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Abstract We study the orbital and oscillatory motion of
test particles moving around slowly rotating first and second
kinds of Einstein–Æther black holes. In relation to the black
hole parameters, we find analytical solutions for the radial
profiles of specific energy and specific angular momentum
of the equatorial stable circular orbits. The properties of the
co-rotating as well as contra-rotating innermost stable circu-
lar orbits are analyzed. We examine the radial profiles of the
frequencies of latitudinal and radial harmonic oscillations as
a function of the black hole mass and dimensionless coupling
constants of the theory. The key features of quasi-periodic
oscillations of test particles near the stable circular orbits
in an equatorial plane of the black hole are discussed. We
investigate the positions of resonant radii for high-frequency
quasi-periodic oscillations models, namely epicyclic reso-
nance and its variants, relativistic precession and its vari-
ants, tidal disruption, as well as warped disc models, con-
sidered in the background of slowly rotating first and second
kinds of slowly rotating Einstein–Æther black holes. Further-
more, Periastron and Lense–Thirring precessions have been
discussed. We demonstrate that the dimensionless coupling
parameters of the theory have a strong influence on particle
motion around Einstein–Æther black holes.
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1 Introduction

General relativity (GR) is a theory of gravitation that was pro-
posed by Albert Einstein in 1915 [1]. GR has served as the
most successful theory of gravitation to explain and under-
stand various mysteries of the astrophysical as well as the
cosmological realm. One needs to modify GR with the aim
to avoid the fundamental issues of the theory. These issues
are related to the existence of a singularity at the origin of
most vacuum solutions of Einstein’s equation, the inconsis-
tency of GR with the quantum field, etc. On the other hand,
the modifications to GR and the alternative theories of grav-
ity may be considered a step forward in developing a unified
theory of the interactions. One of the key principles of both
modern physics and Einstein’s GR is Lorentz’s invariance.
Another piece of evidence for the significance of the Lorentz
invariance is considered to be the capability of GR to describe
all observed gravitational events and its natural mathemati-
cal elegance [2]. Lorentz invariance, on the other hand, may
not be a precise symmetry at all energies [3]. Any successful
description must fail at some point, indicating the appear-
ance of new physical degrees of freedom beyond that point.
Lorentz invariance also causes divergences in quantum field
theory, which can be rectified by a short cutoff distance that
breaks it [4].

Attempts to solve problems in modern physics that are out-
side the scope of local Lorentz symmetry are fascinating [5].
Einstein Æther (EÆ) theory is considered a covariant-based
modified theory of gravitation, which violates the Lorentz
symmetry locally. Its action consists of the Einstein–Hilbert
term coupled with a dynamical, unit timelike vector field,
vα , named as Æther. The rotational symmetry in a preferred
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frame is retained, while local boost invariance vα is broken
[6]. Thus Æther is a type of locally favored state of rest at
each location in spacetime as a result of unexplained physics.
The Lorentz symmetry breaking in the gravity sector can
be effectively described by the EÆ theory, which has been
extensively used to figure out the quantitative restrictions on
Lorentz-violating gravity. In contrast to general relativity,
the presence of Æther field in Æther theory establishes a pre-
ferred timelike direction that violates Lorentzian symmetry
[7].

The motion of charged or neutral particles around black
holes (BHs) is one of the most fascinating issues in BH
astrophysics. It is essential for determining spacetime’s geo-
metric structure. The study of the general relativistic motion
of particles and the electromagnetic fields near to BHs are
now motivated by new observational and theoretical evi-
dence for BHs. Astronomical investigations over the past
ten years have shown the existence of supermassive BHs
as well as stellar mass in galactic centers and X-ray binary
systems. It has long been known that stellar-mass BH bina-
ries exhibit quasi-periodic oscillations in the X-ray flux light
curves, and this phenomenon is regarded as one of the most
effective tests of strong gravity models. These fluctuations
are closely proximity to the BH, and expressed frequencies
scale inversely with the BH mass. According to the current
developments, we can accurately measure the frequencies
of QPOs, at center and its surroundings. It is possible to
classify quasi-periodic oscillations (QPOs) into subclasses
based on their measured frequencies less than 0.5 kHz. Most
of these are high-frequencies (HF) and low-frequencies (LF)
QPOs with frequencies up to 500 Hz and up to 30 Hz, respec-
tively. The twin peaks with a frequency ratio 3:2 close to are
often steady and detectable indicators of HF QPO oscilla-
tions in BH microquasars [8]. The QPOs around BHs (non-
rotating:rotating) and wormholes have been discussed in sev-
eral papers [9–13].

