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Abstract We analyse neutral and charged matter distri-
butions in second order Lovelock gravity, also known as
Einstein–Gauss–Bonnet gravity, in arbitrary dimensions for
a static, spherically symmetric spacetime. We first transform
the charged condition of pressure isotropy, an Abel differ-
ential equation of the second kind, into canonical form. We
then determine a systematic approach to integrate the condi-
tion of pressure isotropy by showing that the canonical form
is a Chini differential equation. The Chini invariant, which
allows the master differential equation to be separable, is
identified. This enables us to find three new general solu-
tions, in implicit form, to the condition of pressure isotropy.
We also show that previously obtained exact specific solu-
tions arise as special cases in our general class of models.
The Chini invariant does not arise in general relativity; it is
a distinguishing feature of Einstein–Gauss–Bonnet gravity.

1 Introduction

General relativity (GR), introduced by Einstein in 1915, rev-
olutionised the way we think about gravity. It replaced New-
tonian gravity and has been validated on numerous occasions
via observations including the perihelion shift of the planet
Mercury, gravitational lensing and the detection of gravita-
tional waves. However, there are several physical phenomena
it cannot explain such as the late-time acceleration of the uni-
verse and dark matter [1]. To address the limitations of gen-
eral relativity, we use the Lovelock theory of gravity [2,3].
Lovelock theory is a natural extension of general relativity,
and contains a series of curvature corrections. The Love-
lock action is derived by considering the Lagrangian action
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to be in the form of a polynomial. It is important to note
that the Bianchi identities are still satisfied in the framework
of Lovelock gravity, ensuring consistency within the theory.
More information on Lovelock gravity can be found in the
papers by Padmanabhan and Kothawala [4] and Garraffo and
Giribet [5]. The geometrical properties of Einstein–Gauss–
Bonnet (EGB) gravity are contained in treatments by Ishihara
[6], Wiltshire [7], Deruelle and Dolezel [8] and Brassel [9].
In second order Lovelock gravity, or EGB gravity, we mod-
ify the Einstein–Hilbert action of GR to include terms that
are quadratic in the Riemann tensor, Ricci tensor and Ricci
scalar. This leads to new and modified field equations. Inter-
estingly, this modified action of EGB gravity appears in the
low energy limit of heterotic string theory [10]. Another note-
worthy feature of EGB gravity is that the resulting equations
of motion are second order quasilinear differential equations,
which implies a theory free of Ostrogradsky ghosts. Various
exact solutions to the EGB field equations have been found.
Some interesting solutions to the EGB field equations can
be found in treatments by Naicker et al. [11,12]; they extend
earlier solutions such as the model of Hansraj and Mkhize
[13] in six dimensions to N dimensions. Other classes of
exact solutions are contained in the works by Hansraj et al.
[14], Maharaj et al. [15], Chilambwe et al. [16], Das et al.
[17], Rej et al. [18], and Bhatti et al. [19], amongst others.
The papers mentioned above have been studied in spherically
symmetric distributions with pressure. Interestingly charged
dust models in EGB gravity exist as shown by Hansraj [20]
and Naicker et al. [21].

EGB gravity is being applied to a number of astrophysi-
cal applications. Motivated by string theory considerations,
Bogadi et al. [22] found compactified structures with a
colour-flavour-locked equation of state. Stars with quark and
strange equations of state have been considered by Rej et al.
[18], Maurya et al. [23], Malaver et al. [24], Hansraj et al.
[25] and Tangphati et al. [26,27]. The generalized case of
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polytropic matter distributions was considered by Kaisavelu
et al. [28]. The matter distributions and gravitational poten-
tials found in these works describe self-gravitating and com-
pact astronomical objects with the vacuum Boulware–Deser
exterior. Further, the EGB field equations for an extended
Vaidya-like source of matter were solved for the mass func-
tion and matter variables in [29]. Theoretical results obtained
are consistent with stellar objects such as the millisecond
pulsar PSR J1614-2230, and LMC X-4, a high-mass X-ray
binary (HMXB) [23]. The framework of minimal geomet-
ric decoupling has been used to study the strength of the
Gauss–Bonnet coupling constant in EGB gravity. The decou-
pling analysis shows consistency with observations related to
compact objects [23] and the gravitational wave events GW
170817 and GW 190814 [30], as shown in the treatments
by [31,32]. It is therefore important to understand the struc-
ture of the EGB field equations, generate exact solutions and
relate them to observational results.

In this paper, we generate the EGB field equations for a
static, spherically symmetric and charged spacetime, assum-
ing the matter distribution to be that of a perfect fluid. The
inclusion of charge introduces more complexity through the
electromagnetic field which is described by Maxwell’s equa-
tions. The resulting field equations are a system of four,
highly nonlinear differential equations. In order to simplify
the Einstein–Gauss–Bonnet–Maxwell (EGBM) field equa-
tions, we impose a restriction in the form of the isotropic pres-
sure condition. If we assume tangential pressure to be equal to
radial pressure, then the EGBM field equations reduce to an
Abel differential equation of the second kind, one of the most
difficult types of differential equations to solve. There are no
known general solutions to this type of differential equation.
Naicker et al. [11,12] showed that the condition of pressure
isotropy can be transformed into canonical form. We relate
the canonical form of the condition of pressure isotropy to the
Chini differential equation [33]. The Chini differential equa-
tion is a first order, nonlinear differential equation that cannot
be integrated in general. It can be transformed into a sepa-
rable differential equation, provided a certain integrability
condition is met. The resulting separable differential equa-
tion can then, in principle, be integrated to give a solution
to the Chini differential equation. We believe that our study
is the first treatment utilising the Chini differential equation
in any gravitational theory. Certain known solutions in EGB
gravity arise as special cases in our general treatment.

