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We report on the design, performance and commissioning of a cryogenic distilla-
tion column for low radioactivity underground argon purification that has been 
constructed at Fermi National Accelerator Laboratory. The plant accepts a mix-
ture of argon, helium, and nitrogen with low argon concentration and is designed 
to return pure argon with a nitrogen contamination less than 10 ppm. During the 
commissioning, the distillation column in a continuous mode produced argon 
99.9% pure. After running in batch mode, the argon purity was increased to 
99.95%, with 500 ppm of nitrogen remaining. The argon production rate was 
about 1 kg/day. 

 
 
 
INTRODUCTION 
 
Argon is an attractive medium for direct searches for WIMP dark matter. Atmospheric argon, however, 
contains 1 part in 1015 of the radioactive isotope 39Ar, formed by the interaction of cosmic rays on 40Ar.  
The decay of this 39Ar can limit the sensitivity of these dark matter searches, particularly at the ton-scale.  

We have identified an underground source of CO2 in Cortez, CO, containing traces (~ 500 ppm) of 
argon almost free of 39Ar. This gas needs to be purified to remove all non-argon contaminants. The first 
purification step is performed locally by means of a Vacuum Pressure Swing Adsorption System (VPSA), 
and produces a crude argon stream, containing 3-5% of argon with a balance of helium and nitrogen [1]. 
The underground argon from this plant has an 39Ar concentration less than 0.65% of the 39Ar in atmospher-
ic argon [2]. 

The argon-nitrogen-helium mixture is then shipped to Fermilab where we have built a cryogenic 
distillation column to remove helium and nitrogen and produce argon with residual contaminations at or 
below 10 ppm. The key element is the vertical separation column filled with packing material and along 
which a controlled temperature gradient is established. This presentation will detail the requirements, 
design, construction, and performance of the cryogenic distillation column that has been constructed for 
the purification of the gas extracted from the CO2 wells in Cortez, CO. 

 The first use of this underground argon is in the DarkSide-50 experiment, scheduled to start opera-
tion in December 2012, which will use 150 kg. Eventually, it is expected that the column will process 
many tons of low-radioactivity argon, allowing the development of ton-sized detectors, among which are 
DarkSide Generation II and DEAP 3600, which will contain about 5,000 kg and 3,600 kg of Argon 
respectively. The column could also be used to purify other targets used in these experiments (Xenon in 
particular). 
 
 
CRYOGENIC FRACTIONAL DISTILLATION 
 
A cryogenic distillation column performs a separation between the components of a mixture by exploiting 
the different boiling points and relative volatility of the components. The more volatile component will 
rise to the top of the column, while the less volatile one will be collected as liquid at the bottom. The goal 
for this plant is to concentrate argon in the liquid phase at the bottom, and waste nitrogen and helium in 
the gas phase at the top. More specifically, we will produce argon with very low nitrogen concentration 
from the bottom. 

We based the basic design of the distillation system on the McCabe-Thiele (M-T) method, one of the 
standard methods for the design and analysis of a distillation system [3, 4]. 

The main element in the distillation system is the column in which the gas-liquid equilibrium is 
maintained. The reboiler, at the bottom of the column, collects the liquid flowing down and boils part of 
the liquid using a heater. The condenser, at the top of the column, plays a critical role in order to maintain 
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a constant temperature profile along the column. The input gas is cooled down to a temperature just above 
the argon boiling point, and then supplied to the feed point in the column. The argon processed through 
the column, with a lower nitrogen and helium concentration than in the feed, is obtained from the reboiler. 
The waste stream, argon with a higher nitrogen and helium concentration, is collected from the top. 

In the M-T method the distillation tower is assumed to be a connected series of theoretical stages, 
with the gas-liquid equilibrium changing by one step in each stage. The number of theoretical stages and 
the optimal position of the feed point are calculated for given boundary conditions of feed, waste and 
product flow rates, more volatile component concentration in the feed, waste and product, and reflux ratio.  

Process simulations have also been performed in collaboration with Linde using UniSim simulation 
software, an engineering suite widely used by oil and gas separation processes companies. Several feed 
compositions have been analyzed with the argon concentration ranging from 10% to 90% with a nitrogen 
balance. 5% argon with a balance of helium (55%) and nitrogen (40%) has also been simulated. The 
results of the simulations are consistent with what already found with the M-T method and they also show 
the capability of the plant to run with a low argon content feed and to be able to produce argon at the 
desired purity and with a high recovery, above 95%. 