It is quite intriguing to investigate the properties of BHs in
the presence of an Æther field. In the EÆ theory, two spher-
ically symmetric and static BH solutions have recently been
presented, with the two combinations in coupling constants
[14,15]. Additional spherically symmetric BH solutions in
the background of a class of coupling constants have been
examined via numerical computing [7], and their analytical
description in polynomial form has been used in the explo-
ration of quasi-normal modes in EÆ theory [16,17]. The
neutral particle dynamics surrounding non-spinning EÆ BHs
have been investigated in [18], while the shadow and deflec-
tion angles for slowly rotating EÆ BHs have been probed in
[19].

A productive method for exploring the phenomena sur-
rounding BHs involves studying QPOs observed in micro-
quasars. Precise frequency measurements of QPOs can pro-
vide valuable insight into the central object. Various types of

QPOs have been categorized based on their frequency, which
can range from just a few millihertz to 0.50 kHz. The con-
cept of QPOs are characterized by low and high-frequency
ranges. BH microquasars typically exhibit high-frequency
QPOs with dual peaks, whose frequency ratio closely cor-
responds to the ratio [20]. Multiple studies have investi-
gated high-frequency QPOs of neutral [21], spinning [22]
and charged test particles [23,24] in the vicinity of rotating
and non-rotating BHs. Recently, alternative rotating space-
times have been explored using hot-spot data surrounding
Sgr A* [25].

In the present paper, we study the orbital and epicyclic
motion of neutral test particles in the background of the first
and second kinds of slowly rotating EÆ BHs. We obtain
the analytical expressions for specific energy and specific
angular momentum of equatorial circular orbits and inves-
tigate the properties of both co-rotating as well as contra-
rotating ISCOs. We explore the perturbed motion of stable
circular orbits located in an equatorial plane and examine the
radial profiles of the radial, vertical, and axial frequencies in
dependence on the BH mass and parameters of the BHs. Fur-
thermore, we examine the position of resonant radii of HF
QPOs models, i.e., epicyclic resonance (ER) and its variants,
relativistic precession (RP) and its variants, tidal disruption
(TD), as well as warped disc (WD) models. The Periastron
and Lense–Thirring Precession have also been discussed.

Throughout the calculations, we consider the geometric
units G = c = 1, and the spacetime signature (−,+,+,+).
Greek indices are taken to run from 0 to 3. However, for
expressions having astrophysical relevance we use the phys-
ical constants explicitly.

2 Slowly rotating Einstein–Æther black hole

The slowly rotating EÆ BH solution is an asymptotically flat
solution of the field equations in EÆ theory. The line element
describing the geometry of this BH with mass M , and electric
charge Q can be given as [26,27]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2)

−4a

r
M sin2 θdtdφ + O(ε2). (1)

Two types of exact solutions exist for slowly rotating EÆ
BHs. The first solution (termed as the first kind of slowly
rotating EÆ BH) corresponds to the special choice of cou-
pling constant, i.e., c14 = 0, c123 �= 0, where c123 =
c1 + c2 + c3, c14 = c1 + c4, and the metric function f (r) for
this case can be written as

f (r) = 1 − 2M

r
+ Q

r2 − 27M4c13

16r4(1 − c13)
, (2)
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Fig. 1 Position of the horizon of the first kind of slowly rotating EÆ
BH as a function of charge Q, for different values of coupling parameter
c13

where c13 = c1 +c3. For c13 = Q = 0, and a = c13 = 0, the
first kind of slowly rotating EÆ BH reduces to the classical
slowly rotating Kerr BH, and RN BH, respectively, while
a = c13 = Q = 0, leads to the Schwarzschild BH. The outer
horizon for the first kind of slowly rotating EÆ BH can be
found by solving f (r) = 0. The second solution (termed as
the second kind of slowly rotating EÆ BH) corresponds to
c123 = 0, and the metric function f (r) for this case can be
written as

f (r) = 1 − 2M

r
+ Q

r2(1 − c13)
+ M2(c14 − 2c13)

2r2(1 − c13)
. (3)

For c13 = c14 = Q = 0, the second kind of slowly rotating
EÆ BH reduces to the classical slowly rotating Kerr BH.
Moreover, c13 = c14 = a = 0, leads to the RN BH, while
c13 = c14 = a = Q = 0, corresponds to the Schwarzschild
BH. The outer horizon for the second kind of slowly rotating
EÆ BH is situated at

r+ = M +
√

(c14 − 2)M2 + 2Q√
2(c13 − 1)

