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Dieter Horns (Uni Hamburg, Vorsitzender)

Jürgen Reuter (DESY)

Bernd Kniehl (Uni Hamburg)

Wolfgang Kilian (Uni Siegen)
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Abstract

Experiments in high energy physics have reached an unprecedented accuracy. This

accuracy has to be matched by the theoretical predictions used to search for new physics.

For this purpose, sophisticated computer programs are necessary, both for the calculation

of matrix elements (tree-level and loop) and in the field of Monte-Carlo event generation.

The hadronic initial state at the LHC poses signifcant challenges for measurement and

simulation. A future lepton collider, like the proposed international linear collider (ILC)

in Japan or compact linear collider (CLIC) at CERN would have a much cleaner initial

state. Such a machine would achieve an even higher precision. In the field of lepton

colliders, the Whizard event generator has been established as the program of choice

due to its unique treatment of beam structure functions and initial-state radiation. In

this thesis, we present the extension of Whizard to next-to-leading order accuracy,

thus augmenting it to the state of the art. We use the Frixione-Kunszt-Signer (FKS)

subtraction scheme to subtract divergences, of which a detailed outline is given. This

new functionality is used to perform in-depth studies of the top quark. Being the heaviest

particle in the standard model, its strong connection to the Higgs sector as well as its

abundant production at a future lepton collider makes it an excellent object of study.

Yet, its lifetime is very short and high-multiplicity final-states of its decay products are

decayed in the detector.

This thesis investigates the influence of NLO QCD corrections to the fully off-shell top

production processes e+e− → µ+νµe
−ν̄ebb̄ and e

+e− → µ+νµe
−ν̄ebb̄H. These calcuations

have not been performed for the first time. Moreover, the incorporation of NLO QCD

corrections into the resummation of the top production threshold and its matching to

the relativistic continuum for the process e+e− → bW+b̄W−. All results are obtained

with Whizard interfaced to the matrix-element generator OpenLoops.
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Zusammenfassung

Die aktuellen Experimente der Hochenergiephysik besitzen eine bisher unerreichte Präzision.

Diese Messgenauigkeit muss durch eine entsprechende Präzision der theoretischen Rech-

nungen begleitet werden, insbesondere in der Suche nach neuer Physik. Zu diesem Zweck

werden fortgeschrittene Computerprogramme, sowohl zur Berechnung von tree-Level-

und Loop-Matrixelementen als auch für die Monte-Carlo Eventsimulation, benötigt.

Der hadronische Initial State am LHC stellt eine Herausforderung f̈r experimentelle

Messungen und theroetische Rechnungen dar. Ein zukünfter Leptoncollider, wie z.B. der

geplante International Linear Collider (ILC) in Japan oder der Compact Linear Collider

(CLIC) am CERN, hätte einen weitaus sauberen Initial State und könnte somit eine noch

höhere Messgenauigkeit erreichen. Im Gebiet der Leptoncollider hat sich der Eventgen-

erator Whizard wegen seiner Fähigkeit, Beamstrahlung und -strukturfunktionen zu

berücksichtigen, als Standardprogram etabliert. In dieser Arbeit präsentieren wir die

Erweiterung Whizards zu next-to-leading order Präzision, womit es auf den Stand

der Technik gebracht wird. Wir verwenden das Frixione-Kunszt-Signer (FKS) Subtrak-

tionsschema, über ein detaillierter Überblick gegeben wird. Die neue Funktionalität

wird verwendet um das Top-Quark tiefgehend zu studieren. Als das schwerste Teilchen

im Standardmodell ist es besonders stark mit dem Higgssektor verknüpft und stellt

darüberhinaus wegen seiner ausgiebigen Produktion an einem Leptoncollider ein hervor-

ragendes Forschungsobjekt dar. Allerdings wird es aufgrund seiner geringen Lebensdauer

nur durch seine Zerfallsprodukte im Detektor registriert.

Diese Arbeit untersucht den Einfluss von NLO QCD Korrekturen auf off-shell Top-

produktion an Hand der Prozesse e+e− → µ+νµe
−ν̄ebb̄ und e

+e− → µ+νµe
−ν̄ebb̄H. Die

Rechnungen hierfür wurden dafü das erste mal durchgeführt. Weiterhin studieren wir die

Integration von NLOQCDKorrekturen in the Resummierung der Top-Produktionsschwelle

und dessen Matching an das relativistische Kontinuum für den Prozess e+e− → bW+b̄W−.

Alle Ergebnisse wurden mit Whizard in Verknüpfung mit dem Matrixelementgenerator

OpenLoops erstellt.
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1. Introduction

In 1947, Lamb and Retherford measured a difference in the energy of the 2S1/2 and
2P1/2 niveaus of the hydrogen atom [10]. This small shift could not be explained by

the Dirac equation alone, and subsequently lead to the realization that interactions of

atoms with the electromagnetic vacuum exist and lead to measurable effects. Shortly

after Lamb and Retherford’s discovery, the shift was explained by Bethe [11], taking into

account self-interactions of the hydrogen atom with virtual photons. In the calculation,

divergences due to arbitrarily large photon energies occur, renormalized by redefining

the zero point of the energy scale. The insights gained here were used by Schwinger

to compute the first-order correction to the electron magnetic moment one year later

[12], which was confirmed experimentally shortly thereafter [13]. The Lamb shift can be

considered as the first higher-order correction encountered and calculated by physicists

in relativistic quantum mechanics. Along with the anomalous magnetic moment, it

strongly stimulated the development of modern quantum field theory and especially the

understanding of renormalization.

Nowadays, vacuum interactions are incorporated routinely in predictions for collider

experiments. Rooted in the standard model of particle physics, they have long moved

past virtual photons and also take into account the exchange of gluons, quarks and elec-

troweak gauge bosons. For example, the neutral pion decay π0 → γγ is only possible

via a triangle quark-loop interaction. The study of this decay was fruitful for the de-

velopment of quantum chromodynamics (QCD), as its decay rate crucially depends on

the number of colors and the quark charges. Moreover, the triangle diagrams with an

interaction of an axial vector and two vector particles, as they are contained in the pion

decay, lead to a violation of tree-level symmetries. Similar anomalies for local symme-

tries have to cancel in a consistent and renormalizable theory, which puts restrictions on

each physics model. Loop interactions therefore play a crucial role in the internal theo-

retical consistency of the standard model. For the anomaly introduced by the triangle

diagrams, this cancellation leads to a fundamental connection between the number of

colors and the charge of the quarks [14],

3(Qu +Qd) +Qe = 0. (1.0.1)

Moreover, this condition has been a strong hint on the existence of the top quark after

1
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V/A
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Figure 1.1. Triangle diagrams with two vector and one axial vector current which give
rise to anomalies that cancel for the correct (physical) choice of fermions in the loop.

the discovery of the bottom quark in 1977. Nowadays, Higgs production at the LHC

contains loop-induced gluon-gluon fusion channels, which are well understood.

Radiative corrections are computed according to a well-defined procedure. Starting

from the leading-order (LO) process, all diagrams with one additional coupling constant

are constructed. This includes diagrams with virtual particles as well as such with

an additional real final-state particle. While the loop diagrams follow directly from

perturbation theory and the Wick theorem, the addition of real-emission amplitudes

is not so obvious. It follows from the requirement that infrared divergences cancel,

as discussed further below. In general, k additional coupling constants make up the

NkLO computation. A precise control of higher-order corrections is essential for the

discrimination of SM backgrounds and BSM signals. For example, a long-standing puzzle

at the Tevatron was the measurement of a non-vanishing top-quark forward-backward

asymmetry [15–17], which in the SM should be zero. This discrepancy was removed

and the measurements brought into accordance with the standard model by including

QCD corrections up to NNLO [18] and NLO electroweak (EW) corrections [19] in the

predictions. Another important case is the muon anomalous magnetic moment, where

the theoretical uncertainty is of the same size as the experimental one, but a disagreement

of three to four standard deviations is observed.

Loop diagrams comprise integrals over k additional virtual momenta qi. These inte-

grals can diverge for qi → ∞ (ultraviolet / UV) as well as for qi → 0 (infrared / IR).

The UV divergences are unphysical and can be removed by the procedure of renormal-

ization, where they are absorbed into the parameters of the theory (e.g. couplings or

masses). Consistently using renormalized quantities then only leaves IR divergences,

which appear both in loop and real-emission diagrams. These singularities arise due to

the production of an infinite amount of quanta with vanishing energies (soft emission) or

emissions collinear to other particles. Divergences of matrix elements are parameterized

with a regularization scheme. In the case of IR divergences, for example a fictitious

small mass can be attributed to the radiated particle or a lower cut-off on the emis-
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Figure 1.2. IR-divergent QCD loop and real-emission corrections to e+e− → qq̄. Note
that no quark self-energy diagrams are depicted because they only have UV divergences.

.

sion energy can be applied. The most common approach is dimensional regularization

[20]. It is based on the observation that to check if singularities arise from loop and

phase-space integrals, it suffices to count the powers of the momenta in the numerator

and denominator, including the integration measure. In dimensional regularization, the

dimensionality of the integration differs from four so that, by power counting, the ma-

trix element is finite. Divergences appear systematically in a Laurent expansion in the

(non-integer) dimension ε = 2− d/2, giving poles 1/ε, 1/ε2, as well as finite terms and

terms of O(ε) and higher which vanish in four dimensions (ε = 0). Applying this scheme

to the basic example of QCD corrections to hadroproduction at a lepton collider, for

which all IR-divergent diagrams are depicted in fig. 1.2, the real-emission and virtual

cross sections are given as a function of ε by [14]

σqq̄g
R (ε) = σ0

αsCF

2π
N (ε)

(
2

ε2
+

3

ε
+

19

2
+O(ε)

)

, (1.0.2)

σ
qq̄(g)
V (ε) = σ0

αsCF

2π
N (ε)

(

− 2

ε2
− 3

ε
− 8 +O(ε)

)

. (1.0.3)

We observe that the ε-poles exactly cancel and that the total NLO correction is finite

in the four-dimensional limit ε→ 01. This IR-cancellation is known since the early days

of relativistic quantum mechanics in the context of photon emissions from electrons.

Discovered by Bloch and Nordsieck in 1937 [21], and elaborated further upon by Yennie,

Frautschi and Suura [22], it was put on a systematic footing by Kinoshita, Lee and

Nauenberg [23, 24]. The so-called KLN theorem states that higher-order amplitudes

are IR-finite, given that degenerate configurations are suitably averaged over. It is the

foundation on which the subtraction methods discussed in this thesis are based.

In the last decade, next-to-leading order has become standard in calculations for LHC

physics. This can to a large extend be attributed to the relatively easy availability of

1The factor N (ε) is a normalization constant with N (ε → 0) = 1. Its expansion leads to ε and ε2

terms which produce additional finite contributions to the cross sections, which are nevertheless
irrelevant because, if N (ε) is chosen consistently, they cancel in the sum of the virtual and real
contribution.
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1. Introduction

one-loop matrix elements for high multiplicities, based on an in-depth understanding

of scattering amplitudes. At NNLO and higher, this automation is not yet realized.

The state-of-the art calculations are made available to other physicists amongst oth-

ers by the means of Monte Carlo event generators. These are more or less special-

ized tools, and in a full experimental study, which might also include parton showers,

hadronization and detector simulation, various combinations of them are used. Parton-

level event generators with automated or semi-automated NLO setups are e.g. Helac

[25], MG5 aMC@NLO [26, 27], MCFM [28, 29], Sherpa [30], VBFNLO [31] and

Whizard [32]. Furthermore, Pythia [33, 34] and Herwig [35–37] are the most com-

monly used parton showers in high energy physics. Automated next-to-leading order

calculations in these event generators have emerged in the last years, thus meeting the

need for increasing calculational accuracy in collider experiments. It is a very field of

research, especially in the context of electroweak and mixed corrections. A complexity

in numerical NLO calculations arises because they cannot access dimensionally regular-

ized expressions as in eq. (1.0.2) and eq. (1.0.3) fully analytically. This would require a

d-dimensional Monte-Carlo integration, with in general d ∈ C. Also, approaches based

on cut-off or mass-regularization introduce dependencies of the results on unphysical

parameters. Monte-Carlo NLO calculations are therefore most commonly based on sub-

traction schemes, which rely on the KLN theorem to add and subtract terms to the total

cross section which cancel the divergences individually in the real and virtual contribu-

tion. The two most common subtraction schemes are the Catani-Seymour approach [38]

and the Frixione-Kunszt-Signer (FKS) scheme [39, 40]. Catani-Seymour subtraction is

used e.g. in Sherpa or Helac, whereas Madgraph and Whizard use FKS. Another

challenge in the NLO-completion of event generation is the interface of NLO hard inter-

actions to parton showers. Already at LO, large logarithms are resummed by Sudakov

factors. In order to keep NLO accuracy, the fixed-order matrix element of the hard

interaction needs to be matched to the resummed parton shower accordingly. Also here,

two major approaches exist. MC@NLO [41, 42] relies on the subtraction of the O(αs)

terms introduced by the parton shower. The Powheg method [43], on the other hand,

rearranges the parton shower in such a way that restores overall fixed-order accuracy.

It is implemented in the Powheg Box [44], which had a large influence on automated

FKS calculations. Monte-Carlo event generators not only play a major role in currently

running LHC experiments, but are also essential in the design of future particle accel-

erators. Especially lepton colliders, such as the proposed International Linear Collider

(ILC) [45, 46] or the Compact Linear Collider (CLIC) [47] promise to provide an un-

precedented precision in the electroweak and top sector. Higgs bosons and top quarks

will be produced in abundance at such a machine. Since the top quark has the largest

mass of all particles in the standard model, they are deeply connected, with far-reaching

consequences e.g. for the (meta-)stability of the universe, which crucially depends on
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mt and mH [48–50]. A precise determination of top-quark properties, particularly its

weak couplings, is thus a powerful opportunity to find hints of new physics and might

also give input to other areas of fundamental physics such as cosmology.

The center-of-mass energy at a linear collider is tunable. On the other hand, it has a

low spread. Combined with the high precision of modern particle detectors, this makes

the study of the top quark feasible also in the threshold region at
√
s ≈ 2mt [51, 52].

Here, the top quarks are non-relativistic and form a quasi-bound state which decays

into the final state bW+b̄W−. This production process at threshold is strongly enhanced

due to large contributions from virtual gluon exchange. To get a precise theoretical

treatment of the production cross section, these large corrections need to be resummed,

which is commonly done in the non-relativistic QCD (NRQCD) framework [53–56].

This thesis contains two parts. The first one is an introduction to FKS subtraction

and its implementation in the event generator Whizard [4–8], presenting examples

for its NLO features. The second part contains detailed studies of off-shell top-quark

production both in the continuum and at threshold with Whizard based on ref. [2]

and ref. [57]. Each part consists of several chapters. In chapter 2, we give a detailed

introduction into the FKS subtraction scheme. Papers on FKS [39, 40, 44, 58–61], usu-

ally have a focus on a certain aspect of the method, leaving out the overall picture.

The intention of that chapter is to present a coherent review of all relevant aspects re-

quired to understand state-of-the art applications of the method. The chapter starts

out by a brief overview of the soft and collinear factorization of matrix elements and

then implements this knowledge in the derivation of real and virtual subtraction terms.

Moreover, although this thesis focuses on lepton colliders, also a brief introduction into

the subtraction of initial-state divergences and structure functions is given. The chap-

ter concludes with a brief discussion on pure electroweak and mixed QCD–electroweak

corrections. Chapter 3 presents the Whizard event generator. We focus on the overall

architecture of the program with a focus on the inclusion of NLO calculations. It follows

a collection of Whizard+NLO applications which serve as validation of the program.

Some aspects not mentioned in the previous chapters are elaborated in more detail, like

the subtraction of divergences in particle decays, Powheg matching or the validation

of resonance-aware subtraction. An essential part of this chapter is a comparison of

Whizard results with those of Madgraph presented in ref. [62] for a diverse set of

lepton collider processes and their discussion.

The first chapter in part two, chapter 5, presents a study of fully off-shell top-quark

pair production with and without an associated Higgs boson at NLO QCD at a lepton

collider. Thereby, the W is assumed to decay only leptonically. A detailed study of the

phenomenology of the process is given, with a focus on the effect of NLO corrections

on the high-precision measurement of top-quark and Higgs boson properties. Also, we

elaborate on the feasibility of BSM searches in the top-quark sector by investigating
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1. Introduction

the dependence of the NLO cross section on the top Yukawa coupling as well as NLO

effects on the forward-backward asymmetry. The subsequent chapter 6 is a summary

of top threshold resummation in Whizard, focusing on the role of fixed-order NLO

corrections therein. They are modified to match the requirements of a factorized com-

putation, leading both to modified FKS regions as well as color-correlations. With this

adaptations, we discuss the effect of real and virtual corrections to the resummed NLL

matrix elements as well as the matching to the top continuum.
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2. The FKS Subtraction Scheme

Next-to-leading order Monte-Carlo computations have no possibility to perform dimen-

sional regularization to cancel divergences, because the very essence of the approach is

the sampling of four-dimensional momenta. Instead, they rely on the so-called subtrac-

tion approach. The idea behind divergence subtraction is to work out the singular limits

of the part of the NLO cross section, dσS and subtract them from the real contribution.

Integrating over the whole phase space, the singular regions have a vanishing weight,

given that the limit is accurate enough. As discussed in the introduction, the KLN

theorem [23, 24] ensures that the same subtraction term, added to the virtual contribu-

tion, also cancels its divergences and allows for a separate integration. This motivates

a general formula for the total next-to-leading order cross section in the subtraction

approach,

σNLO = σBorn +

∫

dΦn+1 [R(Φn+1)− dσS(Φn+1)]
︸ ︷︷ ︸

Finite by construction

+

∫

dΦnV(Φn) +

∫

dΦn+1dσS(Φn+1)
︸ ︷︷ ︸

Finite by KLN

.

(2.0.1)

R denotes the squared real amplitude and V the interference term of the Born and

virtual amplitudes.1

Like R, dσS is a function of the full n + 1-particle phase space. This requires an

integration of the three additional real degrees of freedom, making the construction of

the virtual subtraction terms distinctly more involved than that of the real ones. It

leads to non-trivial integrals, which will be outlined in section 2.3 While the soft and

collinear limits of the matrix elements are unambiguous, there are different approaches

in the way the singular regions are sampled. A concrete implementation of the subtrac-

tion scheme must yield smooth transitions to zero as a phase-space point approaches a

singular region. A complicated multi-leg process can have a multitude of configurations

in which divergences occur, and the proper choice of the subtraction procedure can be

1It should be noted that we did write σBorn instead of σLO, because in general, there is a difference
between the LO cross section and the Born contribution to the NLO cross section. For example, a
different scale might be used in a pure LO calculation and the Born part of an NLO one. Also, the
requirement of NLO values for gauge boson and quark widths lead to significant differences between
the two quantities. An example of a process where this distinction is of crucial importance is off-shell
top-quark production, where σLO and σBorn differ by several percent.
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2. The FKS Subtraction Scheme

the bottleneck of computational efficiency.

There are two major approaches to NLO subtraction, dipole-based [38, 63] meth-

ods and Frixione-Kunszt-Signer (FKS) subtraction [39, 40, 58]. Dipole-based methods,

the most popular one being Catani-Seymour (CS) subtraction [38, 64], focus on soft

emissions. A soft emission is made up of the soft particle itself and the two colored

partons which exchange the first parton. These three indices make up a dipole, and a

summation occurs over all allowed index configurations. FKS subtraction emphasizes

collinear singularities, so that the underlying summation is de facto two-dimensional.

Indeed, as also the authors of ref. [40] claim, this leads to reduced number of subtraction

terms than in the CS formalism. Furthermore, a subtraction scheme based on modi-

fied splitting functions, so-called Nagy-Soper dipoles, has been developed recently [63,

65–67]. It is based on a parton-shower approach with the possibility to keep quantum

interference effects such as spin or color correlations [68, 69]. The NLO+PS matching

in this framework was achieved in ref. [70]. FKS was first applied to three-jet produc-

tion at a hadron collider [39] and later generalized in ref. [58]. From its beginning,

the FKS scheme has been closely related to the study of NLO parton shower match-

ing procedures, like MC@NLO [71] and especially Powheg [43]. In combination with

Powheg, the FKS scheme obtained its first automated Monte-Carlo implementation in

form of the Powheg Box2 [44, 59]. Other event generators to include FKS subtraction

are Madgraph [26, 27],Herwig++ [37] and Whizard [2, 32].

In this chapter, we give a detailed description of FKS subtraction for QCD. We start

with the discussion of collinear and soft factorization in section 2.1. The knowledge

gained there about the corresponding limits enables us to derive real subtraction terms

in section 2.2. Their integration in the context of the virtual matrix element is discussed

thereafter in section 2.3. At this point, all requirements for a subtraction calculation

of a lepton-lepton collision process are met. The rest of the chapter gives details about

the subtraction in the presence of hadron structure functions (PDFs) in section 2.4 and

the resonance-aware FKS modification in section 2.6. We conclude with some aspects

of electroweak corrections.

2.1. Prerequisites

All subtraction schemes rely on the factorization of collinear and soft emissions to extract

the corresponding limits from which subtraction terms can be produced. We therefore

give an overview about collinear and soft singularities in QCD. Further, we discuss

namings and conventions used in the rest of the chapter.

2The homepage of the Powheg Box, http://powhegbox.mib.infn.it/ contains an extensive list of
phenomenological studies performed with it.
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M(n)
M(n) M(n)

Figure 2.1. QCD splittings which can induce a collinear divergence.

2.1.1. Collinear singularities

We start our discussion with an analysis of collinear factorization in QCD splittings. Let

Mij denote the amplitude of the Feynman diagram in which a collinear massless parton j

is emitted by another massless parton i. In QCD, these can be any of the three splittings

depicted in fig. 2.1. The complete squared matrix element is |Mn+1|2 =
∣
∣
∣
∑

i,j Mij

∣
∣
∣

2

,

which contains interference terms between diagrams with emissions from different legs.

This interference can be removed by replacing the numerator in the propagator of the

splitting parton by a sum over spinors or gluon polarization vectors. Choosing a suitable

gauge, the splitting kinematics can then be decoupled from M(n). The splitting parton

then defines the collinear direction, with a momentum pµ = (p, 0, 0, p). We further denote

with p1 and p2 the momenta of the two splitting particles, cf. fig. 2.1, and p12 = p1+ p2.

Note that p12 6= p, as the latter one is only a light-like auxiliary momentum. Also, let

z =
p01
p012

. (2.1.1)

be the energy fraction of one of the splitting partons. Analogously, p02 = (1− z)p012. To

parameterize the collinear limit of p1 and p2, we introduce the transverse momentum

kµ⊥. To restore on-shellness, we further use a unit vector nµ, so that

pµ1 = zpµ + kµ⊥ − k2⊥
z

nµ

2p · n, (2.1.2)

and

pµ2 = (1− z)pµ − kµ⊥ − k2⊥
1− z

nµ

2p · n. (2.1.3)

The unit vector nµ is orthogonal to k⊥, n·k⊥ = 0, and moreover n2 = 0. Using eq. (2.1.2),
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2. The FKS Subtraction Scheme

a detailed calculation for the triple-gluon splitting gives

∣
∣Mn+1

gg

∣
∣
2
=

8παsCA

p212

[

−2gµν
(

z

1− z
+

1− z

z

)

− 4(1− ε)z(1− z)
kµ⊥k

ν
⊥

k2⊥

]

Mn
µMn

ν .

(2.1.4)

There is a factor of 8παs instead of just a factor of 4παs because an additional factor

of two enters through the Dirac algebra of the vertices. The ε-pole originates from

the use of d-dimensional Dirac algebra. We observe the emergence of spin correlation

terms in the second summand of eq. (2.1.4), i.e. kµ⊥k
ν
⊥Mn

µMn
ν . The Lorentz indices µ

and ν of the amplitude Mn are associated with gluon polarization vectors. Thus, this

term mix amplitudes with different Lorentz polarizations. These spin-correlated matrix

elements are a distinct feature of the collinear factorization. Calculations for
∣
∣Mn+1

qg

∣
∣
2

and
∣
∣Mn+1

qg

∣
∣
2
yield the same structure for the collinear-factorized squared matrix element,

so that in general
∣
∣Mn+1

ij

∣
∣
2
=

8παs

k2
P̂ λ
ij(z, k⊥; ε)|Mn

λ|2, (2.1.5)

where k is the momentum of the emitter in the Born phase space and λ stands either for

two spinor or vector indices. The P̂ λ
ij expressions are called the generalized Altarelli-

Parisi splitting functions [72], given by

P̂ ss′

qg (z, k⊥; ε) = δss
′

CF

[
1 + z2

1− z
− ε(1− z)

]

, (2.1.6)

P̂ µν
qq̄ (z, k⊥; ε) = TF

[

−gµν + 4z(1− z)
kµ⊥k

ν
⊥

k2⊥

]

, (2.1.7)

P̂ µν
gg (z, k⊥; ε) = 2CA

[

−gµν
(

z

1− z
+

1− z

z

)

− 2(1− ε)z(1− z)
kµ⊥k

ν
⊥

k2⊥

]

. (2.1.8)

It can be seen that only the splitting of gluons (and more generally, vector particles)

induce spin correlations. The spin structure of the q → qg splitting, eq. (2.1.6), is triv-

ially given by δss
′

. Equation (2.1.5) in combination with the splitting functions give a

complete description of final-state collinear emissions which we will use in section 2.2 to

construct subtraction terms. Similar expressions can be derived for initial-state emis-

sions.

2.1.2. Soft singularities and eikonal currents

The splittings in eq. (2.1.6) – eq. (2.1.8) also show the soft behavior of the respective

splittings for z = 0 and z = 1. The g → gg and q → qg splittings exhibit a singularity

for soft emissions 3, whereas the g → qq̄ splitting is soft-finite. The emission of a soft

3In fact, it is the only sufficient way to prove the existence of soft singularities. The frequently found
explanation utilizing a single propagator (usually one for a quark) has the shortcoming that the
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gluon does not affect the momenta of the radiating partons. It also does not change the

spin4. However, the gluon always carries away color charge, so the color structure of the

radiating partons is changed. This leads to the appearance of color correlations in the

expressions involving the soft limit, which are the topic of this section.

Soft gluon factorization is best described using the notation common in the literature

[38, 74], where the matrix element is decomposed in color space,

Mc1,...,cn(p1, . . . , pn) = 〈c1, . . . , cn|M(p1, . . . , pn)〉. (2.1.9)

The squared matrix element is then simply

|M(p1, . . . , pn)|2 = 〈M(p1, . . . , pn)|M(p1, . . . , pn)〉. (2.1.10)

We introduce the color charge operator Ti, which is associated with the emission of a

gluon from a specific parton i. We single out the color index of the emitted gluon as a.

Ti is defined by its action on color space,

〈a, c1, . . . , ci, . . . , cn|Ti|b1, . . . , bi, . . . , bn〉 = δc1,b1 . . . T
a
ci,bi

. . . δcn,bn , (2.1.11)

where

T a
ci,bi

=







ifciabi if i = gluon

tacibi if i = FS quark or IS antiquark

t̄acibi = −tabici if i = IS quark or FS anti-quark.

(2.1.12)

Color-charge operators commute if i 6= j, otherwise T2
i = Ci, where Ci = CA if i is a

gluon and Ci = CF if i is a quark or anti-quark. The tree-level soft-gluon current, or

eikonal current, is defined as

Jµ =
n∑

i=1

Ti
pµi
pi · q

, (2.1.13)

where the summation is performed over all external (colored) particles and q denotes

the gluon momentum5 To see its connection to soft gluon emissions, consider a q → qg

factor E → 0 in the denominator is cancelled by the phase-space volume.
4If this sounds unintuitive, consider that in an soft emission, the gluon is practically non-existent.
Instead, the emission process can be approximated by an infinitesimal ”kick” to the emitter. In
QED, it can be shown that the eikonal currents of eq. (2.1.13) emerge from the Fourier transform
of a fermion current

jµ(x) = e

∫ ∞

0

dt
p′µ

m
δ(4)
(

x− p′

m
t
)

− e

∫ 0

−∞

dt
pµ

m
δ(4)
(

x− p

m
t
)

which experiences such a sudden change [73].
5Sometimes, the less strict formulation Jµ =

∑

i

2pµ

i
−qµ

2pi·q−q2
Ti is used, since eq. (2.1.13) can lead to

scaleless integrals.
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2. The FKS Subtraction Scheme

splitting. Let m 6= 0 be the quark mass. The emission from one leg can then be written

as

pi

q

∼ gsū(pi)γ
µT a

bc

/pi − /q +m

(pi − q)2 −m2
εµ(q). (2.1.14)

In eq. (2.1.14), the quark mass cancels in the denominator since p2i = m2. In the

numerator, we can use the Dirac equation after substituting γµ(/pi+m) = (−/pi+m)γµ+

2pµi , rendering the whole expression independent of the quark mass. In the limit q → 0

the soft limit the n + 1-particle matrix element can thus be expressed with a color

decomposition w.r.t to the gluon

〈a|Mn+1(q, p1, . . . , pn)〉 ≈ gsε
µ(q)Ja

µ(q)|Mn(p1, . . . , pn)〉, (2.1.15)

where we have made use of the eikonal current from eq. (2.1.13). The spinor present in

eq. (2.1.14) is absorbed into Mn and Mn+1. Squaring the amplitude is now a straight-

forward task. It yields

|Mn+1(q, p1, . . . , pn)|2 ≈ −4παs

∑

i,j=1,n

pi · pj
(pi · q)(pj · q)

|Mn
(i,j)(p1, . . . , pn)|2. (2.1.16)

|Mn
(i,j)|2 includes the effects of possibly non-trivial color interactions in the soft limit

and is from now on referred to as the color-correlated Born matrix element6 It is given

by

|Mn
(i,j)(p1, . . . , pn)|2 = 〈Mn(p1, . . . , pn)|Ti ·Tj|Mn(p1, . . . , pn)〉

=
[

Mn
c1,...,bi,...,bj ,...cn

(p1, . . . , pn)
]∗

T a
bidi
T a
bjdj

Mn
c1,...,di,...,dj ,...,cn

(p1, . . . , pn),

(2.1.17)

where a summation over identical indices is implied.

2.1.3. Notation

We define a basic notation to be used throughout this thesis. The Born phase space for

a 2 → n process is given by

Φ̄n = {k̄⊕, k̄⊖, k̄1, ..., k̄n}, (2.1.18)

6Some authors prefer the term ”color-linked”.
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2.1. Prerequisites

i.e. final-state particles are numbered starting by 1 and the indices ⊕ and ⊖ are used to

denote initial-state momenta parallel and anti-parallel to the beam axis. Likewise, the

phase space including one additional gluon emission is

Φn+1 = {k⊕, k⊖, k1, ..., kn, kn+1}. (2.1.19)

It is always assumed that the emitter momentum is at position n and that kn+1 is the

momentum of the radiated particle. The spatial part of a four-momentum k is described

by k. Moreover, k = |k|.
The gluon momentum has three independent parameters. In FKS, they are given by

the following dimensionless quantities:

• ξ parameterizes the gluon energy. In the standard approach, it is

ξ =
2k0n+1√

s
, (2.1.20)

but different definitions are possible, e.g. for the treatment of resonances.

The gluon energy is bounded from above by ξmax, i.e. ξ ∈ [0, ξmax] with ξmax ≤ 1.

This bound arises because, loosely speaking, the gluon cannot take away more

energy than available from the emitter. Thus, in the massless case,

ξmax =
2k̄0em√
s
. (2.1.21)

More complicated expressions arise for emissions from massive particles, which are

discussed in appendix A.3.

• y ∈ [−1, 1] parameterizes the polar angular separation of the emitter and the gluon.

For massless emitters, it is simply

y = cos θn,n+1. (2.1.22)

The definition of y for massive emitters is a bit more involved. The simple definition

in eq. (2.1.22) is replaced by the slope of a line in a Dalitz plot. Details about this

are given in appendix A.1.3.

• φ ∈ [0, 2π] is the azimuthal angle difference of the two splitting particles in the

transversal plane.

The total NLO matrix element for lepton collisions without structure functions is the

sum

σNLO = σBorn
NLO + σReal

NLO + σVirt
NLO. (2.1.23)

15



2. The FKS Subtraction Scheme

The involvement of structure functions like parton densities introduces additional terms

to be discussed later. Note that, in general, the first summand does not equal the LO

cross section σLO, because the physical parameters it consists of, such as e.g. particle

widths or coupling constants, can have differing values at leading and next-to-leading

order. The integrands of the summands in eq. (2.1.23) are denoted by B, R and V ,
respectively. We will also use the notation dσi for integrands with a meaning of i defined

beforehand. For the treatment of integrated cross sections, phase-space factorization is

of crucial importance. This means that

dΦn+1 = dΦ̄raddΦn = (J dξdydφ) dΦn, (2.1.24)

where the Jacobian J depends on the specific real-emission construction. Phase-space

factorization, combined with matrix-element factorization discussed in the previous two

sections, leads to a structure of R and V which mainly involves a Born-like matrix

element times a kinematical function. Finally, to label particles, we adopt the notation

of ref. [40],

nH : # Strongly interacting massive particles, (2.1.25)

n
(B,R)
L : # Strongly interacting light particles (Born or Real), (2.1.26)

n∅ : # Non-strongly interacting final-state particles. (2.1.27)

Since, next to collision processes, we also want to include particle decays in our FKS

setup, we introduce a slight modification to ref. [40] by denoting the number of initial

state particles by nI . In ref. [40], nI stands for the index of the first strongly-interacting

particle, which we call nF . Thus, nF = 1 for hadron-hadron collisions, nF = 2 for

lepton-hadron collisions, and nF = 3 for lepton-lepton collisions (assuming that nL 6= or

nH 6= 0). With this notation, we assume that the particles in the process definition are

ordered in the following way:

1 ≤ i ≤ nI : Initial state,

nI + 1 ≤ i ≤ n
(B,R)
L + nI : massless quarks and gluons,

n
(B,R)
L + nI + 1 ≤ i ≤ n

(B,R)
L + nH + nI : heavy quarks,

n
(B,R)
L + nH + nI + 1 ≤ i ≤ n

(B,R)
L + nH + n∅ + nI : non strongly-interacting particles.

Furthermore, Ii denotes the identity of the particle with index i. E.g., if i is an anti

quark, Ii = q̄.
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2.2. Real subtraction terms

2.2. Real subtraction terms

In this section, we construct subtraction terms for the real matrix element. We assume

that the Born phase space is divergence-free, i.e. that appropriate cuts are applied to

remove infrared divergences such as for example those arising in the emission of a jet.

Let R denote the squared amplitude of the real matrix element, associated with the

radiative corrections to a given process. It contains both soft and collinear divergences,

which in terms of the parameterizations in eq. (2.1.20) and eq. (2.1.22) means ξ → 0

and y → ±1. Moreover, we assume that the radiative corrections only affect final-state

particles, such as for QCD corrections to lepton collisions. The extension to initial-state

divergences involves corrections to parton densities and is discussed in section 2.4.

