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Abstract

In this Thesis we use Causal Perturbation Theory to study Scalar Quantum Elec-
trodynamics with Duffin-Kemmer-Petiau fields. We determine the differential cross
sections at the tree level, the vacuum polarization tensor, self energy function and
the normalizability of the theory. After that, we compare our results with those ones
obtained via Klein-Gordon-Fock fields determining that they are not completely equiv-
alent.
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Resumo

Nesta tese utilizamos a Teoria de Perturbacao Causal para estudar a Eletrodinamica
Quantica Escalar com os campos de Duffin-Kemmer-Petiau. Determinamos as sec¢oes
de choque diferenciais no nivel da arvore, o tensor de polarizacao do vacuo, a funcao
de auto energia e a renormalizabilidade da teoria. Depois disso, comparamos nossos
resultados com os obtidos através dos campos de Klein-Gordon-Fock, determinando

que eles nao sao completamente equivalentes.

Palavras Chaves: Teoria de Perturbagao Causal; Eletrodinamica Quantica Escalar;

DKP.
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Chapter 1

Introduction

The Duffin-Kemmer-Petiu (DKP) theory is based on the idea of obtaining a first order
relativistic equation to model photons. This idea was implemented during 1934 by L.
de Broglie, who considered that the photon was composed of two leptons and used a

product of Dirac y-matrices to construct a similar equation but with square S-matrices
of order 16 [1,2].

During the years 1936 to 1939 G. Petiau, R. J. Duffin and N. Kemmer [3-5] in-
dividually found that the 16 x 16 S-matrices had three irreducible representations of
dimensions 1, 5 and 10. The representation of order 1 is trivial, the order 5 and 10

representation allow modeling scalar and spin-1 particles respectivelyﬂ.

After World War II, many calculations were performed on scalar quantum electro-
dynamics using the DKP (SDKP) and Klein-Gordon-Fock (SQED) fields. The main
intention was to determine the differences between the two approaches, but up to 1-loop
corrections all differential cross sections were the same [7-10]. Therefore, the belief on
the total equivalence between both approaches was established in the scientific commu-

nity.

However, in May 1971 the doubt about the equivalence between the two scalar
particle theories was revived. In reference |11], E. Fischbach and collaborators found
different results for the broken-symmetry parameter in the kaon semi-leptonic decay
k — m + | + v. The difference comes from the presence of two mesons with different

masses and from the fact that the SU(3) broken-symmetry process is sensitive to the
field dimensions which takes the value 3/2 for DKP and 1 for KGF fields. Furthermore,

LA good historical development of the Duffin-Kemmer-Petiau equation is in [6].

1



2 1. Introduction

the result obtained via DKP was surprisingly closer to the experimental data than that
obtained via KGF formalism. Currently, the calculation is performed considering the

compositional nature of k& and 7 confirming the values obtained using DKP fields [12].

In 2000, V. Ya. Fainberg and B. M. Pimentel did a systematic study of S-matrices
obtained from SDKP and SQED via minimal coupling procedure with an external or
quantized electromagnetic field. They constructed the functional generator of the Green
functions to quantize the DKP theory. After that, they used the LSZ reduction formula

to determine the matrix elements of the S-matrix [13].

The results of V. Ya. Fainberg and B. M. Pimentel were positive but not conclusive.
The equivalence between SDKP and SQE does not include the sector of diagrams
generated by the self-interaction term ~ (¢*$)? and diagrams without the presence
of external photons. The authors suggested the inclusion of analogous self-interacting
term with DKP fields proportional to ()P1)?, where P is a projector that eliminates
the DKP vectorial sector |14].

In the new millennium a rebirth in the interest of DKP theory comes from its advan-
tages compared with the KGF fields. For example, the greater number of combinations
of the DKP fields to generate self-interacting terms [14] has been used to determine an-
alytical solutions of the DKP equation in presence of different kinds of potentials, see
for example [15]. In addition, the DKP theory has been used to study their interactions
in Riemann and Riemann-Cartan spaces [16-20], to study confinement in QCD [21],
as well as applied to covariant Hamiltonian dynamics [22] and to the study of spin-1

particles in the Abelian monopole field |23].

The inclusion of the missing sectors in the article |[13] of V. Ya. Fainberg and B.
M. Pimentel is the main objective of this thesis. For this goal, we are going to use an
axiomatic formalism known as Causal Perturbation Theory (CPT). The decision to use
CPT has been taken because of the results obtained by M. Diitsch, F. Krahe and G.
Scharf about SQED [26]. In the framework of CPT they demonstrated the unitarity,
gauge invariance and normalizability without the second order self-interaction term
~ (¢*¢)?>. The latter does not mean that the interaction term is missing in CPT,
on the contrary the approach recovers all that sector using a physical property called
perturbative gauge invariance. We must mention that the study of SDKP was initiated
by J. T. Lunardi et al. [24,125], therefore this thesis could be seen as an extension of

those papers.

CPT is an approach that treats the quantized fields as operator value distributions



and constructs the S-matrix as a formal series using two fundamental physical princi-
ples: Causality and perturbative gauge invariance. Each step is mathematically well
defined within the framework of distributions theory. The main point of this formalism
is to avoid the ill-defined product of distributions at the same point such as those that
floods the formalism based on Feynman diagrams and that we believe are the ones that

generate UV divergences.

The origin of CPT started in 1973 when H. Epstein and V. Glaser wrote their
article entitled “The role of locality in perturbation theory” [27] where they devel-
oped an iterative construction of the S-matrix taking as advantage the causal support
of the propagators to determine their advanced and retarded part. Ten years later,
G. Scharf began to apply the approach to study Quantum Electrodynamics (QED)
obtaining a finite theory, in other words, free UV and infrared divergences! [28-37].
From the striking results in QED, G. Scharf and collaborators applied CPT to study
other quantum field theories as Yang-Mills [38-43], Higgs boson [44], Electroweak the-
ory [45,46], Super-symmetry [47-50] and Quantum Gravity [51H61]. On the other side
of the Atlantic ocean, B. M. Pimentel and Collaborators applied CPT in General Quan-
tum Electrodynamics (GQED) [62], Light front Dynamics [63,/64], SDKP [65], gauge
Thirring model [66,,67], and QED;3 [68,69].

This thesis is organized in the following form. In the second chapter, we summarize
the concepts of Distribution Theory which we believe necessary to understand CPT. In
Chapter 3, CPT is introduced in generality to be applied to any quantum field theory.
In the fourth chapter, we develop the quantum properties of free DKP, electromagnetic
and fermionic scalar ghost fields to be applied in SDKP and to develop gauge invari-
ance at the quantum level. In the fifth chapter, we use perturbative gauge invariance
to determine the base term of S-Matrix, after that, we determine the differential cross
section of a DKP particle scattered by external electromagnetic field and for the Moller
and Compton scattering process. In the sixth chapter, we compute the vacuum polar-
ization tensor and the self energy function. In the seventh chapter, we will study the
renormalizability of the theory. Finally, in the eight chapter, we write our conclusions

and perspectives.






Chapter 2

Elementary Theory of Distributions

Mathematical discovery is subversive and always ready to overthrow

taboos, and it depends very little on established powers.

Laurent Schwartz

In 1950-51 Laurent Schwartz published Théorie des Distributions [70], a treatise in
two volumes where he constructs systematically the concept of Distribution]] Although
this mathematical tool defines correctly many “functions” used in physics allowing con-

sistent calculation, it has not yet been adopted by the community in all its potentiality.

Following the subversive spirit of L. Schwartz, in this thesis we will use the Bogoliubov-
Epstein-Glaser or CPT approach to solve Quantum Field Theory. CPT uses the theory
of distributions framework in the construction of S-matrix. For this reason, we dedicate

this chapter to present the necessary concepts about Schwartz’s theory.

2.1 The necessity of distribution and its definition

In 1927 P. A. M. Dirac introduce the delta symbol §(x) |[72] with the following properties

sy =4 T Jdmd(w)zl. (2.1)

w0, x=0

!The Theory of Distributions is also known as Theory of Generalized Functions which was the name

that S. L. Sobolev proposed in his study of Cauchy’s problem in hyperbolic equations |71].
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Taking into consideration functional analysis we can prove that the two properties
in (2.1)) are in contradiction. Knowing the latter, Dirac said “Strictly, of course, d(x)
is not a proper function of x, but can be regarded only as a limit of a certain sequence

of functions”, but again, in the context of function analysis, this limit does not exist.

The necessity of the Dirac delta function §(z) is a consequence to fix a physical
quantity in a point of space. For example consider the density p(x) of a point particle
of mass 1. We can understand this quantity as the limit of a sequence of spheres
densities p(x) with less and less radius € but same mass 1. This sequence of densities

have the values
1

w3 Xl <e
pe(x) = 3 (2:2)
0, [x|>e

and we can note that in the limit € — 0 we have p.(x) — §(x) = p(x), but the integral
in all space is null, which have no physical sense for a density [73,(74]. To solve this

problem, we define the weak limit.

Definition 2.1 Consider the continuous f(x), with x € R™. For a sequence of func-

tions pe(x), the function p(z) is called the weak limit of that sequence if V f(z)

e—0

iy | dop ()7 (z) = | dop(o)f(o), (23)
It is straightforward to show that for the sequence (2.2) we have
iny | dap. (o) f(z) = | dad(@)f () = F10). 2:4)

The functional result in is in concordance with the second Dirac condition in
([2-1), because in that case 6(x) must be understood multiplied by a constant function
f(z) = 1. Consequently, the Dirac delta function d(z) must not be used as a function
in the sense of functional analysis because its mathematical behavior is to map the
function f(z) to its functional f(0)

d: f(x) — f(0). (2.5)

The Dirac delta function is not the unique mathematical entity that acts as func-
tional on definite space of functions. For example we have the Heaviside step function
or the principal value operator. This kind of functionals are called distributions or

generalized functions.



2.2. Properties of distributions and the space of test functions 7 7

Definition 2.2 A distribution T is a continuous linear functional on space functions

T where the elements f € T are called test functions

T:T—C. (2.6)
The definition implies the fulfillment of the following conditions:

1. For each test function f(x) € T, the complex functional value associated is de-
noted by (T, f(z)).

2.V {M A} € GV { i), o)} € T, (T A fy + Aafa) = M fr) + AT fo)

3. If a sequence f; € T converge to a function f(x) € T, then the sequence (T f;)
converge to (T, f)

Another important concept, associated with the nature of distribution, is the sup-
port. We will define two kinds of support, one that belongs to test functions and another

that belongs to distributions.

Definition 2.3 The support of a test function f(x) is the compact set of points supp(f)
where f(x) # 0.

Definition 2.4 The support of a distribution T is the complement of reunion of open
set points supp(T) where (T, f) =0 for all test functions f.

In general, the distributions 7" represents the physical law that we want to investigate
and to test. The test functions f(x) are the representation of the external agent which

fluctuate around the point x (supp(f)) where we want to test the physical law.

2.2 Properties of distributions and the space of test

functions T

The space of test functions 7 appear naturally to give a mathematically well defined
definition of a distribution. The linearity condition of the distribution mapping implies
that 7 must be a vector space, which means that a distribution 7" is an element of

the continuous dual space T'. The continuity property for the mapping 7' : T — C
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point out that 7 must have an inner product {,) to define a norm to use the Cauchy
conditionf] [75).

The inner product, necessary to have a well defined theory, guides us to choose
L? spaceﬂ as our first option to construct 7. Actually, every function g(z) € L* is a
distribution over the test function space 7 = L2. But there is one problem, the Dirac

delta function do not belongs to L? space [76]. Furthermore, non continuous functions
belongs to L?, which means that if we take 7 = L? then d(x) ¢ T .

Taking into account the inner product in L?, we can classify the distributions T € 7"

in regqulars and singulars.

Definition 2.5 A distribution T is reqular if {T, ) could be written as the inner prod-

uct of L? space
@ = [ 1@, (27)

i other case the distribution is singular.

The latter definition means that §(z) is a singular distribution and the notation
(2.4) is just symbolic. Nevertheless, all properties of distributions could be obtained

from the integral representation ([2.7)).

To include all the singular distributions, we could use the Schwartz space S(R") as

space of test functions.

Definition 2.6 The test function space S(R™) is the set of infinite differentiable func-
tions f(x) € C* that fulfill the following property

lim |z|*|D"f(z)] =0 (2.8)

|l —o0

for all k e N and | € N7 [l

2We say that a sequence of functionsf, (x) converges to f(z) if for every e > 0, exist N € N that
| fn = ful < € for every m,n > N.

3The square-integrable space L? is that where the inner product is define as (g(x), f(z)) =
fdnag*(z) f(z) < .

4The differential operator D' is defined as

I all+~--+l7n
D'f= mf(x)7 U= (l1,- s lm).
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The property ([2.8) tell us that the elements of S decrease faster than any power of
|| ~!. Furthermore, S has the important property that the Fourier transformation of its
elements also belongs to S [77]. This is important because in Quantum Mechanics any

state function must be independent of working in configuration or momentum space.

But the “nice” behavior of S is not enough to define the derivative of a distribution.

It is necessary to define a sub space of S called the close support space C§°(R™).

Definition 2.7 The space C°(R™) is the set of functions f(x) € C* with a compact
support < R™,

It is straightforward to demonstrate that C3°(R™) < S and, because of that, &' <
Cy’(R™). From a physical point of view the distributions 7" € C§”'(R™) express the fact
that it is not possible to define a physical quantity at a point, but in a region around

that point.
Now, considering two distributions 77,75 € Cg”'(R™), they have the following prop-

erties:

e Addition
<T1 +T27f>:<T17f>+<T27f>'

Multiplication by a complex «

<05T> f> = <Tv O‘f> = CY<T, f>

Translation by a vector z, € R™
(@T'(x + za), f(2)) = (T '(z), f(z — a))-

Linear transformation of the independent variables x — Ax where R™

1

(T(Az), f(z)) = m@(:p), FA™ )

Derivative

CL tap = (- T

It is possible to extend all these properties to distributions in &', considering f(+w0) =
0 for f(z) € S. The product of distributions is an important point and we will present

in the next section.
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2.3 Product of two distributions

To define the product of two distribution, we have to take one of them as a reference
to investigate the characteristics of the other distribution. Therefore, consider a distri-
bution T' e C§”’, after that, if we multiply 7" with a distribution g(x) we want that the

complex value (Tg, f) exist. For the latter objective is necessary that
Ty, f)=<T,f9). (2.9)

To fulfill the condition ({2.9)), it is sufficient that the product f(z)g(x) belongs to C§°.
Consequently, if f(z) € C§°, we need the function g(z) to be infinitively differentiable to

guarantee a well define product. In this thesis we will work with this type of products.

Another kind of product, which is well defined, is the tensorial product. For a two
distributions 77 and 75 and a test function f(z,y) over § x & we define the product
Ti(z) x Ta(y) as

(Ti(x) x Ta(y), f(z,y)) = {Ti(x),{Ta(y), f (2, 9))) = (Ta(y), {Ti(z), f(z,y)))  (2.10)

2.4 Fourier transform and convolution of distribu-

tions

For an unidimensional function f(t), the direct f(t) and inverse f(t) Fourier transform

are defined as

A~

fo) = )t | a5, (211)
f(p) = (21)73 f dte= P f(t). (2.12)
For a distribution 7', its Fourier transformation 7 goes to the test function as follows
(T, fy= T, f). (2.13)
From ([2.13)), we can see that the following property is true
(T, f) =T, [ (2.14)
The convolution product f * ¢ in one dimension is defined as

{fwwaJM#u—@mwzjdw@wa—m. (2.15)
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Regarding the definition (2.15)), it is straightforward to determine the relation with

the Fourier transform of a product

Falp) = @m) "2 {f = g}(p), (2.16)
Fa(p) = 2m) 2 {f = 3} (p), (2.17)
Feglp) = 2m) "2 f(p)g(p), (2.18)
Feg(p) = 2n) 2 fp)g(p). (2.19)

For all distributions, again we generalize the following property of regular distribu-

tions
FGofy = [delFGYa) (o) = [ daf(@) | dyF )Gl - ) .
- [y ) | dsGia - ) fo) = [ v ) [ deciof€ 4y =
Then, with the help of (2.10), the convolution of two distributions 7} * T3 is defined as

(T« Ty, f) = (Th(x) x Ta(y), f(x +y)) (2.21)

In m dimensions, all these properties and definitions are

f() = (2m)°% f ) (2.22)

F(p) = (2m)°% f dte=P £ (2), (2.23)

(T, f)=<T, p, (2.24)

Ty = (T, (2.25)

(e g)(t) = f e f(t - 2)g(x) = f o f(2)g(t — ), (2.26)
Faw) = @) 5 {f « 3} o), (2.27)

Top) = @n) % (f = 3} (), (2.28)

F230) = 20) % F i), (2.20)

F9(p) = 27) % f(p)g(p), (2.30)

(I + Ty, f) = (Ti(x) x Ta(y), f(x +y)). (2.31)






Chapter 3

Causal Perturbation Theory

The latter is one of the most important papers in quantum field theory.
However, for a long time, only a few specialists noticed this important

approach to quantum field theory.

Eberhard Zeidler, writing about the seminal paper of H. Epstein and V.
Glaser [27] in his book [7§]

CPT is an axiomatic approach for solving QFT where ill-defined mathematical quan-
tities or computations are avoided due to the use of the theory of distributions (or gen-
eralized function theory) to give the correct mathematical nature to quantum fields as
operator value distributions (OVD). [79,80]

It focuses in the causality property to construct the S-Matrix as a formal perturba-
tive power series in the coupling constant [27,37,[81], leaving other physical properties
for the end of computation. Even more, the CPT methodology is free of ultraviolet
divergencies as a consequence of not containing ill-defined product of operator value

distributions (OPV) in the same Minkowski space-time point!

In this Chapter we develop the fundamental tools to construct the S-matrix following
the references [37] and [81].

13



14 3. Causal Perturbation Theory

3.1 Axioms of Causal Perturbation Theory

CPT works directly constructing the scattering opemtorﬂ S. In this sense, it follows
the Heisenberg program for QFT [82] which consider the in and out Fock spaces Fi,
and Foy respectively. The space Fi, is the set of all multi-particle states |¢);, before
the scattering process and Foy is the set of all multi-particle states |1 )y after. Then,

the operator S is defined as the bijective application

S En — ]:out- (31)

Consequently, the transition from the in to out state is

S |¢>in - |¢>out = S|¢>inv (3~2)

and the transition amplitude A from the state |, to [¢))ous is computed as

A(|¢>in7 |1/)>out) = (|¢>out7 S|¢>1n) =out <¢|S|¢>ln (33)

But in contrast to the usual construction of S via temporal order product, H. Epstein
and V. Glaser used the formalism developed by Bogoliubov [83] where a test function
is introduced to give the correct mathematical nature to the quantum fields as OVD

which appear in the temporal productﬂ.

Bogoliubov uses a function g(z) € [0, 1] to control the long range interaction which
causes the infrared divergences. The function g(z) is named switching on-off function.
If in a space-time region g(z) = 0 the interaction is switched-off, if 0 < g(x) < 1 the

interaction is partially switched-on, and if g(x) = 1 the interaction is fully switched-on.

We choose g(z) = 0 for 2° = +o0, and g(z) # 0 for a time interval 2° € [to,, tosy]
where the interaction scattering is stronger. Furthermore, g(x) must belong to Ci° or
S to allow the derivatives of singular OVDs. Via this reasoning, we conclude that the

operator S must be a functional of g

S = S|g]. (3.4)

!The S-Matrix and the scattering operator are different concepts but intimately related. The S-
Matrix is the collection of all possibles transition amplitudes in a scattering process, but in this work

we will use the two concepts as the same as usual.
2Remember from Chap. [2| that a distribution needs to be applicated in a test function space.
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Now, considering a perturbative construction of S, H. Epstein and V. Glaser [27]

propose the following ansatz as a formal series expansion

Slgl=1+ Jd%lTl(xl)g(:vl) + L Jd4x2d4$1Tg(a:1,atg)g(xl)g(atg) +...

2!
1
= Z - Jdﬁlxl cdr Ty, 2 g(z) . g(2) (3.5)
= n!
=1+T,
where h = 1 = ¢ as usual and T,,(z1, . . ., z,) is called n-point distribution which are the

terms that we need to find. The factor n! is used to indicate the symmetry property of

T, when a permutation of coordinates is done.

Using unitarity, Bogoliubov found that the 7}, distributions were the temporal prod-
uct of interaction Lagrangian [83]. Instead of using the unitarity property of S-matrix,
H. Epstein and V. Glaser postulate four axioms to constrain 7,, and then develop an
iterative construction with the guide of causality condition [27]. G. Scharf modernize
the approach and applicated it to QED [37].

3.1.1 Axiom I: Boundary Condition

This axiom constrains the spaces Fi, and F,. We postulate that in the temporal
limits ¢ — +oo the particle systems are asymptotically free, inclusive in the adiabatic
limit g(x) — 1. Consequently, the two Fock spaces, in and out, are free multi-particle

spaces.

We can comment that in the adiabatic limit g(z) — 1, (3.5)) can be written as

Slg] =1+ i A"S, (3.6)

where A is the coupling constant of the gauge theory and the convergence of the series

depends on its intensity.

The most important consequence from this axiom is that the theory is determined
via the free field operators, therefore the mass and charge in the free wave equations

are the physical quantities.
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3.1.2 Axiom II: Base Term and Perturbative Gauge Invariance

We postulate that the construction of the S-matrix, as a formal series (3.5]), will be
done inductively from the definition of the first term 7} (x) which will be different for

every gauge theory.

The systematized methodology to construct the term 77(x) is the major contribu-
tion of G. Scharf and collaborators to CPT. In a series of articles |30}36,38-61], they
determine the conditions for the gauge invariant transformation for every term of the
series (3.5), and apply it to construct Yang-Mills and Electroweak theories. They call
this formalism Perturbative Gauge Invariance (PGI), and it complements CPT. PGI
will be developed in Chapter 5.

3.1.3 Axiom III: Poincaré Invariance

Similar to the usual framework, CPT must be invariant under translation and Lorentz
transformation. These transformations must be done on the test functions g(z) because

of the functional nature of S-matrix.

If an observator O uses the test function g(z) to study a physical phenomenon, then
an observator O’ translated to x + a, must use a test function g, = g(x — a). Or if O’
is boosted or rotated to Az, the test function must be gy = g(A™'z). In both cases the

S-matrix must be invariant.