2 Second order Lovelock gravity

Second order Lovelock gravity, also known as EGB gravity,
is a generalization of general relativity. The action of EGB
gravity modifies the Einstein–Hilbert action of general rela-
tivity to include terms which are quadratic in the Ricci scalar,

Ricci tensor and Riemann tensor. The EGB field equations
are derived by varying the action, leading to the form

Gab − α

2
Hab + �gab = κNTab. (1)

In Eq. (1), G is the Einstein tensor, α is the Gauss–Bonnet
coupling constant, � is the cosmological constant, and H is
the Lovelock tensor. This has the explicit form

Hab = gabLGB − 4RRab + 8RacR
c
b

+8Rcd Racbd − 4Ra
cdeRbcde, (2)

where LGB is the Gauss–Bonnet term given by

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd . (3)

The gravitational coupling constant, κN , is given in terms of
the spacetime dimension N by

κN = 2 (N − 2) π
N−1

2

(N − 3)˜�
( N−1

2

) . (4)

where the function ˜�(z) is the gamma function defined by

˜�(z) =
∫ ∞

0
t z−1e−t dt, (5)

which is related to the generalized factorial function with
non-integer inputs.

The total energy momentum tensor T is of the form

Tab = Tab + Eab. (6)

In the above, Tab is the energy momentum tensor for a perfect
fluid

Tab = (ρ + p)uaub + pgab, (7)

where ρ is the energy density, p is the isotropic pressure, u
is the fluid N -velocity and g is the metric tensor. The electro-
magnetic tensor E is a function of the metric tensor, Faraday
tensor F and the surface area of the unit (N − 2)-sphere
AN−2. It takes the form

Eab = 1

AN−2

(

FacFb
c − 1

4
gabFcd F

cd
)

. (8)

The electromagnetic tensor is trace-free only in four dimen-
sions [34]. The surface area of the unit (N − 2)-sphere has
the form

AN−2 = 2π
N−1

2

˜�
( N−1

2

) , (9)
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and the Faraday tensor F can be written as

Fab = Ab;a − Aa;b. (10)

The N -vector A is the electromagnetic potential which, for a
static spherically symmetric spacetime, can be chosen to be
of the form

Aa = (�(r), 0, 0, . . . , 0) , (11)

where �(r) is a scalar potential. Maxwell’s equations can be
written as

Fab;c + Fbc;a + Fca;b = 0, (12a)

Fab;b = AN−2 J
a, (12b)

where

Ja = σua, (13)

is the current vector and σ is the proper charge density.
The EGB field equations (1), along with Maxwell’s equa-

tions (12) describe the evolution of a charged gravitational
fluid in EGB gravity. The line element for a static, spherically
symmetric spacetime in N dimensions is

ds2 = −e2νdt2 + e2λdr2 + r2d�2
N−2, (14)

where

d�2
N−2 =

N−2
∑

i=1

⎡

⎣

⎛

⎝

i−1
∏

j=1

sin2(θ j )

⎞

⎠ (dθi )
2

⎤

⎦ ,

is the metric of the unit (N − 2)-sphere. We have a radial
dependence for the static potentials ν = ν(r) and λ = λ(r).
We obtain the following system of nonlinear differential
equations in static spherical geometry

κN

(

ρ + E2

2AN−2

)

= N − 2

r4e4λ

[

r3e2λλ′ + (N − 3)r2e4λ

2

− (N − 3)r2e2λ

2
+ α̂

(

e2λ − 1
)

×
(

2rλ′ + (N − 5)
(

e2λ − 1
)

2

)

]

− �,

(15a)

κN

(

p − E2

2AN−2

)

= N − 2

r4e4λ

[

r3e2λν′ + (N − 3)r2e2λ

2

− (N − 3)r2e4λ

2
+ α̂

(

e2λ − 1
)

×
(

2rν′ − (N − 5)
(

e2λ − 1
)

2

)]

+ �,

(15b)

κN

(

p + E2

2AN−2

)

= 1

r2e2λ

[

(N − 3)(N − 4)

2

+ r2ν′′ + r2(ν′)2 − r2ν′λ′

+ (N − 3)r(ν′ − λ′)
]

+ α̂

[

2

r2e2λ

(

ν′′ + (ν′)2 − ν′λ′
)

+ 2

r2e4λ

[

3ν′λ′ − ν′′ − (ν′)2
]

+ 2(N − 5)

r3e4λ

(

e2λ − 1
)

(

ν′ − λ′)

− (N − 5)(N − 6)(e2λ − 1)2

2r4e4λ

]

− (N − 3)(N − 4)

2r2 + �, (15c)

σ = e−λ
(

r N−2E
)′

r N−2AN−2
, (15d)

describing the gravitational dynamics of a charged static fluid
in EGB gravity. In the above, we have set

α̂ = α(N − 3)(N − 4). (16)

Simplification of the field equations arises if we utilise the
coordinate transformation of Durgapal and Bannerji [35],

e2ν(r) = y2(x), e−2λ(r) = Z(x), x = r2,

to obtain the following system

κN

(

ρ + E2

2AN−2

)

= (N − 2)

[

(N − 3)(1 − Z) − 2x Ż

2x

+ α̂(1 − Z)

2x2

(−4x Ż

+(N − 5)(1 − Z))

]

− �, (17a)

κN

(

p − E2

2AN−2

)

= (N − 2)

[

2Z ẏ

y
+ (N − 3)(Z − 1)

2x

+ α̂(1 − Z)

(

4Z ẏ

xy

− (N − 5)(1 − Z)

2x2

)]

+ �, (17b)

κN

(

p + E2

2AN−2

)

= 2

y

[

2x Z ÿ + x Ż ẏ + (N − 2)ẏ Z
]

+ (N − 3)

[

Ż + (N − 4)(Z − 1)

2x

]

+ α̂

[

4(N − 4)Z(1 − Z)ẏ

xy

+ 8Z(1 − Z)ÿ

y
+ 4Ż ẏ(1 − 3Z)

y
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+ 2(N − 5)Ż(1 − Z)

x

− (N − 5)(N − 6)(1 − Z)2

2x2

]

+ �,

(17c)

σ 2 =
Z
[

2x
N−1

2 Ė + (N − 2)x
N−3

2 E
]2

(AN−2)2x (N−2)
.

