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Featured Application: This work provides a systematic way to produce a defect-free atom array of

neutral atom platforms for quantum information processing.

Abstract: This paper aims to present an approach to address the atom rearrangement problem by

developing Convolutional Neural Network (CNN) models. These models predict the coordinates

for atom movements while ensuring collision-free transitions and filling all vacancies in the target

array. The process begins with designing a cost function for the assignment problem that incorporates

constraints to prevent collisions and guarantee vacancy filling. We then build and train CNN models

using datasets for three different grid sizes: 10 × 10, 13 × 13, and 21 × 21. Our models achieve high

accuracy in predicting atom positions, with individual position accuracies of 99.63%, 98.93%, and

97.24%, respectively, for the aforementioned grid sizes. Despite limitations in training larger models

due to hardware constraints, our approach demonstrates significant improvements in speed and

accuracy. The final section of the paper presents detailed accuracy results and calculation times for

each model, highlighting the potential of CNN-based methods in optimizing atom rearrangement

processes.

Keywords: atom arrangement; convolutional neural network; collision-free path; defect-free arrangement

1. Introduction

Over the past decade, substantial progress has been made in the neutral atom platform,
which is one of the platforms used to construct a quantum system whose applications exist
in many quantum branches, for instance, quantum information processing in Nielsen [1],
quantum metrology in Giovannetti [2], and quantum simulation in Georgescu [3]. Arrays
of cold neutral atoms are necessary to gain control of single qubits. After trapping atoms,
rearrangement of neutral atoms is therefore crucial, and there have been several recent
impressive results.

Most research on the problems of rearranging atoms from any initial array to any
target array can be categorized into physical methods and mathematical algorithms. One
frequently used physical technique for atom rearrangement is the optical tweezer. In the
most recent work of 2024, by Pichard et al. [4], after the trapping of single atoms up to a
2000 site, atom-by-atom rearrangement is demonstrated with very few defects up to an
828-atom target array using this optical tweezer technique. While the task of trapping single
atoms is crucial [5–7], creating defect-free atomic arrays is just as important as they have
been demonstrated to be a platform for quantum simulations and quantum computations.
There are methods in physics that focus on physically moving the atoms to defect-free
target arrays [8] and more theoretical methods that try to find the best way to move the
atoms under some specified conditions. The development of theoretical solutions will
benefit those who try to physically move the atoms to the target arrays.

Appl. Sci. 2024, 14, 7877. https://doi.org/10.3390/app14177877 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14177877
https://doi.org/10.3390/app14177877
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6474-096X
https://orcid.org/0000-0003-0312-9232
https://orcid.org/0000-0002-3556-8857
https://doi.org/10.3390/app14177877
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14177877?type=check_update&version=1


Appl. Sci. 2024, 14, 7877 2 of 11

The following are instances of work using mathematical algorithms to choose the
path of atom. In 2016, Lee et al. [9] proposed and demonstrated 3D rearrangements of
single atoms. They considered 3D atom arrays as layers of 2D images and then presented a
method for moving atoms in 2D into the right positions. The same year, Barredo et al. [10]
relocated atoms to user-defined target arrays using a developed shortest-move heuristic.
From the heuristic, the number of moves obtained is approximately N

2 , where N is the
number of atoms in the initial array. However, this heuristic does not necessarily minimize
the total distance of atoms’ movement. Moreover, to prevent collision of atoms, their
method of atom moving depends on nearest-neighbor distance in the target array. Later
that year, Endres et al. [11] showed moving atoms in 1D, which is a defect-free condition.
Using this method, atoms can be moved simultaneously in one single movement and
clusters of atoms can be generated in any form.

While atoms are being moved, some of them are lost from the target array. These
empty traps are then filled using the reservoir atoms. In 2017, Lee et al. [12] constructed
an optimization problem from an atom rearrangement problem. The Hungarian matching
algorithm is used to plan collision-free paths through vacancy filling. They were concerned
about the collision of atoms in multiple ways. In the end, they concluded that, if the
cost function is appropriately defined, then all atom collisions can be avoided. In 2019,
de Mello et al. [13] rearranged atoms by applying a shortest-move heuristic. In order to
reduce the number of moves, the heuristic attempts to choose the paths with the fewest
obstructing atoms to fill all vacancies in a pre-defined target array. The heuristic does
not necessarily minimize the total distance of moving atoms but instead focuses on time
efficiency. Later in the year of 2019, Brown et al. [14] presented 3D atom relocation. First,
they choose atoms that they want to move to the target array and then rearrange these
atoms in a single movement by switching rows and columns in 2D. This work does not
focus on either the number of moves or the total distance of moving atoms.