If U(a, A) is a representation of translation a or Lorentz transformation A in Fock

space JF, then the transformation rule of S-matrix is
S = U(a,N\)SU (a, N), (3.7)
Therefore, the Poincaré invariance implies

S =U(a,\)SU (a, N), (3.8)

3.1.4 Axiom IV: Causality

This is the principal axiom to construct the S-matrix. CPT postulates that there exists

a parameter which order the evolution of events in space-time.

In this thesis we will use the temporal parameter 2° to order the S-matrix scattering
events. Then, because of the functional dependence on the switch on-off test functions

g(x), we will time order S regarding g(z).
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Definition 3.1 By considering two test functions gi(x) and go(x) with disjoint sup-

ports, then if Yxi € supp|g1]| and Vo € supp|ge] we can define the time-ordering rule

a:(l] < xg = supplg1] < supp|gz2]- (3.9)

Now, if for a reference system, the S-matrix depends on two test functions g; and g,

the time-ordering rule supp|g;| < supp[gs] implies the following causal decomposition

Slgr + g2] = S[g2]5[g1]- (3.10)

3.2 Iterative construction of S-Matrix

Regarding the four axioms of CPT, we proceed to construct term by term the pertur-
bative series ([3.5). Of course, the first step is to define the one point distribution 7} (z).
As mentioned in the axiom II, each gauge theory presents its own term 77 (z). We will
describe the construction of T} for scalar QED in Chapter 5. In this section we describe
the second step which focuses in determining the term 7;, from the knowledge of the

previous terms {7,,_1,...,T1}.

3.2.1 Properties of the n-point distributions

Because the main elements to be computed are the n-point distributions 7T,,, it will
be useful to determine some of their properties that come from the properties of the

S-matrix:

1. The inverse S~! will be determined in two forms, by inverting (3.5)) as

o0
ST=1+T)" =1+ (-T), (3.11)
r=1
and as formal series
a0
-1 1 4 4 T
ST =1+ Z o Jd 1. dr, T (21, xn)g(21) . g(xy), (3.12)
n=1""
where fn(xl, ..., Zy) is an n-point distribution that is symmetric under the per-

mutations of z; and 1 is the identity matrix. YN}L is not the inverse of T,,, but it
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can be determined as a function of the set {Tl, ..., T,,} using the fact that the
right-hand sides of equations (3.11)) and ( are equal

To(zr, .. wn) = D (1) Y T (X1) . T (X)), (3.13)
r=1 P,
where the sum is over all partitions P, of the set X = {xy,...,x,} in r disjoints

and not empty sub-sets X;.

. Making use of

1L = S[g]S'[g] = S'[9]Slg], (3.14)
we obtain
ZTm Ty (Z2\X) = 0, (3.15)
ZTn—nz (Z\Y)Tm (Y) =0, (3'16)
Py
ZTn o (X)T, (2\X) = 0, (3.17)
ZTm(Z\Y)Tn—nz (Y) =0, (3'18)
Py
where the sums run over all two partitions Py of the set Z = {xy,...,z,} in two

disjoints sub-sets X and Y allowing the cases where X = J or Y = .

. From Poincaré invariance, we determine
To(z1, ... xn) =To(x1 +a,...,x, + a), (3.19)
T(xy,...,x,) = T(Axy, ..., Ax,,). (3.20)

. From causality, we can determine that the n-point distributions are well defined

time ordered product. If {z9,..., 2%} > {20 ., ... 2%}, thus
To(T1y ooy Ty o1y -+ 5 Tn) = Ton (@15 - ooy Ton) T (T 15 - -+ 5 ) (3.21)
and for Tn, we have

fn(xl, e Ty Ty« ey L) = ﬁl_m(:vmﬂ, . ,xn)fm(xl, e T (3.22)
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3.2.2 From 7,1 to T,

In the computation of 7,,, the main objective is to avoid the naive procedure to deter-
mine the advanced and retarded parts of a causal propagator via the multiplication to
a Heaviside step function O(t). Because O(t) ¢ C*, the naive product could not exist

as mentioned in Chapter 2.

First of all, from the knowledge of {T,_1, ..., 17, Thn,... ,TI}, we define the inter-

mediate distributions A, and R), as

Al (zy,. .. 2, ZTm Ty (Y, ), (3.23)
Ry(w1,.. . 20) = 3 T, (Y, 20) T, (X)), (3.24)
Py
where the sum runs over all partitions P, of the set {xi,...,z,_1} in two non-empty

and disjoints sub-sets X and Y. This product is well define because it is done with
distributions defined in different space-points.

The next step is to extend the sums (3.23)) and (3.24)) allowing for the empty sub-set
X=0

Aplzy, ... ZTm T, (Y, ), (3.25)
Ro(z1, ... 2) = ZTn,m(Y, )T, (X), (3.26)
Py

where Ty = 1 = T, and P represents the inclusion of empty sets. We will show that the
distributions A,, and R,, are the retarded and advanced distributions which we want to
determine. Furthermore, it is straightforward to rewrite the sums ) and - as

Ap(zy, .. my) = Al (2, xn) + Tz, .o 1), (3.27)
Ry(z1,...,xn) = R (21,...,x0) + Tp(21, ..., 2p). (3.28)

In equations (3.27) and (3.28]) just R], and A/ are known. If we determine A, or
R,, through the use of another methodology, then we can determine the 7,, by

An(@r, - ) — AL (21, . 2),
T, ... 1) = | @0 @) = Anl@r, ) (3.29)
Ro(xy,...,xn) — Rl (21, ..., 2y).

The latter is possible in the framework of distribution theory.
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3.2.3 Supports of the retarded R, and advanced A, distribu-

tions

The most important property of the distributions R, and A, is their support. To
identify this property, we are going to invoke the following theoremﬁ

Theorem 3.1 Consider three sets of space points Y, P and () such as'Y =
PuQ, P#+#&, PnQ=d,|Y|=n—1, and the point x such that x¢Y , then:

o [f{Q,x} > P, |Q| = ny, therefore

R,(Y,) = ~Toy51(Q. 2)T—uy 1) (P) (3.30)

o If{Q,x} < P, |Q| = ny, therefore

A(Y,2) = ~To 1y (P) Ty 11(Q, ) (3:31)
Now, we can study the support of R,. If Y = {z1,..., 2,1}, then we can write
B as
R,(Y,x,) = R, (Y, z,) + To(Y, z,). (3.32)

Now, we have three cases for time ordering the whole set {Y, xn}ﬁ

e Case one: Y > z,.
e Case two: z,, > Y.

e Case three: Q) > x, > P, where Y = P U Q).

In the second and third cases, we can use the theorem to rewrite (3.32)) in the

following form
R (Y, %) = =Tn11(Q, 20) To—(ni+1)(P) + To(P U Q, x,), (3.33)
where if we use the causal decomposition for the n-point distribution, we get

Rn<Ya xn) = _Tn1+1<Qa xn)Tn—(n1+1)(P> + Tn(P U Q, xn)
= —T(Q,2,)T(P) + T(Q,x,)T(P) (3.34)
=0

3The proof can be seen in Appendix
4For simplicity, we will write all causality conditions obviating the zero super-index.
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In conclusion, from ([3.34)) the unique case where R,, # 0 is for the time order
Ty < {1, .., Tp_1}, (3.35)
and for A,, we can get the time ordering condition z, > {z1,..., 2,1} in the non-null
case.

Considering the Lorentz invariance of the n-point distributions 7, it is not difficult
to extend it to R, and A,. This is important because the causal condition (3.35)) must
be the same for all reference system, and of course, the set {z1,...,z,} must be in the

light-cone with origin in x,,.

To formalize the last deduction, we will define the 4n-dimension light-cone centered

in y as

Lo (y) = {(21, . 0) 2 € VE(y)}, (3.36)

where V*(y) are the closed forward and backward light-cone centered in y
V) = {o/w -y 20, o° (3:37)

Vi(y) ={z/(x—y)? =0, 2°<y’}, (3.38)

\%

<
[e)
——

respectively.

Regarding (3.36]), we conclude for the supports of R, and A, distributions the

following two properties
supp[Rp(x1, ..., 2,)] € T (x,), (3.39)

supp[An (1, ..., 20)] € T, (x0), (3.40)

respectively.

3.2.4 The causal distribution D,

The results (3.39) and (3.40)), tell us that R, and A, are the retarded and advanced

parts of a subtraction
Dy(xy, ... x) = Ro(x1, ..., T0) — Ap(T1, ..., Tp), (3.41)

where D,, is called causal distribution because its support will be the union of the

supports of R, and A,

supp|[Dp(z1, ..., 2,)] S {TF 1 (x,) O, (z,)} (3.42)
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The causal distribution is fully computable from ([3.27)) and (3.28) as

Dp(x1,...,x,) = R (x1,...,2n) — Al (21, ..., 2p) (3.43)

The result (3.43)), is the starting point for the computation of 7,,. Because supp|R,,]N
supp|A,] = {x,}, it is possible to determine R, or A, splitting D, with the specific
supports in the framework of distribution theory. The splitting process is called causal

splitting and will be developed in the next section.

3.3 Causal splitting Procedure

In the usual framework, the splitting of a causal distribution in its advanced or retarded
part is done by the naive multiplication by the Heaviside step function [84]. However,
this product is not always well defined because in quantum field theory there exist
causal singular distributions. As demonstrated by G. Scharf, in QED [37] this naive

procedure was the origin of ultraviolet divergences.

Then, we need to determine how to split correctly a causal distribution. First of all,
we must remember that, in the usual framework, the UV divergence is related with two
sources: the short distance behavior of the causal propagators and the bare physical

parameters as mass and charge of particles [85-92).

Because in CPT it is postulated that the mass and charge are the physical quantities,
this implies that we need to study the behavior of D,, in a vicinity of x,,. The latter is

possible just in the numerical parts of the causal distribution D,,.

3.3.1 Numerical distribution d,,

From the properties of the n-point distributions 7, and T, it is not difficult to note
that the intermediate distributions R’ and A’ could be written as products of normal

order operators. Therefore, we have

Dy(xq, ... xp,) = Z : H(’)(xj) cdF (zy, . 1), (3.44)

where O(z;) represents all operator value distributions (OVD) and d*(zy,...,z,) is
the numerical part of each term in the sum (3.44) obtained via contractions of Wick
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O(x) O(zk)

99 Lk

dn(.’Bl, 600 ,:En)

O(z;) i Lj
o)

Figure 3.1: Graph with four external legs and connected n points represented by d,,.

theoremﬂ. In general, we can represent each term of the summation ([3.44)) graphically,
the uncontracted operator value distribution fields represent external legs and the nu-

merical distributions d*(xy,...,x,) represent the connection of these legs as in Fig.
(B3.1)-

The numerical part d* is what we will causal-split. Using the Poincaré invariance,

we can translate d,, by x,, obtaining
d¥ (w1, m) = d¥(xy — 2, ..., Ty 1 — 1,,0) = d(T), (3.45)

where we define d(Z) as the general notation to denote each numerical distribution to

be split and & = (Z1,...,%,_1) where &; = x; — x,,.

From we can note that the short distance behavior means the mathematical
behavior of d(z) in the limit #; — 0. Furthermore, we can see that the UV divergence
problem is the ill-defined product with the Heaviside step functions ©(z9 — 7)) where
j=1,...,n—1due to its ill defined limit lim Oz — 7).

0
Ty

3.3.2 Singular and Regular distributions

Following section ({2.3)), to causal split d(Z), we will construct the function x(t) € C*

over R!
0 when t<0,

[0,1] when 0<t <1, (3.46)

1 when t¢>1.

x(t)

5The Wick theorem is developed in Appendix 1|
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There is no mathematical ill definitions in the product between x(t) and any distri-
bution 7' € C§”’. Furthermore, it is not difficult to note that ©(t) will be constructed

as the limit ;
O(t) = lim x(

a—0t o

), (3.47)

this last property was the reason to construct x(t), because with its help we will multiply
t

Xx(—) by a causal distribution, then take the limit & — 0% to obtain its retarded part.
!
We will generalize the definition (3.46) to m = 4n — 4 dimensions with the help of

a retarded vector v € T'}_;(0) and define the function y,(Z) as

V.T

el = (25, (3.48)
where v = (vy,...,v,-1), and the product v.Z is defined as
n—1
0T = 2 GVl Ty (3.49)
i=1

Regarding (3.49), we can see that the space-like hyperplane
v.x =0, (3.50)

split the causal support as show in Fig. (3.2).

From ([3.48)) and (3.49)), we can compute that for all Z; € V~ we have 1im+ Xa(Z) =0,
a—0

and for all Z; € VT we get lim Xo(Z) = 1. This is the desired behavior to obtain the
a—0

retarded part r,(Z) of d,(Z) via the multiplication r,(Z) = xa(Z)d,(Z). The problem

is to determine in which cases the following weak limit exists
(ral@), F(3) = Tim Oxa(2)d(3), F(3), (351)

for all test functions f(z) € C§°.

As a Cauchy sequence labeled by «, we need to demonstrate that for all real value
e > 0, there exists a real value 0 < € such that for all « and (3, with values on the

interval 0 < {«, 5} < d, the following inequality is fulfilled
[<xs(@)d(@), f(2)) = Xa(@)d(Z), f(2))] < e (3.52)

Taking 8 as 5 = a/a, where a € R is fixed, and defining the function ¢ (z/a) as

NORICRIC N
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Figure 3.2: Split of the causal support by the hyperplane v.x = 0.

we can rewrite (3.52)) in the following form

|<¢(§)d(56),f(56)>| <e (3.54)

Because ¥(

L&

) € C®, it could be interchanged with f(Z)

\<f(9?)d(9?),w(§)>! <e (3.55)

In order to eliminate the a dependence of the new test function ¢, we can re-scale

the variable as ¥ — aZ

[<f (ax)a™d(ai), (7))] < e. (3.56)

In the limit & — 0%, we could think that the left hand side of (3.56|) is null, but this
is not true for distributions d(a) which increase faster than o™ in the neighborhood
of @ = 0. For this reason, we introduce the function p(«) to characterize the increase

behavior of d(aZ) and define the quasi-asymptotic distribution dy(aZ).

Definition 3.2 A distribution d(x) € C{°(R™) has a quasi-asymptotic dy(x)

over x = 0, if for a positive function p(«) (o > 0) the limit

lim {p(e)a™d(ax), (x)) = {do(x), ¥ (x)) # O, (3.57)

a—07t

exists
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With the help of (3.57), we can multiply and divide the left hand side of (3.56) by
p(e)

(flad)a™d(ok), ¥(E)) =

1 s m ~ ~
= mﬁ(am)p(a)a d(ai), ¥(7))
- %&) [f(0)<,0(oz)amd(ai), (7)) + DD F(0)wp(a)a™d(aF), b(F)) + . .. ]7
(3.58)

where, in the last equality, we did the Taylor series expansion for f(ax) around x = 0.

In (3.58)), after the first term, we have factors proportional to o™ withi = 1,2, ...,

which decrease more rapidly than p(«)d(ax). Then, in the limit « — 0%, we have

f0)

(flag)a" (o), v() ~ 203

(do(7), ¥(7))- (3.59)
As shown in Appendix (A.3), we could use the result (A.13)) to replace p(a) =
a“L(a) in (3.59)

f(0)

(Flap)am (o). v(E) ~ s

{do(7), (7)), (3.60)

where w € R*, and L(«) is a slow varying or quasi-constant function of « in the

neighborhood of a = 0.
From ([3.60)), we can conclude that the condition (3.56) is fulfilled, for all test func-

tions f(z), just in the case where w < 0. For w > 0, the condition is fulfilled for a finite
subgroup of C°. To show the latter we go back to the Taylor expansion of the test
function f(z) in (3.58)

I =w+1 i (3.61)
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where z! = xlf ..o with I =1 + ...+ l,, and the sum runs over all possible [.

From (3.61), we can note that in the case w > 0, only the test functions where
[DUf](0) = 0 with [ = 1,...,w allow the condition (3.56).

Therefore, in order to causal-split d(Z) valid for all test functions f, we could define
the projection

W: f— WY, (3.62)
WF = f(z i ll [D'f](0 (3.63)

where w(z) € S has the following properties w(0) = 1 and [D*w](0) = 0 for all
v=1,...,w. Over the new test functions W the existence condition (3.56)) is valid.

In conclusion, in order to determine the retarded part r, via , we need to
compute the quantity w first. For its importance and nature, w is knowing as order
of singularity because it could be used to classify the distributions as regular or
singular in the cases where w < 0 or w > 0, respectively. As demonstrated by G.
Scharf et al., w is the formal form of the superficial degree of divergence used in the

standard formalism based on Feynman diagrams.

In summary, to obtain the retarded part r(Z) of a causal distribution d(Z), we need

to follow these steps:

1. Determine the power counting function p(z) to obtain the quasi-asymptotic dis-

tribution dy(x) defined in (3.57)).

2. Determine the order of singularity w via

)
a=0t p(a)

= a”. (3.64)

3. If w < 0, the retarded part r(Z) is obtained from

(r(2), f(7)) = lim <X( 2)d(5), f(2)) = (O.7)d(T), £(7)). (3.65)

a—0t

4. If w = 0, the retarded part () is obtained from

(r(x), f(£)) = lim <X( 2)d(3), WE(E)) = (O(v2)d(T), Wf(F).  (3.66)

a—0t



28 3. Causal Perturbation Theory

3.3.3 Uniqueness of the retarded part r(z)

In the regular case, the solution for r(z) is unique. In this section we want to show

that in the singular case it is not.

First of all, we want to emphasize the characteristics of projected test functions
Wf(z). From (3.63)), it is not difficult to rewrite Wf(zx) as

W =a¥tg(x). (3.67)

Then, the following property is fulfilled

D'Wf)| =0, foralll=0,...,w. (3.68)

z=0

Now, we can define the retarded part 7(z)
F(z) = r(z) + Y, CD'S (), (3.69)
1=0

where C) are constants. By construction, we can show that 7(z) generates the same

result as r

(F, f(x)) = (O(x)d(x) + Y, CiD'S(x), Wf(w))

=0

= (O(x)d(x), Wf(x)) + ), CD'd(x), Wf (x))
= (O(z)d(z), Wf(x)) = (r(z), f(z))

(3.70)

The result (3.70) demonstrated that in the singular case w > 0, the most general
solution for the retarded part of d(z) is (3.69).

3.4 Causal-splitting procedure in momentum space

As in the standard framework, we are going to present the computation of the retarded

part r(z) in momentum space using the properties described in section [2.4]
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3.4.1 Regular distribution Case

In a regular distribution case, using (3.65]) we have

= (2m)"%(O(p) » d(p), f(p)) (3.71)

then
#(p) = (2m)"% f d"kO(p — k)d(k). (3.72)

In order to determine é)(q), we choose a vector v = (1,0,0,...) where 0 tell us that

the first three spacial coordinates of v are null. Then, we have

A l

O(q) = (2m)2 716 1) 3.73
@ = 0 5@ ) (3.73)
Replacing (3.73)) into (3.72)), we obtain
_ CZ(kO Pi,-.-,P ,1)
i(p) = (2m) " | @k IS PL s Prct) 3.74
(p) = (2" [ a Pk (3.74)

Regarding that p; € {I'f U ']} and making the substitution &9 = ¢;p{ in (3.74), we
obtain

. _ 'Cz(hpo Py Pn1)
_ (27 ' San(1° Jdt MNP P - - - 3.75
() = (20 Sgn) [ an TP R, (3.75)

where Sgn represents the sign function.
Apparently, in 1) we lost the covariance but because cf(p) is Lorentz invariant

we can make the computation in a reference system where p; = 0, then making the
boost (tp?,0) — (tp?, tp1) we will obtain

~

o _ -1 0 id(tlph cee 7pn—1) 3.76
F(p) = () Sgn(h) [ i PR (3.76)

The result (3.76]) shows that in the computation of 7(p) we could choose the variables
{P2,D3, ..., Pn_1} arbitrarily. Of course, if we take v = (0,...,v) =1,v; =0,...,0), we

finally obtain a momentum dependence on p; € {I'y U '] }.
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To obtain 7(p) independent of a specific variable p;, we must multiply (3.71) by

—1
n — 1 step functions ]—[ O(x ) giving us the following formula

. n—1 n—1
. i
P(p) = <§) Son([ [9)x
=0
n—1 n—1
1 .
X dt; : d(t.p),
fjljo J LUO 1 —t; +iSgn(p9)0+ (t.p)

where t.p =t1.p1 + ...+ ty—1.pn—1 and p € {F:{_1 vl 4}

For a two-point retarded part, the formula (3.77) will be

d(tp)
1 —t+1iSgn(p)0+’

P(p) = %Sgn(po) f dt

—0o0

3.4.2 Singular distribution Case
Similarly to (3.71)), in the singular case we have

((p), f(p)) = (B(v.2)d(T)(p), WF(p))
= (21)"E(O(p) * d(p), W[ (p)).

From (3.63), we can compute the term W (p)

The term [D'f](0) could be written as

[D'£](0) = {3(x), D'f (z)) = (~=1)D'd(x), f(x))

= (~1)(@2m) "= (=ip), f () = (2m) " 26@), F)s

and replacing into (3.80]), we obtain

pelf uTlT.

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)
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Wit - i - 31 3

Nl,_k

“2{(ip)!, fF( )DL (p)]
(3.82)

F(p')) Dy (p)].

—fp-en i Y E ” .
lf]=0

Now, replacing ([3.82)) into (3.79), we get for the term (#(p), f(p)) the following result

F(p), f(p))
= (2m)"2(O(k),{d(p — k), f(p)))

2 Y C o). e - k). D))" £

(3.83)

~ 2 3 E o). dnf - k). D)ot fo).

where in the last line we interchange p and p'.

In (3.83)), the distribution result with the step function could be written as an

integral. Also we could factorize the test function f(p) and obtain

(7 (p) ?jdkz@ Wd(p — k), f(p))

mz z') Jdk@( )}d(p' — k), DLaw(p)p', f(p))

(3.84)
«%)zjﬂ@()@ B F)

~comy [aow) Y Sl - 1. Dy e f)
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Again, comparing the two sides of equation (3.84]), we get the formula

#p) = (2m) % f kO (k)d(p — k)

~ e [ Y, PO dif — ), D))
|1|=0 '

= (2m)" % f dkO(k)d(p — k)
e (3.85)
~em [ ) 3 LDbdw - b, o)

|[]=0

— (2n)"% Jdk@(k)d(p k)

— (27)” Jdk@ 2 T fdp [DLd(p — k) (p),
|t]=0
where in the second equality we used the definition of distribution’s derivative, and in

the second term of third equality we wrote the distribution result as an integral over p'.