(17d)

By equating (17b) and (17c), we obtain the charged condition
of isotropic pressure

[

2x3 ẏ + 4α̂x2 ẏ − 12α̂x2 ẏ Z

+(N − 3)x2y + 2α̂(N − 5)xy

−2α̂(N − 5)xyZ

]

Ż

+2α̂

[

4x ẏ − 4x2 ÿ + (N − 5)y

]

Z2

+
[

4x3 ÿ + 8α̂x2 ÿ − 8α̂x ẏ

−(N − 3)xy − 4α̂(N − 5)y

]

Z

+
[

(N − 3)x + 2α̂(N − 5)

−
(

N − 2

N − 3

)

x2E2
]

y = 0. (18)

When α = 0, we regain N -dimensional general relativity. To
solve the field equations (17), we need to integrate (18).

Equation (18) is an Abel differential equation of the sec-
ond kind in the variable Z if y is specified. Particular solu-
tions to (18) have been found in recent treatments by Hansraj
and Mkhize [13] and Naicker et al. [11,12] by specifying a
form for y. However, a systematic approach leads to a sim-
pler form of (18). Naicker et al. [11] showed that with the
transformation

w = (Z − D(x))W, (19)

where

D(x) = [2α̂(N − 5) + x(N − 3)]y + 2x(x + 2α̂)ẏ

x[6x ẏ + (N − 5)y] . (20)

and

W = exp

(

−
∫

(

4x ẏ − 4x2 ÿ + (N − 5) y
)

x
[

6x ẏ + (N − 5) y
] dx

)

, (21)

the condition of pressure isotropy (18) can be written in
canonical form as

ẇ = F0w
−1 + F1, (22)

where F1 and F0 are given by

F1 = x
[

y − 2
(

x + 2α̂
)

ẏ
]

[(N − 3) ẏ − 2x ÿ] W

α̂ [6x ẏ + (N − 5) y]2 , (23a)

F0 = −2x2 (y − 2
(

x + 2α̂
)

ẏ
)

[

y ((N − 3)ẏ (23b)

+2
(

x(N − 3) + 2α̂ (N − 5)
)

ÿ
)

+ 2 ẏ
[(

x − 4α̂
)

ẏ + 2x
(

x + 2α̂
)

ÿ
]

]

(23c)

× W 2

2α̂2 [6x ẏ + (N − 5) y]3

− (N − 2)yxE2W 2

2α̂(N − 3) [6x ẏ + (N − 5) y]
. (23d)

Note that although the functions F0 and F1 have specific
forms, in the following analysis we will treat F0 and F1 as
arbitrary functions of x . The reduced equation (22), in terms
of w is clearly simpler than (18), in terms of Z .

3 The Chini invariant

Particular solutions to (22) were found by Naicker et al.
[11,12] by placing restrictions on F1 and F0. However new
classes of exact solutions are possible if we relate (22) to
the Chini differential equation. The Chini differential equa-
tion was first studied by Chini [33]. Since then, a number of
studies have focused on this equation, investigating its math-
ematical properties. The global existence of solutions to the
Chini differential equation and its generalizations have been
studied by Redheffer [36]. It has also been studied recently by
Chamberland and Gasull [37]. They considered the number
of limit cycles of a T -periodic Chini differential equation.
In a more recent analysis by Pinto [38], the Chini method
was used to analyse related Riccati differential equations.
More information about the Chini differential equation can
be found in the book by Kamke [39]. As far as we are aware,
the Chini differential equation has not been studied in a real-
istic physical application in gravity. Here we will show that
it arises in the evolution of a gravitational fluid in modified
theories of gravity. As far as we are aware, this is the first
application of the Chini differential equation in a gravita-
tional theory. This highlights the importance of the Chini
differential equation in gravitational dynamics.

The Chini differential equation in canonical form is pre-
sented in Appendix A. It is a first order nonlinear differential
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equation. On inspection of the condition of pressure isotropy
(22), we observe that it is a Chini differential equation (A1)
with n = −1, f (x) = F0, g(x) = 0, and h(x) = F1. The
quantity

β0 = h3 [ ḟ h − f ḣ
]−1

,

must be constant. (In the context of differential equations the
quantity β0 is called an invariant: it leads to separability of the
differential equation.) Hence the Chini invariant is therefore
given by

β0 = F1

[

d

dx

(

F0

F1

)]−1

, (24)

in terms of the variables used in this paper. It is critical to
realise that only if β0 is constant, can the Chini differential
equation be transformed into a separable and hence integrable
differential equation. We may interpret (24) as an integrabil-
ity condition for the existence of solutions. Note that our
result holds for both E = 0 and E �= 0.

We summarize our result as follows:

Theorem 1 The gravitational dynamics in EGB gravity, for
a neutral fluid, and in EGBM gravity, for a charged fluid, are
connected to the Chini differential equation with the Chini
invariant β0.

Corollary 1 The condition of pressure isotropy in EGB
gravity is a separable differential equation if theChini invari-
ant β0 is constant.

Corollary 2 The Chini invariant does not arise in general
relativity.

This is the first demonstration of the Chini differential equa-
tion in a gravitational theory. Hence from the above we
observe that the Chini differential equation distinguishes
EGB gravity from standard general relativity.