The central point of this work is the rearrangement of neutral atoms using mathemati-
cal algorithms under the following conditions. First, all vacancies in the target arrays must
be filled, and, second, the moves must avoid collision of atoms. It is known that atoms in
optical traps have a finite trapping time and can also be lost during transportation with a
certain probability given as a function of time and distance. The time is the total computa-
tion time of the algorithm and atom transportation time. In the case of a half-filled array,
transportation time does not depend much on the initial arrays but changes significantly
on choice of algorithm. Thus, the efficiency of atom rearrangement relies mostly on the
chosen algorithm.

Rearranging atoms (pairing atoms from the trapping sites to the target sites) can be
seen as a combinatorial optimization problem, to be more specific, an assignment problem
with a carefully designed cost function. However, only a few tailored algorithms have been
developed for choosing atoms and their corresponding target sites. Only the Hungarian
matching algorithm, a well-known linear programming technique to solve an assignment
problem, is frequently mentioned in the literature on rearranging atom formation. When
compared to other developed methods for solving an assignment problem, such as greedy
algorithm or other metaheuristic problems, the Hungarian method is relatively slow and
inefficient, especially when the problem is quite large scale as in the atom rearrangement
problem [15].

Therefore, in this paper, we are interested in developing a faster way to solve the atom
rearrangement problem. The orientation of the paper starts with the process of designing
the cost function for the assignment problem to prevent the collision of atoms, and all
vacancies in target array will be filled by the constraints of the assignment problem. The
model we developed can provide an optimal solution which is the optimal matching to
move the atoms in one single movement to prevent atom losses in multiple atom-moving
processes. As solving an assignment problem is slow, especially for a larger-size array,
we offer Convolutional Neural Network (CNN) models to predict the optimal solutions
of the assignment problems for three grid sizes of 10 × 10, 13 × 13, and 21 × 21. This
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drastically shortens the time to find the optimal solutions. Finally, we present the accuracy
and calculation times for each model.

2. Methodology

We are interested in the relocation of atoms in two dimensions with defect-free atomic
array formation while minimizing the total moving distance. For the defect-free condition,
atoms will be moved from an initial array to the target array without collision, and no
vacancies in the target array are allowed. Figure 1 shows one way to move the atoms to
their target positions.

we offer Convolutional Neural Network (CNN) models to predict the optimal solutions 
of the assignment problems for three grid sizes of 10 × 10, 13 × 13,  and 21 × 21 . This 
drastically shortens the time to find the optimal solutions. Finally, we present the accuracy 
and calculation times for each model.

2. Methodology
We are interested in the relocation of atoms in two dimensions with defect-free 

atomic array formation while minimizing the total moving distance. For the defect-free 
condition, atoms will be moved from an initial array to the target array without collision, 
and no vacancies in the target array are allowed. Figure 1 shows one way to move the 
atoms to their target positions.

 

Figure 1. Rearranging atoms to their target positions.
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Matching the atoms and their target sites is obviously an assignment problem if we 

define the cost function to prevent atom collisions. We start with defining 𝑥𝑖𝑗 = 1 if an 
atom moves from position 𝑖 to position 𝑗 and 0 otherwise. Since we want the atoms to 
not collide, it is better to force them to move in a horizontal or vertical way. However, as 
shown in Figure 2, if we move the atom directly from position 𝑖 to position 𝑘, atom colli-
sion will happen. So, if the designated position of the atom is as in Figure 2, the atom in 
position 𝑖 should move to position 𝑗 while the atom in position 𝑗 simultaneously moves 
to position 𝑘.

Figure 2. How to design the cost function so that collisions do not occur.

If we define 𝑐𝑖𝑗 as a function of the Euclidean distance from position 𝑖 to position 𝑗 
and let the distance between 2 connecting positions (both horizontally and vertically) be 
1, we can see that 𝑐𝑖𝑘 should be greater than 𝑐𝑖𝑗 + 𝑐𝑗𝑘.