. (4)

There are the number of observational and theoretical bounds
on coupling constants ci . In the present work, we impose the
following constraints [28]

0 ≤ c14 < 2, 0 ≤ c13 < 1, 3c2 + c13 + 2 > 0. (5)

The positions of horizons for the first and second kinds
of slowly rotating EÆ BHs have shown in Figs. 1 and 2,
respectively. Note that the horizons of slowly rotating EÆ
BHs do not depend on the rotation parameter a of BH. The
horizon of the first kind of BH decreases with the increase

of charge Q, while it increases as the coupling parameter c13

increases. However, for the second kind of BH, the radii of
horizons decrease as the coupling parameter c14 increases.
The EÆ BHs have a greater radius of the horizon as compared
to RN BHs.

3 Circular orbits around EÆ BH

The motion of a neutral particle can be described by the
Hamiltonian given by

H = 1

2
gαβ pα pβ + 1

2
m2, (6)

wherem is the mass of the particle, pα = muα represents the
four-momentum, uα = dxα/dτ denotes the four-velocity,
and τ is the proper time of the test particle. The Hamilton
equations of motion can be written as

dxα

dζ
≡ muα = ∂H

∂pα

,
dpα

dζ
= − ∂H

∂xα
, (7)

where ζ = τ/m is the affine parameter. Due to the symme-
tries of the BH geometry, there exist two constants of motion,
namely specific energy E and specific angular momentum L ,
given by

pt
m

= gttu
t + gtφu

φ = −E, (8)

pφ

m
= gφφu

φ + gtφu
t = L, (9)

where E = E/m, L = L/m and the equations of motion in
an equatorial plane can be written in the form [29,30]

dt

dλ
= Er4 − 2arL

4a2 + r4 f (r)
, (10)

dr

dλ
= ±√

R(r), (11)

dθ

dλ
= 0, (12)

dφ

dλ
= r(2aE + rL f (r))

4a2 + r4 f (r)
, (13)

where R(r) takes the form

R(r) = f (r)

[

1 + r
(
4aEL + rL2 f (r) − E2r3

)

4a2 + r4 f (r)

]

. (14)

Using normalization condition gνσuνuσ = −1, one can
write

Vef f (r, θ) = grr ṙ
2 + gθθ θ̇2, (15)
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Fig. 2 Position of the horizon of second kind of slowly rotating EÆ BH as a function of charge Q, for different values of parameters c14 (left) and
c13 (right)

where ṙ = dr/dτ , θ̇ = dθ/dτ , and Vef f denotes the effec-
tive potential given by a relation

Vef f (r, θ) = E2gφφ + 2ELgtφ + L2gtt
g2
tφ − gtt gφφ

− 1. (16)

The effective potential Vef f (r, θ) plays an important role to
illustrate the motion of test particles. One can describe the
motion of a particle with the help of Vef f (r, θ) without using
the equations of motion. The circular orbits for equatorial
plane θ = π/2 are given by simultaneous conditions

Veff(r) = 0,
dVeff(r)

dr
= 0. (17)

In order to find the specific energy E and specific angular
momentum L of circular orbits, we follow the formalism of
forces presented in [31,32], and the corresponding expres-
sions for the case of slowly rotating EÆ BHs are given by
the relations

E(I ) = f (r)

(

1 − P2
(I )(r)

4a2 + r4 f (r)

)− 1
2

, (18)

E(I I ) = f (r)

(

1 − P2
(I I )(r)

4a2 + r4 f (r)

)− 1
2

, (19)

L(I ) = r P(I )(r)
(

4a2 + r4 f (r) − P2
(I )(r)

)− 1
2
, (20)

L(I I ) = r P(I I )(r)
(

4a2 + r4 f (r) − P2
(I I )(r)

)− 1
2
, (21)

where the subscripts (I ) and (I I ) stand for the first kind and
second kind of slowly rotating EÆ BHs, respectively. The
expressions for P(I )(r) and P(I I )(r) are given by

P(I )(r) = −3a +
√

a2 + r2(r − Q) − 27c13

16(c13 − 1)
, (22)

P(I I )(r) = −3a +
√

a2 + r2(r + c14 − 2c13 + 2Q

2(c13 − 1)
). (23)

The locality of stable or unstable circular orbits is consistent
with the minimum or maximum of the effective potential cor-
respondingly. In Newtonian theory, the effective potential has
a minimum for any value of the angular momentum, and then
it has no minimum radius of a stable circular orbit (I SCO)

[33]. But this position is altered when the effective potential
has a difficult form liable to the particle angular momentum
and other parameters. Therefore, in GR and for the particles
moving near the Schwarzschild BH, the effective potential
has two extrema for any value of angular momentum. But,
only for a particular value of angular momentum do the two
points happen together. This point presents I SCO where is
placed at r = 3rg [33–38] where rg is the Schwarzschild
radius.