The formula (3.85)) depend on function w(p). We could eliminate the latter depen-
dence regarding the non-uniqueness of 7(z). In the momentum space, the most general
solution 7(p) will be obtained from the Fourier transformation of ((3.69))

%n
||
ﬁ>

i Cip! (3.86)

The formula (3.86|) tells us that we can add to 7(p) any polynomial, of degree equal
or less than w, to obtain an equivalent solution. The latter property allows us to define
the normalized solution 7,(p) in the following form

where ¢ € R™ is a fixed point.

°#1(q) <> [D",](q) =0 for all b < w, (3.87)

||
ﬁ>

In Appendix [A.4] we show the computation to get the following explicit form for

A

74(p)

w

o(p) = (2m) 72 Jdk@( [ p—k) d(q — k‘)] (3.88)

Because ¢ could be any point of R™, we define the central splitting solution
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To(p) when we choose ¢ = 0

o) = 2% k(0 [d0 1) - 5,

®'|ﬁ

- 0]. (3.89)

As show in Appendix [A.5] we could find a nice formula for 7y(p) by taking into ac-
count the indetermination of vector v in the construction of the Heaviside step function.

For a two-point retarded distribution, the solution takes the following form

; i 0 cZ(tp)
o) = 5=Sgn(s”) f Tt ke e ST (3.90)

Summarizing, in the momentum space, the procedure to obtain the retarded part

of a causal distribution is:

1. Compute the Fourier transform of numerical causal distribution d(p).

2. Determine the power counting function p(«) via (3.57)), which has a momentum

space version as follows

Definition 3.3 A distribution cZ(p) e C{°(R™) has a quasi-asymptotic a?o(p)
over p = , if for a positive function p(a) (o > 0) there exists the limit

lim{p(a)d ( ), (p)) = (do(p), (p)) # 0. (3.91)

3. Obtain the order of singularity w via
lim plac)
a=0t p(a)

= a”. (3.92)

4. If the numerical causal distribution cZ(p) is reqular w < 0, the retarded part,
normalized in the origin and at second order, is given by the following formula

0

%@——%M)fﬁ

2

d(tp)
1—t+1iSgn(p°)0t’

pelf UTT. (3.93)

—00

5. For the singular case w > 0, the most general solution for the retarded part in

second order is

2 _ b 0 c?(tp) A
o) = 5 5m0") [t e e O (399

where the constants C; are not defined by the causal splitting procedure.
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Of course, the uniqueness of S-matrix implies that one of the solution families ((3.94)
is the real physical one. The physical solution will be obtained by fixing the constants C
regarding physical properties of the theory such as gauge invariance, charge invariance,

particle masses, etc.



Chapter 4

Quantized free Fields and

Perturvative Gauge Invariance

Elementary particles are complicated real objects; free fields are simpler
mathematical ones. Nevertheless, free fields are the basis of quantum field
theory because the really interesting quantities like interacting fields and

scattering matrix (S-matrix) can be expanded in terms of free fields.

Giinter Scharf

Free fields are solutions to the relativistic covariant homogeneous field equations
with a quantization rule. They are not physical objects because they do not model all
the properties of particles, but they are all we know how to solve. Fortunately, in the
case of electromagnetic interaction, the value of coupling constant is small enough to

allow for the expansion of the S-matrix in terms of free fields.

In this thesis we will study scalar QED as a Duffin-Kemmer-Petiau gauge theory
(SDKP) via CPT. Therefore, as mentioned in Chapter , we need to determine the
quantized electromagnetic and DKP free fields. In this Chapter we develop the latter.
Also, we show the properties of a fermionic scalar (Ghost) field to introduce the phys-
ical principle of Perturbative Gauge Invariance (PGI) in order to complement CPT.

Specifically, PGI is used to define the first term 77 of S-matrix expansion ((3.5]).
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4.1 Electromagnetic Field

The quantized electromagnetic field is modeled by the 4-potential A*(z) which obeys

the relativistic wave equation

DAM = Oa I:\ = gl“/&l/a;u gMV = dzag(+, Ty T _)7 (41)

m

wass = 0 for a classical electro-

which is related with the Lorenz gauge condition d, A
magnetic 4-potential. We will see that the latter is related to the physical Fock space

for transversal photons.

Taking into account (4.1) just as four massless Klein-Gordon-Fock equations, we

define the solutions as

Bk
V2w
A3k
V2w

where the operators c#(k)! and (k) are the creation and annihilation operators, re-

A(z) = (27?)_3/2 (co(k)e_ikz — co(k)Teikz) , (4.2)

Al(z) = (2m) 73/ (c'(k)e ™ + ¢(k)Te™™) (4.3)

spectively, which follows the commutation relations

d(k—k') for pu=v

(4.4)
0 for pu#v

[¢(k), " (k)] = {

The minus sign in (4.2)) has been chosen to lead to a mathematical consistent result

for the commutation of two electromagnetic 4—potentialsE| components
[A%(x), A%(y)] = g*7iDo(a — y), (4.5)

where Dy(z — y) is the massless (m = 0) Lorentz invariant Jordan-Pauli distribution

1

Din() = (2m)3

f dpo(p? — mP)sgn(p’)e 7", (4.6)

1 If we do not use the minus sign we will obtain

which is not correct because we have a second rank Lorentz tensor in the left hand side of the equation
and a scalar in the right. We could use the “indefinite metric” prescription to remedy the incoherence,

but in that case we would have negative states in the Hilbert space.
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In order to determine how the Lorenz condition works at the operator level, note

that the covariant derivative of A" gives the following result

= (2m)” f &’k \f (c k) + ]c7(k)> e~ike |

< (k)T) - (4.7)
= (2m)7° f \[ [— i(co(k)+c|7|(k)> e~the |
i (=) 1)T) €],

where cﬁ(k) = %cj (k) is the annihilation operator for longitudinal photons.

Then, states |®) € Fpys, which have neither longitudinal nor scalar polarized modes

photons, fulfill the following condition

(D0, A”|®) = 0, (4.8)

The constraint (4.8]) is the quantum equivalent of the classical Lorentz condition.

We define the negative and positive frequency solution for A" as

3 . 1, f =1,2,3
AP — (27) 73/ J Mc“(k)Te”” X s (4.9)
V2w —1, for u =0,
AP — (2) 32 &k ct(k)e ™. (4.10)

NoE

From (4.9), (4.10) and (4.4), we compute the following commutation relations
(+)
At () A¥ (y) = [A"O(x), A" (y)] = g"iDy (2 — y), (4.11)
(4" (@), 4O (y), ] = giD (w ~ ), (4.12)

1
where A*(x)AY(y) is the Wick contraction of two electromagnetic 4-field potentials (see

Appendix , and where D(()+)(:B —y) and D(()_)(x — y) are the positive and negative

part of Jordan-Pauli distribution

(+) _ i 4 2 2 0\, —ipz _ i d*p —ipz 41
: 3
(=) _ —? 4 2 2 0\ ipz _ —1 d p ipT 4.14

Dy (z) = DS (2) + D) (). (4.15)
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4.2 Duffin-Kemmer-Petiau fields

DKP fields fulfill the Dirac like equation [3-5]

(iB"0,, — m)(x) = 0, (4.16)

where S represent four matrices which obey the following algebra
BB+ BB = B+ . (4.17)

The algebra (4.17)) has three irreducible representation of order 1, 5 and 10. The
representation of order 1 is trivial, the next order 5 represent scalar particles and the
order 10 represents spin-1 particles. For more details of historical development of the

DKP equation we refer to references [6414].

The equation (4.16)) can be obtained from the Lagrangian density

Lok = 508 0(x) — mB () (), (4.18)

where the conjugate DKP field ¢(z) is obtained by

Y(x) =i, n° =2(8%)7 -1, (4.19)

and it obeys the equation

() (i"0, +m) = 0. (4.20)
A particular solution for the S¥-matrices in its irreducible representation of order 5

18

761:

0
0
0
0
0

o O O o O
o O O o O
o O O O =

o O O O
o O O o O
o O O = O

(4.21)

o O o O
o o O O

O O O O O o O o o O

o O O o O
o O O o O

O O O O O O O o o O
o = O O O

O O O o o = O o o o
o O O O O
o O R O O
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A solution for the DKP field ¢(z) in the scalar representation is given by

x) = @y a(p)u” (p)e P* p f(p)u™ (p)e™®
6(0) = | Gpan @+ [ S e, 42
7@ = [P o e + [ TP oy e
o) = | G @ [ e

where a(p) is the annihilation operator of a scalar particle and b(p) is the annihilation

operator of an antiparticle. They obey the commutation relations

[a(p),a’(p)] = d(p — P'),

(4.24)
[b(p), b'(p")] = d(p — P'),

and null for other commutations.

The factors v~ (p) and u™(p) are five elements column vector normalized to get a

positive energy system as follows

utBut = F1. (4.25)

From solution (4.22) we can define the positive and negative frequency solutions

1/](+) and w(f)

(+) d3p T + ipz
P(x) = (27)%17 (p)u”(p)e™, (4.26)
_ d3p — —ipT
¢ = [ S aten e, (1.27)
and by conjugation
- d’p = i
7 = [ e e (1.28)
A d3p - —ipT
= [ e (1.29)
For a global U(1) transformation 69 (x) = ieatp(z), the conserved Noether current
s
3 (x) = e P(x) () (4.30)
where e is the unit charge of a scalar particle and the double dots : ... : mean a normal

ordering product, as usual, to normalize the vacuum expectation value of the current
as (0|7#(z)|0) = 0.
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4.2.1 S(z) function
Now, we want to compute the commutation [¢,(x), %, (y)]. Using
(@) = PP (2) + (), (4.31)
we have
[a(@), B 0)] = [ (@), B, )] + [0 @), 5" ). (4.32)
The second commutation in the right hand side of (4.32) is
) (). T P —— = (o) emibla—)
(v (), "(y)] = on) " b(P)u, (P)e - (4.33)
In order to simplify the expression (4.33)), we will determine the product u—;(p)u; (p)
Replacing @(H(x) from (4.28) into (4.20)), we can obtain the following identity
G @) (83, +m) = 0
d3p t P T (;
7" (PRI G54T, 4 m) = 0,
23 (4.34)
p P ipx
- [l ) - mie = 0
(2m)>
Fb(p> (ﬁ”pu - m)bc = 0.
(4.35)

Multiplying (4.34) by u, (p), we get
uy (P)u=u(p)(8"py — m)pe = 0.

On the other hand, with the use of (4.17)), we could obtain the identities
(4.36)

B (B"p,B%pe — m?) = 0,
B pu(B7py + m)(Bpy —m) = 0.
(4.37)

Comparing (4.36) and (4.35)), we finally have for u, (p)u=(p)
. (P)u=s(P) = C[B"Pu(B Dy + m)]ab

U’a
where C' is a constant that we could compute using the normalization condition (|4.25))
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as follows
Trlu=pu"] =1
Tr[ﬁo “u] =1
CTr(B° B p (B'p, +m)] =1
Cmp, Tr[3°8"] = (4.38)
Cmp,2g"° =1
1
~ 2mpY
where the following properties are used
Tr[ptpre. .. gHen-t] = 0, (4.39)
TT[BMBMQ . ‘ﬁuzn] — g,uluzgu:’,m . ‘gManll/LZn + gM2M3gM4M5 . .gu2nu1. (440)
Replacing (4.38]) into (4.37]), we have
_ 1 v
Ug (p) 7b(p) = 2mp0 [Bupu(ﬁ Py + m)]aba (441)
and replacing the latter result into (4.33)), we obtain
3
N COPRI I ip(a—y)
(0@ T W) = [ g -+ mle ) (4.42)

where we use the notation p = /p,. Following the same path, the first commutation
on the right hand side of (4.32)) takes the following form

dp 1
(2m)3 2mp°

[0 @), 75 ()] = — f [ — m) ™). (4.43)

We can rewrite (4.42)) as

@), 97 W) = Lo lidid + )l |

Bp e lE=y)

Gy 2p b (4.44)

where we can identify the positive frequency part of Jordan-Pauli causal distribution
(4.13)). Using the latter result (4.44)), we define the positive frequency function S in

the following form

S () = %[iﬁ(iﬁ +m)]aw DS (2). (4.45)

Replacing ({4.45)) into (4.44) we obtain

[0 @), 9, ()] = =55 (@~ y). (4:46)
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Working in the same way with the commutation [w((;r)(l‘),%, (y)], it is possible to

write it as follow

[ (@), By ()] =

d3p 1 ip(z—y
=~ | g P ke (447)
= 1 l id(i m —i dg_pieip(z*y)
L+ =i [ e

where we identify the negative frequency part of Jordan-Pauli causal distribution (4.14)).

Then, we define the negative frequency function S(7)(z) as
_ 1, .. _
SU) () = —[id(id +m)w D) (). (4.48)

Replacing (4.48]) into (4.47)), we obtain

49 ), 5 )] = 2550 — ). (1.49)
Finally, we define the function S(z) as
S(x) = S (z) + SO (x) = %[m(za + m)| Dy (), (4.50)

and the commutation (4.32)) takes the following form
— 1
[Va(2), ()] = ZSalz —y). (4.51)

For future use, we will compute the Fourier transform of the Jordan-Pauli and S(z)

distributions. From (4.6), (4.13]) and (4.14)), the following formulas are clear

Dp) = 3-8(" = m*)Sgn(p"). (4.52)
DY) = -5~ m*)O), (4.53)
DO () = 50" — (1) (4.54)
From ([4.45), and it is straightforward to determine
§(0) = GO0 — ) [y + ), (4.59)
5(0) = G Sam@")3* = )i+ )] (1.56)
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4.3 Fermionic Scalar (Ghost) Fields

In this section we will follow reference [93]. We define here two scalar fields u(x) and

u(x)
u(z) = (2m)~92 j%(@( e 7 1 dy (p)le”) (457)
alx) = (2m) "2 jﬁ( L(P)e™7 + dy(p) ) | (4.58)

where the operators d; and d} are the annihilation and creation operators which satisfy

the following anticommutation relations
{d;(p), di(@)} = 0;40(p — q). (4.59)

The positive and negative part of u(x) and u(z) are

d3p 4
Wx) = (21)7 | —==di(p)'e™ (4.60)
u'(x m e’ :
N
u(z) = (2n) 3/2J dpd Je~Pe, (4.61)
i (z) = (2n) 3/2J dp 2P g, (p)ier, (4.62)
dp
~ (=) — —3/2 —ipx
() = —(2m . (4.63)
(z) = =(27) T, hip)e
From (4.59)), the non-null anticommutaors are
dp _
(W), 70} = @n) [ SR DD -y, @40
ds
u(x), u = —(2m e = —1D;, (v —y). .
(9 (2), 7)) = —(2n) [ SR — DD -y (@9

The need for the introduction of the fields u(z) and @(x) is to construct a quantum

gauge theory in the next section.

4.4 Perturbative Gauge Invariance

As mentioned in Chapter 3 in order to begin the construction of the S-matrix, we need
to define the first nontrivial distribution term 73 (z) in (3.5). In the usual approach
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Ti(x) = i : Ly :, where Ly is the interaction Lagrangian. In causal perturbation

theory this is not true.

As an example, we mention the case of SQED constructed with a complex scalar
field ¢(z) which obeys the Klein-Gordon-Fock equation ((]+ m?)p(x) = 0. In order to
obtain a gauge invariant theory, we consider ¢(x) as a classical field that will be coupled
to a classical electromagnetic field A*(z). Using the minimal coupling prescription, we
substitute the partial derivative in the free Lagrangian for ¢(x) with the covariant

derivative D* = 0" + 1e A", obtaining
Lin = —ie A" (0 0, 0) + €2p* @AM A, (4.66)

where e represents the electric charge of the scalar particle.

The problem of using (4.66) to construct 77 is the second order term e*p*pA*A,
which by construction must belong to T5 because in CPT the unit charge e represents
the physical charge and not a simple parameter. What is unquestionable is that 77

must be defined from the gauge invariance property but at the quantum level.

In general, a gauge transformation A*(z) — A*(z), implies that A*(x) and A*(x)
obey the same equation of motion. The latter is equivalent to obtain a transformation
where A*(z) obey the same commutation relation as A*(x). This is possible with the

following transformation

A (x) = e7PMAF(1)eP9, (4.67)
where () is called gauge charge.
By expanding the exponential operators, we obtain
At (x) = AP (x) —iA[Q, AM(x)] + O(\?). (4.68)

On the other hand, consider the following classical gauge transformation but at the

operator level

At (z) = A*(z) + Ao"u(z) + O(\?), (4.69)

where u is a free quantum field which obeys the massless Klein-Gordon-Fock equation

(u(z) = 0. (4.70)

For an infinitesimal parameter \, by comparing (4.68) and (4.69), we can obtain an

equation which defines () uniquely

[Q, A¥(z)] = id"u(x). (4.71)
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The solution for ) from (4.71)) is

Q= J APz, A dyu — (060, AV )u] = f P, AT gu, (4.72)

0

where the integral is evaluated over a hyperplane z” = constant.

If u(x) is a fermionic scalar ghost field, we can obtain a nilpotent ) in the form

Q= 510.0) =0, (1.73)

which can be used to construct a physical Fock space as we will show bellow.

Using (4.2)), (4.3) and (4.57) we can obtain ) as

Q- f ke (k) () ()" — ao () )da() + d ()" (ay () + ao(K))]

(4.74)
= Jd?’kw(k)[cQ(k)T do(k) + di(k)Ter (k)]
where

c1 = ay(k) + ao(k), 2= aj(k) —ao(k), (4.75)

are new operators which satisfy the usual commutation rule
[ci(k), cl(K)] = 6,6 (k — K'). (4.76)

An important result for @), stemming from (4.71)), is the following identity

{QT,Q} =2 J Pkw?(k)[cle; + chey + didy + dids], (4.77)

where we can identify the number operators of non-physical particles. Consequently, we
could use the anticommutation {Q, Q} to define the physical Fock space Fpp,s. Every
physical Fock state |®) € Fpp,s must fulfill the following condition

(Q".Q}@) = 0. (4.78)

Now, returning to the quantum gauge invariance principle, we can see that the gauge
charge @) represents an infinitesimal gauge transformation generator. This allows us to
define the gauge derivative dg for a product F' of Bose fields and even number of ghost
fields and for a product GG of Bose fields and odd number of ghost fields as follow

doF =[Q,F), doG =1{Q.G}. (4.79)
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In order to obtain a gauge invariant theory, we demand that all n-point distributions

T,, must fulfill the following property

<« 0
doT(z1,. .. 2p) = le a—ﬁT:ﬂ(l«l, ), (4.80)
=1
where T /l(gvl, ..., Zy,) is the following time ordering product constructed by causal
perturbation theory
T,y wn) = T{Th(21) ... TY) (1) - . Th(zn) } (4.81)

and T{;I is called the Q-vertex. The property 1’ is called perturbative Gauge

invariance.



Chapter 5

Scattering processes of Scalar
Quantum Electrodynamics at the

tree-level

Hence most physicists are very satisfied with the situation. They say:
“Quantum electrodynamics is a good theory, and we do not have to worry
about it any more.” I must say that I am very dissatisfied with the
situation, because this so-called “good theory” does involve neglecting
infinities which appear in its equations, neglecting them in an arbitrary
way. This is just not sensible mathematics. Sensible mathematics involves
neglecting a quantity when it turns out to be small—not neglecting it just

because it is infinitely great and you do not want it!

P. A. M. Dirac

Here we begin to determine the equivalence between the two approaches to study
scalar QED. The first one via Klein-Gordon-Fock fields (SQED) and the second one via
Duffin-Kemmer-Petiau fields (SDKP). For this goal, we will follow the same spirit that

Fainberg and Pimentel used in |13] comparing the elements of the S-matrix.

As we mentioned in Chapter 1, we will use CPT to consider all sectors of SQED and
SDKP. As demonstrated by Scharf and collaborators in [26], it is not necessary to add
by hand the sectors generated by the vertices proportional to ¢*(z)¢(x)A*(z)A,(z) and
(¢*(z)¢(x))?. In CPT, these terms appears naturally from perturbative gauge invariance

and the causal splitting process. This is the power of CP'T approach.
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In this chapter we compute the following process at the tree level only:

1. Scattering of scalar particle by external electromagnetic field.
2. Moller scattering.

3. Compton scattering.

Bhabha scattering can be studied by crossing properties from Moller process.

5.1 Definition of term 7; for SDKP via Perturba-

tion Gauge Invariance at first order

For a massless gauge field A*(x) we have @ in the form (4.72)) and the following gauge
transformations

doA(x) = id*u(z), (5.1)
dou(z) =0, (5.2)
dou(x) = —id,A"(z). (5.3)

First of all, in order to determine 7;(z) we can use (4.80)) for n = 1

dQTl(QTl) = zé’MTl“/l(asl) (54)

Secondly, due to the adiabatic limit g(z) — 1, the term 77 (z) must contain all kinds
of interactions between gauge and matter fields. As shown by Scharf and collaborators
[38-41], for massless gauge fields A*(z) only in the case with a collection A¥(z), where

a=1,..., N, there are self interactions between gauge and ghost fields.

For SDKP we have only one massless gauge field, therefore 7} contain just the

interaction between electromagnetic and matter current j# in the form

T (1) = i (1) Ay (1) (5.5)

As usual, j#(x) contains DKP fields ¢(z) and t(x). Now, with the help of (5.1,
(5.2) and ((5.3)), the gauge derivative of (5.5)) will take the following form

doT P (1) = dofig"(w1) Au(a1)} = i7" (11)dg Ap(21) = —j*(21)duu(ar).  (5.6)
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From (5.5) and (5.6), we can conclude that in order to obtain (5.4), the matter
current j*(x) must have null divergence. The latter is fulfilled if j# is the DKP Noether
current (4.30)) as follows

Ou" (1) = 0 = AT () = i, TY7 Y = i, [if* (w)ulzn)].  (5.7)
T . . : 1(SDKP) .
inally, replacing (4.30) in the expressions for the Q-vertex 77 " , we obtain the

following form for T}
TP = it (e uan) = de (1) B4 () < u(ay) (5.8)

TEPRD) () = e (1) B (1) = Au(a). (5.9)

5.2 Scattering of DKP scalar particle by static ex-
ternal field

As a first application, we are going to determine the differential cross section do/df2 in
the scattering of scalar by an external electromagnetic field AZ’“.

ext
12 )
A, — A+ Afft, then the perturbative expansion of S Matrix includes a term

If the system includes an external field A¢**, we need to make the substitution

S=...+ Jd%ie () () - AST () + (5.10)

this term is important in the case of a scattered scalar particle by this external field.
Because the initial and final states do not include creation (or annihilation) of photons,

these states are
i = 10 = [ @, o)l (1)]0) (5.11)

outy = |0 ) = j 0ps®;(po)a (p2)[0), (5.12)

where aT(pLQ) are the creation operators for scalar particles with momenta p; » and ®; ;
are wave packets sharply picked at p; and py which are the initial and final momentum

of the bunch of particles before and after the scattering, respectively.

