc in the Brillouin zone. For clear visualization, the tilted-view of (a) and (b) are shown in bottom left

corner of each figure. Along (0,0) — (m, ), by and s are plotted in (c) and (d) respectively. Here U = 4, n(T = 0) = 0.4 and
V = 1 have been chosen.

find that major entropy release will take place below T7, as long as there exist two-stage process; while there
is a minor entropy release at T.. On the contrary, when there is only one first-order transition, or the
two-stage process merge to a single one, there will be a significant entropy release at T.. Typical examples
for entropy release have been demonstrated in figure 5.

10. Discussions

(a) On the sudden changes at T.: though the first order derivative of the free energy OF/OT are
discontinuous at T/, we did not mark it as a real phase transition since there is only one order
parameter in here. This first-order-like changes can be understood by using the Ginzburg—Landau
theory as well, which can be circumvented around some critical point in the phase diagram, resembling
the liquid—gas phase transition [56]. The end of such a first-order-like change in the parameter space is
indicated by the dimension reduction of the critical hyper-surface, i.e., the extra constraint in
equation (16) reduce the dimensionality of the critical hyper-surface (given by equation (12)) by one.

(b) The existence of the two-stage process can be attributed to a sufficiently large U. Note that U is the
energy separation between the two Fermi levels, 1z and i — U, i.e., the energy width of the
single-occupied region €2;. When U is not sufficiently large, the pairing interaction V will pair up all
the k points in the small 2, at T = T_ . Otherwise, at the first stage, say, 7. < T < T, V will pair up
the states in the vicinity of Fermi surfaces only, while leave those deep inside €2; unpaired.
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(c) Microscopically, the two-stage superconductivity can be visualized by the momentum distribution of
the Cooper pairing function by = (c_icit) and the entropy sx = —3>" puk In p, i in the Brillouin
zone, where p,y = e Fnk/T /Zx and the factor % come from the folding of the Brillouin zone. As
demonstrated in figures 6(a) and (b): (1) when T > T, the pairing function bx = 0, i.e., Cooper pairs
are absent, and the entropy is dominated by the single-occupied region €; (2) when T, < T < T,
Cooper pairs come into being in the vicinity of the two Fermi surfaces, associated with a weak and in
situ entropy release, while the entropy inside {2; region remains to be In 2 (see figure 6(d)); (3) when
temperature is below T7, the distribution of Cooper pairs starts to extend to the whole Brillouin zone,
in particular, single-occupied €2; region and double occupied €2, region, and the residual entropy in €2,
region are released entirely (see figures 6(c) and (d)).

11. Summary

We have studied the HK-BCS model and revealed that, in addition to a first-order superconducting
transition occurs at T¢, there allows an extra first-order-like changes at a lower temperature T!. < T¢, as long
as the momentum space on-site repulsion U dominates over the superconducting pairing strength V. This
type of two-stage process have been formulated within a Ginzburg—Landau theory consisting of
eighth-order terms. The underlying physics for the formation of two-stage superconductivity has been
discussed. Our results provide basic qualitative understanding of pairing in NFL systems, such as, lightly
doped cuprates, heavy fermions etc. These results are also useful in understanding superconductivity in the
material-specific large-scale computational methods for strongly correlated materials.
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