The graphical behaviour of energy E and angular momen-
tumL of equatorial circular orbits around the first and second
kind of slowly rotating EÆ BHs is depicted in Figs. 3 and 4
respectively. The energy and angular momentum of circular
orbits around the first and second kinds of slowly rotating
EÆ BHs increases as the coupling parameter c13 increases,
while they decrease with the increase of coupling parame-
ter c14, charge Q or rotation of BH. We compare the energy
as well as the angular momentum of circular orbits around
Schwarzschild, RN, Solwly rotating Kerr and slowly rotating
EÆ BHs, and observe that the circular orbits around slowly
rotating EÆ BHs have greater energy and angular momen-
tum among all the cases.

The ISCO is located at d2Vef f /dr2 = 0 and the position of
co-rotating and counter-rotating ISCOs for first and second
kinds of slowly rotating EÆ BHs is illustrated in Figs. 5 and 6,
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Fig. 3 Radial profiles of energy (first row) and angular momentum
(second row) at the circular orbits around first kind of slowly rotat-
ing EÆ BH for different values of coupling parameter c13, charge Q

and rotation parameter a. The comparison between Schwarzshild, RN,
slowly rotating Kerr, and slowly rotating EÆ BH for energy and angular
momentum has been shown in the last column

Fig. 4 Radial profiles of energy (first row) and angular momentum (second row) of second kind of slowly rotating EÆ BH for different values of
coupling parameters c13, c14 and rotation parameter a

123
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Fig. 5 Position of ISCOs of the first kind of slowly rotating EÆ BH. Solid curves are for co-rotating particles, while dashed curves are plotted for
counter-rotating particles. The comparison between the ISCO positions of slowly Kerr BH and the first kind of EÆ BHs is shown in the last plot

Fig. 6 Position of ISCOs of the second kind of slowly rotating EÆ BH.
Solid curves are for co-rotating particles, while dashed curves are plot-
ted for counter-rotating particles. The comparison between the ISCO

positions of slowly Kerr BH and the first kind of EÆ BHs is shown in
the right plot of the second row

respectively. The co-rotating ISCOs shift towards the BHs,
while the contra-rotating ISCOs move away from the BH
with the increase of the coupling parameter c14 or electric
charge Q. In the case of co-rotating particles, the ISCOs
shift away from the BH as the coupling parameter c13 is
increased but move towards the BH when the rotation of BH
is increased. Smaller radii of ISCOs can be observed when
the BHs rotate rapidly. We see that the ISCOs around the first

and second kinds of slowly rotating EÆ BHs are smaller as
compared to slowly rotating Kerr BH.

4 Harmonic oscillations as perturbation of circular
orbits

In order to investigate the oscillatory motion of neutral par-
ticles, we perturb the equations of motion in the vicinity of
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stable circular orbits. If a test particle is slightly shifted from
the equilibrium position related to a stable circular orbit situ-
ated in an equatorial plane, it will undergo epicyclic motion,
characterized by linear harmonic oscillations. The frequen-
cies of harmonic oscillatory motion measured by the local
observer are given by [40,41]

ω2
r = −1

2 grr

∂2Veff(r, θ)

∂r2 , (24)

ω2
θ = −1

2 gθθ

∂2Veff(r, θ)

∂θ2 , (25)

ωφ = dφ

dτ
. (26)

The radial (ωr ), latitudinal (ωθ ), and orbital/axial (ωφ) fre-
quencies of the neutral test particle for the first and second
kinds of slowly rotating EÆ BH takes the form

ω2
r(I ) = f (r)

r4
(
4a2 + f (r)

)3 (16a3(aξ − E(I )L(I )rY ) − 4a2

×(σν + L2
(I )ψ + E2

(I )r
4Y ) + 4E(I )aL(I )rα

−r2(σL2
(I )(9(Z−1)Z+3)+E2

(I )σr
4μ−3L2

(I )Z
3

+E2
(I )r

4η)), (27)

ω2
θ(I ) = L(I ) f (r)

(
8a2 + L(I ) f (r)

) + 4E(I )a2r3δ

r4
(
4a2 + f (r)

)2 , (28)