Some general comments for the Chini equation in rela-
tion to general relativity and EGB gravity are relevant at this
point. In the case of general relativity, α̂ = 0 and the charged
pressure isotropy condition (18) becomes
[

2x2 ẏ + (N − 3)xy

]

Ż

+
[

4x2 ÿ − (N − 3)y

]

Z

+
[

(N − 3)y −
(

N − 2

N − 3

)

xyE2
]

= 0. (25)

Note that the charged condition of pressure isotropy (25) is
linear in y (if Z is specified) and linear in Z (if y is specified).
In EGB gravity the charged condition of pressure isotropy
(18) holds with α̂ �= 0. This is a nonlinear differential equa-
tion in Z (if y is specified). In fact the resulting equation is

an Abel differential equation of the second kind. We have
shown that the Abel equation (18) can be transformed into
the Chini differential equation

F0

F2
1

�̇� = � + 1 − 1

β0
�2, (26)

where β0 is the Chini invariant given by (24) and

w = F0

F1
�. (27)

The solutions of (26) in EGB gravity will be necessarily dif-
ferent in general, and the gravitational potential Z will differ
from the forms obtained in general relativity for a chosen
form of the potential y. As an example, if y = √

x in EGB
gravity, then the potential Z is given implicitly in general as
shown by Naicker et al. [12] for a charged gravitating fluid.
The Chini differential equation does not arise in general rel-
ativity as the underlying condition of pressure isotropy equa-
tion in linear in Z . The nonlinearity of the potential Z in EGB
gravity leads to the Chini invariant, and this distinguishes the
EGB theory from general relativity.

The transformation which makes (22) separable is (27).
Applying this transformation leads to (26) which is a separa-
ble differential equation in �(x). Equivalently, we can write
(26) as

∫ −β0�

�2 − β0� − β0
d� =

∫

F1
2

F0
dx . (28)

This equation can be integrated for different values of β0.
Three classes of solutions are possible. We present the

families of solutions below.

3.1 Case A: β0 ∈ (−∞,−4) ∪ (0,∞)

Integrating Eq. (28) for these values of β0, we obtain the
general solution for � as
∫

F1
2

F0
dx + C = −β0

2
ln |�2 − β0� − β0|

− β2
0

2
√

β2
0 + 4β0

× ln

∣

∣

∣

∣

∣

∣

2� − β0 −
√

β2
0 + 4β0

2� − β0 +
√

β2
0 + 4β0

∣

∣

∣

∣

∣

∣

, (29)

where C is a constant of integration. Then using (27) and
(19), we can write the solution in terms of the gravitational
potential Z as
∫

F1
2

F0
dx + C

123
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= −β0

2
ln

∣

∣

∣

∣

∣

[

F1

F0
(Z − D(x))W

]2

− β0
F1

F0
(Z − D(x))W − β0

∣

∣

∣

∣

− β2
0

2
√

β2
0 + 4β0

ln

∣

∣

∣

∣

2
F1

F0
(Z − D(x))W

−β0 −
√

β2
0 + 4β0

[

2
F1

F0
(Z − D(x))W

−β0 +
√

β2
0 + 4β0

]−1∣
∣

∣

∣

, (30)

where D(x) is given by (20). In general, this is an implicit
solution for the potential Z , and W is specified by (21).

3.2 Case B: β0 ∈ (−4, 0)

For this range of values for β0, integrating Eq. (28) gives us
the following solution

∫

F1
2

F0
dx + C = −β0

2
ln
∣

∣

∣�
2 − β0� − β0

∣

∣

∣

− β2
0

√

|β2
0 + 4β0|

× arctan

⎛

⎝

2� − β0
√

|β2
0 + 4β0|

⎞

⎠ . (31)

With the help of (27) and (19), we obtain

∫

F1
2

F0
dx + C

= −β0

2
ln

∣

∣

∣

∣

∣

[

F1

F0
(Z − D(x))W

]2

− β0

[

F1

F0
(Z − D(x))W − 1

]∣

∣

∣

∣

− β2
0

2
√

|β2
0 + 4β0|

arctan

((

2
F1

F0
(Z − D(x))W

−β0

)

1
√

|β2
0 + 4β0|

)

, (32)

where we have that D(x) is given by (20). Again, in general,
this is an implicit solution involving the potential Z , and W
is given by (21).

3.3 Case C: β0 = −4

Integrating Eq. (28), we now aquire the general solution

∫

F1
2

F0
dx + C = 4 ln (� + 2) + 8

� + 2
. (33)

Similarly, using (27) and (19) we can write
∫

F1
2

F0
dx + C

= 4 ln

(

F1

F0
(Z − D(x))W + 2

)

+8

[

F1

F0
(Z − D(x))W + 2

]−1

, (34)

where D(x) is given by (20). This gives a solution in implicit
form for the potential Z , and W is defined in (21).

The three classes of solutions that arise depend on the
value of β0. It is important to observe that the above three
general solutions have been found without specifying y and E
and they are valid for both charged and neutral fluids in EGB
gravity. In general the function �(x) is given implicitly. Note
that the condition (A5) must be satisfied for these classes of
solutions to exist. The three families of exact solutions that
we have found, utilizing the Chini equation, are new solutions
of the condition of pressure isotropy in EGB gravity.

We can summarize the results as follows:

Theorem 2 The Chini differential equation in EGB gravity
can be integrated so that three classes of exact solutions are
possible in implicit form for the invariant β0. The potential
Z is given by (30), (32) and (34).

It is important to note that our results, and the above three
classes of exact solutions given by (29), (31) and (33), hold
for any Abel differential equation of the second kind. These
results will also provide exact solutions to Abel differential
equations of the first kind as both types of equations are
related. The Chini form of the condition of pressure isotropy
leads to exact solutions which are given in implicit form.
Explicit forms for the gravitational potentials also arise in
particular cases. We demonstrate this property in the next two
sections for neutral matter and charged matter respectively.

