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Abstract

In this Thesis we use Causal Perturbation Theory to study Scalar Quantum Elec-

trodynamics with Duffin-Kemmer-Petiau fields. We determine the differential cross

sections at the tree level, the vacuum polarization tensor, self energy function and

the normalizability of the theory. After that, we compare our results with those ones

obtained via Klein-Gordon-Fock fields determining that they are not completely equiv-

alent.
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Research field: 1.05.01.01-0;1.05.02.01-7; 1.05.03.01-3





Resumo

Nesta tese utilizamos a Teoria de Perturbação Causal para estudar a Eletrodinâmica

Quântica Escalar com os campos de Duffin-Kemmer-Petiau. Determinamos as seções

de choque diferenciais no ńıvel da árvore, o tensor de polarização do vácuo, a função

de auto energia e a renormalizabilidade da teoria. Depois disso, comparamos nossos

resultados com os obtidos através dos campos de Klein-Gordon-Fock, determinando

que eles não são completamente equivalentes.

Palavras Chaves: Teoria de Perturbação Causal; Eletrodinâmica Quântica Escalar;

DKP.

Áreas do conhecimento: 1.05.01.01-0;1.05.02.01-7; 1.05.03.01-3
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Chapter 1

Introduction

The Duffin-Kemmer-Petiu (DKP) theory is based on the idea of obtaining a first order

relativistic equation to model photons. This idea was implemented during 1934 by L.

de Broglie, who considered that the photon was composed of two leptons and used a

product of Dirac γ-matrices to construct a similar equation but with square β-matrices

of order 16 [1, 2].

During the years 1936 to 1939 G. Petiau, R. J. Duffin and N. Kemmer [3–5] in-

dividually found that the 16 ˆ 16 β-matrices had three irreducible representations of

dimensions 1, 5 and 10. The representation of order 1 is trivial, the order 5 and 10

representation allow modeling scalar and spin-1 particles respectively1.

After World War II, many calculations were performed on scalar quantum electro-

dynamics using the DKP (SDKP) and Klein-Gordon-Fock (SQED) fields. The main

intention was to determine the differences between the two approaches, but up to 1-loop

corrections all differential cross sections were the same [7–10]. Therefore, the belief on

the total equivalence between both approaches was established in the scientific commu-

nity.

However, in May 1971 the doubt about the equivalence between the two scalar

particle theories was revived. In reference [11], E. Fischbach and collaborators found

different results for the broken-symmetry parameter in the kaon semi-leptonic decay

k Ñ π ` l ` ν. The difference comes from the presence of two mesons with different

masses and from the fact that the SUp3q broken-symmetry process is sensitive to the

field dimensions which takes the value 3{2 for DKP and 1 for KGF fields. Furthermore,

1A good historical development of the Duffin-Kemmer-Petiau equation is in [6].
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2 1. Introduction

the result obtained via DKP was surprisingly closer to the experimental data than that

obtained via KGF formalism. Currently, the calculation is performed considering the

compositional nature of k and π confirming the values obtained using DKP fields [12].

In 2000, V. Ya. Fainberg and B. M. Pimentel did a systematic study of S-matrices

obtained from SDKP and SQED via minimal coupling procedure with an external or

quantized electromagnetic field. They constructed the functional generator of the Green

functions to quantize the DKP theory. After that, they used the LSZ reduction formula

to determine the matrix elements of the S-matrix [13].

The results of V. Ya. Fainberg and B. M. Pimentel were positive but not conclusive.

The equivalence between SDKP and SQE does not include the sector of diagrams

generated by the self-interaction term „ pφ˚φq2 and diagrams without the presence

of external photons. The authors suggested the inclusion of analogous self-interacting

term with DKP fields proportional to pψ̄Pψq2, where P is a projector that eliminates

the DKP vectorial sector [14].

In the new millennium a rebirth in the interest of DKP theory comes from its advan-

tages compared with the KGF fields. For example, the greater number of combinations

of the DKP fields to generate self-interacting terms [14] has been used to determine an-

alytical solutions of the DKP equation in presence of different kinds of potentials, see

for example [15]. In addition, the DKP theory has been used to study their interactions

in Riemann and Riemann-Cartan spaces [16–20], to study confinement in QCD [21],

as well as applied to covariant Hamiltonian dynamics [22] and to the study of spin-1

particles in the Abelian monopole field [23].

The inclusion of the missing sectors in the article [13] of V. Ya. Fainberg and B.

M. Pimentel is the main objective of this thesis. For this goal, we are going to use an

axiomatic formalism known as Causal Perturbation Theory (CPT). The decision to use

CPT has been taken because of the results obtained by M. Dütsch, F. Krahe and G.

Scharf about SQED [26]. In the framework of CPT they demonstrated the unitarity,

gauge invariance and normalizability without the second order self-interaction term

„ pφ˚φq2. The latter does not mean that the interaction term is missing in CPT,

on the contrary the approach recovers all that sector using a physical property called

perturbative gauge invariance. We must mention that the study of SDKP was initiated

by J. T. Lunardi et al. [24, 25], therefore this thesis could be seen as an extension of

those papers.

CPT is an approach that treats the quantized fields as operator value distributions
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and constructs the S-matrix as a formal series using two fundamental physical princi-

ples: Causality and perturbative gauge invariance. Each step is mathematically well

defined within the framework of distributions theory. The main point of this formalism

is to avoid the ill-defined product of distributions at the same point such as those that

floods the formalism based on Feynman diagrams and that we believe are the ones that

generate UV divergences.

The origin of CPT started in 1973 when H. Epstein and V. Glaser wrote their

article entitled “The role of locality in perturbation theory” [27] where they devel-

oped an iterative construction of the S-matrix taking as advantage the causal support

of the propagators to determine their advanced and retarded part. Ten years later,

G. Scharf began to apply the approach to study Quantum Electrodynamics (QED)

obtaining a finite theory, in other words, free UV and infrared divergences! [28–37].

From the striking results in QED, G. Scharf and collaborators applied CPT to study

other quantum field theories as Yang-Mills [38–43], Higgs boson [44], Electroweak the-

ory [45,46], Super-symmetry [47–50] and Quantum Gravity [51–61]. On the other side

of the Atlantic ocean, B. M. Pimentel and Collaborators applied CPT in General Quan-

tum Electrodynamics (GQED) [62], Light front Dynamics [63, 64], SDKP [65], gauge

Thirring model [66,67], and QED3 [68, 69].

This thesis is organized in the following form. In the second chapter, we summarize

the concepts of Distribution Theory which we believe necessary to understand CPT. In

Chapter 3, CPT is introduced in generality to be applied to any quantum field theory.

In the fourth chapter, we develop the quantum properties of free DKP, electromagnetic

and fermionic scalar ghost fields to be applied in SDKP and to develop gauge invari-

ance at the quantum level. In the fifth chapter, we use perturbative gauge invariance

to determine the base term of S-Matrix, after that, we determine the differential cross

section of a DKP particle scattered by external electromagnetic field and for the Moller

and Compton scattering process. In the sixth chapter, we compute the vacuum polar-

ization tensor and the self energy function. In the seventh chapter, we will study the

renormalizability of the theory. Finally, in the eight chapter, we write our conclusions

and perspectives.





Chapter 2

Elementary Theory of Distributions

Mathematical discovery is subversive and always ready to overthrow

taboos, and it depends very little on established powers.

Laurent Schwartz

In 1950-51 Laurent Schwartz published Théorie des Distributions [70], a treatise in

two volumes where he constructs systematically the concept of Distribution1. Although

this mathematical tool defines correctly many “functions” used in physics allowing con-

sistent calculation, it has not yet been adopted by the community in all its potentiality.

Following the subversive spirit of L. Schwartz, in this thesis we will use the Bogoliubov-

Epstein-Glaser or CPT approach to solve Quantum Field Theory. CPT uses the theory

of distributions framework in the construction of S-matrix. For this reason, we dedicate

this chapter to present the necessary concepts about Schwartz’s theory.

2.1 The necessity of distribution and its definition

In 1927 P. A. M. Dirac introduce the delta symbol δpxq [72] with the following properties

δpxq “

$

&

%

0, x ‰ 0

8, x “ 0
,

ż

dxδpxq “ 1. (2.1)

1The Theory of Distributions is also known as Theory of Generalized Functions which was the name

that S. L. Sobolev proposed in his study of Cauchy’s problem in hyperbolic equations [71].

5



6 2. Elementary Theory of Distributions

Taking into consideration functional analysis we can prove that the two properties

in (2.1) are in contradiction. Knowing the latter, Dirac said “Strictly, of course, δpxq

is not a proper function of x, but can be regarded only as a limit of a certain sequence

of functions”, but again, in the context of function analysis, this limit does not exist.

The necessity of the Dirac delta function δpxq is a consequence to fix a physical

quantity in a point of space. For example consider the density ρpxq of a point particle

of mass 1. We can understand this quantity as the limit of a sequence of spheres

densities ρεpxq with less and less radius ε but same mass 1. This sequence of densities

have the values

ρεpxq “

$

&

%

1
4
3
πε3
, }x} ď ε

0, }x} ą ε
(2.2)

and we can note that in the limit εÑ 0 we have ρεpxq Ñ δpxq “ ρpxq, but the integral

in all space is null, which have no physical sense for a density [73, 74]. To solve this

problem, we define the weak limit.

Definition 2.1 Consider the continuous fpxq, with x P Rn. For a sequence of func-

tions ρεpxq, the function ρpxq is called the weak limit of that sequence if @fpxq

lim
εÑ0

ż

dxρεpxqfpxq “

ż

dxρpxqfpxq. (2.3)

It is straightforward to show that for the sequence (2.2) we have

lim
εÑ0

ż

dxρεpxqfpxq “

ż

dxδpxqfpxq “ fp0q. (2.4)

The functional result in (2.4) is in concordance with the second Dirac condition in

(2.1), because in that case δpxq must be understood multiplied by a constant function

fpxq “ 1. Consequently, the Dirac delta function δpxq must not be used as a function

in the sense of functional analysis because its mathematical behavior is to map the

function fpxq to its functional fp0q

δ : fpxq Ñ fp0q. (2.5)

The Dirac delta function is not the unique mathematical entity that acts as func-

tional on definite space of functions. For example we have the Heaviside step function

or the principal value operator. This kind of functionals are called distributions or

generalized functions.
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Definition 2.2 A distribution T is a continuous linear functional on space functions

T where the elements f P T are called test functions

T : T Ñ C. (2.6)

The definition 2.2 implies the fulfillment of the following conditions:

1. For each test function fpxq P T , the complex functional value associated is de-

noted by xT, fpxqy.

2. @ tλ1, λ2u P C, @ tf1pxq, f2pxqu P T , xT, λ1f1 ` λ2f2y “ λ1xT, f1y ` λ2xT, f2y

3. If a sequence fi P T converge to a function fpxq P T , then the sequence xT, fiy

converge to xT, fy

Another important concept, associated with the nature of distribution, is the sup-

port. We will define two kinds of support, one that belongs to test functions and another

that belongs to distributions.

Definition 2.3 The support of a test function fpxq is the compact set of points supppfq

where fpxq ‰ 0.

Definition 2.4 The support of a distribution T is the complement of reunion of open

set points supppT q where xT, fy “ 0 for all test functions f .

In general, the distributions T represents the physical law that we want to investigate

and to test. The test functions fpxq are the representation of the external agent which

fluctuate around the point x (supp(f)) where we want to test the physical law.

2.2 Properties of distributions and the space of test

functions T

The space of test functions T appear naturally to give a mathematically well defined

definition of a distribution. The linearity condition of the distribution mapping implies

that T must be a vector space, which means that a distribution T is an element of

the continuous dual space T 1. The continuity property for the mapping T : T Ñ C
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point out that T must have an inner product x, y to define a norm to use the Cauchy

condition2 [75].

The inner product, necessary to have a well defined theory, guides us to choose

L2 space3 as our first option to construct T . Actually, every function gpxq P L2 is a

distribution over the test function space T “ L2. But there is one problem, the Dirac

delta function do not belongs to L2 space [76]. Furthermore, non continuous functions

belongs to L2, which means that if we take T “ L2 then δpxq R T 1 .

Taking into account the inner product in L2, we can classify the distributions T P T 1

in regulars and singulars.

Definition 2.5 A distribution T is regular if xT, fy could be written as the inner prod-

uct of L2 space

xT, fy “

ż

T pxqfpxqdnx, (2.7)

in other case the distribution is singular.

The latter definition means that δpxq is a singular distribution and the notation

(2.4) is just symbolic. Nevertheless, all properties of distributions could be obtained

from the integral representation (2.7).

To include all the singular distributions, we could use the Schwartz space SpRnq as

space of test functions.

Definition 2.6 The test function space SpRnq is the set of infinite differentiable func-

tions fpxq P C8 that fulfill the following property

lim
}x}Ñ8

}x}k}Dlfpxq} “ 0 (2.8)

for all k P N and l P Nm
0 .4

2We say that a sequence of functionsfnpxq converges to fpxq if for every ε ą 0, exist N P N that

}fm ´ fn} ă ε for every m,n ą N.
3The square-integrable space L2 is that where the inner product is define as xgpxq, fpxqy “

ş

dnxg˚pxqfpxq ă 8.
4The differential operator Dl is defined as

Dlf “
Bl1`...`lm

Bxl1Bxl2 . . . Bxlm
fpxq, l “ pl1, . . . , lmq.
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The property (2.8) tell us that the elements of S decrease faster than any power of

}x}´1. Furthermore, S has the important property that the Fourier transformation of its

elements also belongs to S [77]. This is important because in Quantum Mechanics any

state function must be independent of working in configuration or momentum space.

But the “nice” behavior of S is not enough to define the derivative of a distribution.

It is necessary to define a sub space of S called the close support space C80 pRmq.

Definition 2.7 The space C80 pRmq is the set of functions fpxq P C8 with a compact

support Ω Ă Rm.

It is straightforward to demonstrate that C80 pRmq Ă S and, because of that, S 1 Ă
C810 pRmq. From a physical point of view the distributions T P C810 pRmq express the fact

that it is not possible to define a physical quantity at a point, but in a region around

that point.

Now, considering two distributions T1, T2 P C
81
0 pRmq, they have the following prop-

erties:

• Addition

xT1 ` T2, fy “ xT1, fy ` xT2, fy.

• Multiplication by a complex α

xαT, fy “ xT, αfy “ αxT, fy.

• Translation by a vector xa P Rm

xαT px` xaq, fpxqy “ xαT pxq, fpx´ xaqy.

• Linear transformation of the independent variables x ÞÑ Λx where Rm

xT pΛxq, fpxqy “
1

|detrΛs|
xT pxq, fpΛ´1xqy

• Derivative

x
BnT

Bxni
, fpxqy “ xT, p´1qn

Bnfpxq

Bxni
y

It is possible to extend all these properties to distributions in S 1, considering fp˘8q “

0 for fpxq P S. The product of distributions is an important point and we will present

in the next section.
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2.3 Product of two distributions

To define the product of two distribution, we have to take one of them as a reference

to investigate the characteristics of the other distribution. Therefore, consider a distri-

bution T P C810 , after that, if we multiply T with a distribution gpxq we want that the

complex value xTg, fy exist. For the latter objective is necessary that

xTg, fy “ xT, fgy. (2.9)

To fulfill the condition (2.9), it is sufficient that the product fpxqgpxq belongs to C80 .

Consequently, if fpxq P C80 , we need the function gpxq to be infinitively differentiable to

guarantee a well define product. In this thesis we will work with this type of products.

Another kind of product, which is well defined, is the tensorial product. For a two

distributions T1 and T2 and a test function fpx, yq over S ˆ S we define the product

T1pxq ˆ T2pyq as

xT1pxq ˆ T2pyq, fpx, yqy ” xT1pxq, xT2pyq, fpx, yqyy “ xT2pyq, xT1pxq, fpx, yqyy (2.10)

2.4 Fourier transform and convolution of distribu-

tions

For an unidimensional function fptq, the direct f̂ptq and inverse f̌ptq Fourier transform

are defined as

f̂ppq “ p2πq´
1
2

ż

dteip.tfptq, (2.11)

f̌ppq “ p2πq´
1
2

ż

dte´ip.tfptq. (2.12)

For a distribution T , its Fourier transformation T̂ goes to the test function as follows

xT̂ , fy ” xT, f̂y. (2.13)

From (2.13), we can see that the following property is true

xT, fy “ xT̂ , f̌y. (2.14)

The convolution product f ˚ g in one dimension is defined as

tf ˚ guptq ”

ż

dxfpt´ xqgpxq “

ż

dxfpxqgpt´ xq. (2.15)
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Regarding the definition (2.15), it is straightforward to determine the relation with

the Fourier transform of a product

fg
Ź

ppq “ p2πq´
1
2 tf̂ ˚ ĝuppq, (2.16)

fg

Ź

ppq “ p2πq´
1
2 tf̌ ˚ ǧuppq, (2.17)

f ˚ g
Ź

ppq “ p2πq´
1
2 f̂ppqĝppq, (2.18)

f ˚ g

Ź

ppq “ p2πq´
1
2 f̌ppqǧppq. (2.19)

For all distributions, again we generalize the following property of regular distribu-

tions

xF ˚G, fy “

ż

dxtF ˚Gupxqfpxq “

ż

dxfpxq

ż

dyF pyqGpx´ yq

“

ż

dyF pyq

ż

dxGpx´ yqfpxq “

ż

dyF pyq

ż

dξGpξqfpξ ` yq

(2.20)

Then, with the help of (2.10), the convolution of two distributions T1 ˚ T2 is defined as

xT1 ˚ T2, fy ” xT1pxq ˆ T2pyq, fpx` yqy (2.21)

In m dimensions, all these properties and definitions are

f̂ppq “ p2πq´
m
2

ż

dteip.tfptq, (2.22)

f̌ppq “ p2πq´
m
2

ż

dte´ip.tfptq, (2.23)

xT̂ , fy ” xT, f̂y, (2.24)

xT, fy “ xT̂ , f̌y, (2.25)

tf ˚ guptq ”

ż

dmxfpt´ xqgpxq “

ż

dmxfpxqgpt´ xq, (2.26)

fg
Ź

ppq “ p2πq´
m
2 tf̂ ˚ ĝuppq, (2.27)

fg

Ź

ppq “ p2πq´
m
2 tf̌ ˚ ǧuppq, (2.28)

f ˚ g
Ź

ppq “ p2πq´
m
2 f̂ppqĝppq, (2.29)

f ˚ g

Ź

ppq “ p2πq´
m
2 f̌ppqǧppq, (2.30)

xT1 ˚ T2, fy ” xT1pxq ˆ T2pyq, fpx` yqy. (2.31)





Chapter 3

Causal Perturbation Theory

The latter is one of the most important papers in quantum field theory.

However, for a long time, only a few specialists noticed this important

approach to quantum field theory.

Eberhard Zeidler, writing about the seminal paper of H. Epstein and V.

Glaser [27] in his book [78]

CPT is an axiomatic approach for solving QFT where ill-defined mathematical quan-

tities or computations are avoided due to the use of the theory of distributions (or gen-

eralized function theory) to give the correct mathematical nature to quantum fields as

operator value distributions (OVD). [79,80]

It focuses in the causality property to construct the S-Matrix as a formal perturba-

tive power series in the coupling constant [27, 37, 81], leaving other physical properties

for the end of computation. Even more, the CPT methodology is free of ultraviolet

divergencies as a consequence of not containing ill-defined product of operator value

distributions (OPV) in the same Minkowski space-time point!

In this Chapter we develop the fundamental tools to construct the S-matrix following

the references [37] and [81].

13
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3.1 Axioms of Causal Perturbation Theory

CPT works directly constructing the scattering operator 1 S. In this sense, it follows

the Heisenberg program for QFT [82] which consider the in and out Fock spaces Fin

and Fout respectively. The space Fin is the set of all multi-particle states |φyin before

the scattering process and Fout is the set of all multi-particle states |ψyout after. Then,

the operator S is defined as the bijective application

S : Fin Ñ Fout. (3.1)

Consequently, the transition from the in to out state is

S : |φyin Ñ |ψyout ” S|φyin, (3.2)

and the transition amplitude A from the state |φyin to |ψyout is computed as

Ap|φyin, |ψyoutq ” p|ψyout, S|φyinq “out xψ|S|φyin. (3.3)

But in contrast to the usual construction of S via temporal order product, H. Epstein

and V. Glaser used the formalism developed by Bogoliubov [83] where a test function

is introduced to give the correct mathematical nature to the quantum fields as OVD

which appear in the temporal product2.

Bogoliubov uses a function gpxq P r0, 1s to control the long range interaction which

causes the infrared divergences. The function gpxq is named switching on-off function.

If in a space-time region gpxq “ 0 the interaction is switched-off, if 0 ă gpxq ă 1 the

interaction is partially switched-on, and if gpxq “ 1 the interaction is fully switched-on.

We choose gpxq “ 0 for x0 “ ˘8, and gpxq ‰ 0 for a time interval x0 P rton, toff s

where the interaction scattering is stronger. Furthermore, gpxq must belong to C80 or

S to allow the derivatives of singular OVDs. Via this reasoning, we conclude that the

operator S must be a functional of g

S “ Srgs. (3.4)

1The S-Matrix and the scattering operator are different concepts but intimately related. The S-

Matrix is the collection of all possibles transition amplitudes in a scattering process, but in this work

we will use the two concepts as the same as usual.
2Remember from Chap. 2. that a distribution needs to be applicated in a test function space.
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Now, considering a perturbative construction of S, H. Epstein and V. Glaser [27]

propose the following ansatz as a formal series expansion

Srgs ” 1`

ż

d4x1T1px1qgpx1q `
1

2!

ż

d4x2d
4x1T2px1, x2qgpx1qgpx2q ` . . .

”

8
ÿ

0

1

n!

ż

d4x1 . . . d
4xnTnpx1, . . . , xnqgpx1q . . . gpxnq

” 1` T,

(3.5)

where } “ 1 “ c as usual and Tnpx1, . . . , xnq is called n-point distribution which are the

terms that we need to find. The factor n! is used to indicate the symmetry property of

Tn when a permutation of coordinates is done.

Using unitarity, Bogoliubov found that the Tn distributions were the temporal prod-

uct of interaction Lagrangian [83]. Instead of using the unitarity property of S-matrix,

H. Epstein and V. Glaser postulate four axioms to constrain Tn and then develop an

iterative construction with the guide of causality condition [27]. G. Scharf modernize

the approach and applicated it to QED [37].

3.1.1 Axiom I: Boundary Condition

This axiom constrains the spaces Fin and Fout. We postulate that in the temporal

limits t Ñ ˘8 the particle systems are asymptotically free, inclusive in the adiabatic

limit gpxq Ñ 1. Consequently, the two Fock spaces, in and out, are free multi-particle

spaces.

We can comment that in the adiabatic limit gpxq Ñ 1, (3.5) can be written as

Srgs “ 1`
8
ÿ

n“1

λnSn (3.6)

where λ is the coupling constant of the gauge theory and the convergence of the series

depends on its intensity.

The most important consequence from this axiom is that the theory is determined

via the free field operators, therefore the mass and charge in the free wave equations

are the physical quantities.
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3.1.2 Axiom II: Base Term and Perturbative Gauge Invariance

We postulate that the construction of the S-matrix, as a formal series (3.5), will be

done inductively from the definition of the first term T1pxq which will be different for

every gauge theory.

The systematized methodology to construct the term T1pxq is the major contribu-

tion of G. Scharf and collaborators to CPT. In a series of articles [30, 36, 38–61], they

determine the conditions for the gauge invariant transformation for every term of the

series (3.5), and apply it to construct Yang-Mills and Electroweak theories. They call

this formalism Perturbative Gauge Invariance (PGI), and it complements CPT. PGI

will be developed in Chapter 5.

3.1.3 Axiom III: Poincaré Invariance

Similar to the usual framework, CPT must be invariant under translation and Lorentz

transformation. These transformations must be done on the test functions gpxq because

of the functional nature of S-matrix.

If an observator O uses the test function gpxq to study a physical phenomenon, then

an observator O1 translated to x ` a, must use a test function ga “ gpx ´ aq. Or if O1

is boosted or rotated to Λx, the test function must be gΛ “ gpΛ´1xq. In both cases the

S-matrix must be invariant.

If Upa,Λq is a representation of translation a or Lorentz transformation Λ in Fock

space F , then the transformation rule of S-matrix is

S 1 “ Upa,ΛqSU´1
pa,Λq, (3.7)

Therefore, the Poincaré invariance implies

S “ Upa,ΛqSU´1
pa,Λq, (3.8)

3.1.4 Axiom IV: Causality

This is the principal axiom to construct the S-matrix. CPT postulates that there exists

a parameter which order the evolution of events in space-time.

In this thesis we will use the temporal parameter x0 to order the S-matrix scattering

events. Then, because of the functional dependence on the switch on-off test functions

gpxq, we will time order S regarding gpxq.
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Definition 3.1 By considering two test functions g1pxq and g2pxq with disjoint sup-

ports, then if @x1 P supprg1s and @x2 P supprg2s we can define the time-ordering rule

x0
1 ă x0

2 ñ supprg1s ă supprg2s. (3.9)

Now, if for a reference system, the S-matrix depends on two test functions g1 and g2,

the time-ordering rule supprg1s ă supprg2s implies the following causal decomposition

Srg1 ` g2s “ Srg2sSrg1s. (3.10)

3.2 Iterative construction of S-Matrix

Regarding the four axioms of CPT, we proceed to construct term by term the pertur-

bative series (3.5). Of course, the first step is to define the one point distribution T1pxq.

As mentioned in the axiom II, each gauge theory presents its own term T1pxq. We will

describe the construction of T1 for scalar QED in Chapter 5. In this section we describe

the second step which focuses in determining the term Tn from the knowledge of the

previous terms tTn´1, . . . , T1u.

3.2.1 Properties of the n-point distributions

Because the main elements to be computed are the n-point distributions Tn, it will

be useful to determine some of their properties that come from the properties of the

S-matrix:

1. The inverse S´1 will be determined in two forms, by inverting (3.5) as

S´1
“ p1` T q´1

“ 1`
8
ÿ

r“1

p´T qr, (3.11)

and as formal series

S´1
“ 1`

8
ÿ

n“1

1

n!

ż

d4x1 . . . d
4xn rTnpx1, . . . , xnqgpx1q . . . gpxnq, (3.12)

where rTnpx1, . . . , xnq is an n-point distribution that is symmetric under the per-

mutations of xi and 1 is the identity matrix. rTn is not the inverse of Tn, but it
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can be determined as a function of the set tT1, . . . , Tnu using the fact that the

right-hand sides of equations (3.11) and (3.12) are equal

rTnpx1, . . . , xnq “
n
ÿ

r“1

p´1qr
ÿ

Pr

Tn1pX1q . . . TnrpXrq, (3.13)

where the sum is over all partitions Pr of the set X “ tx1, . . . , xnu in r disjoints

and not empty sub-sets Xi.

2. Making use of

1 “ SrgsS´1
rgs “ S´1

rgsSrgs, (3.14)

we obtain
ÿ

P 0
2

Tn1pXqT̃n´n1pZzXq “ 0, (3.15)

ÿ

P 0
2

Tn´n2pZzY qT̃n2pY q “ 0, (3.16)

ÿ

P 0
2

T̃n´n1pXqTn1pZzXq “ 0, (3.17)

ÿ

P 0
2

T̃n2pZzY qTn´n2pY q “ 0, (3.18)

where the sums run over all two partitions P 0
2 of the set Z “ tx1, . . . , xnu in two

disjoints sub-sets X and Y allowing the cases where X “ H or Y “ H.

3. From Poincaré invariance, we determine

Tnpx1, . . . , xnq “ Tnpx1 ` a, . . . , xn ` aq, (3.19)

T px1, . . . , xnq “ T pΛx1, . . . ,Λxnq. (3.20)

4. From causality, we can determine that the n-point distributions are well defined

time ordered product. If tx0
1, . . . , x

0
mu ą tx

0
m`1, . . . , x

0
nu, thus

Tnpx1, . . . , xm, xm`1, . . . , xnq “ Tmpx1, . . . , xmqTn´mpxm`1, . . . , xnq, (3.21)

and for rTn, we have

rTnpx1, . . . , xm, xm`1, . . . , xnq “ rTn´mpxm`1, . . . , xnqrTmpx1, . . . , xmq. (3.22)
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3.2.2 From Tn´1 to Tn

In the computation of Tn, the main objective is to avoid the naive procedure to deter-

mine the advanced and retarded parts of a causal propagator via the multiplication to

a Heaviside step function Θptq. Because Θptq R C8, the naive product could not exist

as mentioned in Chapter 2.

First of all, from the knowledge of tTn´1, . . . , T1, T̃n´1, . . . , T̃1u, we define the inter-

mediate distributions A1n and R1n as

A1npx1, . . . , xnq ”
ÿ

P2

rTn1pXqTn´n1pY, xnq, (3.23)

R1npx1, . . . , xnq ”
ÿ

P2

Tn´n1pY, xnqrTn1pXq, (3.24)

where the sum runs over all partitions P2 of the set tx1, . . . , xn´1u in two non-empty

and disjoints sub-sets X and Y . This product is well define because it is done with

distributions defined in different space-points.