2.2.1. Singular regions and S functions

The full knowledge about the real phase space Φn+1 allows to identify several disjoint

regions, in which at most one collinear and one soft divergence exists. This way, R is

split up into different contributions, each related to one particular singular region,

R =
∑

i,j

Rij. (2.2.1)

Here, Rij becomes divergent only when the momentum ki or kj becomes soft, or ki ‖ kj

(collinear divergence). Everywhere else, Rij is finite. Especially, in the singular region

associated with another (i, j)-pair, it approaches zero. The (i, j) tuples are called FKS

pairs. In words, an FKS pair is a pair of particles which induce soft and / or collinear

divergences in R, excluding the (appropriately removed) divergences already present at

Born level. As it is common, we will use the index α to refer to a given FKS pair.

In QCD, FKS pairs can be put into three basic groups:

• Iα = (q, g) and Iα = (q̄, g) (and vice versa), .i.e. gluon emission off a quark

or anti-quark, respectively. These regions always induce soft divergences, and

collinear ones if mq = 0.

• Iα = (g, g), which are soft and collinear divergent.

• Iα = (q, q̄) (and vice versa), i.e. a g → qq̄ splitting. These regions are finite in the

soft limit, cf. eq. (2.1.8), but induce collinear divergences if mq = 0.

Out of these FKS pairs, the summation in eq. (2.2.1) either runs over combinations of

the first two kinds, or exclusively contains those of the last one. This is because while

(q, g) and (g, g) correspond to an additional gluon in the real flavor structure, (q, q̄)

have an additional quark and one gluon less. Therefore, they do not have the same real
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2. The FKS Subtraction Scheme

matrix element R. All FKS pairs belonging to the same real flavor structure fr are put

together in the set Psym
FKS(fr), defined as

Psym
FKS(fr) =

{

(i, j) :

can contain initial state
︷ ︸︸ ︷

nF ≤ i ≤ n
(R)
L + nH + nI ,

constrained to final state
︷ ︸︸ ︷

nI + 1 ≤ j ≤ n
(R)
L + nH + nI , i 6= j,

R(fr) → ∞ if k0i → 0 or k0j → 0 or ki ‖ kj

}

.

(2.2.2)

Here, the second line contains the condition that (i, j) must induce a soft or collinear

divergence. Since an FKS pair can never be made up of two initial-state particles, one

index can be constrained to the final state. In our case, this is j, which starts at nI +1.7

The second index is thus the radiated particle, which is also referred to as the FKS

parton. Note that we also include the possibility of particle decays in definition (2.2.3)

by using a variable nI . The superscript sym emphasizes that both final-state pairs

(i, j) and (j, i) are treated identically. However, they yield the same matrix element,

so that their contribution appears twice in eq. (2.2.1). This is for example the case for

the collinear divergence in a (q, q̄) region. There are two ways to solve this problem.

The first one is to apply appropriate symmetrization factors to Rα, which decrease the

contribution of each of them, so that the divergence is effectively only subtracted once.

The second solution is to asymmetrize Psym
FKS. However, this requires a distinction of FKS

pairs according to their identity. We define

PFKS(fr) =
{

(i, j) :nF ≤ i ≤ n
(R)
L + nH + nI , nI + 1 ≤ j ≤ n

(R)
L + nI , i 6= j,

R(fr) → ∞ if k0j → 0 or ki ‖ kj,

non-redundancy conditions
}

,

(2.2.3)

with the non-redundancy conditions

Ij = g, Ii 6= g, (j, i) ∈ PFKS ⇒ (i, j) /∈ PFKS if nI + 1 ≤ i, (2.2.4)

Ij 6= g, Ii = g, (j, i) ∈ PFKS ⇒ (i, j) /∈ PFKS if nI + 1 ≤ i < j. (2.2.5)

Only those FKS pairs which both contain gluons are kept symmetrically. Here, a sym-

metrization factor in Rα is required. In the case of gluon emissions from a quark or

anti-quark, only the pair with the quark at the first position is kept. This also allows

us to let j only be defined for massless partons, since massive partons do not induce

singularities and do not need to be subtracted. As a consequence, the condition k0i → 0

7Note that this is in striking difference to ref. [40], where the first index denotes the radiated particle.
We change this in order to be more consistent with the rest of the FKS literature.
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2.2. Real subtraction terms

becomes redundant. The asymmetrization solution is definitely the preferable one, since

it also significantly decreases the number of singular regions which have to be sampled.

Given PFKS, the partition of eq. (2.2.1) is realised by multiplying R with phase-space

partition functions Sα,

Rα = Sα · R, (2.2.6)

which also have to be a partition of unity, cf. eq. (2.2.1),

1 =
∑

α∈PFKS

Sα. (2.2.7)

The S-functions have to vanish in phase-space regions which do not induce the singularity

of the FKS pair (i, j). This means that, in a collinear region, limkk‖kl
Sij = 0 if (k, l) 6=

(i, j). Moreover, for a soft emission not associated with (i, j) but another FKS pair (k, l),

limk0
l
→0 Sij = 0. On the other hand, for a phase-space point which maps the singularity

of an FKS pair, the S-function needs to have a finite value less than one. In regular

phase-space regions, Sα can take any value between 0 and 1. In a collinear region, it is

required that

lim
ki‖kj

Sij = hij(zij) = hij

(
Ei

Ei + Ej

)

. (2.2.8)

The argument zij of hij can be understood as a measure of the softness of the emission.

Further, it takes into account a possible symmetrization of Rα. To this end, it has to

fulfill the condition hij(z) + hij(1 − z) = 1. For a soft emission, which only exists for

Ij = g, we require

lim
k0j→0

Sij = cij, with
∑

i,(i,j)∈PFKS

cij = 1. (2.2.9)

The concrete implementation of Sα as a function of Φn+1 is of course arbitrary The

original works on jet cross sections in QCD [39, 58], use jet measuring functions closely

related to clustering algorithms. There, singular regions where strictly separated by

Heaviside Θ-functions. Smooth S functions were introduced in ref. [71], leading to an

improved numerical behaviour. Nowadays, the canonical, process-independent definition

of Sα is [40, 59]

Sij =
1

D
hij(zij)

dij
, (i, j) ∈ PFKS (2.2.10)

D :=
∑

kl

d−1
kl hkl(zkl), (k, l) ∈ PFKS (2.2.11)

where dij = 0 if and only if Ei = 0 or Ej = 0 or ki ‖ kj. hij is the symmetrization factor
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2. The FKS Subtraction Scheme

mentioned in the context of Psym
FKS. In an asymmetrized setup, it is

hij(zij) =







zij =
Ei

Ei+Ej
if I(i,j) = (g, g)

1 else
. (2.2.12)

The standard expression for the phase-space weights is

dij = 2ki · kj
EiEj

(Ei + Ej)2
, (2.2.13)

which can easily be confirmed to fulfill the required conditions. For a better understand-

ing of FKS partitions, consider the example of the process e+e− → qq̄. There is only one

real-radiation correction here, namely e+e− → qq̄g. The particles are numerated from 1

to 5 so that PFKS = {(3, 5), (4, 5)}. Here, (3, 5) denotes the region in which the gluon

is collinear to the quark, and likewise (4, 5) corresponds to the region with a collinear

divergence with respect to the anti-quark. Note that both regions include soft-gluon

configurations. Because of coherent radiation, soft divergences cannot to attributed to

the emission from an individual particle. We defer the discussion of the soft limit of the

S functions to further below. We demand that R35 diverges for k3 ‖ k5 and vanishes for

k4 ‖ k5. The D factor for this process is

D = d−1
35 + d−1

45 , (2.2.14)

such that the S function attributed to R35 is

S35 =
1

1 + d35
d45

=
1

1 + d′
. (2.2.15)

For a phase-space point in the proximity of the (3, 5)-divergence, d35 = 0, so that S35 = 1.

This is regardless of the value of d45, as long as d45 > 0. On the other hand, in the

disjoint singular region (4, 5), d45 = 0, so that d′ → ∞. This yields S35 = 0, as desired.

The performance of FKS subtraction can be improved further by grouping regions with

identical matrix elements together. For example, the process e+e− → tt̄j has a real

correction e+e− → tt̄gg. There are two FKS pairs associated with gluon emission from

the top quark, (3, 5) and (3, 6) (and the same for emission from the anti-top quark with

3 ↔ 4). Both configurations yield the same matrix element. It is therefore possible to

only include one of them in PFKS and associate a multiplicity with the given emitter

region. This multiplicity is then applied to the real matrix element, but not to the

subtraction terms. Further details about FKS regions are given in appendix B.1 for

various processes.
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2.2. Real subtraction terms

2.2.2. Construction of subtraction terms

The real, non-subtracted contribution to the total NLO cross section is given by

σreal
NLO =

∫

dΦn

∑

α∈PFKS

∫

dΦα
radRα, (2.2.16)

where we made use of phase-space factorization, eq. (2.1.24). We focus on one individual

singular region α. Further, we assume that all particles are massless. Then the diver-

gences in Rα originate from propagators of the form [p01p
0
2(1− cos θ)]

−1
. The first step

in the construction of subtraction terms is to factor out this singular behavior from the

real matrix element. We focus on final-state divergences, for which only y = 1 induces

a collinear singularity. Real emissions from initial-state particles are singular also for

y = −1 and are treated in section 2.4.1. We define R̃α as the finite part of Rα in the

given singular region α,

Rα =
1

ξ2
1

1− y

(
ξ2(1− y)Rα

)
=

1

ξ2
1

1− y
R̃α. (2.2.17)

Dimensional regularization with d = 4 − 2ε is used to make the divergences explicit.

The corresponding integration measure is given by

dΦn+1 =
s1−ε

(4π)3−2ε
ξ1−2ε

(
1− y2

)−ε
dξdydΩ2−2εdΦn, (2.2.18)

where dΩ2−2ε is the angular measure in 4 − 2ε dimensions including the Jacobian

of this transformation. We further denote the pure radiation phase space by dΦrad,

i.e. dΦn+1 = dΦraddΦn. Therefore, integrating over the real-emission phase space,

eq. (2.2.17) yields

∫

dΦradRα =

∫

dΩ2−2ε

∫ 1

−1

dy (1− y)−1−ε

∫ 1

0

dξξ−1−2εR̃α(ξ, y), (2.2.19)

where here and in the following, we leave out the factor s1−ε/(4π)3−2ε for ease of notation.

To extract the divergences in the y-integral, consider the simple manipulation for a fixed

value of ξ

∫ 1

−1

dy
R̃α(ξ, y)

(1− y)1+ε
=

∫ 1

−1

R̃α(ξ, y)− R̃α(ξ, 1)

(1− y)1+ε
+ R̃α(ξ, 1)

∫ 1

−1

dy(1− y)−1−ε. (2.2.20)

R̃α(ξ, y = 1) is proportional to the collinear limit of the real matrix element, as discussed

in section 2.1.1. The divergence at y = 1 is subtracted out in the first summand, as can

be easily verified by expanding Rα(ξ, y) around this point. All collinear divergences of
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2. The FKS Subtraction Scheme

Rα are therefore contained in the second summand. Expanding the first summand in

eq. (2.2.20) in ε and integrating the second one over y yields a polynomial in ε,

1

(1− y)1+ε
= −2−ε

ε
δ(1− y) +

(
1

1− y

)

+

− ε

(
log(1− y)

1− y

)

+

+O(ε2). (2.2.21)

The plus-distribution is defined as

∫ 1

−1

dy

(
g(y)

1− y

)

+

f(y) =

∫ 1

−1

dyg(y)
f(y)− f(1)

1− y
, (2.2.22)

which is finite for all y ∈ [−1, 1]. This way, introducing plus-distributions in eq. (2.2.19)

allows to separate divergent from finite parts. A similar calculation gives an expression

of the same form for the ξ-integral. Note that here, the factor ξ1−2ε in the integration

measure is divided by ξ2 due to eq. (2.2.17), giving an overall ξ−1−2ε, for which we find

ξ−1−2ε = − 1

2ε
δ(ξ) +

(
1

ξ

)

+

− 2ε

(
log ξ

ξ

)

+

+O(ε2). (2.2.23)

The plus-distribution with respect to ξ is defined in same way as in eq. (2.2.22), with

the replacement of f(1) by f(0) 8. Inserting eq. (2.2.23) and eq. (2.2.21) into eq. (2.2.19)

gives the total integrated real cross section, separated into a finite and a divergent part,

∫

dΦradRα =
2−ε

2ε2

∫

dΩ2−2ε R̃α(0, 1)

− 1

2

∫

dΩ2−2ε

∫ 1

−1

dy

[
1

ε

(
1

1− y

)

+

−
(
log(1− y)

1− y

)

+

]

R̃α(0, y)

−
∫

dΩ2−2ε

∫ 1

0

dξ 2−ε

[
1

ε

(
1

ξ

)

+

− 2

(
log ξ

ξ

)

+

]

R̃α(ξ, 1)

+

∫

dφ

∫ 1

−1

dy

∫ 1

0

dξ J (ξ, y, φ)

(
1

ξ

)

+

(
1

1− y

)

+

R̃α(ξ, y) +O(ε)

= Isoft−coll + Isoft + Icoll + Ifin.

(2.2.24)

The divergences in the sum Isoft−coll + Isoft + Icoll in the first three lines are cancelled by

the divergences of the virtual matrix element, as guaranteed by the KLN theorem. For

this reason, these terms make up the subtraction terms to the one-loop matrix elements,

as discussed further in section 2.3. The integral Ifin in the last line is finite due to the

8In the FKS literature it is common to use generalized plus distributions, in which additional θ-
functions around cut-off parameters ξc ∈ [0, 1] and δ0 ∈ [0, 2] are used. This can in certain processes
lead to a better performance in parton shower matching. Introducing ξc and δ0 leads to additional
logarithms in most FKS formulas, which we avoid by consistently implicitly choosing ξc = 1 and
δ0 = 2, which reproduce the standard plus distributions.
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plus-distributions and prescribes the construction of real-emission subtraction terms. It

can be written in four dimensions, where dΩ2−2ε transforms into dφ and the Jacobian J .

The product of the plus-distributions in 1− y and ξ gives four terms, an unregularized

one, i.e. the pure real matrix-element, two with the single soft or collinear limit and one

with the combined soft-collinear limit. Explicitly,

Ifin =

∫ 2π

0

dφ

∫ 1

−1

dy

1− y

∫ 1

0

dξ
J (ξ, y, φ)

ξ

×



 R̃α(ξ, y)
︸ ︷︷ ︸

Full div. real ME

−R̃α(0, y)
︸ ︷︷ ︸

soft limit

−R̃α(ξ, 1)
︸ ︷︷ ︸

coll. limit

+ R̃α(0, 1)
︸ ︷︷ ︸

soft-coll. limit



 .

(2.2.25)

This is the master formula in the treatment of real-emission subtraction terms. It simply

displays what one would have quite intuitively guessed: The finite real matrix element is

obtained by subtracting all soft and collinear limits. However, only the parameterization

in ξ and y as in eq. (2.2.25) ensures that the divergences are separated consistently. In

eq. (2.2.25), the ξ-integration is performed on the full interval [0, 1]. However, due

to kinematical bounds of the radiated particle, the most general integration range is

[0, ξmax], with ξmax ≤ 1, cf. eq. (2.1.21). Therefore, in a Monte-Carlo implementation,

the plus-distributions in eq. (2.2.25) are manipulated further so that simultaneously,

only ξ ∈ [0, ξmax] is sampled, but the random number range is kept at [0, 1]. This is

outlined in appendix B.2. There, eq. (B.2.3) shows that the rescaling leads to additional

terms, involving logarithms of ξmax, which have to be added to eq. (2.2.25) in a full

treatment. In the following section, explicit expressions for the three subtraction terms

R̃α(0, y), R̃α(ξ, 1) and R̃α(0, 1) in eq. (2.2.25), suitable for the use in a Monte-Carlo

implementation, will be discussed.

Subtraction of soft divergences

We construct the soft limit of the real matrix element, i.e. R̃α(0, y) = RS from

eq. (2.2.25). It has already mostly been discussed in the context of eikonal currents

in section 2.1.2. The squared real matrix element RS (we drop the index α here for ease

of notation) factorizes into a kinematical factor and the color-correlated Born matrix

element,

RS = 4παs

n∑

i,j=1

ki · kj
(ki · k)(kj · k)

Bij. (2.2.26)

This is eq. (2.1.16) with Bij = −|Mn
(i,j)|2. The momentum k is that of the emitted

particle, i.e. the FKS parton. The summation in eq. (2.2.26) is performed over all

pairs external legs, especially including identical ones. For a process with n final-state

particles, the matrix Bij has dimension n2. However, color completeness implies that
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2. The FKS Subtraction Scheme

∑

j,i 6=j Bij = −CiB, where Ci is the emitter’s Casimir operator. Moreover, Bij is a

symmetric matrix. Assuming B as known, Bij therefore has

ncol−corr =
n(n− 1)

2
(2.2.27)

independent elements. Using this, the soft limit RS can be written as

RS = 4παs

[

2
∑

i>j

ki · kj
(ki · k)(kj · k)

Bij − B
∑

i

k2i
(ki · k)2

Ci

]

. (2.2.28)

Equation (2.2.28) does not have to be modified for non-colored particles, since for them

Bij = 0 and their contribution trivially vanishes. However, some applications, e.g. the

NLO-treatment of factorized decays, might require a different summation prescription,

as described in section 6.2.2. The real-subtracted matrix element is multiplied by the S-
functions. They behave non-trivially in the soft limit, because more than one dij-terms

can approach zero. This becomes explicit after rewriting eq. (2.2.10),

Sij =
1

1 +
∑

(n,m) 6=(i,j)
dij
dnm

. (2.2.29)

Here, we assume a symmetrized FKS set, so that the indices j and m correspond the

position of the FKS parton (gluon or quark). In the soft limit, both dij → 0 and

dnm → 0, so that the fraction in the denominator is ill-defined. Using the standard

definition of dij in eq. (2.2.13) and the fact that in the soft limit km ≈ kj ≈ k ≈ 0, this

ratio becomes
dij
dnm

=
(ki · k)Eik

0(En + k0)
2

(kn · k)Enk0(Ei + k0)2
k→0
=

ki · k
kn · k

En

Ei

, (2.2.30)

which is finite. Thus, in the soft limit, reduced phase-space functions are used,

dsofti =
2ki · k
Ei

, (2.2.31)

where i denotes the emitter associated with the singular region α and k is the momentum

of the radiated parton.

Subtraction of final-state collinear divergences

Collinear gluon factorization has been discussed in section 2.1.1. For the construction

of final-state collinear subtraction terms in the FKS scheme, the limit eq. (2.1.5) can be
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used with ε = 0. As in eq. (2.1.1), z = k0n+1/k̄
0
em, so that 9

Rq→qg
C =

8παsCF

k2em

1 + z2

1− z
B, (2.2.32)

Rg→qq
C =

8παsTF
k2em

[

−gµν + 4z(1− z)k̂µ⊥k̂
ν
⊥

]

Bµν , (2.2.33)

Rg→gg
C =

8παsCA

k2em

[

−2

(
z

1− z
+

1− z

z

)

gµν − 4z(1− z)k̂µ⊥k̂
ν
⊥

]

Bµν , (2.2.34)

with the short-hand notation k̂µ⊥ = kµ⊥/
√

k2⊥. The spin-correlated Born matrix element

Bµν is as introduced in section 2.1.1 with the explicit formulation [44]

Bµν =
∑

{i},s,s′

M({i}, h)M∗({i}, h′) · ǫµ∗s ǫνs′ . (2.2.35)

The summation is performed coherently over the spin indices of all particles not involved

in the splitting, but mixes the gluon spins s and s′. Bµν fulfills the condition

∑

µ,ν

gµνBµν = −B, (2.2.36)

so that, assuming that B is known, the number of independent elements of Bµν is 15 for

every process. Due to the use of the transverse momentum sum used in the derivation

of eq. (2.2.32) to eq. (2.2.34), there are no interference terms between different singular

regions, so that eq. (2.1.5) only contains one divergence. For this reason, a multiplication

of RC with Sα is not necessary.

Subtraction of final-state soft-collinear divergences

Vanishing gluon energy corresponds to z = 0, which corresponds to singularities in

eq. (2.2.32) and eq. (2.2.34) (eq. (2.2.33) does not have a soft singularity, so that its

soft-collinear approximation is zero). The zeroes in the denominators are cancelled due

to the additional factor of ξ2 which is included in the full calculation, cf. eq. (2.2.17).

This is because

z′ =
z

ξ
=
k0n+1

k̄0em

√
s

2k0n+1

=

√
s

2k̄0em
(2.2.37)

is finite. Thus, in a setup where z is computed from z′ and ξ, the soft-collinear limit can

straightforwardly be computed using eq. (2.2.32) and eq. (2.2.34).

9The implementation in Whizard has a different sign for the second summands in eq. (2.2.33) and
eq. (2.2.34). This is due to a different choice of the collinear parameterization in eq. (2.1.2) in the
Powheg–style definition of Bµν .
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2. The FKS Subtraction Scheme

2.3. Virtual contributions and their subtraction terms

The KLN theorem assures that the divergences in the real and virtual contribution to

the integrated cross section cancel each other. In other words, the pole structure of V
can be extracted from the terms discussed in sections 2.1 and 2.2, by inverting the sign

and integrating over the radiation phase space.

Using the knowledge gained in the last section, we can already infer the general form

of the virtual-subtracted contribution to the cross section, V (0). Obviously, it contains

the O(ε0)-term of the one-loop amplitude, V loop
fin . The integration of the soft limit in

eq. (2.2.26) does not affect the color correlations given by Bij, but removes the spin

correlations due to the spatial averaging it performs. We denote the integrals of the

factors
ki·kj

(ki·k)(kj ·k)
in eq. (2.2.26) associated with Bij by E (mi,mj)

ij,ρ . These eikonal integrals

crucially depend on the masses of the particles at leg i and j, as each massive particle

increases the complexity of the integrals. The index ρ ∈ −2,−1, 0 refers to the coefficient

of ε it belongs to in the Laurent expansion of the integral. In the collinear limits

of, eq. (2.2.32), eq. (2.2.33) and eq. (2.2.34) the spin-correlated matrix element Bµν

transforms into the simple squared matrix element B. For these reasons, the finite part

of the virtual-subtracted contribution has the basic form

V (0) =
∑

k,l

E (mk,ml)
kl,0 Bkl +

∑

i

QiB + V loop
fin . (2.3.1)

This is the master formula for the computation of σvirt in the FKS approach and other

subtraction schemes. In the remainder of this section, we will deal with the derivation of

explicit formulas for E (mk,ml)
kl,0 and Qi. The computation of V loop

fin requires the evaluation

of loop integrals, a task outside of the subtraction implementation.

Beforehand, we want to note that the results presented in the following strongly

depend on the chosen normalization. With the same reasoning as above, it can be seen

that the singular part of the virtual-subtracted matrix element is given by

Vdiv = N (ε) ·
{
∑

k,l

[
1

ε2
E (mk,ml)
kl,−2 +

1

ε
E (mk,ml)
kl,−1

]

Bkl +
1

ε

∑

k

Q′
kBfk + V loop

div

}

. (2.3.2)

The normalization factor N is a remainder of dimensional regularization and is equal to

one in the limit ε → 0. Nevertheless, the explicit form of all terms inside the brackets

crucially depend on the choice of N , which is important when matching the subtraction

terms to the one-loop matrix elements which in the context of Monte-Carlo programs

26



2.3. Virtual contributions and their subtraction terms

are often obtained from external programs. We choose 10

N (ε) =
(4π)ε

Γ(1− ε)

(
µ2

Q2

)ε

. (2.3.3)

Here µ is the renormalization scale and Q is the commonly used Ellis-Sexton scale [77],

which allows to tune the terms in such a way that either the logarithms log(µ2/Q2)

or log(Q2/s) vanish. A different normalization is for example used by RECOLA (cf.

section 3.1.1), namely

N (ε) = (4π)εΓ(1 + ε). (2.3.4)

Matching this to eq. (2.3.3) and ignoring the µ2/Q2 factor, the product Γ(1+ ε)Γ(1− ε)

appears. Expanded in ε, it equals 1+π2

6
ε2+O(ε4). This way, a summand π2/6

∑

k,l E
(mk,ml)
kl,−2

is moved from the divergent to the finite part of V , thus changing the integration result.

We turn to the evaluation of the integrals required in eq. (2.3.1). They are obtained by

integrating the real amplitude over the radiation phase space and extracting the finite

remainders. Therefore, we start with

∫

dΦn+1Rα =

∫

dΦn
s1−ε

(4π)3−2ε
ξ1−2εdξ(1− y2)−εdydΩ2−2εRα, (2.3.5)

where the d-dimensional volume integral is
∫
dΩ2−2ε = 2π1−ε/Γ(1 − ε). We focus on

one individual singular region α, where the splitting particles are well-defined. At the

end of the calculation, to obtain the overall structure of the virtual matrix element, we

sum over all α. The integral in eq. (2.3.5) contains collinear and soft divergences. Our

approach to regularize them is depicted in fig. 2.2. We first regularize the soft divergence

by expanding ξ−1−2ε as in eq. (2.2.23). Note that like in eq. (2.2.17) we factor out a

factor of ξ2 to make the product ξ2Rα finite in the soft limit. This way, the integral is

split up into ∫

dΦn+1Rα = Is,α + I+,α, (2.3.6)

where the + implies that the ξ-singularity has been regularized using

P+(ξ) =

(
1

ξ

)

+

− 2ε

(
log ξ

ξ

)

+

+O(ε2). (2.3.7)

The remaining factor −δ(ξ)/2ε in eq. (2.2.23) is included in Is,α. This way

Is,α := − 1

2ε

∫

dΦn
s1−ε

(4π)3−2ε
dΩ3−2ε lim

ξ→0

[
ξ2Rα

]
, (2.3.8)

10This normalization is also proposed by the BLHA standard [75, 76]
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2. The FKS Subtraction Scheme

Isδ,α Is+,α I+δ,α I++,α

Is,α

y → 1
(

1
1−y

)

+

I+,α

y → 1
(

1
1−y

)

+

∫
dΦn+1Rα

ξ → 0 P+(ξ)

Figure 2.2. Regularization of the integral of the real matrix element. Isδ,α is equal
to zero in standard FKS, but gives an additional contribution to Q in the resonance-

aware approach, cf. eq. (2.6.20). The integral Is+,α yields the eikonal integrals E(mi,mj)
ij,ρ ,

whereas I+δ,α gives another contribution to the Q- factor in eq. (2.3.1). I++,α is the
finite real-subtracted expression discussed in section 2.2.
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2.3. Virtual contributions and their subtraction terms

and

I+,α :=

∫

dΦn+1
P+(ξ)

ξ−1−2ε
Rα. (2.3.9)

Here, in eq. (2.3.8), the δ(ξ) function has been transformed into the limit ξ → 0. The

additional factor ξ−1−2ε in the denominator of eq. (2.3.9) appears because we have ex-

panded by ξ1−2ε in order to restore the full n+1-particle integral measure dΦn+1. Both

integrals still contain collinear divergences. Like in section 2.2, they are regularized by

expanding the y-expressions in terms of plus distributions. The plus distributions have

to map the singularity at y → 1, so that (1 − y2)−ε should be connected to
(

1
1−y

)

+
.

This is achieved by using the identity

(1−y2)−ε = (1+y)−ε(1−y)(1−y)−1−ε = (1−y)
[

−2−2ε

ε
δ(1− y) +

(
1

1− y

)

+

+O(ε)

]

.

(2.3.10)

Using this regularization, in total four different integrals are produced, each with a

distinct singularity structure. This is completely analogous to the separation performed

in eq. (2.2.24). For Is,α, we obtain

Is,α := Is+,α + Isδ,α (2.3.11)

where, as before, a + signifies that a divergence is regularized, in this case the collinear

one. Analogously, I+,α is split up into

I+,α := I+δ,α + I++,α (2.3.12)

The task is now to work out these four integrals.

2.3.1. The integrals I++ and I+δ

The I++–integral is the exact same integral as in eq. (2.2.25). It creates the real-emission

subtraction terms. The remaining integration over the radiation phase space is per-

formed by the Monte-Carlo generator. The I+δ–integral is soft-regularized but contains

collinear divergences. In the following, those singularities are made explicit and the

finite parts of I+δ are extracted. Let i denote the index of the radiated particle and j

the emitter’s index. Then, the emitter momentum in the Born phase space is given by

k = ki + kj. Making the integration over both ki and kj explicit, the I+δ,α–integral is
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2. The FKS Subtraction Scheme

given by 11

I+δ,α =

∫

(2π)dδ(d)

(

k⊕ + k⊖ −
n+1∑

l=1

kl

)[
∏

l 6=j,i

dΦl

]

×
(
k0j
)1−2ε

2(2π)3−2ε
dk0jdΩ

3−2ε
j dk0δ(k0 − k0j − k0i )

×
[

−2−2ε

ε
δ(1− y)

]
(k0i )

1−2ε

2(2π)3−2ε
dk0i dydΩ

2−2ε
i

P+(ξ)

ξ−1−2ε
lim
y→1

[(1− y)Rα] .

(2.3.13)

We perform a change of variables by replacing ξ by z, defined by k0j = zk0 and k0i =

(1− z)k0. This way,

ξ =
2k0i√
s
=

2k0√
s
(1− z) = ξmax(1− z), (2.3.14)

where we have identified the quantity 2k0/
√
s as ξmax, as given in eq. (2.1.21). Consider-

ing the massive case is irrelevant for collinear emissions. Moreover, with the replacement

k0j = zk0, we can combine the product
∏

l 6=i,j dΦl with the dk0j integral to the Born phase-

space measure dΦB. Further, eq. (2.2.23) gives

P+(ξ) = ξ−1−2ε +
1

2ε
δ(ξ) = ξ−1−2ε

max

(

(1− z)−1−2ε +
ξ2εmax

2ε
δ(1− z)

)

, (2.3.15)

which can be used to eliminate the plus-distributions in eq. (2.3.13). We know the

collinear limit ofRα from eq. (2.1.5). Here it is applied with two modifications. First, the

angular integration allows to use the space-averaged Altarelli-Parisi splitting functions

〈P̂ab〉 in eq. (B.3.20) to eq. (B.3.22). Second, there is the additional factor of 1−y, which
yields the slightly modified collinear limit

〈lim
1→y

[(1− y)Rα]〉 =
8παsµ

2ε

2 (k0)2 z(1− z)
〈P̂ 〉α(z, ε)Bfα , (2.3.16)

with the additional factor z(1− z) in the denominator. The explicit expressions for the

space-averaged Altarelli-Parisi-splitting functions are given in eq. (2.1.6) to eq. (2.1.8)

and already appeared in the treatment of the real final-state collinear subtraction terms

in eq. (2.2.32) to eq. (2.2.34). Altogether, integrating out the angular radiation phase

11The explicit limit y → 1 is redundant due to the δ function, but we keep it to emphasize that this
term has to be replaced by the appropriate collinear limit of Rα.
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2.3. Virtual contributions and their subtraction terms

space, we obtain

I+δ,α = −N (ε)

ε

αs

2π

∫

dΦnBfα

(
Q

2k0

)2ε

×
∫ 1

0

dzz1−2ε

[

(1− z)−1−2ε +
ξ2εmax

2ε
δ(1− z)

]

(1− z)〈P̂ 〉α(z, ε),
(2.3.17)

where the normalization factorN (ε) is as in eq. (2.3.3). Finally, we are left with integrals

of the form

I
(0)
+δ,α :=

∫ 1

0

dzz−2ε(1− z)−2ε〈P̂ 〉α(z, ε), (2.3.18)

and

I
(1)
+δ,α :=

∫ 1

0

dzz−2ε ξ
−2ε
max

2ε
δ(1− z)(1− z)〈P̂ 〉α(z, ε). (2.3.19)

which have to be evaluated for each of the three splitting functions individually. After

the integration is performed for each of them, the g → qq̄ and g → gg case is combined

into one term. The explicit results for I
(0)
+δ,α are listed in eq. (B.3.23), eq. (B.3.24)

and eq. (B.3.25). With X(ε) = ξ−2ε
max/ε

2, the integral I
(1)
+δ,α can be determined to equal

−2CF ·X(ε) for a q → qg-splitting, −2CA·X(ε) for a g → gg-splitting and 0 for a g → qq̄-

splitting. As mentioned above, the last two splittings are combined, so the integral can

be written as I+δ,α = −X(ε) · Cfα , where Cfα is the Casimir operator of the singular

region α’s emitter. Table 2.1 lists the integral contributions ordered by their power of ε,

both for the gluon and quark splittings. For the g → qq-splitting the number of flavors

the gluon can split into is accounted for by the inclusion of nf . The coefficients of the

ε0- and ε−1-terms are called γ and γ′, respectively. Using that, for a massless emitter,

ξmax = 2k0/
√
s, the factor (Q/2k0)

2ε
in eq. (2.3.17) can be rewritten as (Q2/s)

ε
ξ−2ε
max.

The expansion of this factor as well as that of the ξ−2ε
max-factor associated with the Casimir

operator leads to a reshuffling of ε-poles and additional terms log (Q2/s) and log ξmax in

eq. (2.3.17). After summing over all α regions, the final result is thus

∑

α∈PFKS(fb)

I+δ,α = N (ε)
αs

2π

∫

dΦn

∑

i

Bi(fb)

{
1

ε

(
−2 log ξmaxCi(fb) + γi(fb)

)
+Q+δ

i(fb)

}

,

(2.3.20)

with

Q+δ
i(fb)

= 2 log ξmax

(

log ξmax − log
Q2

s

)

Ci(fb) +

(

log
Q2

s
− 2 log ξmax

)

γi(fb) + γ′i(fb),

(2.3.21)

which is part of the factor Qi in the master formula in eq. (2.3.1).
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2. The FKS Subtraction Scheme

Table 2.1. Collinear pole structure of all QCD splittings and definition of γ and γ′. Note
that the final ε-series gets further reshuffled due to the expansion of ξ−2ε

max.

g → gg, qq̄
∑

α I
(0)
+δ,α

∑

α I
(1)
+δ,α

O(1)
(

67
9
− 2π2

3

)

CA − 23
9
TFnf = γ′g 0

O(ε−1) 11
6
CA − 2

3
TFnf = γg 0

O(ε−2) CA −CAξ
−2ε
max

q → qg
∑

α I
(0)
+δ,α

∑

α I
(1)
+δ,α

O(1)
(

13
2
− 2π2

3

)

CF = γ′q 0

O(ε−1) 3
2
CF = γq 0

O(ε−2) CF −CF ξ
−2ε
max

2.3.2. The integrals Is+ and Isδ

We perform the y-regularization in eq. (2.3.8) using eq. (2.3.10), which yields

Is+,α = − 1

2ε

∫

dΦn
s1−ε

(4π)3−2ε
dΩ3−2ε lim

ξ→0

[
ξ2Rα

]
. (2.3.22)

Here, in the factor (1− y)
(

1
1−y

)

+
introduced by eq. (2.3.10), the numerator effectively

cancels the denominator. This way, Is+,α is identical to Is,α, from which it follows that

Isδ,α = 0. (2.3.23)

We want to emphasize that it can differ from zero in different regularization approaches,

like the one used in resonance-aware FKS, cf. section 2.6. There it gives a contribution

to the Q-factor in eq. (2.3.1). In standard FKS, it is therefore

Qj(fb) = Q+δ
j(fb). (2.3.24)
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Applying the soft limit of eq. (2.1.16) in Is+,α is only well-defined in the sum over all

singular regions with the same underlying Born flavor structure. We obtain

∑

α

Is+,α = − 1

2ε

∫

dΦB

∫

dΩ3−2ε s1−ε

(4π)2−2ε
4παsµ

εξ2
∑

ij

ki · kj
(ki · k)(kj · k)

Bij

=

∫

dΦB

∑

ij

Bij

(−1

2ε

)(
µ2

s

)ε ∫
dΩ3−2ε

π

sξ2

4

ki · kj
(ki · k)(kj · k)

︸ ︷︷ ︸

E
(mi,mj)

ij,ρ

(2.3.25)

The explicit formulas for the eikonal integrals E (mi,mj)
ij,ρ are given in section B.3.1. Their

finite part enters the master formula in eq. (2.3.1) as discussed in the beginning of the

section.