4 Charged fluids

In general, the integrability condition (24) is a differential
equation with the dependent variable y(x). In the presence
of charge, we obtain

E2 =
[

− 2x2 (y − 2
(

x + 2α̂
)

ẏ
)

[

y ((N − 3)ẏ

+2
(

x(N − 3) + 2α̂ (N − 5)
)

ÿ
)

123



Eur. Phys. J. C          (2024) 84:1330 Page 7 of 14  1330 

+2 ẏ
[(

x − 4α̂
)

ẏ + 2x
(

x + 2α̂
)

ÿ
]

]

× W 2

2α̂2 [6x ẏ + (N − 5) y]3 − 1

β0
F1

∫

F1 dx

]

×2α̂(N − 3) [6x ẏ + (N − 5) y]

(N − 2)yW 2 , (35)

where W is given by (21) and β0 �= 0 is a constant. Effec-
tively, (35) becomes a definition for the charge E2, which will
be determined once y is specified. Hence the solution will be
given by one of the three general cases given above depend-
ing on what is chosen for the value of the Chini invariant
β0. In order to find an exact solution to the charged condi-
tion of isotropic pressure, an Abel differential equation of
the second kind, we need to evaluate three integrals. Firstly
to determine W , we must integrate

∫

(

4x ẏ − 4x2 ÿ + (N − 5) y
)

x
[

6x ẏ + (N − 5) y
] dx,

and then to determine the form for the electromagnetic field
intensity E2 we must evaluate the integral given by

∫

x
[

y − 2
(

x + 2α̂
)

ẏ
]

[(N − 3) ẏ − 2x ÿ] W

α̂
[

6x ẏ + (N − 5) y
]2 dx .

Lastly to generate the solution we need to integrate
∫

F1
2

F0
dx .

Clearly integration is possible only in limited cases depend-
ing on the choice of the potential y.

We present two cases in which the integrations are possible
and exact solutions can be found.

4.1 Specific potential: y = x−4

We demonstrate the above algorithm by determining a new
solution to the isotropic pressure condition for the specific
potential

y = x−4. (36)

For the electromagnetic field intensity, we substitute

β0 = − 4, (37)

into (34) and set the integration constant C = 0. This leads
to

E2 = (N − 3)

x α̂(N − 2)(N − 101)

[

9x2(N − 101)

+16x α̂(N − 263) − 4608α̂2
]

. (38)

Therefore we need to integrate

wẇ = F1w + F0,

with

F1 = −4(N + 7)x− 2(N−65)
N−29 (9x + 16α̂)

α̂(N − 29)2 , (39)

and

F0 = (N + 7)2x− 3(N−77)
N−29

2α̂2(N − 101)(N − 29)3

[

−9x2(N − 101)

−16x α̂(N − 173) + 2048α̂2
]

. (40)

With these choices, we see that the solution falls in Case C
of the general solutions. Substituting into (34), we obtain the
exact solution
[

4(N − 101)F(x)

G(x)
+ 2

]4

× exp

(

8G(x)

4(N − 101)F(x) + 2G(x

)

= C1x
4(N−101)
N−29

[

x(N − 101) − 128α̂
]4 . (41)

where

F(x) = [

(N − 11)x + 2α̂[(N − 13) − (N − 29)Z ]] ,
and

G(x) = (N + 7)
[

128α̂ − (N − 101)x
]

.

This is a new implicit solution of the charged condition of
pressure isotropy.

4.2 Specific potential: y = √
x

We can show that known solutions are also contained in the
Chini class. A specific solution to the charged condition of
isotropic pressure was found by Naicker et al. [12] for the
gravitational potential

y = √
x, (42)

and the electromagnetic field intensity

E2 = 2A(N − 3)2(N − 4)

x2(N − 2)2 . (43)

The solution has the form

4C1 (2 + �) x2 =
[

2 (2 + �)� − K1(x)

]1+ 1√
9+4�

×
[

2 (2 + �)� − K2(x)

]1+ 1√
9+4�

, (44)
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where

K1(x) = 1 +
√

9 + 4A(N − 3)(N − 4)

α̂
,

and

K2(x) = 1 −
√

9 + 4A(N − 3)(N − 4)

α̂
,

with � = A(N−3)(N−4)
α̂

. In terms of the potential Z , the
solution was found to be of the form
[

2(N − 2) (Z − �(x)) − K1(x)

]1+ 1√
9+4�

×
[

2(N − 2) (Z − �(x)) − K2(x)

]1+ 1√
9+4�

= 4C1 (2 + �) x2, (45)

where

�(x) = (N − 2)x + 2α̂(N − 4)

2α̂(N − 2)
.

This solution is contained in the Chini general solutions. If
we substitute

β0 = α̂

2α̂ + A(N − 3)(N − 4)
, (46)

and set the integration constant C = 0 in (34), we regain
the electromagnetic field intensity (43) chosen by Naicker et
al. [12]. We notice that 0 < β0 < 1, therefore the solution
falls underCaseAof the Chini general class. Substituting into
(29), we obtain the potential given by Eq. (44). This particular
solution was obtained by Naicker et al. [12] using an ad hoc
approach. We have shown that it is part of a wider class
of solutions associated with the Chini invariants of Class A
given above.

5 Neutral fluids

In the case of neutral fluids, the integrability condition (24)
has to be solved with E2 = 0. This becomes a nonlinear
differential equation in the dependent variable y. Therefore
neutral fluids are more difficult to analyse using the Chini
invariant. We present two cases as examples where integra-
tion is possible for specific choices of the potential y.