The next step is to extend the sums (3.23) and (3.24) allowing for the empty sub-set

X “ H

Anpx1, . . . , xnq ”
ÿ

P 0
2

rTn1pXqTn´n1pY, xnq, (3.25)

Rnpx1, . . . , xnq ”
ÿ

P 0
2

Tn´n1pY, xnqrTn1pXq, (3.26)

where T0 “ 1 “ T̃0 and P 0
2 represents the inclusion of empty sets. We will show that the

distributions An and Rn are the retarded and advanced distributions which we want to

determine. Furthermore, it is straightforward to rewrite the sums (3.25) and (3.26) as

Anpx1, . . . , xnq “ A1npx1, . . . , xnq ` Tnpx1, . . . , xnq, (3.27)

Rnpx1, . . . , xnq “ R1npx1, . . . , xnq ` Tnpx1, . . . , xnq. (3.28)

In equations (3.27) and (3.28) just R1n and A1n are known. If we determine An or

Rn through the use of another methodology, then we can determine the Tn by

Tnpx1, . . . , xnq “

$

&

%

Anpx1, . . . , xnq ´ A
1
npx1, . . . , xnq,

Rnpx1, . . . , xnq ´R
1
npx1, . . . , xnq.

(3.29)

The latter is possible in the framework of distribution theory.
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3.2.3 Supports of the retarded Rn and advanced An distribu-

tions

The most important property of the distributions Rn and An is their support. To

identify this property, we are going to invoke the following theorem3

Theorem 3.1 Consider three sets of space points Y , P and Q such as Y “

P YQ, P ‰ H, P XQ “ H, |Y | “ n´1, and the point x such that x{PY , then:

• If tQ, xu ą P , |Q| “ n1, therefore

R1npY, xq “ ´Tn1`1pQ, xqTn´pn1`1qpP q (3.30)

• If tQ, xu ă P , |Q| “ n1, therefore

A1npY, xq “ ´Tn´pn1`1qpP qTn1`1pQ, xq (3.31)

Now, we can study the support of Rn. If Y “ tx1, . . . , xn´1u, then we can write

(3.28) as

RnpY, xnq “ R1npY, xnq ` TnpY, xnq. (3.32)

Now, we have three cases for time ordering the whole set tY, xnu
4:

• Case one: Y ą xn.

• Case two: xn ą Y .

• Case three: Q ą xn ą P , where Y “ P YQ.

In the second and third cases, we can use the theorem 3.1 to rewrite (3.32) in the

following form

RnpY, xnq “ ´Tn1`1pQ, xnqTn´pn1`1qpP q ` TnpP YQ, xnq, (3.33)

where if we use the causal decomposition for the n-point distribution, we get

RnpY, xnq “ ´Tn1`1pQ, xnqTn´pn1`1qpP q ` TnpP YQ, xnq

“ ´T pQ, xnqT pP q ` T pQ, xnqT pP q

“ 0

(3.34)

3The proof can be seen in Appendix A.1.
4For simplicity, we will write all causality conditions obviating the zero super-index.
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In conclusion, from (3.34) the unique case where Rn ‰ 0 is for the time order

xn ă tx1, . . . , xn´1u, (3.35)

and for An, we can get the time ordering condition xn ą tx1, . . . , xn´1u in the non-null

case.

Considering the Lorentz invariance of the n-point distributions Tn, it is not difficult

to extend it to Rn and An. This is important because the causal condition (3.35) must

be the same for all reference system, and of course, the set tx1, . . . , xnu must be in the

light-cone with origin in xn.

To formalize the last deduction, we will define the 4n-dimension light-cone centered

in y as

Γ˘n pyq ” tpx1, . . . , xnq{xi P V̄
˘
pyqu, (3.36)

where V̄ ˘pyq are the closed forward and backward light-cone centered in y

V̄ `pyq ”
 

x{px´ yq2 ě 0, x0
ě y0

(

, (3.37)

V̄ ´pyq ”
 

x{px´ yq2 ě 0, x0
ď y0

(

, (3.38)

respectively.

Regarding (3.36), we conclude for the supports of Rn and An distributions the

following two properties

supprRnpx1, . . . , xnqs Ď Γ`n´1pxnq, (3.39)

supprAnpx1, . . . , xnqs Ď Γ´n´1pxnq, (3.40)

respectively.

3.2.4 The causal distribution Dn

The results (3.39) and (3.40), tell us that Rn and An are the retarded and advanced

parts of a subtraction

Dnpx1, . . . , xnq ” Rnpx1, . . . , xnq ´ Anpx1, . . . , xnq, (3.41)

where Dn is called causal distribution because its support will be the union of the

supports of Rn and An

supprDnpx1, . . . , xnqs Ď tΓ
`
n´1pxnq Y Γ´n´1pxnqu. (3.42)
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The causal distribution is fully computable from (3.27) and (3.28) as

Dnpx1, . . . , xnq “ R1npx1, . . . , xnq ´ A
1
npx1, . . . , xnq (3.43)

The result (3.43), is the starting point for the computation of Tn. Because supprRnsX

supprAns “ txnu, it is possible to determine Rn or An splitting Dn with the specific

supports in the framework of distribution theory. The splitting process is called causal

splitting and will be developed in the next section.

3.3 Causal splitting Procedure

In the usual framework, the splitting of a causal distribution in its advanced or retarded

part is done by the naive multiplication by the Heaviside step function [84]. However,

this product is not always well defined because in quantum field theory there exist

causal singular distributions. As demonstrated by G. Scharf, in QED [37] this naive

procedure was the origin of ultraviolet divergences.

Then, we need to determine how to split correctly a causal distribution. First of all,

we must remember that, in the usual framework, the UV divergence is related with two

sources: the short distance behavior of the causal propagators and the bare physical

parameters as mass and charge of particles [85–92].

Because in CPT it is postulated that the mass and charge are the physical quantities,

this implies that we need to study the behavior of Dn in a vicinity of xn. The latter is

possible just in the numerical parts of the causal distribution Dn.

3.3.1 Numerical distribution dn

From the properties of the n-point distributions Tn and T̃n, it is not difficult to note

that the intermediate distributions R1 and A1 could be written as products of normal

order operators. Therefore, we have

D2px1, . . . , xnq “
ÿ

k

:
ź

j

Opxjq : dknpx1, . . . , xnq, (3.44)

where Opxjq represents all operator value distributions (OVD) and dknpx1, . . . , xnq is

the numerical part of each term in the sum (3.44) obtained via contractions of Wick
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Figure 3.1: Graph with four external legs and connected n points represented by dn.

theorem5. In general, we can represent each term of the summation (3.44) graphically,

the uncontracted operator value distribution fields represent external legs and the nu-

merical distributions dknpx1, . . . , xnq represent the connection of these legs as in Fig.

(3.1).

The numerical part dkn is what we will causal-split. Using the Poincaré invariance,

we can translate dn by xn obtaining

dknpx1, . . . , xnq “ dknpx1 ´ xn, . . . , xn´1 ´ xn, 0q ” dpx̃q, (3.45)

where we define dpx̃q as the general notation to denote each numerical distribution to

be split and x̃ “ px̃1, . . . , x̃n´1q where x̃i “ xi ´ xn.

From (3.45) we can note that the short distance behavior means the mathematical

behavior of dpx̃q in the limit x̃j Ñ 0. Furthermore, we can see that the UV divergence

problem is the ill-defined product with the Heaviside step functions Θpx0
j ´ x0

nq where

j “ 1, . . . , n´ 1 due to its ill defined limit lim
x0jÑx

0
n

Θpx0
j ´ x

0
nq.

3.3.2 Singular and Regular distributions

Following section (2.3), to causal split dpx̃q, we will construct the function χptq P C8

over R1

χptq ”

$

’

’

&

’

’

%

0 when t ď 0,

r0, 1s when 0 ă t ă 1,

1 when t ě 1.

(3.46)

5The Wick theorem is developed in Appendix (A.2).
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There is no mathematical ill definitions in the product between χptq and any distri-

bution T P C810 . Furthermore, it is not difficult to note that Θptq will be constructed

as the limit

Θptq “ lim
αÑ0`

χp
t

α
q, (3.47)

this last property was the reason to construct χptq, because with its help we will multiply

χp
t

α
q by a causal distribution, then take the limit αÑ 0` to obtain its retarded part.

We will generalize the definition (3.46) to m “ 4n ´ 4 dimensions with the help of

a retarded vector v P Γ`n´1p0q and define the function χαpx̃q as

χαpx̃q ” χp
v.x̃

α
q, (3.48)

where v “ pv1, . . . , vn´1q, and the product v.x̃ is defined as

v.x̃ ”
n´1
ÿ

i“1

gµνv
µ
i x̃

ν
i . (3.49)

Regarding (3.49), we can see that the space-like hyperplane

v.x̃ “ 0, (3.50)

split the causal support as show in Fig. (3.2).

From (3.48) and (3.49), we can compute that for all x̃i P V̄
´ we have lim

αÑ0`
χαpx̃q “ 0,

and for all x̃i P V̄
` we get lim

αÑ0`
χαpx̃q “ 1. This is the desired behavior to obtain the

retarded part rnpx̃q of dnpx̃q via the multiplication rnpx̃q “ χαpx̃qdnpx̃q. The problem

is to determine in which cases the following weak limit exists

xrnpx̃q, fpx̃qy “ lim
αÑ0`

xχαpx̃qdpx̃q, fpx̃qy, (3.51)

for all test functions fpx̃q P C80 .

As a Cauchy sequence labeled by α, we need to demonstrate that for all real value

ε ą 0, there exists a real value δ ă ε such that for all α and β, with values on the

interval 0 ă tα, βu ă δ, the following inequality is fulfilled

}xχβpx̃qdpx̃q, fpx̃qy ´ xχαpx̃qdpx̃q, fpx̃qy} ă ε. (3.52)

Taking β as β “ α{a, where a P R is fixed, and defining the function ψpx{aq as

ψ

ˆ

x̃

α

˙

“ χ

ˆ

v.x̃
α
a

˙

´ χ

ˆ

v.x̃

α

˙

, (3.53)
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Figure 3.2: Split of the causal support by the hyperplane v.x “ 0.

we can rewrite (3.52) in the following form

}xψp
x̃

α
qdpx̃q, fpx̃qy} ă ε. (3.54)

Because ψp
x̃

α
q P C8, it could be interchanged with fpx̃q

}xfpx̃qdpx̃q, ψp
x̃

α
qy} ă ε. (3.55)

In order to eliminate the α dependence of the new test function ψ, we can re-scale

the variable as x̃Ñ αx̃

}xfpαx̃qαmdpαx̃q, ψpx̃qy} ă ε. (3.56)

In the limit αÑ 0`, we could think that the left hand side of (3.56) is null, but this

is not true for distributions dpαx̃q which increase faster than αm in the neighborhood

of α “ 0. For this reason, we introduce the function ρpαq to characterize the increase

behavior of dpαx̃q and define the quasi-asymptotic distribution d0pαx̃q.

Definition 3.2 A distribution dpxq P C 180 pR
mq has a quasi-asymptotic d0pxq

over x “ 0, if for a positive function ρpαq (α ą 0) the limit

lim
αÑ0`

xρpαqαmdpαxq, ψpxqy “ xd0pxq, ψpxqy ‰ 0, (3.57)

exists
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With the help of (3.57), we can multiply and divide the left hand side of (3.56) by

ρpαq

xfpαx̃qαmdpαx̃q, ψpx̃qy “

“
1

ρpαq
xfpαx̃qρpαqαmdpαx̃q, ψpx̃qy

“
1

ρpαq

”

fp0qxρpαqαmdpαx̃q, ψpx̃qy `Dp1qfp0qxxρpαqαm`1dpαx̃q, ψpx̃qy ` . . .
ı

,

(3.58)

where, in the last equality, we did the Taylor series expansion for fpαxq around x “ 0.

In (3.58), after the first term, we have factors proportional to αm`i, with i “ 1, 2, . . .,

which decrease more rapidly than ρpαqdpαxq. Then, in the limit αÑ 0`, we have

xfpαx̃qαmdpαx̃q, ψpx̃qy «
fp0q

ρpαq
xd0px̃q, ψpx̃qy. (3.59)

As shown in Appendix (A.3), we could use the result (A.13) to replace ρpαq “

αωLpαq in (3.59)

xfpαx̃qαmdpαx̃q, ψpx̃qy «
fp0q

αωLpαq
xd0px̃q, ψpx̃qy, (3.60)

where ω P R`, and Lpαq is a slow varying or quasi-constant function of α in the

neighborhood of α “ 0.

From (3.60), we can conclude that the condition (3.56) is fulfilled, for all test func-

tions fpxq, just in the case where ω ă 0. For ω ě 0, the condition is fulfilled for a finite

subgroup of C80 . To show the latter we go back to the Taylor expansion of the test

function fpxq in (3.58)

xfpαx̃qαmdpαx̃q, ψpx̃qy “

“
1

αωLpαq

”

ω
ÿ

|l|“0

1

l!
rDlf sp0qxxlρpαqαm`ldpαx̃q, ψpx̃qy

`

8
ÿ

|l|“ω`1

1

l!
rDlf sp0qxxlρpαqαm`ldpαx̃q, ψpx̃qy

ı

“

ω
ÿ

|l|“0

1

αω´lLpαq

1

l!
rDlf sp0qxxlρpαqαmdpαx̃q, ψpx̃qy

`

8
ÿ

|l|“ω`1

αl´ω

Lpαq

1

l!
rDlf sp0qxxlρpαqαmdpαx̃q, ψpx̃qy,

(3.61)
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where xl “ xl11 . . . x
ln
n with l “ l1 ` . . .` ln, and the sum runs over all possible l.

From (3.61), we can note that in the case ω ě 0, only the test functions where

rDlf sp0q “ 0 with l “ 1, . . . , ω allow the condition (3.56).

Therefore, in order to causal-split dpx̃q valid for all test functions f , we could define

the projection

W : f ÑWf, (3.62)

Wf “ fpxq ´ wpxq
ω
ÿ

|l|“0

1

l!
rDlf sp0qxl, (3.63)

where wpxq P S has the following properties wp0q “ 1 and rDνwsp0q “ 0 for all

ν “ 1, . . . , ω. Over the new test functions Wf the existence condition (3.56) is valid.

In conclusion, in order to determine the retarded part rn via (3.51), we need to

compute the quantity ω first. For its importance and nature, ω is knowing as order

of singularity because it could be used to classify the distributions as regular or

singular in the cases where ω ă 0 or ω ě 0, respectively. As demonstrated by G.

Scharf et al., ω is the formal form of the superficial degree of divergence used in the

standard formalism based on Feynman diagrams.

In summary, to obtain the retarded part rpx̃q of a causal distribution dpx̃q, we need

to follow these steps:

1. Determine the power counting function ρpxq to obtain the quasi-asymptotic dis-

tribution d0pxq defined in (3.57).

2. Determine the order of singularity ω via

lim
αÑ0`

ρpaαq

ρpαq
“ aω. (3.64)

3. If ω ă 0, the retarded part rpx̃q is obtained from

xrpx̃q, fpx̃qy “ lim
αÑ0`

xχp
v.x̃

α
qdpx̃q, fpx̃qy “ xΘpv.x̃qdpx̃q, fpx̃qy. (3.65)

4. If ω ě 0, the retarded part rpx̃q is obtained from

xrpx̃q, fpx̃qy “ lim
αÑ0`

xχp
v.x̃

α
qdpx̃q,Wfpx̃qy “ xΘpv.x̃qdpx̃q,Wfpx̃qy. (3.66)
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3.3.3 Uniqueness of the retarded part rpxq

In the regular case, the solution for rpxq is unique. In this section we want to show

that in the singular case it is not.

First of all, we want to emphasize the characteristics of projected test functions

Wfpxq. From (3.63), it is not difficult to rewrite Wfpxq as

Wf “ xω`1gpxq. (3.67)

Then, the following property is fulfilled

Dl
pWfq

ˇ

ˇ

ˇ

x“0
“ 0, for all l “ 0, . . . , ω. (3.68)

Now, we can define the retarded part r̃pxq

r̃pxq ” rpxq `
ω
ÿ

l“0

ClD
lδpxq, (3.69)

where Cl are constants. By construction, we can show that r̃pxq generates the same

result as r

xr̃, fpxqy “ xΘpxqdpxq `
ω
ÿ

l“0

ClD
lδpxq,Wfpxqy

“ xΘpxqdpxq,Wfpxqy `
ω
ÿ

l“0

ClxD
lδpxq,Wfpxqy

“ xΘpxqdpxq,Wfpxqy “ xrpxq, fpxqy

(3.70)

The result (3.70) demonstrated that in the singular case ω ě 0, the most general

solution for the retarded part of dpxq is (3.69).

3.4 Causal-splitting procedure in momentum space

As in the standard framework, we are going to present the computation of the retarded

part rpxq in momentum space using the properties described in section 2.4.
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3.4.1 Regular distribution Case

In a regular distribution case, using (3.65) we have

xr̂ppq, f̌ppqy “ xΘpv.x̃qdpx̃q
Ź

ppq, f̌ppqy

“ p2πq´
m
2 xΘ̂ppq ˚ d̂ppq, f̌ppqy

“ xp2πq´
m
2

ż

dmkΘ̂pp´ kqd̂pkq, f̌ppqy,

(3.71)

then

r̂ppq “ p2πq´
m
2

ż

dmkΘ̂pp´ kqd̂pkq. (3.72)

In order to determine Θ̂pqq, we choose a vector v “ p1,0, 0, . . .q where 0 tell us that

the first three spacial coordinates of v are null. Then, we have

Θ̂pqq “ p2πq
m
2
´1δpq1, q2, . . . , qn´1q

i

q0
1 ` i0

`
. (3.73)

Replacing (3.73) into (3.72), we obtain

r̂ppq “ p2πq´1

ż

dk0
1

id̂pk0
1,p1, . . . , pn´1q

p0
1 ´ k

0
1 ` i0

`
. (3.74)

Regarding that pi P tΓ
`
1 Y Γ´1 u and making the substitution k0

1 “ t1p
0
1 in (3.74), we

obtain

r̂ppq “ p2πq´1Sgnpp0
1q

ż

dt1
id̂pt1p

0
1,p1, . . . , pn´1q

1´ t1 ` iSgnpp0
1q0

`
, (3.75)

where Sgn represents the sign function.

Apparently, in (3.75), we lost the covariance but because d̂ppq is Lorentz invariant

we can make the computation in a reference system where p1 “ 0, then making the

boost ptp0
1,0q Ñ ptp0

1, tp1q we will obtain

r̂ppq “ p2πq´1Sgnpp0
1q

ż

dt1
id̂pt1p1, . . . , pn´1q

1´ t1 ` iSgnpp0
1q0

`
. (3.76)

The result (3.76) shows that in the computation of r̂ppq we could choose the variables

tp2, p3, . . . , pn´1u arbitrarily. Of course, if we take v “ p0, . . . , v0
j “ 1,vj “ 0, . . . , 0q, we

finally obtain a momentum dependence on pj P tΓ
`
1 Y Γ´1 u.
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To obtain r̂ppq independent of a specific variable pj, we must multiply (3.71) by

n´ 1 step functions
n´1
ś

j“0

Θpx0
jq giving us the following formula

r̂ppq “

ˆ

i

2π

˙n´1

Sgnp
n´1
ź

j“0

p0
jqˆ

ˆ

ż n´1
ź

j“0

dtj

«

n´1
ź

j“0

1

1´ tj ` iSgnpp0
jq0

`

ff

d̂pt.pq,

(3.77)

where t.p “ t1.p1 ` . . .` tn´1.pn´1 and p P tΓ`n´1 Y Γ´n´1u.

For a two-point retarded part, the formula (3.77) will be

r̂ppq “
i

2π
Sgnpp0

q

8
ż

´8

dt
d̂ptpq

1´ t` iSgnpp0q0`
, p P Γ`1 Y Γ´1 . (3.78)

3.4.2 Singular distribution Case

Similarly to (3.71), in the singular case we have

xr̂ppq, f̌ppqy “ xΘpv.x̃qdpx̃q
Ź

ppq,Wf

Ź

ppqy

“ p2πq´
m
2 xΘ̂ppq ˚ d̂ppq,Wf

Ź

ppqy.
(3.79)

From (3.63), we can compute the term Wf

Ź

ppq

Wf

Ź

ppq “
”

fpxq ´ wpxq
ω
ř

|l|“0

1
l!
rDlf sp0qxl

Ź

ı

ppq

“ f̌ppq ´
ω
ÿ

|l|“0

1

l!
rDlf sp0q

”

wpxqxl

Ź

ı

ppq

“ f̌ppq ´
ω
ÿ

|l|“0

1

l!
rDlf sp0qrilDl

pw̌ppqs.

(3.80)

The term rDlf sp0q could be written as

rDlf sp0q “ xδpxq,Dlfpxqy “ p´1qlxDlδpxq, fpxqy

“ p´1qlxp2πq´
m
2 p´ip1ql, f̌pp1qy “ p2πq´

m
2 xpip1ql, f̌pp1qy,

(3.81)

and replacing into (3.80), we obtain
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Wf

Ź

ppq “ f̌ppq ´
ω
ÿ

|l|“0

1

l!
p2πq´

m
2 xpip1ql, f̌pp1qyrilDl

pw̌ppqs

“ f̌ppq ´ p2πq´
m
2

ω
ÿ

|l|“0

p´1ql

l!
xp1l, f̌pp1qyrDl

pw̌ppqs.

(3.82)

Now, replacing (3.82) into (3.79), we get for the term xr̂ppq, f̌ppqy the following result

xr̂ppq, f̌ppqy

“ p2πq´
m
2 xΘ̂pkq, xd̂pp´ kq, f̌ppqyy

´ p2πq´m
ω
ÿ

|l|“0

p´1ql

l!
xΘ̂pkq, xd̂pp´ kq,Dl

pw̌ppqyyxp
1l, f̌pp1qy

“ p2πq´
m
2 xΘ̂pkq, xd̂pp´ kq, f̌ppqyy

´ p2πq´m
ω
ÿ

|l|“0

p´1ql

l!
xΘ̂pkq, xd̂pp1 ´ kq,Dl

p1w̌pp
1
qyyxpl, f̌ppqy,

(3.83)

where in the last line we interchange p and p1.

In (3.83), the distribution result with the step function could be written as an

integral. Also we could factorize the test function f̌ppq and obtain

xr̂ppq, f̌ppqy “ p2πq´
m
2

ż

dkΘ̂pkqxd̂pp´ kq, f̌ppqy

´ p2πq´m
ω
ÿ

|l|“0

p´1ql

l!

ż

dkΘ̂pkqxd̂pp1 ´ kq,Dl
p1w̌pp

1
qyxpl, f̌ppqy

“ xp2πq´
m
2

ż

dkΘ̂pkqd̂pp´ kq, f̌ppqy

´ xp2πq´m
ż

dkΘ̂pkq
ω
ÿ

|l|“0

p´1ql

l!
xd̂pp1 ´ kq,Dl

p1w̌pp
1
qypl, f̌ppqy.

(3.84)
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Again, comparing the two sides of equation (3.84), we get the formula

r̂ppq “ p2πq´
m
2

ż

dkΘ̂pkqd̂pp´ kq

´ p2πq´m
ż

dkΘ̂pkq
ω
ÿ

|l|“0

plp´1ql

l!
xd̂pp1 ´ kq,Dl

p1w̌pp
1
qy

“ p2πq´
m
2

ż

dkΘ̂pkqd̂pp´ kq

´ p2πq´m
ż

dkΘ̂pkq
ω
ÿ

|l|“0

pl

l!
xDl

p1 d̂pp
1
´ kq, w̌pp1qy

“ p2πq´
m
2

ż

dkΘ̂pkqd̂pp´ kq

´ p2πq´m
ż

dkΘ̂pkq
ω
ÿ

|l|“0

pl

l!

ż

dp1rDl
p1 d̂pp

1
´ kqsw̌pp1q,

(3.85)

where in the second equality we used the definition of distribution’s derivative, and in

the second term of third equality we wrote the distribution result as an integral over p1.

The formula (3.85) depend on function w̌ppq. We could eliminate the latter depen-

dence regarding the non-uniqueness of rpxq. In the momentum space, the most general

solution r̂ppq will be obtained from the Fourier transformation of (3.69)

ˆ̃rppq “ r̂ppq `
ω
ÿ

l“0

Ĉlp
l. (3.86)

The formula (3.86) tells us that we can add to r̂ppq any polynomial, of degree equal

or less than ω, to obtain an equivalent solution. The latter property allows us to define

the normalized solution r̂qppq in the following form

r̂qppq “ r̂ppq ´
ω
ÿ

b“0

pp´ qqb

b!
rDbr̂spqq Ø rDbr̂qspqq “ 0 for all b ď ω, (3.87)

where q P Rm is a fixed point.

In Appendix A.4, we show the computation to get the following explicit form for

r̂qppq

r̂qppq “ p2πq
´m

2

ż

dkΘ̂pkq
”

d̂pp´ kq ´
ω
ÿ

b“0

pp´ qqb

b!
Db
qd̂pq ´ kq

ı

. (3.88)

Because q could be any point of Rm, we define the central splitting solution
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r̂0ppq when we choose q “ 0

r̂0ppq “ p2πq
´m

2

ż

dkΘ̂pkq
”

d̂pp´ kq ´
ω
ÿ

b“0

pb

b!
Db
qd̂pq ´ kq

ˇ

ˇ

ˇ

q“0

ı

. (3.89)

As show in Appendix A.5, we could find a nice formula for r̂0ppq by taking into ac-

count the indetermination of vector v in the construction of the Heaviside step function.

For a two-point retarded distribution, the solution takes the following form

r̂0ppq “
i

2π
Sgnpp0

q

ż

dt
d̂ptpq

pt´ i0`qω`1p1´ t` iSgnpp0q0`q
. (3.90)

Summarizing, in the momentum space, the procedure to obtain the retarded part

of a causal distribution is:

1. Compute the Fourier transform of numerical causal distribution d̂ppq.

2. Determine the power counting function ρpαq via (3.57), which has a momentum

space version as follows

Definition 3.3 A distribution d̂ppq P C 180 pR
mq has a quasi-asymptotic d̂0ppq

over p “ 8, if for a positive function ρpαq (α ą 0) there exists the limit

lim
αÑ0
xρpαqd̂p

p

α
q, ψ̌ppqy “ xd̂0ppq, ψ̌ppqy ‰ 0. (3.91)

3. Obtain the order of singularity ω via

lim
αÑ0`

ρpaαq

ρpαq
“ aω. (3.92)

4. If the numerical causal distribution d̂ppq is regular ω ă 0, the retarded part,

normalized in the origin and at second order, is given by the following formula

r̂0ppq “
i

2π
Sgnpp0

q

8
ż

´8

dt
d̂ptpq

1´ t` iSgnpp0q0`
, p P Γ`1 Y Γ´1 . (3.93)

5. For the singular case ω ě 0, the most general solution for the retarded part in

second order is

ˆ̃r0ppq “
i

2π
Sgnpp0

q

ż

dt
d̂ptpq

pt´ i0`qω`1p1´ t` iSgnpp0q0`q
`

ω
ÿ

l“0

Ĉlp
l, (3.94)

where the constants Ĉl are not defined by the causal splitting procedure.



34 3. Causal Perturbation Theory

Of course, the uniqueness of S-matrix implies that one of the solution families (3.94)

is the real physical one. The physical solution will be obtained by fixing the constants Ĉl

regarding physical properties of the theory such as gauge invariance, charge invariance,

particle masses, etc.



Chapter 4

Quantized free Fields and

Perturvative Gauge Invariance

Elementary particles are complicated real objects; free fields are simpler

mathematical ones. Nevertheless, free fields are the basis of quantum field

theory because the really interesting quantities like interacting fields and

scattering matrix (S-matrix) can be expanded in terms of free fields.

Günter Scharf

Free fields are solutions to the relativistic covariant homogeneous field equations

with a quantization rule. They are not physical objects because they do not model all

the properties of particles, but they are all we know how to solve. Fortunately, in the

case of electromagnetic interaction, the value of coupling constant is small enough to

allow for the expansion of the S-matrix in terms of free fields.

In this thesis we will study scalar QED as a Duffin-Kemmer-Petiau gauge theory

(SDKP) via CPT. Therefore, as mentioned in Chapter 3, we need to determine the

quantized electromagnetic and DKP free fields. In this Chapter we develop the latter.

Also, we show the properties of a fermionic scalar (Ghost) field to introduce the phys-

ical principle of Perturbative Gauge Invariance (PGI) in order to complement CPT.

Specifically, PGI is used to define the first term T1 of S-matrix expansion (3.5).