2.4. Subtraction of initial-state divergences

Divergences induced by initial-state emissions are more intricate than final-state ones,

due to their interaction with the beam structure functions. In this section, we focus on

hadron collisions, because only here, NLO QCD corrections have an effect on the initial

state. Photonic initial-state corrections on lepton beams are briefly discussed in sec. 2.7.

2.4.1. Divergences from PDF evolution

Given a beam constituent parton, the parton densities at the energy scales x1,2 = E1,2/
√
s

evolve as

f(x2) =

∫ 1

0

∫ 1

0

dx1dzf(x1)Γ(z)δ(x2 − x1z). (2.4.1)

Here Γ is the DGLAP evolution kernel. For a splitting of initial-state particles a→ b it

is given by

Γ(b)
a = δabδ(1− x)− αs

2π

(
1

ε
Pab(x, 0)−Kab(x)

)

+O(α2
s). (2.4.2)

Pab is the regularized Altarelli-Parisi splitting function. The splitting functions

defined in eq. (2.1.6) to eq. (2.1.8) contain divergences at z = 1, which can be regularized

with plus-distributions, just as it has already been done for ξ and y. The connection

between the regularized and the generalized splitting functions is [39]

Pab(z, 0) =
(1− z)P̂ab(z, 0)

(1− z)+
+ γaδabδ(1− z), (2.4.3)
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with γa as defined in table 2.1. Kab is a renormalization scheme matching factor, which

is exactly zero in MS. The crucial point about eq. (2.4.2) is that it is a perturbative

expansion itself, containing additional collinear divergences. In a consistent NLO calcu-

lation, the O(αs) contributions from the matrix elements have to be matched with the

O(αs) contributions from the DGLAP evolution in eq. (2.4.2), leading to divergences

which are not cancelled by the virtual contribution.

Let the leading-order hadronic cross section be given by

dσ(0)(s) =

∫

dx⊕dx⊖f⊕(x⊕)f⊖(x⊖) dσ̃
(0)(x⊕x⊖s)

︸ ︷︷ ︸

dσ̂(0)

, (2.4.4)

then the NLO hadronic cross section is

dσ(1)(s) =

∫

dx⊕dx⊖dz⊕dz⊖f⊕(x⊕)f⊖(x⊖) Γ⊕(z⊕)Γ⊖(z⊖)dσ̃
(1)(z⊕z⊖s)

︸ ︷︷ ︸

dσ̂(1)

. (2.4.5)

The subtracted partonic cross sections dσ̂(0,1) are related to the partonic ones via

dσ̂
(0)
ab (k1, k2) = dσ̃

(0)
ab (k1, k2) (2.4.6)

and

dσ̂
(1)
ab (k1, k2) = dσ̃

(1)
ab (k1, k2)

+
αs

2π

∑

d

∫

dx

(
1

ε
Pda(x, 0)−Kda(x)

)

dσ̃
(0)
db (xk1, k2)

+
αs

2π

∑

d

∫ (
1

ε
Pdb(x, 0)−Kdb(x)

)

dσ̃
(0)
ad (k1, xk2).

= dσ̃
(1)
ab + dσ̃

(cnt,+)
ab + dσ̃

(cnt,−)
ab .

(2.4.7)

We observe three terms. The first one, dσ̃
(1)
ab , is the partonic O(αs) cross section. Its

divergences originate purely from the matrix element and the phase space. The other two

are exclusive to hadron collisions. They are interference terms between the leading-order

matrix elements and the O(αs)-contributions to the PDF evolution. They introduce new

singularities into the calculation, which cancel out with the divergences in the real matrix

element, leading to additional subtraction terms. These singularities can be attributed

to y = 1 for dσ̃
(cnt,+)
ab and y = −1 for dσ̃

(cnt,−)
ab . Note that, in lepton collisions (and

only for QCD corrections), dσ̃
(cnt,+)
ab = dσ̃

(cnt,−)
ab = 0, which removes the necessity of any

additional subtraction terms. To account for collinear divergences both at y = +1 and
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2.4. Subtraction of initial-state divergences

y = −1, eq. (2.2.17) is changed so that y2 appears instead of y,

R =
1

ξ2
1

1− y2
(
ξ2(1− y2)R

)
=

1

ξ2
1

1− y2
R̃. (2.4.8)

Since the divergences in eq. (2.4.7) are purely collinear, the soft-subtracted ξ-expansion

of eq. (2.2.23) can be used throughout the following discussions. The master formula in

eq. (2.2.19), taking into account the initial-state definition of R̃ (2.4.8), yields

R(in)
α =

[(
1

ξ

)

+

− 2ε

(
log ξ

ξ

)

+

]
(
1− y2

)−1−ε R̃α = P+(ξ)
(
1− y2

)−1−ε R̃α, (2.4.9)

where P+(ξ) has been defined in eq. (2.3.7). The collinear divergences are regularized

using the identity,

(
1− y2

)−1−ε
= −2−ε

ε
(δ(1− y) + δ(1 + y)) +

1

2

[(
1

1− y

)

+

+

(
1

1 + y

)

+

]

+O(ε),

(2.4.10)

similar to eq. (2.2.21). Note that the expansion only has to performed up to O(1)

because there are no 1/ε-poles in eq. (2.4.9). Equation (2.4.9) is split up further into

R(in)
α = R(in,+)

α +R(in,−)
α +R(in,fin)

α +O(ε). (2.4.11)

The last of the three summands,

R(in,fin)
α =

1

2

[(
1

1− y

)

+

+

(
1

1 + y

)

+

]

P+(ξ)R̃α, (2.4.12)

is the initial-state analogon to eq. (2.2.25) and soft and collinear finite due to the plus-

distributions. The other two summands,

R(in,±) = −2−ε

ε
δ (1∓ y)P+(ξ)R̃α, (2.4.13)

are new and contain the DGLAP-structure of the full real matrix element. They are

only present in the strict collinear limit y = ±1. Therefore, the conditions of the KLN

theorem are not met. It requires an integration over the whole radiation phase space,

which is clearly violated by the presence of the δ-function in eq. (2.4.13), which singles

out the beam axis. Accordingly, instead of cancelling any poles, R(in,±) just gives a finite

contribution.
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M(n) M(n) M(n) M(n)

Figure 2.3. All factorized initial-state QCD splittings.

2.4.2. Initial-state real subtraction

Initial-state collinear singularities

The collinear limit in eq. (2.4.12) is the initial-state analogon to the third summand in

eq. (2.2.25), whose treatment has been discussed in section 2.2.2 and most statements

given there are also valid here. One difference is that in initial-state emission, k2em < 0,

which has to be compensated by an additional minus sign. Also, there are in total four

different splittings, depicted in fig. 2.3. The subtraction terms are

R(g→gg)
C =

8παsCA

−k2em

[

−2

(
z

1− z
+ z(1− z)

)

gµν +
4(1− z)

z
k̂µ⊥k̂

ν
⊥

]

Bµν , (2.4.14)

R(q→gq)
C =

8παsCF

−k2em
1 + z2

1− z
B, (2.4.15)

R(q→qg)
C =

8παsCF

−k2em

[

−gµνz + 4(1− z)

z
k̂µ⊥k̂

ν
⊥

]

Bµν , (2.4.16)

R(g→qq̄)
C =

8παsTF
−k2em

(
z2 + (1− z)2

)
B, (2.4.17)

where now z = 1 − ξ. In the soft limit, all equations are multiplied with ξ, cf. sec-

tion 2.2.2, so that the factor of 1− z in the denominator of eq. (2.4.14) and eq. (2.4.15)

vanishes, regularizing the soft-collinear limit z = 1.

Singular regions and S-functions

To facilitate the evaluation of the S-functions, the dij weights can be brought into a

simpler form by fixing one of the momenta to be parallel to the beam axis. This way,

in eq. (2.2.13), the scalar product ki · kj gives EiEj(1± y), where the + corresponds to

emissions anti-parallel to the z-axis. Further, let j be the index of the emitted quark

or gluon. Then, Ei equals the partonic beam energy. The ISR real-emission mapping

ensures that Ei > Ei, cf. eq. (A.2.3), so that the soft limit is entirely determined by

Ej → 0. In this limit, the denominator (Ei + Ej)
2 effectively cancels the E2

j factor in
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2.4. Subtraction of initial-state divergences

the numerator. We can thus define

d(1,2)j = 2E2
j (1∓ y) . (2.4.18)

A further improvement can be made by introducing a 0-region, which contains singular-

ities which are collinear to both the ⊕- and the ⊖- direction. In QCD, this is only the

case for gluon emissions. The 0-region gets the phase-space weight,

d0j = E2
j

(
1− y2

)
, (2.4.19)

which is the denominator of the sum d−1
1j + d−1

2j . As an illustration for that, consider

the Drell-Yan process qq̄ → l+l− in NLO QCD. There are three initial-state singular

regions, {(0, 5), (1, 5), (2, 5)}. The first one corresponds to gluon emission from either

the quark or the anti-quark. The second one contains the singularity associated with the

g → qq̄-splitting, where q enters the hard interaction. Analogously, the (2, 5)-region is

associated with the same splitting and q̄ entering the hard interaction. The D-function

from eq. (2.2.11) is given by

D =
1

E2
5(1− y2)

+
1

2E2
5(1− y)

+
1

2E2
5(1 + y)

, (2.4.20)

so that

S05 =
1

2
, S15 =

1

4
(1 + y), S25 =

1

4
(1− y). (2.4.21)

Note that S05+S15+S25 = 1, which, however, is only valid if the factor of two is included

in the definitions of eq. (2.4.18).

2.4.3. Subtraction of DGLAP remnants

We are left with R(in,±)
α in eq. (2.4.11) and its cross section dσ̃(in,±). It can be shown

that, regularizing the splitting functions as in eq. (2.4.3) in eq. (2.4.7), the poles in

dσ̃(in,±) and dσ̃(cnt,±) cancel in the sum

dσ(in,±) = dσ̃(in,±) +
1

4
dσ̃(cnt,±) (2.4.22)

When expanding in ε, the ε–dependence of P̂ has to be taken into account,

P̂ab(z, ε) = P̂ab(z, 0) + ε
∂P̂ab(z, ε)

∂ε
|ε=0 +O(α2

s). (2.4.23)
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2. The FKS Subtraction Scheme

In summary, the initial-state collinear remnants are given by [39, 59]

dσ̂
(in,±)
ab =

αs

2π

1

ε
γa(RSα)

+
αs

2π

∑

d

{

(1− z)P̂ad(z, 0)

[(
1

1− z

)

+

log
s

µ2
+ 2

(
log(1− z)

1− z

)

+

]

−∂P̂ad(z, ε)

∂ε
|ε=0 −Kad(z)

}

Bdb.

(2.4.24)

The first line contains a soft singularity, which cancels out with the corresponding ex-

pression in the soft-virtual terms. This leads to additional summands in eq. (2.3.21),

given by

QIS = − log
µ2
F

Q2
(γ⊕ + γ⊖) , (2.4.25)

where Q2 is the Ellis-Sexton scale. The second line in eq. (2.4.24) can be integrated as it

is. It makes up another independent component of the complete NLO calculation, next

to the Born, real and virtual contributions. Its kinematics are essentially Born-like, with

one additional degree of freedom due to the parton energy fraction z.

2.5. Phase space constructions

The first element of an FKS pair, given the redundancy-free definition of PFKS in

eq. (2.2.3), specifies the emitter of a singular region. An essential part of the sub-

traction procedure is to ensure that the phase-space point a real matrix element is

evaluated with for a given α correctly reproduces the soft and collinear limits of this re-

gion. In other words, for each α, there is a mapping Φ̄n → Φn+1(αr) of Born kinematics

to real-emission kinematics. This makes FKS especially suited for a combination with

Powheg matching, in contrast to dipole-based subtraction schemes like CS, where the

mapping proceeds in the different direction. Here, one single n+ 1-particle phase-space

configuration is mapped onto several Born configurations.

In original FKS works, the phase-space construction was hand-tailored for the pro-

cesses involved. In the wake of the development of the Powheg Box [44], a general

algorithm has been developed, first for massless particles. The first publication to discuss

a phase-space construction for massive emitters is ref. [60] in the context of electroweak

corrections to single W production. A special algorithm is used for resonance-aware

FKS [61]. The details of real-emission phase space generation are vital for a correct

implementation of an NLO event generator, but not relevant for the general picture.

Their discussion is therefore deferred to appendix A. In the context of this thesis, we

have developed two new phase-space construction procedures. The first one deals with
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2.6. Resonance-aware FKS Subtraction

initial-state emissions for decay processes, which is discussed in section 4.1. The second is

on-shell phase-space generation for the e+e− → tt̄ threshold treatment, cf. section 6.2.2.

2.6. Resonance-aware FKS Subtraction

In this section, we give an overview over the resonance-aware FKS subtraction, developed

in ref. [61]. It was recently applied to NLO parton shower matching in off-shell tt̄ andWt

production at a hadron collider by ref. [78]. It has also been applied in combination with

an FSR/ISR matrix-element separation to Drell-Yan in ref. [79]. Its implementation

and validation in Whizard is briefly outlined in section 4.2 for the process e+e− →
bb̄µ+µ−. Especially, it plays an important role in the study of top production discussed

in chapter 5 [2].

2.6.1. Narrow resonances and real-emission mappings

The standard FKS approach turns out to be very inefficient in the presence of resonances

which decay into particles which participate in real emissions. For example in the process

e+e− → bW+b̄W− studied later in this thesis, there is a contribution of H → bb̄ decays

in a Higgsstrahlung diagram, with a very narrow resonance ΓH = O(1MeV). The real

correction to this process generates emissions from either the bottom or anti-bottom

quark. This moves the invariant mass of the Higgs boson away from its Born value by

the amount ∆2
bbg, given by

p2bbg = p̄2bb +∆2
bbg. (2.6.1)

σReal
NLO is made up of both Born and real-emission kinematics, the latter one existing

for each possible emitter. For an effective cancellation of singularities, the real matrix

element must strictly factorize into a kinematical factor and the Born matrix element.

However, the shift in the Higgs virtuality induced by eq. (2.6.1) leads to a disagreement

of the Higgs propagator so that this requirement is not met. More explicitly, consider

the Higgs propagator in the Born and color-correlated matrix elements

DBorn
H =

[
(p̄2bb −m2

H)
2 +m2

HΓ
2
H

]−1
, (2.6.2)

and the corresponding one in the real matrix element,

DReal
H =

[
(p2bbg −m2

H)
2 +m2

HΓ
2
H

]−1
. (2.6.3)

For a perfect cancellation of divergences, these two quantities should be equal, or at

least close to. Let ε = p̄2bb −m2
H be the deviation of the Higgs virtuality from its Born
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2. The FKS Subtraction Scheme

value. Then,

D :=
DBorn

H

DReal
H

= 1 +
∆4

bbg + 2∆2
bbgε

ε2 +m2
HΓ

2
H

ε→0
= 1 +

∆4
bbg

m2
HΓ

2
H

(2.6.4)

gives the propagator discrepancy at threshold. It clearly shows the problem involved for

real emission, as D is proportional to the fourth power of the gluon emission energy and

the inverse square of the Higgs width. D ≈ 1 thus requires ∆4
bbg ≪ m2

HΓ
2
H . In the stan-

dard final-state emission phase space construction, the gluon momentum is first aligned

along the emitter momentum. Both are then separated by a rotation corresponding to

the radiation variables y and φ. The gluon emission reshuffles energy from the recoiling

system to the radiation system. To account for that, the real momenta in the recoiling

system are obtained by boosting the Born-level momenta. This boost especially affects

the momentum of the emitter’s resonance partner. For example, in H → bb̄, for a gluon

emission from the bottom quark, the momentum of the anti-bottom quark is boosted.

This way, the Higgs virtuality is shifted as indicated in eq. (2.6.1) with ∆2
bbg > 0. The

mismatch is most distinct for collinear emissions, since ∆4
bbg can take arbitrarily large

values, but also soft emissions can fall below this limit, especially for H → bb̄ where

m2
HΓ

2
H = (0.720GeV)4. The mismatch is milder for t→ Wb, since m2

tΓ
2
t = (15.4GeV)4,

but still of relevance. Note that the issue of the H → bb̄ subprocess is only present

in the off-shell tt̄ process at a lepton collider, because here the production process is

O(α2), instead of O(α2
s) at a hadron collider. In the so-called resonance-aware FKS

approach, first presented in ref. [61], the problem is solved by fixing ∆bbg = 0, so that D
is always perfectly one and the soft and collinear approximations match the real matrix

element in its respective limits. To fixate ∆2
bbg = 0, the real emission is generated in the

resonance rest frame. In contrast to the default approach, the mapping is completely

insensitive to all particles not associated with the resonance. Their momenta are just

kept at their Born value. The gluon and emitter momenta are constructed as usual, and

all recoiling particles which belong to the resonance are boosted. This way, p̄2bb = p2bbg,

which solves the problem of propagator mismatch. Processes can be made up of dia-

grams in which the final-state particles emerge from different resonances. For example,

in four-jet production at a lepton collider, the process e+e− → uūdd̄ consists of diagrams

with Z resonances, in which ZZ → (uū)(dd̄) and of diagrams with W resonances, in

which WW → (ud̄)(dū). These different resonance histories fr interfere in the total

matrix element, and it is thus necessary to separate the cross section into well-defined

contributions, each of them dominating in a single resonance history. This leads to a

modification of the FKS mappings, discussed in section 2.6.3.
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2.6. Resonance-aware FKS Subtraction

2.6.2. Soft mismatch

Moving from the total CMS frame to the resonance rest frame requires careful replace-

ment of
√
s by the resonance virtuality

√

k2res at the appropriate places. Because the

momenta not associated with the emitter of a given resonance history are fixed at their

Born values, the effective reference energy of the gluon emission is now given by the

resonance momentum. Thus, there is the modified expression for the gluon energy

ξ =
2k0n+1
√

k2res
, (2.6.5)

with its upper limit given by

ξmax =
2k̄em · kres

k2res
. (2.6.6)

This trivial replacement has strong consequences for the soft integrals, because ξ differs

between reference frames. This non-globality implies a phase-space factorization which

is different from eq. (2.2.18), i.e.

dΦn+1 =
(k2res)

1−ε

(4π)3−2ε ξ
1−2εdξdΩ3−2εdΦn. (2.6.7)

Therefore, the soft-virtual integral in eq. (2.3.8) changes to

Is,α = − 1

2ε

∫

dΦn
(k2res)

1−ε

(4π)3−2ε
dΩ3−2ε lim

ξ→0

[
ξ2Rα

]
. (2.6.8)

The collinear-virtual integral in eq. (2.3.9) on the other hand is not modified, because

it does not use real phase-space factorization explicitly. The virtual subtraction terms

in section 2.3 are obtained by summing over all Is,α (the summation is actually always

implicit there). The common factor s in the numerator of eq. (2.3.8) appears as a

global logarithm in the final result. In eq. (2.6.8), k2res depends on the reference frame of

the resonance history fr, so that the summation cannot be carried out in the standard

way. In fact, the full R is not recovered that way, i.e. there is a mismatch between R
and the sum over all α. This mismatch has to be included in the resonance-aware FKS

computation as an additional component. The goal is to make the non Lorentz-invariant

part of eq. (2.6.8) explicit. For this we rewrite eq. (2.6.5) to

ξ =
2ki · kres
k2res

, (2.6.9)

which is possible because ξ is defined in the rest frame of kres. Note that eq. (2.6.9) is

not Lorentz-invariant, because ki belongs to the common radiation phase space. The
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2. The FKS Subtraction Scheme

ε-pole in eq. (2.6.8) can be transformed into an integral by artificially extending ξ to the

interval (0, ξ),
∫ ∞

0

dξξ−1−2εe−ε =
Γ(1− 2ε)

−2ε
. (2.6.10)

This continuation might seem problematic at first glance, because arbitrarily large values

of ξ lead to arbitrarily large emission energies, which would violate momentum conserva-

tion. Yet, the soft mismatch has effectively Born kinematics and all radiation variables

are inclusive in the integrals. Therefore, no explicit real-emission phase space has to be

generated, avoiding a violation of momentum conservation12 Vice versa, the replacement

ξ−1−2εe−ξ ⇒ Γ(1− 2ε)

−2ε
δ(ξ) (2.6.11)

undoes eq. (2.6.9). Inserting eq. (2.6.10) into eq. (2.6.8) yields

Is,α =
1

Γ(1− 2ε)

∫

dΦn

∫ ∞

0

dξξ−1−2εe−ε (k
2
res)

1−ε

(4π)3−2εdΩ
3−2ε lim

ξ→0

[
ξ2Rα

]

=
1

Γ(1− 2ε)

∫

dΦn

∫

dΦie
−2ki·kres

k2res

{
1

ξ2
lim
ξ→0

[
ξ2Rα

]
}

,

(2.6.12)

where in the second line we have restored the Lorentz-invariant radiation phase space

dΦi. Moreover, ξ has been replaced in the exponent by eq. (2.6.9). In eq. (2.6.12), the

only quantity which depends on the resonance frame is the exponential. Defining

R̂α =
1

ξ2
lim
ξ→0

[
ξ2Rα

]
, (2.6.13)

we split up Is,α into an IR-finite and divergent part by subtracting and adding an expo-

nential with the same singular behavior with respect to a reference momentum q,

Is,α = I(0)s,α + I(ε)s,α, (2.6.14)

I(0)s,α =
1

Γ(1− 2ε)

∫

dΦn

∫

dΦiR̂α

{

exp

[

−2ki · kres
k2res

]

− exp

[

−2ki · q
q2

]}

, (2.6.15)

I(ε)s,α =
1

Γ(1− 2ε)

∫

dΦn

∫

dΦiR̂α

[−2ki · q
q2

]

. (2.6.16)

In the soft limit ki → 0, eq. (2.6.15) behaves as e−0 − e−0, causing the divergences in

R̂α to vanish. Most commonly, q is the total four-momentum of all final-state particles,

12A subtlety occurs for the evaluation of the soft subtraction, given by eq. (2.2.26), which is required
by eq. (2.6.18). There, the gluon momentum occurs, contrary to the statement made here. Yet, the
gluon energy cancels out in the full expression cf. eq. (2.2.17). Therefore, one can use a unit vector
for k in eq. (2.2.26), which only depends on y and φ.
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so that q2 = s. This way, q2 > 0, which damps contributions of large gluon energies ki
in eq. (2.6.16). The crucial point is that I

(ε)
s,α does not depend on the resonance frame.

Therefore, the sum over all singular regions like in eq. (2.2.26) can be performed, and

the exponential exp
[

−2ki·q
q2

]

factors out. This leaves the sum over all R̂α with the same

Born flavor structure, in which, per construction
∑

α R̂α = R̂, i.e. the full soft limit as

in eq. (2.2.26). For this reason, I
(ε)
s,α is the same as in eq. (2.3.8) and does not introduce

any new contributions. The I
(0)
s,α term has no soft, but collinear divergences. It is split

up into a regularized and divergent part as depicted in fig. 2.2, using eq. (2.3.10). As

before,

I(0)s,α = I
(0)
sδ,α + I

(0)
s+,α. (2.6.17)

with

I
(0)
s+,α ≡ Imism,α =

∫

dΦn

∫ ∞

0

dξ

∫ 1

−1

dy

∫ 2π

0

dφ
sξ

(4π)3
×
{

Rs,α

[

e
− 2k·kres

k2res − e−ξ

]

α

− 32παsCj(fb)

sξ2
Bfb(1− y)−1

[

e
− 2k·kres

k2res

k0i
k0
j − e−ξ

]

α

}

,

(2.6.18)

The second summand subtracts collinear divergences and is therefore only required in

singular regions with massless emitters. B is the usual Born matrix element and Rs,α

the soft approximation of the real matrix element as given in eq. (2.2.26). k is the

gluon momentum associated with the emitter of the singular region α. Note that the

integration range is technically extended to infinity, as already pointed out in relation

to eq. (2.6.10). Further, contributions with very large ξ are damped by the negative

sign in the exponential. Equation (2.6.18) constitutes the so-called soft mismatch, an

integration component exclusive to the resonance-aware FKS framework. In standard

FKS, the integral Isδ equals zero, cf. eq. (2.3.23). This is not the case here, where it is

given by

I
(0)
sδ,α = − 1

Γ(1− 2ε)

∫

dΦB

∫ ∞

0

dξ

∫ 1

−1

dy

∫ 2π

0

dφ
s1−ε

(4π)3−2ε
ξ1−2ε

× 2−2ε

ε
δ(1− y)dξdydΩ2−2ε lim

y→1
[(1− y)Rs,α]

{

e
−

2ki·kres

k2res − e−ξ

}

.

(2.6.19)

It contributes as Qsδ to the collinear virtual subtraction term Q in eq. (2.3.1) in addition

to the expression Q+δ of eq. (2.3.21). The evaluation of eq. (2.6.19) is similar to the

computation of Is+ in section 2.3 and can be found in ref. [61]. The result for the finite
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part is

Qsδ
i = 2

(

log

√
s

2k̄0j
+ log ξmax

)(

log

√
s

2k̄0j
+ log ξmax + log

Q2

s

)

Ci(fb), (2.6.20)

where k̄0j is the energy of the emitter in the Born phase space.

2.6.3. Modified FKS regions

The usual FKS regions discussed in section 2.2.1 are modified in order to separate dif-

ferent resonance histories13. Every resonance of fr, collected in the set Nd , is associated

with a Breit-Wigner factor, giving the weight

P fr =
∏

i∈Nd(fr)

M4
i

(si −M2
i )

2 + Γ2
iM

2
i

, (2.6.21)

with si = k2res,i. This is used to extend the S-functions of eq. (2.2.10). They should not

only approach one only if the kinematics match the soft and collinear characteristics of

α, but also only if the invariant masses si of the decay products of the resonances are

close to threshold. Additionally, they have to vanish if the kinematics match a different

resonance history. This requirements are fulfilled by

Sα =
P fr(α)d−1(α)

∑

f ′
r∈T (Fr(α))

P f ′
r

[
∑

α′∈PFKS(f ′
r)
d−1(α′)

] , (2.6.22)

where T denotes the set of all resonance histories induced by the bare flavor structure

Fr. For the dij terms, the same expressions as in e.g. eq. (2.2.13) can be used, but they

need to be evaluated in the resonance rest frames. This can be achieved by the formal

replacement Ei → ki · kres. The resonance-aware extension of the S-functions increases
the number of singular regions. It is at most the number of emitters times the number

of resonance histories, but can be less because not every emitter need to belong to all

resonance histories. We indicate the additional resonance information in the FKS pairs

by an additional index, (i, j; k). An example is given for e+e− → bb̄µ+µ− in section B.1

in table B.3.

13The approach for the Born phase space discussed ref. [61] is at leading order in principle the same as
the phase-space mappings applied in the Whizard multi-channel setup. For this reason, Whizard

only has resonance mappings for real matrix elements, and we constrain our discussion to those.
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Figure 2.4. An O(α2α2
s) and an O(α4) contribution to e+e− → jjjj. If taken as a real-

emission correction to three-jet production, only the left diagram has a valid underlying
Born flavor structure.

2.7. Remarks on electroweak and mixed corrections

Discussing the subtraction approach, we have implicitly assumed that the subtraction

terms to the real amplitude can be unambiguously created. The factorization formulas

in section 2.1.2 and section 2.1.1 connect real amplitudes with only one Born amplitude.

However, this assumption turns out to be too simple for most processes. The complete

matrix element usually contains different mixed-coupling contributions. For example,

the process e+e− → jjjj is made up of Feynman diagrams of O(αsα) and O(α2), cf

fig. 2.4. In a gauge-invariant calculation, the squared matrix element contains interfer-

ence terms, so that |M|2 has contributions proportional to α2
sα

2, αsα
3 and α4. Figure 2.5

shows the systematics of mixed-coupling corrections. It shows that the same combina-

tion of coupling powers can be reached by a different type of corrections to different

LO terms. Therefore, the O(α2
sα

3) and O(αsα
4) amplitudes contain both divergences

from QCD and QED splittings (apart from those already present at LO). If only pure

QCD corrections are considered, these divergences do not cancel. This shows that to

capture the full physical picture, both QED and QCD corrections have to be taken into

account. In many studies, it is common to only take the coupling combinations at the

left (QCD) or right (QED) border of fig. 2.5 into account. This approach has to be

taken with a grain of salt, since in general, selecting diagrams can violate gauge invari-

ance [80]. However, if the coupling powers and selected consistently, no such problem

arises. The question arises in how far the calculations in this chapter can be transferred

to QED and electroweak corrections. As far as final-state corrections are concerned, this

is straightforward. The construction of soft and collinear limits in this domain is mostly

a kinematical problem. In the collinear limit, color is conserved, and the results from

section 2.1.1 and section 2.2.2 can be adopted for electroweak radiative corrections, with

the trivial replacement of αs by α. Moreover, because there is no γ → γγ splitting in the

standard model, eq. (2.2.34) can be dropped. However, soft subtraction terms have been

composed with the explicit assumption of colored particles, leading to color-correlated

Born matrix elements in eq. (2.2.26). In QED, matrix elements factorize perfectly in

the soft photon limit. Nevertheless, charge-correlations occur because of the fermion-

photon vertex. As briefly outlined in ref. [81], to conserve overall charge conservation,
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Figure 2.5. Visualization of the interference between combined QCD and QED NLO
corrections at the example of the process e+e− → jjjj. Red arrows denote QCD, blue
arrows QED corrections. Only the circles at the left and right borders have one single
associated leading-order contribution. For the other two, a separate QCD treatment is
not possible and electroweak corrections are essential.

charge-flow sign factors σf = ±1 can be introduced such that

∑

f

Qfσf = 0, (2.7.1)

where Qf is the positive or negative charge of particle f . σf is defined so that σf = +1

for incoming fermions or outgoing anti-fermions, and σf = −1 for incoming anti-fermions

or outgoing anti-fermions. With these conventions, the charge-correlated Born matrix

element simply takes the form

Bij = σfiσfjQfiQfjB, (2.7.2)

to be used in the soft subtraction term in eq. (2.2.26) as well as in the corresponding

virtual expressions in eq. (2.3.1).

As far as initial-state radiative corrections are concerned, results cannot be taken

directly from the QCD treatment. The discussion in section 2.4 deeply relies on the

DGLAP evolution of QCD partons. Here, a completely new approach has to be made

for photonic corrections, replacing the PDF evolution by the structure function of the

lepton beam. A simpler approach would be to augment the initial-state real-emission

mapping used for decays as described in section 4.1 to scattering processes.
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3. The WHIZARD Event Generator

Whizard is a multi-purpose event generator for lepton and hadron colliders 1. Histori-

cally, it emerged from works on electroweak physics at a 1.6TeV lepton-collider [82] and

in the TESLA technical design [83]. Especially important processes like vector-boson

scattering with six particles (fermions and bosons) in the final state could not be treated

by the available tools at that time. Hence the name of the program: W, Higgs, Z And

Respective Decays. Whizard has since grown far beyond that original purpose and is

nowadays considered the major multi-purpose event generator in lepton-collider physics,

which is most importantly achieved by its generic treatment of non-trivial lepton beam

structures.

Whizard does not contain a fixed library of processes, like for example the Powheg

Box, but instead is able to generate arbitrary matrix elements using O’Mega [84, 85].

The algorithm is based on helicity amplitudes by using recursion relations and is de-

signed to do this in the most efficient way. Another distinguishing feature of Whizard

is the script language Sindarin2. This is a striking difference to other programs, which

use static input files to control the simulation. Sindarin allows, apart from e.g. se-

lecting physics models, making beam specifications, setting parameters and declaring

processes, for a dynamic analysis using scans, cuts, histograms and plots. Every pro-

cess in Whizard is associated with a specific physics model. The support of these

models relies on its implementation both in O’Mega and Whizard. At the time of

writing, the incorporation of particles with spin 0, 1
2
(Dirac/Majorana), 1, 3

2
and 2 is sup-

ported. Interfaces to Sarah [86], FeynRules [87] and Ufo [88] increase the flexibility

of Whizard’s BSM-support at tree-level.

From the technical point of view, Whizard is an object-oriented and modular pro-

gram. Its main components, i.e. the Whizard core, O’Mega and the multi-channel

integratorVamp [89], are written in programming languages most suited for their specific

task. O’Mega uses a recursive approach to generate matrix element code. This is the

domain where function programming languages work best, and O’Caml was chosen for

this task (which is also object oriented). The generated code purely consists of numerical

1The Whizard homepage is http://whizard.hepforge.org, where download and installation infor-
mation can be found.

2The name is taken from the Lord of the Rings books, where Sindarin is an ancient language spoken
by elves. It is an acronym for ”Scripting integration, data analysis, results display and interfaces”.

47



3. The WHIZARD Event Generator

expressions, where Fortran works best. In the following, when talking about Fortran,

we always imply the modern Fortran2008 standard. Also, Vamp is a mostly numeric

code and is therefore also implemented in Fortran. The Whizard core functions as a

facilitator between the matrix elements and the integrator. It creates the phase space

and computes the matrix elements which are stored in special data structures. These

dynamic data structures allow to compute in principle arbitrary traces of the matrix

elements. Finally, it manages the interface to the multi-channel integrator. For these

tasks, a modular and object-oriented programming language with an additional focus

on numerics works best. Thus, also the Whizard core is written in Fortran. This also

allows to interface various third-party programs to Whizard using Fortran’s native

C-interface.

In the context of this thesis, Whizard has been augmented to automatically perform

next-to-leading order QCD calculations. In the rest of this chapter, we discuss selected

aspects of Whizard relevant for the NLO framework and also for the studies presented

later in this thesis. We refrain from discussing giving any examples of source code or

Sindarin files. The reader should be aware that software is continuously changing,

disrupting the current relationship between different components. A module, object or

subroutine existing at the moment can e.g. be integrated into another, factored up into

smaller entities or be removed entirely as the project advances. The first NLO calculation

performed with Whizard was for chargino production at the ILC in refs. [90, 91], where

both fixed-order QED corrections and soft-photon resummation have been studied. NLO

QCD effects were first studied for the process pp → bb̄bb̄ in refs. [92, 93] using Catani-

Seymour subtraction. Independently from that, the ongoing Whizard+NLO project

was started with the aim to create a fully-automated NLO framework using the FKS

subtraction scheme discussed in detail in the previous chapter. It puts a first focus on

lepton collisions, where NLO QCD corrections only affect final-state particles. It was

first mentioned in ref. [8], from which point on the progress was continuously documented

in refs. [1, 3–7]. Its most advanced application is the study of the off-shell top-quark

continuum at a lepton collider in ref. [2] and the resummed and continuum-matched

top-quark production at threshold in ref. [57].