5.1 Specific potential: y = ax + b

An exact solution to the linear case of the uncharged condi-
tion of pressure isotropy was found by Chilambwe et al. [16]
in five dimensions. This particular solution is given in terms
of rational functions for the potential Z . We seek to find a

solution for Z in an arbitrary number of dimensions N using
the Chini differential equation. If we choose the form

y = ax + b, (47)

for the gravitational potential y, we find that (22) becomes

wẇ = a [b(N − 5) + ax(N + 1)]−
2N
N+1

[

b − a(x + 4α̂)
]

α̂(N − 4)
w

+ a

α̂2 [b(N − 5) + ax(N + 1)]
4−3(N−1)

N+1

× [−b + a(x + 4α̂)
]

[b(N − 3)

−a(x(N − 1) + 8α̂)
]

. (48)

Computing the Chini invariant for (48), we obtain the fol-
lowing

β0 = (N − 3)2

2(N − 1)
, (49)

which is clearly independent of x . Furthermore we observe
that β0 is always positive for N ≥ 4 which implies that
the solution of (48) falls under Case A in the Chini class of
the above three general solutions. Substituting into (29), we
obtain the following solution for (48) containing �:

C1 [b(N − 5) + ax(N + 1)]−
(N−3)2

2(N+1)

× [

b(N − 3) + ax(N − 1) − 8aα̂
]

(N−3)2

2(N−1)

=
(

�2 − β0� − β0

)− β0
2

×
⎛

⎝

2� − β0 −
√

β2
0 + 4β0

2� − β0 +
√

β2
0 + 4β0

⎞

⎠

− β2
0

2
√

β2
0 +4β0

, (50)

where C1 is a constant of integration.
We can then use transformations (27) and (19) to obtain a

solution with the gravitational potential Z :

C1

(

[b(N − 5) + ax(N + 1)]−
(N−3)2

2(N+1)

)

×
(

[

b(N − 3) + ax(N − 1) − 8aα̂
]

(N−3)2

2(N−1)

)

=
[

(

C(x) (B(x)−Z)

)2

+β0C(x) (Z−B(x)) −β0

]− β0
2

×
⎡

⎣

−2C(x)
(

Z − B(x)
)

−2C(x)
(

Z − B(x)
)− β0 +

√

β2
0 + 4β0
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+
β0 +

√

β2
0 + 4β0

2C(x)
(

Z − B(x)
)+β0 −

√

β2
0 + 4β0

⎤

⎦

−β2
0

2
√

β2
0 +4β0

,

(51)

where we have the following:

C(x) = α̂(N − 3) [b(N − 5) + ax(N + 1)]

x
[

b(N − 3) + a
(

x(N − 1) − 8α̂
)] ,

B(x) = H(x) + B(x)

2α̂ [ax(N + 1) + b(N − 5)]
,

H(x) = ax
[

x(N − 1) + 2α̂(N − 3)
]

,

B(x) = b
[

(N − 3)x + 2α̂(N − 5)
]

.

This is a new solution to the condition of isotropic pressure in
N dimensions. This extends the particular Chilambwe et al.
[16] model to N dimensions. In general, our class of solutions
has an implicit form for the potential Z . The Chilambwe et al.
[16] solution was found by inspection; here we have shown
that it is a part of a general class of solutions associated with
the Chini invariant in Case A.

5.2 Specific potential: y = √
x

The choice

y = √
x, (52)

for the gravitational potential was considered by Naicker et
al. [11]. It simplifies the condition of pressure isotropy to the
form

wẇ = − 1

(N − 2) x2 w − 2

(N − 2)2 x3
.

Substituting F0 and F1 in (24), we obtain

β0 = 1

2
. (53)

Clearly β0 is a constant, and the solution must fall underCase
A of the general cases. Substituting β0, F0 and F1 into (29),
we aquire

ln

∣

∣

∣

∣

∣

√

�2 − 1

2
� − 1

2

(

2(� − 1)

2� + 1

) 1
6

∣

∣

∣

∣

∣

=
∫

1

x
dx + C. (54)

Integrating and using properties of the logarithm the expres-
sion (54) can be written as

(2� + 1)2(� − 1)4 = C1x
6. (55)

The solution in terms of the potential Z is obtained using the
transformations (27) and (19), and is of the form

Z = 1

N − 2

[

(

−1 ± 2
√

C1x
3 + N (x)

)− 1
3

+
(

−1 ± 2
√

C1x
3 + N (x)

) 1
3 + 1

]

+ (N − 2) x + 2α (N − 3) (N − 4)2

2α (N − 2) (N − 3) (N − 4)
, (56)

where

N (x) =
√

±4
√

C1x3 + 4C1x6.

This result is equivalent to the solution found by Naicker et
al. [11]; the Chini approach also leads to the same class of
models. It is important to remember that the Chini Class A
solution is a general class of exact solutions, and this case
corresponding to y = √

x is only a special case.
There exists cases in which the potential y has a sim-

ple form for neutral and charged relativistic fluids. These
produce expressions for the potential Z in implicit form in
general. We have identified certain cases in which y leads
to constant Chini invariants and consequently, a resulting
separable differential equation for the charged condition of
pressure isotropy. In Table 1, we list the potentials y, the
Chini invariant β0 and indicate special cases found earlier.

6 Physical features

We consider two physical aspects related to the exact solu-
tions generated in this paper: graphical plots and junction
conditions. In this paper, we have determined solutions for
the interior of a static, spherically symmetric spacetime in the
presence of charge. We note that the solution (45) is implicit
in nature and so attempting to analyse its physical behaviour
is nontrivial. However, it is possible to visually represent
the charge arising from expression (43), as can be seen in
Fig. 1, where we have chosen the parameter A = 1. The
electric charge decreases away from the centre as a general
trend. However, the electric charge increases with increasing
dimension N and is positive and well behaved throughout
the distribution.