35



36 4. Quantized free Fields and Perturvative Gauge Invariance

4.1 Electromagnetic Field

The quantized electromagnetic field is modeled by the 4-potential Aµpxq which obeys

the relativistic wave equation

lAµ “ 0, l “ gµνBνBµ, gµν “ diagp`,´,´,´q, (4.1)

which is related with the Lorenz gauge condition BµA
µ
class “ 0 for a classical electro-

magnetic 4-potential. We will see that the latter is related to the physical Fock space

for transversal photons.

Taking into account (4.1) just as four massless Klein-Gordon-Fock equations, we

define the solutions as

A0
pxq “ p2πq´3{2

ż

d3k
?

2ω

`

c0
pkqe´ikx ´ c0

pkq:eikx
˘

, (4.2)

Aipxq “ p2πq´3{2

ż

d3k
?

2ω

`

cipkqe´ikx ` cipkq:eikx
˘

, (4.3)

where the operators cµpkq: and cµpkq are the creation and annihilation operators, re-

spectively, which follows the commutation relations

rcµpkq, cνpk1q:s “

#

δpk´ k1q for µ “ ν

0 for µ ‰ ν
. (4.4)

The minus sign in (4.2) has been chosen to lead to a mathematical consistent result

for the commutation of two electromagnetic 4-potentials1 components

“

Aαpxq, Aβpyq
‰

“ gαβiD0px´ yq, (4.5)

where D0px´ yq is the massless (m “ 0) Lorentz invariant Jordan-Pauli distribution

Dmpxq ”
i

p2πq3

ż

d4pδpp2
´m2

qsgnpp0
qe´ipx. (4.6)

1 If we do not use the minus sign we will obtain

“

Aαpxq, Aβpyq
‰

“ δαβ iD0px´ yq,

which is not correct because we have a second rank Lorentz tensor in the left hand side of the equation

and a scalar in the right. We could use the “indefinite metric” prescription to remedy the incoherence,

but in that case we would have negative states in the Hilbert space.
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In order to determine how the Lorenz condition works at the operator level, note

that the covariant derivative of Aν gives the following result

BνA
ν
“ p2πq´3

ż

d3k

c

ω

2
r´i

ˆ

c0
pkq `

kj
ω
cjpkq

˙

e´ikx`

` i

ˆ

´c0
pkq: `

kj
ω
cjpkq:

˙

eikxs

“ p2πq´3

ż

d3k

c

ω

2
r´i

´

c0
pkq ` cj

||
pkq

¯

e´ikx`

` i
´

´c0
pkq: ` cj

||
pkq:

¯

eikxs,

(4.7)

where cj
||
pkq “

kj
ω
cjpkq is the annihilation operator for longitudinal photons.

Then, states |Φy P Fphys, which have neither longitudinal nor scalar polarized modes

photons, fulfill the following condition

xΦ|BνA
ν
|Φy “ 0, (4.8)

The constraint (4.8) is the quantum equivalent of the classical Lorentz condition.

We define the negative and positive frequency solution for Aµ as

Aµp`q “ p2πq´3{2

ż

d3k
?

2ω
cµpkq:eikx ˆ

$

&

%

1, for µ “ 1, 2, 3

´1, for µ “ 0,
(4.9)

Aµp´q “ p2πq´3{2

ż

d3k
?

2ω
cµpkqe´ikx. (4.10)

From (4.9), (4.10) and (4.4), we compute the following commutation relations

AµpxqAνpyq “ rAµp´qpxq, Aνp`qpyqs “ gµνiD
p`q

0 px´ yq, (4.11)

rAνp`qpxq, Aµp´qpyq, s “ gµνiD
p´q

0 px´ yq, (4.12)

where AµpxqAνpyq is the Wick contraction of two electromagnetic 4-field potentials (see

Appendix A.2), and where D
p`q

0 px ´ yq and D
p´q

0 px ´ yq are the positive and negative

part of Jordan-Pauli distribution

Dp`qm pxq ”
i

p2πq3

ż

d4pδpp2
´m2

qΘpp0
qe´ipx “

i

p2πq3

ż

d3p

2p0
e´ipx, (4.13)

Dp´qm pxq ”
´i

p2πq3

ż

d4pδpp2
´m2

qΘpp0
qeipx “

´i

p2πq3

ż

d3p

2p0
eipx, (4.14)

Dmpxq “ Dp`qm pxq `Dp´qm pxq. (4.15)
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4.2 Duffin-Kemmer-Petiau fields

DKP fields fulfill the Dirac like equation [3–5]

piβµBµ ´mqψpxq “ 0, (4.16)

where βµ represent four matrices which obey the following algebra

βµβνβρ ` βρβνβµ “ βµgνρ ` βρgµν . (4.17)

The algebra (4.17) has three irreducible representation of order 1, 5 and 10. The

representation of order 1 is trivial, the next order 5 represent scalar particles and the

order 10 represents spin-1 particles. For more details of historical development of the

DKP equation we refer to references [6, 14].

The equation (4.16) can be obtained from the Lagrangian density

LDKP “
i

2
ψpxqβµ

ÐÑ
Bµψpxq ´mψpxqψpxq, (4.18)

where the conjugate DKP field ψ̄pxq is obtained by

ψ̄pxq “ ψ:pxqη0, η0
“ 2pβ0

q
2
´ 1, (4.19)

and it obeys the equation

ψpxqpiβµ
ÐÝ
Bµ `mq “ 0. (4.20)

A particular solution for the βµ-matrices in its irreducible representation of order 5

is

β0
“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, β1
“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 ´1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

,

β2
“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 ´1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, β3
“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‚

.

(4.21)

.
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A solution for the DKP field ψpxq in the scalar representation is given by

ψpxq “

ż

d3p

p2πq
3
2

appqu´ppqe´ipx `

ż

d3p

p2πq
3
2

b:ppqu`ppqeipx, (4.22)

ψpxq “

ż

d3p

p2πq
3
2

a:ppqu´ppqeipx `

ż

d3p

p2πq
3
2

bppqu`ppqe´ipx, (4.23)

where appq is the annihilation operator of a scalar particle and bppq is the annihilation

operator of an antiparticle. They obey the commutation relations

$

&

%

rappq, a:pp1qs “ δpp´ p1q,

rbppq, b:pp1qs “ δpp´ p1q,
(4.24)

and null for other commutations.

The factors u´ppq and u`ppq are five elements column vector normalized to get a

positive energy system as follows

u˘β0u˘ “ ¯1. (4.25)

From solution (4.22) we can define the positive and negative frequency solutions

ψp`q and ψp´q

ψp`qpxq ”

ż

d3p

p2πq
3
2

b:ppqu`ppqeipx, (4.26)

ψp´qpxq ”

ż

d3p

p2πq
3
2

appqu´ppqe´ipx, (4.27)

and by conjugation

ψ
p`q
pxq ”

ż

d3p

p2πq
3
2

a:ppqu´ppqeipx, (4.28)

ψ
p´q
pxq ”

ż

d3p

p2πq
3
2

bppqu`ppqe´ipx. (4.29)

For a global Up1q transformation δψpxq “ ieαψpxq, the conserved Noether current

jµ is

jµpxq “ e : ψpxqβµψpxq :, (4.30)

where e is the unit charge of a scalar particle and the double dots : . . . : mean a normal

ordering product, as usual, to normalize the vacuum expectation value of the current

as x0|jµpxq|0y “ 0.
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4.2.1 Spxq function

Now, we want to compute the commutation rψapxq, ψbpyqs. Using

ψpxq “ ψp`qpxq ` ψp´qpxq, (4.31)

we have

rψapxq, ψbpyqs “ rψ
p`q
a pxq, ψ

p´q

b pyqs ` rψp´qa pxq, ψ
p`q

b pyqs. (4.32)

The second commutation in the right hand side of (4.32) is

rψp´qa pxq, ψ
p`q

b pyqs “

ż

d3p

p2πq3
u´bppqu

´
a ppqe

´ippx´yq. (4.33)

In order to simplify the expression (4.33), we will determine the product u´bppqu
´
a ppq.

Replacing ψ
p`q
pxq from (4.28) into (4.20), we can obtain the following identity

ψ
p`q
pxqpiβµ

ÐÝ
Bµ `mq “ 0

ż

d3p

p2πq
3
2

a:ppqu´ppqeipxpiβµ
ÐÝ
Bµ `mq “ 0,

´

ż

d3p

p2πq
3
2

a:ppqu´ppqpβµpµ ´mqe
ipx
“ 0,

u´bppqpβ
µpµ ´mqbc “ 0.

(4.34)

Multiplying (4.34) by u´a ppq, we get

u´a ppqu
´
bppqpβ

µpµ ´mqbc “ 0. (4.35)

On the other hand, with the use of (4.17), we could obtain the identities

βµpµpβ
νpνβ

θpθ ´m
2
q “ 0,

βµpµpβ
νpν `mqpβ

θpθ ´mq “ 0.
(4.36)

Comparing (4.36) and (4.35), we finally have for u´a ppqu
´
bppq

u´a ppqu
´
bppq “ Crβµpµpβ

νpν `mqsab (4.37)

where C is a constant that we could compute using the normalization condition (4.25)
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as follows
Trru´β0u´s “ 1

Trrβ0u´u´s “ 1

CTrrβ0βµpµpβ
νpν `mqs “ 1

CmpµTrrβ
0βµs “ 1

Cmpµ2gµ0
“ 1

C “
1

2mp0

(4.38)

where the following properties are used

Trrβµ1βµ2 . . . βµ2n´1s “ 0, (4.39)

Trrβµ1βµ2 . . . βµ2ns “ gµ1µ2gµ3µ4 . . . gµ2n´1µ2n ` gµ2µ3gµ4µ5 . . . gµ2nµ1 . (4.40)

Replacing (4.38) into (4.37), we have

u´a ppqu
´
bppq “

1

2mp0
rβµpµpβ

νpν `mqsab, (4.41)

and replacing the latter result into (4.33), we obtain

rψp´qa pxq, ψ
p`q

b pyqs “

ż

d3p

p2πq3
1

2mp0
r{pp{p`mqsabe

´ippx´yq, (4.42)

where we use the notation {p “ βµpµ. Following the same path, the first commutation

on the right hand side of (4.32) takes the following form

rψp`qa pxq, ψ
p´q

b pyqs “ ´

ż

d3p

p2πq3
1

2mp0
r{pp{p´mqsabe

ippx´yq. (4.43)

We can rewrite (4.42) as

rψp´qa pxq, ψ
p`q

b pyqs “
1

i
r

1

m
ri{Bpi{B `mqsabsri

ż

d3p

p2πq3
e´ippx´yq

2E
s, (4.44)

where we can identify the positive frequency part of Jordan-Pauli causal distribution

(4.13). Using the latter result (4.44), we define the positive frequency function Sp`q in

the following form

S
p`q

ab pxq ”
1

m
ri{Bpi{B `mqsabD

p`q
m pxq. (4.45)

Replacing (4.45) into (4.44) we obtain

rψp´qa pxq, ψ
p`q

b pyqs “
1

i
S
p`q

ab px´ yq. (4.46)
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Working in the same way with the commutation rψ
p`q
a pxq, ψ

p´q

b pyqs, it is possible to

write it as follow

rψp`qa pxq, ψ
p´q

b pyqs “

“ ´

ż

d3p

p2πq3
1

2mp0
r{pp{p´mqsabe

ippx´yq

“
1

i
r

1

m
ri{Bpi{B `mqsabsr´i

ż

d3p

p2πq3
1

2p0
eippx´yqs,

(4.47)

where we identify the negative frequency part of Jordan-Pauli causal distribution (4.14).

Then, we define the negative frequency function Sp´qpxq as

S
p´q

ab pxq ”
1

m
ri{Bpi{B `mqsabD

p´q
m pxq. (4.48)

Replacing (4.48) into (4.47), we obtain

rψp`qa pxq, ψ
p´q

b pyqs “
1

i
S
p´q

ab px´ yq. (4.49)

Finally, we define the function Spxq as

Spxq ” Sp`qpxq ` Sp´qpxq “
1

m
ri{Bpi{B `mqsDmpxq, (4.50)

and the commutation (4.32) takes the following form

rψapxq, ψbpyqs “
1

i
Sabpx´ yq. (4.51)

For future use, we will compute the Fourier transform of the Jordan-Pauli and Spxq

distributions. From (4.6), (4.13) and (4.14), the following formulas are clear

D̂mppq “
i

2π
δpp2

´m2
qSgnpp0

q, (4.52)

D̂p`qm ppq “
i

2π
δpp2

´m2
qΘpp0

q, (4.53)

D̂p´qm ppq “ ´
i

2π
δpp2

´m2
qΘp´p0

q. (4.54)

From (4.45), (4.48) and (4.50) it is straightforward to determine

Ŝ˘ppq “
˘i

p2πq
Θp˘p0

qδpp2
´m2

q
1

m
r{pp{p`mqs, (4.55)

Ŝppq “
i

p2πq
Sgnpp0

qδpp2
´m2

q
1

m
r{pp{p`mqs. (4.56)
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4.3 Fermionic Scalar (Ghost) Fields

In this section we will follow reference [93]. We define here two scalar fields upxq and

ũpxq

upxq ” p2πq´3{2

ż

d3p
?

2ω

`

d2ppqe
´ipx

` d1ppq
:eipx

˘

, (4.57)

ũpxq ” p2πq´3{2

ż

d3p
?

2ω

`

´d1ppqe
´ipx

` d2ppq
:eipx

˘

, (4.58)

where the operators di and d:j are the annihilation and creation operators which satisfy

the following anticommutation relations

tdjppq, d
:

kpqqu “ δjkδpp´ qq. (4.59)

The positive and negative part of upxq and ũpxq are

up`qpxq “ p2πq´3{2

ż

d3p
?

2ω
d1ppq

:eipx, (4.60)

up´qpxq “ p2πq´3{2

ż

d3p
?

2ω
d2ppqe

´ipx, (4.61)

ũp`qpxq “ p2πq´3{2

ż

d3p
?

2ω
d2ppq

:eipx, (4.62)

ũp´qpxq “ ´p2πq´3{2

ż

d3p
?

2ω
d1ppqe

´ipx. (4.63)

From (4.59), the non-null anticommutaors are

tup´qpxq, ũp`qpyqu “ p2πq´3

ż

d3p

2E
e´ippx´yq “ ´iDp`qm px´ yq, (4.64)

tup`qpxq, ũp´qpyqu “ ´p2πq´3

ż

d3p

2E
eippx´yq “ ´iDp´qm px´ yq. (4.65)

The need for the introduction of the fields upxq and ũpxq is to construct a quantum

gauge theory in the next section.

4.4 Perturbative Gauge Invariance

As mentioned in Chapter 3, in order to begin the construction of the S-matrix, we need

to define the first nontrivial distribution term T1pxq in (3.5). In the usual approach
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T1pxq “ i : Lint :, where Lint is the interaction Lagrangian. In causal perturbation

theory this is not true.

As an example, we mention the case of SQED constructed with a complex scalar

field ϕpxq which obeys the Klein-Gordon-Fock equation pl`m2qϕpxq “ 0. In order to

obtain a gauge invariant theory, we consider ϕpxq as a classical field that will be coupled

to a classical electromagnetic field Aµpxq. Using the minimal coupling prescription, we

substitute the partial derivative in the free Lagrangian for ϕpxq with the covariant

derivative Dµ “ Bµ ` ieAµ, obtaining

Lint “ ´ieA
µ
pϕ˚
ÐÑ
Bµϕq ` e

2ϕ˚ϕAµAµ, (4.66)

where e represents the electric charge of the scalar particle.

The problem of using (4.66) to construct T1 is the second order term e2ϕ˚ϕAµAµ

which by construction must belong to T2 because in CPT the unit charge e represents

the physical charge and not a simple parameter. What is unquestionable is that T1

must be defined from the gauge invariance property but at the quantum level.

In general, a gauge transformation Aµpxq Ñ A1µpxq, implies that Aµpxq and A1µpxq

obey the same equation of motion. The latter is equivalent to obtain a transformation

where A1µpxq obey the same commutation relation as Aµpxq. This is possible with the

following transformation

A1µpxq “ e´iλQAµpxqeiλQ, (4.67)

where Q is called gauge charge .

By expanding the exponential operators, we obtain

A1µpxq “ Aµpxq ´ iλrQ,Aµpxqs `Opλ2
q. (4.68)

On the other hand, consider the following classical gauge transformation but at the

operator level

A1µpxq “ Aµpxq ` λBµupxq `Opλ2
q, (4.69)

where u is a free quantum field which obeys the massless Klein-Gordon-Fock equation

lupxq “ 0. (4.70)

For an infinitesimal parameter λ, by comparing (4.68) and (4.69), we can obtain an

equation which defines Q uniquely

rQ,Aµpxqs “ iBµupxq. (4.71)
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The solution for Q from (4.71) is

Q “

ż

d3xrBνA
ν
B0u´ pB0BνA

ν
qus “

ż

d3xBνA
νÐÑ
B 0u, (4.72)

where the integral is evaluated over a hyperplane x0 “ constant.

If upxq is a fermionic scalar ghost field, we can obtain a nilpotent Q in the form

Q2
“

1

2
tQ,Qu “ 0, (4.73)

which can be used to construct a physical Fock space as we will show bellow.

Using (4.2), (4.3) and (4.57) we can obtain Q as

Q “

ż

d3kωpkqrpa‖pkq
:
´ a0pkq

:
qd2pkq ` d1pkq

:
pa‖pkq ` a0pkqqs

“

ż

d3kωpkqrc2pkq
:d2pkq ` d1pkq

:c1pkqs,

(4.74)

where

c1 “ a‖pkq ` a0pkq, c2 “ a‖pkq ´ a0pkq, (4.75)

are new operators which satisfy the usual commutation rule

rcipkq, c
:

jpk
1
qs “ δijδpk´ k1q. (4.76)

An important result for Q, stemming from (4.71), is the following identity

tQ:, Qu “ 2

ż

d3kω2
pkqrc:1c1 ` c

:

2c2 ` d
:

1d1 ` d
:

2d2s, (4.77)

where we can identify the number operators of non-physical particles. Consequently, we

could use the anticommutation tQ:, Qu to define the physical Fock space Fphys. Every

physical Fock state |Φy P Fphys must fulfill the following condition

tQ:, Qu|Φy “ 0. (4.78)

Now, returning to the quantum gauge invariance principle, we can see that the gauge

charge Q represents an infinitesimal gauge transformation generator. This allows us to

define the gauge derivative dQ for a product F of Bose fields and even number of ghost

fields and for a product G of Bose fields and odd number of ghost fields as follow

dQF ” rQ,F s, dQG ” tQ,Gu. (4.79)



46 4. Quantized free Fields and Perturvative Gauge Invariance

In order to obtain a gauge invariant theory, we demand that all n-point distributions

Tn must fulfill the following property

dQTnpx1, . . . , xnq “ i
n
ÿ

l“1

B

Bxµl
T µn{lpx1, . . . , xnq, (4.80)

where T µn{lpx1, . . . , xnq is the following time ordering product constructed by causal

perturbation theory

T µn{lpx1, . . . , xnq “ T tT1px1q . . . T
µ
1{1pxlq . . . T1pxnqu, (4.81)

and T µ1{1 is called the Q-vertex. The property (4.80) is called perturbative Gauge

invariance .



Chapter 5

Scattering processes of Scalar

Quantum Electrodynamics at the

tree-level

Hence most physicists are very satisfied with the situation. They say:

“Quantum electrodynamics is a good theory, and we do not have to worry

about it any more.” I must say that I am very dissatisfied with the

situation, because this so-called “good theory” does involve neglecting

infinities which appear in its equations, neglecting them in an arbitrary

way. This is just not sensible mathematics. Sensible mathematics involves

neglecting a quantity when it turns out to be small—not neglecting it just

because it is infinitely great and you do not want it!

P. A. M. Dirac

Here we begin to determine the equivalence between the two approaches to study

scalar QED. The first one via Klein-Gordon-Fock fields (SQED) and the second one via

Duffin-Kemmer-Petiau fields (SDKP). For this goal, we will follow the same spirit that

Fainberg and Pimentel used in [13] comparing the elements of the S-matrix.

As we mentioned in Chapter 1, we will use CPT to consider all sectors of SQED and

SDKP. As demonstrated by Scharf and collaborators in [26], it is not necessary to add

by hand the sectors generated by the vertices proportional to φ˚pxqφpxqAµpxqAµpxq and

pφ˚pxqφpxqq2. In CPT, these terms appears naturally from perturbative gauge invariance

and the causal splitting process. This is the power of CPT approach.

47
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In this chapter we compute the following process at the tree level only:

1. Scattering of scalar particle by external electromagnetic field.

2. Moller scattering.

3. Compton scattering.

Bhabha scattering can be studied by crossing properties from Moller process.

5.1 Definition of term T1 for SDKP via Perturba-

tion Gauge Invariance at first order

For a massless gauge field Aµpxq we have Q in the form (4.72) and the following gauge

transformations

dQA
µ
pxq “ iBµupxq, (5.1)

dQupxq “ 0, (5.2)

dQũpxq “ ´iBµA
µ
pxq. (5.3)

First of all, in order to determine T1pxq we can use (4.80) for n “ 1

dQT1px1q “ iBµT
µ
1{1px1q. (5.4)

Secondly, due to the adiabatic limit gpxq Ñ 1, the term T1pxq must contain all kinds

of interactions between gauge and matter fields. As shown by Scharf and collaborators

[38–41], for massless gauge fields Aµpxq only in the case with a collection Aµapxq, where

a “ 1, . . . , N , there are self interactions between gauge and ghost fields.

For SDKP we have only one massless gauge field, therefore T1 contain just the

interaction between electromagnetic and matter current jµ in the form

T
pSDKPq
1 px1q “ ijµpx1qAµpx1q. (5.5)

As usual, jµpxq contains DKP fields ψpxq and ψ̄pxq. Now, with the help of (5.1),

(5.2) and ((5.3)), the gauge derivative of (5.5) will take the following form

dQT
pSDKPq
1 px1q “ dQtij

µ
px1qAµpx1qu “ ijµpx1qdQAµpx1q “ ´j

µ
px1qBµupx1q. (5.6)
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From (5.5) and (5.6), we can conclude that in order to obtain (5.4), the matter

current jµpxq must have null divergence. The latter is fulfilled if jµ is the DKP Noether

current (4.30) as follows

Bµj
µ
pxq “ 0 ùñ dQT

pSDKPq
1 px1q “ iBµT

µpSDKPq
1{1 “ iBµrij

µ
px1qupx1qs. (5.7)

Finally, replacing (4.30) in the expressions for the Q-vertex T
µpSDKPq
1{1 , we obtain the

following form for T1

T
µpSDKPq
1{1 “ ijµpx1qupx1q “ ie : ψpx1qβ

µψpx1q : upx1q (5.8)

T
pSDKPq
1 pxq “ ie : ψpx1qβ

µψpx1q : Aµpx1q. (5.9)

5.2 Scattering of DKP scalar particle by static ex-

ternal field

As a first application, we are going to determine the differential cross section dσ{dΩ in

the scattering of scalar by an external electromagnetic field Aextµ .

If the system includes an external field Aextµ , we need to make the substitution

Aµ Ñ Aµ ` A
ext
µ , then the perturbative expansion of S Matrix includes a term

S “ . . .`

ż

d4xie : ψpxqβµψpxq : Aextµ pxq ` . . . , (5.10)

this term is important in the case of a scattered scalar particle by this external field.

Because the initial and final states do not include creation (or annihilation) of photons,

these states are

|iny “ |Ψiy “

ż

d3p1Φipp1qa
:
pp1q|0y, (5.11)

|outy “ |Ψfy “

ż

d3p2Φf pp2qa
:
pp2q|0y, (5.12)

where a:pp1,2q are the creation operators for scalar particles with momenta p1,2 and Φi,f

are wave packets sharply picked at pi and pf which are the initial and final momentum

of the bunch of particles before and after the scattering, respectively.

Now, computing the scattering amplitude Sif “ xΨf |S|Ψiy, it is not difficult to see
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that the unique non-null result is

Sif “ ie

ż

d4xxΨf | : ψpxqβµψpxq : |ΨiyA
ext
µ pxq,

“ ie

ż

d4x

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1qˆ

ˆ x0|app2q : ψpxqβµψpxq : a:pp1q|0yA
ext
µ pxq.

(5.13)

In order to compute the term x0|app2q : ψpxqβµψpxq : a:pp1q|0y, we can use the

Wick theorem (see Appendix A.2). Therefore, in the Wick expansion only the term

with the two simultaneous contractions app2qψ̄pxq and ψpxqa:pp1q is not null. These

contractions are

app2qψpxq “ app2qψ
p`q
pxq “ apq2q

ż

d3p

p2πq
3
2

a:ppqu´ppqeipx

“

ż

d3p

p2πq
3
2

δpp2 ´ pqu´ppqeipx “
1

p2πq
3
2

u´pp2qe
ip2x,

(5.14)

ψpxqa:pp1q “ ψp´qpxqa:pp1q “

ż

d3p

p2πq
3
2

appqu´ppqe´ipxa:pp1q

“

ż

d3p

p2πq
3
2

δpp1 ´ pqu´ppqe´ipx “
1

p2πq
3
2

u´pp1qe
´ip1x.

(5.15)

With the help of (5.14) and (5.15), we obtain

x0|app2q : ψpxqβµψpxq : a:pp1q|0y “ x0|app2qψ̄pxqβ
µψpxqa:pp1q|0y

“
1

p2πq
3
2

u´pp2qe
ip2xβµ

1

p2πq
3
2

u´pp1qe
´ip1x

“
1

p2πq3
u´pp2qβ

µu´pp1qe
´ipp1´p2qx.

(5.16)

Replacing (5.16) into (5.13), the scattering amplitude takes the following form

Sif “ ie

ż

d4x

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1q
1

p2πq3
u´pp2qβ

µu´pp1qe
´ipp1´p2qxAextµ pxq

“ ie

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1q
1

p2πq3
u´pp2qβ

µu´pp1q

ż

d4xe´ipp1´p2qxAextµ pxq.

(5.17)

Considering a static electromagnetic field, we can replace Aextµ pxq “ Aextµ pxq and
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evaluate the integral in x0 to obtain

Sif “
ie

p2πq2

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1qu´ppf qβ
µu´pp1qδpE1 ´ E2q

ż

d3xe´ipp2´p1qxAextµ pxq

“
ie

p2πq2

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1qu´pp2qβ
µu´pp1qδpE1 ´ E2qp2πq

3
2 Âµpp2 ´ p1q

“

ż

d3p2

ż

d3p1Φ˚f pp2qΦipp1qMif pp1,p2qδpE1 ´ E2q,

(5.18)

where

Âpp2 ´ p1q “ p2πq
´ 3

2

ż

d3xe´ipp2´p1qxAextµ pxq, (5.19)

Mif pp1,p2q “
ie

p2πq
1
2

u´pp2qβ
µu´pp1qÂpp2 ´ p1q. (5.20)

With the computation of Sif , we will determine the probability transition Pif defined

as

Pif “ |Sif |
2. (5.21)

Replacing (5.18) into (5.21), we have

Pif “

ż

d3p1d
3p2Φf pp2qS̃

˚
if pp1,p2qΦ

˚
i pp1q

ż

d3p11d
3p12Φ˚f pp

1
2qS̃if pp

1
1,p

1
2qΦipp

1
1q, (5.22)

where

S̃if “Mif pp1,p2qδpE1 ´ E2q. (5.23)

Summing over all possible final states

ÿ

f

Pif “

ż

d3p1d
3p2S̃

˚
if pp1,p2qΦ

˚
i pp1q

ż

d3p11d
3p12S̃if pp

1
1,p

1
2qΦipp

1
1q
ÿ

f

Φf pp2qΦ
˚
f pp

1
2q

“

ż

d3p1d
3p2S̃

˚
if pp1,p2qΦ

˚
i pp1q

ż

d3p11d
3p12S̃if pp

1
1,p

1
2qΦipp

1
1qδpp2 ´ p12q

“

ż

d3p1d
3p2S̃

˚
if pp1,p2qΦ

˚
i pp1q

ż

d3p11S̃if pp
1
1,p2qΦipp

1
1q

“

ż

d3p1d
3p2M

˚
if pp1,p2qδpE1 ´ E2qΦ

˚
i pp1q

ż

d3p11Mif pp
1
1,p2qδpE

1
1 ´ E2qΦipp

1
1q

(5.24)

where in the last line we used (5.23).