Figure 3 shows how to prevent the atom from moving diagonally so that trespassing 
does not occur. In this case, we do not want an atom to directly move from position 𝑖 to 𝑘, 
but rather an atom will move from position 𝑖 to position 𝑗 and, at the same time, the atom 
at the position 𝑗 will move to position 𝑘. Hence, 𝑐𝑖𝑘 should still be greater than 𝑐𝑖𝑗 + 𝑐𝑗𝑘.

Figure 1. Rearranging atoms to their target positions.

Model Formulation

Matching the atoms and their target sites is obviously an assignment problem if we
define the cost function to prevent atom collisions. We start with defining xij = 1 if an atom
moves from position i to position j and 0 otherwise. Since we want the atoms to not collide,
it is better to force them to move in a horizontal or vertical way. However, as shown in
Figure 2, if we move the atom directly from position i to position k, atom collision will
happen. So, if the designated position of the atom is as in Figure 2, the atom in position i
should move to position j while the atom in position j simultaneously moves to position k.

ff 10 × 10, 13 × 13,21 × 21

𝑥௜௝ = 1𝑖 𝑗
tt  𝑖 𝑘𝑖 𝑗  𝑗𝑘

 

𝑐௜௝ 𝑖 𝑗𝑐௜௞ 𝑐௜௝ 𝑐௝௞ 𝑖 𝑘, 𝑖 𝑗𝑗 𝑘 𝑐௜௞ 𝑐௜௝ 𝑐௝௞

Figure 2. How to design the cost function so that collisions do not occur.

If we define cij as a function of the Euclidean distance from position i to position j and
let the distance between 2 connecting positions (both horizontally and vertically) be 1, we
can see that cik should be greater than cij + cjk.

Figure 3 shows how to prevent the atom from moving diagonally so that trespassing
does not occur. In this case, we do not want an atom to directly move from position i to k,
but rather an atom will move from position i to position j and, at the same time, the atom
at the position j will move to position k. Hence, cik should still be greater than cij + cjk.

In general, cik should be greater than cij + cjk since, in both cases, we do not want the
atom to move directly from position i to position k but instead move from position i to
position j while the atom that is originally in position j simultaneously moves to position k.
Figure 4 explains how to define cij.
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We then define cij as a function of the Euclidean distance from position i to position j
by (the Euclidean distance from i to j)α as follows:

cα =
(

1 + a2
)

α

2
> 1α+bα= 1 +

(

1 + (a − 1)2
)

α

2

= 1 +
(

1 + a2 − 2a + 1
)

α

2

= 1 +
(

a2 − 2a + 2
)

α

2

We can see that when a = 1 and α = 2, c = 1 + 1 = 2.
This implies that moving either from i to k directly or from j to k and i to j would be the

same. One can solve for α. In fact, α was given in [8]. However, it is obvious that if α ≥ 2,
then the above inequality holds so long as a > 1. We let α = 2, and dij is the Euclidean

distance from node i to node j, and we have cij = dij
2. However, this depends on the

physical distance allowed for trespassing; if α = 2, then the only non-horizontal/vertical
move allowed will be when a = 1.

The assignment problem for atom rearrangement is then summarized as follows:

min∑
∀i,j

cijxij

subject to

∑
∀i

xij = 1, ∀j
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∑
∀j

xij = 1, ∀i

or

∑
∀i

xij = 1, ∀j ∈ T

∑
∀j

xij = 1, ∀i ∈ S

where ci,j =

{

M, if i /∈ S and j /∈ T
d2

ij, otherwise
.

As stated in Lee et al. [8], the probability of single atom trapping per site is about 50%,
that is, they can generate only half-filled atoms in an initial site.

This might look like a simple assignment problem with a cleverly designed cost
function to avoid atom colliding and trespassing. However, as far as atom rearrangement
is concerned, the number of variables blows up relatively fast. For the 10 × 10 trap array,
the problem contains 104 variables. Therefore, for the n trap sites, the number of variables
becomes n2. The number of reasonable trap sites in quantum computing makes this a
large-scale assignment problem. Along with the time limit in the atom rearrangement
problem, solving this as a traditional LP standard routine or the Hungarian matching
algorithm is not feasible. A tailor-made algorithm is thus needed to solve the problem.