Now, computing the scattering amplitude S;; = (U¢|S|V,), it is not difficult to see



50 5. Scattering processes of Scalar Quantum Electrodynamics at the tree-level

that the unique non-null result is
Sy = e | ataUy] s Bla)80la) : (B AT (o)

Jd4 Jd3 J "p10(p2) ®i(p1) x (5.13)

x (Ola(ps) : ()" (x) : al (p1)|0) AL (2).

In order to compute the term (0|a(p2) : ¥ (x)B"¥(x) : a'(py)|0), we can use the
Wick theorem (see Appendix [A.2)). Therefore, in the Wick expansion only the term

with the two simultaneous contractions a(pg)wi ) and (z )aT(pl) is not null. These

contractions are

a(p2) () = a(ps)d () = JL(QQ) f d—%clwp)u_-(p)em

B (2m)> 1 (5.14)
p _ . _ .

— 3 0 2 — u- e’’’ = U (P2 61}7217

| 0P I P) = ()

(@0 (pr) = vl (o) = [ TR ) (o)

(5.15)

d3p _ . 1 B »
= 0(p1 — e P = u (py)e” P*.
J 2n)? (p1 —pP)u (P) = (P1)

With the help of (5.14]) and ([5.15]), we obtain

(I

(Ola(p2) : P(x)8"p(x) = al (p1)|0) = <0| a(p2) ( ﬁ“@/) a'(p1)|0)

- P2 Qi 1
1

= 3F(p2)ﬁ“u_(pl)e_i(pl_p2)x.

(27)

w(P)e™ (5.16)

Replacing (5.16)) into (5.13)), the scattering amplitude takes the following form

. * I — — —i(p1—p2)x Aex
Sif = Z€Jd4xfd3p2Jd3p1@f(p2)@i(p1)(QW)3U—(p2)5Mu (py)e*(P1=P2) Ae (z)

. % I — — —i(p1—p2)r pex
= Z€Jd3p2fd?)plq)f(pg)q)i(pl)(QW)SU_(p2)ﬁﬂu (pl)Jd‘lxe (p1—p2) A {(x).

(5.17)

Considering a static electromagnetic field, we can replace A" () = A (x) and
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evaluate the integral in z° to obtain

Sy = oy [ @ [ @320 o) 50" (pS(E— E) [ dhae ez
= (225)2 Jd3p2 Jd3p1¢’7(132)‘1)z‘(Pl)u__(m)ﬁﬂu_(P1)5(E1 — E2)<27T>%Au(p2 - p1)
= | &ps Jd3p1¢;(P2)@i(P1)Mif(P1, P2)d(Ey — Es),
(5.18)
where
Alpa — p1) = (2m) [ dbe P A (), (5.19)
Mis(p1, p2) = ——u=(p2) Bu™ (1) A(pz — p1). (5.20)
(27}

With the computation of S;f, we will determine the probability transition P;; defined

as
Py = |Si|%. (5.21)

Replacing ([5.18]) into (5.21]), we have
Py = Jd3p1d3pz¢f(pz)5?f(p1,pz)sz" (p1) fd?’p’ldsp'z@}"c(p’z)@f(p’up’z)@(pi), (5.22)

where

Sip = Mis(p1, P2)d(Er — Eb). (5.23)

Summing over all possible final states

~ [ ~
D Py = (d?’pld?’pzsf}(pl, p2)®; (p1) | d*pid’pySip(P), P5)Pi(Ph) D @4 (p2) P (ph)
f ’ ’ f

~ [ ~
= (d3p1d3p255"f(p1, p2)®; (p1) dsplld3p’25if(P/1, Py)®i(P})d(P2 — P5)

J J

5 roL
= ( d’p1d°pyS);(p1, p2) @5 (p1) | d°pySif (P, P2)®i(p))

J J

_ (d3p1d3p2M£}(P1, P2)0(Er — E2)® (p1) Jd?’p’lMif(p’l, P2)d(E} — E2)®4(p))
(5.24)

where in the last line we used (5.23)).
Using the fact that the function ®;(p;) is sharply peaked around p; and considering

that its width is too small compared with the scale of varying of M;;, we can rewrite
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(5.24) as follows

D P = Jd3p2|Mz’f(Pi,P2)|2 stpld?’p'ﬁ(El — E3) @7 (p1)d(Ey — E2)®i(P1).  (5.25)
!

Computing the ps integral in spherical coordinates, we obtain

3Py = [ a9/ Mig (b [ Ipadlpal | @pid’i6(Es — B! (p1)6(E; - E2)i(p))
f

_ f 4, My (pi. p2) f pol ExdEs f Prd®,5(By — Eo)®t (pr)3(EL — Ey)@,(p))
= Jdﬂz\Mif(Pu p2)|? Jd?’plng/l‘I’f(Pl)@i(Pﬁ) J IP2| E2d B0 (Ey — Es)0(EY — E»)

_ f 40, M (pi, o) j 1P, (p1) 03 (9, i | ES(E, — Ey).
(5.26)

Replacing the integral form of the delta function §(E} — E) = (27) 7! { dte {(E1—Ev!

into (5.26)), we can rewrite it as

D Py = JdQQ‘Mif<pi7p2)|2|pi|Ei fd3p1d3p’1c1>;"(p1)c1>i(p’1)5(Ei - Ev)
f

— [ a0 1.2 Pl B [ i 1)) 2) [ a5t
= [ a6l i )Pl B2 [ de2m) [ @piat(pa)e i (2m) F | i e
Jsz‘le<pl,p2 ?|pi| E:(27) Jdt
[(zw)ijd?»plq)j i(Et— plx] [ §Jd3 D, (pl)efi(Eitfp’lx)]

= JdQ2|Mz‘f(Pi;P2)|2|Pz‘|Ei|(277)2 fdt|(1>(t,x = 0)|2:

x=0

(5.27)

where ®(t,x) is the following free wave packet in x-space

O(t,x) = (2#)_% Jd‘q’qui(q)e_i(eq_qx). (5.28)

Considering that the velocity of the scattered particles is v, the wave packet have

the form
O(t,x) = Po(x + vi). (5.29)



5.2. Scattering of DKP scalar particle by static external field 53

Now, averaging (5.27)) in a cylinder of radius R parallel to v using the wave packet

(5.29), we have

1
f

zI <R
The cross section is defined as

o= lim 7R*) Py (R). (5.31)

R—0
/

Then, replacing ((5.30)) into (5.31)), we get

o — J dmjdﬂ«po(m +Vt)|2JngMif(pi,p2)|2|pi|Ei(27r)2

| <R

1
Y] Jd3x|‘p012 JdQQ|Mif(pi> p2)|*|pi| Ei(27)?

1
- MJdQQIMif(pupz)fz‘Pi|Ei(27T)2 (5.32)
- pi| Ei(2)°
G
= Ei2(271')2JdQ2‘Mif<pi7p2)’27

which tell us that the differential cross section will take the following form

JdQQ|Mif(pi7p2)‘2

do

ag _ 2 72 NE

= (B M(py.p) (5.33)
Replacing (5.20)) into (5.33)), we get
o _
dQ ‘ _
e — B . ie — L .
= @2m)’Ef [ —u(ps)B"u” (Pi) Au(ps — Pi)l[=——u=(Pi)8"u" (p)Au(Pi — Py)]
(2’ (2’

= (2m) E2e*[u,, (pr)uo(ps)]8% [ug (Pi)u=1(pi) Bl As (Pr — Pi)Au(Pi — Py)

- 4(5;;?1;0 T?"[pf(pf + m)ﬂuﬁz(pz T m)ﬁ”]fly(pf - pi)Au(pi —Py)
(2m) E2e? )

= —[pfp;’ + pjyfpu + p“pé’ + p]”cpl- ]Au(pf - pi)Au(pi - Pf),
4p¢0pf0 f f
(5.34)
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where (4.37)) was used in the second line, and the trace identities (4.39)) and (4.40) were

used in next ones.

For the potential A*, we will use the Coulomb potential. Therefore, only the 0-

component is not null and takes the following form

Ze A 2 Ze
Ax) = Ap) =0 5.35
() = A =32 (539)
replacing this potential into ((5.34)), we have
do  (2m)E}e? 0,0 0.0 0.0 0,071 A A
Q9 _ MEEC po : 01 Ao (Df — i) Ao(ps —
dQ ~ dpOp [pipi + Pppy + pypi + pppi]Ao(Py — Pi)Ao(Pi — Py)
(2m) E2e? 0 2 7%
= ———|E, + Ef|"| -—————
ALy | d [7? pi — psl*
_ Z2Ei€4 [Ez + Ef]2
By |pi —pyl*
4E2 (536)
— Z2€4
|pi_pf|4
_ 20 AF?
16]p|* sin*(¢9/2)
2 4 E?

=7 )
© 4p[tsin(0/2)

The latter result is equivalent to that obtained in [10] using the usual approach.

5.3 Causal distribution in the second order Ds(z,y)

After setting Ti(x) for SDKP, the next step is to compute the causal distribution
Dsy(z,y). Following (3.23) and (3.24)), the intermediate distributions in second order
A, and Ry, take the following forms

Ay(z,y) = Ti(z)Th(y) = —Ti(z)Th(y), (5.37)

Ry(z,y) = Ti(y)Ti(z) = —Th(y)Th (), (5.38)
where ((3.13) was used.

Replacing (5.9) into (5.37) and (5.38)), and using Wick theorem to obtain normal

ordered terms, we have
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Ay(z,y) = =T (2)T(y)

— & T (0)Bn() = Tuly)Blutaly) : Ap(x) A, (y)
= 2L Do) Bl (@) B () Batbaly) 4+ Do) B ()0 (0)Btaly) : (5.30)

0 ) ) Bl 5 D) Bl @)D () Bialy) 1
x [: AM(I)AV@) : +Au(x)Au(y)]7

where the field contractions are

Al(2)A"(y) = [A"O(2), A"V (y)] = g"iD§" (2 — ), (5.40)
dul)ih(y) = [WO@), 9] = 185 ~ ), (5.41)
Ba(s) = [FO@). 6O W) = —55 - ). (5.42)

Replacing (5.40)), and (5.42) into (5.39), we obtain
Ay(w,y) = +€2B4 82 Do @) (@) 0o (W) ay) + iguw DS (z — y)
= A (@) S5 (= o)t Au@)Ay)
+ €008 Da@)a(y) : 557 (@ —y)  Au(@) Au(y)
— 2By — ) S (@ — ) A () Auly)
— B8 ()T0) 558 (v — Digu DS (w — y)
+ €238, B o (x)haly) - %Szgf (@ — y)iguw Dy (x — y)
B 5y — )54~ y)igu D (& — )
@B D) ()T (y)a(y) = Au@)Auy) -
which can be rewritten as
Ay(w,y) = AL (2,y) + A3 (,y) + ALY (2, y) + ALY (2,y) + AFD (@, )
+ €200y o () ()0 (y)0aly) = Au(@)Au(y) -,

— =

(5.43)

(5.44)

where

A0 (@) = +E B0t D) ()0 )baly) : igu DS @ =), (5.45)



56 5. Scattering processes of Scalar Quantum Electrodynamics at the tree-level

AP ) =~ BB (D) < 155 (0 — ) - Aua)Au)

B . (5.46)
+ B8  Va@)ta(y) 557 (@ — ) Au(@) Au(y) -
AP w.9) =~ 55— 015 (@ — 9) : A0 A ) (5:47)
Ao = =0 W) S gD e
+ Bl Tu)aly) 25— )igu DS @ ), |
AP ,y) = B S5 0 — 1) 25w~ p)igu DY — ) (5.49)
Similarly for R)(z,y), we have
Ry(z,y) = RO (y,2) + B2 (y,2) + RO (y,2) + RV (y,2) + RO (y, 2) (5.50)
+ 8580 Pa) ()o@ ul) 2 Au(y) A () :
where
Ry (a,y) = +€ 88t - Da(y)n(y) b (@)bal)  igu DE (y = ). (5.51)
RE(0,9) =~ 8485 (T2 5 7550 — 1) Au()Aulo): 552
B Do) TS (0= 0) s Auy) Au(e) |
R (.) = 0755 @ = 0180 =) s AL . (655
Ry, 2) =~ 850 ) D) - 55 (0 — )igu DSy — ) -
BB Dal)ule) : =Sy — w)igu DYy — ), |
RP(y,z) = 28" gd%ks*;;)(a: - y)%Séf (y — 2)igu DS (y — ). (5.55)
The causal distribution D, is obtained by the subtraction as follows
Dy(x,y) = Ry(x,y) — Ay(w,y) = DY + DI + DY + DY + DY (5.56)

where

DY = i€, : Buly)Bltn(y)bel@) Biatbale) (DS (y —2) = DV (@ =) . (5.57)
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ol X
D(;) D(2>
(O

D(Z)

(4) ®)
D, D,

Figure 5.1: General graph for processes in the causal distribution Ds(z,y).

D —ie? (2t (S5 (@ = y) + S5 (@ = ) Biatn(y) = Au(p)Au(a)
e D)8l (S — o) + Sy - 2)) Bta(@) = Au)Au(a) -
DY = ETr["S ™ (y —2)8"S ) (v —y) = 575D (@ — 4)5" 5 (y — 2)]x
%+ Au(y) Ay (o) 5

DY = —e2g : P(2)8[ST (= ) D{(y — ) + S (w — ) DS (w = )] (y) -

+ g P(y) B[S (y — 2) D (y — 2) + SO (y — 2) DS (x — )] 89 (@) -,
(5.60)

(5.58)

(5.59)

DY — 4231 (y — 2)8" S (@ — y)ig DS (y — )

5.61
— 2B (@ — )8 S O (y — 2)ig,, DS (= — ). 6!

Each term Déi) represents different processes in the S-matrix and their diagrams
are represented in Fig. [5.1]

5.4 Moller scattering

Now, we will determine the differential cross section of Moller process which consist in
the elastic scattering of two scalar particles b(p;) + b(¢;) — b(ps) + b(qs) where p;  and
g¢i.¢ are the initial and final momentum of particles after and before the interaction as

usual. Therefore, the in and out states take on the following form

inngoter) = [T @ i) — j 1P (p)®,(qn)al (pr)al (1)), (5.62)

loutytoner) = [Vp) ® [y = Jd3p2d3Q2‘lff(pz)<1>f(Q2)aT(p2)aT(qz)\0>, (5.63)
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where {WU;(p1), Vr(p2), Pi(q1), Pr(g2)} are the wave packet functions sharply peaked in
{pi, D, Gi» qr}, respectively.

Taking into account that the causal splitting procedure does not transform the quan-
tized fields, in the computation of scattering amplitude {outyoerer|S|inMoeler) just the

term coming from Dél) will be no-null. Consequently, we will determine the contribution
to Ty(z,y) coming from Dél).

Using the property D(()H(a:) = —D((f)(—x), we can rewrite Dél)(x, y) in the following

form
DM (@, y) = g = O(y) B0 (y)d(x) B () - (DS (y — ) — DS (@ — y))
¢

= ?ig,,  U(y) B0 (y)o(x) B d(x) : (~D§ (w —y) — DSV (@ —y))  (5.64)
= —%ig DY) B ()b () 8°¢(x) : Dol — y),

where we can see that the numerical part of Dél) is Do(x — y).

5.4.1 Causal splitting of D,

We will begin the causal splitting in momentum space. From (4.52)), the Fourier trans-
formation of Dy(x — y) has the following form
~ l
Do(p) = 5-0(p*)Sgn(»") (5.65)
The power counting function p(a) for Do(p) is determined using (3.91). With this
goal, we first have to note that the form of ﬁo(g) is

~ 7 _ _
Do(g) = 55(1920& 2)Sgn(p’a)

- 2
10 _
=5 §(p*)Sgn(p’a).
T

(5.66)

After that, it is not difficult to conclude that for p(a)) = a2 we obtain the following

no null limit

tim p() (Do(2), F(p) ) = (Dolp). Flp) ) # 0. (5.67)

a—0

From 1} the singular order of Dy is

w[Dy] = -2, (5.68)
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which means that ﬁo(p) is a reqular distribution and its splitting in retarded and
advanced part is

Do(z —y) = 0(2 — y°) Doz — y) — 0(y° — 2°) Do (x — y)

ret adv (569)
= Dy (z —y) — D§% (z — y),

where Dit(x —y) = 0(2° — y°)Do(z — y) and D3 (z — y) = 0(y° — 2°) Do(x — ).
From the splitting 1) and 1) the second order retarded distribution Rél) (x,y)
is
Ry (2,y) = ~€%igu BBt Duly)o(y) () alz) - D" (5.70)

Finally, using (3.29)), (5.70) and (5.45) we are able to determine the contribution

(1)

T2(1)(:v, y) for S-matrix coming from D3’ in the following form

T(e,y) - B - R

i zguuﬂabﬁ” D)) 0 (x)t0a(x) Dre% — 1)
— [e2Bl8 < V(Y0 (x) ()  iguw DS (y — )]
= —¢ Zg,wﬁ 2 D () () (2) () - <Dret< y) + D§(y — x))
= —e zguyﬂabﬁ L Da ()Y (2) () (D — y) — DS (@ — 1)
= —%igu BB+ Vu () Vs (y) 0 (2)ha(x) : D (x —y),

(5.71)
where DY (z) = Diet(z) — D(()_)(x) is the well-known Feynman propagator for massless
scalar field.

5.4.2 Computation of differential cross section

The S-matrix term S (g), which contributes in the computation of the differential

cross section for Moller scattering, takes the following form
&) L PRI )
SPNg) = 5 | dyd 2Ty (2, y)g(2)g(y)- (5.72)

Recalling the equations (5.62) and (5.63]), and taking the adiabatic limit for the
computations, we have the scattering amplitude as

SO = Coutaro| Slinarey

_ 3 3 3 3 ® * S(Mo) (573)
= | &’pad’qy | d’p1d” 1V (P2) P (a2)S;r 7 Vi(p1) Pi(an)
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where

SO = (0la(ps)alaz)SVal (pr)a’ (q1)]0)

~ Ola(pa(as)y; | dydeTy (@ y)al (pr)a'(@)]0)
= 5 [ atudtactigup 0t o - )
< Olalp2)a(as) : Tuly)n(s)T(2)a(z) - o' (pr)a’(@)]0)
1 ( L4 B (5.74)
) d*yd xe”igu Be,BeaDy (x — y) X
< Ola(po)a(a) : 6, W)y~ )6 @i (@) < ol (pr)a! (a)|0)
= —% (d4yd4xe2igwﬂgbﬁng§(m —y)x

% Ola(pa)ala) P @)L @) ()l (x)al (p1)al (a1)]0).

Using Wick theorem and the contractions (5.14) and (5.15)), we could reduce the
expression ([5.74]) as follows

S0 = = 5 | dudtactig, D8 = - )
Py T Y = =T
< Ol + alp)alaz) B, ()i (@)l ()0§ (@)a (pr)a (@) +

+ Ee@ ) P @) ) (@)al (pr)a (an)+

+ S @ D @ el @)a (pr)a ()

[ I I 1

+a(p2)a(ae)ty WP @) el ()l (pa)al (@) | x 10)
= 5 | avdtactigu et @ - )|

2l
L = @) (pr)e Y (qy)e
(2m)2 (2m)2 (2m)z (2m)z

—iq1T

—ip1x

L)L (g

(27)% (P2) (27) (a)
- o ,
P )
v

1 .
+ T Uy (ai)e ¥
2

1
%ud (p1)e (27)

(2m)

Nlw

—iq1T

w, (p1)e " uy (qu)e

+

(2m)?

1 — —ip1x 1 ur (qq 6—iqw .
(27r)% uy (P1) (27r)% » (d1) ]
(5.75)

1
(2m)?

Njw
Njw

(2m)
! u_*c(pz)ei””’g—1 U (qe)e' Y
(2m)

_|_

N|w
N|w

(27)
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The four integrals in ((5.75)) can be evaluated by the following formula

Jd4xd4yD(})7'(x o y)eiA:C-i-iBy

_ Jd4r6i(A+B)rJd4uD(I;’(u)ei(AQB)u

—iku

= (27)*(A + B) f d*u[—(2m)~* f iy — el
k2 + 0
. (5.76)
4 —4 4 4, i(—k+258)u
_ (27)'5(A + B)[(27) Jd kaHOJdue( A58
1 A-B
= 2m)6(A+ B)[— | d* -
@) 5(A+ B)[- [ dhgdk+ S5 )
1
= (2m)'6(A + B)[—
(On)'5(A+ B) ]
with the substitutions
xzr—i-g, yzr—g, sz;y, u=x—uy. (5.77)
Therefore, (5.75)) can be rewritten as
5}?4") =6(q2 — q1 + p2 — p)M, (5.78)
where
M = I () By (i) By () e+
(2m)2 L0 ° P2)Pathy TP A Peatta 1 (g2 — q1)* + 10 (5.79)
_ I 1 ’
— - — v -
Pl ()l B (1) 5o |

In Appendix [B] we perform the computation of the differential cross section for a

general value of M. Here we will use its form in the center-of-mass reference

doc.m

s

= (2@2%21/\/1?, (5.80)

where o, is the differential cross section in the center of mass reference.

The factor [M|? for the Moller scattering is computed using (5.79)) as follows
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M =

et 1

= G [ B (e a8 ()

SIS BN D
(o) (@) (a8 () 3|
— — P v, — ]'

X [U‘(pi)ﬁyu (py)u=(ai)B"u (‘WWJF

(@) o (R (PO ()
_ e [ 1 GuoGuw

(2m)t L16m*pSpldsas (a5 — i)

x Tr{pf pf +m)Bp.(p, +m B“’}Tr{gf +m) i (¢, + m)BY )+

+ GuaGvw
16m4pfp?q?cq? (ar — @i)*(q5 — pi)?

< Tr{p,(p, +m)B°p,(p, + m)B"4,(d, + m)B"q (4, + m)B* }+

+ 1 JuaGvw
16m*plalasp; (a5 — pi)* (a5 — a:)*

< Tr{p,(p, +m)B4,(d, + m)B"d (d, +m)B"p,(p, + m)B*}+

N 1 GpaJuw
16m*pqlqtpy (a5 — pi)*

X Trdp,(p, + m)B°d,(d, + m)B=YTr{d (4, + m)B"p,(p, + m)B} |

(5.81)

X

X

The traces in (5.81]) could be re-expressed with the help of properties (4.39)) and
(4.40). We obtain from (5.81])

1 [p1Qz+pZQf+prZ+prf qlpz+qqu+pfpz+pqu]
(2 )4 16E4 (Qf - qz) (qf _pz)

IM|* =
(5.82)

We can reduce this result further by taking into account the center-of-mass reference
frame. The result is

L | (pigi) + (qrq:) L lap) + (prai) 2_ (5.83)

M2
M| (27r)44E4 (g7 — pi)? (pr —pi)?