Using the fact that the function Φipp1q is sharply peaked around pi and considering

that its width is too small compared with the scale of varying of Mif , we can rewrite
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(5.24) as follows

ÿ

f

Pif “

ż

d3p2|Mif ppi,p2q|
2

ż

d3p1d
3p11δpE1 ´ E2qΦ

˚
i pp1qδpE

1
1 ´ E2qΦipp

1
1q. (5.25)

Computing the p2 integral in spherical coordinates, we obtain

ÿ

f

Pif “

ż

dΩ2|Mif ppi,p2q|
2

ż

|p2|
2d|p2|

ż

d3p1d
3p11δpE1 ´ E2qΦ

˚
i pp1qδpE

1
1 ´ E2qΦipp

1
1q

“

ż

dΩ2|Mif ppi,p2q

ż

|p2|E2dE2

ż

d3p1d
3p11δpE1 ´ E2qΦ

˚
i pp1qδpE

1
1 ´ E2qΦipp

1
1q

“

ż

dΩ2|Mif ppi,p2q|
2

ż

d3p1d
3p11Φ˚i pp1qΦipp

1
1q

ż

|p2|E2dE2δpE1 ´ E2qδpE
1
1 ´ E2q

“

ż

dΩ2|Mif ppi,p2q|
2

ż

d3p1d
3p11Φ˚i pp1qΦipp

1
1q|pi|EiδpE

1
1 ´ E1q.

(5.26)

Replacing the integral form of the delta function δpE 11´E1q “ p2πq
´1

ş

dte´ipE
1
1´E1qt

into (5.26), we can rewrite it as

ÿ

f

Pif “

ż

dΩ2|Mif ppi,p2q|
2
|pi|Ei

ż

d3p1d
3p11Φ˚i pp1qΦipp

1
1qδpE

1
1 ´ E1q

“

ż

dΩ2|Mif ppi,p2q|
2
|pi|Ei

ż

d3p1d
3p11Φ˚i pp1qΦipp

1
1qp2πq

´1

ż

dte´ipE
1
1´E1qt

“

ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2

ż

dtp2πq´
3
2

ż

d3p1Φ˚i pp1qe
iE1tp2πq´

3
2

ż

d3p11Φipp
1
1qe

´iE11t

“

ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2

ż

dt

”

p2πq´
3
2

ż

d3p1Φ˚i pp1qe
ipE1t´p1xq

ı

x“0

”

p2πq´
3
2

ż

d3p11Φipp
1
1qe

´ipE11t´p
1
1xq

ı

x“0

“

ż

dΩ2|Mif ppi,p2q|
2
|pi|Ei|p2πq

2

ż

dt|Φpt,x “ 0q|2,

(5.27)

where Φpt,xq is the following free wave packet in x-space

Φpt,xq “ p2πq´
3
2

ż

d3qΦipqqe
´ipEqt´qxq. (5.28)

Considering that the velocity of the scattered particles is v, the wave packet have

the form

Φpt,xq “ Φ0px` vtq. (5.29)
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Now, averaging (5.27) in a cylinder of radius R parallel to v using the wave packet

(5.29), we have

ÿ

f

Pif pRq “
1

πR2

ż

xKďR

d2xK

ż

dt|Φ0px` vtq|2
ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2. (5.30)

The cross section is defined as

σ “ lim
RÑ8

πR2
ÿ

f

Pif pRq. (5.31)

Then, replacing (5.30) into (5.31), we get

σ “

ż

xKďR

d2xK

ż

dt|Φ0pxK ` vtq|2
ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2

“
1

|v|

ż

d3x|Φ0|
2

ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2

“
1

|v|

ż

dΩ2|Mif ppi,p2q|
2
|pi|Eip2πq

2

“
|pi|Eip2πq

2

p
|pi|
Ei
q

ż

dΩ2|Mif ppi,p2q|
2

“ E2
i p2πq

2

ż

dΩ2|Mif ppi,p2q|
2,

(5.32)

which tell us that the differential cross section will take the following form

dσ

dΩ
“ p2πq2E2

i |Mppf ,piq|
2. (5.33)

Replacing (5.20) into (5.33), we get

dσ

dΩ
“

“ p2πq2E2
i r

ie

p2πq
1
2

u´ppf qβ
µu´ppiqÂµppf ´ piqsr´

ie

p2πq
1
2

u´ppiqβ
νu´ppf qÂνppi ´ pf qs

“ p2πqE2
i e

2
ru´mppf qu

´
appf qsβ

µ
adru

´
d ppiqu

´
lppiqsβ

ν
lmÂνppf ´ piqÂµppi ´ pf q

“
p2πqE2

i e
2

4m2pi0pf 0
Trr{pf p{pf `mqβ

µ
{pip{pi `mqβ

ν
sÂνppf ´ piqÂµppi ´ pf q

“
p2πqE2

i e
2

4pi0pf 0
rpµi p

ν
i ` p

ν
fp

µ
f ` p

µ
fp

ν
i ` p

ν
fp

µ
i sÂνppf ´ piqÂµppi ´ pf q,

(5.34)
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where (4.37) was used in the second line, and the trace identities (4.39) and (4.40) were

used in next ones.

For the potential Aµ, we will use the Coulomb potential. Therefore, only the 0-

component is not null and takes the following form

A0
pxq “

Ze

|x|
, Â0

ppq “

c

2

π

Ze

|p|2
, (5.35)

replacing this potential into (5.34), we have

dσ

dΩ
“
p2πqE2

i e
2

4pi0pf 0
rp0
i p

0
i ` p

0
fp

0
f ` p

0
fp

0
i ` p

0
fp

0
i sÂ0ppf ´ piqÂ0ppi ´ pf q

“
p2πqE2

i e
2

4EiEf
rEi ` Ef s

2
r
2

π

Z2e2

|pi ´ pf |4
s

“
Z2Eie

4

Ef

rEi ` Ef s
2

|pi ´ pf |4

“ Z2e4 4E2

|pi ´ pf |4

“ Z2e4 4E2

16|p|4 sin4pϑ{2q

“ Z2e4 E2

4|p|4 sin4pϑ{2q
.

(5.36)

The latter result is equivalent to that obtained in [10] using the usual approach.

5.3 Causal distribution in the second order D2px, yq

After setting T1pxq for SDKP, the next step is to compute the causal distribution

D2px, yq. Following (3.23) and (3.24), the intermediate distributions in second order

A12 and R12 take the following forms

A12px, yq “ T̃1pxqT1pyq “ ´T1pxqT1pyq, (5.37)

R12px, yq “ T1pyqT̃1pxq “ ´T1pyqT1pxq, (5.38)

where (3.13) was used.

Replacing (5.9) into (5.37) and (5.38), and using Wick theorem to obtain normal

ordered terms, we have
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A12px, yq “ ´T1pxqT1pyq

“ e2 : ψapxqβ
µ
abψbpxq :: ψcpyqβ

ν
cdψdpyq : AµpxqAνpyq

“ e2
r: ψapxqβ

µ
abψbpxqψcpyqβ

ν
cdψdpyq : ` : ψapxqβ

µ
abψbpxqψcpyqβ

ν
cdψdpyq :

` : ψapxqβ
µ
abψbpxqψcpyqβ

ν
cdψdpyq : ` : ψapxqβ

µ
abψbpxqψcpyqβ

ν
cdψdpyq :sˆ

ˆ r: AµpxqAνpyq : `AµpxqAνpyqs,

(5.39)

where the field contractions are

AµpxqAνpyq “ rAµp´qpxq, Aνp`qpyqs “ gµνiD
p`q

0 px´ yq, (5.40)

ψapxqψ̄bpyq “ rψ
p´q
pxq, ψ̄p`qpyqs “

1

i
S
p`q

ab px´ yq, (5.41)

ψ̄cpxqψdpyq “ rψ̄
p´q
pxq, ψp`qpyqs “ ´

1

i
S
p´q

dc py ´ xq. (5.42)

Replacing (5.40), (5.41) and (5.42) into (5.39), we obtain

A12px, yq “ `e
2βµabβ

ν
cd : ψapxqψbpxqψcpyqψdpyq : igµνD

p`q

0 px´ yq

´ e2βµabβ
ν
cd : ψbpxqψcpyq :

1

i
S
p´q

da py ´ xq : AµpxqAνpyq :

` e2βµabβ
ν
cd : ψapxqψdpyq :

1

i
S
p`q

bc px´ yq : AµpxqAνpyq :

´ e2βµabβ
ν
cd

1

i
S
p´q

da py ´ xq
1

i
S
p`q

bc px´ yq : AµpxqAνpyq :

´ e2βµabβ
ν
cd : ψbpxqψcpyq :

1

i
S
p´q

da py ´ xqigµνD
p`q

0 px´ yq

` e2βµabβ
ν
cd : ψapxqψdpyq :

1

i
S
p`q

bc px´ yqigµνD
p`q

0 px´ yq

´ e2βµabβ
ν
cd

1

i
S
p´q

da py ´ xq
1

i
S
p`q

bc px´ yqigµνD
p`q

0 px´ yq

` e2βµabβ
ν
cd : ψapxqψbpxqψcpyqψdpyq :: AµpxqAνpyq :,

(5.43)

which can be rewritten as

A12px, yq “ A
1p1q
2 px, yq ` A

1p2q
2 px, yq ` A

1p3q
2 px, yq ` A

1p4q
2 px, yq ` A

1p5q
2 px, yq

` e2βµabβ
ν
cd : ψapxqψbpxqψcpyqψdpyq :: AµpxqAνpyq :,

(5.44)

where

A
1p1q
2 px, yq “ `e2βµabβ

ν
cd : ψapxqψbpxqψcpyqψdpyq : igµνD

p`q

0 px´ yq, (5.45)
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A
1p2q
2 px, yq “ ´e2βµabβ

ν
cd : ψbpxqψcpyq :

1

i
S
p´q

da py ´ xq : AµpxqAνpyq :

` e2βµabβ
ν
cd : ψapxqψdpyq :

1

i
S
p`q

bc px´ yq : AµpxqAνpyq :,
(5.46)

A
1p3q
2 px, yq “ ´e2βµabβ

ν
cd

1

i
S
p´q

da py ´ xq
1

i
S
p`q

bc px´ yq : AµpxqAνpyq :, (5.47)

A
1p4q
2 px, yq “ ´e2βµabβ

ν
cd : ψbpxqψcpyq :

1

i
S
p´q

da py ´ xqigµνD
p`q

0 px´ yq

` e2βµabβ
ν
cd : ψapxqψdpyq :

1

i
S
p`q

bc px´ yqigµνD
p`q

0 px´ yq,
(5.48)

A
1p5q
2 px, yq “ ´e2βµabβ

ν
cd

1

i
S
p´q

da py ´ xq
1

i
S
p`q

bc px´ yqigµνD
p`q

0 px´ yq. (5.49)

Similarly for R12px, yq, we have

R12px, yq “ R
1p1q
2 py, xq `R

1p2q
2 py, xq `R

1p3q
2 py, xq `R

1p4q
2 py, xq `R

1p5q
2 py, xq

` e2βµabβ
ν
cd : ψapyqψbpyqψcpxqψdpxq :: AµpyqAνpxq :

(5.50)

where

R
1p1q
2 px, yq “ `e2βµabβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : igµνD

p`q

0 py ´ xq, (5.51)

R
1p2q
2 px, yq “ ´e2βµabβ

ν
cd : ψbpyqψcpxq :

1

i
S
p´q

da px´ yq : AµpyqAνpxq :

` e2βµabβ
ν
cd : ψapyqψdpxq :

1

i
S
p`q

bc py ´ xq : AµpyqAνpxq :,
(5.52)

R
1p3q
2 py, xq “ ´e2βµabβ

ν
cd

1

i
S
p´q

da px´ yq
1

i
S
p`q

bc py ´ xq : AµpyqAνpxq :, (5.53)

R
1p4q
2 py, xq “ ´e2βµabβ

ν
cd : ψbpyqψcpxq :

1

i
S
p´q

da px´ yqigµνD
p`q

0 py ´ xq

` e2βµabβ
ν
cd : ψapyqψdpxq :

1

i
S
p`q

bc py ´ xqigµνD
p`q

0 py ´ xq,
(5.54)

R
1p5q
2 py, xq “ ´e2βµabβ

ν
cd

1

i
S
p´q

da px´ yq
1

i
S
p`q

bc py ´ xqigµνD
p`q

0 py ´ xq. (5.55)

The causal distribution D2 is obtained by the subtraction (3.43) as follows

D2px, yq “ R12px, yq ´ A
1
2px, yq “ D

p1q
2 `D

p2q
2 `D

p3q
2 `D

p4q
2 `D

p5q
2 (5.56)

where

D
p1q
2 “ ie2gµν : ψapyqβ

µ
abψbpyqψcpxqβ

ν
cdψdpxq :

´

D
p`q

0 py ´ xq ´D
p`q

0 px´ yq
¯

, (5.57)
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Figure 5.1: General graph for processes in the causal distribution D2px, yq.

D
p2q
2 “ie2 : ψcpxqβ

ν
cd

´

S
p`q

da px´ yq ` S
p´q

da px´ yq
¯

βµabψbpyq :: AµpyqAνpxq :

´ ie2 : ψapyqβ
µ
ab

´

S
p`q

bc py ´ xq ` S
p´q

bc py ´ xq
¯

βνcdψdpxq :: AµpyqAνpxq :,
(5.58)

D
p3q
2 “ e2TrrβµSp`qpy ´ xqβνSp´qpx´ yq ´ βνSp`qpx´ yqβµSp´qpy ´ xqsˆ

ˆ : AµpyqAνpxq :,
(5.59)

D
p4q
2 “ ´e2gµν : ψpxqβνrSp´qpx´ yqD

p`q

0 py ´ xq ` Sp`qpx´ yqD
p`q

0 px´ yqsβµψpyq :

` e2gµν : ψpyqβµrSp`qpy ´ xqD
p`q

0 py ´ xq ` Sp´qpy ´ xqD
p`q

0 px´ yqsβνψpxq :,

(5.60)

D
p5q
2 “ `e2βµSp`qpy ´ xqβνSp´qpx´ yqigµνD

p`q

0 py ´ xq

´ e2βµSp`qpx´ yqβνSp´qpy ´ xqigµνD
p`q

0 px´ yq.
(5.61)

Each term D
piq
2 represents different processes in the S-matrix and their diagrams

are represented in Fig. 5.1.

5.4 Moller scattering

Now, we will determine the differential cross section of Moller process which consist in

the elastic scattering of two scalar particles bppiq ` bpqiq Ñ bppf q ` bpqf q where pi,f and

qi,f are the initial and final momentum of particles after and before the interaction as

usual. Therefore, the in and out states take on the following form

|inMollery “ |Ψiy b |Φiy “

ż

d3p1d
3q1Ψipp1qΦipq1qa

:
pp1qa

:
pq1q|0y, (5.62)

|outMollery “ |Ψfy b |Φfy “

ż

d3p2d
3q2Ψf pp2qΦf pq2qa

:
pp2qa

:
pq2q|0y, (5.63)
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where tΨipp1q,Ψf pp2q,Φipq1q,Φf pq2qu are the wave packet functions sharply peaked in

tpi, pf , qi, qfu, respectively.

Taking into account that the causal splitting procedure does not transform the quan-

tized fields, in the computation of scattering amplitude xoutMoeller|S|inMoellery just the

term coming from D
p1q
2 will be no-null. Consequently, we will determine the contribution

to T2px, yq coming from D
p1q
2 .

Using the property D
p`q

0 pxq “ ´D
p´q

0 p´xq, we can rewrite D
p1q
2 px, yq in the following

form

D
p1q
2 px, yq “ e2igµν : ψpyqβµψpyqψpxqβνψpxq : pD

p`q

0 py ´ xq ´D
p`q

0 px´ yqq

“ e2igµν : ψpyqβµψpyqψpxqβνψpxq : p´D
p´q

0 px´ yq ´D
p`q

0 px´ yqq

“ ´e2igµν : ψpyqβµψpyqψpxqβνψpxq : D0px´ yq,

(5.64)

where we can see that the numerical part of D
p1q
2 is D0px´ yq.

5.4.1 Causal splitting of D0

We will begin the causal splitting in momentum space. From (4.52), the Fourier trans-

formation of D0px´ yq has the following form

pD0ppq “
i

2π
δpp2

qSgnpp0
q (5.65)

The power counting function ρpαq for pD0ppq is determined using (3.91). With this

goal, we first have to note that the form of pD0p
p
α
q is

pD0p
p

α
q “

i

2π
δpp2α´2

qSgnpp0α´1
q

“
iα2

2π
δpp2

qSgnpp0α´1
q.

(5.66)

After that, it is not difficult to conclude that for ρpαq “ α´2 we obtain the following

no null limit

lim
αÑ0

ρpαq
A

pD0p
p

α
q, qfppq

E

“

A

pD0ppq, qfppq
E

‰ 0. (5.67)

From (3.92), the singular order of D̂0 is

ωrD̂0s “ ´2, (5.68)
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which means that pD0ppq is a regular distribution and its splitting in retarded and

advanced part is

D0px´ yq “ θpx0
´ y0

qD0px´ yq ´ θpy
0
´ x0

qD0px´ yq

“ Dret
0 px´ yq ´D

adv
0 px´ yq,

(5.69)

where Dret
0 px´ yq “ θpx0 ´ y0qD0px´ yq and Dadv

0 px´ yq “ θpy0 ´ x0qD0px´ yq.

From the splitting (5.69) and (5.64), the second order retarded distribution R
p1q
2 px, yq

is

R
p1q
2 px, yq “ ´e

2igµνβ
µ
abβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : Dret

0 . (5.70)

Finally, using (3.29), (5.70) and (5.45) we are able to determine the contribution

T
p1q
2 px, yq for S-matrix coming from D

p1q
2 in the following form

T
p1q
2 px, yq “ R

p1q
2 ´R

1p1q
2

“ ´e2igµνβ
µ
abβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : Dret

0 py ´ xq

´ re2βµabβ
ν
cd : ψapyqψbpyqψcpxqψdpxq : igµνD

p`q

0 py ´ xqs

“ ´e2igµνβ
µ
abβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : pDret

0 px´ yq `D
p`q

0 py ´ xqq

“ ´e2igµνβ
µ
abβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : pDret

0 px´ yq ´D
p´q

0 px´ yqq

“ ´e2igµνβ
µ
abβ

ν
cd : ψapyqψbpyqψcpxqψdpxq : DF

0 px´ yq,

(5.71)

where DF pxq ” Dret
0 pxq ´D

p´q

0 pxq is the well-known Feynman propagator for massless

scalar field.

5.4.2 Computation of differential cross section

The S-matrix term Sp1qpgq, which contributes in the computation of the differential

cross section for Moller scattering, takes the following form

Sp1qpgq “
1

2!

ż

d4yd4xT
p1q
2 px, yqgpxqgpyq. (5.72)

Recalling the equations (5.62) and (5.63), and taking the adiabatic limit for the

computations, we have the scattering amplitude as

S
pMoq
fi “ xoutMo|S|inMoy

“

ż

d3p2d
3q2

ż

d3p1d
3q1Ψ˚

f pp2qΦ
˚
f pq2qS̃

pMoq
if Ψipp1qΦipq1q

(5.73)
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where

S̃
pMoq
if “ x0|app2qapq2qS

p1qa:pp1qa
:
pq1q|0y

“ x0|app2qapq2q
1

2!

ż

d4yd4xTM2 px, yqa
:
pp1qa

:
pq1q|0y

“ ´
1

2!

ż

d4yd4xe2igµνβ
µ
abβ

ν
cdD

F
0 px´ yqˆ

ˆ x0|app2qapq2q : ψapyqψbpyqψcpxqψdpxq : a:pp1qa
:
pq1q|0y

“ ´
1

2!

ż

d4yd4xe2igµνβ
µ
abβ

ν
cdD

F
0 px´ yqˆ

ˆ x0|app2qapq2q : ψ
p`q

a pyqψ
p´q

b pyqψ
p`q

c pxqψ
p´q

d pxq : a:pp1qa
:
pq1q|0y

“ ´
1

2!

ż

d4yd4xe2igµνβ
µ
abβ

ν
cdD

F
0 px´ yqˆ

ˆ x0|app2qapq2qψ
p`q

a pyqψ
p`q

c pxqψ
p´q

b pyqψ
p´q

d pxqa:pp1qa
:
pq1q|0y.

(5.74)

Using Wick theorem and the contractions (5.14) and (5.15), we could reduce the

expression (5.74) as follows

S̃
pMoq
fi “ ´

1

2!

ż

d4yd4xe2igµνβ
µ
abβ

ν
cdD

F
0 px´ yqˆ

ˆ x0|
”

` app2qapq2qψ
p`q

a pyqψ
p`q

c pxqψ
p´q

b pyqψ
p´q

d pxqa:pp1qa
:
pq1q`

` app2qapq2qψ
p`q

a pyqψ
p`q

c pxqψ
p´q

b pyqψ
p´q

d pxqa:pp1qa
:
pq1q`

` app2qapq2qψ
p`q

a pyqψ
p`q

c pxqψ
p´q

b pyqψ
p´q

d pxqa:pp1qa
:
pq1q

` app2qapq2qψ
p`q

a pyqψ
p`q

c pxqψ
p´q

b pyqψ
p´q

d pxqa:pp1qa
:
pq1q

ı

ˆ |0y

“ ´
1

2!

ż

d4yd4xe2igµνβ
µ
abβ

ν
cdD

F
0 px´ yq

”

1

p2πq
3
2

u´app2qe
ip2y

1

p2πq
3
2

u´cpq2qe
iq2x

1

p2πq
3
2

u´b pp1qe
´ip1y

1

p2πq
3
2

u´d pq1qe
´iq1x

`
1

p2πq
3
2

u´app2qe
ip2y

1

p2πq
3
2

u´cpq2qe
iq2x

1

p2πq
3
2

u´d pp1qe
´ip1x

1

p2πq
3
2

u´b pq1qe
´iq1y

`
1

p2πq
3
2

u´cpp2qe
ip2x

1

p2πq
3
2

u´apq2qe
iq2y

1

p2πq
3
2

u´b pp1qe
´ip1y

1

p2πq
3
2

u´d pq1qe
´iq1x

`
1

p2πq
3
2

u´cpp2qe
ip2x

1

p2πq
3
2

u´apq2qe
iq2y

1

p2πq
3
2

u´d pp1qe
´ip1x

1

p2πq
3
2

u´b pq1qe
´iq1y

ı

.

(5.75)
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The four integrals in (5.75) can be evaluated by the following formula

ż

d4xd4yDF
0 px´ yqe

iAx`iBy

“

ż

d4reipA`Bqr
ż

d4uDF
0 puqe

ipA´B
2
qu

“ p2πq4δpA`Bq

ż

d4ur´p2πq´4

ż

d4k
e´iku

k2 ` i0
seip

A´B
2
qu

“ p2πq4δpA`Bqr´p2πq´4

ż

d4k
1

k2 ` i0

ż

d4ueip´k`
A´B

2
qu
s

“ p2πq4δpA`Bqr´

ż

d4k
1

k2 ` i0
δp´k `

A´B

2
qs

“ p2πq4δpA`Bqr´
1

A2 ` i0
s,

(5.76)

with the substitutions

x “ r `
u

2
, y “ r ´

u

2
, r “

x` y

2
, u “ x´ y. (5.77)

Therefore, (5.75) can be rewritten as

S̃
pMoq
fi “ δpq2 ´ q1 ` p2 ´ p1qM, (5.78)

where

M “
e2igµν
p2πq2

”

u´app2qβ
µ
abu

´
b pp1qu´cpq2qβ

ν
cdu

´
d pq1q

1

pq2 ´ q1q
2 ` i0

`

` u´app2qβ
µ
abu

´
b pq1qu´cpq2qβ

ν
cdu

´
d pp1q

1

pq2 ´ p1q
2 ` i0

ı

.

(5.79)

In Appendix B, we perform the computation of the differential cross section for a

general value of M. Here we will use its form in the center-of-mass reference

dσc.m
dΩ

“ p2πq2
E2

4
|M|2, (5.80)

where σc.m is the differential cross section in the center of mass reference.

The factor |M|2 for the Moller scattering is computed using (5.79) as follows
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|M|2 “

“
e4

p2πq4

”

u´ppf qβµu
´
ppiqu´pqf qβ

µu´pqiq
1

pqf ´ qiq2
`

` u´ppf qβωu
´
pqiqu´pqf qβ

ωu´ppiq
1

pqf ´ piq2

ı

ˆ

ˆ

”

u´ppiqβνu
´
ppf qu´pqiqβ

νu´pqf q
1

pqf ´ qiq2
`

` u´pqiqβαu
´
ppf qu´ppiqβ

αu´pqf q
1

pqf ´ piq2

ı

“
e4

p2πq4

” 1

16m4p0
fp

0
i q

0
fq

0
i

gµαgνω
pqf ´ qiq4

ˆ

ˆ Tr
 

{pf p{pf `mqβ
α
{pip{pi `mqβ

ω
(

Tr
 

{qf p{qf `mqβ
µ
{qip{qi `mqβ

ν
(

`

`
1

16m4p0
fp

0
i q

0
fq

0
i

gµαgνω
pqf ´ qiq2pqf ´ piq2

ˆ

ˆ Tr
 

{pf p{pf `mqβ
α
{pip{pi `mqβ

ν
{qf p{qf `mqβ

µ
{qip{qi `mqβ

ω
(

`

`
1

16m4p0
fq

0
i q

0
fp

0
i

gµαgνω
pqf ´ piq2pqf ´ qiq2

ˆ

ˆ Tr
 

{pf p{pf `mqβ
α
{qip{qi `mqβ

ν
{qf p{qf `mqβ

µ
{pip{pi `mqβ

ω
(

`

`
1

16m4p0
fq

0
i q

0
fp

0
i

gµαgνω
pqf ´ piq4

ˆ

ˆ Tr
 

{pf p{pf `mqβ
α
{qip{qi `mqβ

ω
(

Tr
 

{qf p{qf `mqβ
µ
{pip{pi `mqβ

ν
(

ı

.

(5.81)

The traces in (5.81) could be re-expressed with the help of properties (4.39) and

(4.40). We obtain from (5.81)

|M|2 “ e4

p2πq4
1

16E4
r
pi.qi ` pi.qf ` pf .qi ` pf .qf

pqf ´ qiq2
`
qi.pi ` qi.qf ` pf .pi ` pf .qf

pqf ´ piq2
s
2.

(5.82)

We can reduce this result further by taking into account the center-of-mass reference

frame. The result is

|M|2 “ e4

p2πq4
1

4E4

ˇ

ˇ

ˇ

ˇ

ppiqiq ` pqfqiq

pqf ´ piq2
`
pqipiq ` ppfqiq

ppf ´ piq2

ˇ

ˇ

ˇ

ˇ

2

. (5.83)

Using the Mandelstam variables

s “ ppi ` qiq
2
“ ppf ` qf q

2,
s

2
´m2

“ piqi “ pfqf , (5.84)
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t “ ppi ´ pf q
2
“ pqi ´ qf q

2, m2
´
t

2
“ pipf “ qiqf , (5.85)

u “ ppi ´ qf q
2
“ pqi ´ pf q

2, m2
´
u

2
“ piqf “ qipf , (5.86)

we can rewrite (5.83) as

|M|2 “ e4

p2πq4
1

16E4

ˇ

ˇ

ˇ

ˇ

s´ t

u
`
s´ u

t

ˇ

ˇ

ˇ

ˇ

2

. (5.87)

Replacing (5.87) into (5.80), we have

dσc.m
dΩ

“
α2

4s

ˇ

ˇ

ˇ

ˇ

s´ t

u
`
s´ u

t

ˇ

ˇ

ˇ

ˇ

2

, (5.88)

where α is the fine structure constant.

The result (5.88) is identical to that obtained by C. Itzykson and J. B. Zuber in [94]

using the usual approach, and by J. Beltran in [95] using CPT with Klein-Gordon-Fock

fields.

5.5 Compton scattering

The Compton scattering is the following process

b` γ Ñ b` γ, (5.89)

where b represents an scalar particle and γ a photon.

Using the creation and annihilation operator formalism, the in and out states will

take the following form

|inCompy “ |Ψiy b |Φiy

“

ż

d3p1d
3k1Ψipp1qΦipk1qa

:
pp1qεiνpk1qc

:
νpk1q|0y,

(5.90)

|outCompy “ |Ψfy b |Φfy

“

ż

d3p2d
3k2Ψf pp2qΦf pk2qa

:
pp2qεfµpk2qc

:
µpk2q|0y,

(5.91)

where Ψi,f pp1q and Φi,f pk2q are wave packet sharply peaked in pi,f and ki,f . Besides

εiν and εfµ are the initial and final vector polarization for photons.
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The transition matrix element Sfi “ xoutcomp|S|incompy is then

SCompfi “

ż

d3p2d
3k2

ż

d3p1d
3k1Ψ˚

f pp2qΦ
˚
f pk2qS̃

Comp
fi Ψipp1qΦipk1q, (5.92)

where

S̃Compfi “ x0|app2qεfµpk2qcµpk2qSa
:
pp1qεiνpk1qc

:
νpk1q|0y. (5.93)

Because of the creation and annihilation operators in (5.93), only the contribution

for S coming from D
p2q
2 will produce transition matrix element S̃Compfi non-null. There-

fore, we will focus on determining the contribution of T2 from D
p2q
2 which we rewrite as

follows
D
p2q
2 “e2i : ψpxqβνSpx´ yqβµψpyq :: AµpyqAνpxq :

´ e2i : ψpyqβµSpy ´ xqβνψpxq :: AµpyqAνpxq : .
(5.94)

To begin the causal splitting procedure, we can see in (5.94) that the numerical of

D
p2q
2 is Spx´ yq.