Since the neutral solution (56), arising from the choice
y = √

x , is explicit, we are able to study its physical features.
In the following figures, we have chosen α = 2, � = 1

andC1 = 2. In Figs. 1 and 2, we present the overall behaviour
of the energy density and pressure for the neutral solution.
It can be seen that the behaviour of the curves is smooth
and well defined, in both cases. We also note that both the
energy density and pressure are greater as the dimension N
increases. However, the overall trend in the case of the pres-
sure is that it decreases, for all dimensions, further away from
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Table 1 Summary of Chini invariants and associated potentials

Case Chini invariant β0 Chini class Potential y Fluid Comment

I − 4 C x−4 Charged New solution

II α
2α+A A

√
x Charged Special case found by Naicker et al. [12]

and Hansraj and Mkhize [13]

III (N−3)2

2(N−1)
A ax + b Neutral New solution, special case found

by Chilambwe et al. [16]

IV 1
2 A

√
x Neutral Special case found by Naicker et al. [11]

and Hansraj and Mkhize [13]

Fig. 1 The electromagnetic field E plotted against x

Fig. 2 The energy density ρ plotted against x

the centre of the distribution. Note that this general behaviour
of the pressure in higher dimensions is similar to the profiles
obtained by Paul [40] for dense neutron stars (Fig. 3).

We now further consider the junction conditions for the
matching of the interior charged distribution of matter to an
external vacuum spacetime. In order to match these solu-
tions to an exterior metric, certain junction conditions at the
boundary must be satisfied. In general relativity, the Israel–

Fig. 3 The pressure p plotted against x

Darmois junction conditions

(ds2−)� = (ds2+)� = ds2
�, (57a)

K−
ab = K+

ab = Kab|�, (57b)

must be satisfied in order to match two spacetime mani-
folds M± across a comoving boundary surface �. In the
above, ds2 is the line element andK is the extrinsic curvature.
The junction conditions of EGB gravity were determined by
Davis [41] to be of the form

(ds2−)� = (ds2+)� = ds2
�, (58a)

[Kab − Khab]± + 2α[3Jab − Jhab + 2 P̂abcd K
bc]± = 0,

(58b)

where P is the divergence-free part of the Riemann tensor,
given by

P̂abcd = R̂abcd + 2R̂b[chd]a − 2R̂a[chd]b + R̂ha[chd]b. (59)
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The caret “ˆ” symbol indicates the tensors associated with
the induced metric h. The quantity J is the tensor given by

Jab = 1

3

(

2KKabK
c
b + Kcd K

cd Kab − 2KacK
cd Kdb

− K 2Kab
)

,

(60)

with J as its trace. In an important advance in matching in
EGB gravity, Brassel et al. [42] showed that if the Israel-
Darmois conditions hold, then the EGB junction conditions
(58) are satisfied. This result makes it possible to model a
relativistic star in EGB gravity.

We will match the interior solution (41) found in this paper
to the exterior Boulware–Deser–Wiltshire vacuum solution,
given by

ds2 = −F(r)dt2 + 1

F(r)
dr2 + r2d�2

N−2, (61)

where

F(r) = 1 + r2

2α̂

[

1 −
(

1 + 4α̂

(N − 3)

(

2M

rN−1

− Q2

(N − 3)r2N−4

)) 1
2
]

.

(62)

In the above, the quantities Q and M represent the charge
and gravitational mass of the hypersphere respectively.

The junction conditions require that the line elements of
the interior and exterior must be equal at the boundary. The
interior potentials at the boundary r = R are given by

ξ1 = y(R2), (63a)

ξ2 = Z(R2). (63b)

The matching of the potentials at r = R gives the conditions

ξ2
1 = 1 + R2

2α̂

[

1 −
(

1 + 4α̂

(N − 3)

(

2M

RN−1

− Q2

(N − 3)R2N−4

)) 1
2
]

, (64a)

ξ2 = 1

4R2 ξ2
1 . (64b)

The gravitational mass M can be written as

M = ME + MGB, (65)

where ME is the mass contribution of general relativity, given
by

ME = N − 3

2

[

RN−3(1 − ξ2) − �r N−1

(N − 1)(N − 2)

+ Q2

(N − 3)2RN−3

]

,

(66)

and MGB is the mass contribution of EGB, given by

MGB = 1

2

[

α̂(N − 3)RN−5(1 − ξ2)
2
]

. (67)

The gravitational mass M is affected by dimension N . We
also require that the radial pressure vanishes at the boundary.
From (17), we have

(N − 2)

[

2ξ2ξ3

ξ1
+ (N − 3)(ξ2 − 1)

2R2

+α̂(1 − ξ2)

(

4ξ2ξ3

R2ξ1
− (N − 5)(1 − ξ2)

2R4

)]

+ N − 2

2(N − 3)
η2

1 + � = 0, (68)

where ξ ′
1(R) = ξ3 and η1 = E(R2). The charge density at

the boundary is given by

σ =
√

ξ2
[

RN−2η2 + (N − 2)RN−3η1
]

AN−2RN−2 , (69)

where η2 = η′
1(R). The total charge inside of the hyper-

sphere of radius R as measured by a distant observer is given
by

Q =
∫ R

0
[r2E ′(r2) + (N − 2)r E(r2)]dr, (70)

which, in principle, can be determined when the electric field
E is specified. Equation (70), along with the system (64) and
(68) give restrictions that must be satisfied for the matching of
the two solutions at r = R. This is an algebraic system of six
unknowns (ξ1, ξ2, ξ3, η1, η2,R) in four equations. Therefore
a real solution to the system can be determined when two of
the unknown parameters are specified. Therefore the model
is closed and complete once particular forms for the potential
y, the potential Z , and the electric field E are specified. The
potential Z may arise implicitly, with a complicated analytic
form, as in the treatment of Naicker et al. [12]. In that case we
may have to obtain the determining parameters using numer-
ical techniques; it is important to note that this is always
possible in principle.
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7 Pure EGB reduction

We comment on the possible extension to the interesting class
of theories called pure EGB gravity. The pure Lovelock the-
ory of gravity is a subclass of the full theory where there
is essentially only one Euler density term within the gravi-
tational action, that is, the highest order term of the theory.
In general relativity (or first order Lovelock gravity), this
amounts to the omission of the cosmological constant, leav-
ing only the standard field equations. Significant work has
been done in the higher order pure Lovelock gravity theory,
for example see [43–46]. With regards to the pure EGB the-
ory, the only surviving term in the action is the Gauss–Bonnet
term, i.e.