Using the Mandelstam variables

S
s=(pi+a)=(pr+q)% 5~ m?® = pig; = pray, (5.84)
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t

t= (pi —Pf)2 = (Qi - Qf)Qv m?® — 5 = PiPf = qiqy, (5-85)
u

u=(p;—qr)° = (¢ —ps)*, m*— 5 = Pids = 4Py, (5.86)

we can rewrite (5.83)) as

M = et 1 |s—t s—ul (5.87)
© (2m)416E4 | wu t '
Replacing (5.87)) into ((5.80]), we have
docm o7 |s—t s —ul? (5.88)
dQ  ds| u t | '

where « is the fine structure constant.

The result ((5.88)) is identical to that obtained by C. Itzykson and J. B. Zuber in [94]
using the usual approach, and by J. Beltran in [95] using CPT with Klein-Gordon-Fock
fields.

5.5 Compton scattering

The Compton scattering is the following process
b+~v—0+7, (5.89)

where b represents an scalar particle and v a photon.

Using the creation and annihilation operator formalism, the in and out states will

take the following form

[incomp) = Vi) ® |®;)

(5.90)
_ f 0y W, (1) Bk )a (p1)es (K ) (k1) [0).

loutcomp) = [Vy) ® |Py)
(5.91)
_ f oW ()@ (k2 (p2)e (k2 (k2)[0),

where VU, ;(p1) and ®; s(ko) are wave packet sharply peaked in p; s and k; y. Besides

i and ey, are the initial and final vector polarization for photons.
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The transition matrix element Sy; = (Outcomp|S|iNcomp, i then

Sﬁomp = Jd3p2d3]€2 fdgpldgqu:j;:‘(pQ)@?(kQ)gﬁomp\Ilz<pl)@rL(kl), (592)

where

SE = (0la(pa)e pu(ka)cu(ka) Sal (pr)ew (ki )eh (ki)]0). (5.93)

Because of the creation and annihilation operators in , only the contribution
for S coming from DéQ) will produce transition matrix element Sj({;omp non-null. There-
fore, we will focus on determining the contribution of 75 from D§2) which we rewrite as
follows

DS =e?i - P(x)BYS(x — y) B (y) = Au(y) A () -

— % (y) S (y — x) B () = Auly) Au() -

To begin the causal splitting procedure, we can see in ((5.94)) that the numerical of
DgQ) is S(z —y).

(5.94)

5.5.1 Causal splitting of S(z — y)

In momentum space, the function S(p) is given by the following formula

A~

Sab(p) = i[p(p + m)]abﬁm(p)
m (5.95)

- L[p(p +m)]ad(p® — m*)Sgn(p®).

2mm

In order to determine the order of singularity, we will compute the form of Sg;(p/cv)

Sul2) = g=lpo (g + )b = m®)Sgn(pa) o0

— g+ ma)lud (5 — 0 Sgn(sa),

Using (5.96)) and (3.91]), we can see that for a power counting function p(n) = 1, we
obtain the following non-null quasi-asymptotic distribution

i p()S(2), F0)) = (o [ppladp?)San(r'), F)) # 0. (397

Therefore, from ((3.92)), we can obtain the order of singularity

w[S(p)] = 0, (5.98)
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N

which means that, unpredictably, S(p) is a singular distribution.

The retarded part of S (p), is given by 1) Replacing (I5.95|) into (I3.94|), we have

A~

o) = 80060 [ et Sy
- %Sgn(p ) j_oooo i Slgn(po)z'm) 27:m [tp(tp + m)Jawd (9" — m*)Sgn(tp”)
- %Sgn(]?o) j_oooo L a—— ;gn oD Qﬂim [£2p]ad (9% — m?) Sgn(tp°)
- %Sgn(po) fo; dtt i—it Slgn P00 27:m [tpm]ab5(t2p2 —m?)Sgn(tp°).

(5.99)

We can reduce the two integrals in (5.99)) using the symmetry properties presented

in Appendix [A.6] For the first term in the right hand side of (5.99) we use (A.31)), and
(A.30]) for the second, obtaining the following result

o) = 5= Sanls!) [ty s (P — ) Sty
i N 2t i 2 2 2 0
# 5 San(s") | e st (P — ) Syt
= %[p(p + m)]ab{%SQH(pO)L dtt(l — Q;gn(pO)im) %5(252192 —m?)Sgn(tp°)}

= %[ﬂ(}/‘ + m)]ab{%Sgn(pO) L ’ R t2il;";fl]9(20>¢0+) -

(5.100)

From |D we can compute that the order of singularity of D,, (p) is w[ljm (p)] =

—2. In addition, because Dy, (p) is odd, using |) we can see that the factor between

braces in the last line of (5.100)) is D**(p). Consequently, the retarded part that we are
computing S™(p) = 7o(p) is equal to

S (p) = [p(p -+ m)] D5 (). (5.101)

Furthermore, as expected for the tree level, the causal splitting for S(z — y) could

be done as usual
S(x—y) = 5™z —y) - S*"(x —y), (5.102)

but, CPT tell us that this splitting is not unique because the order of singularity
of S(x — y) implies that the more general solution for S™(z — y) (which is given by
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(3.69)) has the following form
Sret(z —y) = S™Hx —y) + Cé(z —v), (5.103)

where (' is a 5 x 5 constant matrix which is not fixed by the causal-split procedure.

On the other hand, in the causal distribution ((5.94)) the numerical part of the second
term to split has opposite sign in the variable. The latter means that the retarded part

of S(y — ) has the following form

Sret(y —x) = =5 (y — 2) + C"8(x — y). (5.104)

With the help of (5.103) and (5.104)), the retarded distribution RY is

Ry =c%i : ()8 (S (x — y) + Oz — )8 (y) == Au(y) A, () :

” (5.105)
— i s h(y) B (=S (y — ) + CS(z — y)B“(z) = A (y)A,(z) : .

Finally, making the difference 7. 2(2) = Rg) - R;@), we obtain the two point function

associated with the Compton process in the following form

2) _ R§2) _ R’2(2)
= [e%i - (@) B (8™ (w — y) + Co(x — ) B"Y(y) == Au(y)Au(2) : —
— % P(y) B (=S "y — ) + Co(w — ) B (@) = Auly) Ay () <] -

—[EH BT s 5O ) A A) : +

FPB Pyhi(a) s SOy — ) - Ay) Aul) ] (5.106)
= &% P(x)BY(S™ N w —y) — ST —y) + Co(x — y)) Bv(y) : x

< Auy)Al() : +

+ €%, (1) Bl (Se (y — ) + S (y — 3) — Cpod(w — ) Blytba(x) : X

<t Au(y) A, (o) :

Using as usual
SF(x) = 89 (z) — S™H(x) = =S (x) — 599 (), (5.107)

we have for ([5.106])

T3 (2,y) = €% : Y(2)B"(— ST (x — y) + Co(x — ) B*U(y) = Au(y) Ay (@) -

- (5.108)
+ €% P(y) (=S (y —x) = C"6(x — y)) B¢ (@) = Au(y)Au(2) : .
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Because the symmetry of T2(2)(x, y) in the interchange of variable z = y, we can see
that C" = —C', and finally obtain

T3 (2,y) = €% - Y(2)B" (ST (x — y) + Co(x — ) B*¢(y) == Au(y) A, (@) -
+ €% P(y) B (=S (y — x) + Co(x — 1)) B"P(x) = Au(y) A(x) : .

5.5.2 Fixation of constant C

Because D§2) (x,y) is a singular distribution, the causal splitting procedure (based on
causality and gauge invariance at first order) give us a family of 2-point causal dis-
tributions T2(2) (x,y) represented in the freedom of constant C'. To obtain the physical

solution, we must use other physical properties of the theory.

Graphically, the Compton scattering has two external photon legs, this allow us to
use perturbative gauge invariance at second order to determine C'. Then, we need

to compute the gauge derivative dgT5(x,y), this result is

doTs(x,y) = dg [62i () B (=S — y) + Cd(x — ) B"(y) = Au(y)An(z) :
W(

% Py (=S g — ) + O3 — ) (e) = Au(y)A(a) : |

— 2 (@) (—ST (@ — ) + O8(w — y) B () = i0uly) Au(a)

+ 6% P()B (= STz — y) + C(w — ) BU(y) = Au(y)id,ulz)

+€2@:@(y)6“( Sy — ) + Co(x — y)B ¢ (x) == Au(y)idu() ;

4 6% Py) B (ST (y — x) + Colz — ) (x) = i0uuly) A(a) :
(5.110)

Defining Q¥ as
@_( 2)BY[=S" (z —y) + Co(x — y)]B"(y) : (5.111)
Y (y)B[=S"(y — x) + Cd(a — )] B e (2) -,
we can rewrite , as

dQlr9) = 03 (@ wAE) )~ ERQ) A

+ %700 (QU = Au(y)u(x) 1) — 205 (QU) + Au(y)u(z) - .

zy

From (5.112)) and (4.80)) it is clear that, to get gauge invariance at second order,
Q44 must fulfill the following conditions

a,(Qu) =0=20u(Q4). (5.113)
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Taking the first derivative of (5.113)), we obtain

O™ =: oy (x) B [=ST (x — y) + Co(x — y)]B*(y) :
+: ﬁ(x)ﬁ”[ 055 (x —y) + COLo(x — y)]B"d(y) - (5.114)
+:p(y)Br=0sST (y — x) + CoLo(z — )8 Y () -
+: ()P =S"(y — x) + Co(x — y)]BY oY (x) - .

Besides, considering ((5.101)) and (4.50]), we can write the DKP Feynman propagator
S¥(z) as

SF(x) = S (z) — S (z) = =S (z) — S*(z) = —%[i@(z’& +m)|DF(z). (5.115)

In order to reduce (5.114) we must obtain the derivative of S¥(z). The latter can
be done regarding (5.115) and the S-matrix algebra (4.17) from the computation of
(i¢ —m)ST (z) as follows

(i~ m)SF () = 768 — m)(id + m)] D (2)

— L igq - im0 (0)
_ L33 + 2000 — idm?| D ()

m 1 (5.116)
= = [i#00 + igm*] D" (z) — —[~2if0 — 2i¢m’] D" (z)

idS* (x) = mS* (x) + E%(:c)

Now, to obtain the derivative of S¥(—x), firstly we will compute the conjugate
transpose of S¥'(z) using the property *T = n°grn°

(8" ()" = —%[—w’f‘*(—z‘&* +m)| D" (z)
= i i+ m)l(m) [t
- —no%[—z’é(—zé +m)](2r) d4p$no (5.117)
= L [id(—if + m)]D" (~a)
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Secondly, using ((5.117]), the conjugate transpose of (5.116)) is

(757 (2))! = (mS* (x) + - 75(a))
=0, S (=) B = mn ST~ — <35 () (5.118)

(4
m

—i0, 8" (—x) " = mSF(—x) —

Finally, replacing (5.118)) and (5.116)) into ((5.114)), we have

Oua@Q" =2 ith(x)m[=S" (x — y) + Co(x — y)]B"(y) :

+ 1 p(x)[miST (x — y) — %55@ —y) + 0,xCo(x — y)]|8"Y(y) :
1

+ 1 (y) B [=imST (y — ) = —§o(z —y) + CFo(x — y)](2) :
_ m (5.119)
+19(y) B[S (y — @) + Co(z — y)|(—imp(z)) -
=+ )[——4/3‘5( )+ Cd3(x —y)] B (y) :
v @(y)ﬁ“[—%%(@ + Od3(z — y)o(e) -
which tell us that to get quantum gauge invariance, C' must be
C = % (5.120)

where [ is the 5 x 5 identity matrix.

5.5.3 Computation of the differential cross section

Replacing ([5.120)) into (5.109)), we obtain the 2-point distribution associated with the
Compton process T2(2) (x,y) as follows

T(r,y) = & B3 (-5 (@ —y) + 6w —)B0() = A)A) :
+e%i s p(y) B (ST (y — x) + %5(1: —y)B"Y(x) = Au(y) AL (z) - .

To sort the computation, we will denote as 552) the term of S-matrix associated
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with the Compton scattering. Using (5.121|) SéQ) can be written as

1
S =3 f dhed'y Ty (, y)g(x)g(y)

= —% fd4xd4y62i () B S (2 — y) B (y) = Au(y) Ay (@) Jg(@)g(y)
B (5.122)
=5 [l ST - 280l 5 A4 el

+ 2 f &' D)8 @) = A () A () : P(a),

where in the last integral we have joined the two ones coming from the Dirac delta
functions. This latter term can be seen as a graph where we have two photons
and scalars in the same point. As pointed out by Akhiezer and Berestetskii in |10],
an advantage of DKP theory is that this term does not appear as in that developed by
the Klein-Gordon-Fock equation. But, from , it is indisputable that such term

appears because of the singular nature of the associated causal propagator.

To continue our computation, we will decompose 5’52) in the following form

S =, 8 4, 52, (5.123)
where ,
e“1 — .y
o8y = — | d'a D (@) BlBlta(r) = Au(x) Ay(z) - ¢*(2), (5.124)
e —

) = - J d'zd'y : Y(2)BY ST (x = y) () = Au(y)Au(z) : g(x)g(x)

N (5.125)
e —

— 5 | dhed'y :U()B S  (y — 2)8 () = Au(y) Au() - gla)g(a).

The operator transition amplitude distribution Sﬁomp will be written as
gjgomp -, SZ(?) +4 Sz(]%) (5.126)

Considering the adiabatic limit g(x) — 1 and the expression ([5.93)), the terms aSi(]%)

and bSi(]%) take the following forms

e%i

59 = S [ e Olato) : B85 0() <ol (o]0
x (Olea(ka)ca(ka) © Au(x)Ay(z) : gia(ke)cl (k1)]0),

(5.127)
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WSy = _? f d'zd'y(0la(p2) : ()BT (x — y)B*Y(y) : a (p1)]0)x
x (Oleps(ka)cs(ka) © Au(y)Au(z) : ia(ke)c] (k1)]0)—
== | d'ed'y0la(p2) : ()" S (y — 2)B8"(x) : ' (p1)]0) % (5.128)
x (Oless(ka)cs(ka) : Au(y)Au(x) : gia(ke)c] (k1)]0)
- _e%f d*zd*y0la(ps) : ¥(2)BS" (x — y)B"P(y) : a' (p1)]0)x

x (0lesp(ka)ca(ks) : Au(y)A,(2) : gin(kr)cl, (k1)|0).

Before reducing the expressions ((5.127) and (5.128]), we must consider a real polar-

ization vector g, with the following properties
e, =(0,e), ek=0, €& =1, (5.129)

and we need to determine the contractions between the electromagnetic potential field

AH(x) and a creation or annihilation operator for photons. This contractions are

7 | l—|(+)

erp(kj)es(ky)Au(z) = epp(ky)es(ky) AL (o)

3 | 1, forp=1,23
| —3/2f d kc| (K)Tee x rp

= erp(k;)cs(k;)(2m)
j j Vow " L e,
B " 1, forpu=1,2,3
— e7p(k;)(2m) 2 | —=0,50(k; — k)™ x
J \/ﬂ H j 1 o Y N
= (27r)—3/25#r35f—»5’(kj)6ikjm y 1, forpu=1,2,3
V2w; -1, for p =0,
= (27r)—3/2€fﬂ_(kj)eikjm
(5.130)
1, = )
Au(fﬂ)giﬁ(kj)cﬁ(kj) = Au (x)gzﬂ(kj)cﬂ(kj)
N d3]€ ! —ikx 1
= 0 | 50 )l o)
N N (5.131)
aha om0k —k)emHeis (k)

= (2m)7%2 €in(k;) oiki

V2w
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Using Wick theorem and contractions ((5.14)), (5.15)), (5.130]) and (5.131)); the vacuum
expectation values in ([5.127)) are
(Ola(p2) = ¢ (2)8" B ¢(x) = a'(p1)|0) =
—
= (0]a(pa) : () Bl Blutba(w) - al (p1)]0) (5.132)

! (p2)ﬁ'uﬁ U (pl)efi(plfpz)m’

" 2t
Olesalla)anie) : o)A (a) s ella)ah ()0) =
= (O0le (k) an(ks) - Au(@) Ay (2) © cialhes)al, (:)[0)

+ (Ole s (ka)a(ks) - Au() Ao () : eakr)al (k1)|0) (5.133)
sEsu(ke) i (ki) oilk1—ks) _3€pv(ka) Ein(K1) it —ka)e
— (2 k) (2 1-ka)e
(2m)~ NI Cm = ey v ¢
Replacing (5.133)) and (5.132)) into (5.127]), we obtain
aSl(?) = 5(]?1 — p2 + kfl - kQ)Mm (5134)
where
M, = i u=(p2) BB v (P1)[efuciv + € 1uEip]
a m(2ﬂ_)2mm pQ pl fuciv freip (5 135)
. o :
ie

B m(27)24/2w14/2ws [u__(p2)¢f¢iu_ (p1) + Fa(p2)¢i¢fu_ (p1)]-

The computation of bSi(J%) from (5.128)), is similar. The difference between the two

calculation processes lies on the S¥ function between the S-matrices that aSi(J%) does
not have. The final result for bSZ.(]%) i

et 1

—u”o(p2) BBy (P1)] %

Efﬂ(k?) €il/(k1) Jd4 4, QF ipox—i tkoy—ikix
d*uS p2x—ip1y ikay—ik1
X [ \/7 22 m ray da(x y>€ €

erv(ka) gin(ka)
\/2&}2 \/20.)1
= 6(p2 + ko — p1 — k1) M,

(5.136)

Jd4xd4y55;(x o y>eip2x7ip1yeik2x7ik1y]

where

e [u_(pz)%(zfl — ko) (p, — Ky +m)¢ u (p1)
zﬁm (p1 — k2)2 — m2
(Pz)s‘ff(ﬁl +E)(p, + k- m)dus (pl)

(p1 + k1)? —m?

(5.137)
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Regarding (5.136]) and ([5.134]), the transition amplitude Sﬁomp could be written as

SE = 6(pa + ky — p1 — k)M, M = M, + M, (5.138)

Using the result (B.25)) from Appendix [B] the differential cross section in the labo-

ratory system is given by

da’ W?E

ao _ 2 Xf s 2 5.139
A0 (271-) mw; |M(pz7 klapfa kf)| . ( )

where
IMP? = [IMy|* + MEMy + MEM, + |[My|?, (5.140)

and, because the sharply peaked form of the wave packets, we have the following change
of variables

p1—Dis D2 —pp ki ki, ke — kg (5.141)

Before computing the terms in (5.140]), we must take into account two properties.
Firstly, because we are working in the laboratory system, we can fix p; = (m,0). The
latter has the following consequences

pici =0, pigg =0, (5.142)

which complement the polarization conditions that in covariant notation have the fol-
lowing form

5iki = 0, é?fk?f = 0. (5143)

Furthermore, the denominators of fractions in the brackets of ((5.137)), will be reduced
to
(pi — k)®> —m® = —2p;k; = —2muwy, (5.144)

(pi + ki)? — m? = 2p;k; = 2muw;. (5.145)
Secondly, we will find traces with the form
Tr(fd Ay .. Ay = (A1 A5)(A3.Ay) . (Agp_1.Asy) + (A A3)(Ag.As) ... (Agn. Ay).
(5.146)
Then, using ((5.142)), (5.143)) and (5.146)) we can construct many null traces. As an

example we could mention
Tr[.. %ﬂ% ...] =0, (5.147)
Tr|.. .pigz‘f.}éf ... =0, (5.148)
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Trl...¢,p4,. .1 =0, (5.149)

and other combinations.

Now, returning to ([5.140|), we have

64

|M,|* =

16m (2 )4wiwpip$ <Tr[pf(¢f m)gpf (P, m)g g+
+ Tr[pf(pf + m)¢f¢1pz(pz + m)¢f¢z] + TT[}”f(}ﬁf + m)¢1¢fpz(pz + m)ﬁiﬁf]—k

FTrlp, (5, + Mg, + m>¢f¢i1),
(5.150)

et 1 1
3 @) e gl 2l L Py + 2R By I Ep)
¢! 11
<=k m)i(p" +m)] = m3(2m)48wiwy 2mpl 2mp] "

X TT[(¢z‘¢f + ¢f¢,)3”f(?f + m)%(ﬁz + kz)(ﬁz + ki + m)z(pz + m)],

MM, =

(5.151)
M = oy Uy IR B = )
(?l - kf + m)¢fpl(1751 +m) ¢f (p, — kf)(pl - kf +m)¢,]
~ Tomiamyinr T B+ A~ k)
X (p, — kf4+ m[#, B, + M, + K@, + K+ m)g] 515
" TomimyiaaE P Wy T mE Pt ki)
X (p, + Ko+ m)Ep B, + |, [, — k)@, — Ky + m)g]

* 16m*(2m)tww? [pf(p + mﬁ,t% + k) %
X< (p, + K+ m)gp,(p, + mE](p, + k), + K+ m)é ).

Before continuing, we can see that the boxed terms in ([5.151)) and ([5.152)) are sur-
rounded by other which nullifies the traces where they belong as in (5.14745.149)), in

consequence

MEM, =0=M;M,, |M,?*=0. (5.153)

For | M,|?, there are null terms in (5.150)) because the products gP L ¢fpi¢2., ;‘Zplgff
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and ¢ pr¢ It Avoiding this terms and those with odd number of S-matrices, we have

4

|Ma|2 - (Tr[pfpf¢f¢lpzpz¢l¢f] +1r [pfpf¢f¢zpzpz¢f¢z]

e
16m* (2 )wiwpip}

Ty o) T 7))

4 (5.154)
e
= Ami(g;.e 2)
16m4(27r)4w,-wfp?p(} < (ei-25)
= ¢! (ei.64)°
AT twwrmEs 1
Replacing (5.154)) and (5.153)) into (5.139)), we obtain
d etw?
—0 = —fQ(e’iiff)Z
dQlLab  1672m2w;
" (5.155)
W )
= W (Ef.Ei) .

)

In the framework of Klein-Gordon-Fock equation, the result ([5.155) was obtained
in and using CPT in [95].






Chapter 6
Radiative Corrections.