ω2
φ(I ) =

(
2ar3E(I ) + L(I ) f (r)

)2

r4
(
4a2 + f (r)

)2 , (29)

ω2
r(I I ) = 1

λ12

[
12(c13 − 1)E2

(I I )λ
2
11r

2 − 2(c13 − 1) (30)

×λ2
10L2

(I I ) + λ1 + 8λ2λ3λ4λ5λ6λ7λ8λ9λ10

×L2
(I I )

]
, (31)

ω2
θ(I I ) =

(
16ra3E(I I )L(I I ) + γ r2L2

(I I ) + 4a2ρ
)

(
r3

(
4β − r2 + 2r

) − 4a2r
)2 ,

ω2
φ(I I ) = (L(I I )(β − r(r − 2)) − 2arE(I I ))

2

(
4a2 + r2 f (r)

)2 , (32)

where the introduced coefficients read

σ = 27c13

16(c13 − 1)r2 , χ = (−4 + 3r),

ν = (L2(r2 + 9z − 6) − 12E2r4),

ξ = (L2 − 3r2(σL2 + 2E2)),

ψ = (Q2 + 3Qrχ + 2r2(2r − 3)χ),

η = (Q2−3Qr2+2r3), μ = (−3Q+2r(5r−3)+6),

α = (σY+r2(Q2+3Q(r−2)r+2r2(r(3r−8)+6))),

δ =
(

4aL(I ) − E(I )r
3
)

,

β = (2Q − 2c13 + c14)

2(c13 − 1)
,

γ = ((r − 2)r − 4β)2 ,

ρ =
(
L2

(I I )(2(r − 2)r + β) − E2
(I I )r

4
)

,

λ1 =
(
−2c13(r − 1)2 + c14 + 2(Q + (r − 2)r)

) ( − 32a

×(c13 − 1)E(I I )L(I I )r
3(c13

( − 4r2 + 6r − 2
) + c14

+2Q + 4r2 − 6r
)2)

,

λ2 = (c13 − 1)E2
(I I )r

6(c13
( − 4r2 + 6r − 2

) + c14 + 2Q

+4r2 − 6r
)2 − 4L2

(I I )r
2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)
,

λ3 = 16a(c13 − 1)E(I I )L(I I )r
(
c13

(
4r2 − 6r + 2

) − c14

−2Q − 4r2 + 6r
) + (

c13
( − 4r2 + 6r − 2

)

+c14 + 2Q + 4r2 − 6r
)2

,

λ4 = (
8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)) + 8(c13 − 1)L2

(I I )(r − 1)r

×(
c13

(
4r2 − 6r + 2

) − c14 − 2Q − 4r2 + 6r
)
,

λ5 = (
8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)) − 16(c13 − 1)E2

(I I )r
4

×(
c13

(
4r2 − 6r + 2

) − c14 − 2Q − 4r2 + 6r
)
,

λ6 = (
8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)) + 8a(c13 − 1)E(I I )L(I I )

×r
(
2c13

(
6r2 − 6r + 1

) − c14 − 2(Q + 6(r − 1)r)
)
,

λ7 = (
8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)) − 2(c13 − 1)E2

(I I )r
4

×(
2c13

(
6r2 − 6r + 1

) − c14 − 2(Q + 6(r − 1)r)
)
,

λ8 = 8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)
,

λ9 = (
2c13(r − 1)2 − c14 − 2(Q + (r − 2)r)

)(
2c13

×(
6r2 − 6r + 1

) − c14 − 2(Q + 6(r − 1)r)
)
,

λ10 = 8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)
,

λ11 = 8a2(c13 − 1) + r2(2c13(r − 1)2 − c14 − 2(Q

+(r − 2)r)
)
,

λ12 = 2(c13 − 1)r2(8a2(c13 − 1) + r2(2c13(r − 1)2

−c14 − 2(Q + (r − 2)r)
))3

.

and the energy E(I ), E(I I ), and angular momentumL(I ),L(I I )

are given by Eqs. (18)–(21), respectively. The identification
of different shapes of charged particle epicyclic orbits near a
stable circular orbit can be facilitated by observing the behav-
ior of the fundamental frequencies, namely ωr , ωθ , and ωφ , as
well as their respective ratios. The Newtonian theory of grav-
itation predicts that all frequencies are identical, resulting in
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Fig. 7 Radial profiles of frequencies of small harmonic oscillations radial νr , vertical νθ and axial νφ of a neutral particle around first kind of
slowly rotating EÆ BH with BH mass M = 10M�, measured by a static distant observer

elliptical trajectories for particles orbiting spherically sym-
metric bodies. However, for Schwarzschild BH, the frequen-
cies follow the relation ωr < ωθ = ωφ , causing a periapsis
shift and inducing relativistic precession as the radius of the
orbit decreases and the strong gravity region is approached.