3. Convolutional Neural Network Model Formulation

We have developed a Convolutional Neural Network (CNN) model to find the optimal
matching for atom movement and fill vacancies in a grid. Since, from the experimental
data [4], roughly only 50% of the loaded atoms remain, the number of atoms will fill
only 50% of the grids. The model was tested on three types of grids: a 10 × 10 grid with
49 atoms, a 13 × 13 grid with 81 atoms, and a 21 × 21 grid with 169 atoms with the initial
positions of the atoms randomly chosen. The process of building the CNN model involves
three main steps.

First, we prepare the dataset obtained in the above section. The input to the model
is the initial state of the loaded atoms, while the output is the position each atom needs
to move to, calculated using the previously mentioned algorithm. Since the output data
represent positions in two–three-digit numbers where each digit holds equal significance,
these outputs are converted into individual digits. This transformation increases the output
dimension from its original shape (m) to either 2 m or 3 m, depending on the grid size.
For example, for a 10 × 10 grid (m = 100), the output ranges from 0 to 99, resulting
in a transformed output of 200. For a 13 × 13 grid (m = 169), the output ranges from
0 to 168 (three-digit numbers), leading to a transformed output of 3 × 169 = 507. The same
method applies to the 21 × 21 grid.

Next, we construct the CNN model using PyTorch 2.4.0. The CNN model comprises
convolutional (conv2d) and linear layers with varying numbers of nodes, which increase
with larger grid sizes. We employ ReLU as the activation function for all models and
incorporate dropout layers to prevent overfitting.

We treat this task as a regression problem using the Mean Squared Error (MSE) as
the loss function and the Adam optimizer in the training process. During the training, the
models are saved every 100 epochs. These saved models are then validated with a separate
dataset (test set) to ensure accuracy. If a model does not meet the required accuracy, we
return to the training step to refine it further.

Understand the Data

The following example demonstrates a model specifically designed for rearranging
atoms within a general n× n grid size. In this example, let us consider an n = 21, containing
a total of n2 = 441 positions, with a specific number of atoms k, as shown in Figure 5.
Figure 5b represents the target atom arrangement, where ‘1’ indicates the presence of an
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atom, confined to a central square of m × m dimensions, surrounded by zeros. Figure 5a
illustrates an example of the input dataset or the initial state of loaded atoms, where ‘1’s
and ‘0’s are randomly distributed, with k atoms and n2 − k empty spaces. Figure 5c depicts
the output data, showing the positions where atoms need to be relocated. It consists of
k + 1 distinct numbers, with k non-zero numbers denoting the coordinates of the central
square of m × m atom positions, and zero signifying empty spaces. Notably, positions with
‘0’s in Figure 5a align with corresponding positions in Figure 5c, while positions with ‘1’s
in Figure 5a correlate with non-zero numbers in Figure 5c. The model aims to predict atom
movements based on the input, ultimately achieving the target configuration depicted
in Figure 5b.

𝑛 ×  𝑛 𝑛 =  21𝑛ଶ =  441 𝑚 × 𝑚 𝑛ଶ െ 𝑘𝑘 ൅  1 𝑚 × 𝑚

  
(a) (b) 

 
(c) 

ff 2𝑛ଶ 3𝑛ଶ
10 × 10 2𝑛ଶ

Figure 5. (a) Initial state of loaded atom (input of the model). (b) Target state of the atoms after

movement. (c) Target coordinates of each atom that needs to move to achieve the target state (output

of the model).