In desperation I asked Fermi whether he was not impressed by the
agreement between our calculated numbers and his measured numbers.
He replied, “How many arbitrary parameters did you use for your
calculations?” I thought for a moment about our cut-off procedures and
said, “Four.” He said, “I remember my friend Johnny von Neumann used
to say, with four parameters I can fit an elephant, and with five I can

make him wiggle his trunk.” With that, the conversation was over.

Freeman John Dyson

As we saw in the previous Chapter, in the tree level the computations of differen-
tial cross sections via Klein-Gordon-Fock and Duffin-Kemmer-Petiau frameworks are
equivalent. In this chapter we will compute the vacuum polarization tensor and the

self energy function of DKP scalar particle.

6.1 Vacuum polarization

It is not difficult to see that the term which contributes to the vacuum polarization
tensor is (5.59)). That term is rewritten as follows

DY) = —i: A, (y) D" (z,9)A,(z) (6.1)
where
D =i Tr[3" S (y — )85 (w —y) — ST (@ —y)prS Ty —2)].  (62)

7
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As before, to obtain the contribution for 75 coming from Dé?’), we have to split the

numerical part

D (z) = ie*Tr[" S (y — 2) S (@ —y) — B4 (x — )" ST (y — )]

6.3
= ie’[P""(z) — P*(—2)]. (63)

where

P(z) = Tr[g7 S (=2)8S ) (2)], 2=z —y. (6.4)

To obtain the order of singularity w of D*(z), we will determine its Fourier trans-
form. From (6.3)), it is clear that we just need to determine the transform of P"#(z)

which is equal to

Pk = (20 [ P (a)e™
(6.5)
— (2m)7 Jd4ZT7‘[ﬁ”S(+)(—Z)5“S("(2)16“”-

Using the trace properties (4.39)) and (4.40]), and replacing the expressions of S(+)(—2)

and S (2) into from (4.55)), we obtain

) = o | AlpOG)0P — O (-” — K)S((p + k)7 — m?)x

m2(2m)

x mA[4ptp” + 2k*p” + 2p"kY + KMEY].

(6.6)

At this point, it is useful notice that because of the two delta functions and the
expression in brackets, we have

k, P =0, (6.7)

which means that P*”(k) has the following form

PO (k) — (B — K2g"™)B(K?), B(k?):;—];mu, (6.8)

where
Pr(k) = ——am?[1 K d*pO(p")o(p* — m?)O(—p° — k06 (k2 + 2k 6.9
) = Gyedm? = 5] [ 4'pO0)30F — O (= — K60 + 26p). (69

To continue the calculation, we can note from the step and delta functions of

that k is time-like, the latter means that we could do the integral using a special
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reference frame where k = (k°,0). Consequently, we have for the following

f dip. . — J dpO (M3 (5 — m2)O(—p° — K5k + 2k.p)
= [ @ [ dPO0P)5( ~ EDO(-4 — K6(0°) + 24°49)
(6.10)
= [ @ [ a5 00°  B)O(” — KIS+ 2005")

1
_ J T Fp — KIS + 240 By).

Evaluating the integral in spherical coordinates and using E,dE}, = |p|d|p|, we have

1
Jd4p. = 47TprdEp|p|ﬁ@(—Ep — k")6((K°)* + 2k°.E,). (6.11)

P

From the delta function we can determine |p| as

0 0)2
S((O)? + 2k°.B,) = — % o (k'4)

—m?=|p|. (6.12)

Replacing (6.12)) into (6.11]), we obtain

f dip.. —ar f FodE, “?2 — m20((K)? — Am?)——0(— By — K)3((K)? + 249 E,)

2E,
(k°) 1 0 0y2 2
=T\ mQE@(—k: JO((K”)” —4m?).
(6.13)
Finally, we get for the following form
Pr (k) = —— k21— T o ke (K — 4m?) (6.14)
a (2m)4 k22 ' '

Going to a general reference frame and replacing (6.14) into , we obtain for
P (k) the following result

. T kP kY 2
Prk) = 6(27r)4( k2

4dm

- gMV>k2[]_ - L2

120(—k)O((K°)2 — 4m?). (6.15)

On the other hand, using that m — Pm(—k) and (6.15), we have for the
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Fourier transform of D*(x,y) the following form

D (k) = ie*[P7(z) — P (=2)] (k)
= ie’[P""(k) — P (—k)]

e T (O ) (- )3[@0{0)—@(—k°>]@<(k°>2—4m2)

6(2m)* \ k2 K2
ie2k2m s kPkY , 4m2n 2
- _6(27T)4 < k2 - gM ) <1 — ?> Sgn(ko)@((k0)2 . 4m2)‘

(6.16)

Since the tensorial part of D" (k) does not affect the causal splitting process, we

will rewrite (6.16)) as follows

ie’r  krkY

D™ (k) = _6(27r)4( k2

— g")d e, (6.17)

where the factor d"*¢ is the numerical distribution to split and is equal to

4m2 3

12 12Sgn(k°)O((k°)? — 4m?). (6.18)

de(k) = k*[1 —

Now, we need to compute the order of singularity of d"*“(k). From (6.18)) it is
straightforward see that
4m2a? KO K°

ooy — ka2 - 500

« 2 «Q o

)2 —4m?). (6.19)

In consequence, for the power counting function p(a) = o2, the following limit exist

4m?a? s K?
12 ]2Sgn(g)] = k*Sgn(k°). (6.20)

lim p(a)d”“c(ﬁ) = lir%[kQ[l -

a—0 o

Therefore, using the relation (3.92)), we can see that the order of singularity of d"*¢
is
wld"*] = 2, (6.21)

which means that the distribution is singular and its retarded part will be given by
the formula (3.94). Considering the fact that d"*(—k) = —d"*“(k), we can use the
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Appendix result (A.31])

vac _ L 0 r 2dAvac<tp)
) = Sl | ot
0
g [ 2R R Sn( ) (0 — 4m?)
0
0
; 2k2[1 — 4215 Sgn (tk°)O (12 (k)2 — 4m?
=LSgn(ko)Jdt [1 — 7] gn(. O (K") m)‘
2 (1 -2+ iSgn(k°)0*)
0

Now, because t > 0 we have Sgn(tk°)Sgn(k’) = 1. Furthermore, going to the

reference system where k = (k°,0), and making the change of variable s = t2k‘02, we

can rewrite (6.22]) as
. R 021 _ 4m? 2(1.0 2
Tfuac(k> _ LJdt2k [ t2k;2] G(t (k ) —4m )
0 27 t(1 — 2+ iSgn(k°)0+)

Td 1K) KO 1 fg 130(s — 4m?)
= S

J 2k0%\/s\/5(1 — 25 + iSgn(k°)0+)
o0

- (6.23)
= 02 f ds - 7: 2
— o7 +iSgn(k°)0)
4m?2
- Ik
_ g st . E .
27 . s(k% — s +iSgn(k°)0+)
4m
Using the Sokhotski—Plemelj formula
Lp = PV() Fimd(x) (6.24)
T+ 0" T mol), '
we can rewrite (6.23)) as
@ 2.3
i(k0)" 1 2y
see(k) = PV | d e
ri) = =5 PV f 5SRO = 9)
4m?2 (625)
1 4m2 3
~ 0 0)2 2 3
—inSgn(k")O[(k°)* — 4m ](k0)2[1 - (kO)Q]Q}'



82 6. Radiative Corrections.

Now we need the intermediate retarded distribution r*%¢. The latter is the term
coming from P*(z) and its expression is

4m?

(k) = R [1 = =5 [2O(-k)O[(K)* — 4m?]. (6.26)

Finally, the numerical part of the two-point distribution t**“(k) is computing as the
subtraction

(k) = 1 (k) — ' (k)

0y [1_@]% Loy 0 0\2 2 4m2%
=5 (k) P.V41L dsm+§(k )2Sgn(k")O[(K%)? — 4m?|[1 — (k0)2] }
R - e ke (k)? — 4]
i goppy [ gD
= o (k) P.V4nLd NI
Loy 0 0 0)2 2 4m® s
+ 5 (K)*{Sgn(k°) + 20(=k")}O[(K)* — 4m*|[1 - W]z}
i geppy [ g 1D
- 27r(k ) P.V4nLd S((k0)2_8)+
L 0)200(k0) + 0(—KNO[(K9)? — 4m?]1 dm® g
+ 5 (R)HORT) + O(=£)}O( )—m][—kT)Q]}

(k0)4P_V J ds% + %(kO)Q[l B 4m

]

27

_ L 0\4 r s[ _%]%
B 27T(k ) 4£ d s((k0)2 —s)
" (6.27)

With (6.27)), we can write the more general solution tve¢ for the two point distribu-
tion. Because of its singular order w = 2, £**¢ has the following form

5% 2.3
- i [ _ 4m ]5
frac(py — k,O 4 dg—— s 1 Lo kQ.

( ) 27_[_( ) f SS((I{:O)Q _ 3) + Co + Cq + Co (628)

4m?2
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Finally, with "% we can write the vacuum polarization tensor II*”(k) as

. ietr  kPkY
(k) = _6(27r)4< k2

,u,u)?vac

(6.29)

< 2.3
(K0 kR, [1— 4m2]3 ) )
= {12(27’()4( k2 -9 ) J dSm} +C()+Cak5 +02k‘ .

4m?2

To obtain the constants Cy and C5 we need to determine the complete photon
propagator. This is possible if the order of singularity of the distributions associated
with two and more vacuum polarizations insertions have the same value. We will see

this in next Chapter.

6.2 Self-Energy

To study the self-energy function of scalar DKP particle, we start with the causal

distribution ([5.60) which we rewrite here as follows

D3V = g, 0(@)8 [-5 (@ =)Dy (@ —y) + S (@ — y) D (@ — )] B (y)

+ €2, 1 () B[S (y — 2) DS (y — ) — SOy — 2) DS (y — 2)18"¢(x) - .
(6.30)

For future uses, we rewrite too the intermediate distribution R'™ (z,y)

Ry (y, ) = g : $(2)8°S T (w — y) Dy (@ — ) B"P(y) -

SRR o (6.31)
+ € g V() ST (y — 2)DsP (y — )8 () : .

Again, to compute the order of singularity, we will work in the momentum space,
therefore we must determine the Fourier transform of the numerical parts in (6.30)). To

do the computation, we introduce the functions A(z) and B(z) as follows
Alr —y) = A(2) = ST()DG (2), (6.32)

B(z —y) = B(2) = SM(2)D{"(2), (6.33)

where it is easy to note that if we obtain the Fourier transform of these functions, then

we could evaluate the Fourier transform required.
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Replacing 1' and | in 1} the Fourier transform fl(k) has the following

form
Ak) = (2m)7? f d4z{ m(;jr)?’ J 80 — m®)O () — m)]abew} §
% {ﬁ j\ d4q5(q2)@(_q0)6—iqz}eizk
= _m(z;yl JP d4p5(p2 . mQ)@(—pO)[p]5((kJ _p)2)@(p0 o /{JO)— (634)
iz | AP0 = Ol (k- )06 K
where
A, (k) = —ﬁ fd4p5(p2 —m*)O(—p)ps((k — p)*)O(p° — £°), (6.35)
Aall) =~ [ 00 = )0 i (k=IO K. (630

To compute the integral fll(l{;), we will separate the term proportional to p° in the

contraction p = Bop® + Bip* obtaining

Au(k) = _#ﬂyxﬁvjd%(s(?z —m?)O(—p")p"((k — p)*)0(p° — k°)
- _—m(;nﬁ)4ﬁofd4p6(p2 _ m2)@(_p0)p05((k B p)2)@(p0 . ko)_ (6.37)
_ —m(g;,)z}ﬁl Jd4p5(p2 _ m2)@(_p0)pi5((k N p)Q)@(po . ko).

The second integral in the right hand side of (6.37) is null because p’ makes anti-
symmetric the integrand. To calculate the first one, we will use a reference system
where k = (k°,0), thus we have

- m
Ai(k) = —Wﬁojd4p5(p2 —m?)O(—p°)p’s((k —p)*)O(p° — &%)
(6.38)
m 1
— —Bo | @ps((K°)? + 2k°F O(-E, — k).
gt | SR + 2K, + )0y )
From the last delta and step function in (6.38]), we can compute |p| as
m2 — (k02
K = —, — [p| = [p| = L (6.30)

2k0 7
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then, using spherical coordinates, we obtain

A m 1 1 m? + (k)

Ai(k) = ———=[p4 2d o(F
m 1 1 m? + (k)
= g | EylpldEy (B, + )
m(27T)42/80 ﬂ-f p|p’d P2’k0|5< P+ Zko )

(6.40)
m 1 1 m? — (k°)? m? + (k°)?
= mryi 2 g f Eo( ) AEp0 (Ep + —5—)

1 m2 2

= e~ Ve

+ 1)FO(K: — m2)O(—kY).

Now, we will compute A, (k) which can be rewritten as

. S fd4p5(p2 —m?*)O(=p") B Bup"0((k — p))O (" — K°).  (6.41)

Aslk) = ~m(2m)

For the same parity reasons of the integrand, we can show that for p # v the integral
is null. For example
1
Ag(k’) = ... —6163 Jdgp

m(2m)? p'p* (K" + E(p))* — p*)O(° + E(p)) ...

(6.42)

2E(p)

Using the particular representation (4.21]) of the S-matrices, we can write the integral
(6.41) as

1

Ay (k) = —m(Qﬂ)4ﬂ“6yfd4p5(p2 —m*)O(—p")p.p"d((k — p)*)O (" — k°)}
pop® 0 0 0 0
) 0 pipt O 0 0

= Tz fd“pé(pQ —m)O(=p) | 0 0 pp? 0 0 x

0 0 0 p3p® O

0 0 0 0 pp”

x 8((k —p)*)0(p° — k°)}.
(6.43)

Also in that representation, just the entry (5,5) is relevant after multiplication with

the fields ¥ and W. Therefore, using the following result

2.0 0 0 0
02 0 0 0
1 ) L
=10 0 5% 0 0 | (6.44)
00 0 2 0
00 0 0 p?
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we can writd]] (6.43) as follows

Ay (k) = _m(;w)‘l 5”4/52 Jd4p5(p2 B (6.45)

From the delta and step functions of (6.45)), we could obtain the following properties

m2 — (k0)2

_ 0 _
Ep =~k —Ip|=Ipl = — 5

m? — (k)2 < 0. (6.46)

With the help of (6.46)), the integral (6.45)) can be evaluated in spherical coordinates
and a reference system where k = (k°,0) as follows

Ay(k) = _m(217r)4 5;5” Jd“pé(ﬁ —m?)O(—p")p*6(k* — 2k.p + p*)O(p° — k)
_ m@lﬂ)mzﬁl B f d3p2£1?p5((/€0)2 + 20 E, + m?)O(—E, — k)
- Ok )0~k T )
X Jp2d|p|i5((k;0)2 + 2k°. B, + m?) (6.47)
- ORI
x JdEp5(W + Ep)
- SO — O 1~ )

Replacing (6.40) and (6.47) in (6.34)), we obtain for A(k) the following result

1 m2 2

Alk) = Ok = m®)O(—k) 155 (s D{( + b+ S8°8.), (649)

where the return of a general reference system has been done.

Now, we will compute the Fourier transform of B(z). Replacing the explicit forms

1Other form to solve the integral is noting that it needs to be proportional to g"¥ to have Lorentz
invariance.
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of S™)(z) and D((]+)(z) into (6.33), we have for B(k) the following form

B(k) = (27)72 J d* 25D (2)DSY ()™, -y =2
3

- (2n)" f P [ S Iptp+ e} s [ e e
" il | 48— O ol + )L} (3((k ~ p)OK )

(6.49)
= d'pd(p* — m*)O (") [p(m)]a {6 ((k — p)*)O (K" — p°)}
d*po(p* — m*)O (") [P(P)as} {0 ((k — p)*)O (K" — p°)}
= Bl( )+ By(k),
where B;(k) and Bsy(k) are
Balk) = ~gprsef | a'm 87 = OGNS~ pO ). (650)

By (k) = — 5u5ufd4p5(p2 —mHO")p p"d((k — p)*)O(k® — p°). (6.51)

1
m(2m)*

The integral (6.50|) is zero for p = 1,2,3 because in those cases the integrand is
odd and the integral interval is symmetric. The integral for ;1 = 0 could be done in a

reference system where k& = (k°,0), in that case we obtain the following form to solve

By (k) = _2(2—1@460 Jd?’pé((ko)z —2k°E, + m»O(k" — E,). (6.52)

Solving the delta function of (6.52), we get that k° = E, + |p|. After that, using

the two values of k° in the step function we could see that just k° = E, + |p| is not

k02 2
2k0 Y

therefore k°° — m? > 0. With these properties, we could rewrite the integral 1) as

zero, which means that £° > 0. On the other hand, we can obtain that |p| =

By () =~ @O = m)h (4) [ pRdpIS((R): 2K, + )
1 0 02 N k0% — m? 1 (k%)% +m?
_ _m@(k )oK —m )50(47r)2—k()depEp’2ko‘5( o~ Fo)
1 0 9 9 m? m?
- OB — ) (1 = )L+ Tk
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The computation of the integral By (k)) is similar to the one done for Ay(k). Using

the criterion of Lorentz invariance, we get the following intermediate result

A

By (k) = _mﬁuﬁu f d'pd(p* —m*)O(p°)p" " s((k — p)*)O (K" — p°)

m(;ﬁ; % Jd“pé(p2 —m2)Op°)p*s((k — p)*)O(K° — p°) (6.54)

1 H 1
— m(2n)! % f p <m2>E5((’“0)2 — 2k°E, + m*)O(K° — Ey).

From the delta and step functions in (6.54)), we can determine |p| as

m? + (k)2
k= Ep + |p| = Ip| = % 24 (k9% > 0. (6.55)
Using spherical coordinates, we obtain
Balk) = —5 s RO — i) (4n) [ Pdlpl L-0(( — 2°E, + m?)
(2m)*t 4 E,

_ m_ ("B 2 9 Jk(ﬂ m? 0 0 )
TGRS T OK)OK? — m?)(4r) | —5—dE (k") = 2K°E, + m?)
_om BBy o 2 92 koz_mZJ 0\2 7.0 2
20 4 O)O(K* —m?) (4m)—5— | dEO((K')* = 2K° B, + m?)

2

™M g VoK — -m?

s P OO —m?) (1~ ),

(6.56)

Replacing (6.53)) and ( into - we get

B(k) = By(k) + Ba(k)

| 0 2 ., (6.57)
:_<47T)3@(k )G)(k: )(1_ﬁ){(1+_)k+ -8 Bu}.

With the computation of B(k) and A(k), we will return to study the numerical
parts of (6.30) that we rewrite here as follows

DY = ie? : P(x)iB[-S <—wD$N——>+$”<—wD“N——nww<r
2. 9(y)(~)B Sy — 2) D (y — ) — SO (y — 2)DS7 (y — 2)]8"p() -

=z:@(f€) P (@ = y)(y) - i D) DI (2 = y)(a) -,
(6.58)
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where D}%lf and D}glelf are the numerical parts which we have to study in order to

obtain their order of singularity. Using the expressions of A(z) and B(z), D7 and

D7 could be written as follows

DY (x —y) = B[Sz — y)D§ ) (x — y) + S (z — y) D" (x — )] B*
— ie®B,[~A(x — y) + Bz — y)]8",
Dy (x —y) = (—0)e*Bu[ST(y — 2) DS (y — 2) = SOy — )D{ (y — )18
= (—1)e*Bu[B(y — ) — Ay — x)]8".

After that, we can take the Fourier transform of and . For DS f , we
have

Dy (k) = iBa[~A(k) + B(k)]5"

(6.59)

(6.60)

- 1 2 2 .
= iBa[ = = m*)O(—k") 5 (s — D (G + Dk + 5576,
1 2 N (6.61)
~ O —m) (= {4 N+ s, Y15
1 2
— ifa[ ( )3 ()0 — m?)(M — 1 (1+ T+ D, V]
where and are used.
Now, using the follow properties of S-matrices
BHBY By = B, (6.62)
BB BB = 4, (6.63)

we finally get

DF! (k) = 1(47103 (k) (K — m2)(7;§—22 - i+ %;)Bakﬁo‘ + 2 BaB 88"}
= (471T)3 (kO)@(kQ . m2>(% 1){(1 + —)% + 2m}
(6.64)
On the other hand, we can see that
DY (z) = =Dy (-2), (6.65)
then
Dy (k) = =DV (=k)

m2 6.66
= Z’[ngn(k“)@(k2 — m2)(ﬁ - 1){ 1+ —)k: + Qm}]. (6:66)



90 6. Radiative Corrections.

With DY (k) and D7¢ (k) computed, we have to calculate their order of singular-
ity. To achieve these objectives, we must analyze the form of ﬁ}gelf (g) that we write

bellow

~ k 1 kO m?a?
Self (KN _ . L —272 2
DI (Oé> 1(471_)359”(&)@(@ k m )( k2

a2

A0 0 2m).

(6.67)

It is straightforward to see that with the power counting function p(a) = «, we can

obtain the non null limit

s our 1 kO m’a?
: Setf By g o 1 K —272 2 _
2 POIPEER) = I teligy Son IOt =) T =)
2,2
{0 g ) 0%
= 2(47T)3Sgn(k: YK+ 2m) # 0.

Using (3.92), we could see that the order of singularity for D7/ (k) and D7¢ (k)

are

~ A

D5 (k)] = w[ D5 (R)] = 1. (6.69)

Therefore, retarded parts could be obtained using the equivalent formula of (3.94))

in a special reference system where k = (k°,0)

ASelf 10y _ L 0ye+l 0 1 20
7S lf(k, ) = 2 (k") qu {(qo — i0)+1 (k0 — ¢O +z’0)] d(q").