5.5.1 Causal splitting of Spx´ yq

In momentum space, the function Ŝppq is given by the following formula

pSabppq “
1

m
r{pp{p`mqsab pDmppq

“
i

2πm
r{pp{p`mqsabδpp

2
´m2

qSgnpp0
q.

(5.95)

In order to determine the order of singularity, we will compute the form of pSabpp{αq

pSabp
p

η
q “

i

2πm
r{pα

´1
p{pα

´1
`mqsabδpp

2α´2
´m2

qSgnpp0α´1
q

“
i

2πm
r{pp{p`mαqsabδpp

2
´ α2m2

qSgnpp0α´1
q.

(5.96)

Using (5.96) and (3.91), we can see that for a power counting function ρpηq “ 1, we

obtain the following non-null quasi-asymptotic distribution

lim
αÑ0

ρpαqxSp
p

α
q, f̌ppqy “ x

i

2πm
r{p{psabδpp

2
qSgnpp0

q, f̌ppqy ‰ 0. (5.97)

Therefore, from (3.92), we can obtain the order of singularity

ωrŜppqs “ 0, (5.98)
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which means that, unpredictably, Ŝppq is a singular distribution.

The retarded part of Ŝppq, is given by (3.94). Replacing (5.95) into (3.94), we have

r̂0ppq “
i

2π
Sgnpp0

q

ż 8

´8

dt
pSptpq

tω`1p1´ t` Sgnpp0qi0`q

“
i

2π
Sgnpp0

q

ż 8

´8

dt
1

tp1´ t` Sgnpp0qi0`q

i

2πm
rt{ppt{p`mqsabδpt

2p2
´m2

qSgnptp0
q

“
i

2π
Sgnpp0

q

ż 8

´8

dt
1

tp1´ t` Sgnpp0qi0`q

i

2πm
rt2{p{psabδpt

2p2
´m2

qSgnptp0
q

`
i

2π
Sgnpp0

q

ż 8

´8

dt
1

tp1´ t` Sgnpp0qi0`q

i

2πm
rt{pmsabδpt

2p2
´m2

qSgnptp0
q.

(5.99)

We can reduce the two integrals in (5.99) using the symmetry properties presented

in Appendix A.6. For the first term in the right hand side of (5.99) we use (A.31), and

(A.30) for the second, obtaining the following result

r̂0ppq “
i

2π
Sgnpp0

q

ż 8

0

dt
2

tp1´ t` Sgnpp0qi0`q

i

2πm
rt2{p{psabδpt

2p2
´m2

qSgnptp0
q

`
i

2π
Sgnpp0

q

ż 8

0

dt
2t

tp1´ t` Sgnpp0qi0`q

i

2πm
rt{pmsabδpt

2p2
´m2

qSgnptp0
q

“
1

m
r{pp{p`mqsabt

i

2π
Sgnpp0

q

ż 8

0

dt
2t2

tp1´ t` Sgnpp0qi0`q

i

2π
δpt2p2

´m2
qSgnptp0

qu

“
1

m
r{pp{p`mqsabt

i

2π
Sgnpp0

q

ż 8

0

dt
2t pDmpptq

p1´ t` Sgnpp0qi0`q
u.

(5.100)

From (4.52), we can compute that the order of singularity of D̂mppq is ωrD̂mppqs “

´2. In addition, because D̂mppq is odd, using (A.28) we can see that the factor between

braces in the last line of (5.100) is Dret
m ppq. Consequently, the retarded part that we are

computing Sretppq “ r̂0ppq is equal to

Sret
ppq “

1

m
r{pp{p`mqsD

ret
m ppq. (5.101)

Furthermore, as expected for the tree level, the causal splitting for Spx ´ yq could

be done as usual

Spx´ yq “ Sretpx´ yq ´ Sadvpx´ yq, (5.102)

but, CPT tell us that this splitting is not unique because the order of singularity

of Spx ´ yq implies that the more general solution for Sretpx ´ yq (which is given by
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(3.69)) has the following form

S̃retpx´ yq “ Sretpx´ yq ` Cδpx´ yq, (5.103)

where C is a 5ˆ 5 constant matrix which is not fixed by the causal-split procedure.

On the other hand, in the causal distribution (5.94) the numerical part of the second

term to split has opposite sign in the variable. The latter means that the retarded part

of Spy ´ xq has the following form

S̃retpy ´ xq “ ´Sadvpy ´ xq ` C 1δpx´ yq. (5.104)

With the help of (5.103) and (5.104), the retarded distribution R
p2q
2 is

R
p2q
2 “e2i : ψpxqβνpSretpx´ yq ` Cδpx´ yqqβµψpyq :: AµpyqAνpxq :

´ e2i : ψpyqβµp´Sadvpy ´ xq ` Cδpx´ yqβνψpxq :: AµpyqAνpxq : .
(5.105)

Finally, making the difference T
p2q
2 “ R

p2q
2 ´R

1p2q
2 , we obtain the two point function

associated with the Compton process in the following form

T
p2q
2 “ R

p2q
2 ´R

1p2q
2

“ re2i : ψpxqβνpSretpx´ yq ` Cδpx´ yqqβµψbpyq :: AµpyqAνpxq : ´

´ e2i : ψpyqβµp´Sadvpy ´ xq ` Cδpx´ yqβνψpxq :: AµpyqAνpxq :s´

´ r´e2βµβν : ψpyqψpxq :
1

i
Sp´qpx´ yq : AµpyqAνpxq : `

` e2βµβν : ψpyqψpxq :
1

i
Sp`qpy ´ xq : AµpyqAνpxq :s

“ e2i : ψpxqβνpSretpx´ yq ´ Sp´qpx´ yq ` Cδpx´ yqqβµψpyq : ˆ

ˆ : AµpyqAνpxq : `

` e2i : ψapyqβ
µ
abpS

adv
bc py ´ xq ` S

p`q

bc py ´ xq ´ C
1
bcδpx´ yqβ

ν
cdψdpxq : ˆ

ˆ : AµpyqAνpxq : .

(5.106)

Using as usual

SF pxq “ Sp´qpxq ´ Sretpxq “ ´Sp`qpxq ´ Sadvpxq, (5.107)

we have for (5.106)

T
p2q
2 px, yq “ e2i : ψpxqβνp´SF px´ yq ` Cδpx´ yqqβµψpyq :: AµpyqAνpxq :

` e2i : ψpyqβµp´SF py ´ xq ´ C 1δpx´ yqqβνψpxq :: AµpyqAνpxq : .
(5.108)
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Because the symmetry of T
p2q
2 px, yq in the interchange of variable x Õ y, we can see

that C 1 “ ´C, and finally obtain

T
p2q
2 px, yq “ e2i : ψpxqβνp´SF px´ yq ` Cδpx´ yqqβµψpyq :: AµpyqAνpxq :

` e2i : ψpyqβµp´SF py ´ xq ` Cδpx´ yqqβνψpxq :: AµpyqAνpxq : .
(5.109)

5.5.2 Fixation of constant C

Because D
p2q
2 px, yq is a singular distribution, the causal splitting procedure (based on

causality and gauge invariance at first order) give us a family of 2-point causal dis-

tributions T
p2q
2 px, yq represented in the freedom of constant C. To obtain the physical

solution, we must use other physical properties of the theory.

Graphically, the Compton scattering has two external photon legs, this allow us to

use perturbative gauge invariance at second order to determine C. Then, we need

to compute the gauge derivative dQT2px, yq, this result is

dQT2px, yq “ dQ

”

e2i : ψpxqβνp´SF px´ yq ` Cδpx´ yqqβµψpyq :: AµpyqAνpxq :

` e2i : ψpyqβµp´SF py ´ xq ` Cδpx´ yqβνψpxq :: AµpyqAνpxq :
ı

“ e2i : ψpxqβνp´SF px´ yq ` Cδpx´ yqqβµψpyq :: iBµupyqAνpxq :

` e2i : ψpxqβνp´SF px´ yq ` Cδpx´ yqqβµψpyq :: AµpyqiBνupxq :

` e2i : ψpyqβµp´SF py ´ xq ` Cδpx´ yqβνψpxq :: AµpyqiBνupxq :

` e2i : ψpyqβµp´SF py ´ xq ` Cδpx´ yqβνψpxq :: iBµupyqAνpxq : .

(5.110)

Defining Qνµ
xy as

Qνµ
xy “: ψpxqβνr´SF px´ yq ` Cδpx´ yqsβµψpyq :

: ψpyqβµr´SF py ´ xq ` Cδpx´ yqsβνψpxq :,
(5.111)

we can rewrite (5.110), as

dQT2px, yq “ e2i2Byµ
`

Qνµ
xy : upyqAνpxq :

˘

´ e2i2ByµpQ
νµ
xyq : upyqAνpxq :

` e2i2Bxν
`

Qνµ
xy : Aµpyqupxq :

˘

´ e2i2Bxν pQ
νµ
xyq : Aµpyqupxq : .

(5.112)

From (5.112) and (4.80) it is clear that, to get gauge invariance at second order,

Qνµ
xy must fulfill the following conditions

B
x
ν pQ

νµ
xyq “ 0 “ ByµpQ

νµ
xyq. (5.113)
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Taking the first derivative of (5.113), we obtain

B
x
νQ

µν
“: Bxνψpxqβ

ν
r´SF px´ yq ` Cδpx´ yqsβµψpyq :

` : ψpxqβνr´BxνS
F
px´ yq ` CBxνδpx´ yqsβ

µψpyq :

` : ψpyqβµr´BxνS
F
py ´ xq ` CBxνδpx´ yqsβ

νψpxq :

` : ψpyqβµr´SF py ´ xq ` Cδpx´ yqsβνBxνψpxq : .

(5.114)

Besides, considering (5.101) and (4.50), we can write the DKP Feynman propagator

SF pxq as

SF pxq “ Sp´qpxq ´ Sretpxq “ ´Sp`qpxq ´ Sadvpxq “ ´
1

m
ri{Bpi{B `mqsDF

pxq. (5.115)

In order to reduce (5.114) we must obtain the derivative of SF pxq. The latter can

be done regarding (5.115) and the β-matrix algebra (4.17) from the computation of

pi{B ´mqSF pxq as follows

pi{B ´mqSF pxq “ ´
1

m
ri{Bpi{B ´mqpi{B `mqsDF

pxq

“ ´
1

m
r´i{B {B {B ´ i{Bm2

sDF
pxq

“ ´
1

m
r´ip´{B{B{B ` 2{Blq ´ i{Bm2

sDF
pxq

“ ´
1

m
ri{B {B {B ` i{Bm2

sDF
pxq ´

1

m
r´2i{Bl´ 2i{Bm2

sDF
pxq

“ ´pi{B ´mqSF pxq `
2i{B

m
rl`m2

sDF
pxq

i{BSF pxq “ mSF pxq `
i

m
{Bδpxq.

(5.116)

Now, to obtain the derivative of SF p´xq, firstly we will compute the conjugate

transpose of SF pxq using the property βµ: “ η0βµη0

pSF pxqq: “ ´
1

m
r´i{B

:
p´i{B

:
`mqsDF :

pxq

“ ´
1

m
r´iη0 {Bη0

p´iη0 {Bη0
`mqspp2πq´4

ż

d4p
e´ipx

m2 ´ p2 ´ i0
q
:

“ ´η0 1

m
r´i{Bp´i{B `mqsp2πq´4

ż

d4p
eipx

m2 ´ p2 ` i0
η0

“ ´η0 1

m
r´i{Bp´i{B `mqsDF

p´xqη0

“ η0SF p´xqη0.

(5.117)
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Secondly, using (5.117), the conjugate transpose of (5.116) is

pi{BSF pxqq: “ pmSF pxq `
i

m
{Bδpxqq:

´iBνη
0SF p´xqη0η0βνη0

“ mη0SF p´xqη0
´

i

m
η0 {Bδpxqη0

´iBνS
F
p´xqβν “ mSF p´xq ´

i

m
{Bδpxq.

(5.118)

Finally, replacing (5.118) and (5.116) into (5.114), we have

Bν,xQ
µν
“: iψ̄pxqmr´SF px´ yq ` Cδpx´ yqsβµψpyq :

` : ψpxqrmiSF px´ yq ´
1

m
{Bδpx´ yq ` Bν,xCδpx´ yqsβ

µψpyq :

` : ψpyqβµr´imSF py ´ xq ´
1

m
{Bδpx´ yq ` C {Bδpx´ yqsψpxq :

` : ψpyqβµr´SF py ´ xq ` Cδpx´ yqsp´imψpxqq :

“ ` : ψpxqr´
1

m
{Bδpxq ` C {Bδpx´ yqsβµψpyq :

` : ψpyqβµr´
1

m
{Bδpxq ` C {Bδpx´ yqsψpxq :,

(5.119)

which tell us that to get quantum gauge invariance, C must be

C “
I

m
, (5.120)

where I is the 5ˆ 5 identity matrix.

5.5.3 Computation of the differential cross section

Replacing (5.120) into (5.109), we obtain the 2-point distribution associated with the

Compton process T
p2q
2 px, yq as follows

T
p2q
2 px, yq “ e2i : ψpxqβνp´SF px´ yq `

I

m
δpx´ yqqβµψpyq :: AµpyqAνpxq :

` e2i : ψpyqβµp´SF py ´ xq `
I

m
δpx´ yqβνψpxq :: AµpyqAνpxq : .

(5.121)

To sort the computation, we will denote as S
p2q
2 the term of S-matrix associated
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with the Compton scattering. Using (5.121) S
p2q
2 can be written as

S
p2q
2 “

1

2

ż

d4xd4yT
p2q
2 px, yqgpxqgpyq

“ ´
1

2

ż

d4xd4ye2i : ψpxqβνcdS
F
px´ yqβµψpyq :: AµpyqAνpxq :sgpxqgpyq

´
1

2

ż

d4xd4yre2i : ψpyqβµabS
F
py ´ xqβνψpxq :: AµpyqAνpxq :sgpxqgpyq

`
e2i

m

ż

d4x : ψpxqβµβνψpxq :: AµpxqAνpxq : g2
pxq,

(5.122)

where in the last integral we have joined the two ones coming from the Dirac delta

functions. This latter term can be seen as a graph where we have two photons

and scalars in the same point. As pointed out by Akhiezer and Berestetskii in [10],

an advantage of DKP theory is that this term does not appear as in that developed by

the Klein-Gordon-Fock equation. But, from (5.122), it is indisputable that such term

appears because of the singular nature of the associated causal propagator.

To continue our computation, we will decompose S
p2q
2 in the following form

S
p2q
2 “a S

p2q
2 `b S

p2q
2 , (5.123)

where

aS
p2q
2 “

e2i

m

ż

d4x : ψapxqβ
µ
acβ

ν
cdψdpxq :: AµpxqAνpxq : g2

pxq, (5.124)

bS
p2q
2 “ ´

e2i

2

ż

d4xd4y : ψpxqβνSF px´ yqβµψpyq :: AµpyqAνpxq : gpxqgpxq

´
e2i

2

ż

d4xd4y : ψpyqβµSF py ´ xqβνψdpxq :: AµpyqAνpxq : gpxqgpxq.

(5.125)

The operator transition amplitude distribution S̃Compfi will be written as

S̃Compfi “a S
p2q
if `b S

p2q
if . (5.126)

Considering the adiabatic limit gpxq Ñ 1 and the expression (5.93), the terms aS
p2q
if

and bS
p2q
if take the following forms

aS
p2q
if “

e2i

m

ż

d4xx0|app2q : ψpxqβµβνψpxq : a:pp1q|0yˆ

ˆ x0|εfβpk2qcβpk2q : AµpxqAνpxq : εiαpk1qc
:
αpk1q|0y,

(5.127)
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bS
p2q
if “ ´

e2i

2

ż

d4xd4yx0|app2q : ψpxqβνSF px´ yqβµψpyq : a:pp1q|0yˆ

ˆ x0|εfβpk2qcβpk2q : AµpyqAνpxq : εiαpk1qc
:
αpk1q|0y´

´
e2i

2

ż

d4xd4yx0|app2q : ψpyqβµSF py ´ xqβνψpxq : a:pp1q|0yˆ

ˆ x0|εfβpk2qcβpk2q : AµpyqAνpxq : εiαpk1qc
:
αpk1q|0y

“ ´e2i

ż

d4xd4yx0|app2q : ψpxqβνSF px´ yqβµψpyq : a:pp1q|0yˆ

ˆ x0|εfβpk2qcβpk2q : AµpyqAνpxq : εiαpk1qc
:
αpk1q|0y.

(5.128)

Before reducing the expressions (5.127) and (5.128), we must consider a real polar-

ization vector εν with the following properties

εν “ p0, εq, ε.k “ 0, ε2
“ 1, (5.129)

and we need to determine the contractions between the electromagnetic potential field

Aµpxq and a creation or annihilation operator for photons. This contractions are

εfβpkjqcβpkjqAµpxq “ εfβpkjqcβpkjqA
p`q
µ pxq

“ εfβpkjqcβpkjqp2πq
´3{2

ż

d3k
?

2ω
cµpkq

:eikx ˆ

$

&

%

1, for µ “ 1, 2, 3

´1, for µ “ 0,

“ εfβpkjqp2πq
´3{2

ż

d3k
?

2ω
δµβδpkj ´ kqeikx ˆ

$

&

%

1, for µ “ 1, 2, 3

´1, for µ “ 0,

“ p2πq´3{2 δµβεfβpkjq
a

2ωj
eikjx ˆ

$

&

%

1, for µ “ 1, 2, 3

´1, for µ “ 0,

“ p2πq´3{2 εfµpkjq
a

2ωj
eikjx,

(5.130)

Aµpxqεiβpkjqc
:

βpkjq “ Ap´qµ pxqεiβpkjqc
:

βpkjq

“ p2πq´3{2

ż

d3k
?

2ω
cµpkqe

´ikxεiβpkjqc
:

βpkjq

“ p2πq´3{2

ż

d3k
?

2ω
δµβδpk´ kjqe

´ikxεiβpkjq

“ p2πq´3{2 εiµpkjq?
2ω

e´ikjx.

(5.131)
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Using Wick theorem and contractions (5.14), (5.15), (5.130) and (5.131); the vacuum

expectation values in (5.127) are

x0|app2q : ψpxqβµβνψpxq : a:pp1q|0y “

“ x0|app2q : ψ̄apxqβ
µ
acβ

ν
cdψdpxq : a:pp1q|0y

“
1

p2πq3
u´pp2qβ

µβνu´pp1qe
´ipp1´p2qx,

(5.132)

x0|εfβpk2qaβpk2q : AµpxqAνpxq : εiαpk1qa
:
αpk1q|0y “

“ x0|εfβpkf qaβpkf q : AµpxqAνpxq : εiαpkiqa
:
αpkiq|0y

` x0|εfβpk2qaβpk2q : AµpxqAνpxq : εiαpk1qa
:
αpk1q|0y

“ p2πq´3 εfµpk2q
a

2ωf

εiνpk1q
?

2ωi
e´ipk1´k2qx ` p2πq´3 εfνpk2q

a

2ωf

εiµpk1q
?

2ωi
e´ipk1´k2qx.

(5.133)

Replacing (5.133) and (5.132) into (5.127), we obtain

aS
p2q
if “ δpp1 ´ p2 ` k1 ´ k2qMa, (5.134)

where

Ma “
ie2

mp2πq2
?

2ω1

?
2ω2

u´pp2qβ
µβνu´pp1qrεfµεiν ` εfνεiµs

“
ie2

mp2πq2
?

2ω1

?
2ω2

ru´pp2q{εf {εiu
´
pp1q ` u´app2q{εi{εfu

´
pp1qs.

(5.135)

The computation of bS
p2q
if from (5.128), is similar. The difference between the two

calculation processes lies on the SF function between the β-matrices that aS
p2q
if does

not have. The final result for bS
p2q
if is

bS
p2q
if “ ´

e2i

2
r

1

p2πq6
u´cpp2qβ

ν
cdβ

µ
alu

´
l pp1qsˆ

ˆ

”εfµpk2q
?

2ω2

εiνpk1q
?

2ω1

ż

d4xd4ySFdapx´ yqe
ip2x´ip1yeik2y´ik1x`

`
εfνpk2q
?

2ω2

εiµpk1q
?

2ω1

ż

d4xd4ySFdapx´ yqe
ip2x´ip1yeik2x´ik1y

ı

“ δpp2 ` k2 ´ p1 ´ k1qMb,

(5.136)

where

Mb “ ´
e2i

mp2πq2
a

2ωf
?

2ω1

„

u´pp2q{εip{p1
´ {k2qp{p1

´ {k2 `mq{εfu
´pp1q

pp1 ´ k2q
2 ´m2

`

`
u´pp2q{εf p{p1

` {k1qp{p1
` {k1 `mq{εiu

´pp1q

pp1 ` k1q
2 ´m2



.

(5.137)
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Regarding (5.136) and (5.134), the transition amplitude S̃Compfi could be written as

S̃Compfi “ δpp2 ` k2 ´ p1 ´ k1qM, M “Ma `Mb. (5.138)

Using the result (B.25) from Appendix B, the differential cross section in the labo-

ratory system is given by

dσ

dΩ
“ p2πq2

ω3
fEf

mωi
|Mppi, ki, pf , kf q|2. (5.139)

where

|M|2 “ |Ma|
2
`M˚

aMb `M˚
bMa ` |Mb|

2, (5.140)

and, because the sharply peaked form of the wave packets, we have the following change

of variables

p1 Ñ pi, p2 Ñ pf , k1 Ñ ki, k2 Ñ kf . (5.141)

Before computing the terms in (5.140), we must take into account two properties.

Firstly, because we are working in the laboratory system, we can fix pi “ pm,0q. The

latter has the following consequences

piεi “ 0, piεf “ 0, (5.142)

which complement the polarization conditions that in covariant notation have the fol-

lowing form

εiki “ 0, εfkf “ 0. (5.143)

Furthermore, the denominators of fractions in the brackets of (5.137), will be reduced

to

ppi ´ kf q
2
´m2

“ ´2pikf “ ´2mωf , (5.144)

ppi ` kiq
2
´m2

“ 2piki “ 2mωi. (5.145)

Secondly, we will find traces with the form

Trr {A1 {A2 . . . {A2ns “ pA1.A2qpA3.A4q . . . pA2n´1.A2nq ` pA2.A3qpA4.A5q . . . pA2n.A1q.

(5.146)

Then, using (5.142), (5.143) and (5.146) we can construct many null traces. As an

example we could mention

Trr. . . {εi{pi{εi . . .s “ 0, (5.147)

Trr. . . {pi{εf {kf . . .s “ 0, (5.148)
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Trr. . . {εf {pi{εi . . .s “ 0, (5.149)

and other combinations.

Now, returning to (5.140), we have

|Ma|
2
“

e4

16m4p2πq4ωiωfp0
i p

0
f

ˆ

Trr{pf p{pf `mq{εf {εi{pip{pi `mq{εi{εf s`

` Trr{pf p{pf `mq{εf {εi{pip{pi `mq{εf {εis ` Trr{pf p{pf `mq{εi{εf {pip{pi `mq{εi{εf s`

` Trr{pf p{pf `mq{εi{εf {pip{pi `mq{εf {εis

˙

,

(5.150)

M˚
aMb “

e4

m3p2πq48ωiω2
f

1

2mp0
f

1

2mp0
i

Tr
“

p{εi{εf ` {εf {εiq{pf p{pf `mq{εip{pi ´ {kf qˆ

ˆ p{pi ´ {kf `mq {εf {pip{pi `mq
‰

´
e4

m3p2πq48ω2
i ωf

1

2mp0
f

1

2mp0
i

ˆ

ˆ Tr
“

p{εi{εf ` {εf {εiq{pf p{pf `mq{εf p{pi ` {kiqp{pi ` {ki `mq {εi {pip{pi `mq
‰

,

(5.151)

|Mb|
2
“

e4

16m4p2πq4ω3
fωi

Trr{pf p{pf `mq{εip{pi ´ {kf qˆ

ˆ p{pi ´ {kf `mq{εf {pip{pi `mq {εf p{pi ´ {kf qp{pi ´ {kf `mq{εis

´
e4

16m4p2πq4ω2
fω

2
i

Trr{pf p{pf `mq{εip{pi ´ {kf qˆ

ˆ p{pi ´ {kf `mq {εf {pip{pi `mq{εip{pi ` {kiqp{pi ` {ki `mq{εf s

´
e4

16m4p2πq4ω2
fω

2
i

Trr{pf p{pf `mq{εf p{pi ` {kiqˆ

ˆ p{pi ` {ki `mq{εi{pip{pi `mq {εf p{pi ´ {kf qp{pi ´ {kf `mq{εis

`
e4

16m4p2πq4ωfω3
i

Trr{pf p{pf `mq{εf p{pi ` {kiqˆ

ˆ p{pi ` {ki `mq{εi{pip{pi `mq {εi p{pi ` {kiqp{pi ` {ki `mq{εf s.

(5.152)

Before continuing, we can see that the boxed terms in (5.151) and (5.152) are sur-

rounded by other which nullifies the traces where they belong as in (5.147-5.149), in

consequence

M˚
aMb “ 0 “M˚

bMa, |Mb|
2
“ 0. (5.153)

For |Ma|
2, there are null terms in (5.150) because the products {εi{pi{εi, {εf {pi{εi, {εi{pi{εf
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and {εf {pi{εf . Avoiding this terms and those with odd number of β-matrices, we have

|Ma|
2
“

e4

16m4p2πq4ωiωfp0
i p

0
f

ˆ

Trr{pf {pf {εf {εi{pi{pi{εi{εf s ` Trr{pf {pf {εf {εi{pi{pi{εf {εis

` Trr{pf {pf {εi{εf {pi{pi{εi{εf s ` Trr{pf {pf {εi{εf {pi{pi{εf {εis

˙

“
e4

16m4p2πq4ωiωfp0
i p

0
f

ˆ

4m4
pεi.εf q

2

˙

“
e4

4p2πq4ωiωfmEf
pεi.εf q

2.

(5.154)

Replacing (5.154) and (5.153) into (5.139), we obtain

dσ

dΩ

ˇ

ˇ

ˇ

Lab
“

e4ω2
f

16π2m2ω2
i

pεi.εf q
2

“
α2ω2

f

m2ω2
i

pεf .εiq
2 .

(5.155)

In the framework of Klein-Gordon-Fock equation, the result (5.155) was obtained

in [94] and using CPT in [95].





Chapter 6

Radiative Corrections.

In desperation I asked Fermi whether he was not impressed by the

agreement between our calculated numbers and his measured numbers.

He replied, “How many arbitrary parameters did you use for your

calculations?” I thought for a moment about our cut-off procedures and

said, “Four.” He said, “I remember my friend Johnny von Neumann used

to say, with four parameters I can fit an elephant, and with five I can

make him wiggle his trunk.” With that, the conversation was over.

Freeman John Dyson

As we saw in the previous Chapter, in the tree level the computations of differen-

tial cross sections via Klein-Gordon-Fock and Duffin-Kemmer-Petiau frameworks are

equivalent. In this chapter we will compute the vacuum polarization tensor and the

self energy function of DKP scalar particle.

6.1 Vacuum polarization

It is not difficult to see that the term which contributes to the vacuum polarization

tensor is (5.59). That term is rewritten as follows

D
p3q
2 “ ´i : AνpyqD

µν
px, yqAµpxq :, (6.1)

where

Dµν
“ ie2TrrβνSp`qpy ´ xqβµSp´qpx´ yq ´ βµSp`qpx´ yqβνSp´qpy ´ xqs. (6.2)

77
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As before, to obtain the contribution for T2 coming from D
p3q
2 , we have to split the

numerical part

Dµν
pzq “ ie2TrrβνSp`qpy ´ xqβµSp´qpx´ yq ´ βµSp`qpx´ yqβνSp´qpy ´ xqs

“ ie2
rP νµ

pzq ´ P µν
p´zqs.

(6.3)

where

P νµ
pzq “ TrrβνSp`qp´zqβµSp´qpzqs, z “ x´ y. (6.4)

To obtain the order of singularity ω of Dµνpzq, we will determine its Fourier trans-

form. From (6.3), it is clear that we just need to determine the transform of P νµpzq

which is equal to

P̂ νµ
pkq “ p2πq´2

ż

d4zP νµ
pzqeikz

“ p2πq´2

ż

d4zTrrβνSp`qp´zqβµSp´qpzqseikz.

(6.5)

Using the trace properties (4.39) and (4.40), and replacing the expressions of Sp`qp´zq

and Sp´qpzq into (6.5) from (4.55), we obtain

P̂ νµ
pkq “

1

m2p2πq4

ż

d4pΘpp0
qδpp2

´m2
qΘp´p0

´ k0
qδppp` kq2 ´m2

qˆ

ˆm2
r4pµpν ` 2kµpν ` 2pµkν ` kµkνs.