3.1. Matrix elements and interactions

Data structures which allow for a flexible setup of the process computation are a cru-

cial part of a multi-purpose event generator. The O’Mega amplitudes are in general a

function of the process flavors fi, the color flow indices ci [94], the helicities hi and the

momenta {p}i. The first three are referred to as quantum numbers within Whizard.

The quantum number structure of amplitudes is stored in state matrices of the dimension

48



3.1. Matrix elements and interactions

int

f11, h−1

f−11, h−1

f6, c(+1), h−1

f−6, c(−1), h−1 f−6, c(−1), h+1

f6, c(+1), h−1

f−6, c(−1), h−1 f−6, c(−1), h+1

f−11, h+1

f6, c(+1), h−1

f−6, c(−1), h−1 f−6, c(−1), h+1

f6, c(+1), h+1

f−6, c(−1), h−1 f−6, c(−1), h+1

f11, h+1

f−11, h−1

f6, c(+1), h−1

f−6, c(−1), h−1 f−6, c(−1), h+1

f6, c(+1), h+1

f−6, c(−1), h−1 f−6, c(−1), h+1

f−11, h+1

f6, c(+1), h−1

f−6, c(−1), h−1 f−6, c(−1), h+1

f6, c(+1), h+1

f−6, c(−1), h−1 f−6, c(−1), h+1

Figure 3.1. Fully-exclusive tree representation of the process e+e− → tt̄. The nodes
carry the quantum numbers {f, c, h}, where the color is not indicated for the initial-
state leptons. The final ones are also associated with amplitudes (not indicated in the
picture).

nf ·nc ·nh. They are represented by trees, with each node denoting one configuration of

quantum numbers. In contrast to a multi-dimensional array, tree data structures allow

for a dynamic data representation and, moreover, for the use of well-known optimized

algorithms, such as searches, on them 3. An example for such a state matrix is given in

fig. 3.1 for the process e+e− → tt̄. Starting from the root, each quantum-number config-

uration can be traversed. Numerical values for amplitudes are stored on the final nodes.

State matrices are combined with phase-space and particle information to an interac-

tion. An evaluator is an interaction which receives two input interactions and performs

manipulations on them, such as computing the appropriate helicity- and color-averaged

sum of amplitudes. The evaluator is the final data structure in the Whizard amplitude

chain, performing the appropriate summation or averaging over specified quantum num-

bers. Structure functions are also represented by a state matrix on initial-state particles.

This state matrix is combined with the so-called isolated state, which contains the hard

interaction of the partons.

3.1.1. External one-loop providers

Whizard’s standard matrix element provider O’Mega is only able to compute tree-

level matrix elements. Moreover, the computation of color- and spin-correlated matrix

elements, which are essential for soft and collinear approximations to real and virtual

matrix elements (cf. eq. (2.1.17) and e.g. eq. (2.1.4)), is currently not accessible. The

recent years have seen a tremendous development of automated one-loop calculations,

which can be considered to have reached their final stage. Additionally, the Binoth Les

Houches Accord (BLHA) [75, 76] has been developed as a standard interface between

one-loop providers (OLP) and Monte Carlo programs. It prescribes both C++ interfaces

and keywords for configuration files. Among this is also the requirement for the OLP to

3To be more precise, matrix elements are represented in a trie. This is a tree in which the position
of a node determines the key associated with it. An example application for tries is a dictionary.
Here, each node of the trie is associated with a letter of the alphabet and every path inside the trie
represents a word.
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compute color- and spin-correlated squared amplitudes, thus making all building blocks

of a complete NLO calculation accessible. Whizard, in its version 2.4.1 supports three

one-loop providers: GoSam [95, 96], OpenLoops [97, 98] and RECOLA [99, 100]. Be-

sides loop amplitudes, all of these programs also can compute color- and spin-correlated

squared amplitudes. It is possible to use each of them for every component of the NLO

calculation, i.e. additionally also tree-level n- and n + 1-particle matrix elements, as a

matrix element provider. This builds upon the modular structure of Whizard, where

all matrix element interfaces inherit from an abstract base class. The inclusion of any

other OLP therefore is quite straightforward. GoSam and OpenLoops use the BLHA

interface, whereas the RECOLA code is included as an external module in Whizard4.

OLPs which are BLHA-compatible are dynamically linked to Whizard. The BLHA

configuration file, also called .olp–file, is automatically generated by Whizard. It con-

tains specifications such as the desired correction type (QCD or QED) or the coupling

powers of α and αs, further referred to by nEW and nQCD. This is followed by a list

of processes, each associated with an amplitude type which specifies if a tree, loop or

color- or spin-correlated matrix element shall be computed. The one-loop-provider reads

in the .olp–file and creates an answer file, or .olc–file. It is basically the same one

as the .olp–file, but contains confirmation that the given processes have been found

under the specifications. Moreover, each confirmed process is associated with an inter-

nal index, with which the amplitude can be accessed in the BLHA-interface. Different

reasons might lead to the non-confirmation of a process, the most common one being

unsuited coupling powers. For example, matrix elements for the process e+e− → jjj

cannot be accessed with the default choices of nEW = 2 and nQCD = 0, but instead

requires nQCD = 1. In this case, Whizard just terminates the program and advises

the user to check his or her settings. It is slightly more involved for processes with

mixed contributions, such as e+e− → jjjj. Here, there are diagrams with nEW = 2

and nQCD = 2, and such with nEW = 4 and nQCD = 0. This distinction is not made

by O’Mega, from which the PDG arrays used to create BLHA flavor structures are

obtained, and therefore, not all but some processes match the coupling specification. In

the given example with nEW = 2 and nQCD = 2, contributions of flavor combinations

such as e+e− → ud̄sc̄, which has nEW = 4 and nQCD = 0, are automatically set to zero

by Whizard. In the following, each of the currently supported one-loop providers will

be described in further detail.

GoSam GoSam is based on an algebraic approach to the evaluation of loop ampli-

tudes. Basically, it works as one would on paper: It creates Feynman diagrams with

the corresponding analytical expressions and then uses dedicated algorithms to break

4If RECOLA is not enabled or available, dummy interfaces are used.
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down the integrals to master integrals. Within GoSam, the first step is achieved by

Qgraf [101] in combination with Form [102, 103]. The algebraic expressions are then

translated to Fortran90 code by the multi-purpose code generator haggies [104]. In-

tegrals are then simplified by integral reduction [105, 106], using Samurai [107] or

Ninja [108, 109]. Alternatively, Golem95C [110–112] can be used for tensorial reduc-

tion [113] 5. Both methods yield master integrals, which can be looked up in an integral

library such as OneLoop [114]. Whizard controls the GoSam workflow as described

above. It checks whether compiled code for the current process already exists in the

working directory and automatically calls all the steps of GoSam code generation if

this is not the case. Once the code is generated, Amplitudes can be evaluated via the

BLHA interface. Recently, a first application of GoSam to a two-loop calculation has

been presented in ref. [115].

OpenLoops The OpenLoops algorithm is numerical, which means that in contrast

to GoSam, it does not perform any analytical computations. Instead, it uses a hybrid

approach of tensor integrals and OPP recursion relations [105, 116, 117], this way achiev-

ing good automation properties in terms of small code sizes, as well as a high amplitude

evaluation speed. OpenLoops uses a public amplitude repository from which libraries

for each process have to be downloaded. It contains all relevant matrix elements to com-

pute NLO QCD corrections, both for hadron and lepton colliders. Many libraries for

LHC processes can also be employed for leptonic initial states, as any crossing of exter-

nal particles is automatically done when a library is loaded. For example, the one-loop

library to be used for e+e− → jj is ppll. On the other hand, top quarks are not included

in the proton, so that for e+e− → tt̄ the dedicated library eett has to be used. On top

of that, there are also amplitudes for 1 → n processes, which are used to compute NLO

corrections to top-quark, Z and W decays, cf. section 4.1 and section 5.3.1. Further-

more, at the time of writing, amplitudes for electroweak corrections are obtainable from

private repositories. The communication between Whizard and OpenLoops is based

on the BLHA standard. A modification of this standard allows for the computation of

polarized amplitudes by the addition of (+) or (-) after the particle identifier in the

contract file, which obtains one process definition for each (not necessarily non-zero)

initial-state helicity configuration. Whizard then performs the helicity-averaged sum

automatically via its state-matrix structure (cf. section 3.1.2 below).

RECOLA Like OpenLoops, RECOLA is a numerical program based on recursion

relations. It is, however, the only program on the market so far which has completely

realized the recursive approach. To evaluate one-loop scalar and tensor integrals, it

5The name GoSam originated from the combination of both Golem and Samurai
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relies on the COLLIER library [118, 119]. It has been successfully applied to various

processes, e.g. the O(α2α2
s×α)-contribution to pp→ l+l−jj [120] and fully off-shell tt̄H-

production at the LHC [121]. Together with Sherpa, it is used to provide automated

NLO QCD and EW corrections as recently validated in ref. [122].

Discussion of the different OLPs

The three one-loop providers currently supported all have strengths and weaknesses.

From the software development point of view, dynamically linked packages like GoSam

and OpenLoops are more convenient, as they avoid problems associated with different,

possibly unsupported compilers, and are generally faster to implement once the standard

interface exists. On the other hand, applications show that the BLHA interface is limited

and the need for modifications arises beyond the application to inclusive, spin-averaged

cross sections. For most analyses in this thesis, especially those in chapter 4,chapter 5

and chapter 6, OpenLoops has been used.

The on-the-fly code generation and compilation is definitely a drawback of GoSam,

because it can take a large amount of time and computing power. In principle, the

building time of the library can be made arbitrarily short by distributing the compila-

tions of code for different helicity configurations on several machines. Obviously, this

requires user intervention and is therefore less suited to the fully-automated approach of

Whizard+NLO. Nevertheless, the user could create the process library before starting

Whizard. The advantage of GoSam is its flexibility. The user is not constrained to

a fixed number of processes and specific correction types. Even loops for BSM pro-

cesses are possible, using Feynrules [87] and Ufo [88], which has for example been

successfully applied to the two-Higgs-doublet model in ref. [123].

RECOLA can be considered as the most powerful tool in this list. Its capabilities

go beyond the computation of squared matrix elements. Unfortunately, at the time

of writing, the RECOLA support in Whizard can only exploit a fraction of these

features, but should be an integral part of the future Whizard+NLO development.

3.1.2. Organization of NLO matrix elements

In the following, we discuss the design of Whizard to accommodate additional matrix

elements not present in the historically where leading-order matrix elements were the

only components supported out of the box. The design choices are motivated by the

different components entering the subtraction approach in eq. (2.0.1). These are

• The tree-level, N -particle Born matrix element,

• The tree-level, N + 1-particle real radiation matrix element,
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• The interference term of the Born and the loop amplitude (more precisely, its finite

part),

• Color-correlated matrix elements as in eq. (2.1.16),

• Spin-correlated matrix elements as in eq. (2.1.4).

All of these objects can be computed interchangeably with different matrix-element

generators, described in the previous section. Moreover, distinct components can be

associated with different kinematics, like it is the case for the real-emission matrix

element. Other examples are subtraction components for DGLAP remnants (cf. sec-

tion 2.4), where Whizard must integrate over initial-state degrees of freedom, or

the pseudo-radiation generated for the soft mismatch (cf. section 2.6). Additionally,

Whizard+NLO can be run in two integration modes, separate and combined. In

the separate mode, an individual integration is set up for each distinct summand of

eq. (2.0.1). This allows for the distribution of integration and event generation to differ-

ent jobs, increasing performance. Also, the number of integration calls can be tuned to

each component. Real-subtracted matrix elements, for example, need significantly more

integration calls to reach the same accuracy as components with Born-like kinematics,

due to the larger phase-space dimension. On the other hand, the integration of the

virtual part might still be the most time-consuming, because the evaluation of the loop

matrix elements can be far more complex. The combined integration mode integrates

the sum of all subtracted matrix elements and therefore hides details of the NLO calcu-

lation from the user. It is less efficient as the separate integration approach, but some

applications, e.g. Powheg matching (cf. section 4.5), require the combined integra-

tion, where the underlying Born phase-space point obtains a weight equal to the total

NLO contribution. The stated design requirements are met by the following structure

of Whizard as implemented by us from version number 2.4 and onwards.

A process is split up into components and terms 6. Additionally, there is the core

manager, which stores the interfaces to the different matrix-element generators. A com-

ponent corresponds to one of the summands in the subtracted NLO cross section (Born,

Real, Virtual, etc.). It is associated with several terms, which contain kinematics and

parton states. This way, e.g. the real-subtracted component is connected to n + 1

terms, where n is the number of independent kinematical real-emission configurations

in the FKS approach. The additional last term is reserved for the subtraction terms

with Born kinematics. When the matrix element is evaluated, the process sums over all

terms. Each term has a flag which indicates if it is active. This way, different integration

components can be selected. In the combined integration mode, all allocated terms are

6For ease of notation, we do not use the distinction between process and process instance or term
and term instance, as in the source code, since there is no major conceptual difference.
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active. Active terms compute matrix elements. To do so, they set a pointer to a core in

the core manager. If the term is for the real subtraction, it sets an additional pointer

to the core used for correlated matrix elements. The matrix elements returned by each

term are stored in the appropriate interactions, on which traces are evaluated which are

transferred to the integrator at the end of the iteration. A schematic overview over this

setup is given in fig. 3.2.

processcore manager

omega

openloops

openloops

recola

term 1
interaction

term 2
interaction

term 3
interaction

term 4
interaction

term 5
interaction

Born

Real

Virtual

∑ |M|2

components

Figure 3.2. The organization of components, terms and cores for the example of
e+e− → qq̄. Here, there are three components, Born, Real and Virtual, each of which
is associated with a certain number of terms. Since the Born and virtual component
consist of only one kinematical structure, they both have only one term. The real
component has three terms, one for each emitter in qq̄, and a third one for the cal-
culation of the subtracted contribution, which has Born kinematics. The information
about the kinematics and the state matrices is represented by the interaction object
(white). Each term has a pointer to exactly one matrix-element core, collected in the
core manager. It can have different matrix-element methods for each core. The list
of process components can take additional components for more sophisticated types of
corrections, e.g. real finite, soft mismatch or dglap remnant.

The interactions in the parton states of each term are organized to flexibly accom-

modate NLO matrix elements. In Whizard versions prior to 2.4, they were stored

in separate lists. Moreover, structure functions, especially beam polarizations, had to

be extracted from the initial-state state matrices and applied to the matrix elements

with separate subroutines. Version 2.4 introduced a better organization of the NLO

matrix elements, embedded in the tree structure described above. This was especially

motivated by the requirement to generically combine structure functions with (squared)

BLHA matrix elements and subtraction terms. State matrices in their fully-differential

form as they are used with O’Mega matrix elements, cf. fig. 3.1, have been designed

with the assumption that the matrix-element provider returns amplitudes differential in
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all quantum numbers. This is not the case for most third-party tools such as GoSam

or OpenLoops. Also, there are applications where also hand-tailored O’Mega matrix

elements return already summed and averaged amplitudes, such as e.g. in the treatment

of the top-quark threshold, cf. chapter 6. The inclusion of squared matrix elements in

the state matrix tree relies on so-called quantum number masks, to make them inclu-

sive in the corresponding quantum numbers. They are applied on the color and helicity

indices, and the whole state matrix is contracted so that it only includes the quantum

numbers specified in the mask. Polarization is included generically this way by setting

up the quantum number mask in such a way that only final-state helicities are averaged.

Integrating subtraction terms in the standard state matrices requires the introduction

of an additional (pseudo-) quantum number σ. Its internal role is to allocate additional

entries to hold possibly polarized tree-level and color-correlated Born matrix elements

in real-subtraction, virtual and DGLAP components. The book-keeping about which

σ corresponds to which element in the amplitude array has to be done outside of the

state matrices. Figure 3.3 depicts a state matrix tree for the interaction of a virtual

component which deals with polarized tt̄ production. There are two domains with the

pseudo quantum numbers σ0 and σ1, corresponding to the virtual matrix element and

the Born amplitude used in the associated subtraction terms, cf. eq. (2.3.1). The upper

two node levels in fig. 3.3 additionally carry a helicity index. Note that this setup

implies that internal color correlations are used, i.e. the Born matrix element stored in

the σ1 domain is multiplied by a color factor computed inside of Whizard. For color-

correlations for a process with n final-state particles, there are n · (n− 1)/2 independent

(off-diagonal) matrix as explained in the context of eq. (2.2.27). Thus, if an external

matrix-element provider is used, the state matrix tree is continued straightforwardly by

additional n · (n−1)/2 σ domains. Similarly, there are 15 additional σ domains for spin-

correlated matrix elements, cf. the discussion around eq. (2.2.36), independent of the

process. Therefore, if the calculation requires spin correlations, 15 additional σ domains

have to be included.

3.2. Phase space generation

The integration dimension for complicated multi-leg processes without structure func-

tions typically is between 10 (2 → 6) and 26 (2 → 10). Initial-state structure functions

can increase this number even further. As the evaluation of tree-level matrix elements

is optimized (and that of one-loop amplitudes close to it), the phase-space sampling of

the Monte-Carlo integrator nowadays is the bottleneck of high-multiplicity calculations.

The kinematical structure of a process depends on the underlying Feynman diagrams.

Resonances, radiation peaks and numerous other kinematical effects thus lead to a com-
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Figure 3.3. Tree representation of the process e+e− → tt̄ including polarization and
subtraction terms. A summation over colors is implied, so that the quantum number
c(±1) does not appear. Instead, a subtraction pseudo quantum number σi is associated
with each node.

plicated phase-space structure, which a naive, equally-distributed sampling mechanism

can only deal with inefficiently. In theory, the sampling can be optimized with a map-

ping which transforms the actual kinematical dependence of the matrix element into a

smooth, ideally constant distribution on the hypercube. For the phase-space param-

eterization, Whizard creates Feynman graph-like tree structures and keeps track of

kinematically non-trivial regions like resonances within them. It creates a pre-selection

of the most important configurations, dropping those irrelevant for sampling optimiza-

tion. From these, Whizard constructs phase-space trees which are representations of

realisations of momentum flow for a process. A tree is made up of branches, each of

which can have two or no daughters (children). Associated with a mapping on each of

its branches, a tree makes up an integration channel. Channels with similar kinematical

mappings are collected in groves, which allows to connect channels with similar behavior

during integration, thus yielding a better performance.

To make the most out of the multi-channel approach, Whizard is equipped with its

own integration package, Vamp [89]. The Vamp algorithm is an extension of the Vegas

algorithm [124], in so far as it provides for each channel its individual (Vegas–) inte-

gration grid [125]. The estimator for the integral is the weighted sum of the estimators

of each channel. In each iteration, these weights are adapted to fit the multi-channel

structure of the phase space, in addition to the usual rebinning of the integration grids.

Moreover, Vamp identifies channels with vanishing contribution and drops them entirely

to further increase the sampling efficiency.

The implementation of phase spaces inWhizard is modular. All concrete phase-space

realizations inherit from the same abstract base type. The multi-channel approach is

already realized in the organization of this data type. This structure allows for a sim-
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ple exchange of different phase-space sampling approaches, suited for studies of special

processes. The default phase space in Whizard is the so-called wood phase space

(phs wood). A phase space point is completely defined when an invariant mass m, an

azimuthal angle cos θ and a polar angle φ is associated to each of its internal branches.

Neglecting structure functions such as parton densities or beam spectra, all external

branches, i.e. initial- and final-state momenta, can be constructed using the tree struc-

ture. Internally, there are only 1 → 2 splittings in the trees, so that consequently for n

final-state momenta, the number of internal branches is (n − 1). Each branch requires

three random numbers. An exception is the first (initial) branch, which has a fixed

invariant mass m2 = s. Thus, the dimensionality of the integration is

d = 3 · (n− 1)− 1 = 3n− 4. (3.2.1)

In the complete NLO calculation, the integration dimensionality of the different compo-

nents in fig. 3.2 is not identical. Especially the real-subtracted component is evaluated

on a phase space containing three additional degrees of freedom, i.e. the radiation vari-

ables of eq. (2.1.20) and eq. (2.1.22) and the azimuthal angle φ. These require three

additional random variables. Other situation in which a non-Bornlike integrator setup

is required is the subtraction of initial-state singularities, cf. eq. (2.4.24), which has

n-particle kinematics but an additional degree of freedom through the parton energy

fraction z. Explicitly, the integral dimension for each component is given by

d = 3n− 4 +







0 Born, Virtual

3 Real, Soft mismatch

1 DGLAP

. (3.2.2)

The real-emission phase space has to correctly map the singular behavior of the α-region

it is constructed for, cf. section 2.5. In principle, this can be achieved by using a phs wood

phase space with a dedicated mapping on the emitter’s leg which performs the real

emission. In our implementation, we do not follow this approach. It would essentially

multiply the number of channels at Born level by the number of distinct emitters, which

is undesirable for performance optimization. Moreover, the real emission is located at

one branch of the tree, but the FKS phase-space mapping works on the entire tree

by boosting the recoiling momenta. Instead, Whizard+NLO uses an extension of

the standard phs wood phase space module to generate real radiation on top of the

Born phase space, thus realizing directly the mapping Φn → Φn+1. The real momenta

generated this way are then stored generically in the associated term’s interaction. The

number of different real-emission phase spaces determines the number of terms attributed

to the real component. It does in general not equal the number of singular regions,
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3. The WHIZARD Event Generator

because different singular regions can be associated with the same kinematics, e.g. if

they have different underlying splittings (g → gg vs. g → qq̄), or if they differ in their

resonance histories. We therefore define two phase spaces as being equivalent if they

have the same emitter and the same resonance index. The mapping Φn → Φn+1 is

then performed for each non-equivalent real phase space using the algorithms outlined

in chapter A.

3.3. Event generation

Parton shower simulations can be performed with an internal interface to Pythia 6

[33] or to Whizard’s own analytical initial-state parton shower [126]. The latter ef-

ficiently keeps track of the entire shower history, allowing to reweight event samples,

removing the requirement to start new simulation runs for different parameter settings.

Real-subtracted, virtual and various other additional components have to be incorpo-

rated into event generation at next-to-leading order. Born-like kinematics, like virtual

corrections, are trivial to implement, since they just add up to the Born event weight.

Real corrections, on the other hand, are more difficult. First, they have to resemble

the radiation kinematics. In the FKS framework, this means that as many events with

an additional particle have to be produced as there are distinct real phase-spaces, their

number determined by the conditions above. Second, subtraction terms have to be in-

cluded to cancel large weights of soft or collinear phase-space points. Their kinematics is

essentially Born-like, so pure real and subtraction events have to be treated on a differ-

ent footing. Another problem is that both real-subtracted and virtual-subtracted matrix

elements can be negative. This makes it impossible to re-weight the events. With this

standard approach, NLO events are therefore only supported in weighted mode. Here,

an event with Born kinematics is generated with its weight equal to the sum of the Born,

virtual and subtraction contributions. In the presence of a soft mismatch or DGLAP

component, also their weights are added. To each Born-like event, real-emission events

are generated for each emitter with their weight equal to the pure non-subtraction real

matrix element.

An alternative is event generation according to the Powheg scheme [43, 59]. It is an

NLO parton shower matching approach, which generates positive-weighted events (at

least in relatively well-behaved regions of phase space), which can thus be unweighted.

Moreover, Powheg keeps next-to-leading order accuracy for the first emission while

resumming large logarithms in the subsequent parton shower using modified Sudakov

form factors. A more detailed description of Powheg matching as well as predictions

for e+e− → tt̄ are given in section 4.5 and chapter E. In distinction to NLO-matched

events, the previously described approach is referred to as fixed-order NLO events, which
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3.3. Event generation

emphasizes the fact that large logarithms in parton-shower matching are not resummed

in contrast to a matching procedure like Powheg. Both Powheg and fixed-order events

can be written to an event file, .e.g. hepmc [127], or piped directly into an analysis tool

like Rivet [128].
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4. Validation of the WHIZARD NLO

setup and example applications

In this chapter we give a brief overview over several applications of the NLO QCD ex-

tension of Whizard, thus combining the results from the two previous chapters. The

presented studies also serve as a validation of our setup. We start by discussing the

treatment of particle widths at NLO QCD with Whizard in section 4.1, a feature

which is also of crucial importance in the top-quark studies of chapter 5 and chapter 6.

Section 4.2 presents a brief study of the process e+e− → bb̄µ+µ− as a validation of the

resonance-aware FKS implementation and demonstrate the improvement of the integra-

tion it causes. Then, in section 4.3, we present a cross-check with various results from

MG5 aMC@NLO for lepton-collider processes. In section 4.4, we elaborate a bit fur-

ther on an improvement of the real subtraction by the introduction of damping factors,

which we applied with Whizard to the process e+e− → tt̄j. We finish the chapter with

a brief study of Powheg matching for the processes e+e− → tt̄ and e+e− → tt̄H in

section 4.5.

4.1. NLO gauge boson and top-quark widths

Whizard is capable of computing gauge-boson and top-quark widths at NLO QCD.

This feature is an essential part of every consistent NLO calculation involving resonant

particles. Here, all widths have to be used at next-to-leading order. Especially, the em-

ployed NLO width has to be consistent with the input parameters used in the scattering

process, which is best ensured by using the same program to compute them. All major

Whizard+NLO studies [2, 57] compute NLO particle widths internally. Using FKS

subtraction for decays is a straightforward task once scattering processes can be treated.

The most striking difference however is the existence of an initial-state singularity from

gluon emission from the top quark. Such a divergence is not present in lepton collider

processes. Moreover, due to the top-quark mass, it is a purely soft divergence. For a

1 → n decay, it enters the calculation as an initial-state singular region (1, n + 1). For

this region, the ISR FKS weight in eq. (2.4.18) is used. Further, it has to be evaluated

in its own dedicated real-emission phase space. In contrast to FSR singular regions,
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4. Validation of the WHIZARD NLO setup and example applications

where gluon emission can be created as outlined in appendix A.1, the standard ISR

constructions can not directly be used. The algorithm, as described in appendix A.2,

relies on the rearrangement of parton energy fractions, which is valid for processes with

structure functions. But the decay has to be evaluated in the rest frame, i.e. the in-

coming momentum is fixed at p̄0 = (m0, 0, 0, 0), which renders this approach unsuitable.

Instead, we implemented a different phase-space construction algorithm, mirroring the

standard creation of phase-space trees in Whizard. It generates an n+1-particle phase

space for a 1 → n decay with a gluon emission occurring from the top quark. It does

so recursively, i.e. it uses a basic 1 → 2 mapping to go through all the momenta in the

final state. We first describe the basic 1 → 2 construction. The gluon four-momentum

is created as for ISR in scattering processes,

kn+1 =

√
s

2
ξ
(

1,
√

1− y2 sinφ,
√

1− y2 cosφ, y
)

. (4.1.1)

This gluon emission puts the decaying particle off its mass-shell to the momentum

p̄V = p̄ − kn+1. This intermediate off-shell momentum can be straightforwardly trans-

formed into its rest frame using a boost Λ. In this frame of reference, the two decaying

particles with masses m1 and m2, which originate from p̄V move back-to-back, and their

momentum is given by

p =
λ1/2(m2,m2

1,m
2
2)

2m
. (4.1.2)

Here m is the mass of the decaying particle and λ(x, y, z) = (x − y − z)2 − 4yz is the

Källén function. To construct the decay momenta, their momenta are first set parallel

to their corresponding Born momenta in the rest frame of p̄V , p̄
rest
i . Thus, the decay

momenta in the rest frame are given by

presti =

(

Ei, p ·
p̂rest
i

|p̂rest
i |

)

. (4.1.3)

where E2
i = m2

i + p2. Applying the inverse boost Λ−1 generates the momenta of the

real-emission phase space in the lab frame pi. The general case of a 1 → n decay is

treated by recursively applying this elemental construction on the momenta p̄′1 = p̄j and

p̄′2 =
∑N

i=j+1 p̄i. Here, j denotes the recursion depth and starts at one. In each step, we

set p̄V = p̄′2 and increment j by one. The setup of NLO particle widths is checked for

the decay t → bW against analytical results for massive bottom quarks [129, 130], the

explicit expression of which is given in chapter D together with all input parameters.

We find, at NLO QCD

Γwhizard
t = 1.4078768(615)GeV, Γanalytical

t = 1.40787091GeV. (4.1.4)
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These values agree up to the sixth digit. Integration results for gauge boson decays and

higher-multiplicity final states can be found in the context of the top-quark continuum

in section 5.3.1. The role of Γt in the NLO-matched threshold computation is discussed

in chapter 6.

4.2. The process e+e− → bb̄µ+µ− with resonance-aware

FKS subtraction

The resonance-aware FKS subtraction discussed in section 2.6 is implemented inWhizard.

The soft mismatch in eq. (2.6.18) is realized as an integration component additional to

the Born, real and virtual ones. It uses a dedicated phase space in which {ξ, y, φ} are gen-
erated, especially taking into account ξ ∈ (0,∞), but not used to generate real-emission

momenta. Resonance histories are taken from the data structures already existent for

the standard phase space. In the presence of resonances, the FKS pairs obtain an addi-

tional index r which denotes the index of the associated resonance history. Its purpose is

twofold. First, it specifies which reference momentum is chosen when the real-emission

phase space is constructed. Second, it determines which mapping P fr(α) is inserted into

the numerator of Sα in eq. (2.6.22). An example is discussed further below. In the

approach of ref. [61], resonance mappings are also applied to Born-like kinematics. This

is not done by us, as they are similar to the mappings applied by the multi-channel

integrator Vamp.

We have checked our implementation of resonance-aware FKS subtraction using the

production of two massive quarks in association with two muons as a benchmark process,

i.e. e+e− → bb̄µ+µ−. This process has two different resonance histories, Z → bb̄ and

H → bb̄, comprising both Z pair production and Higgsstrahlung. In the context of

extended FKS regions, these then correspond to r = 1 and r = 2. Within both resonance

histories, the bottom and anti-bottom quark can act as an emitter. For this reason,

there are four effective singular regions, as shown in table B.3. Setting the fictitious

mass mµ = 20GeV, we avoid an overly large rise of the cross section due to small muon

invariant masses. This way, no cuts are required. Additionally, using mb = 4.2GeV, we

avoid collinear singularities and also the requirement for cuts on the bottom invariant

mass. This way, we can focus on the pure testing of the resonance implementation.

Note that due to the absence of collinear singularities, only the validity of the first

summand of the soft mismatch component in eq. (2.6.18) is checked this way, the second

being zero. We compare the resonance-aware FKS results with the integration of the

same process in the standard approach. To ensure its convergence, we set the Higgs

width to ΓH = 1000GeV. This way, the standard subtraction can be compared to the

improved one, see table 4.1, where σreal denotes the full real-subtracted cross section
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4. Validation of the WHIZARD NLO setup and example applications

and σmism the result of the integration of the soft mismatch component. Adding the

real and soft-mismatch component for the resonance-aware FKS subtraction, perfect

agreement with the real radiation component of the standard approach is found. We

want to emphasize the significantly higher number of integration calls required with

standard FKS subtraction to reach the same accuracy as with the resonance-aware one.

This improvement is even more distinctly visible on the right-hand side of fig. 4.1. It

shows the ratio of the real matrix element and its soft limit in a selected singular region

α for small gluon energies Eg. For this, a fixed number of phase-space points has been

generated in the interval 0.0001 · [0, ξmax] at
√
s = 500GeV. The physical Higgs width

and muon masses are used. In the resonance-aware approach (blue dots), the ratio

Rα/R
soft
α is almost exactly one on the whole interval, leading to the perfect convergence

observed in table 4.1. In contrast, in the standard approach (red dots), Rα/R
soft
α varies

over two orders of magnitude and converges only unsatisfactory for very small values of

Eg. This fluctuation is an effect of the small Higgs width for which already small emission

energies can cause large numerical deviations in the Higgs propagator, as discussed in

section 2.6.1.

The left-hand side of fig. 4.1 shows a scan of the total cross section. For this scan, we

again used the physical muon mass and Higgs width. There are two distinct peaks at

mZ and mZ +2mb, as well as two less pronounced enhancements at mZ +mH and 2mZ .

NLO QCD corrections are in the range of +5% for
√
s > 2mZ and approximately −4%

for mZ + 2mb <
√
s < mZ . Below

√
s = mZ , the K-factor is significantly smaller than

one.

Table 4.1. Real-subtracted integration component and, in the case of resonance-aware
subtraction, soft mismatch, for ΓH = 1000GeV. A fictitious muon mass mµ = 20GeV
has been used to avoid cuts.

σreal[fb] σmism[fb] ncalls

standard −1.90485± 0.99% n/a 5× 100000
resonances −0.915077± 0.52% −0.97930± 0.94% 5× 20000(real) + 5× 20000(mism)

4.3. Comparison with MG5 aMC@NLO

We put the NLO QCD implementation of Whizard to a test by comparing cross sec-

tions for various lepton collider processes computed by the Madgraph group, given
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4. Validation of the WHIZARD NLO setup and example applications

http://amcatnlo.cern.ch/cards_paper.htm. Especially, for process without explicit

bottom quarks in the final state definition, bottom quarks are massless and included in

the jet definition. The central scale choice is µ0 = HT/2, with

HT =
∑

i

√

p2T,i +m2
i , (4.3.1)

where the sum runs over all final-state particles. We do not compare scale variations.

Jets are clustered using an anti-kT algorithm [131] with R = 0.5, which in Whizard is

realised via the interface to FastJet [132]. On the clustered jets, we apply an additional

cut on the transverse momentum pT (j) > 30GeV. Finally, on this selection, the cut

|η(j)| < 4 is imposed. The phase-space point is discarded if the number of remaining

jets is smaller than the number of jets in the Born process definition. In processes

with photons, we use the cuts pT (γ) > 20GeV and |η(γ)| < 2. In the presence of jets,

additionally Frixione isolation [133] is used in ref. [62]. In that approach, the separation

measure Riγ =
√

(ηi − ηγ)2 + (ϕi − ϕγ)2 is used to isolate photons from jets. Starting

from all jets which are inside a cone of radius δ0, the cumulative sum of the pT -ordered

jets must fulfill the condition

∑

i

pT,iθ (δ −Riγ) ≤ pT,γ
1− cos δ

1− cos δ0
. (4.3.2)

Otherwise, the whole event is rejected. This poses a problem, because the current

Sindarin implementation in Whizard only supports unary and binary operators. But,

eq. (4.3.2) requires an n-ary operator for arbitrary jet multiplicities 1. This could be

achieved by additional Fortran code, which has not been done, however. Also, to our

knowledge, there is no implementation of Frixione isolation in FastJet. Therefore, no

numbers are provided for processes with a light jet and at least one photon. Processes

without a light jet but at least one photon have been recomputed without specifying

Frixione isolation in the Madgraph run card. In processes with explicit bottom quarks,

the four-flavor scheme is used and mb = 4.75GeV. Further, MG5 aMC@NLO requires

the number of b-jets to be conserved after clustering. Again, this is not possible with

the current Sindarin setup in Whizard because bottom quarks and jets cannot be

separated in the cluster interface. For this reason, we do not provide numbers for

processes with bottom quarks and at least one jet. The numbers presented here are

computed in the separate NLO integration mode cf. section 3.3.