» (6.70)
¢ 0\2 0 1 70
= e [ | =g 4
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Working first with Dself (k), we have the following computation

)2 0 o1 0
qu (q° — i0)?(k® — ¢° +zO)] ti [(4n)359n(q )
x O(g" —m )(? - 1){(1 + m—)g + Qm}]}
mk? 0 1 N
~ 64nt qu [(qO)Z(ko — +i0)] Sgn(a)Olg” —m)( 5 —1)
K" 0 1 0 2 _ 2 m_2_ ﬁZ
1287t qu l(q0)2(k0 P 20)] Sgn(q")O(¢" —m”)( 7 D1+ 7 )d
= Tl(ko) + 7“2(/{?0),
(6.71)
where
0 = mhk*” 0 1 a2 oy
ri(k7) = ey qu [(qO)Q(k‘O O ZO)] Sgn(q”)©(q° —m~)( 2 1), (6.72)
’ *_k—OZ 0 ! n(q®) x
ra(K) = 12874 qu [(30)2(;{50 — _; 20)] Sgn(q") 673
x O(¢" —m )(? -1+ ?)g

Solving the integral ry, we have

2 2

0 mk® 0 1 0 2 2y (M

- — - —1
mk® [* 1

_ 0
= Gant ), e -

m?)(1 — m—) [(k(ﬂ qQOQ2 + ikOO)]

mk® [* 1 m? 1 2 (6.74)
= ds=0(s —m?)(1 — — " —
J, de5eto = mt s>[<ko2_s+ikoo>1q s

mko% (*® 1 m? 1
= ds=(1 — — O(s —m?
it ), 15 S)l(k02—s+ik00)] (s=m)
=711 + T2,
where .2
K m [ 1 1
k%) = ds— O(s — m? 6.75
ru (k") 64(7)4L2 ’ {(W s+ik00)] (s =m), (6:75)

1
s 82 [(W — 5+ ik°0)

] O(s — m?). (6.76)
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To solve the integral r1;, we can use the Sokhotski—Plemelj formula (6.24)) as follows

E%m [ 1
7“11(]{70) = J ds [(k02 _ s+ iko())] O(s — mz)

= K m4 : ds [PV( 021 ) — z'7rSgn(k’o)é(lco2 —5)O(s — mQ)]
64(n) J, 2 k0% _ (6.77)
m * 1 1 . 0 02 m2 .
m “{502 — 2‘ . 0 02 2
= 61(7) [log S~ irSgn(k”)O(k°" —m )] .

Now, solving r15 in the similar form, we have

kozm © 1 m2 1
) =- -—— 2
riz(k7) = 64(m)* J;nz dss s [(k02 — S—i—iko())] O(s —m*)
k.02m3 0 1 ' ) B 2
a _64(7T)4 fmz dss—2 lPV(‘kOQ —_3) —imSgn(k°)o(k" — 5)O(s —m )]

k0% m? © ds 1 1 , (k" — m2)
- PVJ , W[S_Q + m] - ZWSgn(kO)T (6.78)

- ingn(k‘O)ﬁ@(k’OQ - m2)]

m2

k02

m m . 2
l—l + W 10g m + ZWSgTL(kJO) @(1{?0 — m2)] .

Replacing (6.77)) and (6.78) into (6.74]), we get

7”1(]{7(]) =T11 + T12
m [ k0% — m?|

61(r) — —inSgn(k")O (k" — mz)]

m 2 m2 m2 9
YRV _1 —1 e — y 0y 02 2
+ 64(77')4 [ + 1,02 0og |l{202 — mQ\ + ZWSgn(k )k02@(k m )]
mn m? ‘k02 —m?| m? . 0 02 2

(6.79)
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Evaluating r,(k°), we obtain

k)=~ J | iy Somta w10+ g
2
:?_é;ﬂﬁfﬁfQQQlw2—5512wm]@@2_nﬁx%;_lw
:_ég%%ﬁfwfwgzLﬁ—q$+2wm]@@%”#x%;_mf’qﬁ_ﬂ
02 0 4
:_igfﬁ%ﬁﬁﬁé[WQ—;+%MQh%%_1>
= 191 (k%) + 792 (K, -
where (0:50)
Tm(ko)_'_(é;)(k%3(4i)350J::dsl [Hﬂ s%+2k0ﬂi](_1)’ (6.81)

ralh) =~ W [t e

2 k0% — s + 2k9%0

The integral (6.81]) could be solved as follows

0 1 ong 1 * o1 1
) =~y 8 e | o o) )
b e 1 * 1 1 -
= (271’) (k ) (47T>3ﬁ0 Jm2 ds |j{;02 s+ 2]{:020] 6.77 (683)

1 |/{302 2|

— ingn(kO)@(k02 - m2)] .

Working with (6.82), we obtain

0 £03m A wd 1 1
raa(k7) = ms4@) s | 07— s 1 2k040

kOS 4 o] 1
:?“Jl%f @;PW(

) — ingn(k‘O)é(k’OQ —5)O(s — mQ)]

12874 k0% — s
k.O 1 m2 ‘kOZ 2’ . 0 02 2
= —Wﬁo [5 + W + /{; (logT — ZWSgTL(/{? )@(k’ —m ))

(6.84)
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Replacing (6.84)) and ( into , we have

7"2(]{?0) = 7"21(]{?0) + 7”22(]{30)

k° 1 m?
= 50[ +

T PR (6.85)
4 k:02 m2
+ (% —1)(log | | — mSgn(kO)@(ko2 — m2))]

With r; and 7, given by the expressions (6.79) and (6.85)), we obtain for ?f U (k0)

the following form

P (1) =
=11 (k°) + ro(K°)
L m’ |k02 —m’| m? .. 0 02 2
= 64(7T)4m [—1 +(1— k—)log S — (1- W)mSgn(k; )O(K*" —m?)
—1 0—1 1 m m! |k302 - m2] . 0 02 2
= 64(n)" [ m +m(1 bg)(log’b 1| — irSgn(k°)O(k°° — m?))
1 % ka % 1 2 . 0 02 9
~~ 5r0r — 5 — Dlog b — 1 - _
" 6a(m)? [ 1~ op2 gl — DUog o™ — 1] —imSgn()O (K™ —m”))
1 ok 1. k1
- 64(7r)4[_m_1_ﬁ+ m(l=35) = 50— )}x
X (10g ‘b2 _ 1| _ mSgn(kO)@(ko2 . m2)>],
(6.86)
where in the last line we return to a general reference system and b? = %

The intermediate distribution for that part is the term of (6.61]) proportional to
A(k), that term is given by

1 2 2

(4@3@(—;@0)@(1{;2 —m?)( — 1){(1 4 —)k + zm}] (6.87)

) = il -

Therefore, numerical part of the 2-point distribution 77(z,y) in momentum space
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is given by the subtraction

£ () = 75 () — 5 (k)

St T AR

64()4 12 2
X (1og 2 — 1] — inSgn(k°)O(k** — mQ))]—
1 0 2 s ﬂ2_ m_2 (6.88)
(il @AOO —m*) (g = D{(1+ 75k + 2m )
e? Kook 1 ko1
- W[_m_l_2_b2+{m(1_ﬁ)_§(b_4_1)}x
x (1og b2 — 1| — inO(k** — mQ))].
Because of the singular order w = 1, the general solution is given by
2
sy o ¢ [ kK L,k 1
(k) 64(7T)4l Moy T {m(l ) 2 1)}X 6.59)

X <log b? — 1] — iw@(kﬂz — m2)>] + Co + Chk.

Now, we will consider the causal splitting of Dﬁlf . Because its order of singularity

w = 1, the retarded part is given by

el 0y _ i 0\2 0 1 ~sel 0
00 = s 0 [ | e | D)

q —q
- o0 [ | i |
llggSmaot w0 = 0 o am
B (21413:5) J ’ [(qoy(ko i o iO)] Sgn(d”)0(¢* — 77@2’)(7;—22 —1)
15;24 J ! [(q”)%ko ¢+ 2‘0)] Sgn(a")0 (e - mZ)(’Z—; D+ q—;)g
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where r; and ry are the same of (6.72]) and (6.73)). Therefore

P (K0) = ri (k) = ra(K°)
1 gk kol
:W[_m+1+@+{m(l_b_) E(ﬁ_l)}x (6.91)
X (1og b2 = 1| = imSgn(k*)O (k" — ]

The intermediate distribution associated with 77¢"/ (k%) is given by the term propor-
tional to B(—z) of (6.31)). The Fourier transform of that term is

FI ) = ~Df(—2)
= —ifu[B(-R)]5°

= —ifl O RIOU — m) (1 = ) - (L Tk + G0 e
1 o 1 |

= i Ke0 - )(1_b—2){ (1+ bz)%—l—Zm}

_ ¢(471T)3@(—k0>@(k2 —m?){ — (1 —)%—I—Zm(l _ b_12>}

(6.92)
where the properties (6.62) and (6.63]) have been used.

The numerical part of the 2-point distribution 77;(x,y) in the momentum space is

given by the following subtraction

trp! (k) = 771 (k) — o (k)

ARt R TRE
X <log 6% — 1| — irSgn(k°)O(K° — m2))]—
_ {z'@@(_kp)@(ka — m2>{ —(1- b_14>% +2m(1 — %)}} (6:93)
e? Kook k
- 64(7r)4[_ R AR CIEI R (RS

Again, because of the order of singularity w = 1, the general solution is given by
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the following formula

e (k) = ¢ l m+k+i+{ (1—l)+%(l—1)}><

64(m)* 2b? b27  2°b4 (6.94)
X <log b2 — 1| — in® (K — m2))] + C5 + Cyk.
Using we conclude that
trr (k) = 7 (=k). (6.95)
Returning to the configuration space, we get
1,9, > @) (= y)e(y) -
?(yﬁf?lf( —y)u(z): (6.96)

(@){t7 (x — y) + Cod(z — y) + C18"3(z — y) }(y) :

LY
E(y){t”%lf(y —a) + C3(x — y) + Cad"d(z — y)}b(x) =

Using the symmetry property of 7T}, under the permutation of variables, we see that
Co = C3 and C; = C4. Therefore, we rewrite T2(4)(a:, y) as

(4) e . .
T (2, y) —f-l_b(x)ﬁ(fv Y)v(y) : (6.97)

where

| ==
+
—~
—
—_
|
| —
N~—
|
DO S
~—~
| —
|
—
S~—
——
X

. & 1
56 = gy ™53
x <log|62 1| - inO(k* — m2)>] + Cy + Ok

2

S

Similar to vacuum polarization, to obtain the constants Cy and C7, we can determine
the propagator loop corrections for a scalar DKP particle. Therefore, we need to prove
that the processes with more than two self-energies loop corrections have the same order

of singularity. We will see this in the next Chapter.






Chapter 7

(Re)Normalizability of SDKP

Because it contained speculations too remote from reality to be of interest

to the reader.

Nature Editors to Fermi

As we saw in Chapter 2, the causal splitting procedure for singular distributions
left constants that we need to find with the help of physical properties different to
causality. Because this procedure occur at each order in the perturbation expansion of
S — matrix, we can use the singular order to define when a theory is renormalizable,

non-renormalizable, and super-renormalizable in the following form:

e We call a theory renormalizable when at each order of perturbation, a finite

number of constants appears from the causal splitting procedure.

e The theory is non-renormalizable when the order of singularity increase at higher

order of perturbation.

e A super-renormalizable theory implies a finite number of constants for the low

order of perturbation expansion.

In this chapter we will investigate the renormalizability of the SDKP theory assum-

ing that the intermediate and causal distributions have the same order of singularity.

99
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e
(a) (b) ()
(e) ()

(d)

Figure 7.1:

Figure 7.2:

7.1 Order of singularity of the intermediate distri-

butions by an independent contraction

In the computation of intermediate distribution, we have the tensorial product of two
n-point distributions 7, and 7T with numerical parts ¢; and to, respectively. From Wick
theorem, many graphs emerge combining many different kind of contractions. All these
graphs could be constructed as combinations of what we called independent contractions

as shown in Fig. [7.1}

For the purpose of this thesis, we will determine in a general way the order of
singularity of a graph coming from [ independent contractions of the form (a), (b), (c),
and (d) in Fig. We will denote by &(z,, — ys,) these contractions as shown in Fig.
(2
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Before using Wick theorem, the n-point distributions 7, and T have the following

H V(g )t 1:1,...,%75)1_[1#@”] HA Tm;) (7.1)
=1 =1

7j=1
where n represents the number of external ) DKP fields (or ¢ DKP fields) and m the

number of external electromagnetic four potential fields. Note that we do not write

form

explicitly the Lorentz index, as we will see later, that will not be necessary.

After the [ contractions from the tensor product 7,7y, we will obtain the following

numerical part
!

b, ) ([ [ 6, — o) oyn, - 10), (7.2)
J
where j =1,...,1.

Using the translation invariance of ¢; and t5, we can rewrite (7.2 as

l
tl(Il Ty ey Tp—1 — x’/‘)[n G(xr]- - ysj)]tQ(yl T Yss ooy Ys—1 — ys>7 (73)

J
where we can see that there are 4r + 4s — 4 independent variables.

To evaluate the calculations simpler, we will introduce a new group of variables &,

pr and p as
€J =Ty =Ty, Pr=Yr—Ys, P = Tr —Ys, (74)
where J = 1,....,r—1and I = 1,...,s — 1. The new set of variables allows us to

rewrite the numerical part (7.3)) in the following form

l
t1<€17 cee 757“*1)[1_"[ 6(£Tj — Ps; + p)]tQ(ph SR 7p8*1)

(7.5)
= t(gb s 751“—1’ Py 7p8—17p)7
where t represent the numerical part of the new graph.
Now, we will compute the Fourier transform of f(f, 0, p) as
£<p17 sy Pr—1,415- - -5 451, q)
_ d4r—4§d4sp€iﬁg+iiﬁ+iqpt g,ﬁ,p
f ( ) (7.6)

l l

l
:fn[d‘ikj]t](.. pi— k) [ TS i+ B )0 (g — Sk,

J J
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102
) = (pla--'va—l)a C.TZ (q1a"'7qs—l)7 and

where f = (617 s 757“—1)7 ﬁ = (/017 cee 7ps—1)7 p
{r;, s;} are the indices of two points joined by a contraction

To obtain the order of singularity of (7, 7, q), we will apply (7.6) to a test function

feR™ where m = 4(r + s — 1)

G, = fd‘““‘*p J 4t f Lo, 4,0 [, 0,0)

!
Jd‘*’" 4 Jd‘“ 4 Jd‘* f]_[ [d*k;S (k) Ea(. .., i + ks, ) ¥ (7.7)
j
<1 (e pi = Frgy . )0(q — ij>f<m,q>.
J
In the integrals under ¢’ and p’ we could do the following transformation
q; — 45 — ij (7 8)
p; — pj + ki,
then we can rewrite (7.7)) as
) !
@y = [ty @ et @@ [ dle [ ]l hew)
J
(7.9)

ksv,...,pj—Fij,...,q)

l
§(q—ij)f(...,qv -
— Jd4r4pfd484q£2 (Cf)tAl (mFQ;: (77 q)7

where
!
Koys oo os0j +krjyoyq).

F(p,q,q) = Jd4qJH[d4kj6(kj)]5(q — Z kNF( g —
’ (7.10)

J
The next step is compute the form of a rescaled distribution <t(§ g, 1), H =

(t (5), f) as follows

), f) = o™, f(aP))
(7.11)

{(
_om f i1 j 4 b (D1 (7 Fa (5,7, ),

=N il
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where P = (P, q,q), and

(7.12)
X f( coalg —kg), o alp k), aq).

We introduce the rescaled variables k = ak and § = aqg, and we will use the order

of singularity w of the contraction &(k;), then

Q| &

lim a“6(=) = &So(k), (7.13)

a—07t

where Gg(k) is the asymptotic distribution of &(k). Therefore, for F, we have the

following form

(7.14)

Now, using the rescaled variables ap; = p; and ag; = §;, we can rewrite ((7.11)) as

A d4 4 = R = 5 5
EONE P f OO RE )

l
x 0(G =D k) FC = Faye B+ Ky ).
J

Finally, considering the two orders of singularity w(t;] = w; and w[tz] = wq, we can
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W“V [~
i
W 0 -2 1 2

Table 7.1: Order of singularity of the four kind of contractions that we compute in the

two previous Chapters.

see that the following limit exists

i w1+wr—d+4l+lw P
lim o )
oA 5 ! -
T Ar—4 ~ 4s—4 ~ wop q w1} p 4 ~ 47w J
= alil%’)l+ d pfd qo tg(a)()& tl(a) fd QJH[d ijé 6(;)]X
l (7.16)
x 5(@—2});3(...,@ TR T SN )
J
# 0,
then, the order of singularity of £(p) is
wlt] =w) +we —4 + 4l + lw. (7.17)

The result ((7.17)) could be generalized for [; contractions of each different kind i as

follows
l;

wt] = wi +wy — 4+ Y (4 +w)li. (7.18)
In Table [7.1 we show the order of singularity of the four kind of independent

contraction that we will use in this Chapter.

7.1.1 Normalization of vacuum polarization tensor

In section [6.1], the causal splitting procedure gave us a vacuum polarization tensor [T+
with three constants that we need to determine with other physical properties. We can
rewrite that result here as

1 (k“k”
(2m)2" k2

[ (k) = g™ )I(k), (7.19)
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where

(k) = {12(;)2 (k%) f ds%} + Cy + Cuk™ + Oyk>. (7.20)

4m?2

To have parity symmetry, it is straightforward to note that
Cy =0, (7.21)

but for the others constants we must do an extra effort.

Gauge invariance in second order is not helpful, because it tell us that Cy and C,

kHEY
k2 g,uu).

must be proportional to (

Similar to standard formalism, we will compute the total photon propagator Dy,
to get a structure that allows us to fix the constants. The latter comes from the sum
of loop corrections by polarization insertions in Moller or Bhabha scattering process.

Therefore, DYy, is given by the following expression

:%+@+W+...

(7.22)
= g“”Dg(x —y) + Jd4zld4ng5(x — 21" (2 — zz)Dg(ZQ —y)+

But, before determining the sum , we must know if all these terms have the
same order of singularity. Let us examine the terms derived from Bhabha processes.
There are two forms to obtain the 1-loop correction for the Bhabha scattering diagram.
The first one is contract two DKP fields between a Bhabha diagram and a basic vertex.
After that, we must contract two electromagnetic four potential, one from the polarized

vertex and the other from a basic vertex. The last process is represented in the following

equations
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X = : (7.24)

The corresponding orders of singularity can be computed using (7.18)), then we have

wlpos] = wh] + w=] —4 + (4 + w[]).1

(7.25)
— (=2 +(0) =4+ (4+(2)).1 =0,

whrod] = wlro] +wl=] — 4+ (4 + w[+]).1

(7.26)
=(0)+(0)—4+ 4+ (-2).1=-2.

The second form to obtain the 1-loop correction, is contracting two DKP fields from

two Bhabha diagrams as follows
X = : (7.27)

with a order of singularity given by

wro] = wh] + wp=] — 4 + (4 + w[-o-]).1

(7.28)
=(—2)+(-2)—4+(4+(2)1=-2

Similarly, for the construction of 2-loop correction by vacuum polarization insertion
we will have the same order of singularity w = 2, this means that the summation ((7.22)

is consistent with the theory.

Now, going to momentum space, the summation ([7.22)) becomes convolutions giving

us the following expression

D2 (p) = g DE (p) + DE (p)T1"* (p) DE (p) +
+ DE (p)T1",(p) D (p)TT (p) DE (p) + .. . (7.29)
= D{ (g™ + T4 Dy,
where
ik
k2

" (p) = (2m)' T = (2m)*( g )I(p)- (7.30)
Multiplying (7.29)) by the left with (D{)~! and by the right with (D5},),?, we obtain

(D)™ g — T = (D). (731)
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Replacing (7.30)) into (7.31)) and using that (D{)~! = —(27)?p?, we obtain

(D7 (k) = ~(2mheg — ap(E _ gy
= (27?)2[(9“9 — kZ—fe)(H —k?) — k;]f k;Q] (7.32)

— (2m)?| PO - ) - P2,

where P, 5 are projectors which fulfill the following property

) Kk
(P)" = g" = =5~ (7.33)
krkb
(P)" = =5 7.34
(P)!(P5)"a = 036" . (7.35)
Then, using (7.35), we can check that DX (k) is
1 1
D (k) = (2m) 2| P e = P
Tot( ) ( 77) 1 H_k2+7/0+ 2 k2+20+ ’ (736)
2 )_2[( uo kuka) 1 _(ku]w) 1 ] .
R Y ) I E o A E I I N i

Notice that the second term in brackets of (7.36) will be null between transversal
polarized photon states, therefore we will concentrate our analysis in the first one. First
of all, if we separate the constant Cy from II(k), it will be a pole for the propagator

giving it mass. Because we know that the photon is massless, we fix this constant as

Co = 0. (7.37)

Secondly, if we separate the term Chk? from II(k), we can rewrite (7.36]) in the
following form
krk? Z 1
) . ) Z = 7
k2 11 — k2 + 40+ 1—-Cy

Dyl (k) = (2m) 72 (g™ — I = Z(7 — Cok?),

(7.38)
which is equivalent to renormalize the “bare” electric charge in the standard formalism,
but in CPT the electric charge is already the physical one. Therefore, C'; must be fixed
as

Cy = 0. (7.39)

With all constants fixed, we can normalize the vacuum polarization at k£ = 0 as
I1(k)
k2 k2o

11(0) = 0, = 0. (7.40)
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7.1.2 The non-renormalizability of Self Energy sector

Now, let us determine the constants that appear in the causal splitting process of the

self-energy function of the DKP propagator which we rewrite here as

T3 (2,y) = i P(@)S(x — ) (y) : +i: D(y)S(y — 2)d(z) -, (7.41)

where )

e koK 1. k1
E“‘f)=—64<7r‘>4[‘m‘1‘@+{m(1—b—z>—§<b—4‘1)}x -

X <log b? — 1| — iﬂ@(/{OQ - m2)>] + Co + Cik.

From ([7.41]), we can see that parity symmetry does not cancel the constant C as in
vacuum polarization. In consequence, we will try to determine the radiative correction

of the DKP propagator ST° by insertions of self-energy functions as follows

a3 (7.43)
S+ T §T

But the problem in the computation of (7.43)) is that the order of singularity of each

term is increasing. Consider the construction of the 1-loop correction coming from the

contraction of two Compton diagrams

HMM i

Using the formula (7.18)), we obtain

wls=] = wlo=<] + wlp=] —4 + (4 + w[=]).1

—(0)+(0) =4+ (4+1).1=1. (745)

For the 2-loop correction we have

P O O

with an order of singularity given by

Wl = W] + wl=] =4+ (4 + w[]) 1

—(0)+(1)—4+(4+1)1=2 (747)
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Therefore, if we increase the number of self-energy insertions by one then the order
of singularity increases by one unit too. In CPT, the latter means that SDKP is a

non-renormalizable theory

7.1.3 The non-renormalizability of Photon-Photon scattering

Another sector where SDKP is non-renormalizable is the photon-photon scattering. We

can contract two DKP fields from two Compton diagrams to obtain the following

H + 7}—{ = : (7.48)

The order of singularity is

wiH] = wlr<] +wlr<] —4+ 4+ w[]).2,

(7.49)
=0+0—-4+(4—-0)2=4.
Now, we can contract two electromagnetic four potentials to obtain
Ny
X = ) (7.50)
AN
The order of singularity of the new diagram is
WD = W + W] - 4+ (4+ w2 -

=44+4-4+(4-2)2=28.