Step 1: Dataset preparation: Change the output shape (separate the output digits)

The output data (Figure 5c) represent the positions where atoms need to move. Each
number in the output data indicates a specific point within the grid. Each digit (hundreds,
tens, ones) in these numbers holds the same importance, meaning if any digit is predicted
incorrectly, it affects the entire predicted point. To enhance prediction accuracy, each output
is transformed from n2 numbers to either 2n2 or 3n2 numbers, depending on whether the
original numbers are two-digit or three-digit numbers. For instance, a 10 × 10 grid size
with two-digit numbers would result in 2n2 numbers, while larger grids with three-digit
numbers would result in 3n2 numbers. Each set of two or three numbers represents a
single point, with the separation of digits explicitly indicated. The assumption is made
that ‘0’ is represented as ‘000’. The modified output data consist of 2n2 or 3n2 positions
accordingly. Specifically, the first n2 indices correspond to the hundreds (if applicable),
followed by indicating the tens, and, finally, the last n2 positions represent the ones of the
original output data. The dataset is split into training and testing sets with an 80:20 ratio to
evaluate the model’s performance.
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Step 2: CNN model construction

The Convolutional Neural Network (CNN) model utilized in this work is composed
of several layers that, together, enable the network to learn and make accurate predictions
from input data. The primary layer type is the 2D convolution layer, which is responsible
for extracting features from input data. Each convolutional layer typically uses a kernel size
of 3 × 3, with a stride of 1 and padding of 1. This configuration helps preserve the spatial
dimensions of the input data while applying the filters to extract features. The number of
input and output channels varies across the layers and is adjusted based on the complexity
and size of the grid. In the early layers, the number of channels starts at a lower value and
increases gradually in subsequent layers to capture more complex features. This increment
continues up to a certain point, after which the number of channels is reduced in the later
layers to decrease the model’s complexity and computational load.

Following the convolution layers are the linear layers. After the convolutional lay-
ers have extracted features from the input, the feature maps are flattened into a one-
dimensional vector. This flattened vector is then fed into the linear layers, which process
the data to make final predictions. These layers operate similarly to a traditional neural
network, where each neuron is connected to every neuron in the previous layer, enabling
the model to learn complex representations of the data.

To introduce non-linearity into the model and allow it to learn more complex functions,
the ReLU (Rectified Linear Unit) activation function is used throughout the network.

Additionally, to prevent overfitting, the model employs Dropout Regularization.
During training, dropout works by randomly dropping a set percentage of neurons in the
network with a probability of 0.005. This technique forces the model to learn redundant
representations and thus generalize better to unseen data. This technique significantly
improves the robustness and performance of the model, especially when working with
limited datasets.

Step 3: Model Training

To train the model for finding the shortest path for atom movement, we treat the
problem as a regression task using the Mean Squared Error (MSE) as the loss function and
the Adam optimizer for training.

Training Process

1. Data Input and Prediction: We input the training data into the CNN model, which
processes this data to generate predictions.

2. Loss Calculation: The model’s predicted output, an array of either 2n2 or 3n2 size
(depending on grid size), is compared to the actual modified output. The difference
between the predicted and actual outputs is measured using the MSE loss function.

3. Backpropagation and Weight Updates: Through backpropagation, gradients are
computed, and the Adam optimizer updates the model weights accordingly.

4. Training Loop: This process is repeated for a pre-defined number of epochs. To ensure
model reliability, the model is saved regularly after every hundred epochs.

Evaluation Process

1. Model Evaluation: Post-training, we evaluate the saved models using the test set
(20% of datasets). This involves calculating the accuracy of each saved model and
counting the number of correct positions predicted in each data instance to ensure
that the trained model is not overfitting and can predict well.

2. Retraining if Necessary: If the evaluated results do not meet our desired goals, we
make adjustments to the CNN model parameters or structures and go back to step 3 to
retrain again.

4. Results and Discussions

The optimal solutions of the assignment problem in Section 2 are solved by MATLAB
R2019a on a computer with an INTEL I9-13900ks with 192 GB of RAM. The CNN models
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are trained and tested on a computer with an NVIDIA GeForce RTX 4090 with 24.0 GB
of RAM. Of the datasets, 80% are used to train the model, and 20% of the datasets are
used to test the accuracy of the CNN models. Figures 6–8 show how many positions the
CNN models can predict correctly in a percentage for the 10 × 10 array, 13 × 13 array,
and 21 × 21 array, respectively. The test results are also summarized in Table 1. It can be
seen that the models can predict the optimal solutions reasonably well, especially for the
10 × 10 array. The models can predict correctly more than 97% of the total number of atom
movements in all test datasets. When considering the correct prediction of each dataset,
the models can predict correctly more than 87% of the number of test datasets with less
than 2% error in each dataset (at least 98% accuracy in each dataset). While the model
for the 10 × 10 array can achieve a very high percentage of defect-free dataset predictions,
this percentage of the model for 21 × 21 is very low. This is due to our current hardware
capabilities. The model for the 21 × 21 array we employ is the largest model that can fit
in the GPU RAM. This limitation highlights the need for more advanced computational
resources to fully realize the potential of our CNN model for larger arrays.