(6.6)

At this point, it is useful notice that because of the two delta functions and the

expression in brackets, we have

kµP
µν
“ 0, (6.7)

which means that P µνpkq has the following form

P µν
pkq “ pkµkν ´ k2gµνqBpk2

q, Bpk2
q “

´1

3k2
P µ

µ, (6.8)

where

P̂ µ
µpkq “

1

p2πq4
4m2

r1´
k2

4m2
s

ż

d4pΘpp0
qδpp2

´m2
qΘp´p0

´ k0
qδpk2

` 2k.pq. (6.9)

To continue the calculation, we can note from the step and delta functions of (6.9)

that k is time-like, the latter means that we could do the integral using a special
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reference frame where k “ pk0,0q. Consequently, we have for (6.9) the following

ż

d4p . . . “

ż

d4pΘpp0
qδpp2

´m2
qΘp´p0

´ k0
qδpk2

` 2k.pq

“

ż

d3p

ż

dp0Θpp0
qδppp0

q
2
´ E2

pqΘp´p
0
´ k0

qδppk0
q
2
` 2k0.p0

q

“

ż

d3p

ż

dp0 1

2Ep

δpp0
´ EpqΘp´p

0
´ k0

qδppk0
q
2
` 2k0.p0

q

“

ż

d3p
1

2Ep

Θp´Ep ´ k
0
qδppk0

q
2
` 2k0.Epq.

(6.10)

Evaluating the integral in spherical coordinates and using EpdEp “ |p|d|p|, we have

ż

d4p . . . “ 4π

ż

EpdEp|p|
1

2Ep

Θp´Ep ´ k
0
qδppk0

q
2
` 2k0.Epq. (6.11)

From the delta function we can determine |p| as

δppk0
q
2
` 2k0.Epq ñ ´

k0

2
“
a

p2 `m2 ñ

c

pk0q2

4
´m2 “ |p|. (6.12)

Replacing (6.12) into (6.11), we obtain

ż

d4p . . . “ 4π

ż

EpdEp

c

pk0q2

4
´m2Θppk0

q
2
´ 4m2

q
1

2Ep

Θp´Ep ´ k
0
qδppk0

q
2
` 2k0.Epq

“ π

c

pk0q2

4
´m2

1

k0
Θp´k0

qΘppk0
q
2
´ 4m2

q.

(6.13)

Finally, we get for (6.9) the following form

P µ
µpkq “ ´

1

p2πq4
k2
r1´

4m2

k2
s
3
2
π

2
Θp´k0

qΘppk0
q
2
´ 4m2

q. (6.14)

Going to a general reference frame and replacing (6.14) into (6.8), we obtain for

P̂ µνpkq the following result

P̂ µν
pkq “

π

6p2πq4
p
kµkν

k2
´ gµνqk2

r1´
4m2

k2
s
3
2 Θp´k0

qΘppk0
q
2
´ 4m2

q. (6.15)

On the other hand, using that P µνp´zq
Ź

“ P̂ µνp´kq and (6.15), we have for the
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Fourier transform of Dµνpx, yq the following form

D̂µν
pkq “ ie2

rP νµpzq ´ P µνp´zqs
Ź

pkq

“ ie2
rP̂ νµ

pkq ´ P̂ µν
p´kqs

“ ie2 k2π

6p2πq4

´kµkν

k2
´ gµν

¯´

1´
4m2

k2

¯
3
2
rΘpk0

q ´Θp´k0
qsΘppk0

q
2
´ 4m2

q

“ ´
ie2k2π

6p2πq4

´kµkν

k2
´ gµν

¯´

1´
4m2

k2

¯
3
2
Sgnpk0

qΘppk0
q
2
´ 4m2

q.

(6.16)

Since the tensorial part of Dµνpkq does not affect the causal splitting process, we

will rewrite (6.16) as follows

Dµν
pkq “ ´

ie2π

6p2πq4
p
kµkν

k2
´ gµνqdvac, (6.17)

where the factor dvac is the numerical distribution to split and is equal to

dvacpkq “ k2
r1´

4m2

k2
s
3
2Sgnpk0

qΘppk0
q
2
´ 4m2

q. (6.18)

Now, we need to compute the order of singularity of dvacpkq. From (6.18) it is

straightforward see that

dvacp
k

α
q “ k2α´2

r1´
4m2α2

k2
s
3
2Sgnp

k0

α
qΘpp

k0

α
q
2
´ 4m2

q. (6.19)

In consequence, for the power counting function ρpαq “ α2, the following limit exist

lim
αÑ0

ρpαqdvacp
k

α
q “ lim

αÑ0
rk2
r1´

4m2α2

k2
s
3
2Sgnp

k0

α
qs “ k2Sgnpk0

q. (6.20)

Therefore, using the relation (3.92), we can see that the order of singularity of dvac

is

ωrdvacs “ 2, (6.21)

which means that the distribution is singular and its retarded part will be given by

the formula (3.94). Considering the fact that dvacp´kq “ ´dvacpkq, we can use the



6.1. Vacuum polarization 81

Appendix result (A.31)

rvac0 pkq “
i

2π
Sgnpk0

q

8
ż

0

dt
2d̂vacptpq

tω`1p1´ t2 ` iSgnpk0q0`q

“
i

2π
Sgnpk0

q

8
ż

0

dt
2t2k2r1´ 4m2

t2k2
s
3
2Sgnptk0qΘpt2pk0q2 ´ 4m2q

t3p1´ t2 ` iSgnpk0q0`q

“
i

2π
Sgnpk0

q

8
ż

0

dt
2k2r1´ 4m2

t2k2
s
3
2Sgnptk0qΘpt2pk0q2 ´ 4m2q

tp1´ t2 ` iSgnpk0q0`q
.

(6.22)

Now, because t ą 0 we have Sgnptk0qSgnpk0q “ 1. Furthermore, going to the

reference system where k “ pk0,0q, and making the change of variable s “ t2k02
, we

can rewrite (6.22) as

rvac0 pkq “
i

2π

8
ż

0

dt
2k02

r1´ 4m2

t2k2
s
3
2 Θpt2pk0q2 ´ 4m2q

tp1´ t2 ` iSgnpk0q0`q

“
i

2π
2k02

8
ż

0

ds
|k0||k0|r1´ 4m2

s
s
3
2 Θps´ 4m2q

2k02?s
?
sp1´ s

k02
` iSgnpk0q0`q

“
i

2π
k02

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sp1´ s
k02
` iSgnpk0q0`q

“
i

2π
k04

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

spk02
´ s` iSgnpk0q0`q

.

(6.23)

Using the Sokhotski–Plemelj formula

1

x˘ i0`
“ PV p

1

x
q ¯ iπδpxq, (6.24)

we can rewrite (6.23) as

rvac0 pkq “
ipk0q4

2π

!

P.V

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
´

´ iπSgnpk0
qΘrpk0

q
2
´ 4m2

s
1

pk0q2
r1´

4m2

pk0q2
s
3
2

)

.

(6.25)
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Now we need the intermediate retarded distribution r1vac. The latter is the term

coming from P µνpzq and its expression is

r1vacpkq “ ´k2
r1´

4m2

k2
s
3
2 Θp´k0

qΘrpk0
q
2
´ 4m2

s. (6.26)

Finally, the numerical part of the two-point distribution tvacpkq is computing as the

subtraction

tvacpkq “ rvac0 pkq ´ r1pkq

“
i

2π
pk0
q
4P.V

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
`

1

2
pk0
q
2Sgnpk0

qΘrpk0
q
2
´ 4m2

sr1´
4m2

pk0q2
s
3
2

)

´ r´k02
r1´

4m2

k2
s
3
2 Θp´k0

qΘrpk0
q
2
´ 4m2

ss

“
i

2π
pk0
q
4P.V

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
`

`
1

2
pk0
q
2
tSgnpk0

q ` 2Θp´k0
quΘrpk0

q
2
´ 4m2

sr1´
4m2

pk0q2
s
3
2

)

“
i

2π
pk0
q
4P.V

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
`

`
1

2
pk0
q
2
tΘpk0

q `Θp´k0
quΘrpk0

q
2
´ 4m2

sr1´
4m2

pk0q2
s
3
2

)

“
i

2π
pk0
q
4P.V

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
`

1

2
pk0
q
2
r1´

4m2

pk0q2
s
3
2 Θrpk0

q
2
´ 4m2

s

“
i

2π
pk0
q
4

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
.

(6.27)

With (6.27), we can write the more general solution rtvac for the two point distribu-

tion. Because of its singular order ω “ 2, rtvac has the following form

rtvacpkq “
i

2π
pk0
q
4

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq
` c0 ` cαk

α
` c2k

2. (6.28)
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Finally, with rtvac we can write the vacuum polarization tensor Πµνpkq as

Π̂µν
pkq “ ´

ie2π

6p2πq4
p
kµkν

k2
´ gµνqrtvac

“

! e2pk0q4

12p2πq4
p
kµkν

k2
´ gµνq

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq

)

` C0 ` Cαk
α
` C2k

2.

(6.29)

To obtain the constants C0 and C2 we need to determine the complete photon

propagator. This is possible if the order of singularity of the distributions associated

with two and more vacuum polarizations insertions have the same value. We will see

this in next Chapter.

6.2 Self-Energy

To study the self-energy function of scalar DKP particle, we start with the causal

distribution (5.60) which we rewrite here as follows

D
p4q
2 “ ´e2gµν : ψpxqβνr´Sp´qpx´ yqD

p´q

0 px´ yq ` Sp`qpx´ yqD
p`q

0 px´ yqsβµψpyq :

` e2gµν : ψpyqβµrSp`qpy ´ xqD
p`q

0 py ´ xq ´ Sp´qpy ´ xqD
p´q

0 py ´ xqsβνψpxq : .

(6.30)

For future uses, we rewrite too the intermediate distribution R1p4qpx, yq

R
1p4q
2 py, xq “ e2gµν : ψpxqβνSp´qpx´ yqD

p´q

0 px´ yqβµψpyq :

` e2gµν : ψpyqβµSp`qpy ´ xqD
p`q

0 py ´ xqβνψpxq : .
(6.31)

Again, to compute the order of singularity, we will work in the momentum space,

therefore we must determine the Fourier transform of the numerical parts in (6.30). To

do the computation, we introduce the functions Apzq and Bpzq as follows

Apx´ yq “ Apzq “ Sp´qpzqD
p´q

0 pzq, (6.32)

Bpx´ yq “ Bpzq “ Sp`qpzqD
p`q

0 pzq, (6.33)

where it is easy to note that if we obtain the Fourier transform of these functions, then

we could evaluate the Fourier transform required.
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Replacing (4.14) and (4.55) in (6.32), the Fourier transform Âpkq has the following

form

Âpkq “ p2πq´2

ż

d4z

"

´i

mp2πq3

ż

d4pδpp2
´m2

qΘpp0
qr{pp{p´mqsabe

ipz

*

ˆ

ˆ

"

´i

p2πq3

ż

d4qδpq2
qΘp´q0

qe´iqz
*

eizk

“ ´
m

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
qr{psδppk ´ pq

2
qΘpp0

´ k0
q´

´
1

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
qr{p{psabδppk ´ pq

2
qΘpp0

´ k0
q

“ A1pkq ` A2pkq

(6.34)

where

Â1pkq “ ´
m

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
q{pδppk ´ pq

2
qΘpp0

´ k0
q, (6.35)

Â2pkq “ ´
1

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
q{p{pδppk ´ pq

2
qΘpp0

´ k0
q. (6.36)

To compute the integral Â1pkq, we will separate the term proportional to p0 in the

contraction {p “ β0p
0 ` βip

i obtaining

Â1pkq “ ´
m

mp2πq4
βν

ż

d4pδpp2
´m2

qΘp´p0
qpνδppk ´ pq2qΘpp0

´ k0
q

“ ´
m

mp2πq4
β0

ż

d4pδpp2
´m2

qΘp´p0
qp0δppk ´ pq2qΘpp0

´ k0
q´

´
m

mp2πq4
βi

ż

d4pδpp2
´m2

qΘp´p0
qpiδppk ´ pq2qΘpp0

´ k0
q.

(6.37)

The second integral in the right hand side of (6.37) is null because pi makes anti-

symmetric the integrand. To calculate the first one, we will use a reference system

where k “ pk0,0q, thus we have

Â1pkq “ ´
m

mp2πq4
β0

ż

d4pδpp2
´m2

qΘp´p0
qp0δppk ´ pq2qΘpp0

´ k0
q

“
m

mp2πq4
1

2
β0

ż

d3pδppk0
q
2
` 2k0Ep `m

2
qΘp´Ep ´ k

0
q.

(6.38)

From the last delta and step function in (6.38), we can compute |p| as

k0
“ ´Ep ´ |p| ñ |p| “

m2 ´ pk0q2

2k0
, (6.39)
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then, using spherical coordinates, we obtain

Â1pkq “
m

mp2πq4
1

2
β04π

ż

p2d|p|
1

2|k0|
δpEp `

m2 ` pk0q2

2k0
q

“
m

mp2πq4
1

2
β04π

ż

Ep|p|dEp
1

2|k0|
δpEp `

m2 ` pk0q2

2k0
q

“
m

mp2πq4
1

2
β04π

1

2|k0|

ż

Epp
m2 ´ pk0q2

2k0
qdEpδpEp `

m2 ` pk0q2

2k0
q

“
1

p4πq3
p
m2

pk0q2
´ 1qp

m2

pk0q2
` 1q{kΘpk2

´m2
qΘp´k0

q.

(6.40)

Now, we will compute Â2pkq which can be rewritten as

A2pkq “ ´
1

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
qβµp

µβνp
νδppk ´ pq2qΘpp0

´ k0
q. (6.41)

For the same parity reasons of the integrand, we can show that for µ ‰ ν the integral

is null. For example

A2pkq “ . . .´
1

mp2πq4
β1β3

ż

d3p
1

2Eppq
p1p3δppk0

` Eppqq2 ´ p2
qΘpp0

` Eppqq . . .

(6.42)

Using the particular representation (4.21) of the β-matrices, we can write the integral

(6.41) as

A2pkq “ ´
1

mp2πq4
βµβν

ż

d4pδpp2
´m2

qΘp´p0
qpµp

νδppk ´ pq2qΘpp0
´ k0

qu

“ ´
1

mp2πq4

ż

d4pδpp2
´m2

qΘp´p0
q

¨

˚

˚

˚

˚

˚

˚

˝

p0p
0 0 0 0 0

0 p1p
1 0 0 0

0 0 p2p
2 0 0

0 0 0 p3p
3 0

0 0 0 0 pνp
ν

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

ˆ δppk ´ pq2qΘpp0
´ k0

qu.

(6.43)

Also in that representation, just the entry p5, 5q is relevant after multiplication with

the fields Ψ and Ψ. Therefore, using the following result

1

4
βνβ

νp2
“

¨

˚

˚

˚

˚

˚

˚

˝

p2

4
0 0 0 0

0 p2

4
0 0 0

0 0 p2

4
0 0

0 0 0 p2

4
0

0 0 0 0 p2

˛

‹

‹

‹

‹

‹

‹

‚

, (6.44)
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we can write1 (6.43) as follows

A2pkq “ ´
1

mp2πq4
βνβν

4

ż

d4pδpp2
´m2

qΘp´p0
qp2δppk ´ pq2qΘpp0

´ k0
q. (6.45)

From the delta and step functions of (6.45), we could obtain the following properties

Ep “ ´k
0
´ |p| ñ |p| “

m2 ´ pk0q2

2k0
, m2

´ pk0
q
2
ă 0. (6.46)

With the help of (6.46), the integral (6.45) can be evaluated in spherical coordinates

and a reference system where k “ pk0,0q as follows

A2pkq “ ´
1

mp2πq4
βνβν

4

ż

d4pδpp2
´m2

qΘp´p0
qp2δpk2

´ 2k.p` p2
qΘpp0

´ k0
q

“ ´
1

mp2πq4
m2β

νβν
4

ż

d3p
1

2Ep

δppk0
q
2
` 2k0.Ep `m

2
qΘp´Ep ´ k

0
q

“ ´
1

mp2πq4
m2Θppk0

q
2
´m2

qΘp´k0
q
βνβν

4
p4πqˆ

ˆ

ż

p2d|p|
1

2Ep

δppk0
q
2
` 2k0.Ep `m

2
q

“ ´
1

mp2πq4
m2Θppk0

q
2
´m2

qΘp´k0
q
βνβν

4
p4πq

1

2

1

2|k0|

m2 ´ pk0q2

2k0
ˆ

ˆ

ż

dEpδp
pk0q2 `m2

2k0
` Epq

“ ´
m

2p4πq3
Θppk0

q
2
´m2

qΘp´k0
qβνβνp1´

m2

pk0q2
q.

(6.47)

Replacing (6.40) and (6.47) in (6.34), we obtain for Âpkq the following result

Âpkq “ Θpk2
´m2

qΘp´k0
q

1

p4πq3
p
m2

pk0q2
´ 1q

!

p
m2

k2
` 1q{k `

m

2
βνβν

)

, (6.48)

where the return of a general reference system has been done.

Now, we will compute the Fourier transform of Bpzq. Replacing the explicit forms

1Other form to solve the integral is noting that it needs to be proportional to gµν to have Lorentz

invariance.
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of Sp`qpzq and D
p`q

0 pzq into (6.33), we have for B̂pkq the following form

B̂pkq “ p2πq´2

ż

d4zSp`qpzqD
p`q

0 pzqeizk, x´ y “ z

“ p2πq´2

ż

d4zt
`i

mp2πq3

ż

d3p

2p0
r{pp{p`mqsabe

´ipz
ut

i

p2πq3

ż

d3q

2q0
e´iqzueizk

“ ´
1

mp2πq4
t

ż

d4pδpp2
´m2

qΘpp0
qr{pp{p`mqsabutδppk ´ pq

2
qΘpk0

´ p0
qu

“ ´
1

mp2πq4
t

ż

d4pδpp2
´m2

qΘpp0
qr{ppmqsabutδppk ´ pq

2
qΘpk0

´ p0
qu

´
1

mp2πq4
t

ż

d4pδpp2
´m2

qΘpp0
qr{pp{pqsabutδppk ´ pq

2
qΘpk0

´ p0
qu

“ B̂1pkq ` B̂2pkq,

(6.49)

where B1pkq and B2pkq are

B̂1pkq “ ´
1

p2πq4
βµ

ż

d4ppµδpp2
´m2

qΘpp0
qδppk ´ pq2qΘpk0

´ p0
q, (6.50)

B̂2pkq “ ´
1

mp2πq4
βνβµ

ż

d4pδpp2
´m2

qΘpp0
qpνpµδppk ´ pq2qΘpk0

´ p0
q. (6.51)

The integral (6.50) is zero for µ “ 1, 2, 3 because in those cases the integrand is

odd and the integral interval is symmetric. The integral for µ “ 0 could be done in a

reference system where k “ pk0,0q, in that case we obtain the following form to solve

B̂1pkq “ ´
1

2p2πq4
β0

ż

d3pδppk0
q
2
´ 2k0Ep `m

2
qΘpk0

´ Epq. (6.52)

Solving the delta function of (6.52), we get that k0 “ Ep ˘ |p|. After that, using

the two values of k0 in the step function we could see that just k0 “ Ep ` |p| is not

zero, which means that k0 ą 0. On the other hand, we can obtain that |p| “ k0
2
´m2

2k0
,

therefore k02
´m2 ą 0. With these properties, we could rewrite the integral (6.52) as

B̂1pkq “ ´
1

2p2πq4
Θpk0

qΘpk02
´m2

qβ0p4πq

ż

p2d|p|δppk0
q
2
´ 2k0Ep `m

2
q

“ ´
1

2p2πq4
Θpk0

qΘpk02
´m2

qβ0p4πq
k02

´m2

2k0

ż

dEpEp
1

|2k0|
δp
pk0q2 `m2

2k0
´ Epq

“ ´
1

p4πq3
Θpk0

qΘpk2
´m2

qp1´
m2

k2
qp1`

m2

k2
q{k.

(6.53)
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The computation of the integral B̂2pkq) is similar to the one done for Â2pkq. Using

the criterion of Lorentz invariance, we get the following intermediate result

B̂2pkq “ ´
1

mp2πq4
βνβµ

ż

d4pδpp2
´m2

qΘpp0
qpνpµδppk ´ pq2qΘpk0

´ p0
q

“ ´
1

mp2πq4
βµβµ

4

ż

d4pδpp2
´m2

qΘpp0
qp2δppk ´ pq2qΘpk0

´ p0
q

“ ´
1

mp2πq4
βµβµ

4

ż

d3ppm2
q

1

2Ep

δppk0
q
2
´ 2k0Ep `m

2
qΘpk0

´ Epq.

(6.54)

From the delta and step functions in (6.54), we can determine |p| as

k0
“ Ep ` |p| ñ |p| “

m2 ` pk0q2

2k0
, m2

` pk0
q
2
ą 0. (6.55)

Using spherical coordinates, we obtain

B̂2pkq “ ´
m

2p2πq4
βµβµ

4
Θpk0

qΘpk2
´m2

qp4πq

ż

p2d|p|
1

Ep
δppk0

q
2
´ 2k0Ep `m

2
q

“ ´
m

2p2πq4
βµβµ

4
Θpk0

qΘpk2
´m2

qp4πq

ż

k02
´m2

2k0
dEpδppk

0
q
2
´ 2k0Ep `m

2
q

“ ´
m

2p2πq4
βµβµ

4
Θpk0

qΘpk2
´m2

qp4πq
k02

´m2

2k0

ż

dEpδppk
0
q
2
´ 2k0Ep `m

2
q

“ ´
m

2p4πq3
βµβµΘpk0

qΘpk2
´m2

qp1´
m2

k2
q.

(6.56)

Replacing (6.53) and (6.56) into (6.49), we get

B̂pkq “ B̂1pkq ` B̂2pkq

“ ´
1

p4πq3
Θpk0

qΘpk2
´m2

qp1´
m2

k2
q

!

p1`
m2

k2
q{k `

m

2
βµβµ

)

.
(6.57)

With the computation of B̂pkq and Âpkq, we will return to study the numerical

parts of (6.30) that we rewrite here as follows

D
p4q
2 “ ie2 : ψpxqiβµr´S

p´q
px´ yqD

p´q

0 px´ yq ` Sp`qpx´ yqD
p`q

0 px´ yqsβµψpyq :

` ie2 : ψpyqp´iqβµrS
p`q
py ´ xqD

p`q

0 py ´ xq ´ Sp´qpy ´ xqD
p´q

0 py ´ xqsβµψpxq :

“ i : ψpxqDSelf
I px´ yqψpyq : `i : ψpyqDSelf

II px´ yqψpxq :,

(6.58)
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where DSelf
I and DSelf

II are the numerical parts which we have to study in order to

obtain their order of singularity. Using the expressions of Apzq and Bpzq, DSelf
I and

DSelf
II could be written as follows

DSelf
I px´ yq “ ie2βµr´S

p´q
px´ yqD

p´q

0 px´ yq ` Sp`qpx´ yqD
p`q

0 px´ yqsβµ

“ ie2βµr´Apx´ yq `Bpx´ yqsβ
µ,

(6.59)

DSelf
II px´ yq “ p´iqe2βµrS

p`q
py ´ xqD

p`q

0 py ´ xq ´ Sp´qpy ´ xqD
p´q

0 py ´ xqsβµ

“ p´iqe2βµrBpy ´ xq ´ Apy ´ xqsβ
µ.

(6.60)

After that, we can take the Fourier transform of (6.59) and (6.60). For D̂Self
I pkq, we

have

D̂Self
I pkq “ iβαr´Âpkq ` B̂pkqsβ

α

“ iβαr´Θpk2
´m2

qΘp´k0
q

1

p4πq3
p
m2

pk0q2
´ 1q

!

p
m2

k2
` 1q{k `

m

2
βνβν

)

´
1

p4πq3
Θpk0

qΘpk2
´m2

qp1´
m2

k2
q

!

p1`
m2

k2
q{k `

m

2
βµβµ

)

sβα

“ iβαr
1

p4πq3
Sgnpk0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

p1`
m2

k2
q{k `

m

2
βµβµ

)

sβα,

(6.61)

where (6.48) and (6.57) are used.

Now, using the follow properties of β-matrices

βµβνβµ “ βν , (6.62)

βµβνβνβµ “ 4, (6.63)

we finally get

D̂Self
I pkq “ i

1

p4πq3
Sgnpk0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

p1`
m2

k2
qβα{kβ

α
`
m

2
βαβ

µβµβ
α
)

“ i
1

p4πq3
Sgnpk0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

p1`
m2

k2
q{k ` 2m

)

.

(6.64)

On the other hand, we can see that

DSelf
II pzq “ ´DSelf

I p´zq, (6.65)

then

D̂Self
II pkq “ ´D̂Self

I p´kq

“ ir
1

p4πq3
Sgnpk0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

´ p1`
m2

k2
q{k ` 2m

)

s.
(6.66)
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With D̂Self
I pkq and D̂Self

II pkq computed, we have to calculate their order of singular-

ity. To achieve these objectives, we must analyze the form of D̂Self
I p k

α
q that we write

bellow

D̂Self
I p

k

α
q “ i

1

p4πq3
Sgnp

k0

α
qΘpα´2k2

´m2
qp
m2α2

k2
´ 1qˆ

ˆ

!

p1`
α2m2

k2
qα´1{k ` 2m

)

.

(6.67)

It is straightforward to see that with the power counting function ρpαq “ α, we can

obtain the non null limit

lim
αÑ0`

ρpαqD̂Self
I p

k

α
q “ lim

αÑ0`
iαr

1

p4πq3
Sgnp

k0

α
qΘpα´2k2

´m2
qp
m2α2

k2
´ 1qˆ

ˆ

!

p1`
α2m2

k2
qα´1{k ` 2m

)

s

“ ´i
1

p4πq3
Sgnpk0

qp{k ` 2mq ‰ 0.

(6.68)

Using (3.92), we could see that the order of singularity for D̂Self
I pkq and D̂Self

II pkq

are

ωrD̂Self
I pkqs “ ωrD̂Self

II pkqs “ 1. (6.69)

Therefore, retarded parts could be obtained using the equivalent formula of (3.94)

in a special reference system where k “ pk0,0q

prSelf pk0
q “

i

p2πq
pk0
q
ω`1

ż

dq0

„

1

pq0 ´ i0qω`1pk0 ´ q0 ` i0q



pdpq0
q.

“
i

p2πq
pk0
q
2

ż

dq0

„

1

pq0 ´ i0q2pk0 ´ q0 ` i0q



pdpq0
q.

(6.70)
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Working first with DSelf
I pkq, we have the following computation

prSelfI pk0
q “

i

p2πq
pk0
q
2

ż

dq0

„

1

pq0 ´ i0q2pk0 ´ q0 ` i0q



D̂Self
I pq0

q

“
i

p2πq
pk0
q
2

ż

dq0

„

1

pq0 ´ i0q2pk0 ´ q0 ` i0q



tir
1

p4πq3
Sgnpq0

qˆ

ˆΘpq2
´m2

qp
m2

q2
´ 1q

!

p1`
m2

q2
q{q ` 2m

)

su

“ ´
mk02

64π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1q´

´
k02

128π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1qp1`

m2

q2
q{q

“ r1pk
0
q ` r2pk

0
q,

(6.71)

where

r1pk
0
q “ ´

mk02

64π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1q, (6.72)

r2pk
0
q “ ´

k02

128π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qˆ

ˆΘpq2
´m2

qp
m2

q2
´ 1qp1`

m2

q2
q{q.

(6.73)

Solving the integral r1, we have

r1pk
0
q “ ´

mk02

64π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1q

“
mk02

64π4

ż 8

0

dq0 1

pq0q2
Θpq02

´m2
qp1´

m2

q02 q

„

2q0

pk02
´ q02

` ik00q



“
mk02

64π4

ż 8

0

ds
1

s
Θps´m2

qp1´
m2

s
q

„

1

pk02
´ s` ik00q



, q02
Ñ s

“
mk02

64π4

ż 8

m2

ds
1

s
p1´

m2

s
q

„

1

pk02
´ s` ik00q



Θps´m2
q

“ r11 ` r12,

(6.74)

where

r11pk
0
q “

k02
m

64pπq4

ż 8

m2

ds
1

s

„

1

pk02
´ s` ik00q



Θps´m2
q, (6.75)

r12pk
0
q “ ´

k02
m

64pπq4

ż 8

m2

ds
m2

s2

„

1

pk02
´ s` ik00q



Θps´m2
q. (6.76)
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To solve the integral r11, we can use the Sokhotski–Plemelj formula (6.24) as follows

r11pk
0
q “

k02
m

64pπq4

ż 8

m2

ds
1

s

„

1

pk02
´ s` ik00q



Θps´m2
q

“
k02

m

64pπq4

ż 8

m2

ds
1

s

„

PV p
1

k02
´ s

q ´ iπSgnpk0
qδpk02

´ sqΘps´m2
q



“
m

64pπq4

„

PV

ż 8

m2

dsr
1

s
`

1

k02
´ s

s ´ iπSgnpk0
qΘpk02

´m2
q



“
m

64pπq4

«

log
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

q

ff

.