Therefore, we can see that we have an increasing order of singularity which tell us

that the sector is non-renormalizable.

7.2 The ~ (¢1))? term

In this section we want to show that it is possible to obtain a proportional term to

~ (¢)2. Starting from two Compton diagrams, we can contract two pair of photons
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7}_§ . 7}_§ _ m (752

The order of singularity of the new diagram is

as follows

w[Tr] = wls=] + wlr=<] =4+ (4 + w[w]).2,

(7.53)
—0+0—4+(4—2)2=0.

Now, because the order of singularity is w = 0, the four point distributions Ty(x1, ..., x4),
associated with the right hand side of ((7.52)), will have one term of the following form

Ty(zy, .. wq) = o+ Moy — 24)0(w0 — 24)8(23 — 14) X

Xy )l ) (e ) (). (7.54)

11 <i2,J1<J2
Replacing ([7.54]) in the expresion of the S-matrix, we will find the following term

1
S = ...+ E d41‘1d4$2d41’3d4]}4€4)\45($1 - (L’4>5(I2 — .T4)(5($3 - .I’4),
' 4 (7.55)
4 €A - 2
Therefore, the theory contains a sector proportional to ~ (¢1/)?. We can show
that this sector is non-renormalizable. For example, contracting two pair of DKP fields

between the 4-DKP diagram and Bhabha or Moller processes, we obtain

KMX | (59

After that, the order of singularity is

wlrre] = wlr] + wh] =4 + (4 + w[—]).2,

“ (7.57)
0+ (=2) —4+(4—0)2=2.

It is important to clarify that the final diagram of ([7.57)) contains the term propor-
tional to ~ (Y))2.



Chapter 8
Conclusions and perspectives

At the end of this Thesis it is clear that the main difference between SQED and SDKP
is the non-renormalizability of the last one. Therefore, we will analyze why this happens

looking back at our results.

In chapter [5| we used the principle of perturbative gauge invariance to determine the
correct form of the base term T3 (x1) to construct the S-Matrix for SDKP gauge theory.
With the term 7T} we determine the differential cross section for the scattering of a scalar
particle via non-quantized electromagnetic field obtaining the same result as that in
SQED. After that, we used CPT to determine the causal 2-point distribution Dy(z1, x5)
which contain many processes: Moller, Bhabha, Compton, vacuum polarization and

self-energy.

The differential cross section computed for Bhabha, Moller and Compton processes
are the same for the ones obtained via SQED. We must highlight the case of Compton
scattering where we found a singular DKP propagator with order of singularity w = 0
because of the extra p coming from the S-matrix algebra. The same happens for
SQED via CPT [26,95] when two derivatives scalar fields are contracted via Wick
theorem. Furthermore, these singular propagators reproduce the second order terms
~ e2A ARG and ~ €2 A, Ainp for SQED and SDKP, respectively. In SQED, via
CPT or Feynman diagrams, the term ~ e?A, A#¢*¢ is really important to obtain the
correct differential cross section because the contributions from the other diagrams are
null [94,95]. For SDKP the same happens as viewed in section |5.5.3]

In Chapter [6] we computed the vacuum polarization tensor and self energy finding

that they are singular propagators with orders of singularity w[-o-] = 2 and w[«] = 1,
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respectively. The non fixed constants coming from causal-splitting procedure were left
to be calculated in Chapter [7| because, before obtaining the complete photon and scalar

propagators, we need to study the renormalizability of the theory.

So, in Chapter (7| we found that the theory is non-renormalizable. Comparing our
computations with the reference [26], we can note that the renormalizability of SQED
is based on the presence of derivatives in the KGF field. The latter makes the order of
singularity w of scattering processes indepent of the internal structure. The Compton
diagram in SDKP is equivalent to the one in SQED with the contraction of two deriva-
tives KGF fields, however Comptom diagrams with other kind of contractions do not
appear. Nevertheless, equivalence occurs because these diagrams do not contribute to
the calculation of the cross section but it will be reflected in the computation of the

complete DKP propagator.

For these reasons, we believe that SDKP represents an effective theory for a bound
state with 0-spin of two leptons coupled with an electromagnetic field. The latter could
explain why, in the computation of the form factor in the semileptonic decay K3 |11],
the use of the DKP fields to represent k and 7 particles gave a result closer to the

experimental value.

It is important to comment that A. A. Nogueira [96] found that in the case of general
SQED] via DKP fields (GSDKP) the theory is renormalizable [96]. As shown by Soto
et al., the use of Podolsky fields makes general QED super renormalizable, what is
explained due to the smaller order of singularity in comparison to that of the Maxwellian
fields. The GSDKP via CPT is a future topic that we hope to study. Furthermore,
A. A. Nogueira found that the UV divergence of photon-photon scattering is solved by
gauge invariance and DKP algebra, so it is possible that the non renormalizability that

we found in this work could be solved in the same way.

With this idea in mind, for future projects we will investigate the possible composite
behavior of Higgs boson modeled by a neutral DKP field using CP'T where spontaneous
symmetry breaking is not used |44]. We believe that the latter is possible considering
that the DKP algebra for scalar particles is a 5-order representation of the group SO(5)
[6] which is used to study composite Higgs models via spontaneous symmetry breaking
[98].

Another interesting topic is to investigate the Gribov theory of quark confinement

LA general theory means that the Maxwellian electromagnetic fields are generalized as Podolsky

electromagnetic fields.



113

[21]. In this theory, a computational tool to obtain a confinement potential is to use
the 10-order DKP algebra to model gluons as spin-1 DKP field. It is possible that these
DKP-gluons represent a spin-1 bound state of two quarks.

We want to highlight that the study of SDKP is not complete yet. For example,
the gauge invariance of the full theory and the unitarity are sections that we have not

finished yet. We hope to complete the work as soon as possible.






Appendix A

Computations for the (GGeneral

theory

A.1 Causality of intermediate distributions

Theorem A.1 ConsiderY = PuQ where P# &, PnQ =, |Y|=n—1,
and the point x such that x¢Y , then:

o [f{Q,x} > P, |Q| = ny, therefore
R;L(Yv :L') = _Tn1+1(Q7x)Tn—(n1+1)(P) (Al)

o [f{Q,z} < P, |Q| = ny, therefore

A;L(Y7 .’B) = _Tnf(n1+1)<P)Tn1+1(Q>x) <A2)

Proof.

We will present the proof of (A.1]). From the definition (3.24)), we have
R(Y,z) = Y T(W,2)T(X), (A.3)
P
where the sub-index of distributions 7;, are not written for simplicity. P, is all partitions
of Y in the non-empty and disjoints sub-sets W and X.
The causality condition P < {Q,x} allows to split each partition W and X such

that
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o W =W, uW,, where {W), =W n P} < {Wy =W n Q},

oXzXlqu,Where{XlszP}<{X2=XmQ}.

Applying the causality decompositions (3.21]) and (3.22)) for the n-point distributions

in (A.3), we get

R(Y,x) = Y T(Wa, )T (W1, 0)T(X1)T(Xa), (A4)

where P represents all partitions of Y in the four sub-sets {Wy, Wy, X1, X5} allowing
for an empty set but with the conditions X; u Xy # & # W, U Ws. The latter means
that {Wy, X;} and {W3, X} are all independent partitions Py of P and @, respectively.
Then, it is straightforward to rewrite as

R(Y,x) = Y T(Wa,2)| 3 T(Wh,2)T(X1) | T(Xs)
P,Q PY,P

+ T(Q,x)[ 3 T(Wl,x)f(xl)]f(@).

PP

(A.5)

The first term of the right hand side of equation ({A.5)) is null because of the property
(3.15)), and using the same property, we get

R(Y,2) = T@Qa)| Y, T(W1,)T(x1)|T(2)

Py,P

- T(Q,x)[ N (W, @) T(xX0) - T(P,x)f(@)]f(@) (A.6)

PY.P

=-T(Q,z)T(P,x)

which proves the theorem for R’. Analog path could be use to proof the theorem for
A ]

A.2 Wick Theorem

All products of n operator value distributions O; = O(x;), are in normal order if they

read
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—
0105...0,=:01...0,, : +[0;1...0;...0;...0, + permutations|+
A7)
—— (

+[01...0;...0...0;...0,...0, + permutations| + ...,

—
where the contractions O(x;)O(x;) are defined as the c-number

O(x:)O(;) = [0 (), O (a;)]. (A.8)

A.3 Power counting function p(x)

In this section we show some properties of p(x). Using a rescaled test function ¥ (x/a),
we have from (3.2)

{do(2),¥(%)) = lim (@™ p(a)d(ax), ¥(%))
= lim ((a0)" p()d(aaz), ¥(z))

~ fim 29 {(ac)™p(ac)d(aaz), () (A.9)

a—0t plac)

= lim ple) T T
= Jim P o), v(a)

= po(a){do(x), ¢ (x)),

where we define the function pg(a) as

pola) = lim 29 (A.10)

a—0t pla)

Via another rescaling of the test function, we have

dof), (5-).> = po®)o(@), ()
= po(b)po(b) (A-11)
po(ab) = po(b)po(b)

The last line of ({A.11]) defines the form of py as

pola) = a®, (A.12)
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and, from the definition (A.10), we conclude that in the limit &« — 07 the power

counting p(x) has the following form

lim p(a) = o“L(a), (A.13)

a—0t

where w € R, and L(«) is a slow varying or quasi-constant function of « in the neigh-

borhood of @ = 0. In practice, L(«) could be omitted in the computations.

A.4 Normalized solution for the retarded numerical

distribution

In this section we will determine the explicit form for the normalized solution 7,(p)

defined in as
) = 7)Y 2 o), (A1)

From (3.85)), we can compute [D#](q)

D'7)(0) = D*[(2m) % [ arb(wyily — b

- [aew) X 1 [arDydef - blaw)

l]=0 p=q

A : (A.15)
_ (2m)-% J akO (k) [ Dld(g — k)~
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Regarding (|A.15)), the sum in the right hand side of (A.14]) is

— (27)"% fdké)(k:)[i v ;'Q)bDZci(q —k)—
-t N (X L ) [apbde 6] (e

l
= > Y. In the second equality
b 1=0b=0

e

where in the first equality we use the property >
b=0

o~

we use the following identity

I
g™ (p—q)°
I I
p=1lg+ -l =), (A17)
= (l=b! b
Finally, using (3.85)) and replacing ((A.16)) into (A.14)), we obtain
Po(p) = (2m)"% f dkO (k) [d(p_k;) Z - o a)" - Dld(q k:)], (A.18)

b=0
which is equation (3.88)).
A.5 Central splitting solution

In this section we want to show the computation to get an explicit formula for the
central splitting solution 7y(p) starting with the formula (3.89)

fo(p)z(zw)—”ﬁfdk@( [p k) ifz_ Dld(q — k)

q_o], (A.19)

and using [DZCZ(q — k)|(q = 0) = (=1)’Dbd(—k), we can rewrite (A.19) as

fo(p)z(zw)*%[ J dkO(k)d(p ip—? f dkO(k)(—1)"Dld(—k) . (A.20)

b=0 h
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Integrating by parts the second integral in (A.20]), we have

A~ ~ s b A ~
inlp) = (20) 2| [akOwydp 1) - Y 5 [ akDLOmIC-D)],
b=0 '

- (2m) | J Ak (p — k)d(k) — > z f A[DLOY(—R)d(k)|. (A.21)
= om% [akiw)[o6 1) - 3, FIDtOI-H],

where in the second line we introduced the change of variables k — k — p and k — —k
in the first and second integrals, respectively.

Now, we introduce the Fourier transform of ©(vz) = O(zY) for v = (1,0,0,...)

7
and considering ¢ = (¢, 0,0, ...,0) in the computation of , we will have in
D = ¢® and p* = (p9)?, so that

O(q) = (27)% "6(ar, ¢2, - -, gn-1) (A.22)

folp) = (om) % [awd(i) [0 1) - 3 L))

b=0

— o [0 [+ 20 () | A

Py — kY +i0*

1 ~
= L @A, p, . pa .
27TJ 1k p, - op 1)[(k?—z’0+)w+1(p —k?+z’0+)]

Introducing the change of variables k9 — ¢,p? and doing the same change of reference

system as in the regular case, we obtain the covariant formula

~

N i 0 d(tip1,p2,-- -, Pn-1) A4
fo(p) = %Sgn(pl)fdtl G 07 ) (1 1y + iSgn(p)0T)’ (A.24)

which is valid for p; € {7 UT'T}.

Similar to the regular distribution case, we could choose the vector v to get a formula
for 79(p) dependent on the integral of any p; € {I'7 U T'7}. But, differently here, it will
be impossible to get an independent formula as ([3.78]).

For a second order solution we get

~

A ¢ 0 d(tp)
fo(p) = %Sgn(p ) fdt ({0711 — t + 15gn()07)’ (A.25)

this is equation ([3.90)).
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A.6 Symmetry of retarded formulas

In this section we show some properties for the central splitting solutions in the regular

and singular cases.

A.6.1 Regular Case

We will determine particular forms of (3.93|) taking into account parity characteristics

in the integrals at second order of perturbation where the formula takes the following

form
) i 0 ci(tp) + -
N dt :
7o(p) 27TSgn(p ) f [t +iSqn(p)0+” pelT uly (A.26)
—0
If d(p) is even
. 0 ¢
i
~ - g 0 dt
To(p) o gn(p’) J 1—t+zSgn +Jdt1—t+Z59n( 0)0 +]
-~ 0
. w w
i
2m gnip’) f 1+t~|—zSgn +J 1—75“59”( )+] A
0
r 2d(1p)
= gy Ly
= 5,00 )Jdtl — 2+ iSgn(p")0+
0
If d(p) is odd
o d(tp) r d(tp)
o 1y 2
= —Sgn(p’ dt
Folp) = 5-Sgn()| f 1=t +iSgn(p)0* Jdtl —tHSgn(PO)O*]
— 0
i N d(tp) T d(tp)
_ i M dt A28
ZWSgn(p ) i J 1+t +iSgn(p?)0+ + 1 —t+1iSgn(p°)0* ( )
5 0

Z, . X 2td(tp)
_ dt
7rSg?’b(p )J 1 — 124 4iSgn(p°)0+
0
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A.6.2 Singular Case

The same performed in the last subsections will be repeated but for the formula (3.94])
in the singular case

+00

R 7
(p) = 3=59m0") | iz

d(tp)
—t+iSgn(p)0*)

(A.29)

—0

A

If d(p) and w are both even or odd

i cZ(tp) d(tp)

0

R _ L 0

To(p) = 27TSgn(p )l J dttw+1(1 “i 1 iSgn(p0)0) +f tt“+1(1 —t+1Sgn(p®)0t)
-~ 0

o]

B 2td(tp)
B Sgn Jdtt‘”l 1 — 12 +4iSgn(p)0+)
0

(A.30)

~

If d(p) and w are even and odd respectively or opposite

. ) )
NS 0 d(tp) J dtep)
fo(p) = 5-Sgn(p )[ J dttw+1<1 "t + iSgn(p*)0+) + ttw+1(1 — ¢+ iSgn(p®)0+)
T g 411 — 2 + iSgn(p?)0+)’
0

(A.31)
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Appendix B

Calculation of differential cross

sections using wave packets

In the computation of differential cross section, the first step is to determine the tran-
sition amplitude S;; = (in|S|out). In the case of two particle scattering, the in and out

states in the Hilbert space are

|in) = |1h;) = Jd3p1d3qlsol(p1)<pz(ql)|p1,q1>, (B.1)

jouty = i) = f s sty (D2, @2) [P, o)), (B.2)

where @15 and 1y are wave packets sharply picked in p; = p;, p2 = pr, ¢ = ¢; and
a2 = qf.
Using (B.1) and (B.2), the transition amplitude take the following form

S = J d3p1d3q1d3p2d3qQ¢; (P2, Q2)§if(P1; a1, P2, d2)%1(P1)pa(as)- (B.3)

where S, 7(P1,41, P2, 92) is “transition amplitude” computed in the standard formalism

Sif(phthm(h) = <p27Q2|5\p17Q1>- (B~4)

In the framework of distribution theory, the wave packets are the test functions of

Sir. This computation with wave packets is well defined, for that reason we choose it
to this thesis.

Now, the transition probability is defined as
Py =[Sy (B.5)
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Replacing (B.3) into (B.5), we have

Py = Jd3p1d3CI1d3p2d3Q2¢;(P2> a2)Sif(P1, A1, P2, d2) %1 (P1)w2(a1) X
(B.6)
| 0 et s (4, ) S5 04 B ) )3 )

Summing over all final states, as usual, we obtain

2 Pif = Jd3p,1d3Q£d3p1dSQ1d3p2d3QQSif(pla q1, P2, Q2)<P1(P1)802(Q1) X
fd?’ hd® ’Zwﬁ(p’z,qé)¢f(pz,q2)5§‘f(p’1,q’l,pé,q’z)wi"(pi)sﬁ’i(q’l)

3 1 d® g1 dpad® 42Si (D1, A1, Pas d2) @} (D)) 03 () )1 (P1)walay) x

d3p1d3q1d pod’ ¢2537(P1, A1, P2 Q2)Szf(p17 di, P2, q2) X

f — P)8(qz — @b ST (P, P )

(P )#5 (%)801(1)1)902((11)
(B.7)

In the computation of the distribution S i, it is possible to give it in the following
structure

S5i(P1, a1, P2, @) = 6(p2 + g2 — p1 — q1) M(P1, a1, P2, G2), (B.8)

where the delta function represents the conservation of energy and momentum, and

M (p1,d1, P2, q2) has information about the scattering process. Replacing into

(B.7), we have
2 Pz‘f = fdspﬁdgfﬁd3p1d3Q1d3P2d3Q25(P1 +q —p2 — Q2)M(p1, q1, P2, (12) X
(B.9)
x 0(p} + ¢y — p2 — @) M*(P1, d1, P2, a2) 5 (P15 (d)) 1 (P1)wa(dr).

Taking into account that the wave packets 1 and ¢, are sharply peaked over p; and

q;, respectively, and M takes smaller values over the same coordinates, we can rewrite

(B.9) as

Py = Jd3p2d3Q2M(pla a1, P2, 92)|* X
f

X Jd3p1d3q15(p1 +q —p2 — Q2)<P1(p1)902(q1)>< (B.lO)

x Jd?* 1P 5 (py + 4 — pa — )i (Ph)es (d)),
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where the integrals in py, p}, ¢1 v ¢} depend of the initial states. Now, replacing the

delta functions by its integral representation

o(p) = (277)4Jd4x6im

we obtain

Y Py = Jd3p2d3QQ|M(p17Q17p2aQ2>’2X
7

x [(2m)7® Jd3p1d3QI¢1<pl>¢2(ql) fd‘lxlei(p”ql(pz*q?))“ X
X fd?’ [ d2q ot (p )gp;(q’l)fd4x2ei(p'1+q’1—(p2+qz))a:2]
= fd?’padng!M(pl, a1, P2, d2)|*F(p2 + ¢2),

where we define the function F' as

F(p) = (2m)® J d*p1d®q101(p1)p2(a1) Jd4$1€i(m+q1p)xl X
X Jd3 d3Q1S01( Des(d)) fd4x2@i(p'1+(1£—p)“727

and p = py + qs.

From (B.13)), we can construct the following free wave packets in z-space

2o = (20) 2 [ @pe ().
Replacing into (B.13]), we have
F(p) = (2m)~* fd4$1d4x2951(901)952(961)95?($2)95§($2)€ip(x1“)-
If we integrate the positive function F'(p) in p, we obtain

f I'pF(p) = (2n)? j 02|31 (2) P Ga() 2

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

Furthermore, F'(p) must be concentrated around p = py + ks = p1 + q1 ~ p; + ¢

because the wave packets p1(p1) and ¢o(q;) are sharply peaked around p; and q;,

respectively. Then, we can rewrite F'(p) in the following form

F(p) = (p — pi — ki) (27)° fd4x|¢1<x>|2|@<x>|2.

(B.17)
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Replacing (B.17)) into (B.12)), we have

2 Py = fd3p2d3k2|M(pu Qs P2, A2)|*0(p2 + k2 — pi — ¢;) (27)° Jd4$|@1($)|2|@2(90)|27
f
(B.18)

where the wave packets @y 2(x) represent the movement of the two bunches of particles

scattered.

Considering a laboratory frame, we will define @;(z) representing the bunch of
particles in movement with velocity v and @o(x) the target at rest, the wave packets
take the following forms

o1(t,x) = fi(x + x1 + Vi), (B.19)

Pa(t, x) = fa(x). (B.20)
Replacing (B.19)) and (B.20)) into (B.18)), and averaging over the cylinder of radius

R parallel to v, we obtain

(27)?
T R2

Jd3p2d3q2|M(pi, q;, P2, Q2)|25(p2 + G2 — i — Gi) X

D Py(R) =
! (B.21)
. f d?:cujdwfl(xﬂl vl

|z11 <R
Grouping the temporal integration variable from the third integral with d?x,, and
using the normalization of wave packets functions, we obtain

(2m)? 3,73 2
;Pif(R) = TR d°pad®q2| M (i, iy P2, Q2) "0 (P2 + @2 — pi — @) (B.22)

Replacing (B.22)) into the following definition of the cross section
= 1 2 .
Olap = lim 71 ijpzf(R)> (B.23)

we obtain

E;
Olab = (27)2 p-| Jd3p2d3q2|M(pi, q:, P2, %)\25([)2 +q —Dpi — Cb’)- (B-24)

The formula (B.24)), is written as Lorentz invariant in the following form

E,E,
o = (27)° (p;f)fi - Jdgpfd?’qflM(pz-, i, P2, d2)*0(ps + g5 — pi — @) (B.25)
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From ((B.24))), we could determine the cross section in the center of mass reference

replacing q; = —p; and qf = —py

FE
2V E?2 —m?
x 8(2E; — 2E)

- (‘ q -
E g | M(pi, @i, P, 42) |26 (2B — 2F
2VE?2 —m? ) 1M (Pi, 4, P, 6a) FO(2Ey )

L (‘|qf’2d|(1f|dQ|M(pi QG, P2 q2>’25(Ef B E) (BQG)
4NE? —m? » i, P2,
E

FE
— (277)2Z JEdQ|M(pi, Qi P2, q2)|>-

Oem = (27)? Wd3]:>fd3qfIM(pi, i, P2, A2 *6*(Py + ay — pi — Q) ¥

= (2m)?
= (2m)?

= (2m)? “qf’EdefdQ’M(Pm i, P2, @) |[*0(Ef — E).

From the last result (B.26]), we obtain the following differential cross section in the

center-of-mass reference system

2
dgg” - (27T)2EI\M\2. (B.27)
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