tt
 

 10 × 10 13 × 13  21 × 21 10 × 10 
10 × 10 21 × 2121 × 21

 10 × 10Figure 6. Number of correct predictions for 10 × 10 array.

tt
 

 10 × 10 13 × 13  21 × 21 10 × 10 
10 × 10 21 × 2121 × 21

10 × 10

 

Figure 7. Number of correct predictions for 13 × 13 array.

Table 2 shows the calculation times of the optimal solutions from MATLAB and the
prediction from the CNN models. Computation times are measured using “cputime” in
MATLAB for the optimal solutions and Python 3.12’s “time” library for the CNN models.
The times in Table 2 are the average times of the corresponding calculating times of
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5000 datasets. It shows the benefit of using the CNN models. In the 10 × 10 array, the CNN
model reduces the calculation time by at least 5 fold. As the size of the array increases,
the benefit of the CNN models is even greater. It can reduce calculation time more than
200 fold in the 21 × 21 array. Hence, CNN models can provide a viable solution for the
atom rearrangement problem. 13 × 13

 21 × 21

𝑂 ሺ𝑁ଷሻ

Figure 8. Number of correct predictions for 21 × 21 array.

Table 1. The models’ accuracy.

Problem Size
(Target Size)

Number of
Datasets

Percentage of Overall
Position Accuracy

Percentage of 98%
Correct Arrangement

Percentage of 99%
Correct Arrangement

Percentage of
Defect-Free

Arrangement

10 × 10 Grid
(49 Atoms)

200,000 99.63 99.10 98.44 87.85

13 × 13 Grid
(81 Atoms)

600,000 98.93 95.10 89.01 68.54

21 × 21 Grid
(169 Atoms)

1,000,000 97.24 87.80 59.04 4.45

Table 2. Computational time.

Problem Size

Calculation Time per Dataset
(Calculation Time 5000 Datasets) % Time Saving

(Time Reduction)
Optimal Solution CNN

10 × 10 Grid 0.0159 (79.73) s 0.0031 (15.32) s 80.50 (5.12 folds)

13 × 13 Grid 0.0898 (449.14) s 0.0048 (24.38) s 94.65 (18.71 folds)

21 × 21 Grid 1.289 (6445.9) s 0.0061 (30.50) s 99.53 (211.3 folds)

Figures 9 and 10 compare the calculation times of the optimal solution and the CNN
models. The calculation times of the CNN models are multiplied by 100 for clearer compari-
son. The calculation times per dataset for the optimal solutions increase up to O

(

N3
)

if the
Hungarian matching method is used when the array sizes increase, while the calculation
times per dataset of the CNN models increase less than linearly (see Figure 9). Interestingly,
Figure 10 shows that, as the number of atoms increases, the calculation times per atom of
the CNN models decrease. This shows the potential of the CNN approach for a very large
array size since the larger the array size, the more efficient the CNN approach.
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Figure 9. Calculation times per dataset.
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Figure 10. Calculation times per atom.

5. Conclusions

This study aims to predict coordinates for atom movements while ensuring collision-
free transitions and filling all vacancies in the target array. The process begins with the
design of a cost function for the assignment problem to prevent collisions and constraints
to guarantee vacancy filling. The conventional Hungarian matching method to solve such
an assignment problem is replaced by Convolutional Neural Network models that we built
and trained using three datasets with different grid sizes: 10 × 10, 13 × 13, and 21 × 21.
Our models achieve high accuracy in predicting atom positions, with individual position
accuracies of 99.63%, 98.93%, and 97.24% and time savings of 5, 39, and over 200 fold,
respectively. Despite hardware limitation effects in training larger models, our approach
demonstrates significant improvements in computational time and prediction accuracy.
It is worth mentioning that computational time tends to increase linearly when the grid
sizes increase compared to potential exponential increases if the problem is solved as a
traditional LP or a Hungarian matching method.
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