Despite these restrictions, the presented results are exhaustive enough to test all

1Another example of such an observable not available in Sindarin is thrust,
T = maxn̂

∑

i |p̂i · n̂| /
∑

i |p̂i|. This issue is supposed to be solved by a forseen major Sin-

darin revision in the future.
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relevant aspects of the NLO-integration in Whizard for lepton collisions and QCD

corrections. The dijet process e+e− → jj validates the basic functionality as well as the

correct treatment of multi-flavor particle definitions. The corresponding process with

two top quarks in the final state checks the same setup but for the more complicated

case of massive emitters. We see in table 4.2 good agreement between the two event

generators for the jj, bb̄ and tt̄ final state. We also get agreeing results for all processes

with a tt̄ final state associated with at least one electroweak gauge boson (γ, W , Z, H).

They are insensitive to QCD corrections, so that in the real-emission phase space, they

just act as a recoiler. Nevertheless, they introduce more complicated loop diagrams (e.g.

for tt̄HH up to pentagon diagrams). The tt̄tt̄, bb̄bb̄ and tt̄bb̄ final-state processes also

show a good agreement with Madgraph. This probes non-trivial color correlations,

which are treated correctly. Moreover, it is a test of the combinatorics involved in the

setup of FKS regions, because the quarks need to be tagged in order not to be considered

as identical particles.

Having established the validity of the e+e− → tt̄ process, the process e+e− → tt̄j is the

next simplest one to test. In contrast to 3j-production, it has trivial FKS combinatorics

because there is only one Born flavor structure. Yet, there are three aspects new to

this process. First, it requires jet clustering. Second, it involves g → qq̄ and g → gg

splittings which require spin-correlated matrix elements, cf. eq. (2.2.33) and eq. (2.2.34).

Lastly, the eikonal correlation terms of the virtual-subtracted component in eq. (2.3.1)

include in addition to massive-massive integrals also massive-massless integrals. The

results for this process are shown in table 4.2. We observe an agreement of the leading-

order numbers, but a clear discrepancy between the NLO cross sections. The agreement

at LO validates that the same running of αs is used and also that the clustering works.

The NLO-deviation can have its origin in all of the three points mentioned above. A

mismatch in the virtual integrals is excluded by the agreement for the process e+e− →
tt̄W±jj. Here, the jet can only consists out of quarks to counterbalance the charge of

the W boson. Therefore, no gluon splittings appear in the real-subtracted part of the

calculation. Yet, massive-massless eikonal integrals are present. A misimplementation

of gluon splittings, either into a quark-antiquark pair or into two other gluons, in the

real-subtracted matrix element could lead to disagreeing results. In fact, we observe

a cross section mismatch in all processes with at least one gluon in the final state at

Born level, cf. table 4.3. This effect, if existent, definitely also contributes to the

disagreement in three- and four-jet production shown in table 4.2. Here, in addition,

wrong combinatorics of FKS regions could be a source of errors. Yet, as long as the

mismatch in the single-jet processes is not resolved, a discussion of these is pointless.

For the same reason, we refrain from presenting numbers for processes with two light

jets and gauge bosons or top quarks, as they are given in the corresponding tables in

ref. [62]. The soft, collinear and soft-collinear limits in Whizard have been checked
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numerically for each individual α region and found to have no inconsistency. To have

comparable results, it is crucial to understand how the clustering and cutting procedures

exactly work both in MG5 aMC@NLO and Whizard. It has been observed that in

Whizard, a significant difference exists between results obtained in the separate and

combined integration mode. For the process e+e− → tt̄j, we obtain a result of 51.0(3)fb

in the latter case, which is much closer to the Madgraph value, yet still not within

the respective error bounds. In the combined integration setup, when a real-emission

phase space point fails the cuts after clustering, also the Born and virtual weights are

discarded. This interplay between the integration components is not present in the

separate integration mode, leading to the observed difference. Although with these

settings we observe an almost perfect agreement between Madgraph and Whizard,

other processes do not show the same improvement. For example the NLO cross section

of the process e+e− → jjj falls off below 300 fb. It is therefore not clear whether

the only source of the observed discrepancies can be found in the application of the

wrong integration mode. We have observed that MG5 aMC@NLO treats scales and

cuts significantly differently from Whizard in the calculation of the real-subtracted

cross section. Whereas Whizard per default uses the same scale for the real-emission

and the subtraction event, MG5 aMC@NLO does not. Also, an event is discarded in

Whizard if any of the emitter regions or the Born phase space does not pass the cuts.

MG5 aMC@NLO, on the other hand, keeps the event weights separately. We have

implemented these different scale and cut choices in Whizard, but do not observe a

significant agreement of the numbers. Note that the validity of e+e− → tt̄W±jj also

hints to a correct treatment of cuts and scales, although the discrepancy might just

not be noticeable in the result 2 There are several ways one can approach a solution to

this problem. Analytical NLO QCD calculations for e+e− → tt̄j are available in the

literature [134–137], yet none of them is directly applicable to a comparison with a total

cross section. A comparison with a third event generator, like Sherpa or Herwig,

might give a hint, especially with respect to the fact that the Madgraph e+e−–results

have not yet been cross-checked against analytical results or any other event genertor

thanWhizard [138]. Further, a separation of the integration inMG5 aMC@NLO into

Born, real and virtual contributions would help to narrow down the problem, although

this has to be considered with care as both programs probably use different conventions

for the arrangement of singularities and subtraction terms. Also, switching off or singling

out FKS regions with gluon splittings in MG5 aMC@NLO could tell whether these

actually are the source of the problem. However, this task could not be achieved before

the completion of this thesis.

2MG5 aMC@NLO per default uses the FKS tuning parameters with ξc and δ0 with values different
from one and two, i.e. ξc = 1/2 and δ0 = 1. Per construction, this should not influence the total
cross section, which has been verified both in Whizard and MG5 aMC@NLO.

68



4.3. Comparison with MG5 aMC@NLO

T
a
b
le

4
.2
.
C
o
m
p
a
ri
so
n
o
f
M
G
5
a
M
C
@
N
L
O

a
n
d
W

h
iz
a
r
d
+
N
L
O

fo
r
le
p
to
n
co
ll
id
er

p
ro
ce
ss
es

in
vo

lv
in
g
je
ts

a
n
d
to
p
q
u
a
rk
s.

C
u
ts

a
n
d
in
p
u
t
va
lu
es

a
re

a
s
g
iv
en

in
se
ct
io
n
4
.3
.
P
ro
ce
ss
es

m
a
rk
ed

w
it
h
a
n
a
st
er
is
k
h
av
e
b
ee
n
re
co
m
p
u
te
d
w
it
h
m

b
=

0
to

m
a
tc
h
th
e
W

h
iz
a
r
d
n
u
m
b
er
,
so

th
e
n
u
m
b
er
s
p
re
se
n
te
d
h
er
e
d
iff
er

fr
o
m

re
f.
[6
2
].

M
G
5
a
M
C

W
H
IZ

A
R
D

F
in
al

st
at
e

σ
L
O
[f
b
]

σ
N
L
O
[f
b
]

K
σ
L
O
[f
b
]

σ
N
L
O
[f
b
]

K

jj
62
2.
3(
5)

63
9(
1)

1.
02
68
4

62
2.
73
(4
)

63
9.
7(
2)

1.
02
72
5

bb̄
∗

92
.7
3(
6)

94
.8
9(
1)

1.
02
33

92
.3
2(
1)

94
.7
8(
7)

1.
02
66
4

tt̄
16
6.
2(
2)

17
4.
5(
6)

1.
04
99
4

16
6.
4(
1)

17
5.
1(
1)

1.
05
22
8

tt̄
tt̄

6.
45
(1
)
·1
0−

4
12
.2
1(
5)

·1
0−

4
1.
89
30
2

6.
46
3(
2)

·1
0−

4
12
.1
6(
2)

·1
0−

4
1.
88
14
7

bb̄
bb̄

1.
64
4(
3)

·1
0−

1
3.
60
(1
)
·1
0−

1
2.
18
97

1.
64
(2
)
·1
0−

1
3.
67
(4
)
·1
0−

1
2.
23
78

tt̄
bb̄

1.
81
9(
3)

·1
0−

1
2.
92
(1
)
·1
0−

1
1.
60
52

1.
86
(1
)
·1
0−

1
2.
93
(2
)
·1
0−

1
1.
57
52

tt̄
j

48
.1
3(
5)

52
.7
(2
)

1.
09
49
6

48
.3
(2
)

61
.8
(5
)

1.
27
95
1

jj
j

34
0.
1(
2)

31
6(
2)

0.
92
91
4

34
2.
4(
5)

31
9(
1)

0.
93
16
6

jj
jj

10
4.
7(
1)

10
9.
0(
6)

1.
04
10
6

10
5.
1(
4)

11
8(
1)

1.
12
27
4

tt̄
tt̄
j

2.
71
9(
5)

·1
0−

5
5.
34
(3
)
·1
0−

5
1.
96
39
4

2.
72
2(
1)

·1
0−

5
4.
47
1(
5)

·1
0−

5
1.
64
25
3

69



4. Validation of the WHIZARD NLO setup and example applications

T
a
b
le

4
.3
.
C
o
m
p
a
riso

n
o
f
M
G
5
a
M
C
@
N
L
O

a
n
d
W

h
iz
a
r
d
+
N
L
O

fo
r
lep

to
n
co
llid

er
p
ro
cesses

w
ith

tw
o
to
p
q
u
a
rk
s
a
n
d
a
t
lea

st
o
n
e
electrow

ea
k
g
a
u
g
e
b
o
so
n
in

th
e
fi
n
a
l
sta

te.
C
u
ts

a
n
d
in
p
u
t
va
lu
es

a
re

a
s
g
iv
en

in
sectio

n
4
.3
.
T
h
e
va
lu
e
g
iven

fo
r
th
e
tt̄W

±

fi
n
a
l
sta

te
co
rresp

o
n
d
s
to

th
e
su
m

o
f
th
e
tw

o
id
en
tifi

ed
fi
n
a
l
sta

tes.
P
ro
cesses

m
a
rk
ed

w
ith

a
n
a
sterisk

h
av
e
b
een

reco
m
p
u
ted

w
ith

o
u
t
F
rix

io
n
e
iso

la
tio

n
to

m
a
tch

th
e
W

h
iz
a
r
d
n
u
m
b
er,

so
th
e
n
u
m
b
ers

p
resen

ted
h
ere

d
iff
er

fro
m

ref.
[6
2].

M
G
5
a
M
C

W
H
IZ

A
R
D

F
in
al

S
tate

σ
L
O
[fb

]
σ
N
L
O
[fb

]
K

σ
L
O
[fb

]
σ
N
L
O
[fb

]
K

tt̄H
2.018(3)

1.911(6)
0.9461

2.022(3)
1.913(3)

0.9461

tt̄γ
12.7(2)

13.3(4)
1.04726

12.71(4)
13.78(4)

1.08418

tt̄Z
4.642(6)

4.95(1)
1.06636

4.64(1)
4.94(1)

1.06467

tt̄H
Z

3.600(6)·10
−
2

3.58(1)·10
−
2

0.99445
3.596(1)·10

−
2

3.581(2)·10
−
2

0.99571

tt̄γ
Z

0.2212(3)
0.2364(6)

1.06873
0.220(1)

0.240(2)
1.09094

tt̄γ
H

9.75(1)·10
−
2

9.42(3)·10
−
2

0.96614
9.748(6)·10

−
2

9.58(7)·10
−
2

0.98277

tt̄γ
γ
∗

0.383(5)
0.416(2)

1.08618
0.382(3)

0.420(3)
1.09952

tt̄Z
Z

3.788(4)·10
−
2

4.00(1)·10
−
2

1.05597
3.756(4)·10

−
2

4.005(2)·10
−
2

1.06621

tt̄H
H

1.358(1)·10
−
2

1.206(3)·10
−
2

0.888
1.367(1)·10

−
2

1.218(1)·10
−
2

0.8909

tt̄W
+
W

−
0.1372(3)

0.1540(6)
1.1225

0.1370(4)
0.1538(4)

1.12257

tt̄W
±
jj

2.400(4)·10
−
4

3.72(1)·10
−
4

1.541
2.41(1)·10

−
4

3.74(2)·10
−
4

1.55186

tt̄H
j

0.2533(3)
0.2658(9)

1.04935
0.254(1)

0.307(1)
1.20874

tt̄γ
j

2.355(2)
2.62(1)

1.11253
2.47(1)

3.14(2)
1.27124

tt̄Z
j

0.6059(6)
0.694(3)

1.14548
0.610(4)

0.666(5)
1.09187

70



4.4. Improving the integration by partitioning the real matrix element
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Figure 4.2. The Born-associated signal diagram (left) and a background diagram (right).
Only the left one gives a correct Born process if the gluon splitting is undone.

4.4. Improving the integration by partitioning the real

matrix element

The process e+e− → tt̄j discussed in the previous section is an example par-excellence for

the improvement which can be obtained by separating the real matrix element into a real

and a finite part. The real corrections to this process are made up by final states which

contain one additional gluon and those in which the gluon is replaced by a light quark

pair. Two Feynman diagrams for the latter case are shown in fig. 4.2. Upon removing

the quarks the gluon splits into, only one of them corresponds to the underlying Born

flavor structure e+e− → tt̄g. The other one, i.e. that with the g → tt̄ splitting, gives

rise to the different Born topology e+e− → tt̄γ. In a fully gauge-invariant calculation,

all diagrams have to be summed up, including the pure squared contribution of the

non-associated background diagrams. They are finite, because the collinear singularity

is regularized by the top quark mass. Therefore, in regions in which these diagrams

dominate, adding subtraction terms actually decreases integration performance. An

example output, clearly showing the poor convergence in the g → qq̄-regions, is shown

on the left-hand side of table 4.4. This problem does not arise in other multi-jet processes,

given that the flavors of the jet definition of the Born process matches the flavors allowed

for gluon splittings in the real correction.

To solve this problem, Whizard can separate the integration of the real-subtracted

matrix element by partitioning the real phase space Φ such that

Rα = Rα
s +Rα

f . (4.4.1)

Here, Rα
s is the singular part of Rα, constrained to the subset Φs ⊂ Φ dominated by the

singularity of region α. Subtraction is performed only on this part of Rα. Accordingly,

Rα
f is the finite part of Rα, defined on Φf = Φ \ Φs. With the basic ideas similar to

phase-space slicing methods, the partition of R has first been discussed in the context of

Born-zero damping in the Powheg approach [139, 140], which is discussed further below

in section 4.5. To achieve the desired behavior of R as in eq. (4.4.1), the suppression
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factor F (Φ) is introduced so that

Rα
s = RαF (Φ), Rα

f = Rα (1− F (Φ)) . (4.4.2)

The standard suppression factor in Whizard is given by

F (Φ) = 1−
∏

(i,j)∈PFKS

θ

[√

p2i +
√

p2j + h−
√

(pi + pj)2
]

, (4.4.3)

which uses the resonance information present in the PFKS (cf. eq. (2.2.2)) to sample

potential singularities. Ergo, a phase-space point is regular (F = 0), if the invariant

masses of all momentum combinations given by PFKS are larger than the sum of a hard

scale h and the virtualities of the individual particles. If at least one FKS pair falls

below this threshold, divergent matrix elements can arise and F = 1. The integration of

Rα
f can be performed using the standard Whizard setup with a phs wood phase space.

It is allocated as a separate component, along with the Born, (singular-)real and virtual

integral summands, cf. fig. 3.2 3. The significant improvement of the integration can be

seen very clearly on the right-hand side of table 4.4, which shows the integration history

if only Rα
s is used. The FKS regions have been constrained to one single FKS region α

with only one FKS pair corresponding to a g → qq̄-splitting. This way, the inefficient

integration becomes most visible. In the complete calculation, the sum over all α is

performed, where the contribution of g → qq̄-splittings is small compared to that of the

other ones. The e+e− → tt̄gg regions make up about 90% of the entire real-subtracted

cross section. Nevertheless, also in the full calculation applying damping factors to the

real matrix elements shows an improvement in the integration convergence. Note that

the integration results in table 4.4 are not identical because the contribution of Rα
f is

missing, because it cannot be constrained to one single α region. It has been checked

that, with a sufficient amount of integration calls, σreal = σreal,sing + σreal,fin in the sum

over all singular regions. Another choice of the suppression factor has been introduced

by ref. [141] and ref. [142] as

F = 1− θ (Rα − n ·Rα
soft) θ (R

α − n ·Rα
coll) , (4.4.4)

i.e. an event is considered as finite if the real matrix element is n times larger than

its soft and/or collinear approximation. Commonly, n = 5 is chosen. It is currently

not implemented in Whizard, but a future study should reveal how approach (4.4.4)

compares to eq. (4.4.3).

3This is also the anchor point for possible other finite real contributions, e.g. those with real electroweak
radiation.
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Table 4.4. Integration histories for σe+e−→tt̄j
α,real (left) and σe+e−→tt̄j

α,real,sing. (right) for the same
number of calls per iteration and constrained to one singular region in which only a
g → qq̄-splitting contributes. The last line shows the average over all iterations. The

improved convergence is obvious. The associated finite result σe+e−→tt̄j
real,fin. is not shown

here, because it cannot be constrained to one single singular region.

Iter. Int. – standard [fb] Err.[fb] Err.[%] Int. – Rs [fb] Err.[fb] Err.[%]
1 3.16 · 10−1 1.88 · 10−1 59.39 −0.85 2.44 · 10−1 28.71
2 −3.3 · 10−1 2.70 · 10−1 81.35 −1.23 1.37 · 10−1 11.08
3 1.24 · 10−2 7.03 · 10−2 565.45 −1.02 1.02 · 10−1 9.96
4 3.73 · 10−2 2.78 · 10−2 74.29 −1.05 4.02 · 10−2 3.82
5 1.02 · 10−2 1.64 · 10−2 160.42 −1.05 1.94 · 10−2 1.84

1.77 · 10−2 1.38 · 10−2 77.67 −1.05 1.70 · 10−2 1.61

4.5. POWHEG matching in tt̄ and tt̄H production in

WHIZARD

The matching of NLO event generation with parton showers requires a matching pro-

cedure to resum large logarithms and restore the correct order of αs. Multiple ap-

proaches have been developed to address this problem, most notably MC@NLO [62]

and Powheg4[43]. In the following, we very briefly outline the Powheg procedure

and discuss its implementation in Whizard. A more detailed description of Powheg

matching can be found in appendix app:ch:powheg-veto.

4.5.1. The Powheg PS+NLO matching approach

The essence of the Powheg approach is that events are generated according to the

following distribution

dσ =
∑

fb

B̄fb(Φn)dΦn

{

∆NLO
fb

(Φn, p
min
T )

+
∑

α∈PFKS(fb)

[
dΦradθ(kT − pmin

T )∆NLO
fb

(Φn, kT )R(Φn+1)
]Φ̄α

n=Φn

α

Bfb(Φn)

}

,

(4.5.1)

4Powheg stands for Positive weight hardest emission generator, which points out the two ma-
jor features of the procedure: The generation of events with positive weights (in contrast to e.g.
MC@NLO and the resummation of large logarithms in the parton shower by the explicit generation
of the hardest emission.
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where

B̄fb(Φn) = Bfb(Φn)+V
fb(Φn)+

∑

α∈PFKS(fb)

∫

[dΦrad (R(Φn+1)− C(Φn+1))]
Φ̄α

n=Φn

α (4.5.2)

is the fully inclusive NLO matrix element including subtraction terms (which are im-

plicitly present in V ) for an individual Born flavor structure fb. ∆
NLO is the probability

that no emission occurs between a high scale pmax
T and any pmax

T > kT > pmin
T . Equa-

tion (4.5.1) has an intuitive interpretation. The first summand is the probability that

no emission harder than pmin
T happens at all, in which case an event with n-parton kine-

matics is generated. The second summand is the probability that an emission happens

exactly at kT with a splitting probability of R/B. In this case no emission must have

happened for pT > kT , which is ensured by the factor ∆NLO(kT ). All contributions

below the cut-off pmin
T are discarded due to the θ-function. With this interpretation, it

can be easily understood that eq. (4.5.1) conserves the NLO cross section (up to the

small cut-off pmin
T ) and only changes the spectrum of differential distributions. We stress

the contraint Φ̄α
n = Φα

n in eq. (4.5.1) and eq. (4.5.2). All matrix elements have to be

evaluated with the same Born phase space in all singular regions. This has consequences

for the application of Powheg matching with Catani-Seymour subtraction, as briefly

discussed further below. The non-splitting probability is given by the modified Sudakov

form factor

∆NLO
fb

(Φn, pT ) = exp






−

∑

α∈PFKS(fb)

∫
[dΦradR(Φn+1)θ(kT (Φn+1)− pT )]

Φ̄α
n=Φn

α

Bfb(Φn)






,

(4.5.3)

which differs from the usual one by the replacement of the splitting functions by R/B

as well as the inclusion of the θ-function. It therefore also covers non-singular regions.

In fact, it damps soft and collinear radiation in eq. (4.5.1) since lim(pT → ∞)∆NLO = 0.

There are two main approaches to cope with the integral in the exponent of the

modified Sudakov form factor in eq. (4.5.3). The most straight-forward, but technically

intense, one is to evaluate the integral numerically, as it is done in ExSample [143].

Whizard, like most other Powheg implementations, uses a veto method. Here, the

soft and collinear divergence structure is used to construct an over-estimator, or upper

bounding function (UBF), U , such that

J ar(ξ, y)Rar(ξ, y)

Bfb
≤ Nar

fb
(ξ, y)Uar(ξ, y). (4.5.4)

Here, we stress the inclusion of the real jacobian J which is implicitly present in

eq. (4.5.3). N is a normalization factor, to be determined by sampling the phase space
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and determine the maxima of the ratio J · R/(B · U). Equation (4.5.4) has to be eval-

uated for every distinct combination of emitter and resonance history, collected in the

multi-index rr. The UBF should be constructed in such a way that it is easy to integrate

analytically. Also, to reproduce the correct collinear limits, there are different functional

forms of U for initial- and final-state radiation. The explicit formulas used in Whizard

can be found in appendix E.2. Also there, a detailed description of the veto proce-

dure can be found. Finally, we want to emphasize the nice interplay between FKS and

Powheg, where only one Born phase space exists, so that the requirement Φ̄α
n = Φn is

met automatically. This is in contrast to Catani-Seymour subtraction. Here, one single

real-emission phase space is mapped onto several n-particle ones, thereby requiring an

explicit implementation of the above projection. This can be done in several ways, e.g.

by mimicking FKS mappings as weighted ratios of CS dipoles [144, 145].

4.5.2. Differential distributions

The automated Powheg matching procedure in Whizard+NLO has been applied to

quark production at lepton colliders, especially top quarks. The study has been presented

in ref. [5, 6], which are recapitulated in the following. We consider the process e+e− → tt̄

at NLO QCD. Events are generated both at fixed-order and in the Powheg scheme,

cf. section 3.3, but no parton shower is applied. This allows to analyze the differences

between the two approaches already at parton level. It has been checked, though, that

processing the Powheg events produced by Whizard with the pT-ordered shower of

pythia8 [146] in the corresponding veto mode delivers reasonable physical results. In

this setup, the top mass is set to mt = 172GeV. We chose µr = mt as renormalization

scale. The coupling constants are α−1
e = 132.160 with no running and αS(MZ) = 0.118

with an NLL running and five active flavors. LO and Powheg events are unweighted

during generation. Polarization and beamstrahlung effects as well as lepton ISR are

neglected. In total, we generate 500K (unweighted) LO events and Powheg events

as well as 1500K (weighted) fixed-order NLO events. We denote as jets all possible

combinations of the occurring quarks and gluons, clustered with FastJet according to

an anti-kT algorithm that uses energies and spherical coordinates instead of transverse

momentum and rapidities as distance measure with R = 1.0. Figure 4.3 shows gluon

and jet energy distributions at
√
s = 500GeV. The soft gluon divergence can be seen

in the NLO event samples either directly in the (unphysical) energy distribution of the

gluon or indirectly in the distribution of the hardest jet, which peaks around the Born

value due to mostly soft gluons. The Powheg events have the expected suppression of

this divergence, originating from the application of the Sudakov form factor. Due to the

unitarity-conserving nature of the Powheg procedure, this leads to an increase of the

differential cross section in the remaining part of the spectrum, a well known feature of
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Figure 4.3. Energy distributions of the emitted gluon and of the hardest jet in the
process e+e− → tt̄.

pure Powheg distributions.
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Figure 4.4. The energy distribution of the hardest jet and the angular distribution of
the Higgs boson in the process e+e− → tt̄H.

Next we address the process e+e− → tt̄H with the same setup at
√
s = 1000GeV.

Apart from that, all other settings are identical to before. The left-hand side of fig. 4.4

shows the distribution of the energy of the hardest jet. The effect of Sudakov suppression

is clearly visible when compared to the same observable in the fixed-order approach.

Scale variations, also shown in the plot, cannot account for this difference. On the other

hand, we observe that in inclusive quantities like the angular distribution of the Higgs

boson, shown on the right-hand side of fig. 4.4, the Powheg matching has no significant

effect, which confirms that inclusive quantities remain correct to NLO accuracy. We want

to emphasize that the total K-factor at this value of
√
s is close to 1, yet distributions of

observables that are sensitive to QCD radiation change drastically in both approaches.

The treatment of Powheg matching presented here is definitely not exhaustive. At the

time of writing, NLO+PS matching in Whizard is considered an experimental feature,
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with the above discussions showing its basic validity. The application to more elaborate

processes, e.g. off-shell top production described at fixed-order in detail in chapter 5, in

combination with increased efficiency through damping methods, might be the scope of

future works within Whizard+NLO.

Optimizing real radiation

A well-known problem of the event generation using the modified Sudakov factor in

eq. (4.5.3) is the existence of so-called Born zeroes [139]. These are configurations in

which B (nearly) vanishes, but B̄ does not 5. In this case, a radiation event is generated

which has a very large ratio R/B in the Sudakov exponent. This is a significant challenge

for the upper bounding function to adapt to, leading to inefficient grids N(ξ, y).

The solution, first implemented by ref. [140], is the partition of the real matrix element

into a singular and a finite part as already discussed in section 4.4. The Powheg event

generation is then performed using only Rα
s . The Rα

f -contribution is finite and can be

treated separately in the standard fixed-order approach.

In contrast to eq. (4.4.3), for Powheg events a different suppression factor is com-

monly used [139],

F =
Z

Z +H
, Z = B

k2T,max

Bmax

, H = k2T , (4.5.5)

where Bmax is an upper estimator of the Born matrix element. To see how this damps

the Born zeroes, consider

Rα
s = Rα

Bk2T,max

Bk2T,max +Bmaxk2T
. (4.5.6)

Here, the ratio R/B is well-behaved, because the damping factor vanishes as fast as the

Born matrix element. Powheg damping is implemented in Whizard using the same

setup described in section 4.4. However, we refrain from discussing its effect on the event

generation here.

5In the case of ref. [139], which studies two-lepton production at a hadron collider (i.e. qq̄′ → W/Z →
ll′), the vanishing Born configurations occur for leptons close to the beam axis.
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Higher-order effects in top-quark

physics
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5. Off-shell tt̄ and tt̄H production at a

linear collider

In this chapter, we investigate NLO QCD perturbative corrections in top-quark pair

production at lepton colliders modeling off-shell and interference effects at increasing

levels of precision. At a future lepton collider like the ILC or CLIC, a scan of this

process including the production threshold allows for a measurement of the top-quark

mass at a precision of 100MeV or less. Moreover, the associated Higgs process gives

the best access to a measurement of the top Yukawa coupling at the per cent level [45,

52, 147–150]. The top quark produced in the collision of the electrons decays almost

immediately into a W boson and a bottom quark. The W boson then further decays

either leptonically into a lepton-neutrino pair or hadronically into two quarks. In this

study, we focus on the leptonic decay channels, with the related 2 → 2, 2 → 4 and 2 → 6

processes,

e+e− → tt̄ , (5.0.1)

e+e− → bW+b̄W− , (5.0.2)

e+e− → µ+νµe
−ν̄ebb̄ . (5.0.3)

The highest QCD precision for on-shell tt̄ production is currently N3LO [151] at the

inclusive level. Fully differential results have been obtained at NNLO QCD in ref. [152]

using antenna subtraction and before that by ref. [153] using phase-space slicing methods.

Both come to the conclusion that NNLO QCD corrections have sizeable effects on top

of the already large NLO corrections. For electroweak corrections, NLO is still state of

the art [154, 155]. An NLO QCD calculation for the off-shell process in eq. (5.0.2) has

first been presented in ref. [156] and reevaluated in ref. [157] with the aim of extracting

the top-quark width using ratios of single- and double-resonant signal regions. Off-shell

NLO QCD predictions for top-quark production at a hadron collider have been studied

in ref. [158, 159] for the bW+b̄W− final state and in ref. [78, 160–163] with leptonic

decays. Notably, in ref. [78] resonance-aware FKS subtraction (cf. section 2.6) as well as

Powheg matching (cf. section 4.5) are applied. Electroweak corrections are available

since recently [164].

Similar to top-quark pair production, we consider the following related 2 → 3, 2 → 5
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and 2 → 7 processes for the associated production of a Higgs boson together with a

top-quark pair with increasing level of precision with respect to off-shell, non-resonant

and interference effects,

e+e− → tt̄H , (5.0.4)

e+e− → bW+b̄W−H , (5.0.5)

e+e− → µ+νµe
−ν̄ebb̄H . (5.0.6)

The on-shell process has been computed up to NLO QCD [165], which is also the highest

currently available precision. Combined electroweak and QCD corrections are available

in ref. [166] and ref. [167].

Our study is the first in-depth analysis of the processes in eq. (5.0.3) and eq. (5.0.6).

It has been published in ref. [2], on which the following discussions in this chapter are

based. We start by discussing the effect of the top-quark width on predictions for off-shell

processes, introducing the complex mass scheme. We then give an in-depth overview

of the phenomenology of the different processes. We encounter a problem of resonance-

aware FKS subtraction in the presence of gluon emissions from internal tops and discuss

a possible solution. After discussing our setup, we proceed by presenting integrated

cross sections. The NLO integration setup is then used to investigate the dependence of

σtot on the top Yukawa coupling and the effect of polarized beams at NLO QCD. The

section concludes with the presentation of differential results in the off-shell processes

for various observables, especially the top forward-backward asymmetry.

5.1. The top-quark width

The top quark is unstable with a lifetime τt inaccessible to direct measurements 1.

Nevertheless, τt can be obtained from the SM prediction for the top-quark width, given

in eq. (4.1.4). Apart from that, Γt is of fundamental importance in every perturbative

calculation involving top quarks. It enters the denominator of the top-quark propagator

as a result of the resummation of self-energy diagrams. The bare propagator ∼ 1
k2−m2

has a pole at k2 = m2, which is regularized by the resummation of 1PI vacuum insertions

Σ(k2),

D(k) =
1

k2 −m2

{

1 +
∞∑

n=1

[
Σ(k2)

k2 −m2

]n
}

=
1

k2 −m2 − Σ(k)
. (5.1.1)

This procedure is well-known and leads to the on-shell renormalization scheme, which

imposes Re (Σ(k2)) |k2=m2 = 0 and Re
(

∂Σ(k2)
∂k2

)

|k2=m2 = 0. This renormalization con-

1The CDF collaboration attempted a direct determination of the top lifetime and obtained an upper
limit of τt < 2.7 · 10−13s [168].
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5.1. The top-quark width

dition allows for the use of the standard propagator, because the resummed quantity

Σ(k2)/(k2 −m2) vanishes and the pole is regularized with a running top mass.

Standard on-shell renormalization works for theories without CP-violation. However,

the resummed diagram clearly contains CP-violating terms due to γ5 matrices. An

explicit calculation shows that the Ward identity is not fulfilled for the top-quark self

energy diagram induced by a virtual W -boson, b

W

t t
, which means that the

standard on-shell scheme is not gauge-invariant. The solution to this problem is to

extend the on-shell renormalization conditions to the entire complex plane, so that

Σ(k2)|k2=µ2 = 0, (5.1.2)

∂Σ(k2)

∂k2
|k2=µ2 = 0, (5.1.3)

where µ2 = m2 − imΓ. The renormalization conditions (5.1.2) and (5.1.3) define the

complex mass scheme [169, 170]. It is the gauge-invariant modification of the usual

on-shell renormalization scheme for resonant particles and also guarantees unitarity

[171]. In section 5.3.1, we will further discuss its practical application and its conse-

quences on the electroweak parameter scheme.

A common approach to intermediate resonant particles is the so-called narrow-width

approximation (NWA), where the matrix element is factorized into production and de-

cay contributions. The NWA is usually employed to enable the computation of high-

multiplicity final states where the full matrix element or the full phase space is too

expensive to compute. This comes at the cost of the neglection of spin- and color corre-

lations as well as non-resonant background contributions and interference terms. While

the correlations can technically be restored [172], the contributions of non-resonant di-

agrams can be large and indeed are in Whizard’s factorized approach. In general, the

broader the resonance peak is, the more significant these contributions become. The

NWA therefore works best with Higgs decays, but should be used with caution when ap-

plied to top quarks and weak gauge bosons. Further, for loop diagrams, non-factorizable

propagators cannot consistently be taken into account. For all these reasons, it is de-

sirable to have predictions which do not require the NWA, which is achieved in this

study.
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Figure 5.1. The double-resonant signal diagram (top left) besides example non-resonant
(top right) and s- and t-channel single-top diagrams (bottom left and right, respectively)
of the process e+e− → bW+b̄W−.

5.2. Phenomenology of tt̄ and tt̄H production and

decay

5.2.1. The tt̄ final state

Top quarks almost exclusively decay via t→ bW+, so the process in eq. (5.0.1) directly

leads to the final state of eq. (5.0.2). In the NWA this is the only diagram which makes

up the process in eq. (5.0.2). However, beyond the NWA, i.e. for completely off-shell

top production, the process contains besides this doubly-resonant (signal) top-quark dia-

grams also contributions from non-resonant and single-resonant (background) diagrams

together with their interference terms. Example diagrams for all three production mech-

anisms are shown in fig. 5.1. The sub-dominant single-top diagrams always occur via

a fermion line between the two external bottom quarks. Using the full matrix element,

all NLO interference effects with single-resonant and non-resonant contributions as well

as spin correlations in the top decay are consistently taken into account. Diagrams like

the one in the top right of fig. 5.1 include potentially divergent photon propagators

from a γ → bb̄ splitting. In general, this evokes the necessity of an invariant-mass cut,

which in our setup is avoided due to a finite bottom-quark mass. W bosons are unstable

and decay either into a (charged) lepton-neutrino pair or a quark anti-quark pair. The

hadronic decay modes account for about two third of the total decay rate, leaving about

10 % for each leptonic decay mode. Taking decays of the W boson, which is also the

particle in the standard model with the largest width, into account therefore is essential

to make contact with experimental signatures. From the leading-order calculational per-

spective, the hadronic decay modes do not yield any substantial complexities compared

to the leptonic ones. However, this changes significantly at NLO QCD. The complexity
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Figure 5.2. Possible topologies of the full process. The blue line indicates a potentially
soft photon that gives rise to a leading-order singularity.
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Figure 5.3. Contributions to the process e+e− → µ+νµe
−ν̄ebb̄ involving a Z or H

resonance, treated via the resonance-aware FKS subtraction.

of the loop diagrams increases drastically with the additional four colored particles in

the final state. Moreover, the subtraction of divergences includes collinear contributions

and non-trivial color-correlations. On the phenomenological side, the clustering is much

more involved and the most suitable scale choice is harder to determine. For this rea-

sons we focus in this first study on the leptonic decay channels. Radiation only occurs

from massive b-quarks, so that no collinear singularities arise. We use 2 → 6 matrix

elements, including all off-shell and background contributions as well as spin correla-

tions. Due to the purely electroweak nature of the leptonic W-boson decays, from a

perturbative point of view these additional decays do not increase the computational

complexity compared to the process with on-shell W-bosons, i.e. the one of eq. (5.0.2).