S =
∫

dN x
√−g (αLGB) + Smatter, (71)

where α is the Gauss–Bonnet coupling constant. The cosmo-
logical constant term and first order term (the Ricci scalar)
fall away leaving only second order term in the above action.
There is therefore no Einstein limit. Thus, upon variation of
the reduced action (71) with respect to the metric, the pure
EGB field equations can be given by

−α

2
Hab = κN Tab, (72)

where the second order Lovelock tensor is defined as before
by (2). In the vacuum scenario, the pure EGB equations
reduce further to

Hab = 0,

which is of a similar form to the Einstein vacuum field equa-
tions; however the Einstein tensor, which is the highest order
Euler density in the first order theory, is replaced by the sec-
ond order Lovelock tensor in the EGB scenario.

The charged pressure isotropy condition in pure EGB
gravity then takes the form

4α̂x [2x(1 − 3Z)ẏ + (N − 5)(1 − Z)y] Ż

−2(N − 4)(N − 5)α̂y(1 − Z)2

−8α̂x(ẏ − 2x)(1 − Z)Z + 4x2E2y = 0. (73)

Observe that Eq. (73) is still an Abel differential equation
of the second kind in Z , for a specified y. Thus, despite
being a subclass of the EGB theory, there is no real simpli-
fication in the governing equation in pure EGB gravity. The
same notions are true in the five dimensional subcase which
implies that the pure EGB scenario is more restrictive than
the more general class. We note that in the absence of charge,
the coupling constant α̂ can be divided out entirely, which
is altogether unsurprising; in Einstein gravity, the coupling
constant is set to one, and so is not present in any explicit

sense. Due to the complicated nature of the above Eq. (73), it
will be analysed in a subsequent treatise, as pure EGB gravity
has several interesting features.

8 Discussion

We have studied the EGB field equations in a static, spheri-
cally symmetric spacetime, assuming the matter distribution
to be that of a charged perfect fluid. We then generated the
charged condition of pressure isotropy from the system of
nonlinear differential equations. This leads to an Abel differ-
ential equation of the second kind, a particularly difficult type
of ordinary differential equation which has no known gen-
eral solutions. We transformed this equation into a simpler
canonical form. We then showed that the canonical form of
the charged condition of pressure isotropy is a Chini differ-
ential equation. The associated Chini invariant β0 is an inte-
grability condition for the existence of solutions. We showed
that three classes of exact solutions, in implicit form, exist.
Some known solutions are contained in our three classes of
solutions. It is important to note that this is the first appear-
ance of the Chini differential equation in a gravity theory.
Also the Chini differential equation is a distinguishing fea-
ture of EGB gravity; it does not arise in general relativity.
The new solutions found in this paper may be used to model
a charged star in EGB gravity. This was used by Naicker et
al. [12], with the potential y = √

x , to illustrate the existence
of charged objects. Other forms of y may be used to model
compact objects in EGB gravity. In this regard, the recently
found junction conditions of Brassel et al. [42] should be
used at the matching surface. We also commented on pure
EGB gravity and indicated that the approach of this paper
can be extended as the governing equation remains an Abel
differential equation of the second kind. This will be pursued
in future research.
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Appendix A: The Chini differential equation

We provide details on the form of the Chini differential equa-
tion, and indicate how the Chini invariant leads to separable
differential equations. We achieve this by writing the Chini
differential equation in canonical form.

The Chini differential equation takes the form

Ẏ = f (x)Yn + g(x)Y + h(x), (A1)

where f , g and h are arbitrary functions of x , and n ∈ R,
n �= 0, 1. This is a generalisation of the Abel differential
equation. We notice that if n = 0 or n = 1, Eq. (A1) becomes
a simple linear differential equation. In general we cannot
integrate Eq. (A1). However a special case arises for which
(A1) is separable. To demonstrate this, we define a new vari-
able �(x). We introduce the following transformation

Y (x) =
(

h

f

) 1
n

�(x), (A2)

where �(x) is an arbitrary function of x .
Then Eq. (A1) becomes

nh
−n+1

n f − 1
n �̇ − n(�n + 1)

−h
−2n+1

n f
−n−1

n [(n f g + ḟ )h − f ḣ]� = 0. (A3)

If we let

β = f −n−1h−2n+1 [(n f g + ḟ )h − f ḣ
]n

,

then Eq. (A3) becomes

nh
−n+1

n f − 1
n �̇ = n(�n + 1) + β

1
n �. (A4)

Notice that if we take

β = β0, (A5)

where β0 is a constant, then (A4) is a separable differential
equation and can be written as

∫

d�

n(�n + 1) + β
1
n

0 �

=
∫

dx

nh
−n+1

n f − 1
n

. (A6)

This integration can be completed to give a solution for �,
which in turn, using (A2), will give a solution to the Chini
equation (A1). Note that the constant β0 in (A5) is known
as the Chini invariant and hence is an integrability condition
of (A1). Note that the variables in (A1) do not separate in
general. The advantage of the Chini invariant is that it leads
to a separable equation.
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