 
 

THE EXPERIMENTAL APPARATUS 
 
Figure 1 (left) shows the schematic of the cryogenic 
distillation column. The packing inside the column is a key 
element of the distillation system. We used the EX 
Laboratory Packing from Sulzer Chemtech (see Figure 1, 
right) with a diameter of 0.022 m. The liquid load of this 
packing is between 0.48 m3/(m2h) and 4.84 m3/(m2h). The 
HETP (Height Equivalent to Theoretical Plate) for this 
packing is typically 0.053 m for liquids (the specific value 
for argon was not immediately available from the 
company). The HETP depends strongly on the liquid load 
and on the type of liquid, so we conservatively increased 
this value by a factor two, therefore the total overall 
packing length is about 3.18 m, equivalent to 60 stages. 
We assembled the column with this configuration; in 
practice we could only fit 58 stages. The optimal position 
of the feed was estimated to be the 5th stage from the top, 
0.53 m from the top with the M-T method, and the middle 
of the packing with the simulations. We thought that the 
simulations were more accurate and we selected the 
middle of the packing as feed position. 

The gas mixture is pre-cooled down through an heat 
exchanger, model GBM220H-60(3p) from GEA-PHE 
using the cold nitrogen and helium gases vented through 
the condenser. The cold gas mixture then enters the 
condensing volume where argon and nitrogen condense 
and eventually feeds the column. The condensing volume is a custom made cylinder, 0.18 m in diameter 
and 0.11 m high for a volume of 2.75E-3 m3. 
 The cooling power needed to cool down and condense the feed is provided through a temperature-
controlled cryocooler, model AL-600 from Cryomech, mounted on the top flange of the condensing 
volume. This cryocooler provides 600W of cooling power at 77K and it is coupled with a 600W heater 
and temperature sensors to maintain the set temperature. 

Once the feed enters the column, the argon-nitrogen-helium mixture is purified by cryogenic distilla-
tion. The more volatile components, nitrogen and helium rise to the top of the column and are vented 
through the condenser, whereas the less volatile component, argon, flows down at the bottom of the 
column and is collected in the liquid phase in the reboiler. A 600W electric heater inside the reboiler will 
force the necessary boiling rate of the condensed argon to provide the desired reflux rate in the column. 
The reflux condenses in the condenser, and then flows down to the reboiler through the column. The 
purified argon is collected inside the reboiler, which is a custom made cylinder, 0.25 m in diameter and 
0.38 m high for a volume of 18.00E-3 m3. An electric heater on the output line is used to gasify the 
product out of the reboiler for storage. 

The cooling power needed to cool down the gas, the column, the piping, and to keep the desired 
temperature profile inside the system is provided through a temperature-controlled cryocooler, model AL-
600 from Cryomech, mounted on the top flange of the condenser. This cryocooler provides 600W of 
cooling power at 77K and it is coupled with a 600W heater and temperature sensors to maintain the set 

 
 

Figure 1  Cryogenic Distillation Column Schematic 
(left) and one element of packing (right) 

 



  
temperature. The condenser is a custom made cylinder, 0.18 m in diameter and 0.11 m high for a volume 
of 2.75E-3 m3. Nitrogen and helium are vented through the condenser. 

 
The cryogenic distillation column, the reboiler, the condenser, and the cold piping are insulated by a 

vacuum jacket and insulated with twenty layers of super insulation, to reduce the heat loss for conduction 
and radiation.  

Sampling lines are connected to a multi port Universal Gas Analyzer (UGA) from SRS to measure 
argon, nitrogen and helium contents of the inlet, outlet, and vent. The system is equipped with an 
instrumented gas panel that handles the flow of the gas through the various parts of the system. It includes 
a by-pass to further purify the product by sending it back in the column. A specific set of temperature 
probes and heaters monitor and control the temperature inside the whole system. 

The system is equipped with a dedicated control 
system, fully automated and LabVIEW controlled (see 
Figure 2). The inlet composition may vary; the whole 
system has been designed to allow maximum 
flexibility during the operations. 

The cryogenic distillation column is designed to 
purify the low radioactivity argon for the DarkSide-50 
experiment. The cleanliness of the system and 
avoiding air contamination are extremely important. 

All the piping is electropolished. Reboiler, con-
denser and condensing volume have been elec-
tropolished after fabrication. To minimize potential 
leaks, the connections are preferably welded. When 
welding was not possible, VCR connections have been 
used. The system has been helium leak checked at the 
level of 1.00E-8 mBar*l/sec to guarantee the leak 
tightness and an air-free system. 
 
 
OPERATIONS 
 
We commissioned the cryogenic distillation plant 
with a known mixture of gas that is approximately 
the same as the output of the VPSA plant in 
Colorado (feed column in Table 1). This mixture was 
also used to calibrate the UGA: the ultimate 
sensitivity to nitrogen in argon is found to be ~500 
ppm. 