However, besides the more involved phase space integration, the number of contributing

diagrams increases substantially due to additional single- and non-resonant contribu-

tions, examples of which are shown in fig. 5.2. Diagrams like the one on the right of

fig. 5.2 show a singularity due to photon emission from a continuous initial-final lepton

line (blue photon line). Therefore, the process in eq. (5.0.3) can not be integrated over

the whole phase space without cuts. Further, we focus on the different lepton-flavor case.

No additional phenomenological aspects are introduced in the same-flavor case, so the

description of off-shell top-quark production is detailed enough with this simplification.

The different-flavor case also has a smaller number of diagrams and requires less cuts

than the same-flavor process.
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Figure 5.4. Contributing diagrams to tt̄H production: associated production of a Higgs
boson and a top quark pair and Higgsstrahlung with an off-shell Z∗ → tt̄ splitting.
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Figure 5.5. A representative non-resonant diagram contributing to bW+b̄W−H produc-
tion via a quartic ZZHH-coupling.

5.2.2. The tt̄H final state

The diagrams involved in Higgs-associated top-pair production are very similar to those

of the corresponding tt̄ production processes, apart form the additional Higgs boson

that couples to all massive internal or external particles (t, b,W±, Z,H). Already on the

level of the on-shell processes of eq. (5.0.4) this results in two competing contributions,

as depicted in fig. 5.4. The diagram on the left of fig. 5.4 is proportional to the top

Yukawa coupling yt and will be referred to as the tt̄H signal contribution, while the

diagram on the right can be considered as irreducible Higgsstrahlung background in the

ZH channel with an off-shell Z∗ → tt̄ splitting. Furthermore, at the level of the off-

shell processes of eq. (5.0.5) and eq. (5.0.6), besides topologies already present for the

corresponding tt̄ processes with an additional attached Higgs boson, new contributions

arise from quartic EW couplings as illustrated in fig. 5.5. Note that a non-vanishing Higgs

width is inconsistent with an external on-shell Higgs boson, especially concerning gauge

invariance. We accept this slight inconsistency to be able to provide results independent

of a specific Higgs decay channel. A completely consistent approach to this process

would require the inclusion of the non-factorized Higgs decay into its dominant decay

mode H → bb̄, similar to what is done in this study for the top quarks and the W bosons.

This is in reach of Whizard, OpenLoops and other automated tools, but beyond the

scope of this thesis. The resulting inconsistency is very small with contributions from

H → bb̄ for off-shell tt̄ as well as tt̄H production being at the percent level.
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5.2.3. Resonance-aware subtraction and its limitations for

top-quark decay

The off-shell processes, i.e. those with bW+b̄W−(H) and µ+νµe
−ν̄ebb̄(H) final states,

contain diagrams with Z/H → bb̄ splittings, for example as depicted in fig. 5.3. Due

to the small intermediate widths, the integration of such contributions benefit strongly

from the extended resonance-aware FKS subtraction, described in section 2.6. Moreover,

there are double- and single-top resonances involved, as depicted in fig. 5.1. Therefore,

the whole process contains three distinct resonance topologies. The Z/H-topologies

have been discussed for the process e+e− → bb̄µ+µ− in section 4.2 and do not pose

any additional problems for top production. Top resonances, on the other hand, lead

to complications involving gluon emissions from internal resonant top quarks. There is

no standard resonance history associated with gluon emissions from top quarks directly

before they decay, yet they can be clearly separated from bottom-quark emissions for

gluon emissions with Eg > Γt. In other words, for bottom-associated gluon emissions, it

is mW+bg ≈ mW−b̄ ≈ mt or mW+b ≈ mW−b̄g ≈ mt, while in top-associated ones mW+b ≈
mW−b̄ ≈ mt, independent of the gluon energy. The standard resonance mapping, which

fixes eithermW+bg ormW−b̄g therefore does not suitably conserve the top-quark virtuality.

It becomes thus obvious that there should be additional resonance histories for internal

gluon emissions. The corresponding phase-space mapping needs to keepmW+b andmW−b̄

at a fixed value, which can be achieved by boosting the entire final state without the

gluon. However, this naive boost violates momentum conservation. In a hadron collision

process, the missing momentum could easily compensated by adapting the hadron energy

fractions of the colliding partons (which then also involves the adaption of PDFs). This

makes clear that in the naive setup where the lepton beams are considered structureless,

such a mapping cannot be realized. A complete resonance-aware treatment therefore

requires the inclusion of structure functions into the analysis. While this issue certainly

deserves a more detailed treatment, we defer it to future projects. In this study, we omit

top-quark resonance histories, i.e. the only resonances the subtraction is aware of are Z

and H. We want to emphasize that this choice does not influence the NLO accuracy of

the final result, but is only a performance issue.

5.2.4. Virtual matrix elements

In this study, all tree-level amplitudes, including color correlated ones, as well as one-

loop amplitudes are obtained using OpenLoops2. We observe a well-known feature of

2The required libraries are eett, eevvjj and eellllbb for the tt̄ and eehtt, eehvvjj and eehllllbb

for the tt̄H processes. Note that, if the OpenLoops configuration file the setting compile extra =

1 is set, all these libraries also include the necessary matrix elements for the associated real amplitude
with one additional gluon, so no additional installation of these processes is required.

87



5. Off-shell tt̄ and tt̄H production at a linear collider

b

W
−

e
+

e
−

W
−

b̄

t W
+

W
−

e
+

e
−

b̄

b

t
W

+

HW
−

e
+

e
−

b̄

b

Figure 5.6. Example pentagon diagrams contributing to the bW+b̄W− final-state pro-
cess containing one or two (leftmost diagram) top resonances and a hexagon diagram
contributing for bW+b̄W−H production.

OpenLoops: The total number of diagrams is not decisive for the computational effort

in the recursion formalism. Instead, the crucial point is the maximal number of n-point

functions involved. For the bb(W → lν)(W → lν) processes discussed here, the most

complex integrals originate from pentagon diagrams, examples for which are depicted in

fig. 5.6. Also shown in fig. 5.6 is a hexagon diagram contributing to the associated Higgs

production process. Table 5.1 lists information about the computational complexity with

respect to the one-loop amplitudes of all processes. Concerning the complexity of the

amplitudes, due to the reduced number of contributing helicity structures the calculation

of the off-shell processes including leptonic decays are even less involved compared to

the corresponding processes with on-shell W-bosons, despite the increased number of

diagrams, particularly due to the fixed neutrino chirality.

Table 5.1. Overview of loop matrix elements at NLO QCD for the studied processes.
Shown are the number of one-loop diagrams, the maximal number of loop propagators
and the number of helicity structures (assuming charged leptons to be massless).

e+e− → nloop diags Max. prop. nhel

tt̄ 2 3 16
bW+b̄W− 157 5 144
bb̄ν̄ee

−νµµ
+ 830 5 16

tt̄H 17 4 16
bW+b̄W−H 1548 6 144
bb̄ν̄ee

−νµµ
+H 7436 6 16

5.3. Setup and validation

The results presented in this chapter are very computationally intense. To achieve

good statistics in differential distributions, both well-adapted grids and a high number
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of events are necessary. The latter issue is a well-known problem of weighted event

generation, but unavoidable due to the existence of negative weighted events in the

fixed-order approach cf. section 3.3. A good grid can take up to a week to be produced

in a single-threadedWhizard integration. Since event generation can always be trivially

parallelized by distributing the total number of events to a large number of small batches,

the integration constitutes the bottleneck of the event generation for high-multiplicity

processes 3. For this reason, all scans have only be performed up to four(five)-particle

final states, whereas differential distributions are available for the full processes, since

here only one integration is required for each scale. The events used for the differential

distributions in the subsequent sections are generated using several thousand CPU cores

by additionally splitting up the simulation into separate runs for Born, real, virtual and

soft-mismatch components. The weights are then added in the final analysis. This way,

several hundreds of millions of events have been produced for both e+e− → µ+νµe
−ν̄ebb̄

and e+e− → µ+νµe
−ν̄ebb̄H. The analysis is directly linked to the event generation in

Whizard by piping the hepmc [127] output into Rivet [128], which continuously adapts

yoda-files 4. In the final step, the yoda-files are merged into one single object for each

scale and can easily be plotted.

5.3.1. Input parameters, scale choices and phase-space cuts

We use the following gauge-boson, quark and Higgs masses [173],

mZ = 91.1876GeV , mW = 80.385GeV ,

mb = 4.2GeV , mt = 173.2GeV ,

mH = 125GeV ,

which enter the calculation as independent input parameters. The electroweak couplings

are derived from the gauge-boson masses and the Fermi constant, Gµ = 1.1663787 ×
10−5 GeV−2, in the Gµ-scheme. The CKM matrix is assumed to be trivial, i.e. diagonal

with entries equal to one5. Its most relevant element in our computation is Vtb, for

which the trivial value is consistent with the measured value (1.021 ± 0.032 [173]).

Furthermore, using the precisely measured value of Gµ automatically absorbs important

electroweak corrections into the top decay [174]. For the strong coupling constant we use

αs(mZ) = 0.1185 and a two-loop running including nf = 5 active flavors. The massive

3This might change in a well-tested parallelized version of Vamp, which at the time of writing is in
the validation and testing phase.

4yoda is a set of C++ classes especially suited for histogramming, https://yoda.hepforge.org.
5Note that off-diagonal entries in the CKM matrix give additional contributions in the computation
of 1 → 3 decay widths. However, to be consistent with the scattering matrix element, we also there
use a trivial CKM matrix.

89



5. Off-shell tt̄ and tt̄H production at a linear collider

bottom quark is renormalized in the on-shell scheme, which is valid here because we

assume Γb = 0, and, since αs does not enter at LO, no renormalization of the strong

coupling is necessary. Further, we use constant ttH and bbH Yukawa couplings.

With this setup, the gauge boson and top widths are computed directly withWhizard

at LO and NLO, using massive b-quarks, cf. section 4.1. In the NLO computation, we

use the mass of the decaying particle as renormalization scale. This way, the following

LO and NLO gauge boson widths are obtained:

ΓLO
Z = 2.4409GeV, ΓNLO

Z = 2.5060GeV, (5.3.1)

ΓLO
W = 2.0454GeV, ΓNLO

W = 2.0978GeV. (5.3.2)

In our calculation we use ΓZ and ΓW at NLO throughout, i.e. also for off-shell cross

sections at LO. This ensures that the effective W and Z leptonic branching ratios that

result from e+e− → bb̄4f(H) matrix elements are always NLO accurate. In contrast, in

order to guarantee that t → Wb branching ratios remain consistently equal to one at

LO and NLO, off-shell matrix elements and the top-decay width need to be evaluated

at the same perturbative order. For the top-quark width we employ two distinct sets

of values: one for the on-shell decay t → W+b and one for the off-sell decay t → ff̄b,

as also detailed in ref. [175]. The value used for the off-shell top-quark decay includes

decays into three lepton generations and two quark generations. It also involves the W

width, for which we use the previously computed NLO value. The numerical values are

ΓLO
t→Wb = 1.4986GeV, ΓNLO

t→Wb = 1.3681GeV, (5.3.3)

ΓLO
t→ff̄b = 1.4757GeV, ΓNLO

t→ff̄b = 1.3475GeV. (5.3.4)

The Higgs width is set to ΓH = 4.143MeV. For the reasons mentioned in section 5.1,

we apply the complex mass scheme by moving to complex-valued masses

µ2
i =M2

i − iΓiMi for i = W,Z, t,H , (5.3.5)

that imply a complex-valued weak mixing angle

s2w = 1− c2w = 1− µ2
W

µ2
Z

. (5.3.6)

The electromagnetic coupling in the Gµ is computed as

αe =

√
2

π
Gµ

∣
∣µ2

W s
2
w

∣
∣ , (5.3.7)

which gives α−1
e = 132.16916. For the on- and off-shell tt̄ and tt̄H processes (i.e. in
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contrast to the decays), the renormalization scale µR is set to

µR = ξR ·mt (5.3.8)

for tt̄ processes and

µR = ξR · (mt +mH) (5.3.9)

for tt̄H processes. The parameter ξR specifies the scale variation, which is chosen to be

ξR ∈
[
1

2
, 2

]

. (5.3.10)

The scale choices in eq. (5.3.8) and eq. (5.3.9) are different to most works on NLO

processes at hadron colliders, where dynamical scales are used. At a lepton collider, fixed

values µR can be used without significant loss of accuracy, because pure QCD corrections

do not comprise initial-state radiation. Thus, the hard scattering process happens at

fixed energy, which is not the case for the corresponding processes at hadron colliders.

This assumption is confirmed by the very good perturbative description presented in

the following sections, cf. fig. 5.7. Still, different dynamical scale choices might be

appropriate for the description of some differential observables.

To avoid singularities at Born-level arising from small photon energy transfers, such

as on the right-hand side of fig. 5.2, for processes with final-state electrons or positrons

we apply a mild phase-space cut

√
(
kine± − koute±

)2
> 20GeV. (5.3.11)

Possible other sources for Born-level divergences are photon splittings into final-state

b-quarks. These are regulated by our choice of mb 6= 0. Therefore, no other cuts are

imposed, although to provide realistic simulations for an experimental setup, a feasible

study has to take into account jet clustering. We define a separate jet by the generalized

kT-algorithm [131, 132] with R = 0.4 and p = −1, corresponding to an anti-kT clus-

tering. The jet clustering is performed by Rivet, which has an interface to FastJet6,

on the partonic events from Whizard, before the filling of histograms occurs. We tag

b/b̄-jets according to their partonic content and denote them as jb and jb̄. Similarly, in

the on-shell processes e+e− → tt̄ and e+e− → tt̄H, we identify the top quark with the

jet containing a top quark. In the discussion of differential cross sections in section 5.7

we always require at least two b-tagged jets.7 No further phase-space restrictions are

applied.

6The kT-algorithm corresponds to ee-genkt in FastJet.
7Since we do not impose any kinematical restriction on b-jets, requiring two b-jets amounts to a lower
bound for their ∆R separation.
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5.3.2. Validation

Validations of the automated subtraction in Whizard+NLO have been discussed ex-

tensively in chapter 4. Especially the top-quark width has been checked against the

value used in ref. [175] and the analytical formulas [129, 176, 177], cf. section 4.1.

Also, the resonance-aware NLO calculation was shown to work in section 4.2. For the

scope of the continuum study, we have performed additional dedicated checks and val-

idations. They have been performed at the permille level and differences are all within

two standard deviations of the MC integration. For the e+e− → bW+b̄W− process, we

have performed an in-depth cross check with various other results and generators. The

total cross section corresponding to the study of ref. [157], therein computed with Mad-

graph5 aMC@NLO, has been reproduced. Moreover, we find excellent agreement

between Whizard, Sherpa [30] and Munich 8 for the parameter set given in sec-

tion 5.3.1, as can be recapitulated in tab. 5.2. Note, that both Sherpa and Munich

use Catani-Seymour subtraction, while Madgraph5 aMC@NLO and Whizard use

FKS subtraction.

Table 5.2. LO and NLO inclusive cross sections for e+e− → tt̄ and e+e− → bW+b̄W− at√
s = 800GeV, using the settings of section 5.3.1. For the NLO results, the integration

errors are shown.

Whizard+NLO Sherpa Munich

Process σLO[fb] σNLO[fb] σLO[fb] σNLO[fb] σLO[fb] σNLO[fb]

e+e− → tt̄ 253.5 271.16(2) 253.6 271.15(2) 253.8 271.369(3)

e+e− → bW+b̄W− 301.8 321(1) 301.3 323.4(3) 302.1 323.8(4)

5.4. Integrated cross sections and scale variation

We start our discussion of numerical results with an investigation of the NLO QCD

corrections to inclusive top quark pair-production cross sections as a function of
√
s.

In the left plot of fig. 5.7 we show inclusive LO and NLO cross sections for the on-

shell process e+e− → tt̄ and the off-shell process e+e− → bW+b̄W− together with the

corresponding K-factors.

8Munich is the abbreviation of “MUlti-chaNnel Integrator at Swiss (CH) precision”—an automated
parton level NLO generator by Stefan Kallweit. In preparation.
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Table 5.3. LO and NLO inclusive cross sections and K-factors for e+e− → tt̄ and
e+e− → bW+b̄W− for various center-of-mass energies targeted by future linear collider
experiments. Uncertainties at NLO are due to scale variation.

e+e− → tt̄ e+e− → bW+b̄W−

√
s [GeV] σLO[fb] σNLO[fb] K-factor σLO[fb] σNLO[fb] K-factor

500 548.4 627.4+1.4%
−0.9% 1.14 600.7 675.1+0.4%

−0.8% 1.12

800 253.1 270.9+0.8%
−0.4% 1.07 310.2 320.7+1.1%

−0.7% 1.03

1000 166.4 175.9+0.7%
−0.3% 1.06 217.2 221.6+1.1%

−1.0% 1.02

1400 86.62 90.66+0.6%
−0.2% 1.05 126.4 127.9+0.7%

−1.5% 1.01

3000 19.14 19.87+0.5%
−0.2% 1.04 37.89 37.63+0.4%

−0.9% 0.993

and remain large but finite below threshold, while for the on-shell process they diverge

close to threshold. Around the maximum of the cross sections, NLO corrections vanish

for both the on-shell and the off-shell process. Above this maximum, the NLO corrections

turn negative, yielding corrections at the maximal CLIC energy of
√
s = 3000GeV of up

to −15% for the on-shell process e+e− → tt̄H and up to −20% for the off-shell process

e+e− → bW+b̄W−H. Again one should also consider how the off-shell cross sections

behave relative to their on-shell counterparts. While at LO the e+e− → bW+b̄W−H

cross section decreases considerably slower with energy compared to the on-shell process

e+e− → tt̄H, at NLO the corrections to the off-shell process are more sizeable and nega-

tive with respect to the on-shell case, yielding comparable inclusive cross sections for the

on-shell and off-shell process. Still, at 3000GeV the off-shell inclusive cross section is

about 20% smaller then the on-shell one. In the right panel of fig. 5.8, we display renor-

malization scale variations at
√
s = 800GeV for Higgs associated top-pair production.

For this center-of-mass energy scale variation uncertainties in e+e− → tt̄H are negligible

(induced by vanishing NLO QCD corrections), while in e+e− → bW+b̄W−H with the

standard choice Γt = Γt(µR = mt) they amount to several per cent in the considered

variation band. Similar to the tt̄ case, we also show scale variations taking consistently

into account the scale dependence in the top-quark width. Here, the behavior of the

off-shell process is very similar to the on-shell one. The small scale variation of this

process a posteriori confirms our assumptions about fixed scales made in eq. (5.3.8) and

eq. (5.3.9), improving the reliability of differential predictions in the following sections.

Finally, in table 5.3 and table 5.4 we list inclusive cross sections for tt̄ and tt̄H (both on-

and off-shell) processes, respectively, for several representative center-of-mass energies.
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Table 5.4. LO and NLO inclusive cross sections and K-factors for e+e− → tt̄H and
e+e− → bW+b̄W−H for various center-of-mass energies targeted by future linear col-
lider experiments. Uncertainties at NLO are due to scale variation.

e+e− → tt̄H e+e− → bW+b̄W−H√
s [GeV] σLO[fb] σNLO[fb] K-factor σLO[fb] σNLO[fb] K-factor

500 0.26 0.42+3.6%
−3.1% 1.60 0.27 0.44+2.6%

−2.4% 1.63

800 2.36 2.34+0.1%
−0.1% 0.99 2.50 2.40+2.1%

−1.9% 0.96

1000 2.02 1.91+0.5%
−0.5% 0.95 2.21 2.00+2.5%

−2.5% 0.90

1400 1.33 1.21+0.9%
−1.0% 0.90 1.53 1.32+2.6%

−3.0% 0.86

3000 0.41 0.35+1.4%
−1.8% 0.84 0.55 0.44+2.9%

−4.3% 0.79

Listed uncertainties are due to scale variations, where we employ the fixed top-width,

Γt = Γt(µR = mt). In section 5.7.1 we will continue our discussion of NLO corrections

for top-pair and Higgs associated top-pair production at the differential level. There we

will focus on
√
s = 800GeV, as here cross sections are largest for tt̄H production, which

should offer the best condition for a precise determination of the top Yukawa coupling,

as discussed in the following section. While this can be considered a viable running

scenario for a precision measurement, one should keep in mind that for other energies,

the NLO QCD corrections will be larger in general, at least at the inclusive level.

5.5. Determination of the top Yukawa coupling

Being the largest of all Yukawa couplings, the tth coupling yt is a crucial quantity in

many BSM modes, such as the MSSM, 2HDM, composite Higgs or Little Higgs models.

A precise measurement of Higgs associated top-pair production allows for the direct

determination of yt at the per cent level [178, 179], thus probing a wide range of new

physics models. Such a measurement is feasible at a future high-energy lepton collider.

In the following, we will study the sensitivity of the tt̄H and bW+b̄W−H cross sections

to yt and investigate the effects of NLO QCD corrections. The sensitivity of the tt̄H

process on yt is commonly expressed in terms of [179, 180]

∆yt
yt

= κ
∆σ

σ
, (5.5.1)
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5. Off-shell tt̄ and tt̄H production at a linear collider

that NLO QCD make κ drop below κ0 suggests the assumption that interference and

background diagrams are affected more by the corrections than the signal diagram. To

quantify this, we use (5.5.1) and (5.5.2) to express κ in terms of S, I and B,

κ = σ(ξt)

[
σ(ξt)

dξt

]−1 ∣
∣
∣
∣
ξt=1

=
S + I +B

2S + I
=
I

2
+
I/2 + B

2S + I
, (5.5.3)

Note that, in the above formula, the additional factor of ξt from (5.5.2) is already set

to one. While B and S are strictly positive, I can take either sign. As can be inferred

from eq. (5.5.3), for κ to drop below 0.5, the interference contribution must be negative.

Assuming that the signal contribution dominates over the interference, i.e. −I < 2S, it

is clear that κ < κ0 can only be realized via sufficiently large and negative interference

terms. It can therefore be concluded that the decrease of κ is due to large negative

corrections on I, which can be attributed to subtraction terms dominating this subset

of the overall result. Negative contributions to I could also be created by BSM effects

at tree level. The study above shows that the discrimination of perturbative corrections

from new physics signals plays an important role in future experimental studies of the

top Yukawa coupling.

Finally, we want to mention that the results from this section are already used by

CLIC to determine their true sensitivity on the top Yukawa coupling [181].

Table 5.5. The parameter κ as defined in eq. (5.5.3) for e+e− → tt̄H and
e+e− → bW+b̄W−H at LO and NLO for

√
s = 800GeV.

e+e− → κLO κNLO κNLO/κLO

tt̄H 0.514 0.485 0.943

bW+b̄W−H 0.520 0.497 0.956

5.6. Polarization Effects

We complete our study of inclusive cross sections for leptonic top-pair and Higgs as-

sociated top-pair production with an investigation of possible beam polarization effects

on these processes. Beam polarization is a powerful tool at linear colliders to disentan-

gle contributing couplings and to reduce backgrounds [182, 183], or e.g. improve the

measurement of the top Yukawa coupling [179]. In table 5.6 and table 5.7 inclusive LO

and NLO cross sections with different polarization settings as suggested by the favored

98



5.7. Differential distributions

ILC running scenarios [184] and two different collider energies are listed for the on-shell

processes e+e− → tt̄ and e+e− → tt̄H, respectively. While cross sections vary strongly

with the beam polarization, the K-factors are unaffected. These results confirm the

naive expectation that NLO QCD corrections fully factorize with respect to the beam

polarization due to the uncolored initial state. On the other hand, one can view the

constant K-factors in table 5.6 and table 5.7 as validation of the polarization dependent

Whizard-OpenLoops-interface via the BLHA extension described in section 3.1.1.

The factorization also holds when top-quark decays are considered and we refrain from

showing polarized cross sections for off-shell production processes.

Table 5.6. LO and NLO inclusive cross sections for e+e− → tt̄ with possible ILC beam
polarization settings at

√
s = 800GeV and 1500GeV.

√
s = 800GeV

√
s = 1500GeV

P (e−) P (e+) σLO[fb] σNLO[fb] K-factor σLO[fb] σNLO[fb] K-factor

0% 0% 253.7 272.8 1.075 75.8 79.4 1.049

−80% 0% 176.5 190.0 1.077 98.3 103.1 1.049

80% 0% 176.5 190.0 1.077 53.2 55.9 1.049

−80% 30% 420.8 452.2 1.074 124.9 131.0 1.048

−80% 60% 510.7 548.7 1.074 151.6 158.9 1.048

80% −30% 208.4 224.5 1.077 63.0 66.1 1.049

80% −60% 240.3 258.9 1.077 72.7 76.3 1.049

5.7. Differential distributions

5.7.1. Top-pair production and decay

We start our analysis of differential distributions for top-pair production and decay

considering the top-quark transverse momentum distribution for the on-shell process

e+e− → tt̄ and the corresponding off-shell process e+e− → µ+νµe
−ν̄ebb̄ including leptonic

decays, shown in fig. 5.10. For the latter the top quark is reconstructed from its leptonic

decay products at so-called Monte-Carlo truth level. This refers to the assumption

that the neutrino momentum can be perfectly reconstructed, so that pT,W+jb = pT,ℓ+νjb .

Despite the different normalization of the two distributions, due to the fact that the

on-shell process does not include leptonic branching ratios, the LO and NLO shapes

are very similar below the Jacobian peak located at around 350GeV. This peak with
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5. Off-shell tt̄ and tt̄H production at a linear collider

Table 5.7. LO and NLO inclusive cross sections for e+e− → tt̄H with possible ILC beam
polarization settings at

√
s = 800GeV and

√
s = 1500GeV.

√
s = 800 GeV

√
s = 1500 GeV

P (e−) P (e+) σLO[fb] σNLO[fb] K-factor σLO[fb] σNLO[fb] K-factor

0% 0% 2.358 2.337 0.991 1.210 1.064 0.879

−80% 0% 1.583 1.571 0.992 1.576 1.381 0.876

80% 0% 1.584 1.571 0.992 0.843 0.746 0.885

−80% 30% 3.988 3.950 0.990 2.003 1.757 0.877

−80% 60% 4.840 4.795 0.991 2.429 2.128 0.876

80% −30% 1.860 1.846 0.992 0.996 0.879 0.883

80% −60% 2.134 2.120 0.993 1.148 1.018 0.886

its large event density is smeared out by the NLO corrections, in particular due to

kinematical shifts induced by the real gluon radiation, yielding corrections at the level

of −20% at the peak and around +20% below the peak. For the on-shell process the

phase-space above the Jacobian peak is kinematically not allowed at LO and gets only

sparsely populated at NLO. In contrast, for the off-shell process this kinematical regime

is allowed already at LO. The observed sizeable corrections in the transverse momentum

of the intermediate top quarks also translate into relevant corrections in the directly

observable transverse momentum of the final state leptons, as shown in fig. 5.12. Namely,

we find corrections up to −30% and up to −20% for the hardest and second hardest

lepton, respectively. In a realistic setup, where experimental selection cuts have to be

applied on the leptons, such effects become also relevant for the fiducial cross section

in precision top physics. Experimentally, pT,W+jb is not directly measurable, as in the

considered leptonic decay mode the top quark cannot be exactly reconstructed due to

the two invisibly escaping neutrinos. To model this constraint, we construct and measure

the transverse momentum of the jb–lepton system, pT,ℓ+jb . Corresponding predictions

for e+e− → µ+νµe
−ν̄ebb̄ are shown in fig. 5.11 (left). Here we observe a tilt of the NLO

shape with respect to the LO one, yielding corrections up to 20% for small pT,ℓ+jb and

up to −40% for large pT,ℓ+jb . In contrast, the transverse momentum distribution of the

jb–jb̄ system, as shown on the right of fig. 5.11, only receives mild QCD corrections at

the level of 10%. The kinematical mass of the top resonance is one of the observables

of especially large interest. On the left of fig. 5.13 we show the reconstructed invariant

top-quark mass, mW+jb = mℓ+νjb , where the ℓ+νjb system is identified based on Monte

Carlo truth. At LO and close to the peak, this distribution corresponds to the Breit-
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5.7. Differential distributions

Table 5.8. Forward-backward asymmetries of the top quark, AFB, and the anti-top
quark, ĀFB.

e+e− → ALO
FB ANLO

FB ANLO
FB /ALO

FB

AFB

tt̄ -0.535 -0.539 1.013

bW+b̄W− -0.428 -0.426 0.995

µ+e−νµν̄ebb̄ -0.415 -0.409 0.986

µ+e−νµν̄ebb̄, without neutrinos -0.402 -0.387 0.964

ĀFB

tt̄ 0.535 0.539 1.013

bW+b̄W− 0.428 0.426 0.995

µ+e−νµν̄ebb̄ 0.415 0.409 0.986

µ+e−νµν̄ebb̄, without neutrinos 0.377 0.350 0.928

the relation AFB = −ĀFB is not fulfilled any more, both at LO and NLO. This can also

observed directly in the angular distribution of ljb-pairs, cf. fig. 5.14, where there is a

slightly more pronounced dip at the lower edge of cos θl−jb̄
than at the one of cos θl+jb .

The differences come from combinatorial issues in the event reconstruction, where the

neutrino momentum in the MC truth information allows to determine the top helicity

and hence the flight direction of the lepton (cf. e.g. ref. [192]). Such information is

unavailable when the neutrino kinematics are omitted.

5.7.3. Higgs associated top-pair production and decay

We start our analysis of differential Higgs-associated top-pair production by again con-

sidering the on-shell process first. Figure 5.16 shows the energy of the Higgs boson, EH ,

and top-pair invariant mass mtt̄. In the e+e− → tt̄H process, the Higgs boson acts as

a colorless recoiler, reducing the effective CMS energy for the tt̄ system. Thus, as mtt̄

approaches the top production threshold at mtt̄ ≈ 2mt, threshold enhancements become

visible also in the EH–distribution. The explicit kinematical connection between EH

and mtt̄ is

EH =
1

2
√
s

(
s+m2

H −m2
tt̄

)
. (5.7.3)

For the on-shell process e+e− → tt̄H the lower kinematical bound of the EH distribu-

tion is given by Emin
H = mH = 125GeV and its upper bound by Emax

H = 335GeV, which

follows from mmin
tt̄ = 2mt. The Higgs energy is thus a key observable in the identifica-

105









6. Matching the NLL threshold

resummation with fixed-order QCD

corrections for e+e− → bW+b̄W−

The study of top-quark production at threshold will be an integral part in the physics

program of future lepton colliders, enabling a measurement of the top mass and width

with unprecedented precision [45, 52, 147–150]. Moreover, also the top-quark couplings

can be studied at threshold. In this chapter, we present the results of the combination

of the NLL-resummed top threshold calculation using NRCQD and the Whizard NLO

QCD implementation. We consider the off-shell process e+e− → bW+b̄W−, for which

the first fully matched NLL + NLO QCD calculation is presented, which gives a coherent

description of the transition region between the non-relativistic threshold regime and the

top-quark continuum. As in chapter 5, we constrain ourselves to structureless beams.

The convolution of theory predictions for the threshold with initial-state radiation and

realistic beam spectra is studied in ref. [52, 148].

A detailed treatment of all aspects of the calculation, e.g. different summation pre-

scriptions for intermediate top helicities or scale choices, is beyond the scope of this

thesis. We concentrate on the relevant points in which fixed-order NLO corrections en-

ter the calculation and how it affects the FKS subtraction inWhizard, based on original

work by us. The full in-depth study is currently in preparation [57]. A summary of the

current progress in validation at the time of writing is given in ref. [1].

6.1. Top-quark quasi-bound states and NRQCD

QQ bound states constitute an essential window of probing non-perturbative QCD at

collider experiments. Such a state, also called quarkonium, is non-relativistic, and can

to a large extend be described with classical quantum mechanics. The challenge lies

in properly transferring QCD, defined in the purely relativistic regime, to the non-

relativistic one. Bound states of light quarks, such as the J/ψ (charmonium) or the Υ

(bottomonium) exhibit a large spectrum of excitations. Like in atomic physics, they

are referred to by their radial (excitation) and spin quantum numbers, e.g. Υ(1S). The
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6. Matching the NLL threshold resummation to fixed-order QCD corrections

top bound state (toponium) is special because the formation time of the bound state is

larger than the top life time, hence it is called a quasi-bound state. Nevertheless, at a

lepton collider, it would be accessible because
√
s can be set close to the threshold and

the final state is clean enough to allow for a precise reconstruction of the top quarks. In

a quantum field theoretical approach, bound states are produced by the divergences of

a ladder summation of gluon-exchange diagrams,

BS = + + + . . . . (6.1.1)

The reason for this is that bound states have to appear as poles of a Green function.

Having the energy EB < 0, it must be located at s = 2m + EB. No single Feynman

diagram can have this pole, therefore bound states are an interference effect between dif-

ferent loop diagrams. 1. In the non-relativistic regime, the additional gluon propagators

are enhanced, leading to factors of (αs/v)
n, where

v =

[√
s− 2mt + iΓt

mt

]1/2

(6.1.2)

is the non-relativistic top velocity [193]. These additional (large) terms need to be

resummed, which is commonly done in the framework of non-relativistic QCD (NRQCD)

[53–56], which describes the color-charged interactions of the quarks with an effective

potential.

In general, the R-ratio to all orders takes the form

R =
σtt̄
σµ+µ−

= v
∑

k

(
αs

v

)k∑

i

(αs ln v)
i×
{

1 (LL); αs, v (NLL); α
2
s, αsv, v

2 (NNLL); . . .

}

.

(6.1.3)

Currently, the state of the art is NNLL accuracy [194] and, without resumming loga-

rithms of v, N3LO [195, 196]. The resonance peak observed in top-quark pair production

corresponds to the 1S-niveau numbers of the bound state. Other states do not exist due

to the large value of the top-quark width. The position of the resonance peak does not

correspond to the top-quark pole mass mt which enters the propagator. Instead, it is

shifted to a lower value due to the negative binding energy of the toponium system.

1The same effect leads to the emergence of repulsive and attractive forces in classical electrodynamics.
The Born diagram for a e+e− → e+e− or e+e+ → e+e+ interaction alone cannot explain the different
sign of the electromagnetic potential, because the absolute square is insensitive to a replacement
e+ → e−. Only at the level of interference terms, the different signs of the processes turn out to be
significant.
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This resonance mass is denoted as M1S
t . It is related to the pole mass via

mt =M1S
t

[
1 + ∆M(

√
s, αs)

]
. (6.1.4)

The explicit formulas for ∆M at LL and NLL accuracy are given in eq. (F.1.2). A

similar relation exists for the relation between the pole mass and the MS mass of the

top quark [197–199], but this is beyond the scope of this thesis.