(6.77)

Now, solving r12 in the similar form, we have

r12pk
0
q “ ´

k02
m

64pπq4

ż 8

m2

ds
1

s

m2

s

„

1

pk02
´ s` ik00q



Θps´m2
q

“ ´
k02

m3

64pπq4

ż 8

m2

ds
1

s2

„

PV p
1

k02
´ s

q ´ iπSgnpk0
qδpk02

´ sqΘps´m2
q



“ ´
k02

m3

64pπq4

«

PV

ż 8

m2

ds

k02 r
1

s2
`

1

spk02
´ sq

s ´ iπSgnpk0
q
Θpk02

´m2q

k04

ff

“ ´
m3

64pπq4

«

1

m2
`

1

k02 log
|k02

´m2|

m2
´ iπSgnpk0

q
1

k02 Θpk02
´m2

q

ff

“
m

64pπq4

„

´1`
m2

k02 log
m2

|k02
´m2|

` iπSgnpk0
q
m2

k02 Θpk02
´m2

q



.

(6.78)

Replacing (6.77) and (6.78) into (6.74), we get

r1pk
0
q “ r11 ` r12

“
m

64pπq4

«

log
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

q

ff

`
m

64pπq4

„

´1`
m2

k02 log
m2

|k02
´m2|

` iπSgnpk0
q
m2

k02 Θpk02
´m2

q



“
m

64pπq4

«

´1` p1´
m2

k02 q log
|k02

´m2|

m2
´ p1´

m2

k02 qiπSgnpk
0
qΘpk02

´m2
q

ff

.

(6.79)



6.2. Self-Energy 93

Evaluating r2pk
0q, we obtain

r2pk
0
q “ ´

k02

128π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1qp1`

m2

q2
q{q

“ ´
k02

128π4

ż 8

0

dq0 1

pq0q2

„

2k0

k02
´ q02

` 2k0i0



Θpq2
´m2

qp
m4

q4
´ 1q{q

“ ´
k02

128π4
β0

ż 8

0

2dq0 1

pq0q2

„

1

k02
´ q02

` 2k0i0



Θpq2
´m2

qp
m4

q4
´ 1qq0, q02

Ñ s

“ ´
k02

128π4
β0

ż 8

m2

ds
1

s

„

1

k02
´ s` 2k0i0



p
m4

s2
´ 1q

“ r21pk
0
q ` r22pk

0
q,

(6.80)

where

r21pk
0
q “ ´

1

p2πq
pk0
q
3 1

p4πq3
β0

ż 8

m2

ds
1

s

„

1

k02
´ s` 2k0i0



p´1q, (6.81)

r22pk
0
q “ ´

1

p2πq
pk0
q
3 1

p4πq3
β0

ż 8

m2

ds
1

s

„

1

k02
´ s` 2k0i0



p
m4

s2
q. (6.82)

The integral (6.81) could be solved as follows

r21pk
0
q “ ´

1

p2πq
pk0
q
3 1

p4πq3
β0

ż 8

m2

ds
1

s

„

1

k02
´ s` 2k0i0



p´1q

“
1

p2πq
pk0
q
3 1

p4πq3
β0

ż 8

m2

ds
1

s

„

1

k02
´ s` 2k0i0



ð p6.77q

“
1

p2πq
pk0
q

1

p4πq3
β0

«

log
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

q

ff

.

(6.83)

Working with (6.82), we obtain

r22pk
0
q “ ´

k03
m4

128π4
β0

ż 8

m2

ds
1

s3

„

1

k02
´ s` 2k0i0



“ ´
k03

m4

128π4
β0

ż 8

m2

ds
1

s3

„

PV p
1

k02
´ s

q ´ iπSgnpk0
qδpk02

´ sqΘps´m2
q



“ ´
k0

128π4
β0

«

1

2
`
m2

k02 `
m4

k04 plog
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

qq

ff

(6.84)
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Replacing (6.84) and (6.83) into (6.80), we have

r2pk
0
q “ r21pk

0
q ` r22pk

0
q

“ ´
k0

128π4
β0

„

1

2
`
m2

k02`

` p
m4

k04 ´ 1qplog
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

qq



(6.85)

With r1 and r2 given by the expressions (6.79) and (6.85), we obtain for prSelfI pk0q

the following form

prSelfI pk0
q “

“ r1pk
0
q ` r2pk

0
q

“
1

64pπq4
m

«

´1` p1´
m2

k02 q log
|k02

´m2|

m2
´ p1´

m2

k02 qiπSgnpk
0
qΘpk02

´m2
q

ff

´
1

p2πq
k0 1

p4πq3
β0

«

1

2
`
m2

k02 ` p
m4

k04 ´ 1qplog
|k02

´m2|

m2
´ iπSgnpk0

qΘpk02
´m2

qq

ff

“
1

64pπq4

„

´m`mp1´
1

b2
qplog |b2

´ 1| ´ iπSgnpk0
qΘpk02

´m2
qq



`
1

64pπq4

„

´
{k

4
´
m2{k

2k02 ´
{k

2
p

1

b4
´ 1qplog |b2

´ 1| ´ iπSgnpk0
qΘpk02

´m2
qq



“
1

64pπq4

„

´m´
{k

4
´
{k

2b2
`

"

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

*

ˆ

ˆ

´

log |b2
´ 1| ´ iπSgnpk0

qΘpk02
´m2

q

¯



,

(6.86)

where in the last line we return to a general reference system and b2 “ k2

m2 .

The intermediate distribution for that part is the term of (6.61) proportional to

Apkq, that term is given by

r1SelfI pkq “ ´ir
1

p4πq3
Θp´k0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

p1`
m2

k2
q{k ` 2m

)

s. (6.87)

Therefore, numerical part of the 2-point distribution TIpx, yq in momentum space
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is given by the subtraction

tSelfI pkq “ prSelfI pkq ´ r1SelfI pkq

“
1

64pπq4

„

´m´
{k

4
´
{k

2b2
`

"

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

*

ˆ

ˆ

´

log |b2
´ 1| ´ iπSgnpk0

qΘpk02
´m2

q

¯



´

´ t´ir
1

p4πq3
Θp´k0

qΘpk2
´m2

qp
m2

k2
´ 1q

!

p1`
m2

k2
q{k ` 2m

)

su

“
e2

64pπq4

„

´m´
{k

4
´
{k

2b2
`

!

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



.

(6.88)

Because of the singular order ω “ 1, the general solution is given by

rtSelfI pkq “
e2

64pπq4

„

´m´
{k

4
´
{k

2b2
`

!

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



` C0 ` C1{k.

(6.89)

Now, we will consider the causal splitting of Dself
II . Because its order of singularity

ω “ 1, the retarded part is given by

prSelfII pk0
q “

i

p2πq
pk0
q
2

ż

dq0

„

1

pq0 ´ i0q2pk0 ´ q0 ` i0q



D̂self
II pq

0
q

“
i

p2πq
pk0
q
2

ż

dq0

„

1

pq0 ´ i0q2pk0 ´ q0 ` i0q



ˆ

ˆ tir
1

p4πq3
Sgnpq0

qΘpq2
´m2

qp
m2

q2
´ 1q

!

´ p1`
m2

q2
q{q ` 2m

)

su

“ ´
mk02

p64π4q

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1q

`
k02

128π4

ż

dq0

„

1

pq0q2pk0 ´ q0 ` i0q



Sgnpq0
qΘpq2

´m2
qp
m2

q2
´ 1qp1`

m2

q2
q{q

“ r1pk
0
q ´ r2pk

0
q,

(6.90)
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where r1 and r2 are the same of (6.72) and (6.73). Therefore

prSelfII pk0
q “ r1pk

0
q ´ r2pk

0
q

“
1

64pπq4

„

´m`
{k

4
`
{k

2b2
`

!

mp1´
1

b2
q `

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπSgnpk0

qΘpk02
´m2

q

¯



.

(6.91)

The intermediate distribution associated with prSelfII pk0q is given by the term propor-

tional to Bp´zq of (6.31). The Fourier transform of that term is

pr1SelfII pk0
q “ ´DSelf

I p´zq

“ ´iβαrBp´kqsβ
α

“ ´iβαr´
1

p4πq3
Θp´k0

qΘpk2
´m2

qp1´
m2

k2
q

!

´ p1`
m2

k2
q{k `

m

2
βµβµ

)

sβα

“ i
1

p4πq3
Θp´k0

qΘpk2
´m2

qp1´
1

b2
q

!

´ p1`
1

b2
q{k ` 2m

)

“ i
1

p4πq3
Θp´k0

qΘpk2
´m2

q

!

´ p1´
1

b4
q{k ` 2mp1´

1

b2
q

)

,

(6.92)

where the properties (6.62) and (6.63) have been used.

The numerical part of the 2-point distribution TIIpx, yq in the momentum space is

given by the following subtraction

tSelfII pkq “ prSelfII pkq ´ r1SelfII pkq

“
1

64pπq4

„

´m`
{k

4
`
{k

2b2
`

!

mp1´
1

b2
q `

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπSgnpk0

qΘpk02
´m2

q

¯



´

´ ti
1

p4πq3
Θp´k0

qΘpk2
´m2

q

!

´ p1´
1

b4
q{k ` 2mp1´

1

b2
q

)

u

“
e2

64pπq4

„

´m`
{k

4
`
{k

2b2
`

!

mp1´
1

b2
q `

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



.

(6.93)

Again, because of the order of singularity ω “ 1, the general solution is given by
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the following formula

rtSelfII pkq “
e2

64pπq4

„

´m`
{k

4
`
{k

2b2
`

!

mp1´
1

b2
q `

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



` C3 ` C4{k.

(6.94)

Using (6.93) we conclude that

tSelfII pkq “ tSelfI p´kq. (6.95)

Returning to the configuration space, we get

T
p4q
2 px, yq “ i : ψpxqrtSelfI px´ yqψpyq :

` i : ψpyqrtSelfII px´ yqψpxq :

“ i : ψpxqttSelfI px´ yq ` C0δpx´ yq ` C1 {B
µ
δpx´ yquψpyq :

` i : ψpyqttSelfI py ´ xq ` C3δpx´ yq ` C4 {B
µ
δpx´ yquψpxq : .

(6.96)

Using the symmetry property of Tn under the permutation of variables, we see that

C0 “ C3 and C1 “ C4. Therefore, we rewrite T
p4q
2 px, yq as

T
p4q
2 px, yq “ i : ψpxqΣpx´ yqψpyq :

` i : ψpyqΣpy ´ xqψpxq :
(6.97)

where

Σ̂pkq “
e2

64pπq4

„

´m´
{k

4
´
{k

2b2
`

!

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



` C0 ` C1{k.

(6.98)

Similar to vacuum polarization, to obtain the constants C0 and C1, we can determine

the propagator loop corrections for a scalar DKP particle. Therefore, we need to prove

that the processes with more than two self-energies loop corrections have the same order

of singularity. We will see this in the next Chapter.





Chapter 7

(Re)Normalizability of SDKP

Because it contained speculations too remote from reality to be of interest

to the reader.

Nature Editors to Fermi

As we saw in Chapter 2, the causal splitting procedure for singular distributions

left constants that we need to find with the help of physical properties different to

causality. Because this procedure occur at each order in the perturbation expansion of

S ´matrix, we can use the singular order to define when a theory is renormalizable,

non-renormalizable, and super-renormalizable in the following form:

• We call a theory renormalizable when at each order of perturbation, a finite

number of constants appears from the causal splitting procedure.

• The theory is non-renormalizable when the order of singularity increase at higher

order of perturbation.

• A super-renormalizable theory implies a finite number of constants for the low

order of perturbation expansion.

In this chapter we will investigate the renormalizability of the SDKP theory assum-

ing that the intermediate and causal distributions have the same order of singularity.
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(a) (b) (c)

(d) (e) (f)

Figure 7.1:

Figure 7.2:

7.1 Order of singularity of the intermediate distri-

butions by an independent contraction

In the computation of intermediate distribution, we have the tensorial product of two

n-point distributions Tr and Ts with numerical parts t1 and t2, respectively. From Wick

theorem, many graphs emerge combining many different kind of contractions. All these

graphs could be constructed as combinations of what we called independent contractions

as shown in Fig. 7.1.

For the purpose of this thesis, we will determine in a general way the order of

singularity of a graph coming from l independent contractions of the form (a), (b), (c),

and (d) in Fig. 7.1. We will denote by Spxrj ´ ysjq these contractions as shown in Fig.

7.2.
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Before using Wick theorem, the n-point distributions Tr and Ts have the following

form

Tr,s “:
n
ź

j“1

ψ̄pxkjqt1,2px1, . . . , xr,sq
n
ź

j“1

ψpxnjq ::
m
ź

j“1

Apxmjq :, (7.1)

where n represents the number of external ψ̄ DKP fields (or ψ DKP fields) and m the

number of external electromagnetic four potential fields. Note that we do not write

explicitly the Lorentz index, as we will see later, that will not be necessary.

After the l contractions from the tensor product TrTs, we will obtain the following

numerical part

t1px1, . . . , xrqr
l

ź

j

Spxrj ´ ysjqst2py1, . . . , ysq, (7.2)

where j “ 1, . . . , l.

Using the translation invariance of t1 and t2, we can rewrite (7.2) as

t1px1 ´ xr, . . . , xr´1 ´ xrqr
l

ź

j

Spxrj ´ ysjqst2py1 ´ ys, . . . , ys´1 ´ ysq, (7.3)

where we can see that there are 4r ` 4s´ 4 independent variables.

To evaluate the calculations simpler, we will introduce a new group of variables ξJ ,

ρI and ρ as

ξJ “ xJ ´ xr, ρI “ yI ´ ys, ρ “ xr ´ ys, (7.4)

where J “ 1, . . . , r ´ 1 and I “ 1, . . . , s ´ 1. The new set of variables allows us to

rewrite the numerical part (7.3) in the following form

t1pξ1, . . . , ξr´1qr

l
ź

j

Spξrj ´ ρsj ` ρqst2pρ1, . . . , ρs´1q

” tpξ1, . . . , ξr´1, ρ1, . . . , ρs´1, ρq,

(7.5)

where t represent the numerical part of the new graph.

Now, we will compute the Fourier transform of t̂p~ξ, ~ρ, ρq as

t̂pp1, . . . , pr´1, q1, . . . , qs´1, qq

“

ż

d4r´4ξd4sρei~p.
~ξ`i~q.~ρ`iqρtp~ξ, ~ρ, ρq

“

ż l
ź

j

rd4kjst̂1p. . . , pi ´ kri , . . .q
l

ź

j

rSpkjqst̂2p. . . , qi ` ksi , . . .qδpq ´
l
ÿ

j

kjq,

(7.6)
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where ~ξ “ pξ1, . . . , ξr´1q, ~ρ “ pρ1, . . . , ρs´1q, ~p “ pp1, . . . , pr´1q, ~q “ pq1, . . . , qs´1q, and

tri, siu are the indices of two points joined by a contraction.

To obtain the order of singularity of t̂p~p, ~q, qq, we will apply (7.6) to a test function

f̌ P Rm where m “ 4pr ` s´ 1q

xt̂, f̌y “

ż

d4r´4p

ż

d4s´4q

ż

d4qt̂p~p, ~q, qqf̌p~p, ~q, qq

“

ż

d4r´4p

ż

d4s´4q

ż

d4q

ż l
ź

j

rd4kjSpkjqst̂2p. . . , qi ` ksi , . . .qˆ

ˆ t̂1p. . . , pi ´ kri , . . .qδpq ´
l
ÿ

j

kjqf̌p~p, ~q, qq.

(7.7)

In the integrals under ~q and ~p we could do the following transformation

$

&

%

qj Ñ qj ´ ksj

pj Ñ pj ` krj ,
(7.8)

then we can rewrite (7.7) as

xt̂, f̌y “

ż

d4r´4p

ż

d4s´4qt̂2p~qqt̂1p~pq

ż

d4q

ż l
ź

j

rd4kjSpkjqs

δpq ´
l
ÿ

j

kjqf̌p. . . , qv ´ ksv , . . . , pj ` krj , . . . , qq

“

ż

d4r´4p

ż

d4s´4qt̂2p~qqt̂1p~pqF p~p, ~q, qq,

(7.9)

where

F p~p, ~q, qq “

ż

d4q

ż l
ź

j

rd4kjSpkjqsδpq ´
l
ÿ

j

kjqf̌p. . . , qv ´ ksv , . . . , pj ` krj , . . . , qq.

(7.10)

The next step is compute the form of a rescaled distribution xt̂p ~p
α
, ~q
α
, q
α
q, f̌y “

xt̂p
~P
α
q, f̌y as follows

xt̂p
~P

α
q, f̌y “ αmxt̂, f̌pα~P qy

“ αm
ż

d4r´4p

ż

d4s´4qt̂2p~qqt̂1p~pqFαp~p, ~q, qq,

(7.11)
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where ~P “ p~p, ~q, qq, and

Fαp~p, ~q, qq “

ż

d4q

ż l
ź

j

rd4kjSpkjqsδpq ´
l
ÿ

j

kjqˆ

ˆ f̂p. . . , αpqj ´ ksjq, . . . , αppj ` krjq, . . . , αqq.

(7.12)

We introduce the rescaled variables k̃ “ αk and q̃ “ αq, and we will use the order

of singularity ω of the contraction Spkjq, then

lim
αÑ0`

αωSp
k̃

α
q “ S0pk̃q, (7.13)

where S0pk̃q is the asymptotic distribution of Spk̃q. Therefore, for Fα we have the

following form

Fαp~p, ~q, qq “

ż

d4q̃

α4

ż l
ź

j

r
d4k̃j
α4

Sp
k̃j
α
qsα4δpq̃ ´

l
ÿ

j

k̃jqˆ

ˆ f̌p. . . , αqj ´ k̃sj , . . . , αpj ` k̃rj , . . . , q̃q

“
1

α4l

ż

d4q̃

ż l
ź

j

rd4k̃jSp
k̃j
α
qsδpq̃ ´

l
ÿ

j

k̃jqˆ

ˆ f̌p. . . , αqj ´ k̃sj , . . . , αpj ` k̃rj , . . . , q̃q.

(7.14)

Now, using the rescaled variables αpi “ p̃i and αqi “ q̃i, we can rewrite (7.11) as

xt̂p
p

α
q, fy “ αm

ż

d4´4p̃

α4r´4

ż

d4s´4 q̃

α4s´4
t̂2p

~̃q

α
qt̂1p

~̃p

α
qFαp

~̃p

α
,
~̃q

α
q

“
α4

α4l

ż

d4r´4p̃

ż

d4s´4q̃t̂2p
~̃q

α
qt̂1p

~̃p

α
q

ż

d4q̃

ż l
ź

j

rd4k̃jSp
k̃j
α
qsˆ

ˆ δpq̃ ´
l
ÿ

j

k̃jqf̂p. . . , q̃j ´ k̃sj , . . . , p̃j ` k̃rj , . . . , q̃q.

(7.15)

Finally, considering the two orders of singularity ωrt1s “ ω1 and ωrt2s “ ω2, we can
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i

ωi 0 -2 1 2

Table 7.1: Order of singularity of the four kind of contractions that we compute in the

two previous Chapters.

see that the following limit exists

lim
αÑ0`

αω1`ω2´4`4l`lω
xt̂p

p

α
q, fy

“ lim
αÑ0`

ż

d4r´4p̃

ż

d4s´4q̃αω2 t̂2p
~̃q

α
qαω1 t̂1p

~̃p

α
q

ż

d4q̃

ż l
ź

j

rd4k̃jα
ωSp

k̃j
α
qsˆ

ˆ δpq̃ ´
l
ÿ

j

k̃jqf̂p. . . , q̃j ´ k̃sj , . . . , p̃j ` k̃rj , . . . , q̃q

‰ 0,

(7.16)

then, the order of singularity of t̂ppq is

ωrts “ ω1 ` ω2 ´ 4` 4l ` lω. (7.17)

The result (7.17) could be generalized for li contractions of each different kind i as

follows

ωrts “ ω1 ` ω2 ´ 4`
li
ÿ

i

p4` ωiqli. (7.18)

In Table 7.1, we show the order of singularity of the four kind of independent

contraction that we will use in this Chapter.

7.1.1 Normalization of vacuum polarization tensor

In section 6.1, the causal splitting procedure gave us a vacuum polarization tensor Πµν

with three constants that we need to determine with other physical properties. We can

rewrite that result here as

Π̂µν
pkq “

1

p2πq2
p
kµkν

k2
´ gµνqΠpkq, (7.19)
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where

Πpkq “
! e2

12p2πq2
pk0
q
4

8
ż

4m2

ds
r1´ 4m2

s
s
3
2

sppk0q2 ´ sq

)

` C0 ` Cαk
α
` C2k

2. (7.20)

To have parity symmetry, it is straightforward to note that

Cα “ 0, (7.21)

but for the others constants we must do an extra effort.

Gauge invariance in second order is not helpful, because it tell us that C0 and C2

must be proportional to pk
µkν

k2
´ gµνq.

Similar to standard formalism, we will compute the total photon propagator Dµν
Tot

to get a structure that allows us to fix the constants. The latter comes from the sum

of loop corrections by polarization insertions in Moller or Bhabha scattering process.

Therefore, Dµν
Tot is given by the following expression

Dµν
Totpx´ yq

“

“ ` ` ` . . .

“ gµνDF
0 px´ yq `

ż

d4z1d
4z2D

F
0 px´ z1qΠ

µν
pz1 ´ z2qD

F
0 pz2 ´ yq`

`

ż

d4z1 . . . d
4z4D

F
0 px´ z1qΠ

µ
λpz1 ´ z2qD

F
0 pz2 ´ z3qˆ

ˆ Πλν
pz3 ´ z4qD

F
0 pz4 ´ yq ` . . . .

(7.22)

But, before determining the sum (7.22), we must know if all these terms have the

same order of singularity. Let us examine the terms derived from Bhabha processes.

There are two forms to obtain the 1-loop correction for the Bhabha scattering diagram.

The first one is contract two DKP fields between a Bhabha diagram and a basic vertex.

After that, we must contract two electromagnetic four potential, one from the polarized

vertex and the other from a basic vertex. The last process is represented in the following

equations

ˆ “ , (7.23)



106 7. (Re)Normalizability of SDKP

ˆ “ . (7.24)

The corresponding orders of singularity can be computed using (7.18), then we have

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.1

“ p´2q ` p0q ´ 4` p4` p2qq.1 “ 0,
(7.25)

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.1

“ p0q ` p0q ´ 4` p4` p´2qq.1 “ ´2.
(7.26)

The second form to obtain the 1-loop correction, is contracting two DKP fields from

two Bhabha diagrams as follows

ˆ “ , (7.27)

with a order of singularity given by

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.1

“ p´2q ` p´2q ´ 4` p4` p2qq.1 “ ´2.
(7.28)

Similarly, for the construction of 2-loop correction by vacuum polarization insertion

we will have the same order of singularity ω “ 2, this means that the summation (7.22)

is consistent with the theory.

Now, going to momentum space, the summation (7.22) becomes convolutions giving

us the following expression

D̂µν
Totppq “ gµνD̂F

0 ppq ` D̂
F
0 ppqΠ̄

µν
ppqDF

0 ppq`

` D̂F
0 ppqΠ̄

µ
λppqD̂

F
0 ppqΠ̄

λν
ppqD̂F

0 ppq ` . . .

“ DF
0 pg

µν
` Π̄µ

λD̂
λν
Totq,

(7.29)

where

Π̄µν
ppq “ p2πq4Π̂µν

“ p2πq2p
kµkν

k2
´ gµνqΠppq. (7.30)

Multiplying (7.29) by the left with pDF
0 q
´1 and by the right with pD´1

Totqν
θ, we obtain

pDF
0 q
´1gµθ ´ Π̄µθ

“ pD´1
Totq

µθ. (7.31)
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Replacing (7.30) into (7.31) and using that pDF
0 q
´1 “ ´p2πq2p2, we obtain

pD´1
Totq

µθ
pkq “ ´p2πq2k2gµθ ´ p2πq2p

kµkθ

k2
´ gµθqΠ

“ p2πq2
”

pgµθ ´
kµkθ

k2
qpΠ´ k2

q ´
kµkθ

k2
k2
ı

“ p2πq2
”

P µθ
1 pΠ´ k

2
q ´ P µθ

2 k2
ı

,

(7.32)

where P1,2 are projectors which fulfill the following property

pP1q
µν
“ gµθ ´

kµkθ

k2
, (7.33)

pP2q
µν
“
kµkθ

k2
, (7.34)

pPiq
µ
νpPjq

ν
λ “ δijδ

µ
λ. (7.35)

Then, using (7.35), we can check that Dµθ
Totpkq is

Dµθ
Totpkq “ p2πq

´2
”

P µθ
1

1

Π´ k2 ` i0`
´ P µθ

2

1

k2 ` i0`

ı

,

“ p2πq´2
”

pgµθ ´
kµkθ

k2
q

1

Π´ k2 ` i0`
´ p

kµkθ

k2
q

1

k2 ` i0`

ı

.

(7.36)

Notice that the second term in brackets of (7.36) will be null between transversal

polarized photon states, therefore we will concentrate our analysis in the first one. First

of all, if we separate the constant C0 from Πpkq, it will be a pole for the propagator

giving it mass. Because we know that the photon is massless, we fix this constant as

C0 “ 0. (7.37)

Secondly, if we separate the term C2k
2 from Πpkq, we can rewrite (7.36) in the

following form

Dµθ
Totpkq “ p2πq

´2
pgµθ ´

kµkθ

k2
q

Z

Π1 ´ k2 ` i0`
, Z “

1

1´ C2

, Π1 “ Zpπ ´ C2k
2
q,

(7.38)

which is equivalent to renormalize the “bare” electric charge in the standard formalism,

but in CPT the electric charge is already the physical one. Therefore, C2 must be fixed

as

C2 “ 0. (7.39)

With all constants fixed, we can normalize the vacuum polarization at k “ 0 as

Πp0q “ 0,
Πpkq

k2

ˇ

ˇ

ˇ

ˇ

k2“0

“ 0. (7.40)
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7.1.2 The non-renormalizability of Self Energy sector

Now, let us determine the constants that appear in the causal splitting process of the

self-energy function of the DKP propagator which we rewrite here as

T
p4q
2 px, yq “ i : ψpxqΣpx´ yqψpyq : `i : ψpyqΣpy ´ xqψpxq :, (7.41)

where

Σpkq “
e2

64pπq4

„

´m´
{k

4
´
{k

2b2
`

!

mp1´
1

b2
q ´

{k

2
p

1

b4
´ 1q

)

ˆ

ˆ

´

log |b2
´ 1| ´ iπΘpk02

´m2
q

¯



` C0 ` C1{k.

(7.42)

From (7.41), we can see that parity symmetry does not cancel the constant C1 as in

vacuum polarization. In consequence, we will try to determine the radiative correction

of the DKP propagator STot by insertions of self-energy functions as follows

STot “

“ ` ` ` . . .
(7.43)

But the problem in the computation of (7.43) is that the order of singularity of each

term is increasing. Consider the construction of the 1-loop correction coming from the

contraction of two Compton diagrams

ˆ “ . (7.44)

Using the formula (7.18), we obtain

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.1

“ p0q ` p0q ´ 4` p4` 1q.1 “ 1.
(7.45)

For the 2-loop correction we have

ˆ “ , (7.46)

with an order of singularity given by

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.1

“ p0q ` p1q ´ 4` p4` 1q.1 “ 2.
(7.47)
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Therefore, if we increase the number of self-energy insertions by one then the order

of singularity increases by one unit too. In CPT, the latter means that SDKP is a

non-renormalizable theory

7.1.3 The non-renormalizability of Photon-Photon scattering

Another sector where SDKP is non-renormalizable is the photon-photon scattering. We

can contract two DKP fields from two Compton diagrams to obtain the following

` “ . (7.48)

The order of singularity is

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.2l,

“ 0` 0´ 4` p4´ 0q2 “ 4.
(7.49)

Now, we can contract two electromagnetic four potentials to obtain

ˆ “ . (7.50)

The order of singularity of the new diagram is

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.2,

“ 4` 4´ 4` p4´ 2q2 “ 8.
(7.51)

Therefore, we can see that we have an increasing order of singularity which tell us

that the sector is non-renormalizable.