The cryogenic distillation column is designed 
to operate in a continuous distillation mode, where 
the gas to be separated is fed into the column continuously, while pure argon is collected in the reboiler, 
and nitrogen and helium are exhausted through the waste. However, if the conditions required for 
continuous flow operations do not result in adequate purity of the argon collected in the reboiler, the 
distillation column can be operated in a batch 
purification mode. In this mode, the input is turned 
off, and the liquid in the reboiler is further distilled 
with a retuned column temperature profile.  

The distillation column was initially operated 
in the continuous flow mode. The temperatures of 
the distillation column were tuned to maximize the 
amount of argon collected, by minimizing the argon 
in the waste. At the same time, we wish to minimize 
the amount of nitrogen contamination in the reboiler. 

Figure 3 shows the nitrogen-to-argon ratio of 
the product gas coming from the reboiler. The 
nitrogen concentration decreased continuously until 
the input feed gas supply was consumed. The final 
nitrogen concentration achieved in the continuous 
flow mode before the gas was consumed was ~1,000 
ppm, giving 99.9% pure argon (Table 1). This value 
was confirmed by 2 independent measurements of a 
sample of the gas: Atlantic Analytical Laboratory 

 

 
 

Figure 2  LabVIEW Control system GUI 

 
 

Figure 3  Nitrogen/Argon ratio as a function of time 
during continuous distillation 

Table 1  Gas composition in the feed and in the product 
during continuous and batch modes 

 
Compo-

nent 
Feed Product  

Contin. 
Product 
Batch 

Argon 5% 99.9% 99.95% 
Nitrogen 40% 1,000ppm 500ppm 
Helium 55% 0 0 

 



  
reported that the sample contained 700 ppm of nitrogen, and colleagues at Pacific Northwest National 
Laboratory measured the nitrogen content to be 920 ppm. The data from the UGA show that the nitrogen 
concentration was decreasing throughout the continuous distillation phase, and we are confident that 
continuous distillation can produce argon with a nitrogen contamination well below 1,000 ppm. Tests 
performed with different feed composition from those given in Table 1 showed that the operating 
parameters for the distillation column must be tuned for different input gas compositions in continuous 
mode.  

We also tested the batch distillation technique. In this mode, the input stream is turned off, and the 
temperature gradient along the column was retuned to allow the excess nitrogen to escape the reboiler, 
while preserving the argon. The measured nitrogen concentration decreased until the nitrogen sensitivity 
limit of the UGA was reached. As mentioned, the lower limit of the UGA’s sensitivity to measure the 
nitrogen concentration is ~500 ppm, which is equivalent to 99.95% pure argon (Table 1). 

Figure 4 clearly shows the measured nitrogen concentration decreasing and plateauing at the nitro-
gen sensitivity limit of the UGA.  

In addition to achieving high purity, it is important that a minimum of the argon in the feed gas be 
wasted. It is possible to estimate the amount of argon collected by two independent methods: from the 
liquid level recorded in the reboiler and from the 
integral of the mass flow meter. During the commis-
sioning, the integrated efficiency for capturing the 
argon from the input gas mixture was between 72% 
and 83%. The discrepancy may be attributed to 
inaccurate calibrations of either the liquid level 
monitor or the mass flow controller. A small fraction 
of the product is consumed in the UGA for measuring 
the composition of the gas.  We believe that in 
production mode we can increase the efficiency of 
argon collection to above 95%, due to the precise set 
of parameters that have been identified throughout the 
commissioning. We are also planning to couple the 
current UGA with a more sensitive unit. The measured 
production rate of argon with the current feed 
composition in continuous distillation mode is ~1 
kg/day. If the feed gas contains more argon, or if the 
helium concentration is lower, the production rate of 
argon can be as high as 5 kg/day. 
 
 
CONCLUSIONS 
 
In the first commissioning of the cryogenic distillation column at Fermilab, we have shown that this plant 
can effectively reduce the nitrogen content by more than 3 orders of magnitude and helium by more than 5 
orders of magnitude. The argon produced by the distillation column contains less than 500 ppm of 
nitrogen, and the helium has effectively been eliminated. This argon purification was performed at a rate 
of about 1 kg/day with 76±5% collection efficiency. With the commissioning phase complete, we have 
now started to operate the distillation system to produce high-purity, low-radioactivity underground argon, 
which will be used for the DarkSide-50 experiment, scheduled to start operation in December 2012. We 
have purified 25 kg of argon to date. 
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Figure 4  Nitrogen/Argon ratio as a function of time 
during batch distillation 