6.1.1. The NRQCD form factor and scales

The resummation of the threshold logarithms is a multi-scale problem, which involves

the mass, momentum and kinetic energy of the top quark. Close to the threshold, there

is a strict scale hierarchy,

ΛQCD ≪ mtv
2 ≪ mtv ≪ mt. (6.1.5)

Integrating out the second largest scale mtv leads to an effective field theory (EFT)

called NRCQD. The three different scales in eq. (6.1.5) are called the hard, soft and

ultra-soft scale. In consequence, they are associated with three different couplings, αH,

αS and αUS (note the capital letter ”S” in the soft strong coupling, opposed to the

lower-case one when generally referring to αs).

We are not giving an in-depth description of the whole resummation procedure. For

the purpose of this work, it should be noted that in the EFT approach, a form factor

enters the tγµt̄ and tγµγ5t̄ vertices which contains loop integrals stemming from the

resummation approach. At leading-log accuracy, it has an analytical formulation,

FLL = 1 + imρΓ(ǫ)Γ(1 + ǫ)Γ(1− ρ)
z2 − z1

ρΓ(1 + ǫ− ρ)
, (6.1.6)

where ǫ > 0 is a small parameter and ρ = (CFαs) / (2v). The parameters z1,2 are given

by the hypergeometric function

z1,2 =2 F2

(

ǫ, 1 + ǫ, 1 + ǫ− ρ;
mv ∓ i(p∓ |p0|)

2mv

)

, (6.1.7)

where p is the magnitude of the three-momentum of the top quark in the collision system.

Such a relatively simple formula only exists at leading-log accuracy. Already at NLL, the

form factor can only be computed numerically, with far-reaching consequences from the

event generator point of view, since this leads to the requirement of additional numerical
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6. Matching the NLL threshold resummation to fixed-order QCD corrections

codes for its computation. The form factor FLL can be expanded in αs to obtain

F exp
LL (αs) = 1 + αs

(

iCFm log mv+p
mv−p

2p

)

+O(α2
s). (6.1.8)

The extension to NLL is quite simple

F exp
NLL(αs) = F exp

LL (αs) + αs

(

−2CF

π

)

+O(α2
s). (6.1.9)

6.2. Factorized NLO decays for the top threshold

treatment of e+e− → bW+b̄W− in Whizard

The outlined resummed amplitudes are available in Whizard for the on-shell process

e+e− → tt̄. The numerical NRQCD form factor is obtained from the third-party code

Toppik [200] 2 and then included in the factorized computation using the O’Mega

library. This direct modification of the vertices fails for off-shell process, i.e. the process

e+e− → bW+b̄W−. Here, modifying the vertices breaks gauge invariance, as can be seen

by applying a suitable local gauge transformation Ψt → e−iQgθ(x)Ψt to the Lagrangian

component containing the modified (covariant) derivative ψ̄i /DNRQCDψ. Moreover, the

modified vertices lead to loop contributions with gluons connecting all colored particles.

This means that integrals over the form factor have to be executed, which however is, if

at all, only possible at LL, since at higher orders, there does not exist a simple analytic

form. These issues are solved by using the factorized ansatz [201, 202], together with

an on-shell projection for the top quark. In this projection, the final-state bottom

and W momenta are transformed in such a way that the top momenta reconstructed

from them are on-shell. The technical details are outlined in section F.2. The factorized

matrix element is given by

M =
〈
e+e−

∣
∣ TNRQCD

∣
∣tt̄
〉

︸ ︷︷ ︸

≡Mprod

〈
tt̄
∣
∣ T
∣
∣bW+b̄W−

〉
, (6.2.1)

where the form factor only enters the production matrix element Mprod and NLO QCD

corrections to the decay can be computed separately. Decay matrix elements do not

obtain large non-relativistic corrections, so that standard relativistic NLO corrections

2Toppik is a Fortran program by Thomas Teubner which is included in every recent Whizard dis-
tribution. To speed up the calculation, at the beginning of a threshold run, Whizard generates
a grid of Toppik output in

√
s, the top-quark spatial momentum and the top-quark off-shellness.

Within this grid, form factors are interpolated. Also, existing grids are saved to disk and reused if
the parameters fit.
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to them can be used. Moreover, the NLO width can be used in the corresponding parts

of the matched computation, keeping NLO accuracy in observables sensitive to the decay

kinematics. The leading-order bW+b̄W−–contribution is simply the square of the sum

of the tree-level amplitudes, including the interferences with all background processes,

σLO =

∣
∣
∣
∣
∣
∣
∣
∣
∣ e

−

e
+

b̄

W
−

W
+

b

∣
∣
∣
∣
∣
∣
∣
∣
∣

2

. (6.2.2)

Note that, for ease of notation, we represent cross sections only by their diagrammatic

kernels and omit other factors, especially the phase-space integration. Furthermore, in

NLO diagrams, αs stands for all possible QCD one-loop diagrams for this final state.

Further, real parts of interference terms are denoted by
(

a


b
)

= 2Re(a · b∗), so that

in this notation, the usual fixed-order NLO matrix element is given by

σNLO = σLO +








e
−

e
+

b̄

W
−

W
+

b



e
−

e
+

b̄

W
−

W
+

b

αs








+

∣
∣
∣
∣
∣
∣
∣
∣
∣ e−

e+

b̄

W−

W+

b

g
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

, (6.2.3)

where the first summand is Born cross section evaluated using the NLO value for Γt.

The second summand comprises the virtual and the third one the real contribution. In

the factorized case, the LO matrix element is

σfact
LO =

∣
∣
∣
∣
∣
∣
∣
∣
∣ e

−

e
+

b̄

W
−

W
+

b

∣
∣
∣
∣
∣
∣
∣
∣
∣

2

. (6.2.4)

Double lines denote top propagators and a dashed line through them a factorized com-

putation with an on-shell projection. The NLO corrections to the decay can then be
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written as

σfact
NLO = σfact
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(6.2.5)

Here, the small gray blob αs includes the same IR-divergent loops as in the calculation

for an individual top decay, i.e. one diagram with a gluon exchange between t and

b (the quark self-energies are IR-finite). Likewise, the gray blob in the real-emission

contribution contains all diagrams with an additional final-state gluon. In this case, it

contains two diagrams, one in which the gluon is emitted from the bottom quark, and

one in which it is emitted from the top quark. It is important to note that we have

omitted final-state interferences between different legs in the real-emission diagrams like


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. (6.2.6)

This is because the IR divergences of these diagrams only cancel when added to appro-

priate virtual corrections that connect final-state bottom quarks. But these require an

integration over the form factor, which is unfeasible as outlined at the beginning of this

section.

6.2.1. The full NLO-matched cross section

Finally, we combine the (N)LL cross sections σNRQCD with an O(αs)-decay with the

full, fixed-order NLO results σQCD for including all irreducible background processes and

interferences of the bW+b̄W− final state. This results is the highest-precision description

of the off-shell tt̄–threshold as of today. Care has to be given about the correct power

counting near the threshold, where v ∼ αs. For this reason, the matrix element Mprod

in eq. (6.2.1), which contains the NRQCD form factor of eq. (6.1.8) and eq. (6.1.9), is at

leading logarithmic accuracy already an NLO contribution in αs. Thus, the combination

with the factorized O(αs)-diagrams discussed in the previous section would count as

NNLO corrections.
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A central issue in the matching procedure is the introduction of a switch-off function

fs, which makes contributions including the form factor vanish well below threshold.

Its argument is the velocity v1S, which is obtained from eq. (B.3.13) by replacing mt

by M1S
t and Γt(mt) by Γt(M

1S
t ). The actual measure of proximity to threshold is |v1s|,

with the minimal value of |v1s| at 2M1S
t being about

√

Γt M1S
t ≈ 0.1GeV. With |v1S|

having its minimum at the 1S peak, fs = 1 is guaranteed. Other choices of v would

induce the switch-off to begin before or after the peak, thus affecting its shape. The

switch-off function fs enters the matrix element via multiplication to the couplings of

the resummed computation. This way, it is ensured that the switch-off scales with the

corresponding power of the particular coupling. In principle, one could also multiply

the whole matrix element with fs, but our approach leads to a smoother switch-off. The

explicit form of the switch-off function is arbitrary, with the minimal requirements

fs
(
v(
√
s = 2M1S

t )
)
= 1 and fs(1) = 0. (6.2.7)

Further, it should be continuously differentiable, which excludes simple linear realiza-

tions of fs. Moreover, it has been experienced that switch-off functions that have a high

curvature close to 0 and 1 introduce unphysical wiggles in cross section scans in the

transition region. The most suited choice for fs has been found to be

fs(v) =







1 v < v1

1− 3
(

v−v1
v2−v1

)2

− 2
(

v−v1
v2−v1

)3

v1 ≤ v ≤ v2

0 v > v2

. (6.2.8)

For a more thorough discussion of switch-off functions, including the question whether

the real or imaginary part or the magnitude of v should be taken, cf. ref. [57] and

ref. [203]. The form factor contains different powers of αs, c.f. eq. (6.1.8) and eq. (6.1.9).

For this reason, naively adding σfull
NRQCD and the fixed-order NLO QCD cross section σQCD

yields double counting ofO(αs)-terms. To solve this problem, we define with σexpanded
NRQCD the

resummed cross section, but with the full form factor replaced by its O(αs)-expansion.

Thus, the master formula for the matched cross section is

σmatched = σQCD(αH) + σfull
NRQCD(fs αH, fs αS, fs αUS)

− σexpanded
NRQCD (fs αH), (6.2.9)

where in the full NRCQD calculation, the strong coupling enters the total cross section

at the hard (αH), soft (αS) and ultra-soft scale (αUS) as described in the context of

eq. (6.1.5). To ensure the removal of double counting, σexpanded
NRQCD has to be evaluated at

the same scale as σQCD, i.e. the hard scale. Note that in eq. (6.2.9), all couplings in
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6. Matching the NLL threshold resummation to fixed-order QCD corrections

the NRCQD terms are already multiplied by fs. We subtract hereby the leading αs

correction, which contains the dominating Coulomb singularity, evaluated at the hard

scale αH, which is also used in σQCD. Thus, we are removing the hard scale for the first

order, as the soft scale in σfull
NRQCD is the more relevant one at threshold. From the fixed-

order point of view both scales are valid choices. The switch-off function fs guarantees

that we keep only σQCD in the continuum. To better separate powers of αs in the form

factor and the matrix element, we separate the form factor into

F(N)LL = 1 + F̃(N)LL, (6.2.10)

so that F̃NLL only contains summands of O(αs) and higher. Using this, the final match-

ing formula in a diagrammatic expression is
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. (6.2.11)

The first summand is the fixed-order continuum cross section. The second is the O(αs)-

contribution which is free of double-counting due to the subtraction of σexpanded
NRQCD . The

rest of the formula is the NLO contribution to the factorized NRQCD matrix element in

eq. (6.2.1). Note that the last two lines formally constitute parts of the NNLO corrections

to bW+b̄W− in non-relativistic power counting.
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6.2.2. Modifications to standard FKS for factorized NLO

Equation 6.2.11 is evaluated using the standard Whizard FKS setup. The treatment of

the fixed-order NLO cross section σNLO is identical to the one in the previous section and

as in ref. [2]. Yet, technical modifications have to be made to the subtraction in order

to deal with the rest of the formula. In the following, we describe these modifications to

standard FKS developed by us. We focus on top-quark production but the statements

also hold for general factorized NLO calculations without ISR.

On-shell generation of the real-emission phase space

Like the tree-level matrix element, the real matrix element has to be evaluated using on-

shell momenta. To generate this phase space, we use the same mappings as in resonance-

aware FKS [61], cf. section 2.6. In that approach, the real emission is generated in such

a way that the invariant mass of the respective resonance is kept at its Born value, which

removes mismatches between the real matrix-element and its soft approximation. Thus,

starting from an already on-shell projected Born momentum configuration, we apply the

same mapping to obtain an also on-shell projected real phase-space point. Note that,

to ensure correct subtraction of soft divergences, also the real-emission FKS variables ξ

and y need to be computed in the on-shell projected Born system. We stress that the

on-shell momenta only enter the matrix-elements and their subtraction terms but not

the phase-space Jacobian. For the latter as well as for event generation, the off-shell

phase-space is used, which is generated alongside the on-shell case.

Decay subtraction

The divergences in the factorized calculation all originate from the t → bWg matrix

element. It consists of two Feynman diagrams. One in which the gluon is emitted from

the top quark and another one in which it is emitted from the bottom. Divergences can

only occur in emissions from particles with on-shell momenta and zero width. Therefore,

in the full bW+b̄W− matrix element, emissions from internal top quarks do not yield

divergences, as they are regularized by Γt. However, in the pure real-emission decay

amplitude, the gluon emission from the top quark is a singular contribution, which needs

to be subtracted. We call this additional singular region a pseudo-ISR region. Pseudo,

because the emitter is still associated with the final state, and so is the real-emission

phase space. However, the FKS weight (cf. eq. (2.2.13))

dij = 2 (pi · pj)
EiEj

(Ei + Ej)
2 (6.2.12)
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6. Matching the NLL threshold resummation to fixed-order QCD corrections

is evaluated as though it belongs to an initial-state emission, i.e. it is evaluated with

pi = ptop = pb + pW . (6.2.13)

With this modification, the FKS pairs (b, g) and (b̄, g) associated with this process are

extended by the pseudo-ISR tuples (b, g)∗ and (b̄, g)∗, where the asterisk indicates that

in this region the FKS weight in eq. (6.2.12) is evaluated with the reconstructed top

momentum in eq. (6.2.13). In regions without an asterisk, pi = pb is used.

Rearrangement of interference terms

In the square of the real matrix element, we omit interference terms between gluon

emissions from different legs, cf. the term 6.2.6. In consequence, we must remove these

interference contributions from the color-correlated Born matrix element used in the soft

subtraction,
n∑

i,j=1

ki · kj
(ki · k)(kj · k)

Bij, (6.2.14)

cf. eq. (2.2.26). The same reasoning applies to the virtual part and its subtraction.

Loop matrix elements do not include diagrams with gluon exchange between quarks on

different legs since these contributions have already been resummed and are included

in the form factor. Therefore, also in the soft part of the virtual subtraction terms,

we leave out summands that correspond to gluon exchange between different legs. In

addition to removing interference terms, tb–interferences have to be taken into account,

using the bottom momentum and the reconstructed top momentum in eq. (6.2.13). The

absence of interference terms allows to split up the FKS regions into two disjoint subsets,

as shown on the right-hand side of table 6.1. Each subset contains a standard and a

pseudo-ISR FKS pair. For αr ∈ {1, 2}, the contribution of color correlations take the

form

− CFB
[

k2b
(k · kb)2

+
(kb + kW−)2

(k · (kb + kW−))2
− 2

kb · (kb + kW−)

(kb · k)((kb + kW−) · k)

]

, (6.2.15)

with an analogous expression for αr ∈ {3, 4}. Here, k is the gluon momentum generated

with the emitter of the given αr and we have already used the fact that for the top

decay, color correlations between different legs are trivially given by a factor of CF . The

minus signs keep color conservation.
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Table 6.1. Singular regions for the process e+e− → W+W−bb̄ in standard FKS (left) and
in its modification devised for factorized processes (right), split up into a (final-state)
interference-free subset and using pseudo-ISR regions.

αr emitter FKS pairs

1 5 {(5, 7), (6, 7)}
2 6 {(5, 7), (6, 7)}

αr emitter pseudo-ISR FKS pairs

1 5 no {(5, 7), (5, 7)∗}
2 5 yes {(5, 7), (5, 7)∗}
3 6 no {(6, 7), (6, 7)∗}
4 6 yes {(6, 7), (6, 7)∗}

6.3. Results for the matched NLL + continuum cross

section

We finally present the fully matched total cross section for the process e+e− → bW+b̄W−.

The following masses enter the calculation as input parameters

mZ = 91.1876GeV, mW = 80.385GeV,

mb = 4.2GeV, mH = 125GeV,

with the corresponding (LO) widths

ΓZ = 2.443GeV, ΓW = 2.049GeV,

Γb = 0GeV, ΓH = 4.143MeV.

The electron is considered massless. The resonance mass M1S
t , as defined in eq. (6.1.4),

enters the calculation as an input parameter. We use M1S
t = 172GeV. Therefore, using

eq. (F.1.2), we obtain mt
LL(2M1S

t ) = 172.802GeV and mt
NLL(2M1S

t ) = 173.124GeV.

As in the continuum study, cf. section 5.3.1, Γt is computed directly with Whizard

both at LO and NLO, whereby M1S
t is used as renormalization scale. Nevertheless, Γt

depends on the pole massmt, and for this reason also on
√
s, cf. eq. (6.1.4), which is taken

into account by the Whizard setup. At threshold, we obtain ΓLO
t (2M1S

t ) = 1.4866GeV

and ΓNLO
t (2M1S

t ) = 1.3692GeV. Also like in the continuum study, the electroweak

coupling is derived in the Gµ-scheme using Gµ = 1.1663787 × 10−5 GeV−2, keeping

corrections to the top decay small [174]. The complex mass scheme is used. However in

order to be consistent with the factorized computation, we do not use complex couplings

like cos θW . Instead, the Weinberg angle and αem are computed using the real part of

119



6. Matching the NLL threshold resummation to fixed-order QCD corrections

mW and mZ like in the usual Fermi scheme as

αem(GF ) =

√
2

π
m2

W sin2(θW )GF . (6.3.1)

A running αem(
√
s) might be more appropriate, but this can easily be achieved a pos-

teriori by rescaling our predictions. The strong coupling, whose value at mZ is set to

αs(mZ) = 0.118, has to be evaluated at the hard, soft and ultra-soft scale, cf. eq. (6.1.5).

We use a three-loop running and nf = 5 flavors to evolve αs to αH = αs(M
1S
t ). From this

value, the strong coupling at the soft scale µS =M1S
t |v|, i.e. αS, is obtained by evolving

from αH with a two-loop or one-loop running at NLL or LL, respectively. v is given by

eq. (B.3.13)3. Similarly, the strong coupling at the ultra-soft scale µUS = M1S
t |v|2, i.e.

αUS, is obtained by a one-loop running from αH. In fig. 6.1, we present cross sections

of e+e− → bW+b̄W− for various approaches to higher-order corrections as a function of√
s close to threshold. The green, violet and orange lines are fully matched results with

different intervals [v1, v2] on which the switch-off function of eq. (6.2.8) is active. For

reference, also the pure fixed-order NLO cross section (blue curve) and the pure NLL

cross section (red curve) are shown. It can be seen nicely that they fail in the regions

where they are not a valid description of top-pair production. The red-dotted NLL re-

summation line clearly rises unphysically far above threshold. On the other hand, the

blue fixed-order NLO curve does not even come close to a correct description of threshold

effects. The matched results, as they should, reproduce both the pure NLL result close

to the threshold, and then converge to the fixed-order line at about 360GeV, whereby

the exact value depends on the switch-off interval [v1, v2]. Far below threshold at about√
s < 335GeV, |v1S| increases again, so that the switch-off function becomes active. For

this reason, like in the relativistic regime, the fixed-order NLO curve and the matched

results agree nicely, whereas there is a significant gap to the pure NLL cross section.

The black dotted line in fig. 6.1 shows the matched cross section without any switch-off,

which is achieved technically by defining it only far away from threshold with v1 = 1000

and v2 = 10000. It is of particular interest because it shows the effects of the non-trivial

construction of eq. (6.2.11). If σNLO+NLL would be obtained by simply interpolating the

NLL and fixed-order result, e.g. via

σnaive
NLO+NLL = fsσNLL + (1− fs)σNLO, (6.3.2)

it would be located strictly between these two. This is clearly not given for all
√
s.

Instead, in the transition region at about 355GeV to 365GeV, it intersects the blue

line.

We generate events at the 1S–peak at
√
s = 2M1S

t = 344GeV, i.e. the position of

3To be precise, ν∗ = 0.05 + |v| is used, but this detail is not relevant within the scope of this work.
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by background diagrams. Thus, the factorized contribution to the matched cross section

vanishes, as this background is not included in it.
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7. Summary & Outlook

The discovery of the Higgs boson completed the experimental verification of the standard

model in terms of its particle content. Yet, a sizeable array of electroweak parameters

has not been measured at all or at a satisfying accuracy, which is a prime task of a

future lepton collider together with the search for new physics with electroweak quantum

numbers. This thesis has given an outlook on important studies at such a machine,

the Whizard event generator used for them and the theory behind NLO subtraction

techniques. It has been shown that the control of NLO QCD corrections is of essential

importance to match the precision of future experiments.

We started out by giving an in-depth description of the FKS subtraction scheme in

chapter 2, which has become one of the standard approaches to numerical NLO calcu-

lations. It has been derived from first principles, and the numerous references on the

topic have been put into one coherent description. We focused on QCD corrections in

lepton collisions, but also outlined additional calculational aspects for hadron colliders

emerging from the perturbative structure of PDFs and also gave a brief outlook on elec-

troweak or QED corrections. Moreover, we have discussed the new resonance-aware FKS

approach. Both the standard and the resonance-aware approach have been implemented

in the Whizard event generator by us for general lepton-collider processes and QCD

corrections.

The thesis continued by giving a brief overview of the Whizard event generator

and especially the integration of FKS subtraction in chapter 3. Whizard is the most

commonly used event generator in the lepton collider community, where studies at NLO

accuracy will become increasingly important in the future. Whizard has an interface to

the external programs GoSam, OpenLoops and RECOLA for the calculation of one-

loop matrix elements and color- and spin-correlated Born matrix elements. Subtracted

amplitudes for all parts of the NLO calculation have been integrated in the dynamic data

structures of Whizard, thus allowing for the convenient development of the program for

future projects. Combining chapter 2 and chapter 3 then allowed us to present various

validation checks and applications of Whizard in chapter 4. We have shown that

Whizard is a reliable and well-performing tool for NLO QCD by means of the decay

process t → bW and the scattering process e+e− → bb̄µ+µ−, where the new resonance-

aware FKS framework has been used. However, we have also found discrepancies with

MG5 aMC@NLO in section 4.3, the resolution of which should be the content of work
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in the immediate future. Whizard and Madgraph agree for processes without gluons

at Born-level. Also in chapter 4, we presented some distributions for events generated

with the Powheg NLO+PS matching scheme, implemented by us in Whizard.

The main physics part showed studies of top-quark production both in the continuum

in chapter 5 and at threshold in chapter 6. In the continuum case, we have presented

the first fully off-shell NLO QCD study of the e+e− → tt̄(H) process at a lepton collider

including leptonic decays. Apart from presenting the capabilities of both Whizard and

OpenLoops to perform high-multiplicity calculations, we have shown that both off-shell

as well as NLO QCD effects are essential in a complete description of this process. We

focused on a CMS energy of
√
s = 800GeV, where the tt̄H cross section is largest, but

K-factors for e+e− → tt̄(H) and e+e− → bW+b̄W−(H) coincidentally are almost one, as

positive NLO corrections to signal diagrams counterbalance negative corrections from

background and interference terms. However, the K-factor for e+e− → tt̄H and its off-

shell processes drops off much stronger than the one for top-quark production without

Higgs, so that at a possible CLIC CMS energy of
√
s = 3000GeV NLO QCD corrections

are as large as −20%. Local K-factors can be even higher in some observables both for

the tt̄ and tt̄H final states. Further, we have analyzed the dependence of the cross section

for the processes e+e− → tt̄H and e+e− → bW+b̄W−H on the top Yukawa coupling at

leading and next-to-leading order. Suitably normalized, this dependence is linear with a

slope which is determined by the contribution of background diagrams. We have found

that NLO QCD corrections decrease this slope by about +5%, thus showing that negative

corrections to interference terms are sizeable. We have presented numerous observables

for the complete off-shell processes e+e− → µ+νµe
−ν̄ebb̄ and e+e− → µ+νµe

−ν̄ebb̄H

in section 5.7. Local K-factors can be as large as six in the reconstructed top-quark

invariant mass due to kinematical regions not accessible at LO and commonly range

between 0.6 and 1.4. The events generated this way have been used to study NLO QCD

effects on the top forward-backward asymmetry in section 5.7.2 for e+e− → µ+νµe
−ν̄ebb̄.

Corrections increase with the off-shellness of the process, reaching to about −5%.

The top-quark continuum study was performed with the resonance-aware FKS ap-

proach, which avoids mismatches between real matrix elements and their soft and

collinear approximations in emissions from particles with a non-vanishing width. Yet,

we have encountered the limits of this approach in the naive setup with structureless

lepton beams. As discussed in section 5.2.3, a coherent resonance treatment requires

final-state boosts which can only be performed if energy can be transferred from the

initial to the final state in the case of partonic scattering systems with variable collision

energy.

In chapter 6, we presented an overview of the study of the top-quark threshold matched

to the NLL resummed calculation. We provided the necessary modifications to the

subtraction implementation required for the factorized approach used to describe the
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matched matrix elements. These include the introduction of so-called pseudo-ISR regions

as well as the treatment of the subtraction on an on-shell mapped phase space. The

NLO framework has been successfully combined with the threshold resummation, which

we have shown in section 6.3, where we have presented of the matched cross section

around the threshold as well as some differential observables at
√
s = 344GeV.

Finally, we collect some open aspects of the projects in this thesis, some of which are

already work in progress. Concerning the continuum study of chapter 5, a complete

NLO QCD study of top-quark production has to be performed with a realistic beam

description. Further, an NLO+PS matching procedure like e.g. Powheg should be

applied so that the results can in principle directly be used for experimental studies

involving parton showers and detector simulations. The current approach with fixed-

order events both has the drawback that it produces large logarithms when interfaced

to a parton shower and that it requires a very large number of weighted events to give

reliable results. A treatment of this issue will definitely also play an important role in

the studies of electroweak corrections in connection with beam structure functions.

NNLO QCD effects in e+e− → tt̄ are known to give additional corrections of sev-

eral percent [152]. Performing this calculation is in the realm of the possible within

Whizard, using well-known subtraction schemes like e.g. stripper [207] or antenna

subtraction [208]. Double-virtual, double-real and real-virtual contributions can be inte-

grated into the Whizard architecture as additional components with associated terms,

just like the pure NLO components (cf. fig. 3.2). All matrix elements except for the

double-virtual ones can be obtained with an already interfaced one-loop provider. Since

at the moment, there is no automated or semi-automated two-loop provider (and is still

probably far away), the two-loop amplitudes would have to be implemented by hand.

Considering e+e− → tt̄H, there is no conceptual difference to the tt̄ final state from the

NNLO perspective, except for more complicated loop integrals. Investigating NNLO ef-

fects here is still an open task and is particularly interesting if we can expect the relative

corrections to be of the same order of magnitude as in the tt̄ case, especially with respect

to the study of the Yukawa coupling in section 5.5.

Notwithstanding the progress in NNLO computations, the work on NLO corrections

is far from complete. As the LHC has not yet shown any significant excess, but several

deviations in the range of two to three standard deviations, e.g. in rare b decays, reliably

controlling both QCD and electroweak corrections becomes even more important. It is

reasonable to assume that this will also be the case for a future lepton collider. Therefore,

the work on the NLO framework of the Whizard event generator is a vital project.

Besides the open questions of the validation with MG5 aMC@NLO in section 4.3,

a complete validation of NLO QCD effects in hadron collisions is within the scope of

future Whizard projects. Moreover, a reliable treatment of electroweak (photonic)
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7. Summary & Outlook

corrections is required for a complete description of real-world experiments. Here, the

correct matching to beam structure functions is a special challenge which is only partly

analogous to the treatment of PDFs at a hadron collider. We recently took up work in

this field and progress can be expected in the coming years.
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A. Details on the construction of the

radiation phase space

This chapter documents the real-emission phase-space generation for final- and initial-

state emissions. In the first case, it has to be distinguished between the massless and

the massive case. We use the conventions from section 2.1.3. Further, we always assume

that the momentum at position n is associated with the emitter and that kn+1 is the

momentum of the radiated particle.

A.1. Real-emission phase space for final-state

singularities

We use the conventions for momenta introduced in section 2.1.3. The construction of

the real-emission phase space leaves the initial state completely unaffected, so that in

all of the following constructions, k⊕ = k̄⊕ and k⊖ = k̄⊖. The construction of real

emission can therefore be constrained to the set of final-state particles F . We further

denote by FR ⊆ F the set of final-state momenta which are modified by the real-emission

algorithm. In default mappings, FR = F , whereas in mappings which conserves invariant

masses, such as resonance-aware or on-shell real-emission mappings, FR ( F .

A.1.1. Basic final-state construction

The construction of the final-state real-emission phase space relies on a separation of

the kinematics of the whole process into that of the emitter system E = {kn, kn+1}
and the kinematics of the recoiling system C, defined by C ∪ E = FR. The radiation

variables Ξ = {ξ, y, φ} determine the construction of the gluon momentum kn+1 in E (for

simplicity, we assume that the radiated particle is a gluon, but the following discussions

hold for any massless particle). Since the sum of the gluon and emitter momenta must

equal the emitter momentum in the Born phase space, i.e. k̄n = kn + kn+1, this also

fixes kn. A boost is applied on C to restore total momentum conservation, after the

construction in E is finished. In the following we explain in detail what we call the

131



A. Details on the construction of the radiation phase space

basic construction, on which all FSR phase-space constructions rely. In summary, it is

as follows:

1. The gluon energy is given by

Eg =
q0

2
ξ, (A.1.1)

with ξ ∈ Ξ. Here, q0 is the energy entering the radiating system. In default

constructions, where the radiating system is made up of all final-state particles, it

is the partonic center-of-mass energy
√
ŝ. In general, it is the energy of a subset of

all final-state particles. Especially, in the construction of a resonance-aware FSR

phase-space, q0 is the resonance energy of the associated resonance history.

The magnitude kn+1 of the (massless) FKS parton momentum is trivially given by

kn+1 = Eg. This fixates kn+1 except for its polar and azimuthal angles.

2. The momenta magnitudes k and kn are constructed, which determines kn except

for a rotation. The construction method differs for massless and massive particles

as outlined below.

3. kn and kn+1 are positioned parallel to the emitter momentum in the Born system,

k′
n = kn

k̄n

k̄n
, k′

n+1 = kn
k̄n

k̄n
. (A.1.2)

Then, a rotation is applied to both momenta,

kn,n+1 = R (ψn,n+1,d)k
′
n,n+1, cosψn,n+1 = cos∠ (kn,n+1,k) =

kn,n+1 · k
kn,n+1k

,

(A.1.3)

around the unit vector d orthogonal to k̄n,

d =
1

√
(
k̄1n
)2

+
(
k̄2n
)2

(
k̄2,−k̄1, 0

)T
. (A.1.4)

The scalar product in the numerator of (A.1.3) can be obtained from momentum

conservation, (k− kn,n+1)
2 = k2

n+1,n, yielding

cosψn,n+1 =
k2n,n+1 + k2 − k2n+1,n

2kn,n+1k
. (A.1.5)

4. The rotation R
(
φ, k̄n/k̄n

)
is applied on E with φ ∈ Ξ.

5. Finally, the recoiling system is boosted by a boost Λrec(β) along the beam axis to
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A.1. Real-emission phase space for final-state singularities

balance the momentum of the radiation system. The boost parameter β is given

by the expressions in eq. (A.1.9) and eq. (A.1.13).

A.1.2. Details of the massless construction

In the default massless construction FR = F . For a massless emitter, y = cos θ. This

yields

k2 = k2n + k2n+1 + 2knkn+1y. (A.1.6)

Moreover, kn = k0n, such that energy conservation gives

kn + kn+1 + k0rec = kn + kn+1 +

√

k2 +M2
rec = q0, (A.1.7)

where krec is the momentum of the recoiling system C and Mrec its associated invariant

mass. Momentum conservation yields krec = k. Combining (A.1.6) and (A.1.7) yields

kn =
q2 −M2

rec − 2q0kn+1

2
(
q0 − kn+1(1− y)

) . (A.1.8)

The boost velocity of Λrec is found by considering the Lorentz-invariant quantity k̄2n =
(
q − k̄rec

)2
= 0. This must also be fulfilled in the real-emission phase space, so that

(q − Λreckrec)
2 = 0, with the resulting boost parameter

β =
q2 − (k0rec + krec)

2

q2 + (k0rec + krec)
. (A.1.9)

A.1.3. Details of the massive construction

The construction of a real emission from a massive particle is treated in ref. [60] with

a Dalitz plot analysis of the (k0n, k
0
n+1)–space. The parameter z > 0 defines the Dalitz

domain

k0n = k̄0n − zk0n+1, (A.1.10)

with its two boundaries z1 and z2. In this treatment, the real radiation variable y changes

its meaning from the emission angle cos θ to the slope of the tangent in the Dalitz plot.

It enters the parameterization in eq. (A.1.10) via

z = z2 −
1 + y

2
(z2 − z1) . (A.1.11)
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A. Details on the construction of the radiation phase space

As discussed in ref. [60], the limits z1 and z2 are given by the boundaries of specific

Dalitz regions,

z1/2 =

(

k̄0rec ±
√
(
k̄0rec
)2 −M2

rec

)

/q0. (A.1.12)

Noteworthy to say, this also determines ξmax and k0n,max. Knowing z and the upper

limit of the emitter energy, k0n can be constructed according to eq. (A.1.10). The same

argumentation that leads to eq. (A.1.9) yields

β =
1− α2

1 + α2
, with α =

k0rec + krec
k0rec − krec

. (A.1.13)

A.2. Real-emission phase space for initial-state

divergences

The construction of initial-state emissions is more involved than that of final-state emis-

sions because in general, the kinematics of the beam momenta are determined by struc-

ture functions. Here, it is generally assumed that the beam partons move fast enough

that radiative effects do not significantly alter their direction. The direction of their

momentum is essentially fixed to be parallel to the beam axis, with parton branchings

only affecting the energy. The construction of a real phase space in an initial-state sin-

gular region therefore relies on the manipulation of the energies of the colliding partons

and a subsequent boost of final-state momenta. The gluon momentum can simply be

constructed as

kn+1 =

√
s

2
ξ
(

1,
√

1− y2 sinφ,
√

1− y2 cosφ, y
)

(A.2.1)

The momenta entering the hard process k⊕ and k⊖ are written in terms of the beam

momenta K⊕ and K⊖,

k⊕ = x⊕K⊕, and k⊖ = x⊖K⊖. (A.2.2)

The same notation also applies for the Born momenta k̄i. The parton energy fractions

of the real-emission and Born phase space are related through the equation [59, 209]

x⊕ =
x̄⊕√
1− ξ

√

2− ξ(1− y)

2− ξ(1 + y)
, x⊖ =

x̄⊖√
1− ξ

√

2− ξ(1 + y)

2− ξ(1− y)
. (A.2.3)

The total final-state momentum in the Born phase space is k̄tot =
∑n

i=1 k̄i. Analogously,

we define ktot =
∑n

i=1 ki. Obviously, k̄tot is parallel to the beam axis. Due to the gluon

emission, this is not the case for ktot, which has a transversal component. Nevertheless,

both quantities are connected through a boost, ktot = Λk̄tot, and so are the individual
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final-state momenta ki and k̄i. Further, Λ is split up into boosts into systems with no

longitudinal component, ΛL, and no transversal component, ΛT , which are easier to

construct. Thus,

ki = Λ−1
L Λ−1

T ΛLk̄i, i = 1, . . . n. (A.2.4)

The Lorentz transformation ΛL is achieved by boosting by the amount

βL,i =
k̄itot
k̄0tot

=
k̄i⊕ + k̄i⊖
k̄0⊕ + k̄0⊖

, (A.2.5)

whereas the boost into the frame with no transversal component is

βT =

[

1 +
ŝ(1− ξ)

p2T

]−1/2

, (A.2.6)

where pT is the radiated particle’s transverse momentum with respect to the z-axis

A.3. Upper limits for real radiation energy

FSR, m = 0 For a massless final-state emitter, the maximal radiation energy is trivially

given by the emitter’s energy at Born level,

ξmax =
2k̄n
q0

. (A.3.1)

FSR, m > 0 The derivation of ξmax has already been outlined in the discussion of the

emitter momentum in section A.1.3. We divide k0n,max by
√
s/2 to obtain

ξmax =
2

q0
· 2q

0zk̄0rec − q2z2 −M2
rec

2q0z(1− z)
. (A.3.2)

ISR The beam momentum fractions in the Born and real emission phase space are

connected by eq. (A.2.3) which can be used to determine an upper bound on ξ by

imposing the conditions x⊕ ≤ 1 and x⊖ ≤ 1. Solving for ξ in eq. (A.2.3) gives two upper

bounds, out of which the smaller one is taken, i.e.