4.1 Frequencies measured by distant observer

The locally measured angular frequencies

ωα = d�α

dτ
, (33)

are related to the angular frequencies measured by the static
distant observer (�), by the gravitational redshift transfor-
mation

�α = d�α

dτ
= ωα

dτ

dt
, (34)

where dτ/dt is the redshift coefficient. If the frequencies of
small harmonic oscillations measured by the distant observer

are expressed in physical units, one needs to extend the cor-
responding dimensionless form by the factor c3/GM . Thus
the frequencies of the neutral particles measured by distant
observers are given by [42]

ν j = 1

2π

c3

GM
� j [Hz], (35)

where j ∈ {r, θ, φ}; �r , �θ , and �φ denotes the dimension-
less radial, latitudinal, and axial angular frequencies mea-
sured by a distant observer. The Figs. 7 and 8 display the
radial profiles of frequencies ν j for small harmonic oscilla-
tions of neutral particles, as measured by an observer at a
distance, around slowly-rotating EÆ BHs of both the first
and second kinds, with varying spin parameter a, charge Q,
and dimensionless coupling parameters c13 and c14. As any
of these parameters increase, the radial profiles shift towards
the black hole. However, coupling parameter c13 contributes
to moving the radial profiles away from the BH. The particles
moving around slowly rotating Kerr BH have high frequen-
cies as compared to moving around slowly rotating EÆ BHs.
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Fig. 8 Radial profiles of frequencies of small harmonic oscillations radial νr , vertical νθ and axial νφ of a neutral particle around second kind of
slowly rotating EÆ BH with BH mass M = 10M�, measured by a static distant observer

5 Quasi-periodic oscillations models

The previous section’s exploration of neutral particle oscil-
lations on circular orbits has potential ramifications in astro-
physics, particularly about HF QPOs detected in micro-
quasars. Hot spot models hypothesize that radiating spots
exist in thin accretion discs and follow nearly circular
geodesic trajectories. The ER model, on the other hand, posits
resonance of axisymmetric oscillation modes of accretion
discs. The frequencies of these oscillations are linked to the
orbital and epicyclic frequencies of circular geodesic motion.
Within the ER model, which includes axisymmetric oscilla-
tory modes at frequencies νθ and νr , uniform radiation is
assumed to emanate from the oscillating torus (or circle).
The presence of a sufficiently large irregularity on the orbit-
ing torus, which has a frequency of νφ , permits the estab-
lishment of the nodal frequency associated with this irregu-
larity. Table 1 contains the variations of the ER model, for
details, see [39]. In the standard RP model [43], the higher of
the paired frequencies corresponds to the orbital (azimuthal)
frequency, νU = νφ , while the lower frequency represents
the periastron precession rate, νL = νφ − νr. From the vari-

Table 1 The upper and lower frequencies of HF QPOs models [39]

Model νU νL

ER0 νθ νr

ER1 νθ νθ − νr

ER2 νθ − νr νr

ER3 νθ + νr νθ

ER4 νθ + νr νθ − νr

ER5 νr νθ − νr

RP0 νφ νφ − νr

RP1 νθ νφ − νr

RP2 νφ νθ − νr

TD νφ + νr νφ

WD 2νφ − νr 2(νφ − νr )

ants of the RP model, we select the RP1 model introduced
in [44], where νU = νθ and νL = νφ − νr, and the “total
precession model” RP2 introduced in [9], where νU = νφ

and νL = νθ − νr (see Table 1). Both the RP1 and RP2 mod-
els predict frequencies νU and νL close to those of the RP
model.
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Fig. 9 Radial profiles of lower νL(r) and upper νU(r) frequencies for
various HF QPOs models for first kind of slowly rotating EÆ BH. Solids
curves are plotted for the first kind of slowly rotating EÆ BH, while
dashed curves are for slowly rotating Kerr BH. Black vertical lines show

the positions of νU : νL = 3 : 2 resonance radii r3:2 for the first kind
of slowly rotating EÆ BH, while gray lines are for Kerr BH. BH spin
parameter a = 0.3 has been used in all cases