7.2 The „ pψ̄ψq2 term

In this section we want to show that it is possible to obtain a proportional term to

„ pψ̄ψq2. Starting from two Compton diagrams, we can contract two pair of photons
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as follows

ˆ “ . (7.52)

The order of singularity of the new diagram is

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.2,

“ 0` 0´ 4` p4´ 2q2 “ 0.
(7.53)

Now, because the order of singularity is ω “ 0, the four point distributions T4px1, . . . , x4q,

associated with the right hand side of (7.52), will have one term of the following form

T4px1, . . . , x4q “ . . .` e4λ4δpx1 ´ x4qδpx2 ´ x4qδpx3 ´ x4qˆ

ˆ
ÿ

i1ăi2,j1ăj2

ψ̄pxi1qψpxj1qψ̄pxi2qψpxj2q.
(7.54)

Replacing (7.54) in the expresion of the S-matrix, we will find the following term

S “ . . .`
1

4!

ż

d4x1d
4x2d

4x3d
4x4e

4λ4δpx1 ´ x4qδpx2 ´ x4qδpx3 ´ x4q,

“ . . .`

ż

d4x1
e4λ4

4

`

ψ̄px1qψpx1q
˘2
.

(7.55)

Therefore, the theory contains a sector proportional to „ pψ̄ψq2. We can show

that this sector is non-renormalizable. For example, contracting two pair of DKP fields

between the 4-DKP diagram and Bhabha or Moller processes, we obtain

ˆ “ . (7.56)

After that, the order of singularity is

ωr s “ ωr s ` ωr s ´ 4` p4` ωr sq.2,

“ 0` p´2q ´ 4` p4´ 0q2 “ 2.
(7.57)

It is important to clarify that the final diagram of (7.57) contains the term propor-

tional to „ pψ̄ψq2.



Chapter 8

Conclusions and perspectives

At the end of this Thesis it is clear that the main difference between SQED and SDKP

is the non-renormalizability of the last one. Therefore, we will analyze why this happens

looking back at our results.

In chapter 5 we used the principle of perturbative gauge invariance to determine the

correct form of the base term T1px1q to construct the S-Matrix for SDKP gauge theory.

With the term T1 we determine the differential cross section for the scattering of a scalar

particle via non-quantized electromagnetic field obtaining the same result as that in

SQED. After that, we used CPT to determine the causal 2-point distribution D2px1, x2q

which contain many processes: Moller, Bhabha, Compton, vacuum polarization and

self-energy.

The differential cross section computed for Bhabha, Moller and Compton processes

are the same for the ones obtained via SQED. We must highlight the case of Compton

scattering where we found a singular DKP propagator with order of singularity ω “ 0

because of the extra {p coming from the β-matrix algebra. The same happens for

SQED via CPT [26, 95] when two derivatives scalar fields are contracted via Wick

theorem. Furthermore, these singular propagators reproduce the second order terms

„ e2AµA
µφ˚φ and „ e2AµA

µψ̄ψ for SQED and SDKP, respectively. In SQED, via

CPT or Feynman diagrams, the term „ e2AµA
µφ˚φ is really important to obtain the

correct differential cross section because the contributions from the other diagrams are

null [94,95]. For SDKP the same happens as viewed in section 5.5.3.

In Chapter 6 we computed the vacuum polarization tensor and self energy finding

that they are singular propagators with orders of singularity ωr s “ 2 and ωr s “ 1,
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respectively. The non fixed constants coming from causal-splitting procedure were left

to be calculated in Chapter 7 because, before obtaining the complete photon and scalar

propagators, we need to study the renormalizability of the theory.

So, in Chapter 7 we found that the theory is non-renormalizable. Comparing our

computations with the reference [26], we can note that the renormalizability of SQED

is based on the presence of derivatives in the KGF field. The latter makes the order of

singularity ω of scattering processes indepent of the internal structure. The Compton

diagram in SDKP is equivalent to the one in SQED with the contraction of two deriva-

tives KGF fields, however Comptom diagrams with other kind of contractions do not

appear. Nevertheless, equivalence occurs because these diagrams do not contribute to

the calculation of the cross section but it will be reflected in the computation of the

complete DKP propagator.

For these reasons, we believe that SDKP represents an effective theory for a bound

state with 0-spin of two leptons coupled with an electromagnetic field. The latter could

explain why, in the computation of the form factor in the semileptonic decay Kl3 [11],

the use of the DKP fields to represent k and π particles gave a result closer to the

experimental value.

It is important to comment that A. A. Nogueira [96] found that in the case of general

SQED1 via DKP fields (GSDKP) the theory is renormalizable [96]. As shown by Soto

et al., the use of Podolsky fields makes general QED super renormalizable, what is

explained due to the smaller order of singularity in comparison to that of the Maxwellian

fields. The GSDKP via CPT is a future topic that we hope to study. Furthermore,

A. A. Nogueira found that the UV divergence of photon-photon scattering is solved by

gauge invariance and DKP algebra, so it is possible that the non renormalizability that

we found in this work could be solved in the same way.

With this idea in mind, for future projects we will investigate the possible composite

behavior of Higgs boson modeled by a neutral DKP field using CPT where spontaneous

symmetry breaking is not used [44]. We believe that the latter is possible considering

that the DKP algebra for scalar particles is a 5-order representation of the group SO(5)

[6] which is used to study composite Higgs models via spontaneous symmetry breaking

[98].

Another interesting topic is to investigate the Gribov theory of quark confinement

1A general theory means that the Maxwellian electromagnetic fields are generalized as Podolsky

electromagnetic fields.
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[21]. In this theory, a computational tool to obtain a confinement potential is to use

the 10-order DKP algebra to model gluons as spin-1 DKP field. It is possible that these

DKP-gluons represent a spin-1 bound state of two quarks.

We want to highlight that the study of SDKP is not complete yet. For example,

the gauge invariance of the full theory and the unitarity are sections that we have not

finished yet. We hope to complete the work as soon as possible.





Appendix A

Computations for the General

theory

A.1 Causality of intermediate distributions

Theorem A.1 Consider Y “ P YQ where P ‰ H, P XQ “ H, |Y | “ n´ 1,

and the point x such that x{PY , then:

• If tQ, xu ą P , |Q| “ n1, therefore

R1npY, xq “ ´Tn1`1pQ, xqTn´pn1`1qpP q (A.1)

• If tQ, xu ă P , |Q| “ n1, therefore

A1npY, xq “ ´Tn´pn1`1qpP qTn1`1pQ, xq (A.2)

Proof.

We will present the proof of (A.1). From the definition (3.24), we have

R1pY, xq “
ÿ

P2

T pW,xqrT pXq, (A.3)

where the sub-index of distributions Tn are not written for simplicity. P2 is all partitions

of Y in the non-empty and disjoints sub-sets W and X.

The causality condition P ă tQ, xu allows to split each partition W and X such

that
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• W “ W1 YW2, where tW1 “ W X P u ă tW2 “ W XQu,

• X “ X1 YX2, where tX1 “ X X P u ă tX2 “ X XQu.

Applying the causality decompositions (3.21) and (3.22) for the n-point distributions

in (A.3), we get

R1pY, xq “
ÿ

P 0
4

T pW2, xqT pW1, xqrT pX1qrT pX2q, (A.4)

where P 0
4 represents all partitions of Y in the four sub-sets tW1,W2, X1, X2u allowing

for an empty set but with the conditions X1 YX2 ‰ H ‰ W1 YW2. The latter means

that tW1, X1u and tW2, X2u are all independent partitions P 0
2 of P and Q, respectively.

Then, it is straightforward to rewrite (A.4) as

R1pY, xq “
ÿ

P2,Q

T pW2, xq
”

ÿ

P 0
2 ,P

T pW1, xqrT pX1q

ı

rT pX2q

` T pQ, xq
”

ÿ

P2,P

T pW1, xqrT pX1q

ı

rT pHq.
(A.5)

The first term of the right hand side of equation (A.5) is null because of the property

(3.15), and using the same property, we get

R1pY, xq “ T pQ, xq
”

ÿ

P2,P

T pW1, xqrT pX1q

ı

rT pHq

“ T pQ, xq
”

ÿ

P 0
2 ,P

T pW1, xqrT pX1q ´ T pP, xqrT pHq
ı

rT pHq

“ ´T pQ, xqT pP, xq

(A.6)

which proves the theorem for R1. Analog path could be use to proof the theorem for

A1. l

A.2 Wick Theorem

All products of n operator value distributions Oi “ Opxiq, are in normal order if they

read



A.3. Power counting function ρpxq 117

O1O2 . . .On “: O1 . . .On : `rO1 . . .Oi . . .Oj . . .On ` permutationss`

` rO1 . . .Oi . . .Ok . . .Oj . . .Ol . . .On ` permutationss ` . . . ,
(A.7)

where the contractions OpxiqOpxjq are defined as the c-number

OpxiqOpxjq “ rOp´qpxiq,Op`qpxjqs. (A.8)

A.3 Power counting function ρpxq

In this section we show some properties of ρpxq. Using a rescaled test function ψpx{aq,

we have from (3.2)

xd0pxq, ψp
x

a
qy “ lim

αÑ0`
xαmρpαqdpαxq, ψp

x

a
qy

“ lim
αÑ0`

xpaαqmρpαqdpaαxq, ψpxqy

“ lim
αÑ0`

ρpαq

ρpaαq
xpaαqmρpaαqdpaαxq, ψpxqy

“ lim
αÑ0`

ρpαq

ρpaαq
xd0pxq, ψpxqy

“ ρ0paqxd0pxq, ψpxqy,

(A.9)

where we define the function ρ0paq as

ρ0paq ” lim
αÑ0`

ρpαq

ρpaαq
. (A.10)

Via another rescaling of the test function, we have

xd0pxq, ψp
x

ba
q, y “ ρ0pbqxd0pxq, ψp

x

a
qy

“ ρ0pbqρ0pbq

ρ0pabq “ ρ0pbqρ0pbq.

(A.11)

The last line of (A.11) defines the form of ρ0 as

ρ0paq “ aω, (A.12)
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and, from the definition (A.10), we conclude that in the limit α Ñ 0` the power

counting ρpxq has the following form

lim
αÑ0`

ρpαq “ αωLpαq, (A.13)

where ω P R, and Lpαq is a slow varying or quasi-constant function of α in the neigh-

borhood of α “ 0. In practice, Lpαq could be omitted in the computations.

A.4 Normalized solution for the retarded numerical

distribution

In this section we will determine the explicit form for the normalized solution r̂qppq

defined in (3.87) as

r̂qppq “ r̂ppq ´
ω
ÿ

b“0

pp´ qqb

b!
rDbr̂spqq. (A.14)

From (3.85), we can compute rDbr̂spqq

rDbr̂spqq “ Db
”

p2πq´
m
2

ż

dkΘ̂pkqd̂pp´ kq

´ p2πq´m
ż

dkΘ̂pkq
ω
ÿ

|l|“0

pl

l!

ż

dp1rDl
p1 d̂pp

1
´ kqsw̌pp1q

ı

p“q

“ p2πq´
m
2

ż

dkΘ̂pkq
”

Db
qd̂pq ´ kq´

´ p2πq´
m
2

ω
ÿ

|l|“|b|

l!ql´b

l!pl ´ bq!

ż

dp1rDl
p1 d̂pp

1
´ kqsw̌pp1q

ı

.

(A.15)
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Regarding (A.15), the sum in the right hand side of (A.14) is

ω
ÿ

b“0

pp´ qqb

b!
rDbr̂spqq

“ p2πq´
m
2

ż

dkΘ̂pkq
”

ω
ÿ

b“0

pp´ qqb

b!
Db
qd̂pq ´ kq´

´ p2πq´
m
2

ω
ÿ

l“0

1

l!

´

l
ÿ

b“0

l!ql´b

pl ´ bq!

pp´ qqb

b!

¯

ż

dp1rDl
p1 d̂pp

1
´ kqsw̌pp1q

ı

“ p2πq´
m
2

ż

dkΘ̂pkq
”

ω
ÿ

b“0

pp´ qqb

b!
Db
qd̂pq ´ kq´

´ p2πq´
m
2

ω
ÿ

l“0

1

l!
pl
ż

dp1rDl
p1 d̂pp

1
´ kqsw̌pp1q

ı

,

(A.16)

where in the first equality we use the property
ω
ř

b“0

ω
ř

l“b

“
ω
ř

l“0

l
ř

b“0

. In the second equality

we use the following identity

pl “ rq ` pp´ qqsl “
l
ÿ

b“0

l!ql´b

pl ´ bq!

pp´ qqb

b!
. (A.17)

Finally, using (3.85) and replacing (A.16) into (A.14), we obtain

r̂qppq “ p2πq
´m

2

ż

dkΘ̂pkq
”

d̂pp´ kq ´
ω
ÿ

b“0

pp´ qqb

b!
Db
qd̂pq ´ kq

ı

, (A.18)

which is equation (3.88).

A.5 Central splitting solution

In this section we want to show the computation to get an explicit formula for the

central splitting solution r̂0ppq starting with the formula (3.89)

r̂0ppq “ p2πq
´m

2

ż

dkΘ̂pkq
”

d̂pp´ kq ´
ω
ÿ

b“0

pb

b!
Db
qd̂pq ´ kq

ˇ

ˇ

ˇ

q“0

ı

, (A.19)

and using rDb
qd̂pq ´ kqspq “ 0q “ p´1qbDb

kd̂p´kq, we can rewrite (A.19) as

r̂0ppq “ p2πq
´m

2

”

ż

dkΘ̂pkqd̂pp´ kq ´
ω
ÿ

b“0

pb

b!

ż

dkΘ̂pkqp´1qbDb
kd̂p´kq

ı

. (A.20)
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Integrating by parts the second integral in (A.20), we have

r̂0ppq “ p2πq
´m

2

”

ż

dkΘ̂pkqd̂pp´ kq ´
ω
ÿ

b“0

pb

b!

ż

dkDb
kΘ̂pkqd̂p´kq

ı

,

“ p2πq´
m
2

”

ż

dkΘ̂pp´ kqd̂pkq ´
ω
ÿ

b“0

pb

b!

ż

dkrDb
kΘ̂sp´kqd̂pkq

ı

,

“ p2πq´
m
2

ż

dkd̂pkq
”

Θ̂pp´ kq ´
ω
ÿ

b“0

pb

b!
rDb

kΘ̂sp´kq
ı

,

(A.21)

where in the second line we introduced the change of variables k Ñ k ´ p and k Ñ ´k

in the first and second integrals, respectively.

Now, we introduce the Fourier transform of Θpvxq “ Θpx0
1q for v “ p1,0, 0, . . .q

Θ̂pqq “ p2πq
m
2
´1δpq1, q2, . . . , qn´1q

i

q0
1 ` i0

`
, (A.22)

and considering q “ pq0
1,0, 0, . . . , 0q in the computation of (A.18), we will have in (A.21)

Db “ Bb and pb “ pp0
1q
b, so that

r̂0ppq “ p2πq
´m

2

ż

dkd̂pkq
”

Θ̂pp´ kq ´
ω
ÿ

b“0

pp0
1q
b

b!
rB
b
kΘ̂sp´kq

ı

,

“
i

2π

ż

dk0
1d̂pk

0
1,p, . . . , pn´1q

” 1

p0
1 ´ k

0
1 ` i0

`
`

ω
ÿ

b“0

pp0
1q
b
´ 1

k0
1 ´ i0

`

¯ı

,

“
i

2π

ż

dk0
1d̂pk

0
1,p, . . . , pn´1q

”

pp0
1q
ω`1

pk0
1 ´ i0

`qω`1pp0
1 ´ k

0
1 ` i0

`q

ı

.

(A.23)

Introducing the change of variables k0
1 Ñ t1p

0
1 and doing the same change of reference

system as in the regular case, we obtain the covariant formula

r̂0ppq “
i

2π
Sgnpp0

1q

ż

dt1
d̂pt1p1, p2, . . . , pn´1q

pt1 ´ i0`qω`1p1´ t1 ` iSgnpp0
1q0

`q
, (A.24)

which is valid for p1 P tΓ
`
1 Y Γ´1 u.

Similar to the regular distribution case, we could choose the vector v to get a formula

for r̂0ppq dependent on the integral of any pj P tΓ
`
1 Y Γ´1 u. But, differently here, it will

be impossible to get an independent formula as (3.78).

For a second order solution we get

r̂0ppq “
i

2π
Sgnpp0

q

ż

dt
d̂ptpq

pt´ i0`qω`1p1´ t` iSgnpp0q0`q
, (A.25)

this is equation (3.90).



A.6. Symmetry of retarded formulas 121

A.6 Symmetry of retarded formulas

In this section we show some properties for the central splitting solutions in the regular

and singular cases.

A.6.1 Regular Case

We will determine particular forms of (3.93) taking into account parity characteristics

in the integrals at second order of perturbation where the formula takes the following

form

r̂0ppq “
i

2π
Sgnpp0

q

8
ż

´8

dt
d̂ptpq

1´ t` iSgnpp0q0`
, p P Γ`1 Y Γ´1 . (A.26)

If d̂ppq is even

r̂0ppq “
i

2π
Sgnpp0

q

„

0
ż

´8

dt
d̂ptpq

1´ t` iSgnpp0q0`
`

8
ż

0

dt
d̂ptpq

1´ t` iSgnpp0q0`



“
i

2π
Sgnpp0

q

„

8
ż

0

dt
d̂ptpq

1` t` iSgnpp0q0`
`

8
ż

0

dt
d̂ptpq

1´ t` iSgnpp0q0`



“
i

2π
Sgnpp0

q

8
ż

0

dt
2d̂ptpq

1´ t2 ` iSgnpp0q0`
.

(A.27)

If d̂ppq is odd

r̂0ppq “
i

2π
Sgnpp0

q

„

0
ż

´8

dt
d̂ptpq

1´ t` iSgnpp0q0`
`

8
ż

0

dt
d̂ptpq

1´ t` iSgnpp0q0`



“
i

2π
Sgnpp0

q

„

´

8
ż

0

dt
d̂ptpq

1` t` iSgnpp0q0`
`

8
ż

0

dt
d̂ptpq

1´ t` iSgnpp0q0`



“
i

2π
Sgnpp0

q

8
ż

0

dt
2td̂ptpq

1´ t2 ` iSgnpp0q0`
.

(A.28)
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A.6.2 Singular Case

The same performed in the last subsections will be repeated but for the formula (3.94)

in the singular case

r̂0ppq “
i

2π
Sgnpp0

q

`8
ż

´8

dt
d̂ptpq

tω`1p1´ t` iSgnpp0q0`q
. (A.29)

If d̂ppq and ω are both even or odd

r̂0ppq “
i

2π
Sgnpp0

q

„

0
ż

´8

dt
d̂ptpq

tω`1p1´ t` iSgnpp0q0`q
`

8
ż

0

dt
d̂ptpq

tω`1p1´ t` iSgnpp0q0`q



“
i

2π
Sgnpp0

q

8
ż

0

dt
2td̂ptpq

tω`1p1´ t2 ` iSgnpp0q0`q
.

(A.30)

If d̂ppq and ω are even and odd respectively or opposite

r̂0ppq “
i

2π
Sgnpp0

q

„

0
ż

´8

dt
d̂ptpq

tω`1p1´ t` iSgnpp0q0`q
`

8
ż

0

dt
d̂ptpq

tω`1p1´ t` iSgnpp0q0`q



“
i

2π
Sgnpp0

q

8
ż

0

dt
2d̂ptpq

tω`1p1´ t2 ` iSgnpp0q0`q
.

(A.31)
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Appendix B

Calculation of differential cross

sections using wave packets

In the computation of differential cross section, the first step is to determine the tran-

sition amplitude Sif “ xin|S|outy. In the case of two particle scattering, the in and out

states in the Hilbert space are

|iny “ |ψiy “

ż

d3p1d
3q1ϕ1pp1qϕ2pq1q|p1,q1y, (B.1)

|outy “ |ψfy “

ż

d3p2d
3q2ψf pp2,q2q|p2,q2qy, (B.2)

where ϕ1,2 and ψf are wave packets sharply picked in p1 “ pi, p2 “ pf , q1 “ qi and

q2 “ qf .

Using (B.1) and (B.2), the transition amplitude take the following form

Sfi “

ż

d3p1d
3q1d

3p2d
3q2ψ

˚
f pp2,q2qS̃if pp1,q1,p2,q2qϕ1pp1qϕ2pq1q. (B.3)

where S̃if pp1,q1,p2,q2q is “transition amplitude” computed in the standard formalism

S̃if pp1,q1,p2,q2q “ xp2,q2|S|p1,q1y. (B.4)

In the framework of distribution theory, the wave packets are the test functions of

S̃if . This computation with wave packets is well defined, for that reason we choose it

to this thesis.

Now, the transition probability is defined as

Pif ” |Sif |
2. (B.5)
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Replacing (B.3) into (B.5), we have

Pif “

ż

d3p1d
3q1d

3p2d
3q2ψ

˚
f pp2,q2qSif pp1,q1,p2,q2qϕ1pp1qϕ2pq1qˆ

ż

d3p11d
3q11d

3p12d
3q12ψf pp

1
2,q

1
2qS

˚
if pp

1
1,q

1
1,p

1
2,q

1
2qϕ

˚
1pp

1
1qϕ

˚
2pq

1
1q.

(B.6)

Summing over all final states, as usual, we obtain
ÿ

f

Pif “

ż

d3p11d
3q11d

3p1d
3q1d

3p2d
3q2Sif pp1,q1,p2,q2qϕ1pp1qϕ2pq1qˆ

ż

d3p12d
3q12

ÿ

f

ψ˚f pp
1
2,q

1
2qψf pp2,q2qS

˚
if pp

1
1,q

1
1,p

1
2,q

1
2qϕ

˚
1pp

1
1qϕ

˚
2pq

1
1q

“

ż

d3p11d
3q11d

3p1d
3q1d

3p2d
3q2Sif pp1,q1,p2,q2qϕ

˚
1pp

1
1qϕ

˚
2pq

1
1qϕ1pp1qϕ2pq1qˆ

ż

d3p12d
3q12δpp2 ´ p12qδpq2 ´ q12qS

˚
if pp

1
1,q

1
1,p

1
2,q

1
2q

“

ż

d3p11d
3q11d

3p1d
3q1d

3p2d
3q2Sif pp1,q1,p2,q2qS

˚
if pp

1
1,q

1
1,p2,q2qˆ

ϕ˚1pp
1
1qϕ

˚
2pq

1
1qϕ1pp1qϕ2pq1q.

(B.7)

In the computation of the distribution S̃fi, it is possible to give it in the following

structure

S̃fipp1,q1,p2,q2q “ δpp2 ` q2 ´ p1 ´ q1qMpp1,q1,p2,q2q, (B.8)

where the delta function represents the conservation of energy and momentum, and

Mpp1,q1,p2,q2q has information about the scattering process. Replacing (B.8) into

(B.7), we have
ÿ

f

Pif “

ż

d3p11d
3q11d

3p1d
3q1d

3p2d
3q2δpp1 ` q1 ´ p2 ´ q2qMpp1,q1,p2,q2qˆ

ˆ δpp11 ` q
1
1 ´ p2 ´ q2qM

˚
pp11,q

1
1,p2,q2qϕ

˚
1pp

1
1qϕ

˚
2pq

1
1qϕ1pp1qϕ2pq1q.

(B.9)

Taking into account that the wave packets ϕ1 and ϕ2 are sharply peaked over pi and

qi, respectively, and M takes smaller values over the same coordinates, we can rewrite

(B.9) as
ÿ

f

Pif “

ż

d3p2d
3q2|Mpp1,q1,p2,q2q|

2
ˆ

ˆ

ż

d3p1d
3q1δpp1 ` q1 ´ p2 ´ q2qϕ1pp1qϕ2pq1qˆ

ˆ

ż

d3p11d
3q11δpp

1
1 ` q

1
1 ´ p2 ´ q2qϕ

˚
1pp

1
1qϕ

˚
2pq

1
1q,

(B.10)
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where the integrals in p1, p11, q1 y q11 depend of the initial states. Now, replacing the

delta functions by its integral representation

δppq “ p2πq´4

ż

d4xe˘ipx, (B.11)

we obtain

ÿ

f

Pif “

ż

d3p2d
3q2|Mpp1,q1,p2,q2q|

2
ˆ

ˆ rp2πq´8

ż

d3p1d
3q1ϕ1pp1qϕ2pq1q

ż

d4x1e
´ipp1`q1´pp2`q2qqx1ˆ

ˆ

ż

d3p11d
3q11ϕ

˚
1pp

1
1qϕ

˚
2pq

1
1q

ż

d4x2e
ipp11`q

1
1´pp2`q2qqx2s

”

ż

d3p2d
3q2|Mpp1,q1,p2,q2q|

2F pp2 ` q2q,

(B.12)

where we define the function F as

F ppq “ p2πq´8

ż

d3p1d
3q1ϕ1pp1qϕ2pq1q

ż

d4x1e
´ipp1`q1´pqx1ˆ

ˆ

ż

d3p11d
3q11ϕ

˚
1pp

1
1qϕ

˚
2pq

1
1q

ż

d4x2e
ipp11`q

1
1´pqx2 ,

(B.13)

and p “ pf ` qf .

From (B.13), we can construct the following free wave packets in x-space

rϕpxq “ p2πq´3{2

ż

d3pe´ipxϕppq. (B.14)

Replacing (B.14) into (B.13), we have

F ppq “ p2πq´2

ż

d4x1d
4x2rϕ1px1qrϕ2px1qrϕ

˚
1px2qrϕ

˚
2px2qe

ippx1´x2q. (B.15)

If we integrate the positive function F ppq in p, we obtain
ż

d4pF ppq “ p2πq2
ż

d4x|rϕ1pxq|
2
|rϕ2pxq|

2. (B.16)

Furthermore, F ppq must be concentrated around p “ p2 ` k2 “ p1 ` q1 « pi ` qi

because the wave packets ϕ1pp1q and ϕ2pq1q are sharply peaked around pi and qi,

respectively. Then, we can rewrite F ppq in the following form

F ppq “ δpp´ pi ´ kiqp2πq
2

ż

d4x|rϕ1pxq|
2
|rϕ2pxq|

2. (B.17)
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Replacing (B.17) into (B.12), we have

ÿ

f

Pif “

ż

d3p2d
3k2|Mppi,qi,p2,q2q|

2δpp2 ` k2 ´ pi ´ qiqp2πq
2

ż

d4x|rϕ1pxq|
2
|rϕ2pxq|

2,

(B.18)

where the wave packets rϕ1,2pxq represent the movement of the two bunches of particles

scattered.

Considering a laboratory frame, we will define rϕ1pxq representing the bunch of

particles in movement with velocity v and rϕ2pxq the target at rest, the wave packets

take the following forms

rϕ1pt,xq “ f1px` x1 ` vtq, (B.19)

rϕ2pt,xq “ f2pxq. (B.20)

Replacing (B.19) and (B.20) into (B.18), and averaging over the cylinder of radius

R parallel to v, we obtain

ÿ

f

Pif pRq “
p2πq2

πR2

ż

d3p2d
3q2|Mppi,qi,p2,q2q|

2δpp2 ` q2 ´ pi ´ qiqˆ

ˆ

ż

|x1K|ďR

d2x1K

ż

d4x|f1px` x1 ` vtq|2|f2pxq|
2.

(B.21)

Grouping the temporal integration variable from the third integral with d2x1K and

using the normalization of wave packets functions, we obtain

ÿ

f

Pif pRq “
p2πq2

πR2|v|

ż

d3p2d
3q2|Mppi,qi,p2,q2q|

2δpp2 ` q2 ´ pi ´ qiq. (B.22)

Replacing (B.22) into the following definition of the cross section

σlab ” lim
RÑ8

πR2
ÿ

f

Pif pRq, (B.23)

we obtain

σlab “ p2πq
2 Ei
|pi|

ż

d3p2d
3q2|Mppi,qi,p2,q2q|

2δpp2 ` q2 ´ pi ´ qiq. (B.24)

The formula (B.24), is written as Lorentz invariant in the following form

σ “ p2πq2
EqiEpi

a

ppiqiq2 ´m4

ż

d3pfd
3qf |Mppi,qi,p2,q2q|

2δppf ` qf ´ pi ´ qiq. (B.25)
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From ((B.24)), we could determine the cross section in the center of mass reference

replacing qi “ ´pi and qf “ ´pf

σc.m “ p2πq
2 E

2
?
E2 ´m2

ż

d3pfd
3qf |Mppi,qi,p2,q2|

2δ3
ppf ` qf ´ pi ´ qiqˆ

ˆ δp2Ef ´ 2Eq

“ p2πq2
E

2
?
E2 ´m2

ż

d3qf |Mppi,qi,p2,q2q|
2δp2Ef ´ 2Eq

“ p2πq2
E

4
?
E2 ´m2

ż

|qf |
2d|qf |dΩ|Mppi,qi,p2,q2q|

2δpEf ´ Eq

“ p2πq2
E

4
?
E2 ´m2

ż

|qf |EfdEfdΩ|Mppi,qi,p2,q2q|
2δpEf ´ Eq.

“ p2πq2
E

4

ż

EdΩ|Mppi,qi,p2,q2q|
2.

(B.26)

From the last result (B.26), we obtain the following differential cross section in the

center-of-mass reference system

dσc.m
dΩ

“ p2πq2
E2

4
|M |2. (B.27)
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