ξmax = 1−max

[

2(1 + y)x̄2⊕
√

(1 + x̄2⊕)
2(1− y)2 + 16yx̄2⊕ + (1− y)(1− x̄2⊕)

2(1− y)x̄2⊖
√

(1 + x̄2⊖)
2(1 + y)2 + 16yx̄2⊖ + (1 + y)(1− x̄2⊖)

]

.

(A.3.3)
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B.1. Example singular regions

To get a deeper understanding of the set of singular regions PFKS as introduced in

eq. (2.2.3), we present information about the singular regions for the example processes

e+e− → jjj and e+e− → tt̄tt̄ as well as e+e− → bb̄µ+µ−, using the resonance-aware

approach for the latter.

e+e−

→ jjj We consider only two flavors and the gluon in the jet, i.e. j = u, ū, d, d̄, g.

This way, the process still contains all relevant singular configurations with the least

amount of combinatorial complexity. Table B.1 gives a summary of all real-emission and

Born flavor structures, emitters, multiplicities and the set PFKS. The real corrections to

this process contain all possible final-state splittings of QCD. The q → qg and g → gg

splittings yield real configurations with two gluons in the final state (αr = 2, 3, 4, 8, 9, 10),

whereas the g → qq̄ splittings lead to flavor structures with two, either identical (αr =

1, 7) or different (αr = 5, 6) quark pairs. Here, for simplicity, we have only considered

two possible quark flavors for the gluon to split into, matching the jet definition. The

real flavor arrays in the second column are organized in such a way that the radiated

particle is on the last position. The preceeding entries are permuted in such a way

that they match the underlying Born flavor structure in the last column. The emitter ε

defines the phase space the real matrix element is evaluated with for this αr. The regions

in {1, 4, 5, 6, 7, 10}, {2, 8} and {3, 9} have identical emitters. The g → qq̄–regions αr = 1

and αr = 7 have multipicity ς = 4, corresponding to each combinatorial possibility the

final-state quarks can be combined to form a gluon with a correct underlying Born.

Treating them seperately does not reproduce the correct collinear limit, because all the

combinatorical contributions are also present in the real matrix element. Likewise, the

q → qg-regions (αr = 2, 3, 8, 9) have ς = 2 for each possible assignment of the two gluons

to the emitted particle. Note that this can easily be deduced from the existence of two

FKS-pairs with the first index matching the region’s emitter (i.e. (3, 5) and (3, 6) in

regions 2 and 8).
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Table B.1. A list of singular FKS regions for the process e+e− → jjj with nf = 2. ε
denotes the position of the emitter in the flavor array fr. The indices ib and ir label
the Born and real flavor structures, respectively. an associated index ir. ς denotes the
region’s multiplicity. PFKS is defined in eq. (2.2.3). Table automatically produced by
Whizard.

αr fr ir ε ς PFKS ib fb
1 [-11,11,-2,2,-2,2] 1 5 4 {(4, 5), (5, 6), (3, 4), (3, 6)} 1 [-11,11,-2,2,21]
2 [-11,11,-2,2,21,21] 2 3 2 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 1 [-11,11,-2,2,21]
3 [-11,11,-2,2,21,21] 2 4 2 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 1 [-11,11,-2,2,21]
4 [-11,11,-2,2,21,21] 2 5 1 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 1 [-11,11,-2,2,21]
5 [-11,11,-2,2,-1,1] 3 5 1 {(5, 6)} 1 [-11,11,-2,2,21]
6 [-11,11,-1,1,-2,2] 4 5 1 {(5, 6)} 2 [-11,11,-1,1,21]
7 [-11,11,-1,1,-1,1] 5 5 4 {(4, 5), (5, 6), (3, 4), (3, 6)} 2 [-11,11,-1,1,21]
8 [-11,11,-1,1,21,21] 6 3 2 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 2 [-11,11,-1,1,21]
9 [-11,11,-1,1,21,21] 6 4 2 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 2 [-11,11,-1,1,21]
10 [-11,11,-1,1,21,21] 6 5 1 {(3, 5), (3, 6), (4, 5), (4, 6), (5, 6)} 2 [-11,11,-1,1,21]

Table B.2. A list of singular FKS regions for the process e+e− → tt̄tt̄. All quantities as
described in tab. B.1. Table automatically produced by Whizard.

αr fr ir ε ς PFKS ib fb
1 [-11,11,6,-6,6,-6,21] 1 3 1 {(3, 7), (4, 7), (5, 7), (6, 7)} 1 [-11,11,6,-6,6,-6]
2 [-11,11,6,-6,6,-6,21] 1 4 1 {(3, 7), (4, 7), (5, 7), (6, 7)} 1 [-11,11,6,-6,6,-6]
3 [-11,11,6,-6,6,-6,21] 1 5 1 {(3, 7), (4, 7), (5, 7), (6, 7)} 1 [-11,11,6,-6,6,-6]
4 [-11,11,6,-6,6,-6,21] 1 6 1 {(3, 7), (4, 7), (5, 7), (6, 7)} 1 [-11,11,6,-6,6,-6]

e+e−

→ tt̄tt̄ Identical particles in real flavor structures can pose an additional com-

plication for q → qg - splittings, as is shown for the example e+e− → tt̄tt̄. We treat this

process at NLO in section 4.3 and find excellent agreement to Madgraph. Table B.2

lists singular regions for this process. There are four distinct regions, corresponding to

the four different emitters involved in this process, each with ς = 1.

e+e−

→ bb̄µ+µ− with resonance mappings In this process, there are two resonance

histories, Z → bb̄ and H → bb̄. As outlined in section 2.6.3, these two resonance histories

appear as an additional index of the FKS region. For example, in {. . . ; 1} regions, as

shown in table B.3, the Z mass and width is inserted in the numerator of the S function

in eq. (2.6.22). Likewise, {. . . ; 2} regions employ the Higgs mass and width. Note that,
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Table B.3. A list of singular regions for the process e+e− → bb̄µ+µ− in resonance-aware
FKS. All quantities as described in table B.1.

αr fr ir ε ς PFKS ib fb
1 [11,-11,5,-5,13,-13,21] 1 3 1 {(3, 7; 1), (4, 7; 1), (3, 7; 2), (4, 7; 2)} 1 [11,-11,5,-5,13,-13]
1 [11,-11,5,-5,13,-13,21] 1 3 1 {(3, 7; 1), (4, 7; 1), (3, 7; 2), (4, 7; 2)} 1 [11,-11,5,-5,13,-13]
2 [11,-11,5,-5,13,-13,21] 1 4 1 {(3, 7; 1), (4, 7; 1), (3, 7; 2), (4, 7; 2)} 1 [11,-11,5,-5,13,-13]
2 [11,-11,5,-5,13,-13,21] 1 4 1 {(3, 7; 1), (4, 7; 1), (3, 7; 2), (4, 7; 2)} 1 [11,-11,5,-5,13,-13]

however, in this case the resonance index does not influence the generation of the real-

emission phase space, because in both cases the radiation system comprises the two

bottom quarks. Table B.3 depicts the entirety if singular regions for this process.

B.2. Rescaling the real integration for ξmax < 1

The FKS variable ξ is kinematically limited to a value ξmax ≤ 1, because simply put, the

radiated particle cannot have more energy than its emitter. This limit in general depends

on the angular separation y, e.g. in emissions from massive particles, cf. eq. (A.3.2).

Both the fact that ξmax ≤ 1 and its dependence on y slightly complicates the integration

in eq. (2.2.25). The upper integration limit 1 is restored by rescaling the ξ-integral with

the transformation

ξ = ξmax(y)ξ̃, (B.2.1)

with ξ̃ as the new integration variable. Rescaling the plus-distribution in eq. (2.2.24)

leads to

∫ ξmax(y)

0

dξ

(
1

ξ

)

+

R̃α(ξ) =

∫ 1

0

dξ̃

[(
1

ξ̃

)

+

+ log ξmax(y)δ(ξ̃)

]

R̃α(ξ̃), (B.2.2)

which results in additional finite terms due to the delta function. The pole structure

is not affected, so that no modifications for virtual subtraction terms have to be done.

139



B. Further details on FKS subtraction

Upon executing the δ(ξ̃) function, eq. (2.2.25) becomes

∫

dΦradRfin
α =

∫ 2π

0

dφ

∫ 1

−1

dy

1− y

{
[

IFSR
remn

︷ ︸︸ ︷

log ξmax(y) ˜Rα(0, y)− log ξmax(1) ˜Rα(0, 1)
]

+

∫ 1

0

dξ̃

ξ̃

[

R̃α(ξ̃ξmax(y), y)− R̃α(0, y)− R̃α(ξ̃ξmax(1), 1) + R̃α(0, 1)
]
}

,

(B.2.3)

which differs from eq. (2.2.25) by the additional remnant logarithms IFSRremn. Note that

here, the only collinear limit is y = 1. In the presence of initial-state singularities,

additional remnant terms appear, given by

I ISRremn = log(ξmax)R̃α(0, y)− log(1− x⊕)R̃α(ξ, 1)− log(1− x⊖)R̃α(ξ,−1). (B.2.4)

Here, x⊕ and x⊖ are the parton energy fractions as defined in eq. (A.2.3).

B.3. Formulas for the virtual-subtracted contribution

B.3.1. Eikonal integrals

We give a list of the explicit expressions for the divergent and finite part of the eikonal

integrals introduced in eq. (2.3.1) and eq. (2.3.2) [40]. ki and kj denote the Born momenta

of the ith and jth particle, respectively. s is the partonic center-of-mass energy, which

in the resonance-aware approach discussed in section 2.6 has to be replaced by k2res. Q
2

is the Ellis-Sexton scale, as discussed in section 2.3 in the context the normalization

factor N (ε) in eq. (2.3.3). Also in this normalization factor, the renormalization scale

µ2 is included. mi and mj are the corresponding particle masses.

• mi = 0, i = j

Ê (0,0)
ii = 0, E (0,0)

ii = 0. (B.3.1)

This follows directly from k2i = 0 in
k2i

(ki·kj)2
.
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B.3. Formulas for the virtual-subtracted contribution

• mi = 0,mj = 0, i 6= j

Ê (0,0)
ij = N (ε)

[
1

ε2
− 1

ε

(

log
2ki · kj
Q2

− log
4EiEj

s

)]

, (B.3.2)

E (0,0)
ij =

1

2
log2

s

Q2
+ log

s

Q2
log

ki · kj
2EiEj

− Li2
ki · kj
2EiEj

+
1

2
log2

ki · kj
2EiEj

− log

(

1− ki · kj
2EiEj

)

log
ki · kj
2EiEj

. (B.3.3)

In the second line, ε = 0, so that N = 1. Further, Li2 is the dilogarithm,

Li2(x) = −
∫ x

0

dz
log(1− z)

z
. (B.3.4)

• mi = 0,mj 6= 0

Ê (0,mj)
ij = N (ε)

[
1

2ε2
− 1

ε

(

log
2ki · kj
Q2

− 1

2
log

4m2
jE

2
j

sQ2

)]

, (B.3.5)

E (0,mj)
ij = −π

2

12
+

1

4
log2

s

Q2
− 1

4
log2

1 + βj
1− βj

+
1

2
log2

ki · kj
(1− βj)EiEj

+ log
s

Q2
log

ki · kj
mjEi

− Li2

(

1− (1 + βj)EiEj

ki · kj

)

+ Li2

(

1− ki · kj
(1− βj)EiEj

)

, (B.3.6)

where

βi =

√

1− m2
i

E2
i

. (B.3.7)

• mi 6= 0, i = j

Ê (mi,mi)
ii = N (ε)

(

−1

ε

)

, (B.3.8)

E (mi,mi)
ii = log

s

Q2
− 1

βi

1 + βi
1− βi

, (B.3.9)

with β as in eq. (B.3.7).
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B. Further details on FKS subtraction

• mi 6= 0,mj 6= 0, i 6= j

Ê (mi,mj)
ij = N (ε)

(

− 1

2ε

1

vij
log

1 + vij
1− vkl

)

, (B.3.10)

E (mi,mj)
ij =

1

2vij
log

1 + vij
1− vij

log
s

Q2

+
(1 + vij)(ki · kj)2

2m2
i

(J(αijEi, αijβiEi)− J(Ej, βjEj)) , (B.3.11)

with β as in eq. (B.3.7). The function J is defined as

J(x, y) =
1

2λν

[

log2
x− y

x+ y
+ 4Li2

(

1− x+ y

ν

)

+ 4Li2

(

1− x− y

ν

)]

. (B.3.12)

The other parameters are given by

vij =

√

1−
(
mimj

ki · kj

)2

, (B.3.13)

αij =
1 + vij
m2

i

ki · kj, (B.3.14)

λ = αijEi − Ej, (B.3.15)

ν =
α2
ijm

2
i −m2

j

2λ
. (B.3.16)

B.3.2. Collinear integrals

The integral of the collinear splittings with an ab final state, as encountered in eq. (2.3.18),

is given by,

Iab =

∫ 1

0

dzz−2ε(1− z)−2ε〈P̂ab〉(z, ε). (B.3.17)

Here, space-averaged Altarelli-Parisi splitting functions are used. They are obtained by

using the collinear parameterization in eq. (2.1.2). E.g. for the g → qq̄-splitting in

eq. (2.1.7), we obtain

〈P̂qq̄〉(z, ε) =
TF
d− 2

(

−gµν +
pµnν + pνnµ

p · n

)(

−gµν + 4z(1− z)
kµ⊥k

ν
⊥

k2⊥

)

, (B.3.18)

which, using n · k⊥ = 0 and d = 4− 2ε yields

〈P̂qq̄〉(z, ε) =
TF

2− 2ε
(2− 2ε− 4z(1− z)). (B.3.19)
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B.3. Formulas for the virtual-subtracted contribution

In total, all 〈P̂ab〉(z, ε) are given by

〈P̂qg〉(z, ε) = CF

(
1 + z2

1− z
− ε(1− z)

)

, (B.3.20)

〈P̂qq̄〉(z, ε) = TF
(1− z)2 + z2 − ε

1− ε
, (B.3.21)

〈P̂gg〉(z, ε) = 2CA

(
z

1− z
+

1− z

z
+ z(1− z)

)

. (B.3.22)

Inserting them into eq. (B.3.17) leads to the results [61]

Igg = −1

ε
CA − 11

6
CA − ε

(
67

9
− 2π2

3

)

, (B.3.23)

Iqg = −1

ε
CF − 3

2
CF − ε

(
13

2
− 2π2

3

)

, (B.3.24)

Iqq =
2

3
TF + ε

23

9
TF . (B.3.25)
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C. The BLHA interface in WHIZARD

Below is an example of a BLHA [75, 76] contract file (or .olc–file) for the process

e+e− → tt̄ with polarized electron beams. It is produced by the one-loop provider by

reading in the .olp–file, which is generated automatically by Whizard. The .olp–

and .olc–file differ only in the additional OK and index tags, which indicate that the

OLP has successfully linked the given process to a library and has given it the specified

internal index.

# BLHA order written by WHIZARD 2.4.2

# BLHA interface mode: OpenLoops

# process: openloops_2_p1_LOOP

# model: SM

InterfaceVersion BLHA2 | Ok

CorrectionType QCD | OK

Extra AnswerFile openloops_2_p1_LOOP.olc | OK

IRregularisation CDR | OK

CouplingPower QCD 0 | OK

CouplingPower QED 2 | OK

extra use_cms 1 | OK

extra me_cache 0 | OK

extra psp_tolerance 10e-7 | OK

# Process definitions

AmplitudeType Loop | OK

11(-1) -11(-1) -> 6 -6 | 1 1

AmplitudeType Loop | OK

11(-1) -11(1) -> 6 -6 | 1 2

AmplitudeType Loop | OK

11(1) -11(-1) -> 6 -6 | 1 3

AmplitudeType Loop | OK

11(1) -11(1) -> 6 -6 | 1 4

AmplitudeType ccTree | OK

11(-1) -11(-1) -> 6 -6 | 1 5

AmplitudeType ccTree | OK

11(-1) -11(1) -> 6 -6 | 1 6

AmplitudeType ccTree | OK

11(1) -11(-1) -> 6 -6 | 1 7

AmplitudeType ccTree | OK

11(1) -11(1) -> 6 -6 | 1 8
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C. The BLHA interface in WHIZARD

The contract file consists of two major blocks. The first one gives general informations

like the powers of αe and αs at leading order or the employed IR regularization scheme.

Entries starting with extra are special to OpenLoops and allow to interface additional

settings into the program. For example, extra use cms 1 switches on the complex

mass scheme in OpenLoops. Processes are registered in the second major block using

first the AmplitudeType specifier, which can be either Tree, Loop, ccTree or scTree,

followed by the explicit flavor content. These tags correspond to a tree-level, loop, color-

or spin-correlated matrix element, respectively. In the given example, the helicity-aware

extension of OpenLoops is used in which polarized beams can be accessed by specifying

the helicity index values (−1, 0, 1) behind the flavor index. Here, we have one entry for

each combination of initial-state electron helicities. After the process definition, the first

number signals that the loading of the library was successful by the tag 1. The second

number is the OLP-internal index of the process to be used in the EvalSubProcess2-

call. Here, the internal index is identical with its position in the contract file. However,

the indices can occur in an arbitrary order.

Note on a software development issue The creation of quantum numbers from the

processes specified in Sindarin at the time of writing requires the O’Mega–libraries

have to be linked to Whizard even when all matrix element are computed by external

matrix element providers. For example, a real-subtraction component requires PDG

arrays of all real flavor structures to set up the region data. Thereby, it also manipulates

these flavor structures by performing permutations suitable for the combinatorics of

the process. Therefore, the flavor strings written into the .olp–file are not necessarily

identical to the ones produced by O’Mega. Yet, an exact agreement is relevant in order

to avoid mismatches between the phase-space and the flavor definitions. Moreover, a

lot of overhead code is generated, whose compilation can take up a significant amount

of time for complicated processes. In a possible refactoring of Whizard and O’Mega,

the two tasks performed by O’Mega– quantum number generation and matrix element

computation – should be separated from each other. In a setup that only uses third-party

matrix element providers, only the first functionality would be used.
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D. The top quark width at NLO QCD

The following is the analytic expression for the top-quark width with massive b-quarks

originally given in ref. [129]. Defining ξ = m2
t/m

2
W and ε = mb/mt, it is

Γ =
GFm

2
t

16
√
2π

[

F0

(
ε, ξ−1/2

)
− 2αs

3π
F1

(
ε, ξ−1/2

)
]

. (D.0.1)

The leading-corder contribution is

F0(ε, w
2) =

√

λ(ε, w2)

2
f0(ε, w

2) (D.0.2)

with

f0(ε, w
2) = 4

[
(1− ε2)2 + w2(1 + ε2)− 2w4

]
(D.0.3)

and

λ(ε, w2) = 1 + w4 + ε4 − 2(w2 + ε2 + w2ε2). (D.0.4)

Note that the auxilliary variable w2 equals ξ−1/2 as in eq. (D.0.1). Further, using the

definitions

uq =
1 + ε2 − w2 − λ1/2

1 + ε2 − w2 + λ1/2
(D.0.5)

and

uw =
1− ε2 + w2 − λ1/2

1− ε2 + w2 + λ1/2
, (D.0.6)
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D. The top quark width at NLO QCD

the pure next-to-leading-order contribution to eq. (D.0.1) is given by

F1 =
1

2
f0 · (1 + ε2 − w2)

{

π2 + 2Li2(uw)− 2Li2(1− uw)− 4Li2(uq)

− 4Li2(uquw) + log

(
1− uq
w2

)

log(1− uq)− log2(1− uquw)

+
1

4
log2

(
w2

uw

)

− log(uw) log

[
(1− uquw)

2

1− uq

]

− 2 log(uq) log [(1− uq)(1− uquw)]

}

−
√
λf0 · (2 log(w) + 3 log(ε)− 2 log(λ))

+ 4(1− ε2)
[
(1− ε2)2 + w2(1 + ε2)− 4w4

]
log(uw)

+
[
(3− ε2 + 11ε4 − ε6) + w2(6− 12ε2 + 2ε4)− w4(21 + 5ε2) + 12w6

]
log(uq)

+ 6
√
λ(1− ε2)(1 + ε2 − w2) log(ε)

+
√
λ
[
−5 + 22ε2 − 5ε4 − 9w2(1 + ε2) + 6w4

]
.

(D.0.7)

Note that we have omitted the functional dependence of f0 and λ on w2 and ε for ease

of notation. The above formula was checked against the numerical Whizard results

as discussed in section 4.1 where we find an agreement with the numbers Γwhizard
t =

1.4078768(615)GeV and Γanalytical
t = 1.40787091GeV. The input parameters used for

this comparison are given below. Top and bottom quarks are massive,

mb = 4.2GeV, mt = 172.0GeV. (D.0.8)

Further, their width, as well as the W -boson width are set to zero. We use mW =

80.419GeV, mZ = 91.188GeV and α−1
e = 125.924, from which GF and the electroweak

mixing angles are computed. The renormalization scale in the NLO part of the calcula-

tion is set to the top mass.
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E. The Powheg veto procedure

We outline the Powheg veto algorithm briefly addressed in section 4.5. To avoid the

direct evaluation of the integral in the exponent of eq. (4.5.3), the corresponding pT–

distribution is produced by a reweighting procedure instead.

E.1. The algorithm

The probability distribution as a function of the FKS variables ξ, y (and φ, which is

irrelevant here) we want to sample is

P (ξ, y) =
R(ξ, y)

B
exp

[

−
∫

dΦ′
rad

R(ξ′, y′)

B
θ(kT (ξ

′, y′)− pT )

]

, (E.1.1)

where kT is a function parameterizing the transverse momentum of the radiation. The

transverse momentum pT is the value which is generated by the algorithm. In the

full event generation, it is used to construct the real-emission event and also enters the

subsequent vetoed parton shower. For this reason, it is advisable to transform eq. (E.1.1)

into an expression with explicit pT–dependence, i.e. we want to trade y for pT . To do

so, we can make use of an identity for variable transformations in probability densities.

For a random variable x with distribution f(x), and another variable y = g(x), the

probability density f̃(y) is given by

f̃(y) =

∫

dxf(x)δ(y − g(x)). (E.1.2)

With this identity, eq. (E.1.1) can be rewritten to, using R̂ = R/B,

P (ξ, pT ) =

∫

dΦradδ(pT − kT (ξ, y))R̂(ξ, y)e
−

∫
dΦ′

radR̂(ξ′,y′)θ(kT (ξ′,y′)−pT )

=
d

dpT
e−

∫
dΦ′

radR̂(ξ′,y′)θ(kT (ξ′,y′)−pT ) =
d

dpT
∆(pT ).

(E.1.3)

The last line emphasizes that P (ξ, pT ) is uniform in ∆(pT ). Therefore, the correct pT–

distribution according to eq. (E.1.1) can be reproduced by solving ∆(pT ) = r for pT with

a random number r ∈ [0, 1]. Solving this equation nevertheless requires the evaluation
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E. The Powheg veto procedure

of the integral in the exponent. To facilitate the generation of pT , an upper bounding

function (UBF) is introduced which is analytically easy to integrate and fulfills the

condition
J (Φn+1)R(Φn+1)

B(Φn)
≤ NU(ξ, y). (E.1.4)

For an explanation of the normalization N , cf. section 4.5. Explicit examples of UBFs

are discussed in the next section. The Sudakov factor where the expression on the

left-hand side of eq. (E.1.4) is replaced by its right-hand side is denoted by ∆U(pT ).

The veto algorithm, a graphical representation of which is given in fig. E.1, proceeds

as follows. First, pT is generated uniformly in the interval [pT , p
max
T ], i.e. the equation

∆U(pT )

∆U(pmax
T )

= r (E.1.5)

is solved for pT . The denominator ensures that pT is only generated in the interval

[0, pmax
T ]. If the obtained value is below the lower bound pmin

T , the radiation is vetoed

and a Born event is generated (note that the Born kinematics are already present at this

point). Else, real kinematics are created. To undo the upper estimate of eq. (E.1.4), a

second veto is performed using a second random number r′ ∈ [0, 1]. The real-emission

event is accepted if r′ < JRB/(NU), otherwise the upper bound pmax
T is set to the value

of pT generated in this iteration. The vetoes are repeated until either pT falls below pmin
T

or the UBF-veto is passed.

E.2. Upper bounding functions

In most applications, the logarithm is taken on both sides of eq. (E.1.5) to avoid the

exponential function of the standard expression for the UBF in eq. (E.1.4). This gives

the integral

− log∆U(pT ) = −
∫

dξdydφU(ξ, y)θ (kT − pT ) . (E.2.1)

The explicit form of U(ξ, y) differs between FSR and ISR regions. First, because di-

vergences arise differently and this has to be represented in the UBF. Second, different

parametirzations of k2T in terms of y have to be employed for initial- and final-state emis-

sions. Here, we give examples for ISR and FSR UBFs. In the latter case, we distinguish

between massless and massive emitters. Further, since in QED the running of αem is

usually neglected, we consider the case of a non-running coupling constant, which leads

to a simpler UBF which can be used for photon emissions.
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E.2. Upper bounding functions

∆U (pmax
T ) = 1

Solve ∆U (pT )
∆U (pmax

T
)
= r for pT

pT > pmin
T ?

Generate Φrad with
pT = kT (ξ, y)

r′ < J(ξ,y)R(ξ,y)
N(ξ,y)U(ξ,y)B ?

pmax
T = pT

Create radi-
ation event

Create
Born event

r ∈ [0,1]

pT

yes

r′ ∈ [0,1]

no

r ∈ [0,1]

no

yes

Figure E.1. Outline of the Powheg veto procedure
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E. The Powheg veto procedure

E.2.1. Final-state emissions – massless emitters

The standard upper bounding function for FSR is given by

U(ξ, y) = N
αs(k

2
T )

ξ(1− y)
. (E.2.2)

The strong coupling in the numerator is essential for an effective sampling of the real

matrix element. It depends on k2T ,

αs(k
2
T ) =

1

b0 log (k2T/Λ
2)
. (E.2.3)

We therefore trade y for k2T in eq. (E.2.1), using the parameterization

k2T =
s

2
ξ2(1− y). (E.2.4)

Note that this is not necessarily the correct kinematical relation between y and k2T , which

is not a problem as long as the singular behavior is the same. With this definitions, we

find from eq. (E.2.1)

− log∆U(pT ) = 2πN

∫ ξmax

0

dξ

ξ

∫ ξ2s

p2
T

dk2T
k2T

αs(k
2
T )

=
πN

b0
θ

(

ξ2max −
p2T
s

)[

log
ξ2maxs

Λ2
log

log(ξ2maxs/Λ
2)

log(p2T/Λ
2)

− log
ξ2maxs

p2T

]

.

(E.2.5)

Here, we have inserted the kinematical bound for ξ as upper integration bound of the

integration 1.

The integrated UBF takes a much simpler form if no running coupling is considered

in eq. (E.2.2), e.g. for photon emissions, where αe can be assumed to be constant. In

this case, we find

− log∆U
QED(pT ) =

π

2
αeNθ

(

ξ2max −
p2T
s

)

log2
(
ξ2maxs

p2T

)

. (E.2.6)

E.2.2. Final-state emissions – massive emitters

The upper bounding function for emissions from massive partons is more involved. It

has been discussed for the first time in ref. [60], where it is derived from eikonal approx-

1Due to eq. (E.2.3), the reference scale Λ appears in eq. (E.2.5). Whizard commonly evolves αs from
MZ , so Λ is not obtainable from the model setup. Instead, it is obtained by first computing αs(p

min
T )

as usual and then solving eq. (E.2.3) for Λ.
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E.2. Upper bounding functions

imations to the real amplitude. It is

Umassive(ξ, y) =

√
s

p̄
em

1

ξ(1− z)
, (E.2.7)

using the notation of section A.1.3, i.e. p̄em is the emitter momentum in the Born phase

space and z is as defined in the context of Dalitz plot variables in the generation of FSR

from massive emitters, cf. eq. (A.1.11). Note that there is no strong coupling in this

choice of ∆U. Integrating eq. (E.2.1) with this UBF, using t = p2T , gives

− log∆U(t) =

√
s

p̄em

[

log ξ · log
[

(1− z2)

√
s

t

]

+
1

2
log2 ξ

+G(−t, q2, ξ)−G(2p̄2em,−
√
s, ξ)

]min(ξ1(t),ξmax)

ξmin

+

√
s

p̄em
θ(ξmax − ξ1(t)) log

ξmax

ξ1(t)
log

1− z2
1− z1

.

(E.2.8)

The Dalitz variables z1 and z2 are as defined in eq. (A.1.12). ξmin is the minimal value

of ξ compatible with the given scale t,

ξmin(t) =

√

t (tz22 + 8p̄0em
√
s(1− z2))− tz2

2s(1− z1)
. (E.2.9)

Moreover, ξ1(t) = ξmin(t) with z2 = z1 and

G(a, b, ξ) = log(a+ bξ) log

(

1− a+ bξ

a

)

+ Li2

(
a+ bξ

a

)

fora < 0,

G(a, b, ξ) = log

∣
∣
∣
∣

bξ

a

∣
∣
∣
∣
log a− Li2

(

−bξ
a

)

+
π2

6
fora > 0,

(E.2.10)

which is the antiderivative of log(a+ bξ)/ξ.

E.2.3. Initial-state emissions

The simplest UBF for initial-state radiation is the same as in eq. (E.2.2), but taking

into account the additional collinear limit y → −1,

U(ξ, y) = N
αs(k

2
T )

ξ(1− y2)
, (E.2.11)

with the corresponding parameterization of the radiation hardness

k2T =
s

4(1− ξ)
ξ2(1− y2). (E.2.12)
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E. The Powheg veto procedure

Note that in contrast to eq. (E.2.4), the CMS energy which actually enters the hard

interaction has to be used.

Performing the integration of the UBF yields [44, 210]

− log∆U(pT ) = θ(s− p2T )
πN

b0

{

θ(k2T,max − s)
[

log
2s

Λ2
log

log(s/Λ2)

log(p2T/Λ
2)

− log
s

p2T

+ log(2) log
log(k2T,max)

log(s/Λ2)

]

+ θ(s− k2T,max)

[

log
2s

Λ2
log

log(k2T,max/Λ
2)

log(p2T/Λ
2)

− log
k2T,max

p2T

]}

+ θ(p2T − s)
πN

b0
log(2) log

log(k2T,max/Λ
2)

log(p2T/Λ
2)

.

(E.2.13)

Again, most of the complexity arises from the running of the strong coupling. For a

fixed electroweak coupling, we find [9]

− log∆U
QED(pT ) = παeN

[

2θ(p2T − s) log(2) log
k2T,max

p2T

+ θ(s− k2T,max)θ(s− p2T )

(

log2
2s

p2T
− log2

2s

k2T,max

)

+ θ(s− p2T )θ(k
2
T,max − s)

(

log2
2s

p2T
− log2(2) + 2 log(2) log

k2T,max

s

)]

.

(E.2.14)
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F. Technical details of the top-quark

threshold matching

F.1. Relation between the top-quark pole mass and M 1S
t

The top-quark pole mass mt and the resonance mass M1S
t are related via

mt =M1S
t

[
1 + ∆M(

√
s, αs)

]
. (F.1.1)

The shift ∆M(N)LL is given by

∆MLL =
(CFαS)

2

8
,

∆MNLL = ∆MLL +
(CFαS)

3

8πCF

{

B0 ·
(

1 + log
hfν∗
CFαS

)

+
A1

2

} (F.1.2)

where

B0 =
11CA − 2NF

3
, (F.1.3)

A1 =
31

9
CA − 20

9
TR ·NF . (F.1.4)

The factors h and f are scale factors which we are not interested in this work so we

can assume h = f = 1. The velocity ν∗ is mostly identically to v in eq. (B.3.13), but

evaluated at M1S
t instead of mt and shifted by 0.05 [194],

ν∗(
√
s) = 0.05 +

∣
∣
∣
∣
∣

√√
s− 2M1S

t + iΓt(M1S
t )

M1S
t

∣
∣
∣
∣
∣
. (F.1.5)
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F. Technical details of the top-quark threshold matching

F.2. On-shell projection

The on-shell projection performed to keep gauge invariance in section 6.2 assumes that

the reconstructed top momenta can be written as

p̂t =
1

2

(√
s, β · et

)
, (F.2.1)

where et = pt/|pt| is a unit vector parallel to the top momentum in the original phase

space. This way, the projection transitions smoothly into the case where the momenta

are already on-shell and also maintain spatial correlations, e.g. the forward-backward

asymmetry. The scale factor β is above the threshold, i.e. for
√
s > 2mt, given by the

mass-shell relation as β =
√

s− 4m2
t . In the full process e+e− → bW+b̄W−, the top-

quark invariant mass can fall below 2mt, so that this choice is not possible. Here, the

top quark is essentially at rest. Therefore, below threshold for
√
<2mt, the scale factor

is set to an arbitrary small number ε. Setting ε = 0 leads to numerical instabilities in

the matrix elements, so in Whizard we choose ε = 10−10.

The bottom and W momenta can be constructed in the rest frame according to

|p̂W | = |p̂b| =
λ1/2(m2

t ,m
2
W ,m

2
b)

2mt

, (F.2.2)

and

EW =
m2

t +m2
W −m2

b

2mt

, Eb =
m2

t −m2
W +m2

b

2mt

, (F.2.3)

which are identical for each event. The reference direction is chosen to be given by the

W-boson momentum in the non-projected phase space, so that p̂W = |p̂W | · eW , which

also fixes the bottom-quark momentum. The final-state momenta can then be straight-

forwardly boosted into the lab frame, which concludes the on-shell projection.
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