The TD model, which has νU = νφ +νr and νL = νφ , may
bear some resemblance to hot spot models. This is because
numerical simulations have shown that the BH tidal forces
that disrupt inhomogeneities (such as asteroids) can create a
ring-like structure that includes an orbiting radiating core. As
for the WD oscillation model of twin HF QPOs, it assumes
that there are non-axisymmetric oscillatory modes of a thin
disc. In order to account for the frequencies in Table 1 of the

WD model, we must make the assumption that there are also
vertical axisymmetric oscillations of the thin disc, which we
will call νθ . The radial profile of the frequencies νU and νL of
different HF QPOs models, i.e., ER (ER0, ER1, ER2, ER3,
ER4, ER5), RP (RP1, RP2, RP3), TD and WD models for
both first and second kind of slowly rotating EÆ BHs are
illustrated in Figs. 9 and 10, respectively. We compare the
frequencies in the background of HF QPOs models modified
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Fig. 10 Radial profiles of lower νL(r) and upper νU(r) frequencies for
various HF QPOs models for the second kind of slowly rotating EÆ
BH. Solids curves are plotted for the second kind of slowly rotating
EÆ BH, while dashed curves are for slowly rotating Kerr BH. Black

vertical lines show the positions of νU : νL = 3 : 2 resonance radii r3:2
for the second kind of slowly rotating EÆ BH, while gray lines are for
Kerr BH. BH spin parameter a = 0.3 has been used in all cases

by the particle motion around a slowly rotating EÆ BHs with
the motion around a slowly rotating Kerr BH and see that the
particle motion deviates from the Kerr limit.

5.1 Resonant radii

The quasi-harmonic character of the motion of test particles
trapped in a toroidal space around the equatorial plane of

BHs gives an interesting astrophysical application concern-
ing the HF QPOs observed in the LMXB systems containing
a neutron star or BH. The HF QPOs usually come in pairs of
the upper and lower frequencies of twin peaks in the Fourier
power spectra. The peaks of HFs are close to the axial fre-
quency of the stable circular orbit denoting the inner edge of
Keplerian discs orbiting BHs, thus the strong gravity effects
must be relevant in explaining HF QPOs [45].

123



  584 Page 12 of 15 Eur. Phys. J. C           (2023) 83:584 

The HF QPOs usually appear in a pair of two peaks with
upper νU and lower νL frequencies in the timing spectra,
and the ratio of frequencies νU : νL is close to the ratio
3:2. Observation of this effect in different non-linear systems
shows the existence of the resonances between two modes
of oscillations. In the case of slowly rotating EÆ BHs, the
upper and lower frequencies of a neutral test particle around
the first and second kinds of slowly rotating EÆ BHs are
functions of parameters c13, c14 resonance position r , and a
BH spin a, given by

νU = νU(r, M, a, c13, c14), νL = νL(r, M, a, c13, c14).

(36)

These frequencies νL and νU are inversely proportional to the
mass M of the BH and given by Eq. (35). In order to fit the
frequencies observed in HF QPOs with the BH parameters,
one needs to find the resonant radii, given by a relation

νU(r3:2) : νL(r3:2) = 3 : 2. (37)

In general, the resonant radii r3:2 are given by a numerical
solution of higher order polynomial in r , for given values
of the BH parameters. The resonant radius solution has no

dependence on the mass of the BH as Eq. (37) is independent
of the mass of the BH explicitly. The position of resonant radii
r3:2 for HF QPO models in the background of slowly rotating
first and second kinds of EÆ BHs have been shown in Figs. 9,
and 10, respectively. We compare the case of slowly rotating
Kerr BH with the slowly rotating EÆ BHs and see that for
all considered BH QPOs models, the position of resonant
radii r3:2 for slowly rotating EÆ BHs is at smaller radii as
compared to slowly rotating Kerr BH. The resonant radius
r3:2 for the ER4 HF QPOs model is closer to the BH among
all considered models.

5.2 Periastron and Lense–Thirring precession

In this section, we discuss the periastron and Lense–Thirring
precession frequency of a neutral test particle moving around
the slowly rotating EÆ BHs in the limit of a small pertur-
bation with respect to the equatorial plane π/2. In order to
calculate the Periastron precession, we assume that the par-
ticle is slightly perturbed from its stable position which in
turn results in oscillations about the stable position rs with a
radial frequency �r . The periastron �P frequency is defined
as a difference in orbital frequency �φ and radial frequency
�r , while the Lense–Thirring precession frequency �LT is

Fig. 11 Periastron and Lense–Thirring precessions for the first kind of slowly rotating EÆ BH
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defined as the difference in orbital frequency �φ and latitu-
dinal frequency �θ , given by the relation

�P = �φ − �r , (38)

�LT = �φ − �θ, (39)

where the orbital �φ , radial �r , and latitudinal frequencies
�θ are given by Eq. (34). In contrast to Newtonian gravity,
when general relativistic effects are taken into consideration
(close to BH), the radial and orbital frequencies are no longer
equal, i.e., �θ �= �φ . The graphical bahaviour of periastron
and Lense–Thirring precession frequencies for both first and
second kinds of EÆ BHs have been depicted in Figs. 11 and
12, respectively. Both periastron and Lense–Thirring preces-
sion frequencies increase as the coupling parameters c13 or
c14 increase. However, �P decreases while �P increases
when the BH rotates rapidly. The radial profiles of �P for
the case of slowly rotating Kerr BH lie above the first and
second kinds of slowly rotating EÆ BHs, while �LT lies
below the EÆ BHs.

6 Discussion and conclusions

We have explored the orbital and oscillatory motion of neutral
test particles moving around slowly rotating first and second
kinds of EÆ BHs and examined the influence of the BH

parameters. The positions of horizons have been investigated.
The radii of the BH horizon increase with the increase of the
coupling parameter c13, however, it decreases as the coupling
parameter c14 or electric charge of BH Q is increased.

Using the formalism of forces [31], we have found the ana-
lytical solutions of radial profiles of specific energy and spe-
cific angular momentum of equatorial stable circular orbits
in dependence on the BH parameters and compared them
with the case of slowly rotating Kerr BH. Initially, the spe-
cific energy and specific angular momentum of circular orbits
grow fastly as the coupling parameter c13 is increased, while
it decreases with the increase of charge parameter Q of BH,
and then becomes almost constant when the particles move
away from the BH. The circular orbits close to the BH have
less energy as well as angular momentum when the BH
rotates rapidly or the coupling parameter c14 is enhanced
but increases as the radial distance is increased. The circular
orbits with high energy and large angular momentum can be
seen around slowly rotating Kerr BH as compared to the first
and second kinds of slowly rotating EÆ BHs.

We have determined the positions of ISCOs for the co-
rotating and contra-rotating neutral test particles orbiting
slowly rotating first and second kinds of EÆ BHs. We
observed that the co-rotating ISCOs shift towards the BHs,
while the contra-rotating ISCOs move away from the BH
with the increase of the coupling parameter c14 or electric

Fig. 12 Periastron and Lense–Thirring precessions for the second kind of slowly rotating EÆ BH
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charge Q. However, the co-rotating ISCOs shift away from
the BH as the coupling parameter c13 is increased but move
towards the BH when the rotation of BH is increased. It is
noted that when the BHs rotate rapidly, smaller radii of ISCOs
can be observed. The ISCOs with smaller radii can be found
around the first and second kinds of slowly rotating EÆ BHs
as compared to slowly rotating Kerr BH.

We have studied the fundamental frequencies of small
harmonic oscillations of test particles in the radial and ver-
tical directions related to the equatorial circular orbits and
studied the radial profiles of the radial, vertical, and orbital
frequencies. The orbital and vertical frequencies coincide
when the rotation of BH is switched off, however, different
profiles can be observed when the BH rotation is switched
on. We found that the radial profiles move toward the BH
when the BH rotates rapidly or charge Q or parameter c14

is increased. However, coupling parameter c13 contributes to
moving the radial profiles away from the BH. The particles
moving around slowly rotating Kerr BH have high frequen-
cies as compared to moving around the first and second kinds
of slowly rotating EÆ BHs.

We have explored the radial profiles of upper νU (r) and
lower νL(r) frequencies for many different HF QPO models,
i.e., ER model and it’s variants (ER0, ER1, ER2, ER3, ER4,
ER5), RP model and it’s variant (RP1, RP2), TD and WD
models and determined the position of resonance radii r3:2.
It is worth mentioning that the positions of resonant radii
r3:2 for all considered HF QPO models for the case of slowly
rotating first and second kinds of EÆ BHs lie at smaller radii
as compared to the slowly rotating Kerr BH. Furthermore, the
resonant radius r3:2 for the ER4 HF QPOs model is closer
to the BH among all considered HF QPO models. In addi-
tion, we have also analysed the bahaviour of periastron and
Lense–Thirring precession frequencies for both the first and
second kinds of slowly rotating EÆ BHs. Both periastron
and Lense–Thirring precession frequencies can be seen high
with the increase of the coupling parameters c13. However,
these frequencies are small when BH rotation or coupling
parameter c14 is increased.
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